
OPTIQ: A Data Movement Optimization Framework for Data-centric

Applications on Supercomputers

by

ANH HUY BUI
B.A. (Hanoi University of Science and Technology) 2006

M.S. (Politecnico di Milano) 2009

Thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:

Andrew Johnson, Chair and Advisor
Ugo Buy
Luc Renambot
Jason Leigh, University of Hawaii at Manoa
Venkatram Vishwanath, Argonne National Laboratory

Copyright by

ANH HUY BUI

2015

To my Mom and Dad for their endless support!

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisors: Andrew Johnson, Jason Leigh and

Venkatram Viswanath for their guidance, motivation, encouragement, patient and support.

Their roles have been inevitable to my success in the PhD program.

Also, I express my profound gratitude to my committee members: Andrew Johnson, Ugo

Buy, Jason Leigh, Luc Renambot and Venkatram Vishwanath. I highly appreciate the value of

their time and their feedback on my work.

I am really grateful to scientists, postdocs, staffs who are/had been at Argonne National

Laboratory for their financial and technical support, helps and discussions. My special thank

to Venkatram Viswanath, Michael E. Papka, Preeti Malakar, Eun-Sung Jung, Todd S. Munson,

Sven Leyffer, Robert Jacob, Sebastien Boisvert and Jeff Hammond.

I sincerely thank staffs, colleages and students at Electronic Visualization Laboratory for

their support, especially to Maxine Brown, Dana M. Plepys and Lance Long.

Last but not least, I would like to thank my family for being supportive of whatever I do.

AHB

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Research Goals . 4
1.3 Thesis Organization . 6

2 DATA MOVEMENT IN DATA-CENTRIC APPLICATIONS . . 7
2.1 Data-centric Applications on Supercomputers 7
2.2 Data Movement in Data-centric Applications on Supercomputers 9

3 RELATED WORK . 13
3.1 Works in data movement optimization 13

4 OPTIQ FRAMEWORK . 18
4.1 Overall Approach . 18
4.2 Framework Components . 19
4.2.1 Path Generation . 20
4.2.2 Path Searching . 21
4.2.3 Scheduler . 22
4.2.4 Transport . 24
4.2.5 Auxiliary Component . 25

5 MULTI-PATH DATA MOVEMENT 26
5.1 Multi-path Data Movement/Routing 26
5.2 K Shortest Paths . 27
5.3 Heuristic approaches . 29
5.3.1 Heuristic Approach 1 . 29
5.3.2 Heuristic Approach 2 . 32
5.3.3 Comparison between Heuristic 1 and Heuristic 2 34
5.4 Modeling Approach . 34
5.4.1 Optimization-based Approach 34
5.4.2 A Mathematical Programming Language (AMPL) 37
5.4.3 AMPL Model . 38

6 IMPLEMENTATION AND EVALUATION 41
6.1 Mira . 41
6.2 Application Programming Interface (API) 44
6.3 Implementation Details . 49

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6.4 Evalution with Synthetic Benchmarks 51
6.4.1 Setup . 51
6.4.2 Communication Patterns . 51
6.4.3 MPI Path Reconstruction . 53
6.4.4 Experimental Results . 53
6.4.4.1 Overall Throughput Improvement 54
6.4.4.2 Scaling Number of Nodes, Keeping Source/Destination Ratio

Constant . 55
6.4.4.3 Varying Messages Sizes . 60
6.4.4.4 Varying Sources-Destinations Distance 60
6.4.4.5 Varying Sources-Destinations Ratio 64
6.4.4.6 Random Sources-Destinations Pairing 66
6.4.4.7 Efficacy of Chunk Size . 67
6.4.4.8 Efficacy of Message Size . 67
6.4.4.9 Efficacy of maxload Value on Heuristic 1 Approach 68
6.4.4.10 Efficacy of Number of Shortest Paths Feeding into Solvers . . 71
6.4.4.11 Efficacy of Solvers . 72
6.4.4.12 Paths Searching Time . 75
6.5 Evaluation with Applications . 76
6.5.1 Community Earth System Model (CESM) 76
6.5.1.1 Introduction . 76
6.5.1.2 Experiments and Results . 77
6.5.2 Hardware/Hybrid Accelerated Cosmology Code (HACC) . . . 81
6.5.3 HACC I/O Application Benchmark 81

7 CONCLUSION . 84
7.1 Thesis Contribution . 84
7.1.1 Holistic Approach and Data Movement Optimization Framework 84
7.1.2 Multi-path Data Movement . 85
7.2 Future Work . 85
7.2.1 Improving performance by investigating different solutions . . 85
7.2.2 Expanding the Work to Other Supercomputers 85
7.2.3 Providing Quality of Service for Data Movement on Supercom-

puters . 86
7.2.4 Reducing Solving Time for Optimial Solutions 87

APPENDIX . 88

CITED LITERATURE . 89

VITA . 95

v

LIST OF TABLES

TABLE PAGE
I Inputs for different layers on optimizing data movement on super-

computers. 3
II Previous works on optimizing data movement 17
III Comparison between Heuristic 1 and Heuristic 2 35
IV Examples of OPTIQ framework’s API 45
V Examples of API usage by applications 47
VI Overall throughput improvement (%) of 3 approaches over MPI Alltoallv

in 91 experiments with different partition sizes. 55
VII Throughput, total number of paths, number of paths per job, max-

imum and average values number of paths per link and max amount
of data per link for 3 patterns in 1024 nodes experiments. 58

VIII Maximum (Max) and average (Avg) distance between sources and
destinations and number of paths for OPT and HEU for disjoint,
overlap and subset on 2048 Mira nodes. 62

IX Throughput (GB/s) for Optimization (OPT), Heuristics (HEU 1
and 2) and MPI Alltoallv (MPI) for 5 different random pairings be-
tween sources and destinations in 1024-node partition. 66

X Throughput (GB/s) with different maxload values for Heuristic 1
approach. 70

XI Search time with different max load in 1024 nodes partition. . . . 70
XII Throughput (GB/s) with different number of paths input to the

solvers. 71
XIII AMPL and solving time. 72
XIV Time and throughput comparision between 2 solvers CPLEX and

SNOPT over 91 cases in 3 patterns. 73
XV Locations and number of pairs of communication between models

in CESM . 78
XVI Throughput, total num of paths, number of paths per job for 3

couplings in 512 nodes (4 ranks/node) experiments. 80

vi

LIST OF FIGURES

FIGURE PAGE
1 Data movement optimization at systems’ layers 10
2 Components of OPTIQ framework . 18
3 Scheduler component . 23
4 The ALCF maintains the 768K core Blue Gene/Q compute cluster

(Mira), data analysis cluster (Tukey), and file server nodes. 41
5 Using pipelining technique with PAMI to eliminate the waiting time

at proxy and reduce control overheads . 50
6 Communication patterns . 52
7 Total throughput from 91 cases for 3 patterns in 2048-node partition. 54
8 Varying the number of sources and destinations and total number of

nodes while keeping the ratio constant (1:8). 57
9 Distribution of total amount of data per link for Disjoint pattern in

1024-node partition. 59
10 Varying the number of sources and destinations and total number of

nodes with constant ratio . 61
11 Total data movement throughput with increasing distance between

sources and destinations. 63
12 Total data movement throughput with increasing number of destina-

tion nodes. 65
13 Chunk sizes and their performance in 512-node partition, subset pat-

tern. 68
14 Total throughput with different message sizes from 16 KB – 8 MB in

disjoint, overlap and subset for OPT and MPI. 69
15 AMPL time, Solving time, Total time and Throughput for CPLEX

and SNOPT solvers of 91 cases in 3 patterns in 2048-node partition . . 74
16 Paths searching time for Optimization approach used SNOPT solver,

Heuristic 2, Heuristic 1 with maxload = 16 75
17 Model communicate with each other via a coupler 77
18 Points distribution over pairs of source-rank/dest-rank and pairs of

source-node/dest-node . 79
19 Aggregation achievable throughput for in situ analysis of HACC I/O 82

vii

LIST OF ABBREVIATIONS

ALCF Argonne Leadership Computing Facility

AMPL A Modeling Language for Mathematical Program-

ming

BG/Q Blue Gene/Q

CESM Community Earth System Model

CPLEX Simplex Method Implemented in the C Program-

ming Language

HACC Hardware/Hybrid Accelerated Cosmology Code

IB InfiniBand

IBM International Business Machines

ILP Integer Linear Programming

LP Linear Programming

MPI Message Passing Interface

OPTIQ A Data Movement Optimization Framework for

Data-centric Applications on Supercomputers

PAMI Parallel Active Message Interface

QDR Quad Data Rate (QDR) 10 Gb/s

viii

LIST OF ABBREVIATIONS (Continued)

SNOPT Sparse Nonlinear Optimization

XGFT eXtended Generalized Fat Tree

ix

SUMMARY

A holistic approach to improve and optimize throughput of data flows in data-centric appli-

cations on supercomputers is the research problem under consideration in this dissertation. The

research presented in this dissertation comes from an observation that on supercomputing sys-

tems, data-centric applications need to reliably and rapidly compute and move large amounts

of data through interconnect networks. This same trend is also observed in commodity clusters.

Thus, improving and optimizing data movement performance is essential at extreme scales in

order to effectively utilize these systems.

In many current supercomputing systems, data movement optimization has been done sepa-

rately at different layers of the systems. Separate optimization is rational due to the complexity,

diversity and sometimes conflicting nature of application communication patterns. However, it

leads to suboptimal solutions. Most of the optimizations are carried out at the system rout-

ing level, favoring certain communication patterns. Communication patterns of applications,

however, have a wide variation. They vary from application to application and even from

phase to phase in a given application. This results in high networking performance for some

communication patterns but lower performance for several other communication patterns.

In order to achieve close to global optimization, optimization of data movement needs to

be carried out in a holistic approach. This dissertation presents approaches that take system

network routing, interconnection network topology and application communication patterns

into the optimization yielding better performance over current data movement mechanisms.

x

SUMMARY (Continued)

The approaches are realized in a Data Movement Optimization Framework (OPTIQ) that

provides an application programming interface (API) requiring minimal changes in applications

for integration. The OPTIQ framework is also extensible, allowing further development and

expansion including algorithms for recommending multiple paths for data movement, different

ways to schedule data transfer, and various mechanisms to transfer the data. It can also be

extended to other systems.

This dissertation demonstrates the OPTIQ framework via a use case of improving and

optimizing data movement by leveraging multi-path data movement to balance the load on

physical network links on supercomputers. The dissertation proposes two greedy heuristic al-

gorithms and a model-based optimization approach. The greedy heuristic approaches improve

data movement with locally optimal solutions while the model-based approach yields globally

optimal solutions requiring longer search time. Depending on the complexity of the systems

and application communication patterns, the framework supports options to search for solu-

tions offline, on-the-fly, or a hybrid combination of the two. The dissertation demonstrates the

efficacy of the proposed approaches via a set of synthetic benchmarks and application bench-

marks. The benchmarks show that over 91 experiments the presented approaches improved

performance by 43% – 67% on average on up to 4096 nodes on a Blue Gene/Q supercom-

puter. The presented approaches improved data movement throughput for several important

application communication patterns on two applications from 30% – 50%.

The presented data movement optimization framework proposes several solutions for the

problem of optimization at large scale by using combined techniques, and offers different options

xi

SUMMARY (Continued)

for time-to-solution based on the complexity of the problem. It also increases our understanding

of the relationships between application communication patterns and system topologies and

routing algorithms, giving deeper insight into supercomputing systems for the design of exascale

systems.

xii

CHAPTER 1

INTRODUCTION

The relentless march of Moore’s law, combined with the growing computational demands

of contemporary scientific applications, are resulting in ever-larger and more powerful super-

computers. Extracting the maximum performance from these leadership-class systems requires

tuning not just microprocessor performance, but also achieving optimal networking perfor-

mance in the supercomputer interconnect. This in turn requires optimizing the communication

patterns of the applications and the routing algorithms used by the supercomputers. The chal-

lenge here is that application communication patterns are time-varying and have widely varying

communication characteristics. Furthermore, supercomputer routing algorithms are optimized

for typical communication patterns, and this can result in lower throughput for several other

communication patterns, resulting in suboptimal performance for certain critical scientific ap-

plications. Thus, improving communication performance for generic communication patterns

on a leadership-scale system is important for improving performance of data-centric applications

which are run on such large-scale systems.

1.1 Motivation

A holistic approach to improve and optimize throughput of data flows in data-centric appli-

cations on supercomputers is the research problem under consideration in this dissertation. On

supercomputers, data-centric applications need to reliably and rapidly compute and move large

1

2

amounts of data through interconnect networks. The same trend is also observed in commodity

clusters. Thus, improving and optimizing data movement throughput is essential at extreme

scales in order to effectively utilize supercomputers.

In many current supercomputing systems, data movement optimization has been done sepa-

rately at different layers of the systems. Separate optimization is rational due to the complexity,

diversity, and sometimes conflicts in application communication patterns. However, it leads to

suboptimal solutions. At the system level, data movement optimization has been thoroughly

investigated on routing algorithms. However it favors certain communication patterns over

others leading to high performance for some communication patterns and low performance for

other communication patterns. Optimizing data movement at the middleware level is optional

and system-specific. At the application layer, we have seen load-balancing work done, but many

data movement patterns are not optimized.

As separate and independent optimizations do not bring a close-to-global optimal solution,

it is necessary to consider a holistic approach that brings together important factors in data

movement from the system level to the application level. This dissertation proposes a holistic

approach that takes system network routing, interconnect network topology, and application

communication patterns into account in the optimization, promising to yield better performance

over current data movement mechanisms.

The approach is realized in a Data Movement Optimization Framework (OPTIQ) that pro-

vides an application programming interface (API) requiring minimal changes when integrating

it into the applications. The framework is designed to be extensible for further extensions of its

3

functionality and applying it on different systems. The Table I lists the inputs for optimizing

data movement at different layers of supercomputers used by OPTIQ.

Layer
Inputs for optimization

Interconnect
topology

System
routing

Comm. routines Comm. patterns

System Yes Most used No

Middleware
libraries

Limited,
system
specific

Yes
(wrap-
pers)

No No

Applications Limited No No Limited

OPTIQ Yes Yes No Yes

TABLE I: Inputs for different layers on optimizing data movement on supercomputers.

Recently built supercomputers vary in term of their interconnection networks, routing al-

gorithms, and compute node allocation policies. Their interconnection networks are becoming

more complicated, and provide more links with higher throughput and lower latency. In current

supercomputers we have various types of interconnection networks such as 3D, 5D torus, Fat

Tree, and Dragonfly with various routing algorithms belonging to both oblivious and adap-

tive types of routing. However, improving data movement on different systems share certain

features. Building a generic framework that can be further developed and customized and ex-

panded upon for use on different systems may help to reduce development time and thus speed

up scientific discoveries.

4

Improvement in data movement performance for the data-centric applications on supercom-

puters can reduce simulation time, leading to faster time-to-solution. This also can help to

reduce energy consumption by applications on supercomputers.

1.2 Research Goals

Improving data movement performance for data-centric applications on supercomputers is

the ultimate goal of this research. In order to achieve this goal, the dissertation investigates a

holistic approach that takes important data movement factors, ranging from the system layer

to the application layer, into consideration. These factors include the interconnection network

topology, default routing policies, location of the running tasks of the applications, and the

applications communication patterns.

The research aims to build a framework comprised of the necessary components for data

movement improvement. These components need to cover reading the system configuration,

receiving inputs from the applications, searching for paths to move data, and scheduling and

moving data for the applications. The components expose an application programming inter-

face(API) making it easy to implement, extend and expand to different supercomputers.

Path searching plays an important role in the framework as the data movement paths can

significantly affect data movement performance. One of the goals of this research is to develop

approaches to search for paths for data movement. The framework aims to provide several

approaches to search for paths for data movement such as heuristics, linear programming,

or hybrid combinations. Heuristic approaches can return paths quickly but they are usually

system-specific, communication pattern specific, and do not guarantee a close-to-global opti-

5

mization. Optimization-based approaches can return globally optimal solutions but usually

require longer time. Investigating the trade-off of different approaches in terms of calculating

time and solution quality is important in this research.

The framework needs to provide different path searching modes such as offline, on-the-fly,

or a combination of the two. This is because not all inputs for path searching may be available

at one time. The framework takes several inputs to search for paths including coordinates of

compute nodes, interconnection network topology, network bandwidth, routing algorithms, and

data movement patterns. The inputs can be available to the framework at certain times de-

pending on the supercomputers and the applications. In some supercomputers, the coordinates

of nodes can be known before application execution. In others it can be known at the running

time. The same is true with network link bandwidth, application communication patterns as

well as other inputs. As the inputs can be available at different times, the framework needs to

provide different path searching modes such as offline, on-the-fly, or a combination of the two.

For example, if the application patterns are known in advance and compute nodes allocation is

static, the framework supports calculating routing paths offline. Otherwise, the path searching

might be done on-the-fly. The hybrid approach combines offline and on-the-fly approaches. It

is used when partial information on data movement can be computed prior to runtime and

the remaining data movement information is only available for collecting and calculating at

runtime. If the framework calculates the data movement at runtime, due to additional time

caused by collecting inputs and calculating data movement paths, the applications benefit from

6

the framework if the additional time for collecting and calculating is amortized from transfer

time.

Evaluating the framework and proposed approaches is also important in this research. The

efficacy of the framework and approaches need to be demonstrated through a set of experiments

and synthetic benchmarks as well application benchmarks.

1.3 Thesis Organization

The dissertations is organized as follows: Chapter 2 briefly introduces data movement in

data-centric applications. In Chapter 3, the dissertation gives an survey of optimizing and im-

proving data movement in supercomputers and closely related problems and solutions. A brief

comparison of the thesis contributions to previous work is also included. Chapter 4 presents

the OPTIQ framework and its components, design, and functionalities in detail. The OP-

TIQ framework is extensible and includes algorithms for recommending multiple paths for data

movement, different ways to schedule data transfer, and various mechanisms to transfer the

data. It can also be extended to other systems. Chapter 5 presents two heuristic approaches

and a model-based approach to leverage multipaths to improve and optimize data movement

in supercomputers. Chapter 6 demonstrates the efficacy of OPTIQ via set of synthetic bench-

marks and application benchmarks. Overall, our approaches improved performance by 43% –

67% on average for three different communication patterns in 91 experiments on up to 4096

nodes on a Blue Gene/Q supercomputer. The benchmarks show that OPTIQ can improve

performance by 30% – 40% for the two applications that were experimented on. Chapter 7

gives concluding remarks and future work.

CHAPTER 2

DATA MOVEMENT IN DATA-CENTRIC APPLICATIONS

This chapter provides a preliminary understanding of data-centric applications on super-

computers and how supercomputers transfer data throughout their interconnection networks.

2.1 Data-centric Applications on Supercomputers

Supercomputers are powerful tools for scientific discovery. They provide an immense amount

of mathematical calculation that is required for certain applications such as weather forecasting,

fluid dynamic calculations, nuclear energy research, petroleum exploration, universe simulation,

and human brain simulation, just to name a few. Supercomputers are not only capable of pro-

cessing a large amount of data but also producing and exchanging vast amounts of data in a

short time. Supporting communication in supercomputers are their low latency, high through-

put interconnection networks. Applications running on the compute nodes of supercomputers

exchange data through these interconnection networks. The data exchanged can be for comput-

ing or can be for I/O purposes. The applications can be either compute-centric, where most of

the simulation time is for computing and the amount of data is relatively small, or data-centric

where applications produce and exchange large amounts of data over the simulation time.

This dissertation focuses on data-centric applications on supercomputers. In this section, the

dissertation presents two, among many, scientific applications being run on supercomputers to

demonstrate variations in the communication patterns and data sizes and exchange frequencies.

7

8

Hardware/Hybrid Accelerated Cosmology Code (HACC) (1) is a large-scale cosmology code

suite that simulates the evolution of the universe through the first 13 billion years after the

Big Bang. For I/O purpose, it has two different types of datasets: an analysis dataset and a

checkpoint/restart dataset. The checkpoint dataset is typically 10 to 40 times larger than the

analysis dataset, but also is written at lower frequency. Both of the datasets are transferred

from a set of compute nodes to a set of I/O nodes through a high-speed interconnection network.

Community Earth System Model (CESM) (2) is a coupled global climate model simulating

the earth’s climate system. It consists of several main models: Atmosphere, Ocean, Land

and Ice. Different models use different computational methods. During simulation the models

communicate with each other through an intermediate component called the Coupler. This

allows different models to be developed and modified independently. Modification of a model, if

needed, is done in the model and the Coupler without affecting other models. When simulating

on supercomputers, different models reside at different physical locations in a given partition

of the compute nodes. Different models also have different communication patterns, with

different data sizes and different communication frequencies. One example of the models’

physical locations could be as follows: The Atmosphere model and the Coupler are on the same

nodes. Both Land and Ice models reside within the Coupler. The Ocean model is disjoint from

the Coupler. Different models also have different communication patterns, with different data

sizes and different communication frequencies. Message sizes in the application can be as small

as a few kilobytes per exchange, but can be adjusted to have larger message sizes.

9

The two applications presented here briefly introduced the diversity of communication pat-

terns, and frequencies and message sizes of applications on supercomputers. In the next section,

the dissertation gives an overview of how data is transferred on supercomputers.

2.2 Data Movement in Data-centric Applications on Supercomputers

Data movement in the data-centric applications on supercomputers considered in this dis-

sertation can be either between compute nodes or between compute nodes and I/O nodes. In

this section the dissertation presents the layers in a supercomputer that data travels through

to reach to its destination from its source.

On supercomputers, optimization of data movement is carried out separately at different

layers as depicted in Figure 1.

At the lowest level System Routing, data is divided into packets, which are routed along

paths selected by the system. The system routes a packet based on its routing strategies. Two

common routing strategies are oblivious and adaptive. In oblivious routing, routing paths are

computed in advance without taking into account the state of the current traffic. Several optimal

paths can be computed in advance and optimized for certain communication patterns (usually

the most used patterns) but not all patterns. After the paths have been computed, the system

uses them at runtime regardless of the current traffic situation. This is good for the patterns

that were optimized, but not for other patterns, or for situations when traffic varies. Adaptive

routing on the other hand, takes the state of the current traffic into account when calculating

the routing paths. It is usually not optimized for any communication patterns; the optimization

is dynamic at runtime, and this leads to limited optimization due to strict time constraints.

10

Figure 1: Data movement optimization at systems’ layers

At the system routing layer, since switches are aware of the local traffic and may be partially

aware of global traffic at the destination, a combination of local traffic aware with global path

selection for the most used communication patterns can result in good performance. However,

the systems still do not have global optimization for many other communication patterns and

flow patterns at the application level.

Along with the increasing computing capability of compute nodes, the complexity and

sophistication of the interconnection networks are also increasing. The current generation of

supercomputers has various interconnection network topologies from 5D in the Blue Gene/Q

supercomputer to Dragonfly in the Cray Cascade supercomputers.

11

At the middleware layer, highly optimized low-level communication libraries such as Paral-

lel Active Messages Interface (PAMI) or User Generic Network Interface (uGNI) are working

only on certain systems such as BG/Q and Cray respectively. High level and compatible com-

munication libraries such as MPI, PGAS-family with different libraries (GASnet, Charm++,

UPC, Chapel, X10...) provide common communication routines. They are usually wrappers

of lower level communications libraries. Therefore, optimization on these libraries is optional

and system-specific. I/O libraries such as MPI-IO, Adios, GLEAN also work well on specific

systems under specific conditions.

At the application layer, application developers or scientists usually use the provided rou-

tines in these systems as-is (MPI routines are most common). Research has been done on

load balancing and improving latency-sensitive communication. Nevertheless, optimization for

various communication patterns is lacking at this layer.

In conclusion, the data of an applications that needs to be exchanged is converted into

appropriate units that can be transferred by using one of the middleware libraries. The middle-

ware libraries use lower level libraries to inject units of data into network in the form of small

packets. The packets travel on physical links to their final destination and move in the opposite

direction at the destination node until reaching the application level. At the application level,

the data communication patterns are known but the availability of networking resources are not.

At the system level, the availability of networking resources is known but the communication

patterns is not.

12

The next chapter gives a detailed survey on data movement improvement and optimization

on supercomputers and closely related work.

CHAPTER 3

RELATED WORK

In this chapter, the dissertation gives a survey of optimizing and improving data movement

in supercomputers and closely related problems and solutions. Optimizing data movement in

supercomputers can be done at different levels and with different approaches.

3.1 Works in data movement optimization

Data movement optimization with a specific network topology and communication matrix

is equivalent to a multi-commodity flow problem (3). For this problem, if integral flow is

required, the problem modeled as integer linear programming (ILP) formulation is NP complete.

However, if fractional flow is allowed, there exists a linear programming (LP) formulation

solvable in polynomial time. Several of the works discussed below use similar ILP or LP

formulations.

Raecke et al. in (4) showed that an oblivious routing algorithm can be found within a

symmetric network such that the contention is only poly-logarithmic increment with the op-

timum of any traffic patterns. However, Raecke’s construction is not polynomial time. Azar

et al. in (5) formulated the problem using linear programming such that it can be solved in

polynomial time using Ellipsoid algorithm. However, the formulation grows exponentially with

the network size. Applegate et al. in (6) concluded that even with a fairly limited knowledge

of the applicable traffic demands, a robust routing that is nearly optimial is possible to obtain.

13

14

Kinsy et al. in (7) proposed an application-aware deadlock-free oblivious routing framework.

The work presented a mixed integer-linear programming (MILP) approach together with a

heuristic approach to produce deadlock-free application-aware routes that minimize latency.

The framework used a heuristic algorithm to calibrate the MILP algorithm.

Rodriguez et al. in (8) proposed oblivious routing schemes in extended generalized fat tree

networks. It extended two algorithms called S-mod-k and D-mod-k to provide a better oblivious

solutions for slimmed networks.

Prisacari et al. in (9) showed that there is potential to optimize all-to-all collective exchange

communication patterns at the system level in fat-tree networks and proved it mathematically

and via simulations. The work is then extended in (10) to propose a generic method to determine

optimal pattern-specific routing for eXtended Generalized Fat Tree (XGFT). The method uses

a hybrid combination of integer linear programming (ILP) and dynamic programming. The

interconnection network is divided into small subdomains and ILP is used for each subdomain.

The local solution is then combined using dynamic programming. The proposed method takes

up to several hours for several thousands of compute nodes in an interconnect network. In the

work, the authors reduce the solving time by optimizing globally with dynamic programming

and locally with ILP. However, the search space was still large and led to long search time. No

heuristic was proposed to reduce the search time. The approaches in this dissertation present

networks as graphs, so the approaches can work with any type of network. In order to reduce

the search time, the search space is significantly pruned by feeding into the algorithms only a

15

number shortest paths. In order to validate the approach, Prisacari used simulation while this

dissertation demonstrated actual implementation and experiments on a real system.

Optimizing data movement on supercomputers can also be done via task mapping. Agarwal

(et al.) in (11) minimized the impact of topology in a process mapping strategy by heuristically

minimizing the total number of hop-bytes communicated. However, the work focused on latency

of data movement rather than throughput which is considered in this dissertation.

Valiant in (12) proposed a randomized routing mechanism mathematically proved to be able

to route data globally with no sharing links. However the routing mechanism did not work with

local traffic as shown in (13). Pifarre et al. in (14) proposed a minimal routing optimization.

However, it did not work well with global optimization as shown in (13) . To address the

limitation of both approaches, in (13), Singh et al. proposed GOAL – Globally Oblivious

Adaptive Locally to balance load using adaptive routing algorithms for torus networks. GOAL

balances the load by choosing the routing direction for each dimension randomly and routing in

the selected direction adaptively. GOAL routes data at the system level and does not consider

the application’s data movement patterns. This dissertation leverages the system’s routing and

takes the application’s data movement patterns into consideration.

In the Blue Gene/Q supercomputer (BGQ), Chen et al. in (15) proposed a heuristic routing

for Blue Gene/Q supercomputing systems. The routing path is computed dynamically at

routing time based on the coordinates of the source and destination, partition shape, and

message size. The systems route a packet along the longest dimension of a partition first,

shortest last. BG/Q systems route a message using single path. Different messages however

16

might be routed using different paths. In a similar work, Garcia et al. in (16) proposed two

deadlock-free routing mechanisms that support on-the-fly adaptive routing on the Cray XC30

system for Dragonfly networks. However, both works were proposed for routing at the system

level. The approaches in this dissertation are proposed as a supplementary work that leverages

existing system routing and topologies to improve data transfer throughput. They take both

the application’s communication patterns and system’s routing/topology into consideration.

At the middleware layer, communication libraries use low level libraries to provide common

communication patterns for applications. The most common library specifications are MPI-2/3

and GASNet (17). Some optimizations are done based on system specific characteristics such

as (18) who proposed optimization for MPI Allreduce in BG/Q based on observations of the

number of links and other hardware support on the compute nodes.

Data movement optimization at the application level has been very limited. Some work has

been done on load balancing such as load balancing on FLASH for multi-level adaptive mesh

(19).

For wide-area networks, Gaurav et al. in (20) proposed a file transfer scheduling algorithm

that incorporates two key optimizations - multi-hop path splitting and multi-pathing. It is

tested on various transfer patterns such as one-to-all broadcast, all-to-one gather, and data

redistribution. (21) used linear programming to optimize data movement between multiple

sites in a Grid environment.

Previous work in (22) and (23) addressed the problem of I/O data aggregation. In a more

recent work (24) the authors presented approaches for improving the performance of sparse

17

Prior works Optimization Interconnection Use case Scalable

[Leighton95] LP + Approximate algorithm General Offline

[Azar03] LP + Ellipsoid algorithm General Offline No

[Kinsy09] MILP + Heuristics General Offline

[Rodriguez09] Heuristics Fat Tree On-the-fly Yes

[Prisacari13] ILP + Dynamic programming XGFT Offline Several thousands

[Valiant81] Randomized General On-the-fly Yes

[Gustavo91] Minimal routing paths General On-the-fly Yes

[Singh03] Globally oblivious, adaptive locally Torus On-the-fly Yes

[BG/L,P] Heuristic 3D Torus On-the-fly Yes

[BG/Q] Heuristic 3D Torus On-the-fly Yes

[Cray XC30] Heuristic Dragonfly On-the-fly Yes

[Kumar’13] Heuristic 5D Torus On-the-fly Yes

[Khana’08] Heuristic Grid LP No

TABLE II: Previous works on optimizing data movement

communication patterns. This dissertation however presents approaches for data movement

optimization with broader ranges of application communication patterns.

Table II summarizes related works and important features presented in this chapter.

In the next chapter, this dissertation presents OPTIQ, a framework to optimize data move-

ment for data-centric applications on supercomputers.

CHAPTER 4

OPTIQ FRAMEWORK

4.1 Overall Approach

A data movement optimization framework(OPTIQ) is built to realize the holistic approach

proposed in this dissertation. OPTIQ has four main components: Path generation, Path search-

ing, Schedule, and Transport depicted in Figure 2.

Transport
transfer data from a source to a destination

Schedule
to split and put messages into queues to be

sent out

Path searching2

3

4

Communication demand: source, destination and
data (size, buffer). Graph of nodes and links.

Path generation
k shortest paths for each pair of communication

HeuristicsOptimization

1

OPTIQ

Figure 2: Components of OPTIQ framework

18

19

Applications that use the framework need to provide communication information including

sources, destinations, and demands - the amount of data to be transferred between the sources

and the destinations. The information is passed as an input for the framework.

Main functionality of each component is described as follows:

• Path generation: generates k shortest paths that can be used as candidates for data

transfer. We need to generate paths to reduce the search space.

• Path searching: searches for paths to transfer data from a set of source nodes to a set

of destination nodes. Multiple paths or a single path can be found using a set of algo-

rithm. The user can decide what algorithm to be used or let the framework use a default

algorithm.

• Schedule: splits a data buffer that needs to be transferred into smaller messages and

puts the messages into a queue of the transport layer to be transferred. It also handles

incoming messages by keeping messages for itself and forwarding other messages to their

next destinations.

• Transport: transfers a message from one node to another node in the system.

• Auxiliary component: gets system specific information such as partition size, topology,

coordinates, and torus, and computes the neighbors of available nodes given to an appli-

cation.

4.2 Framework Components

In this section, the dissertation describes the details of the components.

20

4.2.1 Path Generation

Compute nodes in a supercomputer communicate and exchange data through an intercon-

nection network. Data travels along physical network links of the interconnection network from

sources to destinations. A set of physical network links that connect a source to a destination

forms a path that can be used to transfer data from the source node to the destination node.

For any pair of source and destination, there might be multiple paths that the framework can

employ to transfer data. For interconnection networks on recent supercomputers, the number

of paths connecting any two nodes is exponential. Thus, the framework needs to have a com-

ponent to generate a finite set of paths to be employed for data movement. The important

features of the component are as follows:

• Generated paths to be used as inputs for the Path searching component in the framework

for path searching and demand assigning. A smaller number of generated paths (smaller

search space) leads to shorter search time but might result in lower search quality (more

shared paths, higher congestion). A larger number of generated paths (large search space)

can lead to a longer search time but also potentially leads to higher search quality (less

shared paths, lower congestion).

• The longer a path is, the longer the time data will be travelling along the path. But

the Path searching component might need to employ longer paths to have a significantly

larger search space.

21

Trading off between the above factors is important in the final result of improving data

movement. The dissertation suggests a few options as follows:

• The component is allowed to generate at most k shortest paths between any pair of source

and destination nodes that need to transfer data. The value of k can be determined

empirically.

• The component is allowed to generate paths with the number of hops not more than the

longest distance between any nodes in the current partition. In some supercomputers

such as the Blue Gene/Q, this is the diameter of the partition is given for the application.

The framework provides a set of functions allowing it to generate paths, and write/read

paths to/from a file. With the generated paths, the framework now can search for paths to

be employed to transfer data. In the next section, the dissertation presents the path searching

component.

4.2.2 Path Searching

The Path Searching component searches for paths from the given set of generated paths

from the Path Generation component. It also assigns data to the selected paths.

The Path Searching component supports different search options for an application as fol-

lows:

• Online search: the search occurs while the application is running.

• Offline search: the search is carried out in advance before the application runs or part of

the search is computed in advance.

22

• Hybrid: part of search is computed in advance and the remainder of the search is computed

when more information is available.

The framework also provides different types of search allowing a trade off between search

time and search quality:

• Heuristic search: shorter search time with local optimization solutions.

• Formal optimization mode-based search: longer search time with global optimization

solutions.

The Path Searching component assigns data to the selected paths and passes the paths to

the Scheduler component where data is scheduled to transfer.

4.2.3 Scheduler

As data is transferred from sources to destinations along the paths, it is routed from source

nodes through intermediate nodes to the destination nodes. Any compute node can play from

none to all of the roles below:

• Source: A source sends its data along paths with the amount given by the Path Searching

component.

• Destination: A destination receives its data from source nodes. Data travels along paths

might pass through intermedate nodes in between a source and a destination before reach-

ing to the destination.

• Intermediate/Forward: An intermediate/forward node forwards data from a previous

node to a next node on a path.

23

• Idle: An idle node does nothing.

The Figure 3 depicts the work of the Scheduler component at a node.

Select
message

Local message queue

Forward message queue Sending queue

Look up
table for
next dest

Incoming message

Check
message

Receiving message queue

Figure 3: Scheduler component

At a node, the Scheduler needs to do the following:

• For incoming messages: Check if an incoming message is for itself or not. If the message

is for itself, it puts the message into the Receiving message queue. If not the message

needs to be forwarded to the next destination. The scheduler puts the message into the

Forward message queue.

24

• For local or forward the sending queue. The order of selecting message from either queue

can be either Forward first, Local first or Round Robin. The transport component selects

messages in the sending queue for sending.

A message needs to contain information so that the Scheduler knows how to process the

data. The information includes: message id, source, destination, size, original buffer offset,

and path id. The Scheduler maintains a table of (path id, previous node and next node) for

forwarding purposes. Whenever it receives a message it can check to see if the message has

come to its final destination. If not, it looks up in the table for the next destination of the

message.

When there are multiple tasks per node, the Scheduler can select any tasks in the next node

to be next destination. However, the selection mechanisms must be uniform for at all tasks.

Messages in the sending queue are selected on a first-come-first-serve order by the Transport

component.

4.2.4 Transport

The Transport component selects a message from the sending queue and transfers the mes-

sage from its source node to its destination node. The Transport component can employ any

available libraries for data movement available for transferring messages such as MPI, uGNI,

PAMI, Charm++, UPC... However, it prefers to choose low level libraries for better communi-

cation performance for small messages.

The framework exposes an application programming interface that allows users to use or

develop different communication libraries.

25

4.2.5 Auxiliary Component

The framework also has a set of functions to read system’s information such as topology,

coordinate, torus, size, and routing information, to compute the neighbors and generate the

graph for a partition given for an application.

In this chapter, the dissertation presents OPTIQ framework, a realization of the holistic

approach. In the next chapter, the dissertation demonstrates a development of the framework

for Path generation, Path searching components for multi-path data movement.

CHAPTER 5

MULTI-PATH DATA MOVEMENT

5.1 Multi-path Data Movement/Routing

In large-scale systems such as the Blue Gene/Q (BG/Q), data is routed through its in-

terconnect using the default routing algorithms. They perform well for some communication

patterns (15). However, for certain communication patterns (shown later in this dissertation),

the default routing algorithms result in poor performance due to unbalanced load on the phys-

ical network links. This results in a significantly larger amount of data being transferred over

few links. On the BG/Q, the default algorithm uses a single path to transfer data between any

two nodes in the system. In addition, data traverses along fixed paths on certain links using

a static routing regardless of the overall load of the system. Thus, some links are overloaded

while other links have less data or may even be idle. This overloading is a major bottleneck for

data transfer throughput. Balancing the load while exploiting multiple physical network links

can improve the throughput.

The above problem can be formulated as a multi-commodity integral flow problem, which

is shown to be NP-complete (25). Given a set of source and destination nodes, and the amount

of data to be transferred from the sources to destinations, the problem is to find a set of paths

from the source nodes to the destination nodes that result in high throughput. Additionally, the

objective is to balance the overall system load in order to avoid congestion in the interconnect,

26

27

and to avoid overloading the physical network links. In this chapter (Sections 5.3.1, 5.3.2

and 5.4.1), we propose three approaches to solve this problem, taking into consideration the

system topology. The first approach is a greedy heuristic that select paths to minimize the

maximum number of paths on the physical network links. The second approach is also a greedy

heuristic that selects paths so that the load is balanced on the links. The third approach is an

optimization based model that selects globally optimal paths for source-destination pairs.

We leverage the idle or lightly-loaded links for data transfer in order to balance the load.

For this we need to search for multiple paths between source and destination nodes and assign

an appropriate load on each path. Present-day supercomputers have thousands of nodes and

hundreds of thousands of edges due to their complex interconnect topology. This implies a

large search space for multiple paths. The brute-force approach of searching for paths can

lead to significant amount of time being spent on searching load-balanced paths. We use Yen’s

algorithm (26) to search for a set of shortest paths. To reduce the search time we prune the

search space by constraining the number of hops on each path.

5.2 K Shortest Paths

In order to search for paths, we model the interconnect network as a graph. Each compute

node is modeled as a vertex and each physical link is modeled as an edge. Algorithm 1 depicts

the algorithm to generate k shortest paths from a source to its destination, where k is an input

to the algorithm.

The input to the Algorithm 1 includes a set of pairs of source-destination (si, di), a graph

of nodes and a desired number of shortest paths k for each pair (si, di). The output is a set of

28

Input: Input:
1 Set of pairs of source-destination (si, di). Graph of nodes. Desired number of shortest

paths k.
Output: Output:

2 Set of paths: k paths for each source-destination pair.
3 Procedure FindKShortestPaths()

4 for each pair of (si, di) do
5 while (Less than k paths have been discovered and there are more paths available)

do
6 Use Yen’s algorithm to search for the shortest path p;
7 if Number of hops of p ≤ partition’s network diameter then
8 Add p into k paths;
9 end

10 end

11 end

Algorithm 1: k shortest paths generation.

at most k paths for each pair of source and destination node. We search for a path by iterating

through the set of pairs (line 3). For each pair, we search for one shortest path at a time

using Yen’s algorithm. If the found path’s number of hops is at most the partition’s network

diameter, we add the path into the set of k paths of the pair (line 5-8). The search completes

when we either have k paths or there are no more paths found by Yen’s algorithm (line 4). In

the next sections, we present our heuristic approach and optimization model that use k paths

for finer searches for paths between pairs of sources and destinations.

29

5.3 Heuristic approaches

5.3.1 Heuristic Approach 1

In this section we describe our heuristic to select paths for each source-destination pair,

given the set of k shortest paths k paths. In this approach we assume that same amount of

data is transmitted over each path. Thus the total load on a link can be represented by the

number of paths using the link. In order to avoid overloading of the physical links and to achieve

high performance, we select paths in such a way that satisfies the following two conditions:

1. Select as many paths as possible for any pair of source/destination.

2. The maximum number of paths on any physical link is less than a given maxload value.

The above conditions ensure that we have multiple paths for each pair, and the load is balanced,

and it is within the upper limit of the maximum load on the physical links. The brute force

algorithm explores all combinations of paths for all source-destination pairs and examines the

above two conditions in order to find the best set of paths. However its time complexity is

exponential. We propose a heuristic that outputs a set of paths without exhaustively searching

the entire search space. Our heuristic iterates through all pairs of source/destination nodes to

search for more paths until the maxload value is reached. The pseudocode of our approach

is presented in Algorithm 3. The algorithm is composed of two functions HeuristicSearch

and FindPaths. The function HeuristicSearch invokes FindPaths until paths for all source-

destination pairs are found.

30

Input: Set of source-destination pairs R = {(S, D) | S, D ∈ N} and their k shortest
paths k paths. Maximum allowed load on a link maxload. N ×N physical link
load matrix load.

Output: Set of selected paths for data movement: s paths.
1 Procedure FindPaths()

2 while (R ! = φ) do
3 Select (s,d) from R
4 Let i be the index of (s,d)
5 p ← Select a path from k pathsi
6 k pathsi = k pathsi - p
7 links ← set of links in path p
8 if (load(l) + 1 ≤ maxload ∀l ∈ links) then
9 s pathsi = s pathsi ∪ p

10 Update load ∀l ∈ links

11 if (k pathsi == φ and s pathsi ! = φ) then
12 Remove (s,d) from R
13 if (k pathsi == φ ∀i) then
14 break

15 end
1717 return

18 Procedure HeuristicSearch()

19 k pathsi = call FindKShortestPaths()
20 while (s pathsi ! = φ ∀i ∈ R) do
21 call FindPaths()
22 maxload+ +

23 end
2525 return

Algorithm 2: Heuristic to search paths for each source-destination pair from k shortest
paths.

31

The input to the algorithm includes the set of source-destination pairs R = {(S, D) | S, D

∈ N}, their k shortest paths k paths, the maximum allowed load on a link maxload and the

link load matrix load. load is a table of loads on all physical links. Whenever a link l = (u, v) is

selected by the heuristic the corresponding entry load(l)(= load[u][v]) is incremented by 1. The

heuristic outputs a set of selected paths s paths for data movement for each source-destination

pair.

HeuristicSearch (lines 18–25) finds paths for all source-destination pairs in R. FindPaths

is invoked until there exist some paths between all source-destination pairs. In FindPaths, we

iterate through all pairs of source-destination in R and add at most one path per pair at a time.

For each source-destination pair, we select a path p from k paths (lines 3–5). The selected path

is removed from the set k pathsi (line 6), where i is the index of the selected source-destination

pair. A path from the source node to the destination node is a set of links through intermediate

nodes. Let this set of physical links be denoted as links (line 6). We check if adding p to

s paths violates the load condition for links in p (lines 8–10). If current load load(l) on all links

l ∈ links is below maxload, the path p is added to s pathsi (line 9). Also, the load table is

updated for all links l ∈ links (line 10).

If all the k shortest paths have been used for a pair, we remove the pair fromR (lines 11–12).

The function FindPaths returns when k paths is empty for all source-destination pairs (lines 13–

14). At this point, we increase the maximum load limit maxload by 1 and re-invoke FindPaths

from HeuristicSearch (line 21–22). Once there exist paths for all source-destination pairs, the

32

algorithm terminates. We then divide the data for each source-destination pair equally among

the selected paths for the pair.

5.3.2 Heuristic Approach 2

In this section we describe our heuristic to select paths for each source-destination pair, given

the set of k shortest paths k paths. In this approach we assume pairs of sources-destinations

have different amounts of data called demand. Data of a pair is split into smaller chunks and

assigned into its set of paths in such a way that minimizes the maximum total amount of data

assigned on physical links. At each time of assignment, we only assign an amount of chunk.

This allows us to iterate through all pairs and assign chunk into their paths. After assigning a

chunk to a path, all physical links comprising the path have an additional chunk on its load.

Each path maintains a maxload value, which is the maximum value of current loads on

physical links comprising the path. After an assignment of a chunk to a path, not only the

path’s maxload value needs to be checked and updated but any paths that share the path’s

links also need to be checked and update their maxload values.

In order to reduce the total amount assigned on any physical link, we allow the pair with

the largest amount of data to select a path to assign chunk amount of data first. We maintain

a max heap heap of pairs with the pair with the largest remaining data amount being at the

top of the heap. The assignment is as follows. We pop the pair at the top, select in its k paths

a path with minimum maxload, assign a chunk of data to the path and update its remaining

data. If there is still data to be assigned, we push it back to the heap and do heapify. We update

the maxload value on the paths and loads on the physical links. Our assignment finishes when

33

all pairs assign all of their data to their paths. The pseudocode of our approach is presented in

Algorithm 3.

Input: Set of source-destination pairs P = {(S, D) | S, D ∈ N} and their k shortest
paths k paths. Data size chunk for each assignment of data to paths.

Output: Set of source-destination pairs Pout with assigned data for each path.
1 Procedure FindPaths()

2 Make heap heapP from P.
3 while (heapP != φ) do
4 Heapify the heapP
5 pair = heapP .pop()
6 Select a path p in pair’s k paths with minimum maxload value
7 Assign chunk data to p
8 Update maxload value of p and any paths that use p’s physical’s links and

corresponding physical links
9 pair.demand -= chunk

10 if pair.demand > 0 then
11 heapP .pushback(pair);
12 else
13 Pout.add(pair)
14 end

15 end

Algorithm 3: Heuristic to search paths for each source-destination pair from k shortest
paths.

In the Algorithm 3, we pick the pair with largest amount of remaining data first. This allows

its paths and corresponding physical links to be selected first. The pairs with lower remaining

amounts of data can select paths later. Thus, load is balanced between pairs with higher load

34

and pairs with lower load. Among all paths of a pair, the path with least maxload is selected

first. Thus, the load is balanced among paths belonging to the same pair.

The data assignment in this heuristic approach is greedy and uses local optimization. In

the next section, we present the second approach, in which we employ a mathematical model

to optimize data movement by assigning an optimal amount of data to the paths.

5.3.3 Comparison between Heuristic 1 and Heuristic 2

Both Heuristic 1 and Heuristic 2 share a common goal of minimizing maximum load on

physical links. However, they differ from each other by what they consider the load. While

Heuristic 1 assummes that all pairs of sources and destinations have a similar number of paths

and each path carries a similar amount of data. Thus, Heuristic 1 considers the number of

paths as the load while Heuristic 2 considers the actual amount of data as the load. This would

lead to a better data distribution among the selected paths for Heuristic 2. But the trade-off

is that we need to know the amounts of data in advance, and without knowing it, we cannot

use Heuristic 2. In that case, Heuristic 1 is appropriate to use.

The Table III shows the comparison between Heuristic 2 and Heuristic 1.

5.4 Modeling Approach

5.4.1 Optimization-based Approach

In this approach, we find the optimal assignment of data to transfer along multiple paths

from source nodes to destination nodes. Given the amount of data to be transferred, and the

k shortest paths from source to destination nodes (Algorithm 1), we formulate the problem of

finding paths for transferring data from sources to destinations as an optimization problem.

35

Comparison factors Heuristic 1 Heuristic 2

Load on physical link Number of paths that used a
link.

Actual amount of data pass-
ing through a link.

Pair iteration Each pair 1 time to get 1 path. The pair that has the largest
amount of remaining data.

Use case Do not need to know amounts
of data of pairs in advance

Need to know amounts of data
of pairs in advance.

TABLE III: Comparison between Heuristic 1 and Heuristic 2

The objective of the optimization problem is to minimize the total transfer time by finding

paths that are uniformly loaded. Next, we describe the problem parameters.

The data transfer request of a source-destination pair is denoted as a job. The set of all

jobs is denoted by Jobs. Each job has an amount of data to be transferred from its source

to its destination. This amount of data for job job is denoted by Demand[job], which can be

transferred over selected paths from a pre-computed set of paths kpathsjob (computed prior in

Algorithm 1). A path is denoted by p. The amount of data transferred per unit time for job job

on path p is called a flow of the job and is denoted as flow(job, p). A path p might comprise one

or more links. (i, j) denotes a link from vertex i to vertex j. All links on path p accommodate

the same flow. flow(job, p)ij denotes the flow over link (i, j) of path p. c(i, j) denotes the

capacity of link (i, j). The link capacities are known link bandwidths of the interconnect. The

objective of the optimization problem is to minimize time t to transfer data for all jobs in Jobs

subject to two constraints. The decision variables are the set of selected paths for a job and

the flow along each path flow(job, p)ij . We describe our linear program formulation below.

36

Objective function:

minimize t

Constraints:

• Total flow of a job is equal to the sum total of all its flows along its paths. For any job

in Jobs:

∑
∀p∈kpathsjob

flow[job, p] =
Demand[job]

t
(5.1)

• Total flow of an arc is less than its capacity. For any arc (i, j):

∑
∀job∈Jobs

∑
∀p∈kpathsjob

flow[job, p]ij ≤ c(i, j) (5.2)

The first constraint in Equation Equation 5.1 captures a job’s flow distribution. The total

amount of data of a job Demand[job] is transferred in a time t through a set of paths in

kpathsjob. For each path, the job job is assigned a throughput flow[job, p]. The total data

transferred for a job must be less than Demand[job]. Thus, the job’s throughput (rate of data

transfer) needs to be equal to the combined throughput on all its paths. The second constraint

in Equation Equation 5.2 captures the bound for a link’s capacity. The total throughput of all

jobs on a link should not exceed the link’s capacity.

We used AMPL (A Modeling Language for Mathematical Programming) (27) to model the

optimization problem. We used the SNOPT solver to solve the linear program. The solution

37

times are listed in Section 6.4.4.10. In the next section, we present our experiments and results

to demonstrate the efficacy of our approaches.

5.4.2 A Mathematical Programming Language (AMPL)

A Mathematical Programming Language (AMPL) is an algebraic modeling language (28). It

can be used for describing and solving high-complexity, large-scale optimization and scheduling-

type problems. AMPL supports a number of both commercial and open source solvers such as

SNOPT, CPLEX, MINOS... AMPL is chosen due to the similarity of its syntax to mathematical

notation of optimization problems.

AMPL uses the following notations in describing a problem:

• Sets: are one of the most fundamental concepts in AMPL. They can be used to index

variables, constraints, parameters or even other sets.

• Parameter: are constant values that are not changed during the solving time. Users can

assign values for parameters at the beginning of solving time.

• Vars: are used to represents for variables in mathematical programs. Solvers are allowed

to change them while looking for solutions.

• Objective function: is a function of decision variables. This is either maximized or mini-

mized.

• Constraints: are conditions that solvers need to satisfy while looking for solutions.

In the next section, the dissertation presents the problem in AMPL.

38

5.4.3 AMPL Model

The model is written in AMPL (A Mathematical Programming Language). The model is

described in Model 1.

set Nodes;

set Arcs within Nodes cross Nodes;

set Jobs;

set Paths{Jobs};

set Path_Arcs{job in Jobs, p in Paths[job]}

within Arcs;

param Capacity{Arcs} >= 0 default Infinity;

param Demand {Jobs} default 0;

var Flow {job in Jobs, Paths[job]} >= 0;

var Z >= 0;

maximize obj: Z;

subject to

demand_con {job in Jobs}: sum {p in Paths[job]} Flow[job,p] = Demand[job]*Z;

capacity_con {(i,j) in Arcs}:

sum {job in Jobs, p in Paths[job]:

(i,j) in = Path_Arcs[job,p]} Flow[job,p] <= Capacity[i,j];

Algorithm 3: Model 1 Data movement optimization

39

The notions used in Model 1 are explained as follows:

• sets:

– Nodes: set of nodes in the network, each node represent a compute node in the

supercomputer.

– Arcs: set of arcs in the network. Each arc represent a physical link in the supercom-

puter.

– Jobs: set of jobs. Each jobs has a source and a destination.

– Paths: set of paths for each job.

– Path Arcs: set of arcs on each path of each job.

• params:

– Capacity: capacity of each arc i.e. bandwidth of the physical link.

– Demand: amount of data to be transferred of each job between a pair of source and

destination.

• vars:

– Flow : flow of each job on a path. It can be seen as the proportional bandwidth

assigned for the job on that path.

– Z : is reversed of total time.

• objective function: we want to minimize the time or maximize its reversed value i.e.

maximize Z.

40

• constraints(subject to):

– demand con: flow of a job on equals to the demand of the job divided by the transfer

time.

– capacity con: total flow on an arc is less than its capacity.

The model takes a set of nodes, a set of arcs and their corresponding capacity, a set of jobs

(source/destination pairs), a demand for each job, a set of paths for each job, and a set of arcs

for each path as inputs. It searches for an assignment of flow values (proportional capacity) for

paths of all the jobs such that the transfer time for demands of all jobs is minimum.

We feed the model into solvers together with data of nodes, arcs, capacity, paths for jobs

and get the paths with given proportional bandwidth. Based on proportional bandwidth, each

path can take proportional demand of a job.

CHAPTER 6

IMPLEMENTATION AND EVALUATION

6.1 Mira

The Argonne Leadership Computing Facility (ALCF) maintains several compute-analysis

systems used by the scientific community. In this section, the dissertation describes the su-

percomputing systems in which the framework was developed and tested. Figure 4 depicts

the architecture of the primary LCF resources, consisting of the Blue Gene/Q compute cluster

(Mira), the data analysis cluster (Tukey), and the file server nodes.

Figure 4: The ALCF maintains the 768K core Blue Gene/Q compute cluster (Mira), data
analysis cluster (Tukey), and file server nodes.

41

42

The Blue Gene/Q system (15), Mira, with 48 compute racks (48K nodes and 768K cores) at

the ALCF provides 10 PFlops theoretical peak performance. Each node has an 18-core, 64-bit

PowerPC A2 processor, together with 32KB cached L1, 32 MB cache L2 and 16 GB of memory.

The I/O and interprocess communications of the Blue Gene/Q travel on a 5D torus net-

work both for point-to-point and for collective communications. This 5D torus interconnects a

compute node with its 10 neighbors at 2 GB/s theoretical peak over each link in each direction,

making a total of 40 GB/s bandwidth in both directions for one single compute node. However,

due to packet and protocol overheads, up to 90% of the raw data rate (1.8GB/s) is available

for user data. The machine can be partitioned into non-overlapping rectangular sub-machines;

these sub-machines do not interfere with each other except for I/O nodes and corresponding

storage system.

An overview of the network is also given in (29) and (30). Each compute node has 11 send

units and 11 receive units, 10 for the 10 links of the torus and 1 for the I/O link. All packets

are injected into and pulled out of network injection/reception FIFOs by the Messaging Unit

(MU). The number of FIFOs is enough to saturate all links. Outgoing packets can be put in

any injection FIFOs and may go out to any link. However, incoming packets at a receiver are

placed only in its reception FIFO.

For interconnect network traffic, BG/Q supports both deterministic and dynamic routing

(15). In deterministic routing, packets are routed based on dimension-ordered routing; packets

are routed along the longest first to the shortest last. In dynamic routing, routing is still

dimension-ordered however programmable, enabling different routing algorithms to be used. It

43

is called “zone routing”. There are four zone ids from 0 to 3. Routing algorithm select a zone id

based on the flexibility metric and message size. The flexibility value is computed based on the

torus size and hop distance between two nodes doing communication. The selection of a zone

id given the values is experiment-based and is hard coded in the low-level library (31). Among

the 4 routing zones, routing zone id 1 is unrestricted routing in which packets are routed in a

random order. Routing zone id 0 is longest-to-shortest routing. However, dimensions with the

same lengths can be chosen randomly. Routing zone ids 2 and 3 are deterministic routing. For

these two routing zone ids, given the size of a certain message, routing is always the same and

its path is known before it is routed. These are the default routing algorithms and the default

routing algorithm cannot be changed during run time. However, the routing zone id can be set

by using the PAMI ROUTING environment variable. As BG/Q uses single path data routing,

for sending/receiving a message, only one link is used out of 10 links available. Hence, there is

one reception FIFO at a receiver. In addition, for point-to-point communication, the number

of hops between 2 nodes has negligible effect on performance.

With respect to I/O traffic on the Mira BG/Q system, the compute nodes connect to an

analysis cluster and the file servers through the I/O nodes and a QDR IB Switch Complex.

Every 128 compute nodes (forming a pset) has two bridge nodes; two nodes in the pset have an

additional functionality as a bridge node. Each bridge node has a 11th 2GB/s-bandwidth link

connecting to an I/O node, making total 4 GB/s bandwidth for I/O per pset. I/O traffic is

routed from compute nodes to bridge nodes over the torus network deterministically, and then

traverses over the 11th links from bridge nodes to I/O nodes

44

Parallel Active Message Library (PAMI) is a lower level communication library for BG/Q

(32). PAMI provides low overhead communication by using various techniques such as accel-

erating communication using threads, scalable atomic primitives, lockless algorithms to speed

up messaging rate. As MPI is implemented on top of PAMI, direct use of PAMI would provide

higher messaging rates as well as lower latencies in comparison with MPI.

6.2 Application Programming Interface (API)

The framework provides an application programming interface (API) that allows users to

develop, extend and use the framework easily. The API is generic so that it can be extended

on different supercomputers requiring minimal effort. The disseration presents some simple

examples showing the framework’s API, its functions, usage, and extensibility.

The Table IV shows several examples of the API. The framework needs an initialization

method to set up before applications can use it and a finalization method to terminate the

framework when the applications no longer use it. The framework also needs to read system

information such as topology, coordinates, torus, node id. It also provides different methods to

generate paths, search for paths, create schedules, and transport at low layers.

In order to make it easy to integrate into existing applications, the framework allows ap-

plications to hand over all the communication work. Table V shows two examples of using the

API for data movement between set of nodes and I/O data movement. The inputs in the two

cases from the applications are the similar to MPI Alltoallv and MPI File write.

In the first case, the framework provides optiq alltoallv that has the same inputs as MPI Alltoallv

so the usage is simlar. The source code example is shown in Source Code Example 1.

45

Functionality Methods Parameters Purpose

Initialization

&
Finalization

optiq init int argc, char
**argv

Call other inits to initialize
the framework

optiq finalize None Call other finalization meth-
ods to terminate the frame-
work

Topology

optiq topology init None To init topology
optiq topology get size int *size To get topology’s size e.g

2x4x4x4x2
optiq topology get nodeId int *nodeId To get a node id
optiq topology get coordinate int *coord To get coordinate of node
optiq topology get torus int *torus To get torus of a partition
optiq topology finalize None To finalize topology

Algorithm

optiq alg init None To init algorithms
optiq alg generate kpaths char *graphfile,

std::vector<struct
job> &jobs, int
num paths

To generate k shortest paths

optiq alg search heu std::vector<struct
job>&jobs, enum
alg

To search for paths using
heuristic algorithsm

optiq alg finalize None To finalize algorithms

Schedule
optiq schedule init None To init schedule
optiq schedule create schedule std::vector<struct

job> &jobs
To generate a schedule for the
current jobs

optiq schedule finalize None To finalize schedule

Transport
optiq transport init None To init transport
optiq transport execute None To execute data movement

based on the schedule
optiq transport finalize None To finalize transport

Data

movement

optiq alltoallv void *sbuf,
int *scounts,
int *sdispls,
void *rbuf, int
*rcounts, int
*rdispls

To transport data as
MPI Alltoallv

optiq execute jobs from file char *jobfile, int
datasize

To execute a data movement
written in a file

TABLE IV: Examples of OPTIQ framework’s API

46

void *sendbuf, recvbuf;

int *sendcounts, *senddispls, *recvcounts, *recvdispls;

/* Applications to init the buffers, counts and displacements

* for sending and receiving data

*/

/*To move data*/

In MPI:

MPI_Alltoallv(sendbuf, sendcounts, senddispls, recvbuf, revcounts,

recvdispls);

In OPTIQ:

/* Initialize OPTIQ once at the beginning */

optiq_init();

/* Move data */

optiq_alltoallv(sendbuf, sendcounts, senddispls, recvbuf, revcounts,

recvdispls);

/* Finalize OPTIQ once at the end */

optiq_finalize();

47

Application needs MPI OPTIQ

Moving data form a set
of source nodes to a set
of destination nodes

MPI Alltoallv

• optiq init at the begining

• optiq alltoallv

• optiq finalize at the end

File I/O with paths pre-
calculated from file

MPI File write

• optiq init at the begining

• optiq execute jobs from file to ag-
gregate data to bridge nodes

• MPI File write at the bridge nodes

• optiq finalize at the end

TABLE V: Examples of API usage by applications

In the second case, the framework needs to do file I/O. In this case, the paths can be com-

puted in advance as bridge nodes, I/O nodes, and compute nodes are fixed. When compute

nodes need to do I/O, they can call either MPI File write or they can call optiq execute jobs from file

to aggregate data first and then call MPI File write only at the bridge nodes to write the data

out. Aggregating I/O data using OPTIQ framework is faster than the MPI default mechanism

as shown in the benchmarks for applications in 6.5.2. The source code example of this case is

shown in Source Code Example 2. The usage of the OPTIQ framework in the applications

is quite simple and straightforward, making minimal changes needed in the applications.

In the next section, the disseration presents some details of the implementation.

48

void *buf, *recvbuf /* To receive data at bridge node */;

MPI_File fh;

MPI_Offset offset;

char *filename;

MPI_Comm comm;

int count, recvcounts, amode = MPI_MODE_CREATE | MPI_MODE_WRONLY, rankID;

MPI_Info info = MPI_INFO_NULL;

MPI_Status status;

/* Application prepare data to write to file */

/* Open file */

int MPI_File_open(comm, filename, int amode, info, &fh);

In MPI:

/*All nodes that write data exchange lengths to get offsets then do I/O*/

MPI_File_write_at(fh, offset, buf, count, MPI_BYTE, &status);

In OPTIQ:

/* Initialize OPTIQ and read paths to bridge nodes, once at the beginning */

optiq_init();

char *pathfile = "paths_to_bridge_nodes_file";

std::vector<struct job> jobs;

optiq_job_read_jobs_from_file(jobs, pathfile);

/*Assign data buffer and length*/

for (int i = 0; i < jobs.size(); i++) {

if (jobs[i].source == rankID) {

jobs[i].demand = count;

jobs[i].buf = buf;

}

}

/*Aggregate data*/

optiq_execute_jobs(jobs);

/*If bridge nodes, the get the offset and write data*/

if(isBrigeNode) {

MPI_File_write_at(fh, offset, recvbuf, recvcount, MPI_BYTE, &status);

}

/* Finalize OPTIQ once at the end */

optiq_finalize();

Algorithm 3: Source Code Example 2: Using OPTIQ to aggregate data before I/O

49

6.3 Implementation Details

In the implementation, the framework alters the data movement paths. Therefore, at each

source node, the framework splits the data of each path into smaller chunks and enqueues these

chunks into a send queue. Each node also has a forward queue to store the data it receives from

its sender before relaying to its receiver on the data transfer path. When a node receives a chunk,

it checks if it is the final destination of the chunk. If not, it copies the chunk to the forward

queue, from which messages are injected into the network in order. The Scheduler component

checks both queues and selects a chunk from either queue to transfer. The chunk size of 64 KB

was empirically found to result in good performance on average. In all the experiments, the

reported results include the overhead of queueing, copying etc. in the implementation.

For transferring data, the framework employed PAMI in the BG/Q. PAMI is a low-level

communication library for BG/Q (32). PAMI provides low-overhead communication by using

various techniques such as accelerating communication using threads, scalable atomic prim-

itives, and lockless algorithms to increase the messaging rate. Since MPI is implemented

on top of PAMI, direct use of PAMI would provide higher messaging rates as well as lower

latencies in comparison with MPI. The framework used PAMI Put for large messages and

PAMI Send immediate for control messages.

PAMI supports both one-sided and two-sided communication. It supports both small im-

mediate communication and rendezvous large-message communication. In this implementation,

the framework uses one-sided communication for message transfer and immediate send for con-

50

trol data. In sending and receiving data events, PAMI supports a callback function to let a

sender and receiver know whether the event of sending/receiving has been done at either side.

Source Proxy Destination

main thread comm thread

PAMI_Put

PAMI_Put

PAMI_Put

Put done

PAMI_Send
_immediate

comm threadmain thread

Copy
control
data

PAMI_Put

PAMI_Put

PAMI_Put

main thread comm thread

Figure 5: Using pipelining technique with PAMI to eliminate the waiting time at proxy and
reduce control overheads

As depicted in Figure 5, in the main thread of the source, the framework will keep transfer-

ring data to windows of its proxies using PAMI Put. Its comm thread running in the background

is notified whenever the data is completely put on a proxy’s side. The comm thread then uses

PAMI Send immediate to let the proxy know that the data is ready. It also sends the control

51

data of where and how to process the data with the PAMI Send immediate. Each proxy needs

to set up a callback function to process the control data sent to it. The callback function copies

control data to a queue and informs the main thread. The main thread at each proxy plays the

same role as the main thread of the source node. The size of the window for each message size

is also determined empirically.

6.4 Evalution with Synthetic Benchmarks

In this section, the dissertation demonstrates the efficacy of the proposed approaches through

multiple experiments on a leadership-scale system. The desseration describes the system, the

implementation details, the experimental setup and present the results in the following sections.

6.4.1 Setup

The dissertation shows evaluations of the proposed approaches on Mira by varying the

partition size from 512 nodes to 4096 nodes, varying the number of sources and destinations,

and the average distance between them. There are experiments with different data sizes to be

transferred, various combinations of source-destination pairs. The number of shortest paths

used by our approaches was 50. The maximum load maxload for our heuristic approach was

16.

6.4.2 Communication Patterns

The dissertation demonstrates the data movement performance of the OPTIQ framework

and existing MPI routines on three communication patterns – disjoint, overlap and subset,

illustrated in Figure 6. In this figure, m and n refer to set of source or destination nodes. These

52

patterns are owing to different possible relationships between source and destination nodes as

described below:

• Disjoint: There are distinct sources and destinations. It is a common data movement

pattern present in many applications.

• Overlap: The sources and destinations are overlapped sets. Some applications like CESM

uses this communication pattern for coupling.

• Subset: Either the set of source nodes is subset of the destination nodes or vice versa.

This pattern can be found in CESM and in collective I/O aggregation phase.

n

Disjoint Subset Overlapped

m
nm m

n

Figure 6: Communication patterns

The dissertation demonstrates throughput improvement in a complex network like the 5D

torus through the above diverse communication patterns. It compares the efficacy of the pro-

53

posed algorithms with MPI Alltoallv, which is the most commonly used MPI collective for the

data movement patterns considered in this research.

6.4.3 MPI Path Reconstruction

Several network-related metrics are measured such as load on physical links, and the num-

ber of hops per data-transfer path, for the above benchmarks, using the proposed approaches

and MPI Alltoallv. The load and number of hops highlight performance differences between

MPI and OPTIQ. The performance metrics are output directly in case of OPTIQ. However,

MPI Alltoallv does not output all of these performance metrics. Thus, we need to reconstruct

the data-transfer paths taken by MPI collectives. The MPI paths are reconstructed based on

the routing algorithms described in (15). For each pair of source and destination nodes, the

reconstruction starts at a source node and traces the route taken by the MPI message according

to the rules of the routing algorithm. The paths are recorded for all source-destination pairs

and are used to calculate load and number of hops for MPI Alltoallv.

6.4.4 Experimental Results

The following values are measured to evaluate the efficacy of the framework and different ap-

proaches: throughput, total number of paths, maximum and average values for number of paths

per job, number of paths per link, and total amount of data per link for various communication

patterns, source destination pairing, distance and sizes of sources and destinations, partition

sizes, message sizes, and chunk size. In the next subsections, the dissertation presents the

results and a detailed study of system behavior and network performance for the benchmarks.

54

6.4.4.1 Overall Throughput Improvement

In order to demontrate the efficacy of the framework, 91 experiments were performed on

512, 1024, 2048 and 4096 nodes of Mira. The overlall performance for 2048-node partition is

shown in Figure 7.

8

16

32

64

128

256

512

1024

2048

 0 10 20 30 40 50 60 70 80 90

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Experiment Id

Total transfer throughput (GB/s) for MPI_Alltoallv,
 Optimization and Heuristic approaches in 3 patterns in 2048 nodes

 Optimization
 Heuristics 2
 Heuristics 1

 MPI_Alltoallv

Figure 7: Total throughput from 91 cases for 3 patterns in 2048-node partition.

55

Figure 7 shows the overall performance of Optimization, Heuristics and MPI Alltoallv from

91 experiments on 2048-node partition. For this, Optimization, Heristic 1 and Heuristic 2

showed 45.38%, 20.28% and 18.32% improvement over MPI Alltoallv on average. The average

improvement at other scales is shown in Table VI.

Approaches
Partition size (Number of nodes)

512 1024 2048 4096

Optimization 50.63 67.32 45.38 43.81

Heuristic 2 31.61 43.19 20.28 17.43

Heuristic 1 29.98 27.61 18.32 13.20

TABLE VI: Overall throughput improvement (%) of 3 approaches over MPI Alltoallv in 91
experiments with different partition sizes.

6.4.4.2 Scaling Number of Nodes, Keeping Source/Destination Ratio Constant

In this experiment we vary the number of sources and destinations, together with the total

number of nodes, while keeping a constant ratio of 1:8 between the number of source and

destination nodes. We increase the total number of nodes P from 512 to 4096, The first P/16

nodes send data to the last P/2 nodes. Each source has 8 destinations e.g. node 0 sends

data to nodes P/2, P/2+1, ... P/2+7. We present results for disjoint, overlap and subset

communications using OPTIQ Optimization (OPT), OPTIQ Heuristic 1 (HEU 1), OPTIQ

Heuristic 2 (HEU 2) and MPI Alltoallv (MPI). We use 1 MPI/PAMI rank/node. The data size

is 8 MB per source-destination pair.

56

Figure 8 shows the throughput for Optimization, Heuristic 1 and 2, and MPI. As shown in

the figure, the Optimization approach has the highest throughput, followed by the Heuristic

2 approach then the Heuristic 1 approach and MPI Alltoallv at the bottom. This is because

Optimization and both heuristic approaches use multiple paths for data transfer. Additionally,

Optimization globally balances the load for all source-destination pairs. Heuristic 2 usually has

better performance than Heuristic 1 due to its capability of distributing data better on physical

links.

Table VII shows the throughput, total number of paths, maximum and average number of

paths per job, maximum and average number of paths per physical link and the total data per

link for 1024 nodes. In all three cases, the greedy Heuristic 2 is able to find the highest number

of paths for the entire data flow, following by Heuristic 1, Optimization, and MPI. MPI has

only 1 path for 1 pair of data movement. A similar trend is also observed with the maximum

and average number of paths per job. However, the paths found by both Heuristic approaches

are based on local optimization of load on the physical links, as explained in Section 5.3.1 and

Section 5.3.2. Therefore, there are a higher number of paths per physical link, and a higher

amount of data per physical link in both Heuristics approaches as compared to the Optimization

approach. Optimization has a lower number of paths per link because Optimization globally

load balances the data transfer on the physical links. The most important value that affects

the data movement throughput is the maximum amount of data per physical link. MPI has

the highest maximum amount of data per link, leading to the most consgested links. Heuristic

57

4

8

16

32

64

128

256

512

1024

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 OPTIQ Heuristics 1 Maxload = 16
 MPI_Alltoallv

(a) Disjoint

4

8

16

32

64

128

256

512

1024

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 OPTIQ Heuristics 1 Maxload = 16
 MPI_Alltoallv

(b) Overlap

4

8

16

32

64

128

256

512

1024

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 OPTIQ Heuristics 1 Maxload = 16
 MPI_Alltoallv

(c) Subset

Figure 8: Varying the number of sources and destinations and total number of nodes while
keeping the ratio constant (1:8).

58

1 has the second highest value, next is Heuristic 2. Optimization has the lowest maximum

amount of data per link, thus lowest congestion, contributing to its highest throughput.

Pattern Type
BW
(GB/s)

Num. of Paths Num of paths Max amt.
of data /
link (MB)

Total
Paths

Per Job Per Link
Max Avg Max Avg

Disjoint
OPT 188.62 1169 6 2.28 11 2.53 18.28
HEU 2 84.50 3723 25 7.27 11 6.00 24.31
HEU 1 74.88 3146 23 6.14 16 4.94 63.04
MPI 45.18 512 1 1.00 16 3.07 134.21

Overlap
OPT 200.03 1303 6 2.54 13 2.74 16.97
HEU 2 121.05 5991 33 11.70 10 5.49 22.21
HEU 1 113.17 3273 26 6.39 16 5.17 38.66
MPI 42.84 512 1 1.00 16 3.38 134.21

Subset
OPT 199.20 1269 6 2.48 11 2.79 17.10
HEU 2 106.56 9350 38 18.26 10 5.70 21.75
HEU 1 61.71 3238 26 6.32 16 5.28 45.08
MPI 41.37 512 1 1.00 16 3.52 134.21

TABLE VII: Throughput, total number of paths, number of paths per job, maximum and
average values number of paths per link and max amount of data per link for 3 patterns in 1024
nodes experiments.

Figure 9 shows the distribution of data per link for OPT, HEU 2, HEU 1 and MPI. The opti-

mization approach considers the global load on the network and hence data is distributed among

the paths in a more balanced way such that the physical links are load-balanced. Thus, OPT

has the lowest maximum amount of data per physical link as shown in Figure 9. MPI Alltoallv

has the lowest number of paths. With one path per pair of communication, the entire data is

59

transferred using the single path, without utilizing the other idle links. MPI has the highest

amount of data per physical link as can be observed in Figure 9. Thus MPI has the lowest

throughput. Heuristic 1 and 2 are in the middle of the range with Heuristic 2 having better

data per link distribution. This leads to higher throughput of Heuristic 2 in comparison to

Heuristic 1.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

256K 512K 1M 2M 4M 8M 16M 32M 64M 128M

N
um

be
r o

f L
in

ks

Data size (Bytes) per Link

Distribution of data sizes over physical links
 Optimization
 Heuristics 2

 Heuristics 1 Max Load = 16
 MPI_Alltoallv

Figure 9: Distribution of total amount of data per link for Disjoint pattern in 1024-node
partition.

60

6.4.4.3 Varying Messages Sizes

In this experiment, we varied the number of source nodes, number of destination nodes,

and total number of nodes (partition sizes) but kept the ratio between the source nodes and

the destination nodes constant. With P as size of the partition, we choose the first P/16

nodes as the source nodes, and N/2 last nodes as the destination nodes. Each node in the

set of source nodes communicates with 8 nodes in the set of destination nodes. The pairing is

aligned i.e. node 0 communicates with nodes (P/2, ..., P/2/7). We randomly chose the data

size for each pair of communication from 64 KB up to 8 MB of data. We experimented with

three communication patterns: Disjoint, Overlap, Subset and three approaches: Optimization,

Heuristic, and MPI Alltoallv. We used only one MPI/PAMI rank per node. The total number

of nodes P varied from 512 up to 4096 nodes. The communication throughputs are shown in

Figure 10.

As shown in the Figure 10, in all three communication patterns, the Optimization approach

and Heuristic 2 approach have similar performance and both are significantly higher than

MPI Alltoallv in most of the experiments. In the Disjoint pattern, the performance gap is close

at 4096 nodes. With the other two patterns the gap is quite constant showing the scalability

of our approaches.

6.4.4.4 Varying Sources-Destinations Distance

Figure 11 shows the throughput of OPTIQ Optimization (OPT), OPTIQ Heuristic 1 (HEU

1), OPTIQ Heuristic 2 (HEU 2), and MPI Alltoallv (MPI) for disjoint, overlap and subset

configurations. The experiment was performed in a 2048-node partition with 256 source nodes

61

4

8

16

32

64

128

256

512

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 MPI_Alltoallv

(a) Disjoint

4

8

16

32

64

128

256

512

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 MPI_Alltoallv

(b) Overlap

4

8

16

32

64

128

256

512

512 1024 2048 4096

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size (P)

Transfer bandwidth from the first P/16 nodes to the last P/2 nodes

 OPTIQ Optimization
 OPTIQ Heuristics 2

 MPI_Alltoallv

(c) Subset

Figure 10: Varying the number of sources and destinations and total number of nodes with
constant ratio

62

communicating to 512 destination nodes. The set of destination nodes was chosen such that

the average distance between the source and destination nodes increases. The distance between

two nodes implies the number of hops between them. The x-axes in 11a, 11b and 11c represent

the different destination node positions. For example, in 11a, the sources are from 0–255 and

destination position 1 refers to destination node set from node 256–767, position 2 refers to node

512–1023, position 3 refers to node 1024–1535, and destination position 4 refers to 1536–2047.

The y-axes shows the throughput. We observe that the throughput of OPT and HEU 1 and

2 increase with increasing distance in case of disjoint. This is because OPT and both HEU

are able to find more paths with increasing distance without increasing the maximum load on

the physical links. Both the Optimization and Heuristics approaches outperform MPI Alltoallv

which uses a single path for communication.

Positions
1 2

Distance Number of Paths Distance Number of Paths

Patterns Max Avg OPT HEU 1 HEU 2 Max Avg OPT HEU 1 HEU 2

Disjoint 14 7.50 1105 2822 4751 14 7.50 1372 2887 4809

Overlap 13 7.25 2085 6460 5695 14 7.69 2152 3671 6782

Subset 20 8.56 1840 3422 7276 21 8.56 1639 3364 8203

Positions
3 5

Distance Number of Paths Distance Number of Paths

Patterns Max Avg OPT HEU 1 HEU 2 Max Avg OPT HEU 1 HEU 2

Disjoint 15 8.50 1547 3668 5429 15 8.50 1672 3834 5170

Overlap 15 7.88 2337 6548 5140 18 9.59 2399 7010 7338

Subset 22 9.06 1594 3119 7310 23 9.06 1477 3087 5874

TABLE VIII: Maximum (Max) and average (Avg) distance between sources and destinations
and number of paths for OPT and HEU for disjoint, overlap and subset on 2048 Mira nodes.

63

16

32

64

128

256

1 2 3 4

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Position of destinations

Transfer bandwidth for MPI_Alltoallv and OPTIQ
 with increasing distance in 2048 nodes. Sources are [0-255]

 OPTIQ Optimization
 OPTIQ Heuristic 2
 OPTIQ Heuristic 1

 MPI_Alltoallv

(a) Disjoint

16

32

64

128

256

1 2 3 4

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Position of destinations

Transfer bandwidth for MPI_Alltoallv and OPTIQ
 with increasing distance in 2048 nodes. Sources are [0-255]

 OPTIQ Optimization
 OPTIQ Heuristic 2
 OPTIQ Heuristic 1

 MPI_Alltoallv

(b) Overlap

16

32

64

128

256

1 2 3 4

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Position of destinations

Transfer bandwidth for MPI_Alltoallv and OPTIQ
 with increasing distance 2K. Sources are [0-255]

 OPTIQ Optimization
 OPTIQ Heuristic 2
 OPTIQ Heuristic 1

 MPI_Alltoallv

(c) Subset

Figure 11: Total data movement throughput with increasing distance between sources and
destinations.

64

Table VIII shows the corresponding maximum and average distances between source and

destination nodes, and the number of paths for OPT and HEU 1 and 2 for the configurations

in Figure 11. The number of paths for MPI is 512. In general, the performance of OPT

improves with higher number of paths as seen in the first row for disjoint. It can also be seen

that the number of paths decreases for OPT in the case of subset which leads to a decrease in

throughput. HEU 1 and 2 have more paths than OPT but due to imbalanced data distribution,

the throughputs of both heuristic approaches are lower than OPT.

6.4.4.5 Varying Sources-Destinations Ratio

In this experiment we use a partition of 2048 nodes. We keep the number of source nodes

constant (64 nodes) and increase the number of destination nodes from 128 to 256, 512 and

1024 nodes. Each source node communicates with k destination nodes where k = 2, 4, 8

and 16 respectively. Node x communicates with nodes k · x, k · x + 1, ..., k · x + (k − 1).

There is 1 MPI/PAMI rank per node. Each pair of communication involves 8 MB of data

transfer. The performance of OPT, HEU 2, HEU 1 and MPI for disjoint, overlap, and subset

patterns is shown in Figure 12. With an increase in the number of destination nodes, OPT and

both HEU yield better performance than MPI Alltoallv. The throughput of OPT increases for

destination sizes of 256 and 512 but slightly reduces at 1024 nodes, whereas the throughput

of both HEU increase as the destination size increases. This is because OPT tries to globally

balance load while distributing data among all paths, whereas both HEU ensure the load limit

per path but distribute data for each communication pair, oblivious of the global load. With

a higher number of destination nodes, the number of paths with overlapping links increases.

65

16

32

64

128

256

512

128 256 512 1024

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Destination size (Number of nodes)

Transfer bandwidth for MPI_Alltoallv and OPTIQ with
 increasing destination size. Total 2048 nodes, 64 sources
 Optimization

 Heuristic 2
 Heuristic 1

 MPI_Alltoallv

(a) Disjoint

16

32

64

128

256

512

128 256 512 1024

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Destination size (number of nodes)

Transfer bandwidth for MPI_Alltoallv and OPTIQ with
 increasing destination size. Total 2048 nodes, 64 sources
 Optimization

 Heuristic 2
 Heuristic 1

 MPI_Alltoallv

(b) Overlap

16

32

64

128

256

512

128 256 512 1024

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Destination size (Number of nodes)

Transfer bandwidth for MPI_Alltoallv and OPTIQ with
 increasing destination size. Total 2048 nodes, 64 sources
 Optimization

 Heuristic 2
 Heuristic 1

 MPI_Alltoallv

(c) Subset

Figure 12: Total data movement throughput with increasing number of destination nodes.

66

Another reason for OPT’s drop in performance is because we do not consider the underlying

synchronization overhead in the data transfer optimization formulation.

6.4.4.6 Random Sources-Destinations Pairing

In contrast to the previous subsections, in this experiment, we randomized the pairing

between sources and destinations. We did experiments for all three patterns on 1024 nodes,

with 1 MPI/PAMI rank per node, 8 MB of data per communication. We used source to

destination ratio of 1:8, i.e. first 64 nodes (nodes 0–63) communicate with last 512 nodes

(nodes 512–1024). However, we randomly selected the pairs of sources and destinations. The

results are presented in Table IX.

Config 1 Config 2 Config 3
Patterns OPT HEU

2
HEU
1

MPI OPT HEU
2

HEU
1

MPI OPT HEU
2

HEU
1

MPI

Disjoint 198 167 74 50 171 214 124 54 203 204 135 55
Overlap 206 207 95 52 205 221 133 60 206 227 134 64
Subset 221 210 118 55 185 216 135 60 219 203 132 52

Config 4 Config 5 Average
Patterns OPT HEU

2
HEU
1

MPI OPT HEU
2

HEU
1

MPI OPT HEU
2

HEU
1

MPI

Disjoint 198 233 134 62 194 224 115 59 193.21 206.81 116.92 56.00
Overlap 214 194 125 57 207 203 133 59 208.29 210.88 124.62 58.40
Subset 186 211 123 51 222 197 112 57 207.10 207.92 124.58 55.00

TABLE IX: Throughput (GB/s) for Optimization (OPT), Heuristics (HEU 1 and 2) and
MPI Alltoallv (MPI) for 5 different random pairings between sources and destinations in 1024-
node partition.

67

Optimization and both Heuristic approaches outperform MPI in all cases due to better data

distribution and load-balance. OPT and HEU 1 & 2 result in 50% and 36% better performance

respectively in the case of disjoint.

6.4.4.7 Efficacy of Chunk Size

To transfer a message from a source to a destination through intermediate nodes we split the

message into smaller chunks and keep sending the chunks into the network. This is to reduce

the waiting time at the intermediate nodes, and thus reduce total transfer time. We carried

out an experiment to show optimal chunk sizes for different message sizes. In this experiment

we varied the message sizes from 8 KB up to 8 MB. The chunk sizes also varied from 4KB up

to 1MB. The experiment was carried out in a 512-node partition using subset pattern in which

the first 32 nodes send data to the last 256 nodes. The results are shown in Figure 13.

As shown in the Figure 13, for messages with sizes less than 16 KB, we should transfer the

entire message. With message size 32 KB we can use a chunk-size of 16 KB. With message

sizes 64 KB or 128 KB we can use a 32 KB chunk-size. With larger message sizes we can use

a 64 KB chunk size. Similar trends are found in the disjoint and overlap patterns. For the

experiments in this dissertation we use a 64 KB chunk size.

6.4.4.8 Efficacy of Message Size

In this experiment we show the effect of varying message sizes. The experiment is carried

out in a 512-node partition with 1 MPI/PAMI rank per node, 8 MB message size for all three

patterns. The results for OPT and MPI are shown in Figure 14.

68

2

4

8

16

32

64

128

4K 8K 16K 32K 64K 128K 256K 512K 1M

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Bytes

Total networking throughput of OPTIQ vs. MPI_Alltoallv
 512 nodes, 1 rank/node, ratio=1/8, different chunk sizes

 Message size 8M
 Message size 4M

 Message size 2M
 Message size 1M

 Message size 512K
 Message size 256K

 Message size 128K
 Message size 64K

 Message size 32K
 Message size 16K

 Message size 8K

Figure 13: Chunk sizes and their performance in 512-node partition, subset pattern.

The throughput of transferring small messages in OPTIQ is lower than the default MPI Alltoallv

due to overhead in data transfer by OPTIQ. MPI Alltoallv has better performance than OP-

TIQ when the data size is less than 512 KB. When the message size is greater than 512 KB,

OPTIQ has better performance. The lower performance in OPT at smaller message sizes is due

to overhead caused by additional messages, send and forward queueing, chunking of messages,

and time to copy and inject messages at the intermediate nodes.

6.4.4.9 Efficacy of maxload Value on Heuristic 1 Approach

For the heuristic approach, we use k shortest paths and a maxload value to select the number

of paths used for data transfer, as described in 5.3.1. Depending on the maxload value, the

69

8

16

32

64

128

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Message sizes

Total networking throughput of OPTIQ vs. MPI_Alltoallv
 512 nodes, 1 rank/node, various message size, ratio=1/8

 OPTIQ Optimization Disjoint
 MPI_Alltoallv Disjoint

 OPTIQ Optimization Overlap
 MPI_Alltoallv Overlap

 OPTIQ Optimization Subset
 MPI_Alltoallv Subset

Figure 14: Total throughput with different message sizes from 16 KB – 8 MB in disjoint, overlap
and subset for OPT and MPI.

heuristic may select a different set of paths, which can affect performance. In this experiment,

we show the effect of choosing the maxload value and time to select paths based on the maxload

value. The experiment was carried out in a 1024-node partition, with 1 MPI/PAMI rank per

node, 8 MB message size, source to destination ratio of 1:8 for all 3 patterns. The results for

maxload values of 1, 2, 4, 8, 16, and 32 are shown in Table X. The first column shows the

pattern type, the second column shows the MPI performance and the remaining columns show

Heuristic 1 performance for various maxload.

70

Patterns MPI
Maxload

1 2 4 8 16 32

Disjoint 45 31 32 32 63 75 78

Overlap 42 66 66 66 125 112 89

Subset 74 69 70 69 114 110 96

TABLE X: Throughput (GB/s) with different maxload values for Heuristic 1 approach.

The performance of Heuristic 1 with maxload value of 1, 2 or 4 is similar, and lower than

MPI Alltoallv in the disjoint and subset patterns. This is because with lower maxload values,

the heuristic is not able to find enough paths to transfer data, leading to fewer number of

physical links being used, thus higher load on those physical links. When the maxload value

is set to 32, performance starts to degrade because the heuristic finds too many paths, leading

to many paths sharing a physical link, thus leading to higher load on those physical links. The

best performance is achieved with maxload value of 8 and 16 because of better load distribution

on the physical links. For the experiments in this paper we set maxload value to 16.

When we increase the maxload value, it also takes more time to select paths from the k

shortest paths. Table XIII shows the time for different maxload values in different patterns.

Pattern
Time for Different Max Load (s)

1 2 4 8 16 32

Disjoint 1.958 1.961 1.917 1.956 2.002 2.164

Overlap 1.923 1.890 1.801 1.929 1.993 2.082

Subset 1.907 1.870 1.891 1.955 2.024 2.223

TABLE XI: Search time with different max load in 1024 nodes partition.

71

The search time is short and thus can be amortized over time when a pattern is used

repeatedly.

6.4.4.10 Efficacy of Number of Shortest Paths Feeding into Solvers

For the Optimization approach we need to input k shortest paths for the solvers to search

for an assignment of flow values on the k paths. In this experiment we show the relationship

between the number of paths input to the model, the corresponding data transfer throughput,

and the elapsed time for the AMPL model and solvers. We carried out the experiment in a

2048-node partition for all three patterns with source to destination ratio of 1:8, where 128

nodes communicate with 1024 nodes. We used 1 MPI/PAMI rank per node and 8 MB per

communication. We varied the number of paths fed into the solvers from 4 to 16, 32 and 50.

The performance is shown in Table XII.

Patterns MPI
Number of paths
4 16 32 50

Disjoint 61 29 84 104 197

Overlap 59 82 192 224 308

Subset 111 99 163 168 172

TABLE XII: Throughput (GB/s) with different number of paths input to the solvers.

As we increase the number of paths, the performance improves. This is because with more

paths the solvers have a larger search space, and thus can produce more optimal results to be

72

used for data transfer. However, with increasing number of paths, we also increase the time for

AMPL model to prepare and solvers to search for flow values for paths as shown in Table XIII.

AMPL time is the total amount of time that AMPL needs to check conditions, input data, to

load input data and to generate an instant of a model. The solving time is the actual amount

of time used by an employed solver to solve a problem. The AMPL environment provides the

amounts of time via 2 built-in timing parameters: amplelapsedtime and totalsolveelapsedtime.

Pattern
AMPL time (s) Solve time (s)

4 16 32 50 4 16 32 50

Disjoint 13.9 187.7 123.0 224.0 0.06 6.6 4.4 84.0

Overlap 13.6 51.9 134.6 198.7 0.09 16.6 179.4 530.3

Subset 14.4 50.6 134.9 217.3 0.85 111.3 173.2 939.6

TABLE XIII: AMPL and solving time.

6.4.4.11 Efficacy of Solvers

In this section, the dissertation presents the efficacy of solvers on solving time as well as

the quality of results via the througput of data movement with outputs from different solvers.

The framework used two solvers in the experiments: Sparse Nonlinear Optimization (SNOPT)

and CPLEX. SNOPT is a optimization solver for large-scale nonlinear problems. CPLEX is

optimization solver for very large linear programming problems. The problem described in 5.4.1

is a linear problem, so it is expected to be solved faster with CPLEX than solved with SNOPT.

73

There were 91 experiments carried out in 2048 nodes for three data patterns using the two

solvers. For each experiment, there were 50 shortest paths per pair of communication fed into

the solvers. The total AMPL time, total solving time, total of AMPL time, and solving time

and throughput were measured and reported in Figure 15.

Table XIV presents the time and performance for 91 experiments.

Solvers AMPL time Solving time Total time

CPLEX 22332.8 33973.2 56306.0

SNOPT 24578.2 29728.5 54306.6

TABLE XIV: Time and throughput comparision between 2 solvers CPLEX and SNOPT over
91 cases in 3 patterns.

In terms of total time, in 91 experiments, the total AMPL time for CPLEX is shorter than

SNOPT, but the total solving time is surprisingly higher than SNOPT. This leads to the total

amount of time for the AMPL model and solvers of CPLEX being higher than SNOPT’s total

time.

In term of performance, CPLEX and SNOPT demonstrated comparable performance. The

difference is insignificant i.e. SNOPT has 7% higher performance on average over 91 experi-

ments.

74

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

AM
PL

 ti
m

e
(s

)

Test Id

AMPL time for CPLEX and SNOPT solvers for 91 experiments in 2048 nodes

 CPLEX solver
 SNOPT olver

(a) AMPL time

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

So
lv

in
g

tim
e

(s
)

Experiment Id

Solving time for CPLEX and SNOPT solvers for 91 experiments in 2048 nodes

 CPLEX solver
 SNOPT solver

(b) Solving time

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

To
ta

l t
im

e
(s

)

Experiment Id

Total time for solving 91 experiments in 2048 nodes for CPLEX and SNOPT

 CPLEX solver
 SNOPT solver

(c) Total time

4

8

16

32

64

128

256

512

1024

2048

 0 10 20 30 40 50 60 70 80 90

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Experiment Id

Throughput of 91 experiments using CPLEX and SNOPT in 2048 nodes

 CPLEX solver
 SNOPT solver

(d) Throughput

Figure 15: AMPL time, Solving time, Total time and Throughput for CPLEX and SNOPT
solvers of 91 cases in 3 patterns in 2048-node partition

75

6.4.4.12 Paths Searching Time

As the dissertation presents in the previous sections, the performance of Optimization ap-

proach is highest, followed by the performance of Heuristic 2 and Heuristic 1. However the

performance gained comes with a trade-off of path searching time. Figure 16 shows the paths

searching time for three approaches for 91 experiments of three patterns.

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90

Se
ar

ch
 ti

m
e

(s
)

Experiment Id

Search time for SNOPT solver, Heuristic 2 & 1 for 91 experiments in 2048 nodes

 SNOPT solver
 Heuristic 2

 Heuristic 1

Figure 16: Paths searching time for Optimization approach used SNOPT solver, Heuristic 2,
Heuristic 1 with maxload = 16

76

As shown in Figure 16, the search time of Heuristic 1 is lowest, then Heuristic 2. The

Optimization approach has the highest search time. In general, Heuristic 1 can finish the

search within a few seconds, sometimes less than 1 second. The Heuristic 2 can complete the

search in the time from 8 seconds up to 100 seconds. With the Optimization approach, the

search time goes up to a few thousands seconds. Thus, it is recommended to use Optimization

approach offline for most of cases. Heuristic 1 and 2, on the other hand, can be used on-the-fly

for instant path searching.

In the next section, we demonstrate the efficacy of our approaches through an experiment

with communication patterns and data from two real applications: Community Earth System

Model (CESM) and Hardware/Hybrid Accelerated Cosmology Code (HACC).

6.5 Evaluation with Applications

In these applications, the pairing between sources and destination are random-like. Multiple

ranks, different message sizes. Each ranks/nodes can talk to different number of nodes.

6.5.1 Community Earth System Model (CESM)

6.5.1.1 Introduction

Community Earth System Model (CESM) is a coupled global climate model simulating the

earth system consisting ice, land, ocean, atmospheric and other components (33). In order to

provide flexibility in developing, models in CESM do not communicate directly with each other

but via a coupler. The Figure 17 shows the communication between 4 models: Atmosphere

(ATM), Ice (ICE), Land (LND) and Ocean (OCN) with the Coupler (CPL).

77

Ocean Coupler

Land

Ice

Atmosphere

Figure 17: Model communicate with each other via a coupler

In this dissertation, we demonstrate the efficacy of our framework via communication be-

tween the models and the coupler extracted from a real run of CESM.

6.5.1.2 Experiments and Results

Our experiment was carried on a partition of 512 nodes with 4 MPI/PAMI ranks per node.

The positions of each component, and the number of pairs of communication between ranks

and between nodes are shown in Table XV

Table XV shows the ranges of ranks (start-end) that host the models and the coupler. It

also shows the number of pairs of communication between the models and the coupler. The

number of pairs of communication are counted by MPI/PAMI rank or by node Id. If pairs

of communication with source ranks in the same source node and destinations in the same

78

Model Location
Num. of pairs of communication with Coupler
Between Ranks Between Nodes

ATM 0 - 1791 5227 2233

LND 0 - 515 10390 2911

ICE 516 - 1791 3018 765

OCN 1792 - 2047 2001 502

CPL 0 - 1791

TABLE XV: Locations and number of pairs of communication between models in CESM

destination node then we count them as one pair of communication between the source and the

destination nodes with the data to transfer as the total data of all the pairs. As the Table XV

shows, the number of pairs counting by node Id is much lower than the number of pairs counting

by MPI/PAMI rank. This shows that the MPI/PAMI ranks in the same source node tend to

communicate with MPI/PAMI ranks the same destination node. We gather data of pairs with

the same source and destination nodes and let only one pair transfer data. This helps to increase

the data size per transfer and to reduce the number of pairs of communication that we need to

compute paths, thus speeding up path searching. Communication between MPI/PAMI within

a node is carried out using OpenMP.

In the given communication patterns of CESM, each rank talks to 0 to 4 other ranks. The

message sizes also vary from 1 data point to 26 data points. The distribution of data points

per pair of ranks is shown in 18a. Similar distribution of the number of data points per pair of

nodes is shown in 18b.

79

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 5 10 15 20 25 30

N
um

be
r o

f p
ai

rs
 (s

ou
rc

e
ra

nk
 -

de
st

 ra
nk

)

Number of points

Number of points distribution

(a) By Rank Id

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80

N
um

be
r o

f p
ai

rs
 (s

ou
rc

e
no

de
 -

de
st

 n
od

e)

Number of points

Number of points distribution

(b) By Node Id

Figure 18: Points distribution over pairs of source-rank/dest-rank and pairs of source-node/dest-
node

Figure 18 shows that by gathering data of communications with the same pair of source

node and destination node, the framework can increase the data size significantly. Most of the

pairs by rank have less than 20 data points per pair, while most of the pairs by node have more

than 20 data points per pair. In this experiment, each point of data is converted into 32 KB of

data for communication.

We carried out the experiment’s communication between the Coupler with Atmosphere,

Land, and Ocean. The result of the experiment is shown in Table XVI for three pairs of

communication between CPL-ATM, CPL-LND and CPL-OCN. The throughputs are shown for

different approaches: Optmization (OPT), Heurisic (HEU) and MPI Alltoallv (MPI). We also

80

show the total number of paths and the maximum and average number of paths per job for

each approach.

Coupling Type
BW
(GB/s)

Num. of Paths
Total
Paths

Per Job
Max Avg

CPL-ATM
OPT 352.24 3987 5 1.37
HEU 2 350.62 13789 15 6.18
MPI 241.04 2911 1 1.00

CPL-LND
OPT 343.5 4004 7 1.38
HEU 2 332.40 15107 14 5.19
MPI 278.90 2911 1 1.00

CPL-OCN
OPT 135.16 987 5 1.97
HEU 2 136.06 5924 35 11.80
MPI 104.44 502 1 1.00

TABLE XVI: Throughput, total num of paths, number of paths per job for 3 couplings in 512
nodes (4 ranks/node) experiments.

As shown in the Table XVI, the Optimization approach usually has the highest throughput,

except for the CPL-OCN case, where Optimization approach and Heuristic 2 approach have

similar performance. The Heuristic 2 approach usually has the second highest throughput. MPI

has the lowest throughput. This is because MPI uses only one path to transfer data between two

nodes. This leads to sharing links between pairs of communication coming from the same source

node to the same destination nodes. Also the routing policy does not consider idle links and

the load on neighbors to balance the load. Both factors lead to low performance in MPI. The

81

heuristic approach employs the largest number of paths, but due to the data assignment is not

as optimal as the Optimization approach, it still has lower performance. With the performance

improvement of 30% we can see that by using multipath we can rebalance network load and

improve communication throughput.

6.5.2 Hardware/Hybrid Accelerated Cosmology Code (HACC)

6.5.3 HACC I/O Application Benchmark

HACC (Hardware/Hybrid Accelerated Cosmology Code) (1) is a large-scale cosmology code

suite that simulates the evolution of the universe through the first 13 billion years after the

Big Bang. The application simulates trillions of particles, their movement, collison, as well

as interactions while forming structures that transform into galaxies. During runtime, HACC

writes data periodically to the storage system both for checkpoints and for I/O of the in situ

analysis performed at simulation time.

In this benchmark, we use HACC I/O data to evaluate the performance of data aggrega-

tion of the system for HACC. The data was generated before in experiments done on a real

simulation. In the simuation, there were 8 MPI ranks per node. The data that we used is

around 700 KB to 800 KB per rank or around 6 MB per node. In Mira, I/O data is moved

from compute nodes to bridge nodes before moving to I/O nodes. There are two bridge nodes

per 128 compute nodes. Each compute node has one default bridge node. In this experiment,

we aggregate data from compute nodes to their default I/O nodes by using OPTIQ Heuristic 2

and MPI Alltoallv.

82

We evaluate the data movement performance from compute nodes to bridge nodes. We

compare the aggregation throughput of OPTIQ Heuristic 2 to default MPI Alltoallv in aggre-

gating the data to the bridge nodes of Mira. In this experiment, we scale our experiments from

2,048 up to 32,768 compute cores to aggregate data. We aggregate data from 8 ranks per node

to a single rank and let the single rank to aggregate data to bridge nodes. We collect bandwidth

information and report the average of 10 runs. Figure 19 depicts the achievable performance

of aggregating the data to bridge nodes on Mira.

4

8

16

32

64

128

256

512

1024

512 1024 2048

To
ta

l t
hr

ou
gh

pu
t(G

B/
s)

Partition size

Transfer bandwidth for data aggregation in I/O for HACC

 OPTIQ Heuristics 2
 MPI_Alltoallv

Figure 19: Aggregation achievable throughput for in situ analysis of HACC I/O

83

From the figure we observe an overall improvement of 60% up to 3 times throughput im-

provement for data aggregation. OPTIQ framwork can improve performance for data movement

due to its capability of searching multiple paths and assigning data appropriately to reduce con-

gestion on physical network links.

CHAPTER 7

CONCLUSION

This chapter summarizes the contributions of the dissertation and proposes some future

directions.

7.1 Thesis Contribution

7.1.1 Holistic Approach and Data Movement Optimization Framework

This dissertation is among the first to discuss a holistic approach to improve data movement

performance for data-centric applications on supercomputers. Most of the previous research

focuses on optimization at the system layer for generic communication patterns. Other research

focuses on optimizing data movement for specific communication patterns on specific systems.

Research has been done at the application level, but they do not include the system routing and

topologies as ours does. The holistic approach presented in this dissertation takes into account

the interconnection network topology and the system routing and communication patterns of

the applications to improve data movement performance. The scale at which this dissertation

is presented is also significant compared to other works.

The dissertation also presents a data movement optimization framework named OPTIQ that

realizes this holistic approach. The framework is designed to provide necessary functionalities

to allow applications use it to improve data movement. The research also provides a applica-

tion programming interface (API) that allows the framework to read system information such

84

85

as topology, torus, and size, to compute neighbor nodes and routing information of a given

partition.

7.1.2 Multi-path Data Movement

Other important contributions of the dissertation are a set of approaches including two

greedy heuristic approaches and a model-based optimization approach. All the approaches

leverage multiple paths to balance the load on the physical network links on supercomputers.

While the two heuristic approaches provide a faster but local optimization solutions, the model-

based approach requires longer solving time but outputs globally optimal solutions.

7.2 Future Work

There are several directions that one could take to extend this research from here.

7.2.1 Improving performance by investigating different solutions

In this disseration, the OPTIQ framework only generates one solution from solvers. The

solvers, however can generate different solutions, i.e different sets of paths with different data

assignments for the solutions. The different solutions may have different numbers of hops and

intermediate nodes and thus can have different performance due to the number of copies that

are needed. Investigating different paths from different solutions is one way of extending of this

research.

7.2.2 Expanding the Work to Other Supercomputers

In this dissertation, the framework is designed and built to work on different supercom-

puters. The experiments demonstrated the efficacy of the framework on the Blue Gene/Q

86

supercomputer. The work can be extended to other system with different interconnection net-

work topology such as Cray supercomputers like Edison, Hopper or Stampede, or commodity

clusters to see how the design works. Such as study can also help to modify the design of the

framework to make it work better on different computing systems.

7.2.3 Providing Quality of Service for Data Movement on Supercomputers

In several supercomputing systems, all flows share the same interconnect network infras-

tructure. Current systems route all data flows with the same priority i.e. first come first serve.

The middleware layer also processes different data flows with the same priority at best effort.

This does not provide an opportunity for application writers/scientists to optimize the data

flows based on their understanding of the data movement, i.e. some data flows are for compu-

tation and thus are more urgent than data flows for I/O which can be temporarily stored at

the burst buffer and the transfer can be delayed until the resource contention is lower. With

programmable optical switches and software defined networking, it is possible to control the

data flows at the switch level. Thus, it is possible to provide quality of service for flows of data

on supercomputers. Controlling data flows for QoS purposes will bring to the framework the

capability of assigning different priorities for different data flows. The framework can compute

how many paths are available at runtime and reserve an appropriate portion of resources for

data flows corresponding to their priorities. With support from the framework, application

developers can assign priorities for data flows that can result in lowest time-to-solution for their

applications.

87

7.2.4 Reducing Solving Time for Optimial Solutions

Currently in the experiments presented in this dissertation, it could take a few hours to

solve an optimization at 4096-node partition scale. It would take much longer time at a larger

scale for the same communication patterns. As future supercomputers are expected to have a

much larger number of compute nodes, it is necessary to reduce the solving time to a reasonably

acceptable level. One approach is to use graph partitioning. Recent research on graph partition

is presented in (34). One potential approach is multi-level graph partitioning. In this approach,

a graph is first contracted/coarsened in to a much smaller graph by matching/grouping a

number of nodes into a single node repeatedly until we reach to a small enough graph. Solvers

can be used to solve the problem for the contracted/coarsened graph problem. The next step

is to uncontract/uncoarsen the contracted graph to return it to the original state. At this state

we have the flow values assigned for groups of nodes, which were single nodes in the contracted

graph. We can use local improvement on the subgraphs. This approach can be applied at

multiple levels. In case we have multiple solutions for a contracted graph, we can execute the

uncontracting/uncoarsening and local improvement in parallel.

APPENDIX

IEEE POLICIES ON REUSE LICENSE

Reprinted from the official policies related to the IEEE copyright procedures, given under

the subsection 8.1.4.1 (last verified Feb 14, 2014)

8.1.4 IEEE Copyright Policy and Procedures (from the PSPB Operations Man-

ual)

B. Ownership and rights of IEEE copyrighted material

3. Prior to publication by the IEEE, all authors or their employers shall transfer to the

IEEE in writing any copyright they hold for their individual papers. Such transfer shall be

a necessary requirement for publication, except for material in the public domain or which is

reprinted from a copyrighted publication.

4. In return for the transfer of authors rights, the IEEE shall grant authors and their

employers permission to make copies and otherwise reuse the material under terms approved

by the Board of Directors.

88

CITED LITERATURE

1. Habib, S., Morozov, V., Finkel, H., Pope, A., Heitmann, K., Kumaran, K., Pe-
terka, T., Insley, J., Daniel, D., Fasel, P., Frontiere, N., and Lukić, Z.:
The universe at extreme scale: multi-petaflop sky simulation on the BG/Q.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages 4:1–4:11, Los Alamitos, CA, USA,
2012. IEEE Computer Society Press.

2. Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton,
J. A., Chang, P., Doney, S. C., Hack, J. J., Henderson, T. B., et al.: The Community
Climate System Model version 3 (CCSM3). Journal of Climate, 19(11), 2006.

3. Leighton, T., Stein, C., Makedon, F., Tardos, E., Plotkin, S., and Tragoudas, S.: Fast
Approximation Algorithms for Multicommodity Flow Problems. In Proceedings of
the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,

pages 101–111, New York, NY, USA, 1991. ACM.

4. Racke, H.: Minimizing Congestion in General Networks. In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 43–52, 2002.

5. Azar, Y., Cohen, E., Fiat, A., Kaplan, H., and Racke, H.: Optimal Oblivious Routing
in Polynomial Time. In Proceedings of the Thirty-fifth Annual ACM Symposium
on Theory of Computing, STOC ’03, pages 383–388, New York, NY, USA, 2003.
ACM.

6. Applegate, D. and Cohen, E.: Making Routing Robust to Changing Traffic Demands:
Algorithms and Evaluation. IEEE/ACM Trans. Netw., 14(6):1193–1206, December
2006.

7. Kinsy, M. A., Cho, M. H., Wen, T., Suh, E., van Dijk, M., and Devadas, S.:
Application-aware Deadlock-free Oblivious Routing. SIGARCH Comput. Archit.
News, 37(3):208–219, June 2009.

8. Rodriguez, G., Minkenberg, C., Beivide, R., Luijten, R. P., Labarta, J., and Valero, M.:
Oblivious routing schemes in extended generalized Fat Tree networks. In CLUSTER,
pages 1–8. IEEE, 2009.

89

90

9. Prisacari, B., Rodriguez, G., Minkenberg, C., and Hoefler, T.: Bandwidth-optimal All-
to-all Exchanges in Fat Tree Networks. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS ’13, pages

139–148, New York, NY, USA, 2013. ACM.

10. Prisacari, B., Rodriguez, G., Minkenberg, C., and Hoefler, T.: Fast Pattern-specific Rout-
ing for Fat Tree Networks. ACM Trans. Archit. Code Optim., 10(4):36:1–36:25,
December 2013.

11. Agarwal, T., Sharma, A., and Kalé, L. V.: Topology-aware task mapping for reducing
communication contention on large parallel machines. In Proceedings of the 20th
International Conference on Parallel and Distributed Processing, IPDPS’06, pages
145–145, Washington, DC, USA, 2006. IEEE Computer Society.

12. Valiant, L. G. and Brebner, G. J.: Universal Schemes for Parallel Communica-
tion. In Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing, STOC ’81, pages 263–277, New York, NY, USA, 1981. ACM.

13. Singh, A., Dally, W. J., Gupta, A. K., and Towles, B.: GOAL: a load-balanced adap-
tive routing algorithm for torus networks. ACM SIGARCH Computer Architecture
News, 31(2):194–205, 2003.

14. Pifarré, G. D., Gravano, L., Felperin, S. A., and Sanz, J. L. C.: Fully-adaptive Min-
imal Deadlock-free Packet Routing in Hypercubes, Meshes, and Other Networks.
In Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’91, pages 278–290, New York, NY, USA, 1991. ACM.

15. Chen, D., Eisley, N., Heidelberger, P., Kumar, S., Mamidala, A., Petrini, F., Senger,
R., Sugawara, Y., Walkup, R., Steinmacher-Burow, B., Choudhury, A., Sab-
harwal, Y., Singhal, S., and Parker, J. J.: Looking under the hood of the
IBM blue gene/Q network. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, pages 69:1–

69:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

16. Garcia, M., Vallejo, E., Beivide, R., Odriozola, M., and Valero, M.: Efficient Routing
Mechanisms for Dragonfly Networks. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 582–592. IEEE, 2013.

17. Yelick, K., Bonachea, D., Chen, W.-Y., Colella, P., Datta, K., Duell, J., Graham, S. L.,
Hargrove, P., Hilfinger, P., Husbands, P., Iancu, C., Kamil, A., Nishtala, R., Su, J.,

91

Welcome, M., and Wen, T.: Productivity and Performance Using Partitioned Global
Address Space Languages. In Proceedings of the 2007 International Workshop on
Parallel Symbolic Computation, PASCO ’07, pages 24–32, New York, NY, USA,

2007. ACM.

18. Kumar, S. and Faraj, D.: Optimization of MPI Allreduce on the Blue Gene/Q Supercom-
puter. In Proceedings of the 20th European MPI Users’ Group Meeting, EuroMPI
’13, pages 97–103, New York, NY, USA, 2013. ACM.

19. Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P.,
Rosner, R., Truran, J. W., and Tufo, H.: FLASH: An Adaptive Mesh Hydrody-
namics Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical
Journal Supplement Series, 131(1):273, 2000.

20. Khanna, G., Catalyurek, U., Kurc, T., Kettimuthu, R., Sadayappan, P., Foster, I., and
Saltz, J.: Using overlays for efficient data transfer over shared wide-area networks.
volume 0, pages 1–12, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

21. Zerola, M., Sumbera, M., Lauret, J., and Barták, R.: Efficient multi-site data movement
in distributed environment. In GRID, pages 171–172, 2009.

22. Vishwanath, V., Hereld, M., Morozov, V., and Papka, M. E.: Topology-aware
data movement and staging for i/o acceleration on blue gene/p supercomputing
systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 19:1–19:11, New

York, NY, USA, 2011. ACM.

23. Bui, H., Finkel, H., Vishwanath, V., Habib, S., Heitmann, K., Leigh, J., Papka,
M., and Harms, K.: Scalable Parallel I/O on a Blue Gene/Q Super-
computer Using Compression, Topology-Aware Data Aggregation, and Subfil-
ing. In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd
Euromicro International Conference on, pages 107–111, Feb 2014.

24. Bui, H., Jung, E., Vishwanath, V., Leigh, J., and Papka, M.: Improving data movement
performance for sparse data patterns on blue gene/q supercomputer. In 7th
International Workshop on Parallel Programming Models and Systems Software
for High-End Computing (P2S2) held in conjunction with the 43rd International
Conference on Parallel Processing, September 2014.

92

25. Even, S., Itai, A., and Shamir, A.: On the complexity of time table and multi-
commodity flow problems. In Foundations of Computer Science, 1975., 16th
Annual Symposium on, pages 184–193. IEEE, 1975.

26. Yen, J. Y.: An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quart. Applied Math, 27:526–530, 1970.

27. Fourer, R., Gay, D. M., and Kernighan, B. W.: AMPL: A Modeling Language for
Mathematical Programming. The Scientific Press, 1993.

28. AMPL: A Modeling Language for Mathematical Programming.

29. Chen, D., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., Ku-
mar, S., Salapura, V., Satterfield, D. L., Steinmacher-Burow, B., and
Parker, J. J.: The IBM Blue Gene/Q Interconnection Network and Mes-
sage Unit. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, pages 26:1–26:10, New

York, NY, USA, 2011. ACM.

30. Chen, D., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., Kumar, S., Salapura,
V., Satterfield, D., Steinmacher-Burow, B., and Parker, J.: The IBM Blue Gene/Q
Interconnection Fabric. IEEE Micro, 32(1):32–43, 2012.

31. Gilge, M. et al.: IBM System Blue Gene Solution Blue Gene/Q Application Development.
IBM Redbooks, 2013.

32. Kumar, S., Mamidala, A. R., Faraj, D. A., Smith, B., Blocksome, M., Cernohous, B.,
Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., and Steinmacher-
Burrow, B.: PAMI: A Parallel Active Message Interface for the Blue Gene/Q
Supercomputer. In Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, IPDPS ’12, pages 763–773, Washington, DC,
USA, 2012. IEEE Computer Society.

33. Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P., Lamarque,
J.-F., Large, W. G., Lawrence, D., Lindsay, K., et al.: The community earth
system model: a framework for collaborative research. Bulletin of the American
Meteorological Society, 94(9):1339–1360, 2013.

34. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., and Schulz, C.: Recent advances in graph
partitioning. CoRR, abs/1311.3144, 2013.

93

35. Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson, T.,
Kopnick, J., Higgins, M., and Reinhard, J.: Cray Cascade: A Scalable HPC System
Based on a Dragonfly Network. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages
103:1–103:9, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

36. Chen, S. and Nahrstedt, K.: An Overview of Quality of Service Routing for Next-
generation High-speed Networks: Problems and Solutions. Netwrk. Mag. of Global
Internetwkg., 12(6):64–79, November 1998.

37. Subramanian, L., Stoica, I., Balakrishnan, H., and Katz, R. H.: OverQos: An Overlay
Based Architecture for Enhancing Internet QoS. In Proceedings of the 1st
Conference on Symposium on Networked Systems Design and Implementation -
Volume 1, NSDI’04, pages 6–6, Berkeley, CA, USA, 2004. USENIX Association.

38. Yuan, X.: Heuristic Algorithms for Multiconstrained Quality-of-service Routing.
IEEE/ACM Trans. Netw., 10(2):244–256, April 2002.

39. Lin, X. and Shroff, N. B.: An Optimization-based Approach for QoS Routing in High-
bandwidth Networks. IEEE/ACM Trans. Netw., 14(6):1348–1361, December 2006.

40. Xue, G., Zhang, W., Tang, J., and Thulasiraman, K.: Polynomial Time Approximation Al-
gorithms for Multi-constrained QoS Routing. IEEE/ACM Trans. Netw., 16(3):656–
669, June 2008.

41. Misra, S., Xue, G., and Yang, D.: Polynomial Time Approximations for Multi-Path Routing
with Bandwidth and Delay Constraints, 2009.

42. Mondal, A., Sharma, P., Banerjee, S., and Kuzmanovic, A.: Supporting application net-
work flows with multiple QoS constraints. In Quality of Service, 2009. IWQoS. 17th
International Workshop on, pages 1–9, July 2009.

43. Jeyakumar, V., Alizadeh, M., Mazières, D., Prabhakar, B., Kim, C., and
Greenberg, A.: EyeQ: Practical Network Performance Isolation at the
Edge. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, nsdi’13, pages 297–312, Berkeley, CA, USA, 2013.
USENIX Association.

44. Jacob, R., Larson, J., and Ong, E.: M× N communication and parallel interpo-
lation in Community Climate System Model Version 3 using the model cou-

94

pling toolkit. International Journal of High Performance Computing Applications,
19(3):293–307, 2005.

45. Fan, Z., Cao, Z., Su, Y., Liu, X., Wang, Z., Liu, X., Zang, D., and An, X.: HiNetSim:
A Parallel Simulator for Large-Scale Hierarchical Direct Networks. In Network
and Parallel Computing, volume 8707 of Lecture Notes in Computer Science, pages
120–131. Springer Berlin Heidelberg, 2014.

VITA

Huy A. Bui Email: abui4@uic.edu

Research Interest
Current research interests include the research and development of scalable system software

for data movement optimization in high performance computing systems.

Education
Ph.D. in Computer Science 2009 - 2015
University of Illinois at Chicago (UIC), Chicago, IL.

Master of Science in Computer Engineering 2007 - 2009
Politecnico di Milano (Polimi), Como, Italy.

Bachelor of Science in Computer Science 2001 - 2006
Hanoi University of Science and Technology, Hanoi, Vietnam.

Working Experience
Graduate Research Assistant, Argonne National Lab, Lemont, IL 2012 - 2015

• OPTIQ: Designing and implementing a framework for OPTImization and Quality of
service for data-centric applications on supercomputers. Build model to capture intercon-
nection network topologies, system routing policies, application data movement patterns
(flows) and QoS constraints. Optimize data movement to get maximum throughput while
satisfying QoS constraints at scale. Written in C/C++.

• BIOSAL: Designed and implemented a part of transport layer in BIOSAL (a distributed
BIOlogical Sequence Actor Library) to move data using Parallel Active Message Interface
(PAMI) in the Blue Gene/Q supercomputer Mira. Written in C/C++.

• Multi-path data movement: Designed and implemented multi-path data movement for
sparse data pattern on Blue Gene/Q (BG/Q) supercomputer Mira. Used Ford-Fulkerson
algorithm to discover multiple paths available to move data between sources and destina-
tions. Also used pipeline technique and low-level networking library to move data faster.
Improved throughput up to 8 times for data movement. Demonstrated performance im-
provement for I/O on several applications up to 5 times. Written in C/C++.

• Compressed Generic I/O: Designed and implemented an I/O approach that lever-
aged topology information, subfiling mechanism and used a compression library BLOSC
(BLOcking, Shuffling and lossless Compression) to improve I/O performance on BG/Q
up to 2-3 times. Written in C/C++.

95

96

• Low level communication libs: Designed and implemented an API in C/C++ using
low-level libraries (PAMI, uGNI) for communication in BG/Q and Cray systems for differ-
ent communication modes such as one-sided (RDMA), two-sided, inter-node, intra-node,
achieve up to 2-3 times higher performance.

• Technology roadmaps: Have been collecting and composing technology roadmaps every
year for processors, GPU, memory, interconnect, storage, programming environments and
tools for high performance computing (since 2011).

Graduate Assistant, University of Illinois at Chicago, Chicago, IL Summers ’10,’11

• Designed, developed and maintained web applications for College of Medicine and De-
partment of Disability and Human Development at UIC. Used MS SQL Server as backend
database and ASP.NET with C# code behind as front end.

• Helped to administrate and manage computers, users of two above organizations.

Teaching Assistant, University of Illinois at Chicago, Chicago, IL 2009 - 2012

• Assisted teaching several courses at UIC including Software Design, Video Game Design
and Development, Software Engineering I & II, Distributed Object Programming Using
Middleware. Lectured, graded and helped students with their projects and lab sessions.

• Designed classes’ projects such as a project to introduce cloud computing, MapReduce
and Hadoop framework using Illinois Cloud Computing Testbed.

Skills
Languages: C/C++, Java, C#, ASP.Net, SQL, Linux Shell Script.
Libraries: MPI, OpenMP, Pthread, POSIX, HDF5.
Tools and OSes: Eclipse, Visual Studio, MS SQL Server, MySQL, Windows, Mac, Linux.
Others: Parallel and Distributed Computing, Hadoop, Network Programming.

Publications

[6] H. Bui, E. Jung, V. Vishwanath, A. Johnson, J. Leigh, M. E. Papka. Improving Sparse
Data Movement Performance Using Multiple Paths on the Blue Gene/Q Supercomputer. In-
ternational Journal of Parallel Computing (PARCO) (submitted).

[5] V. Vishwanath, H. Bui, M. Hereld, M. E. Papka. High Performance Parallel I/O (Chap-
ter 18 (GLEAN)) Oct. 2014.

[4] H. Bui, E. Jung, V. Vishwanath, J. Leigh, M. E. Papka. Improving Data Movement
Performance for Sparse Data Patterns on Blue Gene/Q Supercomputer, Proc. of the 43nd Inter-
national Conference on Parallel Processing Workshops (ICPPW) 2014. Workshop on Parallel
Programming Models and Systems Software for High-End Computing (P2S2), 2014.

97

[3] H. Bui, V. Vishwanath, H. Finkel, K. Harms, J. Leigh, S. Habib, K. Heitmann, M.
E. Papka. Scalable parallel I/O on Blue Gene/Q supercomputer using compression, topology-
aware data aggregation, and subfiling, The 22nd Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing (PDP 2014).

[2] H. Bui, V. Vishwanath, J. Leigh, M. E. Papka. Improving I/O Performance for Sparse
Data Patterns on Leadership Systems, The 8th Parallel Data Storage Workshop, PDSW13
[Poster].

[1] H. Bui, V. Vishwanath, J. Leigh, M. E. Papka. Evaluating Communication Perfor-
mance in Supercomputers Blue Gene/Q and Cray XE6, The International Conference for High
Performance Computing, Networking, Storage and Analysis, SC12 [Abstract].

Honors and Awards
Student Travel Award for ICPP 2014
Graduate Student Council and Graduate College Travel Awards for traveling to SC12 con-

ference, UIC, 2012.
Honorable Mention Teaching Assistant Award at Computer Science Dept, UIC, 2011-2012.
ICE Scholarship for Master of Science, Politecnico di Milano, Italy, 2007-2009.

	to1 Introduction
	 Motivation
	 Research Goals
	 Thesis Organization

	to2 Data Movement in Data-centric Applications
	 Data-centric Applications on Supercomputers
	 Data Movement in Data-centric Applications on Supercomputers

	to3 Related work
	 Works in data movement optimization

	to4 OPTIQ Framework
	 Overall Approach
	 Framework Components
	 Path Generation
	 Path Searching
	 Scheduler
	 Transport
	 Auxiliary Component

	to5 Multi-path Data Movement
	 Multi-path Data Movement/Routing
	 K Shortest Paths
	 Heuristic approaches
	 Heuristic Approach 1
	 Heuristic Approach 2
	 Comparison between Heuristic 1 and Heuristic 2

	 Modeling Approach
	 Optimization-based Approach
	 A Mathematical Programming Language (AMPL)
	 AMPL Model

	to6 Implementation and Evaluation
	 Mira
	 Application Programming Interface (API)
	 Implementation Details
	 Evalution with Synthetic Benchmarks
	 Setup
	 Communication Patterns
	 MPI Path Reconstruction
	 Experimental Results
	 Overall Throughput Improvement
	 Scaling Number of Nodes, Keeping Source/Destination Ratio Constant
	 Varying Messages Sizes
	 Varying Sources-Destinations Distance
	 Varying Sources-Destinations Ratio
	 Random Sources-Destinations Pairing
	 Efficacy of Chunk Size
	 Efficacy of Message Size
	 Efficacy of maxload Value on Heuristic 1 Approach
	 Efficacy of Number of Shortest Paths Feeding into Solvers
	 Efficacy of Solvers
	 Paths Searching Time

	 Evaluation with Applications
	 Community Earth System Model (CESM)
	 Introduction
	 Experiments and Results

	 Hardware/Hybrid Accelerated Cosmology Code (HACC)
	 HACC I/O Application Benchmark

	to7 Conclusion
	 Thesis Contribution
	 Holistic Approach and Data Movement Optimization Framework
	 Multi-path Data Movement

	 Future Work
	 Improving performance by investigating different solutions
	 Expanding the Work to Other Supercomputers
	 Providing Quality of Service for Data Movement on Supercomputers
	 Reducing Solving Time for Optimial Solutions

	to APPENDIX
	to CITED LITERATURE
	to VITA

