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SUMMARY 

 The purpose of this study was to investigate how different modes of communication used 

in a 9
th

 grade physics class during an instructional unit on waves benefit and/or limit students’ 

conceptual development and engagement with each other in the context of particular learning 

activities. I was both the teacher and active participant in the community and multimodal 

discourse that I was studying, and the researcher who analyzed this multimodal discourse. I 

examined one of my ninth grade honors physics classes throughout a 12-day instructional unit on 

waves during the second semester of a school year, espousing a sociocultural perspective of 

learning. In this perspective, engagement with scientific ideas in a class is mediated by 

multimodal communicative acts between teacher and students and among students themselves. 

Moreover, consideration for all three metafunctions of any communicate act–ideational, 

interpersonal, and textual–is imperative for supporting conceptual development..  

 Using ethnographic and grounded theory techniques, I examined how my students and I 

called upon different modalities–our interactions within and about modes, the semiotic features 

and grammar of a mode, and the potential affordances, limitations, and challenges that modalities 

offered to student learning and engagement. Data were collected via videotaping all 12 50-

minute lessons on waves. In addition, immediately after each lesson, I wrote teacher-researcher 

reflections on noteworthy events, as well as my thoughts, comments, observations from that 

day’s class, especially with regards to the goal of this study. After instruction was completed, I 

reviewed all of the video and reflection data, and constructed sketches–outlines describing the 

events that occurred, as well as noting interpretative comments regarding those events. My 

interpretations revealed general trends and themes over the course of the unit as well as more 

specific critical moments in the multimodal discourse that warranted a closer and more delicate  



xiii 

 

SUMMARY (cont.) 

analysis. This led to new ways of looking at the data, combining and recombining interpretations 

and themes. 

Two modes emerged as prevalent: gesturing and diagramming. Gesturing, and in 

particular iconic hand gestures, was a prominent and consistent mode for meaning making 

among class participants and its meaning evolved over time as my students and I used this mode. 

There were two primary iconic gestures used in my classroom: an undulating hand gesture 

(UHG) and a back and forth hand gesture (BFG). These hand gestures served as teaching and 

learning tools as I helped students construct meaning of wave characteristics such as amplitude, 

period, and frequency, as well as the sinusoidal propagation of waves.  

As gestures evolved in both form and function throughout the unit, so did students’ 

conceptual understandings. The UHG embodied students’ drawings on the first day of the unit, 

and developed over time particularly as students engaged with the sinusoidal shape of waveform 

graphs. The BFG stemmed from students’ experience producing waves in a slinky during their 

experiments. As students used the BFG in relation to waveform graphs, which had a sinusoidal 

shape, the BFG acquired an undulating characteristic as students shifted from simply shaking 

their fist back and forth to tracing, in air, the sinusoidal shape of a graph’s curve. This 

combination of the BFG with the UHG mediated students’ linking the wavy nature of the graph 

depicting wave propagation (in UHG) with the back and forth motion of the wave source and the 

medium’s particles (in BFG).  

In addition to gesturing, the development of diagrams as a prominent modality for 

meaning making took place as my students and I continuously diagrammed across activities. The 

specific forms of diagrams used and the ways in which they functioned to provide my students 
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opportunities for meaning making constituted the diagrammatical grammar that my class 

explored. There were several critical characteristics of the diagrammatical grammar that my 

students and I co-constructed over the instructional unit, including: iconic depictions of artifacts, 

selection of critical instances to capture, artifact positioning and manipulation, representation of 

measured values or variables using arrows and brackets, and textual labels or captions. When 

diagramming a context, students had to select an instance or instances to depict. Students’ ability 

to choose these instances reflected an understanding of how to analyze and simplify an event in 

order to explain it in more detail. The act of diagramming created epistemological affordances 

for students to analyze particular instances, and consider details at those particular instances in 

which they might not have otherwise engaged with and/or fully represented. Using diagrams, my 

students constructed an individual and collective understanding of not only what aspects of a 

phenomenon or event were important to depict, but also how to utilize semiotic resources to 

represent them in diagrams. Thus, diagrams influenced the conceptual development, or ideational 

engagement, of my students, in addition to offering me a window into their understanding at a 

particular instant. 

 In addition to the salience of gesturing and diagramming, the study offered 

understandings regarding the evolution of two major thematic patterns across various modes–

understanding and measuring wave characteristics; and learning about relationships between 

various wave characteristics from experimental data. Regarding wave characteristics, 

transduction and combination of modalities offered new and various opportunities for meaning 

making, and students’ conceptual understanding shaped students’ engagement with different 

modalities. Transduction between modes helped students develop concepts, such as the period of  
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a wave. The idea began as a brisk BFG as a referent to wave production, but functioned as a 

multimodal scaffold to students’ developing the concept of period within the diagrammatical and 

graphical modes. The sequence of transduction among modes was also integral to the teaching 

and learning of wave characteristics. When I transformed a photograph of a wave in a slinky into 

a graph by drawing axes, and thus creating a combination of three modes–photograph, diagram, 

and graph–various meanings became possible by the co-existence of the various modes.  

Students’ choice of which modality or modalities to engage with, how to utilize the 

grammar of those modalities, and to transduce between modalities, were all integral to their 

understanding of relationships among wave characteristics, as well as how to derive them from 

experimental data. Students engaged with numerical data arranged into tables and plotted them on 

graphs via computer software and free-hand sketches in order to determine relationships among 

wave characteristics. The units of quantitative measurements in a table mediated a link between 

numerical values and other modalities such as diagrams and graphs that may or may not have 

quantitative features. Moreover, examining data while being collected, as opposed to at end of 

data collection, afforded students more meaning-making opportunities. As students interpreted 

their data during data collection, they were able to identify possible patterns and infer 

expectations, and then test their expectations as they continued to collect data.  

There was also a significant interplay between tables and graphs as students extrapolated 

relationships from data sets. Tables afforded students the opportunity to view data as individual 

points, and calculate a value for error that could also be used to differentiate between covariant 

and non-covariant trends in their data. However, tables did not easily allow students to identify the 

particular covariant relationship, and could not provide quantitative information about the  
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relationship, such as regression values. A key to students’ success in understanding relationships 

among wave characteristics was the sequence of their transduction between modes. Students who 

first engaged with tables, which emphasized data as individual points, avoided a potential point 

of confusion that arose from computer-generated graphs, which reduced the level of inference 

that the tables afforded. The computer-generated graph represented the empirical relationship 

within a graphical mode that allowed students to create a free-hand graph with little engagement 

with the underlying relationship. In contrast, a free-hand graph of the empirical relationship 

represented in a table forced students to first infer its shape (or relationship) in light of their 

analysis of the individual values in the table before graphing it using the computer software.  

 In general, as students developed conceptual understandings using different modalities, 

they also developed their abilities to make meaning and articulate ideas using those modalities. 

Students’ conceptions of the grammar (form and function) of a particular mode were co-

developed together with both the concepts and ideas, and the grammars of other modes. Each 

mode did not develop meaning in isolation from each other; instead, the intertwining, 

transduction, combination, and hybridization of modes offered powerful opportunities for 

meaning making. As students appropriated, shared and articulated multiple ways for multimodal 

communication of ideas related to these concepts, they became better able to explicate and 

developed multimodal understandings of those concepts. Ideational development was achieved 

interpersonally through multiple modalities, each of which carried syntax and semantics that 

constituted its grammar. Just as ideas change through discursive interactions and practices, so do 

the interpersonal and grammatical practices used to negotiate and shape them.  
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 As students transduced among modalities, each mode afforded unique meaning-making 

opportunities that contributed to the collective meaning and the development of the idea. 

However, the sequence of students’ transduction represented a learned practice that they 

developed discursively throughout the unit. Moreover, they demonstrated an understanding by 

choosing an appropriate modality for a particular situation, and how to build upon the meanings 

developed from prior modalities. The students in my class converged upon a particular order of 

transduction from data tables to graphs that enabled them to derive empirical relationships that 

agreed with the scientifically accepted ones, and more specifically to successfully differentiate 

between covariant and non-covariant trends. Students who engaged with data tables before 

generating graphs using a computer program were able to engage with graphs in more 

meaningful ways. 

Students’ engagement with one mode influenced the ways in which they called upon and 

utilized other modes, and in some cases, modes combined while retaining their individual 

grammars (combination), or blended together into new modes with their own grammar 

(hybridization). The meaning associated with undulating hand gestures and back and forth hand 

gestures transformed as they were synthesized into a single gesture, which afforded students the 

ability to produce iconic gestures of non-observable propagation of waves. The superposition of 

multiple modes allowed for a diagram I drew to better connect to a reality captured by a 

photograph, while abbreviating its myriad details to only those I considered important and 

depicted in my diagram. My diagram’s characteristics also resembled graphical features, which 

further transduced the diagram-photo combination to a waveform graph. The superposition and 

combination of the modes allowed students to consider waveform graphs with which they were  
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SUMMARY (cont.) 

previously unfamiliar, in light of the other modes that were more familiar to them. This promoted 

the retention and utilization of those modes since each mode still existed while a new mode was 

superimposed onto it. Moreover, Free-hand graphs, which were a prevalent modality used by 

students, were a hybrid of diagrams and graphs. When a diagram of a graph was constructed, 

graphical features such as axes and best-fit lines also became diagrammatical characteristics. A 

free-hand graph’s characteristics combined the brevity of a diagram with the graphical concept of 

prominence of the relationship between independent and dependent variables. 

The findings of this study suggest several implications for practice. Availability and 

access to multimodality is critical to creating a multimodal discourse in the classroom. 

Omnipresent multimodal spaces in which students may call upon whichever mode they prefer or 

deem necessary is of particular importance. In addition to available multimodal spaces, students 

need to develop the grammar of each mode in order to gain confidence and strengthen their 

initiative to both call upon and engage with modes effectively, which will in turn promote those 

modes as prominent and effective ways of constructing and negotiating meaning. 

Thus, a teacher should aim at promoting students’ use of various modes by continually 

providing students with multimodal spaces and by modeling for them the grammars of 

modalities. It is also important for students to model grammatical practices for each other. 

During any form of communication, students are demonstrating grammatical aspects of the 

mode(s) they use. These aspects may already exist in the class’s collective grammar for that 

mode, or may be new ones created by a student based on the needs or motivations for 

communicating in that mode. 

 



xix 

 

SUMMARY (cont.) 

Since transduction among modes is critical to teaching and learning via multimodality, a 

teacher’s careful planning and consideration of the sequence of transduction among modes is 

especially important. Teachers need to be particularly adept in recognizing, and reversing, 

student inability to transduce between modes. Such an inability may be due to a compromised 

understanding of an idea, or lack of knowledge of the grammars of the modalities to be 

transduced, or a combination of the two.  

Students’ multimodal engagement with science ideas and the role that grammars of 

modes play in constructing meaning represent potentially fruitful areas for future research. There 

is little research in science education that explores the development of both teaching and learning 

via multimodality; that is, how both teacher and students multimodally develop their ideas 

together. The practices of transformation and transduction, and combination and hybridization of 

modalities, are particular areas in need of further research. The many possible ways in which 

modalities blend together into combinations or new hybrid modes during teaching and learning, 

and the circumstances and motivations that lead to such combinations are largely unknown. 

Furthermore, teacher research, which was the methodological approach of this study, can provide 

unique opportunities and perspectives to important areas of research in science education, 

including but not limited to multimodality.      
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I. INRODUCTION AND RESEARCH QUESTION 

The purpose of this study is to investigate how different modes of communication used in 

a physics class during an instructional unit on waves might benefit or limit students’ conceptual 

development and engagement with each other in the context of particular learning activities. 

Different modalities dominate communication and experiences in a classroom at different 

moments. Other times multiple modalities are used simultaneously; however, in some instances 

one modality may be more pronounced than another depending on the nature of the interactions 

and contexts specific to that situation. The choice of which modalities are most appropriate for 

the teaching and learning of subject matter at particular instances is determined and carried out 

by the participants (teacher and students) who are working within the affordances and constrains 

of that classroom.  

Given that this study centers on one of my own classes, considering both my students and 

myself as participants in the study allows me to examine the multimodal choices students make 

throughout the unit in the context of the choices I, as the teacher, make in teaching within and 

across different modalities. Student choices may be a result of my providing them opportunities 

to interact within and across different modalities by prompting or requiring students to utilize 

various modes as part of the activity’s task, or by simply allowing them access to multiple modes 

and encouraging them to use various modes as needed. Whether prompted or not, students use 

multiple modalities during group activities and experiments to express, negotiate, and construct 

meaning collectively. In this study, I examine how different modalities and the interplay among 

modalities influence and are influenced by individual and collective learning of waves and 

engagement in multimodal activities.  
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According to Kress and van Leeuwen (2001), several modes are usually enacted together 

that shape the multimodality of discourse. I studied modalities in my classroom as they came 

together to reinforce one another, but also explored modalities (e.g., hand gestures and wavy-line 

diagrams) that became more pronounced in the classroom discourse at various instances, and 

accrued meaning collectively by the students through the unit. Communication and interactions 

in my classroom involve various communicative modes besides oral and written language 

including gestures, pictures, diagrams, computer-generated graphs, data tables, numerical 

measurements and mathematical models, and physical artifacts. These different modalities may 

be present alone, together, or in place of one another. Different modalities dominated at different 

moments, and when viewed as a whole, multimodal discourse ebbed and flowed in my 

classroom. I studied this multimodal discourse to shed light on how different modalities might 

benefit or challenge students’ conceptual development of waves and their engagement with each 

other in a particular context.  

Conceptual development involves engagement with scientific ideas mediated by 

communicative acts. Halliday (1978) asserted that there are three metafunctions in any 

communicative act–ideational, textual, and interpersonal. Discourse participants communicate to 

share ideas, make meaning, and share these meanings. What ideas are developed, how they are 

linked to each other, and in what ways they constitute networks of meanings, all define the 

ideational function of communication. In this study, I explored the ideational function within 

various modalities and the interplay between ideas and grammatical aspects of modalities (i.e., 

syntactical and semantic–the semiotic system of rules, norms, organization, structures, and 

conventions for how meaning is constructed which define the textual function). Within each 

mode, ideas (ideational function) and grammar for engaging with a particular mode (textual 
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function) are developed and shared by the participants, thus, I studied how meanings are 

developed and communicated among people (interpersonal function).  I compared and 

contrasted how students and teacher used different modes to construct meanings within a unit on 

waves, using these three metafunctions as a lens, and the benefits and limitations of engagement 

with different modalities while engaging with each other.  

Many studies utilize multimodality not as an object of study, but as a tool or 

methodological construct to supplement spoken and written language, such as using pictures to 

better access student conceptions (Smagorinsky, 2001, Tucker-Raymond, et al., 2007), or body 

positioning and spatial orientations to better understand discursive practices in small laboratory 

groups (Kelly et al., 2001), or gesturing to better capture scientific language acquisition (Roth, 

2005). How might different modalities promote or limit concept development and student 

engagement? Who is using the different modalities, and how are they being used? What is the 

grammar or rules of engagement governing the use of different modalities, and how are they 

developed? Each communicative mode can contribute meaning to an experience or interaction, 

and depending on the experience or interaction, one modality may be more powerful than 

another in articulating an idea for a particular student within a class. Exploring multimodality for 

its own sake in order to understand how it shapes and is shaped by engagement with ideas, 

people, and contexts may be a useful addition to the literature and have implications for further 

research and practice. As our society marches increasingly towards multimedia, visualizations, 

simulations, and technology, so do our classrooms and schools. Written language is being 

enhanced, and in some cases replaced by other semiotic modes, and developing our 

understanding of the interplay of these semiotic modes in the classroom has the potential for 

significant benefits to teaching and learning. 
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II. THEORETICAL FRAMEWORK 

Sociocultural Perspectives on Science Classroom Learning 

Sociocultural perspectives on science classroom learning largely build on the work of 

Lev Vygotsky (1986), who considered the interdependence of social and cultural contexts to an 

individual’s construction of knowledge mediated by language as a semiotic system. Espousing a 

sociocultural framework, I consider the science classroom learning to be a social endeavor in 

which teacher and students make meaning together through cultural and discursive practices. 

Moreover, I consider that communicative acts in a classroom are not limited to spoken or written 

language, but include any semiotic resources that are used for meaning making (Kress & van 

Leeuwen, 2001; Lemke, 1990; MODE, 2012; Roth, 2005). Thus, classroom science learning is an 

enculturation into the semiotic and cultural practices in which students participate as members of 

a classroom community (Gee, 1996; Lave & Wenger, 1991; Moje, Collazo, Carrillo, & Marx, 

2001; Hicks, 1995).  

From a sociocultural perspective, student participation within a community of learners 

dialectically shapes the meaning making process, thus making student learning highly 

situational. As students learn how to engage appropriately within the classroom community, they 

transition from legitimate peripheral participation to full participation in the community of 

learners (Lave & Wenger, 1991). Their participation changes from low-risk peripheral 

engagements common to novices or newcomers to a culture, to active and full participation as 

veteran members of a culture that comes with their appropriation of the culture’s participation 

framework over time. As students appropriate discursive patterns, practices, and norms that 

regulate and govern their classroom’s interactions, they also make meaning of ideas and 

concepts. Students co-construct shared knowledge and practices with their peers and teacher as 
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they use and transform available semiotic resources as they communicate within and across 

modalities. During instruction, the spontaneous concepts that students develop as they 

experience the world in their everyday life become organized, expanded, and linked to one 

another as scientific concepts are explored (Vygotsky, 1986). At the same time, the scientific 

concepts that students study become linked to referents and gain meaning as spontaneous 

concepts are evoked. Vygotsky claimed that the relationship between spontaneous concepts and 

scientific concepts is achieved through the use of semiotic tools available to learners. Although 

Vygotsky focused primarily on language (spoken words and written text) as a mediating tool for 

concept development, non-linguistic tools, in addition to language, that teacher and students may 

use in a classroom are important for learning. .    

Learning science involves understanding the world around us, including objects, 

phenomena, and processes, using semiotic resources and representations, each of which have 

particular meanings. Sociocultural theory posits that a science classroom community negotiates 

and constructs shared understandings about what is considered to be science, how science is 

done, who can access it, and what and how cultural tools are available and used. As students 

learn in a science classroom, they are socialized into a symbolic world through discursive 

practices in a form of a cultural apprenticeship (Driver, Asoko, Leach, Mortimer, & Scott, 1994). 

The semiotic resources that are used are determined by both the culture of science and the culture 

of schooling. Each classroom develops particular norms, values, and expectations that govern its 

culture and it is the science classroom culture that determines what it means to learn and do 

science (Lemke, 1990).  Since every culture has epistemologies and ideologies that are shared 

among its members (Gee, 1996), learning in a science classroom involves bridging 

epistemologies and ideologies that students bring with them from prior experiences with those of 
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the teacher and those of the science field (Varelas, Becker, Luster, & Wenzel, 2002).  Members 

of a classroom community gradually converge toward a shared understanding as they interact 

with one another, creating a dynamic and dialogic relationship between cultural ideologies and 

discursive practices (Roth, 2005). Throughout this process, students’ individual and collective 

meanings, beliefs, and practices evolve and construct the particular way of doing science in that 

classroom community.  

Classroom science learning takes place as students and teacher communicate engaging 

with ideas, each other, and contexts over time. Halliday (1978) suggested three metafunctions of 

communication: engagement with ideas, construction of social relationships, and creation of 

coherence relative to the semiotic resources involved (e.g., language). These three metafunctions 

act simultaneously and contribute to the meaning expressed by communicative acts within a 

culture. Communicative acts within classroom discourse can, therefore, be viewed, and analyzed, 

as expressing ideas, relating participants socially, and contextualizing the norms for utilizing 

particular semiotic resources as part of their interactions. The ways in which these metafunctions 

are manifested are shaped by the communicative acts over time. Thus, developing 

communicative practices within a culture is a situated and highly contextualized process. A 

sociocultural lens on learning does not foreground the thinking of the individual as supported by 

social interactions and engagement with others and the environment, which is more consistent 

with a social constructivist perspective. Instead, a sociocultural perspective foregrounds ways in 

which social interactions, semiotic resources used, and one’s social, physical, and cultural 

environment shape one’s understanding or development of ideas. For example, adopting a 

sociocultural perspective, Roth (2005) studied how the collective language of a group converged 

from a brittle state to a more scientifically accurate register. Roth did not consider how an 
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individual student’s cognition drove the development of a collective language for the group, but 

instead considered the shared understandings of individuals that emerged within the discourse, as 

well as how the discourse evolved, as evidence of the group’s collective understanding. As 

students develop discursive practices, which are influenced by their own epistemologies and 

ideologies, they also define what science is for their particular group (Kelly & Crawford, 1997). 

They develop shared scientific ideas and concepts, belief systems, language and other semiotic 

resources, and cultural practices that define what science is and what doing science means in 

their classroom.   

Classroom Discourse 

Classroom discourse analysis offers a glimpse into the everyday talk and interactions of 

students within and across activities in the classroom (Cazden, 2001). From a sociocultural 

perspective, teaching and learning are complex, and highly contextual and situational activities 

dialectically intertwined in a dynamic relationship. Discourse analysis is used to examine the 

canvas in which teaching and learning are socially constructed.   

There is a duality involved in discourse; discourse is both a text and a socially situated, 

interactional process for meaning making (Hicks, 1995). Thus, discourse analysis involves 

attention to both the text–language or any semiotic system used to communicate ideas– and the 

meanings negotiated by the discourse participants. In this way, analysis of discourse allows us to 

investigate the construction of social meaning within culturally situated language and practices. 

It is important to consider how the participants in a group take on a shared language as they 

make meaning together. Discourses are more than dialogue, communicative acts, and interactive 

patterns within a community. Discourses also embody ideologies of the participants (Gee, 1996). 

The meanings constructed during communicative acts and interactions are dependent upon 
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beliefs, values, norms, behaviors, actions, and feelings, which taken together define what Gee 

refers to as Discourse (with capital “D”).  “Big D” Discourse represents a contextualized, 

embellished “little d” discourse, and, thus, Discourse analysis involves discourse analysis in 

relation to analysis of contextual elements that shape the discourse.  

Furthermore, any text reflects past sociocultural contexts; that is, the utterances within a 

discourse are echoes of past discourses in which the speaker was previously engaged (Bakhtin, 

1986). In the case of a classroom, students never come to a new class and new discourse with a 

clean slate; they always bring with them previous knowledge, ideologies, epistemologies, 

practices, and expectations based on their prior experiences. However, each classroom is a site of 

teaching and learning with its own culture, its own beliefs, customs, norms, habits of mind, and 

discursive practices. Discourse analysis can reveal a snapshot of individual and shared 

understandings of ideas and a culture’s different ways of engaging with ideas and one another 

within a particular context at the time of the interactions. It can also shed light on how ideas, as a 

collective effort of individuals, evolve when discourse is monitored over time. Discourse 

analysis offers researchers insight into what an individual student knows, what students know 

collectively, how meaning is negotiated and socially constructed, what cultural practices exist, 

and how past experiences manifest in current contexts. It allows researchers to better understand 

the many complexities of meaning making in the classroom. 

Classroom discourse consists of the various communicative acts that are enacted during 

dialogue and interactions within a classroom community. Each classroom has its own semiotic 

systems that are shared and developed by the students and teacher as they engage with one 

another. Traditionally, spoken and written texts have been considered primary methods of 

communication among people, especially in classrooms. However, there have been calls to 
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broaden the traditional conception of language to include any communicative act or semiotic 

domain (Hicks, 1995), including non-linguistic forms of interaction and communication (Wells, 

2001), and multiple modes or modalities (Jaipal, 2010; Kress & van Leeuwen, 2001, Kress et al., 

2006, Pozzer-Ardenghi & Roth, 2007). Non-linguistic forms of interaction include gestures, 

gaze, intonation, spatial orientation, diagrams, pictures, images, sketches, 3D models and 

artifacts, and role-playing. Broadening the definition of language and text in this way allows for 

consideration of any semiotic systems used by discourse participants to construct meaning 

together. “Meaning does not reside solely in a written text; rather, it transpires across symbolic 

domains” (Hicks, 1995, p. 83).  Thus, considering various forms of classroom communication 

beyond oral and written texts enriches classroom discourse and its affordances for meaning 

making (Kress, 1997; Kress et al., 2006; Lemke, 1998; Prain & Waldrip, 2006). As constructs 

are used by the teacher and students within and across semiotic systems, shared understandings 

and cultural practices emerge. Classrooms develop over time their own signatures and styles for 

what it means to talk and do science, how negotiation of ideas and meaning making takes place, 

who has access to science and who does not, and how the discourse is constructed and evolves 

over time.   

Classroom discourse is affected by the activity in which participants engage. The activity 

influences and limits actions, behaviors, objects, material artifacts, and spatial orientations with 

which students make meaning both individually and collectively (Roth, 2005). As classroom 

participants interact in the context of an activity, meaning is developed and communicated. 

Language (considered here in its broad sense to include linguistic and non-linguistic aspects) 

utilized in these social interactions should not be merely thought of as a tool for the expression of 

ideas. There is a dialectical relationship between meanings and means for communication of 
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these meanings.  In a science classroom, as students’ scientific language develops, students do 

not merely develop a better means for expressing their understanding. Instead, as their language 

grows, so does their understanding, and as their understanding grows so does the language they 

can use to articulate it. This is one of the essential elements of Vygotsky’s (1986) theory, linking 

the development of thought and language (or thinking and speech). As we express our ideas 

through language and other semiotic systems, the ideas are fleshed out, articulated, organized, 

modified, clarified, and corrected, which leads to further development of language. This process 

shapes the ideas being expressed and developed. Understanding what semiotic systems are called 

upon during meaning-making, how and under what circumstances they are enacted, and why a 

particular system is utilized over another may offer insights into the potential benefits and 

limitations of various semiotic systems to students’ learning of science.   

In a science classroom, language development and concept development are mutually 

constitutive. As students’ understanding of scientific ideas improves, so does their ability to 

accurately talk about those ideas (Lemke, 1990; Roth, 2005). However, developing students’ 

language and developing students’ understandings in the science classroom are quite complex 

processes. Roth (2005) contended that during convergence towards a stabilized language, 

students’ talk would appear to align with accurate scientific language, but “should not be 

overinterpreted, as the language is still brittle and needs to accrue to their already existing 

familiar world” (p. 78-79). Thus, students’ brittle language should be gradually fostered and 

stabilized through participation in classroom discourse–using and interpreting language, and 

receiving feedback from teacher and peers. Stabilization and understanding are reached as 

students engage in discourse over various lessons and communicative modes, leading to 

alignment with a canonical scientific view (Roth, 2005; Prain & Waldrip, 2006). This 
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perspective on scientific language convergence and stabilization exemplifies the complex nature 

of classroom communication and interactions.  

Classroom discourse is also affected by the activity structure. Doing an experiment, 

listening to a lecture, discussing homework are all examples of activity structures, each with its 

own discourse genre. Research into classroom discourse has revealed different genres that can be 

readily observed, such as the traditional IRE/IRF (Sinclair & Coulthard, 1975; Mehan, 1979), 

triadic dialogue (Lemke, 1990), narrative discourse (Hicks, 1995), and nontraditional 

heterogeneous or hybrid discourse practices (Kamberelis, 2001). Examining discourse genres can 

provide a variety of insights into issues, such as what conducting an experiment looks and 

sounds like for a particular group in this classroom, and what procedures, interactions, or 

organization frameworks are expected and enacted by participants in a particular genre. Activity 

structures and discourse genres are intimately connected (Hicks, 1995). In fact, for Lemke (1990) 

they are identical.  

According to Lemke (1990) discourse genres, or activity structures, are organizational 

patterns of interactions and goings-on of a lesson. For example, the traditional IRE/F (Initiation-

Response-Evaluation/Follow-up) genre of classroom discourse is often the customary activity 

structure of teacher-led instruction. The teacher asks the class a question, a student responds, and 

the teacher either publically evaluates or follows up with another question. Discourse genres may 

serve several functions for the teacher (Wells, 1993; Lemke 1990). Lemke (1990) discussed the 

dual function of triadic dialogue (or IRE) to both teach content and maintain control. The teacher 

is the authority controlling what questions are asked and who will speak, and evaluating whether 

a student’s response is correct or not. In this regard, the teacher is both a knowledgeable 

authority of content, and in authority of classroom procedures, structures, and activities (Oyler, 
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1996). However, a teacher may intend to enact an IRE discourse, but allow an alternative genre 

to emerge spontaneously. For instance, a student raising his or her hand as a bid to challenge the 

teacher’s point of view might not align with the teacher’s intended sequence, and forces the 

teacher to either dispel it and go back to the intended structure or to proceed into a different 

discourse genre where the student and teacher now share authority (Lemke, 1990; Oyler, 1996), 

which Oyler refers to as a breech. Such alternate or competing genres may create tensions within 

a classroom community. The lack of shared understanding of how to participate, interact, and 

communicate might be confusing. However, such tensions can be avoided by structuring 

activities to allow for such competing genres to emerge as expected and intentional forms of 

participation. Allowing and encouraging students to ask questions or argue amongst themselves 

may create interactional spaces for students to engage in science or any other subject matter. 

Spontaneous breeches in discourse can provide powerful learning opportunities, but also risk loss 

of coherent structure in addition to loss of teacher control of the discourse, which may or may 

not be a desirable outcome (Kamberelis, 2001; Oyler, 1996).   

Kamberelis (2001) refers to discourses that consist of such jumps to alternative genres as 

hybrid discourses, which he described as emergent and self-organizing. The teacher can 

intentionally and strategically create these spaces for students, but they are ultimately 

“contingent [upon the] actions and reactions by the individuals, social, and material agents and 

agencies” (p. 89). These emergent discourse genres can co-exist with other genres in the same 

activity. Kamberelis also claimed that hybrid discourse practices afford opportunities for students 

to take ownership of the discourse at times, thereby allowing for their own thinking and 

conceptions to weave into the classroom discourse. In addition to providing students with spaces 
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in the discourse over which they have ownership, hybrid discourses can also offer the teacher 

insight into what students understand and how they construct meaning (Oyler, 1996).          

In classroom discourse, participant interactions depend on the social interfaces present in 

an activity. Considering that a classroom consists of students and a teacher, together making up 

the classroom community, four social interfaces may be present in an activity: student-student, 

student-community, student-teacher, and teacher-community. In student-student interfaces, 

students in either small groups or during whole-class discussion interact without a teacher being 

a discourse participant. In student- community interfaces, a student interacts with the entire 

classroom community including teacher and peers. In student-teacher interfaces, a student and 

the teacher engage in a dialogue, such as when a student asks the teacher a question or vice 

versa. In teacher-community interfaces, the teacher communicates with the entire classroom 

community at once, such as in a lecture. Different discourse genres may be enacted in the same 

interface depending on the power hierarchy or social roles of the participants, which may be 

based on participants’ perceptions of themselves and each other. For instance, if a group of three 

students were to interact while conducting an experiment, and one of the students was considered 

by the group to be an authority on the content, a traditional IRE genre might emerge, with its 

own local framework for participation, as the authoritative student attempts to explain his or her 

point of view to the rest of the members. This can be contrasted with the same activity structure 

and the same social interface, but where all participants viewed each other as equal authorities 

over content and procedures. In this case, a discourse genre that favors shared authority might 

emerge with its own framework for participation. Therefore, discourse genres can be contingent 

upon social interfaces within an activity. They may also be purposefully selected by the teacher 

or emerge discursively as breeches that lead to hybridity in the discourse as noted previously.  
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Studies of classroom discourse explore the detailed interactions within a classroom and 

the moment-to-moment events and actions that constitute students’ engagement with ideas, one 

another, and the environment. The merit of classroom discourse analysis is recognized in both 

psychological (e.g., sociocognitive or social constructivist) and sociocultural research paradigms, 

albeit with different approaches and research foci. In my study, I use discourse analysis to 

capture and explore the social interactions and engagement of my students with ideas, each other, 

and their environment as they learn about the physics of waves.  

Multimodality 

There is much more to human interaction than linguistic exchanges among people. Thus, 

teaching and learning involves both linguistic and non-linguistic modes of communication. Face-

to-face communication is only partly verbal; meaning is shared and created via a myriad of non-

linguistic cues that occur along with, or separately from, linguistic exchanges. In fact, one can 

say a lot without any words at all. Roth (2005) points out the example of a passenger on a plane 

who communicates his desire for a cup of coffee by the mere nodding of his head. In our day-to-

day interactions, countless examples of non-linguistic communication are realized. In some 

ways, non-linguistic communication, such as images, can be even more powerful than language, 

as seen with many everyday advertisements (Kress, 2006). The plurality of communicative 

modes, or semiotic domains, across which meaning may be constructed and shared is captured in 

the construct of multimodality (Kress & van Leeuwen, 2001). In educational studies of classroom 

discourse, exploring multimodality involves analyzing the linguistic alongside other 

communicative acts, such as gestures, diagrams, images and pictures, materials and artifacts, 

gaze and facial expressions, and body positioning and spatial orientations (Jaipal, 2010; Kress et 

al., 2006; Prain & Waldrip, 2006). Multimodal discourse consists of various different modalities 
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that are used together or separately over a period of time during which participants make 

meaning. Analyzing multiple modalities can allow researchers to develop a more thorough and 

rich description and understanding of classroom interactions. Multimodal discourse analysis 

parallels in some ways a traditional discourse analysis of speech acts in a dialogue (Gumperz, 

1982), but is much broader in scope to include other modes used for communicating and 

constructing meaning within a setting.  

How a concept is learned depends on the modality in which it is represented (Kress et al., 

2001). Meanings constructed depend on the semiotic resources used, which include actions, 

materials, and artifacts people use to communicate (van Leeuwen, 2005). Semiotic resources, 

which are socially shaped within a culture and organized in particular ways, define the 

characteristics of a mode (Kress, 2009). According to Halliday (1978), any form of 

communication and, thus, a mode, need to satisfy three metafunctions—ideational (description of 

ideas), interpersonal (shaping of social context), and textual (organization of semiotic resources). 

Examples of modes include images, diagrams, writings, layouts, speech, music, gestures, and 

videos or moving images. In general, different modes may represent similar ideas, but each 

captures ideas in different ways that, whether beneficial or limiting, contribute to the overall 

meaning constructed. 

In a science classroom, the choice and use of particular modes impact how students 

appropriate concepts and relationships among concepts. Students’ ability to utilize a particular 

mode accurately and engage with an idea across modes represents what Pierce (1931-1958) 

called representational competence. Students’ understanding is contingent upon their ability to 

navigate among various representations. Important questions that need to guide our 

understanding of the role of multimodality in teaching and learning within a classroom include: 
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How do students socially construct their representational competence as driven by the social 

interactions and engagement within a particular context? When do students and/or teacher 

choose to draw a picture or diagram to aid their speech in describing an idea? How prominent are 

gestures during classroom discourse and how are gestures used by speakers? In what instances 

do students and/or teacher elect to shift to a mode other than speech, and how does this help 

them to articulate their idea?  

One mode is not necessarily always better than the rest for developing and sharing ideas, 

albeit the fact that spoken and written language is traditionally considered as primary (Cazden, 

2001; Kress & van Leeuwen, 2006; Lemke, 1990). Various modes may be used alone, or 

together with others to reinforce one another and enable discourse participants to clarify, 

articulate, extend, construct, and communicate meaning (Jewitt, in Kress & Mavers, 2009; 

Lemke, 1998). Lemke refers to scientific concepts as semiotic hybrids because their meanings 

derive from the interaction among multiple, simultaneously occurring, semiotic modes. Each 

mode affords, that is, carries, enables, and supports, a different meaning potential, and these 

meaning potentials can be combined and fused into one when the modalities are utilized 

simultaneously or in conjunction with one another. For example, a picture alone can be 

interpreted in a variety of ways, but when it is presented alongside verbal commentary and 

gesturing, its meaning becomes interwoven with the meanings communicated by the other 

modes. In other words, each mode has particular affordances for meaning making, or meaning 

potentials (Kress & van Leeuewen, 1996, 2006). When multiple modes are present, the overall 

meaning is created collectively from all of the modes’ meaning potentials, each contributing or 

reinforcing different aspects to the process as a whole (Lemke, 1998). Thus, although each mode 
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in multimodal discourse has its own potential strengths and limitations, when multiple modalities 

come together, a more enriched understanding of concepts may be achieved.  

When students have not developed fluency in a particular mode, shifting engagement to 

other modes may be especially important. For example, young children lack a fully developed 

language, which is similar to high school physics students who lack a fully developed scientific 

language for communicating about phenomena, which limits the students’ ability to engage in 

scientific discourse. Although many physics students in secondary classrooms can read, write, 

and talk well, they usually have limited fluency in reading, writing, and talking science (Roth, 

2005). For example, Roth found that deictic and iconic gestures often precede the corresponding 

words or verbal language for students referencing different entities. As a result, gesturing plays a 

critical scaffolding role in the development of scientific language and discourse. As this example 

shows, combining linguistic with non-linguistic modes in science classes is particularly 

important.  

As students develop conceptual understandings, they also develop skills for articulating 

and communicating their ideas within and across different modes. Learning science implies that 

students are able to translate between and across multiple modes (Lemke, 1998; Prain & 

Waldrip, 2006). Those with a fully developed conceptual understanding should be able to 

recognize the different strengths and weaknesses that each mode has in representing a scientific 

concept in order to flexibly move between and among modes, as well as to elect the most 

appropriate mode for a particular context or concept. A more articulate understanding of 

concepts is accompanied with a more articulate aptitude with multiple representations of these 

concepts (Ainsworth, 1999, 2006; Ainsworth & Loizou, 2003; Oh & Oh, 2011; Prain & Waldrip, 
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2006). Thus, to support learning, teachers should offer students opportunities for, and guide them 

toward, using and constructing multiple representations (Prain & Tytler, 2012).   

Different modes offer different opportunities for communicating an idea and constructing 

meaning related to this idea. These opportunities are shaped by individuals’ ideas, sociocultural 

elements (such as context and social interactions within this context), and modal affordances. 

Moreover, one’s ideas not only shape the engagement within a particular mode or modes, but are 

also shaped by the engagement. The ways in which students communicate their ideas using a 

mode or modes can both indicate their current knowledge, as well as illuminate the learning that 

takes place as they engage with that mode or across various modes. Engaging with a mode, or 

modes, affords new meaning that influences and shapes students’ ideas, and is thus not only 

capturing a pre-existing idea. For example, Smagorinsky (2001) found that the act of drawing led 

to more articulated meanings for the student authoring the illustration. As one student said, “at 

the end, I understood what I was doing more than I did when I began the drawing” (p. 147). 

Although this comment alone is not evidence of learning, it suggests that for that student, 

drawing was not merely a means of revealing conceptions, but was instead a process of learning. 

The meaning potential of drawing complemented that of the written text, and the act of drawing 

afforded different layers of meaning related to the ideas about which the student was writing. 

Learning can be thought of as the development of semiotic resources, that constitute particular 

modalities, upon which students can call to make meaning (Roth, 2005). Meaning and semiotic 

resources for articulating it are dialectically constituted, and develop in tandem. 

As people develop a language, or any semiotic system for representing aspects of reality, 

they are developing higher mental processes (Vygotsky, 1986). Thus, conceptual understanding 

coevolves with the development and use of language for communicating concepts. Expanding 
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the traditional notion of language (i.e., written and spoken linguistic systems) to include other 

communicative modes, such as gesturing, sketching and drawing, and manipulation and use of 

artifacts, is especially critical in contexts where students lack a shared linguistic system (Jaipal, 

2010; Kress et al. 2001). In his work Talking Science (2005), Roth used multimodal elements of 

classroom discourse, such as gesturing and use of artifacts, to gain a better understanding of how 

learning scientific language coevolves with learning concepts. His focus was on the relationship 

between verbal language development and conceptual development for groups of students 

interacting with one another and the teacher. Roth asserted that while students attempt to orient 

themselves within an unfamiliar environment, they do not have a shared, stabilized, and accurate 

language for guiding each other through the activity. In such cases, gestures, for example, 

provide important resources by aligning participants to something one has identified, even if a 

descriptive language does not yet exist for the students (Roth, 2005). On their own, gestures may 

not carry much meaning, but when used in conjunction with other modes, such as diagrams and 

verbal utterances, students can articulate ideas and meanings across other modes, mediated by 

gestures, which might not be possible if a mode is acting alone. 

Each communicative mode has its own syntactic and semantic rules and patterns (Lemke, 

1990), or visual grammar (Kress & van Leeuwen, 2006). Syntactic rules specify the ways in 

which features of a mode are used together within a communicative act. Semantics capture the 

meaning or interpretations of the representations used within a mode. For example, using one’s 

hand to point at a door is a syntactical rule for calling attention to a door. The meaning or 

interpretation of this communicative act as a command telling someone where to go constitutes 

its semantics. Similarly, in the diagrammatical modality, instead of a hand gesture pointing to a 

door, a sign with an arrow points at a door. The two examples carry the same deictic function 
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and semantic pattern, albeit via different modalities each with its own syntax. The syntax and 

semantics make up the grammar for a particular mode, which is developed and put into practice 

by participants over time.  

It is also critical to recognize that the grammar (i.e., syntax and semantics) of any mode is 

not static or fixed, but is shaped through its cultural, historical, and social uses (Jewitt, 2009). 

The use of any mode is highly contextualized and situated in the moment that a person calls upon 

that mode to communicate. A mode is used according to the grammar understood by that person 

as based on its historical and cultural usage, but can also be influenced and shaped by the 

person’s motivations and context at that particular moment. Social adaptations and interactions 

can shape how a mode is used, and thus, its grammar can change over time (van Leeuwen, 

2005). Regarding teaching and learning, both syntax and semantics (i.e., grammar) are developed 

and articulated by students and teacher over time throughout lessons and activities in a 

classroom. Students and teacher develop how various modes, and the features or semiotic 

resources of a particular mode, can be utilized to convey meaning and communicate ideas. The 

syntactic and semantic features of the modes employed influence one another shaping the 

multimodal classroom discourse and ultimately students’ learning and engagement. 

The availability and use of particular modalities in a classroom are often controlled by the 

teacher. For example, in a teacher-led lesson, the teacher may choose to use certain modalities, 

such as speech and diagrams, to more clearly and efficiently express a concept, or to model how 

a particular modality (e.g., a diagram) should be used by the students in the future. Kress et al. 

(2001) described a teacher-led lecture in which the teacher selected to elaborate on meanings 

through linking a diagram of blood circulation with the teacher’s speech and gestures about it. 

The affordances of each modality strengthen the meaning that the teacher attempts to 
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communicate to students. In student-centered activities, the teacher may provide opportunities 

for students to communicate within and across different modalities in order to develop students’ 

syntactical and semantic skills for utilizing and constructing modes to make and negotiate 

meaning.  

Many studies examining multimodality in science classrooms in particular focus on the 

teacher’s use of modalities during lectures (Jaipal, 2010; Márquez, Mercè, & Espinet, 2006; 

Pozzner & Roth, 2006). For example, in an attempt to better understand how teachers used 

various modes in lectures, Márquez et al. (2006) investigated the different modalities of 

instruction used by teachers while teaching the water cycle to create an analytical scheme for 

discourse analysis. A far smaller number of studies have examined how students use 

multimodality to construct understandings and learn science (Jewitt et al., 2001; Kress et al., 

2001). To develop a more complete picture of teaching and learning in a science classroom, 

exploration of both teacher’s and students’ use of multimodality during the meaning-making 

process is necessary. Kress et al.’s (2001) work was among some of the first comprehensive 

multimodal research on teaching and learning in the science classroom. In their book, the authors 

described not only the teacher’s use of multimodality during lectures, but also investigated 

students’ learning as a “dynamic process of transformative sign-making which involves [social 

interactions of] both the teacher and students” (p.10), taking a multimodal social semiotic 

approach to analyzing the students’ interactions within the classroom’s multimodal discourse. 

They examined the texts and semiotic resources called upon and used by the students, and 

considered the differences between texts (and semiotics resources) produced by the teacher and 

students, respectively. The authors call for the need for science education researchers, and those 

focusing on multimodality in particular, to consider students’ multimodal discourse as a 
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framework for investigating student learning, in addition to teaching, in science classrooms. My 

study examines both the teacher’s and students’ use of various modalities, and the co-

construction of students’ conceptual understanding and multimodal discourse in which they are 

engaged.    

As noted previously in the section on Classroom Discourse, Gee’s (1996) Big “D” 

Discourse captures the ways of knowing and doing in a social context. Although his construct of 

“Discourse” expanded the notion of “discourse” to consider contextual elements and social 

practices of a discourse community, it did not explicitly attend to multimodality. The focus of 

Gee’s framework is the embedded ideologies of a community without explicitly considering the 

particular features of various modalities within a discourse and their contributions to the 

meaning-making process of the discourse participants. Although Gee does not explicitly relate 

his framework to multimodality, the ways of interacting that Gee discusses extend into non-

linguistic dimensions of discourse such as gesture, gaze, proximity, and tone, which constitute 

semiotic resources of various modes. Tucker-Raymond, Varelas, Pappas, and Wentland (2007) 

investigated the ideologies behind children’s conceptions of who scientists are and what they do, 

which the authors monitored over time. Tucker-Raymond and his colleagues used multiple 

modalities, namely speech and images (i.e., children’s drawings), to develop more 

comprehensive narratives that offered insights into children’s conceptions about science and 

their place in science. Both Gee’s Discourse framework and a multimodality framework consider 

communicative acts within classroom discourse to be highly situated and driven by cultural, 

contextual, and social aspects. In addition, the ways in which a particular group of people 

interacts within a culture are transformed as time goes on, reshaping a mode’s grammar, its 

semiotic resources, and usage.      
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In the same way traditional language shapes what counts as science (Lemke 1990; Roth 

2005), multimodality shapes what counts as science, and what it means to engage in scientific 

practices. Multiple modalities mediate and constitute classroom Discourse (with a Big “D”) that 

coevolves with students’ learning of science as a social practice. When students are given access 

to, and engage in interpreting or constructing meanings in, different modalities, their interactions 

are mediated by a richer semiotic canvas that facilitates their collective meaning making. This 

canvas not only combines and multiplies meaning potentials, but is also transformed over time 

by the participants’ discursive practices. Students have much more communicative flexibility if 

they are provided with opportunities to utilize multiple modes of communication to better 

express, clarify, and articulate their thoughts during their interactions (Roth, 2005). This may in 

turn enrich students’ conceptual development by providing alternative semiotic systems with 

which they can reason and communicate with one another as they make and negotiate meaning.  

In classrooms, multimodality may be planned or may spontaneously emerge, without 

being part of the teacher’s intended activity structure, as a response to various communicative 

acts taking place in the classroom. An example of planned use may include a teacher’s inclusion 

of diagramming in a lecture or a teacher’s prompting students to draw a diagram. Unplanned, or 

emergent, multimodality may spontaneously bubble up in the discourse when students are given 

a share of the authority over the discourse practices. For instance, when a student in a physics 

class poses a question to the teacher asking to articulate a homework problem’s context, the 

teacher might respond by gesturing, drawing a diagram, or role-playing the situation to better 

explain the context of the problem that the student is struggling to understand from the written 

and verbal explanation alone. Thus, there may be a shift (or what Kress (1997) called 

transduction), from one particular mode or modes to another. In this example, the multimodality 
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in the teacher’s response is emergent. Students may also call upon an alternative modality during 

interactions within a small group as they negotiate meaning together. For example, as a student 

in a small team of three students suggests an idea related to how to move an artifact during an 

experiment, he or she might enact the suggested movement using a gesture. The gestural mode 

emerged as the student selected it to add more meaning to the communicative act that speech 

alone could not achieve. Which mode or modes emerge may depend on what modes are socially 

available at a particular moment, the amount of time allowed for a communicative act, the 

participant’s epistemic understanding of a particular mode with regards to recognizing when it is 

appropriate to select it and how to successfully engage in it, and even the nature of the idea. 

Another example of when modalities emerge includes a teacher prompting students to further 

articulate their spoken ideas. A student may elect or be prompted to draw on the board or 

deictically gesture to an artifact to add more meaning to speech. These transductions between 

modalities are highly contextualized and situated in the moment and within a particular 

discourse. In regards to discourse genres as discussed earlier, emergent multimodality can be 

thought of as breeches in the multimodal discourse. As previously discussed, these breeches 

create spaces where students share authority with the teacher and may provide students with 

meaningful opportunities for student leaning. Emergent multimodality has not yet been studied 

in multimodality literature, but it is a fruitful research opportunity. Examining how modalities 

emerge provides insights into understanding the ebb and flow of multimodality in a classroom.  

In this study, I will use Halliday’s (1978) work, which I referenced earlier, in order to 

study the communicative functions of both linguistic and non-linguistic modalities, reflecting a 

broader view of language. Halliday asserted that there are three metafunctions in any 

communicative act–ideational, textual, and interpersonal. Discourse participants communicate to 
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share ideas, make meaning, and share these meanings. What ideas are developed, how they are 

linked to each other, and in what ways they constitute networks of meanings, all define the 

ideational function of a communicative act. Communicative acts constructing and enacting social 

interactions between people as they engage with ideas function to socially position the 

participants with one another, and the meaning that is made via social exchanges between 

individuals. Students’ social relationships with one another both affect and are affected by their 

interactions. The norms and means by which a modality can be enacted to generate meaning is 

the textual function. The textual function depends on the grammar of a particular mode, which is 

negotiated by the participants as they interact over time.   

Regarding the many modalities in a science classroom, diagrams and gestures are 

generally typical modalities used by teachers and students and are, therefore, of particular 

significance to examine when studying multimodality in a science classroom (Jaipal, 2010; Kress 

et al. 2001; Márquez, et al, 2006; Roth, 2005; Pozzer-Ardenghi & Roth, 2010). Gesture is a 

modality that often adds meaning when accompanying other modes such as speech (Goodwin, 

1981, 2000; McNeill, 1992, 2000; Roth 2005) and visual modalities (Pozzer-Ardenghi & Roth, 

2007, 2010; Roth 2001). Most gestures in science classrooms function to point (deictic gesture) 

or to represent in form or resemblance (iconic gesture) (Kress et al., 2001; Pozzer-Ardenghi & 

Roth, 2007; Roth, 2001, 2010). Deictic gestures call the collective attention of a group to certain 

visual features, characteristics or aspects of another modality, such as written text, mathematical 

expressions, pictures, diagrams, graphs, and objects and artifacts, by pointing. Pozzer-Ardenghi 

& Roth (2010) describe how a teacher’s speech referring to an aerial photograph can gain 

additional meaning when combined with deictic gestures highlighting an area or pointing to a 

particular location in the photograph. Iconic gestures function as imagistic representations 
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(McNeill, 2000) by depicting an aspect or characteristic of a visual entity through resembling its 

concrete visual characteristics. These gestures embody aspects of the image or artifact they aim 

to represent, and can help call attention to or enact these characteristics in a dynamic way. 

Because one’s hand can move, static visual elements from a picture, for instance, that are 

embodied by one’s hand can also be set into motion by an iconic gesture that enacts the motion. 

Regarding iconic gestures, McNeill (1992) suggested that hand gestures may also impact 

thought, acting as symbols or semiotic resources that exhibit meaning in their own right even if 

accompanying speech or other modalities. In considering gestures as an integral part of the 

communicative and meaning-making process, as opposed to a supplementary mode that is 

subordinate to linguistic modes, affords another tool for understanding meaning-making 

processes, including teaching and learning science.  

Gesturing in science education is a relatively new area of research led largely by the work 

of Roth and his colleagues over the past decade. Much of the research into gesturing in science 

classrooms focuses on either the gesturing of the teacher (e.g., Hwang & Roth, 2011; Pozzner- 

Ardenghi & Roth, 2010; Roth & Lawless, 2002b) or students (Givry & Roth, 2006; Roth & 

Lawless, 2002a; Roth & Welzel, 2001). The issue of how gestures might transform and take on 

meaning as both teacher and students use them over time has remained unexplored. For example, 

studies of teacher use of gestures during lectures and instructional practices have found that 

bodily movements co-articulate concepts in real-time in the presence of an audience (Hwang & 

Roth, 2011). The teacher’s simultaneous gestures and other communicative acts blend together to 

construct the scientific concepts being presented, a process referred to as lamination by Roth and 

Lawless (2002). Studies of how students use gestures in science classrooms have found that 

students’ understanding of concepts or conceptions include all semiotic resources since talk and 
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gesture act simultaneously, and iconic gesturing requires students to identify relevant structures 

in the setting to enact as meaning-making resources (Givry & Roth, 2006).  A focus on gestures 

have also been used to understand how students make meaning of photographs in a biology 

classroom (Pozzer-Ardenghi & Roth, 2003, 2004), and how students use gestures with speech as 

they encounter unfamiliar laboratory environments in a physics classroom (Roth & Lawless, 

2002a). Gesturing is also shown to play a key role in students’ scientific language development 

(Roth & Lawless, 2002a; Roth, 2005). However, a research focus on the relationship between 

how a teacher uses or models gesturing to communicate scientific ideas and how students may 

take on such actions in their communication of scientific ideas over time may offer insights into 

science teaching and learning that focusing only the teacher or the students may not. As students 

and teacher gesture, the cultural and situated meaning for when and how to gesture is negotiated 

discursively, in addition to the scientific concepts the gestures mutually constitute with other 

modalities. As with the case of gestures that emerge from laboratory activities in which students 

manipulate artifacts, these iconic gestures take on situated meanings that are later called upon 

when students describe and explain their actions and observations from the laboratory experience 

(Roth & Wetzel, 2001). Such meanings, captured, enacted, and developed over time via iconic 

gestures, reflect cultural elements that are developed socially, constructed by both teacher and 

students over a period of time and lessons, and, thus, reflect an untapped, yet potentially fruitful, 

area for research in science education.   

Visual depictions or reproductions of an entity that retain some of the entity’s features or 

likeness are generally referred to as images (Kress & van Leeuwen, 2006), or inscriptions (Roth, 

2005). Visual depictions include photographs, diagrams, drawings, graphs, film, paintings, 

sculptures, advertisements, and models. They can even take the form of more abstract entities 
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such as memories and mental models created from verbal descriptions. Images carry different 

meaning potentials that are not only based on an image’s characteristics, but also on readers’ 

visual grammar upon which they form interpretations and meanings of the image (Kress & van 

Leeuwen, 2006). Although images can include a wide variety of visual representations, diagrams 

are especially relevant to the teaching and learning of science and abundant in science 

classrooms.  

Diagrams provide a referent with which teacher and students can engage, and contain a 

system of non-verbal semiotic resources that articulate ideas when talk alone may be insufficient 

or difficult. The production of diagrams, and their utilization as semiotic resources, is a process 

developed over time and interwoven with student learning. For instance, in diagramming an 

observed event or another image such as a photograph, one is forced to abbreviate the many 

characteristics of a photograph and only draw certain features, which are selected based on 

thinking at that particular moment and context. The semiotic resources called upon in generating 

a diagram have situated meanings that are shaped over time as they are utilized by participants 

across contexts. As the teacher and students produce diagrams together, the grammar of how 

diagrams are drawn in particular contexts and how they express scientific ideas and concepts is 

also shaped over time. Participants use both spontaneous methods for diagramming as motivated 

by the needs of a particular context, as well as learned understanding related to diagramming 

syntax. As students use diagrams as a mode of communication of their ideas with one another, 

individual and collective diagramming practices and semiotic resources, as a cultural element of 

the class, are also being negotiated, and thus shaped by participants over time. Teacher modeling 

of diagramming practices may further promote students’ enactment of particular diagramming 
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practices as students could call upon these semiotic resources during future diagramming 

opportunities.    

Diagramming, as a mode frequently used by teachers and students in science classrooms, 

often takes the form of free-hand drawings produced by teacher and students or existing 

diagrams created by some other author such as the author(s) of textbooks and electronic media. 

Diagrams are visual depictions of some reality which the author represents in an abbreviated and 

often contrived way through the production and use of signs (Kress & van Leeuwen, 2006). The 

abbreviations are often used to foreground particular aspects while minimizing or omitting those 

aspects the author has deemed superfluous. Contrived elements that do not physically exist can 

be added such as arrows, captions, and labels, all of which provide interpretive suggestions to the 

reader of the diagram. For these reasons, diagrams are a powerful modality of communication 

and meaning-making and are abundant in the discourse of science classrooms. 

The ways in which diagrams have been involved in science education research varies. A 

source of variation is related to the sign-maker or author of a particular image. Studies have 

focused on a teacher’s production of diagrams during instruction, which shapes the classroom’s 

scientific discourse and impacts students’ learning (Jewitt, Kress, Ogborn, &Tsatsarelis, 2001; 

Marquez, Izquierdo, & Espinet, 2006; Prain & Waldrip, 2006; Roth 2005). In such studies, a 

teacher’s lecture or talk was found to be a blend of simultaneous linguistic and non-linguistic 

modes that multiply the meaning co-constructed between teacher and students. Studies have also 

focused on students’ interpretations and use of diagrams provided by the teacher or textbook. In 

these cases, researchers examined the meaning-making and discourse related to the diagram as 

teacher and students try to take ownership of the diagram by interpreting and discussing its 

features (Ainsworth & Th Loizou, 2003; Jaipal, 2010; Roth, 2005). Consideration of both 
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teachers’ and students’ production and use of diagrams in science classrooms offers a unique 

research perspective that examines bridges between how teacher and students produce diagrams, 

and the dialogical relationships that enable it (Jewitt, Kress, Ogborn, Tsatsarelis, 2001; Prain & 

Waldrip, 2006). Moreover, studies have focused on diagrams that students themselves produce in 

science classrooms (Cook, 2006; Gobert & Clement, 1999; Jewitt, Kress, Ogborn, &Tsatsarelis, 

2001; Pappas, Varelas, Ciesla, & Tucker-Raymond, 2009; Prain & Waldrip, 2006; Tucker-

Raymond, Varelas, Pappas, & Keblawe-Shamah, 2012; Varelas, Pappas, Kokkino, & Ortiz, 

2008; Varelas & Pappas, 2013; Varelas, et al., 2007; Waldrip & Prain, 2010). Student-created 

diagrams have been found to be windows into students’ thinking and conceptual understanding, 

and into their past experiences that had influenced the ideas they depicted.   

As students learn scientific concepts and ideas, they are better able to express concepts 

and ideas across multiple representations, including but not limited to diagrams (Ainsworth, 

1999, 2006; di Sessa, 2004; Prain & Waldrip, 2006). Students make choices as they draw 

diagrams, which represent what they see or envisage regarding a topic, which provides evidence 

for their understandings. However, multiple modalities, of which diagrams may be one, also 

facilitate students’ construction of ideas that are shaped and developed as teacher and students 

engage in multiple modalities (Jewitt, Kress, Ogborn, Tsatsarelis, 2001; Lemke, 1998). What is 

also important to consider is that in classroom discourse various modes are interwoven and 

linked to one another representing ideas. For example, as a student uses a diagram to explain an 

idea to his or her peers, the diagram itself does not carry the full meaning potential during the 

interaction, since other modes, such as talk and gestures, may be inextricably woven creating the 

fabric of multimodal classroom discourse. It is the dialogical relationship among modes 

(linguistic and non-linguistic) that form the canvas for meaning-making in science classrooms. 
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Diagrams are, therefore, a part of a larger multimodal landscape that shapes each modality called 

upon and utilized by classroom participants. For example, in the study conducted by Marquez, 

Izquierdo, and Espinet (2006) in the context of a unit on the water cycle, diagrams were 

pronounced in the classroom multimodal discourse, but the talk and gesturing about the diagrams 

was necessary for the researchers to analyze in order to understand how diagramming aided the 

teacher’s instruction. There is, however, a dearth of research exploring both teacher and student 

use and creation of diagrams and their evolution over time along with their relationship with 

other modes in terms of meaning making. 

Waves 

 Research on how students learn about waves is limited and largely dominated by studies 

focused on student conceptions and mental models, and used constructivist-based frameworks 

(Fazio, Guastella, Sperandeo-Mineo, & Tarantino, 2008; Hubber, 2006; Wittmann, 2002). 

Mechanical waves may be generally associated with two essential models each of which allows 

different aspects of waves to be more or less pronounced. One model represents the motion of a 

wave’s pulse, or propagation, which Wittmann (2002) calls the pulse model. The pulse model 

considers the wave’s disturbance or vibration (pulse) as an object moving with, or being 

transmitted by, the wave. It is relevant to consider the pulse when exploring answers to 

questions, such as: what is the speed of a wave, and how long or how tall is the wave? 

Considering waves from the pulse model perspective may be especially useful to teachers and 

students beginning a curricular unit on mechanical waves (Fazio et al., 2008). The pulse model 

considers the wave to be a fixed entity moving at a constant speed, which reflects a basic and 

fundamental type of motion (constant speed) with which students are often already familiar.   
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The pulse model represents what Fazio et al. refer to as macro-level motion, which 

emphasizes aspects of the wave pulse’s propagation and characteristics, all of which are easier 

for students to observe and visualize. For instance, students can see a pulse move down a long 

slinky, or watch a human wave move through a crowd at a large sporting event. The macro-level 

features of a wave can be captured and explored within and across multiple modalities; students 

can be part of the human wave or they can generate the pulse on a long slinky, and they can talk, 

write, gesture, draw, diagram, manipulate artifacts, and act to communicate and develop 

meanings. In my study, I focus on macro-level aspects of a wave pulse propagating down the 

length of a slinky during initial inquiry-based investigations in which students examine particular 

wave characteristics, such as propagational speed, amplitude, and frequency (period, or pulse 

width if using a single pulse).  

As students begin to develop macro-level scientific concepts, they can transition toward 

engaging with the other wave model–the micro-level model, which represents the oscillatory 

motion of a medium’s particles. This model is also referred to as either the entity model (Linder, 

1992) or the particle model (Wittmann, 2002). In contrast to the macro-level model that 

describes a wave’s propagation, the particle model is a micro-level model that describes motion 

in ways much less salient to the student’s everyday experiences and observations. This model of 

wave behavior is, therefore, more challenging for students to appropriate. Transverse and 

longitudinal waves are examples of a classification based upon the particle motion of a particular 

wave, demonstrating that not all waves’ particles move in the same way.  

Investigations of the particle motion of waves can be coupled with oscillatory motion to 

bring micro-level aspects to a macro-level experience in which students can more meaningfully 

engage. Such investigations include measuring the physical movement of an oscillating mass 
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attached to a spring (Kelly et al., 2001).  Kelly and his colleagues pointed out the benefit of such 

a setup in that “the real-time presentation of data displays afforded the students the flexibility to 

explore ideas, formulate conjectures, test initial hypotheses, and examine multiple interpretations 

of physical events” (p. 140). Given the difficulties in investigating micro-level phenomena, the 

macro-model of the pulse might provide students the necessary scaffolding as they first explore 

wave characteristics.  

Waves are a fundamental topic to any secondary physics classroom and teaching about 

waves, as many other physics topics, can be rich in opportunities to engage with various 

modalities. Both the easily observable and more abstract aspects of waves can be used to support 

students’ meaning making. Students can create a wave on a long metal slinky through the 

movement of their hand, but they can also experience the energy carried by a wave by 

associating it with the disturbance or vibration they feel as a wave hits their hand or moves the 

slinky as it passes through. As students engage in such activities, they have opportunities to use 

various modalities in addition to oral and written language, such as gestures (including hand 

waving back-and-forth), wave diagrams, sinusoidal waveform graphs, and use and manipulation 

of artifacts such as a long metal slinky.   
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III. METHOD 

This teacher research project explored the nature of multimodality in my classroom in the 

context of an instructional unit on waves, and the affordances, limitations, and challenges 

multimodality offered students with regards to their conceptual development and engagement. 

As a teacher researcher, I chose specific content or concepts for my students to learn, as well as 

the lesson structures and contexts in which my students engaged. My pedagogical choices shaped 

the activity structures I instituted, and, therefore, influenced students’ interactions and 

experiences that took place within them. In this study, I was both the teacher and active 

participant in the community and multimodal Discourse that I was studying, and the researcher 

who analyzed this multimodal Discourse. As a result, my teaching choices and pedagogical acts 

influenced my research, and my research intentions influenced my pedagogy.    

My tensions as a teacher researcher involved my ability to synthesize these two roles of 

being a researcher interested in understanding, and a teacher interested in helping students learn 

(Wong, 1995). For instance, I had to find a balance between being a teacher who wants to 

scaffold and a researcher who wants to listen. To alleviate these tensions, I wove together my 

interests as a teacher and researcher into one overall goal–to help my students learn by listening 

and guiding (Wilson, 1995). According to Wilson, engaging in teacher research is all about 

striking a balance. On the one hand, I need to lead, control pace and efficiency, tell and explain, 

intervene and scaffold; and on the other hand, I need to allow students to work together through a 

problem, make their own choices, and expand and articulate their own ideas all while I listen. 

Both sets of practices are necessary for student learning when used appropriately. Thus, in this 

way, there is little tension between being a teacher and a researcher. My study examined the 

moment-to-moment events and interactions that occur within this balance.  
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In order to study how multimodality shapes and is shaped by student learning and 

engagement, I had to be mindful of what I am doing as a teacher to promote use of different 

modalities through my pedagogical choices. For example, how do I model the use of various 

modalities? In what modalities are my interventions and scaffolds? How do my tasks and activity 

structures suggest, promote, or challenge students’ multimodal discourse? To what extent do I 

provide my students access to multiple modes as they make meaning with one another? 

Participants 

Since I was the teacher and researcher, I was engaged in both the framing of activity 

structures and discursive practices in the classroom, and the data collection and analysis for this 

study. I had been a physics teacher for six years, all at the same high school, at the time of this 

study. I have an undergraduate degree in physics, a master’s degree in education, and this study 

is my dissertation for the doctoral degree in curriculum and instruction.     

I studied one of my ninth grade honors physics classes throughout a 12-day instructional 

unit on waves during the second semester. The class had 20 students (11 boys, 9 girls). I taught 

the class at a suburban public high school outside of Chicago. To enroll in ninth grade honors 

physics, students must have already successfully completed a yearlong algebra course.  In this 

class of 20 students, there were: 13 Caucasians, four Asians, one African-American, one 

Hispanic, and one Indian. The students  come from upper- to middle-class socioeconomic 

backgrounds, and live in a moderately affluent suburb of Chicago. The high school is 67.5% 

Caucasian, 11.9% African-American, 11.2% Asian or Pacific Islander, and 8.1% Hispanic.  

Instructional Context 

The study focused on a 12-day unit on waves outlined in Appendix. The unit began with 

students brainstorming different types of waves to activate their prior knowledge, and then 
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enacting a human wave as a class to measure wave speed. The unit emphasized transverse 

waves, albeit introduced longitudinal waves, with the intention of bridging transverse waves with 

longitudinal waves during the following unit on sound waves. Over the course of the next several 

days, in teams of three, students conducted a series of experiments seeking potential 

relationships various wave characteristics had with wave speed using long metal slinkies. In 

between experiments, as a whole class, students presented, critiqued, analyzed, and discussed 

each other’s findings. These experiments and activities allowed students to draw and discuss 

sketches of experimental setups and waveform graphs before the teacher modeled such 

representations, as well as use physical artifacts (long metal slinky and measurement devices). 

Students then began analyzing waveform graphs. First, they used the slinky setup from their 

experiments, but with a motion sensor, to graph the back-and-forth motion of a student’s hand as 

they created waves in the slinky. Students suggested any relevant wave characteristics that they 

could measure. Later, other sources for wave production were considered from practice problems 

on which students worked in small groups. Next, they designed and carried-out an investigation 

concerning wave interference whose ideas were then applied to standing waves, which they 

studied for two days. On the last day of the waves unit, students conducted a lab practical that 

asked them in small groups to measure any wave characteristic for a bobbing mass on a spring, 

without any help from other groups or from the teacher.  

Sources of Data 

In order for me to collect data while simultaneously teaching, a video camera was used to 

record classroom interactions. Video data were collected from one of my ninth-grade honors 

physics classes over a 12-day instructional unit. Videotaping occurred each day for the entire 50 

minutes for which the class met, five days per week. Each day’s video was burned onto a DVD 
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that I labeled and securely stored until the school year ended. The camera was positioned in the 

back of the classroom during whole-class activities and discussions. During small-group 

activities, one focus group (comprised of three students) was filmed by the students in that 

group. Students were informed of the purpose of the videotaping and told to “treat it like you 

were shooting a documentary.” I told them to consider the camera a team member that cannot 

speak but needs to be able to see and hear everything. The same focus group was followed for 

the entire duration of the instructional unit. There was no particular reason for the selection of 

this particular class to study over any of my other classes. I created the student groups, including 

group I focused on during small-group activities. My choice of students in the focus group was 

nearly arbitrary, except for ensuring that students were willing to talk as well as be comfortable 

videotaping and being videotaped. Students in the focus group were not selected based on 

academic status or performance. 

One of the benefits of videotaping is the possibility it offers to repeatedly review the 

video to gain a higher level of delicacy, which is especially critical to research on multimodality 

where multiple modes may be used simultaneously, each with its own ideational, interpersonal, 

and textual metafunctions (Halliday, 1978). However, videotaping is a limitation too, as reliance 

upon a video camera’s recording may be problematic. Like any recording device, it can miss 

faint sounds, or visual information that is outside of the scope of the frame or too far away to be 

recorded sufficiently. What the camera cannot see or hear was lost for purposes of this study. 

Another limitation was that the videotaping during small-group activities was done by the focus 

group members themselves. They were not researchers and were not necessarily savvy video 

camera operators. To minimize this challenge, I gradually implemented the video camera to 

minimize the intrusive effects of its presence, and allowed for the focus group to grow 
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accustomed to both using the camera and documenting their interactions appropriately. They 

were only vaguely familiar with the aims of my research, so they would not change their 

behavior to fit the study. I explained to them that I was studying how they learned, and that it 

was very important that they tape in a way that captured all aspects of their work–what they said, 

did, wrote, drew, showed, and so on. Of course, this did not guarantee that what they taped 

would allow me to capture all modalities at a given moment.  In addition, during small-group 

activities, the video camera did not capture any communication or interactions of groups other 

than the focus group. Finally, immediately after each lesson, I wrote teacher-researcher 

reflections on noteworthy events, as well as my thoughts, comments, observations from that 

day’s class, especially with regards to this study–the use and impact of different modalities on 

my teaching and my students’ learning and engagement. 

Analysis of Data 

I used a qualitative, interpretive design to analyze the data of the study (Lincoln & Guba, 

1985). More specifically, I utilized ethnographic and grounded theory techniques to analyze 

multimodal discourse to explore the multimodal landscape of my classroom and its culture with 

regards to concept development and multimodal engagement. The ways in which I analyzed the 

data provided me with insights into the cultural practices in my classroom in which I was also a 

participant. My insights from being an active participant were blended with those gained by 

systematically examining the classroom video data, as I examined the multimodality in my 

classroom and how it was enacted, and I mapped out participants’ interactions and engagement 

with ideas, other participants, and artifacts within and across modalities to reveal the prominence 

of various modalities.   
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More specifically, I examined how the students and I called upon different modalities–

our interactions within and about modes, semiotic features and grammar of a mode, and the 

potential affordances, limitations, and challenges that modalities offered to student learning and 

engagement. These interpretive considerations revealed general trends and themes over the 

course of the unit as well as more specific critical moments in the multimodal discourse that 

warranted a closer and more delicate analysis. This led to new ways of looking at the data, 

combining and recombining interpretations and themes (Creswell, 2012; Lincoln & Guba, 1985) 

Using a grounded theory (Charmaz, 2006) analytical approach, I developed coding 

schemes that emerged from the data and were refined via iterative constant comparison (Miles & 

Huberman, 1994). Ways of thinking about multimodality were determined by the data as I 

noticed elements that were reoccurring or being absent (Corbin & Strauss, 1994).  

The analysis unfolded as follows. After instruction was completed, I reviewed all of the 

data, formulating preliminary sketches of all of the videotaped lessons (the entire 12-day unit on 

waves). In order to construct these sketches, I first watched the video of each lesson as I created 

an outline describing the events that occurred, as well as noting preliminary interpretative 

comments regarding those events. I did this for all of the videos in chronological order. Figure 

3.1 is a sample page of these preliminary sketches. My interpretive comments are in italics. 

These interpretations were made in light of the ideational, interpersonal, and textual functions of 

multimodal communication and, similar to my teacher-researcher reflections after the end of 

each lesson, highlighted the use and impact of different modalities on my teaching and my 

students’ learning and engagement during each particular lesson.  

Next, the teacher-researcher reflections I had composed immediately following each 

day’s class during the unit were inserted into the preliminary sketches at the end of each lesson 
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to unify these two datasets as the lesson sketches I would use for the rest of my analysis. Figure 

3.2 shows a sample of these reflections. Both these reflections and the interpretive comments I 

wrote as part of the preliminary sketches were italicized as they both aimed at noting potential 

themes and patterns regarding meaning making and multimodality that I could monitor and track 

over the course of the unit. My goal for developing these lesson sketches was to outline the 

events that occurred and code categories that emerged in my comments, reflections, and 

interpretations of the data (Charmaz, 2006). 

The data were analyzed repeatedly through multiple rounds of coding in which I reduced 

the data and recombined it according to categories that represented themes and patterns I noticed 

(Creswell, 2012). These initial categories included participants’ negotiation of a particular 

modality’s grammar, benefits or limitations of modes to the clarity of communicative units, 

ideational links between modalities, shifting between modalities, participant-choice of mode(s), 

and foregrounding (and backgrounding) of modes. These categories were not mutually exclusive 

and often overlapped in both data and content. The same event could be coded as relevant to 

multiple categories, and some categories could be considered as subcategories of others. For 

example, the category defined by instances where modalities seemed to benefit or limit the 

classroom discourse often encompassed some of the other categories, such as shifting between 

modalities or ideational links between modalities, since both of these represent ways in which 

modalities were used by participants benefitting or limiting the classroom discourse.    
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Figure 3.1. Sample page of preliminary sketches.  
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Figure 3.2. Sample page of teacher-researcher reflections. 
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After coding, I then reviewed the sketches again for each of the following modes that 

were most prominent throughout the unit: gestures, diagrams, numerical values and data tables, 

and graphs. Each respective mode served as a distinct and separate lens for reviewing the 

sketches. I examined the sketches and gathered and demarcated video clips of the segments 

where I found a particular mode to be prominent in the classroom discourse. These segments 

were extracted from the lesson video-recordings into separate files that were labeled according to 

what they captured and sorted by modality as well as when they occurred. From each video 

segment, I also extracted digital still photos of specific instances to use as figures in the 

presentation of my findings as videos cannot be inserted into written documents. For each video 

segment and still photos, I also wrote a more detailed description with interpretative comments 

that were used to develop an outline for a particular modality, as seen in the sample in Figure 

3.3. I then reviewed these outlines and elaborated on my interpretations while looking for salient 

themes that emerged within that particular modality. During this review, I also identified which 

video segments I should transcribe and revisit with a higher-level delicacy for my analysis.  

Two modes emerged as prevalent: gesturing and diagramming.  Gesturing and, in 

particular, iconic hand gestures were a prominent and consistent mode for meaning making 

among class participants and their meaning evolved over time as my students and I used them. 

Diagramming was also a pronounced modality utilized often by both teacher and students.  

These two modalities, therefore, became parts of my findings that focused on the evolution of 

form and function of modalities in science teaching and learning.  

While examining, sketches, outlines, and video for meaning making using each modality, 

I noticed overlap between modes regarding particular ideas or thematic patterns with which my 

students and I were engaging throughout the unit. I, thus, tracked the evolution of two major 
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thematic patterns across various modes that emerged from the data. These themes reflected two 

of the major concepts I intended for students to learn as part of this unit on waves:  (1) learning 

about relationships between various wave characteristics through their experimental 

investigations so that they understand that only a wave’s medium affects its propagational speed, 

dispelling the pervasive misconception that the source of wave can influence the wave’s speed; 

and (2) understanding and measuring wave characteristics, and especially in regards to waveform 

graphs. These two themes, thus, became parts of my findings that focused on concept 

development in the context of multimodality.  

 

 

 

 

 

Figure 3.3. Sample page of a modality (gesture) outline.  
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For each of the four themes, I used all data forms, sketches, video segments, and digital 

stills, to produce a theme outline. The video segments that captured interactions that had 

particular significance or required more detailed analysis of the multimodal discourse were, then, 

transcribed and analyzed.     

To capture the multimodal classroom discourse in the transcription of video segments, I 

used traditional sequencing of verbal utterances along with description of non-linguistic features 

related to both the manner in which the speaking occurred as well as multimodal aspects. To 

further capture multimodal aspects, I inserted digital stills from the video segments alongside the 

transcribed units that displayed the non-linguistic modalities such as gestures and diagrams.  The 

multimodal transcript had two columns: one consisting of the verbal utterances and my 

description of multimodal information, and one consisting of digital still photos arranged in such 

a way so that they were located adjacent to the linguistic discourse that occurred at the same 

time.  

Constructing multimodal transcripts was imperative in order to capture the power of the 

various modalities used in my classroom as my students and I worked together towards 

developing meanings about waves. However, there are limitations to examining multiple 

modalities. Utilizing a picture as a focal object activates different experiential meaning potentials 

(Kress & van Leeuwen, 2001), and offers interpretive flexibility (Roth, 2005). In this light, 

meaning making is much more in the eye of the beholder when interpreting images or diagrams, 

for instance, than when interpreting a verbal unit. Thus, interpretational agreement among 

researchers, the researcher and creator of multimodal acts or representations, and the researcher 

and audience may be difficult to achieve. I confronted this challenge by expecting and embracing 

it, as it was actually an impetus for my study. The interpretive ambiguity, that different 
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modalities foster, influences student learning and engagement. Each modality has strengths and 

weaknesses in conveying a particular message, idea, or concept. Thus, multimodality in teaching 

and learning balances limitations across different modalities and strengthens meaning making 

and communication. Moreover, as students learn how to engage in multiple modes and their 

ideational, interpersonal, and textual functions, learning of the concepts about which they 

interact also takes place. 
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IV. EVOLUTION OF THE FORM AND FUNCTION OF MODES 

Undulating Hand Gesture 

Gesturing played a critical role in the teaching and learning of physics, and particularly 

waves on which I focused in this study.  In my classroom, an undulating hand gesture (UHG) 

bubbled up from the students on the first day of the instructional unit. This enactment 

spontaneously emerged and quickly became an insightful iconic gesture that both my students 

and I called upon repeatedly throughout the entire unit. The UHG originated as an undulating up-

and-down hand gesture representing a water wave. As the unit continued, the students and I 

frequently used the UHG in different ways that shaped the gesture’s meaning, function, 

usefulness for meaning making, and even slightly its form.  

The Construction of a Hand Gesture and Its Role in Meaning Making 

There were two types of undulating hand gestures that took place in my classroom that 

both share oscillatory aspects. The UHG began as an enactment of a wave’s sinusoidal shape and 

the undulation that occurs during its propagation.  The other gesture consisted of a simple back 

and forth motion of a hand or back-and-forth gesture (BFG).  This gesture emerged later as 

students created waves in a slinky and discussed the ways in which they created waves. This 

movement back and forth was a shift from the back and forth sinusoidal undulation of the 

original gesture. Although these two gestures differ to some degree in form and function, they 

represent similar underlying concepts and are generally two representations of the same 

phenomenon–the particle motion of waves.  

The UHG emerged on the first day of the unit from a student, Addy, who was seeking 

affirmation around the task the class was to be working on–to draw a wave (see Appendix for an 

outline of the instructional unit). She asked “like water?” as she gestured, suggesting that she 
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envisaged the up-and-down motion of water waves as she drew a wave. Addy’s gesture occurred 

while the students independently worked on the task and was not made public to rest of the class. 

Her gesture may have referenced an image of water waves undulating that she was about to 

draw. She was not alone in associating waves in general with the more specific example of water 

waves. Brian made an identical UHG minutes later during a discussion in front of the class, seen 

in Figure 4.1.1. The time in the captions of all figures refers to the time passed from the 

beginning of class.  

 

 

          

Figure 4.1.1. (Day 1, 9:25). Brian makes an UHG and says “like water” to the rest of the class. 

 

Figure 4.1.2. (Day 1, 13:53). I superimpose an UHG on top of the wavy-line drawing. 

Brian 
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Brian also said “like water” as he gestured in the same way as Addy, but never heard nor 

saw Addy’s original gesture. The circular arrangement of students in the classroom seen in 

Figure 4.1.1 is important because the entire class could see the wavy lines Brian drew on the 

little whiteboard he was holding. They could all hear his speech see his UHG, which together 

represented his idea of a wave. The public nature and ease of visibility that the circular 

arrangement of students afforded allowed these modes to be foregrounded for the other students 

so that they could potentially draw upon both these modes to think about waves in future class 

interactions.  Moreover, I noticed the prominence of the UHG as my students kept using it and, 

thus, aimed at building the gesture into my teaching to promote its usage and development. 

Immediately following the whole-class discussion, I summarized the students’ findings 

and conclusions in a lecture format where I attempted to link the wavy-line drawing that many 

students suggested with the UHG. To do so, I superimposed my UHG over the wavy-line 

drawing to suggest that the UHG was an enactment of the wavy-line drawing (see Fig. 4.1.2), 

and then verbally referenced the water analogy presented earlier by Brian and Addy. I intended 

to reinforce the UHG as a means for enacting the back-and-forth nature of waves in general, 

which was a fundamental concept about waves that students needed to develop throughout this 

unit. I put into practice my multimodal awareness by first recognizing the emergence of a 

potentially valuable gesture, and then promoting it to my class in order to collectively develop its 

function in hopes that students will continue to use the gesture. 

Gestures often functioned as a convenient modality for students particularly when they 

struggled to articulate their ideas using speech alone. For example, in Figure 4.1.3, Dustin made 

an UHG as he offered his interpretation of the projected diagrams, stating, “the one on the left 

goes up and down and the one on the right like goes out.” His speech about waves was muddled 
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and vague, and it was unclear from this utterance whether or not he had a meaningful conception 

that he was trying to communicate at that moment, but he used an UHG as he spoke to help 

articulate his idea that he struggled to explain by talking alone. The UHG was an iconic gesture 

that both referenced and enacted his interpretation of the motion depicted in the drawings (“up 

and down,” or “goes out”), which he was attempting to use to explain how these drawings were 

different. 

 

 

  

Figure 4.1.3. (Day 1, 14:50 or 14:55). Dustin makes an UHG along with muddled speech. 

 

 

All of the different types of wave drawings offered by the students were projected onto 

the screen, shown in Figure 4.1.4. After asking for students to volunteer their interpretations in 

front of the class, Oliver suggested that the “ripple” drawing (i.e., the concentric circles on the 

right in Fig. 4.1.4) was a view from above whereas the wavy-line drawing on the left was a view 

from the side of a wave. I revoiced Oliver’s idea by verbally describing the motion as “in and 

out” and “bobbing,” while simultaneously patting the screen with my hand at the center of the 

ripple drawing as seen in Figure 4.1.4. I did this in an attempt to link these drawings to one 

Dustin 
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another as different representations of the same concept by using a BFG. I also recognized that 

my students would be creating waves in a long metal slinky during the activities in the days to 

follow, and provided a potential connection for students by shifting from the UHG as an 

enactment of the sinusoidal nature of waves to a stationary bobbing motion at the origin or BFG, 

which would later represent one’s hand-motion while creating waves in a slinky. I aimed to 

promote this new BFG with hopes that my students would call upon it as they developed new 

ideas and concepts about wave characteristics.  

 

 

         

Figure 4.1.4. (Day 1, 14:55). I project the three different variations of student-drawings of 

waves onto the screen in front of the class. I pat the screen at center of the “ripple” diagram 

(concentric circles) to change the perspective from a side view of a wave (the wavy line) to an 

above view of a wave (concentric circles).  

 

 

Still in the first day of the unit, my students continued to use the UHG to call upon their 

prior knowledge of waves from their middle school science classes, as well as their current 

  Ripple Diagram 

(concentric circles) 
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mathematics classes in which several of the students had already learned about sinusoids. Figure 

4.1.5 shows Zeke and Addy both making an UHG as Zeke says, “it’s like a cosine graph.” 

Although Zeke was the one speaking, Addy nodded her head saying “yeah yeah” in agreement. At 

the same time, she independently traced a sinusoidal function in the air using a similar gesture to 

original sinusoidal UHG, but without seeing Zeke’s gesture. Zeke and Addy’s use of the UHG 

indicated a possible linking of the wavy-line drawing in this class to sinusoids that they were 

studying in their mathematics classes. Both Zeke and Addy were concurrently enrolled in Algebra 

2 in which they had just finished a unit on wave functions and sinusoids. Zeke’s linking the 

drawing of waves to drawing to “a cosine graph” was mediated by his gesturing, which added 

motion to the visual depictions (wavy-line and cosine graph) that Zeke used along with his talk.  

 

 

 

Figure 4.1.5. (Day 1, 37:55). Zeke and Addy both make an UHG as Zeke says, “it’s like 

a cosine graph.” 

  

Addy 

Zeke 
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Through its prominence during the first day, the UHG had already been a useful tool that 

as the teacher I considered in my planning and decision-making for the rest of the unit. I thought 

that both my students and I could be utilized it in the development of new ideas about waves. One 

such new idea was relating the UHG’s sinusoidal undulating characteristic to the BFG’s 

oscillatory nature of a wave’s source.  

During Day 2 (see Appendix), each team of three students conducted an experiment 

testing the relationship between a wave’s height and its propagational speed, which involved the 

creation of wave pulses in a long metal slinky. The experiment provided a new context for the 

BFG where the back-and-forth hand movement was now used to generate a wave pulse. This 

helped students begin to link the UHG to the BFG through the use or manipulation of artifacts.  

In Figure 4.1.6, Katie made a wave along the floor to demonstrate to her peers her interpretation 

of the wave’s height and how to change it. She used a wide sweeping motion to demonstrate how 

she could create a larger wave height. In this example, the BFG while holding a slinky enacted 

the wave’s height, which could be varied by how large of a BFG Katie made.  

 During the follow-up lecture on Day 3 that summarized the previous day’s experimental 

findings (see Appendix), I superimposed a BFG over a diagram to call attention to the hand-

motion the students had used to make waves in the slinky with hopes of their linking this motion 

to the diagram. I was using the BFG to facilitate their creation of such a link (see Fig. 4.1.7), as 

well as to attach additional meaning to the BFG, namely that it can create waves or function as a 

wave source, which I hoped for students to take up and bring out during future interactions.  
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Figure 4.1.6. (Day 2, 00:25). Katie makes a wide sweeping wave on a slinky along the floor to 

show how the wave’s height can be changed. 

 

 

  

 Figure 4.1.7. (Day 3, 04:06). I move my hand up and down as seen on the right of the 

image marked by the dotted circle. 

 

 

I then aimed to extend the BFG role in creating waves to the context of waveform graphs. 

In Figure 4.1.8a, my bottom hand remained stationary to mark the equilibrium position while my 

Notes from picture on left  

Katie 
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top hand oscillated up and down about the equilibrium position as an enactment of how I could 

create the wave pictured in the notes. This gesture, coupled with the accompanying text: “wave 

height same as the source’s back-&-forth movement,” written just below the diagram called 

students’ attention to the BFG in relation to the diagram as an attempt to anchor the new concept 

of amplitude to a familiar experience (wave-creation in slinky). I superimposed the BFG onto the 

diagram in the same way I did earlier with the slinky-experiment diagram (wave-creating role 

shown in Fig. 4.1.7), and then moved my hand with the wave, as seen in Figure 1.8b, to also link 

it with the UHG that emerged in Day 1 (see in Figures 4.1.1-3).  

 During a whole-class discussion later that day (Day 3 in Appendix), some students were 

able to demonstrate how the BFG could function as a wave source when they applied it to the new 

concepts of period and frequency. At this point, my students had not yet studied these concepts 

nor had they been introduced to these terms. Reference to these concepts occurred when both 

Addy and Oliver briskly moved their hands back-and-forth while referring to the quickness of a 

pulse, which they introduced to the discussion as a possible characteristic that might affect the 

wave’s speed. Both the word “quickness” and the BFG at that moment were ambiguous in terms 

of whether they referred to time or speed of the motion source. Addy and Oliver may have meant 

that the amount of time that it takes for the hand to go one full back-and-forth movement (i.e., the 

wave period) influences the wave’s speed, or they may have meant that the hand’s speed influence 

the wave’s speed. This is a critical distinction, which is usually linked to misconceptions that 

students have about waves and factors that determine their speed, and which implies different 

ways of testing for factors that affect wave speed. Although such a distinction was not made at 

this point, the BFG offered students an opportunity to focus on wave period, as it will be shown 

below. 
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Figure 4.1.8. (a), (Day 3, 18:34). My bottom hand is stationary and marks the equilibrium 

position while my top hand oscillates up and down about the equilibrium position to show how 

the wave pictured was created. (b), (Day 3, 19:02). My UHG traces along the wave pictured. (c), 

Enlarged view of the part of the whiteboard on which I am focusing.  

 

 

Immediately following Addy and Oliver’s suggestion that the quickness of the hand might 

affect a wave’s speed, students collaborated in their teams on an experimental setup that might 

determine this relationship. We then came together as a class and Raymond was elected to sketch 

his team’s idea that was specifically related to a method for measuring the quickness of one’s 

hand in making a wave pulse in a slinky. Figure 4.1.9a shows his sketch of the experimental 

setup. It included a slinky and a motion sensor that was aligned with the hand’s line of motion. 

(a) (b) 

(c) 
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Raymond’s diagram positioned the orientation of this back-and-forth action in relation to the 

artifacts (motion sensor and slinky). After drawing the slinky and motion sensor, he drew a hand 

at the bottom of the slinky, while saying, “here’s a hand.” He then drew a horizontal line from the 

hand away from the motion sensor, and inserted a positive sign underneath it saying, “and it goes 

positive,” and then drew another line from the hand towards the motion sensor, and labeled it with 

a negative sign saying, “then negative.” The positive and negative lines depicted the hand’s 

movement away from the motion sensor (positive direction), and back towards the motion sensor 

(negative). The overall motion of the hand is not clear from this diagram, but the sequence in 

which he diagrammed the lines and explained suggested that he considered the hand to first move 

away and then toward the motion sensor. The BFG in relation to his diagram seemed to enact the 

hand’s motion iconically (see Fig. 4.1.9c) demonstrating the hand’s motion in creating a wave. In 

this case, the BFG was being used to move one end of the slinky from side to side, which would 

create a wave pulse in the slinky. Although Raymond did not gesture while diagramming, his 

sketch built on his understanding of the BFG as a wave source by diagramming it with regards to 

artifacts, while his speech narrated the actions depicted in the diagram.    
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(a) 

  

(b)                (c) 

   
 

Figure 4.1.9. (a), (Day 3, 19:02). Raymond’s drawing of an experimental setup that might be used 

to measure the time of a hand’s back and forth movement during wave production. (b), (Day 3, 

27:20). My flat left hand represents the motion sensor, the right hand (which would be holding a 

slinky) moves left to right in front of the sensor. (c), (Day 3, 28:28). I superimpose the same 

gesture from Figure 4.1.9b on top of Raymond’s diagram. 

 

 

 

 

Raymond 

left hand 
represents 
motion sensor 
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Raymond became confused when asked to sketch his expectation for the computer-

generated graph of the motion sensor’s position versus time data, which I will abbreviate as the 

“motion sensor’s graph” in the rest of this manuscript. The motion sensor is a device that 

simultaneously collects position and time data for any object in front of it, relative to the motion 

sensor’s position. The motion sensor is part of a computer interface whose software plots the data 

on position versus time axes in real time. After drawing position and time axes next to his 

diagram, and naming the axes verbally as he drew them, Raymond hesitantly began to draw its 

curve as a horizontal line corresponding to a positive position value, while saying, “it goes like, 

uh, um.” He stopped talking and drawing, and said that he wasn’t sure. In response to Raymond’s 

confusion, I used a BFG as a means of scaffolding his thinking (Fig. 4.1.9b). My left hand 

represented the motion sensor and my right hand, which would be holding a slinky, oscillated left 

and right in front of it. As Raymond tried to draw the curve again, he sketched a negatively 

sloping line beginning at a positive value, followed by positively sloped line thereafter (see free-

hand graph in Fig. 4.1.9c). My BFG mediated Raymond’s thinking within the graphical mode by 

articulating the specific hand motion that the sensor was capturing, which helped Raymond to 

translate to the shape of the graph’s curve that he drew. His drawing of a horizontal line and 

confusion might have derived from his uncertainty as to when the motion sensor would begin 

plotting position and time data. If the motion sensor had begun collecting and plotting data before 

the hand made a full back and forth movement, it would start off in the shape Raymond initially 

drew. He might have been unsure of whether or not to include this and which way, positive or 

negative, the line should move. My BFG helped him to decide to begin drawing the motion 

sensor’s graph when the hand starts to move, and additionally, and to chose to have the hand 

move towards the sensor and then back as depicted by the graph. I recognized then that my BFG 
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had helped him translate the motion to the graphical modality, and to promote this connection for 

the rest of the class, I walked up to the screen next to his diagram and superimposed my BFG over 

the top of the diagram, as seen in Figure 4.1.9c. My original BFG (Fig. 4.1.9b) was made in the 

back of the room, which might not have been observed by all of the students, but more 

importantly, my superimposing a BFG over Raymond’s diagram (Fig.4.1.9c) directly connected it 

to the diagram, and more specifically, the artifacts depicted in his diagram. My efforts aimed to 

explain the idea of period and frequency in relation to the quickness of the BFG that created a 

wave in a slinky, which was a concept that I wanted my students to call upon when appropriate 

during future lessons. 

This was the case the next day (Day 4) when Addy used the quickness of a BFG, which 

she made in the air, as she sought affirmation for how to measure the period during the second 

slinky experiment (see Appendix) where the students were to explore the relationship between a 

wave’s period and propagational speed using a slinky. As the focal group reviewed their motion 

sensor’s position vs. time graph of the hand’s motion, Addy asked, “we’re measuring the time it 

takes our hand to move from here to here?” The synchronization of her utterance with her gesture 

suggested that the “here to here” marked the interval between when her hand began to produce a 

wave pulse and when it returned to its original position, thus completing one full back and forth 

motion. This showed that she understood that the wave’s period, which students were to measure 

as part of this slinky experiment, was the time interval for one’s hand to move back and forth as 

depicted graphically by the motion sensor. Moreover, her question and deictic gestures sought to 

affirm a collective agreement as to which two points on the graph were associated with the 

beginning and end of her hand’s back and forth motion. 
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On Day 6 (see Appendix), I set up a slinky along the floor in the middle of the class with 

which I led a demonstration in front of the class that would use the same context as their slinky 

experiments, but aiming to introduce waveform graphs. A significant difference was that, in this 

demonstration, continuous wave pulses were generated instead of just one pulse, which was the 

case in the students’ slinky experiments.  I had a student, Mallory, make continuous waves on 

the slinky while a motion sensor captured her hand’s motion (BFG) and plotted the 

corresponding position-time graph that was projected on a screen in front of the class in real-

time. With this activity, I built upon the BFG that students and I had used to call attention to the 

distance and time of the back-and-forth motion of one’s hand as it created waves in a slinky. 

Wave-form graphs were new to these students and I was aiming to connect these graphs to 

students’ familiar prior experiences with slinkies and previous concepts of amplitude and period. 

This demonstration shared similarities with their previous two slinky experiments, namely the 

same artifacts (slinky and motion sensor) and experimental setup that were used for generating 

waves, and involved the concepts of period and amplitude of waves created by a BFG. 

The task following the demonstration prompted students to apply these concepts of 

amplitude and period to the continuous train of pulses and the graph produced by the motion 

sensor. The task asked students to obtain values of any wave characteristics possible. In this way, 

I wanted to find out whether students could identify other relevant characteristics that could be 

quantified. Such wave characteristics may include wavelength, frequency, or wave speed by 

calculating the wavelength divided by the period. After working in their teams for several 

minutes, I asked Brian to describe a wave characteristic his team was able to measure. Figure 

4.1.10 shows how Brian made a quick BFG by using the laser pointer to trace along the curve 

from a trough to the next crest and back to the next trough where the same pattern would be 
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repeated. This demonstrated his understanding of the seeing one wave cycle on the motion 

sensor graph.  This is significant because he started at the trough and traced up to the crest and 

back down to the following trough, which corresponded to the hand motion that initially moved 

to the left (toward the crest) and then to the right as it returned to where it started (back down to 

the trough). In his speech, he linked one wave cycle on the graph with the concept of period, 

saying: “we did the time between the uh, the time for uh, to produce one wave, and our time was 

0.2 seconds because it took about 0.2 seconds to create one wave.” I sought more elaboration by 

asking Brian to show one complete wave cycle on the graph. He replied, “because for every 

motion [Mallory] does, it creates one wave, so this would be one wave [traces graph from trough 

to trough in same way as seen in Figure 4.1.10] and this would be one wave [traces next wave 

cycle from trough to trough] and so on.”  

Four modes (gestural, artifactual, graphical, and linguistic) were all in use providing 

opportunities for meaning making for Brian and the rest of the class. Brian’s speech and gesture 

provided his peers and me access into his ideas, which were scientifically accurate. His definition 

of period as “time for one wave” was based on his definition of one wave, which is why I asked 

him to clarify what he meant by one wave graphically using the laser pointer. His talk while 

using a laser pointer to trace one wave cycle on the graph allowed him to successfully transduct 

the concept of one wave cycle between the artifactual mode by referencing Mallory creating the 

slinky wave, the BFG (i.e., enacting the motion of Mallory’s hand using a BFG), and the 

graphical modality by tracing one full wave cycle on a waveform graph. Moreover, he used the 

time axis afforded by the graphical modality alongside his recognition of one wave cycle on the 

graph to quantify the period of the wave.    
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Figure 4.1.10. (Day 6, 15:26). Brian uses laser pointer to trace out one full cycle on the 

waveform graph. The dotted line denotes the path Brian traces with the laser pointer.  

 

 

Later in the same activity, Mallory moved her hand up and down as if she were creating a 

wave (i.e., made a BFG) in relation to the waveform graph to define one wave cycle and the 

period (Fig. 4.1.11a). The difference in the BFG used here by Mallory and the one that Brian 

made earlier was that her BFG had an undulating form to it, and, thus, transformed into a 

combination between a BFG and a UHG–an up and down hand movement that was propagating 

to the right. The BFG was now being connected to the curved sinusoidal shape of the graph, and 

in doing so, was taking on an undulating characteristic to resemble the line’s shape. I further 

explicated this link between referencing the creation of waves in a slinky through a BFG to the 

UHG’s referencing of the sinusoidal shape of the waveform graph by deictically gesturing to the 

specific points on the waveform to which Mallory referred with her iconic hand gesture. As seen 

in Fig.4.1.11b, I made the same gesture as the one she made from her seat; however, my gesture 

was made on top of the waveform graph while I deictically pointed out the beginning and ending 

laser pointer 
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points for one wave cycle. My gestures occurred simultaneously with Mallory’s speech as I tried 

to superimpose her speech and gesture with my own gestures.  

 

 

     

Figure 4.1.11. (a), (Day 6, 16:07). Mallory uses a combination of a BFG and UHG in relation to 

the waveform graph to define one wave cycle and the period by moving her hand up and down as 

if she was creating a wave, but also showing the propagation of the wave. The motion of her 

hand is shown by the dotted line. (b), (Day 6, 16:20). I repeat Mallory’s gesture by deictically 

gesturing to points on the projected waveform graph corresponding to the points Mallory was 

describing from her seat. 

 

 

On the following day (Day 7), the students worked in their teams on practice problems. 

The focal group, including Zeke, looked up the new term “longitudinal” in their textbook after 

they noticed it in one of the practice problems. The textbook page they reviewed is seen in 

Figure 4.1.12. After reading this page, Zeke summarized it to his peers, saying “oh this is when 

you go like that,” while simultaneously gesturing as if he were creating a wave in the slinky by 

moving his hand forward and backward instead of side to side (Fig. 4.1.13a). Here, Zeke used a 

Mallory 
(a) (b) 
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BFG as a means of enacting the textbook’s textual and diagrammatic definition seen in Figure 

4.1.12. Since the BFG was already a familiar aspect of the class’s multimodal discourse and 

carried meaning in relation to wave production and analysis, Zeke easily appropriated the 

textbook’s explanation using the BFG and used the gesture in his explanation of the term to his 

peers. 

 

 

 

Figure 4.1.12. (Day 7). Textbook page on transverse and longitudinal waves (Hsu, 2004, p. 267).  



66 
 
 

 

(a)    

(b)    

Figure 4.1.13. (a), (Day 7, 39:23). Zeke attempts to explain his interpretation to his peers by 

pretending to create a wave in the slinky by moving his hand forwards (picture to the left) and 

backwards (picture to the right), instead of side to side. (b), (Day 7, 42:00). Katie pushes forward 

with her hand as she speaks as she engages with the meaning of “distance between successive 

compressions.” 

 

   

His group peers later enacted this same gesture.  They were working on the following 

practice problem: “A longitudinal wave that has a frequency of 20 Hz travels along a slinky. If 

the distance between successive compressions is 2 ft., what is the speed of the wave?” Katie and 

Addy both made the same UHG that Zeke first used earlier as he made meaning of the “distance 

between successive compressions” in the problem. Katie’s gestures, seen in Figure 4.1.13b, 

Zeke 

Katie 
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occurred while she verbally interpreted the written text–, “so it’d be like that, it’s going like this 

[same forward-and-backward hand gesture] instead of like that [side-to-side hand gesture], so I 

think it would be the wavelength.” She described the orientation of the hand’s back-and-forth 

motion as she contrasted the forward-and-backward motion in this context with the side-to-side 

motion that may have been more familiar from past experiences. The gesture made her contrast 

salient and allowed her to publically reason that the compression was simply this forward-

backward gesture that created the wave pulse, which was similar to the side-to-side gesture used 

to create pulses in previous activities. By defining compression in this way, she further reasoned 

that the “distance between successive compressions” stated in the text must be the distance 

between wave pulses, which led her to the conclusion that this must be referring to wavelength.   

Kevin also used the BFG to add meaning to his understanding when he later realized that 

“compressions are like the uh top parts of the longitudinal ones,” which he said as he 

simultaneously gestured the top peak of a sinusoidal UHG. Together, these provide evidence of 

his linking a transverse or sinusoidal wave using both speech and gesture) to longitudinal waves 

using only speech. Through his speech and gesture, he publically connected a transverse wave’s 

sinusoidal form and UHG with a longitudinal wave’s compressional form and BFG. It is not just 

the gesture that promoted this connection, but the equivalence of the specific part of the 

sinusoidal UHG to the new idea of compressions in longitudinal waves. He connected these 

compressions with the top part or crest of the sinusoidal UHG, making the UHG critical to his 

development of this idea and his articulation of the idea to his peers.   

 Zeke again used the BFG as he publically described what wave characteristics he 

considered as directly controlled by the source. The gesture was an enactment of the wave source 

for the slinky and afforded Zeke a referent for his idea. Zeke suggested “wave height,” then 
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made a wide, sweeping UHG seen in Figure 4.1.14a-b as he said, “you can make it HIGHER” 

emphasizing the word higher by drawing out his speech as he simultaneously gestured. Across 

speech and gesture, Zeke demonstrated conceptual understanding, as well as how to manipulate 

artifacts as he referenced wave-generation in slinkies with his hand’s BFG. By using the term 

height instead of amplitude, which is the scientific term that the students had not been introduced 

yet, Zeke demonstrated meaningful and scientifically canonical understanding.  

 

 

   

Figure 4.1.14. (Day 8, 28:35). Zeke suggests “wave height” as he makes a wide, sweeping BFG.  

 

 

Megan also used the BFG by moving her hand back and forth quickly while suggesting 

frequency as a wave characteristic whose value is directly controlled by the wave’s source. Zeke 

and Megan’s respective use of the BFG suggested that their ideas were stemming from their 

experiences in the slinky experiments. The BFG mediated between the question of what wave 

characteristics were controlled by the source and the back and forth motion used to create waves 

in a slinky.  Their prior understandings related to waves, which were based on their experiences 

creating waves with the slinky, facilitated their conceptual understanding that a wave’s 

Zeke 
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amplitude depends on the source’s amplitude. Moreover, they offered the other students an 

opportunity to think about how the hand had direct control over both wave characteristics, 

frequency (i.e., how quickly the hand moves back-and-forth) and amplitude (i.e., how far the 

hand moves back and forth).  

 

 

   

Figure 4.1.15. (a), (Day 8, 40:29). Megan gestures right and left to represent the side-to-side 

motion of a particle in the medium of a wave. (b), (Day 8, 41:04). Mallory creates waves in a 

slinky to clarify the “right” and “left” directions. 

 

 

Later in the same discussion, Megan again used the BFG with her speech. I asked the 

class, “how does the particle or piece of the material compare to the motion of the pulse?” 

Megan responded saying, “I think when the pulse travels through, it moves to the right [gestures 

her hand to the right, as seen in Figure 4.1.15a] with the pulse and then it moves back to the left 

with the pulse [moves her hand to the left].” To clarify the “left” and “right” aspects of Megan’s 

claim, I had Mallory create a wave on a slinky in front of the class. I asked everyone to look at 

her hand’s motion and compare its side-to-side motion to the pulse’s forward motion down the 

Megan 

Mallory (a) (b) 
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slinky seen in Figure 4.1.15b. In doing so, I revoiced Megan’s speech and gesture, but included 

the actual artifacts she appeared to envisage during her utterance. This alleviated the need for 

students to imagine the motion of the hand and slinky since it was now there in front of them, 

and allowed me to focus the students’ attention to explicit aspects (i.e., the hand’s side-to-side 

motion and the pulse’s propagation along the slinky). 

Two days later, on Day 10 (see Appendix), Zeke called upon the UHG in the same way it 

was first used on Day 1 to enact water waves, but here, Zeke used it to show the propagational 

motion of a wave in a standing wave, as seen in the photograph in Figure 4.1.16. Zeke made an 

UHG with one hand while simultaneously using the other to depict a central axis. The lateral 

movement of his hand represented the propagation of the wave as it crossed the central axis, 

articulating his point about how the intersection created a node. The lines drawn over the photo 

are based on the motion of Zeke’s hand and his verbal narration of his gestures. The discourse 

excerpt shown in Figure 4.1.16 shows that Zeke envisaged the standing wave as a moving wave 

on a string, whose reflections aligned with the incident waves such that the points on the middle 

axis where both the incident and reflected waves cross and, therefore, appear as stationary nodes. 

Although Zeke’s speech did not have this level of articulation, the underlying concepts were the 

same, and his speech together with his gesturing revealed his scientifically accurate thinking. 

However, his interpretation was likely not perceived by students in the same way that I did at this 

moment in class. Since I already understood how standing waves are created and could see his 

gestures and speech working together to express his conception, it was easier for me to 

understand his thinking. His ideas were not taken up by his peers, possibly due to a variety of 

factors, including difficulty in following his thinking, lack of attention, or inability to see his 

gestures. 
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All transcripts in this manuscript will follow the same coding scheme. Speech will be 

written as text, and researcher comments will be text that is both italicized and placed within 

brackets. Overlapping speech will be bounded by an equal sign at the beginning and end of both 

overlapping utterances. A long dash will denote when a participant is interrupted.   

 

   

1 Teacher: Do you see the stationary points in 

the standing wave, how can we 

explain those? 

 [Zeke’s UHG with his right hand enacts a 

wave in a standing wave as his left hand 

represents a central axis.] 

2 Zeke: because if like the wave is going like 

up here [not pictured, but right hand 

moves to right representing incident 

wave], then well, this is the point 

where it’s in the middle [uses left 

hand to mark the middle axis which 

is shown to the right as a dotted 

line], then when it’s coming back it 

would be going up and then coming 

back through the same point [right 

hand traces the path of a reflected 

wave moving left to the middle axis 

shown to the right as a solid line]. 

 

Figure 4.1.16. (Day 10, 5:25-5:54). Zeke’s explanation for the existence of nodes in a standing 

wave. 

 

 

 

 

The last day of the unit (Day 12) was a lab practicum over the entire unit. A mass hanger 

with one 100-gram mass hung from a vertical spring and bobbed up and down. The students 

were asked to consider this mass hanger as a potential wave source, and to measure in their 

teams all possible characteristics of waves that would have been generated if a medium were 

attached to the bobbing mass. However, since there was no medium attached, the bobbing mass 

Zeke 
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was not generating any visible waves like the waves in a slinky. Students’ team exploration of 

the bobbing mass was done in preparation for an oral examination in which I would ask different 

questions to the members of a team, which would be answered individually. The students did not 

know the questions before they were asked. The students could measure the period, frequency, 

and amplitude of waves generated by the bobbing mass, but they were not offered these 

possibilities.  They had to determine what characteristics they could measure, how to measure 

each of them, and actually make the measurement in preparation of the oral exam. This was 

challenging since the waves propagating away from the wave source (i.e., the bobbing mass) 

would be in air, and, thus, not visible to students. This also limited the wave characteristics 

students could measure since wavelength and propagational speed would be not possible for 

students to measure in this context. 

The transcript shown in Figure 4.1.17 captured the first minute of the focal group 

preparation before the oral evaluation that Kevin videotaped. Both the BFG and UHG were 

present. Katie and Addy used the UHG to first indicate the wave’s propagation direction that was 

not visible. Katie enacted the wave by using an UHG to trace its sinusoidal shape as it 

propagated through the air, thus visualizing it for both herself and her teammates (Fig. 4.1.17, 

Unit 2). Such visualization was necessary for the measurements that students would be asked 

about during their subsequent oral examination. Katie’s and Addy’s UHGs can be seen in Units 

2, 5, and 7. In each of these cases, the mass’s bobbing motion was aligned with their hand’s up-

and-down motion, as the hand traced a sinusoidal path of propagation through the air away from 

the bobbing mass. These gestures alluded to the back-and-forth motion associated with waves, 

the sinusoidal shape the students were familiar with, and the waveform graph from which they 

knew how to make measurements. Thus, their UHG acted as a bridge between their conceptions 
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of wave characteristics in familiar contexts (i.e., waves produced in a slinky) and in various 

modalities (i.e., waveform graphs) and the new unfamiliar artifacts (i.e., mass on a spring) within 

a context with which they had not directly worked (i.e., bobbing mass).  

 

 

 

 

1 Addy: Alright, well like how do we like measure period 

and stuff if there’s no waves? [Addy puts the mass 

into a bobbing motion by pulling down on it] 

 

2 Katie: Well, because it’s going up and down, and if you 

attach something here [points to the bobbing 

mass, and her hand bobs up and down with the 

mass] 

 it’d be going like that [see picture, her speech 

pauses as she traces the dotted sinusoidal line 

path shown in the figure. Her hand’s up-and-

down motion is synchronized with the bobbing 

motion of the mass on a spring] and this the 

source [points to the bobbing mass] 

 

3 Addy: So we can’t like measure anything though, right?   

4 Katie: Yeah you can  

5 Addy: You can get the period [see picture, as she speaks 

she moves her hand tracing out the dotted 

sinusoidal line shown in the figure. Her hand’s 

up-and-down motion is synchronized with the 

bobbing motion of the mass on a spring.]  

 
6 Katie: You can get the period as the time it takes to go 

one  

 

7 Addy: Cuz we can’t like see a wave [see picture, her flat 

palmed hand gesture traces out the dotted 

sinusoidal line shown in the figure] so how do we 

know, how can we time it to get from like point A 

to point B? 

 
8 Kevin: Well,= ya know we can=  calculate the amount of 

time it takes to go back and forth so we can get 

the frequency 

 

9 Katie: =Can’t we get distance?= [overlaps with Kevin’s 

speech] 

 

Addy 

Katie 

Bobbing mass 
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10 Addy: Is this the wave, cuz it’s like a slinky? [gestures 

to the compressions in the spring using her index 

finger and thumb] 

 
11 Kevin: Like a compression, or like a longitudinal wave?  

12 Addy: Yeah, was the longitudinal like the one where you 

push it this way? [makes a forward-and-

backward pushing gesture that is not visibly clear 

enough for a digital still photo] 

 

13 Kevin: Yeah and then the slinky like spirals like going 

forward 

 

14 Addy: And this one was transverse, going back and forth 

[makes the side-to-side BFG as if creating a 

transverse wave seen in the picture to the right. 

The dotted arrows depict the side-to-side motion 

of her hand.] 

 
15 Kevin: Yeah the one where it just waves  

16 Addy: Fine  

  

Figure 4.1.17. Transcript of segment during the focal group’s lab practicum on the last day of the 

instructional unit.  

 

 

The similarity in appearance between the spring in the spring-mass system in this activity 

and the slinky that students had used in past activities generated confusion as seen in Unit 10 

(Fig. 4.1.17). Addy saw the spring compressing and stretching as the mass bobbed and 

mistakenly connected it to the compressing and stretching of a slinky as longitudinal waves pass 

through it. Her focus was on the spring, and its stretching and compressing as the medium, 

instead of the bob as a wave source in the medium of air, and its back and forth motion that 

produced transverse waves in the air around it. She and Kevin, used gestures as they talked 
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(although Kevin’s gestures cannot be seen easily as he was holding the camera) to negotiate 

longitudinal (Unit 12) and transverse (Unit 14) waves in relation to the vertical spring in front of 

them. Their iconic gestures depicted how their hand’s motion had created waves in their previous 

experiences with slinkies, with which they were more familiar than the bobbing mass, and 

provided an anchor to which they could link the bobbing mass. They were considering here for 

the first time the wave nature of the mass-spring system, so the resemblance between the spring 

and the slinkies, with which they were most familiar, caused them to incorrectly associate the 

two objects that were not functionally equivalent. The slinky had been the wave’s medium, with 

their hand acting as its source. The spring in this context had no relevance to the waves they 

were to analyze, except to provide the driving force to maintain the bob’s up and down motion. 

This was a critical distinction between this context and the previous slinky contexts; the spring 

was not the wave’s medium as in the slinky, but instead, it was part of the spring-mass system 

that acted as a wave source, which exhibited wave characteristics that I intended them to 

measure. Kevin referred to the slinky spirals going forward (Unit 13), when longitudinal waves 

were made in the slinky, which alludes to the concept of wave propagation, albeit incorrectly 

regarding this particular task. His observation stemmed from their iconic BFGs that provided a 

scaffold to their consideration of the perspective of the back and forth motion, which promoted 

their examination of the medium in which the wave propagates. Defining the medium as the 

spring would imply that they were analyzing longitudinal waves in the spring, whereas if air 

were the medium, the waves produced must be transverse. The gestures enacted their thinking 

about the bobbing mass in relation to waves it might produce by utilizing the BFG as a wave 

source. This allowed them to link what they already understood about waves from their prior 

experiences with the BFG to the bobbing mass since both are wave sources. The BFG was not 
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only more familiar, but was also often used with a slinky–a medium in which the propagation of 

waves produced by the BFG was visible. In the case of the bobbing mass, the medium in which 

the wave propagation was taking place was being negotiated by the group and could be either the 

air or the spring attached to the bob. The choice of medium depended on the orientation of the 

bob’s back and forth motion with respect to the line of propagation, which defines the wave as 

longitudinal or transverse. In Unit 5, Addy used the UHG to enact the propagation of a transverse 

wave in the air that would otherwise be invisible. The linkage between their BFG and the 

bobbing mass helped visualize the waves the bobbing mass would produce in the spring or the 

air, which were invisible in both cases, and choose which type of wave (longitudinal or 

transverse) to consider for their analysis. 

Summary 

The sinusoidal UHG emerged spontaneously on the first day of the unit and I became 

aware of its prominence as I observed my students’ repeated use during this first lesson. In light 

of this, I realized gesturing would be a critical modality for my students’ conceptual 

development and engagement in my classroom. Thus, I incorporated both types of gestures 

(UHG and BFG) into many of the activities throughout the rest of the unit to promote their usage 

and development, in hopes that gesturing would become a cornerstone for meaning making 

around wave characteristics across the entire unit. Both UHG and BFG were embodiments of 

micro-level motion associated with waves (Wittmann, 2002), which captured, respectively, the 

back-and-forth motion of a wave source and of the particles in a medium through which the 

wave passes. These hand gestures served as teaching and learning tools as I helped students 

construct meaning of wave characteristics such as amplitude, period, and frequency, as well as 

the sinusoidal propagation of waves. I used the BFG as a multimodal scaffold for students to 
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extrapolate a wave’s period and amplitude from a wave-form graph. I repeated Mallory’s BFG in 

front of the class to assign it additional value, and used deictic gestures to explicitly link the 

motion of her gesture to the points on a publically-displayed waveform graph that she described 

from her seat. I also used the BFG in conjunction with other modes to help students connect 

actions and experiences in their slinky experiments with diagrams and graphs of waves. I often 

superimposed both my UHG and BFG over diagrams and graphs in front of students to help 

them make these connections. I superimposed my UHG over the wavy-line drawing to suggest 

that the UHG was an enactment of the underlying motion associated with the wavy-line diagram. 

I revoiced Oliver’s idea and incorporated the BFG by patting the screen in-and-out at the center 

of a ripple drawing to provide perspective to the diagram. I also superimposed a BFG/UHG 

combination over top of the y-axis of a waveform graph to link a motion sensor’s sinusoidal 

graph to the student’s hand as it created waves in a slinky.  

Gesturing shared resemblance with other modalities. The sinusoidal UHG embodied 

students’ drawing of a wave on Day 1, and developed over time particularly as students engaged 

with the sinusoidal shape of waveform graphs. By the last two days of the unit (Days 11 and 12), 

students called upon UHGs to envisage wave propagation abstractly for standing waves and the 

mass on a spring’s wave produced in air, neither of which allow for propagation to be directly 

observed.   

The BFG stemmed from students’ experience producing waves in a slinky during their 

experiments as a prominent means for communicating about a wave’s source, and the oscillatory 

nature of wave sources in particular, especially when the wave source is one’s hand holding a 

slinky. It helped to articulate points of view or perspectives in our diagrams of experimental 

setups, and acted as a scaffold for students to understand how a wave’s period and amplitude 
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were depicted on a waveform graph. As students used the BFG in relation to graphs, which had a 

sinusoidal shape, the BFG acquired an undulating characteristic as students shifted from simply 

shaking their fist back and forth to tracing, in air, the sinusoidal shape of graph’s curve. This 

combination of the BFG with the UHG mediated students’ linking the wavy nature of the graph 

depicting wave propagation (in UHG) with the back and forth motion of the wave source and the 

medium’s particles (in BFG). In this way, the UHG came to represent the back and forth motion 

of the medium as waves propagated through it (particle motion). Therefore, both gestures were 

integral to my students’ concept development of wave characteristics, especially those 

characteristics such as amplitude and period whose values depended on the wave source’s back-

and-forth movement.  

Both gestures scaffolded my students toward more advanced discussions and meaning 

making as they continued to call upon the gestures throughout the unit. The gestures mediated 

students’ thinking about wave characteristics that were controlled by a wave’s source and their 

experiences producing waves in a slinky. They also helped the focal group during the lab 

practicum when the students were confused as to how the wave was propagating. Katie’s iconic 

gesturing depicted the wave’s propagation, as well as its undulation, by tracing the sinusoidal 

shape she imagined and shared with her team. 

As gestures evolved in both form and function throughout the unit, so did students’ 

conceptual understanding. For example, Brian successfully extended the representation of the 

concepts of wave cycle and wave period from one modality to another, namely from gesturing 

and using artifacts to graphs. Moreover, by shifting to the graphical modality in which he had not 

yet worked, he was able to use the time axis, afforded only by the graphical modality, alongside 

his understanding of how one wave cycle is represented on a graph to quantify the wave period, 
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or duration of one wave. As another example, Zeke was able to appropriate the textbook’s 

explanation using a BFG and use it in his explanation of the term to his peers in relation to their 

shared experiences. Katie also used a BFG in a similar way to reason that a compression is 

created by a forward-backward gesture, which is analogous to the side-to-side gesture that was 

used to create pulses in previous activities. By defining compression in this way, she further 

reasoned that the “distance between successive compressions” must be the distance between 

wave pulses, and must be referred to as the wavelength. Kevin also used the BFG to connect the 

crest of a transverse wave with the compression of a longitudinal wave. Thus, gestures were a 

critical modality for both my students and myself, as their teacher, to call upon while interacting 

and making meaning with each other. The intertwining of gestures with other modalities is 

further explored and discussed in the sections 5.1 and 5.2. 
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Diagrams 

In this section, I present how the form and function of diagrams evolved in my class 

during the 12-day unit on waves. Gesturing, on which Section 4.1 focused, in addition to other 

modalities, will be also discussed as it relates to the ways in which my students and I made 

meaning of diagrams and wave concepts.  

Diagramming and Its Co-Construction Among Classroom Participants 

On the first day of the unit (see Instructional Outline in Appendix), I asked each student 

to draw a wave on a small 1 x 1 ft. whiteboard. They then stood in a circle as a gallery-view of 

one another’s whiteboards and unveiled their boards simultaneously by flipping them over. To 

initiate a discussion over similarities and differences in their diagrams, I displayed my board 

showing a wavy-line drawing, which I had anticipated as being similar to many student drawings 

(Fig. 4.2.1). During the brief whole-class discussion that followed, students noticed two other 

prominent diagrams, all three of which are shown in Fig. 4.2.1. The wavy line is on the left, a 

partial ripple diagram commonly seen as depicting volume controls on electronic devices is 

shown in the middle, and a complete two-dimensional ripple diagram similar to an above view of 

ripples in a calm body of water is displayed on the right.  

These three diagrams were the focus of the subsequent discussion that generated more 

ideas about waves including how they could all depict waves from different perspectives, and 

how all waves share an undulating, or back-and-forth characteristic. As discussed in detail in the 

section 4.1 on gestures, students used undulating hand gestures to attribute up-and-down motion 

to the wavy line diagram, as well as forward propagation as the undulating hand was moved 

forward. The ripple diagrams were discussed as an “above view” of a wave, which two different 

students suggested as they explained to the class how the wavy line and ripples were both 

depicting a wave, but in different ways. As one of these students, Oliver had described, the 
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ripples were an “above view,” and the wavy line was a “side view” of a wave. These two wave 

diagrams and the wavy line in particular, would become part of my classroom’s cultural tools 

and serve as standards for how to diagram waves that would be composed and read throughout 

the instructional unit. By calling considerable attention to my students’ diagrams during the first 

day, and positioning them as objects of discussion, I highlighted diagramming as a cultural 

practice and valuable modality for making meaning of waves, which allowed my students to 

express, negotiate, and develop their ideas throughout the unit.   

 

 

  

 
 

Figure 4.2.1. (Day 1, 9:17). Gallery-view of students’ and my wave diagrams during the 1
st
 

lesson of the unit, with the three most common student-suggested wave diagrams sketched 

underneath.  

 

 

 

In my class, diagrams were particularly useful for representing spatial layouts and the 

relative positions of people and artifacts during an experiment. Although my students had been 

Me 
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consistently conducting experiments throughout the year, diagramming experimental setups had 

not been an explicit focus. I had not explicitly prompted students to draw such diagrams as part 

of conducting experiments.  Students had the choice to diagram their experimental setup 

alongside their results, which they were to always present on a 2x3 foot whiteboard following 

data collection as part of any experiment.  I often modeled how to diagram experimental setups, 

as well as led whole-class discussions about them, to encourage students’ initiative to diagram as 

a legitimate and valuable classroom practice, but students were never explicitly asked to include 

a diagram of the experimental setup on their whiteboards as part of their results summary.  

For the first experiment of the wave unit (Day 2), similarly to all previous experiments, 

there were no student handouts. The student inquiry was driven by a purpose statement projected 

on the screen in front of the class that stated, “Graphically and mathematically represent the 

relationship between wave speed and wave height for a long metal slinky.” The student groups 

collected data and each summarized their results on a 2 x 3-ft whiteboard. After the experiment, I 

selected four groups’ whiteboards to display publically as objects for a follow-up class 

discussion (see Figures 4.2.2a-d). Only two of the four groups had drawn diagrams, which are 

denoted by the dotted circles in the figure. Although the displayed boards represent only four of 

the seven groups, they captured both the type and ratio of diagrams drawn. The presence of 

diagrams, without any prompting, on about half of the groups’ whiteboards demonstrated that 

diagramming was useful and valued modality for some students. The lack of detail in their 

diagrams (such as labels, including brackets and arrows) as compared to the diagrams that 

students would eventually draw later in the unit (e.g., see 4.2.14), suggested that early on into the 

unit, students were not proficient in how to use diagrams as a cultural tool.  
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The focal group’s diagram (Fig. 4.2.2a) had the most detail and showed the slinky being 

held by a person at each of its ends. Its only purpose was to show the positions of the participants 

relative to the slinky (an experimental artifact). The other diagram seen in Fig. 4.2.2b does not 

show any participants and their positions. Its function was likely to show the shape of the slinky 

at some instant as waves traveled through it. In doing so, students were most likely calling upon 

the wavy-line diagram from the previous day. The text listed next to the diagram, “overhead 

view of motion,” supported this connection since the discussion of the wavy line diagram during 

the previous day emphasized perspective or vantage point. The wavy line that had been 

perceived as a “side view” of a wave during the previous day’s discussion was now correctly 

described by these students as an “overhead” or above view. This suggested that the students 

were not stating verbatim the perspective from the previous discussion, and indeed understood 

how to assign perspective that varied for the wavy line between this instance and that of the 

previous day. The wavy or sinusoidal shape of the slinky as waves traveled through it in this 

experiment resembled the wavy line drawing, and might have motivated the students in this 

group to include it as a diagram. The choice some students made to include the wavy line 

diagram on their whiteboard for this experiment indicates some value that these students had 

placed on this form of diagram, and that they had constructed this representation as a meaningful 

depiction of a wave. The public nature of both diagrams promoted diagramming as a practice of 

communicating in my classroom, and as a prominent modality for students and myself to call 

upon as we continued to make meaning of waves. 

 During the next day’s (Day 3) follow-up lecture, I modeled for students how to diagram 

the experimental setup from the previous day’s experiment. Using speech and gestures, I focused 

the class’ attention to my diagram’s features such as the labeled arrows that represented 
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measured quantities, and the positions and actions of students relative to the experimental 

artifacts (see Fig. 4.2.3). My intention was to help my students appropriate diagramming 

practices and enact them during future diagramming opportunities. I considered the syntax and 

semantics of diagrams (i.e., the diagrammatical grammar) as a resource of the sociocultural 

practice of science that could facilitate the collective construction of ideas. 

 

 

 

      
 

     
 

Figure 4.2.2. (end of Day 2). Student-groups’ whiteboards of wave speed vs. height slinky 

experiment. (a) shows the focal group’s board. 

 

 

 

The following day (Day 4), when Raymond suggested an experimental setup that utilized 

a motion sensor to measure the quickness of a person’s hand that generated a wave in the slinky, 

I asked him to diagram the setup in front of the class, which is where the transcript in Figure 

4.2.4 begins. In Unit 1, I asked Raymond to describe where he envisioned the motion sensor to 

be located. He immediately elected to diagram the location of the motion sensor as he also spoke.  

(a) (b) 

(c) (d) 
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By publically diagramming the setup, the position of the motion sensor relative to the slinky and 

hand’s motion became well defined for the entire class. Raymond first depicted someone’s hand 

holding the slinky at the bottom, and then drew a motion sensor facing the hand along the axis of 

its side-to-side motion. He then went on to label the diagram using arrows labeled “+” and “-” 

such that moving away from the sensor resulted in motion in the positive direction and motion 

toward to sensor was therefore in the negative direction, as seen in Unit 3. His speech in 

conjunction with his diagramming allowed Raymond to articulate his ideas for the rest of the 

class providing an appropriate setup given this experiment’s purpose. This also provided me 

access into Raymond’s understanding at that moment, of the motion sensor’s utility and function 

as a data collection device. It also suggested that he understood the spatial arrangement of the 

motion sensor in relation to the artifacts (hand and slinky) and the manipulation of the artifacts 

(the hand’s moving the slinky back and forth).   

 

 

   
 

Figure 4.2.3. (Day 3, 4:00). During the post-experiment lecture, I draw and explain my diagram 

of the experimental setup for the wave speed vs. height slinky experiment.  
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Figure 4.2.4. (Day 3, 23:53-24:36). Multimodal transcript of Raymond’s presentation to the class 

of an experimental setup to obtain the relationship between wave speed and hand quickness [or 

period]. 

 

 

  

 On Day 4, while the focal group was working on experimentally determining the 

relationship between wave speed and hand-quickness (or period), Katie suggested they diagram 

their setup when they were summarizing their findings on a large 2 x 3-ft. whiteboard. Figure 

4.2.5 shows the excerpt of the multimodal discourse during the collective diagramming. The 

final diagram of the setup seen at the end of the transcript (Unit 13) resembles Raymond’s 

diagram of the setup during Day 2’s whole-class discussion (Image (b), Unit 3, Fig. 4.2.4). In 

1 Teacher Describe where you’re putting the 

motion sensor so we know what’s 

going on. 

 

2 Raymond Oh ok. So you have your slinky going 

like this [draws a slinky]  

and you have your motion sensor 

[pauses his speech as he draws a 

motion sensor]   

here, and then your hand  

[Raymond attempts to draw a hand 

holding the slinky at its bottom and 

Raymond and the class laughs because 

his drawing does not look much like a 

hand] 

 

3 Raymond And then as it moves this way it’s 

positive [draws an arrow pointing 

away from the slinky and labels it as 

“+” as seen in picture (a) to the right]  

and as it move this way it’s negative 

[draws a line pointing towards the 

slinky and labels it as “-” as seen in 

picture (b) to the right] 

   

Raymond 

motion sensor 

slinky 

(a) (b) 

hand 
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both cases, the diagrams showed a static slinky, since there were no waves drawn into the slinky, 

and a motion sensor to the side of one of the slinky’s ends. Katie also elected to draw a 

stopwatch to denote how they measured time. Their choices in what objects to draw reflected a 

collective understanding of the relevant artifacts for the experiment including those objects that 

were being manipulated (e.g., slinky) or used to collect data (e.g., motion sensor and stopwatch), 

and their spatial positions relative to each other.  

 

 

 

 

1 Katie We can draw our setup. 

 

2 Addy =Yeah= 

3 Kevin =Yeah= that’s good. 

4 Katie Ok we need a slinky [draws a slinky].  

Ok, and then, [draws a bracket at one 

end of the slinky as pictured to the 

right] 

that would be the period, right? 

5 Addy Yes, cuz that’s like I move my hand 

from like here [points finger to the top 

and bottom of the bracket] 

and then I moved it like—  

  
 

Bracket is now labeled “t/period”. 

6 Kevin —It can be the time slash amplitude. 

7 Addy Time slash period [speaks what Katie 

writes. Katie then labels the bracket 

“t/period” in the picture to the right]. 

8 Kevin I think we should draw like arrows for 

it cuz then it shows that it’s going this 

way [down] and then it comes back 

[up] [Katie draws a double-headed 

arrow as seen in the picture to the 

right]. 

    

 

 

bracket 



88 
 
 

 

 

Figure 4.2.5. (Day 4, 26:30-29:48). Multimodal transcript of focal group diagramming their 

experimental setup for the wave speed vs. hand-quickness (or period) slinky experiment. 

 

 

 

 

       
 

Figure 4.2.6. (Day 4, 34:30). Student-groups’ whiteboards for the wave speed vs. slinky length 

experiment. (b) Text accompanying the diagram: “We timed the time it took for the wave to go 

from point A to point B.”  

9 Addy Um, we can show our distance. 

[Katie draws a bracket along the 

entire slinky and labels it “distance 

(3m)”] 

Good! 

[Katie draws a stopwatch] 

And then we had a motion sensor right 

here, right? 

[Addy points to the end of the slinky 

where the brackets are] 

 

10 Katie Yes.  

 

11 Addy Kevin, can you take this [camera], it’s 

kinda hard to draw and hold.  

12 Kevin All right (says laughing). 

13 Addy So it should be facing this [end of the 

slinky]. 

[draws a motion sensor and labels it 

“motion sensor” denoted by the dotted 

circle in the picture to the right] 

Bracket depicting “distance” 

(a) (b) (c) (d) 



89 
 
 

 

The focal group was one of three groups conducting an experiment to find the 

relationship between wave speed and period. The other four groups were conducting an 

experiment seeking the relationship between wave speed and the slinky’s length. The four 

groups’ whiteboards summarizing their experimental results are shown in Fig. 4.2.6. I had not 

explicitly asked students to draw diagrams as part of their preparing a whiteboard, and of these 

four groups only two (4.2.6a, b) chose to include one. The resulting whiteboards of the three 

groups who conducted the other experiment are shown in Fig. 4.2.7. Of these three groups, only 

the focal group (Fig. 4.2.7a) chose to diagram their experimental setup.  

All three of the diagrams that students had created (Figures 4.2.6a,b and 4.2.7a) shared 

several similar characteristics. They each depicted artifacts–objects and devices utilized or 

manipulated in the experiment such as the slinky, and they all made use of labeled brackets. As 

previously discussed, these brackets represented an interval between two points. In modeling 

how to diagram various experimental setups throughout the year, I repeatedly drew labeled 

arrows, but never brackets, suggesting that the idea of using brackets to represent intervals 

emerged spontaneously from among the students. The growing predominance of brackets as a 

symbol suggests that students were both discursively shaping this symbol’s referent (e.g., the 

distance or interval), and using it to communicate their thinking. The growing utilization of 

brackets to diagrammatically represent an interval of distance or time functioned as a scaffold for 

students and me to communicate about an experimental setup.  Since all three groups who 

included brackets were not prompted, this provides evidence of a shared understanding among 

students about the diagrammatical representation of an interval, since I had consistently used 

arrows, and not brackets, throughout the school year as a symbol I had consistently suggested to 

represent intervals including distances. It is evident that students associated arrows with 



90 
 
 

 

direction, as seen with the arrows the focal group used in their diagram depicting their hand’s 

movement back-and-forth. However, in most cases, brackets were use to indicate distance 

between two points.  

 

 

 

 

 

 

     
 

Figure 4.2.7. (Day 4, 41:12). Student-groups’ whiteboards for the wave speed vs. period 

experiment. (a) Focal group’s board.  

 

 

The focal group’s whiteboard seen in Fig. 4.2.6a on Day 4 shared a similar trait with the 

diagram of the first slinky experimental setup I drew for the students during Day 2’s class (see 

Fig. 4.2.3). In both of these diagrams, the students’ manipulation of the slinky during the 

experiment was diagrammed using a superposition of the instance before the manipulation when 

the slinky laid in a straight line and after the manipulation as a wave propagated through it. 

However, the group did not attempt to represent the propagational aspect of this wave in the way 

I had modeled with an arrow labeled v (velocity) in the direction in which the pulse traveled.  

(a) (b) (c) 
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None of the groups diagrammed velocity in this way, but the group whose board is shown 

in Fig. 4.2.6b wrote text as a caption below their diagram in which they indicated that they had 

determined velocity as well as how they had done this. “We found V by doing 
t

d
V  .” They 

also used captions for their diagram to explain how they measured their distances and times used 

in the calculation of velocity. Although brackets in general do not have any directional aspects, 

this group labeled the sides of their bracket as “A” and “B,” and utilized this feature to add both 

the directional and propagational aspects using the supporting text, “We timed the time it took 

for the wave to go from point A to point B.” The order of these letters also suggested 

directionality for the distance of its linear motion (propagation).  

The three groups who diagrammed (Fig. 4.2.6a, b & 4.2.7a) all included text as captions 

or labels in their diagrams, which suggested that students in these groups viewed these 

characteristics as helpful to their articulation of other diagrammatical features. Written text is a 

mode that can act in isolation from other modes, but in these cases was treated as a diagrammatic 

characteristic that added meaning to other characteristics, such as linking a term (e.g., “distance” 

or “time/period”) to a symbol (e.g., bracket), or describing movements or artifact manipulations 

that were difficult to capture in diagrams. Although only three of the seven groups chose to draw 

diagrams of the setup for the second and third slinky experiments, both the slight increase in 

number of groups electing to draw a diagram as compared to the first slinky experiment 

(whiteboards seen in Fig. 4.2.2), in addition to the shared features of their diagrams, suggest 

some development towards a collective understanding of the form and function of diagramming 

experimental setups.    

During the next day (Day 5), I led a follow-up lecture summarizing the two slinky 

experiments from the previous day. As I began to draw the diagram for the wave speed vs. slinky 
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length experiment, I first drew the slinky (see Fig. 4.2.8a), and then asked the class, “what are 

the key components of a good, effective diagram” (Unit 1, Fig. 4.2.8). My initial act of drawing 

the slinky offered students a focal object onto which they suggested how to add other features 

onto my diagram. In Unit 2, Dustin responded with “arrows,” and then elaborated with the 

example of labeling the direction of velocity. His response supported the notion that arrows 

remained a powerful means for conveying both motion, and more specifically the direction of 

motion, in diagrams. In an attempt to strengthen my students’ use of arrows in their diagrams 

toward symbolizing other vector quantities in addition to velocity, I asked a broad question: 

“how do I know what arrows to include [in a diagram]?” (Unit 7). Raymond responded 

explaining that it depended on what the problem was asking, which Brian further articulated as 

what you are trying to find or measure (Unit 12). These responses indicate that students 

recognized that arrows represented variables and measured quantities, but struggled to verbally 

articulate the general function of arrows in diagrams beyond the example of velocity. By 

discussing the diagramming process with my class, I aimed at supporting the development of a 

collective diagrammatical grammar that my students and I could utilize and build upon during 

future activities, as well as attributing additional value to diagrams as a powerful modality and 

cultural resource for students to call upon by their own volition.   

After amplifying students’ ideas for specific characteristics to add to my diagram, I 

included them in it to model how to diagram the experimental setup (see the original and final 

versions of the diagram in Fig. 4.2.8). Based on their suggestions, I added the textual captions 

and labeled arrows seen in the final version of my diagram at the bottom of the transcript in 

Figure 4.2.8. The transcribed discourse between the original and final version of my diagram 

positioned the diagrammatic modality as a prominent mode with which our speech develops. Our 
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speech mediated the signs and symbols we elected to add to my diagram. We attributed meaning 

to its features through our talk about them. Instead of my simply modeling how to draw a 

diagram, it was critical to our collective development of diagrammatical grammar that I paused 

and asked questions to provide opportunities for students to discuss which features to include as 

well as justify their choices. The ideas that students were publically offering  afforded them and 

the rest of the class an opportunity to suggest referents and construct meanings of these features 

together, which promoted the collective development of our class’ diagrammatical grammar and 

conceptual understandings.      

 

 

 

 
Initial version of my diagram of the wave speed vs. slinky length’s experimental setup that 

is projected in front of the students with ensuing discourse following. 

 

1 Teacher: What are the key components of drawing a good, effective diagram? 

(pauses for hands to raise)  

Dustin, yes? (call s on Dustin) 

2 Dustin: Arrows. 

3 Teacher: Arrows! Explain what you mean. 

4 Dustin: Uh arrows to show like which way the velocity is going 

5 Teacher: Right, we want arrows. That’s good! Now let’s be more general about it, like 

yes we want an arrow to represent speed, but how do we know what arrows to 

include? What are those arrows showing? Why did he say arrows? And speak 

in general, like we’re talking about in diagrams, but in general, how are arrows 

used? 

6 Robert: To label uh label the direction of speed or whatever? 

7 Teacher: So arrows show direction and in this case they’re labeling the arrow as speed 

to show the direction of speed. But how do I know when to use speed versus 

acceleration versus force versus distance versus whatever, how do I know what 

arrows to include?  
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Figure 4.2.8. (Day 5, 12:18-15:15). Transcript during the follow-up lecture on Slinky 

Experiments, where I drew a diagram of the experimental setup and had students discuss the key 

elements of the diagram. 

 

 

 

Diagrams were also prevalent in the textbook used in this class (Hsu, 2004) and 

resembled the diagrams my students and I had drawn because of the similar artifacts and 

contexts (waves created in a slinky by moving your hand back and forth), and the use of arrows 

8 Raymond: The type of problem you’re answering? 

9 Teacher: Can you elaborate a bit on that? 

10 Raymond: So like if was a kinematic, you’d have to show velocity, like that it’s moving 

11 Teacher: (I sense confusion in many of the students so I take a step back from the 

discussion and  summarize the ideas leading up to this point for a minute, 

which was omitted from this transcript) 

How do I know when to include an arrow for velocity, and when I can just 

show it moving, but leave out the labeled arrow?  

12 Brian: I think you should label what you’re trying to find and what you’re trying to 

measure 

13 Teacher: Yes! So it comes to this, in a good diagram we’re gonna put every variable 

that’s relevant, that’s either being measured or that’s given in a problem like in 

the text. This is an experiment so we get to chose whatever we measure, those 

are our givens and if we’re trying to calculate something, then we also want to 

include that ‘cause we’re trying to show how those variabe relate to each other 

using  a diagram. 

(I then add the labeled arrows and accomplanying text to my initial diagram, 

resulting in the diagram pictured below)   

 

 
Final version of my diagram of the wave speed vs. slinky length’s that is completed in front 

of the students by the end of the discourse excerpt shown above. 
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to represent motion. On Day 7, students worked in small groups on a set of practice problems. 

They had not yet learned the terms transverse and longitudinal. To introduce the terms, I 

constructed a problem (Problem #5), seen in its entirety in Fig. 4.2.9, intending that students 

would seek the definitions and make meaning of the new terms using the context of the problem.  

I had noted to the students before they began that these terms were in fact new to them, and that 

they could look up their definitions in their textbook.   

 

 

 
 

Figure 4.2.9. (Day 7). Problem 5 from the set of practice problems on which students worked 

together in small groups.   

 

 

 

 

 

 The textbook page that explained transverse and longitudinal waves is shown in Fig. 

4.1.12 (Hsu, 2004, p. 267). Zeke, Katie, Addy and Kevin were working together on Problem 5 as 

Zeke referred to this page for help. Zeke was the only student to look to the textbook, and it 

seemed that he aimed to find information for the sake of the group and not just his own learning. 

It is impossible to know what precise elements and parts of the textbook page he focused on, but 



96 
 
 

 

I know he only viewed the page for a few seconds before saying, “oh!” as if both realizing the 

answer and being surprised by it. As seen in Fig. 4.2.10, Zeke then demonstrated for his peers 

how he made meaning of the textbook’s definition of longitudinal waves saying “it goes like 

that,” while enacting the textbook’s diagram of a hand moving forwards and backwards with a 

gesture (as opposed to the side-to-side hand movement done during their slinky experiments). 

Although it is unclear if the written text or diagram or both in the textbook allowed Zeke to 

realize this definition, his gesture shown in Fig. 4.2.10 embodies the same hand movement as 

displayed in the textbook’s diagram, which may be seen in the dotted circle in Fig. 4.1.12.  

 

 

 
 

Reproduction of Figure 4.1.12. (Day 7). Textbook page on transverse and longitudinal waves 

(Hsu, 2004, p. 267).  
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Figure 4.2.10. (Day 7, 39:23). Zeke attempts to explain his interpretation of the textbook’s 

definition of longitudinal waves to the rest of his group by pretending to create a wave in the 

slinky by (a) moving his hand forwards and (b) backwards as denoted by the dotted arrows.  

 

 

The group did not initially react to Zeke’s idea, but one minute later Katie made the same 

gesture as Zeke while saying, “it’s going like this so it’s not amplitude,” as she reasoned with 

Addy which wave characteristic–wavelength or amplitude–would more likely represent the 

“distance between two successive compressions,” which was text from a different practice 

problem’s question. Katie’s gesture demonstrates that although she did not react to Zeke’s idea 

initially, she understood it and was able to call upon the gesture when it was appropriate and 

necessary to do so in a later problem. 

The next day (Day 8), a group of two students, Mallory and Megan, chose to draw a 

diagram to communicate their ideas without my prompting to do so. This was the first instance 

where a group of students chose to use the diagrammatical modality on their whiteboard to help 

explain their ideas within a context other than experimental setups. Mallory and Megan had 

worked together to prepare the whiteboard aimed at explaining their answer to Problem 3 in the 

set of practice problems they completed together the day before during class. Mallory was later 

Zeke 

(a) (b) 
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called to publically present her and Megan’s whiteboard to the rest of the class (see Fig. 4.2.11). 

Their problem read, “What happens to the period, wavelength, and speed of a wave on a taut 

string when the frequency is doubled? Explain.” Mallory and Megan elected to use a diagram 

and text to describe the characteristic of frequency, and particularly its relationship with 

wavelength in order to answer the question.  

   

 

 

 

Figure 4.2.11. (Day 8, 24:20). Mallory (Group 3) uses her group’s whiteboard to help explain 

their solutions to Problem 3: “What happens to the period, wavelength, and speed of a wave on a 

taut string when the frequency is doubled? Explain.” 

 

When Mallory presented the whiteboard to the class, she read the text as she pointed to 

the diagram to support the text. Their text included: “period is ½ of original because it is the 

inverse of the frequency”; “wavelength is shorter because the # of cycles per second is doubled 

because there are more waves in the period”; and “the speed stays the same because frequency 

doesn’t affect speed–medium does!” (Fig. 4.2.11). Mallory pointed to the diagram as she said 

Mallory 
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that the wavelength would be shorter as a justification for her verbal answer. The text answers 

the question, but the diagram provides the rationale for their answer. Her deictic gesture to the 

diagram, which displays the two waves–one with twice the frequency and half the wavelength as 

the other, was simultaneous to her answer that the wavelength would be shorter. The diagram 

represents a scientifically correct definition of wavelength and an inverse relationship between 

frequency and wavelength, and accurately provides rationale for their answer written next to it.    

Their phrase: “more waves in the period,” incorrectly used the scientific term “period.” 

Period is the time for one oscillation, and they had already stated that the wave’s period would be 

half of the original. However, taking “period” to mean “amount of time” in colloquial, everyday, 

and lifeworld language explains the students’ use of this word to communicate that there are 

more waves in the same period of time.  

Although, the students’ text focused directly on how the wave characteristics (i.e., period, 

wavelength, and speed) changed in response to the frequency doubling (which is what the 

problem was asking), their diagram focused on depicting what doubling the frequency looks like 

for waves in a slinky, which was a familiar context that they had engaged with many times 

before. Once doubling the frequency was visualized, the subsequent changes to the other wave 

characteristics could be noted, and noted in a visual way. Whereas the text focused directly on 

the wave characteristics other than frequency, the diagram focused directly on the frequency and 

could allow the reader to indirectly infer the consequences of doubling of frequency to the other 

wave characteristics. The diagram seen in Figure 4.2.11 shows a slinky that had two wave cycles 

along its length vertically juxtaposed with a slinky that had four wave cycles along its length, 

which captures the idea that frequency was doubled. The vertical alignment of these two slinkies 

allowed for representation of effects of frequency change (i.e., more wave cycles) on wavelength 
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(i.e., shorter wavelength), which were highlighted in the text on the students’ whiteboard. 

Mallory and Megan’s choice to use a diagram suggested that they valued diagrams as a modality 

to meaningfully communicate their ideas, and their conceptual understanding was represented 

within the diagrammatical modality.  

 

On the following day (Day 9) when students were conducting slinky experiments to 

investigate the new topic of wave interference, the focal group negotiated the collective 

production of a diagram on their whiteboard where they were presenting their conclusions from 

the experiment. Figure 4.2.12 shows the multimodal discourse in the focal group and all groups’ 

whiteboards are presented in Figure 4.2.13-14.  

 

 

 

 

1 Katie: So like beginning, middle and end, 

right? 

 

2 Kevin: Yeah. 

(Katie writes “beginning,” “middle,” 

and “end” across the top of the 

whiteboard)  

So at the beginning the big wave an the 

small wave travel towards each other 

and at the middle they create a 

superwave and then at the end they 

were a little bit smaller. 

 

3 Katie: I’m gonna make it really obvious.  

(Katie is likely referring to making it 

really obvious that they used a small 

and large wave pulse in order to 

distinguish between the two pulses. 

Immediately after her utterance, she 

draws a large slinky wave and a 

smaller wave). 

So I’ll like draw an arrow going that 

way and an arrow going that way 

(points to each wave). 
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Figure 4.2.12. (Day 9, 22:20-24:17). Multimodal transcript of the focal group’s interactions 

while drawing of a diagram to present their experimental findings during a lesson on wave 

interference. Addy is videotaping. 

 

 

 

Students were to conduct experiments to answer two questions: (1) will waves pass 

through each other completely, do they bounce off completely, or a little bit of both?; (2) how 

will waves’ amplitudes be affected at the instant they interact—nothing, create a gigantic wave, 

completely destroy each other, etc.? The focal group created an experiment in which they 

simultaneously created one large and one small wave at opposing ends of a slinky that traveled 

towards each other, and found that the waves passed through each other. They used a large and 

4 Kevin: Yeah. 

(Katie draws two different colored 

arrows, one above each wave to denote 

their propagation towards each other 

as seen in the picutre to the right). 

5 Katie: (Katie draws one much larger wave 

under “middle”) 

So this is still going this way (gestures 

to the right as if she is going to draw a 

green arrow to the right) 

 

6 Kevin: And then we can draw like a red arrow 

interfering. 

7 Katie: Like that? 

8 Kevin: Yeah. 

9 Katie: And then.  

10 Kevin: And then the ending one.  

11 Katie: The small one is still going this way? 

(gestures left) 

(Katie draws a little wave) 

That’s just a little smaller. 

(Katie draws a the big wave now on the 

other side, see picture to the right). 
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small (amplitude) wave in order to distinguish the two waves from one another. Katie 

immediately elected to diagram what they did with the slinky in order to present their findings on 

a whiteboard, which forced her to choose critical instances to capture in the diagram. In Unit 1, 

she suggested that they drew their setup at three different times–the beginning, middle or during 

the waves’ interaction, and end. Depicting these three instances enabled their group to create 

snapshots of their experimental setup via the diagrams, which served as epistemological 

affordances (Bezemer & Kress, 2008) to organize and exhibit their conclusions. The beginning 

and end diagrams prove that the two wave pulses pass through each other, while the middle 

diagram supports their conclusion that the two pulses momentarily combine to make one even 

larger wave as they pass through one another.  

In Unit 3 of the transcript in Figure 4.2.12, Katie suggested drawing arrows to show the 

direction the waves traveled. Her use of arrows to represent the motion of the waves is an 

element that students and I had emphasized as an important feature of diagrams earlier, namely 

during the post-experiment discussion captured in the transcript in Figure 4.2.8. Moreover, she 

color-coded the arrows to keep the arrows, and waves to which they corresponded, distinct from 

one another that could reduce ambiguity for the reader. If the arrows were all the same color, it 

would have been less clear that the waves passed though each other as opposed to bouncing off. 

The idea of waves passing through each other was further reinforced by the group’s decision to 

create and depict in their diagram one small and one large wave so they can be differentiated 

from each other. Since their diagram captured the way in which their experiment unfolded and 

the actual data they observed, it offered the rest of the class the same evidence that the focal 

group used to derive their conclusions. Katie’s choice to foreground diagrams as well as her 
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choice to draw these diagrams using features such as arrows, which we had previously discussed, 

demonstrated her understanding of diagrammatic grammar.  

After every group finished preparing their whiteboards, I chose three of the seven boards 

to display publically as focal objects for a class discussion (see Fig. 4.2.13).  I chose these three 

boards to provide our class an opportunity to discuss artifacts of groups that had different 

methods of experimentation and contrasting findings, and to not overwhelm students with too 

many boards. Figure 4.2.14 shows the other four whiteboards that were not displayed publically 

for discussion, which provide insight into the diagrammatical practices of the class.  

The focal group (Fig. 4.2.13a) and the group with the board shown in Fig. 4.2.13b both 

concluded that the waves passed through each other. They both produced two pulses that were 

distinct from each other. As previously mentioned, the focal group made one large and one small 

wave to make this distinction. However, the group whose board is seen in Fig. 4.2.13b 

diagrammed two experimental setups. One setup utilized one large and one small amplitude 

wave, similar to the focal group, except that the waves were inverted such that one pulse was 

created with a left-right hand movement at one end of the slinky whereas the other pulse was 

created with a right-left hand movement at the other end of the slinky. Their other setup followed 

the same premise of sending two distinct waves toward each other, but in this case, one was a 

transverse wave and the other a longitudinal wave. The board shown in Fig. 4.2.13c presented an 

incorrect conclusion that the two waves bounce off each other, which is a common student 

misconception regarding wave interference. Their diagram depicted two identical waves that 

collided and bounced off. Their use of two identical waves was the source of their mistake, 

which was made evident in their diagram. The waves were indistinguishable, and thus allowed 

for ambiguous interpretations. Although they actually passed through one another, they appeared 
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to these students to bounce off each other. The diagramming allowed for the other students and 

me to immediately recognize what this group, and other groups, did experimentally that led them 

to their conclusions. We were able to discuss the different conclusions in light of the diagrams. I 

had asked them to justify their claims, so their choosing to diagram signifies my students had 

constructed diagrams as valuable tools for describing experimental setups. Moreover, the ways in 

which students diagrammed, and their shared diagrammatical practices in particular, provided 

insights into the development of my class’s collective diagrammatical grammar.  

The other four groups’ whiteboards were not displayed for discussion, but were analyzed 

for the purposes of this study (see Fig. 4.2.14). Examining all seven boards showed that arrows 

were a prominent diagrammatic characteristic, and five of the seven boards included arrows. All 

but one of those five groups used arrows to represent motion and the direction of that motion. 

That group (Fig. 4.2.14c) used arrows as an interval representing amplitude, which the group 

claimed, in the text corresponding to the diagram, “flattened out” as the two inverted waves 

passed through each other. On that board, the text was supported by the middle diagram, labeled 

“contact,” which displayed a flattened out wave as the two waves passed through each other. 

Before that moment (labeled “start”), and after (labeled  “end”), the waves are shown to have 

amplitude denoted by arrows, which further explicated the students’ rationale for the conclusion 

shared in the text on their board. 
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Figure 4.2.13. (Day 9). The three whiteboards summarizing students’ ideas concerning wave 

interference that are publically displayed as focal objects for a class discussion.  

 

 

(a) (b) 

(c) 
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Figure 4.2.14. (Day 9). The four whiteboards summarizing students’ ideas concerning wave 

interference that are not publically displayed. 

 

 

Diagrams had been prominent during experimental activities, such as during the previous 

slinky experiments, especially as a means of presenting the experimental setup. In this lesson, 

students were again conducting experiments using slinkies, and called upon diagrams and text to 

communicate their findings on their whiteboards. This lesson’s purpose (i.e., to explain how two 

wave pulses interacted or interfered with each other) differed from the purpose of the previous 

(a) (b) 

(c) (d) 
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slinky experiments (i.e., to derive relationships between two wave characteristics). The 

explanatory nature of this task promoted the use of qualitative data such as observations, which 

students chose to describe using linguistic and diagrammatical modes.  

The diagrams on all of the whiteboards were foregrounded alongside text, but with 

varying degrees of prominence–text dominated in Figure 4.2.14b, diagram dominated in Figure 

4.2.13c and Figure 4.2.14d, and both text and diagrams were prominent in Figures 4.2.13a and 

4.2.14c.  The group with the board shown in Figure 4.2.13c chose to diagram the action they 

briefly described with words in such a way that their diagram and text reinforced each other. The 

diagram both demonstrated their conclusion stated in the text (i.e., “bounce off each other”) and 

justified their claim by showing what they did with the artifacts and what they observed as a 

result. The text alone conveyed the same idea, but the diagram intertwined the idea with the 

artifacts and observations they made to generate the idea. Thus, the meaning made by the 

diagram differed slightly from meaning made by the text, and together, text and diagram, 

represented a richer idea.  

Much of the writing on these boards was either captions or labels of the students’ 

diagrams. The captions either called attention to particular aspects of their diagrams or 

linguistically summarized meanings the authors intended to portray with the diagrams to 

minimize the reader’s interpretive ambiguity. For instance, the group with the board shown in 

Fig. 4.2.14c directly answered with text the two questions guiding the experiment, but used one 

diagram to show what they did and observed. Their answer to the first question was that “the 

waves appear to flatten out for a second and pass through each other, though the wave 

amplitudes change.” As noted above, the middle diagram labeled “contact” showed a flattened 

out wave. The before/after diagrams labeled “start” and “end” suggested that the waves passed 
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through one another, and that the waves’ amplitudes changed between the start and end as 

described in the text. Moreover, the diagram depicted the amplitudes at the end as smaller than 

the ones at the start. This was an epistemological affordance of the diagrams, showing how the 

amplitudes change, which the text did not describe. Their text could have stated that the 

amplitudes decreased, but students could not diagram the changing amplitude without showing 

the way in which it changed. The text and diagram formed a complementary relationship 

regarding meaning making. Furthermore, without the text to call the reader’s attention to this 

change, it would have been likely for the reader to overlook this detail. 

Their answer to the second question, which was about how the waves’ amplitudes might 

be affected at the instant they interact, stated that “the amplitudes seem to flatten out for a second 

and then switching as the energy moves through the waves.” The second part of this answer is 

unclear in terms of the students’ use of the word switching. Since the students used two waves of 

similar amplitudes, as depicted in the diagram, and the same color to depict the two waves, their 

diagram did not clarify what they meant by switching in their text. At least two possible 

interpretations of the word switching should be considered. One is that the two waves pass 

through each other, momentarily destruct at the instant they pass, and switch places as they 

continue in their respective directions (the wave initially on the left side switched to the right 

after passing through, and vice versa), which a scientifically accurate understanding of the 

phenomenon.  The other is that the two waves, at the time of the contact destruct, but bounce off 

each other and switch amplitudes, which is a scientifically inaccurate understanding, and one that 

I have encountered several times during my physics teaching career. Given the students’ answer 

to the first question, the former interpretation is more likely. Moreover, the group’s reference in 

their text that “energy moves through the waves” can be interpreted as a justification of the 
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diminished amplitudes they depicted in their diagram for the stage labeled “end” as opposed to 

that labeled “start.” As the waves travel through each other, there is a decrease of energy that 

maps onto the wave amplitudes.  

Other than captions, text was also used as labels. The textual labels both called attention 

to critical features of a diagram and named these features. Naming features may contribute 

additional meaning to the diagram by diminishing the range of interpretive choices that the 

reader has to make. For example, in Fig. 4.2.13b, the two waves and their respective arrows were 

labeled as “transverse wave” and “compression wave.” If the compressional wave was not 

named, the reader could have easily overlooked this feature based on how subtle this was 

depicted. In addition, the naming of the two waves focused the reader’s attention to the 

difference in the two opposing waves. The scientific terms “traverse wave” and “compression 

wave” imply differences in the relation between the direction of movement of the wave source 

and the direction of the wave propagation.         

On the next day (Day 10), the class period began with a standing wave apparatus set up in 

front of the class. Standing waves only exist at certain frequencies in which the wave moving to 

the left and the reflected wave moving to the right are aligned thereby creating a wave that 

appears stationary, or standing. I initiated a discussion by asking students for their ideas as to 

why there appeared to be stationary points (i.e., nodes) within the waves in the string. Zeke 

volunteered to answer, and used speech and gestures to explain his ideas, but struggled to make 

his points clear for the class. His speech and use of gestures enacting his idea suggested that he 

was “constructing” a diagram in the air based on what he envisioned, since he could not draw it 

being seated in the back of the classroom. His gesturing at this time was previously discussed in 

Section 4.1, and can be seen in Fig. 4.1.16. Recognizing that Zeke was attempting to diagram, 
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but lacked the semiotic resources to do so, I asked him to come up to the front and draw the 

diagram he was envisioning for the class. As he drew the diagram seen in Fig. 4.2.15, he had 

some difficulty talking about it and muttered inaudibly as if talking to himself. He drew the red-

colored wave from left to right and then the purple wave from right to left, which might have 

emphasized to the rest of the students watching him the directional aspects of those waves. These 

were incorporated in the construction of the diagram, which otherwise did not show any 

movement. There were no arrows. The specific direction of each wave is not as important in this 

context, which might explain why Zeke chose not to label the diagram with any arrows. On the 

other hand, the fact that they were traveling in opposite directions relative to one another is 

important for understanding that one wave is a reflection that is superimposed over the incident 

wave, which explains the existence of nodes. This idea was not represented in his diagram but 

was initially described by his iconic gesturing seen in Fig. 4.1.15. Zeke finished the diagram by 

drawing large dots at the stationary points in his diagram while saying, “and that’s where they 

intersect.” As he spoke, he simultaneously gestured by crossing his hands in the shape of an ‘X’ 

as an enactment of the red and purple (incident and reflected) waves’ intersection at a node. The 

direction in which he drew the red and purple waves during the construction of his diagram, 

coupled with his iconic gestures and speech from his seat before diagramming, suggested that he 

understood the idea that one of the waves reflected and therefore headed in opposite directions 

relative to one other.  His speech and gesture during his construction of the diagram 

complemented the diagram by calling the class’ attention to the point of intersection between the 

two waves, and then gesturing to show the relative position of the waves at the node as the 

passed through each other. He used color-coding (red and purple) to demarcate the incident and 

reflected waves, and then made large dots at the nodes to make those locations more pronounced. 
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Since standing waves were an entirely new context, Zeke seems to have used diagramming as a 

modality to anchor his ideas about the standing waves context, and in particular why the 

stationary points (nodes) existed. Diagramming was a critical modality for his engagement 

because he lacked the scientific language such as nodes, antinodes, and incident and reflected 

waves to verbally or textually articulate his ideas succinctly.  

 

 

 

 

Figure 4.2.15. (Day 10, 7:20). Zeke’s original diagram on a standing wave used to aid his 

explanation for the existence of nodes. 

 

 

Summary 

This section aimed at tracking the evolution of the form and function of diagrams used in 

my class. The specific forms of diagrams used and the ways in which they functioned to provide 

my students opportunities for meaning making constituted the diagrammatical grammar that my 

class explored. There were several critical characteristics of the diagrammatical grammar that my 

students and I co-constructed over the instructional unit, including: iconic depictions of artifacts, 

selection of critical instances to capture, artifact positioning and manipulation, representation of 

measured values or variables using arrows and brackets, and textual labels or captions.  

red 
purple 
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The development of diagrams as a prominent modality for meaning making took place as 

my students and I continuously diagrammed across activities. The students were initially led to 

diagram when I asked them to draw a wave during the first lesson (Fig. 4.2.1). The most 

common depiction emerging from students during this lesson was a wavy line, which was 

already familiar to them as an iconic representation of water waves. The wavy line diagram 

depicted water waves at an instant in time, which became the focus of our discussion on 

perspective or the point of view in diagrams (e.g., above view or side view). This was necessary 

for students to meaningfully create and read diagrams throughout the unit. Diagramming during 

the first slinky experiment was not prevalent, but the few diagrams produced functioned as 

public examples of diagramming that utilized perspective and spatial layouts of experimental 

artifacts. Moreover, one of the diagrams included the wavy line to depict waves in a slinky, 

which reflected application of the previous day’s diagram of water waves to a new wave context 

(i.e., waves in a slinky).   

Diagrams of experimental artifacts, and their relative positions within various 

experimental setups, became integral to students’ experimental investigations of waves. The act 

of diagramming created epistemological affordances for students to analyze particular instances, 

and consider details at those particular instances that students might not have otherwise engaged 

with and/or fully represented, such as how amplitude changed (Fig. 4.2.14c). I promoted their 

diagramming of experimental setups in particular to encourage not only their choice of this 

modality, but to also co-construct a collective diagrammatical grammar. I drew diagrams during 

lectures and whole-class discussions (e.g., Fig. 4.2.3 and 4.2.8), and asked students to draw 

diagrams for everyone to see (e.g., Fig. 4.2.4 and 4.2.15), of which we made meaning together as 

a class.  
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When diagramming a context, students had to select an instant or instances to depict. 

When carefully chosen, these often reflect critical instances in dynamic contexts such as before 

and after (or even during) as students did for their investigations of wave interference (Fig. 

4.2.13-14). Students’ ability to choose these instances reflected an understanding of how to 

analyze and simplify an event in order to explain it in more detail. They were forced to recognize 

when key moments occurred regarding the scientific concepts with which they were engaging. In 

the study of wave interference, students depicted the moment that two waves initially heading 

toward one another crossed in order to explain the way in which they interacted. Moreover, once 

students chose an instance to diagram, the motion was captured and frozen in time, which 

provided distinct epistemological affordances as the features of the diagram were constructed, 

negotiated, and labeled by the authors and then interpreted by the readers.   

Initial student diagrams were often iconic depictions of concrete objects, such as water 

(Fig. 4.2.1) and slinkies (Fig. 4.2.2b), with waves traveling through them and experimental 

artifacts (Fig. 4.2.2a). As students developed a collective grammar for diagramming, they 

became increasingly able to depict more elaborate details within their diagrams, which further 

explicated their ideas and encouraged meaning making among students. Such details included 

capturing experimental artifacts’ manipulations and actions that were often represented by 

arrows, as was the case in Raymond’s and then the focal group’s diagrams shown in Unit 3 of 

Fig. 4.2.4 and Unit 8 of Fig. 4.2.5, respectively. Arrows were an integral part of the 

diagrammatical modality throughout the unit. Aside from representing movement and artifact 

manipulation, arrows also depicted measured vector quantities, such as amplitude (Fig. 4.2.3 and 

4.2.14c) and speed (Fig. 4.2.3, 4.2.8b, 4.2.13a-c, and 4.2.14d), and added directional aspects to 

motion when depicting speed or movement. My students also used, without my modeling or 
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suggestion, brackets to depict intervals, such as distance (Fig. 4.2.6a, b, & 4.2.7a) and time (Unit 

4, Fig. 4.2.5). 

 The other prominent diagrammatical characteristic developed as part of the 

diagrammatical grammar was text written in the form of labels and captions within a diagram. 

Although text is a linguistic mode that often acts in isolation from other modes, when used 

within diagrams, text can be treated as a diagrammatic characteristic that adds meaning to both 

the other diagrammatical characteristics and the diagram in general. Labels, such as a numerical 

value or variable written next to an arrow, namely the brackets labeled “Δx” (Fig. 4.2.6a, b) or 

the naming of “transverse” and “longitudinal” waves (Fig. 4.2.14b), more explicitly denote the 

author’s representational intentions. Captions were students’ textual statements corresponding to 

aspects of their diagram. Mallory and Megan used captions underneath their diagrams (Fig. 

4.2.12), which included “frequency” and “2x frequency,” in order to focus the class’ attention to 

the specific concept or meaning they intended for their diagram to portray. These functioned as a 

way for the author of the diagrams to interpret the diagram minimizing the interpretive flexibility 

associated with their diagrams. The captions reduced the many meaning potentials through 

which a reader could interpret their diagram to converge on the author’s intended meaning. In the 

case of Mallory and Megan, they intended to depict how doubling the frequency of waves in a 

slinky would appear using a diagram in order to justify their claim that wavelength would be 

halved if frequency were doubled. Critical instances were also labeled with captions to name the 

instant or denote when the instant occurred relative to the entire motion represented by the 

diagram, such as “beginning,” “during,” and “end” (Fig. 4.2.13a & 4.2.14c).      

Students took the initiative to diagram when they felt diagrams would benefit their 

articulation of ideas. When students conducted their slinky experiments, they chose whether or 
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not to diagram their experimental setups on their whiteboards. Both the abundance of those 

groups who chose to diagram and the quality of the diagrams (i.e., sophistication of 

diagrammatical features and use of semiotic resources) they produced improved throughout the 

unit as a collective diagrammatical grammar was discursively developed over time. 

Diagramming became a norm of my class’s multimodal discourse, a part of my classroom’s 

cultural practices for students to call upon whenever they desired as an abbreviated or succinct 

way of visually depicting an idea, context, or event. As compared to the whiteboards produced 

after the first slinky experiment (Fig. 4.2.2), the students’ initiative to construct diagrams 

dramatically increased for those whiteboards students prepared later in the unit (Fig. 4.2.13-14). 

The diagrams being drawn also became more detailed in accordance to the diagrammatical 

grammar that students developed collectively through the continuous use of diagrams across 

activities. Although the nature of the activities likely motivated their electing to diagram, the 

diagrams presented in this section reveal an increase in the detail and sophistication of 

diagrammatical features, as well as students’ initiative to choose to diagram when I did not 

prompt them to do so. For example, many of the groups included textual labels and captions to 

accompany their diagrams, and used arrows to denote not only that the waves were propagating, 

but also the direction they traveled. At the end of the unit, students were able to utilize diagrams 

to consider waves in circumstances in which waves were not readily observable (Fig. 4.2.15). 

Zeke’s ability to diagram the standing wave in order to better articulate his conceptions 

when speech and gesture could not, highlight a potential benefit to providing students an 

omnipresent space for spontaneous diagramming. Since I intended for diagramming to be a 

primary modality in my class’ culture of doing science and multimodal discourse, I needed to 

provide my students with continual access to diagramming for whenever they elected to do so. I 
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wanted students to always have available opportunities to diagram their ideas to one another 

whenever they elected to do so. I promoted diagramming by recognizing when students struggled 

to communicate using speech and gestures alone, and asking them to diagram what they 

envisioned as was the case with Zeke. I also supported their use of diagrams by asking them to 

whiteboard their findings on many different occasions. The open space on the whiteboards and 

multiple-colored dry-erase markers afforded them the opportunity to draw diagrams that would 

be shared with the rest of the class. During my lectures, I also modeled the use of diagrams to 

assign value and guide the development of diagrammatical grammar which they could use in 

future activities, as well as I led discussions explicitly focused on diagramming practices in the 

context of their slinky experiments. All of these shaped the form and function of diagramming in 

my class that evolved through the unit.  

Diagrams also influenced the conceptual development, or ideational engagement, of my 

students, in addition to offering a window into their understanding. For instance, as the teacher, I 

was able to assess Zeke’s understanding of standing waves based on his ideational engagement 

with the diagram (Fig 4.2.16) even though his peers likely did not all follow his muddled speech 

and gesturing about the diagram. As students in my class diagrammed, wave concepts were 

shaped and developed via the different meaning potentials and epistemological affordances that 

diagrams provided. Using diagrams, my students constructed an individual and collective 

understanding of not only what aspects of a phenomenon or event were important to depict, but 

also how to utilize semiotic resources to represent them in diagrams. 
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V. CONCEPT DEVELOPMENT IN THE CONTEXT OF MULTIMODALITY 

Wave characteristics 

Multimodality played an important role in my students’ development of conceptual 

understandings of wave characteristics. Students interacted with each other, teacher, and ideas, 

using linguistic and non-linguistic modes, including gestures, diagrams, graphs, and classroom 

artifact-manipulation. In previous sections, I presented ways in which two modes (gesturing and 

diagramming), which became salient in my classroom, developed over time, shaping and being 

shaped by the classroom participants’ ideas about waves. In this section, I present ways in which 

the development of concepts related to wave characteristics took place across modalities and 

instructional activities, showing the intricate intertwining of various modes and the ebb and flow 

of ideas across modalities. 

The Ebb and Flow of Concepts Across Multiple Modes 

A common representation of waves is a wavy line in which my students and I engaged 

throughout the entire instructional unit. My students’ drawings of waves on the first day of the 

unit largely consisted of wavy lines, which they linked to water waves that they had amply 

experienced in their everyday life. This wavy line became a critical semiotic resource for the 

development of ideas such as the propagational and oscillatory motions of waves, as well as 

amplitude, wavelength, period, and frequency. Wavy-line diagrams provided students an 

opportunity to engage with, and make meaning of, wave characteristics in addition to language 

used to communicate about these concepts.  

I began the waves unit in my class by having students individually respond on paper to 

the following three tasks: (1) draw a wave; (2) what makes something a wave?; and (3) write 

down 4 examples of waves. The order of these questions was important. I wanted their drawing 

of a wave to precede their writing of a definition. Students had to call upon prior knowledge and 
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experiences with waves within any mode (such as pictures, photographs, observations, diagrams, 

gestures, or language) in order to draw a wave. The act of drawing a wave promoted not only 

their depicting the wave as one entity, but its constituents and characteristics as well, for which 

students lacked the academic language to describe at that time, and which would be called upon 

later as the unit progressed. Students could call upon their drawing’s features as they constructed 

next their linguistic definition of a wave for their next question.  

Since I intended to have my students identify commonalities among their drawings, I had 

asked them to draw their waves both on paper, to turn in, and on a small 1x1 ft. whiteboard. I had 

also created a whiteboard with a wavy line that I anticipated many students would draw. We all 

stood up in a circular arrangement and displayed our whiteboards for each other to see in a 

gallery view (see Fig. 4.2.1, inserted below too for reader’s convenience). As my students and I 

simultaneously turned over our boards to display our drawings, I asked the students to look at 

each other’s drawings and identify patterns. The class and I were able to come up with three 

different variations for a wave drawing, all shown in Figure 5.1.1. 

 

 

         
 

Reproduction of Figure 4.2.1. (Day 1, 9:17). Gallery-view of students’ and my wave diagrams 

during the 1
st
 lesson of the unit.  

Me 
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Figure 5.1.1. (Day 1, 14:56). I draw the three examples of student-generated wave drawings 

from our gallery view and project them in front of the class. 

 

 

After the students returned to their seats, I drew the three most common student-

suggested drawings, seen in Figure 5.1.1, as focal objects for a whole-class discussion. In order 

to better understand what meanings each of these drawings carried for different students, I asked 

students to explain why these drawings are different yet still able to depict a wave. Each 

student’s interpretation publically refined and explicated the collective meaning of the three 

diagrams for the class.  

The three students’ ideas shown in Figure 5.1.1 all contain the same concept of 

perspective (i.e., above view vs. side view). Perspective was an important concept when reading 

the three drawings in order for the students to successfully link the three drawings as all 

representing the same wave. Moreover, different points of view afforded more or less 

prominence to different wave characteristics (such as amplitude, which is visible only in the side 

view). A collective understanding of the perspective from which to view the drawings was 
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essential for defining wave characteristics. As students continued to create and interpret 

diagrams, they would have to apply perspective in order to make meaning of the concepts being 

diagrammed, which will be discussed later in more detail.       

Students’ past everyday experiences with water influenced many of their drawings, 

evidenced by students stating that their drawings were depicting a water wave, as previously 

discussed (e.g., see Fig. 4.1.1). Leslie used this real-world example to help situate her 

interpretation in Unit 4 of the transcript shown in Fig 5.1.2. Her comment first attached the word 

ripple to the concentric circles diagram seen on the right of Fig. 5.1.1. Ripple is a word often 

associated with waves, and water waves in particular, and provides the context here for Leslie’s 

meaning-making of the concentric circles wave diagram.   

From their interpretations of these diagrams, the students began to differentiate between 

the macro or micro perspectives of waves (i.e., the macro propagational motion of the pulse as 

opposed to the micro back and forth motion of the source and particles within the medium). For 

example, in Unit 1 of Fig. 5.1.2, Dustin described the wavy nature of the line to represent a 

wave’s motion as “goes up and down,” which resembled the back and forth or micro wave 

perspective. He then alluded to the propagational or macro wave perspective by describing the 

ripple-shaped drawing’s motion as “goes out [from the center].”    

The next day (Day 2), students conducted experiments in groups each using a long metal 

slinky with which they were to represent the relationship between a wave’s speed and its height 

using a graph and mathematical function. Each three-person group prepared a large 2x3-ft. 

whiteboard summarizing their results, which were to be publically displayed as focal objects for 

a whole-class discussion following the experiment. The four groups whose boards I chose to 

display were previously discussed in Fig. 4.2.2, but are reproduced below too for readers’ ease. 
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1 Dustin: The one on the left [wavy line] goes up and 

down and the one on the right [ripple-shaped 

wave] goes out. 

 

 
 

 

 [I ask for further explanation about the movement in each 

wave drawing, particularly moving from what point?] 

2 Oliver: Maybe the one on the left is a horizontal view 

and the one on the right is a veritcal view from 

above 

3 Teacher: Ahh very interesting idea. So could these 

[drawings] be the same thing or are they 

different? 

4 Leslie: It’s kinda like the one with the circles going out 

from the dot,  it’s kind of like an over view and 

an example is you look at water the ripples go 

out but if you look at it from the side the water 

goes up and down   

5 Teacher: Yeah, so they could be the same thing and 

you’re using the example of water  

 

Figure 5.1.2. (Day 1, 14:45-18:35). Students contrast three different wave drawings. 

 

 

      
 

     
 

Reproduction of Figure 4.2.2. (end of Day 2). Student-groups’ whiteboards summarizing wave 

speed vs. wave height experiment. (a) Focal group’s board. (b) Text accompanying the wavy line 

specifies, “overhead view of motion.” (c, d) No diagram of experimental setup.  

Dustin 

Oliver 

Leslie 

(a) (b) 

(c) (d) 



122 
 
 

 

Regarding wave characteristics, the instructional goal of this experiment was for students 

to develop the concepts of amplitude and wave speed, with which they were not yet familiar, by 

engaging with ideas using language (their own colloquial language), artifacts, and tables to 

organize their measurements of these quantities. Since we had focused on diagramming waves 

during the previous day, I was interested in seeing how the students might call upon the diagrams 

as they described their investigation and findings. I did not explicitly ask students to diagram, but 

provided the semiotic resources (whiteboard, dry-erase markers) for them to do so if they 

wished. I did not require diagrams because I wanted to see if students considered diagramming 

as a useful modality for describing waves, particularly in light of yesterday’s discussion. I 

wanted to see if and which aspects of the previous day’s diagrams would be called upon in this 

experimental context. Only two groups whose boards are seen in 4.2.2a,b constructed diagrams, 

but for different purposes. Fig. 4.2.2a showed the spatial positioning of the participants in 

relation to the slinky while they were creating waves, but did not show how the waves produced 

embodied any wave characteristics.  

Figure 4.2.2b did not depict the participants or how the waves were created, but 

incorporated the concept of perspective to represent the waves generated in the slinky. The idea 

of perspective was brought up in the previous day’s discussion, in which the above-view 

perspective best described the ripple drawing while the side-view was attributed to the wavy line. 

However, the diagram in Fig. 4.2.2b correctly described this drawing’s perspective as an above- 

or “overhead-view of [the] motion,” which was not the same perspective attributed to the wavy 

line during the previous day’s discussion, and, therefore, suggesting that this diagram was an 

extension of the concept of perspective in this new context, and not merely a rote reproduction of 

a wavy line. This team was the only one that chose to draw a wavy line. If considered by itself, 
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their referent for this wavy line and its intended meaning might be unclear; however, this wavy 

line depicted an above-view of the long metal slinky as continuous wave pulses were created 

within it. The textual label over the diagram (i.e., “over-head view of motion”) explicitly 

communicated the team’s perspective minimizing the interpretive flexibility of the reader. The 

slinky was an artifact students used to produce the waves; and therefore, the slinky was the 

referent of the wavy line. The fact that the artifact was a slinky was lost in its transduction from 

the artifactual to the diagrammatical mode; instead the waves were foregrounded by the wavy 

line diagram.  

During the post-experiment follow-up lecture the next day (Day 3), during which I 

summarized the previous day’s experiment, I wanted to emphasize the wavy-line diagram’s 

value to encourage my students to diagram wave characteristics in future activities. I 

diagrammed the experimental setup as seen in Fig. 4.2.3 (also reproduced below for reader’s 

convenience), and explained its features using both speech and the back and forth hand gestures 

(or BFGs as previously discussed, see Fig. 4.1.7). I reinforced the diagramming practices enacted 

by the team who drew the wavy-line diagram on their whiteboard (Fig. 4.2.2b) by including a 

textual label (“View from above”) in the same way they did to provide perspective. My uptake of 

this diagrammatic feature by using it in my diagram not only provided positive and public 

feedback to students, but it also assigned value to recognizing perspective when constructing and 

reading diagrams.  

Diagramming was becoming a prominent mode in my class.  Since wave diagrams often 

afford iconic depictions of wave characteristics that I intended for my students to develop, with 

my diagramming during this lecture, I intended to model appropriate diagramming practices both 

to assign them cultural value, and to promote students’ linking the wavy-line aspects of the 
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diagram to the wave characteristics (e.g., amplitude) which were anchored in their artifactual 

engagement with the slinkies. My BFG acted as a multimodal scaffold that mediated the link 

between the action of creating a wave in the slinky (i.e., moving the hand holding the slinky back 

and forth) and the diagram I drew for students during this lecture. More specifically, the 

prominence of my diagram, and my BFG superimposed over it (Fig. 4.1.7), in relation to the 

students’ production of a wave by shaking the slinky back and forth, show the intertwining of 

these modes in my class, as my students and I negotiated the concepts of amplitude and wave 

speed. My diagram also reflected other contextual elements (i.e., a hand holding the slinky in 

two superimposed positions, helical shape of the slinky, two instances with an example of the 

elapsed time for each, etc.) to help students to better connect the diagram to their experimental 

context, and their manipulation of artifacts, while also modeling diagrammatical grammar for 

students to call upon when diagramming during future activities. For example, the labeled arrows 

I drew in my diagram (Fig.4.2.3) represented one of the quantities students measured during their 

experiment (“wave height,” as indicated by the arrow’s label), which was important for students 

to grasp in order to understand amplitude, which I define later in my diagram shown in Fig. 

5.1.3.     

While students were measuring wave amplitude, they were not aware of the term 

amplitude, but had an intuitive sense that a wave possesses the characteristic of height or 

tallness. In the absence of academic language, students used colloquial speech to talk about this 

characteristic as they also engaged with it through artifactual, gestural, and diagrammatic modes. 

The experimental task afforded students the opportunity to produce a numerical value for wave 

height, and each group’s respective methods for measuring wave height came from their intuitive 

sense of height, which they applied to the waves they produced in the slinky.   
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Reproduction of Figure 4.2.3. (Day 3, 4:00). During the post-experiment lecture, I draw and 

explain my diagram of the experimental setup for the wave speed vs. height slinky experiment.  

 

 

Students measured the wave’s height in terms of how far their hand moved from its initial 

position, as was evident from their measurements during the experiment. Although this was not 

aligned with the scientifically accurate method for measuring amplitude, they correctly measured 

the distance the hand moved. Instead of measuring with respect to a central axis in the middle of 

the maxima and minima, which is the scientifically canonical way of measuring amplitude, 

students measured wave height as the distance between a crest and trough, which would result in 

a value that was twice the amplitude. I utilized another wavy-line diagram at the end of the 

lecture to define the scientifically accurate definition of wave height, and introduce it as 

amplitude (see Fig. 5.1.3). I used the diagram to help my students to articulate the meaning of 

amplitude. The manipulation of the slinky to generate waves with various amplitudes was a 

referent for the term amplitude, and the wavy line diagram acted as a scaffold linking the term to 

its referent and to the way in which it was to be measured. My diagram, shown on the right in 

Diagram of experimental setup projected in front of the class: 
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Figure 5.1.3, used arrows to represent the distance between two points, which depicted the 

amplitude’s value as the distance between the two specific points displayed in the diagram.  

The diagram was the prominent modality used to define amplitude, but was supported by 

other modes through the textual labels, as well as my speech and deictic gesturing that called 

attention to the individual points on the diagram, and interval between them (see Fig. 4.1.8), to 

further explicate the concept of amplitude for my students.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.3. (Day 3, 18:25). I explain my diagram defining the wave characteristic, amplitude.  

 

 

After my definition of amplitude, a student, Becky, asked about the difference between 

the width and height of a pulse. Distinguishing these two quantities was critical for students to 

understand waveform graphs later in the unit. Becky’s question introduced a potential limitation 

of the wavy-line diagram. The diagram is static, but depicts a movement. By pausing the slinky 

wave’s motion through the act of diagramming it at a particular instant, a different wave 

Diagram introducing amplitude projected in front of the class: 
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characteristic–wavelength; was afforded as another potential quantity to be measured. Using the 

diagram, students could measure both the wave’s height and length, and, thus, the concept of 

distance associated with one wave pulse had to become more differentiated (i.e., distance 

referring to height and distance referring to length). This point of confusion and stimulus for 

further development did not emerge prior to the diagram, possibly because a wave’s length is 

nearly impossible to measure directly in real-time on a moving wave pulse. Only when the wave 

was “paused” through the act of diagramming did the possibility of measuring the length of the 

wave pulse became possible. In addition, the students were not as likely to suggest wavelength as 

a potential factor affecting a wave’s speed that they could test out because they could not directly 

choose its numerical value, as opposed to the height which they directly manipulated.  

Although it appeared that the diagram caused Becky confusion that led to her question, it 

also provided students with an opportunity to compare and contrast amplitude and wavelength, 

which could lead to better articulation of these wave characteristics. My response to her 

confusion was captured in Fig. 5.1.4 as I said, “this [gesture representing the length of the bump 

seen in Figure 5.1.4a] is different from this [gesture representing the height of the bump seen in 

Figure 5.1.4b].” Using the wavy-line diagram, I gestured to the spatial interval for width, and 

then for height, to contrast them. Although the diagram was a primary modality, my gestures 

called attention to the intervals representing amplitude and the length of one bump (i.e., one-half 

of the wavelength), which showed students how these quantities were represented on the 

diagram. Both my gestures represented spatial distances, which communicated that both 

wavelength and amplitude are such quantities, but they also highlighted that these distances had 

different orientations, captured by my changing of the gesture orientation from horizontal to 

vertical as I shifted from signifying the length of one “bump” to signifying the height.   
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Figure 5.1.4. (a), (Day 3, 19:31).  I gesture with my hands to represent the length of a bump. (b), 

(Day 3, 19:33).  I gesture with my hands to represent the amplitude of the wave. 

 

 

 

Following the post-experiment summary lecture, I introduced the next two slinky 

experiments which, although, I had anticipated and planned prior to the start of the unit, they 

emerged from students’ suggestions related to which possible factors might cause a wave to 

move faster. Aside from the amplitude, which they had already tested, students suggested hand-

quickness and slinky-length that, scientifically, related to the concepts of period or frequency 

(hand-quickness) and wave medium (slinky-length) respectively.  

Before letting my students conduct experiments seeking the relationship each of these 

quantities had with wave speed, I had them offer their ideas about how to measure hand-

quickness. As discussed previously in Section 4.1, students and I articulated hand-quickness as 

the time for their hand to move back and forth while creating a wave using BFGs. The hand-

quickness became a referent for the term period that students were familiar with from prior units, 

albeit not in relation to waves.  
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The modalities students used to describe how to measure the period shifted from speech 

and iconic hand gestures to diagramming the ways in which they anticipated engaging with the 

artifacts and their predictions about the computer-generated graph of the motion sensor’s data, 

(which hereafter will be abbreviated to the motion sensor’s graph). The shift to diagramming as a 

primary mode occurred after Raymond suggested using a motion sensor to measure the period. I 

asked him to come to the front of the class and draw a diagram of the position-time graph he 

would expect the motion sensor to produce. He immediately drew axes but right away started to 

struggle to draw any curve. As a scaffolding move, I asked him to diagram the experimental 

setup (see transcript in Fig. 4.2.4).  

His diagram of the experimental setup served as a scaffold for students to negotiate their 

expectations for the appearance of the motion sensor’s position vs. time graph. The public and 

collective transduction of Raymond’s diagram of the setup to a free-hand graphical sketch 

representing the motion sensor’s graph is captured in Figure 5.1.5. As seen in the still photo for 

Unit 1, Raymond’s positioning of the motion sensor in the diagram was well defined, and 

provided the footing for Raymond and other students on which to base their graphical 

construction. Although his talk and diagramming of the motion sensor and experimental setup 

were accurate, he could not predict the motion sensor’s position versus time graph. His talk and 

diagramming demonstrated his understanding of perspective regarding diagrams (i.e., he 

recognized that he had to draw an above view of his experimental setup), and the function and 

utility of a motion sensor as a device that collects position and time values of an object in 

experimental contexts. However, his inability to predict the shape of the motion sensor’s position 

vs. time graph reflected a lack in his understanding of how to transduce to the graphical 

modality. As previously discussed, Raymond understood the orientation and spatial aspects of a 
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motion sensor (i.e., the motion sensor measures position, and positive direction is away from the 

sensor while negative is towards the sensor), and the hand’s motion as it created waves, which he 

depicted in his diagram (shown in Fig. 4.2.4). Raymond became confused when asked to 

transduce these ideas to the graphical mode, which required an understanding of both the ideas 

and how to engage with the graphical modality. More specifically, he was not able to shift the 

spatial positioning of his hand with respect to the motion sensor, which he depicted in the 

diagram, to the free-hand graph’s axes as a function of time. His public confusion allowed for 

that the students and I to negotiate and develop this transduction as a class, which is shown in 

Fig. 5.1.5.  
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1 Teacher What’s the graph going to look like, 

and you can call on people too 

Raymond, then just draw what they 

say. 

[several students raise their hands and 

Raymond calls on Zeke] 

 
2 Zeke It’s going to start out at the x-axis, 

because it’s at the zero position—  

 

 

3 Raymond —yeah [says in agreement] 

4 Zeke and if we move close to the motion 

sensor then it’s gonna be going down, 

and then if it’s moving away from the 

motion sensor it’s going to be going 

up, and yeah, it’ll eventually come 

back to the x-axis because it’s where it 

started [Raymond draws the graph as 

Zeke verbally decribes it. The free-

hand graph is denoted by the dotted 

circle pictured to the right]. 

5 Raymond Yeah, because it’d be zero and then 

it’d go back up right? 

[Raymond extends the graph past the 

x-axis as seen in the graph pictured to 

the right] 

 

[The class begins talking to each other debating the 

graph’s shape, and I have Raymond erase the curve 

and start over to negotiate its shape from the 

beginning].  

6 Teacher [ask Raymond to consider first where 

the plot will begin if the hand starts 

out in front of the motion sensor] 

So here’s the motion sensor 

[enactment gesture with my left hand]  

and you’re gonna be moving your 

hand in front of it as you make waves 

[I move my right hand back-and-forth 

in front of my left hand denoted by the 

dotted arrows] 

So if I’m not moving yet, what’s that 

gonna look like on the graph? 
 

Zeke 

Raymond 

left hand 
represents 
motion sensor 
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Figure 5.1.5. (Day 3, 25:35-26:10). Raymond draws a free-hand graph based on other students’ 

suggestions. The graph represents students’ expectations of a motion sensor’s graph of a wave in 

a slinky produced by one’s hand movement. 

 

 

Based on Raymond’s linguistic and diagrammatic description of a possible setup to 

measure the period of someone’s hand that creates a wave in the slinky, Raymond understood 

how a motion sensor collected data as evidenced by his diagramming its spatial positioning 

relative to the hand’s back-and-forth motion. It was not entirely clear from the transcript in Fig. 

5.1.5 how well Raymond was able to reason within the graphical modality; that is, to what extent 

7 Raymond Wait, so you like have some position 

[makes a dot on the y-axis to show his 

starting point as seen in the picture to 

the right] 

And then [becomes hesitant and 

pauses, after several seconds, I call on 

Katie to help]  

 
8 Katie Won’t it drop a little bit [Raymond 

draws what is pictured to the right] 

Not past zero, it won’t hit zero cause 

it’s not gonna be touching the motion 

sensor 

 
9 Raymond Oh yeah, right 

[Raymond erases and re-draws the 

free-hand graph shown to the right] 

 

dot 



133 
 
 

 

he could translate between diagrams and graphs. However, he understood that my hand would 

initially have a nonzero position (Unit 7), which he concluded with the help of my gesturing the 

relative positions of the motion sensor and hand. My gestures called his and the class’ attention 

back to the positioning of the motion sensor relative to the hand’s back-and-forth motion, and 

prompted him to use this reasoning as he sketched the graph. He struggled to graphically 

describe the positioning, as indicated by his extending the graph past the x-axis in Unit 8, but 

was corrected by Katie. Katie’s linguistic description of her expectations for the graph, and 

moreover her ability to correct Raymond as to why he should not extend the graph past the x-

axis, indicated her conceptual understanding of how the motion sensor functions (i.e., measures 

the distance between the an object and the front of the sensor), and her ability to engage with the 

graphical modality. Both of these were critical to her and other students’ conceptual development 

of waveform graphs and wave characteristics throughout the unit.    

At the end of class (Day 4) after conducting the slinky experiment in which they sought 

to determine period’s relationship with wave speed, the groups analyzed their data. Addy’s 

utterance, gesture, and speech reflected her graphical understanding of period as the time for 

one’s hand to make one wave cycle. She also successfully navigated the graphing software and 

its tools in order to take quantitative measurements to determine the period. As the focal group 

examined the motion sensor’s graph, Addy deictically gestured to the screen as she explained to 

Kevin how to measure the period (see Fig. 5.1.6). Her explanation incorporated deictic gestures 

to call out the two points on the graph between which the wave was being created, and whose 

time difference depicted the period, just as we had done the day before as a class when Raymond 

sketched students’ expectations for the shape of the motion sensor’s graph.      
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Addy This is gonna be the period, right?  

[Kevin struggles to determine x,y coordinates]   

No, you click um that thing [points to the button on 

the computer program that displays x,y coordinates 

at any point on the plot],  

and then you put that on that point and find there 

[she points at the point on the plot where she wants 

to find the x,y coordinates],  

and then you can find the difference [she scrolls her 

hand between the two points denoted by the dotted 

bracket in the photo to the right. She meant to find 

the difference in time from when the hand is moved 

to when it returns] 

 

 

Figure 5.1.6. (Day 3, 45:37). Addy explains to her group how to measure the period from the 

motion sensor’s graph. 

 

 

Two days later on Day 6, my learning goal was for students to not only differentiate 

between, but to derive numerical values for the wave characteristics of amplitude, period, and 

wavelength directly from vertical position vs. time graphs and vertical vs. horizontal position 

graphs. From these measures, the students were then to calculate the frequency and wave speed. 

The concepts of wavelength and frequency had not been directly discussed prior to this activity, 

nor had students explicitly studied waveform graphs in this way.   

The activity introducing the waveform graphs to students aimed to utilize transduction 

between modes. Student engagement began with Mallory publically generating waves in a slinky 

while a motion sensor captured her hand’s position as a function of time (see Fig. 5.1.7). Instead 

of a diagram of the experimental setup, Zeke took a photograph from above which I later 

projected in front of the class. For the activity as shown in Fig. 5.1.7, two meter sticks were 

placed end-to-end on the floor alongside a slinky with which Mallory would make continuous 

Addy 
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waves that Zeke would photograph from above. While Mallory created the waves, a motion 

sensor plotted her hand’s back and forth movement and generated a real-time position vs. time 

graph projected in front of the class. I then publically displayed Zeke’s photograph and the 

motion sensor’s graph side-by-side (Fig. 5.1.8) on the screen in front of the class. To make the 

slinky in the photograph appear similar to a waveform graph, I drew in labeled axes, marked off 

each 10 cm on the meter sticks with dots, and traced a dotted line over the slinky to show where 

the slinky would be positioned ideally if its amplitude were not diminishing as it propagated. In 

small groups, students then answered two questions displayed on the screen in front of them 

(seen at the top of Fig. 5.1.8), and wrote their answers on a small 1x1 ft. whiteboard.  

 

 

 

 
 

Figure 5.1.7. (Day 6, 5:21). Mallory creates continuous waves in a slinky that Zeke photographs 

from above, and a motion sensor produces a real-time waveform graph of her hand’s back-and-

forth movement. 

motion sensor 

Zeke’s feet 

Mallory 
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Figure 5.1.8. Waveform-graph lesson. I project Zeke’s photograph of the slinky (left) and the 

motion sensor’s graph (right) on the screen in front of the class. The groups were to write 

answers to the two questions written above (top).  

 

 

I scaffolded students from seeing the photograph on the left in Figure 5.1.8 as a real-

world image of the artifacts to seeing it as a wavy-line graph (or waveform graph). The 

photograph was anchored in the students’ real-world experience since it was a snapshot of the 

artifacts and setup they had just observed. To aid students’ transduction between the image and 

graph, I superimposed a wavy line over the slinky to make the wavy aspect of the slinky more 

pronounced. In order to encourage students to make this transition, I used the diagrammatic 

modality and their past experiences with wavy lines, such as those seen in Figures 5.1.1 and 

5.1.3, to sketch a wavy line on top of the slinky as waves traveled through it. Adding graphical 

axes shifted the diagram to a waveform graph with horizontal and vertical position axes. The 

photograph as it is shown in Figure 5.1.8, therefore, acted as a combination of different 

photographic, diagrammatic, and graphical modes. Photographs are not diagrams, but my 
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superimposed sketchings abbreviated the visual field and added labels, both hallmarks of 

diagrams. The sketching foregrounded the wavy-line nature of the slinky while backgrounding 

the visual details captured by the photograph that were not relevant to our activity (e.g., colored 

tiles on the floor, table legs, students’ feet). Furthermore, the addition of the axes provided the 

diagram-photo combination with graphical features (e.g., axes). The abbreviations of the visual 

field and the labels that are characteristics of diagrams transformed this representation into an 

entity similar to the free-hand graph with which students were already familiar. It was my 

intention to superimpose the wavy line over the photograph to call students’ attention to the 

wavy nature of the slinky and its resemblance to the wavy-line diagrams used in earlier lessons. 

Then, adding axes encouraged them to further shift into engaging with it as a free-hand graph 

that was scaled based on the meter-sticks in the photograph. In this way, students could then 

engage in the graphical modality (i.e., waveform graphs) with the wave characteristics without 

losing the contextual backdrop provided by the photograph. 

As the focal group began identifying wave characteristics they could measure (answering 

the two questions at the top of Figure 5.1.8), they negotiated the concept of amplitude within the 

graphical modality. Addy incorrectly mentioned that amplitude was the distance between the 

highest and lowest points in the graph. There was no debate among the group following Addy’s 

suggestion. Addy’s inaccurate conception of amplitude might have reflected her group’s earlier 

understanding of “wave height” based both on their engagement with artifacts as they measured 

wave height in slinkies by how far their hand moved back-and-forth while creating waves, and 

on the BFG that represented their hand’s motion while producing waves. She was not referring to 

the refined definition of amplitude that I described using the diagram shown in Figure 5.1.3, 

where amplitude should be measured with respect to a central axis. It is unclear to which of the 
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two projected graphs (i.e., the one on the left on top of photograph or the one to the right which 

is the motion sensor’s graph in Figure 5.1.8) she was referring, but her mistake may most likely 

be a result of the motion sensor’s position-time graph’s lack of a central axis. If I had drawn in a 

central axis over the position vs. time graph, she might have more readily recognized it as a 

reference point for measuring amplitude. Addy’s mistake illustrated a limitation to motion 

sensor’s graphs, namely that a central axis needs to be envisaged. I anticipated this limitation and 

tried to use it as a pedagogical strategy to require students to imagine (or draw in whenever 

possible) a central axis from which to measure the amplitude. It is likely that Addy’s difficulty 

with imagining a central axis led her to the inaccurate conceptualization of amplitude. Prior to 

this activity, I had always drawn in a central axis for them (as seen in my diagram in Fig. 5.1.3, 

and the waveform graph on top of the photograph in Fig. 5.1.8).  

The act of measuring wave characteristics affords students engagement in a mode that is 

not foregrounded when they are simply asked to identify them. Had Addy’s group attempted to 

measure the amplitude, as it was asked of them when she made the incorrect conceptualization, 

she may have immediately corrected herself. This was evident moments later when I intervened 

to remind the group that I not only wanted them to list the wave characteristics, but the numerical 

values for these characteristics as well. During this exchange, when Addy suggested amplitude 

as a wave characteristic, I asked her to derive it from the projected graphs and handed her a laser 

pointer with which she could deictically gesture to the project graphs from her seat as she 

answered. Although the groups were all working independently at that time, all groups were 

using the projected graphs, which were the only information provided for this activity. The laser 

pointer made it possible for Addy to point to locations on the graphs from her seat without 

walking up to the screen in front of the class. She pointed to where she envisioned the central 
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axis (see photo on the left of Fig. 5.1.9) and the crest (photo on the right of Fig. 5.1.9), while 

explaining that the distance of “about 0.15 meters” between these two points was the amplitude. 

By requiring Addy to articulate the meaning of amplitude using a graph in relation to how it is 

measured, she was able to correct herself and demonstrate her graphical understanding of 

amplitude. Providing Addy a laser pointer afforded her with an opportunity to deictically gesture 

to the graph as she explained. Despite her earlier mistake, her explanation here was scientifically 

correct.  

 

 

 

  
 

Figure 5.1.9. (Day 6, 11:28-29). Addy gestures to the motion sensor’s graph projected on the 

screen to explain to her group a method for graphically determining amplitude. 

 

 

 

Like the focal group, all of the groups were all able to independently derive amplitude 

from the motion sensor’s graph. This is significant since prior to this activity, I had not explicitly 

taught students how to measure wave characteristics from waveform graphs, and it was, 

Laser pointer 

Laser pointer 
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therefore, students’ first experience engaging with wave characteristics in the graphical modality. 

The ease of identifying and measuring this particular wave characteristic can be linked to their 

understanding of the diagram we used earlier to visually define amplitude (Fig. 5.1.3). When I 

drew this diagram on Day 3, I created a resemblance with the waveform graphs I anticipated us 

using here on Day 6 to introduce waveform graphs, from which students would measure wave 

characteristics, such as amplitude. In Fig. 5.1.3, the slinky was drawn with a straight line through 

the middle of its propagation, or a central axis, which is a graphical feature that could aid 

students’ meaning making of a waveform graph by making it resemble to a diagram.  

I also chose to show a continuous train of pulses instead of the single pulse that the 

students were most familiar with at that time on Day 3. This not only connected the wavy line 

drawing to the diagram, but also linked the diagram to the waveform graphs that exhibited a 

wavy or sinusoidal shape. I was using the wavy nature of this diagram on Day 3 (Fig. 5.1.3) as a 

scaffold for students to make meaning of the waveform graphs during Day 6 (Fig. 5.1.8) in order 

to promote their conceptual development of wave characteristics as measureable quantities 

derived from a graph.   

The transduction between the diagrammatic and graphical modes was facilitated by the 

similar and familiar features shared among them. As students engaged with multiple modes, they 

developed intertwined meanings that were afforded by the various modes. The wavy line was 

similar in shape to that of a waveform graph from which it was possible to derive all of the 

following wave characteristics: amplitude, period, wavelength, frequency, and speed. My 

students and I collectively constructed new meanings as we discussed the waveform graph, in 

which I used familiar features from modes that had been previously used to mediate their 

explanations using graphs, such as the BFG previously discussed and seen in Fig. 4.1.10, and an 
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arrow as a diagrammatic label. As Brian identified one complete wave cycle on the graph in 

front of the class, he talked and pointed to the graph with the laser. I drew an arrow on the graph 

to illustrate the interval of one complete wave cycle that he described in order to make 

permanent his deictic use of the laser pointer (see Fig. 5.1.10). My drawing the arrow visually 

represented the interval Brian was describing as he said, “from here to here, and then here to 

here,” and deictically gestured with the laser pointer along the curve pausing at successive crests 

on the graph. The arrow was a diagrammatical feature that I inserted into this graphical mode to 

facilitate bridging the students’ meaning making within graphs to that within diagrams.  

By pointing out successive wave cycles, Brian was demarcating the wavy line into its 

repetitive cycles. Instead of considering a wavy line as simply representing a wave like he and 

many students had done on Day 1, Brian was now considering the wavy line as a series of 

individual wave cycles.  

 

 

  
 

Figure 5.1.10. (Day 6, 17:35). I draw an arrow on the motion sensor’s graph to make permanent 

the laser pointer’s gestures used to show the interval of one complete wave cycle on the graph. 

 

Laser pointer 
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 Demarcating a wavy line into its cycles was a critical step to students’ graphical 

understanding of other wave characteristics such as period and wavelength. After I drew the arrow 

from crest to crest, Brian immediately suggested that the arrow represented “the time for one 

wave,” or in other words, the period. His saying “time for one wave” instead of the term period is 

significant because he was verbally defining the concept of period; he was not simply uttering a 

scientific term without understanding its referent. His words indicated that he was attaching the 

numerical value for the time interval to his graphical definition of one wave cycle. Furthermore, 

his recognition to measure the time for one wave was likely promoted by my drawing the arrow, 

which was a diagrammatical feature used in the past to depict an interval, which could be found 

by determining the difference between two points. In this case, the arrow was an epistemological 

affordance for students that led them to measuring an interval between two points. Since time was 

plotted on the x-axis in the motion sensor’s graph, Brian recognized that the difference would 

provide a time value, and since the arrow denoted one complete wave cycle, that time would be 

for one wave.   

The notion of measuring an interval between two points that bound one complete wave 

cycle could also be applied to the graph superimposed on the photograph shown in Fig. 5.1.8, 

whose x-axis was length (or horizontal position). Oliver recognized this and suggested wavelength 

as a possible wave characteristic. Oliver first used the laser pointer to trace out one wave cycle, 

which I depicted in Figure 5.1.11 with a dotted line. After Oliver suggested “wavelength,” I asked 

him to explain what that was, to which he responded, “the width of one cycle from a vertical vs. 

horizontal position waveform graph.” Oliver applied Brian’s same measurement technique to the 

photograph’s waveform graph (vertical vs. horizontal position), as opposed to the motion sensor’s 
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graph which Brian had used (vertical position vs. time). It is worth noting that wavelength was a 

characteristic I had not yet formally introduced to the class at that point, except of mentioning it 

briefly during my exchange with Becky regarding the differentiation between a wave’s height and 

width (Fig. 5.1.3) that was discussed earlier.  

 

 

  
 

Figure 5.1.11. (Day 6, 18:26-27). Oliver suggests that the wavelength can be measured from the 

photo’s graph using the same technique Brian used to get the period from the motion sensor’s 

graph moments earlier by tracing along the waveform denoted by the dotted line. 

 

 

As discussed earlier, computer-generated graphs, such as those produced by motion 

sensors often require students to envisage a central axis, which might limit students’ ability to 

correctly measure amplitude from a graph. However, this might not necessarily hold true for free-

hand graphs where there is no computer-generated x-axis. The author has to draw an x-axis as part 

of the diagramming process, and can therefore choose how to draw it. This was the case when I 

asked Katie to draw a free-hand graph of the motion sensor’s graph on her team’s small 

whiteboard moments before the whole-class discussion, which is shown in Fig. 5.1.12. She drew a 

Laser pointer 
Laser pointer 
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central axis on her free-hand graph at a value of 0.3 meters on the y-axis even though there was no 

central axis on the computer-generated graph.  

 

 

 
Figure 5.1.12. (Day 6, 13:49). Katie’s free-hand graph represents the motion sensor’s graph 

projected on the screen. 

 

 

Katie demonstrated on several different occasions her understanding of amplitude as a 

measure from a wave’s crest or trough to its central axis, and that a central axis can be drawn onto 

a graph if it is not already present. During the whole-class discussion as Katie used the laser 

pointer to help explain how she measured amplitude to the class, she described the central axis she 

had drawn on the small whiteboard (see Fig. 5.1.12). Her linguistic description to the class was 

transduced to the graphical mode as I drew in a central axis through the motion sensor’s graph 

while she spoke as seen in Figure 5.1.13. This reinforced Katie’s verbal contribution and afforded 

students a means for deriving amplitude graphically during future activities. Katie again drew in a 
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central axis the next day while solving practice problems in order to measure amplitude (see Fig. 

5.1.14). 

   

 

   
Figure 5.1.13. (Day 6, 20:45). I draw a line on the computer-generated graph to represent a 

central axis.             

 

Figure 5.1.14. (Day 7, 35:33). Katie draws a new x-axis on a computer-generated graph before 

measuring amplitude during a practice problem the next day. 

                        

 

Katie’s explanation focused on the motion sensor’s graph, as opposed to the photograph’s 

free-hand graph (Fig. 5.1.8). Numerical values are easiest to obtain from a graph when it has a 
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clear quantitative scale, a reason for why my students used the motion sensor’s graph to measure 

amplitude instead of the free-hand graph. I asked the class if they could measure the amplitude 

using the free-hand graph and they gestured as if they were measuring amplitude on the free-hand 

graph in the same way Katie had just presented. Zeke then suggested that amplitude was better 

taken from the motion sensor’s graph rather than the photograph’s free-hand graph because “the 

numbers are more accurate.” This reasoning was also exhibited by Katie and Addy who also 

referred to the motion sensor’s graph when determining amplitude, and pointed out a major 

benefit to computer-generated graphs–their quantitative accuracy.  

Similar to drawing diagrams, the act of drawing a free-hand graph forced students to 

foreground certain graphical features they considered important while backgrounding others they 

did not find as important. Two days later on Day 8 (see Instructional Outline in Appendix), as 

the focal group prepared their whiteboard, they chose to draw a free-hand graph on the 

whiteboard representing the computer-generated graphs given in a practice problem. In their 

free-hand graph, the focal group only labeled particular values on the axes that they used to 

determine the numerical values of wave characteristics. The focal group’s free-hand graph (Fig. 

5.1.15) depicted the computer-generated graph I provided to them as part of the practice problem 

(seen on the left in the Fig. 5.1.16). Once completed, the free-hand graph served as an 

abbreviated depiction of the computer-generated graph that complemented their class 

explanation that followed.  
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Figure 5.1.15. (end of Day 8). Focal group’s free-hand graph on their whiteboard of the 

computer-generated graph provided in Practice Problem #6.  

 

 

 

 

Figure 5.1.16. (Day 8). Practice Problem #6. The focal group was assigned to write out the 

solutions to this problem on a whiteboard.  
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The students in the focal group further shaped their understanding of wave characteristics 

through the free-hand graphs as they were interwoven with speech, gestures, graphs, and 

diagrams. The students’ free-hand graphs revealed both their individual and their collective 

understandings as they worked together as a group and negotiated their accurate free-hand graph. 

Although Katie drew the vertical position versus time free-hand graph (y-t graph) seen in Fig. 

5.1.17, the group was discussing what she was drawing, thus making Katie’s graph a product of 

the entire focal group’s collective work. They labeled the 0.6 and -0.6 values on the y-axis that 

corresponded to the crests and troughs, respectively, to aid their reasoning regarding measuring 

the amplitude. On the time axis (x-axis), they chose to label only those numerical values at the 

crests and troughs. It should be noted that although the dotted line at t = 4 sec could be 

interpreted as the end of the first cycle in the graph, reviewing the video recording offered 

evidence that the students were simply linking the time value of 4 sec with the point on the graph 

(i.e., the crest) to which it corresponded (see Fig. 5.1.17). This was also evident after considering 

the second graph (Fig 5.1.18), which did not include a green dotted line since it was not 

necessary as the x-axis values were written next to the corresponding points on the graph. 

Therefore, the dotted line was not intended to denote the end of the first wave cycle; it was 

simply a coincidence that it was located at this point.  

Although students did not use arrows to denote the distance between crests, they made 

linguistic and gestural interpretations and justifications of the features of their whiteboard’s free-

hand graphs as they created them. Addy deictically gestured to seek confirmation from Katie and 

Kevin that the interval to which she gestured represented the wavelength (see Fig. 5.1.18). Her 

gesture acted similarly to the brackets and arrows that depicted such intervals on diagrams, and 

demonstrated that she understood how wavelength should be measured. 
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Figure 5.1.17. (Day 8, 1:54). Addy draws a graphical sketch of the y-t graph from problem #6.  

 

 

 

 

Figure 5.1.18. (Day 8, 5:17). Addy makes interval gesture to represent one wavelength on the y-x 

graph.   

 

 

After the groups prepared their whiteboards outlining the solutions to their respective 

practice problem, one student from each group was randomly selected to present their 

whiteboard to the class. One group (Mallory and Megan) called upon the diagrammatic modality 

in addition to written text to answer their question. Mallory represented her group and explained 
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her team’s whiteboard of solutions to Problem #3, which asked, “What happens to the period, 

wavelength, and speed of a wave on a taut string when the frequency is doubled? Explain.” Her 

group’s whiteboard is shown in Fig. 4.2.11 reproduced below too for reader’s convenience. 

Mallory and her group chose to use a wavy-line diagram in their explanation. Mallory did not 

explicitly describe the diagram in her explanation of the solution, which is shown in Unit 1 of the 

multimodal transcript in Figure 5.1.19. However, during her presentation she referred to the 

board mostly without looking at it. She only gestured to the board once when she was describing 

the reciprocal relationship between period and frequency in which she called upon the units to 

anchor her reasoning and justify her answer. When I asked Megan to point out one wave cycle 

on the diagram, her ability to distinguish wave cycles on the diagram in Units 3, 5, and 7 

evidenced her understanding of wave cycles within both the diagrammatic and graphical 

modalities where wave cycles are denoted in similar ways. 

 

 

 

 

 

 

 

 

 

 

Reproduction of Figure 4.2.11. (Day 8, 24:20). Mallory (Group 3) uses her group’s whiteboard 

to explain their solutions to practice problem #3: “What happens to the period, wavelength, and 

speed of a wave on a taut string when the frequency is doubled? Explain.”  

Mallory 
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1 Mallory Our question was “what happens to the 

period, wavelength, and speed of a wave 

on a taut string when the frequency is 

doubled?” [reads off the paper] 

So the frequency, if you double it, that 

means one, the speed of the actual wave 

stays the same because it’s a constant and 

everything, and it doesn’t affect the speed, 

only the medium does, so speed’ll stay the 

same. 

Two, the period, the period is gonna be one 

half, because kinda what we said before 

um the period is the reciprocal of the 

frequency, so it’d be exactly one half of the 

original one, kinda like we said here, 

[points to the whiteboard as pictured to the 

right] 

the tau [period] is seconds over cycles and 

the frequency is cycles over seconds so it’s 

exactly one half. And then third, the 

wavelength is going to be shorter because 

since he period is one half that means the 

wavelength is going to be longer   

 

  [I revoice Mallory’s points for 4 minutes]  

2 Teacher Show us one cycle, Megan [I hand Megan 

a laser pointer. Megan is in Mallory’s 

group] 

 

3 Megan From there [Megan points a laser pointer 

to the left side of the wave #1] 

to there. [Megan points a laser pointer to 

the next trough as pictured to the right] 

4 Teacher Right, and now it’s about to go up again, 

everyone see that? So there’ two cycles. 

Now show me one cycle on the bottom 

one, number two. 
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5 Megan From there to there. [Megan traces with the 

laser pointer along the diagram from the 

left side to the point shown in the picture to 

the right. A dotted line has been added to 

the picture to show the path Megan traces.] 

 

 

6 Teacher Perfect, so how many waves are [shown] 

on the bottom? 

7 Megan Four. 

 

Figure 5.1.19. (Day 8, 23:58-32:36) Mallory and Megan explain their solutions to Problem #3.  

 

 

Mallory’s correct articulation of ideas across modes presented on her board provided 

evidence of her understanding of the concepts of speed, period, frequency and wavelength, as 

well as how these concepts are related to one another. In this case, she was able provide a 

scientifically accurate explanation of not only how but why other wave characteristics were 

affected by increasing the frequency. In addition, the fact that she and Megan, as a group of two, 

had drawn the diagram together suggests that it was a collective product based on their collective 

understanding of its underlying concepts. The whiteboard may also be considered a collective 

piece because although the board and diagram was in Mallory’s handwriting, Megan was able to 

correctly interpret the diagram with regards to demarcating one wave cycle within both wavy-

line diagrams she and Mallory drew, as seen in Units 2-7 of the transcript in Figure 5.1.19. Their 

diagram (Fig. 4.2.11) was an original idea that emerged from Mallory and Megan and not a copy 

of any previous diagram I had provided to students. However, it resembled the wavy-line 

Laser pointer 



153 
 
 

 

diagrams my students and I had been using consistently since the first day of the unit. Examining 

the diagram’s features revealed Mallory and Megan’s collective understanding that was 

reinforced by the speech and gesture about it.  

The vertical positioning of the two waves as well as their identical horizontal length was 

significant to demonstrating the students’ understanding. The vertical alignment of the two wave 

diagrams showed that the waves had the same horizontal length, which they did to portray the 

concept of frequency. They diagram’s four wave cycles in the bottom slinky, which had double 

the frequency (i.e.,  “2x frequency”) fit into the same horizontal space as the two cycles in the 

top slinky. The students’ conceptual understanding of the relationship between frequency and 

wavelength was also demonstrated by this diagram because of the horizontal shrinking the waves 

must exhibit in order to double the cycles within the same horizontal space. The spatial aspect of 

this diagram made it a beneficial mode to in which to think about and communicate these 

relationships. Mallory and Megan’s ability to recognize and call upon, as well as correctly use, 

the diagrammatic modality was intertwined with their strong collective conceptual 

understanding.  

 By the last day of the unit (Day 12), the students in the focal group were choosing to call 

upon multiple modalities as they engaged with each other about wave characteristics. Moreover, 

they were using different modes to envisage dimensions of waves that could not be directly 

observed, such as their use of gestures to draw a wavy line in the air that embodied a wave’s 

sinusoidal propagation through air. During Day 12, the focal group, like all other groups, had to 

figure out the frequency, period, and amplitude of an oscillating mass (see Instructional Outline 

in Appendix). Since the mass oscillated in air, the propagational or macro-aspect could not be 

seen, but only imagined. Students in the focal group immediately made undulating hand gestures 
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as if they were drawing wavy lines to envisage a wave propagating through an imagined medium 

away from the source (see Fig. 5.1.20). This wavy-line drawing in the air was enacted several 

times, and eventually by every group member, as they negotiated which wave characteristics 

could be measured and how. The dotted lines in Figure 5.1.20 show the wavy lines Katie and 

Addy drew in the air that were synchronized with the mass as it bobbed up and down.  

 

 

  
 

Figure 5.1.20. (Day 12, 00:13 & 00:23). Katie (left) draws a wavy-line in the air to show how 

she imagines the propagation of a wave through an imagined medium if the bobbing mass were 

the wave source. Addy (right) makes a similar gesture seconds later.   

  

 

As the multimodal transcript in Figure 4.1.17, which is partially reproduced below in 

Figure 5.1.21 shows, Addy recognized that there was no wave (Unit 1), which meant that she did 

not observe any propagation. Katie’s suggestion (Unit 2) that there would be propagation if 

something were attached to the bobbing mass was supported by her undulating hand gesture. 

With her speech and gesture, she was imagining the diagrammatic modality and attempting to 

convey it to Addy and Kevin. She drew in the air as her gestures connected her imagined wavy 

Katie 

Addy 

Bobbing mass Bobbing mass 
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line with the bobbing mass as its source. If Katie were to diagram this on paper, it may have 

taken more time and it may have lost the contextual elements provided by the bobbing mass as 

an artifact. She instead elected to enact the wavy line using the undulating hand gesture (UHG) 

in relation to the actual bobbing mass, as if to reference a diagram that she was imagining and 

wanted her team to see. Katie, Addy and Kevin all gestured in this way at various points in this 

activity indicating a collective use and understanding of its function. Their ability to imagine 

propagation and articulate what they envisaged about the waves that might be created by the 

bobbing mass as a wave source demonstrated a strong and collective conceptual understanding 

of wave characteristics.  

 

 

 

1 Addy: Alright, well like how do we like measure period 

and stuff if there’s no waves? [Addy puts the mass 

into a bobbing motion by pulling down on it] 

 

2 Katie: Well, because it’s going up and down, and if you 

attach something here [points to the bobbing mass, 

and her hand bobs up and down with the mass] 

 it’d be going like that [see picture, her speech 

pauses as she traces the dotted sinusoidal line 

path shown in the figure. Her hand’s up-and-down 

motion is synchronized with the bobbing motion of 

the mass on a spring] and this the source [points to 

the bobbing mass] 

 

3 Addy: So we can’t like measure anything though, right?   

4 Katie: Yeah you can  

5 Addy: You can get the period [see picture, as she speaks 

she moves her hand tracing out the dotted 

sinusoidal line shown in the figure. Her hand’s 

up-and-down motion is synchronized with the 

bobbing motion of the mass on a spring.]  

 
6 Katie: You can get the period as the time it takes to go 

one  

 

Addy 

Katie 
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7 Addy: Cuz we can’t like see a wave [see picture, her flat 

palmed hand gesture traces out the dotted 

sinusoidal line shown in the figure] so how do we 

know, how can we time it to get from like point A 

to point B? 

 
8 Kevin: Well,= ya know we can=  calculate the amount of 

time it takes to go back and forth so we can get 

the frequency 

 

Figure 5.1.21. (Day 12, 00:05-00:30). The focal group negotiates which wave characteristics 

they can measure from the vertically-bobbing mass. 

 

 

Summary 

This section’s findings can be summarized into three ideas regarding multimodality and 

the teaching and learning of wave characteristics: (1) Different modalities offered different 

opportunities for concept development; (2) transduction and combination of modalities offered 

new and various opportunities for meaning making; and (3) increased understanding shaped 

students’ engagement with different modalities. 

As students began learning about waves on Day 1, their scientific language to define and 

talk about waves was limited. During this time, students favored colloquial language, as well as 

other non-linguistic modalities including gestures and diagrams. My asking students to draw a 

wave afforded them the opportunity to begin to diagram a wave, including some of its 

characteristics, which promoted transduction among linguistic and diagrammatical modes 

mediated by iconic gestures such as the UHG. The diagrams that students created embodied 

students’ past experiences with waves, including water waves, which they commonly cited. The 

prominence of diagrams during this part of the activity allowed the linguistic modality to support 
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diagramming instead of taking its place. The diagrams offered students an opportunity to 

articulate their conceptions of waves that was different from the opportunity they would have 

had via linguistic modes alone.  

This lesson’s diagramming also promoted the use of diagrams as an effective modality 

that students and I could call upon during future activities, and afforded the concept of 

perspective that helped students to differentiate between the macro and micro aspects of waves. 

Diagramming also provided epistemological affordances for students to examine the shape of the 

wavy line, which would be later linked to the back and forth motion of waves using the BFG and 

artifacts, such as the long metal slinky, and then transduced to the graphical modality. The 

transduction of the wavy line across modes incorporated wave characteristic ideas as students 

and I made meaning of it.  

There was minimal use of diagramming by my students at first. I kept valuing 

diagramming as a cultural practice in my classroom, and modeled appropriate ways of enacting it 

(i.e, my suggestions for the diagrammatical grammar), to encourage students to appropriately 

call upon diagramming during future activities. During my follow-up lecture to the first slinky 

experiment on Day 2, I utilized a diagram to define a wave’s amplitude, and used linguistic and 

gestural modes to further explicate it. The diagram contained diagrammatical features such as 

arrows that allowed for the definition of amplitude to be operational by demonstrating how it 

would be measured. This also shaped the meaning of the wavy line that many students generated 

on the first day, enhancing it to signify to assign the amplitude of a wave as the height of the 

wavy line.  
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The static nature of diagrams afforded opportunities for us to consider motional aspects 

of waves that could not be easily captured in real-time. Becky’s confusion about a wave’s height 

versus its length arose when viewing the diagram I had used to define amplitude. During the 

experiment in which students measured the wave height, it was not possible to measure length as 

the wave pulse was constantly moving down the slinky. However, when the wave pulses were 

“paused” in the diagram, Becky was able to consider this characteristic as a measurable quantity 

which she sought to contrast with amplitude. In my response, I called upon gestures to represent 

intervals between two points on my diagram to facilitate students’ identification of the length and 

then the height of a bump. The form similarity of these two intervals captured the similarity of 

the two quantities, whereas the difference in orientation (i.e., horizontal versus vertical), 

contrasted them, differentiating them into two distinct quantities of which only amplitude could 

be measured in real time.  

On Day 2, transduction between modes helped students develop the concept of period. 

The idea emerged spontaneously from students as “hand-quickness,” and included a brisk BFG 

as a referent. Although ambiguous since it could refer to speed or time duration of hand’s 

movement, the BFG supported students’ development of the concept as a measurable quantity. 

Transduction to the graphical mode was afforded by Raymond’s diagramming his idea for an 

experimental setup that utilized a motion sensor to graph the hand’s motion, from which the 

period could be derived. Students and I were able to discuss ideas regarding an experimental 

setup that did not yet exist because of Raymond’s diagram. Students’ expectations for the motion 

sensor’s graph were drawn and redrawn as a free-hand graph as we negotiated it together in 

relation to the positioning of the hand and motion sensor in Raymond’s diagram.  
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Diagramming enabled the position of the motion sensor to become well defined for the 

students, and suggested a possible anchor for students to base their predictions about what the 

motion sensor’s position vs. time graph might look like. The classroom discourse around 

Raymond’s diagram indicated that Raymond understood how motion sensors, and their spatial 

positions, functioned in experiments, but that he was limited in his ability to shift from his 

diagram to the graphical modality. By publically promoting this transduction, students and I 

were collectively able to conceptualize the period in the graphical modality. 

As students then conducted experiments in which they measured the relationship between 

a wave’s period and its propagational speed, they were afforded the opportunity to enact their 

understanding of period. Addy demonstrated her understanding of period by explaining to her 

group how it was to be measured from their motion sensor’s graph. She incorporated deictic 

gestures regarding the computer-generated graph by pointing to the points on the graph that 

marked the beginning and end of the hand’s motion as it created a wave pulse, while talking 

about the difference in time between those points. 

Transduction among modes was also critical to students’ learning to derive numerical 

values for wave characteristics from waveform graphs. When students were first introduced to 

waveform graphs on Day 6, two variations surfaced. In one variation, an above-view photograph 

of a slinky, while continuous waves were traveling through it, was taken and then projected in 

front of the class. I transformed the photograph into a graph by drawing axes over it such that the 

slinky was the line, and the x-axis was the central axis. This graph represented a combination of 

three modes–photograph, diagram, and graph. Such combinations reflect the blending of two or 

more modes, but each mode can still function as a separate mode and maintains its own 

grammar. However, it allows for the intertwining of various meanings that are afforded by the 
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various modes that co-exist in it. The photograph was abbreviated to foreground certain carefully 

chosen features while sending the rest into the background, which is a hallmark of diagramming. 

Additionally, features and labels drawn (i.e., axes, scale, and curve) were graphical in nature. 

Multimodal combinations afford linkages of ideas across modalities. Instead of asking students 

to simply shift from the primary modality in which they were engaging (like in Raymond’s case 

when he was asked to shift to the graphical mode), this activity utilized a combination of modes. 

Familiar diagrams and artifacts captured by the photograph were intertwined with graphs with 

which students were engaging for the first time. Since the curve on the graph resembled the 

wavy line the students recognized from past lessons, students were supported in linking what 

they understood about the wavy line diagram (e.g., amplitude and period) to the graphical mode 

that now provided scale and numerical information. 

The other variation of a waveform graph used during this lesson was the motion sensor’s 

graph capturing the hand’s motion as it produced waves in the slinky. This graph was generated 

by a computer, and thus, did not require any features to be drawn. The shape of its line was also 

a wavy line, and, similar to the first variation, it promoted students’ extension of meaning related 

to the wavy line to that of the curve in this graph.   

As Addy and Katie applied the concept of amplitude to the motion sensor’s graph, they 

needed to envisage a central axis from which to measure it. This presented a limitation of 

computer-generated graphs whose x-axis may not always be the central axis in a waveform 

graph. This limitation was overcome when students began to draw in a central axis when there 

was not one already provided, which suggested that a benefit of free-hand graphs is that students 

have to draw the axes and can choose to draw the x-axis as a central axis when constructing the 

graph. Drawing in a central axis emerged as a technique to facilitate the measurement of 
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amplitude. Computer-generated graphs and free-hand graphs have both benefits and limitations. 

Computer-generated graphs’ benefits include numerical accuracy from the scale) and limitations 

include lack of a central axis that must be envisaged, whereas the opposite is true for free-hand 

graphs.  

The act of measuring wave characteristics offered students the opportunity to engage with 

multiple modes, which promoted the further articulation of their ideas. It was in the context of 

the act of measuring amplitude that the need for a central axis arouse, which was originally 

overlooked by the focal group as they identified wave characteristics to measure. Moreover, 

Addy incorrectly stated how to measure amplitude at first, only to correct herself when she 

actually took the measurement, and envisaged a central axis by gesturing with a laser pointer as 

if she were drawing the central axis onto the motion sensor’s graph projected in front of the 

class.   

As it was the case with the combination of modes, which was noted earlier, new meaning 

was built from previous meanings, as modes did not remain independent and isolated, but were 

rather interwoven and linked through the concepts with which students engaged. I used an arrow 

(as a diagrammatical feature depicting an interval) to demarcate one wave cycle on a graph as 

students first engaged with waveform graphs. My arrows were enacting Brian’s explanation, and 

promoted the act of measuring an interval, thus offering students an epistemological affordance 

to connect period and wavelength in relation to both waveform graphs since they were measured 

in the same manner (i.e., difference between the beginning and end of one wave cycle along the 

x-axis). This also imbued with further meaning the wavy line diagram from the first day, 

including more than height as a wave characteristic as wave’s period and wavelength were 

added. 
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Students developed different meanings while engaging with a wavy line within the 

graphical versus the diagrammatical modality. A major benefit of the graphical modality was its 

quantitative accuracy. Within the graphical modality, the axes afforded the opportunity to engage 

with quantitative aspects of the wavy line, such as in the motion sensor’s graph shown in Figure 

5.1.8. The numerical axes of graphs allow for various wave characteristics to be quantified. 

Diagrams and free-hand graphs can include quantitative information, such as those created by the 

focal group in Figures 5.1.17 and 5.1.18. In diagrams, the quantitative information is provided to 

the reader via a labeled vector. However, diagrams and free-hand graphs are not typically accurate 

for taking numerical measurements since they lack the scale provided by computer-generated 

graphs.  

The process of creating free-hand graphs afforded students in my class, who authored 

these graphs, the opportunity to label them with particular numerical values derived from a scale 

graph (i.e., the computer-generated graph) that functioned to justify how various wave 

characteristic values were obtained. Subsequently, the readers’ engagement with free-hand graphs 

was to interpret the labeled values on the axes in relation to wave characteristics. Computer-

generated graphs (e.g., Fig. 5.1.16) provided quantitative information through the scale axes on 

which the wavy-line was plotted. The numerical values for wave characteristics were obtained by 

applying the concept of amplitude, period, and wavelength to the graph’s wavy-line (e.g., 

amplitude was determined by measuring the distance between the crest or trough and a central 

axis). The free-hand graphs created by the focal group (Fig. 5.1.17 & Fig. 5.1.18) foregrounded 

the values on the scale that were used to determine the wave characteristics’ values, which 

explicated and justified these values for the reader. The computer-generated graph possessed more 

quantitative detail and scale, but students needed a conceptual understanding of the wave 
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characteristics in order to derive numerical values for them. On the other hand, free-hand graphs 

represented the wave characteristics more clearly by eliminating the milieu of quantitative 

information and including only those values necessary for obtaining values for wave 

characteristics. Qualitative labels similar to features typically used in diagramming (e.g., arrows, 

brackets, written labels) were used to visually define wave characteristics (Fig. 5.1.3), and helped 

students develop the skills needed to engage with these concepts within the graphical modality.  

In generating free-hand graphs, which were interwoven with students’ speech, gestures, 

graphs, and diagrams, the students in the focal group further shaped their understanding of wave 

characteristics. The transduction from the computer-generated graph in Figure 5.1.16 to the free-

hand graphs in Figures 5.1.17-18 offered students an opportunity to re-create ideas from one 

modality to another. Moreover, in doing so within a group context, the process became dialogic 

and a collective effort of the group; students expressed what they knew via multiple 

representations, and their ideas took on new meanings within new modalities. The computer-

generated and free-hand graphs can both be considered graphical; however, since they have 

different grammar, or rules and norms for how they are structured, created, and interpreted, they 

do not constitute the exact same modality. The similarities that these two modalities share, 

though, facilitated the students’ focus on, and developing understandings of, the underlying wave 

characteristics concepts. 

Ultimately, students’ facility in engaging with ideas within and across many modes 

indicates their conceptual understanding. Mallory and Megan chose to use a diagram with text in 

their explanation of a practice problem (Fig. 4.2.11), which demonstrated their understanding of 

both the ideas and the modalities they called upon to describe these ideas, as well as the value of 

diagramming as a modality that they had constructed. Moreover, the focal group called upon 
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multiple modes as they engaged at the end of the unit with a new context–mass bobbing on a 

spring. Their ability to call upon whichever mode they considered appropriate allowed them to 

represent for one another aspects of the wave that were not directly observable, such as its 

propagation through air.  

Different modalities students used to engage with ideas ebbed and flowed, but they were 

also interwoven. Use of each mode did not necessarily contribute distinct meaning to an overall 

concept or idea, but offered unique opportunities for student engagement and concept 

development. Transduction between modes, which was mediated by similar semiotic resources 

and grammatical features shared by the modes, bridged and scaffolded students’ ideas. As 

concepts related to wave characteristics were being developed within different modes, meanings 

developed within modes previously used were in turn extended, as was the case with the wavy 

line that transformed from a depiction of water waves to complex waveform graphs of two 

variations from which quantitative information about various wave characteristics could be 

derived. The interweaving of modalities, which students called upon and used as they engaged 

with, and developed, ideas, shaped their overall conceptual understanding and ability to engage 

with one another using those modes. As students developed conceptual understandings within 

and across different modalities, the ways in which they engaged with the modes changed too. 

The changes to the collective diagrammatical practices of my class in turn shaped the concept 

development within a given mode or modes, forming a reciprocal relationship between the 

development of concepts and the grammar of the modalities used to represent and these 

concepts. 
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Relationships Between Wave Characteristics Determined from Experimental Data 

Students investigated waves by measuring and changing pertinent variables (independent 

and dependent) in order to construct relationships among these variables via experimentation. 

Although the specific variables and the context of experimentation changed from lesson to lesson, 

students followed the same general rules: they set up their experiments in a group of the same 

three students, collected data in their group, and summarized their findings as a group on a 2 x 3 

ft. whiteboard. On their whiteboards, each group drew a free-hand line graph of their data and 

subsequently the equation of the relationship using the graph’s regression. In this section, I present 

ways in which multimodality was part of the students’ construction of these relationships. 

Constructing Relationships in Multiple Modes 

Students conducted three experiments that all utilized long metal slinkies during the unit 

on waves. The first experiment was to study the relationship between a wave’s propagational 

speed and its wave height (or amplitude). The second was to study the relationship between a 

wave’s propagational speed and its period (related to frequency). Finally, the third one was to 

study a wave’s propagational speed and the length of the slinky. All of these occurred between 

days 2-4 of the 12-day unit (see Instructional Outline in Appendix).  

 These experiments did not have an accompanying handout such as a lab handout, and the 

groups had to decide how to conduct an experiment and organize the data. My students and I, 

and the focal group in particular, often used data tables throughout these experiments to organize 

and analyze data. As students collected measurements of independent and dependent variables, 

they often organized these data into tables as the values were collected. During the first 

experiment (Day 2), Katie created waves in a slinky by moving her hand back and forth while 

Kevin held the other side and Addy recorded their data as they proceeded (Fig. 5.2.1). Katie 

suggested Addy organize their data into a table. As shown in Figure 5.2.1, Katie made a gesture 



166 
 
 

 

as she suggested that Addy make a two-column table to organize the independent variable (wave 

height) and the dependent variable (wave speed). The arrows in the figure show how Katie’s 

hand traced out each column depicted by the dotted lines. Katie’s suggestion evidenced her prior 

familiarity with 2-column tables as a mode for representing datasets since this experiment was 

the first for this unit. Addy’s construction of a 2-column table in her notebook moments later 

suggested that Katie’s suggestion made sense to her as a way of organizing their experimental 

data.  

 

 

 

 

   
 

Figure 5.2.1. (Day 2, 03:40-1). Katie gestures to envisage a table. The dotted-line table in the 

middle (03:40) and right (03:41) photographs show the table Katie envisions.  

 

 

In addition to organizing data sets, students used tables to interpret relationships in 

datasets. After the focal group finished collecting data, they immediately began to review their 

data table. They analyzed their data in light of the changes in height and speed, variables that they 

had measured and calculated (using measurements of time and distance) respectively. This 

Katie 

Kevin 

Addy 

hand  

gesture 

hand  

gesture 

03:41 03:40 03:40 
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process required students to first understand what the values in their table represented about the 

artifacts in the experimental setup, and then interpret how changes to the values of one quantity 

affected the other. The focal group’s data table was structured in columns by the variables 

measured or calculated, namely height, time, speed, and distance (which the students also called 

“length” since the distance the wave traveled was the length of the slinky). In each column, the 

group had listed the values of individual trials (Fig. 5.2.2). As students recorded data in the table, 

they had the opportunity to consider each point as both an individual measurement derived from 

the experimental context, and as a constituent of a larger dataset.  

 

 

   
 

Figure 5.2.2. (Day 2, 09:41-58). The data table that the focal group constructs during the wave 

height vs. speed slinky experiment. 

 

 

Engaging with tables encouraged students to consider the units of their measurements, 

which were determined by the devices and artifacts students used during an experiment. Students 

were compelled to consider the units of each quantity they measured or calculated as they labeled 

each column in their table. For example, in the slinky experiment, the groups measured the initial 

height they gave to a wave pulse in a slinky and the elapsed time for it to travel the slinky’s 

length. Each of these measured values, and speed that was calculated using these values, became a 

Addy 
09:41 09:42 09:58 

Katie 
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column in their table shown in Figure 5.2.2. Their written labels included (“Wave Height (ft), 

[elapsed] time (s), speed (m/s), distance [or slinky length] (ft)) contained units in parentheses. The 

practice of labeling the table with the quantity and its units stemmed from students’ past 

experiences in my class, and reflected the grammar for constructing data tables. It also promoted 

students’ conceptual engagement with their data as students questioned if the data made sense or 

not, converted between related units (e.g., feet to meters), and identified patterns that strengthened 

the development of conceptual and empirical relationships.     

The units were foregrounded by the labels students wrote in their tables. Labeling both 

values and units for each variable was part of the grammar for data tables, which enabled and 

promoted students’ consideration of units as they constructed tables. In the focal group’s table, 

Addy made a new column for the length of the slinky, which had a constant value of 20 [feet] 

(shown in Fig. 5.2.2, 09:41). As Katie suggested that Addy determine the speed values by dividing 

the distance column’s values by the time column’s values, Katie pointed to each of the columns 

(shown in Fig. 5.2.2, 09:42) manifesting her understanding of speed as a rate of distance traveled 

(i.e., the slinky’s distance [or length] shown in one of columns Addy had created) over the time 

that Addy had measured with the stopwatch. Katie was able to distinguish the height column from 

the length column in terms of which one should be used to calculate speed, even though they both 

represented a measure of distance in units of feet. In addition, as soon as Addy labeled the slinky 

distance column with feet as units, Katie suggested that instead of feet the units should be meters, 

as it was typically done during experiments prior to those in the waves unit since I had 

consistently required students to express all final numerical values in standard units (e.g., meters, 

seconds, etc.). Addy agreed and changed the “20” to “6.09 m” converting to meters using a 
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conversion factor she already had committed to memory, and then wrote down the speed values 

that Kevin was calculating using his calculator distance values in meters.  

 The students primarily negotiated the meaning of data in relation to units via verbal 

exchanges with one another in the context of their data tables. However, these verbal exchanges 

also involved references to the artifacts used in their experiments. Figure 5.2.3 contains the 

multimodal transcript of the focal group’s engagement with converting the wave height values 

from feet to meters. Similar to recognizing that the slinky’s length values needed to be converted 

from feet to meters, Addy later recognized that the wave height measurements were also in feet 

and needed to be converted to meters. Agreeing with Addy, Kevin suggested that she divide the 

measurements in feet by 3.28 to convert them to meters, but changed to multiply when Addy 

repeated his suggestion to divide. Addy, though, challenged his change and referred back to the 

conversion of the slinky’s length from feet to meters by dividing (Unit 5), which Kevin had then 

correctly suggested.  Although Addy’s utterance in Unit 7 appeared largely mathematical, she also 

seemed to be making sense of the correspondence of 20 feet with 6.09 meters in a spatial way 

since she knew how long the slinky appeared to be. Her spatial reasoning made sense to Kevin 

too, who realized his mistake and agreed with Addy. His utterance in Unit 12 was significant 

because instead of simply agreeing like he did in Units 8 and 10, he then reasoned mathematically 

about Addy’s point demonstrating his engagement with her idea and his own understanding. 

Addy’s spatial reasoning instead of using algebraic arguments that are more abstract and removed 

from the context show the role that the actual experimental setup had on students’ construction of 

concepts. Her utterances and thinking were connected to her engagement with the slinky as an 

artifact.  
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1 Addy We have to convert these feet to meters, 

right?  

[points to wave height column as she speaks, 

which is denoted by the dotted circle in the 

photo to the right]  

 

2 Kevin Yeah, so you have to divide them, no multiply 

by 3.28 

 

3 Addy [2 second pause]  

Wait! You said divide?  

 

4 Kevin No multiply.  

5 Addy Well these I divided. [points to the distance 

(slinky length) column seen in the photo to the 

right] 

 

6 Kevin Oh. 

7 Addy 20 feet divided by 3.28 is like 6.09 meters, 

that makes sense.  

8 Kevin Oh okay. 

9 Addy Doesn’t it? 

10 Kevin Right right okay 

11 Addy So you do one foot divided by 3.28 

12 Kevin Right ’cause a foot is smaller than a meter, 

I’m good. 

 

Figure 5.2.3. (Day 2, 11:00-11:28). Multimodal transcript of focal group’s discussion around 

their data table during the first slinky experiment. Kevin and Addy are sitting down next to each 

other at a table while Katie is standing behind them videotaping. Addy is writing. 

 

 

 

 

Graphing was another modality in which students engaged while exploring experimental 

datasets. Both modalities, graphs and tables, provided opportunities for students to make meaning 
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of the relationship between two variables but in different ways. The curve in a graph depicted the 

relationship that could only be inferred from a data table.  

Upon reviewing the data they had collected and organized into the table shown in Figure 

5.2.4, the focal group identified a non-covariant relationship that they communicated in a free-

hand graph. Every student in the focal group noticed at various points throughout the lesson that 

the stopwatch times, and therefore the speeds, did not really change as the wave height was 

varied. After examining their data table, the group concluded that the wave height had no effect on 

the wave speed based on the lack of change in the time, and therefore speed, values. Addy decided 

to sketch a free-hand graph in her notebook to express the relationship between height and speed 

as shown in Figure 5.2.5. I had not requested that students draw a graph in their notebooks; Addy 

chose to draw it on her own. She turned to the graphical modality to describe and talk about the 

relationship instead of the data table. She reduced all the data to a simple shape (a flat line) on a 

graph that highlighted the relationship of the values of the two variables. The shape of the graph 

was the relationship at which the group had arrived. Addy’s understanding of how to sketch the 

shape of the free-hand graph’s zero-slope best-fit line based upon the data table represented her 

understanding of the relationship between these two variables. Her shift from using a table to 

creating a line graph, not only communicated her conceptual understanding, but also strengthened 

it not only for her but for the other students too.  
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Figure 5.2.4. (Day 2, 12:00). Focal group’s final version of their data table they used to infer an 

empirical relationship for the first slinky experiment. The wave height and speed columns are 

denoted by yellow and orange dotted circles respectively. 

 

 
 

Figure 5.2.5. (Day 2, 12:26). Focal group’s initial free-hand graph inferred from their data table 

for the first slinky experiment. 
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The transduction from the data table to the graphical modality forced Addy to describe the 

relationship in a new modality, whose grammar afforded modifications to her understanding of it. 

She was able to look beyond the small variations in the dataset due to random error, which were 

evident in the table, and sketch a straight and flat line that represented how the relationship should 

appear accounting for the presence of random error. Had she not made this modification during 

her shift from one modality to the other, the line she would have sketched would be crooked to 

include the small variations due to random error. By transducing to a line graph, she not only 

foregrounded the relationship through the shape of the line, but also backgrounded the quantitative 

aspects of the data, which were so prominent in the table. Since her free-hand graph lacked 

numbers on the axes, she lessened the significance of the individual values in exchange for calling 

attention to the significance of the relationship between the variables. In addition, Addy’s decision 

to create a free-hand graph demonstrated the value she had assigned to graphing as a modality.  

Although Addy was the one who drew the graph, the other group members supported her. 

Just before sketching the line graph, Addy verbally shared that she expected the graph’s curve to 

be a “straight line,” when Kevin interrupted her saying, “a horizontal line,” and she quickly agreed 

with his more specific description. This indicated that Kevin and Addy shared a common 

understanding of the non-covariant relationship between wave height and wave speed within the 

graphical modality so that they could both shift from the two-column data table to a line graph. 

Although the axes in their free-hand graph were not labeled, it can be assumed that they knew 

speed was to be on the y-axis and height on the x-axis based on their discussion of the data prior 

to the sketch, how they later entered data into the computer in a similar way, and the eventual 

more detailed free-hand graph Katie produced on their team’s whiteboard shown in Figure 5.2.6. 
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Figure 5.2.6. (Day 2, 12:59). Focal group’s initial free-hand graph for the second slinky 

experiment.   

 

 

The ways in which students used graphs (free-hand or computer-generated) to make 

meaning of relationships between sets of values was critical for understanding how students 

made sense of relationships between wave characteristics since each set of values mapped onto a 

wave characteristic. When students drew free-hand graphs, they had to choose in what way to 

sketch the graph based upon their conception for the grammar of that modality, and in particular, 

which features to include or exclude. Katie sketched the axes of free-hand graph onto the 

whiteboard before the group had entered their data into the graphing software. The features that 

Katie included in the free-hand graphs shown in Figures 5.2.5-6, and the graph corresponding to 

Unit 8 in Fig. 5.2.8, coupled with her group’s verbal exchanges during its creation, reflected the 

group’s conception of the grammar for free-hand graphs. This grammar corresponded to a 

hybridization of diagrammatical and graphical grammars since a free-hand graph was a diagram 

of a graph. There was an ongoing dialogic relationship between the diagrammatical and 

graphical grammars occurring within the construction of the grammar of free-hand graphs. The 
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ways in which students created diagrams shaped the way in which they created free-hand graphs, 

and the ways in which students engaged with computer-generated graphs also shaped how they 

created free-hand graphs. 

The computer-generated graph, though, which the focal group constructed after their 

free-hand graph, did not appear to match the relationship they inferred from the data table. The 

regression performed by the computer program displayed a slope of -0.08029, which represented 

a relationship close to zero, yet not exactly zero. Moreover, the axes of computer-generated 

graphs are automatically scaled to fit the datasets being plotted, but can be rescaled by  the user. 

After the focal group entered their experimental data into the computer’s graphing program, they 

obtained the computer-generated graph shown in Figure 5.2.7a. Katie instantly recognized that 

“you have to make this bigger ’cause the interval is too small,” as she pointed to the y-axis on the 

screen. Katie was referring to the scale or range of the y-axis being too small, and therefore in 

need of expansion. As she spoke, Kevin increased the scale of the y-axis and as a result the graph 

appeared more like their hand-drawn graph (i.e., a flat line), as shown in Figure 5.2.7b. Katie 

then suggested they performed a linear regression, so Kevin chose a best-fit line to be included in 

the computer-generated graph (Fig. 5.2.7c). Their understanding of how this relationship should 

be represented within the graphical modality was evident by their recognition that in order to 

identify the trend line in the computer-generated graph in Figure 5.2.7a they had to expand the 

range of the y-axis, and that the trend line should be a straight line. 
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Figure 5.2.7. (a), (Day 2, 14:16). Initial computer-generated graph during first slinky 

experiment, before any student modification. (b), (14:18). Re-scaled computer-generated graph. 

(c), (14:23). Re-scaled computer-generated graph with a best-fit line. 

 

 

Rescaling the axes helped provide the students visual agreement between the graphs they 

derived from the table and the computer-generated one. Based on the zero slope empirical 

relationship they derived from the table, the focal group was able to recognize that something was 

wrong with the initial appearance of the graph and choose to rescale it. By understanding the 

grammar of the graphical modality, the focal group was able to produce a computer-generated 

graph that was similar to the free-hand graph they had generated from inspecting their data table. 

However, although the two graphs were similar, they were not identical; the slope value generated 

from the computer’s regression was not exactly zero like the slope of the free-hand diagram. The 

best-fit line already accounted for random error, but was limited by the number of data points used 

(a) 

(b) (c) 
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to derive the slope. If a larger number of data were collected and plotted, the slope value, currently 

at 0.08029), would have been much closer to zero.  

At the start of the transcript in Figure 5.2.8, the students in the focal group had just 

finished all of their manipulations of the computer-generated graph, and were beginning to decide 

which particular information from that graph should be included in their free-hand graph. The 

free-hand graph was sketched on a whiteboard that would be publically displayed during the 

whole-class discussion later in the lesson. Units 1-3 show how they reaffirmed their consensus 

that the relationship should be represented by a flat line as it was initially inferred. Kevin was able 

to reason that the best-fit line’s nonzero slope displayed in the computer graph was likely due to 

the slight differences in the speed values.  

 

 

[Kevin has the computer perform a linear regression in which a best-fit line and regression 

data appear] 

1 Addy So yeah like zero [referring to the slope] 

=There should be no slope= 

 

2 Katie =alright the slope is basically= zero, yeah 

3 Kevin Well probably due to the y-values, since 

they’re like slightly different the slope is a 

little off [from zero] 

[15 second break in discourse as the group grabs their whiteboard] 

4 Katie: What’s the speed, which would be the y-

axis value?  

 

 

5 Kevin: Oh, the average speed? Is uh [pause] 

what’s the y-intercept value? 3.5 [pause] 7  

[Kevin reads this value off the computer’s 

regression] 

6 Addy: 3.57 (says in agreement) 

7 Kevin: Meters per second  
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8 [There is a break in the discourse as Katie finishes 

the graphical sketch on the team’s whiteboard]. 

 

 

Figure 5.2.8. (Day 2, 14:43-14:58). Multimodal transcript of the focal group interpreting the 

computer-generated graph of their data from the first slinky experiment. 

 

 

As the focal group transduced from their computer-generated graph to a free-hand graph, 

they were forced to appreciate the relationship in an approximate matter, which helped them 

realize that it was close to zero which they had already inferred from their data table. The focal 

group’s free-hand graph that they constructed on their whiteboard only included pertinent 

information, such as the shape of the best-fit line and particular numerical values derived from the 

computer-generated graph and regression. Katie asked her team to obtain a speed value from the 

computer-generated graph (Unit 4) so she could label the y-intercept on the free-hand graph. 

Kevin’s response in Unit 5 was only partially correct. He acknowledged that there was only one 

speed value, and that it should be an average of all of the speed values; however, he then 

incorrectly identified the y-intercept from the regression as the average speed. Although, Kevin 

made the mistake of treating the y-intercept as the average speed (y-value), these values would 

have been equivalent if the slope of the computer’s best-fit line were actually zero. By the end of 

the transcript, the group determined the speed to be 3.57 m/s, which was the y-intercept obtained 

from the regression. The mean of all of their reported speed values would have been 3.49 m/s. 

These two values are close, but are obtained in significantly different ways. Thus, the students 
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were not analyzing their data correctly, despite Kevin saying “average speed” in Unit 5. This did 

not impact the relationship they were exploring, but it did reveal a potential analytical setback and 

limitation to the use of the graphical modality that went unnoticed by both the students and myself 

at the time.  

There were seven groups in the class and each group independently conducted the same 

experiment. After all of the groups finished and prepared a whiteboard summarizing their 

experimental results, we had a whole-class discussion of these whiteboards. As I noted in Section 

4.2, I selected four of the seven whiteboards to publically display based on the diversity of the 

groups’ interpretations and findings (Figures 4.2.2a-d inserted below for the reader’s 

convenience). I displayed two correct interpretations and two different incorrect interpretations 

side-by-side so we could engage in a whole-class discussion about them. The whiteboard in 

Figure 4.2.2a was made by the focal group, and correctly concluded that there was no relationship 

(or zero-slope relationship) between wave height and wave speed. The group’s whiteboard in 

Figure 4.2.2d also presented a correct conclusion, but referred to the relationship between wave 

height and propagational time instead of wave speed, albeit time was indicative of speed, as time 

of propagation is inversely related to wave speed.  

It was evident that the students whose free-hand graphs are shown in Figures 4.2.2b, c did 

not manipulate or rescale the y-axis of the computer-generated graph to a larger scale during 

their analysis, as the focal group had done. The default small range visually exaggerated the 

range and the best-fit line’s steepness. Since the y-axis was scaled so closely, a slight positive or 

negative slope appeared much steeper than if a larger scale were used instead. This must have led 

them to not recognizing the value of the slope as being approximately zero. As a result, the 

group’s free-hand graph seen in Figure 4.2.2b had a positive slope, and the group’s free-hand 



180 
 
 

 

graph in Figure 4.2.2c had a negative slope. In both cases, the limited ease with the graphical 

grammar regarding the need to rescale the computer-generated graph’s axes in order to consider 

the value of regression slope was responsible for failing to derive the correct relationship. 

 

 

 

      
 

     
 

Reproduction of Figure 4.2.2. (end of Day 2). Student-groups’ whiteboards of wave speed vs. 

height slinky experiment. (a) is the focal group’s board.  

 

 

In contrast, both groups that correctly identified a non-covariant relationship (Figures 

4.2.2a, d) inferred a relationship in light of the random error in their measurements. All of my 

students had encountered and analyzed random error in experiments leading up to this unit 

during which I had encouraged them to calculate a value for error using the difference between 

the highest and lowest values within a repeated trials dataset. They could then compare this 

difference to the difference between two values of the dependent variable for different values of 

(a) (b) 

(c) (d) 
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the independent variable to determine if the latter did not exceed the former and, thus, might be 

attributed to random error. If the team recognized a non-covariant relationship at this point in 

their analysis, they were not required to produce a computer-generated graph, and could instead 

proceed directly to transducing a free-hand graph, as the focal group did with their free-hand 

graph in Fig. 5.2.5. Despite the focal group’s confidence in the empirical relationship they 

derived from their table, they produced a computer-generated graph and considered the empirical 

relationship from it in light of the one they had inferred from the table. It was not known to what 

extent the group, whose board is shown in Figure 4.2.2d and similarly to the focal group inferred 

a non-covariant relationship, engaged with their data, or whether they had created a computer-

generated graph or not. However, they listed a value for error and derived a non-covariant 

relationship shown in their free-hand graph. The value for error listed on their board suggested 

that they engaged with their data table enough to calculate a value for error, and at some point 

during the experiment, they were able to infer the non-covariant relationship which they 

graphically displayed on their whiteboard. 

Following the experiment (Day 3), I facilitated a whole-class discussion about the 

experiment, and in particular, I focused on analytical considerations regarding  the data in 

represented various modalities, to model and foreground the grammar of tables and graphs. This 

discussion included interpretation of tables that contained repeated trials for multiple values of the 

independent variable, and construction and analysis of computer-generated and free-hand graphs. 

I summarized the correct findings for their previous experiment (that there was a non-covariant 

relationship between a wave’s amplitude and its speed), as I modeled appropriate data 

interpretation and analysis to guide students through the process of deriving an empirical  

relationship between wave height and speed using tables and graphs. At first, I presented them 
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with a table of sample repeated trials data, shown in Figure 5.2.9. These data were values I created 

that were similar to data students measured during their experiments on the previous day. I 

provided this table to facilitate our class discussion on how to interpret and analyze random error 

in datasets. As previously mentioned, I had consistently encouraged students to consider the 

extent to which error might affect their measurements by conducting multiple identical trials, or 

repeated trials. Using these data, they could estimate a value for error as the difference between 

the highest and lowest values in the repeated trials dataset. In the sample data seen in Figure 5.2.9, 

the same height (0.3 meters) resulted in a variety of propagational times with the highest (2.02 

sec) and lowest (1.72 sec) being approximately 0.3 sec apart. The same method was used for 

determining error (0.4 m/s) in the corresponding speed values that I calculated with these times.  

 

 

  

 

Figure 5.2.9. (Day 3, 5:40). My table of sample repeated trials during a post-experiment lecture.  

 

 

Why would I include this 

[data table for discussion]? 
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Determining a value for error offered students a mathematically simple way to 

quantitatively assess a value for error, which they could apply to their analysis of the relationship 

by comparing this error to the difference in the highest and lowest values of the dependent 

variable dataset. A difference within the error would indicate a non-covariant relationship, which 

students could then transduce to a free-hand graph with zero slope. Significantly larger differences 

in the dependent variable than the error would suggest a covariant relationship that could be 

further explicated by generating a graph using the computer program, and then transducing it to a 

corresponding free-hand graph.  

The purpose of our whole-class discussion of the repeated trials table was to consider 

random error in measurement and calculate a value for error. The discourse appearing in Figure 

5.2.10 occurred at the beginning of our class discussion about the repeated trials data. Brian’s 

contribution in Unit 6 showed confusion about how to interpret the sample repeated-trials dataset, 

in which all dependent variable values for the same independent variable value should be the same 

but which varied slightly due to random error. Brian apparently confused this repeated-trials 

dataset with the complete dataset, in which various values of wave height (independent variable) 

and wave speed (dependent variable) were shown, and which we had discussed in the previous 

day following the experiment.  

Graphs are an appropriate modality to foreground the relationship between different 

values of independent and dependent variables, which in this experiment was a non-covariant 

one represented by a straight horizontal line. However, graphs are not a useful modality for 

representing repeated trials data since there was no underlying relationship. In the past, data 

tables often afforded transduction with the graphical modality, which was a cultural practice in 

which my students were immersed throughout the school year. Brian did not realize the 
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difference between the repeated-trials dataset and the dataset that contains different values of 

independent and dependent variables and this might have led him to an inappropriate 

transduction to the graphical modality using the repeated trials data.  

 

 

1 Teacher Why would I include this [data table in my results]? 

2 Raymond All of the height values are the same and then we can clearly see that all of the 

time values are different. 

3 Teacher Okay so why did I show this?  

So what? 

4 Raymond There’s error. 

5 Teacher There’s error, good! Can anyone else pull anything out of this? 

6 Brian The values are really close together so like if it was plotted on a graph then it 

would be like a straight line, with like no slope 

7 Teacher Well if these were plotted on a graph, they have the same height value 

8 Brian Oh yeah, whoops 

9 Teacher So that’s one thing that’s confusing, this isn’t showing me the data that I 

[should] graph  

 

Figure 5.2.10. (Day 3, 6:10-7:00). Transcript during a whole-class discussion where students 

offered their interpretations of a repeated-trials data table.  

 

 

Brian’s confusion might have also been fueled by his prior engagement with the non-

covariant graph during the previous day’s whole-class discussion over the experimental results, 

coupled with the fact that the general topic of this discussion was the previous day’s experiment. 

Brian and the other students had just discussed the zero-slope graph during the previous day’s 

experiment. As a result, this might have encouraged his transduction to the graphical modality as 

well as suggested that the graph have a zero-slope best-fit line.  
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Students’ understanding of the relationship between the slinky’s wave height and its 

speed was predicated on their understanding of how to infer such a relationship from the data in 

both tabular and graphical modes. I modeled how students were to graphically understand the 

relationship using free-hand graphs during a lecture following the experiment (Day 3), so that 

they might utilize my techniques in other experiments they would conduct during the following 

day (Day 4). I drew a canonical free-hand graph seen in Figure 5.2.11a to represent the data 

derived from the previous day’s experiment, which my students and I had already discussed 

during the previous day’s discussion. 

 

 

 

       
 

Figure 5.2.11. (a), (Day 3, 11:15) Teacher-drawn free-hand graph depicting a non-covariant 

relationship. (b), (11:30) Teacher-drawn free-hand graph depicting a non-covariant relationship 

that also includes the computer-generated graph’s best-fit line (green line). 

 

 

When sketching my free-hand graph, I made decisions about which graphical features to 

include, or not, in the same way that my students made decisions for their graphs they had 

green line 
(a) (b) 
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sketched on their whiteboards on the previous day. The graphical features I intended to model for 

them, and had consistently encouraged my students to include in their free-hand graphs 

throughout the year are listed in Figure 5.2.12, and capture the grammar of free-hand graphs.  

 

 

 

 

 
 

Figure 5.2.12. The pertinent features of free-hand graphs.  

 

 

 

 

 The best-fit line or curve in any graph is especially important, as it represents the 

relationship among the data. A slight positive or negative slope was typical for computer-

generated best-fit lines of non-covariant datasets with a limited number of data points, which was 

exemplified by the slight positive and negative slopes of the students’ free-hand graphs shown in 

Figures 4.2.2b and 4.2.2c, respectively. The students’ computer-generated graphs from the 

previous day’s experiment often resulted in empirical relationships having nonzero values for 

slope. Since my instructional goal was for students to construct the canonical understanding that 

wave height and wave speed have a zero-slope relationship, I had to help them understand how 

to infer non-covariant relationships using computer-generated graphs. To achieve this, during the 

follow-up lecture, I drew an additional trendline (a green line) onto my free-hand graph to 

represent what a computer’s best-fit line might look like. As seen in Figure 5.2.11b, this green 

best-fit line had a slight positive slope. 

 Labeled axes (with type of quantity and units) 

 Maximum values for each axis to display scale 

 Best-fit line or curve ONLY 

o Do not include points nor “connect-the-dot” lines 
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While explaining my free-hand graph, I used the width of my hand from my thumb on 

the bottom to my pinky finger on the top as a gesture to represent the existing random error as an 

interval or amount of change in the y-axis (Fig. 5.2.13). This gesture aimed at helping students to 

link random error to the graphical modality an interval quantity on the y-axis. Moreover, I 

wanted students to recognize that the computer-generated best-fit line (green line) did not 

contain values outside of the interval representing the amount of error in the dependent variable 

(y-axis) as seen in Figure 5.2.13. Although my free-hand graph was not a scaled graph, and thus 

my hand was not being used in conjunction with our actual value for error, my hand symbolized 

that the error was larger than the variation in the entire dataset being graphed, and publically 

transduced the concept of error to a free-hand graph. I then reminded students that they could 

bypass creating a computer-generated graph if they recognized the relationship had a zero slope 

during their analysis of the tables.  

Following the lecture, students conducted two more experiments (Day 3) again using the 

slinkies: wave speed versus period (related to frequency), and wave speed versus slinky-length. 

Unbeknownst to the students prior to the experiment, there was a non-covariant relationship 

between a wave’s speed and its period (and frequency) that students were to derive from their 

data. The experiments offered students an opportunity to engage with tables and graphs in light of 

the various ways we had shared and discussed during the previous slinky experiment.    
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Figure 5.2.13. (Day 3, 12:03). The width of my hand from my thumb on the bottom to my pinky 

finger on the top represented the interval or amount of change in the y-axis that could be 

attributed to random error. 

 

 

The focal group was assigned the speed vs. period experiment in which they again used a 

stopwatch to measure the time each wave took to travel the fixed slinky length in order to later 

calculate the wave’s speed, and a motion sensor facing the student’s hand to measure the period as 

the wave was created (i.e., the time for the hand to move back and forth as it created a wave in the 

slinky). The focal group conducted 15 trials and recorded all of the stopwatch values into a table 

in their notebook seen in Figure 5.2.14. The listed times were all stopwatch times for the wave to 

travel the 3-meter fixed length of the slinky. The period values captured using the motion sensor 

were not listed in the notebook, but were stored on the students’ computer for them to individually 

match with the stopwatch times (e.g., propagational values) later during their analysis of the data. 

After the data collection, the focal group students realized that the process of matching the 

propagational values with the period values derived from the motion sensor’s graph on the 
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computer would be too tedious, and instead decided to only use the first three and the last three 

trials during their analysis during the next lesson. 

 

 

 

   
 

Figure 5.2.14. (Day 3, 46:17). The focal group’s table of propagational time values from the 

second slinky experiment (period vs. wave speed). The table is typed to the right for increased 

readability.  

 

 

The next day (Day 4), before beginning their analysis of the data they collected during the 

previous lesson, the students worked independently on a brief quiz. The quiz aimed at promoting 

appropriate transduction of data in a table to a free-hand graph taking under consideration random 

error. Students were provided with sample data from an unrelated and hypothetical experiment 

distance = 3m 
 

   t:     0.81       _v_ 

           0.89 

           0.89 

           0.73 

           1.53 

           0.61 

           0.81 

           0.66 

           0.88 

           0.71 

           0.64 

           0.52 

           0.72 

           0.77 

           0.68 
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(Fig. 5.2.15a, b). I projected the sample dataset table and its corresponding computer-generated 

graph shown in Figure 5.2.15a. The students had never conducted this particular experiment–a 

pendulum experiment to determine the relationship between a pendulum’s release height and its 

period, so they were unaware of the underlying relationship. The handout portion of the quiz (Fig. 

5.2.15b) provided each student with a description of the experiment, a table of repeated trials from 

one of the height values (0.2 m), and two sample interpretations from which students were to 

select one and then explain their choice. Students had to determine whether the relationship 

between the two variables was a quadratic relationship represented by the apparent parabola on 

the computer program’s graph, or a non-covariant relationship that only appeared to curve on the 

graph due to random error in each data point and a lack of a large number of data points.  
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Figure 5.2.15. (Day 4). (a), Sample dataset and graph projected in front of the class during a 

brief quiz. (b), Handout of the brief quiz students worked independently. 

 

 

After students finished the quiz, I asked for volunteers to share their choice and reasoning. 

Three students responded verbally explaining their reasoning, and immediately the first student, 

Zeke, began referencing the repeated trials data table (Fig. 5.2.15b) projected on the screen in 

(a) 

(b) 
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front of the class by pointing with a laser pointer. His response is shown in the transcript in Fig. 

5.2.16.  

    

 

 

 

1 Zeke Uh the difference between the highest one which 

is .98 and uh .75 is .23 which is the error because 

you’d expect that to be the same, um so you get 

that just to find the average, and then uh you go 

back uh 

  
[from Fig. 5.2.15b] 

2  [3 second pause as I switch from projecting the 

handout (Fig. 5.2.15b) to projecting the graph 

(Fig. 5.2.15a)] 

3 Zeke um, you find the difference between the highest 

which is 1.02 and 0.82, the difference is .2, so 

since the amount of error is basically the same, 

then you can tell that uh it should be no trend. 

 
[from Fig. 5.2.15a] 

 

Figure 5.2.16. (Day 4, 3:29-4:18). Transcript of Zeke’s interpretation of the random error in the 

data provided during the brief quiz. 

 

 

Zeke’s utterances demonstrated his understanding of determining relationships in datasets 

through his engagement with, and transduction between, modalities, and more specifically 

between numerical lists or tables and graphs. This was also the same method of analysis I had 

suggested during my lecture on Day 2 in the context of the wave speed versus wave height 

experiment. At the end of Unit 1, Zeke said “and then uh you go back,” at which point I switched 
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from projecting the repeated trials data (Fig. 5.2.15b) to the graphing software screen (Fig. 

5.2.15a). Zeke’s utterance in Unit 1 represented his understanding of how to calculate a value for 

error, which led to his conclusion in Unit 3 that there would “be no trend” (i.e., a non-covariant 

relationship). He first considered the highest and lowest values in the repeated trials to determine a 

value for the random error, and then applied that value for error to the dependent variable dataset 

that was both listed in a table and plotted in the computer-generated graph. He examined if the 

change in the dependent variable was significantly larger than the value for error he had just 

determined. Since the highest and lowest period values did not vary by any amount larger than the 

period values measured for the repeated trials, Zeke concluded that there was no [covariant] 

relationship between the pendulum’s release height and the pendulum’s period.  

After Zeke’s response, Dustin then offered his interpretation, which is shown in the 

transcript in Figure 5.2.17. Dustin essentially presented again Zeke’s response, but in his own 

way. Aside from assigning value to Zeke’s response by publically agreeing with him, Dustin 

added his interpretation of the data that he referred to as not “scientific.” He considered the 

changes within the entire dataset and noticed from what he perceived as a common sense point of 

view, that if the values were within 0.15 of each other, then they were not changing by very much. 

It was unclear how exactly Dustin derived the 0.15 value, and to what exactly the 0.15 was 

referring. In the plotted dataset, the lowest stopwatch time corresponded to a height of 0.15 

meters, and the largest time to height a 0.30 meters. The difference in these values was 0.15 

meters, and could be the difference to which Dustin was referring. This was how Addy interpreted 

his comment, which she would later refer to in Unit 3 of the transcript shown in Figure 5.2.18. 

Dustin was considering how the two variables change in relation to each other. Dustin felt that an 

increase of only 0.15 meters of height was too small of an interval and that the change in the 
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stopwatch times that occurred over it lacked a coherent pattern to which he referred to as 

“butchered.” Although other students, such as Brian, were using the ideas we had discussed in 

class, Dustin offered a new idea, namely that there was no trend in the data because the range was 

too small. However, he expressed doubt about his interpretation by prefacing it as an idea that 

“isn’t scientific.”  

 

 

 

1 Dustin I did exactly what Zeke did and I agree with 

him because I’m pretty sure that’s how you 

find error, how Zeke did, and yeah how he 

took biggest and the smallest and subtracted 

‘em and it was uh 0.23, and then can you go 

back? 

[he is requesting that I switch from projecting 

the handout (Fig. 5.2.15b) to projecting the 

graph (Fig. 5.2.15a) as I did for Zeke moments 

earlier] 

 
[from Fig. 5.2.15b] 

2 Dustin And also if you look, and this isn’t scientific, 

but if you look at the uh numbers it’s just like 

.15 off, and to have a trend that like that’s like 

that butchered in that little amount, I don’t 

know it just kinda seems like error 

 
[from Fig. 5.2.15a] 

 

Figure 5.2.17. (Day 4, 6:02-6:43). Transcript of Dustin’s interpretation of random error in the 

data provided during the brief quiz. 
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A key element within both Zeke and Dustin’s responses was their choice to only analyze 

the data tables, instead of the graph, and in particular to not allow the curving shape of the graph 

to mislead their development of the relationship between the two variables. They engaged with 

the two different tables of values presented in a particular order: the repeated trials table was 

used first to assess a value for error, and then that error value was applied to the table of the 

complete dataset of the independent and dependent variables. This was critical to students’ 

construction of relationships from experimental data. This process involves much more than 

assessing variations within a dataset presented in a table. Students must be able to distinguish 

repeated trials data from complete datasets, and engage with each appropriately. As previously 

seen in Brian’s contribution in Unit 6 of Fig. 5.2.10, he confused the repeated trials dataset with 

the complete dataset, and inappropriately shifted from the repeated trials data table to a graphical 

modality, suggesting that the plotted best-fit line would be “a straight line, with like no slope.” 

As compared to Zeke and Dustin’s contributions shown in the transcripts in Figures 5.2.16 and 

5.2.17, Zeke, Dustin, and Brian all recognized that the data were too close together, but Zeke and 

Dustin were able to correctly identify and differentiate between the repeated trials data table and 

the data table of the complete dataset of the independent and dependent variables that was 

plotted. Zeke and Dustin recognized that the shape of the computer’s graph was misleading due 

to the small range exaggerating the curve. Their ability to choose modalities that they considered 

most appropriate, disregard modes completely or critically consider features of a particular 

mode, and transduce between modes indicated and shaped student learning and my class’s shared 

understandings regarding how to derive empirical relationships.  

When identifying non-covariant relationships, the benefit of student engagement with 

data represented in tables might lie in a table’s prominence of individual values as opposed to a 
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graph’s prominence of a collective set of values represented by a curve’s shape. By looking at 

the individual values, my students and I could easily estimate random error by identifying the 

high and low numbers of the dependent variable for the same value of the independent variable 

and subtracting them to obtain a measure of error. 

In contrast to tables, graphs foreground the relationship in a dataset; that is, in graphs, it 

is not the individual values that are pronounced as it is the case in tables, but it is the shape of the 

line or relationship described by the set that is most prominent. Since I noticed that some of my 

students turned to tables as a modality to help them interpret error and especially to differentiate 

between non-covariant and covariant relationships, I asked my whole class which modality they 

considered it was better to use in order to analyze error and identify “false” trends (i.e., empirical 

covariant trends for non-covariant relationships). I created spaces to invite the students to 

overcome the challenges presented by the technology and auto-scaled graphs in particular. The 

students may not be able to fully control the format or appearance of data in the technological 

outlet initially provided.  However, they can and should learn to correctly interpret the data and 

modify the data appearance in light of their understanding. Without understanding the underlying 

grammar of the modality afforded by the technology in a particular lesson, the students may be 

misled by the appearance, making this concept critical to students’ successful engagement with 

data. Students’ responses to the question I posed to the class are shown in the transcript in Figure 

5.2.18.  

In Unit 1, Addy used the laser pointer to point out the graph’s shape as a prominent 

feature that might be misleading. A critical aspect of her thinking was her explanation of how the 

graph could be manipulated to show a different shape by increasing the scale of the y-axis, which 

would allow the curve to appear flat. Her idea can be linked back to her groups’ actions and 
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interpretations during the first slinky experiments in which she and her group successfully 

inferred using the table that the relationship was a non-covariant one, and then matched it to the 

computer-generated graph’s shape by rescaling the graph. Their ability to interpret the 

measurements in the table and their understanding of the graphical grammar afforded them to 

rescale the computer-generated graph, and not to be misled by the appearance of the computer-

generated graph’s shape.  

 

 

1 Addy: I just think for me, I would say that 

the table is easier, like graphs can 

be interpreted all different ways, 

like because of this [uses a  laser 

pointer to trace along the graph’s 

curve]  

it looks like there is a trend where 

there is really not or at least I don’t 

think there is, so like for me a data 

table is easier, um unless you like 

make this [graph’s scale] like 

bigger 

 
(from Fig. 5.2.15a) 

2 Teacher: What do you mean make it bigger? 

3 Addy: Like make it, like what Dustin said, 

this is only like, from the lowest to 

the highest, like .15 

4 Teacher: Okay, like what do you want me to 

do here?  

[I am in control of the computer 

and am asking her to tell me how I 

can manipulate the graph] 
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5 Addy: Like, I think make the top point 

bigger, to like 3  

[I reset the maximum y-axis scale 

from 1.00 to 3.0] 

 

6 Teacher: No we can make anything look like 

a flat line ya know just by rescaling 

so we have to be careful, right? 

 

7 Zeke: Wait, can we just make the bottom 

one go to zero? 

 

8 Teacher: Yeah, I think that’s reasonable to do 

to let the bottom to zero in a lot of 

cases 

[I reset the minimum y-axis scale 

from 0.80 to 0]  

’cause I think you guys are saying, 

correct me if I’m wrong, Graphical 

Analysis is going to go right to a 

really small scale like it’s gonna 

autoscale it right in zoomed in on it, 

so we may want to zoom out a little 

bit just to put it in perspective. 

Yes, Dustin? [calls on Dustin]  

 

 

9 Dustin Yeah uh, I think the table’s better, 

like I did that first, and then also if 

you look at this axis [y-axis], the 

numbers are too close together 

[refers to scale of the original 

graph’s y-axis] 

 

 

 

Figure 5.2.18. (Day 4, 8:16-10:28). Transcript of students’ comments on the use of tables versus 

graphs to interpret error.  
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In Unit 5, I publically rescaled the graph projected in front of the class just as Addy 

suggested, and cautioned the class about rescaling since the process could make almost any 

curve appear flat–even for covariant relationships. If students rescale without interpreting their 

data and its error beforehand, rescaling might lead to identifying a non-covariant trend where 

there is really a covariant one. Given this limitation, I had discussed with my students the idea of 

rescaling at various points throughout the year leading up to this unit encouraging them to 

consider expectations that they first inferred from their data tables We had also discussed that 

when the y-axis range was really small, rescaling could be done by increasing the maximum or 

resetting the minimum to zero. For this reason, when Zeke, in Unit 7, suggested that we could 

reset the minimum to zero instead of the maximum to a higher value, I agreed with him and 

demonstrated this to the class.  

Continuing the focus on the students’ experimental data (i.e., wave speed vs. period, or 

wave speed vs. slinky length), I assigned each group to answer three questions listed in Figure 

5.2.19a. The focal group’s final answers are shown in Figure 5.2.19b. The focal group students 

answered the questions quickly and with little debate, and determined that there was no 

relationship between their variables. Addy offered her reasoning to justify their conclusion saying 

“no relationship because on Tuesday, [Day 2, during the first experiment–wave speed vs. wave 

height] we actually did that, like we thought about experimenting if it was like to move it [the 

hand holding the slinky] faster, which is exactly what we’re doing here.” Going along with 

Addy’s idea, Kevin then added, “yeah, so it’s a flat line.”  

After completing the three questions, each group prepared a whiteboard displaying their 

experimental results that they would share with the rest of the class during another whole-class 

discussion. The focal group’s negotiation of how to draw the free-hand graph is listed in the 
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transcript in Figure 5.2.20. In Unit 1, Katie sought help from her group to decide which quantity 

should be plotted on which axis. She said, “y depends on x,” but then transitioned to thinking 

about which quantity they had chosen the values for. In Units 1 and 3, Katie and Addy indicated a 

shared understanding and familiarity with the word “choose,” which was commonly used by the 

students and me throughout the year to determine which quantity was the independent variable 

and should be plotted on the x-axis. Addy and Katie’s interaction, coupled with their previous 

experiences prior to this unit, shows that their collective understanding of the independent variable 

as the values selected by the experimenter and plotted on the x-axis was part of their group’s 

graphical grammar. This grammatical element of graphs was followed not only by the students in 

the focal group, but also by the rest of the class who constructed graphs in this way as evidenced 

by the agreement between which quantities were plotted on the x- and y-axes of the free-hand 

graphs on various groups’ whiteboards (see Fig. 4.2.2, 4.2.6, & 4.2.7). This suggested that plotting 

on the x-axis the quantity whose values were chosen by the experimenter was a shared cultural 

practice in my class, and an element of the collective graphical grammar for the majority of my 

students.  

 

 

 (a) (a) (b) 
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Figure 5.2.19. (a), (Day 4). Three questions assigned to teams concerning their experiment’s 

data. (b), (Day 4, 20:50). Focal group’s answers to the questions listed in (a).  

 

 

Kevin used the graph’s axes to make sense 

of and support their choice for what to plot on the 

x-axis in Unit 5 when he stated, “it has to be a 

horizontal line.” He was connecting his non-

covariant expectation for the graph’s shape to what 

would be necessary to produce it given this 

particular context. He contrasted his suggestion to 

the alternative in which the resulting graph would exhibit a vertical instead of a horizontal line.    

  

 

1 Katie: So which one did we, y depends on x [points to 

the y- then the x-axis as pictured to the right]  

so which one did we—  

 

2 Addy: —we chose— 

1.  In reviewing your data, describe what 
you expect the graph to look like     

     (i.e., is your dependent variable 
changing?)?  

 
2.  Do you think there is a relationship or 

not, and how confident are you? 
 
3.  Does your data/trend make sense? Is it 

what you expected [before conducting 
the experiment]? 
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3 Katie: —choose?  

[3 second pause]  

We would’ve chosen probably the period. 

4 Addy: Yeah how fast I move my hand  

5 Kevin: Yeah period is on the x-axis, [says in agreement] 

It also makes sense ‘cause the wave speed was 

constant so instead of doing a straight vertical 

line, [gestures as if to draw a vertical line on the 

axes]  

it has to be like a straight horizontal line 

[gestures with a flat hand pictured to the right to 

represent the horizontal line] 

 

 

[pause in the discourse as Katie labels the axes] 

6 Katie: Ok so it’s going to be a straight line [thinks 

aloud as she draws a horizontal line onto the 

free-hand graph] 

 

 

Figure 5.2.20. (Day 4, 25:17-26:20). Transcript of the focal group drawing a free-hand graph of 

their data for the second slinky experiment. 

  

 

 

 Once all of the groups had completed their whiteboards that summarized their results, we 

had a whole-class discussion about them. Since each half of the class conducted a different 

experiment, we first discussed those boards summarizing the slinky length versus wave speed 

experiment, followed by the period versus wave speed experiment. The whiteboards related to 

the slinky length versus wave speed experiment are shown in Fig. 4.2.6a-d. Examining the 

shared features of these groups’ free-hand graphs provided me insight into my students’ 

graphical grammar for free-hand graphs. All of these groups seemed to have correctly identified 

a covariant relationship, and have produced computer-generated graphs that had offered them the 
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regression information they included in their free-hand graphs. All free-hand graphs had the 

same variables plotted on the x- and y-axis, and had both axes labeled with the quantity and its 

units. Moreover, all groups with the exception of the group whose board was pictured in Fig. 

4.2.6b listed the maximum value on each axis to provide some degree of scale. These features 

were also present in the free-hand graphs of the remaining three groups who conducted the other 

slinky experiment (wave speed vs. period) shown in Figures 4.2.7a-c.   

 

 

       
 

Reproduction of Figure 4.2.6. (Day 4, 34:30). Student-groups’ whiteboards for the wave speed 

vs. slinky length experiment. In (b), the text accompanying the diagram is as follows: “We timed 

the time it took for the wave to go from point A to point B.” 

 

 

 

 

Every group who conducted the period versus wave speed experiment also correctly 

identified the canonical relationship, which was non-covariant in this case. The zero-slope best-fit 

lines in their free-hand graphs could not be derived directly from a computer-generated graph, 

since the regression had produced a slight positive or negative slope due to the relatively small 

(a) (b) (c) (d) 
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number of data points the teams collected because of the time constraints imposed on them during 

this experiment.  

 

 

     
 

Reproduction of Figure 4.2.7. (Day 4, 41:12). Student-groups’ whiteboards for the wave speed 

vs. period experiment. (a) Focal group’s board.  

 

 

 

 

The group whose whiteboard is shown in Figure 4.2.7b sketched a zero-slope best-fit line, 

but also was the only group that drew data points onto their free-hand graph, which was not a 

common practice in my classroom. Including data points conveys that the data do not align 

perfectly with the horizontal line. Since the group concluded that there was “no relationship,” 

which was written on their board, and drew a zero-slope line, the data points drawn onto the graph 

were likely aimed at explicating how error affected their data as represented in the graphical 

modality.  

During the whole-class discussion on the results from both experiments, I asked for 

volunteers to present to the class what their team had found. These presentations showed how 

students constructed meaning as they transduced between modes, diagrams, tables, and free-hand 

(a) (b) (c) 
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graphs. Brian explained his group’s whiteboard (that presented results from the slinky length 

versus wave speed experiment) with the help of a laser pointer as shown in Figure 5.2.21. He used 

the laser pointer to make deictic gestures to the whiteboard presented in front of the class from his 

seat as he explained (Unit 1, Fig. 5.2.22). Brian started his explanation by stating his group’s 

conclusion (i.e., that there was a positive trend), and then proceeded to justify this conclusion. His 

group’s free-hand graph was simple yet effective in foregrounding the direct relationship. The 

best-fit line was already a prominent characteristic in the free-hand graph; however, Brian and his 

group emphasized it further by giving the best-fit line its own color (red) and adding the text, 

“positive trend” next to it also in a red color. He justified the relationship by stating the numerical 

values within the plotted dataset (Unit 1, Fig. 5.2.22). Although his whiteboard did not display the 

number tables, he alluded to the tabular modality by referencing individual values from it that 

were not included on the whiteboard or within the free-hand graph. He attempted to justify that 

changes in the speed (dependent variable) were too “scattered” (or large) to be a consequence of 

random error alone. Although there was no data table available on his whiteboard, his speech 

called for everyone in the class to envision this modality by his reading off some of his group’s 

speed measurements. His reason for reverting back to the numerical or tabular modality was to 

justify his team’s decision that this was in fact a covariant, and direct, relationship and not a non-

covariant relationship like in the previous experiments. It was especially significant that he chose 

to refer to a table that was not publically displayed in front of the class as the free-hand graph was. 

Also, the graph lacked scale and, therefore, his reference to a large range of speed values had to be 

imagined too. Based on this discourse excerpt, Brian understood not only how to use data tables to 

identify potential non-covariant relationships, but also how to transduce between tables and 

graphs to describe a relationship between datasets. 
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Figure 5.2.21. (Day 4, 34:57). Brian explains his group’s whiteboard summarizing the wave 

speed vs. slinky length relationship to the rest of the class with the help of a laser pointer. 

 

1 Brian: We graphed it and we concluded 

that it was a positive trend [see 

whiteboard shown in Fig. 5.2.21] 

because um, our um, a lot of our 

points were really far, like they 

were really um scattered, like one 

was like .89, and then one was 

like 1-point-something, and then 

2-point-something, and there was 

a 3-point-something, so we 

decided it was a positive trend. 

And we did this over a speed vs. 

distance graph. 

 

 

Figure 5.2.22. (Day 4, 34:53-35:21). Transcript of Brian’s explanation of his group’s whiteboard 

to the rest of the class. 

Laser pointer 

Brian 
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Toward the end of the instructional unit (Day 11), students sought to discover patterns 

among several wave characteristics for standing waves, a new concept related to waves. They 

were given the task: “measure or calculate all possible wave characteristics for standing waves 

with 1, 2, 3, 4, and 5 bumps” [or antinodes]. In taking measurements on multiple standing waves, 

students were able to engage with the patterns related to wave characteristics that they had just 

learned about but not in the context of standing waves. I informed students that the point of the 

activity was for them to notice any patterns that emerge among the different standing waves.  

 During the activity, Addy noticed a pattern in the frequencies that created standing waves 

after recording the data from the 1-bump and 2-bump standing waves (Fig. 5.2.23), and suggested 

it to the rest of her group (Unit 1, Fig. 5.2.24). Recording the data into a table in her notebook 

might be why she was the first to notice this pattern, which suggests a possible benefit for students 

creating tables where they organize manually recorded data. As her group looked at her notebook, 

Kevin constructed a mathematical relationship underlying the pattern, suggesting in Unit 2 (Fig. 

5.2.24) that, “you do 13 [Hz] times 3.” Here, 13 Hz was the frequency producing a 1-bump 

standing wave and 3 was the desired number of bumps (or antinodes). Recording and examining 

the data while being collected, and having to create more “bumps,” encouraged the focal group to 

derive a relationship between frequency and number of bumps in a standing wave–the integer 

multiple of the frequency that created one bump yielded the frequencies that produced standing 

waves with the same number of bumps as the integer multiple used to calculate it. 

 

 

 

  

 

1-bump data: 

2-bump data: 
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Figure 5.2.23. (Day 11, 24:22). The focal group examines the data from the first two trials in 

which they measured the wave characteristics of 1- and then 2-bump standing waves.  

 

 

1 Addy: So let’s see, wait, for one wave it was 13, [points 

to the 1-bump data set. A clearer picture of the 

data she is refering to is shown in Fig. 5.2.26] 

two waves it was 27, [points to the 2-bump data 

set as pictured to the right. A clearer picture of the 

data she is refering to is shown in Fig. 5.2.26]  

three waves? What should that be? Somewhere in 

the thirties? 

 
 

2 Kevin: It looks like it’s doubling by 2, twenty-seven, so if 

you do 13 times 3 it should be around 39 or 40 

Hertz 

[Katie increases the frequency to 40 Hz as 

pictured to the right]  

Uhp! I see three [bumps]!  

 

 

Figure 5.2.24. (Day 11, 24:12-24:40). Transcript of the focal group creating standing waves of 1, 

2, 3, 4 and 5 antinodes while measuring the wave characteristics of each.  

 

1-bump data 

2-bump data 

(see also Figure 5.2.26)  
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During both slinky experiments, and the standing wave activity, the focal group observed 

relationships among their data while collecting the data. The underlying relationships in all these 

activities were linear albeit with a zero slope in both slinky experiments. These relationships (i.e., 

the non-covariant trends that Katie and Addy had earlier observed for the velocity values during 

the slinky experiments and the covariant trend of the integer-multiples pattern for standing waves 

that Kevin was now suggesting) were inferred while using a data table. As students collected data 

for standing waves, they recorded their values in a table in their notebooks, and the focal group’s 

data tables are shown in Fig. 5.2.25. As discussed earlier, the prominent feature of data tables are 

the individual values or measurements, and this may have encouraged students to discover 

patterns and relationships between these numbers. In their data table, students simultaneously 

tracked five different wave characteristics across each of the standing waves, which might be 

possible yet challenging to accomplish using graphs.  

 

 

   
Figure 5.2.25. (Day 12, 27:58). Focal group’s measurements of wave characteristics of 1-, 2-, 

and 3-bump standing waves.  

 

 

Analyzing data while collecting them also afforded students the opportunity to test their 

emerging theories as they continued to collect data. As students tested their theories, they tried to 
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predict the measured values for the next measurement, which could verify or refute a particular 

pattern. In Unit 2 of the transcript in Fig. 5.2.24, Kevin used the pattern he noticed to predict the 

frequency of a standing wave having 3 bumps. Katie then set the frequency to his predicted value 

and they observed that there was in fact a 3-bump standing wave, which supported his idea.  

Despite the potential benefits of “in-the-moment” data analysis, a teacher promoting this 

type of engagement must be careful of students’ observer bias. When students have noticed a 

pattern, how might they respond if their expectation does not match the measurement? Students’ 

premature identification of a trend in their data when limited data have been collected might lead 

to biasing the data collection process in light of a possibly inaccurate expectation. If students 

apply reasoning appropriate for a dataset to an individual data point, they might choose to include, 

or exclude, new data points based on how these fit or not with their expectation, which could lead 

to observer bias and inappropriate conclusions. There was no evidence that as the focal group 

identified potential relationships while collecting data, they biased their dataset in any ways. 

Moreover, as Addy recorded her group’s data from the 3-bump standing wave shown in 

Figure 5.2.25, Katie noticed another trend in their data. Addy read the calculated velocity value of 

“26.664 [m/s]” and Katie shared both a pattern and a justification for it “the velocities are all the 

same because you’re not changing the medium!” Katie’s statement was significant since it not 

only suggested she had recognized the constancy of velocity among all of the standing waves, but 

that she had made meaning of this pattern in relation to a primary concept she had developed from 

the slinky experiments, namely that a wave’s speed is only dependent upon the medium in which 

it propagates. Katie was able to apply this concept to a new context (i.e., standing waves) 

demonstrating her understanding of this concept. Several minutes later after they finished the 

experiment, Addy said, “the velocities stay the same because the medium isn’t changing,” which 
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was the same idea Katie had stated earlier. Addy’s restating of Katie’s earlier interpretation 

suggested that this idea was now part of their collective conceptual understanding.  

Summary 

Students’ ability to choose the most appropriate modality, utilize their understanding of a 

mode’s grammar, and transduce between modalities, all shaped their ability to derive empirical 

relationships from tables and graphs that were aligned with the ones that are scientifically 

accepted. Students engaged with numerical data arranged into tables and plotted them on graphs 

via computer software and free-hand sketches in order to determine relationships among wave 

characteristics. The prominence of individual measurements in tables and the curve’s shape in 

graphs enabled students to engage with their data in many ways as they experimentally sought to 

discover these relationships. Students analyzed their data both in the midst of collecting them and 

after data collection was completed. They considered their data as individual measurements and as 

part of a larger dataset, interpreted the random error in datasets, assessed and applied that error to 

empirical relationships among datasets, and differentiated between covariant and non-covariant 

trends. Each of the modalities students utilized to engage with their data followed a unique 

grammar that my students and I developed discursively throughout the unit. Transduction between 

modalities was critical for students to develop conceptual understandings of relationships as 

different modalities afforded students different opportunities for meaning making. 

My students took measurements during their data collection, which they organized in 

tables (Fig. 5.2.1 & 5.2.2). The units of these measurements became critical to the meaning 

students made of these numerical values (Fig. 5.2.4). Students’ engagement with units in single 

measurements, or in a dataset organized into a table, or in variables within mathematical 
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equations, offered students opportunities to relate data points to each other or to other quantities 

via mathematical calculations. 

The units of quantitative measurements also mediated a link between numerical values in a 

table and other modalities such as diagrams and graphs that may or may not have quantitative 

features. A student who knows how to procedurally engage in a modality may arrive at a correct 

answer, but may not have grasped the conceptual meanings within that modality or across other 

modalities. Students who can engage with and reason based on their analysis of both a number’s 

value and units, can defend arguments, make connections, determine answers, and justify 

relationships. The focal group’s analysis of their data following the first slinky experiment in my 

class developed and shared conceptual understandings as they analyzed their numerical data by 

first organizing them into tables. The group’s collective interpretation of the relationship that 

governed their data (Fig. 5.2.5) emerged from reasoning about data points in their data table 

attending to both values and their units (Fig. 5.2.4).  

Moreover, examining data while being collected as opposed to end of data collection 

afforded students more meaning-making opportunities. As the focal group interpreted their data 

during data collection, they were able to identify possible patterns and infer expectations, and then 

test their expectations as they continued to collect data. Tables, instead of graphs, offered students 

the opportunity to do this for five different variables simultaneously.    

 Students generated graphs by either graphing using software or by drawing free-hand 

sketches. Each provided particular benefits and limitations regarding student understanding of 

relationships among wave characteristics. Computer-generated graphs were quantitative, having 

scaled axes that students could manipulate, but they were automatically scaled to fit the data 

points. Line segments were also automatically connecting these data points but the software also 
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performed regressions for students (e.g., Fig. 5.2.7a & 5.2.15a). These features presented both 

benefits and limitations to my students when using graphs as a modality for engagement.  

Auto-scaling and connecting lines between points were features that, when coupled 

together, often misguided my students’ development of appropriate relationships between the 

independent and dependent variables. This was especially the case for non-covariant trends in 

which the graph was automatically scaled over only the range of the available data, and the 

connecting lines created a shape or curve that students tended to interpret as a covariant 

relationship. In addition, linear regressions performed by the computer would always result in a 

nonzero, although very close to zero, slope, due to error that is larger when there is only a small 

number of data points, which also added to the potential for student confusion (Fig. 5.2.8 & 

5.2.11b).  

Although these features were often points of confusion, there were several beneficial 

aspects of computer-generated graphs: freedom to adjust and rescale the axes, opportunity to 

acquire numerical information from the regressions, and possibility of taking quantitative 

measurements related to wave characteristics. Students re-scaled the computer-generated graphs 

to better resemble their expectation of a zero-slope best-fit line that agreed with the empirical 

relationship they inferred from their data tables (Fig. 5.2.7b, 5.2.8, & 5.2.18). However, re-scaling 

to a larger range of y-values could also turn out to be misleading in some cases where actual 

covariant trends would be represented by flat lines. Thus, re-scaling should not be approached as a 

graphical technique, but it rather needs to be considered in relation to inferences constructed from 

the actual data organized in a data table, which facilitates engagement with the concept of error. 

With free-hand graphs, in contrast to computer-generated graphs, students either drew 

graphs that were transduced from their data table, or represented an abbreviated depiction of 
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computer-generated graphs. Such graphs enabled students to sketch their own axes and best-fit 

lines with no plotted data (Fig. 5.2.5, 5.2.11, 4.2.6, & 4.2.7). This further foregrounded the shape 

of the best-fit line, which was the relationship I intended for them to construct, by reducing the 

details involved. Data tables and computer-generated graphs both typically display a large number 

of numerical values that need to be interpreted to understand the underlying relationships among 

the data. In graphs, best-fit lines represent such relationships. Although the software offered my 

students regression equations, lines were most prominent in free-hand graphs that my students 

sketched. Moreover, the lack of quantitative and scaled axes of free-hand graphs reduced the 

myriad of quantitative details to only those values students wished to foreground. Students had to 

make their own decisions in terms of which graphical elements to include as they were 

constructing their free-hand graphs. For my students, these included the maximum values on each 

axis and the slope.  

The features and ways in which my students and I made and conveyed meaning through 

free-hand graphs constituted their grammar, which was a hybridization of the grammars for 

diagrams and graphs. More specifically, the grammar for the construction of free-hand graphs in 

my class consisted of those features my students and I considered important to include, and how 

these features were used to make meaning of the relationships among datasets. Individual 

conceptions of the free-hand graphical grammar discursively shaped, and were shaped by, the 

collective understanding that we were developed as a class during whole-class interactions such as 

presentations of groups’ whiteboards following experiments and teacher modeling of free-hand 

graphs during post-experiment lectures. I not only modeled the features I wished for students to 

include in their own graphs, but also verbally described how each feature influences the 

interpretation of the graph’s relationship (Fig. 5.2.11-13). As my students were creating free-hand 
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graphs, and I was explaining the form and function of particular features of such graphs, the 

collective grammar of these graphs was being created in my class.  

There was also a significant interplay between tables and graphs in terms of extrapolating 

relationships from data sets. For example, as the members of the focal group transduced from their 

data table (Fig. 5.2.4) to a free-hand graph (Fig. 5.2.5), they not only constructed their 

understanding of the underlying relationship between wave height and wave speed, but also 

strengthened their understanding of the grammar of each of these modes. Tables afforded students 

to view data as individual points, and calculate a value for error that could also be used to 

differentiate between covariant and non-covariant trends in their data. However, tables did not 

easily allow students to identify the particular covariant relationship (e.g., linear, quadratic, etc.), 

and could not provide quantitative information about the relationship, such as regression values. 

Students could review a data table and recognize that the values were getting larger, for instance, 

but they may not as easily determine whether the points were increasing in a particular way by 

merely looking at the values in a table.   

The focal group’s free-hand graph in Figure 5.2.5 depicted the relationship they had 

determined from their data table before graphing data on a computer. Their free-hand graph 

represented their transduction between the tabular and free-hand graphical modalities. Had the 

focal group not already engaged with their data table to assess the error in their dataset, it may not 

have concluded a non-covariant relationship, a common mistake made by other groups (Fig. 

4.2.2b, c). The non-covariant relationship these students inferred from their data table, in addition 

to their understanding of the graphical grammar, further promoted their adjustment of the scale in 

their computer-generated graph so that the best-fit line appeared flattened.   
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A key to students’ success in understanding relationships among wave characteristics was 

the sequence of their transduction between modes. Students had to interpret—calculate and apply 

a value for error, from their analysis of their table of repeated trials to the changes in dependent 

variable dataset to determine if there was a covariant or non-covariant trend. Students needed to 

first engage with tables, which emphasized the individual points for students to analyze. Students 

avoided a potential point of confusion that arose from graphs, which reduced the level of inference 

that the tables afforded. The computer-generated graph represented the empirical relationship 

within a graphical mode that allowed students to create a free-hand graph with little engagement 

with the underlying relationship. In contrast, a free-hand graph of the empirical relationship from 

a table forced students to infer its shape (or relationship) in light of their analysis of the individual 

values in the table.   

Once students used tables to identify the relationship as covariant, they constructed a 

computer-generated graph with scaled axes and obtained quantitative information, such as a 

regression information, all of which helped them to create a subsequent free-hand graph depicting 

it. When they identified a non-covariant trend, graphing with a computer was unnecessary and 

even misleading in some circumstances, especially if the computer-generated graph’s relationship 

did not appear to agree with the one they inferred from their data table.  

Students learned a sequence for analyzing data across various modalities. They understood 

the motivations for the transduction and could apply it and adapt to a particular experiment. For 

example, the focal group determined the first slinky experiment to have a non-covariant 

relationship using the tables, but still elected to graph the data using the computer. This 

unnecessary step might have been done in accordance to the group’s perceived expectation for 

how experiments were to be conducted based on their experiences leading up to this unit, in which 
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they often graphed data using computers. For the second experiment, they recognized that the 

computer graph was unnecessary, and did not create it. Students’ choice of which modality or 

modalities to engage with relationships, how they utilize those modalities, and the transduction 

between modalities, were all integral to their understanding of relationships among wave 

characteristics, as well as how to derive them from experimental data. 
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VI. DISCUSSION AND IMPLICATIONS 

This study explored multimodality in my classroom during an instructional unit on waves 

with regards to students’ concept development and engagement with each other within and 

across modalities, or modes. Specifically, I investigated: How different modalities promoted and 

challenged students’ concept development and interactions among classroom members, the 

circumstances and ways in which students and I called upon different modes, and how we used 

the grammar of modalities throughout the unit.  

A variety of modalities were present and intentionally used in my classroom that included 

linguistic and non-linguistic modalites such as diagrams and gestures, which were prominent in 

my classroom’s multimodal discourse. These non-linguistic modalities did not just supplement 

text, but captured and developed student conceptions in ways linguistic modes alone could not 

(Jewitt, 2009; Kress & van Leeuwen, 1996, 2006; Kress & van Leeuwen, 2001). As students 

developed conceptual understandings using different modalities, they also developed their 

abilities to make meaning and articulate ideas using those modalities. Students’ conceptions of 

the grammar (form and function) of a particular mode were co-developed together with both the 

concepts and ideas, and the grammars of other modes. Each mode did not develop meaning in 

isolation from each other; instead, the intertwining, transduction, combination, and hybridization 

of modes offered powerful opportunities for meaning making. 

Co-construction of Concepts and Grammars 

Multiple modalities often occur simultaneously, but there are ebbs and flows to the 

prominence of a particular modality (Jewitt, 2009). The synthesis of multiple modes multiplies 

the meaning that students may construct and convey when compared to that of one mode alone 
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(Lemke, 1998). My students and I called upon various modes during our classroom interactions 

in order to construct and explicate meaning with each other, which in turn developed the 

grammars of those modalities.  All modes, including gestures and diagrams that were tracked for 

this study, have their own syntactic and semantic rules and patterns (Lemke, 1990), or grammar. 

Kress and Van Leeuwen (2006) refer to visual grammar as the ways in which a variety of visual 

images communicate meanings. Since my students and I made a distinction between different 

visual images, such as diagrams and graphs, we developed and refined diagrammatical grammar 

as distinct from graphical grammar. As students were developing the grammars of the various 

modalities, they showed increased confidence and initiative to call upon modes whenever 

appropriate. To assign value as well as teach the grammar of gesturing and diagramming in 

particular, I modeled their use, lectured on what features made them effective, asked students to 

use them as part of activities, and provided students with continuous access and opportunities to 

engage with these modes on their own volition. Diagrams and gestures were often publically 

displayed in front of the whole class as focal objects during discussions. Their use and 

negotiation promoted the development of the collective diagrammatical grammar that was 

constituted by the individual students’ conceptions and enactments. 

Multimodality helped students to communicate their prior knowledge on the first day of 

the unit when they struggled to use speech alone. As they had not yet developed an academic 

language for talking about waves, gesturing and diagramming became pronounced modalities in 

my classroom’s multimodal discourse. Non-linguistic modes become especially critical when 

students lack a shared linguistic system or academic language (Jaipal, 2009; Roth 2005). 

Students were able to speak colloquially about waves using everyday examples, such as water 

waves; however the wavy-line diagram and undulating hand gesture (UHG) that emerged on Day 
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1 both carried different opportunities for meaning making, or meaning potentials (Kress & van 

Leeuwen, 1996, 2006). The wavy line contained the hallmark sinusoidal shape of a wave that 

students later studied within waveform graphs, and whose specific qualities became visual 

representations of wave characteristics (e.g., amplitude, period, frequency, and wavelength). 

Students did not initially associate the wavy line and UHG with any of these characteristics since 

they were not yet developed, which made these modes particularly fertile for the construction of 

these ideas. The evolution of students’ meaning making of the wavy line and UHG within and 

across modes demonstrated a significant benefit to learning via multimodality. Diagramming and 

gesturing minimized the need for a linguistic definition of waves, and provided a multimodal 

scaffold for the development of wave characteristics and later transduction to waveform graphs. 

Since measuring wave characteristics was a fundamental practice I aimed for students to develop 

during this unit, the emergence of the wavy line as a familiar conception of a wave became a 

semiotic resource whose grammar was shaped discursively as students developed their 

conceptual understandings of waves and wave characteristics.     

The UHG along with the back and forth hand gesture (BFG) came to represent what 

Wittmann (2002) refers to as a wave’s particle model, or the back and forth motion of the source 

or medium as waves propagate through it. Initially, the UHG functioned with the wavy-line 

diagram to enact its undulating movement that students envisioned but could not represent using 

the diagram alone. The BFG shared the oscillatory motion aspect with the UHG, but also 

differed: the BFG represented a wave’s source, but the UHG, with its sinusoidal shape, 

represented the back-and-forth motion throughout the medium as the wave traveled through it. 

The back and forth motion represented a family resemblance (Roth, 2005), which mediated a 

grammatical link between the two gestures that eventually combined them into a single hand 
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gesture by the end of the unit. Therefore, both gestures were integral to students’ conceptual 

development of wave characteristics, especially regarding amplitude, period, and frequency, 

whose values all depend on the way in which the wave’s source moves. The students and I also 

used the BFG in conjunction with other modes to connect our actions and experiences in their 

slinky experiments with diagrams and graphs of waves. This was done, for example, as students 

called upon a brisk BFG to suggest that the hand’s quickness, while generating a wave pulse, 

might affect its propagational speed, before they developed the concepts of period or frequency. I 

too called upon a BFG when I superimposed it over a diagram of a slinky experiment’s setup to 

bridge the diagram with the students’ actions regarding their manipulation of the slinky during 

their experiments. The semiotic bundling of these modes as we engaged with ideas facilitated 

both the development of these ideas (Azarello, et al., 2009), as well as the grammars of the 

modes in which these ideas were expressed and took shape.  

Additionally, when these back and forth gestures were infused with some forward 

motion, the propagational motion of the pulse, or pulse model (Wittmann, 2002) was linked with 

the pulse’s back and forth motion. This shift, or transformation (Kress, 2003), in the ways in 

which elements of a modality are used to make meaning, reflected students’ understanding of the 

gestural grammar. The BFG began as an iconic representation of the production of a single 

stationary pulse in a slinky. It was later transformed as Brandon used it to represent one wave 

cycle (up and down) in relation to a waveform graph. Here, the BFG moved up and down and to 

the right as he traced along the graph to demarcate one wave cycle from a continuous train of 

pulses. Finally, on the last day of the unit, the BFG further transformed as it combined with the 

UHG. The focal group made back and forth hand gestures that undulated up and down while 

propagating away from a bobbing mass to envisage a wave propagating in the air by tracing its 
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path in the air using the gesture. This gesture referenced their diagramming and graphing 

experiences with the wavy line throughout the unit regarding wave characteristics, and 

simultaneously enacted the particle and pulse models of the wave.   

The grammars of modalities (e.g., gestures, diagrams, graphs) were co-constructed 

between the students and me as we used them in relation to different ideas and contexts. They 

also mediated students’ development of new concepts and their reasoning in light of their prior 

knowledge and experiences. Period and frequency (i.e., hand-quickness while creating waves), 

transverse and longitudinal waves, amplitude, demarcation of wave cycles in a continuous train 

of pulses, and standing waves were all concepts for which students used, and benefitted from, 

multimodality to make meaning. As students appropriated, shared and articulated multiple ways 

for multimodal communication of ideas related to these concepts, they became better able to 

explicate and developed multimodal understandings of those concepts. 

In the midst of many modes that students and I called upon throughout the unit, diagrams 

were especially prominent. Diagrams are often a valuable modality for learning because they can 

represent complex and abstract ideas that the author has to express and the reader has to 

interpret, which may or may not lead to the same meanings (Kress & van Leeuwen, 1996, 2006). 

Diagrams capture systems in ways that other modalities do not. Even in circumstances where 

students can explain their ideas using linguistic modes, diagrams offer different and unique 

opportunities for meaning making that provide additional information that might otherwise be 

left out. Diagrams often work simultaneously with other modes to synthesize and multiply the 

meaning being made as each mode represents an idea in a slightly different way (Lemke, 1998). 

In the previous example in which the focal group, on the last day, gestured in the air to envisage 
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a wave’s propagation, students were diagramming in the air in order to make visible the wave 

(and especially its propagation) that was not observable in this occasion.   

A particularly valuable function of diagrams was representing spatial layouts and 

positioning of artifacts within experimental setups. Diagrams provided a focal object for whole-

class discussions and mediated our negotiation of experimental practices and manipulation of 

artifacts symbolically. They afforded students time to consider artifacts when the artifacts were 

not accessible. For instance, Ryan’s diagram that described his idea for an experimental setup for 

the second slinky experiment (shown in Fig. 4.2.4) allowed the class to discuss potential 

experimental practices in light of the artifacts and how they might manipulate or use those 

artifacts before actually conducting the experiment. When confronted with this new experiment, 

the students and I used diagramming to facilitate the construction of the actual setup (Zahner & 

Corter, 2010). 

The process of drawing diagrams also benefitted students’ learning. Construction of 

diagrams offered them opportunities to engage more deeply with a phenomenon (Baldry & 

Thibault, 2005), since it entailed making decisions about which particular details from their 

observations to capture or not in their diagram, which is part of diagramming’s epistemological 

commitment–the obligations that users of a mode face given its nature  (Kress, 2003; Bezerman 

& Kress, 2008). For example, the group whose whiteboard is shown in Figure 4.2.14c, 

diagrammed the interference between two wave pulses in a slinky with opposing amplitudes, and 

had to choose which instances to capture with a diagram. These choices required students to not 

only identify critical moments, but also to consider why these moments were critical. Moreover, 

constructing a diagram of these instances forced students, for example, to show how or the ways 

in which the amplitudes changed instead of merely stating that they had changed.   
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The previous example also highlights potential limitations of the interpretive flexibility of 

any modality (Roth, 2005) including diagrams. In this example, students constructed diagrams 

based on their observations of two waves interfering in order to capture critical instances of 

evidence with which they could justify their conclusions. The diagrams in this case functioned as 

a resource for students’ reasoning, which was made public when they produced it on a 

whiteboard and displayed it in front of the class. However, every modality carries meaning 

potentials, not meanings (Kress & van Leeuwen, 1996, 2006), thus offering interpretive 

flexibility to both authors and readers. The students and I were able to narrow the interpretive 

flexibility in diagrams by including captions, labels, arrows, and brackets. These characteristics 

of diagrams helped ensure similar interpretations between authors and readers of diagrams.  

Students’ ability to utilize modalities both shaped and was shaped by their engagement 

with ideas, one another, and the grammars for those modes. The prominence of a mode in a 

multimodal discourse depends on its cultural value and syntactical understanding of the 

participants (Kress & van Leeuwen, 2001). Students and I called upon different modes to 

position our thinking, negotiate ideas, express conceptions, and justify claims, which over time, 

assigned discursive value to those modes. Diagrams, for example, were a particularly protrusive 

mode in the discourse. As students came to value and understand how to use diagrams as an 

effective mode for meaning making, their initiative to call upon diagrams was strengthened. 

Moreover, the diagrams students produced reflected their practices, values, norms, beliefs, and 

actions, which were all interwoven into our classroom’s multimodal Discourse (Gee, 1996). 

Diagramming became a part of our class’ culture for doing science as students and I increasingly 

used them as a mode for developing and communicating concepts.  
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Prain and Waldrip (2006) considered learning to be evidenced by students’ ability to 

represent ideas between and across different modes. In this way, diagrams may offer a window 

into the author’s conceptual understanding (Cheng, 2009). They provide teachers and researchers 

a conceptual snapshot of what a student knows at a particular moment, which may include 

multiple representations including but not limited to diagrams (Waldrip & Prain, 2010). I was 

able to both access and assess Zack’s understanding of standing waves at this moment based on 

his speech and gesturing as he attempted to draw a diagram with his hands in the air (Fig. 

4.1.16). Zack lacked the physical semiotic resources to produce a diagram until I asked him to 

draw one in front of the class (Fig. 4.2.15). A potential limitation of this example, as an isolated 

event, is that it cannot account for the ways in which multimodality prepared and enabled Zack 

to construct meaning about standing waves using the diagram that he envisioned. Many further 

insights to be gained from this example are brought to light when it is considered in relation to 

the many multimodal interactions in the classroom within and across modes, and development of 

the grammars by me and the students.  

Conceptual understanding and the grammar of the modes in which it is developed and 

communicated evolve together. It is therefore critical for science education researchers interested 

in how students develop concepts to consider the development of both the ideas and the grammar 

of the modes in which these ideas take shape. Ideational development is achieved interpersonally 

through multiple modalities, each of which carry syntax and semantics that constitute its 

grammar. Just as ideas change through discursive interactions and practices, so do the 

interpersonal and grammatical practices used to negotiate and shape them. Using diagramming 

again as an example, it could therefore be considered as a process for conceptual development 

instead of as a means for accessing and assessing one’s conceptual understanding. Similar to 
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Lemke’s (1990) and Roth’s (2005) claim that as a student’s ability to “talk science” increases 

with their learning of science, students developed their abilities to diagram as they developed a 

conceptual understanding of waves. In addition, as they diagrammed, wave concepts were 

shaped and developed by the epistemological affordances provided by the diagrams (Bezemer & 

Kress, 2008; Jewitt, Kress, Ogborn, & Tsatsarelis, 2001; Kress, 2003; Kress & van Leeuwen, 

2006). Using diagrams, students constructed an individual and collective understanding of what 

aspects of a phenomenon or event were important to depict, but also how to utilize semiotic 

resources to represent them with diagrams.  

Sequence of Transduction Between Modalities 

Students engaged with data tables and graphs to experimentally derive relationships 

between various wave characteristics. As students conducted experiments, their data 

interpretation, both during and after the experiments, was critical to their conceptual 

understanding of these relationships. Kress (2003) pointed out the importance of transduction 

between modes to the meaning-making process. In addition to transduction, the sequence or order 

in which students transduced was especially important for them to develop concepts, such as wave 

characteristics and empirical relationships among them. In the latter case, their development of an 

empirical relationship using tables influenced the way in which they developed and interpreted it 

within the graphical modality (Wu & Krajcik, 2006). More generally, the sequence of transduction 

between modalities relates to concept development, which is significant to our understanding of 

teaching and learning, and warrants further exploration.  

Students’ engagement within, and transduction among, modalities evolved collectively as 

they converged upon a process for multimodal communication that ultimately characterized what 



227 
 
 

 

it meant to do science in our class. As students transduced among modalities, each mode afforded 

unique meaning-making opportunities that contributed to the collective meaning and the 

development of the idea (Bezerman & Kress, 2008; Kress, 1993, 1997). However, the sequence of 

students’ transduction represented a learned practice that they developed discursively throughout 

the unit. Moreover, they demonstrated an understanding by choosing an appropriate modality for a 

particular situation, and how to build upon the meanings developed from prior modalities. 

Students’ ability to express an idea across many modes reflects their conceptual understanding 

(Prain & Waldrip, 2006). Therefore, choosing appropriate modes for engaging with an idea 

demonstrates not only student’s understandings of the grammars of those modalities, but also their 

understanding of the ideas they express via those modes.      

The students in my class converged upon a particular order of transduction from data 

tables to graphs that enabled them to derive empirical relationships that agreed with the 

scientifically accepted ones, and more specifically to successfully differentiate between covariant 

and non-covariant trends. Students often struggle to identify non-covariant trends among data sets 

(Kanari & Millar, 2004). Tables afforded students the opportunity to examine the data as a list of 

individual numerical values. Tables backgrounded the precise relationship (i.e., the trend of the 

relationship), and allowed students to consider the changes in the data as either due to random 

error (non-covariant) or due to a “real” difference in the dependent variable (covariant). Students 

who engaged with data tables first were able to engage with graphs in more meaningful ways. The 

ideas and empirical relationships they developed using the data tables, afforded them an 

expectation for the empirical relationship they would construct within the graphical mode. This 

allowed them to engage with the grammar of graphs in meaningful ways, such as re-scaling the 

axes transform a computer-generated graph in a way that allowed them to infer scientifically 
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accepted relationships, which were also similar to the ones they expected from the data tables. 

Students who expected a non-covariant trend from their engagement with the data tables were able 

to recognize that a small range exaggerated the appearance of a graph’s curve and rescaled the 

axes for an accurate interpretation.  

Students’ level of meaning making was especially strong when they inspected their data 

table and inferred an empirical relationship. They estimated its graphical representation using a 

free-hand graph instead of engaging with a computer-generated graph in which they would not 

have to envisage the graph’s shape since the computer-generated graph would do that for them. 

When students inferred an empirical relationship using a data table before creating a computer-

generated graph that presented a different trend from the one expected, they had to reconcile this 

difference. Such reconciliation led them to further development of the graphical grammar that 

allowed them to manipulate characteristics of the graph.  

It was difficult for students to approximate empirical relationships from graphs, which was 

necessary in light of limitations in the data, such as a small number of data points. Students 

struggled to coordinate empirical relationships derived from different modes similarly to the ways 

in which students often struggle to coordinate theoretical and empirical relationships (Varelas, 

1996), especially for non-covariant trends. The interpretation of the empirical relationship from 

the different modes may be different. The relationship itself is an approximation, which may be 

more or less apparent in one mode versus another. Students demonstrated an ability to 

approximate the relationship generated more often when they had already inferred a relationship 

using a table to which they could compare.  
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A primary feature of a graph is the shape of a graph’s curve that describes the empirical 

relationship that governs the data graphed. . The prominence of this grammatical feature is an 

affordance of graphing that is often beneficial to learning, but in some instances, such as non-

covariant trends, may present a potential challenge to students deriving empirical relationships 

that are scientifically accurate. For instance, it is possible to approximate a graph’s slope of 0.08 

obtained from a regression to be zero, as the focal group did. However, since the computer-

generated graphs used in my class did not include error bars, they lacked the epistemological 

commitment regarding consideration of error that the tables had for my students. When students 

did not engage with the concept of error to infer a relationship from their tables, they lacked an 

expectation for their graphs’ shapes as they transduced to computer-generated graphs. This 

limitation compounded by the students’ developing understanding of the graphical grammar made 

them particularly vulnerable when using computer-generated graphs. For instance, students who 

lacked both an expectation for a graph’s shape, and knowledge of how to rescale axes that might 

be exaggerating the curve’s appearance, often misidentified relationships.  

The transduction from tables to graphs was also significant because students ultimately 

constructed a free-hand graph to capture the relationship they considered the data to follow. When 

students identified a non-covariant relationship while engaging with data tables, graphing with a 

computer was unnecessary, and could therefore be bypassed, which the focal group did during 

their second slinky experiment (wave speed vs. period). In such circumstances, students were able 

construct a free-hand graph of the empirical relationship from their data tables. A computer-

generated graph would not add any additional information (e.g., regression information), and as 

previously discussed, may contribute to the misidentification of the relationship if the graph’s and 

table’s relationships do not appear to match. For covariant relationships, the computer-generated 
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graph was necessary as it provided quantitative information from its scale and linear regression 

that students needed to transduce into the free-hand graph. The success of groups in 

conceptualizing non-covariant relationships, which presented a pervasive difficulty for students, 

was founded in their engagement with tables to construct a relationship before graphing with a 

computer. Graphing via free-hand graphs provided students an alternate modality to computer-

generated graphs for non-covariant relationships, which acted as a mediator to their engagement 

with computer-generated graphs.  

Combination and Hybridization of Modes 

Throughout the unit, my students and I created an interwoven multimodal fabric where 

multiple modalities were used to communicate and create meaning. Students’ engagement with 

one mode influenced the ways in which they called upon and utilized other modes. Moreover, in 

some cases, modes combined while retaining their individual grammars (combination), or blended 

together into new modes with their own grammar (hybridization). Examples include: the synthesis 

of the BFG and UHG, the diagram-photo-graphical combination, and the hybrid free-hand graphs 

(hybrid of diagrams and graphs).  

The BFG stemmed from students producing waves in slinkies during experiments, while 

the UHG emerged from students’ prior experiences with waves and water waves in particular. The 

BFG was combined with diagrams as I superimposed the gesture on top of a diagram of an 

experimental setup. The UHG was also combined with diagrams when students traced in the air 

waveform graphs projected on the screen in front of them, whose sinusoidal path shared a family 

resemblance with the UHG’s motion. The synthesis of the BFG and UHG represented a 

transformation (Bezerman & Kress, 2008; Kress 2003). The meaning associated with each gesture 
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transformed as they were synthesized into a single gesture, which afforded students the ability to 

produce iconic gestures of non-observable propagation of waves, such as waves propagating in air 

and standing waves produced by waves moving too fast to be observed. 

The diagram-photo-graphical combination reflected a superposition of modes. In the 

lesson on Day 6, I transduced a photograph of a slinky with a continuous train of pulses traveling 

through it drawing a diagram and including labels on it. The relevant aspects of the photo (e.g., 

slinky’s shape, hand’s back and forth motion, and metersticks) were foregrounded by my 

drawings while other photographic details that were irrelevant to the lesson were left to the 

background. The superposition allowed for the diagram to connect to the reality captured by the 

photograph, while abbreviating its myriad details to only those I considered important and 

depicted in my diagram. The diagram’s characteristics also resembled graphical features, which 

further transduced the diagram-photo combination to a waveform graph, which was introduced 

during this lesson. The superposition and combination of the modes allowed students to consider 

the new waveform graphs in light of the other modes. This promoted the retention and utilization 

of those modes since each mode still existed while a new mode was superimposed onto it.   

Free-hand graphs were a prevalent modality used by students, and were a hybrid of 

diagrams and graphs. Diagrams abbreviate a reality through a family resemblance between the 

sign and its referent (Jewitt, Kress, Ogborn, & Tsatsarelis, 2001; Roth, 2005). In the diagrams 

produced in my classroom, these abbreviations took the form of arrows, brackets, labels, and 

captions. However, when a diagram of a graph was constructed, graphical features such as axes 

and best-fit lines also became diagrammatical characteristics. The free-hand graph’s 

characteristics combined the brevity of a diagram with the graphical concept of prominence of the 

relationship between independent and dependent variables.  
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Implications for Practice and Future Research 

The many insights that might be of particular importance to teachers and teacher 

educators can be summarized as multimodality awareness. Awareness of multimodality in a 

classroom and the ways in which it can shape teaching and learning can be very powerful to a 

practitioner. Multimodality-aware teachers consider multimodal aspects in their pedagogical 

planning, paying attention to the ways in which both they and their students call upon various 

modes and transduce between modes as they make meaning in the classroom. They also promote 

multimodality in action as they afford their students varied multimodal opportunities planned or 

spontaneous. A teacher may provide multimodal opportunities as part of the lesson’s structure, 

but may also encourage students’ own multimodal ways of engagement with the content. 

Multimodality is more effective when teachers monitor and support students’ development of 

grammar rather than impose it upon them (Towndrow, et al., 2009). Modes should be available 

and accessible to students at all times for them to call upon so that multimodality becomes 

integral to both teacher’s and students’ engagement. The planned and spontaneous multimodal 

events should shape each other. As students begin to utilize modes, in particular ways, the 

teacher can promote their development of these ideas within these modes or scaffold their 

transduction to different modes. Multimodality awareness involves providing students access to 

multimodality, modeling grammars of various modalities, and facilitating transduction between 

modes.  

Availability and Access to Multimodality 

Availability and access to multimodality is critical to creating a multimodal discourse in 

the classroom. Omnipresent multimodal spaces in which students may call upon whichever mode 
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they prefer or deem necessary is of particular importance. At any moment in which students are 

able to interact with each other or the teacher, they need to be in a space where modes are both 

available and accessible. The teacher does not have to require students to use various modes at 

all times, but should allow and encourage students to call upon various modes whenever they 

consider it appropriate. In addition to available multimodal spaces, students need to develop a 

grammar for each mode in order to gain confidence and strengthen their initiative to both call 

upon and engage with modes effectively, which will in turn promote those modes as prominent 

and effective ways for constructing and negotiating meaning.  

In my classroom, for example, diagrams were a mode that was constantly available and 

accessible for students that they could chose to use at any time. As students develop a 

diagrammatical grammar, they also develop a means for communicating ideas that they can build 

on with increasing confidence. Students’ developing competence facilitates the teacher-student 

sharing of control over ideas developed and modes used to develop and express these ideas. 

Zack, for example, during the standing waves lesson, envisaged a diagram and gestured as if to 

draw the diagram in the air with his hands, as he struggled to articulate his ideas in speech. I 

facilitated his diagramming by asking him to draw what he was envisioning on the screen 

projected in front of the class. Zack had already called upon a diagram, but lacked the physical 

semiotic resources, which I then provided. Since all modes involve materiality, Zack used his 

hands, instead of a pen or marker for example, when he initiated forming his diagram. Drawing 

in the air was not permanent, and not a physical medium, and therefore not an effective semiotic 

resource for communicating his ideas via a diagram. My request to draw it did not suggest 

diagramming, but simply offered Zack the physical semiotic resources he lacked in order for him 

to construct a permanent diagram. 
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I also supported student use of diagrams throughout the activities by continually asking 

them to display their team’s findings on whiteboards. I did not explicitly require or tell students 

to diagram on these boards. The open canvas on the whiteboards and multiple-colored dry-erase 

markers afforded them the semiotic resources to draw diagrams if they elected to do so, which 

would then be shared with the rest of the class.  

Modeling Multimodal Grammar 

A teacher with multimodality awareness should aim at promoting students’ use of various 

modes, which, in addition to continually providing students with multimodal spaces, consists of 

modeling the grammars of modalities for students. In my classroom, I hoped for students to take 

on the practices I suggested when engaging with those modes during future lessons. For 

example, I explained during a lecture how to use complete-dataset and repeated-trials tables to 

calculate and then apply a value for error to construct an empirical relationship before graphing 

with a computer. Students later enacted this during their experiments, which gave them an 

opportunity to further develop the grammar of tables. This example highlights the semantics 

component of the grammar, or the ways in which meaning is made using tables. However, 

modeling the syntactic aspect of a mode’s grammar along with the semantic one is also critical. . 

For instance, in my classroom, I engaged students in incorporating arrows in their diagrams 

beginning early in the unit (e.g., Fig. 4.2.3).  

It is also important for students to model grammatical practices for each other. During 

any form of communication, students are demonstrating grammatical aspects of the mode(s) they 

use. These aspects may already exist in the class’ collective grammar for that mode, or may be 

new ones created by a student based on the needs or motivations for communicating in that 
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mode. For example, the UHG emerged on the first day of the unit as a means for students to 

describe the sinusoidal shape of a wavy line and undulation exhibited by waves. As another 

example, the use of brackets in diagrams was suggested by students who wished to denote 

intervals. Both of these examples were student-generated aspects of a particular mode’s grammar 

that were publically demonstrated and later taken on by other students during future lessons. 

Teachers can further emphasize these new and potentially fruitful grammatical aspects by 

marking their value and promoting further their usage.  

Sequence of Transduction and Multimodal Lesson Planning 

Transduction among modes is critical to teaching and learning via multimodality, and a 

teacher’s careful planning and consideration of the sequence of transduction among modes may 

be especially important. The order in which modes transduced in my classroom influenced my 

students’ conceptual development of wave characteristics. Multimodal superpositions (e.g., 

photo-diagram-graph combination, and my BFG superimposed over a diagram of an 

experimental setup) represent a simultaneous and transparent transduction among modes that 

teachers can enact in a particular order to help students layer a concept with meaning across 

modalities. Teachers who are multimodality aware may also recognize student confusion that 

may be manifested as an inability to transduce between modes. Such an inability may be due to a 

compromised understanding of an idea, or a lack of knowledge of the grammars of the modalities 

to be transduced, or a combination of the two.  

Transduction should be explicitly taught. In my classroom, by teaching transduction as an 

experimental practice for analyzing data, students were able to successfully derive non-covariant 

relationships and justify covariant relationships empirically. This is particularly important when 
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students experimentally derive non-covariant relationships. Experiments in which students are to 

discover non-covariant relationships are often aimed at dispelling student misconceptions. For 

example, it is common for students to believe that shaking their hand faster while creating a 

wave in a slinky will make the wave propagate faster. In conducting an experiment seeking this 

relationship, students found that, contrary to their expectations, the period did not affect the wave 

speed. Students incorrectly deriving a covariant relationship when it is canonically non-covariant 

could potentially reinforce the misconception instead refuting it (Bonner, 2012). 

Directions for Future Research 

There is much to be learned from educational research about the role of multimodality in 

teaching and learning of physics and other science fields. Students’ engagement with multiple 

modes, and more specifically the role of grammars of the modes used to construct meaning 

represents a potentially fruitful area for future research. In what ways do the grammars of modes 

used by the teacher and students in biology, or chemistry, co-develop with students’ conceptual 

understanding? There is little research that explores the development of both teaching and 

learning via multimodality; that is, how both the teacher and students multimodally develop their 

ideas together. In addition, this study suggests the importance of examining the development of 

the individual and collective grammars of prominent modalities and its interaction with the 

development of ideas and concepts. The reciprocal relationship between a modality’s grammar 

and meaning affordances as they mutually shape each other over time is critical to understanding 

how concepts develop though multiple modalities.  

The practices of transformation and transduction, and combination and hybridization of 

modalities, are also areas in need of further research, since, as discussed in the context of this 
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study, they are highly situated and depend on the moment-to-moment interactions among 

students and teacher as well as the teacher’s instructional plans. The many possible ways in 

which modalities blend together into combinations or new hybrid modes during teaching and 

learning, and under what circumstances and motivations they occur, is largely unknown. 

Moreover, researchers often consider modes as acting in isolation or simultaneously with other 

modes, but neglect to pay careful attention to the transduction among modes, and sequence of 

transduction in particular. For example, Kanari and Millar (2004) recognized the importance of 

students analyzing their data in tables as opposed to graphs when engaged with non-covariant 

relationships, but did not explore the transduction between the two modalities and the associated 

opportunities and challenges. Multimodality is also an increasingly prominent topic when 

considering the amount of technology-enabled modalities and the availability of many 

communicative modes beyond traditional linguistic ones. In addition, the students’ confusion 

during the last activity of the unit regarding the BFG’s depiction of a transverse versus 

longitudinal wave presented a potentially fruitful topic in need of further investigation. Since 

longitudinal waves were not a primary learning goal for the students in this study, the BFG as a 

mediational gesture between transverse and longitudinal waves was never fully examined. The 

present study offers insight, albeit not nearly enough, on how exploring students’ transduction 

between modes can promote our understanding of meaning making processes, and demonstrates 

how it might be used as a fertile research construct in future studies.          

Teacher research also afforded this study a unique perspective by positioning me as both 

a teacher and learner. As the teacher, I had an understanding and knowledge of the students, and 

access to and engagement with them, all of which offered affordances to me as a researcher. My 

research in turn influenced my teaching and the multimodality of my classroom’s discourse. 
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Teaching as I simultaneously collected data, and having to consider my research while teaching, 

presented challenges, but were not as limiting as one might think. Most of the instances in which 

one would expect tension between research and teaching did not result in any conflict. For 

example, the need for students to elaborate for the sake of data did not seem to be at the expense 

of the lesson pacing or activity structure. As was true for this example and many other such 

instances, the common goals for both my teaching and research minimized any tension. In the 

previous example, elaboration of utterances benefited both the copiousness of the data for this 

study and the clarity of the exchanges within the classroom discourse in which students 

constructed conceptual understandings. Teacher research can provide unique opportunities and 

perspectives to important areas of research in science education, including but not limited to 

multimodality. The reciprocal relationship between teaching and research comes to the fore in 

teacher research, and the shaping of one’s teaching from their learning through conducting a 

study is as important to science education as students’ learning. Although not a direct focus of 

this study, it is evident throughout this manuscript that my teaching was informed by my 

research, and vice versa. Teacher learning from conducting teacher research might be profound 

in terms of developing high quality teaching practices that are based on science education 

research.  

In closing, studying multimodality in the science classroom, especially in light of both 

teaching and learning, can provide a productive lens for future research. Better understanding the 

possible benefits and limitations of various modalities, the transduction, combination, and 

hybridization between modes, and how ideas co-develop across modes and their grammars may 

provide insights into the teaching and learning of any topic within physics and other scientific 

disciplines. 
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APPENDIX 

 

Outline of Instructional Unit on Waves 

 
Day 1 – Lesson: Activate prior knowledge; draw & define waves 

 Students were asked to draw, define, and list examples of waves on a small 1 x 1 foot 

whiteboard.  

 The whiteboards were displayed publically, and considered as objects of discussion.  

 

Day 2 – Lesson: Slinky Experiment I – wave speed vs. wave height 

 The student-teams were given the purpose: graphically and mathematically represent the 

relationship between the wave height and wave speed for a single pulse in a long metal 

slinky.  

 They set up the experiment, collected and analyzed data, and summarized their data on a 

large 2 x 3 foot whiteboard. 

 Four out of the seven whiteboards were later displayed in front of the class to facilitate a 

discussion.  

 

Day 3 – Lesson: Summary lecture on slinky experiment I; slinky experiment II & III – wave 

speed vs. period & wave speed vs. slinky stretching distance, respectively. 

 Teacher-led lecture summarizing the results from Slinky Experiment I 

 The student-teams were then assigned one the two following purpose statements, 

graphically and mathematically represent the relationship between: (1) the period and 

wave speed, or (2) the slink’s stretching distance and wave speed for a single pulse in a 

long metal slinky.  

 Whole-class discussion in relation to how to measure period 

 The students set up their experiment, and collected and organized their data. 

 

Day 4 – Lesson: Finish slinky experiment II & III (analysis) 

 Students worked individually on a bell work in which they analyzed sample data and its 

error. 

 Students then publically offered their responses to the bell work during whole-class 

discussion. 

 In teams, students answered 3 questions guiding their analysis of their data collected the 

previous day  

 Each team prepared a whiteboard of their results, which were juxtaposed publically 

during a whole-class discussion of each experiment—period vs. wave speed, then slinky 

stretching distance vs. wave speed. 

 

Day 5 – Lesson: Summary lecture on slinky experiment II & III 
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APPENDIX (continued) 

 
Day 6 – Lesson: Wave characteristics – introduce waveform graphs; characteristics that can 

be measured 

 Demonstration in which Mallory created continuous waves in a slinky while a motion 

sensor recorded the back and forth movement of her hand. It plotted and displayed in 

front of the class, a real-time position vs. time graph using a computer interface.  
 Also during this time, Zeke stood on a table and photographed the slinky from an above 

view. 
 The position-time graph and Zeke’s photograph were projected side-by-side in front of 

students. 
 I drew over the photograph to make it appear as a vertical position vs. horizontal position 

graph.  
 Students worked in teams to determine numerical values for any wave characteristics 

they could determine. 
 We then shared our findings as a class during a discussion. 

 

Day 7 – Lesson: Work in teams on practice problems 

 Students worked together on a set of practice problems. 

 

Day 8 – Lesson: Each team whiteboards solutions to one of yesterday’s practice problems 

 Small groups of students were each assigned one practice problem from a set of problems 

they had worked on during the previous day. They were instructed to prepare a large 

whiteboard of their solutions to their assigned problem.  

 Each group’s whiteboard was a visual aid for the randomly selected group member that 

was to explain the whiteboard to the class.  

 

Day 9 – Lesson: Wave interference 

 In teams, students constructed experiments to answer each of the following questions:  

(1) Will waves pass through each other completely, do they bounce off completely, or a 

little bit of both? 

(2) How will waves’ amplitudes be affected at the instant they interact--nothing, create a 

gigantic wave, completely destroy each other, etc.? 

 Each team prepared a whiteboard summarizing their results that were then publically 

displayed and discussed as a class. 

 

Day 10 – Lesson: Introduction to standing waves 

 A standing wave in an elastic string was set up in front of the class, and became the focal 

object for a whole-class discussion. 

 In teams, students then created a standing wave and measure all possible wave 

characteristics 
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APPENDIX (continued) 

 

Day 11 – Lesson: Standing waves activity 

 Student-teams set up standing waves in order to measure the wave characteristics for 1-, 

2-, and 3-bump standing waves. 

 In conducting the experiment, students noticed patterns among the measured 

characteristics, and in some instances, were able to predict measured values using the 

patterns. 

 

Day 12 – Lesson: Mass-on-a-Spring Lab Practical 

 Each team was provided a vertically hanging mass-on-a-spring system about which each 

team member would be given a one-question oral exam later in that same lesson.  
 Their task was to consider the bobbing up-and-down of the mass to be a wave source, and 

to use it to measure all possible wave characteristics. 
 I allowed them interact with each other and the artifacts for 15 minutes in preparation of 

an oral lab practical.  
 They took measurements and prepared themselves for any question I might ask them 

regarding their experimental setup.  
 Afterwards, I went from group to group asking each team member one of three different 

questions about the experimental setup, such as “Explain to me the frequency of this 

wave source, and how would you make it have a higher frequency?”  
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