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SUMMARY

Among the several alternative technologies proposed for the post-CMOS scenario, Quantum-

dot Cellular Automata (QCA) is one of most promising for its high level of integration and low

power consumption. The magnetic based implementation of QCA, named NanoMagnet Logic

(NML), is the only one that can both work at room temperature and is feasible with current

fabrication processes. Also, its magnetic nature opens up to new possibilities, like developing

logic circuits with an intrinsic memory ability.

The base cells of NML technology are nanomagnets, which can be arranged on a plane to

create any logic circuit. There is no standby power consumption and the energy required for

magnets switching is several orders of magnitude lower than latest CMOS transistors. However

the network for controlling the cells’ magnetization can nullify the advantages in terms of power

losses. This is the case of the Magnetic Clock NML [1], which has been extensively and thor-

oughly studied in literature. A novel implementation of NML technology, the Magnetoelastic

NML (ME-NML), drives the nanomagnets through an electric field instead of a magnetic field,

highly reducing the power consumption. This solution has already been proved theoretically

and experimentally, however up to now only elementary circuits have been studied.

The Magnetoelastic NML is the subject of this work. To fully understand its potential it is

mandatory to analyze complex architectures keeping into account all the physical constraints

related to the fabrication process.
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SUMMARY (Continued)

First of all, because of the absence of a tool for design and simulation, we developed a RTL

model for handling ME-NML circuits. The model also embeds the capability of evaluating

area occupation and power consumption. Due to the strong regularity of the ME-NML circuits

layout, we were able to define a Standard Cell library, which is a big step toward the creation

of an aided design tool.

Secondly, through a case study we developed an accurate comparison of ME-NML with

the Magnetic Clock NML and the state of the art CMOS transistor. ME-NML performances

were excellent, enough to largely overcome both the other technologies. This was also the

first approach to ME-NML from the architectural level, so it provided general information on

circuit design. Nonetheless we could generalize the behavior of our case study to serial-parallel

architectures.

Once the validity over other technologies was proven, it was mandatory to understand

which kind of architectural organization maximizes the performance of the ME-NML. Therefore

through a second case study we performed the first step of this investigation, comparing three

different versions of a MAC unit: parallel, serial-parallel and serial. The parallel approach

guarantees the best results, but it requires a certain level of interleaving.

In addition to attaining their specific goal, each one of the two case studies has been very

resourceful in other fields. In fact they both helped identifying, from an architectural point

of view, the major limitations of ME-NML technology as well as its strengths. Therefore this

work also provides the first general guidelines for ME-NML design.

xv



CHAPTER 1

INTRODUCTION

1.1 CMOS scaling

Over the past three decades the inexorable evolution of electronics had as foundation the

ever-smaller device dimensions of silicon-based CMOS technology, which has been exponentially

improving in both performance and density of integration. Today, however, the conventional

physical scaling is experiencing asperities and, as forecasted in the International Technology

Roadmap for Semiconductors [2], it is expected to reach its boundaries soon.

This decay counts several factors [3], physical and material limits above all. Basically, due to

both electrostatics and tunneling mechanisms, ultra-small MOSFETs leakage currents begin to

be comparable to the drain current. The increased leakage current, due to downsizing, forbids

the threshold and supply voltages reduction, denying a speed increase. Correspondingly the

higher electric field and the high concentration of dopants deeply impact electronic transport.

These are some of the well known effects of down scaling: Drain Induced Barrier Lowering

(DIBL), Short Channel Effect (SCE), Punch-Through and subthreshold inversion, mobility

degradation, band-to-band tunneling [4][5]. Another challenge involves power consumption and

thermal dissipation: The power density has been growing, as the supply voltage did not scale

as much as the channel length. Furthermore some constraints come from economical aspects

and the lithography-based fabrication techniques.

1
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Due to all these factors, keeping up with the Moore’s Law will most probably be a challenge

that will not be answered by Silicon CMOS nanoelectronics. A lot of research on alternative

technologies has been carried out to preserve the same rate of performance improvements. The

efforts have been focused toward two main directions [2]:

• Innovation of CMOS materials and structures. Demonstrated examples are: SOI (Silicon

On Insulator) transistors, with an insulator layer between substrate silicon body, and

FinFET, where a multigate structure heavily reduces short channel effects.

• Creation of completely new nanoelectronic devices, called “Beyond CMOS Devices”, able

to replace CMOS technology. One of the most promising architectures is the Quantum-

dot Cellular Automata (QCA). Nanotechnologies like QCA offer very high integration

density, but they are still in a premature stage: A reliable and functional realization still

requires extended study from the device up to the architectural level.

Current transistors exploit electronic charge to store information, therefore switching be-

tween logic levels involves charge movement, thus requiring a current flow and a consequent

Joule dissipation. Energy losses are then an intrinsic characteristic of charge based electronics

and, as explained before, highly scaled transistors will not be able to preserve the charge due

to significant leakage. It is clear that charge based devices do not seem to be able to maintain

the cost per function improvements of the last decades. The idea is to replace the charge with

a new kind of information token such as for instance: Polarization of nanomagnets, change in

molecular configuration, electron spin or position of a micromechanical object.
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1.2 Quantum-Dot Cellular Automata (QCA)

Ever since the introduction of the Cellular Automata idea in 1993 [6], Quantum-Dot Cellular

Automata (QCA) has been attracting an increasing interest. It is a valuable candidate for the

post-CMOS era, because it effectively addresses the problems of device density and power

dissipation.

'0' '1' NULL

Figure 1. Possible states of a QCA cell: Stable states ’0’ and ’1’ and unstable NULL state.

QCA technology foundation is a bistable base cell; properly organized arrays of these cells

can realize logic functions. The first proposed implementation used a square cell with 4 quantum

dots in the corners. Since electrons repel each other, if two electrons are available for each cell,

at equilibrium they will be found in two diagonal dots. Since there are only two diagonals,

only two states are possible: ’0’ and ’1’ [7]. To allow a correct signal propagation we will see in

Chapter 2 that a third unstable state (NULL state) is necessary, therefore two more dots need

to be added (Figure 1). This is just the generic base cell, but the theoretical principle of the

QCA can be realized in other ways, depending on the technology used.
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Up to now the literature contains five physical implementations, while the first two present

strong limitations, the others are way more promising.

• Metal QCA [8][9]. This was the first physical implementation and it had a purely demon-

strative purpose. In fact it can work only at temperatures close to the absolute zero,

unless the cell size is downscaled to atomic values. The base cell is composed by metallic

structures on a SiO2 substrate and the quantum dots are basically aluminum islands.

The links between dots are made of Al2O3 tunnel junctions.

• Semiconductor QCA [10][11]. This approach exploits common electronic devices’ struc-

tures, the cells and their dots are realized with GaAs and Si-Ge heterostructures. The

electrons behavior is driven by a voltage applied to metal contacts. Compared to Metal

QCA the operation temperature can be higher, but still it does not work at room tem-

perature. Another limitation concerns the available fabrication processes, which cannot

meet the requirement of very small and identical cells.

• Magnetic QCA or NanoMagnet Logic (NML) [12]. The base cell is a single-domain nano-

magnet with dimensions lower than 100nm, its two possible magnetizations correspond

to ‘0’ and ‘1’ logic values [13]. About speed (hundreds of MHz) and dimensions this

implementation is less interesting than the Molecular QCA, it is also slower than CMOS

systems. What makes Magnetic QCA attractive lies in its magnetic nature, it has excep-

tionally low power consumption and a strong logic-in-memory predisposition [1][14][15].

But the most relevant advantage is the physical realization feasibility with current technol-
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ogy, it allows to study and experiment on QCA based architectures on a higher abstraction

than the single cell, facing directly design problems common to any QCA implementation.

• Molecular QCA [16]. The fundamental states of the Molecular QCA cell correspond to

different charge distributions in a complex molecule, the charge movement can be triggered

by electrons reacting with the oxide-reduction center of the molecule. Using molecules

every QCA cell would be identical to the others and would have the very competitive

dimension of a few nanometers. Moreover molecules reactions work perfectly at room

temperature and are extremely fast, the expected switching speed of this implementation

is of the order of THz [17][18][19]. This is the most promising approach, even though a

functioning realization is still far: Current technology cannot manipulate single molecules

as required yet. Another delicate issue is the transduction of electrical signals from and

to information understandable by the molecule, up to now there is not any valid solution

to this.

• Silicon Atomic QCA [20]. The QCA principle is implemented using atoms as quantum-

dots. It has been proved that the dangling bond (DB) state of silicon atoms can be

exploited as a quantum dot. Up to now the experimental results are promising and the

electrostatic control over the charge within DB assemblies has been verified [21].

1.3 Magnetic QCA

Magnets have already been used in electronics for memory applications, the innovation of

Magnetic Quantum dot Cellular Automata (MQCA), also called NanoMagnetic Logic (NML),

is to use magnets to implement logic functions. The result are digital circuits with intrinsic
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(A) (B) (C)

Figure 2. A) Hysteresis cycle of a multidomain magnetic material. B) Hysteresis cycle of a
single domain magnetic signal. C) The two stable states of the NML base cell.

memory capability [22]. The current fabrication techniques allow to produce the NML base

cells [23], which are nanomagnets with dimensions between 50nm and 100nm. Magnets so

small behave differently than bigger ones, they have only one magnetic domain, which means

that the magnetization does not vary across the magnet, and the hysteresis cycle gets as in

Figure 2.B. Hence nanomagnets smaller than 100nm can have two stable states only, which will

be used to represent ‘0’ and ‘1’ values. The hysteresis cycle describes how magnetization (M)

changes as a function of the magnetic field (H) applied.

As already anticipated there are several reasons that make the NML study worthy, even if

the working frequency is limited:

• NML is the only QCA implementation that works at room temperature and it can be

fabricated with current technology [23].
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• Magnets do not dissipate static power and a single magnet switching absorbs around

30kBT . Therefore NML potentially has an extremely low power consumption.

• Since the difference between QCA and CMOS technologies is bottomless, to fully com-

prehend the potential of QCA, it is mandatory to investigate complex architectures, also

considering all the working and fabrication constrains. Fortunately most of the architec-

tural study on NML could probably be applied to other implementations like the molecular

QCA, which seems far more promising than Magnetic QCA but it is still not supported

by current technology.



CHAPTER 2

NML BACKGROUND

2.1 QCA basics

'0' '0' '0'

'1' '1' '0'

'1' '0' '0'

'1' '1' '1'

I. II.

III. IV.

input cellinput cell

Figure 3. Signal propagation through a 3 cells QCA wire. II) The first cell is forced to ’1’. III)
The second cell switches to ’1’ due to electrostatic interaction. IV) The third cell switches.

The QCA base cell described in Section 1.2 contains six quantum dots, allowing to represent

the ‘0’ and ‘1’ logic values and the NULL state (Figure 1). Placing cells one next to the other

on the same plane it is possible to construct digital circuits, where the signal propagation

through cells is due to electrostatic interaction. A series of adjacent cells is called wire, Figure 3

represents step by step the information propagation through a 3 cells wire. Forcing the first

cell to ‘1’ causes the switch of the nearby cell, due to electrons repulsion. In the same way

8
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the second cell, after switching to ‘1’, will influence the last one. We can say that information

propagates with a Domino-like effect.

2.1.1 Logic Gates

'0' '0' '0' '0' '0' '0'

'0'

'0'

'0'

'1'

'0'

'0'

'1'

'1'

'0'

'1'
'1' '1'

'0'

'0'

IN OUT IN OUT

IN

IN

IN

IN

IN

OUT

OUT

OUT(A) (B) (C) (D)

Figure 4. Logic gates of QCA. A) Wire. B) Crosswire. C) Inverter. D) Majority Gate.

QCA technology counts four basic logic blocks, they are depicted in Figure 4, where IN and

OUT identify inputs and outputs. The blocks are: The wire (Figure 4.A), the crosswire (Fig-

ure 4.B), the inverter (Figure 4.C), the majority gate, also called majority voter (Figure 4.D).

These are the standard gates of the theoretical QCA, keep in mind that each different QCA

implementation has a slightly different ports set, even if the basic concepts remain unchanged.

Crosswire

The crosswire allows two independent signals to cross each other on the same plane
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without interference. The one in Figure 4.B is just one example of crosswire, its actual

realization strongly depends on the QCA implementation adopted. An alternative that

has been proposed is to use multilayer structures, just like with CMOS technology. Even

though it seems that this solution would be suitable for Magnetic QCA, unfortunately at

the current time a multilayer structure is still not feasible due to fabrication complexity.

Inverter

Its logic function is a simple inversion, obtained through a diagonal coupling of cells.

Notice that the signal gets duplicated before the inversion to strengthen the diagonal

electrostatic interaction, which is weaker than the horizontal or vertical ones. Based on

the QCA implementation employed, there are other possible configurations that provide

inversion.

Majority Gate

This logic block is a peculiarity of QCA circuits, together with the inverter it allows

to design any logic function. It is a three input port, where the output is equal to the

majority of the input values. Referring to Figure 4.D, notice that the central cell is subject

to the influence of the top, left and bottom cells. The output will be ’1’ if that is the

value of at least two inputs, and the same works for ’0’. The majority gate ( or majority

voter) logic function is:

F = AB +BC +AC.
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2.1.2 Signal propagation and Clock

Despite what said above, the electrostatic interaction is not strong enough for a signal to

propagate through a wire. The switching of a cell requires as much energy as the barrier between

its two stable states, that is the energy keeping electrons trapped in the dots. Of course this

amount of energy Ek (Kink Energy) is strictly related to the QCA implementation used, the

cell size and the operating temperature. However this value is generally high enough not to

allow autonomous data propagation. For this reason there is the need for an external mean able

to control the signal propagation by acting on the energy barrier between the two stable states.

Such barrier can be lowered by applying an electric field, as a consequence the electrons will be

forced into the central dots leaving the cell in an unstable state, which is referred to as NULL

state. Once removed the external field the cell will stabilize either at ’0’ or ’1’, depending on

the state of neighbor cells.

So the main idea is that if we want a cell to assume the same value as its neighbor, we force

such cell in an unstable state through an external electric field, and then we simply release the

field. This control field is called clock. In principle this technique could work with an infinite

number of cascaded cells, but practically the number has to be small. Otherwise there will be

propagation errors mainly due to thermal noise [24]. Therefore a spatial flow control system is

mandatory.

From the remarks above it is clear that a signal cannot pass through a whole circuit at once,

the cells pattern would be too long. The solution is to break the circuit in small sections and

let signals go over one section at a time, in a pipelined manner. So circuits are partitioned in



12

HOLD

RELEASE

RELAX

SWITCH

HOLD

RELEASE

RELAX

SWITCH

HOLD

RELEASE

RELAX

SWITCH

HOLD

RELEASE

RELAX

SWITCH

CLOCK 

ZONE 1

TIME

STEP 1

CLOCK 

ZONE 2

CLOCK 

ZONE 3

CLOCK 

ZONE 4

TIME

STEP 2

TIME

STEP 3

TIME

STEP 4

TIME

STEP 1

TIME

STEP 2

TIME

STEP 3

TIME

STEP 4

H
O

L
D

R
E

L
E

A
S

E
R

E
L

A
X

S
W
I
T
C
H

H
O

L
D

R
E

L
E

A
S

E
R

E
L

A
X

S
W
I
T
C
H

H
O

L
D

R
E

L
E

A
S

E
R

E
L

A
X

S
W
I
T
C
H

H
O

L
D

R
E

L
E

A
S

E
R

E
L

A
X

S
W
I
T
C
H

Clock 

Signal 2

Clock 

Signal 3

Clock 

Signal 4

Clock 

Signal 1

-1       +1 -1        +1 -1         +1 -1        +1 V

t t t t

(A) (B)

Figure 5. Clock mechanism. A) Clock zones. B) Clock signals.

small areas, where each area counts a limited number of cascaded cells; this areas will be called

clock zones. In the classical scheme the spatial and timing control of the circuit is conferred to

a four phases clocking system. There are then four clock signals with the same waveform but

different phase. The 2nd, 3rd and 4th clocks will have respectively 90◦, 180◦, 270◦ phase shift

with respect to the 1st clock. Each of the partitioned section will receive one of the four clocks,

a correct assignment of the clocks will assure a correct circuit functioning.

Figure 5 shows the clock waveforms on the right and the functioning of a wire divided into

four clock zones on the left. As explained we need a clock that can force cells in their unstable
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Clock 

phase:

1

2

3

4

Figure 6. Simplest clock phases layout, the circuit’s area is partitioned in vertical stripes.

state before the switching phase. The clock waveform has got four phases, as clearly pointed

out by Figure 5.B:

Hold phase. The potential barrier is kept high by a high clock voltage. The cell cannot be

influenced by neighbors.

Release phase. The clock voltage goes from high to low and so does the energy barrier. At

the end of this phase the cell reaches its NULL state.

Relax phase. The potential barrier is kept low, so the barrier between stable states stall at

its minimum. The cell is in the NULL state.

Switch phase. The clock voltage goes from low to high and so does the potential barrier. The

cell will stabilize in one of the two states, depending on the neighbor cells.
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In Figure 5.A the signal goes from left to right. When a clock zone is switching it is

influenced by nearby cells. Cells on the left are in HOLD, they act as input, while cells on the

right are in the RELAX phase, so they have no influence on the switching cells. In between of

HOLD and RELEASE, the cells are either relaxing or latching. This metodology assures data

propagation in a specific direction, it is thus fundamental to arrange the clock zones properly.

For a correct functioning a signal must pass through the clock zones in order from 1 to 4 and

then 1 again.

At this point the last issue is to decide how to arrange the clock zones. In principle the circuit

area can be subdivided in clock zones with any shape, but of course technological limitations

due to the clocking network must be always kept in mind. A straightforward arrangement of

clock zones is represented in Figure 6, the circuit is divided in columns. The four shades of

grey correspond to the different clock phases. The simple subdivision in columns has the strong

disadvantage of allowing signal propagation in one direction only, following the clock phases

order: 1,2,3,4,1,2. . . . To be able of dealing with any kind of circuit, the structure has to be

more complex, it must allow propagation in any direction.

2.2 Nano-Magnets Logic (NML)

The most recent advancements in fabrication techniques, especially the lithography, allow

to build logic circuits using magnets. While magnets have already been used in electronics for

memory applications, the innovation of this implementation is to use magnets to implement

logic functions. As a result NML circuits are digital circuits with intrinsic memory capability.

The base element of NML is a very small bistable magnetic cell. Since it is not a permanent
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magnet, its magnetization can be influenced by external means. Therefore nanomagnets placed

side by side will arrange themselves in an antiferromagnetic manner, because of the attraction

between opposite poles.

The nanomagnets dimensions must be between 50nm and 100nm. The upper limit assures

that the magnets only have one magnetic domain, which means that the magnetization does not

vary across the magnet and the hysteresis cycle gets as in Figure 2.B. The two saturation values

M = +1 and M = −1 are the only stable states, therefore they are associated to logic values ’0’

and ’1’. The lower bound of 50nm is, instead, crucial to avoid the superparamagnetic effect,

which would cause the magnetization to vary together with thermal fluctuations. To assure

thermal stability the energy barrier between the two stable states must be at least 30kBT . As

from Figure 2.C the two states have magnetizations in opposite directions, so they both lie on

the same axis. At the equilibrium, if one side of the magnet is longer than the other, thanks to

shape anisotropy, the magnetization will be forced along the longer axis (easy axis). Therefore

it is important that in NML the ratio between the magnets dimensions (aspect ratio) is within

the 1 : 1.2 range. For a correct signal propagation it is mandatory that every base cell is equal

in shape to the others. Consequently, the more troublesome is the production, the higher will

be the fault probability. That is why the rectangular and elliptical shapes are the most used,

as they assure the best precision in the fabrication process.

The main advantage of Magnetic QCA is to be realizable with current technology ()electron

beam lithography or high end optical lithography) together with its ability to operate at room

temperature. The fabrication feasibility was first proven by researchers of the University of
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Notre Dame in Indiana (US). They built horizontal wires, vertical wires and majority gates

[25]. A Magnetic QCA horizontal wire was also created by researchers of Politecnico di Torino.

2.2.1 Logic Gates

'0' '1'

IN OUT
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Figure 7. A) Horizontal wire. B) Inverter. C) Vertical wire. D) Majority Voter. E) AND
port. F) OR port. G) Crosswire.

Even though the set of logic gates for the NML circuits recalls the generic QCA basic blocks

(Figure 4), there are some differences and improvements. It is understandable that, moving from

the general idea to the physical implementation, the general ports can be optimized based on

the actual technology features. Figure 7 shows the complete set of logic blocks for NML circuits.

The main difference with generic QCA is the horizontal coupling: Horizontally magnets align

themselves antiferromagnetically, each magnet has inverted polarization with respect to the

neighbors. So the inverter can be simplified to a simple horizontal wire with an even number of
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magnets as in Figure 7.A. On the other hand an odd number of adjacent magnets would result

in a buffer function, that is a simple wire (Figure 7.B). Vertically the coupling is ferromagnetic,

so no inversion is possible (Figure 7.C). The majority voter, depicted in Figure 7.D, is pretty

much the same as for general QCA.

Another disparity comes from the possibility of obtaining specific logic gates modifying the

shape of a magnet: By making magnets with slanted edges it is possible to create AND and OR

logic functions [26]. QCA would generally need a three inputs majority gate to obtain AND and

OR logic ports, while only two inputs are needed for non-majority based gates, considerably

optimizing area occupation and layout entanglements. The different-shaped magnets acquire a

preferential state, which they will leave only when both inputs, from above and below, are up or

down, implementing as a consequence an AND or OR logic function (Figure 7.E, Figure 7.F).

At the current time the NML crosswire realization does not have experimental proof of

reliability yet. A possible implementation is the one represented in Figure 7.G, the crossing is

made of five square cells (50nm − 100nm of edge) that have four stable states instead of two.

In this way they can let pass through two signals simultaneously.

2.2.2 Magnetic Clock NML

One solution for controlling the nanomagnets magnetization in NML circuits is the Magnetic

clock, as proposed in [12] and verified experimentally in [23]. The magnetic field is generated by

a current flowing through a wire positioned under the magnets plane (Figure 8). The material

for the wire is copper, buried in a ferrite yoke envelope for field confinement. The wire’s
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Oxide insulator
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H (magnetic field)
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Figure 8. NML with Magnetic Clock mechanism. The magnetic field H is generated by the
current I flowing through the copper wire, which is placed under the magnets plane.

thickness must be enough to generate a magnetic field able to force cells to the intermediate

state (NULL state) [27].

As explained in Section 2.1.2 a multiphase clock system is required. The classic scheme has

4 phases, but also a 3-phase clock is feasible [28][29][30]. The Magnetic NML normaly exploits

a 3 phase clock system is normally exploited. Figure 9 shows the functioning of the 3-phase

clock of a horizontal wire over time (vertical axis), just like in Figure 5 for the generic QCA.

Each clock zone undergoes three phases in the following temporal sequence: RESET,

SWITCH and HOLD. The RESET (clock = 1) erases the information, leading cells to an

intermediate state. In the SWITCH phase the clock goes to zero, so cells can assume a mag-

netic orientation. The orientation is influenced by the nearby cells being in HOLD state, as

cells in the RESET state cannot affect the neighbors. When a group of cells, in the same clock

zone, is in the HOLD phase, they have a stable magnetization.
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Figure 9. The clock phase sequence is RESET, SWITCH, HOLD. A) Functioning in space
(horizontally) and time (vertically) of a horizontal NML wire. B) The 3 clock signals. They
are applied to different zones in space and they are repeated over time. They are the same in

magnitude but with a 120 phase shift.

To assure a correct signal propagation the RESET phase applied to different zones must

overlap in time as in Figure 9.B, where the RESET state lasts slightly more than 2π/3. The

reason lies in the fact that when a zone is in the SWITCH phase, the two neighbor zones
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must be respectively in HOLD and RESET phase. However if the field of the SWITCH zone

is removed and the field is applied to the RESET zone at the same time, a back propagation

phenomenon could take place. Initially, when the field is removed from the SWITCH zone, the

RESET zone would still be in the HOLD state, as magnets need a finite time to switch from a

stable polarization to the intermediate state. In Figure 9.A we can see how the value in Time

step 1 on the left is propagated step by step to magnets in the clock zone on the right.

2.2.2.1 Snake Clock Layout

The generic QCA is based on a 4-phase clock system, however it is also possible to use a

3-phase clock [12], given that the signals are overlapped. The clock network for Magnetic NML

is a 3-phase overlapped system, called Snake-clock; its layout and 3D structure are depicted

respectively in Figure 10.A and Figure 10.B.

1
2

3

oxide
metal wires

nanomagnets1  2  3  1  2  3  1

(A) (B)

Figure 10. Snake-clock. (A) Top 2-D layout. (B) 3-D layout. The nanomagnets are placed
between the two planes. Magnets cannot be placed where wires 2 and 3 are twisted.
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1    2    3

1    3    2 

Figure 11. Example of a simple circuit based on the Snake-Clock system. Different
background colours refer to different clock zones. The arrows show the signal flow direction.

The Snake-clock is based on the scheme in Figure 6, but with three phases only and with

an expedient that allows propagation in both directions: left-right, right-left. The clock wires

are basically simple metal wires parallel to the magnets plane, two positioned above and one

below [28]. Two thin oxide layers provide separation between clock wires and nano-magnets.

One clock wire is straight (number 1), while the other two have a complementary zig-zag shape.

They are like twisted wires, but they do not display any interference, as they are on different
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planes. In the case in Figure 10.B the wires 1 and 2 are routed on the same plane, while the

clock 3 is on the other one.

Considering now the top view in Figure 10.A, it is straightforward to understand that

magnets cannot be placed on areas corresponding to the wires twisting, as they would be

affected by both clock wires 2 and 3. Moreover, in those regions, wires are not parallel to the

magnets long side, hence the generated magnetic field would force them in the wrong state.

Figure 11 shows a very simple circuit based on the Snake-Clock system. The direction of the

information flow is highlighted by arrows, signals propagate through clock zones in the order

1, 2, 3 and so on. The clock wires twisting divides the circuit area in horizontal stripes with

alternate propagation directions. Furthermore, as required by this clock mechanism, there are

no magnets placed over the twisting areas. The magnets with a slanted edge required for the

AND logic function are highlighted in black.

2.2.2.2 Working frequency

The main limitation of NML technology is the maximum working frequency, which is in-

trinsically bounded. To obtain the highest possible clock frequency the clock zone width should

be equal to that of a single magnet. However the usual width is 3-5 [24] because of several

factors: fabrication limitations, thermal noise, latency, throughput. The more are the consec-

utive magnets in a clock zone the lower will be the clock frequency. The constraints on the

clock frequency are mainly related to the clock mechanism chosen and the fall and rise time of

the adiabatic switching of clock signals, mandatory to reduce power consumption. Less critical

is instead the bound derived from the switching time of nanomagnets from the intermediate
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(NULL) state to a stable one and viceversa. The NML circuit speed is expected to be of the

order of 10− 100MHz [31][32][33].

In the beyond-CMOS scenario, NML technology is a good solution but it cannot aim to

completely substitute CMOS. Despite the clear benefits for what concern occupied area, power

consumption and memory ability, NML’s clock frequency cannot keep up with CMOS.

2.2.3 Magnetoelastic Clock NML (ME-NML)

Recently a valuable alternative to the Magnetic Clock NML has been proposed and studied:

the Magnetoelastic Clock NML, also referred to as ME-NML [1][34].

In the previous section (2.2.2) the proposed external mean, responsible for the magnets

switching, was the Magnetic Clock with a Snake-clock layout. The idea was to position clock

wires below or above the magnets plane. A current flowing through the wires would generate

a magnetic field able to control the cells magnetization. The generated field is then along the

magnets’ short side of the magnets, forcing cells in an intermediate unstable state.

The interest in Magnetic QCA is mainly due to the very low power consumption, several

times lower than the latest CMOS transistors. While this is true for the magnets switching,

unfortunately it does not apply to the clock generation system: 1µm copper wires with a

required current of 545mA [35]. Due to Joule losses the power dissipation of the clocking

system is very high, nullifying the advantage of a low-power magnets switching.

To solve this problem an alternative solution has been recently proposed [35][34], it is based

on the Magnetoelastic effect: the magnetization of magnetic materials undergoing mechanical

stress is bonded. Applying a mechanical stress with proper intensity and direction magnetic cells
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Electric Field

(A) (B)

Figure 12. Magnetoelastic NML clocking mechanism. A) No voltage applied. B) Voltage
applied to the electrodes. The PZT substrate induces a strain on the nanomagnets forcing

their magnetization to their intermediate state.

can be forced into the RESET state. The magnetic cells (10nm thick) are coupled with a 40nm

thick PZT layer (Figure 12.A). To maximize the mechanical coupling, magnets are deposited

directly onto the piezoelectric material. For a proper strain transfer, the PZT substrate has

to be much thicker than the magnets. The magnetic material is then controlled by applying

a voltage (few mW ) to the piezoelectric. When the voltage is applied, the strain induced by

the piezoelectric material, forces the magnetization of the magnets layer to the intermediate

position, parallel to the short edges (see Figure 12.B).

The electrodes are deposited on top of the PZT, while the wires that drive the electrodes

can be placed in additional layers, just as for CMOS. This makes this NML implementation

compatible with CMOS fabrication.
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This approach comes from a previous idea based on multiferroic structures instead of simple

magnets [33][36]. The performances of the pure multiferroic structure are better, but there are

two major fabrication problems. The aspect ratio is critical, there are only 2nm of difference

between the length of the two cell’s sides. Such a low resolution is hardly achieved with the

Electron Beam Lithography. Moreover the electrodes should be only a few nanometers thick, a

request that does not comply with the current technology. A pair of them is necessary for every

element, to apply the required voltage. The advantage of the solution with the simple magnets

is the feasibility with current fabrication techniques. Even if its performances are slightly worse

than the multiferroic solution, they are anyway remarkably better than the previous NML

solutions.

Since the clock system exploits a voltage instead of a current, the power consumption is

extremely low, meeting the unmatched expectations for the initial Magnetic QCA concept. In

[1], after a detailed analysis, the selected magnetic material is Terfenol, an alloy of Terbium,

Disprosium and Iron. The choice is mainly based on three parameters:

• maximum stress that can be applied to avoid permanent damage on the magnets;

• maximum value of electric field that can be tolerated by the piezoelectric material, since

it is an insulator;

• minimum stress to force magnets in the RESET state;

• assure shape anisotropy equal of at least 30KbT ≈ 1.24 · 10−19J , to have negligible effects

of the thermal noise on the magnets stability;

• minimum aspect ratio for fabrication feasibility;
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• tolerance to process variation of ±20%, remaining within the working range.

2.2.3.1 Circuit Layout

(A)

(B)

(C)

(1,1) (1,2) (1,3)

(3,1) (3,2) (3,3)

(2,1) (2,2) (2,3)

Placement Grid

(D)

Figure 13. Clock zones of the ME-NML. A) Clock zone with AND logic function. B) Clock
zone with OR logic function. C) Circuit layout example. D) Placement grid for ME-NML

Cells

Starting from the structure just described in Section 2.2.3, MagnetoElastic clock NML (ME-

NML) circuits are composed by mechanically isolated islands, like the one in Figure 13. Each

island corresponds to a clock zone and it is driven by one of the clock signals, applied as a

voltage on the Platinum electrodes. Notice that the electrodes position on top of the PZT

is compatible with CMOS fabrication and leads to a uniform electric field distribution on the

magnets plane.
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The presence of the electrodes makes the clock zones communication on those sides impos-

sible. The signal propagation among cells is allowed only through the top and bottom sides,

which are free from electrodes. For this reason the Majority Voter port cannot be constructed.

Therefore the basic logic gates exploited are inverter, AND (Figure 13.A) and OR (Figure 13.B)

[26], so that any logic circuit can be implemented.

Figure 13.C shows how to put together the clock zones to create a circuit. As already

said, the communication among cells can take place only through the top and bottom corners,

because of the electrodes. For this reason the cells in a row are shifted with respect to the

adjacent ones, to assure a correct signal propagation. In fact the cells are placed on a grid as

in Figure 13.D, where the coefficients identify row and column of the cell’s positioning within

the circuit.

In the example of Figure 13.C the clock zones have both height and width equal to three

nanomagnets. This is the solution adopted throughout the whole work, it has been chosen over

the five magnets version. Thermal noise [24] and fabrication constraints allow cells dimensions

to vary only between 3 and 5 nanomagnets. Small dimensions lead to smaller electrodes and

cells, requiring then a very high resolution fabrication process. The minimum size feasible

with current technology is 3. Bigger dimensions will relax the technology constraints, but will

increase the error probability due to thermal noise and decrease the maximum circuit speed.

If two many cascaded magnets are present in a clock zone, the signal propagation will be error

prone.
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The size of the electrodes varies according to the clock zones dimensions. They are 30−40nm

for the three magnets cells, while 70− 100nm for the five magnets case. This kind of electrodes

are already available for CMOS technology.

Figure 13 does not highlight how and which clock signals are routed to the clock zones. It

will be clarified later on in Section 3.3, where it will also be explained which kind of multi-phase

clock system best suits the Magnetoelastic NML implementation.

2.2.4 Intrinsic Pipeline

In a N-phase clock system, signals need a clock period to propagate through N clock zones.

As a consequence the delay of a signal depends on how many clock zones it has to cross. This

is quite different from CMOS where wires with different lengths have very similar delays. Each

clock zone crossed by a signal can be modelled as a register, as a result it is easy to understand

that NML circuits (just like QCA) are intrinsically pipelined. Every group of N adjacent clock

zones has an overall delay of a clock cycle.

For this reason signal synchronization is a very delicate issue in NML circuits. Figure 14 is

useful for clarifying the problem, the input wires routing is correct in part B, while incorrect in

part A. For a proper circuit functioning the three input signals must reach the two AND ports

simultaneously, to do so the routing must assure that the input wires cross the same amount

of clock zones. The example was presented for the Magnetic NML case, but the same concept

applies to ME-NML as well as any QCA implementation.

The problem gets more complex when dealing with feedback signals, see for example the

feedback in Figure 11 at the top left corner. While the external input of the AND port arrives
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1

(A)

(B)

2 3

Figure 14. NML signal synchronization. The three inputs must arrive to the two AND ports
simultaneously. To do so the input wires must pass through the same number of clock zones.

(A) Not working routing. (B) Correct routing.

at every clock cycle, the second one (the feedback) arrives later. The output of the AND port

needs two clock cycles to be fed back. Therefore at every clock cycle the AND operation is

performed between the new input and the output result obtained 2 cycles before. The proper

result will arrive at the next time step. Notice that the longer the feedback wire, the longer the

delay. The input must then be delayed long enough to match the length of the feedback loop.

In conclusion the inputs have to be fed with a delay equal to the feedback length, reducing then

the throughput, particularly in case of long loops. If, for instance, a circuit has a feedback 5

cycles long, only an input every 5 cycles can be fed. Therefore the throughput is 1/5 of what it
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could be if the input was continuous. In fact, at any time, only 1/5 of the magnets will contain

useful data.

2.2.4.1 Interleaving
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Figure 15. Data interleaving. In this example 3 operations are executed in parallel:
A+B +C, D+E +F , G+H + I. At every clock cycle the input data comes from a different
operation. Since the feedback loop is 3 registers long, data from the same operation are fed

with 3 clock cycles of delay.

The problem of pipelining in CMOS sequential circuits is very complex and delicate. Un-

fortunately it is even worse for the NML (QCA) technology, as it is not possible to control the
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pipeline level. Since the pipeline is intrinsic to the technology, it cannot be eliminated, it can

only be reduced by optimizing the circuit layout.

The usual improvement techniques for CMOS pipelining are jump prediction and instruction

reordering, but for NML (QCA) they can only reduce the problem, they are not able to solve it.

A radical solution is the Data Interleaving [22], which allows to reach the maximum throughput.

The idea is to have a continuous flow of input data. Multiple non correlated set of operations

are executed in parallel, so that the delay time between an input and the next is filled with

other operations.

Figure 15 shows an example of data interleaving mechanism. Three operations are executed

in parallel: A + B + C, D + E + F , G + H + I. At clock cycle 1 the first data of the first

operation, A, is given as input. For a correct synchronization, B has to be fed when A reaches

the end of the feedback loop, which is 3 clock cycles long. Therefore we give A, B and C as

inputs respectively at clock cycles 1, 4 and 7. In the intermediate time steps we can execute in

parallel the other two operations, to reach the maximum throughput. This is possible only if

the three operations are uncorrelated. So at clock cycle 2 the input is not the number data of

operation 1, but D: the first data of operation 2. And in the same way we will input G, the

first data of operation 3, at clock cycle 3. The same goes for the next time steps; the input

order is the following: A, D, G, B, E, H, C, F, I. That is: OP.1 DT.1, OP.2 DT.1, OP.3 DT.1,

OP.1 DT.2, OP.2 DT.2, OP.3 DT.2, OP.1 DT.3, OP.2 DT.3, OP.3 DT.3 (where OP. stands for

operation and DT. for data).
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Data interleaving is a simple expedient that can solve the deep pipelineg problems, but if

the required number of operations to execute in parallel is too high then it might not be a

feasible solution anymore. The number of required parallel operations is equal to the delay ( in

terms of clock cycle) of the longest loop inside the circuit. During the circuit design phase for

NML circuits it is then extremely important to keep loops as short as possible.



CHAPTER 3

VHDL MODEL FOR THE MAGNETOELASTIC NML

The main purpose of this work is to study for the first time the Magnetoelastic Clock NML

(ME-NML) from the architectural point of view, taking into account physical and technological

constraints. The work directly concerns ME-NML, but some aspects could be easily generalized

to other QCA implementations. The Magnetoelastic clock system has been verified [1], but no

design and architectural study is present in literature. As for now there is no automated tool for

properly simulating and synthesizing NML circuits. For this reason researchers at Politecnico

di Torino developed a VHDL model (preliminary done in [37][38][39]) and a design tool, named

ToPoliNano [40]. This tool is specifically constructed for the Magnetic clock NML.

Based on this idea we developed a RTL model in VHDL language which allows to:

• easily simulate any ME-NML circuit, verifying its functioning;

• hierarchically estimate the circuit performance in terms of area occupation and power

consumption.

The model keeps consideration of all the relevant technology constraints. The result will

be a circuit with an embedded evaluation function for power and area. Thanks to the clock

network, each clock zone samples one data per clock cycle, therefore it can be modeled with a

register as they have the same behavior.

33
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3.1 Standard Cell Library

In Section 2.2.3.1 Figure 13 shows that the ME-NML layout is based on mechanically isolated

islands, which will be referred to as cells or clock zones, as they receive their own clock signal. It

has been already mentioned that, for fabrication and physical limitations, the height and width

of a cell can be of either 3 or 5 magnets. For this work we chose the 3 × 3 cell dimension, as

it is the smallest size feasible with current lithographic resolution. Compared to bigger cells, it

has a shorter critical pattern (number of cascaded magnets) leading to both an higher working

speed and a better signal propagation reliability. Based on our choice all the drawings and

circuits from now on will exploit 3× 3 clock zones, but the VHDL model is generalized for any

cell size.

(A) (B)

3x3 3x5

Figure 16. ME-NML cells. A) 3× 3 size. B) 3× 5 size.

We noticed that, due to the small size of this ME-NML cells, there is a limited number of

possible magnets configurations. Hence the totality of the conceivable clock zones is reasonably

small. This interesting feature of ME-NML triggered the idea of designing a finite set of standard
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cells: a Standard Cell Library, where each element is described in VHDL language. The result

is that, assembling cells from the library, any digital circuit can be designed. This standard

cell approach confers to ME-NML a propensity for design automation, making this technology

very much suitable for having its own simulation and synthesis tool.

Wire

AND

OR

Inverter

Standard Cells

'0' '1'

'0' '1'

"00" "01" "10" "11"

Double 

Inverter

Crosswire

Double 

Wire

Figure 17. Full 3× 3 Standard Cell Library for ME-NML.

The full 3× 3 Standard Cell Library is tabulated in Figure 17. The logic gates are basically

the same as for the Magnetic clock NML (Figure 7): Wire, Crosswire, Inverter, AND, OR. But
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here they must be distinguished also by layout and orientation, not only by their logic function.

The main reason is that the whole library is thought in the perspective of a future automated

tool for circuit design.

Cells lying within the same row of Figure 17 can be derived from each other by horizontal

and/or vertical flipping. Since they represent different orientations of the same cell, they are

described by the same VHDL entity. The binary numbers in the table will be given as generic

parameters to state the cell orientation. The only exceptions are Double Wire, AND, OR: These

cells are put in the same row to get a more compact image, but they have to be defined with

different VHDL entity.

Each cell is modeled as a CMOS register plus, if needed, an ideal logic port.

Wire. The word wire in NML technology refers to a series of adjacent magnets. With a proper

clock system a wire can propagate signals with a domino-like behavior. In section 2.1.1 we

explained that the horizontal alignment of magnets is antiferromagnetic, while vertically

each magnet has the same polarization of its neighbors. Therefore, for a clock zone to

have a Wire function, the number of horizontal magnets must be odd. Since wires do not

carry any logic function they are simply described as registers. As clear from Figure 17,

there are four different wires in the library:

• Vertical Wire. There are two possible orientations: left and right.

• Horizontal Wire. There are two possible orientations: up and down.

• Long Wire. From one corner to the opposite one. There are two possible orientations.
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• 2 Outputs Wire. This wire covers three corners, so there are two outputs, as there

cannot be more than one input. It is the only cell with 4 possible orientations.

Double Wire. It contains two independent wires with length of three magnets. In the model

this cell is described with two different registers. From the logic function point of view it

is just like putting together two single wire cell. There are two Double Wire cells in the

library, described by two different VHDL entities. Notice that the horizontal and the

vertical Double Wire are not two different orientations of the same cell.

Crosswire. It is modeled similarly to the Double Wire, but physically the wires cross each

other. This interference-immune crossing is vital, since for now NML is still a planar

technology.

Inverter. The horizontal alternate alignment of magnets is exploited to obtain the inverter

function: Any even number of adjacent horizontal magnets generates an inversion. The

VHDL model only has a small difference compared to the Wire case. To implement the

inversion an ideal CMOS inverter has to be added at the input of the registers. Just like

for the wires two inverters can be present within the same cell, but only horizontally. The

vertical coupling is ferromagnetic, so the inversion does not take place. The library also

contains a cell with both an inverter and a horizontal wire.

• Inverter. It is horizontal only. There are two possible orientations: up and down.

• Inverter plus wire. There are two possible orientations: inverter up and inverter

down.
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• Double Inverter. Beside the fact that it implements the inversion, it is the same as

the horizontal Double Wire.

AND. In Section 2.2.1 it is explained how AND and OR gates can be obtained by modifying

the shape of a magnet [26]. For visual clarity the magnets with the slanted edges are

filled with black. A cut on the bottom left corner provides the AND function. None of

the six AND cells in the library can be derived from another one by flipping, even if they

look like they could. Notice that the slated edge is always on a left corner of the magnet.

Therefore each AND cell is described by a different VHDL entity. The first four cells

have one output, while the others have two outputs.

• AND. There are four different AND cells with only one output. The inputs can be

either both on the left or both on the right, while the output on the other side can

be either at the top or the bottom.

• AND with two outputs. There are two different AND cells with two outputs. The

inputs can be either on the left or on the right, while the outputs are on the other

side.

OR. The only difference from AND cells is the position of the slated edge, which is on the

upper left corner.

3.2 VHDL of the Standard Cells

In this section we will see how the actual VHDL for standard cells works. The Listing 3.1 is

used as an example, it contains the complete code for the Inverter plus Wire. The inverter (4
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adjacent magnets) and the wire (3 adjacent magnets) are horizontal, so the cell can be flipped

around its horizontal axis.

3.2.1 Generic parameters

Each VHDL entity has many generic parameters that allows to differentiate clock zones

belonging to the same type of cell and their relative positioning within the circuit (see lines

11-16 of listing 3.1). In Figure 19.B they are represented as inputs of the Standard Cell.

These parameters do not affect the logic or the functioning of the circuit, indeed they provide

information useful for performance estimation or for a future possible aided design tool.

• PHASE. For ME-NML we chose a 4-phase clocking system. This generic defines which

one of the four clock signals will be connected to the clock zone. This information is

redundant, as the required clock signal is directly connected to the clk port, but we

included it to assure a better suitability of this model to a design tool.

• ROW and COLUMN. ME-NML circuits are composed by cells disposed in a grid-

like fashion, just like depicted in Figure 13.D. ROW and COLUMN refer to the relative

position of a cell within the circuit described by the upper level entity. It will be explained

in section 3.2.4 that the model is hierarchical. If single cells are considered as layer 1, an

entity in layer 2 will assemble them to create the final circuit or part of it.

• ORIENTATION. As represented in Figure 17, when cells can be obtained from each

other by a simple flipping, they are described by the same VHDL file. The ORIENTA-

TION parameter says which one to use. Once again, this does not affect the logic or the

circuit performance: It is just a matter of layout.
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• H and L. The choice for this work has been to exploit 3 × 3 clock zones. So the height

and width (in terms of nanomagnets) of a cell are always equal to 3. Anyway the model

is as generic as possible, so the height and width are parameters: H and L.

3.2.2 Register plus logic function

The Inverter plus Wire cell is composed by two parallel series of magnets: 4 for the inverter

and 3 for the wire. Therefore it is modeled by two D Flip Flop registers, plus an ideal inverter

applied to one of the outputs. Lines 37-38 of Listing 3.1 contain the registers instantiations,

while the inversion function is at line 35.

3.2.3 Area and Energy

In this section we refer once again to the Listing 3.1. Each cell described with VHDL

evaluates and gives as output its own number of magnets (n mag), its area occupation (area eff,

area tot) and power consumption (Er, Ec) (Figure 19.B). The number of magnets is evaluated

at line 34, while the other values are calculated by a component named area and energy (lines

23-31 and 40-41). This component, starting from the number of magnets, height and width

of a cell, provides as output the required information on area and power. For the number of

magnets evaluation, the central part of the Crosswire (the cross) is considered equivalent to 3

magnets.



41

Listing 3.1. Inverter plus Wire
1 en t i t y i nv w i th w i r e i s

g en e r i c (PHASE: s t d l o g i c v e c t o r (1 downto 0) ;−− Clk phase .
ROW: natura l ; −− Re la t i v e c e l l p o s i t i o n ( row )

4 COLUMN: natura l ; −− Re la t i v e c e l l p o s i t i o n ( c o l )
ORIENTATION: s t d l o g i c ;
H: natura l ; −− Height (# o f magnets )

7 L : natura l ) ; −− Width (# o f magnets )
port ( d1 , d2 : in s t d l o g i c ; −− Inputs

c l k : in s t d l o g i c ; −− Depends on the phase
10 q1 n , q2 : out s t d l o g i c ; −− Outputs

n mag : bu f f e r natura l ; −− # of magnets
n zones : out natura l := 1 ;−− # number o f c e l l s

13 a r e a e f f : out natura l ; −− Total magnets area
a r e a t o t : out natura l ; −− Ce l l area
Er : out natura l ; −− Switching energy

16 Ec : out natura l ) ; −− Clock network l o s s e s
end inv w i th w i r e ;

19 a r c h i t e c t u r e behavior o f i nv w i th w i r e i s
component reg i s −− D Fl ipFlop (1 b i t )

. . .
22 end component ;

component area and energy i s
g en e r i c (H: natura l ; −− Height (# o f magnets )

25 L : natura l ) ; −− Width (# o f magnets )
port ( n mag : in natura l ; −− # of magnets

a r e a e f f : out natura l ; −− Total magnets area
28 a r e a t o t : out natura l ; −− Ce l l area

Er : out natura l ; −− Switching energy
Ec : out natura l ) ; −− Clock network l o s s e s

31 end component ;
s i g n a l q1 : s t d l o g i c ;

begin
34 n mag <= L∗2+1; −− Evaluate the number o f magnets us ing H and L .

q1 n <= not q1 ; −− I nve r s i on

37 Wire1 : reg port map(d => d1 , c l k => c lk , q => q1 ) ;
Wire2 : reg port map(d => d2 , c l k => c lk , q => q2 ) ;

40 Eva luate area energy : area and energy g ene r i c map(H,L)
port map(n mag , a r e a e f f , a r ea to t , Er , Ec) ;

end behavior ;
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3.2.3.1 Area information
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Figure 18. Detailed measures of the ME-NML 3× 3 cell.

Figure 18 reports the complete clock zone measures and the distance from nearby cells.

Here is the list of the relevant measures:

• Magnets. Height: Hmag = 65nm, width: Wmag = 50nm.

• Magnets separation. Both horizontal and vertical separation: Sepmag = 20nm.

• Electrodes. Width: Welectrode = 30nm.

• Cells separation. Horizontal: Sep horizcell = 30nm, vertical: Sep vertcell = 20nm.
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The fixed values above are assigned to the proper constants in the model (Listing 3.2), so

that the component area and power will be able to evaluate the correct area information for

each cell. Each cell gives as output two data related to area occupation:

Magnets Area. It is the area of one magnet multiplied by the number of magnet on the cell.

Amagnets = nmag · (Hmag ·Wmag) (3.1)

Cell Area. It is the area of the cell, including the electrodes and the separation space among

cells. It will be used to evaluate the total area of the circuit. Since in this work the cell

dimension is fixed to 3× 3, the Cell Area will be the same for every cell.

Hcell = 3 · (Hmag + Sepmag) = 255nm (3.2)

Wcell = 3 ·Wmag + 2 · (Sepmag +Welectrode) + Sep horizcell = 280nm (3.3)

Acell = Hcell ·Wcell (3.4)

From now on, for an easier design procedure, the vertical separation between cells will be

null. The height of the substrate (and electrodes) will be depicted 20nm higher, occupying then

the area previously devoted to the separation.
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Listing 3.2. Nanomagnets and Cell measures
−− CELL and MAGNET s i z e −−−−−−− Al l va lue s are expres sed in [nm] −−−−−−−−−−−−−−

3 constant HMAG: natura l := 65 ; −− Nanomagnets he ight
constant WMAG: natura l := 50 ; −− Nanomagnets width
constant SEPMAG: natura l := 20 ; −− Nanomagnets s epa ra t i on

6 constant WELECTRODE: natura l := 30 ; −− Elec t rode width
constant SEP HORIZ CELL : natura l := 20 ; −− Ver t i c a l s epa ra t i on between c e l l s
constant SEP VERT CELL: natura l := 30 ; −− Hor i zonta l s epa ra t i on between c e l l s

3.2.3.2 Energy information

The area and power component actually estimates the energy dissipation E and not the

power. Knowing the working frequency fclk, which for this work was chosen equal to 100MHz,

the power P can be easily derived:

P = E · fclk (3.5)

The VHDL contains the definition of all the constants needed for this section, they are shown

in Listing 3.3. The main sources of energy dissipation in NML circuits are basically two:

Magnets Switching. It is the intrinsic energy loss required to force magnets in the NULL

state (Er in Listing 3.1). The switching can be either adiabatic or abrupt: For the

Magnetic clock NML the difference in term of losses was extremely wide, so the switching

had to be adiabatic. But ME-NML behaves differently: The energy consumption is still

equal to 30KbT if adiabatic, but only 180KbT (the whole energy barrier for 50 × 65 ×

10nm3 nanomagnets) if abrupt. Since in both cases the consumption will be negligible
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compared to the second component, the choice is the abrupt switching, which reaches

better performance.

After defining how much energy is dissipated by the switching of a single magnet (Emag),

to calculate the energy consumption of a cell the only information needed is the number

of magnets (nmag) on that cell:

Ecell = nmag · Emag (3.6)

Clock Network. It is the energy dissipated by the clock network mainly due to Joule losses

(Ec in Listing 3.1). Since PZT (piezoelastic materials in general) is an insulator, a ME-

NML cell behaves as a capacitor. Therefore the main contribution to clock losses (for

a 100MHz frequency) is the charge of such capacitor. The capacitance is estimated in

equation Equation 3.7 [35].

C =
ϵ0 · ϵr · tPZT ·Hcell eff

Wcell eff
(3.7)

The first three constants are the absolute dielectric constant (ϵ0), the relative dielectric

constant of PZT (ϵr), the thickness of the PZT substrate (tPZT = 40nm[35]). The other

two values are the effective dimensions of a clock zone, without the inclusion of the

separation between cells. Hence Hcell eff = 235 and Wcell eff = 250 (Figure 18).

Equation 3.8 evaluates the voltage that must be applied to a clock zone to force it into

the RESET state.

V =
Wcell eff · σ

Y · d33
(3.8)
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Listing 3.3. Constants for Energy estimation
1 −− CONSTANTS FOR ENERGY EVALUATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− For sw i tch ing energy eva lua t i on
4 constant Kb: r e a l := 13.8065 e−23;−−Boltzmann const . (mˆ2∗kg∗ sˆ−2∗Kˆ−1)

constant T: r e a l := 300 . 0 ; −−Room temperature (K)
constant EMAG: r e a l := 180∗Kb∗T; −−

7 −− For c l o ck energy eva lua t i on
constant VACUUMPERM: r e a l := 8.854 e−12; −−Vacuum pe rm i t t i v i t y (F/m) .
constant REL PERM: r e a l := 1300 . 0 ; −−Substrate r e l a t i v e perm . (−)

10 constant T PZT : r e a l := 40e−9; −−Elec t rode s th i c kne s s (m)
constant STRESS : r e a l := 28 e+6; −−Applied s t r e s s (Pa)
constant YOUNGMODULUS: r e a l := 80 e+9; −−Young modulus f o r Ter f eno l (Pa)

13 constant PZT CONST: r e a l := 150e−12; −−Subst rate const . , p i e zo c o e f f . (m/V)

In this formula we have the applied stress (σ = 28MPa), the Young modulus for Terfenol

(Y = 80GPa) and the coefficient for strain and applied voltage coupling in the PZT

substrate (d33 = 150pm/V ). Normally for our cells the applied voltage should be in the

range of 0.7− 1.3V [35]. Finally the energy required to charge the capacitance of one cell

is listed in equation Equation 3.9.

Eclk =
1

2
· C · V 2 (3.9)

In this work the clock will be always chosen equal to fclk = 100MHz. The clock period

Tclk depends on technological constraints, not on the logic, as the critical path for signals is

fixed, no matter which logic has been implemented. The constraints on the clock duration

are manifold, all of them derive from technology choices:

• maximum number of magnets per clock zone;

• number of clock phases (3 or 4 for the implementations studied in this work);
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• usage of either adiabatic or abrupt switching.

The power contribution of the circuit for clock generation is negligible, as the circuit

counts a limited number of transistors [12]. Therefore this component will not be taken

into account.

3.2.4 Hierarchical model
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Figure 19. A) VHDL hierarchical model. The information on energy dissipation and area
occupation are propagated hierarchically toward the top entity. B) generic inputs and

outputs of a Standard Cell.
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Since VHDL language is hierarchical, the same is true for our model. The standard cells

form the bottom layer, while components in the upper layer can assemble them together to

create circuits. These blocks of cells themselves can be instantiated by bigger circuits and so

on up to the top entity. Figure 19.A depicts a generic 3-layers hierarchy. The Top Entity (layer

3) is composed by many Block of cells (layer 2), while each block of cells encloses the required

standard cells (layer 1).

This hierarchy is exploited for a bottom-up evaluation of the number of magnets, number of

cells and performance in terms of area and power. As explained in section 3.2.3, each Standard

Cell gives as output all this information about itself thanks to the area and power component.

The elements in the upper layer sum up the data received from every element in the lower layer

(with what is called arrays sum in Figure 19), outputting then the results. This mechanism goes

on recursively up to the Top Entity, which gives as output the total results for the whole circuit.

Notice that the model provides exact results, as there is no approximation in the hierarchical

evaluation and the circuit design for ME-NML provides a layout correspondent with the actual

physical mapping.

3.3 Circuit layout

We have seen how cells are described by the model and how performance is evaluated. In this

section we will see the first example of a ME-NML circuit, focusing on many general aspects of

the design: the circuit layout, the CMOS circuit described by the model, the multiphase clocking

system, the timing of signal propagation. This quick glance will be very useful when dealing

with more complex systems in the following chapters. The small circuit studied in this section
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Figure 20. A) CMOS Half Adder. B) ME-NML Half Adder. C) Waveforms for the 4-phase
overlapped clock system. A color is associated to each clock signal. D) VHDL counterpart of
the ME-NML circuit, it is the circuit described by the VHDL model. E) Timing diagram of

an example of signal propagation through the adder.

is a Half Adder (HA). Since the only logic ports available are Inverter, AND, OR, to design the

ME-NML Half Adder in Figure 20.B we started from the configuration in Figure 20.A.

Cells are placed on a grid-like scheme (Figure 13.D). The pattern from inputs to outputs is

5 clock zones long. For an easier visual comprehension, the AND, OR and inverter magnets are

highlighted respectively in blue, red and orange, while the substrate coloration identifies the
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clock phase of a cell, namely the clock signal driving such clock zone. The clock system choice for

ME-NML is a 4-phases overlapped clock, the 4 waveforms, with their assigned colors, are listed

in Figure 20.C. Notice that clock signals are slightly overlapped, to avoid back propagation.

The model presented in this chapter maps each clock zone to one/two registers, plus a

logic gate if needed. The VHDL code for the ME-NML HA describes the CMOS circuit as in

Figure 20.D. Notice that the path from input to outputs counts 5 registers (5 pipeline stages),

just like the 5 clock zones needed to pass through the ME-NML version. The numbers marking

registers define their clock phase.

For a better comprehension of the circuit functioning, the timing graph in Figure 20.E

shows a simple propagation example. The signals follow the pattern from the inputs to the

Carry output, passing through the nodes marked as A-B-C-D. All clock signals have the same

period Tclk, but they are shifted by 90◦. It is quite clear from the timing that a signal needs

one clock cycle Tclk to cross 4 clock zones (registers in the VHDL counterpart of the ME-NML

circuit). Hence a signal has a latency of Tclk/4 to cross a clock zone.



CHAPTER 4

CASE STUDY I: GALOIS FIELD MULTIPLIER

The aim of the first case study is to answer the most critical question about MagnetoElastic

NML (ME-NML) technology: Does it offer significant improvements over state-of-the-art CMOS

transistors? Is the power dissipation much less than for the Magnetic Clock NML? To prove

the benefits of ME-NML, it is presented an accurate comparison of performances between three

different implementations of the same circuit: 28nm CMOS, Magnetic Clock NML and ME-

NML.

The circuit chosen as case study is a Galois Field Multiplier (GFM). It has got several

applications in cryptography, digital signal processing, coding theory and computer algebra.

This circuit shows strong modularity, because of its systolic array structure: It is composed by

arrays of identical elements able to communicate only with their adjacent neighbors [41][42].

Since the usage of long interconnection wires is avoided, systolic arrays are very much suitable

for NML circuits (QCA in general). NML technology is indeed still planar, it is not possible to

use additional layers for interconnections, so the circuit complexity explodes with the increase

of interconnection overhead. Therefore it is strongly advised, for any QCA implementation, to

design circuits with a systolic array layout, as it is the only way to fully exploit their capabilities.

If designed otherwise, NML circuits would lose to CMOS performances. The example in [43]

clearly proves how with the wrong architectural choices the interconnection overhead can occupy

as much as the 99% of circuit area.

51
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4.1 Galois Fields arithmetic

A Galois Field GF(q) encloses a finite number q of elements, together with the definition of

addition and multiplication operations on pair of elements [44]. When q = pm, with m positive

integer and p prime number, the field exists and is unique. For this work we are exclusively

interested in Binary Galois Fields (GF(2m), p = 2), as they perfectly suit digital systems. A

XOR function implements the addition, while an AND port can perform the multiplication.

In general, when m = 1 the operations are defined as the common modulo p addition and

multiplication. So GF(21), the smallest possible Binary Galois Field, only has the two elements

{0, 1} and modulo 2 operations. Table I shows the addition and multiplication results for

GF(21).

However, when m > 1, modulo operations between polynomials are required instead of

ordinary modulo operations. A polynomial with degree up to m− 1 can be associated to each

element of a field GF(2m). Its coefficients are elements of the field GF(2), that is 0 or 1, so

each polynomial can be represented by a binary number composed by its own coefficients. In

Table II we can see the polynomial mapping and the corresponding binary representation for

TABLE I

ADDITION AND MULTIPLICATION FOR GF(2)
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1
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TABLE II

POLYNOMIAL MAPPING AND MULTIPLICATION TABLE FOR GF(8). PRIMITIVE:
X3 +X + 1.

Element Polynomial Binary Repr.
0 0 000
1 1 001
A x 010
B x+ 1 011
C x2 100
D x2 + 1 101
E x2 + x 110
F x2 + x+ 1 111

· 0 1 A B C D E F
X 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

the field GF(23). Its elements are eight: {0, 1, A,B,C,D,E, F}. This representation has as

primitive polynomial x3 + x + 1, which guarantees an efficient hardware implementation. A

different choice of p(x) generates a different polynomial representation.

But how to obtain the product results in Table II? The algorithm for multiplication of two

polynomials a(x) and b(x) modulo an irreducible polynomial p(x) (called primitive) is reported

in listing 4.1. It is called the Montgomery Multiplication Algorithm [45]. For GF(2m) the

primitive polynomial has degree equal to m. The algorithm can perform modular multiplication

without requiring division, which would be very costly. The multiplication is performed by

sum-and-shift of partial products, while the modulo operation is obtained by subtracting the

irreducible polynomial whenever the degree of the intermediate result gets equal to m. The

ai · b(x) term is either equal to 0 or to b(x), respectively when ai = 0 and ai = 1. So one
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Listing 4.1. Montgomery multiplication algorithm.
r ( x ) := 0

2 f o r i = m−1 downto 0 do
r (x ) := x∗ r ( x ) + a i ∗b(x )
i f degree ( r ( x ) ) = m then r (x ) := r (x )−p(x )

5 re turn r ( x )

coefficient of a(x) at a time is multiplied (carry free) with all the coefficients of b(x). Then the

current result is shifted left (multiplying by x) before adding the new partial result.

4.1.1 Galois Field Multiplier scheme

Translating the Montgomery algorithm into an actual circuit, we obtained a MSB-first bit-

serial Galois Field multiplier. MSB-first and bit-serial refer to how the coefficients of a(x)

are fed to the circuit: Serially and starting from the MSB. Figure 21 shows the scheme of the

multiplier for GF(24). 1-bit registers are exploited to hold inputs and partial results, while the

× and + symbols stand for multiplication and addition. The steps of the algorithm are mapped

to the circuit scheme:

• Shift: x · r(x)

Implemented with a 1-bit shift register toward the MSB. This operation provides the

alignment with the next partial product. The 4 central registers form a shift register that

moves the intermediate result r(x) to the right.
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• Partial product: ai · b(x)

Implemented with m bit-wise multiplications. This multiplications will be realized with

2-inputs AND ports. Data a(x) has to be fed serially, while data b(x) is a parallel input.

• Intermediate result: r(x) = x · r(x) + ai · b(x)

The partial products addition is performed by 4 bit-wise additions, which can be obtained

using XOR ports.

• Subtrahend selection: if degree(r(x)) = m

When this is true the primitive polynomial must be subtracted from the intermediate

result, while when false the subtrahend will be 0. To generate the proper subtrahend

(p(x) or 0), p(x) is multiplicated bit-wise with rm−1, which is the MSB of the intermediate

result. As already mentioned multiplication can be implemented by AND ports.

• Modulo operation: r(x) = r(x) + p(x)

To subtract the selected subtrahend from the intermediate result r(x) the two values are

added (GF addition) bit-wise. This addition can be implemented by XOR ports.

The addition symbols in Figure 21 have three inputs, they perform two of the operation

just described: Intermediate result and Modulo operation.

r(x) = x · r(x) + ai · b(x)

r(x) = r(x) · p(x)

.
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In Figure 21 the systolic array organization is evident, multiple entities of the same basic

block (circled with a dashed line) are combined to form the multiplier. A N-bit GFM requires

N identical basic blocks, the only exception are the first and last which are slightly different

from the others. Simply connecting a different number of this blocks it is possible to obtain any

parallelism. Therefore a generalized GFM can be designed defining only three blocks, which

will be referred to as first, central and last. This characteristic will be valid for any GFM

implementation explored throughout the whole work.

dataB(0)

P(0)
Res(0)

dataB(1)

P(1)
Res(1)

dataB(2)

P(2)
Res(2)

dataB(3)

P(3)
Res(3)

dataA
(serial)

Basic block

Figure 21. Scheme of a 4-bit bit-serial Galois Field Multiplier (GF(24)).
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4.2 CMOS Pipelined Implementation

The scheme in Figure 21 has been modified into the one in Figure 22 to make it fully

pipelined, so that the circuit behavior is as similar as possible to ME-NML functioning. Fur-

thermore, without the pipeline, dataA and feedback propagation would have too long critical

paths, as they grow proportionally to the circuit parallelism. The full pipeline guarantees a

constant critical path for any parallelism leading to a greater throughput, but requiring addi-

tional registers that will have an impact on circuit area. The scheme in Figure 22 will be the

starting point to design the ME-NML version of the Galois Field Multiplier (GFM).

dataB(0)

P(0)
Res(0)

dataB(1)

P(1)
Res(1)

dataB(2)

P(2)
Res(2)

dataB(3)

P(3)
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dataA
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Figure 22. Scheme of the 4-bit fully pipelined Galois Field Multiplier.
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dataB

(A)

dataB(0) dataB(1) dataB(2) dataB(3) dataA
(serial)

(B)

Res(0) Res(1) Res(3)Res(2)
P(0) P(1) P(2) P(3)

Feedback loop

Figure 23. CMOS implementation of the 4-bit fully pipelined GFM. (A) Preskew circuitry for
dataB. (B) Circuit body.

Moreover this is also the architecture chosen for the CMOS implementation, so that it

assures an accurate and straightforward comparison between the two NML technologies con-

sidered in this work. Figure 23.B shows the fully pipelined CMOS circuit: It is exactly like in

Figure 22, with additions performed by XOR gates, and multiplication by AND gates. Just
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like for the scheme in Figure 21, the CMOS implementation is composed by standard blocks.

The N-bit multiplier is formed by N adjacent blocks, which are all identical beside the slight

differences of the first and last ones.

Because of this strong modularity, once defined the three basic blocks (first, central, last),

it is straightforward to create a GFM with any parallelism just by tuning the number of central

blocks (Nbit − 2 central blocks). For example a 4-bit multiplier, like in Figure 23, counts 2

central blocks. Increasing the parallelism the circuit layout will simply grow horizontally.

The generalized N-bit CMOS GFM has been described with VHDL language. The top

entity, called Galois Multiplier, instantiates N basic block components. The basic block

has slightly different configurations, depending on its position within the circuit: first, last or

center. This exact organization has been used also for the two NML implementations.

4.2.1 Timing analysis

Consider from now on a generic N-bit GFM. Due to both the Montgomery algorithm and

the full pipeline, the inputs must be fed to the circuit in a peculiar way. The feedback path

highlighted in blue in Figure 23 determines the input protocol. For a correct alignment of

partial products’ sum, DataA(n-1) must arrive when DataA(n) reaches the end of the feedback

loop. Since the blue loop is two clock cycles long, DataA bits must be fed with a delay of 2 clock

cycles starting from the MSB. Therefore the overall time for DataA to be inputed is 2N · Tclk,

leading to a throughput of 1/(2N · Tclk).

DataB (just like the primitive polynomial P) is a parallel input, but to generate the correct

partial products with DataA its bits cannot arrive simultaneously. According to the circuit
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TABLE III

TIMING PERFORMANCE OF THE CMOS GFM
N bit Interleaving Throughput Result: 1st bit out Result: last bit out

4 2 op. 1/(8Tclk) 8Tclk 11Tclk

8 2 op. 1/(16Tclk) 16Tclk 23Tclk

N 2 op. 1/(2N · Tclk) (2(N − 1) + 2) · Tclk (3(N − 1) + 2) · Tclk

in Figure 23, DataA bits require a single clock cycle to pass through a basic block. Then the

delay between DataB bits is of one clock cycle (Tclk), and each bit has to be hold for the whole

operation: 2N · Tclk. The same is true for P because the feedback propagates as DataA. The

result Res behaves just like DataB and P. Although this protocol remains unchanged for any

circuit parallelism, inputs with higher number of bits need more time to be fed to the circuit.

Table III lists the timing information for a generic multiplier and for two specific parallelisms:

4-bit and 8-bit.

Three major issues derive from the required protocol:

• There is an unused clock cycle between a DataA bit and the next. This means that

meaningful inputs are fed only for half of the time, so at any time half of the registers in

the circuit would contain useless data.

• It is not possible to supply all bits of DataB simultaneously. The same is true for P and

for acquiring Res.

• To guarantee a continuous data flow, the inputs of an operation are fed right after the

ones from the previous one. Therefore the new operation starts while the previous one
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is still processing. The first partial product has to be summed to 0, so the central shift

register would be required to contain zero when the new data arrives. However it would

still be carrying the final result from the previous operation.

.

The solutions adopted applies also to the two nanomagnetic implementations:

• Interleaving. To have a continuous flow of input data multiple non correlated sets of

operations can be executed in parallel, so that the delay time between an input and the

next is filled with other operations (2.2.4.1).

• Preskew and deskew networks. A full set of additional registers must be added to

the multiplier’s body, in order to form preskew (for DataB and P) and deskew (for Res)

networks. Figure 23.A shows the additional circuitry so that all bits of DataB can be

served simultaneously. The same network has been used for P and Res. We will see in

Chapter 5 how they affect the circuit area growth as a function of the number of bits.

• Shift Register Reset. Each register of the central row has to be reset (set to ′0′) when

data from a new operation arrives. Since in that moment it will contain the final result of

the previous operation, such result will be erased. Therefore a line of additional registers,

with the same input as the shift registers, is added right below. In this way the final

result can be preserved, allowing to execute a continuous flow of operations. The reset

of the shift register is applied in the same way as DataB is fed to the circuit. A 1 clock

cycle reset is applied to each register when a new data is fed to its correspondent DataB
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TABLE IV

POLYNOMIAL MAPPING FOR GF(16). PRIMITIVE: X4 +X + 1.
Element Polynomial Binary Representation

0 0 0000
1 1 0001
2 x 0010
3 x+ 1 0011
4 x2 0100
5 x2 + 1 0101
6 x2 + x 0110
7 x2 + x+ 1 0111
8 x3 1000
9 x3 + 1 1001
10 x3 + x 1010
11 x3 + x+ 1 1011
12 x3 + x2 1100
13 x3 + x2 + 1 1101
14 x3 + x2 + x 1110
15 x3 + x2 + x+ 1 1111

register. The first register of the feedback (bottom-right corner) must be reset as well

anytime a new DataB(3) bit is applied.

4.2.2 Circuit simulation

The purpose of creating a CMOS version of the GFM is to compare its performances with

those of NML technology. First, the circuit has been described with VHDL and verified through

simulation with Modelsim 6.4. Then the circuit performances have been estimated through a

physical place&route with Cadence Encounter 13.1, using a 28nm library of low power CMOS

transistors.
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TABLE V

MULTIPLICATION TABLE FOR GF(16). PRIMITIVE: X4 +X + 1.
X 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3 0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
4 0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
5 0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6
6 0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4
7 0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11
8 0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1
9 0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
10 0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12
11 0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
12 0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
13 0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
14 0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5
15 0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

We described with VHDL the CMOS fully pipelined version of the N-bit Galois Multiplier.

At first only the multiplier body was tested, both with and without exploiting interleaving.

Then the preskew and deskew additional circuitry have been added to the multiplier itself

for another simulation session. The simulation without synchronization circuitry requires a

quite complex testbench, while after adding the additional registers the timing protocol gets

much simpler. The parallelism is defined by a generic parameter called N BIT, which in the

simulation is in the range 4 : 64 (GF(16) to GF(264)).

The circuit verification was carried out comparing simulation results to expected results

evaluated through a proper Matlab script. Every testbench prints the results into a text file,
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using functions from the std.textio library for VHDL. On the other side Matlab has a set

of functions for handling Galois Field arithmetic. The function gf creates the required array

of Galois Field elements, then any operation on those elements is performed within the Galois

Field specified. It is then trivial to generate the product matrix (as in Table V) that will

be used to write the expected results into a text file. This work uses the default primitive

polynomials defined by Matlab, which identifies them with a number corresponding to the

binary representation of polynomials’ coefficients. The simulation evaluates only a limited

number of randomly determined multiplications, because for high number of bits the product

table is extremely vast.

4.3 ME-NML Implementation

The central part of the study on the Galois Field Multiplier (GFM) has been the design and

optimization of its MagnetoElastic NML implementation. This work presents, for the first time

in literature, the design of a ME-NML circuit, also keeping into account the technological and

physical constraints of this newly proposed technology. Chapter 3 explained how a Standard

Cell Library and a RTL model have been developed for this technology, starting from the base

cell derived from the MagnetoElastic Clock idea [1]. Section 3.3 introduced the ME-NML design

methodology, also providing in Figure 20 a small design example. However only through the

study of complex architectures it is possible to fully understand the potentialities and limitations

of a novel technology.
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4.3.1 Circuit design

The register function is intrinsic in ME-NML technology. So, while designing circuits, all

that counts is the combinational logic. Since the only available ports are AND, OR and Inverter

the 3-inputs XOR has been realized as in Figure 24.

A

B

C

f

3-inputs XOR
f = A    B    C

Figure 24. 3-inputs XOR function constructed with AND, OR and Inverter gates.

4.3.1.1 Basic blocks

The basic block of GFM contains two AND and one XOR gates, plus a certain number of

registers. Through several steps of manual design and optimization, the final basic blocks for

the GFM came out as in Figure 25, where the newly designed ME-NML blocks are matched

with the correspondent CMOS blocks of the circuit in Figure 23. The in/out signals for each

block are indicated for an easier comparison with the CMOS circuit.
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First block Central block Last block

dataB(0) dataB(n) dataB(N) dataA
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Res(0) Res(N)Res(n)
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dataB(n)
Res(n)

P(n)

Aout

fb-out

PEin

dataB(N) Res(N)

P(N)

Aout

fb-out

PEin

dataA

rst rst rst

Figure 25. Basic blocks of the GFM. ME-NML blocks on top are matched with the
correspondent CMOS blocks.

The reset network is not shown for CMOS, but its functioning was explained in 4.2.1. In

the ME-NML implementation the reset (rst), treated just like any other signals, is applied to

the signal (PEin) that propagates the temporary result from a block to the next one. The reset
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is obtained through an AND gate with as inputs PEin and the reset signal itself. The same is

true for the reset applied to the feedback wire in the Last block (bottom-right corner).

For the sake of clarity the electrodes were omitted and there is no vertical separation between

cells. The cell’s color identify the clock phase: yellow for phase 1, pink for phase 2, light blue

for phase 3, green for phase 4. A N-bit multiplier requires N adjacent blocks: 1 First block,

N − 2 Central blocks, 1 Last block. Notice that the right border of the n block has the same

shape as the left border of the n+1 block.

4.3.1.2 4-bit GFM

'0'

dataB(0) dataB(1) dataB(2) dataB(3)

P(0)

Res(0) Res(1) Res(2) Res(3)
dataA
(serial)

rst P(1) rst P(2) rst P(3) rst

Figure 26. Magnetoelastic NML implementation of a 4-bit Galois Multiplier.
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In Figure 26 the basic blocks have been pulled together to form the 4-bit GFM. Figure 27

contains a circuit which is equivalent to the ME-NML version in terms of timing. This scheme

allows to easily comprehend how the ME-NML implementation works. Each register of Fig-

ure 27 represents four consecutive phases, so it is crossed in one clock cycle, which is the time

needed to pass through four ME-NML cells. A feedback path is highlighted in both drawings:

It is 6 clock cycles long, that is the time for crossing 24 ME-NML cells. The delay between

DataA bits has to correspond to this critical path’s length. This delay is much longer compared

to the CMOS circuit, because of the intrinsic pipeline nature of NML. The blue arrow is also

useful to indicate how signals propagate through this kind of circuit.

dataB(0)

dataA
(serial)

Res(0)

P(0)

dataB(1)

P(1)rst

Res(1)

dataB(2)

P(2)rst

Res(2)

dataB(3)

P(3)rst rst

Res(3)

Feedback loop

Figure 27. Equivalent circuit for the ME-NML GFM.
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4.3.1.3 4-bit GFM with synchronization circuitry

'0'

dataB

dataA 
    (serial)R

es
u
lt

Reset

P (primitive
   polynomy)

Figure 28. ME-NML Galois Multiplier with additional preskew and deskew networks.
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One criticality described in Section 4.2.1 is the introduction of a preskew/deskew network,

so that all bits of DataB, P and Res can be served/acquired simultaneously. The additional

circuitry has been designed and added to the GFM body. Figure 28 is divided into three

horizontal stripes. The central one is the GFM’s body (Figure 26) and the top and bottom

ones are the required synchronization networks. The preskew/deskew circuitries can also be

decomposed in basic blocks and described with VHDL generically for any number of bits, even

though they are not as regular as the central section. They do not contain any logic, only

interconnections.

4.3.2 VHDL description and circuit simulation

To verify the circuit functioning and to evaluate performances, the ME-NML Galois Mul-

tiplier has been described with the RTL model presented in Chapter 3. The top entity

Galois Multiplier instantiates and connects the required number of basic blocks (Figure 25),

which are defined by another entity called Base Blocks (see Listing 4.2). Any circuit parallelism

can be obtained assigning the desired number of bits to the constant N BIT.

The simulation was performed only on the circuit body, as it was enough to verify the circuit

functioning. The synchronization circuitry do not add any logic, anyway a full synchronization

network, related to the second case study of this work, has been modeled and simulated (Chapter

6). Since the additional network is not considered, the testbench is very delicate from the

timing point of view. The simulation procedure is the same used for CMOS: Results from the

simulation are compared with the expected results evaluated by a Matlab script.
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Listing 4.2. VHDL entities of Galois Multiplier: full circuit and basic block.
1 −− Galo i s Mu l t i p l i e r en t i t y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

en t i t y Ga l o i s Mu l t i p l i e r i s
port (DataB ,P, r s t : in s t d l o g i c v e c t o r (N BIT−1 downto 0) ; −− DataB ,P(x ) , r e s e t

4 r s t f b , DataA : in s t d l o g i c ; −− f eedback r e s e t , DataA s e r i a l l y f ed
Res : out s t d l o g i c v e c t o r (N BIT−1 downto 0) ; −− Result
clkA , clkB , clkC , clkD : in s t d l o g i c ;−− Clock s i g n a l s

7 n mag : out natura l := i n i t n a t u r a l ;−− # of magnets
n zones : out natura l := i n i t n a t u r a l ;−− # of c e l l s used
AREA EFF: out natura l ; −− Total magnets area

10 AREATOT: out natura l ; −− Total area occupied by the c e l l s
Er : out natura l ; −− Energy consumption o f nanomags
Ec : out natura l ) ; −− Energy consumption o f c l o ck

13 end Ga l o i s Mu l t i p l i e r ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Base Block en t i t y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 en t i t y Base Block i s
g en e r i c (ELEMENT: i n t e g e r ) ; −− I d e n t i f i e s one among N BIT bas i c b locks
port (

19 A in , B, P, fb in , PE in : in s t d l o g i c ;
mrbit out , fb out , Res , PE out : out s t d l o g i c ;
r s t , r s t f b : in s t d l o g i c ; −− r e s e t s i g n a l s

22 c lk , clkA , clkB , clkC , clkD : in s t d l o g i c ; −− Clock s i g n a l s ( a l l phases )
n mag : out natura l := i n i t n a t u r a l ;−− # of magnets
n zones : out natura l := i n i t n a t u r a l ;−− # of c e l l s used

25 AREA EFF: out natura l ; −− Total magnets area
AREATOT: out natura l ; −− Total area occupied by the c e l l s
Er : out natura l ; −− Energy consumption o f nanomags

28 Ec : out natura l ) ; −− Energy consumption o f c l o ck
end Base Block ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The timing protocol is very similar to the CMOS case but with 3 times longer delay, because

the critical path is not 2 anymore, but 6. The result is a 6 clock periods delay between

DataA bits, and 3 clock cycles of delay for the others: DataB, P, Res. To reach the maximum

throughput 6 uncorrelated operations should be interleaved. Table VI contains the timing

information concerning the ME-NML implementation. To properly understand this table refer

to the equivalent circuit in Figure 26, rather than the original one in Figure 27.

The timing diagram resulting from the simulation of a simple operation is reported in

Figure 29. The operation executed is Res = DataA ·DataB = 10× 9. The result can be found

in Table V: 10×9 = 5, “1010′′×“1001′′ = “0101′′. Prior to the operation execution all cells are
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TABLE VI

TIMING PERFORMANCE OF THE ME-NML GFM
N bit Interleaving Throughput Result:1st bit out Result:last bit out

4 2 op. 1/(24Tclk) 23Tclk 32Tclk

8 2 op. 1/(48Tclk) 45Tclk 66Tclk

N 2 op. 1/(6N · Tclk) (6(N − 1) + 5) · Tclk (9(N − 1) + 5) · Tclk

considered in an undefined state, so that it will be easier to understand how inputs are given

to the circuit, because signals stay undefined until they are assigned a value. The whole timing

protocol strictly depends on the physical layout of the circuit.

Let’s analyze the diagram in detail:

DataA DataA is fed serially one bit every 6 clock cycles starting from the MSB.

DataB DataB is fed in parallel, one bit every 3 clock cycles starting from the MSB. Its values

change every 6Nbit clock cycles.

Primitive polynomial It should be applied like DataB, but since the polynomial is usually

kept fixed it is treated as a constant. The polynomial chosen is x4+x+1and it is mapped

to binary as “10011”, but the MSB is not used by the Galois Multiplier.

Result The result must be acquired one bit every 3 clock cycles, starting from the MSB.

Reset signals The rst signal is applied to all the blocks but the first one, so rst(0) is always

equal to 1. Each rst(i) bit is applied together with its corresponding DataB(i) and kept

low for 6 clock cycles. The rst2 controls the feedback and it is applied 1 clock cycle after

the beginning of the operation.
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1UUU 10UU 100U 1001

0011

UUUU 1UUU 10UU 000U 0001 1001 0011 0111 1101 1001

0111 0011 1001 1101 1111 0111 0011 1001 1101

968

197

3152250

14180000

722421123

12035000

DataA_serial

DataB 1UUU 10UU 100U 1001

P 0011

Result UUUU 1UUU 10UU 000U 0001 1001 0011 0111 1101 1001

rst 0111 0011 1001 1101 1111 0111 0011 1001 1101

rst2

clkA

clkB

clkC

clkD

n_mag 968

n_zones 197

AREA_EFF 3152250

AREA_TOT 14180000

Er 722421123

Ec 12035000

nm^2

nm^2

yoctoJ

zeptoJ

Res(3) Res(2) Res(1) Res(0)

B(3) B(2) B(1) B(0)

A(3)=1 A(2)=0 A(1)=1 A(0)=0

40ns 80ns 120ns 160ns 200ns 240ns 280ns 320ns0ns

Figure 29. Timing diagram of the operation 9× 10 with the ME-NML 4-bit Galois Multiplier.

Clock signals There are 4 overlapped clock signals. The phase shift between one signal and

the next is then 90◦.

Area and Power The six natural signals at the bottom contain the results of the embedded

performance evaluation: Number of nanomagnets, number of cells, total area occupied by

nanomagnets, total area occupied by cells, energy required for magnets switching, energy

dissipated by the clock network.

It may seem that in the diagram in Figure 29 only one operation is executed, but that is

not totally true. The interleaving technique is not exploited, so the only operation evaluated by
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the circuit is 10× 9, but a close look reveals that such multiplication is executed 6 consecutive

times. Notice that each bit of the final result keeps its value for 6 clock cycles. The reason is

that instead of applying inputs and resets only for a single clock period out of six, they are kept

active for 5 more.

4.4 Magnetic Clock NML Implementation

1    2    3    1

1    3    2    1

1    3    2    1

dataA (serial)

Result
P

dataB

Reset Reset

Feedback loop

Figure 30. The 2-bit Magnetic NML Galois Multiplier, comprehensive of preskew and deskew
networks.

The introduction of the MagnetoElastic Clock technology [1], was mainly triggered by the

too high energy dissipation of the Magnetic Clock system. Therefore for an exhaustive study

of the ME-NML, we provide a comparison with the Magnetic NML (described in 2.2.2), which

is based on a magnetic field clock and a snake-clock mechanism [28].
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This section illustrates an implementation of the Galois Multiplier based on the Magnetic

NLM technology. Performance data will be extracted and compared with the other two tech-

nologies considered in this work. Magnetic Clock NML has already been studied from the

physical and architectural point of view developing an ad-hoc RTL model [37]. So to say that

the validity of this technology has been already proved, here we will just design the generic

N-bit Galois Multiplier and compute directly from the circuit schematic all the information

regarding timing, occupied area and power dissipation.

The two small examples presented in Figure 11 and Figure 14 provided an insight on how

Magnetic NML circuits look like and how signal propagation works. We also explained how to

address synchronization and feedback issues derived from the circuit layout, which is strongly

dependent on the snake-clock system. This preliminary knowledge can be easily applied also

to more complex structures, such as the Galois Multiplier.

4.4.1 Galois Multiplier scheme

Despite all the similarities among different NML implementations, the snake-clock approach

leads to a unique circuit organizations. What remains unchanged is the systolic array nature

of the bit-serial Galois Multiplier: Three basic blocks are defined for the Magnetic NML too.

We enclosed two drawings of the Magnetic NML Galois Multiplier including the synchro-

nization networks: the 2-bit version in Figure 30 and the 4-bit version in Figure 31. The latter

has been divided in two parts to allow a better visual comprehension: The right side of the cut

on top should be connected to the left side of the other one. In both figures the circuit body

(central stripe) i separated by the preskew/deskew networks (top and bottom). Furthermore
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vertical blue lines mark the division among basic blocks: First, Central, Last. Once again any

parallelism can be obtained by combining these blocks.

dataA (serial)

P

rst
rst

Res

dataB

Figure 31. The 4-bit Magnetic NML Galois Multiplier, comprehensive of preskew and deskew
networks. The circuit is split in left part (on top) and right part (below), to facilitate its

comprehension.
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A small area on the left in Figure 30 shows the exact layout of snake-clock wires and the

signal propagation directions, in the rest of the drawing the forbidden areas are simply marked

by black crosses. Notice also the feedback critical path for this implementation, it is highlighted

with blue. Its length is 30 clock zones, which correspond to 10 clock cycles, since the snake-clock

is a 3-phase clocking system.

4.4.2 Timing analysis

A new bit of DataA can be sent to the circuit every 10 clock cycles. The basic block depth

is instead equal to 15 clock zones (5 clock periods), so that will be the delay between bits of

DataB, P and Res. Table VII gives the main timing information on this implementation.

TABLE VII

TIMING PERFORMANCE OF THE MAGNETIC NML GFM
N bit Interleaving Throughput Result:1st bit out Result:Last bit out

4 2 op. 1/(40Tclk) 40Tclk 55Tclk

8 2 op. 1/(80Tclk) 80Tclk 115Tclk

N 2 op. 1/(10N · Tclk) (10(N − 1) + 10) (15(N − 1) + 10) · Tclk



CHAPTER 5

CASE STUDY I: GFM RESULTS COMPARISON

This chapter is devoted to performance evaluation of the three GFM implementations in

terms of occupied area and power consumption. First of all the results produced for each

technology are discussed separately, providing details on their evaluation. Then the three

versions are placed side by side, presenting an accurate comparison. NML circuits are handled

keeping into account technological constraints and the exact details on the clock network chosen.

The outcomes demonstrate the effectiveness of ME-NML for power and area performances.

For each implementation the results are evaluated for 4 to 64 bits, both with and without

the preskew/deskew circuitry for input and outputs signals. The additional synchronization

networks are a factor generally neglected in literature, even though they bring a significant

increase of circuit area.

5.1 CMOS Results

The CMOS version of the GFM has been presented in Section 4.2. All the results are ex-

tracted after finalizing the physical layout through Cadence Encounter 13.1. For the place&route

we exploited a low power CMOS 28 nm FDSOI standard cell library, with the following work-

ing conditions: V = 0.9V , T = 25◦C. The working frequency was set to f = 100MHz even

though the CMOS implementation could reach up to 7GHz. The reason was to assure a fair

comparison with the NML implementations, which are limited to a 100MHz frequency.

78
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4-bit

8-bit

Without synch network With synch network

gnd

vdd

standard cells

g
n
dv
d
d

DIE

CORE

Figure 32. Post-route layout of the GFM in its CMOS implementation.

5.1.1 Occupied area

Figure 32 puts side by side the postroute layout of the GFM with and without synchroniza-

tion circuitry, in its 4-bit and 8-bit implementations. The area has been calculated from the

values of height and width of the core, without considering the die. Table VIII contains all the

results of area occupation for the CMOS GFM.
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TABLE VIII

AREA OCCUPATION OF CMOS GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

CIRCUIT
AREA

Number of bits
4 8 16 32 64

No
Synch

Width (µm) 14,31 19,08 28,37 37,35 52,95
Height (µm) 10,80 16,80 22,80 34,80 49,20
AREA (µm2) 154,6 320,6 646,9 1299,7 2605,3

With
Synch

Width (µm) 18,21 30,69 54,47 103,88 202,22
Height (µm) 14,40 26,40 50,40 96,00 187,20
AREA (µm2) 262,3 810,1 2745,2 9972,5 37856,0

Interconnection Overhead 1,7 2,5 4,2 7,7 14,5
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Figure 33. Comparison of area occupation for the CMOS GFM both with and without
synchronization circuitry.
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The interconnection overhead is simply evaluated as the ratio between values with and

without preskew/deskew networks, and it can also be observed in Figure 33. The impact of

the additional circuitry goes from 1.7 (4 bit) to 14.5 (64 bit). Which means that it goes from

adding the 70% of the area for the 4 bit circuit, to increasing the 64 bit circuit (the highest

parallelism considered) of 14.5 times.

5.1.2 Power consumption

TABLE IX

POWER CONSUMPTION OF THE CMOS GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION
(µW )

Number of bits
4 8 16 32 64

No
Synch

Internal 12,09 28,21 57,28 116,95 245,87
Switching 1,21 3,38 7,21 14,99 31,52
Leakage 1,00 2,05 4,13 8,30 16,63
TOTAL 14,30 33,63 68,62 140,24 294,03

With
Synch

Internal 20,40 70,38 243,90 855,50 3240,00
Switching 1,63 5,75 17,07 56,72 200,70
Leakage 1,69 5,25 17,85 64,99 247,10
TOTAL 23,72 81,37 278,82 977,21 3687,80

Interconnection Overhead 1,7 2,4 4,1 7,0 12,5

The post-route power estimation gave the results in Table IX. The losses increase due to

interconnection overhead is also disclosed by Figure 34. The additional circuitry affects the
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Figure 34. Comparison of power consumption for the CMOS GFM both with and without
synchronization circuitry.

power consumption less than the area occupation, reaching a maximum increase of 12.5 times

with respect to the power required by the GFM body itself.

5.2 Magnetoelastic NML Results

For what concerns the area and power estimation for the ME-NML implementation, the

methodology and formulas have been detailed in Section 3.2.3. The results for the GFM body

are directly evaluated by the VHDL model. Total area and energy components are given as

output of the top entity Galois Multiplier during simulation, just like in the timing diagram

of Figure 29. On the other hand the preskew/deskew parts have not been described with

the model, their performance has been evaluated directly from the drawings. They can be

generalized to any number of bits isolating some basic blocks. However the generalization



83

Col = 1 Col = 2 : N-1 Col = N

Row
=
2

Row
=

3:N

Row
=
1

A. B. C.

D. E. F.

G. H. I.

Row
=

2:N-1

Row
=
N

Row
=
1

Row
=
2

Row
=

3:N

Row
=
1

Figure 35. Basic blocks for the upper interconnections.

is much more complex, because the interconnections grow also vertically, requiring then the

definition of more basic blocks.

5.2.1 Upper synchronization network

Figure 35 contains the nine blocks from which it is possible to compose, for any parallelism,

the synchronization circuitry above the GFM’s body. For example with a certain combination

of these blocks it is possible to create the interconnections above the circuit’s body in Figure 28.

There would actually be a few differences between Figure 28 and the circuit realized with the

standard blocks, because the blocks will have some additional cells and magnets, useless to

the circuit functioning. The reason is that the base blocks have been generalized as much as

possible. For our purposes the simplification is not a problem, the final results of area and

power will just be slightly higher than they should.
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Figure 36. Layout of the upper interconnections for the 8-bit GFM. The second table is the
optimized layout.

TABLE X

NUMBER OF CELLS AND MAGNETS OF THE BASIC BLOCKS FOR THE UPPER
INTERCONNECTIONS

Cells Magnets Cells Magnets Cells Magnets

G 8 26 H 7 23 I 5 15
D 8 40 E 12 74 F 5 21
A 13 48 B 14 56 C 13 56

Figure 35 tries to explain how to create the upper interconnections for a N-bit GFM, starting

from the blocks from A to I. They result in a N×N matrix of blocks. The left part of Figure 36

shows how blocks would be placed in the 8-bit case. However some blocks in the top-central

region are useless. The layout can then be optimized as in Figure 36 on the right, where the

empty boxes correspond to empty regions. The number of rows and columns will be the same,

but the block E will not be present N − 2 times in each column anymore. The central columns
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(col = 2 to col = N − 1) will have the following number of E blocks (the fractions have integer

results): ∣∣∣∣col − Nbit + 1

2

∣∣∣∣+ Nbit

2

Table X lists the total number of cells and nanomagnets for each of the nine blocks. These

values are used to evaluate the occupied area and power consumption according to the organi-

zation described above. Blocks are identified by the capital letters assigned in Figure 35.

5.2.2 Lower synchronization network

Row
=

2 : N-1

Col = 1 Col = EVEN Col = NCol = ODD

D.C.B.A.

G.F.E.

I.H.

Row
=
N

Row
=
1

Conn.
Below

Figure 37. Basic blocks for the lower interconnections.

The synchronization circuit below the GFM’s body has been treated just like the intercon-

nections on top. As before the basic blocks have been organized in a table (Figure 37). The

central columns, excluding then the first and last, have an alternate behavior. Odd columns
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Figure 38. Layout of the lower interconnections for the 7-bit, 8-bit and 9-bit GFM.

enclose different blocks than the even ones. The three examples in Figure 38 help understand

the circuit organization.

5.2.3 Occupied area

TABLE XI

NUMBER OF MAGNETS AND CELLS OF ME-NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

MAGNETS
and CELLS

Number of bits
4 8 16 32 64

No
Synch

N of magnets 974 1990 4022 8086 16214
N of cells 199 403 811 1627 3259

With
synch

N of magnets 2007 6431 22287 82509 297710
N of cells 427 1273 4117 14547 50235

First, the number of nanomagnets and cells have to be determined, the values are listed

in Table XI. Eventually the results concerning area occupation, both with and without the
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preskew/deskew circuits, are organized in Table XII and plotted in Figure 39. Where, apart

from the individual results, the interconnection overhead can be observed as well. The overhead

due to the upper and lower interconnections behaves similarly to the CMOS implementation.

It grows quadratically with the number of bits, going from 2.1 (4 bit) to 15.4 (64 bit).

TABLE XII

OCCUPIED AREA OF ME-NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

CIRCUIT AREA
(µm2)

Number of bits
4 8 16 32 64

No
Synch

Magnets 3.2 6.5 13 26 53
Cells 14 29 58 116 233

With
synch

Magnets 6.5 21 72 268 968
Cells 31 91 294 1040 3590

Interc. overhead 2.1 3.2 5.1 8.9 15.4

5.2.4 Power consumption

The power consumption is proportional to the area occupation, because both measures have

the number of cells as factor. Therefore the interconnections overhead is the same as for the

occupied area. The detailed results are in Table XIII. In fact the magnets switching energy is

negligible (20 times smaller) compared the clock network dissipation.
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Figure 39. Comparison of area occupation for the ME-NML GFM both with and without
synchronization circuitry.

5.3 Magnetic Clock NML Results

It has not been discussed yet how to evaluate the performance of Magnetic Clock NML

circuits, so it is done in this section before providing the results.

5.3.1 Number of clock zones and magnets

The evaluation of area and power performances requires: the number of clock zones, the

length of the clock zones (circuit height) and the total number of magnets. These values are at

first computed for each basic block and then put together to obtain results for each parallelism

and with or without the upper and lower interconnections parts. The final results are directly

presented in Table XIV. The number of clock zones is nothing less than the circuit horizontal
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TABLE XIII

POWER CONSUMPTION OF ME-NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION
(µW )

Number of bits
4 8 16 32 64

No
Synch

Switching 0.07 0.15 0.30 0.60 1.21
Clock 1.21 2.45 4.92 9.88 19.8

TOTAL 1.28 2.60 5.22 10.5 21.0

With
synch

Switching 0.15 0.48 1.66 6.15 22.2
Clock 2.59 7.73 25.0 88.3 305

TOTAL 2.74 8.21 26.7 94.5 327

Interc. overhead 2.1 3.2 5.1 9.0 15.6

width, while the circuit height is for now measured in terms of magnets, the actual dimension

can be evaluated knowing the magnets height and their vertical separation.

5.3.2 Occupied area

The Magnetic Clock NML exploits 90 × 60nm2 magnets with separation Sepmag = 20nm.

Horizontally the clock zone contains four magnets, therefore its width is Wzone = 4 · (Wmag +

Sepmag) = 320nm. These data, together with those in Table XIV, allow to evaluate the total

area of magnets and the rectangle circumscribed to the circuit, the latter is shown in Table XV.

Such table as usual encloses information on the preskew/deskew networks overhead, which is the

lowest among the three technologies considered. We will see that the interconnection overhead

is the same for both area and power estimation. Figure 40 gives an idea of the GFM behavior

increasing the number of bits, with and without the additional synchronization circuits.
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TABLE XIV

DIMENSIONS AND NUMBER OF MAGNETS OF THE MAGNETIC NML GFM BOTH
WITH AND WITHOUT SYNCHRONIZATION CIRCUITRY.

Number of bits
4 8 16 32 64

No
Synch

Number of magnets 1818 3678 7398 14838 29718
Width (clock zones) 67 127 247 487 967
Height (magnets) 24 24 24 24 24

With
Synch

Number of magnets 3154 7388 18880 53960 172504
Width (clock zones) 67 127 247 487 967
Height (magnets) 40 56 88 152 280

TABLE XV

AREA OF THE MAGNETIC NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

CIRCUIT AREA
Number of bits

4 8 16 32 64

Area without synch (µm2) 57 107 209 411 817
Area with synch (µm2) 94 250 765 2610 9530

Interconn. overhead 1.7 2.3 3.7 6.3 11.7

5.3.3 Power consumption

The power dissipation, as for the ME-NML, has two sources: magnets switching and clock

wires. The average energy required by the switching of a single nanomagnets is equal to

δE = 30KbT = 1.24 · 10−19J , since an adiabatic switch has to be exploited. The switching

energy is obtained multiplying this value for the total number of magnets. However the main

contribution is due to the clock network losses, because the current needed to generate the
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Figure 40. Comparison of area occupation for the Magnetic NML GFM both with and
without synchronization circuitry.

magnetic field is very high: I = 3mA. The power consumption is therefore the dissipation of

the current I flowing through a copper wire, which has resistivity ρ = 16.8nΩ · m. For each

clock zone we consider a copper wire with width Wclk = Wzone = 320nm and thickness of

Tclk = 400nm, so its section is Sclk = Wclk · Tclk. At any instant, only one third of the clock

zones is active, since only one of the clock wires at a time is active. Summing the length Hzone

of one third of the clock zones Nzones eff we obtain the length Lclk = Nzones eff · Hzone to

assign to the copper wire, that will model the clock dissipation of the whole circuit. The power

consumption is derived from the following formula:

P = I2 · ρLclk

Sclk
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The power consumption results are in Table XVI. For further information on the Magnetic

NML model refer to [37].

TABLE XVI

POWER OF THE MAGNETIC NML GFM, BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION
µW

Number of bits
4 8 16 32 64

No
Synch

Magnets Switching 0.023 0.046 0.092 0.18 0.37
Clock Wires 70 132 257 506 1010

TOTAL 70 132 257 506 1010

With
Synch

Magnets Switching 0.040 0.092 0.24 0.67 2.14
Clock Wires 116 308 941 3210 11700

TOTAL 116 308 942 3210 11700

Interconn. overhead 1.7 2.3 3.7 6.3 11.7

5.4 Results Comparison

Now that all the results have been presented, we compare the performances of the three im-

plementations in terms of area and power. The main interest is the ratio between the results for

ME-NML and those for CMOS and Magnetic NML. Nonetheless the interconnection overhead

trends of each technology are put side by side. The purpose of Table XVII is to collect in one

place all these data. The first table concerns the GFM’s body only, the second table shows the

results for the whole circuit, including the synchronization networks. Finally the third table

reports once again the interconnection overhead, which is the ratio between area and power for
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TABLE XVII

RATIO BETWEEN RESULTS FOR ME-NML AND THOSE FOR CMOS AND
MAGNETIC NML. THE THIRD TABLE SHOWS THE INTERCONNECTION

OVERHEAD TRENDS OF EACH TECHNOLOGY.

No Synch
Number of bits

4 8 16 32 64

Area
CMOS / ME-NML 11,0 11,1 11,2 11,2 11,2
Mag.NML / ME-NML 4,1 3,7 3,6 3,5 3,5

Power
CMOS / ME-NML 11,2 12,9 13,1 13,4 14,0
Mag.NML / ME-NML 54,7 50,8 49,2 48,2 48,1

With Synch
Number of bits

4 8 16 32 64

Area
CMOS / ME-NML 8,5 8,9 9,3 9,6 10,5
Mag.NML / ME-NML 3,0 2,7 2,6 2,5 2,7

Power
CMOS / ME-NML 8,7 9,9 10,4 10,3 11,3
Mag.NML / ME-NML 42,3 37,5 35,3 34,0 35,8

Interconnection Overhead
Number of bits

4 8 16 32 64

Area
CMOS 1,7 2,5 4,2 7,7 14,5

Mag.NML 1,6 2,3 3,7 6,4 11,7
ME-NML 2,2 3,1 5,1 9,0 15,4

Power
CMOS 1,7 2,4 4,1 7,0 12,5

Mag.NML 1,7 2,3 3,7 6,3 11,6
ME-NML 2,1 3,2 5,1 9,0 15,6

the whole circuit and those related to the body itself. For the whole analysis the number of

bits has been varied from 4 to 64.

The table shows that ME-NML owns the best performance in all the cases. First, consider

the area without synchronization circuitry: CMOS circuit is 11 times larger than ME-NML,

Magnetic NML instead is 3.5-4.1 times bigger. The additional interconnections have a slightly
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stronger impact on ME-NML than on the others. The ratio between technologies lowers to 8.5-

10.5 for CMOS and 2.5-3.0 for Magnetic NML. This decrease is confirmed by the interconnection

overhead table, where ME-NML has the highest values for any number of bits.

Let’s switch now to the power consumption data, ME-NML is still the best technology.

First consider the results without synchronization circuitry: CMOS consumes 11-14 times more

energy than ME-NML, Magnetic NML instead requires around 50 times more than ME-NML.

Just like for the area, when considering the full circuit, ME-NML performance suffers more for

the additional interconnections. However this does not weaken its leadership significantly. The

ratios decrease to 8.7-11.3 for CMOS and 42-36 for Magnetic NML. Notice once more that this

behavior is also shown by the interconnection overhead values, which for ME-NML are always

slightly higher than for Magnetic NML and CMOS.

Referring now to the third table only, notice that the synchronization networks have a huge

impact, particularly for high number of bits. The area and power increase up to 15.6 times in

the ME-NML case, 14.5 times for CMOS and 11.7 for the Magnetic NML.

For a better visual comprehension four comparison graphs have been enclosed:

1. Area comparison without synchronization networks (Figure 41);

2. Power comparison without synchronization networks (Figure 42);

3. Area comparison with synchronization networks (Figure 43);

4. Power comparison with synchronization networks (Figure 44).
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Data on occupied area, without considering the additional networks, is plotted in Figure 41.

Of course the area increases with the number of bits, the interesting outcome is that the CMOS

implementation has the worst performance, while the smallest area belongs to the ME-NML

circuit. The CMOS library chosen is the most scaled that we have, but there currently exist

transistors smaller that 28nm. However, even considering a 14nm library, it would result in a

CMOS scaling of 4 times, so that the ME-NML still has a considerable margin. Moreover NML

magnets can be scaled too.

Figure 42 depicts instead the power comparison, still neglecting the upper and lower inter-

connections. The curves are similar to the graphs of the circuit area. However, while ME-NML

confirms itself as the best technology, the Magnetic NML is now definitely the worst one. It is
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though what expected, as the Magnetic Clock network requires a very high current to generate

the magnetic field.

For what concerns the synchronization networks, simply notice that the circuit body only

grows horizontally, while the upper and lower networks grow also vertically, hence they grow

quadratically. This additional cost is often neglected in literature, even though such circuitry

is essential to properly interface our module with others. This is a recurring problem of QCA

circuits [22], because of their intrinsic pipeline nature.

Figure 43 shows the occupied area for the three GFM versions after adding the preskew/deskew

modules. All the curves have similar trends and ME-NML and CMOS have respectively the

best and worst performance, like when considering the area of the GFM’s body only.
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Figure 44 shows instead the power consumption for the three GFM versions after adding

the preskew/deskew modules.

The final considerations are mostly three. First, the MagnetoElastic NML has confirmed

its potentialities. With a proper architectural choice it leads to a great reduction of circuit area

and power losses of the clock network, which was the insuperable drawback of previous NML

implementations. Second, the synchronization networks have a huge impact on performances,

thus it is imperative to take them into consideration when they are required. Third, even with

these excellent results, NML technology is not meant as a replacement for CMOS technology,

since its speed is intrinsically limited. For this very circuit, with the 28nm library exploited,

CMOS technology would be able to work at 7GHz, 70 times faster than the NML maximum
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frequency: 100MHz. The benefits of NML technology are bounded to circuit area and power

consumption, together with its intrinsic memory ability.



CHAPTER 6

CASE STUDY II: MULTIPLY ACCUMULATE UNIT (MAC)

It has been proved that Magnetoelastic NML overcomes both Magnetic Clock NML and

CMOS technologies in terms of circuit area and power consumption (Chapters 4 and 5). The

ME-NML implementation of the bit-serial Galois Multiplier, organized as a systolic array,

turned out to be extremely compact and easily scalable. However not all kinds of architectures

are suitable for ME-NML technology. In this chapter we start investigating which architec-

tures are best suited for this technology and why. The final goal is to develop some general

guidelines for identifying which circuit organizations and design approaches can boost ME-NML

performances.

Our inquiry focuses on the dualism between serial and parallel structures, trying to deter-

mine which one of the approaches gets the best out of ME-NML. The case study chosen is a

generalized Multiply Accumulate unit (MAC), which will be realized in three different versions:

fully parallel, serial-parallel, fully serial. The three generalized MAC will be designed, modelled,

simulated and compared in terms of area, power, throughput and latency.

The MAC unit is composed by a multiplier, an adder and an accumulator: The main scheme

is depicted in Figure 45. The operation performed by this circuit is the following:

99
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t0 :Res0 = A0 ·B0

t1 :Res1 = Res0 + (A1 ·B1)

t2 :Res2 = Res1 + (A2 ·B2)

. . .

tN :Rest = ΣN
i=0Ai ·Bi

(6.1)

ADDER

DataA DataB

Result

MULTIPLIER

ACCUMULATOR

Figure 45. Multiply Accumulate unit scheme.
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6.1 Parallel Implementation

The first implementation presented is a parallel version of the MAC unit. It is basically

composed by a parallel multiplier and an adder with feedback. The accumulator function is

instead embedded, as ME-NML is intrinsically pipelined. The array multiplier and the ripple

carry adder (RCA) have been chosen as components of the parallel MAC, because they both

have a systolic array architecture. They are composed by blocks that communicate only with

their neighbors, avoiding long interconnections and feedback. The feasibility of ME-NML circuit

design strongly depends on those properties.

It is crucial to point out that the best circuits for CMOS usually maximize performances in

terms of working frequency, at the cost of an higher complexity. However such optimizations do

not necessarily have the same advantages when designed with ME-NML. The intrinsic pipeline

sets a fixed maximum working frequency that depends on the technology itself and not on

the architecture adopted. Therefore the optimization for ME-NML cannot improve the circuit

speed, it has to be aimed elsewhere:

• Reduce area occupation and consequently also the power consumption;

• Minimize internal delays limiting the pipeline stages of feedback loops, affecting positively

the overall circuit latency. The throughput instead does not depend on circuit layout if

the interleaving technique can be exploited properly.

From this considerations and from the previous case study we can state that when handling

ME-NML technology, the plainer the layout the better the performance. To double check this

deductions we also designed a multiplier and an adder different from the Array Multiplier and
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RCA. Both the Booth’s multiplier and the Carry Look-ahead Adder proved to be much more

complex and big, especially the latter.

6.1.1 Array Multiplier and Ripple Carry Adder
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Figure 46. 4-bit MAC scheme. Array Multiplier on the left and Ripple Carry Adder on the
right.
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The scheme of the 4-bit Array Multiplier (left) and the 8-bit Ripple Carry Adder (right) are

drawn in Figure 46, where FA and HA stand for Full Adder and Half Adder. The two inputs

A and B are parallel, just like the output Res. Let’s consider a MAC unit with Nbit inputs A

and B. The result of the N-bit multiplication is a 2Nbit number, therefore the adder will have

2Nbit inputs. In fact in Figure 46 we have a 4-bit multiplier and a 8-bit adder.

Notice that the multiplier is basically a matrix of Full Adders, so it is two-dimensional and

its area grows quadratically with the circuit parallelism. The Array Multiplier’s algorithm is

the simplest one, it follows step by step the handmade multiplication. Partial products are

shifted and added to an intermediate result. Each AND ports column in the drawing evaluates

a partial product, which is then added to the intermediate result by the Full Adders. Moreover

every AND column has a 1-bit shift with respect to the previous column to assure the proper

alignment of the partial products sum. The final product goes to the RCA, which sums it with

the accumulator’s value, which is stored in the RCA’s feedbacks. Within the adder the carry

propagates vertically from one FA to the next.

The circuit arrangement and orientation imitates the ME-NML implementation that will be

presented shortly, to guarantee an easy visual comparison between the two circuits. However

there are some differences. The scheme in Figure 46 does not have any pipeline stage, while

the ME-NML MAC will be fully pipelined.

For the two circuits to be more similar, each row and column in Figure 46 should represent

a pipeline stage. Furthermore the free space in the bottom part of the circuit will be removed
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to optimize the circuit area, placing half of the Adder’s FA modules horizontally under the

Multiplier.

6.1.2 Full Adder and Half Adder
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B
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Carry-out

Sum

A

B

Carry-out

Sum
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B

Carry

Sum

A

B

Carry-in
Sum

Carry-out

(A) (B)

Figure 47. Half Adder and Full Adder realized with both ME-NML and CMOS technologies.
(A) Half Adder. (B) Full Adder.

The basic modules of the MAC unit are Full Adder (FA) and Half Adder (HA), they

represent the first step of the ME-NML MAC design. These modules can be arranged in many

different ways, one version of the Half Adder has already been depicted in Figure 20. Here

we present the FA and HA that have been exploited to create the parallel MAC. Figure 47.A
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shows once again the ME-NML HA together with its CMOS scheme, Figure 47.B encloses the

FA instead.
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Basically the whole parallel MAC has been designed exploiting these blocks only, providing

them with a properly routed network of interconnections. A mandatory reset signal that prop-

agates toward all the feedback loops of the RCA. The reset sets to ′0′ the feedbacks for the first

operation and whenever the accumulator needs to be zeroed.

6.1.3 Basic blocks

The circuit organization is the same as for the Galois Field Multiplier. A set of basic blocks

is defined so that they can be assembled to create a generic N-bit MAC. The blocks can be

divided in three groups:

Multiplier blocks There are 9 base blocks and they are represented in Figure 49. The indexes

of Mult(-,-) refer to their position and occurences within the matrix of a generic N-bit

Array Multiplier. The main inputs and outputs are all labeled. X and Y are the multiplier

inputs. The internal carry and partial sum signals are referred to as c and S. The reset

signal rst does not concern the multiplication, it is simply passing through the Array

Multiplier on its way toward the Adder. The S out outputs of the blocks in the Row

0 and in Column N-1 have the multiplication result bits, they will be connected to the

input of the RCA. Row 0 has the results from Res(0) to Res(N-1), while Column N-1

(Mult(0,N-1) excluded) has the results from Res(N) to Res(2N-1), where Res(2N-1) is

the signal c out of the block Mult(N-1,N-1). The Adder’s base blocks are also labeled in

Figure 48, which shows the whole 4-bit parallel MAC.
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Figure 50. Base blocks of the Ripple Carry Adder for the parallel MAC

Adder blocks The 5 base blocks for the RCA are in Figure 50. As clear from Figure 48,

half blocks are placed horizontally under the multiplier (Add-LSB), while the other half

is placed vertically on the right side of the multiplier (Add-MSB). Add-LSB(0) contains

the first two modules of the RCA: an Half Adder and a Full Adder. All the other blocks

enclose a single FA with its feedback loop. Once again the main inputs and outputs are

labeled:
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S in and S out S in is one bit of the multiplication result, while S out is one bit of the

final MAC result.

c in and c out c in and c out are simply the carry in and carry out that respectively

come from the previous FA and go to toward the next.

rst Each FA receives a reset signal and splits it in two branches. The first acts on the

feedback loop while the second is forwarded to the next block.

y The Add-LSB blocks lie below the multiplier, therefore the Y bits have to pass through

them.

Interconnections blocks To describe with the VHDL model a generic MAC also the inter-

connections have been divided in base blocks (Figure 51). 9 blocks are needed to build the

interconnections for any circuit parallelism. The 7-bit MAC is the first one that requires

all the 9 blocks, implementations smaller than 7-bit only require some of them. One of

the functions of interconnection regions is the inputs and outputs synchronization. Just

like for the Galois Multiplier, they assure that bits of the same signal can be fed and

acquired simultaneously, guaranteeing the easiest possible interface protocol with other

devices.

6.1.4 VHDL description and circuit simulation

The VHDL model and simulation procedure is the same as for the Galois Multiplier. The

generic parallel MAC has been modeled with the usual components’ hierarchy and tested up to

64 bits. Thanks to Matlab, for each parallelism to be tested, we created a set of 1000 random
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Figure 51. Base blocks for the interconnections of the parallel MAC implementation

inputs and related results. The VHDL testbench acquires those random inputs and writes the

simulation results into another file, which is to be compared to the expected results.

The top entity MAC N bit (see Listing 6.1) instantiates the Multiplier, the Adder and various

interconnections entities. Each of these entities will instantiate its own base blocks introduced

in Section 6.1.3. In Listing 6.1, beside the performance natural signals and the clocks, there

are the N-bit inputs X, Y and the 1-bit reset. The outputs are the 2N-bit MAC results and

the carry out of the MSB Full Adder of the RCA (MAC Co).
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Listing 6.1. VHDL top entity of the parallel MAC
en t i t y MAC N BIT i s

2 port (X,Y: in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
r e s e t : in s t d l o g i c ;
MAC result : out s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;

5 MAC Co: out s t d l o g i c ;
clkA , clkB , clkC , clkD : in s t d l o g i c ; −− Main c l o ck and c l o ck zones
n mag : out natura l := i n i t n a t u r a l ; −− # of magnets

8 n zones : out natura l := i n i t n a t u r a l ;−− # of c e l l s used
AREA EFF: out natura l ; −− Total magnets area
AREATOT: out natura l ; −− Total area occupied by the c e l l s

11 Er : out natura l ; −− Energy consumption o f nanomags
Ec : out natura l ) ; −− Energy consumption o f c l o ck

end MAC N BIT;

6.1.5 Timing Analysis

The Array Multiplier is composed by a matrix of N × (N − 1) base blocks. Increasing

the circuit parallelism the matrix will get bigger, affecting the overall circuit latency. On the

other hand for any number of bits the RCA will always be only one column thick, having a

constant impact on the latency. Every block of the Multiplier requires 5 clock cycles to be

crossed horizontally (signal X ) and 2 vertically (signal Y ). Therefore the inputs (bottom-left)

need (5(N − 1) + 2N + 5) · Tclk to reach the result. The additional 5 clock cycles are fixed and

mainly refer to the time needed to pass through the RCA. The critical paths are highlighted

with blue in Figure 52.A.

In a MAC each multiplication’s result is added to the value in the accumulator. Since each

block of the adder has a 5 clock long feedback loop (Figure 52.B), the operations cannot be fed

to the MAC in a continuous flow. Two operations must be fed with 5 cycles of delay in order for

them to be added to each other. Therefore to reach the maximum throughput 5 uncorrelated
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Figure 52. Critical paths of the parallel MAC. (A) Critical paths of multiplier’s base blocks.
(B) Feedback loop of adder’s base blocks.

operations should be interleaved. With the interleaving the throughput is of one operation per

clock cycle. All information regarding timing performance of the parallel MAC are listed in

Table XVIII. The table indicates the throughput when the interleaving technique is exploited,

hence the maximum possible throughput.

TABLE XVIII

TIMING PERFORMANCE OF THE PARALLEL MAC
N bit Interleaving Throughput Latency: 1st Result out

4 5 op. 1/(Tclk) 28Tclk

8 5 op. 1/(Tclk) 56Tclk

N 5 op. 1/(Tclk) 5(N − 1) + 2N + 5 · Tclk
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6.2 Serial-Parallel Implementation

The parallel MAC described in the previous section has a 2D layout. The idea for the second

version of the MAC was to create a circuit organized as a 1D array of elements. This section

presents the best circuit we were able to obtain. It is referred to as serial-parallel MAC, because

it has serial inputs and parallel output. While the design of the parallel MAC was trivial,

in this case it was not possible to design a simple circuit able to keep up with the parallel

implementation. The circuit’s body itself has excellent characteristics, but its input/output

protocol is unique, it would be very difficult to interface it directly with other devices. Moreover

additional interconnections are required, as in the case of the Galois Multiplier (Chapter 4),

terribly spoiling the performances.

6.2.1 Circuit scheme

The scheme is Figure 53 is the body of the 4-bit serial-parallel MAC, but to have serial inputs

and parallel output it requires additional registers. Let’s discard for now the preskew/deskew

networks. The circuit counts 2Nbit 1-bit adders. Each adder has its own feedback, so that the

array of FAs can function as an accumulator. A reset signal allows to reset the accumulator

whenever necessary. As usual the scheme is fully pipelined to imitate ME-NML behavior. The

timing protocol follows the handmade multiplication procedure, where the N partial products

are evaluated one by one and summed together.
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Figure 53. Body of the 4-bit serial-parallel MAC.

Figure 53 also shows a timeline that explaines the inputs protocol to execute a 4-bit opera-

tion. At t0 A is fed serially starting from the MSB. After all 4 bits of A enter the shift register,

they are multiplied bitwise with B(0), which has been applied in the meantime. This gives the

first 4-bit partial product which goes in the first four Full Adders, while the remaining three

Adders receive ′0′. Data B always has N − 1 = 3 bits equal to ′0′, because partial products

have a N-bit width. After the first partial product is evaluated data A bits shift to the right

and are multiplied with data B(1) which arrives right after B(0) but shifted of one step toward

the MSB (right). In this way the second partial product is correctly aligned to the first one, so

that they are added properly.
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Figure 54. Full scheme of the 4-bit serial-parallel MAC.
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Evaluating all the partial products only requires N clock cycles. But another N cycles have

to be spent feeding ′0s′ to prepare the circuit for the next operation. The Full Adders’ carry-out

signals are propagated to the carry-in of the next FA on the right. It is now evident that input

B enters the circuit in a way that would make it difficult to interface this circuit with others.

The same applies to the result, whose bits need to be synchronized, just like for the Galois

Multiplier in chapter 4. In Figure 54 the preskew (for B) and deskew (for Res) networks are

added on top and bottom of the circuit body. It is immediately clear their great impact.

Also, the input B is distributed to all FA blocks, while it should be given only to 4 blocks

at a time, assigning ′0′ to the others. As a consequence, for the circuit to work properly, the

’0s’ must come from data A. Input A, after giving the N bits of data A, will give N ’0s’. In

this way the time to execute a single operation doubles.

6.2.2 ME-NML implementation

The main element is a Full Adder with a feedback loop for the result. The ME-NML FA

used for our serial-parallel MAC is drawn in Figure 55. The feedback loop, highlighted in blue,

is 3 clock periods long. Like the previous cases, the feedback is the critical path that decides

the delay required between inputs. In this case a input bit has to be served every 3 clock cycles,

hence the maximum throughput can be reached with a 3-operations interleaving. The two other

patterns point out that the base block takes 2 clock cycles to be crossed horizontally, and 3

cycles vertically.
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Figure 55. Full Adder block for the serial-parallel MAC. Three patterns underline horizontal
crossing, vertical crossing and feedback loop.

The full adders in the scheme of Figure 54 only have 1Tclk latencies, therefore the timing

is slightly different than the final ME-NML implementation. The two circuits are exactly the

same apart from the internal delays. For example consider the input conditioning structure for

B in Figure 54, each register of the column at the top-left corner is realized in ME-NML with

a 3 cycles delay.
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Figure 56. ME-NML implementation of the serial-parallel MAC.

The ME-NML final circuit of the 4-bit MAC is in Figure 56. The circuit is divided into four

main regions and within each region the dashed lines identify the basic blocks. To construct

the generic MAC each region has been treated separately. First, we selected the set of recurrent

blocks, then we investigated how to organize them so that combining them properly it is possible
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to create a MAC with any number of bits. The full set of blocks are enclosed in Figure 57. A

different VHDL entity defines each region:

MAC 1D body The central part is composed by 4 different blocks. It contains all the logic

functions, while the other regions are exclusively interconnections.

MAC 1D conn above Describes the two regions pointed in Figure 56. The triangular region

contains only one kind of cell, so it has been generated directly without the need of defining

base blocks. The other part has been divided into 5 types of block. Their organization

(described in the VHDL model) is quite tricky, but they still can recreate the required

interconnections for any circuit parallelism.

MAC 1D conn below The left part is very similar to the right part of the connections above.

The 5 base blocks of the two regions are lightly different. On the other hand the right part

is composed only by two type of cells, therefore it has been described directly without

requiring the definition of basic blocks.

MAC 1D input cond This conditioning network simply models a shift register, it allows to

provide simultaneously the same bit of data B to multiple FAs of the MAC 1D body region.

The whole circuit has been described with the RTL model we developed for ME-NML

technology. A substantial effort was devoted to the generic description of the interconnection

networks. The top entity MAC 1D instantiates the four entities reported above. Notice in Listing

6.2 that the inputs A and B are serial, while the Result is parallel.



120

Components for: MAC_1D_conn_above

Components for: MAC_1D_body

Components for: MAC_1D_conn_below

Components for: MAC_1D_input_cond

First

0

1        2         3       4

1        2         3       4        5 

1

2

3

4

5

Center

1 to N_BIT-3

1        2         3       4

1        2         3       4        5 

1

2

3

4

5

Last

N_BIT-2

1        2         3       4

1        2         3       4        5 

1

2

3

4

5

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

Second Last

N_BIT-2

A

Rst

C_out

Res
Rst

B

C_in

Last

N_BIT-1

Res
Rst

C_in

Center

1 to N_BIT-3

A

Rst

C_out

Res
Rst

B

C_in

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

1

2

3

4

1        2         3       4         5 

2         3       4        5        6

First

0B

'0'

Rst

Rst

C_out

Res

A

Figure 57. Basic blocks for each region of the serial-parallel MAC.



121

Listing 6.2. VHDL top entity of the serial-parallel MAC
en t i t y MAC 1D i s

2 port (A,B, Rst : in s t d l o g i c ;
Result : out s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;
[ . . . ] −− Omitted c l o ck and area−power s i g n a l s

5 )
end MAC 1D;

6.2.3 Timing analysis

Data A and data B give their bits serially with a delay of 3 clock cycles between them.

Then the time required to provide all the bits is 3Nbit · Tclk. After that for another 3Nbit · Tclk

the inputs are set to ′0′, until a new operation starts. The throughput would be equal to one

operation every 3 · 2Nbit clock cycles, but exploiting the interleaving technique it goes up to

1/(2Nbit · Tclk). Table XIX reports these results and also evaluates the overall circuit latency.

Data A arrives directly at the MAC’s body, data B instead has to cross the preskew network

first. Also, data B must reach the MAC’s body when all the bits of data A have entered the

circuit. As a consequence data B must be fed earlier than data A. More precisely the two inputs

must be applied with a time difference of 3(Nbit − 1) · Tclk.

TABLE XIX

TIMING PERFORMANCE OF THE SERIAL-PARALLEL MAC
N bit Interleaving Throughput Latency: 1st Result out

4 3 op. 1/(8Tclk) 36Tclk

8 3 op. 1/(16Tclk) 76Tclk

N 3 op. 1/(2N · Tclk) (6(N − 1) + 4N + 2) · Tclk
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6.3 Serial Implementation

The third and last implementation analyzed in this work is the Serial MAC, which has both

serial inputs and output. The starting idea was to create a circuit exploiting only two 1-bit

Full Adder, one for the multiplier and one for the adder.

FA

Ctrl-mult

Res(serial)

dataA

(serial)

dataB

(serial)

0 - 1 - 1 - 1
x3

x4

Rst-mult
Rst-adder

x4FA

Rst-acc

x32

Multiplier Adder

FAInput1 C_out

C_in

Sum

Accumulator

Input2

Result

Figure 58. Scheme of the 4-bit serial MAC (preliminary implementation).
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6.3.1 Serial MAC scheme

The architecture that best suited our demands is represented in Figure 58 in its 4-bit

version. It consists of a serial multiplier, a serial adder and an accumulator, which is nothing

less than the adder’s feedback loop. Registers with the x3, x4, x32 labels represent multiple

cascaded registers (respectively 3, 4, 32) that have been combined together for a sharper visual

understanding.

6.3.1.1 Multiplier

The multiplier accurately imitates the handmade multiplication algorithm (Figure 59 shows

the 4-bit case). The serial inputs A and B are multiplied and then fed to the first Full Adder.

Their products must produce all the 1-bit partial products of the form Ai ·Bj (see Figure 59).

To do so the inputs protocol for a 4-bit multiplication is the following:

A3
B3

A2
B2

A1
B1

A0
B0

A3B0 A2B0 A1 B0 A0B0
A3B1 A2B1 A1 B1 A0B1

A3B2 A2B2 A1 B2 A0B2
A3B3 A2B3 A1 B3 A0B3

S3 S2 S1 S0S6 S5 S4S7

x
=

Figure 59. Handmade 4-bit multiplication algorithm.



124

Data A bits are given in the order {A0, A1, A2, A3} for 4 times (Nbit times) and then data A

is set to ′0′ until the end of the operation. To generate the partial product properly, each bit of

data B must be multiplied with all the data A bits. Therefore the elapsed time to generate all

the Ai ·Bi products is 16 ·Tclk (in general N2
bit ·Tclk). In the 4-bit case B is fed in the following

order: {B0, B0, B0, B0, B1, B1, B1, B1, B2, B2, B2, B2, B3, B3, B3, B3}. After that data B is set

to ′0′ until the end of the operation.

So the Full Adder of the multiplier sums the partial products one bit at a time. It has two

feedbacks, one for the result S and one for the carry-out, so that the whole multiplication can

be carried out by a single FA module. For a correct alignment of the partial products’ sum the

carry feedback has to be Nbit registers long, while only Nbit − 1 are required for the result’s

loop. The multiplier produces one bit of the result every Nbit clock cycles, therefore the whole

operation takes 2N2
bit · Tclk, as the result counts 2N bits. The result is then forwarded to the

adder, but only 1 bit out of N is meaningful.

Notice that the multiplier’s feedbacks both demand a control signal. The Rst-mult simply

resets the carry-in before starting a new operation. The Ctrl-mult has instead a more complex

function. We said that the output of the FA contains a bit of the final result every Nbit ·Tclk, all

the other data are intermediate results. For a correct circuit functioning (see the algorithm in

Figure 59), the bits of the final result must not be fed back to the FA. Ctrl-mult is supposed

to mask those bits, setting the feedback to ′0′.
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6.3.1.2 Adder

The adder sums up the multiplication result to the value in the accumulator starting from

the LSB and puts the result back into the accumulator. It also has to keep track of the carry

bits. Rst-adder resets the carry loop when the LSB of a new result arrives. The other reset

signal Rst-acc allows to set the accumulator to 0.

6.3.1.3 Accumulator

The accumulator works as a shift registers, its data is always moving. Its length is equal to

the duration of a multiplication: 2N2
bit · Tclk. Because of the circuit functioning, at any instant

only 2N cells (1/N) of the accumulator registers will contain useful data. A lot of space is then

wasted by registers (or cells in ME-NML) that for most of the time do not contain meaningful

data. The solution we propose to reduce the great impact of the accumulator on the circuit

area is to let multiple MAC units share the same accumulator.

6.3.2 Serial MAC with shared Accumulator

The accumulator of the first serial MAC proposed (Figure 58) is too long and costly. Even

though the data to be stored is 2Nbit long, the accumulator has a length of 2N2
bit registers. At

every instant 2Nbit · (Nbit − 1) register contain meaningless data. This means that ideally the

same accumulator could be shared by N different MAC units.

The circuit with the common accumulator was designed, described with the RTL model and

simulated with positive results. But afterwards a further optimization came up: Notice that

the Adder block can be shared as well, as it processes useful data only once every Nbit clock

cycles. So here we will present only the latest version.
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The final scheme is shown in Figure 60, where eight 8-bit serial MAC units are represented

together. They all share the same Accumulator and Adder. The Mult. and Adder are simplified

as boxes, but they refer to the 8-bit circuit in Figure 58.

Below the multiplier blocks there are four rows of shift registers. The top line is meant

to carry the results from all the multipliers to the Adder, but only the meaningful values are

allowed to enter that shift register. The output of each multiplier has to pass first through a

multiplexer which is controlled by Ctrl results. This signal makes sure that the intermediate

results of the multiplication will not enter the shift register, given that all the multipliers output

the result bits at the same time. The lenght of 7 registers assures that the results of one MAC

do not overwrite those of another one. The signal Ctrl results is set to ′1′ once every N clock

cycles, otherwise it is ′0′.

The Adder works as described before, but this time it will be exploited to its best, processing

useful data all the time. The MAC result, stored in the accumulator, can be extracted serially

at any point of it. If one acquires all the results from the same point of the accumulator, those

of the MAC units closer to the Adder will arrive earlier.

Even though the eight MAC units are connected together, one might want to consider them

as independent from each other, with their own inputs and output. Also, one might want all of

them to have the same latency from inputs to result. In Figure 60 each MAC block has its own

arrow that extracts the information in the accumulator. If the results are acquired in that way,

every MAC has the same latency. Furthermore, inputs and output of each MAC are spatially

separated from other MAC’s signals.
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Figure 60. Scheme of the 8-bit serial MAC with shared Accumulator and Adder.

6.3.3 ME-NML implementation

The scheme in Figure 60 has been designed as suitable as possible to ME-NML technology.

As usual for the Magnetoelastic NML design, we subdivided the circuit in the base blocks

displayed in Figure 61. The modules follow the horizontal separation present in Figure 60, the

first and the last MAC units are slightly different from the middle ones, which are all exactly

the same. The block on the right is the shared Adder.

Until now all the ME-NML circuits were in some way modular, so that they could be

described generically for any number of bits. On the contrary the serial MAC designed in this

section is not scalable. All the feedbacks increase in length together with the number of bits,

modifying radically the circuit layout.
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Figure 61. Base blocks of the 8-bit serial MAC with shared Accumulator and Adder.

Changing the parallelism, the MAC requires to be redesigned from scratch, so we only

designed and simulated the 8-bit serial MAC. The full 8-bit serial MAC is in Figure 62, it

contains 8 different MAC units working in parallel and sharing both Accumulator and Adder.

The results are going out from the top of each block, while in Figure 60 they were outputted

at the bottom. Anyway both cases have the same timing. As usual this architecture has been

described with our RTL model for ME-NML.
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6.3.4 Timing analysis

Since the Full Adders of the Multiplier processes a continuous flow of data, for this imple-

mentation it is not necessary to use the interleaving technique. Table XX contains the main

information concerning timing. The throughput is the inverse of the execution time of one

operation: 1/(2N2 · Tclk). Since the proposed circuit requires N MAC to be linked together,

the throughput for the entire shared-accumulator serial MAC (8 MACs) is 1/(2N).

TABLE XX

TIMING PERFORMANCE OF THE SERIAL MAC
N bit Interleaving Throughput Latency: LSB of Result out

4 1 op. 1/(32Tclk) 45Tclk

8 1 op. 1/(128Tclk) 85Tclk

N 1 op. 1/(2N2 · Tclk) (2N2 + 9) · Tclk

The latency from the beginning of an operation to when the LSB of the result reaches the

output is 2N2 · Tclk. This value of latency applies if the results are taken as in Figure 62, from

the top of each block. In this way all the blocks have the same latency, even if some of them

are closer than others to the Adder. However the result could also be acquired much closer to

the Adder, so to minimize the latency. For example right after the Adder’s output, just like

MAC Res in Figure 62 at the bottom-right corner.



CHAPTER 7

CASE STUDY II: MAC RESULT COMPARISON

This chapter presents the performance outcomes for the MAC unit implementations pro-

posed in Chapter 6. Here the three architectures are examined in terms of occupied area and

power consumption, while the throughput and latency information have already been exhib-

ited. At last the different MAC versions are placed side by side, offering a rigorous comparison.

The results estimation follows the main guidelines adopted for the case study on the Galois

Multiplier.

It will be proved the superiority of the parallel MAC over the other two architectures. For

a fair comparison of area and power, each implementation should have the same throughput,

but that it is not the case. Therefore we combined as many MAC modules as needed to reach

a throughput equal to 1. For example since the serial MAC has throughput 1/(2N2), the area

and power of a single serial MAC have been multiplied by (2N2) as if (2N2) MAC units were

working together to achieve a 1/1 throughput.

7.1 Parallel MAC Results

The simulation of the VHDL model for the parallel MAC tells us the number of nanomagnets

and cells, the occupied area and the value of the two energy components. The complete set of

results has been arranged in Table XXI:

• Area. The layout of this circuit, as clear from Figure 48, has many empty internal regions.

So the area evaluated by the model (Cells area in the table) is smaller than it should,
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TABLE XXI

PARALLEL MAC PERFORMANCE RESULTS.

Parallel MAC
Number of bits

4 8 16 32

NUMBER OF CELLS 1507 5913 23413 93165

AREA

Cells area( µm2) 96 422 1670 6650
Height (# of cells) 53 105 209 417
Width (# of cells) 43 87 175 351

TOT (µm2) 150 601 2410 9630
Increase rate - 4.01 4.00 4.00

POWER
TOT (µW ) 9.7 38 150 600
Increase rate - 3.92 3.96 3.98

because it only considers the space occupied by cells. The value actually assigned to the

parallel MAC is rounded up to the parallelogram circumscribed to the circuit (TOT in

the table). To obtain the parallelogram’s area we derived a generic equation for evaluating

height and width (in terms of cells) for any number of bits.

• Power. The model evaluates the two power components, which have been added together

to get the total consumption.

• Increase rate. The increase rate simply shows the growth of area and power when the

number of bits doubles. So the increase rate in the Nbit = 16 column is the result for

Nbit = 16 divided by the result for Nbit = 8.

As expected the increase rate is quadratic and regular, because that is how both the Mul-

tiplier and the interconnection regions grow. The wasted space because of the empty inner

regions has a big effect on the area occupation, while it does not affect the power consumption.
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Figure 63. Central blocks of Multipler and Adder for an optimized version of the Parallel
MAC.

Right now we are working on an optimized version that is completely compact. The new circuit

was obtained by rearranging the base block of both the multiplier and the adder as in Fig-

ure 63. The expected improvements concern area and latency reduction (3Tclk both vertically

and horizontally). Anyway precise results are not available yet.

7.2 Serial-Parallel MAC Results

Since the Serial-parallel MAC layout is very compact, the area calculated by the VHDL

model corresponds to the actual space occupied by the circuit. So increase rates of area and

power are pretty much the same as they are both proportional to the number of cells. Actually
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TABLE XXII

SERIAL-PARALLEL MAC PERFORMANCE RESULTS.

Serial-parallel MAC
Number of bits

4 8 16 32 64

NUMBER
OF

CELLS

Body 303 623 1263 2543 5103
Conn. above 98 510 2294 9702 39878
Conn. below 125 541 2237 9085 36605
Input cond. 53 121 257 529 1073

TOT 579 1795 6051 21859 82659
TOT / Body 1.9 2.9 4.8 8.6 16.2

AREA (µm2) 41 128 432 1560 5900

POWER (µW ) 3.7 12 39 140 530

Increase rate - 3.10 3.37 3.61 3.78

the switching energy is only proportional to the number of nanomagnets, but for big circuits

it is also in some way proportional to the number of cells. Furthermore this component is at

least 15 times lower than the clock network losses.

All the results are displayed in Table XXII. Looking at the number of cells of each region, it

is possible to see how different parts grow as the number of bits increases. As expected the body

and the input conditioning expand linearly, while the interconnection regions grow quadrati-

cally. The TOT/Body slot gives precise intel on how much area is occupied by input/output

preskew/deskew networks.

7.3 Serial MAC Results

Even if only the 8-bit serial MAC has been designed and simulated, it was trivial to obtain

a projection of the number of cells for the other parallelisms. What varies with the number

of bits are the two feedback loops of the multiplier block (Figure 58), the Accumulator and
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TABLE XXIII

SERIAL MAC PERFORMANCE RESULTS.

Serial MAC
Number of bits

4 8 16 32 64

NUMBER
OF CELLS

Entire shared circuit 510 1138 3514 12106 44650
Effective MAC 128 142 220 378 698

AREA (µm2) 9.1 10.2 15.7 27 50

POWER (µW ) 0.82 0.92 1.4 2.4 4.5

Increase rate - 1.12 1.54 1.72 1.84

the shift register that brings the products to the Adder (Figure 60). Also the loop of the

adder gains length. In each single MAC block, to obtain the 2N-bit circuit from the N-bit one,

the multiplier’s loops must get N clock periods longer. The same is true for the segment of

the products’ shift register and for each of the two segments of the accumulator. From this

considerations it was possible to predict with good approximation the growth of the serial MAC

with the number of bits.

In Table XXIII the first row of data refers to the whole circuit with shared adder and

accumulator. But such circuit contains N MAC units. To get an idea of the weight of a single

MAC, the total number of cells has been divided by the number of bits, which is also the

number of MAC blocks enclosed by the entire circuit. The result are in the Effective MAC row.

Area and power are also the effective values for a single MAC, not those for the whole structure

containing many MAC units. Their behavior is the same, as usual for compact circuits.
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The throughput of the serial MAC decreases quadratically with the number of bits. There-

fore ideally, to keep up with the parallel MAC performance, the increase rate of a single MAC

should be equal to 1. Unfortunately this is clearly not the case.

7.4 Results Comparison

TABLE XXIV

COMPARISON OF THE 3 MAC IMPLEMENTATIONS, WITH THE THROUGHPUT
BEING EQUAL.

Number of bits
4 8 16 32

With
Interleaving

AREA

0D 291 1300 8030 55,300
1D 331 2050 13,800 99,900
2D 150 601 2410 6930

0D/2D 1.94 2.16 3.34 5.74
1D/2D 2.21 3.41 5.75 10.4

POWER

0D 26.3 117 724 4990
1D 29.8 185 1250 9010
2D 9.71 38.1 151 600

0D/2D 2.71 3.08 4.8 8.32
1D/2D 3.07 4.86 8.27 15

No
Interleaving

AREA

0D 58 260 1610 11,100
1D 198 1230 8300 59,000
2D 150 601 2410 6930

0D/2D 0.39 0.43 0.67 1.15
1D/2D 1.32 2.05 3.45 6.22

POWER

0D 5.3 23.5 145 998
1D 17.9 111 748 5410
2D 9.71 38.1 151 600

0D/2D 0.54 0.61 0.96 1.66
1D/2D 1.84 2.91 4.96 9.01
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The three architectures have been analyzed in terms of throughput, latency (Chapter 6),

circuit area and power consumption (Sections 7.1-2-3). Up to now the results of each MAC

implementation have been presented singularly, here they are placed side by side. The complete

set of data required for the comparison are enclosed in Table XXIV, where the labels 0D, 1D,

2D refer respectively to Serial MAC, Serial-parallel MAC, Parallel MAC.

7.4.1 Comparison conditions

7.4.1.1 Interleaving

To reach their maximum throughput, both Parallel MAC and Serial-Parallel MAC, ne-

cessitate the interleaving technique. The parallel circuit requires a 5 operations interleaving,

otherwise its throughput would be 1/5Tclk and not 1/Tclk. The serial-parallel version requires

instead 3 operations only. The Serial MAC does not require any interleaving. The comparison

is carried out in two different situations, at first without considering the interleaving possibility,

then assuming that the interleaving is exploited to its best.

7.4.1.2 Equal throughput

To obtain a meaningful comparison, area and power performance should be referred to

circuits with the same throughput. The output rate of the Parallel MAC has been used as ref-

erence for both cases: With and without interleaving. So in Table XXIV the results concerning

the parallel MAC are simply those of a single unit. On the other hand the results of the other

two implementations have been multiplied by a coefficient, which is the number of units that

should work in parallel to reach the same throughput as the Parallel MAC. They have to arrive

at a 1/5Tclk rate without interleaving, and a 1/Tclk with interleaving.
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• Serial MAC. Throughput always is 1/(2N2 · Tclk). 2N2 MAC units required to reach

1/Tclk, 2N
2/5 MAC units required to reach 1/5Tclk.

• Serial-parallel MAC. Exploiting interleaving its throughput is 1/(2N · Tclk), so 2N

units required to reach 1/1Tclk. Without using the interleaving technique output rate is

1/(3 · 2N · Tclk). So 3/5 · 2N units to arrive at 1/5Tclk.

7.4.2 Results exploiting interleaving

Let’s take now a closer look at Table XXIV, starting from the With interleaving part.

The same results are also depicted in Figure 64 and Figure 65. The 2D implementation is

undoubtedly the most efficient, while the 1D (serial-parallel) has the worst outcomes. The

0D/2D and 1D/2D rows are meant to give a sharper impression of the comparison. There are

two main trends to be noticed.

Firstly the parallel MAC, with respect to the other implementations, is the best both for

area and power, but in different ways. The power performance leads on the other architectures

definitely more than the area occupation. This fact is to be attributed to the empty regions

within the parallel MAC layout (serial and serial-parallel MAC do not have any), which largely

increase the area but do not affect the power consumption. Furthermore, the area has been

rounded up to the circumscribed parallelogram, including then also some empty space outside

of the multiplier. So to say that the actual circuit area is slightly less than what reported.

From the alternative solution we are working on for the Parallel MAC it seems that the

problem of free inner regions can be solved. Therefor the power results presented here are more
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Figure 64. Area comparison of the three MAC implementations exploiting interleaving and
with the throughput being equal.

significant than those for the area. Because with a compact layout the area would improve up

to the power performance.

Secondly, the results of the three implementations fall apart from each other as the number

of bits increases. Notice how for the power the 4-bit case gives 0D/2D = 2.71, 1D/2D = 3.07,

while the 32-bit case has 0D/2D = 8.32, 1D/2D = 15. Ideally how should the three MAC units

grow to keep the same relationships among each other together with a constant throughput?

• Parallel MAC: if Nbit doubles it grows 4 times and keeps the same throughput. Let’s see

how the other should behave to reach a 4 times area increase.

• Serial-parallel MAC: if Nbit doubles the throughput gets halved, so twice the number of

MAC units are required to maintain the same throughput as before. Therefore for the
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Figure 65. Power comparison of the three MAC implementations exploiting interleaving and
with the throughput being equal.

overall area to grow only 4 times, the area of a single MAC should become at most twice

as much as before.

• Serial MAC: if Nbit doubles the throughput gets 4 times lower, so 4 times the number

of MAC units are required to maintain the same throughput as before. Therefore for

the overall area to grow only 4 times, the area of a single MAC cannot become any

larger. However the serial-parallel MAC grows almost quadratically with the number of

bits (section Table XXII), because of the preskew/deskew networks. The parallel MAC

also has those kind of interconnections, but their quadratic growth do not affect the MAC

performance. It has a 2-D structure, so every part of it grows quadratically. So also

the serial MAC do not follow the ideal behavior required to keep up with the parallel
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Figure 66. Area comparison of the three MAC implementations without interleaving and with
the throughput being equal.

implementation. Its MAC unit increases with the number of bits up to the 545% (64-

bits), the reason are the several feedback loops increasing linearly with the number of bits

(Table XXIII).

7.4.3 Results without exploiting interleaving

In a situation where the interleaving technique could not be used, the hierarchies among

the three MAC versions undergo slight changes. Look again at Table XXIV and also refer to

Figure 66 and Figure 67. The performance of the parallel and serial-parallel MAC units worsen

respectively of 5 and 3 times, according to their previous interleaving usage. The serial MAC

gains a lot in this situation because it cannot exploit interleaving anyway.
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Figure 67. Power comparison of the three MAC implementations without interleaving and
with the throughput being equal.

In fact the serial MAC becomes the leading architecture up to a 16 bits parallelism. But

since, as explained before, none of the implementations can keep up with the parallel one when

the number of bits increases, finally the parallel MAC takes back its lead for 32 or higher

number of bits.

7.4.4 Final considerations

The serial MAC can then be a fine alternative when unable to provide to the circuit inter-

leaved operations. The idea of sharing accumulator and adder boosted the performance, but

it can also be a setback, as it requires Nbit multiple MAC modules to be connected together.

It is not possible for one of them to function without the presence of the others. Anyway the

parallel MAC has by far the most promising architecture organization. Its strength is twofold:
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Advantage over the serial-parallel MAC The circuit’s body is a 2D array, just like all the

synchronization interconnections networks. So, while extremely bothersome for 1D struc-

tures, the additional skew networks do not affect the 2D circuits growth trends. Unfor-

tunately the serial-parallel MAC greatly suffers the input/output conditioning networks.

The only way for this circuit to be very competitive would be a system where it could

interface itself with other modules without the need for its additional preskew/deskew

networks.

Advantage over the serial MAC Long interconnections and feedbacks are the main prob-

lem with ME-NML technology. The 2D systolic array organization of the parallel MAC

keeps them to the minimum, avoiding for example the long feedback required for serial

multiplication, which in the serial MAC also affect the loops of adder and accumulator.



CHAPTER 8

CONCLUSIONS

The Magnetoelastic clock brought a great enhancement to NML technology because it

consumes remarkably low power. However only a proper choice of architecture can preserve the

benefits of this clock solution. This work is meant to be the starting point for circuit design

with MagnetoElastic technology, presenting a series of achievements to deal with ME-NML

circuits.

Standard Cell library

First of all the definition of the Standard Cell library, together with the high regularity of circuit

layout, will be the foundation for the creation of a design tool, that could greatly improve future

research in this field. The design and simulation methodology proposed for this work consists

of a hierarchical RTL model, based of the set of Standard Cells. The model contains all

the information concerning the physical placement and orientation of cells. Furthermore the

embedded capability of exact performance evaluation makes the model an advanced stand-alone

tool.

Case Study I

The case study on the generic N-bit Galois Multiplier provided an assessment of the true

value of this new technology. Results proved that the MagnetoElastic clock system solves the

power losses issue of the clock network for the Magnetic NML, achieving a 50 times reduction

of power absorption. Nonetheless its area turns out to be 4 times more compact. However

144
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the most impressive outcome is the advantage over the state-of-the-art CMOS transistors.

The comparison has been performed mapping the CMOS circuit with Encounter by Cadence

exploiting a low power 28nm FDSOI standard cell library. The ME-NML Galois Multiplier

overcomes CMOS transistors of 10 times both for area occupation and power consumption.

Anyway even with these excellent results NML technology is not meant as a replacement

for CMOS technology, since its speed is intrinsically limited to 100MHz. ME-NML could

be introduced alongside CMOS for some specific applications that can benefit from its high

integration, low power and logic-in-memory ability. A radical change of technology would

require an enormous cost for retooling an entire industry. To even consider such a change the

performance improvements of the new technology must be measured in orders of magnitude.

Apart from the comparison with other technologies this case study also provides other essen-

tial structural information, as it is the first design example of a complex circuit. It demonstrates

that systolic array architectures are particularly suited for ME-NML design. Furthermore it

highlights a huge limitation of serial-parallel circuits, as they require preskew and deskew net-

works that greatly affect the area occupation. The interconnection overhead gets worse in-

creasing the circuit parallelism. In fact the body of serial parallel circuits grows linearly with

number of bits, while the synchronization networks increase their area quadratically. The effect

is that half of the 4-bit Galois Multiplier’s area is devoted to the additional circuitry, while in

the 64-bit Galois Multiplier the synchronization networks are around 14 times bigger than the

circuit’s body.
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Case Study II

Once the potentialities of ME-NML technology have been ascertained, an extensive work has to

be carried out to discover which kinds of architectural organization lead to the best performance.

To do so the second case study put side by side three main classes of circuits: parallel (2D

structure), serial parallel (1D structure), serial (0D structure). The parallel MAC results are

overall better than the other two implementations in particular for high parallelisms, while for

small circuits the performances are more similar. When it is not possible to exploit interleaving,

the serial MAC implementation is able to reach the performance of the parallel MAC and even

outdo it for small parallelisms. The reason is that the serial MAC implementation does not

require the interleaving technique to function at its best.

Even though this is just one example, after investigating the reasons behind the result we can

say that most likely this outcome represents the general trend for ME-NML. The serial-parallel

structure requires additional synchronization circuits that strongly affect its performance, just

like for the Galois Multiplier. Notice also that even though the same interconnections are

required for the parallel MAC, in that case the MAC body grows with the number of bits just

like the interconnections. On the other hand, the drawbacks of the fully serial MAC are the

feedback loops, that get longer increasing the parallelism of the incoming data.

8.1 Future work

Beside the mere case studies results, there are some relevant side considerations that lead

to possible future goals:
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• The circuit design was done entirely manually using a graphic design software. Any

small adjustment or modification, even if just for interconnections, requires a considerable

amount of time. Therefore it is strongly advised to create an ad-hoc automated design

tool. Researchers at Politecnico di Torino developed one [40] for the Magnetic clock NML,

and already started to work on extending it to MagnetoElastic NML.

• The architectural study begun with the second case study should be carried on to reach

a complete knowledge over MagnetoElastic circuits, so that this novel technology can be

exploited to its best.

• Since ME-NML is intrinsically pipelined, any parallel input or output requires an addi-

tional synchronization circuitry to interface other modules. While this issue greatly affect

the performance of 1D array structures (e.g. Galois Multiplier, serial-parallel MAC), it

does not have too much of an impact on 2D arrays (parallel MAC). The only way to

improve this aspect is to aim toward systems where all the modules share the same in-out

protocol for parallel signals. We already devoted efforts in this direction with excellent

outcomes because in ME-NML circuits the input or output protocols for parallel signal

are the same in most of the cases.

• Every circuit with at least a feedback loop requires the interleaving technique to reach its

maximum throughput. It would be interesting to design and study the circuitry required

for handling input signals.



APPENDIX

VHDL LISTINGS

This chapter contains the main VHDL listings developed during the thesis work. They are

organized in four sections:

• RTL model for Magnetoelastic NML technology;

• Case study I: Galois Field Multiplier;

• Case study II: MAC unit;

• Testbench template for ME-NML circuits.

A.1 ME-NML model

A.1.1 Constants package for ME-NML

Listing A.1. ME-NML constants package: MENML package
package MENML package i s

3 −− Para l l e l i sm −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant N BIT : i n t e g e r := 4 ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 −− Time cons tant s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant CLK PERIOD: time := 10 ns ; −− Clock per iod
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9

−− MAGNETS, ELECTRODES AND CELLS DIMENSIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Al l the va lue s are expres sed in [nm] −−−

12 −− Primary cons tant s
constant LMAG: natura l := 50 ; −− Nanomagnets l ength
constant HMAG: natura l := 65 ; −− Nanomagnets he ight

15 constant TMAG: natura l := 10 ; −− Nanomagnets th i c kne s s
constant L SEP MAG: natura l := 20 ;−− Nanomagnets ho r i z on t a l s epa ra t i on
constant H SEP MAG: natura l := 20 ;−− Nanomagnets v e r t i c a l s epa ra t i on

18 constant N MAG CROSS: natura l := 3 ;−− # of magnets f o r the Crosswire c r o s s
−− Derived cons tant s
constant L ELECTRODE: natura l := (L SEP MAG∗2 + LMAG) /3 ;−− Elec t rode l ength

21 constant L SEP CELL : natura l := (L SEP MAG∗2 + LMAG) /3 ; −− Ce l l s s epa ra t i on
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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24 −− ENERGY EVALUTATION CONSTANTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Primary cons tant s

27 constant Kb: r e a l := 13 . 8065 ; −− Kb = 1.38065 e−23 m2∗kg ∗( s ˆ−2)/K
constant T: r e a l := 300 . 0 ; −− Room temperature [K]
−− This va lue i s 10ˆ24 g r e a t e r . Expressed in [ yocto Joule ]

30 constant MAGCONSUMPTION: natura l := natura l (180 .0∗Kb∗T) ;

constant VACUUMPERM: r e a l := 8854 . 0 ; −− Vacuum pe rm i t t i v i t y : 8 .854 e−12 F/m.
33 constant REL PERM: r e a l := 1300 . 0 ; −− Subst rate r e l a t i v e p e rm i t t i v i t y

constant T PZT : r e a l := 4 . 0 ; −− Elec t rode s th i c kne s s : 40e−9 m.
constant STRESS : r e a l := 2 8 . 0 ; −− Applied s t r e s s : 26 e+6 Pa .

36 constant YOUNGMODULUS: r e a l := 8 . 0 ; −− Young modulus f o r Ter f eno l : 80 GPa.
constant PZT CONST: r e a l := 1 5 . 0 ; −− P i e z o e l e c t r i c c o e f f i c i e n t : 150 pm/V.
−− Derived cons tant s

39 constant Ec const : natura l := natura l ( (VACUUMPERM∗REL PERM∗T PZT∗(STRESS) ∗∗2) / ( (
YOUNGMODULUS∗PZT CONST) ∗∗2) ∗ ( 1 . 0 e−6) ) ;

−− # of CELLS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 constant N ZONES BASE ELEMENT: natura l := 1 ; −− Use fu l f o r count ing the t o t a l number

o f c e l l s used
constant N ZONES PE : i n t e g e r := 72 ; −− Max # of c e l l s in a PE: 9∗8=72
−− Orientat ion −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 constant LX: s t d l o g i c := ’ 0 ’ ; −− Le f t
constant RX: s t d l o g i c := ’ 1 ’ ; −− Right
constant UP: s t d l o g i c := ’ 0 ’ ;

48 constant DOWN: s t d l o g i c := ’ 1 ’ ;
constant LX UP: s t d l o g i c v e c t o r (1 downto 0) := ”00” ;
constant LXDOWN: s t d l o g i c v e c t o r (1 downto 0) := ”01” ;

51 constant RX UP: s t d l o g i c v e c t o r (1 downto 0) := ”10” ;
constant RXDOWN: s t d l o g i c v e c t o r (1 downto 0) := ”11” ;
−− Phase −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

54 constant A: s t d l o g i c v e c t o r (1 downto 0) := ”00” ;
constant B: s t d l o g i c v e c t o r (1 downto 0) := ”01” ;
constant C: s t d l o g i c v e c t o r (1 downto 0) := ”10” ;

57 constant D: s t d l o g i c v e c t o r (1 downto 0) := ”11” ;
−− Dimensions −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant ZONE H: natura l := 3 ;

60 constant ZONE L: natura l := 3 ;
−− Other cons tant s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant i n i t n a t u r a l : na tura l := 0 ; −− I n i t i a l i z a t i o n natura l port

63 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
end MENML package ;

66 package body MENML package i s
end MENML package ;

A.1.2 Area and Energy evaluation

Listing A.2. Area and energy evaluation for a single cell: area and energy
l i b r a r y i e e e ;

2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;

5 use work .MENML package . a l l ;
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en t i t y area and energy i s
8 g ene r i c (H: natura l ; −− Height (# o f magnets )

L : natura l ) ; −− Width (# of magnets )
port ( n mag : in natura l ; −− # of magnets

11 a r e a e f f : out natura l ; −− Total magnets area
a r e a t o t : out natura l ; −− Ce l l area
Er : out natura l ; −− Switching energy

14 Ec : out natura l ) ; −− Clock network l o s s e s
end area and energy ;

17 a r c h i t e c t u r e behavior o f area and energy i s
s i g n a l L CELL EFF : natura l := L∗LMAG + (L−1)∗L SEP MAG;−−Length o f the c e l l
s i g n a l H CELL : natura l := H∗(HMAG+H SEP MAG) ;−−Height o f the c e l l

20 s i g n a l H ELECTRODE: natura l := H∗(HMAG+H SEP MAG) ;−−Height o f the e l e c t r o d e s
begin

−− Area eva lua t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 AREA EFF <= n mag∗LMAG∗HMAG; −−Total area occupied by the magnets themse lves

AREATOT <= L CELL EFF∗H CELL + 2∗HELECTRODE∗L ELECTRODE + H CELL∗L SEP CELL ;
−− Energy eva lua t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26 Er <= n mag ∗ MAGCONSUMPTION; −− Magnets energy consumption
Ec <= (L CELL EFF/2) ∗H CELL∗Ec const ; −− Clock energy consumption

end behavior ;

A.1.3 Standard Cells

Only the VHDL code for one standard cell has been completely enclosed, the short wire horiz.

All the others are very similar, so the common parts have been deleted.

Listing A.3. Short horizontal wire: short wire horiz.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−

2 −−
−− UP DOWN (o = magnet , x = void )
−− ooo xxx

5 −− xxx xxx
−− xxx ooo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

11 use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

14 en t i t y s h o r t w i r e h o r i z i s
g en e r i c (PHASE: s t d l o g i c v e c t o r (1 downto 0) ;−− Clk phase .

ROW: natura l ; −− Re la t i v e c e l l p o s i t i o n ( row )
17 COLUMN: natura l ; −− Re la t i v e c e l l p o s i t i o n ( c o l )

ORIENTATION: s t d l o g i c ;
H: natura l ; −− Height (# o f magnets )

20 L : natura l ) ; −− Width (# o f magnets )
port ( d : in s t d l o g i c ; −− Inputs

c l k : in s t d l o g i c ; −− Depends on the phase
23 q : out s t d l o g i c ; −− Outputs

n mag : bu f f e r natura l ; −− # of magnets



151

n zones : out natura l := 1 ;−− # number o f c e l l s
26 a r e a e f f : out natura l ; −− Total magnets area

a r e a t o t : out natura l ; −− Ce l l area
Er : out natura l ; −− Switching energy

29 Ec : out natura l ) ; −− Clock network l o s s e s
end s h o r t w i r e h o r i z ;

32 a r c h i t e c t u r e behavior o f s h o r t w i r e h o r i z i s
−− D Fl ipFlop (1 b i t )
component reg i s

35 port (d : in s t d l o g i c ;
c l k : in s t d l o g i c ;
q : out s t d l o g i c ) ;

38 end component ;
−− Component f o r eva lua t ing area and energy o f a standard c e l l
component area and energy i s

41 g ene r i c (H: natura l ; −− Height (# o f magnets )
L : natura l ) ; −− Width (# o f magnets )

port ( n mag : in natura l ; −− # of magnets
44 a r e a e f f : out natura l ; −− Total magnets area

a r e a t o t : out natura l ; −− Ce l l area
Er : out natura l ; −− Switching energy

47 Ec : out natura l ) ; −− Clock network l o s s e s
end component ;

begin
50 n mag <= L ; −− Evaluate the number o f magnets us ing H and L .

−− This c e l l i s model led as a r e g i s t e r .
53 Wire : reg port map( d => d ,

c l k => c lk ,
q => q ) ;

56

−− Area and energy eva lua t i on f o r t h i s c e l l .
Eva luate area energy : area and energy g ene r i c map(H,L)

59 port map(n mag , a r e a e f f , a r ea to t , Er , Ec) ;
end behavior ;

Listing A.4. Short vertical wire: short wire vert.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

3 −− LX RX (o = magnet , x = void , a = and magnet , r = or magnet )
−− oxx xxo
−− oxx xxo

6 −− oxx xxo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

9 n mag <= H; −− Evaluate the number o f magnets us ing H and L .
−− This c e l l i s model led as a r e g i s t e r .
Wire : reg port map( d => d ,

12 c l k => c lk ,
q => q ) ;

[ . . . ]
15 end behavior ;

Listing A.5. Long diagonal wire: long wire.
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−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

3 −− LX RX (o = magnet , x = void , a = and magnet , r = or magnet )
−− oxx xxo
−− ooo ooo

6 −− xxo oxx
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

9 n mag <= H+L−1; −− Evaluate the number o f magnets us ing H and L .
−− This c e l l i s model led as a r e g i s t e r .
Wire : reg port map( d => d ,

12 c l k => c lk ,
q => q ) ;

[ . . . ]
15 end behavior ;

Listing A.6. Angle wire with 2 outputs: wire 2outputs.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− ( o = magnet , x = void , a = and magnet , r = or magnet )

3 −− LX UP LXDOWN RX UP RXDOWN
−− ooo oxx ooo xxo
−− oxx oxx xxo xxo

6 −− oxx ooo xxo ooo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

9 n mag <= H+L−1; −− Evaluate the number o f magnets us ing H and L .
q1 <= q ;
q2 <= q ;

12 −− This c e l l i s model led as a r e g i s t e r .
Wire : reg port map( d => d ,

c l k => c lk ,
15 q => q ) ;

[ . . . ]
end behavior ;

Listing A.7. Double horizontal wire: double wire horiz.
1 −− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− ooo ( o = magnet , x = void , a = and magnet , r = or magnet )

4 −− xxx
−− ooo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 begin
n mag <= L∗2 ; −− Evaluate the number o f magnets us ing H and L .
−− This c e l l i s model led as 2 r e g i s t e r s .

10 Wire1 : reg port map(d => d1 ,
c l k => c lk ,
q => q1 ) ;

13 Wire2 : reg port map(d => d2 ,
c l k => c lk ,
q => q2 ) ;

16 [ . . . ]
end behavior ;
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Listing A.8. Double vertical wire: double wire vert.
1 −− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− oxo ( o = magnet , x = void , a = and magnet , r = or magnet )

4 −− oxo
−− oxo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 begin
n mag<= H∗2 ; −− Evaluate the number o f magnets us ing H and L .
−− This c e l l i s model led as 2 r e g i s t e r s .

10 Wire1 : reg port map(d => d1 ,
c l k => c lk ,
q => q1 ) ;

13 Wire2 : reg port map(d => d2 ,
c l k => c lk ,
q => q2 ) ;

16 [ . . . ]
end behavior ;

Listing A.9. Crosswire: crosswire.
1 −− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− oxo ( o = magnet , x = void , a = and magnet , r = or magnet )

4 −− xox
−− oxo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 begin
n mag <= N MAG CROSS + (H−1)∗2 + (L−3) ∗2 ; −− Evaluate the number o f magnets us ing H

and L .
−− This c e l l i s model led as 2 r e g i s t e r s .

10 Wire12 : reg port map(d => d1 ,
c l k => c lk ,
q => q2 ) ;

13 Wire21 : reg port map(d => d2 ,
c l k => c lk ,
q => q1 ) ;

16 [ . . . ]
end behavior ;

Listing A.10. Inverter (always horizontal): inv horiz.
1 −− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− UP DOWN (o = magnet , x = void , a = and magnet , r = or magnet )

4 −− oooo xxx
−− xxx xxx
−− xxx oooo

7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

n mag <= L+1; −− Evaluate the number o f magnets us ing H and L .
10 q n <= not q ; −− Logic func t i on

−− This c e l l i s model led as a r e g i s t e r p lus i t s l o g i c func t i on .
Wire : reg port map( d => d ,

13 c l k => c lk ,
q => q ) ;

[ . . . ]
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16 end behavior ;

Listing A.11. Parallel inverter and wire: inv with wire horiz.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −−
−− UP DOWN (o = magnet , x = void , a = and magnet , r = or magnet )
−− oooo ooo

5 −− xxx xxx
−− ooo oooo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 begin
n mag <= L∗2+1; −− Evaluate the number o f magnets us ing H and L .
q1 n <= not q1 ; −− Logic func t i on

11 −− This c e l l i s model led as 2 r e g i s t e r s p lus i t s l o g i c func t i on .
Wire1 : reg port map(d => d1 ,

c l k => c lk ,
14 q => q1 ) ;

Wire2 : reg port map(d => d2 ,
c l k => c lk ,

17 q => q2 ) ;
[ . . . ]

end behavior ;

Listing A.12. Double inverter: double inv horiz.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −−
−− oooo ( o = magnet , x = void , a = and magnet , r = or magnet )
−− xxx

5 −− oooo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

8 n mag <= L∗2+2; −− Evaluate the number o f magnets us ing H and L .
q1 n <= not q1 ; −− Logic func t i on
q2 n <= not q2 ; −− Logic func t i on

11 −− This c e l l i s model led as 2 r e g i s t e r s p lus i t s l o g i c func t i on .
Wire1 : reg port map(d => d1 ,

c l k => c lk ,
14 q => q1 ) ;

Wire2 : reg port map(d => d2 ,
c l k => c lk ,

17 q => q2 ) ;
[ . . . ]

end behavior ;

Listing A.13. AND on the left with output going up: and wire lx up.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −−
−− oxo oxx ( o = magnet , x = void , a = and magnet , r = or magnet )
−− aoo aoo

5 −− oxx oxo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

8 n mag <= H + (H−1)/2 + L − 1 ; −− Evaluate the number o f magnets us ing H and L .
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and res <= d1 and d2 ; −− Logic func t i on
−− This c e l l i s model led as a r e g i s t e r p lus i t s l o g i c func t i on .

11 Wire : reg port map( d => and res ,
c l k => c lk ,
q => q ) ;

14 [ . . . ]
end behavior ;

Listing A.14. AND on the left with 2 outputs: and 2outputs lx.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

3 −− oxo ( o = magnet , x = void , a = and magnet , r = or magnet )
−− aoo
−− oxo

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

n mag <= H∗2 + L − 2 ; −− Evaluate the number o f magnets us ing H and L .
9 and res <= d1 and d2 ; −− Logic func t i on

q1 <= q ;
q2 <= q ;

12 −− This c e l l i s model led as a r e g i s t e r p lus i t s l o g i c func t i on .
Wire : reg port map( d => and res ,

c l k => c lk ,
15 q => q ) ;

[ . . . ]
end behavior ;

Listing A.15. OR on the left with output going up: and wire lx up.
1 −− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−
−− oxo oxx ( o = magnet , x = void , a = and magnet , r = or magnet )

4 −− roo roo
−− oxx oxo
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

7 begin
n mag <= H + (H−1)/2 + L − 1 ; −− Evaluate the number o f magnets us ing H and L .
o r r e s <= d1 or d2 ; −− Logic func t i on

10 −− This c e l l i s model led as a r e g i s t e r p lus i t s l o g i c func t i on .
Wire : reg port map( d => o r r e s ,

c l k => c lk ,
13 q => q ) ;

[ . . . ]
end behavior ;

Listing A.16. OR on the left with 2 outputs: or 2outputs lx.
−− CELL ORIENTATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−

3 −− oxo ( o = magnet , x = void , a = and magnet , r = or magnet )
−− roo
−− oxo

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
begin

n mag <= H∗2 + L − 2 ; −− Evaluate the number o f magnets us ing H and L .
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9 o r r e s <= d1 or d2 ; −− Logic func t i on
q1 <= q ;
q2 <= q ;

12 −− This c e l l i s model led as a r e g i s t e r p lus i t s l o g i c func t i on .
Wire : reg port map( d => o r r e s ,

c l k => c lk ,
15 q => q ) ;

[ . . . ]
end behavior ;

A.2 Galois Multiplier (GFM)

Both the CMOS and the ME-NML versions of the GFM have been described with VHDL

and enclosed in this section.

A.2.1 CMOS

For what concerns the CMOS GFM, the listings of the top entity GFM synch and the basic

blocks component Basic Block are reported below. All the basic blocks are defined within the

same entity.

Listing A.17. Top entity of the CMOS GFM (includes synch networks): GFM synch.
1 l i b r a r y IEEE ;

use IEEE . Std Log ic 1164 . a l l ;

4 en t i t y GFM synch i s
g en e r i c (N BIT : i n t e g e r :=8) ;
port ( c lk , r s t , mrbit : in s t d l o g i c ;

7 p synch , b synch : in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
r synch : out s t d l o g i c v e c t o r (N BIT−1 downto 0) ) ;

end GFM synch ;
10

a r c h i t e c t u r e s t r u c t o f GFM synch i s
component Bas ic Block i s

13 port ( c lk , r s t : in s t d l o g i c ;
in b , in p , mrbit , i n r eg , en p : in s t d l o g i c ;
ou t r e su l t , out PE : out s t d l o g i c ) ;

16 end component ;
component reg i s

port ( c l k : in STD LOGIC;
19 r s t : in STD LOGIC;

r e g i n : in STD LOGIC;
r eg out : out STD LOGIC) ;

22 end component ;
s i g n a l mrb i t vec t : s t d l o g i c v e c t o r (N BIT downto 0) ;
s i g n a l en p vec t : s t d l o g i c v e c t o r (N BIT downto 0) ;

25 s i g n a l p a r a l l e l d a t a : s t d l o g i c v e c t o r (N BIT downto 0) ;
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s i g n a l p , b , r : s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
begin

28 p a r a l l e l d a t a (0 ) <= ’0 ’ ;
en p vec t (N BIT) <= pa r a l l e l d a t a (N BIT) ;
mrb i t vec t (N BIT) <= mrbit ;

31 mrbi t vec t (N BIT−1) <= mrbi t vec t (N BIT) ;

Mult gen : f o r I in (N BIT−1) downto 0 generate
34 begin

l a s t Ba s i c B l o c k : i f I=(N BIT−1) generate
s i g n a l p synch prop , b synch prop , r synch prop : s t d l o g i c v e c t o r (N BIT downto 0) ;

37

begin
pe : Bas ic Block

40 port map
( c l k=>c lk , r s t=>r s t ,
i n b => b( I ) , i n p=> p( I ) , mrbit=> mrbi t vec t ( I ) ,

43 i n r e g => p a r a l l e l d a t a ( I ) , en p => en p vec t ( I ) ,
o u t r e s u l t => r ( I ) ,
out PE => p a r a l l e l d a t a ( I+1) ) ;

46

r eg2 p ipe enp : reg port map( c l k => c lk , r s t => r s t , r e g i n => en p vec t ( I+1) ,
r eg out => en p vec t ( I ) ) ;

p ( I ) <= p synch prop (0 ) ;
49 b( I ) <= b synch prop (0 ) ;

r synch prop (0 ) <= r ( I ) ;
p synch prop (N BIT−1−I ) <= p synch ( I ) ;

52 b synch prop (N BIT−1−I ) <= b synch ( I ) ;
r synch ( I ) <= r synch prop ( I ) ;

55 r e s synch : f o r j in 1 to I generate
begin

r eg synch r : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => r synch prop ( j−1) ,
r eg out => r synch prop ( j ) ) ;

58 end generate ;
end generate ; −− end i f I= (N BIT−1)

61 c en t e r Bas i c B l o ck : i f I>0 and I<N BIT−1 generate
s i g n a l p synch prop , b synch prop , r synch prop : s t d l o g i c v e c t o r (N BIT downto

0) ;
begin

64 pe : Bas i c Block
port map
( c l k=>c lk , r s t=>r s t ,

67 i n b => b( I ) , i n p=> p( I ) , mrbit=> mrbi t vec t ( I ) ,
i n r e g => p a r a l l e l d a t a ( I ) , en p => en p vec t ( I ) ,
o u t r e s u l t => r ( I ) ,

70 out PE => p a r a l l e l d a t a ( I+1) ) ;

r eg1 p ipe mrb i t : reg port map( c l k =>c lk , r s t=>r s t , r e g i n=>mrbi t vec t ( I+1) , r eg out=>
mrbi t vec t ( I ) ) ;

73 r eg2 p ipe enp : reg port map( c l k => c lk , r s t => r s t , r e g i n => en p vec t ( I+1) ,
r eg out => en p vec t ( I ) ) ;

p ( I ) <= p synch prop (0 ) ;
b ( I ) <= b synch prop (0 ) ;

76 r synch prop (0 ) <= r ( I ) ;
p synch prop (N BIT−1−I ) <= p synch ( I ) ;
b synch prop (N BIT−1−I ) <= b synch ( I ) ;

79 r synch ( I ) <= r synch prop ( I ) ;
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r e s synch : f o r j in 1 to I generate
82 begin

r eg synch r : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => r synch prop ( j−1) ,
r eg out => r synch prop ( j ) ) ;

end generate ;
85

s i g synch : f o r j in 1 to N BIT−1−I generate
begin

88 r eg synch p : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => p synch prop ( j ) , r eg out
=> p synch prop ( j−1) ) ;

r eg synch b : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => b synch prop ( j ) , r eg out
=> b synch prop ( j−1) ) ;

end generate ;
91 end generate ; −− End i f I = medium

Ba s i c B l o c k f i r s t : i f I=0 generate
94 s i g n a l p synch prop , b synch prop , r synch prop : s t d l o g i c v e c t o r (N BIT downto

0) ;
begin
pe : Bas ic Block

97 port map
( c l k=>c lk , r s t=>r s t ,
i n b => b( I ) , i n p=> p( I ) , mrbit=> mrbi t vec t ( I ) ,

100 i n r e g => p a r a l l e l d a t a ( I ) , en p => en p vec t ( I ) ,
o u t r e s u l t => r ( I ) ,
out PE => p a r a l l e l d a t a ( I+1) ) ;

103

r eg1 p ipe mrb i t : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => mrbi t vec t ( I+1) ,
r eg out => mrbi t vec t ( I ) ) ;

r eg2 p ipe enp : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => en p vec t ( I+1) , r eg out
=> en p vec t ( I ) ) ;

106 p( I ) <= p synch prop (0 ) ;
b ( I ) <= b synch prop (0 ) ;
r synch prop (0 ) <= r ( I ) ;

109 p synch prop (N BIT−1−I ) <= p synch ( I ) ;
b synch prop (N BIT−1−I ) <= b synch ( I ) ;
r synch ( I ) <= r synch prop ( I ) ;

112

s i g synch : f o r j in 1 to N BIT−1−I generate
begin

115 r eg synch p : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => p synch prop ( j ) , r eg out
=> p synch prop ( j−1) ) ;

r eg synch b : reg port map( c l k=>c lk , r s t=>r s t , r e g i n => b synch prop ( j ) , r eg out
=> b synch prop ( j−1) ) ;

end generate ;
118 end generate ; −− end i f I = 0

end generate ; −− end f o r I
end s t r u c t ;

Listing A.18. Basic blocks of the CMOS GFM: Basic Block.
l i b r a r y IEEE ;

2 use IEEE . Std Log ic 1164 . a l l ;
use IEEE . math rea l . a l l ;
use i e e e . numer ic std . a l l ;

5

en t i t y Bas ic Block i s
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port ( c lk , r s t : in s t d l o g i c ;
8 in b , in p , mrbit , i n r eg , en p : in s t d l o g i c ;

o u t r e s u l t : out s t d l o g i c ;
out PE : out s t d l o g i c ) ;

11 end Bas ic Block ;

a r c h i t e c t u r e s t r u c t o f Bas ic Block i s
14 component reg i s

port ( c lk , r s t , r e g i n : in STD LOGIC;
r eg out : out STD LOGIC) ;

17 end component ;
component and and i s

port ( in 0 , i n 1 : in s t d l o g i c ;
20 out and : out s t d l o g i c ) ;

end component ;
component xor3 in i s

23 port ( in prod , in r eg , in sub : in s t d l o g i c ;
out xor : out s t d l o g i c ) ;

end component ;
26

s i g n a l b t o i n 0 : s t d l o g i c ;
s i g n a l mrb i t t o i n 1 : s t d l o g i c ;

29 s i g n a l ou t and to in p rod : s t d l o g i c ;
s i g n a l ou t p t o i n sub : s t d l o g i c ;
s i g n a l ou t r : s t d l o g i c ;

32 s i g n a l ou t s ub t o i n xo r : s t d l o g i c ;
s i g n a l x o r t o r : s t d l o g i c ;

35 begin

B: reg port map ( c l k => c lk ,
38 r s t => r s t ,

r e g i n => in b ,
r eg out =>b t o i n 0 ) ;

41 R: reg port map ( c l k => c lk ,
r s t => r s t ,
r e g i n => out r ,

44 r eg out => ou t r e s u l t ) ;
P : reg port map ( c l k => c lk ,

r s t => r s t ,
47 r e g i n => in p ,

r eg out =>ou t p t o i n sub ) ;
PE NEXT: reg port map ( c l k => c lk ,

50 r s t => r s t ,
r e g i n => out r ,
r eg out => out PE ) ;

53 ANDB: and and port map( i n 0 => b to in 0 ,
i n 1 => mrbit ,
out and => out and to in p rod ) ;

56 ANDP: and and port map ( i n 0 => out p to in sub ,
i n 1 => en p ,
out and => ou t s ub t o i n xo r ) ;

59 XOR1: xor3 in port map ( in prod=> out and to in prod ,
i n r e g=> i n r eg ,
in sub=> ou t sub to i n xo r ,

62 out xor=> out r ) ;
end s t r u c t ;
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A.2.2 Magnetoelastic NML (ME-NML)

Here are reported the listings of the top entity Galois Multiplier and the the basic blocks

component Basic Block. All the basic blocks are defined within the same entity.

Listing A.19. Top entity of the ME-NML GFM: Galois Multiplier.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
en t i t y Ga l o i s Mu l t i p l i e r i s

port ( B in ,P, r e s e t : in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
9 r e s e t2 , A in : in s t d l o g i c ;

Res : out s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
clkA , clkB , clkC , clkD : in s t d l o g i c ;

12 n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;

15 AREATOT: out natura l ;
Er : out natura l ;
Ec : out natura l ) ;

18 end Ga l o i s Mu l t i p l i e r ;

a r c h i t e c t u r e behavior o f Ga l o i s Mu l t i p l i e r i s
21 component Bas i c b l o ck i s

[ . . . ]
end component ;

24 s i g n a l A vect , en p vect , r e s u l t s v e c t : s t d l o g i c v e c t o r (N BIT downto 0) ;
−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;

27 s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :
n a tu r a l v e c t o r (N BIT downto 1) := ( o the r s => i n i t n a t u r a l ) ;

begin
30 −− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every
PE i n s t an t i a t e d .

−− Resu l t s are g iven as outputs o f t h i s ” Ga l o i s Mu l t i p l i e r ” component .
33 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

36 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

39 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

42 nat Er := Er vect ;
nat Ec := Ec vect ;
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45 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
48 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

51 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
54 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

57 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

60

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

63 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

66 Ec <= sum tot Ec ;
end proce s s ;

69 r e s u l t s v e c t (0 ) <= ’0 ’ ;
en p vec t (N BIT) <= r e s u l t s v e c t (N BIT) ;
A vect (N BIT)<=A in ;

72

−− The Mu l t i p l i e r i s obta ined assembl ing as many PEs as the N BIT . There are only 3
d i f f e r e n t PE,

−− bes ide the f i r s t one and the l a s t one a l l the o the r s are the same .
75 Mult gen :

f o r i in 0 to N BIT−1 generate
begin

78 PE: Bas i c b l o ck
g ene r i c map(ELEMENT=>i )
port map(

81 A in => A vect ( i +1) ,
b in=>B in ( i ) ,
p=>P( i ) ,

84 en p in => en p vec t ( i +1) ,
PE in => r e s u l t s v e c t ( i ) ,
A out => A vect ( i ) ,

87 en p out => en p vec t ( i ) ,
r e s => Res ( i ) ,
PE out => r e s u l t s v e c t ( i +1) ,

90 r e s e t=> r e s e t ( i ) , r e s e t 2=>r e s e t2 , c l k=>c lk , clkA=>clkA , clkB=>clkB , clkC=>clkC ,
clkD=>clkD ,

n mag=>n mag vect ( i +1) ,
n zones=>n zone s ve c t ( i +1) ,

93 AREA EFF=>a r e a e f f v e c t ( i +1) ,
AREATOT=>a r e a t o t v e c t ( i +1) ,
Er=>Er vect ( i +1) ,

96 Ec=>Ec vect ( i +1)
) ;

end generate ;
99



162

end behavior ;

Listing A.20. Basic blocks of the ME-NML GFM: Basic Block.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y Bas i c b l o ck i s
g en e r i c (ELEMENT: i n t e g e r ) ;−− I d e n t i f i e s one among N BIT proc e s s i ng e lements

9 port (
A in , b in , p , en p in , PE in : in s t d l o g i c ;
A out , en p out , res , PE out : out s t d l o g i c ;

12 r e s e t , r e s e t2 , clkA , clkB , clkC , clkD : in s t d l o g i c ;
n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;

15 AREA EFF: out natura l ;
AREATOT: out natura l ;
Er : out natura l ;

18 Ec : out natura l ) ;
end Bas i c b l o ck ;

21 a r c h i t e c t u r e behavior o f Bas i c b l o ck i s
[ . . . ] −− Def ine as components a l l the standard c e l l s .

24 −− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (N ZONES PE downto 1) :=( othe r s=>i n i t n a t u r a l ) ;
27 −− Connections among c e l l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s i g n a l A1 2d , C1 3d , A1 4d , A1 6d : s t d l o g i c ;
s i g n a l B2 1d , B2 1d2 , D2 2d , B2 3d , B2 3d2 , D2 4d , B2 5d , D2 6d : s t d l o g i c ;

30 s i g n a l C3 2d , A3 3d , A3 3d2 , C3 4d , C3 5d , A3 6d , C3 7d2 , D4 2d , D4 2d2 : s t d l o g i c ;
s i g n a l B4 3d , B4 3d2 , D4 4d , D4 4d2 , B4 5d , D4 6d , D4 6d2 , B4 7d : s t d l o g i c ;
s i g n a l C5 2d , A5 3d , A5 3d2 , C5 4d , C5 4d2 : s t d l o g i c ;

33 s i g n a l A5 5d2 , C5 6d , C5 6d2 , A5 7d , A5 7d2 : s t d l o g i c ;
s i g n a l D6 2d , B6 3d , D6 4d , D6 4d2 , B6 5d , B6 5d2 , D6 6d , D6 6d2 : s t d l o g i c ;
s i g n a l C7 2d , C7 3d , C7 4d , A7 5d , A7 5d2 , C7 6d , C7 7d : s t d l o g i c ;

36 s i g n a l B8 1d , B8 1d2 , D8 2d , B8 3d , B8 3d2 , D8 4d , B8 5d , B8 5d2 , D8 6d : s t d l o g i c ;
s i g n a l A9 2d , A9 4d , C9 5d , A9 6d : s t d l o g i c ;
s i g n a l z e r o i n : s t d l o g i c ;−− connected to PE in o f the f i r s t PE. Then s e t to ’ 0 ’ .

39 −− S i gna l s added f o r Last PE f o r the c e l l s in p o s i t i o n s :
15 ,17 ,18 ,27 ,28 ,38 ,58 ,67 ,87 ,97 .

s i g n a l C1 5d , C1 7d , A1 8d , B2 5d2 , D2 6d2 , B2 7d , D2 8d , A3 5d : s t d l o g i c ;
s i g n a l C3 6d , A3 7d , C3 8d , B4 7d2 , C5 8d , D6 7d , A7 7d , B8 7d , C9 7d : s t d l o g i c ;

42

begin
z e r o i n <= ’0 ’ ;

45

−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every

standard c e l l i n s t a n t i a t e d .
48 −− Resu l t s are g iven as outputs o f t h i s ” Bas i c b l o ck ” component .

N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
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va r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;

51 va r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
v a r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
54 n nat mag := n mag vect ;

n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;

57 na t a r e a t o t := a r e a t o t v e c t ;
nat Er := Er vect ;
nat Ec := Ec vect ;

60

sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

63 sum n mag := sum n mag + n nat mag ( i ) ;
sum n zones := sum n zones + n nat zones ( i ) ;
s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;

66 sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

69 end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;
sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;

72 s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;

75 sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

n mag <= sum tot n mag ;
78 n zones <= sum tot n zones ;

a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;

81 Er <= sum tot Er ;
Ec <= sum tot Ec ;

end proce s s ;
84

−− STANDARD CELLS INSTANTIATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Labels have the f o l l ow i ng form : ( l e t t e r ) ( number ) (number )

87 −− The l e t t e r i s the c l o ck phase , f i r s t number the r e l a t i v e row with in the PE,
−− second number the r e l a t i v e column with in the PE.
−− In order to a s s i gn s i g n a l s ∗d or ∗d2 to a c e l l f o l l ow t h i s sequence :

90 −− up l e f t , up r ight , down le f t , down right .
C1 3 : s h o r t w i r e h o r i z g en e r i c map(C, 1 , 3 ,DOWN,ZONE H,ZONE L)

port map(C1 3d , clkC , D2 2d , n mag vect (3 ) , n zone s ve c t (3 ) , a r e a e f f v e c t (3 ) ,
a r e a t o t v e c t (3 ) , Er vect (3 ) , Ec vect (3 ) ) ;

93 B2 3 : doub l e w i r e ho r i z g en e r i c map(D, 2 , 3 ,ZONE H,ZONE L)
port map(B2 3d , B2 3d2 , clkB , C1 3d , C3 4d , n mag vect (11) , n zone s ve c t (11) ,

a r e a e f f v e c t (11) , a r e a t o t v e c t (11) , Er vect (11) , Ec vect (11) ) ;
C3 2 : l ong w i r e g en e r i c map(C, 3 , 2 ,LX,ZONE H,ZONE L)

96 port map(C3 2d , clkC , D4 2d , n mag vect (18) , n zone s ve c t (18) , a r e a e f f v e c t (18) ,
a r e a t o t v e c t (18) , Er vect (18) , Ec vect (18) ) ;

A3 3 : and 2outputs lx g en e r i c map(A, 3 , 3 ,ZONE H,ZONE L)
port map(A3 3d , A3 3d2 , clkA , B2 3d2 , B4 3d , n mag vect (19) , n zone s ve c t (19) ,

a r e a e f f v e c t (19) , a r e a t o t v e c t (19) , Er vect (19) , Ec vect (19) ) ;
99 C3 4 : l ong w i r e g en e r i c map(C, 3 , 4 ,LX,ZONE H,ZONE L)



164

port map(C3 4d , clkC , D4 4d , n mag vect (20) , n zone s ve c t (20) , a r e a e f f v e c t (20) ,
a r e a t o t v e c t (20) , Er vect (20) , Ec vect (20) ) ;

D4 4 : o r w i r e l x g en e r i c map(D, 4 , 4 ,DOWN,ZONE H,ZONE L)
102 port map(D4 4d , D4 4d2 , clkD , A5 5d , n mag vect (28) , n zone s ve c t (28) , a r e a e f f v e c t (28)

, a r e a t o t v e c t (28) , Er vect (28) , Ec vect (28) ) ;
B4 5 : s h o r t w i r e h o r i z g en e r i c map(B, 4 , 5 ,DOWN,ZONE H,ZONE L)

port map(B4 5d , clkB , C5 6d , n mag vect (29) , n zone s ve c t (29) , a r e a e f f v e c t (29) ,
a r e a t o t v e c t (29) , Er vect (29) , Ec vect (29) ) ;

105 C5 4 : c r o s sw i r e g en e r i c map(C, 5 , 4 ,ZONE H,ZONE L)
port map(C5 4d , C5 4d2 , clkC , D4 4d2 , D6 4d , n mag vect (36) , n zone s ve c t (36) ,

a r e a e f f v e c t (36) , a r e a t o t v e c t (36) , Er vect (36) , Ec vect (36) ) ;
A5 5 : and 2outputs lx g en e r i c map(A, 5 , 5 ,ZONE H,ZONE L)

108 port map(A5 5d , A5 5d2 , clkA , B4 5d , B6 5d , n mag vect (37) , n zone s ve c t (37) ,
a r e a e f f v e c t (37) , a r e a t o t v e c t (37) , Er vect (37) , Ec vect (37) ) ;

C5 6 : c r o s sw i r e g en e r i c map(C, 5 , 6 ,ZONE H,ZONE L)
port map(C5 6d , C5 6d2 , clkC , D4 6d , D6 6d , n mag vect (38) , n zone s ve c t (38) ,

a r e a e f f v e c t (38) , a r e a t o t v e c t (38) , Er vect (38) , Ec vect (38) ) ;
111 D6 4 : i n v w i t h w i r e h o r i z g en e r i c map(D, 6 , 4 ,UP,ZONE H,ZONE L)

port map(D6 4d , D6 4d2 , clkD , A5 5d2 , A7 5d , n mag vect (44) , n zone s ve c t (44) ,
a r e a e f f v e c t (44) , a r e a t o t v e c t (44) , Er vect (44) , Ec vect (17) ) ;

B6 5 : and w i r e l x g ene r i c map(B, 6 , 5 ,UP,ZONE H,ZONE L)
114 port map(B6 5d , B6 5d2 , clkB , C5 6d2 , n mag vect (45) , n zone s ve c t (45) , a r e a e f f v e c t

(45) , a r e a t o t v e c t (45) , Er vect (45) , Ec vect (45) ) ;
D6 6 : o r w i r e l x g en e r i c map(D, 6 , 6 ,UP,ZONE H,ZONE L)

port map(D6 6d , D6 6d2 , clkD , A5 7d2 , n mag vect (46) , n zone s ve c t (46) , a r e a e f f v e c t
(46) , a r e a t o t v e c t (46) , Er vect (46) , Ec vect (46) ) ;

117 C7 4 : l ong w i r e g en e r i c map(C, 7 , 4 ,RX,ZONE H,ZONE L)
port map(C7 4d , clkC , D6 4d2 , n mag vect (52) , n zone s ve c t (52) , a r e a e f f v e c t (52) ,

a r e a t o t v e c t (52) , Er vect (52) , Ec vect (52) ) ;
A7 5 : and 2outputs lx g en e r i c map(A, 7 , 5 ,ZONE H,ZONE L)

120 port map(A7 5d , A7 5d2 , clkA , B6 5d2 , B8 5d , n mag vect (53) , n zone s ve c t (53) ,
a r e a e f f v e c t (53) , a r e a t o t v e c t (53) , Er vect (53) , Ec vect (53) ) ;

C7 6 : l ong w i r e g en e r i c map(C, 7 , 6 ,RX,ZONE H,ZONE L)
port map(C7 6d , clkC , D6 6d2 , n mag vect (54) , n zone s ve c t (54) , a r e a e f f v e c t (54) ,

a r e a t o t v e c t (54) , Er vect (54) , Ec vect (54) ) ;
123 B8 5 : doub l e w i r e ho r i z g en e r i c map(B, 8 , 5 ,ZONE H,ZONE L)

port map(B8 5d , B8 5d2 , clkB , C7 6d , C9 5d , n mag vect (61) , n zone s ve c t (61) ,
a r e a e f f v e c t (61) , a r e a t o t v e c t (61) , Er vect (61) , Ec vect (61) ) ;

C9 5 : s h o r t w i r e h o r i z g en e r i c map(C, 9 , 5 ,UP,ZONE H,ZONE L)
126 port map(C9 5d , clkC , D8 4d , n mag vect (69) , n zone s ve c t (69) , a r e a e f f v e c t (69) ,

a r e a t o t v e c t (69) , Er vect (69) , Ec vect (69) ) ;

Last : i f (ELEMENT = N BIT−1) generate
129 begin

A1 4 : l ong w i r e g ene r i c map(A, 1 , 4 ,RX,ZONE H,ZONE L)
port map(A in , clkA , B2 3d , n mag vect (4 ) , n zone s ve c t (4 ) , a r e a e f f v e c t (4 ) ,

a r e a t o t v e c t (4 ) , Er vect (4 ) , Ec vect (4 ) ) ;
132 C1 5 : s h o r t w i r e h o r i z g en e r i c map(C, 1 , 5 ,DOWN,ZONE H,ZONE L)

port map(C1 5d , clkC , D2 4d , n mag vect (5 ) , n zone s ve c t (5 ) , a r e a e f f v e c t (5 ) ,
a r e a t o t v e c t (5 ) , Er vect (5 ) , Ec vect (5 ) ) ;
A1 6 : s h o r t w i r e h o r i z g en e r i c map(A, 1 , 6 ,DOWN,ZONE H,ZONE L)

135 port map(A1 6d , clkA , B2 5d , n mag vect (6 ) , n zone s ve c t (6 ) , a r e a e f f v e c t (6 ) ,
a r e a t o t v e c t (6 ) , Er vect (6 ) , Ec vect (6 ) ) ;
C1 7 : s h o r t w i r e h o r i z g en e r i c map(C, 1 , 7 ,DOWN,ZONE H,ZONE L)

port map(C1 7d , clkC , D2 6d , n mag vect (7 ) , n zone s ve c t (7 ) , a r e a e f f v e c t (7 ) ,
a r e a t o t v e c t (7 ) , Er vect (7 ) , Ec vect (7 ) ) ;

138 A1 8 : wi re 2outputs g en e r i c map(A, 1 , 8 ,RXDOWN,ZONE H,ZONE L)
port map(A1 8d , clkA , res , B2 7d , n mag vect (8 ) , n zone s ve c t (8 ) , a r e a e f f v e c t (8 ) ,

a r e a t o t v e c t (8 ) , Er vect (8 ) , Ec vect (8 ) ) ;
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D2 4 : s h o r t w i r e v e r t g en e r i c map(D, 2 , 4 ,RX,ZONE H,ZONE L)
141 port map(D2 4d , clkD , A3 5d , n mag vect (12) , n zone s ve c t (12) , a r e a e f f v e c t (12) ,

a r e a t o t v e c t (12) , Er vect (12) , Ec vect (12) ) ;
B2 5 : doub l e w i r e ho r i z g en e r i c map(B, 2 , 5 ,ZONE H,ZONE L)

port map(B2 5d , B2 5d2 , clkB , C1 5d , C3 6d , n mag vect (13) , n zone s ve c t (13) ,
a r e a e f f v e c t (13) , a r e a t o t v e c t (13) , Er vect (13) , Ec vect (13) ) ;

144 D2 6 : doub l e w i r e ho r i z g en e r i c map(D, 2 , 6 ,ZONE H,ZONE L)
port map(D2 6d , D2 6d2 , clkD , A1 6d , A9 6d , n mag vect (14) , n zone s ve c t (14) ,

a r e a e f f v e c t (14) , a r e a t o t v e c t (14) , Er vect (14) , Ec vect (14) ) ;
B2 7 : s h o r t w i r e h o r i z g en e r i c map(B, 2 , 7 ,UP,ZONE H,ZONE L)

147 port map(B2 7d , clkB , C1 7d , n mag vect (15) , n zone s ve c t (15) , a r e a e f f v e c t (15) ,
a r e a t o t v e c t (15) , Er vect (15) , Ec vect (15) ) ;
D2 8 : s h o r t w i r e v e r t g en e r i c map(D, 2 , 8 ,LX,ZONE H,ZONE L)

port map(D2 8d , clkD , A1 8d , n mag vect (16) , n zone s ve c t (16) , a r e a e f f v e c t (16) ,
a r e a t o t v e c t (16) , Er vect (16) , Ec vect (16) ) ;

150 A3 5 : s h o r t w i r e h o r i z g en e r i c map(A, 3 , 5 ,UP,ZONE H,ZONE L)
port map(A3 5d , clkA , B2 5d2 , n mag vect (21) , n zone s ve c t (21) , a r e a e f f v e c t (21) ,

a r e a t o t v e c t (21) , Er vect (21) , Ec vect (21) ) ;
C3 6 : s h o r t w i r e h o r i z g en e r i c map(C, 3 , 6 ,UP,ZONE H,ZONE L)

153 port map(C3 6d , clkC , D2 6d2 , n mag vect (22) , n zone s ve c t (22) , a r e a e f f v e c t (22) ,
a r e a t o t v e c t (22) , Er vect (22) , Ec vect (22) ) ;
C3 8 : l ong w i r e g ene r i c map(C, 3 , 8 ,RX,ZONE H,ZONE L)

port map(C3 8d , clkC , D2 8d , n mag vect (24) , n zone s ve c t (24) , a r e a e f f v e c t (24) ,
a r e a t o t v e c t (24) , Er vect (24) , Ec vect (24) ) ;

156 D4 6 : i n v ho r i z g en e r i c map(D, 4 , 6 ,DOWN,ZONE H,ZONE L)
port map(D4 6d , clkD , A5 7d , n mag vect (30) , n zone s ve c t (30) , a r e a e f f v e c t (30) ,

a r e a t o t v e c t (30) , Er vect (30) , Ec vect (30) ) ;
B4 7 : c r o s sw i r e g ene r i c map(B, 4 , 7 ,ZONE H,ZONE L)

159 port map(B4 7d , B4 7d2 , clkB , C3 8d , C5 8d , n mag vect (31) , n zone s ve c t (31) ,
a r e a e f f v e c t (31) , a r e a t o t v e c t (31) , Er vect (31) , Ec vect (31) ) ;
A5 7 : and w i r e l x g en e r i c map(A, 5 , 7 ,UP,ZONE H,ZONE L)

port map(A5 7d , A5 7d2 , clkA , B4 7d2 , n mag vect (39) , n zone s ve c t (39) , a r e a e f f v e c t
(39) , a r e a t o t v e c t (39) , Er vect (39) , Ec vect (39) ) ;

162 A9 6 : and wi re rx g ene r i c map(A, 9 , 6 ,UP,ZONE H,ZONE L)
port map(A9 6d , r e s e t2 , clkA , B8 5d2 , n mag vect (70) , n zone s ve c t (70) , a r e a e f f v e c t

(70) , a r e a t o t v e c t (70) , Er vect (70) , Ec vect (70) ) ;
−− Di f f e r e n t in ” F i r s t ” PE

165 A1 1 : s h o r t w i r e v e r t g en e r i c map(A, 1 , 1 ,RX,ZONE H,ZONE L)
port map( b in , clkA , B2 1d , n mag vect (1 ) , n zone s ve c t (1 ) , a r e a e f f v e c t (1 ) ,

a r e a t o t v e c t (1 ) , Er vect (1 ) , Ec vect (1 ) ) ;
A1 2 : s h o r t w i r e h o r i z g en e r i c map(A, 1 , 2 ,DOWN,ZONE H,ZONE L)

168 port map(A1 2d , clkA , B2 1d2 , n mag vect (2 ) , n zone s ve c t (2 ) , a r e a e f f v e c t (2 ) ,
a r e a t o t v e c t (2 ) , Er vect (2 ) , Ec vect (2 ) ) ;
B2 1 : c r o s sw i r e g ene r i c map(B, 2 , 1 ,ZONE H,ZONE L)

port map(B2 1d , B2 1d2 , clkB , A out , C3 2d , n mag vect (9 ) , n zone s ve c t (9 ) ,
a r e a e f f v e c t (9 ) , a r e a t o t v e c t (9 ) , Er vect (9 ) , Ec vect (9 ) ) ;

171 D2 2 : wi re 2outputs g en e r i c map(D, 2 , 2 ,RX UP,ZONE H,ZONE L)
port map(D2 2d , clkD , A1 2d , A3 3d , n mag vect (10) , n zone s ve c t (10) , a r e a e f f v e c t

(10) , a r e a t o t v e c t (10) , Er vect (10) , Ec vect (10) ) ;
D4 2 : doub l e w i r e ho r i z g en e r i c map(D, 4 , 2 ,ZONE H,ZONE L)

174 port map(D4 2d , D4 2d2 , clkD , A3 3d2 , A5 3d , n mag vect (26) , n zone s ve c t (26) ,
a r e a e f f v e c t (26) , a r e a t o t v e c t (26) , Er vect (26) , Ec vect (26) ) ;
B4 3 : and w i r e l x g en e r i c map(B, 4 , 3 ,DOWN,ZONE H,ZONE L)

port map(B4 3d , B4 3d2 , clkB , C5 4d , n mag vect (27) , n zone s ve c t (27) , a r e a e f f v e c t
(27) , a r e a t o t v e c t (27) , Er vect (27) , Ec vect (27) ) ;

177 C5 2 : s h o r t w i r e h o r i z g en e r i c map(C, 5 , 2 ,UP,ZONE H,ZONE L)
port map(PE in , clkC , D4 2d2 , n mag vect (34) , n zone s ve c t (34) , a r e a e f f v e c t (34) ,

a r e a t o t v e c t (34) , Er vect (34) , Ec vect (34) ) ;
A5 3 : and 2outputs lx g en e r i c map(A, 5 , 3 ,ZONE H,ZONE L)
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180 port map(A5 3d , A5 3d2 , clkA , B4 3d2 , B6 3d , n mag vect (35) , n zone s ve c t (35) ,
a r e a e f f v e c t (35) , a r e a t o t v e c t (35) , Er vect (35) , Ec vect (35) ) ;
D6 2 : l ong w i r e g ene r i c map(D, 6 , 2 ,RX,ZONE H,ZONE L)

port map(D6 2d , clkD , A5 3d2 , n mag vect (42) , n zone s ve c t (42) , a r e a e f f v e c t (42) ,
a r e a t o t v e c t (42) , Er vect (42) , Ec vect (42) ) ;

183 B6 3 : s h o r t w i r e h o r i z g en e r i c map(B, 6 , 3 ,UP,ZONE H,ZONE L)
port map(B6 3d , clkB , C5 4d2 , n mag vect (43) , n zone s ve c t (43) , a r e a e f f v e c t (43) ,

a r e a t o t v e c t (43) , Er vect (43) , Ec vect (43) ) ;
C7 2 : l ong w i r e g ene r i c map(D, 7 , 2 ,RX,ZONE H,ZONE L)

186 port map(C7 2d , clkC , D6 2d , n mag vect (50) , n zone s ve c t (50) , a r e a e f f v e c t (50) ,
a r e a t o t v e c t (50) , Er vect (50) , Ec vect (50) ) ;
C7 3 : s h o r t w i r e h o r i z g en e r i c map(C, 7 , 3 ,DOWN,ZONE H,ZONE L)

port map(C7 3d , clkC , D8 2d , n mag vect (51) , n zone s ve c t (51) , a r e a e f f v e c t (51) ,
a r e a t o t v e c t (51) , Er vect (51) , Ec vect (51) ) ;

189 B8 1 : c r o s sw i r e g ene r i c map(B, 8 , 1 ,ZONE H,ZONE L)
port map(B8 1d , B8 1d2 , clkB , en p out , C7 2d , n mag vect (57) , n zone s ve c t (57) ,

a r e a e f f v e c t (57) , a r e a t o t v e c t (57) , Er vect (57) , Ec vect (57) ) ;
D8 2 : l ong w i r e g ene r i c map(D, 8 , 2 ,RX,ZONE H,ZONE L)

192 port map(D8 2d , clkD , A9 2d , n mag vect (58) , n zone s ve c t (58) , a r e a e f f v e c t (58) ,
a r e a t o t v e c t (58) , Er vect (58) , Ec vect (58) ) ;
B8 3 : c r o s sw i r e g ene r i c map(B, 8 , 3 ,ZONE H,ZONE L)

port map(B8 3d , B8 3d2 , clkB , C7 3d , C7 4d , n mag vect (59) , n zone s ve c t (59) ,
a r e a e f f v e c t (59) , a r e a t o t v e c t (59) , Er vect (59) , Ec vect (59) ) ;

195 D8 4 : wi re 2outputs g en e r i c map(D, 8 , 4 ,RXDOWN,ZONE H,ZONE L)
port map(D8 4d , clkD , A7 5d2 , A9 4d , n mag vect (60) , n zone s ve c t (60) , a r e a e f f v e c t

(60) , a r e a t o t v e c t (60) , Er vect (60) , Ec vect (60) ) ;
A9 1 : s h o r t w i r e v e r t g en e r i c map(A, 9 , 1 ,RX,ZONE H,ZONE L)

198 port map( r e s e t , clkA , B8 1d , n mag vect (65) , n zone s ve c t (65) , a r e a e f f v e c t (65) ,
a r e a t o t v e c t (65) , Er vect (65) , Ec vect (65) ) ;
A9 2 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 2 ,UP,ZONE H,ZONE L)

port map(A9 2d , clkA , B8 1d2 , n mag vect (66) , n zone s ve c t (66) , a r e a e f f v e c t (66) ,
a r e a t o t v e c t (66) , Er vect (66) , Ec vect (66) ) ;

201 A9 3 : s h o r t w i r e v e r t g en e r i c map(A, 9 , 3 ,RX,ZONE H,ZONE L)
port map(p , clkA , B8 3d , n mag vect (67) , n zone s ve c t (67) , a r e a e f f v e c t (67) ,

a r e a t o t v e c t (67) , Er vect (67) , Ec vect (67) ) ;
A9 4 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 4 ,UP,ZONE H,ZONE L)

204 port map(A9 4d , clkA , B8 3d2 , n mag vect (68) , n zone s ve c t (68) , a r e a e f f v e c t (68) ,
a r e a t o t v e c t (68) , Er vect (68) , Ec vect (68) ) ;

end generate ;

207 Center : i f (ELEMENT < N BIT−1 and ELEMENT > 0) generate
begin

A1 1 : s h o r t w i r e v e r t g en e r i c map(A, 1 , 1 ,RX,ZONE H,ZONE L)
210 port map( b in , clkA , B2 1d , n mag vect (1 ) , n zone s ve c t (1 ) , a r e a e f f v e c t (1 ) ,

a r e a t o t v e c t (1 ) , Er vect (1 ) , Ec vect (1 ) ) ;
A1 2 : s h o r t w i r e h o r i z g en e r i c map(A, 1 , 2 ,DOWN,ZONE H,ZONE L)

port map(A1 2d , clkA , B2 1d2 , n mag vect (2 ) , n zone s ve c t (2 ) , a r e a e f f v e c t (2 ) ,
a r e a t o t v e c t (2 ) , Er vect (2 ) , Ec vect (2 ) ) ;

213 A1 4 : s h o r t w i r e h o r i z g en e r i c map(A, 1 , 4 ,DOWN,ZONE H,ZONE L)
port map(A1 4d , clkA , B2 3d , n mag vect (4 ) , n zone s ve c t (4 ) , a r e a e f f v e c t (4 ) ,

a r e a t o t v e c t (4 ) , Er vect (4 ) , Ec vect (4 ) ) ;
A1 6 : s h o r t w i r e v e r t g en e r i c map(A, 1 , 6 ,RX,ZONE H,ZONE L)

216 port map(A1 6d , clkA , res , n mag vect (6 ) , n zone s ve c t (6 ) , a r e a e f f v e c t (6 ) ,
a r e a t o t v e c t (6 ) , Er vect (6 ) , Ec vect (6 ) ) ;
B2 1 : c r o s sw i r e g ene r i c map(B, 2 , 1 ,ZONE H,ZONE L)

port map(B2 1d , B2 1d2 , clkB , A out , C3 2d , n mag vect (9 ) , n zone s ve c t (9 ) ,
a r e a e f f v e c t (9 ) , a r e a t o t v e c t (9 ) , Er vect (9 ) , Ec vect (9 ) ) ;

219 D2 2 : wi re 2outputs g en e r i c map(D, 2 , 2 ,RX UP,ZONE H,ZONE L)
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port map(D2 2d , clkD , A1 2d , A3 3d , n mag vect (10) , n zone s ve c t (10) , a r e a e f f v e c t
(10) , a r e a t o t v e c t (10) , Er vect (10) , Ec vect (10) ) ;
D2 4 : l ong w i r e g ene r i c map(D, 2 , 4 ,LX,ZONE H,ZONE L)

222 port map(D2 4d , clkD , A1 4d , n mag vect (12) , n zone s ve c t (12) , a r e a e f f v e c t (12) ,
a r e a t o t v e c t (12) , Er vect (12) , Ec vect (12) ) ;
B2 5 : s h o r t w i r e h o r i z g en e r i c map(B, 2 , 5 ,DOWN,ZONE H,ZONE L)

port map(B2 5d , clkB , C3 5d , n mag vect (13) , n zone s ve c t (13) , a r e a e f f v e c t (13) ,
a r e a t o t v e c t (13) , Er vect (13) , Ec vect (13) ) ;

225 D2 6 : l ong w i r e g ene r i c map(D, 2 , 6 ,LX,ZONE H,ZONE L)
port map(D2 6d , clkD , A1 6d , n mag vect (14) , n zone s ve c t (14) , a r e a e f f v e c t (14) ,

a r e a t o t v e c t (14) , Er vect (14) , Ec vect (14) ) ;
C3 5 : s h o r t w i r e h o r i z g en e r i c map(C, 3 , 5 ,UP,ZONE H,ZONE L)

228 port map(C3 5d , clkC , D2 4d , n mag vect (21) , n zone s ve c t (21) , a r e a e f f v e c t (21) ,
a r e a t o t v e c t (21) , Er vect (21) , Ec vect (21) ) ;
A3 6 : l ong w i r e g ene r i c map(A, 3 , 6 ,LX,ZONE H,ZONE L)

port map(A3 6d , clkA , B2 5d , n mag vect (22) , n zone s ve c t (22) , a r e a e f f v e c t (22) ,
a r e a t o t v e c t (22) , Er vect (22) , Ec vect (22) ) ;

231 C3 7 : c r o s sw i r e g ene r i c map(C, 3 , 7 ,ZONE H,ZONE L)
port map(A in , C3 7d2 , clkC , D2 6d , D4 6d2 , n mag vect (23) , n zone s ve c t (23) ,

a r e a e f f v e c t (23) , a r e a t o t v e c t (23) , Er vect (23) , Ec vect (23) ) ;
D4 2 : doub l e w i r e ho r i z g en e r i c map(D, 4 , 2 ,ZONE H,ZONE L)

234 port map(D4 2d , D4 2d2 , clkD , A3 3d2 , A5 3d , n mag vect (26) , n zone s ve c t (26) ,
a r e a e f f v e c t (26) , a r e a t o t v e c t (26) , Er vect (26) , Ec vect (26) ) ;
B4 3 : and w i r e l x g en e r i c map(B, 4 , 3 ,DOWN,ZONE H,ZONE L)

port map(B4 3d , B4 3d2 , clkB , C5 4d , n mag vect (27) , n zone s ve c t (27) , a r e a e f f v e c t
(27) , a r e a t o t v e c t (27) , Er vect (27) , Ec vect (27) ) ;

237 D4 6 : i n v w i t h w i r e h o r i z g en e r i c map(D, 4 , 6 ,DOWN,ZONE H,ZONE L)
port map(D4 6d , D4 6d2 , clkD , A5 7d , A3 6d , n mag vect (30) , n zone s ve c t (30) ,

a r e a e f f v e c t (30) , a r e a t o t v e c t (30) , Er vect (30) , Ec vect (30) ) ;
B4 7 : w i re 2outputs g en e r i c map(B, 4 , 7 ,LXDOWN,ZONE H,ZONE L)

240 port map(B4 7d , clkB , C3 7d2 , PE out , n mag vect (31) , n zone s ve c t (31) , a r e a e f f v e c t
(31) , a r e a t o t v e c t (31) , Er vect (31) , Ec vect (31) ) ;
C5 2 : s h o r t w i r e h o r i z g en e r i c map(C, 5 , 2 ,UP,ZONE H,ZONE L)

port map(PE in , clkC , D4 2d2 , n mag vect (34) , n zone s ve c t (34) , a r e a e f f v e c t (34) ,
a r e a t o t v e c t (34) , Er vect (34) , Ec vect (34) ) ;

243 A5 3 : and 2outputs lx g en e r i c map(A, 5 , 3 ,ZONE H,ZONE L)
port map(A5 3d , A5 3d2 , clkA , B4 3d2 , B6 3d , n mag vect (35) , n zone s ve c t (35) ,

a r e a e f f v e c t (35) , a r e a t o t v e c t (35) , Er vect (35) , Ec vect (35) ) ;
A5 7 : and w i r e l x g en e r i c map(A, 5 , 7 ,UP,ZONE H,ZONE L)

246 port map(A5 7d , A5 7d2 , clkA , B4 7d , n mag vect (39) , n zone s ve c t (39) , a r e a e f f v e c t (39)
, a r e a t o t v e c t (39) , Er vect (39) , Ec vect (39) ) ;
D6 2 : l ong w i r e g ene r i c map(D, 6 , 2 ,RX,ZONE H,ZONE L)

port map(D6 2d , clkD , A5 3d2 , n mag vect (42) , n zone s ve c t (42) , a r e a e f f v e c t (42) ,
a r e a t o t v e c t (42) , Er vect (42) , Ec vect (42) ) ;

249 B6 3 : s h o r t w i r e h o r i z g en e r i c map(B, 6 , 3 ,UP,ZONE H,ZONE L)
port map(B6 3d , clkB , C5 4d2 , n mag vect (43) , n zone s ve c t (43) , a r e a e f f v e c t (43) ,

a r e a t o t v e c t (43) , Er vect (43) , Ec vect (43) ) ;
C7 2 : l ong w i r e g ene r i c map(D, 7 , 2 ,RX,ZONE H,ZONE L)

252 port map(C7 2d , clkC , D6 2d , n mag vect (50) , n zone s ve c t (50) , a r e a e f f v e c t (50) ,
a r e a t o t v e c t (50) , Er vect (50) , Ec vect (50) ) ;
C7 3 : s h o r t w i r e h o r i z g en e r i c map(C, 7 , 3 ,DOWN,ZONE H,ZONE L)

port map(C7 3d , clkC , D8 2d , n mag vect (51) , n zone s ve c t (51) , a r e a e f f v e c t (51) ,
a r e a t o t v e c t (51) , Er vect (51) , Ec vect (51) ) ;

255 C7 7 : s h o r t w i r e h o r i z g en e r i c map(C, 7 , 7 ,DOWN,ZONE H,ZONE L)
port map( en p in , clkC , D8 6d , n mag vect (55) , n zone s ve c t (55) , a r e a e f f v e c t (55) ,

a r e a t o t v e c t (55) , Er vect (55) , Ec vect (55) ) ;
B8 1 : c r o s sw i r e g ene r i c map(B, 8 , 1 ,ZONE H,ZONE L)

258 port map(B8 1d , B8 1d2 , clkB , en p out , C7 2d , n mag vect (57) , n zone s ve c t (57) ,
a r e a e f f v e c t (57) , a r e a t o t v e c t (57) , Er vect (57) , Ec vect (57) ) ;
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D8 2 : l ong w i r e g ene r i c map(D, 8 , 2 ,RX,ZONE H,ZONE L)
port map(D8 2d , clkD , A9 2d , n mag vect (58) , n zone s ve c t (58) , a r e a e f f v e c t (58) ,

a r e a t o t v e c t (58) , Er vect (58) , Ec vect (58) ) ;
261 B8 3 : c r o s sw i r e g ene r i c map(B, 8 , 3 ,ZONE H,ZONE L)

port map(B8 3d , B8 3d2 , clkB , C7 3d , C7 4d , n mag vect (59) , n zone s ve c t (59) ,
a r e a e f f v e c t (59) , a r e a t o t v e c t (59) , Er vect (59) , Ec vect (59) ) ;
D8 4 : w i re 2outputs g en e r i c map(D, 8 , 4 ,RXDOWN,ZONE H,ZONE L)

264 port map(D8 4d , clkD , A7 5d2 , A9 4d , n mag vect (60) , n zone s ve c t (60) , a r e a e f f v e c t
(60) , a r e a t o t v e c t (60) , Er vect (60) , Ec vect (60) ) ;
A9 1 : s h o r t w i r e v e r t g en e r i c map(A, 9 , 1 ,RX,ZONE H,ZONE L)

port map( r e s e t , clkA , B8 1d , n mag vect (65) , n zone s ve c t (65) , a r e a e f f v e c t (65) ,
a r e a t o t v e c t (65) , Er vect (65) , Ec vect (65) ) ;

267 A9 2 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 2 ,UP,ZONE H,ZONE L)
port map(A9 2d , clkA , B8 1d2 , n mag vect (66) , n zone s ve c t (66) , a r e a e f f v e c t (66) ,

a r e a t o t v e c t (66) , Er vect (66) , Ec vect (66) ) ;
A9 3 : s h o r t w i r e v e r t g en e r i c map(A, 9 , 3 ,RX,ZONE H,ZONE L)

270 port map(p , clkA , B8 3d , n mag vect (67) , n zone s ve c t (67) , a r e a e f f v e c t (67) ,
a r e a t o t v e c t (67) , Er vect (67) , Ec vect (67) ) ;
A9 4 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 4 ,UP,ZONE H,ZONE L)

port map(A9 4d , clkA , B8 3d2 , n mag vect (68) , n zone s ve c t (68) , a r e a e f f v e c t (68) ,
a r e a t o t v e c t (68) , Er vect (68) , Ec vect (68) ) ;

273 D8 6 : l ong w i r e g ene r i c map(D, 8 , 6 ,RX,ZONE H,ZONE L)
port map(D8 6d , clkD , A9 6d , n mag vect (62) , n zone s ve c t (62) , a r e a e f f v e c t (62) ,

a r e a t o t v e c t (62) , Er vect (62) , Ec vect (62) ) ;
A9 6 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 6 ,UP,ZONE H,ZONE L)

276 port map(A9 6d , clkA , B8 5d2 , n mag vect (70) , n zone s ve c t (70) , a r e a e f f v e c t (70)
, a r e a t o t v e c t (70) , Er vect (70) , Ec vect (70) ) ;

end generate ;

279 F i r s t : i f (ELEMENT = 0) generate
begin

A1 2 : s h o r t w i r e v e r t g en e r i c map(A, 1 , 2 ,LX,ZONE H,ZONE L)
282 port map( b in , clkA , B2 1d , n mag vect (2 ) , n zone s ve c t (2 ) , a r e a e f f v e c t (2 ) ,

a r e a t o t v e c t (2 ) , Er vect (2 ) , Ec vect (2 ) ) ;
B2 1 : s h o r t w i r e v e r t g en e r i c map(B, 2 , 1 ,RX,ZONE H,ZONE L)

port map(B2 1d , clkB , C3 2d , n mag vect (9 ) , n zone s ve c t (9 ) , a r e a e f f v e c t (9 ) ,
a r e a t o t v e c t (9 ) , Er vect (9 ) , Ec vect (9 ) ) ;

285 D2 2 : s h o r t w i r e v e r t g en e r i c map(D, 2 , 2 ,RX,ZONE H,ZONE L)
port map(D2 2d , clkD , A3 3d , n mag vect (10) , n zone s ve c t (10) , a r e a e f f v e c t (10) ,

a r e a t o t v e c t (10) , Er vect (10) , Ec vect (10) ) ;
D4 2 : s h o r t w i r e h o r i z g en e r i c map(D, 4 , 2 ,UP,ZONE H,ZONE L)

288 port map(D4 2d , clkD , A3 3d2 , n mag vect (26) , n zone s ve c t (26) , a r e a e f f v e c t (26) ,
a r e a t o t v e c t (26) , Er vect (26) , Ec vect (26) ) ;
B4 3 : and w i r e l x g en e r i c map(B, 4 , 3 ,DOWN,ZONE H,ZONE L)

port map(B4 3d , z e ro in , clkB , C5 4d , n mag vect (27) , n zone s ve c t (27) , a r e a e f f v e c t
(27) , a r e a t o t v e c t (27) , Er vect (27) , Ec vect (27) ) ;

291 B6 3 : s h o r t w i r e h o r i z g en e r i c map(B, 6 , 3 ,UP,ZONE H,ZONE L)
port map( z e ro in , clkB , C5 4d2 , n mag vect (43) , n zone s ve c t (43) , a r e a e f f v e c t (43) ,

a r e a t o t v e c t (43) , Er vect (43) , Ec vect (43) ) ;
B8 3 : s h o r t w i r e v e r t g en e r i c map(B, 8 , 3 ,RX,ZONE H,ZONE L)

294 port map(B8 3d , clkB , C7 4d , n mag vect (59) , n zone s ve c t (59) , a r e a e f f v e c t (59) ,
a r e a t o t v e c t (59) , Er vect (59) , Ec vect (59) ) ;
D8 4 : s h o r t w i r e v e r t g en e r i c map(D, 8 , 4 ,RX,ZONE H,ZONE L)

port map(D8 4d , clkD , A7 5d2 , n mag vect (60) , n zone s ve c t (60) , a r e a e f f v e c t (60) ,
a r e a t o t v e c t (60) , Er vect (60) , Ec vect (60) ) ;

297 A9 4 : s h o r t w i r e v e r t g en e r i c map(A, 9 , 4 ,LX,ZONE H,ZONE L)
port map(p , clkA , B8 3d , n mag vect (68) , n zone s ve c t (68) , a r e a e f f v e c t (68) ,

a r e a t o t v e c t (68) , Er vect (68) , Ec vect (68) ) ;
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300 −− Di f f e r e n t in ”Last ” PE
A1 4 : s h o r t w i r e h o r i z g en e r i c map(A, 1 , 4 ,DOWN,ZONE H,ZONE L)

port map(A1 4d , clkA , B2 3d , n mag vect (4 ) , n zone s ve c t (4 ) , a r e a e f f v e c t (4 ) ,
a r e a t o t v e c t (4 ) , Er vect (4 ) , Ec vect (4 ) ) ;

303 A1 6 : s h o r t w i r e v e r t g en e r i c map(A, 1 , 6 ,RX,ZONE H,ZONE L)
port map(A1 6d , clkA , res , n mag vect (6 ) , n zone s ve c t (6 ) , a r e a e f f v e c t (6 ) ,

a r e a t o t v e c t (6 ) , Er vect (6 ) , Ec vect (6 ) ) ;
D2 4 : l ong w i r e g ene r i c map(D, 2 , 4 ,LX,ZONE H,ZONE L)

306 port map(D2 4d , clkD , A1 4d , n mag vect (12) , n zone s ve c t (12) , a r e a e f f v e c t (12) ,
a r e a t o t v e c t (12) , Er vect (12) , Ec vect (12) ) ;
B2 5 : s h o r t w i r e h o r i z g en e r i c map(B, 2 , 5 ,DOWN,ZONE H,ZONE L)

port map(B2 5d , clkB , C3 5d , n mag vect (13) , n zone s ve c t (13) , a r e a e f f v e c t (13) ,
a r e a t o t v e c t (13) , Er vect (13) , Ec vect (13) ) ;

309 D2 6 : l ong w i r e g ene r i c map(D, 2 , 6 ,LX,ZONE H,ZONE L)
port map(D2 6d , clkD , A1 6d , n mag vect (14) , n zone s ve c t (14) , a r e a e f f v e c t (14) ,

a r e a t o t v e c t (14) , Er vect (14) , Ec vect (14) ) ;
C3 5 : s h o r t w i r e h o r i z g en e r i c map(C, 3 , 5 ,UP,ZONE H,ZONE L)

312 port map(C3 5d , clkC , D2 4d , n mag vect (21) , n zone s ve c t (21) , a r e a e f f v e c t (21) ,
a r e a t o t v e c t (21) , Er vect (21) , Ec vect (21) ) ;
A3 6 : l ong w i r e g ene r i c map(A, 3 , 6 ,LX,ZONE H,ZONE L)

port map(A3 6d , clkA , B2 5d , n mag vect (22) , n zone s ve c t (22) , a r e a e f f v e c t (22) ,
a r e a t o t v e c t (22) , Er vect (22) , Ec vect (22) ) ;

315 C3 7 : c r o s sw i r e g ene r i c map(C, 3 , 7 ,ZONE H,ZONE L)
port map(A in , C3 7d2 , clkC , D2 6d , D4 6d2 , n mag vect (23) , n zone s ve c t (23) ,

a r e a e f f v e c t (23) , a r e a t o t v e c t (23) , Er vect (23) , Ec vect (23) ) ;
D4 6 : i n v w i t h w i r e h o r i z g en e r i c map(D, 4 , 6 ,DOWN,ZONE H,ZONE L)

318 port map(D4 6d , D4 6d2 , clkD , A5 7d , A3 6d , n mag vect (30) , n zone s ve c t (30) ,
a r e a e f f v e c t (30) , a r e a t o t v e c t (30) , Er vect (30) , Ec vect (30) ) ;
B4 7 : w i re 2outputs g en e r i c map(B, 4 , 7 ,LXDOWN,ZONE H,ZONE L)

port map(B4 7d , clkB , C3 7d2 , PE out , n mag vect (31) , n zone s ve c t (31) , a r e a e f f v e c t
(31) , a r e a t o t v e c t (31) , Er vect (31) , Ec vect (31) ) ;

321 A5 7 : and wi r e l x g en e r i c map(A, 5 , 7 ,UP,ZONE H,ZONE L)
port map(A5 7d , A5 7d2 , clkA , B4 7d , n mag vect (39) , n zone s ve c t (39) , a r e a e f f v e c t

(39) , a r e a t o t v e c t (39) , Er vect (39) , Ec vect (39) ) ;
C7 7 : s h o r t w i r e h o r i z g en e r i c map(C, 7 , 7 ,DOWN,ZONE H,ZONE L)

324 port map( en p in , clkC , D8 6d , n mag vect (55) , n zone s ve c t (55) , a r e a e f f v e c t (55) ,
a r e a t o t v e c t (55) , Er vect (55) , Ec vect (55) ) ;
D8 6 : l ong w i r e g ene r i c map(D, 8 , 6 ,RX,ZONE H,ZONE L)

port map(D8 6d , clkD , A9 6d , n mag vect (62) , n zone s ve c t (62) , a r e a e f f v e c t (62) ,
a r e a t o t v e c t (62) , Er vect (62) , Ec vect (62) ) ;

327 A9 6 : s h o r t w i r e h o r i z g en e r i c map(A, 9 , 6 ,UP,ZONE H,ZONE L)
port map(A9 6d , clkA , B8 5d2 , n mag vect (70) , n zone s ve c t (70) , a r e a e f f v e c t (70) ,

a r e a t o t v e c t (70) , Er vect (70) , Ec vect (70) ) ;
end generate ;

330

end behavior ;

A.3 Multiply Accumulate unit (MAC)

This section reports the listings for the three implementations of the MAC unit. The basic

blocks of the parallel and serial-parallel MAC are not included. The listings of the ME-NML



170

Galois Multiplier already give a clear example of how to describe a basic block starting from

the drawing.

A.3.1 Parallel MAC

Here are only the top entity MAC N bit, and its two main components: the Multiplier and

the Adder/Accumulator ACC. The interconnection components are not shown.

Listing A.21. Top entity of the Parallel MAC: MAC N bit.
l i b r a r y i e e e ;

2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;

5 use work .MENML package . a l l ;

e n t i t y MAC N BIT i s
8 port (A,B: in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;

r e s e t : in s t d l o g i c ;
MAC result : out s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;

11 MAC Co: out s t d l o g i c ;
clkA , clkB , clkC , clkD : in s t d l o g i c ;
n mag : out natura l := i n i t n a t u r a l ;

14 n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;
AREATOT: out natura l ;

17 Er : out natura l ;
Ec : out natura l ) ;

end MAC N BIT;
20

a r c h i t e c t u r e behavior o f MAC N BIT i s
[ . . . ] −−Components d e f i n i t i o n

23

−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;

26 s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :
n a tu r a l v e c t o r ( (N BIT−1)∗N BIT downto 1) := ( othe r s => i n i t n a t u r a l ) ;

−− Connections among macro−b locks
s i g n a l result from ACC , resu l t f rom Bconn : s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;

29 s i g n a l in B conn from ACC : s t d l o g i c v e c t o r (N BIT−4 downto 0) ;
s i g n a l in ACC from B conn : s t d l o g i c v e c t o r (N BIT−4 downto 0) ;
s i g n a l B for FA ACC , B for mul , A from Aconn : s t d l o g i c v e c t o r (N BIT−1 downto 0) ;

32 s i g n a l Za vect , Zb vect : s t d l o g i c v e c t o r (2∗N BIT−2 downto 0) ;
s i g n a l Z l a s t , C temp in , C temp out , reset from ACC : s t d l o g i c ;
s i g n a l r e s e t l a t : s t d l o g i c v e c t o r (N BIT−1 downto 0) ;

35 s i g n a l temp from ACC to Mul : s t d l o g i c v e c t o r (N BIT−3 downto 0) ;
s i g n a l temp from Mul to ACC : s t d l o g i c v e c t o r (N BIT−3 downto 0) ;

begin
38 −− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every
PE i n s t an t i a t e d .

−− Resu l t s are g iven as outputs o f t h i s ”Galois MAC N BIT” component .
41 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
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va r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

44 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

47 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

50 nat Er := Er vect ;
nat Ec := Ec vect ;

53 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
56 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

59 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
62 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

65 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

68

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

71 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

74 Ec <= sum tot Ec ;
end proce s s ;

77 B input : B connect ion
port map(

B, result from ACC , in B conn from ACC ,
80 B for FA ACC , resu l t f rom Bconn , in ACC from B conn ,

c lk , clkA , clkB , clkC , clkD ,
n mag vect (1 ) , n zone s ve c t (1 ) , a r e a e f f v e c t (1 ) , a r e a t o t v e c t (1 ) , Er vect (1 ) ,
Ec vect (1 ) ) ;

83

Accumulator : ACC
port map(

86 Za vect , Zb vect , Z l a s t , B for FA ACC , C temp in , r e s e t , r e s e t l a t , temp from Mul to ACC ,
in ACC from B conn ,
temp from ACC to Mul , in B conn from ACC , B for mul , result from ACC ,MAC Co, C temp out ,
reset from ACC ,
clk , clkA , clkB , clkC , clkD ,

89 n mag vect (2 ) , n zone s ve c t (2 ) , a r e a e f f v e c t (2 ) , a r e a t o t v e c t (2 ) , Er vect (2 ) ,
Ec vect (2 ) ) ;

Mult : Mu l t i p l i e r
port map(

92 A from Aconn , B for mul , temp from ACC to Mul , C temp out , reset from ACC ,
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C temp in , Z la s t , Za vect , Zb vect , temp from Mul to ACC , r e s e t l a t ,
c lk , clkA , clkB , clkC , clkD ,

95 n mag vect (3 ) , n zone s ve c t (3 ) , a r e a e f f v e c t (3 ) , a r e a t o t v e c t (3 ) , Er vect (3 ) ,
Ec vect (3 ) ) ;

A input : A conn
port map(

98 A, A from Aconn ,
c lk , clkA , clkB , clkC , clkD ,
n mag vect (4 ) , n zone s ve c t (4 ) , a r e a e f f v e c t (4 ) , a r e a t o t v e c t (4 ) , Er vect (4 ) ,
Ec vect (4 ) ) ;

101 Connect i out :MAC conn
port map( resu l t f rom Bconn , MAC result ,
c lk , clkA , clkB , clkC , clkD ,

104 n mag vect (5 ) , n zone s ve c t (5 ) , a r e a e f f v e c t (5 ) , a r e a t o t v e c t (5 ) , Er vect (5 ) ,
Ec vect (5 ) ) ;

end behavior ;

Listing A.22. Array Multiplier: Multiplier.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y Mu l t i p l i e r i s
port ( A mul in , B mul in : in s t d l o g i c v e c t o r ( N bit−1 downto 0) ; −− input data vec to r

9 temp ACC in : in s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
C0 in , r e s a c c : in s t d l o g i c ;
C1 out , Z l a t sup : out s t d l o g i c ;

12 Za , Zb : out s t d l o g i c v e c t o r (2∗N bit−2 downto 0) ;
temp ACC out : out s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
r e s l a t : out s t d l o g i c v e c t o r ( N bit−1 downto 0) ;

15 clkA , clkB , clkC , clkD : in s t d l o g i c ;
n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;

18 AREA EFF: out natura l ;
AREATOT: out natura l ;
Er : out natura l ;

21 Ec : out natura l ) ;
end Mu l t i p l i e r ;

24 a r c h i t e c t u r e behavior o f Mu l t i p l i e r i s
[ . . . ] −− Components d e f i n i t i o n

27 −− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r ( ( N bit−1)∗N bit downto 1) := ( o the r s => i n i t n a t u r a l ) ;
30 s i g n a l x vect , y vect , C out : s t d l o g i c v e c t o r ( N bit∗∗2−N bit−1 downto 0) ;

s i g n a l temp up , temp down , S prev : s t d l o g i c v e c t o r ( N bit ∗∗2−3∗N bit+1 downto 0) ;
s i g n a l Co la s t : s t d l o g i c v e c t o r ( N bit−3 downto 0) ;

33 s i g n a l tempZ0 , tempSangle ,GND: s t d l o g i c ;
s i g n a l r e s v e c t : s t d l o g i c v e c t o r ( N bit−2 downto 0) ;

begin
36 −− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every
PE i n s t an t i a t e d .
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−− Resu l t s are g iven as outputs o f t h i s ” Ga l o i s Mu l t i p l i e r ” component .
39 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

42 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

45 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

48 nat Er := Er vect ;
nat Ec := Ec vect ;

51 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
54 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

57 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
60 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

63 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

66

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

69 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

72 Ec <= sum tot Ec ;
end proce s s ;

75 −− The s t r u c tu r e o f t h i s macro−block i s l i k e a matrix . In order to d e s c r i b e
−− the po s i t i o n o f PE, s i g n a l s and energy s i gna l , v e c t o r s are used and the
−− i ndec e s are computed in accord ing with the f o l l ow i n g r u l e s :

78 −− 1) the f i r s t row i s the lowest one ( in accord ing to the drawing ) , index
−− ’ k ’ i d e n t i f i e s the row s t a r t i n g from 0 ;
−− 2)moving from the l e f t to the r i g h t in the f i r s t row ( the used index i s

81 −− ’ i ’ ) , the po s i t i o n s t a r t s from 0 (1 f o r the energy ) up to the l a s t
−− element o f the row ;
−− 3) f o r the other rows the same procedure i s used , but the o f f s e t ,

84 −− cor re spond ing to the number o f e lements o f the prev ious rows , i s added .
Za (0 )<=tempZ0 ;
Zb (0 )<=tempZ0 ;

87 Za(N BIT−1)<=tempSangle ;
Zb(N BIT−1)<=tempSangle ;
Mul : f o r k in 0 to N bit−1 generate

90 row 0 : i f ( k=0) generate−−row 0 from down
row : f o r i in 0 to N bit−2 generate
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e l 0 : i f ( i =0) generate
93 e l :TWOAND HA inf

port map(
A mul in (k+1) , A mul in (0 ) , B mul in (0 ) , B mul in (1 ) , C0 in , temp ACC in ( i ) ,

96 x vec t ( ( k+1)∗(N BIT−1) ) , y vec t (0 ) , y vec t ( N bit−1+k) , C out ( i ∗( N bit−1)+k) ,
Za ( i +1) ,Zb( i +1) , C1 out , temp ACC out ( i ) , x vec t ( k∗( N bit−1)+i +1) , tempZ0 ,

c lk , clkA , clkB , clkC , clkD ,
n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) , a r e a e f f v e c t (

k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+i +1) , Ec vect (
k∗( N bit−1)+i +1) ) ;

99 end generate ;
o t h e r e l : i f ( ( i >0)and ( i<N bit−2) ) generate

e l : AND HA cent inf
102 port map(

B mul in ( i +1) , x vec t ( k∗( N bit−1)+i ) , temp down (k∗(N BIT−2)+i −1) , temp ACC in
( i ) , S prev (k∗( N bit−2)+i −1) ,

y vec t ( ( i +1)∗( N bit−1)+k) , x vec t ( k∗(N BIT−1)+i +1) ,Za ( i +1) ,Zb( i +1) , C out ( i
∗( N bit−1)+k) , temp up (k∗(N BIT−2)+i −1) , temp ACC out ( i ) ,

105 c lk , clkA , clkB , clkC , clkD ,
n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) , a r e a e f f v e c t (

k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+i +1) , Ec vect (
k∗( N bit−1)+i +1) ) ;

end generate ;
108 l a s t e l : i f ( i=N bit−2) generate

e l : AND HA fin inf
port map(

111 B mul in ( i +1) , x vec t ( k∗( N bit−1)+i ) , temp down (k∗(N BIT−2)+i −1) , S prev (k∗(
N bit−2)+i −1) , r e s a c c ,

y vec t ( ( i +1)∗( N bit−1)+k) , tempSangle , C out ( i ∗( N bit−1)+k) , temp up (k∗(N BIT
−2)+i −1) , r e s v e c t ( k ) ,

c lk , clkA , clkB , clkC , clkD ,
114 n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) , a r e a e f f v e c t (

k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+i +1) , Ec vect (
k∗( N bit−1)+i +1) ) ;

end generate ;
end generate ;

117 end generate ;
other row : i f ( ( k>0)and (k<N bit−1) ) generate

row : f o r i in 0 to N bit−2 generate
120 e l 0 : i f ( i =0) generate

e l :TWOAND FA cent
port map( A mul in (k+1) , x vec t ( k∗( N bit−1) ) , y vec t (k−1) , y vec t (N BIT+k−2) ,

C out ( i ∗( N bit−1)+k−1) , temp up ( ( k−1)∗(N BIT−2)+i ) ,
123 x vec t ( ( k+1)∗( N bit−1) ) , y vec t ( k ) , y vec t (N BIT+k−1) , C out ( i ∗( N bit−1)+k)

, S prev ( ( k−1)∗(N BIT−2)+i ) , temp down ( ( k−1)∗(N BIT−2)+i ) , x vec t ( k∗( N bit−1)+i +1) ,
c lk , clkA , clkB , clkC , clkD ,
n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,

a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

126 end generate ;
o t h e r e l : i f ( ( i >0)and ( i<N bit−2) ) generate

e l : FA cent cent
129 port map(

x vec t ( k∗( N bit−1)+i ) , y vec t ( ( i +1)∗(N BIT−1)+k−1) , C out ( i ∗( N bit−1)+k−1)
, temp down (k∗(N BIT−2)+i −1) , temp up ( ( k−1)∗(N BIT−2)+i ) , S prev (k∗(N BIT−2)+i −1) ,

S prev ( ( k−1)∗(N BIT−2)+i ) , C out ( i ∗( N bit−1)+k) , temp up (k∗(N BIT−2)+i −1) ,
temp down ( ( k−1)∗(N BIT−2)+i ) , x vec t ( k∗( N bit−1)+i +1) , y vec t ( ( i +1)∗(N BIT−1)+k) ,

132 c lk , clkA , clkB , clkC , clkD ,
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n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,
a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

end generate ;
135 l a s t e l : i f ( i=N bit−2) generate

e l : FA f in cent
port map(

138 x vec t ( k∗( N bit−1)+i ) , y vec t ( ( i +1)∗(N BIT−1)+k−1) , C out ( i ∗( N bit−1)+k−1)
, S prev (k∗(N BIT−2)+i −1) , temp down (k∗(N BIT−2)+i −1) , r e s v e c t (k−1) ,

y vec t ( ( i +1)∗(N BIT−1)+k) ,Za ( N bit−1+k) ,Zb( N bit−1+k) , C out ( i ∗( N bit−1)+
k) , temp up (k∗(N BIT−2)+i −1) , r e s v e c t ( k ) , r e s l a t (k−1) ,

c lk , clkA , clkB , clkC , clkD ,
141 n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,

a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

end generate ;
end generate ;

144 end generate ;
l a s t r ow : i f ( k=N bit−1) generate

row : f o r i in 0 to N bit−2 generate
147 e l 0 : i f ( i =0) generate

e l : AND HA sup
port map(

150 x vec t ( k∗( N bit−1) ) , y vec t (k−1) , y vec t (N BIT+k−2) , C out ( i ∗( N bit−1)+k−1)
, temp up ( ( k−1)∗(N BIT−2)+i ) ,

temp down ( ( k−1)∗(N BIT−2)+i ) ,GND, x vec t ( k∗( N bit−1)+i +1) , S prev ( ( k−1)∗(
N BIT−2)+i ) , Co la s t ( i ) ,

c lk , clkA , clkB , clkC , clkD ,
153 n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,

a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

end generate ;
o t h e r e l : i f ( ( i >0)and ( i<N bit−2) ) generate

156 e l : FA cent sup
port map(

x vec t ( k∗( N bit−1)+i ) , y vec t ( ( i +1)∗(N BIT−1)+k−1) , C out ( i ∗( N bit−1)+k−1)
, temp up ( ( k−1)∗(N BIT−2)+i ) , Co la s t ( i −1) ,

159 S prev ( ( k−1)∗(N BIT−2)+i ) , Co la s t ( i ) , temp down ( ( k−1)∗(N BIT−2)+i ) , x vec t
( k∗( N bit−1)+i +1) ,

c lk , clkA , clkB , clkC , clkD ,
n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,

a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

162 end generate ;
l a s t e l : i f ( i=N bit−2) generate

e l : FA f in sup
165 port map(

Co la s t ( i −1) , x vec t ( k∗( N bit−1)+i ) , y vec t ( ( i +1)∗(N BIT−1)+k−1) , C out ( i ∗(
N bit−1)+k−1) , r e s v e c t (k−1) ,

Za ( N bit−1+k) ,Zb( N bit−1+k) , Z la t sup , r e s l a t ( k ) , r e s l a t (k−1) ,
168 c lk , clkA , clkB , clkC , clkD ,

n mag vect ( k∗( N bit−1)+i +1) , n zone s ve c t ( k∗( N bit−1)+i +1) ,
a r e a e f f v e c t ( k∗( N bit−1)+i +1) , a r e a t o t v e c t ( k∗( N bit−1)+i +1) , Er vect ( k∗( N bit−1)+
i +1) , Ec vect ( k∗( N bit−1)+i +1) ) ;

end generate ;
171 end generate ;

end generate ;
end generate ;

174 end behavior ;
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Listing A.23. Ripple Carry Adder: ACC.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y ACC i s
port (Za , Zb : in s t d l o g i c v e c t o r (2∗N bit−2 downto 0) ;

9 Z la t sup : in s t d l o g i c ;
B ACC in : in s t d l o g i c v e c t o r ( N bit−1 downto 0) ;
C1 , r e s i n : in s t d l o g i c ;

12 r e s l a t i n : in s t d l o g i c v e c t o r ( N bit−1 downto 0) ;
temp MUL in : in s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
temp Bconn in : in s t d l o g i c v e c t o r ( N bit−4 downto 0) ;

15 temp MUL out : out s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
temp Bconn out : out s t d l o g i c v e c t o r ( N bit−4 downto 0) ;
B ACC out : out s t d l o g i c v e c t o r ( N bit−1 downto 0) ;

18 S ACC: out s t d l o g i c v e c t o r ( N bit∗2−1 downto 0) ;
Co ACC,C0 , r e s ou t : out s t d l o g i c ;
c lk , clkA , clkB , clkC , clkD : in s t d l o g i c ;

21 n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;

24 AREATOT: out natura l ;
Er : out natura l ;
Ec : out natura l ) ;

27 end ACC;

a r c h i t e c t u r e behavior o f ACC i s
30 [ . . . ] −−Components d e f i n i t i o n .

s i g n a l mrbit vect , en p vect , r e s u l t s v e c t : s t d l o g i c v e c t o r (N BIT downto 0) ;
33 −− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on

type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (N BIT∗2 downto 1) := ( o the r s => i n i t n a t u r a l ) ;
36 s i g n a l C v e c t i n f a : s t d l o g i c v e c t o r ( N bit−3 downto 0) ;

s i g n a l C ve c t i n f b : s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
s i g n a l C ve c t l a t : s t d l o g i c v e c t o r ( N bit+2 downto 0) ;

39 s i g n a l temp in : s t d l o g i c v e c t o r ( N bit−2 downto 1) ;
s i g n a l temp out : s t d l o g i c v e c t o r ( N bit−2 downto 1) ;
s i g n a l r e s v e c t : s t d l o g i c v e c t o r ( N bit−3 downto 0) ;

42 s i g n a l S prev : s t d l o g i c v e c t o r ( N bit−3 downto 0) ;
s i g n a l S p r ev vec t ou t : s t d l o g i c v e c t o r ( N bit−2 downto 0) ;
s i g n a l B2 , t emp f i r s t i n , t emp f i r s t ou t , err1 , e r r 2 : s t d l o g i c ;

45 begin

−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 −− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every

PE i n s t an t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” Ga l o i s Mu l t i p l i e r ” component .
N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
51 va r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :

na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
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va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

54 begin
n nat mag := n mag vect ;
n nat zones := n zone s ve c t ;

57 n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;
nat Er := Er vect ;

60 nat Ec := Ec vect ;

sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;

63 f o r i in 0 to n mag vect ’ l ength −1 loop
sum n mag := sum n mag + n nat mag ( i ) ;
sum n zones := sum n zones + n nat zones ( i ) ;

66 sum ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;

69 sum Ec := sum Ec + nat Ec ( i ) ;
end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

72 sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;

75 sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

78 n mag <= sum tot n mag ;
n zones <= sum tot n zones ;
a r e a e f f <= sum to t a r e a e f f ;

81 a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;
Ec <= sum tot Ec ;

84 end proce s s ;
−− The s t r u c tu r e o f t h i s macro−block i s l i k e a vec to r . The indece s f o r
−− s i g n a l s and energy s i g n a l are a s s i gned in accord ing to t h e i r p o s i t i o n

87 −− in the vec to r s t ruc ture ,
−− ’ i ’ i d e n t i f i e s the po s i t i o n . ; in p a r t i c u l a r i=0 i d e n t i f i e s the l e f tmos t PE.
B ACC out (0 )<=B ACC in (0 ) ;

90 ACC: f o r i in 0 to N bit∗2−2 generate
f i r s t e l em e n t : i f ( i =0) generate

HA FA: FIRST HA FA ACC
93 port map(

Za( i ) ,B ACC in ( i +1) ,B ACC in ( i +2) , r e s i n ,C1 , Za ( i +1) ,Zb( i +1) , temp MUL in ( i ) ,
t emp f i r s t i n ,

S ACC( i ) ,B ACC out ( i +1) , temp MUL out ( i ) , t emp f i r s t ou t ,C0 , C v e c t i n f a ( i ) ,
C ve c t i n f b ( i ) , S prev ( i ) , r e s v e c t ( i ) ,B2 ,

96 c lk , clkA , clkB , clkC , clkD ,
n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,

Er vect ( i +1) , Ec vect ( i +1) ) ;
end generate ;

99 second e lement : i f ( i =1) generate
FA: FA ACC inf
port map(

102 t emp f i r s t ou t , r e s v e c t ( i −1) ,Za ( i +1) ,Zb( i +1) , C v e c t i n f a ( i −1) , temp MUL in ( i ) ,
temp Bconn in ( i −1) , temp in ( i ) ,B2 , S prev ( i −1) ,

B ACC out ( i +1) , r e s v e c t ( i ) ,S ACC( i ) , S prev ( i ) , C v e c t i n f a ( i ) , C ve c t i n f b ( i ) ,
temp MUL out ( i ) , temp Bconn out ( i −1) , temp out ( i ) , t emp f i r s t i n ,

c lk , clkA , clkB , clkC , clkD ,
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105 n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,
Er vect ( i +1) , Ec vect ( i +1) ) ;
end generate ;

108 o th e r i n f e l emen t : i f ( ( i >1)and ( i<N bit−2) ) generate
FA: FA ACC inf
port map(

111 B ACC in ( i +1) , r e s v e c t ( i −1) ,Za ( i +1) ,Zb( i +1) , C v e c t i n f a ( i −1) , temp MUL in ( i ) ,
temp Bconn in ( i −1) , temp in ( i ) , temp out ( i −1) , S prev ( i −1) ,

B ACC out ( i +1) , r e s v e c t ( i ) ,S ACC( i ) , S prev ( i ) , C v e c t i n f a ( i ) , C ve c t i n f b ( i ) ,
temp MUL out ( i ) , temp Bconn out ( i −1) , temp out ( i ) , temp in ( i −1) ,

c lk , clkA , clkB , clkC , clkD ,
114 n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,

Er vect ( i +1) , Ec vect ( i +1) ) ;
end generate ;
ang l e e l ement : i f ( i=N bit−2) generate

117 FA: FA ACC angle rx
port map(
B ACC in ( i +1) , r e s v e c t ( i −1) ,Za ( i +1) , C v e c t i n f a ( i −1) , temp out ( i −1) , err1 , S prev ( i

−1) ,
120 B ACC out ( i +1) , r e s out , S ACC( i ) ,S ACC( i +1) , C ve c t l a t ( i−N bit+2) , temp in ( i −1) , err2

,
c lk , clkA , clkB , clkC , clkD ,
n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,

Er vect ( i +1) , Ec vect ( i +1) ) ;
123 end generate ;

l a t e l emen t : i f ( ( i>N bit−2)and ( i /=2∗N bit−2) ) generate
FA: FA ACC lat cent

126 port map(
Za( i +1) ,Zb( i +1) , r e s l a t i n ( i−N bit+1) , C ve c t l a t ( i−N bit+1) ,
S ACC( i +1) , C ve c t l a t ( i−N bit+2) ,

129 c lk , clkA , clkB , clkC , clkD ,
n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,

Er vect ( i +1) , Ec vect ( i +1) ) ;
end generate ;

132 l a s t e l emen t : i f ( i =2∗N bit−2) generate
FA: FA ACC lat sup
port map(

135 Z lat sup , r e s l a t i n ( i−N bit+1) , C ve c t l a t ( i−N bit+1) ,
S ACC( i +1) ,Co ACC,
clk , clkA , clkB , clkC , clkD ,

138 n mag vect ( i +1) , n zone s ve c t ( i +1) , a r e a e f f v e c t ( i +1) , a r e a t o t v e c t ( i +1) ,
Er vect ( i +1) , Ec vect ( i +1) ) ;
end generate ;

end generate ;
141 end behavior ;

A.3.2 Serial-Parallel MAC

Here is reported the top entity MAC 1D of the Serial-Parallel MAC, together with its four

components. This version of the MAC has been divided in four regions: body MAC 1D body,
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connections above MAC 1D conn above, connections below MAC 1D conn below, input B condi-

tioning MAC 1D input cond.

Listing A.24. Top entity of the Serial-Parallel MAC: MAC 1D.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y MAC 1D i s
port (DataA ,DataB , Rst : in s t d l o g i c ;

9 Result : out s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;
−−−−−−−−−−−−−−−−
clkA , clkB , clkC , clkD : in s t d l o g i c ;

12 −−−−−−−−−−−−−−−−
n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;

15 AREA EFF: out natura l ;
AREATOT: out natura l ;
Er : out natura l ;

18 Ec : out natura l ) ;
end MAC 1D;

21 a r c h i t e c t u r e behavior o f MAC 1D i s
[ . . . ] −− Components d e f i n i t i o n s

24 −− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (4 downto 1) := ( o the r s => i n i t n a t u r a l ) ;
27

−− in and out cons ide r ed from the body
s i g n a l DataA prop in : s t d l o g i c v e c t o r ( (2∗N BIT−2)−1 downto 0) ;

30 s i g n a l DataA prop out : s t d l o g i c v e c t o r ( (2∗N BIT−2)−1 downto 0) ;
s i g n a l DataB prop in : s t d l o g i c v e c t o r (3∗ (2∗N BIT−2)−1 downto 0) ;
s i g n a l DataB prop out : s t d l o g i c v e c t o r (2∗(2∗N BIT−2)−1 downto 0) ;

33 s i g n a l Rst prop in , Rst prop out : s t d l o g i c v e c t o r ( (2∗N BIT−1)−1 downto 0) ;
s i g n a l Res prop in : s t d l o g i c v e c t o r (2∗ (2∗N BIT−1)−1 downto 0) ;
s i g n a l Res prop out : s t d l o g i c v e c t o r (3∗ (2∗N BIT−1)−1 downto 0) ;

36 s i g n a l InputCond2Body : s t d l o g i c ;
s i g n a l InputCond2ConnAbove : s t d l o g i c v e c t o r (2∗N BIT−3 downto 0) ;

39 begin

−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 −− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec

−− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .

45 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
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48 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

51 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

54 nat Er := Er vect ;
nat Ec := Ec vect ;

57 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
60 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

63 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
66 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

69 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

72

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

75 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

78 Ec <= sum tot Ec ;
end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

81

Body block : MAC 1D body port map(
DataA => DataA ,

84 DataB => InputCond2Body ,
Rst => Rst ,
Res MSB => Result (2∗N BIT−1) ,

87 −−−−−−−−−−−−−−−−
DataA in vect => DataA prop in ( (2∗N BIT−2)−2 downto 0) ,
DataB in vect => DataB prop in ,

90 DataA out vect => DataA prop out ,
DataB out vect => DataB prop out ,

93 Rst i n v e c t => Rst prop in ,
Rs t out vec t => Rst prop out ,
Re s i n ve c t => Res prop in ,

96 Res out vec t => Res prop out ,
−−−−−−−−−−−−−−−−
clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,

99 n mag=>n mag vect (1 ) , n zones=>n zone s ve c t (1 ) ,AREA EFF=>AREA EFF vect (1 ) ,AREATOT=>
AREA TOT vect (1 ) ,Er=>Er vect (1 ) ,Ec=>Ec vect (1 ) ) ;

Conn above : MAC 1D conn above port map(
102 Inputs => InputCond2ConnAbove ,

DataA in => DataA prop out ,
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DataA out => DataA prop in ,
105 DataB in => DataB prop out ,

DataB out => DataB prop in ,
−−−−−−−−−−−−−−−−

108 clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
n mag=>n mag vect (2 ) , n zones=>n zone s ve c t (2 ) ,AREA EFF=>AREA EFF vect (2 ) ,AREATOT=>
AREA TOT vect (2 ) ,Er=>Er vect (2 ) ,Ec=>Ec vect (2 ) ) ;

111 Conn below : MAC 1D conn below port map(
Outputs => Result (2∗N BIT−2 downto 0) ,
Res prop in => Res prop out ,

114 Res prop out => Res prop in ,
Rst prop in => Rst prop out ,
Rst prop out => Rst prop in ,

117 −−−−−−−−−−−−−−−−
clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
n mag=>n mag vect (3 ) , n zones=>n zone s ve c t (3 ) ,AREA EFF=>AREA EFF vect (3 ) ,AREATOT=>
AREA TOT vect (3 ) ,Er=>Er vect (3 ) ,Ec=>Ec vect (3 ) ) ;

120

I npu t cond i t i on ing : MAC 1D input cond port map(
Data in => DataB ,

123 Data out (2∗N BIT−3 downto 0) => InputCond2ConnAbove ,
Data out (2∗N BIT−2) => InputCond2Body ,
−−−−−−−−−−−−−−−−

126 clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
n mag=>n mag vect (4 ) , n zones=>n zone s ve c t (4 ) ,AREA EFF=>AREA EFF vect (4 ) ,AREATOT=>
AREA TOT vect (4 ) ,Er=>Er vect (4 ) ,Ec=>Ec vect (4 ) ) ;

129 end behavior ;

Listing A.25. Body of the Serial-Parallel MAC: MAC 1D body.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y MAC 1D body i s
port (DataA ,DataB , Rst : in s t d l o g i c ;

9 Res MSB : out s t d l o g i c ;
−−−−−−−−−−−−−−−−
DataA in vect : in s t d l o g i c v e c t o r ( (2∗N BIT−2)−2 downto 0) ;

12 DataB in vect : in s t d l o g i c v e c t o r (3∗ (2∗N BIT−2)−1 downto 0) ;
DataA out vect : out s t d l o g i c v e c t o r ( (2∗N BIT−2)−1 downto 0) ;
DataB out vect : out s t d l o g i c v e c t o r (2∗ (2∗N BIT−2)−1 downto 0) ;

15

Rst i n v e c t : in s t d l o g i c v e c t o r ( (2∗N BIT−1)−1 downto 0) ;
Rs t out vec t : out s t d l o g i c v e c t o r ( (2∗N BIT−1)−1 downto 0) ;

18 Res in ve c t : in s t d l o g i c v e c t o r (2∗ (2∗N BIT−1)−1 downto 0) ;
Res out vec t : out s t d l o g i c v e c t o r (3∗ (2∗N BIT−1)−1 downto 0) ;
−−−−−−−−−−−−−−−−

21 clkA , clkB , clkC , clkD : in s t d l o g i c ;
−−−−−−−−−−−−−−−−
n mag : out natura l := i n i t n a t u r a l ;

24 n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;
AREATOT: out natura l ;
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27 Er : out natura l ;
Ec : out natura l ) ;

end MAC 1D body ;
30

a r c h i t e c t u r e behavior o f MAC 1D body i s
[ . . . ] −− Components d e f i n i t i o n s

33

−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;

36 s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :
n a tu r a l v e c t o r (2∗N BIT downto 1) := ( othe r s => i n i t n a t u r a l ) ;

type matrix 2Nx2 i s array (2∗N BIT−1 downto 0) o f s t d l o g i c v e c t o r (1 downto 0) ;
type matrix 2Nx3 i s array (2∗N BIT−1 downto 0) o f s t d l o g i c v e c t o r (2 downto 0) ;

39 type matrix 2Nx4 i s array (2∗N BIT downto 0) o f s t d l o g i c v e c t o r (3 downto 0) ;
s i g n a l DataA array , DataB array , Carry in ar ray , Carry out array , Re su l t ou t a r r ay :

s t d l o g i c v e c t o r (2∗N BIT downto 0) ;
s i g n a l DataA v in array , Rs t v in a r ray , Res v in ar ray , Rst v out ar ray , Res v out ar ray :

s t d l o g i c v e c t o r (2∗N BIT downto 0) ;
42 s i g n a l DataA v out array : matrix 2Nx2 ;

s i g n a l DataB v in array , DataB v out array : matrix 2Nx3 ;
s i g n a l Res prev in ar ray , Res prev out ar ray : matrix 2Nx4 ;

45 begin
−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec

48 −− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .
N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
51 va r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :

na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
v a r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

54 begin
n nat mag := n mag vect ;
n nat zones := n zone s ve c t ;

57 n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;
nat Er := Er vect ;

60 nat Ec := Ec vect ;

sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;

63 f o r i in 0 to n mag vect ’ l ength −1 loop
sum n mag := sum n mag + n nat mag ( i ) ;
sum n zones := sum n zones + n nat zones ( i ) ;

66 sum ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;

69 sum Ec := sum Ec + nat Ec ( i ) ;
end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

72 sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;

75 sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;
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78 n mag <= sum tot n mag ;
n zones <= sum tot n zones ;
a r e a e f f <= sum to t a r e a e f f ;

81 a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;
Ec <= sum tot Ec ;

84 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DataA array (0 ) <= DataA ;

87 DataB array (0 ) <= DataB ;
Rs t v i n a r r ay (0 ) <= Rst ;
Res MSB <= Resu l t ou t a r ray (2∗N BIT−1) ;

90

DataA v in array (2∗N BIT−3 downto 1) <= DataA in vect ;
R s t v i n a r r ay (2∗N BIT−1 downto 1) <= Rst i n v e c t ;

93 Rst out vec t <= Rst v out a r ray (2∗N BIT−2 downto 0) ;

Prop Above : f o r ind in 0 to 2∗N BIT−3 generate
96 DataA out vect ( ind ) <= DataA v out array ( ind ) (0 ) ;

DataB out vect ( ind∗2+1 downto ind ∗2) <= DataB v out array ( ind ) (1 downto 0) ;
DataB v in array ( ind ) <= DataB in vect ( ind∗3+2 downto ind ∗3) ;

99 end generate ;
Prop Below : f o r ind2 in 0 to 2∗N BIT−2 generate

Re s p r ev in a r r ay ( ind2+1) (3 downto 2) <= Res in ve c t ( ind2∗2+1 downto ind2 ∗2) ;
102 Res out vec t ( ind2∗3+2 downto ind2 ∗3) <= Res prev out ar ray ( ind2+1) (3 downto 1) ;

end generate ;

105 MAC Body : f o r i in 0 to 2∗N BIT−1 generate
MAC 1D Body map : MAC 1D body PE gene r i c map(ELEMENT=>i )
port map(

108 DataA=>DataA array ( i ) ,
DataB=>DataB array ( i ) ,
Carry in=>Car ry in a r ray ( i ) ,

111 Carry out=>Carry out ar ray ( i ) ,
clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
Resu l t out=>Resu l t ou t a r r ay ( i ) ,

114 −− other in /out
DataA v in=>DataA v in array ( i ) ,
Rs t v in=>Rst v in a r r ay ( i ) ,

117 Res v in=>Res v in a r r ay ( i ) ,
DataB v in=>DataB v in array ( i ) ,
Res prev in=>Res p r ev in a r r ay ( i ) ,

120

Rst v out=>Rst v out a r ray ( i ) ,
Res v out=>Res v out ar ray ( i ) ,

123 DataA v out=>DataA v out array ( i ) ,
DataB v out=>DataB v out array ( i ) ,
Res prev out=>Res prev out ar ray ( i ) ,

126 −−−−−−−−−−−−−−−−
n mag=>n mag vect ( i +1) , n zones=>n zone s ve c t ( i +1) ,
A r e a e f f=>Ar e a e f f v e c t ( i +1) , Area tot=>Area to t ve c t ( i +1) ,

129 Er=>Er vect ( i +1) , Ec=>Ec vect ( i +1) ) ;

Re s p r ev in a r r ay ( i +1) (1 ) <= Resu l t ou t a r r ay ( i ) ;
132 Res p r ev in a r r ay ( i +1) (0 ) <= Res v out ar ray ( i ) ;

Re s v in a r r ay ( i ) <= Res prev out ar ray ( i +1) (0 ) ;
DataA array ( i +1) <= DataA v out array ( i ) (1 ) ;

135 DataB array ( i +1) <= DataB v out array ( i ) (2 ) ;
Car ry in a r ray ( i +1) <= Carry out ar ray ( i ) ;
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end generate ;
138 end behavior ;

Listing A.26. Preskew network of the Serial-Parallel MAC: MAC 1D conn above.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

6

en t i t y MAC 1D conn above i s
port ( Inputs : in s t d l o g i c v e c t o r (2∗N BIT−3 downto 0) ;

9 DataA in : in s t d l o g i c v e c t o r (2∗N BIT−3 downto 0) ;
DataA out : out s t d l o g i c v e c t o r (2∗N BIT−3 downto 0) ;
DataB in : in s t d l o g i c v e c t o r (2∗ (2∗N BIT−2)−1 downto 0) ;

12 DataB out : out s t d l o g i c v e c t o r (3∗ (2∗N BIT−2)−1 downto 0) ;
clkA , clkB , clkC , clkD : in s t d l o g i c ;
−−−−−−−−−−−−−−−−

15 n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;

18 AREATOT: out natura l ;
Er : out natura l ;
Ec : out natura l ) ;

21 end MAC 1D conn above ;

a r c h i t e c t u r e behavior o f MAC 1D conn above i s
24 [ . . . ] −− Components d e f i n i t i o n s

−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
27 type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;

s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :
n a tu r a l v e c t o r (N CELLS CONN ABOVE+N CELLS CONN TRIANGLE downto 0) := ( othe r s =>
i n i t n a t u r a l ) ;

30 constant COLUMNS: i n t e g e r := 2∗N BIT−2;
type matr ix prop ver t i s array ( (COLUMNS/4+1) ∗(COLUMNS+(COLUMNS mod 4) /2) downto 0) o f

s t d l o g i c v e c t o r (5 downto 0) ;
s i g n a l s i g p r o p v e r t : mat r ix prop ver t ;

33 s i g n a l s i g p r o p h o r i z : s t d l o g i c v e c t o r ( ( (COLUMNS+1)∗(COLUMNS+2)/2 −1) downto 0) ;

s i g n a l s i g p r o p t r i a n g l e : s t d l o g i c v e c t o r ( ( ( 2∗N BIT−2)∗(2∗N BIT−1)/2 −1) downto 0) ;
36

begin
−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39 −− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec
−− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .

42 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

45 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
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n nat mag := n mag vect ;
48 n nat zones := n zone s ve c t ;

n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

51 nat Er := Er vect ;
nat Ec := Ec vect ;

54 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
57 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

60 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
63 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

66 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

69

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

72 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

75 Ec <= sum tot Ec ;
end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

78 Right part : f o r c o l in 0 to COLUMNS−1 generate
Select Column0 : i f ( c o l mod 4) = 0 generate
Conn4 up : MAC 1D c4 up port map(

81 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +3)/2 −1) ,
s i g o u t => s i g p r o p h o r i z ( ( c o l +1)∗( c o l +2)/2 −1) ,
s i g bo t tom in=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

84 s i g bot tom out=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
87 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

90 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

93 end generate ;
Select Column1 : i f ( c o l mod 4) = 1 generate

Conn8 up : MAC 1D c8 up port map(
96 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +3)/2 −1 downto ( c o l +2)∗( c o l +3)/2 −2) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +1)∗( c o l +2)/2 −1 downto ( c o l +1)∗( c o l +2)/2 −2) ,
s i g bo t tom in=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

99 s i g bot tom out=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
102 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
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105 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

108 end generate ;
Select Column2 : i f ( c o l mod 4) = 2 generate

Conn12 up : MAC 1D c12 up port map(
111 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +3)/2 −1 downto ( c o l +2)∗( c o l +3)/2 −3) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +1)∗( c o l +2)/2 −1 downto ( c o l +1)∗( c o l +2)/2 −3) ,
s i g bo t tom in=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

114 s i g bot tom out=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
117 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

120 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

123 end generate ;
Select Column3 : i f ( c o l mod 4) = 3 generate

Conn16 up : MAC 1D c16 up port map(
126 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +3)/2 −1 downto ( c o l +2)∗( c o l +3)/2 −4) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +1)∗( c o l +2)/2 −1 downto ( c o l +1)∗( c o l +2)/2 −4) ,
s i g bo t tom in=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

129 s i g bot tom out=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
132 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

135 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

138 end generate ;
Se l ec t STD el : i f c o l /4 > 0 generate
For smth : f o r N cSTD up in 0 to ( c o l /4)−1 generate

141 ConnSTD up : MAC 1D cSTD up port map(
s i g i n => s i g p r o p h o r i z ( ( ( c o l +1)∗( c o l +2)/2 + 4∗N cSTD up)+4 downto ( ( c o l +1)∗( c o l +2)
/2 + 4∗N cSTD up)+1) ,
s i g o u t => s i g p r o p h o r i z ( ( c o l ∗( c o l +1)/2 + 4∗N cSTD up)+3 downto ( c o l ∗( c o l +1)/2 + 4∗
N cSTD up) ) ,

144 s i g bo t tom in => s i g p r op v e r t ( c o l +(2∗N BIT−2)∗N cSTD up) (2 downto 0) ,
s i g bot tom out=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗N cSTD up) (5 downto 3) ,
s i g t o p i n => s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗(N cSTD up+1) ) (5 downto 3) ,

147 s i g t o p ou t => s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗(N cSTD up+1) ) (2 downto 0) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
150 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ,

153 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD up) ) ;

156 end generate ;
end generate ;
s i g p r o p v e r t ( c o l ) (2 ) <= DataA in (2∗N BIT−3−c o l ) ;

159 DataA out (2∗N BIT−3−c o l ) <= s i g p r o p ho r i z ( c o l ∗( c o l +1)/2) ;
s i g p r o p v e r t ( c o l ) (1 downto 0) <= DataB in ((2∗N BIT−3−c o l )∗2+1 downto (2∗N BIT−3−c o l
) ∗2) ;
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DataB out ( (2∗N BIT−3−c o l )∗3+2 downto (2∗N BIT−3−c o l ) ∗3) <= s i g p r op v e r t ( c o l ) (5
downto 3) ;

162 end generate ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Tr iang l e : f o r c o l in 1 to 2∗N BIT−3 generate

165 Row gen : f o r row in 1 to c o l generate
Green : i f ( ( ( 2∗N BIT−3)−(co l −1) ) mod 4) = 1 generate −− green , phase D

Drow col : l ong w i r e g en e r i c map(D, row , ( c o l +1)/2 ,LX,ZONE H,ZONE L)
168 port map( s i g p r o p t r i a n g l e ( c o l ∗( c o l +1)/2 +row ) , clkD , s i g p r o p t r i a n g l e ( c o l ∗( co l

−1)/2 +row−1) , n mag vect ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , n zone s ve c t ( c o l ∗(
co l −1)/2+row−1+N CELLS CONN ABOVE) , a r e a e f f v e c t ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) , a r e a t o t v e c t ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Er vect (
c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Ec vect ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) ) ;

end generate ;
Yellow : i f ( ( ( 2∗N BIT−3)−(co l −1) ) mod 4) = 2 generate −− yel low , phase A

171 Arow col : l ong w i r e g en e r i c map(A, row , ( c o l +2)/2 ,LX,ZONE H,ZONE L)
port map( s i g p r o p t r i a n g l e ( c o l ∗( c o l +1)/2 +row ) , clkA , s i g p r o p t r i a n g l e ( c o l ∗( co l

−1)/2 +row−1) , n mag vect ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , n zone s ve c t ( c o l ∗(
co l −1)/2+row−1+N CELLS CONN ABOVE) , a r e a e f f v e c t ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) , a r e a t o t v e c t ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Er vect (
c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Ec vect ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) ) ;

end generate ;
174 Pink : i f ( ( ( 2∗N BIT−3)−(co l −1) ) mod 4) = 3 generate −− pink , phase B

Brow col : l ong w i r e g en e r i c map(B, row , ( c o l +1)/2 ,LX,ZONE H,ZONE L)
port map( s i g p r o p t r i a n g l e ( c o l ∗( c o l +1)/2 +row ) , clkB , s i g p r o p t r i a n g l e ( c o l ∗( co l

−1)/2 +row−1) , n mag vect ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , n zone s ve c t ( c o l ∗(
co l −1)/2+row−1+N CELLS CONN ABOVE) , a r e a e f f v e c t ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) , a r e a t o t v e c t ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Er vect (
c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Ec vect ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) ) ;

177 end generate ;
Cyan : i f ( ( ( 2∗N BIT−3)−(co l −1) ) mod 4) = 0 generate −− cyan , phase C

Crow col : l ong w i r e g en e r i c map(C, row , ( c o l +2)/2 ,LX,ZONE H,ZONE L)
180 port map( s i g p r o p t r i a n g l e ( c o l ∗( c o l +1)/2 +row ) , clkC , s i g p r o p t r i a n g l e ( c o l ∗( co l

−1)/2 +row−1) , n mag vect ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , n zone s ve c t ( c o l ∗(
co l −1)/2+row−1+N CELLS CONN ABOVE) , a r e a e f f v e c t ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) , a r e a t o t v e c t ( c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Er vect (
c o l ∗( co l −1)/2+row−1+N CELLS CONN ABOVE) , Ec vect ( c o l ∗( co l −1)/2+row−1+
N CELLS CONN ABOVE) ) ;

end generate ;
F i r s t : i f row = 1 generate

183 s i g p r o p h o r i z ( (COLUMNS+1)∗(COLUMNS+2)/2 −c o l ) <= s i g p r o p t r i a n g l e ( c o l ∗( co l −1)
/2 +row−1) ;

end generate ;
end generate ;

186 end generate ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g p r o p t r i a n g l e ( ( ( 2∗N BIT−2)∗(2∗N BIT−1)/2 −1) downto (2∗N BIT−3)∗(2∗N BIT−2)/2+1)
<= Inputs (2∗N BIT−3 downto 1) ;

189 s i g p r o p h o r i z ( (COLUMNS+1)∗(COLUMNS+2)/2−COLUMNS)<= Inputs (0 ) ;
end behavior ;

Listing A.27. Deskew network of the Serial-Parallel MAC: MAC 1D conn below.
l i b r a r y i e e e ;

2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
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use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;

5 use work .MENML package . a l l ;

e n t i t y MAC 1D conn below i s
8 port ( Outputs : out s t d l o g i c v e c t o r (2∗N BIT−2 downto 0) ;

Res prop in : in s t d l o g i c v e c t o r (3∗ (2∗N BIT−1)−1 downto 0) ;
Res prop out : out s t d l o g i c v e c t o r (2∗ (2∗N BIT−1)−1 downto 0) ;

11 Rst prop in : in s t d l o g i c v e c t o r (2∗N BIT−2 downto 0) ;
Rst prop out : out s t d l o g i c v e c t o r (2∗N BIT−2 downto 0) ;
clkA , clkB , clkC , clkD : in s t d l o g i c ;

14 −−−−−−−−−−−−−−−−
n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;

17 AREA EFF: out natura l ;
AREATOT: out natura l ;
Er : out natura l ;

20 Ec : out natura l ) ;
end MAC 1D conn below ;

23 a r c h i t e c t u r e behavior o f MAC 1D conn below i s
[ . . . ] −− Components d e f i n i t i o n s

26 −− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (N CELLS CONN BELOW+N CELLS CONN TAIL downto 0) := ( othe r s =>
i n i t n a t u r a l ) ;

29 constant COLUMNS: i n t e g e r := 2∗N BIT−2;
type matr ix prop ver t i s array ( (COLUMNS/4+1) ∗(COLUMNS+(COLUMNS mod 4) /2) downto 0) o f

s t d l o g i c v e c t o r (5 downto 0) ;
s i g n a l s i g p r o p v e r t : mat r ix prop ver t ;

32 s i g n a l s i g p r o p h o r i z : s t d l o g i c v e c t o r ( ( (COLUMNS+1)∗(COLUMNS+2)/2 −1) downto 0) ;
type ma t r i x p r op t a i l i s array ( (2∗N BIT−1)−1 downto 0) o f s t d l o g i c v e c t o r ((4+N BIT)

∗2−1 downto 0) ;
s i g n a l s i g p r o p t a i l : ma t r i x p r op t a i l ;

35

begin
−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

38 −− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec
−− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .

41 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

44 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

47 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

50 nat Er := Er vect ;
nat Ec := Ec vect ;
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53 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

sum n mag := sum n mag + n nat mag ( i ) ;
56 sum n zones := sum n zones + n nat zones ( i ) ;

s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;

59 sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

end loop ;
62 sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;

65 sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

68

n mag <= sum tot n mag ;
n zones <= sum tot n zones ;

71 a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;

74 Ec <= sum tot Ec ;
end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 Le f t pa r t : f o r c o l in 0 to COLUMNS−1 generate
S e l e c t c 4 : i f ( c o l mod 4) = 0 generate

Conn4 down : MAC 1D c4 down port map(
80 s i g i n => s i g p r o p h o r i z ( ( c o l +1)∗( c o l +2)/2 −1) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +3)/2 −1) ,
s i g t o p i n=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

83 s i g t o p ou t=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
86 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

89 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

92 end generate ;
S e l e c t c 8 : i f ( c o l mod 4) = 1 generate

Conn8 down : MAC 1D c8 down port map(
95 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +1)/2 −1 downto ( c o l +2)∗( c o l +1)/2 −2) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +3)∗( c o l +2)/2 −1 downto ( c o l +3)∗( c o l +2)/2 −2) ,
s i g t o p i n=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

98 s i g t o p ou t=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
101 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

104 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

107 end generate ;
S e l e c t c 1 2 : i f ( c o l mod 4) = 2 generate

Conn12 down : MAC 1D c12 down port map(
110 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +1)/2 −1 downto ( c o l +2)∗( c o l +1)/2 −3) ,
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s i g o u t => s i g p r o p h o r i z ( ( c o l +3)∗( c o l +2)/2 −1 downto ( c o l +3)∗( c o l +2)/2 −3) ,
s i g t o p i n=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (2 downto 0) ,

113 s i g t o p ou t=> s i g p r op v e r t ( c o l +(2∗N BIT−2)∗( c o l /4) ) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
116 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

119 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

122 end generate ;
S e l e c t c 1 6 : i f ( c o l mod 4) = 3 generate

Conn16 down : MAC 1D c16 down port map(
125 s i g i n => s i g p r o p h o r i z ( ( c o l +2)∗( c o l +1)/2 −1 downto ( c o l +2)∗( c o l +1)/2 −4) ,

s i g o u t => s i g p r o p h o r i z ( ( c o l +3)∗( c o l +2)/2 −1 downto ( c o l +3)∗( c o l +2)/2 −4) ,
s i g t o p i n=> s i g p r op v e r t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1)

(2 downto 0) ,
128 s i g t o p ou t=> s i g p r op v e r t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1)

−1) (5 downto 3) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
131 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,

134 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( ( c o l ) mod 4)+1)∗( c o l /4+1) −1) ) ;

137 end generate ;
Select cSTD : i f c o l /4 > 0 generate

Select N cSTD : f o r N cSTD down in 0 to ( c o l /4)−1 generate
140 ConnSTD down : MAC 1D cSTD down port map(

s i g i n => s i g p r o p h o r i z ( ( c o l ∗( c o l +1)/2 + 4∗N cSTD down)+3 downto ( c o l ∗( c o l +1)
/2 + 4∗N cSTD down) ) ,

s i g o u t => s i g p r o p h o r i z ( ( ( c o l +1)∗( c o l +2)/2 + 4∗N cSTD down)+4 downto ( ( c o l
+1)∗( c o l +2)/2 + 4∗N cSTD down)+1) ,

143 s i g t o p i n => s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗N cSTD down) (2 downto 0) ,
s i g t o p ou t=> s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗N cSTD down) (5 downto 3) ,
s i g bo t tom in => s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗(N cSTD down+1) ) (5 downto 3) ,

146 s i g bot tom out => s i g p r o p v e r t ( c o l +(2∗N BIT−2)∗(N cSTD down+1) ) (2 downto 0) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
149 n mag=>n mag vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD down)

,
n zones=>n zone s ve c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) +

N cSTD down) ,
AREA EFF=>a r e a e f f v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) +

N cSTD down) ,
152 AREATOT=>a r e a t o t v e c t (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) +

N cSTD down) ,
Er=>Er vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD down) ,
Ec=>Ec vect (2∗ ( c o l /4) ∗( c o l /4+1) + ( ( c o l ) mod 4) ∗( c o l /4+1) + N cSTD down) ) ;

155 end generate ;
end generate ;

158 s i g p r o p v e r t ( c o l ) (2 downto 0) <= Res prop in ( c o l ∗3+2 downto co l ∗3) ;
s i g p r o p h o r i z ( c o l ∗( c o l +1)/2) <= Rst prop in ( c o l ) ;

161 Rst prop out ( c o l ) <= s i g p r op v e r t ( c o l ) (3 ) ;
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Res prop out ( c o l ∗2+1 downto co l ∗2) <= s i g p r op v e r t ( c o l ) (5 downto 4) ;
end generate ;

164 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Right part : f o r row in 2∗N BIT−1 downto 1 generate

S e l e c t c o l : f o r c o l in 1 to 4+(row+1)/2 generate
167 Se l e c t row : i f row<2∗N BIT−1 generate

Yellow : i f ( c o l mod 2)=1 and ( row mod 2)=1 generate −− ye l low
Arow col : d oub l e w i r e ho r i z g en e r i c map(A, row ,(4+N BIT)−(co l −1) ,ZONE H,ZONE L)

170 port map( s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , s i g p r o p t a i l ( row ) ( c o l ∗2−1) , clkA ,
s i g p r o p t a i l ( row−1) ( ( co l −1)∗2) , s i g p r o p t a i l ( row ) ( ( co l −1)∗2) ,

n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)
∗(4+N BIT)+co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) , a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect
( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) ) ;

end generate ;
173 Green : i f ( c o l mod 2)=1 and ( row mod 2)=0 generate −− green

Drow col : d oub l e w i r e ho r i z g en e r i c map(D, row ,(4+N BIT)−(co l −1) ,ZONE H,ZONE L)
port map( s i g p r o p t a i l ( row−1) ( c o l ∗2) , s i g p r o p t a i l ( row ) ( c o l ∗2) , clkD ,

s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , s i g p r o p t a i l ( row ) ( c o l ∗2−1) ,
176 n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)

∗(4+N BIT)+co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) , a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect
( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) ) ;

end generate ;
Cyan : i f ( c o l mod 2)=0 and ( row mod 2)=1 generate −− cyan

179 Crow col : d oub l e w i r e ho r i z g en e r i c map(C, row ,(4+N BIT)−(co l −1) ,ZONE H,ZONE L)
port map( s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , s i g p r o p t a i l ( row ) ( c o l ∗2−1) , clkC ,

s i g p r o p t a i l ( row−1) ( ( co l −1)∗2) , s i g p r o p t a i l ( row ) ( ( co l −1)∗2) ,
n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)

∗(4+N BIT)+co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) , a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect
( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) ) ;

182 end generate ;
Pink : i f ( c o l mod 2)=0 and ( row mod 2)=0 generate −− pink

Brow col : d oub l e w i r e ho r i z g en e r i c map(B, row ,(4+N BIT)−(co l −1) ,ZONE H,ZONE L)
185 port map( s i g p r o p t a i l ( row−1) ( c o l ∗2) , s i g p r o p t a i l ( row ) ( c o l ∗2) , clkB ,

s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , s i g p r o p t a i l ( row ) ( c o l ∗2−1) ,
n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)

∗(4+N BIT)+co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) , a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect
( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+
N CELLS CONN BELOW) ) ;

end generate ;
188 end generate ;

Last row : i f row=2∗N BIT−1 generate
191 Ye l l ow e l : i f ( c o l mod 2) = 1 generate −− ye l low

Arow col : s h o r t w i r e h o r i z g en e r i c map(A, row ,(4+N BIT)−(co l −1) ,UP,ZONE H,
ZONE L)

port map( s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , clkA , s i g p r o p t a i l ( row−1) ( ( co l −1)∗2) ,
n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)∗(4+N BIT)+
co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) ,
a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect ( ( row−1)∗(4+N BIT)+
co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) ) ;

194 end generate ;
Cyan el : i f ( c o l mod 2) = 0 generate −− cyan
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Crow col : s h o r t w i r e h o r i z g en e r i c map(C, row ,(4+N BIT)−(co l −1) ,UP,ZONE H,
ZONE L)

197 port map( s i g p r o p t a i l ( row−1) ( c o l ∗2−1) , clkC , s i g p r o p t a i l ( row−1) ( ( co l −1)∗2) ,
n mag vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , n zone s ve c t ( ( row−1)∗(4+N BIT)+
co l+N CELLS CONN BELOW) , a r e a e f f v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) ,
a r e a t o t v e c t ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) , Er vect ( ( row−1)∗(4+N BIT)+
co l+N CELLS CONN BELOW) , Ec vect ( ( row−1)∗(4+N BIT)+co l+N CELLS CONN BELOW) ) ;

end generate ;
end generate ;

200 end generate ;
Outputs (2∗N BIT−row−1) <= s i g p r o p t a i l ( row−1) (0 ) ;

end generate ;
203

D0 col : s h o r t w i r e h o r i z g en e r i c map(D,0 ,4+N BIT ,DOWN,ZONE H,ZONE L)
port map( s i g p r o p t a i l ( 0 ) (2 ) , clkD , s i g p r o p t a i l ( 0 ) (1 ) , n mag vect (6+N CELLS CONN BELOW)

, n zone s ve c t (6+N CELLS CONN BELOW) , a r e a e f f v e c t (6+N CELLS CONN BELOW) ,
a r e a t o t v e c t (6+N CELLS CONN BELOW) , Er vect (6+N CELLS CONN BELOW) , Ec vect (6+
N CELLS CONN BELOW) ) ;

206

Sig Propagat ion : f o r i in 1 to 2∗N BIT−2 generate
s i g p r o p t a i l ( i ) (9+ i ) <= s i g p r o p ho r i z (COLUMNS∗(COLUMNS+1)/2 +i ) ;

209 end generate ;

s i g p r o p t a i l ( 0 ) (9 ) <= Rst prop in (2∗N BIT−2) ;
212 Rst prop out (2∗N BIT−2) <= s i g p r o p t a i l ( 0 ) (8 ) ;

s i g p r o p t a i l ( 0 ) (7 ) <= Res prop in (6∗N BIT−6) ;
s i g p r o p t a i l ( 0 ) (5 ) <= Res prop in (6∗N BIT−5) ;

215 s i g p r o p t a i l ( 0 ) (3 ) <= Res prop in (6∗N BIT−4) ;
Res prop out (4∗N BIT−4) <= s i g p r o p t a i l ( 0 ) (6 ) ;
Res prop out (4∗N BIT−3) <= s i g p r o p t a i l ( 0 ) (4 ) ;

218 end behavior ;

Listing A.28. Circuit for distribution of the input B to the Serial-Parallel MAC:
MAC 1D input cond.

1 l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

4 use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

7 en t i t y MAC 1D input cond i s
port ( Data in : in s t d l o g i c ;

Data out : out s t d l o g i c v e c t o r (2∗N BIT−2 downto 0) ;
10 clkA , clkB , clkC , clkD : in s t d l o g i c ;

−−−−−−−−−−−−−−−−
n mag : out natura l := i n i t n a t u r a l ;

13 n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;
AREATOT: out natura l ;

16 Er : out natura l ;
Ec : out natura l ) ;

end en t i t y MAC 1D input cond ;
19

a r c h i t e c t u r e s t r u c t o f MAC 1D input cond i s
[ . . . ] −− Components d e f i n i t i o n s

22

−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
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type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
25 s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (N BIT−1 downto 1) := ( o the r s => i n i t n a t u r a l ) ;
s i g n a l propagat ion : s t d l o g i c v e c t o r (N BIT∗3−1 downto 0) ;

28 begin
−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec o f every

standard c e l l i n s t a n t i a t e d .
31 −− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .

N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;

34 va r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
v a r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
37 n nat mag := n mag vect ;

n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;

40 na t a r e a t o t := a r e a t o t v e c t ;
nat Er := Er vect ;
nat Ec := Ec vect ;

43

sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;
f o r i in 0 to n mag vect ’ l ength −1 loop

46 sum n mag := sum n mag + n nat mag ( i ) ;
sum n zones := sum n zones + n nat zones ( i ) ;
s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;

49 sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

52 end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;
sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;

55 s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;

58 sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

n mag <= sum tot n mag ;
61 n zones <= sum tot n zones ;

a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;

64 Er <= sum tot Er ;
Ec <= sum tot Ec ;

end proce s s ;
67 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

propagat ion (1 ) <= Data in ;
Data out (2∗N BIT−2) <= propagat ion (N BIT∗3−2) ;

70

Input Condi t ion ing : f o r i in 0 to N BIT−2 generate −− 0 parte da l basso
InCondElement : MAC 1D input cond element g ene r i c map ( i )

73 port map
( prop vec t in up => propagat ion ( i ∗3+1 downto i ∗3) ,
prop vect out up => propagat ion ( i ∗3+2) ,
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76 prop vect in down => propagat ion ( ( i +1)∗3+2) ,
prop vect out down => propagat ion ( ( i +1)∗3+1 downto ( i +1)∗3) ,
Outputs (0 ) => Data out (2∗ (N BIT−2)+1−(2∗ i ) ) ,

79 Outputs (1 ) => Data out (2∗ (N BIT−2)+1−(2∗ i +1) ) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
82 n mag=>n mag vect ( i +1) ,

n zones=>n zone s ve c t ( i +1) ,
AREA EFF=>a r e a e f f v e c t ( i +1) ,

85 AREATOT=>a r e a t o t v e c t ( i +1) ,
Er=>Er vect ( i +1) ,
Ec=>Ec vect ( i +1) ) ;

88 end generate ;
end a r c h i t e c t u r e ;

A.3.3 Serial MAC

This section contains the top entity MAC 0D 8bit of the 8-bit Serial MAC, together with the

listing of its shared Adder MAC 0D Adder 8bit.

Listing A.29. Top entity of the 8-bit Serial MAC: MAC 0D 8bit.
1 l i b r a r y i e e e ;

use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;

4 use i e e e . s t d l o g i c a r i t h . a l l ;
use work .MENML package . a l l ;

7 en t i t y MAC 0D 8bit i s
port (DataA , DataB : in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;

Feedback ctr l , Car ry r s t : in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
10 Ct r l r e s u l t s , Acc rst , Rst acc new , Carry rst shared FA : in s t d l o g i c ;

Resu l t s : out s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
R e s u l t s s e r i a l : out s t d l o g i c ;

13

clkA , clkB , clkC , clkD : in s t d l o g i c ;
n mag : out natura l := i n i t n a t u r a l ;

16 n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;
AREATOT: out natura l ;

19 Er : out natura l ;
Ec : out natura l ) ;

end MAC 0D 8bit ;
22

a r c h i t e c t u r e behavior o f MAC 0D 8bit i s
[ . . . ] −− Components d e f i n i t i o n

25

type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;
s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :

n a tu r a l v e c t o r (N BIT+1 downto 1) := ( o the r s => i n i t n a t u r a l ) ;
28 s i g n a l Acc in , Acc out , Pa r t i a l s o u t : s t d l o g i c ;

type matrix i s array (N BIT downto 0) o f s t d l o g i c v e c t o r (13 downto 0) ;
s i g n a l prop matr ix : matrix ;

31
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begin
prop matr ix (0 ) (2 )<= Ct r l r e s u l t s ;

34 prop matr ix (N BIT) (8 )<= Acc in ;
prop matr ix (N BIT) (9 )<= Rst acc new ;
Acc out <= prop matr ix (N BIT) (0 ) ;

37 Pa r t i a l s o u t <= prop matr ix (N BIT) (1 ) ;

El : f o r i in 0 to N BIT−1 generate
40 MAC Body : MAC 0D body 8bit g en e r i c map(ELEMENT => i )

port map(
DataA=>DataA( i ) ,DataB=>DataB( i ) ,

43 Feedback ct r l=>Feedback ct r l ( i ) , Car ry r s t=>Car ry r s t ( i ) ,
Result=>Resu l t s ( i ) ,

46 p r o p l e f t i n => prop matr ix ( i ) (7 downto 0) ,
p r op r i g h t i n => prop matr ix ( i +1) (13 downto 8) ,
p r o p l e f t o u t => prop matr ix ( i ) (13 downto 8) ,

49 prop r i gh t ou t => prop matr ix ( i +1) (7 downto 0) ,

clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
52 n mag=>n mag vect ( i +1) , n zones=>n zone s ve c t ( i +1) ,

A r e a e f f=>Ar e a e f f v e c t ( i +1) , Area tot=>Area to t ve c t ( i +1) ,
Er=>Er vect ( i +1) , Ec=>Ec vect ( i +1)

55 ) ;
end generate ;

58 Shared FA : MAC 0D Adder 8bit
port map(

Pa r t i a l s o u t=>Par t i a l s ou t , Acc out=>Acc out ,
61 Acc r s t=>Acc rst , Car ry r s t=>Carry rst shared FA ,

Acc in=>Acc in , R e s u l t s s e r i a l=>Re s u l t s s e r i a l ,
clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,

64 n mag=>n mag vect (N BIT+1) , n zones=>n zone s ve c t (N BIT+1) ,
A r ea e f f=>Ar e a e f f v e c t (N BIT+1) , Area tot=>Area to t ve c t (N BIT+1) ,
Er=>Er vect (N BIT+1) , Ec=>Ec vect (N BIT+1)

67 ) ;

−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 −− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec

−− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .

73 N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,
Ec vect )
v a r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :
na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;

76 va r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

begin
n nat mag := n mag vect ;

79 n nat zones := n zone s ve c t ;
n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;

82 nat Er := Er vect ;
nat Ec := Ec vect ;

85 sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ;
sum area tot := 0 ; sum Er:= 0 ; sum Ec:= 0 ;
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f o r i in 0 to n mag vect ’ l ength −1 loop
88 sum n mag := sum n mag + n nat mag ( i ) ;

sum n zones := sum n zones + n nat zones ( i ) ;
s um ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;

91 sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;
sum Ec := sum Ec + nat Ec ( i ) ;

94 end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;
sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;

97 s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;
sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;

100 sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

n mag <= sum tot n mag ;
103 n zones <= sum tot n zones ;

a r e a e f f <= sum to t a r e a e f f ;
a r e a t o t <= sum to t a r ea to t ;

106 Er <= sum tot Er ;
Ec <= sum tot Ec ;

end proce s s ;
109 end a r c h i t e c t u r e ;

Listing A.30. Shared adder: MAC 0D Adder 8bit.
l i b r a r y i e e e ;

2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
use i e e e . s t d l o g i c un s i g n ed . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;

5 use work .MENML package . a l l ;

e n t i t y MAC 0D Adder 8bit i s
8 port ( Pa r t i a l s ou t , Acc out : in s t d l o g i c ;

Acc rst , Car ry r s t : in s t d l o g i c ;
Acc in , R e s u l t s s e r i a l : out s t d l o g i c ;

11

clkA , clkB , clkC , clkD : in s t d l o g i c ;
n mag : out natura l := i n i t n a t u r a l ;

14 n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;
AREATOT: out natura l ;

17 Er : out natura l ;
Ec : out natura l ) ;

end MAC 0D Adder 8bit ;
20

a r c h i t e c t u r e behavior o f MAC 0D Adder 8bit i s
[ . . . ] −− Components d e f i n i t i o n

23

−− Vectors o f natura l f o r magnets and c e l l count , area and energy eva lua t i on
type na tu r a l v e c t o r i s array ( natura l range <>) o f natura l ;

26 s i g n a l n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect , Ec vect :
n a tu r a l v e c t o r (49 downto 1) := ( o the r s => i n i t n a t u r a l ) ;

−− Connections among c e l l s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s i g n a l D1 1d , D1 1d2 , B1 2d , D1 3d , B1 4d , A2 1d , C2 2d , C2 2d2 , A2 3d , A2 3d2 , C2 4d , C2 4d2 ,

A2 5d : s t d l o g i c ;
29 s i g n a l B3 1d , B3 1d2 , D3 2d , D3 2d2 , B3 3d , B3 3d2 , D3 4d , D3 4d2 , C4 1d , A4 2d , A4 2d2 , C4 3d ,

C4 3d2 , A4 4d , A4 4d2 , C4 5d : s t d l o g i c ;
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s i g n a l D5 1d , D5 1d2 , B5 2d , B5 2d2 , D5 3d , D5 3d2 , B5 4d , B5 4d2 , C6 1d , C6 1d2 , A6 2d , A6 2d2 ,
C6 3d , A6 4d , A6 4d2 : s t d l o g i c ;

s i g n a l D7 1d , D7 1d2 , B7 2d , B7 2d2 , D7 3d , D7 3d2 , B7 4d , B7 4d2 , C8 1d , A8 2d , A8 2d2 , C8 3d ,
C8 3d2 , A8 4d , A8 4d2 , C8 5d , C8 5d2 : s t d l o g i c ;

32 s i g n a l D9 1d , D9 1d2 , B9 2d , B9 2d2 , D9 3d , D9 3d2 , B9 4d , B9 4d2 , D9 5d , A10 1d , C10 2d , A10 3d ,
C10 4d , A10 5d , A10 5d2 : s t d l o g i c ;

s i g n a l D9 5q2 , A10 1q , A10 5q2 : s t d l o g i c ;

35 begin
−− SUM OF ARRAYS OF NATURAL ELEMENTS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− This p roce s s sums up the va lue s o f n mag , n zones , a r e a e f f , a r ea to t , Er , Ec

38 −− o f every standard c e l l i n s t a n t i a t e d .
−− Resu l t s are g iven as outputs o f t h i s ” PE ga lo i s ” component .
N mag sum : proce s s ( n mag vect , n zones vec t , a r e a e f f v e c t , a r e a t o t v e c t , Er vect ,

Ec vect )
41 va r i ab l e n nat mag , n nat zones , n a t a r e a e f f , na t a r ea to t , nat Er , nat Ec :

na tu r a l v e c t o r ( n mag vect ’ length−1 downto 0) := ( o the r s => i n i t n a t u r a l ) ;
v a r i ab l e sum n mag , sum n zones , sum area e f f , sum area tot , sum Er , sum Ec : natura l
:= i n i t n a t u r a l ;
v a r i ab l e sum tot n mag , sum tot n zones , s um to t a r e a e f f , sum tot a rea to t ,
sum tot Er , sum tot Ec : natura l := i n i t n a t u r a l ;

44 begin
n nat mag := n mag vect ;
n nat zones := n zone s ve c t ;

47 n a t a r e a e f f := a r e a e f f v e c t ;
n a t a r e a t o t := a r e a t o t v e c t ;
nat Er := Er vect ;

50 nat Ec := Ec vect ;

sum n mag := 0 ; sum n zones := 0 ; sum area e f f := 0 ; sum area tot := 0 ; sum Er:= 0 ;
sum Ec:= 0 ;

53 f o r i in 0 to n mag vect ’ l ength −1 loop
sum n mag := sum n mag + n nat mag ( i ) ;
sum n zones := sum n zones + n nat zones ( i ) ;

56 sum ar ea e f f := sum area e f f + n a t a r e a e f f ( i ) ;
sum area tot := sum area tot + na t a r e a t o t ( i ) ;
sum Er := sum Er + nat Er ( i ) ;

59 sum Ec := sum Ec + nat Ec ( i ) ;
end loop ;
sum tot n mag := sum n mag ∗ INTERCONNECTOVERHEAD;

62 sum tot n zones := sum n zones ∗ INTERCONNECTOVERHEAD;
s um to t a r e a e f f := sum area e f f ∗ INTERCONNECTOVERHEAD;
sum to t a r ea to t := sum area tot ∗ INTERCONNECTOVERHEAD;

65 sum tot Er := sum Er ∗ INTERCONNECTOVERHEAD;
sum tot Ec := sum Ec ∗ INTERCONNECTOVERHEAD;

68 n mag <= sum tot n mag ;
n zones <= sum tot n zones ;
a r e a e f f <= sum to t a r e a e f f ;

71 a r e a t o t <= sum to t a r ea to t ;
Er <= sum tot Er ;
Ec <= sum tot Ec ;

74 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

77 C6 1d <= Pa r t i a l s o u t ;
C8 1d <= Acc out ;
A10 5d2 <= Acc r s t ;

80 D1 1d <= Carry r s t ;
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Acc in <= A10 1q ;
R e s u l t s s e r i a l <= A10 5q2 ;

83

−− STANDARD CELLS INSTANTIATIONS −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Labels have the f o l l ow i ng form : ( l e t t e r ) ( number ) (number )

86 −− The l e t t e r i s the c l o ck phase , f i r s t number the r e l a t i v e row with in the PE,
−− second number the r e l a t i v e column with in the PE
−− In order to a s s i gn s i g n a l s ∗d or ∗d2 to a c e l l I f o l l ow t h i s sequence :

89 −− up l e f t , up r ight , down le f t , down right

−−Row1
92 D1 1 : and wi re rx g ene r i c map(D, 1 , 1 ,DOWN,ZONE H,ZONE L)

port map(D1 1d , D1 1d2 , clkD , A2 1d , n mag vect (1 ) , n zone s ve c t (1 ) , a r e a e f f v e c t (1 ) ,
a r e a t o t v e c t (1 ) , Er vect (1 ) , Ec vect (1 ) ) ;

B1 2 : s h o r t w i r e h o r i z g en e r i c map(B, 1 , 2 ,DOWN,ZONE H,ZONE L)
95 port map(B1 2d , clkB , C2 2d , n mag vect (2 ) , n zone s ve c t (2 ) , a r e a e f f v e c t (2 ) ,

a r e a t o t v e c t (2 ) , Er vect (2 ) , Ec vect (2 ) ) ;
D1 3 : s h o r t w i r e h o r i z g en e r i c map(D, 1 , 3 ,DOWN,ZONE H,ZONE L)

port map(D1 3d , clkD , A2 3d , n mag vect (3 ) , n zone s ve c t (3 ) , a r e a e f f v e c t (3 ) ,
a r e a t o t v e c t (3 ) , Er vect (3 ) , Ec vect (3 ) ) ;

98 B1 4 : s h o r t w i r e h o r i z g en e r i c map(B, 1 , 4 ,DOWN,ZONE H,ZONE L)
port map(B1 4d , clkB , C2 4d , n mag vect (4 ) , n zone s ve c t (4 ) , a r e a e f f v e c t (4 ) ,
a r e a t o t v e c t (4 ) , Er vect (4 ) , Ec vect (4 ) ) ;

−−Row2
101 A2 1 : s h o r t w i r e v e r t g en e r i c map(A, 2 , 1 ,RX,ZONE H,ZONE L)

port map(A2 1d , clkA , B3 1d , n mag vect (6 ) , n zone s ve c t (6 ) , a r e a e f f v e c t (6 ) ,
a r e a t o t v e c t (6 ) , Er vect (6 ) , Ec vect (6 ) ) ;

C2 2 : doub l e w i r e ho r i z g en e r i c map(C, 2 , 2 ,ZONE H,ZONE L)
104 port map(C2 2d , C2 2d2 , clkC , D1 1d2 , D3 2d , n mag vect (7 ) , n zone s ve c t (7 ) , a r e a e f f v e c t

(7 ) , a r e a t o t v e c t (7 ) , Er vect (7 ) , Ec vect (7 ) ) ;
A2 3 : doub l e w i r e ho r i z g en e r i c map(A, 2 , 3 ,ZONE H,ZONE L)

port map(A2 3d , A2 3d2 , clkA , B1 2d , B3 3d , n mag vect (8 ) , n zone s ve c t (8 ) , a r e a e f f v e c t
(8 ) , a r e a t o t v e c t (8 ) , Er vect (8 ) , Ec vect (8 ) ) ;

107 C2 4 : doub l e w i r e ho r i z g en e r i c map(C, 2 , 4 ,ZONE H,ZONE L)
port map(C2 4d , C2 4d2 , clkC , D1 3d , D3 4d , n mag vect (9 ) , n zone s ve c t (9 ) , a r e a e f f v e c t
(9 ) , a r e a t o t v e c t (9 ) , Er vect (9 ) , Ec vect (9 ) ) ;

A2 5 : s h o r t w i r e v e r t g en e r i c map(A, 2 , 5 ,LX,ZONE H,ZONE L)
110 port map(A2 5d , clkA , B1 4d , n mag vect (10) , n zone s ve c t (10) , a r e a e f f v e c t (10) ,

a r e a t o t v e c t (10) , Er vect (10) , Ec vect (10) ) ;
−−Row3
B3 1 : doub l e w i r e v e r t g en e r i c map(B, 3 , 1 ,ZONE H,ZONE L)

113 port map(B3 1d , B3 1d2 , clkB , C4 1d , C2 2d2 , n mag vect (11) , n zone s ve c t (11) ,
a r e a e f f v e c t (11) , a r e a t o t v e c t (11) , Er vect (11) , Ec vect (11) ) ;

D3 2 : doub l e w i r e ho r i z g en e r i c map(D, 3 , 2 ,ZONE H,ZONE L)
port map(D3 2d , D3 2d2 , clkD , A2 3d2 , A4 2d , n mag vect (12) , n zone s ve c t (12) ,
a r e a e f f v e c t (12) , a r e a t o t v e c t (12) , Er vect (12) , Ec vect (12) ) ;

116 B3 3 : doub l e w i r e ho r i z g en e r i c map(B, 3 , 3 ,ZONE H,ZONE L)
port map(B3 3d , B3 3d2 , clkB , C2 4d2 , C4 3d , n mag vect (13) , n zone s ve c t (13) ,
a r e a e f f v e c t (13) , a r e a t o t v e c t (13) , Er vect (13) , Ec vect (13) ) ;

D3 4 : doub l e w i r e ho r i z g en e r i c map(D, 3 , 4 ,ZONE H,ZONE L)
119 port map(D3 4d , D3 4d2 , clkD , A2 5d , A4 4d , n mag vect (14) , n zone s ve c t (14) , a r e a e f f v e c t

(14) , a r e a t o t v e c t (14) , Er vect (14) , Ec vect (14) ) ;
−−Row4
C4 1 : s h o r t w i r e v e r t g en e r i c map(C, 4 , 1 ,RX,ZONE H,ZONE L)

122 port map(C4 1d , clkC , D5 1d , n mag vect (15) , n zone s ve c t (15) , a r e a e f f v e c t (15) ,
a r e a t o t v e c t (15) , Er vect (15) , Ec vect (15) ) ;

A4 2 : doub l e w i r e ho r i z g en e r i c map(A, 4 , 2 ,ZONE H,ZONE L)
port map(A4 2d , A4 2d2 , clkA , B3 1d2 , B5 2d , n mag vect (16) , n zone s ve c t (16) ,
a r e a e f f v e c t (16) , a r e a t o t v e c t (16) , Er vect (16) , Ec vect (16) ) ;
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125 C4 3 : doub l e w i r e ho r i z g en e r i c map(C, 4 , 3 ,ZONE H,ZONE L)
port map(C4 3d , C4 3d2 , clkC , D3 2d2 , D5 3d , n mag vect (17) , n zone s ve c t (17) ,
a r e a e f f v e c t (17) , a r e a t o t v e c t (17) , Er vect (17) , Ec vect (17) ) ;

A4 4 : doub l e w i r e ho r i z g en e r i c map(A, 4 , 4 ,ZONE H,ZONE L)
128 port map(A4 4d , A4 4d2 , clkA , B3 3d2 , B5 4d , n mag vect (18) , n zone s ve c t (18) ,

a r e a e f f v e c t (18) , a r e a t o t v e c t (18) , Er vect (18) , Ec vect (18) ) ;
C4 5 : s h o r t w i r e v e r t g en e r i c map(C, 4 , 5 ,LX,ZONE H,ZONE L)

port map(C4 5d , clkC , D3 4d2 , n mag vect (19) , n zone s ve c t (19) , a r e a e f f v e c t (19) ,
a r e a t o t v e c t (19) , Er vect (19) , Ec vect (19) ) ;

131 −−Row5
D5 1 : doub l e w i r e ho r i z g en e r i c map(D, 5 , 1 ,ZONE H,ZONE L)

port map(D5 1d , D5 1d2 , clkD , A4 2d2 , A6 2d , n mag vect (20) , n zone s ve c t (20) ,
a r e a e f f v e c t (20) , a r e a t o t v e c t (20) , Er vect (20) , Ec vect (20) ) ;

134 B5 2 : c r o s sw i r e g en e r i c map(B, 5 , 2 ,ZONE H,ZONE L)
port map(B5 2d , B5 2d2 , clkB , C4 3d2 , C6 3d , n mag vect (21) , n zone s ve c t (21) ,
a r e a e f f v e c t (21) , a r e a t o t v e c t (21) , Er vect (21) , Ec vect (21) ) ;

D5 3 : doub l e w i r e ho r i z g en e r i c map(D, 5 , 3 ,ZONE H,ZONE L)
137 port map(D5 3d , D5 3d2 , clkD , A4 4d2 , A6 4d , n mag vect (22) , n zone s ve c t (22) ,

a r e a e f f v e c t (22) , a r e a t o t v e c t (22) , Er vect (22) , Ec vect (22) ) ;
B5 4 : o r w i r e l x g en e r i c map(B, 5 , 4 ,UP,ZONE H,ZONE L)

port map(B5 4d , B5 4d2 , clkB , C4 5d , n mag vect (23) , n zone s ve c t (23) , a r e a e f f v e c t (23)
, a r e a t o t v e c t (23) , Er vect (23) , Ec vect (23) ) ;

140 −−Row6
C6 1 : wi re 2outputs g en e r i c map(C, 6 , 1 ,RXDOWN,ZONE H,ZONE L)

port map(C6 1d , clkC , D5 1d2 , D7 1d , n mag vect (25) , n zone s ve c t (25) , a r e a e f f v e c t (25) ,
a r e a t o t v e c t (25) , Er vect (25) , Ec vect (25) ) ;

143 A6 2 : c r o s sw i r e g en e r i c map(A, 6 , 2 ,ZONE H,ZONE L)
port map(A6 2d , A6 2d2 , clkA , B5 2d2 , B7 2d , n mag vect (26) , n zone s ve c t (26) ,
a r e a e f f v e c t (26) , a r e a t o t v e c t (26) , Er vect (26) , Ec vect (26) ) ;

C6 3 : w i re 2outputs g en e r i c map(C, 6 , 3 ,RX UP,ZONE H,ZONE L)
146 port map(C6 3d , clkC , D5 3d2 , D7 3d , n mag vect (27) , n zone s ve c t (27) , a r e a e f f v e c t (27) ,

a r e a t o t v e c t (27) , Er vect (27) , Ec vect (27) ) ;
A6 4 : c r o s sw i r e g en e r i c map(A, 6 , 4 ,ZONE H,ZONE L)

port map(A6 4d , A6 4d2 , clkA , B5 4d2 , B7 4d , n mag vect (28) , n zone s ve c t (28) ,
a r e a e f f v e c t (28) , a r e a t o t v e c t (28) , Er vect (28) , Ec vect (28) ) ;

149 −−Row7
D7 1 : and 2outputs lx g en e r i c map(D, 7 , 1 ,ZONE H,ZONE L)

port map(D7 1d , D7 1d2 , clkD , A6 2d2 , A8 2d , n mag vect (30) , n zone s ve c t (30) ,
a r e a e f f v e c t (30) , a r e a t o t v e c t (30) , Er vect (30) , Ec vect (30) ) ;

152 B7 2 : o r w i r e l x g en e r i c map(B, 7 , 2 ,DOWN,ZONE H,ZONE L)
port map(B7 2d , B7 2d2 , clkB , C8 3d , n mag vect (31) , n zone s ve c t (31) , a r e a e f f v e c t (31)

, a r e a t o t v e c t (31) , Er vect (31) , Ec vect (31) ) ;
D7 3 : and 2outputs lx g en e r i c map(D, 7 , 3 ,ZONE H,ZONE L)

155 port map(D7 3d , D7 3d2 , clkD , A6 4d2 , A8 4d , n mag vect (32) , n zone s ve c t (32) ,
a r e a e f f v e c t (32) , a r e a t o t v e c t (32) , Er vect (32) , Ec vect (32) ) ;

B7 4 : o r w i r e l x g en e r i c map(B, 7 , 4 ,DOWN,ZONE H,ZONE L)
port map(B7 4d , B7 4d2 , clkB , C8 5d , n mag vect (33) , n zone s ve c t (33) , a r e a e f f v e c t (33)

, a r e a t o t v e c t (33) , Er vect (33) , Ec vect (33) ) ;
158 −−Row8

C8 1 : wi re 2outputs g en e r i c map(C, 8 , 1 ,RXDOWN,ZONE H,ZONE L)
port map(C8 1d , clkC , D7 1d2 , D9 1d , n mag vect (35) , n zone s ve c t (35) , a r e a e f f v e c t (35) ,
a r e a t o t v e c t (35) , Er vect (35) , Ec vect (35) ) ;

161 A8 2 : c r o s sw i r e g en e r i c map(A, 8 , 2 ,ZONE H,ZONE L)
port map(A8 2d , A8 2d2 , clkA , B7 2d2 , B9 2d , n mag vect (36) , n zone s ve c t (36) ,
a r e a e f f v e c t (36) , a r e a t o t v e c t (36) , Er vect (36) , Ec vect (36) ) ;

C8 3 : and 2outputs lx g en e r i c map(C, 8 , 3 ,ZONE H,ZONE L)
164 port map(C8 3d , C8 3d2 , clkC , D7 3d2 , D9 3d , n mag vect (37) , n zone s ve c t (37) ,

a r e a e f f v e c t (37) , a r e a t o t v e c t (37) , Er vect (37) , Ec vect (37) ) ;
A8 4 : c r o s sw i r e g en e r i c map(A, 8 , 4 ,ZONE H,ZONE L)
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port map(A8 4d , A8 4d2 , clkA , B7 4d2 , B9 4d , n mag vect (38) , n zone s ve c t (38) ,
a r e a e f f v e c t (38) , a r e a t o t v e c t (38) , Er vect (38) , Ec vect (38) ) ;

167 C8 5 : and wi r e l x g ene r i c map(C, 8 , 5 ,DOWN,ZONE H,ZONE L)
port map(C8 5d , C8 5d2 , clkC , D9 5d , n mag vect (39) , n zone s ve c t (39) , a r e a e f f v e c t (39)

, a r e a t o t v e c t (39) , Er vect (39) , Ec vect (39) ) ;
−−Row9

170 D9 1 : doub l e w i r e ho r i z g en e r i c map(D, 9 , 1 ,ZONE H,ZONE L)
port map(D9 1d , D9 1d2 , clkD , A8 2d2 , A10 1d , n mag vect (40) , n zone s ve c t (40) ,
a r e a e f f v e c t (40) , a r e a t o t v e c t (40) , Er vect (40) , Ec vect (40) ) ;

B9 2 : i nv w i th w i r e g en e r i c map(B, 9 , 2 ,UP,ZONE H,ZONE L)
173 port map(B9 2d , B9 2d2 , clkB , C8 3d2 , C10 2d , n mag vect (41) , n zone s ve c t (41) ,

a r e a e f f v e c t (41) , a r e a t o t v e c t (41) , Er vect (41) , Ec vect (41) ) ;
D9 3 : doub l e w i r e ho r i z g en e r i c map(D, 9 , 3 ,ZONE H,ZONE L)

port map(D9 3d , D9 3d2 , clkD , A8 4d2 , A10 3d , n mag vect (42) , n zone s ve c t (42) ,
a r e a e f f v e c t (42) , a r e a t o t v e c t (42) , Er vect (42) , Ec vect (42) ) ;

176 B9 4 : i nv w i th w i r e g en e r i c map(B, 9 , 4 ,UP,ZONE H,ZONE L)
port map(B9 4d , B9 4d2 , clkB , C8 5d2 , C10 4d , n mag vect (43) , n zone s ve c t (43) ,
a r e a e f f v e c t (43) , a r e a t o t v e c t (43) , Er vect (43) , Ec vect (43) ) ;

D9 5 : w i re 2outputs g en e r i c map(D, 9 , 5 ,RXDOWN,ZONE H,ZONE L)
179 port map(D9 5d , clkD , A10 5d , D9 5q2 , n mag vect (44) , n zone s ve c t (44) , a r e a e f f v e c t (44) ,

a r e a t o t v e c t (44) , Er vect (44) , Ec vect (44) ) ;
−−Row10
A10 1 : s h o r t w i r e h o r i z g en e r i c map(A,10 , 1 ,UP,ZONE H,ZONE L)

182 port map(A10 1d , clkA , A10 1q , n mag vect (45) , n zone s ve c t (45) , a r e a e f f v e c t (45) ,
a r e a t o t v e c t (45) , Er vect (45) , Ec vect (45) ) ;

C10 2 : s h o r t w i r e h o r i z g en e r i c map(C,10 , 2 ,UP,ZONE H,ZONE L)
port map(C10 2d , clkC , D9 1d2 , n mag vect (46) , n zone s ve c t (46) , a r e a e f f v e c t (46) ,
a r e a t o t v e c t (46) , Er vect (46) , Ec vect (46) ) ;

185 A10 3 : s h o r t w i r e h o r i z g en e r i c map(A,10 , 3 ,UP,ZONE H,ZONE L)
port map(A10 3d , clkA , B9 2d2 , n mag vect (47) , n zone s ve c t (47) , a r e a e f f v e c t (47) ,
a r e a t o t v e c t (47) , Er vect (47) , Ec vect (47) ) ;

C10 4 : s h o r t w i r e h o r i z g en e r i c map(C,10 , 4 ,UP,ZONE H,ZONE L)
188 port map(C10 4d , clkC , D9 3d2 , n mag vect (48) , n zone s ve c t (48) , a r e a e f f v e c t (48) ,

a r e a t o t v e c t (48) , Er vect (48) , Ec vect (48) ) ;
A10 5 : and 2outputs rx g ene r i c map(A,10 , 5 ,ZONE H,ZONE L)

port map(A10 5d , A10 5d2 , clkA , B9 4d2 , A10 5q2 , n mag vect (49) , n zone s ve c t (49) ,
a r e a e f f v e c t (49) , a r e a t o t v e c t (49) , Er vect (49) , Ec vect (49) ) ;

191 −−−−−−−−
end behavior ;

A.4 Testbench template

This section contains the Testbench used for testing the Parallel MAC without interleaving.

It has the same structure as all the other testbench used. After defining the clock and reset

signals, the input signals are acquired from a text file containing 100 random numbers in the

required range. They are fed to the circuit and after the right amount of time the circuit’s
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output, as well as the information on area and energy, are writeen into another text file. The

output results will be compared afterwards to a file containing the expected results.

Listing A.31. Testbench template.
l i b r a r y i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

3 use i e e e . numer ic std . a l l ;
use i e e e . s t d l o g i c a r i t h . a l l ;
use i e e e . math rea l . a l l ;

6 use work .MENML package . a l l ;
l i b r a r y std ;
use std . t e x t i o . a l l ; −− For txt f i l e handl ing

9 use i e e e . s t d l o g i c t e x t i o . a l l ;

e n t i t y tb MAC Nbit i s
12 end tb MAC Nbit ;

a r c h i t e c t u r e behavior o f tb MAC Nbit i s
15 component MAC N bit i s

port (A,B: in s t d l o g i c v e c t o r (N BIT−1 downto 0) ;
r e s e t : in s t d l o g i c ;

18 MAC result : out s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;
MAC Co: out s t d l o g i c ;
c lk , clkA , clkB , clkC , clkD : in s t d l o g i c ;

21 n mag : out natura l := i n i t n a t u r a l ;
n zones : out natura l := i n i t n a t u r a l ;
AREA EFF: out natura l ;

24 AREATOT: out natura l ;
Er : out natura l ;
Ec : out natura l ) ;

27 end component ;

s i g n a l A,B: s t d l o g i c v e c t o r ( N bit−1 downto 0) ;
30 s i g n a l ACC: s t d l o g i c v e c t o r (2∗N BIT−1 downto 0) ;

s i g n a l c lk , clkA , clkB , clkC , clkD , r e s e t , Carry out : s t d l o g i c ;
s i g n a l n mag , n zones , AREA EFF, AREA TOT, Er , Ec : natura l ;

33

begin
−− CLOCK GENERATION

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 −− Clock zones have c l o ck with DC of 35%, and over lap with the cont iguous

PhaseA process : p roc e s s
begin

39 clkA <= ’1 ’ ;
wait f o r 3 ns ;
clkA <= ’0 ’ ;

42 wait f o r 6 . 5 ns ;
clkA <= ’1 ’ ;
wait f o r 0 . 5 ns ;

45 end proce s s ;
PhaseB process : p roc e s s
begin

48 clkB <= ’0 ’ ;
wait f o r 2 ns ;
clkB <= ’1 ’ ;

51 wait f o r 3 . 5 ns ;
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clkB <= ’0 ’ ;
wait f o r 4 . 5 ns ;

54 end proce s s ;
PhaseC process : p roc e s s
begin

57 clkC <= ’0 ’ ;
wait f o r 4 . 5 ns ;
clkC <= ’1 ’ ;

60 wait f o r 3 . 5 ns ;
clkC <= ’0 ’ ;
wait f o r 2 ns ;

63 end proce s s ;
PhaseD process : p roc e s s
begin

66 clkD <= ’1 ’ ;
wait f o r 0 . 5 ns ;
clkD <= ’0 ’ ;

69 wait f o r 6 . 5 ns ;
clkD <= ’1 ’ ;
wait f o r 3 ns ;

72 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− RESET GENERATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

75 data proce s s : p roc e s s
begin

r e s e t <=’0 ’;
78 wait f o r 5∗CLK PERIOD;

loop
re s e t <=’1 ’;

81 wait f o r CLK PERIOD;
end loop ;

end proce s s ;
84 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− The data gene ra t i on proce s s takes the data from the ” t e s t v e c t o r x ” f i l e , where x can
be 4 , 8 ,

−− 16 or 32 . The data , taken from the f i l e , was generated by MatLab us ing the func t i on ”
rand ” ,

87 −− f o l l owed by some manipulat ions in order to have i n t e g e r s in the c o r r e c t range . The
name o f the

−− f i l e has to be changed in FILE OPEN( , , ) accord ing to the number o f b i t s .
−− The number o f t e s t vec to r i s always 1000 .

90 Data generate : p roce s s
v a r i a b l e dataA , dataB : s t d l o g i c v e c t o r ( N bit−1 downto 0) ;
v a r i a b l e good : boolean ;

93 va r i ab l e InLine : l i n e ;
v a r i a b l e l i n e c o n t e n t : s t d l o g i c v e c t o r (2∗N bit−1 downto 0) ;
f i l e t e s t v e c t o r s : t ex t ;

96 va r i ab l e LineNumber : i n t e g e r :=0;
begin
FILE OPEN ( t e s t v e c t o r s , ” t e s t v e c t o r s / t e s t v e c t 4 . txt ” , READMODE) ;

99

f o r i in 0 to 1000 loop
dataA:= ( othe r s => ’ 0 ’ ) ;

102 dataB:= ( othe r s => ’ 0 ’ ) ;
r e ad l i n e ( t e s t v e c t o r s , InLine ) ;
read ( InLine , l i n e c o n t e n t ) ;

105 f o r k in 0 to N BIT−1 loop
dataA (k ) := l i n e c o n t e n t ( k ) ;
dataB (k ) := l i n e c o n t e n t ( N bit+k) ;
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108 end loop ;
A<=dataA ;
B<=dataB ;

111 wait f o r 5∗CLK PERIOD;
end loop ;
f i l e c l o s e ( t e s t v e c t o r s ) ;

114 end proce s s ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− INSTANTIATION OF THE MULTIPLIER −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

117 MAC: MAC N bit
port map(A=>A,
B=>B, r e s e t=>r e s e t , MAC result=>ACC,MAC Co=>Carry out ,

120 c l k=>c lk , clkA=>clkA , clkB=>clkB , clkC=>clkC , clkD=>clkD ,
n mag=>n mag , n zones=>n zones ,
a r e a e f f=>a r e a e f f , a r e a t o t=>area to t ,

123 Er=>Er , Ec=>Ec) ;
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−− RESULTS WRITING −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

126 −− The r e s u l t s are wr i t t en in a f i l e c a l l e d ”Resu l t s ” . At the end o f the s imu la t i on the
s to r ed

−− va lue s have to be compared with the ones computed by MatLab . These were saved in the
f i l e s named

−− ” r e s u l t x ” in the same f o l d e r ; a l s o in t h i s case x can be 4 , 8 , 16 or 32 . Concerning
the

129 −− s imu la t i on times , they are 50 ,28 us , 50 .56 us , 51 .12 us and 52 .24 microseconds f o r 4 ,
8 , 16 and

−− 32 case r e s p e c t i v e l y .
W r i t i n g f i l e p r o c e s s : p roc e s s

132 f i l e o u t f i l e : t ex t ; −−de c l a r e output f i l e
v a r i ab l e l i n e c on t en t , MsgLine : l i n e ; −− l i n e number d e c l a r a t i o n
−− va r i ab l e l i n e c o n t e n t : s t r i n g (1 to 2∗N BIT) ;

135 va r i ab l e r e s u l t : s t d l o g i c v e c t o r (2∗N bit−1 downto 0) ;
v a r i ab l e s t a r t : natura l := 0 ;

begin
138 wait f o r 28∗CLK PERIOD+(N BIT−4)∗7∗CLK PERIOD; −− wait un t i l the f i r s t b i t o f the

r e s u l t i s a v a i l a b l e
loop
f o r ind in 2∗N BIT−1 downto 0 loop

141 r e s u l t ( ind ) :=ACC( ind ) ;
end loop ;
f i l e o p e n ( o u t f i l e , ” Resu l t s / r e s u l t s . txt ” ,append MODE) ;

144 wr i t e (MsgLine , r e s u l t ) ;
w r i t e l i n e ( o u t f i l e , MsgLine ) ;
f i l e c l o s e ( o u t f i l e ) ;

147 wait f o r 5∗CLK PERIOD;
end loop ;

end proce s s ;
150 −− Write in a f i l e Energy and Area −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Writing : p roce s s
f i l e o u t f i l e : t ex t ; −−de c l a r e output f i l e

153 va r i ab l e ou t l i n e : l i n e ; −− l i n e number d e c l a r a t i o n
begin

wait f o r 50 ns ;
156 f i l e o p e n ( o u t f i l e , ” Resu l t s / area energy . txt ” ,APPENDMODE) ;

wr i t e ( out l i n e , n mag ) ; −−wr i t e the l i n e .
159 wr i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e

wr i t e ( out l i n e , n zones ) ; −−wr i t e the l i n e .
w r i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e
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162 wr i t e ( out l i n e , r e a l (AREA EFF) /1 .0 e+06) ; −−wr i t e the l i n e .
w r i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e
wr i t e ( out l i n e , r e a l (AREATOT) /1 .0 e+06) ; −−wr i t e the l i n e .

165 wr i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e
wr i t e ( out l i n e , r e a l (Er ) /1 .0 e+09) ; −−wr i t e the l i n e .
w r i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e

168 wr i t e ( out l i n e , r e a l (Ec) /1 .0 e+06) ; −−wr i t e the l i n e .
w r i t e l i n e ( o u t f i l e , o u t l i n e ) ; −−wr i t e the contents in to the f i l e
f i l e c l o s e ( o u t f i l e ) ;

171 end proce s s ;
end behavior ;
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