
Bayesian Look Ahead Sampling Methods to Allocate

Up to M Observations Among k Populations

BY

Yanmin Liu
B.S., Hebei Normal University, 2002

M.S., Beijing Institute of Technology, 2005

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2011

Chicago, Illinois

Defense Committee:

Klaus J. Miescke, Chair and Advisor
Jie Yang
Jing Wang
Sally Freels, Epidemiology and Biostatistics
Stanley L. Sclove, Information and Decision Sciences



Copyright by

Yanmin Liu

2011



This thesis is dedicated to my family for their love and support.

iii



ACKNOWLEDGMENTS

I would like to thank everyone who has supported my study and research during my stay

at University of Illinois at Chicago.

I would like to express my sincere gratitude to my thesis advisor, Prof. Klaus Miescke,

for giving me tremendous guidance in my research. Without his inspiration and support, I

wouldn’t have made it this far with my PhD studies.

I would like to thank the other committee members, Prof. Jie Yang, Prof. Jing Wang,

Prof. Sally Freels and Prof. Stanley Sclove for taking the time to review my thesis and for

their invaluable insight and comments. I am also grateful to Prof. Sam Hedayat, Prof. Dibyen

Majumdar, Prof. Huahun Chen, Prof. Hui Xie, Prof. Robert Anderson and all the other

professors I took courses from for their enlightenment and encouragement for me.

I would like to thank the Department of Mathematics, Statistics, and Computer Science at

UIC for supporting me during my years as a graduate student. I appreciate all the adminis-

trative staff, especially Kari Dueball, for helping me dealing with the paperwork and providing

invaluable information and suggestions.

iv



ACKNOWLEDGMENTS (Continued)

I would also like to express my deepest gratitude to my family for their unconditional

love and support. I am also thankful to my friends and fellow students for their help and

encouragement.

v



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Selection models . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 TWO BAYESIAN SAMPLING METHODS . . . . . . . . . . . . . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Fixed sample-size sampling algorithm . . . . . . . . . . . . . . . 7
2.3 Properties of fixed sample-size algorithm . . . . . . . . . . . . . 11
2.4 m-truncated sampling algorithm . . . . . . . . . . . . . . . . . . 20
2.5 Two Bayesian sampling methods . . . . . . . . . . . . . . . . . 21
2.6 Comparison of two sampling methods . . . . . . . . . . . . . . 23

3 SELECTION OF THE BEST POPULATION(S) . . . . . . . . . . . 35
3.1 Selection of the best population . . . . . . . . . . . . . . . . . . 35
3.1.1 Selection of the smallest normal variance . . . . . . . . . . . . . 35
3.1.2 Selection of the largest normal mean with random mean and

variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.3 Selection of the smallest normal variance with random mean

and variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.4 Selection of the normal population with the largest absolute

value of mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.5 Selection of the Poisson population with the smallest mean . 46
3.1.6 Selection of the best Gamma population . . . . . . . . . . . . . 48
3.2 Subset selection of best populations . . . . . . . . . . . . . . . . 50
3.2.1 Subset selection of b largest normal means . . . . . . . . . . . 51
3.2.2 Subset selection of b greatest probabilities of success . . . . . 57
3.3 Simultaneous selection and estimation . . . . . . . . . . . . . . 61
3.3.1 Selection and estimation of the largest normal mean . . . . . . 61
3.3.2 Selection and estimation of the smallest normal variance . . . 66
3.3.3 Selection and estimation of the largest probability of success . 69

4 SELECTION OF THE BEST POPULATION(S) COMPARED
WITH CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Selection of the best population compared with a control . . . 74
4.2.1 Selection of the best normal population . . . . . . . . . . . . . 74
4.2.2 Selection of the best normal population in terms of variance . 76
4.2.3 Selection of the best Bernoulli population . . . . . . . . . . . . 78

vi



TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.2.4 Selection of the best Poisson population . . . . . . . . . . . . . 79
4.2.5 Selection of the best Gamma population . . . . . . . . . . . . . 81
4.3 Selection of all good populations compared with a control while

excluding bad populations . . . . . . . . . . . . . . . . . . . . . 83
4.3.1 Selection of all good normal populations . . . . . . . . . . . . . 83
4.3.1.1 Comparing each population with its own control . . . . . . . . 84
4.3.1.2 Comparing all populations with a common control . . . . . . 86
4.3.2 Selection of all good normal populations compared with un-

known control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Selection of all good normal populations in terms of variance 90
4.4 Selection of all good normal populations close to a control . . 92

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

CITED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

vii



LIST OF TABLES

TABLE PAGE

I BAYES RISK AND OPTIMAL ALLOCATION WHENX = (−0.3, 0.2, 0.6) 12

II BAYES RISK AND OPTIMAL ALLOCATION WHENX = (−0.3, 0.6, 0.2) 13

III BAYES RISK AND OPTIMAL ALLOCATION WHENX = (0.6,−0.3, 0.2) 13

IV BAYES RISK AND OPTIMAL ALLOCATION WHENX = (0.6, 0.2,−0.3) 14

V BAYES RISK AND OPTIMAL ALLOCATION WHENX = (0.2,−0.3, 0.6) 14

VI BAYES RISK AND OPTIMAL ALLOCATION WHENX = (0.2, 0.6,−0.3) 15

VII BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,7,9) . 15

VIII BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,7,8) . 16

IX BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,5,9) . 16

X BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,5,8) . 17

XI BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,7,9) . 17

XII BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,7,8) . 18

XIII BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,5,9) . 18

XIV BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,5,8) . 19

XV METHOD 1 VS METHOD 2 WHEN COST=10−8 . . . . . . . . . . 23

XVI METHOD 1 VS METHOD 2 WHEN COST=10−6 . . . . . . . . . . 24

XVII METHOD 1 VS METHOD 2 WHEN COST=10−5 . . . . . . . . . . 25

XVIII METHOD 1 VS METHOD 2 WHEN COST=3 ∗ 10−5 . . . . . . . . 26

XIX METHOD 1 VS METHOD 2 WHEN COST=5 ∗ 10−5 . . . . . . . . 27

viii



LIST OF TABLES (Continued)

TABLE PAGE

XX METHOD 1 VS METHOD 2 WHEN COST=8 ∗ 10−5 . . . . . . . . 28

XXI METHOD 1 VS METHOD 2 WHEN COST=10−6 . . . . . . . . . . 29

XXII METHOD 1 VS METHOD 2 WHEN COST=10−5 . . . . . . . . . . 30

XXIII METHOD 1 VS METHOD 2 WHEN COST=10−4 . . . . . . . . . . 31

XXIV METHOD 1 VS METHOD 2 WHEN COST=5 ∗ 10−4 . . . . . . . . 32

XXV METHOD 1 VS METHOD 2 WHEN COST=10−3 . . . . . . . . . . 33

XXVI METHOD 1 VS METHOD 2 WHEN COST=10−2 . . . . . . . . . . 34

ix



LIST OF MATHEMATICS SYMBOLS

The symbols used in the thesis with their explanations are listed below. Different meanings

for the same symbol occur when there is no confusion from context.

M Maximum Number of Additional Observations

k Number of Populations

c The cost of sampling one more observation

x Vector (x1, x2, . . . , xn)

R The set of all real numbers

r(m1, . . . ,mk) Bayesian look ahead risk if drawing mi more ob-

servations from population i

ri Bayesian look ahead risk of optimal allocation of

i more observations determined by fixed sample-

size sampling algorithm

r̃i Bayesian look ahead risk of optimal allocation

of up to i more observations determined by i-

truncated sampling algorithm.

x



SUMMARY

In this paper, we study the Bayesian look ahead sampling methods for allocating up to M

observations among k populations to select the best population(s).

First, we investigated the properties of fixed sample-size sampling algorithm proposed by

Professor Klaus J. Miescke, which always draws fixed number of observations at the next step.

Then we proposed and studied a m-truncated sampling algorithm, which draws up to m obser-

vations sequentially.

Based on these two algorithms, respectively, two Bayesian look-ahead sampling methods for

allocating up to M observations among k populations are developed. To investigate the prop-

erties of and compare these two methods, we implement them to allocate up to M observations

among k normal distributions with the same variance or k binomial populations to select the

best population.

For given values of M, the Bayes risks of these two methods are calculated or estimated.

The smaller the Bayes risk, the better the method. It turns out that when the sampling cost

is large compared with the decision loss, the second method is better than the first. When the

sampling cost is not very large, then in the normal case the two methods are comparable, with

one method occasionally better than the other. On the other hand, in the binomial case, the

second method dominates most of the time.

xi



SUMMARY (Continued)

These two methods are then applied in various other situations. All we need to do is to

calculate the look-ahead Bayesian risk of the Bayes rule if we are to draw mi observations from

population Pi, for i = 1, . . . , k, where m1 + . . .+mk = m and 0 ≤ m ≤M .

xii



CHAPTER 1

INTRODUCTION

1.1 Selection models

In the real life full of complexities, we often face the problem of selecting the best one or

more populations among several populations. These are usually the populations of the responses

to certain ”treatments”, which might be, for example, different training methods for the new

employee, different newly developed drugs for a certain disease, or different varieties of wheat

in an agricultural experiment. There are various ways selection problem have been formulated

for k competing populations. For example, the goal might be to find a best population, t best

populations or a best population compared with a control.

Among the early contributors to the literature of selection rules are Paulson(1949, 1952), Ba-

hadur (1950), Bahadur and Robbins (1950), Bahadur and Goodman (1952), Bechhofer (1954),

Bechhofer, Dunnett, and Sobel (1954), Dunnett(1955, 1960), Gupta (1956, 1965), Sobel (1956),

Lehmann (1957a,b, 1961, 1963, 1966), Hall (1959), and Eaton (1967a,b). The first research

monograph was written by Bechhofer, Kiefer, and Sobel (1968) with the focus on a sequen-

tial approach for exponential (Koopman–Darmois) families. The dramatic developments that

would follow in the field motivated Gupta and Panchapakesan (1979) to write their classical

monograph that provides an up to the time complete overview of the entire related literature.

Soon after, an extension of this overview followed with Gupta and Huang (1981). A categorized

1
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guide to selection and ranking procedures was provided by Dudewicz and Koo (1982). Collec-

tions of research papers on selection rules are included in Gupta and Yackel (1971), Gupta

and Moore (1977), Gupta (1977), Dudewicz(1982), Santner and Tamhane(1984), Gupta and

Berger(1982, 1988), Hoppe (1993), Miescke and Herrendörfer (1993, 1994), Miescke and Rasch

(1996a,b), Panchapakesanand Balakrishnan (1997), and Balakrishnan and Miescke (2006). Sev-

eral books emphasizing the selecting methodologies are by Dudewicz (1976), Gibbons, Olkin,

and Sobel (1977), Büringer, Martin, and Schriever (1980), Mukhopadhyay and Solanky (1994),

Bechhofer, Santner, and Goldsman (1995), Rasch (1995), Horn and Volland (1995) and Liese

and Miescke(2008).

Selection problems in various settings are not only statistically highly relevant, but also

theoretically challenging, with techniques quite different from those of estimation and testing

problems. In this paper, we use Bayesian method to find the optimal selection rules.

Let X = (X1, ..., Xk) be the vector of observations from the k populations that take on

values in (Xi,Ai) and have the distribution Pi,θi , i = 1, ..., k, where the parameters θ1, ..., θk

belong to the same parameter set ∆. The general selection model is

Ms = (Xki=1Xi,
⊗k

i=1
Ai, (Pθ)θ∈∆k), (1.1)

where it is assumed that P = (Pθ)θ∈∆k is a stochastic kernel, which allows us to use Bayes

techniques to find optimal selection rules.
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When the sampling design is unbalanced, we have to deal with an unbalanced selection

model. More specifically, let Xi,1, ..., Xi,ni be observations from population Pθi , i = 1, ..., k,

where all the observations are independent. Then we have the selection model

Mus = (Xki=1X ni ,
⊗k

i=1
A⊗ni , (

⊗k

i=1
P⊗niθi

)θ∈∆k). (1.2)

It is of the form (Equation 1.1) if we identify X ni with Xi, A⊗ni with Ai, and
⊗k

i=1 P
⊗ni
θi

with

Pθ. If n1 = · · · = nk,Mus is balanced.

Often we reduce the model Ms by means of a statistic V : Xki=1Xi →m Rk and the reduced

model is

Mss = (Rk,Bk, (Qθ)θ∈∆k), (1.3)

where Qθ = Pθ ◦V −1. Usually the statistic V is sufficient for θ, and thereforeMss andMs are

equivalent. We call Mss the standard selection model.

The typical goal in selection theory is to find a best population. To specify what is a best

population, we choose a functional κ : ∆→ R according to the purpose of the experiment where

a population i0 is considered to be best if i0 ∈ Mκ(θ) with

Mκ(θ) = arg max
i∈{1,...,k}

κ(θi) = {i : κ(θi) = max
1≤l≤k

κ(θl)}. (1.4)

Although there may be more than one populations, a point selection rule selects exactly

one population and therefore the decision space is Dpt = {1, ..., k}. Given the model Ms
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from (Equation 1.1), a point selection rule D is a stochastic kernel D(A|x), A ∈ P({1, ..., k}),

x = (x1, ..., xk) ∈ Xki=1Xi. Let

ϕi(x) = D({i}|x), x ∈ Xki=1Xi, i = 1, ..., k,

D(A|x) =
∑k

i=1
ϕi(x)δi(A), A ⊆ {1, ..., k}, x ∈ Xki=1Xi,

we may identify the stochastic kernel D with ϕ = (ϕ1, ..., ϕk), where

ϕi : Xki=1Xi →m [0, 1],
∑k

i=1
ϕi(x) = 1. (1.5)

For brevity, ϕ is also called a selection rule or a selection.

Let L : ∆k ×Dpt → R be any loss function. The risk of a selection rule ϕ under L is

R(θ, ϕ) =
∑k

i=1
L(θ, i)

∫
ϕi(x)Pθ(dx) =

∑k

i=1
L(θ, i)Eθϕi, θ ∈ ∆k. (1.6)

Subset selection rules are decisions on subsets of the set of k populations, and a selected

subset should contain the best population(s) in some specified way. For example, we might want

to select a subset of random size containing the best population. Sometimes, the experimenters

are interested in selecting the subset of t (1 < t < k) best populations. In this case, the decision

space is

Dsu = {A : A ⊆ {1, ..., k}, |A| = t},
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Given the model Ms in (Equation 1.1), we call every stochastic kernel K : P(Dsu) ×

Xki=1Xi →k [0, 1] a subset selection rule. Let ϕA(x) = K({A}|x), every subset selection rule

can be represented by

ϕA : Xki=1Xi →m [0, 1], A ∈ Dsu,
∑

A∈Dsu
ϕA(x) = 1, x ∈ Xki=1Xi.

If the experimenters have other objectives, we need to accordingly modify the decision

spaces, the selection rules and the loss functions, and, therefore, solve various other selection

problems in their corresponding formulations.



CHAPTER 2

TWO BAYESIAN SAMPLING METHODS

2.1 Introduction

Let P1, . . . , Pk be k normal populations with common given variance σ2, but their means,

denoted by θ1, . . . , θk, respectively, are unknown. Our objective is to find the population with

the largest mean based on the independent random samples of respective sizes n1, . . . , nk.

In the decision theoretic approach, let L(θ, i) be the given loss for selecting population i at

any θ = (θ1, . . . , θk) ∈ Rk. In this section, let L(θ, i, n) = θ[k] − θi + nc, where θ[k] =

maxi=1,...,k{θ1, . . . , θk}, θ[k] − θi is the decision loss due to selecting population i as the best

population, and nc is the sampling cost with c being the cost of sampling one more observation.

It is assumed that θ = (θ1, ..., θk) is a realization of a random vector Θ = (Θ1, ...,Θk), where

Θi ∼ N(µi, vi
−1), i = 1, ..., k, are independent.

Since sample mean is sufficient for the distribution mean, we base our selection rule on the

sample means. Suppose Xi is the i-th sample mean, then we have

Xi|Θ = θ ∼ N(θi, pi
−1), Θi ∼ N(µi, vi

−1),

Θi|X = x ∼ N(
pixi + viµi
pi + vi

,
1

pi + vi
), Xi ∼ N(µi, p

−1
i + v−1

i )

where Xi is the sample mean of the i-th population and pi = niσ
−2 is its precision.

6
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We also consider selecting the population with the largest probability of success from k

Bernoulli populations. Suppose the probability of success of the ith population is θi, where

θi is a realization of the random variable Θi ∼Beta(αi, βi) with αi > 0, βi > 0, i = 1, . . . , k.

Θ1, . . . ,Θk are independent.

Because the sample total is sufficient for θi, we base our selection rule on these k sample

totals. We have

Xi|Θ = θ ∼ B(ni, θi), Θi ∼ Beta(αi, βi)

Θi|X = x ∼ Beta(αi + xi, βi + ni − xi), Xi ∼ PE(ni, αi, βi, 1),

where Xi is the ith sample sum. Here the unconditional marginal distribution of Xi, i =

1, . . . , k is a Pólya-Eggenberger-type distribution, sometimes called beta-binomial distribution

with the following probability mass function

P{Xi = xi} =

(
ni
xi

)
Γ(αi + βi)

Γ(αi)Γ(βi)

Γ(αi + xi)Γ(βi + ni − xi)
Γ(αi + βi + ni)

, xi = 0, 1, . . . , ni.

2.2 Fixed sample-size sampling algorithm

Suppose previously, we have drawn ni observations from the i-th population for i = 1, . . . , k.

To select the best population, we want to draw m more observations from among k populations.

To solve the problem of allocating these m observations among k populations, Professor Klaus

Miescke proposed a fixed sample size sampling method without considering sampling cost. That

is, the loss function is L(θ, i) = θ[k] − θi.
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Suppose we are to draw mi observations from the ith population. In the following, we will

calculate the look ahead Bayes risk of the Bayes selection rule corresponding to this allocation

for the normal and the binomial case, respectively.

a) Normal Case

Let x=(x1, . . . , xk) be the vector of means of the samples drawn previously. Let Y=(Y1, . . . , Yk)

be the vector of means of samples that will be drawn. Here, Yi =
∑mi

j=1 Yij/mi. Then it is easy

to derive that

Θi|X = x, Y = y ∼ N(
αiµi(x) + qiyi

αi + qi
,

1

αi + qi
), i = 1, . . . , k, independent,

Yi|X = x ∼ N(µi(x),
αi + qi
αiqi

), i = 1, . . . , k, independent,

where αi = pi + νi and µi(x) = νiµi+pixi
νi+pi

.

Then the look ahead Bayes risk is

E{ min
i=1,...,k

E{L(Θ, i)|X = x, Y }|X = x}

= E{ min
i=1,...,k

E(Θ[k] −Θi|X = x, Y )|X = x}

= Ex{E(Θ[k]|X = x, Y )− max
i=1,...,k

E(Θi|X = x, Y )}

= Ex(Θ[k])− Ex{ max
i=1,...,k

E(Θi|X = x, Y )}

= Ex(Θ[k])− Ex{ max
i=1,...,k

αiµi(x) + qiYi
αi + qi

}
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b) Bernoulli Case

Let x=(x1, . . . , xk) be the vector of sums of the samples drawn previously. Let Y=(Y1, . . . , Yk)

be the vector of sums of samples that will be drawn. Here, Yi =
∑mi

j=1 Yij . Then we have

Θi|X = x, Y = y ∼ Beta(ai + yi, bi +mi − yi), i = 1, . . . , k, independent

P (Yi = yi|X = x) =

(
mi

yi

)
Γ(ai + bi)Γ(ai + yi)Γ(bi +mi − yi)

Γ(ai)Γ(bi)Γ(ai + bi +mi)
,

where yi = 0, 1, . . . ,mi, ai = αi + xi, bi = βi + ni − xi, i = 1, . . . , k, and Y1, . . . , Yk are

independent.

The look ahead Bayes risk is

E{ min
i=1,...,k

E(L(Θ, i)|X = x, Y )|X = x}

= Ex(Θ[k])− Ex{ max
i=1,...,k

ai + Yi
ai + bi +mi

}

Denote the Bayes look ahead risk corresponding to the allocation (m1, . . . ,mk) by r(m1, . . . ,mk),

the fixed sample-size sampling algorithm is as follows:

If there exists an allocation (m∗1, . . . ,m
∗
k) such that m∗1 + . . .+m∗k = m and

r(m∗1, . . . ,m
∗
k) = min

m1+...+mk=m
{r(m1, . . . ,mk)},
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then (m∗1, . . . ,m
∗
k) is the optimal allocation and r(m∗1, . . . ,m

∗
k) is the Bayes risk of our final

decision. If there are more than one optimal allocations, assign them equal probability and

randomly choose one as our final allocation.

It is easy to see that the optimal allocation of m more observations at the next step maxi-

mizes Ex{maxi=1,...,k
αiµi(x)+qiYi

αi+qi
} in the normal case and Ex{maxi=1,...,k

ai+Yi
ai+bi+mi

} in the bino-

mial case.

In the following, we will take the sampling cost into consideration and suppose that the cost

of sampling one more observation is c. Let the loss function be

L(θ, i, n+m) = θ[k] − θi + nc+mc,

where θ[k]−θi is the loss from selecting ith population, that is, the decision loss, and nc+mc

is the cost of sampling n+m observations.

Then the look ahead Bayes risk corresponding to the allocation (m1, . . . ,mk) in the normal

case is

Ex(Θ[k])− Ex{ max
i=1,...,k

αiµi(x) + qiYi
αi + qi

}+ nc+mc,

while the risk in the Bernoulli case is

Ex(Θ[k])− Ex{ max
i=1,...,k

ai + Yi
ai + bi +mi

}+ nc+mc.
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We can see that in both cases, the optimal allocation does’t change, only the final Bayes

risk increases by nc+mc.

2.3 Properties of fixed sample-size algorithm

Theorem 2.3.1 Without sampling cost, that is, c=0, the Bayesian risk of the optimal allo-

cation of m
′

more observations at the second stage is no more than the Bayesian risk of the

optimal allocation of m more observations if m < m
′
.

Proof. For any allocation (m
′
1, · · · ,m

′
k) of m

′
more observations, we can find one allocation

(m1, · · · ,mk) of m more observations such that mi ≤ m
′
i, i = 1, · · · , k. Then the Bayesian

risk of (m
′
1, · · · ,m

′
k) is no more than that of (m1, · · · ,mk) because the Bayesian rule using

mi observations from population i, i = 1, · · · , k, is one of rules using m
′
i observations( it just

ignores m
′
i−mi observations) from population i, i = 1, · · · , k, which have no less risk than the

Bayesian rule of the allocation (m
′
1, · · · ,m

′
k).

Therefore, the Bayesian risk of the optimal allocation of m
′

more observations, that is, the

minimum of Bayesian risks of all allocations of m
′
, is no more than the Bayesian risk of the

allocation (m1, · · · ,mk) of m more observations for which there exists (m
′
1, · · · ,m

′
k) such that

mi ≤ m
′
i, i = 1, · · · , k.

But, for any allocation (m1, · · · ,mk) of m more observations, we can find one allocation

(m
′
1, · · · ,m

′
k) of m

′
more observations such that mi ≤ m

′
i, i = 1, · · · , k. Therefore, the Bayesian

risk of the optimal allocation of m
′

more observations is no more than the Bayesian risk of

any allocation of m observations. Thus, the Bayesian risk of the optimal allocation of m
′

more

observations is no more than the Bayesian risk of the optimal allocation of m more observations.
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
-0.3 0.2 0.6 0 0.0570 0 0 0
-0.3 0.2 0.6 1 0.0570 0 1 0
-0.3 0.2 0.6 2 0.0568 0 2 0
-0.3 0.2 0.6 3 0.0563 0 3 0
-0.3 0.2 0.6 5 0.0547 0 5 0
-0.3 0.2 0.6 10 0.0496 0 7 3
-0.3 0.2 0.6 20 0.0411 0 12 8
-0.3 0.2 0.6 30 0.0354 0 17 13

TABLE I

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (−0.3, 0.2, 0.6)

Example 2.3.2 Let k = 3, n = (4, 8, 12), σ2 = 1, µi = 0, νi = 1, for i = 1, 2, 3. Given various

observations at the first stage, calculate the Bayes risk of optimal allocation at the second stage

for m=0, 1, 2, 3, 5, 10, 20, 30, respectively.

From the computation result (Table 1-6), we can see that the Bayes risk of optimal allocation

decreases as the sample size at the second stage increases. We also can see that the optimal

allocation at the second stage tends to draw more observations from the population from which

fewer observations have been drawn or larger sample mean has been obtained at the first stage.

Example 2.3.3 n=(5, 12, 17), k=3, α = (1, 1, 1), β = (1, 1, 1). Given various observations at

the first stage, calculate the Bayes risk of optimal allocation at the second stage for m=0, 1, 2,

3, 5, 10, 20, 30, respectively.
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
-0.3 0.6 0.2 0 0.0650 0 0 0
-0.3 0.6 0.2 1 0.0649 0 1 0
-0.3 0.6 0.2 2 0.0646 0 2 0
-0.3 0.6 0.2 3 0.0639 0 3 0
-0.3 0.6 0.2 5 0.0617 0 4 1
-0.3 0.6 0.2 10 0.0555 0 7 3
-0.3 0.6 0.2 20 0.0458 0 12 8
-0.3 0.6 0.2 30 0.0395 0 17 13

TABLE II

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (−0.3, 0.6, 0.2)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
0.6 -0.3 0.2 0 0.1009 0 0 0
0.6 -0.3 0.2 1 0.0968 1 0 0
0.6 -0.3 0.2 2 0.0884 2 0 0
0.6 -0.3 0.2 3 0.0813 3 0 0
0.6 -0.3 0.2 5 0.0711 5 0 0
0.6 -0.3 0.2 10 0.0574 9 0 1
0.6 -0.3 0.2 20 0.0430 14 0 6
0.6 -0.3 0.2 30 0.0349 19 0 11

TABLE III

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (0.6,−0.3, 0.2)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
0.6 0.2 -0.3 0 0.1072 0 0 0
0.6 0.2 -0.3 1 0.1034 1 0 0
0.6 0.2 -0.3 2 0.0955 2 0 0
0.6 0.2 -0.3 3 0.0885 3 0 0
0.6 0.2 -0.3 5 0.0785 4 1 0
0.6 0.2 -0.3 10 0.0611 7 3 0
0.6 0.2 -0.3 20 0.0429 12 8 0
0.6 0.2 -0.3 30 0.0335 17 13 0

TABLE IV

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (0.6, 0.2,−0.3)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
0.2 -0.3 0.6 0 0.0720 0 0 0
0.2 -0.3 0.6 1 0.0710 1 0 0
0.2 -0.3 0.6 2 0.0670 2 0 0
0.2 -0.3 0.6 3 0.0628 3 0 0
0.2 -0.3 0.6 5 0.0558 5 0 0
0.2 -0.3 0.6 10 0.0456 9 0 1
0.2 -0.3 0.6 20 0.0341 14 0 6
0.2 -0.3 0.6 30 0.0274 19 0 11

TABLE V

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (0.2,−0.3, 0.6)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
0.2 0.6 -0.3 0 0.0860 0 0 0
0.2 0.6 -0.3 1 0.0846 1 0 0
0.2 0.6 -0.3 2 0.0799 2 0 0
0.2 0.6 -0.3 3 0.0751 3 0 0
0.2 0.6 -0.3 5 0.0675 5 0 0
0.2 0.6 -0.3 10 0.0532 7 3 0
0.2 0.6 -0.3 20 0.0375 12 8 0
0.2 0.6 -0.3 30 0.0291 17 13 0

TABLE VI

BAYES RISK AND OPTIMAL ALLOCATION WHEN X = (0.2, 0.6,−0.3)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
3 7 9 0 0.1074 0 0 0
3 7 9 1 0.0768 1 0 0
3 7 9 2 0.0734 2 0 0
3 7 9 3 0.0666 3 0 0
3 7 9 5 0.0611 5 0 0
3 7 9 10 0.0498 8 2 0
3 7 9 20 0.0387 12 7 1
3 7 9 30 0.0322 16 11 3

TABLE VII

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,7,9)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
3 7 8 0 0.0986 0 0 0
3 7 8 1 0.0680 1 0 0
3 7 8 2 0.0646 2 0 0
3 7 8 3 0.0578 3 0 0
3 7 8 5 0.0523 5 0 0
3 7 8 10 0.0426 9 1 0
3 7 8 20 0.0330 13 7 0
3 7 8 30 0.0275 18 12 0

TABLE VIII

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,7,8)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
3 5 9 0 0.0746 0 0 0
3 5 9 1 0.0634 1 0 0
3 5 9 2 0.0571 2 0 0
3 5 9 3 0.0521 3 0 0
3 5 9 5 0.0459 5 0 0
3 5 9 10 0.0390 10 0 0
3 5 9 20 0.0316 15 1 4
3 5 9 30 0.0271 20 1 9

TABLE IX

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,5,9)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
3 5 8 0 0.0596 0 0 0
3 5 8 1 0.0596 0 0 1
3 5 8 2 0.0534 2 0 0
3 5 8 3 0.0509 3 0 0
3 5 8 5 0.0459 5 0 0
3 5 8 10 0.0400 10 0 0
3 5 8 20 0.0322 13 3 4
3 5 8 30 0.0270 17 7 6

TABLE X

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(3,5,8)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
2 7 9 0 0.0678 0 0 0
2 7 9 1 0.0678 0 0 1
2 7 9 2 0.0625 0 2 0
2 7 9 3 0.0622 0 3 0
2 7 9 5 0.0585 1 4 0
2 7 9 10 0.0504 4 6 0
2 7 9 20 0.0396 8 9 3
2 7 9 30 0.0329 10 13 7

TABLE XI

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,7,9)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
2 7 8 0 0.0543 0 0 0
2 7 8 1 0.0543 1 0 0
2 7 8 2 0.0543 2 0 0
2 7 8 3 0.0509 3 0 0
2 7 8 5 0.0484 5 0 0
2 7 8 10 0.0429 6 4 0
2 7 8 20 0.0346 10 9 1
2 7 8 30 0.0293 14 13 3

TABLE XII

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,7,8)

x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
2 5 9 0 0.0640 0 0 0
2 5 9 1 0.0640 1 0 0
2 5 9 2 0.0577 2 0 0
2 5 9 3 0.0552 3 0 0
2 5 9 5 0.0502 5 0 0
2 5 9 10 0.0444 10 0 0
2 5 9 20 0.0375 12 3 5
2 5 9 30 0.0315 14 8 8

TABLE XIII

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,5,9)
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x1 x2 x3 m Bayes Risk m∗1 m∗2 m∗3
2 5 8 0 0.0920 0 0 0
2 5 8 1 0.0807 1 0 0
2 5 8 2 0.0744 2 0 0
2 5 8 3 0.0694 3 0 0
2 5 8 5 0.0633 5 0 0
2 5 8 10 0.0548 6 3 1
2 5 8 20 0.0426 10 6 4
2 5 8 30 0.0351 14 10 6

TABLE XIV

BAYES RISK AND OPTIMAL ALLOCATION WHEN X=(2,5,8)

From the computation result (Table 7-14), we can observe that as m increases, the Bayes

risk of optimal allocation decreases, and that the optimal allocation at the second stage tends

to draw more observations from the population which has the larger sample proportion at the

first stage or from which fewer observations have been drawn at the first stage. The same result

has been observed for the normal case.

If the cost is not zero, drawing more observations will decrease the decision risk, but increase

the sampling cost at the same time. The optimal sample size at the second stage m∗ belongs

to

arg min
m∈N
{Ex{Θ[k]} − max

m1+...+mk=m
Ex{ max

i=1,··· ,k
E(Θi|x, Y )}+ nc+mc}

or equivalently,
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arg max
m∈N
{ max
m1+...+mk=m

Ex{ max
i=1,··· ,k

E(Θi|x, Y )} −mc},

where N = {0, 1, 2, . . .}.

2.4 m-truncated sampling algorithm

Even we are allowed to allocate m more observations, it is not necessary that we draw exactly

m additional observations when the sampling cost is taken into account, maybe drawing fewer

observations will lead to smaller Bayes risk.

For Professor Klaus Miescke’s sampling algorithm, no matter what the optimal allocation is,

m more observations are always drawn at the next step. This is why it is called a fixed-sample

size sampling algorithm. If we compare the Bayes risk without additional observations with the

minimum of the Bayes risks respectively corresponding to drawing 1, . . . , m more observations

according to the optimal allocation determined by fixed sample-size algorithm, when the former

is no more than the latter, stop sampling, otherwise, draw one more observation from the

population favored by the fixed sample-size 1 sampling algorithm, proceed this way until the

former is no more than the latter or m more observations are drawn, then maybe we can end

up with smaller Bayes risk with smaller sample size. It is based on this idea that I propose and

study the m-truncated sampling algorithm, which proceeds as follows:

Step 1. Calculate the Bayes risk without additional observation. Then calculate the look-

ahead Bayes risk of the optimal allocation of i more observations at the second stage, which is

determined by the fixed sample size i sampling procedure, i = 1, . . . ,m, and find the minimum

look ahead risk.
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Step 2. Compare the Bayes risk without additional observation with the minimum look-

ahead Bayes risk found in Step 1. If the former is not greater than the latter, then stop

sampling more observations and make a decision according to the Bayes decision rule based on

whatever we have, i.e., the former is the Bayes risk of this decision. Otherwise, draw one more

observation from the population favored by the optimal allocation of one more observation,

which is determined by the fixed sample size 1 sampling procedure, update the prior with the

new observation, set m to m− 1. If m > 0, return to Step 1, otherwise, go to Step 3.

Step 3. If m more observations have been drawn, stop sampling more observations and

the Bayes risk of our final decision is the Bayes risk without additional observations under the

updated prior.

Obviously, at most m additional observations can be drawn using this procedure.

2.5 Two Bayesian sampling methods

Because of budget restriction, we can’t always have as many observations as we want.

Usually, there is a limit to the number of observations that can be drawn in the future. Suppose

we can draw up to M observations. To allocate up to M observations among k populations in

an optimal way, I proposed two Bayesian methods based on the two previously mentioned

algorithms, respectively.

The first method, based on the fixed sample size sampling algorithm, is as follows. Calculate

the Bayes risk without additional observations, then calculate the look-ahead Bayes risk of the

optimal allocation of m observations at the next step, determined by the fixed sample size
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sampling algorithm, for m = 1, 2, . . . ,M . Denote those risks by r0, r1, . . . , rM , respectively. We

call m∗ the optimal sample size if

rm∗ = min
i=0,...,M

{ri}.

If m∗ = 0, then we make a decision without further sampling. Otherwise, we adopt the op-

timal allocation of m∗ observations determined by the fixed sample size m∗ sampling algorithm

as our optimal allocation of up to M observations and the Bayes risk of our decision is rm∗ .

The second method is based on the m-truncated sampling algorithm, and its process, similar

to that of the first method, is as follows. Calculate the Bayes risk without additional observa-

tions, then find the look-ahead Bayes risk of the allocation of up to m observations determined

by the m-truncated sampling algorithm, for m = 1, 2, . . . ,M(We estimate the Bayes risk of this

allocation by averaging the 10,000 risks obtained by independently running the m-truncated

sampling procedure 10,000 times). Denote these risks by r̃0, r̃1, . . . , r̃M , respectively. Obviously,

r̃0 = r0. Find m∗∗ such that

r̃m∗∗ = min
i=0,...,M

{r̃i}.

If m∗∗ = 0, then we just make a decision without further sampling. Otherwise, we use the

allocation determined by the m∗∗-truncated sampling algorithm and r̃m∗∗ is the Bayes risk of

our final decision.
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2.6 Comparison of two sampling methods

Example 2.6.1 Let k = 3, n = (6, 9, 15), σ2 = 1, µi = 1, νi = 0.5, for i = 1, 2, 3. The

observation at the first stage is (0.5, 1.1, 1.6). Calculate the Bayes risks of the two algorithms

for m = 0, 1, · · · , 12 with different sampling costs.

Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00000001 0 0.0256 0.0256 30 30 30 30
0.00000001 1 0.0256 0.0256 31 31 31 31
0.00000001 2 0.0256 0.0256 32 31.3527 31 32
0.00000001 3 0.0256 0.0257 33 32.1723 31 33
0.00000001 4 0.0255 0.0255 34 32.9766 32 34
0.00000001 5 0.0253 0.0252 35 33.8569 32 35
0.00000001 6 0.0251 0.0249 36 34.7278 32 36
0.00000001 7 0.0249 0.0247 37 35.6825 32 37
0.00000001 8 0.0246 0.0246 38 36.61 33 38
0.00000001 9 0.0243 0.0243 39 37.5064 33 39
0.00000001 10 0.0239 0.0238 40 38.4195 34 40
0.00000001 11 0.0236 0.0240 41 39.3409 34 41
0.00000001 12 0.0233 0.0235 42 40.2694 34 42

TABLE XV

METHOD 1 VS METHOD 2 WHEN COST=10−8

Where Bayes Risk 1 is the Bayes risk of fixed sample-size sampling algorithm, while Bayes

Risk 2 is the estimated Bayes risk of the m-truncated sampling algorithm based on 10,000 runs.

SS is the final sample size of the first algorithm, while ESS is the estimate of the expected
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.000001 0 0.0257 0.0257 30 30 30 30
0.000001 1 0.0257 0.0257 31 30 30 30
0.000001 2 0.0257 0.0255 32 31.0937 31 32
0.000001 3 0.0256 0.0257 33 31.5534 31 33
0.000001 4 0.0255 0.0256 34 32.1679 31 34
0.000001 5 0.0253 0.0255 35 32.7965 31 35
0.000001 6 0.0251 0.0252 36 33.4409 31 36
0.000001 7 0.0249 0.0249 37 34.0786 31 37
0.000001 8 0.0246 0.0244 38 34.7808 32 38
0.000001 9 0.0243 0.0246 39 35.5863 32 39
0.000001 10 0.0240 0.0243 40 36.3512 32 40
0.000001 11 0.0237 0.0237 41 37.1061 32 41
0.000001 12 0.0233 0.0231 42 37.8648 32 42

TABLE XVI

METHOD 1 VS METHOD 2 WHEN COST=10−6

sample size of the second algorithm, and Min(Max) SS is the minimal(maximal) sample size of

the second algorithm in 10,000 runs.

From the computation result (Table 15-20), we can see that for fixed sampling cost, as

m increases from 1 to 12, the expected sample size of the m-truncated sampling algorithm

increases most of the time, while the Bayes risk decreases most of the time.

When m is fixed, as sampling cost increases, the expected sample size of the m-truncated

sampling algorithm decreases. When the sampling cost is very small (for example, when

cost=10−8), the expected sample size of the m-truncated sampling algorithm is close to m.
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00001 0 0.0259 0.0259 30 30 30 30
0.00001 1 0.0259 0.0259 31 30 30 30
0.00001 2 0.0259 0.0259 32 30 30 30
0.00001 3 0.0259 0.0260 33 31.2415 31 33
0.00001 4 0.0258 0.0257 34 31.6134 31 34
0.00001 5 0.0257 0.0258 35 32.0752 31 35
0.00001 6 0.0255 0.0252 36 32.5411 31 36
0.00001 7 0.0252 0.0255 37 33.0595 31 37
0.00001 8 0.0249 0.0252 38 33.5806 31 38
0.00001 9 0.0247 0.0247 39 34.0888 31 39
0.00001 10 0.0243 0.0245 40 34.6536 31 40
0.00001 11 0.0240 0.0236 41 35.153 31 41
0.00001 12 0.0237 0.0235 42 35.7396 31 42

TABLE XVII

METHOD 1 VS METHOD 2 WHEN COST=10−5

When sampling cost gets larger, the difference between m and the expected sample size gets

larger for large value of m.

We can also see that when sampling cost is large, (for example, when cost=8 ∗ 10−5), the

second method is better than the first method for M=1,. . ., 12. When the sampling cost is not

very large, the two methods are comparable. Sometimes, the first is better; Sometimes, the

second prevails. The difference of their risks is not large.

Example 2.6.2 Let k = 3, n = (5, 8, 13), α = (1, 1, 1), β = (0.5, 0.5, 0.5). The observation at

the first stage is (2, 4, 7). Calculate the Bayes risks of two algorithms for M=0, 1, · · · , 12 with

different costs.
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00003 0 0.0265 0.0265 30 30 30 30
0.00003 1 0.0266 0.0265 31 30 30 30
0.00003 2 0.0266 0.0265 32 30 30 30
0.00003 3 0.0266 0.0265 33 30 30 30
0.00003 4 0.0265 0.0265 34 31.3731 31 34
0.00003 5 0.0264 0.0263 35 31.6946 31 35
0.00003 6 0.0262 0.0261 36 32.0508 31 36
0.00003 7 0.0260 0.0262 37 32.4168 31 37
0.00003 8 0.0257 0.0259 38 32.8575 31 38
0.00003 9 0.0254 0.0253 39 33.2473 31 39
0.00003 10 0.0251 0.0252 40 33.6791 31 40
0.00003 11 0.0248 0.0249 41 34.1505 31 41
0.00003 12 0.0245 0.0245 42 34.5753 31 42

TABLE XVIII

METHOD 1 VS METHOD 2 WHEN COST=3 ∗ 10−5

From the simulation result (Table 21-26), we can see that most of the time, the second

method is better than the first. The superiority of the former becomes more obvious when the

sampling cost gets larger.

For both methods, we need to know the look-ahead risk of the Bayesian rule if we are to draw

mi observations from population Πi, i = 1, ..., k, where m1 + . . . + mk = m and 1 ≤ m ≤ M .

Denote the look-ahead Bayes risk by r(m1, . . . ,mk). After these risks have been calculated, the

remaining work is straightforward.

Therefore, if we want to apply these methods in another situation, we only need to know

how to calculate r(m1, . . . ,mk) in that situation.
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00005 0 0.0271 0.0271 30 30 30 30
0.00005 1 0.0272 0.0271 31 30 30 30
0.00005 2 0.0272 0.0271 32 30 30 30
0.00005 3 0.0272 0.0271 33 30 30 30
0.00005 4 0.0272 0.0271 34 30 30 30
0.00005 5 0.0271 0.0267 35 31.5152 31 35
0.00005 6 0.0269 0.0266 36 31.7884 31 36
0.00005 7 0.0267 0.0267 37 32.1134 31 37
0.00005 8 0.0265 0.0265 38 32.4776 31 38
0.00005 9 0.0262 0.0264 39 32.8295 31 39
0.00005 10 0.0259 0.0257 40 33.1881 31 40
0.00005 11 0.0257 0.0256 41 33.5547 31 41
0.00005 12 0.0254 0.0264 42 33.353 31 42

TABLE XIX

METHOD 1 VS METHOD 2 WHEN COST=5 ∗ 10−5

In the following two chapters, I will consider other selection problems. I will derive the

formula for r(m1, . . . ,mk) under various conditions. In particular, I will set up the formula

for r(m1, · · · ,mk) where m1 + . . .+mk = 1, because for the m-truncated sampling algorithm,

we need to know the optimal allocation of the next observation. I also prove a theorem that

helps easily find the optimal allocation of the next observation in the subset selection of b best

normal populations case.
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00008 0 0.0280 0.0280 30 30 30 30
0.00008 1 0.0281 0.0280 31 30 30 30
0.00008 2 0.0282 0.0280 32 30 30 30
0.00008 3 0.0282 0.0280 33 30 30 30
0.00008 4 0.0282 0.0280 34 30 30 30
0.00008 5 0.0281 0.0280 35 30 30 30
0.00008 6 0.0280 0.0276 36 31.5947 31 36
0.00008 7 0.0278 0.0277 37 31.8536 31 37
0.00008 8 0.0276 0.0269 38 32.0801 31 38
0.00008 9 0.0274 0.0273 39 32.4111 31 39
0.00008 10 0.0271 0.0268 40 32.7209 31 40
0.00008 11 0.0269 0.0266 41 33.0005 31 41
0.00008 12 0.0266 0.0264 42 33.353 31 42

TABLE XX

METHOD 1 VS METHOD 2 WHEN COST=8 ∗ 10−5
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.000001 0 0.0979 0.0979 26 26 26 26
0.000001 1 0.0875 0.0875 27 27 27 27
0.000001 2 0.0808 0.0809 28 27.5238 27 28
0.000001 3 0.0788 0.0789 29 28.4525 28 29
0.000001 4 0.0736 0.0729 30 29.5068 29 30
0.000001 5 0.0717 0.0710 31 30.2441 29 31
0.000001 6 0.0681 0.0662 32 31.2638 30 32
0.000001 7 0.0650 0.0634 33 31.8918 30 33
0.000001 8 0.0628 0.0603 34 32.9406 31 34
0.000001 9 0.0603 0.0582 35 33.7853 32 35
0.000001 10 0.0584 0.0559 36 34.7522 33 36
0.000001 11 0.0563 0.0541 37 35.7087 34 37
0.000001 12 0.0546 0.0528 38 36.6829 34 38

TABLE XXI

METHOD 1 VS METHOD 2 WHEN COST=10−6
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.00001 0 0.0981 0.0981 26 26 26 26
0.00001 1 0.0878 0.0878 27 27 27 27
0.00001 2 0.0810 0.0809 28 27.5275 27 28
0.00001 3 0.0791 0.0790 29 28.452 28 29
0.00001 4 0.0739 0.0734 30 29.5104 29 30
0.00001 5 0.0720 0.0715 31 30.2499 29 31
0.00001 6 0.0684 0.0663 32 31.2566 30 32
0.00001 7 0.0653 0.0639 33 31.8912 30 33
0.00001 8 0.0631 0.0603 34 32.9441 31 34
0.00001 9 0.0606 0.0583 35 33.7722 32 35
0.00001 10 0.0587 0.0565 36 34.7581 33 36
0.00001 11 0.0566 0.0542 37 35.7235 34 37
0.00001 12 0.0549 0.0531 38 36.6783 34 38

TABLE XXII

METHOD 1 VS METHOD 2 WHEN COST=10−5
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.0001 0 0.1005 0.1005 26 26 26 26
0.0001 1 0.0902 0.0902 27 27 27 27
0.0001 2 0.0835 0.0835 28 27.5205 27 28
0.0001 3 0.0817 0.0817 29 28.4533 28 29
0.0001 4 0.0766 0.0759 30 29.5059 29 30
0.0001 5 0.0747 0.0744 31 30.1897 29 31
0.0001 6 0.0713 0.0691 32 31.2576 30 32
0.0001 7 0.0683 0.0671 33 31.8998 30 33
0.0001 8 0.0661 0.0632 34 32.9361 31 34
0.0001 9 0.0638 0.0614 35 33.7088 31 35
0.0001 10 0.0619 0.0593 36 34.7174 32 36
0.0001 11 0.0600 0.0575 37 35.6357 33 37
0.0001 12 0.0583 0.0565 38 36.5106 34 38

TABLE XXIII

METHOD 1 VS METHOD 2 WHEN COST=10−4
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.0005 0 0.1109 0.1109 26 26 26 26
0.0005 1 0.1010 0.1010 27 27 27 27
0.0005 2 0.0947 0.0945 28 27.538 27 28
0.0005 3 0.0933 0.0929 29 28.4478 28 29
0.0005 4 0.0886 0.0879 30 29.5158 29 30
0.0005 5 0.0871 0.0860 31 30.2477 29 31
0.0005 6 0.0841 0.0826 32 31.1979 30 32
0.0005 7 0.0815 0.0797 33 31.8627 30 33
0.0005 8 0.0797 0.0766 34 32.7963 30 34
0.0005 9 0.0778 0.0750 35 33.548 30 35
0.0005 10 0.0763 0.0734 36 34.2986 30 36
0.0005 11 0.0748 0.0721 37 35.3848 31 37
0.0005 12 0.0735 0.0710 38 36.0193 31 38

TABLE XXIV

METHOD 1 VS METHOD 2 WHEN COST=5 ∗ 10−4
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.001 0 0.1239 0.1239 26 26 26 26
0.001 1 0.1145 0.1144 27 27 27 27
0.001 2 0.1087 0.1082 28 27.5215 27 28
0.001 3 0.1078 0.1073 29 28.4541 28 29
0.001 4 0.1036 0.1027 30 29.5142 29 30
0.001 5 0.1026 0.1012 31 30.047 29 31
0.001 6 0.1001 0.0977 32 31.1832 30 32
0.001 7 0.0980 0.0956 33 31.4871 30 33
0.001 8 0.0967 0.0925 34 32.3444 30 34
0.001 9 0.0953 0.0914 35 32.8898 30 35
0.001 10 0.0943 0.0900 36 33.5455 30 36
0.001 11 0.0933 0.0890 37 34.3923 30 37
0.001 12 0.0925 0.0887 38 34.9046 30 38

TABLE XXV

METHOD 1 VS METHOD 2 WHEN COST=10−3
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Cost m Bayes Risk 1 Bayes Risk 2 SS ESS Min SS Max SS

0.01 0 0.3579 0.3579 26 26 26 26
0.01 1 0.3575 0.3574 27 27 27 27
0.01 2 0.3607 0.3561 28 27.5237 27 28
0.01 3 0.3688 0.3561 29 27.5259 27 28
0.01 4 0.3736 0.3560 30 27.529 27 28
0.01 5 0.3816 0.3560 31 27.5285 27 28
0.01 6 0.3881 0.3558 32 27.5253 27 28
0.01 7 0.3950 0.3560 33 27.5299 27 28
0.01 8 0.4027 0.3558 34 27.5225 27 28
0.01 9 0.4103 0.3559 35 27.5255 27 28
0.01 10 0.4183 0.3560 36 27.5224 27 28
0.01 11 0.4263 0.3560 37 27.5212 27 28
0.01 12 0.4345 0.3561 38 27.53 27 28

TABLE XXVI

METHOD 1 VS METHOD 2 WHEN COST=10−2



CHAPTER 3

SELECTION OF THE BEST POPULATION(S)

3.1 Selection of the best population

Point selection rules are decisions on which of the k populations is the best. Whether a

population is the best or not is based on certain criteria. For example, the population with the

largest mean is considered best among k normal populations with the same known variance.

Although there may be more than one best populations, a point selection rule selects exactly

one population.

In the following sections, we will find the optimal allocation of m more observations to select

the best normal, Poisson, or Gamma population under various conditions.

3.1.1 Selection of the smallest normal variance

There are k normal populations with the same mean. Our objective is to choose the popu-

lation associated with the smallest variance.

Suppose X1, ..., Xn, are i.i.d random variables from X ∼N(µ, φ), where µ is known.

Given φ, the pdf of X = (X1, ..., Xn) is

35
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p(x|φ) =
n∏
i=1

(2πφ)−1/2e−
1
2

(xi−µ)2/φ

= (2πφ)−n/2e−
1
2

∑n
i=1(xi−µ)2/φ

= (2πφ)−n/2e
− s

2φ .

where s =
∑n

i=1(xi − µ)2.

By Fisher-Neyman Factorization Theorem, s is sufficient for φ.

Given φ, let s
φ = X, then X ∼ X2(n), the pdf of X is

f(x) =
1

2
n
2 Γ(n2 )

x
n
2
−1e−

x
2 , x > 0.

we can get the pdf of S, which is

f(s|φ) =
1

2
n
2 Γ(n2 )

s
n
2
−1φ1−n

2 e
− s

2φφ−1

=
1

2
n
2 Γ(n2 )

s
n
2
−1φ−

n
2 e
− s

2φ , s > 0

Suppose Φ ∼ lg(α, β), α > 0, β > 0, then the pdf of Φ is

π(φ) =
βα

Γ(α)
φ−α−1e

−β
φ , φ > 0
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Given x = (x1, ..., xn), that is, given s, Φ ∼ lg(α+ n
2 , β + s

2), therefore, given X=x, the pdf

of Φ is

π(φ|s) =
(β + s

2)α+n
2

Γ(α+ n
2 )

φ−(α+n
2

)−1e
−β+

s
2

φ , φ > 0

Because f(s|φ)π(φ) = π(φ|s)m(s), we have

m(s) =
f(s|φ)π(φ)

π(φ|s)

=

1

2
n
2 Γ(n

2
)
s
n
2
−1φ−

n
2 e
− s

2φ βα

Γ(α)φ
−α−1e

−β
φ

(β+ s
2

)α+
n
2

Γ(α+n
2

) φ−(α+n
2

)−1e
−β+

s
2

φ

=
βαs

n
2
−1

2
n
2 Γ(n2 )Γ(α)

·
Γ(α+ n

2 )

(β + s
2)α+n

2

=
Γ(α+ n

2 )

2
n
2 Γ(α)Γ(n2 )

· βαs
n
2
−1

(β + s
2)α+n

2

, s > 0.

It is easy to calculate the expectation of S.

E(S) =

∫ ∞
0

Γ(α+ n
2 )

2
n
2 Γ(α)Γ(n2 )

βαs
n
2

(β + s
2)α+n

2

ds

=
Γ(α+ n

2 )βα

2
n
2 Γ(α)Γ(n2 )

∫ ∞
0

s
n
2

+1−1

(β + s
2)α−1+n

2
+1
ds

=
Γ(α+ n

2 )βα

2
n
2 Γ(α)Γ(n2 )

·
2
n+2
2 Γ(α− 1)Γ(n+2

2 )

Γ(α+ n
2 )βα−1

=
nβ

α− 1
.



38

At the end of the first stage, ni observations have been drawn from the i-th population. Let

si =
∑ni

j=1(xij − µ)2 and s=(s1, . . . , sk), then the updated prior is

Φi ∼ lg(αi + ni
2 , βi + si

2 ), i = 1, ..., k, and Φi’s are independent.

Suppose at the second stage, mi observations, Yi1, . . . , Yimi , are to be drawn from the i-th

population. Let Wi =
∑mi

j=1(Yij − µ)2 and W = (W1, ...,Wk). The posterior distribution of Φi,

given S = s,W = w, is

Φi ∼ lg(αi +
ni
2

+
mi

2
, βi +

si
2

+
wi
2

), i = 1, ..., k,

and Φi’s are independent.

The marginal pdf of Wi, given S = s, is

f(Wi = wi) =
Γ(αi + ni

2 + mi
2 )

2
mi
2 Γ(αi + ni

2 )Γ(mi2 )
·

(βi + si
2 )αi+

ni
2 wi

mi
2
−1

(βi + si
2 + wi

2 )αi+
ni
2

+
mi
2

, wi > 0

i = 1, ..., k, and Wi’s are independent.

Because we want to choose the population associated with the smallest variance φ[1] =

min{φ1, ..., φk}, the loss function is

L(φ, i, n) = φi − φ[1] + nc.

Suppose αi > 1, i = 1, ..., k. To determine the optimum allocation of m more observations

at stage 2 using the fixed sample-size sampling algorithm, one has to calculate r(m1, ...,mk),

that is, the look ahead Bayes risk corresponding to the allocation (m1, ...,mk).



39

r(m1, ...,mk) = E{ min
i=1,...,k

E{L(Φ, i, n+ n)|S = s,W}|S = s}

= Es{ min
i=1,...,k

βi + si
2 + Wi

2

αi + ni
2 + mi

2 − 1
− E{Φ[1]|S = s,W}}+ nc+mc

= Es{ min
i=1,...,k

βi + si
2 + Wi

2

αi + ni
2 + mi

2 − 1
} − Es{Φ[1]}+ nc+mc

Therefore, the optimum allocation minimizes

Es{ min
i=1,...,k

βi + si
2 + Wi

2

αi + ni
2 + mi

2 − 1
}

subject to m1 + ...+mk = m.

Let’s consider the special case where m=1. Suppose mi = 1, mj = 0, j 6= i, i ∈ {1, ..., k},

let

li = Es{min{min
j 6=i

βj +
sj
2

αj +
nj
2 − 1

,
βi + si

2 + Wi
2

αi + ni
2 + 1

2 − 1
}},

then the best allocation of the next observation is to draw one observation from the i∗th

population, where li∗ = mini=1,...,k{li}.

3.1.2 Selection of the largest normal mean with random mean and variance

In the section, we will consider the case where both mean and variance of each population

are unknown.

Suppose Xi ∼ N(θi, φi), i = 1, ..., k, and Xi’s are independent.
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The prior density of Θi and Φi is π(θi, φi) = π1(θi|φi)π2(φi),

where π1(θi|φi) is a N(µi, τiφi) density and π2(φi) is an lg(αi, βi) density.

Suppose at the first stage, Xi1 = xi1, ..., Xini = xini , i = 1, ..., k, have been observed, then

the updated prior density of Θi and Φi is:

π(θi, φi|x) = π1(θi|φi, x)π2(φi|x),

where π1(θi|φi, x) is a normal density with mean µi(x) = µi+niτix̄i
niτi+1 , ( x̄i = 1

ni

∑ni
j=1 xij) and

variance (τi
−1 + ni)

−1φi and π2(φi|x) is an inverted gamma density with parameters αi + ni
2

and β
′
i where

β
′
i = {β−1

i + 1
2

∑ni
j=1(xij − x̂i)2 + ni(x̄i−µi)2

2(1+niτi)
}−1.

Suppose at the second stage, Yi1 = yi1, ..., Yimi = yimi , i = 1, ..., k, have been observed, then

the posterior distribution of Θi and Φi, is

π(θi, φi|x, y) = π1(θi|φi, x, y)π2(φi|x, y),

where π1(θi|φi, x, y) is a normal density with mean γi(x, y) = µi(x)+mi(τi
−1+ni)

−1ȳi
mi(τi−1+ni)−1+1

, (ȳi =

1
mi

∑mi
j=1 yij) and variance (τi

−1 + ni + mi)
−1φi and π2(φi|x, y) is an inverted gamma density

with parameters αi + ni
2 + mi

2 and β
′′
i , where

β
′′
i = {β′i

−1
+ 1

2

∑mi
j=1(yij − ŷi)2 + mi(ȳi−µi(x))2

2(1+mi(τi−1+ni)−1)
}−1.

(Θi,Φi)
T ’s, given X = x, Y = y, are independent.

According to James O. Berger’s book, we know that the marginal posterior density of Θi,

given X = x, Y = y, is a

T (2(αi +
ni
2

) +mi, γi(x, y), ((τi
−1 + ni +mi)(αi +

ni
2

+
mi

2
)β
′′
i )−1)
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and Θi’s, i = 1, ..., k, are independent.

The marginal density of Yi = (Yi1, ..., Yimi) given X = x, m(yi|x), is

(2π)−
mi
2 (1 + niτi)

1
2 (1 + niτi +miτi)

− 1
2 (Γ(αi +

ni
2

)β
′
i

αi+
ni
2 )−1Γ(αi +

ni +mi

2
)β∗i

αi+
ni+mi

2

where

β
′
i = {β−1

i +
1

2

ni∑
j=1

(xij − x̂i)2 +
ni(x̄i − µi)2

2(1 + niτi)
}−1,

β∗i = {β−1
i +

1

2

ni∑
j=1

(xij − ẑi)2 +
1

2

mi∑
j=1

(yij − ẑi)2 +
(mi + ni)(z̄i − µi)2

2(1 + niτi +miτi)
}−1,

z̄i =
1

mi + ni
(

ni∑
j=1

xij +

mi∑
j=1

yij),

and Yi’s, given X = x, are independent.

Our objective is to choose the population with the largest mean.

Let the loss function be L(θ, i, n) = θ[k] − θi + nc, then

r(m1, . . . ,mk) = Ex{ min
i=1,...,k

E{L(Θ, i, n+m)|X = x, Y }}

= Ex{ min
i=1,...,k

E{Θ[k] −Θi|X = x, Y }}+ nc+mc

= Ex{Θ[k]} − Ex{ max
i=1,...,k

E{Θi|X = x, Y }}+ nc+mc
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Suppose αi >
1
2 , i = 1, ..., k, then

E{Θi|X = x, Y } =
µi(x) +mi(τi

−1 + ni)
−1Ȳi

mi(τi−1 + ni)−1 + 1

Therefore, the optimum allocation (m∗1, ...,m
∗
k) maximizes, subject to m1 + ...+mk = m,

Ex{ max
i=1,...,k

µi(x) +mi(τi
−1 + ni)

−1Ȳi
mi(τi−1 + ni)−1 + 1

}

If we allocate the next observation to the ith population, then the expected posterior gain

gi = Ex{max{max
j 6=i

µj(x),
µi(x) + (τi

−1 + ni)
−1Ȳi

(τi−1 + ni)−1 + 1
}}

Therefore,the optimum allocation is to allocate the next observation to the population with

g[k], where g[k] = maxi=1,...,k{gi}.

3.1.3 Selection of the smallest normal variance with random mean and variance

In this section, we will consider selecting the population with the smallest variance.

According to page 288 of James O. Berger’s book, the marginal posterior distribution of Φi,

given X = x, Y = y, is a lg(αi + ni
2 + mi

2 , β
′′
i ) and Φi’s are independent .

Let the loss function be

L(φ, i) = φi − φ[1] + nc+mc,

where φ = (φ1, ..., φk), and φ[1] = min{φ1, ..., φk}, then
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r(m1, . . . ,mk) = Ex{ min
i=1,...,k

E{L(Φ, i, n+m)|X = x, Y }}

= Ex{ min
i=1,...,k

E{Φi − Φ[1] + nc+mc|X = x, Y }}

= Ex{ min
i=1,...,k

E{Φi|X = x, Y }} − Ex{Φ[1]}+ nc+mc

Suppose αi > 1, i = 1, ..., k, then

E{Φi|X = x, Y } =
1

(αi + ni
2 + mi

2 − 1)β
′′
i

.

Therefore, the optimum allocation (m∗1, ...,m
∗
k) minimizes, subject to m1 + ...+mk = m,

Ex{ min
i=1,...,k

1

(αi + ni
2 + mi

2 − 1)β
′′
i

}

= Ex{ min
i=1,...,k

β
′
i

−1
+ 1

2

∑mi
j=1(Yij − Ȳi)2 + mi(Ȳi−µi(x))2

2(1+mi(τi−1+ni)−1)

αi + ni
2 + mi

2 − 1
}

Suppose m=1. If we allocate the next observation to the ith population, then

li = Ex{ min
i=1,...,k

E{Φi|X = x, Y }}

= Ex{min{min
j 6=i

1

(αj +
nj
2 − 1)β

′
j

,
β
′
i

−1
+ (Yi1−µi(x))2

2(1+(τi−1+ni)−1)

αi + ni
2 −

1
2

}}
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Therefore, the optimum allocation is to allocate the next observation to the population

associated with l[1] = min{11, ..., lk}.

3.1.4 Selection of the normal population with the largest absolute value of mean

Suppose there are k normal populations, where population Πi has mean θi and variance

σ2. θi is a realization of Θi, which follows normal distribution with mean µi and variance v−1
i ,

i = 1, ..., k, respectively. In this section, our objective is to choose the population with the

largest absolute value of mean.

The loss function is

L(θ, i, n) = |θ|[k] − |θi|+ nc,

where |θ|[k] = max{|θ1|, · · · , |θk|}.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, · · · , k, then the look ahead Bayes risk r(m1, . . . ,mk) is
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Ex{ min
i=1,··· ,k

E{|Θ|[k] − |Θi||X = x, Y }}

= Ex{|Θ|[k]} − Ex{ max
i=1,··· ,k

E{|Θi||X = x, Y }}+ nc+mc

= Ex{|Θ|[k]} − Ex{ max
i=1,··· ,k

{
√

2√
π(αi + qi)

e
− (αiµi(x)+qiYi)

2

2(αi+qi) +
αiµi(x) + qiYi

αi + qi

[1− 2Φ(−αiµi(x) + qiYi√
αi + qi

)]}}+ nc+mc

Therefore, the optimal allocation maximizes

Ex{ max
i=1,··· ,k

{
√

2√
π(αi + qi)

e
− (αiµi(x)+qiYi)

2

2(αi+qi) +
αiµi(x) + qiYi

αi + qi
[1− 2Φ(−αiµi(x) + qiYi√

αi + qi
)]}}

subject to mi + · · ·+mk = m.

Suppose m=1. If we allocate the next observation to the ith population, then the expected

gain

gi = Ex{max{max
j 6=i
{
√

2
√
παj

e−
αjµ

2
j (x)

2 + µj(x)[1− 2Φ(−µj(x)
√
αj)]},

√
2√

π(αi + qi)
e
− (αiµi(x)+qiYi)

2

2(αi+qi) +
αiµi(x) + qiYi

αi + qi
[1− 2Φ(−αiµi(x) + qiYi√

αi + qi
)]}},

i = 1, · · · , k, therefore, the optimal allocation of the next observation is to draw one observation

from the population corresponding to g[k], where g[k] = max{g1, · · · , gk}.
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3.1.5 Selection of the Poisson population with the smallest mean

Suppose populations Πi can be characterized with Poisson distribution with mean λi, where

λi is a realization of Λi, i = 1, ..., k.

Suppose Λi follows a Gamma distribution with parameters ki and θi, i = 1, ..., k, then the

pdf of Λi is

π(λ; ki, θi) =
1

θi
kΓ(ki)

λki−1e
− λ
θi

for λ > 0, where ki, θi > 0, i = 1, ..., k.

Suppose at the first stage, n1, ..., nk observations have been drawn from population Π1, ...,Πk,

respectively.

Let xi =
∑ni

j=1 xij , i = 1, ..., k, and xT = (x1, ..., xk), then the updated prior Λi|x ∼Gamma(ki+

xi,
θi

niθi+1), i = 1, ..., k.

At the second stage, m more observations need to be drawn from these k populations. Our

objective is to find the optimal allocation of these m observations among k populations.

The loss function is

L(λ, i, n) = λi − λ[1] + nc,

where λ = (λ1, ..., λk), and λ[1] = min{λ1, ..., λk}.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, ..., k. Let yi =
∑mi

j=1 yij , i = 1, ..., k, and yT = (y1, ..., yk), then Λi|x, y ∼Gamma(ki + xi +

yi,
θi

niθi+miθi+1), i = 1, ..., k.
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The marginal probability mass function of Yi given x is

P (Yi = y|x) =

(
ki + xi + yi − 1

ki + xi − 1

)
(

miθi
niθi+1
miθi
niθi+1 + 1

)y(
1

miθi
niθi+1 + 1

)ki+xi

=

(
ki + xi + yi − 1

ki + xi − 1

)
(

miθi
niθi +miθi + 1

)y(
niθi + 1

niθi +miθi + 1
)ki+xi

for y > 0, i = 1, ..., k, and given X = x, Yi’s are independent.

The look ahead Bayes risk r(m1, . . . ,mk) is

Ex{ min
i=1,...,k

E(L(Λ, i, n+m)|X = x, Y )

= Ex{ min
i=1,...,k

E(Λi|X = x, Y )} − Ex{Λ[1]}+ nc+mc

= Ex{ min
i=1,...,k

θi(ki + xi + Yi)

niθi +miθi + 1
} − Ex{Λ[1]}+ nc+mc

Therefore, the optimal allocation minimizes

Ex{ min
i=1,...,n

θi(ki + xi + Yi)

niθi +miθi + 1
}

subject to mi + ...+mk = m.

Suppose m=1. If we allocate the next observation to the ith population, then we get
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li = Ex{ min
i=1,...,n

θi(ki + xi + Yi)

niθi +miθi + 1
}

= Ex{min{min
j 6=i

θj(kj + xj)

njθj + 1
,
θi(ki + xi + Yi)

niθi + θi + 1
}}.

Therefore, the optimal allocation of the next observation will draw one observation from

the population with l[1], where l[1] = min{l1, ..., lk}

3.1.6 Selection of the best Gamma population

Suppose population Πi can be characterized with the Gamma distribution with the common

shape parameter a and the inverse scale parameter θi, where θi is a realization of Θi and

Θi ∼Gamma (αi, βi) with αi > 0 and βi > 0, i = 1, ..., k.

At the first stage, ni observations have been drawn from population Πi, i = 1, ..., k. Let xi =∑ni
j=1 xij (if ni = 0, then xi = 0),i = 1, ..., k, and xT = (x1, ..., xk), then Θi|x ∼Gamma(αi +

nia, βi + xi), i = 1, ..., k.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, ..., k. Let yi =
∑mi

j=1 yij , i = 1, ..., k, and yT = (y1, ..., yk), then Θi|X = x, Y = y ∼

Gamma(αi + nia+mia, βi + xi + yi).

The marginal probability density function of Yi given X = x is

f(Yi = y|X = x) =
Γ(αi + nia+mia)(βi + xi)

αi+niaymia−1

Γ(αi + nia)Γ(mia)(βi + xi + y)αi+nia+mia
,

for y > 0, i = 1, ..., k, and given x, Yi’s are independent.
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Let the loss function be

L(θ, i, n) = θi − θ[1] + nc,

then the look ahead Bayes risk r(m1, . . . ,mk) is

Ex{ min
i=1,...,k

E(L(Θ, i, n+m)|X = x, Y )}

= Ex{ min
i=1,...,k

E(Θi|X = x, Y )} − Ex{Θ[1]}+ nc+mc

= Ex{ min
i=1,...,k

αi + nia+mia

βi + xi + Yi
} − Ex{Θ[1]}+ nc+mc

Therefore, the optimal allocation minimizes

Ex{ min
i=1,...,k

αi + nia+mia

βi + xi + Yi
}

subject to m1 + ...+mk = m.

Suppose m=1, that is, we want to find the optimal allocation of the next observation among

k populations. Let

li = Ex{min{min
j 6=i

αj + nja

βj + xj
,
αi + nia+ a

βi + xi + Yi
}}

then the best allocation will draw one observation from the population with l[1], where

l[1] = min{l1, ..., lk}.
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Especially, when a=1, that is, these k gamma populations are also exponential populations,

the optimal allocation minimizes

Ex{ min
i=1,...,k

αi + ni +mi

βi + xi + Yi
}

subject to m1 + ...+mk = m.

Let

li = Ex{min{min
j 6=i

αj + nj
βj + xj

,
αi + ni + 1

βi + xi + Yi
}},

then the optimal allocation of the next observation is to allocate the next observation to

the population associated with l[1], where l[1] = min{l1, ..., lk}.

3.2 Subset selection of best populations

In many situations, people need to select a subset of populations where the selected subset

should contain one or more best populations based on the given criteria. If the subsets are

restricted to have a fixed size t, then usually it is desired that it contain t best populations. For

example, experimenters would like to select 3 best treatments at the first round of screening to

reduce the total number of observations needed to make their terminal point selection. Another

example where the selection of a fixed-size subset is needed is to admit the 10 best applicants

into a PhD program at a University. This type of problem can be treated through moderately

extending the framework of the point selection problem.
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In the following two sections, we will find the optimal allocation of m observations to select

b (1 < b < k) normal populations with b largest means or b (1 < b < k) Bernoulli populations

with b largest probabilities of success among k normal or Bernoulli populations, respectively.

3.2.1 Subset selection of b largest normal means

We consider the following two-stage selection model where X = (X1, ..., Xk) can be observed

at stage 1, and Y = (Y1, ..., Yk) at stage 2. More specifically, for θ = (θ1, ..., θk) ∈ Rk, let

Xi ∼ N(θi, pi
−1) with pi

−1 = σ2/ni, and Yi ∼ N(θi, qi
−1) with qi

−1 = σ2/mi, i = 1, ..., k,

which are altogether independent. Apparently, X and Y play the role of summary statistics:

Xi as the sample mean based on ni, and Yi as the sample mean based on mi, observations

from N(θi, σ
2), i = 1, ..., k, that are altogether independent. In the Bayes approach, let the

means parameter θ = (θ1, ..., θk) be the outcome of a random parameter Θ = (Θ1, ...,Θk), where

Θi ∼ N(µi, vi
−1), i = 1, ..., k, and they are independent.

Our objective is to choose b best populations with 1 < b < k, from k populations. The

decision space D is the set of all subsets of size b of {1, 2, ..., k}, and there are
(
k
b

)
elements in

that decision space. The loss function is assumed to be L(θ,A, n) =
∑

i∈A(θ[k]−θi)+nc, where

θ[k] = max(θ1, ..., θk). Let us consider the fixed total sample size allocation problem where the

total number of observations n is fixed. Then the optimal allocation, i.e. the one that achieves

the minimum Bayes risk, is determined by

min
n1+...+nk=n

E[min
A∈D

E(L(Θ, A, n)|X)]. (3.1)
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At the end of stage 1, the optimal allocation for the second stage, with a total number of m

observations allowed at stage 2, is the one that achieves

min
m1+...+mk=m

E{min
A∈D

E(L(Θ, A, n+m)|X = x, Y )|X = x}. (3.2)

To evaluate the inner conditional expectation in (Equation 3.1), we need the conditional dis-

tribution of Θ, given X = x and Y = y, which is as follows.

Θi ∼ N(
αiµi(x) + qiyi

αi + qi
,

1

αi + qi
), (3.3)

where αi = pi + vi and µi(x) = viµi+pixi
vi+pi

, i = 1, ..., k, and they are independent. The outer

conditional expectation in (Equation 3.1) is w.r.t. the conditional distribution of Y , given

X = x, which is as follows.

Yi ∼ N(µi(x),
αi + qi
αiqi

), (3.4)

i = 1, ..., k, and they are independent.
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r(m1, . . . ,mk) = E{min
A∈D

E{L(Θ, A, n+m)|X = x, Y }|X = x}

= E{min
A∈D

E{
∑
i∈A

(Θ[k] −Θi)|X = x, Y }|X = x}+ nc+mc

= Ex{E{bΘ[k]|X = x, Y }} − Ex{max
A∈D

E{
∑
i∈A

Θi|X = x, Y }}+ nc+mc

= bEx{Θ[k]} − Ex{max
A∈D

E{
∑
i∈A

Θi|X = x, Y }}+ nc+mc

Therefore, the optimal allocation, r(m∗1, . . . ,m
∗
k), maximizes, subject to m1 + ...+mk = m,

the following quantity

Ex{max
A∈D

E{
∑
i∈A

Θi|X = x, Y }}

= Ex{max
A∈D

[
αi1µi1(x) + qi1Yi1

αi1 + qi1
+ ...+

αibµib(x) + qibYib
αib + qib

]}

= E{max
A∈D

[µi1(x) + (
qi1

αi1(αi1 + qi1)
)1/2Ni1 + ...+ µib(x) + (

qib
αib(αib + qib)

)1/2Nib]}.

Let q = 1/σ2. For qi = q, qj = 0, and j 6= i where 1 ≤ i ≤ k, we have

E{max
A∈D

[µi1(x) + (
qi1

αi1(αi1 + qi1)
)1/2Ni1 + ...+ µib(x) + (

qib
αib(αib + qib)

)1/2Nib]}

= E{max[ max
{A:A∈D, i/∈A}

∑
k∈A

µk(x), max
{A:A∈D, i∈A}

∑
j∈A, j 6=i

µj(x) + µi(x) + σiNi]}
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Let µ[1](x) < µ[2](x) < ... < µ[k](x). If q(i) = 1 and q(j) = 0, for j 6= i, then we have the

following for i ∈ {1, ..., k − b}.

g(i) = E{max[ max
{A:A∈D, i/∈A}

∑
k∈A

µ[k](x),

max
{A:A∈D, i∈A}

∑
j∈A, j 6=i

µ[j](x) + µ[i](x) + σ(i)N(i)]}

= E{max[µ[k−b+1](x) + µ[k−b+2](x) + ...+ µ[k](x),

µ[k−b+2](x) + ...+ µ[k](x) + µ[i](x) + σ(i)N(i)]}

= E{µ[k−b+2](x) + µ[k−b+3](x) + ...+ µ[k](x)

+ max[µ[k−b+1](x), µ[i](x) + σ(i)(x)N(i)]}

= µ[k−b+2](x) + µ[k−b+3](x) + ...+ µ[k](x) + µ[i](x)

+ E{max[µ[k−b+1](x)− µ[i](x), σ(i)N(i)]}

= µ[k−b+2](x) + µ[k−b+3](x) + ...+ µ[k](x) + µ[i](x)

+ σ(i)E{max[
µ[k−b+1](x)− µ[i](x)

σ(i)
, N(i)]}

= µ[k−b+2](x) + µ[k−b+3](x) + ...+ µ[k](x) + µ[i](x) + σ(i)T (
µ[k−b+1](x)− µ[i](x)

σ(i)
)

On the other hand, for i ∈ {k − b+ 1, k − b+ 2, ..., k},
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g(i) = E{max[ max
{A:A∈D, i/∈A}

∑
k∈A

µ[k](x),

max
{A:A∈D, i∈A}

∑
j∈A , j 6=i

µ[j](x) + µ[i](x) + σ(i)N(i)]}

= E{max[µ[k−b](x) + µ[k−b+1](x) + ...+ µ[k](x)− µ[i](x),

µ[k−b+1](x) + ...+ µ[k](x) + σ(i)N(i)]}

= µ[k−b+1](x) + ...+ µ[k](x) + E{max[µ[k−b](x)− µ[i](x), σ(i)N(i)]}

= µ[k−b+1](x) + ...+ µ[k](x) + σ(i)E{max[
µ[k−b](x)− µ[i](x)

σ(i)
, N(i)]}

= µ[k−b+1](x) + ...+ µ[k](x) + σ(i)T (
µ[k−b](x)− µ[i](x)

σ(i)
)

Let us consider the two populations P(k−b) and P(k−b+1), since they turn out to play a

special role in this situation: these are the only two populations between which a preference in

terms of order relation ” < ” can be established that does not depend on µ(1)(x), ..., µ(k)(x).

In fact, the following theorem shows that the next allocation is not assigned to that one of the

two populations for which more prior plus sampling information has been gathered so far.

Theorem 3.2.1 At every X = x, the following holds. α(k−b) > (=, <)α(k−b+1) if and only if

R(k−1)(x) < (=, >)R(k−b+1)(x).
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g(k−b)(x) = µ[k−b+2](x) + ...+ µ(k)(x) + µ[k−b](x)

+σ(k−b)T (
µ[k−b+1](x)− µ[k−b](x)

σ(k−b)
)

g(k−b+1)(x) = µ[k−b+2](x) + ...+ µ(k)(x) + µ[k−b+1](x)

+σ(k−b+1)T (
µ[k−b](x)− µ[k−b+1](x)

σ(k−b+1)
).

Because T (w) = T (−w) + w, we have

g(k−b+1)(x) = µ[k−b+2](x) + ...+ µ(k)(x) + µ[k−b+1](x)

+σ(k−b+1)[T (
µ[k−b+1](x)− µ[k−b](x)

σ(k−b+1)
) +

µ[k−b](x)− µ[k−b+1](x)

σ(k−b+1)
]

= µ[k−b+2](x) + ...+ µ(k)(x) + µ[k−b+1](x)

+σ(k−b+1)T (
µ[k−b+1](x)− µ[k−b](x)

σ(k−b+1)
) + µ[k−b](x)− µ[k−b+1](x)

= µ[k−b+2](x) + ...+ µ(k)(x) + µ[k−b](x)

+σ(k−b+1)T (
µ[k−b+1](x)− µ[k−b](x)

σ(k−b+1)
).

The rest follows from the fact that γT (x/γ) is strictly increasing in γ for every x ∈ R.
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3.2.2 Subset selection of b greatest probabilities of success

In this section, our objective is to choose b best Binomial populations, that is, b populations

with largest probabilities of success, where 1 < b < k. Let the loss function be

L(θ,A, n) =
∑
i∈A

(θ[k] − θi) + nc (3.5)

where |A| = b, and A ⊂ {1, ..., k}.

Suppose at the first stage, ni observations, xi1, . . . , xini , have been drawn from population

Πi, and at the second stage, mi observations, Yi1, . . . , Yimi , are to be drawn from population

Πi, i = 1, . . . , k. Let Θ = (Θ1, ...,Θk), xi =
∑ni

i=1 xij , Yi =
∑mi

i=1 Yij , x
T = (x1, . . . , xk) and

Y T = (Y1, . . . , Yk), then the look ahead Bayes risk, r(m1, . . . ,mk), is

Ex{min
A∈D

Ex{L(Θ, A, n+m)|Y }}

= bEx{Θ[k]} − Ex{max
A∈D

Ex{
∑
i∈A

Θi|Y }}+ nc+mc

= bEx{Θ[k]} − Ex{max
A∈D

∑
i∈A

ai + Yi
ai + bi +mi

}+ nc+mc

Therefore, the optimal allocation maximizes

Ex{max
A∈D

∑
i∈A

ai + Yi
ai + bi +mi

}

subject to m1 + . . .+mk = m.
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We know that given X = x, Θi ∼Beta(ai, bi), where ai = αi + xi, bi = βi + ni − xi; Given

X = x, and Y = y, Θi ∼Beta(ai + yi, bi +mi − yi), i = 1, ..., k, and Θ1, ...,Θk are independent.

Let µ[1] ≤ µ[2] ≤ ... ≤ µ[k] be the ordered sequence of µ1, ..., µk, P(t) be the population

associated with µ[t], and a(t), b(t), m(t), g(t) and ε(t) be associated with population P(t), where

µt = at
at+bt

, ε(t) = 1
a(t)+b(t)

, t = 1, ..., k.

Let m(i) = 1, and m(j) = 0, for j 6= i, denote the posterior gain corresponding to this

allocation by g(i), then

(1) for 1 ≤ i ≤ k − b,

g(i) = Ex{max
A∈D

Ex(
∑
i∈A

Θi|Y )}

= Ex{max[µ[k−b+1] + ...+ µ[k], µ[k−b+2] + ...+ µ[k] +
a(i) + Y(i)

a(i) + b(i) + 1
]}

= Ex{µ[k−b+2] + ...+ µ[k] + max[µ[k−b+1], µ[k] +
a(i) + Y(i)

a(i) + b(i) + 1
]}

= µ[k−b+2] + ...+ µ[k] + max[µ[k−b+1],
a(i) + 1

a(i) + b(i) + 1
]µ(i)

+ max[µ[k−b+1],
a(i)

a(i) + b(i) + 1
](1− µ(i))

(2) for k − b+ 1 ≤ i ≤ k
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g(i) = Ex{max
A∈D

Ex(
∑
i∈A

Θi|Y )}

= Ex{max[µ[k−b] + µ[k−b+1] + ...+ µ[k] − µ[i], µ[k−b+1] + ...+ µ[k] − µ[i]

+
a(i) + Y(i)

a(i) + b(i) + 1
]}

= µ[k−b+1] + ...+ µ[k] − µ[i] + Ex{max[µ[k−b],
a(i) + Y(i)

ai + bi + 1
]}

= µ[k−b+1] + ...+ µ[k] − µ[i] + max(µ[k−b],
a(i) + 1

a(i) + b(i) + 1
)µ[i]

+ max(µ[k−b],
a(i)

a(i) + b(i) + 1
)(1− µ[i])

Therefore, the optimal allocation of the next observation draws one observation, with equal

probabilities, from one of those populations P(t) with g(t) = max{g(1), ..., g(k)}, t = 1, ..., k.

Finding all populations which are tied for maximum value of the expected posterior gains

can be done through paired comparisons. One of these is seen to be different from all others:

the comparison of g(k−b+1) and g(k−b) is made only through the respective fractions. A similar

phenomenon is in the normal case, as is shown in the previous theorem.
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g(k−b) = µ[k−b+2] + ...+ µ[k] + max[µ[k−b+1],
a(k−b) + 1

a(k−b) + b(k−b) + 1
]µ[k−b]

+ max[µ[k−b+1],
a(k−b)

a(k−b) + b(k−b) + 1
](1− µ[k−b])

= µ[k−b+2] + ...+ µ[k] + max[µ[k−b+1],
µ[k−b] + ε(k−b)

1 + ε(k−b)
]µ[k−b]

+ max[µ[k−b+1],
µ[k−b]

1 + ε(k−b)
](1− µ[k−b])

= µ[k−b+2] + ...+ µ[k] + max[µ[k−b+1],
µ[k−b] + ε(k−b)

1 + ε(k−b)
]µ[k−b] + µ[k−b+1](1− µ[k−b])

= µ[k−b+2] + ...+ µ[k] + µ[k−b+1] + max{0, [
µ[k−b] + ε(k−b)

1 + ε(k−b)
− µ[k−b+1]]µ[k−b]}

= µ[k−b+1] + ...+ µ[k] + max{0, (1− µ[k−b+1])µ[k−b] − [
1− µ[k−b]

1 + ε(k−b)
]µ[k−b]}

g(k−b+1) = µ[k−b+1] + ...+ µ[k] − µ[k−b+1] + max[µ[k−b],
µ[k−b+1] + ε(k−b+1)

1 + ε(k−b+1)
]µ[k−b+1]

+ max[µ[k−b],
µ[k−b+1]

1 + ε(k−b+1)
](1− µ[k−b+1])

= µ[k−b+2] + ...+ µ[k] + [
µ[k−b+1] + ε(k−b+1)

1 + ε(k−b+1)
]µ[k−b+1]

+ max[µ[k−b],
µ[k−b+1]

1 + ε(k−b+1)
](1− µ[k−b+1])

= µ[k−b+2] + ...+ µ[k] + µ[k−b+1] +
µ[k−b+1] − 1

1 + ε(k−b+1)
µ[k−b+1]

+ max{
µ[k−b+1]

1 + ε(k−b+1)
(1− µ[k−b+1]), (1− µ[k−b+1])µ[k−b]}

= µ[k−b+1] + ...+ µ[k] + max{0, (1− µ[k−b+1])µ[k−b] − [
1− µ[k−b+1]

1 + ε(k−b+1)
]µ[k−b+1]}
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Therefore, to compare g(k−b) and g(k−b+1), we only need to compare two fractions
(1−µ[k−b])µ[k−b]

1+ε(k−b)

and
(1−µ[k−b+1])µ[k−b+1]

1+ε(k−b+1)
.

3.3 Simultaneous selection and estimation

After a population has been selected, a natural follow-up question may arise. The question

is how large the parameter of the selected population is. That is, we need to estimate the

parameter of the selected population. Most research works have dealt with either estimation

or selection problem, except those by Cohen and Sackrowitz (1988), Gupta and Miescke (1990,

1993), Bansal and Miescke (2002, 2005), and Misra, van der Meulen, and Branden (2006). All

their works have been done with Bayesian approach. By incorporating loss due to selection with

that due to estimation in one loss function and then letting both types of decision, selection and

estimation, be subject to risk evaluation, the decision theoretic treatment leads to ’selecting

after estimation’ instead of ’estimating after selection’, which has been pointed out by Cohen

and Sackrowitz (1988).

In the following sections, we will find the optimal allocation of m more observation to solve

the problem of simultaneous estimation and selection of the best parameter for both normal

and Bernoulli distributions.

3.3.1 Selection and estimation of the largest normal mean

Given k normal populations Π1, ...,Πk with a common variance σ2 and mean θ1, .., θk, respec-

tively, we want to choose the population with the largest mean and, at the same time, estimate

the selected mean. That is, our objective is to select the population which is associated with

θ[k] = max{θ1, .., θk} and simultaneously estimate θ[k].
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The loss function is assumed to be additive:

L(θ, d) = A(θ, s) +B(θs, ls)

where A represents the loss of selecting population Πs at θ and B the loss of estimating θs

by ls.

Supposed the observed data are k independent samples of sizes n1, .., nk from Π1, ...,Πk with

sample means x1, ..., xk, respectively. Let x be (x1, ..., xk)
T .

Since Bayes rules are used, only nonrandomized decision rules need to be considered here,

which are represented as follows:

d(x) = (s(x), ls(x)(x)), x ∈ Rk

where s(x) ∈ {1, ..., k} is the selection rule at x and li(x) ∈ Ω, i = 1, ..., k, is a collection of

k estimates based on x for θi, i = 1, ..., k, respectively, available at selection.

Let the vector of the k unknown means be random and denoted by Θ. Under a prior

distribution of it, the posterior risk at X = x is

r(d(x)|X = x) = rA(s(x)|x) + rB(s(x), ls(x)(x)|x),

where

rA(s(x)|x) = E{A(Θ, s(x))|X = x},
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and

rB(s(x), ls(x)(x)|x) = E{B(Θs(x), ls(x)(x))|X = x}.

Formula (Equation 3.1) and Theorem 3.2.1.

Lemma 3.3.1 Let l∗i (x) minimize rB(i, li(x)|x), i = 1, ..., k. Furthermore, let s∗(x) mini-

mize rA(s(x)|x) + rB(s(x), l∗s(x)(x)|x). Then the Bayes decision rule, at X = x, is d∗(x) =

(s∗(x), l∗s∗(x)(x)).

Let’s consider the following loss function

L1(θ, d, n) = a(θ[k] − θs) + |θs − ls|+ nc,

where c is the cost of sampling one observation and a > 0 gives relative weights to the two

types of losses.

At θ = (θ1, ..., θk) ∈ Rk, Xi ∼ N(θi, pi
−1) and Yi ∼ N(θi, qi

−1), are independent sample

means of the samples from population Πi at stage 1 and stage 2, respectively, i = 1, ..., k, which

altogether are assumed to be independent, where where pi
−1 = σ2

ni
and qi

−1 = σ2

mi
.

Θ = (Θ1, ...,Θk) are random and follow a distribution where Θi ∼ N(µi, vi
−1), i = 1, ..., k,

are independent.

Given X = x, Y = y, Θi ∼ N(αiµi(x)+qiyi
αi+qi

, 1
αi+qi

), i = 1, ..., k,

whereαi = pi + vi, µi(x) = viµi+pixi
vi+pi

, i = 1, ..., k, and Θi’s are independent.

The conditional distribution of Yi, given X = x, is Yi ∼N(µi(x), αi+qiαiqi
), i = 1, ..., k, and Yi’s

are independent.
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By Lemma 1, the Bayes rule employs the estimator l∗i (x, y) = αiµi(x)+qiyi
αi+qi

for θi, i = 1, ..., k,

and it remains to find s∗(x). For any decision rule d = (s, l∗s), the posterior risk at X = x, Y = y,

turns out to be the following for selection s(x) = i ∈ {1, ..., k}.

a(E{Θ[k]|X = x, Y = y} − αiµi(x) + qiyi
αi + qi

) +

√
2√

π(αi + qi)
+ nc+mc

= aE{Θ[k]|X = x, Y = y} − (al∗i (x, y)−
√

2√
π(αi + qi)

) + nc+mc

Then we have the following theorem.

Theorem 3.3.2 1 Under loss function L1 and the normal prior considered above, the Bayes

rule d∗(x, y) = (s∗(x, y), l∗s∗(x,y)(x, y)) employs l∗i (x, y) = αiµi(x)+qiyi
αi+qi

, i = 1, ..., k, and s∗(x, y)

maximizes al∗i (x, y)−
√

2√
π(αi+qi)

, i = 1, ..., k.

Let us now consider fixed total sample size allocation problems. At the end of stage 1,

we have drawn n observations from among the k populations and x = (x1, . . . , xk) has been

observed. We want to draw m more observations at the second stage. If we draw mi observations

from population Πi, i = 1, . . . , k, where mi ≥ 0, i = 1, . . . , k and m1 + . . . + mk = m, then

r(m1, . . . ,mk), the corresponding look ahead Bayes risk, is the following:
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Ex{aE{Θ[k]|X = x, Y } − max
i=1,...,k

(al∗i (x, Y )−
√

2√
π(αi + qi)

)}+ nc+mc

= aEx{Θ[k]} − Ex{ max
i=1,...,k

(al∗i (x, Y )−
√

2√
π(αi + qi)

)}+ nc+mc

Therefore, the optimal allocation maximizes, subject to m1 + ...+mk = m,

Ex{ max
i=1,...,k

(al∗i (x, Y )−
√

2√
π(αi + qi)

)}

= E{ max
i=1,...,k

(
aαiµi(x) + aqiYi

αi + qi
−

√
2√

π(αi + qi)
)},

where Yi ∼ N(µi(x), αi+qiαiqi
), i = 1, ..., k, independent.

Because Yi ∼ N(µi(x), αi+qiαiqi
), we have Ni = Yi−µi(x)√

αi+qi
αiqi

∼ N(0, 1), i = 1, ..., k, and they are

independent.

Therefore,

E{ max
i=1,...,k

(
aαiµi(x) + aqiYi

αi + qi
−

√
2√

π(αi + qi)
)}

= E{ max
i=1,...,k

(
aαiµi(x) + aqi[

√
αi+qi
αiqi

Ni + µi(x)]

αi + qi
−

√
2√

π(αi + qi)
)}

= E{ max
i=1,...,k

(aµi(x)−
√

2√
π(αi + qi)

+ a

√
qi√

αi(αi + qi)
Ni)}
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Suppose mi = 1, mj = 0, j 6= i, let

gi = E{max[max
j 6=i

(aµj(x)−
√

2
√
παj

), aµi(x)−
√

2√
π(αi + q)

+ a

√
q√

αi(αi + q)
Ni]},

where Ni ∼ N(0, 1), and q = 1
σ2 , for i = 1, ..., k, then the optimal allocation for the next

observation draws one observation with equal probabilities from one of the populations Πi for

which gi = max{g1, . . . , gk}.

3.3.2 Selection and estimation of the smallest normal variance

In this section, our objective is to choose the population with the smallest variance and, at

the same time, estimate its variance.

Suppose population Πi can be described by Xi ∼ N(µ, φi), i = 1, ..., k, and X ′is are inde-

pendent, where µ is known and φi is a realization of Φi ∼ lg(αi, βi), i = 1, ..., k.

At the first stage, ni observations, xi1, ..., xini , have been drawn from population Πi, i =

1, ..., k. Let si =
∑ni

j=1(xij − µ)2, i = 1, ..., k, then the updated prior is Φi ∼ lg(αi + ni
2 , βi +

si
2 ), i = 1, ..., k, and Φi’s are independent.

At the second stage, suppose mi observations, Yi1, ..., Yimi , are to be drawn from population

Πi, i=1,...,k. Let wi =
∑mi

j=1(yij−µ)2, i = 1, ..., k, s=(s1, . . . , sk)
T and w=(w1, . . . , wk)

T . Given

S = s, W = w, Φi ∼ lg(αi + ni
2 + mi

2 , βi + si
2 + wi

2 ), i = 1, ..., k, and Φi’s are independent.

The marginal pdf of Wi, given S = s, is
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f(Wi = wi) =
Γ(αi + ni

2 + mi
2 )

2
mi
2 Γ(αi + ni

2 )Γ(mi2 )
·

(βi + si
2 )αi+

ni
2 wi

mi
2
−1

(βi + si
2 + wi

2 )αi+
ni
2

+
mi
2

,

for wi > 0, i = 1, ..., k, and Wi’s are independent.

Let the loss function be

L(φ, (h, lh), n) = φh − φ[1] + a(φh − lh)2 + nc,

where φh − φ[1] is the loss of selecting population Πh at φ = (φ1, . . . , φk) and (φh − lh)2 the

loss of estimating φh by lh, a is a positive constant giving relative weights to the two types of

losses, and c is the cost of sampling one observation.

The Bayesian rule (h∗, l∗h∗) at S = s and W = s minimizes E{Φh − Φ[1] + a(Φh − lh)2|S =

s,W = s}.

Suppose αi > 2, it is easy to see that

l∗i = E{Φi|S = s,W = w} =
βi + si

2 + wi
2

αi + ni
2 + mi

2 − 1
,

i = 1, ..., k, and h∗ minimizes, for i = 1, ..., k,

βi + si
2 + wi

2

αi + ni
2 + mi

2 − 1
− E{Φ[1]|S = s,W = w}+ a

(βi + si
2 + wi

2 )2

(αi + ni
2 + mi

2 − 1)2(αi + ni
2 + mi

2 − 2)
.

Then the Bayesian risk r(m1, . . . ,mk) for this allocation is
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Es{ min
i∈{1,...,k}

(
βi + si

2 + Wi
2

αi + ni
2 + mi

2 − 1
− E{Φ[1]|W,S = s}

+a
(βi + si

2 + Wi
2 )2

(αi + ni
2 + mi

2 − 1)2(αi + ni
2 + mi

2 − 2)
)}+ nc+mc

= Es{ min
i∈{1,...,k}

(
βi + si

2 + Wi
2

αi + ni
2 + mi

2 − 1
+ a

(βi + si
2 + Wi

2 )2

(αi + ni
2 + mi

2 − 1)2(αi + ni
2 + mi

2 − 2)
)}

−Es{Φ[1]}+ nc+mc.

The optimum allocation (m∗1, ...,m
∗
k) minimizes

Es{ min
i∈{1,...,k}

(
βi + si

2 + Wi
2

αi + ni
2 + mi

2 − 1
+ a

(βi + si
2 + Wi

2 )2

(αi + ni
2 + mi

2 − 1)2(αi + ni
2 + mi

2 − 2)
)}

for any allocation (m1, ...,mk) subject to m1 + ...+mk = m.

For i = 1, . . . , k, let

gi = Es{min[min
j 6=i

(
βj +

sj
2

αj +
nj
2 − 1

+ a
(βj +

sj
2 )2

(αj +
nj
2 − 1)2(αj +

nj
2 − 2)

),

βi + si
2 + Wi

2

αi + ni
2 + 1

2 − 1
+ a

(βi + si
2 + Wi

2 )2

(αi + ni
2 + 1

2 − 1)2(αi + ni
2 + 1

2 − 2)
]}

then the optimum allocation is to draw the next observation, with equal probabilities, from

one of the populations Πi for which gi = min{g1, . . . , gk}.
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3.3.3 Selection and estimation of the largest probability of success

In this section, our objective is to choose, among k independent populations, the one with

the largest probability of success and at the same time, estimate its probability of success.

Suppose population Πi follows a Bernoulli distribution with probability of success θi, where

θi is a realization of Θi ∼ Be(αi, βi) with αi > 0 and βi > 0, for i = 1, ..., k, and Θi’s are

independent.

Suppose at the first stage, ni observations, xi1, . . . , xini , have been drawn from population

Πi for i = 1, . . . , k, where n1 + . . .+ nk = n. Let xi =
∑ni

i=1 xij ,and x = (x1, . . . , xk)
T . At the

second stage, we are to draw mi observations, Yi1, . . . , Yimi , from population Πi for i = 1, . . . , k,

where m1 + . . .+mk = m. Let Yi =
∑mi

i=1 Yij , and Y = (Y1, . . . , Yk)
T .

It is easy to see that, given X = x, Y = y, Θi ∼ Be(ai + yi, bi + mi − yi), for i = 1, . . . , k

and Θi’s are independent, where ai = αi + xi, and bi = βi + ni − xi, for i = 1, ..., k.

The conditional pmf of Y given X = x is

P (Yi = yi) =
Γ(ai + bi)

Γ(ai)Γ(bi)
· Γ(ai + yi)Γ(bi +mi − yi)

Γ(ai + bi +mi)

(
mi

yi

)
,

where yi = 0, ...,mi, for i = 1, ..., k, which is a Pólya-Eggenberger distribution with four

parameters mi, ai, bi and 1. Yi’s are independent.

Since our objective is to choose the population Πi with θi = max{θ1, ..., θk} and to simulta-

neously estimate θi, let the loss function be
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L(θ, d, n) = θ[k] − θs + a(θs − ls)2 + nc,

where θ[k] − θs is the loss of selecting population Πs at θ = (θ1, ..., θk), and (θs − ls)2 the

loss of estimating θs by ls, a is a positive constant giving relative weights to the two types of

losses, and c is the cost of sampling one observation.

By Lemma 1, at X=x and Y=y, the Bayes rule employs the estimator l∗i (x, y) = ai+yi
ai+bi+mi

for θi, i = 1, ..., k, and s∗(x) minimizes, for i = 1, ..., k,

E{Θ[k]|X = x, Y = y} − ai + yi
ai + bi +mi

+ a
(ai + yi)(bi +mi − yi)

(ai + bi +mi)2(ai + bi +mi + 1)
+ nc+mc

Therefore, r(m1, ..,mk), the look-ahead Bayes risk for allocation (m1, ..,mk), is the following:

Ex{E{Θ[k]|X = x, Y } − max
i=1,...,k

(
ai + Yi

ai + bi +mi

−a (ai + Yi)(bi +mi − Yi)
(ai + bi +mi)2(ai + bi +mi + 1)

)}+ nc+mc

= Ex{Θ[k]} − Ex{ max
i=1,...,k

(
ai + Yi

ai + bi +mi
− a (ai + Yi)(bi +mi − Yi)

(ai + bi +mi)2(ai + bi +mi + 1)
)}

+nc+mc
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Thus, the optimal allocation (m∗1, ..,m
∗
k) maximizes

Ex{ max
i=1,...,k

(
ai + Yi

ai + bi +mi
− a (ai + Yi)(bi +mi − Yi)

(ai + bi +mi)2(ai + bi +mi + 1)
)}

subject to m1 + ...+mk = m.

For i = 1, ..., k, let

gi = Ex{max[max
j 6=i

(
aj

aj + bj
− a ajbj

(aj + bj)2(aj + bj + 1)
),

ai + Yi
ai + bi + 1

− a (ai + Yi)(bi + 1− Yi)
(ai + bi + 1)2(ai + bi + 2)

]}

= max[max
j 6=i

(
aj

aj + bj
− a ajbj

(aj + bj)2(aj + bj + 1)
),

ai + 1

ai + bi + 1
− a (ai + 1)bi

(ai + bi + 1)2(ai + bi + 2)
]

ai
ai + bi

+ max[max
j 6=i

(
aj

aj + bj
− a ajbj

(aj + bj)2(aj + bj + 1)
),

ai
ai + bi + 1

− a ai(bi + 1)

(ai + bi + 1)2(ai + bi + 2)
]

bi
ai + bi

,
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then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations Πi with gi = max{g1, . . . , gk}.



CHAPTER 4

SELECTION OF THE BEST POPULATION(S) COMPARED WITH

CONTROL

4.1 Introduction

Although the experimenter is generally interested in selecting the best population(s) of the

competing ones, in certain conditions, even the best population may not be good enough to

warrant the experimenter’s selecting it. For example, if we want to choose the most effective one

from among the k competing new treatments, the best treatment will not be worth considering

unless its mean effect reaches a specified level or it is better than the mean effect of the treatment

currently used. Therefore, the problem of simultaneous comparison of k given experimental

populations among themselves and with a standard is of practical interest. This problem

has been studied by many researchers under different types of formulations with different loss

functions. When the true value of the parameter of the standard population is not known, it

is necessary to take a random sample from it and this population is called the control. We can

differentiate these two situations by referring to them as the ”specified standard” and ”variable

control” cases. However, it is convenient to refer to the population in either case as the control

although at the expense of some precision.

73
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4.2 Selection of the best population compared with a control

Suppose there are k independent populations and one control population, we are interested

in selecting the best population compared with the control. In the following sections, we will try

to find the optimal allocation of m observations at the second stage to select the best normal,

Bernoulli, Poisson or Gamma population compared with a control.

4.2.1 Selection of the best normal population

Suppose there are k normal populations, where population Πi has mean θi and variance

σ2 for i = 1, . . . , k. There is also a control normal distribution Π0 with mean θ0 and variance

σ2, where θ0 is known. If θi > θ0, then population Πi is considered to be better than Π0.

We want to choose the best normal population compared with the control. If θ[k] ≤ θ0(θ[k] =

max{θ1, . . . , θk}), that is, there is no population better than control, we just choose Π0.

The selection rule a is a measurable mapping from the sample space to [0, 1]k+1, where ai

is the probability of selecting population Πi as the best population compared with the control

and
∑k

i=0 ai = 1. Let D be the decision space, that is, the set consisting of all selection rules.

The loss function is

L(θ, a, n) = max(θ[k], θ0)−
k∑
i=0

aiθi + nc

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, ..., k, where m1 + · · ·+mk = m, then the look ahead Bayes risk r(m1, . . . ,mk) is
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Ex{min
a∈D

E{L(Θ, a(x, Y ))|X = x, Y }}+ nc+mc

= Ex{min
a∈D

E{max(Θ[k], θ0)− a0(Y )θ0 −
k∑
i=1

aiΘi|X = x, Y }}

+nc+mc

= Ex{E{max(Θ[k], θ0)|X = x, Y } −max
a∈D

[a0(Y )θ0 +
k∑
i=1

ai(Y )E(Θi|X = x, Y )]}

+nc+mc

= Ex{max(Θ[k], θ0)} − Ex{max
a∈D

[a0(Y )θ0 +
k∑
i=1

ai(Y )E(Θi|X = x, Y )]}+ nc+mc

= Ex{max(Θ[k], θ0)} − Ex{max[θ0, max
i=1,··· ,k

αiµi(x) + qiYi
αi + qi

]}+ nc+mc

Therefore, the optimal allocation maximizes

Ex{max[θ0, max
i=1,··· ,k

αiµi(x) + qiYi
αi + qi

]}

subject to m1 + · · ·+mk = m.

For i = 1, . . . , k, let

gi = Ex{max[θ0,max
j 6=i

µj(x),
αiµi(x) + qYi

αi + q
]},

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with g[k], where g[k] = max{g1, · · · , gk}.
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4.2.2 Selection of the best normal population in terms of variance

Suppose there are k normal populations, where population Πi has a common mean µ and

variance φi for i = 1, . . . , k. There also exists a control normal population Π0 with mean µ and

a known variance φ0. φi is a realization of Φi, which follows the inverse gamma distribution

with shape parameter αi and scale parameter βi, i = 1, ..., k.

If φi < φ0, population Πi is considered better than Π0. Our objective is to select the

population with the smallest variance among these k populations and better than the control.

If min{φ1, · · · , φk} > φ0, that is, there is no population better than the control, we will choose

Π0 as our best population.

Let φ = (φ1, · · · , φk)T , a = (a0, · · · , ak)T , and the loss function be

L(φ, a, n) =

k∑
i=0

aiφi −min{φ0, φ[1]}+ nc

where ai is the probability that Πi is the best population compared with the control and∑k
i=0 ai = 1. Let D be the decision space, that is, the set consisting of all selection rules.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, · · · , k, then r(m1, . . . ,mk), the look ahead Bayes risk corresponding to this allocation, is
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Ex{min
δ∈D

E{δ0(x, Y )φ0 +
k∑
i=1

δi(x, Y )Φi −min(Φ[1], φ0)|X = x, Y }}+ nc+mc

= Ex{min
δ∈D

E{δ0(Y )φ0 +
k∑
i=1

δi(Y )Φi|X = x, Y } − E{min(Φ[1], φ0)|X = x, Y }}

+nc+mc

= Ex{min
δ∈D

E{δ0(Y )φ0 +

k∑
i=1

δi(Y )Φi|X = x, Y }} − Ex{min(Φ[1], φ0)}

+nc+mc

= Ex{min[φ0, min
i=1,...,k

E(Φi|X = x, Y )]} − Ex{min(Φ[1], φ0)}+ nc+mc

= Ex{min[φ0, min
i=1,...,k

βi + si
2 + Wi

2

αi + ni
2 + mi

2 − 1
]} − Ex{min(Φ[1], φ0)}+ nc+mc.

Therefore, the optimal allocation minimizes

Ex{min[φ0, min
i=1,...,k

βi + si
2 + Wi

2

αi + ni
2 + mi

2 − 1
]}

subject to m1 + ...+mk = m.

For i = 1, . . . , k, let

li = Ex{min[φ0,min
j 6=i

βj +
sj
2

αj +
nj
2 − 1

,
βi + si

2 + Wi
2

αi + ni
2 −

1
2

]},

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with l[1], where l[1] = min{l1, ..., lk}.
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4.2.3 Selection of the best Bernoulli population

There are k Bernoulli populations, where population Πi has the probability of success θi.

There is also a control Bernoulli distribution with probability of success θ0, where θ0 is known.

If θi > θ0, then population Πi is considered to be better than Π0. Here, our objective is to

choose the best Bernoulli population compared with the control. If θ[k] ≤ θ0, that is, there is

no population better than control, we just choose Π0.

The selection rule a is a measurable mapping from the sample space to [0, 1]k+1, where ai

is the probability of selecting population Πi as the best population compared with the control

and
∑k

i=0 ai = 1. D is the decision space consisting of all selection rules.

The loss function is

L(θ, a, n) = max[θ[k], θ0]−
k∑
i=0

aiθi + nc

Suppose at the second stage, mi observations are to be drawn from population Πi, for

i = 1, ..., k, where m1 + . . .+mk = m, then the look ahead Bayes risk for this allocation is

Ex{min
a∈D

E{max[Θ[k], θ0]− a0(x, Y )θ0 −
k∑
i=1

ai(x, Y )Θi|X = x, Y }}+ nc+mc

= Ex{max[Θ[k], θ0]} − Ex{max
a∈D
{a0(x, Y )θ0 +

k∑
i=1

ai(x, Y )E{Θi|X = x, Y }}}

+nc+mc

= Ex{max[Θ[k], θ0]} − Ex{max[θ0, max
i=1,··· ,k

ai + Yi
ai + bi +mi

]}+ nc+mc
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Therefore, the optimal allocation maximizes

Ex{max[θ0, max
i=1,··· ,k

ai + Yi
ai + bi +mi

]}

subject to m1 + · · ·+mk = m.

For i = 1, . . . , k, let

gi = Ex{max[θ0,max
j 6=i

aj
aj + bj

,
ai + Yi

ai + bi + 1
]},

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with g[k], where g[k] = max{g1, · · · , gk}.

4.2.4 Selection of the best Poisson population

Suppose population Πi follows a Poisson distribution with mean λi, for i = 1, ..., k. Π0 is

the control population with know mean λ0.

Our objective is to select the population Πi with λi = min{λ1, ..., λk} and λi < λ0, where

1 ≤ i ≤ k. If there is no such population existing, we just choose Π0 as our best population.

Let the loss function be

L(λ, δ, n) =
k∑
i=0

δiλi −min(λ[1], λ0) + nc.
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At the first stage, ni observations, xi1, . . . , xini , have been drawn from population Πi, for

i = 1, . . . , k, where n1 + . . . + nk = n. At the second stage, suppose we are to draw mi

observations, Yi1, . . . , Yimi , from population Πi, i = 1, . . . , k, where m1 + . . .+mk = m.

Let xi =
∑ni

j=1 xij , x = (x1, . . . , xk)
T , Yi =

∑mi
j=1 Yij , Y = (Y1, . . . , Yk)

T , and D be the

decision space consisting of all selection rules, then the look ahead Bayes risk corresponding to

the allocation (m1, . . . ,mk) is

Ex{min
δ∈D

E{δ0(x, Y )λ0 +

k∑
i=1

δi(x, Y )Λi −min(Λ[1], λ0)|X = x, Y }}+ nc+mc

= Ex{min
δ∈D

E{δ0(x, Y )λ0 +

k∑
i=1

δi(x, Y )Λi|X = x, Y } − E{min(Λ[1], λ0)|X = x, Y }}

+nc+mc

= Ex{min
δ∈D

E{δ0(Y )λ0 +
k∑
i=1

δi(Y )Λi|X = x, Y }} − Ex{min(Λ[1], λ0)}+ nc+mc

= Ex{min[λ0, min
i=1,...,k

E{Λi|X = x, Y }]} − Ex{min(Λ[1], λ0)}+ nc+mc

= Ex{min[λ0, min
i=1,...,k

θi(ki + xi + Yi)

niθi +miθi + 1
]} − Ex{min(Λ[1], λ0)}+ nc+mc

where the probability density function of Yi given X=x has been given previously for i =

1, . . . , k, and Yi’s are independent.

Therefore, the optimal allocation minimizes

Ex{min[λ0, min
i=1,...,k

θi(ki + xi + Yi)

niθi +miθi + 1
]}
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subject to m1 + ...+mk = m.

For i = 1, ..., k, let

li = Ex{min[λ0,min
j 6=i

θj(kj + xj)

njθj + 1
,
θi(ki + xi + Yi)

niθi + θi + 1
]},

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with l[1], where l[1] = min{l1, ..., lk}.

4.2.5 Selection of the best Gamma population

Suppose there are k populations which can be characterized by k Gamma distributions with

the same, respectively. Given Θi = θi, Xi ∼ Gamma (a, θi) and Θi ∼Gamma (αi, βi), for

i = 1, ..., k. The control population Π0 follows Gamma(a, θ0), where θ0 is a constant.

Suppose at the first stage, ni observations have been drawn from population Πi, for i =

1, . . . , k, where n1 + . . .+nk = n. We want to find the optimal allocation of the m observations

among the k populations at the second stage to select the best population comparing with the

standard. For 1 ≤ i ≤ k, population Πi is said to be the best comparing with the standard if

θi = min{θi, ..., θk} and θi < θ0. If there is no such population existing, we will choose Π0 as

our best population.

Let D be the decision space consisting of all selection rules and the loss function be

L(θ, δ, n) =
k∑
i=0

δiθi −min(θ[1], θ0) + nc,

where c is the cost of sampling one observation.
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Suppose mi observations are to be drawn from population Πi, for i = 1, . . . , k, with m1 +

. . .+mk = m, then r(m1, . . . ,mk), the look ahead Bayes risk for this allocation, is

Ex{min
δ∈D

E{
k∑
i=0

δi(Y )Θi −min(Θ[1],Θ0)|X = x, Y }}+ nc+mc

= Ex{min[θ0, min
i=1,...,k

E{Θi|X = x, Y }]} − Ex{min(Θ[1],Θ0)}+ nc+mc

= Ex{min[θ0, min
i=1,...,k

αi + nia+mia

βi + xi + Yi
]} − Ex{min(Θ[1],Θ0)}+ nc+mc,

where the probability density function of Yi given X=x has been given previously, for i =

1, . . . , k, and Yi’s are independent.

Therefore, the optimal allocation minimizes

Ex{min[θ0, min
i=1,...,k

αi + nia+mia

βi + xi + Yi
]}

subject to m1 + ...+mk = m.

For i = 1, . . . , k, let

li = Ex{min[θ0,min
j 6=i

αj + nja

βj + xj
,
αi + nia+ a

βi + xi + Yi
]}

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with l[1], where l[1] = min{l1, ..., lk}.

Especially, if the populations are exponentially distributed, that is, a = 1, then the optimal

allocation minimizes
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Ex{min[θ0, min
i=1,...,k

αi + ni +mi

βi + xi + Yi
]}

subject to m1 + ...+mk = m.

For i = 1, . . . , k, let

lei = Ex{min[θ0,min
j 6=i

αj + nj
βj + xj

,
αi + ni + 1

βi + xi + Yi
]}

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with le[1], where le[1] = min{le1, ..., lek}.

4.3 Selection of all good populations compared with a control while excluding bad

populations

In certain practical situations, people may be interested in selecting all good populations

while excluding bad ones compared with a control. For example, suppose there are k indepen-

dent newly developed manufacturing processes, we want to find out all manufacturing processes

whose performance is no worse than the specified standard and exclude those with worse per-

formance. We can also make further selection based on the selection result. In the following

sections, we will find out the optimal allocation of m observations at the second stage to select

good normal populations while excluding bad ones under several conditions.

4.3.1 Selection of all good normal populations

In this section, our objective is to find the optimal allocation of m observations among k

populations at the second stage to select all good normal populations and exclude all bad ones.
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In the first part, we compare each population with its own control, while in the second part,

we compare all populations with a common control. Therefore, we need to set two different

scenarios and use different losses functions.

4.3.1.1 Comparing each population with its own control

Suppose there are k normal populations, where population Πi has mean θi and variance σ2

for i = 1, ..., k. For each population Πi, there also exists a control normal population Π0,i with

a known mean θ0,i and variance σ2, i = 1, ..., k. θi is a realization of Θi, which follows the

normal distribution with mean µi and variance v−1
i , for i = 1, ..., k, and Θi’s are independent.

For i = 1, ..., k, if θi ≥ θ0,i + di, population Πi is considered better than Π0, if θi < θ0,i, we

say population Πi worse than Π0, where di is a nonnegative constant. Our objective is to find

all populations better than their respective control and exclude all bad ones.

Let the loss function be

L(θ,A, n) =
∑
j /∈A

L1,jI[θ0,j+dj ,∞)(θj) +
∑
j∈A

L2,jI(−∞,θ0,j)(θj) + nc,

where A is a subset of {1,. . . , k} consisting of numbers corresponding to selected populations,

L1,j > 0 is the loss of not selecting population Πj when it is better than its control, while L2,j > 0

is the loss of selecting population Πj when it is a bad population, for j = 1, . . . , k, and c is the

cost of sampling one observation.

Suppose, at the second stage, mi observations are to be drawn from population Πi, i =

1, · · · , k, where m1 + . . . + mk = m. Let D be the set consisting of all subsets of {1, . . . , k},

then the Bayes risk is
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Ex{min
A∈D

E{
∑
j /∈A

L1,jI[θ0,j+dj ,∞)(θj) +
∑
j∈A

L2,jI(−∞,θ0,j)(θj)|X = x, Y }}

+nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jP (Θj ≥ θ0,j + dj |X = x, Y ) +
∑
j∈A

L2,jP (Θj < θ0,j |X = x, Y )}}

+nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jΦ(

αjµj(x)+qjYj
αj+qj

− θ0,j − dj√
1

αj+qj

) +
∑
j∈A

L2,jΦ(
θ0,j − αjµj(x)+qjYj

αj+qj√
1

αj+qj

)}}

+nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jΦ(
αjµj(x) + qjYj√

αj + qj
− (θ0,j + dj)

√
αj + qj)

+
∑
j∈A

L2,jΦ(θ0,j

√
αj + qj −

αjµj(x) + qjYj√
αj + qj

)}}+ nc+mc

where Φ(x) is the cumulative distribution function of standard normal distribution, and the

probability density function of Yi given X=x has been given previously, for i = 1, . . . , k, and

Yi’s are independent.

Therefore, the optimal allocation minimizes

Ex{min
A∈D
{
∑
j /∈A

L1,jΦ(
αjµj(x) + qjYj√

αj + qj
− (θ0,j + dj)

√
αj + qj)

+
∑
j∈A

L2,jΦ(θ0,j

√
αj + qj −

αjµj(x) + qjYj√
αj + qj

)}}

subject to m1 + ...+mk = m.
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4.3.1.2 Comparing all populations with a common control

Suppose populations Πi follows a normal distribution with mean θi and a common known

variance σ2, for i = 1, ..., k. Population Πi is considered good if θi ≥ θ0, where θ0 is a constant,

otherwise, Πi is considered bad.

A selection rule δ is a measurable mapping from sample space Y to [0, 1]k, D is the set

consisting of all such mappings, that is, D is the set of all possible selection rules.

Let the loss function be

L(θ, δ(y), n) =

k∑
i=1

l(θi, δi(y)) + nc

where

l(θi, δi(y)) = δi(y)(θ0 − θi)I[0,∞)(θ0 − θi) + (1− δi(y))(θi − θ0)I[0,∞)(θi − θ0).

Suppose we are to draw mi observations from population Πi, i = 1, . . . , k, where m1 + . . .+

mk = m, then the Bayes risk for this allocation is
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Ex{min
δ∈D

E{L(θ, δ(x, Y ), n+m)|X = x, Y }}

= Ex{min
δ∈D

[
k∑
i=1

(δi(x, Y )

∫ θ0

0
(θ0 − θi)f(θi|X = x, Y )dθi

+(1− δi(x, Y ))

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi)]}+ nc+mc

= Ex{min
δ∈D

[

k∑
i=1

(δi(x, Y )[

∫ θ0

0
(θ0 − θi)f(θi|X = x, Y )dθi

+

∫ ∞
θ0

(θ0 − θi)f(θi|X = x, Y )dθi] +

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi)]}+ nc+mc

= Ex{min
δ∈D

[
k∑
i=1

δi(x, Y )[θ0 − E{Θi|X = x, Y }] +
k∑
i=1

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi]}

+nc+mc

= Ex{min
δ∈D

k∑
i=1

δi(x, Y )[θ0 − E{Θi|X = x, Y }]}+ Ex{
k∑
i=1

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi}

+nc+mc

= Ex{
∑

i∈A(x,Y )

[θ0 − E{Θi|X = x, Y }]}+ Ex{
k∑
i=1

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi}+ nc+mc

= Ex{
∑

i∈A(x,Y )

[θ0 −
αiµi(x) + qiYi

αi + qi
]}+ Ex{

k∑
i=1

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi}+ nc+mc

where A(x, Y ) = {i|1 ≤ i ≤ k and θ0 ≤ E{Θi|X = x, Y }} = {i|1 ≤ i ≤ k and θ0 ≤

αiµi(x)+qiYi
αi+qi

}.

Because
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Ex{
k∑
i=1

∫ ∞
θ0

(θi − θ0)f(θi|X = x, Y )dθi}

= Ex{
k∑
i=1

E{I[θ0,∞)(Θi)(Θi − θ0)|X = x, Y }}

=
k∑
i=1

Ex{E{I[θ0,∞)(Θi)(Θi − θ0)|X = x, Y }}

=
k∑
i=1

Ex{I[θ0,∞)(Θi)(Θi − θ0)}

does not depend on the allocation of the m observations at the second stage, the optimal

allocation minimizes

Ex{
∑

i∈A(x,Y )

[θ0 −
αiµi(x) + qiYi

αi + qi
]}

subject to m1 + . . .+mk = m.

For i = 1, . . . , k, let

li = Ex{
∑

j 6=i,j∈A(x,Yi)

[θ0 − µj(x)] +
∑

{i}
⋂
A(x,Yi)

[θ0 −
αiµi(x) + qiYi

αi + qi
]}

=
∑

j 6=i,j∈A(x,Yi)

[θ0 − µj(x)] + Ex{
∑

{i}
⋂
A(x,Yi)

[θ0 −
αiµi(x) + qiYi

αi + qi
]}

where if θ0 ≤ αiµi(x)+qiYi
αi+qi

, A(x, Yi) = {j|j 6= i, θ0 ≤ µj(x)}
⋃
{i}, otherwise, A(x, Yi) =

{j|j 6= i, θ0 ≤ µj(x)}.

then the optimal allocation of the next observation draws one observation, with equal prob-

abilities, from one of the populations with l[1] = min{l1, ..., lk}.
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4.3.2 Selection of all good normal populations compared with unknown control

Suppose there are k normal populations, where population Πi has mean θi and variance σ2,

for i = 1, . . . , k. There also exists a control normal population Π0 with mean θ0 and variance

σ2. σ2 is a known constant and θi is a realization of Θi, which follows the normal distribution

with mean µi and variance v−1
i , for i = 0, 1, ..., k.

For i = 1, . . . , k, if θi > θ0 +di, population Πi is considered better than Π0, if θi < θ0, we say

population Πi worse than Π0, where di ≥ 0 is known. Our objective is to select all populations

better than the control and exclude all bad ones.

Let the loss function be

L(θ,A, n) =
∑
j /∈A

L1,jI[θ0+dj ,∞)(θj) +
∑
j∈A

L2,jI(−∞,θ0)(θj) + nc,

where A is a subset of {1,. . . , k} consisting of numbers corresponding to selected populations,

L1,j > 0 is the loss of not selecting population Πj when it is better than Π0, while L2,j > 0 is

the loss of selecting population Πj when it is a bad population, for j = 1, . . . , k, and c is the

cost of sampling one observation.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

0, 1, · · · , k, where m0 + . . .+mk = m, then the Bayes risk is
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Ex{min
A∈D

E{
∑
j /∈A

L1,jI[Θ0+dj ,∞)(Θj) +
∑
j∈A

L2,jI(−∞,Θ0)(θj)|X = x, Y }}+ nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jP (Θj ≥ Θ0 + dj |X = x, Y ) +
∑
j∈A

L2,jP (Θj < Θ0|X = x, Y )}}

+nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jΦ(

αjµj(x)+qjYj
αj+qj

− α0µ0(x)+q0Y0
α0+q0

− dj√
1

αj+qj
+ 1

α0+q0

)

+
∑
j∈A

L2,jΦ(

α0µ0(x)+q0Y0
α0+q0

− αjµj(x)+qjYj
αj+qj√

1
αj+qj

+ 1
α0+q0

)}}+ nc+mc

where D consists of all subsets of {1, . . . , k}. Φ(x) is the cumulative distribution function of

standard normal distribution, and the probability density function of Yi given X=x has been

given previously, for i = 0, 1, . . . , k, and Yi’s are independent.

Therefore, the optimal allocation minimizes

Ex{min
A∈D
{
∑
j /∈A

L1,jΦ(

αjµj(x)+qjYj
αj+qj

− α0µ0(x)+q0Y0
α0+q0

− dj√
1

αj+qj
+ 1

α0+q0

)

+
∑
j∈A

L2,jΦ(

α0µ0(x)+q0Y0
α0+q0

− αjµj(x)+qjYj
αj+qj√

1
αj+qj

+ 1
α0+q0

)}}

subject to m1 + ...+mk = m.

4.3.3 Selection of all good normal populations in terms of variance

Suppose there are k normal populations, where population Πi has a common known mean µ

and variance φi, for i = 1, . . . , k. There also exists a control normal population Π0 with known
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mean µ and variance φ0. φi is a realization of the inverse gamma distribution Φi with shape

parameter αi and scale parameter βi, for i = 1, ..., k. Φi’s are independent.

For i = 1, ..., k, if φi < φ0, population Πi is considered better than Π0, if φi > φ0, we say

population Πi worse than Π0. Our objective is to find all populations better than or equal to

the control and exclude all bad ones.

Let the loss function be

L(φ,A, n) =
∑
j /∈A

L1,jI(−∞,φ0](φj) +
∑
j∈A

L2,jI(φ0,∞)(φj) + nc

where A is a subset of {1,. . . , k} consisting of numbers corresponding to selected populations,

L1,j > 0 is the loss of not selecting population Πj when it is better than or equal to the control,

while L2,j > 0 is the loss of selecting population Πj when it is worse than Π0, for j = 1, . . . , k,

and c is the cost of sampling one observation.

Suppose, at the second stage, mi observations are to be drawn from population Πi, i =

1, · · · , k, where m1 + . . .+mk = m, then the Bayes risk for this allocation is
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Ex{min
A∈D

E{
∑
j /∈A

L1,jI(−∞,φ0](Φj) +
∑
j∈A

L2,jI(φ0,∞)(Φj)|X = x, Y }}+ nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,jP (Φj ≤ φ0|X = x, Y ) +
∑
j∈A

L2,jP (Φj > φ0|X = x, Y )}}+ nc+mc

= Ex{min
A∈D
{
∑
j /∈A

L1,j

Γ(αj +
nj
2 +

mj
2 ,

βj+
sj
2

+
Wj
2

φ0
)

Γ(αj +
nj
2 +

mj
2 )

+
∑
j∈A

L2,j(1−
Γ(αj +

nj
2 +

mj
2 ,

βj+
sj
2

+
Wj
2

φ0
)

Γ(αj +
nj
2 +

mj
2 )

)}}+ nc+mc

where D consists of all subsets of {1, . . . , k}, Γ(αi + ni
2 + mi

2 ,
βi+

si
2

+
Wi
2

φ0
) is the upper incom-

plete gamma function, and the probability density function of Wi given X=x has been given

previously, for i = 1, · · · , k, and Wi’s are independent.

Therefore, the optimal allocation minimizes

Ex{min
A∈D
{
∑
i/∈A

L1,i

Γ(αi + ni
2 + mi

2 ,
βi+

si
2

+
Wi
2

φ0
)

Γ(αi + ni
2 + mi

2 )
+
∑
i∈A

L2,i(1−
Γ(αi + ni

2 + mi
2 ,

βi+
si
2

+
Wi
2

φ0
)

Γ(αi + ni
2 + mi

2 )
)}}

subject to m1 + ...+mk = m.

4.4 Selection of all good normal populations close to a control

Suppose population Πi can be characterized by normal distribution with mean θi and a

common variance σ2. There is also a control population Π0 characterized by N(θ0, σ
2), where

θ0 is a constant. For i = 1, . . . , k, the distance between population Πi and Π0 is measured by
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δi = (θi−θ0)2

2σ2 ; For a given constant c > 0, population Πi is said close to the control population if

δi ≤ c, and bad otherwise. we want to select all populations close to the control and excluding

all bad populations.

A decision rule d = (d1, ..., dk) is a mapping defined on the sample space Y into [0, 1]k. Let

the loss function be

L(θ, d, n) =
k∑
i=1

Li(θ, di) + nc,

where Li(θ, di) = di(δi − c)I(c,∞)(δi) + (1− di)(c− δi)I[0,c](δi) and c is the cost of sampling

one observation.

Suppose at the second stage, mi observations are to be drawn from population Πi, i =

1, . . . , k, then the Bayes risk is
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Ex{min
d∈D

E{
k∑
i=1

Li(Θ, di)|X = x, Y }}+ nc+mc

= Ex{min
d∈D

k∑
i=1

E{di(x, Y )(
(Θi − θ0)2

2σ2
− c)I(c,∞)(

(Θi − θ0)2

2σ2
)

+(1− di(x, Y ))(c− (Θi − θ0)2

2σ2
)I[0,c](

(Θi − θ0)2

2σ2
)|X = x, Y }}+ nc+mc

= Ex{min
d∈D

k∑
i=1

{di(x, Y )

∫
Ai

(
(θi − θ0)2

2σ2
− c)f(θi|X = x, Y )dθi

+(1− di(x, Y ))

∫
Āi

(c− (θi − θ0)2

2σ2
)f(θi|X = x, Y )dθi}}+ nc+mc

= Ex{min
d∈D

k∑
i=1

{di(x, Y )

∫
Ai

(
(θi − θ0)2

2σ2
− c)f(θi|X = x, Y )dθi

+di(x, Y )

∫
Āi

(
(θi − θ0)2

2σ2
− c)f(θi|X = x, Y )dθi

+

∫
Āi

(c− (θi − θ0)2

2σ2
)f(θi|X = x, Y )dθi}}+ nc+mc

= Ex{min
d∈D

k∑
i=1

{di(x, Y )E{(Θi − θ0)2

2σ2
− c|X = x, Y }

+

∫
Āi

(c− (θi − θ0)2

2σ2
)f(θi|X = x, Y )dθi}}+ nc+mc

= Ex{min
d∈D

k∑
i=1

di(x, Y )E{(Θi − θ0)2

2σ2
− c|X = x, Y }}

+

k∑
i=1

Ex{
∫
Āi

(c− (θi − θ0)2

2σ2
)f(θi|X = x, Y )dθi}+ nc+mc

= Ex{min
d∈D

k∑
i=1

di(x, Y )E{(Θi − θ0)2

2σ2
− c|X = x, Y }}

+

k∑
i=1

Ex{E{(c−
(Θi − θ0)2

2σ2
)I[0,c](

(Θi − θ0)2

2σ2
)|X = x, Y }}+ nc+mc

= Ex{min
d∈D

k∑
i=1

di(x, Y )E{(Θi − θ0)2

2σ2
− c|X = x, Y }}

+

k∑
i=1

Ex{(c−
(Θi − θ0)2

2σ2
)I[0,c](

(Θi − θ0)2

2σ2
)}+ nc+mc

= Ex{
∑

i∈B(x,Y )

E{(Θi − θ0)2

2σ2
− c|X = x, Y }}

+
k∑
i=1

Ex{(c−
(Θi − θ0)2

2σ2
)I[0,c](

(Θi − θ0)2

2σ2
)}+ nc+mc
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where Ai = {θi| (θi−θ0)2

2σ2 > c}, Āi = {θi| (θi−θ0)2

2σ2 ≤ c} and B(x, Y ) = {i|E{ (Θi−θ0)2

2σ2 |X =

x, Y } ≤ c}.

Therefore, the optimal allocation minimizes

Ex{
∑

i∈B(x,Y )

E{(Θi − θ0)2

2σ2
− c|X = x, Y }}

subject to mi + ...+mk = m.

For i = 1, . . . , k, let

li = Ex{
∑

j 6=i,j∈B(x,Yi)

E{(Θj − θ0)2

2σ2
− c|X = x}+

∑
{i}

⋂
B(x,Yi)

E{(Θi − θ0)2

2σ2
− c|X = x, Yi}}

where if E{ (Θi−θ0)2

2σ2 |X = x, Yi} ≤ c, B(x, Yi) = {j|j 6= i, E{ (Θj−θ0)2

2σ2 |X = x} ≤ c}
⋃
{i},

otherwise, B(x, Yi) = {j|j 6= i, E{ (Θj−θ0)2

2σ2 |X = x} ≤ c}, then the optimal allocation of the

next observation draws one observation, with equal probabilities, from one of the populations

with l[1], where l[1] = min{l1, ..., lk}.
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Appendix A

DERIVATION OF CONDITIONAL DISTRIBUTIONS

A.1 Derivation of conditional distribution of Y

In the following, we will derive the conditional distribution of Y given X=x when both

mean and variance of the normal distribution are random, where x = (x1, ..., xn)T , and Y =

(Y1, ..., Ym)T , are vectors of observations at the first and the second step, respectively.

m∏
i=1

ϕθ,φ(yi)π(θ, φ|x) =

m∏
i=1

ϕθ,φ(yi)π1(θ|φ, x)π2(φ|x)

= m(y|x)π(θ, φ|x, y)

= m(y|x)π1(θ|φ, x, y)π2(φ|x, y)

where π1(θ|φ, x, y) is the pdf of normal distribution with mean µ(x, y) = µ+(m+n)τx̃
(n+m)τ+1 , where

x̃ = 1
m+n(

∑n
i=1 xi +

∑m
i=1 yi), and variance (τ−1 + n + m)−1φ and π2(φ|x, y) is an inverted

gamma density with parameters α+ n+m
2 and β∗,where

β∗ = {β−1 + 1
2

∑n
i=1(xi − x̃)2 + 1

2

∑m
i=1(yi − x̃)2 + (m+n)(x̃−µ)2

2(1+nτ+mτ) }
−1.
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Appendix A (Continued)

Therefore,

m(y|x) =
f(y, θ, φ|x)

π(θ, φ|x, y)

=

∏m
i=1 ϕθ,φ(yi)π(θ, φ|x)

π(θ, φ|x, y)

=
(2πφ)−

m
2 e
− 1

2φ

∑m
i=1(yi−θ)2(2π φ

τ−1+n
)−

1
2 e
− 1

2
τ−1+n

φ
(θ−µ(x))2

(2π φ
τ−1+n+m

)−
1
2 e
− 1

2
τ−1+n+m

φ
(θ−µ(x,y))2

·
[Γ(α+ n

2 )β
′α+n

2 φα+n
2

+1]−1e
− 1

φβ
′

[Γ(α+ n+m
2 )β∗α+n+m

2 φα+n+m
2

+1]−1e
− 1
φβ∗

=
(2π)−

m
2 ( τ

1+nτ )−
1
2 [Γ(α+ n

2 )β
′α+n

2 ]−1

( τ
1+nτ+mτ )−

1
2 [Γ(α+ n+m

2 )β∗α+n+m
2 ]−1

· e
− 1

2φ
[
∑m
i=1(yi−θ)2+ 1+nτ

τ
(θ−µ(x))2+ 2

β
′ − 1+nτ+mτ

τ
(θ−µ(x,y))2− 2

β∗ ]

In the following, we will prove that

m∑
i=1

(yi − θ)2 +
1 + nτ

τ
(θ − µ(x))2 +

2

β′
− 1 + nτ +mτ

τ
(θ − µ(x, y))2 − 2

β∗
= 0

The coefficient of θ2

m+
1 + nτ

τ
− 1 + nτ +mτ

τ
= 0

The coefficient of θ

−2

m∑
i=1

yi − 2
1 + nτ

τ
µ(x) + 2

1 + nτ +mτ

τ
µ(x, y) = 0
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Appendix A (Continued)

After standard calculation, we have that the rest

m∑
i=1

yi
2 +

1 + nτ

τ
µ2(x) +

2

β′
− 1 + nτ +mτ

τ
µ2(x, y)− 2

β∗

is also equal to 0.

Therefore,

m(y|x) = (2π)−
m
2 (1 + nτ)

1
2 (1 + nτ +mτ)−

1
2 Γ(α+

n+m

2
)Γ(α+

n

2
)
−1
β∗α+n+m

2 β
′−α−n2 .

A.2 Derivation of pdf of the sum of Gamma distributions given Gamma prior

Suppose X ∼ Gamma(a, θ) given θ, which is a realization of a random variable Θ, where

Θ ∼ Gamma(α, β). n observations x1, ..., xn have been drawn from X. Let y =
∑n

i=1 xi, then

Θ|y ∼ Gamma(α+ na, β + y)

Because Xi|θ ∼ Gamma(a, θ), for i = 1, ..., k, we have Y = X1 + ...+Xn|θ ∼ Gamma(na, θ).

In the following, we will derive the marginal distribution of Y.

f(y|θ)π(θ) = m(y)π(θ|y),

where

f(y|θ) =
θna

Γ(na)
yna−1e−θy, y > 0, θ > 0,

π(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0,
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π(θ|y) =
(β + y)α+na

Γ(α+ na)
θα+na−1e−(β+y)θ, θ > 0, y > 0,

therefore, the marginal probability density function of Y

m(y) =
f(y|θ)π(θ)

π(θ|y)

=

θna

Γ(na)y
na−1e−θy βα

Γ(α)θ
α−1e−βθ

(β+y)α+na

Γ(α+na) θ
α+na−1e−(β+y)θ

=
Γ(α+ na)βαyna−1

Γ(α)Γ(na)(β + y)α+na
, y > 0.

A.3 Derivation of pmf of the sum of Poisson distributions given Gamma prior

Suppose X ∼ Poisson(λ) given λ, which is a realization of a random variable Λ, where Λ ∼

Gamma(k, θ), with k being the shape parameter and θ being the scale parameter. n observations

x1, ..., xn have been drawn from X. Let y =
∑n

i=1 xi, then Λ|y ∼ Gamma(k + y, θ
nθ+1)

Because Xi|λ ∼ Poisson(λ), i = 1, ..., k, we have Y = X1 + ...+Xn|λ ∼ Poisson(nλ).

In the following, we will derive the marginal distribution of Y.

f(y|λ)π(λ) = m(y)π(λ|y), where

f(y|λ) =
(nλ)ye−nλ

y!
, y = 0, 1, ..., λ > 0,

π(λ) =
1

θkΓ(k)
λk−1e−

λ
θ , λ > 0,

π(λ|y) =
1

( θ
nθ+1)k+yΓ(k + y)

λk+y−1e−
λ(nθ+1)

θ , λ > 0,
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therefore, the marginal probability mass function of Y

m(y) =
f(y|λ)π(λ)

π(λ|y)

=

(nλ)ye−nλ

y!
1

θkΓ(k)
λk−1e−

λ
θ

1
( θ
nθ+1

)k+yΓ(k+y)
λk+y−1e−

λ(nθ+1)
θ

=
Γ(k + y)nyθy

Γ(k)y!(nθ + 1)k+y
, y = 0, 1, ...
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