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SUMMARY

A novel distributed video and image processing framework is presented in our work. Our

work involves a serious of new algorithms in video processing and dynamical games. In the first

part of our work, we present a distributed graph-based sequential particle filtering framework

for visual tracking from single and multiple collaborative cameras in lossy networks. Many

practical visual processing applications require a robust and efficient algorithm to handle oc-

clusions for visual tracking from degraded visual data in camera networks that utilizes limited

computational resources. Firstly, distributed graph-based particle filtering for visual tracking

from one view is introduced. Specifically, two new distributed approaches: the graph-based

sequential particle filtering framework and its hierarchical counterpart are proposed from one

camera. We subsequently derive a distributed visual tracking solution from multiple cameras

to handle object occlusions in the presence of frame loss by using collaborative particle fil-

ters. The proposed approach relies on Markov Properties and partial-order relations to derive

a close-form sequential updating scheme on general graphs in lossy networks. The resulting

distributed visual tracking technique is therefore robust to occlusion and sensor errors from

specific camera views. Furthermore, the computational complexity of the proposed distributed

approach from multiple cameras grows linearly with the number of cameras and objects in

each camera. The resulting experiments further demonstrate the superiority of our approach

to deal with severe occlusions in the presence of frame loss compared with existing methods. In

the second part of our work, we propose a novel statistical estimation algorithm to stochastic

xii



SUMMARY (Continued)

context-sensitive grammars (SCSGs). First, we show that the SCSGs model can be solved

by decomposing it into several causal stochastic context-free grammars (SCFGs) models and

each of these SCFGs models can be solved simultaneously using a fully synchronous distributed

computing framework. An alternate updating scheme based approximate solution to multiple

SCFGs is also provided under the assumption of a realistic sequential computing framework.

A series of statistical algorithms are expected to learn SCFGs subsequently. Specific to our

case, a hybrid of general Forward-Backward Algorithm, Inside Algorithm and Expectation-

Maximization Technique will be used to estimate the parameters for SCFGs. The SCSGs can

be then used to represent multiple-trajectory. Experimental results demonstrate the improved

performance of our method compared with existing methods for multiple-trajectory classifica-

tion. In the third part of our work, we propose a Compressed-Sensing Game Theory (CSGT)

framework to solve the Nash equilibria. We demonstrate that the proposed CSGT framework

provides a polynomial complexity solution to the Nash Equilibria, thus allowing more general

pay-off functions for certain classes of two-player dynamic games. We also provide numerical

examples that demonstrate the efficiency of proposed CSGT framework in solving the Nash

equilibria for two-player games in comparison to existing algorithms.

xiii



CHAPTER 1

INTRODUCTION

1.1 Literature Review

1.1.1 Visual Tracking

Recent technological trends have required the deployment of surveillance and visual track-

ing applications in distributed smart camera networks driven by its extensive availability and

applications such as human-computer interaction, human activity analysis, etc. Multiple object

tracking is a challenging task because of the exponentially increased computational complexity

in terms of the degrees of freedom of the object and the severe image ambiguities incurred

by frequent self-occlusions. Compared to relatively independent movements in multiple object

tracking, the motion of articulated object has some inherent constraints. For example, the con-

straints between analyzed part and its neighboring part. Monocular video is capable of single

object tracking and multiple isolated object tracking. However, multiple object tracking and

articulated motion analysis usually have to deal with multi-object occlusions. Monocular video

has intrinsic limitations in solving occlusions, due to the limited field of single view. There is

a growing need to obtain more information by increasing the number of cameras (1). Track-

ing with multiple cameras not only expands coverage of the environment, but also helps to

disambiguate in matching when subjects are occluded from a certain viewing angle. In many

applications, bandwidth constraints, security concerns, and difficulty in storing and analyzing

1
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large amounts of data centrally at a single location necessitate the development of distributed

camera networks. Thus, the development of distributed scene-analysis algorithms is highly

required. Following this trend, the extensive availability of distributed camera networks calls

for a robust and efficient algorithm for object tracking from degraded visual data that utilizes

limited computational resources. For instance, video tracking from hand-held cameras or cam-

eras mounted on mobile platforms is often required to track objects based on video sequences

with missing frames due to acquisition and network errors. The unstable wireless connectivity

and narrow bandwidth in mobile phones have made some frames unavailable and thus imposed

tremendous constraints on our ability to deploy state-of-the-art tracking systems on mobile

platforms. Therefore, robust and self-healing tracking algorithms which can deal with random

frame loss are very desirable in such a lossy environment. Motivated by these practical applica-

tions, we seek to develop a robust and self-healing tracking algorithm to address missing frames

on multi-camera platforms.

In our work, we propose a novel distributed framework of multiple object tracking from

multiple collaborative cameras. The main contributions of this work can be summarized as

follows.

• To the best of our knowledge, the distributed visual tracking framework in this work is

the first distributed graph-based technique especially designed for smart camera networks.

The resulting distributed visual tracking technique is therefore robust to occlusion and

sensor errors from specific camera views. Furthermore, the computational complexity of
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the proposed distributed approach from multiple cameras grows linearly with the number

of cameras and objects in each camera.

• Instead of using centralized joint data association for complex objects, we propose to

adopt multiple collaborative trackers for multiple objects, which is a good choice for a

smart camera. We first introduce an efficient decomposed inter-part interaction model and

propose a novel graph-based particle filtering (GBPF) framework. To handle severe self-

occlusion, high-level inter-unit interactions are further formulated; A novel hierarchical

graph-based particle filtering (HGBPF) framework is proposed within one camera.

• We develop new distributed camera networks to avoid centralized approaches to visual

tracking from multiple cameras. An additional likelihood density called a camera collabo-

ration likelihood is introduced to characterize the collaboration between the same objects

counterparts in different views. A novel camera collaboration model is proposed within

collaborative particle filters framework, which is a good choice for smart camera networks.

As our distributed graph-based visual tracking framework from multiple camera views is

derive from tracking technique with only one camera. We first provide a brief summary of

previous work from one view. Since the visual information from a single fixed camera is quite

limited, there is a growing interest in obtaining more information by increasing the number of

cameras. Then a brief overview of visual tracking on multi-camera platform is also provided.

Some related work of graphical models is also presented in this section.

Most early efforts for multiple object tracking use monocular video. A widely accepted

approach that addresses many problems in this difficult task is based on a joint state-space
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representation and infers the joint data association (2) (3). Various improvements have been

made, such as joint probabilistic data association filter for tracking complex visual objects (4).

MacCormick and Blake (5) used a binary variable to identify foreground objects and proposed

a probabilistic exclusion principle to penalize the hypothesis where two objects occlude. Is-

ard and MacCormick combined a multi-blob likelihood function with the condensation filter

and used a 3D object model providing depth ordering to solve the multiple-object occlusion

problem (6). Tao et al. (7) proposed a sampling-based multiple-object tracking method using

background subtraction. Khan et al. (8) proposed a MCMC-based particle filter which uses a

Markov random field to model motion interaction. Although the above algorithms, which are

based on a centralized process, can handle the problem of multiple-object occlusion in principle,

they require a tremendous computational cost due to the complexity introduced by the high di-

mensionality of the joint-state representation which grows exponentially in terms of the number

of objects tracked. Therefore, various decentralized solutions have been proposed for multiple

object tracking. The decentralized approach was carried by Qu et al. (9) who proposed an

interactively distributed multiple-object tracking framework using a magnetic-inertia potential

model.

Compared to relatively independent movements in multiple object tracking, the motion of

articulated object has some inherent constraints. Many approaches have been studied to avoid

the problems inherent in articulated object tracking. Most early efforts of articulated motion

analysis took advantages of 2D and 3D object models (10). A unified spatio-temporal articulated

model was proposed by Lan and Huttenlocher (11). Kalman filters have been employed by many
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researchers to combat occlusions in articulated object tracking (12). Sequential Monte Carlo

method or particle filter was demonstrated to be efficient for object tracking in clutter (10)

and has also been introduced for articulated motion analysis. Deutsher et al. (13) modified

the Condensation algorithm (10) by an annealed particle filter. Choo and Fleet (14) described

a filter that used hybrid Monte Carlo to obtain efficient samples in high-dimensional spaces.

Chang et al. (15) proposed an appearance-based particle filter for articulated hand tracking.

The successful application of particle filtering was limited to situations where the dimension of

the joint state is relatively small. For high-dimensional state spaces, many algorithms become

computational inefficient.

Although various decentralized solutions have been proposed to deal with the problem of

occlusion from only one camera view, monocular video has intrinsic limitations for multiple ob-

ject tracking. Since the visual information from a single fixed camera is quite limited, there is

a growing interest in obtaining more information by increasing the number of cameras (1) (16).

Tracking with multiple cameras not only expands coverage of the environment, but also helps to

disambiguate in matching when subjects are occluded from a certain viewing angle. However,

using multiple cameras raises many additional challenges. The most critical difficulties pre-

sented by multi-camera tracking are to establish a consistent label correspondence of the same

object among the different views and to integrate the information from different camera views

for tracking that is robust to significant and persistent occlusion. Many existing approaches

address the label correspondence problem by using different techniques such as feature match-

ing (17), camera calibration and 3D environment model (18). Integration of information from
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multiple cameras to solve the multiple object occlusion problem has been developed. Static and

active cameras are used together in (19). Iwase et al. (20) integrated the tracking data of soccer

players from multiple cameras by using homography and a virtual ground image. A particle

filter-based approach is presented by Gatica-Perez et al. (21) for tracking multiple interacting

people in meeting rooms. Nummiaro et al. (22) proposed a color-based object tracking ap-

proach with a particle filter implementation in multi-camera environments. Recently, Du and

Piater (23) presented a very efficient algorithm using sequential belief propagation to integrate

multi-view information for a single object in order to solve the problem of occlusion with clutter.

Recently, probabilistic graphical models have been used to facilitate the analysis of high

dimensionality signal processing problems. It provides a more simple and distinct way to visu-

alize the structure of the probability model. For example, variational analysis methods (24) (25)

are generally used to obtain approximate inference for loopy Markov networks. They provide

lower bounds of the approximation as a theoretical benefit. In contrast to variational analysis

methods, loopy belief propagation (26) often converges and when it do, it gives a better ap-

proximation. Furthermore, Bayesian filtering framework has become very popular for object

tracking. It provides a recursive formulation of the posterior probability density function in

dynamical systems. Analytical solutions for the optimal Bayesian filtering problem are known

only for special cases including the linear and gaussian case (Kalman filter (27)). Particle

filters (10) (28) (29) (30) provide a general framework for estimating the probability density

function of general non-linear and non-Gaussian systems. They are based on a Monte Carlo

approach, where the density is represented by a set of random samples. Samples can be drawn
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from any distribution called the proposal density or the importance function, but sample weights

should be properly adjusted so that the sample set fairly approximates the posterior density.

Particle filtering on general graphs is first proposed by (31). They split the general graph into

multiple cycle-free subgraphs and apply the filtering algorithm on cycle-free graphs in a dis-

tributed way. However, graph-based particle filtering does not incorporate stochastic missing

frames behavior into the estimation. Therefore, robust particle filtering algorithm to address

random frame loss due to acquisition and network errors on multi-camera platform is very

desirable.

1.1.2 Video Classification

The application of the grammars to syntactic pattern recognition has received tremendous

attention in recent years due to its wide applicability in diverse areas such as gesture recognition,

biological sequence analysis, speech signal processing, etc. Finite-state grammars (FSGs), also

known as hidden Markov models, have achieved a great success in the speech community (32).

They were used in modern tracking systems (33) and in machine vision (17). On the other

hand, context-free grammars (CFGs) are studied in (34) for gesture recognition and imple-

mentation of an online parking lot monitoring task. In (35) they were used in modeling the

dynamics of a bursty wireless communications channel. Reference (36) applies these syntactic

models to the study of biological sequence analysis and RNA. Finally, application of syntactic

modeling in pattern recognition is covered in depth in (37). Among the many grammars and

languages that have been investigated for practical applications, FSGs and CFGs, as well as

their stochastic counterparts, stochastic finite-state grammars (SFSGs) and stochastic context-
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free grammars (SCFGs), are currently the most widely used classes of grammars. In general,

Bayesian estimation of SFSGs and SCFGs are polynomial complexity, whereas this is not true

for stochastic context-sensitive grammars (SCSGs). In general, estimation of context-sensitive

grammars (CSGs) can not be solved in close form. In particular, the learning algorithms for

finite-state grammars (FSGs) and context-free grammars (CFGs) rely on the causality of the

model. However, CSGs can not be solved in exact form since such a model is inherently non-

causal. Previous works have focused on formulating other classes of grammars lie between the

CFGs and CSGs (38). In our preliminary work, we propose learning algorithms on SCSGs

directly.

Object trajectory-based analysis and recognition has gained significant interest in scientific

research recently. This trend can be attributed mainly to several different reasons. First,

object trajectory data is becoming more easily available due to advances in sensor technology

and computing techniques (15). On the hardware side, advancements in sensor technology are

resulting in low-cost versatile sensors. On the software side, advancements in computer vision

have led to the design of robust object trackers that can handle occlusions, shape deformations

and intensity changes in single- and multi- camera settings. Second, moving object trajectories

are often used to describe and analyze an object’s behavior. Motion trajectories provide rich

spatio-temporal information about an object’s activity. Abnormal behaviors can be detected

by comparing newly detected moving object trajectories with normal trajectories. Doing so

requires a parsimonious representation of object trajectories. Such a representation could be

provided by stochastic grammars (39).
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Furthermore, developing high-accuracy activity classification and recognition algorithms

using motion trajectories is still an extremely challenging task particularly when the number

of activities to be recognized is relatively large. Multi-class classification problem is inherently

challenging. Chance classification of n classes is 1/n, as n goes to infinity, chance accuracy

goes to 0. The object trajectory is typically modeled as a sequence of consecutive locations

of the object on a coordinate system resulting in a vector in 2-D or 3-D Euclidean space.

The measurement parameters, at each point in time, needed for object localization can be

arbitrarily high-dimensional vectors including x and y- projections, distance, silhouette of the

object shape, and other data corresponding to object appearance and environment. Developing

scalable activity recognition algorithms based on this high dimensionality cue is an extremely

challenging task.

Our work is focused on stochastic context-sensitive grammars (SCSGs) learning and presents

a series of statistical estimation approaches to estimate the parameters for stochastic grammars.

To the best of our knowledge, this is the first work to provide learning algorithms on SCSGs.

There are two constraints in learning SCSGs: one is how to split complex grammars into

simpler ones that can be analyzed; the other one is to determine a discrete structure (topology)

of the grammar and estimate probabilistic parameters in a simpler grammar. In this work,

SCSGs models are first decomposed into several causal SCFGs, and a approximate simultaneous

solution to each of these distributed causal SCFGs is provided by adopting an alternate updating

scheme. Our proposed model is then successfully applied to multiple-trajectory classification.
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A series of algorithms are expected to learn stochastic grammars for trajectories and predict

their categories based on learned stochastic grammars.

1.1.3 Compressed sensing game theory

Game theory is a mathematical model describes and analyzes scenarios with interactive

decisions. In recent years, there has been a growing interest in adopting cooperative and non-

cooperative game theoretic approaches to model many communications and networking prob-

lems, such as cognitive radio systems, sensor networks, defense networks and gene regulatory

networks (40). Many of these applications employ solution concepts such as correlated equi-

libria and Nash equilibria. Nash equilibria can capture decision balance among all players at

the expense of computation. Correlated equilibria extends the Nash equilibria and are benign

to solve. Although widely used and computationally less expensive, the correlated equilibrium

could be too ”broad”. Furthermore, the true correlations among the players could be neglected

for the solutions. Compared with correlated equilibria, the Nash equilibria assume that agents

act independently and have received great attention in the signal processing and communica-

tion communities (41). The existence of Nash equilibrium requires essential use of Brouwer

fixed point theorems (42) and in general, any algorithm solving the fixed point problem would

unconditionally require an exponential number of function evaluations. The particular path

following algorithm developed by Lemke and Howson (43) was recently proven to require, even

in the best case for some instances, an exponential number of steps (44). The general problem

for solving Nash equilibria has been shown PPAD-complete (45), which is currently lack of

general efficient algorithm. Instead, research attentions for efficient algorithm have been put
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on various special classes of the problem. For example, the problem of computing a Nash equi-

librium in a two-player zero-sum game is solvable in polynomial time by Khachiyan’s ellipsoid

algorithm (46). The problem with convex payoff functions can be solved by convex optimization

tools such as interior point method (47). However, it is still unknown whether we can have

efficient algorithm if we have situations other than those special cases.

Compressed sensing is a signal processing technique for efficiently acquiring and reconstruct-

ing a signal, by finding solutions to under-determined linear systems. This takes advantage of

the signal’s sparseness in some domain, allowing the entire signal to be determined from rel-

atively few measurements. Donoho showed that the number of linear equations can be small

and still contain nearly all the information to reconstruct the signal (48).



CHAPTER 2

DISTRIBUTED GRAPH-BASED PARTICLE FILTERING

FRAMEWORK FOR SINGLE AND MULTIPLE COLLABORATIVE

CAMERAS IN LOSSY NETWORKS

2.1 Theoretical Foundations

This section describes theoretical framework of our graph-based algorithm for distributed

smart camera networks, including the stochastic dynamical models, particle filtering and graph-

ical models.

2.1.1 Stochastic Dynamical Models

To define the problem of tracking, the propagation process must be set out in terms of

discrete time t. The state of the object in the model is denoted xt, and its history is x0:t.

Similarly, the set of measurements (e.g., color histogram and edge ) at time t is zt with history

z1:t.

A somewhat general assumption is made for the probabilistic framework that the object

dynamics formulate a temporal first-order Markov chain. The new state xt depends only on

the immediately preceding state, independent of the earlier history. Therefore, we have

p(xt|xt−1, xt−2, . . . , x0) = p(xt|xt−1) (2.1)

12
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In this case, the dynamics are entirely determined by the form of the conditional density

p(xt|xt−1). However, the first-order Markov model cannot accurately characterize the dynamics

of moving objects. Therefore, this still allows more general and accurate dynamics. To address

this problem, a more general assumption is adopted for the probabilistic framework that the

object dynamics form a high-order Markov chain (49) so that

p(xt|xt−1, xt−2, . . . , x0) = p(xt|xt−1, . . . , xt−m) (2.2)

—the new state is conditioned directly on the immediately m preceding state. Both first-

and high-order hidden Markov models are mainly used for single object tracking. Recently,

graph-based sequential particle filtering for conditional density propagation is performed by a

sequential updating scheme in a predetermined order in (31). Compared with first- and high-

order particle filtering, graph-based sequential particle filtering can be used to many emerging

multiple object tracking applications.

In our work, we establish a distributed graph-based framework of particle filtering in deal-

ing with frame loss for these stochastic dynamical models on multi-camera platform. This

distributed framework has the striking property that, of course, it is more useful for realistic

problems. For example, in a wireless lossy network formed by several camera-equipped mobile

phones, it is quite easy to lose some visual data during the video transmission process, thus

make it ineffective to use existing methods (10)(49)(31).
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2.1.2 Particle Filtering

From a Bayesian perspective (28), the tracking problem is to recursively calculate some

degree of belief in the state xt at time t, taking different values, given the data z1:t up to time

t. Then, the conditional state density p(xt|z1:t) may be obtained, recursively, in two stages:

prediction and update. In this section, a first-order markovian discrete-time state space model

is assumed. The rule for propagation of state density over time is

p(xt|z1:t) = ktp(zt|xt)p(xt|z1:t−1) (2.3)

where

p(xt|z1:t−1) =
∫

xt−1

p(xt|xt−1)p(xt−1|z1:t−1) (2.4)

Particle filters (10) have been proposed as a nonlinear and non-Gaussian method for Bayesian

estimation, without incurring excessive computational load. We denote {xi
0:t, w

i
t}N

i=1 as a ran-

dom measure that characterizes the posterior pdf p(x0:t|z1:t), where {xi
0:t} is a set of N particles

with associated weights {wi
t, i = 1, . . . , N}. Therefore,

p(x0:t|z1:t) ≈
N∑

i=1

wi
tδ(x0:t − xi

0:t) (2.5)
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where

wi
t ∝ wi

t−1

p(zt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, zt)
(2.6)

In (2.6), p(zt|xi
t) is the likelihood and p(xi

t|xi
t−1) is the transition probability and q(xi

t|xi
t−1, zt)

is the proposal density. Therefore, the posterior filtered density can be approximated as

p(xt|z1:t) ≈
N∑

i=1

wi
tδ(xt − xi

t) (2.7)

The normalized weights πi
t are given by

πi
t =

wi
t∑N

j=1 wj
t

(2.8)

The state estimate x̂t is given by the sample mean

x̂t =
N∑

i=1

πi
tx

i
t (2.9)

Parallel with the derivation of particle filtering for the first-order markovian discrete-time

state space model, particle filters for the high-order Markov chain and general graphical models

could be easily derived.

2.1.3 Graphical Models

In our graph representation, each node represents a hidden state xi and is linked to an

observation zi. We use V to denote the set of hidden states in graph G, i.e., V = {x1, x2, ...}.
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Figure 1. Example of a directed cycle-free graph (the observation layer is omitted).

Set V could be partitioned into disjoint sets, called layers, {Vl}L
l=0. The number of elements in Vl

is K(l). Let us use V0:l = {V0, V1, ...Vl} to denote the collection of child sets up to order l, where

we define the 0th − order child set V0 as the set of nodes that have no parents. Furthermore,

we use the notation vm,l to denote the mth node in Vl, m = 1, 2, ..., K(l). The parent of vm,l is

denoted as Pa(vm,l). It could be easily seen that Pa(vm,l) ⊆ V0:l−1. The observation associated

with vm,l is denoted as om,l, and Ol = {om,l, m = 1, 2, ..., K(l)}. We denote the order of node

vm,l as S(vm,l). For the nodes within the same layer, the order could be arbitrarily assigned.

Although therefore the order of the nodes in a graph will have many combinations, we only use

one predetermined order for a graph. For example, one possible order of the graph in Fig. 1 is:

x0, x1, x2, x3, x4, x5, where S(x0) = 1, S(x3) = 4, S(x5) = 6.

For example, in Fig. 1, V = {x0, x1, x2, x3, x4, x5}, V0 = {x0}, V1 = {x1, x2}, V2 = {x3},

V3 = {x4} and V4 = {x5}; v1,0 = x0, v1,1 = x1, v2,1 = x2, v1,2 = x3, v1,3 = x4, v1,4 = x5;

Pa(v1,2) = {x1, x2}.
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2.2 Distributed Graph-Based Particle Filtering Framework from Monocular View

2.2.1 Graph-Based Particle Filtering (GBPF) Framework

Multiple object tracking is a challenging task because of the exponentially increased compu-

tational complexity in terms of the degrees of freedom of the object and the severe image am-

biguities incurred by frequent self-occlusions. Compared to relatively independent movements

in multiple object tracking, the motion of articulated object has some inherent constraints. A

good example of such constraints appears in the human body. It can be observed that there

is a common relationship among arms and legs. Left arm moves forward while left leg moves

backward. We start to derive a distributed graph-based framework from one view for articu-

lated object tracking. When we apply this framework to multiple object tracking, we ignore

the inherent constraints between complex parts and consider comparatively independent move-

ments among multiple objects. We first introduce a decomposed inter-part interaction model in

this section. Then a distributed graph-based particle filtering framework is formulated in this

section. The proposed distributed graph-based framework is a good choice for a smart camera

in camera networks.

2.2.1.1 Graphical Models for Articulated Object Representation

An articulated object can be represented by a graphical model in Fig. 2. The Fig. 2 can

also be applied to multiple object tracking. It has two layers: the hidden state layer (circle

nodes) and the observation layer (square nodes). Each circle node corresponds to a part of the

articulated object. For instance, considering a human body, a part can be a torso, or a thigh,
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Figure 2. Graphical model for an articulated object at time t.

etc. The undirected links represent physical constraints among different articulated parts. Each

individual part is associated with its observation. The directed link from a part’s state to its

associated observation represents the local observation likelihood. Instead of using the joint

state representation for the whole articulated object, we denote the state of each part at time

t by xi,t, where i = 1, 2, ..., M is the index of parts. In our implementation, the state xi,t is

chosen as x = (cx, cy, b,Θ), where (cx, cy) is the center point; b is half of the length of the

rectangle; Θ is the rotation angle of state around the center point with respect to the Y axis.

The ratio of the length and width of the rectangle is held constant equal to its value obtained

in the first frame. We denote the observation of xi,t by zi,t.

The inter-part interaction density p(xj,t | xi,t) models the constraints between analyzed part

i and its neighboring part j. Estimation of this density should adapt to different applications

and is usually critical in practical implementation. To avoid high computational requirements
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for a joint state representation model, we develop an efficient decomposed inter-part interaction

model based on (50). It can be observed that the relative locations and poses of two adjacent

parts are independent. Therefore, by temporarily discarding the time index, we have

p(xj,t | xi,t) = p(cxj , cyj , bj , Θj |cxi, cyi, bi, Θi)

= p(cxj , cyj | cxi, cyi)p(Θj | Θi)p(bj | bi) (2.10)

Where we assume that the size of an object part is not influenced by its neighboring parts.

Without considering the size relation between two parts, p(bj | bi) becomes uniformly dis-

tributed. Thus, we can further simply (2.10) to be

p(xj,t | xi,t) ∝ p(cj | ci)p(Θj | Θi) (2.11)

Where ci = (cxi, cxi), cj = (cxj , cxj) are the coordinates of the center points. p(cj | ci) models

the location interaction of two adjacent parts. We adopt a ”spring-joint” model similar to (50)

for p(cj | ci).

p(cj | ci) =
1

2π|Σc|1/2
exp{−1/2(cj − ci)T Σ−1

c (cj − ci)} (2.12)
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Where Σc is the covariance matrix of this bivariate normal distribution. In (2.10), p(Θj | Θi)

models the pose relation of two adjacent parts. It can be estimated either by some prior

knowledge in particular applications, or by learning from training data.

2.2.1.2 Posterior Density Propagation And Sequential Importance Sampling

In our graph representation, we use V to denote the set of hidden states in graph G, i.e.

V = {x0, x1, x2, ...}. Set V could be partitioned into disjoint sets, called layers, {Vl}L
l=0. The

number of elements in Vl is K(l). Let us use set V0 to denote the set of nodes that have no

parents. Furthermore, we use the notation vm,l to denote the mth node in Vl, m = 1, 2, ..., K(l).

The parents of vm,l can be denoted as Pa(vm,l). It could be easily seen that Pa(vm,l) ⊆ V0:l−1.

The observation associated with vm,l is denoted as om,l, and Ol = {om,l, m = 1, 2, ..., K(l)}.

We denote the order of node vm,l as S(vm,l). Although therefore the order of the nodes in a

cycle-free graph will have many combinations, we only use one predetermined order.

The nodes in set V0 do not have any parents, and the conditional probability is given as prior

p(vm,0). For the node vm,l in Vl, we formulate the conditional density p(vm,l, V0:l−1|om,l, O1:l−1)

as

p(vm,l, V0:l−1|om,l, O1:l−1) ∝ p(om,l|vm,l)p(vm,l|Pa(vm,l))p(V0:l−1|O1:l−1) (2.13)

We further use sequential importance sampling technique (10) again as the paradigm. We

denote {{vm,l, V0:l−1}i, wi
S(vm,l)

}N
i=1 as a random measurement that characterizes the posterior
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density in (2.13), where {vm,l, V0:l−1}i is a set of N particles with associated weights wi
S(vm,l)

, i =

1, 2, . . . , N . The weights are normalized such that
∑N

i=1 wi
S(vm,l)

= 1.

Therefore,

p(vm,l, V0:l−1|om,l, O1:l−1) ≈
N∑

i=1

wi
S(vm,l)

δ({vm,l, V0:l−1} − {vm,l, V0:l−1}i) (2.14)

where the weights are given by

wi
S(vm,l)

∝ p({vm,l, V0:l−1}i|om,l, O1:l−1)
q({vm,l, V0:l−1}i|om,l, O1:l−1)

(2.15)

By using the conditional independence properties (51), we obtain q(vm,l, V0:l−1|om,l, O1:l−1) =

q(vm,l|om,l, Pa(vm,l))q(V0:l−1|O1:l−1). The weight update equation can be further obtained as

follows:

wi
S(vm,l)

∝ wi
S(vm,l)−1

p(om,l|vi
m,l)p(vi

m,l|{Pa(vm,l)}i)

q(vi
m,l|{Pa(vm,l)}i, om,l)

(2.16)

In (2.16), p(om,l|vi
m,l) is the likelihood, and p(vi

m,l|{Pa(vm,l)}i) captures the relationship

between the particles of the current node and its parents, and q(vi
m,l|{Pa(vm,l)}i, om,l) is the

proposal density.

In applications, we still consider one filtered estimate at each time step. Therefore, we have

p(vm,l|om,l, O1:l−1) ≈
N∑

i=1

wi
S(vm,l)

δ(vm,l − vi
m,l) (2.17)
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Figure 3. Graphical model of articulated object tracking.

The graphical model of articulated object tracking is given in Fig. 3. The graphical model

in Fig. 3 can also be applied to multiple object tracking if we ignore the inherent constraints

between complex parts and consider comparatively independent movements among multiple

objects. The notation xi,t represents the hidden state of part i at time t, and zi,t is the

observation associated to it. The undirected link between circle nodes represents the interaction

among parts, e.g. self-occlusion. When a graph has cycles, e.g. parts 1, 2 and 4, we could split

the graph into multiple cycle-free subgraphs by following the approach presented in (31) and

apply the particle filtering algorithm on cycle-free graphs in a distributed way.

From (2.16), (2.17) and the graphical model of articulated object tracking, we get

p(xi,t|zi,t, z1:{S(xi,t)−1}) ≈
N∑

n=1

wn
i,tδ(xi,t − xn

i,t) (2.18)
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The weights are normalized such that
∑N

n=1 wn
i,t = 1. The weight update equation can be

further obtained as follows:

wn
i,t ∝ wn

S(xi,t)−1

p(zi,t|xn
i,t)p(xn

i,t|{Pa(xi,t)}n)
q(xn

i,t|{Pa(xi,t)}n, zi,t)
(2.19)

In (2.19), p(xn
i,t|{Pa(xi,t)}n) captures the relationship between the particles of the current

node and its parents. Depending on whether there are interactions among different parts of

articulated objects at the same time, p(xn
i,t|{Pa(xi,t)}n) could be divided into two categories as

follows:

1. If there are no interactions (e.g., occlusions) among different parts at the same time (e.g.,

part 3), p(xn
i,t|{Pa(xi,t)}n) = p(xn

i,t|xn
i,t−1) is determined by the dynamics of the isolated part,

which is usually considered as a random walk or learned from training data. Therefore, (2.19)

becomes

wn
i,t ∝ wn

S(xi,t)−1

p(zi,t|xn
i,t)p(xn

i,t|xn
i,t−1)

q(xn
i,t|{Pa(xi,t)}n, zi,t)

(2.20)

2. If different parts of articulated object interact at time t (e.g., parts 1, 2, 4 and 5),

we have p(xn
i,t|{Pa(xi,t)}n) = p(xn

i,t|xn
i,t−1, {ln(xi,t)}n), where ln(xi,t) represents the interacting

parts of xi at time t. Because interacting parts must compete for limited observations, we

therefore model this probability as p(xn
i,t|xn

i,t−1, {ln(xi,t)}n) ∝ p(xn
i,t|xn

i,t−1)φ(xn
i,t, {ln(xi,t)}n).

We define φ(xn
i,t, {ln(xi,t)}n) as φ(xn

i,t, {ln(xi,t)}n) =
∏

xj,t∈ln{xi,t}{
∑Nj

m=1 w(xm
j,t)p(xm

j,t|xn
i,t)},
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where Nj is the total number of samples of part j. The density p(xm
j,t|xn

i,t) models the interaction

between two neighboring parts’ samples xm
j,t and xn

i,t. w(xm
j,t) acts as a weight to the associated

interaction. They work together to constrain the neighboring parts and prevent different parts

of the articulated object from separating over time. Therefore, (2.19) becomes

wn
i,t ∝ wn

S(xi,t)−1

p(zi,t|xn
i,t)p(xn

i,t|xn
i,t−1)

q(xn
i,t|{Pa(xi,t)}n, zi,t)

×
∏

xj,t∈ln{xi,t}
{

Nj∑
m=1

w(xm
j,t)p(xm

j,t|xn
i,t)} (2.21)

2.2.2 Hierarchical Graph-Based Particle Filtering (HGBPF) Framework

The interaction inside an articulated object lies not only in the adjacent parts but also some

”high-level” nonadjacent ”part groups”. For clarity, we define a group of parts as a unit, which

is denoted by XI,t, where I = 1, ..., M ′; M ′ is the total number of units. For instance, each

limb of a human body contains two parts and can, thus, be regarded as a unit. Similar to the

model in Fig. 2, but considering the ”high-level” unit interaction as well, we represent the same

articulated object in Fig. 2 by a hierarchical graphical model as illustrated in Fig. 4. Compared

with the model in Fig. 2, the difference of this hierarchical model is that it introduces a high-level

layer containing big blue ellipse nodes and red curve links. Each big ellipse node corresponds

to a unit of the articulated object. The undirected curve links between units represent ”high-

level” interaction. We denote the related neighboring units of XI,t by ln(I), the joint state

of all these related neighboring units by Xln(I),t = {XK,t, K ∈ ln(I)}, and the corresponding

observations by Zln(I),t = {ZK,t, K ∈ ln(I)}. We assume that p(Xln(I),t|xi,t) = p(Xln(I),t|XI,t).



25

This assumption assumes all the parts xi,t ∈ XI,t share the same ”relation” with the neighboring

units Xln(I),t, which is the interaction between high-level units Xln(I),t and XI,t.

Compared with the graph-based particle filtering framework in the previous subsection,

hierarchical framework in this subsection introduces an additional high-level inter-unit weighting

factor. We can also use the sequential Monte Carlo method (10) to approximate the conditional

density propagation rule derived in the previous section. Therefore, (2.19) becomes

wn
i,t ∝ wn

S(xi,t)−1

p(zi,t|xn
i,t)p(xn

i,t|xn
i,t−1)

q(xn
i,t|{Pa(xi,t)}n, zi,t)

×
∏

xj,t∈ln{xi,t}
{

Nj∑
m=1

w(xm
j,t)p(xm

j,t|xn
i,t)}

×
∏

K∈ln(I)

{
NK∑
l=1

w(X l
K,t)p(X l

K,t|Xn
I,t)} (2.22)

Where n is the sample index of part i (unit I), m is the sample index of part j, l is the

sample index of unit K, Nj is the total sample number of part j, and NK is the total sample

number of unit K. The density p(X l
K,t|Xn

I,t) models the interaction between two neighboring

units’ samples X l
K,t and Xn

I,t. w(X l
K,t) acts as a weight to the associated interaction. By using

Markov Properties (51), the w(X l
K,t) can be further approximated by a normalized product of

all parts’ weights in unit K. Proposed distributed hierarchical graph-based framework from one

view is given in Algorithm 1. For the one without hierarchy, we integrate interaction weights

from neighboring parts as in (2.21) if neighboring parts exist.
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Figure 4. Hierarchical graphical model of an articulated object.

Algorithm 1 Proposed distributed HGBPF from monocular view

— for l = 1, 2, ... \\ Layers

— for m = 1 : k(l)

∗ If neighboring units or parts of vj
m,l exist

� integrate interaction weights from neighboring

units and neighboring parts as in (2.22).

� estimate the conditional density for vj
m,l as in (2.17).

∗ Else \\ No interaction

� calculate weights as in (2.20) and estimate the

conditional density for vj
m,l as in (2.17).

— end for m

— end for l
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2.3 Distributed Graph-Based Particle Filtering Framework from Multiple Views

in Lossy Networks

The extensive availability of distributed camera networks calls for a robust and efficient

algorithm for object tracking from degraded visual data due to acquisition and network errors.

We first present dynamic modeling of visual tracking from multiple collaborative views. We

subsequently provide a distributed visual tracking solution from multiple cameras to handle

occlusion problem. Then an exact solution for frame loss problem within one camera is presented

for distributed smart camera networks. The resulting distributed visual tracking technique from

multiple collaborative cameras is therefore robust to occlusion and sensor errors from specific

camera views.

2.3.1 Dynamic Graphical Modeling of Multiple Object Tracking from Multiple

Views

The graphical model is an intuitive and convenient tool to model and analyze complex

dynamic systems. We illustrate the dynamic graphical model of two consecutive frames for

multiple objects in two collaborative cameras in Fig. 5. The graphical model of two collaborative

cameras in Fig. 5 can also be applied to articulated object tracking on multi-camera platform

if we consider the inherent constraints between complex parts of the object. The notation xA
1,t

represents the hidden state of object 1 at time t from camera A, and zA
1,t is the observation

associated to it. The undirected link in each camera between states nodes represents the

interaction among objects, e.g. occlusion. The directed link between consecutive states of the

same object in each camera represents the state dynamics. The directed curve link between the
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counterpart states of the same object in two cameras represents the camera collaboration. This

collaboration is activated between any possible collection of cameras only for objects which

need help to improve their tracking performances. For instance, in Fig. 5, all objects in camera

B at time t do not need to activate the camera collaboration because they do not interact with

the other objects at all. In this case, each objects can be robustly tracked independently. On

the other hand, objects 1 and 2 in camera A at time t activate camera collaboration since

they interact and may undergo occlusion problem. Therefore, external information from other

cameras may be helpful to make the tracking of these two objects more stable. As a result,

we can incorporate the estimations of other cameras into the camera we focus on. Instead of

storing and analyzing large amounts of data centrally at a single camera, our solution to the

problem of visual tracking on multi-camera platform adopt a distributed camera networks, in

which each camera can receive the projections from other cameras. Furthermore, our graphical

model of two collaborative cameras in Fig. 5 can be directly applied to the camera networks

with N cameras.

We then decompose the graphical model in Fig. 5 for every object in each camera by

performing four steps: (1) each sub-model aims at one object in one camera; (2) for analysis of

objects of a specific camera, only neighboring objects which have direct links to the analyzed

object are kept. All the nodes of both nonadjacent objects and their observations are removed;

(3) each undirected ”interaction” link is decomposed into two different directed links from

different objects. The direction of the link is from the analyzed object’s state to the other

object’s observation; (4) since the camera collaboration link from a object’s state in the analyzed
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Figure 5. The general dynamic graphical model for multiple object tracking using multiple
collaborative cameras.

camera view to its counterpart state in another view and the link from this counterpart state to

its associated observation have the same direction, this causality can be simplified by a direct

link from the grandparent node to its grandson as illustrated in Fig. 6.

2.3.2 Distributed Graph-Based Particle Filtering Framework from Multiple Views

2.3.2.1 Distributed Bayesian Formulation and Multi-Camera Correspondence

In this section, we present a generic statistical framework to model the interaction among

cameras for multi-camera tracking. For multi-camera multi-object tracking, we will dynamically

estimate the posterior based on observations from both the object and its neighbors in the
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Figure 6. Equivalent simplification of camera collaboration link. The link causality from
grandparent to parent then to grandson node is replaced by a direct link from grandparent to

grandson node.

current camera view as well as its counterpart in other camera views. Without loss of generality,

we illustrate our framework by using L cameras. We use the notation vj
m,l to denote the mth

node in layer Vl in camera j, and oj
m,l is the observation associated to it, where m = 1, 2, ..., K(l),

j = 1, 2, ...L. We use the notation Ol and Vl to denote Ol = {om,l, m = 1, 2, ..., K(l)} and

Vl = {vm,l, m = 1, 2, ..., K(l)}, respectively. Taking camera L as an example, the posterior

density we estimate is p(vL
m,l, V

L
0:l−1|{oj

m,l, O
j
1:l−1}L

j=1). Two assumptions are made in derivation:

(i) we assume observations at different time are independent, both mutually and with respect

to the dynamic process (10); (ii) given an object’s state, the associated observations in different

cameras are conditionally independent.

p(vL
m,l, V

L
0:l−1|{oj

m,l, O
j
1:l−1}L

j=1)

=
1
k
p(oL

m,l|vL
m,l)p(vL

m,l|Pa(vL
m,l))

L−1∏
j=1

p(oj
m,l|vL

m,l) · p(V L
0:l−1|{Oj

1:l−1}L
j=1) (2.23)

A novel likelihood density
∏L−1

j=1 p(oj
m,l|vL

m,l) called a ”collaboration likelihood” is used to

characterize the collaboration between the same object’s counterparts in different views. When
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not activating the camera collaboration and regarding its projections in different views as

independent, the proposed framework can be identical to the distributed approach presented

in the previous section with one camera.

2.3.2.2 Collaborative Particle Filters

The collaborative particle filters framework is first proposed in (52). A novel camera collab-

oration model is proposed within collaborative particle filters framework in this section. Details

are given below.

Taking camera L as an example, a particle set {{vL
m,l, V

L
0:l−1}i, wL,i

S(vm,l)
}N

i=1 is employed

to represent the posterior p(vL
m,l, V

L
0:l−1|{oj

m,l, O
j
1:l−1}L

j=1), where {vL
m,l, V

L
0:l−1}i is a set of N

particles with associated weights wL,i
S(vm,l)

, i = 1, 2, . . . , N . Therefore,

p(vL
m,l, V

L
0:l−1|{oj

m,l, O
j
1:l−1}L

j=1) ≈
N∑

i=1

wL,i
S(vm,l)

δ({vL
m,l, V

L
0:l−1} − {vL

m,l, V
L
0:l−1}i) (2.24)

If p(vL,i
m,l|{Pa(vL

m,l)}i) is the proposal density how we generate the particles, the correspond-

ing weights are given by

wL,i
S(vm,l)

∝ wL,i
S(vm,l)−1p(oL

m,l|vL,i
m,l)

L−1∏
j=1

p(oj
m,l|vL,i

m,l) (2.25)

In (2.25), the weights of local likelihood p(oL
m,l|vL,i

m,l) can be calculated by objects’ color

histogram (10), edge likelihood (10) and interaction between objects (31); The collaboration

weights of camera collaboration likelihood
∏L−1

j=1 p(oj
m,l|vL,i

m,l) is evaluated by the model as fol-

lows:
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In our distributed camera networks, the problem of visual tracking from multiple views can

be solved with the independent visual tracking from each individual view. Taking camera L

as an example, the reference camera L receives camera collaboration message from all other

related cameras. Specifically, we rely on collaboration among the multiple cameras to provide

an iterative refinement of the independent tracking performance obtained for each camera.

Without loss of generality, a set of N particles is considered for each object in each camera.

Particles {vj,k
m,l}N

k=1 in camera j (j ∈ {1, 2, ...L − 1}) are roughly weighted as {πj,k
S(m,l)}N

k=1 by

doing tracking according to local likelihood (31) in view j firstly. In this paper, we use πj,k
S(m,l)

to denote normalized weight, while wj,k
S(m,l) is its raw counterpart. Then they are mapped to

view L, producing Φ(vj,k
m,l), where Φ(·) is a function of vj,k

m,l characterizing the epipolar geometry

transformation. According to epipolar geometry theory (53), a point in one view can find an

epipolar line in another view. Therefore, each particle vj,k
m,l in camera j can find an epipolar

”band”, i.e. Φ(vj,k
m,l) in camera L. After that, the collaboration likelihood can be calculated

based on Φ(vj,k
m,l). Fig. 7 shows the procedure to calculate the collaboration weight for each

particles based on Φ(vj,k
m,l) in camera L. The particles {vL,1

m,l, . . . , v
L,N
m,l } are represented by circles.

Only middle lines of the bands, i.e. {Φ(vj,1
m,l), Φ(vj,2

m,l), . . . ,Φ(vj,N
m,l )} are shown in the Fig. 7. The

collaboration weight for particle vL,i
m,l can be computed as

Ψj,L
S(m,l)(v

j,k
m,l, v

L,i
m,l) ∝ exp(−dist2(vL,i

m,l, Φ(vj,k
m,l))) (2.26)

πL,i
S(m,l) ∝

L∏
j=1,j �=L

N∑
k=1

πj,k
S(m,l)Ψ

j,L
S(m,l)(v

j,k
m,l, v

L,i
m,l) (2.27)
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Figure 7. Calculating camera collaboration weights in camera L.

dist(·) denotes a Point-Line distance between vL,i
m,l and Φ(vj,k

m,l). The collaboration weights

are then passed from camera L to all other related cameras in a similar way. In this case, we

do iteration several times between different views to get more stable estimation.

2.3.3 Graph-Based Particle Filtering Framework with Missing Frames

The development of distributed camera networks calls for a robust and efficient algorithm

for object tracking from degraded visual data that utilizes limited computational resources. For

instance, video tracking from hand held cameras or cameras mounted on mobile platforms is

often required to track objects based on video sequences with missing frames due to acquisition

and network errors. Since our distributed particle filtering framework use the estimations of

other views to refine the tracking performance of the view we focus on, the frame loss problem

will be considered during the video transmission process. An exact solution for frame loss

problem within one camera is presented for distributed smart camera networks in this section.
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Figure 8. First-order hidden Markov chain model with missing frames.

2.3.3.1 Isolated Objects Tracking With Missing Frames

When objects are isolated from each other, an independent first-order or high-order Markov

chain model is adopted for each object (10). The assumption of a first-order Markov model

leads to a simple expression of the posterior density propagation and efficient implementation.

Thus, we introduce it first.

Figure. 8 illustrates an example of a first-order hidden Markov chain model with several

consecutive frames for single object. The circle nodes represent the states of the objects (e.g.,

x4). The square nodes denote the observations associated with the hidden states (e.g., z4).

The directed line between two consecutive states represents the conditional density and forms

a temporal first-order Markov chain (e.g., p(x3|x2)). The directed link from object xi to its

observation zi can be characterized by the local likelihood p(zi|xi). We use a dashed box to

represent missing frames (e.g., x4, x3).

The first-order hidden Markov chain model is an acyclic directed graph (51). The Moral

graph associated with a directed graph is the undirected graph on the same vertex set and

with an edge set obtained by including all edges in the directed graph together with all edges

necessary to eliminate forbidden Wermuth configurations. Note that the first-order hidden
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Figure 9. Moral graph of first-order hidden Markov chain model.

Markov chain model possesses the same independence interpretations as its associated Moral

graph (51). Fig. 9 illustrates the Moral graph of the first-order hidden Markov model.

Proposition 1: Given missing states, i.e. xt−1:t−n in the first-order hidden Markov model

(HMM), the current state xt only depends on xt−n−1. Let us use xt−1:t−n and K\{p} to denote

xt−1, xt−2, . . . , xt−n and the set of all the elements in K except p, respectively.

P (xt|xt−1:0\{xt−1:t−n}, zt−1:1\{zt−1:t−n}) = P (xt|xt−n−1) (2.28)

Proof: We use a ⊥ b | c to denote random variables a, b are conditionally independent

on c. By using the Separation Theorem (51) on the moral graph of the first-order HMM, we

obtain conditional independence as follows:

xt ⊥ xt−1:0\{xt−1:t−n−1} | xt−n−1 (2.29)
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Figure 10. Second-order hidden markov chain model with missing frames.

xt ⊥ zt−1:1\{zt−1:t−n} | {xt−1:0\{xt−1:t−n}} (2.30)

This completes the proof.

Remark: From the first-order hidden Markov model (HMM), it is clear that the conditional

probability distribution of the hidden variable xt at time t, given the values of the hidden

variable x at all times except the missing states xt−1, xt−2, . . . , xt−n, depends only on the value

of the hidden variable xt−n−1: the values at time t−n−2 and before have no influence. Actually,

this property indicates that the value of the hidden variable xt−n−1 contains all the remaining

information to predict the hidden variable xt at time t.

Compared with traditional first-order particle filtering derived based on first-order hidden

Markov model, if the state-space model is a mth-order Markov chain (49), the current state xt

depends on the past m states (i.e., xt−1, xt−2, . . . , xt−m). Figure. 10 illustrates an example of

a second-order hidden Markov chain model (i.e., m = 2). The circle nodes represent the states

of the objects (e.g., x4). The square nodes denote the observations associated with the hidden
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Figure 11. Moral graph of second-order hidden markov chain model.

states (e.g., z4). Solid lines represent the first-order hidden Markov model and the dashed lines

denote the second-order dependencies. The directed link from object xi to its observation zi

can be characterized by the local likelihood p(zi|xi). We use dashed box to represent missing

frames (e.g., x4, x3). Figure. 11 illustrates the Moral Graph of the second-order hidden Markov

chain model.

Proposition 2: Let us use xt−an:t−a1 to denote {xt−a1 , xt−a2 , . . . , xt−an}, where a1 < a2 <

a3 . . . < an. Given missing states xt−an:t−a1 in the mth-order hidden Markov model (HMM),

we have

p(xt|x0:t−1, z1:t−1\{xt−an:t−a1 , zt−an:t−a1}) = p(xt|xt−ax−m:t−1\{xt−ax:t−a1}) (2.31)

where assuming that there are m complete items before xt−ax , while there are less than m

complete items before xt−a1 , . . . , xt−ax−1 , where a1 < m. Therefore, we have xt−ax−m > xt−ax+1 .
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Proof: By utilizing the Separating Theorem (51) on the Moral graph of the high-order

hidden Markov model, we can obtain the following conditional independence:

xt ⊥ z1:t−1\{zt−an:t−a1}|x0:t−1\{xt−an:t−a1} (2.32)

xt ⊥ x0:t−ax−m−1\{xt−an:t−ax+1}|xt−ax−m:t−1\{xt−ax:t−a1} (2.33)

This completes the proof.

Remark: This property indicates that the values of the hidden states xt−ax−m:t−1\{xt−ax:t−a1}

contain all the remaining information to predict the hidden variable xt at time t. Both first-

order and mth-order hidden Markov model (HMM) can be used for visual tracking of single

object. The assumption of the first-order Markov model can simplify the expression of the

posterior density and the implementation of visual tracking, however, firstly, it can not ac-

curately characterize the dynamics of moving objects; secondly, particle filtering based on a

first-order Markov model is extremely sensitive to loss of particle information from the pre-

vious time instant, when particles are lost or delayed. The dynamics of the object is given

as xk = Axk−m + ... + Fxk−2 + Gxk−1 + Hvk. The coefficients could be learned from a set

of pre-labeled training sequences (54). We adopt different order hidden Markov models for

the dynamics of the object based on the training set. We use sequential importance sampling

method for estimation. For brevity, we omit the formulation of posterior density and particle

filtering implementation for first-order and high-order hidden Markov model.
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2.3.3.2 Multiple Occluded Objects Tracking With Missing Frames

As mentioned in details in previous section, We use V to denote the set of hidden states

in graph G; i.e., V = {x1, x2, ...}. Set V could be partitioned into disjoint sets, called layers,

{Vl}L
l=0. The number of element in Vl is K(l). We use the notation vm,l to denote the mth

node in Vl, m = 1, 2, ..., K(l). The parents of vm,l is denoted as Pa(vm,l). It could be easily

seen that Pa(vm,l) ⊆ V0:l−1. The observation associated with vm,l is denoted as om,l, and

Ol = {om,l, m = 1, 2, ..., K(l)}. We denote the order of node vm,l as S(vm,l). For the nodes

within the same layer, the order could be arbitrarily assigned.

Proposition 3: Given missing objects, vb1,l−a1 , vb2,l−a2 , . . . , vbn,l−an , where vb1,l−a1 ∈ Pa(vm,l),

a1 < a2 < . . . < an, we have

p(vm,l|V0:l−1\{vb1,l−a1 , . . . , vbn,l−an}, O1:l−1\{ob1,l−a1 , . . . , obn,l−an})

= p(vm,l|Pa(vm,l), Pa(vb1,l−a1), . . . , Pa(vbx,l−ax)\{vb1,l−a1 , . . . , vbx,l−ax}) (2.34)

Where we assume that none of elements in Pa(vbx,l−ax) is missing, while each of Pa(vbx−1,l−ax−1),

. . . , Pa(vb1,l−a1) is not complete.

Proof: By utilizing the Separating Theorem (51) and the Markov properties (51) on the

Moral graph of an arbitrary cycle-free graph, we can obtain the following conditional indepen-

dence:

vm,l ⊥ O1:l−1\{ob1,l−a1 , . . . , obn,l−an}|V0:l−1\{vb1,l−a1 , . . . , vbn,l−an} (2.35)
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Figure 12. Graphical model of multiple (articulated) object tracking in the presence of frame
loss.

vm,l ⊥ {V0:l−1\{vb1,l−a1 , . . . , vbn,l−an} − A}|A (2.36)

where A denotes Pa(vm,l), Pa(vb1,l−a1), . . . , Pa(vbx,l−ax)\{vb1,l−a1 , . . . , vbx,l−ax}.

For brevity, we omit the formulation of posterior density estimation and particle filtering

implementation on cycle-free graphs with missing frames. When a general graph has cycles, we

could split the graph into multiple cycle-free subgraphs by following the approach presented

in (31) and apply the tracking algorithm based on cycle-free graphs in a distributed way to

address missing frames. The proposed method is utilized for multiple object tracking with

missing frames. The graphical model of multiple object tracking in the presence of frame loss

is given in Fig. 12. The graphical model of multiple object tracking with missing frames in
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Fig. 12 can also be applied to articulated object tracking with missing frames. The ellipse

nodes represent the states of the objects (e.g., x1,t). The square nodes denote the observations

associated with the hidden states (e.g., z1,t). The notation x1,t represents the state of object

1 at time t, and z1,t is the observation associated to it. The undirected link between states

nodes represents the interaction among objects (e.g., occlusion). We use dashed box to represent

missing frames (e.g., frame at time t−1). Different colors of the ellipse nodes represent different

objects (for example, the green ellipse node represents object 2). Depending on whether there

are interactions among different objects at the same time, p(xi
m,t|{Pa(xm,t)}i) with missing

frames could be divided into two categories as follows:

1. If there are no interactions among different objects at the same time, p(xi
m,t|{Pa(xm,t)}i) =

p(xi
m,t|xi

m,t−2) is determined by the dynamics of the object, which is usually considered

as a random walk; e.g., see object 4 in Fig. 12.

2. If the objects interact at time t (e.g., objects 1, 2 and 3), we first split the graph with

cycles (interaction) by splitting an undirected edge into two directed edges with two

directions (31). Then we have p(xi
m,t|{Pa(xm,t)}i) = p(xi

m,t|xi
m,t−2, {ln(xm,t)}i), where

ln(xm,t) represents the interacting objects of xm at time t; e.g., p(xi
2,t|xi

2,t−2, x
i
1,t, x

i
3,t)

described in Fig. 12.

For objects with interaction, we consider not only the dynamics of the same object at

adjacent time, but also the occlusion among different objects at the same time. We could

model this probability as p(xi
m,t|xi

m,t−2, {ln(xm,t)}i) = p(xi
m,t|xi

m,t−2)
∏

j(1 − 1
α exp{−‖xi

m,t −

xi
j,t‖2/α2}), where ‖ · ‖ represents the Euclidean distance between object j and m.
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In the area of multiple object tracking, similar to Fig. 12, arbitrary video sequence could

be modeled as a specific graph. We could first split the general graph with cycles into multiple

directed cycle-free subgraphs. Then we could apply our proposed method to deal with missing

frames distributively in each cycle-free subgraph. Although the particle filtering solution in

dealing with missing frames on each cycle-free subgraph leads to an exact estimation, the

distributed solution to particle filtering on general graphs provides an approximate solution

because there is no guarantee that an update scheme can be used to represent the joint density

on general graphs with complex cycles (55). The complexity of the approximated solution of

particle filtering on general graphs grows exponentially along with the number of nodes belongs

to cycles. Heuristics could be considered to further reduce the computation complexity, e.g.,

only splitting the local cycles. The resulting distributed visual tracking technique is therefore

robust to sensor errors from specific camera views. Furthermore, the computational complexity

of the proposed distributed approach grows linearly with the number of objects in each camera

if proper heuristic approach is considered. The illustrious advantage of our proposed algorithm

is that we could resolve loss of object with any number and location in an arbitrary graph

derived from video sequence.

We then give the general framework for distributed graph-based particle filtering approach

using multiple collaborative cameras in the presence of frame loss in Algorithm 2.
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Algorithm 2 Proposed GBPF using multiple collaborative cameras

• for j = 1, 2, 3, ...L \\ L cameras

— for l = 1, 2, ... \\ Layers

∗ for m = 1 : k(l)

� if frames (objects) are missing, find exact ones

by proposition 1, 2 and 3

� integrate collaboration weights from all other

cameras with local likelihood in camera j

� estimate the conditional density for vj
m,l

∗ end for m

— end for l

• end for j

2.4 Experimental Results

With two or more cameras, we have more observations about the object’s location, the

tracking result will be more robust consequently. However, more cameras will definitely result

in more computational load. Therefore, our distributed camera collaboration system will only

be activated when occlusions exist. We can still incorporate the observations from other cameras

to improve the reference camera’s tracking performance even when the information from one

other camera is missing. In this section, the tracking performances of distributed framework

for video sequences from one camera are presented first. Then the results for visual tracking in
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distributed smart camera networks are illustrated both qualitatively and quantitatively in this

section.

2.4.1 Video Sequences from One Camera

In this section, we report some of the experimental results. Our proposed distributed

framework from one view is applied to both articulated object tracking and multiple object

tracking in this section. The tracking performance of the proposed two graph-based methods

from one view are compared both qualitatively and quantitatively with the multiple independent

particle filtering (MIPF) (10), mean field Monte Carlo (MFMC) (56), respectively. For all

methods, we use 50 particles for each part. In our simulations, the tracked parts are identified

by the user. The number of tracked parts in articulated object is therefore pre-determined, and

the parts are assumed to have a uniform prior distribution. Different colors of the rectangular

are used to label the parts. The dynamics of the object is considered as a random walk, with

the noise variance the same for all comparative methods.

The Boy sequence is from a video taken by a hand-held camcorder, which is common

for a lot of activities nowadays. The video Boy contains a boy moving his arms. We apply

graph-based particle filtering (GBPF) framework to the boy in the video using 50 particles per

part. For comparison, we implemented MIPF (10) as baseline method. As shown in Fig. 13,

the figures in the first row report the tracking results of GBPF framework. By exploiting the

physical adjacent constraints of the human body, the GBPF improves the tracking performance

in that the connections among parts are preserved well. The figures in the second row reports

the tracking performance for MIPF (10). Note that our proposed GBPF can track each part of
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Figure 13. Tracking results of the Boy sequence for frames 63, 74, 100, 149: (a) The proposed
graph-based particle filtering (GBPF) method; and (b) multiple independent particle filters

(MIPF) (10). 50 particles are used for each part.

the object in most frames for irregular motions, while MIPF (10) loses track after self-occlusion.

Table I compares the average MSE and computational time of the two methods in Fig. 13. From

Table I, we indeed observe that the computation time required for the proposed GBPF is higher

than the MIPF (10), simply because we introduce interaction weighting factor among different

parts of the object. Furthermore, we compare the horizontal and vertical coordinates of two

selected parts’ trajectories (Yellow and Purple rectangles) from the Boy sequence for frame

50 to frame 150. Fig. 14 illustrates that the selected part loses track after fast motion and

self-occlusions in MIPF (10). Note that the proposed GBPF is more accurate than MIPF (10).
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TABLE I

STATISTICAL TRACKING PERFORMANCE FOR THE BOY SEQUENCE (PER
FRAME).

Method GBPF MIPF
Average MSE 2.08 9.67

CPU time 42.6 19.7

The Walking sequence contains a person walking forward inside a lab. The similar color

of the torso and arms, and the frequent severe self-occlusions among limbs make it difficult

for articulated motion analysis. We illustrate the sample result frames of our proposed two

graph-based framework, MIPF (10) and MFMC (56) in Fig. 15. MFMC (56) outperforms

MIPF (10) since it keeps the connection among the parts. However, it could not produce

satisfactory results when self-occlusions present. Compared with MFMC (56), our proposed

GBPF improves the performance in that the connections among parts are preserved well. This

is because our proposed framework uses separated interaction models for the location and

rotation. By handling the high-level interaction among arms and legs and using a learned

model of limb poses, HGBPF framework gives the best results. Table II compares the average

MSE and computational time of the four methods in Fig. 15. From Table II, we indeed observe

that MFMC (56) improves the tracking performance compared with MIPF (10). Moreover, the

proposed two methods model the interaction constraints of an articulated object more efficiently

compared with MFMC (56) and therefore achieve more accurate tracking results.
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(a)

(b) (c)

Figure 14. The horizontal and vertical coordinates of the trajectories of selected objects of the
Boy sequence.

When we apply this distributed graph-based particle filtering (GBPF) framework to mul-

tiple object tracking, we ignore the inherent constraints between complex parts and consider

comparatively independent movements among multiple objects. A typical sequence of multiple

object tracking is Shopping Center sequence which is shown in Fig. 16. We apply graph-based

particle filtering (GBPF) framework to the Shopping Center sequence. For comparison, we

implemented MIPF (10) as baseline method. In this case, we have less confidence on the color
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Figure 15. Tracking results of the Walking sequence for frames 16, 32, 53 and 65: (a)
multiple independent particle filters (MIPF) (10); (b) mean-field Monte Carlo (MFMC)(48);
the proposed GBPF method; and (d) proposed HGBPF method. 50 particles are used for

each part.

histogram due to the clutter environment, but we want to test the tracking performance of two

methods in the extreme case. Nonetheless, our proposed GBPF can easily trace the person in

every frame, while MIPF (10) loses track in the first half.
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TABLE II

STATISTICAL TRACKING PERFORMANCE FOR THE WALKING SEQUENCE (PER
FRAME).

Method MIPF MFMC GBPF HGBPF
Average MSE 6.08 3.67 2.12 1.55

CPU time 28.6 36.1 45.7 49.6

Figure 16. Tracking results of the Shopping center sequence for frames 824, 836, 847, 873:
(a) The proposed graph-based particle filtering (GBPF) method; and (b) multiple

independent particle filters (MIPF) (10). 50 particles are used for each object.
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2.4.2 Video Sequences on Multi-camera Platform

Visual tracking on multi-camera platform is often required to track objects based on video se-

quences with missing frames due to acquisition and network errors. In this section, we carry out

a series of experiments to test the proposed distributed graph-based particle filtering (GBPF)

framework from multiple views in the presence of frame loss. The proposed distributed frame-

work from multiple collaborative cameras is compared both qualitatively and quantitatively

with the multiple independent particle filtering (MIPF) (10), distributed graph-based frame-

work from multiple views independently in section 4, respectively.

We denote p as the loss rate of each frame in the experiments. Without loss of generality, two

cameras are used in our framework first. The Tennis video clip contains five tennis balls moving

across each other. Fig. 17 shows the tracking results of MIPF (10), distributed framework

based on two cameras independently and distributed framework from two collaborative cameras.

Our framework in distributed camera networks could handle occlusion well in the presence of

frame loss compared to MIPF (10) and distributed framework from one view. Compared with

MIPF (10), our distributed framework from one view improves the performance in that the

connections among parts are preserved well. This is because our proposed framework uses

separated interaction models for each object. By handling the occlusion problem in distributed

smart camera networks, our framework on multi-camera platform gives the best results.

To further evaluate the proposed algorithm, typical surveillance video Lab sequence is shown

in Fig. 18. This data set was recorder from two views with missing frames, i.e. p = 0.1. The

fundamental matrix between two views is computed from 8 matching points in a pair of im-
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Figure 17. Tracking results of the Tennis sequence for frame 170, 181 with 50 particles per
object and missing frames, i.e. p = 0.1: (a) distributed graph-based framework using two

collaborative cameras; (b) distributed graph-based framework from multiple views
independently; and (c) multiple independent particle filtering (MIPF) (10).

ages (53). In Fig. 18, we compare the tracking results of (a) multiple independent particle

filtering (MIPF) (10), (b) distributed graph-based framework from multiple views indepen-

dently and (c) distributed graph-based framework using two collaborative cameras. Note that

distributed framework from two cameras can trace objects in every frame, while distributed

framework from one view loses track after heavy occlusion. Both distributed framework out-

perform MIPF (10) in dealing with missing frames, which validates our theory. Furthermore, we

compare the horizontal and vertical coordinates of two people’s trajectory from the second view

of Lab sequence for frame 250 to frame 325. Fig. 19 illustrates that the people coming from the

right side loses track completely after occlusion in MIPF (10). Note that the proposed method
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Figure 18. Tracking results of the Lab sequence for frame 280, 295 with missing frames, i.e.
p = 0.1: (a) multiple independent particle filtering (MIPF) (10); (b) distributed graph-based
framework from multiple views independently; and (c) distributed graph-based framework

using two collaborative cameras. We use 80 particles per object.

based on two collaborative cameras is more accurate than MIPF (10). Table III compares the

average MSE in second view and computational time of the three methods in Fig. 18.

Our distributed graph-based framework on multi-camera platform is also tested with three

cameras. The People sequence (57) was recorded with three cameras. In Fig. 20, we illustrate

the tracking performance of our distributed system from three views. As shown in Fig. 20,

the figures in the first row report the tracking results for frame 1407 from three views. We

report the tracking results for frame 1449 from three views on the second row of Fig. 20 also.

Our distributed graph-based framework from three cameras can handle the occlusion problem

pretty well. Table IV provides the specific time for each part of likelihood estimation. As can
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Figure 19. The horizontal and vertical coordinates of two people’s trajectory on the Lab
sequence. The illustration of ground truth, proposed algorithm using two collaborative

cameras, MIPF (10) with 80 particles per object and missing frames, i.e. p = 0.1.

Figure 20. Tracking results of the People sequence (51) for frame 1407 and 1449 with 50
particles per object using distributed graph-based framework from three collaborative

cameras.
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TABLE III

STATISTICAL TRACKING RESULTS ON LAB SEQUENCE PER FRAME.
Method MIPF GBPF from one view GBPF from multiple cameras

Average MSE (camera 2) 8.55 4.83 1.67
CPU time 6.84 6.93 8.1

TABLE IV

AVERAGE COMPUTATION TIME COMPARISON OF DIFFERENT PARTS IN
PARTICLE FILTERING ESTIMATION ON PEOPLE SEQUENCE.

Color/edge likelihood Interaction likelihood Camera collaboration likelihood
25 5.1 4.67

be seen in Table IV, compared with the most time-consuming components which relate to color

and edge likelihood estimation, the computational time for camera collaboration likelihood

is negligible. It is because the camera collaboration likelihood estimation only involves some

efficient numerical calculations. Moreover, in our distributed framework we impose a preset

limit on the number of iterations (usually less 5 iterations), which results in negligible overhead

for the computation time of the iterative algorithms. The data presented in all Tables have

been averaged over ten trials.



CHAPTER 3

DISTRIBUTED CONTEXT-FREE GRAMMARS FRAMEWORK AND

ITS APPLICATION IN TRAJECTORY-BASED VIDEO

CLASSIFICATION

3.1 Theoretical Foundations

3.1.1 Transformational Grammars

An overview of the formal language theory is provided in this section. A formal language can

be broadly defined as any set of strings consisting of concatenations of symbols. The complete

set of distinguishable symbols in the language is known as the alphabet and is denoted here by

T. For example, an alphabet might be T = {a, b}, and one language over this alphabet might

consist of all finite repetitions of the combinations ab followed by either b or aa; in this language,

the strings b, aa and ababaa are valid strings but aba is not. The general notion of a formal

language is impractically broad. It is much more useful, and intuitive, to specify a language

in terms of its structural patterns. This is often accomplished by defining a transformational

grammar (37).

3.1.1.1 Chomsky Hierarchy of Grammars

In grammatical terminology, a deterministic grammar Gs is a four-tuple Gs = (N, T, P, S).

N is a finite set of nonterminal symbols, T is a finite set of terminal symbols, and N ∩ T = ∅.

P is a finite set of production rules, and S ∈ N is the starting symbol. The grammars are

55
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divided into four different types according to the forms of their production rules. Specifically,

only production rules of the form A → aA or A → a are allowed in regular grammars (RGs).

This means that the left-hand side of the production must contain one nonterminal only, and

the right-hand side could be either one terminal or one terminal followed by one nonterminal.

Context-free grammars (CFGs) have production rules P of the form A → η where A ∈ N and

η ∈ (N ∪ T )+; the superscript Σ+ indicates the set of all finite length strings of symbols in a

finite set of symbols Σ, excluding the string of length 0. A context-free grammar is a special case

of a context-sensitive grammar. Production rules of the form α1Aα2 → α1ηα2 are allowed in

CSGs where α1, α2, η ∈ (N ∪T )+. In other words, the allowed transformations of nonterminal

A are dependent on its context α1 and α2. Also a context-sensitive grammar is a special (more

restricted) form of a unrestricted grammar (UG). Any production rules of the form α1Aα2 → γ

are allowed in unrestricted grammars (UGs) where α1, α2, γ ∈ (N ∪ T )+. Table V provides a

condensed summary of the classes of grammars, their production rule structures, and classes of

languages that they define. More detailed treatment of the Chomsky Hierarchy is given by (58).

A stochastic grammar Gs is a five-tuple Gs = (N, T, P, Ps, S), Ps is the set of probability

distributions over the set of production rules P . Stochastic grammars are classified and analyzed

on the basis of their underlying characteristic grammars. A characteristic grammar is obtained

from the stochastic grammar by removing the probability distribution Ps from the grammar

definition.
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TABLE V

DETERMINISTIC GRAMMARS, PRODUCTION RULES, AND LANGUAGES.
Grammar Production Rule Structure Language

FSGs A → aA, A → a Finite State (Regular) Language (RL)
CFGs A → β Context-Free Language (CFL)
CSGs α1Aα2 → α1ηα2 Context-Sensitive Language (CSL)
UGs α1Aα2 → γ Unrestricted (Type-0) Language (UL)

3.1.1.2 Existing Methods for Learning Grammars

The problem of learning stochastic grammars from training sequences has two aspects: de-

termining a discrete structure (topology) of the grammar and estimating probabilistic param-

eters in the grammar. Based on maximum likelihood criterion, efficient estimation algorithms

for probabilistic parameters have been proposed: a Forward-Backward Algorithm for hidden

Markov models (59) and an Inside-Outside Algorithm for stochastic context-free grammars

(SCFGs) (60). Both algorithms are iterative algorithms which are based on the Expectation-

Maximization (EM) Technique that increases the likelihood of the training sample in each step

until a local maximum is reached.

The standard method for estimating the parameters of SCFGs ( i.e., the probabilities of the

productions) from a set of training examples is known as the Inside-Outside Algorithm (60).

However, it requires the grammar to be in Chomsky normal form, which is inconvenient to

handle in many practical problems ( and requires more nonterminals). Further, the computa-

tional time for this algorithm is quite long compared to the Forward-Backward Algorithm. To
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avoid such problems, Sakakibara et al. (61) have developed a new method for training SCFGs

that is a generalization of the Forward-Backward Algorithm to tree grammars and which is

more efficient than the Inside-Outside Algorithm. The new algorithm, called Tree-Grammar

EM, requires structured strings as training examples. This algorithm uses a similar idea to

the identification of context-free grammars from structured strings shown in (62). Since infor-

mation on the grammatical structure is given explicitly in training examples, Tree-Grammar

EM Algorithm does not have to consider all possible derivations of the training examples when

estimating the grammar’s parameters, as the Inside-Outside Algorithm must do. Also a similar

idea of estimation algorithm has been developed by Eddy and Durbin (36) by the name of

covariance model.

Learning grammatical structures of stochastic grammars is challenging. The difficult arises

from two specific aspects of the problem of learning grammars from examples: determining the

grammatical structure (topology) of the unknown grammar and identifying the set of nonter-

minals in the grammar. The first problem is especially hard because the number of all possible

grammatical structures for a given positive example becomes exponential in the length of the

positive example. To overcome the hardness of learning CFGs from examples without structural

information available, Sakakibara and Kondo (63) have proposed a new hypothesis representa-

tion method, called tabular representation, which consists of a table-like data structure similar

to the parse table used in the Cocke-Younger-Kasami Algorithm (64) for CFGs of Chomsky

normal form. In particular, the learning algorithms for finite-state grammars (FSGs) and

context-free grammars (CFGs) rely on the causality of the model. However, context-sensitive
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grammars (CSGs) can not be solved in exact form since such a model is inherently non-causal.

Therefore, we still try to investigate a polynomial complexity solution for CSGs.

3.1.2 Trajectory Representation

This section provides a survey of the related work from recent literature in the area of

trajectory representation. Studies into human psychology have shown the extra-ordinary abil-

ity of human beings to recognize object motion even from minimal information system such

as Moving Light Displays (MLDs). In spite of the paucity of information, human observers

easily perceive not only motion but also the kind of motion; e.g., walking, running, dancing,

etc (65). Based on this understanding, object motion has been an important feature for the

representation and discrimination of one object from another in video applications. Earlier ap-

proaches in motion-based methods focused on object tracking from raw and compressed domain

videos (66) (67) (68) (69). Indexing and searching based on object motion as the dominant

cue has attracted a lot of research activity in the past few years. Chen et. al. segment each

trajectory into subtrajectories using fine-scale wavelet coefficients at high levels of decomposi-

tion (30). This approach suffers from the fact that the representation is based on ad hoc features

which are not tolerant to affine transformations of the trajectories. Also the feature vectors

lie in a non-uniform space, so the matching process has to compute the overall distance based

on weighted average of individual features. F. Bashir et al. represent the subtrajectories using

PCA coefficients (66). The work on trajectory indexing and retrieval segments the trajectories

based on dominant sign changes in curvature data. In our trajectory classification system, the

trajectory segmentation scheme looks for sharp changes in target’s velocity and acceleration
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Figure 21. Illustration of a sequence generated by a simple context-free grammar.

through 1st and 2nd order derivatives. Consequently, trajectories are segmented at points of

maximum change in curvature of the trajectory. We represent the subtrajectories using PCA

because of its optimal energy compaction properties (70).

3.2 Learning Stochastic Context-Sensitive Grammars (SCSGs)

In this section, we first present limitations of current stochastic context-free grammars

(SCFGs) model. Motivated by these practical applications, our noncausal stochastic context-

sensitive grammars model (SCSGs) is provided then. A completely new distributed approach

is proposed to learn context-sensitive grammars in exact form in this section also.

3.2.1 Problem Statement: Limitations of SCFGs

In our stochastic context-free grammars (SCFGs) representation, SCFGs are defined by

a five-tuple Gs = (N, T, P, Ps, S), where N is an alphabet of nonterminal symbols, T is an

alphabet of terminal symbols such that N
⋂

T = ∅, P is a finite set of production rules of

the form A → η where A ∈ N and η ∈ (N ∪ T )+. We use Ps to denote the set of probability

distributions over the set of production rules P . S is a special nonterminal called the start

symbol.
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For example, a sequence generated by a simple SCFG is illustrated in Fig. 21(a). Take

Fig. 21 as our SCFG example, T = {a, b}, N = {A, B, S}, the start symbol S = {S}. The

production rules of the simple SCFG example in Fig. 21 are illustrated as follows:

S → A|B

A → aBB|aAB|aAA|aBA|aA|aB|a

B → bBB|bAB|bAA|bBA|bA|bB|b

We also illustrate the production rules we use in Fig. 21(b). For instance, with the grammars

in Fig. 21(b), the string abba in Fig. 21(a) can be derived with the derivation: S → A → aBB →

abB → abbA → abba.

This example can be used to describe changes from horizontal and vertical directions. The

main limitation of this grammar is that it allows only causal state dependencies. In partic-

ular, the learning and classification algorithms of this grammar rely on the causality of the

model. However, a noncausal model is needed for some practical applications. For example,

for multiple object motion trajectories analysis, we can not isolate the motion trajectories to

individual objects and, thus, lose their interactions. Therefore, SCFGs can not characterize the

intrinsic interactions between different trajectories at the same time, since such an application

is inherently noncausal. Motivated by these noncausal practical applications, a new model with

noncausal property is needed. In this paper, this goal can be achieved by our stochastic context-
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Figure 22. Illustration of a sequence generated by a context-sensitive grammar.

sensitive grammars model (SCSGs). The noncausal SCSGs can characterize the intrinsic state

transition structure and behavior of complex systems involving multidimensional system states.

3.2.2 Stochastic Context-Sensitive Grammars

Take multiple object motion trajectories analysis as an example, a noncausal model is needed

that can capture the representation of motion trajectories. The SCSGs model applied here has

two advantages: i) The interactions (eg. occlusions between different objects) can be preserved

well in our model. ii) The learning algorithm for our model avoids costly semantic analysis that

would perform classification based on heuristics rather than the inherent probabilistic model

used for multiple trajectories representation.

In our SCSGs representation, we denote the SCSGs as a five-tuple Gs = (N, T, P, Ps, S),

where N is an alphabet of nonterminal symbols, T is an alphabet of terminal symbols such that

N
⋂

T = ∅, Production rules P of the form α1Aα2 → α1ηα2 are allowed in SCSGs where α1,

α2, η ∈ (N ∪T )+. In other words, the allowed transformations of nonterminal A are dependent

on its context α1 and α2. We use Ps to denote the set of probability distributions over the set

of production rules P . S is a special nonterminal called the start symbol.
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For example, a sequence generated by a SCSG is illustrated in Fig. 22(a). Take Fig. 22 as

a SCSG example, T = {a, b}, N = {A, B, S}, the start symbol S = {S}. The production rules

of the simple SCSG example in Fig. 22 are illustrated as follows:

S → AB|BA|BB|AA

BA → BABa|BAAa|bA

bA → bB|bA|ba

AB → ABBb|ABAb|aB

aB → aA|aB|ab

AA → AABa|AAAa|aA

aA → aA|aB|aa

BB → BBBb|BBAb|bB

bB → bA|bB|bb

We also illustrate the production rules we use in Fig. 22(b). For instance, with the grammars

in Fig. 22(b), the string baba in Fig. 22(a) can be derived with the derivation: S → BA →

BABa → bABa → baBa → baba. Comparing to the terminals sequence generated by the

SCSG in Fig. 22(a), we analyze the string baba from the rightmost a. This a serves as the

first terminal generated by the SCSG. Then we consider the leftmost b as the second terminal

generated by the grammar. The second rightmost b is considered as the third terminal, and so

on. We generate the terminal sequence by using the generation rule above.
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3.2.3 Learning SCSGs: A Distributed Approach

In this section, we are now in the position to deal with the stochastic context-sensitive

grammars (SCSGs) model. We propose a novel solution to the arbitrary noncausal SCSGs by

splitting the SCSGs into multiple causal SCFGs that are analytically solvable in a distributed

computing framework, therefore referred to as distributed SCFGs. The learning and classi-

fication algorithms are processed on our distributed SCFGs sequentially using an alternate

updating scheme to approximate solution of the noncausal SCSGs model. For simplicity, we

first focus our discussion of distributed approach on the example in Fig. 22(a). The proposed

scheme can be easily extended to more complex higher dimensional cases.

Fig. 23 demonstrates an example of splitting a noncausal SCSGs. The four types of causality

are depicted in Fig. 24 first. In Fig. 24, gray state nodes represent neighboring state nodes that

affect black state node. Black state node is the node we try to analyze. In a causal system,

the neighboring state nodes that affect the analyzed node can only come from one of these

four cases in Fig. 24. Our resulting subgraphs from splitting should preserve one type of

causality as depicted in Fig. 24. The splitting rules are defined as follows. We first identify

types of dependencies. Each noncausal (bi-directional or multidirectional) dependency between

state nodes is decomposed into a couple of causal dependencies, by focusing on one-direction

dependency while ignoring other dependencies once at a time. For the node involving noncausal

dependencies, we connect it to its nearest neighboring state node by specifying one type of

single-dependency to form a directional graph. All non-neighboring state nodes or nodes have

different type of single-dependency and their observations are removed. Then we connect state
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Figure 23. Example of splitting procedure: a) SCSGs; b) state nodes involving
multidirectional dependencies; c) splitting dependencies into several causal dependencies; d)

two distributed SCFGs.

nodes involving causal dependencies to the graph obtained in the previous step. All newly added

nodes on the directional graph should preserve the causality. If the newly added node, together

with the existing graph, makes any loop of dependency, that node will be removed. For each

decomposed directional dependency, we repeat the steps above until all distributed dependency

graphs are obtained. The state dependency information is still intact in the splitting procedure.

Furthermore, since each distributed sub-model preserves the correlation between neighboring

state nodes, the proposed framework is not a simple collection of uncorrelated causal models

but an accurate representation of the original model.
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Figure 24. Four types of causality: a) Type I (Up and Left); b) Type II (Up and Right); c)
Type III (Down and Left); d) Type IV (Down and Right).

Our proposed distributed framework can be applied to more complex SCSGs. In our frame-

work, we decompose the SCSGs, by focusing on one causal direction of state transition at a

time, while ignoring other directions of state transition probabilities. Fig. 25(a) depicts one

more complex example of a SCSG. We decompose the noncausal model in Fig. 25(a) using the

proposed distributed approach. We get two distributed SCFGs, shown in Fig. 25(b) and (c).

The solution of splitting SCSGs into multiple SCFGs and alternate updating parameters of

the SCFGs is essentially equivalent to the Loopy Believe Propagation (LBP) (25) on graphical

model. Our decomposition of SCSGs to SCFGs is equivalent to the removal of the restriction

in a graph with loop to be loop-free. The convergence of LBP has been proved in (25), and a

sufficient condition of convergence is given in (71). Moreover, it is shown that the LBP algo-

rithm will converge to a solution that is consistent with every cycle-free graph embedded in the

graphical model. The estimation provided by the proposed distributed approach will converge

to the identical solution obtained by the use of the LBP algorithm provided that the proper

schedule is selected. We note, however, that although the final estimate will be identical, the
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Figure 25. Decomposition of SCSGs to SCFGs: a) SCSGs; b) distributed SCFGs; c)
distributed SCFGs.

proposed estimation presented in this paper is performed using a completely different algo-

rithm. Specifically, in the case of the LBP algorithm, an iterative procedure is presented and

implemented in a distributive manner on the graphical model and the convergence of the LBP

must be ascertained. On the other hand, the proposed distributed SCFGs model provides a

recursive solution to the learning and classification algorithms whose convergence is guaranteed.

We are now in the position to provide a simultaneous solution to the learning and clas-

sification algorithms of multiple distributed SCFGs. Without loss of generality, the SCSGs

with applications to two trajectories as depicted in Fig. 26(a) are used as an example to

explain our proposed distributed approach in details. The proposed scheme can be easily

extended to more complex cases. In our SCSGs representation, we denote the SCSGs as a
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five-tuple Gs = (N, T, P, Ps, S), where N is an alphabet of nonterminal symbols, T is an al-

phabet of terminal symbols such that N
⋂

T = ∅, P is a finite set of production rules. We

use Ps to denote the set of probability distributions over the set of production rules P . S

is a special nonterminal called the start symbol. Take Fig. 26(a) as our SCSGs model, T =

{O1,0, O1,1, O1,2, O1,3, O2,0, O2,1, O2,2, O2,3}, N = {S, U1,0, U1,1, U1,2, U1,3, U2,0, U2,1, U2,2, U2,3}
⋃

{X1,0, X1,1, X1,2, X1,3, X2,0, X2,1, X2,2, X2,3}, S = {S}. The undirected edge between two states,

for example, the edge between X1,0 and X2,0, makes the desired model non-causal. An undi-

rected edge, by definition, could be split into two directed edges with two different directions.

Therefore, we propose a novel solution to it, where we ”decompose” SCSGs model in Fig. 26(a)

into several causal SCFGs. We approximate the simultaneous solution of each of the distributed

causal SCFGs by an alternate updating scheme. For example, we distribute the SCSGs model

in Fig. 26(a) to two causal SCFGs, shown in Figs. 26(b)-(c). We approximate the simultane-

ous solution of multiple distributed SCFGs by a sequential alternating updating scheme. One

example updating scheme is depicted in Fig. 26(b)-(c). The numbers {1, 2, 3, 4, ...} are the

sequence orders of updating of model parameters.

The learning algorithms of the SCFGs we have provided in the following section are applied

to each of the SCFGs in Figs. 26(b)-(c) sequentially. In this way, we provide an analytical

learning procedure to the SCSGs model by decomposing it into several causal SCFGs models and

each of these SCFGs models can be solved simultaneously using a fully synchronous distributed

computing framework.
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Figure 26. Illustration of a sequence generated by a simple context-sensitive grammar.

3.3 Learning Stochastic Context-Free Grammars (SCFGs)

In this section, we first decompose SCSGs model into multiple SCFGs. Then the statistical

estimation algorithms for each SCFGs are applied sequentially. Specific to our case, a hy-

brid of general Forward-Backward Algorithm, Inside Algorithm and Expectation-Maximization

Technique will be used to estimate the system parameters. Then using the forward recursion

procedure in the Baum-Welch Algorithm (59) to compute the log-likelihood that each model

gives to the test sample.
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3.3.1 Stochastic Context-Free Grammars

In our stochastic context-free grammars (SCFGs) representation, SCFGs are defined by

a five-tuple Gs = (N, T, P, Ps, S), where N is an alphabet of nonterminal symbols, T is an

alphabet of terminal symbols such that N
⋂

T = ∅, P is a finite set of production rules of

the form A → η where A ∈ N and η ∈ (N ∪ T )+. We use Ps to denote the set of probability

distributions over the set of production rules P . S is a special nonterminal called the start

symbol.

Take Fig. 27 as an example of a simple context-free grammar model, the start symbol S =

{S}, N = {S, U1,0, U1,1, U1,2, U1,3, U2,0, U2,1, U2,2, U2,3, X1,0, X1,1, X1,2, X1,3, X2,0, X2,1, X2,2, X2,3},

T = {O1,0, O1,1, O1,2, O1,3, O2,0, O2,1, O2,2, O2,3}.

We are now in the position to deal with the SCFGs model in Fig. 27. Given a SCFG S, there

are three basic problems for dealing with S. The first problem is to calculate the probability

of the string w generated by S; the second one is to find the most probable path p of states

to maximize Pr(p|w, S); the last one is to estimate the parameters in S to maximize Pr(w|S).

The first two problems, calculating the probability Pr(w|S) of a given string w assigned by a

SCFG S and finding the most likely derivation tree of w by S, can be solved using dynamic

programming methods (64). In the following section, we provide a series of learning algorithms

to estimate the parameters in SCFGs.

3.3.2 Learning Stochastic Context-Free Grammars Model

In this section, we describe the statistical estimation algorithms of the SCFGs model. Let’s

take Fig. 27 as an example. The following notation will be used throughout this section.
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Figure 27. Illustration of a sequence generated by a simple context-free grammar.

The state variable Xi,t represents the (unknown) state sequence at specific time t for row i,

where t = {0, 1, ..., T}, i = {1, 2}; ri,t represents the observation associated with Xi,t. Each

ri,t = (w1, w2, ..., wmi,t) is a string of concatenated terminal symbols, and mi,t is the length of

ri,t. Take Fig. 7 as an example, r1,0 = O1,0O1,0, r2,0 = O2,0O2,0O2,0, r1,1 = O1,1.

It is convenient to introduce the following variables:

1. Inside variable: β
Xi,t

j (i, t, p, q) = P (wpq|Aj
pq, Xi,t)

2. Outside variable: α
Xi,t

j (i, t, p, q) = P (w1(p−1), A
j
pq, w(q+1)m|Xi,t)
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Where wpq is the subsequence of terminals from pth position of ri,t to qth position, and

Aj
pq is the nonterminal Aj ∈ Np that derives wpq, or Aj ⇒ wpq. In the following part, we

first describe the application of general Forward-Backward Algorithm, Inside Algorithm and

Expectation-Maximization Technique to estimate the system parameters (72). In order to clas-

sify a new test sample into one of the classes, we then use the forward recursion procedure

in the Baum-Welch Algorithm (59) to compute the log-likelihood that each model gives to the

test sample. If the ith model is the most likely, then declare the class of the sequence to be class i.

-Inside Algorithm

The Inside Algorithm computes the probability, OXi,t(ri,t), inductively as follows:

1. Initialization: β
Xi,t

j (i, t, p, p) = P (Aj → wp|Xi,t)

2. Induction: β
Xi,t

j (i, t, p, q) =
∑

r,s

∑q−1
d=p P (Aj → ArAs)βXi,t

r (i, t, p, d)βXi,t
s (i, t, d + 1, q)

for ∀j, 1 ≤ p < q ≤ mi,t.

3. Termination: OXi,t(ri,t) = β
Xi,t

1 (i, t, 1, mi,t)

OXi,t(ri,t) is the output probability of the string ri,t generated by the state Xi,t.

-General Forward-Backward (GFB) Algorithm

The computational time for Inside-Outside Algorithm is quite long compared to the Forward-

Backward Algorithm. For structures generated by stochastic context-free grammars, the Gen-

eral Forward-Backward Algorithm is more efficient than the Inside-Outside Algorithm. Define
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F
(p)
m,n,k,l(i, t) (t = {0, 1, ..., T}, i = {1, 2}) as the probability of state corresponding to observa-

tion r3−i,t is state m, state corresponding to observation r3−i,t−1 is state n, state corresponding

to observation ri,t−1 is state k and state corresponding to observation ri,t is state l, given the

observations and model parameters. We use p to denote the pth iterative procedure, then

F
(p)
m,n,k,l(i, t) = P (m = X3−i,t, n = X3−i,t−1, k = Xi,t−1, l = Xi,t|O,Θ(p)), (3.1)

and define G
(p)
m (i, t) as the probability of the state corresponding to observation ri,t is state

m, then

G(p)
m (i, t) = P (m = Xi,t|O,Θ(p)), (3.2)

For any Markov process, if its state sequence satisfy the following property, then general

Forward-Backward Algorithm (73) can be applied to it: the probability of all-state sequence

S can be decomposed as products of probabilities of conditional-independent subset-state se-

quences U0, U1, ..., i.e., P (S) = P (U0)P (U1/U0)...P (Ui/Ui−1)..., where U0, U1, ..., Ui, ... are sub-

sets of all-state sequence in the proposed system (74). Define the observation sequence cor-

responding to each subset-state sequence Ui as OBi. Subset-state sequences for our proposed

model are shown in Fig. 28.

Define the forward probability αUu(u), u = 1, 2, ... as the probability of observing the ob-

servation sequence OBv(v ≤ u) corresponding to subset-state sequence Uv(v ≤ u) and having

state sequence for u-th product component in the decomposing formula as Uu, given model
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Figure 28. Proposed Markov-modulated stochastic context-free grammars (SCFGs) and its
corresponding conditional-independent subset-state sequence decomposition structure for the

GFB algorithm.

parameters Θ, i.e., αUu(u) = P (S(u) = Uu, OBv, v ≤ u|Θ), and the backward probability

βUu(u), u = 1, 2, ... as the probability of observing the observation sequence OBv(v > u) corre-

sponding to subset-state sequence Uv(v > u), given state sequence for u-th product component

as Uu and model parameters Θ, i.e., βUu(u) = P (OBv, v ≥ u|S(u) = Uu, Θ). The recursive

updating formula of forward and backward probabilities can be obtained as

αUu(u) = [
∑
u−1

αUu−1(u − 1)P (Uu|Uu−1, Θ)]P (OBu|Uu, Θ) (3.3)

βUu(u) =
∑
u+1

P (Uu+1|Uu, Θ)P (OBu+1|Uu+1, Θ)βUu+1(u + 1) (3.4)

The estimation formulas of F
(p)
m,n,k,l(i, t), G

(p)
m (i, t) are

G(p)
m (i, t) =

αUu(u)βUu(u)∑
u:Uu(i,t)=m αUu(u)βUu(u)

(3.5)
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F
(p)
m,n,k,l(i, t) =

αUu−1(u − 1)P (Uu|Uu−1, Θ)P (OBu|Uu, Θ)βUu(u)∑
u

∑
u−1 αUu−1(u − 1)P (Uu|Uu−1, Θ)P (OBu|Uu, Θ)βUu(u)

(3.6)

-Expectation-Maximization Technique

In this subsection, EM algorithm is applied for parameter estimation. For a Markov chain

with M states, Ci,t = (C1(A → η; ri,t), C2(A → η; ri,t), ..., CM (A → η; ri,t)) and Cm(A → η; ri,t)

is the number of counts the production rule A → η is applied in deriving ri,t based on state m.

Let Φ = {am,n,k,l, P
1(A → η), ..., PM (A → η)} be the model parameters, where Pm(A → η) is

the set of production rules probabilities based on state m.

The Expectation step of the EM algorithm yields the following equation:

EΦ(i)(logLn(Φ)) =
2∑

i=1

T∑
t=0

∑
Xi,t

∑
AXi,t

∑
T Xi,t

EΦ(i)(CXi,t(A → η; ri,t)) × logPXi,t(A → η)Gm(i, t)

+
2∑

i=1

T∑
t=0

∑
U

∑
U−1

log(am,n,k,l)Fm,n,k,l(i, t) +
2∑

i=1

T∑
t=1

∑
X1,0

log(X1,0)Gm(1, 0)

(3.7)

where EΦ(i)(CXi,t(A → η; ri,t)) can be computed using inside and outside variables, am,n,k,l

denote the probability of state m occurring immediately after the state n, k, l. The Maximiza-

tion step of the EM algorithm could be computed by applying Lagrange Multiplier. Since the

parameters we wish to optimize are independently separated into three terms in the sum, the

three terms are the estimates of the prior distribution, the transition matrix, and the production

rule probabilities, we can optimize the parameter term by term.
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We can get the iterative updating formulas of parameters of the proposed model,

X
(p+1)
1,0 = P (Gm(1, 0)(p)|O,Θ(p)) (3.8)

PXi,t(A → η)(p+1) =

∑2
i=1

∑T
t=1 E

(p)

Φ(i)(CXi,t(A → η; ri,t))G
(p)
m (i, t)∑

η

∑2
i=1

∑T
t=1 E

(p)

Φ(i)(CXi,t(A → η; ri,t))G
(p)
m (i, t)

(3.9)

A = a
(p+1)
m,n,k,l =

∑2
i

∑T
t F

(p)
m,n,k,l(i, t)∑M

l=1

∑2
i

∑T
t F

(p)
m,n,k,l(i, t)

, (3.10)

Once the stochastic context-free grammars (SCFGs) for all classes have been trained, the

classification of new sample can be performed by computing the likelihood that SCFG i best

describes the test sample. Given SCFGs for the L classes, and the observation sequence

O1, O2, ..., Om, we assign class label k as the SCFG that maximizes the likelihood given new

sample. This computation is efficiently performed using the forward recursion procedure in the

Baum-Welch Algorithm (59).
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3.4 Application of Stochastic Grammars: Multiple-Trajectory video Classification

We propose to embody multiple-trajectory in a modified grammar representation, and im-

plement statistical estimation algorithms. Section A presents modified grammar representation

of multiple-trajectory.

3.4.1 Grammar Representation of Multiple-Trajectory

A trajectory in our work is a 2-D T-tuple corresponding to the x and y-axes projections of

the object’s centroid location at each instant of time, {(Xt, Yt), t = 0, ..., T}. We classify the

trajectories into separate classes. The word ”class” refers to a type of activity for which we have

a sufficient number of samples to train the system. The trajectories are segmented at points of

maximum change in curvature of the trajectory. We represent the subtrajectories using PCA

because of its optimal energy compaction properties (70). For M multiple trajectories, the PCA

coefficient vectors of the input trajectories after segmentation are posted as an observation se-

quence Oi,t, where t = {0, 1, ..., T}, i = {1, 2, ..., M}; Let there be T +1 subtrajectories for each

trajectory. Then, the state variable Xi,t represents one state at specific time t for trajectory

i, where t = {0, 1, ..., T}, i = {1, 2, ..., M}; Each Xi,t represents hidden state corresponding to

observation Oi,t. We consider 4 possible directional observations Oi,t emitted from each state

variable Xi,t, which are up, down, left and right. We, therefore, propose to use continuous den-

sity stochastic context-sensitive grammars (SCSGs), where each state is modeled by a mixture

of Gaussian. Without loss of generality, we illustrate our framework based on 2 trajectories.

The undirected edge between 2 state (trajectories) denotes the ”interaction” among the process
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(trajectories) at the same time. The directed edge between 2 state represents that the current

state is influenced by the previous state. ”Influences” or ”interactions” among the process

(trajectories) are modeled as dependencies of state variables among process (trajectories). We

constrain the probabilistic dependencies of state in one trajectory at time t, on its own state

at time t − 1, as well as on the states of other trajectories that ”interact” or ”influence” on it.

Summary of stochastic context-sensitive grammars (SCSGs) model training and classifica-

tion algorithms

-Training:

1. Decompose the stochastic context-sensitive grammars (SCSGs) model into multiple stochas-

tic context-free grammars (SCFGs) model and apply the learning algorithm on each of it

sequentially.

2. Assign initial values to {X1,0, am,n,k,l, P
Xi,t(A → η)}.

3. Update the forward and backward probabilities according to (3.3) and (3.4) and also

update F
(p)
m,n,k,l(i, t), G

(p)
m (i, t) according to (3.5) and (3.6).

4. Update {X(p+1)
1,0 , a

(p+1)
m,n,k,l, P

Xi,t(A → η)(p+1)} according to (3.8)-(3.10) using EM Algo-

rithm.

5. Back to step 2, calculate the new log-likelihood function, stop if log-likelihood is below

pre-set threshold.

-Classification:
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1. To classify a trajectory into one of the classes, compute the log-likelihood that each model

gives to the trajectory. If the i’th model is the most likely, then declare the class of the

trajectory to be class i.

3.4.2 Simulation Results on Video Classification Application

In this section, we report experimental results of the proposed stochastic context-sensitive

grammars (SCSGs) model applied to the problem of video classification that contains multiple

motion trajectories. For simplicity, we only test our proposed algorithm on the video sequences

including 2 trajectories. We first decompose the SCSGs model into multiple stochastic context-

free grammars (SCFGs) model. Then a series of algorithms are expected to learn SCFGs

sequentially and predict the categories of new sample based on learned stochastic grammars.

We test the classification performance of both stochastic context-sensitive grammars (SC-

SGs) model classifier, traditional coupled stochastic context-free grammars (CSCFGs) model

classifier on 2 data sets: (A) Synthetic TWO-HANDS data set. (B) Subset of the Context

Aware Vision using Image-based Active Recognition (CAVIAR) data set which contains video

clips of multiple trajectories with interactions. The performances for the data set are reported

in terms of the following criteria.

1) The average Receiver Operating Characteristics (ROC) curve.

The ROC curve captures the trade-off between false positive rate versus the true positive

rate as the threshold on likelihood at the output of the classifier is varied. As a baseline case,

the performance of a uniformly distributed random classifier is also presented in the ROC curve.

2) The Area Under Curve (AUC).
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The AUC is a convenient way of comparing classifiers, which varies from 0.5 (random

classfier) to 1.0 (ideal classifier).

3) The Optimal Operating Point (OOP)

The Optimal Operating Point based on equal error rate criterion yields an optimal trade-

off between false positives and true positives under the equal cost assumption between false

acceptance and correct acceptance.

4) Classification Accuracy.

The Classification Accuracy is defined as:

PAccuracy = 1 − |F |/|S|, (3.11)

where |F | represents the cardinality of the false positives set, and |S| represents the cardinality

of the whole data set.

The synthetic TWO-HANDS data set is taken from the Australian Sign Language (ASL)

data set. We select ten sign words, and combine each two different sign words, e.g., sign words

”god” and ”boy”, as a class, to form a new class ”god+boy” which contains two-hands 2D

trajectory (x- and y-) samples. In this way, we construct 45 classes of two-hand trajectories,

each of which contains 30 samples, totally 1350 two-hand trajectory samples to form our TWO-

HANDS data set. We first use 50% samples as training data, and the rest as testing data. It

should be noted here that the Receiver Operating Characteristics curve in Fig. 29 represents

an average of 45 individual curves for a total of 675 queries for classification. As can be seen
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TABLE VI

PERFORMANCE STATISTICS FOR TWO-HANDS DATA SET.
Classifier proposed SCSGs CSCFGs

OOP 0.81 0.77
AUC 0.86 0.83

Accuracy Rate 0.79 0.77

from the figure, our proposed SCSGs model classifier is more accurate than traditional CSCFGs

model classifier. The Optimal Operating Point (OOP), Area Under Curve (AUC) and Average

Classification Accuracy for two systems on the data set in Fig. 29 can be further illustrated from

Table VI. Our proposed SCSGs model classifier achieves a 79% accurate rate of classification,

and CSCFGs model classifier is 2% lower than proposed method. This experiment demonstrates

the robustness and superior performance of our proposed classifier. Cross-validation method is

used for estimating the performances of the two classifiers.

We further report the results on a wide range of data sizes from 10 to 45 classes. All classes

are selected from the data set of 1350 trajectories with 45 classes. The results are reported in

terms of the average probability of classification accuracy of the classifiers in Table VII. As the

number of classes increases, the classification accuracy for both methods will decrease. However,

our proposed method holds the superior performance compared to CSCFGs. To further compare

our method with CSCFGs, the first 10 classes from original 45 classes are selected to provide

further analysis of classification performances. Bar chart in Fig. 30 is used to demonstrate the
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Figure 29. Illustration of the region of convergence (ROC) curve and Area Under Curve
(AUC) for the proposed SCSGs and CSCFGs for TWO-HANDS data set.

accuracy rate for each class first. As can be seen from the figure, our SCSGs perform much

better than CSCFGs, since our SCSGs can characterize the intrinsic state transition structure

and behavior of complex systems involving states of multiple trajectories. The confusion matrix

will summarize the results in more details. The confusion matrix for our proposed SCSGs and

traditional CSCFGs are illustrated in Table VIII. For example, in the confusion matrix for

CSCFGs, of the 15 actual samples for each class 4 and 5, the classifier predicts that one of the

actual class 4 is class 5, and one of the actual class 5 is class 4; while our proposed SCSGs can

distinguish class 4 and 5 with 100% accuracy. This example demonstrates that our proposed

SCSGs perform much better than CSCFGs. Take class 2 as another example, in the confusion

matrix for our SCSGs, of the 15 actual class 2, the proposed SCSGs predict that two are class



83

Figure 30. Illustration of the accuracy rate of each class for SCSGs and CSCFGs for
TWO-HANDS data set.

1 and one is class 3, while in the confusion matrix for CSCFGs, of the 15 actual class 2, the

CSCFGs predict that three are class 1 and one is class 3. We can see from this comparison that

CSCFGs classifier has trouble distinguishing between class 1, 2 and 3. Our proposed method

can distinguish one more class 2 from class 1. However, since the trajectories from these three

classes are so similar to each other that it is indeed very difficult to distinguish them completely.

The similar situations also happen to class 3 and 9. Table IX presents the classification accuracy

of the data set of 1350 trajectories with 45 classes with different percentage of training data.

As can be seen from the table, more training data can help us obtain more stable and accurate

classification performance.

Then we test both SCSGs classifier, traditional CSCFGs classifier on CAVIAR data set,

we select data classes that have 2 people interacting with each other, and use 50% samples as
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TABLE VII

ACCURACY RATE VERSUS NUMBER OF CLASSES FOR TWO-HANDS DATA SET.
data size (classes) 10 20 30 45
proposed SCSGs 0.94 0.89 0.85 0.79

CSCFGs 0.91 0.88 0.82 0.77

TABLE VIII

CONFUSION MATRIX OF PROPOSED SCSGS AND CSCFGS FOR TWO-HANDS DATA
SET.

predicted class No.
1 2 3 4 5 6 7 8 9 10

actual
class
No.

1
SCSGs 15 0 0 0 0 0 0 0 0 0

CSCFGs 15 0 0 0 0 0 0 0 0 0

2
SCSGs 2 12 1 0 0 0 0 0 0 0

CSCFGs 3 11 1 0 0 0 0 0 0 0

3
SCSGs 1 1 13 0 0 0 0 0 0 0

CSCFGs 1 2 12 0 0 0 0 0 0 0

4
SCSGs 0 0 0 15 0 0 0 0 0 0

CSCFGs 0 0 0 14 1 0 0 0 0 0

5
SCSGs 0 0 0 0 15 0 0 0 0 0

CSCFGs 0 0 0 1 14 0 0 0 0 0

6
SCSGs 0 0 0 0 1 14 0 0 0 0

CSCFGs 0 0 0 0 1 14 0 0 0 0

7
SCSGs 0 0 0 0 0 0 15 0 0 0

CSCFGs 0 0 0 0 0 0 15 0 0 0

8
SCSGs 0 0 0 0 0 0 0 15 0 0

CSCFGs 0 0 0 0 0 0 0 15 0 0

9
SCSGs 0 0 0 0 0 0 0 3 12 0

CSCFGs 0 0 0 0 0 0 0 4 11 0

10
SCSGs 0 0 0 0 0 0 0 0 0 15

CSCFGs 0 0 0 0 0 0 0 0 0 15
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TABLE IX

ACCURACY RATE VERSUS PERCENTAGE OF TRAINING SET FOR TWO-HANDS
DATA SET.

percentage of training data 30% 50% 80%
proposed SCSGs 0.60 0.79 0.86

CSCFGs 0.59 0.77 0.83

training data, and the rest as testing data. There are 9 classes of 180 two-people interacting

trajectories. Fig. 31 lists samples of 2 trajectories from 2 classes of 9 classes in CAVIAR data set.

The Receiver Operating Characteristics (ROC) curve for a total of 90 queries for classification

is shown in Fig. 32. As can be seen from the figure, the performance of SCSGs classifier is

better than traditional CSCFGs classifier. The Optimal Operating Point (OOP), Area Under

Curve (AUC) and Average Classification Accuracy for two systems on the CAVIAR data set in

Fig. 32 can be further illustrated from Table X. As shown in Table X, the average classification

accuracy of our classifier reaches 85%, which is 3% higher than traditional CSCFGs classifier.

The data presented in all Tables have been averaged over ten trials.



86

TABLE X

PERFORMANCE STATISTICS FOR CAVIAR DATA SET.
Classifier proposed SCSGs CSCFGs

OOP 0.84 0.79
AUC 0.90 0.86

Accuracy Rate 0.85 0.82

Figure 31. Illustration of the region of convergence (ROC) curve and Area Under Curve
(AUC) for the proposed SCSGs and CSCFGs for CAVIAR data set.

Figure 32. Multiple-trajectories samples of two classes in CAVIAR data set: (a) 2 trajectories
sample from class 1: ”Two people meet and walk together”; (b) 2 trajectories sample from

class 2: ”Two people meet, fight and run away”.



CHAPTER 4

COMPRESSED SENSING GAME THEORY (CSGT): A NOVEL

POLYNOMIAL COMPLEXITY SOLUTION TO NASH EQUILIBRIA IN

DYNAMICAL GAMES

4.1 Compressed sensing approach to solution of under-determined systems of linear

equations

In this section, we provide a brief review of the idea behind the compressed sensing theory.

We use the term signal to represent the solution data we are trying to acquire. Let x ∈ R
n

represent a signal and y ∈ R
m a vector of linear measurements formed by taking inner products

of x with a set of linearly independent vectors ai ∈ R
n, i = 1, 2, ..., m. In matrix format,

the measurement vector is y = Ax, where A ∈ R
m×n has rows aT

i , i = 1, 2, ..., m. When the

number of measurements m is equal to n, the process of recovering x from the measurement

vector y simply entails solving a linear equations system. However, in many applications, one

only has very fewer measurements compared to a much larger dimension of space the signal x

resides in, i.e., m � n. In that case, the linear system Ax = y is typically under-determined,

permitting infinitely many solutions. In order to have a unique solution, one need to apply

various regulatory conditions.

87



88

In compressed sensing, one adds the constraint of sparsity, allowing only solutions to have

smallest number of nonzero coefficients. Specifically, we are trying to solve the follow optimiza-

tion problem.

min{‖x‖0 : Ax = y}, (4.1)

where the quantity ‖x‖0 denotes the number of non-zeros entries in x. (Equation 4.1) is a

combinatorial optimization problem with a prohibitive complexity if solved by enumeration,

and thus is not tractable. An alternative model is to replace (Equation 4.1) by (Equation 4.2)

and solve a computationally tractable convex optimization problem:

min{‖x‖1 : Ax = y}. (4.2)

Under favorable conditions the combinational problem (Equation 4.1) and convex programming

(Equation 4.2) share a common solution (75). This equivalence result allows one to solve the

L1 problem, which is much easier than the original L0 problem.

In this paper, we will employ the compressed sensing theory to solve the Nash equilibrium

which can be formulated as solutions of a under-determined system of linear equations. More

specifically, we use the basis pursuit model (Equation 4.2) for recovery represents a fundamental

instance of compressed sensing. Certainly not the only one, many other recovery methods such

as greedy-type algorithms are also available (76).
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Theory of compressed sensing presently consists of two components: recoverability and sta-

bility. Recoverability addresses the central questions: what types of measurement matrices and

recovery procedures ensure exact recovery of all k-sparse signals and how many measurements

are sufficient to guarantee such a recovery? On the other hand, stability addresses the robust-

ness issues in recovery when measurements are noisy and/or sparsity is inexact. We first review

an important concept in compressed sensing.

Definition 1 A measurement matrix A satisfies the Restricted Isometry Property (RIP) if the

following inequality holds for all i-sparse vector x, i ≤ m and ε ∈ (0, 1)

(1 − ε)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + ε)‖x‖2 (4.3)

Recoverability is ensured if the matrix A ∈ R
m×n holds RIP for certain pairs of (i, ε) (75).

Choosing a measurement matrix A with m < n that has proper RIP ensures exact recovery

of signal. In practice, it is almost always the case that either measurements or the measurement

matrix is inexact, or both. The compressed sensing stability studies the issues concerning how

accurately a compressed sensing approach can recover signals under these circumstances (77).

Stability results have been established for (Equation 4.2) and its extension

min{‖x‖1 : ‖Ax − y‖2 ≤ r}. (4.4)



90

Most compressed sensing methods have been shown to possess recoverability with known

stability (76).

4.2 Compressed Sensing Framework and Nash Equilibrium

Let (S, u) be a game with n players, where Si is the strategy set for player i, S = S1×S2...×Sn

is the set of strategy profiles and u is the payoff function for s ∈ S. Let si be a strategy

profile of player i and s−i be a strategy profile of all players except for player i. When each

player i ∈ {1, ..., n} chooses their corresponding strategy si, which results in a strategy profile

s = (s1, ..., sn), then player i obtains his payoff ui(s). Note that the payoff of individual player

depends on the strategy profile chosen by all players.

Definition 2 A strategy vector s ∈ S is said to be a Nash equilibrium if for all players i and

each alternate strategy s′i ∈ Si, we have that

ui(si, s−i) ≥ ui(s′i, s−i). (4.5)

In other words, no player i can change his chosen strategy from si to s′i and thereby improve

his payoff, assuming that all other players stick to the strategies they have chosen in s. The Nash

equilibrium we have considered so far are called pure strategy equilibrium. For the notion of

mixed Nash equilibrium, let us enhance the choices of players so each one can pick a probability

distribution over his set of possible strategies; such a choice is called a mixed strategy.
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A correlated equilibrium is a probability distribution over strategy vector s (78). Let p(s)

denote the probability of strategy vector s, where we also use the notation p(s) = p(si, s−i)

when talking about a player i.

Definition 3 The distribution is a correlated equilibrium if for all players i and all strategies

si, s
′
i ∈ Si, we have the inequality

∑
s−i

p(si, s−i)ui(si, s−i) ≥
∑
s−i

p(si, s−i)ui(s′i, s−i). (4.6)

If player i receives a suggested strategy si, the expected profit of the player cannot be increased

by switching to a different strategy s′i ∈ Si. Nash equilibria are special cases of correlated

equilibria, where the distribution over S is the product of independent distributions for each

player. Therefore Nash equilibrium is a special case of correlated equilibrium. More precisely,

we have the following theorem revealing the relationship between correlated equilibria and Nash

equilibria in a 2-player game (79).

Theorem 1 In any non-degenerate 2-player game, the Nash equilibria reside in vertices of the

polytope formed by correlated equilibria.

Notice that the boundaries of the a polytope are determined by a system of linear equations.

While the vertices are characterized as the solutions of various pairs of those linear equations,

or equivalently the sparse solution of the differences between those pairs. The traditional

compressed sensing is to seek sparse solution for under-determined system of equations. But

in Ax = y here, A is over-determined. One efficient way to solve this problem is to convert it
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to compressed sensing problem by letting A−1Ax = A−1y, finally we get x = A−1y. A−1 here

is the pseudo-inverse of A. We then can solve the optimization problem using the compressed

sensing theory.

Given all the payoff functions of the 2-player mixing game, we can use the same idea to solve

all the vertices of the polytope formed by solution sets of correlated equilibria. By Theorem

1, at least one of the vertices is the Nash equilibrium. We point out the major difference

of our method to directly solving system of linear equations is that the latter case requires

solving the equations for combinatorically many times since the vertices could be formed by

combinatorically many boundaries. While our method only need to perform a joint convex

optimization, although at the expense of combinatorically many storage requirement. For a

2-player mixing game, the following procedure is used to formulate the matrix A. For example,

in a 2-play game, The pay off matrix of person a is [a1, a2; a3, a4], the pay off matrix of person

b is [b1, b2; b3, b4]; For the matrix A, we obtain the first row of matrix by doing substraction

operations between second row and the first row of person a. we got [a3 − a1, 0, a4 − a2, 0]; The

second row of the matrix is obtained by doing substraction operation between second row and

the first row. We finally obtain [0, a1 − a3, 0, a2 − a4]. We perform the same operation for the

person two. Finally, the 5*4 matrix of A we obtain is [a3 − a1, 0, a4 − a2, 0; 0, a1 − a3, 0, a2 −

a4; b2 − b1, b4 − b3, 0, 0; 0, 0, b1 − b2, b3 − b4; 1, 1, 1, 1];

We have the following theorem to characterize the usability of our method for solving the

Nash equilibria.
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Theorem 2 Assume the payoff matrix A−1 ∈ R
m×n satisfies the (n−1,

√
2−1)−RIP condition,

the compressed sensing based method will find the exact Nash equilibria.

In practice, commonly one is not able to have a precise description of the payoff matrix

A−1. Instead, A−1 is a random matrix per se. We can model the uncertainty in the payoff

as a Gaussian random matrix, which results A−1 as a Gaussian random matrix. We have the

following theorem for the case where A−1 is a Gaussian matrix.

Theorem 3 Given a Gaussian payoff matrix A−1 ∈ R
m×n, if with probability at least 1 − δ,

the matrix 1√
m

A−1 satisfies the (i, ε) − RIP property provided

m ≥ Ci

ε
log

( n

ε2i

)
, (4.7)

where i ≥ 1, ε ∈ (0, 1/2) and δ ∈ (0, 1). C is a constant which only depends on δ. Then with

probability p where p ∼ O(e1−δ), the compressed sensing based method will solve the exact Nash

equilibria.

4.3 Experimental Results

Compressed-Sensing Game Theory (CSGT) framework serves as an efficient way to solve

Nash equilibria for certain classed of 2-player games. Therefore, one of the advantages of CSGT

is that it is computationally less expensive than is Lemke-Howson algorithm (80). To evaluate

the performance of our CSGT, we ran several sets of experiments. In the first set of experiments,

we compared the performance of CSGT to that of Lemke-Howson algorithm (80) on two 2-play
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games including battle of the sexes and prisoner’s dilemma. The compressed sensing package

(http://dsp.rice.edu/cs) is adopted in our experiment.

In battle of the sexes game, the husband would most of all like to go to the football game,

while their wife would like to go to the opera. Both would prefer to go to the same place rather

than different ones. The payoff matrix in Table XI shows an example of battle of the sexes

game, where the wife chooses row and the husband chooses a column. In each cell, the first

number represents the payoff to the wife and the second number represents the payoff to the

husband. In our experiment, we formulate 5 ∗ 4 matrix by substraction operations. The A

matrix in this example is [−3, 0, 1, 0; 0, 3, 0,−1;−1, 3, 0, 0; 0, 0, 1,−3; 1, 1, 1, 1]

TABLE XI

THE PAYOFF MATRIX OF BATTLE OF THE SEXES GAME
Opera Football

Opera 3, 1 0, 0
Football 0, 0 1, 3

Both CSGT and Lemke-Howson algorithm (80) were executed on this two-player game

for 100 times. As can be seen from Fig. 1, the Nash equilibria (blue) are vertices of the

correlated equilibria. It it also shown that our compressed sensing framework find the Nash

equilibrium (0.75, 0.75) first. Table XII compares the average computational time and the first
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Figure 33. battle of the sexes game

TABLE XII

STATISTICAL PERFORMANCE FOR BATTLE OF THE SEXES GAME.
Method NE CPU time
CSGT (0.75, 0.75) 0.031

Lemke-Howson (0.75, 0.75) 1.16

Nash equilibrium solution found by these two methods. The table 2 demonstrates that CSGT

solves the game far more quickly than Lemke-Howson.

In prisoner’s dilemma game, each player chooses to either ”cooperate” or ”defect”. The

payoff matrix in Table XIII shows an example of prisoner’s dilemma game, where the player 1

chooses row and the player 2 chooses a column. In each cell, the first number represents the
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payoff to the player 1 and the second number represents the payoff to the player 2. The matrix

implies that the ”both cooperate” outcome is better than the ”both defect” outcome.

TABLE XIII

THE PAYOFF MATRIX OF BATTLE OF THE SEXES GAME.
Cooperate Defect

Cooperate 4, 4 5, 1
Defect 1, 5 0, 0

Both CSGT and Lemke-Howson algorithm (80) were executed on this two-player game for

100 times. Table XIV compares the average computational time and the first Nash equilibrium

solution found by these two methods. The table XIV demonstrates that CSGT solves the game

far more quickly than Lemke-Howson.

TABLE XIV

STATISTICAL PERFORMANCE FOR PRISONER’S DILEMMA GAME.
Method NE CPU time
CSGT (2.5, 2.5) 0.016

Lemke-Howson (2.5, 2.5) 0.13
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