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SUMMARY

Among the several alternative technologies proposed for the post-CMOS scenario, Quantum-
dot Cellular Automata (QCA) is one of most promising for its high level of integration and low
power consumption. The magnetic based implementation of QCA, named NanoMagnet Logic
(NML), is the only one that can both work at room temperature and is feasible with current
fabrication processes. Also, its magnetic nature opens up to new possibilities, like developing
logic circuits with an intrinsic memory ability.

The base cells of NML technology are nanomagnets, which can be arranged on a plane to
create any logic circuit. There is no standby power consumption and the energy required for
magnets switching is several orders of magnitude lower than latest CMOS transistors. However
the network for controlling the cells’ magnetization can nullify the advantages in terms of power
losses. This is the case of the Magnetic Clock NML [1], which has been extensively and thor-
oughly studied in literature. A novel implementation of NML technology, the Magnetoelastic
NML (ME-NML), drives the nanomagnets through an electric field instead of a magnetic field,
highly reducing the power consumption. This solution has already been proved theoretically
and experimentally, however up to now only elementary circuits have been studied.

The Magnetoelastic NML is the subject of this work. To fully understand its potential it is
mandatory to analyze complex architectures keeping into account all the physical constraints

related to the fabrication process.

Xiv



SUMMARY (Continued)

First of all, because of the absence of a tool for design and simulation, we developed a RTL
model for handling ME-NML circuits. The model also embeds the capability of evaluating
area occupation and power consumption. Due to the strong regularity of the ME-NML circuits
layout, we were able to define a Standard Cell library, which is a big step toward the creation
of an aided design tool.

Secondly, through a case study we developed an accurate comparison of ME-NML with
the Magnetic Clock NML and the state of the art CMOS transistor. ME-NML performances
were excellent, enough to largely overcome both the other technologies. This was also the
first approach to ME-NML from the architectural level, so it provided general information on
circuit design. Nonetheless we could generalize the behavior of our case study to serial-parallel
architectures.

Once the validity over other technologies was proven, it was mandatory to understand
which kind of architectural organization maximizes the performance of the ME-NML. Therefore
through a second case study we performed the first step of this investigation, comparing three
different versions of a MAC unit: parallel, serial-parallel and serial. The parallel approach
guarantees the best results, but it requires a certain level of interleaving.

In addition to attaining their specific goal, each one of the two case studies has been very
resourceful in other fields. In fact they both helped identifying, from an architectural point
of view, the major limitations of ME-NML technology as well as its strengths. Therefore this

work also provides the first general guidelines for ME-NML design.

XV



CHAPTER 1

INTRODUCTION

1.1 CMOS scaling

Over the past three decades the inexorable evolution of electronics had as foundation the
ever-smaller device dimensions of silicon-based CMOS technology, which has been exponentially
improving in both performance and density of integration. Today, however, the conventional
physical scaling is experiencing asperities and, as forecasted in the International Technology
Roadmap for Semiconductors [2], it is expected to reach its boundaries soon.

This decay counts several factors [3], physical and material limits above all. Basically, due to
both electrostatics and tunneling mechanisms, ultra-small MOSFETSs leakage currents begin to
be comparable to the drain current. The increased leakage current, due to downsizing, forbids
the threshold and supply voltages reduction, denying a speed increase. Correspondingly the
higher electric field and the high concentration of dopants deeply impact electronic transport.
These are some of the well known effects of down scaling: Drain Induced Barrier Lowering
(DIBL), Short Channel Effect (SCE), Punch-Through and subthreshold inversion, mobility
degradation, band-to-band tunneling [4][5]. Another challenge involves power consumption and
thermal dissipation: The power density has been growing, as the supply voltage did not scale
as much as the channel length. Furthermore some constraints come from economical aspects

and the lithography-based fabrication techniques.



Due to all these factors, keeping up with the Moore’s Law will most probably be a challenge
that will not be answered by Silicon CMOS nanoelectronics. A lot of research on alternative
technologies has been carried out to preserve the same rate of performance improvements. The

efforts have been focused toward two main directions [2]:

e Innovation of CMOS materials and structures. Demonstrated examples are: SOI (Silicon
On Insulator) transistors, with an insulator layer between substrate silicon body, and

FinFET, where a multigate structure heavily reduces short channel effects.

e Creation of completely new nanoelectronic devices, called “Beyond CMOS Devices”, able
to replace CMOS technology. One of the most promising architectures is the Quantum-
dot Cellular Automata (QCA). Nanotechnologies like QCA offer very high integration
density, but they are still in a premature stage: A reliable and functional realization still

requires extended study from the device up to the architectural level.

Current transistors exploit electronic charge to store information, therefore switching be-
tween logic levels involves charge movement, thus requiring a current flow and a consequent
Joule dissipation. Energy losses are then an intrinsic characteristic of charge based electronics
and, as explained before, highly scaled transistors will not be able to preserve the charge due
to significant leakage. It is clear that charge based devices do not seem to be able to maintain
the cost per function improvements of the last decades. The idea is to replace the charge with
a new kind of information token such as for instance: Polarization of nanomagnets, change in

molecular configuration, electron spin or position of a micromechanical object.



1.2 Quantum-Dot Cellular Automata (QCA)

Ever since the introduction of the Cellular Automata idea in 1993 [6], Quantum-Dot Cellular
Automata (QCA) has been attracting an increasing interest. It is a valuable candidate for the
post-CMOS era, because it effectively addresses the problems of device density and power

dissipation.

O e(|l®@ O|j|0 O
o oflo of|le e
® O|(0 e|(0 O

'0' 1 NULL

Figure 1. Possible states of a QCA cell: Stable states '0” and ’1’ and unstable NULL state.

QCA technology foundation is a bistable base cell; properly organized arrays of these cells
can realize logic functions. The first proposed implementation used a square cell with 4 quantum
dots in the corners. Since electrons repel each other, if two electrons are available for each cell,
at equilibrium they will be found in two diagonal dots. Since there are only two diagonals,
only two states are possible: '0” and ’1’ [7]. To allow a correct signal propagation we will see in
Chapter 2 that a third unstable state (NULL state) is necessary, therefore two more dots need
to be added (Figure 1). This is just the generic base cell, but the theoretical principle of the

QCA can be realized in other ways, depending on the technology used.



Up to now the literature contains five physical implementations, while the first two present

strong limitations, the others are way more promising.

e Metal QCA [8][9]. This was the first physical implementation and it had a purely demon-
strative purpose. In fact it can work only at temperatures close to the absolute zero,
unless the cell size is downscaled to atomic values. The base cell is composed by metallic
structures on a Si0y substrate and the quantum dots are basically aluminum islands.

The links between dots are made of AloO3 tunnel junctions.

e Semiconductor QCA [10][11]. This approach exploits common electronic devices’ struc-
tures, the cells and their dots are realized with GaAs and Si-Ge heterostructures. The
electrons behavior is driven by a voltage applied to metal contacts. Compared to Metal
QCA the operation temperature can be higher, but still it does not work at room tem-
perature. Another limitation concerns the available fabrication processes, which cannot

meet the requirement of very small and identical cells.

e Magnetic QCA or NanoMagnet Logic (NML) [12]. The base cell is a single-domain nano-
magnet with dimensions lower than 100nm, its two possible magnetizations correspond
to ‘0’ and ‘1’ logic values [13]. About speed (hundreds of M Hz) and dimensions this
implementation is less interesting than the Molecular QCA, it is also slower than CMOS
systems. What makes Magnetic QCA attractive lies in its magnetic nature, it has excep-
tionally low power consumption and a strong logic-in-memory predisposition [1][14][15].

But the most relevant advantage is the physical realization feasibility with current technol-



ogy, it allows to study and experiment on QCA based architectures on a higher abstraction

than the single cell, facing directly design problems common to any QCA implementation.

e Molecular QCA [16]. The fundamental states of the Molecular QCA cell correspond to
different charge distributions in a complex molecule, the charge movement can be triggered
by electrons reacting with the oxide-reduction center of the molecule. Using molecules
every QCA cell would be identical to the others and would have the very competitive
dimension of a few nanometers. Moreover molecules reactions work perfectly at room
temperature and are extremely fast, the expected switching speed of this implementation
is of the order of THz [17][18][19]. This is the most promising approach, even though a
functioning realization is still far: Current technology cannot manipulate single molecules
as required yet. Another delicate issue is the transduction of electrical signals from and
to information understandable by the molecule, up to now there is not any valid solution
to this.

e Silicon Atomic QCA [20]. The QCA principle is implemented using atoms as quantum-
dots. It has been proved that the dangling bond (DB) state of silicon atoms can be
exploited as a quantum dot. Up to now the experimental results are promising and the

electrostatic control over the charge within DB assemblies has been verified [21].

1.3 Magnetic QCA

Magnets have already been used in electronics for memory applications, the innovation of
Magnetic Quantum dot Cellular Automata (MQCA), also called NanoMagnetic Logic (NML),

is to use magnets to implement logic functions. The result are digital circuits with intrinsic
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Figure 2. A) Hysteresis cycle of a multidomain magnetic material. B) Hysteresis cycle of a
single domain magnetic signal. C) The two stable states of the NML base cell.

memory capability [22]. The current fabrication techniques allow to produce the NML base
cells [23], which are nanomagnets with dimensions between 50nm and 100nm. Magnets so
small behave differently than bigger ones, they have only one magnetic domain, which means
that the magnetization does not vary across the magnet, and the hysteresis cycle gets as in
Figure 2.B. Hence nanomagnets smaller than 100nm can have two stable states only, which will
be used to represent ‘0’ and ‘1’ values. The hysteresis cycle describes how magnetization (M)
changes as a function of the magnetic field (H) applied.

As already anticipated there are several reasons that make the NML study worthy, even if

the working frequency is limited:

e NML is the only QCA implementation that works at room temperature and it can be

fabricated with current technology [23].



e Magnets do not dissipate static power and a single magnet switching absorbs around

30kpT. Therefore NML potentially has an extremely low power consumption.

e Since the difference between QCA and CMOS technologies is bottomless, to fully com-
prehend the potential of QCA, it is mandatory to investigate complex architectures, also
considering all the working and fabrication constrains. Fortunately most of the architec-
tural study on NML could probably be applied to other implementations like the molecular
QCA, which seems far more promising than Magnetic QCA but it is still not supported

by current technology.



CHAPTER 2

NML BACKGROUND

2.1 QCA basics
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Figure 3. Signal propagation through a 3 cells QCA wire. II) The first cell is forced to '1’. III)
The second cell switches to 1’ due to electrostatic interaction. IV) The third cell switches.

The QCA base cell described in Section 1.2 contains six quantum dots, allowing to represent
the ‘0’ and ‘1’ logic values and the NULL state (Figure 1). Placing cells one next to the other
on the same plane it is possible to construct digital circuits, where the signal propagation
through cells is due to electrostatic interaction. A series of adjacent cells is called wire, Figure 3
represents step by step the information propagation through a 3 cells wire. Forcing the first

cell to ‘1’ causes the switch of the nearby cell, due to electrons repulsion. In the same way

8



the second cell, after switching to ‘1’, will influence the last one. We can say that information
propagates with a Domino-like effect.

2.1.1 Logic Gates

N /o 0 o "
5 °o o e|j0 e e ©
o. o o||lo o INfoe o
IN ouT IN ouT IN ® _Ofl® Ol gur ! °c e
o e|[o e|[o e|[o e]: e O N [® o o e|[o e]|[fo e e O " ol[e o],
o o||lo of|]o offlo o E I'lo oKo odfo o'l o of[lo of|lo of'0 o o E IN o offo o E
e of||le o|le ofle of: o 0|\’ lo e e o|/le o|le o o e: o e|lo e|OUT!:
. 0 0 0 0o X . o 0" o ello—el I > e
1 H o H o of|o o ' IN|o o
' ' o o ' e ofle o ' e O
1 (A) i (B) e OUT (9] R : (D) -

Figure 4. Logic gates of QCA. A) Wire. B) Crosswire. C) Inverter. D) Majority Gate.

QCA technology counts four basic logic blocks, they are depicted in Figure 4, where IN and
OUT identify inputs and outputs. The blocks are: The wire (Figure 4.A), the crosswire (Fig-
ure 4.B), the inverter (Figure 4.C), the majority gate, also called majority voter (Figure 4.D).
These are the standard gates of the theoretical QCA, keep in mind that each different QCA

implementation has a slightly different ports set, even if the basic concepts remain unchanged.

Crosswire

The crosswire allows two independent signals to cross each other on the same plane
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without interference. The one in Figure 4.B is just one example of crosswire, its actual
realization strongly depends on the QCA implementation adopted. An alternative that
has been proposed is to use multilayer structures, just like with CMOS technology. Even
though it seems that this solution would be suitable for Magnetic QCA, unfortunately at

the current time a multilayer structure is still not feasible due to fabrication complexity.

Inverter
Its logic function is a simple inversion, obtained through a diagonal coupling of cells.
Notice that the signal gets duplicated before the inversion to strengthen the diagonal
electrostatic interaction, which is weaker than the horizontal or vertical ones. Based on
the QCA implementation employed, there are other possible configurations that provide

inversion.

Majority Gate
This logic block is a peculiarity of QCA circuits, together with the inverter it allows
to design any logic function. It is a three input port, where the output is equal to the
majority of the input values. Referring to Figure 4.D, notice that the central cell is subject
to the influence of the top, left and bottom cells. The output will be ’1’ if that is the
value of at least two inputs, and the same works for '0’. The majority gate ( or majority
voter) logic function is:

F=AB+ BC+ AC.



11

2.1.2 Signal propagation and Clock

Despite what said above, the electrostatic interaction is not strong enough for a signal to
propagate through a wire. The switching of a cell requires as much energy as the barrier between
its two stable states, that is the energy keeping electrons trapped in the dots. Of course this
amount of energy Fj (Kink Energy) is strictly related to the QCA implementation used, the
cell size and the operating temperature. However this value is generally high enough not to
allow autonomous data propagation. For this reason there is the need for an external mean able
to control the signal propagation by acting on the energy barrier between the two stable states.
Such barrier can be lowered by applying an electric field, as a consequence the electrons will be
forced into the central dots leaving the cell in an unstable state, which is referred to as NULL
state. Once removed the external field the cell will stabilize either at 0’ or ’1’, depending on
the state of neighbor cells.

So the main idea is that if we want a cell to assume the same value as its neighbor, we force
such cell in an unstable state through an external electric field, and then we simply release the
field. This control field is called clock. In principle this technique could work with an infinite
number of cascaded cells, but practically the number has to be small. Otherwise there will be
propagation errors mainly due to thermal noise [24]. Therefore a spatial flow control system is
mandatory.

From the remarks above it is clear that a signal cannot pass through a whole circuit at once,
the cells pattern would be too long. The solution is to break the circuit in small sections and

let signals go over one section at a time, in a pipelined manner. So circuits are partitioned in
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small areas, where each area counts a limited number of cascaded cells; this areas will be called

clock zones. In the classical scheme the spatial and timing control of the circuit is conferred to

a four phases clocking system. There are then four clock signals with the same waveform but

different phase. The 2"?¢ 37 and 4" clocks will have respectively 90°,180°,270° phase shift

with respect to the 15! clock. Each of the partitioned section will receive one of the four clocks,

a correct assignment of the clocks will assure a correct circuit functioning.

Figure 5 shows the clock waveforms on the right and the functioning of a wire divided into

four clock zones on the left. As explained we need a clock that can force cells in their unstable
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Figure 6. Simplest clock phases layout, the circuit’s area is partitioned in vertical stripes.

state before the switching phase. The clock waveform has got four phases, as clearly pointed

out by Figure 5.B:

Hold phase. The potential barrier is kept high by a high clock voltage. The cell cannot be

influenced by neighbors.

Release phase. The clock voltage goes from high to low and so does the energy barrier. At

the end of this phase the cell reaches its NULL state.

Relax phase. The potential barrier is kept low, so the barrier between stable states stall at

its minimum. The cell is in the NULL state.

Switch phase. The clock voltage goes from low to high and so does the potential barrier. The

cell will stabilize in one of the two states, depending on the neighbor cells.
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In Figure 5.A the signal goes from left to right. When a clock zone is switching it is
influenced by nearby cells. Cells on the left are in HOLD, they act as input, while cells on the
right are in the RELAX phase, so they have no influence on the switching cells. In between of
HOLD and RELEASE, the cells are either relaxing or latching. This metodology assures data
propagation in a specific direction, it is thus fundamental to arrange the clock zones properly.
For a correct functioning a signal must pass through the clock zones in order from 1 to 4 and
then 1 again.

At this point the last issue is to decide how to arrange the clock zones. In principle the circuit
area can be subdivided in clock zones with any shape, but of course technological limitations
due to the clocking network must be always kept in mind. A straightforward arrangement of
clock zones is represented in Figure 6, the circuit is divided in columns. The four shades of
grey correspond to the different clock phases. The simple subdivision in columns has the strong
disadvantage of allowing signal propagation in one direction only, following the clock phases
order: 1,2,3,4,1,2.... To be able of dealing with any kind of circuit, the structure has to be

more complex, it must allow propagation in any direction.

2.2 Nano-Magnets Logic (NML)

The most recent advancements in fabrication techniques, especially the lithography, allow
to build logic circuits using magnets. While magnets have already been used in electronics for
memory applications, the innovation of this implementation is to use magnets to implement
logic functions. As a result NML circuits are digital circuits with intrinsic memory capability.

The base element of NML is a very small bistable magnetic cell. Since it is not a permanent
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magnet, its magnetization can be influenced by external means. Therefore nanomagnets placed
side by side will arrange themselves in an antiferromagnetic manner, because of the attraction
between opposite poles.

The nanomagnets dimensions must be between 50nm and 100nm. The upper limit assures
that the magnets only have one magnetic domain, which means that the magnetization does not
vary across the magnet and the hysteresis cycle gets as in Figure 2.B. The two saturation values
M = +1 and M = —1 are the only stable states, therefore they are associated to logic values "0’
and ’1’. The lower bound of 50nm is, instead, crucial to avoid the superparamagnetic effect,
which would cause the magnetization to vary together with thermal fluctuations. To assure
thermal stability the energy barrier between the two stable states must be at least 30kgT. As
from Figure 2.C the two states have magnetizations in opposite directions, so they both lie on
the same axis. At the equilibrium, if one side of the magnet is longer than the other, thanks to
shape anisotropy, the magnetization will be forced along the longer axis (easy axis). Therefore
it is important that in NML the ratio between the magnets dimensions (aspect ratio) is within
the 1: 1.2 range. For a correct signal propagation it is mandatory that every base cell is equal
in shape to the others. Consequently, the more troublesome is the production, the higher will
be the fault probability. That is why the rectangular and elliptical shapes are the most used,
as they assure the best precision in the fabrication process.

The main advantage of Magnetic QCA is to be realizable with current technology ()electron
beam lithography or high end optical lithography) together with its ability to operate at room

temperature. The fabrication feasibility was first proven by researchers of the University of
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Notre Dame in Indiana (US). They built horizontal wires, vertical wires and majority gates

[25]. A Magnetic QCA horizontal wire was also created by researchers of Politecnico di Torino.

2.2.1 Logic Gates
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Figure 7. A) Horizontal wire. B) Inverter. C) Vertical wire. D) Majority Voter. E) AND
port. F) OR port. G) Crosswire.

Even though the set of logic gates for the NML circuits recalls the generic QCA basic blocks
(Figure 4), there are some differences and improvements. It is understandable that, moving from
the general idea to the physical implementation, the general ports can be optimized based on
the actual technology features. Figure 7 shows the complete set of logic blocks for NML circuits.
The main difference with generic QCA is the horizontal coupling: Horizontally magnets align
themselves antiferromagnetically, each magnet has inverted polarization with respect to the

neighbors. So the inverter can be simplified to a simple horizontal wire with an even number of
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magnets as in Figure 7.A. On the other hand an odd number of adjacent magnets would result
in a buffer function, that is a simple wire (Figure 7.B). Vertically the coupling is ferromagnetic,
so no inversion is possible (Figure 7.C). The majority voter, depicted in Figure 7.D, is pretty
much the same as for general QCA.

Another disparity comes from the possibility of obtaining specific logic gates modifying the
shape of a magnet: By making magnets with slanted edges it is possible to create AND and OR
logic functions [26]. QCA would generally need a three inputs majority gate to obtain AND and
OR logic ports, while only two inputs are needed for non-majority based gates, considerably
optimizing area occupation and layout entanglements. The different-shaped magnets acquire a
preferential state, which they will leave only when both inputs, from above and below, are up or
down, implementing as a consequence an AND or OR logic function (Figure 7.E, Figure 7.F).

At the current time the NML crosswire realization does not have experimental proof of
reliability yet. A possible implementation is the one represented in Figure 7.G, the crossing is
made of five square cells (50nm — 100nm of edge) that have four stable states instead of two.

In this way they can let pass through two signals simultaneously.

2.2.2 Magnetic Clock NML

One solution for controlling the nanomagnets magnetization in NML circuits is the Magnetic
clock, as proposed in [12] and verified experimentally in [23]. The magnetic field is generated by
a current flowing through a wire positioned under the magnets plane (Figure 8). The material

for the wire is copper, buried in a ferrite yoke envelope for field confinement. The wire’s
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Figure 8. NML with Magnetic Clock mechanism. The magnetic field H is generated by the
current I flowing through the copper wire, which is placed under the magnets plane.

thickness must be enough to generate a magnetic field able to force cells to the intermediate
state (NULL state) [27].

As explained in Section 2.1.2 a multiphase clock system is required. The classic scheme has
4 phases, but also a 3-phase clock is feasible [28][29][30]. The Magnetic NML normaly exploits
a 3 phase clock system is normally exploited. Figure 9 shows the functioning of the 3-phase
clock of a horizontal wire over time (vertical axis), just like in Figure 5 for the generic QCA.

Each clock zone undergoes three phases in the following temporal sequence: RESET,
SWITCH and HOLD. The RESET (clock = 1) erases the information, leading cells to an
intermediate state. In the SWITCH phase the clock goes to zero, so cells can assume a mag-
netic orientation. The orientation is influenced by the nearby cells being in HOLD state, as
cells in the RESET state cannot affect the neighbors. When a group of cells, in the same clock

zone, is in the HOLD phase, they have a stable magnetization.
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Figure 9. The clock phase sequence is RESET, SWITCH, HOLD. A) Functioning in space
(horizontally) and time (vertically) of a horizontal NML wire. B) The 3 clock signals. They
are applied to different zones in space and they are repeated over time. They are the same in

magnitude but with a 120 phase shift.

To assure a correct signal propagation the RESET phase applied to different zones must

overlap in time as in Figure 9.B, where the RESET state lasts slightly more than 27/3. The

reason lies in the fact that when a zone is in the SWITCH phase, the two neighbor zones
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must be respectively in HOLD and RESET phase. However if the field of the SWITCH zone
is removed and the field is applied to the RESET zone at the same time, a back propagation
phenomenon could take place. Initially, when the field is removed from the SWITCH zone, the
RESET zone would still be in the HOLD state, as magnets need a finite time to switch from a
stable polarization to the intermediate state. In Figure 9.A we can see how the value in Time

step 1 on the left is propagated step by step to magnets in the clock zone on the right.

2.2.2.1 Snake Clock Layout

The generic QCA is based on a 4-phase clock system, however it is also possible to use a
3-phase clock [12], given that the signals are overlapped. The clock network for Magnetic NML
is a 3-phase overlapped system, called Snake-clock; its layout and 3D structure are depicted

respectively in Figure 10.A and Figure 10.B.

2 oxide
l 3
1231231 nanomagnets

(A) (B)

1 /metal wires

Figure 10. Snake-clock. (A) Top 2-D layout. (B) 3-D layout. The nanomagnets are placed
between the two planes. Magnets cannot be placed where wires 2 and 3 are twisted.
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Figure 11. Example of a simple circuit based on the Snake-Clock system. Different
background colours refer to different clock zones. The arrows show the signal flow direction.

The Snake-clock is based on the scheme in Figure 6, but with three phases only and with
an expedient that allows propagation in both directions: left-right, right-left. The clock wires
are basically simple metal wires parallel to the magnets plane, two positioned above and one
below [28]. Two thin oxide layers provide separation between clock wires and nano-magnets.
One clock wire is straight (number 1), while the other two have a complementary zig-zag shape.

They are like twisted wires, but they do not display any interference, as they are on different
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planes. In the case in Figure 10.B the wires 1 and 2 are routed on the same plane, while the
clock 3 is on the other one.

Considering now the top view in Figure 10.A, it is straightforward to understand that
magnets cannot be placed on areas corresponding to the wires twisting, as they would be
affected by both clock wires 2 and 3. Moreover, in those regions, wires are not parallel to the
magnets long side, hence the generated magnetic field would force them in the wrong state.

Figure 11 shows a very simple circuit based on the Snake-Clock system. The direction of the
information flow is highlighted by arrows, signals propagate through clock zones in the order
1, 2, 3 and so on. The clock wires twisting divides the circuit area in horizontal stripes with
alternate propagation directions. Furthermore, as required by this clock mechanism, there are
no magnets placed over the twisting areas. The magnets with a slanted edge required for the

AND logic function are highlighted in black.

2.2.2.2  Working frequency

The main limitation of NML technology is the maximum working frequency, which is in-
trinsically bounded. To obtain the highest possible clock frequency the clock zone width should
be equal to that of a single magnet. However the usual width is 3-5 [24] because of several
factors: fabrication limitations, thermal noise, latency, throughput. The more are the consec-
utive magnets in a clock zone the lower will be the clock frequency. The constraints on the
clock frequency are mainly related to the clock mechanism chosen and the fall and rise time of
the adiabatic switching of clock signals, mandatory to reduce power consumption. Less critical

is instead the bound derived from the switching time of nanomagnets from the intermediate



23

(NULL) state to a stable one and viceversa. The NML circuit speed is expected to be of the
order of 10 — 100M H z [31][32][33].

In the beyond-CMOS scenario, NML technology is a good solution but it cannot aim to
completely substitute CMOS. Despite the clear benefits for what concern occupied area, power

consumption and memory ability, NML’s clock frequency cannot keep up with CMOS.

2.2.3 Magnetoelastic Clock NML (ME-NML)

Recently a valuable alternative to the Magnetic Clock NML has been proposed and studied:
the Magnetoelastic Clock NML, also referred to as ME-NML [1][34].

In the previous section (2.2.2) the proposed external mean, responsible for the magnets
switching, was the Magnetic Clock with a Snake-clock layout. The idea was to position clock
wires below or above the magnets plane. A current flowing through the wires would generate
a magnetic field able to control the cells magnetization. The generated field is then along the
magnets’ short side of the magnets, forcing cells in an intermediate unstable state.

The interest in Magnetic QCA is mainly due to the very low power consumption, several
times lower than the latest CMOS transistors. While this is true for the magnets switching,
unfortunately it does not apply to the clock generation system: 1um copper wires with a
required current of 545mA [35]. Due to Joule losses the power dissipation of the clocking
system is very high, nullifying the advantage of a low-power magnets switching.

To solve this problem an alternative solution has been recently proposed [35][34], it is based
on the Magnetoelastic effect: the magnetization of magnetic materials undergoing mechanical

stress is bonded. Applying a mechanical stress with proper intensity and direction magnetic cells
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Figure 12. Magnetoelastic NML clocking mechanism. A) No voltage applied. B) Voltage
applied to the electrodes. The PZT substrate induces a strain on the nanomagnets forcing
their magnetization to their intermediate state.

can be forced into the RESET state. The magnetic cells (10nm thick) are coupled with a 40nm
thick PZT layer (Figure 12.A). To maximize the mechanical coupling, magnets are deposited
directly onto the piezoelectric material. For a proper strain transfer, the PZT substrate has
to be much thicker than the magnets. The magnetic material is then controlled by applying
a voltage (few mW) to the piezoelectric. When the voltage is applied, the strain induced by
the piezoelectric material, forces the magnetization of the magnets layer to the intermediate
position, parallel to the short edges (see Figure 12.B).

The electrodes are deposited on top of the PZT, while the wires that drive the electrodes
can be placed in additional layers, just as for CMOS. This makes this NML implementation

compatible with CMOS fabrication.
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This approach comes from a previous idea based on multiferroic structures instead of simple
magnets [33][36]. The performances of the pure multiferroic structure are better, but there are
two major fabrication problems. The aspect ratio is critical, there are only 2nm of difference
between the length of the two cell’s sides. Such a low resolution is hardly achieved with the
Electron Beam Lithography. Moreover the electrodes should be only a few nanometers thick, a
request that does not comply with the current technology. A pair of them is necessary for every
element, to apply the required voltage. The advantage of the solution with the simple magnets
is the feasibility with current fabrication techniques. Even if its performances are slightly worse
than the multiferroic solution, they are anyway remarkably better than the previous NML
solutions.

Since the clock system exploits a voltage instead of a current, the power consumption is
extremely low, meeting the unmatched expectations for the initial Magnetic QCA concept. In
[1], after a detailed analysis, the selected magnetic material is Terfenol, an alloy of Terbium,

Disprosium and Iron. The choice is mainly based on three parameters:

e maximum stress that can be applied to avoid permanent damage on the magnets;

e maximum value of electric field that can be tolerated by the piezoelectric material, since

it is an insulator;
e minimum stress to force magnets in the RESET state;

e assure shape anisotropy equal of at least 30K;T ~ 1.24-10~'°J, to have negligible effects

of the thermal noise on the magnets stability;

e minimum aspect ratio for fabrication feasibility;
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e tolerance to process variation of +20%, remaining within the working range.

2.2.3.1 Circuit Layout

Placement Grid
(1,DH|(1,2)[(1,3)
Hen|ea)|es

(3,1)(3,2)[(3,3)

Figure 13. Clock zones of the ME-NML. A) Clock zone with AND logic function. B) Clock
zone with OR logic function. C) Circuit layout example. D) Placement grid for ME-NML
Cells

Starting from the structure just described in Section 2.2.3, MagnetoElastic clock NML (ME-
NML) circuits are composed by mechanically isolated islands, like the one in Figure 13. Each
island corresponds to a clock zone and it is driven by one of the clock signals, applied as a
voltage on the Platinum electrodes. Notice that the electrodes position on top of the PZT
is compatible with CMOS fabrication and leads to a uniform electric field distribution on the

magnets plane.
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The presence of the electrodes makes the clock zones communication on those sides impos-
sible. The signal propagation among cells is allowed only through the top and bottom sides,
which are free from electrodes. For this reason the Majority Voter port cannot be constructed.
Therefore the basic logic gates exploited are inverter, AND (Figure 13.A) and OR (Figure 13.B)
[26], so that any logic circuit can be implemented.

Figure 13.C shows how to put together the clock zones to create a circuit. As already
said, the communication among cells can take place only through the top and bottom corners,
because of the electrodes. For this reason the cells in a row are shifted with respect to the
adjacent ones, to assure a correct signal propagation. In fact the cells are placed on a grid as
in Figure 13.D, where the coefficients identify row and column of the cell’s positioning within
the circuit.

In the example of Figure 13.C the clock zones have both height and width equal to three
nanomagnets. This is the solution adopted throughout the whole work, it has been chosen over
the five magnets version. Thermal noise [24] and fabrication constraints allow cells dimensions
to vary only between 3 and 5 nanomagnets. Small dimensions lead to smaller electrodes and
cells, requiring then a very high resolution fabrication process. The minimum size feasible
with current technology is 3. Bigger dimensions will relax the technology constraints, but will
increase the error probability due to thermal noise and decrease the maximum circuit speed.
If two many cascaded magnets are present in a clock zone, the signal propagation will be error

prone.
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The size of the electrodes varies according to the clock zones dimensions. They are 30—40nm
for the three magnets cells, while 70 — 100nm for the five magnets case. This kind of electrodes
are already available for CMOS technology.

Figure 13 does not highlight how and which clock signals are routed to the clock zones. It
will be clarified later on in Section 3.3, where it will also be explained which kind of multi-phase

clock system best suits the Magnetoelastic NML implementation.

2.2.4 Intrinsic Pipeline

In a N-phase clock system, signals need a clock period to propagate through N clock zones.
As a consequence the delay of a signal depends on how many clock zones it has to cross. This
is quite different from CMOS where wires with different lengths have very similar delays. Each
clock zone crossed by a signal can be modelled as a register, as a result it is easy to understand
that NML circuits (just like QCA) are intrinsically pipelined. Every group of N adjacent clock
zones has an overall delay of a clock cycle.

For this reason signal synchronization is a very delicate issue in NML circuits. Figure 14 is
useful for clarifying the problem, the input wires routing is correct in part B, while incorrect in
part A. For a proper circuit functioning the three input signals must reach the two AND ports
simultaneously, to do so the routing must assure that the input wires cross the same amount
of clock zones. The example was presented for the Magnetic NML case, but the same concept
applies to ME-NML as well as any QCA implementation.

The problem gets more complex when dealing with feedback signals, see for example the

feedback in Figure 11 at the top left corner. While the external input of the AND port arrives



29

0
opood

i goo i
; 00000000 ;
! Odg !

0oOopoog 000000 DDDDDED

god
0oOopoog 000000 000
ood

dll
ooopoog nooooodd Cooopo

Figure 14. NML signal synchronization. The three inputs must arrive to the two AND ports
simultaneously. To do so the input wires must pass through the same number of clock zones.
(A) Not working routing. (B) Correct routing.

at every clock cycle, the second one (the feedback) arrives later. The output of the AND port
needs two clock cycles to be fed back. Therefore at every clock cycle the AND operation is
performed between the new input and the output result obtained 2 cycles before. The proper
result will arrive at the next time step. Notice that the longer the feedback wire, the longer the
delay. The input must then be delayed long enough to match the length of the feedback loop.
In conclusion the inputs have to be fed with a delay equal to the feedback length, reducing then
the throughput, particularly in case of long loops. If, for instance, a circuit has a feedback 5

cycles long, only an input every 5 cycles can be fed. Therefore the throughput is 1/5 of what it
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could be if the input was continuous. In fact, at any time, only 1/5 of the magnets will contain
useful data.

2.2.4.1 Interleaving
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Figure 15. Data interleaving. In this example 3 operations are executed in parallel:
A4+B+C, D+ E+F,G+ H+ 1. At every clock cycle the input data comes from a different
operation. Since the feedback loop is 3 registers long, data from the same operation are fed
with 3 clock cycles of delay.

The problem of pipelining in CMOS sequential circuits is very complex and delicate. Un-

fortunately it is even worse for the NML (QCA) technology, as it is not possible to control the



31

pipeline level. Since the pipeline is intrinsic to the technology, it cannot be eliminated, it can
only be reduced by optimizing the circuit layout.

The usual improvement techniques for CMOS pipelining are jump prediction and instruction
reordering, but for NML (QCA) they can only reduce the problem, they are not able to solve it.
A radical solution is the Data Interleaving [22], which allows to reach the maximum throughput.
The idea is to have a continuous flow of input data. Multiple non correlated set of operations
are executed in parallel, so that the delay time between an input and the next is filled with
other operations.

Figure 15 shows an example of data interleaving mechanism. Three operations are executed
in parallel: A+ B+ C, D+ FE+ F, G+ H + I. At clock cycle 1 the first data of the first
operation, A, is given as input. For a correct synchronization, B has to be fed when A reaches
the end of the feedback loop, which is 3 clock cycles long. Therefore we give A, B and C as
inputs respectively at clock cycles 1, 4 and 7. In the intermediate time steps we can execute in
parallel the other two operations, to reach the maximum throughput. This is possible only if
the three operations are uncorrelated. So at clock cycle 2 the input is not the number data of
operation 1, but D: the first data of operation 2. And in the same way we will input G, the
first data of operation 3, at clock cycle 3. The same goes for the next time steps; the input
order is the following: A, D, G, B, E, H, C, F, I. That is: OP.1 DT.1, OP.2 DT.1, OP.3 DT.1,
OP.1 DT.2, OP.2 DT.2, OP.3 DT.2, OP.1 DT.3, OP.2 DT.3, OP.3 DT.3 (where OP. stands for

operation and DT. for data).
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Data interleaving is a simple expedient that can solve the deep pipelineg problems, but if
the required number of operations to execute in parallel is too high then it might not be a
feasible solution anymore. The number of required parallel operations is equal to the delay ( in
terms of clock cycle) of the longest loop inside the circuit. During the circuit design phase for

NML circuits it is then extremely important to keep loops as short as possible.



CHAPTER 3

VHDL MODEL FOR THE MAGNETOELASTIC NML

The main purpose of this work is to study for the first time the Magnetoelastic Clock NML
(ME-NML) from the architectural point of view, taking into account physical and technological
constraints. The work directly concerns ME-NML, but some aspects could be easily generalized
to other QCA implementations. The Magnetoelastic clock system has been verified [1], but no
design and architectural study is present in literature. As for now there is no automated tool for
properly simulating and synthesizing NML circuits. For this reason researchers at Politecnico
di Torino developed a VHDL model (preliminary done in [37][38][39]) and a design tool, named
ToPoliNano [40]. This tool is specifically constructed for the Magnetic clock NML.

Based on this idea we developed a RTL model in VHDL language which allows to:
e casily simulate any ME-NML circuit, verifying its functioning;
e hierarchically estimate the circuit performance in terms of area occupation and power

consumption.

The model keeps consideration of all the relevant technology constraints. The result will
be a circuit with an embedded evaluation function for power and area. Thanks to the clock
network, each clock zone samples one data per clock cycle, therefore it can be modeled with a

register as they have the same behavior.

33
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3.1 Standard Cell Library

In Section 2.2.3.1 Figure 13 shows that the ME-NML layout is based on mechanically isolated
islands, which will be referred to as cells or clock zones, as they receive their own clock signal. It
has been already mentioned that, for fabrication and physical limitations, the height and width
of a cell can be of either 3 or 5 magnets. For this work we chose the 3 x 3 cell dimension, as
it is the smallest size feasible with current lithographic resolution. Compared to bigger cells, it
has a shorter critical pattern (number of cascaded magnets) leading to both an higher working
speed and a better signal propagation reliability. Based on our choice all the drawings and
circuits from now on will exploit 3 x 3 clock zones, but the VHDL model is generalized for any

cell size.

____________________________________

_____________________________________

Figure 16. ME-NML cells. A) 3 x 3 size. B) 3 x 5 size.

We noticed that, due to the small size of this ME-NML cells, there is a limited number of
possible magnets configurations. Hence the totality of the conceivable clock zones is reasonably

small. This interesting feature of ME-NML triggered the idea of designing a finite set of standard
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cells: a Standard Cell Library, where each element is described in VHDL language. The result
is that, assembling cells from the library, any digital circuit can be designed. This standard
cell approach confers to ME-NML a propensity for design automation, making this technology

very much suitable for having its own simulation and synthesis tool.

Standard Cells

0" "' Crosswire %8&
'OV 1 1 1
T T | I
- Inverter
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Figure 17. Full 3 x 3 Standard Cell Library for ME-NML.

The full 3 x 3 Standard Cell Library is tabulated in Figure 17. The logic gates are basically

the same as for the Magnetic clock NML (Figure 7): Wire, Crosswire, Inverter, AND, OR. But
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here they must be distinguished also by layout and orientation, not only by their logic function.
The main reason is that the whole library is thought in the perspective of a future automated
tool for circuit design.

Cells lying within the same row of Figure 17 can be derived from each other by horizontal
and/or vertical flipping. Since they represent different orientations of the same cell, they are
described by the same VHDL entity. The binary numbers in the table will be given as generic
parameters to state the cell orientation. The only exceptions are Double Wire, AND, OR: These
cells are put in the same row to get a more compact image, but they have to be defined with
different VHDL entity.

Each cell is modeled as a CMOS register plus, if needed, an ideal logic port.

Wire. The word wire in NML technology refers to a series of adjacent magnets. With a proper
clock system a wire can propagate signals with a domino-like behavior. In section 2.1.1 we
explained that the horizontal alignment of magnets is antiferromagnetic, while vertically
each magnet has the same polarization of its neighbors. Therefore, for a clock zone to
have a Wire function, the number of horizontal magnets must be odd. Since wires do not
carry any logic function they are simply described as registers. As clear from Figure 17,

there are four different wires in the library:

e Vertical Wire. There are two possible orientations: left and right.

e Horizontal Wire. There are two possible orientations: up and down.

e Long Wire. From one corner to the opposite one. There are two possible orientations.
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e 2 Outputs Wire. This wire covers three corners, so there are two outputs, as there

cannot be more than one input. It is the only cell with 4 possible orientations.

Double Wire. It contains two independent wires with length of three magnets. In the model
this cell is described with two different registers. From the logic function point of view it
is just like putting together two single wire cell. There are two Double Wire cells in the
library, described by two different VHDL entities. Notice that the horizontal and the

vertical Double Wire are not two different orientations of the same cell.

Crosswire. It is modeled similarly to the Double Wire, but physically the wires cross each
other. This interference-immune crossing is vital, since for now NML is still a planar

technology.

Inverter. The horizontal alternate alignment of magnets is exploited to obtain the inverter
function: Any even number of adjacent horizontal magnets generates an inversion. The
VHDL model only has a small difference compared to the Wire case. To implement the
inversion an ideal CMOS inverter has to be added at the input of the registers. Just like
for the wires two inverters can be present within the same cell, but only horizontally. The
vertical coupling is ferromagnetic, so the inversion does not take place. The library also

contains a cell with both an inverter and a horizontal wire.

e Inverter. It is horizontal only. There are two possible orientations: up and down.

e Inverter plus wire. There are two possible orientations: inverter up and inverter

down.
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e Double Inverter. Beside the fact that it implements the inversion, it is the same as

the horizontal Double Wire.

AND. In Section 2.2.1 it is explained how AND and OR gates can be obtained by modifying
the shape of a magnet [26]. For visual clarity the magnets with the slanted edges are
filled with black. A cut on the bottom left corner provides the AND function. None of
the six AND cells in the library can be derived from another one by flipping, even if they
look like they could. Notice that the slated edge is always on a left corner of the magnet.
Therefore each AND cell is described by a different VHDL entity. The first four cells

have one output, while the others have two outputs.

e AND. There are four different AND cells with only one output. The inputs can be
either both on the left or both on the right, while the output on the other side can

be either at the top or the bottom.

e AND with two outputs. There are two different AND cells with two outputs. The

inputs can be either on the left or on the right, while the outputs are on the other

side.

OR. The only difference from AND cells is the position of the slated edge, which is on the

upper left corner.

3.2 VHDL of the Standard Cells

In this section we will see how the actual VHDL for standard cells works. The Listing 3.1 is

used as an example, it contains the complete code for the Inverter plus Wire. The inverter (4
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adjacent magnets) and the wire (3 adjacent magnets) are horizontal, so the cell can be flipped
around its horizontal axis.

3.2.1 Generic parameters

Each VHDL entity has many generic parameters that allows to differentiate clock zones
belonging to the same type of cell and their relative positioning within the circuit (see lines
11-16 of listing 3.1). In Figure 19.B they are represented as inputs of the Standard Cell.
These parameters do not affect the logic or the functioning of the circuit, indeed they provide

information useful for performance estimation or for a future possible aided design tool.

e PHASE. For ME-NML we chose a 4-phase clocking system. This generic defines which
one of the four clock signals will be connected to the clock zone. This information is
redundant, as the required clock signal is directly connected to the clk port, but we

included it to assure a better suitability of this model to a design tool.

¢ ROW and COLUMN. ME-NML circuits are composed by cells disposed in a grid-
like fashion, just like depicted in Figure 13.D. ROW and COLUMN refer to the relative
position of a cell within the circuit described by the upper level entity. It will be explained
in section 3.2.4 that the model is hierarchical. If single cells are considered as layer 1, an

entity in layer 2 will assemble them to create the final circuit or part of it.

e ORIENTATION. As represented in Figure 17, when cells can be obtained from each
other by a simple flipping, they are described by the same VHDL file. The ORIENTA-
TION parameter says which one to use. Once again, this does not affect the logic or the

circuit performance: It is just a matter of layout.
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e H and L. The choice for this work has been to exploit 3 x 3 clock zones. So the height
and width (in terms of nanomagnets) of a cell are always equal to 3. Anyway the model

is as generic as possible, so the height and width are parameters: H and L.

3.2.2 Register plus logic function

The Inverter plus Wire cell is composed by two parallel series of magnets: 4 for the inverter
and 3 for the wire. Therefore it is modeled by two D Flip Flop registers, plus an ideal inverter
applied to one of the outputs. Lines 37-38 of Listing 3.1 contain the registers instantiations,

while the inversion function is at line 35.

3.2.3 Area and Energy

In this section we refer once again to the Listing 3.1. Each cell described with VHDL
evaluates and gives as output its own number of magnets (n_mag), its area occupation (area_eff,
area_tot) and power consumption (Er, Ec) (Figure 19.B). The number of magnets is evaluated
at line 34, while the other values are calculated by a component named area_and_energy (lines
23-31 and 40-41). This component, starting from the number of magnets, height and width
of a cell, provides as output the required information on area and power. For the number of
magnets evaluation, the central part of the Crosswire (the cross) is considered equivalent to 3

magnets.
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entity inv_with_wire is

generic (PHASE: std_logic_vector (1 downto 0);— Clk phase.

ROW: natural;
COLUMN: natural;
ORIENTATION: std _logic;
H: natural;
L: natural);
port ( dl,d2: in std_logic;

clk: in std-logic;
ql.n,q2: out std_logic;
n_mag: buffer natural;
n_zones: out natural :=
area_eff: out natural;
area_tot: out natural;
Er: out natural;
Ec: out natural);

end inv_with_wire;

— Relative cell position (row)
— Relative cell position (col)

—— Height (# of magnets)
— Width (# of magnets)
— Inputs
— Depends on the phase
— Outputs
— # of magnets

1;— # number of cells
— Total magnets area
— Cell area
— Switching energy
— Clock network losses

architecture behavior of inv_with_wire is
component reg is — D FlipFlop (1bit)

end component ;
component area_and_energy is
generic (H: natural;
L: natural);
port ( n_mag: in natural;
area_eff: out natural;
area_tot: out natural;
Er: out natural;
Ec: out natural);

end component;
signal ql: std-logic;
begin
n_mag <= Lx*241; — Evaluate the

ql_.n <= not ql; — Inversion

Wirel: reg port map(d => d1,clk
Wire2: reg port map(d => d2,clk

Evaluate_area_energy: area_and_e

— Height (# of magnets)
— Width (# of magnets)
— # of magnets

— Total magnets area
— Cell area

— Switching energy

—— Clock network losses

number of magnets using H and L.

=> clk ,q => ql);
= clk ,q => q2);

nergy generic map(H,L)

port map(n-mag, area_eff ,area_tot ,Er,Ec);

end behavior;
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3.2.3.1 Area information
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Figure 18. Detailed measures of the ME-NML 3 x 3 cell.

Figure 18 reports the complete clock zone measures and the distance from nearby cells.

Here is the list of the relevant measures:

e Magnets. Height: H,,qy = 65nm, width: W,,4 = 50nm.
e Magnets separation. Both horizontal and vertical separation: Sepyqg = 20nm.
e Electrodes. Width: W ectrode = 30nm.

e Cells separation. Horizontal: Sep_horiz.e; = 30nm, vertical: Sep_vert..; = 20nm.
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The fixed values above are assigned to the proper constants in the model (Listing 3.2), so
that the component area_and power will be able to evaluate the correct area information for

each cell. Each cell gives as output two data related to area occupation:

Magnets Area. It is the area of one magnet multiplied by the number of magnet on the cell.

Amagnets = nmag : (Hmag : Wmag) (31)

Cell Area. It is the area of the cell, including the electrodes and the separation space among
cells. It will be used to evaluate the total area of the circuit. Since in this work the cell

dimension is fixed to 3 x 3, the Cell Area will be the same for every cell.

Hcell =3 (Hmag + Sepmag) = 255nm (32)
chll =3- Wmag +2- (Sepmag + Welectrode) + SepthT’iZcell = 280nm (33)

Acell = Hcell : chll (34)

From now on, for an easier design procedure, the vertical separation between cells will be
null. The height of the substrate (and electrodes) will be depicted 20nm higher, occupying then

the area previously devoted to the separation.
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— CELL and MAGNET size —

constant
constant
constant
constant
constant
constant

HMAG:

WDMAG:

SEP_MAG:
W_ELECTRODE:
SEP_HORIZ_CELL:
SEP_VERT_CELL:

77777 All values

natural := 65; —
natural := 50; —
natural = 20; —
natural := 30; —
natural = 20; —
natural := 30; —

are expressed in [mm] —mM8M8M

Nanomagnets height

Nanomagnets width

Nanomagnets separation

Electrode width

Vertical separation between cells
Horizontal separation between cells

3.2.3.2

Energy information

The area_and_power component actually estimates the energy dissipation E and not the

power. Knowing the working frequency fe, which for this work was chosen equal to 100M H z,

the power P can be easily derived:

P=F": fu

(3.5)

The VHDL contains the definition of all the constants needed for this section, they are shown

in Listing 3.3. The main sources of energy dissipation in NML circuits are basically two:

Magnets Switching. It is the intrinsic energy loss required to force magnets in the NULL

state (E, in Listing 3.1).

The switching can be either adiabatic or abrupt: For the

Magnetic clock NML the difference in term of losses was extremely wide, so the switching

had to be adiabatic. But ME-NML behaves differently: The energy consumption is still

equal to 30K,T if adiabatic, but only 180K},T" (the whole energy barrier for 50 x 65 x

10nm? nanomagnets) if abrupt. Since in both cases the consumption will be negligible
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compared to the second component, the choice is the abrupt switching, which reaches

better performance.

After defining how much energy is dissipated by the switching of a single magnet (Eyp,qq),
to calculate the energy consumption of a cell the only information needed is the number

of magnets (nmqg) on that cell:

Ecell = Nmag * Emag (36)

Clock Network. It is the energy dissipated by the clock network mainly due to Joule losses
(E. in Listing 3.1). Since PZT (piezoelastic materials in general) is an insulator, a ME-
NML cell behaves as a capacitor. Therefore the main contribution to clock losses (for
a 100M H z frequency) is the charge of such capacitor. The capacitance is estimated in

equation Equation 3.7 [35].

€ € tpzr - Heell eff

C pu—
chll,eff

(3.7)

The first three constants are the absolute dielectric constant (eg), the relative dielectric
constant of PZT (e, ), the thickness of the PZT substrate (tpz7 = 40nm|[35]). The other
two values are the effective dimensions of a clock zone, without the inclusion of the

separation between cells. Hence Heey cff = 235 and Weey e 5 = 250 (Figure 18).

Equation 3.8 evaluates the voltage that must be applied to a clock zone to force it into

the RESET state.

Weetlefs -0

V= Y - ds3

(3.8)
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Listing 3.3. Constants for Energy estimation

— CONSTANTS FOR ENERGY EVALUATION

— For switching energy evaluation

1| constant Kb: real := 13.8065e—23;—Boltzmann const.(m" 2xkgxs ™ —2«K"—1)
constant T: real := 300.0; —Room temperature (K)
constant EMAG: real := 180xKbx*T}; —

— For clock energy evaluation
constant VACUUMPERM: real

8.854e—12; —Vacuum permittivity (F/m).

constant RELPERM: real := 1300.0; —Substrate relative perm. (—)
10| constant T_PZT: real := 40e—-9; —Electrodes thickness (m)
constant STRESS: real := 28e+6; —Applied stress (Pa)
constant YOUNGMODULUS: real := 80e-+9; —Young modulus for Terfenol (Pa)
13| constant PZT_CONST: real := 150e—12; —Substrate const., piezo coeff. (m/V)

In this formula we have the applied stress (¢ = 28 M Pa), the Young modulus for Terfenol
(Y = 80GPa) and the coefficient for strain and applied voltage coupling in the PZT
substrate (ds3 = 150pm/V’). Normally for our cells the applied voltage should be in the
range of 0.7 — 1.3V [35]. Finally the energy required to charge the capacitance of one cell

is listed in equation Equation 3.9.
1 2
Ear = 3 c-v (3.9)

In this work the clock will be always chosen equal to fur = 100M Hz. The clock period
T, depends on technological constraints, not on the logic, as the critical path for signals is
fixed, no matter which logic has been implemented. The constraints on the clock duration

are manifold, all of them derive from technology choices:

e maximum number of magnets per clock zone;

e number of clock phases (3 or 4 for the implementations studied in this work);
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Figure 19. A) VHDL hierarchical model. The information on energy dissipation and area
occupation are propagated hierarchically toward the top entity. B) generic inputs and

e usage of either adiabatic or abrupt switching.
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The power contribution of the circuit for clock generation is negligible, as the circuit

counts a limited number of transistors [12]. Therefore this component will not be taken

into account.

Hierarchical model

______________________________________________________________
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Since VHDL language is hierarchical, the same is true for our model. The standard cells
form the bottom layer, while components in the upper layer can assemble them together to
create circuits. These blocks of cells themselves can be instantiated by bigger circuits and so
on up to the top entity. Figure 19.A depicts a generic 3-layers hierarchy. The Top Entity (layer
3) is composed by many Block of cells (layer 2), while each block of cells encloses the required
standard cells (layer 1).

This hierarchy is exploited for a bottom-up evaluation of the number of magnets, number of
cells and performance in terms of area and power. As explained in section 3.2.3, each Standard
Cell gives as output all this information about itself thanks to the area_and_power component.
The elements in the upper layer sum up the data received from every element in the lower layer
(with what is called arrays sum in Figure 19), outputting then the results. This mechanism goes
on recursively up to the Top Entity, which gives as output the total results for the whole circuit.
Notice that the model provides exact results, as there is no approximation in the hierarchical
evaluation and the circuit design for ME-NML provides a layout correspondent with the actual
physical mapping.

3.3 Circuit layout

We have seen how cells are described by the model and how performance is evaluated. In this
section we will see the first example of a ME-NML circuit, focusing on many general aspects of
the design: the circuit layout, the CMOS circuit described by the model, the multiphase clocking
system, the timing of signal propagation. This quick glance will be very useful when dealing

with more complex systems in the following chapters. The small circuit studied in this section
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Figure 20. A) CMOS Half Adder. B) ME-NML Half Adder. C) Waveforms for the 4-phase
overlapped clock system. A color is associated to each clock signal. D) VHDL counterpart of
the ME-NML circuit, it is the circuit described by the VHDL model. E) Timing diagram of
an example of signal propagation through the adder.

is a Half Adder (HA). Since the only logic ports available are Inverter, AND, OR, to design the
ME-NML Half Adder in Figure 20.B we started from the configuration in Figure 20.A.

Cells are placed on a grid-like scheme (Figure 13.D). The pattern from inputs to outputs is
5 clock zones long. For an easier visual comprehension, the AND, OR and inverter magnets are

highlighted respectively in blue, red and orange, while the substrate coloration identifies the
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clock phase of a cell, namely the clock signal driving such clock zone. The clock system choice for
ME-NML is a 4-phases overlapped clock, the 4 waveforms, with their assigned colors, are listed
in Figure 20.C. Notice that clock signals are slightly overlapped, to avoid back propagation.

The model presented in this chapter maps each clock zone to one/two registers, plus a
logic gate if needed. The VHDL code for the ME-NML HA describes the CMOS circuit as in
Figure 20.D. Notice that the path from input to outputs counts 5 registers (5 pipeline stages),
just like the 5 clock zones needed to pass through the ME-NML version. The numbers marking
registers define their clock phase.

For a better comprehension of the circuit functioning, the timing graph in Figure 20.E
shows a simple propagation example. The signals follow the pattern from the inputs to the
Carry output, passing through the nodes marked as A-B-C-D. All clock signals have the same
period Tk, but they are shifted by 90°. It is quite clear from the timing that a signal needs
one clock cycle Ty, to cross 4 clock zones (registers in the VHDL counterpart of the ME-NML

circuit). Hence a signal has a latency of T /4 to cross a clock zone.



CHAPTER 4

CASE STUDY I: GALOIS FIELD MULTIPLIER

The aim of the first case study is to answer the most critical question about MagnetoElastic
NML (ME-NML) technology: Does it offer significant improvements over state-of-the-art CMOS
transistors? Is the power dissipation much less than for the Magnetic Clock NML? To prove
the benefits of ME-NML, it is presented an accurate comparison of performances between three
different implementations of the same circuit: 28nm CMOS, Magnetic Clock NML and ME-
NML.

The circuit chosen as case study is a Galois Field Multiplier (GFM). It has got several
applications in cryptography, digital signal processing, coding theory and computer algebra.
This circuit shows strong modularity, because of its systolic array structure: It is composed by
arrays of identical elements able to communicate only with their adjacent neighbors [41][42].
Since the usage of long interconnection wires is avoided, systolic arrays are very much suitable
for NML circuits (QCA in general). NML technology is indeed still planar, it is not possible to
use additional layers for interconnections, so the circuit complexity explodes with the increase
of interconnection overhead. Therefore it is strongly advised, for any QCA implementation, to
design circuits with a systolic array layout, as it is the only way to fully exploit their capabilities.
If designed otherwise, NML circuits would lose to CMOS performances. The example in [43]
clearly proves how with the wrong architectural choices the interconnection overhead can occupy

as much as the 99% of circuit area.

o1
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4.1 Galois Fields arithmetic

A Galois Field GF(q) encloses a finite number ¢ of elements, together with the definition of
addition and multiplication operations on pair of elements [44]. When ¢ = p™, with m positive
integer and p prime number, the field exists and is unique. For this work we are exclusively
interested in Binary Galois Fields (GF(2™), p = 2), as they perfectly suit digital systems. A
XOR function implements the addition, while an AND port can perform the multiplication.
In general, when m = 1 the operations are defined as the common modulo p addition and
multiplication. So GF(2!), the smallest possible Binary Galois Field, only has the two elements
{0,1} and modulo 2 operations. Table I shows the addition and multiplication results for
GF(2}).

However, when m > 1, modulo operations between polynomials are required instead of
ordinary modulo operations. A polynomial with degree up to m — 1 can be associated to each
element of a field GF(2™). Its coefficients are elements of the field GF(2), that is 0 or 1, so
each polynomial can be represented by a binary number composed by its own coefficients. In

Table II we can see the polynomial mapping and the corresponding binary representation for

TABLE I

ADDITION AND MULTIPLICATION FOR GF(2)
+10 1 <10 1
0]0 1 010 O
111 0 110 1
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TABLE II

POLYNOMIAL MAPPING AND MULTIPLICATION TABLE FOR GF(8). PRIMITIVE:

X3+ X +1.
Element | Polynomial | Binary Repr. -10 1 A B C D E F
0 0 000 X/0 0 0 0 0 0 0 O
1 1 001 110 1 A B C D E F
A x 010 Al0O A CEB 1 F D
B r+1 011 B|0 B EDTF C 1 A
C x2 100 C|lo ¢C B F E A D 1
D 22 +1 101 D/o D1 C A F B E
E 2+ 110 E|0 E F 1 DB A C
F 22 4+x+1 111 F|oO F DA 1 E C B

the field GF(23). Its elements are eight: {0,1,A, B,C, D, E,F}. This representation has as
primitive polynomial z3 + = + 1, which guarantees an efficient hardware implementation. A
different choice of p(x) generates a different polynomial representation.

But how to obtain the product results in Table II? The algorithm for multiplication of two
polynomials a(z) and b(z) modulo an irreducible polynomial p(x) (called primitive) is reported
in listing 4.1. Tt is called the Montgomery Multiplication Algorithm [45]. For GF(2™) the
primitive polynomial has degree equal to m. The algorithm can perform modular multiplication
without requiring division, which would be very costly. The multiplication is performed by
sum-and-shift of partial products, while the modulo operation is obtained by subtracting the
irreducible polynomial whenever the degree of the intermediate result gets equal to m. The

a; - b(x) term is either equal to 0 or to b(x), respectively when a; = 0 and a; = 1. So one
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Listing 4.1. Montgomery multiplication algorithm.

r(x) =0
for i = m—1 downto 0 do
r(x) := x*r(x) + a_ixb(x)
if degree(r(x)) = m then r(x) := r(x)-p(x)

return r(x)

coefficient of a(x) at a time is multiplied (carry free) with all the coefficients of b(x). Then the

current result is shifted left (multiplying by z) before adding the new partial result.

4.1.1 Galois Field Multiplier scheme

Translating the Montgomery algorithm into an actual circuit, we obtained a MSB-first bit-
serial Galois Field multiplier. MSB-first and bit-serial refer to how the coefficients of a(x)
are fed to the circuit: Serially and starting from the MSB. Figure 21 shows the scheme of the
multiplier for GF(2%). 1-bit registers are exploited to hold inputs and partial results, while the
x and + symbols stand for multiplication and addition. The steps of the algorithm are mapped

to the circuit scheme:

e Shift: x - r(x)
Implemented with a 1-bit shift register toward the MSB. This operation provides the
alignment with the next partial product. The 4 central registers form a shift register that

moves the intermediate result (z) to the right.
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e Partial product: a; - b(x)
Implemented with m bit-wise multiplications. This multiplications will be realized with

2-inputs AND ports. Data a(x) has to be fed serially, while data b(x) is a parallel input.

e Intermediate result: r(x) = x - r(x) + a; - b(x)
The partial products addition is performed by 4 bit-wise additions, which can be obtained

using XOR ports.

e Subtrahend selection: if degree(r(x)) = m
When this is true the primitive polynomial must be subtracted from the intermediate
result, while when false the subtrahend will be 0. To generate the proper subtrahend
(p(x) or 0), p(z) is multiplicated bit-wise with r,,,_1, which is the MSB of the intermediate

result. As already mentioned multiplication can be implemented by AND ports.

e Modulo operation: r(x) = r(x) + p(x)
To subtract the selected subtrahend from the intermediate result r(x) the two values are

added (GF addition) bit-wise. This addition can be implemented by XOR ports.

The addition symbols in Figure 21 have three inputs, they perform two of the operation

just described: Intermediate result and Modulo operation.

r(z)=x-r(z)+a; b(x)
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In Figure 21 the systolic array organization is evident, multiple entities of the same basic
block (circled with a dashed line) are combined to form the multiplier. A N-bit GFM requires
N identical basic blocks, the only exception are the first and last which are slightly different
from the others. Simply connecting a different number of this blocks it is possible to obtain any
parallelism. Therefore a generalized GFM can be designed defining only three blocks, which
will be referred to as first, central and last. This characteristic will be valid for any GFM

implementation explored throughout the whole work.

. Basic block
dataB(0) " dataB(1) " dataB(2) dataB(3)
v 5 Ly
Y% Y
dataA
<] (serial)
J Y <l
X
> > >
X X
7 a :
A i A i A A
PO pasoyt PO pey)! Lre) Res(2) PG)  Res(3)

Figure 21. Scheme of a 4-bit bit-serial Galois Field Multiplier (GF(2%)).
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4.2 CMOS Pipelined Implementation

The scheme in Figure 21 has been modified into the one in Figure 22 to make it fully
pipelined, so that the circuit behavior is as similar as possible to ME-NML functioning. Fur-
thermore, without the pipeline, dataA and feedback propagation would have too long critical
paths, as they grow proportionally to the circuit parallelism. The full pipeline guarantees a
constant critical path for any parallelism leading to a greater throughput, but requiring addi-
tional registers that will have an impact on circuit area. The scheme in Figure 22 will be the

starting point to design the ME-NML version of the Galois Field Multiplier (GFM).

dataB(0) dataB(1) dataB(2) dataB(3)

A

s
e 18
1

X X
b A b A <—I
A A A A
P(0) \/ P(1) \/ PQ2) \J P(3) \/
Res(0) Res(1) Res(2) Res(3)

Figure 22. Scheme of the 4-bit fully pipelined Galois Field Multiplier.
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Figure 23. CMOS implementation of the 4-bit fully pipelined GFM. (A) Preskew circuitry for
dataB. (B) Circuit body.

Moreover this is also the architecture chosen for the CMOS implementation, so that it
assures an accurate and straightforward comparison between the two NML technologies con-
sidered in this work. Figure 23.B shows the fully pipelined CMOS circuit: It is exactly like in

Figure 22, with additions performed by XOR gates, and multiplication by AND gates. Just
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like for the scheme in Figure 21, the CMOS implementation is composed by standard blocks.
The N-bit multiplier is formed by N adjacent blocks, which are all identical beside the slight
differences of the first and last ones.

Because of this strong modularity, once defined the three basic blocks (first, central, last),
it is straightforward to create a GFM with any parallelism just by tuning the number of central
blocks (N — 2 central blocks). For example a 4-bit multiplier, like in Figure 23, counts 2
central blocks. Increasing the parallelism the circuit layout will simply grow horizontally.

The generalized N-bit CMOS GFM has been described with VHDL language. The top
entity, called Galois Multiplier, instantiates N basic_block components. The basic_block
has slightly different configurations, depending on its position within the circuit: first, last or

center. This exact organization has been used also for the two NML implementations.

4.2.1 Timing analysis

Consider from now on a generic N-bit GFM. Due to both the Montgomery algorithm and
the full pipeline, the inputs must be fed to the circuit in a peculiar way. The feedback path
highlighted in blue in Figure 23 determines the input protocol. For a correct alignment of
partial products’ sum, DataA (n-1) must arrive when DataA (n) reaches the end of the feedback
loop. Since the blue loop is two clock cycles long, DataA bits must be fed with a delay of 2 clock
cycles starting from the MSB. Therefore the overall time for DataA to be inputed is 2N - Ty,
leading to a throughput of 1/(2N - Tyy).

DataB (just like the primitive polynomial P) is a parallel input, but to generate the correct

partial products with DataA its bits cannot arrive simultaneously. According to the circuit
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TABLE III

TIMING PERFORMANCE OF THE CMOS GFM

N bit | Interleaving | Throughput | Result: 1st bit out | Result: last bit out
Z 2 op. 1/(8Tx,) 8T, 11Ty,
8 2 op. 1/(16Tclk) 16Tclk 23Tclk
N 2 op. 1/@2N -Ta) | N -1)+2) T, | BN —1)+2) Ty

in Figure 23, DataA bits require a single clock cycle to pass through a basic block. Then the
delay between DataB bits is of one clock cycle (Ty), and each bit has to be hold for the whole
operation: 2N - Ty,. The same is true for P because the feedback propagates as DataA. The
result Res behaves just like DataB and P. Although this protocol remains unchanged for any
circuit parallelism, inputs with higher number of bits need more time to be fed to the circuit.
Table III lists the timing information for a generic multiplier and for two specific parallelisms:
4-bit and 8-bit.

Three major issues derive from the required protocol:

e There is an unused clock cycle between a DataA bit and the next. This means that
meaningful inputs are fed only for half of the time, so at any time half of the registers in

the circuit would contain useless data.

e It is not possible to supply all bits of DataB simultaneously. The same is true for P and

for acquiring Res.

e To guarantee a continuous data flow, the inputs of an operation are fed right after the

ones from the previous one. Therefore the new operation starts while the previous one
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is still processing. The first partial product has to be summed to 0, so the central shift
register would be required to contain zero when the new data arrives. However it would

still be carrying the final result from the previous operation.

The solutions adopted applies also to the two nanomagnetic implementations:

e Interleaving. To have a continuous flow of input data multiple non correlated sets of
operations can be executed in parallel, so that the delay time between an input and the

next is filled with other operations (2.2.4.1).

e Preskew and deskew networks. A full set of additional registers must be added to
the multiplier’s body, in order to form preskew (for DataB and P) and deskew (for Res)
networks. Figure 23.A shows the additional circuitry so that all bits of DataB can be
served simultaneously. The same network has been used for P and Res. We will see in

Chapter 5 how they affect the circuit area growth as a function of the number of bits.

e Shift Register Reset. Each register of the central row has to be reset (set to '0’) when
data from a new operation arrives. Since in that moment it will contain the final result of
the previous operation, such result will be erased. Therefore a line of additional registers,
with the same input as the shift registers, is added right below. In this way the final
result can be preserved, allowing to execute a continuous flow of operations. The reset
of the shift register is applied in the same way as DataB is fed to the circuit. A 1 clock

cycle reset is applied to each register when a new data is fed to its correspondent DataB



62

TABLE IV

POLYNOMIAL MAPPING FOR GF(16). PRIMITIVE: X* + X + 1.

Element Polynomial Binary Representation
0 0 0000
1 1 0001
2 T 0010
3 r+1 0011
4 22 0100
5 241 0101
6 22+ 0110
7 22 +r+1 0111
8 3 1000
9 3+ 1 1001
10 2+ 1010
11 B +r+1 1011
12 3 + 22 1100
13 2 4+a?+1 1101
14 2’4+ 1110
15 24+’ +r+1 1111

register. The first register of the feedback (bottom-right corner) must be reset as well

anytime a new DataB(3) bit is applied.

4.2.2 Circuit simulation

The purpose of creating a CMOS version of the GFM is to compare its performances with
those of NML technology. First, the circuit has been described with VHDL and verified through
simulation with Modelsim 6.4. Then the circuit performances have been estimated through a
physical place&route with Cadence Encounter 13.1, using a 28nm library of low power CMOS

transistors.
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TABLE V

MULTIPLICATION TABLE FOR GF(

—_

6). PRIMITIVE: X* + X + 1.

X0 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15
o0 o o o o O O O O o o o o0 o0 0 ©o0
10 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15
210 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13
3/0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2
410 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9
510 5 10 15 v 2 13 8 14 1 4 1 9 12 3 6
6 /0 6 12 10 1 13 7 1 5 3 9 15 14 8 2 4
|10 7 14 9 15 8 1 6 13 10 3 4 2 &5 12 11
8§ /0 8 3 1 6 14 5 13 12 4 15 7 10 2 9 1
910 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14
0(0 10 7 13 14 4 9 3 1 5 8 2 1 11 6 12
11/0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3
120 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8
3/0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7
410 14 1 1 13 3 2 12 9 7 6 8 4 10 11 5
510 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10

We described with VHDL the CMOS fully pipelined version of the N-bit Galois Multiplier.
At first only the multiplier body was tested, both with and without exploiting interleaving.
Then the preskew and deskew additional circuitry have been added to the multiplier itself
for another simulation session. The simulation without synchronization circuitry requires a
quite complex testbench, while after adding the additional registers the timing protocol gets
much simpler. The parallelism is defined by a generic parameter called N_BIT, which in the
simulation is in the range 4 : 64 (GF(16) to GF(2%4)).

The circuit verification was carried out comparing simulation results to expected results

evaluated through a proper Matlab script. Every testbench prints the results into a text file,
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using functions from the std.textio library for VHDL. On the other side Matlab has a set
of functions for handling Galois Field arithmetic. The function gf creates the required array
of Galois Field elements, then any operation on those elements is performed within the Galois
Field specified. It is then trivial to generate the product matrix (as in Table V) that will
be used to write the expected results into a text file. This work uses the default primitive
polynomials defined by Matlab, which identifies them with a number corresponding to the
binary representation of polynomials’ coefficients. The simulation evaluates only a limited
number of randomly determined multiplications, because for high number of bits the product

table is extremely vast.

4.3 ME-NML Implementation

The central part of the study on the Galois Field Multiplier (GFM) has been the design and
optimization of its MagnetoElastic NML implementation. This work presents, for the first time
in literature, the design of a ME-NML circuit, also keeping into account the technological and
physical constraints of this newly proposed technology. Chapter 3 explained how a Standard
Cell Library and a RTL model have been developed for this technology, starting from the base
cell derived from the MagnetoElastic Clock idea [1]. Section 3.3 introduced the ME-NML design
methodology, also providing in Figure 20 a small design example. However only through the
study of complex architectures it is possible to fully understand the potentialities and limitations

of a novel technology.
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The register function is intrinsic in ME-NML technology. So, while designing circuits, all

that counts is the combinational logic. Since the only available ports are AND, OR and Inverter

the 3-inputs XOR has been realized as in Figure 24.

N
\
P L

{’3-inputs XOR |
f=A®B®C|

__________________________

Figure 24. 3-inputs XOR function constructed with AND, OR and Inverter gates.

4.3.1.1 Basic blocks

The basic block of GFM contains two AND and one XOR gates, plus a certain number of

registers. Through several steps of manual design and optimization, the final basic blocks for

the GFM came out as in Figure 25, where the newly designed ME-NML blocks are matched

with the correspondent CMOS blocks of the circuit in Figure 23. The in/out signals for each

block are indicated for an easier comparison with the CMOS circuit.
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Figure 25. Basic blocks of the GFM. ME-NML blocks on top are matched with the
correspondent CMOS blocks.

The reset network is not shown for CMOS, but its functioning was explained in 4.2.1. In

the ME-NML implementation the reset (rst), treated just like any other signals, is applied to

the signal (PEin) that propagates the temporary result from a block to the next one. The reset
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is obtained through an AND gate with as inputs PFEin and the reset signal itself. The same is
true for the reset applied to the feedback wire in the Last block (bottom-right corner).

For the sake of clarity the electrodes were omitted and there is no vertical separation between
cells. The cell’s color identify the clock phase: yellow for phase 1, pink for phase 2, light blue
for phase 3, green for phase 4. A N-bit multiplier requires N adjacent blocks: 1 First block,
N — 2 Central blocks, 1 Last block. Notice that the right border of the n block has the same

shape as the left border of the n+1 block.

4.3.1.2 4-bit GFM
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Figure 26. Magnetoelastic NML implementation of a 4-bit Galois Multiplier.
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In Figure 26 the basic blocks have been pulled together to form the 4-bit GFM. Figure 27
contains a circuit which is equivalent to the ME-NML version in terms of timing. This scheme
allows to easily comprehend how the ME-NML implementation works. Each register of Fig-
ure 27 represents four consecutive phases, so it is crossed in one clock cycle, which is the time
needed to pass through four ME-NML cells. A feedback path is highlighted in both drawings:
It is 6 clock cycles long, that is the time for crossing 24 ME-NML cells. The delay between
DataA bits has to correspond to this critical path’s length. This delay is much longer compared
to the CMOS circuit, because of the intrinsic pipeline nature of NML. The blue arrow is also

useful to indicate how signals propagate through this kind of circuit.

Figure 27. Equivalent circuit for the ME-NML GFM.
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Figure 28. ME-NML Galois Multiplier with additional preskew and deskew networks.
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One criticality described in Section 4.2.1 is the introduction of a preskew/deskew network,
so that all bits of DataB, P and Res can be served/acquired simultaneously. The additional
circuitry has been designed and added to the GFM body. Figure 28 is divided into three
horizontal stripes. The central one is the GFM’s body (Figure 26) and the top and bottom
ones are the required synchronization networks. The preskew/deskew circuitries can also be
decomposed in basic blocks and described with VHDL generically for any number of bits, even
though they are not as regular as the central section. They do not contain any logic, only

interconnections.

4.3.2 VHDL description and circuit simulation

To verify the circuit functioning and to evaluate performances, the ME-NML Galois Mul-
tiplier has been described with the RTL model presented in Chapter 3. The top entity
Galois Multiplier instantiates and connects the required number of basic blocks (Figure 25),
which are defined by another entity called Base Blocks (see Listing 4.2). Any circuit parallelism
can be obtained assigning the desired number of bits to the constant N_BIT.

The simulation was performed only on the circuit body, as it was enough to verify the circuit
functioning. The synchronization circuitry do not add any logic, anyway a full synchronization
network, related to the second case study of this work, has been modeled and simulated (Chapter
6). Since the additional network is not considered, the testbench is very delicate from the
timing point of view. The simulation procedure is the same used for CMOS: Results from the

simulation are compared with the expected results evaluated by a Matlab script.
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Listing 4.2. VHDL entities of Galois Multiplier: full circuit and basic block.

— Galois Multiplier entity
entity Galois_Multiplier is

port (DataB,P,rst: in std_logic_vector (N.BIT—1 downto 0); — DataB,P(x) , reset
rst_fb ,DataA: in std_logic; — feedback reset, DataA serially fed
Res: out std_logic_vector (N.BIT-1 downto 0); — Result
clkA, clkB, clkC, clkD: in std_logic;— Clock signals
n_mag: out natural := init_natural;— # of magnets
n_zones: out natural := init_natural;— # of cells used
AREA EFF:out natural; — Total magnets area
AREA TOT:out natural; — Total area occupied by the cells
Er: out natural; — Energy consumption of nanomags
Ec: out natural); —— Energy consumption of clock

end Galois_Multiplier ;

— Base Block entity
entity Base_Block is
generic (ELEMENT: integer); — Identifies one among N_BIT basic blocks
port (
A_in, B, P, fb_in, PE_.in: in std_logic;
mrbit_out, fb_out, Res, PE_out: out std_logic;

rst ,rst_fb: in std_-logic; — reset signals

clk, clkA, clkB, clkC, clkD: in std_logic; — Clock signals (all phases)
n_mag: out natural := init_natural;— # of magnets

n_zones: out natural := init_natural;— # of cells used

AREA EFF:out natural; — Total magnets area

AREA_TOT: out natural; — Total area occupied by the cells
Er: out natural; — Energy consumption of nanomags
Ec: out natural); —— Energy consumption of clock

end Base_Block;

The timing protocol is very similar to the CMOS case but with 3 times longer delay, because
the critical path is not 2 anymore, but 6. The result is a 6 clock periods delay between
DataA bits, and 3 clock cycles of delay for the others: DataB, P, Res. To reach the maximum
throughput 6 uncorrelated operations should be interleaved. Table VI contains the timing
information concerning the ME-NML implementation. To properly understand this table refer
to the equivalent circuit in Figure 26, rather than the original one in Figure 27.

The timing diagram resulting from the simulation of a simple operation is reported in
Figure 29. The operation executed is Res = DataA- DataB = 10 x 9. The result can be found

in Table V: 10 x 9 = 5, “1010” x “1001” = “0101”. Prior to the operation execution all cells are
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TABLE VI

TIMING PERFORMANCE OF THE ME-NML GFM

N bit | Interleaving | Throughput | Result:1st bit out | Result:last bit out
4 2 op. 1/(24T 1) 23Tk 32T
8 2 op. 1/(48Tclk) 45Tclk 66Tclk
N 2 op. /(6N - Tee) | (6(N —1)+5)-Tar | (N —1)+5) - Tk

considered in an undefined state, so that it will be easier to understand how inputs are given
to the circuit, because signals stay undefined until they are assigned a value. The whole timing
protocol strictly depends on the physical layout of the circuit.

Let’s analyze the diagram in detail:

DataA DataA is fed serially one bit every 6 clock cycles starting from the MSB.

DataB DataB is fed in parallel, one bit every 3 clock cycles starting from the MSB. Its values

change every 6Ny clock cycles.

Primitive polynomial It should be applied like DataB, but since the polynomial is usually
kept fixed it is treated as a constant. The polynomial chosen is % + 2 + land it is mapped

to binary as “10011”, but the MSB is not used by the Galois Multiplier.
Result The result must be acquired one bit every 3 clock cycles, starting from the MSB.

Reset signals The rst signal is applied to all the blocks but the first one, so 7st(0) is always
equal to 1. Each rst(i) bit is applied together with its corresponding DataB(i) and kept
low for 6 clock cycles. The rst2 controls the feedback and it is applied 1 clock cycle after

the beginning of the operation.
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Figure 29. Timing diagram of the operation 9 x 10 with the ME-NML 4-bit Galois Multiplier.

Clock signals There are 4 overlapped clock signals. The phase shift between one signal and

the next is then 90°.

Area and Power The six natural signals at the bottom contain the results of the embedded
performance evaluation: Number of nanomagnets, number of cells, total area occupied by
nanomagnets, total area occupied by cells, energy required for magnets switching, energy

dissipated by the clock network.

It may seem that in the diagram in Figure 29 only one operation is executed, but that is

not totally true. The interleaving technique is not exploited, so the only operation evaluated by
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the circuit is 10 x 9, but a close look reveals that such multiplication is executed 6 consecutive
times. Notice that each bit of the final result keeps its value for 6 clock cycles. The reason is
that instead of applying inputs and resets only for a single clock period out of six, they are kept

active for 5 more.

4.4 Magnetic Clock NML Implementation
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Figure 30. The 2-bit Magnetic NML Galois Multiplier, comprehensive of preskew and deskew
networks.

The introduction of the MagnetoElastic Clock technology [1], was mainly triggered by the
too high energy dissipation of the Magnetic Clock system. Therefore for an exhaustive study
of the ME-NML, we provide a comparison with the Magnetic NML (described in 2.2.2), which

is based on a magnetic field clock and a snake-clock mechanism [28].
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This section illustrates an implementation of the Galois Multiplier based on the Magnetic
NLM technology. Performance data will be extracted and compared with the other two tech-
nologies considered in this work. Magnetic Clock NML has already been studied from the
physical and architectural point of view developing an ad-hoc RTL model [37]. So to say that
the validity of this technology has been already proved, here we will just design the generic
N-bit Galois Multiplier and compute directly from the circuit schematic all the information
regarding timing, occupied area and power dissipation.

The two small examples presented in Figure 11 and Figure 14 provided an insight on how
Magnetic NML circuits look like and how signal propagation works. We also explained how to
address synchronization and feedback issues derived from the circuit layout, which is strongly
dependent on the snake-clock system. This preliminary knowledge can be easily applied also

to more complex structures, such as the Galois Multiplier.

4.4.1 Galois Multiplier scheme

Despite all the similarities among different NML implementations, the snake-clock approach
leads to a unique circuit organizations. What remains unchanged is the systolic array nature
of the bit-serial Galois Multiplier: Three basic blocks are defined for the Magnetic NML too.

We enclosed two drawings of the Magnetic NML Galois Multiplier including the synchro-
nization networks: the 2-bit version in Figure 30 and the 4-bit version in Figure 31. The latter
has been divided in two parts to allow a better visual comprehension: The right side of the cut
on top should be connected to the left side of the other one. In both figures the circuit body

(central stripe) i separated by the preskew/deskew networks (top and bottom). Furthermore
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vertical blue lines mark the division among basic blocks: First, Central, Last. Once again any

parallelism can be obtained by combining these blocks.
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Figure 31. The 4-bit Magnetic NML Galois Multiplier, comprehensive of preskew and deskew
networks. The circuit is split in left part (on top) and right part (below), to facilitate its
comprehension.
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A small area on the left in Figure 30 shows the exact layout of snake-clock wires and the
signal propagation directions, in the rest of the drawing the forbidden areas are simply marked
by black crosses. Notice also the feedback critical path for this implementation, it is highlighted
with blue. Its length is 30 clock zones, which correspond to 10 clock cycles, since the snake-clock

is a 3-phase clocking system.

4.4.2 Timing analysis

A new bit of DataA can be sent to the circuit every 10 clock cycles. The basic block depth
is instead equal to 15 clock zones (5 clock periods), so that will be the delay between bits of

DataB, P and Res. Table VII gives the main timing information on this implementation.

TABLE VII

TIMING PERFORMANCE OF THE MAGNETIC NML GFM
N bit | Interleaving | Throughput | Result:1st bit out | Result:Last bit out

4 2 op. 1/(40Tclk) 40Tclk 55Tclk
8 2 Op. 1/(80Tdk) 80Tclk 115Tclk
N 2 op. 1/(I0N -Top) | (I0(N —1)+10) | (15(N — 1)+ 10) - T




CHAPTER 5

CASE STUDY I: GFM RESULTS COMPARISON

This chapter is devoted to performance evaluation of the three GFM implementations in
terms of occupied area and power consumption. First of all the results produced for each
technology are discussed separately, providing details on their evaluation. Then the three
versions are placed side by side, presenting an accurate comparison. NML circuits are handled
keeping into account technological constraints and the exact details on the clock network chosen.

The outcomes demonstrate the effectiveness of ME-NML for power and area performances.
For each implementation the results are evaluated for 4 to 64 bits, both with and without
the preskew/deskew circuitry for input and outputs signals. The additional synchronization
networks are a factor generally neglected in literature, even though they bring a significant

increase of circuit area.

5.1 CMOS Results

The CMOS version of the GFM has been presented in Section 4.2. All the results are ex-
tracted after finalizing the physical layout through Cadence Encounter 13.1. For the place&route
we exploited a low power CMOS 28 nm FDSOI standard cell library, with the following work-
ing conditions: V = 0.9V, T' = 25°C. The working frequency was set to f = 100M Hz even
though the CMOS implementation could reach up to 7TGHz. The reason was to assure a fair

comparison with the NML implementations, which are limited to a 100M H z frequency.

78
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Figure 32. Post-route layout of the GFM in its CMOS implementation.

5.1.1 Occupied area

Figure 32 puts side by side the postroute layout of the GFM with and without synchroniza-
tion circuitry, in its 4-bit and 8-bit implementations. The area has been calculated from the
values of height and width of the core, without considering the die. Table VIII contains all the

results of area occupation for the CMOS GFM.



TABLE VIII

AREA OCCUPATION OF CMOS GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

CIRCUIT Number of bits
AREA 4 8 16 32 64
No Width (pm) 14,31 19,08 28,37 37,35 52,95
Svnch Height (um 10,80 16,80 22,80 34,80 49,20
Y AREA (um?) 154,6 320,6 646,9 1299.7 2605,3
With Width (um) 18,21 30,69 54,47 103,88 202,22
Svnch Height (um) 14,40 26,40 50,40 96,00 187,20
Y AREA (um?) 262,3 810,1 2745,2 99725 37856,0
Interconnection Overhead | 1,7 2,5 4,2 7,7 14,5
CMOS Area Overhead
40000 ————— —_— —_—
Without synch circuitry | 37859
as000 LWith synch circtuitry =~ oo 1
30000
725000
S
=.20000
®
e
<€ 15000
10000 2973
5000 26
2745
262 310 6a7 10—
0,155 s 321 16 32 64

Bit Number

Figure 33. Comparison of area occupation for the CMOS GFM both with and without
synchronization circuitry.
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The interconnection overhead is simply evaluated as the ratio between values with and
without preskew/deskew networks, and it can also be observed in Figure 33. The impact of
the additional circuitry goes from 1.7 (4 bit) to 14.5 (64 bit). Which means that it goes from
adding the 70% of the area for the 4 bit circuit, to increasing the 64 bit circuit (the highest

parallelism considered) of 14.5 times.

5.1.2 Power consumption

TABLE IX

POWER CONSUMPTION OF THE CMOS GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION Number of bits
(uW) 4 8 16 32 64
Internal 12,09 28,21 57,28 116,95 245,87
No Switching 1,21 3,38 7,21 14,99 31,52
Synch Leakage 1,00 2,05 4,13 8,30 16,63
TOTAL 14,30 33,63 68,62 140,24 294,03
Internal 20,40 70,38 243,90 855,50 3240,00
With Switching 1,63 5,75 17,07 56,72 200,70
Synch Leakage 1,69 5,25 17,85 64,99 247,10
TOTAL 23,72 81,37 278,82 977,21 3687,80
Interconnection Overhead 1,7 2.4 4,1 7,0 12,5

The post-route power estimation gave the results in Table IX. The losses increase due to

interconnection overhead is also disclosed by Figure 34. The additional circuitry affects the
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Figure 34. Comparison of power consumption for the CMOS GFM both with and without
synchronization circuitry.

power consumption less than the area occupation, reaching a maximum increase of 12.5 times

with respect to the power required by the GFM body itself.

5.2 Magnetoelastic NML Results

For what concerns the area and power estimation for the ME-NML implementation, the
methodology and formulas have been detailed in Section 3.2.3. The results for the GFM body
are directly evaluated by the VHDL model. Total area and energy components are given as
output of the top entity Galois Multiplier during simulation, just like in the timing diagram
of Figure 29. On the other hand the preskew/deskew parts have not been described with
the model, their performance has been evaluated directly from the drawings. They can be

generalized to any number of bits isolating some basic blocks. However the generalization
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Figure 35. Basic blocks for the upper interconnections.

is much more complex, because the interconnections grow also vertically, requiring then the

definition of more basic blocks.

5.2.1 Upper synchronization network

Figure 35 contains the nine blocks from which it is possible to compose, for any parallelism,
the synchronization circuitry above the GFM’s body. For example with a certain combination
of these blocks it is possible to create the interconnections above the circuit’s body in Figure 28.
There would actually be a few differences between Figure 28 and the circuit realized with the
standard blocks, because the blocks will have some additional cells and magnets, useless to
the circuit functioning. The reason is that the base blocks have been generalized as much as
possible. For our purposes the simplification is not a problem, the final results of area and

power will just be slightly higher than they should.
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Figure 36. Layout of the upper interconnections for the 8-bit GFM. The second table is the

NUMBER OF CELLS AND MAGNETS OF THE BASIC BLOCKS FOR THE UPPER

optimized layout.

TABLE X

INTERCONNECTIONS
Cells Magnets Cells Magnets Cells Magnets
G 8 26 H 7 23 I 5 15
D 8 40 E 12 74 F ) 21
Al 13 48 B| 14 56 Cc| 13 56

Figure 35 tries to explain how to create the upper interconnections for a N-bit GFM, starting

from the blocks from A to I. They result in a N x N matrix of blocks. The left part of Figure 36

shows how blocks would be placed in the 8-bit case. However some blocks in the top-central

region are useless. The layout can then be optimized as in Figure 36 on the right, where the

empty boxes correspond to empty regions. The number of rows and columns will be the same,

but the block E will not be present N — 2 times in each column anymore. The central columns
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(col =2 to col = N — 1) will have the following number of E blocks (the fractions have integer

results):

Ny; 1 Ny;
’CO[— bit + ‘_’_ bit

2 2

Table X lists the total number of cells and nanomagnets for each of the nine blocks. These
values are used to evaluate the occupied area and power consumption according to the organi-
zation described above. Blocks are identified by the capital letters assigned in Figure 35.

5.2.2 Lower synchronization network
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Figure 37. Basic blocks for the lower interconnections.

The synchronization circuit below the GFM’s body has been treated just like the intercon-
nections on top. As before the basic blocks have been organized in a table (Figure 37). The

central columns, excluding then the first and last, have an alternate behavior. Odd columns
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7-bit layout 8-bit layout 9-bit layout
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Figure 38. Layout of the lower interconnections for the 7-bit, 8-bit and 9-bit GFM.

enclose different blocks than the even ones. The three examples in Figure 38 help understand
the circuit organization.

5.2.3 Occupied area

TABLE XI

NUMBER OF MAGNETS AND CELLS OF ME-NML GFM BOTH WITH AND WITHOUT

SYNCHRONIZATION CIRCUITRY.
MAGNETS Number of bits

and CELLS 4 8 16 32 64
No N of magnets | 974 1990 4022 8086 16214
Synch N of cells 199 403 811 1627 3259
With | N of magnets | 2007 6431 22287 82509 297710
synch N of cells 427 1273 4117 14547 50235

First, the number of nanomagnets and cells have to be determined, the values are listed

in Table XI. Eventually the results concerning area occupation, both with and without the
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preskew /deskew circuits, are organized in Table XII and plotted in Figure 39. Where, apart
from the individual results, the interconnection overhead can be observed as well. The overhead
due to the upper and lower interconnections behaves similarly to the CMOS implementation.

It grows quadratically with the number of bits, going from 2.1 (4 bit) to 15.4 (64 bit).

TABLE XII

OCCUPIED AREA OF ME-NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

CIRCUIT AREA Number of bits
(um?) 4 8 16 32 64
No Magnets 3.2 6.5 13 26 53
Synch Cells 14 29 58 116 233
With Magnets 6.5 21 72 268 968
synch Cells 31 91 294 1040 3590
Interc. overhead 2.1 32 51 89 15.4

5.2.4 Power consumption

The power consumption is proportional to the area occupation, because both measures have
the number of cells as factor. Therefore the interconnections overhead is the same as for the
occupied area. The detailed results are in Table XIII. In fact the magnets switching energy is

negligible (20 times smaller) compared the clock network dissipation.
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ME-NML Area Overhead
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Figure 39. Comparison of area occupation for the ME-NML GFM both with and without
synchronization circuitry.

5.3 Magnetic Clock NML Results

It has not been discussed yet how to evaluate the performance of Magnetic Clock NML

circuits, so it is done in this section before providing the results.

5.3.1 Number of clock zones and magnets

The evaluation of area and power performances requires: the number of clock zones, the
length of the clock zones (circuit height) and the total number of magnets. These values are at
first computed for each basic block and then put together to obtain results for each parallelism
and with or without the upper and lower interconnections parts. The final results are directly

presented in Table XIV. The number of clock zones is nothing less than the circuit horizontal
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TABLE XIII

POWER CONSUMPTION OF ME-NML GFM BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION Number of bits
(pW) 4 8 16 32 64
No Switching 0.07 0.15 0.30 0.60 1.21
Synch Clock 1.21 245 4.92 9.88 19.8
TOTAL 1.28 260 5.22 105 21.0
With Switching 0.15 0.48 1.66 6.15 22.2
synch Clock 2.59 7.73 25.0 88.3 305
TOTAL 2.74 821 26.7 94.5 327
Interc. overhead 21 32 51 9.0 15.6

width, while the circuit height is for now measured in terms of magnets, the actual dimension

can be evaluated knowing the magnets height and their vertical separation.

5.3.2 Occupied area

The Magnetic Clock NML exploits 90 x 60nm? magnets with separation Sepmag = 20nm.
Horizontally the clock zone contains four magnets, therefore its width is Woone = 4 - (Winag +
SePmag) = 320nm. These data, together with those in Table XIV, allow to evaluate the total
area of magnets and the rectangle circumscribed to the circuit, the latter is shown in Table XV.
Such table as usual encloses information on the preskew/deskew networks overhead, which is the
lowest among the three technologies considered. We will see that the interconnection overhead
is the same for both area and power estimation. Figure 40 gives an idea of the GFM behavior

increasing the number of bits, with and without the additional synchronization circuits.



TABLE XIV

90

DIMENSIONS AND NUMBER OF MAGNETS OF THE MAGNETIC NML GFM BOTH
WITH AND WITHOUT SYNCHRONIZATION CIRCUITRY.

AREA OF THE MAGNETIC NML GFM BOTH WITH AND WITHOUT

SYNCHRONIZATION CIRCUITRY.

Number of bits

4 8 16 32 64

No Number of magnets | 1818 3678 7398 14838 29718
Synch Width (clock zones) | 67 127 247 487 967
Height (magnets) 24 24 24 24 24

With Number of magnets | 3154 7388 18880 53960 172504
Synch Width (clock zones) | 67 127 247 487 967
Height (magnets) 40 56 88 152 280

TABLE XV

CIRCUIT AREA

Number of bits

4

8 16 32

64

Area without synch (um?) | 57

Area with synch (um?) | 94

107 209 411

817
250 765 2610 9530

Interconn. overhead

1.7 23 37 63 117

5.3.3

Power consumption

The power dissipation, as for the ME-NML, has two sources: magnets switching and clock

wires.

The average energy required by the switching of a single nanomagnets is equal to

SE = 30K,T = 1.24 - 1019, since an adiabatic switch has to be exploited. The switching

energy is obtained multiplying this value for the total number of magnets. However the main

contribution is due to the clock network losses, because the current needed to generate the
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Figure 40. Comparison of area occupation for the Magnetic NML GFM both with and
without synchronization circuitry.

magnetic field is very high: I = 3mA. The power consumption is therefore the dissipation of
the current I flowing through a copper wire, which has resistivity p = 16.8n{) - m. For each
clock zone we consider a copper wire with width Wy, = W,one = 320nm and thickness of
Tor = 400nm, so its section is Syp = Weyg - Tep. At any instant, only one third of the clock
zones is active, since only one of the clock wires at a time is active. Summing the length H, e
of one third of the clock zones N.opes ey We obtain the length Lok = Noopeseff - Hzone to
assign to the copper wire, that will model the clock dissipation of the whole circuit. The power

consumption is derived from the following formula:

Ly,
Seik

P=1I*p
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The power consumption results are in Table XVI. For further information on the Magnetic

NML model refer to [37].

TABLE XVI

POWER OF THE MAGNETIC NML GFM, BOTH WITH AND WITHOUT
SYNCHRONIZATION CIRCUITRY.

POWER CONSUMPTION Number of bits
N4 4 8 16 32 64

No Magnets Switching | 0.023 0.046 0.092 0.18 0.37
Synch Clock Wires 70 132 257 506 1010

TOTAL 70 132 257 506 1010
With Magnets Switching | 0.040 0.092 0.24 0.67 2.14
Synch Clock Wires | 116 308 941 3210 11700

TOTAL | 116 308 942 3210 11700
Interconn. overhead 1.7 2.3 3.7 6.3 11.7

5.4 Results Comparison

Now that all the results have been presented, we compare the performances of the three im-
plementations in terms of area and power. The main interest is the ratio between the results for
ME-NML and those for CMOS and Magnetic NML. Nonetheless the interconnection overhead
trends of each technology are put side by side. The purpose of Table XVII is to collect in one
place all these data. The first table concerns the GFM’s body only, the second table shows the
results for the whole circuit, including the synchronization networks. Finally the third table

reports once again the interconnection overhead, which is the ratio between area and power for
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TABLE XVII

RATIO BETWEEN RESULTS FOR ME-NML AND THOSE FOR CMOS AND
MAGNETIC NML. THE THIRD TABLE SHOWS THE INTERCONNECTION

OVERHEAD TRENDS OF EACH TECHNOLOGY.
Number of bits

No Synch 48 16 32 64

Area CMOS / ME-NML 11,0 11,1 11,2 11,2 11,2
Mag.NML / ME-NML | 4,1 3,7 36 35 35

Power | CMOS / ME-NML 112 129 13,1 134 140
Mag.NML / ME-NML | 54,7 50,8 49,2 48,2 48,1

) Number of bits

With Synch 1 3 16 5 6l

Area CMOS / ME-NML 85 89 93 9,6 10,5
Mag.NML / ME-NML | 3,0 2,7 26 25 27

Power CMOS / ME-NML 87 99 104 10,3 11,3
Mag.NML / ME-NML | 42,3 37,5 35,3 34,0 358

Number of bits

Interconnection Overhead 1 3 16 % 6

CMOS 1,7 25 42 7.7 14,5

Area Mag.NML 1.6 23 37 64 11,7
ME-NML 22 31 51 90 154

CMOS 1,7 24 41 70 125

Power Mag.NML 1.7 23 3,7 63 11,6
ME-NML 21 32 51 90 156

the whole circuit and those related to the body itself. For the whole analysis the number of
bits has been varied from 4 to 64.

The table shows that ME-NML owns the best performance in all the cases. First, consider
the area without synchronization circuitry: CMOS circuit is 11 times larger than ME-NML,

Magnetic NML instead is 3.5-4.1 times bigger. The additional interconnections have a slightly
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stronger impact on ME-NML than on the others. The ratio between technologies lowers to 8.5-
10.5 for CMOS and 2.5-3.0 for Magnetic NML. This decrease is confirmed by the interconnection
overhead table, where ME-NML has the highest values for any number of bits.

Let’s switch now to the power consumption data, ME-NML is still the best technology.
First consider the results without synchronization circuitry: CMOS consumes 11-14 times more
energy than ME-NML, Magnetic NML instead requires around 50 times more than ME-NML.
Just like for the area, when considering the full circuit, ME-NML performance suffers more for
the additional interconnections. However this does not weaken its leadership significantly. The
ratios decrease to 8.7-11.3 for CMOS and 42-36 for Magnetic NML. Notice once more that this
behavior is also shown by the interconnection overhead values, which for ME-NML are always
slightly higher than for Magnetic NML and CMOS.

Referring now to the third table only, notice that the synchronization networks have a huge
impact, particularly for high number of bits. The area and power increase up to 15.6 times in
the ME-NML case, 14.5 times for CMOS and 11.7 for the Magnetic NML.

For a better visual comprehension four comparison graphs have been enclosed:
1. Area comparison without synchronization networks (Figure 41);
2. Power comparison without synchronization networks (Figure 42);

3. Area comparison with synchronization networks (Figure 43);

4. Power comparison with synchronization networks (Figure 44).
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Area Comparison
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Figure 41. Area comparison between the three GFM implementations without
synchronization networks.

Data on occupied area, without considering the additional networks, is plotted in Figure 41.
Of course the area increases with the number of bits, the interesting outcome is that the CMOS
implementation has the worst performance, while the smallest area belongs to the ME-NML
circuit. The CMOS library chosen is the most scaled that we have, but there currently exist
transistors smaller that 28nm. However, even considering a 14nm library, it would result in a
CMOS scaling of 4 times, so that the ME-NML still has a considerable margin. Moreover NML
magnets can be scaled too.

Figure 42 depicts instead the power comparison, still neglecting the upper and lower inter-
connections. The curves are similar to the graphs of the circuit area. However, while ME-NML

confirms itself as the best technology, the Magnetic NML is now definitely the worst one. It is



96

Power Comparison
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Figure 42. Power comparison between the three GFM implementations without
synchronization networks.

though what expected, as the Magnetic Clock network requires a very high current to generate
the magnetic field.

For what concerns the synchronization networks, simply notice that the circuit body only
grows horizontally, while the upper and lower networks grow also vertically, hence they grow
quadratically. This additional cost is often neglected in literature, even though such circuitry
is essential to properly interface our module with others. This is a recurring problem of QCA
circuits [22], because of their intrinsic pipeline nature.

Figure 43 shows the occupied area for the three GFM versions after adding the preskew/deskew
modules. All the curves have similar trends and ME-NML and CMOS have respectively the

best and worst performance, like when considering the area of the GFM’s body only.
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Area Comparison with preskew and deskew networks
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Figure 43. Area comparison between the three GFM implementations with synchronization
networks.

Figure 44 shows instead the power consumption for the three GFM versions after adding
the preskew/deskew modules.

The final considerations are mostly three. First, the MagnetoElastic NML has confirmed
its potentialities. With a proper architectural choice it leads to a great reduction of circuit area
and power losses of the clock network, which was the insuperable drawback of previous NML
implementations. Second, the synchronization networks have a huge impact on performances,
thus it is imperative to take them into consideration when they are required. Third, even with
these excellent results, NML technology is not meant as a replacement for CMOS technology,
since its speed is intrinsically limited. For this very circuit, with the 28nm library exploited,

CMOS technology would be able to work at TGHz, 70 times faster than the NML maximum
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Figure 44. Power comparison between the three GFM implementations with synchronization

networks.

frequency: 100M Hz. The benefits of NML technology are bounded to circuit area and power

consumption, together with its intrinsic memory ability.



CHAPTER 6

CASE STUDY II: MULTIPLY ACCUMULATE UNIT (MAC)

It has been proved that Magnetoelastic NML overcomes both Magnetic Clock NML and
CMOS technologies in terms of circuit area and power consumption (Chapters 4 and 5). The
ME-NML implementation of the bit-serial Galois Multiplier, organized as a systolic array,
turned out to be extremely compact and easily scalable. However not all kinds of architectures
are suitable for ME-NML technology. In this chapter we start investigating which architec-
tures are best suited for this technology and why. The final goal is to develop some general
guidelines for identifying which circuit organizations and design approaches can boost ME-NML
performances.

Our inquiry focuses on the dualism between serial and parallel structures, trying to deter-
mine which one of the approaches gets the best out of ME-NML. The case study chosen is a
generalized Multiply Accumulate unit (MAC), which will be realized in three different versions:
fully parallel, serial-parallel, fully serial. The three generalized MAC will be designed, modelled,
simulated and compared in terms of area, power, throughput and latency.

The MAC unit is composed by a multiplier, an adder and an accumulator: The main scheme

is depicted in Figure 45. The operation performed by this circuit is the following:

99
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to 2R680 = Ao . Bo
t1 :Res1 = Resg + (A1 . Bl)

ty :Resg = Resi + (AQ . Bg) (6'1)

ty :Rest = SN A; - B;

DataA DataB

' |
\MUL]\“I/PLIER/

% y
ADDER

Y

ACCUMULATOR 4

Y
Result

Figure 45. Multiply Accumulate unit scheme.
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6.1 Parallel Implementation

The first implementation presented is a parallel version of the MAC unit. It is basically
composed by a parallel multiplier and an adder with feedback. The accumulator function is
instead embedded, as ME-NML is intrinsically pipelined. The array multiplier and the ripple
carry adder (RCA) have been chosen as components of the parallel MAC, because they both
have a systolic array architecture. They are composed by blocks that communicate only with
their neighbors, avoiding long interconnections and feedback. The feasibility of ME-NML circuit
design strongly depends on those properties.

It is crucial to point out that the best circuits for CMOS usually maximize performances in
terms of working frequency, at the cost of an higher complexity. However such optimizations do
not necessarily have the same advantages when designed with ME-NML. The intrinsic pipeline
sets a fixed maximum working frequency that depends on the technology itself and not on
the architecture adopted. Therefore the optimization for ME-NML cannot improve the circuit

speed, it has to be aimed elsewhere:

e Reduce area occupation and consequently also the power consumption;

e Minimize internal delays limiting the pipeline stages of feedback loops, affecting positively
the overall circuit latency. The throughput instead does not depend on circuit layout if

the interleaving technique can be exploited properly.

From this considerations and from the previous case study we can state that when handling
ME-NML technology, the plainer the layout the better the performance. To double check this

deductions we also designed a multiplier and an adder different from the Array Multiplier and
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RCA. Both the Booth’s multiplier and the Carry Look-ahead Adder proved to be much more

complex and big, especially the latter.

6.1.1 Array Multiplier and Ripple Carry Adder

—» Res&
c7
—> )—|_ EA »Res7
6
A3 FA| > )_?FA >Res6
:D [
c5 Res5
—» »— » RES
A3 FA[ A2» FA FA
gubs - B
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> »—7 » Res4
A3>—_[>_ HA Az»—:D_ FA A1>—:l>_ FA FA
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A3 ;3 ~
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Figure 46. 4-bit MAC scheme. Array Multiplier on the left and Ripple Carry Adder on the
right.
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The scheme of the 4-bit Array Multiplier (left) and the 8-bit Ripple Carry Adder (right) are
drawn in Figure 46, where FA and HA stand for Full Adder and Half Adder. The two inputs
A and B are parallel, just like the output Res. Let’s consider a MAC unit with Ny inputs A
and B. The result of the N-bit multiplication is a 2Np; number, therefore the adder will have
2Ny inputs. In fact in Figure 46 we have a 4-bit multiplier and a 8-bit adder.

Notice that the multiplier is basically a matrix of Full Adders, so it is two-dimensional and
its area grows quadratically with the circuit parallelism. The Array Multiplier’s algorithm is
the simplest one, it follows step by step the handmade multiplication. Partial products are
shifted and added to an intermediate result. Each AND ports column in the drawing evaluates
a partial product, which is then added to the intermediate result by the Full Adders. Moreover
every AND column has a 1-bit shift with respect to the previous column to assure the proper
alignment of the partial products sum. The final product goes to the RCA, which sums it with
the accumulator’s value, which is stored in the RCA’s feedbacks. Within the adder the carry
propagates vertically from one FA to the next.

The circuit arrangement and orientation imitates the ME-NML implementation that will be
presented shortly, to guarantee an easy visual comparison between the two circuits. However
there are some differences. The scheme in Figure 46 does not have any pipeline stage, while
the ME-NML MAC will be fully pipelined.

For the two circuits to be more similar, each row and column in Figure 46 should represent

a pipeline stage. Furthermore the free space in the bottom part of the circuit will be removed
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to optimize the circuit area, placing half of the Adder’s FA modules horizontally under the
Multiplier.

6.1.2 Full Adder and Half Adder
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Figure 47. Half Adder and Full Adder realized with both ME-NML and CMOS technologies.
(A) Half Adder. (B) Full Adder.

The basic modules of the MAC unit are Full Adder (FA) and Half Adder (HA), they
represent the first step of the ME-NML MAC design. These modules can be arranged in many
different ways, one version of the Half Adder has already been depicted in Figure 20. Here

we present the FA and HA that have been exploited to create the parallel MAC. Figure 47.A
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shows once again the ME-NML HA together with its CMOS scheme, Figure 47.B encloses the

FA instead.
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Figure 48. 4-bit parallel ME-NML MAC unit. Labels identify the base blocks of Multiplier

and Adder.
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Basically the whole parallel MAC has been designed exploiting these blocks only, providing
them with a properly routed network of interconnections. A mandatory reset signal that prop-
agates toward all the feedback loops of the RCA. The reset sets to ‘0’ the feedbacks for the first

operation and whenever the accumulator needs to be zeroed.

6.1.3 Basic blocks

The circuit organization is the same as for the Galois Field Multiplier. A set of basic blocks
is defined so that they can be assembled to create a generic N-bit MAC. The blocks can be

divided in three groups:

Multiplier blocks There are 9 base blocks and they are represented in Figure 49. The indexes
of Mult(-,-) refer to their position and occurences within the matrix of a generic N-bit
Array Multiplier. The main inputs and outputs are all labeled. X and Y are the multiplier
inputs. The internal carry and partial sum signals are referred to as ¢ and S. The reset
signal rst does not concern the multiplication, it is simply passing through the Array
Multiplier on its way toward the Adder. The S_out outputs of the blocks in the Row
0 and in Column N-1 have the multiplication result bits, they will be connected to the
input of the RCA. Row 0 has the results from Res(0) to Res(N-1), while Column N-1
(Mult(0,N-1) excluded) has the results from Res(N) to Res(2N-1), where Res(2N-1) is
the signal c_out of the block Mult(N-1,N-1). The Adder’s base blocks are also labeled in

Figure 48, which shows the whole 4-bit parallel MAC.
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Figure 49. Base blocks of the Array Multiplier for the parallel MAC.
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Figure 50. Base blocks of the Ripple Carry Adder for the parallel MAC

Adder blocks The 5 base blocks for the RCA are in Figure 50. As clear from Figure 48,
half blocks are placed horizontally under the multiplier (Add-LSB), while the other half
is placed vertically on the right side of the multiplier (Add-MSB). Add-LSB(0) contains
the first two modules of the RCA: an Half Adder and a Full Adder. All the other blocks

enclose a single FA with its feedback loop. Once again the main inputs and outputs are

labeled:
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S_in and S_out S_in is one bit of the multiplication result, while S_out is one bit of the

final MAC result.

c_tn and c_out c_in and c_out are simply the carry in and carry out that respectively

come from the previous FA and go to toward the next.

rst Fach FA receives a reset signal and splits it in two branches. The first acts on the
feedback loop while the second is forwarded to the next block.

y The Add-LSB blocks lie below the multiplier, therefore the Y bits have to pass through

them.

Interconnections blocks To describe with the VHDL model a generic MAC also the inter-
connections have been divided in base blocks (Figure 51). 9 blocks are needed to build the
interconnections for any circuit parallelism. The 7-bit MAC is the first one that requires
all the 9 blocks, implementations smaller than 7-bit only require some of them. One of
the functions of interconnection regions is the inputs and outputs synchronization. Just
like for the Galois Multiplier, they assure that bits of the same signal can be fed and
acquired simultaneously, guaranteeing the easiest possible interface protocol with other

devices.

6.1.4 VHDL description and circuit simulation

The VHDL model and simulation procedure is the same as for the Galois Multiplier. The
generic parallel MAC has been modeled with the usual components’ hierarchy and tested up to

64 bits. Thanks to Matlab, for each parallelism to be tested, we created a set of 1000 random
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Figure 51. Base blocks for the interconnections of the parallel MAC implementation

inputs and related results. The VHDL testbench acquires those random inputs and writes the
simulation results into another file, which is to be compared to the expected results.

The top entity MAC_N_bit (see Listing 6.1) instantiates the Multiplier, the Adder and various
interconnections entities. Each of these entities will instantiate its own base blocks introduced
in Section 6.1.3. In Listing 6.1, beside the performance natural signals and the clocks, there
are the N-bit inputs X, Y and the 1-bit reset. The outputs are the 2N-bit MAC_results and

the carry out of the MSB Full Adder of the RCA (MAC_Co).
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Listing 6.1. VHDL top entity of the parallel MAC

entity MACNBIT is
port (X,Y:in std_-logic_-vector (N_BIT—1 downto 0);
reset: in std_logic;
MAC_result: out std_-logic_vector (2*N_BIT—1 downto 0);
MACCo:out std_logic;

clkA, clkB, clkC, clkD: in std_-logic; — Main clock and clock zones
n_mag: out natural := init_natural; — # of magnets

n_zones: out natural := init_natural;— # of cells used

AREA EFF: out natural; — Total magnets area

AREATOT: out natural; — Total area occupied by the cells
Er: out natural; — Energy consumption of nanomags

Ec: out natural); — Energy consumption of clock

end MACNBIT;

6.1.5 Timing Analysis

The Array Multiplier is composed by a matrix of N x (N — 1) base blocks. Increasing
the circuit parallelism the matrix will get bigger, affecting the overall circuit latency. On the
other hand for any number of bits the RCA will always be only one column thick, having a
constant impact on the latency. Every block of the Multiplier requires 5 clock cycles to be
crossed horizontally (signal X) and 2 vertically (signal Y). Therefore the inputs (bottom-left)
need (5(N — 1) + 2N +5) - Ty to reach the result. The additional 5 clock cycles are fixed and
mainly refer to the time needed to pass through the RCA. The critical paths are highlighted
with blue in Figure 52.A.

In a MAC each multiplication’s result is added to the value in the accumulator. Since each
block of the adder has a 5 clock long feedback loop (Figure 52.B), the operations cannot be fed
to the MAC in a continuous flow. Two operations must be fed with 5 cycles of delay in order for

them to be added to each other. Therefore to reach the maximum throughput 5 uncorrelated
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Mult(i,i) Add-MSB(i)

Figure 52. Critical paths of the parallel MAC. (A) Critical paths of multiplier’s base blocks.
(B) Feedback loop of adder’s base blocks.

operations should be interleaved. With the interleaving the throughput is of one operation per
clock cycle. All information regarding timing performance of the parallel MAC are listed in
Table XVIII. The table indicates the throughput when the interleaving technique is exploited,

hence the maximum possible throughput.

TABLE XVIII

TIMING PERFORMANCE OF THE PARALLEL MAC
N bit | Interleaving | Throughput | Latency: 1st Result out

4 5 op. 1/(Tclk) 28Tclkz
8 5 op. 1/ (Tew) 5671,
N 5 op. 1/ (Tag) 5(N—1)+2N +5- Ty
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6.2 Serial-Parallel Implementation

The parallel MAC described in the previous section has a 2D layout. The idea for the second
version of the MAC was to create a circuit organized as a 1D array of elements. This section
presents the best circuit we were able to obtain. It is referred to as serial-parallel MAC, because
it has serial inputs and parallel output. While the design of the parallel MAC was trivial,
in this case it was not possible to design a simple circuit able to keep up with the parallel
implementation. The circuit’s body itself has excellent characteristics, but its input/output
protocol is unique, it would be very difficult to interface it directly with other devices. Moreover
additional interconnections are required, as in the case of the Galois Multiplier (Chapter 4),

terribly spoiling the performances.

6.2.1 Circuit scheme

The scheme is Figure 53 is the body of the 4-bit serial-parallel MAC, but to have serial inputs
and parallel output it requires additional registers. Let’s discard for now the preskew/deskew
networks. The circuit counts 2Vp;; 1-bit adders. Each adder has its own feedback, so that the
array of FAs can function as an accumulator. A reset signal allows to reset the accumulator
whenever necessary. As usual the scheme is fully pipelined to imitate ME-NML behavior. The
timing protocol follows the handmade multiplication procedure, where the N partial products

are evaluated one by one and summed together.
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0 0 0 B(3) B(3) B(3) B(3) t6
0 0 B(2) B(2) B(2) B(2) 0 t5
0 B(1) B(1) B(1) B(1) t4

t3 A(0)
t2 A(1)
t1 AQ2)
t0 A(3)

Figure 53. Body of the 4-bit serial-parallel MAC.

Figure 53 also shows a timeline that explaines the inputs protocol to execute a 4-bit opera-
tion. At to A is fed serially starting from the MSB. After all 4 bits of A enter the shift register,
they are multiplied bitwise with B(0), which has been applied in the meantime. This gives the
first 4-bit partial product which goes in the first four Full Adders, while the remaining three
Adders receive '0/. Data B always has N — 1 = 3 bits equal to '0/, because partial products
have a N-bit width. After the first partial product is evaluated data A bits shift to the right
and are multiplied with data B(1) which arrives right after B(0) but shifted of one step toward
the MSB (right). In this way the second partial product is correctly aligned to the first one, so

that they are added properly.
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Figure 54. Full scheme of the 4-bit serial-parallel MAC.



116

Evaluating all the partial products only requires N clock cycles. But another N cycles have
to be spent feeding '0s’ to prepare the circuit for the next operation. The Full Adders’ carry-out
signals are propagated to the carry-in of the next FA on the right. It is now evident that input
B enters the circuit in a way that would make it difficult to interface this circuit with others.
The same applies to the result, whose bits need to be synchronized, just like for the Galois
Multiplier in chapter 4. In Figure 54 the preskew (for B) and deskew (for Res) networks are
added on top and bottom of the circuit body. It is immediately clear their great impact.

Also, the input B is distributed to all FA blocks, while it should be given only to 4 blocks
at a time, assigning ‘0’ to the others. As a consequence, for the circuit to work properly, the
'0s” must come from data A. Input A, after giving the N bits of data A, will give N ’0s’. In

this way the time to execute a single operation doubles.

6.2.2 ME-NML implementation

The main element is a Full Adder with a feedback loop for the result. The ME-NML FA
used for our serial-parallel MAC is drawn in Figure 55. The feedback loop, highlighted in blue,
is 3 clock periods long. Like the previous cases, the feedback is the critical path that decides
the delay required between inputs. In this case a input bit has to be served every 3 clock cycles,
hence the maximum throughput can be reached with a 3-operations interleaving. The two other
patterns point out that the base block takes 2 clock cycles to be crossed horizontally, and 3

cycles vertically.
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Figure 55. Full Adder block for the serial-parallel MAC. Three patterns underline horizontal
crossing, vertical crossing and feedback loop.

The full adders in the scheme of Figure 54 only have 17, latencies, therefore the timing
is slightly different than the final ME-NML implementation. The two circuits are exactly the
same apart from the internal delays. For example consider the input conditioning structure for
B in Figure 54, each register of the column at the top-left corner is realized in ME-NML with

a 3 cycles delay.
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Figure 56. ME-NML implementation of the serial-parallel MAC.

The ME-NML final circuit of the 4-bit MAC is in Figure 56. The circuit is divided into four
main regions and within each region the dashed lines identify the basic blocks. To construct
the generic MAC each region has been treated separately. First, we selected the set of recurrent

blocks, then we investigated how to organize them so that combining them properly it is possible
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to create a MAC with any number of bits. The full set of blocks are enclosed in Figure 57. A

different VHDL entity defines each region:

MAC_1D_body The central part is composed by 4 different blocks. It contains all the logic

functions, while the other regions are exclusively interconnections.

MAC_1D_conn_above Describes the two regions pointed in Figure 56. The triangular region
contains only one kind of cell, so it has been generated directly without the need of defining
base blocks. The other part has been divided into 5 types of block. Their organization
(described in the VHDL model) is quite tricky, but they still can recreate the required

interconnections for any circuit parallelism.

MAC_1D_conn_below The left part is very similar to the right part of the connections above.
The 5 base blocks of the two regions are lightly different. On the other hand the right part
is composed only by two type of cells, therefore it has been described directly without

requiring the definition of basic blocks.

MAC_1D_input_cond This conditioning network simply models a shift register, it allows to

provide simultaneously the same bit of data B to multiple FAs of the MAC_1D_body region.

The whole circuit has been described with the RTL model we developed for ME-NML
technology. A substantial effort was devoted to the generic description of the interconnection
networks. The top entity MAC_1D instantiates the four entities reported above. Notice in Listing

6.2 that the inputs A and B are serial, while the Result is parallel.
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Listing 6.2. VHDL top entitvy of the serial-parallel MAC
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entity MACID is

port (A,B,Rst: in std_logic;
Result: out std_logic_vector (2«N_BIT—1 downto 0);

[...] — Omitted clock and area—power signals

end MACD;

6.2.3 Timing analysis

Data A and data B give their bits serially with a delay of 3 clock cycles between them.

Then the time required to provide all the bits is 3Ny;; - Ty After that for another 3Ny - T

the inputs are set to 0/, until a new operation starts. The throughput would be equal to one

operation every 3 - 2Ny clock cycles, but exploiting the interleaving technique it goes up to

1/(2Npis - Tep). Table XIX reports these results and also evaluates the overall circuit latency.

Data A arrives directly at the MAC’s body, data B instead has to cross the preskew network

first. Also, data B must reach the MAC’s body when all the bits of data A have entered the

circuit. As a consequence data B must be fed earlier than data A. More precisely the two inputs

must be applied with a time difference of 3(Np;z — 1) - Teip.

TABLE XIX

TIMING PERFORMANCE OF THE SERIAL-PARALLEL MAC

N bit | Interleaving | Throughput | Latency: 1st Result out
4 3 op. 1/(8T k) 36T,
8 3 op. 1/(16T ) 7671 15
N 3 op. 1/(2]\7 : Tclk) (6(N - 1) + 4N + 2) . Tclk
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6.3 Serial Implementation

The third and last implementation analyzed in this work is the Serial MAC, which has both
serial inputs and output. The starting idea was to create a circuit exploiting only two 1-bit

Full Adder, one for the multiplier and one for the adder.

Multiplier Adder

dataB
(serial)

1 1
| 1
1 1
| !
1

1 ¢ :
| dataA 4»@ I
I (serial) !
I I A ~
| ~ :
1

1 1
| 1
1 1
1 1
1 1
1 1
| 1
1 1
| 1
1 1

Rst-mult

Ctrl-mult
0-1-1-1 x3

Input2y +C_in

Input1—» FA —»C_out

+Sum

\/

Accumulator

Figure 58. Scheme of the 4-bit serial MAC (preliminary implementation).
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6.3.1 Serial MAC scheme

The architecture that best suited our demands is represented in Figure 58 in its 4-bit
version. It consists of a serial multiplier, a serial adder and an accumulator, which is nothing
less than the adder’s feedback loop. Registers with the z3, x4, 232 labels represent multiple
cascaded registers (respectively 3,4, 32) that have been combined together for a sharper visual

understanding.

6.3.1.1 Multiplier

The multiplier accurately imitates the handmade multiplication algorithm (Figure 59 shows
the 4-bit case). The serial inputs A and B are multiplied and then fed to the first Full Adder.
Their products must produce all the 1-bit partial products of the form A; - B; (see Figure 59).

To do so the inputs protocol for a 4-bit multiplication is the following:

A3 A2 Ai Ao X
B3 B> B Bo =

A3Bo A2Bo A1Bo AoBo

A3B1 A2B1 Ai1B1 AoBi -

A3B2 A2B2 A1B2 AoB2 — -
A3Bs A2B3s AiBs AoBs — - -

S7 Se Ss Sa S3 So Si So

Figure 59. Handmade 4-bit multiplication algorithm.
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Data A bits are given in the order { Ay, A1, Ag, Az} for 4 times (Np;; times) and then data A
is set to '0’ until the end of the operation. To generate the partial product properly, each bit of
data B must be multiplied with all the data A bits. Therefore the elapsed time to generate all
the A; - B; products is 16 - T,y (in general Nb%-t -Ter). In the 4-bit case B is fed in the following
order: {By, By, By, By, B1, B1, B1, B1, B2, Bo, Ba, B, Bs, B3, Bs, Bs}. After that data B is set
to '0’ until the end of the operation.

So the Full Adder of the multiplier sums the partial products one bit at a time. It has two
feedbacks, one for the result S and one for the carry-out, so that the whole multiplication can
be carried out by a single FA module. For a correct alignment of the partial products’ sum the
carry feedback has to be Np; registers long, while only Np; — 1 are required for the result’s
loop. The multiplier produces one bit of the result every Np;; clock cycles, therefore the whole
operation takes 2Nl)2it - Tek, as the result counts 2N bits. The result is then forwarded to the
adder, but only 1 bit out of N is meaningful.

Notice that the multiplier’s feedbacks both demand a control signal. The Rst-mult simply
resets the carry-in before starting a new operation. The Ctrl-mult has instead a more complex
function. We said that the output of the FA contains a bit of the final result every Np;; - Tex, all
the other data are intermediate results. For a correct circuit functioning (see the algorithm in
Figure 59), the bits of the final result must not be fed back to the FA. Ctrl-mult is supposed

to mask those bits, setting the feedback to '0'.
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6.3.1.2 Adder

The adder sums up the multiplication result to the value in the accumulator starting from
the LSB and puts the result back into the accumulator. It also has to keep track of the carry
bits. Rst-adder resets the carry loop when the LSB of a new result arrives. The other reset
signal Rst-acc allows to set the accumulator to 0.

6.3.1.3 Accumulator

The accumulator works as a shift registers, its data is always moving. Its length is equal to
the duration of a multiplication: 2Nb2it - T,. Because of the circuit functioning, at any instant
only 2N cells (1/N) of the accumulator registers will contain useful data. A lot of space is then
wasted by registers (or cells in ME-NML) that for most of the time do not contain meaningful
data. The solution we propose to reduce the great impact of the accumulator on the circuit
area is to let multiple MAC units share the same accumulator.

6.3.2 Serial MAC with shared Accumulator

The accumulator of the first serial MAC proposed (Figure 58) is too long and costly. Even
though the data to be stored is 2/Ny;; long, the accumulator has a length of 2Nb2it registers. At
every instant 2Np;; - (Npie — 1) register contain meaningless data. This means that ideally the
same accumulator could be sha