
Score-Matching Representative Approach for Big Data Analysis with

Generalized Linear Models

by

Keren Li
B.Sc. (Nankai University) 2001

M.S. (Louisiana State University) 2004

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:
Jie Yang, Chair and Advisor
Samad Hedayat
Min Yang
Jing Wang
Hua Yun Chen, Division of Epidemiology and Biostatistics, School of Public Health



Copyright by

Keren Li

2018



This work is dedicated to my wife and my parents, who have always loved me unconditionally,

had me better and more fulfilled than I could have ever imagined.

iii



ACKNOWLEDGMENT

I would like to acknowledge everyone who played a role in my struggle to achieve my dream

of becoming a Ph. D.

First of all, I would like to thank my advisor, Prof. Jie Yang, who has provided patient

advice and guidance throughout the research process and helped me a lot during my Ph. D.

study. He also has given much time, effort and knowledge to aid in the completion of my

research papers and this dissertation. Thank you for your patience and friendship.

Secondly, special thanks go to Prof. Min Yang, who supported me in the first summer here

and provided me lots of opportunities. I would also like to thank Prof. Jing Wang. She has

cultivated an appreciation for teaching. One of my work was inspired in her class. My sincere

thank goes to Prof. Samad Hedayat, whose wisdom and experience was greatly appreciated, as

well as Prof. Hua Yun Chen, agreed to serve in my committe member in such a short time.

Thank all professors taught me for your unwavering support.

Also, thank Prof. Hsin-Hsiung Huang from University of Central Florida, one of my best

friends, who offered me lots of helps and suggestions.

And lastly, many thanks go to Xuelong, Shuang, Yue, Hani, and many others, who con-

tributed to our discussion sessions.

Finally, I am grateful to have had this opportunity attending MSCS, UIC. This experience

has afforded me the opportunity to achieve great success.

iv



PREFACE

The idea of representative originally came from a joint research project with Prof. Jie Yang,

when we tried to develop a subsampling method for generalized linear regression with categorical

response for big data. The data we dealt with is the famous flight on-time performance data. For

subsampling method, an initial value is always required. Prof. Jie Yang suggested to discretize

the only continuous variable, namely distance, in our model into 25 levels by using the interval

center as smoothing value. Later we found our subsampling method could not even compare

with the initial value no matter how we improved our method. We guessed it was because we

discretized distance in too many levels. Then I reduced the pieces of interval down to 20, 10,

even 4. Surprisingly, the initial result can still beat the developed method. It indicates that even

with a coarse grid, the binning method could still work well in some situations. Thereafter, we

tried more comprehensive simulations, where the performance of traditional smoothing choices,

interval center, is not that satisfactory. We realized that the key is the choice of representative

(smoothing value). We named this method representative method, where later on, we found

this terminology has been used for smoothing value on Wikipedia already. The difference is

that we focus on the choice of representative while the data binning focuses on how to partition

the data. So, the scope of this paper is given partitioning of data, find representatives.
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SUMMARY

We propose a fast and efficient strategy, called the representative approach, with linear

models and generalized linear models for big data analysis, and in particular for distributed

dataset.

With a given partitioning of big dataset, this approach constructs a representative data

point for each data block and fits the target model on the representative dataset. In terms

of time complexity, it is as fast as the subsampling approaches in the literature. As for effi-

ciency, its accuracy of estimated parameters appears to be better than the divide-and-conquer

method. Additionally, the representative approach is especially useful when analyzing massive

data distributed stored on different nodes, since the generation of representatives is conditional

independent. Overall, we recommend two representative approaches, mean representative (MR)

and score-matching representative (SMR), along with theoretical justifications, for big data

analysis with generalized linear models.

Comprehensive simulation studies confirm that MR is a good solution for linear models

and pre-analysis for GLMs, while SMR outperforms the subsampling and divide-and-conquer

methods, even with moderate size of block, for general GLMs. With properly chosen data

partition, SMR estimate appears to be even comparable with the full data estimate. Using the

Airline on-time performance data as an illustrative real big data example, we show that MR

and SMR are as good as the full data estimate when available.
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SUMMARY (Continued)

For GLMs with flat inverse link functions and moderate coefficients of the continuous vari-

ables, we recommend MR. Otherwise, we recommend SMR solution with MR as an initial step

with a finer partition.
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CHAPTER 1

INTRODUCTION

In the past decade, big data or massive data has drawn dramatically increasing atten-

tion all over the world. It was in the 2009 ASA Data Expo competition when people found

out that no statistical software was available to analyze the massive Airline on-time perfor-

mance data. At that time, the airline data file, about 12GB in size, consisted of 123,534,969

records of domestic flights in the United States from October 1987 to April 2008 (Kane et

al., 2013 (1)) . Up to February 2017, the airline on-time performance data collected from

the Bureau of Transportation Statistics consisted of 353 files with 169,609,446 valid records in

total.

The response in the Airline on-time performance data was treated as a binary variable Late

Arrival with 1 standing for late by 15 minutes or more (Wang et al., 2016 (2)). Generalized

linear models (GLMs) have been widely used for modeling binary response, as well as Poisson,

Gamma, and Inverse Gaussian responses (McCullagh and Nelder, 1989 (3); Dobson and Barnett,

2008 (4)). In order to fit a GLM with p predictors, a typical algorithm searching for the

maximum likelihood estimate (MLE) based on the full data of size N requires O(ζNNp
2) time

to run, where ζN is the number of iterations required for convergence of the full data MLE

algorithm (Wang et al., 2017 (5)).

Staring in 2009, substantial efforts have been made on developing both methodologies and

algorithms towards big data analysis (see, for example, Wang et al. (2016) (2), for a good

1

http://stat-computing.org/dataexpo/2009/
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
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survey on relevant statistical methods and computing). Divide-and-conquer, also known as

divide-and-recombine, split-and-conquer, or split-and-merge, first partitions a big dataset into

K blocks, fits the target model block by block, and then aggregates the K fits to form a final one

(Wang et al., 2016 (2)). A divide-and-conquer algorithm proposed by Lin and Xi (2011) (6)

reaches time complexity of O(ζN/KNp
2), where ζN/K is the number of iterations required by a

GLM MLE algorithm with N/K data points. The accuracy of the estimated parameters based

on the divide-and-conquer algorithm relies on the block size N/K, which typically depends on

the computer memory. Therefore, as N goes to infinity, K has to increase accordingly. Typically,

its accuracy is not as good as the full data estimate.

Another popular strategy for big data analysis is subsampling. For example, leveraging

technique has been used to sample a more informative subset of the full data for linear regression

problems (Ma and Sun, 2014 (7)). Inspired by D-optimality in optimal design theory, Wang et

al. (2018) (8) proposed an information-based subsampling technique, called IBOSS, for big data

linear regression problems. Its time complexity is O(Np) while the ordinary least square (OLS)

estimate for linear models takes the time complexity of O(Np2). Motivated by A-optimality,

Wang et al. (2017) (5) developed an efficient two-step subsampling algorithm for large sample

logistic regression, which is also a special case of generalized linear models. The time complexity

of the A-optimal subsampler is also O(Np). Compared with the divide-and-conquer strategy,

the subsampling approach requires much less computational cost. Nevertheless, its accuracy

relies on the subsample size and is typically not as good as the divide-and-conquer estimate.
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In the computer science literature, data binning technique employing a binned version of

continuous variables is a commonly used discretization technique for data pre-processing, which

bins continuous variables into categorical variables coded by so-called smoothing values (see, for

example, Kotsiantis and Kanellopoulos (2006) (9)). It mainly focuses on how to partition data

into blocks or bins, while the smoothing values are usually chosen from class labels, boundary

points, center, mean, or median of data block, whose performance could not be guaranteed,

especially for nonlinear models.

Inspired by data binning but different from it, the representative approach proposed in

this dissertation assumes a given data partitioning and concentrates on constructing the best

smoothing values, which we call representatives, more efficiently according to the regression

model. The recommended score-matching representative (SMR) approach runs as fast as sub-

sampling approaches, while estimates model parameters comparable to the divide-and-conquer

method. Unlike the data binning technique serving as a data pre-analysis method, the repre-

sentative approach provides a solution with reasonable accurate level for big data analysis.

Actually, in representative approach, the GLM is fitted on K representatives obtained from

the original N data points (K� N). The time complexity is only O(Np), same as the subsam-

pling approaches. The K representatives are not a subset of the N data points, but summarize

the information from each single of the N data points. The accuracy of parameter estimates

are comparable with or better than the divide-and-conquer estimate. Moreover, by matching

the score function of GLMs, the SMR estimate is comparable with the full data estimate for

our comprehensive experiments.
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The representative approach provides an ideal solution for the so-called distributed database

(see, for example, Özsu and Valduriez (2011) (10)), which is dispersed over a network of inter-

connected computers and is often the case in practice for massive data. By exchanging only the

estimated parameters and the representative data points among parallel computing computers,

the representative approach can work well even with slow-speed network connection.

The remainder of this dissertation proceeds as follows.

In Chapter 2 we describe necessary preliminary knowledges such as the generalized linear

model framework, data partitions including grid partition, feather space oriented, and clustered

partition, data oriented, as well as natural partition and distributed database.

In Chapter 3, starting from a toy example of univariate linear regression, we describe the

framework of representative approaches. By comparing mean, median and mid-point represen-

tatives, we recommend mean representative (MR) for big data linear regression. Also, some

theoretical justifications of block-center kind representatives, as well as simulations are given.

In Chapter 4, we develop the score-matching representative (SMR) along with its theoretical

justifications. Based on our comprehensive simulation studies comparing SMR with MR, A-

optimal subsampling, and Divide-conquer, we recommend SMR for big data generalized linear

regressions.

In Chapter 5 we use the Airline on-time performance data as an illustrative real big data

analysis example. We show that the MR and SMR estimates are as accurate as the full data

estimate when the latter is available.

We conclude in Chapter 6 and discuss the future work.



CHAPTER 2

PRELIMINARY

2.1 Generalized Linear Model and Score Function

Given the original data set {(xi, yi), i = 1, 2, . . . ,N} with covariates xi ∈ Rd and response

yi ∈ R, we consider a generalized linear model assuming independent response random variable

Yi’s and the corresponding predictors Xi = (h1(xi), . . . , hp(xi))
T ∈ Rp. For model-based data

analysis with fairly general known functions h1(·), . . . , hp(·), we would rather regard the data

set as D = {(Xi, yi), i = 1, . . . ,N}. For simplicity, we denote Xi = (xi1, . . . , xip)
T , i = 1, . . . ,N.

For many applications, h1(xi) ≡ 1 corresponds to intercept.

In this dissertation, we only consider independent observations following an exponential

family distribution in the natural form with probability density function

f(yi) = exp{
yiθi − b(θi)

φ
+ c(yi, φ)},

where θi is the natural parameter and φ is the dispersion parameter, b(·) and c(·, ·) are known

functions.

Following McCullagh and Nelder (1989) (3), there exists a link function g and regression

parameters β = (β1, ..., βp)
T , such that

E(Yi) = µi and ηi = g(µi) = XT
i β (2.1)

5
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For typical applications, the link function g is one-to-one and differentiable. The connection

between parameter θi and observer expected value µi is given by θi = h(µi). If θi = ηi ∀i

holds, we call the corresponding link function canonical. Note that we do not transform the

response yi, but rather its expected value µi.

It is known that

E(Yi) = µi = b ′(θi)

Var(Yi) = σ
2
i = φb

′′(θi)

provided b(θ) is twice differentiable. V(θ) := b ′′(θ) is called the variance function of the GLM.

The log-likelihood function is then

l(β, φ,y) =

n∑
i=1

[
yiθi − b(θi)

φ
+ c(yi, φ)

]

=

n∑
i=1

[
yih(µi) − b(h(µi))

φ
+ c(yi, φ)

]

=l(µ,φ,y)
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According to McCullagh and Nelder (3) (1989, Section 2.5), the maximum likelihood esti-

mator (MLE) of β is given by

β̂ =arg max
β

{l(β;y,X)}

=arg max
β

N∑
i=1

[
yiθ(Xi,β) − b(θ(Xi,β))

φ
+ c(yi, φ)

]

where θ(Xi,β) = θi = h(g
−1(XT

i β)). MLE is obtained by solving the score equation

s(β;y,X) =

n∑
i=1

∂li
∂β

= 0

where y = (y1, . . . , yN)
T , X = (X1, . . . ,XN)

T .

Suppose g is continuous. The score function can be written as

s(β;y,X) =

n∑
i=1

∂li
∂θi

dθi
dµi

dµi
dηi

∂ηi
∂β

=

n∑
i=1

(yi − µi)
1

φb ′′(θi)

1

g ′(µi)
Xi

=

n∑
i=1

(yi − g
−1(ηi))

1

φb ′′((b ′)−1(g−1(ηi)))g ′(g−1(ηi))
Xi

=

n∑
i=1

(yi −G(ηi))ν(ηi)Xi

where

ν(η) = {φb ′′((b ′)−1(g−1(η)))g ′(g−1(η))}−1 = φ−1dθ

dη
, G(η) = g−1(η) (2.2)
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For canonical link, the effective part of ν(η) = 1, since it is a constant. For more ν and G

examples of commonly used GLMs, see Table VI.

2.2 Data Partition

The main focus of binning methods is on how to partition data into blocks or bins. Many

different partition methods have been proposed in the literature (see Fahad et al. (2014) (11)

for a good survey). From our point of view, there are at least two types of partitioning methods.

One type is to partition the feature space Rp or its subset, with cut points obtained from the

summary information of data. We call it grid partition. Grid partition methods (Kotsiantis and

Kanellopoulos, 2006 (9)) divide the space into rectangular cells at the given cut points on each

covariate, such as quantiles (equal-depth) or equal-width points, which is usually satisfactory

with a moderate number of predictors. Its time complexity is O(Np). That is, the data is

arranged into blocks according to the ranges of the covariates xi’s or the predictors Xi, for

example, a block Ik may be defined as {x = (x1, . . . , xd)
T ∈ Rd | xi ∈ [aki, bki), i = 1, . . . , d}.

Another partition type is based on clustering algorithms. We call it clustered partition.

The clustering methods aim to split the dataset into blocks such that observations in-block

are similar and consistent according to specific parameters, e.g. k-means clustering, described

in detail by Hartigan (1975) (12). Pakhira (2014) (13) proposed a linear k-means with time

complexity O(Np). The hierarchical clustering methods partition data using an agglomerative

hierarchical clustering method (Johnson, 1967 (14)). The density-based methods find blocks

defined as regions of density (Ester et al., 1996 (15)). The mixture model based clustering
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methods classify by a law of multivariate probability distributions, e.g. EM (Ghahramani and

Jordan, 1994 (16)).

For a massive dataset, employing partition methods could be very challenging especially

with large p due to the curse of dimensionality. Considering computational cost, some coarse

partitioning may be applied, where the binning methods are used only for pre-analysis.

2.3 Natural Partition and Distributed Database

In practice, massive data are often provided in parts or blocks. Each file may contain some

unique combinations of covariate values. For example, the Airline on-time performance data up

to February 2017 are stored into 353 individual data files, labeled by months. We call such kind

of data partition a natural partition. In the natural partition, the sizes of blocks are usually

large in terms of largest distance in block, binning methods may not reach a good result for

regular choices of smoothing values. Therefore, a sub-partition is necessary after a natural

partition for analysis purpose.

An example of natural partition is the distributed database (Özsu and Valduriez, 2011 (10)),

where the data may be stored in different hard disks, multiple computers, even not located

in the same physical location but interconnected. The communications between nodes are

usually slow and restricted. Therefore, operations on distributed database are expected to be

independent or conditional independent. Any re-split and combine operation is also unfriendly

to distributed database, while sub-partitioning is allowed, as long as the latter does not require

any communication between nodes. In this paper, the representative methods we developed

obey the independent or conditional independent rule.



CHAPTER 3

REPRESENTATIVE APPROACHES AND LINEAR MODELS

In this dissertation, we suppose a partitioning is given, that is, if I = {1, 2, . . . ,N} is the

index set of the whole dataset, then there exists a partitioning {I1, I2, . . . , IK} of I with nonempty,

disjoint blocks Ik’s, such that, I = ∪Kk=1Ik.

The kth data block Dk = {(Xi, yi), i ∈ Ik} has block size nk = |Ik|, the number of observations

in block, for k = 1, . . . , K. Therefore {Dk}
K
k=1 is a partitioning of original full data D . In the

kth block Dk, Xk and yk are the corresponding design matrix and response vector respectively.

3.1 A Toy Example

First, we consider only one explanatory variable, x, and assume that the statistical relation-

ship between x and the response variable y is linear, which can be written as

yi = β0 + β1xi + εi

i = 1, 2, . . . ,N. We will assume that yi’s have been standardized so that the intercept is

removed from the model

yi = βxi + εi, i = 1, 2, . . . ,N, 0 ≤ xi ≤ 1.

10
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The ordinary least square (OLS) estimator of β is given by

β̂ = (

n∑
i=1

x2i )
−1

n∑
i=1

xiyi

Our purpose is given partition of data, find a “representative” value for each block to form

a set of new data with reduced size, on which the new estimate exactly equals the estimate

on the full dataset. We build a new dataset by creating pseudo record (x̃k, ỹk), to replace all

records within kth block, k = 1, . . . , K. The new records along with the corresponding numbers

of records in block, form a weighted dataset, {(nk, x̃k, ỹk), k = 1, . . . , K}. That is, a new dataset

{(x∗i , y
∗
i ) =

∑K
k=1(x̃k, ỹk)1{i ∈ Ik}, i = 1, . . . ,N}.

The weighted least square (WLS) estimator of β̃ on the new dataset is then given by

β̃ = (

K∑
k=1

∑
i∈Ik

x̃2k)
−1(

K∑
k=1

∑
i∈Ik

x̃kỹk)

= (

K∑
k=1

nkx̃
2
k)

−1(

K∑
k=1

nkx̃kỹk)

There are two criterions for choosing representatives. First, fitted regression parameter

on the representatives {(nk, x̃k, ỹk), k = 1, . . . , K} holds the equation β̃ = β̂, or β̃ is unbiased.

Second, the choice of representatives should be independent, i.e., each partition elects their

representative only base on the data in the given block, unaffected by other blocks.
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The choice is not unique, since there is only one equation while 2K variables. By adding

some constrains, we have

nkx̃
2
k =

∑
i∈Ik

x2i , nkx̃kỹk =
∑
i∈Ik

(xiyi) (3.1)

for k = 1, . . . , K. So we have

x̃k = n
− 1

2

k (
∑
i∈Ik

x2i )
1
2 , ỹk = n

− 1
2

k

∑
i∈Ik

(xiyi)(
∑
i∈Ik

x2i )
1
2

for k = 1, . . . , K. This choice gives exactly the same fitted regression parameter as the full data.

Note that the choice of representative to exactly meet full data fit is not unique.

Also, we have an unbiased representative choice

x̃k = n
−1
k

∑
i∈Ik

xi = n
−1
k 1

T
nk
xk, ỹk = n

−1
k

∑
i∈Ik

yi = n
−1
k 1

T
nk
yk (3.2)

where xk = (xk1 , . . . , xkkn )
T , y(k) = (yk1 , . . . , ykkn )

T , with Ik = {k1, . . . , kkn}.

3.2 Representative Approaches

Inspired by the data binning and the toy example, we propose the representative approach for

model-based regression analysis on partitioned dataset. Unlike binning method, main attention

of this dissertation is paid on the choice of representative (smoothing value) of predictors (other

than covariates) for each block. The procedure is to construct representative data point (X̃k, ỹk)

for data block Dk, k = 1, . . . , K, and then fit the regression model based on the (weighted)
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representative dataset D̃ = {(nk, X̃k, ỹk), k = 1, . . . , K}. The number of unique observations is

usually significantly smaller than the original dataset size N. It is only related to the number

of blocks K. The procedure may be repeated if the construction of representative data points

depends on the fitted model.

Note that unlike subsampling approaches, a representative data point may not belong to the

original dataset, it is essentially a pseudo data generated from the data block and the current

system information.

We suggest two principles to choose representatives.

First, the choice of representatives should be conditional independent, i.e., each block elects

its representative only base on data in-block and the current system information, unaffected by

the observations of other blocks, to reduce computational costs. Consequently, representative

methods will facilitate parallel computing, especially for distributed database, since the gen-

eration of representative for each block happens in block, without communicating with other

blocks.

Second, the goal of the representative approach is to make the fitted regression parameter

β̃ based on the weighted representative dataset is considerably close to, if not equal to, the full

data estimate β̂.

Assume a natural partition has been provided for the representative approach. One may

perform a sub-partition on each original data block in order to improve the efficiency of the

representative approach, such as a linear k-means (Pakhira, 2014 (13)), both with a time

complexity O(Np).
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There are many representative choices that could possibly work, if the given partitioning is

delicate. In practice, we may not be able to reach an “appropriate delicate” partitioning in big

data sense or there is a high computational cost. For example, consider applying a grid partition

on a set of data with 20 predictor variables. If each dimension is split into 8 intervals, then

the theoretical maximum number of blocks is 820 ≈ 1.15 × 1018, such that the actual number

of non-empty blocks may be comparable to the size of full dataset, which fails to reduce the

scale of dataset. If the splits is 4 or even smaller, then some representative estimates may

be far away from the full data estimate due to the coarse partition. In such a situation, the

choice of representatives is very important with respect to the scarce computational resource.

Theoretical analysis in Section 3.3 and simulation studies in Section 3.4 show that taking block

mean is a good choice of representatives.

3.3 Center Representatives for LMs

Suppose we have p continuous predictors and the data follows a multivariate linear model.

yi = β0 + β1xi1 + · · ·+ βdxip + εi, i = 1, 2, . . . , n.

After some data transformation and min-max normalization, β0 can be removed and 0 ≤ xij ≤ 1,

for i = 1, . . . , n, j = 1, . . . , p, and the linear model can be rewritten as

y = Xβ+ ε, where
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y =



y1

y2

· · ·

yn



T

, X =



x11 x12 · · · x1p

x21 x22 · · · x2p

· · · · · ·

xn1 xn2 · · · xnp


=



XT
1

XT
2

· · ·

XT
n


, β =



β1

β2

· · ·

βp


, ε =



ε1

ε2

· · ·

εn


Xi = (xi1, xi2, . . . , xip)

T , i = 1, 2, . . . , n

OLS estimator of β is given by

β̂ = (XTX)−1XTy =

(
n∑
i=1

XiX
T
i

)−1 n∑
i=1

Xiyi

Building equations like Equation 3.1 may lead to an insolvable situation with p+1 parame-

ters but only p(p+1) equations. Inspired by Equation 3.2, using block center is a naive choice

of the representative for LM. It is also popular in the data binning literature. More specifically,

given the kth data block Dk = {(Xi, yi), i ∈ Ik} with block size nk, options for its representative

X̃k include

• mid-point of the rectangular block, when a grid partitioning is given;

• component-wise median;

• mean, that is, X̃k = n
−1
k

∑
i∈Ik Xi.

Then the weighted representative data for the kth block is (nk, X̃k, ỹk) with ỹk = n
−1
k

∑
i∈Ik yi,

which will be justified in Theorem 4.1.1. An algorithm of center representative methods is given

in Algorithm 1
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Algorithm 1: Center Representative Methods

Data: Partitioning of D : {Dk = (Xk,yk)}
K
k=1

Result: Center representative estimator β̃ for Linear Model.
1 for k = 1, . . . , K do

2 Calculate X̃k by either mid-point, median, or mean in block;

3 Calculate ỹk = n
−1
k

∑
i∈Ik yi;

4 Set nk the number of records in block;

5 end

6 Fit linear regression on the representative dataset D̃ = {(nk, X̃
(t)
k , ỹ

(t)
k )}Kk=1 to get β̃.

A comprehensive simulation study with linear models below shows that the third option

using block means, called the mean representative approach (MR), is more efficient in terms of

mean square error than the mid-point and median options, as well as the IBOSS subsampling

approach proposed in Wang et al. (2018) (8).

3.3.1 Mid-point representative approach

If a grid partitioning is given, the mid-point representative does not need any detail informa-

tion of predictors in block, only the cut points for each predictor to generate the representative

predictors. That is, it does not need read blocks for representative predictor. The only informa-

tion read from each block is the response variables for generating the representative responses.

So, mid-point is a fast solution with very low computational cost, since it is only related to

the cut points and response variables. The computing time of generating mid-point represen-

tatives is O(Kp+N), since this procedure does not read the covariate information in block but



17

the cut points and responses of block. The time required by a WLS algorithm on K data points

is O(Kp2), thus required total time complexity is O(Kp2 +N).

Based on the simulation studies for linear models in Section 3.4, the performance of mid-

point is the worst among three center representatives. The estimate is away from the full data

estimate when the partition grid is not delicate, especially when there are unbounded or large

range covariates. Therefore, mid-point is essentially a pre-analysis for big data, quick but not

accurate in most situations. Nevertheless, when the calculation burden is too heavy, mid-point

may provide some initial analysis results.

3.3.2 Median representative approach

Median representative provides a better result than mid-point in the sense of accurate,

but still is not comparable to mean representative, based on the simulation studies showed in

Section 3.4 for the linear model. And median also has bias issue on intercept estimation.

The median is not affected by outliers, which contains more information if the model as-

sumption is true or close. Thus it is robust if there is a model misspecification.

Median representative takes O(Np) to generate representative set, and the WLS estimation

also consumes O(Kp2). Consequently, the total time complexity of either median or mean is

O(Np + Kp2). If K � N and p � N, the overall time complexity is O(Np) for either median

or mean representative approaches, while the full data OLS estimation takes O(Np2) and the

IBOSS (Wang et al., 2018 (8)) requires O(Np).
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3.3.3 Mean representative approach

The time complexity of MR is the same as median representative for linear models, while

the performance of MR is comparable to full data estimate based on the simulation studies in

Section 3.4.

The following theorem shows that for linear models, the MR estimate is unbiased and

asymptotically efficient as maximum distance in block ∆ = maxk maxi,j∈Ik ‖Xi − Xj‖ → 0,

which are advantages over mid-point and median representative approaches.

Theorem 3.3.1. Suppose
∑N
i=1XiX

T
i is positive definite. For linear model yi = XTi β + εi,

i = 1, . . . ,N, with εi iid ∼ N(0, σ2), the MR estimator β̃ has mean β and covariance Cov(β̃) =

σ2(
∑K
k=1 nkX̃

T
kX̃k)

−1 when ∆ is sufficiently small.

Additionally, the difference between Cov(β̃) and Cov(β̂) based on the full data shrinks to

zero in terms of largest eigenvalue as ∆ goes to zero, and
∥∥∥Cov(β̃) − Cov(β̂)

∥∥∥
2
= O(∆2), where

the induced matrix norm ‖A‖2 = max
‖x‖=1

‖Ax‖ is square root of the largest eigenvalue of ATA.

Proof. Denote by Xk, yk, εk the predictor matrix, response vector and error vector respectively

of kth block.

Consider

∥∥∥∥∥
K∑
k=1

XT
kXk −

K∑
k=1

nkX̃
T

kX̃k

∥∥∥∥∥
2

=

∥∥∥∥∥∥
K∑
k=1

∑
i∈Ik

(Xi − X̃k)(Xi − X̃k)
T

∥∥∥∥∥∥
2

≤
K∑
k=1

∥∥∥∥∥∥
∑
i∈Ik

(Xi − X̃k)(Xi − X̃k)
T

∥∥∥∥∥∥
2
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Denote by δk = maxi,j∈Ik ‖Xi − Xj‖, so we can rewrite
∑
i∈Ik(Xi−X̃k)(Xi−X̃k)

T = δ2k
∑
i∈Ik aia

T
i ,

with ‖ai‖ ≤ 1. By the definition of matrix norm,

∥∥∥∥∥∥
∑
i∈Ik

aia
T
i

∥∥∥∥∥∥
2

= max
‖x‖=1

∥∥∥∥∥∥
∑
i∈Ik

aia
T
i x

∥∥∥∥∥∥
≤ max
‖x‖=1

∑
i∈Ik

‖ai‖2‖x‖

≤ nk

Therefore we have

∥∥∥∥∥
K∑
k=1

XT
kXk −

K∑
k=1

nkX̃
T

kX̃k

∥∥∥∥∥
2

≤
K∑
k=1

nkδ
2
k ≤ ∆2N (3.3)

Denote by λ1 and λ∗1 the smallest eigenvalues of
∑K
k=1XT

kXk and
∑K
k=1 nkX̃

T

kX̃k. By the

assumption in theorem, λ1 > 0. By Equation 3.3, we have λ∗1 > λ1 − ∆
2N > λ1/2 > 0 if

∆2 < λ1/(2N). That is,
∑K
k=1 nkX̃

T

kX̃k is invertible when ∆ is sufficiently small.

Therefore, we have the WLS from mean representative dataset

β̃ = (

K∑
k=1

nkX̃kX̃
T

k)
−1

K∑
k=1

nkX̃kỹk

=(

K∑
k=1

n−1
k XT

k1nk
1
T
nk

Xk)
−1

K∑
k=1

n−1
k XT

k1nk
1
T
nk
yk

=β+ (

K∑
k=1

n−1
k XT

kJnk
Xk)

−1
K∑
k=1

n−1
k XT

kJnk
εk
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It is easy to verify that MR estimator is unbiased,

E(β̃) = β+ E((
K∑
k=1

n−1
k XT

kJnk
Xk)

−1
K∑
k=1

n−1
k XT

kJnk
εk) = β

Also, the covariance matrix of MR estimator is given by

Cov(β̃) =

K∑
k=1

Cov((

K∑
k=1

n−1
k XT

kJnk
Xk)

−1n−1
k XT

kJnk
εk)

=σ2
K∑
k=1

(

K∑
k=1

n−1
k XT

kJnk
Xk)

−1n−2
k XT

kJ2nk
Xk(

K∑
k=1

n−1
k XT

kJnk
Xk)

−1

=σ2(

K∑
k=1

1

nk
XT
kJnk

Xk)
−1

=σ2(

K∑
k=1

nkX̃
T

kX̃k)
−1

and the matrix norm of difference between the Fisher information matrices of OLS and MR is

given by
K∑
k=1

XT
kXk −

K∑
k=1

nkX̃
T

kX̃k
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Consider the induceda matrix norm of difference between covariance matrices of OLS and

MR estimators

∥∥∥Cov(β̃) − Cov(β̂)
∥∥∥
2

=σ2

∥∥∥∥∥(
K∑
k=1

nkX̃
T

kX̃k)
−1 − σ2(

K∑
k=1

XT
kXk)

−1

∥∥∥∥∥
2

=σ2

∥∥∥∥∥(
K∑
k=1

nkX̃
T

kX̃k)
−1(

K∑
k=1

XT
kXk −

K∑
k=1

nkX̃
T

kX̃k)(

K∑
k=1

XT
kXk)

−1

∥∥∥∥∥
2

≤σ2
∥∥∥∥∥(

K∑
k=1

nkX̃
T

kX̃k)
−1

∥∥∥∥∥
2

∥∥∥∥∥(
K∑
k=1

XT
kXk −

K∑
k=1

nkX̃
T

kX̃k)

∥∥∥∥∥
2

∥∥∥∥∥(
K∑
k=1

XT
kXk)

−1

∥∥∥∥∥
2

≤σ2λ−11 λ
∗
1
−1

K∑
k=1

nkδ
2
k

≤2σ2
K∑
k=1

nkδ
2
kλ

−2
1

≤2∆2σ2Nλ−21

Thus when ∆ goes to zero, Cov(β̃) converges to Cov(β̂) in terms of largest eigenvalue.

3.3.3.1 Practical significance when ∆ goes to zero

The difference between Fisher information matrices of OLS estimator β̂ and β̃ can be written

as
∑K
k=1 nkΣk, with Σk the sample covariance matrix for predictors in the kth data block. So,

with smaller ∆, the smaller the largest eigenvalue of sample covariance matrix for each data

block, and more similarity of covariates between records in data block. From Theorem 3.3.1,

with small values of ∆, the difference between MR estimator and OLS is negligible.
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∆ = 0 means there is no distinct for covariates in block, the only thing may differ is the

response variable due to the randomness. It could happen when all the covariates are categorical

or with finite values and the data is naturally partitioned by distinct covariate values. In this

case, MR actually replaces the responses in the data block by their average.

From the proof of Theorem 3.3.1, we find that the convergence rate of covariance matrix

is O(∆2). More specifically, if the number of blocks K is fixed, the optimal partitioning is to

minimize
∑K
k=1 nkδ

2
k.

Assume the average density of kth covariate block is fk, then we have nk = c · δpkfk for some

constant c. Thus the goal is equivalent to minimize

K∑
k=1

n
1+2/p
k f

−2/p
k

subject to
∑K
k=1 nk = N.

Let wk = nk/N. Then
∑K
k=1wk = 1. The goal is to minimize

K∑
k=1

w
1+2/p
k f

−2/p
k (3.4)

subject to
∑K
k=1wk = 1. Rewrite Equation 3.4, we have

K−1∑
k=1

w
1+2/p
k f

−2/p
k + (1−

K−1∑
k=1

wk)
1+2/pf

−2/p
K
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For k = 1, . . . , K− 1,

∂

∂wk
[

K−1∑
k=1

w
1+2/p
k f

−2/p
k + (1−

K−1∑
k=1

wk)
1+2/pf

−2/p
K ] = 0

implies wk/wK = fk/fK. That is, wk ∼ fk. Therefore, there exists some constant c ′, such that

δk = c · n
1/p
k f

−1/p
k = c ′

Consequently, the optimal partitioning should keep all blocks with approximately even size,

and minimize the largest size. Therefore, k-means partition is the optimal choice for MR in

linear regressions.

In case the grids of partition are coarse, the MR variance could be large and away from the

variance of OLS.

3.3.3.2 Homogeneous linear representative family

In general, for any choice of linear combinations of records in block, the representative

estimator is unbiased. That is, given collection of vectors {αk ∈ Rp}Kk=1, take the representatives

as the linear combinations of records in each block, (X̃k, ỹk) = (XT
kαk,y

T
kαk), then the estimator

β̃ = (

K∑
k=1

nkX
T
kαkα

T
kXk)

−1
K∑
k=1

nkX
T
kαkα

T
kyk
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is unbiased. For convenience and regularization, we require all components of αk to be nonneg-

ative and αTkαk = n
−1
k . The covariance matrix of β̃ is given by

σ2(

K∑
k=1

nkX
T
kαkα

T
kXk)

−1

Such family of representative choices is called homogeneous linear representative family. MR

belongs to this family.

3.4 Simulation Study with LMs

For an illustration purpose, we first run simulation studies based for a linear regression

model

yi = β0 + β1xi1 + · · ·+ β7xi7 + εi (3.5)

where i = 1, . . . ,N and εi’s are iid ∼ N(0, σ2). Note that linear regression models are actually

special cases of the generalized linear models with normal distributed responses and identity

link (see Table VI).

Following Wang et al. (2017) (5), we assume β0 = 0, β1 = · · · = β7 = 0.5. We also set

σ2 = 1 for simulating responses. For simulating the predictors xi = (xi1, . . . , xi7)
T , we consider

6 unbounded distributions in Wang et al. (2017) (5), as well as a bounded distribution as

follows:

1. mzNormal: N7(0,Σ) with Σ having diagonal 1 and off-diagnonal 0.5;

2. nzNormal: N7(1.5,Σ), a case with imbalanced responses;

3. ueNormal: N7(0,Σu) with Σu having diagonals {12, . . . , 72} and off-diagnal 0.5;
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4. mixNormal: 0.5N7(1,Σ) + 0.5N7(−1,Σ), a case with bimodal xi;

5. T 3: Multivariate t with 3 degrees of freedom t3(0,Σ)/10, a case with heavy tails;

6. EXP: exp(λ = 2), a case with a heavier tail on the right;

7. BETA: Beta(α = 0.5, β = 0.5), a bounded case with “U” shaped distribution.

The main-effects predictors in Equation 3.5 are for illustration purpose. The representative

approach can actually work with general predictors included, such as interactions of covariates.

For illustration purpose, we choose a moderate sample size N = 106 in this simulation

study. Since a natural partition for the simulated data is not available, we use two data-driven

partitions:

• An equal-depth partition with m = 4 splits for each predictor, that is, use the three

sample quartiles (25%, 50%, and 75% quantiles) as cut points for each predictor and

partition the whole data into up to 47 = 16384 blocks;

• A k-means partition with K = 1000.

A great advantage of grid partition is the significant reduction in complexity, especially when

the original data provided in files, where a natural grid performed already. Quantiles are more

preferred than equal division points since the latter sometimes may lead to imbalance blocks,

where some of them may contain very small numbers of observations and some contain large

proportions of observations, especially in the case of high skewed data where too many empty

blocks are produced such that it is not feasible for the model fitting. The k-means partition

emphasizes more on similarity in-block, but dissimilarity between blocks.
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TABLE I: Average (std) of RMSEs (10−3) of 20 simulations for linear model with N = 106

Simulation Full Equal-depth (m = 4) k-means (K = 1000)
IBOSS

setup data Mid Med MR Med MR

mzNormal 1.3(0.1) 239.3(0.7) 28.8(0.0) 1.5(0.1) 3.3(0.1) 1.6(0.1) 6.8(0.4)
nzNormal 1.3(0.1) 239.3(0.7) 28.8(0.0) 1.5(0.1) 3.3(0.1) 1.6(0.1) 6.8(0.4)
ueNormal .45(.04) 251.7(0.8) 43.6(0.1) .47(.04) 13.2(0.2) .44(.04) 2.3(0.2)

mixNormal 1.3(0.1) 201.3(0.7) 16.4(0.0) 1.4(0.1) 2.0(0.1) 1.4(0.1) 7.5(0.4)
T 3 6.6(0.5) 483.6(1.0) 107.2(0.5) 9.0(0.6) 11.2(0.5) 8.4(0.4) 12.0(0.9)

EXP 1.9(0.1) 369.3(1.0) 76.8(0.2) 2.1(0.1) 30.1(0.3) 2.0(0.1) 6.0(0.4)
BETA 3.2(0.2) 27.9(0.3) 12.8(0.3) 3.3(0.2) 33.5(0.3) 3.3(0.2) 18.2(1.2)

Table I shows the root mean squared errors (RMSEs) (
∑7
i=1(β̃i − βi)

2/7)1/2 between the

estimated parameter values β̃’s based different methods and the true value β across different

simulation settings each with 20 independent simulations. Average of RMSEs and standard

deviation of average are provided in Table I and all future tables related to RMSE.

In terms of RMSE, Table I clearly shows that even with moderate size of block, the MR

outperforms both mid-point (Mid) and median (Med) representative approaches, as well as

IBOSS proposed by Wang et al. (2018) (8) with subsample size 20, 000, which is larger than

the number of non-empty blocks. Compared with the true parameter value, MR is comparable

even with the estimates based on the full data. As for ueNormal, average of MR is slightly

smaller than full data fit. But by paired t-test, this discrepancy is not significant. If the data

and partitioning are given, then the result of MR is deterministic. Thus box-plots may provide

more information than standard deviations.
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TABLE II: Average intercepts (10−5) estimation of 20 simulations for linear model withN = 106

Simulation setup full data median MR

mzNormal -6.0 -24.3 -6.0
nzNormal -75.6 -30154.6 -61.8
ueNormal -6.0 11.6 -5.9

mixNormal 0.3 -11.9 0.4
T 3 22.5 21.4 22.5

EXP -2.5 -10381.7 6.5
BETA -75.9 4366.3 -98.9

Note that the RMSE of MR based on equal-depth partition obtained from average 11488 ∼

16384 non-empty blocks are comparable with the RMSE from k-means with K = 1000. It

indicates representative approaches based on clustered partition are more efficient, which is

confirmed by our theoretical justifications in Theorem 4.1.1.

3.4.1 Naive labeling algorithm for grid partition

Suppose each predictor Xj is split into mj intervals, with cut points {s
(j)
1 , s

(j)
2 , . . . , s

(j)
mj−1

}. We

purpose an algorithm to label observations such that observations in the same block share the

same label. Given a piece of observation x = (x1, x2, . . . , xp), its label id is given by

id =

p∑
j=1

[

p∏
i=j+1

mi][

mi−1∑
k=1

1{xj > s
(j)
k }]



where we make convention that
∏p
i=p+1mi := 1.

On the other hand, given id, we can recover the location of each predictor of that point.

Define c1 = id%/%(
∏p
i=2mi) and r1 = id mod (

∏p
i=2mi) to be the integer quotient and the
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reminder respectively, where %/% is the integer division operator and mod is the modulus

operator. Then define cj = rj−1%/%(
∏p
i=j+1mi) and rj = rj−1 mod (

∏p
i=j+1mi). That is, xj

locates in the cjth interval.

3.4.2 CPU time of MR

For all experiments in this dissertation, we use the R programming language ( R version

3.4.4). For the IBOSS method and the A-optimal subsampling method, we use the packages

provided by Haiying Wang on his website. As for center representatives, “data.table” package

is used to achieve the calculating by group. Function “data.Cluster()” is used to perform k-

means partition. All computations are carried out on a single thread of a server running Ubuntu

16.04.4 with Intel Xeon CPU E5-2695 v4 @ 2.10GHz and 377GB memory.

The CPU time for MR and IBOSS is shown in Table III for linear models with N = 106 and

p = 7, using both equal-depth with m = 4 and k-means with K = 1000 partition. When we

increase the number of parameters p to 10, in mzNormal, the number of non-empty blocks is

around 375000, one-third of sample size. If p = 14, the number of non-empty blocks is almost

equal to the sample size N = 106. Equal-depth partitioning is not a good option for large p,

since the number of blocks increases exponentially as p increases and approaches N quickly.

Therefore, only clustering methods will be considered when p is not small.

For illustration purpose, we also use equal-depth and k-means partition on the simulation

studies showing the relation of the CPU time against the number of parameters p and sample

size N respectively. The computational time to apply such a k-means is high though. According

to the time complexity analysis in Section 3.3, the computational time of MR should roughly

https://haiying-wang.uconn.edu
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TABLE III: Average CPU time (sec) of MR and IBOSS over 100 simulations for linear model
with N = 106, p = 7

Simulation Equal-depth k-means
setup Full Partition MR Partition MR IBOSS

mzNormal 0.463 2.551 0.498 70.669 0.188 2.018
nzNormal 0.507 2.404 0.492 71.130 0.191 1.916
ueNormal 0.373 2.545 0.485 74.665 0.214 1.973

mixNormal 0.388 2.528 0.417 65.670 0.189 1.865
T 3 0.451 2.384 0.550 96.920 0.211 1.793

EXP 0.473 2.357 0.549 113.779 0.243 1.826
BETA 0.401 2.405 0.521 134.842 0.228 1.789

proportional to the number of parameters p and sample size N. Our simulation studies in

Figure 1 and Figure 2 confirm our conclusion. With a prior partitioning provided, MR is com-

parable to IBOSS method in terms of computational time. But also, if there is no partitioning

provided, and a k-means partitioning is required, then a very high computational cost has to

be paid additionally.

Equal depth partition can be performed quickly for small p, and linear to N. As stated

in Theorem 3.3.1, k-means partition is the best partitioning when the number of partitions is

fixed, but it is slow currently using “data.Cluster()” shown in Figure 1 (b) and Figure 3. The

latter shows that computational time of k-means using “data.Cluster()” is high for large N.

How to obtain a more efficient partition is very important to representative approaches, but

out of the scope of this dissertation work.
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Figure 1: Average CPU time of full data fit, MR and IBOSS over 20 simulations against p for
linear model with N = 106, mzNormal, under k-means (K = 1000)
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Figure 2: Average CPU time of full data fit, MR and IBOSS over 20 simulations against N for
linear model with p = 7, mzNormal, under equal-depth (m = 4)
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for linear model with p = 7, mzNormal



CHAPTER 4

REPRESENTATIVES FOR GENERALIZED LINEAR MODELS

4.1 Center Representatives for GLMs

4.1.1 Theoretical justification for center representatives for GLMs

The simulation studies in Section 3.4 imply that the maximum distance within data blocks,

denoted as ∆ = maxk maxi,j∈Ik ‖Xi − Xj‖, may play an important role in extracting data

information more efficiently. Given the data set D = {(Xi, yi), i = 1, . . . ,N}. Recall that in the

generalized linear model of Section 2.1, β̂ is the maximum likelihood estimate (MLE) based on

the full data set D = {(Xi, yi), i = 1, . . . ,N} and β̃ is the MLE based on the representative data

set D̃ = {(nk, X̃k, ỹk), k = 1, . . . , K}. We denote ∆̃ = maxk maxi∈Ik ‖Xi − X̃k‖.

Theorem 4.1.1. Suppose the log-likelihood function l(β) is strictly concave on a compact set

B ∈ Rp and the maximum can be achieved in the interior of B. If ỹk = n−1
k

∑
i∈Ik yi, then∥∥∥β̃− β̂

∥∥∥→ 0 as ∆̃→ 0; additionally,
∥∥∥β̃− β̂

∥∥∥ = O(∆̃
1
2 ).

Lemma 4.1.1 (Theorem 2.1 of Kanniappan and Sastry (1983) (17)). Let f : X → Y and

fn : X → Y be continuous, convex maps. Suppose fn → f uniformly. Then the sequence of

arg inf
x

fn(x) converges to arg inf
x

f(x).

Proof of Theorem 4.1.1:

32
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The log-likelihood contributed by the kth block essentially is

lk(β) =
∑
i∈Ik

[yiθ(X
T
i β) − b(θ(X

T
i β))]

Consider the log-likelihood of representative from kth block,

l̃k(β) =nk[ỹkθ(X̃
T
kβ) − b(θ(X̃

T
kβ))]

=(nkỹk −
∑
i∈Ik

yi)θ(η̃k) +
∑
i∈Ik

[yiθ(X̃
T
kβ) − b(θ(X̃

T
kβ))] (4.1)

Since ỹk = n
−1
k

∑
i∈Ik yi, the first term in Equation 4.1 equals 0.

Consider the first order Taylor expansion of l̃k about X̃k at Xi, and by the Cauchy-Schwarz

Inequality, we have

∣∣∣̃lk(β) − lk(β)∣∣∣ = ∑
i∈Ik

{[yiθ
′(XT

i β) − b
′(θ(XT

i β))θ
′(XT

i β)](X̃k − Xi)
Tβ+ o(

∥∥∥X̃k − Xi

∥∥∥)}
=

∑
i∈Ik

{[(yi −G(X
T
i β))ν(X

T
i β)](X̃k − Xi)

Tβ+ o(
∥∥∥X̃k − Xi

∥∥∥)}
≤ (

∑
i∈Ik

∥∥∥X̃k − Xi

∥∥∥2∑
i∈Ik

[(yi −G(X
T
i β))ν(X

T
i β)‖β‖]2)

1
2 +

∑
i∈Ik

o(
∥∥∥X̃k − Xi

∥∥∥)
≤ nk∆̃‖β‖(n−1

k

∑
i∈Ik

[(yi −G(X
T
i β))ν(X

T
i β)]

2)
1
2 +

∑
i∈Ik

o(∆̃)

Denote Fk = (n−1
k

∑
i∈Ik [(yi −G(X

T
i β))ν(X

T
i β)]

2)
1
2 .
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Therefore for sufficient small ∆̃, we have

1

N

∣∣∣̃l(β) − l(β)∣∣∣ ≤ 1

N

K∑
k=1

nk∆̃‖β‖Fk +
1

N

N∑
i=1

o(∆̃) (4.2)

≤ ∆̃‖β‖max
k
Fk + o(∆̃) (4.3)

≤M∆̃ (4.4)

for some M > 0. That is, 1
N l̃(β) converges to 1

Nl(β) uniformly as ∆̃ goes to 0 for β on a

compact set.

By Lemma 4.1.1, the MLE of l̃ converges to the MLE of l as ∆̃→ 0.

The strict concavity of l(β) implies the existence of unique β̂ ∈ B, such that β̂ = arg max
β

l(β).

Let β̃ maximizes l̃(β). Then we have that

1

N

∣∣∣̃l(β̃) − l(β̂)∣∣∣ ≤M∆̃
Therefore

0 ≤ 1

N
(l(β̂) − l(β̃)) ≤ 2M∆̃

Consider the second Taylor expansion of l(β) at β̂

l(β) = l(β̂) + (β− β̂)T
∂2l

∂β∂βT

∣∣∣
β=β̂

(β− β̂) + o(
∥∥∥β− β̂

∥∥∥2)
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since ∂l
∂β(β̂) = 0. The smallest eigenvalue of ∂2l

∂β∂βT

∣∣∣
β=β̂

, λ1, is positive, i.e., λ1 > 0, since l(β)

is strictly concave.

Therefore,

∣∣∣̃l(β) − l(β)∣∣∣ > λ1
2

∥∥∥β− β̂
∥∥∥2 (4.5)

for small enough
∥∥∥β− β̂

∥∥∥. It can be verified that

∥∥∥β̃− β̂
∥∥∥ ≤√4MN

λ1
∆̃

1
2

Actually, if
∥∥∥β̃− β̂

∥∥∥2 > 4MN/λ1∆̃, then by Equation 4.5,

l(β̂) − l(β̃) > 2MN∆̃

or

l(β̃) < l(β̂) − 2MN∆̃ (4.6)

From Equation 4.4 and Equation 4.6, we know that

l̃(β̃) < l(β̂) −MN∆̃ ≤ l̃(β̂)

That leads to a contradiction.
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That is, ∥∥∥β̃− β̂
∥∥∥ = O(∆̃

1
2 )

2

Remark. Denote the partition of the predictor space Rp or its subset by {B1, . . . , BK}. Assume

the predictors X1, . . . ,XN ∈ Rp are iid ∼ F with a finite expectation, and for k = 1, . . . , K,

[(y−G(XTβ))ν(XTβ)]2 on Bk has finite expectation. That is, max
k
Fk is bounded in probability,

for k = 1, . . . , K. Therefore, if the distribution of data is fixed, increasing of N will not affect

the convergency and convergent rate.

Remark. For MR approach, X̃k = n
−1
k

∑
i∈Ik Xi. It can be verified that ∆̃ ≤ ∆ instantly. That

is, for MR approach, if ∆→ 0, then β̃→ β̂.

For median representative approach, ∆̃ is also controlled by ∆. Consider in a block we

have data Xi = (xi1, . . . , xip)
T , i = 1, . . . , n and the median representative is given by X̃ =

(x̃1, . . . , x̃p)
T . Let x(1)j, . . . , x(n)j be ordered statistic of x1j, . . . , xnj, j = 1, . . . , p.

max
i

∥∥∥Xi − X̃
∥∥∥ =

p∑
j=1

(xij − x̃j)
2

≤
p∑
j=1

(x(1)j − x(n)j)
2

≤pmax
ij
‖Xi − Xj‖

Therefore, if ∆→ 0, then β̃→ β̂ for median representative.
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As for mid-point representative, we should redefine ∆ as the maximum grid size to enjoy

the results of Theorem 4.1.1

When all the covariates are categorical or have finite discrete values, one may partition the

data according to distinct Xi’s. In this case, ∆ = 0.

Corollary 4.1.1. If ∆ = 0, then the mid-point, median, and mean representative approaches

are the same and all satisfy β̃ = β̂.

Proof. In each block, all the predictor variables are the same, i.e., Xi ≡ X̄k for i ∈ Ik,k =

1, . . . , K. Consider the log-likelihood of MR from kth data block,

l̃k =nk[ȳkθ(X̄
T
kβ) − b(θ(X̄

T
kβ))]

=
∑
i∈Ik

[yiθ(X
T
i β) − b(θ(X

T
i β))]

=lk

Therefore, MR method exactly meets the full data fit. Similarly, mid-point and median repre-

sentatives meet the full data estimate as well.

4.1.2 Simulation studies with logistic model

The MR approach works very well for linear models and has been validated for GLMs when

∆ is sufficiently small. Nevertheless, simulation studies for moderate ∆ with general GLMs in

this section show that MR approach is not that satisfactory.
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Logistic regression model is one of the most widely used generalized linear models. It

connects an expected Bernoulli response or binomial response with linear predictors by the

logit link g(µ) = log[µ/(1 − µ)]. Wang et al. (2017) (5) proposed a subsampling strategy

inspired by A-optimality.

Table IV shows results from a comprehensive simulation study with logistic regression

models. We use the same setup in Section 3.4 for simulating the predictors, as well as the

true parameter values. For comparison purpose, we include (Wang et al., 2017 (5))’s A-optimal

subsampling estimates with subsample size 20, 000, which is bigger than the average number of

representatives (11488 ∼ 16384). Also, a new representative approach proposed in Section 4.2,

SMR, is included.

Based on Table IV, for logistic regression models, mid-point representative does not work

so well as others, its RMSEs to true value are above 0.2 for unbounded cases. MR performs very

good in the bounded case BETA, while RMSEs of MR are below or around 0.03 for almost

all the cases except for ueNormal, where a high proportion of the linear predictor ηi’s are

extremely large. Compared with MR, median representative approach still has a bias issue in

estimating intercept β0, although its RMSE for estimating β seems a slightly better than MR for

the four normal distributions. Both median and mean representative approaches perform better

than A-optimal subsampler for most simulation settings except for the non-equal-variance case

ueNormal.

Table IV shows that SMR with MR estimates as its initial values performs uniformly the

best, even comparable with the estimates based on the full data. Based on equal-depth partition
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TABLE IV: Average (std) of RMSEs (10−3) of 20 simulations for logistic model with N = 106

Simulation Full Equal-depth (m = 4) k-means (K = 1000)
A-opt

setup data Mid Med MR SMR Med MR SMR

mzNormal 3.6 266.8 8.8 20.3 4.0 15.7 17.7 4.0 28.0
(0.2) (0.6) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.2)

nzNormal 7.3 206.4 12.5 20.5 9.7 13.0 15.4 8.6 435.5
(0.4) (0.9) (0.7) (0.5) (0.6) (0.3) (0.3) (0.4) (0.1)

ueNormal 1.8 344.0 143.8 170.2 4.5 205.1 208.5 4.1 13.5
(0.2) (0.6) (0.2) (0.1) (0.2) (0.4) (0.4) (0.4) (0.1)

mixNormal 5.1 220.5 10.9 19.9 5.4 17.9 17.7 6.2 31.6
(0.4) (0.6) (0.3) (0.3) (0.4) (0.3) (0.3) (0.4) (0.2)

T 3 18.3 484.5 81.0 31.3 21.8 22.9 21.7 21.4 140.5
(1.0) (0.9) (0.7) (0.6) (0.8) (1.6) (1.5) (1.5) (1.0)

EXP 6.5 374.8 49.8 23.3 13.8 14.4 12.9 9.0 269.6
(0.5) (1.0) (0.7) (0.5) (0.5) (0.6) (0.5) (0.5) (0.4)

BETA 7.2 26.4 16.5 7.8 7.7 36.3 7.3 6.9 245.1
(0.3) (0.6) (0.6) (0.4) (0.4) (0.5) (0.3) (0.3) (0.7)

withm = 4 (up to 16,384 representatives), the RMSE of MR is 0.1702 on average for ueNormal

simulation setup, while SMR pulls the RMSE back to 0.0045. With a better partition, such as

k-means, SMR can achieve a similar accuracy level with only 1000 representatives.

As a conclusion, when the predictors are bounded or the proportion of extremely large linear

predictors is low, MR is a fast and low-cost (computationally cheaper) solution for big data

analysis using generalized linear models. It is better than mid-point, median, or A-optimal

approaches. Nevertheless, MR may not be satisfactory if higher accuracy level is desired. In

that case, MR is used as a pre-analysis of SMR for generalized linear models, while the latter has

a huge improvement over different distributions and different partition methods, and benefits

from the large sample size.



40

TABLE V: Average intercept (10−5) estimate of 20 simulations for logistic model with N = 106

based on equal-depth with m = 4

Simulation setup Full data Med MR

mzNormal -92.6 -99.7 -89.3
nzNormal 8.9 -27441.2 555.1
ueNormal 72.8 42.6 25.8

mixNormal -52.1 -61.8 -50.0
T 3 -6.6 -8.5 -7.4

EXP 142.0 -5444.0 3985.7
BETA 311.5 4800.3 348.8

4.2 Score-Matching Representative Approach for GLMs

Section 4.1.2 shows that for moderate ∆ with general GLMs, MR approach is not so sat-

isfactory when there are extreme values in either predictors or coefficients. In this section,

we propose a much more efficient representative approach, called score-matching representative

(SMR) approach, for GLMs. Its asymptotic efficiency is even better than divide-and-conquer

approach, with reduced time complexity due to the representative strategy.

Recall that preliminary results in Section 2.1, the MLE β̂ solves the score equation s(β) = 0.

It is usually solved by the Fisher scoring method, which iteratively updates the score function

with the current estimate of β.

Inspired by the Fisher scoring method, given some initial values of the estimated parame-

ters, our score-matching representative approach builds data representatives by matching the

values of the score function block by block, then applies the Fisher Scoring method on the

representative dataset and gets estimated parameter values. We may use the current estimated
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parameter value as initial value for the next iteration, and repeat this procedure for a few times

till a certain accuracy level is achieved. According to our comprehensive simulation studies (see

Section 4.1.2), three iterations are satisfactory for typically applications.

4.2.1 Score-matching representative approach

Let sk(β) denote the score function contributed by kth data block Dk = {(Xi, yi), i ∈ Ik},

and s̃k(β) denote the score function based on the weighted representative data of kth block

(nk, X̃k, ỹk).

Suppose the estimated parameter is β̃
(t)

at the tth iteration. For the (t+1)th iteration, our

strategy is to find the representative (X̃k, ỹk) carrying the same score as the kth data block at

β̃
(t)

, that is,

∑
i∈Ik

ν(XT
i β̃

(t)
)(yi −G(X

T
i β̃

(t)
))Xi = nk ν(X̃

T
kβ̃

(t)
)(ỹk −G(X̃

T
kβ̃

(t)
))X̃k (4.7)

which implies sk(β̃
(t)
) = s̃k(β̃

(t)
). Multiplying by β̃

(t)
both sides of Equation 4.7, we get

∑
i∈Ik

ν(ηi)(yi −G(ηi))ηi = nk ν(η̃k)(ỹk −G(η̃k))η̃k (4.8)

where ηi = XT
i β

(t) and η̃k = X̃T
kβ

(t). The weight ν(ηi)ηi of yi in Equation 4.8 suggests that

we take ỹk as a weighted average of yi’s for the SMR approach, that is,

ỹk = [
∑
i∈Ik

ν(ηi)ηi]
−1

∑
i∈Ik

ν(ηi)ηiyi (4.9)
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Note that ỹk → n−1
k

∑
i∈Ik yi as ∆ goes to 0. That is, ỹk in Equation 4.9 is a natural

generalization of the mean representative.

Since ỹk in Equation 4.9 does not rely on η̃k, we can further obtain η̃k by solving Equa-

tion 4.8.

Theorem 4.2.1. There exists an η̃k ∈ [mini∈Ik ηi, maxi∈Ik ηi] that solves Equation 4.8.

Proof. Define S(η; ỹk) := ν(η)(ỹk −G(η))η, the Equation 4.8 is equivalent to

n−1
k

∑
i∈Ik

S(ηi; ỹk) = S(η̃k; ỹk) (4.10)

by definition of ỹk in Equation 4.9. This is a 1-dimensional nonlinear equation about η̃k. There

exists at least one solution between min
i∈Ik

{ηi} and max
i∈Ik

{ηi}, since S(· ; ỹk) is continuous.

Remark. The existence of this representative choice is guaranteed by the existence of the so-

lution to Equation 4.8 about η̃k. The solution of η̃k may not be unique since S usually is not

monotone. In that case, we choose the η̃k with X̃k closest to X̄k to keep ∆̃ as small as possible,

thus consistent with the mean representative.

Remark. If the original predictors contain the intercept term 1, the corresponding representa-

tive predictor may not be exactly 1.

After plugging η̃k into Equation 4.7, we get the representative X̃k for SMR:

X̃k = [nkν(η̃k)(ỹk −G(η̃k))]
−1

∑
i∈Ik

ν(ηi)(yi −G(ηi))Xi (4.11)
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Remark. The solution of X̃k is extremely sensitive to the accuracy of η̃k, so is s̃k(β̃
(t)
), when

ν(η̃k)(ỹk − G(η̃k)) is close to 0. Since our criterion is sk(β̃
(t)
) = s̃k(β̃

(t)
), we should take a

strict tolerance on the solution to Equation 4.8. Some adjustment is considered if X̃k is away

from X̄k even with a high accuracy requirement taken already.

The representative D̃k = (nk, X̃k, ỹk) now carries the same scoring value as the data block,

s̃k(β) = sk(β), k = 1, . . . , K for the (t + 1)th iteration. The size of representative dataset only

relies on the number of blocks K, significant smaller than the original sample size N. We apply

the Fisher Scoring algorithm on the representative dataset D̃ = {(nk, X̃k, ỹk), k = 1, . . . , K} and

get β̃
(t+1)

.

We may repeat this procedure for a few times, say 3 times, to achieve the desired accuracy

level (see Figure 4, Figure 5, Figure 6 in Section 4.3). See Algorithm 2 for the complete

procedure of SMR.

4.2.1.1 Time complexity of SMR

Since each time we are dealing with K representative data points and its accuracy depends

on ∆ instead of N, the computational cost has been significantly reduced as well. For general

GLM, to calculate all ηi, the time is O(Np). For kth data block, to calculate ỹk through

Equation 4.9, the time is O(nk). The time to list Equation 4.8 is O(nk) and ζr iterations is

required to solve this 1-dimensional nonlinear equation. Also, X̃k in Equation 4.11 requires

O(nkp). Along with the time to proceed GLM MLE on K representative points, O(ζKKp
2),

3-iteration SMR requires O(Np + Nζr + ζKKp
2). If ζr, ζK, K, p � N, the time complexity of
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Algorithm 2: Score-Matching Representative Method

Data: Partitioning of D : {Dk = (Xk,yk)}
K
k=1, threshold δ

Result: SMR estimator β̃ for Generalized Linear Model.

7 Get the mean representative set D̃ (0) = {(nk, X̃
(0)
k , ỹ

(0)
k )}Kk=1;

8 Initialize allocation β̃
(0)

by apply Fisher Scoring method on D̃ (0);
9 Set t = 0;

10 while
∥∥∥β̃(t)

− β̃
(t−1)

∥∥∥ > δ do

11 Set t := t+ 1;
12 for k = 1, . . . , K do

13 Calculate η
(t)
i := XT

i β
(t−1) for i ∈ Ik;

14 Calculate ỹ
(t)
k by Equation 4.9;

15 Solve the nonlinear equation Equation 4.8 for η̃
(t)
k ;

16 Calculate X̃
(t)
k by Equation 4.11;

17 end
18 Update the regression parameter by applying Fisher Scoring method on the

representative dataset D̃ (t) = {(nk, X̃
(t)
k , ỹ

(t)
k )}Kk=1 to get β̃

(t)
;

19 end

20 β̃ := β̃
(t)
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SMR is essentially O(Np). Similarly, the time complexity of MR is O(Np+ζKKp
2), thus O(Np)

as well when N is relatively large.

For linear model, Equation 4.8 is a quadratic equation with explicit form of solutions,

therefore, the time complexity of SMR is O(Np+ Kp2).

4.2.1.2 Observed scoring updating

Besides of apply the regular Fisher Scoring algorithm on the representative dataset, another

updating of β̃
(t)

is given by

β̃
(t+1)

= β̃
(t)

+ [

K∑
k=1

1

nk
s̃k(β̃

(t)
)s̃k(β̃

(t)
)T ]−1s̃(β̃

(t)
) (4.12)

But it turns out a poor performance for coarse partitioning.

4.2.2 Commonly used GLMs

4.2.2.1 Canonical links

For canonical link, ν(η) = 1/φ, since φη = θ. Then

ỹk = [
∑
i∈Ik

ηi]
−1

∑
i∈Ik

yiηi

S(η; ỹk) = ỹkη− g
−1(η)η

X̃k = [nkỹk − nkg
−1(η̃k)]

−1
∑
i∈Ik

[(yi − g
−1(ηi))Xi]

= [nk(ỹk − µ̃k)]
−1

∑
i∈Ik

[(yi − µi)Xi]

where ηi = XT
i β, µ̃k = g

−1(η̃k), µi = g
−1(ηi).
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Linear model:

Linear model is a special case of GLMs with normally distributed response and identity

link. The density of Yi has the exponential family form

f(yi, µi, σ) = exp

yiµi −
µ2i
2

σ2
−
1

2

[
ln
(
2πσ2

)
+
y2i
σ2

] ,
This implies for θi = µi, φ = σ2, b(θi) = θ2i/2, and also the identity link function, i.e.,

g(µi) = µi, g
−1(ηi) = ηi, thus G(η) = η

For SMR, we have explicit solutions to Equation 4.7:

ỹk = [
∑
i∈Ik

ηi]
−1

∑
i∈Ik

yiηi

η̃k =
ỹk ±D1/2

2

X̃k = [nkỹk − nkη̃k]
−1

∑
i∈Ik

[(yi − ηi)Xi]

The solution of presentative linear predictor always exits since the discriminant is always non-

negative,

D = ỹ2k − 4n
−1
k

∑
i∈Ik

(ỹkηi − η
2
i )

= n−1
k

∑
i∈Ik

(ỹk − 2ηi)
2 ≥ 0
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This solution does not belong to homogeneous linear representative family, since it is an iterative

representative choice.

Binary response with logit link:

g(µ) = ln µ
1−µ . So we have , G(η) = g−1(η) = exp(η)

1+exp(η)

ỹk = [
∑
i∈Ik

ηi]
−1

∑
i∈Ik

yiηi

S(η; ỹk) = ỹkη−
exp(η)

1+ exp(η)
η

X̃k = [nkỹk − nk
exp(η̃k)

1+ exp(η̃k)
]−1

∑
i∈Ik

[(yi −
exp(ηi)

1+ exp(ηi)
)Xi]

Poisson response with log link:

The likelihood function of Poisson has the exponential family form

f(yi; λi) = exp{yi log λi − λi − log yi!} = exp{yiθi − exp θi − log yi!}
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where g(µ) = lnµ. So we have , G(η) = g−1(η) = exp(η)

ỹk = [
∑
i∈Ik

ηi]
−1

∑
i∈Ik

yiηi

S(η; ỹk) = ỹkη− exp(η)η

X̃k = [nkỹk − nk exp(η̃k)]
−1

∑
i∈Ik

[(yi − exp(ηi)Xi]

4.2.2.2 Non-canonical links

Binary response with probit link:

g(µ) = Φ−1(µ) and θ = logΦ(η) − logΦ(−η). Thus,

ν(η) =
φ(η)

Φ(η)Φ(−η)

G(η) = Φ(η)

Binary response with complementary Log-log link:

We have g(µ) = ln(ln(1− µ)) and θ = log(exp{exp(η)}− 1). Thus,

ν(η) =
dθ

dη
=

exp(η)

1− exp{− exp(η)}

G(η) = g−1(η) = 1− exp{− exp(η)}
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The representative choices should be

ỹk = [
∑
i∈Ik

exp(ηi)

1− exp{− exp(ηi)}
ηi]

−1
∑
i∈Ik

yiηi

S(η; ỹk) = (ỹk − (1− exp{− exp(η)}))
exp(η)

1− exp{− exp(η)}
η

X̃k = [nk
exp(η̃)

1− exp{− exp(η̃)}
(ỹk − (1− exp{− exp(η̃k)}))]

−1·

∑
i∈Ik

exp(ηi)

1− exp{− exp(ηi)}
[(yi − (1− exp{− exp(ηi)})Xi]

Binary response with log-log link:

We have g(µ) = ln(− ln(µ)) and θ = − log(exp{exp(η)}− 1). Thus,

ν(η) =
dθ

dη
=

exp(η)

exp{− exp(η)}− 1

G(η) = g−1(η) = exp{− exp(η)}

Binary response with cauchit link:

g(µ) = tan(π(µ− 1/2)) and θ = log(π/2+ arctan(η))−log(π/2− arctan(η)) = log arccot(η)−

log arccot(−η). Thus,

ν(η) =
π

(1+ η2)(π/2+ arctan(η))(π/2− arctan(η))

G(η) =
1

π
arctan(η) +

1

2
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Table VI

TABLE VI: Examples of ν(η) and G(η)

Distribution of Y link function g effective ν(η) G(η)

Normal(µ) identity 1 η

logit 1 exp(η){1+ exp(η)}−1

progit φ(η){Φ(η)Φ(−η)}−1 Φ(η)
Bernoulli(µ) cloglog exp(η){1− exp[− exp(η)]}−1 1− exp{− exp(η)}

loglog exp(η){exp{− exp(η)}− 1}−1 exp{− exp(η)}
cauchit π{(1+ η2)(π2/4− arctan2(η))}−1 arctan(η)/π+ 1/2

Poisson(µ) log 1 exp(η)

Gamma reciprocal 1 1/η

Inverse Gaussian inverse squared 1 1/
√
η

For more GLMs, see Table VI.

4.2.3 Justification of SMR

First of all, if the current estimate of regression parameter is exactly the full data estimate

β̂, then the representative sets have the score functions with value 0 at the current estimation.

The new estimate β̃ is equal to the initial value. So, the full data fit β̂ is a stationary point of

the SMR. Similarly like MR, when ∆̃ goes to 0, SMR estimator also converges to β̂.

Theorem 4.2.2. Suppose the regularity condition in Theorem 4.1.1 holds. Then with Equa-

tion 4.9 and Equation 4.11, SMR estimator β̃
(t)

converges to β̂ as ∆̃ goes to zero for any

t.

Proof. When ∆̃ goes to 0, the discrepancy between ηi in the kth block and η̃k in Equation 4.8

also goes to 0. Therefore ỹk in Equation 4.9 converges to block mean. By Theorem 4.1.1, β̃
(t)

converges to β̂ as ∆̃ goes to 0 for any t.
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Next, we provide a theorem for score-matching methods which include SMR with Equa-

tion 4.9 and Equation 4.11 as a special case:

Theorem 4.2.3. Consider a more general iterative representative approach with estimated

parameter β̃
(t)

at its tth iteration. Suppose for the (t + 1) iteration, for each k = 1, . . . , K, the

obtained representative (X̃k, ỹk) satisfies the following three conditions:

(1) The representative matches the score function at β̃
(t)

, that is, Equation 4.7 is true;

(2) The representative response ỹk ∈ [mini∈Ik yi, maxi∈Ik yi];

(3) ∆̃ = O(∆) as ∆ goes to 0, that is, there exists an M > 0 which does not depend on ∆,

such that, ∆̃ ≤M∆ for any data partition with small enough ∆.

Then the estimated parameter β̃
(t+1)

based on the representative data satisfies

‖β̃(t+1)
− β̂‖ ≤ ρ(∆) ‖β̃(t)

− β̂‖+O(∆) (4.13)

where ρ(∆) = O(∆) < 1 for small enough ∆. Therefore, β̃
(t) → β̂ as t→ ∞ and ∆→ 0.
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Lemma 4.2.1. If A is invertible and sufficiently large compared to B in terms of eigenvalues,

we have

(A+ λB)−1 = (ν(I+ λA−1B))−1

= (I+ λA−1B)−1A−1

= (I− λA−1B+ λ2A−1BA−1B− . . . )A−1

= A−1 − λA−1BA−1 + λ2A−1BA−1BA−1 − . . .

Taking λ = 1, we have (A+ B)−1 = A−1 −A−1BA−1 + o(
∥∥A−1B

∥∥)
Proof of Theorem Equation 4.13:

Suppose the score function for the full data s(β) has zero root β̂, i.e., s(β̂) = 0. The

score function of representative data s(t)(β) := s(β; ỹ(t), X̃
(t)
) based on the current estimation

of regression parameter β̃
(t)

, which has zero root β̃
(t+1)

, satisfies s(t)(β̃
(t)
) = s(β̃

(t)
).

Consider the first order of Taylor approximation,

s(β̂) = s(β̃
(t)
) +

∂s

∂β

∣∣∣
β=β̃

(t)(β̂− β̃
(t)
) + o(

∥∥∥β̂− β̃
(t)
∥∥∥)

s(t)(β̃
(t+1)

) = s(t)(β̃
(t)
) +

∂s(t)

∂β

∣∣∣
β=β̃

(t)(β̃
(t+1)

− β̃
(t)
) + o(

∥∥∥β̃(t+1)
− β̃

(t)
∥∥∥)
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which implies

β̂− β̃
(t+1)

=(β̂− β̃
(t)
) − (β̃

(t+1)
− β̃

(t)
)

=(I− H̃(β̃
(t)
)−1H(β̃

(t)
))(β̂− β̃

(t)
) + H̃(β̃

(t)
)−1(o(

∥∥∥β̃(t+1)
− β̃

(t)
∥∥∥) + o(∥∥∥β̂− β̃

(t)
∥∥∥))

where

H(β̃
(t)
) =

∂s

∂β

∣∣∣
β=β̃

(t) =

K∑
k=1

∑
i∈Ik

[(yi −G(ηi))ν
′(ηi) −G

′(ηi)ν(ηi)]XiX
T
i

H̃(β̃
(t)
) =

∂s(t)

∂β

∣∣∣
β=β̃

(t) =

K∑
k=1

nk[(ỹ
(t)
k −G(η̃

(t)
k ))ν ′(η̃

(t)
k ) −G ′(η̃

(t)
k )ν(η̃

(t)
k )]X̃

(t)
k X̃

(t)
k

T

with η
(t)
i = XT

i β̃
(t)

and η̃
(t)
k = X̃

(t)
k

T

β̃
(t)

.

Since the condition (2) and (3) hold, we have

∥∥∥β̂− β̃
(t)
∥∥∥ =O(∆)∥∥∥β̃(t+1)

− β̃
(t)
∥∥∥ =O(∆)

and

ỹ
(t)
k =ȳ

(t)
k +O(∆)

Xi =X̃
(t)
k +O(∆)
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for i ∈ Ik. Therefore, we have

H̃(β̃
(t)
) = H(β̃

(t)
) +O(∆)

in terms of matrix norm. By Lemma 4.2.1, we have

I− H̃(β̃
(t)
)−1H(β̃

(t)
) = I− (H(β̃

(t)
) +O(∆))−1H(β̃

(t)
) = O(∆)

When ∆ is sufficiently small, the largest eigenvalue ρ(∆) = O(∆) of I − H̃(β̃
(t)
)−1H(β̃

(t)
) is

strictly lesser than 1. Therefore

∥∥∥β̃(t+1)
− β̂

∥∥∥ ≤ ρ(∆)∥∥∥β̃(t)
− β̂

∥∥∥+O(∆) (4.14)

while β̃
(t)

is close to β̂. This guarantees that β̃
(t) → β̂ if t → ∞ when the maximum size of

block ∆→ 0. 2

Remark. We call ρ(∆) in Equation 4.13 the globe rate of convergence, which depends on the

size of ∆. Its specific form can be found in the proof of Theorem 4.2.3. Based on our experience,

even for moderate size of ∆, ρ(∆) can be significantly smaller than 1 and the first few iterations

can improve the accuracy level significantly. Nevertheless, the final discrepancy away from the

full data estimate still depends on ∆.
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For the proposed SMR approach in Section 4.2.1, the MLE estimator β̂ based on the full

data is a stationary point of the SMR iteration. That is, if the estimated parameter β̃
(t)

= β̂

at the tth iteration, then after one SMR iteration, the estimated parameter β̃
(t+1)

= β̂.

For SMR, the condition (1) of Theorem 4.2.3 holds instantly.

It should be noted that condition (2) of Theorem 4.2.3 does not hold automatically. For

example, consider a binomial model. Suppose there is a block with 2 observations: y1 = 1,

y2 = 0, and η1 = 0.5, η2 = −1. SMR representative could be ỹ = −1; or if y1 = 0, y2 = 1

and η1 = 0.5, η2 = −1, then ỹ = 2. The invalid responses is due to mixed signs of ηi’s. To

avoid invalid representative responses, we split the block into two pieces by the signs of ηi’s

and generate two representatives, one for positive ηi’s and the other for negative ηi’s. By this

way, condition (2) of Theorem 4.2.3 holds for sure since the weights ν(ηi)ηi in each part have

the same sign.

As for condition (3), simulation studies show that it is almost always the case for SMR

approach. Occasionally (approximately 3 out of 16,000), X̃k could be out of the convex hull

of its block due to small ν(η̃k)(ỹk − G(η̃k)) value. For such cases, we replace it with the

MR representative. The difference caused for score function is negligible. By this way, the

condition (3) of Theorem 4.2.3 holds as well.

Overall, Theorem 4.2.3 explains why SMR approach works so well.

Corollary 4.2.1. When ∆ = 0, MR and SMR generate the same set of representatives. There-

fore, both SMR and MR estimates are equal to the full data estimate for GLMs. A special



56

case is when all covariates are categorical and the dataset is naturally partitioned by distinct

covariate values.

Proof. Since ∆ = 0, then in the kth block, there is no diversion for covariates, Xi = X̄k,

so is ηi = η̄k, i ∈ Ik. Therefore, ỹk = ȳk by Equation 4.9. Equation 4.7 indicates that

S(η̄k; ỹk) = S(η̃k; ỹk), where η̃k = η̄k is a solution. By taking the solution with X̃k closest to

X̄k, we actually have X̃k = X̄k.

So, SMR meets MR and the full data fit.

When most covariates are categorical except for a few continuous variables, for example,

the flight on-time performance analysis in Section 5, both MR and SMR may work very well.

4.2.4 Asymptotic properties of MR and SMR for big data

In order to study the asymptotic properties of MR and SMR as N goes to ∞, we assume the

predictors X1, . . . ,XN ∈ Rp are iid ∼ F with a finite expectation, and the partition {B1, . . . , BK}

of the predictor space Rp is fixed. To avoid trivial cases, we assume pk = F(Bk) > 0 for

each k = 1, . . . , K. Then the index block Ik = {i ∈ {1, . . . ,N} | Xi ∈ Bk} with size nk. By

the strong law of large numbers, as N → ∞, nk/N → pk > 0 almost surely. Since we are

considering asymptotic properties here, we consider the discrepancy from the true parameter

value β instead of the estimator β̂ based on the full data.

For MR approach, as N→ ∞,

X̃k → p−1k

∫
Bk

x F(dx), ỹk → p−1k

∫
Bk

G(βTx) F(dx) (4.15)
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almost surely. If the link function g or G = g−1 is linear, then g(ỹk) − X̃T
kβ → 0 and thus

MR estimate β̃ → β. Nevertheless, in general g is nonlinear, the accuracy of MR estimate

mainly depends on the size of blocks ∆, not the sample size N. In other words, fixing the data

partition, the accuracy of MR estimate is limited by Equation 4.15 thus will not benefit from

increasing a large enough sample size for most GLMs.

Different from MR, by matching the score function of the full data, SMR approach can still

improve its estimate when the sample size gets bigger even with a fixed data partition.

Actually, for a general GLM, E(Yi) = G(ηi) and Yi−G(ηi)
ind
∼ (0, σ2i ), where σ2i = Var(Yi) =

h(ηi) > 0. For either a bounded block Bk or a bounded h(·), maxi∈Ik σ
2
i is also bounded. By

strong law of large numbers and Taylor expansion, as N→ ∞ and nk → ∞, the left hand side

of Equation 4.8 after divided by nk is

LHS =n−1
k

∑
i∈Ik

ν(ηi)ηi(yi −G(ηi))

=n−1
k

∑
i∈Ik

ν(ηi)ηi

[
yi −G(X

T
i β) −G

′(XT
i β)X

T
i (β̃

(t)
− β) +O(‖β̃(t)

− β‖2)
]

a.s.→n−1
k

∑
i∈Ik

ν(ηi)ηi

[
−G ′(XT

i β)X
T
i (β̃

(t)
− β) +O(‖β̃(t)

− β‖2)
]

(4.16)

=− ν(η̃k)η̃kG
′(X̃T

kβ)X̃
T
k(β̃

(t)
− β) +O(∆‖β̃(t)

− β‖) +O(‖β̃(t)
− β‖2) (4.17)

Equation 4.16 shows that when N increases, the leading discrepancy of LHS caused by response

yi’s vanishes. Even if the maximum block size ∆ is fixed, when β̃
(t)

is close to β, the LHS of

Equation 4.8 is small, and so is its right hand side. For blocks with η̃k away from 0, it indicates
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ỹk − G(η̃k) and thus ỹk − G(X̃
T
kβ) is small. That is, when N → ∞, the SMR representatives

{(X̃k, ỹk), k = 1, . . . , K} stay close to the true curve, µ = E(Y) = G(XTβ), which leads to a

faster convergent rate of SMR estimate towards β than MR’s.

Equation 4.17 implies that if G ′(X̃T
kβ) is relatively large, it may slow down the convergence

of SMR estimate. For example, under a Poisson regression model with log link , G(η) = eη.

If the initial estimate of the regression parameter is not so close, SMR may have difficulty in

converging to the full data estimate. In such kind of situations, one may need a finer partition

or smaller ∆ to obtain a good initial estimate. For models with fairly flat G functions, such as

models with logit link, G ′ is small for most blocks. Even if the initial estimate for SMR is not

so close, we can still accurate estimate after a few iterations.

4.3 More Simulation Studies

In practice, we only need to run a few iterations for SMR to reach the accuracy level

comparable with the full data estimate. Our simulation studies in this section show that 3-

iteration SMR is comparable with the divide-and-conquer approach (Lin and Xi, 2011 (6)), also

known as divide and recombine, split and conquer, or split and merger in the literature (Wang

et al., 2016 (2)). In the rest of this paper, we call the 3-iteration SMR simply SMR.

4.3.1 SMR vs MR for linear model

Following the simulation setups in Section 3.4, we simulate 20 datasets of size N = 1× 106

for each of the 7 distributions. MR and SMR are used to obtain the parameter estimate β̃.

Different from Table I, we show in Table VII, the average RMSE between β̃ and the full data

estimate β̂. The improvement of RMSE from MR to SMR is not much based on equal-depth
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TABLE VII: Average (std) of RMSEs (10−3) from β̂ of 20 simulations for linear model with
N = 106

Simulation Equal-depth (m = 4) k-means (K = 1000)
setup MR SMR MR SMR

mzNormal 0.710(0.037) 0.705(0.037) 0.805(0.047) 0.029(0.003)
nzNormal 0.710(0.037) 0.704(0.036) 0.805(0.047) 0.029(0.005)
ueNormal 0.194(0.024) 0.193(0.024) 0.194(0.021) 0.067(0.010)

mixNormal 0.816(0.060) 0.806(0.060) 0.731(0.063) 0.004(0.001)
T 3 6.432(0.324) 6.351(0.327) 5.653(0.416) 0.506(0.055)

EXP 1.020(0.068) 0.990(0.066) 0.750(0.039) 0.018(0.003)
BETA 0.686(0.041) 0.672(0.041) 0.873(0.062) 0.010(0.002)

partition, while the improvements based on k-means partition are truly significant (see also

Figure 4).

This simulation study confirms the conclusion in Theorem 4.2.3. That is, when ∆ is smaller,

ρ(∆) is closer to 0 and the improvement from MR to SMR is much more significant.

4.3.2 SMR vs divide-and-conquer for logistic models

Logistic regression model is also a special case of GLMs with Bernoulli or binomial response

and canonical link, logit, and

G(η) = g−1(η) =
exp(η)

1+ exp(η)

S(η; ỹk) = ỹkη−
exp(η)

1+ exp(η)
η

Following the simulation setup in Section 4.1.2, we simulate 20 datasets of size N = 1× 106

for logistic regression models. Divide-and-conquer (DC) proposed by Lin and Xi (2011) (6) and
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Figure 4: Box-plots of iterative SMR vs MR : RMSE from full data β̂ for linear model, N = 106

with based on k-means with K = 1000. The x-axis is MR and the iterations of SMR, from 1 to
20. Grey lines connect iterations in each simulation.
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TABLE VIII: Average (std) of RMSEs (10−3) of 20 simulations for logistic models with N = 106

(MR, SMR: k-means with K = 1000; Divide-and-Conquer (DC): 1000 blocks)

Simulation RMSE from true β RMSE from full data β̂
setup Full MR SMR DC MR SMR DC

mzNormal 3.6 17.7 4.0 7.7 17.5 1.7 6.9
(0.2) (0.2) (0.3) (0.2) (0.1) (0.1) (0.1)

nzNormal 7.3 15.4 8.6 21.3 13.9 4.9 20.2
(0.4) (0.3) (0.4) (0.4) (0.2) (0.3) (0.2)

ueNormal 2.3 208.5 4.1 12.8 209.0 3.5 13.2
(0.2) (0.4) (0.4) (0.3) (0.5) (0.4) (0.1)

mixNormal 5.1 17.7 6.2 12.2 17.0 3.2 11.2
(0.4) (0.3) (0.4) (0.3) (0.1) (0.2) (0.1)

T 3 18.3 21.7 21.4 21.6 11.9 11.2 11.9
(1.0) (1.5) (1.5) (0.9) (0.9) (0.9) (0.1)

EXP 6.5 12.9 9.0 18.1 10.5 5.3 16.7
(0.5) (0.5) (0.5) (0.5) (0.2) (0.2) (0.1)

BETA 7.2 7.3 6.9 9.6 2.9 2.2 5.9
(0.3) (0.3) (0.3) (0.4) (0.1) (0.1) (0.1)

our SMR are applied for estimating parameters. Table VIII shows that based on a k-means

partitioning with k = 1000, SMR outperforms the divide-and-conquer method with 1000 blocks

for all simulation settings. For illustration purpose, boxplots of comprehensive simulations are

listed in Figure 5, as well as Figure 6, which shows that SMR outperforms the divide-and-

conquer method with 1000 blocks for all simulations. It also reveals that 3 iterations of SMR

are pretty enough to reach a accuracy level comparable to the full data fit.

SMR can be applied to multiple computers (known as nodes), and exchanges only the

representative data points and estimated parameter values. It can perform well even with

limited network connections.



62

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 5 10 15 20

iteration

R
M

S
E

(a) mzNormal

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0 5 10 15 20

iteration

R
M

S
E

(b) nzNormal

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0 5 10 15 20

iteration

R
M

S
E

(c) ueNormal

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0 5 10 15 20

iteration

R
M

S
E

(d) mixNormal

0.010

0.015

0.020

0.025

0.030

0.035

0 5 10 15 20

iteration

R
M

S
E

(e) T3

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

0 5 10 15 20

iteration

R
M

S
E

(f) EXP

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012

0.013

0 5 10 15 20

iteration

R
M

S
E

method

full

DC

MR

SMR

(g) BETA

Figure 5: Box-plots of iterative SMR vs full, MR, and divide-conquer: RMSE from true β for
logistic model with N = 106 based on k-means with K = 1000. The x-axis is full, Divide-and-
conquer, MR, and the iterations of SMR, from 1 to 20. Grey lines connect iterations in each
simulation.
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Figure 6: Box-plots of iterative SMR vs MR, and Divide-and-conquer: RMSE from full data β̂
for logistic model with N = 106 based on k-means with K = 1000. The x-axis is Divide-and-
conquer, MR, and the iterations of SMR, from 1 to 20. Grey lines connect iterations in each
simulation.



64

Divide-and-conquer methods typically operate on random partitions, that is, each data

block for divide-and-conquer consists of data points from many nodes. Usually there are only

limited values for some fields in a single node, on which regression on a single node may not

have a feasible solution. Therefore, a heavy communication between nodes are required, which

violates the independence computing rule. Thus the computing of divide-and-conquer methods

heavily depend on the speed and capacity of network connection.

4.3.3 Some properties of SMR

Both MR and SMR benefit from increasing in sample size and number of splitting blocks

with respect to RMSE from true value. In this section, we reveal that SMR can take extra

advantage in such situation with respect to RMSE from full data estimate through experiments

over different sample sizes and numbers of blocks.

4.3.3.1 Performances of MR, SMR over different sample sizes

We conclude in Section 4.2.4 that SMR can benefit more than MR as sample size increases.

In this section, we show that the advantage of SMR is over divide-and-conquer method as well.

In this simulation study, we use the first simulation setup mzNormal for illustration pur-

pose. For MR and SMR, we use an equal-depth partition with m = 4, whose effectiveness is

comparable with a k-means partition with K = 1000 according to Section 4.1.2. The partition is

fixed as N gets bigger. For divide-and-conquer method, we fix its block size 103 for illustration

purpose, which is the same as the block size in Section 4.3.2. As N gets bigger, the number

of blocks for divide-and-conquer method increases proportionally, which is often the case in

practice.
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TABLE IX: Average (std) of RMSEs (10−3) of 20 simulations for logistic models with differentN
(MR, SMR: equal-depth with m = 4; Divide-and-conquer (DC): block size 1000), mzNormal

N
RMSE from true β RMSE from full β̂

Full MR SMR DC MR SMR DC

1× 105 11.71 22.40 12.55 13.56 19.13 4.04 6.88
(0.62) (0.58) (0.72) (0.52) (0.21) (0.26) (0.06)

3× 105 6.51 20.59 7.02 9.44 19.64 2.32 6.91
(0.40) (0.26) (0.40) (0.32) (0.10) (0.20) (0.05)

10× 105 3.65 20.33 4.03 7.74 20.10 1.48 6.94
(0.23) (0.22) (0.24) (0.23) (0.06) (0.08) (0.03)

30× 105 2.13 20.33 2.37 7.37 20.11 0.79 6.94
(0.15) (0.09) (0.17) (0.10) (0.02) (0.06) (0.02)

100× 105 1.15 20.22 1.26 7.08 20.13 0.39 6.92
(0.08) (0.06) (0.08) (0.06) (0.02) (0.02) (0.01)

As shown in Table IX and Figure 7, as N increases, SMR estimate gets closer to full data

estimate quickly, and accuracy is improved faster than MR and divide-conquer, which seem not

get closer to the full data estimate. Thus, SMR is more efficient with the same sample size,

additionally, time complexity of SMR is lower than divide-conquer. The different performances

of MR and SMR confirm our conclusion in Section 4.2.4.

The reason MR gets a little away from it is the unbounded covariates, which leads to the

ranges of predictors increase along N. The flat trend of the divide-and-conquer method in

Figure 7 (b) is mainly due to the increased relative bias as the number of blocks increases (see

Figure 1 in Lin and Xi (2011) (6)). As N→ ∞, its estimate cannot catch up with full data fit.
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Figure 7: RMSE vs log10(N) of MR, SMR, and divide-conquer for logistic model

4.3.3.2 Performances of MR and SMR with finer partition

According to Theorems 4.1.1 and 4.2.3, the estimate β̃ obtained by MR or SMR converges

to the full data estimate β̂ as ∆ → 0. That is, with finer partition, β̃ gets closer to β̂,

but not necessarily the true parameter β for given dataset, which confirms the conclusion of

Theorem 4.2.3. Similar to MR, the maximum size of blocks contributes more than the number

of blocks to the convergence rate of SMR. Our simulation studies summarized in Table X and

Table XI confirm our conclusions. In addition, Even if the partitioning is coarse, SMR can still

work, while finer partitioning improves the performance of course. That is, SMR is more robust

to partitions than MR, where the latter is more sensitive to the size of blocks.

For comparison purpose, we also list the RMSEs of divide-and-conquer (DC) methods for

the same number of blocks in Table XI. Note that DC typically uses random partition and

prefers as fewer blocks as possible.
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TABLE X: Average (std) of RMSEs (10−3) of 20 simulations for logistic model, N = 106,
mzNormal, equal-depth partition with different m

m
RMSE from true β RMSE from full β̂

Full MR SMR MR SMR

2 3.65(0.23) 69.59(0.19) 4.51(0.26) 69.61(0.12) 2.83(0.18)
3 3.65(0.23) 33.21(0.22) 3.96(0.32) 33.13(0.08) 1.98(0.13)
4 3.65(0.23) 20.33(0.22) 4.03(0.24) 20.10(0.06) 1.48(0.08)
5 3.65(0.23) 13.67(0.24) 3.70(0.22) 13.32(0.04) 1.04(0.05)

TABLE XI: Average (std) of RMSEs (10−3) of 20 simulations for logistic model, N = 106,
mzNormal, k-means partition for MR and SMR with different K, random partition for DC
with K blocks

K
RMSE from true β RMSE from full β̂

Full MR SMR DC MR SMR DC

500 3.65 21.00 4.33 4.92 20.78 2.08 3.44
(0.23) (0.23) (0.27) (0.24) (0.09) (0.14) (0.02)

1000 3.65 17.68 4.04 7.73 17.44 1.81 6.95
(0.23) (0.25) (0.25) (0.25) (0.08) (0.14) (0.03)

2000 3.65 14.84 3.89 14.27 14.54 1.71 13.92
(0.23) (0.21) (0.26) (0.23) (0.06) (0.11) (0.04)

3000 3.65 13.55 4.26 21.09 13.09 1.53 20.89
(0.23) (0.20) (0.23) (0.23) (0.09) (0.10) (0.03)
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4.3.4 Other GLMs

Commonly used GLMs include binary responses with logit, probit, cloglog, loglog, cauchit

links, Poisson responses with log link, Gamma responses with reciprocal link, Inverse Gaussian

responses with inverse squared link, etc. We provide detailed formulas for ν(η) and G(η) in

Table VI.

TABLE XII: Average (std) of RMSEs (10−3) for three models, N = 106, mzNormal, k-means

(K = 1000)

Binary with cloglog Poisson with log Logistic with interactions

Average Full MR SMR Full MR SMR Full MR SMR

From true 2.62 43.26 3.83 0.22 25.61 9.14 3.49 7.33 3.78

(0.17) (0.18) (0.21) (0.01) (1.48) (1.34) (0.22) (0.35) (0.29)

From full 0 43.21 2.71 0 25.61 9.14 0 6.13 1.39

- (0.12) (0.15) - (1.48) (1.34) - (0.13) (0.07)

In Table XII, we show average RMSE of 20 simulations based on k-means partition with

K = 1000 for the following three models:

• Binary response with complementary Log-log (cloglog) link
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Figure 10: Boxplots of RMSE from full β̂ of 20 simulations for three models with N = 106,
mzNormal, based on k-means with K = 1000

Cloglog link function g(µ) = ln(ln(1− µ)). Thus, G(η) = 1 − exp{− exp(η)} is relatively

flat, therefore even the performance of MR is not that close, SMR still converges fast.

• Poisson response with log link

The canonical link function of Poisson is g(µ) = lnµ. So G(η) = exp(η) increases expo-

nentially. With a low accuracy initial value MR, the convergence of SMR is slower down,

which confirms our conclusion in Section 4.2.4. Also, the variance of both MR and SMR

are high. Thus, a good initial value for Poisson is crucial important.

• GLM with interactions

Either MR or SMR can be applied on interactions directly since they face to the predictor

variables other than covariates. x = (x1, x2, x3)
T follows mzNormal, and predictors are

(h1(x), . . . , h7(x)) = (x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3) for a logistic model, both MR and

SMR works well.



71

TABLE XIII: Average CPU time (sec) of MR, SMR, A-optimal, Divide-and-conquer over 20
simulations for logistic model with N = 106, p = 7, under k-means (K = 1000)

Simulation setup full data MR SMR A-opt DC

mzNormal 21.949 0.459 51.722 2.237 18.242
nzNormal 27.732 0.528 54.821 2.340 19.057
ueNormal 28.987 0.548 58.150 2.329 18.900

mixNormal 27.015 0.442 51.071 2.296 18.765
T 3 15.306 0.308 36.118 2.344 17.667

EXP 22.984 0.338 34.704 2.368 18.079
BETA 18.666 0.324 33.435 2.310 17.725

4.3.5 CPU time of SMR

For illustration purpose, we use k-means partition method with K = 1000 in this section.

The CPU time for 1-step SMR and A-optimal subsampling with subsample size 20000 and

Divide-and-conquer with 1000 random blocks are shown in Table XIII for logistic models with

N = 106 and p = 7. The CPU time of SMR is still higher than full data fit and Divide-and-

conquer method, since the number of parameters p is of moderate size.

According to the time complexity analysis in Section 4.2.1.1, the computational time of

SMR should also roughly proportional to the number of parameters p and sample size N like

MR, if the number of blocks K is small. Our simulation studies in Figure 11 and Figure 12

confirm our conclusion, which showing the relation of the CPU time of SMR against the number

of parameters p and sample size N. The computational time to apply such a k-means partition

is still high though.
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CHAPTER 5

AIRLINE ON-TIME PERFORMANCE DATA

The Airline on-time performance data for US domestic flights of arrival time from October

1987 to February 2017 were collected from Bureau of Transportation Statistics as a real example

for big data analysis.

5.1 Descriptive Analysis of Airline Data

The dataset consists of 353 cvs files with total original records number N = 173, 106, 219

and the fields shown in Table XIV.

First we discretize DISTANCE by taking value of interval center for every 200 miles. Then

classify data into bins with weighted response pair (Ontime, Delay) by distinct values of YEAR,

SEASON, DAYOFWEEK, DEPTIMEBLK, and DISTANCE to do descriptive analysis. There

is 1 bin without departure information, 172 bins with no delay or travel information. Thus we

remove the following bins in Table XV.

The total valid records number after cleaning is N = 169, 609, 446. Parts of descriptive

analysis are given in Table XVI, Table XVII, Table XVIII.

5.2 SMR and MR on Flight Data with Oracle Responses

For illustration purpose, we consider three categorical covariates. Quarter (season, 1 ∼ 4)

is used instead of MONTH with 7 levels for simplification purpose. DayOfWeek (day of week,

1 ∼ 7) is still considered since it is a significant covariate. Following convention of O’hare
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https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
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TABLE XIV: Description of fields in original data

Field Name Description

YEAR Year, from 1987 to 2017
QUARTER Quarter (1-4)
MONTH Month
DAY OF MONTH Day of Month
DAY OF WEEK Day of Week
FL DATE Flight Date (yyyymmdd)
ORIGIN AIRPORT ID Origin Airport, Airport ID. An identification number as-

signed by US DOT to identify a unique airport. Use this
field for airport analysis across a range of years because an
airport can change its airport code and airport codes can be
reused.

DEST AIRPORT ID Destination Airport, Airport ID. An identification number
assigned by US DOT to identify a unique airport. Use this
field for airport analysis across a range of years because an
airport can change its airport code and airport codes can be
reused.

CRS DEP TIME CRS Departure Time (local time: hhmm)
DEP DELAY Difference in minutes between scheduled and actual depar-

ture time. Early departures show negative numbers.
DEP DELAY GROUP Departure Delay intervals, every (15 minutes from < −15 to

> 180)
DEP TIME BLK CRS Departure Time Block, Hourly Intervals
CRS ARR TIME CRS Arrival Time (local time: hhmm)
ARR DELAY Difference in minutes between scheduled and actual arrival

time. Early arrivals show negative numbers.
ARR DELAY GROUP Arrival Delay intervals, every (15-minutes from < −15 to

> 180)
ARR TIME BLK CRS Arrival Time Block, Hourly Intervals
CANCELLED Cancelled Flight Indicator (1=Yes)
CANCELLATION CODE Specifies The Reason For Cancellation
DIVERTED Diverted Flight Indicator (1=Yes)
CRS ELAPSED TIME CRS Elapsed Time of Flight, in Minutes
DISTANCE Distance between airports (miles)
DISTANCE GROUP Distance Intervals, every 250 Miles, for Flight Segment
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TABLE XV: Removed records

n of records Year SEASON DAYOFWEEK DEPTIMEBLK DISTANCE Ontime Delay

26 1987 4 1 0700-0759 0 0 0
706 1987 4 3 1500-1559 0 0 0

1899 1987 4 7 1900-1959 0 0 0
1948 1987 4 7 2200-2259 0 0 0

46311 1989 4 2 0600-0659 0 1 0
46429 1989 4 2 1400-1459 0 0 0

594920 2012 3 4 1 0 1
190 1987 4 1 1700-1759 23 0 0
487 1987 4 2 1800-1859 22 0 0

... ... ... ... ... ... ... ...

TABLE XVI: Ontime-delay ratio over SEASON

SEASON Ontime ratio Delay ratio Number of total records

1 0.788 0.212 41579713
2 0.804 0.196 42361276
3 0.808 0.192 42914516
4 0.801 0.199 42753941



76

TABLE XVII: Ontime-delay over DAYOFWEEK

DAYOFWEEK Ontime ratio Delay ratio Number of total records

1 0.803 0.197 24988255
2 0.814 0.186 24686764
3 0.802 0.198 24810248
4 0.778 0.222 24914325
5 0.772 0.228 24973697
6 0.832 0.168 21550008
7 0.806 0.194 23686149

TABLE XVIII: Ontime-delay over DEPTIMEBLK

DEPTIMEBLK Ontime ratio Delay ratio Number of total records

0001-0559 0.860 0.140 2476334
0600-0659 0.902 0.098 10358193
0700-0759 0.877 0.123 11921054
0800-0859 0.852 0.148 12060297
0900-0959 0.839 0.161 10924704
1000-1059 0.835 0.165 10270352
1100-1159 0.824 0.176 10768536
1200-1259 0.813 0.187 10832755
1300-1359 0.797 0.203 11141752
1400-1459 0.785 0.215 10036841
1500-1559 0.767 0.233 10432324
1600-1659 0.757 0.243 10344962
1700-1759 0.739 0.261 11628797
1800-1859 0.733 0.267 10426461
1900-1959 0.730 0.270 9374510
2000-2059 0.732 0.268 7724958
2100-2159 0.749 0.251 5207005
2200-2259 0.784 0.216 2592115
2300-2359 0.803 0.197 1087496
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TABLE XIX: Description of fields in Airline on-time performance data

Field Name Description

ArrDel15 binary response variable: arrival delay indicator, 15 minutes or more
(1=Yes)

QUARTER season, “1”: January 1-March 31,“2”: April 1-June 30, “3”: July 1-
September 30, “4”: October 1-December 31

DayOfWeek day of week, “1”: Monday, “2”: Tuesday, “3”: Wednesday, “4”: Thurs-
day, “5”: Friday, “6”: Saturday, “7”: Sunday

DepTimeBlk CRS departure time block, “1”: 12:00 AM - 05:59 AM, “2”: 06:00 AM
- 11:59 AM, “3”: 12:00 PM - 05:59 PM, “4”: 06:00 PM - 11:59 PM

DISTANCE distance between airports, in miles

airport, we divide the departure time into 4 periods : “12:00 AM - 05:59 AM”, “06:00 AM

- 11:59 AM” , “12:00 PM - 05:59 PM” , “06:00 PM - 11:59 PM”. Therefore DepTimeBlk

(departure time block) takes 1 ∼ 4. The only continuous covariate, DISTANCE (distance of

flight, 8 ∼ 4983 miles) is taken into consideration, as well as the binary response variable, Delay

(arrival delay indicator, 1=YES). For details of variables, see Table XIX.

In order to evaluate the performances of MR and SMR even when full data estimate is not

available, we generate the oracle coefficient values by fitting logistic model on the data files

from March 2012 to February 2017, and then simulate pseudo responses 10 times through the

logistic model with the oracle parameter values. That is, we know the true parameter values β

in this case, shown in Table XX.

In order to mimic the distributed enviorment, we do not combine files or operate across

multiple files. For the sub-partition, the only continuous variable DISTANCE is splitted into 8
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TABLE XX: Oracle coefficients of predictors

Predictor β β ′

Intercept -2.3168 -2.3168
QUARTER2 -0.0074 -0.0074
QUARTER3 0.0024 0.0024
QUARTER4 -0.0952 -0.0952

DAY OF WEEK2 -0.1200 -0.1200
DAY OF WEEK3 -0.1079 -0.1079
DAY OF WEEK4 0.0632 0.0632
DAY OF WEEK5 0.0369 0.0369
DAY OF WEEK6 -0.2321 -0.2321
DAY OF WEEK7 -0.1041 -0.1041
DEP TIME BLK2 0.4678 0.4678
DEP TIME BLK3 1.0978 1.0978
DEP TIME BLK4 1.3058 1.3058

DISTANCE 5.87e-5 5.87e-4

intervals by its quantiles in each individual file. In order to show how the accuracy of parameter

estimate is improved with more and more data, we run 4 experiments with the first 12 months,

60 months, 240 months and 353 months (that is, the whole dataset), respectively. In each

experiment, we obtain full data estimate (not available for 240 months and 353 months due to

big data size), as well as our MR and SMR estimates, which are listed in Table XXI. The dash

mark is made for full data fits of 240 months and 353 months because our computer cannot

handle such large size dataset directly.

From Table XXI, we can see that the three estimates are about the same. The main reason

is that there is only one continuous predictor DISTANCE, whose coefficient is 0.0000587.

Even multiplied by the largest value of DISTANCE, 4983, the contribution of DISTANCE is
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TABLE XXI: Average (std) of RMSEs (10−3) from oracle β for airline on-time performance
data

Number of months Full MR SMR

12 months 6.094(0.946) 6.087(0.955) 6.082(0.954)
60 months 2.695(0.282) 2.686(0.280) 2.690(0.282)
240 months - 1.304(0.304) 1.303(0.302)
353 months - 0.914(0.137) 0.910(0.137)

only 0.03, which is too small compared with the intercept −2.3168. In other words, this is

roughly a case with all categorical predictors. According to Corollaries 4.1.1 and 4.2.1, both

MR and SMR will match the full data estimate.

Table XXI also shows that as sample size gets bigger, both MR and SMR estimates are

getting better, which is especially important when a full data estimate could not be obtained.

In order to show when SMR is better than MR, we enlarge the coefficient of DISTANCE by

10 times to get a new oracle β ′ (see Table XX). Then the maximum contribution of predictor

DISTANCE becomes 0.3, which is expected to play a more important role in predicting Delay.

We list the corresponding results in Table XXII. As the sample size increases, the improvement

of SMR estimate over MR’s becomes more in terms of average but still not that significant if

we look at the standard deviation term, since the contribution of continuous term to linear

predictor is still relative small. In that case, MR and SMR estimates are comparable but not

the same as the full data estimate.
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TABLE XXII: Average (std) of RMSEs (10−3) from oracle β ′ with coefficient of DISTANCE
enlarged by 10 times for airline on-time performance data

Number of months Full MR SMR

12 months 6.530(1.167) 7.460(1.107) 7.167(1.156)
60 months 2.656(0.451) 3.319(0.540) 3.276(0.492)
240 months - 2.181(0.368) 1.791(0.357)
353 months - 1.946(0.283) 1.493(0.251)



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

When all predictors of the GLMs are categorical or discrete, the best solution would be

partitioning the data according to distinct predictor values if applicable. In this case, ∆ = 0

and MR estimate exactly matches the full data estimate.

For GLMs with flatG(η) (that is, G ′(η) is bounded by some moderate number), such as logit,

probit, cloglog, loglog, and cauchit links for binomial models, one may check the coefficients

of the continuous variables fitted by MR. That is, estimate the contribution of continuous

variables to linear predictor by multiplying their coefficients by first quantiles and third quantiles

respectively, then compare the products to the intercept and the coefficients of binary dummy

covariates of categorical variables. If all linear predictors contributed by continuous variables

are relatively small comparing to the intercept or linear predictors contributed by categorical

ones, then MR estimate might be good enough. Otherwise, we recommend SMR solution.

For GLMs with unbounded or too large G ′(η), such as Poisson model, Gamma model, we

recommend SMR over MR with a finer partition.

6.2 Dynamic Distributed Computing Framework

A method designed for dynamic distributed dataset is now desired. It should satisfy a

scenario as the follows: the central processor mode and local nodes with most data restored
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on, are physically distributed; The communications between them are expensive, and may not

be synchronized; The data on local nodes may be updated along time. A dynamic distributed

computing framework is described as follows.

1. Central processor node sends the initial information to the distributed local nodes;

2. Local nodes calculate independently based on the current local data and the system

information, then send the calculating results to the central processor node;

3. The central processor node makes analysis on the data sent by local nodes;

4. Repeat 1 ∼ 3 until some thresholds are triggered.

6.3 Future Works

Firstly, current SMR is good for distributed dataset, it can be improved to fit a dynamic

distributed system. The algorithm will be the same, but the properties of SMR in dynamic

distributed computing are worth to explore. Working under a dynamic distributed computing

framework is one of our most important future works.

The choice of representatives is not unique for GLMs. We may not only consider repre-

sentatives based on the score functions, but also ones based on the log-likelihoods themselves

directly, or ones based on information matrices.

Even for the model described in Theorem 4.2.3, our proposed SMR does not perfectly satisfy

all the conditions. An improved SMR under this framework could be a next step.

Also, MR is a quick solution but essentially a pre-analysis for GLMs. The statistical infer-

ence for MR is a completion of this representative approach, as well as median representative
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approach. Furthermore, could we have other representatives with computing speed comparable

to MR, but containing more information?

Data partition, or more specifically, ∆, is critical for both MR and SMR. How to obtain a

more efficient partition is very important to representative approaches.

All above topics are under model based framework, nonparametric structure will be another

story.
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