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Summary

A generic Kuperberg flow is a C∞ aperiodic flow on a three-dimensional plug,

with several axiomatic assumptions on the construction of the plug and the dynamics

of the flow. It is known that such a generic Kuperberg flow contains a unique minimal

set, which is a codimension one lamination in the plug.

Even though the entropy is zero, the dynamics of the flow on the minimal set

is complicated, and numerical simulations suggested a fractal structure which was

confirmed in the generic case. A natural first question toward understanding the

fractal geometry of the minimal set is its Hausdorff dimension, which is related to the

symbolic dynamics of the flow. The purpose of this work is to analyze this dynamics

and fractal geometry, in order to estimate the Hausdorff dimension.

To study the dynamics, we choose a suitable transverse section in the plug

and analyze the pseudogroup of first-return maps of the flow to this section. The

generators of the pseudogroup satisfy some contraction properties along a transversal.

Successive iterations of these maps generate a fractal, similar to a limit set of an

iterated function system, but exhibiting much less self-similarity.

The fractal generated by the pseudogroup is the intersection of the minimal set

with the transverse section, and the transversal on which the pseudogroup contracts

is a Cantor set. This set has a complicated coding induced by the symbolic dynamics

of the pseudogroup defining its construction. By exploring these dynamics we obtain

a symbolic space coding the Cantor set, as well as bounds on its ratio geometry.

viii



SUMMARY ix

The product structure of the minimal set as a codimension one lamination

reduces its dimension theory to that of the transverse Cantor set. Cantor sets in the

line have a rich dimension theory, coming from the thermodynamic formalism of the

underlying symbolic space. However, the symbolic space arising from the dynamics

of the Kuperberg pseudogroup does not fit in the existing literature and as such

has no associated thermodynamic formalism, which appears to preclude dimension

estimates.

Fortunately, we are able to locate a small subset of the Cantor set, exhibiting

a surprising amount of self-similarity, and on which the symbolic dynamics are those

of a directed graph with infinitely many edges and vertices. The thermodynamics of

such spaces has been established, and with some variations, we are able to apply it

here to obtain dimension estimates.



CHAPTER 1

Introduction

In this work, we study the dynamics and fractal geometry of the minimal sets

for generic Kuperberg flows on 3-manifolds. The minimal sets resemble, in many

ways, the strange attractors that arise in physics, and one of the outstanding open

problems is to understand the dimension theory of Kuperberg minimal sets, and its

dependance on the dynamics.

Krystyna Kuperberg showed in the work [24] that every closed 3-manifold

admits a smooth flow with no periodic orbits. Her proof was based on the construction

of a smooth aperiodic flow in a plug, which is a compact three-manifold with boundary.

This plug is inserted in flows to break open periodic orbits. It is known that the flow in

the plug preserves a unique minimal setM, and that under generic assumptions,M
is a codimension one lamination with a Cantor transversal, as was shown in [19]. The

dynamics of Kuperberg flows have been previously studied in [25], [14], [19], [20],

[21], and [28], and it is known that the topology of M is particularly complicated.

There have been many notable contributions to the dimension theory of limit

sets of dynamical systems in dimensions higher than two; see [6], [43], [44], [45] for

some examples. A common theme in these works is hyperbolicity in the dynamics

and a reduction to one dimension via stable manifolds. However, as stated in the

survey [39],

“Even for the simplest examples of higher dimension [than 2] we are

far from a general theory of the Hausdorff dimension of limit sets.”

The Kuperberg flow does not resemble these systems, because by a theorem

of Katok [23], an aperiodic flow cannot preserve a hyperbolic measure. Though the

flow is not hyperbolic and has zero entropy, arbitrarily small perturbations of it are

1



1. THE KUPERBERG FLOW 2

hyperbolic and have positive entropy (see [20]). For this reason, the dynamics of the

Kuperberg flow are said to lie “at the boundary of hyperbolicity.”

In two dimensions, this type of behavior is present in Hénon-like families and

Kupka-Smale diffeomorphisms (see [5],[11],[26]). Studying the fractal geometry and

dimension theory of the Kuperberg minimal set makes a new contribution to a general

dimension theory for limit sets in dimension three, in the absence of hyperbolicity.

Fortunately, the characterization of the minimal set as a codimension one

lamination reduces the dimension theory to that of the transverse Cantor set. Without

this, the study of its fractal geometry and dimension theory would be completely

intractable.

The dimension theory of Cantor sets in the the line has a vast literature, par-

ticularly for limit sets of iterated function systems, graph directed systems, and their

generalizations. However, the transverse Kuperberg minimal set poses new challenges

in this direction as well. These come from the complicated symbolic dynamics of the

action of the holonomy pseudogroup associated to the flow, which is not semiconju-

gate to a subshift.

In this paper we propose a general framework for treating the symbolic dy-

namics of limit sets of pseudogroups, and apply this to a transverse section of the

Kuperberg minimal set. We build a symbolic model of this transverse Cantor set

and extract a graph directed subspace by analyzing the pseudogroup. This allows

the application of results from one-dimensional thermodynamic formalism to obtain

dimension estimates, which are then extended to the minimal set via the product

structure.

1. The Kuperberg flow

Kuperberg’s construction is the first– and only currently known– smooth flow

on S3 with no periodic orbits. This was discovered as a counterexample to Seifert’s

conjecture.



1. THE KUPERBERG FLOW 3

1.1. Seifert’s conjecture. A vector field on a manifold is said to have a closed

orbit if one of its integral curves is homeomorphic to S1. The Hopf vector field on S3,

whose integral curves form the Hopf fibration, has all orbits closed. In 1950, Seifert

[41] showed that every nonsingular vector field on S3 sufficiently close to the Hopf

vector field also has a closed orbit, and then asked if every continuous vector field

on S3 does. The generalized Seifert conjecture asked this question for any compact

orientable n-manifold with Euler characteristic zero.

Counterexamples in dimension four and greater were discovered in 1966 by

Wilson [52], who constructed the first plug, the product of a closed rectangle with a

torus, which carries a smooth vector field satisfying certain properties. A plug is a

manifold with boundary, together with a smooth vector field. If this local vector field

satisfies some symmetry conditions, the plug can be inserted into a manifold carrying

a global vector field, in such a way that the local dynamics in the plug are compatible

with the global dynamics. If the plug intersects a periodic orbit, the plug’s interior

dynamics can break it.

Using this method, Wilson constructed smooth counterexamples to Seifert’s

conjecture in dimension greater than or equal to four. Seifert’s conjecture is trivial

in dimension two, so Seifert’s conjecture only remained unsolved in dimension three,

although Wilson did succeed in showing that on every closed connected three-manifold

there exists a smooth vector field with only finitely many closed orbits.

The first counterexample to Seifert’s conjecture in dimension three was con-

structed in 1972 by Schweitzer [40]. This counterexample used a plug supporting

an aperiodic vector field of class C1. In 1988, Harrison [17] modified Schweitzer’s

construction to class C2, but serious obstructions remained in extending to C∞. For

an account of Schweitzer’s and Harrison’s constructions, see [14].

1.2. Kuperberg’s plug. In 1994, Kuperberg [24] constructed a C∞ counterex-

ample to Seifert’s conjecture in dimension three. This construction began with a

modified Wilson plug embedded in R3 containing two periodic orbits. Kuperberg
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then used self-intersections to break the periodic orbits inside Wilson’s plug with-

out creating new periodic orbits. See [24], [14], [19], and [28] for descriptions of

Kuperberg’s construction.

1.3. Kuperberg’s minimal set. Ghys [14] showed that Kuperberg’s plug con-

tains a unique minimal set. Using a numerical simulation due to B. Sevannec, he

obtained an image of this minimal set on a transverse section of the plug. See Figure

1.

Figure 1. Cross-section of the Kuperberg minimal set, from Ghys ([14])
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Ghys encouraged an investigation into the properties of this minimal set, and

asked how such properties depend on Kuperberg’s construction. A closer study of the

topology and dynamics of the minimal set was carried out by Hurder and Rechtman

[19]. To answer Ghys’ question, they defined a special class of flows called generic

Kuperberg flows that preserves a unique minimal set with the following characteriza-

tion.

Theorem 1.1. ([19], Theorem 17.1) Let K be the Kuperberg plug, ψt : K → K

a generic Kuperberg flow, and M ⊂ K the minimal set. Then M is a codimension

one lamination with a Cantor transversal τ . Furthermore, there exists a closed surface

R′ ⊂ K such that

M =
⋃

−∞<t<∞
ψt(R′).

The surface R′ is called the notched Reeb cylinder. Because of Theorem 1.1,

the fractal geometry of M can be studied by analyzing the orbit of the R′. Perhaps

the first question in this direction is the Hausdorff dimension of the minimal set. This

theorem also provides a local product structure for the minimal set, so the dimension

theory ofM reduces to that of τ . The study of dynamically defined Cantor sets and

their dimension theory has a long history.

2. Iterated function systems and limit sets of group actions

A large class of fractals are the limit sets of iterated function systems, which

were introduced by Hutchinson [22].

2.1. Iterated function systems. LetX be a compact space, and E = {1, . . . , p}
a finite alphabet. An iterated function system is a collection {φi : X → X}i∈E of

injective contracting maps, with a common Lipschitz constant 0 < s < 1.

Each iterated function system has an invariant limit set :

J =
∞⋂
n=1

⋃
(i1,...,in)∈En

φi1 ◦ · · · ◦ φin(X).
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With appropriate separation conditions, J is a Cantor set. There is a p-to-1 expanding

map S whose inverse branches are φi, and the dynamics of S|J is conjugate to the

one-sided shift on EN. For an introduction to iterated function systems, see chapter

9 of [13]. There are many generalizations of iterated function systems, including

graph-directed Markov systems.

2.2. Graph directed Markov systems. Let (V,E) be directed graph with

finite vertex and edge sets V and E, respectively. Each edge e has an initial vertex

i(e) ∈ V and terminal vertex t(e) ∈ V . Let A : E×E → {0, 1} be the edge incidence

matrix of this directed graph, so if Aee′ = 1, then t(e) = i(e′). For each v ∈ V ,

let Xv be a metric space, and for each e ∈ E let φe : Xt(e) → Xi(e) be an injective

contraction map. If the maps {φe}e∈E have a common Lipschitz constant 0 < s < 1,

the collection is called a graph directed Markov system.

For each n ≥ 1, the matrix A determines the following space of admissible

words of length n:

En
A = {ω ∈ EN : Aωi,ωi+1

= 1 for all 1 ≤ i ≤ n− 1}.

In terms of these, the system has an invariant limit set:

J =
∞⋂
n=1

⋃
(i1,...,in)∈EnA

φi1 ◦ · · · ◦ φin
(
Xt(ωn)

)
.

As with iterated function systems, these limit sets are often Cantor sets, and their

dynamics are conjugate to a subshift of finite type over the alphabet E.

In some cases, the limit set of a discrete group Γ = 〈g1, . . . , gn〉 acting on a

compact space X can be realized as the limit set of an graph-directed system defined

by the generators gi and their images gi(X). Here are some examples.

• Expanding maps : A distance expanding map f : X → X defines a semigroup

action of N on X. Such a map has a Markov partition of arbitrarily small

diameter (see [38]). Defining the iterated function system to be the inverse
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branches of f , the limit set of this action is the limit set of the graph directed

system whose incidence matrix is the matrix defining the Markov partition.

• Fuchsian groups : Let Γ be a Fuchsian group acting on the hyperbolic disc

H2. Bowen [8] related the action of Γ on its boundary circle ∂H2 = S1

to an expanding Markov map f : S1 → S1. This correspondence is called

the Bowen-Series coding ; via this correspondence, these actions are orbit

equivalent. As above, the inverse branches of f form a graph directed system

with admissible words coded by the matrix defining the Markov map f .

• Schottky groups : Another example is the limit set of a finitely generated

Kleinian group of Schottky type, acting on the Riemann sphere. It can be

shown that such a limit set is the limit set of an appropriately defined graph

directed system. For details, see Chapter 5 of [31].

2.3. Infinitely generated function systems and pseudo-Markov systems.

There are many generalizations of iterated function systems and graph directed sys-

tems. These include the infinite iterated function systems of Mauldin and Urbański

[29] and the pseudo-Markov systems of Stratmann and Urbański ([48]). The former

can be used to describe sets of complex continued fractions (see [30]), and the latter

are models of limit sets of infinitely generated Schottky groups (see [48]).

The dynamics of a graph directed function system on its limit set is semicon-

jugate to a shift over a sequence space of admissible words. This is the domain of

symbolic dynamics, and the ergodic properties of such systems is well studied. One

of the advantages of relating the limit set of a group to the limit set of a function

system, is that the symbolic dynamics of the function system can then be used to

study the symbolic dynamics of the group action.

Once such a connection has been made, the fractal geometry of the limit set

of the group can be studied using techniques from iterated function systems. The

patterns that emerge when “zooming in” to the fractal by applying maps in the

function system, are the same as those that emerge by applying the generators of the
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group to a fundamental domain. These regular patterns are captured by the incidence

matrix determining the admissible words in the coding of the limit set.

3. General function systems and limit sets of pseudogroup actions

Pseudogroups are a generalization of groups of transformations of metric spaces

(see [16]). A primary application of pseudogroups is in the dynamics of foliations and

laminations. Compositions of transition maps of a foliation or lamination comprise

its holonomy pseudogroup. For a flow that does not admit a global section, the col-

lection of first-return maps to a section also forms a pseudogroup. For an exposition

of the dynamics of pseudogroups see [18] and [51].

Limit sets of pseudogroup actions have a similar definition to those of group

actions, but are generally more difficult to study. They can be fractals, but they need

not exhibit the same self-similarity evident in limit sets of groups.

In Chapter 5, we define the notion of a general function system. The limit set

of such a system is a fractal that need not be self-similar. This provides a framework

to relate the limit sets of pseudogroups to those of function systems. The transverse

Cantor set of the Kuperberg minimal set is the limit set of a pseudogroup action on

the transversal. The pseudogroup here is the holonomy of the foliation by flowlines of

the Kuperberg flow. In Chapter 11, we will relate this set to the limit set of a general

function system.

4. Symbolic dynamics and thermodynamic formalism

Let E be an alphabet (finite or infinite). The dynamics of the shift map on

invariant subspaces of the sequence space EN is well studied. The shift map has

an associated topological pressure that is related to ergodic properties of measures

supported on the space. This is part of the thermodynamic formalism developed by

Sinai, Ruelle, and Bowen (see [46], [38], and [7]). For generalized systems such as

infinite iterated function systems and pseudo-Markov systems, there are extensions of
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the thermodynamic formalism (see [31]). In Chapter 2, we will define the topological

pressure in an appropriate context.

4.1. Symbolic dynamics of limit sets of graph directed systems. For

graph directed systems, there is a bijective coding map π : Σ → J , where Σ ⊂ EN

is a compact shift-invariant subset, and J is the limit set of the system. This map

intertwines the system’s dynamics on J with the shift on Σ. Following Barriera [1]

we say that the function system is modeled by the subshift Σ.

In this way, symbolic quantities such as pressure have natural analogues de-

fined entirely in terms of the function system. If the function system is assumed to

have regularity C1+α for some α > 0, the pressure has additional uniformity proper-

ties that makes its definition particularly transparent. In Chapter 3 we will present

the pressure in this context, and study these properties.

4.2. Symbolic dynamics of limit sets of general function systems. Gen-

eral function systems are coded by more general sequence spaces, including spaces

that are not shift-invariant. These are also introduced in Chapters 2 and 3. In later

chapters we will equate the transverse Kuperberg minimal set to the limit set J of a

general function system, and show that there is a bijective correspondence π : Σ→ J ,

where Σ ⊂ NN is a sequence space that is not shift-invariant. As with subshifts, we

say that such a general function system is modeled by this general symbolic space Σ.

The definition of limit sets of general function systems resembles that of graph

directed systems. However, their fractal geometry is a priori more complicated than

their graph directed counterparts, and exhibits less self-similarity. Applying the maps

in the function system, we “zoom in” on the fractal, but the regular patterns present

in graph directed systems do not emerge, because the underlying dynamics are those

of a pseudogroup rather than those of a group.

The limit sets of actions of pseudogroups is not as widely studied as those

of groups and can exhibit substantially more pathology. The ergodic theory and

symbolic dynamics of these systems is still being developed (see [51]). Progress
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in this direction includes the entropy theory of Ghys, Langevin, and Walczak [15].

However, it is not at all clear how to develop a thermodynamic formalism or to define

quantities such as pressure for limit sets of pseudogroups and of function systems that

are coded by these general symbolic spaces.

4.3. Dual symbolic spaces. In his study of differentiable structures on Cantor

sets, Sullivan [49] defined the notion of a dual Cantor set. The symbolic description

of the dual is given by simply reversing the coding and reading the words in the

opposite order.

The distortion of a fractal in a metric space can be quantified by its ratio

geometry. The ratio geometry is a sequence of real numbers that measure the self-

similarity defect of the fractal; if the sequence is constant, the fractal is self-similar

and its similarity coefficient is equal to this constant. The asymptotic ratio geometry

is called the scaling function and is viewed as a function on the symbolic space coding

the fractal. Sullivan proved that for Cantor sets defined by C1+α function systems, the

scaling function on the dual is an invariant of the differential structure. In Chapter 8

we will see that dual Cantor sets arise naturally in our study of the symbolic dynamics

of the Kuperberg minimal set. We present the dual of a symbolic space in Chapter

4 in the context of general symbolic spaces appropriate for coding the limit sets of

general function systems. For references on Sullivan’s theorem and dual Cantor sets,

see [4], [36], and [37].

5. Symbolic dynamics of the Kuperberg minimal set

We now return to the Kuperberg flow, its minimal set, and the fractal geometry

of the minimal set. In Chapter 5 we briefly present the general theory of plugs, and

summarize Wilson’s construction [52] of a vector field on a mirror-image plug with

two periodic orbits. In Chapter 6, we summarize Kuperberg’s construction of a plug

K [24], using self-insertions to modify Wilson’s plug. The flow of the resulting vector
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field on K is called the Kuperberg flow ψt. The images of these periodic orbits under

the quotient map are called the special orbits.

To simplify the problem, it is necessary to make additional assumptions on

the construction K and ψt. These assumptions are listed in Chapter 2, and are

compatible with the generic hypotheses on Kuperberg flows given in [19]. Under

these assumptions, we can write the insertion maps in coordinates and explicitly

integrate the Kuperberg vector field.

The dynamics of ψt are complicated, but there are several important notions

that allow us to relate these to the simpler dynamics of the Wilson flow. These

notions are called transition and level ; they were defined by Kuperberg in [24] and

used extensively in [19], [14], and [28]. We can decompose orbits of points in K by

level, and relate each level set to an orbit in Wilson’s plug. We make this precise in

Chapter 4.

5.1. The Kuperberg pseudogroup. In Chapter 7 we commence the study

of the holonomy pseudogroup associated to ψt. This flow does not admit a global

section, so we choose a convenient local section defined in Chapter 2. It is the union

of two rectangles transverse to the flow, that lie in the entrances to the two insertion

regions. In Chapters 8 through 10, we restrict to just one which we refer to as S.

The map taking a point x ∈ S to its first return under ψt generates a pseu-

dogroup Ψ. Using the theory of levels from Chapter 6, we first show that this pseu-

dogroup is generated by the first-return maps of the Wilson flow, together with the

insertion maps.

The intersection of the notched Reeb cylinderR′ with S is a curve γ. In view of

Theorem 1.1, the intersection M∩ S is the closure of the orbit of the curve γ under

this pseudogroup. Because our assumptions in Chapter 2 allowed us to integrate

the Kuperberg flow and write the insertion maps in coordinates, we then set out to

explicitly parametrize the transition curves in the intersectionM∩ S. We carry this

out in Chapter 8. See Figure 2 for a picture of some of these curves.
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Figure 2. The first two iterations in the recursive construction of the
transverse minimal set. Compare with Figure 1.

5.2. Interlaced Cantor sets. Through Chapter 10, we only consider the first

return to S, one of the two rectangular regions defined by the insertions. To account

for the entire minimal set, we must also consider points that enter the other insertion

region, before intersecting S. These points also form a Cantor set in S, and because

of the symmetry of the plug, these Cantor sets are identical. In Chapter 11 we will

prove that these two Cantor sets are interlaced, and that M ∩ S is equal to this

interlaced Cantor set. The symbolic dynamics of two interlaced Cantor sets modeled

by sequence spaces Σ and Ξ, is defined naturally by the induced dynamics on a joint

sequence space Σ ∗ Ξ. These terms will be defined precisely in Chapter 6.
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5.3. Symbolic dynamics of the Kuperberg minimal set. Using the theory

of levels, we prove that each curve in M∩ S is coded by a word ω in an appropriate

general sequence space, whose word length corresponds to the level of the curve.

These can be used to code the points in τ ⊂ S, the Cantor transversal of M.

The space Σ of admissible words is not shift-invariant, and depends delicately

on the symbolic dynamics of the Kuperberg pseudogroup. The number of words in

each level depends on the escape times of curves in M∩ S under the pseudogroup.

In general, it is impossible to predict the exact escape times of all curves in M∩ S.

However, in Chapter 11 we give an iterative construction of the sequence space Σ in

terms of these escape times. In Chapter 10, we use the Kuperberg pseudogroup and

projection maps along the leaves of the lamination M to define a general function

system on the transversal. Using the symbolic dynamics developed in Chapters 7 and

8, we show that this general function system is modeled by the dual of the sequence

space Σ, in the sense of Sullivan. This allows us to prove the following theorem.

Theorem (A). Let M be the Kuperberg minimal set with Cantor transversal

τ . There is a sequence space Σ ⊂ NN and a C1+α general function system on [0, 1]

modeled by the dual Σ̃, with limit set τ .

As we show in Chapter 3, limit sets of general function systems modeled by a

sequence space have a bijective coding to the space. Then as an immediate corollary

to Theorem A, we obtain

Corollary (B). LetM be the Kuperberg minimal set with Cantor transversal

τ . Then there exists a sequence space Σ ⊂ NN and bijective coding map

π : Σ→ τ.

This coding of τ by Σ will be crucial later, when estimating the dimension.
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6. Dimension theory of limit sets

In his study of the limit sets Fuchsian groups, Bowen [9] related the ther-

modynamic formalism to dimension theory. In this setting, the pressure defined by

the symbolic dynamics depends only on a parameter t ∈ R, and can thus be viewed

as a function p : R → R. Bowen proved that this function has a unique zero that

coincides with the Hausdorff dimension of the limit set. This relation is known as

Bowen’s equation for dimension. This equation– and its subsequent generalizations

in other settings– is now ubiquitous in the dimension theory of dynamical systems.

There is an immediate analogue of Bowen’s equation for limit sets of graph

directed Markov systems. Similarly, there is an analogue for each generalization,

including graph directed and pseudo-Markov systems. In Chapter 4 we will present

the pressure function and Bowen’s equation in the appropriate generality. For a

proof of Bowen’s equation for limit sets of finite iterated function systems, see [3].

For generalizations of Bowen’s equation, see [29], [31], and [48], in increasing order

of generality. For general expositions of applications of thermodynamic formalism to

dimension theory see [35], [12], [36] and [39].

In the survey [39], Schmeling and Weiss point out how pervasive Bowen’s ideas

are in the dimension theory of dynamical systems.

“One of the most useful techniques in the subject is to obtain a

Bowen formula for the Hausdorff dimension of a set, i.e. to obtain

the Hausdorff dimension as the zero of an expression involving the

thermodynamic pressure. Most dimension formulas for limit sets of

dynamical systems and geometric constructions in the literature are

obtained, or can be viewed, as Bowen formulas.”

For this reason, to study the dimension theory of a set as complicated as the

transverse minimal set τ in the Kuperberg plug, it seems necessary to have the full

power of the thermodynamic formalism at our disposal. However, we have already

noted that for limit sets of pseudogroups and general function systems modeled by
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sequence spaces that are not shift-invariant, such a formalism does not exist. Thus, it

is necessary to relate τ to a more tractable function system, for instance the pseudo-

Markov systems of Stratmann and Urbański ([48]).

7. A graph directed subspace of Σ

We carry out this analysis in Chapters 8 and 2. For each ε > 0, let Sε ⊂ S

be a sub-rectangle of width ε. By analyzing the parametrizations of these curves and

their images under the generators of Ψ, we obtain bounds (with error) on the escape

times of curves inM∩ Sε. The error in these bounds decreases as ε→ 0. Because Σ

is defined in terms of escape times, we thus extract a subspace Σε ⊂ Σ that we can

determine explicitly for small ε. We then show that the bijective coding π : Σ → τ

restricts to a bijective coding π : Σε → τε, where τε is the intersection of τ with an

ε-neighborhood of the critical orbit in K.

Fortunately, for small enough ε > 0, the fractal τε exhibits much more self-

similarity than is evident in τ . The next theorem exploits this self-similarity.

Theorem (C). LetM be the Kuperberg minimal set, with Cantor transversal

τ . Let τε be the intersection of τ with an ε-neighborhood of the critical orbit in K.

For sufficiently small ε > 0 there is a C1+α graph directed pseudo-Markov system on

[0, ε] with limit set τε.

8. Dimension theory of the Kuperberg minimal set

Theorem C shows that the general function system modeled by Σ from The-

orem B has a graph-directed subsystem modeled by Σε ⊂ Σ. Thus for small enough

ε, we can invoke the dimension theory developed in Chapter 4 for graph directed

systems to obtain results about the dimension theory of τε.

8.1. Properties of the dimension. To relate this to the dimension theory of

τ , we first state the following global-to-local result.
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Lemma (D). Let τ be the transverse Cantor set of the Kuperberg minimal set,

and let τε be the intersection of τ with an ε-neighborhood of the critical orbit in K.

Then for any ε > 0,

dimH(τ) = dimH(τε).

We prove this lemma in Chapter 12. Applying the thermodynamic formalism

for graph directed systems from Chapter 4, we obtain the following theorem.

Theorem (E). Let τ be the transverse Cantor set of the Kuperberg minimal

set. Then the Lebesgue measure of τ is zero, and 0 < dimH(τ) < 1.

8.2. Numerical estimates for dimension. Finally we turn to numerical di-

mension results. The Kuperberg flow is defined in terms of several external param-

eters, the most important being its angular speed a > 0. To numerically estimate

dimension using Bowen’s equation, it is necessary to calculate the pressure function

and its zero explicitly. Besides calculating the dimension, we are interested in its

dependence on the parameter a > 0. As we show in Chapter 4, the pressure function

depends on the symbolic dynamics and the derivatives of the maps comprising the

function system. Both of these quantities depend on external parameters, including

a.

The symbolic dynamics are determined by the space Σε, which we have calcu-

lated by virtue of Theorem C. However, the function system on [0, 1] from Theorem B

is defined in terms of the Kuperberg pseudogroup and projection maps along leaves.

Explicit calculation of the derivatives of these maps seems impossible.

Fortunately, in regularity C1+α, the derivatives of the maps can be related to

ratio geometry of the limit set. This is the bounded distortion property from one-

dimensional dynamics, used by Shub and Sullivan ([42]), and is presented in Chapter

4. This reduces the pressure calculation to the estimation of the ratio geometry of

the transverse Cantor set τ .

A detailed study of this ratio geometry is carried out in Chapter 9. In this

chapter, we use the parametrizations of the curves calculated in Chapter 8 and study
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their intersections with the transversal. As with the symbolic dynamics, by restricting

to a suitably small ε-neighborhood of the critical orbit, we obtain explicit bounds on

the ratio geometry. The simplest type of ratio geometry is that of stationary systems,

such as iterated function systems whose maps are similarities. Such systems have a

clean numerical dimension theory that depends on the ratio coefficients of the system

(see [35]).

In this direction, we define in Chapter 4 an asymptotically stationary function

system with error aδ for some δ. This error is a function aδ : Σ→ R≥0 that decreases

to zero as δ does. The ratio geometry of the limit set of such a function system differs

from that of a stationary system by this error. As long as the error satisfies a natural

summability condition, the pressure function for an asymptotically stationary system

approaches that of a stationary system and allows for numerical estimates.

In Chapter 9, we show that for any δ > 0, there exists ε > 0 such that pseudo-

Markov system whose limit set is τε is asymptotically stationary with summable error

aδ. This can be used to obtain the following dimension estimates.

Theorem (F). Let τ be the Cantor transversal of the Kuperberg minimal set.

Let t = dimH(τ) be its Hausdorff dimension, and a > 0 the angular speed of the

Kuperberg flow.

• t = dimH(τ) is the unique zero of a dynamically defined pressure function,

• t depends continuously on a,

• For any a we may compute t to a desired level of accuracy.

We conclude Chapter 12 by extending the results of Theorems E and F to the

entire minimal set M, using the product structure from Theorem 0.1. In Chapter

13, we survey some remaining open questions related to the dimension theory of the

Kuperberg minimal set.



CHAPTER 2

Symbolic spaces over an infinite alphabet

In this chapter we will fix some important notation that will be used through-

out the paper. The notation of graph-directed symbolic spaces is standard and we

follow some commonly observed conventions. The main reference here is [29] (see

also [7], [29] [38]). We then introduce general symbolic spaces and symbolic spaces

of infinite type, which are natural generalizations of graph-directed symbolic spaces.

We conclude by presenting dual symbolic spaces.

1. Countable alphabets

Let E ⊂ N be a countable alphabet, and let E∗ =
⋃
n≥1E

n and E∞ = EN be

the finite and infinite words in E, respectively. If ω ∈ E∗ then ω ∈ En for some n and

we say |ω| = n is the word length of ω. If ω ∈ E∞, we set |ω| =∞. If ω ∈ E∗ ∪ E∞

and n ≤ |ω|, we denote by ω|n the truncated word (ω1, . . . , ωn). If ω ∈ E∗ is a finite

word, we denote

[ω] = {τ ∈ E∞ : τ ||ω| = ω}.

We have a countable-to-one left shift map σ : E∞ → E∞. With the convention

1
2∞ = 0, the space E∗ ∪ E∞ is metrizable in the usual metric

d(ω, τ) =
1

2|c(ω,τ)| ,

where c(ω, τ) is the longest common initial subword of ω and τ .

2. General and infinite type symbolic spaces

2.1. General symbolic spaces. Let Σ ⊂ E∗ be a collection of finite words.

Because the alphabet E is countable, in general Σ is infinite. For each such Σ and

18
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n ≥ 1, let

Σn = {ω ∈ Σ : |ω| = n}.

The symbolic spaces that arise naturally in our applications will satisfy the following

property.

Definition 2.1 (Extension admissibility property). We say that Σ ⊂ E∗

satisfies the extension admissibility property if Σn 6= ∅ for all n ≥ 1, and for all

(ω1, . . . , ωn) ∈ Σn with n > 1, we have (ω1, . . . , ωn−1) ∈ Σn−1.

We will refer to spaces Σ ⊂ E∗ satisfying the extension admissibility property

as general symbolic spaces. These spaces have words of arbitrary length, and each

word is comprised of admissible subwords. Such spaces need not be shift-invariant,

and the spaces we will consider in our applications will not be.

2.2. Symbolic spaces of infinite type. Let Σ ⊂ E∞ be a closed subspace.

For each such space, and for each n ≥ 1 define

Σn = {ω|n : ω ∈ Σ}.

This definition is compatible with the one given above for spaces of finite words.

There is a natural analogue of Definition 2.1 for these spaces.

Definition 2.2 (Restriction admissibility property). We say that Σ ⊂ E∞

satisfies the restriction admissibility property if for all ω ∈ Σ and for all n > 1 with

ω|n ∈ Σn, we have ω|n−1 ∈ Σn−1.

We will refer to spaces Σ ⊂ E∞ satisfying the restriction admissibility property

as symbolic spaces of infinite type. There is a natural way of obtaining a space of

infinite type from a general symbolic space, and vice versa, called extension and

restriction. There are versions of these notions for sequences of words, and those of

spaces.
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2.3. Extension and restriction of words. Fix a general symbolic space, and

consider a sequence of finite words

(ω1, . . . , ωn) ∈ Σn,

defined for all n ∈ N. In terms of this, we define ω ∈ E∞ by

ω = (ω1, ω2, . . .),

so that ω|n = (ω1, . . . , ωn). The word ω ∈ E∞ is called the infinite extension of the

sequence (ω1, . . . , ωn).

Similarly, if Σ ⊂ E∞ is a symbolic space of infinite type, for each word ω ∈ Σ

we obtain a sequence ω|n ∈ Σn by truncating. This is naturally a sequence in E∗,

and we call it the finite restriction of ω.

Extension and restriction are naturally dual to each other. If (ω1, . . . , ωn) ∈ Σn

is a sequence in a general symbolic space, it is equal to the restriction of its extension.

If ω ∈ Σ is a word in a space of infinite type, it is equal to the extension of its

restriction.

2.4. Extension and restriction of spaces. For general symbolic spaces, we

have the following analogue of the above notion, which we also refer to as infinite

extension.

Definition 2.3 (Infinite extension). Let Σ ⊂ E∗ be a general symbolic space.

The infinite extension Σ∞ is

Σ∞ = {ω ∈ E∞ : ω|n ∈ Σn for all n ∈ N}.

Thus the infinite extension Σ∞ of a general symbolic space Σ consists of the

infinite words whose finite truncations lie in Σ. Notice that Σ∞ satisfies the restriction

admissibility property because Σ is assumed to satisfy the extension admissibility
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property, so Σ∞ is in fact a space of infinite type. Similarly, we obtain a general

space from a space of infinite type by finite restriction.

Definition 2.4 (Finite restriction). Let Σ ⊂ E∞ be symbolic space of infinite

type. The finite restriction Σ∗ is

Σ∗ =
⋃
n≥1

Σn

Thus the finite restriction Σ∗ of a space of infinite type Σ consists of all the

finite truncations of words in Σ. Notice that Σ∗ satisfies the extension admissibility

property because Σ is assumed to satisfy the restriction admissibility property, so Σ∗

is in fact general symbolic space.

As with words and sequences, extension and restriction are naturally dual to

each other. If Σ is a general symbolic space then (Σ∞)∗ = Σ. If Σ is a symbolic space

of infinite type then (Σ∗)∞ = Σ.

3. Graph directed symbolic spaces

Let (V,E) be a directed graph with countable vertex and edge sets V and

E. For each edge e ∈ E let i(e) and t(e) ∈ V be its initial and terminal vertex,

respectively. Let A : E × E → {0, 1} be the edge incidence matrix of this directed

graph, so if Aee′ = 1 then t(e) = i(e′).

For n ≥ 1, the admissible words of length n are

(1) En
A = {ω ∈ En : Aωiωi+1

= 1 for all 1 ≤ i ≤ n− 1}.

Let E∗A =
⋃
n≥1E

n
A be the collection of all finite admissible words, and E∞A the

one-sided infinite admissible words. It is easy to see that E∗A satisfies the extension

admissibility property, so it is a special case of a general symbolic space. Because

E∞A is closed, it is a special case of a symbolic space of infinite type. The infinite

extension of E∗A is E∞A and the finite restriction of E∞A is E∗A. The left shift restricts

to σ : E∞A → E∞A because the admissible words E∞A are invariant.
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4. Dual symbolic spaces

In this chapter we will define the dual of a symbolic space (see [49]). Consider

the case E = N so that E∞ =
∏∞

i=1E. We define the space Ẽ∞ ⊂ ∏−1
i=−∞E as

follows.

Ẽ∞ = {(. . . , ω2, ω1) : (ω1, ω2, . . .) ∈ E∞}

There is a natural bijection E∞ → Ẽ∞ given by

(ω1, ω2, . . . , ) 7→ (. . . , ω2, ω1)

This map is an isometry in the above metric. It is also an involution, so we say that

Ẽ∞ is the dual space to E∞.

Similarly, we define

Ẽn = {(ωn, . . . , ω1) : (ω1, . . . , ωn) ∈ En},

and Ẽ∗ =
⋃
n≥1 Ẽ

n.

For a graph directed symbolic space E∞A as defined in Chapter 2, we have a

dual Ẽ∞A defined by

Ẽ∞A = {(. . . , ω2, ω1) : Aωi−1ωi = 1 for all i},

and similarly for Ẽn
A and Ẽ∗A.

Finally, general symbolic spaces, spaces of infinite type, and their subspaces

have duals defined in an analogous way.



CHAPTER 3

C1+α function systems

In this chapter we will present graph-directed pseudo-Markov systems, their

limit sets, and some of their associated thermodynamic formalism. This theory is par-

allel to that of Stratmann and Urbański [48], but altered to account for the symbolic

dynamics of the Kuperberg pseudogroup, which will be studied in detail in Chapter

8.

We assume that each space is a compact subinterval of [0, 1] and that the maps

have regularity C1+α. From this we will deduce the important properties of bounded

variation and distortion in this context, which are analogues of the corresponding

properties in the setting of the cookie-cutter Cantor sets of Sullivan [49], [3].

We will then introduce general function systems– a natural generalization of

pseudo-Markov systems– and their limit sets. We conclude by presenting interlaced

limit sets of two general function systems satisfying a disjointness condition.

1. Graph directed pseudo-Markov systems

Let X be a bounded metric space. Let E be a countable alphabet and A :

E × E → {0, 1} an incidence matrix determining the admissible words E∞A . Assume

that for each i ∈ E we have injective maps fi : X → X with a common Lipschitz

constant 0 < s < 1. We denote ∆i = fi(X), and further assume that these images

satisfy the separation condition

∆i ∩∆j = ∅ if i 6= j.

The following definition is given in terms of the above notation.

23
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Definition 1.1. A graph directed pseudo-Markov system– or pseudo-Markov

system for short– is a set ⋃
i,j∈E
Aij=1

{φi,j : ∆j → X}

of injective maps satisfying the following properties.

• Lipschitz : For each i, the maps φi,j : ∆j → X have a common Lipschitz

constant 0 < s < 1.

• Separation: For each i, j ∈ E with Aij = 1 we have

φi,j(∆j) ∩ φi′,j′(∆j′) = ∅

when i 6= i′ or j 6= j′.

• Graph directed property : For all i, j ∈ E with Aij = 1, we have

φi,j(∆j) ⊂ ∆i.

By the graph directed property and Equation 1, for each n ≥ 1 and ω ∈ En
A

we have a map φω : X → X given by the composition

(2) φω = φω1,ω2 ◦ φω2,ω3 ◦ · · · ◦ φωn−1,ωn ◦ fωn .

For convenience, define

(3) ∆ω = φω(X).

In this notation, we deduce the nesting property ∆ω,i ⊂ ∆ω for all ω ∈ E∗A and i ∈ E
such that (ω, i) ∈ E∗A.

Since each map φωi,ωi+1
and fi has Lipschitz constant 0 < s < 1, we have for

each n ≥ 1 that

diam
(
∆ω|n

)
≤ sn diam(X).
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From the nesting property we see ∆ω|n ⊃ ∆ω|n+1 . By this and the above equation,⋂∞
n=1 ∆ω|n is necessarily a singleton. This defines a bijective coding map π : E∞A → X

given by

π(ω) =
∞⋂
n=1

φω|n(X).

The limit set J of the pseudo-Markov system {φi,j} is

J = π(E∞A )(4)

=
⋃

ω∈E∞A

∞⋂
n=1

∆ω|n

=
∞⋂
n=1

⋃
ω∈EnA

∆ω.

Note: the above description of J is only true when the pseudo-Markov system is of

finite multiplicity, which is a consequence of our separation condition. For a definition

of this term and details, see Lemma 3.2 of [48].

2. Topological pressure

2.1. Pressure of continuous potentials. Fix an alphabet E and incidence

matrix A, and let f : E∞A → R be a continuous function; we will refer to such as a

potential. For any n ≥ 1, denote by Snf : En
A → R the sum

Snf(ω) = sup
τ∈[ω]

n−1∑
j=0

f(σjτ),

and from this we form the nth partition function

Zn(f) =
∑
ω∈EnA

expSnf(ω).

From the cocycle relation Sm+nf(ω) = Smf(ω)+Snf(σmω) we deduce that Zm+n(f) ≤
Zn(f)Zm(f) and so the following limit exists, which we call the topological pressure

of the potential f

P (f) = lim
n→∞

1

n
logZn(f).
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There is a natural generalization of this notion, to families of potentials.

2.2. Pressure of summable Hölder families of potentials. We use the no-

tation

F = {gi : X → R, hi,j : ∆j → R}

to denote a family of Hölder continuous functions of the same Hölder order. Also

assume that F satisfies the summability conditions

∑
i∈E
‖egi‖ <∞, and

∑
i,j∈E
Aij=1

∥∥ehi,j∥∥ <∞.
We refer to such a family as a summable Hölder family. For any n ≥ 1, word ω ∈ En

A,

and summable Hölder family F , denote by SnF (ω) : X → R the function

SnF (ω) =
n∑
j=1

hωj ,ωj+1
◦ φσjω + gωn .

Similar to above, the following cocycle relation holds:

Sm+nF (ω) =
n+m∑
j=1

hωj ,ωj+1
◦ φσjω + gωn+m

=
m∑
j=1

hωj ,ωj+1
◦ φσjω +

m+n∑
j=m+1

hωj ,ωj+1
◦ φσjω + gωn+m

=
m∑
j=1

hωj ,ωj+1
◦ φσjω +

n∑
j=1

hωj+m,ωj+m+1
◦ φσj+mω + gωn+m

= SmF (ω) + SnF (σmω).

This implies that the following limit exists:

(5) P (F ) = lim
n→∞

1

n
log

∑
ω∈EnA

‖expSnF (ω)‖ .

This is called the topological pressure of the family F .
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3. C1+α graph directed systems in dimension one

The pseudo-Markov formalism outlined above is very general. To apply this

formalism to the Kuperberg minimal set, we will make the following assumptions on

X, the images ∆i = fi(X), and maps φi,j : ∆j → X.

3.1. Dimension one. From now on we assume that X is an interval in [0, 1],

and that each ∆i is a closed subinterval. Let | · | be usual distance on [0, 1], and set

|U | = diam(U) when U ⊂ [0, 1]. For any function f : X → X or X → R, we denote

its uniform norm in this distance by

‖f‖∞ = sup
x∈X
|f(x)|.

From the condition limn→∞ |∆ω|n| = 0 for all ω ∈ E∞A we see that the limit

set J from Equation 8 is perfect. From the separation condition on pseudo-Markov

systems, J is totally disconnected. By these facts and our above assumption on X

and ∆i, we see that J is a Cantor set in the line. See Figure 1 for a picture of a limit

set of pseudo-Markov system in the line satisfying these conditions.

3.2. C1+α regularity. In general, to develop thermodynamic formalism we need

a conformality condition. Since we are assuming ∆i ⊂ X ⊂ [0, 1], this can be replaced

by the weaker condition of C1+α regularity.

Definition 3.1. A pseudo-Markov system {φi,j : ∆j → X} is said to be C1+α

if there exists an α > 0 such that

• for all i ∈ E, the map fi : X → X defining ∆i has regularity C1+α.

• For all i, j ∈ E such that Aij = 1, the map φi,j : ∆j → X has regularity

C1+α.

A pseudo-Markov system satisfying this assumption is referred to as a C1+α

pseudo-Markov system. Henceforth we will assume this regularity. The following

lemmas are standard in one-dimensional dynamics (see [42], [3], or the appendix to

[49]). Our proofs are based on their analogues for iterated function systems.
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X ⊂ [0, 1]

∆1∆2∆3· · ·

∆11∆12· · ·∆21∆22· · ·· · ·

1

;

Figure 1. The first two steps of the recursive construction of J in
the notation of Equation 8. The alphabet is E = {1, 2, 3, . . .}, and
the incidence matrix is Aij = 1 for all i, j ∈ E. Note the separation
condition ∆i ∩∆j = ∅ and nesting property ∆ω,i ⊂ ∆ω.

Lemma 3.2 (Bounded variation). Let F = {gi, hi,j} be a summable Hölder

family of potentials. Then there exists a constant M > 0 such that for any n ≥ 1 and

all ω ∈ En
A we have

|SnF (ω)(x)− SnF (ω)(y)| < M

for all x, y ∈ X.

Proof. Let α > 0 be the Hölder order of each gi and hi,j. Since these maps have

Lipschitz constant 0 < s < 1, we know for all x, y ∈ X that

|φω(x)− φω(y)| ≤ s|ω||X|.
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By this and the Hölder continuity of each potential we have

|SnF (ω)(x)− SnF (ω)(y)| ≤
n−1∑
j=1

∣∣hωj ,ωj+1

(
φωj+1,...,ωn(x)

)
− hωj ,ωj+1

(
φωj+1,...,ωn(y)

)∣∣
|gωn(x)− gωn(y)|

≤ C
n−1∑
j=1

∣∣φωj+1,...,ωn(x)− φωj+1,...,ωn(y)
∣∣α + C|x− y|α

≤ C
n−1∑
j=0

s(n−j−1)α|X|

<
C|X|

1− |s|α .

�

For C1+α pseudo-Markov systems in dimension one, we obtain the important

bounded distortion property from the bounded variation property.

Lemma 3.3 (Bounded distortion of derivatives). Let {φi,j} be a C1+α pseudo-

Markov system. Then there exists a constant K > 1 such that for all n ≥ 1 and

ω ∈ En
A,

K−1 <
|φ′ω(x)|
|φ′ω(y)| < K

for all x, y ∈ X.

Proof. Consider the family F = {gi, hi,j}, where

gi(x) = log |f ′i(x)|, and hi,j(x) = log |φ′i,j(x)|.

By our C1+α assumption in Definition 3.1, each fi and φ′i,j is Hölder continuous on

a compact set and bounded away from zero, so F is a Hölder family. Note that the

summability conditions on F are

∑
i∈E
‖f ′i‖ <∞, and

∑
i,j∈E
Aij=1

‖φ′i,j‖ <∞.
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The first is a consequence of the mean value theorem and the separation conditions

on the images ∆i = fi(X). The second is a consequence of that, together with the

nesting property ∆i,j ⊂ ∆i when Aij = 1.

Since F is a summable Hölder family, we may apply Lemma 3.2 to say there

exists a constant M > 0 such that for all n ≥ 1 and all ω ∈ En
A we have |SnF (ω)(x)−

SnF (ω)(y)| < M for all x, y ∈ X. For our choice of F , by the chain rule we have

SnF (ω)(x) =
n−1∑
j=1

log
∣∣∣φ′ωj ,ωj+1

(φωj+1,...,ωn(x))
∣∣∣+ log

∣∣f ′ωn(x)
∣∣ = log |φ′ω(x)|,

so the conclusion of Lemma 3.2 states that

e−M <
|φ′ω(x)|
|φ′ω(y)| < eM .

Let K = eM > 1. �

From the bounded distortion of derivatives and the mean value theorem, we

obtain bounded distortion of the intervals ∆ω.

Lemma 3.4 (Bounded distortion of intervals). Let K ≥ 1 be the constant

defined in Lemma 3.3. Then for all n ≥ 1 and ω ∈ En
A we have

K−1|X| < |∆ω|
|φ′ω(x)| < K|X|

for all x ∈ X.

Proof. By the mean value theorem applied to φω : X → X we have

inf
x∈X
|φ′ω(x)| ≤ |∆ω|

|X| ≤ sup
x∈X
|φ′ω(x)|.

Let x−, x+ ∈ X be the points on which φ′ω takes its infimum and supremum respec-

tively, and let x ∈ X be arbitrary. By Lemma 3.3 and the above inequality,

K−1|φ′ω(x)| < |φ′ω(x−)| ≤ |∆ω|
|X| ≤ |φ

′
ω(x+)| < K|φ′ω(x)|.

�
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4. Asymptotically stationary pseudo-Markov systems

In the last chapter, we showed that pseudo-Markov systems with regularity

C1+α have bounds on the distortion of their derivatives and intervals. In this chapter,

we will introduce a simpler class of pseudo-Markov systems with zero distortion,

called stationary systems. Then we will introduce asymptotically stationary systems,

a simple generalization of these.

Definition 4.1 (Ratio geometry). Let {φi,j} be a pseudo-Markov system.

For each i ∈ E let Ri : E∗A → R≥0 be given by

Ri(ω) =
|∆ω,i|
|∆ω|

.

The function E∗A → RN
≥0 defined by ω 7→ {Ri(ω)}i∈E is called the ratio geometry of

the pseudo-Markov system.

The simplest pseudo-Markov systems are those whose ratio geometry is con-

stant. Following Pesin and Weiss (see [34], [35], [2]) we refer to such systems as

stationary.

Definition 4.2. Let {φi,j} be a pseudo-Markov system with ratio geometry

Ri. Suppose that there exist positive real constants {ri}i∈E such that for all ω ∈ E∗A
with |ω| > 1, we have

Ri(ω) = ri.

Such a pseudo-Markov system is called stationary, and the numbers {ri}i∈E are called

the ratio coefficients of the system.

For example, consider a pseudo-Markov system for which fi and φi,j are simi-

larities for all i, j ∈ E (i.e. f ′i and φ′i,j are everywhere constant); this is a stationary

system.

For each i ∈ E let si = |∆i|. Then for each ω ∈ En
A, by Equations 2 and 3,

the lengths of the intervals ∆ω of a stationary pseudo-Markov system are simply a
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product of the ratio coefficients.

(6) |∆ω| = sω1rω2 · · · rωn

In Chapter 4 we will see that stationary systems have a particularly simple dimension

theory, in terms of their ratio coefficients.

We now introduce a class of pseudo-Markov systems whose ratio geometry

differs from that of a stationary system by some explicit error functions.

Definition 4.3. Let {φi,j} be a pseudo-Markov system. Suppose that there

exist positive real constants {ri}i∈E and functions a± : E∗A → R≥0 such that for all

n ≥ 1 and ω ∈ En
A,

(7) sω1rω2 · · · rωn − a−(ω) < |∆ω| < sω1rω2 · · · rωn + a+(ω)

Such a pseudo-Markov system is called asymtotically stationary with error a±.

To relate these systems to their simpler stationary counterparts, it is necessary

to impose some conditions on the error functions a±. With these conditions, we will

see later that the dimension theory of limit sets of asymptotically stationary systems

can also be analyzed using their ratio coefficients.

• Summability : Assume for all n ≥ 1 that

∑
ω∈EnA

a±(ω) <∞.

• Monotonicity : Assume that the error functions a± depend on an external

parameter δ ∈ R≥0– which we notate as a± = a±δ – such that the following

holds.

lim
δ→0

a±δ = 0.
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Henceforth when referring to an asymptotically stationary pseudo-Markov system

with summable monotone error, we mean a system in the sense of Definition 4.3

satisfying these two properties.

5. General function systems

We will now present general function systems and their limit sets. These

are generalizations of graph-directed systems, and their dynamics are not necessarily

conjugate to a shift.

Let E be a countable alphabet and let Σ ⊂ E∞ be a symbolic space of infinite

type as defined in Chapter 2. This implies that Σn 6= ∅ for all n ≥ 1. Let X be

a bounded metric space, and for each i ∈ E assume that there exist injective maps

fi : X → X with a common Lipschitz constant 0 < s < 1. We denote ∆i = fi(X)

and assume the separation condition

∆i ∩∆j = ∅ when i 6= j.

In terms of this notation, we give the following definition.

Definition 5.1. A general function system modeled by Σ is a set

{φi,j : ∆j → X}(i,j)∈Σ2

of injective maps satisfying the following properties.

• Lipschitz : For each (i, j) ∈ Σ2, the maps

{φi,j : ∆j → X}

have a common Lipschitz constant 0 < s < 1.

• Separation: For each (i, j) ∈ Σ2 we have

φi,j(∆j) ∩ φi′,j′(∆j′) = ∅
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when i 6= i′ or j 6= j′.

• Nesting property : For all n ≥ 1 and ω ∈ Σn we have

φωi,ωi+1
(∆ωi+1

) ⊂ ∆ωi

for all 1 ≤ i ≤ n− 1.

By the nesting property, for any n ≥ 1 and ω ∈ Σn we have a map φω : X → X

given by the composition

φω = φω1,ω2 ◦ φω2,ω3 ◦ · · · ◦ φωn−1,ωn ◦ fωn .

Setting ∆ω = φω(X), we have the following consequence of the nesting prop-

erty.

∆ω,i ⊂ ∆ω, and ∆ω,i ∩∆ω,j 6= ∅

for all ω ∈ Σ ∩ E∗ and i 6= j ∈ E such that (ω, i) and (ω, j) ∈ Σ ∩ E∗.
Because the maps φi,j have global Lipschitz constant 0 < s < 1, we have for

each n ≥ 1 that

diam
(
∆ω|n

)
≤ sn diam(X).

As with the graph-directed systems, the compact sets ∆ω|n are nested, so
⋂∞
n=1 ∆ω|n

is necessarily a singleton and nonempty by our assumption on Σ. This defines a

bijective coding map π : Σ→ X given by

π(ω) =
∞⋂
n=1

∆ω|n .
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The limit set J of the general function system {φi,j} is

J = π(Σ)(8)

=
⋃
ω∈Σ

∞⋂
n=1

∆ω|n

=
∞⋂
n=1

⋃
ω∈Σn

∆ω.

As with graph-directed systems, for our applications we will only consider the

case when X ⊂ [0, 1] is compact and each ∆i ⊂ X is a closed subinterval.

We will impose the same regularity conditions on general function systems as

we did on graph-directed systems. Namely, we assume that there exists α > 0 such

that the maps fi : X → X and φi,j : ∆j → X have regularity C1+α. We call such a

function system a C1+α general function system modeled by Σ.

If A : E×E → {0, 1} is an incidence matrix, the space of admissible words E∞A

defined in Chapter 2 is a symbolic space of infinite type, so for the choice Σ = E∞A ,

the general function system is a graph directed pseudo-Markov system as in Chapter

1.

6. Interlaced limit sets

Suppose we have general function systems modeled by two disjoint copies of

the same symbolic space, with a mutual disjointness condition on their images. These

two systems can naturally combined to create a function system modeled by a “joint”

sequence space. The limit set of this function system is said to be the interlacing of

the limit sets of the two original systems.

In this chapter we will give a precise definition of these terms in the context of

limit sets of the C1+α general function systems from Chapter 5, and then the special

case of pseudo-Markov systems from Chapter 1.

6.1. Interlaced limit sets of general function systems. Let E be a count-

able alphabet, and Σ ⊂ E∞ a symbolic space of infinite type. Let X ⊂ [0, 1] be
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compact, and consider two C1+α general function systems {φi,j : Xj → X} and

{ψi,j : Yj → X}, modeled by Σ. To distinguish between the maps in the two function

system, define E and E ′ to be disjoint copies of E, define Σ ⊂ E∞ and Σ′ ⊂ E ′∞

two disjoint copies of the same symbolic space, and say that {φi,j : Xj → X} and

{ψi,j : Yj → X} are modeled by Σ and Σ′, respectively.

Separation conditions on Xi = fi(X) and Yj = gj(X) are implicit in the

definition presented in Chapter 5. Assume further that Xi and Yj satisfy the joint

separation property

Xi ∩ Yj = ∅ when i ∈ E and j ∈ F.

For each n ≥ 1 and ω ∈ Σn, τ ∈ Σ′n we have composition maps φω, ψτ : X → X

with images Xω = φω(X) and Yτ = φτ (Y ). The nesting property satisfied by each

function system, together with this joint separation condition, ensures that

Xω ∩ Yτ = ∅ for all ω ∈ Σn and τ ∈ Σ′n

for all n ≥ 1.

These two function systems have Cantor limit sets JΣ, JΣ′ , respectively. See

Figure 2 for a picture of two such limit sets.

Let Σ ∗Σ′ ⊂ (E ∪E ′)∞ be the set of all infinite words on the alphabet E ∪E ′

comprised of admissible subwords of Σ and Σ′. This is called the joint sequence space

of Σ and Σ′.

From the general function systems {φi,j} and {ψi,j} modeled by Σ and Σ′,

we will now construct a general function system modeled by Σ ∗ Σ′. For i ∈ E and

j ∈ E ′, assume we have an extension

ψ̃i,j : Yj → X satisfying ψ̃i,j(Yj) ⊂ Xi.
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1 1

Figure 2. Two Cantor limit sets JΣ and JΞ of general function systems
in the line, satisfying the joint separation condition.

Similarly, for i ∈ E ′ and j ∈ E assume an extension

φ̃i,j : Xj → X satisfying φ̃i,j(Xj) ⊂ Yi.

Now consider the function system

{γi,j : Zj → X}(i,j)∈(Σ∗Σ′)2

modeled by Σ ∗ Σ′, where

Zj =

 Xj : j ∈ E
Yj : j ∈ E ′

and

γi,j =



φi,j : i, j ∈ E
φ̃i,j : i ∈ E ′, j ∈ E
ψ̃i,j : i ∈ E, j ∈ E ′

ψi,j : i, j ∈ E ′

Then for any ω ∈ (Σ ∗ Σ′)n we have a composition map γω : X → X given by

γω = γω1,ω2 ◦ γω2,ω3 ◦ · · · ◦ γωn−1,ωn ◦ hωn ,
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where hωn = fωn if ωn ∈ E, and hωn = gωn if ωn ∈ E ′.
As in Chapter 5, we let ∆ω = γω(X) so that the Cantor limit set of {γi,j} is

JΣ∗Σ′ =
∞⋂
n=1

⋃
ω∈(Σ∗Σ′)n

∆ω.

We say the Cantor set JΣ∗Σ′ is the interlacing of the Cantor sets JΣ and JΣ′ . See

Figure 3.

1

;

Figure 3. The interlacing JΣ∗Ξ of the Cantor sets JΣ and JΞ from
Figure 2.

6.2. Interlaced limit sets of pseudo-Markov systems. If we have incidence

matrices AE : E × E → {0, 1} and AE
′

: E ′ × E ′ → {0, 1} such that En
AE = Σn

and E ′nAE′ = Σ′n for all n ≥ 1, the above general function systems are graph directed

pseudo-Markov systems as studied in Chapter 1.

Then the joint sequence space Σ ∗ Σ′ defined above is (E ∪ E ′)∞
AE∪E′

, where

AE∪E
′
: (E∪E ′)×(E∪E ′)→ {0, 1} is the joint incidence matrix given by AE∪E

′
(i, j) =

AE(i, j), i.e. the joint words are admissible according to E.

For each n ≥ 1, consider the intervals Xω = φω(X) where ω ∈ En
AE , and

Yτ = ψτ (X) where τ ∈ E ′nAE′ . Then by Equation 8 we have the following descriptions
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of the limit sets of the respective pseudo-Markov systems.

JE =
∞⋂
n=1

⋃
ω∈En

AE

Xω, and JE′ =
∞⋂
n=1

⋃
τ∈E′n

AE
′

Yω.

The interlacing JE∪E′ of JE and JE′ is the limit set of the joint pseudo-Markov system,

and is given by

JE∪E′ =
∞⋂
n=1

⋃
ω∈(E∪E′)n

AE∪E′

∆ω,

where ∆ω = γω(X) and γω is the composition of the maps φi,j and ψi,j indexed by

admissible words ω in the joint sequence space (E ∪ E ′)n
AE∪E′

. Each point in JE∪E′

corresponds to a unique word in (E ∪ E ′)∞
AE∪E′

.



CHAPTER 4

Dimension theory of limit sets

The Hausdorff dimension of a limit set is related to the pressure by Bowen’s

equation. In regularity C1+α, the pressure has uniformity properties that can be de-

duced from the bounded variation and distortion properties in Lemmas 3.2 and 3.4.

We present these properties for pseudo-Markov systems and then state Bowen’s equa-

tion in this context. We then apply this to the dimension theory of the asymptotically

stationary pseudo-Markov systems of Chapter 4.

1. The pressure function

Let E be a countable alphabet, A an incidence matrix, and {φi,j : ∆j → X} a

C1+α pseudo-Markov system as in Chapter 1. For any t ∈ (0,∞) consider the family

Ft = {gi, hi,j}, where

gi(t) = t log |f ′i(x)|, and hi,j(x) = t log |φ′i,j(x)|.

This is a summable Hölder family of potentials as defined in Chapter 3, and as such

has a well-defined topological pressure P (Ft). We define p(t) = P (Ft) and call p the

pressure function determined by the system {φi,j}. From the proof of Lemma 3.3, for

all ω ∈ En
A we have

SnFt(ω)(x) = t log |φ′ω(x)|.

Substituting this into Equation 5 we obtain

(9) p(t) = lim
n→∞

1

n
log

∑
ω∈EnA

‖φ′ω‖t.

40
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Notice that p = limn→∞
1
n

log pn, where

pn(t) =
∑
ω∈EnA

‖φ′ω‖t.

Because pm+n(t) ≤ pm(t)pn(t) for all t ∈ [0,∞), we have that pn(t) < ∞ if and only

if p1(t) <∞. Let θ = inf{t : p(t) <∞}, so that the set of finiteness of p is (θ,∞). A

summary of the properties of p are collected below.

Proposition 1.1 (Proposition 4.10 from [48]). The topological pressure func-

tion p(t) is non-increasing on [0,∞), and is continuous, strictly decreasing, and con-

vex on (θ,∞).

The definition of topological pressure given in Equation 9 can be difficult to

use in practice. Fortunately, the assumption of C1+α regularity and its consequences

yields a more useful definition. Applying Proposition 3.3,

p(t) = lim
n→∞

1

n
log

∑
ω∈EnA

|φ′ω(x)|t

for any x ∈ X. By Proposition 3.4,

(10) p(t) = lim
n→∞

1

n
log

∑
ω∈EnA

|∆ω|t.

2. Bowen’s equation for pressure

A generalization of Bowen’s equation ([7]) is proved in [48] for what are termed

“weakly thin” pseudo-Markov systems. Weak thinness is a general notion, but in our

setting it is equivalent to p1(1) =
∑

i∈E |∆i| < ∞, which is a consequence of the

separation and compactness conditions from Chapter 3.

Theorem 2.1 (Proposition 4.13 of [48]). Let {φi,j} be a C1+α pseudo-Markov

system with limit set J and associated pressure function p(t). Then the Hausdorff

dimension dimH(J) satisfies

dimH(J) = inf{t ≥ 0 : p(t) < 0},
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and if p(t) = 0 then t is the only zero of p(t) and t = dimH(J).

3. Dimension of limit sets of asymptotically stationary systems

In Chapter 4 we introduced the asymptotically stationary pseudo-Markov sys-

tems, with error a±δ . We assume that this error is summable and monotone, as

specified in that chapter. The dimension theory of stationary systems is particu-

larly simple and goes back to Moran ([32]). The dimension theory of asymptotically

stationary systems is similar.

Theorem 3.1. Let {φi,j} be an asymptotically stationary pseudo-Markov sys-

tem, with summable monotone error a±δ , and let Jδ be its limit set. Then the Lebesgue

measure of Jδ satisfies

lim
δ→0

µ(Jδ) = 0,

and the Hausdorff dimension dimH(Jδ) satisfies

0 < lim
δ→0

dimH(Jδ) < 1.

Proof. Let µ be Lebesgue measure on [0, 1]. By the nesting and separation

conditions on ∆ω,

µ(Jδ) = µ

 ∞⋂
n=1

⋃
ω∈EnA

∆ω

 = lim
n→∞

µ

 ⋃
ω∈EnA

∆ω

 = lim
n→∞

∑
ω∈EnA

|∆ω|.

We then substitute Equation 7 to obtain

µ(Jδ) ≤ lim
n→∞

∑
ω∈EnA

sω1rω2 · · · rωn + lim
n→∞

∑
ω∈EnA

a+
δ (ω)

≤ lim
n→∞

∑
ω∈En

sω1rω2 · · · rωn + lim
n→∞

∑
ω∈EnA

a+
δ (ω)

= lim
n→∞

(∑
i∈E

si

)(∑
i∈E

ri

)n−1

+ lim
n→∞

∑
ω∈EnA

a+
δ (ω)
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By the separation condition in Definition 1 we know
∑

i∈E ri < 1. By the summa-

bility and monotonicity conditions on a+
δ the right term decreases to 0 as δ → 0, so

limδ→0 µ(Jδ) = 0, as desired.

We now turn to the Hausdorff dimension. Let pδ(t) be the pressure function

associated to this pseudo-Markov system. Substituting Equation 7 into the pressure

function in Equation 10 we obtain that p−δ < pδ < p+
δ , where

p±δ (t) = lim
n→∞

1

n
log

∑
ω∈EnA

(sω1rω2 · · · rωn)t ±
∑
ω∈EnA

a±δ (ω)


Then by the monotonicity of a±δ we have that limδ→0 p

±
δ = p, where

p(t) = lim
n→∞

1

n
log

∑
ω∈EnA

(sω1rω2 · · · rωn)t

For the upper bound, we calculate

p(t) < lim
n→∞

1

n
log

∑
ω∈En

stω1
rtω2
· · · rtωn

= lim
n→∞

1

n
log

(∑
i∈E

sti

)(∑
i∈E

rti

)n−1

= log
∑
i∈E

rti .

Let t∗ be the unique solution to
∑

i∈E r
t
i = 1, and notice that t∗ < 1. Applying

Bowen’s theorem (2.1), we have dimH(J) < t∗ < 1.

For the lower bound, recall that for all n ≥ 1, En
A contains more than one

word, say ω = (ω1, . . . , ωn).

p(t) > lim
n→∞

1

n
log (sω1rω2 · · · rωn)t = lim

n→∞
1

n

(
log stωn +

n−1∑
j=1

log rtωj

)
.

Setting the right hand side = 0, we see that t∗ = 0 is a solution. So again by Bowen’s

theorem, we have dimH(J) > t∗ = 0. �



CHAPTER 5

The Wilson flow

Wilson’s flow ([52]) is defined on a plug, a closed manifold that traps orbits.

First we will define general plugs, and then present the construction of Wilson’s plug.

Then we will introduce Wilson’s vector field, and study its dynamics in the plug.

1. Plugs

Let M be a compact orientable manifold with nonempty boundary. A plug is

a product M × [0, 1], supporting a vector field V with flow φt.

For the plugs we consider, M will have dimension two, so M × [0, 1] is an

oriented three-manifold with boundary ∂M × [0, 1]. Let (x, z) be a coordinate system

on M × [0, 1]. We will orient the plug vertically, so that M × {0} is the “bottom” of

the plug, and M × {1} the “top.” If (x, 0) ∈ M × {0} and (x′, 1) ∈ M × {1} satisfy

x = x′, then these two points are said to be facing.

A plug is a local dynamical system designed to be inserted into a global one.

For the plug to be inserted into a manifold with a flow there are several important

assumptions it must satisfy. These ensure that the dynamics inside the plug are

compatible with the dynamics outside, and that the plug traps a set of orbits of the

flow on the manifold.

• Matched ends property : If a flowline of φt passes through the points (x, 0)

and (x′, 1), then these points are facing, i.e. x = x′.

• Trapped orbit property : There exists a flowline of φt passing through (x, 0)

but not intersecting M × {1}.

If a plug satisfies the following additional symmetry condition, we call it a mirror-

image plug.

44
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• Mirror-image property : The reflection of the field V over the center M×
{

1
2

}
is the negative of V .

Flowlines in a mirror-image plug are symmetric over M ×
{

1
2

}
. Notice that the

mirror-image property implies the matched-ends property.

The Wilson plug is a mirror-image plug with M a closed annulus. For the

original description see [52], and for subsequent descriptions [24], [14], [19]. Our

notation does not differ much from this literature’s.

2. The Wilson plug

Define the closed rectangle E = [1, 3] × [−2, 2] in coordinates (r, z), and the

closed rectangular solid E × [0, 2π], in coordinate (r, θ, z). Denote by c1, c2 ∈ E the

points (2,−1) and (2,+1), respectively. Then li = ci × [0, 2π] are two line segments

in the rectangular solid.

Finally, define closed neighborhoods Bi of ci, so that Bi × [0, 2π] is a tubular

neighborhood of each li. The Wilson plug W is the image of the region E × [0, 2π]

under the embedding (r, θ, z) 7→ (r cos θ, r sin θ, z).

See Figures 1 and 2 for a picture of the rectangle and the embedded plug,

respectively. Notice that the lines li map to circles under the embedding, and the

tubes Bi × [0, 2π] map to torii containing the corresponding circles li.

Under this embedding, M = {(r, θ) : 2 ≤ r ≤ 3, 0 ≤ θ ≤ 2π} is an annulus,

and W = M × [−2, 2] is a plug in the notation of Chapter 1. The bottom of the plug

is M × {−2} and the top is M × {2}.

3. The Wilson vector field

For convenience, we will describe the dynamics in the coordinates (r, θ, z) and

suppress the embedding. On E × [0, 2π], we define a vector field W .

(11) W = f
∂

∂θ
+ g

∂

∂z
,
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E

B1

B2

c1

c2

l1

l2

r = 1 r = 2 r = 3

z = −2

z = −1

z = 0

z = 1

z = 2

θ = 0

θ = 2π

1

;

Figure 1. The rectangular region E× [0, 2π] with the coordinates and
special regions indicated

where f and g are C∞ real-valued functions of the rectangle E, constructed as follows.

First, fix a > 0, and define f : E → R by

(12) f(r, z) =

 a : z < 0

−a : z ≥ 0

Notice that this function is not C∞– not even continuous– but can be made

so by adjusting it in an arbitrarily small neighborhood of {z = 0} ⊂ R.

To construct g, for i = 1, 2 let pi : Bi → [0, 1] be C∞ functions satisfying

(13) pi(ci) = 0, pi ≡ 1 on ∂Bi, pi(x) > 0 for all x ∈ Bi \ {ci}

Then we define g : E → [0, 1] by
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1

;

Figure 2. The embedded Wilson plug. The lines li from Figure 1
map to periodic orbits of the Wilson flow.

(14) g(x) =

 pi(x) : x ∈ Bi, i = 1, 2

1 : x ∈ E \ (B1 ∪B2)

Notice that g ≡ 1 outside the regions Bi. Inside each Bi, g decreases smoothly to

zero, reaching zero (by definition of pi) at precisely ci.

Since g ≡ 0 at the two points ci ∈ E, the z component of the Wilson field W
(equation 11) is singular on the circles li. The fieldW preserves these circles, forming

two periodic orbits inside the plug. These are referred to as the special orbits, and

are illustrated in Figure 2. The torii Bi× [0, 2π] that contain them are referred to as

the critical torii.
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Finally, we define the Reeb cylinder as R = {r = 2} and for any ε > 0 we

define the critical region Cε as an ε-neighborhood of R– explicitly, Cε = {2 ≤ r ≤
2 + ε} ⊂ W . All the interesting dynamics will occur inside this critical region.

4. Dynamics of the Wilson flow

4.1. Orbits of points: Helices. Let φt be the flow of W . By definition of W ,

the radial coordinate of each orbit is preserved, so that flowlines are helical in shape.

At the base annulus {z = −2} we have f ≡ a and g ≡ 1 in equation 11, so the

orbit spirals upward counter-clockwise from the base annulus to the central annulus

{z = 0}. At this point, f ≡ −a, so the θ component of the flow direction is reversed;

now the orbit spirals upward clockwise until it reaches the upper annulus {z = 2}
and escapes the plug.

Since f is anti-symmetric across the line {z = 0} ⊂ E, flowlines are symmetric

about the annulus {z = 0} ⊂ W . This implies that W is a mirror-image plug. In

particular, it satisfies the matched-ends property (See Chapter 1). Wilson orbits that

originate in the base {z = −2} of the plug have three orbit types, as shown in Table

1. The third orbit type shows that W satisfies the trapped orbit property.

4.2. Orbits of curves: Propellers. Following [19] we make the following def-

inition.

Definition 4.1 (Single propellers). Let η : [s1, s2] → W be a continuous

curve such that the radial coordinate of η(s1) is 2, and for all s1 < s ≤ s2, the radial

coordinate of η(s) is strictly greater than 2. A single propeller is
⋃
t≥0 φt(η) for such

an η.

Definition 4.2 (Double propellers). Let η : [s1, s2] → W be a continuous

curve such that there exists s1 < sc < s2 with η(sc) having a radial coordinate of 2,

and for all s1 ≤ s < sc and sc < s ≤ s2 the radial coordinate of η(s) is strictly greater

than 2. A double propeller is
⋃
t≥0 φt(η) for such an η.
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• Disjoint from critical torii:
In this case f ≡ ±a and g ≡ 1
in equation 11, and the or-
bit helix spirals at a constant
speed. The orbit takes a short
time to escape the plug.

1

• Intersecting critical torii:
Inside the critical torii, g ≡ pi
which is zero at ci. Thus the
vertical component of the orbit
slows dramatically inside the
torii, at a speed depending on
the orbit’s radial proximity to
the special orbit. The orbit
takes a long time to escape the
plug.

1

• In the Reeb cylinder R:
Upon entering the first torus,
g ≡ p1 and the orbit spirals
towards the special orbit c1.
As the orbit approaches c1 the
speed of its vertical component
approaches zero. The orbit
is trapped and remains in the
plug for infinite time.

1

Table 1. Classification of Wilson orbits originating in the base {z = −2}

Notice that a single propeller can be obtained from a double propeller by

restricting the parametrization of the generating curve η. We will see later that the
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Figure 3. The intersections of a single and double propeller with a
transverse section {θ = constant} of the Wilson plug. The inside edge
at r = 2 is trapped and limits on the intersection of the special orbit
(r, z) = (2,−1), while the outside edge(s) at r > 2 escapes.

minimal set of the Kuperberg flow can be decomposed into a union of single propellers,

so understanding how propellers are embedded in W is the key to understanding the

embedding of the minimal set. A propeller forms a “helical ribbon” winding around

the Wilson plug. Its outside edge has an r-coordinate bounded away from 2, so it

forms a helix, the first orbit type. Its inside edge has an r-coordinate of 2 and thus

is trapped in the plug, the third orbit type. Thus each propeller contains curve that

is trapped for infinite time, resulting in a complicated embedding in the plug. This

complexity is illustrated in a cross-section of the Wilson plug shown in Figure 3.

5. The Wilson minimal set

Let x ∈ W . By Table 1, if the radial coordinate of x is > 2, its orbit escapes

through the top {z = 2} in finite forward time, and escapes through the bottom

{z = −2} in finite backward time. If the radial coordinate of x is = 2, its orbit limits

on one of the special orbits li in forward and/or backward time, depending on its

vertical position in the plug. Thus the minimal invariant set in W is the union l1∪ l2.

See Figure 4.
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1

Figure 4. The minimal set in the Wilson plug W is the two special
orbits l1 ∪ l2.

6. The Wilson pseudogroup

Let S ⊂ W be a surface tranverse to the Wilson flow φt. For our purposes,

it will suffice to consider a small rectangle with a constant θ-coordinate. We may

consider the first return map Φ : S → S of φt to S.

Explicitly, Φ(x) = φT (x) where T > 0, φT (x) ∈ S, and T is minimal with

respect to these properties. Each such map has a natural inverse, by first-return

under the backward orbit.

Notice that Φ is not defined on all of S, nor are successive compositions of

Φ necessarily defined, even where Φ is. Thus Φ does not generate a group, but

does generate a pseudogroup (see [18], [51]) of local homeomorphisms. This is the

holonomy pseudogroup of the foliation of W by flowlines of φt.



CHAPTER 6

The Kuperberg flow

The Kuperberg plug is constructed by performing two operations of self-

insertion on the Wilson plug. We will summarize this below, but the construction is

delicate and we refer to [24] for the details.

1. Kuperberg’s construction and theorem

First we define two closed disjoint regions L1, L2 ⊂ W , intersecting the outside

boundary {r = 3} of the plug, the top and bottom of the plug, and the two special

orbits. For i = 1, 2 we denote by L+
i the intersection of these regions with the top

of the plug, and by L−i the bottom. We then re-embed the Wilson plug in R3 in a

folded figure-eight. See Figure 1.

Now for each i = 1, 2 we define diffeomorphisms σi : Li → W , called insertion

maps. Denote Di = σi(Li) ⊂ W , and let D±i = σi(L
±
i ). We make several assumptions

about the images Di.

• We choose each Di to intersect a short segment of the special orbit li.

• The neighborhoods Di intersect the inside boundary {r = 1} of the plug.

• The regions Li are “twisted” under σi so that special orbits li enter through

D−i and exit through D+
i .

• There is a single angle αi ∈ [0, 2π] such that the vertical arc {r = 2, θ =

αi,−2 ≤ z ≤ 2} ⊂ R ∩ Li maps onto the horizontal special orbit segment

Di ∩ li.

We will use the insertion maps to define a new plug as follows. First we remove

the images Di of the insertion maps from W , denoting Ŵ = W \ (D1 ∪D2). Then,

we define an equivalence relation ∼ on Ŵ by setting x ∼ y if x lies in either L+
i ∪L−i

or the outside boundary Li ∩ {r = 3}, and y lies in the images of these regions under

52



1. KUPERBERG’S CONSTRUCTION AND THEOREM 53

L2 L1

1

1

Figure 1. The re-embedded Wilson plug with the closed regions L1

and L2, and the quotient Kuperberg plug K = Ŵ/ ∼

σi, for both i = 1, 2. The Kuperberg plug K is the quotient Ŵ/ ∼, a manifold with

boundary (See Figure 3). Let τ : Ŵ → K be the quotient map.

The set R∩{|z| ≤ 1} is the sub-cylinder of the Reeb cylinder R lying between

the two special orbits. Let R′ be the closure of R ∩ {|z| ≤ 1} \ Ŵ . This is the

sub-cylinder with the two “notches” Li ∩ R removed. We refer to R′ as the notched

Reeb cylinder.

Now, for each i = 1, 2, we define a rectangular region Si ⊂ D−i . We will

assume that the the radial coordinate of the inner edge of each Si is constant = 2.

Thus Si∩R is a vertical line segment, which we denote by γi, and Si∩R′ is the upper

half of γi, which we denote by γui . Further, each rectangle Si is foliated by vertical

line segments {γc,i}c, where γ0,i = γi.
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D−
2 D−

1

1

Figure 2. The self-insertions defining the Kuperberg plug. The spe-
cial orbits enter the bottom faces Di = σi(Li) where Li are shown in
Figure 1

We will write each Si, γi, and γui in coordinates in Chapter 2. For now,

we need only specify that each Si intersects the special orbit li, which is consistent

with Kuperberg’s construction outlined above. Using this notation, there are two

important assumptions we must make about the insertions σi defining K. The first

is important for proving that the dynamics inside K are aperiodic. The second will

prove to be crucial for determining properties of the minimal set.

• Radius Inequality: For i = 1, 2, the radial coordinate of each point in Li

is strictly greater than that of its image under σi, with one exception. That

is, for points in the inverse image {r = 2, θ = αi,−2 ≤ z ≤ 2} under σi of

the special orbit ci, where the radial coordinates agree.

• Quadratic Insertion: For i = 1, 2, the inverse image under σi of γi is a

parabola with vertex (2, αi,−2). Furthermore, the inverse image under σi of

the rectangular region Si is a “parabolic strip” with vertex (2, αi,−2). More

precisely, the inverse image under σi of each vertical line segment γc,i in the

vertical foliation of Si is a parabola with vertex (2 + c, αi,−2).

See Figure 3 for an illustration of the quadratic insertion property.
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r = 2

θ = α

σ−1(γ)

σ−1(S)

1

γ

S

1

Figure 3. The quadratic insertion property

If a closed manifold carries the dynamics of a smooth vector field, we may

insert a plug– supporting a separate smooth vector field– into the interior of this

manifold. Assume that the plug has the matched ends property, and that the ends of

the plug are transverse to the field on the manifold. Then the theory of plugs and

insertions developed in [52], [39], [24] and [25] show that a smooth global field on

the plugged manifold, compatible with the dynamics of both the manifold and the

plug, can be defined by smoothly altering the dynamics in a tubular neighborhood

of the boundary of the plug. The construction is delicate and we refer to [24] for

the details. By these facts, the Wilson field W induces a smooth vector field K on

the Kuperberg plug, which we call the Kuperberg field. Kuperberg proved that the
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self-insertions defining K break the periodic orbits li, without creating new periodic

orbits.

Theorem 1.1. (Theorem 4.4 from [24]) The C∞ vector field K defined on K

has no closed orbits.

Kuperberg’s theorem is true under very flexible assumptions; in fact, the proof

uses only the radius inequality and does not require the quadratic insertion property.

However, to determine finer aspects of the dynamics of the Kuperberg flow on its

minimal set, we will need to make several more assumptions.

2. Further insertion assumptions

In this chapter, we will impose more restrictive versions of the assumptions

we have already made, to obtain explicit formulas for the insertion maps σi and the

Wilson flow φt. To simplify the exposition, we will write these formulas only for σ1,

the lower insertion map. In the following chapter, we denote by σ, D−, B, p, γ, α, S,

γc and l the quantities σ1, D−1 , B1, p1, γ1, α1, S1, γc,1 and l1 respectively. Identical

assumptions will be made (but not written down) for the upper insertion σ2.

2.1. Rectangular intersection. First, we assume that the rectangular region

S has a constant angular coordinate θ = β, width 0 < b < 1, and height 2R for some

R > 0. Explicitly,

(15) S = {(r, β, z) : 0 ≤ r − 2 ≤ b, |z + 1| ≤ R}.

The upper and lower boundaries of this rectangle are

(16) S± = {(r, β,−1±R) : 0 ≤ r − 2 ≤ b}

Both intervals S± can be identified with [0, b] and will be used extensively later

when describing the transverse minimal set. The inner edge of this rectangle is the

intersection S ∩R, the vertical line γ we defined earlier:
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(17) γ = {(2, β, z) : |z + 1| ≤ R}

Also, we define γu and γl to be the upper and lower half of γ, so γ = γu ∪ γl.
By definition of R′, we have R′ ∩ S = γu. See Figure 4.

γu = {(2, β, z) : 0 ≤ z + 1 ≤ R}(18)

γl = {(2, β, z) : −R ≤ z + 1 ≤ 0}

z = −1

z = −1−R

z = −1 +R

r = 2 r = 2 + b

γu

γl

S−

S+

1

Figure 4. The rectangle S, with the inner edge γ = γu ∪ γl and the
upper and lower boundaries S±.

Additionally, we assume that (B × [0, 2π]) ∩ (S × [0, 2π]) = (S × [0, 2π]).

Recall that the vertical component g (defined in Equations 11 and 14) of the Wilson
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flow changes from g = 1 to g = p precisely at ∂B. This assumption will simplify

the boundary conditions that arise when integrating W , since the upper and lower

boundaries of the critical torus B × [0, 2π] must now coincide with the two annuli

C± = {(r, θ,−1±R) : 0 ≤ r − 2 ≤ b, 0 ≤ θ ≤ 2π}.

The intersection of the annuli C± with S are the upper and lower boundary intervals

S± of the strip S.

2.2. Quadratic decay. Recall the function p defined in Equation 13. We now

assume that p decays quadratically inside the critical strip S.

(19) p|S(r, z) =
1

R2
((r − 2)2 + (z + 1)2)

By the rectangular intersection assumption, this is compatible with the boundary

condition p = 1 on ∂B from Equation 13.

2.3. Quadratic insertion formula. Recall the quadratic insertion assumption

made in Chapter 1. In this chapter, we will make these assumptions more specific; in

particular we will write the inverse of the insertion map σ in coordinates.

By equation 15, any point in the rectangle S can be written as (2+r, β,−1+z),

where 0 ≤ r ≤ b and −R ≤ z ≤ R. We will assume that σ−1 takes S to a parabolic

strip in the base z = −2, its vertex having a constant θ coordinate of α, in the

following way:

(20) σ−1(2 + r, β,−1 + z) = (2 + r + z2, α− z,−2)

See Figure 3.

In light of Equation 17, we can parametrize γ as

(21) γ : [−R,R]→ S γ(s) = (2, β,−1 + s),
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and by Equation 18, γu and γl are parametrized as γu = γ|[0,R] and γl = γ|[−R,0].

Referring to equation 20, we can parametrize parabolic the curve σ−1γ as follows.

(22) σ−1γ(s) = (2 + s2, s+ α,−2)

Observe that S =
⋃

0≤c≤b γc, where

γc = {(2 + c, β, z) : |z + 1| ≤ R}.

The collection {γc}0≤c≤b is the foliation of S by vertical lines, introduced in the

statement of the quadratic insertion property from Chapter 1. We parametrize each

vertical line γc as follows.

(23) γc : [−R,R]→ S γc(s) = (2 + c, β,−1 + s)

Equation 20 implies that for each c ∈ [0, b], the curve σ−1γc is parabolic in the base

{z = −2} of the plug, with the parametrization

(24) σ−1γc(s) = (2 + c+ s2, s+ α,−2).

Since γ0 = γ, this parametrization is compatible with the above parametrization of

γ.

3. Integrals of W

Our quadratic decay assumption allows us to integrateW explicitly. At points

(r, θ,−2) ∈ {z = −2}, the Wilson vector field W has f ≡ +a and g ≡ 1, resulting in

the simple expression

(25) φt(r, θ, z) = (r, θ + at, z + t) when 0 ≤ z(t) ≤ −1−R
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A flowline looks like the first case in Table 1, a helix rising with constant

vertical speed 2π
a

. The upper bound on z in Equation 25 is the point at which the

orbit intersects the lower annulus C−. At this point, we have g = p by our rectangular

intersection assumption, and use Equation 19 to integrate W .

(26) φt(r, θ, z) =

(
r, θ + At,−1 + (r − 2) tan

(
r − 2

R2
t+ tan−1

(
z + 1

r − 2

)))
when |z(t) + 1| ≤ R.

In this region, a flowline looks like the second case in Table 1, a helix rising at

a variable speed depending on its radial proximity to the Reeb cylinder {r = 2} and

its vertical proximity to z = −1.

4. Transition and level

Let ψt be the flow of the Kuperberg vector field. Flowlines of ψt are very

complicated and do not admit a classification as simple as those of the Wilson flow

given in Table 1. However, since the K is a quotient of W , the dynamics of ψt resemble

the dynamics of φt. To see this resemblance, we begin by embedding K in R3 as we

did W in Figure 2, suppressing the more complicated embedding as in Figure 1, but

retaining the interior self-insertions defining K. See Figure 5 for this embedding.

Each orbit of the Kuperberg flow ψt contains transition points. These are

intersections of the orbit with an insertion region. Between these transition points,

the flowline coincides with one of the flowlines of the Wilson flow φt. The hierarchy

of levels will be used to keep track of these transition points. By studying levels and

the dynamics of the Wilson flow, we can understand the dynamics of the Kuperberg

flow.

4.1. Transition points and the level function for orbits.
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D−
2

D−
1

1

Figure 5. The Kuperberg plug embedded as the Wilson plug.

Definition 4.1 (Orbit segments and orbits). For any x ∈ K, we denote its

closed orbit segment for time t2 − t1 > 0 by

O[x, t1, t2] =
⋃

t1≤t≤t2
ψt(x).

Its open orbit segment is

O(x, t1, t2) =
⋃

t1<t<t2

ψt(x),

and its half-open orbit segment is

O(x, t1, t2] =
⋃

t1<t≤t2
ψt(x).
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Its orbit O(x), forward orbit O+(x), and backward orbit O−(x) are

O(x) =
⋃

−∞<t<∞
ψt(x), O+(x) =

⋃
t≥0

ψt(x), O−(x) =
⋃
t≤0

ψt(x).

Depending on the location of x in the plug, its orbit O(x) may be finite or

infinite (see Table 1). An orbit’s intersection with the bottom {z = −2}, the top

{z = +2}, or either of the four insertion faces D±i (i = 1, 2), is called a transition

point. There are four types of transition points.

• primary entry points are transition points in {z = −2}.
• primary exit points are transition points in {z = 2}.
• secondary entry points are transition points in D+

i for i = 1, 2.

• secondary exit points are transition points in D−i for i = 1, 2.

For each x ∈ K, there is a natural orbit decomposition

(27) O(x) =
⋃
i∈I
O(x, ti, ti+1],

into disjoint half-open orbit segments, where for all i ∈ I, ψti(x) is a transition

point and O(x, ti, ti+1) contains no interior transition points. The indexing set I is

countable if x has an infinite orbit, and is finite if the orbit is. The level function

nx(t) along the orbit of x indexes how many insertions an orbit has passed through

at time t, measured from zero.

Definition 4.2 (Level function along orbits). Let x ∈ K, let n+
x (t) be the

number of secondary entry points in O(x, 0, t], and let n−x (t) be the number of

secondary exit points in O(x, 0, t]. Define the level function nx : O(x) → N by

nx(ψt(x)) = n+
x (t)− n−x (t).

For a fixed x ∈ K, we say that y ∈ O(x) has level k if y = ψT (x) with

nx(T ) = k. The following lemma appears in [14] (Lemme, pg. 300) and is formulated

more precisely in Lemma 6.5 of [19]; the only secondary entrance points that are

trapped have a radial coordinate = 2; the rest escape the insertion in finite time.



4. TRANSITION AND LEVEL 63

Lemma 4.3. Suppose x has a radial coordinate > 2, and the orbit O(x) con-

tains a secondary entrance point ψT (x) for some T > 0. Then there exists S > T such

that ψS(x) is a secondary exit point, ψT (x) and ψS(x) are facing, and nx(T ) = nx(S).

The next lemma appears in various forms in the literature (Proposition 4.1

of [24], Lemma 5.1 of [19], and Lemma 7.1 of [14]) and is crucial in relating orbits

of the Kuperberg flow to orbits of the Wilson flow. Recall that τ : Ŵ → K is the

quotient map defining the Kuperberg plug.

Lemma 4.4 (short-cut lemma). Suppose that a secondary entrance point x− ∈
D−i and a secondary exit point x+ ∈ D+

i are facing. Then there exists a point y− in

the base {z = −2} ⊂ W and y+ in the top {z = 2} ⊂ W of the Wilson plug such that

τ(y±) = x±, and a finite time T > 0 such that y+ = φT (y−).

In this way, the dynamics of a Kuperberg orbit segment between secondary

entrance and exit points reduces to the dynamics of a finite Wilson orbit from the

base to the top of the plug.

Finally, for orbits of curves we have an analogous definition to that of Definition

4.1.

Definition 4.5 (Orbit strips and surfaces). For any η be a curve with image

in K. Its closed orbit strip for time t2 − t1 > 0 is

O[η, t1, t2] =
⋃

t1≤t≤t2
ψt(η).

Its open orbit strip is

O(η, t1, t2) =
⋃

t1<t<t2

ψt(η),

and its half-open orbit strip is

O(η, t1, t2] =
⋃

t1<t≤t2
ψt(η).
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Its orbit surface O(η), forward orbit surface O+(η), and backward orbit surface O−(η)

are

O(η) =
⋃

−∞<t<∞
ψt(η), O+(η) =

⋃
t≥0

ψt(η), O−(η) =
⋃
t≤0

ψt(η).

As we will see in Section 8, the minimal set of the Kuperberg flow is the closure

of a union of propellers, and each propeller is an orbit surface in this sense.



CHAPTER 7

The Kuperberg pseudogroup

In Chapter 6 we introduced the Wilson pseudogroup generated by Φ, the first-

return map of the Wilson flow to a tranverse section. In this chapter, we will study

the Kuperberg pseudogroup Ψ, defined in the same way using the Kuperberg flow.

The domains of the generators of the pseudogroup we define will be subsets of the

two transverse rectangles Si, i = 1, 2, defined in Chapter 2.

σ−1(S1) σ−1(S2)

S2

S1

1

Figure 1. The rectangular regions Si ⊂ D−i and their inverse images
σ−1(Si) ⊂ {z = −2}. Compare with Figures 3 and 5.

65
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In Chapter 6, we showed that every orbit decomposes into segments whose

endpoints are transition points, having no interior transition points. At a secondary

transition point, the orbit intersects an insertion region D±i , which is identified via

σ−1 with L±i ⊂ {z = ±2} in the base or the top of the plug. The dynamics of the

orbit changes drastically at transition points, and these dynamics are determined by

σ−1. The interior of the orbit segment follows the helical Wilson flow φt studied in

Chapter 5.

The transverse rectangles Si lie in D−i , so the Kuperberg first-return of a point

to Si is a secondary entrance point, by definition. This first-return map follows the

Wilson flow. At the transition point, it is mapped via σ−1 into a parabolic strip in

the base of the plug, which then follows the Wilson flow up to more intersections

with Si. So the Kuperberg pseudogroup Ψ of first-return maps to the rectangles

S1 ∪ S2 is generated by the Wilson pseudogroup to Si from Si or the base, and the

insertion maps from Si to the base, for i = 1, 2. In this section, we will construct

these generators for Ψ.

In Chapter 9 of [19], the full Kuperberg pseudogroup to a larger transverse

section was studied. This pseudogroup is very complicated, and in subsequent chap-

ters of [19] its properties were used to study the dynamics of the Kuperberg flow

on the entire plug K. In this paper we are concerned only with the dynamics of

the Kuperberg flow in small neighborhoods of the special orbits li, which is why we

choose the sections Si. The pseudogroup Ψ we consider is a restriction of the full

pseudogroup studied in [19].

In the second part of this chapter, we explore the symbolic dynamics of the Ψ

on an orbit. For simplicity, we focus on the lower rectangle S1, by considering a suit-

able sub-pseudogroup of Ψ. For any x ∈ K, the intersection O(x) ∩ S is a sequence

of points ordered by the flow direction, on which the Kuperberg pseudogroup acts

faithfully. Using the notion of level introduced Chapter 6, we will decompose this

intersection into level sets, and show that the pseudogroup generators permute this
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level decomposition. Finally, we will construct a sequence space Σ ⊂ NN and a bijec-

tive coding map Σ→ O(x)∩ S, and study the induced dynamics of the pseudogroup

on this space. This is the symbolic dynamics of the Kuperberg pseudogroup, which

will be instrumental later when studying the minimal set.

1. Generators of the pseudogroup

Recall the rectangular regions Si ⊂ D−i defined in Equation 15 of Chapter 2.

In the quotient K, these regions are identified with the parabolic regions σ−1(Si) ⊂
{z = −2} in the base of the plug. See Figure 1.

We now list the generators of the Kuperberg pseudogroup restricted to the

rectangles S1 ∪ S2.

1.1. The Wilson maps Φi : DΦi → RΦi. Consider a point x ∈ Si ⊂ D−i for

i = 1, 2. We assume that x is not the intersection point of the special orbit li with

Si, i.e. x 6= (2, βi,±1). We define Φi(x) as the first return to Si under the Wilson

flow φt. Explicitly, Φi(x) = φT (x), where T > 0, φT (x) ∈ Si, and T is minimal with

respect to these properties.

In the Kuperberg plug, x is identified with σ−1(x) in the base. By the as-

sumption that x is not the intersection point of li with Si, we know by the radius

inequality that σ−1(x) has radius > 2. Applying the short-cut lemma (Lemma 4.4),

there exists a facing point x′ ∈ D+
i , and the flow from x to x′ is a finite union of

Wilson flow segments. From x′, the orbit follows the Wilson flow around the plug

and back to Φi(x), its first-return to Si. See Figure 2 for an illustration of Φ1.

Note that Φi(x) is not defined for all x ∈ Si. This is because the Wilson flow

of a point has a monotonically increasing z-coordinate, so there are points near the

top of Si that never return to Si under Φi. However, there is a subset DΦi ⊂ Si of

points x for which Φi(x) is defined. Denote the image by RΦi = Φi(DΦi) ⊂ Si (see

Figure 3).
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S1

1

Figure 2. The map Φ1 follows the Wilson flow φt through the lower
insertion region D1 and around to its first return to S1. There is a
similar picture for Φ2.

1.2. The Wilson map Φ1,2 : DΦ1,2 → RΦ1,2. As discussed in the previous para-

graph, there is a set of points near the upper boundary of S1 that do not return to S1

under the Wilson flow. However, the Wilson flow of these points does intersect the

upper rectangle S2. This defines a map Φ1,2 : DΦ1,2 → RΦ1,2 given by Φ1,2(x) = φT (x),

where T > 0, φT (x) ∈ S2, and T is minimal with respect to these properties (See

Figure 4).

1.3. The insertion maps Θi : DΘi → RΘi. In the Kuperberg plug K, the

quotient map τ identifies each rectangle Si with the parabolic strip σ−1(Si) in the

base (See Figure 1). Thus an orbit that intersects a rectangle Si is identified via σ−1

with the base, after which the orbit follows the Wilson flow back up to the lower



1. GENERATORS OF THE PSEUDOGROUP 69

z = −1

z = −1−R

z = −1 +R

r = 2 r = 2 + b

1

Figure 3. The image RΦi = Φi(DΦi) is the orange region. The points
x ∈ Si \DΦi are near the top of Si; the Wilson flow of these points does
not return to Si.

rectangle S1. See Figure 5 for an illustration of this. We will now define a map

Θi : DΘi → RΘi , where DΘi ⊂ Si, and RΘi ⊂ S1.

The vertex of a parabolic strip σ−1(Si) is xi = (2, αi,−2) (See Chapter 2 and

Figure 3). Because the radial coordinate of xi is 2, its Wilson orbit φt(xi) is trapped

in K. The orbit φt(σ
−1(Si)) of the entire parabolic strip σ−1(Si) intersects the lower

rectangle S1 at a sequence of times Tj, j = 1, 2, . . .. These intersections are “twisted”

parabolic strips, resembling the propellers’ cross-sections in Figure 3. The vertices of

these parabolic regions are the intersections of the orbit of xi with S1, which is the
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S2

S1

1

Figure 4. The map Φ1,2 follows the Wilson flow φt from the upper
region of S1, through the insertion region D1 and up to its first return
to S2.

ordered sequence of points φTj(xi) limiting on the special orbit intersection, whose

z-coordinate monotonically increases with j. Because S contains the special orbit

intersection (2, β,−1), there is a critical time Tk such that this sequence of points

remains in Si for all j ≥ k. In other words, let k be the minimal value of j such that

φTj(xi) ∈ Si for all j ≥ k. In terms of this fixed k, define

Θi(x) = φTk(σ
−1(x)).

Define DΘi ⊂ Si the set of points x for which the above equation is defined, and

define the image RΘi = Θi(DΘi) ⊂ S1 (See Figure 6).
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σ−1(S1)

S1

1

Figure 5. The map Θ1 follows the Wilson flow from σ−1(S1) in the
base {z = −2} up to its first return to S1. There is a similar picture
for Θ2.

2. Restriction to a sub-pseudogroup

To summarize, we have constructed the Kuperberg pseudogroup Ψ on S1∪S2,

generated by five elements:

(28) Ψ = 〈Φ1,Φ2,Φ1,2,Θ1,Θ2〉

The dynamics of the full pseudogroup Ψ are complicated. To simplify the study, we

will consider the sub-pseudogroup generated by the two maps Φ1,Θ1 : S1 → S1. To

save on notation, we denote Φ = Φ1 and Θ = Θ1. In terms of these, we define

(29) Ψ1 = 〈Φ,Θ〉.
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z = −1

z = −1−R

z = −1 +R

r = 2 r = 2 + b

1

Figure 6. The tip of the twisted parabolic strip Θi(Si) in Si. The
vertex φTk(xi) of the strip lies in the Reeb cylinder {r = 2}.

Following the shorthand used in Section 2, we will refer to S1, D1, σ1, l1, γ1,

γc,1, and β1 simply by S, D, σ, l, γ, γc, and β, respectively. These conventions will

be observed for the remainder of this chapter, and throughout Chapters 8 – 10. We

will return to the dynamics of the full pseudogroup in Chapter 11 when we discuss

interlacing.

3. Orbit intersections with a transversal

In this and subsequent sections we will introduce the intersection of a forward

Kuperberg orbit O+(x) with S. We then study its level decomposition and the

symbolic dynamics of the pseudogroup action on this intersection.

Let x ∈ S be any point other than the intersection (2, β,−1) of S with the

special orbit l, and consider its forward orbit O+(x) in K. In Section 4, we introduced
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the level function along an orbit. This induces a level decomposition of the intersection

O+(x) ∩ S.

(30) O+(x)∩S =
⋃
k

O+(x)k∩S, where O+(x)k∩S = {y ∈ O+(x)∩S : nx(y) = k}.

3.1. The pseudogroup action. The next two lemmas show that Φ preserves

level, while Θ increases level by one.

Lemma 3.1. If x ∈ S is not in the special orbit, the map Φ restricted to

O+(x) ∩ S maps O+(x)k ∩ S into O+(x)k ∩ S.

Proof. Let y ∈ O+(x)k ∩ S, so there exists T > 0 such that y = ψT (x) and

nx(T ) = k. Since S ⊂ D−, y is necessarily a secondary entrance point. In the

quotient plug K, y is identified with σ−1(y). Because we assumed that O+(x) is not

the special orbit, y is not in the special orbit’s intersection with S. Applying the

radius inequality (Section 6), we see that y has a radial coordinate > 2, and so we

may apply Lemma 4.3 to say there exists S > T with ψS(x) ∈ D+ a secondary exit

point, y and ψS(x) are facing, and nx(T ) = nx(S) = k. The orbit of ψS(x) now follows

the Wilson flow forward to its first return to S (if it exists), which by definition is

Φ(y) (if it is defined). Because the Wilson flow preserves the level, Φ(y) has level k,

so Φ(y) ∈ O+(x)k ∩ S, which concludes the proof. �

Lemma 3.2. If x ∈ S is not in the special orbit, the map Θ restricted to

O+(x) ∩ S maps O+(x)k ∩ S into O+(x)k+1 ∩ S.

Proof. Let y ∈ O+(x)k ∩ S, so there exists T > 0 such that y = ψT (x) and

nx(T ) = k. As in Lemma 3.1, y is a secondary entrance point. If it exists, Θ(y) is the

first return of σ−1(y) to S. Notice that points on the forward orbit of σ−1(y) have

level k. Because S ⊂ D−, Θ(y) is a secondary entrance point and thus has level k+1.

This shows that Θ(y) ∈ O+(x)k+1 ∩ S, which concludes the proof. �
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These lemmas demonstrate that the pseudogroup 〈Φ,Θ〉 acts faithfully on the

intersection O+(x) ∩ S by permuting the level.

4. Symbolic dynamics of orbits

In this section, we will define a natural sequence space coding the points in an

intersection O+(x) ∩ S. This space will consist of finite words, whose word length is

equal to the level of the corresponding point. The action of the pseudogroup 〈Φ,Θ〉
on the level decomposition of O+(x)∩S will induce a faithful action on this sequence

space.

Fix x ∈ K with O+(x)∩S 6= ∅, and let y ∈ O+(x)∩S be a point of level zero,

i.e. y = ψT (x) with nx(T ) = 0. Then by Lemma 3.2, Θ(y) has level one.

(1) Points of level one: For 1 ≤ i1 ≤M(x), let

yi1 = (Φi1−1Θ)(y),

where M(x) is the minimum positive integer such that (ΦM(x)Θ)(y) is not defined,

i.e. (ΦM(x)Θ)(y) does not return to S under the Kuperberg flow. We call M(x)

the escape time of Θ(y) from S. By Lemma 3.1, each point yi1 has level one.

(2) Points of level two: For each 1 ≤ i1 ≤M(x), let

yi1,i2 = (Φi2−1Θ)(yi1),

where 1 ≤ i2 ≤ Mi1(x) and Mi1(x) is the minimum positive integer such that

(ΦMi1
(x)+1Θ)(yi1) is not defined. Note that Mi1(x) 6= ∞, because Θ(yi1) has a

radial coordinate > 2, so the Wilson orbit of the points Θ(yi1) escape in finite

time. By Lemmas 3.1 and 3.2, each point yi1,i2 has level two.

(3) Points of level k : For each 1 ≤ ik−1 ≤Mi1,...,ik−1
(x), let

yi1,...,ik = (Φik−1Θ)(yi1,...,ik−1
),
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where 1 ≤ in ≤ Mi1,...,ik−1
(x) and Mi1,...,ik−1

(x) is the minimum positive integer

such that (ΦMi1,...,ik−1
(x)+1Θ)(yi1,...,ik−1

) is not defined. By Lemmas 3.1 and 3.2,

each point yi1,...,ik has level k.

We have recursively defined the symbolic dynamics of a forward orbit. For a fi-

nite orbit, this process must terminate, resulting in a finite sequence space. Naturally,

the sequence space for an infinite orbit is infinite. We now make this precise.

z = −1

z = −1 −R

z = −1 + R

r = 2 r = 2 + b

y1

y2

y3

yM

Φ

Φ

yi1,1

yi1,2

yi1,3

yMi1

Φ
yi1,i2,1

yi1,i2,2

yi1,i2,3

yMi1,i2

Θ
Θ

1

Figure 7. Symbolic dynamics of finite orbit of Θ(y) on the rectangle
S. The points are labeled according to Equation 31. The map Φ
moves points up along the Wilson flow, preserving the radial coordinate.
The map Θ moves points outward, through the insertion. The radius
inequality implies that Θ increases the radius.

4.1. Symbolic dynamics of a finite orbit. Assume that O+(x) is finite, and

let y ∈ O+(x)∩S be a point of level zero as above. Since a finite orbit must intersect
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S at most a finite number of times, there exists N ∈ N such that

O+(Θ(y)) ∩ S =
N⋃
j=1

Mi1,...,ij−1
(x)⋃

ij=1

yi1,...,ij ,

where Mi1,i0(x) = M(x), and Mi1,...,iN−1
(x) < ∞ for all i1, . . . , iN−1. From Lemmas

3.1 and 3.2, we have that for all 1 ≤ j ≤ N , the maps Φ and Θ in the Kuperberg

pseudogroup permute these points in the following way.

Φ(yi1,...,ij) = yi1,...,ij+1(31)

Θ(yi1,...,ij−1
) = yi1,...,ij ,1

See Figure 7 for a picture of part of a finite orbit’s intersection with S and its per-

mutation by Φ and Θ. We now have a sequence space Σ ⊂ NN given by

Σ =
N⋃
j=1

Mi1,...,ij−1
(x)⋃

ij=1

(i1, . . . , ij).

The Kuperberg pseudogroup acts faithfully on this space by Equation 31 and we have

a bijective coding map

π : Σ→ O+(Θ(y)) ∩ S,

given by π(ω) = yω. In this correspondence, the length of ω is equal to the level of

π(ω).

4.2. Symbolic dynamics of an infinite orbit. We have similar symbolic dy-

namics for an infinite orbit, but the orbit now has points of arbitrary level so N =∞.

The sequence space is now Σ ⊂ NN, given by

(32) Σ =
∞⋃
j=1

Mi1,...,ij−1
(x)⋃

ij=1

(i1, . . . , ij).

The coding map π : Σ → O+(Θ(y)) ∩ S is still bijective and the Kuperberg pseu-

dogroup acts on Σ as defined in Equation 31.
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For finite or infinite orbits, the sequence space Σ coding the points in the

transverse section was constructed iteratively; we added symbols to the right of words

of length k − 1 to define the words of length k. This implies that the sequence space

Σ satisfies the extension admissibility condition from Definition 2.1, and thus is a

general symbolic space as defined in Chapter 2, over the alphabet E = N.



CHAPTER 8

The Kuperberg minimal set

The Kuperberg flow ψt preserves a unique minimal set M ⊂ K, with the

following characterization.

Theorem 0.1. ([19], Theorem 17.1) Let M ⊂ K be the Kuperberg minimal

set, and let R′ be the notched Reeb cylinder. ThenM is a codimension one lamination

with Cantor transversal τ , and

M =
⋃

−∞<t<∞
ψt(R′).

This theorem is proved under generic assumptions on the insertions and flow,

detailed in Chapter 17 of [19]. The assumptions we made in Section 6 are special

cases of these generic assumptions, so the above theorem applies to the plug K that

we have constructed. We will use this theorem as a point of departure in studying

M.

1. The level decomposition

First, define

(33) N0 =
⋃

−∞<t<∞
ψt(R), and M0 =

⋃
−∞<t<∞

ψt(R′),

so that M = M0. In the notation of orbit surfaces from Definition 4.5, we have

N0 = O(R) and M0 = O(R′).
An important part of the analysis in [19] that we will require is the level

decomposition. In Definition 4.2, for any x ∈ K we defined the level function nx :

O(x) → N along the orbit of x. We extend nx to a level function n0 on M0 in the

following way.

78
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Definition 1.1 (level function of M0). Let x ∈ M0. By Equation 33, there

exists T ≥ 0 and y ∈ γu such that x = ψT (y). In terms of the level function

ny : O(y)→ N, define

n0(x) = ny(T ).

The following proposition appears as Proposition 10.1 in [19].

Proposition 1.2. The function n0 :M0 → N = {0, 1, 2, . . .} is well-defined.

As a consequence, the following level decomposition is well-defined.

(34) M0 =
⋃
k≥0

Mn
0 , where Mk

0 = {x ∈M0 : n0(x) = k}

Note that the level function n0 extends to N0, hence N0 also has a well-defined

level decomposition.

2. The intersections N0 ∩ S and M0 ∩ S

The lower insertion rectangle S is transverse to the Kuperberg flow ψt. Recall

from Equation 28 that Ψ is the Kuperberg pseudogroup of first-return maps of the

flow ψt. By construction γ = S ∩R and γu = S ∩R′. From this and Equation 33 we

have

(35) N0 ∩ S =
⋃
g∈Ψ

g(γ), and M0 ∩ S =
⋃
g∈Ψ

g(γu).

In the quotient plugK, γ is identified with σ−1γ, a parabolic curve parametrized

in Equation 22. By this equation, we see that σ−1γ(0) is the only point of σ−1γ with

a radial coordinate of 2; every other point in σ−1γ has a radial coordinate > 2. Thus

the Wilson orbit of γ is a double propeller (see Definition 4.2), and by restricting the

parametrization of γ to γu, we obtain a single propeller (see Definition 4.1).
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Under the Kuperberg flow, each intersection of the orbit of γ with S is iden-

tified with a curve in the base of the plug. The Kuperberg flow of these curves then

follows the Wilson flow up into the interior of the plug, and each of these orbits is a

propeller. Each of these surfaces then may intersect the insertion regions Si again,

and the process repeats, creating an infinitely branching union of propellers with a

complicated embedding in K.

As Kuperberg orbits of γ and γu, the surfaces N0 andM0 are unions of double

and single propellers, respectively. These branching surfaces are termed “choux-

fleurs” in [14], and are extensively studied in [19]. Each single propeller in M0 is

a restriction of a double propeller in N0 ⊃ M0. The embedding and transverse

dynamics of N0 and M0 are complicated.

By Equation 35, to study N0 ∩ S we must compute the image of γ under

the full Kuperberg pseudogroup Ψ as defined in Equation 28. However, determining

the admissible compositions of the generators of Ψ is difficult. So we will begin by

focusing on the dynamics of Ψ1 = 〈Φ,Θ〉 (see Equation 29), defining

(36) N0,1 ∩ S =
⋃
g∈Ψ1

g(γ).

Of course, we have M0,1 defined similarly.

3. The pseudogroup action on the level decomposition

In Chapter 7 we studied the action of the pseudogroup 〈Φ,Θ〉 on the transverse

section O+(Θ(y)) ∩ S of an orbit. We defined a general sequence space Σ and a

bijective coding map π : Σ → O+(Θ(y)) ∩ S, and studied the dynamics of the

pseudogroup on the section and the induced dynamics on the sequence space.

In this section, we will develop similar symbolic dynamics for 〈Φ,Θ〉 acting on

N0,1∩S. In addition to labeling the curves in N0,1∩S according to a sequence space,

we will explicitly parametrize these curves in coordinates (r, θ, z).
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To do this, we return to the assumptions made in Chapter 2. These will allow

us to explicitly parametrize the propellers O+(γ, 0, t) for t ≥ 0. The images of γ

under the maps Φ and Θ can be explicitly calculated from these parametrizations,

by studying their intersections with the lower insertion rectangle S. As we studied

in Chapter 7, the sequence space coding an orbit is defined in terms of escape times.

By analyzing the parametrizations of the curves in N0,1 ∩ S, we will obtain precise

estimates on their escape times, and thus the sequence space coding these curves.

The level decomposition of N0 (identical to that ofM0 given in Equation 34)

induces the following level decomposition of N0,1 ∩ S.

(37) N0,1 ∩ S =
⋃
k≥0

N k
0,1 ∩ S, where N k

0,1 ∩ S = {x ∈ N0,1 ∩ S : n0(x) = k}

By Propositions 3.1 and 3.2, the pseudogroup 〈Φ,Θ〉 acts on this level decomposition

in the following way.

Φ : N k
0,1 ∩ S 7→ N k

0,1 ∩ S(38)

Θ : N k
0,1 ∩ S 7→ N k+1

0,1 ∩ S

3.1. The level-zero curve N 0
0,1 ∩ S. By Equation 33, N0 = O(R). Points in

the Reeb cylinder R have level zero, as do points in the intersection R∩S = γ, hence

N 0
0,1 ∩ S = {γ}. Recall the parametrization of γ given in Equation 21:

γ(s) = (2, β,−1 + s), with s ∈ [−R,R].

We refer to the midpoint γ(0) as the vertex of γ, which is the intersection l ∩ S of

the special orbit with S.

3.2. The level-one curves N 1
0,1 ∩ S. For all i1 ∈ N let

(39) γi1 = (Φi1−1Θ)(γ).
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Because γ has level zero, by Equation 38 γi1 has level one for all i1. We now use the

assumptions we made in Chapter 2 to parametrize each γi1 .

Proposition 3.1. For all i1 ∈ N there exist s±i1 with −R < s−i1 < 0 < s+
i1
< R

such that the parametrization of γi1 : [s−i1 , s
+
i1

] \ 0→ S is

γi1(s) =
(
2 + s2, β,−1 + qi1(s)

)
, where(40)

qi1(s) = s2 tan

(
s2

R2
Ti1(s)− tan−1

(
R

s2

))
,

Ti1(s) = a−1(2πi1 + β − α + s) +R− 1.

Proof. By definition γi1 is the i1-th return time of σ−1γ to S. Recall from

Equation 22 the the parametrization:

σ−1γ(s) = (2 + s2, α− s,−2), with s ∈ [−R,R]

From {z = −2} to {z = −1 − R}, the Kuperberg flow is given by Wilson’s flow in

Equation 25. Applying this to the above parametrization, we obtain a parametrization

of the following orbit strip:

O+(σ−1γ, 0, 1−R) = (2+s2, α−s+at,−2+ t), where s ∈ [−R,R] and t ∈ [0, 1−R].

As the Wilson orbit of the parabolic curve σ−1γ, we see that O+(σ−1γ, 0, 1−R) is a

double propeller parametrized by s and t. Its intersection with the bottom annulus

C− is the curve ψ1−Rσ−1γ. For |z + 1| ≤ R the Kuperberg flow is now given by

Wilson’s flow in Equation 26. Applying this to the parametrization of ψ1−Rσ−1γ, we

obtain a parametrization of the double propeller inside this region.

O+(ψ1−Rσ−1γ, 0, T ) =

(
2 + s2, α− s+ a(1−R+ t),−1 +

(
s2

R2
t− tan−1

( r
s2

)))
, where

s ∈ [−R,R] \ {0} and t ∈ [0, T ].



3. THE PSEUDOGROUP ACTION ON THE LEVEL DECOMPOSITION 83

By Equation 39 and the definition of Φ, each curve γi1 is the i1-th intersection

of this double propeller with S as T increases. To find parametrizations of these

curves, recall by Equation 15 that S has a constant angular coordinate θ = β. Setting

the θ coordinate in the parametrization of O+
1 (ψ1−Rσ−1γ, 0, T ) to β+2πi1 and solving

for t > 0, we find that the i1-th return time of ψ1−Rσ−1γ to S is

Ti1(s) = a−1(2πi1 + β − α + s) +R− 1

Substituting this back into the parametrization of O+(ψ1−Rσ−1γ, 0, T ) we obtain the

desired formula given in Equation 40.

However, these parametrizations are not valid for all s ∈ [−R,R] or i1 ∈ N;

because γi1 is defined by Φ,Θ : S → S we must restrict to values of s and i1 such that

γi1(s) ∈ S. The upper boundary S+ of S has a constant z-coordinate z = −1 + R.

Thus in the notation of Equation 40, our restriction should be such that qi1(s) ≤ R.

Define s+
i1

and s−i1 as the unique solutions to the equation qi1(s) = R on the domains

s > 0 and s < 0, respectively. Using the parametrization for qi1 given in Equation

40, it is easy to show that by the intermediate value theorem that these exist, and

that by monotonicity of qi they are unique.

In Chapter 9, we will prove that the radial coordinates of the endpoints γi1(s
±
i1

)

decrease monotonically as i1 → ∞. Referring to Equation 15, we see that S has a

fixed radial width of b > 0, so there exists a minimal Nb ∈ N such that γi1(s
±
i1

) ∈ S
for all i1 ≥ Nb. In terms of Nb, we define

(41) Σb,1 = {Nb, Nb + 1, . . . , } ⊂ N.

The index i1 ranges through all Σb,1 because the double propeller O+(ψ1−Rσ−1γ, 0, T )

is trapped. We conclude by restricting our parametrization to γi1 : [s−i1 , s
+
i1

] \ 0→ S,

and indices to i1 ∈ Σb,1. �
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As with the level-zero curve γ, for all i1 ∈ Σb,1, we call γi1(0) the vertex of γi1 .

Defining vi1 = lims→0 qi1(s), we see by Equation 40 that the vertex of γi1 is

lim
s→0

γi1(s) = (2, β,−1 + vi1)

Notice that the vertices of the level-one curves γi1 lie on the level-zero curve γ. Ex-

plicitly, γ(vi1) = (2, β,−1 + vi1) using Equation 21. This relation will imply a nesting

property for higher-level curves.

Using the parametrization given in Equation 40, it can be shown that vi1 < 0

for all i1 and that limi1→∞ vi1 = 0. So as i1 →∞, these vertices limit on intersection

l ∩ S = (2, β,−1), the vertex of γ. See Figure 1 for a plot of these curves.

γ1

γ2

γ3
γ4

γ5

z = −1 + v1

−1 + v2

−1 + v3

−1 + v4

−1 + v5

...

r = 2

z = −1

1

Figure 1. A plot of the level-one curves γi1 ⊂ S for i1 = 1, 2, . . . , 20,
and a = R = 1, α = β = 0. The vertices vi1 form a vertical sequence
on the Reeb cylinder {r = 2}, limiting on the special point (2, β,−1).
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3.3. The level-two curves N 2
0,1 ∩ S. For each i1 ∈ Σb,1 define

(42) γi1,i2 = (Φi2−1Θ)(γi1).

Because each γi1 has level one, by Equation 38 each γi1,i2 has level two. We can

parametrize each γi1,i2 as follows.

γi1,i2(s) =
(
2 + (s2 + q2

i1(s)), β,−1 + qi1,i2(s)
)

, where

(43)

qi1,i2(s) = (s2 + q2
i1(s)) tan

((
s2 + q2

i1
(s)

R2

)
Ti1,i2(s)− tan−1

(
R

s2 + q2
i1

(s)

))
,

Ti1,i2(s) = a−1(2πi2 + β − α+ qi1(s)) +R− 1

Here γi1,i2 : [s−i1,i2 , s
+
i1,i2

] \ 0 → S, where s−i1,i2 < 0 < s+
i1,i2

are the solutions to the

equation qi1,i2(s) = R. The derivation of the parametrization in Equation 43 goes

exactly like the proof of Proposition 3.1; we follow the orbit surface of each γi1 through

the insertion and calculate its i2-th intersection with S. We omit the details. See

Figure 2 for a plot of these curves.

It remains to determine the admissible words (i1, i2) coding the level-two curves

in N 2
0,1. To determine these words, we will need to estimate the escape times of the

vertices of the level-two curves γi1,i2 , which we now define. As with the level-one

curves, we call γi1,i2(0) the vertex of γi1,i2 , and define vi1,i2 = lims→0 qi1,i2(s), so that

the vertex is

lim
s→0

γi1,i2(s) =
(
2 + v2

i1
, β,−1 + vi1,i2

)
,

using Equation 43. The level-two curves satisfy an important nesting property that

we now describe.

Definition 3.2. Let η be a curve in S, and suppose that η ∪ S+ bounds a

closed region in S. If ζ is another curve in S, we say that ζ is nested in η if the image

of ζ is contained in this closed region.
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Notice in Figure 1 that each γi1 ∪ S+ bounds a closed region.

Proposition 3.3. For each (i1, i2), the level-two curve γi1,i2 is nested in γi2.

Proof. Recall that vi1 = lims→0 qi1(s). Using Equations 40 and 43, it is easy

to show that lims→0 Ti1,i2(s) = Ti2(vi1) and lims→0 qi1,i2(s) = qi2(vi1). From this we

obtain that

lim
s→0

γi1,i2(s) = (2 + v2
i1
, β,−1 + qi2(vi1))

= γi2(vi1).

This shows that the vertex of γi1,i2 is located on the image of γi2 . By the radius

inequality, γi1,i2 is nested in γi2 . �

Inspecting the parametrization in Equation 43, we see that for a fixed (i1, i2),

the radial coordinate of each γi1,i2 is bounded away from 2. Each γi1,i2 is the i2-th

intersection of the orbit surface O+(ψ1−Rσ−1γi1 , 0, T ) with S, so this surface is not

a double propeller and escapes the plug in finite time. In particular it has finitely

many intersection curves, thus for a fixed i1 ∈ Σb,1 there are only finitely many values

of i2 such that (Φi2−1Θ)(γi1) ∩ S 6= ∅. The minimal value of i2 is Nb, because γi1,i2

is nested in γi2 by Proposition 3.3. So for each i1 ∈ Σb,1 there exists Mi1 such that

Nb ≤ i2 ≤Mi1 , hence the admissible words defining γi1,i2 are

(44) Σb,2 =
⋃

i1∈Σb,1

Mi1⋃
i2=Nb

(i1, i2) =
∞⋃

i1=Nb

Mi1⋃
i2=Nb

(i1, i2).

Using the parametrization in Equation 43, we can show that the vertex of

each curve is its point of minimal z-coordinate. Recall that γi1,i2 is defined (i.e. the

parametrization in Equation 43 is valid) if and only if qi1,i2(s) = R has a solution;

equivalently, if qi1,i2(s) ≤ R for some s. Since −1 + qi1,i2(s) is the z-coordinate of

γi1,i2(s), we see that γi1,i2 is defined if and only if vi1,i2 ≤ R. Thus Mi1 coincides with

the escape time of the vertex as defined in Chapter 7; for a fixed i1 ∈ Σb,1, it is the
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γ1

γ1,1

γ2

γ1,2

r = 2

z = −1

1

Figure 2. A plot of the level-two curves γi1,i2 in Sε where i1 = 1. Note
that each γi1,i2 is nested in γi2 .

maximal i2 such that vi1,i2 ≤ R. Using this, we can find explicit bounds on Mi1 by

estimating these escape times.

Proposition 3.4. For each i ∈ Σb,1, let Mi be the greatest positive integer

such that vi,Mi
≤ R. Then there exist constants C,K > 0 such that Mi is asymptotic

to C +Ki2. More precisely, for any δ > 0 there is an integer N1 > 0 with

C + (K − δ)i2 < Mi < (C + δ) +Ki2

for all i ≥ N1.

Proof. We will prove the upper bound; the lower bound is similar. Recall from

the proof of Proposition 3.3 the nesting property vi1,i2 = qi2(vi1). In particular,

vi,Mi
= qMi

(vi). Since the upper boundary S+ of S has a constant z-coordinate of
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−1 + R, we have that Mi is the greatest positive integer such that qMi
(vi) ≤ R.

Referring to the parametrization in Equation 3.1, this inequality is equivalent to

2πMi ≤ α− β + a(1−R)− vi +
2aR2

v2
i

tan−1

(
R

v2
i

)
.

Recall that limi→∞ vi = 0. Thus for any δ > 0, there exists N > 0 such that

0 < −vi < 2πδ for all i ≥ N . Also note that tan−1

(
R

v2
i

)
<
π

2
for all i. Substituting

these into the above inequality, we obtain

(45) 2πMi < α− β + a(1−R) + 2πδ +
πaR2

v2
i

.

Using the definition vi = lims→0 qi(s), it is easy to show that there exists a constant

p > 0 such that vi = −p
i
. We define the following constants.

(46) C =
α− β + a(1−R)

2π
, K =

aR2

2p2

Substituting these into Equation 45, we obtain

Mi < (C + δ) +Ki2.

�

Recall that the vertices vi1 of γi1 limit on the special orbit intersection l∩S, the

vertex of γ. From the recursive definition in Equation 42 and the parametrizations in

Equation 43, one can show that the vertices of γi1,i2 limit on the vertices of γi1 . See

Figure 3 for another picture of the level-two curves inside the level-one curves, and

observe this limiting behavior.

3.4. The level-k curves N k
0,1 ∩ S. Let Σb,k−1 denote the admissible words of

level k − 1 defining the curves γi1,...,ik−1
. As before, we define

(47) γi1,...,ik = Φik−1Θ(γi1,...,ik−1
),
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Figure 3. The level-two curves limiting on the level-one curves.

and observe that γi1,...,ik ∈ N k
0,1 ∩ S by Equation 38. As with levels one and two, we

can explicitly parametrize these curves.

γi1,...,ik(s) = (2 + pi1,...,ik(s), β,−1 + qi1,...,ik(s)) , where(48)

qi1,...,ik(s) = pi1,...,ik(s) tan

((
pi1,...,ik(s)

R2

)
Ti1,...,ik(s)− tan−1

(
R

pi1,...,ik(s)

))
,

pi1,...,ik(s) = s2 +

k−1∑
j=1

q2i1,...,ij (s),

Ti1,...,ik(s) = a−1(2πik + β − α+ qi1,...,ik−1
(s)) +R− 1

For each ω = (i1, . . . , ik), we have γω : [s−ω , s
+
ω ] \ 0 → S, where s±ω are the unique

solutions to the equation qω(s) = R.
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As with levels one and two, we call γω(0) the vertex of γω. The z-coordinate

of the vertex is −1 + vω, where

vω = lim
s→0

qω(s).

The proof of the following proposition is identical to the proof of Proposition 3.3.

Proposition 3.5. For each (i1, . . . , ik) ∈ Σb,k, the level-k curve γi1,...,ik is

nested in the level-(k − 1) curve γi2,...,ik .

It remains to recursively determine the admissible words Σb,k from Σb,k−1. For

fixed values of (i1, . . . , ik−1) ∈ Σb,k−1, the curve γi1,...,ik is defined for finitely many

Nb ≤ ik ≤Mi1,...,ik−1
, resulting in a sequence space

Σb,k =
⋃

(i1,...,ik−1)∈Σb,k−1

Mi1,...,ik−1⋃
ik=Nb

(i1, . . . , ik)(49)

=
∞⋃

i1=Nb

Mi1⋃
i2=Nb

· · ·
Mi1,...,ik−1⋃
ik=Nb

(i1, . . . , ik).

As in Proposition 3.4 we will estimate Mi1,...,ik−1
via escape times of vertices vω.

Recall from Equation 46 the constants C,K > 0 determining the admissible words of

level two.

Proposition 3.6. For each (i1, . . . , ik−1) ∈ Σb,k−1 let M = Mi1,...,ik−1
be the

greatest positive integer such that vi1,...,ik−1,M ∈ S. Then for large values of i1, . . . , ik−1,

Mi1,...,ik−1
is asymptotic to C+Ki2k−1. More precisely, for any δ > 0 there is an integer

Nk−1 > 0 with

C + (K − δ)i2k−1 < Mi1,...,ik−1
< (C + δ) +Ki2k−1

when i1, . . . , ik−1 ≥ Nk−1.

Proof. We will prove the upper bound; the lower bound is similar. By Proposi-

tion 3.5 we have the nesting property vi1,...,ik = qi2,...,ik(vi1). In particular, vi1,...,ik−1,M =
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qi2,...,ik−1,M(vi1). Then M = Mi1,...,ik−1
is the greatest positive integer such that

qi2,...,ik−1,M(vi1) ≤ R. By Equation 48 this is equivalent to

2πMi1,...,ik−1
< α−β+a(1−R)−qi2,...,ik−1

(vi1)+
2R2

v2i1 +
∑k−1

j=2 q
2
i2,...,ij

(vi1)
tan−1

(
R

v2i1 +
∑k−1

j=2 q
2
i2,...,ij

(vi1)

)

Recall that limi→∞ vi = 0 and vω = lims→0 qω. Combining this with the nesting

property we obtain that

lim
i1→∞

qi2,...,ik−1
(vi1) = vi2,...,ik−1

= qi3,...,ik−1
(vi2),

and by induction, for all 1 ≤ j ≤ k − 1 that

lim
i1,...,ij−1→∞

qi2,...,ij(vi1) = vij

Then for a sufficiently large integer Nk−1, we have for all i1, . . . , ik−1 ≥ Nk−1 that

0 < −qi2,...,ik−1
(vi1) < 2πδ, and 0 < |qi2,...,ij(vi1)| <

√
δ

k
.

Substituting this into the first inequality and using that tan−1(·) < π

2
, we obtain for

i1, . . . , ik−1 ≥ Nk that Mi1,...,ik−1
is the greatest positive integer such that

2πMi1,...,ik−1
< α− β + a(1−R) + 2πδ +

πaR2

v2
ik−1

+ δ
.

Since vik−1
= − p

ik−1

from the proof of Proposition 3.4, this is equivalent to

Mi1,...,ik−1
< (C + δ) +Ki2k−1.

�

Finally, from the recursive definition in Equation 47, and Equation 38, the

pseudogroup 〈Φ,Θ〉 permutes the curves γi1,...,ik in the following way.

Φ(γi1,...,ik) = γi1,...,ik+1(50)

Θ(γi1,...,ik−1
) = γi1,...,ik,1
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4. Symbolic dynamics of the rectangle S

In the previous section we described the level decomposition of the intersection

N0,1 ∩ S, parametrized the curves in each level set, and labeled the curves by words

in a sequence space. The parametrization of the parabolic curve σ−1γ in Equation 22

was crucial in this analysis.

In this section, we recall the additional assumption from Chapter 2 that σ−1(S)

is a parabolic strip (see Figure 3). More specifically, we assumed that the foliation

of S by the vertical lines {γc}0≤c≤b (where γc is parametrized in Equation 23) is

mapped under σ−1 into the parabolic foliation {σ−1γc}0≤c≤b of σ−1(S), where σ−1γc

is parametrized in Equation 24. See Figure 4.

Figure 4. The vertical curves γc and their images σ−1γc.

For each 0 ≤ c ≤ b, define

(51) Nc =
⋃

−∞<t<∞
ψt(γc).
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Since γ0 = γ, this agrees with our definition of N0 given in Equation 33.

For 0 ≤ c ≤ b, and for i = 1, 2 we have a definition of Nc,1 ∩ S identical to the

definition of N0,1 ∩ S given in Equation 36. As in Equation 37, for each c there is a

well-defined level decomposition of Nc,1 ∩ S.

(52) Nc,1 ∩ S =
⋃
k≥0

N k
c,1 ∩ S.

Each level set N k
c,1 ∩ S is comprised of curves γc,(i1,...,ik) recursively defined by pseu-

dogroup elements as

(53) γc,(i1,...,ik) = Φik−1Θ
(
γc,(i1,...,ik−1)

)
,

exactly as we defined γi1,...,ik in Equation 47.

The symbolic dynamics of the action of 〈Φ,Θ〉 on Nc,1 ∩ S is similar to that

of its action on N0,1 ∩ S. For c = 0 and each k ≥ 1 we recover the sequence space

Σb,k from Equation 49 coding the curves γi1,...,ik ∈ N0,1 ∩ S. For 0 < c ≤ b, there is a

similar sequence space Σc,k coding the curves γc,(i1,...,ik) ∈ Nc,1 ∩ S, but this sequence

space has fewer admissible words because the escape times of γc under the action of

Φ decrease as c→ b. This is evident from Figure 4.

Finally, let Ai = Φi−1Θ(S), and recursively define

Ai1,...,ik = Φik−1Θ
(
Ai1,...,ik−1

)
.

Notice that the admissible words ω coding the sets Aω are the same as those coding

the curves γω because γω ⊂ ∂Aω, so their escape times are equal. This is an important

point that we will return to later, when defining function systems on the transversal.

The nesting property for curves γω established in Proposition 3.5 implies that the

sets Aω are nested.

Proposition 4.1. For each (i1, . . . , ik) ∈ Σk, we have

Ai1,...,ik ⊂ Ai2,...,ik .
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See Figure 5 for a picture of these sets Aω for level-one ω.

A1

A2

r = 2

z = −1

1

Figure 5. The sets Aω for ω ∈ Σb,1 of level one. Notice that each
curve γω is the lower boundary of each Aω. Compare with Figure 1.

5. Summary of symbolic dynamics

From Equation 37, the transverse intersection N0,1 ∩ S has a level decomposi-

tion

(54) N0,1 ∩ S =
⋃
k≥0

N k
0 ∩ S.

Each level set is a collection of curves

(55) N k
0,1 ∩ S =

⋃
ω∈Σb,k

γω,
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where Σb,k ⊂ Nk is the space of admissible words of length k (see Equation 49)

depending on b, the width of the transverse section S. Each curve γω ∈ N0,1 ∩ S
corresponds to a word ω whose length |ω| is the level of γω. Define the space of all

finite admissible words as

(56) Σb =
∞⋃
k=0

Σb,k,

where Σb,0 is a singleton (because there is only one curve of level zero, namely γ).

Referring to Equation 49, a word (i1, . . . , ik) is in Σb,k only if (i1, . . . , ik−1) is in

Σb,k−1. By Definition 2.1, Σb satisfies the extension admissibility property, and thus

is a general symbolic space as defined in Chapter 2.

Substituting Equations 55 and 56 into Equation 54, we obtain

(57) N0,1 ∩ S =
⋃
k≥0

⋃
ω∈Σb,k

γω =
⋃
ω∈Σb

γω.

From Equation 33, M0 is the orbit of the curve γu which is obtained by

restricting the parametrization of γ. By restricting the parametrization in Equation

57 we obtain

(58) M0,1 ∩ S =
⋃
ω∈Σb

γuω.

The faithful action of the pseudogroup 〈Φ,Θ〉 on N0,1 ∩ S given in Equation

50 induces a faithful action on Σb:

Φ : Σb,k → Σb,k Φ(i1, . . . , ik) = (i1, . . . , ik + 1)(59)

Θ : Σb,k → Σb,k+1 Θ(i1, . . . , ik) = (i1, . . . , ik, 1)

For each 0 ≤ c ≤ b and each curve γc in the vertical foliation of S, we have a

similar level decomposition ofNc,1∩S as a collection of curves coded by a smaller space

Σc of admissible words. Together, this gives a level decomposition of
⋃
t≥0 ψt(S) ∩ S

in terms of the sets Aω.
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(60)
⋃

−∞<t<∞
ψt(S) ∩ S =

⋃
ω∈Σb

Aω.

6. Dual symbolic dynamics

In Chapter 4 we introduced the dual Σ̃ of a symbolic space Σ. In this section

we will compute the admissible words in the dual space Σ̃b,k. We first recall the

conventions; if ω = (i1, . . . , ik) ∈ Σb,k is an admissible word, then we denote its dual

by ω̃ = (ik, . . . , i1). For any k ≥ 1, the dual of Σb,k is

Σ̃b,k = {ω̃ : ω ∈ Σb,k}.

By Equation 49,

(61) Σ̃b,k =
∞⋃

i1=Nb

Mi1⋃
i2=Nb

· · ·
Mi1,...,ik−1⋃
ik=Nb

(ik, . . . , i1).

The space of all finite dual words is

(62) Σ̃b =
∞⋃
k=0

Σ̃b,k,

For every ω ∈ Σb there is a corresponding curve γω. The curve dual to γω is γ̃ω = γω̃.

From the action of 〈Φ,Θ〉 on Σb,k shown in Equation 59, we obtain an obviously

defined action on Σ̃b. Also, the nesting property for curves γ given in Proposition 3.5

implies a nesting property for dual curves γ̃.

Proposition 6.1. For each (i1, . . . , ik) ∈ Σ̃b,k, the level-k curve γi1,...,ik is

nested in the level-(k − 1) curve γi1,...,ik−1
.

Finally, recall the sets Aω coded by ω ∈ Σb introduced in Chapter 4. For each

set Aω there is a corresponding dual set Ãω = Aω̃. These dual sets satisfy a nesting

property similar to that in Proposition 4.1.
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Proposition 6.2. For each (i1, . . . , ik) ∈ Σ̃b,k we have

Ai1,...,ik ⊂ Ai1,...,ik−1
.



CHAPTER 9

Transverse dynamics

In the previous chapter we coded the curves in the intersection of the sur-

face N0,1 with the transverse rectangle S, and studied the pseudogroup dynamics on

this intersection. In this chapter we choose a one-dimensional transversal in S, and

study the induced pseudogroup dynamics on its intersection with N0,1. Our choice of

transversal is the upper boundary S+ of S, as defined in Section 2:

(63) S+ = {(r, β,−1 +R) : 0 ≤ r − 2 ≤ b}.

Note that S+ can be identified with [0, b]. We will introduce the transverse distances of

the curves γω measured along S+. Then we will use the parametrizations of the curves

derived in Section 8 to asymptotically estimate these transverse distances. These will

be important for later estimates of the Hausdorff dimension of the minimal set.

1. The transverse set N0,1 ∩ S+

Recall from Equation 48 and the remarks afterwards that for each k ≥ 1

and ω ∈ Σb,k there exist unique s±ω with s−ω < 0 < s+
ω such that qω(s±ω ) = R. By

the definition of S+ above and the parametrizations of γω in Equation 48, this is

equivalent to γω(s±ω ) ∈ S+, so each curve γω has two unique points of intersection

with S+. Because γ = γl ∪ γu as defined in Equation 18, we see that for all k ≥ 1

and each ω ∈ Σb,k, γ
l
ω and γuω each have one unique intersection point with S+. We

define a±ω as the radial distances of these points from the Reeb cylinder, measured

98



2. TRANSVERSE DISTANCES 99

along S+. In coordinates,

γuω ∩ S+ = (2 + a−ω , β,−1 +R)(64)

γlω ∩ S+ = (2 + a+
ω , β,−1 +R).

With this choice, it is easy to see from the parametrization in Equation 48 that

a−ω < a+
ω for each ω.

From Equation 57 we have

(65) N0,1 ∩ S+ =
⋃
ω∈Σb

a±ω ,

and by Equation 58 we have

(66) M0,1 ∩ S+ =
⋃
ω∈Σb

a−ω .

From the parametrization in Equation 48,

(67) a±i1,...,ik =
(
s∓i1,...,ik

)2
+

k−1∑
j=1

q2
i1,...,ij

(
s∓i1,...,ik

)
for each ω = (i1, . . . , ik) ∈ Σb,k. See Figure 1 for a picture of a±ω for words ω ∈ Σb,1 of

level one.

In Figures 1 and 2 it appears that γω becomes radially narrower as |ω| → ∞,

as does γi,ω as i→∞ for ω fixed. In the next section we measure the asymptotics of

these widths more precisely.

2. Transverse distances

Define the function a : Σb → R+ by

a(ω) = |a+
ω − a−ω |.
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γ1

γ2

γ3
γ4

γ5

S+

r = 2 r = 2 + b

z = −1

z = −1 +R

a−2 a+2a−
3 a+

3
. . .

1

1

Figure 1. The points a±i as intersections of the level-one curves γi
with the upper boundary S+ of S. In this case Nb = 2, the minimal
value of i such that qi(s) = R has a solution.

This function gives the transverse width of the curve γω measured along S+. We say

that {a(ω)}ω∈Σb,k are the transverse distances of level k. We will now estimate the

transverse distances of each level.

2.1. Transverse distances of level one. By Equation 67, we have

(68) a(i) =
∣∣(s+

i )2 − (s−i )2
∣∣ ,
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where s±i are the unique solutions to qi(s) = R. Recall the constants C and K from

Equation 46.

Proposition 2.1. For all δ > 0 there exists L1 ∈ N such that for all i ≥ L1,∣∣∣∣∣a(i)−
(
π−1K

3
2

i
5
2

)∣∣∣∣∣ < δ

i2
.

Proof. Using the parametrization given in Equation 40, the equation qi(s) = R

is equivalent to fi(s) = 0, where

fi(s) = 2πC + s+
4K

s2
tan−1

(
R

s2

)
− 2πi.

So s±i are the unique roots of fi. We now claim that for any δ > 0 there exists N ∈ N

such that for all i ≥ N ,

s+
i ,−s−i ∈

[√
K(1− δ)

i
,

√
K(1 + δ)

i− 1
,

]
.

We will prove this for s+
i ; the proof for −s−i is identical.

First, restrict parameter values s to the interval√
K(1− δ)
i− C < s <

√
K(1 + δ)

i− 1− C .

We will show that fi has a root on this interval; by uniqueness it must be s+
i . Notice

as i→∞ that s↘ 0 on this interval, so for large enough i, tan−1

(
R

s2

)
∼ π

2
. From

this, we can show for sufficiently large i that f−i (s) < fi(s) < f+
i (s) for all s on this

interval, where

f±i (s) = 2πC + s+
2πK(1± δ)

s2
− 2πi.

Note that f±i are monotonically decreasing, and that

f−i

(√
K(1− δ)
i− C

)
> 0, and f+

i

(√
K(1 + δ)

i− 1− C

)
< 0,

so fi must have a root on this interval and we obtain the desired bounds on s+
i , after

absorbing C into the constant N .
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As an immediate corollary, notice that for any δ > 0 and sufficiently large i,

(69)
2
√
K(1− δ)
i
1
2

<
∣∣s+
i − s−i

∣∣ < 2
√
K(1 + δ)

i
1
2

We now turn to the proof of the proposition. Substituting the equations

fi(s
±
i ) = 0 into Equation 68 yields

a(i) =

∣∣∣∣ 4K

2π(i− C)− s+
i

tan−1

(
R

(s+
i )2

)
− 4K

2π(i− C)− s−i
tan−1

(
R

(s−i )2

)∣∣∣∣ .
It is easy to show using the parametrization in Equation 40 that (s+

i )2 > (s−i )2.

Applying this to the above expression for a(i) we obtain

tan−1

(
R

(s+
i )2

)
<

a(i)∣∣∣ 4K
2π(i−C)−s+i

− 4K
2π(i−C)−s−i

∣∣∣ < tan−1

(
R

(s−i )2

)
.

In light of the bounds we established on s±i we know that s±i → 0 and therefore that

tan−1

(
R

(s±i )2

)
→ π

2

as i→∞. Then for any δ > 0,

K(1− δ)
2πi2

|s+
i − s−i | < a(i) <

K(1 + δ)

2πi2
|s+
i − s−i |

for sufficiently large i. Combining this with Equation 69, we obtain the desired

result. �

From this proof we deduce the following corollary.

Corollary 2.2. The following limit exists

lim
i→∞

a−i = 0.

Proof. By Equation 67, a−i = (s+
i )2. From the proof of Proposition 2.1, limi→∞ s

+
i =

0. �
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Corollary 2.2 is analytic confirmation of one of the heuristic facts evident in

Figure 1; that the level-one curves γi limit on the Reeb cylinder r = 2 as i → ∞.

From this and the nesting properties, we will later deduce that the level-two curves

limit on the level-one curves, and inductively that the level-k curves limit on the

level-(k − 1) curves.

2.2. Transverse distances of level two. By Equation 67, for all (i, j) ∈ Σb,2

we have

(70) a(i, j) =
∣∣(s+

i,j)
2 + q2

i (s
+
i,j)− (s−i,j)

2 − q2
i (s
−
i,j)
∣∣ ,

where s±i,j are the unique solutions to qi,j(s) = R.

Proposition 2.3. For all δ > 0 there exists L2 ∈ N such that for all (i, j) ∈
Σb,2 with i, j ≥ L2, ∣∣∣∣∣a(i, j)−

(
π−1K

3
2

j
5
2

· (2π)−2aR2

i2

)∣∣∣∣∣ < δ

i2j2
.

Proof. Using the parametrization given in Equation 43, the equation qi,j(s) = R

is equivalent to fi,j(s) = 0, where

fi,j(s) = 2πC + qi(s) +
4K

s2 + q2
i (s)

tan−1

(
R

s2 + q2
i (s)

)
− 2πj.

The unique roots of fi,j are s±i,j.

Recall that lims→0 qi(s) = vi by definition and that limi→∞ vi = 0. Applying

this fact to the above expression for fi,j and using a method similar to that in the

proof of Proposition 2.1, we can show for any δ that

s+
i,j,−s−i,j ∈

[√
K(1− δ)
j + 1− C ,

√
K(1 + δ)

j − 1− C

]

for sufficiently large i, j. As a corollary we obtain that

(71)
2
√
K(1− δ)
j

1
2

< |s+
i,j − s−i,j| <

2
√
K(1 + δ)

j
1
2
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for sufficently large i, j.

We now claim that for small enough parameter values s we have

(72)
−aR2 − δ

i2

2π(i− C)− s+ aR + δ
< qi(s) <

−aR2 + δ
i2

2π(i− C)− s+ aR− δ ,

for sufficiently large i. To prove this we use the parametrization from Equation 40:

qi(s) =
s2 tan

(
s2

R2Ti(s)
)
−R

1 + R
s2

tan
(
s2

R2Ti(s)
) .

For small x, tanx ∼ x. Then for any δ > 0 we have

−R− δ
i

1 + 1
R
Ti(s) + δ

< qi(s) <
−R + δ

i

1 + 1
R
Ti(s)− δ

for large enough i and small enough s. Multiplying the top and bottom of each

fraction by aR, substituting aTi(s) = 2π(i− C)− s from Equation 40 and re-scaling

δ we obtain the desired bounds.

As an immediate corollary we obtain for any δ > 0 and small enough parameter

values u, v that

(73)
(2π)−2aR2

i2
|u− v| − δ

i2
< |qi(u)− qi(v)| < (2π)−2aR2

i2
|u− v|+ δ

i2

for large enough i.

We now turn to the proof of the proposition. Substituting the equations

fi,j(s
±
i,j) = 0 into Equation 70 yields

a(i, j) =

∣∣∣∣∣ 4K

2π(j − C)− qi(s+i,j)
tan−1 R

(s+i,j)
2 + q2i (s+i,j)

− 4K

2π(j − C)− qi(s−i,j)
tan−1 R

(s−i,j)
2 + q2i (s−i,j)

∣∣∣∣∣ ,
and since (s+

i,j)
2 > (s−i,j)

2 this implies

tan−1

(
R

(s+
i,j)

2 + q2
i (s

+
i,j)

)
<

a(i, j)∣∣∣∣ 4K
2π(j−C)−qi(s+i,j)

− 4K
2π(j−C)−qi(s−i,j)

∣∣∣∣ < tan−1

(
R

(s−i,j)
2 + q2

i (s
−
i,j)

)
.
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But from the bounds we established on s±i,j we know that s±i,j → 0 and thus that

tan−1

(
R

(s±i,j)
2 + q2

i (s
±
i,j)

)
→ π

2

as i, j →∞. Then we can eliminate the inverse tangent terms and simplify to

K(1− δ)
2πj2

∣∣qi(s+
i,j)− qi(s−i,j)

∣∣ < a(i, j) <
K(1 + δ)

2πj2

∣∣qi(s+
i,j)− qi(s−i,j)

∣∣ .
Substituting in Equation 73, we improve the bounds to

K(1− δ)
2πj2

(
(2π)−2aR2

i2
|s+i,j − s−i,j | −

δ

i2

)
< a(i, j) <

K(1 + δ)

2πj2

(
(2π)−2aR2

i2
|s+i,j − s−i,j |+

δ

i2

)
.

Finally, we substitute in Equation 71 and re-scale δ to obtain the desired bounds. �

Using the estimates in the above proof, we now show that the level-two points

ai,j limit on the level-one points ai in the following way.

Corollary 2.4. For (i, j) ∈ Σb,2 the limit exists

lim
i,j→∞

a−i,j = 0,

and for j sufficiently large,

lim
i→∞

a−i,j = a−j .

Proof. By Equation 67,

a−i,j = (s+
i,j)

2 + q2
i (s

+
i,j).

From the proof of Proposition 2.1 we know that limi,j→∞ s
+
i,j = 0. Using this, further-

more we have

lim
i,j→∞

qi(s
+
i,j) = lim

i→∞
vi = 0,

which proves the first statement. To prove the second statement, we first claim that

for a sufficiently large j,

lim
i→∞

s+
i,j = s+

j .
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To prove this, recall from the proof of Proposition 2.1 that s+
j is the unique root of

fj on s > 0, so

fj(s
+
j ) = 2πC + s+

j +
4K

(s+
j )2

tan−1

(
R

(s+
j )2

)
− 2πj = 0,

and from the proof of Proposition 2.3 that s+
i,j is the unique root of fi,j, so

fi,j(s
+
i,j) = 2πC + qi(s

+
i,j) +

4K

(s+
i,j)

2 + q2
i (s

+
i,j)

tan−1

(
R

(s+
i,j)

2 + q2
i (s

+
i,j)

)
− 2πj = 0.

For sufficiently large j, limi→∞ qi(s
+
i,j) = 0 from the proof of Proposition 2.3. Using

this and comparing the above parametrizations, we see that limi→∞ s
+
i,j is a root of

fj for sufficiently large j. Since the root of fj is unique on s > 0 and equals s+
j , we

obtain the desired result. �

2.3. Transverse distances of level k.

Proposition 2.5. For all δ > 0 there exists Lk ∈ N such that for all (i1, . . . , ik) ∈
Σb,k with i1, . . . , ik ≥ Lk,∣∣∣∣∣a(i1, . . . , ik)−

(
π−1K

3
2

i
5
2
k

· ((2π)−2aR2)
k−1

i21 · · · i2k−1

)∣∣∣∣∣ < δ

i21 · · · i2k
.

Proof. By the parametrization given in Equation 48, the equation qi1,...,ik(s) = R

is equivalent to fi1,...,ik(s) = 0, where

fi1,...,ik(s) = 2πC+qi1,...,ik−1
(s)+

4K

s2 +
∑k−1

j=1 q
2
i1,...,ij

(s)
tan−1

(
R

s2 +
∑k−1

j=1 q
2
i1,...,ij

(s)

)
−2πik,

Recall that lims→0 qi1,...,ik−1
(s) = vi1,...,ik−1

and that limi1,...,ik−1→∞ vi1,...,ik−1
= 0.

Applying this to the above expression for fi1,...,ik we can show that

s+
i1,...,ik

,−s−i1,...,ik ∈

√ K(1− δ)
ik + 1− C ,

√
K(1 + δ)

ik − 1− C


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for sufficiently large i1, . . . , ik. As a corollary we obtain that

(74)
2
√
K(1− δ)
i
1
2
k

< |s+
i1,...,ik

− s−i1,...,ik | <
2
√
K(1 + δ)

i
1
2
k

for sufficently large i1, . . . , ik.

We now claim that for sufficiently small parameter values s and sufficiently

large values of i1, . . . , ik we have

−aR2 − δ
i21···i2k

2π(ik − C)− qi1,...,ik−1
(s) + aR+ δ

< qi1,...,ik(s) <
−aR2 + δ

i21···i2k
2π(ik − C)− qi1,...,ik−1

(s) + aR− δ ,

for sufficiently large i1, . . . , ik. The proof of this uses the expression for qi1,...,ik in

terms of qi1,...,ik−1
given in Equation 48, together with precisely the same method of

proof as the corresponding claim in the proof of Proposition 2.3. As a corollary, we

have for sufficiently large i1, . . . , ik and small enough parameter values u, v that

(2π)−2aR2

i2k
|qi1,...,ik−1

(u)− qi1,...,ik−1
(v)| − δ

i21 · · · i2k
< |qi1,...,ik(u)− qi1,...,ik(v)|

<
(2π)−2aR2

i2k
|qi1,...,ik−1

(u)− qi1,...,ik−1
(v)|+ δ

i21 · · · i2k
.

From this recursive expression we can prove by induction on k for sufficiently large

i1, . . . , ik and small u, v that

(75)(
(2π)−2aR2

)k
i21 · · · i2k

|u−v|− δ

i21 · · · i2k
< |qi1,...,ik(u)− qi1,...,ik(v)| <

(
(2π)−2aR2

)k
i21 · · · i2k

|u−v|+ δ

i21 · · · i2k

We now turn to the proof of the proposition. Substituting the equations

fi1,...,ik(s
±
i1,...,ik

) = 0 into Equation 67 and eliminating the inverse tangent terms as in

the proof of Proposition 2.3 yields

K(1− δ)
2πi2k

∣∣∣qi1,...,ik−1
(s+
i1,...,ik

)− qi1,...,ik−1
(s−i1,...,ik)

∣∣∣ < a(i1, . . . , ik)

<
K(1 + δ)

2πi2k

∣∣∣qi1,...,ik−1
(s+
i1,...,ik

)− qi1,...,ik−1
(s−i1,...,ik)

∣∣∣ .
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Substituting Equation 75 we obtain

K(1− δ)
2πi2k

((
(2π)−2aR2

)k−1

i21 · · · i2k−1

|u− v| − δ

i21 · · · i2k−1

)
< a(i1, . . . , ik)

<
K(1 + δ)

2πi2k

((
(2π)−2aR2

)k−1

i21 · · · i2k−1

|u− v|+ δ

i21 · · · i2k−1

)
.

Finally, we substitute in Equation 74 and re-scale δ to obtain the desired bounds. �

The proof of the following corollary is a straightforward generalization of the

proof of Corollary 2.4.

Corollary 2.6. For (i1, . . . , ik) ∈ Σb,k the limit exists

lim
i1,...,ik→∞

a−i1,...,ik = 0,

and for ω = (i1, . . . , ik) with i1, . . . , ik sufficiently large,

lim
j→∞

a−j,ω = a−ω .

3. The projection action

In Chapter 8, we exhibited a faithful action of Ψ1 = 〈Φ,Θ〉 on N0,1 ∩ S. This

does not restrict to an action on the transversal N0,1 ∩ S+, because the maps Φ and

Θ do not preserve S+. Nevertheless, we will show that the 〈Φ,Θ〉 acts faithfully on

N0,1 ∩ S+ in this section.

By Theorem 0.1, N ∩ S is a codimension-one lamination in S, and N0,1 ∩ S is

a collection of leaves of this lamination. By Equation 57, the leaves in N0,1 ∩ S are

the collection of curves γω indexed by ω ∈ Σb.

To obtain a faithful action of 〈Φ,Θ〉 on N0,1 ∩S+, we will project to S+ along

these leaves. We will call this the projection action of 〈Φ,Θ〉 on S+. To define this

action, we will first define the projection maps along the leaves.

3.1. The projection maps. By Equation 64, each curve γω has two unique

intersections with S+, whose radial coordinates are 2 +a±ω . Furthermore, each γω has
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a vertex vω = γω(0), as defined in Section 8. For each ω ∈ Σb we have maps

(76) p±ω : a±ω 7→ vω,

and each map p±ω has a well-defined inverse.

Each leaf γω is the intersection with S of the orbit of the smooth curve γ

under the C∞ flow ψt. The surface S is transverse to the flow, so each γω is a C∞

submanifold of codimension one in S. Each γω is covered by a finite number of charts

of the lamination in S, and each map p±ω is a finite composition of transition maps

of these charts, which are C∞. As a consequence, the maps p±ω are in the holonomy

of this lamination and are smooth projections along its leaves. See Figure 2 for a

picture of the projection along curves γi of level one.

3.2. The projection action. Notice that the vertices
⋃
ω∈Σb

vω are preserved

by 〈Φ,Θ〉. By Equation 59, the action on the vertices is

Φ(vi1,...,ik) = vi1,...,ik+1(77)

Θ(vi1,...,ik) = vi1,...,ik,1.

To define the projection action of 〈Φ,Θ〉 on N0 ∩ S+ =
⋃
ω∈Σb

a±ω , we conjugate the

above action by the projection maps.

Φ · a±i1,...,ik =
(
p±i1,...,ik+1

)−1
Φ p±i1,...,ik(a

±
i1,...,ik

)

Θ · a±i1,...,ik =
(
p±i1,...,ik,1

)−1
Θ p±i1,...,ik(a

±
i1,...,ik

)

Combining this with Equations 76 and 77 we see that

Φ · a±i1,...,ik = a±i1,...,ik+1(78)

Θ · a±i1,...,ik = ai1,...,ik,1,

so the symbolic dynamics of this action on the transversal S+ is the same as that of

the action on the section S given in Equation 50.
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γ1

γ2

γ3

S+

r = 2 r = 2 + b

z = −1

z = −1 +R

a−2 a+2

p−2
p+2

v2

1

1

Figure 2. The projection maps p±2 projecting the points a±2 along the
curve γ2 to its vertex v2.

4. Dual transverse distances

In Section 6 we defined the dual space Σ̃b and obtained nesting properties for

the curves γω and sets Aω when ω ∈ Σ̃b. Thus from any statement about a±ω or a(ω)

we have a dual version of the statement. For later use we record two such versions

below. The first is the dual version of Proposition 2.5.
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Proposition 4.1. For all δ > 0 there exists Lk ∈ N such that for all (i1, . . . , ik) ∈
Σ̃b,k with i1, . . . , ik ≥ Lk,∣∣∣∣∣a(i1, . . . , ik)−

(
π−1K

3
2

i
5
2
1

· ((2π)−2aR2)
k−1

i22 · · · i2k

)∣∣∣∣∣ < δ

i21 · · · i2k
.

The second is the dual version of Corollary 2.6.

Corollary 4.2. For (i1, . . . , ik) ∈ Σ̃b,k the limit exists

lim
i1,...,ik→∞

a−i1,...,ik = 0,

and for ω = (i1, . . . , ik) with i1, . . . , ik sufficiently large,

lim
j→∞

a−ω,j = a−ω ,

and by induction,

lim
jk+1,...,jk+n→∞

aω,jk+1,...,jk+n = a−ω

for any n ≥ 1.



CHAPTER 10

C1+α function systems on the transversal

In this chapter we use the pseudogroup Ψ1 = 〈Φ,Θ〉 and the projection maps

from Chapter 3 to define a function system on the transversal S+. By Equation 63,

S+ can be identified with [0, b] via the map

(r, β,−1 +R) 7→ r − 2.

In this coordinate system, Equation 64 reads simply

γω ∩ S+ = a±ω ,

so for ease of notation we will frequently use this coordinate system.

The function system we will define will be a C1+α general function system on

[0, b] modeled by a general symbolic space in the sense of Chapter 5. Furthermore, we

will prove that for sufficiently small ε > 0, this function system has a pseudo-Markov

subsystem on [0, ε] ⊂ [0, b], as studied in Chapter 1. These function systems will be

related to the transverse Kuperberg minimal set in Chapter 11.

1. A C1+α function system on [0, b]

The domain of the projection maps defined in Chapter 3 is

⋃
ω∈Σb

a±ω ⊂ [0, b].

To define a function system on [0, b], we will need to project along curves γc,ω in the

parabolic foliations of Aω studied in Chapter 4.

1.1. Extension of the projection maps. Recall the foliation of S by vertical

lines {γc}0≤c≤b parametrized in Equation 23. Then by Equation 52 and the subsequent

112
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remarks, we have a level decomposition

Nc,1 ∩ S =
⋃
ω∈Σc

γc,ω.

For each ω ∈ Σc, the curve γc,ω has intersection points a±c,ω ∈ [0, b], and vertex

vc,ω = γc,ω(0). We extend the projections p±ω to projections p±c,ω along the curves γc,ω

in the same way as in Equation 76.

(79) p±c,ω : a±c,ω 7→ vc,ω

1.2. Preliminary steps. The definition of a general function system modeled

on a symbolic space, as given in Section 5, has some preliminary steps. Namely, a

compact space X ⊂ [0, 1], a countable alphabet E, and for each i ∈ E a C1+α map

fi : X → X with Lipschitz constant < 1 and images ∆i = fi(X) satisfying the

separation property

∆i ∩∆j = ∅ when i 6= j.

In our setting, we let X = S− ∪ S+, where S± are the upper and lower

boundaries of S, from Equation 16. Because S± are both identified with [0, b], the

space X is naturally identified with two disjoint copies of [0, b]. Let Nb ∈ N be the

constant defined in the proof of Proposition 3.1, and let

E = Σb,1 = {Nb, Nb + 1, . . .}

as defined in Equation 41.

To define fi : X → X, we define fi(c) for c on each interval S± separately. If

c ∈ S+ then by Equation 23, c = a−c , the unique upper endpoint of γc. If c ∈ S− then

c = a+
c , the unique lower endpoint of γc. We now define

(80) fi(a
±
c ) = (p±c,i)

−1 Φi−1 Θ p±c (a±c ).
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In words, fi first projects a±c to the vertex vc of γc, then follows the orbit of vc through

the insertion to its first intersection Θ(vc) with S. It then follows the orbit of Θ(vc)

to its its (i − 1)-th return to S under Φ. By construction, this is the vertex vc,i

of γc,i which is then inversely projected back along γc,i to its intersection a±c,i with

S+ = [0, b].

For any i ∈ Σb,1, recall from Chapter 4 that Ai = (Φi−1Θ)(S). For each i, the

curves {γc,i}c form a parabolic foliation of Ai (See figures 4 and 5). From this and

the definition of the extended projection maps given in Equation 79, we see that

fi(X) = Ai ∩ S+.

Denote ∆i = fi(X) and note that each ∆i is a closed interval. Since γi ⊂ ∂Ai, and

a±i are the unique intersection points of γi with [0, b], we have

∆i = [a−i , a
+
i ],

so that |∆i| = a(i), the transverse distances of level one studied in Section 9. See

Figure 1.

We now show that fi satisfies the properties we imposed in Section 5.

• Uniform contraction: For all i ∈ Σb,1, the maps fi have a uniform Lipschitz

constant 0 < s < 1.

In fact, more is true. First, note that as C1 maps of a compact space,

each fi is individually Lipschitz by the mean value theorem. Let c, c′ ∈ S+.

Then

|fi(c)− fi(c′)| ≤ |∆i| = a(i).

By Proposition 2.1, a(i) ∼ i−
5
2 → 0 as i→∞. So as i increases, the Lipschitz

constant of fi becomes arbitrarily small. See Figure 2 for a picture of this.

Thus setting s to be the Lipschitz constant of f1 suffices for our purposes.
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γ1

A1

γ2

A2

S+

r = 2 r = 2 + b

z = −1

z = −1 +R
∆2∆3∆4· · ·

1

1

Figure 1. The sets Ai and their intersection intervals ∆i with S+ = [0, b].

• C1+α regularity : There exists α > 0 such that for all i ∈ Σb,1, the maps fi

have regularity C1+α.

Recall from Section 3 that the projection maps p±ω are C∞; this argument

also holds for the maps p±c,ω. The maps Θ,Φ are in the holonomy of the

Kuperberg flow and as such are also C∞. By Equation 80, the maps fi are

compositions of these and as such are C∞. By the mean value theorem, a

C∞ map of a compact interval has a uniform bound on its second derivative.

This demonstrates that for all i ∈ Σb,1, fi are uniformly C1+α for α = 1.
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r = 2 r = 2 + b

γ γc γc′

a−c a−c′ S+ = [0, b]

1

Two points a−c , a
−
c′ ∈ S+ = [0, b]

as endpoints of the vertical seg-
ments γc, γc′ .

r = 2 r = 2 + b

γi

γc,i

γc′,i

a−i a+
i

a−c,i a−c′,i

1

The images a−c,i, a
−
c′,i ∈ [a−i , a

+
i ]

under fi of a−c , a
−
c′ , respectively.

Figure 2

• Separation property : As ∆i = Ai ∩ S+, the sets ∆i are pairwise disjoint

because the sets Ai are.

1.3. The function system on [0, b]. In this section we will use the spaces ∆i

defined above to define a general function system modeled by a symbolic space of

infinite type, in the sense of Definition 5.1.

The dual space Σ̃b defined in Equation 62 is a general symbolic space, and

thus has an infinite extension Σ̃∞b (see Definition 2.3) which is a symbolic space of

infinite type. We now define a general function system

{φi,j : ∆j → X}(i,j)∈Σ̃b,2
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modeled by Σ̃∞b .

The collection of curves {γc,j}0≤c≤b forms a parabolic foliation of each Aj (see

figure 4). Each point x ∈ ∆j is the unique intersection point a±c,j of one of these

curves γc,j with the upper boundary S+ = [0, b]. For any i, j ≥ Nb we define maps

φi,j : ∆j → [0, b] as follows.

(81) φi,j(a
±
c,j) =

(
p±c,(j,i)

)−1

Φi−1 Θ p±c,j(a
±
c,j)

The definition resembles that of fi given in Equation 80. Each point a±c,j ∈ ∆j

is projected down to the vertex vc,j of the parabola γc,j. It then follows the orbit

of vc,j through the insertion Θ and the (i − 1)-th return to S under Φ, which by

definition is the vertex vc,(j,i), and is then inversely projected back along γc,(j,i) to its

intersection point a±c,(j,i) ∈ [0, b].

We need to show that this is well-defined for (i, j) ∈ Σ̃b,2. Recall from Equation

44 that Σb,2 is the sequence space indexing the level-two curves γc,(i,j) defined in

Equation 53 by

γc,(i,j) = (Φj−1Θ)(γc,i).

Comparing with Equation 81, we see that φi,j is well-defined with image in S when

(i, j) ∈ Σ̃b,2. We can now state the following theorem.

Theorem 1.1. Let Σb be the general symbolic space given in Equation 56, and

let Σ∞b be its infinite extension. Then the collection {φi,j : ∆j → [0, b]}(i,j)∈Σ̃b,2
is a

C1+α general function system modeled by the dual Σ̃∞b .

Proof. We will show that {φi,j} satisfies the requirements of a C1+α general

function system given in Definition 5.1.

• Uniform contraction: For each (i, j) ∈ Σ̃b,2 the maps {φi,j : ∆j → [0, b]} have

a common Lipschitz constant 0 < s < 1.
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Recall the above proof that the maps fi are uniformly Lipschitz; a similar

argument holds here. Consider the dual transverse distances a(i, j) of level

two defined in Chapter 4. Then for all 0 ≤ c, c′ ≤ b we have

|φi,j(a±c,j)− φi,j(a±c′,j)| < a(i, j)

for all (i, j) ∈ Σ̃b,2. Since by a(i, j) → 0 as i, j → ∞ by Proposition 2.3,

the Lipschitz constant decreases as i, j → ∞. Thus for a fixed i, we have

that φi,j is uniformly Lipschitz for all j, with Lipschitz constant equal to

the Lipschitz constant of φi,1. Let Kf be the uniform Lipschitz constant of

the maps fi, and let Kφ be the uniform Lipschitz constant of the maps φi,1.

Taking K = max{Kf , Kφ} suffices.

• Separation: For each (i, j), (i′, j′) ∈ Σ̃b,2 we have

φi,j(∆j) ∩ φi′,j′(∆j′) = ∅

when i 6= i′ or j 6= j′.

This is a consequence of the separation of ∆i and the following nesting

property.

• Nesting property : For all k ≥ 1 and ω ∈ Σ̃b,k we have

φωi,ωi+1
(∆ωi+1

) ⊂ ∆ωi

for all 1 ≤ i ≤ k − 1.

The dual curves {γc,(i,j)}(i,j)∈Σ̃b,2
form a parabolic foliation of the dual sets

{Ai,j}(i,j)∈Σ̃b,2
. By Proposition 6.1 we know that Ai,j ⊂ Ai for dual words

(i, j). By definition, φi,j maps the endpoints a±c,j of each curve γc,j ⊂ Aj to

the endpoints a±c,(i,j) of the curve γc,(i,j) ⊂ Ai,j ⊂ Ai. Since ∆i = Ai ∩ [0, b],

this can be rewritten as

φi,j(∆j) ⊂ ∆i.
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The desired statement then follows by induction on the word length k = |ω|.

• C1+α regularity : There exists α > 0 such that for all (i, j) ∈ Σ̃b,2, the maps

φi,j are of class C1+α.

This is identical to the previous argument for the regularity of the maps

{fi}i∈Σb,1 .

�

2. A graph directed pseudo-Markov subsystem

The previous section defined a general function system on [0, b] modeled by

Σ̃b. The sequence space Σ̃b is not completely determined, because we do not know

the escape times Mi1,...,ik defining it. However, in Proposition 3.6 we obtained explicit

estimates on those escape times for large values of i1, . . . , ik. In this section we will

extract a subspace that uses these estimates. We will then show that the function

system modeled by the subspace is a graph directed pseudo-Markov system, as defined

in Section 1.

2.1. The sequence space Σ̃ε. For each 0 < ε ≤ b, let Sε ⊂ S be the rectangle

intersecting the Reeb cylinder {r = 2}, and the top S+ and bottom S− of S, with

width ε. Let S+
ε ⊂ S+ be the upper boundary of this rectangle, which can be identified

with [0, ε]. See Figure 3.

As for Nb, let Nε be the smallest integer such that γi intersects S+
ε for all

i ≥ Nε. This defines a sequence space Σε as in Equation 56, with dual Σ̃ε as in

Equation 62. Since ε ≤ b we have Nε ≥ Nb. Furthermore, limε→0Nε =∞.

We claim that for sufficiently small ε > 0, the sequence space Σε is a graph

directed symbolic space in the sense of Chapter 2; there is a countable alphabet E

and incidence matrix A : E × E → {0, 1} such that for each n ≥ 1, Σε,n = En
A in the

notation of Equation 1.
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S+
ε S+

S

r = 2 r = 2 + br = 2 + ε

Sε

1

Figure 3. The small rectangle Sε inside the larger rectangle S. Here
Nb = 2, the smallest integer such that γi intersects S+ for all i ≥ Nb,
and Nε = 6, the smallest integer such that γi intersects S+

ε for all
i ≥ Nε.

By Proposition 3.6, for small δ > 0 and for large i1, . . . , in we have

C + (K − δ)i2n−1 < Mi1,...,in < (C + δ) +Ki2n−1,

where C and K are defined in Equation 46. Let b·c be the integer floor. Since

limε→0Nε =∞, for small enough ε we may substitute the above estimate into Equa-

tion 49 to obtain
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(82) Σε,n =
∞⋃

i1=Nε

bCc+bKci21⋃
i2=Nε

· · ·
bCc+bKci2n−1⋃

in=Nε

(i1, . . . , in).

Let E = Σε,1 = {Nε, Nε + 1, . . .} and define the matrix A : E ×E → {0, 1} by

(83) A(i, j) =

 1 : j ≤ bCc+ bKci2

0 : j > bCc+ bKci2

Then the admissible words En
A defined in Equation 1 are

En
A = {(i1, . . . , in) ∈ En : Aijij+1

= 1 for all 1 ≤ j ≤ n− 1}

= {(i1, . . . , in) ∈ {Nε, Nε + 1, . . .}n : ij+1 ≤ bCc+ bKci2j for all 1 ≤ j ≤ n− 1}

= Σε,n,

by comparing with Equation 82. Taking the dual, we have Σ̃ε,n = Ẽn
A for each n ≥ 1.

2.2. The limit set Jε. By Theorem 1.1, for any 0 < ε ≤ b the function system

{φi,j : ∆j → [0, ε]}(i,j)∈Σ̃ε,2

is a well-defined C1+α subsystem of {φi,j : ∆j → [0, b]}(i,j)∈Σ̃b,2
modeled by the dual

space Σ̃ε.

By the above discussion, for sufficiently small ε > 0 there exists an incidence

matrix A such that

Σ̃ε,n = Ẽn
A.

Let Jε ⊂ Jb be the limit set of this subsystem. By definition,

(84) Jε =
∞⋂
n=1

⋃
ω∈ẼnA

∆ω.



CHAPTER 11

The transverse Cantor set

In this section we will relate this transverse Cantor set τ of the Kuperberg

minimal set M to limit sets of the function systems defined in Section 10. We will

use the previous symbolic dynamics developed in Section 8 for the sets N0 ∩ S and

M0∩S to define bijective coding maps between these Cantor sets and the appropriate

symbolic spaces.

1. Sections of the minimal set

Re-stating Equation 58,

(85) M0,1 ∩ S =
⋃
ω∈Σb

γuω.

Define M1 =M0,1, so that

(86) M1 ∩ S =M0,1 ∩ S =
⋃
ω∈Σb

γuω.

Recall the subspace Σε ⊂ Σb defined in Section 2. Replacing S with Sε and b with ε

in Equation 58, we obtain

(87) M1 ∩ Sε =
⋃
ω∈Σε

γuω.

2. The transverse Cantor set in [0, b]

In this section we will prove preliminary versions of Theorem A and Corollary

B from Chapter 1. The full versions will require the notion of interlacing and will be

given in the subsequent section.
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In the lamination charts for M constructed in Chapter 19 of [19], the trans-

verse Cantor set τ has a variable radial coordinate. By Equation 63, our choice of

transversal S+ is compatible with these lamination charts. Then with τ defined in

Theorem 0.1, we may set

(88) τ =M∩ S+.

As in the previous section we denote

(89) τ1 =M1 ∩ S+.

Combining Equations 64, 66 and 87 we obtain

τ1 =
⋃
ω∈Σb

a−ω .

Re-indexing the points a−ω using the bijection (ω1, ω2, . . .) 7→ (. . . , ω2, ω1) yields

(90) τ1 =
⋃
ω∈Σ̃b

a−ω .

See Figure 1 for an illustration the intersections of the level-one curves in M1 ∩ S
with S+.

In Section 10, we showed that the general symbolic space Σb has the extension

admissibility property. Since its dual Σ̃b also does, it has a well-defined infinite

extension Σ̃∞b . We can now state the following theorem, which will be used later to

prove Theorem A from Chapter 1.

Theorem (A0). There is a C1+α general function system on [0, b] modeled by

Σ̃∞b with limit set τ1.

Proof. In Theorem 1.1 we defined a C1+α general function system on [0, b] mod-

eled by Σ̃∞b and proved that its limit set is

Jb =
∞⋂
n=1

⋃
ω∈Σ̃b,n

∆ω.
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γu1

γu2

γu3
γu4

γu5

a−2a−
3

. . .

1

1

Figure 1. The points a−i as intersections of the level-one curves γui
with the upper boundary S+ of S. We obtain this from Figure 1 by
restricting the parametrization of γi.

Thus it suffices to show that τ1 = Jb. By Equation 90, this is equivalent to

⋃
ω∈Σ̃b

a−ω =
∞⋂
n=1

⋃
ω∈Σ̃b,n

∆ω.

We will show both containments.
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First, let

x ∈
⋃
ω∈Σ̃b

a−ω =
∞⋃
n=1

⋃
ω∈Σ̃b,n

a−ω .

Then there is a sequence of finite words ωn ∈ Σ̃b,n with a−ωn → x.

Note that Jb contains each point a−ωn , because by construction, a−ωn is the left

endpoint of the interval ∆ωn . Because Jb is a Cantor set it must contain all its limit

points. In particular it must contain x, which concludes the forward containment.

For the reverse containment, let

x ∈ Jb =
∞⋂
n=1

⋃
ω∈Σ̃b,n

∆ω.

By Theorem 1.1, Jb is the limit set of a general function system modeled by Σ̃∞b , so

x corresponds to a unique word ω ∈ Σ̃∞b via the coding map π:

x = π(ω) =
∞⋂
n=1

∆ω|n .

For details, see Section 5. Consider the finite restriction of ω; this is the sequence

ωn = ω|n ∈ Σ̃b,n (see Section 2.3). By definition of the sets ∆ω we have a−ωn ∈ ∆ωn

and thus

lim
n→∞

a−ωn = lim
n→∞

n⋂
k=1

∆ωk = x.

Then x is a limit point of a sequence a−ωn with ωn ∈ Σ̃b, so

x ∈
⋃
ω∈Σ̃b

a−ω

as desired. �

In the above proof, we used that the limit set of a general function system

modeled by a symbolic space of infinite type has a bijective coding to that space.

For details, see Section 5. As an immediate corollary to Theorem A0 we obtain the

following.
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Corollary (B0). There is a symbolic space Σ1 of infinite type and a bijective

coding

π1 : Σ1 → τ1

Proof. By Theorem A0, τ1 is the limit set of a general function system on [0, b]

modeled by Σ̃∞b . By the results of Section 5, there is a bijective coding

π1 : Σ̃∞b → τ1.

So it suffices to take Σ1 = Σ̃∞b . �

3. The transverse Cantor set τ as an interlaced Cantor set

Recall from Equation 28 that the full Kuperberg pseudogroup Ψ on S1 ∪S2 is

Ψ = 〈Φ1,Φ2,Φ1,2,Θ1,Θ2〉.

Up to now, we have only considered the sub-pseudogroup Ψ1 = 〈Φ1,Θ1〉, using the

shorthand notation Θ = Θ1 and Φ = Φ1. The results of Chapters 8 – 10 gave us

a complete description of the transverse set M0,1 ∩ S, its closure M1 ∩ S, and its

transverse Cantor set τ1.

However, to account for the full transverse minimal setM∩S it is necessary to

incorporate the other maps Φ2,Θ2, and Φ1,2. In this section we will use the symmetry

of the plug K to show that these maps generate a Cantor set τ2 identical to τ1, and

that the interlacing of τ1 and τ2 (see Section 6) is the transverse Kuperberg minimal

set τ from Theorem 0.1.

In this section, we will dispense with our shorthand notation S,D, γ for S1, D1, γ1,

and return to considering Si, Di, and γi for i = 1, 2, as we did in the first half of Chap-

ter 7.

3.1. The Cantor set τ2 in S+
1 . The intersection of the notched Reeb cylinder

R′ with the upper insertion rectangle S2 is γ2, a vertical line with a parametrization
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similar to that of γ1 given in Equation 21. Consider the curves

γi = Φi−1
1 Θ2(γ2).

The images of γi lie in S1, and have a similar parametrization to those of γi given in

Proposition 3.1. A derivation of this fact closely resembles the proof there, which we

will not repeat. The only quantitative difference appearing in the parametrization

is the constant 0 ≤ α < 2π, which is the angular coordinate of the vertex of the

parabola σ−1γ1 ⊂ {z = −2} (see Equation 22). If α1 and α2 are the vertices of the

parabolas σ−1γ1 and σ−1γ2 respectively, then 0 ≤ α1 < α2 < 2π.

We can then adjust the proof of Proposition 3.1 to show that the ith return

time of the Wilson orbit of σ−1γ2 to S1 is strictly between the ith and (i + 1)th

return times of σ−1γ1, which define the curves γi and γi+1. As i increases, the r and

z-coordinate of the curves γi and γi increases. Thus the curve γi is between γi and

γi+1 for all i ∈ Σb,1, hence these curves alternate as i increases. For an illustration of

this, see Figure 2.

For any (i1, . . . , ik) ∈ Σb,k we recursively define

γi1,...,ik = Φik−1 Θ1(γi1,...,ik−1
),

exactly as we defined γi1,...,ik . Because their construction is identical to that of γi1,...,ik ,

the curves γi1,...,ik are also coded by Σb,k, and their transverse distances a(i1, . . . , ik)

are identical to the transverse distances a(i1, . . . , ik) estimated in Chapter 9. The

following definitions are similar to Equations 87 and 89:

M2 ∩ S =
⋃
ω∈Σb

γω, τ2 =M2 ∩ S+.

We then define a function system using conjugations of pseudogroup elements by

projections along γω, and show that τ2 is a Cantor limit set of a general function

system modeled by Σ̃∞b , exactly as we did for τ1 in Theorem A0.
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r = 2

z = −1

1

Figure 2. A plot of the level-one curves γi generated by Φ1 and Θ1,
shown in blue, and the level-one curves γi generated by Φ1 and Θ2,
shown in red. Compare with Figure 1.

3.2. The level-one curves in S1 ∪ S2. Consider the collection {γi, γj}i,j∈Σb,1

of interlaced curves in S1. We may naturally re-index this collection to ηi, where

i ∈ (Σb,1 ∗ Σb,1)1, the joint sequence space (see Section 6).

There is an identical family of curves of interlaced curves η′i in S2. The reason

for this is the symmetry of K; we may invert the plug, reverse time, and obtain a

similar analysis to Chapter 8. Visually, there is an inverted Figure 2 in the upper

insertion rectangle S2.
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3.3. The level-two curves in S1 ∪ S2. For each i1 ∈ (Σb,1 ∗ Σb,1)1, define

ηi1,i2 = Φi2−1
1 Θ1(ηi1), ηi1,i2 = Φi2−1

1 Θ2(η′i1).

An argument identical to the construction of Σb,2 shows that the admissible words

coding ηi1,i2 and ηi1,i2 are two disjoint copies of Σb,2.

The generator Θ1 maps S1 into A1, the boundary of which is γ1. Because they

are defined using Θ1, the curves ηi1,i2 are nested in γi2 . Similarly, ηi1,i2 are nested in

γi2 because they are defined using Θ2. A proof of these facts follows Proposition 3.3.

Consider the collection {ηi1,i2 , ηj1,j2} of all level-two curves in S1, where (i1, i2)

and (j1, j2) range through Σb,2. As with the level-one curves, we re-index this to a

single collection {ηi1,i2}, where (i1, i2) range through the joint sequence space (Σb,1 ∗
Σb,1)2. Finally, note that we have identical level-two interlaced curves η′i1,i2 in the

upper rectangle S2, also indexed by (Σb,1 ∗ Σb,1)2.

3.4. The level-k curves in S1 ∪S2. We continue recursively defining the inter-

laced curves ηi1,...,ik and ηi1,...,ik in S1 as in Equation 47:

ηi1,...,ik = Φik−1
1 Θ1(ηi1,...,ik−1

)

ηi1,...,ik = Φik−1
1 Θ2(η′i1,...,ik−1

)

After each such definition, we re-index the individual collections ηω, ηω to ηω by the

joint sequence space. We then note the identical families η′ω ∈ S2, and continue.

3.5. The function system on the interlaced curves. Recall the transverse

Cantor set τ defined in Theorem 0.1 and Equation 88. By the interlacing of curves

studied above, τ is the interlacing of the Cantor sets τ1 and τ2, in the sense of Section

6. Using the interlaced curves, we define a general function system modeled by the

infinite extension of the joint sequence space Σb,1 ∗ Σb,1, whose limit set is τ . This is

the content of the following theorem, whose proof follows that of Theorem A0.
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Theorem (A). Let τ be the Cantor transversal of the Kuperberg minimal set.

Then there is a C1+α general function system on [0, b] modeled by Σ̃∞b ∗ Σ̃∞′b with limit

set τ .

In the notation of Section 6, this limit set is

τ =
∞⋂
n=1

⋃
ω∈(Σ̃b∗Σ̃′b)n

∆ω.

Just as with Corollary B0, we obtain the following from Theorem A.

Corollary (B). Let τ be the Cantor transversal of the Kuperberg minimal

set. Then there is a bijective coding map

π : Σ̃∞b ∗ Σ̃∞′b → τ.

4. The transverse Cantor set in [0, ε]

As in Equation 88, we define τε ⊂ τ by

(91) τε =M∩ S+
ε .

For i = 1, 2, let τi,ε be the intersection of τi with an ε-neighborhood of the

critical orbit in the Kuperberg plug. By applying Theorem A0 to a suitably small

transversal [0, ε], we can prove Theorem C0. This will be used to prove Theorem C.

Theorem (C0). For each i = 1, 2 and sufficiently small ε > 0, there is a C1+α

graph directed pseudo-Markov system on [0, ε] with limit set τi,ε.

Proof. We will give the proof only for τ1,ε. By Theorem A0, τ1,ε = Jε, the limit

set of a C1+α function system modeled by the dual Σ̃∞ε . By the results of Section 2,

this is a C1+α graph directed pseudo-Markov system. �

Again by considering the interlacing of τ1,ε with τ2,ε we obtain τε with the

following characterization.
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Theorem (C). Let τ be the Cantor transversal of the Kuperberg minimal set,

and let τε be the intersection of τ with an ε-neighborhood of the critical orbit. For

sufficiently small ε > 0 there is a C1+α graph directed pseudo-Markov system on [0, ε]

with limit set τε.

We conclude by displaying the limit set of this pseudo-Markov system. In

Equation 83 we defined the incidence matrix A defining the admissible words En
A

of length n. For two copies E and E ′ of the sequence space Σb,1, we have a joint

incidence matrix AE∪E
′

coding the admissible words in the interlaced Cantor set, as

defined in Section 6. This matrix defines admissible words (E ∪ E ′)n
AE∪E′

, and by

Theorem C we have

(92) τ =
∞⋂
n=1

⋃
ω∈(E∪E′)n

AE∪E′

∆ω.



CHAPTER 12

Dimension of the Cantor set

In this section we will apply the dimension theory developed in Section 4

to study the Hausdorff dimension of τ , the transverse minimal set in Kuperberg’s

plug. We will then use the product structure of the lamination to extend this to the

dimension of M.

By Theorem A we know that τ is the limit set of a C1+α general function sys-

tem. By Theorem C, for sufficiently small ε > 0, τε is the limit set of a pseudo-Markov

subsystem. Limit sets of pseudo-Markov systems have a well-developed dimension

theory as exposed in Section 4. We wish to apply this theory to the transverse mini-

mal set τ , but to do this we must first relate the dimension of τ to that of τε.

1. The Hausdorff dimension of τ

The next lemma uses minimality ofM to show that the Hausdorff dimension of

τ can be calculated inside a small neighborhood of an arbitrary point. For any x ∈ τ ,

let Bε(x) ⊂M denote the closed ball of radius ε centered at x, and let Uε(x) ⊂ Bε(x)

denote its open interior.

Lemma 1.1 (D). Let τ be the Cantor transversal of the Kuperberg minimal

set. For ε, ε′ > 0 sufficiently small, and any x, y ∈ τ , we have

dimH(τ ∩Bε(x)) = dimH(τ ∩Bε′(y)).

Proof. We show that dimH(τ ∩ Bε′(y)) ≥ dimH(τ ∩ Bε(x)), with the reverse

inequality following by the same method, which proves the claim.

For each z ∈ τ ∩ Bε(x) there exists Tz > 0 such that ψTz(z) ∈ Bε′(y). Let

εz > 0 be sufficiently small so that ψTz(Bεz(z)) ⊂ Bε′(y).

132
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The collection of open balls {Uεz(z) | z ∈ τ ∩ Bε(x)} is an open covering of

the compact set τ ∩ Bε(x) so there exists a finite subcovering, centered at points

{z1, . . . , zk} ⊂ τ ∩ Bε(x). By standard properties of Hausdorff dimension, we have

that

dimH(τ ∩Bε(x)) = max {dimH(Bεzi
(zi) ∩ τ)) | 1 ≤ i ≤ k}.

The flow ψ is C∞ so for each i we have that

dimH(ψTz(Bεzi
(zi) ∩ τ)) = dimH(Bεzi

(zi) ∩ τ).

Now assume that ε′ > 0 is sufficiently small so that the projection ΠF along

the leaves of the foliation is 1-1 when restricted to the ball Bε′(y),

ΠF : ψTz(Bεzi
(zi) ∩ τ)→ τ ∩Bε′(y).

The value of ε′ > 0 depends only on the construction of the flow, and not on the

choice of the point y′. The holonomy projection map ΠF is C1 by results in HR, so

we then have

dimH(ψTz(Bεzi
(zi) ∩ τ)) = dimH(ΠF(ψTz(Bεzi

(zi) ∩ τ))) ≤ dimH(τ ∩Bε′(y)).

The claim follows. �

Now consider the point x = (2, β,−1) in the Kuperberg plug. This is the

intersection of the lower critical orbit with the rectangle S. By the definition in Section

2, x is the left endpoint of the transversal S+
ε . Then for any ε > 0, τε = τ ∩ Bε(x).

Taking ε′ = b in the statement of Lemma D, we obtain that

(93) dimH(τ) = dimH(τε)

for any ε > 0. This reduces the calculation of the Hausdorff dimension of τ to that

of τε. We now combine this with the estimates from Chapter 9 on the transverse

distances, to prove the following theorem.
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Theorem (E). Let τ be the Cantor transversal of the Kuperberg minimal set.

Then the Lebesgue measure of τ is zero, and 0 < dimH(τ) < 1.

Proof. By Equation 93, it suffices to prove the statement for τε for any ε > 0.

By Theorem C and Equation 92 we know that for sufficiently small ε > 0,

τε =
∞⋂
n=1

⋃
ω∈(E∪E′)n

AE∪E′

∆ω.

By construction of the pseudo-Markov system from Section 2, |∆ω| = a(ω),

the transverse distances studied in Section 9. By Proposition 4.1, for any δ > 0 there

exist Ln ∈ N such that for all i1, . . . , in ≥ Ln we have

(94)

∣∣∣∣∣a(i1, . . . , in)−
(
π−1K

3
2

i
5
2
1

· ((2π)−2aR2)
n−1

i22 · · · i2n

)∣∣∣∣∣ < δ

i21 · · · i2n

Taking the dual of Equation 82 yields

(95) Ẽn
AE =

∞⋃
i1=Nε

bCc+bKci21⋃
i2=Nε

· · ·
bCc+bKci2n−1⋃

in=Nε

(in, . . . , i1).

By the definition of Nε given in the proof of Proposition 3.1, we know that Nε →∞
as ε→ 0. So taking a sequence εn → 0 with Nεn ≥ Ln for all n, we have that Equation

94 holds for all (i1, . . . , in) ∈ Ẽn
AE for small enough ε, and δ → 0 as ε→ 0.

Substituting |∆ω| = a(ω) into Equation 94 and rewriting, we have that for

any δ > 0 and small enough ε > 0,

(96)
π−1K

3
2

i
5
2
1

· ((2π)−2aR2)
n−1 − δ

i22 · · · i2n
< |∆i1,...,in| <

π−1K
3
2

i
5
2
1

· ((2π)−2aR2)
n−1

+ δ

i22 · · · i2n

for all (i1, . . . , in) ∈ (E ∪ E ′)n
AE∪E′

and δ → 0 as ε→ 0.

To simplify notation, let

si =
π−1K

3
2

i
5
2

, and ri =
(2π)−2aR2

i2
.
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Referring to Section 4, we see that for δ > 0 there exists sufficiently small ε > 0 such

that τε is the limit set of an asymptotically stationary pseudo-Markov system with

ratio coefficients ri given above, and summable monotone error

a±δ (i1, . . . , in) = ± δ

i21 · · · i2n
.

By Theorem 3.1, we obtain that the Lebesgue measure of τε is zero, and that 0 <

dimH(τε) < 1. �

2. Estimating the dimension via the pressure

The following theorem is an application of the thermodynamic formalism de-

veloped in Section 4 to the dimension theory of τ .

Theorem (F). Let τ be the Cantor transversal of the Kuperberg minimal set.

Let t = dimH(τ) be its Hausdorff dimension, and a > 0 the angular speed of the

Kuperberg flow.

• t = dimH(τ) is the unique zero of a dynamically defined pressure function,

• t depends continuously on a,

• For any a we may compute t to a desired level of accuracy.

Proof. By Equation 93, it suffices to prove the statement for τε for any ε > 0.

By Theorem C, we know that for small enough ε, τε is the interlaced limit set of

a pseudo-Markov system, with limit set given in Equation 92. From Section 4, the

pressure function determined by this pseudo-Markov system is

p(t) = lim
n→∞

1

n
log

∑
ω∈(E∪E′)n

AE∪E′

|∆ω|t.

Since E and E ′ are equal, for each interval ∆ω coded by a word ω ∈ (E ∪
E ′)n

AE∪E′
there are two intervals ∆ω for ω ∈ En

AE , and these two intervals have equal
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lengths. From this we obtain

p(t) = lim
n→∞

1

n
log

∑
ω∈EnA

|2∆ω|t.

Applying Equations 95 and 96 we obtain that p−(t) < p(t) < p+(t), where

p±(t) = lim
n→∞

1

n
log

∑
(i1,...,in)∈EnA

∣∣∣∣∣2π−1K
3
2

i
5
2
1

· ((2π)−2aR2)
n−1 ± δ

i22 · · · i2n

∣∣∣∣∣
t

(97)

= lim
n→∞

1

n
log

∞∑
i1=Nε

bCc+bKci21∑
i2=Nε

· · ·
bCc+bKci2n−1∑

in=Nε

∣∣∣∣∣2π−1K
3
2

i
5
2
1

· ((2π)−2aR2)
n−1 ± δ

i22 · · · i2n

∣∣∣∣∣
t

.

By Bowen’s theorem (Theorem 2.1),

dimH(τε) = inf{t ≥ 0 : p(t) ≤ 0}.

It is easy to see that p±(t) have the same properties as p(t) specified in Theorem

1.1; in particular they are strictly decreasing and have unique zeros on (0, 1). Then

t = dimH(τε) is bounded between these zeros, by Bowen’s theorem. Furthermore,

as ε → 0 in the sequence space En
AE , we have δ → 0, so these two zeros approach

dimH(τε). From Equation 97, the zeros of p±(t) vary continuously with a, and thus

dimH(τε) also does. For the final statement, we refer to the explicit formula for p±(t)

given in Equation 97. For a specific choice of ε, δ, and a, we can estimate the roots of

p±(t). These are upper and lower bounds on dimH(τε), which improve as ε→ 0. �

3. Numerical results for dimension

Finally, we turn to the numerical problem of estimating the Hausdorff dimen-

sion of τ . As before, by Equation 93 it suffices to estimate the Hausdorff dimension

of τε for any ε > 0. In this section, we will make specific choices of ε and a, and derive

explicit upper and lower estimates on dimH(τε).
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Consider p+(t) as defined in Equation 97. The following establishes an upper

bound on p+(t) and hence on p(t).

p+(t) < lim
n→∞

1

n
log

∞∑
i1=Nε

∞∑
i2=Nε

· · ·
∞∑

in=Nε

∣∣∣∣∣2π−1K
3
2

i
5
2
1

· ((2π)−2aR2)
n−1

+ δ

i22 · · · i2n

∣∣∣∣∣
t

= lim
n→∞

1

n
log

∞∑
i=Nε

(
2π−1K

3
2

i
5
2

)t

+ lim
n→∞

1

n
log

( ∞∑
j=Nε

(
(2π)−2aR2 + δ

j2

)t)n−1

= log
∞∑

j=Nε

(
(2π)−2aR2 + δ

j2

)t
Let t = t∗ be the unique zero of this upper bound. Since p(t) and p+(t) are strictly

decreasing, we have that dimH(τε) < t∗ by Bowen’s theorem.

A lower bound for p−(t) is more delicate. For a given ε, choose M ∈ N with

M > Nε. Then we have the following lower bound.

p−(t) > lim
n→∞

1

n
log

M∑
i1=Nε

bCc+bKci21∑
i2=Nε

· · ·
bCc+bKci2n−1∑

in=Nε

∣∣∣∣∣2π−1K
3
2

i
5
2
1

· ((2π)−2aR2)
n−1 − δ

i22 · · · i2n

∣∣∣∣∣
t

Let t = t∗ be the unique zero of the right and side. Again since p(t) and p−(t) are

strictly decreasing, we have that t∗ < dimH(τε).

Recall that the constants C,K are defined in terms of a in Equation 46. The

constant Nε is defined in the proof of Proposition 3.1, and from the proof of Propo-

sition 2.3 we can show that Nε ∼ dKε e. Let δ > 0 be small, and choose ε > 0 small

enough that Equation 97 holds. Substituting the values of the constants C,K and

Nε into this equation, we can use a computer algebra system to numerically estimate

t∗ and t∗.

For example, choose the following numerical values:

δ = ε = 0.01, a = 10, R = 0.5.
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Substituting these into the values of C,K,Nε in Equation 97, and numerically esti-

mating t∗ and t∗ in Mathematica, we obtain

0.40105 < dimH(τ) < 0.51826.

The lower bound can be improved by choosing larger values of M and n in the lower

approximation of p−(t) above.

4. The Hausdorff dimension of M

From the dimension results for τ we obtain results for M. First, we have a

corollary of Theorem E.

Corollary. LetM be the Kuperberg minimal set. Then the three-dimensional

Lebesgue measure of M is zero, and 2 < dimH(M) < 3.

Proof. By Theorem 0.1, M has a local product structure of R2 × τ . As a

consequence of Theorem E, the product Lebesgue measure is zero. A standard result

in dimension theory (see [28] or [12]) states that if X and Y are subsets of Euclidean

space, and the Hausdorff dimension of Y is equal to its upper box dimension, then

dimH(X × Y ) = dimH(X) + dimH(Y ).

Applying this to the product structure we obtain

dimH(M) = 2 + dimH(τ),

and the result follows from Theorem E. �

Using the product structure in the above proof, we have the following corollary

of Theorem F.

Corollary. Let M be the Kuperberg minimal set. Let t = dimH(M) be its

Hausdorff dimension, and a > 0 the angular speed of the Kuperberg flow.

• t = dimH(M) is the unique zero of a dynamically defined pressure function,
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• t depends continuously on a,

• For any a we may compute t to a desired level of accuracy.

Because of this corollary, for the choice of δ, ε, a and R above we have

2.40105 < dimH(M) < 2.51826.



CHAPTER 13

Further questions

There are many remaining open questions about Kuperberg flows. Some of

these are surveyed in [21]. In this section, we will state some open questions that

pertain to the dimension theory of minimal sets of Kuperberg flows.

1. Efficient algorithms for dimension estimates

The method that yields the numerical results from Theorem F is not partic-

ularly efficient. The the zeros of the upper and lower bounds on p±(t) are computa-

tionally expensive to estimate. For this reason, we cannot fully explore the possible

range of the Hausdorff dimension over the parameter space.

Problem. Design a more efficient algorithm for computing the Hausdorff di-

mension of the transverse Cantor set of the Kuperberg minimal set.

In the course of the proof of Theorem E, we showed that the ratio geometry

of the transverse Cantor set τε for ε > 0 is asymptotically stationary. The dimension

theory for limit sets of iterated function systems whose symbolic dynamics are semi-

conjugate to a subshift of finite type is classical. For stationary systems, Bowen’s

equation for dimension reduces to an equation involving the spectral radius of the

incidence matrix (see Chapter 7 of [35]). The proof of this result relies on a the-

orem of Ruelle relating the pressure to the spectral radius of the Perron-Frobenius

operator. Solving the spectral radius equation is more computationally efficient than

calculating the zeros of the pressure, so an answer to this question might be along

these lines.

140
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2. Hausdorff measure of the minimal set

A more delicate problem than determining Hausdorff dimension is proving

that the Hausdorff measure at dimension is finite. In general, for the limit set of

a finitely generated iterated function system or a geometric construction to have

finite Hausdorff measure at dimension, the dynamics on the sequence space must be

topologically mixing. For subshifts of finite type this is equivalent to transitivity of

the incidence matrix (see [35] or [2]).

Problem. Let M be the Kuperberg minimal set, let t = dimH(M) be its

Hausdorff dimension, and let H t be the t-dimensional Hausdorff measure. Show that

0 < H t(M) <∞.

In [34], Pesin and Weiss showed that the limit set of a geometric construction

has finite Hausdorff measure at dimension, provided that the eigenmeasure of the

Perron-Frobenius operator is a Gibbs state. A Perron-Frobenius operator in the

context of pseudo-Markov systems is studied in [48]. By transferring the definition

there to the notation developed in Sections 2 and 3, it seems possible to prove an

analogue of this result for τ , and then extend to M by the product structure.

3. Ergodic properties of invariant measures

The ergodic theory of measures invariant under the Kuperberg flow appears

to be very difficult. However, Theorems A and C appear to offer a foothold onto

this problem. For small ε > 0 the transverse minimal set τε is a limit set of a

function system modeled on a sequence space Σ that is invariant under the Kuperberg

pseudogroup. Let µ be a measure on Σ invariant under the pseudogroup. Then the

pushforward π∗µ through the coding map is a measure on the transverse minimal set,

invariant under the Kuperberg flow. From the product structure given in Theorem

0.1, a global measure on M can be disintegrated along the leaves to obtain the

product of a measure on the leaves with a measure on the transversal. As long as

the conditional measures on the leaves are absolutely continuous, one can reduce to
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studying the ergodic properties of the transverse measures on τ and therefore to those

on Σ, which seems more tractable.

A measure invariant under the Kuperberg flow must have zero entropy as a

consequence of a theorem of Katok ([23]); this was pointed out by Ghys ([14]). The

Kuperberg plug contains an open set of wandering points and as such cannot preserve

a measure supported on open sets; this was pointed out by Matsumoto ([28]). Any

other question related to the ergodic properties of invariant measures of the Kuperberg

flow appears to be wide open.

4. Dimension of minimal sets of perturbations of Kuperberg flows

Kuperberg flows are not structurally stable. In [20], Hurder and Rechtman

defined a class of plugs Kε supporting a C∞ flow, for which K0 is the Kuperberg

plug with no periodic orbits, but Kε for ε > 0 has infinitely many periodic orbits.

They showed further that the minimal set of Kε has embedded horseshoes. It would

be simple to construct such a class Kε compatible with the assumptions we have

made in Section 2. For K0 we would recover the symbolic dynamics and dimension

results from this paper, and for Kε with ε > 0 we would obtain more standard results

(positive entropy, uniform hyperbolicity, etc.). The dimension theory of horseshoes is

well studied (see [27], [44], [45]). It would be interesting to see how the dimension

and symbolic dynamics change as ε→ 0.

5. Dimension of minimal sets of generic Kuperberg flows

The minimal set we have studied is that of a very particular Kuperberg flow.

To simplify our calculations, we have made numerous assumptions on the flow, inser-

tion maps, and insertion regions. These are listed in Section 2. However, Theorem

0.1 is true under much weaker assumptions, the axioms of a generic Kuperberg flow

defined by Hurder and Rechtman. These are listed in Chapter 12 of [19]. It would

be interesting to see what results from Theorems A – F survive in this generality.
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(1994), 283-307.
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[29] Mauldin, R. D. and Urbański, M. Dimensions and measures in infinite iterated function systems.

Proc. London Math. Soc. 73 (1996), 105-154.
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[31] Mauldin, R. D. and Urbański, M. Graph directed Markov systems: geometry and dynamics of

limit sets. Camb. Tracts in Math. 148 (2003), Cambridge University Press.

[32] Moran, P. Additive functions of intervals and Hausdorff measure. Proc. Cambridge Phil. Soc.

(1946), 15-23.

[33] Patterson, S.J. The limit set of a Fuchsian group. Acta Math. 136 (1976), 241-273.



CITED LITERATURE 145

[34] Pesin, Y. and Weiss, H. On the dimension of deterministic and random Cantor-like sets, symbolic

dynamics, and the Eckmann-Ruelle conjecture. Commun. Math. Phys. 182 (1996), 105-153.

[35] Pesin, Y. Dimension theory in dynamical systems. Chicago Lectures in Math. (1997), University

of Chicago Press.
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