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SUMMARY

The accurate simulation of linear electromagnetic scattering by diffraction gratings is

crucial in several technologies of scientific interest. In this contribution we describe a High–

Order Perturbation of Surfaces (HOPS) algorithm built upon a class of Integral Equations

due to the analysis of Fokas and collaborators, now widely known as the Unified Transform

Method. The unknowns in this formalism are boundary quantities (the electric field and

current at the layer interface) which are an order of magnitude fewer than standard volumet-

ric approaches such as Finite Differences and Finite Elements. Our numerical experiments

show the efficiency, fidelity, and high–order accuracy of our algorithm.
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CHAPTER 1

INTRODUCTION

We first introduce the setting of Fokas Integral equations and our HOPS approach built

on these equations to solve scalar Helmholtz equations satisfied by electro-magnetic waves

diffracted across a periodic structure. We later build on the framework established for the

Helmholtz equation to solve the vector Maxwell equation satisfied by electromagnetic waves

diffracted across a periodic structure.

1.1 Volumetric methods

Classical numerical algorithms such as Finite Elements (e.g., (1; 2; 3; 4)) and Finite

Differences (e.g., (5; 6; 7)) have been used to simulate these configurations. Volumetric

approaches however have prohibitively large number of unknowns for the piecewise ho-

mogeneous grating problem we consider here. In addition, for these methods an error is

introduced by enforcing an (approximately) “Non–Reflecting Boundary Condition” (e.g.,

(8) and variants, e.g., (9; 10; 11)) by restricting the unrestricted problem domain at some

finite distance from the grating structure.

1.2 Boundary Integral methods

Consequently, methods based upon Integral Equations (IEs) (12) are a better candi-

date but they face many limitations. For instance, in order to deliver high–order (spectral)

accuracy, special quadrature rules must be designed. These rules result in dense, non–

symmetric positive definite linear systems when applied to nonlocal IEs . However, these

limitations have been reasonably taken care of (by iterative solution procedures accelerated

by Fast Multipole Methods (13)) and hence Boundary Integral methods are a compelling

1
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choice (14). But, the following three properties make them non–competitive compared with

our new method for the periodic, parametrized problems we consider. First, for periodic

problems the relevant Green function must be periodized. This periodization induces slow

convergence, a well–known problem (15). This slow convergence induced can be accel-

erated (e.g., with Ewald summation). However, these methods necessitate an additional

discretization parameter: The number of approximate terms retained in periodized Green

function.

Second, for crossed interface, parameterized by height/slope ε, an IE solver must be

invoked for every ε. Finally, for each simulation the dense, non–symmetric positive definite

matrices must be inverted .

1.3 New alternative

Our new method is a “High–Order Perturbation of Surfaces” (HOPS) method, more

specifically a Fokas Integral Equation (FIE) formulation appropriately generalized to the

fully three–dimensional vector Maxwell equations (16; 17). These formulations have their

beginnings to the low–order calculations of Rayleigh (18) and Rice (19). Their high–order

version has been developed into the Method of Field Expansions (FE) by Bruno & Reitich

(20; 21; 22), Nicholls and Reitich (23; 24; 25), and Nicholls and Malcolm (26; 27). A closely

related algorithm, the Method of Operator Expansions, was developed in parallel by Milder

and collaborators (28; 29; 30; 31; 32; 33; 34).

These formulations not only have the advantages of classical Integral Equations formu-

lations (e.g., exact enforcement of far–field conditions and surface formulation) but also

avoid the shortcomings listed above. First, quasiperiodicity of solutions is manifested itself

and does not need to be further approximated as HOPS schemes utilize eigenfunctions of

the Laplacian (suitable complex exponentials) on a periodic domain.
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Second, Once the Taylor coefficients are calculated for the scattering fields, a simple

summation for any given boundary parameter ε will recover the returnsIinstead of starting

a new simulation) as these methods are built upon expansion in ε.

Finally, we need to only invert a single, sparse operator (flat–interface approximation

operator) for every perturbation order .

As shown in (16; 17) for solving the Helmholtz equation the approach of Fokas (35)

and collaborators (see, e.g., (36; 37; 38)) allows one to state simple integral relations for

Dirichlet and Neumann data of elliptic boundary value problems which do not involve

the fundamental solution. Instead they feature quite smooth kernels related to solutions

of the relevant Helmholtz problem meaning that simple quadrature rules (e.g., Nyström’s

Method (12)) can be brought to bear on the problem. The Fokas approach (known as

the “Unified Transform Method”) does lead to dense, poorly conditioned linear systems

to be inverted, but it was shown in (17) how this can be significantly ameliorated with

a HOPS methodology. In particular, as we shall see, one trades a single dense and ill–

conditioned matrix inversion for a sequence (one for each perturbation order retained) of

fast, well–conditioned linear solves around the base (flat–interface) geometry. This matrix

is of convolution–type which enables rapid solution by the FFT algorithm. Additionally,

we find that, for many configurations of interest, a few perturbation orders are sufficient for

a solution of high fidelity, resulting in an algorithm of remarkable speed and accuracy.



CHAPTER 2

TWO-DIMENSIONAL SCATTERING: THE HELMHOLTZ

EQUATION

We consider the problem of diffraction of electromagnetic waves across a periodic struc-

ture. More precisely, we consider two regions, Ω+ and Ω−, that are made up of materials

with dielectric constants ε+ and ε−, respectively or with dielectric constant ε+ and a perfect

conductor respectively. A grating surface y = f(x), where f is a periodic function of period

d seperate these regions. We assume the permeability of the dielectrics equal to µo, the

permeability of vaccum.

When the grating is illuminated by a plane wave

Ei = Aeiαx−iβye−iωt, (2.1a)

Hi = Beiαx−iβye−iωt, (2.1b)

If the two regions are filled with a dielectric and a perfect conductor respectively, the

total field in Ω+ is given by

Eup = Ei + Erefl, (2.2a)

Hup = Hi + Hrefl, (2.2b)

4
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where as the field in Ω− vanishes. We remove the factor exp(−iωt), and also point that

the incident, reflected, and total fields satisfy the time-harmonic Maxwell equations (39)

∇×E = iωµoH, ∇ ·E = 0, (2.3a)

∇×H = iωε+E, ∇ ·H = 0, (2.3b)

in Ω+. And, at the interface between two regions the total field satisfies

n×Eup = 0 on y = f(x), (2.4)

where n is the unit vector normal to the interface. If regions Ω+ and Ω− are made

up of two dielectrics, the total field in Ω− satifsfies Eqs. (2.3) and holds the following

transmission conditions:

n× (Eup − Edown) = 0, on y = f(x). (2.5a)

n× (Hup − Hdown) = 0, on y = f(x). (2.5b)

(2.5c)

And finally, the periodic grating surface induces quasi-periodic fields: if v is either E or

H, we have

v(x+ d, y) = exp(iαd)v(x, y). (2.6)
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For the above situation the fields E and H are independent of z (refer (39)) and Eqs.

(2.3) and (2.4) [or Eqs. (2.3) and (2.5)] can be simplified to set of equations for a single

unknown. In fact u(x, y) equal to either diffracted Ez(Transverse Electric - TE) or diffracted

Hz(Transverse Magnetic - TM) satisfy the Helmholtz equation

∆u+ (k±)2u = 0 in Ω±, (2.7)

where k± = ω
√
µoε±. Succintly, the solution above is an α-quasi-periodic function

which satisifies the Helmholtz equation and one of the following boundary conditions (39).

1. TE Mode: Dielectric-Perfect Conductor Interface

Set u = Ereflz , then the boundary condition is

u = − exp[iαx− iβf(x)] on y = f(x). (2.8)

2. TM Mode: Dielectric-Perfect Conductor Interface

Set u = Hreflz , then the boundary condition is

∂u

∂n
= −

∂

∂n
exp(iαx− iβy) on y = f(x). (2.9)

3. TE Mode: Interface between two Dielectrics

Set u+ = Ereflz , u− = Erefrz , then the boundary conditions are

u+ − u− = − exp[iαx− iβy] y = f(x), (2.10a)

∂u+

∂n
−
∂u−

∂n
= −

∂

∂n
exp(iαx− iβy) on y = f(x). (2.10b)
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4. TM Mode: Interface between Two Dielectrics

Set u+ = Hreflz , u− = Hrefrz , then the boundary conditions are

u+ − u− = − exp[iαx− iβy] y = f(x), (2.11a)

∂u+

∂n
− (1/ν2o)

∂u−

∂n
= −

∂

∂n
exp(iαx− iβy) on y = f(x), (2.11b)

where ν2o =
ε−

ε+ = (k
−

k+ )
2.

2.1 Rayleigh Expansion, Radiation Conditions, and Energy Balance

Lets incorporate boundary conditions at infinity to Eq. (2.7) to determine the soltuion

u: The solution should consist of outgoing waves and must be bounded at infinity.

Let

K =
2π

d
, αn = α+ nK, α2n + (β±n )

2 = (k±)2, (2.12)

where β±n is determined by Imβ±n > 0 or β±n ≥ 0. Assume

k+ 6= ±(α+ nK), k− 6= ±(α+ nK) (2.13)

where n is any integer. The case k± = ±(α + nK) for any n are known as Woods

anomalies. (Refs. 18 and 19.). This phenomenon is not discussed here, and (2.13) will be

assumed to hold.

Under this assumption, in the region Ω+, for y > yM = |f|∞, any α-quasi-periodic

solution to the Helmholtz equation is given by the Rayleigh expansion
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u+ =

∞∑
n=−∞A

+
n exp(iαnx− iβ

+
ny) +

∞∑
n=−∞B

+
n exp(iαnx+ iβ

+
ny). (2.14)

Similarly, in Ω−, for y < ym = −|f|∞, any solution u− to the Helmholtz equation is

given by

u− =

∞∑
n=−∞A

−
n exp(iαnx− iβ

−
ny) +

∞∑
n=−∞B

−
n exp(iαnx+ iβ

−
ny). (2.15)

Also solution u of Eq. (2.7) in Ω± satisfies the radiation condition at infinity if

A+
n = 0, B−

n = 0 for all n. (2.16)

Finally, to test the convergence for the numerical solution of diffraction problems, we

would use the relation between the Rayleigh coefficients of u given by the principle of

conservation of energy (39). For example, if Ω− is made up with a perfect conductor and

if k+ is real, this energy criterion is given by

∑
n∈U+

β+
n |B

+
n |
2 = β+

o , (2.17)

Where U+ ≡ {n : β+
n > 0}. (2.18)

Equivalently

∑
n∈U+

en = 1, (2.19)

where en = β+
n |B

+
n |
2/β+

o . The coefficient en is called the nth-order efficiency.
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2.2 Theory

When the grating is shaped by y = f(x) = εg(x) and g is smooth (C2, C1+δ, Lipschitz)

the field u = u(x, y, ε) is analytic with respect to the parameter ε. Under the assumption

f(x) is analytic, the following results have been established (40).

1. Given a profile y = εof(x), for some εo ∈ R and yo above (or below) the profile,

u = u(x, y, ε) is an analytic function of x, y, and ε for y sufficiently close to yo and ε

sufficiently close to εo.

2. The functions

u±(x, εf(x), ε), (2.20a)

∂u±

∂nε(x, εf(x))
(x, εf(x), ε) (2.20b)

are analytic with respect to x and ε.

3. For an εo ∈ R, the functions u± are analytic with respect to ε, x and y for ε close to

εo and y close to the interface y = εof(x). This property implies that functions u± can be

analytically extended across the interface.

It follows from 1 and 3, that u± can be expanded in power series of ε,

u±(x, y, ε) =

∞∑
n=0

u±n (x, y)ε
n, (2.21)

and converge for small ε. The functions u± also satisy Helmholtz equations.

From 2 and 3, differentiation of solutions with respect to ε and use of the chain rule are

permissible
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u+ − u− = − exp[iαx− iβεf(x)] on y = εf(x), (2.22a)

∂u+

∂nε
− ν2o

∂u−

∂nε
= −

∂

∂nε
exp(iαx− iβεf(x)) on y = εf(x), (2.22b)

2.3 Fokas Integral Equations

The Dirichlet-Neumann operator (DNO) in our approach comes from the procedure of

Fokas which, in our context, particularly follows from the following identity.

Lemma 2.1. If we define

Z(k) := ∂yφ(∆ψ+ k2ψ) + (∆φ+ k2φ)∂yψ

then

Z(k) := divx[F
(x)] + ∂y[F

(x) + F(k)],

where

F(x) := ∂yφ(∇xψ) +∇xφ(∂yψ),

F(y) := ∂yφ(∂yψ) −∇xφ · (∇xψ),

F(k) := k2φψ.

Defining the periodic domain

Ω = Ω(̄l+ l(x), ū+ u(x)) := {0 < x < d}× {̄l+ l(x) < y < ū+ u(x)}, (2.23a)

l(x+ d) = l(x), u(x+ d) = u(x), (2.23b)

provided that φ and ψ solve the Helmholtz equations

∆φ+ k2φ = 0, ∆ψ+ k2ψ = 0, (2.24)
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then Z(k) = 0. A (trivial) consequence of the divergence theorem gives us the following

lemma.

Lemma 2.2. Suppose that G(x,y), defined on Ω, is d-periodic in the x variable,

G(x+d,y) = G(x,y), where

G(x, y) = (G(x)(x, y), G(y)(x, y))T , (2.25)

then

∫
Ω

div[G]dV =

∫d
0

[G(x) · (∇xl) −G(y)]y=l̄+l(x) dx

+

∫d
0

[−G(x) · (∇xu) +G(y)]y=ū+u(x) dx.

(2.26)

If φ is α-quasiperiodic and ψ is (−α)-quasiperiodic, i.e.,

φ(x+ d, y) = eiα·dφ(x, y), ψ(x+ d, y) = e−iα·dψ(x, y), (2.27)

then the Lemma 2.2 tells us, with G = (F(x), F(y) + F(k))T ,

0 =

∫
Ω

Z(k)dV =

∫
∂Ω

div[G]dV

=

∫d
0

(F(x) · ∇xl− F(y) − F(k))y=l̄+l(x)dx

+

∫d
0

(F(x) · (−∇xu) + F(y) + F(k))y=ū+u(x)dx,

(2.28)

since, here, F(x), F(y), and F(k) are periodic. More specifically,
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0 =

∫d
0

[∂yψ(∇xψ · ∇xl) +∇xφ · (∂yψ∇xl) − ∂yφ(∂yψ)

+∇xφ · (∇xψ) − k2φψ dx]y=l̄+l(x)

+

∫d
0

[∂yφ(∇xψ · (−∇xu)) +∇xφ · (∂yψ · (−∇xu))

+ ∂yφ(∂yψ) −∇xφ · (∇xψ) + k2φψ dx]y=ū+u(x),

(2.29)

and

0 =

∫d
0

[∂yψ(∇xl · ∇xφ− ∂yψ) +∇xψ · (∇xl∂yφ+∇xφ) −ψk2φ]y=l̄+l(x) dx

+

∫d
0

[∂yψ(−∇xu · ∇xφ+ ∂yφ) −∇xψ · (∇xu∂yφ+∇xφ) +ψk2φ]y=ū+u(x) dx.
(2.30)

If we define

ξ(x) := φ(x, l̄+ l(x)), ζ(x) := φ(x, ū+ u(x)), (2.31)

then tangential derivatives are given by

∇xξ(x) := [∇xφ+∇xl∂yφ]y=l̄+l(x), ∇xζ(x) := [∇xφ+∇xu∂yφ]y=ū+u(x).

Normal derivatives are given by

L(x) := [−∂yφ+∇xl · ∇xφ]y=l̄+l(x), U(x) := [∂yφ−∇xu · ∇xφ]y=ū+u(x),

which results in

0 =

∫d
0

(∂yψ)y=l̄+l(x)L+ (∇xψ)y=l̄+l(x) · ∇ξ− (ψ)y=l̄+l(x)k
2ξdx

+

∫d
0

(∂yψ)y=ū+u(x)U− (∇xψ)y=ū+u(x) · ∇xζ+ (ψ)y=ū+u(x)k
2ζdx,

(2.32)

or
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∫d
0

(∂yψ)y=ū+u(x)U+ (∂yψ)y=l̄+l(x)Ldx

=

∫d
0

(∇xψ)y=ū+u(x) · ∇xζdx−
∫d
0

(∇xψ)y=l̄+l(x) · ∇xξdx

−

∫d
0

k2(ψ)y=ū+u(x)ζdx+

∫d
0

k2(ψ)y=l̄+l(x)ξdx.

(2.33)

2.4 The Top Layer

For this problem we consider upward propagating, α-quasiperiodic solutions of

∆φ+ k2φ = 0, l̄+ l(x) < y < ū

φ = ξ, y = l̄+ l(x).

To begin, we note that the Rayleigh expansion (39) gives, for y > ū, that upward

propagating α-quasiperiodic solutions of the Helmholtz equation can be written as

φ(x, y) =

∞∑
q=−∞ ζ̂pe

iαp·x+iβp(y−ū), p = (p1, p2), p1, p2 ∈ Z, (2.34)

where

αp :=

α1 + 2πp1/d1
α2 + 2πp2/d2

 βp :=


√

(k)2 − |α2p| p ∈ U

i
√
|α2p|− (k)2 p 6∈ U

, (2.35)

and the set of propagating modes is specified by

U := {p| |αp|
2 < k2}.

Evaluating φ above at y = ū delivers the (generalized) Fourier series of ζ(x),

ζ(x) =
∑∞
p1=−∞∑∞

p2=−∞ζ̂peiαp·x,
so that we can compute the DNO at y = ū as
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U = ∂yφ(x, ū) =

∞∑
p1=−∞

∞∑
p2=−∞(iβp)ζ̂pe

iαp·x =: (iβD)ζ. (2.36)

Proceeding, we consider an (-α)-quasiperiodic “test function”

ψ(x, y) = e−iαp·x+imp(y−l̄)

with mp to be determined so that the difference between the first and the sum of the

third and fifth terms in (2.2) are zero. For this we consider the quantity

R(x) := (∂yψ)y=ūU− (∇xψ)y=ū · ∇xζ+ k2(ψ)y=ūζ,

and define

Ep := exp(imp(ū− l̄)).

It can be easily shown that

R(x) = (imp)e
−iαpxEp(iβD)ζ− (−iαp)e

−iαpxEp · ∇xζ+ k2e−iαpxEpζ

=

∞∑
q=−∞{(imp)(iβq) − (−iαp) · (iαp) + k2}Epζ̂qe−i(αp−αq)·x.

(2.37)

Integrating R over the period cell, the only non-zero term features p = q so that

∫d
0 R(x)dx = |d|{(imp)(iβp) − (−iαp) · (iαp) + k2}Epζ̂p.

Choosing mp = βp, so that

ψ(x, y) = e−iαpx+iβp(y−l̄),

a ”conjugated solution,” we get
∫d
0 R dx = 0 since

αp · αp + β2p = k2 ⇒ (iαp) · (iαp) + (iβp)
2 + k2 = 0. (2.38)

In light of these computations we now have
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∫d
0

(∂yψ)y=l̄+l(x)Ldx =−

∫d
0

(∇xψ)y=l̄+l(x) · ∇xξdx

+

∫d
o

k2(ψ)y=l̄+l(x)ξdx,

(2.39)

and, with ψ defined above,

∫d
0

(iβp)e
iβple−iαpxLdx =−

∫d
0

(−iαp)e
iβple−iαpx · ∇xξdx

+

∫d
0

k2eiβple−iαpxξdx.

(2.40)

2.5 The Bottom Layer

In a similar fashion we can consider downward propagating, α-quasiperiodic solutions

of

∆φ+ k2φ = 0, l̄ < y < ū+ u(x)

φ = ζ, y = ū+ u(x),

and the “test function”

ψ(x, y) = e−iαpx−iβp(y−ū).

With this choice of ψ the second, fourth, and sixth terms in (2.34) combine to zero and

we find

∫d
0

(∂yψ)y=ū+u(x)Udx =

∫d
0

(∇xψ)y=ū+u(x) · ∇xζdx

−

∫d
0

k2(ψ)y=ū+u(x)ζdx.

(2.41)

With ψ defined in this way we determine that
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∫d
0

(−iβp)e
−iβpue−iαpxUdx =

∫d
0

(−iαp)e
−iβpue−iαpx · ∇xζdx

−

∫d
0

k2e−iβpue−iαpxζdx.

(2.42)

2.6 A Middle Layer

Finally, We consider α-quasiperiodic solutions of

∆φ+ k2φ = 0, l̄+ l(x) < y < ū+ u(x)

φ = ξ, y = l̄+ l(x)

φ = ζ, y = ū+ u(x),

and the “test functions”

ψ(u)(x, y) =
cosh(iβp(y− l̄))

sinh(iβp(ū− l̄))
e−iαpx

ψ(l)(x, y) =
cosh(iβp(ū− y)

sinh(iβp(ū− l̄))
e−iαpx.

(2.43)

Defining

cop := coth(iβp(ū− l̄)), csp := csch(iβp(ū− l̄)),

C(u) := cosh(iβpu), S(u) := sinh(iβpu),

C(l) := cosh(iβpl), S(l) := sinh(iβpl),

(2.44)

we can show that
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ψu(x, ū+ u) = (copC(u) + S(u))e
−iαpx

ψu(x, l̄+ l) = cspC(l)e
−iαpx

ψl(x, ū+ u) = cspC(u)e
−iαpx

ψl(x, l̄+ l) = (copC(l) − S(l))e
−iαpx,

(2.45)

and

∂xψ
(u)(x, ū+ u) = (−iαp)(copC(u) + S(u))e

−iαpx

∂xψ
(u)(x, l̄+ l) = (−iαp) cspC(l)e

−iαpx

∂xψ
(l)(x, ū+ u) = (−iαp) cspC(u)e

−iαpx

∂xψ
(l)(x, l̄+ l) = (−iαp)(copC(l) − S(l))e

−iαpx,

(2.46)

and

∂yψ
(u)(x, ū+ u) = (iβp)(C(u) + cop S(u))e

−iαpx

∂yψ
(u)(x, l̄+ l) = (iβp) csp S(l)e

−iαpx

∂yψ
(l)(x, ū+ u) = (iβp) csp S(u)e

−iαpx

∂yψ
(l)(x, l̄+ l) = (−iβp)(C(l) − cop S(l))e

−iαpx.

(2.47)

From (2.34), with ψ(u) we find
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∫d
0

(iβp)(C(u) + cop S(u))e
−iαpxUdx+

∫d
0

(iβp) csp S(l)e
−iαpxLdx

=

∫d
0

(−iαp)(copC(u) + S(u))e
−iαpx · ∇xζdx−

∫d
0

(−iαp)cspC(l)e
−iαpx · ∇xξdx∫d

0

k2cspC(l)e
−iαpxξdx−

∫d
0

k2(copC(u) + S(u))e
−iαpxζdx.

(2.48)

With ψ(l) we find

∫d
0

(−iβp)(C(l) − copS(l))e
−iαpxLdx+

∫d
0

(iβp)cspS(u)e
−iαpxUdx

=

∫d
0

(−iαp)(copC(l) − S(l))e
−iαpx · ∇xξdx+

∫d
0

(−iαp)cspC(u)e
−iαpx · ∇xζdx

−

∫d
0

k2cspC(u)e
−iαpxζdx+

∫d
0

k2(copC(l) − S(l))e
−iαpxξdx.

(2.49)

2.7 Summary of Formulas and Zero-Deformation Simplifications

We point out that all of the formulas derived thus far, can be stated gererically as

Âp[Ṽ ] = R̂p[V ]. (2.50)

1. (Top Layer) For (2.43), after dividing by (iβp),

Ṽ = G, V = ξ, Âp(g)[G] =

∫d
0

eiβpge−iαpxG(x) dx, (2.51)

and

R̂p(g)[ξ] =

∫d
0

eiβpge−iαpx
iαp

iβp
· ∇xξ(x) +

k2

iβp
ξ(x) dx. (2.52)

2. (Bottom Layer) For (2.46), after dividing by (iβp)
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Ṽ = J, V = ζ, Âp(g)[J] =

∫d
0

eiβpge−iαpxJ(x) dx, (2.53)

and

R̂p(g)[ζ] =

∫d
0

eiβpge−iαpx
iαp

iβp
· ∇xζ(x) +

k2

iβp
ζ(x) dx. (2.54)

3. (Middle Layer) For (2.52) and (2.53), after dividing by (iβp),

Ṽ =

Ṽu
Ṽ l

 =

U
L

 , V =

Vu
V l

 =

ζ
ξ

 , (2.55)

and

Âp(u, l)

U
L

 =

∫d
0

C(u) + copS(u) cspS(l)

−cspS(u) C(l) − copS(l)


U
L

 e−iαpxdx, (2.56)

and

R̂p(u, l)

ζ
ξ

 =

∫d
0

−S(u) − copC(u) cspC(l)

cspC(u) S(l) + copC(l)


U
L



(
iαp

iβp
· ∇x +

k2

iβp
)

ζ
ξ

 e−iαpxdx.
(2.57)

In the case of flat interfaces (g ≡ 0, u ≡ 0, l ≡ 0) we have:
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1. (Top Layer)

Âp(0)[G] =

∫d
0

e−iαpxG(x) dx,

R̂p(0)[ξ] =

∫d
0

e−iαpx{
iαp

iβp
· ∇x +

k2

iβp
}ξ dx.

2. (Bottom Layer)

Âp(0)[J] =

∫d
0

e−iαpxJ(x) dx,

R̂p(0)[ζ] =

∫d
0

e−iαpx{
iαp

iβp
· ∇x +

k2

iβp
}ζ dx.

3. (Middle Layer)

Âp(0, 0)

U
L

 =

∫d
0

1 0

0 1


U
L

 e−iαpx dx,

R̂p(0, 0)

ζ
ξ

 =

∫d
0

−cop csp

csp −cop

 {
iαp

iβp
· ∇x +

k2

iβp
}

ζ
ξ

 e−iαpx dx.

Recognizing the Fourier transform

ψ̂p = F[ψ] =

∫d
0

e−iαpxψdx,

and using the fact that (iαp) · (iαp) + k2 = −(iβp)
2 we find:

1. (Top Layer)
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Âp(0)[G] = Ĝp,

R̂p(0)[ξ] = {
iαp

iβp
· (iαp) +

k2

iβp
}ξ̂p = −(iβp)ξ̂p.

2. (Bottom Layer)

Âp(0)[J] = Ĵp,

R̂p(0)[ζ] = {
iαp

iβp
· (iαp) +

k2

iβp
}ζ̂p = −(iβp)ζ̂p.

3. (Middle Layer)

Âp(0, 0)

U
L

 =

1 0

0 1


Ûp
L̂p

 ,

R̂p(0, 0)

ζ
ξ

 =

−cop csp

csp −cop

 {
iαp

iβp
· (iαp) +

k2

iβp
}

ζ̂p
ξ̂p



=

−cop csp

csp −cop

 (−iβp)

 ζ̂p
ξ̂p,

 ,

and discover the classical results:
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Ĝp = −(iβp)ξ̂p, Ĵp = −(iβp)ζ̂p,Ûp
L̂p

 = (iβp)

−cop csp

csp −cop


ζ̂p
ξ̂p

 .

2.8 A High-Order Perturbation of Surfaces (HOPS) Method.

We recognize that these FIEs depend upon the boundary perturbation (g = f(x)) in a

rather simple way. In fact, if we set g(x) = εf(x) then the integral operators Âp and R̂p are

analytic with respect to ε (sufficiently small)

Âp(g) = Âp(εf) =

∞∑
n=0

Âp,n(f)ε
n, R̂p(g) = R̂p(εf) =

∞∑
n=0

R̂p,n(f)ε
n. (2.58)

In light of these expansions one can posit the forms

V(g) = V(εf) =

∞∑
n=0

Vn(f)ε
n, Ṽ(g) = Ṽ(εf) =

∞∑
n=0

Ṽn(f)ε
n. (2.59)

In particular, for the problem of computing a Dirichlet-Neumann Operator [28, 29, 30],

given analytic Dirichlet data (so that the first expansion in (2.58) converges strongly), we

fully anticipate that the corresponding Neumann data will also be analytic [28] so that the

second expansion is also valid.

If we insert the expansions (2.58) and (2.59) into

Âp[Ṽ ] = R̂p[V ], p ∈ Z, (2.60)

this results in
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( ∞∑
n=0

Âp,nε
n

)[ ∞∑
m=0

Ṽmε
m

]
=

( ∞∑
n=0

R̂p,nε
n

)[ ∞∑
m=0

Vmε
m

]
. (2.61)

This, evidently regular, perturbation expansion can now be equated at successive orders

of ε delivering,

Âp,0[Ṽn] = R̂p,0[Vn] +

n−1∑
m=0

R̂p,n−m[Vm] −

n−1∑
m=0

Âp,n−m[Ṽm]. (2.62)

This recursion describes a natural HOPS scheme for the simulation of quantities of

interest which is advantaged over (2.60) in a number of ways.

First, the solution of (2.60) requires the formation and inversion of Âp(g) which, as

we shall show, can become quite ill-conditioned as the boundary deformation g departs

significantly from zero. By contrast, in solving (2.61) one must (repeatedly) invert the op-

erator Âp,0 = Âp(0) which, as we will see, is both well-conditioned and can be accomplished

rapidly using the FFT algorithm.

Second, one may perceive that a disadvantage of utilizing (2.61) is that this system

must be solved at every perturbation order n desired which would make it much more

computationally intensive that inverting (2.60) once. However, this is, in fact, a strength

as it allows one to compute the Neumann data for an entire family of profiles g(x) = εf(x)

with one simulation. That is, upon solving (2.61) for 0 ≤ n ≤ N we can form

ṼN(x; ε) :=

N∑
n=0

Ṽn(x)ε
n, (2.63)

and approximate Ṽ corresponding to g = εf for any ε by a simple summation (with

linear cost). By contrast, if one wished to do the same with (2.60), the operator Âp(g)

must be formed and inverted with every new instance of g.
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At this point we simply require forms for the Taylor coefficients of the integral operators

Âp and R̂p, namely the {Âp,n, R̂p,n}. As we now show, the matter is a simple one and in

fact, in the previous section we identified the ”flat interface” operators {Âp.0, R̂p,0} explicitly

(though we made no particular use of them).

2.9 Higher-Order Corrections.

Based on the forms for (2.55 - 2.60), it is straightforward to compute the Âp,n and R̂p,n.

In particular, for the upper layer, if g(x) = εf(x) then (2.54) gives

Âp,n(f)[G] =

∫d
0

(iβ
(0)
p )nFn(x)e

−iαp·xG(x) dx, (2.64)

and (2.55) gives

R̂p,n(f)[ξ] =

∫d
0

(iβ
(0)
p )nFn(x)e

−iαp·x

{
iαp

iβ
(0)
p

· ∇x +
(k(0))2

iβ
(0)
p

}
ξ(x) dx, (2.65)

where Fn(x) := f(x)
n/n!. In the lower layer, if g(x) = εf(x) then (2.56) gives

Âp,n(f)[J] =

∫d
0

(−iβ
(M)
p )nFn(x)e

−iαp·xJ(x) dx, (2.66)

and (2.57) gives

R̂p,n(f)[ζ] =

∫d
0

(iβ
(M)
p )nFn(x)e

−iαp·x

{
iαp

iβ
(M)
p

· ∇x +
(k(M))2

iβ
(M)
p

}
ζ(x) dx. (2.67)

Finally, in a middle layer, if u(x) = εfu(x) and l(x) = εfl(x) then (2.59) gives
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Âp,n(fu, fl)

U
L

 =

∫d
0

(Cn + copSn)Fu,n cspSnFl,n

−cspSnFu,n (Cn − copSn)Fl,n


U
L

 e−iαpx dx, (2.68)

and

R̂p,n(fu, fl)

ζ
ξ

 =

∫d
0

(−Sn − copCn)Fu,n cspCnFl,n

cspCnFu,n (Sn − copCn)Fl,n



×

{
iαp

iβ
(m)
p

· ∇x +
(km)2

iβ
(m)
p

}ζ
ξ

 e−iαpx dx,
(2.69)

where,

Fu,n := (fu(x))
n/n!, Fl,n := (fl(x))

n/n!,

and,

C2j := (iβmp )
2j, C2j+1 := 0, S2j := 0, S2j+1 := (iβmp )

2j+1, j = 0, 1, . . .

At this point we are able to make a crucial observation which gives an unexpected

computational benefit to our approach as opposed to the one advanced in previous section.

Specifically, we note that in (2.64 - 2.69) we are able to separate the wavenumber (p)

dependence from the spatial (x ) dependence in the following ways. For (2.64) we write
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Âp,n(f)[G] = (iβ
(0)
p )n

∫d
0

Fn(x)e
−iαp·xG(x) dx, (2.70)

for (2.65)

R̂p,n(f)[ξ] = (iβ
(0)
p )n

iαp

iβ
(0)
p

·
∫d
0

Fn(x)e
−iαp·x∇xξ(x)

+ (iβ
(0)
p )n

(k(0))2

iβ
(0)
p

∫d
0

Fn(x)e
−iαp·xξ(x) dx,

(2.71)

for (2.66)

Âp,n(f)[J] = −(iβ
(M)
p )n

∫d
0

Fn(x)e
−iαp·xJ(x) dx, (2.72)

and for (2.67)

R̂p,n(f)[ξ] = −(iβ
(M)
p )n

iαp

iβ
(M)
p

·
∫d
0

Fn(x)e
−iαp·x∇xζ(x)dx

+−(iβ
(M)
p )n

(k(M))2

iβ
(M)
p

∫d
0

Fn(x)e
−iαp·xζ(x) dx.

(2.73)

Finally, for (2.68 and 2.69) we get

Âp,n(fu, fl)

U
L

 =

(Cn + copSn) cspSn

−cspSn (Cn − copSn)

 ∫d
0

e−iαp·x

Fu,nU
Fl,nL

dx, (2.74)
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R̂p,n(fu, fl)

ζ
ξ

 =

(−Sn − copCn) cspCn

cspCn (Sn − copCn)


 iαp
iβmp

 · ∫d
0

e−iαp·x

Fu,n∇xζ
Fl,n∇xξ

dx

+

(−Sn − copCn) cspCn

cspCn (Sn − copCn)


(k(m))2

iβmp

 ∫d
0

e−iαp·x

Fu,nζ
Fl,nξ

dx.
(2.75)

The important observation to make about all of these is that they are convolution

operators which can be rapidly evaluated by the FFT algorithm. For instance, in using

(2.74 and 2.75) one could perform the following sequence of steps to evaluate the action of

Ân,p on the function G(x) evaluated at the Nx equally-spaced points on [0, d]:

1. Multiply G(x) by Fn(x) pointwise in ”physical space” (Cost: O(Nx)).

2. Fourier transform the product via the FFT (Cost: O(Nxlog(Nx))).

3. Multiply pointwise by the diagonal operator (iβ
(0)
p )n in ”Fourier space” (Cost: O(Nx)).

We point out that, at this point, it is quite natural to use inverse Fourier transform

to move back to ”physical space”. We use this convention for the rest of this contribution

which amounts to replacing (2.66) by

A0[Ṽn] = R0[Vn] +

n−1∑
m=0

Rn−m[Vm] −

n−1∑
m=0

An−m[Ṽm], (2.76)

where

An =
1

|d|

∞∑
p=−∞ Âp,ne

iαp·x̃, Rn =
1

|d|

∞∑
p=−∞ R̂p,ne

iαp·x̃. (2.77)
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2.10 Exact Solutions

Unfortunately, there are no known exact solutions for plane-wave incidence for non-

trivial interface shapes for the DNO problem. To prove that our algorithm converges we

use the following principle: To build a numerical solver for

Lu = 0 in Ω

Bu = 0 at ∂Ω,

(2.78)

it is often just as easy to create an algorithm for the corresponding inhomogenous prob-

lem:

Lu = R in Ω

Bu = Q at ∂Ω.

(2.79)

Letting ω an arbitrary function, we can solve

Rω := Lω, Qω := Bω, (2.80)

Using which we now have an exact solution for

Lu = Rω in Ω

Bu = Qω at ∂Ω,

(2.81)
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namely u = ω. Using this approach, we can test our homogenous solver which would

be a special case (Rω ≡ 0) for our inhomogenous solver. We should however select ω which

have the same “behavior” as solutions of u of the homogenous problem. Our exact solution

however, does not correspond to plane-wave incidence rather plane-wave reflection.

To be specific, consider the family of functions

v
(m)
r (x, y) = A(m)ei(αr·x+β

(m)
r y) + B(m)ei(αr·x−β

(m)
r y), m ∈ Z (2.82)

with A(M) = B(0) = 0. and m denotes the surface layer. These are outgoing, α-

quasiperiodic solutions of the Helmholtz equation, so that Rω ≡ 0 in the notation above.

These functions however do not satisfy the boundary conditions satisfied by an incident

plane wave. We compute the surface data with the construction of the Qω in mind

ζ̃(m) := v
(m−1)
r − v

(m)
r y = g(x),

ψ̃(m) := ∂N(m) [v
(m−1)
r − v

(m)
r ] y = g(x).

We test our numerical algorithm for any choice of deformation g(x) using this family of

exact solutions.

2.11 Numerical Implementation

We utilize Nyström’s method (12) to simulate the Integral Equations (2.64) as they

appear in MVl = Q. In this setting this amounts to enforcing these equations at N =

(N1, N2) equally spaced gridpoints, xj = (x1,j1 , x2,j2), on the period cell [0, d1]× [0, d2], with

unknowns being the functions Ṽ(m),l, V(m),l at these same gridpoints xj.

Using these we define,
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εrel := sup
0≤m≤M−1

{
|Ṽ

(m),l
r − Ṽ

(m),l,N
r |L∞

|Ṽ
(m),l
r |L∞

,
|V

(m),l
r − V

(m),l,N
r |L∞

|V
(m),l
r |L∞

}
. (2.83)

2.12 Convergence Studies

For our convergence studies we follow the lead of (41) and select configurations quite

close to the ones considered there. First, we consider the two-dimensional and 2φ-periodic

profiles independent of the x2- variable. We then consider the fully three-dimensional case.

Recalling the three profiles introduced in (42): The sinusoid

fs(x) = cos(x) (2.84)

the ”rough” (C4 but not C5) profile

fr(x) = (2× 10−4)
{
x4(2π− x)4 −

128π8

315

}
(2.85)

and the Lipschitz

fL(x) =


−(2/π)x+ 1, 0 ≤ x ≤ π

(2/π)x− 3, π ≤ x ≤ 2π
(2.86)

These profiles have approximate amplitude two, zero mean, and maximum slope of

approximately one. The Fourier series of fr and fl are listed in (42). fr,P and fL,P represent

the truncated P-term Fourier series.

We start with two three-layer configurations:
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1. Two Smooth Interfaces

α = 0.1, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x) = εfs(x), g(2)(x) = εfs(x), ε = 0.01, d = 2π,

N = 10, ..., 30.

(2.87)

2. Rough and Lipschitz Interfaces

α = 0.1, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x) = εfr,40(x), g(2)(x) = εfL,40(x), ε = 0.03, d = 2π,

N = 80, ..., 320.

(2.88)

In these three-layer configurations the wavelengths of propagation (λ(m) = 2π/k(m)) are

λ(0) ≈ 5.6885, λ(1) ≈ 2.8530, λ(2) ≈ 1.9031. (2.89)

In the first configuration, we show that only a small number of collocation points (N ≈

20) are sufficient to achieve machine precision for small, smooth profiles, (2.88), which

displays the spectral accuracy of the scheme. In sumulation (2.92) provided that N is

chosen sufficiently large, we show that the algorithm converges quickly even when smooth

interfaces are replaced by the rough, (2.89), and Lispschitz, (2.90), profiles respectively

(both truncated after P = 4F0 Fourier series terms).

Among the many multilayer configurations our algorithm can address we choose two

more, representative ones:
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1. Six-Layer

α = 0.1, β(m) = 1.1+m, 0 ≤ m ≤ 5

g(1)(x) = εfs(x), g(2)(x) = εfr,40(x), g(3)(x) = εfL.40(x),

g(4)(x) = εfr,40(x), g(5)(x) = εfs(x), ε = 0.02, d = 2π,

N = 40, ..., 120.

(2.90)

2. 21-Layer

α = 0.1, β(m) =
m+ 1

10
, 0 ≤ m ≤ 20

g(m)(x) = εfs(x), 1 ≤ m ≤ 20, ε = 0.02, d = 2π,

N = 10, ..., 30.

(2.91)

We again show that in all cases, provided that a sufficient number of degrees of freedom

are selected our algorithm provides highly accurate solutions in a stable and rapid manner.

We now consider (2π) × (2π) periodic interfaces in a three-dimensional structure. We

select the following: The sinusoid

f̃s(x1, x2) = cos(x1 + x2), (2.92)

the ”rough” (C2 but not C3) profile

f̃r(x1, x2) −

(
2

9
× 10−3

){
x21(2π− x1)

2x22(2π− x2)
2 −

64π8

225

}
, (2.93)

and the Lipschitz boundary
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f̃L(x1, x2) =
1

3
+



(2/π)x1 − 1, x1 ≤ x2 ≤ 2π− x1

−(2/π)x2 + 3, x2 > x1, x2 > 2π− x1

3− (2/π)x1, 2π− x1 ≤ x2 ≤ x1

−1+ (2/π)x2, x2 < x1, x2 < 2π− x1.

(2.94)

These profiles have approximate amplitude two, zero mean, and maximum slope of

approximately one. The Fourier series of fr and fl are listed in (42). fr,P and fL,P represent

the truncated P-term Fourier series.

We focus upon the two three-layer configurations outlined below.

1. Two Smooth Interfaces:

α1 = 0.1, α2 = 0.2, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x1, x2) = εf̃s(x1, x2), g(2)(x1, x2) = εf̃s(x1, x2), ε = 0.1,

d1 = 2π, d2 = 2π, N1 = N2 = 6, ..., 32.

(2.95)

2. Rough and Lipschitz interfaces:

α1 = 0.1, α2 = 0.2, β(0) = 1.1, β(1) = 2.2, β(2) = 3.3,

g(1)(x1.x2) = εf̃r,20(x1, x2), g(2)(x1, x2) = εf̃L,20(x1, x2), ε = 0.01,

d1 = 2π, d2 = 2π, N1 = N2 = 8, ..., 24.

(2.96)

Our algorithm again delivers highly accurate results. Provided that a sufficient number

of collocation points are used, our algorithm exhibits the same behavior independent of

interface shape.
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2.13 Layered Medium Simulation

Having verified the validity of our codes, we demonstrate the utility of our approach

by simulating plane-wave scattering from all of the configurations described in the pre-

vious section. Recall, in two dimensions this included two-layer (2.91) & (2.92) and two

multiple-layer problems (2.94) & (2.95); while in three dimensions this featured two two-

layer scenarios (2.99) & (2.100). For this there is no exact solution for comparison we resort

to the diagnostic of enery defect .

δ = 1−
∑
p∈U0

e0p −
∑
p∈UM

eMp . (2.97)

We observe in Figure 7 that we achieve full double precision accuracy with our coarsest

discretization for the smooth-smooth configuration, (2.91), while in Figure 8 we show that

the same can be realized with N ≈ 200 for the rough-Lipschitz problem, (2.92). The

same generic behavior is noticed for the six-layer configuration, (2.94), and the 21 layer

device, (2.95), which are displayed in Figures 9 and 10, respectively. Finally, we display

three-dimensional results corresponding to the two-layer problems, (2.99) & (2.100), and

the quantitative results are given in Figures 11 & 12, respectively.
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Figure 1. Relative error for 2D smooth-smooth config (Eq: 2.91) for Helmholtz equation
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Figure 2. Relative error for 2D rough-Lipschitz config (Eq: 2.92) for Helmholtz equation
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Figure 3. Relative error for 2D smooth- rough-Lipschitz-rough-smooth config (Eq: 2.94)
for Helmholtz equation
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Figure 4. Relative error for 20 smooth interfaces (Eq: 2.95) for Helmholtz equation
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Figure 5. Relative error for 3D smooth-smooth configuration (Eq: 2.99) for Helmholtz
equation
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Figure 6. Relative error for 3D rough-Lipschitz configuration (Eq: 2.100) for Helmholtz
equation
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Figure 7. Energy defect for 2D smooth-smooth configuration (Eq: 2.91) for Helmholtz
equation
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Figure 8. Energy defect for 2D rough-Lipschitz configuration (Eq: 2.92) for Helmholtz
equation
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Figure 9. Energy defect for 2D smooth-rough-Lipschitz-rough-smooth config (Eq: 2.94)
for Helmholtz equation
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Figure 10. Energy defect for 21 layer config with 20 smooth interfaces (Eq: 2.95) for
Helmholtz equation
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Figure 11. Energy defect for 3D smooth-smooth configuration (Eq: 2.99) for Helmholtz
equation
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Figure 12. Energy defect for 3D smooth-smooth configuration (Eq: 2.100) for Helmholtz
equation



CHAPTER 3

THREE DIMENSIONAL SCATTERING: THE MAXWELL

EQUATION

3.1 The Governing Equations

At z = g(x, y), lets consider a diffraction grating with crossed periodic interface.

Where x and y are the lateral coordinates, and z is the vertical coordinate.

The inteface delineates two layers

S+ := {z > g(x, y)} , S− := {z < g(x, y)} .

The layers are filled with materials having dielectric constants {εu, εw}, permeability of

each equal to µ0. In this chapter we consider the crossed and periodic grating interface

g(x+ d1, y+ d2) = g(x, y);

see Figure Figure 13. Figure 3.1: Plot of the configuration with grating interface shaped by

g(x, y) = (ε/4) (cos(2πx/d1) + cos(2πy/d2)), d1 = d2 = d = 500 nm, ε/d = 0.01 giving ε = 5 nm.

The plane–wave incidence is of the form

Einc(x, y, z) := eiωtEinc(x, y, z, t) = Aei(αx+βy−γz)

Hinc(x, y, z) := eiωtHinc(x, y, z, t) = Bei(αx+βy−γz),

where

A · κ = 0, B =
1

ωµ0
κ×A, |A| = |B| = 1,

47
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Figure 13. Configuration Plot for Maxwell problem

and κ := (α,β,−γ)T .

As before dropping the factor exp(−iωt), the time–harmonic Maxwell equations (43; 39) can be

written as

∇×E = iωµ0H, div [E] = 0, (3.1a)

∇×H = −iωεE, div [H] = 0. (3.1b)

All the reduced fields satisfy the vector Helmholtz equation, e.g.,

∆E + k2E = 0, (3.2)

with k2 = ω2εµ0.
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The total fields are decomposed into incident and scattered components by

E =


Eu + Einc in Su

Ew in Sw

, H =


Hu + Hinc in Su

Hw in Sw

,

and each satisfy vector Helmholtz equations, e.g.,

∆Eu + (ku)2Eu = 0, in Su

where (ku)2 := ω2εuµ0, and

α2 + β2 + γ2 = (ku)2.

At the interface, the transmission conditions (43; 39),

N× [Eu − Ew] = ζ

N× [Hu − Hw] = ψ,

where N := (−∂xg,−∂yg, 1)
T , and,

ζ = −N×
[
Einc

]
z=g

, ψ = −N×
[
Hinc

]
z=g

.

In light of Maxwell’s equations, (Equation 3.1), we get

N× [Eu − Ew]z=g = ζ, (3.3a)

N× [∇× [Eu − Ew]]z=g = ψ, (3.3b)

where

ψ = −N×
[
∇×

[
Einc

]]
z=g

.
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We point out that only four of these six boundary conditions are linearly dependent (the z–component

of each can be written as a linear combination of the x– and y–components, for instance). Clearly it

only makes sense to enforce four and we choose the x– and y–components of each. To compensate

for this “defect” we recall that the electric field is divergence free in the bulk, and must also be so

at the interface. Thus we enforce the two additional boundary conditions

div [Eu] = div [Ew] = 0, z = g. (3.3c)

Finally, the fields are quasiperiodic because of the periodicity of the grating interfaces

Em(x+ d1, y+ d2, z) = e
i(αd1+βd2)Em(x, y, z), m = u,w,

and we demand that Eu and Ew are outgoing at positive and negative infinity, respectively.

3.2 The Rayleigh Expansions, Efficiencies, and the Reflectivity Map

Rayleigh expansions (39) which are quasiperiodic, outgoing solutions of (Equation 3.2) are given

by separation of variables. The electric fields can be expanded as

Eu(x, y, z) =

∞∑
p=−∞

∞∑
q=−∞ap,qe

iγu
p,qzei(αpx+βqy) (3.4a)

and

Ew(x, y, z) =

∞∑
p=−∞

∞∑
q=−∞dp,qe

−iγw
p,qzei(αpx+βqy), (3.4b)

where, for p, q ∈ Z,

αp := α+ (2π/d1)p, βq := β+ (2π/d2)q,

γmp,q :=


√

(km)2 − α2p − β
2
q (p, q) ∈ Um

i
√
α2p + β

2
q − (km)2 (p, q) 6∈ Um

, m = u,w,
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and,

Um =
{
p, q ∈ Z | α2p + β

2
q < (km)2

}
, m = u,w,

which are the “propagating modes” in the upper and lower layers. (Where ap,q and dp,q are

the upward and downward propagating Rayleigh amplitudes.) Efficiencies are given by

eup,q = (γup,q/γ) |ap,q|
2
, (p, q) ∈ Uu,

ewp,q = (γwp,q/γ) |dp,q|
2
, (p, q) ∈ Uw,

and the object of fundamental importance to the design of Surface Plasmon Resonance (SPR)

biosensors (44; 45; 46; 47; 48; 49) is the “Reflectivity Map”

R :=
∑

(p,q)∈Uu

eup,q. (3.5)

If the lower layer is filled with a perfect electric conductor, and a lossless dielectric fills the upper

medium, we get R = 1 by conservation of energy. However in the case of a metal (such as gold)

in the lower domain, R drops in its value to a tenth or even a hundredth. This is the fundamental

phenomenon behind the utility of Surface Plasmon Resonance (SPR) sensors (50; 51; 52).

3.3 Boundary Formulation

We will now demonstrate how the governing equations (Equation 3.2) & (Equation 3.3) can

be rewritten in terms of surface quantities, more specifically the Dirichlet and (exterior) Neumann

traces. For this we define the surface quantities

U(x, y) := Eu(x, y, g(x, y)) (3.6a)

W(x, y) := Ew(x, y, g(x, y)) (3.6b)

Ũ(x, y) := [−∂zE
u + (∂xg)∂xE

u + (∂yg)∂yEu] (x, y, g(x, y)) (3.6c)

W̃(x, y) := [∂zE
w − (∂xg)∂xE

w − (∂yg)∂yEw] (x, y, g(x, y)), (3.6d)
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where

U =


Ux

Uy

Uz

 , W =


Wx

Wy

Wz

 , Ũ =


Ũx

Ũy

Ũz

 , W̃ =


W̃x

W̃y

W̃z

 ,

so

{
U,W, Ũ,W̃

}
: R2 → R3,{

Uj,Wj, Ũj, W̃j
}
: R2 → R, j = x, y, z.

As each of the components of {U,W} is an outgoing, quasiperiodic solution of the Helmholtz

equation, (Equation 3.2), the Dirichlet and Neumann traces are related by the Fokas Integral Equa-

tions (FIE) (16; 17)

AuŨj − RuUj = 0, AwW̃j − RwWj = 0, j = x, y, z. (3.7)

The operators are defined (for j = x, y, z) by

Au[Ũj] :=
1

d1d2

∞∑
p=−∞

∞∑
q=−∞ Â

u
p,q[Ũ

j]ei(αpx+βqy),

Ru[Uj] :=
1

d1d2

∞∑
p=−∞

∞∑
q=−∞ R̂

u
p,q[U

j]ei(αpx+βqy),

and

Aw[W̃j] :=
1

d1d2

∞∑
p=−∞

∞∑
q=−∞ Â

w
p,q[W̃

j]ei(αpx+βqy),

Rw[Wj] :=
1

d1d2

∞∑
p=−∞

∞∑
q=−∞ R̂

w
p,q[W

j]ei(αpx+βqy).
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In these

Âup,q[Ũ] :=

∫d1

0

∫d2

0

eiγ
u
p,qg(x,y)e−i(αpx+βqy)Ũ(x, y) dx dy

R̂up,q[U] :=

∫d1

0

∫d2

0

eiγ
u
p,qg(x,y)e−i(αpx+βqy)

{
iαp∂x + iβq∂y + (ku)2

iγup,q

}
U(x, y) dx dy

Âwp,q[W̃] :=

∫d1

0

∫d2

0

e−iγ
w
p,qg(x,y)e−i(αpx+βqy)W̃(x, y) dx dy

R̂wp,q[W] :=

∫d1

0

∫d2

0

e−iγ
w
p,qg(x,y)e−i(αpx+βqy)

{
iαp∂x + iβq∂y + (kw)2

iγwp,q

}
W(x, y) dx dy.

3.4 Tangential Trace

Regarding the boundary conditions, we begin with the trace of the tangential component of a

vector field. For this we have

N×U = SU,

where

S :=


0 −1 −(∂yg)

1 0 (∂xg)

(∂yg) −(∂xg) 0

 .

We further require the (x, y)–projection operator

Px,yU = Px,y


Ux

Uy

Uz

 =

Ux
Uy

 ,

so that

Px,y :=

1 0 0

0 1 0

 .
This gives

Sx,y := Px,yS =

Sxx Sxy Sxz

Syx Syy Syz

 ,
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where

Sxx = 0, Sxy = −1, Sxz = −(∂yg), Syx = 1, Syy = 0, Syz = (∂xg). (3.8)

Thus, the two (x– and y–components of the) Dirichlet boundary conditions, (Equation 3.3a),

read

Sx,yU − Sx,yW = Px,yζ. (3.9)

3.5 Tangential Curl

We recall that the curl of Em is given by

∇×Em =


∂yE

m,z − ∂zE
m,y

∂zE
m,x − ∂xE

m,z

∂xE
m,y − ∂yE

m,x

 , m = u,w.

We now change to the surface variables {U,W} with tangential derivatives {(∂xU, ∂yU), (∂xW, ∂yW)},

and normal derivatives, {Ũ,W̃}. The chain rule gives

∂xU(x, y) = [∂xE
u + (∂xg)∂zE

u] (x, y, g(x, y)),

∂yU(x, y) = [∂yEu + (∂yg)∂zE
u] (x, y, g(x, y)),

∂xW(x, y) = [∂xE
w + (∂xg)∂zE

w] (x, y, g(x, y)),

∂yW(x, y) = [∂yEw + (∂yg)∂zE
w] (x, y, g(x, y)),

while (Equation 3.6) gives formulas for Ũ and W̃. It is not difficult to see that

|N|
2
∂xE

u =
(
|N|
2
− (∂xg)

2
)
∂xU − (∂xg)(∂yg)∂yU + (∂xg)Ũ

|N|
2
∂yEu = −(∂xg)(∂yg)∂xU +

(
|N|
2
− (∂yg)

2
)
∂yU + (∂yg)Ũ

|N|
2
∂zE

u = (∂xg)∂xU + (∂yg)∂yU − Ũ,
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and

|N|
2
∂xE

w =
(
|N|
2
− (∂xg)

2
)
∂xW − (∂xg)(∂yg)∂yW − (∂xg)W̃

|N|
2
∂yEw = −(∂xg)(∂yg)∂xW +

(
|N|
2
− (∂yg)

2
)
∂yW − (∂yg)W̃

|N|
2
∂zE

w = (∂xg)∂xW + (∂yg)∂yW + W̃,

where

|N|
2
= (∂xg)

2 + (∂yg)
2 + 1.

In light of this inconvenient pre–factor, regarding the tangential curl boundary condition, (Equation 3.3b),

we premultiply by |N|
2

and enforce the equivalent equation

N×
[
|N|
2∇× [Eu − Ew]

]
z=g

= |N|
2
ψ. (3.10)

Regarding the curl of Eu we now proceed deliberately, beginning with the x–component

|N|
2
(∂yE

u,z − ∂zE
u,y) =

{
−(∂xg)(∂yg)∂xU

z +
(
|N|
2
− (∂yg)

2
)
∂yU

z + (∂yg)Ũ
z
}

−
{
(∂xg)∂xU

y + (∂yg)∂xU
y − Ũy

}
= C̃u,xxŨx + C̃u,xyŨy + C̃u,xzŨz + Cu,xxUx + Cu,xyUy + Cu,xzUz,
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where

C̃u,xx = 0, (3.11a)

C̃u,xy = 1, (3.11b)

C̃u,xz = (∂yg), (3.11c)

Cu,xx = 0, (3.11d)

Cu,xy = −(∂xg)∂x − (∂yg)∂y, (3.11e)

Cu,xz = −(∂xg)(∂yg)∂x +
(
|N|
2
− (∂yg)

2
)
∂y. (3.11f)

Continuing, for the y–component,

|N|
2
(∂zE

u,x − ∂xE
u,z) =

{
(∂xg)∂xU

x + (∂yg)∂yU
x − Ũx

}
−
{(

|N|
2
− (∂xg)

2
)
∂xU

z − (∂xg)(∂yg)∂yU
z + (∂xg)Ũ

z
}

= C̃u,yxŨx + C̃u,yyŨy + C̃u,yzŨz + Cu,yxUx + Cu,yyUy + Cu,yzUz,

where

C̃u,yx = −1, (3.12a)

C̃u,yy = 0, (3.12b)

C̃u,yz = −(∂xg), (3.12c)

Cu,yx = (∂xg)∂x + (∂yg)∂y, (3.12d)

Cu,yy = 0, (3.12e)

Cu,yz = −
(
|N|
2
− (∂xg)

2
)
∂x + (∂xg)(∂yg)∂y. (3.12f)
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Finally, for the z–component,

|N|
2
(∂xE

u,y − ∂yE
u,x) =

{(
|N|
2
− (∂xg)

2
)
∂xU

y − (∂xg)(∂yg)∂yU
y + (∂xg)Ũ

y
}

−
{
−(∂xg)(∂yg)∂xU

x +
(
|N|
2
− (∂yg)

2
)
∂yU

x + (∂yg)Ũ
x
}

= C̃u,zxŨx + C̃u,zyŨy + C̃u,zzŨz + Cu,zxUx + Cu,zyUy + Cu,zzUz,

where

C̃u,zx = −(∂yg), (3.13a)

C̃u,zy = (∂xg), (3.13b)

C̃u,zz = 0, (3.13c)

Cu,zx = (∂xg)(∂yg)∂x −
(
|N|
2
− (∂yg)

2
)
∂y, (3.13d)

Cu,zy =
(
|N|
2
− (∂xg)

2
)
∂x − (∂xg)(∂yg)∂y, (3.13e)

Cu,zz = 0. (3.13f)

Defining

C̃u =


C̃u,xx C̃u,xy C̃u,xz

C̃u,yx C̃u,yy C̃u,yz

C̃u,zx C̃u,zy C̃u,zz

 , Cu =


Cu,xx Cu,xy Cu,xz

Cu,yx Cu,yy Cu,yz

Cu,zx Cu,zy Cu,zz

 ,

we have

|N|
2∇×Eu =

(
C̃u Cu

)Ũ

U

 .
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Again considering that we only wish to enforce these for the x– and y–components, we define

Cux,y := Sx,yC
u =

−Cu,yx − (∂yg)C
u,zx −Cu,yy − (∂yg)C

u,zy −Cu,yz − (∂yg)C
u,zz

Cu,xx + (∂xg)C
u,zx Cu,xy + (∂xg)C

u,zy Cu,xz + (∂xg)C
u,zz



C̃ux,y := Sx,yC̃
u =

−C̃u,yx − (∂yg)C̃
u,zx −C̃u,yy − (∂yg)C̃

u,zy −C̃u,yz − (∂yg)C̃
u,zz

C̃u,xx + (∂xg)C̃
u,zx C̃u,xy + (∂xg)C̃

u,zy C̃u,xz + (∂xg)C̃
u,zz

 .

In an analogous manner one can derive for the curl of Ew that

|N|
2∇×Eu =

(
C̃w Cw

)Ũ

U

 ,

where

C̃w =


C̃w,xx C̃w,xy C̃w,xz

C̃w,yx C̃w,yy C̃w,yz

C̃w,zx C̃w,zy C̃w,zz

 , Cw =


Cw,xx Cw,xy Cw,xz

Cw,yx Cw,yy Cw,yz

Cw,zx Cw,zy Cw,zz

 .

As before we define

Cwx,y := Sx,yC
w =

−Cw,yx − (∂yg)C
w,zx −Cw,yy − (∂yg)C

w,zy −Cw,yz − (∂yg)C
w,zz

Cw,xx + (∂xg)C
w,zx Cw,xy + (∂xg)C

w,zy Cw,xz + (∂xg)C
w,zz



C̃wx,y := Sx,yC̃
w =

−C̃w,yx − (∂yg)C̃
w,zx −C̃w,yy − (∂yg)C̃

w,zy −C̃w,yz − (∂yg)C̃
w,zz

C̃w,xx + (∂xg)C̃
w,zx C̃w,xy + (∂xg)C̃

w,zy C̃w,xz + (∂xg)C̃
w,zz

 ,

so that the (x– and y–components of the) two Neumann boundary conditions, (Equation 3.10),

read

C̃ux,yŨ + Cux,yU − C̃wx,yW̃ − Cwx,yW = Px,y |N|
2
ψ. (3.14)
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The entries of these operators can be shown to be

C̃w,xx = 0, (3.15a)

C̃w,xy = −1, (3.15b)

C̃w,xz = −(∂yg), (3.15c)

Cw,xx = 0, (3.15d)

Cw,xy = −(∂xg)∂x − (∂yg)∂y, (3.15e)

Cw,xz = −(∂xg)(∂yg)∂x +
(
|N|
2
− (∂yg)

2
)
∂y, (3.15f)

and

C̃w,yx = 1, (3.16a)

C̃w,yy = 0, (3.16b)

C̃w,yz = (∂xg), (3.16c)

Cw,yx = (∂xg)∂x + (∂yg)∂y, (3.16d)

Cw,yy = 0, (3.16e)

Cw,yz = −
(
|N|
2
− (∂yg)

2
)
∂x + (∂xg)(∂yg)∂y, (3.16f)

and

C̃w,zx = (∂yg), (3.17a)

C̃w,zy = −(∂xg), (3.17b)

C̃w,zz = 0, (3.17c)

Cw,zx = (∂xg)(∂yg)∂x −
(
|N|
2
− (∂yg)

2
)
∂y, (3.17d)

Cw,zy =
(
|N|
2
− (∂xg)

2
)
∂x − (∂xg)(∂yg)∂y, (3.17e)

Cw,zz = 0. (3.17f)
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3.6 Divergence–Free Conditions

Finally, we enforce the divergence–free condition (again premultiplied by the factor |N|
2
) in the

new variables

|N|
2

div [Eu] = |N|
2
(∂xE

u,x + ∂yE
u,y + ∂zE

u,z)

=
(
|N|
2
− (∂xg)

2
)
∂xU

x − (∂xg)(∂yg)∂yU
x + (∂xg)Ũ

x

+−(∂xg)(∂yg)∂xU
y +

(
|N|
2
− (∂yg)

2
)
∂yU

y + (∂yg)Ũ
y

+ (∂xg)∂xU
z + (∂yg)∂yU

z − Ũz

= D̃u,xŨx + D̃u,yŨy + D̃u,zŨz +Du,xUx +Du,yUy +Du,zUz,

where,

D̃u,x = (∂xg), (3.18a)

D̃u,y = (∂yg), (3.18b)

D̃u,z = −1, (3.18c)

Du,x =
(
|N|
2
− (∂xg)

2
)
∂x − (∂xg)(∂yg)∂y, (3.18d)

Du,y = −(∂xg)(∂yg)∂x +
(
|N|
2
− (∂yg)

2
)
∂y, (3.18e)

Du,z = (∂xg)∂x + (∂yg)∂y. (3.18f)

In a similar manner,

|N|
2

div [Ew] = |N|
2
(∂xE

w,x + ∂yE
w,y + ∂zE

w,z)

= D̃w,xW̃x + D̃w,yW̃y + D̃w,zW̃z +Dw,xWx +Dw,yWy +Dw,zWz,
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where

D̃w,x = −(∂xg), (3.19a)

D̃w,y = −(∂yg), (3.19b)

D̃w,z = 1, (3.19c)

Dw,x =
(
|N|
2
− (∂xg)

2
)
∂x − (∂xg)(∂yg)∂y, (3.19d)

Dw,y = −(∂xg)(∂yg)∂x +
(
|N|
2
− (∂yg)

2
)
∂y, (3.19e)

Dw,z = (∂xg)∂x + (∂yg)∂y. (3.19f)

If we define

D̃u :=

(
D̃u,x D̃u,y D̃u,z

)
, Du :=

(
Du,x Du,y Du,z

)
,

D̃w :=

(
D̃w,x D̃w,y D̃w,z

)
, Dw :=

(
Dw,x Dw,y Dw,z

)
,

then the two divergence–free conditions read

(
D̃u Du

)Ũ

U

 = 0,

(
D̃w Dw

)W̃

W

 = 0. (3.20)

3.7 Surface Equations

Summarizing all of these developments, we find that we must solve (Equation 3.7), (Equation 3.9),

(Equation 3.14), and (Equation 3.20) which we state abstractly as

Mv = b (3.21)
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where

M =

M̃BC MBC

M̃DN MDN

 , v =



Ũ

W̃

U

W


, b =

bBC
bDN

 . (3.22)

In these

M̃BC =



0 0 0 0 0 0

0 0 0 0 0 0

C̃u,xx C̃u,xy C̃u,xz −C̃w,xx −C̃w,xy −C̃w,xz

C̃u,yx C̃u,yy C̃u,yz −C̃w,yx −C̃w,yy −C̃w,yz

D̃u,x D̃u,y D̃u,z 0 0 0

0 0 0 D̃w,x D̃w,y D̃w,z



, (3.23a)

and

MBC =



Sxx Sxy Sxz −Sxx −Sxy −Sxz

Syx Syy Syz −Syx −Syy −Syz

Cu,xx Cu,xy Cu,xz −Cw,xx −Cw,xy −Cw,xz

Cu,yx Cu,yy Cu,yz −Cw,yx −Cw,yy −Cw,yz

Du,x Du,y Du,z 0 0 0

0 0 0 Dw,x Dw,y Dw,z



, (3.23b)

and

M̃DN =



Au 0 0 0 0 0

0 Au 0 0 0 0

0 0 Au 0 0 0

0 0 0 Aw 0 0

0 0 0 0 Aw 0

0 0 0 0 0 Aw



, (3.23c)
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and

MDN =



−Ru 0 0 0 0 0

0 −Ru 0 0 0 0

0 0 −Ru 0 0 0

0 0 0 −Rw 0 0

0 0 0 0 −Rw 0

0 0 0 0 0 −Rw



, (3.23d)

and

bBC =



−ζy − (∂yg)ζ
z

ζx + (∂xg)ζ
z

−ψy − (∂yg)ψ
z

ψx + (∂xg)ψ
z

0

0



, bDN =



0

0

0

0

0

0



. (3.23e)

3.8 A High–Order Perturbation of Surfaces (HOPS) Approach

Our High–Order Perturbation of Surfaces (HOPS) methodology for solving (Equation 3.21) is

a straightforward application of regular perturbation theory. It can be shown that not only are the

(known) linear operatorM =M(g) =M(εf) and inhomogeneity b = b(g) = b(εf) analytic functions

of ε for f sufficiently smooth (e.g., C2, C1+α, or even Lipschitz), so is our unknown v = v(g) = v(εf)

(53; 54; 24). Therefore we can make the strongly convergent expansions

{M,v, b} = {M,v, b} (g) = {M,v, b} (εf) =

∞∑
n=0

{Mn, vn, bn} (f)ε
n. (3.24)

Insertion of these into (Equation 3.21) followed by equating at order εn yields

M0vn = bn −

n−1∑
`=0

Mn−`v`. (3.25)
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Note that at each perturbation order, while one must apply the operators Mn−`, one need only

invert the flat–interface operator M0 (repeatedly). Once this has been accomplished for a range of

orders 0 ≤ n ≤ N (delivering vn) one can form an approximate solution

vN(x, y; ε) :=

N∑
n=0

vn(x, y)ε
n. (3.26)

All that remains is to specify Mn and bn. These come from (Equation 3.22) and it is clear that

this will mandate expansions

{
M̃BC,MBC, M̃DN,MDN, bBC, bDN

}
(εf)

=

∞∑
n=0

{
M̃BC,n,MBC,n, M̃DN,n,MDN,n, bBC,n, bDN,n

}
(f)εn.

This, in turn, requires forms for

{
Srs, C̃m,rs, Cm,rs, D̃m,r, Dm,r, Au, Aw, Ru, Rw, ζr, ψr

}
=

∞∑
n=0

{
Srsn , C̃

m,rs
n , Cm,rsn , D̃m,rn , Dm,rn , Aun, A

w
n , R

u
n, R

w
n , ζ

r
n, ψ

r
n

}
(f)εn,

form ∈ {u,w} and r, s ∈ {x, y, z}. All of these are easily derived, and forms for {Aun, A
w
n , R

u
n, R

w
n , ζn, ψn}

appear in (17). We presently specify the remainder.

From (Equation 3.8) we have the non–zero components

Sxy0 = −1, Sxz1 = −(∂yf), Syx0 = 1, Syz1 = (∂xf).

(Equation 3.11), (Equation 3.12), and (Equation 3.13) give the non–zero members

C̃u,xy0 = 1, C̃u,xz1 = (∂yf),

Cu,xy1 = −(∂xf)∂x − (∂yf)∂y, Cu,xz0 = ∂y, Cu,xz2 = −(∂xf)(∂yf)∂x + (∂xf)
2∂y,
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and

C̃u,yx0 = −1, C̃u,yz1 = −(∂xf),

Cu,yx1 = (∂xf)∂x + (∂yf)∂y, Cu,yz0 = −∂x, Cu,yz2 = −(∂yf)
2∂x + (∂xf)(∂yf)∂y,

and

C̃u,zx1 = −(∂yf), C̃u,zy1 = (∂xf),

Cu,zx0 = −∂y, Cu,zx2 = (∂xf)(∂yf)∂x − (∂xf)
2∂y,

Cu,zy0 = ∂x, Cu,zy2 = (∂yf)
2∂x − (∂xf)(∂yf)∂y.

Similarly, (Equation 3.15), (Equation 3.16), and (Equation 3.17) deliver

C̃w,xy0 = −1, C̃w,xz1 = −(∂yf),

Cw,xy1 = −(∂xf)∂x − (∂yf)∂y, Cw,xz0 = ∂y, Cw,xz2 = −(∂xf)(∂yf)∂x + (∂xf)
2∂y,

and

C̃w,yx0 = 1, C̃w,yz1 = (∂xf),

Cw,yx1 = (∂xf)∂x + (∂yf)∂y, Cw,yz0 = −∂x, Cw,yz2 = −(∂yf)
2∂x + (∂xf)(∂yf)∂y,

and

C̃w,zx1 = (∂yf), C̃w,zy1 = −(∂xf),

Cw,zx0 = −∂y, Cw,zx2 = (∂xf)(∂yf)∂x − (∂xf)
2∂y,

Cw,zy0 = ∂x, Cw,zy2 = (∂yf)
2∂x − (∂xf)(∂yf)∂y.
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Finally, from (Equation 3.18) and (Equation 3.19) we find, respectively, the non–zero contribu-

tions

D̃u,x1 = (∂xf), D̃u,y1 = (∂yf), D̃u,z0 = −1,

Du,x0 = ∂x, Du,x2 = (∂yf)
2∂x − (∂xf)(∂yf)∂y,

Du,y0 = ∂y, Du,y2 = −(∂xf)(∂yf)∂x + (∂xf)
2∂y,

Du,z1 = (∂xf)∂x + (∂yf)∂y,

and

D̃w,x1 = −(∂xf), D̃w,y1 = −(∂yf), D̃w,z0 = 1,

Dw,x0 = ∂x, Dw,x2 = (∂yf)
2∂x − (∂xf)(∂yf)∂y,

Dw,y0 = ∂y, Dw,y2 = −(∂xf)(∂yf)∂x + (∂xf)
2∂y,

Dw,z1 = (∂xf)∂x + (∂yf)∂y.

3.9 Numerical Results

We now point out that a numerical implementation of this algorithm is immediate. Indeed,

we consider a HOPS approach to the solution of (Equation 3.21) which amounts to a numerical

approximation of solutions to (Equation 3.25),

vn =M−1
0

[
bn −

n−1∑
`=0

Mn−`v`

]
.

We approximate the members of the truncated Taylor series (Equation 3.26),

vn(x, y) =



Ũn(x, y)

W̃n(x, y)

Un(x, y)

Wn(x, y)


,
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by

v
Nx,Ny
n (x, y) :=

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2



^̃Un,p,q(x, y)

^̃Wn,p,q(x, y)

Ûn,p,q(x, y)

Ŵn,p,q(x, y)


eiαpx+iβqy.

The unknown coefficients are recovered upon demanding that (Equation 3.25) be true for these forms.

Convolution products are computed using the FFT algorithm (55) and the only “discretization” is

that we restrict to −Nx/2 ≤ p ≤ Nx/2− 1 and −Ny/2 ≤ q ≤ Ny/2− 1.

Of great importance is how the Taylor series in ε, (Equation 3.26), is to be summed. To be

specific, to approximate v we have just considered the truncation

vNx,Ny,N(x, y; ε) :=

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

(
N∑
n=0

v̂p,q,nε
n

)
eiαpx+iβqy,

which generates the Taylor polynomials

v̂Np,q(ε) :=

N∑
n=0

v̂p,q,nε
n.

The Padé approximation (56) has been successfully used with HOPS methods on many occasions

(see, e.g., (21; 54)), and we recommend its use here. Padé approximation simulate the truncated

Taylor series v̂Np,q(ε) by

[L/M](ε) :=
aL(ε)

bM(ε)
=

∑L
`=0 a`ε

`

1+
∑M
m=1 bmε

m
(3.27)

where L+M = N and

[L/M](ε) = v̂Np,q(ε) +O(εL+M+1);

well–known formulas for the coefficients {a`, bm} can be found in (56). This approximant has re-

markable properties of enhanced convergence, which can be found in § 2.2 of Baker & Graves–Morris

(56) and § 8.3 of Bender & Orszag (57).
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3.10 Validation

For the problem of plane–wave scattering by a (non–flat) diffraction grating there are, of course,

no exact solutions. Therefore, in order to validate our code, we compare results of our simulations

with those generated from Field Expansions (FE) simulations described and previously verified in

(27). Among the myriad choices of quantities to measure we have selected the zeroth (“specular”)

reflected efficiency, eu0,0, as it is the precipitous drop in this quantity which signals the onset of a

Surface Plasmon Resonance (50; 51; 52).

With this in mind we chose a particular physical configuration which is motivated by the seminal

work of Bruno & Reitich (22) on the FE scheme for simulating the vector Maxwell equations for a

doubly layered medium. We consider the sinusoidal biperiodic grating shape specified by

f(x, y) =
1

4

[
cos

(
2πx

d

)
+ cos

(
2πy

d

)]
, (3.28a)

so that d1 = d2 = d. We chose their wavelength–to–period ratio λ/d = 0.83, but did not restrict to

normally incident radiation. Indeed, if we express

α = (2π/λ)νu sin(θ) cos(φ), β = (2π/λ)νu sin(θ) sin(φ), (3.28b)

ku = (2π/λ)νu, kw = (2π/λ)νw, (3.28c)

γu =
√
(ku)2 − α2 − β2, γw =

√
(kw)2 − α2 − β2, (3.28d)

where νm is the index of refraction of layer m, then we chose

θ = 10(2π/360), φ = 5(2π/360), νu = 1, νw = 2. (3.28e)

To conclude the specification of the configuration, we selected

ε/d = 0.003, 0.01, 0.03, 0.1, d = 0.500. (3.28f)
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For numerical parameters we chose

Nx = Ny = 16, N = 10,

and computed the relative error between our new approach (denoted “FIE”) and the FE algorithm:

Error =

∣∣eu,FIE0,0 − eu,FE0,0

∣∣∣∣eu,FE0,0

∣∣ .

In Figure 3.2 we study the convergence of our new methodology for various perturbation orders N

utilizing Padé approximation as the profile height ε is varied.



70

ε

10
-2

10
-1

R
e
la
t
iv
e
L
∞

E
r
r
o
r

10
-10

10
-5

Relative Error versus ε

N = 2

N = 4

N = 6

N = 8

Figure 14. Relative error for 3-D two layer Maxwell problem

Figure 3.2: Relative error versus perturbation parameter ε for various perturbation orders N

(with [N/2,N/2] Padé approximation). Results for the (Equation 3.28), with Nx = Ny = 16.

In Figure 3.3 we display results of our convergence study for different values of the height

ε as N is refined.
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Figure 3.3: Relative error versus perturbation order N (with [N/2,N/2] Padé approximation)

for various perturbation parameters ε. Results for the (Equation 3.28), with Nx = Ny = 16.

In each of these figures we note the rapid and robust convergence of our new approach

to the results of the validated, high–order accurate FE methodology (27).

3.11 Simulation of Reflectivity Maps

To conclude, we considered configurations inspired by the simulations of the laboratory

of S.–H. Oh (Minnesota), particularly the Surface Plasmon Resonance (SPR) sensing devices

studied in (46; 49). In these a two–dimensional sensor was studied featuring a corrugated
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insulator/conductor interface. While we are unable at present to study the third insulator

layer featured there, we are able to add three–dimensional effects and, with very little

trouble, change the types of the insulator and/or conductor.

We retained the grating interface shape f defined in (Equation 3.28a), chose vacuum as

the insulator above the interface so that νu = 1, and filled the lower layer with either gold

or silver. The indices of refraction of these metals are the subject of current research, and

for these we selected Lorentz models

εσ = εσ∞ +

6∑
j=1

∆σj

−aσjω
2 − ibσjω+ cσj

, σ ∈ {Au,Ag},

where ω = 2π/λ, and the parameters εσ∞, ∆σj , aσj , bσj , cσj can be found in (58). For physical

and numerical parameters we chose

θ = 0, φ = 0,

h = ε = 0, . . . , 0.200, d1 = d2 = 0.650,

Nx = Ny = 12, N = 0, . . . , 8.

In Figure 3.4 we display the Reflectivity Map, R(λ, h), (Equation 3.5), for this configuration

which shows a strong resonance around λ = 670 nm and h = 90 nm.

Figure 3.4: Reflectivity Map for the two–layer vacuum/gold configuration, R(λ, h), versus inci-

dent wavelength, λ, and deformation height h = ε. Results for the sinusoidal shape (Equation 3.28a)

with Nx = Ny = 12, [4/4] Padé approximant.

By contrast, in Figure 3.5 we display R, (Equation 3.5), where we have replaced gold

with silver. This shows a much more sensitive (narrower in λ) resonance at the new values
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Figure 15. Reflectivity Map for two-layer vaccum/gold configuration for Maxwell problem

λ = 665 nm and h = 60 nm.

Figure 3.5: Reflectivity Map for the two–layer vacuum/silver configuration, R(λ, h), versus inci-

dent wavelength, λ, and deformation height h = ε. Results for the sinusoidal shape (Equation 3.28a)

with Nx = Ny = 12, [4/4] Padé approximant.
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Figure 16. Reflectivity Map for two-layer vaccum/silver configuration for Maxwell problem



CHAPTER 4

CONCLUSION

We first implemented the HOPS algorithm designed by Nicholls for “Two Dimensional

Helmholtz equation” by inverting the flat interface operator for every wavenumber there by

reducing the size of the linear system involved. This new approach resulted in a linear system

with better condition number and lower dimensions. Using this approach, we successfully

reproduced the Resonance phenomenon achieved by Bruno and Reitich for two layers and

by Nicholls and Maxwell for multiple layer(21 layers). The performance improvement is

significant for the 21-layers case. Encouraged by our results, we successfully built on the

framework developed for the scalar Helmholtz equation to solve the 3D vector Maxwell

equations for single interface separating two layers. Our results confirmed our assertions

about the benefits of this method compared to others.
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CHAPTER 5

FUTURE DIRECTION

Going forward, we want to reduce the number of unknowns for three dimensional scatter-

ing in the two layer case by writing the lower layer Dirichlet and Neumann trace parameters

in terms of the upper layer Dirichlet and Neumann trace parameters as done in the case

of two dimensional scattering. This would reduce the size of our linear system by a factor

6. We later wish to extend our three dimensional scattering algorithm to handle multiple

layers (greater than 2).
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