
Mining Large Graphs

BY

YUCHEN ZHAO

B.E., Tsinghua University, China, 2007

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2013

Chicago, Illinois

Defense Committee:

Philip S. Yu, Chair and Advisor

Bing Liu

Piotr Gmytrasiewicz

Aravinda Sistla

Zeqian Shen, eBay Research Labs

This thesis is dedicated to my girlfriend Zhao Jayce Gu

ii

ACKNOWLEDGMENTS

First and foremost I would like to express sincere gratitude to my Ph.D. advisor Professor Philip S.

Yu. I deeply appreciate his continuous support, mentoring and patience during my graduate studies and

research at the University of Illinois at Chicago. I am truly indebted to him for providing me with tons

of flexibility to try a variety of research topics based on my interests throughout my research. Without

his guidance and advising, this thesis would never have been accomplished. My thanks also go to Dr.

Charu Aggarwal at IBM T.J. Watson Research Center. It is my honor to work with him and he always

gave me generous help, inspiration and mentoring on my research.

I would like to thank my committee members Professor Bing Liu, Professor Piotr Gmytrasiewicz,

Professor Aravinda Sistla and Dr. Zeqian Shen, for their valuable advice, suggestions and time. I also

want to thank IBM research, eBay research and Linkedin for providing me opportunities to apply my

research into practice.

I wish to extend my warmest thanks to all colleagues in the Big Data and Social Computing (BDSC)

Lab at the University of Illinois at Chicago. I am very grateful to work with them during my graduate

studies and there are countless fun and enjoyable moments while we discuss and learn.

Lastly, I would like to thank my girlfriend Zhao Jayce Gu for her continuous support, trust and

encouragement. I would like to thank my parents for their unconditional understanding and support.

YZ

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1

1.1 Dissertation Framework . 1

1.2 Clustering Graph Streams . 2

1.3 Clustering Graph Streams with Side Information 3

1.4 PU-Learning in Graphs . 3

1.5 Application in Social Networks: Social Role Inference 4

2 CLUSTERING GRAPH STREAMS . 6

2.0.1 Related Work and Contributions . 10

2.1 Graph Stream Clustering Framework 12

2.1.1 Computing Edge Structural Similarity and Spread 17

2.2 Sketch Based Micro-cluster Compression 20

2.2.1 Distance estimations . 24

2.2.2 Estimation of Spread . 26

2.2.3 Time Complexity . 27

2.2.3.1 Disk-based Clustering Algorithm . 28

2.2.3.2 Time Complexity of Sketch-based Method 29

2.3 Evolution Analysis with Clustering . 29

2.4 Experimental Results . 34

2.4.1 Data Sets and Default Parameters . 35

2.4.2 Evaluation Metrics . 38

2.4.3 Clustering Evaluation . 39

2.4.4 Case Studies for Evolution Analysis 41

2.4.5 Quantitative Comparisons . 44

3 CLUSTERING GRAPH STREAMS WITH SIDE INFORMATION 49

3.1 Related Work . 53

3.2 Distance Optimization . 55

3.2.1 Preprocessing . 56

3.2.2 Distance Definitions . 57

3.2.3 Dynamic Multi-distance Optimization (DMO) 59

3.3 Sketch-Based Clustering Framework 62

3.3.1 Preliminaries . 63

3.3.2 Sketch Based Statistics . 64

3.3.3 Algorithm with Side Information (GSSClu) 66

3.3.4 Key Measures Estimation . 67

3.4 Experimental Results . 71

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.4.1 Data Sets . 71

3.4.2 Methods . 73

3.4.3 Metrics and Settings . 74

3.4.4 Effectiveness Results . 75

3.4.5 Efficiency Results . 77

3.4.6 Sensitivity Analysis Results . 79

4 PU-LEARNING IN GRAPHS . 83

4.1 Related Work . 87

4.2 Graph PU-Learning Framework . 89

4.2.1 Optimization Framework . 91

4.2.1.1 Optimize Subgraph Features . 95

4.2.1.2 Optimize Class Labels . 98

4.2.2 The GPU-Learning Algorithm . 100

4.3 Experiment Results . 102

4.3.1 Data Sets . 102

4.3.2 Methods . 104

4.3.3 Evaluation Metrics and Settings . 105

4.3.4 Effectiveness Results . 106

4.3.5 Efficiency Results . 109

5 APPLICATION IN SOCIAL NETWORKS: SOCIAL ROLE INFERENCE . 112

5.1 Related Work . 117

5.2 Correlating Social Roles and Statuses with Social Networks 118

5.2.1 Data . 118

5.2.2 Homophily . 120

5.2.3 Triadic Closure . 121

5.2.4 Reach . 122

5.2.5 Tie Strength and Trust . 123

5.2.6 Structural Holes . 124

5.2.7 Summary . 125

5.3 Modeling Social Roles and Statuses 125

5.3.1 Node Feature Function . 127

5.3.2 Edge Feature Function . 130

5.3.3 Global Optimization . 131

5.4 Experiment Results . 132

5.4.1 Data Sets . 133

5.4.2 Baselines . 133

5.4.3 Performance in Different Roles/Statuses 135

5.4.4 Sensitivity Analysis Results . 136

5.4.5 Social Factor Analysis . 136

v

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

6 CONCLUSIONS AND CONTRIBUTIONS . 139

CITED LITERATURE . 142

VITA . 150

vi

LIST OF TABLES

TABLE PAGE

I MICRO-CLUSTER EXAMPLES . 44

II NOTATIONS OF THE GPU FRAMEWORK 56

III SUMMARY OF EXPERIMENTAL DATA SETS. ”POS%” DENOTES

THE PERCENTAGE OF POSITIVE GRAPHS IN EACH DATA SET. . . . 104

IV NOTATIONS OF THE SRS MODEL . 126

vii

LIST OF FIGURES

FIGURE PAGE

1 The GMicro Algorithm . 15

2 Performance on Synthetic Data Set (10K Graphs) 39

3 Performance on IGRAPH0103-07 Data Set . 40

4 Performance on IGRAPH0406-07 Data Set . 41

5 Performance on DBLP Data Set . 42

6 Sensitivity Analysis on the Number of Clusters 43

7 Frequencies of Graphs in Cluster A . 45

8 An Example of a (Directed) Social Activity Graph Stream with Side Information 50

9 An Example of an (Undirected) Authorship Graph with Side Information 51

10 Cluster Purity . 75

11 Efficiency Results . 77

12 Sensitivity Analysis with γ on Purity . 79

13 Sensitivity Analysis with γ on Efficiency . 81

14 Sensitivity Analysis with the Number of Clusters on Purity 82

15 Sensitivity Analysis with the Number of Clusters on Efficiency 82

16 Supervised Graph Classification Process . 86

17 Graph PU Learning Process . 86

18 the Algorithm to Optimize Features . 94

19 the Algorithm to Optimize Labels . 99

viii

LIST OF FIGURES (Continued)

FIGURE PAGE

20 The GPU-Learning Algorithm . 101

21 F-score with Different γ . 107

22 F-score with Increasing Number of Features . 108

23 Running Time of the GPU Framework . 110

24 (a) Very few structured information is needed from users to use the Facebook

social network. (b) An example of Facebook user with over 300 friends but

very few textual and categorical data. 113

25 Three example profiles on a professional social network showing users use

‘non-standard’ and creative descriptions. 114

26 Correlating Social Networks with Social Roles/Statuses 119

27 An example of factor graph with four users {v1, v2, v3, v4}. Each user vi is as-

sociated with an attribute vector Xvi . hk(yvi ,Xvi) is the node feature function,

whereas fk,l(yvi , yvj) is the edge feature function defined on the edge between

users vi and vj . 132

28 Results on the Finance Industry Data Set . 134

29 Results on the IT Industry Data Set . 134

30 Sensitivity Analysis over the Fraction of Labeled Users 137

31 Relative Importance of Social Factors . 138

ix

SUMMARY

Recently, there is an increasing need for mining graphs with the rapidly growing social networks,

Internet applications and communication networks. Among all these real-world applications, graphs

are ubiquitous and contain tremendous useful information in every aspect. In this thesis, we focus on

studying graph structures and apply the knowledge from graph structures to a number of fundamental

data mining tasks.

The graph structured mining tasks are very challenging due to the following reasons. First, the

number of possible edges scales up quadratically with the number of nodes. Thus, the number of edges

of a graph data set can be extremely large and it is difficult to mine useful knowledge from such massive

graph structures. (2) Many graphs are naturally associated with many useful side information. However,

such information can be noisy and can be difficult to incorporate into the mining model. How to use the

side information and auxiliary attributes in the mining approaches in a meaningful way is non-trivial.

(3) Different from traditionally data mining techniques, the graph structures are complex and lack of

existing features in the graph data. Traditional learning techniques focus on mining in a fixed feature

space. However, graphs are not directly represented in a meaningful feature space. For social network

applications, finding the right features for the mining tasks is even a more challenging task, since most

features of graph structures are weak signals and cannot be directly used in the model.

Motivated by these challenges, in this thesis, we propose a hash-based compression framework to

efficiently and effectively cluster graph objects in the stream scenario. We then extend it to the graph

clustering problem with side information. We propose a novel optimization framework DMO, which

x

SUMMARY (Continued)

can dynamically optimize the weights of graph distance and side information distance metrics. The

hash-based compression framework consumes constant storage spaces and the mining process can be

scalable to massive graphs with side attributes. We then study the graph structures from another per-

spective, i.e., positive and unlabeled learning in graphs. We derive an evaluation criterion to estimate the

dependency between structural features and labels, and then propose an integrated approach that con-

currently updates both graph feature selection and class label assignment. By using structural features

from graph objects, the experimental results shows that the proposed integrated framework significantly

outperforms the previous methods.

As graph structures are very useful for understanding the nature of graphs, we further extend our

analysis to online social networks. We explore five social principles and concepts that represent a

variety of network characteristics and quantify their relations with social roles and statuses. We propose

a novel probabilistic model SRS, which can integrate both the local social factors of individual users

and network influence via neighbors in a principled way.

xi

CHAPTER 1

INTRODUCTION

1.1 Dissertation Framework

Graphs are ubiquitous and very important tools to model diverse kinds of data with complex struc-

tures. Examples include social networks, Internet, chemical compounds, program flows, etc. There are

increasing needs for building models to mining graph data. In social networking, people want to find

friends with similar interests and groups with similar people; in software engineering, programmers like

to study how to automatically identify bugs/errors in program flows (16); in molecular drug discovery,

researchers want to be able to automatically classify the chemical compounds’ anti-cancer activities in

order to find new drugs for cancers or chronic diseases (41; 84). Motivated by these challenges, graph

mining has received much attention in the last decade.

In this thesis, we explore some fundamental data mining problems by studying graph structures.

We first study using graph structures to clustering massive graphs. Since many graph data sets are

available in the form of streams and can be obtained continuously, we solve a even more challenging

mining task: clustering graph streams. In the meantime, many graph data is associated much but noisy

side information. Thus, we further propose an integrated framework to cluster massive graph streams

with side information. As classification is also an important data mining task, we propose a method

by using network structures to classify positive and negative graph objects. Finally, we examine a real

data mining problem in online social networks: social roles and status inference. We systematically

1

2

study how network structures can effect individual’s social role and status in online social networks. We

also propose a factor graph based framework to combine the network structures of each individual and

network influence in a principled way. In the rest of this chapter, we will introduce the above mining

tasks which are covered in this thesis.

1.2 Clustering Graph Streams

We first examine the problem of clustering massive graph streams by studying network structures.

Graph clustering poses significant challenges because of the complex structures which may be present

in the underlying data. The massive size of the underlying graph makes explicit structural enumeration

very difficult. Consequently, most techniques for clustering multi-dimensional data are difficult to gen-

eralize to the case of massive graphs. Recently, methods have been proposed for clustering graph data,

though these methods are designed for static data, and are not applicable to the case of graph streams.

Furthermore, these techniques are especially not effective for the case of massive graphs, since a huge

number of distinct edges may need to be tracked simultaneously. This results in storage and compu-

tational challenges during the clustering process. In order to deal with the natural problems arising

from the use of massive disk-resident graphs, we will propose a technique for creating hash-compressed

micro-clusters from graph streams. The compressed micro-clusters are designed by using a hash-based

compression of the edges onto a smaller domain space. We will provide theoretical results which show

that the hash-based compression continues to maintain bounded accuracy in terms of distance compu-

tations. Since clustering is a data summarization technique, it can also be naturally extended to the

problem of evolution analysis. We will provide experimental results which illustrate the accuracy and

efficiency of the underlying method.

3

1.3 Clustering Graph Streams with Side Information

Graph clustering becomes an important problem due to emerging applications involving the web,

social networks and bio-informatics. Recently, many such applications generate data in the form of

streams. Clustering massive, dynamic graph streams is significantly challenging because of the com-

plex structures of graphs and computational difficulties of continuous data. Meanwhile, a large volume

of side information is associated with graphs, which can be of various types. The examples include

the properties of users in social network activities, the meta attributes associated with web click graph

streams and the location information in mobile communication networks. Such attributes contain ex-

tremely useful information and have the potential to improve the clustering process, but are neglected

by most recent graph stream mining techniques. In this chapter, we define a unified distance measure

on both link structures and side attributes for clustering. In addition, we propose a novel optimization

framework DMO, which can dynamically optimize the distance metric and make it adapt to the newly

received stream data. We further introduce a carefully designed statistics SGS(C) which consume con-

stant storage spaces with the progression of streams. We demonstrate that the statistics maintained are

sufficient for the clustering process as well as the distance optimization and can be scalable to massive

graphs with side attributes. We will present experiment results to show the advantages of the approach

in graph stream clustering with both links and side information over the baselines.

1.4 PU-Learning in Graphs

The problem of graph classification has drawn much attention in the last decade. Conventional

approaches on graph classification focus on mining discriminative subgraph features under supervised

settings. The feature selection strategies strictly follow the assumption that both positive and negative

4

graphs exist. However, in many real-world applications, the negative graph examples are not available.

In this chapter we study the problem of how to select useful subgraph features and perform graph clas-

sification based upon only positive and unlabeled graphs. This problem is challenging and different

from previous works on PU learning, because there are no predefined features in graph data. Moreover,

the subgraph enumeration problem is NP-hard. We need to identify a subset of unlabeled graphs that

are most likely to be negative graphs. However, the negative graph selection problem and the subgraph

feature selection problem are correlated. Before the reliable negative graphs can be resolved, we need

to have a set of useful subgraph features. In order to address this problem, we first derive an evaluation

criterion to estimate the dependency between subgraph features and class labels based on a set of esti-

mated negative graphs. In order to build accurate models for the PU learning problem on graph data, we

propose an integrated approach to concurrently select the discriminative features and the negative graphs

in an iterative manner. Experimental results illustrate the effectiveness and efficiency of the proposed

method.

1.5 Application in Social Networks: Social Role Inference

Users in online social networks play a variety of social roles and statuses. For example, users in

Twitter can be represented as advertiser, content contributor, information receiver, etc; users in Linkedin

can be in different professional roles, such as engineer, salesperson and recruiter. Previous research work

mainly focuses on using categorical and textual information to predict the attributes of users. However,

it cannot be applied to a large number of users in real social networks, since much of such information is

missing, outdated and non-standard. In this thesis, we investigate the social roles and statuses that people

act in online social networks in the perspective of network structures, since the uniqueness of social

5

networks is connecting people. We quantitatively analyze a number of key social principles and theories

that correlate with social roles and statuses. We systematically study how the network characteristics

reflect the social situations of users in an online society. We discover patterns of homophily, the tendency

of users to connect with users with similar social roles and statuses. In addition, we observe that different

factors in social theories influence the social role/status of an individual user to various extent, since

these social principles represent different aspects of the network. We then introduce an optimization

framework based on Factor Conditioning Symmetry, and we propose a probabilistic model to integrate

the optimization framework on local structural information as well as network influence to infer the

unknown social roles and statuses of online users. We will present experiment results to show the

effectiveness of the inference.

CHAPTER 2

CLUSTERING GRAPH STREAMS

In recent years, there has been a renewed focus on graph mining algorithms because of applications

involving the web, bio-informatics, social networking and community detection. Numerous algorithms

have been designed for graph mining applications such as clustering, classification, and frequent pattern

mining (5)(18)(28)(20)(86)(84).

The problem of clustering has been studied extensively in the data mining literature (34)(40)(44)(91).

Recently, the problem has also been examined in the context of graph data (18)(28)(70). The problem

of clustering graphs has traditionally been studied in node clustering of individual graphs, in which we

attempt to determine groups of nodes based on the density of linkage behavior. This problem has tra-

ditionally been studied in the context of graph-partitioning (45), minimum-cut determination (42) and

dense subgraph determination (30)(90).

The problem of clustering in the graph domain allows for two different kinds of algorithms:

• Node Clustering Algorithms: In this case, we have a single large graph, and we wish to partition

this large graph into densely connected regions of the graph. Many scenarios such as the web,

social networks and information networks fall into this category. Some examples of such graph

partitioning algorithms are found in (1)(43)(45).

• Graph Clustering Algorithms: In this case, we have many graphs which are defined over a

particular domain of nodes. In such case, we cluster the graphs on the basis of the structural

6

7

similarity across the different graphs. We further note that while the first kind of algorithms try

to determine the dense regions in the graph, the latter type try to find similarity across different

graphs whether or not they are dense. Thus, the goal of graph clustering algorithms is inherently

different from that of node clustering algorithms.

Recently, the problem has also been studied in the context of object clustering, in which we attempt

to cluster many different individual graphs (as objects) (5)(20), which are defined on a base domain.

This is distinct from the problem of node clustering in which the nodes are the entities to be clustered

rather than the graphs themselves. However, the available techniques (5)(20) are designed for the most

straight-forward case, in which the graphs are defined over a limited domain. Furthermore, it is assumed

that the graph data sets are available on disk. This scenario arises in the context of certain kinds of XML

data (5)(20), computational biology, or chemical compound analysis.

We study a much more challenging case in which a large number of graphs are defined over a mas-

sive domain of distinct nodes. Furthermore, these graphs are not available at one time on disk, but are

continuously received in the form of a stream. The node labels are typically drawn over a universe of

distinct identifers, such as the URL addresses in a web graph (69), an IP-address in a network appli-

cation, or a user-id in a social networking application. Typically, the individual graphs constitute some

kind of activity on the larger graph, such as the click-graph in a user web-session, the set of interactions

in a particular time window in a social network, or the authorship graphs in a dynamically updated lit-

erature site. Often such graphs may individually be of modest size, though the number of distinct edges

may be very large on the aggregate data. This property is referred to as that of sparsity, and is often

encountered in a variety of real applications. This makes the problem much more challenging, because

8

most clustering algorithms would require tracking the behavior of different nodes and edges. Since

the number of possible edges may be of the order of the square of the number of nodes, it may often

be difficult to explicitly store even modest summary information about the edges for all the incoming

graphs. Clearly, such a problem becomes even more challenging in the stream scenario. Examples of

such graph streams are as follows:

• The click-graph derived from a proxy-log in a user-session is typically a sparse graph on the

underlying web graph.

• The interactions between users in a particular time-window in a social network will typically be

a collection of disjointed graphs.

• The authorship graphs of individual articles in a large scientific repository will be small graphs

drawn across millions of possible authors.

The currently available algorithms are designed either for the case of node-entity clustering, or for

the case in which we have disk-resident data sets over a limited domain (5)(20). Such algorithms require

multiple passes over the data (5)(20), and are not applicable to the case of data streams. Furthermore,

these algorithms do not scale very well with the underlying domain size. While the problem of stream

clustering has been studied extensively in the context of multi-dimensional data (4)(58), there are no

known algorithms for the case of clustering graph streams. In this chapter, we will propose the first

algorithm for clustering graph streams. We use a model in which a large number of graphs are received

continuously by the data stream. It is also assumed that the domain size of the nodes is very large,

and this makes the problem much more challenging. Thus, the large domain size of the stream and the

structural characteristics of graphs data pose additional challenges over those which are caused by the

9

data stream scenario. These additional challenges are related to the fact that the space-complexity of

algorithms for summarizing the underlying graphs can be considerable. This is because the complexity

of a summary is related to the number of distinct edges in the graph.

In other words, problem of clustering graph streams is particularly difficult because of the following

reasons:

• Most graph mining algorithms use sub-structural analysis in order to perform the clustering. This

may be difficult in the case of data streams because of the one-pass constraint. The one-pass

constraint creates some natural algorithmic constraints in the data stream computation process.

• The number of possible edges scales up quadratically with the number of nodes. Therefore, the

total number of distinct edges in the graph may be very large. As a result, it may be difficult to

explicitly hold the summary information about the massive graphs for intermediate computations.

• The individual graphs from the stream may exhibit the sparsity property. In other words, the

graphs may be drawn from a large space of nodes and edges, but each individual graph in the

stream may contain only a very small subset of the edges. This leads to representational problems,

since it may be difficult to keep even summary statistics on the large number of edges. This also

makes it difficult to compare graphs on a pair-wise basis.

Most generalizations of known clustering algorithms are likely to require disk-based computations

because of the large number of the edges which need to be processed. In this chapter we will design the

concept of sketch-based micro-clusters for graph data. The broad idea in sketch-based micro-clusters

is to combine the idea of sketch-based compression with micro-cluster summarization. This approach

10

helps in reducing the size of the representation of the underlying micro-clusters, so that they are easy

to store and use. This also helps in creating an approach which can be utilized with memory-resident

computations only. We will also show that the approach continues to maintain bounded accuracy for the

underlying computations.

This chapter is organized as follows. The remainder of this section discusses related work and con-

tributions. In the next section, we will introduce the graph clustering problem, and the broad framework

which is used to solve this problem. We will introduce the concept of graph micro-clusters, and how they

can be used for the clustering process. Section 3 discusses the extension of these techniques with the

use of sketch-based structures. The application of the clustering technique to the problem of evolution

analysis is discussed in section 4. Section 5 contains the experimental results.

2.0.1 Related Work and Contributions

Graph clustering algorithms can be either of the node clustering variety in which we have single

large graph and we attempt to cluster the nodes into groups of densely connected nodes. The second

class of algorithms is the object clustering variety, wherein we have many graphs which are drawn from

a base domain, and these different graphs are clustered together based on their structural similarity.

In this chapter, we will concentrate on the second class of algorithms in which different graphs are

clustered as objects based on structural similarity.

The case of node-clustering algorithms traditionally been studied in the context of the minimum cut

problem (42), graph partitioning (45), network structure clustering (70), and dense subgraph determi-

nation (30)(90). In particular, the techniques for dense subgraph determination (14)(30) use min-hash

techniques in order to summarize massive graphs, and then use these summaries in order to cluster the

11

underlying nodes. However, these techniques are limited to node clustering of individual graphs, rather

than the clustering of individual graphs as objects based on structural similarity. An interesting class of

multi-level graph partitioning schemes has been presented in (1)(43). In these methods, a large graph is

first coarsened into a smaller graph with the use of node-collapsing techniques, and then a partitioning

phase is applied to the much smaller graph. While this is an excellent technique to find dense regions in

a given graph, this is not the goal of the chapter, in which we wish to determine the similarities among

different graph objects in a stream of such objects. An approach for finding dense regions may not

necessarily work for finding similar structures across multiple graphs, and vice-versa.

Recently, methods have been studied for clustering graphs as objects in the context of XML data

(5)(20). However these techniques have two shortcomings: (1) These techniques are designed for the

case when the nodes are drawn from a limited domain rather than from a very large set of possibilities.

When the number of nodes is very large, the number of distinct edges may be too large to track effec-

tively. (2) The available techniques are designed for disk-resident data, rather than graph streams in

which the individual objects are continuously received over time. This chapter will achieve both goals.

This chapter provides the first time- and space-efficient algorithm for clustering graph streams.

Space-efficiency is an important concern in the case of massive graphs, since the intermediate clus-

tering data cannot be easily stored for massive graphs. This goal is achieved by performing a hash-

compression of the underlying micro-clusters. We will show that the hash-compression technique does

not lose significant effectiveness during the clustering process. We will show that the additional process

of hash compression does not lose any effectiveness for the clustering process. We will illustrate the

effectiveness of the approach on a number of real and synthetic data sets.

12

2.1 Graph Stream Clustering Framework

In this section, we will introduce theGMicro framework which is used for clustering graph streams.

We assume that we have a node set N over which the different graphs are defined. We note that each

graph in the stream is typically constructed over only a small subset of the nodes. The label of each node

in N is denoted by a corresponding string. For example, in the case of an intrusion application, each

of the strings in N correspond to the IP-addresses. The nodes of the incoming graphs G1 . . . Gk . . . are

each drawn on the subset of nodes N .

For purposes of notation, we assume that the set of distinct edges across all graphs are denoted by

(X1, Y1) . . . (Xi, Yi) . . . respectively. Each Xi and Yi is a node label drawn from the set N . We note

that this notation implicitly assumes directed graphs. In the event of an undirected graph, we assume

that lexicographic ordering on node labels is used in order to convert the undirected edge into a directed

edge. Thus, the approach can also be applied to undirected graphs by using this transformation. We also

assume that the frequency of the edge (Xi, Yi) in graph Gr is denoted by F (Xi, Yi, Gr). For example, in

a telecommunication application, the frequency may represent the number of minutes of phone conver-

sation between the edge-pair (Xi, Yi). In many applications, this frequency may be implicitly assumed

to be 1, though we work with the more general case of arbitrary frequencies. We note that when the

node set N is very large, the total number of distinct edges received by the data stream may be too large

to even enumerate on disk. For example, for a node set of 107 nodes, the number of distinct edges may

be more than 1013. This may be too large to explicitly store within current disk resident constraints. The

graph clustering framework requires us to cluster the graphs into a group of k clusters C1 . . . Ck, such

that each graph from the data stream is dynamically assigned to one of the clusters in real time.

13

While micro-clustering (4) has been used in order to cluster multi-dimensional data, we will con-

struct micro-clusters which are specifically tailored to the problem of graph data. In this chapter, we

will use a sketch-based approach in order to create hash-compressed micro-cluster representations of

the clusters in the underlying graph stream. First, we will discuss a more straightforward representa-

tion of the uncompressed micro-clusters, and the storage and computational challenges in maintaining

these representations. Then, we will discuss how the sketch-based techniques can be used in order to

effectively deal with these challenges. We will show that the sketch-based techniques can be used in

combination with the micro-clusters to construct the distance functions approximately over the different

clusters.

Next, we will introduce a more straightforward and direct representation of graph-based micro-

clusters. Let us consider a cluster C containing the graphs {G1 . . . Gn}. We assume that the implicit

graph defined by the summation of the graphs {G1 . . . Gn} is denoted by H(C). Then, we define the

micro-cluster GCF (C) as follows:

Definition 1 The micro-cluster GCF (C) is defined as the set (L(C), GCF2(C), GCF1(C), n(C), T (C)),

with size (3 · |L(C)|+ 2), where L(C) is the set of edges in micro-cluster C. The individual components

of GCF (C) are defined as follows:

• L(C) is a set which contains a list of all the distinct edges in any of the graphs Gi in C.

• GCF2(C) is a vector of second moments of the edges in L(C). Consider an edge (Xq, Yq) ∈

L(C). Then the corresponding second moment for that edge is defined as
∑n

r=1 F (Xq, Yq, Gr)
2.

We note that the value of F (Xq, Yq, Gr) is implicitly assumed to be zero, when (Xq, Yq) is not

present in the graph Gr . We refer to the second moment value for (Xq, Yq) as J(Xq, Yq,H(C)).

14

• GCF1(C) is a vector of first moments of the edges in L. Consider an edge (Xq, Yq) ∈ L(C). Then

the corresponding first moment for that edge is defined as F (Xq, Yq,H(C)) =
∑n

r=1 F (Xq, Yq, Gr).

• The number of graphs in the micro-cluster C is denoted by n(C).

• The time stamp is of the last graph which was added to the cluster C is denoted by T (C).

One observation about micro-clusters is that for two clusters C1 and C2, the value of GCF (C1 ∪ C2)

can be computed as a function of GCF (C1) and GCF (C2). This is because the list L(C1 ∪ C2)) is the

union of the lists L(C1) and L(C2). Similarly, the frequencies may be obtained by pairwise addition,

and n(C1 ∪ C2) may be determined by examining the size of the set L(C1 ∪ C2). The value of t(C1 ∪ C2)

may be determined by computing the minimum of t(C1) and t(C2). We refer to this property as additive

separability.

Property 1 The graph micro clusters satisfy the additive separability property. This means that the

micro-cluster statistics for GCF (C1 ∪ C2) can be computed as a function of GCF (C1) and GCF (C2).

We note that graph micro-clusters also satisfy a limited version of the subtractivity property. All com-

ponents of the micro-cluster other than the time stamp can be used to compute GCF (C1 − C2) as a

function of GCF (C1) and GCF (C2). We summarize as follows:

Property 2 The graph micro-clusters satisfy a limited version of the subtractivity property.

We note that graph micro-clusters differ from multi-dimensional micro-clusters in the sense that

while the size of the multi-dimensional micro-cluster representation remains bounded and easy to com-

pute, this is not the case for graph micro-clusters. This is because the number of edges in the list L(C)

will grow as more and more graphs are added to the data stream. As the size of L(C) increases, the

15

Algorithm GMicro(Number of Clusters: k)

begin

M = {};

{M is the set of micro-cluster statistics }
repeat

Receive the next stream graph Gr;

If less than k clusters currently exist, then create micro-cluster statistics for singleton graph

Gr, and insert it into set of micro-clusters M;

if k micro-clusters exist, then compute edge structure similarity of Gr to each micro-cluster

in M;

if graph Gr lies outside the structure spread of closest micro-cluster then replace the least

recently updated cluster with new singleton cluster containing only Gr;

else add Gr to the statistics of the closest micro-cluster;

until data stream ends;

end

Figure 1. The GMicro Algorithm

space-requirements increase as well. Furthermore, the computational complexity of distance computa-

tions also depends upon L(C). Since the number of possible distinct edges in L(C) is large, this will

result in unmanageable space- and time-complexity with progression of the data stream. Therefore, we

need a technique to further reduce the size of the micro-cluster representation. However, for simplicity,

we will first describe the technique without the use of the compressed representation. This broad frame-

work is retained even when sketch based compression is used. Therefore, we will first describe the use

of the raw micro-cluster statistics in order to cluster the incoming graphs. Then, we will describe how

sketch methods are used in order to make changes to specific portions of the micro-cluster representation

and corresponding computations.

16

The micro-clustering algorithm uses the number of micro-clusters as input. We refer to the the

Graph MICROclustering algorithm as the GMicro method. Initially, the clustering algorithm starts off

with the null set of micro-clusters. As new graphs arrive from the data stream, they are added to the

data as singleton micro-clusters. Thus, the first k graph records are created as singleton micro-clusters.

Subsequently, when the next graph Gr arrives, the distance to each micro-cluster centroid is computed.

The distance measure that we compute is constructed as a variant on the L2-distance measure for multi-

dimensional data and can be computed with the use of micro-cluster statistics. We assign the incoming

record Gr to the closest centroid based on this structural distance computation. However, in some

cases, an incoming data point in an evolving data stream may not fit well in any cluster. In order to

handle this case, we check if the structural spread of the picked micro-cluster is less than the distance

of Gr to that micro-cluster. The structural spread is defined as a factor1 of the mean-square radius

S(C) of the elements of micro-cluster C from its centroid. As in the case of the structural similarity

measure, we will see that the spread can also be computed as a function of the micro-cluster statistics.

If the structural spread is less than the distance of Gr to the closest micro-cluster, then we create a new

singleton micro-cluster containing only Gr . This micro-cluster replaces the most stale (least recently

updated) micro-cluster. The information on the last update time of the micro-clusters is available from

the corresponding time stamps in the micro-cluster statistics. The overall algorithm is illustrated in

Figure 1.

1In accordance with normal distribution assumptions, we pick this factor to be 3.

17

2.1.1 Computing Edge Structural Similarity and Spread

Since we are dealing with the case of sparse structural data, we need to normalize for the frequency

of edges included in both the incoming record and the centroid to which the similarity is being computed.

We note that a micro-cluster can also be considered a pseudo-graph for which the frequencies of the

corresponding edges are defined as the sum of the corresponding frequencies of the edges from which

the micro-cluster was created. Therefore, we simply need to define a distance (similarity) function

between two graphs in order to compute the similarity between micro-clusters and centroids. Let C be a

given micro-cluster which contains the graphs G1 . . . Gn. Let the implicit graph for the micro-cluster C

(corresponding to the summation of the graphs G1 . . . Gn) be denoted by H(C). Let the corresponding

normalized graph (by dividing each edge frequency of H(C) by n(C)) be denoted by H(C).) Thus,

H(C) represents the centroid graph of all the graphs in the micro-cluster. Let the edges in L be denoted

by (X1, Y1) . . . (Xm, Ym). Let Gt be the incoming graph. Then, the L2-distance L2Dist(Gt,H(C))

between the graphs Gt and H(C) is defined as follows:

L2Dist(Gt, H(C)) =
m
∑

i=1

(

F (Xi, Yi, Gt)−
F (Xi, Yi, H(C))

n(C)

)2

A second possibility for the computation of the similarity function is the dot product. Unlike, the

L2-distance function, higher values imply greater similarity. The dot product Dot(Gt,H(C)) between

the graphs Gt and H(C) is defined as follows:

18

Dot(Gt, H(C)) =
m
∑

i=1

F (Xi, Yi, Gt).
F (Xi, Yi, H(C))

n(C)

Next, we will define the structural spread of a given cluster. Since the structural spread is defined as

a function of the mean-square radius, we will first define the mean square radius of the micro-cluster C.

Then, the mean-square radius S(C) of C is defined as follows:

S(C) =
1

n

n
∑

j=1

L2Dist(Gj, H(C))

=
1

n
·

n
∑

j=1

m
∑

i=1

(

F (Xi, Yi, Gj)−
F (Xi, Yi, H(C))

n(C)

)2

The spread is defined as a factor1 t multiplied with S(C). Both the structural distance measure

and the structural spread can be computed as a function of the micro-cluster statistics. This is because

the value of F (Xq, Yq,H(C)) is directly available from the first-order statistics of micro-cluster C.

Similarly, the value of n(C) is included in the micro-cluster statistics. Therefore, we summarize as

follows:

1We use t = 3 in accordance with the normal distribution assumption.

19

Lemma 1 The structural similarity measures denoted by L2dist(Gt,H(C)) and Dot(Gt,H(C)) be-

tween Gt and the centroid graph H(C) for cluster C can be computed from the micro-cluster statistics.

The spread S(C) can also be directly computed from the micro-cluster statistics. The corresponding

value can be obtained by simplifying the expression for S(C).

Lemma 2 The structural spread S(C) can be computed from the micro-cluster statistics.

Proof 1 Let us denote F (Xi, Yi,H(C))/n(C) by pi. This represents the average frequency of the edges

for the centroid of the micro-cluster. As discussed earlier, this can be computed directly from the micro-

cluster statistics. By substituting in the expression for S(C), we get the following:

S(C) =
1

n(C)

n
∑

j=1

m
∑

i=1

(F (Xi, Yi, Gj)− pi)
2 (2.1)

By expanding the expression for S(C), we can simplify as follows:

S(C) =

=

∑m

i=1
J(Xi, Yi,H(C))

n(C)
− 2

m∑

i=1

pi ·
∑n

j=1
F (Xi, Yi, Gj)

n(C)
+

+
m∑

i=1

p
2

i

=

∑m

i=1
J(Xi, Yi,H(C))

n(C)
− 2 ·

m∑

i=1

·pi · pi +

m∑

i=1

p
2

i

=

∑m

i=1
J(Xi, Yi,H(C))

n(C)
−

m∑

i=1

p
2

i

20

We note that all the terms in the above definition are drawn from the micro-cluster definition. There-

fore, the spread S(C) can be computed directly from the micro-cluster statistics.

2.2 Sketch Based Micro-cluster Compression

The storage and computational requirements for updating the micro-clusters depend upon the num-

ber of edges in them. The number of edges in the micro-clusters will typically increase as new graphs

arrive in the stream. As the size of the micro-cluster increase, so does the time for computing the dis-

tance functions of incoming data points from the clusters. When the domain size is extremely large, the

number of distinct edges can be too large for the micro-cluster statistics to be maintained explicitly. For

example, consider the case when the number of possible nodes is 107. This is often the case in many real

applications such as IP-network data. Since the number of possible edges may be as large as 1013, the

size of the micro-cluster statistics may exceed the disk limitations, after a sufficient number of graphs

are received. This leads to challenges in storage and computational efficiency.

Sketch based approaches (9)(19) were designed for enumeration of different kinds of frequency

statistics of data sets. A commonly-used sketch is the count-min method (19). In this sketch, we

use w = ⌈ln(1/δ)⌉ pairwise independent hash functions, each of which map onto uniformly random

integers in the range h = [0, e/ǫ], where e is the base of the natural logarithm. The data structure itself

consists of a two dimensional array with w · h cells with a length of h and width of w. Each hash

function corresponds to one of w 1-dimensional arrays with h cells each. In standard applications of the

count-min sketch, the hash functions are used in order to update the counts of the different cells in this

2-dimensional data structure. For example, consider a 1-dimensional data stream with elements drawn

from a massive set of domain values. When a new element of the data stream is received, we apply

21

each of the w hash functions to map onto a number in [0 . . . h − 1]. The count of each of the set of w

cells is incremented by 1. In the event that each item is associated with a frequency, the count of the

corresponding cell is incremented by the corresponding frequency. In order to estimate the count of an

item, we determine the set of w cells to which each of the w hash-functions map, and determine the

minimum value among all these cells. Let ct be the true value of the count being estimated. We note

that the estimated count is at least equal to ct, since we are dealing with non-negative counts only, and

there may be an over-estimation because of collisions among hash cells. As it turns out, a probabilistic

upper bound to the estimate may also be determined. It has been shown in (19), that for a data stream

with T arrivals, the estimate is at most ct + ǫ · T with probability at least 1− δ. The sketch can also be

used in order to estimate the frequencies of groups of items by using these same approach. The count-

min sketch can be used in order to estimate the frequency behavior of individual edges by treating each

edge as an item with a unique string value. We note that each edge (Xi, Yi) can be treated as the string

Xi ⊕ Yi where ⊕ is the concatenation operator on the node label strings Xi and Yi. This string can be

hashed into the table in order to maintain the statistics of different edges. The corresponding entry in

incremented by the frequency of the corresponding edge.

We can use the sketch based approach in order to construct the sketched micro-cluster. The idea is

that the portions of the micro-cluster whose size is proportional to the number of edges are not stored

explicitly, but implicitly in the form of sketch table counts. We will then see how well the individual

components of the micro-cluster representation are approximated. Since all clustering computations

can be performed in terms of micro-cluster statistics, it follows that the clustering computations can

22

be effectively performed as long as the underlying micro-cluster statistics can be approximated. The

compressed micro-clusters are defined as follows:

Definition 2 The micro-cluster GCF (C) is defined as the set (GSketch(C), R(C), n(C), T (C)) of size

(e/ǫ) · ln(1/δ) + 3. The individual components of GCF (C) are defined as follows:

• The data structure GSketch(C), contains a sketch-table of all the frequency-weighted graphs

which are included in the micro-cluster. This requires a table with size (e/ǫ) · ln(1/δ). The actual

micro-cluster update is performed as follows. For each edge (Xi, Yi) for an incoming graph,

we compute the concatenation string Xi ⊕ Yi, and hash it into the table with the use of w hash

functions. We add the frequency of the incoming edge to the corresponding w entries.

• We maintain R(C) =
∑m

i=1 J(Xi, Yi,H(C)) explicitly. This is done by adding the square of the

frequency of the incoming edge to R(C).

• The number of graphs in the micro-cluster C is denoted by n(C).

• The time stamp is of the last graph which was added to the cluster C is denoted by T (C).

The above definition implies that a separate sketch-table is maintained with each micro-cluster. It is

important to note that we use the same set of corresponding hash functions for each sketch table. This

is important in order to compute important statistics about the micro-clusters such as the dot-product.

The GMicro algorithms can be used with this new definition of micro-clusters except that the inter-

mediate computations may need to be performed as sketch-based estimates. In the remaining portion of

this section, we will discuss how these estimates are computed, and the accuracy associated with such

computation. We note that the first-order and second-order statistics are implicitly coded in the sketch

23

table. Let W (C) be the sum of the edge frequencies in H(C). The sketch encodes implicit information

about the micro-clusters. The first-order and second-order statistics can be estimated as follows:

• F (Xi, Yi,H(C)) can be estimated by hashing Xi⊕Yi into the hash table with the use of thew hash

functions, and computing the minimum of the corresponding entries. It can be directly shown (19)

that the corresponding estimate F̂ (Xi, Yi,H(C)) lies in the range [F (Xi, Yi,H(C)), F (Xi, Yi,H(C))+

ǫ ·W (C)] with probability at least 1− δ.

• We note that J(Xi, Yi,H(C)) cannot be estimated effectively. One possibility is to compute an

estimate on J(Xi, Yi,H(C)) by hashing Xi ⊕ Yi into the hash table with the use of the w hash

functions, and computing the minimum of the square of the corresponding entries. However, the

bound on this estimate is quite loose, and therefore we will not use the approach of estimating

J(Xi, Yi,H(C)). Rather, we will see that the additional information R(C) =
∑m

i=1 J(Xi, Yi, C),

which is maintained in the sketch-based statistics is sufficient to perform the intermediate compu-

tations for clustering.

The above observations emphasize that intermediate information on the micro-cluster statistics can

be constructed approximately with the sketch technique. This is useful, since all the important properties

of the clusters are encoded in the micro-cluster statistics. For example, if the behavior of the different

portions of the graph (or specific edges) need to be examined in the context of different clusters, the

corresponding micro-cluster statistics need to be derived. Next, we discuss the estimation of important

quantitative computations which are performed during the clustering process.

24

2.2.1 Distance estimations

We will expand the expression for L2Dist in order to express it in terms of sketch-based micro-

cluster statistics:

L2Dist(Gt, H(C)) =
m
∑

i=1

(

F (Xi, Yi, Gt)−
F (Xi, Yi, H(C))

n(C)

)2

=

m
∑

i=1

F (Xi, Yi, Gt)
2 − 2

m
∑

i=1

F (Xi, Yi, Gt) · F (Xi, Yi, H(C))

n(C)
+

+

m
∑

i=1

F (Xi, Yi, H(C))2

n(C)2

All of the three expressions in the above expansion are dot products. Of these dot products, the value

of the expression
∑m

i=1 F (Xi, Yi, Gt)
2 can be computed exactly, by using the statistics of the incoming

graph Gt. The other two dot products are estimated using the technique discussed for (19). Specifically,

in the second term, F (Xi, Yi, Gt) can be computed exactly, while F (Xi, Yi,H(C)) can be computed di-

rectly from the sketch table GSketch(C). We perform a pairwise multiplication for each edge appeared

in the incoming graph Gt, and use the sum to estimate
∑m

i=1 F (Xi, Yi, Gt) · F (Xi, Yi,H(C)) in the

second term. The value of the third term (
∑m

i=1 F (Xi, Yi,H(C))2) can be estimated by performing the

dot product between two copies of GSketch(C). There is a one-to-one correspondence among the cells

of both copies. We perform pairwise dot products for the w different rows in the sketch table, and pick

the minimum of these values as the estimate.

25

Next, we will bound the quality of the distance estimation. Since the distance estimation is expressed

as a function of individual dot-products (which can themselves be bounded), this also helps in bounding

the overall quality of the estimation. Let V (Gt) be the sum of the frequencies of the edges in Gt. Then,

we can show the following:

Lemma 3 With probability at least (1 − 2 · δ), the estimate of L2Dist(Gt,H(C)) with the use of the

sketch-based approach lies in the range [L2Dist(Gt,H(C))−2·ǫ·V (Gt)·W (C)/n(C), L2Dist(Gt ,H(C))+

ǫ ·W (C)2/n(C)2].

Proof 2 We note that the computation of L2Dist requires the estimation of two terms, which have

opposite effects on the overall estimate. Each extreme case is when one of the terms is estimated as

exactly as possible, and the other is overestimated as much as possible. We deal with these cases below:

Extreme Case I:
∑m

i=1 F (Xi, Yi,H(C))2 is exactly estimated, but F (Xi, Yi,H(C)) · F (Xi, Yi, Gt) is

over-estimated: This forms the lower bound for the range, since the over-estimated term has a negative

sign attached before it. We know from (19), that the over-estimation of this dot product is no more than

ǫ · V (Gt) ·W (C) with probability at least (1 − δ). Scaling by the constant 2/n(C) to account for the

constant factor in front of the term, we derive that the lower bound is at least L2Dist(Gt,H(C))− 2 ·

ǫ · V (Gt) ·W (C)/n(C) with probability at least 1− δ.

Extreme Case II: F (Xi, Yi,H(C)) · F (Xi, Yi, Gt) is exactly estimated, but
∑m

i=1 F (Xi, Yi,H(C))2 is

over-estimated: This forms the upper bound for the range. As in the previous case, we can show that

the level of over-estimation is at most ǫ ·W (C)2 with probability at least 1 − δ. Scaling by the factor

1/n(C)2 to account for the constant factor in front of the term, we derive that the upper bound is at most

L2Dist(Gt,H(C)) + ǫ ·W (C)2/n(C)2 with probability at least 1− δ.

26

Since the bounds for either of the two cases are violated with probability at most δ, the probability

of neither bound being violated is at least 1− 2 · δ. This proves the result.

The above result can also be used for dot-product estimation.

Lemma 4 With probability at least (1 − δ), the estimate of Dot(Gt,H(C)) with the use of the sketch-

based approach lies in the range [Dot(Gt,H(C),Dot(Gt,H(C)) + ǫ · V (Gt) ·W (C)/n(C)].

Proof 3 This follows directly from the dot product results in (19).

2.2.2 Estimation of Spread

In this section, we will discuss the estimation of the spread S(C) with the sketch-based approach. It

was shown earlier that the value of S(C) is estimated as follows:

S(C) =

∑m
i=1 J(Xi, Yi,H(C))

n(C)
−

m
∑

i=1

p2i

=
R(C)

n(C)
−

m
∑

i=1

p2i

The above expression can be estimated directly from the sketch statistics. BothR(C) and n(C) are main-

tained directly in the sketched micro-cluster statistics. Next, we discuss the computation of the second

term. The value of
∑m

i=1 p
2
i can be estimated as the sum of the squares of the sketch components in

each row. We compute the minimum value across w rows, and denote this value by Pmin. The first term

in the above expression is estimated as Pmin/n(C), and the second term is estimated as Pmin/n(C)
2.

Next, we will bound the quality of the estimation with the use of the sketch-based approach.

27

Lemma 5 With probability at least 1− δ, the sketch based estimation of S(C) lies in the range [S(C)−

ǫ ·
∑m

i=1 p
2
i , S(C)].

Proof 4 We note that S(C) is expressed using two terms, the first of which is known exactly. The only

source of inaccuracy is in the estimation of
∑n

i=1 p
2
i , which is computed as a self dot-product, and

therefore over-estimated. Since this term adds negatively to the overall estimation, it follows that the

overall computation is always under-estimated. Therefore, the upper bound on the estimation is the true

value of S(C).

In order to compute the lower bound, we consider the case when the second term
∑m

i=1 p
2
i is over-

estimated as much as possible. In order to estimate this value, we consider a hypothetical graph Q(C) in

which all edges ofH(C) are received exactly once, and the frequency of the ith edge is F (Xi, Yi,H(C)).

We note that the sketch of this graph is exactly the same as that of H(C), since the aggregate frequencies

are the same. Therefore, the dot product of Q(C) with itself will estimate
∑m

i=1 F (Xi, Yi,H(C))2 =

n(C)2 ·
∑n

i=1 p
2
i . The dot-product estimation for the graph Q(C) is exactly equal to Pmin. Therefore,

the value of Pmin/n(C)
2 is an estimate of

∑m
i=1 p

2
i . By using the bounds discussed in (19), it can be

shown that this over-estimate is at most ǫ ·
∑m

i=1 p
2
i with probability at least 1− δ. This establishes the

lower bound.

2.2.3 Time Complexity

In this section, we will study the time-complexity of the graph stream clustering algorithm. We will

compute this time-complexity both for the case of the disk-based clustering algorithm and the sketch-

based clustering algorithm. This analysis will also show the advantage of the disk-based clustering

28

algorithm over the sketch-based clustering method. We assume that the entire data stream contains N

data points, which are divided into k clusters. Furthermore, we assume that the average number of

edges in an incoming graph in the stream is given by p. Furthermore, let the average number of distinct

edges in the different micro-clusters in the stream be given by t.

2.2.3.1 Disk-based Clustering Algorithm

The main time-complexity of the disk-based clustering algorithm is in computing the distances of

the incoming graph to the different micro-clusters. We note that the process of updating the micro-

clusters is strictly dominated by this running time. The time to compute the distances between between

the ith graph with li edges and the jth micro-cluster with L(Cj) distinct edges is given by li+L(Cj). For

each incoming graph, this needs to be repeated over the k different clusters. Furthermore, this process

needs to be repeated over the N different graphs in the stream. Thus, the two terms in the expression

li+L(Cj) need to be summed overN ·k different possibilities. Since the average number of components

in the graphs and the micro-clusters are given by p and t respectively, it follows that the total number of

operations is given by O((p+ t) ·N · k).

One observation about the time-complexity is that it is dependent on p and t, which are highly

dependent on the characteristics of the underlying data. Furthermore, the value of t is dependent on the

number of distinct edges in the micro-clusters, which may be quite large. At a given time, the number of

distinct edges in the micro-clusters may vary, as a result of which the processing efficiency of the stream

clustering method may vary considerably over the computation process. These operations are also disk-

resident, and are therefore not particularly efficient. The random-accesses to the micro-clusters on disk

can be slow, because each random access requires seeks from the disk for the computation process.

29

2.2.3.2 Time Complexity of Sketch-based Method

In this section, we will study the time-complexity of the sketch-based method. In the case of the

hash-table, for each incoming graph with li edges, we need to compute the distance to the sketch-based

micro-clusters. For a given graph with li edges, we need to compute w different hash functions. We

note that (unlike the previous case), this is independent of the number of distinct edges in the micro-

cluster. As in the previous case, a total of N · k different similarity computations need to be performed

over the data stream. Since the average number of edges in a graph is p, the average efficiency per

similarity computation is given by p ·w. Thus, the total requirement over the entire data stream is given

by O(N ·k ·p ·w). We note that unlike the previous case, this is not dependent upon the distinct edges in

the data stream. This makes the efficiency requirements more stable over the course of the data stream.

Furthermore, these operations are all main memory operations, and are therefore much more efficient

than the disk resident case. As we will see later, these improved efficiencies of the sketch-based method

will be reflected in the experimental results.

2.3 Evolution Analysis with Clustering

Since clustering is a natural method for data summarization, it can also be used for evolution anal-

ysis. The changes in the summarized cluster representation provide an idea of the changes in the high

level trends in the data. Specifically, if tc be the current time, then for a user-defined window q, we would

like to compare the clusters at time tc with those at time tc − q. Such changes provide an understanding

of the nature of the changes in the underlying graph structure, and can be useful for a wide variety

of applications. There are two kinds of evolutionary changes which can be tracked in the underlying

clusters:

30

• We can track new clusters which are added during the clustering process; or clusters which dis-

appear over the course of stream clustering. This provides a direct view of the obvious changes

which occur during the clustering process. Such situations typically arise because of the sud-

den arrival of either completely new trends in the data stream, or the sudden disappearance of

important trends in the original data stream.

• In some cases, the changes may not be directly obvious as in the cluster additions and deletions.

Rather, the aggregate distributions of the data points among different clusters in different segments

may be different. This is a more challenging situation to detect, and may occur as a results of

slower evolution over a continuous period.

Both cases require the comparisons of the clusters across different snapshots. The first case is simple,

because we can simply compare the clusters at snapshot tc, with the clusters at snapshot tc−q, and report

the clusters which are new, or the clusters which have disappeared. In order to accurately distinguish

new clusters from old ones, we maintain cluster-identifiers, which are defined by the time-stamp at

which they are created. The identifier is very useful in tracking the behavior of the clusters throughout

the entire process. Since each cluster is created at a different time-stamp, this ensures that the different

cluster-identifiers are unique. Therefore, in order to track new or disappearing clusters in the data, we

track the following two quantities:

• The new cluster identifiers at time tc, which were not present at time tc − q. This immediately

provides us with the new clusters which have appeared in the stream over the last horizon of

length q.

31

• The cluster identifiers which have disappeared between time tc − q and tc. This immediately

provides us with the clusters which have disappeared in the last horizon of length q.

The above quantities provide us with a good understanding of trends appearing or disappearing

in the data. The process of determining the changes in the aggregate frequencies is slightly different.

For this purpose, we maintain the vector-space frequency vectors of the cluster-identifiers. The vector-

space representation of a cluster identifier contains the identifier itself along with the frequency of the

corresponding cluster identifiers. The frequency of a cluster identifier corresponds to the number of

data points inside the cluster. This is required in order to keep track of the “popularity” of the cor-

responding cluster. Note that the set of the cluster identifiers in the vector-space representation will

change over time, as new clusters are added and old ones are deleted. Therefore, if id1(t) . . . idk(t)

and f1(t) . . . fk(t), be the corresponding cluster identifiers and frequencies, the clusters and their corre-

sponding membership frequencies at time t, then all of these values are maintained in the vector-space

representation. Thus, a total of 2 · k values are maintained, where k is the number of clusters.

In order to compute the changes which have occurred in the evolution of the clusters from time tc−q

to time tc, we first compute the differential cluster statistics from time tc − q to time tc, as well as the

differential cluster statistics from time tc − 2 · q to time tc − q. The differential cluster statistics refer

to the frequencies of the data points in the different clusters at time tc, which correspond only to data

points which have arrived between times tc− q and tc. Since the cluster identifiers between times tc− q

and tc may not exactly be the same, we compute the statistics only for the clusters which are available at

the time tc. We formally define the differential cluster statistics between time periods (t1, t2) as follows:

32

Definition 3 The differential cluster statistics in the time period (t1, t2), is the frequencies of the data

points in the cluster identifiers at time t2, which have arrived in the time period (t1, t2). In other words,

we use only the data points which have arrived in the time-interval (t1, t2).

It is evident that the differential cluster statistics can be computed directly from the micro-clusters

because of the additivity property. This is done matching the cluster identifiers between times t1 and t2,

and then subtracting the corresponding statistics between the two time intervals.

In order to compute the aggregate changes from the clusters in the time-interval (tc − 2 · q, tc −

q) to the interval (tc − q, tc), we compute the normalized-cosine similarity between the vector-space

representation of the differential cluster statistics. The smaller the cosine similarity, the greater the

differences from (tc − q) to tc. Since the normalized cosine-similarity lies in the range (0, 1), we can

output a change alarm level, which is defined as the 1−cs(t), where cs(t) is the current cosine similarity

at time t. This alarm level can be computed continuously over horizons of length q throughout the life of

the data stream. Peaks in this alarm level correspond to sudden changes in the trends in the data stream.

We note that the construction of the differential statistics requires the storage of the micro-clusters

at different snapshots. Therefore, we need the snapshots of the past horizons in order to construct the

differential statistics. If the horizon q is known a-priori, then it suffices to maintain a single snapshot

at time tc − q, in addition to the current snapshot at time tc. A complicating issue is that the user may

dynamically choose any horizon during stream processing, and therefore it is not sufficient to maintain

a single snapshot at time tc − q. While a natural solution is to store the snapshots at evenly spaced

intervals, this can be impractical for an application receiving large amounts of data during long periods

33

of time. This is because the number of snapshots will continuously increase over time, and the storage

requirements will become impractical over a long period of time.

Therefore, a natural solution is to store the snapshots at pyramidally defined intervals, so as to ap-

proximate the corresponding horizons well. Ideally, we would like to obtain the differential vector of a

horizon which is as close to the target horizon as possible. For this purpose, we use a pyramidal pattern

(4) of storage of the snapshots. Of course, the snapshot for the current time instance is always main-

tained dynamically in main memory. The pyramidal storage pattern is defined by constructing a set of

levels across which the snapshots are stored. These levels are defined and stored as follows:

(1) For a user-defined parameter α > 1, snapshots at level i are stored at clock times which are divisible

by αi.

(2) For a user-defined integer parameter l, the last αl snapshots of each level are retained at any moment

in time.

There can be overlap between snapshots at different levels, if l > 0. In such cases, we eliminate

duplicates in order to maximize storage efficiency. We make the following observations:

(1) At clock time T , the total number of levels is logα(T).

(2) At clock time T , the total number of snapshots is at most αl · logα(T).

(3) For any user-specified horizon q and current time tc, a snapshot can be found at time tc−q
′ such that

|q− q′|/h < 1/(2 ·αl−1). Therefore, the horizon q can be approximated with a high degree of accuracy.

While the first two properties are quite evident, the third needs to be proved explicitly. The following

Lemma proves this explicitly:

34

Lemma 6 For any user-specified horizon q and current time tc, a snapshot can be found at time tc − q′

such that |q − q′|/q < 1/(2 · αl−1).

Proof 5 See (4).

We note that these results show that the number of stored snapshots increase logarithmically with

time T , while guaranteeing a high degree of accuracy. For example, let us consider an extreme example

of a sensor network running over one hundred years, with clock intervals of one second. Further, let us

assume that we pick α = 2 and l = 10. We note that this choice of parameters guarantees a 99.99%

accuracy in horizon estimation. In such a case, we need to store 210 · log2(100 ·365 ·24 ·3600) ≈ 31554

snapshots. Assuming that the historical behavior is stored on disks at leader (or intermediate) nodes,

this is a fairly modest storage requirement. This ensures that the change diagnosis can be performed

dynamically for any time-horizon according to user requirements. This also ensures that the evolu-

tion analysis can be performed simultaneously with the stream clustering process, without a significant

additional overhead.

2.4 Experimental Results

In this section, we will present the experimental results from the use of this approach. We will test

the techniques for both efficiency and effectiveness. We will test both the exact clustering approach and

the compression-based clustering approach. We will show that the two techniques are almost equally

good in terms of quality, but the compression-based technique is significantly superior in terms of effi-

ciency. This is because the disk-based approach requires the storage of a large number of edges on disk.

This slows down the disk-based approach significantly.

35

2.4.1 Data Sets and Default Parameters

We used a combination of real and synthetic data sets in order to test our approach. The real data

sets used were as follows:

(1) DBLP Data Set: The DBLP data set contains scientific publications in the computer science do-

main. We further processed the data set in order to compose author-pair streams from it. All conference

papers ranging from 1956 to March 15th, 2008 were used for this purpose. There are 595, 406 authors

and 602, 684 papers in total. We note that the authors are listed in a particular order for each paper.

Let us denote the author-order by a1, a2, . . . , aq . An author pair 〈ai, aj〉 is generated if i < j, where

1 ≤ i, j ≤ q. There are 1, 954, 776 author pairs in total. Each conference paper along with its edges

was considered a graph. We used a clustering input parameter of k = 2000 clusters.

(2) IBM Sensor Data Set: This data contained information about local traffic on a sensor network

which issued a set of intrusion attack types. Each graph constituted a local pattern of traffic in the sen-

sor network. The nodes correspond to the IP-addresses, and the edges correspond to local patterns of

traffic. We note that each intrusion typically caused a characteristic local pattern of traffic, in which

there were some variations, but also considerable correlations. We used two different data sets with the

following characteristics:

Igraph0103-07: The data set Igraph0103-07 contained 1 a stream of intrusion graphs from June 1,

1Available at

http://www.charuaggarwal.net/sens1/gstream.txt

36

2007 to June 3, 2007. The data stream contained more than 1.57 ∗ 106 edges in the aggregate, which

were distributed over approximately 2250 graphs. We note that this graph was much denser compared

to the DBLP data set, since each individual graph was much larger. Thus, even though the number of

graphs do not seem very large, the size of the underlying edge streams were huge, since each graph

occupies a large amount of space. We intentionally chose a graph structure which was very different

from the DBLP data set, since this helps in evaluating our algorithm on different kinds of graphs.

Igraph0406-07: The data set Igraph0406-07 contained 1 a stream of intrusion graphs from June 4,

2007 to June 6, 2007. The data stream contained more than 1.54 ∗ 106 edges in the aggregate, which

were distributed over approximately 2760 graphs. We used a clustering input parameter of k = 120

clusters.

(3) Synthetic Data Set: We used the R-Mat data generator in order to generate a base template for

the edges from which all the graphs are drawn. The input parameters for the R-Mat data generator were

a = 0.5, b = 0.2, c = 0.2, S = 17, and E = 508960 (using the CMU NetMine notations). If an edge

is not present between two nodes, then the edge will also not be present in any graph in the data set.

Next, we generate the base clusters. Suppose that we want to generate κ base clusters. We generate

κ different zipf distributions with distribution function 1/iθ . These zipf distributions will be used to

define the probabilities for the different nodes. The base probability for an edge (which is present on the

1Available at

http://www.charuaggarwal.net/sens2/gstream.txt

37

base graph) is equal to the product of the probabilities of the corresponding nodes. However, we need

to adjust these base probabilities in order to add further correlations between different graphs.

Next, we determine the number of edges in each graph. The number of edges in each of the generated

graph is derived from a normal distribution with mean µ = 100 and standard deviation σ = 10. The

proportional number of points in each cluster is generated using a uniform distribution in [α, β]. We

used α = 1, and β = 2. In order to generate a graph, we first determine which cluster it belongs to

by using a biased die, and then use the probability distributions to generate the edges. The key here is

that the different node distributions be made to correlate with one another. One way of doing so is as

follows. Let Z1 . . .Zκ be the κ different Zipf distributions. In this case, we used k − 20 in order to

generate the data set. In order to add correlations, we systematically add the probabilities for some of

the other distributions to the ith distribution. In other words, we pick r other distributions and add them

to the ith distribution after adding a randomly picked scale factor. We define the distribution Si from

the original distribution Zi as follows:

Si = Zi + α1 · (randomly picked Zj) + . . .

. . . + αr · (randomly picked Zq)

α1...αr are small values generated from a uniform distribution in [0, 0.1]. The value of r is picked to be

2 or 3 with equal probability. We use S1 . . . Sr to define the node probabilities. We used a clustering

input parameter of k = 20.

38

For all data sets (unless otherwise mentioned), the default length of the hash table was 500, and the

default number of hash functions was 15.

2.4.2 Evaluation Metrics

We used a variety of metrics for the purposes of evaluation. For the case of the synthetic data

sets, we used the cluster purity measure. For each generated cluster, we determined the dominant

cluster id (based on the synthetic generation identifier), and reported the average cluster purity over

the different clusters. The higher the cluster purity, the better the quality of the clustering. On the

other hand, this is not an effective metric for the case of real data sets. This is because the “correct”

definition of an unsupervised cluster is unknown in real data sets. Therefore we rely on two criteria

to test the effectiveness: (1) We explicitly examine the clusters anecdotally to illustrate their coherence

and interpretability. (2) A possible source of error can be the use of the sketch-based approximation.

Therefore, we test the percentage of time that the sketch-based approximation results in a different

assignment than one which is achieved by using the exact representation of the micro-clusters.

Therefore, for the purposes of evaluation only, we also retain the exact representations of the micro-

clusters which are constructed on the clusters maintained with the approximate sketch-based approach.

We note that this option is for effectiveness evaluation purposes only and is disabled during efficiency

measurements. Then, we compute the assignment using the exact as well as sketch-based computation.

We compute the fraction of time that the two assignments are the same. A perfect situation would be

one in which the value of this fraction is 1.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 2000 4000 6000 8000 10000

C
LU

S
T

E
R

 P
U

R
IT

Y

GRAPHS PROCESSED

a) QUALITY

DISK-BASED
SKETCH-BASED

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120 140 160
P

R
O

C
E

S
S

IN
G

 R
A

T
E

(E
D

G
E

S
/S

E
C

)
TIME (SECONDS)

b) PROCESSING RATE

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 300 400 500 600 700 800

C
LU

S
T

E
R

 P
U

R
IT

Y

LENGTH OF SKETCH TABLE

c) EFFECTIVENESS SENSITIVITY
(TABLE LENGTH)

DISK-BASED
SKETCH-BASED

 0

 500

 1000

 1500

 2000

 2500

 200 300 400 500 600 700 800

T
IM

E
 (

S
E

C
O

N
D

S
)

LENGTH OF SKETCH TABLE

d) EFFICIENCY SENSITIVITY
(TABLE LENGTH)

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20

C
LU

S
T

E
R

 P
U

R
IT

Y

WIDTH OF SKETCH TABLE

e) EFFECTIVENESS SENSITIVITY
(TABLE WIDTH)

DISK-BASED
SKETCH-BASED

 0

 500

 1000

 1500

 2000

 2500

 10 12 14 16 18 20

T
IM

E
 (

S
E

C
O

N
D

S
)

WIDTH OF SKETCH TABLE

f) EFFICIENCY SENSITIVITY
(TABLE WIDTH)

DISK-BASED
SKETCH-BASED

Figure 2. Performance on Synthetic Data Set (10K Graphs)

2.4.3 Clustering Evaluation

We first present results on effectiveness. For the case of real data sets, no realistic “ground-truth”

can be inferred for an unsupervised problem. Therefore, we will intuitively examine some anecdotal

evidence about the clusters in order to explore their natural coherence. Then, we will examine the accu-

racy of the sketch-based approximation with quantitative comparisons of the sketch based assignments

with those that use the original data.

We will first present some summary results for a group of clusters obtained by the algorithm in the

case of the DBLP data set. The most frequently occurring authors in these clusters are as follows:

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 600 900 1200 1500 1800A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

GRAPHS PROCESSED

a) ASSIGNMENT ACCURACY
(SKETCH APPROX.)

SKETCH-BASED
 0

 300

 600

 900

 1200

 40 60 80 100 120 140
P

R
O

C
E

S
S

IN
G

 R
A

T
E

(E
D

G
E

S
/S

E
C

)
TIME (SECONDS)

b) PROCESSING RATE

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

LENGTH OF SKETCH TABLE

c) EFFECTIVENESS SENSITIVITY
(TABLE LENGTH)

SKETCH-BASED

 0

 80

 160

 240

 320

 100 200 300 400 500 600

T
IM

E
 (

S
E

C
O

N
D

S
)

LENGTH OF SKETCH TABLE

d) EFFICIENCY SENSITIVITY
(TABLE LENGTH)

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

WIDTH OF SKETCH TABLE

e) EFFECTIVENESS SENSITIVITY
(TABLE WIDTH)

SKETCH-BASED

 0

 80

 160

 240

 320

 10 12 14 16 18 20

T
IM

E
 (

S
E

C
O

N
D

S
)

WIDTH OF SKETCH TABLE

f) EFFICIENCY SENSITIVITY
(TABLE WIDTH)

DISK-BASED
SKETCH-BASED

Figure 3. Performance on IGRAPH0103-07 Data Set

Cluster A: Frequent Authors: Jiawei Han, Umeshwar Dayal, Jian Pei, Ke Wang

Cluster A: Description: Sequential Pattern Mining Papers Published between 2000 and 2004

Cluster B: Frequent Authors: Herbert Edelsbrunner, Bernard Chazelle, Leonidas J. Guibas, John

Hershberger, Micha Sharir, Jack Snoeyink, Emo Welzl

Cluster B: Description: The cluster contains a group of papers on computational geometry.

Cluster C: Frequent Authors: Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, Prithviraj

Banerjee

Cluster C: Description: The cluster contains papers on parallel computing written between 1999 and

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 300 600 900 1200 1500 1800A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

GRAPHS PROCESSED

a) ASSIGNMENT ACCURACY
(SKETCH APPROX.)

SKETCH-BASED
 0

 300

 600

 900

 1200

 1500

 40 60 80 100 120 140
P

R
O

C
E

S
S

IN
G

 R
A

T
E

(E
D

G
E

S
/S

E
C

)
TIME (SECONDS)

b) PROCESSING RATE

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

LENGTH OF SKETCH TABLE

c) EFFECTIVENESS SENSITIVITY
(TABLE LENGTH)

SKETCH-BASED

 0

 200

 400

 600

 800

 100 200 300 400 500 600

T
IM

E
 (

S
E

C
O

N
D

S
)

LENGTH OF SKETCH TABLE

d) EFFICIENCY SENSITIVITY
(TABLE LENGTH)

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

WIDTH OF SKETCH TABLE

e) EFFECTIVENESS SENSITIVITY
(TABLE WIDTH)

SKETCH-BASED

 0

 200

 400

 600

 800

 10 12 14 16 18 20

T
IM

E
 (

S
E

C
O

N
D

S
)

WIDTH OF SKETCH TABLE

f) EFFICIENCY SENSITIVITY
(TABLE WIDTH)

DISK-BASED
SKETCH-BASED

Figure 4. Performance on IGRAPH0406-07 Data Set

2003.

It is clear that in each case, the clusters contain a coherent set of authors together with papers on the

same subject matter. This was generally the case across all the clusters. The aim of the above examples

is to simply provide an intuitive idea of the meaningfulness of the underlying clusters. We will provide

some quantitative measures slightly later.

2.4.4 Case Studies for Evolution Analysis

We will first present some examples of results obtained by our framework on the DBLP data set. We

will present the evolution trends in the underlying clusters with the passage of time. We will use some

42

 0

 0.2

 0.4

 0.6

 0.8

 1

 5000 10000 15000 20000A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

GRAPHS PROCESSED

a) ASSIGNMENT ACCURACY
(SKETCH APPROX.)

SKETCH-BASED
 0

 10

 20

 30

 40

 50

 60

 70

 80 160 240 320 400
P

R
O

C
E

S
S

IN
G

 R
A

T
E

(E
D

G
E

S
/S

E
C

)
TIME (SECONDS)

b) PROCESSING RATE

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

LENGTH OF SKETCH TABLE

c) EFFECTIVENESS SENSITIVITY
(TABLE LENGTH)

SKETCH-BASED

 0

 800

 1600

 2400

 3200

 100 200 300 400 500 600

T
IM

E
 (

S
E

C
O

N
D

S
)

LENGTH OF SKETCH TABLE

d) EFFICIENCY SENSITIVITY
(TABLE LENGTH)

DISK-BASED
SKETCH-BASED

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 12 14 16 18 20A
S

S
IG

N
M

E
N

T
 A

C
C

U
R

A
C

Y

WIDTH OF SKETCH TABLE

e) EFFECTIVENESS SENSITIVITY
(TABLE WIDTH)

SKETCH-BASED

 0

 800

 1600

 2400

 3200

 10 12 14 16 18 20

T
IM

E
 (

S
E

C
O

N
D

S
)

WIDTH OF SKETCH TABLE

f) EFFICIENCY SENSITIVITY
(TABLE WIDTH)

DISK-BASED
SKETCH-BASED

Figure 5. Performance on DBLP Data Set

of the clusters containing the author Jiawei Han as a frequently occurring node (among the clustered

objects) as an example. The most frequently occurring nodes (authors) in the corresponding clusters are

listed in Table I.

The cluster A is a big cluster with around 80 authors, and it spans a relatively long time period.

Other clusters (B, C, D, and E) are relatively small, and may also be temporally transient. The cluster A

was created when Jiawei Han published his paper in the first KDD conference in the year 1995. From

then on, this cluster was frequently updated, and actually it was one of the most frequently updated

clusters in DBLP. We will describe more details about this cluster later. The cluster B was created in

43

 0

 500

 1000

 1500

 2000

 2500

 3000

 40 60 80 100 120

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CLUSTERS

a) SYNTHETIC DATA SET

DISK-BASED
SKETCH-BASED

 0

 100

 200

 300

 400

 120 140 160 180 200 220

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CLUSTERS

b) IGRAPH0102-07 DATA SET

DISK-BASED
SKETCH-BASED

 0

 200

 400

 600

 800

 1000

 120 140 160 180 200 220

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CLUSTERS

c) IGRAPH0406-07 DATA SET

DISK-BASED
SKETCH-BASED

 0

 800

 1600

 2400

 3200

 2000 2200 2400 2600 2800 3000

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CLUSTERS

d) DBLP DATA SET

DISK-BASED
SKETCH-BASED

Figure 6. Sensitivity Analysis on the Number of Clusters

the year 1994, and our framework found that it was frequently updated from the year 1994 to 1996.

We noticed that Jiawei Han and Yongjian Fu published several papers during that time on the topic of

association rules. However, this cluster remained unchanged since 1999 and finally was replaced by

a new incoming graph due to the fact that it was rarely updated. The possible reason might be that

Yongjian Fu graduated after this point, and did not publish significantly after this point. The cluster

C mined through our framework reveals the co-authorship among Jiawei Han, Ke Wang and Jian Pei,

which accurately presents their research work on sequential pattern mining and frequent itemset mining

from 2001 to 2003. Clusters D and E are two relatively new clusters, and they continued to grow steadily

44

Cluster ID Most Frequent Coauthors Starting Year

A Jian Pei, Xifeng Yan, Philip S. Yu, and Anthony K. H. Tung 1995

B Yongjian Fu 1994

C Ke Wang and Jian Pei 2001

D Xiaolei Li and Hector Gonzalez 2003

E Deng Cai and Xiaofei He 2005

TABLE I

MICRO-CLUSTER EXAMPLES

till the end of the stream. We noticed that Xiaolei Li and Deng Cai were two PhD students supervised

by Jiawei Han, who started their research in 2003 and 2005 respectively. The information provided by

the clustering process is consistent with the results generated by our proposed framework.

Since cluster A is one of the most frequently updated clusters in DBLP, it is interesting to analyze

its aggregate distributions. This cluster represented a number of general data mining papers which

could not be neatly assigned to any particular subtopic of data mining. We show the frequencies of

the graphs in the cluster A at different time periods in Figure 7. The increasing frequency represents

more researchers are involved and more papers are published. From the figure, we can learn that the

community represented by the cluster A is growing fast in the past decade. This cluster increased in size

over the years, as the number of authors, collaborations, and papers also increased in size over time.

2.4.5 Quantitative Comparisons

Next, we will compare the effectiveness of the exact clustering approach with one that uses hash-

compressed micro-clusters. The effectiveness for both the exact and compression-based clustering ap-

proach for the different data sets are illustrated in Figures 2(a), 3(a), 4(a) and 5(a). In the case of the

45

 0

 10

 20

 30

 40

 10 20 30 40 50

F
R

E
Q

U
E

N
C

Y

GRAPHS PROCESSED (K)

CLUSTER A

Figure 7. Frequencies of Graphs in Cluster A

synthetic data set, we use cluster purity as the measure, whereas in the case of the real data sets, we used

the fraction of time that the same assignment was performed by both the two approaches. In the case

of real data sets, we computed the assignment with the use of both exact and sketch-based statistics,

and we checked if they were the same. For the synthetic data set, we note that the quality of the two

approaches is almost identical. The purity of the compression-based clustering approach is only slightly

lower than the purity of the exact clustering approach. For the real data sets, the percentage of time

that the two approaches result in the same assignment of an incoming data point to a given cluster was

typically over 90%. Some cases in which the distance differences were small between the first and sec-

ond choices resulted in a different ordering of assignments. However, such differences do not typically

result in qualitative differences in the underlying clustering process. This suggests that the sketch-based

approximation of the micro-clusters maintains the accuracy of the clustering process.

46

We also tested the efficiency of the two methods. All results were tested on a Debian GNU/Linux

server (double dual-core 2.4 GHz Opteron processors, 4GB RAM). In Figures 2(b), 3(b), 4(b) and 5(b)

we have illustrated the efficiency of the clustering method on different data sets. The progression of the

stream is illustrated on the X-axis, whereas the stream processing rate (the number of edges processed

per second) is illustrated on the Y -axis. Since the exact clustering approach uses a disk-based scheme

to handle the large space requirements of data sets, its processing rate is significantly lower than the

sketch-based approach. Furthermore, the size of the micro-clusters increases with progression of the

stream, since the number of edges tracked by each micro-cluster increases with stream progression.

Therefore, the technique slows down further with stream progression. On the other hand, the processing

rate of the sketch-based approach is significantly faster than the exact clustering approach, and it is not

affected by the progression of the stream. This is because the size and update of the memory-resident

sketch table remains unaffected with the progression of the data stream. The disk-based approach is

affected by the changes in the underlying trends. When new distinct edges are encountered, the scheme

slows down as it is unable to find the corresponding edges in the underlying statistics and adds to the

existing statistics on disk. The efficiency results with stream progression are illustrated in Figures 3(b)

and 4(b). It is evident that the processing rate of the disk-based approach is heavily influenced by the

distribution of the edges in the incoming graphs, while the sketch-based approach maintains a relatively

stable performance with time progression. The low variability of the processing rate of the sketch-based

method is a clear advantage from the perspective of practical applications.

We also tested the sensitivity of the clustering approach with sketch-table parameters. From the

estimation analysis in section 3, it is evident that we can obtain better quality results by increasing the

47

number of hash functions w and the range h. On the other hand, it is also not advantageous to increase

the sketch table size unnecessarily, since this results in inefficiency on account of poor cache locality.

It is desirable that a high quality clustering can be obtained with the use of a reasonably small sketch

table. In this section, we will conduct sensitivity analysis of the effectiveness and efficiency with sketch

table size.

The effectiveness and efficiency results of the two methods on the DBLP data set are illustrated in

Figures 5(a) and (b). It is evident that the two approaches resulted in a very similar assignment, and the

processing rate of the sketch-based approach is significantly higher than the disk-based approach. Since

the disk-based approach requires too much time to process the whole DBLP data set, we will use only

the first 5,000 graphs for sensitivity analysis.

Figures 2(c) and (d) illustrate the impact of sketch table length on effectiveness and efficiency of

the clustering process. We use the results of the exact clustering approach as the baseline. These results

are constant across the range of sketch-table parameters, because the exact clustering approach does

not use the sketch table. We can see that the clustering quality improves with increasing sketch table

length. This is because collisions are more likely to occur in smaller hash tables. On the other hand, the

efficiency is not affected much by the sketch table length due to the constant lookup time of hash tables.

We also reported the sensitivity analysis of sketch table length on the real data sets in Figures 3(c), (d),

4(c), (d) and 5(c), (d). As the case of synthetic data sets, when the length of the sketch table is larger than

500, the similarity of assignment between the two methods is more than 90%. Thus, for modestly large

sketch-table sizes, the approach is able to closely mimic the behavior of the exact clustering approach.

48

We also tested the sensitivity of the approach to the number of hash functions. The number of hash

functions was varied from 10 to 20. The results for the synthetic data sets are illustrated in Figures

2(e), and (f), and those for the real data sets are illustrated in 3(e), (f), 4(e), (f) and 5(e), (f). As in the

previous case, we present the results of the exact clustering approach as the baseline in each figure. The

processing time increases linearly when the number of hash functions increases. That is because the

process of determining the minimum value among all the cells requires us to look up each hash function

once. We also note that the quality is not affected very significantly by the number of hash functions.

While increasing the number of hash functions improves the robustness, its effect on the absolute quality

is relatively small. This implies that we can use a small number of hash-functions in order to maintain

efficiency, while retaining effectiveness.

It is also valuable to test the efficiency of the proposed approach over varying numbers of clusters.

The results for synthetic and real data sets are illustrated in Figures 6 (a), (b), (c) and (d), respectively.

As a comparison, we present the results of the exact clustering approach for each data set. In all figures,

the X-axis illustrates the number of clusters, and the Y -axis represents the running time in seconds.

The DBLP data set contains many authors and papers which tend to have numerous underlying clusters.

Because of this characteristic of the DBLP data set, we vary the number of clusters from 2000 to 3000.

We vary the number of clusters from 30 to 130 for the synthetic data set, and vary the number from 120

to 220 for the two sensor data sets. Other settings are the same as the previous figures. From Figures

6, it is evident that our approach scales linearly with increasing number of clusters for all data sets.

This is because the number of sketch tables and the distance function computations scale linearly with

increasing number of clusters.

CHAPTER 3

CLUSTERING GRAPH STREAMS WITH SIDE INFORMATION

Recently, there is an increasing need for mining dynamic graphs with the rapidly growing social

networks, Internet applications and communication networks (8)(46)(2)(7)(93). A graph stream is de-

fined as individual graph objects arrive continuously over time, which represent various activities among

nodes in the networks. Such activities can be discussion threads in social networks, user click graphs in

user web browsing sessions and authorship graphs in a dynamically updated scientific repository. The

nodes of each graph object are typically drawn from a massive domain, such as users in social networks,

IP addresses in Internet applications and terminals in communication networks. Although each graph

object is in a modest size, the total number of distinct nodes and edges in the aggregated data from the

stream can be extremely large.

Many existing approaches on graph stream mining have been devised to solve different tasks, in-

cluding clustering (8), classification (2), outlier detection (7), etc. All these approaches on graph streams

are primarily designed for mining the link structures among graph objects only. However, in many real

world applications, there are many side attributes associated with graphs that can be potentially highly

useful to the mining tasks. Some examples of such attributes are listed as follows:

• In social networks, many social activities are generated daily in the form of streams, which can

be naturally represented as graphs. In addition to the graph representation, there are tremendous

side information associated with social activities, e.g. user profiles, behaviors, activity types and

49

50

stream

…

User A

User D

User E User B

User C
User D

User E

User F User A

User G
Geography: USA

User Profiles: …

Type:GroupChat

Platform:mobile

…

G1 G2 G3 G4

Geography: USA

User Profiles: …

Type: Message

Platform:PC

…

USA

…

Figure 8. An Example of a (Directed) Social Activity Graph Stream with Side Information

geographical information. These attributes can be quite informative to analyze the social graphs.

We illustrate an example of such user interaction graph stream in Figure 8.

• Web click events are graph object streams generated by users. Each graph object represents a

series of web clicks by a specific user within a time frame. Besides the click graph object, the

meta data of webpages, users’ IP addresses and time spent on browsing can all provide insights

to the subtle correlations of click graph objects.

• In a large scientific repository (e.g. DBLP), each single article can be modeled as an authorship

graph object (8)(7). In Figure 9, we illustrate an example of an authorship graph (paper) which

consists of three authors (nodes) and a list of side information. For each article, the side attributes,

including paper keywords, published venues and years, may be used to enhance the mining quality

since they indicate tremendous meaningful relationships among authorship graphs.

51

Node:

Author 1

Node:

Author 2

Node:

Author 3

Gi
Venue:

ICDE

Year: 2010

Keyword:

Graph

Keyword:

Algorithm

…

Figure 9. An Example of an (Undirected) Authorship Graph with Side Information

Thus, it is much desired that the mining process can incorporate both links and side information to

further improve its effectiveness. In this chapter, we propose a framework to cluster graph streams with

side information. The challenges of this problem are two-fold:

(1) Both graphs and side information are drawn from massive domains, which can not be explicitly

held in the memory. For example, consider the number of users in a social network to be N . The poten-

tial number of distinct interactions (edges) can be as large as the order of N2. Many side information

such as IP address, tags, tokenized text and geographical information can also be extremely large. Even

the summaries of those incoming data are rapidly growing with the streams and eventually unable to be

explicitly stored. In addition, the problem becomes particular challenging in the stream scenario due to

the high rate of incoming streams. Storing data in the hard disks and offline processing will not be able

to efficiently handle the high volume of streams.

52

(2) Different types of side information give different indications on the nature of clustering, because

many side attributes are quite noisy and insignificant. In other words, each side information type has

its own degree that contributes to the underlining clustering. For example, while clustering individual

graphs as shown in Figure 9 from a large scientific repository, the aim is to group papers from the same

research area into the same cluster. Thus, the links representing co-authorship as well as attributes of

keywords and venues can be quite indicative to which cluster an individual graph object Gi should

be grouped into. However, the attributes including paper published years might not be that useful to

cluster individual papers, since many research papers in different areas appear in various specialized

conferences every year. Thus, considering both the linkage and side information, it is non-trivial to

qualitatively measure the importance of each side information type as well as links.

In this chapter, we first define a unified distance measure E-S Distance which combines the dis-

tances with regard to linkage and side information. Then we propose a novel optimization framework

DMO which dynamically learns and tracks the importance (weights) of links and side attributes. The

optimization framework on links and side attributes is periodically examined. It adjusts the weights to

make the graphs within a cluster to be as coherent as possible while the graphs from different clusters to

be as distinct as possible. Since efficiency is critical to stream algorithms and the data size is massive,

it is not realistic to explicitly store all received data in the memory. We introduce a sketch based com-

pression framework SGS(C), which can store the statistics of heterogenous data including edges and

side attributes. More importantly, we demonstrate that DMO can be efficiently and dynamically solved

in the sketch representation given by SGS(C). We show that the proposed approach consumes constant

53

memory with the growing incoming data and can be used to estimate all measures in the clustering

algorithm as well as the optimization framework DMO.

The rest of this chapter is organized as follows. In Section 3.1, we discuss related work on graph

stream clustering. In Section 3.2, we define a unified distance metric E-S Distance on graph objects

with side information. Then we present a novel optimization framework DMO to dynamically refine the

distance measures with the progression of the stream. In Section 3.3, we propose the statistics SGS(C)

and how to use SGS(C) to estimate in the clustering algorithm. We report the experiment results in

Section 5.4.

3.1 Related Work

In the literature, a number of techniques have been proposed to mine graph and network data

(84)(53)(25)(79). Traditional graph clustering methods are extensively studied on the node cluster-

ing setting of a single static graph, including graph partitioning (45), minimum cut (36), heterogeneous

networks (72) and dense subgraph mining (90). The context of node clustering is to group similar nodes

together based on linkage behaviors of a single large graph. Beside using only linkage information,

Zhou et al. (96) proposed a random walk based approach to cluster a single static graph by examining

structural and attribute similarities. All these techniques are only applicable to the nodes in a static

individual graph, rather than to cluster many graph objects whose nodes are drawn from a massive

domain.

A number of approaches are also proposed in the context of object clustering, which are designed

to cluster many graph objects. The difference between node clustering and object clustering is that

object clustering aims to cluster graph objects rather than nodes from a single graph. Many approaches

54

have been proposed to discover the substructures of graphs (85)(90)(94). However, mining subgraphs is

computationally expensive with multiple passes. Therefore they are not applicable to handle continuous

massive graph streams. (5)(20) are proposed to cluster objects in XML data. However, those approaches

cannot be scalable to a massive number of graphs and nodes, and are only able to handle disk-based

data rather than stream data. Recently, a number of techniques are proposed to mine graph streams.

(8) proposed a method to cluster massive graph streams by extending micro-clusters. (2) is designed to

construct the summary of graph streams and classify graph objects by scanning each of them only once.

A structural connectivity model is proposed in (7) to identify outliers in massive network streams. (93)

designed a graph sketch technique to estimate and optimize the queries on graph streams. However,

all above approaches only consider the structure information among graphs, whereas neglect the side

information associated with each graph object. Thus, many meaningful relationships and correlations

of graph objects might not be discovered in the mining process.

Using side information to analyze record-based data within feature spaces are extensively studied

in the context of distance metric learning. Distance metric learning studies the problem to learn proper

distance metrics over inputs. (83) proposed a global distance metric learning approach under a super-

vised setting. In addition, a number of approaches e.g. (26)(68) are designed to learn local adaptive

distance metrics with supervised information. In an unsupervised setting, Principle Component Analy-

sis (PCA) and Multiple Dimension Scaling (MDS) are widely used to reduce dimensions using a linear

strategy. A detailed survey on distance metric learning can be found in (88). However, these methods

cannot be easily generalized to graph data, especially to dynamic graph streams.

55

3.2 Distance Optimization

We first introduce some notations and definitions that will be used throughout the chapter. As-

sume we have a stream of graphs G denoted as {G1, G2, ..., Gn, ...}, where each graph Gi is drawn on

the subset of massive nodes N . We use set E to represent the set of distinct edges from all graphs:

E = {(X1, Y1), (X2, Y2), ..., (Xn′ , Yn′), ...}. Specifically, Xj and Yj are the two nodes of each edge

(Xj , Yj), and each graph Gi contains a subset of edges from set E . We assume the frequency of edge

(Xj , Yj) in a graph Gi is denoted by F (Xj , Yj , Gi). For example, in communication networks, the

frequency may represent the duration of conversations between two parties. The frequency may also be

implicitly set to 1 in many applications to reflect the link relationships between two nodes.

Associated with the graph stream, we also have d different types of side information denoted by

T = {T1, ..., Td}. For example, the side information in authorship graph streams may contain different

types of side attributes, such as publication years, conferences and paper keywords. We note that some

attributes are associated with the whole graph while some attributes can also be associated with indi-

vidual nodes or edges. We take the aggregated side attributes of nodes and edges, then append them to

the whole graph. In addition, each graph may contain multiple side attributes of the same type, e.g. a

paper has multiple keywords. Let Sl = {Sl1, ..., Sln, ...} be all distinct side attributes of type Tl, where

l = 1, ..., d. For example, if the type of Tl is “keyword”, Sl stores all the distinct keywords appeared

in the stream. The value of side attribute Sln of type Tl associated with graph Gi is represented as

V (Sln, Gi). For example, suppose the side attribute “database” as a type “keyword” appears in the

paper Gi for 3 times. Then its corresponding value is 3. Clearly, V (Sln, Gi) is 0 if graph Gi does not

contain the side attribute Sln.

56

Symbol Description

G = {G1, ..., Gn, ...} graph streams

E = {(X1, Y1) , ..., (Xn′ , Yn′) , ...} all distinct edges

T = {T1, ..., Td} d types of side information with the stream

Sl = {Sl1, ..., Sln, ...} all distinct side attributes of type Tl, where l = 1, ..., d

F (Xj , Yj , Gi) the frequency of edge (Xj , Yj)

V (Sln, Gi) the value of side attribute Sln in type Tl associated with Gi

C1, C2, ..., Ck k clusters

H(Ci) aggregated graphs in cluster Ci

N(Ci) the number of graphs in cluster Ci

TABLE II

NOTATIONS OF THE GPU FRAMEWORK

The goal of the stream clustering framework is to cluster graph objects into k clusters, which are

denoted by C1, C2, ..., Ck . Each incoming graph object from the stream is dynamically assigned to the

most appropriate cluster, and the cluster is updated in real-time. Suppose we have a cluster Ci containing

a set of graphs {Gi1 , ..., Gin}. The implicit graph defined by the aggregation of graphs {Gi1 , ..., Gin} is

denoted by H(Ci). In other words, H(Ci) represents the summarization of graphs in cluster Ci. We use

N(Ci) to denote the number of graphs in cluster Ci. The above notations are summarized in Table IV.

3.2.1 Preprocessing

We propose a general framework to cluster both directed and undirected graphs. The edges can

either be weighted or unweighted. The side information can also be of different formats. The notations

used in the main chapter implicitly assume each graph object in the stream is a directed graph. For

57

undirected graphs, we convert them to directed graphs by applying lexicographic ordering on node

labels. Thus, all notations can be simply reused for the case of undirected graphs after the conversion.

In the meanwhile, we assign the frequencies of all edges to be 1 if no frequency information is provided

in the graphs.

We consider a general case that each side attribute is numeric. The binary and categorical attributes

can be converted to numeric attributes in a straightforward way. Specifically, binary attributes are special

cases of numeric attributes. In addition, for categorical attributes, different categorical values can be

assumed to be separate binary attributes. For side attributes that are associated with individual nodes or

edges, we compute the aggregated values for each whole graph.

3.2.2 Distance Definitions

In order to cluster graph objects into a set of k clusters such that similar graphs are grouped into the

same clusters, a distance function is required to measure the similarities between graphs and clusters.

Suppose we have a newly arrived graph Gi. For each cluster Cj where j = 1, 2, ..., k, the distance

between Gi and Cj is calculated by a distance function d(Gi, Cj). The new graph Gi will be grouped

into its nearest cluster which has the minimum distance among all k clusters. We note that each new

graph contains both edge information and side information. Therefore, we define two types of distances

for edge and side information respectively. The quadratic edge distance between the graph Gi and

cluster Cj is defined as:

d2e(Gi, Cj) =

m
∑

t=1

(

F (Xt, Yt, Gi)−
F (Xt, Yt,H(Cj))

N(Cj)

)2

(3.1)

58

where m is the number of distinct edges received. In the above definition, all edges are enumerated and

summed to the distance measure. However, we notice that only the edges contained in Gi or H(Cj)

contribute to the summation. Since H(Cj) is the summarization of all graphs in the jth cluster, the

frequencies of edges F (Xt, Yt,H(Cj)) are normalized by the number of graphs in the cluster. Similarly,

the quadratic side distance between the graph Gi and cluster Cj on the side information of type Tl is

defined as:

d2s(Gi, Cj , Tl) =

ml
∑

t=1

(

V (Slt, Gi)−
V (Slt,H(Cj))

N(Cj)

)2

(3.2)

where ml is the number of distinct side attributes of type Tl.

Let vector ~D(Gi, Cj) = [de(Gi, Cj), ds(Gi, Cj , T1), ..., ds(Gi, Cj , Td)]
T . The dimension of ~D(Gi, Cj)

is d+1. Given the definitions of edge distance and side distances, we can further define the E-S distance

on edge and side information:

Definition 4 (E-S Distance) The E-S distance on edge and side information is defined as:

d2(Gi, Cj) = ‖Gi − Cj‖
2
A

= w0 · d
2
e(Gi, Cj) +

d
∑

l=1

(

wl · d
2
s(Gi, Cj , Tl)

)

= ~D(Gi, Cj)
TA~D(Gi, Cj), A < 0 (3.3)

59

where w0 is the weight of edge distance and wl(l = 1, ..., d) are the weights of side distances. Matrix A

is a diagonal matrix diag(w0, w1, ..., wd) representing the weights of edge and side distances.

In the above definition, matrix A is required to be positive semi-definite A < 0 to ensure the E-S

distance be non-negative.

3.2.3 Dynamic Multi-distance Optimization (DMO)

A straightforward E-S distance measure may be using a (d+1)-dimensional identity matrix Id+1 =

diag(1, 1, ..., 1) as the matrix A. Thus, all edge distance and side distances are assigned to have equal

weights 1. However, different types of attributes and link information give different indications to the

clustering. Suppose we cluster authorship graphs according to research areas. The coauthor relation-

ships and paper keywords are clearly more important than author affiliations and publication years. The

reasons are that researchers from the same area tend to collaborate, and papers of the same area are more

likely to share the same keywords. Therefore, assigning equal or manually predefined weights to E-S

distance cannot be generalized to vast real-world applications on massive graph streams.

In order to dynamically learn the weights of distances in matrixAwith the progression of the stream,

we consider minimizing the intra-cluster distances of graphs received so far:

min
A

k
∑

j=1

∑

Gi∈Cj

‖Gi − Cj‖
2
A (3.4)

60

A trivial solution of this optimization problem is A = 0. Thus, we further add a series of constraints to

regulate the pairwise inter-cluster distances between cluster centroids:

‖Ci − Cj‖A ≥ c, for i, j = 1, ..., k and i 6= j (3.5)

Here, the definition of inter-cluster distance ‖Ci − Cj‖A is a natural extension of Eq. Equation 3.3.1 c

in Eq. Equation 3.5 is an arbitrary positive constant which only affects the scales of weights. Thus we

set c to 1. The optimization framework is given below:

min
A

k
∑

j=1

∑

Gi∈Cj

‖Gi − Cj‖
2
A

s.t. ‖Ci − Cj‖A ≥ 1 (i, j = 1, ..., k and i 6= j)

A is diagonal, A < 0 (3.6)

The idea of the optimization is to let the graphs within the same clusters to be as coherent as possible

and graphs from different clusters can be separated well.

Lemma 7 The proposed optimization framework in Eq. Equation 5.10 is a convex optimization prob-

lem.

Proof 6 From the definition in Eq. Equation 3.3, it is clear that the objective function is a linear function

on A. Thus the objective function is a convex function. The inter-cluster distance constraints can

1L2-distance is not used here to prevent matrix A always being rank 1.

61

be rewritten as 1 −
(

‖Ci − Cj‖
2
A

)1/2
≤ 0 for i, j = 1, ..., k and i 6= j. Since

(

‖Ci − Cj‖
2
A

)1/2
is

concave, the inter-cluster distance constraints are convex functions. It is also straightforward to verify

the constraints on matrix A are convex (13). Thus, the optimization framework in Eq. Equation 5.10 is

a convex optimization problem.

We propose Dynamic Multi-distance Optimization (DMO) to solve the above optimization frame-

work, and we use DMO to dynamically refine the weights of graph edges and side attributes.

Lemma 8 (DMO) The solution of proposed optimization framework in Eq. Equation 5.10 can be ap-

proximated by solving the following form:

min
A

t

k
∑

j=1

∑

Gi∈Cj

‖Gi − Cj‖
2
A −

k
∑

i=1

∑

j=1,j 6=i

log (‖Ci − Cj‖A − 1) , t > 0, A < 0 (3.7)

Proof 7 Since the inter-cluster distance inequality constraints can be rewritten as 1−
(

‖Ci − Cj‖
2
A

)1/2
≤

0, we define the log-barrier of the problem as:

φ(A) = −
k
∑

i=1

∑

j=1,j 6=i

log (‖Ci − Cj‖A − 1) (3.8)

Eq. Equation 3.7 can be directly derived by applying the log-barrier to the objective function in Eq. Equa-

tion 5.10 (13). Here, t is a positive parameter of the logarithmic barrier method.

We will describe the details on efficient distance estimation in Section 3.3. Suppose the distances

on edges and side information are available, Eq. Equation 3.7 in DMO can be solved by using the

62

gradient descent algorithm. Specifically, the matrix A is initialized to be an identity matrix which

gives all distances equal weights. For every γ graphs clustered, a gradient descent search is applied

to Eq. Equation 3.7 and weights are dynamically optimized based on the newly received graph edges

and side attributes. By enabling DMO, the adjusted weights ensure that the intra-cluster distances are

minimized and the inter-cluster distances are maximized. Thus, the weights of both edge and side

information can be gradually and dynamically refined throughout the streams.1

3.3 Sketch-Based Clustering Framework

One challenge of stream mining is the growing size of available data. This problem is especially

critical on the graph data with side information. On the one hand, graphs are drawn from a massive set

of nodes in many real applications, and the number of possible edges are quadratic with the number of

nodes. On the other hand, the volume of side information can also be quite large. Furthermore, both

the sizes of edge and side information are growing with more and more data received. When the sizes

become extremely large, this brings enormous difficulties to maintain all data in the memory. In this

section, we propose a carefully designed sketch-based framework to maintain the statistics of incoming

data. The proposed framework considerably reduces the storage requirement and only requires constant

memory spaces with the streams. We also demonstrate how to use the statistics maintained to accurately

estimate the key measures in the clustering process as well as the optimization framework DMO.

1Since the weights are refined gradually, every update takes only a few search steps. We do not use the Newton

method because it is usually slower due to the matrix inverse at each update.

63

3.3.1 Preliminaries

Sketch approaches are generic methods to approximate aggregation functions in the data stream

domain. We adapt Count-Min sketch (19) to estimate frequency statistics of data points, and extend it

to the context of graphs with side information. Sketch approaches are generic methods to approximate

aggregation functions in the data stream domain. We adapt Count-Min sketch (19) to estimate frequency

statistics of data points, and extend it to the context of graphs with side information. In each sketch table,

we maintain a two-dimensional array with w ·h cells with w = ⌈ln(1/δ)⌉ rows and h = ⌈e/ǫ⌉ columns,

where e is the base of the natural logarithm. In addition, w different hash functions f1, ..., fw are

randomly generated from a pairwise-independent family. Each hash function corresponds to one of 1-

dimensional row arrays with h cells in the sketch. When a new data point di arrives, each hash function

fj is applied to di and maps it to a hash value vj with range [0, h − 1]. For the jth hash function, the

frequency of data point di is added to the vjth column on the jth row of the sketch. Thus, only one cell

on each row is updated, and there are w cells in the sketch table that are incremented by the frequency

of di.

In order to estimate the frequency of a data point, we map the data point to w cells in the sketch

table by applying the w hash functions. The frequency of the data point is determined by the minimum

value among all these w cells. We notice that the sketch table can only overestimate the actual values,

since the frequencies are non-negative and cells are updated by addition. As shown in (19), the estimate

guarantees that the overestimate is no more than ǫ · T with probability at least 1 − δ for a data stream

with T arrivals. This probabilistic upper bound shows that increasing w and h can get more accurate

estimation. Its sensitivity on the size of the sketch table has been studied in previous work (7)(6). In the

64

following, we will present how to apply sketches to statistics maintenance on graph streams with side

information.

3.3.2 Sketch Based Statistics

Instead of storing the explicit edges and side information, we maintain the following statistics:

Definition 5 The Statistics of Graphs with Side information SGS(C) maintained in the memory for each

cluster C is defined as {ESketch(C), ER(C), SSketch(C, 1...d), SR(C, 1...d), N(C), T (C)}. Each

component in SGS(C) is defined in details as:

• ESketch(C). one w · h sketch table storing first moments of edge frequencies.

• ER(C). the summation of second moments of edge frequencies: ER(C) =
∑

Gi∈C

∑m
t=1 F

2(Xt, Yt, Gi).

• SSketch(C, 1...d). d w · h sketch tables storing first moment values for d side attribute types

correspondingly.

• SR(C, 1...d). a vector with length d containing the summation of second moments of side at-

tribute values: SR(C, l) =
∑

Gi∈C

∑ml

t=1 V
2(Slt, Gi), l = 1, ..., d.

• N(C). the number of graphs in the cluster C .

• T (C). the most recent timestamp of the cluster being updated.

When a new incoming graph Gt is assigned to a cluster C , the statistics in SGS(C) are updated

as follows. For each edge (Xi, Yi), w hash functions are applied to Xi ⊕ Yi and the hash values are

used to determine w cells in the sketch table ESketch(C). Here, ⊕ is the concatenation operator on

the node label strings. Those w cells are incremented by F (Xi, Yi, Gt). In the meanwhile, the second

65

moment of its edge frequency is added to ER(C). Similarly, each side attribute in graph Gt is hashed

into SSktch(C, 1...d), and SR(C, 1...d) is updated based on the second moment value. Lastly N(C)

is incremented by 1 and T (C) is updated to the current time.

Since none of the components’ sizes in SGS(C) grow in the update, the statistics maintained always

keep a constant storage with the progression of the stream. Furthermore, another advantage of SGS(C)

is that the storage used by SGS(C) can be easily adjusted by setting the sizes of sketches to adapt the

local hardware requirement. We further observe that SGS(C) follows the additive property:

Lemma 9 The statistics maintained in Definition 5 follows the additive property. In other words,

SGS(C1 ∪ C2) can be computed as a function of SGS(C1) and SGS(C2).

Proof 8 The sketch table in ESketch(C1 ∪ C2) can be computed by additions of two-dimensional

arrays in ESketch(C1) and ESketch(C2). Similarly, SSketch(C1 ∪C2, 1...d) is also the summation

of sketch tables SSketch(C1, 1...d) and SSketch(C2, 1...d). For second moments,

ER(C1 ∪ C2)

=
∑

Gi∈(C1∪C2)

m
∑

t=1

F 2(Xt, Yt, Gi)

=
∑

Gi∈C1

m
∑

t=1

F 2(Xt, Yt, Gi) +
∑

Gi∈C2

m
∑

t=1

F 2(Xt, Yt, Gi)

= ER(C1) + ER(C2)

66

Likewise, SR(C1 ∪ C2, 1...d) = SR(C1, 1...d) + SR(C2, 1...d). N(C1 ∪ C2) is the number of total

graphs in C1 and C2, thus N(C1 ∪ C2) = N(C1) +N(C2). T (C1 ∪ C2) is the most recent timestamp

of C1 and C2, hence T (C1 ∪ C2) = max(T (C1), T (C2)) .

3.3.3 Algorithm with Side Information (GSSClu)

Here, we present the algorithm for clustering graph streams with side information. The input of

the clustering algorithm is the number of clusters k. The only information we store is the set of cluster

statistics {SGS(C1), ..., SGS(Ck)}. As the initialization step, we set A to be an identity matrix which

gives equal weights to the edge and side information. For the first k received graphs, we create k

singleton cluster statistics SGS(Ci), i = 1, ..., k respectively. While the initialization may not create a

well-separated clustering, these k clusters will be further stabilized in the subsequent steps. For each

new graph Gi, we compute the E-S distance on edge and side information between Gi and k clusters.

Assume Cmin is the closest cluster to Gi among all k clusters. We also want to measure the structural

spread of the cluster Cmin since Gi may not necessarily belong to cluster Cmin. The reason is that Gi

might be an outlier or represent a new cluster, despite that it has the shortest distance to Cmin compared

with other clusters. Thus, we define the structural spread of a given cluster Cj as a function of the

mean square radius of Cj:

S(Cj) =
p

N(Cj)

∑

Gi∈Cj

‖Gi − Cj‖
2
A (3.9)

67

Here, the spread S(Cj) is defined as the mean square radius of the cluster Cj multiplied with a factor

p.1 If the graph Gi is within the spread of Cmin, Gi is assigned to cluster Cmin and the statistics of

SGS(Cmin) is updated accordingly. Otherwise, the graph Gi may be an outlier or represent a new

born cluster. Therefore, we remove the most stale, namely least recently updated, cluster based on the

stored timestamps, and create singleton cluster statistics from Gi. In the meanwhile, for every γ graphs

obtained from the stream, we dynamically optimize the matrix A based on newly received information

using Eq. Equation 3.7 defined in DMO. Thus, the weights of both edge and side information can

be actively learned and adjusted with the evolving stream. The detailed description on the clustering

method GSSClu can be found in Algorithm 1.

3.3.4 Key Measures Estimation

Next, we will illustrate how to compute the measures in GSSClu using the statistics maintained by

SGS(C).

Lemma 10 The statistics maintained in SGS(Cj), j = 1, ..., k are sufficient to compute all measures

required by the clustering algorithm GSSClu.

Proof 9 From Algorithm 1, it is clear that the clustering process requires the following measures:

• ‖Gi−Cj‖
2
A (Eq. Equation 3.3): the E-S distance between a newly received graphGi and a cluster

Cj .

•
∑

Gi∈Cj
‖Gi − Cj‖

2
A (Eq. Equation 3.4): the intra-cluster distance of a cluster Cj where Gi

represents all graphs clustered in Cj .

1We use p = 3 in accordance with the normal distribution assumption.

68

Algorithm 1 Clustering Graph Streams with Side Information (GSSClu)

Input: k: number of clusters

Initialize cluster statistics set to be an empty set;

A = Id+1;

graph count = 0;

foreach newly received graph Gi do
graph count = graph count+ 1;

if i < k then
create singleton cluster statistics SGS(Ci) by inserting Gi;

continue;
end

for j = 1 to k do

compute ‖Gi − Cj‖
2
A defined in Eq. Equation 3.3;

end

let Cmin be the closest cluster;

if ‖Gi − Cmin‖
2
A < S(Cmin) then assign Gi to SGS(Cmin) else replace least recently updated

cluster statistics by singleton cluster statistics created from Gi;

if graph count % γ == 0 then
adjust A by optimizing Eq. Equation 3.7;

end

end

• ‖Ci − Cj‖A (Eq. Equation 3.5): the inter-cluster distance between two clusters.

• S(Cj) (Eq. Equation 3.9): the structural spread of a cluster Cj .

All these four distance measures are computed based on combinations of side information distances and

edge distance. We will only show how to compute the measure related to the side information due to the

space limitation. The computation in terms of the edges can be derived in a similar way.

69

E-S Distance of New Graphs: The distance between an incoming graph Gi and a cluster Cj on the

side information of type Tl is defined in Eq. Equation 3.2. It can be expanded as:

d2s(Gi, Cj , Tl)

=

ml
∑

t=1

(

V (Slt, Gi)−
V (Slt,H(Cj))

N(Cj)

)2

=

ml
∑

t=1

V 2(Slt, Gi)−

ml
∑

t=1

2V (Slt, Gi)
V (Slt,H(Cj))

N(Cj)

+

ml
∑

t=1

V 2(Slt,H(Cj))

N2(Cj)
(3.10)

Since Gi is the newly received graph from the stream, its side attributes are available and known exactly.

Therefore, the first term V 2(Slt, Gi) in Eq. Equation 3.10 can be computed exactly. In the second term,

only a non-zero value of both V (Slt,Gi) and V (Slt,H(Cj)) will add up to the summation. Hence,

instead of computing all ml side attributes, we only need to enumerate all side attributes contained

in Gi. V (Slt,H(Cj)) can be directly estimated from the sketch table SSketch(Cj , l) in SGS(Cj),

whereas the exact value of V (Slt, Gi) is known. N(Cj) is also stored in SGS(Cj). The third term

can be computed by performing pairwise self products of each row in SSketch(Cj , l). The minimum of

these w values divided by N2(Cj) is used as the estimate value.

Intra-cluster Distance: The intra-cluster distance of cluster Cj is defined as the sum of distances

between every graph clustered in Cj and Cj’s centroid. Different from the previous computation in

Eq. Equation 3.10, one should note that the graphs clustered in Cj are not explicitly stored. Hence, the

70

estimation from Eq. Equation 3.10 cannot be directly reused. For the side information of type Tl, it can

be expanded as:

∑

Gi∈Cj

d2s(Gi, Cj , Tl)

=
∑

Gi∈Cj

ml
∑

t=1

(

V (Slt, Gi)−
V (Slt,H(Cj))

N(Cj)

)2

=
∑

Gi∈Cj

ml
∑

t=1

V 2(Slt, Gi)− 2

ml
∑

t=1

V 2(Slt,H(Cj))

N(Cj)

+N(Cj)

ml
∑

t=1

V 2(Slt,H(Cj))

N2(Cj)

= SR(Cj , l)−

∑ml

t=1 V
2(Slt,H(Cj))

N(Cj)
(3.11)

From Eq. Equation 3.11, one can observe that SR(Cj, l) and N(Cj) are both explicitly maintained in

SGS(Cj).
∑ml

t=1 V
2(Slt,H(Cj)) in the second term can be estimated by pairwise products of each row

in SSketch(Cj , l). Thus, the intra-cluster distance can also be computed from the statistics maintained.

Inter-cluster Distance: The inter-cluster distance is defined as the distance between two clusters’

centroids in Eq. Equation 3.5. The inter-cluster distance in terms of side information Tl is:

d2s(Ci, Cj , Tl)

=

ml
∑

t=1

(

V (Slt,H(Ci))

N(Ci)
−
V (Slt,H(Cj))

N(Cj)

)2

=

ml
∑

t=1

V 2(Slt,H(Ci))

N2(Ci)
−

ml
∑

t=1

2
V (Slt,H(Ci))V (Slt,H(Cj))

N(Ci)N(Cj)

+

ml
∑

t=1

V 2(Slt,H(Cj))

N2(Cj)
(3.12)

71

As shown previously, the first and third terms can be computed by pairwise self products of sketches in

SGS(Ci) and SGS(Cj) respectively. Similarly, the second term can be computed by the product of

each row from SSketch(Ci, l) and SSketch(Cj , l), and the minimum of w rows is used as the estimate

value.

Cluster Structural Spread: From the definition in Eq. Equation 3.9, the spread of a cluster Cj

related to the side information type Tl can be represented as:

p

N(Cj)

∑

Gi∈Cj

d2s(Gi, Cj , Tl) (3.13)

Since
∑

Gi∈Cj
d2s(Gi, Cj , Tl) can be estimated from Eq. Equation 3.11, the structural spread can be

also computed from the statistics.

Therefore, all measures used in Algorithm 1 including DMO can be estimated by the statistics

maintained in SGS(Cj), j = 1, ..., k. We further observe that the accuracies of estimations are directly

related to the sketches, which are bounded by the probabilistic upper bound described earlier.

3.4 Experimental Results

In this section, we present the effectiveness and efficiency of the proposed clustering scheme with

a number of baselines on real data sets. We refer to our approach as the GSSClu method, since it is

designed for Graph Stream with Side Information Clustering.

3.4.1 Data Sets

We use two real data sets, namely CORA and IMDB, to evaluate the GSSClu method. We use two

real data sets to evaluate the GSSClu method. The details of these two data sets are listed as follows:

72

• CORA Data Set: The first data set that we use in the evaluation is the CORA data set1. The

CORA data set consists of 19,396 scientific articles in the computer science domain. In order to

compose author-pair graph streams from the scientific publications, we consider each scientific

article as a graph object with co-author relationships as edges as in (8)(7). We use the research

topics of research papers as the ground truth to evaluate the clustering quality. In the CORA

data set, all research papers are classified into a topic hierarchy, with 73 sub topics on the leaf

level. We use the second level topics as the labels to evaluate. There are 10 topics in total,

which are Information Retrieval, Databases, Artificial Intelligence, Encryption and Compression,

Operating Systems, Networking, Hardware and Architecture, Data Structures Algorithms and

Theory, Programming and Human Computer Interaction. Each paper has an average 3.3 authors.

For the side attributes, we obtain two types of side information to assist clustering: terms and

citations. The terms are extracted from the paper titles, and citations include a list of papers that

a given article cites. One paper cites 4.3 papers and has 6.1 distinct terms in average.

• IMDB Data Set: The Internet Movie Database is an online collection of movies and television

shows, which also contains the related information, such as actors, directors, production crew,

etc. We obtain a sample of IMDB data set, which covers ten-year movie data from the year of

1996 to 2005 in USA. We further process the data set to compose an actor-pair graph stream from

it. Each movie is considered as a graph object. Actors of the movie are nodes and actor-pairs

are considered as edges within the graph. In order to evaluate the effectiveness of the proposed

1http://www.cs.umass.edu/˜mccallum/code-data.html

73

clustering method, we use the movie genre as the label. We extract the movies of the top four

genres from the IMDB, including Short, Drama, Comedy and Documentary. In addition, we

remove the movies which have more than one label. In total, there are 9,793 movies, which

consist of 1,718 movies from the Short genre, 3,359 movies from the Drama genre, 2,324 movies

from the Comedy genre and 2,392 movies from the Documentary genre. One movie graph object

has 24.6 edges in average.

Moreover, we extract three side information types associated with the actor-pair graphs, namely

plot keywords, producers and directors. We extract words by tokenizing movie plots. After stop

words removal, the frequent words are used as keywords. We notice that the distinct keywords,

producers and directors from the whole data set are very large due to the data sparsity. In average,

one movie graph object has 16.3 keywords, 1.1 producers and 1.4 directors.

3.4.2 Methods

In order to demonstrate the effectiveness and efficiency of the proposed approach, we compare

GSSClu with a number of baselines. Since there is no known method to cluster graph streams with

side information, we use the following approaches to show the performance of GSSClu from different

perspectives:

(1) GMciro: (8) proposed GMicro to cluster graph streams by extending the micro-cluster model.

GMicro is the best known method to cluster fast and high volume graph streams by considering the

similarities of edge structures. However, this method only considers the linkage within graphs, and

cannot utilize the massive side information associated with graphs to enhance the clustering process.

74

(2) GSSClu [w/o opt.]: Since GMicro does not use side information to cluster, we use a variation

of GSSClu to demonstrate the power of dynamic distance optimization framework DMO as shown in

Eq. Equation 3.7 for a fair comparison. Instead of dynamically optimizing the importance among links

and various side attributes, this method assigns them with equal weights as a simplified version of

GSSClu. We refer to this approach as GSSClu [w/o opt.] in all following figure legends.

(3) Disk-based GSSClu: In order to show the effectiveness of the proposed sketch-based framework

SGS(C), we develop another variation of GSSClu by computing the exact values of all metrics in the

clustering algorithm. Due to the massive size of the incoming stream data and its growing nature, the

data can only be stored on the hard disk to avoid the out of memory problem. We refer to this approach

as Disk-based GSSClu. By comparing it with GSSClu, we can understand how close the sketch-based

framework SGS(C) can estimate the true values. However, one should note that Disk-based GSSClu is

about 5 to 10 times slower than GSSClu due to the long response time of disk queries.

3.4.3 Metrics and Settings

The goal of the evaluation is to examine if the proposed approach can effectively use linkage and

side information from the streams to improve the clustering results over the baselines. In order to test the

effectiveness of the proposed scheme, we use the cluster purity measure (8) to evaluate the clustering

quality. For each data set, the labels of graph objects are known but excluded from the clustering

process. We only use the labels to measure the quality of clustering. Specifically, for each generated

cluster, we compute the dominate class labels from the graph objects within the cluster. The purity of

each cluster is computed as the fraction of graph objects in the cluster which belong to the dominate

class label. We report the average purity scores of different clusters as the cluster purity measure. We

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000 10000

C
LU

S
T

E
R

 P
U

R
IT

Y

GRAPHS PROCESSED

GMicro
GSSClu [w/o opt.]

GSSClu
Disk-based GSSClu

 0

 0.2

 0.4

 0.6

 0.8

 0 1000 2000 3000 4000 5000 6000

C
LU

S
T

E
R

 P
U

R
IT

Y

GRAPHS PROCESSED

GMicro
GSSClu [w/o opt.]

GSSClu
Disk-based GSSClu

(a) CORA Data Set (b) IMDB Data Set

Figure 10. Cluster Purity

note that the cluster purity ranges from 0 to 1, and 1 represents a perfect clustering result. Clearly, a

good clustering will provide a high value of the cluster purity. For efficiency, we report the processing

rate for the proposed method and baselines.

Unless otherwise mentioned, the default parameter γ is set to be 250. We also test the sensitivity

over γ at the end of this section. The number of hash function is set to be 10 and the width of sketch

table is set to be 500 for all baselines and the proposed method. The default values of k are 10 for the

CORA data set and 8 for the IMDB data set, which are the same settings as in (7)(6).

3.4.4 Effectiveness Results

We first show the effectiveness results for the CORA and IMDB data sets. The effectiveness results

for GSSClu and baseline algorithms with increasing number of processed graphs are shown in Figures 10

(a) and (b). The number of graphs processed is shown on the X-axis, whereas the cluster purity is

illustrated on the Y-axis.

76

For the CORA data set, we can observe that all four approaches achieve stable performance along

the progression of the stream. The reason is that all these four approaches are designed to process

stream data. Since the CORA data set has 10 labels, a random assignment will generate clusters with

purity roughly at 0.1. From the figure, GMicro achieves about 0.33 cluster purity by using links only.

The performance of GSSClu [w/o opt.] is lower than GMicro although it uses both the links and side

information. This is because side information sometimes are quite noisy. Thus, assigning arbitrary (in

this case, equal) weights to links and side attributes may even degrade the clustering quality. We further

note that the proposed approach GSSClu has a purity score at around 0.45, which gains a performance

at least 10% over GMicro and GSSClu [w/o opt.] in terms of purity. This suggests that the distance

optimization DMO can indeed effectively learn the importance among links and different side attributes.

In the meantime, the performances of GSSClu and Disk-based GSSClu are quite similar. Disk-based

GSSClu is only slightly higher than GSSClu in term of purity, which can hardly be distinguished from

the figure. This further demonstrates that the sketch-based approximation maintains the accuracy of the

clustering process.

For the IMDB data set, the four approaches get similar performances for the first 1,000 received

graphs. GMicro gives an even higher purity score than GSSClu. The reason of this is that GSSClu

does not get enough statistics to infer the importance of links and side attributes with limited data. With

more and more graphs received, we can observe that GSSClu significantly outperforms both GMicro and

GSSClu [w/o opt.] with at least 0.25 purity improvement. We note that a random clustering assignment

would get a purity score from 0.25 to 0.3, since there are four roughly balanced labels in the IMDB data

set. The trend for the three baselines is similar to the one of the CORA data set. From the results of

77

 0

 200

 400

 600

 800

 1000

 100 150 200 250 300

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

TIME (SECONDS)

GMicro
GSSClu [w/o opt.]

GSSClu
 0

 200

 400

 600

 800

 1000

 50 100 150 200 250

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

TIME (SECONDS)

GMicro
GSSClu [w/o opt.]

GSSClu

(a) CORA Data Set (b) IMDB Data Set

Figure 11. Efficiency Results

both data sets, it is clear that GSSClu works especially well when a reasonable number of data points is

received, because the optimization framework DMO can dynamically adjust the weights and compute a

meaningful unified distance metric. In the meantime, GSSClu is superior to GMicro and GSSClu [w/o

opt.] with the stream, and the sketch-based estimation is very close to the exact computation. In other

words, the differences between the estimated values from SGS(C) and the exact values calculated by

Disk-based GSSClu are extremely small and do not typically lead to quantitative clustering difference.

3.4.5 Efficiency Results

We also test the efficiency results of GSSClu and baselines on the real data sets. Disk-based GSSClu

is 5 to 10 times lower than GSSClu due to the slow disk access. Thus, we do not show the efficiency

result on Disk-based GSSClu. The results of GSSClu and other two baselines are shown in Figure 11

(a) and (b). In each figure, the X-axis shows the progression of the stream in terms of time, whereas the

Y -axis illustrates the stream processing rate. The processing rate is computed based on the number of

78

edges processed per second. The reason that we do not use the number of graphs processed per second

is graphs could have skewed sizes. Some graphs are very large which need longer time to process,

and then its low processing rate in terms of the number of graphs does not reasonably represent the

underlying efficiency.

From both figures, one can observe that GMicro achieves the best efficiency. The reason that GSS-

Clu based approaches consume more running time is GMicro only processes linkage data. The side

information data has the same order of magnitude as the linkage data, which increases the running time

of GSSClu based approaches. For example, in the CORA data set, each graph has 3.3 nodes in average,

while it has 4.3 citations and 6.1 terms as the side information in average. In order to process such

large number of additional side information, it is natural that the GSSClu based approaches consume

more running time than the GMicro approach. Considering GSSClu based approaches, GSSClu and

GSSClu [w/o opt.] process the same amount of data. It is evident that both GSSClu and GSSClu [w/o

opt.] maintains a relatively stable processing rate with the progression of the stream. The figures show

that the sketch-based statistics SGS(C) can indeed process stream data with high efficiency because the

statistics remain the same memory consumption with constantly growing received graph objects. The

low variability in processing rate is a clear advantage for use in practice. We further notice that GSSClu

[w/o opt.] is slightly faster than GSSClu. This is quite natural, since GSSClu requires to periodically

optimize and adjust the weights of links and side attributes. Since the optimization framework DMO is

solved in the sketch representation, the optimization of GSSClu only adds a slight overhead on the run-

ning time. Considering the tremendous effectiveness improvement of the proposed approach GSSClu,

the overhead of running time is quite acceptable.

79

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 2000 4000 6000 8000 10000

C
LU

S
T

E
R

 P
U

R
IT

Y

GRAPHS PROCESSED

γ= 250
γ= 500

γ=1000
 0.4

 0.5

 0.6

 0.7

 0.8

 0 1000 2000 3000 4000 5000 6000

C
LU

S
T

E
R

 P
U

R
IT

Y

GRAPHS PROCESSED

γ= 250
γ= 500

γ= 1000

(a) CORA Data Set (b) IMDB Data Set

Figure 12. Sensitivity Analysis with γ on Purity

3.4.6 Sensitivity Analysis Results

In order to study how the parameter can affect the performance of GSSClu, we further conduct

sensitivity analysis with respect to γ. As shown previously, γ determines the frequency to update and

adjust the weights in the E-S distance computation. Thus, it is reasonable to optimize the weights for

every a few hundred received graphs. In Figure 12, we present the effectiveness results on both data

sets with three variations of γ values, namely 250, 500 and 1000. The number of graphs processed is

shown on the X-axis, and the cluster purity is illustrated on the Y-axis. In order to present the detailed

differences among different settings of γ, the cluster purity is plotted on a more enlarged scale. From

both figures, it is evident that GSSClu maintains stable quality for a wide range of parameter γ settings.

In the meanwhile, a smaller γ value slightly improves the cluster purity. The reason is that the weights

and E-S distances can be adjusted more promptly under a smaller γ setting to adapt the incoming

80

data. All these suggest that our proposed method is not sensitive to the setting of γ with respect to

the effectiveness and GSSClu is quite robust with the progression of the stream.

We also test the efficiency of the proposed method over different settings of γ. Similar to Figure 11,

we plot the time in seconds on the X-axis, and the processing rate with respect to edges per second on

the Y-axis in Figure 13. We use a smaller granularity on the processing rate than that of Figure 11 to

show the slight differences among three variations in γ. Based on the results shown on both figures, the

processing rates for different settings of γ are relatively stable with the increasing number of received

graphs. Furthermore, it is evident that a smaller value of γ can lead to lower processing rate of GSSClu.

This is quite natural, since more frequent optimization consumes more running time. However, the

overhead of the optimization framework DMO is minimal and does not affect the overall efficiency

much. This suggests that the GSSClu approach is an efficient and scalable algorithm over a wide range

of parameter γ settings.

We further perform the sensitivity analysis with regard to the number of clusters k. We first show the

effectiveness results with the number of clusters in Figure 14. We present the number of clusters k on

the X-axis, and the cluster purity score of the whole data set on the Y-axis. It is evident that the cluster

purity score increases when we increase the number of clusters. The reason is that a larger number of

clusters will generate clusters with finer granularity. In the meanwhile, we can observe that the cluster

purity score increases only by about 0.03 even when the number of clusters is doubled. In other words,

the cluster purity is highly consistent across all settings of k. This suggests that the proposed approach

GSSClu can constantly perform well under a variety of k settings, and its effectiveness is not sensitive

to the value of the number of clusters.

81

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

TIME (SECONDS)

γ= 250
γ= 500

γ= 1000
 400

 450

 500

 550

 600

 50 100 150 200 250

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

TIME (SECONDS)

γ= 250
γ= 500

γ= 1000

(a) CORA Data Set (b) IMDB Data Set

Figure 13. Sensitivity Analysis with γ on Efficiency

The efficiency results with the number of clusters k are illustrated in Figure 15. The number of

clusters is shown on the X-axis, and the processing rate of the whole data set is presented on the Y-axis.

We test the efficiencies with k ranging from 10 to 18 for the CORA data set and from 6 to 14 for the

IMDB data set. From the results on both data sets, it is clear that the GSSClu approach scales linearly

with the number of clusters k in terms of efficiency. Specifically, the smaller the number of clusters, the

higher the processing rate achieved. This is because the distance computation in GSSClu scales linearly

with the increasing number of clusters.

82

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 10 12 14 16 18

C
LU

S
T

E
R

 P
U

R
IT

Y

NUMBER OF CLUSTERS

GSSClu
 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 6 8 10 12 14

C
LU

S
T

E
R

 P
U

R
IT

Y

NUMBER OF CLUSTERS

GSSClu

(a) CORA Data Set (b) IMDB Data Set

Figure 14. Sensitivity Analysis with the Number of Clusters on Purity

 100

 200

 300

 400

 500

 600

 10 12 14 16 18

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

NUMBER OF CLUSTERS

GSSClu
 200

 300

 400

 500

 600

 700

 6 8 10 12 14

P
R

O
C

E
S

S
IN

G
 R

A
T

E
 (

E
D

G
E

S
/S

E
C

)

NUMBER OF CLUSTERS

GSSClu

(a) CORA Data Set (b) IMDB Data Set

Figure 15. Sensitivity Analysis with the Number of Clusters on Efficiency

CHAPTER 4

PU-LEARNING IN GRAPHS

In the literature, many research efforts have been devoted to graph classification (76)(84)(87)(48).

Conventional methods focus on mining discriminative subgraph features (17) under supervised settings,

which assume that both positive and negative examples are available. However, in many real-world

applications, the negative graphs are missing, while only the positive and unlabeled graphs are available.

Examples are as follows:

• In software engineering, the experts need to identify some program flows with errors as well as

some correct examples. Usually, it is easy to determine some program flows with obvious errors.

However it is almost impossible to confirm that a program is guaranteed to be completely bug-free

or absolutely correct with no errors.

• In molecular drug discovery, researchers are more likely to publish results of newly discovered

drugs with positive outcomes on a disease. However the results of chemicals with negative out-

comes can rarely be published in the literature.

Thus, it is much desirable that if one can train an accurate classification model on graph data with only

positive and unlabeled examples. This setting is also known as Positive and Unlabeled (PU) learning,

which aims to learn from data with only positive and unlabeled examples. It has been shown to be useful

in many data mining tasks (27)(57)(61)(89), such as text mining, uncertain data mining, stream mining,

etc.

83

84

Formally, the graph PU learning problem corresponds to training a model to identify a subset of

unlabeled graphs that are most likely to be negative graphs. These graphs are called reliable negative

graphs/examples. Positive and unlabeled learning is particularly challenging on graph data. Conven-

tional PU learning approaches can identify a group of reliable negative examples in the vector space.

These approaches assume that the full set of useful features is available (57)(61)(89). However, graph

data are not directly represented in a feature space, and they require an additional subgraph feature min-

ing process by evaluating the subgraph patterns in a graph data set. Usually the number of subgraphs

in a graph data set is extremely large. Only a small number of the features are relevant to the classifi-

cation task (17)(84). What makes this problem even more challenging is that the subgraph enumeration

problem and the subgraph isomorphism test problem are NP-hard. Thus, it is impossible to enumerate

all the subgraph features and adopt existing methods for PU learning.

Despite its value and significance, the PU learning for graph data has not been investigated in this

context. If we consider PU learning and subgraph feature mining problems together, the major research

problems are summarized as follows:

• Lack of Features: one problem with the graph PU learning lies in the complex structures and lack

of features in the graph data. Traditional PU learning techniques focus on identifying reliable

negative examples in a fixed feature space. However, graphs are not directly represented in a

meaningful feature space. For the graph data, we usually need to first find a set of subgraph

features, and then convert each graph into a vector based upon these features. The performance

of the PU learners depends strongly on what subgraph features are used.

85

• Lack of Negative Graphs: another problem with the graph PU learning lies in the absence of

negative training examples. Conventional graph classification approaches focus on mining dis-

criminative subgraph features (17)(84) under supervised settings. Figure 16 illustrates the su-

pervised graph classification process. In the subgraph feature mining step, it assumes that both

positive and negative graph examples are available. However, when all the negative graphs are

missing/unavailable, the conventional feature evaluation methods cannot work in this case.

• Inaccuracy of Reliable Negative Examples: Conventional PU learning algorithms work in a way

by iteratively adding new discovered negative examples to a reliable negative set. The classifi-

cation model is built based on the given positive set and reliable negative set at each iteration.

However, the reliable negative set in a graph scenario is prone to contain more false negatives

due to the fact that graph features do not naturally exist and are discovered gradually during the

iterations. In other words, the examples in the reliable negative set are not that “reliable” for the

graph data. Simply growing the reliable negative set will bring more errors to the classification

model at each iteration. This will eventually lead to severe quality degradation.

A straightforward solution to the above problems is the two-stage graph PU learning approach. In

this approach, we first mine a set of frequent subgraphs and use them as features. Then we apply tradi-

tional PU learning methods on the data with the above features. Obviously this approach is ineffective

due to the fact that many discriminative features are not the most frequent ones (17)(84). Thus some

discriminative features will be missed by the frequent subgraph mining approach.

In this chapter, we introduce a novel framework called GPU-Learning to mine useful subgraph

features using only positive and unlabeled graphs. Our framework is illustrated in Figure 17. We first

86

Figure 16. Supervised Graph Classification Process

Figure 17. Graph PU Learning Process

87

derive an evaluation criterion to estimate the dependency between subgraph features and class labels

based on a set of estimated negative graphs. We then devise an integrated framework to evaluate the

usefulness of subgraph features based on only positive and unlabeled graphs. This integrated framework

can optimize both graph feature selection and class label assignment concurrently by capturing their

dependencies. We iteratively update the evaluation of useful subgraph features and estimation of reliable

negative graphs in the graph data set. Finally we perform comprehensive experiments on real-world

graph classification tasks with only positive and unlabeled examples. The experiment results show that

the proposed graph PU learning method can effectively boost the graph classification performance using

only positive and unlabeled graphs.

The rest of the chapter is organized as follows. In Section 4.1, we discuss related work on graph

classification and PU learning. In Section 4.2, we propose an optimization framework on graph positive

and unlabeled learning, and analyze how to solve the optimization problem by solving two subproblems.

Section 4.3 reports the experimental results.

4.1 Related Work

To the best of our knowledge, this chapter is the first work on positive and unlabeled learning

problem for graph classification. Some research works have been done in related areas.

The problem of PU learning has been investigated by many researchers. In (23), the authors con-

ducted a theoretical study of PAC learning from positive and unlabeled examples. A number of practi-

cal approaches have also been proposed to study building classifiers from positive and unlabeled data

(61)(62)(89). Many of these algorithms follow a two-step strategy, which can be done by first extracting

a set of reliable negative examples, and then performing the classification task on the positive examples

88

and reliable negative examples by using classification algorithms such as Naive Bayes, SVM and EM.

For example, (62) proposed the S-EM method, which uses an algorithm called Spy in the first step to

obtain reliable negative examples. Then it uses EM algorithm as the second step to build classifiers. (89)

reported the PEBL method. It uses the 1-DNF in the first step, and runs SVM iteratively in the second

step for building classifiers. Despite extracting reliable negative examples from the unlabeled examples,

it is also possible to identify positive examples from the unlabeled data by iteratively growing both the

positive and reliable negative sets (29).

Besides the two-step strategy, (24) adopted a NB based method, PNB, to remove the effect of pos-

itive examples from the unlabeled set, but it requires the user to provide the probability of the positive

label. One-class SVM can also be utilized for the purpose to classify positive and unlabeled examples,

which uses only positive data to build a SVM classifier. One shortcoming of using one-class SVM to

handle PU learning problem is it does not consider useful information in the unlabeled examples.

A number of approaches recently have been reported to address different environments under the PU

learning setting, e.g. uncertain data (37), stream data (57), text (29)(61), and Web (89), etc. However,

as we have mentioned, there is no PU learning algorithm devised for the graph domain.

Mining subgraph features from graph data have also been studied in recent years. The aim of such

approaches is to extract useful subgraph features from a set of graphs by adopting some filtering criteria.

Depending upon whether the label information is considered in the feature mining process, the existing

works can roughly be classified into two types: unsupervised and supervised. In the unsupervised

approaches, the frequencies are used as the subgraph feature evaluation criterion, where the aim is to

collect frequently appearing subgraph features. For example, Yan and Han developed a depth-first search

89

algorithm: gSpan (85), which can build a lexicographic order among the graphs, and map each graph to

a unique minimum DFS code as its canonical label. Based on the lexicographic order, gSpan algorithm

adopts the depth-first search in the DFS code tree to mine frequent connected subgraphs efficiently.

There are also many other frequent subgraph feature mining approaches have been developed in the last

decade, e.g., FSG (54), MoFa (12), FFSM (39), and Gaston (67). Furthermore, supervised subgraph

feature mining approaches have also been proposed in the literature, such as LEAP (84), CORK (76),

which search for discriminative subgraph features for graph classifications. In addition, gSSC (50)

addresses the problem of feature selection for graph classification under semi-supervised settings.

4.2 Graph PU-Learning Framework

In this section, we will introduce the Graph Positive and Unlabeled Learning (GPU) framework

which is used for building graph classifiers on positive and unlabeled examples. We will first in-

troduce some notations and definitions. Assume that we have a set of graph objects, denoted as

D = {G1, G2, ..., Gn}. The graph objects in set D are defined as in Definition 6, and each graph

object is associated with a class label. Let Y = [y1, y2, ..., yn] where yi is the label of Gi. Thus yi can

be +1 (positive), −1 (negative) or 0 (unlabeled). The initial class labels in the graph data set D can only

be positive and unlabeled.

Definition 6 (Graph Object) Each graph object can be represented by G = (V,E,L), where V is a

set of vertices, E ⊆ V × V is a set of edges, and L is a function assigning labels to the vertices.

Definition 7 (Subgraph) Let G′ = (V ′, E′, L′) and G = (V,E,L) be two graphs. G′ is a subgraph of

G (G′ ⊆ G) iff there exist an injective function ψ : V ′ → V s.t. (1) ∀ v ∈ V ′, L′(v) = L (ψ(v)); (2)

∀(u, v) ∈ E′, (ψ(u), ψ(v)) ∈ E. If G′ is a subgraph of G, then G is a supergraph of G′.

90

Given a graph data set D and a minimum support θ, the frequent subgraphs are the subgraphs whose

frequencies are greater than or equal to the minimum support θ. Given a set of subgraph features

{g1, g2, ..., gd}, a graph object G can be represented as a binary vector x = [x1, x2, ..., xd]
⊤ with d

dimensions, where xi = 1 if subgraph feature gi ⊆ G; otherwise xi = 0.

In order to solve the graph PU learning problem, the key challenges are described as follows:

(a) How can we identify the reliable negative graphs among the unlabeled graphs? The most reliable

negative graphs are defined as a set of unlabeled graph which are most likely to be negative graphs.

(b) How can we evaluate the usefulness of the subgraph features based on only positive and unlabeled

graph examples?

The above two problems are closely related to each other in graph PU learning. The reasons are as

follows. In problem (a), we need to identify a set of reliable negative graphs. However, before the

reliable negative graphs can be estimated, a set of useful subgraph features must be available. The

performance of PU learning for estimating reliable negative graphs directly depends on the quality of

the subgraph features that are used. The better the feature set, the more effectively we can estimate the

reliable negative graphs. In addition, for problem (b), we need to select a set of useful features for the

graph classification task, where the feature evaluation performance directly depends on the quality of

the reliable negative graphs that are selected in the PU learning process. The more accurate estimation

we have on the negative graphs, the more effectively we can evaluate the useful subgraph features in the

feature selection process. In this case, the qualities of reliable negative examples and subgraph features

are closely correlated. Thus we propose the following optimization framework to concurrently identify

reliable negative graph examples and find useful subgraph features.

91

4.2.1 Optimization Framework

The goal of the framework is to simultaneously find a set of optimal subgraph features and identify

a list of reliable negative examples. We first formally introduce the notations as follows:

• S = {g1, g2, ..., gd}: a given set of subgraph features that we use to predict the labels. Usually

we want to find a subset T (T ⊆ S, T 6= ∅) which can optimize the evaluation criteria between

subgraph features and labels.

• t: an integer which determines the maximum number of subgraph features to be selected from the

set S.

• ǫ(T, Y): an evaluation function to estimate the dependency between the selected feature set T

and the labels of the graphs including the estimated labels for the unlabeled graphs. We note that

the value of evaluation function is controlled by two variables: one is the subgraph feature set T ,

and the other is the label assignments Y . We want to maximize the function by selecting the most

optimal subgraph features as well as estimating the negative examples accurately.

• T ∗: the optimal set of subgraph features T ∗ ⊆ S.

• X: a d × n matrix representing the graph data set D = {G1, G2, ..., Gn} where each Gi is

represented by a binary feature vector based on feature S. X = [x1, x2, ..., xn] = [f1, f2, ..., fd]
⊤,

where X = [Xij]d×n, and Xij = 1 iff gi ⊆ Gj , otherwise Xij = 0.

• C: an n × n diagonal matrix representing the confidence levels of (estimated) labels, i.e., the

probabilities of the graphs to have certain labels. In details, Cii indicates the probability of graph

Gi to have the class label yi. Since the positive labels are presumably given, the confidence of

92

positive graph examples is always 1, i.e., Cii = 1 when the label of graph Gi is positive. For

the case of estimated negative examples, Cii ∈ (0, 1] iff the label of graph Gi is estimated to be

negative.

In order to simultaneously optimize the subgraph feature selection and label assignment, we will

use the following framework:

(T ∗, Y ∗) = argmax
T⊆S,Y ∈{−1,1}n

ǫ(T, Y) s.t. |T | ≤ t. (4.1)

where we select a subset of subgraph features T from S, and the number of subgraph features in the set

T must be less than or equal to t.

In order to solve the above optimization problem, we assume that the optimal subgraph features and

the estimated labels for the unlabeled graphs should follow the properties of dependency maximization,

i.e., graphs with the same labels are more likely to have similar features. In details, from the subgraph

feature selection perspective, if we are given a set of estimated negative graphs among the unlabeled

graphs, the optimal subgraph features should be able to maximize the dependency between the features

and the labels of graphs including the estimated negative ones. From the PU learning perspective, given

a set of subgraph features, the optimal set of estimated negative graphs are those that can maximize

the dependency between the features and labels of the graphs. Dependency maximization has also

been successfully applied to many research topics, e.g. vector space dimensionality reduction (92) and

classification on multi-label graph data (49). Hilbert-Schmidt Independence Criterion (HSIC) has been

designed to measure statistical dependency based on the covariance operators in kernel space, which

93

we will use as the evaluation criterion for dependency in Eq. Equation 4.1. The details of HSIC and

its empirical estimate can be found in (33). Based on the representation of HSIC, we will have the

following graph PU learning framework:

max
T,Y

tr(KTHLYH)

s.t. |T | ≤ t, T ⊆ S, Y ∈ {−1, 1}n. (4.2)

where tr(.) is the trace of a matrix, and matrices KT , H , LY ∈ Rn×n. The matrix KT is the inner

product of the graph vector representations based on the selected subgraph features T , which can also

be considered as the kernel matrix of graphs with the kernel function K(Gi, Gj) = 〈DTxi,DTxj〉.

DT here is a diagonal matrix representing which features are selected in the feature set T . In details,

DT ii = 1 iff graph feature gi is selected in T ; otherwise DT ii = 0. H = [Hij]n×n is the “centering”

matrix, and Hij = δij − 1/n, where δij is the indicator function which equals to 1 when i = j and

0 otherwise. LY = [LY ij]n×n is the kernel matrix for graph labels including the estimated negative

graphs. The kernel function can be written as L(yi, yj) = 〈Ciiyi, Cjjyj〉, where the matrix C indicates

the confidence levels of graph label assignments.

It is clear that there are two sets of variables in the optimization framework, which are the selected

subgraph features T and a list of assigned labels Y . Both sets of variables can dynamically change

and need to be optimized to maximize Eq. Equation 4.2. In addition they are also coupled. Therefore,

optimizing them together can be extremely difficult. We will divide the optimization framework into

two subproblems, which are:

94

Algorithm optimize features (Graph Data Set: D, Labels: Y , Number of Selected Subgraph Features: t,
Minimum Support: θ);

begin

T = ∅;

Recursively visit the DFS Code Tree in gSpan:

g = currently visited subgraph in DFS Code Tree;

Compute the value of q(g) using Eq. Equation 4.4;

if |T | < t, then:

T = T ∪ {g};

else if q(g) > ming′∈T q(g
′), then:

remove the feature with the lowest quality from T ;

T = T ∪ {g};

if freq(g) ≥ θ and q̂(g) ≥ ming′∈T q(g
′):

Depth-first search subtree rooted from node g;

return T.

end

Figure 18. the Algorithm to Optimize Features

• Given the graph data set and labels, how to find the optimal subgraph features.

• Given the graph data set and a set of features, how to accurately estimate the class labels.

Our approach is to integrate the above two subproblems and optimize the whole framework concurrently.

In the following part, we will first show how to optimize the above two subproblems, and then integrate

them to solve the graph PU learning problem.

95

4.2.1.1 Optimize Subgraph Features

We will first describe how to optimize the selected subgraph features T by assuming the label as-

signments are given. We can rewrite the optimization Eq. Equation 4.2 as:

tr(KTHLYH)

= tr(X⊤DTDTXHCY
⊤Y CH)

= tr(DTXHCY
⊤Y CHX⊤DT)

=
∑

gi∈T

(f⊤giHCY
⊤Y CHfgi)

=
∑

gi∈T

(f⊤giMfgi)

whereM = HCY ⊤Y CH and fgi is the indicator vector for subgraph feature gi. Here fgi = [f1gi , ..., f
n
gi]

⊤,

and fkgi = 1 when the graph object Gk has the subgraph feature gi for k = 1, 2, ..., n. Let the function

h(gi,M) denote the value of f⊤giMfgi . We can observe that in Eq. Equation 4.2, tr(KTHLYH) equals

to the sum of h(gi,M) over all graph feature gi ∈ T . Therefore the problem of maximizing the value of

tr(KTHLYH) is equal to finding a subset of features that can maximize the sum of h(gi,M), which

can be represented as:

max
T

∑

gi∈T

h(gi,M) s.t. |T | ≤ t, T ⊆ S. (4.3)

96

Definition 8 (Feature Quality Measurement) Given a graph data set D = {G1, G2, ..., Gn}, its corre-

sponding labels yi for graph Gi and the label confidence level matrix C , the quality of a feature gi can

be measured by:

q(gi) = h(gi,M) = f⊤giMfgi (4.4)

where M = HCY ⊤Y CH .

In the above definition, a higher value of feature quality measurement q(gi) represents larger de-

pendency between this feature and the labels. In other words, good subgraph features should have high

q(gi) values. The solution to the subgraph feature optimization can be done by first computing the fea-

ture quality measurement q(gi) on each subgraphs in S, and then selecting the top t subgraph features

which have the highest values of q(gi). Before we introduce the algorithm to optimize features, we can

derive the following upper bound of q(gi):

Lemma 11 Given any two subgraphs g, g′ ∈ S, g′ is a supergraph of g (g′ ⊇ g). The feature quality

measurement of g′ is bounded by q̂(g) (i.e., q(g′) ≤ q̂(g)):

q̂(g) = f⊤g M̂fg (4.5)

where M̂ is defined as M̂ij = max(Mij , 0).

Proof 10

q(g′) = f⊤g′Mfg′ =
∑

i,j:Gi,Gj∈Ω(g′)

Mij

97

where Ω(g′) = {Gi|g
′ ⊆ Gi, 1 ≤ i ≤ n}. Since g is a subgraph of g′, we have Ω(g) ⊇ Ω(g′).

q(g′) =
∑

i,j:Gi,Gj∈Ω(g′)

Mij ≤
∑

i,j:Gi,Gj∈Ω(g′)

M̂ij

≤
∑

i,j:Gi,Gj∈Ω(g)

M̂ij = q̂(g)

Therefore, for any g′ ⊇ g, q(g′) is bounded by q̂(g).

In order to obtain the subgraph feature set S, we use a well-known depth-first search algorithm

gSpan (85) to enumerate frequent subgraphs. The key idea of gSpan is to first assign a unique minimum

DFS code to each graph, and then discover all frequent subgraphs by a pre-order traversal of the tree.

The minimum DFS codes of two graphs are the same iff they are isomorphic. We extend this idea and

utilize Lemma 11 to efficiently prune the DFS code tree with a branch-and-bound strategy.

We first initialize the set of selected subgraph features T to be empty. In the depth-first search

through the DFS code tree, we compute the quality of each current visited subgraph g using Eq. Equa-

tion 4.4. If the number of features in T is less than or equal to t, we will add the current subgraph

feature g into T . Otherwise we will compare the quality of subgraph g with the lowest quality subgraph

in T . If q(g) is higher which means the current visited subgraph g is a more useful feature than some

of subgraph features in T , we will replace the subgraph in T which has the lowest quality measure with

the subgraph feature g.

For each visited subgraph feature g, we also compute its upper bound q̂(g) before performing depth-

first searching rooted from g. If q̂(g) < ming′∈T q(g
′), we can safely prune all branches originating from

g. The reason is all supergraphs of g will have smaller values of q(.) than any subgraph features in T .

98

Thus skipping all supergraphs of g will not affect the quality of the final selected subgraph features but

provide higher efficiency. By doing search space pruning, the searching can be quite efficient than the

original gSpan since a large number of search spaces do not need to be visited. However, if q̂(g) ≥

ming′∈T q(g
′), we cannot prune this branch since it is possible that there exists a supergraph g′ ⊇ g that

is better than some subgraph features in T .

After all subgraphs in the DFS code tree are enumerated, the feature set T will be returned as the

optimal set of subgraph features. The detailed algorithm is illustrated in Figure 18. We note that in

order to continue to depth-first search the subgraphs rooted from g, g needs to satisfy two conditions:

one is the frequency of feature g has to be greater than or equal to the minimum support, and the other

is the upper bound of its supergraphs q̂(g) has to be greater than or equal to the quality measure of some

selected features in T .

4.2.1.2 Optimize Class Labels

In this subsection, we will solve the second subproblem, which is how to obtain the class labels

when the graph features T are given. The optimization can be approximated by building a classification

model on the data set corresponding to the given features, and utilizing the classifier to predict the class

labels of unlabeled examples. Any classifier which can output probability estimates should be sufficient

for this purpose. Here we select Support Vector Machine (SVM) as the classifier.

Conventional PU learning algorithms expand the reliable negative set by iteratively adding new

found negative examples. However, the challenge on the graph data are the quality of reliable negative

set depends on the effectiveness of the graph features used. Presumably the quality of the initial graph

features is low, but the feature set can be iteratively improved later. Therefore continuously growing a

99

Algorithm optimize labels (Graph Data Set: D, Labels: Y , Subgraph Features: T);

begin

P = {Gi|Gi ∈ D, yi = 1};

N = {Gi|Gi ∈ D, yi = −1};

Build an SVM classifier MSVM using P and N ;

for each graph Gi ∈ {Gj |Gj ∈ D, yj 6= 1}:

Predict class label of Gi by applying classifier MSVM ;

if(Gi is not negative), yi = 0, then continue;

yi = −1;

Cii = probability estimate from classifier MSVM ;

end

Figure 19. the Algorithm to Optimize Labels

negative set generated from the low-quality initial graph features can bring more and more errors into the

later iterations. In order to avoid this, at each iteration we reevaluate every unlabeled graph including

those previously classified as negative (Gi ∈ {Gj |Gj ∈ D, yj = −1}), since some of them may be

false negatives due to the previous ineffective graph features. Thus those graphs which are incorrectly

classified as negative based on the previous graph features can have the opportunity to make their class

labels corrected in the current run because of using a more accurate set of graph features.

Considering the positive graph examples are initially given in the data set with confidence 1.0,

we only label estimated negative examples in order to avoid adding noise to the positive set. For those

100

graphs classified as negative by classifier MSVM , we use the method in (82) to compute their probability

estimates by solving the following optimization problem:

min
p1,p−1

(r−1,1p1 − r1,−1p−1)
2

s.t. p1 ≥ 0, p−1 ≥ 0, p1 + p−1 = 1. (4.6)

where ri,j is the pairwise class probabilities of class labels i and j, i.e., the probability of an example

belongs to class i given that it can only belong to class i or j, and pi is the probability estimate of class

label i. The value of p−1 is assigned to the corresponding value in the label confidence level matrix C

for the negative graphs. The algorithm description on class label optimization can be found in Figure

19.

4.2.2 The GPU-Learning Algorithm

We can now make use of the solutions of the above two subproblems to optimize the evaluation

criterion in Eq. Equation 4.2. In order to start, we first set all unlabeled graphs to have label −1, use

them together with the positive graphs and perform the initial feature selection by a depth-first search

using the algorithm in Figure 18. It is clear that the quality of initial selected features is not optimal since

it assumes all unlabeled examples are negative, but it provides a good starting point for the following

optimization framework.

With the help of initial graph features, we use the algorithm in Figure 19 to classify unlabeled graph

objects and compute their probability estimates. Since the initial features are obtained by assuming

all unlabeled examples are negative, we only want to label the most possible negative graph objects.

101

Algorithm GPU (Graph Data Set: D, Labels: Y , Number of Selected Subgraph Features: t,
Minimum Support: θ);

begin

Set the labels of unlabeled graphs to be −1;

while not(L changes in the previous run) do

begin

Update feature set:

T = optimize features(D, Y, t, θ);
Update labels:

L = optimize labels(D, Y, T);
if (in the first iteration) then

Compute the mean µ and standard deviation σ of the probability estimates of classified

negative examples by MSVM ;

Do not update the labels of classified negative examples to be −1 if their probability

estimates are less than or equal to µ−m · σ;

end if

end

return a classifier built on D, T and L;

end

Figure 20. The GPU-Learning Algorithm

102

In details, we only select whose the probability estimates (p−1) are above a particular threshold β as

negatives and assign them class label −1. The value of β is picked to be m standard deviations1 below

the mean value of the probability estimates of all negative examples classified by MSVM . The values of

the label confidence level matrix C are also updated by the probability estimates correspondingly.

With the initial estimated negative examples, we optimize the graph features and label assignments

by using the algorithms in Figure 18 and Figure 19 in an iterative way. Different from the traditional PU

learning approaches, the graph features are dynamically selected at each iteration by using the function

optimize features, and each estimated negative graph is assigned a probability weight (confidence level)

to assist the feature selection. We note that although the depth-first search for graph features need to be

performed iteratively, only a small portion of the whole search tree is visited at each iteration because

of the upper bound pruning in Lemma 11. Figure 20 shows the whole framework.

4.3 Experiment Results

In this section, we will test our PU learning algorithm for graph classification on a number of real

data sets. We will present experiment results for both effectiveness and efficiency of the proposed

approach.

4.3.1 Data Sets

We used six real data sets in order to test our approach. The data sets used were from the following

tasks:

1Here we pick this factor m to be 2.

103

• Toxicology prediction (PTC) task1: The first four data sets were collected from the toxicology

prediction task, which contains the outcomes of biological tests for the carcinogenicity of chemi-

cals using the graph structure of chemical compounds on different animal models. There are four

data sets available corresponding to the animal model: (1) Female Mouse (FM), (2) Male Mouse

(MM), (3) Female Rat (FR) and (4) Male Rat (MR). Each of these data sets contains more than

300 chemical compounds. The chemical compounds in the data sets are assigned with carcino-

genicity labels for these animal models. On each animal model the carcinogenicity label is one of

{CE, SE, P, E, EE, IS, NE, N}. We used {CE, SE, P} as the positive labels, and {NE, N} as the

negative labels, similar to the setting in (49)(50)(52). Each chemical compound is represented as

a graph with an average of 25.7 vertices.

• Anti-cancer activity prediction (NCI1): We collected two more data sets from the PubChem web-

site2. The data sets consist of anti-cancer activity records on chemical compounds against two

types of cancers: breast (MCF-7) and leukemia (MOLT-4). For all chemical compounds, the

one with an active label will be regarded as a positive example, whereas the inactive one will

be treated as negative. The original data set are unbalanced, where the active label is around

5%. We randomly sampled 500 compounds which have balanced labels from each data set for

classification.

The summary of data sets is listed in Table III.

1http://www.predictive-toxicology.org/ptc/

2http://pubchem.ncbi.nlm.nih.gov

104

Name Graphs# Pos% Description

FM 349 41.0 Female Mouse Toxicology

MM 336 38.4 Male Mouse Toxicology

FR 351 34.5 Female Rat Toxicology

MR 344 28.2 Male Rat Toxicology

MCF-7 27784 8.19 Breast Cancer

MOLT-4 39765 7.89 Leukemia Cancer

TABLE III

SUMMARY OF EXPERIMENTAL DATA SETS. ”POS%” DENOTES THE PERCENTAGE OF

POSITIVE GRAPHS IN EACH DATA SET.

4.3.2 Methods

In order to show the effectiveness and efficiency of the proposed approach, we compared with a

number of baseline approaches. We refer to our approach as the GPU-Learning method. Since there

is no known method for PU learning for graph data, we used the standard PU learning approaches as

baselines, in which the features are represented by top-k frequent subgraphs generated by gSpan. We

compared with two variations of PU learning algorithms in (61):

• NB+SVM-I: In the traditional PU learning two-step strategy setting, it uses Naive Bayesian tech-

nique in the first step to obtain a set of reliable negative examples from the unlabeled set. Then it

runs SVM iteratively on the positive set and reliable negative set until converges.

• Spy+SVM-I: The difference between Spy+SVM-I and NB+SVM-I is in its initialization. Spy+SVM-

I randomly samples a set of positive examples as “spies”, and marks them as negative. Adding

105

spies to the negative set allows the algorithm to understand the characteristics of the unknown

positive examples in the unlabeled set.

In addition, it is also possible to solve the graph PU learning problem using a semi-supervised classifi-

cation algorithm by assuming there are no negative examples:

• gSSC+1-NN: (50) proposed a method to classify semi-supervised graphs data. The idea is that

the labeled graphs in different classes should be far from each other, while the ones in the same

class should be close to each other and the unlabeled graphs should be well separated. The nearest

neighbor (1-NN) classifier is used for classification while maintaining the above constraints.

4.3.3 Evaluation Metrics and Settings

In order to evaluate the effectiveness of graph classification, we used the popular F-score on the

positive class as the evaluation metric. F-score has also been widely used to measure the performance

of PU learning techniques in the literature (37)(57)(61)(62). F-score is defined as: F = 2× p×r
p+r , where

p is the precision and r is the recall of the test data set. F-score represents a harmonic mean between

recall and precision, where F-score has a high value only if that both precision and recall are high.

For all data sets, we randomly selected 30% of the graphs as testing set in each run, and used

the remaining graphs as training set. The baselines and GPU-Learning approaches were used to build

classifiers on the training set, and we evaluated the performance by applying the classifiers on the testing

set. In order to create a wide range of positive and unlabeled graph data for evaluation, we randomly

sampled a portion with percentage γ (γ varies from 0.2 to 0.8) from the graphs that have positive labels,

106

and used them as the positive set. The rest of the graphs that have positive labels with percentage (1−γ)

and all the graphs that have negative labels were treated as the unlabeled set.

Since the results of the PU classification can vary depending upon the randomly sampled test sets,

we repeated each test 10 times with different random seeds and reported the average as the final score.

Unless otherwise mentioned, the default value of γ is 0.5, the number of selected subgraph features is

30, and the minimum support of frequent subgraphs is 2% for PTC task and 5% for NCI1 task.

4.3.4 Effectiveness Results

We will first present the effectiveness results in terms of F-score for all six data sets. The effec-

tiveness results on F-score for all baseline approaches and GPU-Learning with different γ settings are

illustrated in Figure 21. The value of γ varies from 0.2 to 0.8 with an increment of 0.1, which is il-

lustrated on the X-axis. The classification quality in terms of F-score with respect to the ground truth

is illustrated on the Y -axis. It is clear that GPU-Learning can achieve a much performance compared

with other schemes. In details, gSSC+1-NN cannot achieve good performance since it is not designed

for positive and unlabeled data. GPU-Learning improves the F-score by at least 0.1 up to 0.4 compared

with NB+SVM-I and Spy+SVM-I in general. This is because many infrequent subgraphs can be very

useful and a set of dynamically selected graph features can indeed improve the classification quality.

The improvement on F-score keeps competitive throughout different settings of γ, which means the im-

provement of quality is not sensitive to the value of γ, even at some extreme cases. The GPU-Learning

algorithm can work especially well when only a small portion of positive examples are labeled. This

suggests the GPU-Learning framework is quite effective on the graph data over a wide range of percent-

age of labeled positive graphs. We further notice that the value of F-score will slightly increase when the

107

 0

 0.2

 0.4

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(a) FM (b) MM

 0

 0.2

 0.4

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(c) FR (d) MR

 0

 0.2

 0.4

 0.6

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 0.8

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F
-s

co
re

γ

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(e) MCF-7 (f) MOLT-4

Figure 21. F-score with Different γ

108

 0

 0.2

 0.4

 0.6

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(a) FM (b) MM

 0

 0.2

 0.4

 0.6

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(c) FR (d) MR

 0

 0.2

 0.4

 0.6

 0.8

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

 0

 0.2

 0.4

 0.6

 0.8

 20 25 30 35 40

F
-s

co
re

Number of Features

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

(e) MCF-7 (f) MOLT-4

Figure 22. F-score with Increasing Number of Features

109

γ increases on all six data sets. This is quite natural since larger number of positive examples provide

more useful information on the characteristics of the graphs.

We also tested the effectiveness of three baseline approaches and GPU-Learning approach to the

number of selected subgraph features. The number of selected subgraph features varies from 20 to

40. The results for six data sets are presented in Figure 22. The number of selected subgraph features

are illustrated on the X-axis, whereas the quality measure F-score is illustrated on the Y -axis. From

the figures, we can observe that the classification quality usually improves when the number of selected

features increases. That is because larger number of selected features can provide more detailed structure

information of graphs to the classifiers. It is clear that the GPU-Learning algorithm is consistently

superior to all three baselines in terms of classification quality on various settings of number of selected

subgraph features.

4.3.5 Efficiency Results

In this section, we present the running times for GPU-Learning and the three different baselines. In

addition, we evaluate the efficiency of pruning by using the upper bound for feature quality in Lemma

11. In GPU-Learning algorithm, we use the upper bound for feature quality to prune the search spaces

of subgraph enumerations. We compare with the same method but without the upper bound pruning.

We denote this method as GPU w/o Pruning, which uses gSpan to obtain a set of frequent subgraphs

and then selects the optimal set of subgraphs based on the feature quality measure. We note that GPU

w/o Pruning generates the same classification results as GPU-Learning, since pruning does not change

the set of selected subgraph features.

110

 0

 10

 20

 30

 40

 50

 60

 1.6 1.8 2 2.2 2.4

T
im

e
(s

ec
on

ds
)

Minimum Support (%)

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

 0

 10

 20

 30

 40

 50

 60

 1.6 1.8 2 2.2 2.4

T
im

e
(s

ec
on

ds
)

Minimum Support (%)

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

(a) FM (b) MM

 0

 10

 20

 30

 40

 50

 60

 70

 1.6 1.8 2 2.2 2.4

T
im

e
(s

ec
on

ds
)

Minimum Support (%)

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

 0

 10

 20

 30

 40

 50

 60

 1.6 1.8 2 2.2 2.4

T
im

e
(s

ec
on

ds
)

Minimum Support (%)

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

(c) FR (d) MR

 0

 200

 400

 600

 800

 4 4.5 5 5.5 6

T
im

e
(s

ec
on

ds
)

Minimum Support

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

 0

 200

 400

 600

 800

 4 4.5 5 5.5 6

T
im

e
(s

ec
on

ds
)

Minimum Support

NB+SVM-I
Spy+SVM-I

gSSC+1-NN
GPU-Learning

GPU w/o Pruning

(e) MCF-7 (f) MOLT-4

Figure 23. Running Time of the GPU Framework

111

The efficiency results of the different methods with respect to the minimum support on six data sets

are reported in Figure 23. The values of minimum support are illustrated on the X-axis, and the running

time is illustrated on the Y -axis. It is evident that all algorithms consume more running time when

decreasing the minimum support, because they would need to explore larger subgraph search spaces.

The running time of NB+SVM-I and Spy+SVM-I are almost identical due to the fact that they use

the similar two-step strategy, which makes their curves in the figure overlap. Although GPU-Learning

requires multiple searches over the DFS code tree whereas NB+SVM-I and Spy+SVM-I only need

once, it is clear that the running time of the GPU-Learning approach is comparable with the baseline

schemes because of the pruning technique adopted in the GPU-Learning framework. The running time

of the proposed GPU-Learning approach is quite acceptable, considering the tremendous qualitative

advantages over the baseline approaches.

We further observe that without pruning, the running time increases exponentially with the decrease

of minimum support. This is because the sizes of subgraph search spaces increase exponentially when

the minimum support decreases. It is interesting to see that GPU-Learning is at least twice more efficient

than GPU w/o Pruning, and the running time of GPU-Learning does not increase as much throughout

all data sets. The reason is that the upper bound of feature quality can effectively help prune the sub-

graph search spaces without decreasing the quality of classification. One can see that it is also possible

that GPU-Learning consumes almost the same or less running time as the baseline approaches when

the minimum support goes very low. Therefore the pruning power of the proposed method is a clear

advantage from the perspective of practical applications.

CHAPTER 5

APPLICATION IN SOCIAL NETWORKS: SOCIAL ROLE INFERENCE

As social networks become emerging platforms that people connect, communicate and share, there

are tremendous knowledge on social networks and the online social structures reflect the social relations

of users. Social role and status is one primary concept on individual users of a society. Social roles and

statuses are defined as the part that people act as members in the society. They represent the degree of

honor or prestige attached to the position of each individual (77).

In online social networks, people behave differently in social situations because they carry differ-

ent latent social roles and statuses, which entail various expectations that society puts on them. There

are diversified roles and statuses on different social network platforms. For example, the social roles

in Twitter can be advertiser, company supporter, content contributor, information receiver, etc; the so-

cial roles in the professional network Linkedin can be engineer, salesperson, recruiter, manager, etc.

Studying social roles and statuses is very helpful to gain the insights of the whole society as well as

manage social resources at the individual level. Understanding social roles and statuses is crucial to

many online social network applications, including advertising targeting, marketing, personalization,

recommendation, etc.

Conventional approaches (3)(56)(63)(65) use mining techniques on textual or categorical informa-

tion to predict user attributes in online social networks. Such information can be users’ tweets, profiles

and status updates. However, in a real social network, the textual and structured information is usually

unavailable and noisy due to the following three reasons:

112

113

(a) Facebook sign up form (b) A Facebook user

Figure 24. (a) Very few structured information is needed from users to use the Facebook social

network. (b) An example of Facebook user with over 300 friends but very few textual and categorical

data.

Missing Data: Previous research has shown that less than 1% of Twitter users produce 50% of the

content (81). A large number of online users view feed updates and make connections in online social

networks. However, they do not include much textual and categorical information (e.g., work place,

interests, geographic location, etc.) in their profiles since such information is mostly not mandatory in

social networks. Thus, there is very little textual and categorical data that can be used to infer the social

roles and statuses in this case. Figure 24(a) shows an example of Facebook sign up form, where most

structured information is not required to register. Figure24(b) shows a social network user with over

300 connections but with few textual and categorical information in the profile. Therefore, the network

structures can be extremely useful while inferring such users.

Outdated Data: A large number of users do not actively update their profiles based on their lat-

est states in a timely manner. Therefore, the inference based on such outdated data may lead to less

114

Figure 25. Three example profiles on a professional social network showing users use ‘non-standard’

and creative descriptions.

meaningful predictions and even have adverse effects while applying misleading inference results into

practice. However, such users may still use the social networks to connect with new friends and commu-

nicate with others. Thus, their network behaviors and characteristics might represent their latest states

and can be useful to infer the true social roles and statuses.

Non-standard Data: Recently online social network users often use ‘creative’ and ‘non-standard’

descriptions and tags in their profiles. Figure 25 illustrates three users in a professional social network

with creative profiles. Although all these three users belong to the same social role ‘software engineer’

in a professional network, they use ‘code monkey’, ‘geek’ and even a line of javascript code that prints

‘make cool stuff’ to describe themselves. Conventional mining approaches can not capture the real

meaning in such case and therefore are unable to handle ‘non-standard’ data properly.

115

As missing, outdated and non-standard data largely exist among online users in social networks, on

the one hand, the conventional methods cannot be applied to predict the social roles and statuses for such

massive users; on the other hand, manually labeling the social roles and statuses is a time-consuming

and error prone process, which can not be scalable for a real-world social network. Therefore, in this

chapter, we study the social role and status prediction problem in a semi-supervised setting. In other

words, a portion of social roles and statuses are known either by mining methods with high precision and

recall, or manually labeled by domain experts. The goal is to infer the roles and statuses of unlabeled

users via exploring network structures and characteristics, since the key uniqueness of social networks

is connecting people.

Despite its value and significance, the social role and status inference problem in social networks

has not been fully investigated. The problem is non-trivial and brings some unique research challenges.

First, what are the most essential factors and principles that can reflect social roles and statuses of

users? Can we discover some fundamental patterns from the networks that can identify the role or

status of online social network users? Second, since users in social networks are connected, can we

quantitatively evaluate if connected users have the tendency to associate with people having similar

social roles and statuses? Third, can we design a model to formalize this inference problem? How can

we incorporate the network characteristics of individual users as well as the social relationships with

neighbors/friends into the model in a principled way?

In this chapter, we first quantify the correlations between the network structures of users and their

social roles/statuses. We systematically study the effects and patterns on five social principles and

concepts that are related to the inference problem: homophily, triadic closure, reach, embeddedness and

116

structural holes. These correspond to a variety of key aspects of the social network, including neighbor

influence, tie density, centrality, tie strength & trust and connectivity. We find patterns of homophily,

the tendency of users to connect with users with similar social roles and statuses. We also show that

social principles and theories all provide different degrees of predictive powers of social role and status.

However, most of them are weak signals and cannot independently infer effectively.

We introduce the concept of Factor Conditioning Symmetry based on the social factors and formulate

an optimization framework to model the local effects upon social roles and statuses given the observed

social factors. To integrate the optimization framework with the homophily property, we define and

propose a factor graph based probabilistic model considering both the individual network structures and

the social relationships via network influence.

Our results on real social network data sets show that we can reliably infer the unknown social roles

and statuses with as few as 20% labeled users given, and our proposed model significantly outperforms

baselines on a number of measures. The results further suggest that network reach is the most important

social factor with regard to social roles/statuses. Structural hole is complementary with most additive

effect, and triadic closure is also useful, while the effect from strength of tie is more marginal.

The rest of this chapter is organized as follows. In Section 5.1, we discuss related work on social

role and status inference. In Section 5.2, we study the correlations between social networks and so-

cial roles/statuses and introduce our observations over a number of fundamental social principles. We

propose a factor graph based model to infer the social roles and statuses in Section 5.3. We report the

experiment results in Section 5.4.

117

5.1 Related Work

Traditionally, there have been efforts to study node classification and labeling in relational data.

Most of these approaches can be grouped into two categories: (1) methods using some non-network

features to train an traditional local classifier, e.g., Naive Bayes and decision trees. (2) methods using

network propagation on weighted edges to determine the unknown labels. A survey can be found in (3).

Recently, some research work studied the user profile inference problem under some specific set-

tings in the online network context. For example, editors in Wikipedia have been studied in (80). Email

users of Palin’s email network have been analyzed in (38). In (65), the authors studies user attribute in-

ference in university social networks by applying community detection. However, all previous methods

either focus on a specific network such as email network(56)(38) and Wikipedia network(80), or have

some strong assumptions of the data. Such strong implication does not exist in general social role and

status inference in social networks and thus cannot be directly applied. For example, user attributes from

university students(65), such as year and department, usually are identical within the same university

network community. However, a closely connected community in a general social network may corre-

spond to a division in a company, which include people from different roles, e.g., designer, engineer,

tester, salesperson and manager.

There has been some previous work on social network inference problems in different contexts.

For example, (66) proposed a method to infer latent social networks based on convex programming.

Social network relevance from interpersonal communication is studied in (22). The problem of network

diffusion and influence has been studied in (31)(11). (74) proposed a predictive model on inferring social

ties across heterogeneous networks. The privacy concerns related to public and private profiles have

118

been explored in (95). The role of the social network as a whole in online shopping has been investigated

in (35). In addition, graphical models have been applied on network data in many applications. Topical

factor graph has been introduced in (75) to analyze social influence. (73) used a factor graph based

model to perform sentiment analysis in social networks. (78) introduced a time-constrained factor graph

model to mine advisor-advisee relationships. All above previous work focuses on different dimensions

from social roles and statuses, thus cannot be directly applied. Also recently a number of approaches

have been proposed to infer and predict social links (10)(59), which are orthogonal to our goal: inferring

roles and statuses.

5.2 Correlating Social Roles and Statuses with Social Networks

In this section, we study a number of key sociology theories and quantitatively analyze the correla-

tions between the social roles / statuses of online users in social networks and these fundamental social

psychological concepts. One should note that we do not intend to enumerate all social factors, but rather

use representative social principles that reflect different aspects of network structures for individual

users.

5.2.1 Data

We first describe the data that we use in the analyses. We obtain a sample of network data from

Linkedin in the IT industry. We use the social network users in this specific industry because the readers

are probably more familiar with the background in the IT industry. There are four social roles that we

identify: Research & Development (R&D), Marketing & Sales (M&S), Human Resource (HR) and

Executives (EXE). These four roles cover the majority of individuals in the IT industry. The Executive

role is defined as users with an equivalent title of ‘Director’ or higher. The users in our data set are from

119

0

0.2

0.4

0.6

0.8

1

R&D M&S HR EXE

P
ro

b
a
b
ili

ty
 o

n
 H

o
m

o
p
h
ily

Connected

Random

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

P
ro

b
a
b
ili

ty
 o

n
 T

ri
a
d
ic

 C
lo

s
u
re

Local Clustering Coefficient

R&D

M&S

HR

EXE

(a) Evaluating Homophily (b) Triadic Closure Probability

0

0.02

0.04

0.06

0.08

0.1

1 178 355 532 709

P
ro

b
a
b
ili

ty
 o

n
 D

e
g

re
e
 C

e
n
tr

a
lit

y

Node Degree Centrality

R&D

M&S

HR

EXE

0

0.02

0.04

0.06

0.08

0.1

1 309 618 926 1234

P
ro

b
a
b
ili

ty
 o

n
 A

N
D

Average Neighbor Degree

R&D

M&S

HR

EXE

(c) Distribution of Degree Centrality (d) Distribution of Average Neighbor Degree

0

0.01

0.02

0.03

0.04

0.001 0.021 0.041 0.061 0.081 0.101

P
ro

b
a
b
ili

ty
 o

n
 E

m
b
e
d
d
e
d
n
e
s
s

Embeddedness

R&D

M&S

HR

EXE

0

50

100

150

200

250

R&D M&S HR EXE

N
u
m

b
e
r

o
f
L
in

k
e
d
 C

o
m

m
u
n
it
ie

s

(e) Distribution of Embeddedness (f) Illustrating Structural Holes

Figure 26. Correlating Social Networks with Social Roles/Statuses

120

a variety of companies, including Microsoft, HP, IBM, Facebook, etc. There are 45,162 users in the data

set and the average node degree is 214.86. We use a mixture of classification models built on available

textural/categorical information and manual labeling to identify and verify the social role/status of each

user. Although we only present the analyses and explanations based on four roles in the IT industry due

to the space limit, we also explored the social principles in a wide range of industries and in various

social roles, and the observations are similar.

5.2.2 Homophily

Homophily(64) refers to the tendency of users in social networks that have ties with similar other

individuals, which is also known as “birds of a feather flock together”. Homophily is a fundamental

characteristic of social networks. Singla et al. (71) discovered that people who chat with each other

are more likely to share interests in the MSN Messenger network. Leskovec et al. (55) also found the

tendency of ‘like to associate with like’ in viral marketing.

In order to study the homophily pattern on social roles and statuses, we show the probabilities of

connected users that have the same social role/status in Figure 26(a). We also plot the probabilities where

the social relations are created randomly as a baseline. One can observe that the random probabilities for

R&D role is much higher than other three roles. The reason is that a large portion of professionals are

in R&D role in the IT industry. From the figure, it is obvious that the similarities between friends with

regard to social roles are significantly larger than that of random pairwise users. This clearly suggests

that the homophily pattern exists on social roles and statuses. In other words, people have the tendency

to have ties with others who carry similar social roles and statuses.

121

5.2.3 Triadic Closure

Triadic closure is one of the most basic principles in social network theory on social relationships

(51)(35). It involves three individuals in a social network i, j, k where i is connected to both j and k. If

j and k are later connected, it may somehow imply that the connection between j and k is resulted from

their connections to i. Triadic closure has been widely used to study the strength and density of social

ties in sociology theories.

In order to quantitatively measure the basic pattern of triadic closure in social networks and its

relation with the social role and status of each user, we use Local Clustering Coefficient(51)(35)(22)

for each individual user in online social networks to study the effects of triadic closure :

Definition 9 (Local Clustering Coefficient [LCC])

LCCi =
2 · |{ej,k : j, k ∈ Nvi |}

|Nvi | · (|Nvi | − 1)
(5.1)

where vi is a given user node, Nvi is the set of vi’s neighbors, ej,k is the edge connecting users j and k,

and j, k are two neighbors of i.

The definition of Local Clustering Coefficient quantifies the closeness of neighbors to a clique.

Intuitively, it counts the number of triangles of user i with neighbors and then is normalized by the total

number of triangles if i is involved in a clique. The value of LCC should be in the range of [0, 1].

Figure 26(b) shows the probability of closure in terms of local clustering coefficient for four different

roles in the IT industry. One can observe that the LCC scores for the majority social network users are

within the range of [0.03, 0.1]. The curve of users with R&D role is the flattest among that of all the

122

roles. In addition, its peak has the largest LCC value at 0.0710. These indicate that the users in R&D

have a relative dense social ties compared with users in other roles. The reason might be users in

R&D usually only connect with co-workers and close friends, and their social roles as researchers or

developers do not require them to actively explore new connections as other roles, e.g., marketing and

sales. We further observe that the curve for HR role shifts left compared with other three curves. This

observation fits our intuition quite well: users as recruiter and staffing agent connect with a large number

of individuals from different backgrounds and communities. Thus, their social roles lead to relative low

density of ties. Furthermore, the curve representing users in M&S is similar to that of users in Executive

role. However, Executive role has a higher likelihood value at the peak, whereas M&S has a longer and

heavier tail. All these observations clearly show that users in online social networks show diversified

triadic closure patterns with different social roles because they function differently in the online society

as they do offline. In the meantime, we also note that the likelihood curves in Figure 26(b) have some

overlaps, thus using triadic closure alone is not effective enough to infer the social roles and statuses of

online social network users.

5.2.4 Reach

Another important aspect of networks we study is the reach of individual users in online social

networks. We first measure the reach of individuals in the network using Degree Centrality, which

is defined as the number of ties that a user has. The distribution of degree centrality is shown in Fig-

ure 26(c). We observe that the R&D role has a distinct probability distribution compared with other

three roles. The distribution of R&D role has a much steeper shape and 80% of users in R&D have

node degrees which are less than 200. We further note that the distributions of M&S and EXE roles

123

have longer tails (the tails are partially off the figure). This suggests that these two roles usually have to

access more resources of the network because of the properties of their social functions. Furthermore,

we notice that the EXE role has the lowest probability on low node degrees. This can also be explained

by its social functions.

We also explore the Average Neighbor Degree (AND) which represents the ‘2-hop’ reach of in-

dividuals in networks. The distribution of average neighbor degree is shown in Figure 26(d). To our

surprise, the distributions on all four roles have more obvious distinctions than that of degree centrality.

Similarly, R&D role has the steepest probability curve which represents that the number of ties asso-

ciated with R&D role is relatively small. H&R role has the flattest probability function and a heavier

tail. This is because users in the H&R role such as recruiters are more dependent on social resources via

their connections. In addition, the EXE role has a relative larger neighborhood spread than that of the

M&S role. We also test on Median Neighbor Degree (MND) and the distribution patterns are similar.

From these observations, we can infer that the reach of individual users in the network can potentially

indicate their roles and statuses, because the society puts on different expectations for each role/status.

5.2.5 Tie Strength and Trust

Another social principle that we study is the strength of tie. To quantitatively measure the strength

of tie associated with a user in a social network, we define Embeddedness of user vi as:

Definition 10 (Embeddedness)

Embvi =
1

|Nvi |

∑

vj∈Nvi

|Nvi ∩Nvj |

|Nvi ∪Nvj |
(5.2)

124

Embeddedness measures the degree that individuals are enmeshed in social networks (32). The em-

beddedness score of a node is high if the node has a large overlap of neighborhoods with its neighbors.

In sociology, a high embeddedness score also represents trust and confidence, since the presence of

mutual friends reduces the chance of misbehavior (21). We illustrate the probability on embeddedness

related to the four roles in Figure 26(e). As we can see, R&D, M&S and EXE have similar embed-

dedness likelihood distributions, where the curve of R&D is shifted to the right slightly. The overall

embeddedness score of HR is smaller than other roles. This indicate that the tie strength associated with

users in the HR role is relatively weak, although their neighborhood spread is larger than other roles.

5.2.6 Structural Holes

The last social principle we review is structural holes (15). In sociology, a structural hole represents

a user who connects with multiple non-interacting parties (3). The name comes from the intuition that

an “empty space” will be left in the network if remove such a user. A user of structural hole property

is structurally important because she connects diverse regions in the social network. We compute the

Number of Communities (NOC) that each individual user connects to, and use it to represent the

property of structural holes. In a professional network, we define each company/organization as a

community, since different companies do not interact closely and can be approximately regarded as

non-interacting parties.

We present the average number of connected communities for each role in Figure 26(f). Clearly,

different roles represent diverse degrees to structural holes. The values of HR and EXE are about four

and three times of the value of R&D, respectively. The high value of HR is because of their large number

125

of connections, whereas the social functions of executives require them to interact and collaborate with

multiple parties via their local bridges.

5.2.7 Summary

In summary, different social properties represent various patterns and can be utilized to differen-

tiate social roles and statuses, because these properties measure various aspects of network, e.g., tie

density, centrality, tie strength, etc. We also note that most social factors are weak signals and cannot

independently infer social roles and statuses effectively.

5.3 Modeling Social Roles and Statuses

In the previous section, we observe that a variety of social principles and concepts show different

degrees of correlations with social roles and statuses. We also discover that the existence of homophily

on social roles and statuses. In this section, we first introduce Factor Conditioning Symmetry (FCS) and

use the equality to model the local influence of individual nodes from observed social factors. Then,

combined with the homophily property, we propose a factor graph based model SRS to infer Social

Roles and Statuses by integrating these social factors and neighbor effects in a meaningful manner, such

that the model is capable to infer social roles and statuses effectively.

We first introduce some notations and definitions that we will use throughout the rest of the chapter.

Assume we have a partially labeled social network G = (V L, V U , E,X), where V L is the set of labeled

users with social roles/statuses and V U is the set of unlabeled users in the social network. We note that

the set of all users in the network V = {vi} = V L ∪ V U and V L ∩ V U = ∅. E represents the set

of all edges in the network. X is the set of five social factors of users we studied in Section 5.2, i.e.,

LCC, degree centrality, AND, LCC, embeddedness and NOC. Let vi be a user in the network, yvi be the

126

Symbol Description

G = (V L, V U , E,X) A partially labeled social network

V L the set of labeled users

V U the set of unlabeled users

E the set of edges

X the set of network attributes

vi a user in the social network

Y a vector of labels for all users

yvi the label for user vi

Xvi a vector of network attributes of user vi

Nvi the neighbors of user vi

R = {1, ..., r} r different social roles/statuses

hk(yvi ,Xvi) node feature function of vi with role k

fk,l(yvi , yvj) edge feature function of the edge between vi with role k and vj with

role l

TABLE IV

NOTATIONS OF THE SRS MODEL

label for user vi and Xvi be a vector of network attributes of user vi. Suppose the set of labels to be

R = {1, ..., r}, which contains r different roles/statuses. The goal is to infer the labels of users with

unknown social roles: yvi ∈ R where vi ∈ V U . The above notations are summarized in Table IV.

We have observed that the social factors in X have predictive powers on social roles in Section 5.2,

and the homophily property suggests that users tend to have similar roles to their connected neighbors.

In order to infer the unknown social roles and statuses, we construct a factor graph on a given social

127

network G based on the Markov assumption that (1) the social roles of yvi are influenced by the social

factors Xvi associated with users and (2) the social roles are also affected by their immediate neighbors

Nvi .

We define two types of feature functions in the factor graph which correspond to the above two

assumptions:

• Node Feature Function: hk(yvi ,Xvi) models the local influence upon the social roles and sta-

tuses given attributes Xvi .

• Edge Feature Function: fk,l(yvi , yvj) captures the homophily effects of connected nodes with

regard to the social roles and statuses.

where k and l are two indices that specify the labels of nodes. We define the above two feature

functions formally as follows.

5.3.1 Node Feature Function

As the node feature function represents the local information of each user vi and vi can be either

labeled or unlabeled, we define the node feature function based on whether vi is labeled:

hk(yvi ,Xvi) =

1, vi ∈ V L, yvi = k

0, vi ∈ V L, yvi 6= k

P k
vi , vi ∈ V U

(5.3)

128

We note that if the user vi has a label k, hk(yvi ,Xvi) equals to 1 since the ground truth is known.

Pvi represents a vector of probabilistic estimates on the roles R of user vi: Pvi = {P 1
vi , ..., P

r
vi}.

Since usually a social network has multiple roles and statuses rather than binary labels, inspired

by previous work on multi-class classifications (82), we compute the value of Pvi from the Pairwise

Probabilities of Roles and Statuses (PPR). We define the conditional pairwise probability as:

Definition 11 (Pairwise Probabilities of Roles and Statuses (PPR))

rk,l(vi,Xvi) = P (yvi = k|yvi = k or yvi = l,Xvi) (5.4)

It is clear that Eq. Equation 5.4 defines the probability of vi being the role/status of k conditioned on

vi being either k or l given the attributes Xvi . We further introduce the Factor Conditioning Symmetry

on PPR:

Lemma 12 (Factor Conditioning Symmetry (FCS))

rk,l(vi,Xvi) · P (yvi = l|Xvi) = rl,k(vi,Xvi) · P (yvi = k|Xvi) (5.5)

Proof 11 Based on the definition of PPR, we have:

rk,l(vi,Xvi) =
P (yvi = k|Xvi)

P (yvi = k or yvi = l|Xvi)
(5.6)

129

Similarly,

rl,k(vi,Xvi) =
P (yvi = l|Xvi)

P (yvi = k or yvi = l|Xvi)
(5.7)

With Eq. Equation 5.6 and Equation 5.7, we have:

rk,l(vi,Xvi)

rl,k(vi,Xvi)
=

P (yvi = k|Xvi)

P (yvi = l|Xvi)
(5.8)

which can be rewritten as Eq. Equation 5.5 in Lemma 12.

We use Lin’s method (60) to estimate PPR and we denote the estimated value as r̂k,l(vi,Xvi). From

the Factor Conditioning Symmetry, an effective probability estimate on Pvi should make both sides

in Eq. Equation 5.5 as close as possible. Therefore, we estimate the probability Pvi by solving the

following optimization problem:

min
Pvi

1

2

r
∑

k=1

r
∑

l=1

(

r̂k,l(vi,Xvi) · P
l
vi − r̂l,k(vi,Xvi) · P

k
vi

)2

s.t. P k
vi ≥ 0, k = 1, ..., r;

r
∑

k=1

P k
vi = 1. (5.9)

Eq. Equation 5.9 can be further converted to a quadratic programming form to solve:

130

Definition 12 (Factor Conditioning Optimization)

min
Pvi

1

2
P T
viQPvi (5.10)

where Qkl =

r
∑

m=1,m6=k

r̂2m,k(vi,Xvi), k = l

−r̂k,l(vi,Xvi) · r̂l,k(vi,Xvi), k 6= l

Lemma 13 Factor Conditioning Optimization in Eq. Equation 5.10 defines a convex quadratic pro-

gramming problem.

Proof 12 For any non-negative vector z,

zTQz =

1

2

r
∑

k=1

r
∑

l=1

(

r̂k,l(vi,Xvi) · zl − r̂l,k(vi,Xvi) · zk
)2

≥ 0 (5.11)

Therefore, the matrix Q is positive semidefinite and Eq. Equation 5.10 is a convex function.

5.3.2 Edge Feature Function

For the edge feature function, it models the influence from neighbors. We define it to be a function

with an input of two users vi and vj who are connected in the social network:

fk,l(yvi , yvj) =
|em,n ∈ E : yvm = k, yvn = l|

|vm : yvm = k| · |vm : yvm = l|
(5.12)

131

Intuitively, users with social roles/statuses k and l are more likely to be friends if these two roles are

frequently connected in the observed data. Thus, |em,n ∈ E, yvm = k, yvn = l| models the frequency of

k and l being connected in the observed data. Then it is normalized by |vm : yvm = k| · |vm : yvm = l|,

which defines the number of connections if k and l roles are fully connected.

5.3.3 Global Optimization

Let Y be a vector of labels of all users. With the node feature function and edge feature function,

we define the Social Roles and Statuses Inference Model (SRS) as follows:

Definition 13 (Social Roles and Statuses Inference Model [SRS]) The factor graph based social roles

and statuses inference model is:

P (Y) =
1

Z

(

∏

vi∈V,k

hk(yvi ,Xvi)

)

·

(

∏

vi∈V

∏

vj∈N(vi),k,l

fk,l(yvi , yvj)

)

(5.13)

where Z is a normalization factor and k, l are the labels of users vi and vj .

The above definition defines a factorized probabilistic model with joint distribution. It is desired

that the model can fit the data well, which is usually achieved by maximizing the likelihood of the given

data.

We demonstrate a simple factorized network with four users in Figure 27 to illustrate the factoriza-

tion. One can observe that the inference not only depends on the attributes of users, but also is affected

by neighbors. For example, the prediction of v2 is influenced by its own attributes Xv2 and neigh-

132

v2

v1

v3

v4

Xv4

Xv1

Xv3Xv2

fk,l(yv1,yv2)

fk,l(yv1,yv4)

fk,l(yv2,yv4)

fk,l(yv2,yv3)

fk,l(yv3,yv4)
hk(yv1,Xv1)

hk(yv2,Xv2) hk(yv3,Xv3)

hk(yv4,Xv4)

Figure 27. An example of factor graph with four users {v1, v2, v3, v4}. Each user vi is associated with

an attribute vector Xvi . hk(yvi ,Xvi) is the node feature function, whereas fk,l(yvi , yvj) is the edge

feature function defined on the edge between users vi and vj .

bors v1, v3, v4 via the edge feature function fk,l(yvi , yvj). The task is to infer the roles and statuses of

unlabeled users by maximizing the likelihood function P (Y).

We derive an iterative algorithm to maximize the joint probability distribution in Eq. Equation 5.13

based on the loopy belief propagation(47). We omit the details due to the space limit.

5.4 Experiment Results

Here we present the effectiveness of the proposed SRS model on social role and status inference.

We evaluate performance using precision, recall and F-score on each social role/status, as well as the

overall accuracy. We also conduct sensitivity analyses with the fraction of labeled users and study the

importance of social factors.

133

5.4.1 Data Sets

Beside the social network data set in the IT industry that we study in Section 5.2, we also extract

a social network data set in the Finance industry from Linkedin to evaluate the proposed model. There

are five social roles that we obtain in the finance industry which correspond to different social functions:

Finance, Sales, IT, Support and Operation. The social network users in our data set cover diverse major

companies in the finance industry, such as Goldman Sachs, Citi Group, Bank of America, Morgan

Stanley, JP Morgan, etc. We have 76,186 users in the finance industry data set and the avenge node

degree is 74.51. Similar to the IT industry data set, we employ a mixture of classification models built

on available textural/categorical information and human manual labeling to label and validate the roles

and statuses of the users.

5.4.2 Baselines

In order to demonstrate the effectiveness of the proposed model, we compare SRS against a number

of baseline approaches. Since the SRS model considers both the local network structures of individual

users and the effects from neighbor influence, we use the following approaches to show the performance

of SRS from different perspectives:

(1) SVM: We apply the SVM classifier on the social factors X as the first baseline. It evaluates the

performance with only the local structural information of individual nodes.

(2) Homophily: In Section 5.2, we have seen the property of homophily associated with social roles

and statuses. Previous studies on sociology(64) also suggest user attributes, such as ages, occupations

and interests, may be inferred from neighbors. Therefore, we employ a baseline that applies majority

134

0

0.2

0.4

0.6

0.8

Finance Sales IT Support Operation

P
re

c
is

io
n

SVM

Homophily

Community Detection

SRS

0

0.2

0.4

0.6

0.8

Finance Sales IT Support Operation

R
e
c
a
ll

SVM

Homophily

Community Detection

SRS

0

0.2

0.4

0.6

0.8

Finance Sales IT Support Operation

F
-s

c
o
re

SVM

Homophily

Community Detection

SRS

(a) Precision (b) Recall (c) F-score

Figure 28. Results on the Finance Industry Data Set

0

0.2

0.4

0.6

0.8

1

R&D M&S HR EXE

P
re

c
is

io
n

SVM

Homophily

Community Detection

SRS

0

0.2

0.4

0.6

0.8

1

R&D M&S HR EXE

R
e
c
a
ll

SVM

Homophily

Community Detection

SRS

0

0.2

0.4

0.6

0.8

1

R&D M&S HR EXE

F
-s

c
o
re

SVM

Homophily

Community Detection

SRS

(a) Precision (b) Recall (c) F-score

Figure 29. Results on the IT Industry Data Set

votes on the labels of neighbors to infer social roles/statuses. We refer to this method as Homophily,

which evaluates the network influence of social roles and statuses.

(3) Community Detection: Previous work (65) applies community detection methods on social

network users to infer user attributes. We evaluate the performance of adopting community detection

approaches to infer social roles and statuses.

135

5.4.3 Performance in Different Roles/Statuses

We first show the performance of the proposed model SRS as well as the baselines. We use 50%

users as the labeled nodes and the task is to infer the roles/statuses of the other 50% users. This set-

ting corresponds to a natural assumption of a real-world social network. The effectiveness results in

precision/recall/F-score on the Finance industry data set are illustrated in Figures 28(a), (b) and (c),

respectively. F-score represents a harmonic mean between precision and recall, where F-score has a

high value only if that both precision and recall are high. It is clear that SRS significantly outperforms

the baselines on all the measures. Specifically, SRS improves the F-score by 0.3 - 0.45 compared with

the SVM scheme. This is in accordance with our previous observations that the social factors have pre-

dictive powers regarding social roles but they are not discriminative enough to predict effectively. This

also suggests that the proposed SRS model can indeed integrate the social factors and network effects of

connected users to improve the effectiveness. In addition, SRS generally gives a 0.2 - 0.3 improvement

on F-score over the Homophily and Community Detection approaches. We further note that Homophily

and Community Detection approaches have similar performance across different roles. This is natural

since both methods only consider the property that similar users should be grouped together. We also

note that the improvement of SRS on three measures remains consistent throughout all the five social

roles in the Finance industry. This demonstrates that the proposed SRS model is consistently superior

to the different baselines, irrespective of the social roles and statuses that are inferred.

We also test the SRS model and baseline approaches on the IT industry data set with four social

roles. We present the results in Figures 29(a), (b) and (c) on precision, recall and F-score, respectively.

They once again show that the SRS model generally outperforms three baseline models in terms of

136

effectiveness. The above results on two real social network data sets clearly show that the SRS model

is able to use the social factors of individual users and network influence through neighbors in a robust

and consistent way over a variety of social roles/statuses from diverse social network contexts.

5.4.4 Sensitivity Analysis Results

It is also valuable to test the effectiveness of the proposed model over different settings of labeled

users. Therefore, we show the performance of SRS and baselines by varying the fractions that users

are labeled in the data sets in Figure 30(a) and Figure 30(b) for the Finance industry data set and the

IT industry data set, respectively. In both figures, the proportion of labeled users varies from 20% to

80% and it is illustrated on the X-axis. This creates a wide variety of scenarios of unknown social

roles in social networks. The overall accuracy over all social roles is illustrated on the Y-axis. From

both figures, it is evident that the performance generally improves with more users being labeled. This

is quite natural since larger number of observed users provide more useful insights on inferring social

roles and statuses. We also note that the improvement of SRS compared with baselines is consistent for

all settings on the fraction of labeled users. This means the improvement of performance is not sensitive

to the percentage that users are labeled. The robustness of the SRS model over large ranges of labeled

users shows that the proposed approach can effectively infer social roles and statuses under different

settings of observed data in social networks.

5.4.5 Social Factor Analysis

As we have shown incorporating social factors of individual users and neighbor influence effects in

the proposed model SRS can effectively infer social roles and statuses, we further study the importance

of different social factors used in SRS. We first compute the information gain of each social factor for the

137

0

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

O
v
e
ra

ll
A

c
c
u
ra

c
y

Fraction of Labeled Users

SVM
Homophily
Community Detection
SRS

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8

O
v
e
ra

ll
A

c
c
u
ra

c
y

Fraction of Labeled Users

SVM

Homophily

Community Detection

SRS

(a) Finance Industry (b) IT Industry

Figure 30. Sensitivity Analysis over the Fraction of Labeled Users

IT industry and present the results in Figure 31(a). Similar trend is also observed in the Financie industry

which is not shown due to space limitation. The single most important social factor is the average node

degree. This is line with our observations on investigating the distribution of average neighbor degree

in Figure 26(d). The second most informative social factor is the degree centrality, which also measures

the reach of networks. This is interesting that the average neighbor degree (representing the ‘2-hop’

reach) is even more useful than the degree centrality (representing the ‘1-hop’ reach). We suspect the

reason is that the direct degree of individual users is sometimes noisy, e.g. an engineer can connect with

over 1,000 users but a recruiter can also have less than 200 connections. However, the overall ‘friends

of friends’ may capture the local structures more effectively since the above noises can be balanced out

to a certain degree. In addition, the social factor NOC which illustrates the concept of structural holes

only has a slightly lower information gain score than that of the degree centrality. This demonstrates

that the connectivity and bridging effects can well reveal the roles and statuses of social network users.

We further show the overall accuracy by adding social factors one by one to SRS according to the

importance of social factors in Figure 31(a), i.e., first add AND, followed by Degree, then NOC, etc.

138

Social Factor IG

AND 0.2607

Degree 0.1881

NOC 0.1777

LCC 0.0872

Emebeddness 0.0663
0.6

0.64

0.68

0.72

SRS-1 SRS-2 SRS-3 SRS-4 SRS-5

O
v
e

ra
ll

A
c
c
u

ra
c
y

(a) Information Gain (b) Contribution of Social Factors

Figure 31. Relative Importance of Social Factors

The results are illustrated in Figure 31(b), where SRS-k denotes an SRS model with the top k social

features. We note that adding NOC to the model has a large gain on the overall accuracy, while adding

Degree only achieves a fairly small gain. This is due to the fact that structural hole is a complementary

concept not captured by reach via AND and Degree, while Degree and AND are both reach measures,

i.e., degree measures of the node itself and its neighbors, respectively. LCC is also helpful indicating

the usefulness of capturing the concept of triadic closures, while the effect of the strength of tie, i.e.,

embeddness, is more marginal. We also observe that there is a clear improvement on accuracy with more

social factors included. This demonstrates that each social factor we obtained has its own contribution

to the performance, since the social factors measure different aspects of the network structures.

CHAPTER 6

CONCLUSIONS AND CONTRIBUTIONS

In this thesis, we have explored graph structured based mining on graphs and networks. Towards this

direction, we thoroughly studied clustering graph streams and proposed a technique for creating micro-

clusters with hash-compressed data structures. By extending this idea, we further explored clustering

graph streams with side information since many graphs are naturally associated with side information

and auxiliary attributes. In the meantime, we analyzed how to apply graph structure techniques to

classify positive and negative graph objects. We also presented the social network applications of using

network structures. The contributions we made are summarized as follows:

• We presented a new algorithm for clustering massive graph streams. While the problem of clus-

tering graph data has been discussed in the literature, the currently available techniques are not

designed for fast data streams. Furthermore, available methods are not designed for the case of

massive graphs. In such cases, the number of distinct edges is too large to manage effectively.

This case leads to unique challenges because it is no longer possible to efficiently hold even

summary information. We addressed these challenges with the use of a novel hash-compressed

micro-cluster technique. The goal of this technique is to use a summarized micro-cluster repre-

sentation which can be efficiently maintained in limited space (and therefore in main memory).

This technique continues to maintain the effectiveness of the method without losing efficiency.

We also presented methods for performing evolution analysis with the resulting clusters. Since

139

140

clustering is a natural way of performing data summarization, the approach is able to provide

interesting insights into the evolving clusters. We presented case studies which show the interest-

ing clusters which were determined, as well as the evolution of the underlying clusters. We also

presented experimental results illustrating the effectiveness and efficiency of the method.

• We presented the first approach to cluster graph streams with side information. While many ap-

proaches have been devised to mine graph streams, they solely focus on the link structures of

graphs. Many graph objects in real applications contain various forms of side information, which

may be used to improve the clustering process. The problem is challenging, because not only it

requires to process high volume links and side information with efficiency, but also it is non-trivial

to incorporate side attributes to the graph clustering process. In order to use both links and side

attributes for the clustering model, we defined a unified distance metric E-S Distance based on

edges and side information. We further proposed an optimization framework DMO to dynami-

cally refine the distance metric by measuring the inter and intra cluster distances. A sketch-based

framework SGS(C) was also introduced to store the statistics of both edges and side information.

We demonstrated that SGS(C) can not only estimate the measures used in the clustering algo-

rithm, but also solve the optimization framework DMO efficiently. The experiment results showed

that the proposed method significantly outperforms the baselines in terms of effectiveness, while

it also maintains high efficiency and scalability.

• We presented a new framework for positive and unlabeled learning on graph classification. While

the problem of PU learning has been discussed in the literature, the currently available techniques

are not designed for the graph domain. The lack of feature representations of graphs leads to the

141

difficulty on identifying a set of reliable negative examples. In addition, the usefulness of features

cannot be obtained when the negative examples are missing from the data set. We addressed these

challenges by first deriving an evaluation criterion to estimate the dependency between features

and labels, and then proposing an integrated approach that concurrently updates both graph feature

selection and class label assignment. We presented experimental results illustrating the proposed

integrated framework significantly outperforms the previous methods.

• We studied inferring social roles and statuses in online social networks, where the categorical

and textural information is often missing, outdated and non-standard. We explored five social

principles and concepts that represent a variety of network characteristics and quantified their

relations with social roles and statuses. We proposed a novel probabilistic model SRS, which can

integrate both the local social factors of individual users and network influence via neighbors in

a principled way. The experiment results on two real social network data sets showed that the

proposed model greatly outperforms a number of baseline models and is able to effectively infer

in a wide range of scenarios. In this study, we discovered the patterns of homophily associated

with social roles and statuses. Among the social factors, we found that network reach is the most

important with regard to social roles/statuses. Structural hole is complementary with most additive

effect, and triadic closure is also useful, while the effect from strength of tie is more marginal.

We believe that our results provide a promising step towards understanding social behaviors and

social situations at the individual level and have many potential applications in social networks.

CITED LITERATURE

1. A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law graphs. In

Proceedings of the 20th international conference on Parallel and distributed processing,

IPDPS’06, pages 124–124, Washington, DC, USA, 2006. IEEE Computer Society.

2. C. C. Aggarwal. On classification of graph streams. In SDM, pages 652–663. SIAM / Omnipress,

2011.

3. C. C. Aggarwal. Social Network Data Analytics. Springer Publishing Company, Incorporated, 1st

edition, 2011.

4. C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams.

In Proceedings of the 29th international conference on Very large data bases - Volume 29,

VLDB ’03, pages 81–92. VLDB Endowment, 2003.

5. C. C. Aggarwal, N. Ta, J. Wang, J. Feng, and M. Zaki. Xproj: a framework for projected structural

clustering of xml documents. KDD ’07, pages 46–55, New York, NY, USA.

6. C. C. Aggarwal, Y. Zhao, and P. S. Yu. On text clustering with side information. In ICDE’12, pages

894–904.

7. C. C. Aggarwal, Y. Zhao, and P. S. Yu. Outlier detection in graph streams. In ICDE ’11, pages

399–409, Washington, DC, USA.

8. C. C. Aggarwal, Y. Zhao, and P. S. Yu. On clustering graph streams. In SDM, pages 478–489.

SIAM, 2010.

9. N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency mo-

ments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-

ing, STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM.

10. L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in

social networks. In WSDM ’11, pages 635–644, New York, NY, USA.

11. E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic. The role of social networks in information

diffusion. In WWW ’12, pages 519–528, New York, NY, USA.

142

143

12. C. Borgelt and M. Berthold. Mining molecular fragments: Finding relevant substructures of

molecules. In ICDM, pages 211–218, Maebashi City, Japan, 2002.

13. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY,

USA, 2004.

14. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the web. In

Selected papers from the sixth international conference on World Wide Web, pages 1157–

1166, Essex, UK, 1997. Elsevier Science Publishers Ltd.

15. R. Burt. Structural holes: The social structure of competition. Harvard University Press, 1995.

16. H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug signatures using discrimative

graph mining. In ISSTA, pages 141–152, Chicago, IL, 2009.

17. H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative pattern mining for effective classifi-

cation. In ICDE, pages 169–178, Washington, DC, 2008.

18. D. J. Cook and L. B. Holder. Mining Graph Data. John Wiley & Sons, 2006.

19. G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and

its applications. J. Algorithms, 55(1):58–75, Apr. 2005.

20. T. Dalamagas, T. Cheng, K.-J. Winkel, and T. Sellis. Clustering xml documents using struc-

tural summaries. In Proceedings of the 2004 international conference on Current Trends

in Database Technology, EDBT’04, pages 547–556, Berlin, Heidelberg, 2004. Springer-

Verlag.

21. E. David and K. Jon. Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

Cambridge University Press, New York, NY, USA, 2010.

22. M. De Choudhury, W. A. Mason, J. M. Hofman, and D. J. Watts. Inferring relevant social networks

from interpersonal communication. In WWW ’10, pages 301–310, New York, NY, USA.

23. F. Denis. PAC learning from positive statistical queries. In ALT, pages 112–126, London, UK,

1998.

24. F. Denis, R. Gilleron, and M. Tommasi. Text classification from positive and unlabeled examples.

In IPMU, pages 1927–1934, Annecy, France, 2002.

144

25. I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based multilevel algorithm for graph clustering.

KDD ’05, pages 629–634, New York, NY, USA. ACM.

26. C. Domeniconi and D. Gunopulos. Adaptive nearest neighbor classification using support vector

machines. In NIPS, pages 665–672, 2001.

27. C. Elkan and K. Noto. Learning classifiers from only positive and unlabeled data. In KDD, pages

213–220, Las Vegas, NV, 2008.

28. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut trees. Internet

Mathematics, 1:385–408, 2004.

29. G. P. C. Fung, J. X. Yu, H. Lu, and P. S. Yu. Text classification without negative examples revisit.

IEEE Transactions on Knowledge and Data Engineering, 18:6–20, 2006.

30. D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs.

In Proceedings of the 31st international conference on Very large data bases, VLDB ’05,

pages 721–732. VLDB Endowment, 2005.

31. M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence.

In KDD ’10, pages 1019–1028, New York, NY, USA.

32. M. Granovetter. Economic Action and Social Structure: The Problem of Embeddedness. The

American Journal of Sociology, 91(3):481–510, 1985.

33. A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with

hilbert-schmidt norms. In ALT, pages 63–77, Singapore, 2005.

34. S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases. In

Proceedings of the 1998 ACM SIGMOD international conference on Management of data,

SIGMOD ’98, pages 73–84, New York, NY, USA, 1998. ACM.

35. S. Guo, M. Wang, and J. Leskovec. The role of social networks in online shopping: information

passing, price of trust, and consumer choice. In EC ’11, pages 157–166, New York, NY,

USA.

36. J. Hao and J. B. Orlin. A faster algorithm for finding the minimum cut in a graph. SODA ’92, pages

165–174, Philadelphia, PA, USA.

145

37. J. He, Y. Zhang, X. Li, and Y. Wang. Naive bayes classifier for positive unlabeled learning with

uncertainty. In SDM, pages 361–372, Columbus, OH, 2010.

38. X. Hu and H. Liu. Social status and role analysis of palin’s email network. In WWW ’12 Companion,

pages 531–532, New York, NY, USA.

39. J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomor-

phism. In ICDM, pages 549–552, Melbourne, FL, 2003.

40. A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1988.

41. N. Jin, C. Young, and W. Wang. GAIA: graph classification using evolutionary computation. In

SIGMOD, pages 879–890, Indianapolis, IN, 2010.

42. D. R. Karger. Random sampling in cut, flow, and network design problems. In Proceedings of the

twenty-sixth annual ACM symposium on Theory of computing, STOC ’94, pages 648–657,

New York, NY, USA, 1994. ACM.

43. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

44. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.

Wiley-Interscience, 9th edition, Mar. 1990.

45. B. W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell

system technical journal, 49(1):291–307, 1970.

46. M.-S. Kim and J. Han. A particle-and-density based evolutionary clustering method for dynamic

networks. Proc. VLDB Endow., 2(1):622–633, Aug. 2009.

47. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques - Adaptive

Computation and Machine Learning. The MIT Press, 2009.

48. X. Kong, W. Fan, and P. S. Yu. Dual active feature and sample selection for graph classification. In

KDD, pages 654–662, San Diego, CA, 2011.

49. X. Kong and P. S. Yu. Multi-label feature selection for graph classification. In ICDM, pages 274–

183, Sydney, Australia, 2010.

146

50. X. Kong and P. S. Yu. Semi-supervised feature selection for graph classification. In KDD, pages

793–802, Washington, DC, 2010.

51. G. Kossinets and D. Watts. Empirical analysis of an evolving social network. Science,

311(5757):88–90, 2006.

52. T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classification. In NIPS,

pages 729–736, Vancouver, Canada, 2004.

53. B. Kulis, S. Basu, I. Dhillon, and R. Mooney. Semi-supervised graph clustering: a kernel approach.

ICML ’05, pages 457–464, New York, NY, USA. ACM.

54. M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313–320, San Jose,

CA, 2001.

55. J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing. ACM Trans.

Web, 1(1), May 2007.

56. A. Leuski. Email is a stage: discovering people roles from email archives. In SIGIR ’04, pages

502–503, New York, NY, USA.

57. X. Li, P. S. Yu, B. Liu, and S.-K. Ng. Positive unlabeled learning for data stream classification. In

SDM, pages 1075–1086, Sparks, NV, 2009.

58. A. M. S. G. R. M. Liadan O’Callaghan, Nina Mishra. Streaming-data algorithms for high-quality

clustering. In Proceedings of the 18th International Conference on Data Engineering,

ICDE ’02, pages 685–, Washington, DC, USA, 2002. IEEE Computer Society.

59. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In CIKM ’03,

pages 556–559, New York, NY, USA.

60. H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on platt’s probabilistic outputs for support vector

machines. Mach. Learn., 68(3):267–276, Oct. 2007.

61. B. Liu, Y. Dai, X. Li, W. S. Lee, and P. S. Yu. Building text classifiers using positive and unlabeled

examples. In ICDM, pages 179–188, Melbourne, FL, 2003.

62. B. Liu, W. S. Lee, P. S. Yu, and X. Li. Partially supervised classification of text documents. In

ICML, pages 387–394, San Francisco, CA, 2002.

147

63. A. McCallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in social networks

with experiments on enron and academic email. J. Artif. Int. Res., 30(1):249–272, Oct.

2007.

64. M. McPherson, L. S. Lovin, and J. M. Cook. Birds of a Feather: Homophily in Social Networks.

Annual Review of Sociology, 27(1):415–444, 2001.

65. A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you know: inferring user

profiles in online social networks. In WSDM ’10, pages 251–260, New York, NY, USA.

66. S. A. Myers and J. Leskovec. On the convexity of latent social network inference. In J. D. Lafferty,

C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, NIPS ’10, pages

1741–1749. Curran Associates, Inc., 2010.

67. S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference. In KDD,

pages 647–652, Seattle, WA, 2004.

68. J. Peng, D. R. Heisterkamp, and H. K. Dai. Adaptive kernel metric nearest neighbor classifica-

tion. In IN PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON

PATTERN RECOGNITION, pages 33–36, 2002.

69. S. Raghavan and H. Garcia-molina. Representing web graphs. pages 1–10. ACM Press, 2003.

70. M. J. Rattigan, M. Maier, and D. Jensen. Graph clustering with network structure indices. In

Proceedings of the 24th international conference on Machine learning, ICML ’07, pages

783–790, New York, NY, USA, 2007. ACM.

71. P. Singla and M. Richardson. Yes, there is a correlation: - from social networks to personal behavior

on the web. In WWW ’08, pages 655–664, New York, NY, USA.

72. Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous information networks with

star network schema. KDD ’09, pages 797–806, New York, NY, USA. ACM.

73. C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li. User-level sentiment analysis incorporating

social networks. In KDD ’11, pages 1397–1405, New York, NY, USA.

74. J. Tang, T. Lou, and J. Kleinberg. Inferring social ties across heterogenous networks. In WSDM

’12, pages 743–752, New York, NY, USA.

148

75. J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. In KDD

’09, pages 807–816, New York, NY, USA.

76. M. Thoma, H. Cheng, A. Gretton, J. Han, H. peter Kriegel, A. Smola, L. Song, P. S. Yu, X. Yan,

and K. Borgwardt. Near-optimal supervised feature selection among frequent subgraphs.

In SDM, pages 1075–1086, Sparks, NV, 2009.

77. H. Tischler. Introduction to sociology. Wadsworth Publishing Company, 2010.

78. C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo. Mining advisor-advisee relationships

from research publication networks. In KDD ’10, pages 203–212, New York, NY, USA.

79. G. Wang, Y. Zhao, X. Shi, and P. S. Yu. Magnet community identification on social networks. KDD

’12, pages 588–596, New York, NY, USA, 2012.

80. H. T. Welser, D. Cosley, G. Kossinets, A. Lin, F. Dokshin, G. Gay, and M. Smith. Finding social

roles in wikipedia. In iConference ’11, pages 122–129, New York, NY, USA.

81. S. Wu, J. M. Hofman, W. A. Mason, and D. J. Watts. Who says what to whom on twitter. In WWW

’11, pages 705–714, New York, NY, USA.

82. T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multi-class classification by pairwise

coupling. J. Mach. Learn. Res., 5:975–1005, Dec. 2004.

83. E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application to

clustering with side-information. In Advances in Neural Information Processing Systems

15, pages 505–512. MIT Press, 2002.

84. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In

SIGMOD, pages 433–444, Vancouver, BC, 2008.

85. X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, pages 721–724,

Maebashi City, Japan, 2002.

86. X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In Proceedings of the ninth

ACM SIGKDD international conference on Knowledge discovery and data mining, KDD

’03, pages 286–295, New York, NY, USA, 2003. ACM.

87. X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based approach. In SIGMOD,

pages 335–346, Paris, France, 2004.

149

88. L. Yang and R. Jin. Distance Metric Learning: A Comprehensive Survey. Technical report, Depart-

ment of Computer Science and Engineering, Michigan State University, 2006.

89. H. Yu, J. Han, and K. C.-C. Chang. PEBL: positive example based learning for web page classifi-

cation using SVM. In KDD, pages 239–248, Edmonton, AB, 2002.

90. Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Out-of-core coherent closed quasi-clique mining from

large dense graph databases. ACM Trans. Database Syst., 32(2), June 2007.

91. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data clustering method for very

large databases. In Proceedings of the 1996 ACM SIGMOD international conference on

Management of data, SIGMOD ’96, pages 103–114, New York, NY, USA, 1996. ACM.

92. Y. Zhang and Z.-H. Zhou. Multi-label dimensionality reduction via dependence maximization. In

AAAI, pages 1503–1505, Chicago, IL, 2008.

93. P. Zhao, C. C. Aggarwal, and M. Wang. gsketch: on query estimation in graph streams. Proc.

VLDB Endow., 5(3):193–204, Nov. 2011.

94. Y. Zhao, X. Kong, and P. S. Yu. Positive and unlabeled learning for graph classification. ICDM ’11,

pages 962–971, Washington, DC, USA.

95. E. Zheleva and L. Getoor. To join or not to join: the illusion of privacy in social networks with

mixed public and private user profiles. In WWW ’09, pages 531–540, New York, NY, USA.

96. Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. Proc.

VLDB Endow., 2(1):718–729, Aug. 2009.

VITA

NAME: Yuchen Zhao

EDUCATION:

B.E. in Computer Software, Tsinghua University, 2007.

PUBLICATIONS

• Yuchen Zhao, Guan Wang, Philip S. Yu, Shaobo Liu, Simon Zhang, “Inferring Social Roles and

Statuses in Social Networks”, in submission.

• Guan Wang, Yuchen Zhao, Philip S. Yu, Shaobo Liu, Simon Zhang, “Inferring Dynamic Social

Hierarchy Relations from Heterogeneous Information Networks”, in submission.

• Charu Aggarwal, Yao Li, Philip Yu, and Yuchen Zhao, “On Edge Classification in Networks with

Structure and Content”, in submission.

• Charu Aggarwal, Yuchen Zhao, Philip Yu, “On Scalable Sharpening of Uncertain Text Streams”,

in submission.

• Yuchen Zhao, Neel Sundaresan, Zeqian Shen, Philip S. Yu, “Anatomy of a Web-Scale Resale

Market: A Data Mining Approach”, in Proceedings of the 22nd international conference on World

Wide Web, industrial track (WWW ’13).

• Yuchen Zhao, Philip S. Yu, “On Graph Stream Clustering with Side Information”, in Proceedings

of the 13rd SIAM International Conference on Data Mining (SDM ’13).

150

151

• Guan Wang, Yuchen Zhao, Xiaoxiao Shi, Philip S. Yu, “Magnet Community Identification on

Social Networks”, in Proceedings of the 18st ACM SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD ’12).

• Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, “On Text Clustering with Side Information”, in

Proceedings of the 28th International Conference on Data Engineering (ICDE ’12).

• Yuchen Zhao, Xiangnan Kong, Philip S. Yu, “Positive and Unlabeled Learning for Graph Clas-

sification”, in Proceedings of the 11th IEEE International Conference on Data Mining (ICDM

’11).

• Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, “Outlier Detection in Graph Streams”, in Pro-

ceedings of the 27th International Conference on Data Engineering (ICDE ’11).

• Yuchen Zhao, Charu C. Aggarwal, Philip S. Yu, “On Wavelet Decomposition of Uncertain Time

Series Data Sets”, in Proceedings of the 19th ACM international conference on Information and

knowledge management (CIKM ’10).

• Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, “On Clustering Graph Streams”, in Proceedings

of the 10th SIAM International Conference on Data Mining (SDM ’10).

• Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, “On the use of Side Information for Mining Text

Data”, PrePrint, in IEEE Transactions on Knowledge and Data Engineering (TKDE).

• Charu C. Aggarwal, Yuchen Zhao, Philip S. Yu, “A Framework for Clustering Massive Graph

Streams”, in Statistical Analysis and Data Mining, Volume 3, Issue 6, pages 399-416, December

2010 (SADM).

