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SUJMMARY 

iv 

 

Over the past decades significant technological progress has been made in Very Deep Sub-Micron and 

nanometer technology domains. However, the performance improvement due to shrinking size of 

transistors has come at the cost of decreased reliability. Our research mainly studies power and energy 

efficient error detection techniques at circuit and system levels. 

At circuit level, we are studying the problem of synthesizing fault-secure and power efficient data path 

circuits from behavioral specifications. First, we propose an Integer linear programming (ILP) 

formulation to unify power consumption and fault security. Considering the new challenges of nanometer 

devices that include process parameters variations due to manufacturing imperfection and voltage 

variations due to manufacturing imperfection and runtime activity, we propose an ILP based 

comprehensive approach that considers power consumption and fault security simultaneously. The 

technique can adapt to the varying transient fault durations at different locations at runtime. Another 

challenge is the variation of fault rate of the IC chips from a same design, and time- or workload- 

dependent fault rate of an IC chip. To address this issue, we propose an adaptive CED technique for linear 

digital systems. By exploiting the linearity, the proposed CED technique performs one re-computation for 

r normal computations, where r is referred to as check ratio. The check ratio r can be adjusted on-line to 

perform more or less frequent CED operations according to the actual need of CED. 

My research also involves studying the security concern of the scan-based Design-for-Test (DFT). 

Although scan-based DFT is a powerful testing scheme, we show that it can be used to retrieve the 

information stored in a crypto chip thus compromising its theoretically proven security. 

At system level, we study power efficient task scheduling algorithm under the reliability constraint for 

real-time systems. The popular deployed Dynamic Voltage and Frequency Scaling (DVFS)-enabled 

processors can run at lower speeds to conserve energy at the cost of extended circuit delay and increased 

fault susceptibility. For a hard real-time system subject to faults, finding the optimal schedule of tasks that 

guarantees feasibility and reliability and minimizes energy consumption is of paramount significance. In 
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our research, we study the trade-off between reliability and energy efficiency, and propose a three-phase 

approach that produces a near-optimal schedule in polynomial time, O(L
2
·K·lg(K)+K

2
) for K tasks and L 

voltage/frequency levels. 
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Chapter 1. Motivation 

Over the past decades significant technological progress has been made in Very Deep Sub-Micron 

(VDSM) and nanometer technology domains. However, the performance improvement due to shrinking 

size of transistors that enables denser and smaller chips running at faster clock speeds and consuming less 

power has come at the cost of decreased reliability, as warned by the International Technology Roadmap 

of Semiconductors (ITRS). Besides inherent design defects such as ground bounce, IR drop, leakage, and 

charge sharing, densely packed chips are also highly susceptible to environment-induced Single Event 

Upsets (SEU) and Single Event Latchups (SEL). Faults occur when ions or electro-magnetic radiation 

strikes a sensitive device node and causes a transient or persistent change of the state of the node. To 

compensate for the inevitable increase of failures, and to avoid revenue losses, yield reduction, and time-

to-market slowdown, the ITRS urges “automatic insertion of robustness into the design.”  

On the other hand, design for power efficiency is now a domain under intensive research due to increased 

chip density and clock frequency. Energy efficiency is crucial to many real-time systems due to their 

limited energy supply and severe thermal constraints of the operating environment. Power reduction 

techniques can help reduce power dissipation, extend battery lifetime, improve noise margin, and reduce 

packaging and cooling cost. 

Until recently little research has been done to jointly consider both fault security and power efficiency. 

For systems like surveillance, satellites, and life-support implanted devices that require both fault 

tolerance and energy efficiency, there is a lack of efficient solutions. Simply applying fault tolerance 

techniques and energy minimization techniques one after the other only results in inferior quality. This is 

mainly due to the direct conflict between the two objectives, as fault detection is usually achieved through 

redundancy (space, time, or information), and a redundant system unavoidably consumes more power 

than its non-redundant version. This conflict must be addressed properly since the need for power 

efficiency and fault security continues rising while the demand for faster and better systems never stops. 
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However, since the techniques for the two design objectives are developed independently, they inevitably 

achieve one but fail the other. For example, exploiting Register-Transfer (RT) level operation-to-cycle 

schedule and operation-to-unit binding to reduce switching activities will tend to disturb the schedule and 

binding tuned for fault detection, and vice versa. Further, the existing circuit level power-reduction 

techniques do not exploit the unique characteristics of faults and redundant computations, and will not 

result in good quality. Similarly when we are performing frequency assignment at system level, if one 

minimizes energy first, i.e. allocating slack to slowing down normal task executions, the remaining slack 

may not be enough for fault recovery. If reservation of recovery is done before energy minimization, re-

executions are treated as normal tasks and receive slacks proportionally – those slacks are wasted when 

faults are absent – a more possible situation than the situation where faults have occurred, according to 

the current fault rates of hardware systems. In fact, the two objectives cannot be achieved one after the 

other at both circuit level and system level. This calls for comprehensive approaches that achieve both 

objectives at the same time, which is the topic of our research. 
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Chapter 2. Circuit level techniques 

 Introduction 2.1.

In this section, we introduce some basic concepts and assumptions used in our research. 

2.1.1. High level synthesis  

High level synthesis is the process of transforming a behavioral description of the system into a register 

transfer level (RTL) implementation. High level synthesis can be divided into several tasks, such as 

scheduling, binding, register allocation, interconnection determination and clock selection. We assume 

that the behavioral specification, which is usually provided in a hardware description language, has been 

compiled into a control-data flow graph (CDFG). Vertices in the graph represent operations and edges in 

the graph denote data dependencies. The process of scheduling assigns a start execution time to each 

operation in the CDFG while binding assigns a hardware unit to each operation. Clock selection refers to 

the procedure of choosing a value for the system clock period. An example is shown in Figure 1. 
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Figure 1 High Level Synthesis Flow 

2.1.2. Fault security 



4 

 

 

 

 A circuit is said to be fault-secure with respect to a specified class of faults if, on the occurrence of any 

fault from the class, the circuit produces either the correct output or signals an error [1][2]. The fault 

model that we use in this work assumes the fault to be confined to a single unit in the circuit (e.g., adder, 

multiplier, etc.). The fault can last for any duration (i.e., it may be permanent or transient) and can cause 

an arbitrary error at the unit's output [3]. Algorithm level duplication with comparison is the traditional 

method of providing fault security to a system [4]. The two circuits that execute the same computation 

will be referred to as the normal computation (NC) and the recomputation (RC). This method guarantees 

fault security against any fault that affects either NC or RC, but not both.  

1n 2n

+1n 1r 2r

+1r

M1 M2

M2 M1A1

A2+2n

+2r

A1

A2
X

X

Sub-DFG1

Sub-DFG2

 

Figure 2 Hybrid time and space redundancy 

Algorithm level recomputing can be implemented by time, space, or hybrid redundancy. In time 

redundancy based recomputing, RC has to start after the transient fault in NC dies out to satisfy fault 

security. It may involve significant time overhead. In space redundancy based recomputing, operations in 

NC and RC cannot be assigned to the same functional unit in order to satisfy fault security. Straight 

forward implementation of space redundancy leads to datapath duplication. Due to the disadvantages of 

pure time or space based techniques, hybrid time & space redundancy techniques are proposed. In these 

techniques, checkpoints are inserted to partition the DFG into sub-dfgs. As a result, operations in NC and 

RC can share resource without violating fault security if they are in different sub DFGs as shown in 

Figure 2. To achieve fault security, all operations must be secured. An operation is secured when the 

following “No-Sharing” rule is satisfied: 
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• The NC copy of the datapath from the primary inputs to the output of this operation does not share any 

hardware units with the corresponding RC copy. 

• The NC copy of the output of the operation is compared with the corresponding RC copy. 

In this example, checkpoint insertions create opportunities for resource minimization. In our technique, 

we assume the number of resources are given and insert checkpoints for power reduction. We assume that 

these comparison operations are performed by totally self-checking (TSC) equality checkers and, hence, 

faults in the units implementing these comparisons need not be explicitly considered during behavioral 

synthesis. Depending on how the duplicated CDFG is scheduled, many equal to comparison operations 

can share the same equality checker.  

2.1.3. Power consumption due to switched capacitance 

Power dissipation in CMOS circuits comes from two major sources: dynamic/switching power due to 

charging and discharging capacitive loads during state transitions, and static/leakage power due to sub-

threshold currents and the reverse biased junction currents. Dynamic power due to switching activity is 

the concern of our research. The average dynamic power of a CMOS gate is captured as  

 

where V is the supply voltage, CL is the load capacitance of the gate and SA is the number of gate output 

transitions during the period of time T. CLSA/T represents the average switched capacitance (SC) of the 

gate. The total dynamic power of a circuit is 

  

A number of techniques have been proposed to reduce supply voltage, switching probability, switched 

capacitance, and frequency. Among these techniques, minimizing total switched capacitance by fine-

tuning RT level operation-to-cycle schedule and operation-to-unit binding is the interest of our research 

  SC
T

SA
CVP Ltotal   2

T

SA
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since it directly interacts with fault security. To illustrate how the switching capacitance is affected by 

scheduling and binding, consider the two schemes of schedule and binding shown in Figure 3. Suppose an 

application needs to perform three independent additions +1, +2, and +3 in two clock cycles, and on 2 

adders A1 and A2. If the scheme of Figure 3 (a) is used, the switched capacitance equals to the switched 

capacitance of A1 when its input switches from +1 to +3. If the scheme of Figure 3 (b) is used, the 

switched capacitance equals to that of A1 when its input switches from +2 to +3.  For example, if a = 

0101, b = 0010, c = 0100, d = 0001, then e = a+b=0111, f = c+d=0101, g = e+f=1100. So in the scheme of 

Figure 3 (a) the output of A1 changes from e g: 0111  1100 and 3 output ports flip while in the 

scheme of Figure 3 (b) the output of A1 changes from f g: 0101 1100 and 2 output ports flip. This 

shows an opportunity of optimization.  

+1 +2

+3

A1 A2

A1

+1 +2

+3

+1 +2

+3

A2 A1

A1

a    b   c    d

e f

g
(1) (2)

 

Figure 3 The effect of scheduling and binding on switching activities of a datapath 

In [5], a technique to compute the switched capacitance is proposed. It uses the DFG, the input sequences 

and the gate level description of the function units as the inputs and generates the switched capacitance 

matrix. In our circuit level techniques, the objective is to minimize the total switched capacitance. 

 High level synthesis of fault secure datapath for power minimization 2.2.

2.2.1. Motivation 

Existing circuit level error detection techniques have some limitations to achieve power efficiency or fault 

security. Some techniques are designed to handle the worst case in order to maintain yield and runtime 

reliability, which leads to significant and unmanageable power overhead. For example, the n-bit RESO 
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adder uses extra k bits to detect the faults disturbing up to k consecutive bits [6]. It leads to a complete 

duplication to guarantee fault security. Other circuit level techniques are incapable to deal with the 

increased duration of environment-induced transient faults, i.e. SETs. Many techniques aim only at 

transient faults as they occur much more frequently than persistent faults. The idea is to use two or three 

flip-flops with shifted clocks to latch a signal [7]. If the signal is disturbed by a transient fault, the fault-

caused glitch is expected to die away shortly, and will be latched by just one flip-flop – either the one 

with the normal clock or the one with a shifted clock, but not all. Hence comparing the states of the two 

(three) flip-flops detects (corrects) the fault. The idea is based on the assumption that the phase shift 

between clocks, which is limited to a small fraction of the clock period of the circuit, is longer than the 

durations of fault-caused glitches. This idea, however, is incapable for nanometer GHz designs. 

According to a recent study [8], environment-induced transient faults (SETs) have widths in the range of 

500ps to 900ps in the 90nm process and will increase as feature size decreases. That is equivalent to 

several clock cycles in a multi-GHz design, which completely invalidates the assumption. Another 

invariance based on line test technique is proposed in [9]. The probability to miss faults is the 

disadvantage. The limitations of circuit level techniques motivate us to study high level synthesis of fault 

secure datapath for power minimization. 

One of the new challenges of nanometer devices is the increased variations between wafers, dies, and the 

regions within a die. Those variations include process parameters variations due to manufacturing 

imperfection, voltage variations due to manufacturing imperfection and runtime activity, and temperature 

variations due to runtime activity and power dissipations. These PV variations inevitably result in various 

transient fault durations of the IC chips of a same design. For examples, process variations can lead to 

more than 10% variation of transient fault duration [10], and voltage variations can double transient fault 

duration [11]. For different transient fault duration, the power consumption due to switching activity of a 

fault secure datapath is different. Therefore, we propose a novel synthesis and design technique that 
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generates datapaths that meet CED constraints with minimal power consumption, and have runtime 

adaptability through RT level datapath control. 

2.2.2. Fault duration and location aware fault security 

 Comprehensive scheduling and binding under fault security constraint for power optimization 2.2.2.1.

Unification of scheduling and binding (S&B) can lead to designs with lower power consumption than 

S&B separately [6]. From Figure 2, we can see that fault security is achieved by checkpoint insertions. So 

next we will demonstrate the necessity to do checkpoint insertion with S&B simultaneously. Checkpoint 

insertion before S&B is not possible because faulty security depends on S&B. The faulty security 

constraint is no hardware sharing between NC and RC in the same DFG. Without the binding information, 

we don’t have any clue to insert checkpoints. Checkpoint insertion after S&B is not good either because 

checkpoints allow data dependency to be broken in RC, which increases S&B flexibility and creates more 

opportunities to save power. In the example of Figure 4, let’s assume SC is 1 between +1 and +4 and 5 for 

all else. After inserting a checkpoint at the output of +1, the data dependency between +1
r
 and +3

r
 can be 

broken which enables +1
r
 to be scheduled after +4

r
, thus saving power. Therefore, it is necessary to 

consider scheduling, binding, and checkpoint insertion simultaneously for power minimization. 
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Figure 4 The effect of checkpoint insertion on power consumption  

 Fault duration and location aware fault security 2.2.2.2.
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As we have mentioned, process and voltage variations inevitably result in various transient fault durations 

inevitably result in various transient fault durations of the IC chips of a same design and various fault 

durations of the same IC over time. Recent studies have shown that the amount of multi-cycle transient 

faults increase with frequency and integration level of circuits. For different transient fault durations, the 

optimal power consumption due to switching activity of a fault secure datapath is different. Also note that 

the original idea of fault security is proposed for faults with any duration. So all the faults are considered 

as persistent, which is pessimistic. We therefore change the first part of “No Sharing” rule to that A 

function unit cannot be used by both NC and RC of the same sub-DFG within N clock cycles, where N is 

the fault duration of the unit. A persistent fault can be described as an N-cycle fault where N is at least 

two to three times larger than the total schedule length of a DFG. It is easy to see that power consumption 

tends to increase with N, the duration of faults. This is because with the increase of N, scheduling and 

binding are more constrained (even with additional checkpoints), and the resulted scheme may consume 

more power.  

1n 2n

+1n 1r 2r

+1r

M1 M2

M2 M1A1

A2+2n

+2r

A1

A2

1n 2n

+1n 1r 2r

+1r

M1 M2

M2 M1A1

A1+2n

+2r

A2

A2
X X

X

Sub-DFG1

Sub-DFG2

Fault duration of adders reduce to 1 Fault duration 3 for all

SC: 20SC: 24

Sub-DFG2

Sub-DFG1

X

 

Figure 5 The effect of fault duration on power consumption 

Let’s look at an example as shown in Figure 5. We assume the switched capacitance is 10 and 2 

respectively for multiplication and additions with different inputs. The example on the left is optimized 

for fault duration of 3 cycles. The fault security constraint is no sharing between NC and RC in the same 

sub-DFG and the total switched capacitance is 24. In the example on the right, the fault duration of adders 



10 

 

 

 

is reduced to 1. The transient fault is not able to corrupt two operations as long as they are scheduled 1 

clock cycle apart. As a result NC and RC can be scheduled back to back for additions and the total 

switched capacitance 20. This example shows that fault location aware fault durations save power over a 

uniform worst case fault duration. It also shows that power consumption decreases with fault durations. 

Therefore, runtime adaptability according to different CED needs can help save power.  

A reconfigurable datapath is used to execute different schemes as shown in [12]. It can adapt to a 

different schedule and binding in-field. A register file is used to store data, and is connected to functional 

units through buses. We assume the register files and buses are protected using ECC codes since they are 

still the most cost-effective solution. Switching between different schemes can be realized by tuning the 

RT level control signals: e.g., managing data to and from the buses, administrating the tri-state buffers, 

etc. All these can be performed at runtime. We hence focus on determining the power-optimal schedule 

and binding for a given CED constraint, i.e, a “No-Sharing” rule with a specific N. 
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Figure 6 The effect of fault duration on power consumption 

 The problem formulation 2.2.2.3.

Given the DFG of an application, latency and resource constraints, and a set of CED constraints derived 

from a set of maximal fault durations, the goal is to find, for each CED constraint, the scheme of schedule 

and binding that consumes the least power. In the form of general optimization problem, the problem can 

be described as 

Objective:  Minimize power consumption 
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Subject to:  (1) scheduling and binding constraints 

(2) fault security constraints. 

To our best knowledge this is the first effort to unify power efficiency and fault security during high level 

synthesis. Since it has been shown many times that minimizing power through scheduling and binding is 

a NP-Hard problem in its general form [13], we will first attack this problem by formulating the problem 

using Integer Linear Programming (ILP), and then propose an improved heuristic approach that speeds up 

the process.  

2.2.3. An ILP formulation to unify fault security and power efficiency
1
 

Recently, a number of ILP-based approaches are proposed [14][15][16] to solve this problem and other 

EDA problems [17]. These approaches search for the optimal scheme of schedule and binding that 

minimizes power consumption subject to the constraints of resource and/or throughput. These ILP 

formulations have more or less similar notions. In our research, we extend them to include the constraints 

for fault security.  

 Definition 2.2.3.1.

A DFG is represented by an acyclic graph G = (O, E, d), where O is the set of operations, and E is the set 

of directed edges that represent data dependencies. O and E consist of operations and dependencies in 

both NC and RC. The following notations and definitions will be used in this chapter. 

L Known variable. It is the total number of clock cycles required to execute (under some 

constraints) all the operations in O. 

oi, oi
n
, oi

r
 oi is the i

th
 operation in O. oi

n
 and oi

r
 are oi’s NC and RC copies respectively. oi is used when 

we do not have to differentiate NC and RC copies. 

s(oi) Unknown variable. It is the start execution cycle of oi O, an integer. 

                                                      
1Copyright © 2009 IEEE. This section uses the author’s previous work published in 2009 IEEE International Symposium on Defect and Fault 

Tolerance in VLSI systems. Yu Liu, Kaijie Wu: An ILP Formulation to Unify Power Efficiency and Fault Detection at Register-Transfer Level 
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d(oi) Known variable. It is the delay of oi in terms of cycles. 1 d(oi) L. 

xoi,j 0–1 unknown variable. It is equal to 1 if oi starts at cycle j, or 0 if otherwise. 

yoi,oj 0–1 unknown variable. It is 1 if oi and oj share a same unit, and oi executes right before oj, or 0 

if otherwise. 

SA(oi, oj) Known variable. It denotes the amount of switching power consumption of a unit by 

executing oi and oj successively. 

SA(oi) Known variable. It denotes the amount of switching power consumption of a unit by 

executing oi on the unit first. 

coi 0–1 unknown variable. It is 0 if there is a checkpoint at the output of operation oi, or 1 if 

otherwise. 

 Known variable. It is equal to the number of different classes of units. For instance, if a design 

library has only adders and multipliers, =2. 

k The k
th
 unit class, where k=1, 2,…, . For instance, we might denote adders by 1, and 

multipliers by 2. k denotes the number of the k
th
 class units. 

(oi) Known variable. It is the index of unit class required to execute operation oi, i.e., oi can only 

run at (oi)
 units. 

zoi,j
 0-1 unknown variable. If oi is bound to the j

th
 unit of the (oi) class,  zoi,j

= 1, otherwise zoi,j
= 0. 

Pck 

N 

The static power consumed by a checkpoint. 

The maximal duration of faults  

In the next two sub-sections we will derive a set of constraints using these variables. Constraints 

introduced in section 2.2.3.2 are for general scheduling and binding. The constraints proposed in 

section.2.2.3.3 are dedicated for fault tolerance. The objective function is proposed in section 2.2.3.4.  

 The constraints for scheduling and binding 2.2.3.2.
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Constraint 1): An operation has a unique start execution time and should finish within the latency 

constraint. This constraint applies to operations in both NC and RC. Recall that xoi, j= 1 if and only if 

operation oi starts at cycle j, we have the following constraints: 

1
)(

)( ,
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The start time of operation oi can be derived as: 
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Constraint 2)  Data dependency of NC must be satisfied. This constraint only applies to the operations 

in NC. The constraint applicable to the operations in RC will be discussed in the next sub-section. If 

operation oj
n
 has a dependency on operation oi

n
, we have the following constraint:  

)()()( i

n

i

n

j odosos   (2) 

Constraint 3)  Resource constraints must be satisfied. For any operation class k the user will specify the 

maximum number of units of this class, k, which can be used in the datapath. The maximum number 

of the k operations that can be scheduled in any cycle t, including the operations in both NC and RC, 

cannot be larger than k. These operations include not only the ones that start at cycle t, but also the 

ones that start before cycle t and finish on or after cycle t. 
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Constraint 4) Unit sharing constraints. First, since an operation can only be bound to one unit, for any 

operation oi, there is at most one operation that executes right before and after oi on the same unit. 

Therefore for any given oi in NC or RC, we have:  
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Second, yoi,oj must be 0 if oj starts before oi finishes. Since the start time of operations is unknown, a 

variable oi,oj is used to constrain yoi,oj. For any two operations oi and oj that (oi) = (oj), oi,oj is defined as: 
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When oj starts before oi finishes, oi,oj
 will be a negative value larger than -1. Otherwise oi,oj

 will be a 

positive value smaller than 1. The constraint on y is as follows: 

jiji ooooy ,, 1   (5) 

Third, when the execution window of oi and oj overlaps (i.e. |s(oj)-s(oi)| < d(oj)), they must be bound to 

different units. Therefore,  

L

odosos
zz

iji

koko ii

)()()(
2

,,


  (6) 

When the execution window of oi and oj overlaps, (|s(oj)-s(oi)|-d(oj))/L is a negative number larger than -1. 

Therefore the right side of (6) is smaller than 2 and either oi or oj but not both can be bound to the k
th
 unit. 

If the execution window of oi and oj does not overlap, (|s(oj)-s(oi)|-d(oj))/L is positive and oi and oj  may be 

bound to the same unit. 

Next, yoi,oj must be 0 if oi and oj are bound to different units,. Therefore, 
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If oi and oj are bound to a same unit, say the 1
st
 unit in their class, zoi,1 = zoj,1 = 1, and zoi,m = zoj,m = 0 for m 

 1. The right side of (7) will return 1 that allows yoi,oj be to either 1 or 0. Otherwise, If oi and oj are bound 

to different units, say the 1
st
 and 2

nd
 units in their class respectively, zoi,1 = 1, zoj,1 = 0, zoi,2 = 0, zoj,2 = 1, and 

zoi,m = zoj,m = 0 for m  1, 2. The right side will return a positive number less than 1 that forces yoi,oj to be 0. 

Each operation can be bound to only one unit. 

∑      
|  (  )

|  

       (8) 

All hardware units must be used. 

∑         (9) 

Finally, the ILP formulation presented in [12] suggests putting a global lower bound on unit sharing as 

shown below:  

Yy
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(10) 

The lower bound Y is either chosen by an experienced engineer or can be determined by exhaustive 

searching through all possible values of Y and choosing the one resulting in the lowest power [12]. 

  The constraints for fault security 2.2.3.3.

In this sub-section we will derive a set of constraints that are related to fault security.  

Constraint 5) Constraints for the data dependencies in RC. If there is a checkpoint at the output of oi (i.e. 

coi
 = 0), the data dependency between oi

r
 and its successor oj

r
 in RC may not be satisfied as we explained 

in Section 2.2. Instead, oj
r
 has the option to receive inputs from oi

n
. This gives a new constraint s(oj

r
)  

s(oi
n
) + d(oi). To satisfy this constraint, we simply constrain an operation in RC starts no earlier than its 

corresponding copy in NC. 
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) (11) 

Constraint 6) Constraints for checkpoints. If the dependency from oi
r
 to oj

r
 is broken in a schedule, a 

checkpoint must be inserted at the output of oi (i.e. coi
 must be 0). Otherwise, if the dependency from oi

r
 to 

oj
r
 in RC is satisfied, there may or may not be a checkpoint (i.e. coi

 may take 0 or 1). The variable oi,oj is 

used to control the dependency. oi,oj is defined as follows: 
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oo ji
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It is easy to see that -1 oi,oj  1. oi,oj will be positive when the data dependency from oi
r
 to oj

r
 is satisfied, 

or negative when the dependency is broken (i.e. oj
r
 starts earlier than oi

r
 finishes). Therefore we have the 

following constraint: 

1, 
jii oooc   (12) 

To summarize, in a schedule if the dependency from oi
r
 to oj

r
 in RC is satisfied, oi,oj will return a positive 

value, which makes (12) a useless constraint since it is always true. If the dependency from oi
r
 to oj

r
 in RC 

is broken, oi,oj will be a negative value, which forces coi to be 0. This means a checkpoint must be 

inserted.  

Constraint 7) Constraints for binding that ensure fault-security. An operation in NC cannot share the same 

unit with its copy in RC within the fault duration of the unit N. It gives the following: 
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 , 1  m  |µτ(oi)|  

(13) 

The constraint further requires that any operation in a sub-DFG of NC cannot share resource with any 

operation in the corresponding sub-DFG of RC, and vice versa. However, the sub-DFG partitions are 
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unknown since the locations of checkpoints are to be determined during the searching process. We need 

to consider all possible pairs of operations that are of a same class with one in NC and one in RC 

respectively.  

Recall that the variable coi tells if oi’s output is checked. For each dependency edge from oi, say the one 

from oi to om, we create a new variable called coi, om = coi since we assume there is at most one path 

between any two operations. In the example shown in Figure 7 there are two checkpoints. One is at the 

output of +1 and the other one is at the output of +3. So we have c1=1, c2=1, c+1 = 0, c+2=1, c+3 = 0, and 

c1,+1=1, c2,+1=1, c+1,+2 = 0, c+2,+3=1. 

C1

C2

C4

C5

C3

2n

+1n

+3n

+2n

1r

2r

+1r

+3r

+2r

1n

X

X

 

Figure 7 An example of CDFG with checkpoints 

Next, to constrain the pair of operations oi
n
 and oj

r
, we define the Pathoi,oj as the set of edges that connect 

oi
n
 and oj

n
 by considering all the directed edges (dependencies) in NC as UN-DIRECTED edges. The 

constraint is only applicable to graphs with at most one path between every two nodes. In the example 

shown in Figure 7, Path1,2 includes the dependency edge 1
n
 +1

n
, and the dependency edge 2

n
 +1

n
. 

We then have the following constraint: 
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  (14) 

where w is the number of edges along Pathoi,oj, k ranges from 1 to |µτ(oi)|, and N is the fault duration. If the 

number of checkpoints along the path is equal to or larger than 1, then the ∑ term will be smaller than w 
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and the right side of (14) will be larger than or equal to 2 which allows resource sharing between oi
n
 and 

oj
r
. If no checkpoints along the path, then the ∑ term equals w and the right side of (14) will be larger than 

or equal to 2 only if oi
n
 and oj

r 
are schedule N cycles apart. Otherwise, the right side will return a value 

less than 2 thereby prohibiting the sharing between them. Again use 1
n
 and 2

r
 as an example and 

assume the fault duration is 2 clock cycles. The number of edges w in Path1,2 is 2, and the sum of c 

variables along the path is 2, which indicates that the number of checkpoints in the path is 0. Thus the 

right side of (14) is 2+1-2+1/2=1.5 and this prohibits the sharing between 1
n
 and 2

r
. So, at most one of 

them can be bound to the k
th
 unit in the class of multiplier. 

 The objective function 2.2.3.4.

The objective function of the ILP formulation is to minimize the sum of the switching power of function 

units. They are  

Switching Power between operations:  
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Cold start switching power: 
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Power of checkpoints: 
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 Experimental results  2.2.3.5.
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A C++ program is created to generate the equalities and inequalities for those constraints given in the 

above sections. The C++ program has three inputs: 1) the CDFG G = (O, E, d) that gives the algorithm to 

be implemented; 2) the latency constraint L; and 3) the resource constraints. The ILP formulation is input 

to ILOG Cplex. As a comparison, we also implement the same benchmarks by applying power-reduction 

technique [12] first then applying fault-tolerance technique [18]. We denote such approach as Power-

Before-Fault (PBF), and the proposed unified approach as Power-and-Fault (P&F). To make the 

comparisons fair, we use the same number of hardware resources and the same value of L for both 

approaches. The reason that we do not compare the approach that applies power-reduction techniques 

after applying fault-tolerance techniques is that the resulting datapath, with a very high probability, won’t 

be fault secure anymore. The power dissipation of the two approaches is reported in Figure 8. 

In the experiments we assume uniform delay for adders and multipliers. The power number is calculated 

based on the actual switching activities captured at gate level. To do so, we model the multipliers and 

adders using VHDL, synthesize them into gate level netlists using Synopsys DesignVision and TSMC 

65nm CMOS library, simulate the netlists with random inputs using ModelSim, and record the actual 

gate-level switching activities. According to the report, the 1616 multiplier chosen by Synopsys 

DesignVision has a range of switching activities between 0 and 510, while the 3232 adder has a range 

between 0 and 120. The switching activities are then converted to power (in mw) by consulting the 

average dynamic power reported by Synopsys PrimePower. The static power of components is directly 

taken from the reports created by Synopsys PrimePower. The left y-axis in Figure 8 is for energy 

consumed by processing one set of inputs using PBF and P&F designs, and the right y-axis is for the 

difference in percentage.  

As can be seen from Figure 8, the power difference between PBF and P&F is ranged from 10% up to 40%. 

Such a huge range is due to the unpredictability of the PBF approach. This approach first applies the 

power-reduction technique to NC only. RC is then added according to the technique in [12]. 
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The running time of solving the ILP formulation increases very fast with the number of operations. The 

number of operations of the chosen algorithms is in the range from 10 to 14 including both NC and RC. 

Runtime degrades significantly for larger graphs. Interested readers can refer to [18] for more information 

about the correlation between the complexity of the model and the running time.  

 

Figure 8 Power dissipation and reduction 

 Conclusions 2.2.3.6.

In this section, we have presented an ILP formulation that minimizes power consumption of a datapath 

under the constraints of latency, resource, and fault tolerance. The optimal results obtained by solving the 

unified formulation indicate that on average 20% power reduction can be achieved over traditional non-

unified techniques. Also, it can be used as references for evaluating heuristics-based approaches. 

2.2.4. The improved heuristic approach
2
 

 Overview 2.2.4.1.

                                                      
2Copyright © 2010 IEEE. This section uses the author’s previous work published in 2010 IEEE International Conference on Computer 

Design. Yu Liu, Kaijie Wu: Towards Cool and Reliable Digital Systems rt level CED Techniques with runtime adaptability.  
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Due to the nature of problem, the ILP-based solution becomes very slow when the number of operations 

in NC is larger than 10. A speedup is necessary for real-sized applications. Therefore, we choose to solve 

the problem by iterative-improvement based heuristics, which has been used with great success in the area 

of high level synthesis [19]-[23]. The algorithm proposed in this section is based on a general search 

strategy for optimization, which is called variable depth search. Examples of well-known algorithms that 

use this strategy are Kernighan and Lin’s heuristic algorithms for graph partitioning and the traveling 

salesman problem [24][25].  

 

Figure 9 The proposed iterative-improvement based heuristics 

The pseudo code of the proposed algorithm is shown in Figure 9. It starts from an initial feasible schedule. 

This initial schedule only needs to comply with the latency and resource constraints, but not the CED 

constraints. Hence, it can be generated by any high-level synthesis algorithm. The algorithm looks for a 

sequence of schedule moves that can improve over previous iterations (Line 4-10). A schedule move is a 

change of an operation’s start time. At the beginning of each “do” iteration, all operations are unlocked, 

i.e., every operation can be scheduled to another cycle if there is at least one available unit in that cycle. 

For a DFG with O operations and a latency of L cycles, the number of possible schedule moves are O×(L-

1) in the worst case. All the possible moves are judged by a Move Selection Function and only the most 

promising move will be performed (Line 7). For the new schedule that takes the most promising move, 

the binding subject to resource and CED constraints is found, and the power is estimated (Line 8). This 

1. Function: Iterative Improvement 

2. Input: Initial schedule, Latency, Resource, CED constraints 

3. Output: The final schedule and binding 

4. do 

5. {   Unlock all operations 

6.       While there is a reschedulable operation 

7.       {  Perform the move selected by Move Selection Function 

8.            Compute power by the Power Estimation Function 

9.            Lock the operation 

10.         } 

11.        Accept the sequence of moves till the one with min power 

12. }until (No improvement over the previous sequence for a certain number of iterations) 
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operation will be locked at the new cycle (Line 9) to avoid being moved back and forth, and the “While” 

loop looks for another move. Now the number of possible moves are (O-1)×(L-1) in the worst case. The 

“While” loop repeats until no operation is movable which generates a sequence of moves. Each move 

creates a new schedule by modifying the schedule created by the previous move. The schedule created by 

the last move is not necessarily the best one in terms of power consumption. If this happens, only the 

sequence of moves that reaches the best schedule will be accepted and the moves afterward will be 

discarded (Line 11). Since the algorithm takes the sequence of moves that has the most energy reduction 

in each “do’ iteration even though some individual moves in the sequence may increase the energy, it is 

capable of hill climbing to escape from local minima. A schedulable DFG cannot contain circular 

dependency. So feedbacks in a DFG are broken and considered as primary inputs and outputs.  

 The Move Selection Function 2.2.4.2.

Since the goal is to minimize power consumption, the most accurate metric is power, i.e., among as many 

as O×(L-1) moves, the Move Selection Function selects the move that results in the minimal power. 

However, the power of a move cannot be determined until the optimal binding of the new schedule is 

found. Since to find the power-optimal binding subject to resource and CED constraints is a NP-Hard 

problem, it is necessary to evaluate the moves in polynomial time, and then find the power-optimal 

binding only for the most promising move. 

Our heuristic is based on the observation that a schedule with more binding options usually leads to a 

binding with lower power. A schedule with more binding variables usually has more binding options. 

Hence in our approach, a move is evaluated by the amount of binding variables of the new schedule, i.e., 

the amount of y variables in a schedule (refer to equation (7)). There are two types of switching activities, 

intra-switch and inter-switch. Intra-switch activity is generated by successively executing two operations 

in a same iteration instance of the DFG, and Inter-switch activity is generated by successively executing 

two operations in two successive iteration instances of the DFG. An intra-switch y variable is defined for 
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each pair of same-type operations with the following exceptions: 1) their execution windows overlap; 2) 

there exists at least one Full Cycle between the two operations. A Full Cycle of an operation type is the 

cycle where the number of operations of the type equals the number of units of the type, i.e., all units of 

the type are busy at a Full Cycle; 3) they are the NC and RC copies of a same operation and their schedule 

time is not far enough to tolerate the faults specified in the CED constraint. On the other hand, inter-

switch y variables are for the switching activity between the operations on and after the last Full Cycle 

and the operations on and before the first Full Cycle of the schedule. If there is no Full Cycle in a 

schedule, an operation may have an inter-iteration y variable with itself. An example of schedule changes 

is shown in Figure 10. Schedules (b) and (c) are obtained by moving an operation in (a). According to our 

definitions, 8 y variables can be generated from (b) and 11 y variables can be generated from (c). It is not 

hard to see that schedule (b) has 2 binding options while schedule (c) has 4 binding options. This agrees 

with our statements at the beginning. The performance of the move selection approach is studied in 

section 2.2.4.5. 

+1

+3+2

+4

Resource constraint:  2 adders

Time constraint: 3 clock cycles

+1

+3

+2

+4

(c)

+1

+3+2

+4

(b)

(a)

 

Figure 10 Schedule changes and binding options 

Further, the y variables of different operation types may carry different weights. For example according to 

our experiments, the average switched capacitance between two multiplications is about 4 times that of 

additions. Therefore, assigning the y variables of multiplications a weight 4 times larger than the y 

variables of additions improves accuracy. Overall, the weighted sum of the number of y variables of each 

operation type is the metric used by the proposed Move Selection Function. 

 (b)-1 (b)-2 

(c)-1 

(c)-2 (c)-3 (c)-4 

A1 +1, +2 +1,+3 +1,+2,+3 +1,+2,+4 +1,+4 

A2 +3, +4 +2,+4 +4 +3 +2,+3 
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 The Power Estimation Function 2.2.4.3.

When the schedule is determined, we still need to perform binding and checkpointing for power 

optimization. As we have mentioned, this is still challenging because 1) When the schedule of a design is 

fixed, finding the power optimal binding is NP-hard [14] and 2) we will show that when scheduling and 

binding are fixed, inserting the minimum number of checkpoints for fault security is NP-complete. 

Therefore, we propose a two-step approach to attack the complexity. The first step finds the optimal 

binding subject to a relaxed fault security rule: a unit cannot be used for both NC and RC of the same 

operation within its fault duration. Note that the relaxed rule constrains an operation’s NC copy and its 

RC copy only while the original rule constrains an operation’s NC copy with all the RC operations in the 

same sub-DFG. The second step then inserts minimal checkpoints to the binding obtained in the first step, 

which enforces the original fault security rule. By inserting additional checkpoints, the binding that 

complies with the relaxed rule can ALWAYS be converted to comply with the original rule – any 

operation that violates the rule can form its own sub-DFG by inserting a checkpoint at its output. The 

power consumption of the scheme is the sum of the power consumption of functional units and 

checkpoints. 

Step I. The constraints for optimal binding with relaxed fault security. 

Constraint 1) Unit sharing constraints. An operation can only be bound to one unit, and one operation is 

carried right before and after it on the same unit. Equation (18) differs from Equation   (4) in that inter-

switch activities are also considered here. Hence: 

∑       
             (  )  (  )

  ∑         
             (  )  (  )

 (18) 

Inter-switch y variables add up to the number of units of that type.  

∑        (  )  (  )
 |  (  )|  (19) 
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Third, when the execution window of oi and oj overlaps, they can’t be bound to a same unit as in equation 

(6) 

       must be 0 if oi and oj are bound to different units as in equation (7). 

Each operation can be bound to only one unit as in (8). 

All hardware units must be used as in (9). 

Constraint 2) The relaxed “No-Sharing” rule. . If the NC copy and RC copy of an operation are schedule 

within the fault duration of unit m, they cannot share the unit. It is obtained from equation (13) by 

bringing in the value of schedule time and fault duration. 

   
       

     , 1  m  |µτ(oi)|    (20) 

The objective function of the ILP formulation is to minimize the sum of the switched capacitance of 

function units as in equation (15). 

The ILP formulation may have multiple binding options with the same optimal power. All the best 

solutions from step I are evaluated by step II. When binding for all operations are done, the minimal 

number of checkpoints can be determined using the ILP formulation presented below.

 

 

Step II. The constraints for optimal checkpoint insertion  

Since the first step only complies with the relaxed fault security rule, additional checkpoints may be 

needed to enforce the original fault security rule. In order to do this, we need to check each function unit. 

If an operation from NC and an operation from RC in the same (sub-) DFG are bounded to the unit within 
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its fault duration, then at least one checkpoint must be inserted to each path between these two operations, 

so that the two operations are partitioned to different sub-DFGs.  

After the schedule and binding are determined, the pairs of operations that violate the fault security rule 

on each unit can be identified and the paths between those pairs are also known. Though the complexity 

to compute the total number of paths between two nodes of a DAG is exponential, it is not the bottleneck 

of our approach. If a dependency in RC is broken, like the ×1
r
  +1

r
 in Figure 4, a checkpoint needs to 

be inserted at the broken edge which cuts the paths including the edge. Inserting the minimal number of 

checkpoints to cut off the remaining paths is as hard as the Set Cover problem – a well-known NP-

Complete problem. We prove this by transforming the set cover problem to the minimum checkpoint 

insertion problem. Suppose we have a black box that can solve minimum checkpoint insertion. Given an 

arbitrary instance of Set Cover, specified by a Set U and a collection of subsets. The goal is to cover the 

set U with minimum subsets. We formulate an instance of minimum checkpoint insertion in which each 

path corresponds to an element in U. Each subset is a checkpoint. If a subset contains an element, then the 

checkpoint is on the path. Therefore, inserting minimal number of checkpoints that cut all the paths is 

equivalent to find the minimal number of these sets. The following constraint is applied to these paths: 

1
,),()(




joionoji

n

Pathcoo

oc


  
(22) 

The objective is to minimize the number of checkpoints.   

           ∑    
     

 (23) 

Figure 11 is an example to illustrate how to generate the constraints from a scheduled and bound DFG. 

Take M1 as an example, 1
n
,3

n
, and 2

r
 are allocated to M1. Since they are in the same DFG within 

M1’s fault duration, 1
n
 and 2

n
 needs to be partitioned to different sub-DFGs and the same for 3

n
 and 

2
n
. Therefore, we have c1+c2 ≥ 1 and c2+c4+c3 ≥ 1 respectively.  
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Figure 11 A scheduled and bound DFG 

 Checker minimization 2.2.4.4.

After determining the minimum number of checking operations, we also need to determine the minimum 

number of checkers to execute the checking operations. We assume the comparison operations are 

performed by totally self-checking (TSC) equality checkers. For each checkpoint, checking can be 

performed from the finish time of NC and RC till the end of the iteration. Let n(t) be the number of 

checkpoints that start at or after t, 

Min # of TSCs = max (n(L), n(L-1)/2, …, n(1)/L) 

 Experimental results 2.2.4.5.

We implemented the improved heuristic using C++. The program takes as inputs a latency constraint, a 

resource constraint, and a set of CED constraints. The initial schedule of the DFG including both NC and 

RC is generated before the proposed technique is applied. Since the initial schedule does not need to 

comply with the CED constraints, it can be produced using any scheduling and binding technique. We use 

the List Scheduling algorithm for the latency constrained problem. If it returns an infeasible schedule that 

violates the latency constraint, the program exits with a request for longer latency. During the iterative 

improvement, the program calls the API functions of ILOG Cplex to solve the formulations of bindings 

and checkpoint insertions. The switching activities of units are captured at gate level. To do so, we model 

the multipliers and adders using VHDL, synthesize them into gate level netlist using Synopsys 
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DesignVision and TSMC 65nm CMOS library, simulate the netlist with random inputs using ModelSim, 

and export the actual gate-level switching activities. According to the simulation results, the 16 bit 

multiplier chosen by Synopsys DesignVision has a range of switching activities between 0 and 510, while 

the 32 bit adder has a range of switching activities between 0 and 120. In our experiments, we assume the 

switched capacitance ranges have the same ratio. The ranges are scaled down by 10 and random numbers 

are generated in the range to simulate the switched capacitance. The delay of a multiplier is 2 and the 

delay of an adder is 1. The experiments are performed on some known benchmarks found in real-life 

applications: a 2
nd

 order Differential Equation Solver (diff2) with 11 operations [27], a DTMF tone 

generator (dtmf) with 11 operations [28], a multiple output 2
nd

 order filter (mof2) with 12 operations [26], 

a 16-point Finite Impulse Response Filter (fir16) with 33 operations, and a Correlator (cor15) with 31 

operations. The numbers of operations reported above are NC only. Each benchmark takes 10 different 

CED constraints with 1≤N≤10. 

  

Figure 12 Accuracy of selection function 

The first experiment is to verify the accuracy of the Move Selection Function in the proposed technique. 

Recall that the Move Selection Function bets on the move that brings the most y variables. To verify the 

accuracy of the bet, we find the optimal binding of each move of each iteration, and report the difference 

between the least switched capacitance among all the moves in each iteration and the switched 

capacitance of the selected move in that iteration. As shown in Figure 12, the top solutions are selected 

and the difference is less than 10% for all benchmarks. It can be observed that large differences occurred 
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for small benchmarks such as diff2 and dtmf. This is because that the options are limited in small 

benchmarks and a wrong bet could cause a larger difference.  

The second experiment is to verify the effectiveness of the iterative improvement, i.e., how the iterative 

procedure improves over the initial schedule. The initial schedule is bound optimally and then 

checkpointed to comply with the same CED constraint (N=1 in this example) as the proposed technique, 

and the difference is reported in Figure 13. As can be seen from the figure, the proposed technique 

reduces switched capacitance over the initial schedule by 20% on average. 

 

 Figure 13 Improvement over the initial schedule 

 

Figure 14 The power consumption over different N 
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The third experiment is to verify the difference of power consumption due to different CED constraints, 

i.e., different fault durations N. The results are reported in Figure 14. The trend shown in the figure 

confirms that power consumption in general increases with N especially when N is between 1 and 5. 

Beyond 5 all curves tend to be flat. This is because with such long durations of faults, the flexibility of 

scheduling and binding are strongly limited and the difference in power consumption becomes less. 

Comparing to the best case where N = 1, the worst case when N = 10 has 10% to 20% more switching 

activities.  

Finally, the proposed technique can solve fairly large examples (50 operation of each type in duplicated 

DFG) very quickly. Comparing to the recent works that handles at most 20 operations and do not consider 

CED constraints (i.e., no RC copy), the runtime has been improved significantly [14]-[16]. For the DFG 

that has 50+ operations for a type, finding the optimal bindings by itself becomes time consuming due to 

its NP-Complete nature. We leave the further improvement as our future work. 

 Conclusions 2.2.4.6.

In this section, we propose a register transfer level CED technique whose CED capabilities can be 

adjusted at runtime according to the actual need. The proposed high-level synthesis technique ensures that 

the generated datapath consumes minimal power for any CED capability it has been turned to. 

Experiment results show that significant amount of runtime power can be saved by our technique, and the 

runtime of the proposed technique is acceptable even for large examples.  

 Fault rate aware concurrent error detection for linear digital systems
3
 2.3.

2.3.1. Introduction 

Another effect of the PVT variations is on fault rate. These variations inevitably result in various fault 

susceptibility of the IC chips from a same design, and time- or workload- dependent fault susceptibility of 

an IC chip. A recent study shows that the run time variation ranges from -33.5% to 81.7% [1], and it is 

                                                      
3Copyright © 2011 IEEE. This section uses the author’s previous work published in 2011 IEEE International Conference on Computer 

Design. Yu Liu, Kaijie Wu: Runtime adaptable concurrent error detection for linear digital systems 
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getting worse [31]. A SER estimation tool that models the various variations is proposed in [33]. It shows 

that the impact of voltage variation, temperature variation, and device aging on fault rate can be 50%. 

Given the fact that fault rate is low (10
-7

 to 10
-4

) [32]  and fault detection latency is always allowed, a 

CED technique that is adaptable to the fault rate would help save a lot of energy.  

There is a thread of research that dedicates to linear digital systems. Popular examples of linear digital 

systems include FIR, DFT, etc. A number of information-redundancy-based CED techniques have been 

proposed. The basic idea is to create a Coding Matrix CM with certain properties so that errors can be 

detected by checking if CM×S(t+1) = CM×X×S(t) + CM×Y×I(t) [34][35][36][37][38] as shown in Figure 

15. These works, however, have several rather strong limitations. First, most of the work assumes that 

operations never share hardware units. A 16-point FIR consisting of 17 multiplications and 16 additions 

thus requires 17 multipliers and 16 adders. Even though these techniques claim one check variable is 

enough to detect any single error in a system with n state variables, which gives just 1/n overhead, they do 

not consider the unrealistically high silicon cost as well as the significant static power consumption. 

When hardware sharing is considered, more check variables are needed which leads to more overhead. 

The overhead is also high if the system has a single state variable. Another strong limitation is the fault 

model used by these works. They assume a fault always offsets the output of the faulty unit by a fixed 

amount, which is not true as shown in [39].  
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Figure 15 Error detection for linear state variable system 



32 

 

 

 

Accumulation based CED for linear digital system is studied in [40][41][42]. Error is signaled when the 

accumulated offset exceeds the tolerance. In [40], fault security is not guaranteed because the 

bidirectional error effect can be cancelled out during accumulation. [41] and [42] study the full adder 

implementations for monotonic error effects. This limits the applicability of the techniques because the 

fast adders today are not composed of full adders.  

In our research, we propose an adaptive CED technique for linear digital systems. By exploiting the 

linearity, the proposed CED technique performs one re-computation for r normal computations, where r is 

referred to as check ratio. Comparing to the existing CED techniques that are based on duplicated 

computations, the energy expenditure of CED is reduced significantly. By introducing coefficients and 

residue codes based techniques, the fault detection capability of the proposed scheme is maintained in 

spite of the reduced frequency of CED operations. It detects transient faults with extended durations. The 

check ratio r can be adjusted on-line to perform more or less frequent CED operations according to the 

actual need of CED. Such adaptability enables an energy-efficient CED solution for today’s digital 

systems with strong fault susceptibility variation. 

2.3.2. The basic idea  

Assume  ( ),  ( ), and  ( ) are respectively the input, output, and state vectors of a linear system at time 

t. The transfer function of the system can be summarized as  ( )     ( )     ( ),  (   )  

   ( )     ( ), where M, N, P, Q matrices are the arithmetic operations specified by the system. 

The following text focuses on  ( )     ( )     ( ) only but the technique can be applied to both 

parts. We further simplify the expression to  ( )     ( ) as our technique does not differentiate state 

from input. The basic idea of the proposed CED technique is on the following equation: 

∑  ( )
 

   
 ∑    ( )

 

   
   ∑  ( )
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This invariance offers a great opportunity to reduce the amount of re-computations in linear systems. The 

idea is shown graphically in Figure 16. Let’s denote a normal computation by NC and a re-computation 

for CED by RC. By exploiting linearity, an RC can be carried out for every r successive NCs (r=2 in this 

example). The r successive inputs are accumulated and fed to an RC. The result of the RC is compared 

with the accumulated result of the r NCs. We define r as the “check ratio.” Increasing r reduces the 

number of RCs hence the energy consumption of CED. The detection of the faults that affect either RC or 

one of the r NCs is guaranteed. The implementation requires two states: NC and RC. In the state of NC, 

the input and output are accumulated respectively. In the state of RC, the accumulated inputs are fed to 

the datapath. 

O(1)=QI(1)

I(1) I(2)

=?

Normal Computation (NC)

Re-Computation (RC)

O(2)=QI(2)

O(1,2)=Q(I(1)+I(2))

 

Figure 16 The basic idea 

2.3.3. The run-time adaptability 

As the result of the strong PVT variations in today’s nanometer devices, the fault susceptibility also varies 

significantly [1]. Recognizing that the energy consumption of the devices with different CED capability 

varies significantly, designing towards the worst case of fault susceptibility (i.e., the worst-case fault rate) 

is not cost effective. The great benefit coming from the check ratio is that the CED capability and its 

energy overhead of the datapath can be changed on the fly. A set of r can be defined according to the 

different needs of CED that are resulted from the variation of fault susceptibility. With the run-time 

adaptable CED technique, one can increase r to perform less frequent CED operations in circuits with 

lower fault rate for more energy saving, or decrease r to perform more frequent CED operations in the 
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circuits with higher fault rate for better CED capability. By doing this one will never overpay the energy 

bill of fault tolerance. 

The control of r could be manually by setting a desired r using external pins, or automatically by sensing 

the change of working environment such as altitude, temperature, radiation, etc. It is assumed for each 

different working environment the need for CED (i.e., the value of r) is pre-determined by offline testing. 

The change to r can be done at any time, i.e., before system starts or during runtime. A counter is 

implemented to track the sequence of NC. The counter is reset to 0 after an RC and increments when a 

NC starts and counts up to r-1. Before the counter reaches r-1, the datapath carries out NC only and 

accumulates the inputs and the outputs respectively. When the counter reaches r-1 or a value larger than 

r-1 due to a recent (runtime) change made to r, the datapath will transit to the other state that carries RC. 

The results are checked and the counter will be reset at the end of this state. 

2.3.4. The problem of the basic idea 

The plain implementation detects the faults that affect one of the computations, i.e., one of the r NCs or 

the RC. The proof is trivial. Hence, the transient faults lasting no more than one cycle are guaranteed to 

be detected. The transient faults that last several cycles, however, may affect more than one computation 

and may be missed. A small example is shown in Figure 17.  
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O(2)

A1’s Fault Duration  

Figure 17 An example to show missed faults 
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The Data Flow Graph (DFG) of a small linear application has two multiplications (1, 2) and two 

additions (+1, +2). It is scheduled into three clock cycles and allocated to two multipliers (M1, M2) and 

one adder (A1). The DFG is repeated twice (C1-C3 and C4-C6) to represent two successive NCs. Assume 

the adder A1 has a transient fault that could cause one of the following offsets in the set (-2, -1, 0, +1) 

depending on its input [43]. The offset will be passed to the output of the computation since the 

computation is linear. Now we further assume the transient fault lasts from C2 to C5. Since the fault 

affects two operations in the first NC (i.e., +1 and +2 at cycle C2 and C3), the set of possible offsets of 

output O(1) is (-4, -3, -2, -1, 0, +1, +2,). Since the fault affects one operation once in the second NC (i.e. 

+1 at cycle C5), the set of possible offsets of output O(2) is still (-2, -1, 0, +1). After accumulating the 

(faulty) results of the two NCs, the sum of offsets could become 0 if they have the same magnitude but 

opposite signs. The fault will then go un-detected. There is a trivial case where the offsets at O(1) and O(2) 

are both 0, e.g. when the A1’s fault occurrences at C2, C3, and C5 introduce offsets +1, -1, 0 respectively. 

Missing this fault does not affect system correctness. Note that a fault is said to affect an operation only if 

the operation’s output is different from the expected output with respect to its present input, in spite that 

the input itself could be incorrect due to an early fault occurrence.  

2.3.5. To make up the CED capability 

Given a fault f that is identified by its location and its type (Stuck-At-0 or Stuck-At-1), the offset at the 

output of the host unit can be derived according to the circuit between the fault location and the output. 

Hence the set of offsets caused by a fault strongly depends on the implementation of the unit, and 

different implementations may have very different offsets. There are previous works that study the 

problem [43][44]. The analysis, however, only shows the magnitude of offsets without sign information. 

A closer investigation on the sign of offsets is performed. For example, the adders using a propagate-

generate network consist of bitwise PG cells to form the generation and propagation of each bit, followed 

by a tree of group PG cells that form the group generation and group propagation, and then Sum cells at 

the last stage. The basic cells in the three stages are shown in Figure 18. It can be observed that for group 
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PG cells implemented using only AND gates and OR gates, a Stuck-At-0 fault can only decrease the carry 

out propagated through the cell while a Stuck-At-1 fault can only increase the carry out propagated 

through the cell. Combining this observation and the technique presented in [43] helps us determine the 

sign of the offsets. 

ai bi

gi pi

pj-1,k pi, j gj-1,k gi,j

pi,k gi,k

si

pi    ci-1  

(a) Bitwise PG cell     (b) Group PG cell      (c) Sum cell  

Figure 18 The basic components in a adder using PG network 

The error analysis for array multipliers and other fast multipliers are presented in [43]. These multipliers 

use carry save adders to compress the partial products and a carry propagate adder to generate the final 

product. If a full adder in the carry save adders is faulty, either sum or carry-out or both may be faulty. 

Then the error value is 2
k
, 1≤k≤n. If the faulty gate is in the carry propagate adder, the analysis is the 

same as adders.  

 The Coefficients Vector 2.3.5.1.

To avoid cancelling the offsets during outputs accumulation when the fault affects more than one 

computation, we assign a set of positive coefficients to the outputs of the linear system. To balance the 

effect, the inputs are also multiplied by the same coefficients. The updated invariance is shown below 

where CV is the vector of coefficients. 

∑   ( )   ( )
 

   
 ∑   ( )     ( )

 

   
   ∑   ( )   ( )
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Given a fault f that is identified by its location and its type, the set of possible offsets is denoted by 

  
  {  

      }. The superscript 1 in   
 ,   

 , and   indicates that the fault affects one operation, and    

is the total number of distinct offsets, i.e., the number of   
 . Now let’s consider a simple case where the 

fault affects two successive NCs. If this fault affects N operations in the first NC, the set of possible 

offsets of the output of the first NC is expanded to   
    

    {  
      

             }. If the 

fault affects M operations in the second NC which results in a set   
 , the coefficients must ensure that for 

any   
    in   

  and any   
    in   

 : 

  ( )    
    ( )    

     Eq.1 

Apparently if all   
  and   

  have the same sign, the inequality always holds. Hence we assume there 

exists at least one pair offsets (  
 ,   

 ) with different signs. It is easy to see that the selection of CV has a 

strong impact on the overhead. We propose to use 2
k
 as the coefficients so the multiplications can be 

implemented with very low cost. One can exhaustively search the appropriate 2
k
 by incrementing k 

starting from zero. The search process, though is exhaustive, is always upper-bounded as shown below.  

To derive the upper bound, we pay attention to the maximum and minimum offsets in   
  and   

 . Let’s 

denote the most positive offset and the most negative offset in the two sets as       and      , and the 

least positive offset and the least negative offset as       and        respectively. The terms “most” and 

“least” are according to the magnitudes of offsets. We use the following lemma to upper-bound CV. 

Lemma 1: Eq.1 can be achieved if either of the following is true: 

  ( )

  ( )
    {

     
|     |

 
|     |

     
} 

  ( )

  ( )
    {

     
|     |

 
|     |

     
} 
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The proof is trivial. The idea is to magnify the least positive (or negative) offset in one set to be larger 

than the most negative (or positive) offset in the other set so the accumulated offset never becomes 0. 

A CV needs to be examined on all possible faults in a unit, and on all units in the datapath. Further, faults 

with extended duration may affect more than two NCs. For a given datapath (i.e., the DFG is scheduled 

and allocated, and the implementations of units are determined), the only factor that affects the selection 

of coefficients is the fault durations. According to a recent study [45], environment-induced transient 

faults (SETs) have widths in the range of 500ps to 900ps in the 90nm process. It is about 1 to 5 cycles 

considering the state-of-the-art clock frequency. It is expected to grow as feature size decreases and 

frequency increases. The above analysis can be extended to long lasting faults that may affect more than 

two computations including RC.  

Assume a fault spans X NCs, where it affects the q
th
 NC    times thereby resulting a set of offsets 

 
 

   {  
        }       . Assume NC and RC share the faulty unit [45]. The fault affects the 

RC    times thereby resulting a set of offsets   
   {  

        }. The CV must ensure that for all   
  

 

in all  
 

  
, and for all   

   in the   
  , the following inequality holds.  

∑   ( )   
 

  
 

   
   

   

To help understand the notations, we again use the example shown in Figure 16. Assume a fault f affects 

the 1
st
 NC two times and results in   

     
  {           }, where    ,        , and      . 

This fault also affects the 2
nd

 NC one time and results in   
     

  {      }, where    ,       

 , and      . Finally, the fault affects the RC one time and results   
     

  {      }, where 

    , and      . To ensure the detection of the faults, one must ensure that for any  
 

  
 in both  

 

  
 , 

and for any   
   in the   

  the following inequality holds: 
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  ( )    
     ( )    

     
   Eq.2 

Strictly speaking, no    works for Eq.2 if   
     

     
    . This corner case can be safely ignored 

since the fault does not affect the computations at all. If we let   
   {  

  |  
      

        }, and 

  ( )   , Eq.2 is re-written as following: 

∑   ( )    
  

 

   
   Eq.3 

Theorem 1: Eq.3 can be achieved if the following holds: 

  ( )

  ( )
    {

     
|     |

 
|     |

     
}        ( )    ( ) 

Proof: Let   be the RHS. Without loss of generality we assume   ( )    (   ). Hence the offset in 

  
   receives the largest coefficient. Since   ( )   ,   ( )     for      . The following 

deduction is to prove that after being multiplied by their corresponding coefficients, any negative (or 

positive)   
   in   

   has a larger magnitude than the sum of any positive (or negative)  
 

  
 in any  

 

  
 

(     ), with exactly one  
 

  
 from one  

 

  
.  

  ( )  |  
  |    ( )  |  

  |       (   )  |  
    |  

  ( )  |  
  |

 
              

  
    {

     
|     |

 
|     |

     
}  

    

(   )  
 (   )  

    

  
   

The minimal ratio between coefficients satisfying Theorem 1 is used to upper bound the exhaustive 

search of CV. In fact, the actual ratio found by searching is much less. Section V shows more details. As 

can be observed, the magnitude of coefficients generally increases with the duration of faults. This 

translated to a wider datapath for accumulation. To reduce the overhead, we propose to use RT-level 

residue codes.  
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 The residue codes 2.3.5.2.

Residue code based CED circuits were initially designed for a single operator as shown in Figure 19 (a) 

[43][44]. The CED capability is provided by encoding operation inputs (modulation) and verifying if the 

output is a valid codeword. While their hardware cost is in general much cheaper than the straightforward 

duplication and comparison approach, the modulation and verification need to be done for each operation. 

In this section, we propose to check the linear datapath as a whole to reduce the overhead and improve the 

adaptability as shown in Figure 19 (b).  

Adder

x
y

Adder % b

% b % b

% b =?

x+y

Linear 
Datapath

Input Stream

Datapath
% B

% B

% B =?

Output
(a) (b)

% = Mod

 

Figure 19 The residue-based CED (a) Operator oriented (b) Datapath oriented  

It is easy to see that residue-based CED can be done for linear datapath since 

 ( )        ( ) (   )   (     )  ( ( )    ) (  ) 

The major problem in designing residue code based CED is to select the right check base B. While B 

should be chosen as small as possible to minimize overhead, it should detect all possible faults that could 

be produced by the linear datapath. If we denote the set of offsets of a fault affecting N operations in one 

computation by   
 , B should ensure the following for all non-zero offsets: 

  
                

    
  

The number of check bases that have to be examined is small since we are only interested in small check 

bases that have the forms of 2
k
±1 for efficient residue computation. Modulo generator is an essential 

building block in our approach. For the check bases of type 2
k
±1, modulo generator can be efficiently 

implemented by exploiting the properties of modulo arithmetic [47][48]. 
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 The improved idea 2.3.5.3.

The block diagram of the proposed CED is shown in Figure 20. While a NC is under execution, its input 

is shifted, modulated, and accumulated concurrently. The accumulated inputs are then fed to RC. The 

output of the NC is also shifted, modulated, and accumulated. The accumulated outputs of NCs are then 

compared to the output of RC for error detection.  

O(1)=QI(1)

I(1) I(2)

=?

O(2)=QI(2)

O(1,2)=Q(I(1)+I(2))

%

%

%%

 

Figure 20 The block diagram of the proposed CED 

Finding the appropriate CV and residue code is done at design (i.e. synthesis) stage. The synthesis 

procedure will take as inputs the worst-case fault duration and the scheduled and allocated datapath, and 

generate the appropriate CV and residue code. With the knowledge of operations’ schedule and allocation, 

one can find X, the number of computations (in the worst case) that are affected by a fault with the given 

duration, and   , the number of operations in each computation that are affected by the fault. The set of 

offsets of each computation,   
 , can then be derived based on the implementation of the faulty unit. By 

repeating this procedure, the   
  of each possible fault of each unit can be derived. By searching through 

all the sets the      ,      , and      ,       and hence   can be identified. The proper CV is then 

obtained by an exhaustive search. Residue codes can then be determined. The procedure is implemented 

using C++. We assume all units of the same type in a datapath always use the same implementation, e.g., 

all adders in an implementation use ripple carry adder. Under this assumption, the search process for a 16-

point Finite Impulse Response Filter takes only a few minutes.  

2.3.6. Experiment results 
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To demonstrate the effectiveness of the proposed technique, we have implemented it on three popular 

benchmarks found in real-life applications: a digital cosinusoidal generator (cos) with 6 operations [29], a 

DTMF tone generator (dtmf) with 11 operations [29], and a 16-point Finite Impulse Response Filter (fir) 

with 33 operations. We use the latency-constrained List Scheduling algorithm to schedule and allocate the 

normal computations of these designs. Since the purpose of the experiments is to demonstrate energy 

saving due to reduced re-computations, we simply let the re-computations use the same schedule and 

allocation. The comparison is made between the proposed technique and the straightforward duplication-

based CED. We model the datapaths of these benchmarks using Verilog, synthesize them into netlists 

using Synopsys Design Vision and TSMC 65nm device library, simulate and verify the netlists using 

Synopsys VCS. In our implementations, multiplications are 8-bit and take two clock cycles, and additions 

are 16-bit and take one cycle. We used Array Multipliers for multiplications, and Carry Ripple Adder 

(CRA) or Carry Lookahead Adder (CLA) for additions.  

Table 1 The CV for the implementations using CRA/CLA 

Fault Duration  3  4  5  6  7  8  

cos  (2,4)  (2, 4)  (2, 8)  (4, 16)  (4, 16)  (4, 16, 64)  

dtmf  n/a  (2, 4)  (2, 8)  (2, 8)  4, 16)  (4, 16)  

fir  n/a  (2, 4)  (2, 8)  (4, 16)  (4, 32)/(4, 64)  (4, 32)/(4, 64)  

Table 1 shows the CV found for the implementations of the three benchmarks. If a fault lasts less than 3 

cycles in the cos implementations, or 4 cycles in the dtmf or fir implementations, it will affect only one 

computation. Hence no coefficient is needed. If a fault lasts 8 cycles, it could affect up to three 

computations in the cos implementations, or up to two computations in the dtmf and fir implementations. 

For the example of the implementations using CRA, a CV with (4, 16, 64) is thus needed for cos, a CV 

with (4, 16) is needed for dtmf, and a CV with (4,64) is needed for fir.  
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Figure 21 The width of check base increases with the worst-case fault duration 

The check (modulation) bases found for the implementations are shown in Figure 21. An n-bit check base 

indicates that modulations are performed on either 2
n
+1 or 2

n
-1. As can be observed, the width of check 

base slowly increases with the worst-case fault duration.  

Next, Figure 22 shows the energy saved by using the proposed technique. The energy saving is 

normalized based on the energy consumption of the duplication-based CED. For accurate power 

calculation, we have performed gate-level simulation and used random inputs to generate the switching 

activities. All implementations are designed to detect faults lasting up-to 8 clock cycles. The energy 

consumption are computed and the normalized energy saving is reported in the figures. From the figures, 

we can see that the energy saving increases with check ratio. The cos implementations have relatively 

small energy saving. This is majorly due to its simple DFG that consists of just 6 operations.  
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(a) 

 (b) 

Figure 22 The normalized energy saving of the proposed technique in the implementations using (a) CRA, 

or (b) CLA 

(a) (b) 

Figure 23 The area overhead of the proposed technique for the implementations using (a) CRA or (b) 

CLA 
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(a)  (b) 

Figure 24 The static power consumption of the proposed for the implementations using (a) CRA or (b) 

CLA 

The last comparison is on the area overhead, as shown in Figure 23. The designs are synthesized using 

Synopsys Design Vision and TSMC 65nm device library. The area overhead of the proposed technique 

includes the overhead due to the accumulations, CV multiplications, modulations, and the extra memory 

for buffering the inputs. The experimental results show that the proposed CED technique consumes much 

less silicon area than the duplication-based CED. 

2.3.7. Conclusions 

In this section, we propose a novel CED technique for linear digital systems. By exploiting the linearity, 

the proposed technique can handle the extended fault durations with low energy consumption. The check 

ratio of the proposed CED technique can be adjusted online to fit the current need of fault tolerance with 

minimal overhead. Experimental results show that the proposed technique saves as much as 25% energy 

compared with duplication CED. 
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Chapter 3. System level reliability analysis and fault recovery techniques 

 Introduction 3.1.

At system level, energy efficiency is crucial to many real-time systems due to their limited energy supply 

and severe thermal constraints of the operating environment. Among the power- management techniques 

proposed to tackle these challenges, Dynamic Voltage and Frequency Scaling (DVFS) has emerged as the 

most popular and widely deployed scheme. DVFS dynamically adjusts the supply voltage of CMOS 

circuits to save power at the cost of extended circuit delays. For systems like surveillance, satellites, and 

life-support implanted devices that require both fault tolerance and energy efficiency, there is a lack of 

efficient solutions. Simply applying fault tolerance techniques and energy minimization techniques one 

after the other only results in inferior quality. If one minimizes energy first, i.e. allocating slack to 

slowing down normal task executions, the remaining slack may not be enough for fault recovery. If 

reservation of recovery is done before energy minimization, re-executions are treated as normal tasks and 

receive slacks proportionally – those slacks are wasted when faults are absent – a more possible situation 

than the situation where faults occurr, according to the current fault rates of hardware systems.  

In our research, we propose to study the trade-off between fault tolerance and energy efficiency of fault-

prone real-time systems. With a system-level reliability goal defined as the probability of finishing all 

tasks successfully on time in a fault-prone environment, we are interested in finding the schedule that 

meets the reliability goal, preserves feasibility even under the worst case of fault occurrences, and 

consumes the least energy when no fault occurs. A schedule in our approach includes task-to-task 

execution order and DVFS policy (frequency assignments of all tasks). As we will explain later that such 

a problem is NP-Hard, the proposed heuristic-based approach attacks this problem in three phases and 

produces a near-optimal schedule in polynomial time. In order to assess the quality of the solutions, an 

exhaustive search is implemented to find the optimal schedule since there is no other existing work on the 

same problem. Experimental results show that schedule produced by the proposed approach consume less 

than 2% more energy than the optimal solutions. 
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 The system setup and the related works 3.2.

3.2.1. The system setup 

The focus of this chapter is on uni-processor real-time systems. It is assumed that the processor is DVFS 

capable and supports a finite set of discrete voltage/frequency levels, F = {f 
1
 = fmax, f 

2
, …, f 

L
= fmin}. L is 

the number of levels and        . The system model studied in this work is referred to as frame-based 

systems where all tasks are released at time 0 of a time frame and should be finished before the end of the 

frame, as described in a survey [57]. Tasks could have dependences between them. An example of such a 

system is the industrial application that involves collecting data points from thousands of sensors at 

several MHz rate, processing them (communication, encoding or decoding, CRC check, data fusion, and 

etc) and then feeding the result into a decision-machine for further analysis or visualization. The read–

process–analyze cycle time is determined by the rate of incoming data-points, and strict task timelines 

need to be followed to ensure that no data-point is missed in any cycle. Such systems have received lots 

of attention [53][54][60][61][62]. The deadline or duration of a frame-based system is denoted by D. For 

a task Ti scheduled in such systems, the following parameters are defined: Ni as its worst case CPU cycles, 

Vi as its operating voltage, and fi as its operating frequency. A task set consisting of K tasks is then 

denoted by TSet = {Ti, 1≤ i ≤ K). 

In addition to the DVFS technique, Dynamic Power Management techniques can also conserve energy 

consumption by putting CPU into sleep mode when it is idle, and waking it up when tasks are pending. 

The idle period must be long enough to justify the additional energy and time consumed by wake-up 

process. It is assumed that the studied real-time systems have a short idle period after finishing the 

workload of the current frame. Hence the CPU will keep on (with leakage power only) until the start of 

the next frame. While memory is another major contributor of system energy consumption, managing 

memory’s energy consumption requires more detailed information on the memory access patterns of tasks. 

Hence, this study focuses on minimizing the energy consumption of CPU only. 

While environment-induced faults could be transient or persistent, it is reported that transient faults are 
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the most common ones – three orders higher than persistent faults [51][54][55]. Transient faults in 

combinational circuits are becoming as important as those in unprotected memory circuits as technology 

scales due to reduced voltages, nodal capacitance, clock periods, and pipeline depths [83]. This chapter 

focuses on transient faults, and assumes that transient faults are detected by concurrent error detection 

mechanisms built into the systems, such as watchdogs [79], flow signatures checking [80], 

simultaneously and redundantly threaded architecture [81], etc. The time overhead of fault detection is 

assumed to be included in the worst case execution time of tasks. 

When faults are detected, the system could either roll back to the latest checkpoint or re-execute the faulty 

task. Since environment-induced faults are infrequent, on-demand re- executions saves considerable 

energy over regular checkpointing. We therefore consider re-execution-based systems. Further, the 

proposed technique devotes all schedule slack to slowing down normal task executions after reserving the 

minimal time for re-executions. This is similar to the strategy applied to checkpointing-based systems in 

[63]. Upon detecting faults, the system could either execute the remaining tasks on fmax, or reschedule the 

remaining tasks online according to the updated information of fault occurrences. The technique 

minimizes energy consumption when faults are absent and guarantees feasibility even if the worst case 

occurs.  

3.2.2. The reliability metric 

Traditionally, fault tolerance constraint, which specifies the number of faults to tolerate in a time frame, is 

the reliability metric used in most works on fault-tolerant systems [71][72]. In DVFS-capable systems, 

however, such fault tolerance constraints CANNOT be directly applied. This is because DVFS has 

negative impacts on the fault susceptibility of systems. As a result, running a same task set in the same 

environment but with different DVFS policies could have different fault susceptibilities (fault rates), 

hence may need to tolerate different numbers of faults to achieve the same reliability. Many recent works 

including [57][61][62][65][66][88] and the proposed work choose the probability-based reliability metric. 

It is defined as the probability of finishing a give task or task set on time in the designated working 
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environment [70]. It serves as a unique Reliability Goal (denoted by RG thereafter) to the system that is 

being designed.  

3.2.3. The related works and our contribution 

Recently, many works on passive re-execution systems are proposed. In passive re-execution systems, re-

executions are performed only when faults are detected. In 2004, Zhu et al. proposed an exponential fault 

rate model to capture the impact of DVFS on the rate of transient faults and showed that energy 

management through DVFS could impair system reliability [56]. Based on this observation they proposed 

to schedule an additional recovery task to recuperate the reliability loss due to DVFS for a single task 

model [66] and uni-core multiple tasks model [60][87]. In [58], the researchers study a similar problem 

based on the assumption that the re-executions are always successful. Our work explores the reliability 

model from another angle that does not require this simplification. The technique proposed in [62] 

addresses the problem in multi-core systems using Constraint Logic Programming (CLP). While the 

paper considers the adverse effects of DVFS on fault susceptibility, it requires the user to input both a 

traditional fault tolerance constraint and a probability-based reliability goal. The potential conflict is 

obvious since to reach the same reliability goal different numbers of faults need to be tolerated under 

different DVFS policies. Ejlali et al. showed that using ECC codes to protect registers in addition to re-

execution can save more energy [66]. This work is different from the previous works in the following 

aspects: 

First, being aware that the problem is NP-Hard, we propose a heuristic-based approach that can produce a 

near-optimal solution in polynomial time. The experimental results show that runtime is less than a 

second for sets with more than 1000 tasks. Hence the proposed approach can also be used to online re-

schedule that collects the slack created by early completion of tasks, or to admit and schedule “emergency” 

tasks released in the middle of a frame. The experimental results show that the solutions from the 

proposed approach are close to the optimal solutions.  
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The second aspect is regarding the reliability metric for DVFS-capable systems. As we explained in 

Section 3.2.2, many recent works, including ours, use the probability-based reliability metric. There are 

two probability-based reliability metrics that target different levels. The task-level reliability is the 

probability of finishing a single task on time in the designated working environment, while the system-

level reliability is the probability of finishing a task set on time in the designated working environment 

[66]. Many of existing works consider only task-level reliability [57][61][65][66][67][68][88]. These 

techniques end up reserving dedicated recovery time for each task that is not executed using fmax. We 

believe this could be too pessimistic and propose to preserve reliability at system level instead. In this 

work, the system-level reliability serves as a unique reliability goal (RG) – the only reliability metric input 

by user. The proposed technique converts RG to a set of traditional fault tolerance constraints where each 

of these constraints meets or exceeds RG. 

Finally, this work assumes that any task executed on any frequency could incur faults. This includes 

normal executions of tasks and re-executions of faulty tasks. The probability model proposed in [56] is 

used to estimate the fault rate of a task executed on a certain frequency. As a result, the achievable 

reliability of this work is upper- bounded only by the availability of slack. The more the slack, the higher 

the achievable reliability. After reserving enough slack for re-executions that achieves user-specified RG, 

the rest slack can be used to slow down the processor for energy conservation. This is different from the 

works that try to recuperate the reliability loss due to DVFS, where the achievable reliability is upper-

bounded by the probability of finishing all tasks using fmax without incurring faults 

[57][65][66][67][68][88] .  

 The problem and the framework  3.3.

Given a uni-processor real-time system that supports a set of frequency levels (F = {f 
1
 = fmax, f 

2
, …, f 

L
= 

fmin}, and        ), a set of K tasks, and a system-level reliability goal RG, one wants to find a schedule 

that includes the task-to-task execution order and the DVFS policy (Y = (fiF, 1iK)). The schedule 
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must satisfy the following requirements: its system-level reliability must meet or exceed RG; it must be 

feasible even under the worst case of fault occurrences that is derived from RG; it must be energy optimal 

when faults are absent. 

The optimization problem is NP-Hard since one of its sub-problem, finding the energy-optimal DVFS 

policy of a task set in a system supporting discrete scaling, is in fact a Multiple Choice Knapsack Problem 

(MCKP). A MCKP problem is a variant of the Knapsack Problem with an additional constraint: items are 

subdivided into K classes and exact one item must be picked from each class. The problem of finding the 

energy-optimal DVFS policy can be easily converted to a MCKP problem: each task corresponds to a 

class; each class contains L items with each item corresponding to the task scheduled on one of the L 

frequency levels; each item has a weight and a value equal to the execution time and energy consumption 

of the task scheduled on that frequency, respectively. One needs to pick exact one frequency for each task 

(DVFS policy) with a goal to minimize the total energy consumption. Dudzinski and Walukiewicz show 

that MCKP is a NP-Complete problem since it is actually a special case of knapsack problem [84].  

While formulating the problem into general programming approaches such as Linear or Non-Linear 

Programming and/or CLP is an option (for example [62]), the long and nondeterministic CPU time of 

these approaches is unacceptable to practical systems. A heuristic-based approach is thus highly desired.  

Next, the user input reliability metric RG needs to be converted to the form of traditional fault tolerance 

constraints on which the re-execution-based fault recovery schemes will be developed. However, the 

conversion between the two metrics is not trivial because:  

The complexity of calculating the reliability of a scheduled task set: A task set is scheduled if its task-to-

task order and DVFS policy are determined. For a scheduled task set comprising K tasks and subject to at 

most X faults, there are a total of ∑ (     
 
) 

    fault patterns [69]. The reliability can be computed by 

dynamic programming in polynomial time [58]. 

The cyclical dependence between DVFS policy and fault tolerance constraints: Since voltage scaling 
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negatively impacts the fault susceptibility of devices, the conversion between the two metrics becomes 

even more difficult. On one hand, determining a DVFS policy of a task set requires the knowledge of the 

amount of slack reserved for fault recovery (so that the rest can be used by DVFS to slow down). On the 

other hand, the slack required by fault recovery depends on the current fault rate that further depends on 

the DVFS policy being used.  

User Input RG, Task Set

Phase 1:

Convert RG to a set of traditional 

fault tolerance constraints

Phase 2:

Find the optimal execution order 

of tasks Ooptimal

(  ,   ), (  ,   ), …, (  ,   ) The optimal order Ooptimal

Phase 3:

For each (  ,   ), derive its optimal DVFS policy Y assuming Ooptimal.

Calculate the energy of each Y assuming no faults. Choose the one 

with minimal energy to be the global optimal Yoptimal.

Y1 for (X1,f1), Y2 for (X2,f2), …, YL for(XL,fL), and

Yoptimal

 

Figure 25. The proposed three-phase technique 

If we denote the reliability of the system that executes tasks using DVFS policy Y and is subject to at 

most X faults as R(X, Y), we want to test if R(X, Y)  RG. Our approach is to calculate R(X, Y*) where 

policy Y* assigns all tasks the same frequency – the lowest frequency used in policy Y. Obviously R(X, Y) 

≥ R(X, Y*). A tight lower bound of R(X, Y*) can be computed in constant time as shown in Section IV. 

The simplification, however, raises a concern that the bound could be loose if the frequencies in Y vary a 

lot. Thanks to the convex relation between energy and frequency, the optimal DVFS policy tends to 

assign tasks the same frequency or a small set of consecutive frequencies. This alleviates the problem. 

The proposed three-phase framework is outlined in Figure 25.  

Phase 1 converts RG to a set of traditional fault tolerance constraints: For each frequency level     F, we 

calculate the minimum X that makes R(X, Y*) ≥ RG where Y* is a policy that assigns all tasks the same 
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frequency   . Hence the X guarantees the reliability for any policy Y that uses frequencies no lower than 

  . The calculated X will be recorded as a tuple (  ,   ). Each tuple (  ,  ) is a traditional fault tolerance 

constraint, and meets or exceeds the user specified RG. 

Phase 2 finds the optimal task-to-task execution order: This phase investigates the impact on energy due 

to different task-to-task execution order, and finds the order towards optimal energy saving. Our 

investigation shows that the optimal order is independent to the selection of DVFS policy. If the order of 

tasks cannot be changed, one can simply ignore this phase and use the designated order for Phase 3. 

Phase 3 derives the DVFS policy based on the traditional fault-tolerance constraints passed from Phase 1: 

For each tuple (X
 l
,   ) from Phase 1, Phase 3 seeks the optimal DVFS policy for the optimal order found 

in Phase 2. The schedule should preserve feasibility when    faults occur, and minimize energy when 

faults are absent. The optimal DVFS policy will be the one that consumes the least energy when faults are 

absent.  

Recognizing that such a problem is NP-hard for a system supporting discrete scaling, we propose to start 

off with the comparable ideal system that supports continuous scaling. The analysis shows that for a given 

tuple (  ,   ) one can find the optimal policy in polynomial time in the continuous system. The optimal 

policy is then converted back to the discrete system using a simple heuristic. 

 Phase 1: System-level reliability vs. Fault tolerance constraints 3.4.

This phase converts the system-level reliability goal RG to a set of fault tolerance constraints for re-

execution based fault recovery. In other words, for the system using policy Y, one wants to find out the 

minimum number of X so that the reliability goal is achieved, i.e. R(X, Y) ≥ RG. We opt for calculating the 

reliability of policy Y* where all tasks are assigned the same frequency -- the lowest frequency of policy Y. 

It is easy to see that R(X, Y*) ≤ R(X, Y). A tight lower bound of R(X, Y*) can be calculated in constant 

time [73].  

 Phase 2: The optimal execution order 3.5.
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Phase 2 is to find the optimal order of task execution. In other words, without the knowledge of this 

section, one may have to find the optimal DVFS policy for EVERY possible task execution order (which 

is K! in the worst case) before he can conclude which one is the best overall. With the knowledge of this 

section, one only needs to find the optimal DVFS policy for only one task execution order. 

3.5.1. The slack constraints Si 

Feasibility is guaranteed if and only if at any time there is always enough time to handle the worst case 

where X faults are going to occur. Let us name the i
th
 running task as Ti, and denote its frequency as fi. 

Consider the time instance when T1 … Ti-1 finish their executions without incurring faults, and Ti is being 

executed. The feasibility is ensured if, until Ti is finished, there is always enough time to handle the 

following situations: Ti incurs faults, or any tasks after Ti incur faults. We therefore define for each task Ti 

its deadline Di and slack Si as the following:  

     ( ∑
  

    

 

     

 
   
    

)                        E 1 

      ∑
  

  

 

   

                       E 2 

where Ri = max(Ni, Ni+1… NK), 1 i K. This follows the strategy given in Section II.1 that all re-

executions of the faulty task and the normal executions of all the remaining tasks are budgeted on fmax. Si 

is determined by the assigned frequencies f1 … fi. Therefore it is also denoted as Si(f1, f2, …, fi) when 

necessary. The meanings of Si > 0, Si = 0, Si < 0 are that by executing tasks T1…Ti on the assigned 

frequencies f1…fi respectively, Ti will finish earlier than its deadline, right on its deadline, or later than its 

deadline respectively. It is easy to see that the sufficient and necessary condition for a policy Y to be 

feasible is for Ti  TSet, Si  0. The example in Figure 26 shows the concepts of slacks and deadlines 

with all tasks scheduled on fmax and X=1. In Figure 26 a task is represented by using a bar where the 
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height (y-axis) is its frequency and the length is the execution time (x-axis). The deadline of the task set, 

D, is set to 15 s. The deadline for each task, Di, can then be calculated as D1 = 2s, D2 = 6s, D3 = 10s, 

D4 = 12s and D5 = 14s. The corresponding Si are shown in the figure. This schedule is feasible since all 

tasks finish before their corresponding deadline Di, i.e. Si > 0 for 1  i  5. 

Freq.

0 1 2 3 4 5 6 7 8 9 10 11 12

D4
D3D2D1

Time (s)
T1 T2 T3

13 14 15

DD5

S1 S2 S3
S4

S5

T4 T5

fmax fmax =1GHz

  

Figure 26 An example of slacks and deadlines 

3.5.2. The optimal execution order 

A system needs to reserve time for the worst case—the longest unfinished task incurs all the faults, and 

the reservation cannot be released until the longest unfinished task is executed successfully. If the longest 

unfinished task is executed earlier, the reservation can be released earlier and devoted to slowing down 

more tasks. Hence in order to minimize energy consumption, an intuition is to schedule longer tasks 

earlier – the order matters. The energy-optimal policies of different orders could be different, i.e., there is 

an optimal Y for each possible O. Among all the energy- optimal policies let us denote the one that 

consumes the least energy as the Global Optimal Policy and its corresponding order as the Optimal Order. 

The Optimal Order may not be unique. 

Theorem 1: If there exists an order that always executes longer tasks earlier whenever possible (i.e., 

permitted by dependencies), the optimal policy of this order is always the Global Optimal Policy, 

and the order is one of the Optimal Orders.   

Proof: Theorem 1 states that executing longer tasks earlier whenever possible is a sufficient condition. To 

prove it, we assume that there exists another Optimal Order O that does not comply with the “longer tasks 
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earlier” rule. We show that by converting O to a new order O
*
 that complies with the “longer tasks earlier” 

rule, the optimal policy of O, which is also the Global Optimal Policy, can still be used by the O
*
 without 

violating any slack constraints. 

Assume in order O, there exists a shorter task Ti before a longer task Tj and there is no dependence 

between them, i.e. O = (T1,…, Ti,…, Tj,…,TK) and Ni < Nj. We move Ti after Tj to create a new order that 

is denoted as O*= (T1… Ti-1,Ti+1, …, Tj, Ti …, TK) with Ti right after Tj. We prove that the new schedule 

with the new order O* and the original Global Optimal Policy Y is always feasible by showing the slack 

constraints of all the tasks are satisfied: 

a) The slack constraints of Tm (1≤m≤i-1 or j+1≤m≤K) are satisfied as there is no change to their start 

and finish time; 

b) The slack constraints of Tm (i≤m≤j) are also satisfied as shown below: 
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In this deduction,   
  = max (Ni, Nj+1,…,NK) ≤ Rj = max (Nj, Nj+1,…,NK), and   

  = max (Nm,…, Nj, Ni, 

Nj+1,…,NK) =    = max (Nm, …,Nj, Nj+1,…,NK) since Ni < Nj. Sj ≥ 0 and Sm ≥ 0 are because the original 

schedule is feasible.  

Energy wise, since the new schedule also uses the original Global Optimal Policy Y, the new schedule 

consumes the same energy as the original schedule. Hence the new order O* is an Optimal Order. 

Q.E.D. 

 

Figure 27. Find the Optimal Order 

Theorem 1 greatly simplifies the searching space of execution orders from as many as K! to only one – 

the one that always schedules longer tasks earlier. This order will be referred to as the Optimal Order 

thereafter. The pseudo code is given in Figure 27. Initially, all tasks are unscheduled and are listed in 

USet. Each of the following While iteration schedules the longest task in USet and the tasks on which it 

depends. The total time complexity is O(K
2
). 

 Phase 3: The optimal DVFS policy 3.6.

Function: Find_Optimal_Order (TSet) 

USet  TSet 

while USet <>  do 

Find the longest task in USet  

if the task has unscheduled ancestors then 

Find_Optimal_Order(Fan in tree of the task) 

end if 
Schedule the task, and Remove the task from USet 

end while 
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A tuple (  ,  ) passed from Phase 1 delivers two constraints:    is the maximum number of faults to 

tolerate in a time frame, and f
 l
 
 
is the minimal frequency that can be used in the policy. For the purpose of 

this section,    and   are referred to as fsch_min and X respectively. The frequency (f) of executing a task is 

a function of the voltage (V) on which the processor is running: f = b(V – Vth)
2
 /V, where Vth is the 

threshold voltage and b is a constant for a given technology process. Mathematically, the above equation 

can be rewritten as if V is a function of f: V = V(f), where function V(·) is a monotonically increasing 

function of f when V > Vth. Hence, the power consumption of an active processor can be determined by its 

frequency, as denoted by PA(f), and PA(f) = Pd(f) + Pind, where Pd(f) and Pind are frequency-dependent 

power and frequency-independent power respectively [60]. The energy consumed by executing a task 

with Ni CPU cycles at frequency fi can then be computed as 
  (  )  

  
.
 4
 The total energy consumed by 

executing K tasks is then given by: 

        ∑
  (  )  
  

 

   

          E 3 

After finishing all scheduled tasks, the processor is assumed to go into idle/sleep state where only the 

minimal static power (PIdle  0) is consumed: 

           (  ∑
  
  

 

   

)        E 4 

Therefore, the total energy consumption of executing K tasks in a processor in a time frame with duration 

D is: 

                                                      
4 We assume system voltage/frequency changes only at the start of a task and will stay until the end of the task.  
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Let  (  )  
  (  )           

  
  represent the energy consumption per clock cycle, ETotal can be written as: 

       ∑ (  )  

 

   

                  E 6 

Pd(f) is believed to be a strictly increasing convex function of f, represented by a polynomial with an order 

between 2 and 3 [74]. Since PIdle is the minimal static power consumed when the processor is idle, it can 

be derived that PIdle  Pind. Therefore E(f) is a convex function and the minimum system energy is 

achieved when f takes the so-called critical frequency[62]. Since executing below the critical frequency 

consumes more time and energy, all the frequencies considered in this study are no less than it. 

Determining the optimal DVFS policy for a system supporting discrete scaling is NP-Hard. We propose 

to first investigate a comparable system that supports continuous scaling. The optimal policy for the 

continuous system can then be derived in polynomial time, and will be converted back to the original 

discrete system using a simple heuristic.  

3.6.1. Continuous system: Determine the optimal DVFS policy of a given execution order 

 The algorithm 3.6.1.1.

The example in Figure 28 is used to demonstrate the meanings of these notations. Consider a task set 

comprising of 5 tasks that are named according to the execution order: T1, T2, T3, T4, and T5, and require 

1k, 4k, 2k, 2k, 1k CPU cycles (Ni), respectively, as shown in Figure 28 (a). The processor has fmax = 1GHz 

and can scale down to fmin = 300MHz continuously. The system is supposed to tolerate at most 1 fault in a 
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time frame. In Figure 28, a task is represented by a bar where the height (y-axis) is its frequency and the 

length (x-axis) is its execution time. The deadline of the task set, D, is set to 15 s. The deadline of each 

task, Di, can then be calculated as D1 = 2s, D2 = 6s, D3 = 10s, D4 = 12s and D5 = 14s. In Figure 28 

(a), all tasks are executed on fmax, and such a policy is feasible since all tasks finish before their 

corresponding deadlines, i.e. Si > 0 for 1  i  5. The goal is to find the optimal DVFS policy of the task 

set so that the energy is minimized without letting Si < 0, for 1  i  5.  

 

Figure 28. An example with fsch_min = 1/3 fmax and X = 1 

We propose the following iterative procedure to find the optimal DVFS policy. The proof of optimality 

follows in the next subsection. I is set to 0 at the beginning: 

1) Reduce the frequencies of all tasks scheduled AFTER the I
th

 task simultaneously until either fmin is 

reached or the slack of any task decreases to 0. If it is the former case, the procedure returns with a 

complete policy. Otherwise, go to 2).  

2) Update I using the index of the task that runs out slack. If more than one tasks run out slack at the same 

time, I is set to the last one. Go to 1).  

In the example, T2 is the first task that runs out slack, followed by T4, then T5. The complete policy is Y = 

{f1=833MHz, f2=833MHz, f3=667MHz, f4=667MHz, f5= 500MHz}, as given in Figure 28 (b).  

 The proof of the optimality 3.6.1.2.
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From the previous example, it can be seen that the frequencies of tasks produced by the iterative 

procedure always have fi  fi+1. Theorem 2 shows that this is a necessary condition for a DVFS policy to 

be energy optimal. 

Freq.

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (s)
T1 T2

T3

13 14 15

T4

(a)

fmax

0.5fmax

The total execution 

time of T2 and T3

Freq.

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (s)
T1 T2 T3

13 14 15

T4

(b)

fmax

0.67fmax

I=2, N2 = N3 = 2,

f2 = 0.5fmax< f3 = fmax

I=2, N2 = N3 = 2,

f ’2 = f ’3 = 0.67fmax

 

Figure 29. An example to show fI ≥ fI+1 is necessary 

Theorem 2: For TSet = {Ti, 1 i  K}, if a policy Y=(fi, 1 i  K) is feasible and energy-optimal, then 

fi  fi+1. 

Proof: We make a counter statement that in an “optimal” policy there exists an index I such that fI < fI+1. 

Then we can build a new policy that assigns the following     and       to tasks TI and TI+1 respectively: 

          
       
  
  
 
    
    

 

It is trivial to prove       , and           . Figure 29 shows a small example for the proof and TI and 

TI+1 are the 2
nd

 and 3
rd

 tasks respectively. Figure 29 (a) is the original “optimal” frequency that has f2 < f3, 

and Figure 29 (b) is the new policy that has f’2 = f’3. Comparing to the original “optimal” policy, the total 

execution time of tasks TI and TI+1 of the new policy remains the same, and hence the feasibility of the 

tasks except TI remains the same. Since TI finishes earlier, its feasibility is not hurt either. So the new 

policy is feasible. 
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Again comparing to the original “optimal” policy, the energy consumed by the tasks except TI and TI+1 

remains the same since their frequencies are not changed. But the total energy consumed by TI and TI+1 in 

the new policy is less. This is because E(f) is a convex function and the total execution time of TI and TI+1 

remains the same, executing tasks TI and TI+1 using fI’ and  fI+1’ always consumes less energy than using fI 

and fI+1 [59][86]. Therefore the new policy consumes less energy than the original one. This disproves the 

counter statement thereby proving this lemma. Q.E.D.  

Task Ti is called a breakpoint (BP) task if fi > fi+1. In the example given in Figure 28 (d), T2 and T4 are BP 

tasks. Those BP tasks are of special interest to us since they define the complete policy of all tasks. We 

create a  variable for each task as in Eq 5: 

   
∑   
 
   

  
                            E 7 

It can be seen as a hypothetical frequency for task Ti in the way explained by Lemma 1.  

Lemma 1: The slack constraint of Ti will be satisfied if Ti and all the tasks before Ti are executed on 

frequencies equal to or higher than i, i.e. Si ≥ 0 if fk  ∆i for 1ki; The slack constraint of Ti will be 

violated if at least one task, either Ti or any task before Ti, is executed on a frequency lower than i 

while none of the other tasks is executed on frequencies higher than i, i.e. Si < 0 if fk  ∆i for 1ki 

and j, 1≤j≤i,  fj < ∆i . 

Proof: The proof is straightforward.  

If fk > ∆i for 1ki 

  (       )     ∑
  
  

 

   

    ∑
  
  

 

   

   

 

If fk > ∆i for 1ki  



63 

 

 

 

  (       )     ∑
  
  

 

   

    ∑
  
  

 

   

   

If fk  ∆i for 1ki, and j, 1≤j≤i, fj < ∆i 

  (       )     ∑
  
  

 

       

 
  

  
    ∑

  
  

 

   

   

 

Q.E.D.    

Lemma 2 and Theorem 3 show that the first BP task is the one with the largest  value among all the 

tasks.  

Lemma 2: For a feasible and energy-optimal policy Y=(fi, 1iK), if task TI is the first BP task and 

∆I > fsch_min, then fk = I for 1kI. 

Proof: If task TI is the first BP task, all the tasks scheduled before TI are on the same frequency as TI, i.e. 

fk = fI for 1kI. Next, Lemma 1 tells that the frequency of these tasks cannot be less than I due to slack 

constraints, i.e. fk  I for 1  k  I. Therefore we only need to show that fk is no larger than I for 1  k  

I.  

We then make the counter statement that the “optimal” policy has fk > I for 1  k  I. Especially, fI > I. 

If TI is the last task, i.e. I = K, the policy cannot be optimal because fI can always be reduced without 

affecting the other tasks. Hence we will focus on the case where TI is not the last task, i.e. I<K. Since it is 

assumed that the processor supports continuous scaling, one can always build a new policy that assigns 

frequencies, fI’, fI+1’, to tasks TI and TI+1 respectively such that  

fI’ > fI+1’, and fI’ = fI – ε > ∆I, ε > 0 

                 E 8 
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Comparing to the original “optimal” policy, the total execution time of tasks TI and TI+1 of the new policy 

remains the same, and hence the feasibility of the other tasks except TI and TI+1 remain the same. Also 

because the frequencies of TI and all the tasks executed before TI have the following property: f1 =…= fI-1 > 

fI’ > ∆I, according to Lemma 1, the slack constraint of task TI is satisfied, i.e. SI’ ≥ 0. SI+1’= SI+1≥ 0 since 

TI+1 finishes at the same time in the new policy. So the new policy is feasible. 

Again comparing to the original “optimal” policy, the energy consumed by the tasks except TI and TI+1 

remains the same since their frequencies are not changed. But the energy consumed by TI and TI+1 in the 

new policy are less. This is because E(f) is a convex function and the total execution time of TI and TI+1 

remains the same, executing tasks TI and TI+1 using fI’ and  fI+1’ always consumes less energy than using fI 

and fI+1 according to theorem 3 in [59]. Therefore the new policy consumes less energy than the original 

one. This disproves the counter statement thereby proving this lemma. Q.E.D.  

Theorem 3: For a feasible and energy-optimal Y=(fi, 1iK), TI is the first BP task if ∆I > fsch_min, and 

I > k for I<kK, and I  k for 1k<I.  

Proof: The theorem assumes task TI, the task that has the largest ∆ frequency, is not the last task, i.e. I<K. 

The theorem is similar and the proof is easier if TI is the last task. We make a counter statement that the 

first BP task is TJ, J≠I, J≤K.  

If J < I, we have f1 = …= fJ > fJ+1≥…≥ fI. According to Lemma 1, fJ has to be greater than ∆I. Together 

with the condition that I  k for 1k<I, it can be derived that fJ > J.  

If J > I, we have f1 = …= fI =…= fJ > fJ+1. According to Lemma 1, fI  ≥ I, hence fJ = fI  ≥ I. Together 

with the condition that I > k for I<kK, it can be derived that fJ > J. 

Therefore the counter statement always leads to fJ > J. According to Lemma 2, TJ cannot be the first BP 

task. This contradicts the original statement thereby proving Theorem 3 Q.E.D.  
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Therefore if TI is the first BP task, letting fi = I for 1iI will lead to the feasible and energy-optimal 

policy. However, consider the second BP task, say TJ (I < J), we CANNOT simply let fj = J, for I < j  J. 

This is because J is calculated by assigning J to all the first J tasks. But it has been proven that all the 

first I tasks will be executed on I, a frequency higher than J. Therefore to determine a new BP task, one 

may consider a new frame that starts after the most recent BP task finishes, and a new task set that 

consists of all tasks after it. The  frequency of these tasks will be updated as following assuming TI is the 

most recent BP task: 

   
∑   
 
     

     
                       E 9 

 

Figure 30. Find the optimal DVFS policy  

Figure 30 shows the pseudo code that finds all the BP tasks and their frequencies. The complexity of 

finding I is same as that of a search algorithm, O(K). Therefore, the complexity of this algorithm is O(K
2
).  

3.6.2. Convert the optimal policy to the discrete system 

Function: Phase_3_Find_Optimal_DVFS_Policy 

Input: TSet, fsch_min, X 

Output: the energy-optimal Y=(f1, f2, …, fK)  

{ Calulate R1, R2, …, RK;  j = 1; 

while (j <= K)  

{ Calculate the set ∆ = (∆j, …, ∆K)  

{      (∑
  

    

 
      

   

    
);   

      
∑   
 
   

  
, for j≤i≤K;   

} 

Find I that ∆I>∆k for I<k≤K and ∆I ≥∆k for j≤k<I; 

if (∆I ≤ fsch_min)  

{ let fj = … = fK = fsch_min; break; } 

else  

{ let fj = … = fI = ∆I; D = D – DI; 

j = I + 1; 

} 

   } 

} 
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If the frequency of task Ti is between two frequency levels, i.e. f 
l
  fi > f 

l+1
, Ti will be assigned the higher 

frequency f 
l
. This guarantees feasibility. Next, there might be some room to decrease the frequencies of 

some tasks without violating feasibility. The tasks are chosen according to a simple heuristic – the task 

that has the largest    
  ( )

  
|    . Denote this value as the Energy Gradient (EG) of task Ti at frequency 

fi. The algorithm attempts to reduce the frequency of the task with the largest EG to its next lower level. 

The algorithm uses a max-heap maintain the EG of all tasks at their current levels.  

Hence such attempt is done by extracting the task at the root of heap. The attempt is successful if the new 

policy is feasible. And the EG of the extracted task at the lower level is inserted back to the heap.  

Otherwise, the task is discarded and the task with the second largest EG (again at the root of the heap) 

will be considered. The complexity of one such iteration is O(lg(K)). The search stops when no task can 

run at lower frequencies. In the worst case, the algorithm stops when the frequency levels of at most K-1 

tasks are reduced from fmax to fmin which gives a complexity O(L·K). Therefore the complexity of this 

algorithm is O(L·K·lg(K)). The actual runtime is much less since the input of this algorithm is already 

close to the optimal policy. Finally, Phase 3 will examine all the tuples of (X
 l
, f

 l
) from Phase 1. Therefore 

the complexity of Phase 3 is O(L
2
·K·lg(K)+K

2
). Overall the proposed approach including all phases has a 

complexity O(L
2
·K·lg(K)+K

2
). 

 Evaluation 3.7.

Table 2. The processors used in simulation 

Processor Pentium M 765 
Opteron Athlon64-

4000+ 
PXA255 

Marvell XScale  

Performance 

States 

(Frequency, 

Voltage) 

(2.1GHz, 1.340V) 

(1.8GHz, 1.276V) 

(1.6GHz, 1.228V) 

(1.4GHz, 1.180V) 

(1.2GHz, 1.132V) 

(1.0GHz, 1.084V) 

(0.8GHz, 1.036V) 

(0.6GHz, 0.988V) 

(2.8GHz, 1.40V) 

(2.6GHz, 1.35V) 

(2.4GHz, 1.30V) 

(2.2GHz, 1.25V) 

(2.0GHz, 1.20V) 

(1.8GHz, 1.15V) 

(1.0GHz, 1.10V) 

(2.4GHz, 1.40V) 

(2.2GHz, 1.35V) 

(2.0GHz, 1.30V) 

(1.8GHz, 1.25V) 

(1.0GHz, 1.10V) 

(400MHz, 1.65V) 

(300MHz, 1.43V) 

(200MHz, 1.32V) 

(1GHz, 2.05V) 

(800MHz, 1.65V) 

(600HMz, 1.3V) 

(400MHz, 0.99V) 

(200MHz, 0.7V) 
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Table 3 Difference between the reliability lower bound and its actual value 

The number of faults 
The range of the frequency levels used in a policy 

1 2 3 4 5 6 7 8 

X = 1 9.57e-14 6.64e-12 1.16e-10 2.15e-9 4.30e-8 9.66e-7 2.65e-5 1.11e-3 

X = 2 9.49e-20 4.55e-17 3.01e-15 2.15e-13 1.70e-11 1.56e-9 1.83e-7 3.49e-5 

 

To evaluate the proposed three-phase approach on energy consumption and runtime saving, we developed 

five processor simulators based on the published data of Intel Pentium M 765, Intel PXA255, AMD 

Opteron, AMD Athlon64 4000+, Marvell XScale. All of them support discrete DVFS 

[75][76][77][78][86]. The specifications of these processors are listed in Table 2. A performance state is a 

voltage/frequency pair. 

The first experiment is to evaluate the accuracy of the reliability bound proposed in Phase 1. We 

randomly create task sets that each one comprises 100 tasks and each task has a cycle number (N) 

between 0.5 million and 20 million. λ0 and d are set to 10
-6

 and 4 respectively according to [56]. Given a 

set of consecutive frequency levels, each task set is assigned 10 random DVFS policies that use the 

frequencies in the set. For each policy, the reliability of a DVFS policy is calculated by exhaustively 

accumulating the probabilities of all fault patterns, and the lower bound is calculated according to [73]. 

Table 3 shows the average difference between them. A row of this table shows the difference for policies 

using different numbers of levels, and a column shows the differences for a policy with different fault 

numbers. We choose the Pentium M 765 processor simulator because it supports up to 8 frequency levels. 

As expected, the difference reduces with the increase of X, and increases with the number of frequency 

levels used in a policy. Since the proposed technique uses the lower bound of reliability to estimate the 

reliability of a policy, the reliability of a produced schedule always meets or exceeds RG. The inaccuracy 

becomes significant when the range of levels used in a policy (except the re-execution frequency fmax) is 

beyond 5, which will result in pessimistic schedules. Thanks to the convex relation between energy and 
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frequency, the optimal DVFS policy tends to assign tasks the same frequency or a small set of 

consecutive frequencies, which helps confine the inaccuracy of the proposed lower bound. 

                      

Figure 31  Exhaustive search 

The second experiment is designed to evaluate the quality of the complete package of the proposed 

approach. The uniqueness of the proposed technique lies on the following points: it addresses uni-core 

systems, it addresses the adverse effect of voltage scaling on fault susceptibility using a fast heuristic; it 

takes system-level reliability as the only reliability metric, it exams the optimal execution order. To the 

best of our knowledge, there is no other technique that addresses the same issue. For example, the 

technique proposed in [61] addresses multi-core systems and requires both a traditional fault tolerance 

constraint and a reliability goal. The technique proposed in [87] uses task-level reliability and a 

continuous voltage scaling model. The continuous model makes the problem a convex optimization 

problem while the discrete model used this work makes the problem a MCKP problem. As a result, we 

Function: Exhaustive Search 

Input: RG, K, {N1, N2, …, NK}, L, {f
1
 = fmax, f

2
, …, f 

L
 = fmin} ; 

Output: the optimal policy Y; 

{ Find_Optimal_Order (TSet); 

YSet = {Yi}contains the complete list of policies; 

for each policy Yi in YSet 

{ if the energy of Yi ≥ Current_Minimum_Energy   

Break; 

  Reliability = 0; 

for (x=0; x≤MaxX; x++) 

  { if Yi is not feasible Break; 

   Reliability += P(x,Yi); 

   if Reliability ≥ RG   

Current_Minimum_Energy = energy of Yi ; 

} 

} 

}      
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choose to compare the result of our work to the optimal solution produced by exhaustive searches. The 

pseudo code is shown in Figure 31. Note that because the exhaustive search is independent to all the 

approximations and assumptions made in the proposed three-phase approach, it provides a fair 

evaluation of the complete package. For each processor listed in Table 2 we randomly generated 350 task 

sets with different numbers of edges in the data dependency graph and utilizations of normal tasks 

execution ranging from 10% to 70%. Utilizations higher than 0.7 are not tested because the reliability 

goal may not be satisfied. The system-level reliability goals RG are set to 0.999 999 99 and 0.999 999 9 

respectively, according to [61]. Pidle and Pind are set to be 0.1w. All the other parameters are the same as 

the first experiment. Energy consumption is calculated based on the model given in [62]. The simulations 

are performed in a PC with two 3.4GHz CPUs, 2GB RAM.  

 

Figure 32 The comparison between the energy consumed by the DVFS policies produced by the proposed 

technique and the energy consumed by the optimal DVFS policies 

Comparison results are reported in Figure 32 with (a) for RG = 0.999 999 99 and (b) for RG = 0.999 999 9. 

In these figures, x-axis is the utilization and y-axis is the energy difference. As one may see the energy 

difference is usually less than 5% except the Marvell processor. The reason of the large difference of 

Marvell processor is due to its large steps between its performance states. As shown in Table 2, the 

difference between consecutive states of Marvell processors is about 0.3 to 0.4v while the corresponding 
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difference of other processors is about 0.05 to 0.2v. Hence a small difference in DVFS policy could result 

in a large difference in energy consumption. Another observation is that the difference peaks when the 

utilization is between 0.3-0.6. This is because when the utilization is low (< 0.4), all tasks tend to be 

scheduled on or near fYmin. Hence difference between exhaustive search and the proposed search is smaller. 

The reason is also applied to the high utilization (>0.6) where all tasks tend to be scheduled on or near fmax. 

But because tasks’ frequencies are high, a small difference in DVFS policy may lead to a large difference 

in energy consumption. The most error appears at the mid-utilization region. This is because at this region 

tasks’ frequencies spread across a wider spectrum. Therefore the chance of two approaches producing 

different policies is higher.  

Speed wise, the runtime of the proposed approach is on the order of milliseconds. No noticeable runtime 

increase is observed for the task sets consisting of up to 1000 tasks. The exhaustive search on the other 

hand spends several minutes for small-scale task sets that comprise up-to 14 tasks. Its runtime increases 

dramatically as the number of tasks and/or the number of frequency levels increase. 

 Conclusions 3.8.

This section studies the trade-off among energy efficiency, fault tolerance, and reliability in scheduling 

real-time tasks. Being aware that the problem is NP-hard, we propose to solve this problem in three 

phases: the first phase converts the reliability goal to a list of conventional fault tolerance constraints, the 

second phase determines the execution order, and the third phase derives the optimal schedule for each 

constraint in the list. The final schedule is the one that consumes the least energy. The proposed approach 

finds a close-to-optimal schedule for a set of K tasks scheduled on a system supporting L voltage levels in 

O(L
2
K

2
) time. The difference between the results of the proposed approach and the optimal results is 

small. 
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Chapter 4. Security concern of crypto devices with scan chains
5
 

 Motivation 4.1.

Radio frequency identification (RFID) is an automated data capture technology that can be used to 

electronically identify, track, and store information contained on a tag that is attached to an object, such as 

a product, case, or pallet. The main technology components of an RFID system are a tag, reader, and 

database. A reader scans the tag for data and sends the information to a database, which stores the data 

contained on the tag as shown in Figure 33. RFID tags are made up of a microchip with some data storage 

and an antenna. Tag readers broadcast an RF signal to access information stored on the tags. RFIDs are an 

important cross-section technology whose potential application can be found in practically all areas of 

daily life and business. However, unprotected tags may pose a serious threat on information security and 

consumer privacy since the communication between tags and readers can be easily eavesdropped [106]. 

The potential risks include consumer location privacy tracking, sales figure tracking, industrial espionage, 

unauthorized access to the tag’s memory, and counterfeit of tags [89]. 

 

Figure 33 Components of an RFID system 

Many issues regarding information security within RFID systems can be solved by some cryptographic 

technology. Among all the modern cryptographic technologies, stream cipher encryption is an ideal 

option due to the proven security, low hardware and power cost, and high efficiency. For example, the 

Mifare RFID chips, which are used in many mass transit systems worldwide including Boston, London, 

and Netherland, encrypt the tag ID using a stream cipher called Crypto-1[103]. However, even if stream 

cipher encryption is used, RFID chips may still suffer from many advanced attacks. A trio of MIT 

                                                      
5 Copyright © ACM, 2011. This chapter is a minor revision of the work published in ACM Transactions on Design Automation of Electronic 

Systems, Volume 16, Issue 2, March 2011, http://doi.acm.org/10.1145/1929943.1929952 
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students has discovered the security weaknesses of Mifare card used in the Boston public transportation 

system, and showed how to hack the RFID chip to get free subway rides [102]. In this chapter, we present 

a general attack that targets a group of stream ciphers, including one of the candidates of the latest 

ECRYPT eSTREAM project [92]. 

 Introduction 4.2.

Stream cipher is an important class of encryption algorithm. They encrypt plaintext messages one bit at a 

time, in contrast to block ciphers that operate on large blocks of data. Consequently, stream ciphers have 

simple hardware circuitry, are generally faster and consume very low power. Stream ciphers are deployed 

in applications where buffering is limited or characters are processed individually such as in wireless 

telecommunications applications. Stream ciphers have limited or no error propagation and hence are 

advantageous in noisy environments where transmission errors are highly probable. A stream cipher 

encrypts plaintext bits using a pseudorandom keystream. As shown in Figure 34 (a), one bit of plaintext is 

combined with one bit of keystream at a time, typically using a simple XOR operation. Thus, the security 

of a stream cipher depends on the randomness of its keystream. In practice, the pseudorandom keystream 

is generated by the keystream generator using a user provided secret key. 

(a)

`

Keystream 
Generator

Cipher
Text

Plain
Text

+

Preloaded Key

Keystream

 (b)

D QD Q + D QD Q +

D QD Q D QD Q ++

+ Keystream

 

Figure 34: (a) Stream Cipher (b) An example LFSR based keystream generator 

In this chapter, we assume that the user key is preloaded into the device, which is the typical scenario in 

practice. The keystream generator is implemented either as a Linear Feedback Shift Register (LFSR) or 

other methods such as a linear congruence generator. Due to ease of implementation, long period, and 
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uniformly distributed output, LFSR based stream ciphers are quite popular. An example keystream 

generator that uses two LFSRs is shown in Figure 34 (b). 

Scan-based Design-For-Test (DFT) is one of the most popular methods to test IC devices. Scan-based 

DFT ties all flip-flops (FFs) in one or more scan chains, and the states of the FFs can be scanned out 

through these chains as shown in Figure 35. Scan-based DFT provides access to the internal state of 

(crypto) hardware by improving control of internal nodes from the primary inputs and observation of 

values on internal nodes at the primary outputs.  

D Q

Combinational 

Logic

D Q

Scan In

Scan Out

Scan 

Enable

Scan 
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MUX

MUX

0

1

0

1

 

Figure 35: The structure of a scan chain 

A flip-flop included in a scan chain is replaced by a scan flip-flop (a D flip-flop with a MUX at the D 

input). During normal mode when the Scan_Enable signal is set to 0 the scan flip-flop works like a 

regular D flip-flop. In test mode when the Scan_Enable signal is set to 1 scan flip-flops are disconnected 

from the combinational circuit and connected as a scan chain. Now, the flip-flop contents can be set to 

predetermined values (controllability) and intermediate state can be scanned out (observability). Scan 

chains are typically inserted into the design by test synthesis tools. A scan chain is classically organized 

according to the physical positions of the flip-flops. Even if they are arbitrarily connected it does not 

improve the security as shown in this chapter. During chip packaging, scan chains are either connected to 

the external JTAG interface for in-field debug and maintenance [98] or left unbound to prevent access. In 
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the former case, it is easy to compromise the secrets on the chip. In the latter case, unbound scan chains 

can still be accessed [109]. 

While scan-based DFT improves the quality of testing, it also opens a powerful side channel to the 

privacy information stored in the design under test, and hence, weakens the theoretically guaranteed 

security of cipher algorithms [Goering 2004]. Until now, scan chains in DES and AES block cipher 

implementations have been exploited to leak their secret keys [108][109] as follows: 

 First, the positions of scan elements in the scan chain are determined. For this, pairs of known 

plaintexts that are different in a single bit position are applied in the normal mode and then the internal 

state of the hardware implementation is scanned out in the test mode. 

 Then the secret key is discovered. Modules in the block cipher are analyzed to identify a class of 

plaintexts. By applying a small number of plaintexts from this special class in the normal mode and by 

scanning out the corresponding internal state in the test mode, the secret keys are discovered. 

In this chapter, we propose a scan-based attack on the hardware implementations of LFSR-based stream 

ciphers that use scan-based DFT. In contrast to the scan attacks of block ciphers, the proposed scan attack 

of stream ciphers does not require the attacker to apply carefully designed plaintexts. It is also worth 

noticing that hardware designers not realizing the security implications of scan DFT may use it in security 

devices [94].  

We will introduce the general technique to determine the scan chain structure of several types of LFSR 

structures used in stream ciphers in section 4.4 and follow it up by demonstrating the attack on six stream 

ciphers DECIM [90], Pomaranch [96], A5/1, A5/2 [91], w7 [105], and LILI II [90].  

 General description of the attack 4.3.

We assume the attacker has physical access to the Device-Under-Attack (DUA). An attacker can 

temporarily access a victim RFID tag or RFID-based toll card as shown in Figure 33, launch the attack 
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and return the tag or toll card without being noticed. With the obtained secret keys, the attacker can 

eavesdrop on the victim’s communication or clone the card for unauthorized usage. Specifically, we 

assume that the attacker 

 Knows the algorithmic details of the stream cipher since they are public; 

 Can run the DUA for a certain number of clock cycles in its normal mode without being noticed; 

 Can scan out the states of internal registers of DUA via scan chains after each clock cycle; 

 Does not need to scan in special inputs in the test mode and does not need to apply chosen inputs 

to the stream cipher. This makes the proposed attack different from and more powerful than the one 

proposed in [107]. 

After each scan out operation, the attacker will obtain a bit vector that includes all bits of the LFSR and 

all bits of the architectural registers (AR). ARs are the registers that are not in the cipher specification but 

in the DUA implementation. This is because a cipher generally provides only the algorithm-related 

specifications. Different DUAs of the same cipher may have minor differences. For example, different 

state coding may introduce different numbers of state registers. Since LFSRs are initialized by the secret 

key and an initial vector, a stream-cipher-based DUA can be reproduced if the initial states of all the 

LFSRs are recovered even though the actual secret key itself may not be known. The goal of the attacker 

is to discover the correspondence between the bits of the scan-out vector and the bits in the LFSRs in the 

stream cipher.  

The attacker scans out the internal registers at the time when the DUA is initialized and records the scan-

out vector V0. He then resets the DUA, clocks it by one cycle, and records the new scan-out vector as V1. 

The attacker repeats this procedure for a certain number of rounds and uses all the recorded vectors to 

reconstruct the state information of the DUA. The attack can be vital.  

 Scan attack on LFSR based stream ciphers 4.4.

We will describe several attacks that target general LFSR structures. The attack on a specific stream 
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cipher is a combination of some or all of these attacks. We will analyze the case where the scan-out vector 

consists of bits of the LFSRs and the ARs. The states of the ARs are assumed to be random. Let N be the 

length of the scan-out vector and L be the length of the LFSR, N  L. Then N-L is the number of FFs in 

the ARs. The following notations are used in this chapter.  

LFSR  Linear Feedback Shift Register 

AR  Architectural Register 

MNR  Maximum number of rounds needed to determine a flip-flop in a search 

LBB Left boundary bit of all the discovered bits 

RBB Right boundary bit of the discovered bits 

N The length of the scan-out vector 

L The length of the LFSR 

4.4.1. Scan attack on external (Fibonacci) LFSR based stream ciphers 

Figure 36 shows two L-bit external LFSRs with N-L bits ARs. One LFSR has an input and the other has 

no input. Since the attacks on both are similar, we will only illustrate the attack using the external LFSR 

with no input.  

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

AR0 AR1 ARN-L-1
… … …

S0 S1 SL-2 SL-1

CL-1 CL-2
C1 C0

In

AR0 AR1 ARN-L-1
… … …

 

Figure 36: An L-bit external LFSR (a) without an input and (b) with an input 

The bits in an external LFSR without an input have the Update Functions:  
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Si(t) = Si-1(t-1)  for 1 ≤ i ≤ L-1            (1) 

S0(t) = ∑0≤i≤L-1 (Ci × SL-1-i(t-1)), Ci = 0 or 1       (2) 

The Update Functions show how Si(t) at clock cycle t is updated by the values from time t-1. Si(t) is the 

state of the i
th
 stage at clock cycle t (scanned out as part of the vector Vt). Si-1(t-1) is the state of the (i-1)

th
 

stage at cycle t-1 (scanned out as part of the vector Vt-1). Ci (1 ≤ i ≤ L-1), Si(t) and Si-1(t-1) could be 1 or 0 

depending on the characteristic polynomial of the LFSR. To discover the bit-by-bit correspondence 

between the scan-out vector and the flip-flops in the LFSR, the attacker randomly picks a bit X from one 

of the scan-out vectors, and checks if X belongs to the LFSR by performing an -search. 

-search is of two types. For a bit X, the left -search looks for another bit W where W(t-1)=X(t), while a 

right -search looks for another bit Y where X(t)=Y(t+1). 

Vector 1 2 3 4 5 6 7 8 9 10 Suspect set of W

V0 0 0 0 0 0 0 0 1 1 0 All bits except 9

V1 1 0 0 0 0 0 0 0 0 0 1, 2, 3, 4, 5, 6, 7, 10

V2 0 1 0 0 0 0 0 0 0 1 2, 3, 4, 5, 6, 7, 10

V3 0 0 1 0 0 0 0 0 1 1 2, 10

V4 1 0 0 1 0 0 0 0 0 0 2

V5 0 1 0 0 1 0 0 0 0 1 2

V6 0 0 1 0 0 1 0 0 1 0 2

V7 1 0 0 1 0 0 1 0 1 1 Miss

Vector 1 2 3 4 5 6 7 8 9 10 Suspect set of W

V0 0 0 0 0 0 0 0 1 1 0 All bits except 8

V1 1 0 0 0 0 0 0 0 0 0 1, 2, 3, 4, 5, 6, 7, 10

V2 0 1 0 0 0 0 0 0 0 1 2, 3, 4, 5, 6, 7, 10

V3 0 0 1 0 0 0 0 0 1 1 3, 4, 5, 6, 7

V4 1 0 0 1 0 0 0 0 0 0 4, 5, 6, 7

V5 0 1 0 0 1 0 0 0 0 1 5, 6, 7

V6 0 0 1 0 0 1 0 0 1 0 6, 7

V7 1 0 0 1 0 0 1 0 1 1 7

(a) (b)

 

Figure 37 Left -search is either (a) successful (i.e. hit) or (b) not successful (i.e. miss) 

Let us consider an 8-bit external LFSR with feedback polynomial 1+x
3 
+x

8
. Its update functions are S0(t) 

= S2(t-1)+ S7(t-1), and Si(t) = Si-1(t-1) for 1 ≤ i ≤ 7. For clarity, we assume that the bits of the scan-out 

vectors are in the same sequence as the bits in the LFSR, i.e. the 1
st
 bit is S0, the 8

th
 bit is S7, and the 9

th
 

and 10
th
 bits are ARs. Hence N = 10 and L=8. The left -search on this example is shown in Figure 37 (a) 

where the 9
th
 bit of the scan-out vector is chosen to be X. The attacker finds its left neighbor W by starting 

with a “suspect set” which initially contains all bits except X. The attacker prunes this suspect set by 

eliminating those bits whose values in Vi are different from the value of X in Vi+1. This is one round of 
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checking. If the suspect set is emptied after several rounds of checking as shown in Figure 37 (a), the 

search is unsuccessful in finding a left neighbor and is hence called a “miss”. The attacker then randomly 

picks another bit and repeats this procedure. In Figure 37 (b) S7 is determined to be the left neighbor W of 

S8 after 7 rounds of checking, and the search returns a “hit”.  

Since the bits in the LFSR are pseudorandom and the bits in the ARs are assumed random, each bit in the 

scan-out vector has a 50% chance to be 1 or 0. If a bit is not the W of the current X, it will be denoted as a 

false bit, and the probability of eliminating this false bit from the suspect set at the n
th
 round equals  

1  t  n-1 PbW(t-1)=X(t)  PbW(n-1)X(n) = 0.5
n
 

where PbW(t-1)=X(t) is the probability that W(t-1)=X(t). Therefore, the probability of eliminating a false bit 

from the suspect set after n rounds equals 

∑1  t  n 0.5
n
= 1- 0.5

n
 

If the chosen X is a bit of the LFSR and has the expected Update Function W(t-1)=X(t), its suspect set will 

never be emptied. Otherwise, its suspect set will be emptied eventually after certain rounds of searching. 

Hence the attacker needs to determine the maximum number of rounds (MNR) in the way that a “hit” is 

deemed if the set contains just one bit after so many rounds of searching. Given the sizes of today’s 

LFSR-based stream ciphers, we define the MNR as the number of rounds after which more than 99.99% 

false bits are eliminated. The MNR of α-search for this example and for all the stream ciphers is thus 15.  

A hit during left α-search discovers two bits, X, and its left neighbor W, in the LFSR. A bit is the Left 

Boundary Bit (LBB) if its left neighbor is undiscovered. A bit is the Right Boundary Bit (RBB) if its right 

neighbor is undiscovered. After one successful left α-search, W is the LBB and X is the RBB. In the 

example of Figure 37 (b), bit 7 is the LBB and bit 8 is the RBB. Repeatedly applying the left -search on 

LBB will discover the LFSR bits all the way to its left-most bit S0. Repeatedly applying the right -search 

on an RBB will discover all bits in the LFSR all the way to the right most bit SL-1. At this point, the 
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structure of the LFSR is identified. It is important to note that the SAME set of scan-out vectors can be 

analyzed to discover multiple bits in the LFSR. Therefore for each stream cipher, the attacker only needs 

to scan out MNR+1 internal state vectors. 

4.4.2. Scan attack on internal (Galois) LFSR based stream ciphers 

Structure of an internal LFSR in some stream ciphers is shown in Figure 38. The bits in an internal LFSR 

have the following relations: 

Si(t) = Si-1(t-1)  (Ci  SL-1(t-1))  (1 ≤ i ≤ L-1),        (3) 

S0(t) = SL-1(t-1)                   (4) 

Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the characteristic polynomial of the LFSR. 

S0 S1 SL-2 SL-1

C1 CL-2 CL-1

 

Figure 38 An L-bit internal LFSR 

When Ci = 1, Si(t) = Si-1(t-1) SL-1(t-1), and is referred to as a tap bit. When Ci = 0, there is no feedback 

involved. Si(t) = Si-1(t-1) (1 ≤ i ≤ L-1), and is referred to as a non-tap bit. The non-tap bits can be 

discovered by the -search. Discovering and identifying the tap-bits needs a new type of search, named 

-search. 

In the left -search, for a selected bit X, a pair of bits in the scan-out vector (W, Z) are found such that 

W(t-1)=X(t) when Z(t-1) = 0, or W(t-1) = X(t)’ when Z(t-1) = 1.  

Similarly, in the right -search, for a selected bit X, a pair of bits in the scan-out vector (W, Z) are found 

such that X(t) = Y(t+1) when Z(t) = 0, or X(t) = Y(t+1)’ when Z(t) = 1. 
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The -search is based on the observation that Si(t) = Si-1(t-1) or Si(t) = Si-1(t-1)’ when SL-1(t-1) = 0 or 1 

respectively. For the first -search, the attacker has to guess two bits, the neighbor bit of X and SL-1. The 

number of possible 2-tuples for bit X is P(U, 2) = U(U-1), where U is the number of undiscovered bits in 

the LFSR. However, when the first -search returns a hit, bit SL-1 is identified. To discover the remaining 

bits using -search, the attacker needs to guess only one bit. This reduces the suspect set of 2-tuples to 

P(U, 1) = U. The probability of eliminating a 2-tuple from the suspect set in the n
th
 round equals: 

1  t  n-1 (PbZ(t-1)=1  PbW(t-1)=X(t)’+ PbZ(t-1)=0  PbW(t-1)=X(t))  [PbW(n-1) X(n)’  PbZ(n-1)=1 + PbW(n-1) X(n)  PbZ(n-

1)=0] = 0.5
n
. 

More than 99.99% false 2-tuples are eliminated from the suspect set in 15 rounds (MNR). The attack 

procedure that combines  and  searches is as follows: 

1) The attacker randomly picks a bit and applies the -leftward-search. If the search returns a miss, the 

attacker randomly picks another bit and continues with -leftward-searches until he gets a hit. The hit 

discovers a non-tap bit and its left neighbor which are the RBB and LBB of the discovered bits 

respectively.  

2) The attacker applies the -leftward-search on LBB and the -rightward-search on RBB. This step is 

repeated to grow the discovered section until either the whole LFSR is discovered (LBB = RBB), or both 

the leftward and the rightward searches return misses. The latter case indicates that the attacker has 

reached tap-bits.  

3) The attacker applies the -leftward-search on the LBB and the -rightward-search on the RBB to 

locate the left neighbor of LBB and right neighbor of RBB, which will become the new LBB and RBB 

respectively. Then go to step 2. Steps 2) and 3) are repeated until all the bits in the LFSR are discovered. 

Since the first -search identifies bit SL-1, this bit can be used to identify all the other tap bits in this LFSR. 

4.4.3. Scan attack on internal LFSRs with inputs 
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An internal LFSR with input is the same as the one shown in Figure 38 except that SL-1 is XORed with the 

input before feedback to the previous stages. The bits have the following relations where In stands for the 

input: 

Si(t) = Si-1(t-1) (Ci(SL-1(t-1)  In)), 1≤i≤L-1       (5) 

S0(t) = SL-1(t-1)  In           (6) 

Ci (1 ≤ i ≤ L-1) could be 1 or 0 depending on the characteristic polynomial of the LFSR. When Ci = 0, no 

feedback is involved and Si(t) = Si-1(t-1) (1≤i≤L-1). These non-tap bits can be discovered by -searches. 

When Ci = 1, Si(t) = Si-1(t-1)  S0(t-1)  In. Determining these tap bits, however, requires extra effort 

since In is not accessible by the attacker. The attacker considers two tap bits, LBB Si and the RBB Sj at 

the same time. Since  

Si(t) = Si-1(t-1)  S0(t-1)  In and Sj+1(t)= Sj(t-1)  S0(t-1)In, and 

Si(t)  Sj+1(t) = Si-1(t-1)  S0(t-1)  In  Sj(t-1)  S0(t-1)  In = Si-1(t-1)  Sj(t-1) 

A new -search for such a discovery is defined as follows:  

-search: Given a pair of bits X and F, this search looks for a 2-tuple (W, G) where W(t-1)  F(t-1) = X(t) 

 G(t).  

The attacker has to guess two bits W and G, therefore the suspect set of 2-tuples for bits X and F is P(U, 2) 

where U is the number of undiscovered bits. The probability of eliminating a 2-tuple from the suspect set 

at the n
th
 round is: 

(1  t  n-1 PbW(t-1)  F(t-1) = X(t)  G(t))  PbW(n-1)  F(n-1)  X(n)  G(n) = 0.5
n
 

More than 99.99% false 2-tuples can be eliminated in 15 rounds (MNR). The attack procedure combining 

the  and  searches is similar to the one combining  and  searches. Just replace  with  in step 3. 
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4.4.4. Scan attack on LFSRs with jump registers 

A modified jump cell, has been proposed to replace the normal register cell used in LFSRs in [97]. Figure 

39 shows a register cell that can work in two modes controlled by the Jump Control switch. When the 

switch is open, it works as a normal register cell and when the switch is closed, it works as a jump cell. 

Clocking an LFSR using normal cells J times produces the same result as clocking once the same LFSR 

that uses jump cells instead. J is the jump index derived from the characteristic polynomial. 

Normal

Jump Control

Jump

 

Figure 39 A Jump Cell 

Attacking an LFSR using jump cells does not require any new type of search. However, the number of 

rounds to eliminate a bit/tuple from the suspect set increases. The bits in an external LFSR using jump 

cells have the following relations where JC stands for Jump Control: 

Si(t) = Si-1(t-1)  JC  Si(t-1), for 1 ≤ i ≤ L-1,          (7) 

S0(t)=∑0≤i≤L-1(Ci  SL-1-i(t-1))JC  S0(t-1), Ci = 0 or 1      (8) 

Observe that when Si(t-1) = 0, Si(t) = Si-1(t-1). The jump version of -search defined below can discover 

the bits in an external LFSR using jump cells: 

-leftward-search-J: Given a bit X, it looks for another bit W where W(t-1) = X(t) when X(t-1) = 0.  

-rightward-search-J: Given a bit X, it looks for another bit Y where X(t-1) = Y(t) when Y(t-1) = 0.  

The probability of eliminating a bit from the suspect set at the n
th
 round is  

1  t  n-1 (PbX(t-1)=1+ PbX(t-1)=0  PbW(t-1)=X(t))  (PbX(n-1)=0  PbW(n-1)X(n)) = (3/4)
n-1
1/4 
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More than 99.99% false bits are eliminated from the suspect set within 33 rounds (MNR). The MNR to 

eliminate more than 99.99% tuples from the suspect set is doubled. The attack procedure for the LFSRs 

using normal cells can also be applied to the LFSRs using jump cells. 

4.4.5. Scan attack on irregular clock controlled LFSRs 

Irregularly stepping the LFSR through successive states is a method to increase the linear complexity of 

an LFSR while preserving a large period and good statistical properties. Stream ciphers based on 

regularly clocked LFSRs are susceptible to basic and fast correlation attacks [93][104]. Irregular clocking 

limits the possibilities for mounting classical correlation attacks. 

For devices using irregular clocked LFSRs, consecutive scan-out vectors could be partly or completely 

the same. These redundant vectors should be abandoned. To determine if a vector is redundant, the 

attacker can check if the bits of interest to the search (i.e. the (X W) in an -search, the (X W Z) in a -

search, and the (X W F G) in a -search) have different values from the bits in the previous vector. The 

MNR to eliminate the bits/tuples from a suspect set increases inversely with the probability of the LFSR 

being clocked in a cycle.  

4.4.6. Scan attacks on stream ciphers with multiple LFSRs 

Most LFSR-based stream ciphers use more than one LFSR. To determine the scan chain structure, we 

need to locate all the LFSRs. Therefore, we need to establish a one to one correspondence between the 

LFSRs discovered and the LFSRs in the cipher. If the LFSRs have different lengths, we can easily get the 

mapping. If the LFSRs have the same length, we can still map them according to their unique feedback 

functions.  

 Putting it all together: Attacks on selected LFSR-based stream ciphers  4.5.

4.5.1. DECIM 
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DECIM is a stream cipher submitted to the ECRYPT eSTREAM project [92]. It uses an 80-bit key, a 64-

bit IV, and a 192-bit external LFSR. The key stream generation mechanism is shown in Figure 40. The 

bits of the external LFSR are numbered from 0 to 191. The Boolean function f is a 13-variable quadratic 

symmetric function. ABSG is an irregular decimation mechanism. DECIM uses a 32-bit key buffer to 

maintain a constant throughput for the key stream. The LFSR is regularly clocked. 

The -search is sufficient to attack DECIM. While we estimate that the MNR = 15 is sufficient for an -

search, we use MNR = 17 in our simulations to ensure a high level of confidence. The total number of 

checking performed is 17×N=17×228 = 3876.  

 
0 1 … 190 191

f

ABSG Buffer
keystream

 

Figure 40 DECIM Stream Cipher 

… 80 1 … 17 18

… 100 1 … 20 21
key

stream
Majority 

function

R3

R2

R1

… 100 1 … 21 22

 

Figure 41 A5/1 Stream Cipher 

4.5.2. A5/1 

A5/1 is a stream cipher used to encrypt over the air transmissions in the GSM standard. A GSM 

conversation is transmitted as a sequence of 228-bit frames (114 bits in each direction) every 4.6 

milliseconds. To ensure privacy, each frame is XORed with a 228-bit keystream produced by A5/1. As 

shown in Figure 41, A5/1 cipher uses three external LFSRs – R1, R2, and R3 of lengths 19, 22, and 23 

bits, respectively. At each cycle, after the initialization phase, the left-most bits of the LFSRs are XORed 

to produce one bit key. The three LFSRs are irregularly clocked depending on the output of a majority 

function M. M computes the majority of S8 of R1, S10 of R2 and S10 of R3. An LFSR shifts only when the 

state of its selected bit equals M. 
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To attack A5/1, we need to apply -searches to determine the three register segments. After that, we can 

tell them apart by their lengths. The number of vectors used by our simulation is 32 (ie. MNR =31) and 

the total number of comparisons is about 31×N=31×64=1984. 

4.5.3. A5/2  

A5/2 is a stream cipher used to provide voice privacy in the GSM cellular telephone protocol. A5/2 uses 

four external LFSRs R1, R2, R3 and R4 of lengths 19, 22, 23, and 17 bits respectively as shown in Figure 

42. Clocking of R1, R2 and R3 is controlled by R4 and R4 is regularly clocked in each clock cycle. A 

majority function is attached to an LFSR and outputs the majority of three selected bits from the LFSR. 

The outputs of all the majority functions and the right most bit from each register are XORed to produce 

the output. 

The procedure to attack A5/2 is basically the same as that of A5/1. The number of scan-out vectors used 

in our simulation is 42 (i.e MNR = 41) and the total number of comparisons is approximately 41×81 = 

3321. 
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Figure 42: A5/2 Stream Cipher 
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Figure 43: A module in W7 stream cipher 

4.5.4. W7 

W7 is a synchronous stream cipher optimized for efficient hardware implementation [105]. W7 cipher 

contains eight similar modules each of which consists of three external LFSRs and one majority function 

as shown in Figure 43. The majority function in a module controls the clocking of the LFSRs in the 
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module and the clocking principle is the same as that of A5/1. The outputs of all modules compose a byte 

of the key stream.  

Since all the LFSRs are external, applying -search is sufficient to discover the bits of all the LFSRs. The 

identity of a LFSR can be told by matching the unique lengths and feedback functions of discovered 

LFSRs. The MNR used in our simulation is 83 and the total number of comparisons is 

83×N=83×1024=84992. 

4.5.5. LILI II  

LILI-II is a simple and fast stream cipher that uses two internal LFSRs. As shown in Figure 44, LILI II 

has two subsystems: one subsystem generates an irregular clock to control the other subsystem that 

produces the keystream. The LFSR in the clock-control subsystem is regularly clocked. The Fc function 

in the system takes the first bit in the LFSR S0 and the 127
th
 bit in the LFSR S126 and computes Fc = 2S0 + 

S126 + 1. Since the output of Fc could be 1, 2, 3, or 4, the LFSR in the keystream generation subsystem is 

clocked 1, 2, 3, or 4 times respectively between two consecutive key bits. 

LFSRc LFSRd

Fc=2x0+x126+1 Fd

Clock control Data generation

keystream

 

Figure 44: LILI II Stream Cipher 

Since both LFSRs are internal, applying -search and -search can discover all bits. The identities of the 

two LFSRs can be told by matching the lengths. The MNR used by our simulation is 62 and the number 

of checking is 62×N = 62×255 = 15810. 

4.5.6. Pomaranch  
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Figure 45: Pomaranch stream cipher (a) Top level (b) The odd module 

The keystream generator in Pomaranch is called the cascade jump controlled sequence generator 

consisting of 9 modules as shown in Figure 45(a). Each module has an 18-bit shift register using F and S 

cells as shown in Figure 45(b). An F cell works as a jump cell when JCi of this module is 1, or as a 

regular shift cell when JCi is 0. An S cell works as a jump cell when JCi of this module is 0, or as a 

regular shift cell when JCi is 1. All cells are regularly clocked. The inputs to the key map module 

comprise of 9 bits from the LFSR and 16 bits of the secret key. The 1-bit output of the Key Map is sent to 

the next module as the JCi. For the 9 modules, all the even numbered modules share a configuration of F 

and S cells and a feedback function, while all the odd numbered modules share another configuration of F 

and S cells and another feedback function. The attack steps are as follows: 

1) Discover the 9 LFSRs by applying the jump version of -search. 

2) Identify if a discovered LFSR belongs to an odd module or an even module by matching its 

feedback function. 

3) Since the JCi of the first module is always 0, it will match the discovered LFSR whose F and S 

cells never switch modes.  

4) For the remaining modules, the cell working modes depend on the JCi of the module that in turn 

depends on the LFSR and the 16-bit key used by the previous module. Since the LFSR of the first module 

is identified in step 3), we can guess JCi by simulating every possible 16-bit key (from 0x0000 up to 

0xFFFF) and see if it agrees with the cell working modes of any discovered LFSR that belongs to an even 
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module. 

5) Repeat step 4 above to attack the remaining modules. 

Overall, the MNR used in our simulation is 42 and the total number of checking is 42×N = 42×162 = 

6804. 

Table 4 summarizes the simulation results of all the ciphers we attack. Note that the number of scan-out 

vectors needed to launch such scan-based attack is just MNR + 1. The total number of comparisons 

equals MNR  N, which takes negligible time in a modern computer. 

Table 4 The summary of the stream ciphers 

Cipher LFSR Type MNR N Clock Control 

DECIM External 17 228 Regular 

A5/1 External 32 64 Irregular 

A5/2 External 41 81 Irregular 

W7 External 83 1024 Irregular 

LILI II Internal 62 255 Irregular 

Pomaranch Jump 42 162 Regular 

 

 The state-of-art countermeasures 4.6.

Not all DFT techniques may introduce security vulnerabilities. For example, in large chips and processors 

with over tens of thousands of flip-flops, test data is typically compressed on chip. This adds an additional 

layer of security that prevents the attacker from recovering the bit-by-bit information of the scan chains – 

the attacker would have to work on compressed scan-out vectors. However, in embedded processors and 

crypto accelerators used in low-end smart cards, test data is not compressed owing to the limited number 

of flip-flops. With debug becoming mandatory, test inputs and test outputs are not compressed even in 

some large processors [98]. Therefore the countermeasure that ensures security while maintaining 
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testability is of great interests. However, the state-of-art countermeasures either bring additional security 

concerns or are not cost-effective when stream ciphers are considered, as we explain below.  

The first countermeasure against scan-based attacks is a scan-chain scrambling technique [95]. The 

scrambling technique partitions a scan chain into multiple segments. The connections between segments 

are via MUXs and can be altered by giving different control signals to these MUXs. If a tester fails 

authentication, the segments will be connected in an unpredictable way so that the bits in a scan-out 

vector do not correspond to the bits in a different scan-out vector. Clearly, the effectiveness of such 

technique relies on the effectiveness of tester authentication. However, this important issue is not 

addressed by the authors. 

Another authentication-based secure-scan architecture called “Lock & Key” is proposed in [98]. Similar 

to the scan-scrambling technique, the “Lock & Key” technique also partitions the scan chains into 

multiple equal-length segments. The test security controller examines the test key that is input through the 

scan path. If the provided key passes the authentication, the LFSR in the controller will be seeded by the 

seed provided by the tester so the scan in/out operation is predictable. Otherwise, the LFSR will be seeded 

randomly and the scan operation is not predictable. Another secure-scan architecture called LCSS is 

processed in [100]. LCSS is again an authentication-based technique. The Key Checking Logic (KCL), 

which is a K-input-1-output combinational logic, examines the key provided through the scan path, and 

will zero-out the scan-out vectors if an invalid key is detected. It can be seen that the security of both 

techniques depends on the privacy of the test key. Since all chips produced in a batch will share the same 

test key, how to keep the test key private among different consumers is a significant security concern, 

especially when chip fabrications are usually outsourced to a third-party foundry nowadays. A makeup 

scheme is to implement the key checking circuit using re-configurable logic and allows end users to re-

configure test keys. But the significant cost at both manufacturing phase and run-time is in conflict with 

the primary reason to use stream ciphers where efficiency and low-cost are greatly appreciated.  
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A secure scan architecture that does not depend on tester authentication is shown in Figure 46 [107]. The 

private key used by the crypto core is stored in the KEY register that does not join any scan chain. This 

technique defines two modes for CUT: Secure mode and Insecure mode. In Insecure mode, the tester can 

scan in any key to the Mirror Key Register (MKR) for the purpose of testing or debugging. The real 

private key is not involved in Insecure mode therefore scanning out the internal registers does not leak its 

secret. In Secure mode, the private key stored in the KEY register is loaded into the Mirror Key Register 

for normal operations. Transition from Secure mode to Insecure mode is always followed by a global 

reset. However in the case that a stream cipher is deployed, since the initial status of the LFSR is the 

secret, employing a Mirror Key Register basically doubles the number of FFs in the circuit.  
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Figure 46: MKR based secure scan architecture 

 Conclusion 4.7.

In this chapter we propose a new scan attack that targets a group of LFSR-based stream ciphers. The 

attack analyzes the scan-out vectors to discover the internal states of DUA. The number of scan-out 

vectors required is less than 20 for some ciphers and is less than 100 for all the ciphers attacked in our 

research. The CPU time for processing the vectors and identifying the bits of LFSR is negligible. With the 

knowledge of the LFSRs used in stream cipher devices, an attacker can clone an authentication device, 

eavesdrop a private conversation, etc. The state-of-art countermeasures either bring additional security 

concerns, or are not cost-effective when stream ciphers are considered. This calls for new cost-effective 

secure scan architectures for stream ciphers. If a cost-effective secure scan architecture or built-in self-test 

is used, then this approach will not be successful.  
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Chapter 5. Future work 

Power and energy efficient error detection techniques at circuit and system levels are presented in this 

thesis. As we have shown, unification of fault security and power efficiency is an interesting and 

challenging topic. In the high level synthesis approaches, there are three major challenges. First, when the 

schedule of a design is fixed, finding the power optimal binding is NP-hard. Second, simultaneous 

scheduling and binding for power minimization is NP-hard. Third, we prove that when scheduling and 

binding are done, inserting the minimum number of checkpoints for fault security is NP-hard. The 

proposed iterative improvement approach can solve fairly large inputs with 50 operation of each type in 

duplicated DFG. Even though the runtime has been improved significantly compared to the recent works 

that handles at most 20 operations and do not consider fault security constraints, it is very time consuming 

to handle DFGs that has 50+ operations for a given type. One bottle neck is the ILP formulation to 

compute the optimal power. Future work can focus on how to solve this problem more efficiently. Once 

the complexity is reduced, more high level synthesis tasks, such as register allocation, can be considered. 

For the system level technique, we present a task scheduling algorithm for single processor frame based 

systems. The technique optimizes the energy consumption under the system deadline constraint and 

reliability constraint. There are two major limitations in this technique. First, it is designed for single 

processor system. Extension to multi-processor system would be useful. For example, a task assignment 

algorithm can be developed to assign the tasks to different processors so that our single processor 

algorithm can be applied afterwards. Another limitation is the frame based system model. In the frame 

based system model, all tasks are released at time 0 of a time frame and should be finished before the end 

of the frame. Though frame based system has received a lot of attention, to have general applicability to 

real-time systems, it is useful to extend the technique to handle task sets where each task has an individual 

release time and deadline. 
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