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SUMMARY

My thesis includes two major parts which are described as follows.

The first part develops a new powerful algorithm for multiple-constrained optimal design

problems. Experiments with multiple objectives form a staple diet of modern scientific research.

Deriving optimal designs with multiple objectives is a long-standing challenging problem with

only a few tools available. The few existing approaches cannot provide a fully satisfactory

solution in general: either the computation is very expensive, or a satisfactory solution is

not guaranteed. A novel algorithm is proposed to address this literature gap. We prove the

convergence of this algorithm, and show in various examples that the new algorithm can derive

the true solutions with high speed.

The second part is develops an information-based optimal subdata selection strategy, which

can efficiently pick out subsample of fixed size from massive data set with the logistic regression

model. Advances in computes technology have enabled an exponential growth in data collection

and the size of data sets. For the extraordinary large data sets, proven statistical methods are

no longer applicable due to computational limitations. A critical step in Big Data analysis is

data reduction. In this thesis, we investigate the sampling approach of selecting subsets under

the logistic regression model. For random sampling approaches, it is shown that the information

contained in the subdata is limited by the size of the subset. A novel framework of selecting

subsets is proposed. The information contained in the subdata based on the new framework

increases as size of full data increases. The respective performances of the proposed approaches,

x



SUMMARY (Continued)

along with some of the widely-applied existing methods, are compared under various criteria

based on extensive simulation studies.
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CHAPTER 1

ON MULTIPLE-OBJECTIVE OPTIMAL DESIGNS

(Previously published as Cheng, Q., Majumdar, M. and Yang, M. (2016) On Multiple

Objective Nonlinear Optimal Designs, mODa 11 - Advances in Model-Oriented Design and

Analysis, pp 63-70)

1.1 Introduction

With the development of computational technology, nonlinear models have become more

feasible and popular. An optimal/efficient design can improve the accuracy of statistical infer-

ences with a given sample size, or reduce size of sample needed for certain level of accuracy. A

major challenge in studying optimal designs of the nonlinear models is that the optimal designs,

are depending on the unknown interested model parameters. Thus, a common solution to this

challenge is to use the locally optimal designs, which are using the best possible guess of the

parameters (1). (Hereafter, for simplicity, word ”locally” is omitted.)

However, little progress has been made due to the complexity of design for nonlinear models.

References (2; 3; 4; 5; 6) obtained a series of unifying results so called ”complete classes” of

designs. These results provided big steps towards simplifying design search for nonlinear models,

even for multiple-objective design problems.

A research gap, however, still exists. It seems impossible to find the optimal design analyt-

ically, and we have to rely on a numerical solution. While we can focus on designs of a simple

1
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form, the numerical computation may still be problematic in terms of time cost. A comprehen-

sive review about classic and newly developed algorithms can be found in the book by Pronzato

and Pázman(7). Among these efficient algorithms, Yang, Biedermann, and Tang (8) proposed

a general algorithm (the optimal weights exchange algorithm - OWEA) which can identify an

optimal design quickly regardless of optimality criteria and parameters of interest. While the

new algorithm is for single objective design problem, it provides foundations for deriving the

multiple-objective optimal designs.

In practice, it is common for a experimenter to have multiple objectives. A typical ex-

ample is the multiple comparisons study in (9). There are several ways of formulating the

multiple-objective optimal design problems. They include compound optimal design approach,

the minimax efficient design approach, the Pareto front approach (10; 11; 12), and so forth. One

popular approach formulates the optimality problem as maximizing one objective function sub-

ject to all other objective functions satisfying certain efficiencies. The constrained optimization

approach provides a clearer and more intuitive interpretation than the compound optimality

approach. This has made it a popular method.

However, the constrained optimization approach does not maintain the concave property.

The uncertainty of the number of design points and mostly bounded design space also add

difficulty to the direct use of any derivative-based approaches. Classical algorithms, like aiming

at one single objective, can hardly be extended to multiple objective cases. Consequently,

there is no general approach of deriving a constrained optimal design. Fortunately, there is a

relationship between the two approaches. Based on the Lagrange multiplier theorem, Clyde
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and Chaloner (13) generalized a result of Cookand Wong (14) and showed the equivalence of

the constrained optimization approach and the compound optimality approach. A numerical

solution for the constrained design problem can be derived by using an appropriate compound

optimality criteria. In fact, almost all numerical solutions for constrained design problems use

this strategy. However, the major challenge is how to find the corresponding weights for a given

constrained optimality problem.

There are two approaches in the literature using this relation; the grid search approach and

the sequential approach. The grid search approaches rapidly becomes computationally infea-

sible as the accuracy increase. And with three objectives, Huang and Wong (15) proposed a

sequential approach for finding the weights. The basic idea is to consider the objective func-

tions in pairs and sequentially add more constraints. While they seem to have given reasonable

answers in their examples, their approach lacks theoretical justification. Consequently, this

approach will generally not yield a satisfactory solution even for the three-objective optimal

design problems. Other approaches for constructing contrained optimal design are also avail-

able(16; 17). The article (16) considered constructing contrained optimal designs with equality

constraints, and (17) focused on finding optimal designs with system of linear contraints on

weight vectors of design points. They are different from the settings in this dissertation and

are thus not discussed further.

The goal of this dissertation is to propose a novel algorithm for finding the corresponding

weights for a given constrained optimality problem, and then to find the corresponding optimal

design. Consistency of the algorithm is proved. The performance of the new algorithm is
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demonstrated by comparing it with the grid search approaches and sequential approaches. As

an example, for a design with four objectives, the new algorithm can find a desired solution

within 30 minutes with a laptop. In contrast, the grid search approach will take more than 10

hours and the sequential approach fails to produce a desired solution.

This chapter is organized as follows. In Section 1.2, we introduce the set up and necessary

notation. Section 1.3 we briefly describe the previous works on algorithms for the constrained

optimization approach. Characterization and convergence properties are presented in Section

1.4. The implementation of the algorithm, as well as its computational cost, are discussed in

Section 1.5. Applications of the algorithm to many different nonlinear models, and different

number of constrains, along with comparisons of the algorithm with the grid search and the

sequential approach are shown in Section 1.6. Section 1.7 provides a brief discussion.

1.2 Set up and Notation

We adapt the same notation as those of (8). Suppose we have a nonlinear regression model

for which at each vector point x, the experimenter observes values of dependent response

variable Y. We assume that the responses are independent and follow some exponential family

distribution with mean η(x,θ), where θ is a (k× 1) vector of unknown parameters. Typically,

approximate designs are studied, i.e. designs of the form ξ = {(xi,ωi), i = 1, . . . ,m} with

support points xi ∈ X and weights ωi > 0, with
∑m
i=1ωi = 1. Here, X denotes the original

design space. The set of all approximate designs on the design region X is denoted by Ξ.

Denote the information matrix of ξ as Iξ. LetΦ0(ξ), . . . , Φn(ξ) be the values of n+1 smooth

objective functions for design ξ. These objective functions are some real-valued functions of
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Iξ which are formulated such that larger values are desirable. These objectives depend on the

optimality criteria and the parameters of interest, and different objectives may have different

parameters of interest. For example, Φ0(ξ) can be the opposite number of the trace of inverse

of the information matrix; and Φ1(ξ) can be the opposite number of the determinant of the

inverse of the corresponding information matrix when the parameter of interest is restricted to

the first two parameters (assuming there are more than two parameters).

Ideally, we hope we can find a deisgn ξ∗ which can maximize Φ0(ξ), . . . , Φn(ξ) simulta-

neously among all possible designs. However, such solution does not exist in general. The

constrained optimization approach specifies one objective as the primary criteria and maxi-

mizes this objective subject to the constraints on the remaining objectives (14; 13). Formally,

this approach can be written as

Maximize
ξ∈Ξ

Φ0(ξ) subject to Φi(ξ) ≥ ci, i = 1, . . . , n, (1.1)

where c = (c1, . . . , cn) are user-specified constants which reflect minimally desired levels of

performance relative to optimal designs for these n objective functions. To make this problem

meaningful, through out this chapter, we assume there is at least one design satisfying all the

constraints, which means an optimal solution exists.
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Unfortunately, within the restricted optimality set up, there is no direct way of solving the

constrained optimization problem. We have to solve (Equation 1.1) through the corresponding

compound optimal design. Let

L(ξ,U) = Φ0(ξ) +

n∑
i=1

ui(Φi(ξ) − ci), (1.2)

where ui ≥ 0, i = 1, . . . , n. Let U = (u1, . . . , un). For a given U, L(ξ,U) maintains the

concavity property without any restrictions. This property is critically important for applying

the celebrated equivalence theorem, which enables verification whether a given design is indeed

optimal. Once a U is given, deriving a design maximizing L(ξ,U) can ba based on some existing

algorithms, such as PSO (18); the Cocktail algorithm (19); and OWEA (8), among others. As

we mentioned earlier, it is not recommended to use the compound optimal design strategy

directly due to lack of a meaningful interpretation.

To establish the relationship between constrained optimal design and compound optimal

design, we need the following assumptions, which are adapted from (13) . Assume that

(A1) Φi(ξ), i = 0, . . . , n, are concave on Ξ.

(A2) Φi(ξ), i = 0, . . . , n, are differentiable and the directional derivatives are continuous on x.

(A3) If ξn converges to ξ, then Φi(ξn) converges to Φi(ξ), i = 0, . . . , n.

(A4) There is at least one design ξ in Ξ such that the constraints in (Equation 1.1) are satisfied.

Clyde and Chaloner (13) generalized a result of Cook and Wong (14) and showed the equivalence

of the constrained optimization approach and the compound optimality approach.



7

Theorem 1. (13). Under assumptions A1 to A4, ξ∗ is optimal for constrained optimal design

(Equation 1.1) if and only if there exists a non-negative vector U∗ = (u∗1, · · · , u∗n) ∈ <n, such

that

ξ∗ = argmaxξ∈ΞL(ξ,U
∗), Φi(ξ

∗) ≥ ci for i = 1, · · · , n

and
n∑
i=1

u∗i (Φi(ξ
∗) − ci) = 0.

(1.3)

Theorem 1 provides necessary and sufficient condition for constrained optimal designs

(Equation 1.1). It demonstrates that a numerical solution for the constrained design prob-

lem (Equation 1.1) can be derived by using an appropriate compound optimality criteria. The

big challenge is how to find the desired U∗ for a given constrained design problem (Equa-

tion 2.2). Since the exact derivative is not available, direct use of derivative-based algorithms

to find this U∗ may not be accurate and may lead to some undesired local roots. Thus they

are not discussed here. There are two approaches to handle this: the grid search approach

and the sequential approach. Both approaches consider the weighted optimal design, which is

equivalent to compound optimal design. Let

Φλ(ξ) =

n∑
i=0

λiΦi(ξ), (1.4)
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where λ = (λ0, . . . , λn), λ0 > 0, 0 ≤ λi < 1, i = 1, . . . , n with
∑n
i=0 λi = 1. Clearly Φλ(ξ)

is just a normalized form of L(ξ,U). For given λ, Φλ(ξ) also enjoys the concave property

as L(ξ,U) does. So deriving a weighted optimal design can be based on the some standard

algorithm, or the newly developed OWEA algorithm.

As we discuss in the introduction section, both grid search and the sequential approach (we

shall give detailed description later) have their own problems. Consequently, they cannot serve

as a general solution for the constrained optimal design problem (Equation 1.1). How can we

develop a general and efficient algorithm for the important but largely unsolved problem? The

first step is to characterize U∗ in Theorem 1.

1.3 Characterization

For deriving theoretical results purpose, we need to have two assumptions. The first one is

Φ0 is a strict concave function on information matrices. (1.5)

The strict concave property means the optimal design is unique in term of information matrix,

i.e., if ξ∗1 and ξ∗2 both are optimal designs for L(ξ,U0) with a fixed Lagrange multiplier U0,

then the two information matrices of ξ∗1 and ξ∗2 are identical. Assumption (Equation 1.5) is not

restrictive. Many optimality objective functions satisfy this assumption. For example, D-, A-,

E-, and general φp-optimality criteria (20) for full parameters satisfy this assumption.

Let ξ∗ be the optimal design for a constrained optimal design problem (Equation 1.1). By

Theorem 1, ξ∗ is also an optimality solution of a compound optimal design problem (Equa-
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tion 1.2). Let U∗ = (u∗1, . . . , u
∗
n) be the Lagrange multiplier of the compound optimal design

problem.

In a compound optimal design problem (Equation 1.2), each ui > 0 without upper bound.

For an algorithm searching for U∗, it is challenging to establish the convergence property of

the algorithm when the search space is infinite. Thus our second assumption is

u∗i ∈ [0,Ni) where Ni is pre-specified, i = 1, . . . , n. (1.6)

This assumption is equivalent to the grid size in a weighted optimal design problem (Equa-

tion 1.4). Both grid search approach and sequential approach need to choose a grid size. Let

the grid size be ε, then it means 0 ≤ ui ≤ 1−ε
ε < 1

ε for the equivalent compound optimal

design (Equation 1.2). We can always choose some reasonable large numbers Ni’s such that

Assumption (Equation 1.6) is satisfied.

A constraint Φi is called active if u∗i > 0; otherwise the constraint will be regarded as

inactive. For easy presentation, we denote ξU as a design which maximizes the Lagrange

function L(ξ,U) for a given weight vector U = (u1, · · · , un) and Φ̂i(ξ) asΦi(ξ)−ci, i = 1, . . . , n.

Before we characterize U in Theorem 1, we first give an overview of the new algorithm. The

detailed description will be given in Section 4.
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1.3.1 Overview of the New Algorithm

The new algorithm is designed to search for a satisfied U∗ from the easiest case to the most

complex case. It goes through all the possible cases, while following a complexity order until

the right combination of active constraints are found:

All constraints are inactive −→ One constraint is active

−→ · · · −→ All constraints are active.

Now consider that the constrained optimal design problem have a active constraints. With-

out losing generality, suppose these active constraints are Φ1, · · · , Φa. In other words, our

efforts now are on finding a weight vector U = (u1, · · · , ua, ua+1,

· · · , un) where u1, · · · , ua are positive and ua+1, · · · , un are zero and hopefully ξU will satisfy

the sufficient condition.

To search for satisfied values for u1, · · · , ua, the algorithm uses bisection process for all ele-

ments u1, · · · , ua through an iterative procedure. The rest elements ua+1, · · · , un in weight

vector U will be fixed at 0 during this process. Denote bisection result of U by U∗ =

(u∗1, · · · , u∗a, 0, · · · , 0). Then for any i ∈ {1, · · · , a}, u∗i will satisfy the following property:
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if Φ̂i(ξU∗) > 0, then u∗i = 0;

if Φ̂i(ξU∗) < 0, then u∗i = Ni;

if Φ̂i(ξU∗) = 0, then u∗i ∈ [0,Ni].

(1.7)

This property will be quoted frequently in the theorems stated later.

For example, take a = 2, which means only u1 and u2 are supposed to be nonzero. In this

case, the algorithm first fixes u2 as u02 =
0+N2
2 . Then the value for u1 will be updated to u01 using

bisection and u01 will satisfy Property (Equation 1.7) with U0 = (u01, u
0
2, 0, · · · , 0). Now check

Φ̂2(ξU0). If Φ̂2(ξU0) 6= 0, adjust the value for u2 through one time bisection to get u12 such

that Φ̂2(ξU1) is closer to 0. For the new fixed u2 = u
1
2, again update u1 to u11 using bisection

to make u11 satisfy Property (Equation 1.7) with U1 = (u11, u
1
2, 0, · · · , 0). Check Φ̂2(ξU1) and

update u2 to u22 if Φ̂2(ξU1) 6= 0. Continue this process until a satisfied U∗ = (u∗1, u
∗
2, 0, · · · , 0)

is found which guarantees that u∗1 and u∗2 both satisfy Property (Equation 1.7).

For a general a active constraints case, similar to a = 2 case, we first fix ua as u0a = 0+Na
2 .

Similar to the recursive procedure mentioned for 2 active constraints case, derive the correspond-

ing values u01, · · · , u0a−1 for the element u1 to ua−1 using bisections approach such that they

satisfy Property (Equation 1.7), with U0 = {u01, · · · , u0a, 0, · · · , 0}. Check whether Φ̂a(ξU0) = 0

and update ua to u1a. Continue this process until a desired U∗ = (u∗1, · · · , u∗a, 0, · · · , 0) is found

with all u∗1, · · · , u∗a satisfied Property (Equation 1.7).
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In order to guarantee the bisection technique is valid and the desired Property (Equation 1.7)

can be achieved for u1, · · · , ua through the bisection process, we need to characterize the

property of the multiplier U. The characterizations in this section allow us to propose a new

algorithm which guarantees the convergence and speed.

1.3.2 Properties

Theorem 2. For any a ∈ {1, · · · , n}, S ( {1, · · · , n}\{a} and

S ′ = {1, · · · , n}\(S
⋃
{a}), define US = {ui|i ∈ S} and US ′ = {ui|i ∈ S ′}. Then Φ̂a(ξU) is

a non-decreasing function of ua if US ′ is pre-fixed and US satisfies one of the following two

conditions:

Φ̂i(ξU) ≥ 0 and uiΦ̂i(ξU) = 0 for i ∈ S1, or

ui = Ni and Φi(ξU) < 0 for i ∈ S2,
(1.8)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅ and U is the combination of US, ua, and US ′ by their

corresponding indexes.

The main purpose of Theorem 2 is to guarantee that the recursive bisection technique can

be properly implemented. Condition (Equation 1.8) implies that ui, for i ∈ S, satisfy Property

given by (Equation 1.7). Suppose there are a active constraints and they areΦ1, · · · , Φa. When

we search for the proper value of ui (i ≤ a−1), ui+1, · · · , ua and the zero-element ua+1, · · · , un

can be regarded as fixed, which correspond to US ′ in the Theorem. And since it is a recursive

procedure, for u1, · · · , ui−1, the value will be updated first according to the value assigned to ui

each time and fixed ui+1, · · · , un. Thus (u1, · · · , ui−1) is US in this case. After u1, · · · , ui−1 is
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updated for the given ui, Φ̂i(ξU) should be a monotone increasing function of ui by Theorem

2. Due to the monotone property, three cases may occur when we search for ui:

Case 1 Φ̂i(ξU) = 0 and ui ∈ [0,Ni];

Case 2 Φ̂i(ξU) < 0 and ui = Ni;

Case 3 Φ̂i(ξU) > 0 and ui = 0.

The three possible cases are equivalent to Property given by Equation 1.7. Under all of these

possible cases that may occur when the bisection technique is applied to the former elements,

Theorem 2 makes clear that the monotone increasing property holds for the next element to

which the bisection technique is applied.

Now suppose the active constraints are Φi with i ∈ S ⊆ {1, · · · , n}. A weight vector U∗S for

active constraints can be found through the bisection technique. One can always construct a

complete weight vector U∗ = (u∗1, · · · , u∗n) as follows:

For any i ∈ {1, · · · , n}

• If i ∈ S, take u∗i as the corresponding value in U∗S;

• If i /∈ S, u∗i = 0.

For simplicity, we denote such constructed full weight vector U as {US, 0}.

Theorem 3. Define S ( {1, · · · , n} as the active constraints indexes set. For two non-zero value

sets U0
S and U1

S of the corresponding weight vector US, let U0 = {U0
S, 0} and U1 = {U1

S, 0}, then
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ξU0 will be equivalent to ξU1, i.e., they have the same information matrix, if the two designs

both satisfy

Φ̂i(ξ) = 0, i ∈ S. (1.9)

Now suppose Φ1, · · · , Φa are active constraints. Theorem 3 shows all the possible weight

vectors, that satisfy Φ̂i(ξU) = 0, i ∈ {1, · · · , a}, are equivalent. Thus if we find U∗ =

(u∗1, · · · , u∗a, 0, · · · , 0) with Φ̂i(ξU∗) = 0 for i ∈ {1, · · · , a}, U∗ can represent all the possi-

ble satisfied weight vectors since they are all equivalent. For such U∗, if Φ̂i(ξU∗) ≥ 0 for

i = 1, · · · , n, then U∗ will be the desired weight vector. Otherwise the assumption is not valid

and two cases need to be considered:

Case 1 There are still a active constraints but we need to pick another combination of constraints

of size a and re-do the searching process.

Case 2 If all combinations of sized a constraints have been tested and a desired U∗ cannot be

found, then it implies the constrained optimal design problem has more than a active

constraints and a+ 1 active constraints cases should be considered.

However, the bisection technique may return a weight vector with some elements, say i-th

element, taking value at lower bound 0 or upper bound Ni, while the corresponding Φ̂i 6= 0.

In this situation, the following theorem guarantees that the assumed active constraint set is

not valid, and then we can move to a new active constraints set according to the two cases

mentioned above.
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Theorem 4. For any S ⊂ {1, · · · , n}, suppose that U0 = {U0
S, 0} satisfies the following two

conditions

(i) Φ̂i(ξU0) ≥ 0 for i ∈ S1 and
∑
i∈S1

uiΦ̂i(ξU0) = 0.

(ii) Φ̂i(ξU0) < 0 and ui = Ni for i ∈ S2.

(1.10)

where S1 ∪ S2 = S and S1 ∩ S2 = ∅. If there exists at least one element in S, say i, such that

Φ̂i(ξU0) 6= 0, then there does not exist a positive value set U+
S = {ui ∈ (0,Ni)|i ∈ S}, such that

Φ̂i(ξU+) = 0 for i ∈ S, where U+ = {U+
S , 0}.

Now we are ready to present the new algorithm.

1.4 Algorithm

For a given constrained optimal design problem (Equation 1.1), the new algorithm is to find

the desired U∗. In each step, we need to derive an optimal design for a compound optimal

design problem (Equation 1.2) with U being given. We first introduce such algorithm.

1.4.1 Deriving Compound Optimal Design with given U

The paper (8) proposed the optimal weight exchange algorithm (OWEA), a general and

efficient algorithm for deriving optimal designs. OWEA can be applied to commonly used

optimality criteria regardless of the parameters of interest, and also enjoys high speed. This

algorithm was originally designed for one objective optimal design problems. Fortunately,

OWEA can be extended for deriving ξU = argmaxξL(ξ,U) where U is given. A detailed

description about OWEA algorithm can be found in the supplemental material.
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Now, we are ready to present the main algorithm, which searchs for the satisfied U∗.

1.4.2 The Main Algorithm

The algorithm searches from the simplest case (no constraint is active) to the most compli-

cated case (all constraints are active). For each of these cases, the algorithm will implement a

recursive bisection procedure. The algorithm can be described as following:

Step 1 Set a = 0, derive ξ∗ = argmax
ξ

Φ0(ξ) and check whether Φi(ξ
∗) ≥ ci for i = 1, · · · , n.

If all constraints are satisfied, stop, and then ξ∗ is the desired design. Otherwise, set a = 1

and go to Step 2.

Step 2 Set i = 1, consider ξ∗ = argmax
ξ

Φ0(ξ) + uiΦi(ξ). Adjust the value of ui using the

bisection technique on [0,Ni] to obtain u∗i such that Φ̂i(ξ
∗) = 0. During the bisection

process, the upper bound, instead of the median, of the final bisection interval will be

picked as the right value for u∗i . If Φ̂i(ξ
∗) > 0 when ui = 0, set u∗i = 0. If Φ̂i(ξ

∗) < 0 when

ui = Ni, set u∗i = Ni. For ξ∗ = argmax
ξ

Φ0(ξ) + u
∗
iΦi(ξ), check whether Φ̂j(ξ

∗) ≥ 0 for

j = 1, · · · , n. If all constraints are satisfied, stop and ξ∗ is the desired design; otherwise

change i to i+1 and repeat this process. After i = n is tested and no desired ξ∗ is found,

then set a = 2 and proceed to Step 3.

Step 3 Find all subsets of {1, · · · , n} of size a, and then choose one out of these subsets.

Denote that subset as S.

Step 4 Let (s1, . . . , sa) be the indexes of the elements in US. To find the right value U∗S

for US, we follow a recursive procedure. For each time a given value of usa , first use



17

bisection technique to find the corresponding us1 , · · · , usa−1 . The full weight vector U

can be constructed with us1 , · · · , usa by setting all the other weight elements in U as 0’s,

which we later denote by U = {US, 0}. Then adapt the value of usa as follows :

– If Φ̂sa(ξU) > 0 when usa is assigned as 0, set u∗sa = 0.

– If Φ̂sa(ξU) < 0 when usk is assigned as Na, set u∗sa = Na.

– Otherwise use the bisection technique to find u∗sa such that Φ̂sa(ξU) = 0.

Record u∗sa and the corresponding values for {u∗s1 , · · · , u
∗
sa−1

} as U∗S. For the bisection

process in each dimension, the upper bound of the final bisection interval will be picked

as the right value for the corresponding element in weight vector U∗S. Then the full weight

vector U∗ can be constructed using U∗ = {U∗S, 0}.

Step 5 For the U∗S and ξU∗ derived in Step 4, check Φ̂i(ξU∗), i = 1, . . . , n. If all constraints

are satisfied, stop and ξU∗ is the desired design. Otherwise, pick another a-element subset

in Step 3, and go through Step 4 to Step 5 again. If all a-element subsets are tested, then

go to Step 6.

Step 6 Change a to a+1, go through Step 3 to Step 5, until a = n. If no suitable design ξU∗

is found, the implication is that there is no solution for the constrained optimal design

(Equation 1.1).

We demonstrate this algorithm through an optimal design problem with two constraints.

Denote the target objective function by Φ0 and two constrained objective functions by Φ1 and
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Φ2. The algorithm will search for a desired weight vector U∗ = (u∗1, u
∗
2) and desired design ξU∗

according to the following process:

Step 1 Suppose there is no active constraint. Then U∗ in this case will be (0, 0) and ξU∗ is also

an optimal design for Φ0. If ξU∗ satisfies all the constraints, then ξU∗ is the desired

design. Otherwise go to Step 2.

Step 2 Suppose there is one active constraint. First suppose Φ1 is active. Derive u∗1 through

bisection technique such that Φ̂1(ξU∗) = 0, where U∗ = (u∗1, 0). If ξU∗ satisfies all the

constraints, ξU∗ is the desired design. Otherwise suppose Φ2 is active and repeat this

process. If both fail to find the desired ξU∗ , that means there are more than one active

constraint. Go to Step 3.

Step 3 Now suppose all constraints are active. Derive U∗ = (u∗1, u
∗
2) through bisection technique

such that Φ̂i(ξU∗) = 0 for i = 1, 2. If such U∗ can be derived, then ξU∗ is the desired

design. If it fails to produce a satisfied U∗, then there are two possible reasons as follows:

Case 1 The predefined upper bound vector N1 and N2 are improper. The true u∗i fall out

of the interval [0,Ni) for at least one of i’s, i = 1, 2,

Case 2 There is no solution for the constrained optimal design problem.

1.4.3 Convergence and Computational Cost

Whether or not an algorithm is successful depends mainly on two properties, namely, con-

vergence and computational cost. We first establish the convergence of the proposed algorithm.
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Theorem 5. For the constrained optimal design problem (Equation 1.1), under Assumptions

(Equation 1.5) and (Equation 1.6), the proposed algorithm converges to ξ∗.

Next we shall compare the computational cost of the new algorithm with those of the grid

search and the sequential approach. Both the grid search and the sequential approach are based

on weighted optimal design problem (Equation 1.4), which is equivalent to a compound optimal

design problem with ui =
λi
λ0

, i = 1, . . . , n. All three approaches are based on identifying a

satisfied multiplier of a compounded optimal design problem and the computational cost of

each approach is proportional to the number of multiplier the approach tests.

The grid search approach considers all possible combinations of λ1, · · · , λn on [0, 1]n with

given mesh grid size. The combination must satisfy that
∑n
i=1 λi < 1 and λ0 is set as 1−

∑n
i=1 λi.

Suppose the grid size is ε in a grid search. Let TG be the number of all possible combinations.

Direct computation shows that

TG =

n∑
k=0

(
n

k

)(
b 1εc− 1
k

)
=

(
n+ b 1εc− 1

n

)
, (1.11)

where b.c refers to floor function.

For the new algorithm, since ui =
λi
λ0

, the upper bound of the corresponding ui is 1/ε. To

guarantee the new algorithm has at least the same accuracy (ε) on interval [0, 1/ε] as that

of grid search, one needs d−2log2ε + 2e times bisection technique. Here d.e refers the ceiling
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TABLE I

COMPARISONS OF COMPUTATIONAL COST

Three Objectives Four Objectives

Mesh Grid Size 0.01 0.001 0.01 0.001

Grid Search 5050 500500 171700 167167000
New Algorithm 289 529 4913 12167

Note: Numbers in the table are counts of weighted optimal
designs calculated to solve the multiple-objective
design problem for each technique.

function. Let TL be the number of times compound optimal designs calculated during the

searching process, then

TL =

n∑
k=0

(
n

k

)
d−2log2ε+ 2ek = d−2log2ε+ 3en. (1.12)

As for the sequential approach, the computational cost is significantly less than those of

the grid search and the new algorithm. However, as we demonstrate in the next section, the

sequential approach in general cannot find a desired solution.

Table I shows the comparison of computational cost between new algorithm and grid search

under different grid sizes and different numbers of constraints.
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1.5 Numerical Examples

In this section, we will compare the performance (accuracy and the computing time) of the

new algorithm, against the grid search and the sequential approach in terms of accuracy and

computing time.

All three approaches utilize the OWEA algorithm to derive optimal designs for given

weighted optimal design problems. For all examples, the design space has been discretized

uniformly into 1000 design points. The cut-off value for checking optimality in L(ξ,U) for

given U was chosen to be ∆ = 10−6. All other set ups of OWEA are the same as those of (8).

For new algorithm and grid search, we require the algorithms to produce the best possible

design while guarantee that the constraints are satisfied exactly. For the sequential approach,

since it doesn’t guarantee to produce a proper design and may fail during the searching process,

a tolerance value ε = 0.01 is adopted. This means that during the sequential approach process,

if a design ξ0 have Φi(ξ0) ≥ ci − ε for some i, then the design ξ0 will still be regarded as a

proper design which satisfies the constraint for objective function Φi. The grid size is 0.01 for

all the examples in this section. The pre-specified upperbound N in the new algorithm is 100.

All the algorithms are implemented in SAS software using a Lenovo laptop with Intel Core 2

duo CPU 2.27 HZ.

1.5.1 Three-objective Optimal Designs

Now, we compare the performance of the grid search approach, the sequential approach,

and the new algorithm in term of deriving optimal designs with three objectives.
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Example I Consider the nonlinear model given by

y = β1e
−θ1x + β2e

−θ2x + ε. (1.13)

This model is commonly used to compare the progression of a drug between different compart-

ments. Here y denotes the concentration level of the drug in compartments, x denotes the sam-

pling time, and ε is assumed to follow normal distribution with mean zero and variance σ2. In a

PK/PD study, Notari (21) used (Equation 1.13) to model the concentration of a drug taken at

different time. The estimates of the parameters are θ0 = (θ1, θ2, β1, β2) = (1.34, 0.13, 5.25, 1.75).

Under these parameter estimations, Huang and Wong (15) studied three-objective optimal de-

sign with design space x ∈ [0, 15].

Let B = diag{ 1
θ21
, 1
θ22
, 1
β21
, 1
β22
}; W =

∫10
2 f(x)f

t(x)v(dx), where f(x) is the linearized func-

tion of the model function using Taylor expansion at θT0 ; ξ∗0 = argminξtr(I
−1(ξ)B); ξ∗1 =

argminξ|I
−1(ξ)|; and ξ∗2 = argminξtr(I

−1(ξ)W). The three objective functions can be written

as follows:

Φ0(I(ξ)) = −
tr(I−1(ξ)B)

tr(I−1(ξ∗0)B)
,

Φ1(I(ξ)) = −(
|I−1(ξ)|

|I−1(ξ∗1)|
)
1
4 , and

Φ2(I(ξ)) = −
tr(I−1(ξ)W)

tr(I−1(ξ∗2)W)
.
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Define EffiΦi(ξ) = − 1
Φi(I(ξ))

. Clearly EffiΦi(ξ), i = 0, 1, 2 are consistent with the definitions of

efficiency of design ξ under the corresponding optimality criteria. For example, EffiΦ1(ξ) refers

the D-efficiency. Such definition will be used in the subsequent examples.

The three-objective optimal design problem considered in (15) is given by:

Maximize
ξ

EffiΦ0(ξ)

subject to


EffiΦ1(ξ) ≥ 0.9,

EffiΦ2(ξ) ≥ 0.8.

Notice that the constraints EffiΦ1(ξ) ≥ 0.9 and EffiΦ2(ξ) ≥ 0.8 are obviously equivalent to

Φ1(I(ξ)) ≥ −10/9 and Φ2(I(ξ)) ≥ −5/4, respectively. In the subsequent examples, we will use

a similar efficiency setup without specifying their equivalence to the corresponding objective

functions.

TABLE II

EXAMPLE I: THE RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2
ξ∗0 1 0.7315 0.7739
ξ∗1 0.6677 1 0.5576
ξ∗2 0.6959 0.4166 1
ξ∗ 0.8692 0.9000 0.8001
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The efficiency of ξ∗1, ξ
∗
2, and ξ∗3 under each of the three objective functions is shown in

Table II. Clearly, the optimal design based on one single optimal criteria has bad performance

under other optimal criteria. These efficiencies are consistent with the corresponding efficiencies

provided in Table 4 of (15). The new algorithm is applied to the three-objective optimal design

problem. With the new algorithm, the corresponding Lagrange function is given by:

L(ξ,U∗) = Φ0 + 4.2053Φ1 + 2.5085Φ2.

The efficiencies of the derived constrained optimal design ξ∗ are also shown in Table II. It

shows that ξ∗ has high efficiency on Φ0 while guarantees the other two efficiencies are above

the acceptable level.

The grid search and the sequential approach are also applied to this optimal design problem.

The sequential result is also consistent with that of (15).

TABLE III

EXAMPLE I: RELATIVE EFFICIENCIES OF CONSTRAINED OPTIMAL DESIGNS
BASED ON DIFFERENT TECHNIQUES

Efficiency

Techniques Φ0 Φ1 Φ2 Computational Cost (Seconds)

Grid Search 0.8658 0.9009 0.8000 1834
Sequential Approach 0.8917 0.8900 0.8040 52
New Algorithm 0.8692 0.9000 0.8001 103
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Table III shows the efficiencies and computational time comparisons of the constrained

optimal designs derived using the grid search, the sequential approach and the new algorithm.

It shows that the three approaches are essentially equivalent in this sense. The sequential

approach gains highest efficiency on Φ0 by sacrificing a little bit on constrained efficiencies.

The new algorithm and grid search have slightly dropped on target efficiency to guarantee

that the two constraints are exactly satisfied. The sequential approach is faster. However, the

computational time in the table for sequential approach is just for one possible order. In many

cases, one may need to check many possible orders to produce a satisfied solution. Thus, the

computational time will tremendously increase in that case. Also in the next a few examples,

however, sequential approach fails to provide a desired design.

Example II Emax model is commonly used in dose-finding studies. This model can be

written as

y = β0 +
β1x

β2 + x
+ ε, (1.14)

where x represents the dose level, ε is assumed to follow the normal distribution with mean zero

and variance σ2, β0 represents the response when the dose level is at 0, β1(Emax) is the maximum

effect of the drug and β2(ED50) can be regarded as the dose level which produces half of Emax.

In a dose finding study, Dette et.al (22) used Model (Equation 1.14) to find optimal design for

the minimum effective dose level (MED) under parameter estimates β0 = 0, β1 = 0.4760, and

β2 = 25, where the relevant difference ∆ is set as 0.2. Now suppose a researcher is interested
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in estimating h0(β) = β2, h1(β) = β1, and h2(β) =MED = β2log(
β1+∆
β1

). Let ci =
∂hi(β)
∂β and

ξ∗i = argminξtr(c
T
i I

−1(ξ)ci), i = 0, 1, 2. The corresponding objective functions are:

Φ0(I(ξ)) = −
tr(cT0 I

−1(ξ)c0)

tr(cT0 I
−1(ξ∗0)c0)

, and

Φi(I(ξ)) = −
tr(cTi I

−1(ξ)ci)

tr(cTi I
−1(ξ∗i )ci)

, i = 1, 2.

Consider the three-objective optimal design problem given by:

Maximize
ξ

EffiΦ0(ξ)

subject to


EffiΦ1(ξ) ≥ 0.7,

EffiΦ2(ξ) ≥ 0.65.

Utilizing the new algorithm, we find that the corresponding Lagrange function is given by:

L(ξ,U∗) = Φ0 + 0.4944Φ1 + 0.2258Φ2.

The efficiencies of ξ∗0, ξ
∗
1, ξ

∗
2, and the constrained optimal design ξ∗ under each of different

optimal criteria are shown in Table IV.

Table V shows the efficiencies and computational time comparisons of the constrained op-

timal designs derived using the grid search, the sequential approach and the new algorithm.

The table shows that the new algorithm produces a desired design. Grid search also produces
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TABLE IV

EXAMPLE II: RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2
ξ∗0 1.0000 0.5891 0.6670
ξ∗1 0.0001 1.0000 0.0001
ξ∗2 0.0028 0.0006 1.0000
ξ∗ 0.9609 0.7008 0.6505

a satisfied solution, although the computational time is around fifteen times of that of the new

algorithm. A notable fact is that the sequential approach could not produce a proper solution.

For sequential approach, all possible orders are tested and they all fail to produce a proper

design.

Sequential approach results based on different orders are shown in Table VI. ξ∗ijk is the

derived design based on the order Φi → Φj → Φk using the sequential approach. Since by the

sequential approach procedure, ξ∗012 will be equivalent to ξ∗102 and ξ∗021 is equivalent to ξ∗201,

only four different orders are shown on the table. From Table VI, we can see that ξ∗210 performs

relative well. However the efficiency for Φ2 for ξ∗210 is 0.6726, while the corresponding constraint

value is 0.65. This indicates ξ∗210 does not identify the active objective function Φ2.
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TABLE V

EXAMPLE II: RELATIVE EFFICIENCIES OF CONSTRAINED OPTIMAL DESIGNS
BASED ON DIFFERENT APPROACHES

Efficiency

Techniques Φ0 Φ1 Φ2 Time Cost (Seconds)

Grid Search 0.9604 0.7000 0.6529 502
Sequential Approach Failed
New Algorithm 0.9609 0.7008 0.6505 34

Example III Atkinson et.al (23) derived Bayesian designs for a compartmental model,

which can be written as

y = θ3(e
−θ1x − e−θ2x) + ε = η(x, θ) + ε. (1.15)

where ε is assumed to follow the normal distribution with mean zero and variance σ2 and y

represents the concentration level of the drug at time point x. Clyde and Chaloner (13) derived

multiple-objective optimal designs under this model with parameter values θT = (θ1, θ2, θ3) =

(0.05884, 4.298, 21.80) and design space [0, 30]. It is of interest to estimate θ as well as the

following quantities:

• Area under the curve (AUC),

h1(θ) =
θ3
θ1

−
θ3
θ2
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TABLE VI

EXAMPLE II: EFFICIENCIES OF THE DERIVED DESIGNS BASED ON DIFFERENT
ORDERS USING SEQUENTIAL APPROACH

Efficiency

Designs Φ0 Φ1 Φ2
ξ∗120 0.9036 0.6992 0.6854
ξ∗210 0.9437 0.6995 0.6726
ξ∗102 Fails
ξ∗201 Fails

• Maximum concentration,

cm = h2(θ) = η(tmax, θ),

where tmax = 1.01.

Let ξ∗0 = argmin|I−1(ξ)|, ci be the gradient vector of hi(θ) according to parameter vector θ

and ξ∗i = argmintr(c
T
i I

−1(ξ)ci), i = 1, 2. The corresponding objective functions can be written

as follows:

Φ0(I(ξ)) = −(
|I−1(ξ)|

|I−1(ξ∗0)|
)
1
3 , and

Φi(I(ξ)) = −
tr(cTi I

−1(ξ)ci)

tr(cTi I
−1(ξ∗i )ci)

, i = 1, 2.
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Consider the following three-objective optimal design problem:

Maximize
ξ

EffiΦ0(ξ)

subject to EffiΦi(ξ) ≥ 0.4, i = 1, 2.

Utilizing the new algorithm, we find that the corresponding Lagrange function is given by:

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.

The efficiencies of ξ∗0, ξ
∗
1, ξ

∗
2, and the constrained optimal design ξ∗ under different optimality

criteria are shown in Table VII.

TABLE VII

EXAMPLE III: RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2
ξ∗0 1.0000 0.3431 0.3634
ξ∗1 0.0036 1.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000
ξ∗ 0.9761 0.4008 0.4046
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Table VIII compares the efficiencies and computational time comparisons of the constrained

optimal designs derived using the grid search, the sequential approach and the new algorithm.

The table clearly shows both new algorithm and grid search produce a satisfied solution. How-

ever, the grid search approach takes nearly eighteen times the computational time compared to

that of the new algorithm. On the other hand, the sequential approach again fails to produce

a satisfied solution. For the sequential approach, all possible orders are tested and results are

shown in Table IX. ξ∗ijk is the sequential optimal design based on order Φi → Φj → Φk. Ta-

ble IX shows sequential approach with order Φ1 → Φ0 → Φ2 and order Φ2 → Φ0 → Φ1 fails to

produce a design which satisfies all the constraints. For optimal designs derived with the other

two orders, although constraints are satisfied, the efficiency of the target objective function Φ0

is far below the results from the new algorithm and the grid search. All of these results indicate

that the sequential approach may not be proper for finding multiple-objective optimal design

problems.

1.5.2 Four-Objective and Five-Objective Optimal Designs

In this subsection, we mainly focus on the performance of the new algorithm when there are

four or five objectives. The sequential approach is dropped due to its unstable performance.

The grid search is not considered either due to its lengthy computational time.
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TABLE VIII

EXAMPLE III: RELATIVE EFFICIENCY OF CONSTRAINED OPTIMAL DESIGN
BASED ON DIFFERENT TECHNIQUES

Efficiency

Techniques Φ0 Φ1 Φ2 Time Cost (Seconds)

Grid Search 0.9761 0.4042 0.4009 1047
Sequential Approach Fails
New Algorithm 0.9761 0.4008 0.4046 59

Example IV Under the same set up as that of Example III, we consider another parameter

of interest, time to maximum concentration tm, where

tm = h3(θ) =
log(θ2) − log(θ1)

θ2 − θ1
.

The corresponding objective function is

Φ3(I(ξ)) = −
tr(cT3 I

−1(ξ)c3)

tr(cT3 I
−1(ξ∗3)c3)

,
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TABLE IX

EXAMPLE III: EFFICIENCIES OF THE DERIVED DESIGNS BASED ON DIFFERENT
ORDERS USING SEQUENTIAL APPROACH

Efficiency

Designs Φ0 Φ1 Φ2
ξ∗120 0.5797 0.3908 0.5981
ξ∗210 0.4537 0.6135 0.3904
ξ∗102 Fails
ξ∗201 Fails

where c3 is the gradient vector of h3(θ) according to vector θ and ξ∗3 = argminξtr(c
T
3 I

−1(ξ)c3).

Clyde and Chaloner (13) studied the following four-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to



EffiΦ1(ξ) ≥ 0.4,

EffiΦ2(ξ) ≥ 0.4,

EffiΦ3(ξ) ≥ 0.4.

is considered.

Utilizing the new algorithm, we find that the corresponding Lagrange funcion is

L(ξ,U∗) = Φ0 + 0.0916Φ1 + 0.0854Φ2.
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This indicates that only two out of the three constrains are active, which are the objective

functions Φ1 and Φ2. The efficiencies of ξ∗0, ξ
∗
1, ξ

∗
2, ξ

∗
3, and the constrained optimal design ξ∗

under different optimal criteria are shown in Table X. The computational time is around 56

seconds.

TABLE X

EXAMPLE IV: THE RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, ξ

∗
3 AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3
ξ∗0 1.0000 0.3431 0.3634 0.6464
ξ∗1 0.0036 1.0000 0.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000 0.0002
ξ∗3 0.0785 0.0001 0.0007 1.0000
ξ∗ 0.9761 0.4008 0.4046 0.5143

Example V Based on the same settings as Example IV, we add another objective function:

Φ4(I(ξ)) = −
tr(I−1(ξ))

tr(I−1(ξ∗4))
.
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Here ξ∗4 = argmintr(I
−1(ξ)). Then five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to



EffiΦi(ξ) ≥ 0.4, i = 1, 2, 3

EffiΦ4(ξ) ≥ 0.75

is considered.

Result from new algorithm indicates that the corresponding Lagrange function is given by:

L(ξ,U∗) = Φ0 + 0.3052Φ1 + 0.8362Φ4.

In this case, only the objective functions Φ1 and Φ4 are active. The efficiencies of ξ∗0, ξ
∗
1, ξ
∗
2, ξ
∗
3,

ξ∗4 and the constrained optimal design ξ∗ under different optimal criteria are shown in Table XI.

It takes 2 minutes and 27 seconds for the new algorithm to find ξ∗.

Example VI

Consider Equation 1.13 in Example I. Suppose that we want to maximize the efficiency

of D-optimal, while guaranteeing that the efficiency of C-optimal for each parameter is above

0.7. All other settings are as the same as those of example I. Let ξ∗0 = argmin|I−1(ξ)| and

ξ∗i = argmintr(e
T
i I

−1(ξ)ei), i = 1, 2, 3, 4, where ei is the unit vector with i-th element equal to

1.
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TABLE XI

EXAMPLE V: THE RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, ξ

∗
3, ξ

∗
4 AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3 Φ4
ξ∗0 1.0000 0.3431 0.3634 0.6464 0.7044
ξ∗1 0.0036 1.0000 0.0000 0.0000 0.0000
ξ∗2 0.0042 0.0000 1.0000 0.0002 0.0005
ξ∗3 0.0785 0.0001 0.0007 1.0000 0.0010
ξ∗4 0.7904 0.1138 0.6460 0.5895 1.0000
ξ∗ 0.9616 0.4013 0.4184 0.4945 0.7501

The corresponding objective functions can be written as follows:

Φ0(I(ξ)) = −(
|I−1(ξ)|

|I−1(ξ∗0)|
)
1
3 , and

Φi(I(ξ)) = −
tr(eTi I

−1(ξ)ei)

tr(eTi I
−1(ξ∗i )ei)

, i = 1, 2, 3, 4.

Consider the following five-objective optimal design problem

Maximize
ξ

EffiΦ0(ξ)

subject to EffiΦi(ξ) ≥ 0.7, i = 1, 2, 3, 4.
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Results from the new algorithm show that the corresponding Lagrange function is

L(ξ,U∗) = Φ0 + 0.0183Φ1 + 0.3540Φ2 + 0.0305Φ4.

In this case, only the objective function Φ3 is inactive. The efficiencies of ξ∗0, ξ
∗
1, ξ

∗
2, ξ

∗
3, ξ

∗
4

and the constrained optimal design ξ∗, under different optimal criteria, are shown in Table XII.

It takes about 37 minutes on a laptop.

TABLE XII

EXAMPLE VI: THE RELATIVE EFFICIENCIES OF ξ∗0, ξ
∗
1, ξ

∗
2, ξ

∗
3, ξ

∗
4 AND ξ∗

Efficiency

Design Type Φ0 Φ1 Φ2 Φ3 Φ4
ξ∗0 1.0000 0.8323 0.4461 0.6326 0.5967
ξ∗1 0.9141 1.0000 0.3294 0.6234 0.6136
ξ∗2 0.3849 0.1964 1.0000 0.3353 0.6422
ξ∗3 0.1471 0.0006 0.0232 1.0000 0.0051
ξ∗4 0.6044 0.4260 0.6867 0.6230 1.0000
ξ∗ 0.9259 0.7009 0.7007 0.7212 0.7027

1.6 Discussion

While the importance of multiple-objective optimal designs is well recognized in scientific

studies, their applications are still undeveloped due to a lack of a general and efficient algorithm.
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The combination of the OWEA algorithm for the compound optimal design problem and the

new algorithm, provides an efficient and stable framework for finding the general multiple-

objective optimal designs. And Examples show remarkable improvement on computational

cost, compare to the grid search approach.

For optimal designs with no more than four objective functions, the new algorithm can

efficiently derive the desired solution. When there are five or more objective functions, it is

unlikely that all constraints are active. If only less than four constraints are active, then the

new algorithm can still solve the optimal design efficiently. However, in a rare situation where

there are four or more active constraints, the computation time can become lengthy. More

research works are needed to study these cases.

In order to guarantee the convergence of new algorithm, the strict concavity of the objec-

tive function Φ0 is required. However, various cases are tested and the convergence holds for

virtually all situations based on experience. It may be worthwhile to study the theoretical

properties for these cases. On the other hand, the new algorithm is implemented under locally

optimal designs context for all examples. It is possible to extend these results to other settings,

such as the cases discussed in (24). Penalty approaches provides another strategy for finding

multiple-objective optimal design. In the penalty approach, each constraint is transfered to a

penalty term. Thus, the constrained optimal design problem can be transfered to a compounded

optimal design problem with these penalty terms as the new optimal criteria. More research is

certainly needed.
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Although computer code for this new algorithm is not straightforward, the main body of

the code work for all multiple-objective design problems are the same. One only needs to

change the information matrix for the specific model and the specific objective functions in

a multiple-objective optimal design problem. The SAS IML codes for all examples in this

chapter are freely available upon request. These codes can be easily modified for different

multiple-objective optimal problems.



CHAPTER 2

SUPPLEMENTAL MATERIALS FOR MULTIPLE OBJECTIVE

OPTIMAL DESIGNS

(Previously published as Cheng, Q., Majumdar, M. and Yang, M. (2016) On Multiple

Objective Nonlinear Optimal Designs, mODa 11 - Advances in Model-Oriented Design and

Analysis, pp 63-70)

2.1 OWEA Algorithm

Since all elements in U are nonnegative, L(ξ,U) = Φ0(ξ) +
∑n
i=1 ui(Φi(ξ) − ci) can be

regarded as a new optimal criteria. For a design ξ = {(x1, w1), · · · , (xm−1, wm−1), (xm, wm)},

let X = (x1, · · · ,xm)T and W = (w1, · · · , wm−1)
T . The following algorithm follows the similar

procedure as that of OWEA in (8).

Step 1 Set t = 0, let the initial design set X0 take 2k design points uniformly from the design

space and the corresponding weight to be 1/2k for each point.

Step 2 Derive the optimal weight vector Wt for a fixed sample points set Xt.

Step 3 For ξt = (Xt,Wt), denote directional derivative of L(ξ,U) at x as dU(x, ξt), where x is

any design point from the design space X . The explicit expression can be found in (8).

Step 4 For a small prefixed value ∆ > 0, if maxx∈X dU(x, ξt) ≤ ∆, ξt can be regarded as the

optimal design. If dU(x, ξt) > ∆ for some design point x, let Xt+1 = Xt
⋃

x̂t where

x̂t = argmax
x∈X

dU(x, ξt). Then go through Step 2 to Step 4 again with new Xt+1.

40
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In Step 2, the optimal weight vector Ŵ can be found by Newton’s method based on the first

derivative and second derivative of L(ξ,U) respect to the weight vector W. These derivatives

can be derived using Equation 2.1 and the formula in the Appendix of (8).

∂Φλ(ξ)

∂W
=
∂Φ0(ξ)

∂W
+

n∑
i=1

ui
∂Φi(ξ)

∂W
;

∂2Φλ(ξ)

∂WWT
=
∂2Φ0(ξ)

∂WWT
+

n∑
i=1

ui
∂2Φi(ξ)

∂WWT
.

(2.1)

Based on the exact same argument as (8), this algorithm converges to an optimal design max-

imizing L(ξ,U). We use the extended OWEA to derive ξU.

2.2 Sequential Approach Procedures

The sequential procedure for finding the corresponding compound optimal design with the

specified order {s1, · · · , sn+1} can be described as follows:

Step 1 If Φ0 ∈ {Φs1 , Φs2}, say Φ0 = Φs1 . Consider solving the constrained optimal design

problem

Maximize Φ0 while Φs2 ≥ cs2 .

If not, consider solving the constrained optimal design problem

Maximize Φs2 while Φs1 ≥ cs1 .

Finding the weight vector in the weighted optimal design problem corresponding to

the specified constrained optimal design problem, using the grid search with a pre-
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fixed grid size. Denote the weight vector by (1 − β2, β2). Construct a new objec-

tive function Φ{s1,s2}(ξ) =
(1−β2)Φs1 (ξ)+β2Φs2 (ξ)

(1−β2)Φs1 (ξs1,s2 )+β2Φs2 (ξs1,s2 )
, where ξs1,s2 is optimal design for

(1− β2)Φs1(ξ) + β2Φs2(ξ). If n ≥ 2, set k = 3.

Step 2 For the newly constructed objective function, consider weighted design problem

(1 − x)Φ{s1,··· ,sk−1} + xΦsk . Change the value of x by grid search on [0, 1] with given

grid size. If Φ0 ∈ {Φs1 , · · · , Φsk}, choose a proper value x such that the corresponding

weight design maximizes Φ0 while guarantees Φsi ≥ ci for i = 1, · · · , k. If not, choose a

proper value x such that the corresponding weighted optimal design maximizes Φsk while

guarantees Φsi ≥ ci for i = 1, · · · , k − 1. Denote this value as βk. If all the possible

value for x fails to satisfy the constraints for Φs1 , · · · , Φsk , that indicates the sequential

approach fails with the specified order. Then quit the algorithm.

Construct new objective function

Φ{s1,··· ,sk}(ξ) =
(1− βk)Φs1,··· ,sk−1(ξ) + βkΦsk(ξ)

(1− βk)Φs1,··· ,sk−1(ξs1,··· ,sk) + βkΦsk(ξs1,··· ,sk)
,

where ξs1,··· ,sk is optimal design for (1− βk)Φs1,··· ,sk−1(ξ) + βkΦsk(ξ). Set k = k+ 1 and

repeat Step 2, until k = n+ 1.

Step 3 Transfer Φ{s1,··· ,sn+1}(ξ) back to
∑n
i=0 λiΦi(ξ) using scalar change. Then

∑n
i=0 λiΦi(ξ)

will be the weighted optimal design problem found for constrained design problem with

the sequential approach based on the specified order.
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2.3 Theory and Proof

Constrained optimization approach specifies one objective as the primary criteria and max-

imizes this objective subject to the constraints on the remaining objectives (14; 13). Formally,

this approach can be written as

Maximize
ξ∈Ξ

Φ0(ξ) subject to Φi(ξ) ≥ ci, i = 1, . . . , n, (2.2)

where c = (c1, . . . , cn) are user-specified constants which reflect minimally desired levels of

performance relative to optimal designs for these n objective functions. To make this problem

meaningful, throughout this chapter, we assume that there is at least one design satisfying all

the constraints, which means an optimal solution exists.

Let S ⊂ {1, . . . , n}, for easy presentation, we denote UT
SΦ̂S(ξ) =

∑
i∈S uiΦ̂i(ξ). We also

denote Φ̂(ξ) = (Φ̂1(ξ), . . . , Φ̂n(ξ)).

Proof of Theorem 2. Let u0a > u
1
a be two nonnegative values. Let U0

S and U1
S be the corre-

sponding value sets for US satisfying the two conditions in the theorem when ua = u0a and u1a,

respectively. Let U0 be the combination of U0
S, u

0
a, and US ′ by their corresponding indexes.

Similarly let U1 be the counterpart of U1
S, u

1
a, and US ′ .

Notice that for U0
S and U1

S, the classification of S1 and S2 could be different. This means

that elements in S1 for U0
S may fall into S2 for U1

S and versus the same. We just need to check

that the two disjoint subsets from S satisfy Condition (Equation 1.8) in the theorem separately.
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By the properties of ξU0 and ξU1 , we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU1) + (U0)T Φ̂(ξU1), and

Φ0(ξU1) + (U1)T Φ̂(ξU1) ≥ Φ0(ξU0) + (U1)T Φ̂(ξU0).

(2.3)

Notice that

(U0)T Φ̂(ξU0) = (U0
S)
T Φ̂S(ξU0) + u

0
aΦ̂a(ξU0) + (US ′)

T Φ̂S ′(ξU0),

(U0)T Φ̂(ξU1) = (U0
S)
T Φ̂S(ξU1) + u

0
aΦ̂a(ξU1) + (US ′)

T Φ̂S ′(ξU1),

(U1)T Φ̂(ξU0) = (U1
S)
T Φ̂S(ξU0) + u

1
aΦ̂a(ξU0) + (US ′)

T Φ̂S ′(ξU0), and

(U1)T Φ̂(ξU1) = (U1
S)
T Φ̂S(ξU1) + u

1
aΦ̂a(ξU1) + (US ′)

T Φ̂S ′(ξU1).

(2.4)

Adding up the two inequalities in Equation 2.3 and utilizing Equation 2.4, we have

(u0a − u
1
a)(Φ̂a(ξU0) − Φ̂a(ξU1)) + (U0

S − U1
S)
T (Φ̂S(ξU0) − Φ̂S(ξU1)) ≥ 0. (2.5)

Suppose i ∈ S1 when ua = u0a and i ∈ S2 when ua = u1a. Clearly that (u0i − u
1
i ) ≤ 0 while

(Φ̂i(ξU0)−Φ̂i(ξU1)) ≥ 0. The conclusion holds for all other cases through the similar argument.

Thus we have, for any i ∈ S, (u0i − u
1
i )(Φ̂i(ξU0) − Φ̂i(ξU1)) ≤ 0. Consequently, we have

(U0
S − U1

S)
T (Φ̂S(ξU0) − Φ̂S(ξU1)) =

∑
i∈S

(u0i − u
1
i )(Φ̂i(ξU0) − Φ̂i(ξU1)) ≤ 0, (2.6)
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which indicates

(u0a − u
1
a)(Φ̂a(ξU0) − Φ̂a(ξU1)) ≥ 0. (2.7)

Thus the conclusion follows.

Proof of Theorem 3. By the definitions of ξU0 and ξU1 , we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU1) + (U0)T Φ̂(ξU1), and

Φ0(ξU1) + (U1)T Φ̂(ξU1) ≥ Φ0(ξU0) + (U1)T Φ̂(ξU0).

(2.8)

By Equation 1.9, Equation 2.8 can be rewritten as

Φ0(ξU0) ≥ Φ0(ξU1), and

Φ0(ξU1) ≥ Φ0(ξU0),
(2.9)

which implies

Φ0(ξU0) = Φ0(ξU1). (2.10)

Thus

L(ξU0 ,U
0) = Φ0(ξU0) = Φ0(ξU1) = L(ξU1 ,U

0). (2.11)
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This indicates that ξU0 and ξU1 both maximize Lagrange function L(ξ,U0).

SinceΦ0 is strictly concave function on information matrices, L(ξ,U0) is also strictly concave

function on information matrices. Thus, ξU0 and ξU1 have the same information matrix,

implying ξU0 is equivalent to ξU1 .

Proof of Theorem 4. Define S11 = {i|Φ̂i(ξU0) > 0, i ∈ S1}. By the properties of U0, clearly

we have u0i = 0 for i ∈ S11 and u0i = Ni for i ∈ S2. Suppose there exists a positive value set

U+ = {U+
S , 0} with Φ̂i(ξU+) = 0 for i ∈ S. Then we have

Φ0(ξU0) + (U0)T Φ̂(ξU0) ≥ Φ0(ξU+) + (U0)T Φ̂(ξU+) and

Φ0(ξU+) + (U+)T Φ̂(ξU+) ≥ Φ0(ξU0) + (U+)T Φ̂(ξU0).

(2.12)

Then, the summation of the two inequalities in Equation 2.12 returns

(U0
S/(S11∪S2) − U+

S/(S11∪S2))
T (Φ̂S/(S11∪S2)(ξU0) − Φ̂S/(S11∪S2)(ξU+))

+ (U0
S11

− U+
S11

)T (Φ̂S11(ξU0) − Φ̂S11(ξU+))

+ (U0
S2

− U+
S2
)T (Φ̂S2(ξU0) − Φ̂S2(ξU+)) ≥ 0.

(2.13)

By Condition Equation 1.10, and our assumption, we have that (i) Φ̂i(ξU0) = 0 for i ∈ S/(S11∪

S2); (ii) u0i = 0 for i ∈ S11; and (iii) Φ̂i(ξU+) = 0 for i ∈ S. Thus, (Equation 2.13) reduces to

(−U+
S11

)T Φ̂S11(ξU0) + (U0
S2

− U+
S2
)T (Φ̂S2(ξU0)) ≥ 0. (2.14)
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Notice that, for i ∈ S11, Φ̂i(ξU0) > 0 and U+
S11
> 0. We have

(−U+
S11

)T Φ̂S11(ξU0) < 0.
(2.15)

On the other hand, for i ∈ S2, u0i = Ni > U+
i and Φ̂i(ξU0) < 0, we have

(U0S2 −U
+
S2
)T (Φ̂S2(ξU0)) < 0.

(2.16)

Since S11
⋃
S2 6= ∅, we have

(−U+
S11

)T Φ̂S11(ξU0) + (U0
S2

− U+
S2
)T (Φ̂S2(ξU0)) < 0.

(2.17)

This is contradiction to Equation 2.14. Thus the conclusion follows.

Proof of Theorem 5. Since there exists an optimal solution for the constrained optimal de-

sign problem (1), there exists an active constraints set. (It could be empty set, which means no

active constraints). The new algorithm will search for these active constraints set and identify

the Lagrange multiplier of the corresponding compound optimal design problem. The new al-

gorithm starts from the simplest case, i.e., there is no active constraints, to most complex case,

i.e., all constraints are active.

For each assumed active constraints set S, by Theorem 2, the algorithm procedure utilizing

the bisection technique to guarantee that the derived vector U∗ = {U∗S, 0} satisfies the two

conditions in Equation 1.10. If Φ̂i(ξU∗) 6= 0 for some i ∈ S, Theorem 4 guarantees that there
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is no positive value set U+
S within the given intervals such that Φ̂i(ξU+) = 0 for all i ∈ S

where U+ = {U+
S , 0}. This means S cannot be the true active constraints set. Otherwise, it

contradicts Assumption (6). On the other hand, if Φ̂i(ξU∗) = 0 for all i ∈ S but Φ̂i ′(ξU∗) < 0

for some i ′ ∈ {1, · · · , n}\S, Theorem 3 guarantees that Φ̂ ′i(ξU ′) < 0 for any vector U ′ = {U ′S, 0}

satisfying Φ̂i(ξU ′) = 0 for all i ∈ S. This also means S cannot be the true active constraints

set.

Since the new algorithm goes through all possible active constraints combinations, a desired

U∗, i.e., Φ̂i(ξU∗) = 0 for all i ∈ S and Φ̂i(ξU∗) ≥ 0 for all i ∈ {1, · · · , n}\S, must be found.

Otherwise, it means none of the constraint combinations are active. This contradicts the fact

that there is an active constraints set.

For the desired U∗, let ξ∗ = argmaxξL(ξ,U
∗). By Theorem 1, ξ∗ is the optimal design of

the constrained optimal design problem (Equation 1.1).



CHAPTER 3

THE IBOSS ALGORITHM FOR LARGE-SCALE LOGISTIC

REGRESSION

3.1 Introduction

Technological advances have enabled an exponential growth in data collection and the size

of data sets. For example, the cross-continental Square Kilometre Array, the next generation of

astronomical telescopes, will generate 700 TB of data per second (25). While the extraordinary

size datasets provide researchers golden opportunities of scientific discoveries, they also bring

tremendous challenges for analyzing these big datasets. Many proven and classical statistical

methods are no longer applicable due to computational limitations.

There are some recent advances in statistical analysis to deal with these challenges. Roughly

speaking, there are three major directions, namely, (1) the divide and conquer approach, (2)

the sequential updating method and (2) the subsampling-based approach.

The divide and conquer approach takes advantage of parallel computing. Data are split into

chunks of reasonable size. Then, analysis is implemented separately on each chunk of data, and

a specified aggregation method is implemented to merge the piece of information from chunks

and produce final analysis. Strategy of analysis on each chunks and aggregation methods

varies depends on the structure of the data and model assumptions. For linear regression

model, the least square estimate can be directly decomposed into a weighted average of the

49
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least square estimate of each chunk. This has became the standard aggregation method for

merging solutions from blocks with linear models. For the nonlinear models, several aggregation

methods are proposed. Lin and Xi(26) proposed an approach of approximating the estimating

equation using Taylor expansion. Under certain conditions and assumptions, accuracy of the

final estimator from this approach is closed to the direct estimator from full data. Chen and

Xie(27) considered a divide and conquer type approach for generalized linear models (GLM),

where both the number of observations n and the dimension of covariates vector p are large, by

incorporating variable selection and using penalized regression into the processing steps of each

chunk. The authors show under certain regularity conditions that their combined estimator is

model selection consistent and asymptotically consistent with the penalized estimator based on

the full dataset.

The sequential updating approach works on streaming data. Since the data is arriving

in chunks, some of the logics and ideas from divide and conquer approach can be borrowed.

In Schifano et.al(28), an approach similar to divide and conquer approach is proposed. The

estimate of the parameters based on current data can be updated using previous estimate of

parameter and the new coming data. The consistency of the estimate is guaranteed under cer-

tain regularity conditions. Both the divide and conquer approach and the sequential updating

approach target on chunk analysis and aggregation of analysis result from each pieces. The two

approaches gain efficiency mainly from the implementation of parallel computing. They take

advantage of more computational resources available. In some senses, these two approaches do
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not provide a true saving of computational cost. In addition, it may still be time-consuming

when dealing with extremely large data sets using these techniques.

The subsampling approaches, which is to analyze subsamples of the data, downsize the

data and reduce the computation burden. Combining the methods of subsampling (29) and

bootstrap (30; 31), (32) proposed a novel approach called bags of little bootstrap (BLB) to

achieve computational efficiency. Liang et.al(33) and Liang and Kim(34) proposed a mean log-

likelihood approach using Monte Carlo averages of estimates from subsamples to approximate

the quantities needed for the full data. It seems BLB and mean log-likelihood select the sub-

samples using simple random sample algorithm. Another line of subsampling approach is based

on sampling-based algorithms to select a subsample. In this approach, a sampling probability

is assigned to each dataline according to its leveraging score and subsampling procedure is

performed based on the assigned sampling probability. Ma and Sun(35) reviewed the existing

subsampling methods in the context of linear regression and termed them leveraging algorithms.

Ma et.al(36) considered the statistical properties of leveraging algorithms. They systematically

derived biases and variances of algorithmic leveraging methods in linear regression models, and

then proposed a shrinkage algorithmic leveraging method to improve the performance.

A major limitation of random subsampling approaches is that the amount of information in

the subdata based on subsampling approach, generally is proportional to the size of the subdata,

which is significantly smaller than the full data size. Wang et.al(37) proved that, under linear

models, the variances of estimates based on the random subsampling approach converge to

zero at the rate proportional to the size of subdata. Is it possible that the subdata contain
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information that is related to the size of full data rather than that of the subdata? Ideally, we

choose the subdata with maximum information among all possible subdata sets. However, this

is impossible in practice since there are
(
n
r

)
possible ways of selecting a subdata with size r from

a full data with size n. This combination number is quickly out of reach even for moderate

numbers n and r. An alternative approach need to be employed here. Under linear models,

Wang et.al(37) proposed a novel approach called Information-Based Optimal Subdata Selection

(IBOSS) to select a subdata. Unlike random subsampling approaches, IBOSS is a deterministic

approach. It selects a subdata based on the characterization of the D-optimal design. Under

certain conditions, Wang et.al(37) showed that variances of the estimates converge to zero at

the rate of the size of full data. The simulation studies demonstrate that the performance of

IBOSS is significantly improving from the existing subsampling approaches.

Can the IBOSS strategy be extended to generalized linear models, especially logistic re-

gression model? The logistic regression models, since developed by Cox(38), have played an

important role in categorical data analysis. It has been widely used in various fields, such as

finance, various medical fields and the social sciences. Unlike the linear models, where closed

form estimation is available, there are no closed form estimation of generalized linear models,

including logistic regression models. Instead, estimations need to be carried out using an it-

erative algorithm. The computation complexity is then even more challenging for big dataset.

There is relatively little work on how to choose a subdata from a full dataset under generalized

linear models. This is perhaps due to the complexity of the nonlinearity features. Wanf et.al(39)

proposed the OSMAC algorithm using the leveraging method in order to handle the subsam-
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pling work for logistic model. The probability weight is built up based on the A-optimality

from optimal design theory (40). Based on different transformations of the the A-optimality,

several subsampling strategies are proposed in their work. Among all these approaches, the

mVc approach attains almost the best accuracy on the defined criteria under their simulation

set up, while maintaining endurable computational cost. However, like many other leveraging

approaches for linear regression case, as we shall show in the next section, the information

extracted from mVc approach is limited by the subsample size.

Inspired by the IBOSS approach for the linear case, in this paper, we study subdata selection

under logistic regression models. A new algorithm of selecting a subdata is proposed. Compared

to the existing subsampling approaches, the new algorithm has following advantages: (1) the

performance of the algorithm is significantly better; (2) the computational cost is competitive;

and (3) the selecting procedure is independent of the response variable. Since “data reduction

is perhaps the most critical component in retrieving information in big data” (41), this result

is valuable approach in big data analysis.

This chapter is organized as follows. Section 3.2 introduces the notations, gives a summary of

existing methods, and present an upper-bound of the information matrix for subsampling-based

estimators. A new algorithm as well as its asymptotic properties will be introduced in Section

3.3. Section 3.4 compares the performances of the new algorithm, OSMAC algorithm and

simple random sampling using various simulation settings. Section 3.5 proposes an alternative

directional derivative approach under un-asymmetric cases. A brief summary of this paper and

possible extensions are given in section 3.6.
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3.2 Notations and Existing Methods

3.2.1 Notations

Let (Yi, Zi), i = 1, . . . , n denote the full data, where Yi is a binary response and Zi =

(xi1, · · · , xim)T is the m dimension explanatory variables. Assume the logistic regression model:

Prob(Yi = 1|Xi) =
eX
T
i β

1+ eX
T
i β
, (3.1)

where β = (β0, · · · , βm)T and Xi = (1, ZTi )
T . β0 is called the intercept parameter and (β1, · · · , βm)T

is the m dimension slope parameters. Denote the covariate matrix X = (X1, · · · , Xn)T and re-

sponse vector Y = (Y1, · · · , Yn)T . Thus, the full data can be represented by (X,Y). Like linear

models, the maximum likelihood estimator is frequently used to approximate β. However, for

logistic regressions, there is no closed-form of the maximum likelihood estimates (MLEs), then

iterative algorithms such as Newton-Raphson algorithm (42) are often used to approximately

find the maximum likelihood estimator β̂. In this paper, denote the MLE of β based on the

full data as β̂. The computational cost of approximating β̂ is at the order of O(∆nm2), where

∆ is the number of iterations. Thus, for extraordinary large n, the computational cost could be

beyond the available computation capacity. We may have to consider analyzing a subdata set

instead of the full data. The research question here is: suppose we can only analyze a subdata

with size r, how can we choose the subdata such that it contains the most information? Let

α1, . . . , αn be the indicator whether the data point is selected or not, i.e., αi = 1 if (Yi, Xi) is

selected in the subdata and 0 otherwise. Let α = (α1, . . . , αn) and βα
i be the resulting estimate
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from the subdata selected through α. Our goal is, under the restriction
∑n
i=1 αi = k, to find α

such that

MSE(β) =

m∑
i=1

(βα
i − βi)

2 (3.2)

is as small as possible.

In literature, many subsampling strategies are designed based on minimizing this MSE term.

But most of them target data under linear models, and usually cannot be easily extended to

logistic regression cases due to their nonlinearity of the logistic model. The few strategies

suitable for logistic models are given by the simple random sampling approach (SRS) and the

OSMAC approach from (39).

3.2.2 Existing Subsampling Approaches

When SRS is implemented, each dateline has an equal chance to be selected. It can be

regarded as a leveraging type subsampling approach where each dataline has an equal proba-

bility of 1
n to be picked. It is a widely-used technique for many years to downsize data due to

its simplicity and low cost on computational resources. However, in term of the information

retrieved from a big dataset, SRS may not be the best choice.

Inspired by the A-optimality criteria from optimal design theories, Wang et.al(39) proposed

the novel OSMAC algorithm. The OSMAC algorithm is a leveraging type approach. The

probability weights are assigned to each dataline in a way to optimize the A-optimal criteria

of the slope parameter with certain pre-specified strategies. According to the use of different
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strategies to optimize the A-optimal criteria, the OSMAC approach proposes four different ways

of calculating probability weights. They are the mMSE, mEMSE, mVc, and mEVc strategies,

respectively. Among all of them, the mMSE strategy directly minimizes the asymptotic MSE

of β̂ and has the best performance in terms of accuracy. However, the computational cost of

mMSE strategy for calculating the sampling weights is not endurable. Within the remaining

three strategies, mVc strategy’s estimation accuracy is the closest to the mMSE strategy, while

its computational cost is acceptable. Instead of directly attempting to minimize the asymptotic

MSE of β̂, this strategy targets on finding weights to minimize the asymptotic MSE of MXβ̂,

where MX = 1
n

∑n
i=1wi(β̂)XiX

T
i . The corresponding sampling probability for each dataline

under the mVc strategy is given by

πmVci =
|yi − pi(β̂)|||Xi||∑n
j=1 |yj − pj(β̂)|||Xj||

.

The other two strategies in Wang et.al(39) are inferior to the mVc strategy on MSE accuracy

based on the simulation settings in their paper. Thus they are not discussed here.

3.2.3 Limitations on Estimation Efficiency for Existing Subsampling Strategies

The asymptotic property of the ML estimator β̂ has been studied for many years. For

models within the exponential family, different approaches to prove the consistency of the

maximum likelihood estimator (43; 44; 45) is available under various conditions. For the set up

of assumptions, one can refer to (43) and (46) , while the MLE consistency of logistic regression



57

can be regarded as one typical case of the MLE consistency of the exponential family. For the

full data MLE β̂, as n→ ∞,

(β̂− β0) ∼ N(0, (

n∑
i=1

Ψ(ui)XiX
T
i )

−1),

where ci = XTi β and Ψ(ci) =
eci

(1+eci )2
. The derivation details and necessary conditions can be

found in the next chapter. The variance term (
∑n
i=1 Ψ(ci)XiX

T
i )

−1 determines how accurate,

asymptotically, the MLE β̂ is on estimating true value β. It is more convenient to work on

its inverse, the information matrix, I =
∑n
i=1 Ψ(ci)XiX

T
i . Roughly speaking, the information

contains in the data to estimate parameter β increases as the size n increases. When the

subsampling strategies are implemented, the subsample size r is usually fixed although the

data size n might be very large. Does the MLE from subsample still remains the asymptotic

consistency? Is the Fisher information matrix Iα of the picked subsample bounded by subdata

size r despite the fact n goes to infinity?

For SRS, the mle consistency of the sub data can be relatively easily proved. However, it

can be shown that, with this approach, the expectation of Iα =
∑n
i=1 αiΨ(ci)XiX

T
i is bounded

when r is bounded (we will show this in the next section). Therefore, the information we can

extract from the SRS is limited. This is one major drawback of the SRS strategy, despite its

advantage on speed and simplicity. With a much more advanced ranking strategy, does the

leveraging type approach, mVc strategy, also have this kind of limitation when size of subdata

r is fixed?
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For the leveraging type subsampling strategies, the sampling probability of each dataline is

based on the rank of the importance among them. This rank provides a way to directly assess the

importance of each dataline. To adjust for weight difference across different datalines picked,

the weighted maximum likelihood estimator is often used to estimate the parameters with

the picked subdata. However, also due to complexity of the probability weight, the weighted

MLEs’ consistency can no longer be guaranteed. Alternative consistency has been proposed

to theoretically support the leveraging type subsample algorithms. Wang et.al(39) proved

consistency of leveraging type algorithms between MLEs of subdata and MLEs of full data.

Theorem 6. (Wang et. al, 2016) Let n denote full data size and r denote subsample size. The

leveraging sampling probability for each dataline is set as πi. Let FN denote the set of (Y,X).

Under certain conditions specified in Wang et.al(2016), as n, r→ ∞, conditional on FN,

V− 1
2 (β̂sub − β̂) → N(0, I)

where β̂sub is the weighted maximum likelihood estimation for subdata, β̂ is the maximum like-

lihood estimation of full data and V =M−1
X VcM

−1
X . In this formula, MX = 1

n

∑n
i=1wi(β̂)XiX

T
i ,

Vc =
1
rn2

∑n
i=1

(yi−pi(β̂))
2XiX

T
i

πi
and wi(β) = pi(β)(1− pi(β)). This result can be rewritten as

β̂sub − β̂|FN ∼ N(0, V).

This theorem builds up the bridge between maximum likelihood estimator of subdata and

full data for all leveraging type subsampling procedures. On the other hand, it does not
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show how much improvement the leveraging type approaches can have on estimation accuracy

with fixed subsample size r. The following theorem investigates Isub and gives some insight

information on this term.

Theorem 7. For leveraging type algorithms, if the conditions in Wang et.al(2016) is satisfied

and the consistency described in 6 holds, then the information matrix Isub = V
−1 is dominated,

in term of Loewring ordering, by a matrix proportional to the size of subdata, i.e.,

Isub ≤ r(
n∑
i=1

πiXiX
T
i ).

Applying Theorem 7 to sampling-based methods, we can show that the information from

the subdata is bounded by a term associated with subdata size r.

Theorem 8. For simple random sampling, suppose Xi, i = 1, . . . , n are generated independently

from the same distribution X which has finite forth moment, then we have

Isub ≤ r(E(XiXTi ) + o(1)) almost surely as n→ ∞
where o(1) is a matrix with all elements at order o(1).

The mVc algorithm is one of the algorithms proposed by Wang et.al(39). When implement

the mVc procedure, each data line is assigned with a weight

πmVci =
|yi − pi(β̂)|||Xi||∑n
j=1 |yj − pj(β̂)|||Xj||

.
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Through simulation studies and real data analysis, Wang et.al(39) shows the algorithm has high

estimation accuracy on slope parameters while the computational cost is endurable. However,

we can show that, as one of the leveraging type algorithm, the expectation of the information

matrix of the subdata extracted by using mVc procedure is still bounded by the subsize r.

Theorem 9. For mVc algorithm, suppose covariate vector Xi, i = 1, . . . , n, are generated in-

dependently from the same distribution X, which satisfies the following conditions:

1. There exists fixed constant s, such that E(||Xi||
6) < s.

2. For some constant B2 > B1 > 0, Prob(B1 < ||Xi|| < B2) > 0.

Then

Isub ≤
r

a
(E(||X||XXT ) + o(1)) almost surely as n→ ∞

where o(1) is a matrix with all elements at order o(1).

These two theorems show that the information from the subdata sampled through existing

subsampling strategies for logistic regression model is bounded from above by a term related

to the size of the subdata even when n→ ∞. A new strategy proposed in the next section can

break the restriction.

3.3 Extended IBOSS Algorithm for Logistic Regression Models

3.3.1 Optimal design and IBOSS algorithm for linear case

Optimal design focuses on finding the best way to allocate design points when design ex-

periment under pre-specified models and estimation interests. The optimization idea, based on
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information matrix can be borrowed to identify the most informative datalines from big data

for estimating unknown parameters.

Recently statisticians have started thinking about utilizing optimal design theory in building

up subsampling strategies. Wang et.al (37) proposed the novel IBOSS subsampling approach

for linear models. Unlike the leveraging type strategies, which aim to adjust probability weight

among datalines with ranking of importance, the IBOSS algorithm directly utilizes the structure

of D-optimal design for linear models and then sequentially selects the boundary datalines on

each dimension, which by theory are likely to be most informative. The subsampling procedure

for IBOSS strategy in Wang et.al(37) is as follows:

Step 1 From full data set (X, Y), with subdata size r and covariate vector Zi of m dimension for

i = 1, · · · ,m, calculate rs =
⌊
r
2m

⌋
Step 2 Starting from k = 1, inside {(Yi, X

T
i ), i ∈ B}, pick rs data rows with largest value, and rs

data lines with smallest value on the k-th dimension, put these datalines into the newly

constructed subsample, and then erase them from the whole data. Repeat these steps for

k = 2, . . . ,m. Combined all datalines picked as the newly constructed sub-sample.

The results by implementing this procedure with data simulated and real data show apparent

improvement on estimating efficiency. Theoretically, Wang et.al(37) also shows that the infor-

mation matrix of the subdata with IBOSS approach are not bounded by the subsample size r as

long as n→ ∞. Readers are referred to (37) for more details. These exciting properties of the

IBOSS algorithm shown both in theory and simulation drive us to think about the possibility
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of extending the IBOSS strategy to logistic regression models. We first review a D-optimality

result for logistic regressions.

Theorem 10 ((47)). Under the logistic model (Equation 3.1) and certain conditions specified in

(47), consider finding optimal points within the transformed design space Ξ = (1, xi1, · · · , xim−1, ci =

XTi β). Then the D-optimal design for estimating parameter β is ξ∗ = {(C∗l1, 1/2
m)&(C∗l2, 1/2

m), l =

1, · · · , 2m−1}, where C∗l1 = (1, al,1, · · · , al,m−1, c
∗) and C∗l2 = (1, al,1, · · · , al,m−1,−c

∗) .

• c∗ minimize function f(c), where f(c) = c−2(Ψ(c))−m−1, Ψ(c) = [p ′(c)]2

p(c)(1−p(c)) , p(c) = ec

1+ec

and c = XTβ for a covariate vector X.

• al,i is the boundary of the design space in the i-th dimension, i = 1, · · · ,m− 1

This theorem shows that, unlike the D-optimal design points for linear models which are

simply located on the boundary of the design space, all the optimal design points for logistic

regression models also have to meet the criteria that ci = ±c∗. And the last dimension of these

points may not necessarily be on the boundary. The optimal value c∗, by formula, is a fixed

constant which only concerns with the dimension and value of parameters. These differences

indicates that directly borrowing the IBOSS procedure of linear case, which sequentially picks

extreme datalines from each dimension, cannot be applied to logistic models. However we can

use the similar strategy, i.e., select design points closest to the optimal design points and then

balance it with the concern of computational cost to build up the new IBOSS strategy for

logistic regression. Motivated by this idea, an extended IBOSS procedure for logistic regression

is presented in the next subsection.
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3.3.2 Overview of the New Algorithm

The IBOSS algorithm for logistic regression case is designed to find the most informative

subsample from the full data by utilizing optimal design theory for logistic regression. The

goal is to have the best possible estimation accuracy for all slope parameters while control

the computational cost in a reasonable range. In building up the new IBOSS procedure, the

D-optimality, which minimizes the determinant of the inverse of the information matrix of inter-

ested parameters, is used to characterize the datalines to build the most informative subsample.

Since the D-optimal points for logistic models are on the boundary for the first m−1 dimension

of the design space as well as having c = XT β̂ fixed at constant ±c∗, to best meet the logic of

picking datalines closest to this characterization, a two-stage subsampling strategy is employed.

At the first stage, a relative large portion of the full data with their c value falling into a pre-

specified neighbor of ±c∗ is selected. For example, we can set up a δ > 0 and then collect all

the data lines (Xi, Yi) with {i | min{|ci − c
∗|, |ci + c

∗|} ≤ δ}, where ci = XTi β̂. These datalines

picked will be treated as the new database for the second-stage subsampling procedure. The

second-stage procedure is similar to the IBOSS procedures proposed for linear models. The only

difference is that we only do extreme value selection for the first m− 1 dimension instead of all

the m dimensions. One might notice that the calculation of c for each dataline and the optimal

value c∗ needs pre-knowledge on interest parameters β, which are unknown. To address this

issue, a rough estimation of the parameter β with a small subdata from SRS is first conducted

before this two stage procedure. The entire extended IBOSS procedure is described in details

as follows:
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1. Prefix a constant δ as maximum tolerance on the c dimension.

2. Given data set {(Yi, X
T
i ), i = 1, · · · , n}, first do random sampling and pick ro sub-samples,

fitting the data and get estimate β̂r0 .

3. Compute ci = X
T
i β̂r0 , pick B = {i | min{|ci − c

∗|, |ci + c
∗|} ≤ δ}.

4. Start from k = 1, inside {(Yi, X
T
i ), i ∈ B}, pick

⌈
r1

2(m−1)

⌉
data lines with largest value and⌈

r1
2(m−1)

⌉
data lines with smallest value on the k-th dimension, put the datalines into the

newly constructed subsample, erase these datalines from the whole data.

5. Repeat Step 4 for k = 2, . . . ,m − 1. The newly constructed sub-sample is the subdata

selected.

In the following subsection we will show some theoretical results which indicates that the

extended IBOSS strategy maintain some good asymptotic properties of the IBOSS procedure

for linear case.

3.3.3 Asymptotic Results

As we have shown, in the former section, one big restriction for the SRS procedure and mVc

procedure is that the Fisher information matrix of the subdata is bounded by the size of the

subsample r even n goes to infinity. Next we shall show that the extended IBOSS procedure

proposed in this paper is not limited by this restriction.

Due to the complexity of logistic regression model, as well as the two stage procedures of the

extended IBOSS strategy, it is extremely challenging to investigate the asymptotic property of

the general m dimension case. Here we shall focus on a simple case: when the slope parameter
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is two-dimensional, and it’s corresponding slope covariate vector Z = (x1, x2)
T is generated

independently from a multivariate normal distribution with mean vector u and variance matrix

Σ. Under this set up, we prove that, as long as n1 → ∞, all the elements in information matrix

of the subdata goes to infinity with the new IBOSS subsampling procedure except the first

diagonal element for intercept parameter. Here n1 represents the size of remaining datalines

after first stage procedure.

Theorem 11. For logistic regression with Xi = (1, xi1, xi2)
T and β = (β0, β1, β2)

T , assume

that the two dimension slope covariate Zi = (xi1, xi2), i = 1, · · · , n, are generated independently

from the same multivariate normal distribution Z with mean vector u and variance-covariance

matrix Σ. Denote the correlation between c = XTβ and x1 as ρ, the pre-specified neighbor of

±c∗ when implementing the first stage procedure of the new IBOSS strategy as C. Let F1 and

F2 be the distribution function of ±x1 conditional on c = XTβ ∈ C and n1 represent the number

of remaining datalines after first stage. Then if ρ 6= ±1, the elements for the slope parameters

in the information matrix of the picked subdata with the new IBOSS procedure will go to ∞ as

long as n1 → ∞.

Remark 1. Denote the information matrix of selected subdata as IIBOSS, then it can be rewritten

as

IIBOSS =

n∑
i=1

αiΨ(ci)XiX
T
i

=


∑n
i=1 αiΨ(ci) M12

MT
12 M22.


(3.3)
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The theorem is equal to saying that all the elements in M22 will goes to infinity as n1 goes to

infinity.

From this theorem, one can find that, unlike the SRS algorithm and the leveraging type

mVc algorithm, the slope elements of the information matrix of sub data picked using extended

IBOSS subsampling procedure under this two-dimensional case is not limited by any upper

bound related to the subsample size. As long as the size of remaining data after first stage

n1 → ∞, these elements in the information matrix can goes to infinity. In implementations, the

δ is usually specified to approximately keep a certain percentage of the full data after the first

stage. Thus, slope elements in the information will increase, as the full datasize n increases even

with fixed r. This is actually a necessary condition to have the variance of slope parameters goes

to zero as n→ ∞. Sure, this case studied here is the simplest case, but it still shows the great

potential on estimation efficiency of the extended IBOSS procedure. Due to the complexity of

the conditional distribution F1 and F2, it’s hard to get any explicit forms for these infinity terms

as well as their orders. However, the performance of the IBOSS optimal subsampling strategy

can be demonstrated in various simulated scenarios which is presented in the next section.

3.4 Simulation Settings and Results

In this section, the new subsampling procedure are tested with various distribution settings

for generating Zi. There are several scenarios. Each scenario is targeting on answering one

specific performance question. For most scenarios, the distribution settings to generate covariate

vectors are the same. The distribution used to generate these Zi’s are:

• MzNormal
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Multivariate-normal distribution with mean vector u = (0, · · · , 0) and variance-covariance

matrix Σ.

• NzNormal

Multivariate-normal distribution with mean vector u = (1, · · · , 1) and variance-covariance

matrix Σ.

• Mixed Normal

Xi is simulated randomly from mixed normal distribution 1
2N(u, Σ) + 1

2N(−u, Σ), where

vector u = (1, · · · , 1), for i = 1, · · · , n.

• T3

Multivariate T distribution with degree freedom 3 and variance-covariance matrix Σ/10.

These distributions have been used in Wang et.al(39) to demonstrate the efficiency of the

mVc subsampling strategy. In this dissertation, the dimension size m might change from one

scenario to another. The performance of new IBOSS strategy is compared with SRS strategy

and mVc strategy in all scenarios, and sometimes, performance of the full data regression is

also attached for reference. To be consistent with the simulation settings in Wang et.al(39), we

assume that there is no intercept parameter β0, unless otherwise specified.

Now we are ready to introduce the fisrt scenario, which is to test the performance of the

new IBOSS strategy with smalll datasets.
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3.4.1 Small Data Size Scenario

For small data size scenario, the Xi’s are 1 x 7 vector generated randomly from the distri-

bution settings mentioned above. In this scenario, Σij = 0.5 for i 6= j and Σij = 1 for i = j,

n = 10000, r0 = 200, and β is 1 x 7 vector and true value β0 = (0.5, · · · , 0.5). These settings

are also exactly borrowed from (39). The size of subsample is fixed at 600, 700, 800, 900 and

1000. Each case is simulated 1000 times.

The result of these scenarios with small sample size are shown in Figure 1. For all the sub-

figures, the x axis represents the size of the subdata, and the y axis is the average mean square

error of all iterations. Under all the distribution settings, the performance of the new sub-

sampling strategy is compared to the the commonly used SRS strategy and a newly developed

leverage algorithm(mVc). Under Mixed Normal, MzNormal and NzNormal settings, the new

IBOSS strategy and the mVc strategy outperforms the SRS strategy. The performance of the

mVc algorithm is very similar to that of the new strategy with MixedNormal and MzNormal

distribution. Sometimes the mVc strategy is slightly better than the extended IBOSS strategy

under the MzNormal distribution. With NzNormal distributions, we see a difference between

performance of the mVc strategy and the new IBOSS stategy, as the subdata size r grows larger.

When we compare these strategies under T3 distributions, the performance of the new

strategy stands out. The performance of the new IBOSS strategy is significantly better than

the performance of the other other two strategies, this means the subdata picked with new

strategy is much more informative than the subdata picked with the mVc approach or the SRS

approach.



69

3.4.2 Big Data Size Scenario

For the second scenario, we compare these three approaches on data relative large on size.

Under all the distribution settings, n = 500000, r0 = 1000, β is 1 x 7 vector and true value

β0 = (0.5, · · · , 0.5), variance-covariance structure Σ, Σij = 0.5 for i 6= j and Σij = 1 for i = j.

The size of final subdata is fixed at 2000, 5000 and 8000. 1000 iterations is ran for all strategies

and all simulation settings.

The result of these runs are shown in Figure 2. All the notations on the figures are the

same as these on the figures of the small size scenario. For the Mix Normal distribution, the

performance of the mVc algorithm is almost equivalent to the commonly used SRS strategy.

Also, one can find an obvious improvement on estimation accuracy when the new IBOSS strat-

egy is used. Under the NzNormal distributions, the mVc strategy slightly outperforms the new

strategy. However, the performance difference becomes smaller and smaller as subsize r grows

larger and finally are merely can be seen with r = 8000. Under the T3 settings, the perfor-

mance of the new subsampling strategy performs even better. The average MSE of extended

IBOSS can be less than 1
4 of the average MSE of mVc strategy or SRS strategy. This means

the subsample picked with the new strategy is more than four times as efficient as the mVc and

SRS strategies.

3.4.3 Increas in Estimation Efficiency as n Grows

Intuitively, the new IBOSS approach tries to pick points close to D-optimal points of logistic

model. As we showed in theory, the subdata should become more informative as n grows larger.

This indicates that the new algorithm should enjoy an improve on estimation accuracy as n
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increases, even when the size of subdata r is fixed. In this subsection, simulations are conducted

to see whether we can observe this trend. Here we stick to the distribution and parameter

settings from previous example. The parameters β is fixed as a 9 dimensional vector of 0.5,

while the number of datalines for the whole dataset is picked as 200000, 400000, 600000, 800000.

The size of the subdata is fixed at 5000. The log scale average MSEs are shown in Figure 3.

In this figure, one can see that for MixedNormal, MzNormal and NzNormal distribution,

the estimation accuracy increase on the new IBOSS approach and mVc approach can be barely

seen as n increases. This is consistent with the result by (37) for the linear model. However,

for T3 distributions, a clear trend of increasing estimation efficiency as data size grow larger

can be observed for the new IBOSS strategy. The average MSE from regression with full data

is also presented for reference in this figure.

3.4.4 Some Insights on Determining δ

In all the simulation scenarios discussed above, the δ is pre-specified for the first stage

filtering of data. The value of δ, along with full data size n and distributions to generate Zi,

will largely affect the estimation accuracy of the new algorithm. Unfortunately, there is no

theoretical result to help us find the proper delta when handling any given dataset. However,

we can use simulations to give us a rough idea about the proper range for setting up δ value.

In this part, we still use the distribution settings from the top scenarios. The slope parameter

(β1, · · · , β9) is again set as a 9 dimensional parameter with value 0.5. Since the δ criteria
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directly works on c = XTβ, to make our simulation more general, we consider the following 3

cases:

• Balanced case: Intercept β0 is not considered in the model, or to say known as 0. In

this case, with Zi generated from the top four distributions, the c value will be center

around 0 for MixedNormal, MzNormal and T3 distributions. The c value for Nz Normal

distribution will be centered around some positive number, depending on the number of

covariates.

• Right shift case: Intercept β0 = 2, then the distribution center for c is shifted to the right

hand side of the center of the balanced case.

• Left shift case: Intercept β0 = −2, then the distribution center for c is shifted to the left

hand side of the center of the balanced case.

For all these 3 cases, at first stage of the IBOSS procedure, we pick certain percent of the

full data according to the distance criteria we set up with an increasing order. The percentage

tested are c(0.25, 0.35, · · · , 0.75). The full data size is n = 500000. For each test setting in this

scenario, 200 iterations are used and average MSE of the slope parameters are calculated. The

result for all these cases are shown in the following Figure 4, Figure 5, and Figure 6.

From the top figures, one can easily find that, regardless of the distributions of covariates

Zi and the shift of center of c, the 30% extraction rate for first stage procedure seems to

have robust good performance across all distributions. This means that when we try to pick
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a proper value for δ, we can pick a δ which filtered out around 70% percent of full data and

keep around 30% according to the distance criteria we set up. Also for the T3 distribution,

the different quantiles tested generally perform well. Also, a slight gain on accuracy can be

obtained as the percentage grows higher, which indicates that there is truly some difference

from one distribution to another.

3.5 Further Studies: Directional Derivative Subsampling Approach for Asymmetric

Data Case

Good performance of the IBOSS algorithm was demonstrated by simulated data in the

previous section. However, in real cases, if the range of c = XTβ is not symmetric, for example,

when X only takes positive values and β are also a positive vector, it might be impossible for us

to simultaneously select data points within neighbors of ±c∗. Thus the efficiency of the extended

IBOSS procedure might not be guaranteed. With these un-symmetric cases, some alternative

subsampling procedures should be used. The directional derivative theory in optimal design

theory inspired us to propose the following directional derivative optimal subsampling strategy

(DDOSS) in order to handle subdata selection cases under this situation.

Definition 12. Denote the optimal design for logistic model of m dimension with optimal crite-

ria Ψ as ξ∗ and it’s information matrix as Iξ∗. Thus for a covariate vector X = (1, x1, · · · , xm),

the directional derivative of X to the optimal design ξ∗ with optimal criteria Ψ is defined as

DX = lim
α→0 Ψ((1− α)Iξ

∗ + (αIX)) − Ψ(Iξ∗)

α
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The directional derivative DX can help us evaluate the information contained in data line

(X, Y), compared to points in the optimal design, ξ∗. The larger the form DX is, the closer

dataline X is to the best design points. Thus, a very natural idea for picking out subsamples is

to pick out datalines with the largest DX values under the commonly used D-optimal criteria.

The DDOSS procedure is given as follows:

1. Given data set {(Yi, X
T
i ), i = 1, · · · , n}, first do random sampling and pick ro sub-samples,

fitting the data and get estimate β̂r0 .

2. Numerically find the optimal design ξ∗ under the given range of X values for all dimensions

with D-optimal criteria.

3. Compute mi = tr(I
−1
ξ (IXi − Iξ)) for each dataline Xi.

4. Pick out (Xi, Yi) with the highest r m ′is as the final subdata.

Here mi is just the simplified version of the directional derivative DXi under D-optimal

criteria. The whole subsampling procedure is independent of the response value Y. Thus the

asymptotic consistency is not a problem. In order to demonstrate the performance of DDOSS,

we will test it with a simulation study by simulating data from the following distributions:

1. T distribution case: Generate data from T-dist(df=3)
5 + 3;

2. The Exponential Exp(1) distribution;

3. Mixed Normal distribution: Generate data from 0.5N(2, Σ) + 0.5N(3, Σ);

4. The Normal distribution N(2, Σ) (Normal distribution I);
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5. The Normal distribution N(3, Σ) (Normal distribution II).

Here, the variance matrix Σ is taken as diag(2, · · · , 2). All of the tested distributions are

borrowed from the former simulation settings except the Exp(1) distribution, however, the mean

parameter and variance matrix Σ is revised to make sure all dimension of X is falling into a range

around [0, 6]. Under the Exp(1) distribution, the covariate vector Zi’s are i.i.d generated from

Exp(1). The logistic model is 3 dimension with true parameter β = (0.5, 0.5, 0.5), assuming

there is no intercept parameter β0. The D-optimal design is then built up using the β estimate

from the initial SRS sample for each iteration. Subsample size r is fixed as 5000, with initial

simple random sampling size r0 = 1000. The average mean square error from 1000 iterations

with SRS, mVc and DDOSS is shown in Table Table XIII.

TABLE XIII

PERFORMANCE OF SUBSAMPLING PROCEDURES UNDER ASYMMETRIC CASES

Distribution N MSEmVc MSESRS MSEDDOSS
T 400000 1.43x10−2 7.73x10−2 3.91x10−3

Mixed 400000 2.37x10−3 1.16x10−2 2.07x10−3

Normal I 400000 1.14x10−3 3.10x10−3 9.80x10−4

Normal II 400000 2.62x10−3 9.21x10−3 1.30x10−3

EXP 400000 1.37x10−3 1.59x10−3 2.10x10−4
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From the table, the DDOSS algorithm obvious beats SRS and mVc with all ditribution

tested. Meanwhile, the computational cost to find the optimal design with given β estimate only

depends on the dimension of β. Thus this cost will be independent of full data set size as well as

the subdata set size. If we ignore the computational cost for this part, the computational cost

of the DDOSS is still endurable, compare to the mVc procedure. The average computation time

of all iteration in seconds under some of the tested distributions is shown below in Table XIV:

TABLE XIV

COMPUTATIONAL COST OF DIFFERENT APPROACHES WITH DIFFERENT DATA
SIZES

Distribution N mVc SRS DDOSS

T 400000 2.32x10−3 1.68x10−4 3.58x10−3

Mixed 400000 1.80x10−3 1.72x10−4 2.07x10−3

Normal I 400000 9.12x10−4 1.32x10−4 1.98x10−3

Normal II 400000 8.44x10−4 1.00x10−4 1.99x10−3

3.6 Discussion

In this chapter, the IBOSS subsampling strategy for linear models was extended to the

logistic regression models. Under the framework of the logistic regression models, the existing

popular subsampling approaches, the mVc strategy and the SRS strategy were analyzed and
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an upper bound of the information from these strategies were derived. For the extended IBOSS

procedure proposed in this dissertation, assuming the covariates are from two dimensional

multivariate normal distribution, we showed that the diagonal elements (corresponding to the

slope parameters) of the information matrix goes to infinity, even when subsample size is fixed

as long as full sample size goes to infinity. This gives some theoretical justification of the

proposed approach. We expect such results also hold for the general case, which are confirmed

by simulation results. However, it would be rather challenging, if not impossible, to derive such

asymptotically theoretical conclusions due to model complexity. The performance of the new

IBOSS approach is also demonstrated with simulated data under various distribution settings

for Zi. The new strategy generally outperforms the simple random sampling strategy and at

least does no worse than the newly developed leveraging algorithm under most distribution

settings. For the T3 distribution case, the extended IBOSS procedure is clearly superior to the

other procedures discussed in this dissertation.

When the range of c value is extremely asymmetric, and the IBOSS procedure cannot

be properly implemented, an alternative subsampling approach(DDOSS) based on directional

derivative was also provided. The DDOSS approach clearly outperformed the other approaches

with the simulated datasets. The computational cost of DDOSS is higher than the cost of the

SRS and mVc procedures, but it’s still endurable.

However, the new strategies proposed are still under development. The asymptotic property

for the DDOSS approach and extended IBOSS approach is not well understood for the general

case of m-dimensional logistic model . There also seems to be many potential related research
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topics worth investigating. For example, one may study how to develop a general strategy to

find suitable δ defined in this paper, how to combine the idea of this approach with penalty

functions for regularized regressions, and so forth.

In this information explosion age, big data with complex data structure can be easily ob-

tained via various sources. While it provides us more valuable information, the computational

cost of analyzing them can be way much out of capacity and endurability. Efforts on developing

subsampling strategies has greatly improved the quality of the subdata and saved tremendous

computational resources. However, subsampling strategies for nonlinear models, like the logis-

tic regression model considered in this chapter, are still not well developed. We hope that this

work can stimulate more ideas and more researches in this direction.
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Figure 1. Comparison of subsampling algorithms for the small size scenario
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Figure 2. Comparison of subsampling algorithms for the large size scenario
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Figure 3. Comparison of subsampling algorithms for different full data sizes
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Figure 4. For new algorithm, comparison of efficiency under different percentages: Balanced
case
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Figure 5. For new algorithm, comparison of efficiency under different percentage: Right
skewed case
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Figure 6. For new algorithm, comparison of efficiency under different percentage: Left skewed
case



CHAPTER 4

SUPPLEMENTAL MATERIALS FOR THE EXTENDED IBOSS

APPROACH

Proof of Theorem 7. By the definitions ofMX and Vc in Theorem 1, Matrix V can be written

as

V =

(
n∑
i=1

1

n
pi(β̂)(1− pi(β̂))XiX

T
i

)−1(
1

rn2

n∑
i=1

(yi − pi(β̂))
2XiX

T
i

πi

)(
n∑
i=1

1

n
pi(β̂)(1− pi(β̂))XiX

T
i

)−1

=
1

r

(
n∑
i=1

pi(β̂)(1− pi(β̂))XiX
T
i

)−1( n∑
i=1

(yi − pi(β̂))
2XiX

T
i

πi

)(
n∑
i=1

pi(β̂)(1− pi(β̂))XiX
T
i

)−1

.

84
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Then the information matrix Isub can be written as

Isub = V−1

= r

(
n∑
i=1

pi(β̂)(1− pi(β̂))XiX
T
i

)(
n∑
i=1

(yi − pi(β̂))
2XiX

T
i

πi

)−1( n∑
i=1

pi(β̂)(1− pi(β̂))XiX
T
i

)

= r

[
p1(β̂)(1− p1(β̂))X1

√
π1

y1 − p1(β̂)
, · · · ,

pn(β̂)(1− pn(β̂))Xn
√
πn

yn − pn(β̂)

]


(y1−p1(β̂))X
T
1√

π1

...

(yn−pn(β̂))XTn√
πn



[
(y1 − p1(β̂))X1√

π1
, · · · , (yn − pn(β̂))Xn√

πn

]


(y1−p1(β̂))X
T
1√

π1

...

(yn−pn(β̂))XTn√
πn





−1

[
(y1 − p1(β̂))X1√

π1
, · · · , (yn − pn(β̂))Xn√

πn

]

p1(β̂)(1−p1(β̂))X

T
1

√
π1

y1−p1(β̂)

...

pn(β̂)(1−pn(β̂))XTn
√
πn

yn−pn(β̂)

 .
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Set W = diag( (y1−p1(β̂))√
π1

, · · · , (yn−pn(β̂))√
πn

). Then Isub can be re-written as

Isub = r

[
p1(β̂)(1− p1(β̂))X1

√
π1

y1 − p1(β̂)
, · · · ,

pn(β̂)(1− pn(β̂))Xn
√
πn

yn − pn(β̂)

]
WX(XTW2X)−1XTW

p1(β̂)(1−p1(β̂))X
T
1

√
π1

y1−p1(β̂)

...

pn(β̂)(1−pn(β̂))XTn
√
πn

yn−pn(β̂)



= r

[
p1(β̂)(1− p1(β̂))X1

√
π1

y1 − p1(β̂)
, · · · ,

pn(β̂)(1− pn(β̂))Xn
√
πn

yn − pn(β̂)

]
ProjWX


p1(β̂)(1−p1(β̂))X

T
1

√
π1

y1−p1(β̂)

...

pn(β̂)(1−pn(β̂))XTn
√
πn

yn−pn(β̂)

 ,
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where X =


XT1

...

XTn

. Define BWX =


w1X

T
1 · · ·

...

· · · wnX
T
n

, where wi is the i-th diagonal element in W.

Clearly the columns of WX are in the column space of BWX. Thus, we have

Isub <= r[
p1(β̂)(1− p1(β̂))X1

√
π1

y1 − p1(β̂)
, · · · ,

pn(β̂)(1− pn(β̂))Xn
√
πn

yn − pn(β̂)
]ProjBWX


p1(β̂)(1−p1(β̂))X

T
1

√
π1

y1−p1(β̂)

...

pn(β̂)(1−pn(β̂))XTn
√
πn

yn−pn(β̂)



= r[
p1(β̂)(1− p1(β̂))

√
π1X1

y1 − p1(β̂)
, · · · ,

pn(β̂)(1− pn(β̂))
√
πnXn

yn − pn(β̂)
]


XT1 (X1X

T
1 )

−1X1 · · ·

...

· · · XTn(XnX
T
n)

−1Xn



XT1p1(β̂)(1−p1(β̂))

√
π1

y1−p1(β̂)

...

XTnpn(β̂)(1−pn(β̂))
√
πn

yn−pn(β̂)


= r(

n∑
i=1

p2i (β̂)(1− pi(β̂))
2πi

(yi − pi(β))2
XiX

T
i ) ≤ r(

n∑
i=1

πiXiX
T
i ).

Here, the inequalities are under the context of Lowering ordering.

Proof of Theorem 8. Notice that πi =
1
n for i = 1, · · · , n. The conclusion follows by applying

Theorem 7 and the strong law of large numbers.
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Proof of Theorem 9. Applying Theorem 7 and πmVci = |yi−pi(β̂)|||Xi||∑n
j=1 |yj−pj(β̂)|||Xj||

, we have

Isub = r(

n∑
i=1

|yi − pi(β̂)|||Xi||∑n
j=1 |yj − pj(β̂)|||Xj||

XiX
T
i )

= (
r∑n

j=1 |yj − pj(β̂)|||Xj||

n∑
i=1

||Xi|||yi − pi(β)|XiX
T
i )

≤ r(
∑n
i=1 ||Xi||XiX

T
i∑

{yj=1}
|1− pj(β̂)|||Xj||+

∑
{yj=0}

|pj(β̂)|||Xj||
).

(4.1)

Notice that E((||Xi||xijxij ′)
2) ≤ E(||X||6) < s for j, j ′ = 1, · · · , p and Xi, i = 1, . . . , n are identically

independent distributed. By strong law of large numbers, we have

∑n
i=1 ||Xi||XiX

T
i

n
= E(||X||XXT ) + o(1) almost surely as n→ ∞. (4.2)

For a given set of parameter β,

∑
{yj=1}

|1− pj(β̂)|||Xj||+
∑

{yj=0}
|pj(β̂)|||Xj||

n

=

∑
{yj=1}

|1− pj(β) + pj(β) − pj(β̂)|||Xj||+
∑

{yj=0}
|pj(β̂) − pj(β) + pj(β)|||Xj||

n

≥
∑

{yj=1}
|1− pj(β)|||Xj||+

∑
{yj=0}

|pj(β)|||Xj||

n
−

∑n
j=1 |pj(β̂) − pj(β)| ||Xj||

n
.

Notice that pj(β) =
e
XTj β

1+e
XT
j
β

and pj(β̂) =
e
XTj β̂

1+e
XT
j
β̂

, we have

|pj(β) − pj(β̂)| =
eX
T
j β̄

(1+ eX
T
j β̄)2

|XTj β̂− XTj β| ≤ ||Xj||||β̂− β||
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for any given X, where XT β̄ is a value between XTβ and XT β̂. Consequently, we have

∑
{yj=1}

|1− pj(β̂)|||Xj||+
∑

{yj=0}
|pj(β̂)|||Xj||

n

≥
∑

{yj=1}
|1− pj(β)|||Xj||+

∑
{yj=0}

|pj(β)|||Xj||

n
− ||β̂− β||

∑n
j=1 ||Xj||

n

=

∑
{yj=1}

|1− pj(β)|||Xj||+
∑

{yj=0}
|pj(β)|||Xj||

n
− o(

∑n
i=1 ||Xi||

n
)

=

∑
{yj=1}

|1− pj(β)|||Xj||+
∑

{yj=0}
|pj(β)|||Xj||

n
− o(E(||Xi||))

=

∑n
i=1(1− pi(β))

yi(pi(β))
1−yi ||Xi||

n
+ o(1)

almost surely as n→ ∞.

(4.3)

By applying the law of large numbers to the term
∑n
i=1(1− pi(β))

yi(pi(β))
1−yi ||Xi||, we have

1

n

n∑
i=1

(1− pi(β))
yi(pi(β))

1−yi ||Xi|| = E((1− p(β))
y(p(β))1−y||X||) + o(1)

= 2E(p(β)(1− p(β))||X||) + o(1)

(4.4)

where y is a Bernoulli trial with probability of success p(β) = eX
Tβ

1+eX
Tβ

. Next we shall show

that 2E(p(β)(1 − p(β))||X||) > a for some constant a > 0. Notice that when X ∈ [B1, B2],

|XTβ| ≤
√

||X||2||β||2, thus p(β)(1 − p(β)) > k for some positive constant k. Let IB1≤X≤B2 = 1

when X ∈ [B1, B2] and 0 otherwise. We have

E(p(β)(1− p(β))||X||) ≥ E(p(β)(1− p(β))||X||IB1≤X≤B2)

≥ kB1Prob(B1 < ||X|| < B2)

≥ a

(4.5)
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for some constant a > 0. By applying (Equation 4.1), (Equation 4.2), (Equation 4.3), (Equa-

tion 4.4), and (Equation 4.5), we have

Isub ≤
r

a
(E(||X||XXT ) + o(1)) almost surely as n→ ∞.

Proof of Theorem 11. To prove this theorem, first we need to derive the explicit form of pdf

f1(x1) and f2(v1) for F1 and F2.

Since Z ∼ N(µ, Σ), then Zt = (x1, x
Tβ) ∼ N((u1, uc)

T , Σt). According to the first stage

procedure of new IBOSS algorithm,

C = {c | |c− c∗| < δ or |c+ c∗| < δ} = (a, b) ∪ (−b,−a)

for some constants a < b.

All the proof works here is built with cases that (a, b) ∩ (−b,−a) = ∅. For cases when

(a, b)∩ (−b,−a) 6= ∅, one can rewrite (a, b)∩ (−b,−a) as (a ′, b ′) for some constant a ′, b ′ and

prove the same result using exactlty the same framework.

Denote Var(c) by σ2c and Var(x1) by σ21 with σ1, σc > 0. Thus by using the conditional

distribution forms derived in Arnold et.al(48), we can directly obtain that
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f1(x1) =

1
σ1
e
−

(x1−u1)
2

2σ2
1 g1(x1)

Φ(b−ucσc
) −Φ(a−ucσc

) +Φ(−a−ucσc
) −Φ(−b−ucσc

)

and

f2(v1) =

1
σ1
e
−

(v1+u1)
2

2σ1 g2(v1)

Φ(b+ucσc
) −Φ(a+ucσc

) +Φ(−a+ucσc
) −Φ(−b+ucσc

)
,

where

g1(x1) = Φ(

b−uc
σc

− ρx1−u1σ1√
1− ρ2

) −Φ(

a−uc
σc

− ρx1−u1σ1√
1− ρ2

) +Φ(

−a−uc
σc

− ρx1−u1σ1√
1− ρ2

) −Φ(

−b−uc
σc

− ρx1−u1σ1√
1− ρ2

)

and

g2(v1) = Φ(

b+uc
σc

− ρ v1+u1σ1√
1− ρ2

) −Φ(

a+uc
σc

− ρ v1+u1σ1√
1− ρ2

) +Φ(

−a+uc
σc

− ρ v1+u1σ1√
1− ρ2

) −Φ(

−b+uc
σc

− ρ v1+u1σ1√
1− ρ2

).

Now we investigate the information matrix of subdata from the new IBOSS algorithm. By

implementing the new algorithm, we will first pick candidate sample whose c = XTβ ∈ C. And

for the two dimension case discussed here, the second stage of the procedure picks the data

rows with the largest
⌈
r
2

⌉
x1 values, and the smallest

⌈
r
2

⌉
x1 values, in order to build the final

subdata with size around r.



92

In other words, with the remaining datalines (X ′1, · · · , X ′n1) after first stage procedure,

(X ′1, · · · , X ′d
r
2e) and (X ′n1−d

r
2e+1, · · · , X ′n1) will form the final subdata, where X ′i = (1, x ′1

i, x ′2
i)

is the covariate vector with the i − th largest x ′1 values. Also one can easily find that random

variable x ′i1 follow distribution F1 with pdf f1, i = 1, · · · , n1.

As

IIBOSS =

n∑
i=1

αiΨ(ci)XiX
T
i

=

d r2e∑
i=1

Ψ(c ′i)X
′iX ′iT +

n1∑
i=n1−d r2e+1

Ψ(c ′i)X
′iX ′iT ,

(4.6)

to prove the theorem, the explicit forms for (X ′1, · · · , X ′d
r
2e) and (X ′n1−d

r
2e+1, · · · , X ′n1) need

to be derived.

First let us focus on getting explicit form for X ′1 = (1, x ′1
1, x ′2

1). As x ′1
1 is the largest value

among (x ′11, · · · , x ′n11) and x ′i1 are independently generate from F1, if we can prove that F1

belongs to the Gumbel type and F−11 (1− 1
n1
) → ∞ as n1 → ∞, then the distribution of x ′1

1 will

satisfy

Fx ′11
(an1x+ bn1) = e

−e−x (4.7)

when n1 → ∞, where an1 =
σ21(1−ρ

2)

F−11 (1− 1
n1

)
and bn1 = F

−1
1 (1− 1

n1
).
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By plugging in x =
√
F−11 (1− 1

n) and x = −
√
F−11 (1− 1

n) to (Equation 4.7), one can obtain

x ′11 = F−11 (1− 1
n1
) + o(1). Then by Theorems 2.8.1 and 2.8.2 (49), we can derive

x ′1
i = F−11 (1−

1

n1
) + o(1) for i = 1, · · · ,

⌈ r
2

⌉
. (4.8)

For x ′1
n1−d r2e+1, · · · , x ′1n1 , consider random variables (v11 = −x ′11, · · · , vn11 = −x ′n11) and

cv = V
Tβ = −c. Thus vi1 follows distribution F2 for i = 1, · · · , n1 and (−x ′1

n−d r2e+1, · · · ,−x ′1n)

will be corresponding to the largest [ r2 ] values in (v11, · · · , vn11). Reorder (v11, · · · , vn11) as

((v11, · · · , v
n1
1 )) in descending order. Similarly, by assuming that F2 belongs to the Gumbel type

and F−12 (1− 1
n2
) → ∞, we can get explicit forms for v11, as:

v11 = F
−1
2 (1−

1

n1
) + o(1).

Again by Theorems 2.8.1 and 2.8.2 from (49), we have

vi1 = F
−1
2 (1−

1

n1
) + o(1) → −∞ for i = 1, · · · ,

⌈ r
2

⌉
,

which is equivalent to

x ′1
i = −F−12 (1−

1

n1
) + o(1) for i = n1 −

⌈ r
2

⌉
+ 1, · · · , n1. (4.9)
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As c = β0 + x1β1 + x2β2 and ρ 6= ±1, we have β2 6= 0. By applying (Equation 4.8),

(Equation 4.9) and the fact that c ∈ C is bounded, we have

x ′2
i = −

β1F
−1
1 (1− 1

n)

β2
+O(1) for i = 1, · · · ,

⌈ r
2

⌉
(4.10)

and

x ′2
i =

β1F
−1
2 (1− 1

n)

β2
+O(1) for i = n1 −

⌈ r
2

⌉
+ 1, · · · , n1 (4.11)

Let e denote the minimum value for Ψ(β) = p(β)(1 − p(β)) = eX
Tβ

(1+eX
Tβ)2

in range C. Thus

apply (Equation 4.8), (Equation 4.9), (Equation 4.10), (Equation 4.11) to (Equation 4.6), we

can prove

IIBOSS ≥ e

 r I12

IT12 I22


where

I12 =

(⌈
r
2

⌉
(F−11 (1− 1

n1
) − F−12 (1− 1

n1
)) + o(1)

⌈
r
2

⌉
β1
β2
(F−12 (1− 1

n1
) − F−11 (1− 1

n1
)) +O(1)

)
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and

I22 =


⌈
r
2

⌉
((F−11 (1− 1

n1
))2 + (F−12 (1− 1

n1
))2) + o(F) −

⌈
r
2

⌉
(
β1(F

−1
1 (1− 1

n1
))2

β2
+
β1(F

−1
2 (1− 1

n1
))2

β2
) +O(F)

−
⌈
r
2

⌉
(
β1(F

−1
1 (1− 1

n1
))2

β2
+
β1(F

−1
2 (1− 1

n1
))2

β2
) +O(F)

⌈
r
2

⌉
(
β21(F

−1
1 (1− 1

n1
))2

β22
+
β21(F

−1
2 (1− 1

n1
))2

β22
) + o(F)

 ,

F = max(F−11 (1− 1
n), F

−1
2 (1− 1

n)) → ∞.
Since F−1i (1− 1

n1
) → ∞, for i = 1, 2, then all the elements of the I22 part, which is for slope

parameters, will goes to infinity.

Now the remaining part is to prove that the assumptions we used hold for Fi, i = 1, 2. They

are

• Fi belongs to Gumbel type for i = 1, 2.

• F−1i (1− 1
n1
) → ∞ as n1 → ∞ for i = 1, 2.

Here, we will just show that the framework used to prove these assumptions with F1, one

can similarly prove them using a similar framework with F2.

By Leadbetter et.al(50), the necessary and suffcient condition for distribution F1 to be the

Gumbel type is that

lim
t→∞ 1− F1(t+ xr(t))

1− F1(t)
= e−x for x ∈ <, (4.12)

where r(t) is a positive function when t is big enough.

Thus, as long as (Equation 4.12) holds for F1, the first assumption will holds for F1.
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Set r(t) = σ21(1−ρ
2)/(t−u1), then r(t) > 0 for t big enough and limt→∞ r(t) = limt→∞ r ′(t) =

0. Thus

lim
t→∞ 1− F1(t+ xr(t))

1− F1(t)
= lim
t→∞ f1(t+ xr(t))(1+ xr

′(t))

f1(t)

= lim
t→∞ e

−
(t+xr(t)−u1)

2

2σ2
1 g1(t+ xr(t))(1+ xr

′(t))

e
−

(t−u1)
2

2σ2
1 g1(t)

= lim
t→∞ e

−
(t+xr(t)−u1)

2

2σ2
1

e
−

(t−u1)
2

2σ2
1

lim
t→∞ g1(t+ xr(t))

g1(t)
.

(4.13)

Consider limt→∞ e
−

(t+xr(t)−u1)
2

2σ2
1

e
−

(t−u1)
2

2σ2
1

first, one can directly derive that

lim
t→∞ e

−
(t+xr(t)−u1)

2

2σ2
1

e
−

(t−u1)
2

2σ2
1

= lim
t→∞ e

−
(xr(t))2

2σ2
1 e

−
(xr(t)(t−u1))

σ2
1

= lim
t→∞ e

−
(xr(t)(t−u1))

σ2
1 .

(4.14)

Thus by plugging in r(t) = σ21(1− ρ
2)/(t− u1), we can obtain

lim
t→∞ e

−
(t+xr(t)−u1)

2

2σ2
1

e
−

(t−u1)
2

2σ2
1

= e−(1−ρ2)x. (4.15)
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Then to calculate limt→∞ g1(t+xr(t))
g1(t)

, first consider

lim
t→∞

Φ(
b−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ(
a−uc
σc

−ρ
a+xr(t)−u1

σ1√
1−ρ2

)

Φ(
b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ(

a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

Then, one can derive that

lim
t→∞

Φ(
b−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ(
a−uc
σc

−ρ
a+xr(t)−u1

σ1√
1−ρ2

)

Φ(
b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ(

a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

= lim
t→∞

Φ ′(
b−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ ′(
a−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

)

Φ ′(
b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ ′(

a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

= lim
t→∞

e
−

(b−ucσc
−ρ
t+xr(t)−u1

σ1
)2

2(1−ρ2) −ρ(1+xr ′(t))√
1−ρ2σ1

− e
−

(a−ucσc
−ρ
t+xr(t)−u1

σ1
)2

2(1−ρ2) −ρ(1+xr ′(t))√
1−ρ2σ1

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) −ρ√
1−ρ2σ1

− e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) −ρ√
1−ρ2σ1

.

= lim
t→∞ e

−
(b−ucσc

−ρ
t+xr(t)−u1

σ1
)2

2(1−ρ2) − e
−

(a−ucσc
−ρ
t+xr(t)−u1

σ1
)2

2(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) − e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

(1+ xr ′(t))

= lim
t→∞ e

−
(b−ucσc

−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(b−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2) − e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(a−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) − e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

(1+ xr ′(t)).
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If ρ > 0, one can show that

lim
t→∞ e

−
(b−ucσc

−ρ
t−u1
σ1

)2

2(1−ρ2)

e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

= lim
t→∞ e

−
(a−ucσc

−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(b−aσc
)2

2(1−ρ2) e
−

(a−ucσc
−ρ
t−u1
σ1

)(b−aσc
)

(1−ρ2)

e

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

= ∞
(4.16)

Thus

lim
t→∞

Φ(
b−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ(
a−uc
σc

−ρ
a+xr(t)−u1

σ1√
1−ρ2

)

Φ(
b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ(

a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

= lim
t→∞(

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(b−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

−
e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(a−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

)

(1+ xr ′(t))

= lim
t→∞(e

−
(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(b−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2) −
e
−

(a−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2) e
−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(a−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

)(1+ xr ′(t))

(4.17)

And, since limt→∞ r(t) = 0, we have

lim
t→∞ e−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(b−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2) = lim
t→∞ e−

(−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

= e−ρ
2x.

(4.18)
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and

lim
t→∞ e−

(ρ
xr(t)
σ1

)2

2(1−ρ2) e

(a−ucσc
−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2) = lim
t→∞ e−

(−ρ
t−u1
σ1

)(ρ
xr(t)
σ1

)

(1−ρ2)

= e−ρ
2x.

(4.19)

Applying (Equation 4.16),(Equation 4.18) ,(Equation 4.19) to (Equation 4.17), we have

lim
t→∞

Φ(
b−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ(
a−uc
σc

−ρ
a+xr(t)−u1

σ1√
1−ρ2

)

Φ(
b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ(

a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

= lim
t→∞(1+ xr ′(t))(e−ρ

2x − e−ρ
2x lim
t→∞ e

−
(a−ucσc

−ρ
t−u1
σ1

)2

2(1−ρ2)

e
−

(b−ucσc
−ρ
t−u1
σ1

)2

2(1−ρ2)

).

As lim
t→∞ r ′(t) = 0,

= e−ρ
2x

(4.20)

Similarly, we can prove that

lim
t→∞

Φ(
−a−uc
σc

−ρ
t+xr(t)−u1

σ1√
1−ρ2

) −Φ(
−b−uc
σc

−ρ
a+xr(t)−u1

σ1√
1−ρ2

)

Φ(
−a−uc
σc

−ρ
t−u1
σ1√

1−ρ2
) −Φ(

−b−uc
σc

−ρ
t−u1
σ1√

1−ρ2
)

= e−ρ
2x

(4.21)
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Apply (Equation 4.20), (Equation 4.21) to limt→∞ g1(t+xr(t))
g1(t)

, we can obtain

lim
t→∞ g(t+ xr(t))

g(t)
= e−ρ

2x

for the ρ > 0 case.

For the ρ < 0 case, one can follow similar frame work and get limt→∞ g(t+xr(t))
g(t) = e−ρ

2x.

For the ρ = 0 case, one can easily find limt→∞ g(t+xr(t))
g(t) = 1 = e−ρ

2x.

Thus, we have

lim
t→∞ g(t+ xr(t))

g(t)
= e−ρ

2x (4.22)

as long as ρ 6= ±1.

With (Equation 4.22) and (Equation 4.14), (Equation 4.12) can be written as

lim
t→∞ 1− F1(t+ xr(t))

1− F1(t)
= e−x for x ∈ <.

So the necessary and sufficient condition (Equation 4.12) holds and therefore the first as-

sumption holds for F1.

Now we prove the second assumption that F−11 (1− 1
n1
) → ∞ as n1 → ∞.
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Suppose F−11 (1− 1
n1
) → h <∞. Then there exists N, for all n1 > N, we have |F−11 (1− 1

n1
)−

h| < ε0, where ε0 is a fixed positive constant. Then consider

∫∞
h+ε0

f1(x1) dx1 ≥
∫h+2ε0
h+ε0

f1(x1) dx1

=

∫h+2ε0
h+ε0

1
σ1
e
−

(x1−u1)
2

2σ1 g1(x1)

Φ(b−ucσc
) −Φ(a−ucσc

) +Φ(−a−ucσc
) −Φ(−b−ucσc

)
dx1

=
1

Φ(b−ucσc
) −Φ(a−ucσc

) +Φ(−a−ucσc
) −Φ(−b−ucσc

)

∫h+2ε0
h+ε0

1

σ1
e
−

(x1−u1)
2

2σ2
1 g1(x1) dx1

Since g1(x1) is a positive continuous function of x1 and x1 is bounded, thus the minimum value

of g(x1) is g0 > 0. Then

∫∞
h+ε0

f1(x1) dx1 ≥
g0

Φ(b−ucσc
) −Φ(a−ucσc

) +Φ(−a−ucσc
) −Φ(−b−ucσc

)

∫h+2ε0
h+ε0

1

σ1
e
−

(x1−u1)
2

2σ2
1 dx1

=
g0

Φ(b−ucσc
) −Φ(a−ucσc

) +Φ(−a−ucσc
) −Φ(−b−ucσc

)

√
2π(Φ(

h+ 2ε0 − u1
σ1

) −Φ(
h+ ε0 − u1

σ1
))

≥ l > 0

Thus, as long as we take any n satisfy n ≥ 1
l , we can obtain F−11 (1− 1

n) > h+ ε0, which is

conflict with our assumption. Thus F−11 (1 − 1
n1
) → ∞ if ρ 6= ±1. The second assumption also

holds for F1.
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