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SUMMARY

In this thesis I present the design and the implementation of a tool to analyze the

paths that information exchanged by different process on the phone takes, in order to

automatically detect vulnerabilities that may come out from bad programming practices

or simple distractions while implementing Android applications.

The goal of this work is to produce a tool, targeted to every developer who wishes to

test his application. It aims to be intuitive and simple to use.

The tool implements a static code analyzer able to take in input Android application

packages and produce as output precise security reports on the analyzed application. The

analysis performed focuses its attention to the facilities provided by Android to easily en-

able applications subprocesses to communicate.

This work was originally ideated after some manual exploration in real Android ap-

plications, downloaded from the store. This exploration confirmed that in several cases

even the most simple isolation principles were violated, even by popular and broadly used

applications.

ix



CHAPTER 1

INTRODUCTION

1.1 Android OS Overview

In the past years Android OS had became the most widespread mobile operative system

in the world surpassing all the competitors in market shares.[1]

One of the reasons for Android success is its open-source nature. The Android Open

Source Project (AOSP) code is entirely available for download at AOSP download page.

In particular, it has to be noticed that every phone manufacturer can easily customize

and adapt to its needs an already cooked operative system, without the need to develop

a new one from scratch, determining drop in development costs, and a consequent drop

in the final product price. Of course this possibility is not restricted to manufacturing

companies, but everyone can change and build the code for various purposes such as bug

fixing, development contribution or personal curiosity.

This exposition of the code, although, may lead into security problems: a clear sketch

of the security features of the operative system can easily be delineated, leading to a easier

to access and broader knowledge of the security issues the operative system could have.

This knowledge might be exploited for benign purposes such as fixing, but also maliciously,

endangering the final phones users.

1
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When a security issue is detected and correctly fixed by the community, the propagation

of this patch is, in practice, difficult for two main reasons: first, due to the high fragmen-

tation in Android versions, it might become complicated to detect all the versions in which

the bug is present. Then the modification performed by the manufacturers on the actual

deployed versions of the operating system might be significant, leading into substantial

differences with respect to the official AOSP branch. This misalignment, usually makes

difficult for the manufacturer to keep their deployed versions up to date.

1.1.1 Android OS Architecture

Android OS is a comprehensive operative system built on the top of the Linux Kernel.

It is structured as a stack consisting of four logical layers, composed by different modules

written in Java, C++ and C.

• Applications: these are the actual programs the user interact with. Applications can

be written either in Java with the support of the official Android SDK, or in C++ over

the official Android NDK.

• Application Framework: this is a set of services handling applications life-cycle,

message passing and content sharing between applications and managing application

specific resources such as images and localized strings.

• Libraries and Runtime: Libraries are a collections of facilities available for both

application framework components and applications. They provide an unified way to

access database storage, web browsing components, media players and so on. The

runtime enables each application to run in its own instance of Dalvik VM.
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• Linux Kernel: this is the lower layer of the infrastructure. In addition to the Linux

Kernel, in this layer are also present hardware drivers, in charge of communicating

directly to the phone’s physical components. These drivers are clearly device specific

and there exist phone specific build types in AOSP, containing specific driver binaries

(sources are usually not available).

In Figure 1 is represented the complete OS architecture along with all the macro-

components.

Figure 1: Android OS architecture. Source: http://source.android.com/tech/
security/index.html#android-platform-security-architecture
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Applications and libraries Java code is compiled into Dalvik bytecode, after being com-

piled into the classical Java bytecode. This bytecode was specifically designed to run on

mobile devices (ARM processors), carrying some specific optimizations. Its main charac-

teristic is to be register-based, unlike the classical Java bytecode which is stack-based. The

Dalvik VM was designed to run efficiently multiple VM instances so to guarantee isolation

among processes. From version 2.2 of Android it has also been added to the Dalvik virtual

machine a built-in just-in-time (JIT) compiler, in order to speed up the runtime execution

of Android applications.

This thesis focuses the attention on the first two layers of the described hierarchy, i.e.

the applications layer and the application framework layer.

1.1.2 Android OS Security Model

Android claims to be designed to be the most secure and usable mobile operating sys-

tem providing automatic mechanisms to guarantee user data and resources protection

along with application isolation.

The OS strongly relies on the consolidated Linux security model in which process iso-

lation is guaranteed by design, except for a (reduced) set of privileged code fragments

that run with root privileges. Linux policies on user resources ensure that user A, will not

access CPU resources, memory, files or devices belonging to user B. The concept of user

isolation is exploited by Android in order to provide a complete application isolation (ap-

plication Sandboxing). Differently from the traditional Linux implementation, in Android,

it is assigned to each application a unique user ID. Each application will then run into a
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separate process belonging to its user. This ensures that no unauthorized data access can

occur at native code level.

As mentioned above the application Sandboxing is also ensured by the fact that com-

pletely separated instances of Dalvik VMs are started for each new application that is

launched. This guarantees complete isolation also at Java code level.

Together those two isolation should prevent memory corruptions to compromise the

security of the device. Nevertheless application Sandboxing is breakable on a non properly

configured device.

Another higher level security feature that Android OS provides is the so called Appli-

cation Permission Model. By default applications can access a quite limited number of

resources. Most of those can only be accessed through OS calls. Applications, in order

to access non-default features must declare their intention of usage: a misdeclaration of a

requested resource causes a security exception, raised by the application framework, lead-

ing into a failure of serving such request. The Application Permission Model contains a fine

grained, hierarchical list of capabilities applications can declare. The choice between al-

lowing or not applications to access the declared resources is demanded to the final user at

installation time. Unfortunately the capabilities cannot be partially accepted/unaccepted,

so the only way a user has to prevent an application not to access a specific capability

is not to install the application at all. This choice is presented to the user both when in-

stalling applications downloaded from the official Google Play Store and when installing

other applications from unknown sources.
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1.1.3 Android OS interprocess communication

A single Android application package can contain several (independent) components.

Each of those components, along with its type has to be declared in a manifest file. Com-

ponents can belong to one of the following categories:

• Activities: Activities generally contain the code for one single user-focused task. Ac-

tivities have associated UI components the user can interact with. Typically, the main

entry point for an application is a distinguished activity (declared in the manifest file).

• Services: Services are pieces of code that run in background independently from

the current context presented to the user. Services communicate with the external

environment via interfaces available through remote procedure calls.

Due to Application Sandboxing, application’s components cannot directly share informa-

tion or send messages ones to the others. In order to make available the possibility for

such isolated processes to communicate, the OS has to provide a controlled mechanism.

Android interprocess communication is made available by the help of the following three

elements:

• Binder: It is a lightweight procedure call mechanism mostly used when the com-

munication demand high performance communication. It is implemented using a

custom Linux driver. Exploiting Binder, the Services discussed above can efficiently

exchange informations.
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• Intents: Intents are objects representing simple messages that can be exchanged

by different processes. The name Intent was chosen because of the fact that these

messages usually are sent when a process has an intention to interact with another

process. Intent messages either carry information on a specific destination or man-

ifest that some generic request needs to be served by some process able to manage

such specific request. Intents can also act as broadcast messages informing a set

of interested processes that some status change has occurred (i.e. a network status

change information may be interesting for both a browser and a chat application that

could notify the user in case of a connection drop, or resume a paused operation after

the network status returns available).

• Content Providers Content providers is the name given to the interfaces used to

expose some particular data, generally directly available for all the processes. An

application may want to expose some data it controls to other applications; this can

be done by the exposer application by implementing a content provider interface, in

which the process specifies its behavior in response to queries from the outer world.

Intents are the fundamental communication element in the Android interprocess commu-

nication system.

1.2 Motivation

In the last few years many researches have highlighted several possible vulnerabilities

deriving from poor understanding of the official Android’s security guidelines[2] and of the

Android’s security model in general. Android specifically makes interprocess communica-
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tion and collaboration one of its main paradigms. Although this communication must be

carefully designed by developers, that need to follow some basic design guidelines such

as Activity state isolation and so on. Android does not take explicit measures to enforce

the design of the applications to be intrinsically secure. This means that the decision of

using or not the large amount of security features embedded in Android is left to the final

application developer. This philosophy might be slightly optimistic, because it is based on

the assumption that every developer has a reasonably good security background to under-

stand and not to underestimate the problems that a non-defensive programming approach

can cause.

This work wants to highlight that in several real-world cases this design guidelines are

not properly followed, and this “bad behavior” can lead in real threats for the final users.

1.3 Contribution of Thesis

The goal of this thesis is to design and implement a tool capable of automatically detect

programming choices, when developing Android applications, that can lead into security

risks for the final user. The tool should eventually be able to warn the developer about

these risks, and suggest a set of possible solutions. As described in Chapter 2, the sub-

set of programming choices taken into consideration are the ones concerning messages

exchanged, in particular accepted, by application’s Activities.

1.4 Related Work

In this section I present three main relevant research areas in Android security.

• Permission analysis
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When installing an Android application the user is requested to accept and allow

the application to access to user and system resources (personal informations, photo

camera, GPS location, ...). This is done presenting to the user a list of all the re-

sources required by the application to work. It has been proved that such choice it is

not optimal for two main reasons: users might not have an adequate understanding

of both the meaning of the entries in such list and the security issues that accepting a

given permission can cause. Then even experienced users were found not to pay the

required attention to this screen, mainly because is often long and verbose. Other

research areas are interested in analyzing the risks and the conceptual flaws of this

permission model.[3] [4]

Other problems when dealing with Android permission raise because of the high us-

age of inter application communication. An application that has not declared the

usage of the system contacts can use another application, enabled to read user’s con-

tacts, as proxy for this information, as long as one is installed on the phone. This

means that the permission list that the user need to accept might not be exhaus-

tive.[5] [6]

• Automatic malware detection

Android by default allows to install applications only downloaded from trusted sources

(Google Play store). Anyway, users can easily install applications coming from arbi-

trary sources (even email attachments) just by disabling an option in the OS set-

tings. Unfortunately even applications installed from the Google Play Store are in-
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adequately controlled for the presence of malicious code. This has pushed a large

part of researches in the Android security world to come out with techniques to au-

tomatically detect malicious pieces of code in applications. In this area, which is the

broadest in Android security, many approaches have been proposed, from the more

formal to the more empirical ones.[7] [8] [9] [10] [11]

• General security toolkits Another broad area of research concerns the study of

automated systems to automatically detect vulnerabilities in applications that could

be exploited by malicious applications to access user’s personal data, fake user’s

behavior or damage the system itself. This toolkits basically can be used to test

applications against a certain subset of vulnerabilities.[12] [13]

This work can be collocated in this last category.

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 describes more precisely which

set of vulnerabilities this thesis deals with. Chapter 3 contains the core idea behind the

analyzer. Chapter 4 is an overview of the tools and the techniques, along with design

choices made in order to meet the research goal. Chapter 5 is a description of a real-

world example of use of the tool. Chapter 6 contains a discussion of the practical benefits

deriving by the usage of the tool and about how such tool can be extended to analyze a

broader circle of security implications.



CHAPTER 2

PROBLEM DEFINITION

2.1 Overview

In order to define the problem I will adopt a model consisting of two activities: the first,

identified as sender, will produce as output an Intent carrying a set of messages targeted

to another Activity, identified as receiver. The receiver, after being notified that it was a

suitable recipient of the Intent, will extract the information in the messages in order to

complete the operation specified by the logic of the Activity itself.

Figure 2: Activity data exchange model

11
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2.1.1 Messages as Collections of Parameters

Without loss of generality we can think that an exchanged message consists of a col-

lection of named parameters (Extras). The names (keys) uniquely identify a piece of infor-

mation inside the Intent, therefore the receiver usually relies on its prior knowledge about

these keys in order to retrieve a particular information. This can be viewed as a protocol

that both the sender and the receiver should implement in order to let the communication

succeed.

Given a key, its corresponding payload can have an arbitrary type: the Intent Java API

accept all the primitives Java types, but also a generic Serializable object. To retrieve

these variables, then, the Activity willing to use them, also need to know their exact type.

The API provides specific utility methods for each of the primitive types plus a generic

getSerializableExtra(String name) method that returns an object implementing the Seri-

alizable interface: the access to the object’s informations will be available only after a cast

to its original class.

In Table I are listed the main API methods. These functions are also available in their

arrayed fashion, allowing extras to carry multiple values under a single key.

The Intent APIs provide reflective interfaces to retrieve all the Extras a message in-

cludes. The use cases of this approach are however limited mainly to test purposes. It is

usually convenient to explicitly name the parameters, providing them an explicit semantic

expressed by the name itself.
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TABLE I: INTENT API METHODS FOR EXTRA MANIPULATION

Setters Getters

getBoolean(String key) putBoolean(String key, boolean value)
getByte(String key) putByte(String key, byte value)
getChar(String key) putChar(String key, char value)
getDouble(String key) putDouble(String key, boolean value)
getF loat(String key) putF loat(String key, float value)
getInt(String key) putInt(String key, int value)
getLong(String key) putLong(String key, long value)
getSerializable(String key) putSerializable(String key, Serializable value)
getShort(String key) putShort(String key, Short value)
getString(String key) putString(String key, String value)

The proposed analysis deals only with primitive types, leaving out the more complex

structures such as Objects. In practice, this is not a real limitation, for the reason that

strings represent the greatest amount of data exchanged.

2.1.2 Activity Lifecycle

Android Activities are managed by the help of a stack structure: the Activity currently

running is the one at the top of the stack and it is in a running state. When a new Activity is

launched the one previously running is moved to either a paused state or a stopped state.

An Activity becomes paused when the new launched one partially covers it; it instead

becomes stopped when it is completely covered. In this case, since the Activity is not

visible at all there is no need for it to keep running.
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A running garbage collector can ask to both paused and stopped applications to exit

their execution, or it can simply kill them.

In Figure 3 is delineated this lifecycle, complete of all the methods that are invoked on

the Activity by the system when a status change is requested.

Figure 3: Android Activity Lifecycle Explained. Source: http://developer.android.
com/reference/android/app/Activity.html#ActivityLifecycle



15

Whenever there is a match between the Intent recipient and an Activity, this Activity

is always created and pushed on the top of the stack. Thus the logic for handling the

received data has to be encoded starting from the onCreate() callback method. The Intent

data will also be available after a onResume() on a onRestart() call since such data will be

preserved when the activity is either paused or stopped. Since it is not reasonable for the

Activity logic to wait until a stop or a pause request occur to handle the received data, for

the following analysis, it will be assumed that onCreate() is the single entry point for the

data and the single point where the operations performed on the data itself start.

2.1.3 Activity Accessibility

While same-application Activities can always exchange data, due to application isola-

tion and sandboxing, Activities are not allowed, by default, to receive data by processes

not belonging to the same application. This intention has to be explicitly declared in one

of the ways listed below in the application manifest.

We can easily divide Activities in two macro groups:

• Intra Application accessible: those are processes that respond and start only after

receiving commands started from processes inside the same application.

• Inter Application accessible: those applications can be reached by Intent started

by any other process in the system. Android provides two paradigms that activities

must follow in order to be world accessible: Intent Filter and Content Provider.
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The paradigm that Intent Filters implement mainly consist in functionality delega-

tion: processes delegate to an (a set of) other process a predefined operation that the

processes responding to the Intent promise to accomplish.

Content Providers, instead, as already discussed, are a paradigm for data exchange.

Although Content Providers are public by default, they can be kept private (only

accessed by the application) setting the corresponding option in the application’s

manifest.

As specified in the IPC section of the “Security Tips” section in the Android developer

guide, every Activity should be responsible of the received data and should perform input

validation, since Intents and Intent filters cannot be considered security features.[2]

2.2 Android Root Access

As consequence of the Android’s open-source fashion, many communities working around

the project have raised. The work of these groups mainly focuses in the modification of the

official project, mainly in term of addition of functionalities and specific settings. One of

their claims, is manifested in the will of avoiding the control of the phone by the phone’s

manufacturer or by Google on the users’ devices. They see the impossibility of the pro-

cesses, other than the system ones, to run with root privilege as a fundamental lack of

freedom. Beside this, they perceive the locking, by the manufacturers of the boot load-

ers as a constriction, since the phone users loose the capability of changing the built-in

operative system with a desired one.



17

They started early, with respect to the Android birth, to produce tools able to “jail-

break” (or “root”) the phones (removing the constrains applied by the manufacturers) to

let the users install any kind of software on their devices (either trusted or untrusted),

having the possibility to escalate their privileges to root.

Understanding the impact of the penetration of such communities in the real phone

market is although hard. Unfortunately there not exists an official report on the number

of rooted devices, or of devices mounting aftermarket Android versions.

We can anyway deduce that the impact is not marginal by taking a look at the number

of downloads that both the most famous versions and their related applications received.

TABLE II: ANDROID ROOT MARKET IMPACT

Name Application/OS Downloads (thousands)

Superuser Application 10,000 - 50,000
Rom Manager Application 5,000 - 10,000
Titanium Backup Root Application 5,000 - 10,000
CyanogenMod OS 4,200 *
Wireless Tether for Root Users Application 1,000 - 5,000
Root Explorer Application 500 - 1,000

* currently installed
Data updated on March 9, 2013. Sources: Google Play Store, CyanogenMod Statistics.
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In a rooted environment, since every candidate process can obtain root privileges, the

security risks for the user increase dramatically, since the application sandboxing model

is compromised. A root process, in fact, no longer has to obey at the sand-boxed model.

Such process can directly access and modify any local data it wishes, it can send to any

other process an arbitrary message and it can launch any kind of command. When sending

a message to request an other process intervention, this data sent with root privileges

will never be ignored, regardless all the security and isolation policies mentioned in the

previous paragraph. As consequence of this, developers cannot simply ignore the existence

of rooted devices, but they should build applications in a defensive way. Intuitively they

should perform sanity checks on the data received even on Activities which access should

not be public by specification.

2.3 Preliminary Analysis

The problem presented in the following sections was first noticed by monitoring inter-

Activity Intent payloads exchanges from some popular applications downloaded from the

Google Play Store.

This simple monitoring was possible with the help of some instrumented classes in the

Android libraries, in particular the ones concerning Activity lifecycle and general Activity

management.

2.3.1 Instrumentation Class

The Android Java Core framework provides utility classes to instrument and monitor Ac-

tivities lifecycle and its interaction with the system. When the instrumentation is enabled,
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the Instrumentation class is automatically instantiated before to run the application code.

This class is designed to be used by the code in the application itself, i.e. the monitoring

logic has to be implemented inside the application.

Since for a preliminary analysis it may result hard and time consuming to inject code in

the applications taken in consideration for the analysis, we adopted a naïve approach. We

modified the official Instrumentation class code, in order to make it log for us on a phone

directory all the Intent data traffic, regardless what application or Activity is currently

running.1 This was obtained enhancing execStartActivity(). The method is called exactly

before the Activity is created, and thus, exactly before the onCreate() method is called on

the Activity itself. In this way we have the guarantee that the Intent cannot receive further

manipulations, after we capture it.

It has to be noticed that the folder in which the data is saved, must have world writable

permissions. This is because the Instrumentation class code runs in the context of the

currently running application, so it will become the application itself in charge of writing

in the directory.

The recorded data then can be easily dumped off the phone and analyzed off-line.

1The experiment was done on a custom Android 4.0.2 build, targeted for the Android Emulator
(full-eng).
Instrumentation class can be found under< aosp_root > /frameworks/base/core/java/android/app/
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2.3.2 Manual Testing

Android provides several testing and debugging facilities to automatize the testing pro-

cess with a batched sequence of commands: in particular, am was found very useful to

emulate sender Activities behavior. am is a shell tool to interact with the Android runtime

and it can be exploited to create and send Intent populated with Extra parameters.

am [start|startservice] -a <action> -n <component> -e <extra_key> <extra_value>

The command specified above, launches a generic component (can be either a Service or

an Activity), specified in the �n option, requesting it to perform an action (�a, typically

VIEW), passing to it the set of Extra parameters specified with the �e option (there exist

several �e type-specific options, String is default).

This allowed us to manually, but easily reproduce a crafted copy of the collected mes-

sages, and see how those changes were affecting the execution of the targeted activity, or

the internal state of the whole application.

We were eventually able to change elements in the Activities and to actually push text

in the application local storage. This meant that no particular check was performed, but

the Activities were blindly accepting input strings. In the following section are described

the risks that such programming behavior can bring out.

2.4 Threat model

In this section are delineated the attacks and the threats to the final user that could

come out from a non-defensive approach when dealing with received Intent payloads.
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A malicious message could harm or change in an unexpected way the status of the

application if one of the following conditions is satisfied:

• Exposed Activity: Activities that have explicitly requested to be exposed, for data

or functionality sharing, are, in a sense, world-accessible. Their access, can not of

course exclude malicious requesters.

• Unexposed Activity, Root access: Under this scenario, even not exposed Activities

cannot be considered immune with respect to hostile messages. As discussed before,

root applications can overcome the limits imposed by the sandboxing.

In particular, as shown in Figure 2, a malicious message can basically be targeted to

one of the following resources:

• Network: a malicious message can be forwarded to a server. In this case the attack

may not directly include the application, but use its code as a bridge to access and

modify information on the server.

• Local Storage: the message may include parts able not only to store unwanted

information on the application’s local storage, but also to also to corrupt previously

existing data.

• UI Elements: message parts may be used to compose notes aimed to notify the

user of a certain situation. Crafted messages may lead the user to have a wrong

perception of the current situation.
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Figure 4: Attack target resources

Intuitively, the resources can be targeted by those kind of attacks, only if the the pay-

load of the Intent is directly used as payload for new piece of information sent to the

resource, or if there exist a flow in the code that connects the Intent payload to the re-

source, and such flow does not include any sanity check neither on the directly involved

parameter nor on another related parameter.

2.4.1 Attacker

In this scenario, we can think at an attacker as a normal application, installed on the

user’s phone, by the user itself, via either the Google Play Store or an another third party

source. The application may carry some malicious code along with real functionalities,
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used for defacing purposes. The malicious code could remain silent until the user trig-

gers a specific action on the malicious application, believing in the benignity of the used

Application.

2.4.2 Victim

The victim, for this class of attacks, is the final phone user. The user act a fundamental

role in this scenario, since he is the one eventually triggering the attack against himself

and also that will perceive the changes or the anomalies on its own resources.

Users usually tend to trust applications downloaded from the Google Play Store, be-

cause the common sense suggest it to be a “safe” source. In reality, uploaded applications

are not exhaustively tested and verified in actual environments by the Google Play Store

staff, so there is not an actual guarantee that applications, even if they are distributed by

a certified entity, do not embed malicious code fragments.

One may think that malicious applications could be considered suspicious because they

may declare unusual or apparently not required permissions. It has been shown that, in

practice, the effectiveness of such declarations is pretty low and that users, even if they

are actually able to understand them, tend just to ignore the permission screen prompted

on application installation.[4]

2.5 Characterization of the Attacks

The exploitation of this class of vulnerabilities result in a very broad set of use cases.

The attacks can be classified in three categories, accordingly to the resource they target:

• Server attacks
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• Database attacks

• Phishing attacks

2.5.1 Server Attacks

The attacks described in this section can be compared to web attacks. In attacks, the

attacker makes use of a script or a crafted resource source URL in the page (typically an

image) to induce the browser to directly or indirectly send a request to the server. The

sent request is usually targeted to a route on the web server that accept GET parameters

in input (usually to target of some form in the web application) to change the status of the

server itself.

<img src="http://bank.com/transfer?from=Alice&amount=1000&to=Bob">

In this example, if we assume that the goal of the attack is to transfer money from Alice

to Bob and the example image tag is somehow rendered by Alice’s browser along with all

other DOM elements of the Alice bank page, such browser will send the request to the

server, believing to retrieve an image. Instead of responding with an image, the server

will change its status if no extra check is performed on the logic in charge of serving the

request: the attack will succeed.

The attack relies on the fact that since the resource is requested to be loaded in the

same context (domain) of the rest of the application, in particular of the attacker target

URL. In this scenario the user session identifier for the application will be also sent along

with the request produced by the attacker. This implies that if the authorization security
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control in the target page only relies on the user session identifier, such page will have no

way to distinguish between a request performed in the normal flow and another forged by

an attacker.

Figure 5: Server attack schema

We can think our Activity attack as a special CSRF attack where a malicious application

is sending an Intent message to a target Activity he knows it will perform a request on

the server. If this request will be created embedding some of the received Intent extras,

an attacker may accurately change the extra values in order to manipulate the state of

the server. Again, similarly to CSRF attacks, the request will produce the desired result,

because it will be populated by the Activity, with all the session identifiers equivalent that

the Activity use to attach when normally requested to perform this action. Also in this
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case, if no extra security mechanism is implemented, nor the Activity, nor the server will

be able to distinguish between a normal and a malicious request.

The example below shows the Activity equivalent of the previous bank example.

Figure 6: Server attack example

Suppose to have a bank application where the money transaction is implemented by

the use of two Activities and they behave in the following way: the first Activity collects

recipient and amount data from the users and sends these data to a second Activity via

an Intent message. Suppose then that this second Activity (processing Activity) is the
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one in charge of sending the transaction to the bank server, showing a load indicator and

eventually a success message.

If no extra security mechanism is provided (such as a request validation token), an

attacker may send to the processing Activity a message commanding it to perform a trans-

action of an arbitrary amount to an arbitrary recipient. This transaction will be prepared

by the Activity and successfully sent to the bank server. Of course this attack relies on

the fact that there is an active user session in the bank application at the moment of the

attack.

This class of attacks is anyway harder to perform, since their intrinsic architecture

is more convoluted, even if they can directly exploit application local knowledge such as

authentication tokens and so on.

2.5.2 Database Attacks

Under the usual assumption that no check is performed on the data extracted from the

Intent, and that such data flows to the database, here classical SQL injection attacks can

be performed.

Android offers APIs to deal with SQLite databases. The API are designed to strongly

recommend the developer to use prepared statement (one for each insert, update, delete

operations) so to explicitly prevent most of the SQL injections risks. It anyway offers a

method to execute arbitrary SQL code: execSQL(String sql). As shown in Figure 7, a ma-

licious string that flows from an Intent message to the database, without passing through
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Figure 7: Database attack schema

any prepared statement or extra sanity checks, could eventually damage or compromise

user’s local data.

I will now show with an example how not even prepared statements are enough to

defend the application logic. Suppose an application storing sensitive data that requires a

PIN to be accessed.

Suppose that, similarly to the previous example, the “ change PIN” feature is imple-

mented by two different Activities, the first requiring the user to insert the PIN and the

second performing the update of the PIN on the local database and showing a success di-

alog. Of course there is no need for this Activity to be exposed to the outer world, since a

PIN change is a typical internal operation. Suppose the application is installed on a rooted

phone and the attacking application has obtained root rights. Under these assumptions,

the attacker may send a message to the second activity that will change the local value of

the PIN number into an arbitrary one. The application will then deny further user accesses

to the application because she will not have any idea of what the new set PIN is.
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Figure 8: Database attack example

One may say that there is no need to pass through an Activity to access local data, if the

intentioned Activity has the rights to do so (root). This is generally true if the application’s

local data are not encrypted. An attack that flows trough the Activity, will easily overcome

the encryption, because it will directly exploit the code of the Activity, executed in its

specific context, that should have been designed to cope with encryption.

2.5.3 Phishing Attacks

This class of attacks can be performed whereas the Activity presents some received

payload data to the user.
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In this an attacker may use application visive context to let the user believe some

convenient (for the attacker) fact, or to give to the user a wrong perception of the status

of the application.

Figure 9: Phishing attack schema

Suppose there is a given application that contains an Activity used to notify the user

or to give to her some information about the status of the application itself. Suppose this

Activity is just used by the application to display messages that it receives in input with

an Intent message, i.e. it has not any kind of logic. An attacker could start this activity

feeding it with arbitrary strings that will be prompted to the user.

To make this attack more effective, an attacker application may have been designed

to launch a series of target application’s Activities that exactly reconstruct and reproduce

the normal navigation flow of the application. Doing so the user will be induced to think
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that she was the author of the flow of actions leading in this last screen, sometimes in the

past.



CHAPTER 3

DESIGN

3.1 Overview

As introduced in the previous chapter, Android does not explicitly force developers to

design applications in a defensive way. Most of the problems described can be solved

just by designing applications in a more conscious way, following the design guidelines

indicated in the official developer guide and using Intent extra messages to exchange in-

formation only when strictly necessary.

For instance, thinking at the scenario described in Section 2.5.3, a different approach to

avoid to transmit text to be displayed into Intent extras exists. We can think at two different

use cases where Intents are convenient here. One where there is a set of pre-defined

messages that are all eventually prompted in the same Activity, as a general information

displaying screen, useful to reuse UI components. The other where the Activity is used

to provide notifications to the user, and the text of the notification changes every time

because, for example, it contains parts of an e-mail, or the event that required the user

to be notified. In both of the cases can be convenient to design lightweight Activities that

simply takes an arbitrary set of strings in input and place them on the screen. These

Activities can be simply launched and populated through an Intent call.

32
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A more clean and safe solution for the first case could be to directly hard code all

the possible messages in the displaying Activity binding them to a meaningful ID. When

there is the need to display a specific message other Activities can make use of this ID to

command to the displayer which message has to be prompted. In this way we ensure that

all the messages displayed to the user can not come from an untrusted source.

Unfortunately, if the messages to be shown are variable by nature, this approach does

not apply. In this case the “clean” alternative to the one described above, could be to cre-

ate a queue of messages to be dispatched in the local storage, that the notifying Activity

consumes when notified. Here an Activity willing to use the notifying Activity communi-

cate to the user can store the message in the local database and command the second

Activity to consume the last message in the queue, using it to populate the UI. If this

part of the storage is reliable (encrypted, and not vulnerable to what described in section

2.5.2), is guaranteed that only notification generated from trusted sources will eventually

be displayed.

This is just an example to show that a safe data handling strategy is possible.

3.2 Goals of the Analysis

The goal of this work is to design and provide a tool, that by statically analyzing the

code, can tell to the developer, what kind of bad behavior is encoded in the application,

and where exactly it occurs, so a responsible programmer can go back and immediately fix

it.
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The problem can be transposed to a statical code analysis problem, aimed to analyze

the control flows that Activity extra parameter values take when received by an Activity.

A demonstration of a vulnerability is obtained when there exist a control flow leading a

parameter value to a set of API calls labeled as vulnerable. This set of API calls includes

requests population (network), database non-prepared statements calls and UI elements

text setters. A control flow is took into consideration, only when such flow does not include

sanity checks on the parameter value.

The static analysis should then be able to:

• Detect Starting Points: detect the code instructions after the parameter values are

delivered to the Activity (the Intent management is delegated by the Activity Manager

to the matching Activity)

• Follow variables control flow: follow and track all the statements that include or

use the values for further computation

• Deal with aliased variables: follow and track also all the variable that aliases the

variables containing the parameter values

• Deal with branching: effectively and smartly deal with branching and different

control flow

• Deal with different scopes: deal with method calls that receive values as parame-

ter, by following the control flow of these parameters
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3.3 Entry Points Definition

As described in Section 2.1.2, we can consider a single entry point for the Intent to

enter the Activity, i.e. the onCreate() method. Every time an Activity needs to handle

an Intent message, it is newly created and the corresponding creation handler method is

invoked by the Activity Manager.

This ensures that defining entry points for the analysis for all the onCreate() methods

present in the application is an exhaustive assumption.

1. public void onCreate(Bundle savedInstanceState) {

2. super.onCreate(savedInstanceState);

3. String paramValue = getIntent().getStringExtra("A_PARAMETER");

4. doSomethingWith(paramValue);

5. }

The variable paramV alue defined at line 3, is a suitable candidate for the analysis, so

the specified onCreate() method will be used as entry point.

3.4 Data Flow Analysis

In this section are described all the problems the analyzer has to deal with when ana-

lyzing the code.
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3.4.1 Variable Path Following

We are interested in tracking every statement that uses one of the variables labeled as

entry point candidate. The concept of using a variable, given a statement, can be seen as

checking whether a given statement contains that variable on the right hand side of the

assignment or not, and if no assignment is included in the statement, check id there is a

method call that contains the variable in its argument list.

So we reduce the problem of following the flow paths taken by the data as tracking all

the statements that uses the variable containing such data.

TABLE III: EXAMPLE OF RELEVANT STATEMENTS

Statement Type Statement Tracked

Assignment int b = doSomethingWith(a); Yes
Assignment int c = a; Yes
Assignment int c = a+ 7; Yes
Method Call doSomethingWith(a); Yes
For for (int i = 0; i < a.size(); i++); No
If if (a > 0); No

Suppose that only variable a is being tracked

In Table III are listed a set of statements that can be relevant or not to track in the

analysis.
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In order to be able to communicate to the user which is the vulnerable piece of code,

and more precisely, which is the parameter that causes the vulnerability, during the anal-

ysis, all the tracked statements must be related to the variable that caused them to be

tracked.

After this phase the tool should produce a data structure of the type

< parameter_variable, [statements] > for each parameter that needs to be tracked.

3.4.2 Variable Aliasing

Since there is no guarantee of the fact that originally tracked parameters will not be

identically assigned to new variables in the code, the analyzer, while executing, must dy-

namically add to its tracking set also all the variables that aliases the base ones. The

algorithm of the analyzer should be general enough to treat generally both base parame-

ters and the ones added during the execution.

In addition, for each aliasing variable, it has to be provided a reference to the original

variable. For this reason we introduce a slightly modified version of the previous structure

including the reference: < aliasing_variable, variable_ref, [statements] >

The reconstruction and the union of the statements that either directly or indirectly

reference a parameter is left to further steps of the analysis.

3.4.3 Inter Procedural Analysis

In order to provide correct and exhaustive results, the analysis has to take care of

methods calls and therefore of different variable scopes.
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One approach might be to treat function parameters as special case of aliasing vari-

ables, where their traceability is limited to a specific call context occurred with a specific

argument list. This means that for two different calls of the same method, with two dif-

ferent tracked variables passed, has to produce two completely separated statement lists.

Similarly, two different methods that locally share the same variable name, called with the

same value, must produce two completely separated sets: no overlap can occur.

To do so we need to augment the previously described structure with an additional

information: a method identifier. The resulting structure has this shape:

< aliasing_variable, variable_ref, method_id, [statements] >.

The structure is instantiated when the method call occurs binding the argument (variable_ref )

with the corresponding parameter (aliasing_variable). It has to be noticed that this ap-

proach is general enough to deal with nested method calls. The binding with the original

parameter, when it is passed through multiple method calls can be obtained by navigating

the variable_ref chain until a non-aliased variable is encountered.

3.5 Vulnerability Testing

As last step of the analysis, the remaining thing that has to be done is to check the

statement lists of all the tracked variables against a vulnerable list. This list includes the

methods signatures of all the API calls considered dangerous for our purposes.

Whereas a match is found in the list of statements corresponding to a parameter, that

statement is marked as vulnerable and as consequence a warning presenting both the

statement and the parameter is generated.
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3.6 Example

Below is presented an example of the analysis performed on a small piece of code.

1. public void onCreate(Bundle savedInstanceState) {

2. super.onCreate(savedInstanceState);

3. String paramValue = getIntent().getStringExtra("A_PARAMETER");

4. doSomethingWith(paramValue);

5. }

6.

7. public void doSomethingWith(String value) {

8. doSomethingElse(String value);

9. }

10.

11. public void doSomethingElse(String v) {

12. doSomethingBad(v);

13. }

The analysis, after line 3, will have a list of solutions containing paramV alue and an

empty parameter statement list.

When the analyzer encounter line 4 the solution set will contain two elements, shown

in Table IV:

Something similar will happen encountering line 8, in this case the binding is done

between variables value and v.
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TABLE IV: SOLUTIONS AFTER LINE 4

<paramValue, [doSomethingWith(paramValue);]>
<value, @paramValue, []>

In Table V are listed the results obtained at the end of the analysis.

TABLE V: RESULTS AT THE END OF THE ANALYSIS

<paramValue, [doSomethingWith(paramValue);]>
<value, @paramValue, [doSomethingElse(value);]>
<v, @value, [doSomethingBad(v);]>

In the end, supposing that doSomethingBad() is a method contained in the vulnerable

method list, such statement will be marked, so will be v. The marking will be propagated

trough value and eventually to paramV alue which is a base parameter value.

A report will be eventually produced, carrying A_PARAMETER as a vulnerable pa-

rameter and that the vulnerable call for such parameter occurred at line 12.



CHAPTER 4

IMPLEMENTATION

4.1 Overview

In this Chapter are described the tools and the techniques adopted to develop and

implement the tool.

The tool is designed to be simple to use. It takes as input an Android application pack-

age (APK file) and passing through various analysis phases it produces as output security

warnings, aimed to notify the user that a suspicious behavior has been encountered in the

code. In addition the tool produces a set of example commands that can run on on the

phone in order to effectively demonstrate the weakness in the code.

The code contained in the package, in form of Dalvik executable bytecode (dex), is

decompiled and transformed into an higher level intermediate representation. This rep-

resentation can be placed in between the bytecode and the actual Java since it is more

human readable than the bytecode, but less complex and structured than the actual Java

code.

This intermediate code, passes through a preliminary analysis aimed to detect the entry

points, and collect informations used for further analysis. This step also includes a partial

computation of the example commands.
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Figure 10: Analysis workflow

The code is then sent to the last step of the analysis, where are extracted the sequence

of operations that have a direct or transitive relation with the extracted entry points. Even-

tually, these sequences are checked against a list of potentially dangerous operations. Ev-

ery time a match between an element in the sequence and an element in the list is found,

a report to the user is produced. For this analysis, the entry points are the values accepted

as input by the activities and the list contains a set of methods concerning network request

creation, database storage and UI presentation.

The tool is written in Java, and it makes use of both Soot1 and Heros2 frameworks to

transform and analyze the code. The first is a well consolidated framework and the second

1http://www.sable.mcgill.ca/soot/

2http://sable.github.io/heros/
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was recently developed in order to complete some of the lacks of Soot. They are open

source projects distributed under GNU Lesser General Pubblic Licence (LGPL).

4.2 The Soot Framework

Soot was first presented between years 1999 and 2000 by members of Sable Research

Group at McGill University as master thesis by Vallée-Rai[14] and with the more famous

paper by the whole research group[15].

Soot is a Java static analyzer, that enables manipulation and optimization of the Java

bytecode. The bytecode is transformed in a series of four intermediate representations

designed for different objectives. These representations can be sorted from the ones closer

to the bytecode to the furthest:

• Baf is a streamlined representation of the bytecode

• Jimple is a 3-addressed readable representation

• Shimple is a version of Jimple in static single assignment form

• Grimp is an aggregated version of Jimple

One of the main characteristic of Soot is its modularity. Soot is designed to be modular

and highly adaptable to solve the set of problems it is aimed to. It relies on a singleton

object, the Scene (accessible via Scene.v()), that is initially populated when the code is

given as input, after being parsed. The Scene offers a large set of APIs to programmatically

access classes and methods of the populated objects. A large set of tools is provided to

analyze the Scene. Soot offers pre-implemented algorithms to perform call graph analysis,
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domination analysis or context-sensitive point-to point analysis. Soot also comes with a

package manager that can be used to handle a chain of modules (as phases) which the

code is eventually sent to. This allows to attach to the execution chain, external or custom

transformations of analyzers.

Soot can run either as command line tool or as embedded Java library to satisfy needs

that require more complex customizations.

4.2.1 Jimple Intermediate Representation

For the purposes of our analysis we adopted Jimple as intermediated representation.

This choice was not driven by a special need, but we made it because of the wide support

that this representation has obtained. Jimple has become the most popular intermediate

representation and it can be considered as a kind of standard when performing static code

analysis and optimization.

Here below is presented an example of method in its Jimple representation:
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protected void onCreate()

{

[...]

$z1 == 0 goto label4;

$r4 = $r0.<com.dropbox.client2.android.AuthActivity: java.lang.String consumerKey>;

label4:

virtualinvoke $r3.<android.content.Intent: android.content.Intent

putExtra(java.lang.String,java.lang.String)>("CONSUMER_KEY", $r4);

[...]

}

Jimple is a 3-addressed representation. It consists of a reduced set of statements (12),

that limit the complexity of the analysis without reducing its expressibility in terms of

readability. It also completely masks the underlining stack representation (as in the byte-

code) by the use of local variables so not to cope with location of non-explicit variables in

the stack. As can be noticed in the example above, it preserves the original Java types,

complete with their namespace.

4.2.2 Soot with Dalvik Bytecode

It has recently been announced the integration in Soot of Dexpler1 [16], adding to Soot

the ability to transform the Dalvik bytecode into a Jimple representation and vice-versa.

1Instrumenting Android Apps with Soot - http://www.bodden.de/2013/01/08/soot-android-
instrumentation
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This transformation may seem simple to perform, since Dalvik bytecode is register

based, and there is a remarkable similarity between Dalvik registers and Jimple local vari-

ables. However, registers and constants in Dalvik are untyped, and their types has to be

computed in order to complete the Jimple transformation (as seen before Jimple variables

preserves the original Java types).

Thank to this addition we were able to analyze the code without any further decompi-

lation. This of course highly simplified the whole process. Unfortunately Dexpler has been

pushed only to the development branch of Soot, so it is only included in the nightly build.

4.2.3 Heros Framework and IFDS

Unfortunately Soot does not provide a precise method for inter-procedural analysis. To

overcome this lack, Eric Bodden, one of the Soot’s current main contributors, has designed

Heros[17].

Heros does not rely neither on Soot nor on any kind of Soot’s intermediate representa-

tion to perform the analysis. It is also language-agnostic, in the sense that it can be used

to analyze any language. It is written in Java and it accepts generics types representing

statements, methods and data facts.

Heros is an interprocedural, finite, distributive, subset/interprocedural distributive en-

vironment (IFDS/IDE) general purpose solver. IFDS/IDE frameworks are class of algo-

rithms to solve in polynomial time inter-procedural finite data-flow analysis.

IFDS is a general algorithm that allow to reduce a inter-procedural data-flow analy-

sis into a graph reachability problem.[18]. It solves problems in which flow functions can
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be expressed as distributive functions. Many data-flow problems can be defined with dis-

tributive flow functions, and thus be solved with the IFDS/IDE framework such as defining

truly-live variables, variables typestate and information-flow.

The IFDS algorithm extracts from the program’s inter-procedural control-flow graph a,

so called, “exploded super graph”. In this graph, a node (s, d) is reachable from a selected

Figure 11: IFDS flow functions, reproduced from[18]

start node (s0, 0) if and only if the data-flow fact d holds at s, where s is a program state-

ments. As “fact” is intended any logical statement, such as variable x has been declared,

initialized or has passed through a series of defined computations. The algorithm makes

use of data-flow functions to connect different nodes. As sketched in Figure 11 the func-

tion id is the identity function, mapping each data-flow fact before a statement into itself.
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The value 0 represents an empty fact that is always valid. This 0 value is used to generate

data-flow facts unconditionally. Function a adds a to the set of facts by connecting 0 to a,

and at the same time removes b and other facts not explicitly connected. Function f adds

b, removes a and leaves c untouched.

Heros solves arbitrary IFDS problems defined by implementing the

IFDSTabulationProblem<N,D,M> interface, where N are node types (statements), D are

data-fact types and M are method types. By implementing this interface the programmer

has to define the chosen value for zero data-facts, provide a set of entry points for the

analysis and define the behavior of the flow functions. Defining the flow functions means

to implement four callback methods, one for each different inter-procedural behavior:

• getNormalFlowFunction(N curr, N succ)

• getCallFlowFunction(N callStmt , M destinationMethod)

• getReturnFlowFunction(N callSite , M calleeMethod , N exitStmt , N returnSite)

• getCallToReturnFlowFunction(N callSite , N returnSite)

For each of these functions (each of them representing a generic flow function) the

programmer has to implement a inner callback method that will be called for each data-

fact present at a given computation moment: Set<D> computeTargets(D source). In this

way one or more facts can be generated specifically from a specific fact.

As can be noticed Heros is a precise and close implementation of the originally propose

IFDS algorithm.
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4.3 Entry Points Detection and Command Generation

IFDS algorithm has a worst-case complexity of O(N3) where N is the number of in-

structions in the analyzed domain. It is not reasonable to perform the analysis with data

facts produced from any point in the program. To prevent this we need to collect a subset

of methods (entry points) from which the analysis can begin.

To do so, a full scan of the Jimple representation of the program is performed. In this

scan we are interested in detecting all the instructions that affect Intents extras, e.g. that

both set or retrieve them. Since the set of API calls that Android provides to set and re-

trieve the extra parameters contained in the Intent message is quite limited and constant

between different Android versions, the list of the signatures of this calls is explicitly de-

clared. Whereas one these statements is interesting in the context of our search a data

structure is populated wrapping together all the extras that are enclosed in the same In-

tent. To this data structure is also added other information that is not relevant to the

real analysis but is instead necessary to generate the example commands, like class and

package names.

In the application there may exists Intent messages targeted to other application’s

Activities (for example more than one application are included in the scope of the analysis),

the tool also produces commands for Intent messages sent, but not received by the same

application, as well as received, but never sent within the application. For this reason

in this step is collected information both when a creation method callback is encountered
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(onCreate()) and when a request to start a new Activity is performed. Of course this causes

duplicates that are removed afterwards.

As entry points for the real inter-procedural analysis, since we are tracking the pro-

gramming behavior when receiving data, only the structures populated from receiving

methods are considered.

4.4 Inter-procedural analysis

In this section is presented how the IFDS algorithm is exploited to perform the data

flow analysis described in Section 3.4.

IFDS algorithm is well suitable to our analysis objectives, in fact this specific analysis

is an instance of an information-flow problem easily describable as an IFDS Tabulation

problem.

For our instance of the IFDS problem we use a simple data structure to represent data

facts, similar to the one described in Section 3.4.3:

<Value trackedVariable,

Value baseVariable,

SootMethod contextMethod,

List<Stmt> trackedStatements>

where trackedVariable is the variable to which the list of tracked statements cor-

responds, baseVariable is the reference to an aliased variable if any, null otherwise.

contextMethod is the scope of validity of the variable and trackedStatements is the list of

all the statements in which trackedVariable appears.
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Value is a Soot interface that classes can implement to represent a variable, SootMethod

is an utility class to access methods information and Stmt is an interface that represents

general statements.

4.4.1 IFDS Problem

The problem is expressed as an instance of an Heros problem by implementing the

interfaces described in Section 4.2.3. Below is described the logic encoded in the flow

functions for each of the normal flow, call flow, return flow and call to return flow callbacks.

As mentioned previously, as soon as the analysis starts is available the list of entry

points complete with all the parameters treated in such entry points, namely base param-

eters.

• Normal flow function This callback is called when the statement does not include

a method call or a return instruction.

When this callback is called on behalf of a statement containing a base parameter

reference, if the fact set is empty or it does not contain a fact yet having such base

parameter as trackedVariable a new fact is added with the base parameter vari-

able as trackedVariable and a new list of statements is initialized with the current

statement.

If the current statement is an assignment and one of the trackedVariable contained

in the fact set is present in the right hand side of the assignment a new fact is gener-

ated. This fact will contain as trackedVariable the variable in the left hand side and
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the previous fact trackedVariable as baseVariable. Then the current statement is

added to the new fact’s statement list.

Eventually, if a statement simply uses a variable contained in the trackedVariable

field of a fact, such statement is added to the list, otherwise the previous facts are

simply propagated.

• Call flow function This callback is called when a statements include a method invo-

cation.

If the fact set is empty is done something similar to what described for the normal

flow callback, i.e. a new fact is generated if the current statement is an assignment

that contains on its left hand side a variable containing a base value. Similarly, when

the invocation contains as parameter a variable present in the trackedVariable field

of a fact, if the returned value of the method is assigned to a new variable, a refer-

encing fact is created containing the current statement in the statement list.

Also, whereas a variable in the fact list is passed a parameter, a new fact is gener-

ated with trackedVariable equal to the local variable, as baseVariable equal to the

passed parameter and the statement list with the current statement added. In this

way is explicitly created a parameter-argument binding for all the method invoca-

tions.

The fact list is killed in all the other cases so to avoid to analyze method not relevant

in our analysis domain.
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• Return flow function

Since we are not propagating facts from the body to the method to the one enclosing

it when the end of the body is reached, we simply kill all the paths passing by this

callback.

• Call to return function

We are not interested in propagating back facts binding the local returned variable to

an external assignments, since we explicitly binding local and external scopes. This

solutions is more robust since it allows to track internal operations performed on non

primitive types (that are passed by reference). The flow function for this call back is

simply an identity function that simply propagates all the facts valid so far.

This analysis will produce a set of all and only interesting variables in the context of the

analysis, along with a list of all the statements that used them, or affected them for some

reason.

4.4.2 Vulnerability check

At this point what remains to do is simply to query the IFDS facts for each captured

onCreate() method (entry points). The complete IFDS facts can be considered the ones

corresponding to the last statement for each entry point method.

The list of facts can be used to reconstruct the variable dependencies (aliasing) in order

to correlate all the statements to the variables enclosing the base parameter values and

build a new list containing only base parameters in the trackedVariable field.
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Then each of the entries in the statement lists is checked against a list of methods

statements considered vulnerable. Every time a match is encountered a security warning

is produced and outputted.



CHAPTER 5

PROOF OF CONCEPT

5.1 Experimental Setup

In order to demonstrate the effectiveness of our method we choose a set of popular

applications from the Google Play Store. We downloaded a sample consisting of 30 middle

size applications. For middle size we mean applications with a limited, but significant,

number of Activities (8-15) and Services (1-3). This choice was driven by the substantial

execution time that the analysis takes. The IFDS solver takes between 2 and 9 minutes to

complete the analysis of a single Activity. The variance in this time strongly depends on

the number of methods present in the Activity, along with their complexity.

5.2 Results

In Table VI are present the number of paths the tool detected, divided into three sets.

These three sets corresponds to the three set of vulnerabilities described in Section 2.4.

Below are listed some remarkable vulnerabilities which effectiveness have been demon-

strated by manually creating an exploit that triggers them:

• Mint let an attacker load an arbitrary web page in the visual context of the appli-

cation. Since this application deals with user’s personal finance reports it is easy to

imagine how an attacker could exploit this capability.
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TABLE VI: EXPERIMENTAL ANALYSIS RESULTS

Application Name Paths to Network Paths to Database Paths to UI

Airbnb 0 0 5
Airfrance 0 0 0
Blink 0 0 0
Booking 0 0 4
Craiglist 0 0 1
EF File Manager 0 0 0
Evernote 0 0 1
Expedia 0 0 2
Fancy 0 0 2
FriendCaster 0 0 0
GoChat 0 0 4
Hike 0 1 2
IM+ 0 0 2
Imo 0 0 1
Mediolanum 0 0 0
Mint 1 0 1
OpenTable 0 0 1
Poste Italiane 0 0 5
Postepay 0 0 9
Readability 0 0 0
RocketTalk 1 0 8
Seesmic 0 0 1
Skype 0 0 0
Skyscanner 0 0 0
Snapchat 0 0 2
Swissquote 0 0 2
TripIt 0 0 0
Twitter 5 1 10
Wall Street Journal 0 0 0
Waze 0 0 0
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• Poste Italiane/Postepay: these two applications let an attacker communicate any

kind of message to the application user through the applications’ modal alert screen.

An user may be deceived and induced to perform some dangerous action on its debit

card account.

• Airbnb let open the modification of the house rules and the FAQ screen.

• in RocketTalk, an attacker may specify a chat room (JSON resource) which URL

could not belong to the RocketTalk default domain. This fact can be exploited by an

attacker to actually manipulate user’s chat history.

During the analysis was also found a noteworthy defense mechanism implemented by

GOChat. This simple chat application exchanges verification codes for inter-Activity com-

munication. This defense method exploits the Applications shared memory space (shared

among all the Activities) to store a token generated from the Intent sender. The Intent

receiver then matches the token received in the Intent payload with the one stored in the

application shared memory. Every communication request without a valid token will then

be discarded.

This simple approach was found to be very effective. In fact we were not able to man-

ually perform any kind of operation on Activities protected by this mechanism. Of course

this approach cannot be exploited when a given Activity or Service has to be world acces-

sible by design.
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5.3 Paths Distribution

As can be noticed in Figure 12 the number of UI paths detected heavily dominates the

number of paths in the other two classes. Intuitively we can see the cardinality of these

three sets decreasing with the increasing complexity of the threat model.

Figure 12: Path distribution histogram
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As can be intuitively deduced from an high level reasoning about the use cases and

the underlining architectures that let these classes of vulnerability raise, network and

database paths are less likely to appear.

To support this thought, we can also rank the three vulnerability classes in order of

severity: network vulnerabilities are the most severe since they can impact remote user

resources (maybe locally synchronized on many user devices). Then database set that

affect the local status of the application and eventually the phishing set which (in theory)

should only affect user’s current session.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

To conclude, the tool is actually able to detect paths on real applications and it does not

suffer of false-negatives: this evidence was demonstrated by a manual validation of each

of the collected results.

Unfortunately since the tool is not able to cope with application semantic (common

trough this class of approaches), it suffers of false-positives. For example, just by looking

at the paths it can not be determined if a phishing attach can be considered effective:

we can not distinguish between slight modification in the UI (button label changing) and

considerable modification that can actually deceive an user. In Section 6.2 is described an

evolution of the tool that could help to solve this problem.

The tool could be confidently used in real world development environments to test

application’s message passing implementation against the tree class of vulnerabilities dis-

cussed in this thesis. Of course the results of the tools are indications that should no be

blindly accepted.

6.2 Future Work

One of the main lacks of this tool is a complete dynamic test suite that can demonstrate

the severity of found vulnerabilities. This problem is, unfortunately, hard, because the anal-
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ysis includes a wide set of Android system features, namely interprocess communication,

network communication, databases and UI elements.

The only effective way to automatically prove the severity of a given vulnerability is to

test it into the application execution context. This requires the ability to instrument the

applications at run time, by artificially triggering events that lead the application in the

vulnerable state. To have a solid feedback is also needed to monitor the effective changes

that occur in the resources, and to bind them to the event that provoked them.

Android debugging tools may not be enough for this purposes due to their incapac-

ity to explicitly track cause-effect events. In addition debugging tools does not provide

mechanisms to analyze encrypted network traffic or encrypted data storage. Of course a

exhaustive testing can be performed only by having clear access to all the resources of the

system.

A solution to this impossibility could be to create a modified build where informations

are captured before being encrypted and (in case of the network), leaving the system and

responses are captured after entering the system and after being decrypted. This, al-

though, requires a deep knowledge of the Android system, because this approach requires

to instrument all the system libraries such as the Activity Manager, the Apache HTTP

Library included in Android, the SQLite database drivers and the component rendering

library.

Given this omni-comprehensive environment is then possible to perform an active and

automatic testing of the severity of the vulnerabilities.
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A tool like the one described above could be considered a comprehensive testing frame-

work for Android applications.
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Appendix A

IFDS IMPLEMENTATION

1

2 public class IFDSFollowFlow

3 extends DefaultJimpleIFDSTabulationProblem<IFDSFact, InterproceduralCFG<Unit, SootMethod>> {

4

5 private final Set<Unit> initialSeeds;

6 private final Set<Value> baseValues;

7 private final SootMethod baseContext;

8

9 public IFDSFollowFlow(InterproceduralCFG<Unit, SootMethod> icfg, AbstractTrappedAction receiver) {

10 super(icfg);

11 Set<Unit> seeds = new HashSet<Unit>();

12 baseValues = new HashSet<Value>();

13 baseContext = Scene.v().getMethod(receiver.getMethodSignature());

14 seeds.add(baseContext.getActiveBody().getUnits().getFirst());

15 baseValues.addAll(receiver.getAllValues());

16 this.initialSeeds = seeds;

17 }

18

19 private boolean valueInUseBoxes(Value val, Stmt statement) {

20 for (ValueBox dBox : statement.getUseBoxes()) {

64
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Appendix A (Continued)

21 if (dBox.getValue().equivTo(val)

22 && interproceduralCFG().getMethodOf(statement).equals(baseContext)) return true;

23 }

24 return false;

25 }

26

27 @Override

28 protected FlowFunctions<Unit, IFDSFact, SootMethod> createFlowFunctionsFactory() {

29 return new FlowFunctions<Unit, IFDSFact, SootMethod>() {

30

31 @Override

32 public FlowFunction<IFDSFact> getNormalFlowFunction(Unit curr, Unit succ) {

33 if (interproceduralCFG().isStartPoint(curr)

34 && interproceduralCFG().getMethodOf(curr).equals(baseContext)) {

35 return new FlowFunction<IFDSFact>() {

36

37 @Override

38 public Set<IFDSFact> computeTargets(IFDSFact source) {

39 if (source == zeroValue()) {

40 HashSet<IFDSFact> res = new HashSet<IFDSFact>();

41 for (Value v : baseValues) {

42 IFDSFact fact = new IFDSFact(v, baseContext);

43 res.add(fact);
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Appendix A (Continued)

44 }

45 return res;

46 } else {

47 return Collections.emptySet();

48 }

49 }

50 };

51 }

52

53 if (curr instanceof DefinitionStmt) {

54 final DefinitionStmt assignment = (DefinitionStmt) curr;

55 return new FlowFunction<IFDSFact>() {

56 @Override

57 public Set<IFDSFact> computeTargets(IFDSFact source) {

58 // facts have already been initialized

59 if (source != zeroValue()) {

60 // source base value is assigned

61 if (source.getValue().equals(assignment.getRightOp())

62 && interproceduralCFG().getMethodOf(assignment).equals(

63 source.getContextMethod())) {

64

65 source.addStatement(assignment);

66 source.addAlias(assignment.getLeftOp(),
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Appendix A (Continued)

67 interproceduralCFG().getMethodOf(assignment));

68 return Collections.singleton(source);

69 }

70 // source alias is assigned

71 if (source.hasAlias(assignment.getRightOp(),

72 interproceduralCFG().getMethodOf(assignment))) {

73 source.addAlias(assignment.getLeftOp(),

74 interproceduralCFG().getMethodOf(assignment));

75 source.addStatement(assignment);

76 return Collections.singleton(source);

77 }

78

79 }

80 return Collections.singleton(source);

81 }

82 };

83 }

84

85 return Identity.v();

86

87 }

88

89 @Override
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Appendix A (Continued)

90 public FlowFunction<IFDSFact> getCallFlowFunction(final Unit callStmt,

91 final SootMethod destMethod) {

92 if (interproceduralCFG().isStartPoint(callStmt)

93 && interproceduralCFG().getMethodOf(callStmt).equals(baseContext)) {

94 return new FlowFunction<IFDSFact>() {

95

96 @Override

97 public Set<IFDSFact> computeTargets(IFDSFact source) {

98 if (source == zeroValue()) {

99 HashSet<IFDSFact> res = new HashSet<IFDSFact>();

100 Set<Stmt> statements = new HashSet<Stmt>();

101 for (Value v : baseValues) {

102 IFDSFact fact = new IFDSFact(v, baseContext);

103 res.add(fact);

104 }

105 return res;

106 } else {

107 return Collections.emptySet();

108 }

109 }

110 };

111 }

112 final Stmt stmt = (Stmt) callStmt;
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Appendix A (Continued)

113 final InvokeExpr invokeExpr = stmt.getInvokeExpr();

114 final List<Value> args = invokeExpr.getArgs();

115 final List<Value> localArguments = new ArrayList<Value>(args.size());

116 for (Value value : args) {

117 if (value instanceof Value)

118 localArguments.add(value);

119 else

120 localArguments.add(null);

121 }

122

123 return new FlowFunction<IFDSFact>() {

124

125 @Override

126 public Set<IFDSFact> computeTargets(IFDSFact source) {

127 if (source == zeroValue()) return Collections.singleton(source);

128 if (localArguments.contains(source.getValue())) {

129

130 int paramIndex = args.indexOf(source.getValue());

131 source

132 .addAlias(

133 new EquivalentValue(Jimple.v().newParameterRef(

134 destMethod.getParameterType(paramIndex), paramIndex)),

135 invokeExpr.getMethod());
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Appendix A (Continued)

136 source.addStatement(stmt);

137 source

138 .addAlias(

139 new EquivalentValue(Jimple.v().newParameterRef(

140 destMethod.getParameterType(paramIndex), paramIndex)),

141 invokeExpr.getMethod());

142 if (callStmt instanceof DefinitionStmt) {

143 DefinitionStmt defStmt = (DefinitionStmt) callStmt;

144 if (defStmt.getLeftOp().getType().toString().equals("java.lang.String")) {

145 source.addAlias(defStmt.getLeftOp(), baseContext);

146 }

147 }

148 return Collections.singleton(source);

149 }

150 SootMethod contextMethod = interproceduralCFG().getMethodOf(callStmt);

151 Value aliasedArg = getValueFromFact(source, contextMethod, localArguments);

152 if (aliasedArg != null) {

153 source.addAlias(aliasedArg, invokeExpr.getMethod());

154 source.addStatement(stmt);

155 if (callStmt instanceof DefinitionStmt) {

156 DefinitionStmt defStmt = (DefinitionStmt) callStmt;

157 if (defStmt.getLeftOp().getType().toString().equals("java.lang.String")) {

158 source.addAlias(defStmt.getLeftOp(), contextMethod);
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Appendix A (Continued)

159 }

160 }

161 return Collections.singleton(source);

162 }

163 // do not propagate trough non�interesting functions

164 return Collections.emptySet();

165 }

166 };

167 }

168

169 @Override

170 public FlowFunction<IFDSFact> getCallToReturnFlowFunction(Unit arg0, Unit arg1) {

171 return Identity.v();

172 }

173

174

175 @Override

176 public FlowFunction<IFDSFact> getReturnFlowFunction(Unit arg0, SootMethod arg1, Unit arg2,

177 Unit arg3) {

178 // no need to propagate local fact

179 return KillAll.v();

180 }

181 };
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Appendix A (Continued)

182 }

183

184 @Override

185 public Set<Unit> initialSeeds() {

186 return initialSeeds;

187 }

188

189 @Override

190 protected IFDSFact createZeroValue() {

191 return new IFDSFact(new JimpleLocal("<<zero>>", NullType.v()), baseContext);

192 }

193

194 }
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