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SUMMARY

Classically, the Fisher information is the relevant object for defining optimal experimental

designs. However, for models that lack certain regularity, the Fisher information does not exist

and, hence, no notion of design optimality is available in the literature for such situations. This

thesis fills this gap by proposing a so-called Hellinger information that generalizes Fisher infor-

mation in the sense that the two measures agree in regular problems, but the former also exists

in certain nonregular problems. A Hellinger information inequality is derived, showing that

the Hellinger information defines a lower bound on the local minimax risk of estimators. This

provides a connection between features of the underlying model, in particular, the design and

the performance of estimators, motivating the use of this new Hellinger information for defin-

ing a notion of design optimality in nonregular problems. Hellinger optimal designs are derived

for several nonregular regression problems, and numerical results are shown to demonstrate

empirically the improved efficiency of these designs compared to alternatives.
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CHAPTER 1

INTRODUCTION

1.1 Regular models and Fisher information

In the optimal design literature, the focus is on regular models, where the response variable

follows a distribution from an exponential family. In such cases, Fisher information emerges as

the relevant object and optimal designs are defined as those with maximal Fisher information.

However, for nonregular models, such as a linear regression model with error terms following

an exponential distribution, Fisher information does not exist. This project provides a new

measure of information that is suitable for constructing optimal designs for nonregular models.

Section 1 of this chapter reviews the theoretical background for optimal design of experiment

for regular models, including a discussion of Fisher information. This discussion emphasizes

that the primary motivation for the optimization of Fisher information is its connection to

the quality of estimator, as this will be a key point in the subsequent chapters. Section 2

covers basic concepts and notations in the mathematics of experimental design and reviews

recent developments in the strategy of optimization of the Fisher information matrix. Section

3 introduces the types of nonregular models that can benefit from the approach to optimal

design proposed in subsequent chapters. Finally, Section 4 of this chapter outlines the rest of

this thesis.

1
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1.1.1 Fisher information and regular models, asymptotic normality

Suppose that the parametric family of probability measures {Pθ, θ ∈ Θ} is defined on a

measurable space (Ω,B), so that Pθ is dominated by some σ-finite measure µ on B, and the

choice of dominating measure µ is defined for all points of the parametric family. Following

(Lehmann, 1999), the model is regular if it satisfies the following conditions:

• C1) the parameter is identifiable, i.e., for all θ ∈ Θ, pθ 6= pθ′ ⇔ θ 6= θ′;

• C2) the parameter space Θ ⊂ Rd, d ≥ 1 is an open set;

• C3) common support: the set {y : pθ(y) > 0} is independent of θ;

• C4) pθ(y) is differentiable with respect to θ for all y.

Under these conditions, Fisher information exists.

Definition 1. (Fisher information) Assume {Pθ, θ ∈ Θ} satisfies C1) − C4) above and define

l̇θ = (∂ log pθ(y)
∂θ1

, ..., ∂ log pθ(y)
∂θd

)>. Then the Fisher information matrix has dimension d× d and is

defined as

I(θ) = Eθ(l̇θ l̇
>
θ ).

Consider the following additional condition:

(C5) The first two derivatives with respect to pθ(y) exist for all y, and for all θ ∈ Θ, the

corresponding differentiation with respect to θ of
∫
pθ(y)dy can be obtained by differentiating

under the integral sign. Under the additional condition (C5), there is an alternative formula

for Fisher information,

I(θ) = −Eθ(l̈θ).
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There are two properties of Fisher information that will be important in the course of the

argument here. First, Fisher information is additive. If Y1, ..., Yn are independently but not

identically distributed, with densities that share the same parameter pi,θ, i = 1, ..., n, letting

I(i)(θ) be the Fisher information from the ith observation, then the information obtained in a

sample (y1, ..., yn), denoted as In(θ), would be
∑n

i=1 I(i)(θ). If Y1, ..., Yn are independently and

identically distributed (iid), then information for all yi would be the same, i.e., I(i)(θ) = I(θ).

So, the information in the sample would be In(θ) = nI(θ). Second, Fisher information has a

formulation for reparametrization: If η = g(θ), assuming g(θ) is one-to-one, differentiable, and

g(.) 6= 0, then Ĩ(η) is the Fisher information for η, such that

Ĩ(η) = {(g−1(θ))′}TI(g−1(η)){(g−1(θ))′}.

A class of regular models is the exponential family of distributions. If pθ(y) belongs to the

exponential family, then there are some non-negative functions h(.), T (.), A(.), such that pθ(y)

can be expressed as

pθ(y) = h(y)eθ
>T (x)−A(θ), where eA(θ) =

∫
h(y)eθ

>T (y)dy.

The normal, exponential, Bernoulli, Poisson distributions, and many other distributions be-

long to the exponential distribution family. Probability distribution functions of the exponential

distribution family satisfy the regularity conditions C(1) through C(5), thus Fisher informa-

tion exists for them as well. For example, the Fisher information for the location parameter
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of normal distribution, N(µ, σ2), with known variance σ2, is I(µ) = σ−2. The Poisson dis-

tribution with probability distribution function, pλ(y) = λye−λ(y!)−1, has Fisher information,

I(λ) = λ−1.

Another important concept related to Fisher information is the Cramér-Rao lower bound,

which states that Fisher information inversely bounds the variance of any unbiased estimator

from below.

Theorem 1 (Cramér-Rao Lower bound). Consider regular model {Pθ, θ ∈ Θ}. If Yn =

(Y1, .., Yn)>, Y1, .., Yn
iid∼ pθ and if T (Yn) is a real-valued statistics with Eθ(T ) = τ(θ), then,

letting τ ′(θ) be a vector of the derivative of τ(θ), the Cramér-Rao lower bound is

Vθ(T ) ≥ τ ′(θ)T (nI(θ))−1τ ′(θ). (1.1)

The Cramér-Rao lower bound can be attained only in exponential families. Asymptotically,

all regular models belong to the exponential family. (Lehmann and Casella, 1998) Specifically,

the bound can be attained by maximum likelihood estimator (MLE), θ̂n, the solution to the

likelihood equation, ∂
∑

log pθ(yi)
∂θ = 0. MLE is asymptotically normal, i.e.,

n1/2(θ̂n − θ)→ N(0, I(θ)−1) as n→∞.

Notice that the asymptotic variance of MLE around true parameter value θ becomes smaller

as Fisher information becomes larger.
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In summary, Fisher information plays an important role in describing the asymptotic prop-

erty of estimation for regular models, i.e., it determines a lower bound of risk of any arbitrary

unbiased estimator. Due to the asymptotic normality of regular model, the inverse of Fisher

information is equivalent to the asymptotic variance of the MLE. The regularity conditions C1)

to C5) are therefore often described as the condition for the existence of Fisher information

and for asymptotic normality. In order to pave the way to the introduction of Hellinger infor-

mation in Chapter 2, the next subsection reviews a less restrictive condition that nonetheless

leads to local asymptotic normality, namely differentiable in quadratic mean. An alternative

derivation of Fisher information based on the Hellinger distance between distributions is also

discussed. The purpose of section 1.1.2 is to provide some background to the definition of

Hellinger information described in Chapter 2.

1.1.2 DQM and local asymptotic normality

Asymptotic normality also occurs under weaker conditions than those listed in Section 1.1.1.

Specifically, asymptotic normality does not require C(4), and, in fact, pθ(y) does not have to be

differentiable with respect to θ for all y. For example, take the Laplace distribution’s density

function with mean parameter µ and, given variance 2b2, pµ(y) = 1
2bexp(−

|y−µ|
b ). The MLE

for µ, µ̂ is the sample median, and n1/2(µ̂− µ)/b is asymptotically normal. Distributions that

satisfy C1) to C5), as well as distributions like Laplace distribution, satisfy a condition called

differentiable in quadratic mean (DQM), which implies local asymptotic normality.
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Definition 2. (Differentiable in quadratic mean) A model pθ is differentiable in quadratic mean

(DQM) at θ, for some θ′ ∈ Θ, if there is a quadratic expansion of Hellinger distance between

pθ and pθ′ , with some non-negative matrix J(θ). That is,

∫
(
√
pθ(y)−

√
pθ′(y))2dy = (θ − θ′)>J(θ)(θ − θ′) + o(|θ − θ′|2) as θ → θ′. (1.2)

For models satisfying C1) to C5), i.e., when Fisher information, Eθ(l̇θ l̇
>
θ ), exists, then with

regards to the above expression (Equation 1.2), J(θ) = 1
4Eθ(l̇θ l̇

>
θ ). A brief justification follows.

First, consider Θ ∈ R. Assuming that Fisher information, Eθ(l̇θ l̇
>
θ ), exists, then C1) to C4)

imply that the point-wise derivative of pθ(y) exists everywhere (with respect to θ), and so does

the point-wise derivative of
√
pθ(y), as follows:

∂

∂θ

√
pθ(y) =

1

2

1√
pθ(y)

∂

∂θ
pθ(y) =

1

2

∂ log pθ(y)

∂θ

√
pθ(y).

Therefore, the integral of the squared derivative of the square root of the probability distri-

bution function is proportional to Fisher information:

∫ (
∂

∂θ

√
pθ(y)

)2

dy =

∫
1

4
(
∂ log pθ(y)

∂θ
)2pθ(y)dy =

1

4
Eθ(l̇

2
θ).

Then, by regularity condition C5),

lim
ε→0

∫
(

√
pθ(y)−

√
pθ+ε(y)

ε
)2 dy =

∫ (
∂

∂θ

√
pθ(y)

)2

dy =
1

4
Eθ(l̇

2
θ).
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Thus, the squared Hellinger information can be approximated by the following:

h(θ, ϑ) =
1

4
Eθ(l̇

2
θ) (θ − ϑ)2 + o(|θ − ϑ|2), as θ → ϑ. (1.3)

For the multi-dimensional case, J(θ) = 1
4Eθ(l̇θ l̇

>
θ ), here is a brief justification for when Θ ∈ R2,

with θ = (θ1, θ2). In this case, one can rewrite the squared Hellinger distance as follows:

h(θ, ϑ) =

∫ (√
pϑ1,ϑ2 −

√
pθ1,θ2

)2
dy

=

∫ (√
pϑ1,ϑ2 −

√
pθ1,ϑ2 +

√
pθ1,ϑ2 −

√
pθ1,θ2

)2
dy

=

∫ (√
pϑ1,ϑ2 −

√
pθ1,ϑ2

)2
dy +

∫ (√
pθ1,ϑ2 −

√
pθ1,θ2

)2
dy

+ 2

∫ (√
pϑ1,ϑ2 −

√
pθ1,ϑ2

)(√
pθ1,ϑ2 −

√
pθ1,θ2

)
dy.

Define the symmetric 2× 2 matrix J(θ) as J11(θ), J22(θ), J12(θ), and by similar calculation

as the one-dimensional case, it can be shown that,

J11(θ) = lim
ε1→0

1

ε2
1

∫ (√
pθ1+ε1,θ2 −

√
pθ1,θ2

)2
dy =

1

4
Eθ((

∂ log pθ
∂θ1

)2)

J22(θ) = lim
ε2→0

1

ε2
2

∫ (√
pθ1,θ2+ε2 −

√
pθ1,θ2

)2
dy =

1

4
Eθ((

∂ log pθ
∂θ2

)2)

J12(θ) = lim
ε1,ε2→0

1

ε1ε2

∫ (√
pθ1+ε1,θ2+ε2 −

√
pθ1,θ2+ε2

)(√
pθ1,θ2+ε2 −

√
pθ1,θ2

)
dy

=
1

4
Eθ(

∂ log pθ
∂θ1

∂ log pθ
∂θ2

).
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Thus, the matrix J(θ) has following appearance:

J(θ) =

J11(θ) J12(θ)

J12(θ) J22(θ)

 =
1

4
Eθ(l̇θ l̇

>
θ ).

Since none of J11(θ), J22(θ), or J12(θ) depends on the direction of (ε1, ε2)>, (u1, u2)> = (ε1,ε2)>

|(ε1,ε2)| ,

and squared Hellinger distance between pθ and pϑ has the following approximation, as θ → ϑ:

h(θ, ϑ) =(θ − ϑ)>

J11 J12

J12 J22

 (θ − ϑ) + o(‖θ − ϑ‖22)

=
1

4
(θ − ϑ)>Eθ(l̇θ l̇

>
θ ) (θ − ϑ) + o(‖θ − ϑ‖22).

Notice that obtaining Eθ(l̇θ l̇
>
θ ) does not require that l̇θ exist at every point of the support. If it

is not differentiable at a countable number of points, this would still be true. Examples include

the triangle distribution, and the Laplace distribution with location parameter.

The above shows that regularity conditions imply DQM; however, there are models that

violate certain conditions of regularity but are nonetheless DQM, such as the triangle and

Laplace distributions. A characteristic for these distributions is that Pθ is DQM at a specific

value θ∗, such that the limit of pθ(y) of y → θ∗ exists, but pθ(y) is not necessarily differentiable

with respect to θ at the point y = θ∗. This means that for pθ(y) to be DQM at some θ ∈ Θ, it

is not required that C4) or C5) apply.
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Example 1. With 1S(y) as the indicator function for set S, consider a non-symmetric standard

triangular distribution with the following density (Shemyakin, 2014):

pθ(y) =
2y

θ
1[0,θ](y) +

2 (1− y)

θ
1[θ,≤1](y).

pθ(y) is differentiable in quadratic mean at θ, because

lim
ε→0

∫
(

√
pθ(y)−

√
pθ+ε(y)

ε
)2 dy =

1

4θ(1− θ)
.

One important implication of DQM is that as the sample size becomes large, the local

model behaves like normal distribution. A more detailed explanation follows. First, however,

a consequence of DQM is that the limit of the likelihood ratio has a quadratic approximation

as described in the following theorem.

Theorem 2. (Van der Vaart, 1998) (Theorem 7.2) Suppose that Θ is an open subset of Rk

and that the model (Pθ, θ ∈ Θ) is differentiable in quadratic mean at θ0. Then, Pθ0 l̇θ0 = 0, and

the Fisher information matrix Iθ0 = Pθ0 l̇θ0 l̇
>
θ0

exists. Define a local parameter h =
√
n(θ − θ0)

with θ0 as a fixed point, for every converging sequence hn → h, as n→∞.

log

n∏
i=1

pθ0+ hn√
n

pθ0
(Yi) = h>

∑n
i=1 l̇θ0√
n
− 1

2
hTIn(θ0)h+ opθ0 (1) for every hn → h, as n→∞. (1.4)
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The limit of likelihood ratio above has a similar form to the log likelihood ratio of N(h, I(θ0))

and N(0, I(θ0)):

log
dN(h, I(θ0))

dN(0, I(θ0))
(Y ) = hT I(θ0)Y − 1

2
hT I(θ0)h. (1.5)

To see this, first recall that the expectation of score function, l̇θ0 , is zero, and that its variance

is the Fisher information. By the central limit theorem,
∑n
i=1 l̇θ0√
n

, from the first term of the

right hand side of (Equation 1.4), the function follows distribution N(0, In(θ0)):

∑n
i=1 l̇θ0√
n

pθ0→ N(0, In(θ0)). (1.6)

From the first term of the right hand side of (Equation 1.5), since Y ∼ N(0, I−1(θ0)),

I(θ0)Y ∼ N(0, I(θ0)).

In other words, h>
∑n
i=1 l̇θ0√
n

pθ0→ h>In(θ0)Y . Hence,

log

n∏
i=1

pθ0+hn/
√
n

pθ0
(Yi)

pθ0→ log
dN(h, In(θ0))

dN(0, In(θ0))
(Y ). (1.7)

Given that θ0 is the true parameter value, the limit of likelihood ratio reflects how much

information there is in the model from a sample of n observations about θ, because, if given a

sample of size n and if the ratio is large, it follows that the ratio is sensitive to mis-guessing

the true value of the parameter. The more sensitive the likelihood ratio is to mis-guessing the

true value of the parameter, the more informative to the true parameter value.
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In a sense, the limit of likelihood ratio, log
∏n
i=1

p
θ0+

hn√
n

pθ0
(Yi) in (Equation 1.4), describes,

under DQM, how much information there is for θ0 when given a sample of size n. Based on

(Equation 1.6), the expectation of the first term in the right hand side of (Equation 1.4) is

zero. Thus, the “relative peakness” of likelihood ratio at θ0 is measured by 1
2h

TIn(θ0)h. Put

differently, under DQM, it is the Fisher information In(θ0) that determines the amount of

information for a sample size of n on θ0.

That the limit of likelihood ratio converges to a normal one indicates that, as sample size

increases, the local model has similar properties to a normal model. (Equation 1.7) means that

when sample size n is large, the local model (pn
θ0+h/

√
n

: h ∈ Rk) and (N(h, In(θ0)−1) : h ∈ Rk)

have similar statistical properties. (N(h, In(θ0)−1) : h ∈ Rk) can be considered a limit model

of (pn
θ0+h/

√
n

: h ∈ Rk) that is DQM. Discussion of limit local model is helpful because every

sequence of statistics in (pn
θ0+h/

√
n

: h ∈ Rk) is matched in the limit by a statistics in its limit

model, with the implication that there is no sequence of estimator that can be asymptotically

better, in terms of risk, than the best estimator in the limit model. Typically, MLE is matched

by MLE in the limit experiment. A rigorous statement of this conclusion is expressed in the

Asymptotic Representation Theorem introduced in (Le Cam et al. 1972) and (Van der Vaart,

1991).

For the normal distribution, the best estimator in terms of efficiency for the location pa-

rameter is MLE. Accordingly, for models that are DQM, whose limit experiment is Normal, the

best estimator shall be MLE θ̂, as well, and it follows normal distribution asymptotically, i.e.

√
n(θ̂ − θ0) ∼ N(0, I−1

n (θ0)). In other words, for the model that is differentiable in quadratic
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mean at θ, the inverse of Fisher information is the asymptotic variance-covariance matrix. For

these reasons, for the rest of this thesis, we say that a model is regular as long as it is DQM.

Nonregular models refer to those that are not DQM.

1.1.3 Regular regression model and Fisher information

Statistical models help scientists understand how different conditions and features of their

observations affect observed outcomes. Linear regression, non-linear regression, and generalized

linear models are common statistical modeling tools. For these models, Fisher information

depends on covariates. As Fisher information determines the quality of estimation, as discussed

previously, in the stage of experimental design, one can choose covariates for observations in an

experiment in ways that can improve the quality of estimation.

Linear and nonlinear models with normal distributed error terms can be characterized as

follows: with xi being the covariate vector for ith observation and θ being the parameter of

interest, θ ∈ Rk, there is a differentiable function g(θ,X) such that

yi = g(θ,xi) + εi, εi ∼ N(0, σ2), i = 1, ..., n.

Denoting Ixi(θ) as the Fisher information based on ith observation, then

Ixi(θ) = σ−2(
∂g(θ,xi)

θ1
, ...,

∂g(θ,xi)

θd
)>(

∂g(θ,xi)

∂θ1
, ...,

∂g(θ,xi)

∂θd
).
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By the additivity property, Fisher information of θ based on a sample of n independent obser-

vations (yi,xi), i = 1, ..., n, In(θ), would be the summation of Ixi(θ), i = 1, ..., n:

In(θ) = σ−2
n∑
i=1

(
∂g(θ,xi)

θ1
, ...,

∂g(θ,xi)

θd
)>(

∂g(θ,xi)

∂θ1
, ...,

∂g(θ,xi)

∂θd
).

Based on the above summary of the Fisher information for linear and nonlinear models, one

sees that Fisher information is a function of the covariates xi, i = 1, ..., n and θ. The familiar

example of linear regression illustrates this point.

Example 2. When the regression model is linear, then g(θ,xi) = x>i θ. Letting Y be the vector

of n observation, Y = (Y1, ..., Yn)>, and letting X = (xi, ...,xn)> be the design matrix, and

ε = (ε1, ..., εn)> be the vector of error, then the model can be written as

Y = Xθ + ε, ε ∼ Nn(0, σ2I).

The Fisher information based on (Y,X) would therefore be In(θ) = σ−2XTX. The best linear

unbiased estimator for θ is θ̂ = (XTX)−1XTY and the variance of θ̂ is V ar(θ̂) = σ2(XTX)−1 =

In(θ)−1.

The generalized linear model is commonly used in statistics. The model set-up assumes that

observation y is generated from some distribution of the exponential family, with the mean E(Y )

determined by independent variable X, which the parameter of interest is determined through

a link function g(.), E(Y ) = g−1(Xθ). Any generalized linear models belong to the exponential

family, where regularity conditions are satisfied, so the Cramér-Rao lower bound applies, and
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the MLE is asymptotically normal, with the variance-covariance matrix being equivalent to the

inverse of Fisher information. What follows is an example of using a generalized linear model

for count data.

Example 3. In a Poisson regression model for independent count data Yi, i = 1, . . . , n with

covariate vector xi, i = 1, . . . , n and link function log(λi) = x>i θ, based on the additivity

property and the reparametization rule of Fisher information matrix, the Fisher information

matrix for θ can be written as In(θ) =
∑n

i=1 xix
>
i exp(x

>
i θ).

One can see that for generalized linear models, Fisher information also depends on covari-

ates, just as in the case of regression models. Therefore, for linear, nonlinear regression, and gen-

eralized linear models, the Fisher information matrix is determined by covariates xi, i = 1, ..., n.

1.2 Optimal design of experiment

Planning an experiment involves decisions about how many observations of the various ex-

perimental conditions should be conducted. Taking into account the purpose of the experiment,

the mathematics of optimal design seeks to determine the best design based on a number of

goals, such as minimizing the chances of a wrong conclusion or maximizing precision in the

estimation of the parameters in the specified statistical model.

As described in the previous section, for both linear and nonlinear regression models, and

generalized linear models, Fisher information depends on the the covariates of each observation.

Since Fisher information inversely determines the lower bound of mean square error of arbitrary

unbiased estimators, maximizing I(θ) in some sense among possible experimental designs will

optimize design in terms of producing the most efficient estimates.
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1.2.1 Approximate design

In the study of experimental design, an exact design of size n includes information about

where to take observations from, i.e., location of observation sites, how many different sites

there will be, and how many observation are taken from each site. Denote χ as the covariate

design space, which is a collection of all sites at which one can make observations. For example,

consider the simple linear regression model, yi = θ0 + θ1xi + εi, εi ∼ N(0, σ), i = 1, ..., 8, where

the design space is χ = [−5,−1]. An exact design of this experiment contains 4 sites. Site 1 is

located at x1 = −1 with 1 observation, site 2 is taken at x2 = −2 with 3 observations, site 3 is

located at x3 = −4 with 2 observations, and site 4 is located at x5 = 5 with 2 observations.

(Kiefer, 1974) suggested the use of approximate design to simplify the setup of experimental

design. An approximate design has the format of ξ = {(wi, xi), i = 1, ..., r}, xi ∈ χ, where xi, i =

1, ..., r represents r distinct locations of experimental space from which one takes observations,

also known as the “design points” of an experiment. In this format, wi represents the proportion

of total observations from site xi. In an approximate design, all the weights sum up to 1, i.e.,∑r
i wi = 1, thus ξ over χ is also called a design measure. The approximation of the exact design

described previously can then be written as ξ = {(1
8 ,−1), (3

8 ,−2), (2
8 ,−4), (2

8 ,−5)}.

Considering optimality criteria described in the following section, optimization with respect

to exact design is generally intractable, due to the fact that it is a discrete optimization problem.

Optimization with respect to approximate design works around this issue by rendering the

optimization problem such that it is continuous. In solving real problems, after obtaining an

optimal design with respect to approximate design, one can convert the approximate design to
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exact design of n observations by taking n×wi observations (or the closest integer to n×wi if

it is not an integer) at location xi.

Consider an approximate design ξ = {(wi, xi), i = 1, ..., r}. By additivity of Fisher infor-

mation, with sample size of n, Fisher information based on design ξ with sample size n can be

expressed as

Iξ(θ) = n
r∑
i=1

Ixi(θ)wi.

Since sample size n is irrelevant in finding approximate optimal design, the matrix

Mξ(θ) =
r∑
i=1

Ixi(θ)wi (1.8)

is called the information matrix of a design, and finding an approximate optimal design boils

down to maximizing some function of Mξ(θ), where the choice of function depends on the

optimality criterion.

For example, given an approximate design with r many design points, ξ = {(w1,xi)...(wr,xr)},

for Poisson regression from Example 3, the information matrix of ξ would be

Mξ(θ) =
r∑
i=1

wixix
>
i exp(x

>
i θ).

For generalized linear models, the information matrices and thus the corresponding designs

depend on the unknown model parameters. One way to deal with this is to identify locally

optimal designs based on the best guess of the parameters. While the local guessed value



17

can be provided by an expert, one can also conduct a first stage design with a small number

of observations to obtain a reasonable initial estimation, then use it as the guessed value.

According to (Ford et al., 1992), a local optimal design can also serve as a benchmark to check

the efficiency of other designs.

1.2.2 Goal of optimal design of experiment for regular models

Under regularity conditions, the Cramér-Rao lower bound theorem states that Fisher in-

formation is the inverse of the direct or asymptotic variance-covariance matrix of unbiased

efficient estimator, such as MLE for linear regression, nonlinear regression, and generalized lin-

ear models. When working with these models, the goal of optimal design is to minimize the

variance-covariance matrix of efficient estimator by maximizing the Fisher information matrix.

To directly compare non-negative definite matrices, one can use Loewner ordering.

Definition 3 (Loewner Order). If a matrix M with dimension (k × k) is higher in Loewner

ordering than matrix M̃ , such that M ≥ M̃ , this means that M − M̃ is a non-negative definite

matrix, i.e., the smallest eigenvalue has to be non-negative.

A sufficient condition for M,M̃ such that M −M̃ ≥ 0 is that Mi,j = M̃i,j:, for all 1 ≤ i, j ≤

k, except for one i, such that Mi′,i′ ≥ M̃i′,i′ . However, there is no total ordering on the non-

negative definite matrices in Loewner Order. Therefore, in practice, a convex scalar function

of Fisher information (such as the trace, minimum, and determinate of a matrix) are typically

used as criteria for comparison. The following summarizes some commonly used optimality

criteria and their statistical meanings (Stufken and Yang, 2012):
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• D-optimality. A design is D-optimal for θ if it maximizes the determinant of Fisher

information over all possible designs. D-optimal designs minimize the expected volume

of the asymptotic 100(1− α)% joint confidence ellipsoid for the elements of θ.

• A-optimality. A design is A-optimal for θ if it minimizes the trace of the inverse of

Fisher information over all possible designs. A-optimal designs minimize the sum of the

asymptotic variances of the estimators of elements of θ.

• E-optimality. A design is E-optimal for θ if it maximizes the smallest eigenvalue of Fisher

information. E-optimal designs minimize the expected length of the longest semi-axis of

the asymptotic 100(1− α)% joint confidence ellipsoid for the elements of θ.

(Dette et al., 2011) pointed out that most of the optimality criteria are monotonic with

respect to Loewner ordering. Suppose that Φ(.) is an optimality criterion function. This

function relates to non-negative definite matrices M, M̃ , like so:

M ≥ M̃ ⇒ Φ(M) ≥ Φ(M̃).

Furthermore, based on (Yang and Stufken, 2009), if one is interested in estimation of a differen-

tiable function of parameter g(θ), and if θ̂ is unbiased and an efficient estimator for θ, the asymp-

totic covariance matrix of η(θ̂) under design ξ becomes Covξ(η(θ̂)) = (∂η(θ)
∂θ>

)I−1
ξ (θ)(∂η(θ)

∂θ>
)>.

Further, this implies that, for two designs ξ, ξ̃, such that Iξ(θ) ≥ Iξ̃(θ), then Covξ(η(θ̂)) ≤

Covξ̃(η(θ̂)).
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1.2.3 Optimization of information matrix

This section will review some recent developments in the strategy of finding the optimal

design of experiment. Taking advantage of the monotone properties of D-, E-, and A-optimality

criteria with respect to Loewner ordering, one can first find a small class of designs with simple

features such that, for any design outside of this class, there is an equal or better design in the

class in terms of Loewner ordering. Thereby, the search for optimal design with respect to a

specific criterion can be restricted to this small class of designs, called the “complete class.”

Definition 4. (Complete Class) A complete class Ξ is a subclass with a simple format such

that for any design ξ /∈ Ξ, there exists a design, ξ∗ ∈ Ξ, that satisfies Mξ∗(θ) ≥Mξ(θ).

The process of finding the complete class and then searching for optimal design based on a

specific optimality criterion greatly simplifies the optimization problem, as the complete class

has a lower number of design points to begin with.

In an early attempt to find the complete class for optimal design, the Caratheodory theorem

gives the upper bound for the number of design points that a design can have for any k × k

moment matrix that can be written as a linear combination of at most k(k+1)
2 +1 many moment

matrices of design with only one design point.

(De la Garza, 1954) presented the result that for a k−th order polynomial regression model,

a complete class for the model consists of designs with precisely k+1 points, i.e., for any design

with a number of support points larger than k + 1, there is a design with k + 1 points that

is equal or better. Furthermore, k + 1 is also the minimum number of support points such

that the model is estimable. In other words, the minimum number of support points in optimal
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design for such a model would be the same as the dimension of the parameter in the polynomial

regression model.

(Yang and Stufken, 2009) has found that the de la Garza phenomenon exists for many

other nonlinear models with two parameters, such as logistic and probit models, for which the

optimal design would be a two-point design. (Yang, 2010) extends the result from (Yang and

Stufken, 2009) to many commonly used nonlinear models, with no limitation on the dimension

of the parameter. Furthermore, the procedure proposed in (Yang, 2010) is easy to implement.

For example, there would be minimally k many design points in optimal design for the Poisson

regression model from Example 2, with θ ∈ Rk. (Dette et al., 2011) and (Yang et al., 2012)

further extend these results to a larger class of nonlinear models. For example, given the double-

exponential regrowth model that is used to describe the dynamics of post-irradiated tumors,

yi = θ1 + log(θ2e
θ3xi + (1− θ2)e−θ4xi) + εi, εi ∼ N(0, σ2), the designs with at most four points

form a complete class. In Chapter 2, we will see that Hellinger information is not in a matrix

form, thus some of the techniques of optimization of the non-negative definite matrix developed

in the literature on the optimal design of experiments are not applicable; however, the idea of

using the complete class to find optimal designs is nonetheless employed. In Chapter 3, optimal

design for a simple linear and quadratic nonregular regression model will be presented, and the

number of design points in the optimal design for these two models is equal to the number of

parameters, coinciding with the de la Garza phenomenon.
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1.3 Introduction to nonregular models

Nonregular models include any models that do not satisfy the regularity conditions and,

thus, for which Fisher information does not exist. In Chapter 2, we will develop an approach

using Hellinger information as the measure of information for a large class of models, including

regular models and some nonregular ones. The later chapters of this thesis focus on a class

of nonregular models applicable in different areas of scientific studies. This section introduces

these nonregular models, including some of their applications, and the available methods for

estimations, along with explanations of the challenges that these nonregular models present to

optimization of design. In Chapter 3, some optimal design results for nonregular models in

this section will be presented, based on the optimization of Hellinger information described in

Chapter 2.

1.3.1 Distribution with parameter-dependent support

The type of nonregularity considered in this project can be described as models with

parameter-dependent support, a violation of condition C(3). A simple example of this type

of model is uniform distribution, where the boundary of the support of the distribution is

determined by the parameter itself. Letting 1[0,θ)](.) be the indicator function,

Uniform distribution: pθ(y) =
1

θ
1[0,θ)](y).

The scope of nonregular models considered in this project can be described in terms of the

following conditions. First, pθ(y) is strictly positive on support S(θ) = [a1(θ), a2(θ)], and
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bounded and continuous on any compact set in Θ. Second, pθ(y) is absolutely continuous in θ

for a fixed y in the interior of support, i.e., where y ∈ (a1(θ), a2(θ)), where both a1(.) and a2(.)

are zero functions, and derivative p′θ(y) = ∂pθ(y)
∂θ exists for each θ in the interior of S(θ). Third,

right limit q1(θ) = lim
y↘a1(θ)

pθ(y) and left limit q2(θ) = lim
y↗a2(θ)

pθ(y) are finite.

One such model is a truncated distribution, typically used in situations where the range

of random variable is bounded from below or above, such that observations beyond the bound

are ignored. A truncated distribution can be formed by forcing a bound on the support of the

distribution and normalizing it such that it would still be integrated to one over the new support.

It can be viewed as a conditional distribution that results from restricting the domain of some

other probability distribution. Specifically, let p(y) be the original probability distribution

and let F (y) be the cumulative distribution. To form a truncated distribution with parameter-

dependent support, such that y ∈ [θ1, θ2], with θ = (θ1, θ2) ∈ R2, one would define the truncated

distribution as

pθ(y) =
p(y)

F (θ2)− F (θ1)
.

There are many applications for truncated distribution. For instance, in reliability engi-

neering, a product might be expected to exhibit a very low failure rate during the period of

warranty, but fail quickly after its designated service life. (Zhang and Xie, 2011) suggested that

for the purpose of avoiding over-engineering, it would be useful to employ an upper-truncated

distribution to model failure rate of a product. They presented an example utilizing the upper-

truncated Weibull model to analyze a set of real test data representing time-to-failure of the
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turbocharger of one type of engine. Time to failure t follows upper-truncated Weibull distribu-

tion, with θ as the parameter for the upper truncation point,

pθ(t) =
β
λ ( tλ)β−1exp(−( tλ)β)

(1− exp( θβ ))
1(0,θ](t).

(Finney and Varley, 1955) use truncated Poisson distribution to model the number of eggs from

gall-flies and the number of Gall-cells in flower heads with data that is incomplete. (Zaninetti,

2014) used a truncated gamma distribution to model samples of stars. (DePriest, 1983) used

truncated normal distribution for estimations of radiance measurements from satellite-borne

infrared sensors. Several further examples of application of truncated distribution are described

in (Fu, 2016).

Another commonly used type of nonregular distribution with parameter-dependent support

involves shift discontinuities, which can be useful to model minimum values. Shift discontinuity

in this context can be conceived of as a change of variable to impose a shift on the support of

the distribution. For example, start with variable z with support [0,∞); given a location of

shift, θ, one can form a new variable y such that y − θ = z. The support of the new shifted

distribution would depend on θ. The shifted gamma distribution is an example of this kind of

irregularity:

pθ(y) =
1

Γ(β)
(y − θ)β−1 exp[−(y − θ)], y ≥ θ given β > 0. (1.9)

Shifted distribution is used when one wants to include a lower threshold for the observa-

tions from models with non-negative observations. Unlike in truncated distribution described
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above, where the observations out of the interested range are ignored, the assumption for

shifted distribution is that there will not be observations considered below the lower thresh-

old. Many disciplines employ shifted distribution for a variety of purposes, with applications

in fields as diverse as physics, material studies, climatology, and psychology, among others (see

(Cousineau, 2009)). In studies of the voltage endurance of devices, a common method is to

apply the voltage continuously to a test specimen until breakdown occurs, at which point the

breakdown voltage is recorded and studied. Usually, there is a threshold voltage below which

no breakdown can occur, and it is of interest to determine the value of this threshold in these

voltage endurance tests. (Hirose and Lai, 1997) used the shifted-Weibull distribution with den-

sity function pτ (y) = β
λ (y−τλ )β−1exp(−(y−τλ )β), y ≥ τ , to model breakdown voltage data. The

random variable Y represents the breakdown voltage, with threshold parameter τ representing

the voltage below which no breakdown occurs. (Allen, 2014) employed a shifted exponential

distribution to model computer response time at a computer center, with the shift parameter

representing the minimum response time. (Bartolucci et al., 1999) utilized a shifted-Weibull

to model time to failure of an adjuvant breast cancer therapy trial. (Bartkut-Norkūnien and

Sakalauskas, 2009) deployed shifted Weibull distribution in modeling hourly wind speed for

a wide range of locations in Europe. For further examples applying shifted distribution, see

(Cousineau, 2009).

1.3.2 Nonregular regression

A nonregular regression model based on shifted distribution allows one to model relation-

ships between features of observations and minimum values. (Smith, 1994) gives the general



25

set-up for nonregular regression. Let xi = (xi1, ..., xid)
T be the vector of value of experimen-

tal variable of ith observation, and let g(θ; xi) be a differentiable function of θ ∈ Rd in all

dimensions, given xi.

yi = g(θ; xi) + εi, i = 1, ..., n, θ ∈ Rd, (1.10)

Here, εi, i = 1, ..., n independently follows a non-negative distribution like gamma distribu-

tion, Weibull distribution, Pareto distribution, etc. What follows are some examples in which

nonregular regression models apply.

Example 4. (Smith, 1994) has shown that to model the annual minimum temperatures in

Gothenburg, Nebraska from 1895−1987, a linear regression model with nonzero residual fol-

lowing Weibull distribution can be used. Let Yi be the temperature of the ith year, and let

xi = i− 1941, with i being the calender year. With that set up, (Smith, 1994) used the model

yi = θ0 + θ1xi + εi,with εi, an example of a two-parameter Weibull distribution. Another ex-

ample used by (Smith, 1994) involves a quadratic nonregular regression model to analyze the

annual best performance in the mile race from 1931 to 1985.

Example 5. In the study of auctions, (Donald and Paarsch, 2002) and (Chernozhukov and Hong,

2004) show that a nonregular regression model can be used to model winning bids in auctions

when information such as number of potential bidders, information available to bidders, and

the attitude of bidders toward risk are given and encoded as covariate values. Assuming the

bidders’ valuations are independent, letting xi be the covariates for the ith auction, then the

winning bid, Yi can be explained by an efficient cost function c(Xi) that depends on Xi, the
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feature of ith auction, and a mark-up function β(ni) ≥ 1, with ni as the number of bidders

(assuming that β(ni) approaches 1 as number of bidders ni approaches infinity). In this context,

a common auction model can then be written as Yi = c(Xi)β(ni) + εi, εi ≥ 0, εi according to

distributions like Exponential, Pareto, Weibull, etc.

Example 6. (Chernozhukov and Du, 2001) suggest using nonregular regression to model ob-

served capital stock, when it can be assumed that observed capital stock satisfies the equation

Zi = s(Xi) + vi, where Xi are covariates and vi is a disturbance that is positive most of the

time.

Example 7. In a study on the impact of various socioeconomic demographics pertaining to min-

imum birth-weight, (Chernozhukov and Du, 2001) use a linear nonregular model with covariates

including gender of child, age of mother, cigarette consumption of mother, education level of

mother, etc.

Example 8. (Hall et al., 2009) presented an example using a nonregular regression model in

the study of utility companies in the United States. The dependent observation yi = − log( cipi )

is the negative log transformation of ratio of the cost ci and the price of fuel for ith company

pi. The independent variable Xi = log(Qi) is the log output of ith company. They find that

a linear model is appropriate for these data; that is, yi = θ0 + θ1xi + εi, with εi, condition on

xi, following a distribution that satisfies p(u;x) = b(x)c(x)uc(x)−1 + o(uc(x)+d−1) as u→ 0, and

d > 0, b(.) and c(.) are smooth, strictly positive scalar functions.

In this paper, as a first attempt at the problem of finding optimal designs for nonregular

models, we begin with a relatively simple set-up where the error term is iid for all observa-
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tions. In this thesis, we focus on the nonregular regression model described in (Smith, 1994),

where the error term in nonregular regression, εi, i = 1, .., n, identically and independently

follows non-negative distributions like gamma, Weibull, some extreme value distribution and

Pareto distributions, etc., with a probability distribution function that can be described by the

following:

p(z) = α czα−1 for some α > 0, c > 0 as z → 0. (1.11)

So far, in practice, most nonregular regression models are used for observation studies. It

seems that it is hard to find examples in the literature of nonregular regression being applied in

experimental studies. However, for many examples described in Section 1.3.1 and the economic

auction models, one might conduct experiments to discover whether different experimental

conditions would lead to different minimum values. For instance, in the voltage endurance

studies, if the researcher is interested in the relation between certain features of the device and

minimum breakdown voltage, then a nonregular regression model could be used and experiments

testing this relationship could be conducted.

Experimental auctions compose an area of interest in economics to test certain propositions

of auction theory, and, in practice, experiments are conducted to study buyers’ willingness to

pay for certain products. For details, see, (Umberger and Feuz, 2004) and (Kagel and Levin,

2009). Although nothing, it seems, has been written on the experimental design for nonregular

regression auction models described earlier in (Donald and Paarsch, 2002), it may be an area

of interest for researchers to conduct experiments testing how different features of the bidder

or of the item on auction can change the winning bid.
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1.3.3 Parameter estimation in nonregular problems

Under regularity conditions, as discussed in Section 1.1.1, the maximum likelihood estimator

is usually considered the best estimator, because it is efficient with respect to the Cramér-

Rao bound and it exhibits asymptotic normality, which tends to provide grounds for clear

interpretation for estimation and statistical inference.

The models described in Section 1.3.1 and 1.3.2 are nonregular due to their common feature

of parameter-dependent support in violation of regularity condition C(3) and C(4). It is true

that if the shape parameter of the shifted-gamma or shifted Weibull distribution equals two,

then the model is DQM on the shift location parameter, as will be discussed in Chapter 2, and

the MLE would exhibit asymptotic normality, despite violation of conditions C(3) and C(4).

However, in most cases, the nonregular models described here are not DQM, therefore the MLE

can no longer serve as the default choice. In these situations, the behavior of the MLE needs

to be examined on a case-by-case basis for different nonregular models.

(Smith, 1994) summarized the maximum likelihood estimation for nonregular distributions

described in Section 1.3.1 with the characteristic of

pθ(y) = α c(y − θ)α−1 for some α > 0, c > 0 as y → θ, y ≥ θ. (1.12)

When a > 2, Fisher Information exists, usually with the asymptotic result about MLE being

valid. When 1 < a ≤ 2, local MLE exists, but does not have the usual asymptotic properties,

i.e., it is not asymptotically normal, and asymptotic efficiency is an open question. When
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0 < a ≤ 1, no local MLE exists but there are a number of alternative estimators consistent

at rate O(n). There are some asymptotically efficient estimators in these cases, however, they

depend on the choice of loss function, and the construction of the estimators is complicated, as

described in greater detail in (Ibragimov and Hasminskii, 1981).

In addition to the problems of the maximum likelihood estimator described above, (Cousineau,

2009) and (Hirano and Porter, 2003) point out that, for some shifted models, the MLE solution

is biased by an unknown amount. (Cousineau et al., 2004) have shown that for shifted Weibull

distribution, the bias depends on the shape parameter and sample size.

To address the estimation problem of one-dimensional shift or truncated parameters, there

are many proposed estimators other than MLE. (Hirose, 1999) provided a bias-corrected es-

timator, but it is sensitive to the specific details of the implementation. There is also the

maximum product of spacing estimator proposed in (Cheng and Amin, 1979) and (Ranneby,

1984), which avoids inconsistent solutions to the likelihood equation when the shape parameter

of shifted Weibull distribution is smaller than one. A generalization of the maximum product

of spacing method is the quantile maximum product estimation, discussed in (Heathcote et

al., 2002), (Heathcote et al., 2004), (Cousineau et al., 2004), (Speckman and Rouder, 2004),

and (Heathcote and Brown, 2004). (Jacquelin, 1993) proposed an alternative to MLE called

weighted maximum likelihood estimation, with the purpose of canceling out the bias. (Smith,

1985) suggested the sample minimum for estimation with respect to the shifted models.

For the estimation of nonregular regression models described in Section 1.3.1, (Smith, 1994)

proposed an estimator that is based on minimum order statistics. The asymptotic variance-
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covariance structure for the estimator provided in (Smith, 1994) is not available. However, the

confidence interval for inference can be obtained though simulation. More details about Smith’s

estimator for nonregular regression will be given in Chapter 3. (Smith, 1994) argues that this

method held advantage over MLE due to the fact that, in reality, the value of shape parameter

α from the distribution of εi (Equation 1.11) is unknown, and MLE behaves differently for

different α values, whereas Smith’s method works for all α values. Smith’s method appears to

be the most straightforward way for estimation of nonregular regression; however, it seems that

it only works for nonregular linear regression models.

Other estimators for nonregular regression include the Bayesian method and the nonpara-

metric method. (Hirano and Porter, 2003) propose to use a Bayesian estimator for nonregular re-

gression problems, with the error term following exponential distribution, while (Chernozhukov

and Hong, 2004) extend the Bayesian approach to a wider class of nonregular regression models.

(Hall et al., 2009) use a nonparametric method for nonregular regression models, demonstrating

their method by applying it to Example 7.

In summary, maximum likelihood behaves differently depending on the value of other param-

eters in the model, and these values are quite likely to be unknown in real practical situations.

There are other estimators that can be deployed to address the problem presented by nonregu-

larity depending on various attributes, such as different values of the shape parameter. Most of

these estimators are characterized by an asymptotic variance-covariance structure that is not

analytically available. This implies that it is not feasible to take the same approach for opti-

mal design as in the regular case, i.e., finding the expression of the variance-covariance matrix
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then optimizing it with respect to designs. The motivation for this thesis is to find a unified

approach, adopting a measure of information that can be optimized in order to determine opti-

mal design, without needing to derive the variance-covariance matrix of specific estimators for

specific models.

1.4 Information for nonregular models

Under regularity conditions, Fisher information exists and is the inverse of the asymptotic

variance-covariance matrix of MLE. Thus, one can obtain the design with the minimal variance-

covariance matrix of MLE among all possible designs by choosing the design that maximizes

Fisher information. When there is not asymptotic normality available to the nonregular models,

as discussed in Section 1.3, the estimation problem becomes complicated. Most important, the

absence of the variance-covariance matrix of estimators and risk bound, such as the Cramér-

Rao lower bound, makes it difficult to approach the problem of optimal design of experiment

for nonregular models. While it is possible to consider the problem of optimal design for

nonregular models on the basis of specific models with specific estimators by closely examining

the asymptotic distribution of the specific estimator, a new generalized approach to optimal

design for nonregular models is desired.

Any alternative approach to the measure of information in optimal design must meet two

criteria. First, the new measure of information has to be a more general form of measuring

information, such that Fisher information would be a special case of the new information.

Second, it must be related to the quality of estimation such that the optimization of this

measure of information with respect to designs can lead to better estimation. In Chapter 2, a
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Cramér-Rao-like lower bound is introduced and Hellinger information is defined. This thesis

proposes Hellinger information as the information measure to be used in a unified approach to

optimal design problems involving nonregular models. In Chapter 3, optimal designs for two-

parameter linear and quadratic nonregular regression models based on Hellinger information

are derived, and results from simulation studies on the optimal designs are included.



CHAPTER 2

INFORMATION IN NONREGULAR MODELS

This project seeks to define a measure of information that could serve a function similar to

Fisher information, but which can be applied to nonregular models, for which Fisher information

does not exist. The resulting measure of information, to be applied usefully in the optimal design

of experiment, must possess two properties: It has to be general enough to account for regular

cases, such that Fisher information could be viewed as a special case of Hellinger information;

second, it has to indicate the quality of estimation for arbitrary estimators for both regular and

nonregular cases. This chapter offers a definition of Hellinger information that satisfies these

two properties and accommodates multidimensional parameters under regular conditions and

for a range of nonregular conditions.

As discussed in Chapter 1 Section 1.1.2, Fisher information appears in the quadratic approx-

imation of Hellinger distance as shown in (Equation 1.2). Section 1 of this chapter builds on

this fact, showing that for some nonregular models, a non-quadratic approximation of Hellinger

distance exists. In section 2, a local minimax risk bound of arbitrary estimation that is based on

expansion of Hellinger distance will be presented. In section 3, Hellinger information is defined

and some results of its expression for a class of models are presented, with several examples.

Throughout the chapter, the relation between Hellinger information and Fisher information

will be specified. A summary of results from this chapter, along with a comparison of Hellinger

information defined in this project and a previous effort from (Shemyakin, 2014) that explored

33
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alternative measure of information in the context of Bayesian statistics, appear in section 5.

This section also argues that the approach of defining Hellinger information presented in this

thesis fulfills the two criteria laid out above, and is therefore appropriate in the optimal design

of experiment for nonregular cases.

2.1 Hellinger information

2.1.1 Expansion of Hellinger distance

First, consider distributions Pθ, θ ∈ Θ ⊆ Rd, d ≥ 1, on Y having µ-densities pθ = dPθ/dy.

We can define a model-specific measure of distance on Θ via the Hellinger metric H(Pθ, Pϑ),

according to which the function h is defined as the squared Hellinger distance.

Definition 5. (Squared Hellinger distance h(θ, ϑ))

h(θ, ϑ) ≡ H2(Pθ, Pϑ) :=

∫
(p

1/2
θ − p1/2

ϑ )2 dy = 2− 2

∫
(pθpϑ)1/2 dy.

Recall the definition of DQM from Chapter 1: if θ 7→ p
1/2
θ is differentiable in quadratic mean,

then, for each θ, the ratio ‖ε‖−2
2 h(θ, θ + ε) has a finite and non-zero limit as ε → 0, ε ∈ Rd,

where ‖·‖2 denotes the usual `2-norm. In other words, H2 has a local quadratic approximation,

i.e., with l̇θ = (∂ log pθ(y)
∂θ1

, ..., ∂ log pθ(y)
∂θd

)>, and Fisher information I(θ) = Eθ(l̇θ l̇
>
θ ),

h(θ, ϑ) =
1

4
(θ − ϑ)> I(θ) (θ − ϑ) + o(‖θ − ϑ‖22), as θ → ϑ. (2.1)

For one-dimensional parameters, when pθ is DQM at θ, then
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lim
ε→0

h(θ,±ε)
|ε|2

= lim
ε→0

∫
(
√
pθ −

√
pθ+ε)

2dy

|ε|2
=

1

4
I(θ).

For the nonregular models presented in Chapter 1 Section 1.3, the quadratic approximation

of squared Hellinger distance in (Equation 2.1) is no longer available. For some of them, a

non-quadratic expansion exists. Here is an one-dimensional example.

Example 9. Uniform distribution has the following expression:

pθ(y) =
1

θ
1[0,θ](y).

To calculate lim
ε↘0
|ε|−αh(θ, θ±ε), one can calculate lim

ε↘0
|ε|−α

∫
(
√
pθ−
√
pθ+ε)

2dy and lim
ε↘0
|ε|−α

∫
(
√
pθ−

√
pθ−ε)

2dy separately, with an appropriate value for α.

h(θ, θ + ε) =

∫ θ

0
(
√
pθ −

√
pθ+ε)

2dy = 2− 2

∫ θ

0

√
1

θ(θ + ε)
dy

=2− 2

√
θ

θ + ε
= 2− 2

√
1− ε

θ + ε
.

Notice that
√

1− ε
θ+ε = 1 + 1

2(− ε
θ+ε) + o(ε) as ε → 0. Letting α = 1, then applying lim

ε↘0

1
|ε| to

the last expression from above, one obtains

lim
ε↘0

h(θ, θ + ε)

|ε|
= lim

ε↘0

ε
θ+ε + o(ε)

|ε|
=

1

θ
.
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Let η = θ − ε,

h(θ, θ − ε) =

∫ θ−ε

0
(
√
pθ −

√
pθ−ε)

2dy =

∫ η

0
(
√
pη+ε −

√
pη)

2dy = h(θ, θ + ε). (2.2)

Thus,

lim
ε↘0

h(θ, θ − ε)
|ε|

= lim
ε↘0

ε
θ + o(ε)

|ε|
=

1

θ
.

From the above calculations, it can be shown that when the parameter is one-dimensional,

the direction of change (positive or negative) does not matter in finding the expression of the

expansion of Hellinger distance.

Therefore, as ε→ 0, for Unif(0, θ),

h(θ, θ ± ε) =
1

θ
|ε|+ o(|ε|).

This resembles the local Hölder condition on h considered in Chapter 1 Section 6 of (Ibragi-

mov and Hasminskii, 1981). The expansion of h(θ, θ±ε) for Unif(0, θ) is not quadratic. However,

in comparison to the expansion of squared Hellinger distance under DQM case (Equation 2.1),

it is apparent that 1
θ takes the place of 1

4I(θ).

In fact, for many other models with scalar parameter, there exists a positive constant α < 2

such that, for each θ, the ratio |ε|−αh(θ, θ + ε) has a finite and non-zero limit, say J(θ), such

that there is a local approximation,

h(θ, ϑ) = J(θ)|θ − ϑ|α + o(|θ − ϑ|α), as ϑ→ θ. (2.3)
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Based on Example 9, for Unif(0, θ), J(θ) = 1
θ . In order for the definition of “information

measure” to be applicable to optimal design of experiment, it must be able to accommodate

multi-dimensional parameters. The following provides a definition for expansion of Hellinger

information for multi-dimensional parameters.

Definition 6. Let Θ ⊆ Rd, for d ≥ 1, and let u denote a generic direction, a d-vector with

‖u‖2 = 1. Suppose there exists α ∈ (0, 2] such that, for all θ ∈ Θ and all directions u, the

following limit exists and is neither 0 nor ∞:

lim
ε→0

h(θ, θ + εu)

|ε|α
= J(θ, u). (2.4)

Then the following local approximation holds:

h(θ, θ + εu) = J(θ, u)|ε|α + o(|ε|α), ε→ 0, (2.5)

In the above approximation, α is defined as the index of regularity, and J(θ, u) is defined

as Hellinger information at θ in the direction of u.

Here are three brief comments about this definition.

• Based on the fact that squared Hellinger distance is symmetric, i.e., h(θ, θ+uε) = h(θ, θ−

uε), this means that J(θ,−u) = J(θ, u) is true in general. For one-dimensional parameter,

θ ∈ R, there are only two possible directions of change: u = 1, u = −1, then J(θ, 1) =

J(θ,−1). Thus, J(θ, u) is written as J(θ) in the one-dimensional case.
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• This definition includes the case when the regularity index α = 2, i.e., when the model is

differentiable in quadratic mean at θ, and thus J(θ, u) = 1
4u
>I(θ)u.

• Note that this definition does not allow α to depend on u, which means that each com-

ponent of θ, treated individually, must have the same index of regularity. To better

understand this point, consider, for example, a shifted exponential distribution with loca-

tion parameter θ1 and rate parameter θ2. If θ1 were fixed and θ2 were the only parameter,

then the above definition would hold with α = 2. Similarly, if θ2 were fixed and θ1 were

the only parameter, then it holds with α = 1 (see Example 16). However, if both θ1 and

θ2 are parameters, then the model does not satisfy the conditions of the above definition.

To see this, consider two unit vectors u = (1, 0) and u′ = (0, 1). If α = 1, then J(θ, u) is

in (0,∞) but J(θ, u′) is zero, which is not allowed; likewise, if α = 2, then J(θ, u′) is in

(0,∞) but J(θ, u) is infinite, which is also not allowed. Therefore, the above definition

cannot accommodate situations where the components of θ, treated individually, would

have different regularity indices. The design applications we have in mind in this thesis

fit naturally within this setting where all components have the same regularity, and the

more general case will be presented elsewhere.

In the near-regular Example 1 from Chapter 1 Section 1.2, J(θ) = 1
4θ(1−θ) for non-symmetric

standard triangular distribution. What follows are some other examples for the one-dimensional

case for nonregular models.

Example 10. Following steps similar to those in Example 9, it can be shown that

• If Pθ = Unif(θ−1, θ), θ > 1, then α = 1 and J(θ) = (θ2 + 1){θ(θ2 − 1)}−1.
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• If Pθ = Unif(θ, θ2), θ > 1, then α = 1 and J(θ) = (2θ + 1){θ(θ − 1)}−1.

Example 11. Consider a random variable t that adheres to the following version of truncated

Weibull with probability distribution function pθ (t), with known β, ϕ,

pθ (t) = βϕβtβ−1 exp
{
−ϕβ

(
tβ − θβ

)}
, t ∈ [θ,∞), ϕ > 0.

If one is only interested in θ, then the regularity index for θ is α = 1 and J(θ) = ϕβθβ−1.

While calculation of J(θ) for the one-dimensional case is straightforward, this is not true if

d > 1. Due to the non-quadratic nature of the expansion of Hellinger distance for nonregular

cases, it can be difficult to think of the derivation of J(θ, u) when α < 2. However, for the

purpose of this project, the multi-dimensional parameter case in the experimental design setting

(so far) can all be described as cases in which the multi-dimensional nonregular model can be

obtained by reparameterization of a one-dimensional parameter model. Nonregular regression

models are described in Chapter 1 Section 1.3.2. The following proposition provides a general

result for the expression of Hellinger distance expansion for cases like this.

Proposition 1. (Reparameterization rule for expansion of Hellinger distance) Consider para-

metric families, {Pθ, θ ∈ Θ},Θ ⊂ Rd, and {Qη, η ∈ H}, H ⊂ R. Suppose there exist J̃(η) and

αη > 0 such that

h(η, η + ε) = J̃(η)|ε|αη + o(|ε|αη) as ε→ 0.

If there is a differentiable function g(.) : Θ → H, such that for every θ ∈ Θ, there is an

η = g(θ) ∈ H, and pθ(y) = qη(y), for all y, then the regularity index of every θi, i = 1, .., d
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would be the same as αη. Therefore, based on a single observation, with any unit vector u =

(u1, ..., ud)
>, the expansion of Hellinger distance can be expressed as

h(θ, θ + uε) =
∣∣ d∑
j=1

uj
∂g(θ)

∂θj

∣∣αη J̃(η)|ε|αη + o(|ε|αη) as ε→ 0.

That is, the Hellinger information at θ in the direction of u is

J(θ, u) =
∣∣ d∑
j=1

uj
∂g(θ)

∂θj

∣∣αη J̃(η).

Proof. By definition of J̃(η), Hellinger distance of qη(y) and qη′(y) has the expansion

h(η, η′) = J̃(η)|η − η′|αη + o(|η − η′|αη).

Since g(.) is differentiable, denote ġ = (∂g(θ)∂θ1
, ..., ∂g(θ)∂θd

)>. For any given θ, there is an η, such

that g(θ) = η, with g(.) being differentiable. Thus, for some ε > 0, g(θ + εu) = g(θ) +

ġ>uε + o(ε). Furthermore, letting ∆ = ġ>uε + o(ε), then g(θ + ε) = η + ∆. Therefore,

pθ(y) = qη(y), pθ+εu(y) = qη+∆(y) which implies h(θ, θ + εu) = h(η, η + ∆). To find J(θ, u) in

the expression of expansion of h(θ, θ + εu) is to find expression of lim
ε→0

h(θ,θ+εu)
|ε|αθ , with αθ being

the regularity index for θ. Notice that

lim
ε→0

h(θ, θ + εu)

|ε|αη
= lim

ε→0

h(η, η + ∆)

|ε|αη
= lim

ε→0

h(η, η + ∆)

|ġ>uε|αη
|ġ>u|αη = lim

∆→0

h(η, η + ∆)

|∆|αη
|ġ>u|αη .
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If one recalls that lim
∆→0

h(η,η+∆)
|∆|αη = J̃(η), it can be concluded that regularity index of θ would be

the same as that of η, i.e. αθ = αη, and h(θ, u) = J̃(η)
∣∣∑d

i=1 ui
∂g(θ)
∂θi

∣∣αη . So, Hellinger distance

between pθ(y) and pθ+uε(y) has the following expansion:

h(θ, θ + uε) = J̃(η)
∣∣ġ>u∣∣αη |ε|αη + o(|ε|αη)

= J̃(η)
∣∣ d∑
i=1

ui
∂g(θ)

∂θi

∣∣αη |ε|αη + o(|ε|αη), as ε→ 0

(2.6)

The following examples can illustrate how one might apply Proposition 1 to a nonregular

model.

Example 12. Consider Unif(0, eθ
>x), θ ∈ Rd, d ≥ 1,with fixed x ∈ Rd.

pθ(y) =
1

eθ>x
1

[0,eθ>x]
(y).

Recall that for Unif(0, η), J(θ) = 1
η , with 1 as the regularity index. Thus, if θ, x are one-

dimensional, by Proposition 1, it follows that

J(θ) = |xeθx| 1

eθx
= |x|.

If d > 1, and x = (x1, ..., xd)
>, then similarly, Hellinger information at θ in the direction of u

would be

J(θ, u) = |eθ>x
d∑
j=1

ujxj |
1

eθ>x
= |

d∑
j=1

ujxj |. (2.7)
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Proposition 1 is consistent with the reparameterization rule for Fisher information. Under

regularity conditions, Fisher information for η and θ exists for pη(y) and pθ(y) and I(θ) =

(∂g(θ)∂θ1
, .., ∂g(θ)∂θd

)>I(η)(∂g(θ)∂θ1
, .., ∂g(θ)∂θd

). Notice that this coincides with Proposition 1: when d = 1,

J(θ) = J̃(η)
∣∣∂g(θ)

∂θ

∣∣2 =
1

4
I(η)

∣∣∂g(θ)

∂θ

∣∣2 =
1

4
I(θ),

and when d > 1,

J(θ, u) = |
d∑
i=1

ui
∂g(θ)

∂θi

∣∣2J̃(η) = uT (
∂g(θ)

∂θ1
, ..,

∂g(θ)

∂θd
)>J̃(η)(

∂g(θ)

∂θ1
, ..,

∂g(θ)

∂θd
)u =

1

4
u>I(θ)u.

The next result is useful for finding the expression of Hellinger information in direction u

for any function of the parameter.

Proposition 2. Consider parametric families, {Pθ, θ ∈ Θ},Θ ⊂ Rd, and let ψ : Θ → Rq, q ≤

d be a differentiable function with non-singular q × d derivative matrix Dψ(θ). Then, for

estimation of ψ(θ), the Hellinger information of ψ at θ in the direction of u is

Jψ(θ, u) = ‖Dψ(θ)u‖−α2 J(θ, u).

Proof. Letting ψ : Θ → Rq be a differentiable function with non-singular q × d derivative

matrix Dψ(θ), when J(θ, u) is given, but the interest of estimation is ψ(θ), then the following

“chain rule” can be applied in order to find the expression of Jψ(θ, u). For some ε > 0,
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∆ψ = ψ(θ + εu) − ψ(θ) = Dψ(θ)uε + o(ε). Following a similar argument as in the proof of

Proposition 1 above,

h(θ, θ + uε) = J(θ, u)|ε|α + o(|ε|α)

= Jψ(θ, u)|∆ψ|α + o(|ε|α)

= Jψ(θ, u)‖Dψ(θ)u‖α2 |ε|α + o(|ε|α).

Thus,

Jψ(θ, u)‖Dψ(θ)u‖α2 = J(θ, u)→ Jψ(θ, u) = ‖Dψ(θ)u‖−α2 J(θ, u).

2.1.2 Geometric interpretation of J(θ, u)

The following is a brief geometric interpretation of J(θ, u). As mentioned earlier in the

previous Section, whenever the regularity index α < 2, one can no longer write the local

approximation (Equation 2.5) in a quadratic form; thus, there is not a “direction-free” matrix

(i.e., of the kind associated with Fisher information) when α < 2. The implication is that the

“measure of information” based on the Hellinger expansion for nonregular problems cannot be

expressed as a matrix.
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One can view J(θ, u) in (Equation 2.5) as a “directional derivative-like” function in squared

Hellinger distance at θ, with exponent α, in the direction u. Given ε > 0, and a point θ ∈ Θ,

one can compare the approximation to region

S(θ) = {h(θ, θ + εu) : |u| = 1}

for the regular case, α = 2, and for the nonregular case, α < 2.

When α = 2, given scaler ε > 0, and some unit vector u, Hellinger distance between pθ and

pθ+uε can be expressed as

h(θ, θ + uε) = 1
4u
> I(θ)u|ε|2 + o(|ε|2).

Due to the fact that I(θ) is positive definite, the collection of Hellinger distance between θ

and θ + uε over all {u : |u| = 1}, approximately forms the surface of an ellipsoid with d axes,

centered at 0 = h(θ, θ). Let’s denote this as S2(θ), expressed as follows:

S2(θ) = {1

4
u> I(θ)u|ε|2 : |u| = 1}.

On the other hand, when α < 2, the shape formed by Hellinger distance between θ and

θ + uε over all u : |u| = 1 is no longer an ellipsoid, but an irregularly shaped surface.

We call Sα(θ), an irregularly shaped surface because the rate of change of Hellinger distance

as |ε| increases from the center value θ depends on the direction of change in such a way that
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it cannot be expressed in a quadratic form. That is, under α < 2, an approximation to

S(θ) = {h(θ, θ + εu) : |u| = 1}, can be most appropriately expressed in these terms:

Sα(θ) = {J(θ, u)|ε|α : |u| = 1}.

Apart from its intrinsic interest, the geometric interpretation laid out above will prove useful

in understanding the proof of Theorem 1 in the next part, regarding the Hellinger information

inequality.

2.2 Hellinger information inequality

Theorem 3 below establishes a suitable connection between the quality of any arbitrary

estimator and Hellinger information with direction u. This will provide the necessary foundation

for defining a measure of information that is applicable to the question of optimal design for

nonregular models.

Suppose the goal is to estimate ψ(θ) based on sample of size n, Yn = (Y1, ..., Yn), where

ψ : Rd → Rq, q ≤ d, is sufficiently smooth. Let Tn = T (Yn) be an estimator of ψ(θ), and

measure its quality by the risk,

Rψ(Tn, θ) = Eθ‖Tn − ψ(θ)‖22. (2.8)

For the q-vector version of mean square error, expectation, Eθ, is taken with respect to the

joint distribution of Y1, ..., Yn. This covers the case where ψ(θ) = θ and q = d, (i.e., when the
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interest is in the full parameter vector θ), the case where ψ(θ) is a single component of θ and

q = 1, as well as other intermediate cases.

Before presenting the Hellinger information inequality, here is how the Hellinger information

in the direction of u from a sample of n independent observations is defined. Hellinger infor-

mation in direction u from a joint distribution can be defined analogously to (Equation 2.4);

however, this project defines the independent sample version of J(θ, u) with the sum formula

as presented below. This definition does not affect the finding of the Hellinger information

inequality presented in Theorem 3, and it agrees with the familiar notion that information from

independent sources is additive.

Definition 7. Let Yn = (Y1, . . . , Yn) consist of independent observations with Yi ∼ Pi,θ,

i = 1, . . . , n, and let h(i)(θ, ϑ) denote the i-specific Hellinger distance between Pi,θ and Pi,ϑ.

Take any fixed θ ∈ Θ ⊆ Rd and assume that, for any d-dimensional direction u, hi admits a

local expansion at θ as in (Equation 2.5), with J(i)(θ, u) and regularity index α ∈ (0, 2]. The

Hellinger information at θ in the direction of u based on sample Yn is defined as

Jn(θ, u) =

n∑
i=1

J(i)(θ, u).

Theorem 3. Let Yn = (Y1, . . . , Yn) consist of independent observations with Yi ∼ Pi,θ, i =

1, . . . , n, and Jn(θ, u), the Hellinger information at θ in the direction of u of sample Yn exists.

Let ψ : Θ→ Rq be a differentiable function with non-singular q×d derivative matrix Dψ(θ), and
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let Tn = T (Yn) be any estimator of ψ(θ) with risk in (Equation 2.8). If εn,u = {3Jn(θ, u)}−1/α,

and

lim inf
n→∞

n−1Jn(θ, u) > 0, (2.9)

then

Rψ(Tn, θ + εuu) +Rψ(Tn, θ) & ‖Dψ(θ)u‖22 Jn(θ, u)−2/α, for all large n. (2.10)

Consequently, if Bn(θ) is the region whose boundary is determined by the union of {θ + εn,uu}

over all directions u, then for all large n

inf
Tn

sup
ϑ∈Bn(θ)

Rψ(Tn, ϑ) &
{

inf
u
‖Dψ(θ)u‖−α2 Jn(θ, u)

}−2/α
. (2.11)

Proof. See Appendix 2.5.2

Three brief comments about the result in Theorem 3:

• The universal constant hidden in “&” is known and given in the proof.

• There is nothing special about “3” in the definition of εu; any number strictly greater

than 2 would suffice.

• Based on the reparametization rule of Proposition 1, the Hellinger information of ψ(.) at θ

in the direction of u, based on a sample of size n, shall be Jψn (θ, u) = ‖Dψ(θ)u‖−α2 Jn(θ, u).
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Thus, one can rewrite the right-hand side of (Equation 2.11), and the inequality would

then be expressed as

inf
Tn

sup
ϑ∈Bn(θ)

Rψ(Tn, ϑ) &
{

inf
u:‖u‖2=1

J ϕn (θ, u)
}−2/α

. (2.12)

Some additional comments about the interpretation of Theorem 3 are in order. First, the

reason for the sum of two risks, or the supremum over a “neighborhood” of θ, is that a lucky

choice of Tn ≡ θ has excellent performance at θ, but not such good performance at a nearby

ϑ. The theorem says that, if one looks at a locally uniform measure of risk, which prevents

“cheating” towards a particular θ, then one cannot do better, in terms of risk, than the lower

bound in (Equation 2.11). The classical Cramér–Rao lower bound uses unbiasedness of the

estimator to prevent this kind of “cheating”.

To assess how sharp the bound in (Equation 2.11) is outside of regular cases, consider the

case where q = 1, so that ψ(θ) is a scalar function. Regarding the rate, if we consider the

identically independently distributed case, so that Jn(θ, u) = nJ1(θ, u), it follows that the

lower bound is of order n−2/α, which agrees with the known minimax rate for estimators in

nonregular models (Ibragimov and Hasminski 1981, Chapter 1 Sec.5). Therefore, the bound

cannot be improved in terms of how it depends on the sample size. To assess the quality of the

lower bound in terms of its dependence on θ, if the observations come from Unif(0, θ), which
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has α = 1 and J(θ) = θ−1, the maximum likelihood estimator is the sample maximum, and its

mean square error is given by

θ2n

(n+ 1)2(n+ 2)
+
( θn

n+ 1
− θ
)2
.

Asymptotically, this expression is equivalent to θ2n−1, which agrees with our lower bound.

Therefore, up to universal constants, the bound in Theorem 3 is sharp. The question of whether

a particular estimator for a specific nonregular model can attain the bound exactly, or asymp-

totically, apparently needs to be addressed case by case. Although not the focus here, this

deserves further investigation.

How does the bound compare to Cramér–Rao in the regular case, with α = 2? The following

discussion explores this question.

Corollary 1. When α = 2, Fisher information of a sample of size n, In(θ), exists. When

ψ(.) : Rd → Rq, letting λmin(.) be the function of minimum eigenvector, then the expression of

the right-hand side of the risk bound from (Equation 2.11) would have the expression of

{
inf
u
‖Dψ(θ)u‖−α2 Jn(θ;u)

}−2/α
=

1

4
λmin

{
(Dψ(θ)>I−1

n (θ)Dψ(θ))−1
}
.

Proof. When α = 2, Fisher information In(θ) exists and Jn(θ, u) = 1
4u
>In(θ)u. When ψ(.) :

Rd → Rq, then Dψ(θ) is q × d. So, by (Equation 2.13),

min
u:‖u‖2=1

‖Dψ(θ)u‖−2
2 Jn(θ, u) = [ max

u:‖u‖2=1
4
‖u>Dψ(θ)‖22
u>In(θ)u

]−1.
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By Cholesky decomposition, let In(θ) = M>M . Since Dψ(θ)>I−1
n (θ)Dψ(θ) is positive definite,

‖u>Dψ(θ)‖22
u>In(θ)u

=
‖u>M>(M>)−1Dψ(θ)‖22

u>In(θ)u

≤
‖u>M>Mu‖2‖Dψ(θ)>M−1(M−1)>Dψ(θ)‖2

u>In(θ)u

= ‖Dψ(θ)>I−1
n (θ)Dψ(θ)‖2

= λmax(
1

4
Dψ(θ)>I−1

n (θ)Dψ(θ))

=
1

4
λmin[(Dψ(θ)>I−1

n (θ)Dψ(θ))−1]

The above inequality takes an equal sign only when u is dependent with respect to columns in

Dψ(θ)>.

In conclusion, when α = 2,

{
inf
u
‖Dψ(θ)u‖−α2 Jn(θ;u)

}−2/α
=

1

4
λmin

{
(Dψ(θ)>I−1

n (θ)Dψ(θ))−1
}
.

Now, let’s compare this to the Cramér–Rao lower bound for estimation of ψ(θ). When q = 1,

the local minimax risk bound (Equation 2.11) from Theorem 3 coincides with the expression of

the lower bound in (Equation 1.1), the Cramér-Rao lower bound:

inf
Tn

sup
ϑ∈Bn(θ)

Rψ(Tn, ϑ) & Dψ(θ)>I−1
n (θ)Dψ(θ), for all large n.
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When the Cramér-Rao lower bound exists, Corollary 1 shows that it is proportional to the

lower bound from Theorem 3. As the Hellinger information inequality described in Theorem 3

covers both regular and some nonregular models, we can conclude that Theorem 3 is a more

general result.

2.2.1 Definition of Hellinger information

In the context of optimal design, the measure of information must provide a measure of

quality of estimation. So far, given independent sample yi, i = 1, ..., n, when the interest of

estimation is the parameter θ itself, Jn(θ, u) =
∑n

i J(i)(θ, u) defines the Hellinger information on

θ in the direction u of the sample. However, what determines the quality of arbitrary estimators,

based on Theorem 3, is Jn(θ, u) at the minimum direction. Based on these observations, this

project proposes that the measure of information for parameter with regularity index of α ≤ 2

would be min
u:‖u‖2=1

Jn(θ, u).

Definition 8. Let Yi ∼ Pi,θ, i = 1, . . . , n be independently distributed, with θ ∈ Θ ⊆ Rd

being a fixed but unknown parameter. Further, assume that each Pi,θ has the same index of

regularity, α ∈ (0, 2], and the following expansion exists:

hi(θ, θ + εu) = J(i)(θ, u)|ε|α + o(|ε|α), |u| = 1, ε→ 0.

Then the Hellinger information of function ψ(.) at θ based on the sample is defined as

J ψn (θ) = min
u:‖u‖2=1

J ϕn (θ, u). (2.13)
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With J ϕn (θ, u) = ‖Dψ(θ)u‖−α2 Jn(θ, u), the Hellinger information at θ based on the sample is

defined as follows: When ψ is identity function, then Hellinger information at θ is

Jn(θ) = min
u:|u|=1

Jn(θ, u). (2.14)

Under DQM, based on Corollary 1, Hellinger information is proportional to the minimum-

eigenvalue of Fisher information of ψ(θ):

J ψn (θ) =
{1

4
λmax(Dψ(θ)>I−1

n (θ)Dψ(θ))
}−1

= λmin
{1

4
(Dψ(θ)>I−1

n (θ)Dψ(θ))
}−1

.

Example 13. Based on n independent observations (yi,xi),xi = (xi,1...xi,d)
>, i = 1, ..., n gener-

ated from Unif(0, eθ
>xi), θ ∈ Rd, Hellinger information has the following expression:

Jn(θ) = min
u:‖u‖2=1

|
n∑
i=1

d∑
j=1

ujxi,j |.

2.2.2 A general result for a class of nonregular models

This subsection introduces a general result for Hellinger information for a class of nonregular

models discussed in chapter 1 section 1.3.3, described as pθ(y) from (Equation 1.12). Recall

that pθ(y) = p0(y − θ), and p0(y) from (Equation 1.11) can be further specified as

p0(y) = αf(y)yα−11[0,∞](y), (2.15)
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where f(y) is bounded away from zero and infinity as y → 0. (That is, the function is “slowly

varying” and is sufficiently smooth.) As described in (Equation 1.11), there is some constant

c > 0 such that lim
y→0

f(y) = c. A good example is a gamma distribution with shape α, in which

case f(y) = {αΓ(α)}−1e−y, possibly including a known scalar parameter.

Proposition 3. Suppose p0 such that, for any ∆ > 0,

∫ ∞
∆

( d
dy

log p0(y)
)2
p0(y) dy <∞. (2.16)

If α ∈ [1, 2), then h(θ, θ + ε) = f(0)εα + o(εα), as ε→ 0; that is, Hellinger information at θ is

J (θ) = f(0).1

Proof. See Appendix 2.5.1

Example 14. The distribution function of shifted Weibull for a given shape parameter K is

pη(y) =
K

λ
(
y − η
λ

)K−1 exp[−(
y − η
λ

)K ], y ≥ η, 1 ≤ K < 2, λ > 0.

Since the Weibull(K) distribution function is p0(z) = K( 1
λ)K(z)K−1exp(−( zλ)K), then as

z → 0, let’s denote it as

p(z) = K(
1

λ
)K(z)K−1. (2.17)

1Theorem VI.1.1 in (Ibragimov and Hasminskii, 1981) shows that h(θ, θ + ε) = O(εα) as ε→ 0, but
they don’t give the constant f(0). Condition (Equation 2.16) is basically the same as Condition C5 in
(Woodroofe, 1974), which is basically the same as Assumption 9 in (Smith, 1985). Therefore, it can be
checked for the gamma case as well as others.
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Letting F0(z) be the cumulative distribution of p0(z), then F0(ε) = 1− exp(−( ελ)K). Thus

Hellinger information for η would be

J (η) = lim
ε→0

1− exp(−( ελ)K)

(ε)K
= (

1

λ
)K , and the regularity index would be K.

Example 15. The distribution function of the shifted gamma distribution for a given shape

parameter β ∈ [1, 2) is

pη(y) =
1

Γ(β)
(y − η)β−1 exp[−(y − η)]1[η,∞](y).

Gamma(β) distribution is p0(z) = 1
Γ(β)(z)β−1 exp(−z), z ≥ 0, and as z → 0, exp(−z)→ 1, thus

p0(z)→ 1
Γ(β)(z)β−1. Let F0(z) be the cumulative distribution of p0(z), Fz(ε) = γ(β,ε)

Γ(β) . Then, as

ε→ 0, γ(β, ε) = εβ

β , following Proposition 3,

J (η) = lim
|ε|→0

γ(β, ε)

Γ(β)

1

|ε|α
=

εβ

βΓ(β)|ε|α
=

1

βΓ(β)
,

and the regularity index of η would be β.

Example 16. The distribution function of shifted exponential for a given rate parameter θ2 is

pθ1(y) = θ2 exp[−θ2(y − θ1)]1[θ1,∞](y).
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Based on Proposition 3, the regularity index of the location parameter θ1 is α = 1, and J (θ1) =

θ2.

2.2.3 Expression of Hellinger information for the nonregular regression model

Now we are ready to obtain Hellinger information with respect to the nonregular regression

model described in Chapter 1. Recall that the nonregular regression model can be described as

yi = g(θ; xi) + εi, i = 1, ..., n, θ ∈ Rd, (2.18)

where εi follows distribution that satisfies (Equation 2.15). That is, there are some α > 0, c > 0,

such that p0(εi) = α c εα−1
i , as εi → 0. Then, distribution of yi given xi would be

pi,θ(yi) = αc(yi − g(θ; xi))
α−1, as yi → g(θ; xi).

By Proposition 3, Hellinger information for η from pη(y) = αc(y− η)α−1 as α ∈ [1, 2) would

be J(η) = c. By Proposition 1,

Jn(θ, u) =
n∑
i=1

∣∣ d∑
j=1

uj
∂g(θ,xi)

∂θj

∣∣αc. (2.19)
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Based on Example 14 and Example 15, and Proposition 1, Hellinger information for an inde-

pendent sample, (yi, xi), i = 1, ..., n, from the regression model (Equation 3.1) with Gamma(β)

distributed error, would have the following expression:

Jn(θ) = min
u:‖u‖2=1

n∑
i=1

∣∣ d∑
j=1

uj
∂g(θ, xi)

∂θj

∣∣β 1

βΓ(β)
,with regularity index β;

under Weibull(K) distributed error, then,

Jn(θ) = min
u:‖u‖2=1

n∑
i=1

∣∣ d∑
j=1

uj
∂g(θ, xi)

∂θj

∣∣K(
1

λ
)K ,with regularity index K.

Since it is assumed that the shape parameter (β for gamma case, and K for Weibull case) in

error distribution is either known or considered a nuisance parameter in the experiments where

the focus is on the estimation of θ, the value of 1
βγ(β) , (

1
λ)K is not important, nor, in general,

is the value of c from the error distribution p0(εi). The Hellinger information for nonregular

regression model with regularity index α can thus be expressed as

Jn(θ) ∝ min
u:‖u‖2=1

n∑
i=1

∣∣ d∑
j=1

uj
∂g(θ, xi)

∂θj

∣∣α. (2.20)

2.3 Summary

This chapter presented a definition of Hellinger information as an extension of Fisher infor-

mation from regular to nonregular models. This definition of Hellinger information is meaning-

ful both in terms of its derivation and its relationship to the quality of estimator. The main
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result, the Hellinger information inequality, presented in Theorem 3, states that the Hellinger

information determines a lower bound of local minimax risk bound for any estimators.

Although it is not clear what approach is efficient to the risk bound from Theorem 3 in

terms of estimation, this provides a guideline to compare designs. In the regression setting,

as mentioned in Chapter 1, Fisher information depends on the covariates of a sample, which

means that it depends on the design of an experiment. The same can be said about the Hellinger

information by its expression in (Equation 2.20). The goal of optimal experimental design for

nonregular models can be framed in terms of maximizing the Hellinger information with respect

to designs.

In fact, optimization of Hellinger information under regularity condition, based on Corollary

1, is equivalent to optimization of minimum eigenvalue of Fisher information. For, when Fisher

information exists,

Jn(θ) = min
u:‖u‖2=1

u>I(θ)u.

Thus, optimal design obtained from optimization of Hellinger information when α = 2 is equiv-

alent to E-optimal design.

The next chapter presents optimal design results based on Hellinger information for several

nonregular regression models.

2.4 A comparison with Shemyakin (2014)

One inspiration for this project comes from recent developments in Bayesian statistics, where

Fisher information can function as non-informative prior for regular parameters. The idea of
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using Hellinger information as an extension of Fisher information for non-informative prior was

previously suggested by (Shemyakin, 2014).

The definition of one-dimensional Hellinger information in this thesis mostly coincides with

that proposed by (Shemyakin, 2014). Specifically, considering Hellinger information J (θ) and

regularity index α, (Shemyakin, 2014) suggested to use J 2/α(θ) as the definition instead. The-

orem 3 from (Shemyakin, 2014) presented a result for Hellinger information for one-dimensional

parameter in the α = 1 case, which can be viewed as a special case for Proposition 2 in this

thesis. However, the common ground between this project and Shemyakin’s does not extend

beyond this point.

First, regarding the information inequality, (Shemyakin, 2014) presented a different in-

equality that can be viewed as an integral version of the Cramér-Rao inequality for the one-

dimensional parameter: Supposing π(θ) is a prior distribution for θ ∈ Θ, then with some

constant C(α),

∫
(θ̂ − θ)2pθ(y)π(θ)dydθ ≥ C(α)n−2/α

∫
Θ
J−2/α(θ)π(θ)dθ + o(n−2/α).

A reference to an earlier paper (Shemyakin, 1993) on this result is given but, unfortunately, the

details seem not to be available in English. While this is an interesting result, the integration

over θ is not appropriate for our non-Bayesian formulation here and, moreover, we require an

analogous result for vector parameters as well, and we are not aware of a multi-dimensional
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version of the above bound. The result in Theorem 3 does not require integration over the

parameter space, and holds for scalar and vector parameters simultaneously.

The second major point of departure between this project and (Shemyakin, 2014) is that

Shemyakin defines a so-called “Hellinger information matrix” for multi-dimensional nonregular

parameters. He proposes that the Hellinger information matrix be defined by its components

as follows:

lim
ε→0

D
1/αi+1/αj
i,j (θ, αi, αj)

|ε|−2
, and with

Di,j(θ, αi, αj) =

∫
(
√
pθ1...θm(y)−

√
pθ1...θi+ε2/αi ...θm(y))(

√
pθ1...θm(y)−

√
p
θ1...θj+ε

2/αj ...θm
(y)).

The definition seems to contradict our claim in Chapter 2 that no such matrix is available.

This is not a contradiction, however, because Shemyakin’s definition of “Hellinger information

matrix” is ad hoc, chosen only so that it agrees with the Fisher information in regular cases, but

only in a formal manner. That is, the above matrix does not describe the local behavior of the

Hellinger distance and, therefore, does not lead to an information inequality as was developed

in Theorem 3.

2.5 Appendix

2.5.1 Proof of Proposition 3

It is easy to check that

h(θ, θ + ε) =

∫ θ+ε

θ

(√
pθ+ε(y)−

√
pθ(y)

)2
dy +

∫ ∞
θ+ε

(√
pθ+ε(y)−

√
pθ(y)

)2
dy.



60

The first integral is easy to calculate:

∫ θ+ε

θ

(√
pθ+ε(y)−

√
pθ(y)

)2
dy =

∫ θ+ε

θ
pθ(y) dy = f(0)εα, ε→ 0.

So, it remains to be shown that the second integral is o(εα). After some change of variables,

this boils down to showing that

∫ ∞
0

(√
p0(z + ε)−

√
p0(z)

)2
dz = o(εα).

Take ∆ > 0 as in (Equation 2.16). Then we can split the integral above, like so:

∫ ∆

0

(√
p0(z + ε)−

√
p0(z)

)2
dz +

∫ ∞
∆

(√
p0(z + ε)−

√
p0(z)

)2
dz.

It follows from (Equation 2.16) and the dominated convergence theorem that the second term

satisfies ∫ ∞
∆

(√
p0(z + ε)−

√
p0(z)

)2
dz = O(ε2) = o(εα), ε→ 0.

Thus, we must prove that
∫ ∆

0 (
√
p0(z + ε) −

√
p0(z))2 dz = o(εα). To start, adding and sub-

tracting
√
f(z + ε)zα−1 yields the equation

√
p0(z + ε)−

√
p0(z)

=
√
f(z + ε)

(
(z + ε)

α−1
2 − z

α−1
2
)

+ (
√
f(z + ε)−

√
f(z))z

α−1
2 ,
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so that the integrand becomes

(√
p0(z + ε)−

√
p0(z)

)2
= I1(z; ε) + I2(z; ε) + I3(z; ε),

where

I1(z; ε) = f(z + ε)
(
(z + ε)

α−1
2 − z

α−1
2
)2

I2(z; ε) =
(√

f(z + ε)−
√
f(z)

)2
zα−1

I3(z; ε) = 2
√
f(z + ε)

(√
f(z + ε)−

√
f(z)

)(
(z + ε)

α−1
2 − z

α−1
2
)
z
α−1
2 .

The second term, I2, is the easiest to deal with, so we take this one first. Because f is smooth

and slowly varying near zero, the mean value theorem says that
√
f(z + ε)−

√
f(z) . ε, which

implies that

∫ ∆

0
I2(z; ε) dz . ε2

∫ ∆

0
zα−1 dz . ε2 = o(εα), ε→ 0.

The third term, I3, is similar. That is, after applying the mean value theorem to both of the

differences in I3, we discover that

∫ ∆

0
I3(z; ε) dz . ε2

∫ ∆

0
z−

3−α
2 z

α−1
2 dz = ε2

∫ ∆

0
zα−2 dz = o(εα) if α ≥ 1.
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Since the integral converges, the upper bound is O(ε2) = o(εα) as ε→ 0. Since (z+ε)β−zβ,

for β < 1, the first term, I1, is maximized at z = 0, and so we have

I1(z; ε) . εα−1|(z + ε)
α−1
2 − z

α−1
2 |.

Apply the mean value theorem to the difference in this upper bound, and we get

I1(z; ε) . εαz−
3−α
2 .

As with I3, the integral of this upper bound is finite and, in particular, is proportional to ∆
α−1
2 .

Putting everything together, we have

∫ ∞
0

(√
p0(z + ε)−

√
p0(z)

)2
dz = ∆

α−1
2 εα + o(εα), ε→ 0.

Since ∆ can be arbitrarily small, the right-hand side is o(εα), which completes the proof.

2.5.2 Proof of Theorem 3

A key to the proof of Theorem 3 is to make a connection between the Hellinger distance and

the risk of an estimator. This first step is based, in part, on the analysis in Chapter 1 Section

6 of (Ibragimov and Hasminskii, 1981), although our setup and conclusions are more general in

certain ways. We summarize this first step in the following lemma.
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Lemma 1. For data Y ∈ Y, consider a model Pθ, with µ-density pθ, indexed by a parameter

θ ∈ Θ ⊆ Rd. Let ψ = ψ(θ) be the interest parameter, where ψ : Rd → Rq. For an estimator

T = T (Y ) of ψ, the risk function Rψ(T, θ) for the estimator T satisfies

Rψ(T, θ) +Rψ(T, ϑ) ≥ min
{1− h(θ, ϑ)

4h(θ, ϑ)
,

1

16

}
‖ψ(θ)− ψ(ϑ)‖2.

Proof. Define the mean function of the estimator T , i.e., mψ(θ) = Eθ(T ). Since integration of

a constant function with respect to the (signed) measure with density pθ − pϑ is zero, we have

the following identity:

mψ(θ)−mψ(ϑ) =

∫ [
T (y)− 1

2{mψ(θ) +mψ(ϑ)}
][
pθ(y)− pϑ(y)

]
µ(dy).

Write vθ,ϑ(y) = T (y)− 1
2{mψ(θ) +mψ(ϑ)}. Now bound the norm of the quantity in the above

display:

‖mψ(θ)−mψ(ϑ)‖ =
∥∥∥∫ vθ,ϑ(pθ − pϑ) dy

∥∥∥
≤
∫
‖vθ,ϑ‖ |p

1/2
θ + p

1/2
ϑ | |p

1/2
θ − p1/2

ϑ | dy.

Next, apply the Cauchy–Schwartz inequality, to get

‖mψ(θ)−mψ(ϑ)‖2 ≤
∫
‖vθ,ϑ‖2 |p

1/2
θ + p

1/2
ϑ |

2 dy · h(θ, ϑ).
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For two non-negative numbers a and b, we have (a + b)2 ≤ 2(a2 + b2), so the first term in the

above upper bound is itself bounded by

2

∫
‖vθ,ϑ‖2pθ dy + 2

∫
‖vθ,ϑ‖2pϑ dy.

If we rewrite vθ,ϑ as

vθ,ϑ(y) = {T (y)−mψ(θ)}+ 1
2{mψ(ϑ)−mψ(θ)},

and use the fact that
∫
{T −mψ(θ)}pθ dy = 0, then we get

∫
‖vθ,ϑ‖2 pθ dy = Rψ(T, θ) + 1

4‖mψ(θ)−mψ(ϑ)‖2.

An analogous bound holds for
∫
‖vθ,ϑ‖2 pϑ dy, so we get

‖mψ(θ)−mψ(ϑ)‖2 ≤ 2h(θ, ϑ)
{
Rψ(T, θ) +Rψ(T, ϑ) + 1

2‖mψ(θ)−mψ(ϑ)‖2
}
.

Rearranging terms gives the bound

Rψ(T, θ) +Rψ(T, ϑ) ≥ 1− h(θ, ϑ)

h(θ, ϑ)
‖mψ(θ)−mψ(ϑ)‖2.

Finally, write bψ(θ) = mψ(θ)− ψ(θ) for the bias function of T , and consider the following two

exhaustive cases based on the magnitude of the bias.
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• Suppose that max{|bψ(θ)|, |bψ(ϑ)|} < 1
4‖ψ(θ) − ψ(ϑ)‖. Then it follows from the triangle

inequality that

‖mψ(θ)−mψ(ϑ)‖ = ‖ψ(θ)− ψ(ϑ) + bψ(θ)− bψ(ϑ)‖ ≥ 1
2‖ψ(θ)− ψ(ϑ)‖.

• Next, suppose that, say, ‖bψ(θ)‖ ≥ 1
4‖ψ(θ) − ψ(ϑ)‖. Then we trivially have Rψ(T, θ) ≥

‖bψ(θ)‖2 and, therefore, Rψ(T, θ) +Rψ(T, ϑ) ≥ 1
16‖ψ(θ)− ψ(ϑ)‖2.

Putting these two cases together proves the claim.

Returning to the proof of Theorem 3, recall that Yn = (Y1, . . . , Yn) is an n-vector of

independent but not iid random variables, i.e., Yi ∼ Pi,θ, for i = 1, . . . , n. Then the squared

Hellinger distance between joint distributions Pnθ and Pnϑ is given by

hn(θ, ϑ) := H2(Pnθ , P
n
ϑ ) = 2

[
1−

n∏
i=1

{
1− hi(θ, ϑ)

2

}]
,

where hi(θ, ϑ) = H2(Pi,θ, Pi,ϑ) is the squared Hellinger distance between individual components.

If θ and ϑ are sufficiently close, in the sense that hi(θ, ϑ) ≤ 1 for each i = 1, . . . , n, then, given

the following inequalities,

1− x ≤ − log x and − log(1− x) ≤ 2x, x ∈ [0, 1/2],



66

it follows that

hn(θ, ϑ) ≤ −2

n∑
i=1

log
{

1− hi(θ, ϑ)

2

}
≤ 2

n∑
i=1

hi(θ, ϑ). (2.21)

According to our assumption about local expansion of the individual hi’s, if ϑ = θ+ ε u for

a unit vector u, then

hn(θ, θ + ε u) ≤ 2Jn(θ, u) εα + o(nεα), ε→ 0.

When we take ε equal to εn,u = {3Jn(θ, u)}−1/α, then we get

hn(θ, θ + εn,u u) ≤ 2
3 + o(1), n→∞,

where the latter “o(1)” conclusion is justified by the assumption (Equation 2.9) about the rate of

information accumulation. Therefore, for large enough n, with ϑn,u = θ+εn,u u, hn(θ, ϑn,u) ≤ 3
4 ,

it follows from the above lemma that

Rψ(Tn, θ) +Rψ(Tn, ϑn,u) ≥ 1
16‖ψ(θ)− ψ(ϑn,u)‖2.

Since ψ is differentiable, there is a Taylor approximation at θ:

ψ(θ)− ψ(ϑn,u) = Dψ(θ)(θ − ϑn,u) + o(‖θ − ϑn,u‖),
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where the latter little-oh means a q-vector whose entries are all of that magnitude. Plugging in

the definition of ϑn,u gives

ψ(θ)− ψ(θ + εn,u u) = −εn,uDψ(θ)u+ o(εn,u), n→∞,

and, hence,

‖ψ(θ)− ψ(θ + εn,u u)‖2 = ε2
n,u‖Dψ(θ)u+ o(1)‖2 ≥ 1

2ε
2
n,u‖Dψ(θ)‖2.

Plugging in the definition of εn,u establishes the first claim, (Equation 2.10), and the constant

attached to the lower bound is 1
323−2/α. The second claim, (Equation 2.11), follows from the

first and the general fact that, for a function f defined on a set A, f(y1) + f(y2) is smaller than

2sup
A
f(y).



CHAPTER 3

OPTIMAL DESIGN FOR NONREGULAR REGRESSION BASED ON

HELLINGER INFORMATION

Classically, optimal design of experiment under regularity conditions boils down to the

optimization of Fisher information, which is inversely proportional to a lower risk bound of

arbitrary estimator. However, this approach is only viable for regular models, as Fisher in-

formation only exists for regular models. Thus, there is not a systematic approach available

to the problem of optimal design for nonregular models. The absence of Fisher information is

perhaps the greatest, but by no means the only, obstacle; Chapter 1 discussed other issues in

the optimal design of experiment, for nonregular models, including non-normal behavior of the

usual “go-to” estimators, such as MLE, and the absence of variance-covariance structure for

available estimators. Moreover, a variance-covariance structure is enough for inference only if

the distribution is normal.

Chapter 2 presents a Hellinger information inequality from Theorem 3 that can be viewed

as an extension of the Cramér-Rao bound to nonregular models, while the Hellinger informa-

tion determines a lower bound of risk of arbitrary estimators. Chapter 2 lays out theoretical

justification for using Hellinger information in the optimal design of experiment for nonregular

models in a manner similar to Fisher information in regular cases. This approach to opti-

mal design based on Hellinger information is applicable to a wide range of nonregular models

68
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without requiring derivation of the asymptotic distribution of estimator on a case-by-case or

model-by-model basis.

In this chapter, we put this approach to practice, specifically applying it to nonregular

regression models whose Hellinger information was derived in Chapter 2, Section 2.2.3. Section

3.1 consists of a brief review of the nonregular regression model and the estimation method.

Definition of optimal design for the nonregular regression model is presented in Section 3.2.

Optimal design obtained by optimization of Hellinger information for a linear and a quadratic

nonregular regression model are derived and presented in Theorem 3 and Theorem 4 in Section

3.3 and Section 3.4. Simulations comparing optimal designs to other designs are also presented.

3.1 Nonregular regression problem and method of estimation

According to (Smith, 1994), a class of nonregular regression models proceeds as follows:

Let xi = (xi1, ..., xid)
> be the vector of value of experimental variable of ith observation, and

let g(θ; xi) be a differentiable function of θ ∈ Rd in all dimensions, given xi. The probability

distribution of the error term, p(εi), then satisfies the following property: There is some constant

α ∈ [1, 2), c > 0 such that

yi = g(θ; xi) + εi, i = 1, ..., n, θ ∈ Rd, for some α ∈ [1, 2). (3.1)

The error term εi follows distribution p0 that fits the description in (Equation 2.15) from

Chapter 2 Section 2.2. As discussed earlier in Chapter 1 the error distribution that fits the

description above includes the three-parameter Weibull and gamma distribution, as well as
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the generalized extreme value and generalized Pareto distributions. For the rest of this thesis,

“nonregression model” would be the model referring to (Equation 3.1).

For nonregular regression model (Equation 3.1), where g(θ, xi) = θ0 +
∑p

j=1 θjxij , (Smith,

1994) suggested an estimation method which requires the experimental variable xi = (xi1, ..., xid)
>,

i = 1, ..., n to be a zero-sum vector, i.e.
∑n

i=1 xij = 0, j = 1, ..., p. Centering the experimental

variable to zero is used in such cases. According to (Koenker and Hallock, 2001), it is standard

practice in quantile regression to center the covariates at the origin so that the intercept in the

regression model can be interpreted as a conditional quantile function for some representative

case, in order to avoid extrapolation of the model, since the case when all the covariates are

at zero might not exist in reality. The estimator for θ would then be the solution to the linear

programming problem of choosing θ0, ..., θp to satisfy the following:

maximize θ0 subject to Yi ≥
p∑
j=0

xijθj for all i. (3.2)

Although there is an analytic expression for the distribution of this estimator, there is no

closed-form expression for asymptotic variance of Smith’s estimator, and the confidence interval

has to be numerically determined. (Smith, 1994) argued that this method is superior to those

that use the MLE. Besides the various problems with MLE mentioned in Chapter 1, Section

1.1.2, in reality it is often unknown what value α takes, especially when α < 1. Smith’s estimator

can be employed for all α > 0, so, it seems to be the main tool for nonregular regression.



71

Accordingly, it is used as the method of estimation in the simulation studies presented in the

later part of this chapter.

3.2 Hellinger Information for nonregular regression

3.2.1 Hellinger Information for nonregular regression based on an approximate

design

Chapter 2, Section 2.3 has shown that Hellinger information based on a sample of size

n is proportional to (Equation 2.20). Accordingly, what follows is the definition of Hellinger

information based on an approximate design.

Definition 9. Consider the nonregular regression model of (Equation 3.1), with any m point

approximated design with the format of ξ = {(wi, xi), i =, ...,m}. Hellinger information based

on ξ is defined as

Jξ(θ) = min
u:‖u‖2=1

m∑
i=1

wi
∣∣ d∑
j=1

ui
∂g(θ, xi)

∂θj

∣∣α.
Definition 10. (Optimal design under Hellinger information inequality) A design ξopt is con-

sidered optimal for the nonregular regression model (Equation 3.1) if it minimizes the local

minimax risk bound of the arbitrary estimator.

ξopt = argmax
ξ
Jξ(θ) = argmax

ξ
min

u:‖u‖2=1

m∑
i=1

wi
∣∣ d∑
j=1

ui
∂g(θ, xi)

∂θj

∣∣α
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When α ≥ 2 from (Equation 3.1), or for regular regression models where error follows

Normal distribution, Hellinger information based on design ξ can be rewritten as

Jξ(θ) =
1

4
min

u:‖u‖2=1
u>
( m∑
i=1

wi(
∂g(θ, xi)

∂θ
)(
∂g(θ, xi)

∂θ
)>
)
u =

1

4
λmin

( m∑
i=1

wi(
∂g(θ, xi)

∂θ
)(
∂g(θ, xi)

∂θ
)>
)
.

Therefore, optimal design based on Hellinger information is equivalent to E-optimal design

under regularity conditions.

The following two sections present some analytic results for optimal designs and some sim-

ulation results using Smith’s estimator (Smith, 1994) for simple linear nonregular regression

models and for the quadratic regression model. The requirement of centering the experimental

variable at zero, as discussed in Section 3.1, implies that suitable designs for these models must

belong to the collection of all balanced designs, which is denoted as Ξ,

Ξ =
{
{(wi, xi)...., },

∑
wixi = 0, xi ∈ [−A,A]

}
.

3.3 Nonregular regression example: linear model

3.3.1 Optimal design result on nonregular polynomial regression model

The Hellinger information for nonregular regression model (Equation 3.1) based on design

ξ, according to Definition 10, would be

Jξ(θ) = min
u:‖u‖2=1

m∑
i=1

wi
∣∣ d∑
j=1

ui
∂g(θ, xi)

∂θj

∣∣α.
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Letting u = (u1, ..., up+1) be a unit vector, the optimal design of a nonregular polynomial

regression model, g(θ, x) = θ0 +
∑p

j=1 θjx
j , is

ξopt = max
ξ∈Ξ

min
u:‖u‖2=1

m∑
i=1

wi|
p∑
j=0

uj+1x
j
i |
α with Ξ =

{
{(wi, xi)...., },

∑
wixi = 0, xi ∈ [−A,A]

}
.

The following lemma contains a result about optimal design for nonregular polynomial regres-

sion models.

Lemma 2. Denote Ξ∗ =
{
{(w1,−x1), ..., (wk,−xm), (w1, x1), ..., (wk, xm)},

∑
wi = 0.5, xi ∈

[0, A],m > 1
}

as a collection of symmetric designs that belongs to Ξ. The optimal design for

any nonregular polynomial regression model (Equation 3.1) with g(θ,xi) = θ0 +
∑p

j=1 θjx
j
i must

therefore be a symmetric design, i.e.,

max
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ(θ, u) = max
ξ∈Ξ

min
u:‖u‖2=1

Jξ(θ, u).

Proof. see Appendix 3.6.1

Lemma 2 suggests that when searching for optimal design for polynomial nonregular regres-

sion models, one can restrict the search to symmetric designs.

3.3.2 Optimal design result on nonregular linear regression model

For simple linear nonregular regression models, we have the following result.
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Lemma 3. Denote min
u:‖u‖2=1

J{(0.5,±A)}(θ, u) as the Hellinger information of θ of model (Equation 3.1)

with g(θ,xi) = θ0 +θ1xi, based on design {(0.5,−A), (0.5, A)}. Then, for any symmetric design

ξ∗ ∈ Ξ∗,

min
u:‖u‖2=1

J(0.5,±A)(θ, u) ≥ max
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ∗(θ, u).

Proof. see Appendix 3.6.2

By Lemma 2 and Lemma 3, we have the following theorem.

Theorem 4. The optimal design for nonregular regression model (Equation 3.1) with g(θ, x) =

θ0 + θ1x, is

ξopt = {(0.5,−A), (0.5, A)}

Proof. see Appendix 3.6.3

3.3.3 Simulation

The optimal design based on Hellinger inequality in Theorem 3 is to minimize the lower

bound of local minimax risk, which is defined as the sum of mean square error of estimator.

The objective of the following simulation is to evaluate the performance of the optimal design

compared with naive designs in terms of the sum of mean square error.

3.3.3.1 Simulation setup

The following outlines the simulation steps for each design. (In the next section, this setup

will also be used for simulation studies involving quadratic models.)
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• For given true value of θ, with shape parameter α ∈ [1, 2), and given the distribution of

error term Gamma (α), generate n observations for approximate design ξ = {(wi, xi), i,=

, ..., k}, i.e., generate nwi for each xi.

• Derive estimation of θ. For a linear model, estimation comes from R-package ‘Rglpk’

which is used for solving linear programing problems. For quadratic models, estimation

comes from R-package “quantreg” for quantile regression of zero percentile. 1

• Repeat each experiment ξ for M = 1000 times, denoted by θ̂mj ,m = 1, ...M for each

j = 0, ..., p+ 1.

• Compare the mean square error for each parameter for each design, ξ. For example, with

linear model and design, ξ,

MSE(θj) =

∑M
m=1(θ̂mj − θj)2

M
, j = 0, ..., 1 + p,

the risk is
∑1+p

i MSE(θj).

3.3.3.2 Simulation results

Recall that the optimal design for two-parameter linear nonregular regression model is

ξopt = {(−A, 0.5), (A, 0.5)}. In the following simulation study, the purpose is to compare optimal

design to five-, ten-, and fifteen-point equidistant equal weight designs across the experimental

variable space, [−A,A], denoted as ξ5pt, ξ10pt and ξ15pt.

1Note: “quantreg” and “Rglpk” both obtain the same estimation for linear model, but “Rglpk” does
not seem to be able to produce estimation for quadratic models.
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For the rest of Chapter 3, all examples have the same sample size of 120 for each run of

experiment, and the result of mean square error came from 1000 repeats of each experiment.

The number in parentheses is the standard error of mean square error.

Based on the results regarding Hellinger information presented in Chapter 2, the optimal

design result for two-parameter linear nonregular regression models shall be the same regardless

of the specific distribution of error distribution and the boundary of the experimental space, A.

That is, one expects to see the optimal design perform better than other designs in simulations,

regardless of the choice of the error distribution, the choice value of scalar parameter (if the

distribution is gamma or Weibull), the value of shape parameter (α), or the value of A. The

three following examples confirm this optimal design result.

Example 17 explores simulation settings with different error distributions with the same true

parameter value, while Example 18 checks if choosing a different true parameter value would

change the conclusion. Example 19 presents simulation results from settings with different

values of A,α with gamma distributed error.

Example 17. Table 1, Table 2 and Table 3 contain simulation results from gamma distributed

error with shape parameter value 1.2 and with scale parameter set at 10, 1, and 0.5, respec-

tively. It appears that MSE across parameters increases as scale parameter increases. With

scale parameter larger than 1, the mean square error level is higher, whereas, while the scale

parameter decreases, the mean square error level is reduced. However, the ranking of MSE for

each parameter and the sum of MSE among designs remain the same. Table 4, Table 5, and

Table 6 contain results from a simulation with Weillbull distributed error and shape parameter
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value of 1.2, and with scale parameters of 10, 1, and 0.5, respectively. One can draw the same

conclusion from Table 1 to Table 3. For all the tables below, among all designs’ sum of MSE,

the one from optimal design is two standard error away from the next smallest one. Although

under different settings, the MSE and sum of MSE differ among the designs, the relative ranking

between designs for each setting remains mostly the same.

This example confirms that the optimal design does not depend on the choice of scale pa-

rameter or the choice of distribution of error, as long as the error distribution fits the description

from Proposition 2. Thus, for the rest of the simulation, without loss of generality, only gamma

distributed error will be used (when α = 1, the distribution is exponential).

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.15649 (0.00562) 0.04026 (0.00207) 0.19674 (0.00599) ξopt

0.12490 (0.00525) 0.10168 (0.00501) 0.22659 (0.00726) ξ5pt

0.13218 (0.00533) 0.14636 (0.01198) 0.27855 (0.01311) ξ10pt

0.13439 (0.00659) 0.14481 (0.00988) 0.27920 (0.01188) ξ15pt

TABLE 1: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 10
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MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00161 (0.00006) 0.00041 (0.00003) 0.00202 (0.00007) ξopt

0.00131 (0.00006) 0.00202 (0.00016) 0.00333 (0.00017) ξ5pt

0.00140 (0.00006) 0.00212 (0.00017) 0.00352 (0.00018) ξ10pt

0.00140 (0.00006) 0.00246 (0.00019) 0.00386 (0.00020) ξ15pt

TABLE 2: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 1

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00041 (0.00002) 0.00011 (0.00001) 0.00052 (0.00002) ξopt

0.00032 (0.00001) 0.00048 (0.00003) 0.00081 (0.00004) ξ5pt

0.00037 (0.00001) 0.00046 (0.00003) 0.00083 (0.00004) ξ10pt

0.00037 (0.00002) 0.00058 (0.00004) 0.00095 (0.00005) ξ15pt

TABLE 3: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 0.5

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.12340 (0.00471) 0.03116 (0.00171) 0.15456 (0.00501) ξopt

0.11565 (0.00458) 0.08444 (0.00346) 0.20010 (0.00574) ξ5pt

0.11716 (0.00477) 0.12004 (0.00860) 0.23720 (0.00984) ξ10pt

0.10780 (0.00388) 0.11838 (0.00766) 0.22618 (0.00859) ξ15pt
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TABLE 4: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 10, Weibull Distributed

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00130 (0.00005) 0.00035 (0.00002) 0.00165(0.00005) ξopt

0.00112 (0.00005) 0.00173 (0.00014) 0.00284 (0.00014) ξ5pt

0.00116 (0.00005) 0.00153 (0.00012) 0.00268 (0.00012) ξ10pt

0.00114 (0.00004) 0.00166 (0.00013) 0.00280 (0.000014) ξ15pt

TABLE 5: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 1, Weibull Distributed

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00036 (0.00002) 0.00009 (0.00001) 0.00046(0.00002) ξopt

0.00029 (0.00001) 0.00043 (0.00003) 0.00072 (0.00004) ξ5pt

0.00030 (0.00001) 0.00039 (0.00002) 0.00069 (0.00003) ξ10pt

0.00030 (0.00001) 0.00046 (0.00003) 0.00077 (0.00003) ξ15pt

TABLE 6: A = 1, α = 1, θ0 = 2, θ1 = 0.5, scale = 0.5, Weibull Distributed
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Example 18. This example is meant to check if the true parameter value matters to the perfor-

mance of design in simulation. Table 7 and Table 8 contains results from two runs of simulations

with A = 1, exponential distribution error (α = 1), and with different true parameter values.

Table 7 has true parameter value of θ0 = 100, θ1 = 50, whereas Table 8 has true parameter

value of θ0 = 2, θ1 = 0.5. One can see that although the true values are quite different from

each other, the level of mean square error of each parameter, the level of standard deviation of

mean square error and the sum of mean square error are close between these two tables. Thus,

for the rest of the simulations examples, without loss of generality, all the true value of the

parameters will be the same.

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00045 (0.00002) 0.00015 (0.00001) 0.00060 (0.00002) ξopt

0.00035 (0.00002) 0.00064 (0.00005) 0.00099 (0.00006) ξ5pt

0.00039 (0.00002) 0.00068 (0.00005) 0.00107 (0.00006) ξ10pt

0.00037 (0.00002) 0.00068 (0.00005) 0.00106 (0.00006) ξ15pt

TABLE 7: A = 1, α = 1, θ0 = 100, θ1 = 50
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MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00045 (0.00002) 0.00015 (0.00001) 0.00061 (0.00003) ξopt

0.00034 (0.00002) 0.00068 (0.00006) 0.00102 (0.00006) ξ5pt

0.00040 (0.00002) 0.00065 (0.00006) 0.00105 (0.00006) ξ10pt

0.00040 (0.00002) 0.00074 (0.00006) 0.00114 (0.00007) ξ15pt

TABLE 8: A = 1, α = 1, θ0 = 2, θ1 = 0.5

Comparing the results from the previous simulations with different true parameter values

and different error distribution settings, it turns out that the ranking of sum of mean squre error

between designs is the same, and the optimal design is always significatly better than others.

Based on this, the simulations for the next example would have the same true parameter value

and error distribution.

Example 19. To see how optimal design performs for different combinations of A,α values, the

following two tables provide some comparisons.

Setting true value as θ0 = 6, θ1 = 0.5, with error following exponential distribution, Table 9

records sum of mean square error from three different runs of simulations with A set to 1, 2,

and 5 respectively.
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Design A = 1, α = 1 A = 2, α = 1 A = 5, α = 1

ξopt 0.00061 (0.00002) 0.00040 (0.00002) 0.00039 (0.000018)

ξ5pt 0.00105 (0.00006) 0.00053 (0.00002) 0.00041 (0.000022)

ξ10pt 0.00102 (0.00006) 0.00049 (0.00002) 0.00038 (0.000018)

ξ15pt 0.00110 (0.00006) 0.00060 (0.00002) 0.00042 (0.000020)

TABLE 9: θ0 = 6, θ1 = 0.5, α = 1

Setting true value as θ0 = 6, θ1 = 0.5, with error following gamma distribution with shape

parameter of α = 1.4, Table 10 records sum of mean square error from three different runs of

simulations with A set to 1, 2 and 5 respectively.

Design A = 1, α = 1.4 A = 2, α = 1.4 A = 5, α = 1.4

ξopt 0.00532 (0.00015) 0.00426 (0.00013) 0.00448 (0.000155)

ξ5pt 0.00806 (0.00034) 0.00495 (0.00017) 0.00409 (0.000149)

ξ10pt 0.00825 (0.00031) 0.00513 (0.00016) 0.00423 (0.000146)

ξ15pt 0.00936 (0.00039) 0.00500 (0.00016) 0.00457 (0.000154)

TABLE 10: θ0 = 6, θ1 = 0.5, α = 1.4
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From other runs of simulation (not presented here), increasing α value while holding other

settings the same would increase sum of mean square error level for each simulation, and the

level of standard deviation.

When A = 1, A = 2, under both α = 1 and α = 1.4 cases, optimal design is superior, since

sum of mean square error from other designs are all larger than two standard deviation away

from that of ξopt.

From the result for A = 5, it appears that the design with the smallest sum of mean square

error is not the optimal design; however, the Welch modified two-sample t-test result1 shows

that the difference is not significant. For α = 1 case, notice that Sum(MSE)(ξopt) = 0.000396,

which is larger than that from Sum(MSE)(ξ10pt) = 0.000377; however, the difference is not

significant. The t-score is 0.000396−0.000377√
2∗0.0000182

= 0.7463905, degree of freedom is 1998, and the

p-value for two-sided test is 0.4555. For α = 1.4 case, Sum(MSE)(ξopt) = 0.004484, which

is larger than that from Sum(MSE)(ξopt)ξ5pt = 0.004087, though, again, the difference is not

significant. The t-score is 0.004484−.004087√
0.0001552+0.0001492

= 1.846492, and the p-value for two-sided test is

0.06497.

Table 11 to Table 13 provide greater detail of Table 9. Likewise, Table 14 to Table 16

provide greater detail of Table 10. What follows is a list of several observations from these

tables:

1The result is calculated in R with function tsum.test
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• The optimal design for each combination of A,α values is significantly superior to other

designs in estimation of θ1, while not always significantly inferior in estimation of θ0. To

see this, from Table 11 to Table 16, ξopt’s MSE(θ0) value is either the largest or the

second largest; however, among these 6 simulations, not every ξopt’s MSE(θ0) value

is significantly larger than the smallest MSE(θ0) value. For example, in Table 15,

MSE(θ0)(ξopt) = 0.00404 and MSE(θ0)(ξ15pt) = 0.00376 (the smallest) are not sig-

nificantly different according to the t-test. On the estimation of θ1, for each of Table 11

to Table 16, ξopt has the smallest MSE(θ1) and is significantly smaller than the second

smallest MSE(θ1) from other designs.

• On observing the effect of different A values, it appears that when A is small, the MSE for

θ0 and θ1 are at the same scale, but when A becomes large, the scale of MSE for different

parameters becomes drastically different.

From Table 11 and Table 12, among MSE(θ0), and MSE(θ1) values, almost all of them

have the first non-zero digit at the 4th decimal place. (Except for optimal design for

A = 2 from Table 12: the MSE(θ1) first non-zero digit is at the 5th decimal place.)

For A = 5, using Table 13 (α = 1) as an example, one can observe that MSE(θ0) for the

designs considered are still around 0.0003 and 0.00004, which are at the same level from

Table 11 (A = 1) and Table 12 (A = 2), while MSE(θ1) reduces drastically in comparison

to MSE(θ0): the first non-zero digit in Table 13 is at the 5th digit. This means that,

for large A, MSE(θ1) only contributed about a hundredth of value from MSE(θ0) in

calculation of Sum(MSE). Thus, the ranking of Sum(MSE) among designs for large A
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is identical to the ranking of MSE(θ0), since the contribution of MSE(θ1) to the value

of Sum(MSE) is negligible. These same observations can be seen for α = 1.4 cases from

Table 14 to Table 16

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00045 (0.00002) 0.00016 (0.00001) 0.00061 (0.00002) ξopt

0.00034 (0.00002) 0.00071 (0.00006) 0.00105 (0.00006) ξ5pt

0.00036 (0.00002) 0.00065 (0.00006) 0.00102 (0.00006) ξ10pt

0.00034 (0.00002) 0.00076 (0.00006) 0.00110 (0.00006) ξ15pt

TABLE 11: A = 1, α = 1

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.000373 (0.000016) 0.000031 (0.000020) 0.000404 (0.000016) ξopt

0.000364 (0.000020) 0.000165 (0.000015) 0.000529 (0.000025) ξ5pt

0.000360 (0.000018) 0.000131 (0.000010) 0.000492 (0.000021) ξ10pt

0.000408 (0.000020) 0.000192 (0.000014) 0.000600 (0.000024) ξ15pt

TABLE 12: A = 2, α = 1
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MSE(θ0) MSE(θ1) Sum(MSE) Design

0.000391 (0.000018) 0.000005 (0.000000) 0.000396 (0.000018) ξopt

0.000378 (0.000021) 0.000029 (0.000002) 0.000407 (0.000022) ξ5pt

0.000350 (0.000018) 0.000027 (0.000002) 0.000377 (0.000018) ξ10pt

0.000386 (0.000020) 0.000032 (0.000003) 0.000418 (0.000020) ξ15pt

TABLE 13: A = 5, α = 1

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00443 (0.00015) 0.00089 (0.00005) 0.00532 (0.00015) ξopt

0.00388 (0.00014) 0.00418 (0.00031) 0.00806 (0.00034) ξ5pt

0.00377 (0.00013) 0.00448 (0.00028) 0.00825 (0.00031) ξ10pt

0.00401 (0.00013) 0.00534 (0.00037) 0.00936 (0.00039) ξ15pt

TABLE 14: A = 1, α = 1.4
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MSE(θ0) MSE(θ1) Sum(MSE) Design

0.00404 (0.00013) 0.00022 (0.00005) 0.00426 (0.00013) ξopt

0.00398 (0.00014) 0.00097 (0.00010) 0.00495 (0.00017) ξ5pt

0.00408 (0.00014) 0.00105 (0.00007) 0.00513 (0.00016) ξ10pt

0.00376 (0.00013) 0.00124 (0.00010) 0.00500 (0.00016) ξ15pt

TABLE 15: A = 2, α = 1.4

MSE(θ0) MSE(θ1) Sum(MSE) Design

0.004449 (0.000155) 0.000035 (0.000002) 0.004484 (0.000155) ξopt

0.003888 (0.000148) 0.000200 (0.000016) 0.004087 (0.000149) ξ5pt

0.004063 (0.000146) 0.000166 (0.000016) 0.004229 (0.000146) ξ10pt

0.004364 (0.000154) 0.000201 (0.000013) 0.004565 (0.000154) ξ15pt

TABLE 16: A = 5, α = 1.4
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3.4 Nonregular regression example: quadratic model

3.4.1 Optimal design results

Consider the nonregular quadratic regression model, i.e., g(θ, x) = θ0 + θ1xi + θ2x
2
i in

(Equation 3.1). Based on Definition 10, optimal design for the nonregular quadratic model is

ξopt = max
ξ∈Ξ

min
u:‖u‖2=1

n∑
i=1

wi|u1 + u2xi + u3x
2
i |α.

The following theorem provides a result for the α = 1 case.

Theorem 5. When α = 1, optimal design for nonregular quadratic regression model belongs

to the collection of all three-point symmetric designs centered at zero and with two points at

boundary, denoted as Ξ3pt,

Ξ3pt =
{
ξw = {(1− w

2
,−A), (w, 0), (

1− w
2

, A)}, w ∈ (0, 1)
}
. (3.3)

Proof. see Appendix 3.6.4

Theorem 5 means that for the α = 1 case, Hellinger information in the direction of u based

on design ξw ∈ Ξ3pt has the expression of

Jξw(θ, u) = w|u1|+
1− w

2
(|u1 + u2A+ u3A

2|+ |u1 − u2A+ u3A
2|),
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and optimal design would be

Jξ∗w = argmax
w∈[0,1]

min
u:‖u‖2=1

Jξw(θ, u).

Unfortunately, the analytic solution to the optimal weight at point zero from (Equation 3.3),w∗ =

argmax
w∈[0,1]

Jw(θ, u), is not available. However, one can use a numerical search method to find the

approximated result.

The result in Theorem 5 is only for α = 1, although it is quite likely that the result from

Theorem 5 can be extended to all nonregular quadratic models with regularity index value

between 1 and 2. Simulation results presented later in Section 3.4.3 support this hypothesis.

The following steps outline the numerical search for the optimal weight at point zero, i.e.,

searching numerically for

w∗ = argmax
w∈[0,1]

min
u:‖u‖2=1

Jξw(θ, u). (3.4)

To accomplish this, for a given w, search for minimum value of

Jξw(θ, u) = w|u1|α +
1− w

2
(|u1 + u2A+ u3A

2|α + |u1 − u2A+ u3A
2|α), u = (u1, u2, u3), |u| = 1,

over unit circle; repeat this for w ∈ [0, 1] over mesh size of 0.05, then choose the w value that

obtains the maximum min
u:‖u‖2=1

Jξw(θ, u). The following describes the steps of a grid search over

the unit circle.
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First, notice that for any unit vector u from (+,−,+), (−,−,−), and (−,+,−), one can find

a vector from (+,+,+) such that they would have the same Jξw(θ, u) value. Similarly, for any

unit vector from (+,−,−), (−,−,+), and (−,+,+), one can find a unit vector from (+,+,−)

such that Jξw(θ, u) would have the same value. Thus, one only needs to search over the first

octant (+,+,+) and fourth octant (+,+,−). The method of generating these unit-vectors is

based on the spherical coordinates of unit sphere (u1, u2, u3) with θ as the azimuthal coordinate,

and ϕ as the polar coordinate. Accordingly, any unit-vectors would have the expression of

u =
(

sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)
)
, 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π.

Points from the first octant (+,+,+) are

u(i,j) =
(

sin(ϕi) cos(θj), sin(ϕi) sin(θj), cos(ϕi)
)

ϕi, θj = 0, 0.01, ..., 1.57 ≈ π

2
.

With the mesh size set for ϕ, θ above, there are 1572 = 24649 many u(i,j) from (+,+,+). To

obtain points from fourth octant (+,+,−), one can simply change the sign of all u3 to the

negative of these 24649 u(i,j) of the first octant, i.e., the points from (+,+,−) would be

u(i,j) =
(

sin(ϕi) cos(θj), sin(ϕi) sin(θj),− cos(ϕi)
)

ϕi, θj = 0, 0.01, ..., 1.57.

This method generates 24649 × 2 = 49928 many unit vectors to search over. The numerical

solution to (Equation 3.4) for α = 1 case is presented in Table 17.
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A α argmax
w∈[0,1]

argmin
u:‖u‖2=1

Jw(θ, u) u(min)

1 1 0.5 (0.70328, 0, -0.71091)

2 1 0.65 (0.00071, 0.8957, 0.44466)

5 1 0.8 (0.99917, 0, -0.04079)

10 1 0.9 (0.99994, 0, -0.0108)

TABLE 17: Numerical search result: w∗ from (Equation 3.4) for α = 1 case

At this point, we do not have the proof that Theorem 5 can be extended to α ∈ (1, 2).

However, some simulation studies in the later section show that it is likely that the extension

is true. Table 18 provides the results for the numerical solution to (Equation 3.4) for different

α values.

α = 1 α = 1.5 α = 1.8 α = 1.9

A=1 0.5 0.6 0.6 0.6

A=2 0.65 0.75 0.75 0.8

A=5 0.8 0.9 0.95 0.95

A=10 0.9 0.95 0.95 0.95

TABLE 18: Numerical search result: w∗ from (Equation 3.4) for different A,α
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3.4.2 Simulation results for quadratic regression model when α = 1

Following the same simulation steps described in Section 3.3.3.1, the simulation results in

this section consider the optimal designs listed in Table 19 and 5-, 10-, and 15-point uniform

designs for comparison. For all the simulations in this section, sample size is set to N = 80,

and to obtain mean square errors, each experiment is repeated M = 1000 times, with true

parameters’ values set at θ = (2, 4, 0.8).

A Optimal Design ξOptimal

1 ξ0.5 = {(−A, 0.25), (0, 0.5), (A, 0.25)}

2 ξ0.65 = {(−A, 0.175), (0, 0.65), (A, 0.175)}

5 ξ0.8 = {(−A, 0.1), (0, 0.8), (A, 0.1)}

10 ξ0.9 = {(−A, 0.05), (0, 0.9), (A, 0.05)}

TABLE 19: List of optimal designs for different A under α = 1 case

Example 20. To compare optimal designs to other designs for different values of A, in Table 20,

each row records the sum of mean square error and its standard error for different designs.

Row of ξOptimal records the results from optimal designs from Table 19. One can observe that

across different A values, optimal design performs the best since one can observe that their
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Sum(MSE) is two standard deviations away from the other designs’. Table 21 to Table 23

contain the more detailed results from each of the settings from Table 20.

Design A = 1, ξ0.5 A = 2, ξ0.65 A = 5, ξ0.8

ξOptimal 0.00229 (0.00009) 0.00071 (0.00003) 0.00039 (0.00003)

ξ5pt 0.00484 (0.00020) 0.00176 (0.00011) 0.00107 (0.00007)

ξ10pt 0.00486 (0.00022) 0.00110 (0.00007) 0.00084 (0.00006)

ξ15pt 0.00567 (0.00028) 0.00122 (0.00006) 0.00084 (0.00006)

TABLE 20: Simulation Result: Designs For Nonregular Quadratic Regression

MSE(θ0) MSE(θ1) MSE(θ2) Sum(MSE) Design

0.00054 (0.00004) 0.00059 (0.00004) 0.00116 (0.00007) 0.00229 (0.00009) ξ0.5

0.00089 (0.00006) 0.00083 (0.00005) 0.00311 (0.00019) 0.00484 (0.00020) ξ5pt

0.00080 (0.00005) 0.00076 (0.00005) 0.00331 (0.00020) 0.00486 (0.00022) ξ10pt

0.00079 (0.00005) 0.00091 (0.00007) 0.00397 (0.00027) 0.00567 (0.00028) ξ15pt

TABLE 21: A = 1, α = 1
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MSE(θ0) MSE(θ1) MSE(θ2) Sum(MSE) Design

0.00029 (0.00002) 0.00028 (0.00002) 0.00015 (0.00001) 0.00071 (0.00003) ξ0.65

0.00121 (0.00011) 0.00028 (0.00002) 0.00027 (0.00003) 0.00176 (0.00011) ξ5pt

0.00075 (0.00006) 0.00017 (0.00001) 0.00019 (0.00001) 0.00110 (0.00007) ξ10pt

0.00080 (0.00006) 0.00019 (0.00001) 0.00022 (0.00001) 0.00122 (0.00006) ξ15pt

TABLE 22: A = 2, α = 1

MSE(θ0) MSE(θ1) MSE(θ2) Sum(MSE) Design

0.00022 (0.00002) 0.00015 (0.00005) 1e-05 (0) 0.00039 (0.00002) ξ0.8

0.00103 (0.00007) 0.00003 (0) 1e-05 (0) 0.00107 (0.00007) ξ5pt

0.00080 (0.00006) 0.00003 (0) 1e-05 (0) 0.00084 (0.00006) ξ10pt

0.00078 (0.00006) 0.00003 (0) 1e-05 (0) 0.00082 (0.00006) ξ15pt

TABLE 23: A = 5, α = 1

3.4.3 Some results for α ∈ (1, 2) case

Table 24 lists the likely but unproven optimal designs for nonregular quadratic regression

models with different values of A,α. These are obtained by numerical search, following the
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steps from Section 3.4.1. A simulation is conducted to compare designs from Table 24 and 5-,

10-, and 15-point uniform designs. The sum of mean square errors from the simulation and

their standard error are recorded in Table 25. The simulation settings are the same as the ones

for α = 1 case, i.e. N = 80,M = 1000, θ = (2, 4, 0.8).

A α Likely candidates for the optimal design: ξ(A,α)

1 1.5 ξ0.6 = {(−A, 0.15), (0, 0.6), (A, 0.15)}

2 1.5 ξ0.75 = {(−A, 0.25
2 ), (0, 0.75), (A, 0.25

2 )}

2 1.9 ξ0.8 = {(−A, 0.1), (0, 0.8), (A, 0.1)}

5 1.8 ξ0.95 = {(−A, 0.025), (0, 0.95), (A, 0.025)}

TABLE 24: Likely but unproven optimal designs for different A,α cases

Design A = 1, α = 1.5 A = 2, α = 1.5 A = 2, α = 1.9 A = 5, α = 1.8

ξ(A,α) 0.02213 (0.00062) 0.00922 (0.00028) 0.03091 (0.00073) 0.01852 (0.00053)

ξ5pt 0.03836 (0.00129) 0.01411 (0.00053) 0.04027 (0.00132) 0.02831 (0.00114)

ξ10pt 0.03749 (0.00142) 0.01206 (0.00045) 0.04397 (0.00143) 0.02834 (0.00118)

ξ15pt 0.04092 (0.00148) 0.01229 (0.00044) 0.04001 (0.00129) 0.02593 (0.00115)

TABLE 25: Simulation result for design from Table 24
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The first row of Table 25 contains the simulation results from likely candidates for optimal

design from Table 24. Across different cases, the likely candidates for the optimal designs

listed in Table 24 perform the best since their Sum(MSE) are two standard deviations away

from other designs’, so the simulation results support the hypothesis that the optimal designs

for the quadratic nonregular regression model with α ∈ (1, 2) are likely to belong to Ξ3pt =

{(1−w
2 ,−A), (w, 0), (1−w

2 , A)}.

3.5 Summary of simulation results

By observing simulation results from the previous two sections, we see that for quadratic

models, optimal design based on Hellinger information outperforms other designs. For linear

models, when the boundary of experimental design variable space A is small, optimal design

based on Hellinger information does outperform other designs in terms of sum of mean square

error. However, as A becomes large, the optimal design is among the best designs, but not the

one with the smallest sum of mean square error; however, in such cases, the risk from estimation

from optimal design is not statistically different.

Optimal design of nonregular models is obtained from optimization of Hellinger information,

which serves as a lower bound of a risk bound for arbitrary estimators. The simulation thus

confirms Theorem 3.

Given the absence of efficient estimators for nonregular regression models and the lack of

closed-form expression of the asymptotic variance-covariance structure of Smith’s estimator

(Smith, 1994), this approach to optimal design based on Hellinger information is the best

available.
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3.6 Appendix

3.6.1 Proof of Lemma 2

For a given design ξ = {(wi, xi), i = 1, ...k}, let ū = argmin
u:‖u‖2=1

∑k
i=1wi|

∑p+1
j=0 x

j
iuj+1|α, then

notice that for any j, uj+1(x)j = (−1)juj+1(−x)j .

Therefore,

k∑
i

wi|
p+1∑
j=0

xji ūj+1|α =

k∑
i

wi|
p+1∑
j=0

(−xi)j(−1)j ūj+1|α ≥ min
u:‖u‖2=1

k∑
i

wi|
p+1∑
j=0

(−xi)juj+1|α. (3.5)

Similarly, let u∗ = argmin
u:‖u‖2=1

∑k
i=1wi|

∑p+1
j=0(−xi)juj+1|α, then

k∑
i

wi|
p+1∑
j=0

(−xi)ju∗j+1|α =

k∑
i

wi|
p+1∑
j=0

xji [(−1)ju∗j+1]|α ≥ min
u:‖u‖2=1

k∑
i=1

wi|
p+1∑
j=0

xjiuj+1|α. (3.6)

Therefore, by the definition of u∗ and ū, combining (Equation 3.5) and (Equation 3.6),

min
u:‖u‖2=1

k∑
i

wi|
p+1∑
j=0

xjiuj+1|α = min
u:‖u‖2=1

k∑
i

wi|
p+1∑
j=0

(−xi)juj+1|α. (3.7)

Given design ξ ∈ Ξ, one can form a symmetric design, ξ∗, by an equal mixture of design ξ

and ξ− = {(wi,−xi), i = 1, ...k}. Let ξ∗ = 1
2ξ + 1

2ξ
−, then

min
u:‖u‖2=1

Jξ∗(θ, u) = min
u:‖u‖2=1

(
1

2

k∑
i

wi|
p+1∑
j=0

xjiuj+1|α +
1

2

k∑
i

wi|
p+1∑
j=0

(−xi)juj+1|α)

≥ min
u:‖u‖2=1

(
1

2

k∑
i

wi|
p+1∑
j=0

xjiuj+1|α) + min
u:‖u‖2=1

(
1

2

k∑
i

wi|
p+1∑
j=0

(−xi)juj+1|α).
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Based on (Equation 3.7), the above inequality can be written as

min
u:‖u‖2=1

Jξ∗(θ, u) > min
u:‖u‖2=1

k∑
i

wi|
p+1∑
j=0

xjiuj+1|α.

This means that for any design ξ ∈ Ξ, there is a symmetric design ξ∗ ∈ Ξ∗ such that

min
u:‖u‖2=1

Jξ∗(θ, u) ≥ min
u:‖u‖2=1

Jξ(θ, u),

which means,

max
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ∗(θ, u) ≥ max
ξ∈Ξ

min
u:‖u‖2=1

Jξ(θ, u),

and since Ξ∗ ⊂ Ξ,

max
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ∗(θ, u) = max
ξ∈Ξ

min
u:‖u‖2=1

Jξ(θ, u).

3.6.2 Proof of Lemma 3

Based on model (Equation 3.1) with g(θ, x) = θ0 + θ1x,

J{(0.5,±A)}(θ, u) = 0.5(|u1 + u2A|α + |u1 − u2A|α), and

Jξ∗(θ, u) =

m∑
1

wi(|u1 + u2xi|α + |u1 − u2xi|α).
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Any unit vector (except u = (1, 0))1 can be written in the following format:

u = ±(± B√
1 +B2

,
1√

1 +B2
), B ∈ [0,∞). (3.8)

Notice that no matter what choices of sign combination of u1, u2 is given,

|u1 + u2xi|α + |u1 − u2xi|α = (1 +B2)−0.5α(|B + xi|α + |B − xi|α).

First we check that for any given unit-vector u, J{(0.5,±A)}(θ, u)− Jξ∗(θ, u) is non-negative.

Recall that
∑m

1 wi = 0.5,

J{(0.5,±A)}(θ, u)− Jξ∗(θ, u)

=0.5(|u1 + u2A|α + |u1 − u2A|α)−
m∑
1

wi(|u1 + u2xi|α + |u1 − u2xi|α)

=
m∑
1

wi(|u1 + u2A|α + |u1 − u2A|α − |u1 + u2xi|α − |u1 − u2xi|α)

=(1 +B2)−0.5α
m∑
1

wi(|B +A|α + |B −A|α − (|B + xi|α + |B − xi|α)).

Based on the expression above, for any ξ∗, to see if J{(0.5,±A)}(θ, u)−Jξ∗(θ, u) is non-negative

or not boils down to checking the sign of

m∑
1

wi(|B +A|α + |B −A|α − (|B + xi|α + |B − xi|α))

1The case for u = (1, 0) can be ignored, since Jξ(θ, (1, 0)) are the same for all ξ ∈ Ξ.
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for any 0 ≤ x1, .., xm ≤ A and B ∈ [0,∞).

The following shows that |B+A|α+ |B−A|α− (|B+xi|α+ |B−xi|α) is non-negative for all

possible cases defined by relationships between xi, A,B in location: xi ≤ A ≤ B, B ≤ xi ≤ A

and xi ≤ B ≤ A.

• Case 1, 0 ≤ xi ≤ A ≤ B,

|B+A|α+ |B−A|α−(|B+xi|α+ |B−xi|α) = (B+A)α+(B−A)α−(B+xi)
α−(B−xi)α

When α = 1,

(B +A) + (B −A)− (B + xi)− (B − xi) = 2B −B −B = 0.

When α > 1, function f1(x) = (B + x)α + (B − x)α is an increasing function, since its

first derivative is always positive when B > x,

∂f1(x)

∂x
= α[(B + x)α−1 − (B − x)α−1] > 0.

Then, for any xi, 0 ≤ xi ≤ A, f1(A)− f1(xi) ≥ 0, i.e.

(B +A)α + (B −A)α − (B + xi)
α − (B − xi)α ≥ 0, for all i = 1, ..,m.
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• Case 2: 0 ≤ B ≤ xi ≤ A

|B+A|α+ |B−A|α−(|B+xi|α+ |B−xi|α) = (B+A)α+(A−B)α−(B+xi)
α−(xi−B)α

When α = 1,

(B +A) + (A−B)− (B + xi)− (xi −B) = 2A− 2xi ≥ 0.

When α > 1, function f2(x) = (B + x)α + (x−B)α, 0 ≤ B < x, is an increasing function

since its first derivative is always positive,

∂f2(x)

∂x
= α[(B + x)α−1 + (x−B)α−1] > 0.

Since xi ≤ A, f2(A)− f2(xi) ≥ 0, for all i,

(B +A)α + (A−B)α − (B + xi)
α − (xi −B)α > 0, i = 1, ...,m.

• Case 3 When 0 ≤ xi ≤ B ≤ A,
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|B +A|α + |B −A|α − (|B + xi|α + |B − xi|α)

=(B +A)α + (A−B)α − (B + xi)
α − (B − xi)α

=(B +A)α − (B + xi)
α + (A−B)α − (B − xi)α. (3.9)

When α = 1, (B +A)− (B + xi) + (A−B)− (B − xi) = 2A− 2B ≥ 0.

When α > 1, if A−B ≥ B − xi ≥ 0, then (A−B)α− (B − xi)α ≥ 0, so (Equation 3.9) is

non-negative.

When α > 1, if 0 ≤ A − B < B − xi, then (A − B)α − (B − xi)α < 0. Let A − B =

dm, B − xi = di. Notice that this assumption means 0 ≤ dm < di. Set

B + xi = W, then B +A = xi + di +B + dm = W + di + dm.

Consider f3(x) = (x+ y)α − xα − yα, y > 0, x ≥ 0, f3(x) is an increasing function, as its

first derivative is positive,

f ′3(x) = α(x+ y)α−1 − αxα−1 > 0.

Also notice that f3(0) = 0, so f3(x) is a non-negative function.
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Therefore, due to w > 0, di > 0,

(W + di + dm)α − (W )α − (di + dm)α > 0 and (di + dm)α − dαi − dαm > 0.

Therefore, when 0 ≤ A−B < B − xi

(B +A)α − (B + xi)
α + (A−B)α − (B − xi)α

=(W + di + dm)α − (W )α + (dm)α − (di)
α

>(di + dm)α + (dm)α − (di)
α

>dαi + dαm + (dm)α − (di)
α

≥0.

In summary of all three cases, no matter where B is in relation to xi and A,

|B +A|α + |B −A|α − (|B + xi|α + |B − xi|α) ≥ 0 for all i=1,...,m.

Therefore, for any given u, and symmetric design ξ∗ = {(wi,−xi), (wi, xi), i = 1, ..,m},

J{(0.5,±A)}(θ, u) ≥ Jξ∗(θ, u).



104

Let ũ = argmin
u:‖u‖2=1

J(0.5,±A)(θ, u), then following from the above conclusion, for any ξ∗,

min
u:‖u‖2=1

J(0.5,±A)(θ, u) = J(0.5,±A)(θ, ũ) ≥ Jξ∗(θ, ũ) ≥ min
u:‖u‖2=1

Jξ∗(θ, ũ).

Consequently,

min
u:‖u‖2=1

J(0.5,±A)(θ, u) ≥ max
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ∗(θ, u).

3.6.3 Proof of Theorem 4

Recall that optimal design is defined as the design that maximizes the Hellinger information,

argmax
ξ∈Ξ

min
u:‖u‖2=1

Jξ(θ, u). Lemma 1 says that the optimal design has to be a symmetric design,

argmax
ξ∗∈Ξ∗

min
u:‖u‖2=1

Jξ(θ, u) = argmax
ξ∈Ξ

min
u:‖u‖2=1

Jξ(θ, u).

Lemma 2 says that the best design among symmetric designs is the symmetric two-point design

on the boundary, i.e.,

{(0.5,−A), (0.5, A)} = argmax
ξ∗∈Ξ∗

min
u:|u|=1

Jξ(θ, u).

Combining both lemmas,

{(0.5,−A), (0.5, A)} = argmax
ξ∈Ξ

min
u:|u|=1

Jξ(θ, u).
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3.6.4 Proof of Theorem 5

Lemma (2) says that the optimal design for quadratic model must be a symmetric design,

so here we only need to search among the collection of symmetric designs.

Given any symmetric design ξ∗ = {(w1,−x1), ...(wk,−xm), (w1, x1), ...(wm, xm)} and di-

rection vector u, the Hellinger information of ξ∗ in the direction of u = (u1, u2, u3) has the

expression of

Jξ∗(θ, u) =

m∑
1

wi(|u1 + u2xi + u3x
2
i |α + |u1 + u2(−xi) + u3x

2
i |α).

For simplicity, denote fu(x) = u1 + u2x+ u3x
2, then when α = 1 the above becomes

Jξ∗(θ, u) =
m∑
1

wi(|fu(xi)|+ |fu(−xi)|).

First, we want to show that there exist ri ∈ [0, 1] such that the following relation is true,

for all xi ∈ [−A,A],

2ri|fu(0)|+ (1− ri)|fu(A)|+ (1− ri)|fu(−A)| > |fu(xi)|+ |fu(−xi)|. (3.10)

Notice that |fu(x)| = |f−u(x)|, i.e. |u1 + u2x + u3x
2| = | − u1 − u2x − u3x

2|. Therefore,

for every given ū with ū3 < 0, i.e. when fū(x) is concave down, there is a u̇ = −ū such that

|fu̇(x)| = |fū(x)|, and fu̇(x) is convex. Thus, for simplicity, the following only shows that

(Equation 3.10) is true for fu(x) with u3 > 0, i.e., only when fu(x) is convex. There are seven
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cases based on the locations of x-intercepts of fu(x), and for each case, (Equation 3.10) can be

shown to be true. Here we only consider cases of u such that u3 6= 0, since the case for u3 = 0 is

equivalent to the linear regression case. In the rest of the proof, for simplicity, let f(x) ≡ fu(x).

By convexity, if f(xi) > 0 over [0, B] for some B > 0 and xi ∈ [−B,B], and then there is a

ri ∈ (0, 1), such that xi = ri0 + (1− ri)B and,

rif(0) + (1− ri)f(B) > f(xi) and rif(0) + (1− ri)f(−B) > f(−xi),

then

2ri|f(0)|+ (1− ri)|f(B)|+ (1− ri)|f(−B)| > |f(xi)|+ |f(−xi)|. (3.11)

Given direction vector u and design point location −xi, xi, with xi > 0 and the assumption

that u3 > 0, there are seven cases that describe the possible relationships between −xi, xi and

the left, right roots of f(x), xL < xR.

• Case 1 xi < xL, xR,

• Case 2 xL, xR < −xi

• Case 3: −xi ≤ xL, xR ≤ xi

• Case 4: xL ≤ −xi, xi ≤ xR

• Case 5: −xi ≤ xL ≤ xi ≤ xR

• Case 6: xL ≤ −xi ≤ xR ≤ xi

• Case 7: There are at most one root for f(x), i.e. f(x) > 0 for all x ∈ R
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The following goes through these cases and shows that (Equation 3.10) is true for each of

them. Notice that cases 1 and 2 are equivalent, and that cases 5 and case 6 are equivalent.

• In case 1 both roots are above xi, so there are two possible ways that this can happen

regarding the given value of A:

– 1.1) The left root xL is above A, i.e. A ≤ xL. This implies that f(xi) > 0 over

[−A,A], then by the argument of convexity in (Equation 3.11), then (Equation 3.10)

is true.

– 1.2) The left root xL is below A, i.e. xL < A.

Under 1.2), f(−xi), f(xi), f(−A) > 0, which implies that

|f(−xi)|+ |f(xi)| = 2u1 + 2u3x
2, and f(−A) = u1 − u2A+ u3A

2. (3.12)

If A is smaller than right root, A < xR, then f(A) < 0, so

|f(A)| = −u1−u2A−u3A
2 > 0, and −u2A > u1 +u3A

2. Then with (Equation 3.12),

|f(A)|+ |f(−A)| = −2u2A > 2u1 + 2u3A
2 > 2u1 + 2u3x

2
i = |f(−xi)|+ |f(xi)|.

If A is larger than right root, A > xR, then f(A) > 0, so

|f(A)| = u1 + u2A+ u3A
2 > 0. Then with (Equation 3.12),

|f(A)|+ |f(−A)| = 2u1 + 2u3A
2 > 2u1 + 2u3x

2
i = |f(−xi)|+ |f(xi)|.
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Then for 1.2) one can find a ratio rA such that rA(|f(A)|+f(−A)) > f(xi)+f(−xi),

let ri = 1− rA, then (Equation 3.10) is true, i.e.

2ri|f(0)|+ (1− ri)|f(A)|+ (1− ri)|f(−A)| > |f(xi)|+ |f(−xi)|.

• Case 3: −xi ≤ xL, xR ≤ xi, is the case of both roots of f(x) are in [−xi, xi], then f(x)

would be positive and increasing over [xi, A], while positive and decreasing over [−A,−xi],

i.e.

f(A) > f(xi) > 0, f(−A) > f(−xi) > 0,

Let ri = 1− rA, then, under α = 1, (Equation 3.10) is true, i.e.,

2ri|f(0)|+ (1− ri)|f(A)|+ (1− ri)|f(−A)| > |f(xi)|+ |f(−xi)|.

• Case 4: xL ≤ −xi, xi ≤ xR. In this case, f(x) ≤ 0 over [−xi, xi], which means |f(x)| =

−f(x) = −u1 − u2x− u3x
2 is concave over [−xi, xi]. Thus, |f(0)| > 1

2 |f(xi)|+ 1
2 |f(−xi)|,

consequently, (Equation 3.10) holds.

• Case 5: −xi ≤ xL ≤ xi ≤ xR and case 6: xL ≤ −xi ≤ xR ≤ xi.

Since case 6 is the symmetrical to case 5, here we only discuss case 5.

First, the assumption of case 5, −xi ≤ xL ≤ xi ≤ xR, implies that −u22u3
= xL+xR

2 >

−xi+xi
2 = 0, i.e. u2 < 0.

Also notice that −xi ≤ xL implies that 0 < f(−xi) < f(−A) and
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|f(−A)| = u1 − u2A+ u3A
2, |f(−xi)| = u1 − u2xi + u3x

2
i (3.13)

Based on the set up of case 5, and the possible relations of given A and direction u, the

expression of f(xi) and f(A) depends on the following two sub-cases,

– The right boundary A is below right intercept, i.e. A < xR, i.e. f(xi) < f(A) < 0,

then

|f(A)| = −f(xi) = −u1 − u2A− u3A
2, and |f(xi)| = −f(xi) = −u1 − u2xi − u3x

2
i .

Therefore, with the fact that −u2 > 0, A ≥ xi, and (Equation 3.13), we have

|f(−A)|+ |f(A)| − |f(−xi)| − |f(xi)|

=− 2u2A+ 2u2xi

=− 2u2(A− xi)

≥0.

– The right boundary A is above right intercept, i.e. xR < A which implies that

f(xi) < 0 < f(A),

|f(A)| = u1 + u2A+ u3A
2, and |f(xi)| = −f(xi) = −u1 − u2xi − u3x

2
i .
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Therefore, with −u2 > 0, A ≥ xi, and (Equation 3.13)

|f(−A)|+ |f(A)| − |f(−xi)| − |f(xi)|

=2u1 + 2u3A
2 + 2u2xi

=2(u1 + u2xi + u3A
2)

=2(u1 + u2A+ u3A
2)− u2(A− xi)

=2|f(A)| − u2(A− xi)

≥0.

Combining these two sub-cases, we can conclude that under case 5,

|f(−A)|+ |f(A)| ≥ |f(−xi)|+ |f(xi)|.

Then one can find a ratio rA such that rA(|f(A)|+f(−A)) > f(xi)+f(−xi), let ri = 1−rA,

then (Equation 3.10) is true

2ri|f(0)|+ (1− ri)|f(A)|+ (1− ri)|f(−A)| > |f(xi)|+ |f(−xi)|.

• Case 7: There is at most one root, which means, f(x) > 0 for all x ∈ [−A,A]. Thus, by

argument in (Equation 3.11), implies (Equation 3.10).
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In summary of these seven cases, (Equation 3.10) holds. For a given wi, after multiplying

wi on both side of the inequality of (Equation 3.10), we have

2wiri|f(0)|+ wi(1− ri)|f(A)|+ wi(1− ri)|f(−A)| ≥ wi(|f(xi)|+ |f(−xi)|). (3.14)

Let w =
∑m

i=1(1 − ri)wi, by the fact that
∑m

i=1wi = 0.5, 1 − 2w =
∑m

i=1 2wiri. We can

denote a three point symmetric design based on the left hand side of (Equation 3.14) as

ξw = {(w,−A), (1− 2w, 0), (w,A)}, 0 ≤ w ≤ 0.5.

Hellinger information based on design ξw in the direction of a given u has the expression

Jξw(θ, u) = (1− 2w)|f(0)|+ w|f(A)|+ w|f(−A)|.

Thus, based on (Equation 3.14), for any u, for any symmetric design ξ∗, there is a w, such that

Jξw(θ, u) ≥ Jξ∗(θ, u).

By the exact same argument and Lemma 1, the conclusion of this theorem holds.



CHAPTER 4

SUMMARY AND DISCUSSION

This project seeks to address the problem that Fisher information does not exist for non-

regular models, which implies that, in the context of optimal design, the object of optimization

is absent. Our proposed approach introduces and defines an alternative measure of informa-

tion, namely, Hellinger information, to be used as the object of optimization in optimal design

for nonregular models. The theoretical foundation for this approach is based on the Hellinger

information inequality presented in Theorem 3, which shows that, when Hellinger information

exists, it is proportional to a lower bound of risk for any estimators. Furthermore, the mini-

mum eigenvalue of Fisher information can be viewed as a special case of Hellinger information

under regularity conditions. Based on our proposed approach using Hellinger information, we

derived optimal designs for some nonregular models over different simulations, with different

parameters. The results of these simulations support that our approach is valid in optimal

design problems for nonregular models.

This thesis is a first attempt at developing a general approach to optimal design of exper-

iment when regularity conditions do not apply. A number of questions remain that cannot be

covered sufficiently in this text. Below are several directions for further work based on this

thesis.
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• In Chapter 3, optimal design results were presented for polynomial nonregular regressions

up to degree two. One line of further research would be to explore how to obtain optimal

design for different functions of g(θ; (x)) in the model (Equation 3.1).

For example, given a nonregular regression model with g(θ;x) = eθ
>x, and exponential

distributed error, the optimal design based on Definition 10, would be

ξopt. = argmax
ξ

min
u:‖u‖2=1

m∑
i=1

wi
∣∣eθ>xi d∑

j=1

ujxi,j |.

Notice that, because the parameter of interest appears in the expression above, one can

use the local optimal design approach for this problem.

• More work is needed in order to determine what kind of estimator is efficient with re-

spect to the Hellinger information inequality presented in Chapter 2. A more rigorous

understanding of the Hellinger information inequality and its relationship to the available

estimators would be useful.

• As discussed in Chapter 2, Section 2.4, Fisher information also plays the role of being a

non-informative prior in Bayesian models. While (Shemyakin, 2014) considered Hellinger

information a non-informative prior, he did not adequately justify this use of Hellinger

information. (Shemyakin, 2014) only pointed out that, for models with one-dimensional

parameter, Fisher information is a special case of Hellinger information. It would therefore

be worthwhile to investigate whether and how Hellinger information, with or without

direction, can be used as a non-informative prior in Bayesian inference.
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