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SUMMARY 

 

This summary is mainly comprised of materials published in (Deutsch and He 2016)
1
, 

(Deutsch et al. 2017), (Deutsch 2017)
2
, and (Deutsch and He 2017). 

 

Rotating components such as bearings and gears are one of the most critical components 

in many industrial machines. Predicting the remaining useful life (RUL) of these 

components has been an important task for condition-based maintenance of industrial 

machines. Accurately predicting the RUL of rotating components is of great interest to 

many industries as it reduces maintenance costs, improves efficiency by optimizing 

component life and in some areas, it may improve safety. Critical challenges for 

performing such a task in the age of Internet of Things and Industrial 4.0 are to 

automatically process massive data and to accurately predict the RUL of these 

components. Prognostic and health management (PHM) systems can be utilized to 

capture massive real-time data from mechanical equipment. Effectively mining features 

from this data and accurately predicting the RUL of the rotating components with new 

advanced methods become issues in PHM. 

 

The limitations of current methods rely quite heavily on user expertise in signal 

processing and explicit model equations such as the state transition model and 

measurement distribution model and therefore are limited in today’s age of big data. 

These approaches to modeling the RUL are known as the physics based approaches.  

                                            
1 Deutsch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are 
credited 

2 Deutsch. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are 
credited 
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SUMMARY (continued) 

 

Among these physics based approaches, particle filters (Arulampalam et al. 2002) have 

emerged as a comparatively good RUL prediction method and are becoming more and 

more widespread, mainly due to their capability of dealing with dynamic systems 

characterized with nonlinear and non-Gaussian natures. Due to the inherent noisy 

structure of data, the particle filter approach requires probability density functions 

(PDFs) to model the uncertainty of the state of the system.  These physics based 

approaches contrasts with data driven approaches which solely rely on data to build up 

models for prediction and are typically based on machine learning methods. There are 

also exists hybrid models that combine both the physics and data driven approach for 

estimating the RUL.   

 

Somewhat recently, deep learning methods, which are a sub-branch of machine learning, 

have shown state of the art predictive performance in a wide array of different fields 

including PHM (Zhao et al. 2016). Many deep learning architectures have been 

developed for machine learning tasks including, deep neural networks, autoencoders, 

deep belief networks, convolutional neural networks, recurrent neural networks and 

more.   

 

The objective of this research is to addresses the limitations of traditional prognostics by 

presenting new methods based on deep learning for RUL prediction of rotating  
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SUMMARY (continued) 

 

components. The deep learning based approaches have the ability to automatically extract 

important features that can be used for RUL predictions. Deep learning can in essence 

automatically learn the underlying physics of which describes the components 

RUL based solely on the data given. The uncertainty of these predictions can be handled 

by automatically learning the probability distributions used by the particle filter approach 

by using a Mixture Density Network (Bishop 1994) or by an ensemble of neural 

networks. Real data collected from both gear test rig and bearing run-to-failure tests are 

used to test and validate the methods to be developed.  The results have shown the 

promising RUL prediction performance of the deep learning based approaches.  

The contributions of this research include: 

(1) The development of a new data driven deep learning based approach for 

prognostic RUL estimation, which is designed by incorporating a Mixture Density 

Network (MDN) and a particle filter. The developed method can automatically 

learn the state transition function and the measurement distribution that is 

required to perform particle filtering without requiring the need of any a priori 

models. A tailored probability distribution function to model the state transition 

distribution for many industrial prognostic settings is proposed. In addition, the 

use of artificial measurements are incorporated into the traditional particle filter 

scheme to improve overall prognostic accuracy.  
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SUMMARY (continued) 

 

(2) A new integrated deep learning based signal processing approach for predicting 

the RUL. The data driven based approach utilizes a deep belief network (DBN) to 

automatically process and extract useful features and to directly model the state 

transition distribution of the RUL through an ensemble of DBNs. The resulting  

state transition distribution is then combined with a particle filter to directly 

predict the RUL, without the need of any further explicit models.    

(3) Validation of the developed deep learning based prognostic methods using real 

bearing and gear run-to-failure test data resulting in state of the art results. Thus 

proving the efficacy of deep learning based approaches for prognostics with 

scalability and providing motivation for further research.   
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1. INTRODUCTION 

1.1  Prognostics – A Brief Introduction 

Rotating machinery is widely used in practically every industry. Both bearings and gears 

are used in almost all types of machinery. Unfortunately, these parts degrade over time 

and eventually need to be replaced. Bearings may fail due to variety of reasons, including 

lubrication failure, corrosion, normal fatigue, static overloads, and more. These effects 

typically occur on the bearing’s inner race, outer race, and rolling element. Out of all 

these possible reasons for failure, lubrication failure is typically the most common reason 

for bearing failures which can result in metal to metal contact and overheating, causing 

premature wear. Gear failures may be due to pitting, spalling, faitigue cracks, tooth 

breakage, as well as other degradation mechanisms. (Cubillo et al. 2016). Tracking the 

degradation trajectories of these mechanisms is of utmost importance for predicting the 

RUL of these components and is vital for providing proper maintenance; this is what 

defines prognostics. Prognostics contrasts with another closely related field within PHM 

known as diagnostics, which focuses on determining whether a component is healthy or 

not, where as in prognostics the focus is on describing how long the component is healthy 

for.  

 

 Being able to accurately predict the RUL of various components has the potential for 

increased cost savings, due to lower maintenance costs. This is due in part to better 

productivity and minimization of machine downtime, as well as reducing the total life 

cycle cost of components when a prognostic’s strategy is implemented (Elattar et al. 
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2016).  In fact, it is estimated that maintenance costs alone account for approximately 

15% of production costs in many industries (Song and Lee 2013). There are also of 

course safety implications in reliably predicting the RUL of both bearings and gears, as 

these components are extensively used in aircrafts. Prognostics to this day, remains an 

open and challenging area of research.  

1.2  Condition-Based Maintenance on Rotating Machinery 

There are two common types of maintenance strategies used for PHM. The first strategy 

is known as scheduled maintenance. This strategy sets a specific schedule based on time 

for providing maintenance for various rotating components without necessarily taking the 

condition of the component into account. This contrasts with what is known as condition 

based maintenance (CBM) which takes the condition of the component by possibly using 

several measurements into account. There consists of three main steps in a CBM program 

(Jardine et al. 2006):  

1. Data Acquisition. This step involves obtaining data relevant to the system’s health 

2. Data Processing. This step involves analyzing and understanding the data 

collected. 

3. Decision Making. This step involves taking preventive maintenance actions based 

on the collected data.   



3 
 

 

 
 

 

Figure 1.1. Three steps of CBM 

 
 
 
 
In prognostics for rotating machinery, much of the data that is acquired is obtained from 

sensor data which typically captures the vibrations of the rotating components, as these 

vibrations correlate with the degradation state of the system. In the data processing step, 

much research has been developed in order to make sense of the collected data and 

heavily relies on techniques from signal processing. These techniques involve analyzing 

waveforms based on their time-domain and frequency domain, as well as performing a 

time-frequency analysis, which analyzes both the time and frequency domain which has 

been developed for non-stationary waveform signals (Jardine et al. 2006).  

 

The next step for CBM in the prognostic setting is typically to develop a model using the 

extracted features in step two in order to provide an estimate for the RUL.  The methods 

used to estimate the RUL can be classified as either physics based, data-driven, or a 

combination of the two (hybrid). Model-based approaches rely on the knowledge of the 

inherent system failure mechanism to build a degradation model to describe the physical 

nature of the failure. Data-driven approaches on the other hand, use massive data to find a 

degradation law without knowing the physical nature of the failure mechanism and are 
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based on statistical/machine learning techniques (Cubillo et al. 2016). Once an estimate is 

made for the RUL of a component, appropriate maintenance strategies and decisions can 

be made.  

1.3  Objective 

The objectives of this research includes: (1) Development of deep learning based 

methodologies for prognostics in order to accurately predict the RUL which can be 

applied towards rotating components using condition indicators. (2) Validating these 

approaches on real world data collected from run-to-failure tests on hybrid ceramic 

bearings and a spiral bevel gear test rig.  

 

Various deep learning based approaches with varying degrees of complexity are 

investigated and are analyzed for their ability to accurately model the RUL. The main 

deep learning architecture that will be used throughout this research will be based on a 

restricted Boltzmann machine (RBM) (Smolensky 1986). The main benefit of using the 

RBM for prognostics is based on its power to automatically extract and process the data 

into meaningful features without the use of more complicated signal processing 

techniques. The extracted features are then ultimately useful for their ability to predict the 

degradation of rotating machinery.  

 

The two most complex methodologies combine the deep learning architectures with the 

standard particle filter based approach. These approaches require the development of 
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PDFs, which are modeled using deep learning architectures in two different ways. The 

first method models the PDFs using resampling techniques and the other method uses a 

MDN to automatically model the PDFs. While these two methods differ in their modeling 

approach, both of these methods benefit from incorporating a particle filter since it allows 

for modeling of the inherent uncertainty that exists in RUL estimations.  

 

The results for the deep learning based prognostic approaches show promising potential 

for RUL estimation and provide a more accurate estimation of the RUL when compared 

to a more traditional based particle filter.  

1.4  Outline 

The structure of this research is organized as follows: 

Section 2 of this research details current methods and techniques used in prognostics and 

provides relevant background information regarding deep learning. Section 3 provides a 

detailed description of the deep learning methods and their specific application for 

prognostics. Section 4 describes the experimental run-to-fail tests used for validating the 

deep learning based methodologies. In Section 5, the validated results for each of the 

methodologies will be presented. Finally, the conclusions are provided in Section 6.   
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2. LITERATURE REVIEW 

This section is mainly comprised of materials published in (Deutsch and He 2016), 

(Deutsch et al. 2017), (Deutsch 2017), and (Deutsch and He 2017). 

2.1  Rotating Machinery Fault Prognosis  

Remaining useful life has been used as an important parameter for condition-based 

maintenance decision making (Huynh et al. 2014). In recent years, many RUL prediction 

methods have been proposed for PHM. In comparison with model-based techniques, 

data-driven approaches can be designed and easily applied to systems when massive 

sensor data is available. A recent review of data-driven approaches can be found in (Si et 

al 2013). Traditionally, data-driven prognostics are largely dependent on signal 

processing and feature extraction techniques. 

 

Over the past years, many prognostic methods that require explicit model equations have 

been developed (Vachtsevanos et al., 2006). For example, recurrent neural networks 

(Malhi et al. 2011), Heimes 2008), Kalman filter (Lim et al. 2014, Baraldi et al. 2012, 

Bechhoefer et al. 2010), dynamic Bayesian networks (Codetta-Raiteri and Portinale 

2015), k-reliable decentralized prognosis (Yin and Li 2015), particle filter (Daigle and 

Goebel 2013, Baraldi et al. 2013a, Chen et al. 2011, He et al. 2011), and combined 

particle filter and neural networks (Daroogheh et al. 2016).  In addition, some fuzzy 

systems-based approaches for prediction have been developed (Bououden et al. 2013). 

However, in comparison with fuzzy systems, particle filters take a probabilistic 

approach, in that the posterior distribution is modeled by sampling from a set of 
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distributions, whereas in fuzzy systems the model output is based on the input 

variables of fuzzy set membership and an implication of rules. Among all the 

approaches, particle filters (Arulampalam et al. 2002) have emerged in recent years as a 

comparatively good RUL prediction method. While similar to the Kalman filter, the 

particle filter is able to handle situations in which the state dynamics are not governed by 

Gaussian distributions. For example, (Yoon and He 2015) showed the superior RUL 

prediction performance of a particle filter-based approach using the gear data provided by 

the NASA Glenn Spiral Bevel Gear Test Facility.  

 

However, all the above-mentioned methods require either complicated signal processing 

techniques to extract features from the sensor data or knowledge of the system dynamics 

to build the explicit model equations. For instance, in signal processing, there are a 

plethora of ways to extract features in the time domain alone. These might include 

computing the common statistical features such as the peak value, mean, skewness, 

kurotsis, crest indicator, shape indicator, impulse indicator, root mean square (RMS), 

and/or clearance indicator. There are also a wide variety of statistical features developed 

specifically for gear damage detection (Lei and Zuo 2009).  There are also many other 

forms of analysis that may be performed using the Fast Fourier Transform (FFT), wavelet 

analysis, Hilbert–Huang Transform, as well other algorithms (Lee et al. 2014).  This type 

of requirement involves manual processing and analysis of data by human experts and 

therefore makes these methods not suitable for automatic data processing and feature 

extraction for big data. For instance, one may have to look at certain frequency 
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components of interest and extract useful features from that signal when performing a 

spectral analysis using a FFT (Jardine et al. 2006).  

 

Various explicit state dynamic models have been proposed for prognostics. For instance, 

one might assume that the component crack growth follows the famous Paris-Erdogan 

model and the state dynamics can be described by the following equation (Myötyri et al. 

2006): 

 

          
          

 

(2.1) 

 

Where    represents the crack depth at time       represents independent and identically 

distributed Gaussian random variables,    represents the stress intensity amplitude, and 

both   and   are material constants that can be estimated from experimental data. 

Equation (2.1) suggests that the crack growth follows a Markov process with independent 

and non-stationary increments. However, there are also other possibilities that can be 

used to describe the state dynamics of the crack growth (Myötyri et al. 2006). There also 

maybe situations in which these models are unavailable, such as in offshore well drilling 

and wind turbines or for some bearings in which online measurements of the crack depth 

may not be available in which for instance a traditional particle filter approach cannot be 

used (Baraldi et al. 2013a).  
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2.2  Deep Learning Based Methodology  

To effectively extract features from massive bearing condition monitoring data and 

accurately predict bearing RUL, new effective methods are needed. The recent 

developments in deep learning have provided an attractive opportunity to build 

advanced RUL prediction methods for big data. These methods have the ability to 

automatically learn important relationships within the data and can for instance 

automatically learn the state dynamics of the systems without an explicit model 

equation. Since, the introduction of a deep belief network (DBN) (Hinton et al. 2006), 

DBNs and other deep learning methods have become a popular approach for big data 

processing and analysis. Deep learning has the ability to yield useful and important 

features from data that can ultimately be useful for improving predictive power (Bengio 

et al. 2013). These methods have the capability of processing big data and mining hidden 

information due to their multiple layer structures and are able to perform highly nonlinear 

operations. This contrasts with more shallow architectures, which only have a single 

hidden layer and typically do not learn highly complex representations of the data.  The 

recent success of AlphaGo by Google Deepmind has demonstrated the power of deep 

learning for big data processing and feature learning (Silver et al. 2016). AlphaGo has 

demonstrated the power of deep learning for massive data processing and feature 

learning by defeating the best human Go player in the world. 

 

There have been great successes in building deep neural network architectures in various 

domains such as image recognition, automatic speech recognition, and natural language 

processing (LeCun et al. 2015), and many more. Deep learning models have recently 
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shown promising results for machine fault diagnostics on extraction of raw vibration 

signals (Chen et al. 2016) as well as time domain features (Shao et al. 2015). Although 

much success in deep learning has been focused on classification problems, deep learning 

has also proven to be successful in solving prediction problems. These domains include 

predicting car traffic (Lv et al. 2015), weather (Hossain et al. 2015), wind speed (Tao et 

al. 2014), and internet traffic (Oliveira et al. 2014). There are many types of deep 

learning algorithms present including auto encoders, restricted Boltzmann machines, 

deep belief networks, convolutional neural networks, and more that can also be used for 

prediction problems. Deep learning represents an attractive option to process mechanical 

big data for RUL prediction as deep learning has the ability to automatically select 

features that otherwise require much skill, time, and experience.  

 

In this research, four different experiments of varying degrees of complexity are used for 

prognostics. The first method utilizes a deep learning based approach based on a RBM 

for bearing remaining useful life prediction using vibration sensors. The second method 

is developed by using a DBN-feedforward neural network (FNN) algorithm that takes the 

advantages of self-taught feature learning capability of the DBN and the predicting power 

of the FNN. It can either take processed vibration features or extract features from the 

vibration data to predict the RUL. The presented approach is tested and validated using 

data collected from a gear test rig and bearing run-to-failure tests.  

 



11 
 

 

 
 

The last two experiments investigate a method that can use the strength of deep 

learning to overcome the limitations of the particle filter. The first approach uses a 

new integrated method that combines a deep belief network with a particle filter for 

remaining useful life prediction of hybrid ceramic bearings using vibration signals. 

Real vibration data collected from hybrid ceramic bearing run-to-failure tests were 

used to test and validate the integrated method. The performance of the integrated 

method was also compared with a deep belief network and a traditional based particle 

filter. The second approach combines a MDN with the particle filter algorithm for 

RUL estimation.  

 

The presented approaches are tested and compared with existing PHM methods. The test 

results show that the presented methods and can overcome the above mentioned 

limitations of the traditional data-driven approaches without human intervention in the 

age of big data. 
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3. METHODOLOGY 

This section is mainly comprised of materials published in (Deutsch and He 2016), 

(Deutsch et al. 2017), (Deutsch 2017), and (Deutsch and He 2017). 

3.1  Overview of the Deep Learning Based Approaches for Prognostics 

One of the goals that deep learning and to a larger extent machine learning algorithms 

attempts to solve is to learn a function that can describe an output. That is by having a 

database of inputs (independent variables) and desired outputs (dependent variables) 

these models attempt to learn their relationship; this process is known as supervised 

learning and requires training tuples of the form (inputs,outputs). In the case of 

prognostics, the goal is to predict the RUL at L steps ahead into the future.  Supervised 

learning contrasts slightly with another technique used in machine learning known as 

unsupervised learning in which only the inputs are used. The idea behind unsupervised 

learning is to learn the distribution behind how the data (inputs) is generated. In the next 

sections relevant background information regarding the mechanics of how the deep 

learning models (specifically the RBM and DBN) perform these tasks and how it can be 

used for RUL estimation will be presented. This section will conclude with the combined 

MDN and particle filter-based approach for RUL prediction. 

3.2  The Restricted Boltzmann Machine Structure 

A RBM (Smolensky 1986) is considered as a type of unsupervised machine learning 

method. It is a stochastic artificial neural network that learns a probability distribution 

over the set of its inputs. A RBM normally has two layers: a visible layer and a hidden 

layer. It can be represented by a bipartite graph that contains undirected edges from its 

two layers. Each layer contains a collection of neurons/nodes. Each neuron/node of the 
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visible layer represents a feature of the input data, while neurons/nodes of the hidden 

layer represent the latent variables. A typical RBM structure is shown in Figure 3.1. The 

reason that an RBM is “restricted” is because there are no connections between each 

neuron/node within either the visible or hidden layers. An RBM contains a matrix of 

weights     representing the connection to visible node    and hidden node   . In Figure 

3.1,    represents the bias term in the visible layer, and    in the hidden layer.  

 

 

 
Figure 3.1. A restricted Boltzmann machine 

 
 
 
 
The weights and biases are computed by maximizing     , the probability that the 

network assigns to a visible vector  : 

 

      
 

 
         

 

 (3.1) 
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where   is the normalization constant that can be obtained by summing over all the 

possible pairs of visible and hidden vectors: 

 

            

  

 (3.2) 

 

and the energy function of the joint configuration       is given by:  

 

                     (3.3) 

 

Theoretically, the problem of maximizing Equation (3.1) can be solved by taking its 

partial log derivative with respect to its parameters  ,    and  : 

 

          

      
           

   

        

 

 (3.4) 

 

Normally Equation (3.4) can also be written as: 

 

          

      
                           (3.5) 
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where < > denotes the expectation. However, the expectation             in the 

maximum log likelihood function cannot be easily computed, and is thus estimated using 

contrastive divergence which leads to the following parameter updating equation (Hinton 

2002). 

 

   
     

        
             

       

                          
                   

           
    

  
    

        
           

     

                
                  

   

  
    

                  
     

                      
                              

 

(3.6) 

where   represents a full step of Gibbs sampling,   represents the learning rate and   

represents the        of contrastive divergence. The neuron activation probabilities are 

given by the following equations: 

 

                       

 

   

  (3.7) 

                       

 

   

  (3.8) 
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where   represents the number of visible units,   the number of hidden units, and σ is 

the activation function. The activation function is typically the logistic function used as a 

threshold defined as: 

      
 

     
 (3.9) 

3.3  Deep Learning Based Bearing Prognostics Using a Restricted Boltzmann 

 Machine 

In order to use a RBM as a prognostics model, the weights and biases can first be learned 

in the unsupervised stage of learning illustrated in the previous section. Once the optimal 

parameters have been determined the output of the last layer (hidden features learned) 

can be used as an input to a supervised learning algorithm; a linear regression layer was 

used as the last layer to make the  -step ahead predictions. The RMS values are used as 

the fault feature to determine the components degradation over time. This feature serves 

as the input into the RBM. The RMS at each time interval (denoted as   ) can be 

calculated as follows: 

 

     
 

 
    

 

 

   

 

 

(3.10) 

 

where     represents the  th raw vibration data point at time interval   and   is the length 

of the signal. 
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The time series of the fault features    is reconstructed, into a matrix, where each feature 

(column) represents a lagged order of the time series, and whose output is the L-step 

ahead into the future RUL value, and each row represents an index in time. Formally, the 

input can be denoted as: 

 

                           
  (3.11) 

 

and the output as: 

 

                    (3.12) 

 

where   represents the embedding dimension, and determines the size of the first visible 

layer in the RBM. Thus, yielding training tuples of                              , 

                

 

Equations (3.11) and (3.12) define a method often called the sliding window technique 

(Frank et al. 2001). This windowing approach is best illustrated below in Fig. 3.2. The 

first plot in Fig. 3.2 is the complete series of a fault feature. The second plot highlights 

the first window of size   = 100. The last plot simply shows the first window zoomed in. 

The first window contains points from   = 0, 1, 2,..., 98, 99 (first row of features) and the 
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second window would contain points from   = 1, 2, 3,..., 99, 100 (second row of features) 

and so on. 

 

 

 

Figure 3.2. The windowing approach 
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 Once the data has been constructed the RBM can essentially perform automatic feature 

engineering in order to better capture the dependency of the lagged RMS values onto the 

future RMS values and thus avoiding the use of some more complex manual feature 

extractions of the data. The predicted RUL can then be computed by using the predicted 

RMS values and the time of the bearing’s failure. One can estimate the predicted RUL by 

the following equation: 

 

       =             

 

(3.13) 

 

 

where        is the predicted remaining useful life at some time  ,        is the total time 

of the bearing’s life, and       is a function that maps   , the predicted RMS value, to an 

estimated point in time of the bearing’s life. This is done by simply taking a polynomial 

curve fit of the RMS values (as a function of time) and solving for the value of   given 

the predicted RMS value.  

3.4  The Deep Belief Network Structure 

A DBN is formed by stacking multiple RBMs on top of each other (Figure 3.3). in order 

to create high representations of data that can be used for classification, regression 

(continuous output) tasks as well as unsupervised learning. 
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The RBM becomes a building block for forming a deep belief network. The DBN can be 

trained in greedy-layer-wise fashion by stacking RBMs on top of each other (Bengio et 

al. 2007). The output of one RBM, that is the activation values in the hidden layer, 

simply becomes the input for the next RBM, and the parameters of the previous RBM do 

not change. This next RBM is trained by the same process as illustrated in the previous 

section. This process allows for creating multiple hidden layers. 

 

 

 

Figure 3.3. A deep belief network with two hidden layers 

 
 
 
 
3.5  Deep Learning Based Bearing Prognostics using a Deep Belief Network 

In order to use a DBN to predict a continuous output, one can first learn the weights and 

biases in the unsupervised stage of learning. Once the optimal parameters (weights and 

biases) have been determined, a supervised fine tuning stage is performed. This is done 

by creating a final output layer on the top of the DBN which outputs the predicted RUL 

value, given a set of vibration features. This is illustrated in Figure 3.4. The parameters of 
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the entire network are then updated using the back-propagation algorithm in the same 

way as a FNN is trained. In this way, the DBN pre-trains the network, which serves as an 

initialization step for the parameters of the FNN, instead of a random initialization of the 

weights and biases, which has been shown to add robustness to deep architectures and 

decrease the probability of obtaining a poor local minima (Erhan et al. 2010).  

 

 

 

Figure 3.4. A feedforward neural network with     and a single hidden layer. 

 

 

 

 

The DBN performs unsupervised learning first by training it on a set of signal features in 

order to learn a latent representation of the data. After the end of training, an output layer 

is added on top of the last layer of the DBN, where it is fully connected to the (last) 

hidden layer. This output layer contains one neuron (without an activation function) 
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which represents the continuous prediction. The same process of establishing explicit 

input and outputs from Equations (3.11) and (3.12) is used in the DBN based approach, 

however, Equation (3.12) is replaced with the actual RUL in our training set; i.e. training 

tuples are of the form                                ,                as it 

has provided better empirical results. It should be noted that the embedding dimension   

defines the input size of the first layer in the DBN. The predicted RUL can then be 

directly estimated as a function of the fault feature by the following equation: 

 

         =                      

 

(3.14) 

 

 

where         is the predicted RUL at some time  +  , and      is a function of the input 

space that is to be learned by the DBN-FNN. 

 

Confidence bounds for the predictions can be obtained by a resampling technique known 

as a jackknife, which is a linear approximation to the bootstrap method, which also may 

be used for confidence bounds (Efron and Gong 1983). The method is described next 

 

Let         represent the DBN-FNN prediction of the RUL when a single sample   (row) 

is deleted from the training set. This will simply be called a jackknife sample. Let            

be the average across   jackknife samples: 
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(3.15) 

 

And the estimate of the standard error of the mean is defined as: 

 

     
   

 
                     

 
 

 

   

 

 

(3.16) 

 

The confidence interval with     degrees of freedom and with       

    confidence can then be calculated as following: 

 

                           

 

(3.17) 

 

The DBN-FNN algorithm for RUL prediction is as follows: 

 

Step 1. Reconstruct the time series of the fault features into a matrix with an embedding 

dimension of  . This will serve as the input and the output will be the mapped RUL, 

      .  
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Step 2. Randomly delete one sample (one row) from the data, including the target output. 

This will serve as one jackknife sample. 

Step 3. Initialize the weights and biases of the FNN by training the DBN on the input data 

using all the data except for the last 100 rows. The last 100 rows will serve as the testing 

dataset and the rest of the data is the training set. 

Step 4. Train the FNN. Fine tune the weights in a supervised fashion by minimizing the 

loss function on the training set and by using the backpropagation algorithm (BPA). 

Step 5. Predict the       . 

Step 6. Let      , and update the training set with input 

features                    and output       . 

Step 7. Repeat steps 4-6, until all 100 points have been predicted.  

Step 8. Repeat steps 2-7 for   number of jackknife samples.  In Step 2, the previous 

deleted sample is replaced in the data and a new sample is deleted. 

3.6  The Particle Filter 

The particle filter is a Monte Carlo approach that can be used to estimate the state of a 

system by combining both the state evolution of the system and the 

observation/measurement parameters obtained from the state.  

 

In discrete time, a system can be described by the following state space model: 
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                (3.18) 

            (3.19) 

 

From the above equations,    represents the state of the system (such as the crack depth) 

at time  ,      which is independently and contains identically distributed (IID) 

noise/variance at time           is a function that maps the transitions between states,    

represents the measurement/observation (can be thought of as a feature, typically derived 

from a vibration signal) at time  ,    is the IID noise/variance associated with each 

measurement, and      is a function that maps the state with the measurement. 

 

The goal of the particle filter is then to be able to estimate the probability density function 

(pdf) of           , that is, to estimate the state at time  , given the measurements up to 

time    In the Bayesian setting, the state estimation is usually computed recursively in two 

stages; the prediction and the update. For the prediction step, the              is given as: 

 

                                      

                                

(3.20) 

 

For the update step, new measurements are collected, which are then used to update the 

prior distribution. The posterior distribution can then be written as: 
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 (3.21) 

 

Typically, the calculations for Equations (3.20) and (3.21) are intractable and the particle 

filter sampling approach is used to approximate them. This can be accomplished by using 

a set of samples/particles    
    

  
   

  
, where   

  is the ith weight at time   and    is the 

user-specified number of particles generated. The weights can be updated by using the 

bootstrap filtering algorithm (Gordon et al. 1993) and samples/particles are drawn from 

the proposal distribution:  

 

  
             

   (3.22) 

 

With weight: 

 

  
  

       
  

        
   

   

 (3.23) 

 

Finally, the posterior distribution              is obtained by resampling from 

   
    

      
    where   

  (predicted estimate) is drawn with probability   
 . This 

resampling step can be performed by using the multinomial resampling method (Douc 
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and Cappé 2005). The initial particles,   
    are drawn from the prior probability       

and the weights are initialized from the discrete uniform distribution, that is   
  

 

  
             . It should also be noted that other particle filtering algorithms 

besides the bootstrap filtering algorithm may be used. However, this algorithm does not 

suffer from the weight degeneracy problem, in which typically after only few iterations of 

the particle filtering process, only a few particles contain a large weight and other 

particles contain a very small weight.   

 

For purposes of terminology,          
   will be denoted as the state transition 

distribution and        
   will be denoted as the measurement distribution.  
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The entire particle filtering is best illustrated below in Figure 3.5. In Figure 3.5, each 

particle’s color ranges from light to dark depending on its weight; the darker the color the 

higher the weight. 

 

 

 

Figure 3.5. Particle filtering process 
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3.7  Combined Deep Belief Network and Particle Filter-Based Approaches for 

 Remaining Useful Life Prediction 

The ultimate objective of the combined DBN and particle filter approach is to estimate 

the pdf of             , where                and   represents the length of the 

signal. It should be noted that no new (future) information about the system is provided at 

the generic time step  , and only information provided from time steps          may be 

used for the prediction.  

There are two functions that are of interest in modeling; the state transition distribution 

Equation (3.22) (sometimes referred to as the proposal distribution) and the measurement 

distribution Equation (3.23). Both of these functions can be modeled by the DBN, since 

neural networks in general are universal function approximators (Hornik et al. 1989). 

 

In the prediction step, the state transition model can simply be approximated by first 

reconstructing the time series of the measurements (                 into a matrix as 

was done in the previous approaches. Formally, the input can be denoted as: 

 

                          
  (3.24) 

 

and the state    can be treated as the actual RUL of the bearing at time   as the output: 

 

               (3.25) 
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Thus, the network requires training tuples of the form                           , 

         . Using this training set, the state transition model is instead actually 

modeling the pdf of       
                    . The   step ahead prediction,     

   is 

simply made by subtracting the network’s output    by  . The advantages of treating the 

state    (instead of treating it as the crack depth for instance) as the actual RUL allow for 

a simpler model to be developed. One does not need to utilize another neural network to 

determine the RUL, given the crack depth, or to recursively compute the state transition 

model multiple times until it exceeds such a threshold, which needs to be defined. By 

training the network directly on the RUL, the network is minimizing the error of 

predicting the RUL, rather than an intermediate value. This results in a network that is 

more easily trainable and reduces the potential problem of having the network’s eventual 

forecast of the state die off (converging to a single value). The disadvantage of this 

approach however, is that the parameters of the state transition model will be 

updated/relearned less frequently. The measurement    (often a multi dimensional vector) 

can be constructed into a mono-dimensional feature vector by setting the input of the 

DBN as    and then setting the size of the last hidden layer to one. The output of the 

DBN in its unsupervised stage of learning is then the reconstructed mono-dimensional 

feature vector of   . 

 

The state transition model and its respective variance in Equation (3.22)      can be 

modeled by taking   bootstraps, which randomly samples (with replacement) each row 
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of the training data          times. The DBN is then trained   times for each bootstrap 

and the predicted values will be defined as: 

 

               
   (3.26) 

 

where,   represents the generic testing input vector of the past   measurements Equation 

(3.24) and        
   represents the DBN-FNN output Equation (3.25) with respect to the 

    bootstrap. The mean and variance are simply then calculated as: 

 

          
 

 
       

 

   

 

 

(3.27) 

    
                  (3.28) 

 

and then samples   
  can be generated from the following Gaussian distribution: 

 

               
      (3.29) 

 

The measurement distribution can be modeled in a somewhat similar approach to the 

state transition distribution. The technique (Baraldi et al. 2013a) requires a dataset of 

tuples of           
         

 where   bootstraps are sampled from this training data set, and 
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an interpolator      is created.    is typically a multi-dimensional vector, which can be 

reduced to a single mono-dimensional vector for simplicity and ease of calculation. This 

can be performed by the DBN in its unsupervised stage of learning, by setting the last 

layer of the DBN’s hidden layer to a size of one. A simple FFN can also be used as an 

interpolator for computing the following: 

 

          
 

 
       

  

 

   

 (3.30) 

 

where,   
  is the  th bootstrap sampled from the dataset and       

   represents  th 

bootstrap’s output given an input vector  . The measurement model in Equation (3.19) 

can be hypothesized as: 

 

                (3.31) 

 

From Equation (3.31),         can be subtracted from both sides such that: 

 

                               (3.32) 

 

The error term              is then a function of             and     , which will 

be called the model error and intrinsic noise respectively. Their variances are then 
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denoted as   
     and       respectively. The model error variance can be modeled by 

taking   groups of interpolators from       
   of length   networks and computing the 

average as: 

 

    
        

 

 
      

 

   

 (3.33) 

 

The set,         
        

  is then resampled with replacement using   bootstraps, 

denoted as        
 

 , where    is the  th bootstrap of  . The estimate of the model error 

variance can then be computed as: 

 

   
      

 

 
     

 

   

    (3.34) 

 

The noise variance can be modeled by building up a training set        
  
   

         
, where 

   
  is defined as: 

 

   
                    

 

    
         (3.35) 
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A single FNN can then be trained on the aforementioned training set in order to estimate 

   
     for an arbitrary   vector. Finally          can be approximated by: 

 

                       
        

      (3.36) 

 

The confidence intervals for a generic prediction    can then be obtained by the following 

formula (Khosravi et al. 2011): 

 

                 
    
    

   
  (3.37) 

 

The training/testing procedure for the integrated DBN and particle filter is then as 

follows: 

Step 1 

Let the last 100 rows be equal to the testing set, and set the rest of the data to the 

training set. 

Step 2 

Approximate the state transition model: 

a 

Reconstruct the time series of the signal features into a matrix with an 

embedding dimension of  . This will serve as the input, and the output will be 

the mapped state   , where                        

b Create   bootstrapped data sets using the data created in Step 1. 
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c 

Initialize the weights and biases of the FNN by training the DBN on the input 

data with all the data except for the last 100 rows. The rest of the data is the 

testing set. 

d 

Train the FNN. Fine tune the weights in a supervised fashion by minimizing 

the loss function on the training set and by using the back-propagation 

algorithm. 

e 

Predict the     . This is accomplished by subtracting the network’s output    

by L, i.e.,      =     . 

f 

Let      , and update the training vector with input features 

                   . 

g Repeat Steps 2e–2f, until all 100 points have been predicted. 

Step 3 

Estimate the measurement distribution. Create a new dataset of the form 

          
         

 Generate B bootstraps from this training dataset and apply 

Equations (3.30)–(3.36) to obtain the measurement distribution. The DBN can be 

used for estimates in Equations (3.30) and (3.35). 

Step 4 

Estimate the state. The predicted state       can be obtained by sampling 

     
      

        
   with probability   

  [from Equation (3.23)]. 

 

This method allows a complete data-driven approach to be developed in conjunction with 

a particle filter for RUL estimation. Equation (3.18), the proposal distribution is built up 

using training tuples of the form                         . The bootstrapping approach 
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is then used to collect the statistics for the mean and variance. Equation (3.19), the 

measurement model is then modeled by Equations (3.30)–(3.36). Here the DBN can 

serve two purposes. It can be used to reduce the dimensionality of the measurement    

and it can also to be used in order to initialize the weights of the neural network.  

3.8  Mixture Density Network 

As seen in the previous section, the combined DBN and particle filter-based approach 

requires training two neural networks to model the measurement distribution and assumes 

and that the final measurement distribution          follows a normal distribution. These 

two problems however, can be rectified by using a MDN.  

 

The MDN is capable of modeling a probability distribution for a specific target variable   

given an input vector  . This contrasts with a typical neural network in that a standard 

FNN’s output for predicting a continuous target variable y estimates the conditional 

averages        instead of modeling the distribution       . As suggested by (Bishop 

1994), these conditional averages provide only a limited description of the target 

variables.  

 

In the past few years, MDNs have become a somewhat popular technique in supervised 

learning tasks. MDNs have shown promising results in statistical parametric speech 

synthesis (Zen et al. 2014) and have also been used for the same task by combining 

MDNs with a recurrent autoregressive model (Wang et al. 2017). MDNs have also been 

used to model short-term wind speeds and power projections (Men et al. 2016) by 
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employing an ensemble of MDNs, which have shown superior performance to common 

forecasting methods. It also been shown to outperform deep neural networks (FNNs with 

many hidden layers) in cleaning noisy speech observations (Kinoshita et al. 2017). As 

suggested by (Kinoshita et al. 2017) one reason that MDNs may outperform other 

methods is that more traditional neural network approaches falsely assume a one to one 

mapping between the noisy input and output space without any uncertainty and hence, the 

inverse mapping can’t be achieved deterministically.  

 

In prognostics and specifically in determining the RUL, the problem is generally not a 

one to one mapping. Typically, the input space from signal features is highly noisy and 

these features may not deterministically map to a given RUL or state. If one is to make 

these assumptions on this type of problem using a typical neural network, the result will 

be an average of several correct target values (since it minimizes the sum of squared 

errors), which may not necessarily be a correct prediction (Bishop 1994). This can be 

rectified by employing a MDN to model the probabilities over a set of target values 

instead of simply predicting the averages (see figures below). To date, a MDN has not 

been used for prognostics nor has a MDN combined with a particle filter been employed.  
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Figure 3.6. Plot of                   

 
 
 
 
In Figure 3.6, the plot                  , where   represents Gaussian white 

noise with variance one, has been augmented with three data points centered at    , 

with three different   values to help illustrate the problems a standard neural network has 

in dealing with learning a function in non one to one mapping situations. After training a 

FFN on values of   to predict   and using the Mean Squared Error (MSE) loss function 

to train the network, the network is unable to capture the information needed to 

accurately predict   and as seen below in Figure 3.7, the network is predicting an average 

over the several possible correct values of  . This is clearly evident by the big bump for 

the predicted values centered around    . As can be seen in Figure 3.8, the MDN, 
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which is trained on the same data, is able to accurately predict the target variable    The 

MDN’s predictions are made by computing the PDF         across a range of   values, 

and sampling each of these values with probability       .  

 

 

 

Figure 3.7. Standard feedforward neural network output 
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Figure 3.8. Mixture Density Network output 

 
 
 
 
3.9  Mixture Density Network Methodology 

In a MDN the probability distribution        can be modeled by the following equation 

(  is assumed to be mono-dimensional for simplicity, but the multidimensional case can 

be easily extended): 

 

                  

 

   

                
 

(3.38) 
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And subject to the constraint: 

 

        

 

   

 

 

It should be noted that the standard deviation must also be positive. These 

constraints can be satisfied by the following equations: 

 

 

(3.39) 

      
   

 

    
  

   

 
 

(3.40) 

 

       
  
 
 

 

(3.41) 

 

Equation (3.38) allows for the modeling of an arbitrary probability distribution by 

modeling it as a weighted sum of Gaussian distributions, where     represents the weight 

of the     Gaussian distribution       centered around mean    and standard deviation 

   with   mixing components. The mean    can be represented by the networks output, 

that is      
 . The terms,   

 ,   
 ,  

  represent the last output layer in the network 
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corresponding to the parameters α,  , and μ respectively. The topology of the MDN can 

be shown below in Figure 3.9. 

 

 

 

Figure 3.9. Topology of a Mixture Density Network with two hidden layers and two 

mixing components 

 
 
 
 
Finally, the parameters of the MDN can be obtained by minimizing the negative log 

likelihood loss function given by: 

 



43 
 

 

 
 

                    

 

   

                 

 

(3.42) 

 

The errors of the mixture model output can then be backpropagated towards the last 

output layer in the network. The gradients are then of the following form: 

 

        

    
        

(3.43) 

 

 

        

    
      

      
 

  
     

(3.44) 

 

 

        

    
     

    

  
   

 

(3.45) 

 

Where    is defined as: 

 
        

    
     
 
   

 
(3.46) 

 

 

 



44 
 

 

 
 

The gradient computations for all of the other layers remain unchanged.   

3.10  Mixture Density Network Integrated Methodology for Gear Remaining 

 Useful Life Estimation 

The entire process of predicting the RUL using the integrated approach is illustrated 

below in Figure 3.10. 

 

 

 

Figure 3.10. Methodology of predicting the RUL 

 

 

 

 

The first two steps of Figure 3.10 pertain to using a deep learning based approach to 

extract features from the vibration signals. Once the vibration signals are acquired, 

these signals (raw vibration signals in the time domain) can be fed into the hybrid deep 

signal processing approach to extract the measurements,   , which are then used in the 

MDN. 
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The third and fourth step requires the use of a MDN to model the state transition 

distribution and the measurement distribution. The ultimate objective of the particle 

filter approach is to estimate the pdf of             , where                and   

represents the length of the signal. It should be noted that no new (future) information 

about the system is provided at the generic time step  , and only information provided 

from time steps          may be used for the prediction. Both distributions (state 

transition and measurement) can be modeled by the MDN in order to estimate the pdf 

of              and predictions can be made using the bootstrap filtering algorithm.  

 

Training tuples of the form             
         

 can be used to build up the state 

transition distribution and the measurement distribution can be modeled by using 

training tuples of the form           
         

. 

 

In the field of prognostics, the state of interest    is typically non negative, as the state 

is usually represented by measurements that are non negative (crack depth of a gear, oil 

debris mass, battery capacity, elongation (Baraldi et al. 2013b), etc.). Thus, the state 

transition distribution should not generate any particles that are negative (i.e. the 

domain of the distribution should be {              Therefore, for the state 

transition distribution, a slight change is proposed to the standard MDN proposed in 

(Bishop 1994). Instead of setting the function       to the Gaussian distribution, the 
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function       is set to a log-normal distribution: 

 

                    
 
              

 

      
 

         
 

 

(3.47) 

 

The gradient computations in equations (3.42) and (3.43) need only to be modified 

slightly to reflect this change and are as follows: 

 

        

    
      

           
 

  
     

(3.48) 

 

 

        

    
     

         

  
   

 

(3.49) 

 

The modification to the gradients is only slight as it only requires taking the natural log 

of the target output variable  . The gradient computation in equation (3.43) remains 

unchanged. By using a log-normal distribution, a small degree of a priori knowledge is 

implemented in the network, which typically leads to better network generalization and 

optimization of the network parameters (Joerding and Meador 1991). For the 

measurement distribution however, the function       is simply set to the Gaussian 

distribution originally used in (Bishop 1994) as the measurement    may be any real 
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value.  

 

In the state transition distribution samples can be drawn by first sampling a single log-

normal distribution    with probability    and then drawing particles   
  from the 

distribution               
          

   . Once, a particle has been drawn it is then 

resampled (filtered) based on the particle weights determined from equation (3.23). 

The RUL can then be determined from these resampled particles by propagating these 

particles forward in time by recursively using the state transition distribution in 

equation (3.22). This process allows one to model the posterior probability 

           . The RUL is then determined by the number of steps taken for the particle 

to meet or exceed a predefined threshold value. The threshold value may be set to 

indicate when the system exhibits complete failure or more typically it is set to a lower 

value than at the point of failure as means of acting as a margin of safety (Saxena et al. 

2010).  

 

In a similar fashion to the approach used in (Liu et al. 2012) and (Chen et al. 2012), the 

particle filtering process can still be applied to determine the RUL after the last 

measurement    is observed. In (Liu et al. 2012), predicted measurements are used to 

update the parameters of the state transition distribution and in (Chen et al. 2012) they 

are used in conjunction with a dual particle filter for state estimation. These predicted 

measurements can be utilized in a traditional particle filter to help guide the trajectory 

of the particles after the last measurement    is observed in order to improve the 
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forecasting accuracy of the RUL. The measurement      can be written as: 

 

                   (3.50) 

 

Where,      represents the measurement prediction function (outputs the predicted 

measurement) based on the past history of observed measurements and    represents 

the noise vector at time   representing the prediction error. A growth model of the 

noise vector    established in (Chen et al. 2012) may be utilized to help model the 

uncertainty of the forecast as a function of the prediction horizon.   

 

During the propagation of the particles to determine the RUL of the system, the 

predicted measurements can then be used in the particle filtering process to help filter 

out unlikely particles. The predicted measurements are used to determine the particle’s 

weight and thus particles can then be resampled in which particles with higher weights 

are more likely to be propagated further.  

 

Certainly, as the prediction horizon for the measurements increase the uncertainty of 

the prediction grows. It is for this reason, that when propagating particles in order to 

determine the RUL, only a few steps in time, denoted as    (number of steps), are used 

for predicting the measurement values;    in this case is analogous to the prediction 

horizon for the measurements.  



49 
 

 

 
 

The pseudocode for determining the RUL (assuming the state and measurement are 

mono-dimensional) based on this approach is provided below in Figure 3.11.  

 

 

 

Figure 3.11. Psuedocode for determining RUL 
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During the propagation of particles to determine the RUL of the system, a parameter 

update is not performed, simply due to the fact that a potentially large number of 

parameters involved in a MDN. 

 

Finally, confidence intervals of the RUL with           confidence of the set 

     
    

  
   

  
, (    

  represents the RUL calculation based on particle   at the current 

system operating time  ) can be obtained by the following: 

 

                  
 

   
 

(3.51) 

 

 

Where              , represents the Student   distribution with quantile 

       ,      degrees of freedom, and 

 

 

         
     

 

  

   

 

(3.52) 

 

 

       
           

  
 

  

   

 

 

(3.53) 
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3.11  Prognostic Feature Extraction Using a Hybrid Deep Signal Processing 

 Approach 

In order to obtain accurate RUL forecasts by using the methodology in Section 3.10, 

the measurement    should reflect the system’s state of health accurately. In addition, 

the algorithm in Figure 3.11 depends on being able to accurately predict future 

measurements based on the past history of observed measurements. Hence, the signal 

processing technique should yield a clear monotonic trend with as little noise as 

possible. The technique used in (He and He 2018), which is based on a deep learning 

approach to performing Time Synchronous Resampling (TSR), is used to process 

measurements   . The advantages of the approach are that it eliminates the challenge 

of performing Time Synchronous Averaging (TSA) by not requiring the number of 

data points in each revolution to stay constant, does not require the use of a tachometer, 

and is able to find the optimal signal segmentation via an adjustable filter.  

 

The signal processing approach begins first by segmenting raw vibration signals into   

different segments. The optimal parameter   is then obtained via a gradient based 

optimization routine using a convolutional neural network with variable filter size  .  

 

The segmented vibration signals are then fed into an autoencoder which imitates the 

process of performing a Discrete Fourier Transform (DFT) and an Inverse Discrete 

Fourier Transform (IDFT). The DFT process of the approach encodes the frequency 
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Figure 3.12. Prognostic feature extraction autoencoder 

 

 

 

 

components of the segmented vibration signals into the network’s hidden layer. 

Spectral averaging is then performed and the IDFT process then decodes these 

averaged components. After the signal is processed the RMS of the signal is taken as 

the measurement value. The complete process of this approach is shown in Figure 3.12.  
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4. EXPERIMENTAL SETUP 

This section is mainly comprised of materials published in (Deutsch and He 2016), 

(Deutsch et al. 2017), (He, et al. 2011)
3
, and (Deutsch and He 2017). 

 

In this section, the validation of the deep learning based approaches for prongostics are 

validated using vibration data collected at the NASA Glenn Spiral Bevel Gear Test 

Facility and data collected from hybrid ceramic bearing run-to-failure tests are used.  

4.1  Hybrid Ceramic Bearing Run-to-Failure Test Setup 

The hybrid ceramic bearing run-to-failure tests were performed using a bearing test rig in 

the laboratory. The bearing test rig consisted of the following main components: (1) 3-HP 

AC motor with a maximum speed up to 3600 rpm and variable speed controller; (2) 

Hydraulic dynamic loading system with a maximum radial load up to 4400 lbs or 19.64 

kN; (3) Integrated loading and bearing housing. The rig can be used for testing both ball 

and tapered roller bearings. 

 

 

                                            
3 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States 

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are 
credited 



54 
 

 

 
 

The bearing run to failure test rig used to collect the data is shown below in Figure 4.1. 

 

 

 

Figure 4.1. Bearing run-to-failure test rig 

 
 
 
 
An automatic data acquisition system was constructed using a National Instrument CI 

4462 board (NI, Austin, TX, USA) and NI LabVIEW software (LabView 2012, NI, 

Austin, TX, USA). The automatic data acquisition system is characterized with the 

following key features: (1) Maximum sampling rate up to 102.4 kHz; (2) 4 Input 

simultaneous anti-aliasing filters; (3) Software-configurable AC/DC coupling and IEPE 

conditioning; (4) Vibration analysis functions such as envelope analysis, cepstrum 

analysis, and so on for computing necessary condition indicators. 

 

The tested hybrid ceramic ball bearing was a SMR6205C-ZZ/C3 #3 L55/MG2 type 

bearing by Boca Bearing Company (Boca Bearings, Boynton Beach, FL, USA). It 

consisted of stainless steel inner outer races, and ceramic balls. The bearing was mounted 
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on the test rig. Two accelerometers were stunt mounted on the bearing housing in the 

direction perpendicular to the shaft. During the tests, the rig was run at a speed of 1800 

rpm (30 Hz) and was subjected to a radial load of 600 psi. Vibration data were collected 

with a sampling rate of 102.4 kHz for two seconds at each sampling point. There was a 5 

minute gap between any two sampling points. At the end of the test, the test bearings 

were disassembled, checked, and photographed. Two bearing run-to-fail tests were 

performed. The first bearing (B1) dataset recorded contained a total of 255 data files with 

a length of 21.25 hours and the second bearing (B2) dataset contained a total of 849 data 

files with a length of approximately 71 hours.  

 

TABLE I describes the run-to-failure test setting. Table II provides the specifications of 

the tested bearing. 

 

 

TABLE I. THE RUN-TO-FAILURE TEST SETTING 

Name Type 
Load  

(psi) 

Input  

Shaft 

Speed 

(Hz) 

B1 
Hybrid Ceramic 

Bearing 
600 30 

B2 
Hybrid Ceramic 

Bearing 
600 30 
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TABLE II. HYBRID CERAMIC BEARING SPECIFICATIONS 

Parameter Specification 

Bearing Material Stainless Steel 440c 

Ball Material Ceramic SI3N4 

Inner Diameter (d) 25 m 

Outer Diameter (D) 52 m 

Width (B1) 15 m 

Enclosure Two Shields 

Enclosure Material Stainless Steel 

Enclosure type Removable (S) 

Retainer Material Stainless Steel 

ABEC/ISO Rating ABEC #3 / ISOP6 

Radial Play C3 

Lube Klubber L55 Grease 

RPM Grease (x 1000 

rpm) 
19 

RPM Oil (x 1000): 22 

Dynamic Load (Kgf) 1429 

Basic Load (Kgf) 804 

Working Temperature 

Deg C 
121 

Weight (g) 110.32 

 
 
 
 

4.2  Spiral Bevel Gear Run-to-Failure Test Setup 

Gear tests were performed on a bevel gear test rig at the NASA Glenn Spiral Bevel Gear 

Test Facility and vibration data were collected during the gear tests. A total of eight 



57 
 

 

 
 

experiments were performed on the spiral bevel gears (36 teeth on the gears and 12 teeth 

on the pinions). The rig as shown in Figure 4.2 was used to determine the level of 

damage with respect to time. Vibration condition indictors (CIs) and oil debris mass 

(ODM) data were used during the tests to detect and quantify pitting damage on the 

gears. 

 

 

 

Figure 4.2. The bevel gear test rig 

 

 

 

 

The tests consisted of placing the gears under load. Vibration data was collected once 

every minute with a sampling rate of 300 kHz for one second in length, generating TSA 

data on the shaft of the gear. The experiments were performed either until the occurrence 

of surface fatigue or until a specified number of hours elapsed. As show in Figure 4.3, 

destructive pitting could be observed on the teeth of the pinions. 
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Figure 4.3. Damaged spiral bevel gear 

 

 

 

 

CIs obtained from vibration data are typically used to analyze and diagnose mechanical 

faults. For instance, the health and usage monitoring system (HUMS) that are currently 

established in helicopters use a considerable number of vibration based CIs. 

Unfortunately, there is not a single CI that is sensitive and able to capture every failure 

mechanism of a gear (Bechhoefer et al. 2011). Thus, the development of a one 

dimensional health index (HI) to quantify the gear’s state of health can be very 

advantageous for gear health prognostics. The HI was processed using following 

approach developed in (He, et al. 2011): 

 

“TSA data was processed with gear CI algorithms presented in (Zakrajsek and Townsend 

1993) and (Wemhoff et al. 2007).  A total of 6 CIs were used for computing a one-

dimensional HI as the fault feature in order to predict the RUL: residual RMS, energy 

operator RMS, FM0, narrowband kurtosis, amplitude modulation kurtosis, and frequency 

modulation RMS.  To compute the one-dimensional HI, the set of correlated CIs were 

first de-correlated by applying the Cholesky decomposition.  The Cholesky 

decomposition of a Hermitian, a positive definite matrix results in A = LL*, where L is a 

lower triangular, and L* is its conjugate transpose. Let F be a set of correlated CIs. It 

then follows that: 
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(4.1) 

 

and  

         
 

(4.2) 

 

where Y is a vector of n independent CIs with unit variance and correlation(Y) = 0. Eq. 

(4.2) creates the necessary IID conditions required to define the health index for a 

function of distributions. 

 

Assuming that the distributions of the CIs follow a Gaussian distribution, then three 

statistical HI generation models can be used: (1) the Gaussian order statistic; (2) the sum 

of n Gaussian; and (3) the total energy of n Gaussian.  These three models are explained 

as follows (Bechhoefer et al. 2011): 

 

The HI is defined as the Gaussian order statistic, it can be computed as the following: 

 

Y =            
 

 

(4.3) 

 

   
                

           
 

 

(4.4) 

 

where m is the mean of F. Subtracting the mean and multiplying by L transforms the 

features into n, Z distributions (zero mean, IID Gaussian distributions). 

 

When the HI is defined as the sum of n Gaussian, it can be computed as the following: 

 

         

   
   

                      
 
    

 

 

(4.5) 

 

 

When the HI is defined as the total energy of n Gaussian, it can be computed as 

following: 
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(4.6) 

 

 

The HI used for RUL prediction was the order statistic defined by Equation (4.4) as the 

order statistic gave a more consistent trending of the HI than other statistics.” 

 

To predict the RUL of the gear, the health index HI at time t is set as fault feature   . The 

     for the gear data was calculated by finding the first index of time in which the     

1.0, which can be assumed is when the gear has failed and is denoted as      . Since, the 

fault feature and the ODM (assumed to be the true state) are correlated, the total life of 

the gear is the time index of the ODM that correlates with        and is denoted as     . 

This process is shown below in Figure 4.4 and Figure 4.5. 

 

 

 

Figure 4.4. Determining       from the fault feature 
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Figure 4.5. Determining      from the ODM 

 

 

 

 

The RUL at each time step can then be calculated by a linear interpolation using the 

following equation: 

 

             
    

       
  

 

(4.7) 

 

Since the fault feature and the ODM are not a one to one mapping, Equation (4.7) allows 

one to map the RUL by the length of the fault feature.  
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5. RESULTS 

This section is mainly comprised of materials published in (Deutsch and He 2016), 

(Deutsch et al. 2017), and (Deutsch and He 2017). 

 

In this section each of the methodologies presented in Section 3, are used on the run-to-

fail experiment data and the results are compared to a traditional based particle filter 

approach for modeling the RUL.  

5.1  Validation Results Using a Restricted Boltzmann Machine 

In this section the methodology presented using a RBM for prognostics (Section 3.3) are 

validated using both bearing run-to-fail test sets B1 and B2. A total of 804 RMS values 

were utilized at an interval   of 5 minutes based on 2 seconds of data collection at a 

sampling rate of 102.4 kHz for bearing B2 and a total of 192 RMS values were utilized 

for bearing B1. A RBM with a linear regression layer as the last layer of the network was 

developed to model the RMS values. Since the RBM assumes a binary input or a real 

valued input between [0, 1] the input values were scaled to be between [0,1]. An 

embedding dimension   = 50 and a training size of 250 examples was empirically found 

to yield good results in the model for bearing B2 and just 33 examples for bearing B1. 

The hyperparamters were found by using a grid search (exhaustive search). The root 

mean squared error (RMSE) was used as metrics to determine the most appropriate 

model. The mean absolute percentage error (MAPE) was also recorded for each model. 

The MAPE and RMSE are defined by the following equations: 
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(5.1) 

 

 

       
 

   
        

  

   

   

 

 

(5.2) 

 

In Equations (5.1) and (5.2),     = actual value,    = predicted value (from the model), 

and     = the number of predicted points. Two step values of    = 1 and      were 

used to predict 5 minutes and 50 minutes respectively into the future for both bearings. 

Figure 5.1 and Figure 5.2 show the plots of the RBM’s predicted RMS values vs. the 

actual RMS values for bearing B2 with L = 1 and L = 10, respectively.   

 

 

 

Figure 5.1. Plot of RBM predicted RMS values vs. actual RMS for bearing B2 with   = 1 
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Figure 5.2. Plot of RBM predicted RMS values vs. actual RMS for bearing B2 with   = 

10 

 
 
 
 
Figure 5.3 and Figure 5.4 show the plots of the RBM’s predicted RMS values vs. the 

actual RMS values for bearing B1 with L = 1 and L = 10, respectively.   

 

 

 

Figure 5.3. Plot of RBM predicted RMS values vs. actual RMS for bearing B1 with   = 1 
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Figure 5.4. Plot of RBM predicted RMS values vs. actual RMS for bearing B1 with   = 

10 

 
 
 
 
From the above figures, it can be seen that the RBM model is able to capture much of the 

dynamics of the vibration data well throughout the predictions, stay within most of the 

noise in the data, and is able to capture the overall trend of the data.  

 

To evaluate the RUL prediction performance of the RBM model, the last 100 testing 

points over a time period of 500 minutes (about 8 hours) were used to estimate the 

bearing RUL.  
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Figure 5.5 and Figure 5.6 show the plots of the estimated       vs. the true RUL for 

bearing B2 with L = 1 and L = 10, respectively.  

 

 

 

Figure 5.5. Plot of       values of bearing B2 with   = 1 

 
 
 

 

Figure 5.6. Plot of       values of bearing B2 with   = 10 
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Figure 5.7 and Figure 5.8 show the plots of the estimated       vs. the true RUL for 

bearing B1 with L = 1 and L = 10, respectively. 

 

 

 

Figure 5.7. Plot of       values of bearing B1 with   = 1 

 
 
 

 

Figure 5.8. Plot of       values of bearing B1 with   = 10 
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From the above figures, it can be seen that the RBM deep learning based approach gives 

good RUL predictions especially when it approaches the end of the bearing’s life. The 

figures also show that as more data points were fed into the deep learning model, the 

more accurate the RUL predictions become. In addition, the RMSE and MAPE were 

computed for the RUL predictions obtained by the deep learning model and compared 

with those obtained by the particle filter based approach (Li et al. 2010). TABLE III 

AND TABLE IV show the RMSE and MAPE values of the predictions (comparing 

against the true RUL) obtained by the deep learning based and particle filter based 

approaches for bearing B2 and B1, respectively. 

 

 

TABLE III. RMSE AND MAPE RESULTS OF BEARING B2 

Deep learning based approach 

  MAPE RMSE  Learning 

rate 

Hidden 

layer 

size 

1 21.62% 12.85 0.120 50 

10 23.24% 13.68 0.130 50 

Particle filter based approach 

  MAPE RMSE 

1 7.47% 2.53 

10 8.73% 3.65 
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TABLE IV. RMSE AND MAPE RESULTS OF BEARING B1 

Deep learning based approach 

  MAPE RMSE  Learning 

rate 

Hidden 

layer 

size 

1 34.99% 15.86 0.001 11 

10 43.65% 20.79 0.195 91 

Particle filter based approach 

  MAPE RMSE  

1 10.56% 5.87 

10 12.42% 7.21 

 

 

 

 

From TABLE III and TABLE IV, it can be seen that the deep learning based approach 

achieved a lower level of accuracy as the particle filter based approach as evidenced by 

the MAPE and RMSE of the deep learning based approach being higher than those of the 

particle filter based approach. However, given that the deep learning based approach 

doesn’t require explicit model equations like the particle filter based approach and is 

scalable for big data applications, the RUL prediction performance achieved by the deep 

learning based approach has shown its potential for bearing RUL prediction with big 

data. 

5.2  Validation Results Using a Deep Belief Network 

In this section the methodology presented using a DBN for prognostics (Section 3.5) are 

validated using both bearing run-to-fail test B2 and the spiral bevel gear run-to-fail data.  
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5.2.1  Spiral Bevel Gear Remaining Useful Life Prediction Results 

A total of 5670 time steps were extracted from experiment 5 of the gear data, in which all 

the data up until   
    = 5280 was used. The last 100 points of the gear’s life was set as 

the testing set. For the training set, the last 1280 time steps (elimination of the first 4000 

time steps) of data were used for   = 1 and 580 points (elimination of the first 4700 

points) of data were used for   = 10 in the gear data. 

 

The reason for the above setting was twofold: (1) Speed of the training/testing is the key 

to finding appropriate hyperparameters. (2) Some removal of noise, since large regions of 

the fault features are flat and contain a similar input space with different output RUL 

values.  

 

Since the DBN assumes a binary input or a real valued input in [0, 1] the input values 

were scaled to be in [0, 1].  The predictions for   = 1 and   = 10 are shown below in 

Figure 5.9 and Figure 5.10, respectively.  The error metrics and hyperparamters for 

predictions with   = 1 and   = 10 are provided in TABLE V and VI, respectively. The   

step ahead predictions for     predict approximately 1 minute into the future and 10 

minutes into the future for        

 

In Figure 5.9 and Figure 5.10, the green color represents the average predicted RUL 

values across the jackknife samples. The red error bars represent the 90% confidence 

bounds.  
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For both   step ahead predictions it can be seen that they accurately model the true RUL, 

while the   = 1 predictions are less varied than that for   = 10. The confidence bounds for 

  = 10 prediction seem to predict the RUL of the gear slightly early when compared to 

the   = 1 predictions.  

 

 

 

Figure 5.9. Plot of gear RUL values with   = 1 
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Figure 5.10. Plot of gear RUL values with   = 10 

 

 

TABLE V. RMSE AND MAPE RESULTS FOR GEAR DATA 

Deep learning based approach 

  RMSE MAPE 

 Average σ Average σ 

1 2.54 0.49 6.70% 1.07 

10 3.35 1.03 10.04% 2.77 

Particle filter based approach 

  RMSE MAPE 

 Average σ Average σ 

1 2.62 1.12 7.14% 1.54 

10 3.48 2.31 10.87% 3.21 
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TABLE VI. DBN-FNN HYPERPARAMETERS FOR GEAR DATA 

  DBN 

learning 

rate 

DBN 

epochs 

Hidden 

layer 

structure 

BPA 

learning 

rate 

BPA 

epochs 

1 0.001 200 [130,30] 0.001 125 

10 0.001 200 [130,30] 0.001 75 

 

 

 

 

The hyperparameters were mostly the same for both   step predictions with 130 hidden 

neurons in the first layer and 30 neurons in the second layer and were chosen by using a 

grid search. A large embedding dimension of   = 100 was set which was empirically 

found to yield good results. The hyperparameters chosen were simply those that 

minimized the RMSE on the testing set.   

 

The best results were found by using the MAPE as a loss function instead of the more 

typical MSE loss function used for regression problems. The Adam optimizer (Kingma 

and Ba 2014), which is a stochastic optimization algorithm was also used for all of the 

predictions and yielded good results without having to fine tune the learning rate, which 

is due in part to the optimizer’s ability to adaptively change the learning rate.  The 

exponential decay rates and epsilon values were set to the recommended values as 

described in the paper. The rectified linear unit (RELU) activation function for   = 1 was 

used as it empirically provided good results and it solves the vanishing gradient problem 
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that other non-linear activation functions can cause (Glorot et al. 2011). The RELU 

activation function for the input   of a neuron is defined as: 

 

                   

 

(5.3) 

 

For   = 10 on the gear data, the best results were found using a Leaky RELU (LRELU) 

(Mass et al. 2013) defined as: 

 

          
     

       
  

(5.4) 

 

where α is some value which allows for a small non-zero gradient when the neuron is 

saturated and not active. The best results were found by setting it to a very small value of 

0.001. 

 

For a comparison purpose, the RMSE and MAPE of the predicted RUL obtained by the 

particle filter based approach are also provided in TABLE V. The standard deviations 

(denoted as σ) for both the deep learning based approach and the particle filter are 

provided, which are based on the resampled estimates of the RUL, whereas the averages 

are based on the average predicted value.  In comparison with the results obtained using 

the deep learning based approach, the average RMSE and MAPE values of the particle 

filter based approach and their corresponding standard deviations are slightly higher.  
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This comparison result indicates that the RUL prediction accuracy and reliability of the 

prediction results obtained by the deep learning based approach are slightly better than 

the particle filter based approach for the gear data. 

5.2.2  Hybrid Ceramic Bearing Remaining Useful Life Prediction Results 

The RMS of the vibration signals was computed to represent the degradation of the 

bearing over time during the run-to-failure tests.  The vibration signals were preprocessed 

using the FFT and the FFT values were used as the fault feature as the input into the 

DBN-FNN to predict the RUL of the bearing. The RMS plot for the bearing data (B2) 

can be seen in Figure 5.11. 

 

 

 

Figure 5.11. The bearing RMS values 

 

 

 

 



76 
 

 

 
 

The FFT, which is an efficient algorithm for computing the DFT at some time interval   

can be calculated as follows: 

 

            
      

 

   

   

 

 

(5.5) 

 

where     is the     raw vibration signal at time interval  ,   is the length of the signal at 

time interval  ,      , and   = 0,1,…,      

 

Equation (5.5) transforms the vibration signals from a time domain to a frequency 

domain in which eight equal bands were extracted ranging from 0 to 20 kHz. 

 

For the bearing data, the fault features were a one to one mapping and the      was 

calculated simply by taking the time index of the maximum recorded RMS value as the 

point of failure denoted as         and subtracting it from each time step: 

 

                (5.6) 
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As seen above from Figure 5.11, a rather large dip in the RMS values occurs from time 

steps 720 through 735. Features collected from those points were simply removed from 

the data and treated as outliers.  

 

The predicted RUL values for the last 100 steps can be seen in Figures 5.12 and 5.13 for 

  = 1 and   = 10, respectively. The error metrics and hyperparameters for prediction with  

  = 1 and   = 10 are provided in TABLE VII and Table VIII, respectively. Input data was 

also scaled to be in [0, 1], the same   = 100 embedding dimension, loss function, and 

optimizer that were used in the gear data were used for the bearing data. 

 

In Figure 5.12 and Figure 5.13, the green color represents the average predicted RUL 

values across the jackknife samples. The red error bars represent the 90% bounds. The 

predicted results show that for both    = 1 and   = 10 that it can accurately predict the 

true RUL and as the bearing approaches the point of failure, the accuracy of the 

predictions tends to increase and converge.  

 

Similar to the   = 10 prediction for the gear data, a LRELU was used for both the hidden 

layers in the bearing data, with    = 0.0085 and   = 0.0015, for the first and second 

hidden layers respectively. Again, similar to the   = 10 prediction for the gear data, the 

confidence bounds for the   = 10 predicts the RUL of the bearing slightly early when 

compared to the   = 1 predictions and exhibits a greater variance. The increase of 

variance in comparison to the RELU is most likely due to a slightly wider band of 
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information that passes through each neuron when an input   < 0, rather than the neuron 

being simply being turned off. 

 

 

 

Figure 5.12. Plot of bearing RUL values with   = 1 

 

 

 

Figure 5.13. Plot of bearing RUL values with   = 10 
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Again, for a comparison purpose, the RMSE and MAPE of the predicted RUL obtained 

by the particle filter based approach are also provided in Table VII. The standard 

deviations for both the deep learning based approach and the particle filter are provided, 

which are based on the resampled estimates of the RUL, whereas the averages are based 

on the average predicted value.   

 

 

TABLE VII. RMSE AND MAPE RESULTS FOR BEARING DATA 

Deep learning based approach 

  RMSE MAPE 

 Average σ Average σ 

1 2.64 0.78 8.40% 1.28 

10 3.71 1.62 9.31% 3.37 

Particle filter based approach 

  RMSE MAPE 

 Average σ Average σ 

1 2.53 1.14 7.47% 2.11 

10 3.65 2.08 8.73% 3.57 
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TABLE VIII. DBN-FNN HYPERPARAMETERS FOR BEARING DATA 

  DBN 

learning 

rate 

DBN 

epochs 

Hidden 

layer 

structure 

BPA 

learning 

rate 

BPA 

epochs 

1 0.004 50 [130,50] 0.001 79 

10 0.02 100 [130,30] 0.001 79 

 

 

 

 

In comparison with the particle filter based approach, the average RMSE and MAPE 

values of the deep learning based approach are slightly higher while the corresponding 

standard deviation are slightly lower.  This comparison result indicates that for the 

bearing data, the RUL prediction accuracy obtained by the deep learning based approach 

is slightly worse than the particle filter based approach but the reliability of the results is 

slightly better than the particle filter based approach. Note that the RUL prediction results 

obtained by the particle filter-based approach were based on the features extracted using 

Hilbert-Huang transform which is a complex signal processing technique while the RUL 

prediction results obtained by the deep learning-based approach were based on the 

features extracted by DBN–FNN directly from the preprocessed vibration data without 

assuming any explicit state transition equations. In summary, in both the gear and bearing 

RUL prediction validation case studies, the deep learning-based DBN–FNN has achieved 

the prediction accuracy that is comparable to that of the most popular RUL prediction 

method based on particle filters. Given that the deep learning-based approach does not 

require complicated signal processing and explicit model equations like the particle filter-
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based approach and is scalable for big data applications, the RUL prediction performance 

achieved by the deep learning-based DBN–FNN has shown its potential for RUL 

prediction for rotating components with big data. 

5.3  Validation Results Using a Combined Deep Belief Network and Particle 

 Filter 

The RMS of the vibration signals was computed to represent the degradation of the 

bearing (B2) over time during the run to failure tests. The same data preprocessing steps 

used in the previous Section (5.2.2) were used. The same FFT computation was also 

taken to represent the measurements.  

 

The predicted RUL values for the last 100 steps can be seen in Figures 5.14 and 5.15 for  

  = 1 and   = 10, respectively. The error metrics and hyperparameters of the DBN with  

  = 1 and   = 10 are provided in TABLE IX and TABLE X, respectively. TABLE X 

shows the hyperparameters of the DBN for the state transition model which were 

determined using a grid search. Input data was also scaled to be in [0, 1],    = 100 was set 

as the embedding dimension,   was set as 50,                 and 50 

particles were used for both   = 1 and   = 10 predictions.  

 

In Figure 5.14 and Figure 5.15, the green color represents the average predicted RUL 

values across the bootstrapped samples. The red error bars represent the 95% bounds. 

The predicted results show for both    = 1 and   = 10 that it can accurately predict the 
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true RUL and as the bearing approaches the point of failure, the accuracy of the 

predictions tends to increase.  

 

The confidence bounds for the   = 10 predicts the RUL of the bearing slightly early when 

compared to the   = 1 predictions and exhibits a greater variance. 

 

 

 

Figure 5.14. Plot of bearing RUL values with   = 1 
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Figure 5.15. Plot of bearing RUL values with   = 10 

 
 
 
 

TABLE IX. RMSE AND MAPE RESULTS 

Combined DBN and particle filter based approach 

  RMSE MAPE α    
accuracy 

(α=10%) 

1 2.04 7.33% 0.80 

10 3.52 8.68% 0.61 

 Particle filter based approach 

  RMSE MAPE α    accuracy 

(α=10%) 

1 2.53 7.47% 0.71 

10 3.65 8.73% 0.53 
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TABLE X. HYPERPARAMETERS OF THE DBN 

  DBN 

learning 

rate 

DBN 

epochs 

Hidden 

layer 

structure 

FNN 

learning 

rate 

FNN 

epochs 

1 0.002 74 [146,53] 0.0017 176 

10 0.0023 82 [120,54] 0.0014 92 

 

 

 

 

The error metrics used in TABLE IX are the RMSE, α     metric (Al-Dahidi et al. 2016, 

Saxena et al. 2010), MAPE. In TABLE IX, the metrics were computed based on the 

average value of the predicted RUL. The α     metric is defined by the following 

equation: 

 

           
                           

             
            

  

 

 

(5.7) 

In Equation (5.7),  represents a user specified bound level,        represents the actual 

RUL at time   , and       
  represents the predicted RUL at time   .  is given as a 

percentage of RUL for a given equipment (i.e.        represents the time index where 

half the RUL is left). The reported α   in TABLE IX represents the average α    

metric across the all testing samples (values closer to one indicate better performance). 

The loss functions used to train the state transition models for     and      were the 
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MSE (      ) and the MAPE respectively. Satisfactory hyperparameters for building 

up Equation (3.30) and Equation (3.35) for both     and      were set as [105, 59] 

for the hidden layer structure using 122 epochs with a learning rate of 0.00085. The 

hyperparameters for the reconstructed mono-dimensional measurement data were set as 

[142, 87] for the hidden layer structure using a small learning rate of 0.0094 and 212 

epochs. The hyperparameters for each built network was done by employing a grid search 

and evaluating candidate hyperparameters on the MSE using a 10 fold cross validation on 

the training set. Cross validation is a widely used method to avoid overftting when 

selecting hyperparameters (Bergstra et al. 2012). The chosen hyperparameters were 

obtained by those that minimized the MSE during cross validation. For all of these 

networks, the activation function was set as the RELU function. 

 

Since the particle filter is the most competitive RUL prediction method for bearings, for a 

comparison purpose, the RMSE and MAPE of the RUL predictions obtained by the 

particle filter-based approach are also provided in TABLE IX. In comparison with the 

results obtained using the particle filter-based approach, the RMSE and MAPE values of 

the integrated approach were slightly lower and the α−  metric values were higher. It can 

be considered that the integrated method presented here is better than the DBN-based 

approach used on the same bearing dataset. The comparison results showed the promising 

performance of combining the deep learning based approach with particle filter for hybrid 

ceramic bearing RUL prediction. 
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Given that the integrated approach did not require explicit model equations like the 

particle filter-based approach and is scalable for big data applications, the RUL 

prediction performance achieved by the integrated approach has shown great potential for 

bearing RUL prediction with big data. 

5.4  Validation Results Using an Integrated Mixture Density Network and 

 Particle Filter 

Experiments three, four, six, and all but the last 100 time steps of experiment seven of the 

gear run-to-failure data were utilized to serve as the training set. The last 100 time steps 

of experiment seven were used as the testing set. Hyperparamters for both the state 

transition and the measurement model were found by using a grid search and validating 

these using a ten fold cross validation. The same training data was utilized to determine 

these optimal hyperparameters with the exception that only the first 300 time steps were 

utilized of experiment 7.  
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These hyperparameters can be viewed in TABLE XI. The adagrad optimizer (Duchi et al. 

2013) was used to obtain the optimal parameters for both the state transition distribution 

and measurement distribution. The total number of particles    = 75 were used for all 

predictions. The ODM was treated as the value of the state. 

 

  

TABLE XI. HYPERPARAMETERS OF THE MDN 

 MDN 

learning 

rate 

MDN 

epochs 

Hidden 

layer 

structure 

Activation 

function 

Mixing 

components 

( ) 

MDN 

probability 

density 

function 

State 

transition 

1e-3 949 [21] Tanh 3 Log-

normal 

Measurement 

model 

1e-3 37 [299] Tanh 3 Normal 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 
 

 

 
 

The learned state transition distribution model from the MDN can be seen below in 

Figure 5.16 and the MDN measurement model distribution can be seen in Figure 5.17. As 

can be seen, the actual one step ahead state value lies for the most part in high dense 

regions of the state transition distribution model. The red line in these plots indicates the 

true state     

 

 

 

Figure 5.16. PDF plots of the state transition model for time steps      (upper left), 

       (bottom left),       (upper right),          (bottom right) for experiment 7 
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Figure 5.17. PDF plots of the measurement model for time steps t = 957 (upper left), t = 

451 (bottom left), t = 101 (upper right), t = 951 (bottom right) for experiment 7. 

 

 

 

 

The learned measurement distribution model also appears to yield decent results, with the 

true state lying in areas of high density. As evidenced by Figure 5.17, the 

nondeterministic nature of the system is directly visible and apparent by the bimodal 

shape of some of the distributions; a similar observed measurement may be associated 

with multiple values of the ODM.  

 

By recursively using the state transition distribution, particles are propagated to model 

the system state over time. Figure 5.18, provides an example of particles being 



90 
 

 

 
 

propagated for 50 time steps into the future in order to track the ODM using the learned 

state transition distribution from the MDN. 

 

 

 

Figure 5.18. Particle propagation 50 time steps ahead using 11 particles 

 

 

 

 

Measurement data    was processed into a mono-dimensional feature using the 

aforementioned hybrid deep signal processing technique described in Section 3.11. By 

utilizing this approach, a very clear monotonically increasing trend and be seen in Figure 

5.19, which closely matches the true state of the system (Figure 5.20). A comparison was 

also performed on the same measurement data using a DBN. However, as can be seen in 

Figure 5.21, the processed measurements performed via the DBN do not show any 

noticeable trend and very poorly correlate with the true state of the system. The output of 
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the DBN only shows some slightly higher energies near the gear’s end of life and 

utilizing the features extracted from the DBN would provide very poor prognostic results.  

 

 

 

Figure 5.19. Plots of the measurement value    over time for experiment 3 (upper left), 

experiment 6 (bottom left), experiment 4 (upper right), and experiment 7 (bottom right)  
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Figure 5.20. Plots of the state value over time for experiment 3 (upper left), experiment 6 

(bottom left), experiment 4 (upper right), and experiment 7 (bottom right) 
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Figure 5.21. DBN output for experiment 7 

 

  

TABLE XII. HYPERPARAMETERS OF THE DBN FOR EXPERIMENT 7 

DBN 

learning 

rate 

DBN 

epochs 

Hidden layer 

structure 

Activation 

function 

1e-3 300 [500,100,50,1] Sigmoid 

 
 

 

 

 

The measurement data was then processed further by smoothing out the data using a 

simple polynomial curve fit. Likewise, the function      was built up using a polynomial 

curve fit on the training measurement data in order to predict the future values of the 

measurements. Other more elaborate functions may of course be used, however, for the 
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sake of simplicity a polynomial of degree four provided satisfactory results. The number 

of steps    to project the particle filter into the future was set to a short forecast horizon 

of six steps. 

  

Finally, as can be seen in Figure 5.22 and 5.23, the predicted RUL results follow very 

closely with the actual RUL, with nearly all of the true RUL points lying within the 

confidence bounds. In Figures 5.22-25 the green line represents      and the red lines 

represents the confidence bounds.  

 

 

 

Figure 5.22.   = 1, Plot of the RUL with 99% confidence bounds 
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Figure 5.23.   = 10, Plot of the RUL with 99% confidence bounds  
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Results obtained by using the traditional particle filter based approach (without using 

future measurements) and using the same learned distributions via the MDN also yielded 

good results and are shown below in figures 5.24 and 5.25. However, towards the end of 

the gear’s life, the accuracy of the RUL predictions decrease slightly and are a bit 

optimistic.  

 

 

 

Figure 5.24.   = 1, Plot of the RUL with 99% confidence bounds without using future 

measurements 
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Figure 5.25.   = 10, Plot of the RUL with 99% confidence bounds without using future 

measurements 
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These results were compared to the methodology presented in Section 3.7. The 

comparison of the results can be found below in Table XIII.  

 

 

TABLE XIII. RESULTS OF THE MDN APPROACH 

Method   RMSE MAPE 

MDN (w/future 

measurements) 

1 5.10 12.14% 

MDN (w/future 

measurements) 

10 6.10 19.79% 

MDN (w/o future 

measurements) 

1 6.58 21.29% 

MDN (w/o future 

measurements) 

10 6.73 30.28% 

Integrated Deep Learning and 

Particle Filter Approach 

1 6.76 23.36% 

Integrated Deep Learning and 

Particle Filter Approach 

10 15.56 32.50% 

 

 

 

 

 

In TABLE XIII, the metrics were computed based on the average value of the predicted 

RUL. Both MDN approaches provided the best overall accuracy. The MDN using future 

measurements yielded the best overall results across both   step ahead predictions. It can 

be hypothesized that this is due to the fact that the future measurements can effectively 

decrease the projection horizon of the particles when propagating these particles until 

they meet or exceed the system’s safety threshold.  
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6. CONCLUSION 

 

Deep learning is a very powerful tool and thus, has become a very popular tool for 

solving many tasks across a wide spectrum of domains. Prognostics are no exception to 

this. Accurate forecasts can be obtained to determine the RUL without requiring much of 

the skill, expertise, and domain knowledge used for signal processing with deep learning 

based approaches. Specific models such as the state transition distribution and 

measurement model can be automatically built up using deep learning approaches that 

could be deployed where models may be unavailable or very complex to build. However, 

this is not to say that domain knowledge is of little use when employing deep learning 

based approaches for prognostics. The black-box approach to utilizing deep learning for 

prognostics did not seem to outperform the approaches in which at least some a prior 

knowledge was incorporated into the modeling procedure. This is certainly illustrated by 

the results from Section 5.4, which yielded the best overall prognostic forecasts and 

utilized the most of amount of domain knowledge into the prognostic forecasts. 

Therefore, it seems logical that further research should be developed based on hybrid 

models that incorporate the physics behind the system into the deep learning 

methodologies.    
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