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PREFACE

Please note that Chapter 3 describes a supply chain optimization project executed for a

private corporation under a non-disclosure agreement, and as such, raw data is not included

this document. The author has instead provided summary data and believes this to be sufficient

in conveying the significance of the work.
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SUMMARY

This thesis investigates supply chain optimization: managerial decisions related to the design

of a supply chain with the goal of maximizing profits. The work is divided into two parts, the

first focusing on the use of game theory and the second focusing on the use of stochastic

programming.

In the first part (Chapter 2), we study competition and coordination in a supply chain in

which a single supplier both operates a direct channel and sells its product through multiple

differentiated retailers competing in quantities. We construct theoretical models of the supply

chain, and use these models to develop managerial insights. Because it is difficult to obtain

real-world pricing data to verify the analytical results in this part, the impact of this research

is limited to theory that may be applied in future work.

We first study the supply chain with symmetric retailers and find that the supplier generally

prefers to have as many retailers as possible in the market, even if the retailers’ equilibrium

retail price is lower than that of the supplier, and even if the number of retailers and their cost

or market advantage prevents sales through the direct channel.

We also find that the two-channel supply chain may be subject to inefficiencies not present in

the single-channel supply chain and study coordination. We show that several contracts known

to coordinate a single-channel supply chain do not coordinate the two-channel supply chain;

thus we propose a linear quantity discount contract and demonstrate its ability to perfectly

coordinate the two-channel supply chain with symmetric retailers. We study numerically the
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SUMMARY (Continued)

supply chain with asymmetric retailers and find that the supplier still benefits from having

more retailers in the market and that linear quantity discount contracts can mitigate supply

chain inefficiency, though they no longer achieve perfect coordination.

We then extend our investigation of the two-channel supply chain to that in which the

supplier has limited capacity, either known or subject to probabilistic constraints. We show

that the supplier cannot benefit by selling through the retailer if the maximum possible capacity

is small, or if the lower bound on capacity is in a range that would cause the indirect channel’s

capacity to be zero when the supplier optimizes its retail price to maximize profits. We further

show that, under some conditions, the supply chain profits can actually benefit from uncertainty,

and that the retailer typically absorbs most of the profit loss when the profits instead decrease.

In the second part (Chapter 3), we present a case study of a large-scale stochastic optimiza-

tion problem for USG, a building supplies manufacturer with plants and customers throughout

North America. USG seeks to minimize total delivered cost (including production and freight

costs) of products in its Durock R© product line, subject to capacity constraints and uncertainties

in both demand and production costs. We first demonstrate that demand uncertainty, rather

than production cost uncertainty, is the main cause of month-to-month variations in total cost.

We then use the chance constraint method to optimize the network, and propagate uncertainty

through the cost models, applying a penalty cost for unfulfilled constraints. We show that we

can reduce theoretical costs by approximately 4.8% by optimizing the network for the 50th

percentile of demand, and reduce costs by approximately 1.6% as implemented, as compared

to the base case using a single month’s demand and cost data.
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1. INTRODUCTION

All firms that produce physical goods engage in three main areas of supply chain manage-

ment, broadly defined as source, make, and deliver, as shown in Figure 1. The category of

“source” includes any activities related to procuring raw materials to enable production, while

“make” involves the actual making of the physical goods. “Deliver” encompasses any activ-

ities involved in providing the goods to the customer, such as finished goods stocking, order

fulfillment, and transportation management.

Effective management of each area requires not just the day-to-day execution of supply

chain-related tasks, but the design of a supply chain appropriate for a firm’s strategy. Given

the high cost of the supply chain in manufacturing industries (a few representative examples

include the automobile industry, which spends 67% of revenue in the supply chain, and the

paper industry, which spends 55% of revenue (1)), tools for optimizing the supply chain to

reduce costs or increase profits are of considerable value to firms engaged in these activities.

This thesis focuses on two supply chain design problems in the area of delivery. The first is

that of channel selection: should a supplier sell directly to its end customers, sell through an

Figure 1: Activities in supply chain management
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independent retailer, or both? We address this question in Chapter 2 by looking at a variety

of factors that may influence channel strategy, including costs, relative market sizes, price

sensitivity, and the number of retailers participating in the market. We also investigate how

the decision is affected by capacity constraints, both known and probabilistic. This portion

of the thesis is theoretical, as it is difficult to obtain real world data to verify the theoretical

results of this part. Therefore, in the second part, we concentrated on a real world supply chain

management problem related to network planning.

This second problem is that of designing a distribution network: given a set of plants,

warehouses, and customers throughout North America, which plants should deliver to which

customers to minimize total costs? Chapter 3 presents a case study in which we optimize

the North American distribution network for USG, a major building supplies manufacturer,

taking into consideration production, transportation, and warehousing costs, as well as capacity

constraints at each production facility. We present an approach to this problem that accounts

for the uncertainty in customer demand, and find that a considerable cost reduction can be

achieved, as compared to the present-state.



2. USE OF GAME THEORY TO OPTIMIZE THE TWO-CHANNEL

SUPPLY CHAIN

2.1 Introduction

2.1.1 Background and Motivation

The increasing consolidation of consumer goods retail into “superstores” has given these

large retailers significant power to drive consumer choices. Close to 6% of U.S. retailing happens

through a single retailer, Walmart, in both its online and bricks-and-mortar store (2). In

addition to Walmart and other general superstores (Target, Meijer, etc.), the last two decades

have also seen the growth of specialty superstores, such as Lowe’s and Home Depot in the home

improvement sector, Best Buy in consumer electronics, and Barnes & Noble in book-selling.

The combination of these two factors presents a dilemma for suppliers with the resources to

operate their own retail channels. Some, like Nike and Apple, have exclusive bricks-and-mortar

stores that sell their products directly to end consumers in addition to a presence in superstores.

Others take advantage of e-commerce to reach customers in a wide geographical region with

comparatively low investment. In either case, these suppliers that extend into the retail space

find themselves competing with the retailers to whom they sell products for the dollars of the

end consumer. In some cases, the supplier may even find its price being undercut.

If the supplier is operating under capacity constraints, as when they are under strict time

constraints for a new product launch, these constraints add another element of complexity to the

supplier’s decision. In this case, any amount sold through an independent channel reduces the

3
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amount available in the direct channel. This is common in the consumer electronics industry:

for example, when Apple released the “new iPad” in 2012, the product was backordered through

the direct channel’s website, while available at some of the independent retailers.

We have studied the behavior of these two channel supply chains, those in which a supplier

both operates a direct channel and sells its product through multiple independent retailers, with

the goal of developing insights into the effects of competition between the channels; the “price

of anarchy,” or profits lost to local optimization; opportunities for coordination to improve total

supply chain profits; and the effects of capacity constraints.

In this section, our contributions are strictly theoretical: we are unable to verify them

through the use of empirical data, yet we hope these insights lay a foundation for future appli-

cations:

1. We determine the supply chain structure at equilibrium, and we obtain the equilibrium

retail prices, wholesale price, quantities and efficiency in closed form when the retailers

are symmetric in cost and demand characteristics.

2. We obtain the supply chain efficiency in closed form when the retailers are symmetric and

show that the two-channel supply chain is subject to sources of inefficiency not present

in the single-channel supply chain.

3. We demonstrate that many of the contracts that perfectly coordinate the traditional one-

channel supply chain fail to coordinate the symmetric two-channel supply chain, but that

a linear quantity discount contract does.
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4. We show numerically that when the retailers are not symmetric, some of our analytical

findings for symmetric retailers continue to hold. The linear quantity discount contract

no longer perfectly coordinates the two-channel supply chain, but contract parameters

may be found that significantly improve the total supply chain profit.

5. We determine the supply chain structure at equilibrium, and we obtain the equilibrium

retail prices, wholesale price, quantities and efficiency in closed form when a supplier

competes with a single retailer and capacity is uncertain.

2.1.2 Review of Literature

Since (3) introduced the idea of “double marginalization”, many have studied how vertical

integration affects a supply chain’s quantities, prices, and profits (4). In the last two decades,

the number of suppliers vertically integrating their supply chain by creating their own “direct”

channels to reach end customers has increased, and with it, the volume of literature on the

topic (5), a trend largely due to the ease with which a supplier may compete online (6).

(7) assume that the direct channel is at an inherent disadvantage to the retail channel with

respect to customer preference, exclusive of price, i.e given the same price in both channels,

no customer would choose to purchase directly from the manufacturer. Using this type of

model, they find that it is most profitable for the manufacturer to set its wholesale and retail

prices such that nothing is ever sold through the direct channel, but to maintain the direct

channel as a means of influencing the independent retailer’s retail price. (8) similarly award a

customer preference advantage to the retailer, while assuming a cost advantage for the supplier,

and develop conditions under which both a retail channel and a direct channel are active in
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equilibrium. They show that this occurs when the difference in marginal costs between the

two channels falls within a specific range, outside of which either the supplier cost advantage

or the retailer’s customer preference advantage will allow one firm to set its prices aggressively

enough to achieve whole market coverage on its own. (9) focus on the supplier’s desire to

preserve its relationship with the existing retailer, and therefore analyze a scenario in which a

supplier commits to selling through its direct channel at the same price as in the retail channel.

They conclude that both firms may benefit from the addition of the direct channel as long

as the equal-pricing policy is maintained, the supplier benefiting from additional revenue and

the retailer benefiting from a wholesale price reduction. They note, however, that as the direct

channel gains acceptance among consumers, the supplier is increasingly motivated to set a retail

price lower than that of the retailer, putting the retailer’s profits in jeopardy. By contrast to

these three papers, our intended model does not assume that any channel possesses an absolute

advantage in customer preference, nor in cost, as both the direct and the traditional retail

channels may be online, bricks-and-mortar, or both, and rising consumer acceptance of the

internet suggests a heterogeneity of consumer preference (6).

Another stream of literature focuses on the challenges and opportunities for a retailer oper-

ating more than one channel (e.g. physical store, internet, catalog) in competition with other

retailers. (10) present many of the challenges inherent in operating an internet channel along-

side a physical store or catalog channel: cannibalization of higher-margin sales, implementation

and on-going operational costs, and customer retention issues, but conclude that a consumer-

centric view of channel offerings ultimately allows for profitable operation in a multi-channel
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environment. (11) similarly investigate the decision for retailers to add internet channels along-

side bricks-and-mortar stores, showing that, in equilibrium, all retailers will add an internet

channel, but typically at a loss of profits. More recently, (12) examine the qualitative impact

of channel multiplicity, and suggest further research on how products, customers, channel lead-

ership, and distribution intensity are viewed in an environment with many channels. Other

authors exploring the role of several channels operated by the same firm include (13), who find

that a retailer-owned online channel may increase that retailer’s investment in service compo-

nents at the physical store and (14), who show that customers who migrate to an online channel

from a catalog channel ultimately purchase more over time. While these works investigate each

retailer’s options in choosing their channel strategy, we will focus, by contrast, on the differ-

ence between a supplier-owned channel and a retailer-owned channel, and the resulting channel

conflict independent of whether the channel is a physical store, internet, catalog, or other type

of channel, noting that often the conflict occurs between a supplier’s channel and a retailer’s

channel of the same form.

Other authors similarly focus on the specific use of one type of channel versus another, but

also consider direct channels in their analysis. (15) look at the situation where a manufacturer

sets up a high-cost direct channel with the expectation that many customers will use the

direct channel to learn about the product and then instead purchase from a retailer, i.e. the

manufacturer deliberately keeps its retail price high, allowing the retailers to undercut its price

and “free ride” on its branding efforts. They find that the existence of the direct channel

always benefits the manufacturer, and is most valuable when consumers require a high degree
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of information about the product being sold or when search costs are either very high or very

low. Because our model instead assumes no customer search, there is no such “free riding”

effect. Further, our model allows the manufacturer’s direct channel to take a variety of media,

and thus cost structures. In combination, these two factors lead us to conclude that, when the

retailers have a more favorable cost or market position, the manufacturer’s equilibrium retail

price will be lower than that of the retailers, and in the most extreme cases, the manufacturer

will leave the retail market entirely. (16) examine the addition of an internet channel, owned

by either the manufacturer, a retailer, or a brand new entrant, to either a vertically integrated

or decentralized supply chain consisting only of physical stores, comparing it to the entry of

an additional physical store, assuming that customer disutility for a purchase from a physical

store is proportional to the distance from that store. They conclude that the creation of an

internet channel has a different impact on prices and customer utility than the addition of

another physical store, and the specific costs or benefits depend on the supply chain’s degree of

vertical integration prior to the addition, as well as the distance between physical stores when

multiple are present. While this paper also addresses channel conflict, none of the scenarios

considered in the existing literature described above allow for an internet presence in both the

direct and indirect channels, a common situation as noted in our motivating examples, and one

our model will accommodate.

Discussions of channel strategy are also prominent in the literature on franchising. (17) find

that a manufacturer is better off selling through a franchisee–an independent retailer carrying

only the manufacturer’s products–when competition is high, but prefers vertical integration if
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he can sufficiently differentiate his product to lower competition. (18) extends these results to

the more general case of nonlinear demand and supports his findings with empirical data, while

(19) argues that the benefits of selling through an independent retailer rely on not just the

intensity of retail competition but also the likelihood of competitors at either tier of the supply

chain raising their prices in concert. (20) notes that many franchisors have a combination of

company-owned and franchised locations, an example of “dual-channel” distribution, and uses

empirical data to show that the franchising vs. integration decision is dependent on a variety of

factors including population density, the labor intensity, and the annual growth of an industry,

thus concluding that this decision must be made anew for each proposed location. (21) present

a review in which they argue that most franchisors have a target percentage for the number of

company-owned outlets, driven largely by the value of their brand names. As can be seen in

the motivating examples above, in our context, the relationship between the supplier of a single

product and its potential independent retailers differs considerably from that of a franchisor and

its franchisees. Most notably, the supplier is not able to influence demand at the retailer to the

degree that a franchisor may do so at a franchisee and the supplier’s decision to sell through

an indirect channel is therefore based solely on pre-existing information about the retailers’

demand curve. Further, a franchisee’s initial investment in a franchise has no analogue for a

retailer choosing to add a product to its offerings; a retailer’s decision to enter the market is

influenced mainly by its expected gross margin.

Also of interest is the large body of recent literature focused on supply chain coordination

mechanisms, with the goal of increasing efficiency by providing incentives to align decisions with
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those of a centralized supply chain (22). (23) was one of the first to show how coordination

mechanisms could improve supply chain efficiency in his work on buy-back mechanisms. Other

early work on supply chain coordination proposed quantity discounts as a means of improving

the efficiency of a channel consisting of a single supplier and a single retailer (24), (25). (26)

shows that a supply chain with a single supplier and multiple homogenous retailers may be

coordinated using quantity discounts along with a fixed payment or “franchise fee”, and shows

the equivalence of an all-units quantity discount and an incremental quantity discount policy in

doing so. (27) suggest a “linear quantity discount” contract, in which the wholesale price is a

linearly decreasing function of quantity, as a means of coordinating the lot sizes of a supplier and

a retailer with fixed retail price and demand, while (28) show that such a contract is sufficient to

coordinate a supply chain with one supplier and two independent retailers competing on price.

(29) use a model of one supplier and many retailers, introducing a “price-discount sharing”

(PDS) scheme, in which the wholesale price to a retailer is a function of that retailer’s retail

price. They demonstrate that a linear PDS is sufficient for coordinating a supply chain with non-

competing retailers, but that a nonlinear scheme may be required when differentiated retailers

compete on price. (30) focus on the inefficiencies caused by externalities among retailers,

concluding that complementarity aggravates the double marginalization effect, providing an

opportunity for significant efficiency improvements through coordination, while substitutability

causes the opposite. (31) analyze revenue sharing contracts, finding that the supply chain can

be coordinated, and that profits may be arbitrarily allocated in a supply chain consisting of

a single supplier and multiple differentiated retailers engaging in Cournot competition. Our
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work will extend this literature by testing these contracts in a two channel setting to see if

they achieve perfect coordination when both the supplier and the independent retailers operate

retail channels.

(32) and (33) bring together literature on the two channel supply chain and coordination

mechanisms. (33) model a direct channel in competition with a retail channel in which the

allocation of demand between the two channels is constant, total demand is dependent on sales

effort in both channels, and retail price is fixed at the same value in both channels. They

find that a wholesale price contract must be dependent on both sales effort to coordinate such

a supply chain, but note the practical difficulty of implementing any scheme that requires

the supplier to monitor the retailer’s effort. (32) takes price and demand to be exogenous,

though both may differ by channel, and finds that many common contracts (including buy-

back, rebate, and revenue sharing) fail to coordinate the supply chain. He instead suggests a

“penalty” contract in which the retailer pays the supplier a unit penalty per missed sale to

achieve perfect coordination, but, like the effort-dependent contract of Tsay and Agrawal, such

a contract may be infeasible because of its requirement that the supplier know the retailer’s lost

sales. Our work differs from both of these in that we assume price to be endogenous (resulting

from the retail quantity decisions and price-demand relationship), and the proportion of the

demand realized in the direct channel changes with the decisions made in both channels. We

also intend to study the viability of contracts that, unlike those proposed by these authors,

require no complex tracking of the retailer’s activities.
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Many authors have addressed supplier uncertainty and its effect on the supply chain by

assuming that suppliers are subject to a disruption that results in complete default (34) 1.

(35), (36), (37), and (38) all investigate the effects of information asymmetry, when a supplier

knows its true default risk but the retailers do not. (39) investigate a supply chain featuring a

single retailer with uncertain demand and multiple suppliers, each with a known probability of

delivery failure. They show that, with two suppliers, a high correlation between their default

risks benefits the retailer by driving wholesale prices downward. As more suppliers are added

to the supply chain, the retailer may be able to benefit from both low wholesale prices and low

default risk. From the suppliers’ perspective, they benefit from actions that lower their own

default risk’s correlation with that of other suppliers, as that leads to higher wholesale prices.

(40) studies a single retailer ordering from a single risky supplier that is possibly subsidized

by the retailer, and develops conditions under which the retailer’s optimal ordering decision is

independent of the decision to subsidize the supplier.

More closely related to our work is the literature that assumes a capacity or yield uncertainty,

i.e. that a supplier may make a partial delivery to the retailer when production conditions are

unfavorable, rather than fully default. (41) assume that such a partial delivery is possible, but,

like Babich et al., find that a retailer suffers from a positive correlation among the suppliers’

yields. (42) and (43) both address the question of when investments in the suppliers should

1For consistency, we refer to the supplier as the upstream partner and the retailer as the downstream
partner in a two-tier supply chain, though various authors use supplier and manufacturer to indicate the
same
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be made to reduce uncertainty. The former models multiple suppliers with uncertain yields in

competition for sales to a retailer, finding that the retailer typically benefits from providing

incentives to its suppliers to reduce uncertainty, either through process improvement or the

adoption of minimum standards, in spite of the wholesale price inflation that may follow. Wang

et al. investigate whether a retailer should dual-source or directly invest in a single supplier,

finding that the investment strategy is typically beneficial when the suppliers have a high level

of cost heterogeneity, but dual-sourcing is preferred when there is a high level of reliability

heterogeneity. (44) study a single supplier and a single retailer with uncertain demand. The

supplier’s capacity is fixed, but it may outsource excess demand to an OEM with uncertain

capacity. They find that the supplier benefits from coordination with the OEM, but the OEM

may not see a benefit unless the supplier also coordinates with the retailer.

While these authors all address supply uncertainty, none have done so in a two channel

setting. Our proposed work is therefore unique in this respect: the supplier is a retailer, and

thus needs to consider its own uncertainty in planning its retail quantity and that of the other

retailers. While (45) address the problem of allocating a fixed amount of inventory among

numerous retailers, the addition of both capacity uncertainty and conflict between the direct

and indirect channel significantly differentiates the research questions addressed.
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2.2 Competition and Coordination in a Two-Channel Supply Chain

2.2.1 The Model

We consider a single supplier that exclusively supplies a single product to N retailers. In

addition, the supplier also operates a direct retail channel. These N+1 firms competing in

quantity form an oligopoly over the end market.

The retail price at a given firm (one of the retailers or the supplier direct channel) is

affected by the total quantity released to the market, and therefore is a function of both the

firm’s quantity and its competitors’ quantities. We also assume that there is some degree of

differentiation in the customer experience at different firms, and that some customers prefer each

firm, exclusive of price. This is a reasonable assumption when one considers the many reasons a

customer may choose a retail outlet: some specific to bricks-and-mortar stores (location, staff,

hours of operation), some specific to online venues (shipping policies, fulfillment times, level of

product detail), and some common to both (return policies, credit card acceptance, availability

of other products). We therefore use a linear inverse demand model that allows us to capture

this differentiation:

p = α−Bq, (2.1)

where p = (p0, p1, · · · , pN ) is the vector of retail prices, with p0 representing the retail price

at the supplier direct channel and p1, · · · , pN representing the prices at the N retailers, q =

(q0, q1, · · · , qN ) is the vector of quantities, with q0 representing the quantity at the supplier and
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q1, · · · , qN representing the quantities at the N retailers, α = (α0, α1, · · · , αN ), with α0 repre-

senting the maximum selling price at the supplier and α1, · · · , αN representing the maximum

selling price at the retailers, and B in R(N+1)×(N+1) is the symmetric price sensitivity matrix

given by:

B =



β0 γ01 · · · γ0N

γ10 β1 · · · γ1N

...
...

. . .
...

γN0 γN1 · · · βN


.

The coefficients β0, · · · , βN > 0 represent the price sensitivity of demand at each firm with

respect to its own quantity, and γij > 0 represents the cross-sensitivity of demand at firm i with

respect to the quantity at firm j. Because we assume that the change in a competitor’s quantity

affects a firm’s price less than a change in that firm’s own quantity, we add the restriction that

γij < βi ∀i, j (46). This is broadly applicable when both channels exist as physical locations;

customers must physically travel from one to another, at a cost. However, even if both channels

are online, a customer may face switching costs in the form of setting up a new account, not

being able to bundle shipping with other products, etc. For example, it is easy to imagine that

a customer purchasing several items from the Sam’s Club website may prefer to add a Keurig

machine to his existing order over creating a new order at the Keurig website. This demand

model is common throughout the recent operations management and economic literature (46),
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(47), (48)1. Note that we model competition via quantities to reflect the fact that order quantity

decisions often have to be made in advance of the selling season, and prior to pricing decisions,

especially when independent retailers place an order from an external supplier. (49) state

that the Cournot competition model fits best situations where retailers “simultaneously and

independently make quantity decisions” and then bring these quantities to the market, letting

the price be determined by the quantities on the market. They show that price competition

a la Bertrand would require that quantity decisions follow the realization of demand, which is

not always realistic when retailers order from an external supplier. In addition, they show that

quantity competition is equivalent to quantity precommitment followed by price competition,

thus our model can be viewed as similar to a price competition model as long as retailers and

supplier first commit in terms of quantities.

Production incurs a fixed per-unit cost, cA, and retailing incurs a fixed per-unit cost, ci, for

firm i. We assume that the cost of retailing includes all variable costs, such as inbound shipping,

and that the retailers may be asymmetric in such costs. For ease of notation, we let c′i = ci+cA

represent the total cost of a unit sold through firm i. The quantity νi = αi − c′i represents

the maximum product margin of a unit sold through firm i. This maximum product margin is

the difference between one unit’s maximum selling price and its total cost to the supply chain.

1In practice, there is some uncertainty in price. However, as long as the firms are risk-neutral, neither
an additive nor a multiplicative uncertainty has an impact on expected utility maximization and our
results continue to hold. For ease of exposition, we therefore present the price as a deterministic function
of demand.
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Without loss of generality, we assume the maximum product margin to be positive for each

channel, as otherwise no item would be produced and sold through that channel.

The supplier and the N retailers engage in a Stackelberg game where the supplier is Stack-

elberg leader. The supplier chooses the total quantity, Q, to be sold through retailers and the

retail quantity q0 to be sold in the direct channel. The retailers then simultaneously react by

choosing their retail quantities qi, which then determine the retail prices of all firms, while the

wholesale price w is set to clear the wholesale market.

For tractability in developing our analytical results, in the next two sections we assume that

all N retailers are symmetric. In Section 2.2.4, we numerically investigate the effects of retailer

asymmetry.

2.2.2 Equilibrium Analysis With Symmetric Retailers

In this section we consider all retailers to be symmetric in terms of cost characteristics and

demand parameters, i.e. α1 = · · · = αN , and likewise for βi, γij , ci, c
′
i, and νi. We denote

this by eliminating the subscripts on α, β, γ, c, c′, and ν to indicate they apply to all retailers,

while maintaining the use of 0 as the subscript for the supplier. While we realize that this

is a restrictive assumption that is not satisfied in a strict sense in reality, it keeps the model

tractable and allows us to obtain analytically some managerial insights that we test numerically

in Section 2.2.4 when the symmetry assumption is relaxed. Further, the difference in cost and

market positions among retailers is likely to be much less significant than the difference in cost

and market positions between a supplier and its retailers. For example, Walmart and Target

are much more alike than Walmart and Random House.
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The ratio ρ = ν0
ν of maximum margins gives an indication of the relative strength of the

supplier’s direct channel compared to the indirect channel. Also, we introduce the notations

δ = 2β + γ(N − 1) and ∆ = β + γ(N − 1) to simplify expressions that appear often in our

results.

2.2.2.1 The Decentralized Case

We first determine the equilibrium solution of the Stackelberg game described above. The

supplier first chooses the total wholesale quantity and the direct channel retail quantity, antici-

pating the market-clearing wholesale price and the retailers’ quantities, then all retailers choose

their quantities qi, i = 1, . . . , N . The profit to the supplier, Π0, and the profit to retailer i, Πi,

are therefore given by1:

Π0 = q0(α0 − β0q0 − γQ− c′0) +Q(w − cA) (2.2)

Πi = qi(α− βqi − γ
N∑
j=0
j 6=i

qj − c− w), i = 1, · · · , N, (2.3)

and the supplier’s optimization problem is constrained by the wholesale market clearing con-

dition:
∑N

i=1 qi(w) = Q, where qi(w) denotes the quantity selected by retailer i when the

wholesale price is w. We denote ΠT = Π0 +
∑

i Πi the total supply chain profits.

1While retail prices cannot, in practice, take negative values, we omit this as an explicit constraint, and
instead show that at the equilibrium and at the centralized optimum, prices are positive (see Appendix
4.2, Proof of Prop. 2.2.1).
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Proposition 2.2.1. The equilibrium supply chain structure, profits, quantities, and prices are

given in Table Table I.

Domain ρ ≤ ρmin ρmin < ρ < ρmax ρ ≥ ρmax
Structure Wholesale Supplier Two-Channel Monopoly Retailer

q0 N/A δν0−γNν
2(β0δ−γ2N)

ν0
2β0

qi
ν
2δ

β0ν−γν0
2(β0δ−γ2N)

N/A

p0 N/A
α0+c′0

2
α0+c′0

2

pi
∆(α+c′)+2βα

2δ (1
2)(α+ c′ + β(β0ν−γν0)

β0(2β−γ)+γN(β0−γ)) N/A

Π0
ν2N
4δ

δν20+(β0ν−2γν0)Nν
4(β0δ−γ2N)

ν20
4β0

Πi
βν2

4δ2
β(β0ν−γν0)2

4(β0δ−γ2N)2
N/A

TABLE I: EQUILIBRIUM QUANTITIES, PRICES, AND PROFITS FOR THE DECEN-
TRALIZED SUPPLY CHAIN

The equilibrium supply chain structure, as shown in Table Table I, depends solely on param-

eter ρ. When ρ ≤ γN
δ = ρmin, the supplier’s direct channel is weak compared with the indirect

channel and thus the supplier exits the retail market and acts only as a wholesale supplier to its

retailers. When ρ ≥ β0
γ = ρmax, the supplier’s direct channel is strong enough to make retailers

exit the market, leaving the supplier as a monopoly retailer. Therefore, the two-channel case

occurs if ρmin < ρ < ρmax. This indicates that a two-channel equilibrium with both channels

in operation exists only when the quantity available at either a retailer or the supplier has a

limited influence on the price at the others (we note that ρmin < 1 < ρmax, so the two-channel
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structure occurs at equilibrium when the supplier channel and the retailer channel are identical

in maximum product margins, i.e. ρ = 1).

Increasing the value of N increases the retail market size which offers the supplier the

potential to improve its indirect channel profit. However, when its direct channel is in operation

as well as the indirect channel, the presence of more retailers also intensifies the competition

between the indirect and the direct channel and can hurt the direct channel profit. In addition,

the value of N affects the structure of the supply chain by determining the value of ρmin.

Changing the number of retailers thus has a non trivial overall effect on the supplier’s total

profit. We next investigate the effect of N on the equilibrium supply chain profits (see Figure

2a).

In the two-channel structure, it is straightforward to show from Table Table I that the

supplier’s equilibrium profit is monotonically non-decreasing in N . When there are no retailers

(N = 0), the supplier acts as a monopoly retailer. As retailers enter the market, the supplier

earns more in wholesale revenue than is lost in direct retail revenue due to the intensification

of retail competition; thus, to the supplier, the expansion of the indirect retail market is worth

the loss of direct retail market share. We note that this holds true even when the supplier’s

price is undercut (see Figure 2b), a finding that helps explain our motivating example of books

sold by Random House.

As N becomes large, the behavior of the supplier depends on its margin position as compared

to the other retailers. If ρ ≥ 1, the supplier remains in the retail market regardless of the number

of new entrants, and continues to benefit from increases in wholesale revenue as N grows. If
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ρ ≤ 1, additional entrants eventually force the supplier out of the retail market1. However,

the supplier’s profit continues to increase in N , as enough new wholesale revenue replaces the

direct retail revenue no longer earned. Therefore, the supplier benefits from the presence of as

many retailers as possible in the market, even if it is itself forced out of the retail market.
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(a) Profits vs. N , where α0 = 11 and α = 12
(thus ν0 = 9, ν = 10, and ρ = .9).
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(b) Prices vs. ρ, where N = 3 and α = 3
(ν = 1 and ν0 varies from .6 to 2, causing ρ
to vary from ρmin = .6 to ρmax = 2).

Figure 2: Profits vs. Number of Retailers and Price vs. ρ in Equilibrium, where c0 = cA = c =
1, β0 = 2, β = 1.5, and γ = 1.

It is easy to show that the growth in total demand as N increases due to additional retailers

capturing more consumers has a beneficial effect on the total supply chain profit, though the

1ρmin increases with N thus as N increases, ρ becomes lower than ρmin and the structure of the
supply chain changes.
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profit to each retailer is decreasing because of more intense competition. The combined retailer

profit is unimodal, thus, the growth in the total profit beyond the maximum retailer profit

accrues entirely as a benefit to the supplier.

2.2.2.2 The Centralized Case and the Price of Anarchy

As a benchmark for the decentralized equilibrium, we consider a centralized supply chain

where a single central decision-maker chooses the prices and quantities for all firms, with the

goal of maximizing the total system profit. This profit, Π̃T , is given by:

Π̃T = q0(p0 − c′0) +
N∑
i=1

qi(pi − c′). (2.4)

Proposition 2.2.2. The centralized optimal profits, quantities, and prices are given in Table

Table II.

Domain ρ ≤ ρCmin ρCmin < ρ < ρmax ρ ≥ ρmax
Structure Wholesale Supplier Two-Channel Monopoly Retailer

q0 N/A ∆ν0−γNν
2(β0∆−γ2N)

ν0
2β0

qi
ν

2∆
β0ν−γν0

2(β0∆−γ2N)
N/A

p0 N/A
α0+c′0

2
α0+c′0

2

pi
α+c′

2
α+c′

2 N/A

ΠT
ν2N
4∆

∆ν20+β0Nν2−2γNν0ν
4(β0∆−γ2N)

ν20
4β0

TABLE II: OPTIMAL QUANTITIES, PRICES, AND PROFITS FOR THE CENTRALIZED
SUPPLY CHAIN
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As in the decentralized case, the centralized chain structure depends on ρ and the supplier

acts as a monopoly retailer when ρ ≥ ρmax. However, the supplier exits the direct retail market

when ρ < γN
∆ , denoted as ρCmin. The centralized supply chain thus has a two-channel structure

if ρCmin < ρ < ρmax. Note that ρCmin can be interpreted as a measure of the inverse of a retailer’s

market power: 1/ρCmin = 1+(1/N)(β/γ−1), and the higher N the more competitive the market

is, while the closer γ is to β, the less differentiated retailers are.

We define the efficiency of the system, η, as the ratio of the total profit in the decentralized

case and the total profit in the centralized case, a ratio frequently of interest in the supply

chain literature (50), (30), (51). The closed form expressions for the efficiency are given in

Table Table XI. The efficiency serves as a measure of supply chain performance. Literature

on the “price of anarchy,” which measures the efficiency lost to selfish behavior (typically, 1

- η: see (52), (53), or (54)), seeks to quantify this inefficiency and uses the price of anarchy

as a motivation for coordination mechanisms. In what follows, we study characteristics of the

supply chain efficiency and we show that the dual channel efficiency behaves differently than

the single-channel efficiency.

Proposition 2.2.3. The efficiency is not monotone in ρ, N , or γ.

We summarize the monotonicity properties of efficiency in Table Table XI. We first consider

the effect of ρ on the efficiency, illustrated in Figure 3a. In the range 0 ≤ ρ ≤ ρmin, η is constant

in ρ, and takes a value between 3
4 , at N = 1, and 1, at N =∞. This echoes results developed

by previous authors for a single-channel supply chain that 3
4 is the minimum efficiency of a
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system in which a single supplier interacts with N non-differentiated symmetric retailers in

competition ((52), (53), (55), (56)).

When ρ increases beyond ρmin, the decentralized system moves from the wholesale supplier

structure to the two-channel structure, and the efficiency is unimodal in this range, reaching

a minimum between ρmin and ρCmin. In particular, we observe that the efficiency of the two-

channel supply chain falls below that of a single-channel supply chain when ρmin < ρ < ρCmin.

This is surprising, as in a two-channel supply chain, some products are sold through the direct

channel, avoiding double marginalization. Further, the existence of a direct channel increases

the number of retail outlets, and therefore intensifies retail competition, which generally leads

to higher efficiency. However, the efficiency in the two-channel supply chain is lower than that

of a single-channel supply chain only in the range of ρ for which the optimal centralized supply

chain structure differs from the equilibrium decentralized supply chain structure. Therefore,

the supplier’s sub-optimal presence in the retail market lowers efficiency: products sold through

the direct channel yield a lower maximum product margin than the indirect channel.

Figures 3b and 3c illustrate the non-monotonicity of efficiency with respect to both N and

γ in the range1 ρCmin < ρ < ρmax. These results are unique to a dual channel supply chain.

For a single-channel supply chain with a single supplier and multiple retailers, (56) show that

efficiency is increasing in the number of retailers and decreasing in retailer differentiation (i.e. an

1In this numerical example, ρ = 1 so it is higher than both ρmin = N
N+9 and ρCmin = N

N+4 , and lower
than ρmax = 1.5, so the system has a two-channel structure in equilibrium independently of the number
of retailers for both the decentralized and centralized cases.
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Figure 3: Efficiency vs. ρ, N , and γ.

increase in γ). In the dual channel supply chain, at N = 0 there is a single decision-maker and

the efficiency equals 1. As retailers are added to the system, the efficiency initially decreases,

as the retail quantity sold through the direct channel (not subject to double marginalization)

decreases. When the number of retailers grows large, the double marginalization effect is

outweighed by the retail competition effect; the retailers lose all market power and the efficiency

approaches 1 (as in single-channel supply chains). The non-monotonicity of efficiency with
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respect to γ when N is large in a dual channel chain can be explained as follows: the immediate

increase in efficiency as soon as differentiation is introduced is very large, reflecting the abrupt

change from no competition (γ = 0) to intense competition (γ > 0 and large N), and the

efficiency becomes very close to 1, indicating that the supplier’s dual role gives it almost all of

the decision-making power. As γ increases further, the supplier’s power is diminished by the

decreased differentiation between the two channels, causing a slight drop in efficiency. Finally,

as γ approaches β, the retailers’ quantity approaches zero, so the supply chain closely mimics

that with a single decision-maker, and efficiency approaches 1.

The two-channel supply chain therefore contains several sources of inefficiency not found in

the single-channel supply chain, but that can be remedied:

1. When ρmin < ρ < ρCmin, the inefficiency can be reduced by removing the supplier from the

retail market.

2. When β0 is large enough to cause a dip in efficiency for low values of N , the efficiency can

be improved by limiting the number of independent retailers.

3. When N is large enough that efficiency is not monotonically increasing in γ, efficiency can

be improved by decreasing the intensity of competition, through means such as the removal

of links to third-party retailers from Random House’s website in our introductory example.

Each of these strategies for increasing efficiency is unique to the two-channel supply chain. We

caution, however, that these tactics are applicable in a limited number of situations, thus we

turn our attention to coordinating contracts as a potentially more robust method of improving

efficiency.
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2.2.3 Coordination Mechanisms With Symmetric Retailers

Based on the above discussion, we consider ways to improve the efficiency of a system in

which the supplier opts to act as both a supplier to other retailers and a direct retailer itself. We

exclude from our discussion the range ρ ≤ ρmin, in which the supplier is acting only as a supplier

to other retailers in both the centralized and decentralized cases, because this is equivalent to

single-channel supply chains with one supplier and many retailers, on the coordination of which

much has been written (22). Likewise, when ρ ≥ ρmax, we have the trivial case in which

both the centralized and decentralized systems are monopolies and efficiency is one. Therefore,

we focus on the case when ρmin < ρ < ρmax, in which the decentralized supply chain has a

two-channel structure in equilibrium, and the centralized supply chain’s optimal structure is

either two-channel (for ρCmin ≤ ρ < ρmax) or single-channel with the supplier acting only as a

wholesale supplier (for ρmin < ρ < ρCmin).

For the contracts we discuss herein, we assume that the contract parameters governing

compensation from the retailer to the supplier are negotiated before the start of the game

(similarly to (31)), then the supplier chooses its retail quantity, and finally the retailers choose

their retail quantities. Further, due to symmetry among retailers, we assume that the same

contract is offered to all retailers.

2.2.3.1 Applying Common Contracts to the Two-Channel Supply Chain

We find that no fixed per-unit wholesale price coordinates the two-channel supply chain.

This result agrees with earlier single-channel literature ((22), (57)) demonstrating that a fixed

wholesale price cannot both coordinate a supply chain with a single supplier and a single retailer
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and preserve a margin for each. However, a notable difference between the one-channel and

two-channel supply chains is that the former may be coordinated by eliminating the margin of

one of the firms (58). Thus, the trivial cases in which the wholesale price equals the marginal

cost or the retail price both coordinate the one-channel supply chain. By contrast, both of these

extreme values of the wholesale price (w = cA and w = pi) fail to coordinate a two-channel

supply chain.

Similarly, an all-units quantity discount, in which the supplier offers a wholesale price dis-

count on all units purchased if a retailer orders more than a specified breakpoint (24) also fails

to coordinate the two-channel supply chain, though it can achieve perfect coordination in a

single-channel supply chain. While the retailers can be incentivized to order their centralized

optimal quantity by setting the breakpoint equal to this quantity, the contract does nothing

to motivate the supplier to choose its quantity at the centralized optimal quantity. Thus, the

all-units quantity discount is insufficient in the two-channel case.

Revenue sharing contracts ((31)) and linear price discount sharing (PDS) contracts ((29))

fare only slightly better. In a revenue sharing contract, the retailers get a discount on the

wholesale price, in exchange for returning a percentage of their revenue to the supplier. In a

linear PDS contract, the wholesale price is discounted by an amount linearly proportional to the

discount the retailers offer on their retail prices. These two classes of contracts are equivalent, in

that they generate the same prices, quantities, and profits for all firms. When ρmin < ρ < ρCmin,

there exists a revenue sharing contract or linear PDS contract that perfectly coordinates the

supply chain. Its parameters and resulting profits are given in Table Table XII. However, when
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ρCmin ≤ ρ < ρmax, the supply chain cannot be perfectly coordinated with a revenue sharing

contract or linear PDS contract. Therefore, these contracts only coordinate the two-channel

supply chain when the supplier is forced out of the retail market, and fail to coordinate the

supply chain when both channels are in operation.

2.2.3.2 Linear Quantity Discount Contract

When both channels are active (ρCmin ≤ ρ < ρmax), the challenge of choosing a contract that

induces the supply chain optimal retail quantities in both channels is not easily overcome. A

contract that makes the supplier’s quantity equal to the centralized quantity by stripping the

retailers of a margin cannot penalize the retailers for deviating from the optimal quantity. On

the other hand, a contract that gives the retailers an incentive to order their centralized optimal

quantities is insufficient because it fails to force the supplier’s quantity to match its centralized

quantity. We now study a linear quantity discount contract, and show that it successfully

coordinates the supply chain for any value of ρ between ρmin and ρmax.

In the linear quantity discount contract, the per-unit discount is a linear function of the

number of units purchased by a retailer (27). This contract involves two parameters: wo, the

maximum wholesale price, and s, the discount per unit, resulting in a wholesale price per unit,

w = wo− sq. Parameters wo and s are fixed, and the supplier chooses its retail quantity before

the retailers choose theirs. Under this scheme, the profits are given by

Π̂0 = q0(p0 − c0 − cA) +
N∑
i=1

qi((w
o − sqi)− cA) (2.5)

Π̂i = qi(p− c− (wo − sqi)). (2.6)
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Theorem 2.2.4. When ρmin < ρ < ρCmin, there exists a linear quantity discount contract that

perfectly coordinates the supply chain. Its parameters and resulting profits are given in Table

Table XII.

When ρCmin ≤ ρ < ρmax, the linear quantity discount contract with s = β − ε and wo =

β0δ(α−c+cA)−γ(βν0+γN(α−c+cA))
2(β0δ−γ2N)

perfectly coordinates the supply chain when ε approaches zero,

and this results in limiting profits of Π̂0 = Π̃T and Π̂i = 0.

In the range ρmin < ρ < ρCmin, both the maximum wholesale price, wo, and the discount per

unit, s, are increasing in ρ, so the greater ρ, the greater the incentive to buy a large quantity

wholesale from the supplier. This is needed to offset the fact that the supplier becomes more

competitive in the retail market for larger values of ρ, and the equilibrium quantity of the

retailers therefore decreases.

In the range ρCmin ≤ ρ < ρmax, the wholesale price is uniformly equal to α−c+cA
2 . The optimal

price for the retailers is α+c+cA
2 , and so they are each selling at a price exactly equal to marginal

cost. However, unlike in the revenue sharing and linear PDS contracts, this zero margin is not

pre-supposed by the contract itself, but is rather a result of the quantity decision. Therefore,

the equilibrium quantity for the retailers is equal to the optimal centralized quantity, and a

deviation from this quantity would have a negative effect on their profits. Thus, this contract

achieves perfect coordination in this range, though at a loss to the retailers, as compared to

the decentralized case. This is a significant limitation of the contract, as the retailers have no

incentive to participate in a supply chain that offers them no profit. However, this may be

remedied with a transfer payment from the supplier, a mechanism previously proposed by a
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variety of authors ((59), (60), (61)). Because the total supply chain profit is larger with the

contract than without, a linear quantity discount contract in combination with a fixed transfer

payment can perfectly coordinate the two-channel supply chain at a Pareto improvement to all

firms.

With such a two-part contract, it is not guaranteed that the supplier’s profit is monotonically

increasing in the number of retailers. Though the total profit increases in the number of retailers,

the exact profit allocation depends on the supplier’s negotiating strength relative to that of the

retailers (62). In practice, therefore, a supplier who is able to offer retailers a small transfer

payment would be better off with more retailers in the supply chain. By contrast, a supplier

with less negotiating power may be able to use the threat of additional retailers to negotiate

a lower transfer payment to the existing retailers. In either case, however, the supplier must

be more strategic about offering its product to additional retailers than in the non-coordinated

decentralized game.

2.2.4 Asymmetry of Retailers

In Sections 2.2.2 and 2.2.3, we assumed that all retailers have similar cost and market po-

sitions, i.e. αi, βi, γij , ci, c
′
i, and νi are symmetric among retailers. In this section, we relax this

assumption and we examine the effect of asymmetry in these parameters by running a series

of numerical experiments to gain insight into the supply chain’s behavior when the retailers

are asymmetric and differentiated. We find numerically the decentralized equilibrium by for-

mulating the retailers’ problem as a linear complementarity problem (LCP) (63) and solving
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the supplier’s decisions as a nonlinear optimization problem subject to the constraint that the

retailers’ decisions are the solution of this LCP.

2.2.4.1 Effect of the Number of Retailers on Profits and Efficiency

In this section, we confirm that key results from Section 2.2.2 hold when the retailers are

asymmetric, namely, that the supplier’s profit and the total profit are increasing, while each

retailer’s profit is decreasing, in the number of retailers. Further, as in the symmetric case, the

efficiency is not monotone, but rather, initially declines with the addition of retailers and then

recovers as N becomes large. We proceed as follows: we fix the supplier’s parameters (α0, β0,

γ0i, c0, and cA), and an upper and lower bound for each of the retailers’ parameters. We then

assign to each retailer random parameters drawn from a uniform distribution between these

bounds, maintaining the assumptions that βi > γij and γij = γji ∀i, j and B is symmetric. The

trial is repeated 250 times and we average the relevant output values (e.g. profits, efficiency,

etc.). We repeat the process in this manner, varying the supplier’s parameters and the bounds

on the retailer’s parameters, and conclusions are drawn from the complete set of numerical

results.

Because the retailers can no longer be assumed to make identical choices about participating

or not participating in the retail market (and a central planner may not make the same decision

about all retailers), throughout this section we use N to refer to the total number of retailers

considered and n to refer to the total number that participate in the retail market, i.e., have a

retail quantity greater than zero. We call the latter “active retailers”.
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We find that the results obtained numerically in the asymmetric case are consistent with

those obtained analytically in the symmetric case: as shown in Figure 4a, the supplier’s average

profit and the average total profit are increasing in N , while each retailer’s average profit is

decreasing in N . There may be one or more retailers who leave the retail market, i.e., in general

n < N , and we find that the larger N , the greater the difference in fraction of active retailers

between the centralized and decentralized settings; see Figure 5a. For the numerical example

illustrated in this figure, more than 99% of the retailers remain in the retail market in the

decentralized case on average for values of N as large as 10, while the centralized case shows

a steep drop-off in n, with only 63% of retailers remaining active when N = 10. As shown in

Figure 5b, the supplier may also choose to leave the retail market (as occurs when the supply
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chain contains a retailer or retailers with large maximum margins). However, regardless of

whether the supplier and/or some retailers are pushed out of the retail market, on average, the

supplier still earns more profit when more retailers are present (as shown in Figure 4a), and

thus we confirm that it is still in the supplier’s best interest to include as many asymmetric

retailers as possible in the supply chain.
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We also find that, as in the symmetric case, the efficiency is not monotonic in N , but rather

drops off upon the initial entry of retailers into the market, and then recovers as additional

retailers push the supply chain closer to perfect competition, as shown in Figure 4b. As com-

pared to the symmetric case (Figure 3b), the asymmetric efficiency is lower except for very

small values of N . This can be explained by the fact that when retailers are asymmetric a

new effect influences efficiency. When retailers are symmetric, either they all participate in the

retail market, or none does, both at equilibrium and at the centralized solution. When they are

asymmetric, the centralized planner only selects the “strongest” retailers to be active, while, as

shown in Figure 5a, unless N is very small, at equilibrium many more retailers decide to be ac-

tive. This discrepancy between the centralized and decentralized settings lowers efficiency. An

implication of this observation is that a contract that would coordinate the asymmetric supply

chain must induce only some of the retailers to leave the retail market, which was not the case

for a coordinating contract in a symmetric supply chain. We further investigate coordinating

contracts under asymmetry of retailers in Section 2.2.4.2.

2.2.4.2 Effect of Asymmetry on the Existence of a Coordinating Contract

In this section, we investigate the effect of a linear quantity discount contract on the supply

chain with asymmetric retailers. We find that, contrary to the symmetric case, no such contract

achieves perfect coordination. However, we demonstrate that this type of contract significantly

improves efficiency and thus may have practical use. We assume that retailer i is offered a

linear quantity discount contract characterized by parameters si, w
o
i , i = 1, · · · , N and we
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search numerically for the set of contract parameters that maximizes the total supply chain

profit.
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Figure 6: Distribution of Efficiency of the Asymmetric Supply Chain in 100 Randomized Trials,
where N is drawn from a discrete uniform distribution from 2 to 6, c0 = cA = 1, β0 = 2.5,
and α0, αi, i = 0, · · · , N , ci, βi, i = 0, · · · , N , and γij , i = 0, · · · , N, j = 0, · · · , N drawn from
uniform distributions on [12, 14], [8, 10], [1.5, 2.5], [1.5, 3.5], and [.5, 1.5], respectively.

We can find contract parameters for each retailer that induce retailer quantities equal to the

centralized solution; however, the asymmetry of cross-sensitivity (the γij ’s) makes it impossible

to induce the supplier to choose a quantity equal to its centralized optimal quantity, and thus

no contract perfectly coordinates the asymmetric chain.

We find that, without achieving perfect coordination, linear quantity discount contracts can

still significantly improve the efficiency, and therefore the total profit, of the supply chain. We
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solved 100 instances of the problem of finding the best possible contract terms with N drawn

from a discrete uniform distribution from 2 to 6, and νi, βi, γij , i = 0, · · · , N, j = 0, · · · , N

drawn from uniform distributions on [8, 18], [1.5, 3.5], and [.5, 1.5], with a restriction that the

matrix B be symmetric positive definite. As shown in Figure 6, for 77% of the trials, a contract

was found that resulted in efficiency of 95% or better, while for 48% of the trials, the contract

resulted in efficiency of 99% or better. By contrast, the efficiency with a fixed per-unit wholesale

price was above 95% for only 50% of the trials, and above 99% in only 15% of the trials. In

62% of trials, the efficiency improved by at least 1% when a contract was applied, and in 30%

of trials, it improved by at least 5%.

Nevertheless, the fact that the contract proposed here does not perfectly coordinate the

decisions with the centralized setting is a clear limitation of this contract. Further research

on contracts that may fully coordinate asymmetric dual supply chains is necessary to improve

upon this result.

2.3 The Two-Channel Supply Chain with Capacity Constraints

We next turn our attention to the two-channel supply chain in which capacity is constrained.

2.3.1 The Model

We consider a single risk-neutral supplier that exclusively supplies a single product to a

risk-neutral retailer. In addition, the supplier also operates a direct retail channel, thus we

refer to him as the supplier-retailer throughout. These two firms competing in price form an

oligopoly over the end market. We let the subscript s represent the supplier, while subscript r

represents the retailer, and by common convention, we use female pronouns for the supplier and
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male for the retailer. The supplier does not initially know the exact number of units available,

K, but knows that it is equal to either L or U , such that L < U .

We assume that the demand at each location is convex and linearly decreasing in price, as

commonly found in the literature (64). We therefore let Ds(p) = as − bp and Dr(p) = ar − bp

represent the retail demand at the supplier and at the retailer, respectively, such that as, ar, b >

0. Further, we assume that the supplier’s potential market is larger than that of the retailer, i.e.

as ≥ ar, and that ar ≥ as+bc
2 . The latter condition is reasonable in that a monopoly supplier

would be unlikely to engage with a retailer with a very small market potential, and we use it

here to greatly simplify our results and allow us to better focus on capacity as the parameter of

most interest. Demand that is not fulfilled at a retail location is lost; the selling season is too

short to allow for customer search. There is no penalty for lost demand, except the unrealized

revenue. There is a constant production cost of c per unit.

The game is played in four stages:

1. The supplier chooses a retail price, p.

2. The retailer chooses his quantity, q, and the maximum wholesale price he is willing to

pay, w.

3. The supplier chooses whether or not to sell to the retailer. Her decision is either “yes”

or “no,” i.e. if she chooses to sell, it is the quantity and wholesale price dictated by the

retailer.

4. The capacity, K, is revealed.
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2.3.2 The Game with Known Capacity

We first assume that the capacity, K, is known, and we solve the game by backwards

induction beginning with stage 3. We assume the supplier chooses to sell to the retailer if her

profit is greater than or equal to her profit when she does not sell to the retailer. If she sells to

the retailer, her profit is

Πs =


K(p− c)− q(p− w) K − q ≤ Ds(p),

Ds(p)(p− c) + q(w − c) K − q > Ds(p, )

,

and if she does not sell to the retailer, her profit is

Πs =


K(p− c) K ≤ Ds(p),

Ds(p)(p− c) K > Ds(p),

.

When capacity is known, we assume that the supplier will choose the channel strategy (sell to

retailer or don’t sell to retailer) that yields the higher profit.

In phase 2, the retailer’s profit is

Πr = min[q,Dr(p)]p− qw. (2.7)
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When demand is deterministic, the retailer will order q = Dr(p), so we can write the retailer’s

profit as

Πr = Dr(p)(p− w)

Further, the retailer’s profit is linearly decreasing in w, so the retailer will choose the smallest

w that causes the supplier to sell to him, i.e. the w that makes the supplier’s profit equal in

the one-channel and two-channel cases, plus some ε value that is mathematically insignificant,

but gives the supplier a slight incentive to sell to the retailer.

There are three possible cases for the relationship of capacity and demand:

1. Ds(p) < K −Dr(p)

2. K −Dr(p) ≤ Ds(p) < K

3. Ds(p) ≤ K

Case 1:

Ds(p)(p− c) +Dr(p)(w − c) = Ds(p)(p− c)

w = c.

In this case, the wholesale price is c, meaning that the supplier has excess capacity, and should

be willing to sell to the retailer at any price that covers the cost of production.
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Case 2:

K(p− c)−Dr(p)(p− w) = Ds(p)(p− c)

w =
p(Ds +Dr(p)−K) + c(K −Ds(p))

Dr(p)

w =
p(ar + as −K − 2bp) + c(K − as + bp)

ar − bp
.

Case 3:

In this case, the only wholesale price that would make K(p − c) − Dr(p)(p − w) = K(p − c)

is w = p, which would obviously allow the retailer no profit, and thus we conclude that if the

capacity is less than demand at the supplier, nothing is sold through the retailer.

We then turn our attention to the supplier’s profit in Phase 1. Because, in Cases 1 and

2, the wholesale price has been calculated to make the supplier’s profit equivalent to that in

the wholesale case, the supplier’s profits are equal under both, and thus only dependent on the

relationship between Ds(p) and K.

Πs =


K(p− c) K ≤ Ds(p)

Ds(p)(p− c) Ds(p) < K

.

When K ≤ Ds(p), the profit is linearly increasing in p, so it is maximized at the endpoint,

p∗ = as−K
b for a profit of K(as−K)

b − Kc. When K > Ds(p), the profit function is quadratic,
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Domain p w Ds Dr Πs Πr

ar − bc ≤ K as+bc
2b c as−bc

2 ar − as+bc
2

(as−bc)2
4b

(as−bc)(2ar−as−bc)
4b

as−bc
2 ≤ K < ar − bc as+bc

2b
θ

b(as−2ar+bc)
as−bc

2 ar − as+bc
2

(as−bc)2
4b

(as−bc)(2K−as−bc)
4b

K ≤ as−bc
2

as−K
b N/A K N/A K(as−K)

b −Kc N/A
κ = as − ar +K

θ = as(K − ar) + bc(2as − ar −K)

TABLE III: PRICES, MARGINS, QUANTITIES, AND PROFITS AT EQUILIBRIUM WHEN
CAPACITY IS KNOWN

and maximized at p∗ = as−bc
2b , for a profit of (as−bc)2

4b . These two are equal when K = as−bc
2 ,

thus, when K ≤ as−bc
2 , the supplier will choose the former, and when K > as−bc

2 , the latter.

However, we see that when as−bc
2 > ar, the retailer’s quantity is not positive if p = as+bc

2 .

We therefore revisit the retailer’s decision in Case 2. The smallest possible value of w that

motivates the supplier to sell through the retailer is w = p(ar+as−K−2bp)+c(K−as+bp)
ar−bp . When

K > as−bc
2 , w > (as−bc)(p−c)+2p(ar+bc−2bp)

2(ar−bp) . If we add the condition that as > 2ar − bc (required

for qr to be positive), we have w > 2p − c. As we know that p > c, we can conclude that the

smallest possible wholesale price that would guarantee the supplier equal profits in the one- and

two-channel cases must be larger than the retail price, and the retailer’s profit would therefore

be negative. We can therefore conclude that nothing will be sold through the retailer when

ar ≤ as−bc
2 .

Proposition 2.3.1. The equilibrium prices, profits, and margins when capacity is known are

given in Table Table III.
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We see that when K ≥ as−bc
2 , the supplier’s profit is (as−bc)2

4b , and when K < as−bc
2 , the

supplier’s profit is (as−K)K
b − Kc. The qualitative result is intuitive: when capacity is large

compared to size of the supplier’s potential market, the capacity is ultimately not a determinant

of the supplier’s profit, and when capacity is instead relatively small, it limits the supplier’s

profit.

Less intuitive, however, are the conditions under which the supplier chooses to sell to the

retailer. As we see comparing rows 2 and 3 with row 4, the choice to sell to the retailer may

depend on the relative demand parameters of the supplier and retailer, so as long as K is large,

the supplier sells to the retailer when the retailer’s demand position is at least moderately

strong compared to that of the supplier (i.e. ar >
as−bc

2 . If the retailer’s demand positions is

weak compared to that of the supplier, the supplier does not bother selling through the retailer.

Even if the capacity is very large, the resulting decline in price from selling through the retailer

harms the supplier’s profit more than sales to the retailer benefit her.

2.3.3 The Game with Uncertain Capacity

Assume that capacity can be either high or low: K takes value H with probability α and

L with probability 1 − α, such that L < H. In the one-channel case, we have three possible

scenarios:

1. Ds(p) < L

Πs = Ds(p)(p− c)
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(a) If L > as−bc
2

p∗ = as+bc
2b

Πs = (as−bc)2
4b

(b) If L < as−bc
2

p∗ = as−L
b

Πs = L(as−bc−L)
b

2. L < Ds(p) < H

Πs = α[Ds(p)(p− c)] + (1− α)[L(p− c)]

(a) If L > α(as−bc)
1+α

p∗ = as−L
b

Πs = L(as−bc−L)
b

(b) If L < α(as−bc)
1+α , H > α(as−bc+L)−L

2α

p∗ = α(as−bc−L)+L
2αb

Πs = (α(as−bc−L)+L)2

4αb

(c) If H < α(as−bc+L)−L
2α

p∗ = as−H
b

Πs = (as−bc−H)(α(H−L)+L)
b

3. H < Ds(p)

Πs = α[H(p− c)] + (1− α)[L(p− c)]
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Domain Price Profit
as−bc

2 ≤ L as+bc
2b

(as−bc)2
4b

α(as−bc)
1+α ≤ L < as−bc

2
as−L
b

L(as−bc−L)
b

L < α(as−bc)
1+α , α(as−bc+L)−L

2α ≤ H α(as−bc−L)+L
2αb

(α(as−bc−L)+L)2

4αb

H < α(as−bc+L)−L
2α

as−H
b

(as−bc−H)(α(H−L)+L)
b

TABLE IV: OPTIMAL PRICES AND PROFITS IN THE ONE CHANNEL CASE WITH
UNCERTAIN CAPACITY

p∗ = as−H
b

Πs = (as−bc−H)(α(H−L)+L)
b

Proposition 2.3.2. Optimal prices and profits for the one channel supply chain with uncertain

capacity are given in Table Table IV.

When the supplier instead chooses to sell to the retailer as well as operating a direct channel,

we must consider not only the relationship among L, Ds(p), and H, but also q (= Dr(p)). We

therefore see that each of the one-channel cases (indicated by a number) encompasses several

two channel cases (indicated by a lowercase letter).

1. Ds(p) ≤ L

Πs = Ds(p)(p− c)

(a) Ds(p) < L− q

Πs = Ds(p)(p− c) + q(w − c)

(b) L− q < Ds(p) < H − q

E[Πs] = (1− α)[(L− q)(p− c)] + α[Ds(p)(p− c)] + q(w − c)]
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(c) L− q < H − q < Ds(p) < L

E[Πs] = (1− α)[(L− q)(p− c)] + α[(H − q)(p− c)] + q(w − c)]

The condition Ds(p) < L only results if the demand curve is such that the optimal price for

maximizing revenue results in a demand at the supplier less than the lower possible capacity,

L, i.e. as−bc
2 < L. If the optimal price is large enough that demand at the supplier is smaller

than what is leftover in the low capacity case once the retailer’s demand has been fulfilled

(Ds(p) < L− q), then 1a results, and it is clear that the supplier benefits from selling through

the retailer, in addition to selling through the direct channel, at any wholesale price greater

than the unit cost. This occurs when ar − bc < L.

If the optimal price results in demand at the supplier such that L − q < Ds(p) < L (1b

or 1c ), the supplier gives up some quantity of sales (the difference between Ds(p) and L− q),

in return for an increase in revenue gained by selling wholesale through the retailer. This

occurs when as−bc
2 < L < ar − bc. The supplier is concerned only that the retailer may require

a quantity large enough that the supplier is not able to meet her own demand, and needs

an increased wholesale price to make up the lost revenue from lower direct sales. Therefore, a

retailer instead wishing to purchase at a lower cost could instead propose an agreement in which

its quantity is limited, i.e. q < Dr(p) so that the condition Ds(p) < L− q may be maintained.

Interestingly, this operates in opposition to the all-units quantity discount contract commonly

found in the literature (citation here), in which a retailer receives a lower price for purchasing

a larger quantity.
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In the case where Ds(p) < H − q (1b), equivalent to as−bc
2 < L < ar − bc < H, the supplier

only gives up retail revenue if capacity turns out to be low, but can fulfill all direct channel

demand if capacity is high. Therefore, the wholesale price must be higher than the cost (see

value given in Table Table XIII) for the supplier to be better off selling through the retailer

than selling only through the direct channel. By contrast, if H − q < Ds(p) (1c), equivalent to

as−bc
2 < L < H < ar − bc, the supplier cannot fulfill direct channel demand if it sells through

the retailer, regardless of whether capacity is low or high. An even higher wholesale price is

therefore required to provide the supplier with an expected profit equivalent to that in the

one-channel case.

2. L < Ds(p) < H

E[Πs] = α[Ds(p)(p− c)] + (1− α)[L(p− c)]

(a) L− q < L < Ds(p) < H − q < H

E[Πs] = α[Ds(p)(p− c)] + (1− α)[(L− q)(p− c)] + q(w − c)

(b) H − q < Ds(p) < H

E[Πs] = α[(H − q)(p− c)] + (1− α)[(L− q)(p− c)] + q(w − c)

The one-channel case L < Ds(p) < H can be divided into two two-channel cases, depending on

the relationship between Ds(p) and H − q. When Ds(p) < H − q, case 2a results, and, as in

1b, the supplier can meet all direct channel demand if capacity is high, but not if capacity is

low. Therefore, the wholesale price must again account for the chance that the chance that the

capacity will be low. This occurs when L < α(as+bc)
1+α and H > α(ar+bc−L)+L

α .
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If H − q < Ds(p), case 2b results, and, as in 1c, the supplier cannot meet all direct channel

demand for either value of capacity, high or low. The wholesale price therefore accounts for

the certainty that direct channel sales will be lost in order to supply the indirect channel. This

occurs when L < α(as+bc)
1+α and α(as+bc+L)−L

2α < H < α(ar+bc−L)+L
α .

However, in both 2a and 2b, a value of L between α(2ar−as−bc)
1−α and α(as−bcL)−L

1−α would result

in a negative quantity in the retailer’s channel, i.e. Dr(p) < 0. Therefore, the supplier must

choose a retail price less than ar
b . The closest the retailer can get to an optimal retail price is

therefore ar
b − ε, where ε is some small quantity that ensures a positive demand in the retail

channel, i.e. Dr(p) > 0. The wholesale price is then calculated accordingly to leave the supplier

with a profit equal to that of the one-channel case. However, this wholesale price is then

greater than the retail price, rendering the retailer unwilling to participate in the supply chain.

Therefore, the supplier will not sell through the retailer in this case.

3. H < Ds(p)

E[Πs] = α[H(p− c)] + (1− α)[L(p− c)]

(a) H < Ds(p)

E[Πs] = α[(H − q)(p− c)] + (1− α)[(L− q)(p− c)] + q(w − c)

In 3a, is clear that the supplier can only benefit from the two-channel case if the wholesale

price is greater than the retail price. As it is assumed that a retailer will not agree to sell a

product for which its unit net profit is negative, it can be concluded that the supplier does not

sell through the retailer when H < Ds(p), equivalent to H < α(as−bc+L)−L
2α .
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Row Domain Channel Structure

1
L < α(2ar−as−bc)

1−α ,
α(as−bc+L)−L

2α < H
Two-channel

2 α(2ar−as−bc)
2α ≤ L < α(as−bc)

1−α One-channel

3 H ≤ α(as−bc+L)−L
2α One-channel

4 α(as−bc)
1+α ≤ L Two-channel

TABLE V: SUPPLY CHAIN STRUCTURE UNDER UNCERTAINTY WHEN CAPACITY IS
UNCERTAIN

Theorem 2.3.3. The equilibrium supply chain structure under capacity uncertainty is given

in Table Table V. Full results for equilibrium prices, demands, and profits are given in Tables

Table XIII, Table XIV, and Table XV in the appendix.

As long as this conditions in either the first or third row are met, there exists a wholesale

price at which the supplier can both allow the retailer a profit and improve her profit, as

compared to only operating the direct channel. While the particular game described finds the

wholesale price at which the supplier’s profits are the same in the one- and two-channel supply

chains, it is assumed that she will charge slightly higher than this minimum, and thus increase

her total profit from both wholesale and retail sales.

The first possible scenario that leads to a two-channel equilibrium is L < α(2ar−as−bc)
1−α and

α(as−bc+L)−L
2α < H. The lower boundary on H is dependent on the unit cost (c), the size of the

supplier’s market (as), the price sensitivity parameter (b), the likelihood of high capacity (α),

and the value of low capacity. It is somewhat surprising that the size of the retailer’s market

(ar) is not a factor, given that the product available in the direct channel (L − q or H − q) is
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dependent upon both the realized capacity and the amount ordered by the retailer. However,

because the wholesale price decision is set up to ensure that the supplier is expected to earn at

least as much by selling through both channels as by selling only through the direct channel, a

large retailer market can’t possibly harm the supplier.

Note that this boundary can be written as as−bc
2 + L(α−1)

2α for clearer comparison to the

corresponding boundary, K > as−bc
2 , when capacity is known. As the quantity α− 1 is always

negative, we see that the minimum H that motivates the supplier to sell through the indirect

channel under unknown capacity is lower than the minimum K under known capacity.

We can explain this difference by examining at the supplier’s retail pricing decision. Given

infinite capacity, the optimal retail price would be p∗inf = as+bc
2 . When capacity is known,

this is the optimal price as long as the resulting total demand is less than the capacity, K.

When capacity is unknown, however, this is only the optimal price as long as the resulting

total demand is less than the lowest possible realization of capacity, L. If a retail price of

p∗inf would result in a total demand greater than L, the supplier maximizes expected profit by

choosing a higher retail price, and thereby lowering demand, no matter how large the value of

H. Therefore, the total demand at the chosen retail price is lower when capacity is unknown,

and the value of H at which demand exceeds price is likewise lower than when capacity is

known.

It is also of interest to note the boundary on H is decreasing in L. This is somewhat

counterintuitive, as a larger value of L results in a retail price closer to pinf∗, and thus a larger

total demand, and the expectation that H would need to be large to fulfill demand in both
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channels. However, this can also be explained by the fact that price is increasing in L when a

retail price of p∗inf would result in a total demand greater than L. Therefore, an increase in L

causes a decrease in demand; thus, H does not need to be as large for all demand to be fulfilled

in two channels.

The second condition, L < α(2ar−as−bc)
1−α , is required for demand to be positive in the in-

direct channel. This is because the price, when L < Ds(p) < H, is increasing in L, causing

demand in both channels to decrease. Unsurprisingly, then, this boundary gets larger when the

retailer’s total market size gets larger, and gets smaller when the supplier’s market size, the

price sensitivity, or the per-unit cost increase. Further, the supplier’s inability to benefit by

selling through the indirect channel can only occur when there is a low chance that capacity

will be high, specifically, when α < as−ar
ar−bc . When α is smaller than this bound, there is a range

of L that will induce a one-channel equilibrium on its own, regardless of the value of H.

The second possible scenario that leads to a two channel equilibrium is L > α(as−bc)
1+α . This

condition indicates that L is larger than demand in the direct channel when the retail price

is equal to the price that maximizes the supplier’s profit, unconstrained by the relationship

between capacity and demand (p = p∗inf ), i.e. the supplier’s demand will not exceed capacity,

regardless of whether capacity is low or high. Given that c < p, the bound on L is therefore

less than half of the supplier’s total demand. It therefore seems realistic that many real-world

scenarios will fall into this case.

Note, however, in the situation described in row 4, the quantity available in the direct

channel, once the indirect demand has been fulfilled, may be less than the direct demand.
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Therefore, there is still a risk that direct channel sales will be lost if capacity is low, while no

such risk would exist if the supplier only sold direct to its market. Hence, the wholesale price

is decreasing in α as long as L− q < Ds(p), i.e. the greater the chance that sales will be missed

in the direct channel, the larger the wholesale price paid by the retailer.

Returning to our motivating example, we can assume that, given Apple’s inability to fulfill

orders placed at their own website, L − q < Ds(p), but it remains unknown whether L <

Ds(p) < H or Ds(p) < L. We can, however, speculate that the production of a brand new type

of screen at a third-party supplier has a significant amount of risk, and therefore, α would take

a low value. This results in a lower bound on L as given in row 4 that is only a small fraction

of Apple’s total direct channel demand, and it is therefore likely that the New iPad launch fell

into this scenario.

2.3.4 Comparison Between Known and Unknown Capacity

We next investigate the effect that capacity uncertainty has on profits by comparing each

domain in the known capacity case to corresponding domains in the unknown capacity case,

and find that uncertainty does not always have a detrimental effect on total profit. We assume,

for purposes of comparison, that the known capacity is equal to the expected capacity in the

unknown case, i.e. K = αH+(1−α)L. This allows us to isolate the effects of uncertainty from

the effects of differences in the capacity values themselves. We refer to the various domains

when capacity is uncertain by their row number in Table Table III, along with the letter C,

and the various domains when capacity is unknown by their row number in Table Table XIV,

along with the letter U.
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We first compare 1C to 1U. The supplier’s, retailer’s, and total profits are equal as long as

K ≥ L, indicating, unsurprisingly, that as long as the lowest possible realization of capacity

is at least as large as capacity in the known case, neither the highest realization of capacity

nor its probability have any effect on profits. It is also possible that L and H could meet

the conditions in the second row of the uncertain case, while K remains larger than ar − bc,

so we also compare 1C with 2U. Here, we find that the total profit loss due to uncertainty

is (1−α)(as−bc)(L−(ar−bc))
2b > 0. Unsurprisingly, the profit loss is decreasing in α and L; as the

probability of high capacity or the lowest value of capacity increase, so too do the profits come

closer to those under known capacity. Similarly, profit loss due to uncertainty is increasing

in both as and ar; as the market size in either channel increases, so too does the quantity of

missed sales in the direct channel if capacity is low, while all demand is fulfilled when capacity

is known and satisfies ar − bc < K.

Comparing the 2C to 2U, the supplier’s profit is the same in both, but the retailer’s ex-

pected profit, and therefore the expected total supply chain profits, is smaller when capacity is

uncertain, by a quantity of α(H−(ar−bc))(as−bc)
2b > 0. Here, the profit loss is actually decreasing

in α, a counterintuitive result illustrated in Figure 7a. This is because, as we’ve defined K

in this section to be the expectation of capacity, we find that an increase in α leads to an

increase in K, and therefore an increase in the quantity available in the direct channel when

as−bc
2 < K < ar − bc. This increases total supply chain profits at a faster rate than in the

case of unknown capacity, where an increase in α merely leads to an increasing probability of

a larger quantity available in the direct channel. Also, the profit loss is decreasing in ar, a
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Figure 7: Profits vs. α and ar, where as = 100, b = 1, c = 2, L = 60, H = 100, and
K = αH + (1− α)L.

notable difference from 1C/2U, but easily explained as the total profit increases with ar when

capacity is uncertain, but remains constant when capacity is known, as shown in 7b.

When as−bc
2 < L < H < ar − bc, the resulting expected capacity must obey the condition

as−bc
2 < K < ar − bc. Therefore, we compare 3U to 2C, and find the profits are exactly equal.

In 4U, H may be greater or less than as−bc
2 ; thus K may fall into 2C or 3C. The profit lost

to uncertainty between 2C and 4U is L(α−1)−Hα)(2L−(as−bc))
2b < 0, and between 3C and 4U is

α(H−L)(L(1−α)+Hα)
b < 0, indicating that, in both comparisons, the total profit is actually larger

under uncertainty than when capacity is known. In 4U/2C, the retailer’s profit is substantially

larger under uncertainty, while the supplier’s profit is just slightly smaller, leading to a net effect

of higher total profits under uncertainty, as shown in Figure 8. This is driven by an increase in

retail price when capacity is uncertain, as, in domain 4U, the supplier chooses the retail price



55

42 44 46 48
L

100

200

300

400

500

PS

2C

4U

(a) Supplier profits vs. L for
cases 2C and 4U.

42 44 46 48
L

2340

2360

2380

2400

PR

2C

4U

(b) Retailer profits vs. L for
cases 2C and 4U.

42 44 46 48
L

2500

2600

2700

2800

2900

PT

2C

4U

(c) Total profits vs. L for cases
2C and 4U.

Figure 8: Profits vs. L, where as = 100, ar = 80, b = 1, c = 2, α = 1
2 , H = 60, and

K = αH + (1− α)L.

so as to induce a demand exactly equal to L. The increased total profit under uncertainty

between 4U and 3C has a similar explanation: when capacity is certain, the supplier chooses

a retail price such that there is nothing sold through the indirect channel; under uncertainty,

a lower retail price is chosen, allowing both channels to be active and thereby increasing total

profit.

When capacity is uncertain and L < Ds(p) < H (5U and 6U), profits are lower under

uncertainty, and, in contrast to 1U, 2U, and 3U, the loss of total profit due to uncertainty is

shared between the supplier and the retailer. Further, the larger α, the larger the percentage

of the loss that is borne by the retailer.

The key findings from these comparisons are therefore summarized in the following two

theorems:

Theorem 2.3.4. The profit loss due to uncertainty affects each firm in the supply chain as

follows:
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• When as−bc
2 < L, all supply chain profits lost to uncertainty are lost to the retailer.

• When α(as−bc)
1+α < L < as−bc

2 , the supply chain profits are greater under uncertainty, and

the benefits of uncertainty accrue entirely to the retailer.

• When L < α(as−bc)
1+α , the total supply chain profit loss due to uncertainty is shared between

the supplier and the retailer.

Theorem 2.3.5. The profit loss due to uncertainty is related to the probability of high capacity

as follows:

• When ar − bc < L, the profit loss is decreasing in α.

• When as−bc
2 < L < ar − bc, the profit loss is increasing in α.

• When α(as−bc)
1+α < L < as−bc

2 , there is no profit loss (in fact, there is a profit gain).

• When L < α(as−bc
1+α , the profit loss is decreasing in α.

We have therefore demonstrated, by comparing the case with known capacity to the case

with unknown capacity, that there is a considerable amount of unexpected behavior: in some

cases, the total supply chain profits do not improve with the removal of uncertainty, and in

others, the supplier’s profits do not improve. Therefore, from the supplier’s point of view,

efforts to eliminate uncertainty may prove to have no benefit.



3. USE OF STOCHASTIC OPTIMIZATION TO LOWER

DISTRIBUTION COSTS AT USG

3.1 Introduction

3.1.1 Background and Motivation

USG is a leading building supplies manufacturer in North America. For the Durock R©

product line on which this project focuses, several dozen items are produced in three locations

in the United States, and may pass through any one of a network of warehouses before being

delivered to customers throughout the United States and Canada.

Currently, the production and distribution decisions are made through the use of a large

scale linear program (LP). The goal of the LP is to minimize the total delivered cost (produc-

tion, freight, and handling) for all items in the planning network, while meeting the managerial

constraints of capacity at each plant and demand at each customer location. The input pa-

rameters (production costs, freight costs, handling costs, and demand) are drawn from a single

point in time.

The problem is extremely large, with upwards of 1500 customer locations being used in

the current model. In addition, the number of items fluctuates between thirty and forty, and

combined with the large number of warehouse locations and the choice between rail and truck

modes of freight, over 90,000 decision variables are used in the current state.

Currently, the LP is solved using existing commercial software (INFOR Tactical Planner)

to create an input file that is then optimized using IBM’s CPLEX solver; the resulting output

57
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is then interpreted by the software and manually converted into sourcing rules that link the

optimal plan to the order fulfillment system, ensuring that customer orders are placed at the

correct plant or warehouse and that warehouse replenishment orders are placed at the correct

originating plant.

Therefore, the current planning process does not account for the variability in inputs. Most

notably, the customer demand at each location changes from month to month, and at an

item/location level, this alone can result in almost 6,000 uncertain input parameters. Further,

the cost for each item at each producing plant may vary, adding over 100 more uncertainties

to the problem. In the current state, one month of inputs are taken and put into the plan as

though they are deterministic parameters, a method that is unlikely to produce the optimal

stochastic solution. We therefore seek a method for optimizing the distribution network that

accounts for these uncertainties.

3.1.2 Problem Definition

We wish to minimize the total expected value of production and distribution of thirty-seven

commodities produced at three plants and distributed to customers throughout the United

States and Canada. Each commodity may be shipped directly from a plant to a customer, or

shipped through one of fifty-four intermediate warehouses. Outbound shipments to customers

are done via truck, but shipments from plants to warehouses may be done via either truck or

rail modes.

For a product shipped directly from a plant to a customer, the costs incurred are the

production cost, the cost of loading a truck, and the outbound freight. For a product passing
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through an intermediate warehouse, the costs incurred are the production cost, the rail or truck

loading cost, the rail or truck freight from the plant to the warehouse, the cost of unloading the

inbound rail or truck at the warehouse, the cost of loading the outbound truck to the customer,

and the outbound truck freight to the customer. While the freight and loading/unloading costs

incurred are typically larger for a product passing through an intermediate warehouse than one

shipping direct from a plant, the absence of freight lanes from every plant to every customer

sometimes necessitates the use of this option.

Our objective is therefore to minimize the total cost of production, loading/unloading, and

freight by determining which plant or warehouse should ship to each customer, and which plant

should ship to each warehouse utilized in meeting customer requirements. The problem is

subject to three sets of constraints:

1. Demand constraints: demand is met at each customer location

2. Capacity constraints: capacity is not exceeded at any production location

3. Warehouse balance constraints: the amount of each product leaving each warehouse is

less than or equal to the amount entering that warehouse

3.1.3 Approach

To optimize USG’s production and distribution network while accounting for demand and

cost uncertainty, we first characterize the uncertainty of the historical data, using one year of

monthly data for customer demand and three years of monthly data for production costs. This

data is fit to probability distributions as described in the section Statistical Fit of Historical
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Data. In the Problem Formulation section, we first solve the base case, to mimic USG’s cur-

rent planning process. We then propagate the demand and cost uncertainties through the base

model to determine their relative impacts. Based on our analysis of the historical uncertainty,

we determine that the chance constraint method is appropriate for our problem, and use the

cumulative probability distributions to convert the deterministic demand constraints into prob-

abilistic constraints. Finally, we sample the cost and demand uncertainties and propagate them

through the models obtained using the chance constraint method for several different constraint

fulfillment levels, applying a penalty for constraint violations to determine the total cost. We

present our findings in the Results section.

3.2 Review of Literature

The problem of optimizing distribution through a supply chain has been long studied. In

their seminal work, (65) optimize the location of distribution facilities between plants and

customers using Bender’s decomposition. Other authors who focus on deterministic production

and distribution planning are presented in reviews by (66), (67), and (68). More recently, a

number of authors have addressed uncertainty in planning a single tier of the supply chain, such

as production planning/scheduling or transportation decisions, as reviewed by (69) and (70).

More recently, authors have used stochastic optimization methods to optimize production

and distribution decisions in a supply chain under demand uncertainty, similar to the problem

under our study. (71) propose a model to handle demand uncertainty by considering the

production decisions to be “here-and-now” and the distribution decisions to be “wait-and-see.”

(72) use a multi-objective two-stage stochastic model to maximize both profit and demand
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fulfillment, while (73) apply a sample average approximation scheme to optimize the supply

chain configuration to minimize total production and distribution cost.

Other literature on supply chain uncertainty is motivated by a desire to formulate optimal

responses to natural disasters, i.e. the root cause of uncertainty is a single uncertain event that

can be modeled as one of many possible scenarios. In an early paper on the topic, (74) present

several heuristic methods for solving a multi-commodity, multi-modal network flow problem

under time constraints. (75) develop a two-stage stochastic programming model for distribution

of critical goods under uncertainty in both demand and transportation network capacity. (76)

assume a discrete number of disaster scenarios to solve a storage location and inventory problem

with a vehicle routing subproblem. (77) similarly model both the location and distribution

decisions, but assume that the supply chain has several echelons, each containing several entities

that must work in cooperation to respond to a disaster.

Another common approach is robust optimization for addressing uncertainty in supply chain

planning. (78) use robust optimization to solve a network design problem with uncertainty in

both demand and transportation costs, and demonstrate its advantage over worst-case scenario

planning. (79) propose a robust optimization approach for solving two-stage network flow

problems with uncertain demand, showing that their method is less computationally complex

than scenario-based stochastic optimization and allows for parametrization of the conservatism

of the solution. (80), investigate a three-tier supply chain with uncertainty in both demand

and price preferences among the buyers and sellers and use robustness measures to minimize

the degree to which the objective values vary with demand uncertainties.
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Our work is most closely related to (81), who model a multi-echelon supply chain network

under demand uncertainty, optimizing the number, location, and capacity of warehouses and

distribution centers, the transportation links among locations, and the production rates of

materials. While we optimize the production and flow of materials through warehouses in

already fixed locations, the choice among many warehouses in the USG problem can be thought

of as analogous to the decision of choosing warehouse locations from a discrete number of

options. Similarly, the choice of freight lanes for moving products in our case is similar to the

decision of which transportation links to establish.

3.3 Statistical Fit of Historical Data

The data available to us consists of one year’s worth of monthly data for the historical

demand and thirty-four month’s worth of monthly data for the historical production cost. In

this section, we develop probability distributions that fit the data in order to later simulate a

large number of scenarios by drawing samples from those distributions.

3.3.1 Historical Demand

Looking at historical demand, we aggregate data into 162 geographical areas (hereafter

referred to as “areas”) and 37 items. The areas represent states, provinces, or in some cases,

portions of states (for example, California is broken down into two areas based on the fact that

historical shipments to customers in northern California came from a different warehouse than

southern California). This gives us a total of 5994 state/item combinations. However, for the

time period studied (2012), only 689 of these combinations have sales in at least one month.
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We therefore heuristically eliminate the 5305 combinations that have no historical demand, and

work to model the demand of the 689 combinations that do.

For combinations with sales in 10 or more months, we model the demand as a truncated

normal distribution in three steps:

1. We calculate the mean and standard deviation (µ and σ) of the historical data.

2. To find the bounds within which 99.9% of samples will fall, we multiply the standard

deviation by 3.08 (taken from a standard normal z table), and subtract this from the

mean to determine the lower bound. We add the same value to the mean to determine

the upper bound.

3. If the lower bound is negative (L < 0), we replace the lower bound with zero, and the

upper bound with twice the mean (2µ). This ensures that the demand samples are both

non-negative and centered around the mean.

Using this method, 41 combinations are modeled with a lower bound greater than zero, and

148 combinations are modeled as a normal distribution truncated at a lower bound of zero.

For combinations with sales in 9 or fewer months, we model the demand as a binned uniform

distribution. For this type of distribution, we specify one or more “bins” from which samples

should be drawn, each defined by a lower and upper bound, and the percentage of samples that

should be drawn from each bin. For each combination, the smallest bin has bounds [0, ε], where

ε is a mathematically insignificant value (i.e. 1.0E − 9) meant to ensure that a portion of the

samples taken for this combination are effectively zero.
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For combinations with three or fewer distinct values for demand (201 combinations), we

create a separate bin for each value, and then assigned a percentage of samples equal to the

percentage of historical data points matching that value, as shown in Table Table VI. For

combinations with four or more distinct values (299 combinations), we use a zero bin as de-

scribed above and a non-zero bin with lower and upper bounds corresponding to the smallest

and largest non-zero demand represented in the twelve months of data studied.

TABLE VI: DEMAND COMBINATIONS WITH THREE OR FEWER DISTINCT VALUES

Bins (excluding zero bin) Number of combinations

1 400

2 49

3 51

3.3.2 Historical Production Cost

Historical production cost data is available for 36 items at three plants, and one additional

item at two plants, for a total of 110 item/plant combinations.

As summarized in Table Table VII, we model 108 of these combinations as normal distribu-

tions using thirty-four months of monthly historical data (taken in the 2010-2012 timeframe)
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TABLE VII: DISTRIBUTIONS USED TO MODEL COST COMBINATIONS

Distribution Number of data points used Combinations

Normal 34 91

Normal 33 8

Normal 32 15

Uniform 34 1

Binned Uniform 34 1

to calculate the means and standard deviations. Of these combinations, 76 pass a Pearson’s

Chi-squared goodness of fit test for a normal distribution at a p-value of 0.05 using all data

points available. Of the remaining 32 combinations, 8 pass the test when a single outlier is

dropped (and the mean and standard deviations recalculated accordingly), and 15 pass when

two outliers are dropped. In the latter case, the two months of extremely high production costs

are subsequent, and assumed to be an uncommon production issue that will not recur. The

final 9 combinations do not pass at the 5% level, but pass for smaller p-values, and do not more

closely resemble any other common distribution, thus the normal approximation is still used.

One combination is modeled as a uniform distribution, and one as a binned uniform dis-

tribution as described in the previous section. Both pass the goodness-of-fit test for these

distributions at the 5% level.

3.4 Problem Formulation

3.4.1 The Base Case

We first optimized the network using a single month’s data (in this case, October 2012, a

month in which the total demand was close to the twelve-month average), in order to mimic
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the current planning process and therefore create a baseline plan against which others can be

measured. Our objective is to minimize total cost, which consists of the production costs, the

freight costs from plants to warehouses, the freight costs from plants to geographical areas, the

freight costs from warehouses to geographical areas, and the handling costs. For the solution

to be feasible, we must meet three sets of constraints:

1. Demand constraints: the total amount shipped from all plants to a geographical area plus

the total amount shipped from all warehouses to a geographical area must be greater than

or equal to demand in that area.

2. Capacity constraints: the total amount produced at each plant must be less than or equal

to the capacity at that plant.

3. Warehouse balance constraints: the amount of product shipped from all plants to a ware-

house must be greater than or equal to the amount of product shipped from that warehouse

to all geographical areas.
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The mathematical formulation is given as follows:
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subject to :
∑
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xijl +
∑
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xwkjl ≤ dj ∀ j, l

∑
j

xijl +
∑
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(xtikl + xrikl) ≤ ci ∀ i, l

∑
i

(xtikl + xrikl) ≤
∑
j

xwkjl ∀ k, l

where:

xijl: amount of item l shipped from plant i to customer j via truck

xtikl: amount of item l shipped from plant i to warehouse k via truck

xrikl: amount of item l shipped from plant i to warehouse k via rail

xwkjl: amount of item l shipped from warehouse k to customer j via truck

pil: cost of producing item l at plant i

lti: cost of loading a truck at plant i

lri cost of loading a rail at plant i

nt: units per truck

nr: units per rail

fij : truck freight per unit from plant i to customer j

ftik: truck freight per unit from plant i to warehouse k
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frik: rail freight per unit from plant i to warehouse k

fwkj : truck freight per unit from warehouse k to customer j.

3.4.2 The Average Demand Case

We next optimize the network using average costs and demands, to quantify the cost of the

plan when the deterministic optimization techniques are applied to the average of one year’s

worth of data. In this case, our problem remains the same as in the base case, except that each

production cost is replaced with the twelve-month average production cost, and each demand

is replaced with the twelve-month average demand.

3.4.3 The Impact of Uncertainty

To determine how much cost and demand uncertainty affect total cost, we create 10,000

scenarios by sampling the demand and cost distributions developed in the previous section and

propagate them through the model optimized for average cost and demand, ignoring constraint

violations. The were generated using software provided by the Vishwamitra Research Insti-

tute to implement a Latin Hypercube sampling technique, and cost propagation was done in

MATLAB using standard functions. We first propagate both demand and production cost un-

certainty, then repeat the process for only demand, and then for only production cost. As shown

in Table Table VIII, the demand uncertainty accounts for most of the variance in total cost:

the standard deviation propagating only demand uncertainty through the cost model is more

than 97.5% of the standard deviation when both demand and production cost uncertainty are

used. We can therefore justify using an optimization method that focuses primarily on finding

a best solution with respect to demand uncertainty.
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TABLE VIII: TOTAL NETWORK COST UNDER THE PROPAGATION OF DEMAND AND
COST UNCERTAINTIES

Uncertainties Standard Deviation

Demand & Prod. Cost 3.8% of mean

Demand 3.7% of mean

Production Cost 0.8% of mean

3.4.4 The Chance Constraint Method

To account for uncertainty in the demands, we use the chance constraint method, as first

proposed by (82). In this method, we seek a solution to our optimization problem that will allow

each demand constraint to be met a certain percentage of the time, once implemented. For

example, if we choose a 75% chance of meeting demand for a single item in Montana, we would

expect that, in any given year, the planned amount of product distributed to Montana would

meet or exceed the demand in nine of twelve months, and fall short in the other three. In a

practical sense, customers in Montana would still receive the product required in the other three

months (as long as total network demand is less than total network capacity, an assumption we

will return to later), but from a non-optimal location, and thus at a higher cost.

We therefore divide our calculation of total cost into two phases:

1. We optimize the plan assuming a certain probability (or “chance”), p, that all demand

constraints will be met.
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2. We sample the demand distributions using a Latin hypercube sampling technique (83)

and propagate the uncertainty through the model developed in 1, applying a cost penalty

each time a constraint is violated.

The problem under our study lends itself well to this method, due to the zero demands

common in our historical data set. Of the 689 area/item combinations with sales in 2012, 201

have no sales in at least nine of twelve months, and 367 have no sales in at least six of twelve

months. Therefore, a chance constraint formulation allows us to consider what happens when

we focus the optimization on the most likely demands, and decrease the influence of less likely

occurrences, i.e. sales in area/item combinations that happen with low frequency.

Further, the chance constraint method enables the conversion of the stochastic program

into a standard linear program. Given that USG already has the software to solve a large-scale

LP, it is advantageous to use a method such as this one that allows for future planning of the

network using existing capabilities.

To optimize the plan under chance constraints (phase 1), we begin with the base case

formulation given in the previous section. For each of the demand constraints, we take the

cumulative probability distribution developed earlier and locate the pth percentile. We then

replace the right side of the demand constraint with this value, thus ensuring that demand

would be fulfilled with a probability of p. Because we have monthly data for demand, we begin

with p = 6
12 = .5, and then later repeat chance constraint optimization for other fractions of

12: .58, .67, .75, .83, .92, and 1. We formalize this mathematically as
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P (djl ≥
∑
i

xijl +
∑
k

xkjl) ≥ p ∀ j, l

∑
i

xijl +
∑
k

xkjl ≤ F−1
djl

(p) ∀ j, l,

where F−1
dj

is the inverse cumulative probability distribution of demand at location j.

For example, to model the 83rd percentile of demand, we used the 3rd largest demand value

out of the 12 available. An example is shown in Figure 9. By using the 83rd percentile of

demand, we assume that, were this optimized plan implemented in practice, each month, 83%

of the demand constraints would be met.
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Figure 9: PDF and CDF of a sample item/area combination.
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The chance constraint LP therefore takes the form

Minimize E
[∑

i

∑
j

∑
l

(
pil + fij + (

li
nt

)

)
xijl +

∑
i

∑
k

∑
l

(
pil + ftik + (

li
nt

)

)
xtikl

+
∑
i

∑
k

∑
l

(
pil + frikl + (

lri
nr

)

)
xrikl +

∑
j

∑
k

∑
l

(
fwkj + (

li
nt

)

)
xkjl

]
subject to :

∑
i

xijl +
∑
k

xkjl ≤ F−1
djl

(p) ∀ j, l,

∑
j

xijl +
∑
k

(xtikl + xrikl) ≤ ci ∀ i, l

∑
i

(xtikl + xrikl) ≤
∑
j

xwkjl ∀ k, l,

where p is the probability that each demand constraint is met.

In the second phase, we sampled 10,000 data points from the demand and cost distributions

using a Latin Hypercube sampling scheme, and propagated each sample through the optimized

model. Because demands in many of the area/item combinations were assumed to be zero in

phase one, if they took a non-zero value when sampled, we assumed the product shipped from

the location found in the optimization with average demand constraints, provided capacity was

available at that location, and applied the appropriate cost. If there was not capacity available

at that location, we used the average cost from the other two production locations, and added

the average freight/unit of the entire optimized plan to a penalty for shipping from a non-

primary location. The penalty value is based on calculations provided by USG for shipments

from non-optimized locations.
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3.5 Results

All problems described in the previous section were modeled as linear programs in GAMS,

and solved using the IBM CPLEX engine. Computational time was under five minutes for each.

To protect the confidentiality of USG’s cost data, we assume an average total cost in the base

case optimization of “$BC1,” and give all other values in terms of a percent increase or decrease

from this value. For the case with costs and demand constraints based on average demands,

we find an average total cost of $BC1 + 0.3%

The total production and distribution cost for the optimized network under chance con-

straints is given in Table Table IX. Because many of the item/area combinations had sales

in fewer than twelve months, the number of non-zero demand combinations are also provided.

Note that the 92nd and 100th percentiles could not be optimized in this manner, as for those

percentiles, the total network demand exceeds total network capacity. While the lower demand

percentiles have lower total costs, they represent a smaller total amount of product, and thus

we must proceed to the second phase, in which we apply penalties as described below, to get a

realistic cost of applying the chance constraints in the real world.

Table Table X gives the descriptive statistics for monthly cost using a chance constraint-

optimized model applied to 10,000 samples of uncertain parameters, and with constraint vi-

olation penalties applied. Here we let $BC2 represent the base case, and present the other

numbers relative to this value.

Optimizing at the 50th percentile and applying the penalty for violated constraints gives us

a 4.86% improvement over the average, the lowest cost of all the demand schemas used. This
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TABLE IX: NON-ZERO COMBINATIONS AND MONTHLY COST OF THE NETWORK
OPTIMIZED USING CHANCE CONSTRAINTS WITHOUT VIOLATION PENALTY

Percentile Non-Zero Combinations Monthly Optimized Cost

42nd 279 $BC - 29.19%

50th 322 $BC - 21.72%

58th 347 $BC - 12.25%

67th 424 $BC - 1.80%

75th 488 $BC + 14.48%

83rd 557 $BC + 37.44%

indicates that USG should use the median demands when optimizing the network, rather than

average demands or demands from a single month, as they do now.

However, as expected, the standard deviation is larger when optimizing at the 50th percentile

than at any of the higher percentiles. This is because, when propagate uncertainty through

the model optimized at the 50th percentile of demand, more constraints are violated and then

penalized by a higher cost. Because the constraints violated differ from sample to sample

across the 10,000 used, the results at the 50th percentile show more variance than those at

higher percentiles. It is therefore useful to note that there is a trade-off between the expected

lowest total cost and the risk of a high total cost in any individual month. For comparison, at

the 58th percentile, we get a 4.4% improvement over the base case, but the standard deviation

is almost 8% smaller. While optimization at the 50th percentile gives us the lowest total cost,

it forces us to accept a greater risk of high network costs in any given month.
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TABLE X: DESCRIPTIVE STATISTICS FOR MONTHLY COST WITH CONSTRAINT VI-
OLATION PENALTY.

Percentile Mean Std. Dev. Avg. # of violations

Base Case $BC2 6.05% of mean 262

Average $BC2-1.37% 5.70% of mean 256

42nd $BC2-4.58% 7.07% of mean 307

50th $BC2-4.86% 6.84% of mean 295

58th $BC2-4.35% 6.28% of mean 287

67th $BC2-1.37% 5.75% of mean 264

75th $BC2+9.08% 4.30% of mean 251

83rd $BC2+29.07% 3.15% of mean 230

Looking at the capacity constraints, only one is active in the initial optimization at the 50th

percentile, indicating that all capacity will be used at the lowest cost plant (LCP). In many

cases, it is more cost-effective to distribute product from the LCP through an intermediate plant

to a customer than to service that customer directly from a more expensive plant. Qualitatively,

this is the main difference between the output from the base case and from that of the 50th

percentile optimization: the latter ensures that the capacity at the LCP is better-utilized, in

fact, when uncertainty is propagated through the base case model, the full capacity at the LCP

is used 87% of the time, while through the 50th percentile model, this increases to 96%.

3.5.1 Value of the Stochastic Solution

The value of the stochastic solution is the difference between the solution obtained by

using average values for each of the uncertain inputs and the solution obtained by considering

uncertainty in our choice of modeling methods (84). In this case, it is therefore the difference
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between the base case solution and the solution obtained using the chance constraint method

at the 50th percentile. We therefore calculate the value of the stochastic solution to be 4.86%.

In a practical sense, this indicates that the stochastic solution is valuable to USG if it

can be executed and implemented for less than 4.86% of the total monthly cost. As previously

mentioned, the chance constraint method utilizes USG’s existing software capabilities, and thus

the execution and implementation costs are very small.

3.5.2 Expected Value of Perfect Information

The expected value of perfect information is the difference between the stochastic solution

and the total cost if all costs and demands were known prior to network optimization (85).

Optimizing the network individually for each of the months with available demand data gives us

an average cost approximately 3.61% less than the expected cost when optimizing the network

at the 50th percentile. This indicates that a perfect forecast of both production costs and

demands would save the company 3.61% over the stochastic solution.

We can interpret this to mean that USG could save up to 3.61% by reducing the uncertainty

in production costs and demands, either through an actual reduction in the month-to-month

variability of production costs and demands or through improved forecasting methods that

would allow for network optimization based on narrower sampling distributions. For exam-

ple, production cost variability may be reduced through stricter process control and demand

variability may be reduced through the use of safety stock inventories. However, the cost of

investing in these improvements must be weighed against the EVPI, which we see offers a less

than 3.61% improvement over the stochastic solution.



77

3.6 Implementation

USG implements its network plan through a set of “sourcing rules” in its order fulfillment

system (OFS). When a customer places an order, the OFS places the order at the plant or

warehouse location dictated by the rule. Therefore, we converted the output of the CPLEX

solver into a table of sourcing rules by creating a sourcing rule where the decision variable had

a positive value (i.e. if the decision variable representing the volume of Durock shipped from

plant i to the customer area j was positive, we created a sourcing rule in OFS so that Durock

orders placed by customers in area j would be shipped from plant i).

Going forward, a member of USG’s Network Optimization Planning team will generate the

sourcing rules semi-annually as follows:

1. Find the 50th percentile demands:

(a) Compile historical data on sales for each customer area and item, in monthly buckets,

in an Excel spreadsheet.

(b) Sort the monthly demands from high to low.

(c) Choose the 7th largest monthly demand, representing the 50th percentile of demand.

2. Find the average production costs:

(a) Compile historical data on production costs, by plant and item, in monthly buckets,

in an Excel spreadsheet.

(b) Calculate the average (mean) demands.
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3. Input the problem parameters to the INFOR Tactical Planner software via Excel spread-

sheet:

• Demands as found in step 1

• Average production costs as found in step 2

• Current freight rates

• Current plant production capacities

4. Run the INFOR Tactical Planner to create a CPLEX input file.

5. Upload the CPLEX input file to the CPLEX engine and initiate the LP solver, producing

a CPLEX output file.

6. Upload the CPLEX output file to the INFOR Tactical Planner to view output in a GUI.

7. Make changes to any sourcing rules in the OFS program by keying in a new source where

necessary.

Note that steps 4 through 7 remain unchanged from the original process, and the only difference

in step 3 is the use of 50th percentile demands and average costs, instead of data taken from

the previous month. Therefore, the only additional work is in steps 1 and 2, both of which

involve a larger data query and some brief spreadsheet manipulation not done in the original

process. The additional workload, for a member of the Network Optimization Planning team,

is estimated at less than one full day, annually, the cost of which is therefore negligible.

As discussed in the previous section, the theoretical results suggest a potential 4.9% average

savings in each month. To capture these savings, USG began implementing the new sourcing
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Figure 10: Flowchart of the semi-annual sourcing rule creation process.

rules in January, 2014. However, in actually implementing the sourcing rules, there were found

to be several limitations that prevent USG from obtaining the entire cost savings. The largest

is the practice of shipping Durock orders in less than full truckload quantities. Only about half

of Durock orders ship in full truckload quantities, with the remaining Durock shipping in mixed

truckloads with items from other product lines. Typically, the other product line is Sheetrock,

and its volume exceeds that of the Durock, so the Sheetrock sourcing rules supersede those of

the Durock product line.

Further, other customer service limitations prevent orders from shipping from the optimal

plant. For example, for customers who pick up their product at a specific warehouse, the
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warehouse is chosen by the customer. Taking all of these limiting factors into consideration,

the average monthly savings is approximately 1.6% of network costs, with some variation in

this number from month to month. While the actual savings are only about one-third of the

theoretical savings, they still represents a substantial annual cost reduction to USG.



4. CONCLUSION

In Chapter 2, we showed that a supplier with a direct retail channel achieves higher profit

in a two-channel supply chain with symmetric retailers than by acting as a monopoly retailer,

even if the equilibrium retail price is lower at the retailers than at the supplier. Further, when

the retailers have a stronger cost or price position, the supplier does best by leaving the retail

market entirely. We also showed that an increase in the number of retailers has a beneficial

effect on the supplier’s profit. We therefore conclude that the supplier benefits from additional

competition in the retail market provided it is the sole supplier to those competitors and new

retailers capture new demand; thus it should sell its product to as many retailers as possible,

even if doing so causes nothing to be sold through the direct channel or its own retail price to

be undercut.

We also showed that the presence of a direct channel may introduce inefficiencies not present

in the single-channel supply chain. Inefficiency is often higher in the two-channel supply chain

than in the one-channel supply chain, if the relative maximum product margins of the two

channels are such that the supply chain takes different structures under centralization and

decentralization. In this case, the efficiency of the supply chain can be increased by eliminating

the direct channel. Further, the inefficiency may decrease with differentiation when the number

of retailers is high, or increase in the number of retailers when differentiation is low, two

phenomena not seen in the single-channel supply chain, and thus creating counterintuitive

strategies for mitigating the loss of efficiency.

81
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We demonstrated that the symmetric two-channel supply chain may not be perfectly coordi-

nated using revenue sharing or linear PDS contracts if both channels are to remain in operation.

By contrast, we prove that a linear quantity discount contract coordinates this supply chain.

However, we also note that these contracts often achieve coordination at a loss to one or more

of the participating firms, and in the most extreme cases, cause the retailers to earn no profit

at all. Therefore, a fixed transfer payment may be required in concert with one of these three

types of contract to perfectly coordinate the supply chain at no loss to any firm. Under such

a two-part contract, the total profit is increasing in the number of retailers, but each firm’s

profit is dependent on its relative negotiating strength for determining the value of the transfer

payment. We further showed that our key results for the supplier’s profit, the total profit,

and supply chain efficiency hold in numerical experiments with asymmetric retailers. Further,

the linear quantity discount contract is capable of improving the supply chain efficiency, even

though the asymmetry of retailers prevents it from achieving perfect coordination.

These insights have practical implications for manufacturers that operate direct channels

through which they sell products that are either exclusive or clear market leaders; specifically,

we showed that their exclusivity may better serve them at the wholesale level, selling to many

retailers, rather than at the retail level, acting as a monopoly retailer. Additionally, forging

relationships with retailers through coordinating contracts further maximizes the leverage of

the manufacturer’s exclusivity advantage. As these manufacturers adapt to the increasing

prominence of superstores in the U.S. marketplace, they are wise to recognize the value of a

strategy inclusive of multiple retailers.
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In considering the two-channel supply chain with constrained capacity, we found that the

supplier can benefit by selling through the retailer, in addition to selling through a direct

channel, as long as known capacity is sufficiently high. When capacity is uncertain, however, a

one-channel supply chain may result from an upper bound on capacity that is low, relative to

the lower bound, the supplier’s total market size, and the probability of a high capacity or from

a lower bound on capacity at which the retail price will induce a zero quantity in the indirect

channel.

Further, we showed that, in comparing the profits with known capacity to those under

capacity uncertainty, the suppliers does not always benefit from the elimination of uncertainty,

and in fact, may be harmed by it. Similarly, the retailer usually benefits from the elimination

of uncertainty, but for a range of capacity values, actually sees a decrease in profits if capacity

is known. These insights are useful to suppliers both in determining their distribution channel

strategy and deciding how much to invest in reduction of uncertainty.

In Chapter 3, we sought to incorporate the uncertainty of production costs and demand

into the optimization of a distribution network to find the lowest possible cost of servicing

162 geographical areas from three production sites, either directly or through one of fifty-four

intermediate warehouses. To do so, we first fit the historical data for each of 800 uncertainties

to either a normal or binned uniform distribution. We then used the chance constraint method

to convert probabilistic demand constraints to deterministic demand constraints based on their

cumulative distribution functions. Uncertainty was propagated through the chance constrained

model and a penalty was applied for each constraint violation. Optimizing the network for the
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50th percentile of demand with constraint violation penalties provided the lowest total network

cost, at a 4.8% theoretical improvement over the base case, in which a single month’s demands

were used. As implemented, the savings are an average 1.6% improvement over the base case.

This represents a significant monthly cost savings to USG.

In summary, we have investigated several types of decisions that firms make in developing

their supply chain strategies, and shown how tools from the fields of game theory and stochastic

programming can be used to optimize those decisions. The methodologies and results presented

have the potential to improve managerial decisions in the area of supply chain management.
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4.1 Appendix A: Tables

TABLE XI: MONOTONICITY PROPERTIES OF EFFICIENCY

0 ≤ ρ ≤ ρmin ρmin < ρ ≤ ρCmin ρCmin < ρ < ρmax ρ ≥ ρmax
η (β+δ)(β0δ−γ2N)N

δ2(β0N−2γNρ+∆ρ2)
∆R

N(β0δ−γ2N)2
(β0∆−γ2N)R

2(β0δ−γ2N)2(2β0N−(4γN+δρ−γ(N−1)ρ)ρ)
1

In ρ Constant Unimodal Monotone Increasing Constant
In N Monotone Increasing Not Monotone Not Monotone Constant
In γ Monotone Increasing Not Monotone Not Monotone Constant

R = β0N(β0(β + δ)− γ2N)− 2γN(β0(β + δ)− γ2N)ρ+ (β0δ
2 − γ2N∆)ρ2

TABLE XII: CONTRACT PARAMETERS AND RESULTING PROFITS FOR ρmin < ρ <
ρCmin

Revenue Sharing Linear PDS Linear Quantity Discount

φ =
δ(ρCmin−ρ)

βρCmin
ζ = δ(ρ−ρmin)

βρCmin
s = δ(ρ−ρmin)

2ρ−ρCmin

wr = A
2βγN z = A

2βγN wo = α− c− γρCmin(N−1)ν

2∆(2ρ−ρCmin)

Π̂0
ν2(δρ−βρCmin)

4γ∆
ν2(δρ−βρCmin)

4γ∆
ν2N((2β+3γ(N−1))ρ−(β+2γ(N−1))ρCmin)

4∆2(2ρ−ρCmin)

Π̂i
γν2(N−1)(ρ−ρCmin)

4∆2(2ρ−ρCmin)

ν2δ(ρCmin−ρ)
4γ∆N

ν2δ(ρCmin−ρ)

4γ∆2N

A = (2β(∆(c′ + cA) + αγ(N − 1)) + γ2(α+ c′)(N − 1)2)ρCmin − δρ(δc′ + αγ(N − 1))
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One-channel
Equivalent

Domain Retail Price Wholesale Price

Ds(p) ≤ L ar − bc ≤ L as+bc
2b c

Ds(p) ≤ L as−bc
2 ≤ L < ar − bc < H as+bc

2b
bc(LA+bcα)+(−bc(−2+α)−LA)as−ar(bc(1+α)−Aas)

b(bc−2ar+as)

Ds(p) ≤ L as−bc
2 ≤ L < H < ar − bc as+bc

2b
bc(LA−Hα)+(2bc+Hα−LA)as−ar(bc+as)

b(bc−2ar+as)

Ds(p) ≤ L α(as−bc)
1+α ≤ L < as−bc

2
as−L
b

−L2+(H−L)(bc+L)α+(−Hα+L(2+α)−as)as+ar(−L+as)
b(L+ar−as)

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(ar+bc−L)+L

α ≤ H
L+α(as+bc−L)

2bα
LA2+bcα(1+α)−Aαas

2bα

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(as−bc+L)−L

2α ≤ H < α(ar+bc−L)+L
α

L+α(as+bc−L)
2bα

L2A2(1+α)+α2B−2LAα(as+bc+Hα)−2α(L+(as+bc−L)α)ar
2bα(L+(as+bc)α−Lα−2αar)

L < Ds(p) ≤ H
α(2ar−as−bc)

1+α ≤ L < α(as−bc)
1−α ,

α(as−bc+L)−L
2α ≤ H

L+α(as+bc−L)
2bα N/A

H < Ds(p) H < α(as−bc+L)−L
2α

as−H
b N/A

A = α− 1
B = (as + bc)2 − (as − bc)(as − bc− 2H)α

TABLE XIII: PRICES AT EQUILIBRIUM IN THE TWO CHANNEL SUPPLY CHAIN WITH CAPACITY UNCER-
TAINTY
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One-channel
Equivalent

Domain Supplier Demand Retailer Demand Total Demand

Ds(p) ≤ L ar − bc ≤ L as−bc
2 ar − as+bc

2 ar
Ds(p) ≤ L as−bc

2 ≤ L < ar − bc < H as−bc
2 ar − as+bc

2 ar
Ds(p) ≤ L as−bc

2 ≤ L < H < ar − bc as−bc
2 ar − as+bc

2 ar

Ds(p) ≤ L α(as−bc)
1+α ≤ L < as−bc

2 L ar − as + L ar − as + 2L

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(ar+bc−L)+L

α ≤ H
α(as−bc+L)−L

2α ar − α(2ar−as+bc−L)+L
2α ar − bc+ L(1− 1

α)

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(as−bc+L)−L

2α ≤ H < α(ar+bc−L)+L
α

α(as−bc+L)−L
2α ar − α(2ar−as+bc−L)+L

2α ar − bc+ L(1− 1
α)

L < Ds(p) ≤ H
α(2ar−as−bc)

1+α ≤ L < α(as−bc)
1−α ,

α(as−bc+L)−L
2α ≤ H

α(as−bc+L)−L
2α N/A α(as−bc+L)−L

2α

H < Ds(p) H < α(as−bc+L)−L
2α H N/A H

A = α− 1

TABLE XIV: DEMANDS AT EQUILIBRIUM IN THE TWO CHANNEL SUPPLY CHAIN WITH CAPACITY UN-
CERTAINTY
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One-channel
Equivalent

Domain
Expected

Supplier Profit
Expected

Retailer Profit
Expected

Total Profit

Ds(p) ≤ L ar − bc ≤ L (as−bc)2
4b

(as−bc)(2ar−as−bc)
4b

(ar−bc)(as−bc)
2b

Ds(p) ≤ L as−bc
2 ≤ L < ar − bc < H (as−bc)2

4b
(bc−as)(2LA+bc(2α−1)+as−2αar))

4b
(LA+α(bc−ar))(bc−as)

2b

Ds(p) ≤ L as−bc
2 ≤ L < H < ar − bc (as−bc)2

4b
(as−bc)(bc+2(L+Hα−Lα)−as)

4b
(LA−Hα)(bc−as)

2b

Ds(p) ≤ L α(as−bc)
1+α ≤ L < as−bc

2
L(as−bc−L)

b
(H−L)α(as−bc−L)

b
(LA−Hα)(bc+L−as)

b

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(ar+bc−L)+L

α ≤ H
(LA+bcα−αas)2

4bα
(LA+bcα−αas)(L+bcα−Lα−2αar+αas)

4bα
(bc−ar)(LA+bcα−αas)

2b

L < Ds(p) ≤ H
L < α(2ar−as−bc)

1−α ,
α(as−bc+L)−L

2α ≤ H < α(ar+bc−L)+L
α

(LA+bcα−αas)2

4bα
(LA+bcα−αas)(LA−(bc+2H)α+αas)

4bα
(LA−asα+bcα)(LA−Hα)

2bα

L < Ds(p) ≤ H
α(2ar−as−bc)

1−α ≤ L < α(as−bc)
1+α ,

α(as−bc+L)−L
2α ≤ H

(LA+bcα−αas)2

4bα N/A (LA+bcα−αas)2

4bα

H < Ds(p) H < α(as−bc+L)−L
2α

(as−bc−H)(α(H−L)+L)
b N/A (as−bc−H)(α(H−L)+L)

b
A = α− 1

TABLE XV: PROFITS AT EQUILIBRIUM IN THE TWO CHANNEL SUPPLY CHAIN WITH CAPACITY UNCER-
TAINTY
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4.2 Appendix B: Proofs of Propositions and Theorems

Proof of Proposition 2.2.1. We first consider the case that q0 > 0 and qi > 0. Since Πi is

concave in qi, maximizing Πi over qi to find the retailers’ reaction function, the first order

condition is

dΠi(qi)

dqi
= α− 2βqi − γ

N∑
j=1
j 6=i

qj − w − c = 0.

Using the symmetry of the retailers, this becomes

dΠi(qi)

dqi
= α− 2βqi − γ((N − 1)qi + q0)− w − c = 0,

giving a reaction function of

qi(w) =
α− c− w − γq0

2β + γ(N − 1)
.

The wholesale market clearing condition implies Q = Nqi(w), or w = α−c−γq0− 2β+γ(N−1)
N Q.

We next maximize Π0 over Q and q0. It is straightforward to obtain that the Hessian is negative

definite and hence, after simplifying the first order conditions, we obtain q∗0 = δν0−γNν
2(β0δ−γ2N)

,

q∗i = Q∗/N = β0ν−γν0
2(β0δ−γ2N)

and w∗ = α−c+cA
2 .

If the resulting qi is such that qi ≤ 0, (i.e. β0ν−γν0
2(β0δ−γ2N)

≤ 0), we then take qi = 0: the

supplier acts as a monopoly retailer. In this case, Π0 is concave in q0, and therefore, we use the

first-order condition to maximize the profit over q0, and find that q∗0 = ν0
2β0

.
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If the resulting q0 is such that q0 ≤ 0, (i.e. δν0−γNν
2(β0δ−γ2N)

≤ 0), we then take q0 = 0: the supplier

acts as a wholesale supplier, and Π0 is concave in Q and Πi is concave in qi. We proceed as

we did in the two-channel case to get a reaction function of qi = ν−w
2β+γ(N−1) . Maximizing Π0

over the wholesale quantity, we get, from the first order conditions, Q∗ = νN
2δ , w∗ = ν

2 + cA

and q∗i = ν
2δ . The prices and profits follow from the quantities and wholesale prices in all three

cases, and it is easily verified that the assumption of ν0 > 0 and ν > 0 is sufficient to ensure

the non-negativity of all prices and profits.

Proof of Proposition 2.2.2. The total profit is given in Equation (Equation 2.4). When q0 > 0

and qi > 0, the total profit function is concave in q0 and qi, and the first-order conditions are

∂ΠT (q)

∂q0
= α0 − 2β0q0 − 2γ

N∑
i=1

qi − c′0 = 0

∂ΠT (q)

∂qi
= α− 2βqi − 2γ

N∑
j=1
j 6=i

qj − c′ = 0.

Using the symmetry of retailers, the first-order conditions become

∂ΠT (q)

∂q0
= α0 − 2β0q0 − 2γNqi − c′0 = 0

∂ΠT (q)

∂qi
= α− 2βqi − 2γ((N − 1)qi + q0)− c′ = 0.

Solving for quantities yields q∗0 = ∆ν0−γNν
2(β0∆−γ2N)

and q∗i = β0ν−γν0
2(β0∆−γ2N)

.

As in the decentralized case, if the expression obtained above for q0 is negative, we let q0 = 0

(ρ ≤ ρCmin); the total profit function is then concave in qi and maximizing over qi, the first order
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condition and the symmetry of retailers give q∗i = ν
2∆ . If the expression obtained above for qi0

is negative, we let qi = 0 (ρ ≥ ρmax); the centralized case is then identical to the monopoly

case.

The optimal retail prices and maximum profits can be found from the optimal quantities

for all three ranges of ρ.

Proof of Proposition 2.2.3. In the range 0 ≤ ρ ≤ ρmin, the efficiency is given by

η =
∆(3β + γ(N − 1))

δ2
,

which is constant in ρ and increasing in N and γ ( ∂η∂γ = 2β2

δ3
> 0).

In the range ρmin < ρ ≤ ρCmin, the efficiency is

η =
∆
(
β0N(β0(3β + γ(N − 1))− γ2N) + 2γN(β0(γ − 3β) + γN(γ − β0))ρ+ κρ2

)
N(β0δ − γ2N)2

,

where κ = β0(2β−γ)2+(2β0(β−γ)+β(2β0−γ+γ2)γN+(β0−γ)γ2N2. Clearly, η is a quadratic

function of ρ, and because κ is positive, η is convex in ρ. At ρ = γN(β0(γ−3β)+γN(γ−β0))
κ , the

partial derivative of η with respect to ρ is zero. We next show that this value is between ρmin

and ρCmin:

γN(β0(γ − 3β) + γN(γ − β0))

κ
− ρmin =

(β0(2β − γ) + γN(β0 − γ))βγN

δκ
≥ 0,

ρCmin −
γN(β0(γ − 3β) + γN(γ − β0))

κ
=
β0β

2γN

∆κ
≥ 0.
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We therefore conclude that efficiency is unimodal over ρ in this range, as illustrated in Figure

3a.

In the range ρCmin < ρ ≤ ρmax, the efficiency and its partial derivative with respect to ρ are

η =
(β0∆− γ2N)(β0N(β0(3β + γ(N − 1))− γ2N) + 2γNρη1 + (β0δ

2 − γ2N∆)ρ2)

(β0(γ − 2β) + γN(γ − β0))2(β0N + ρ(−2γN + βρ+ γ(N − 1)ρ))

∂η

∂ρ
=

2β0β
2N(β0(β − γ) + γN(β0 − γ))ρ(β0 − γρ)

(β0δ − γ2N)2(β0N + ρ(γ(ρ(N − 1)− 2N) + βρ))2
≥ 0,

where η1 = (β0(γ − 3β) + γN(γ − β0)) so efficiency is monotonically increasing in ρ.

In the range ρ > ρmax, the centralized system acts exactly as the decentralized system, and

the efficiency is therefore 1.

Proof of Theorem 2.2.4. If we assume a linear quantity discount contract where w = po − s.qi,

where po = β0(δ(α−c+2cA)+γ(N−1)cA))−γ(βν0+γN(α−c+3cA))
2(β0∆−γ2N)

, and s = βi − ε, retailer i’s profit is

Πi = qi(α− γ(
N∑
j=0

qj)− po + εqi).

Finding the reaction function, plugging it into the supplier’s profit function, and solving for both

quantities gives us quantities for q0 and qi as functions of ε. As ε goes to zero, the quantities

become

q0 =
∆ν0 + γNν

2(β0∆− γ2N)

qi =
βν − γν0

2(β0∆− γ2N)
,
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which are equal to the centralized quantities.

Proof of Proposition 2.3.1. Given the supplier’s profit function as:

Πs =


K(p− c) K ≤ Ds(p)

Ds(p)(p− c) Ds(p) < K

.

it is clear that, when K ≤ Ds(p), the profit is linear in p, thus the optimal retail price is found

at the endpoint K = Ds(p). When K > Ds(p), the profit function is quadratic in p, thus p∗ is

found when the first order condition is met:

dΠs

dp
= as − 2bp+ bc = 0. (4.1)

This gives us an optimal retail price that can be expressed as

p∗ =


as−K
b K ≤ Ds(p)

as+bc
2b Ds(p) < K

.Demandsandprofitsnaturallyfollow. (4.2)
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Proof of Proposition 2.3.2. The supplier’s profit is:

Πs =



Ds(p− c) Ds(p) ≤ L

αDs(p)(p− c) + (1− α)L(p− c) L < Ds(p) ≤ H

αH(p− c) + (1− α)L(p− c) H < Ds(p)

.

We proceed as in the proof of Proposition 2.3.1 to find retail prices; demands and profits

naturally follow.

Proof of Theorem 2.3.3. In this case, we first find the wholesale price that will make the sup-

plier’s two-channel profits equal to the supplier’s one channel profits found in Proposition 2.3.2

by setting the two profit expressions equal to one another and solving analytically for w. We

then proceed as in the proof of Proposition 2.3.1 to find retail prices; demands and profits

naturally follow.

Proof of Theorem 2.3.4. When comparing 2C to 2U, under the assumption K = αH+(1−α)L,

Πs(2C)−Πs(2U) = 0 (4.3)

Πr(2C)−Πr(2U) =
α(H − ar + bc)(as − bc)

2b
(4.4)

ΠT (2C)−ΠT (2U) =
α(H − ar + bc)(as − bc)

2b
. (4.5)
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Thus, we see that all profit loss due to uncertainty accrues to the retailer. We proceed similarly

for all valid comparisons between the one and two channel case to obtain the full table of

results.

Proof of Theorem 2.3.5. When comparing 2C to 2U, under the assumption K = αH+(1−α)L,

ΠT (2C)−ΠT (2U) =
α(H − ar + bc)(as − bc)

2b
(4.6)

d[ΠT (2C)−ΠT (2U)]

dα
=

(as − bc)(H − ar + bc)

2b
> 0 (4.7)

(4.8)

Πs(2C)−Πs(2U) = 0 (4.9)

(4.10)

Πr(2C)−Πr(2U) =
α(H − ar + bc)(as − bc)

2b
(4.11)

d[Πr(2C)−Πr(2U)]

dα
=

(as − bc)(H − ar + bc)

2b
> 0 (4.12)

(4.13)

(4.14)

Therefore, the total supply chain profit loss is increasing in α, and the same is true of the

retailer’s profit loss. We proceed similarly for all valid comparisons between the one and two

channel case to obtain the full table of results.
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62. Nagarajan, M. and Sos̆ić, G.: Game-theoretic analysis of cooperation among supply chain
agents: Review and extensions. Eur. J. Oper. Res., 187:719 – 745, 2008.

63. Cottle, R. W., Pang, J.-S., and Stone, R. E.: The linear complementarity problem, vol-
ume 60. Siam, 2009.

64. Petruzzi, N. C. and Dada, M.: Pricing and the newsvendor problem: A review with
extensions. Oper. Res., 47(2):183 – 194, 1999.

65. Geoffrion, A. M. and Graves, G. W.: Multicommodity distribution system design by
benders decomposition. Management science, 20(5):822–844, 1974.

66. Thomas, D. J. and Griffin, P. M.: Coordinated supply chain management. European
journal of operational research, 94(1):1–15, 1996.

67. Vidal, C. J. and Goetschalckx, M.: Strategic production-distribution models: A crit-
ical review with emphasis on global supply chain models. European Journal of
Operational Research, 98(1):1–18, 1997.

68. Klose, A. and Drexl, A.: Facility location models for distribution system design. European
Journal of Operational Research, 162(1):4–29, 2005.

69. Sahinidis, N. V.: Optimization under uncertainty: state-of-the-art and opportunities.
Computers & Chemical Engineering, 28(6):971–983, 2004.

70. Mula, J., Poler, R., Garcia-Sabater, J., and Lario, F.: Models for production planning under
uncertainty: A review. International journal of production economics, 103(1):271–
285, 2006.

71. Gupta, A. and Maranas, C. D.: Managing demand uncertainty in supply chain planning.
Computers & Chemical Engineering, 27(8):1219–1227, 2003.

72. Guillén, G., Mele, F., Bagajewicz, M., Espuna, A., and Puigjaner, L.: Multiobjective
supply chain design under uncertainty. Chemical Engineering Science, 60(6):1535–
1553, 2005.



103

73. Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A.: A stochastic programming
approach for supply chain network design under uncertainty. European Journal of
Operational Research, 167(1):96–115, 2005.

74. Haghani, A. and Oh, S.-C.: Formulation and solution of a multi-commodity, multi-modal
network flow model for disaster relief operations. Transportation Research Part A:
Policy and Practice, 30(3):231–250, 1996.
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