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SUMMARY

In this thesis, I present results and analyses of first principles calculations based on Density

Functional Theory (DFT) to examine the structural, electronic and lattice properties of two

complex oxide systems: the misfit-layered thermoelectric Ca3Co4O9 (CCO) and a polar inter-

face containing the solid oxide electrolyte LaGaO3 (LGO). In Chapter 1, I present a general

introduction and the motivation for the study of these systems. This is followed by a brief

summary of the fundamental ideas in DFT and the different theoretical methods employed in

my calculations in Chapter 2. In Chapter 3, I present results and discussion related to the

electronic structure of CCO calculated by means of increasing order Fibonacci approximants.

In Chapter 4, I focus on the lattice and thermal properties of this material, in particular, the

calculation of the thermal conductivity by combining first principles results with the Boltzmann

transport equation. In Chapter 5, I propose and analyze the computational design of a polar

interface in order to increase the ionic conductivity of LGO. Finally, in Chapter 6 I present a

summary and the conclusions of my studies.

xiii



CHAPTER 1

INTRODUCTION

Complex oxides have been fascinating the scientific community for many years, and they

have been the subject of many experimental as well as theoretical investigations. The reasons

are various. On the one hand, they exhibit a very wide range of physical properties, such as

colossal magneto-resistance, two dimensional electron gas, (multi)-ferroism, superconductivity,

thermoelectricity, ionic conductivity, to mention a few, which make them exceptional candi-

dates for many technological applications. Together with the possiblity of developing better

and more efficient computer memories, thermoelectric devices, transistors, solid oxide fuel cells,

they open a very promising route in the quest for renewable, environmentally safe and afford-

able sources of energy. One of the factors that makes oxides appealing for renewable energy

applications is that in many cases they can operate at high temperatures where other materials

would start to decompose and usually release toxic residues to the environment. In addition,

various properties of complex oxide materials can be easily tuned by decreasing/increasing the

oxygen partial pressure. Many of these properties have posed scientific challenges that have not

yet found a clear theoretical explanation, such as the microscopic origin of high temperature

superconductivity in the cuprates [1]. Moreover, due to the many recent advances in oxide

hetero-structure synthesis, new and surprising phenomena are continuously discovered by ex-

perimentalists. A recurring theme along this line is the synthesis of complex oxide structures

in close proximity with each other or with conventional electronic materials giving rise to novel

1



2

and exciting phases that are not found in the initial constituents. Among the wide variety of

complex oxides, in this thesis I will concentrate on transition metal oxides, in which much of

the interesting physics stems from the fact that transition metal elements can be found in more

than one oxidation state when bonded to oxygen.

In this thesis, I will present results and analyses of my first principles studies on two complex

oxide materials that can have potential energy applications. In both studies, I will apply similar

first principles methods based on Density Functional Theory (DFT), the framework and the

extensions of which will be explained in some detail in Chapter 2. In spite of this similarity

with respect to the main method to be employed, the research to be presented in the remaining

Chapters will actually involve two approaches that are philosophically different: In the first

part (Chapters 3 and 4), I will focus on the misfit-layered thermoelectric Ca3Co4O9 (CCO), a

complex bulk material composed of two incommensurate subsystems along one of the lattice

dimensions resulting in a structure that is, in principle, non-periodic. In this study, mostly

due to the complexity of the structure, the theory lags significantly behind the large number

of experimental results. Accordingly, in Chapters 3 and 4, I will mainly investigate whether a

suitable structural model can be developed in order to understand the existing experimental

observations. The efforts of these sections can then be directed towards the establishment of a

working basis that will enable future theoretical studies on CCO to lead or work in close synergy

with experimental efforts. In the second part of the thesis (Chapter 5), I will take advantage

of the well-established successes of DFT in order to guide experiment in the synthesis of a new

ionically conducting material. By computational design of a heterostructure, I will explore the
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possibility of enhancing the ionic conductivity of the perovskite LaGaO3 (LGO). My results

and possible future research directions will be summarized in Chapter 6. In the remaining

part of this Chapter, I will focus on some of the basic ideas behind thermoelectricity and ionic

conductivity in solid-oxide fuel cells and how these desirable properties can be achieved in the

two particular systems, bulk CCO and LGO interfaces, to be examined in this thesis.

1.1 Thermoelectric Materials

There is no doubt that the future of humankind depends on the development of more

efficient, renewable and cleaner sources of energy. The discovery of new ways of generating

energy would not only benefit the environment, and consequently improve human life, but it

will also contribute to global peace and prosperity. This quest is one of the major challenges of

modern science, and a great deal of effort is needed in order to find good answers. Concurrent

with this search, another important problem that can be addressed is related to the observation

that a large percentage of the energy we use today is lost in the form of waste heat. For instance,

it is estimated that 70% of the energy consumed by a car is released as waste heat [2]. If we

could reuse even part of that energy, it would be a very important gain. From thermodynamics,

we know that the upper limit for the efficiency of a thermal machine is given by the efficiency

of the Carnot engine. Therefore, assuming that the operational temperature of a car is of the

order of 400 K (which can be verified by checking the temperature gauge of almost any car), the

maximum percentage that can be recycled can thus be estimated as (1−300/400)×100 = 25%,

where I have assumed the temperature of the environment to be around 300 K. Although this

is not a very large efficiency, in the big picture it would constitute an extraordinary progress.
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Much of the interest in thermoelectric materials is due to the fact that they offer a clean and

simple way to reuse part of the waste heat by converting it into electricity.

Figure 1. Schematic representation of power generation by thermoelectric materials. Two
types of thermoelectrics are needed for the circuit to work: p−type (hole conducting) and

n−type (electron conducting). Adapted from Texas Tech University website [3].

The capacity to convert heat into electricity is quantified by the figure of merit, defined as

ZT =
σS2

(κe + κl)
T, (1.1)

where T is the temperatue, σ the electrical conductivity, and κl and κe the lattice and electronic

contribution to the thermal conductivity, respectively, and S the Seebeck coefficient. The latter,

also known as thermopower, is defined as S = E
∇T . When two ends of a material are set at
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different temperatures, resulting in a temperature gradient ∇T , mobile charge carriers diffuse

towards the cold region building up an electric field (E). If the carriers are electrons then a

negative charge builds up at the cold end, and thus the directions of E and ∇T are opposite;

if the carriers are holes, the cold end has instead a positive charge, and as a result E and ∇T

point in the same direction. These two cases correspond to p− (S > 0) and n−type (S < 0)

thermoelectrics, respectively. In order to convert thermal energy into electricity it is necessary

to have circuit where the two types of thermoelectrics, p and n, are simultaneously operating

between the heat source and the cold side, as schematically shown in Figure 1. Typical values

for the figure of merit for different materials are displayed in Figure 2. Good thermolelectrics

are characterized by ZT values of 1 or above. For instance, Bi2Te3 exhibits a ZT ≈ 1 at 400

K, the Bi2Te3/Sb2Te3 superlattice a ZT ≈ 2.4 at 300K [4] and PbTe/PbSeTe quantum dots

a ZT ≈ 1, also at room temperature [5]. However, many of these popular thermoelectrics

present several disadvantages: they are often unstable at higher temperatures (most materials

are limited to the 200− 700 K range); they may decompose releasing toxic or harmful elements

to the environment; many of them are made of expensive/rare constituents, which makes them

unaffordable for a large number of applications.

Although a good thermoelectric material is characterized by a high Seebeck coefficient, a

high electrical conductivity and a low thermal conductivity, these quantities very often compete

with each other and are hard to optimize simultaneously. One of the reasons is the Wiedemann-
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Figure 2. TE performance (in terms of ZT ) of different TE materials summarized as a
function of temperature [6, 7]. Cross-hatched area shows typical reported values of manganite

and titanate systems [6]. The highest reported values for any metal oxide [8] to-date are
indicated by the dotted line.

Franz law that relates the electrical conductivity to the electronic contribution to the thermal

conductivity as

ke = LσT, (1.2)

where L = 2.44 × 10−8WΩK−2 is the Lorenz constant. Accordingly, reducing κe would also

reduce σ, which would negatively affect the figure of merit. On the other hand, a high electrical

conductivity is usually related to a periodic (ordered) crystal structure, which consequently

would reduce the scattering rate of phonons, thus increasing the lattice contribution to the

thermal conductivity, again affecting the figure of merit negatively. Last but not least, a high

electrical conductivity would also tend to neutralize the electric field that results from the

Seebeck effect. A way to overcome this conflict is to work with a material where one or more

substructures have the electrical properties of crystalline systems while the rest behaves like an
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amorphous solid, thus exhibiting a low thermal conductivity. This is known as the “Phonon-

Glass and Electron-Crystal” criterion for nano-structured thermoelectrics proposed by Slack [9].

A particular type of materials that adjust to these requirements are the denominated layered-

cobaltites, characterized by CoO2 layers of CdI2 type, made of edge-shared CoO6 octahedra,

and separated by one or more layers belonging to a distorted or disordered subsystem. A

schematic of the structures of different layered cobaltites is shown in Figure 3. They can be

classified by the number the number of intermediate layers between the CoO2 sheets. Apart

from the remarkable thermoelectric properties some of these type of materials exhibit (see

Figure 2), layered cobaltites are in general chemically inert, very stable at high temperatures

and their constituents are usually cheap and abundant on Earth, making them auspicious for

technological applications. Among these materials CCO (n = 3 in Figure 3) stands out as the

best candidate (together with NaxCoO2) for a p−type thermoelectric.

As mentioned above, Chapters 3 and 4 of this thesis will be devoted to studying the

properites of the misfit-layered CCO, which is composed of two subsystems with phonon-

glass/electron-crystal behavior. This complex structure offers no minor challenges for its analy-

sis, since these two subsystems are incommensurate with each other making the whole structure

non-periodic, while first principles computational methods for studying bulk materials typically

rely on the underlying periodicity of the structure. In Chapter 3, I will study the electronic

structure of CCO by means of increasing order rational approximants. I will show that good

agreement with various experimental observations about the electronic conductivity of this ma-

terial can be obtained when electron correlations are taken into account using an extension of
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Figure 3. Schematic representation of the crystal structure of the layered cobalt oxides: n
indicates the number of atomic planes in the blocking layer situated between the CoO2 layers.

CCO corresponds to the n = 3 layered cobaltite. Adapted from Shizuya et al. [10].

DFT, commonly referred to as the “DFT+U approximation”. In Chapter 4, I will focus on

the other aspect of the figure of merit, i.e. the thermal conductivity. I will use my conclusions

from Chapter 3 in order to construct a model that makes it possible to predict the lattice and

thermal properties of CCO and to validate my computations with existing experimental data.

1.2 Ionic conductors

Solid oxide fuel cells (SOFCs) are one of the most promising ways of generating clean and

renewable energy in a highly efficient way. By converting stored chemical energy directly into

usable electricity, they are capable of overcoming the efficiency limitations associated with

combustion such as the Carnot limit mentioned in the previous section [11]. Moreover, they
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mostly do not release pernicious gases to the atmosphere, or do it only in very small amounts;

for example, a SOFC using H2 as fuel would only dispose heat and water. Figure 4 shows the

schematics of a typical SOFC. The fuel (H2) is electro-oxidized at the anode and recombined

with the O2− ions coming from the cathode through the solid electrolyte to produce H2O. This

reaction,

H2(g) +O2− → H2O(g) + 2e− (1.3)

releases two electrons that via an external circuit are transfered to the cathode where molecular

oxygen (present in air) is reduced to oxide ions:

1

2
O2(g) + 2e− → O2−. (1.4)

This mechanism is similar to that of a battery, with the difference that a SOFC works as long

as a constant flow of fuel is supplied with practically no degradation. Much of the recent

excitement about SOFCs comes from the fact that on stand-alone applications they can reach

efficiencies of up to 65% in the conversion of chemical energy into work, which is twice the

corresponding values of internal combustion engines [11]. In more sophisticated cycles that

combine heat and power applications using SOFCs, the efficiency can reach values above 85%.

Another remarkable advantage of SOFCs is that due to their fuel flexibility they could easily

adapt to existing hydrocarbon fuel infrastructure, rising the efficiency and reducing the emission

of pollutants. However, practical applications of SOFCs are limited by a high operational

temperature (≈ 900◦C). Reducing their operational temperature would result in the use of less
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expensive metallic materials as interconnects, more stability and durability, since there will be

less degradation and faster responses to start-up and shut-down procedures, which is one of the

major limitations for their applicability in portable power and transportation markets [11, 12].

Another reason to reduce SOFC operational temperatures is the fact that the efficiency of a

SOFC working at lower temperatures would increase, since it is not subject to the limitations

imposed by the Carnot cycle. There is then a strong motivation to develop new SOFCs able to

perform at a lower, or at least, intermediate temperatures (600-800◦C).

Figure 4. Schematic of a SOFC. Adapted from Earnest Garrison website [13].

As mentioned above, the basic components of a SOFC are a cathode, an anode, and a

solid oxygen ion (O2−) conducting electrolyte. The choice of the anode and the cathode is

determined in terms of chemical and thermomechanical stabilibity with the electrolyte. Due

to its high stability, the most commonly used electrolyte is YSZ (yttria stabilized zirconia).
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However, since low-temperature SOFCs would require higher ionic conductivities in order to

work, new and better solid electrolytes should be found. One of the best candidates is the

perovskite LaGaO3 (LGO), which exhibits a very high oxide ion conductivity when doped with

either Sr or Mg [12]. Since the dopants have a lower valence than the substituted atoms, they

require charge compensation which can be achieved by the formation of positively charged

oxygen vacancies. These vacancies eventually create the empty levels that allow O2− to diffuse

across the electrolyte towards the anode in the SOFC. However, doping creates its own problems:

Although dopants increase the number of positively charged oxygen vacancies in LGO, they

can also lead to interactions (scattering, formation of clusters) that decrease their mobility,

thus reducing the ionic conductivity. In this thesis, I will study the possibility of creating

an alternative mechanism to increase the number of oxygen vacancies in LGO without the

limitations imposed by doping. This will be the subject of Chapter 5, where the idea of a

negatively charged (001) interface between LGO and MgAl2O4 (MAO) will be explored. Along

the (001) direction both LGO and MAO structures can be viewed as an alternation of positively

and negatively charged planes (Figure 5). It is well known that systems with a net polar charge

at the interface require some charge compensation mechanism [14]. Otherwise a net total dipole

moment would build up inside the material, leading to a potential that diverges proportionally

to the thickness, producing what is known as the polar catastrophe. The main idea in this

investigation is the possibility that positively charged oxygen vacancies could be a very favorable

compensation mechanism in this interface due to the observations that both LGO and MAO are

bulk insulators with large band gaps, and that all elements involved typically appear with single
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valences (e.g, 2+, 3+, 3+, and 3+, for Mg, Al, La, and Ga, respectively) making electronic

compensation an unlikely mechanism. Moreover, since vacancy formation energies are higher

in MAO (as will be shown in Chapter 5), they are very likely to be located in LGO, therefore,

enhancing the number of ionic carriers. Experimental work based on my computational design

of this interface is currently being investigated at Argonne National Laboratory.
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Figure 5. Schematic of a negatively charged (001) LGO//MAO interface where positively
charged oxygen vacancies compensate the polarity.



CHAPTER 2

MODELING METHODS

In this chapter I present a succint overview of the theoretical methods that will be used

in this thesis. I start by describing important features of Density Functional Theory (DFT),

the method I have employed for my first principles studies of complex oxides materials. The

Hohenberg-Kohn theorems, which establish the theoretical grounds for all the later develope-

ments in DFT, are enuntiated and briefly discussed, followed by a description of some of the

different methods that make it possible to apply DFT to the study of real materials. These

methods comprise the Kohn-Sham approach, exchange-correlation functionals, plane-waves and

pseudopotentials, and have been demonstrated to be remarkably successful in practical appli-

cations. Next, I briefly discuss the DFT+U approach, which attempts to correct some of the

problems with DFT, when applied to the study of strongly correlated systems. The final part

of this chapter explains the way in which data obtained from DFT calculations can be used to

evaluate different macroscopic properties of a material, such as the vibrational spectra, specific

heat and thermal conductivity.

2.0.1 Interacting Electron Gas Problem

Since the times of Demokritos inquisitive people have tried to undertstand the macroscopic

properties of a system in terms of its most elemental components. Such a quest involves the

simultaneous understanding of, first, the fundamental properties of the microscopic individual

13
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constituents, and, second, the way in which these constituents interact with each other in

order to give rise to the macroscopic properties we observe. With the development of quantum

mechanics during the first part of the twentieth century, it became possible to understand most

of the fundamental properties governing single particles such as protons, electrons, photons,

etc. According to quantum mechanics, the properties of a system of N particles are determined

by a 3N -variable-wavefunction obeying the Schrödinger equation. Taking into account that the

number of atoms of a macroscopic material is of the order of 1023 (≈ Avogadro’s number), and

that these atoms are in turn composed of nuclei and electrons, it is clear that it is no trivial

task to solve the Schrödinger equation for a realistic system. A calculation involving such a

number of variables will largely exceed current computational capacities. It is then necessary to

resort to approximations and to an alternative approach, different from the bare wavefunction

description, if we want to apply quantum mechanics to realistic systems such as solid state

materials.

The full many body Hamiltonian of a solid can be expressed as [15]

Ĥ =− h̄2

2me

∑
i

∇2
i +

∑
i,I

ZIe
2

|ri −RI|
+

1

2

∑
i 6=j

e2

|ri − rj|

− h̄2

2MI

∑
I

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ|
,

(2.1)

where lower case letters correspond to electrons and capitals to nuclei with charge ZI and mass

MI , and me and e are the electron mass and charge, respectively. This Hamiltonian can be

greatly simplified by noticing that since nuclei are much more massive than electrons, they
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move much slower, and therefore the many body problem can be solved for the electrons only,

without taking into account the motion of the nuclei. This is the so-called Born-Oppenheimer

approximation. After this simplification the Hamiltonian of the many body problem is reduced

to

Ĥ =− h̄2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
+ EII , (2.2)

where EII is the (constant) part of the Hamiltonian representing interaction between ions. In

this way the many body problem is reduced to a merely electronic Hamiltonian that is much

easier to solve. However, the many body problem thus posed is still very hard to solve for a

realistic system, and therefore, it is necessary to resort to a different approach. The genius of

the Density Functional Theory developed by Hohenberg, Kohn and Sham, consists in a reformu-

lation of the problem. First, the 3N -variables wavefunction is replaced by a density, depending

only on three Cartesian components. This is achieved by means of two theorems formulated by

Hohenberg-Kohn in 1964. The first theorem asserts that for any system of interacting particles

the external potential Vext is uniquely determined (up to an additive constant) by the ground

state particle density. The second theorem establishes that the ground state density can be

obtained by minimizing a universal functional of the density n(r), which can be expressed as

EHK[n] = T [n] + Eint[n] +

∫
d3rVextn(r). (2.3)
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However, the second of Hohenberg-Kohn theorems is a proof of existence and does not provide

a practical recipe to construct the functional. In 1967, Kohn and Sham came up with the ansatz

that triggered the development of what is now known as Density Functional Theory.

The method proposed by Kohn and Sham relies on the assumption that the ground state

density corresponding to the interacting system can be represented by the ground state density

of a system of non-interacting particles. In this auxiliary system the effect of interactions and

correlations is contained in an effective potential, and the single particle Hamiltonian has the

form (in atomic units, h̄ = m = e = 1)

Ĥ = −1

2
∇2 + VKS, (2.4)

The density can then be expressed in terms of the eigenfunctions or orbitals, φi, of this Hamil-

tonian

n(r) =
N∑
i=1

|φi( r)|2, (2.5)

where there is one particle per φi(r) orbital and N the total number of particles. The indepen-

dent particle kinetic energy is given by

Ts =

N∑
i=1

∫
d3rφ∗i (r)

(
−1

2
∇2

)
φi(r) (2.6)
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And the total energy functional from Equation 2.3 can now be recast as

EKS[n] = Ts[n] + EHartree[n] + Exc[n] +

∫
d3rVextn(r), (2.7)

where

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
, (2.8)

and Exc[n] is an energy functional that accounts for the effects of exchange and correlation.

The effective potential is generated by all the terms on the right hand side of Equation 2.7 other

than the independent-particle kinetic energy Ts[n], and it is obtained by taking the variation

of the sum of the energies with respect to the density

VKS(r) =
δEHartree[n]

δn(r)
+
δExc[n]

δn(r)
+ Vext(r)

=
1

2

∫
d3r′

n(r′)

|r− r′|
+
δExc[n]

δn(r)
+ Vext(r).

(2.9)

However, one of the major challenges of DFT is that the exact form of the Exc[n] is not known

and has to be approximated. The two most popular approximations for the exchange-correlation

energy will be discussed in the next section.

2.0.2 Exchange-Correlation Functionals

The great simplification introduced by the Kohn-Sham approach is that by explicitly sepa-

rating long-range interactions, such as the Hartree contribution, in the expression of the total



18

energy (Equation 2.7), the remaining exchange-correlation part, Exc[n], can be reasonably ap-

proximated as a local or quasilocal functional of the density

Exc[n] =

∫
drn(r)εxc ([n], r) . (2.10)

Since according to the Hohenberg-Kohn theorem this functional should be a universal functional

of the density, the value of εxc ([n], r) can then be calculated by considering the exchange-

correlation energy for the uniform electron gas. In this way

Exc[n] =

∫
drn(r)εunif

xc ([n], r) , (2.11)

and the whole problem reduces to finding accurate approximations to εunif
xc ([n], r), which can

be achieved by means of Quantum Monte Carlo Methods. The simplest approximation for the

exchange correlation energy assumes that this functional is local in character, and it is known

as the Local Spin Density Approximation (LSDA, but often simply referred as LDA). Within

LSDA Equation 2.11 can be expressed as (spin-polarized case)

ELSDAxc [n↑, n↓] =

∫
d3n(r)εunif

xc

(
n↑(r), n↓(r)

)
(2.12)

where n↑ and n↓ are the charge densities corresponding to spin up and spin down electrons,

respectively.
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Although the LDA method should, in principle, only be applicable to systems with slowly

varying densities, LDA has proven to be remarkably and unexpectedly successful in the study of

many systems that do not satisfy this condition, such as atoms and molecules. The applicability

of LDA to these systems is mainly justified by a good agreement with experiment, and it should

always be carefully tested. Two of the reasons why LDA performs well far beyond the limits

of slow varying densities are, first, the fact that it provides a reasonable approximation for the

exchange-correlation hole interaction and, second, a systematic cancellation of errors due to

overestimations and understimations of the exchange-correlation energy (as carefully explained

in [16], p. 183). However, this cancellation is only approximate, and the overall tendency of

LDA is to overestimate binding energies, which results in wrong ionization energies and smaller

lattice parameters.

The first step beyond the LDA is to consider exchange-correlation energies that not only

depend on the density but also on the magnitude of its gradient. This approach is known as the

Generalized Gradient Approximation (GGA). The non-local functional can then be expressed

as

EGGAxc [n↑, n↓] =

∫
d3n(r)εunif

xc

(
n↑, n↓,

∣∣∣∇n↑∣∣∣ , ∣∣∣∇n↓∣∣∣ , ...) (2.13)

By preserving most of the good features of LDA and by expanding it to take inhomogeneities

into account, GGA methods predict atomization energies of molecules in much better agreement

with experiment [17] than LDA. Numerous GGA functionals have been proposed, and the most

popular are the ones developed by Becke (B88), Perdew and Wang (PW91), and Perdew,

Burke, and Enzerhof (PBE). Although a significant improvent is obtained in the study of
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atoms and molecules by correcting the overbinding introduced by LDA, GGA does not perform

significantly better in the study of solids where the electronic density is rather uniform. In

many cases it overcorrects the exchange-correlation energy making it too low, which results

in an overestimation of the lattice parameters. In practical applications to real systems, in

particular in the study of solids, the reason for choosing one exchange-correlation functional or

the other is usually provided in the context of agreement with experimental data.

2.0.3 Plane Waves

As we saw in previous sections, by writing the Hamiltonian in terms of the electron density

and by mapping the initial system into a non-interacting one, the Kohn-Sham approach allows

us to simplify the many body problem considerably. In the case of solids, however, the problem

thus reduced is still formidable, given the very large number of electrons and ions involved. More

simplifications are needed in order to use the Kohn-Sham method in practical applications.

This can be achieved (i) by taking full advange of the periodicity and the symmetry of the

structure and (ii) by noticing that while the valence electrons interact with each other and with

the nucleus, core electrons are almost inert and not significantly involved in bonding. In this

section we will be only concerned with (i) and will leave (ii) for the next section.

First we notice that in the case of solids it is very convenient to write the Kohn-Sham

orbitals in terms of plane-waves since it allows us to take full advantange of the periodicity of

the structure of the crystal. According to Bloch’s Theorem, the eigenstates φ of a one-electron
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Hamiltonian Ĥ = − h̄2

2m∇
2 + U(r), where U(r) = U(r + R) for all R in a Bravais lattice, can

be expressed as [18]

φk,n(r) = eik·ruk,n(r), (2.14)

where the functions uk,n have the same periodicity as the potential, i.e., uk,n(r) = uk,n(r + R),

for all R in the Bravais lattice. Fourier transforming uk,n, we obtain

φk,n(r) = eik·r
∑
G

ck,n(G)eiG·r, (2.15)

where G are the reciprocal vectors, defined by eiG·R = 1. The electronic density can then also

be expressed in terms of these orbitals and their occupations,

n(r) =
∑
k,n

∑
G′

fk,nc
∗
k,n(G′)ck,n(G)ei(G−G

′)·r, (2.16)

where fk,n represents the occupation of state φk,n(r). The corresponding total kinetic energy

is

T =
1

2

∑
k,n

∑
G

fk,n
∣∣ck,n(G)

∣∣2∣∣k + G
∣∣2 (2.17)

where the sums over k run over the entire Brillouin zone. Since in practical implementations we

are not able to perform an infinite summation over G nor over a very large number of k-points,

it is necessary to set a cutoff vector for the wavefunction and to devise a clever way in order

to perform summation over the Brillouin zone. The first is achieved by setting a cutoff (Ecut)
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for the kinetic energy of the plane-waves such that summations for a given k only run over G

vectors that satisfy

|G + k|2

2
≤ Ecut. (2.18)

By taking into account the point group symmetry of the crystal, k summations over the whole

Brillouin zone can be reduced to a much smaller set of k-points (special k-points) over the

so-called Irreducible Brillouin zone. Different schemes for the generation of this set of k-points

have been proposed [19–21] but the most widely used is the one developed by Monkhorst and

Pack [21], which is the scheme adopted for the calculations in this thesis.

2.0.4 Pseudopotentials

Most of the chemical and bonding properties of atoms are determined by the outer shell

(or valence) electrons, while the inner shell (or core) electrons are rather inert, since they are

more strongly bound and closer to the nuclei. The whole atom can then be represented by

the valence electrons immersed in an effective potential (or pseudopotential) determined by

the core electrons and the nucleus. In this way the many-body Hamiltonian can be simplified

enormously by reducing the number of electrons. In a system of many atoms, such as a solid, the

total potential experienced by the valence electrons is obtained as the sum of all the individual

pseudopotentials of each atom, and this corresponds to the external potential Vext appearing

in the Kohn-Sham Equation (2.9).

In the previous section, I mentioned about the advantages of writing the Kohn-Sham equa-

tions in terms of plane-waves, expecting to keep the number of required wavefunctions as small

as possible (without suffering much in accuracy). However, one difficulty we encounter is
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that valence wavefunctions are highly oscillatory inside the core region (see [18]: p. 194) and

thus their expansion in terms of plane waves would require, in principle, a very large number of

terms. Luckily, this problem can be overcome using pseudopotentials and working with so-called

pseudo-wavefunctions for valence states, rather than the true “all-electron” wavefunctions. This

is explained briefly below:

Calling |ψc〉 and |ψv〉 the exact solutions of the Schrödinger equation for core and valence

electrons, we have

Ĥ |ψc,v〉 = Ec,v |ψc,v〉 (2.19)

Our goal is to map the valence wavefunctions |ψv〉 into a new set of smoother functions, that

can be then better approximated by a much smaller number of plane-waves. Following this

idea, we define a new set of slowly varying valence wave-functions |φv〉 such that

|φv〉 = |ψv〉+
∑
c

〈ψc |φv〉 |ψc〉 (2.20)

It is straightforward to show that the |φv〉’s thus defined satisfy a Schrödinger-like equation

with an effective Hamiltonian with the same eigenvalues as the original valences wave-functions

Ĥeff |φv〉 = Ev |φv〉 , (2.21)

where

Ĥeff = Ĥ +
∑
c

(Ev − Ec) |ψc〉 〈ψc| . (2.22)
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The effective potential v̂p felt by valence electrons can then be expressed as

v̂p = v̂ +
∑
c

(Ev − Ec) |ψc〉 〈ψc| , (2.23)

where v̂ corresponds to the bare potential due to the nucleus. Since the second term on the right

hand side of Eq. (2.22) corresponds to a repulsive potential (since Ev > Ec), the pseudopotential

v̂p felt by the valence electrons is therefore much weaker than the true potential due to the

nucleus.

2.0.5 Projector Augmented Wave (PAW) Method

One of the drawbacks of the pseudopotential method outlined in the previous section is

that the information on the all-electron wavefunction in the core region is lost. This can affect

the calculation of different properties such as hyperfine parameters and electric field gradients.

In addition, the pseudopotential method does not provide any explicit way to determine a

priori the reliablity of the approximation and is, in general, subject to transferability errors.

An alternative method is the projector augmented wave (PAW) method proposed by Blöchl in

1994. One of the main advantages of the PAW method is that it gives access to full wavefunctions

and densities, and it is exact if a sufficient number of basis wavefunctions are considered inside

the core. The main idea of PAW is to map a smooth auxiliary wavefunction |ψ̃n〉 into the true

all-electron Kohn-Sham single particle wave function |ψn〉 by means of an operator T̂ such that

|ψn〉 = T̂ |ψ̃n〉 . (2.24)
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The Kohn-Sham equation can then be written as

T̂ †ĤT̂ |ψ̃n〉 = εnT̂
†T̂ |ψ̃n〉 . (2.25)

Since the true wavefunctions are already smooth at a certain distance from the core, the form

of T̂ is such that it only modifies the wavefunction close to the nuclei:

T̂ = 1 +
∑
a

T̂ a, (2.26)

where T̂ a only acts around a certain radius around atom a (augmentation sphere). The next

step is to expand the true wavefunction in a basis of partial waves |φ̃ai 〉 inside the augmentation

spheres. For each of these partial waves a corresponding auxiliary smooth partial wave is also

defined, requiring that

|φai 〉 = (1 + T̂ a) |φ̃ai 〉 . (2.27)

Since T̂ a does nothing outside the augmentation sphere, it is clear that φai (r) = φ̃ai (r) in this

region. After some mathematical manipulation, it can be shown that the

T̂ = 1 +
∑
a

∑
i

(
|φai 〉 − |φ̃ai 〉

)
〈p̃ai | , (2.28)
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where 〈p̃ai | is a projector operator such that 〈p̃ai |φ̃aj 〉 = δi,j inside the augmentation spheres. By

recasting Equation 2.24, the all electron Kohn-Sham wavefunction can be expressed as

ψn(r) = ψ̃n(r) +
∑
a

∑
i

(
φai (r)− φ̃ai (r)

)
〈p̃ai |ψ̃n〉 , (2.29)

where the smooth and numerically more convenient wavefunction ψ̃n(r) is obtained by solving

Equation 2.25. In this way, the highly oscillatory Kohn-Sham wavefunctions are decomposed

into two contributions: auxiliary wavefunctions which are smooth everywhere and a contribution

which contains rapid oscillations but that only acts in the core region for each atom. As a result,

within the PAW method each part can be treated separetely. Smooth delocalized wavefunctions

can be efficiently represented by using coarse Fourier or real space grids (e.g. plane waves),

while localized contributions can be expressed in terms of centered radial grids (e.g. Gaussians,

polynomials, Bessel functions). Within the PAW method, information about the core region is

not lost and the Kohn-Sham all electron wavefunctions can be retrieved at any time.

2.0.6 Corrections to DFT: DFT + U

Although the DFT methods outlined above are able to accurately describe the ground states

of many materials, they fail to provide a good account of systems with strong onsite electron

interactions due to highly localized orbitals. The main reason for this is that in the Kohn-Sham

approach the many-body problem is mapped into a non-interacting system with a one-electron

exchange-correlation assumed to be either local (LDA) or semi-local (GGA) but with no orbital

dependence in the functionals. The effect of correlations is thus treated in a mean field fashion,
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favoring delocalized solutions of the many body problem. The failures of this approach are more

notorious in systems that contain transition metal or rare-earth elements with partially filled

d (or f) shells. When applying the Kohn-Sham method with an orbital-independent potential

to such a system, one typically obtains a partially filled d band with metallic structure. For

example, the electronic structures of transition-metal oxides NiO and CoO have long been

known to be poorly described by traditional DFT methods [22]. The calculated LDA bandgap

for NiO is 0.2 eV against an experimental value near 4 eV, and CoO is predicted to be metallic,

while experimentally it exhibits a 2.4 eV bandgap [22]. The application of GGA, by partly

taking into account non-local effects, improves these values slightly: 0.5 and 0.8 eV for the NiO

and CoO-bandgaps, respectively, but these are still considerably smaller than the corresponding

experimental values.

The LDA+U method was first introduced by Anisimov et al. in order to include electron-

electron interactions due to localized orbitals into the exchange-correlation functional [23]. Al-

though initially applied to LDA functionals, the acronym “LDA+U” also stands for methods

that involve LDA or GGA-type calculations coupled with additional orbital-dependent inter-

actions [15]. The form of the added term in the LDA/GGA functionals is derived from a

Hubbard-type Hamiltoninan model, where the additional interactions are usually considered

only for highly localized atomic-like orbitals on the same site. Within this approach the total
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energy is treated as a functional of the electron density as well as a function of the occupation

numbers of d or f orbitals given by ni. The simplest form of this functional is [22]

ELDA+U = ELDA − UN(N − 1)/2 + U
∑
i,j

ninj (2.30)

where the term in the middle is the mean field interaction of d(f)-electrons already included in

ELDA, and hence, has to be substracted in order to avoid double counting. The corresponding

orbital energies are the derivatives of the total energy with respect to the occupations ni: [22]

εi = ∂E/∂ni = εLDA − U
(

1

2
− ni

)
(2.31)

Note that the gap between fully occupied (ni = 1) and empty (ni = 0) orbitals is given by the

Coulomb parameter U , thus reproducing the qualitative behavior of a Mott-Hubbard insulator.

In a similiar fashion we can extract the orbital dependent potential as the variations with

respect to the orbital occupation

Vi = δE/δni = VLDA + U

(
1

2
− ni

)
(2.32)

This indicates that for occupations that are initially larger than 1/2, the U contribution to

the potential is attractive, inducing electrons to localize in this particular orbital, while on the

other hand if the initial occupation is smaller than 1/2 electrons the opposite occurs and empty

states are favored.
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2.0.7 Phonons and Finite Difference Method

At finite temperature (T ), atoms forming a crystalline lattice vibrate around their equi-

librium positions with an amplitude depending on the value of T . In equilibrium, the ions of

a lattice are located at the sites ~Rni = ~Rn + ~τi, where ~Rn are the lattice vectors and ~τi the

basis positions in the unit cell. If these ions deviate from their equilibrium positions by a small

amount ~sni = δ ~Rni, then their total kinetic energy can be expressed as

Kions =
∑
n,i

1

2
Mi

[
d ~sni
dt

]2

=
1

2

∑
n,i,α

Mi

[
dsniα
dt

]2

, (2.33)

where the subscript α corresponds to the Cartesian directions. On the other hand, the potential

energy of the ions can be written as a Taylor expansion

V =
1

2

∑
n,i,α,m,j,β

∂2E

∂Rniα∂Rmjβ
sniαsmjβ. (2.34)

where E is the total energy of the ions. In the expression, third or higher order terms have

been neglected (Harmonic Approximation), and the first order term vanishes, since the system

is assumed to be in equilibrium when the ions are at postions ~Rni.

The so-called force constant matrix Fniα;mjβ is defined as

Fniα;mjβ =
∂2E

∂RniαRmjβ
. (2.35)
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The dimension of this matrix is dim(F ) = d × ν × N , where d is the dimension of the space,

ν the number of atoms in the basis, and N the number of primitive cells in the system. The

equation of motion for the ions in the crystal can then be written as

Mi
d2sniα
dt2

= − ∂E

∂Rniα
= −

∑
mjβ

Fniα;mjβsmjβ (2.36)

We then look for solutions of the form sniα(t) = 1√
Mi
ũniαe

−iωt, obtaining the eigenvalue equation

ω2ũniα =
∑
mjβ

D̃niα;mjβũmjβ (2.37)

where D̃niα;mjβ is the dynamical matrix, defined as

D̃niα;mjβ =
1√
MiMj

Fniα;mjβ. (2.38)

Because of translational symmetry D̃ = D̃( ~Rn − ~Rm), we should look for solutions of the form

ũniα = uiαe
i~q·Rn , which is the same as Fourier transforming Equation 2.38. In this way by

defining

Diα;jβ =
∑
~R

D̃niα;mjβe
−i~q·~R, (2.39)

then the eigenvalue equation can be cast as

∑
j,β

Diα;jβujβ = ω2uiα, (2.40)
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or, i.e.,

↔
D (~q) · ~u = ω2~u. (2.41)

The solutions to the eigenvalue equation are labeled by ~q’s belonging to the first Brillouin zone

and the dimension of ~u is d× ν. By solving Equation 2.41, we obtain the d× ν normal phonon

modes and their corresponding frequencies (for N values of q in the first Brillouin zone).

Within the Finite Difference Method, force constants in Equation 2.35 are approximated as

Fniα;mjβ = − ∆E

sniαsmjβ
= − fniα

smjβ
. (2.42)

where fniα is the force acting on ion ni in the direction α when ion mj is displaced by a small

amount in direction β. Making use of this approximation, the Finite Difference Method within

DFT works in the following way: Obtain the equilibrium configuration for the structure with

the maximum possible accuracy (i.e. forces of the order of ≈ 10−4 eV/Å); displace atom j

along direction β keeping all the other atoms fixed; calculate Fniα;mjβ for all the i ions in

the unit cell by using Equation 2.42. This last step is usually done in a cell large enough

(supercell) to minimize spurious interactions of an atom with its periodic images. Once all

the different components of Fniα;mjβ have been calculated, the dynamical matrix is determined

by Equation 2.38. Thus, by diagonalizing this matrix the normal modes of the system can be

obtained.
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Equation 2.38 can be rewritten in a more explicit form

D(q)eq,s = ω2
q,seq,s, (2.43)

where each phonon mode is represented by q, belonging to the first Brillouin zone, and s, the

band index, which runs over d× ν values. The eigenvector eq,s is (d× ν)-dimensional, and its

components corresponds to the d Cartesian components of each of the ν ions in the unit cell.

2.0.8 Thermal Properties

2.0.8.1 Constant Volume Heat Capacity

Once we have determined the phonon dispersion for the system, the heat capacity at constant

volume can be obtained from quantum statistical mechanics for bosons:

Cv =
∂u

∂T

∣∣∣∣
V

=
∑
q,s

kB

[
h̄ω(q, s)

kBT

]2 exp(h̄ω(q, s)/kBT )

[exp(h̄ω(q, s)/kBT )− 1]2
, (2.44)

where q is a reciprocal lattice vector and ω(q, s) is the frequency of the corresponding nor-

mal mode. As I mentioned in the previous section these frequencies are obtained from DFT

calculations combined with the Finite Differences Method.

2.0.8.2 Boltzmann Transport Equation and Thermal Conductivity

According to Fourier’s Law, the heat flux (~q) across a material and the temperature gradient

are related by:

~q = −κ∇T, (2.45)
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where the proportionality constant κ (positive) is defined as the thermal conductivity. Since

heat flux can be achieved from both lattice vibrations and transfer of electrons, the thermal

conductivity can be expressed as

κ = κe + κph, (2.46)

where κe and κph are the contributions due to electrons and phonons, respectively. The electrical

thermal conductivity is related to the eletronic conductivity through the Wiedemann-Franz

Law:

ke = LσT, (2.47)

where L = 2.44× 10−8 W Ω K−2 is the Lorenz constant. Since for the systems considered here,

the electronic contribution to the thermal conductivity is typically smaller than the lattice

contribution, I will concentrate on the latter.

First we notice that the total energy per unit time carried by phonons of energy h̄ω(q, s)

moving with veloctity v(q, s) is given by fqsh̄ω(q, s)~v(q, s), where fqs is non-equilibrium dis-

tribution function. The total heat flux in the material is then obtained by summing over all

the phonon modes

~q = h̄
∑
q,s

fq,sωq,s~vq,s (2.48)

For small deviations from equilibrium, the relaxation-time approximation assumes that the rate

at which the distribution function fq,s returns to equilibrium is proportional to the deviation:

−~vq,s ·
∂f0

q,s

∂T
∇T =

fq,s − f0
q,s

τq,s
, (2.49)
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where f0
q,s corresponds to the equilibrium distribution function (Bose for phonons) and τq,s the

relaxation time. Since in general the thermal conductivity of a real material is not isotropic,

we define a thermal conductivity tensor such that

qα = −
∑
β

καβ (∇T )β . (2.50)

By combinig Eq. (2.22), (2.25) and (2.26), the thermal conductivity tensor can be obtained as

καβ = h̄
∑
q,s

vαq,sv
β
q,sτq,sω(q, s)

∂f0
q,s

∂T
, (2.51)

where the superscripts α, β correspond to the Cartesian components. In the same way as pre-

viously in the case of the constant volume heat capacity, ω(q, s) can be obtained by using DFT

combined with the Finite Differences Method. The phonon group velocities can be calculated

from the phonon dispersion by taking into account that

vαq,s =
∂ωq,s

∂qα
. (2.52)

In the analysis of different properties of a solid, many times one is also interested in deter-

mining the relative contributions coming from individual atoms or group of atoms of different

substructures. For instance, in the study of the electronic structure, the partial Densitiy of
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States (PDOS) gives the projection of the total DOS over the different atoms. Following the

same spirit, the Projected Thermal Conductivity for atom µ is defined as

καβ,µ = h̄
∑
q,s

|eµq,s|2vαq,svβq,sτq,sω(q, s)
∂f0

q,s

∂T
, (2.53)

where eµq,s is the subvector determined by the components of the normal mode eigenvector

corresponding to atom µ. Since the eigenvectors are orthonormal, it is easy to verify that the

total thermal conductivity can be obtained by the sum over all the N individual atoms in the

unit cell

καβ =
N∑
µ

καβ,µ. (2.54)



CHAPTER 3

FIRST PRINCIPLES STUDIES OF THE MISFIT-LAYERED CALCIUM

COBALTITE

3.1 Introduction

Transition metal oxides have been the focus of many experimental, theoretical, and com-

putational studies, as they exhibit a wide range of functional properties including colossal

magneto-resistance, two-dimensional electron gas, (multi)-ferroism, and superconductivity, to

name a few. It was suggested a while ago that bringing two transition metal oxides with dif-

ferent properties in close proximity with each other might result in the emergence of novel and

exciting phases not seen in either bulk structure [24, 25]. For example, one such novel phase

stabilized by combining an insulating oxide with a distorted rocksalt structure and a Mott-

insulator oxide can exhibit high efficiency thermoelectric transport [26]. Such a combination

would not only satisfy the subsystem approach, where one subsystem fulfills the role of the

“electron crystal” while the other acts as a “phonon glass”, but the interfacial effects can also

be expected to lead to a significant enhancement of the electron transport, not seen in pure bulk

phases. Incommensurately-layered cobalt oxides [27–31, 10], in particular Ca3Co4O9, (CCO),

also reported as (Ca2CoO3)(CoO2)1.62, represent one such system, where the close proximity

between the layers of rocksalt (RS) Ca2CoO3 and hexagonal CoO2 results in a high in-plane

Seebeck coefficient, S, and more importantly, a high thermoelectric figure of merit, ZT , at

36
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elevated temperatures. Furthermore, CCO stands out as the only layered cobalt oxide system

containing one cation with nominally different oxidation states in both subsystems, namely

Co2+ in the RS layers and Co4+ in the hexagonal CoO2 layers. This makes CCO an ideal

system for studying effects such as charge transfer or orbital ordering both experimentally and

theoretically.

Since the pioneering experimental study of Masset et al. [32] who reported the structural

model of CCO along with its temperature-dependent magnetic and transport properties, there

have been several other experimental studies about the structural, electronic, magnetic, and

thermoelectric properties of CCO in its pristine [32–48] as well as doped forms with various

types of cation substitutions [49–56]. The structure of CCO was reported to be monoclinic

with two misfit-layered subsystems, a distorted RS-type Ca2CoO3 layer sandwiched between

two CdI2-type CoO2 layers along the c−direction. Both subsystems share the same a and c

lattice parameters, but they are incommensurate along the b direction. Among the experimental

studies to date, of particular importance is the study by Takeuchi et al. [36] who investigated the

electronic structure of CCO using high resolution photoemission spectroscopy and demonstrated

that the large thermoelectric power of CCO could be well accounted for with the Boltzmann-

type metallic electrical conduction. The authors also argued that the metallic conduction in

CCO was due to the hexagonal CoO2 layer, not the RS subsystem. This suggestion was also

supported by resistivity and Hall measurements of Eng et al. [41] who argued that the transport

properties of CCO were essentially governed by itinerant holes in the CoO2 layers.
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In spite of significant experimental effort to characterize and improve its thermoelectric

properties, there have been few theoretical or computational studies on CCO [46, 57, 58]. To

some extent, this is due to the computational challenge posed by modeling an incommen-

surate crystal. Asahi et al. carried out the first ab initio calculations on CCO within the

framework of density functional theory (DFT): Using an approximate unit cell of composi-

tion (Ca2CoO3)4(CoO2)6, they performed a comprehensive study of the structural, electronic,

magnetic, and thermoelectric properties of CCO [57]. While the computations of Asahi et al.

provided a great deal of information at the microscopic level to aid in the interpretation of

experiments and accounted for some of the experimental observations, their finding that only

the RS subsystem contributes to the density of states at the Fermi level was later shown to be in

contradiction with the interpretations of Takeuchi et al. from their photoemission experiments.

In the present study, I report results from first principles calculations performed within

a DFT framework on CCO using structural models with systematically increasing unit cell

sizes. As mentioned before, the composition of CCO can be described relatively well as

(Ca2CoO3)(CoO2)1.62 which means that the composition ratio of the two subsystems is very

close to the golden mean τ = (1+
√

5)/2 ≈ 1.618, which commonly appears in the study of qua-

sicrystals [59]. Taking into account that τ is the limit of the sequence of the ratios of consecutive

Fibonacci numbers F (n+1)/F (n) = 2, 3/2, 5/3, 8/5, 13/8, ...→ τ , I model the incommensurate

structure of CCO by using supercells with composition (Ca2CoO3)2F (n)(CoO2)2F (n+1). Us-

ing the same terminology as in the study of quasicrystals [59], I call such supercells “rational

approximants” to CCO. In this study, I consider four consecutive approximants of increasing
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supercell sizes, namely the 3/2, 5/3, 8/5, and 13/8 approximants, the smallest of which is the

one considered by Asahi et al. For each approximant, I determine the structural and electronic

properties using local and gradient-corrected exchange-correlation functionals, as well as using

the DFT+U formalism [23, 60] to account for enhanced electron correlations. I show that good

agreement with photoemission experiments can be obtained when correlations are taken into ac-

count in the RS subsystem, while the size of the approximant plays a secondary role. The rest of

the paper is organized as follows. In the next section, I outline the computational methods and

parameters used in this study. The results and discussion of my first principles computations

for the structural, electronic, magnetic, and thermoelectric properties of various approximants

used to model CCO within DFT and DFT+U are presented in Sec. III. I conclude with a brief

summary in Sec. IV.

3.2 Computational Methods and Parameters

Monoclinic unit cells of CCO were constructed for the different rational approximants. The

lattice parameters were initially set at the experimental values [33] along the periodic directions

as a = 4.83 Å, c = 10.84 Å, and β = 98.13◦. The periodicities of the Ca2CoO3 RS and CoO2

hexagonal subsystems along the b direction are incommensurate with each other. As a result,

CCO can be stoichiometrically expressed as (Ca2CoO3)(CoO2)b1/b2 , where b1 and b2 correspond

to the periodicities of the RS and CoO2 subsystems along the incommensurate b direction,

respectively. The corresponding experimental values are bexp
1 = 4.56 Å and bexp

2 = 2.82 Å,

yielding bexp
1 /bexp

2 ≈ 1.62. In order to build the different rational approximants with composition

(Ca2CoO3)2F (n)(CoO2)2F (n+1) I took the initial lattice parameters b of the monoclinic unit cell
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along the incommensurate direction by an average, such that 2b = F (n)bexp
1 +F (n+1)bexp

2 . This

results in starting periodicities of bRS and bCoO2 for the two subsystems, where 2bRS = bexp
1 +

F (n+ 1)bexp
2 /F (n) and 2bCoO2 = bexp

2 + F (n)bexp
1 /F (n+ 1). In the present study, I considered

four rational approximants for CCO, namely the 3/2, 5/3, 8/5, and 13/8 approximants with

42, 66, 108, and 174 atoms in the unit cell, respectively. The initial lattice parameters b

along the incommensurate direction for those approximants are 8.79, 13.89, 22.68, and 36.57

Å, respectively. Various views of unit cell for the unrelaxed 5/3 approximant are shown in

Figure 6.

The calculations were performed using the projector augmented wave (PAW) method as

implemented in VASP [61]. All internal as well as lattice parameters (a, b, c, β) were allowed to

relax in the structural optimizations, where I used a plane wave cutoff of 530 eV and a residual

force criterion of 0.02 eV/Å. During structural optimizations, I used Monkhorst-Pack (MP)

k-point grids of 6 × 3 × 3, 6 × 2 × 3, 6 × 2 × 3, and 4 × 1 × 2 for the 3/2, 5/3, 8/5, and 13/8

approximants, respectively. For the density of states calculations, I used the same cutoff energy

and the tetrahedron method with MP grids of 12× 6× 6, 12× 4× 6, 12× 2× 6, and 12× 2× 6

for the 3/2, 5/3, 8/5, and 13/8 approximants, respectively. The calculations were performed

within the local (spin) density approximation (LDA) using the Ceperley Alder (CA) functional

[62], as well as with the generalized gradient approximation using the Perdew-Burke-Ernzerhof

(PBE) functional [63]. I have carefully examined the dependence of the results on the choice of

the exchange-correlation functional, and note that the main conclusions reported in this paper

do not have a significant dependence on this choice. Accordingly, unless otherwise noted, all
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Figure 6. The structure of the unrelaxed 5/3 rational approximant of CCO (one unit cell plus
an extra CoO2 layer) along the b (left) and a (right) directions. The large gray, medium-sized

dark (red), and small white circles represent Ca, Co, and O atoms, respectively. The
particular atoms in CoO2 and RS subsystems with fractional coordinates given in Tables II

and IV are labeled on the left. The periodicities bCoO2 and bRS of the CoO2 and RS
subsystems are shown on the right.
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results for the atomic and electronic structures of CCO are reported for the LDA-CA exchange-

correlation functional. The calculations were performed for the ferromagnetic spin configuration

of the Co atoms. The initial magnetic moments for all Co atoms were set at 1.3 µB. I tested the

dependence of the convergence to the correct ground state on the initial magnetic moment by

restarting all computations for the 3/2 and 5/3 approximants with different starting moments

of 2.0, 1.5, and 1.0 µB.

In order to provide a better description of the correlations between the rather localized d

electrons of Co, I also performed LDA+U computations for all rational approximants of CCO

following Dudarev’s approach [64], as implemented in VASP. With J = 1 eV, I considered

values of 3, 5, and 7 eV for the on-site Coulomb repulsion term U . Values near U = 5 eV

were suggested and successfully used in previous DFT calculations carried out on NaxCoO2

and CoO2 [65, 66]. In addition, I also computed the effective U parameters for Co atoms in

the RS and CoO2 subsystems from first principles using a linear response approach [67], as

implemented in the Quantum Espresso package [68]. The results from these computations will

be discussed in the next section.

3.3 Results and Discussion

3.3.1 Structural parameters

Starting with the experimental lattice and internal parameters as described above, full

structural optimizations were carried out on all approximants. The results for the relaxed lattice

parameters are displayed in Table I. For the a and c lattice parameters, we observe no significant

variations as a function of the approximant used. Within LDA, a and c are underestimated by
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∼ 1.5−2% and ∼ 3%, respectively. Along the incommensurate direction, on the other hand,

the relaxed lattice parameters bRS and bCoO2 are, by construction, expected to show larger

variations with respect to the approximant size. This is indeed what we observe in Table I, where

bRS and bCoO2 converge somewhat slowly to values near 4.5 and 2.8 Å, respectively, which are

slightly underestimated with respect to experimental values, consistent with the trends observed

within LDA. Repeating the calculations with PBE exchange-correlation functional, I find that

the lattice parameters are slightly (1−2%) overestimated compared to experimental values,

as expected. As shown in Table I for the 3/2 approximant, the agreement with experiment is

slightly better with the PBE functional compared to LDA, especially for the c lattice parameter.

TABLE I

Experimental and computed (within DFT) lattice parameters for all the rational
approximants. The lengths of the lattice parameters are given in Å.

Approximant a bRS bCoO2 c β

3/2 (LDA) 4.73 4.29 2.86 10.52 98.13◦

3/2 (PBE) 4.89 4.39 2.92 10.92 98.14◦

5/3 (LDA) 4.75 4.57 2.74 10.50 98.31◦

8/5 (LDA) 4.76 4.47 2.79 10.50 98.25◦

13/8 (LDA) 4.76 4.50 2.77 10.48 98.28◦

Experimental 4.83 4.56 2.82 10.84 98.13◦

Fractional coordinates for the internal parameters computed for all the approximants are

shown in Table II along with the experimental values. The agreement with experimental values

is quite reasonable (within a few percent), except for the fractional coordinates of Co along

the a−axis in the RS subsystem and O1 along the c−axis in the CoO2 subsystem where the
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Experimental and computed (within DFT) fractional coordinates for all the rational
approximants. See Figure 6 for the atom labels. Unless otherwise noted, all results are from

computations performed within LDA.

Experimental 3/2 3/2 (PBE) 5/3 8/5 13/8
Subsystem Atom a c a c a c a c a c a c

CoO2 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
O1 0.363 0.084 0.363 0.089 0.364 0.090 0.363 0.093 0.364 0.092 0.363 0.093
O2 0.636 0.896 0.632 0.907 0.636 0.910 0.637 0.907 0.636 0.908 0.637 0.907

RS Ca1 0.182 0.281 0.174 0.272 0.179 0.276 0.173 0.278 0.177 0.276 0.176 0.277
Ca2 0.312 0.727 0.313 0.724 0.317 0.724 0.314 0.722 0.317 0.724 0.316 0.723
Co 0.702 0.505 0.794 0.498 0.799 0.500 0.799 0.500 0.799 0.500 0.800 0.500
O1 0.718 0.338 0.689 0.329 0.691 0.333 0.691 0.333 0.694 0.333 0.693 0.333
O2 0.183 0.497 0.188 0.498 0.203 0.500 0.182 0.500 0.180 0.500 0.179 0.500
O3 0.837 0.677 0.795 0.666 0.799 0.667 0.799 0.667 0.801 0.667 0.800 0.667

deviations from experiment increase to around 10%. When we repeat the calculations with the

PBE exchange-correlation functional, most of the fractional coordinates get closer to experi-

mental values, however, the coordinate of O2 along the a−axis in the RS subsystem becomes

significantly worse, in agreement with Asahi’s earlier results [57]. Overall, the choice of the

exchange-correlation functional does not seem to affect the agreement of the computed internal

coordinates with experimental values. We also observe that the internal parameters are not

very sensitive to the choice of the approximant, with average deviations staying near 3% and

2% along the a− and c−axes, respectively, for all approximants considered.

The structures were also fully re-optimized within the DFT+U formalism. The resulting

lattice parameters for U = 5 eV are displayed in Table III. The inclusion of U does not result

in a significant change for a and b lattice parameters or the angle β. However, the c lattice

constants increases by ∼ 1% within LDA. The inclusion of U within PBE decreases the lattice

constants slightly, and generally results in better agreement with experimental values. The

fractional coordinates computed with U = 5 eV are shown in Table IV. Overall, the PBE and
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LDA results are observed to be rather close to each other for the fractional coordinates. The

agreement with experimental values, on the other hand, is not particularly better compared to

U = 0 case.

TABLE III

Experimental and computed (within DFT+U) lattice parameters for all the rational
approximants using U = 5 eV. The lengths of the lattice parameters are given in Å.

Approximant a bRS bCoO2 c β

3/2 (LDA+U) 4.75 4.24 2.83 10.65 98.20◦

3/2 (PBE+U) 4.89 4.36 2.91 10.95 98.20◦

5/3 (LDA+U) 4.75 4.58 2.75 10.54 98.34◦

8/5 (LDA+U) 4.74 4.46 2.79 10.58 98.28◦

13/8 (LDA+U) 4.76 4.50 2.77 10.58 98.28◦

Experimental 4.83 4.56 2.82 10.84 98.13◦

TABLE IV

Experimental and computed (within DFT+U) fractional coordinates for all the rational
approximants using U = 5 eV. See Figure 6 for the atom labels. Unless otherwise noted, all

results are from computations performed within LDA+U.

Experimental 3/2 3/2 (PBE+U) 5/3 8/5 13/8
Subsystem Atom a c a c a c a c a c a c

CoO2 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
O1 0.363 0.084 0.365 0.093 0.366 0.093 0.364 0.095 0.365 0.094 0.364 0.094
O2 0.636 0.896 0.635 0.907 0.634 0.907 0.636 0.906 0.635 0.906 0.636 0.906

RS Ca1 0.182 0.281 0.175 0.268 0.178 0.274 0.174 0.275 0.178 0.273 0.176 0.273
Ca2 0.312 0.727 0.318 0.732 0.317 0.724 0.316 0.725 0.320 0.727 0.319 0.727
Co 0.702 0.505 0.797 0.500 0.794 0.500 0.794 0.500 0.799 0.500 0.795 0.500
O1 0.718 0.338 0.688 0.335 0.687 0.333 0.687 0.335 0.691 0.334 0.691 0.336
O2 0.183 0.497 0.212 0.500 0.211 0.500 0.206 0.500 0.208 0.500 0.207 0.500
O3 0.837 0.677 0.793 0.665 0.793 0.667 0.795 0.665 0.798 0.666 0.797 0.665



46

I note that full optimization of the unit cells (for both U = 0 and U 6= 0) leads to the

emergence of interesting structural patterns along the incommensurate b direction as a function

of the approximant size. In particular, the RS unit of composition Ca2CoO3 forms various

n-unit clusters. Using the notation X ≡ Ca2CoO3 for the sake of simplicity and denoting an

n−unit Ca2CoO3 cluster by Xn, the arrangement of atoms along the b direction can be viewed as

Xn−Xm− ..., where each Xn cluster is separated from its neighbors slightly due to the buckling

of the O-Co-O chains along the c direction, but still joined with each other along the b direction

with Ca-O bonds. As shown in Figure 7, the relaxation leads to the emergence of a X3 −X1

structural pattern for the 3/2 approximant composed of one 3-unit and one 1-unit clusters along

the b direction. The 5/3 approximant can be viewed as two identical 3-unit clusters, X3 −X3

joined with each other. The 8/5 approximant can similarly be viewed as a X3 −X2 −X3 −X2

pattern fitting within one b lattice parameter. The most complicated pattern occurs for the

13/8 approximation, composed of various 1−, 2−, 3−, and 4−unit clusters, and is of the form

X4 −X2 −X1 −X2 −X4 −X3. The particular pattern adopted by a given approximation is

related to the incommensurate nature of the CoO2 and RS subsystems, and depends critically

on how the system can minimize the total energy globally within the constraints imposed by

the ratio of the Fibonacci numbers. The effects of these structural patterns on the electronic

structure of CCO will be discussed toward the end of the next section.
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Figure 7. The relaxed structures (with U = 5 eV) of all approximants along the a direction.
Each structure shows one unit cell plus an extra CoO2 layer along the c direction. The

structural patterns, mentioned in the text, composed of n−unit X ≡ Ca2CoO3 clusters that
occur along the b direction are clearly visible. Representatives for n = 1, 2, 3, and 4 are shown

with dashed ellipses and denoted as Xn.
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3.3.2 Electronic Properties

3.3.2.1 Density of States Analysis

In order to gain insight into the transport properties of CCO I focused on the different con-

tributions to the density of states (DOS) around the Fermi level (Ef ) from the two subsystems,

RS and CoO2. While I performed the DOS analyses for all the approximants considered, in

what follows I will first present our results in detail for the 5/3 approximant and later comment

on the trends as a function of the approximant.

Figure 8 shows spin-polarized total DOS for CCO. Low-energy features in the range of

−21 to −16 eV correspond to states that originate from the Ca 3p and O 2s orbitals, and the

features at high energies around 8 eV correspond to the unoccupied Ca 3d levels. The states

from −8 to 3 eV around Ef are due to strong hybridization among O 2p and Co 3d orbitals.

The contributions to the DOS at Ef are primarily from one of the spin channels (down), as Ef

falls in a pseudogap in the spin-up channel. There is a (real) gap in the electronic DOS for the

spin-down channel in the vicinity of Ef as well, but that occurs ∼ 0.2 eV above Ef . Similar

features were observed for the total DOS of the 3/2, 8/5 and 13/8 approximants.

Figure 9 shows the site-projected partial DOS (PDOS) for Co 3d orbitals in the RS and

CoO2 subsystems; in each plot the PDOS are displayed after averaging over all Co atoms in

the particular subsystem. The Co 3d states in the CoO2 subsystem have a small, but finite,

contribution to the DOS at Ef only in the spin-down channel, where Ef lies ∼ 0.3 eV below

the gap. The Co 3d states in the RS subsystem, on the other hand, contribute to the DOS at

Ef in both spin channels. Comparing Figure 8 and Figure 9, one can see quite well that in
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Figure 8. Total DOS (showing spin-up and spin-down channels) computed for the 5/3 rational
approximant. The lower panel shows the details of the total DOS within ±4 eV of the Fermi

level, which is denoted by the (red) vertical dashed line.
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the spin-up channel the DOS in the immediate vicinity of Ef is controlled primarily by states

originating from Co 3d orbitals in the RS system, while both subsystems contribute to DOS

near Ef in the spin-down channel.
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Figure 9. Partial DOS projected into d−orbitals of Co atoms in the CoO2 (upper panels) and
the RS (lower panels) subsystems in the spin-up (left) and spin-down (right) channels. The

Fermi level is shown with the (red) vertical dashed lines.

The PDOS projections into magnetic angular momentum (m) resolved Co d orbitals in each

subsystem are shown in Figure 10 and Figure 11 for the CoO2 and RS subsystems, respectively.

We observe that t2g bands of the CoO2 system are fully occupied in the spin-up channel. In

the spin-down channel, they are mostly, but not fully occupied, contributing to the finite DOS

at Ef . The eg bands of the CoO2 system, on the other hand, are fully unoccupied lying ∼1.2

eV above Ef (Figure 10). In the RS subsystem, all three t2g,↑ bands are occupied while the

eg,↑ bands are partially occupied. In the minority-spin channel, one of the t2g bands, dxy,↓,
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is noticeably lower in energy and is almost fully occupied, while the other two are partially

occupied. The eg,↓ bands of the RS system are mostly unoccupied (Figure 11).
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Figure 10. Spin-up (left) and spin-down (right) partial DOS projected into m−resolved
d−orbitals of Co atoms in the CoO2 subsystem. The Fermi level is shown with the (red)

vertical dashed lines.

While there are some differences between our results for the RS subsystem and previous

computations of Asahi et al., the differences are mostly minor and the agreement between the

two sets of DFT calculations is reasonably good for the RS subsystem. The main difference

between our results and those of Asahi et al., which has implications for transport properties of

CCO, occurs in the CoO2 subsystem: Namely, while I find that 3d orbitals of the CoO2 system

contribute to the DOS at Ef (Figure 9 upper panel or the spin-down panel of Figure 10),

Asahi et al. do not find any contribution from this subsystem to the DOS at Ef which falls
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Figure 11. Spin-up (left) and spin-down (right) partial DOS projected into m−resolved
d−orbitals of Co atoms in the RS subsystem. The Fermi level is shown with the (red) vertical

dashed lines.

in the crystal-field gap of the CoO2 3d states setting these Co atoms to be in the low-spin

Co3+ (S = 0) state. In contrast, our results suggest that a fraction of the Co atoms in the

CoO2 subsystem are in the Co4+ state due to the partially occupied t2g,↓ bands that cross

Ef . The finding of no contribution to DOS from the CoO2 system, therefore, led Asahi et al.

to conclude that the conductivity of CCO must be due to the RS subsystem while the CoO2

subsystem would be acting merely as a charge reservoir. This reasonable conclusion is, however,

contradicted by resonant photoemission spectroscopy experiments carried out by Takeuchi et

al. [36] who argued that the valence band in an energy from Ef to 1 eV below it is dominated

by the electronic structure of the CoO2 layer, with very little, if any, contribution from the

RS subsystem. My results presented so far are not in good agreement with this experimental

observation, either, as we find that both subsystems contribute to the DOS at Ef . In fact,
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as shown in Figure 9 and comparisons of Figure 10 and Figure 11, we observe that there is

significantly more contribution to the DOS at Ef from the RS subsystem.

3.3.2.2 DOS Analysis within DFT+U

In searching for a possible explanation for this discrepancy, I considered the effect of electron

correlations by including the on-site Coulomb interactions in the DFT+U formalism for the Co

3d orbitals. While I used a range of U values from 3 to 7 eV and also performed first principles

computations of U using a linear response approach for Co atoms in both subsystems, in what

follows I will present my results for U = 5 eV which is a reasonable value based on previous

DFT studies on similar systems [65, 66].

Figure 12 shows the total DOS for both spin channels computed for the 5/3 approximant

with U = 5 eV. In contrast to the behavior displayed in Figure 8 for U = 0, Ef now falls

in a gap in the spin-down channel. CCO is still predicted to be a metal, since there is a

small, but finite, DOS at Ef in the spin-up channel. As shown Figure 13 which displays the

Co 3d contributions from the two subsystems, the metallicity of CCO is now almost entirely

due to the CoO2 subsystem with a negligible contribution from the RS subsystem in the spin-

up channel. Compared to behavior observed in Figure 9, the inclusion of the Hubbard U ,

therefore, results in a significant change in the contributions from the RS subsystem to the DOS

around Ef , while there is hardly any change in the contributions from the CoO2 subsystem.

Angular momentum resolved projections into various 3d orbitals belonging to the CoO2 and RS

subsystems (Figure 14 and Figure 15, respectively) also verify this; the only significant change

for the CoO2 subsystem is that the unoccupied eg bands now lie ∼ 2.3 eV above Ef (Figure 14).
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Figure 12. Total DOS (showing spin-up and spin-down channels) computed for the 5/3
rational approximant within LDA+U. The Fermi level is shown by the (red) vertical dashed

line. The calculations are performed with U = 5 eV.
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For the RS subsystem, on the other hand, the eg bands no longer contribute to the DOS at Ef ,

as they do for the U = 0 case. In addition, the only fully occupied m−resolved band in the

spin-down channel is dxy,↓, and all the other previously (U = 0) partially occupied orbitals are

now unoccupied (Figure 15). These results show that inclusion of electron correlations beyond

the mean-field description of DFT with a Hubbard U leads to agreement with experimental

observations about the nature of states near Ef [36, 41].
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Figure 13. Partial DOS, computed with LDA+U, projected into d−orbitals of Co atoms in
the CoO2 (upper panels) and the RS (lower panels) subsystems in the spin-up (left) and

spin-down (right) channels. The Fermi level is shown with the (red) vertical dashed lines. The
calculations are performed with U = 5 eV.

As is well-known, the energy correction introduced by the Hubbard U in the DFT+U method

penalizes partial occupation of the localized orbitals, hence, favoring either fully occupied or

empty orbitals. In the CoO2 subsystem, since most of the states are already almost fully
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projected into m−resolved d−orbitals of Co atoms in the CoO2 subsystem. The Fermi level is

shown with the (red) vertical dashed lines. The calculations are performed with U = 5 eV.

occupied (t2g) or empty (eg), the introduction of the Hubbard term leaves the nature of the

states near Ef practically unchanged with the exception of increasing the band gap by ∼1 eV.

In the case of the RS subsystem on the other hand, several partially occupied states near Ef are

split when the Hubbard U is introduced, placing Ef in a gap of Co 3d states. It is important

to note that this does not mean that the electron correlations are less important in the CoO2

subsystem. Our first principles computations for the magnitude of U using a linear response

theory yield values of 5.4 and 8.1 eV for Co in the RS and CoO2 sublattices, respectively.

However, even such a large U value for the CoO2 subsystem does not result in a significant

change in the behavior of states near Ef , the only change being a slightly larger crystal field

splitting between the t2g and eg states. What controls the position of Ef when U is introduced,
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is the energy gain due to the redistribution of the Co 3d bands from the RS subsystem to

energies fully above and below Ef .
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Figure 15. Spin-up (left) and spin-down (right) partial DOS, computed within LDA+U,
projected into m−resolved d−orbitals of Co atoms in the RS subsystem. The Fermi level is
shown with the (red) vertical dashed lines. The calculations are performed with U = 5 eV.

3.3.2.3 Evolution with respect to Approximant Size

Figure 16 and Figure 17 show how the d projected PDOS around Co atoms in the CoO2

and RS subsystems, respectively, evolve as a function of the approximant size. The results

displayed are for U = 5 eV; the general trends as a function of approximant size do not change

appreciably for other values of U including U = 0. As seen in Figure 16, in the spin-down

channel Ef falls in a gap of PDOS projected into the d orbitals of the Co atoms in the CoO2

subsystem (13/8 approximant is an exception to this, see below), while in the spin-up channel
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Co 3d states contribute significantly to the DOS at Ef giving rise to the metallic behavior.

For projections into Co atoms in the RS subsystem (Figure 17), again Ef lies in a gap of d

states in the spin-down channel. In the spin-up channel, on the other hand, the PDOS at Ef

remains quite small compared to the contribution from the CoO2 subsystem, but is not zero.

The smallest (almost zero) value of PDOS at Ef is obtained for the 5/3 approximant. For other

approximants, the contribution increases in a non-monotonic fashion.
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Figure 16. Partial DOS, computed within LDA+U, projected into d-orbitals averaged over all
Co atoms in the CoO2 subsystem for the 3/2, 5/3, 8/5 and 13/8 rational approximants. The
Fermi level is shown with the (red) vertical dashed lines. The calculations are performed with

U = 5 eV.

I have examined the reason behind the slight variations in the contributions to the DOS

around Ef , in particular, from the RS subsystem, and find the answer in the details of the

arrangements of the (Ca2CoO3) RS structure into particular n−unit clusters, as discussed at the
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Figure 17. Partial DOS, computed within LDA+U, projected into d-orbitals averaged over all
Co atoms in the RS subsystem for the 3/2, 5/3, 8/5 and 13/8 rational approximants. The

Fermi level is shown with the (red) vertical dashed lines. The calculations are performed with
U = 5 eV.

end of the last section. As might be inferred from the middle panel of the spin-up channel PDOS

displayed in Figure 15, the relevant orbital that gives rise to small contributions to DOS from

the RS subsystem around Ef is d3z2−r2 . For the 5/3 approximation with an almost vanishing

contribution to the DOS at Ef from the RS subsystem, there are two identical (Ca2CoO3)3

clusters stacked along the b direction. Within each (Ca2CoO3)3 cluster, two of the three Co

atoms are symmetry-equivalent resulting in 2 distinct Co atoms. Of these two Co atoms, the

Co-O interatomic distances for the rather distorted CoO6 octahedra are such that when electron

correlations are taken into account with a Hubbard U , for one of them the d3z2−r2,↑ orbital is

fully occupied, while for the other, it is fully unoccupied and gives rise to the sharp peak

observed ∼ 1 eV above Ef . The formation of such fully occupied or unoccupied eg,↑ orbitals

results in practically no contribution to the PDOS from the RS subsystem. However, any time



60

the RS subsystem contains other types of clusters (such as the 1-, 2-, and 4-unit clusters) found

in all other approximants, we observe that the Co atoms from such units contribute slightly to

the DOS at Ef , as they are no longer able to accommodate the necessary number of electrons

fully below Ef by neatly pairing up with other Co atoms in the relevant cluster, as they can

do with a (Ca2CoO3)3 cluster. Hence, we find that the (small) contributions to the DOS at

Ef from the RS subsystem are correlated with the presence of 1−, 2−, and 4−unit clusters in

them. The 13/8 approximant which contains the largest number of such clusters within one

unit cell has, accordingly, a relatively large number of RS-derived eg-like states in the vicinity of

Ef . This analysis, along with the interpretations from the photoemission[36] and transport[41]

experiments suggests that increasing the unit cell size along the incommensurate direction by

going to larger and larger approximants may not necessarily lead to better models for CCO,

and the “magic” 5/3 approximant does a good job for modeling the electronic properties of

CCO, when correlations are taken into account.

3.3.3 Magnetic Properties

As mentioned earlier, my calculations were performed starting from a ferromagnetic initial

configuration for all Co atoms in the structure. Since it is very common for these types of

spin-polarized calculations to get trapped in local minima, especially when carried out within

the DFT+U framework, I tested different initial magnetizations of 1.0, 1.3, 1.5, and 2 µB, in

order to check the convergence to the correct ground state. Table V shows the final magnetic

moments averaged over Co atoms in the RS and CoO2 subsystems, in addition to the total

magnetization per Co atom (Mave) computed with different exchange-correlation functionals,
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U = 0 and 5 eV, for all rational approximants considered. The magnetization primarily arises

from Co atoms in the RS subsystem; the average magnetic moment in the CoO2 subsystem

is at least one order of magnitude smaller than that in the RS subsystem. The value of Mave

increases when the calculations are performed within the DFT+U framework compared to

the corresponding regular DFT calculation. Furthermore, Mave computed with PBE is always

larger than that computed with the LDA exchange-correlation functional for both U = 0 and 5

eV, however, the difference between PBE+U and LDA+U values for Mave is considerably less

compared to that between the PBE and LDA values. This is the same observation I reported

earlier for the structural parameters, in particular, for the predicted fractional coordinates. If

TABLE V

Averaged magnetic moments (in µB) for Co atoms belonging to the RS and CoO2 subsystems
and averaged magnetic moment per cell per Co (Mave) for the different approximants,

performed within standard DFT and DFT+U, with LDA and PBE exchange-correlation
functionals. The value of the Hubbard parameter is U = 5 eV.

Approximant Ex-corr RS CoO2 Mave

3/2 LDA 1.66 -0.11 0.78
LDA+U 2.76 -0.03 1.34

3/2 PBE 2.26 0.18 1.26
PBE+U 2.94 0.10 1.49

5/3 LDA 1.50 0.22 0.88
LDA+U 2.75 -0.13 1.19

5/3 PBE 2.08 0.12 1.07
PBE+U 2.86 -0.16 1.19

8/5 LDA 1.53 0.19 0.89
LDA+U 2.77 -0.10 1.24

13/8 LDA 1.48 0.20 0.87
LDA+U 2.71 0.00 1.29
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we consider the trends as a function of the approximant size, we observe that the convergence

is fairly fast, e.g. at the LDA level, the Mave values for the 3/2, 5/3, 8/5, and 13/8 rational

approximants are 0.78, 0.88, 0.89, and 0.87 µB, respectively. The computed Mave that seems

to have converged to a value near 0.88 µB is underestimated compared to the experimentally

measured value near 1.3 µB for temperatures of less than 400 K [32]. Within LDA+U, on the

other hand, the computed Mave (for U = 5 eV) are 1.34, 1.19, 1.24, and 1.29 µB, respectively,

converging to a value near 1.3 µB, in excellent agreement with the experimentally reported

value. These results show that the inclusion of electron correlations within DFT+U improves

the agreement with experiment regarding not only the contribution of the two subsystems to

the DOS near Ef but also the computed magnetic moments as well.

3.3.4 Seebeck Coefficient of CCO

The results from the DOS analysis presented above can be used to obtain an estimate for

the Seebeck coefficient (thermopower) S of CCO within the framework of Heikes formula: [69]

S = −kB
e

ln

(
g3

g4

x

1− x

)
, (3.1)

where x is the concentration of Co4+ ions, and g3 and g4 the degeneracies (including both spin

and orbital degrees of freedom) for the Co3+ and Co4+, respectively. Based on my results for

the 5/3 approximant with U = 5 eV, I assume that S is determined solely by the contribution

from the CoO2 subsystem. As inferred from Figure 14, the Co atoms in the CoO2 subsystem

are in a low-spin (LS) configuration, and in a mixed-valence state of Co3+ (t32g,↑e
0
g,↑) and Co4+
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(t22g,↑e
0
g,↑). We determine the concentration x from ratio of unoccupied t2g,↑ PDOS to the whole

area under the t2g,↑ PDOS curve from ∼ -1.5 eV to ∼ 0.2 eV, averaging over the three orbitals.

We find a value near 0.3. Setting the degeneracies for the LS configurations of Co3+ and Co4+

as g3 = 1 and g4 = 6, we thus arrive at a value for S ∼ 227 µVK−1.

My computed value for S is significantly larger than the value of 41 µVK−1 obtained by

Asahi et al. [57] in their analysis of CCO using the 3/2 approximant. The reason for the

large discrepancy can readily be attributed to the differences in the electronic structures of

CCO as obtained in the respective first principles studies. In particular, Asahi et al. assume

no contribution to the Seebeck coefficient from the CoO2 subsystem, as Ef falls in crystal-

field gap of Co d states in the CoO2 subsystem, and the contribution from the RS subsystem

is computed using x, g3, and g4 as inferred from their (U = 0) calculation. As mentioned

before, these findings of Asahi et al. are not in agreement with results from the photoemission

experiments of Takeuchi et al. This observation led us to consider electron correlations within

a DFT+U framework that indeed led to the finding of a vanishing DOS at Ef from the RS

subsystem. Even with this improvement, the agreement of our computed value for S ∼ 227

µVK−1 with the experimental values near 135 µVK−1 (Refs. [32, 37, 48]) is only somewhat

fair. However, one should take into account the fact that S has a rather sensitive dependence

on x. For example, a value of x = 0.56 would result in perfect agreement with experiment.

The concentration of Co4+ ions was indeed inferred to be x ∼ 0.5 in recent electron energy-loss

spectroscopy studies of Yang et al.[43], who reported an average Co valence of 3.5 in the CoO2

subsystem. One should also keep in mind that the computations are based on the pristine
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5/3 approximant model of CCO, and defects and unintentional doping in real materials could

change the measured Seebeck coefficient significantly. Finally, I note that my value of x ∼ 0.3,

while not leading to very good agreement with experiment for the values of S as described

above, is rather consistent with the amount of doping (interpreted as Co4+ content) obtained

from transport measurements of Limelette et al. [38] and Eng et al. [41] who find values near

0.32 and 0.36, respectively. In future studies, it would be instructive to use the computed band

structure directly within Boltzmann transport formalism [70] in order to obtain an independent

estimate of the Seebeck coefficient.

3.4 Summary

I have reported results on and analyses of first principles calculations, performed within

the framework of standard DFT and DFT+U, for misfit-layered CCO modeled by rational ap-

proximants with systematically increasing unit cell sizes. The structural parameters computed

within DFT and DFT+U are found to be in reasonably good agreement with experimental

values and previous computations. The standard DFT calculations predict a large contribution

to the DOS at Ef from the RS subsystem, in disagreement with results from photoemission

experiments. When electron correlations are taken into account within a DFT+U formalism,

d states derived from Co atoms in the RS subsystem are observed to have very little, if any,

contribution to DOS at Ef , and the states that give rise to the metallic conductivity of CCO

are essentially all derived from Co atoms in the hexagonal CoO2 subsystem, in agreement with

results from photoemission data. It is interesting to note that even though my first principles

linear response calculations for the Hubbard U indicate a value for Co atoms belonging to the



65

CoO2 subsystem (8.1 eV) that is significantly larger than that for Co atoms in the RS subsystem

(5.4 eV), the introduction of U does not result in a significant change in the nature of states

derived from the Co atoms in the CoO2 subsystem, since the relevant t2g states associated with

the CoO2 subsystem are nearly fully occupied and the eg states fully unoccupied. The impact

of U on the RS subsystem, on the other hand, is significant as it opens up a gap in the partial

DOS at Ef . My results, therefore, strongly suggest that the necessary ingredient for obtaining

agreement with photoemission experiments is to take the correlations into account in the RS

subsystem. The size of the rational approximant as a structural model for the incommensurate

CCO plays a minor role in this regard. In particular, even a relatively small 5/3 approximant

does a good job in modeling the essential electronic properties of CCO. I have presented results

that associate the opening of the gap in the PDOS of Co atoms belonging to the RS subsystem

with the formation of particular structural features in the form of (Ca2CoO3)n clusters that

extend along the incommensurate b−direction. I have also shown that another significant effect

of U is to bring the computed magnetic moments per Co atom in nearly perfect agreement

with experimental values and to minimize the differences between the predictions of LDA+U

and PBE+U. Based on my DOS analysis, I find the Co atoms that contribute to the metal-

lic conductivity in CCO (i.e. those in the CoO2 subsystem) to be in a mixture of Co3+ and

Co4+ low-spin configurations, with a predicted concentration near 30% for Co4+ ions. While

this value is in very good agreement with results from transport measurements, the predicted

Seebeck coefficient S using this concentration of Co4+ ions and Heikes formula has only a fair

agreement with experimentally measured values for S. I expect that further refinements of the
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structural models for CCO, more sophisticated approaches for treating electron correlations,

and incorporating energetically favorable point and extended defects in modeling studies will

likely lead to the successful resolution of the slight discrepancies remaining between experiment

and theory for this technologically and scientifically important oxide thermoelectric material.



CHAPTER 4

LATTICE AND TRANSPORT PROPERTIES OF THE

MISFIT-LAYERED OXIDE THERMOELECTRIC Ca3Co4O9 FROM

FIRST PRINCIPLES

4.1 Introduction

As I mentioned in the introduction, the thermoelectric properties of CCO are intimately

related to the co-existence of three conditions: a high Seebeck coefficient, a high electrical

conductivity and a low thermal conductivity. The previous chapter was mainly related to elec-

tronic properties. Although I have not performed a first principles calculation of the electrical

conductivity, by determining the electronic structure of CCO I showed that it is the the CoO2

subsystem that controls the electrical conductivity of this material. Furthermore, by using my

first principles results I was able to give an estimate for the Seebeck coefficient, resulting in

a value of the order of experimentally measured values. Thus, having determined the elec-

tronic structure from first principles (DFT+U), and having shown that the results are in good

agreement with experiments, I can now apply these tools in order to calculate the thermal

conductivity.

The main goal in this chapter is to see how I can make use of the data obtained from

DFT+U in order to determine vibrational and thermal properties of CCO. First, by using the

interatomic forces calculated from first principles and the finite differences method I determine

67
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the full phonon dispersion of the 3/2 and 5/3 approximants. These phonon modes are then

used to calculate the specific heat of each structure and compared to experiment. Then I

apply the Boltzmann Transport Equation (BTE) to calculate the thermal conductivity for each

approximant along the different axes.

4.2 Computational Methods

Similar to the approach discussed in the previous Chapter, monoclinic unit cells of CCO

were constructed for the different rational approximants. The lattice parameters were initially

set at the experimental values [33] along the periodic directions as a = 4.83 Å, c = 10.84 Å,

and β = 98.13◦. Due to computational constraints, for the phonon studies I only considered

the two lowest order rational approximants for CCO, namely the 3/2 and 5/3 approximants,

with 42 and 66 atoms in the unit cell, respectively. The initial lattice parameters b along the

incommensurate direction for these approximants are 8.79 and 13.89 Å, respectively.

The calculations were performed using the projector augmented wave (PAW) method as im-

plemented in VASP [61], and within the generalized gradient approximation using the Perdew-

Burke-Ernzerhof (PBE) functional [63]. All internal as well as lattice parameters (a, b, c, β) were

allowed to relax in the structural optimizations, where I used a plane wave cutoff of 550 eV and a

residual force criterion of 0.001 eV/Å. During structural optimizations, I used Monkhorst-Pack

(MP) k-point grids of 4×2×2 for the two approximants. The two approximants (3/2 and 5/3)

were optimized starting from different initial configurations in order to find the most stable

structure in each case. Small displacements were added to the initial structures and relaxations

were perfomed with and without symmetry. The calculations were performed for the ferromag-
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netic spin configuration of the Co atoms. The initial magnetic moments for all Co atoms were

set at 1.3 µB. I tested the dependence of the convergence to the correct ground state on the

initial magnetic moment by restarting all computations for the 3/2 and 5/3 approximants with

different starting moments of 2.0, 1.5, and 1.0 µB.

As I showed in the previous chapter, a Hubbard U correction has to be included along with

GGA in order to provide a better description of the correlations between the rather localized

d electrons of Co. In all cases, I used the Dudarev’s approach [64], as implemented in VASP.

As discussed in Chapter 3, I chose a value of U = 5 eV (J = 1 eV), since it predicted an

electronic structure for CCO in good agreement with experiment. In order to evaluate the

effect of the U parameter on lattice and thermal properties, calculations without including U

were also performed for the 3/2 approximant.

Lattice-dynamical calculations such as the phonon spectrum and the phonon density of

states, were calculated by the Finite Differences Method as implemented in Phonopy [71] using

the force constants obtained from DFT calculations. For both the 3/2 and 5/3 approximants,

2×1×1 supercells were employed in the calculation of force constants. As explained in Chapter

2, the constant volume heat capacitu can be calculated from the computed phonon dispersions

ω(q, s) as

Cv =
∑
q,s

kB

[
h̄ω(q, s)

kBT

]2 exp(h̄ω(q, s)/kBT )

[exp(h̄ω(q, s)/kBT )− 1]2
, (4.1)

where q is a reciprocal lattice vector in the first Brillouin zone and ω(q, s) is the frequency

of the corresponding normal mode s. By applying the Boltzmann Transport Equation (BTE)
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within the relaxation time approximation, I can also calculate the thermal conductivity tensor

(see Chapter 1, Section 2.0.7.2)

καβ = h̄
∑
q,s

vαq,sv
β
q,sτq,sω(q, s)

∂f0
q,s

∂T
, (4.2)

where vαq,s is the phonon velocity, α and β the Cartesian directions, τq,s the relaxation time,

and f0
q,s the Bose-Einstein distribution function. For simple systems such as Si or Ge, it is

possible to compute the relaxation times from first principles [72, 73], however, in the case of

CCO, with a very large unit cell, such calculations are prohibitively demanding. Therefore the

relaxation time was assumed to be constant, τq,s = τ , and taken out of the sum as an adjustable

parameter. The phonon velocities were calculated by using the central difference method for

frequencies obtained over a dense grid in the Brillouin zone. Since I am also interested in

determining the relative contributions to the thermal conductivity coming from the CoO2 and

RS subsystems, I define a projected thermal conductivity as

καβ,µ = h̄
∑
q,s

|eµq,s|2vαq,svβq,sτq,sω(q, s)
∂f0

q,s

∂T
, (4.3)

where eµq,s is the subvector determined by the components of the normal mode eigenvector

corresponding to atom µ (see last part of Section 2.0.7.2). In the same fashion as the Projected

Density of States (PDOS) for the electronic structure, this quantity represents the individual

contribution of individual atoms to the total thermal conductivity, and satisfies
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καβ =
N∑
µ=1

καβ,µ, (4.4)

where N is the total number of atoms in the unit cell.

4.3 Results

4.3.1 Structure

The resulting lattice parameters for the two approximants are displayed in Table I. For the

3/2 approximant I also display the optimized lattice parameters for the case of pure PBE with

no Hubbard correction. Lattice and internal parameters as well as magnetic moments are in

good agreement with my previous DFT+U (LDA, PBE) calculations [74] and with experimental

results. As discussed in [74] we observe the formation of different clustering patterns along the

incommensurate direction, b, for the different approximant. Using the notation X ≡ Ca2CoO3

for the sake of simplicity and denoting an n−unit Ca2CoO3 cluster by Xn, the arrangement

of atoms along the b direction can be viewed as Xn − Xm − ..., where each Xn cluster is

separated from its neighbors slightly due to the buckling of the O-Co-O chains along the c

direction, but still joined with each other along the b direction with Ca-O bonds. As shown in

Figure 18, the relaxation leads to the emergence of a X2 − X2 structural pattern for the 3/2

approximant composed of two 2-units. The 5/3 approximant can be viewed as two identical

3-unit clusters, X3 − X3 joined with each other. As I have mentioned before, the particular

pattern adopted by a given approximation is related to the incommensurate nature of the CoO2

and RS subsystems, and depends critically on how the system can minimize the total energy
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globally within the constraints imposed by the ratio of the Fibonacci numbers. I should also

mention that in our previous work, for the 3/2 approximant I found X1−X3 clustering patterns

instead of the X2−X2 shown here. The disagreement is due to the fact that the two clustering

patterns are very close in energy and therefore small variations in the starting parameters can

lead to different ground state configurations. In the present chapter, since more accurate forces

are required in the calculation of phonons, more stringent parameters were used than in the

previous case.

TABLE VI

Experimental and computed lattice parameters for the 3/2 (DFT and DFT+U) and 5/3
(DFT+U) rational approximants. The lengths of the lattice parameters are given in Å.

Approximant a bRS bCoO2 c β

3/2 (PBE) 4.89 4.39 2.93 10.93 98.10◦

3/2 (PBE+U) 4.88 4.41 2.94 10.97 98.05◦

5/3 (PBE+U) 4.88 4.71 2.82 10.86 98.22◦

Exp. 4.83 4.56 2.82 10.84 98.13◦

4.3.2 Vibrational Spectrum and Heat Capacity

The thermoelectric capabilities of CCO for technological applications, in particular for the

developement of new energy conversion devices, are intimately related to its vibrational prop-

erties. Lattice vibrations are a key contribution to the total thermal conductivity. As such,

they could potentially be modified via doping or lattice distorsions in order to enhance or tune

the performance of the thermoelectric. Figure 19 shows the phonon dispersions for the two

approximants (U = 5 eV) along different symmetry directions. Differences in lengths for YΓ
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X2 
X3 

3/2 5/3 

Figure 18. The relaxed structures (with U = 5 eV) of the 3/2 and 5/3 approximants along the
a direction. Each structure shows one unit cell plus an extra CoO2 layer along the c direction.
The structural patterns, mentioned in the text, composed of n−unit X ≡ Ca2CoO3 clusters

that occur along the b direction are clearly visible. Two different clusters, X2 and X3 (for the
3/2 and 5/3 approximants, respectively), are show with dashed ellipses.
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paths correspond to the different sizes of the b lattice constant for the two approximants. Also,

phonons on the 3/2 approximant were calculated by using an optimized 2 × 1 × 1 (84 atoms)

unit cell, which accounts for the shorter length for ΓX and the higher density of bands for the

3/2 with respect to the 5/3 (66 atoms in unit cell). Figure 20 shows the calculated phonon

DOS for the 3/2 (U = 0, U = 5 eV) and 5/3 approximants, where negative values correspond

to imaginary frequencies. First we notice that in all cases the overall structure of the phonon

DOS can be divided in two bell shaped structures, centered at ≈ 6 and 14 THz, respectively.

As expected, the lower frequency bell corresponds to normal vibrational modes involving the

heavier atoms, Ca and Co, while the higher frequency modes correspond to vibrations of the

lighter O atoms. Comparing the DFT and DFT+U case (only for the 3/2 approximant), I

observe that apart from eliminating the imaginary values, the inclusion of a finite U does not

change the U = 0 results significantly. Although different optimizations and modulations of the

3/2 structure were attempted in this latter case, it was not possible to eliminate the imaginary

values of the frequency. These instabilities are mostly associated with atoms in the RS subsys-

tem, which has a very large contribution to the DOS at FL when modeled within DFT only

(see Figure 9) [75]. On the other hand, when the U is included, and thus the system becomes

more insulating, I obtain positive frequencies for the two approximants (3/2 and 5/3). The

major differences between the 3/2 and 5/3 cases correspond to the height of the bell centered

at ≈ 14 THz, which is significantly higher for the 3/2 approximant.

These differences can be attributed to the different clustering patterns we observe in each

case. Having determined the phonon spectrum we can now apply Equation 4.1 in order to
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Figure 19. Phonon dispersions along different symmetry directions for the 3/2 (left) and 5/3
(right) approximants. In both cases U = 5 eV.
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(U = 0) approximant correspond to instabilities in the RS subsystem.
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calculate the constant volume heat capacity for CCO. The results are displayed in Figure 21

along with the experimental data obtained by Wu et al. [76]. The agreement is very good for

the three cases; the maximum error corresponds to the 3/2 approximant with U = 0 and is

only around 5% or less.
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Figure 21. Calculated constant volume heat capacity for the 3/2 (U = 0, 5 eV, dotted blue
and solid red, respectively) and 5/3 (U = 5 eV, dashed green) approximants. The insets

compare these values with the corresponding available experimental data (pink solid circles)
from Wu et al. [76].
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4.3.3 Thermal conductivity

As described in Section 4.2, by obtaining the phonon velocities from the full phonon dis-

persion and then applying the BTE within the relaxation time approximation, the thermal

conductivity can be calculated up to a constant τ that, as mentioned before, is taken out of

the summation as an adjustable parameter. Typical values for the phonon relaxation times

in similar cobaltites are usually of the order of ≈ 1 ps [77]; in this work I have chosen τ = 2

ps in order to fit experimental data from Satake et al. [78]. Figure 22 shows the calculated

thermal conductivity for the 3/2 and 5/3 approximants for U = 5 eV along the a, b and z

directions (where z is perpendicular to a and b). These results indicate a highly anisotropic

thermal conductivity, mostly between in-plane (ab) and out plane directions (along c), obtaining

κab/κc ≈ 6− 8 for both approximants, which is good agreement with experimental findings by

Terasaki et al. in another layered cobaltite [77]. In their work they report κab/κc ≈ 5− 10 for

Bi2xPbxSr2Co2Oy. When comparing the two approximants I observe almost the same values

for thermal conductivities along a and c, but different behaviors along the incommensurate

direction, b. For the 3/2 approximant, κb is ≈ 10 mW/Kcm below κa, while for the 5/3 it

is the other way around. As in the case of the electronic structure, I again obtain a better

agreement with experiment for the 5/3 approximant, since according to mesaurements carried

out by Satake et al., κb < κa for CCO and other layered cobaltites incommensurate along b.

This behavior, due to a higher dispersion of phonons along the non-periodic direction, is not

captured by the 3/2 periodic approximant but reproduced by the 5/3 one. However, although

this model is able to predict the main features of the thermal conductivity, I observe that in my
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calculations saturation temperatures are reached are higher temperatures than in the experi-

mental results by Satake et al., where saturation ocurrs at ≈ 50 K. This disagreement may be

one of the consequences of the simplifications involved in assuming a constant relaxation time.

By using Equation 4.4, the projected thermal conductivities for each subsystem can be

evaluated. Figure 23 shows the corresponding contributions to the total thermal conductivity

due to the RS and CoO2, respectively, along the three Cartesian directions, for the 3/2 and

5/3 approximants. I observe that in all cases, the RS subsystem is the one responsible for most

of the contributions to the thermal conductivity. The main differences between the results

for the two approximants correspond to the RS thermal conductivities calculated along the

incommensurate direction (y), which can be related to the different clustering patterns found

along this direction after relaxations, affecting only the RS structure.

Figure 24 displays the thermal conductivity for the 3/2 approximant calculated for U = 0.

I observe a simlar behavior as in the U = 5 eV case; the only difference is that the values

of κ are up to 10% higher. The Hubbard term, by adding a repulsive interaction between

electrons, loosens the strength of the binding between atoms which in turns results in smaller

force constants than in the U = 0 case.

4.4 Summary

In this chapter I have reported first principles calculations of the lattice and thermal prop-

erties of the misfit-layered thermoelectric CCO, modeled by rational approximants, within the

framework of standard DFT and DFT+U. Vibrational spectra, specific heat and thermal con-

ductivities have been calculated for both the 3/2 and 5/3 approximants. Although for the
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Figure 22. (a) and (b), calculated thermal conductivities for the 3/2 (top) and 5/3 (bottom)
approximants along the different Cartesian axis. (c) Experimental values from Satake [78].
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3/2 approximant and U = 0 a few negative frequencies are obtained, the phonon DOS exhibit

similar features in the three cases considered in this work, i.e., 3/2 with U = 0, 5 eV and 5/3

with U = 5 eV. Calculated constant volume heat capacities are found to be within a 5% with

respect to available experimental data, being the 3/2 approximant the one in better agreement

with experiment when we include the U and the worst when we do not inclued it. Thermal

conductivities have been calculated by using the Boltzmann Transport Equation, within the

relaxation time approximation, assuming τ as an adjustable parameter. Typical values for the

relaxation time are in the range 1−5 ps. Here I obtained that for a value of τ = 2 ps, calculated

thermal conductivities are of the same order as the corresponding experimental values. The

calculated thermal conductivities show a clear anisotropic behavior along the different lattice

directions. In all the cases the ratio κab/κc ≈ 5 − 10, which is in good agreement with exper-

imental data for other layered cobaltites. Although the thermal conductivities along a exhibit

similar values for the 3/2 and 5/3 approximants (with U = 5 in both cases), the values along

the incommensurate direction, b, follow different behaviors. For the 5/3, the value of κa is pre-

dicted to be greater than the value of κb, which is better agreement with experimental results

by Satake et al. The opposite behavior is observed for the calculated thermal conductivities for

the 3/2 approximant. This result reinforces one of the conclusion of chapter 3, where I showed

how the 5/3 approximant (with U = 5 eV) did a better job than the 3/2 approximant in the

prediction of the electronic structure when compared with experiment.

I have also evaluated the dependence of different thermal properties on U . This was only

performed for the 3/2 approximant. I did not observe significant differences for the phonon DOS,
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however, using U = 5 eV slightly improves the agreement of calculated Cv with experiment.

In additon, the value of U does not alter the relative ratios between thermal conductivities

along the different lattice directions, but their magnitudes seem to scale monotonically with

U . Partial contributions to the total thermal conductivity of CCO were also calculated for the

3/2 and 5/3 approximants, and I showed that most of the contributions are due to the RS

susbsystem. Although many approximations have to be made in order to calculate the thermal

conductivity of CCO from first principles, the model proposed with a 5/3 approximant is able

to predict its main features in reasonable agreement with experiment. This method can then be

used in the search for better thermoelectric materials, as it gives a way to estimate the thermal

conductivity as function of structure and composition. Since, in general, the lattice thermal

conductivity is reduced more strongly than the electronic counterpart upon alloying, relative

variations with respect to different dopants can thus be assessed from first principles.
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Figure 24. Comparison between calculated thermal conductivities along different Cartesian
directions for the 3/2 approximant with U = 0 and U = 5 eV, respectively.



CHAPTER 5

FIRST-PRINCIPLES STUDY OF COMPENSATION MECHANISMS IN

NEGATIVELY CHARGED LaGaO3/MgAl2O4 INTERFACES

5.1 Introduction

The fascinating and diverse electrical properties of thin film heterostructures have drawn

worldwide attention in recent years [79–82]. The physical origins of this diversity are inherent

to the interfacial structures and include symmetry-breaking and epitaxial strain. In turn,

the resulting changes in the charge distribution and crystal field can drive atomic relaxations

and reconstructions, creating a much larger manifold of possible structures and, consequently,

electrical properties compared to parent bulk structures. In particular, interfacial ion transport

has been widely investigated in oxide materials. Higher mobility at temperatures below 800◦C

would have a profound impact on applications in energy conversion devices [11]. Many undoped

bulk materials have good mobilities but a limited number of carriers. In many cases, despite the

fact that it is possible to increase the number of charged carriers by doping, interactions between

dopant ions and their charge-compensating defects lead to the formation of distinct clusters that

decrease the mobilities of the migrating species [83]. Some interfaces in oxides are known to

enhance ionic diffusion [84–86]. Modifications of interfacial charge to manipulate properties of

the space charge layer provide another venue of changing transport properties in the proximity

of an interface. If the density of the interfaces is such that space charge layers overlap, one can

84
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expect emergent behavior of ionic transport properties that cannot be interpolated from the

bulk counterpart behavior. However, it is well known that grain boundaries in acceptor-doped

oxide perovskites [79] and fluorites [80] are typically positively charged relative to the bulk. This

leads to oxygen vacancy depletion layers, and a consequent reduction in ionic conduction. For

heterostructures with oxygen vacancies as the dominant carriers, a possible route to enhance in-

plane interfacial ionic transport is to induce oxygen vacancy enrichment in space charge layers

during synthesis. Here, I describe a computational study of such a thin film heterostructure.

Heterogeneous doping is a well-known strategy for enhancing ionic conductivity by increas-

ing the concentration of mobile point defects in the vicinity of the interface (i.e., in the space

charge region) [81]. Heterolayers were also demonstrated to significantly improve ionic conduc-

tivity in CaF2/BaF2 superlattices, with conductivity progressively increasing with increasing

interfacial density [82]. Similar strategies have been employed more recently in the case of

oxides, with varying degrees of success. For example, Kosacki and co-workers reported that the

oxygen ion conductivity of Y2O3-stabilized ZrO2 (YSZ) is significantly enhanced when grown

on MgO substrates [87]. Other studies of this system have not found the same enhancement

[88, 89]. Korte et al. found ionic conductivity to increase linearly with increasing density

of phase boundaries in YSZ/Y2O3 heterostructures, and the activation energy was found to

decrease for strained YSZ layers [90]. There has been much debate on enhanced ionic conduc-

tivity along YSZ/SrTiO3 heterointerfaces. Garcia-Barriocanal et al. reported an eight order-

of-magnitude increase in oxygen ion conductivity [91], although others have argued that the

enhanced conduction in that system is electronic rather than ionic in origin [92]. These studies
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not only illustrate the potential of heterointerfaces in modulating ionic transport, but also the

difficulty in understanding the conduction behavior of oxide interfaces, advancing arguments on

the effects of space charge, epitaxial strain and composition variations on ionic conductivity in

multilayers. From a computational perspective, there have been several recent first-principles

studies aimed at improving the understanding of the properties of polar interfaces [93–98].

Electronic and ionic redistribution were shown to lead to compensation of extra charge at the

interface resulting in considerable changes in electronic structure of oxide heterostructures.

The perovskite LaGaO3 (LGO) is an insulator, with very low ionic conductivity. Both La

and Ga retain their valence state (+3) in oxides, so when LGO is doped with lower valence

cations such as Sr and/or Mg, the oxygen vacancy concentration can be substantially increased.

Doped LGO exhibits oxygen ion conductivity comparable to the best oxygen ion conductors

[99]. Creating negatively charged interfaces with another material is another possible route

to increasing the oxygen vacancy concentration in LGO and possibly inducing enhanced ionic

conductivity in the space charge layers adjacent to the interfaces. Here I demonstrate that het-

erointerfaces in LGO heterostructures with spinel-structured MgAl2O4 (MAO) can be designed

to create negatively charged interfaces. MAO is an insulator with a wide band gap and single-

valence cations (+2 and +3 for Mg and Al, respectively). Thus, a charged interface between

MAO and perovskite LGO is unlikely to be compensated electronically. A good epitaxial match

between MAO and LGO and similar thermal expansion coefficients also motivate my choice of

these two materials for this study.
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My strategy to induce higher vacancy concentrations involves the use of charged atomic

planes as building blocks, as charged surfaces and interfaces require compensation to maintain

overall electrical neutrality. Uncompensated polarity in semi-infinite systems causes diverging

electric fields, and much work has been devoted to these issues [14]. The compensation is

typically achieved by redistribution of electronic charges, changes in local composition at the

interface or screening by mobile ions in the space-charge layer. In the presence of mobile

charge carriers near an interface, a space charge layer arises, which can be described by the

Poisson-Boltzmann equation, assuming purely electrostatic interactions with the interface and

each other. However, the specific interactions of mobile carriers with interfacial species near

the interface can modify the expected behavior due to variations in the composition, bonding,

and structure at the interface in comparison to the bulk. I explore how these interactions can

be investigated using first-principles methods and whether they can be included in continuum

models.

In this work, I investigate an interface between the perovskite LGO, and the spinel MAO,

which both exhibit alternating positive and negative charged (001) planes (see Figure 5). Ex-

perimentally, perovskite-spinel heterointerfaces are known to form spontaneously as a result of

phase separation [100]. The interfacial planes of both materials in my model are negatively

charged, giving rise to an excess negative charge that is compensated by oxygen vacancies in

the space charge layer. Thus, the heterostructure maintains overall electrical neutrality and, at

the same time, allows us to investigate different vacancy distributions next to the interface and

determine specific interactions. I compare electronic and ionic compensation mechanisms and
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determine electron density distributions self-consistently in each case via first-principles calcu-

lations. Based on the results of those calculations, I model band-bending and distributions of

vacancies using the Poisson-Boltzmann equation. The rest of the paper is organized as follows.

In Section II, the computational methods and parameters are provided. In Section III, I present

results for the computed properties of bulk LGO and MAO phases with and without vacancies,

followed by structural energetics and electronic structures of the LGO(001)//MAO(001) inter-

faces for different oxygen vacancy distributions. In Section IV, my results from first principles

computations are used to estimate the distribution of charged vacancies within the framework

of the Poisson-Boltzmann equation. Finally, I summarize my results in Section V.

5.2 Computational Details

5.2.1 Method

All calculations were performed within the framework of density functional theory (DFT)

using the projector augmented wave method as implemented in VASP with the Perdew-Burke-

Ernzerhof exchange-correlation functional [61]. Unless specified otherwise in the next subsec-

tion, I used a cutoff energy of 530 eV for wavefunctions. The k-point meshes for structure

optimizations, total energy, and density-of-states (DOS) calculations for the various structures

considered are also given in the next subsection. All structures were optimized using criteria of

total-energy-convergence to within 0.1 meV and residual forces to less than 0.02 eV/Å. DOS

calculations were performed using the tetrahedron method. For DOS and total energy calcula-

tions of the relaxed structures, the number of k-points and the energy cutoff for wavefunctions
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were chosen in order to ensure energy convergence to within 0.01 eV. Bader analysis was used

to determine ionic charges.

5.2.2 Computational Procedures

5.2.2.1 Bulk

First, I optimized geometries of bulk LGO and MAO structures. Of the three polymorphs for

LGO (cubic, orthorhombic and rhombohedral), I performed calculations using the orthorhombic

structure (o-LGO), which is known to be the one with the lowest ground state energy [101]. Full

structural optimization for o-LGO was performed on a supercell containing 20 atoms, starting

from the experimental lattice constants [102] a = 5.523 Å, b = 5.491 Å, and c = 7.772 Å, using

a 4× 4× 4 k-point mesh. For MAO bulk calculations, a cubic supercell containing a total of 56

atoms was considered. Starting from the experimental cubic lattice parameter[103] a = 8.075

Å, the structure was fully optimized using a 6× 6× 6 k-point mesh.

For structural optimization of LGO or MAO structures with oxygen vacancies (VO) I used

supercell models. For LGO I used a
√

2 ×
√

2 × 1 supercell and considered three different

cases: one VO per cell (since the structure is quasi-cubic, various oxygen sites can be considered

to be equivalent), two VO’s located at the maximal separation in the same LaO plane, and

two VO’s located at the maximal separation in the same GaO2 plane. The in-plane distance

between two VO sites is
√

2a = 5.77 Å. Geometry optimization for one VO in MAO was done

using the same supercell as in the bulk calculations. In these geometry optimizations, only

the internal parameters were allowed to relax, keeping the lattice parameters fixed at their

previously optimized values. In vacancy calculations I used 3 × 3 × 3 and 5 × 5 × 5 k-point
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meshes, and wavefunction energy cutoffs of 425 and 400 eV for LGO and MAO, respectively.

DOS and single-point total energy calculations were performed using a 4× 4× 4 k-point mesh

for LGO bulk and a 10× 10× 10 k-point mesh for MAO bulk. In cases of LGO and MAO with

oxygen vacancies, DOS calculations were performed using 6 × 6 × 6 and 10 × 10 × 10 k-point

meshes, respectively.

5.2.2.2 Heterostructure

The model of the LGO(001)//MAO(001) interface was constructed by putting together a

GaO2-terminated LGO slab and an AlO2-terminated MAO slab. In this way LGO and MAO

slabs have non-stoichiometric structures of the type (GaO2)1−/ (LaO)1+/.../(LaO)1+/(GaO2)1−,

and (AlO)1−/(1/2Mg)1+/... /(1/2Mg)1+/(AlO)1−, respectively, where charge per plane is given

under the assumption that the ions are in their formal valence states. Since formation ener-

gies are significantly higher in the MAO structure, the extra charge due to deviations from

stoichiometry is compensated by oxygen vacancies in the LGO part of the structure. The

MAO portion of the (001) superlattice used in our calculations consists of 5 (AlO)1− and 4

(1/2Mg)1+ stacking planes, amounting to a total of 64 atoms. For the LGO part, I used 9

(GaO2)1− and 8(LaO)1+ intermediate planes, in order to minimize the interaction between the

periodic negatively charged interfaces and also to ensure a more “bulk-like” behavior away from

the boundary. As a result the present model for the LGO//MAO heterostructure has the form:

(GaO2)1−{(LaO)1+(GaO2)1−)}8//(AlO)1−{(1/2Mg)1+(AlO)1−}5, with a total of 232 atoms.

The LGO(001)//MAO(001) interface is shown schematically in Figure 25.
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    La       

(001)

(010)     Al           O           Ga           Mg       

Figure 25. Side view of initial configuration of the o-LGO//MAO interface. The interface is
formed by (AlO2)−1 and (GaO2)−1 planes, which results in an excess negative charge. For

o-LGO, tilted octahedra with a central Ga atom are displayed.
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In the present work, MAO is considered to be a substrate with multilayers of LGO and

MAO grown on top of it. Therefore, the lattice parameters of quasi-cubic LGO along x and y

directions (considering z to be the direction perpendicular to the interface) were fixed at the

optimized lattice parameter of (001) MAO to simulate epitaxy. All internal parameters were

optimized, as well as the lattice parameter along z for the whole supercell. Among the various

configurations for the heterostructure of LGO on MAO, I have chosen the one with the lowest

total energy, and used it in order to construct the initial structures of the interfacial structures

with different vacancy configurations considered. Oxygen vacancies in the heterostructure were

created in LaO and GaO2 planes located at different distances from the interface with the same

in-plane separations between two VO sites as in the bulk.

5.2.3 Chemical Potentials

The formation energy for oxygen vacancies (EVO) per vacancy was calculated using

EVO =
Et(VO)− Et

NVO

+ µO, (5.1)

where Et(VO) and Et refer to the total energies of the systems with and without VO, respectively,

and NVO is the number of vacancies. The system is assumed to be in equilibrium with O2 in gas

phase. Therefore, the chemical potential of oxygen at temperature T and partial pressure p is

uniquely determined as µO = 1
2µO2(gas)(T, p), which can be expressed in terms of the chemical

potential of oxygen at temperature T and p0 = 1 atm partial pressure as µO2(gas)(T, p) =
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(
µO2(T, p0) + kT ln p

p0

)
. The expression for µO2(T, p0) can be obtained by dividing it into

enthalpy (H) and entropy (S) contributions as

µO2(T, p0) =
(
HO2(T, p0)−HO2(0, p0)

)
− TSO2(T, p0) +HO2(0, p0). (5.2)

Assuming that HO2(0, p0) corresponds to the total energy of the O2 molecule, and by obtaining

H and S from thermochemical tables [104], the above equations can be combined to give µO

at any given T and p. In order to compute the total energy of O2 in the gas phase, I placed an

O2 molecule in a 14× 15× 16 Å3 supercell, and performed spin-polarized calculations with an

energy cutoff of 900 eV for the wavefunctions and Γ-point sampling.

The interface energy for a LGO//MAO heterostructure is defined as

Eint = (Et −NLaµLa −NGaµGa −NMgµMg −NAlµAl −NOµO)/2A, (5.3)

where Et is the total energy of the LGO//MAO system, A is an interface area per supercell and

NX , µX refer to the number of atoms of type X in the supercell and their chemical potentials

in respective bulk oxides. The factor of 2 accounts for the fact that by construction there are

two identical interfaces in a periodic LGO//MAO supercell. In order to evaluate the limits

on chemical potentials of Ga and Al, calculations were also performed by full relaxations from

the experimental parameters [105, 106] of monoclinic β −Ga2O3 and trigonal α−Al2O3 using

k-point meshes of 4× 12× 8 and 6× 6× 6, respectively.
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The chemical potentials are derived assuming thermodynamic equilibrium with LaGaO3,

MgAl2O4, Ga2O3 and Al2O3, which results in the following set of equations:

µLa + µGa + 3µO = µLaGaO3 , (5.4)

µMg + 2µAl + 4µO = µMgAl2O4 , (5.5)

2µGa + 3µO = µGa2O3 , (5.6)

2µAl + 3µO = µAl2O3 , (5.7)

where µLaGaO3 , µMgAl2O4 , µGa2O3 , and µAl2O3 are the calculated total energies per formula unit

of bulk LGO, MAO, Ga2O3, and Al2O3, respectively. I calculate vacancy formation energy

(Equation 5.1), and interface energy Eint (Equation 5.3) by expressing all of the individual

cation chemical potentials from Equation 5.4 to Equation 5.7 along with Equation 5.2 for µO .

5.3 Results and Discussion

5.3.1 Calculated Structures and Electronic Properties of Bulk LGO and MAO

The optimized bulk lattice parameters along with corresponding experimental values for

LGO and MAO are given in Table I. For both LGO and MAO, the calculated lattice parameters

are slightly overestimated, by ≈ 1%, with respect to the corresponding experimental values,

giving a lattice mismatch of 4.2%, slightly bigger than the experimental value of 3.7%.

Figure 26 shows the computed partial DOS for bulk LGO and MAO. The calculated bandgap

values are given in Table I. As expected, LGO shows an insulating behavior with a bandgap

of 3.74 eV, which is underestimated with respect to the experimental value of 4.4 eV, but in
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Figure 26. Projected DOS for bulk LGO (top) and MAO (bottom). Both structures display
insulating behavior with bandgaps calculated to be 3.74 and 5.00 eV, respectively.

agreement with previous DFT calculations using GGA [107]. The main contributions to the

DOS at the top of the valence band are from the hybridized O 2p, and Ga 3d and 4p states. In

the conduction band, the high intensity peak at ≈ 5 eV represents the unoccupied La 4f states.

For MAO, a bandgap of 5.00 eV is underestimated with respect to the experimental value of

7.8 eV [108]. The upper valence band contains mostly O 2p orbitals, while the lower part of the
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conduction band corresponds to unoccupied Al 3p and Mg 3s orbitals. These results for MAO

are also in good agreement with previous DFT calculations using GGA [109].

TABLE VII

Calculated and experimental bandgaps and lattice parameters of LGO and MAO.

Calculated Experimental [102, 103, 107, 108]
Lattice Parameters (Å) Lattice Parameters (Å)

Bandgap (eV) a b c Bandgap (eV) a b c

LGO 3.74 5.57 5.55 7.88 4.4 5.523 5.491 7.772
MAO 5.00 8.16 - - 7.8 8.075 - -

5.3.2 Oxygen vacancies in bulk LGO and MAO

I performed geometry optimization of structures with oxygen vacancies created in the LGO

and MAO bulk as described in the previous Section. The formation energies for VO in LGO

and MAO were calculated using different concentrations of vacancies, NVO/NO, where NVO and

NO are the number of VO’s and available O sites in the supercells, respectively. I considered

NVO/NO values of 1/32 for MAO and 1/24 and 2/24 for LGO. The results for the formation

energies EVO (Equation 5.1) are given in Table II. They show that the vacancy formation energy

for MAO at the lowest calculated concentration is significantly higher than that for LGO (by

≈ 1.5 eV), suggesting that in an LGO//MAO heterostructure the formation of VO should be

energetically more favorable in the LGO subsystem than in MAO.

Next, I consider interactions between vacancies in LGO by comparing calculations with

different oxygen vacancy concentrations. Table II shows formation energy of oxygen vacancy
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TABLE VIII

Formation energies for VO in bulk LGO and MAO. See the text for vacancy concentrations.

1/24 VO concentration Formation Energy (eV)
LGO 5.14
MAO 6.65

2/24 VO concentration
LaO plane (LGO) 5.28

GaO2 plane (LGO) 5.19

for 1/24 and 2/24 vacancy concentrations, respectively. In the latter case, two VO’s, instead

of one, are created in bulk LGO. In this case two scenarios were considered: two VO’s located

in (a) a GaO2 plane and (b) a LaO plane. The VO − VO distance of 5.77 Å, was the same in

both cases, which is the maximum possible in-plane distance for VO’s in the present supercell

configuration. As indicated by the formation energies in Table II, the interaction of vacancies

is repulsive and relatively weak, with interaction energies of 0.025 and 0.07 eV per vacancy for

VO’s in GaO2 and LaO planes, respectively, resulting in similar vacancy formation energies for

1/24 and 2/24 concentrations. Comparing the formation energies of vacancies in LaO versus

the GaO2 planes at the same concentrations, we find the vacancies to have a slight preference

to be in a GaO2 plane (by 0.045 eV). We note that in the bulk structures vacancies are formally

not charged, since a neutral O atom is removed from the supercell to create a vacancy. In the

forthcoming discussion of results for the heterostructures, each heterostructure considered in

our calculations formally has a total of −4e extra charge at the interface (per supercell), which

requires two compensating positively charged oxygen vacancies, denoted by V ••O in the Kröger-
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Vink notation. Therefore, vacancy interactions in the bulk LGO and in the heterostructure

might not be directly comparable.

5.3.3 Structure and Interface Energies of the LGO//MAO Heterostructures

In our model of the LGO//MAO interface, a GaO2 plane of LGO with a nominal charge of

−1e per formula unit is placed next to an AlO2 plane of MAO with the same nominal charge of

−1e per formula unit, introducing an extra negative charge at the interface. In polar interfaces,

the required charge compensation may be achieved by different mechanisms [94, 95, 14], such as

(i) a change in the number of electrons, as in AlO2/LaO/TiO2 interfaces in LaAlO3//SrTiO3

superlattices, where the extra electrons are placed in the SrTiO3 conduction band, and/or (ii)

by an atomic reconstruction, as in the case of the AlO2/SrO/TiO2 interfaces [93], where charge

compensation is achieved by the introduction of oxygen vacancies [110]. In order to compare

different compensation mechanisms and to find the most favorable, I considered the following

configurations: (a) LGO//MAO interface with no vacancies, (b) LGO//MAO interface fully

compensated by oxygen vacancies.

As mentioned above, for the heterostructure model considered here, two VO’s (per each of

two interfaces in the supercell) are required to achieve compensation, since each GaO2 or AlO2

plane is represented by a total of four formula units in the supercell, resulting in an extra charge

of −4e per interface. In order to compare different vacancy arrangements in the heterostructure

in the latter case, I calculated the LGO//MAO heterostructure with two vacancies per interface

located in either the GaO2 or LaO plane at different distances from the interface. The two VO’s
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Figure 27. Relaxed structures of the LGO//MAO interface along (001) and (010) directions
for vacancies located in (a) the first plane, (b) the second plane, and (c) the third plane.

Small squares show the approximate location of the vacancies.

were created in either GaO2 or LaO planes by removing negatively charged oxygen ions, thus

making overall heterostructure electrically neutral (i.e. compensated).

Optimized geometries of heterostructures with vacancies in either of the first three layers are

shown in Figure 27. For a more quantitative description of the structures, average displacements

along z for atoms located in planes 1, 2 and 3 of LGO are presented in Figure 28. When the

vacancies are in the first layer, the oxygens in this layer displace outward by about 0.3 Å on

average, driven by electrostatic interactions with a negatively charged interface. Displacements

of cations in the first three layers are small in this structure. There is a nearly uniform out-
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Figure 28. Average displacements for La, Ga, O as a function of the plane in which they are
located when VO’s are located in (a) the first plane, (b) the second plane, and (c) the third

plane.

of-plane compressive strain beyond the third layer, which is a common feature of all three

structures presented in Figure 27. Structures corresponding to vacancies in the second (GaO2)

and third (LaO) planes are characterized by a more pronounced reconstruction in the interface

region. When the vacancies are in the second plane (LaO), two of the Ga ions in the GaO2

plane adjacent to the interface move towards the MAO region by about 0.15 Å following the

pattern of Mg ions. The outward displacement of O atoms by 0.4 Å on average is somewhat

higher than in the previous case. When the vacancies are in the third plane (GaO2), the two
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Ga ions align with Mg ions and are located exactly where the next layer of Mg atoms would be

located in a periodic MAO structure. The displacements of O atoms, on the other hand, are

much smaller than in previous cases. We note that the crystal field effects are expected to be

strong in MAO because of the predominantly ionic character of bonding. This favors location

of positive atoms (Ga) in LGO near the interface in ionic positions (Mg) of the truncated

MAO lattice. Additional explanation for this structural rearrangement is a higher structural

flexibility of the interfacial planes as a result of removing oxygens from the second or third

planes, which weakens the bonding between the first planes next to the interface. This results

in more degrees of freedom for interface reconstruction. This is not the case when vacancies

are removed either from the first plane or from planes beyond the third plane into the LGO

structure (not shown).

The formation energies of oxygen vacancies were calculated using Equation 5.1. Here, all

energies are referenced to the same heterostructure without vacancies referred to in the compen-

sation mechanism (a) above. These relative energies of formation are plotted in Figure 29. In

many cases, due to the underestimation of bandgaps, the application of LDA or GGA exchange

functionals results in incorrect formation energies. The effects are stronger when charged defects

are introduced into the system, but also occur when neutral defects introduce new single-particle

states that are occupied by electrons. This does not apply to our case (LGO//MAO), where

neutral oxygen atoms are removed from the system and where, apart from a small reduction in

the bandgap, no new single-particle states were observed in the DOS [111]. Negative vacancy

formation energy indicates that an oxygen vacancy would be preferred to electronic charge
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Figure 29. Formation energies for oxygen vacancies located in different LGO planes. Starting
at plane 3, formation energies can be linearly interpolated, as shown by a straight line,

reflecting the effect of the electrostatic potential generated by the negative charge distribution
at the interface. (See Section IV).

transfer in order to compensate the excess charge at the interface. This is the case for vacancies

belonging to planes 1 (GaO2), 2 (LaO), and 3 (GaO2), but not for vacancies located deeper

in bulk LGO. The minimum in energy is achieved when the vacancies are located in plane 3

(GaO2), corresponding to the most stable configuration. We can also calculate the formation

energies for VO’s in different planes as a function of the oxygen partial pressure in the range

from 10−12 to 1 atm at room temperature (using the formalism summarized in Section II.C).

The results for the first five planes are shown in Figure 30.
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Figure 30. Formation energies of oxygen vacancy calculated as a function of oxygen partial
pressure (atm) at a temperature of 298.5 K. Each line corresponds to vacancies located in a

different plane.

Interface energies for the heterostructure with VO’s in the third (GaO2) plane and for the

heterostructure without vacancies were calculated using Equation 5.3. Typical values for inter-

face energies are ≈ 1−3 J/m2. The results for the interface energies for the two cases - without

vacancies and with vacancies in the third plane - are shown as a function of the oxygen partial

pressure in Figure 31. We observe that even for very high pressures the interface with vacancies

has the lower energy.

5.3.4 Charge distribution and electronic properties of LGO//MAO heterostructures

Since the electron distributions in our calculations are determined self-consistently, the

electrons in the nominally charged planes can redistribute. For example, if one-electron lev-

els associated with vacancies are lower in energy than the states in the interfacial planes, the
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Figure 31. Interface energy computed using Equation 5.3 as a function of the oxygen partial
pressure for an interface without any VO’s (solid line) and with VO’s located in the third

(GaO2) plane of LGO (dashed line).

vacancies might trap electrons and change their valence state. This is likely to affect charge

compensation mechanisms and ionic conductivity in the space charge layer. In order to in-

vestigate charge compensation in the LGO//MAO heterostructure in detail, I address electron

charge distribution. A Bader analysis was performed to obtain the charge state for each atom

in the heterostructure and then these values were summed up for each atomic plane parallel to

the interface in order to calculate the total charge per plane.

The charge profile for the structure with VO’s created in the third (GaO2) planes from

each interface is shown in Figure 32. As expected, the MAO is more ionic than LGO. In fact,

the charges per plane for MAO are twice higher than those for LGO despite the fact that

the nominal charges of the planes obtained by summing up formal charges of the constituent
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ions are the same in both materials. The charges in the planes away from the interface are

very similar to bulk charges, with the notable exception of the planes with VO’s. It is evident

that after vacancy creation and relaxation the interface remains negatively charged, while VO’s

exhibit positive charge and do not accept electrons from the interfacial planes or elsewhere.

This charge state corresponds to two V ••O located in the third (GaO2) plane.
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Figure 32. Total charge per plane for the LGO//MAO heterostructure with vacancies located
in the third plane. (Blue) circles represent the location of the vacancies and dashed horizontal

lines (green) represent the bulk values of the charge in the planes.

Next I consider the effect of different compensation mechanisms on the electronic structure.

Since it is known that DFT produces bandgaps that are too low compared to experimental

values, these results should be taken as qualitative. The bandgaps for heterostructures with

different positions of the plane in which the vacancies are located are plotted in Figure 33. As
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the vacancies are placed farther away from the interface, the bandgaps decrease. However, for

the configuration with the lowest energy in our calculations (vacancies in the third plane), the

heterostructure is still insulating and exhibits a bandgap of 1.78 eV. The bandgaps become

small for heterostructures with vacancies located beyond the fourth plane. This decrease in

the bandgap with the increasing distance between the plane containing the vacancies and the

interface, can be qualitatively understood as sketched in Figure 33. The negative charge at the

interface plane together with the positive charge of the plane containing the vacancies creates

an electric field inside the LGO region in-between these two planes, thus generating a linear

potential that bends both the valence and conduction bands. The bandgap, calculated as the

difference between valence band maximum and conduction band minimum, decreases linearly

with the distance. If we use an extrapolation, a large concentration of vacancies away from the

interface would result in a metallic state as the distance increases. This is in contrast to the

compensation mechanism without the vacancies, where the position of compensating charge

does not vary. Therefore, predominantly ionic conductivity seems to be possible, since the

heterostructure maintains the band gap with the compensating vacancies at the most favorable

distance from the interface. In the next section, I consider the distribution of vacancies in order

to validate this point.

5.4 Vacancy Distribution using the Poisson-Boltzmann Equation

In the previous sections I have determined the formation energies, charge states and mi-

croscopic configurations for vacancies in the LGO//MAO heterostructure at 0 K within the

framework of DFT. However, it is also important to know how vacancies would be distributed
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Figure 33. (a) Bandgap as a function of the location of vacancies. (b) Schematic of the
valence and conduction band bending in the region between the positively charged vacancies

and the negatively charged interface. Indicated value of bandgap corresponds to the case
when VO’s are located in the third plane. (c) Schematic of the electric field in LGO.

at finite temperatures and thus to determine the spatial extent of the charge-compensating

layer. One way to give a macroscopic description of the LGO//MAO system at finite tem-

perature is to consider the Poisson-Boltzmann (P-B) equation, which has been used by others

in the study of carrier distribution in ionic conductors [112, 113]. Within this approach, the

distribution of charged carriers in the presence a surface charge density is determined by their

electrostatic energy and the Boltzmann statistics. The input parameters for this model are

the dielectric constant of the medium, the charge density at the interface and the charge of

each mobile particle [in this case, oxygen vacancies (V ••O )]. First, we establish a correspondence
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between the input parameters of the P-B model and our DFT results. We start by noticing

that the formation energy for V ••O ’s displayed in Figure 29 can be thought as composed of two

contributions: on the one hand the energy resulting from the electrostatic interaction between

the charged vacancy (charge +2e) and the negatively charged interface (Ee), and on the other

hand an intrinsic contribution (Ei) which includes short-range effects (such as structural, chem-

ical, etc.). In this way we can write EVO = Ei + Ee. Guided by the discussion in the previous

section (Figure 33c), we can express the electrostatic contribution as

Ee =
σe

εrε0
z, (5.8)

where z is the coordinate in the direction perpendicular to the interface, σ is the charge density

at the interface, and εr is the relative dielectric constant of LGO. From Figure 29, we observe

that the formation energy per V ••O grows almost linearly starting from plane 3 (GaO2 layer)

and going into the bulk. I conclude from this observation that when the vacancies are located

closer to the interface than the third atomic plane, the electrostatic contribution to EVO is

not the dominant contribution to the vacancy energy since strong structural rearrangement

in the interfacial region results in EVO approximately equal to Ei. On the other hand, if the

vacancies are located farther away from the interface than the third plane, the relaxations in

the first several planes next to the interface are much smaller and the electrostatic energy of

these vacancies can be reasonably approximated by Equation 5.8. Thus, by assuming that the

intrinsic contribution to the vacancy formation energy, Ei, is a constant, we can calculate σ/εr

from the slope of the interpolating line shown in Figure 29. Taking into account that σ is
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determined by the extra charge placed at the interface, and using the value that corresponds to

−4e per unit cell (σ = −0.96 C/m2), we obtain εr = 24.8, which is in very good agreement with

the experimental value of 25.20 at room temperature for the (001) direction [114]. Such a good

agreement between the microscopic (DFT) and the macroscopic (electrostatic) models, serves

as a validation for the applicability of the P-B analysis developed in the rest of this section. We

can now write the P-B equation for V ••O ’s (charge +2e) in the LGO part of the heterostructure

as

d2φ

dz
= −2eρ0

εrε0
e
− 2eφ
kBT , (5.9)

where ρ0 is defined as the density of vacancies at a point where the potential φ(z)=0, and can

be determined by the requirement that the charge at the interface is compensated by the total

charge of the vacancies. This equation takes into account the fact that the potential due to

the interfacial charge density is screened by the vacancies. Solving Equation 5.9, we obtain the

density of vacancies as a function of z

ρ(z) =
εrε0kBT

2e2
(
z + εrε0kBT

eσ

)2 . (5.10)

In Figure 34 I plot the vacancy concentration as a function of the distance to the interface

for temperatures of 300 and 800 K, respectively. In order to show how the value of the interfacial

charge would affect the equilibrium distribution, I also plot the concentration of vacancies for

different interfacial charge densities (σ/10 and σ/100). We observe that for σ = −0.96 C/m2
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at both temperatures the density of vacancies decreases abruptly when going away from the

interface, which means that most vacancies are located in plane 3. For an interfacial charge

density of σ/100, vacancies would distribute more uniformly across the structure.

It is illustratrive to compare resulting distributions with the highest vacancy concentration

(≈ 1021cm−3) of Sr- and Mg-doped LGO [115]. In the LGO//MAO heterostructure (where

σ = −0.96 C/m2) the concentration of vacancies at a distance of 4 Å from the interface (plane

3) is more than two orders of magnitude higher than for the Sr- and Mg-doped case, either at 300

or 800 K. Since the value of σ is relatively large, the concentration of vacancies in Equation 5.10

decreases like 1/z2 (z is measured from plane 3) when going away from the interface into LGO

bulk. Therefore, at 800 K the density of vacancies 6 Å away from the interface (plane 4) is of

the same order of magnitude as in the doped bulk. For that reason, to design a nanostructure

with minimal vacancy concentration similar to that of Sr- and Mg- doped bulk LGO, the total

thickness of the LGO slab should be below twice 6 Å. It is likely that high ionic conductivity

in the LGO//MAO system could be achieved at lower average vacancy concentrations than in

the doped LGO, due to decreased interactions between the charged carriers and the dopants

[83], resulting in higher mobility in the heterostructure.

From the P-B model we can also obtain the difference of potential between the interface

and a point at a distance z from it in LGO as

φ(z)− φ(0) =
kBT

e
ln

[
1 +

eσz

εrε0kBT

]
. (5.11)
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Earlier I have mentioned that one of the requirements for a good ionic conductor was

the absence of any electrical conductivity. I have shown that at T = 0 K the LGO//MAO

heterostructure remained insulating for all the different vacancy configurations (Section III.D).

Now we can revisit this question in the light of the P-B formalism. In order to have electronic

conductivity in the system the electrostatic energy of an electron should be enough to promote

this electron from the valence to the conduction band, overcoming the bandgap. For that to

happen Egap = e [φ(z)− φ(0)], where Egap corresponds to the bandgap for bulk LGO calculated

to be 3.74 eV (more than 1 eV smaller than the bandgap for MAO). Using this condition together

with Equation 5.11 and solving for z, it is possible to estimate the value of the critical thickness

of the LGO part of the heterostructure for which electronic conductivity will start to occur. In

this case, the values I obtain for the critical thickness are well above the possible heterostructure

size, even for a temperature of 1000 K, indicating that electronic conductivity would be very

unlikely in the system. Therefore, according to this model, even for high temperatures our

LGO//MAO heterostructure would remain insulating.

5.5 Summary

I have studied the possibility of enhancing ionic conductivity in LGO by the design of

LGO//MAO heterostructures with excess negative charge in the interfacial planes. My study

reveals that compensation by oxygen vacancies is a favorable mechanism for thin LGO slabs.

DFT calculations for vacancies placed at different distances from the interface exhibit a non-

monotonic formation energy behavior in the first three planes, followed by a nearly linear

increase in energy consistent with electrostatic interactions. The vacancy formation energy was
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found to be the lowest for vacancies located in the third LGO plane away from the interface.

Calculated charge distributions indicate that there is no charge migration/redistribution from

the negatively charged interface towards the bulk, and that the compensating vacancies exhibit

a charge consistent with a charge state V ••O . Furthermore, I showed that although there is a de-

crease in the bandgap, the LGO//MAO heterostructure with vacancies still remains insulating.

These two conditions, i.e. the presence of charged ionic defects and the absence of electronic

conductivity, are essential requirements for a good ionic conductor. Finally, based on these

results, a Poisson-Boltzmann model was used in order to describe the vacancy distribution,

showing that even at high temperatures most vacancies are highly localized around the first

atomic planes of the LGO structure and that electronic conduction is very unlikely. In light of

the recent advances in synthesis of oxide heterostructures and the encouraging first-principles

results reported here, I therefore suggest that it is possible to synthesize such a heterostruc-

ture with excess negative charge at the interfaces. This is likely to lead to enhanced ionic

conductivity in such a layered system.
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Figure 34. Poisson-Boltzmann concentration of vacancies in LGO (log scale) calculated for
different charge densities at the interface and at temperatures of (a) 300, and (b) 800 K.

Dashed horizontal lines correspond to the highest concentration of vacancies in Sr- and Mg-
doped LGO.



CHAPTER 6

SUMMARY AND CONCLUDING REMARKS

In this thesis I have studied two different complex oxides that have potential applications

in alternative-energy technologies. In Chapter 3, I investigated the electronic properties of the

misfit-layered thermoelectric Ca3Co4O9 (CCO) from first principles within the framework of

Density Functional Theory. This was not a trivial task, since DFT techniques for the study

of bulk materials usually rely on the periodicity of the system, which is not the case for CCO,

as the structure is composed of two subsystems, rocksalt (RS) Ca2CoO3 and hexagonal CoO2,

which are incommensurate with each other. The approach I followed was to model the CCO

structure by using Fibonacci rational approximants, which in the limiting case converge to

the incommensurate stoichiometry ratio observed in the experiments. However, this is still a

formidable problem. If we take into account that the smallest of these approximants contains a

total of 42 atoms in its unit cell, for higher order approximants the limit of our computational

capabilities is reached very soon (the largest one considered was the 13/8, with a total of

174 atoms in the unit cell). As mentioned in the introduction, although CCO has been the

subject of extensive experimental studies the number of theoretical/computational studies is

very scarce. In addition, the only DFT study of the electronic structure of CCO predicted the

RS subsystem to be the one responsible for the electrical conductivity, while experimentally

the opposite behavior was observed. In Chapter 3 of this thesis I considered two hypotheses

for this disagreement. First, since previous theoretical calculations had been performed on the

114
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lowest-order approximant, there was a possibility that this was a size effect, and that better

agreement might perhaps be obtained with larger approximants. Second, earlier calculations

only used plain DFT, which typically fails to give a good account of the on-site interactions

due to localized d orbitals of transition metal elements, and the disagreement could have been

due to the lack of a more realistic modeling of electron correlations. The main conclusion was

that although the size of the approximant has indeed some effect on the electronic properties,

the right physics is only captured when a Hubbard term is added to the Hamiltonian within

the framework of the DFT+U method. More specifically, I found that, including correlations

effects, the 5/3 approximant does a very good job of reproducing the electronic properties of

CCO.

As mentioned in the Introduction, an important property that affects the figure of merit of

a thermoelectric material is its thermal conductivity. In Chapter 4, I applied the conclusions

of the previous chapter in order to determine the phonon modes of CCO by using DFT+U and

the finite-difference methods. Here, due to the significant computational demand, I limited my

study to the 3/2 and 5/3 approximants, respectively. For the 3/2 approximant, the U = 0

case was also considered in order to evaluate the sensitivity of the results to the value of U .

With the full phonon spectra, it was then possible to compute different thermal properties,

such as the constant volume heat capacity (Cv). This quantity was calculated for the 3/2

(U = 0, 5 eV) and 5/3 approximants, obtaining in each case a very good agreement with

available experimental data. Although the better agreement is obtained for the 3/2 (U = 5 eV)

approximant, in all cases, the differences are only of a few percents. These results thus served
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as an indirect validation of the method. The next step was to apply the Boltzmann transport

equation (BTE) within the relaxation time approximation in order to calculate the thermal

conductivity. Although the relaxation time could also be calculated from first principles, this

requires the evaluation of anharmonic three phonon processes, a task impossible to achieve in

a reasonable time in a such large system with current computational capabilities. Therefore,

the approach I followed was to leave the relaxation time as a fitting parameter. I calculated

the thermal conductivities for the 3/2 and 5/3 approximants of CCO. The main result was

that both approximants are able to reproduce the large anisotropy found in the experiments

between the direction perpendicular to the layering of the two subsystems and the parallel

ones. However, although the two approximants agreed very well in the predicted thermal

conductivities along the commensurate directions, they exhibited different behaviors along the

incommensurate one. As in the study of the electronic structure (Chapter 3), here again the 5/3

approximant does a better job, since the resulting thermal conductivity with this approximant

along the incommensurate direction is lower than that along the periodic direction, in good

agreement with experimental findings.

Overall, most of what I presented in Chapters 3 and 4 was devoted to the development

of a model that allowed the theory and the experiment to be in better agreement with each

other. In the introduction I mentioned that in the case of CCO the theory lagged behind

experiment. Now in the conclusion of this thesis, I would like to argue that after my studies of

the electronic and thermal properties of CCO, the gap has been significantly reduced. These

techniques could thus be applied in future studies of the same system in order to design new
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ways of improving the thermoelectric properties of CCO. For example, by using the electronic

structure determined in Chapter 3 and the BTE for electrons, both the Seebeck coefficient and

the electrical conductivity can also be calculated. In this way, all the parameters involved in

the figure of merit can thus be determined from first principles. Consequently, one can explore

various strategies in order to increase the figure of merit of CCO, such as the effect of dopants

and the effect of different stacking orders between the two subsystems. Hopefully these studies

will allow the theory to lead experiment in a systematic way towards the development of better

thermoelectric properties in CCO alloys and/or nanostructures.

In Chapter 5, I followed a philosophically different approach, in which my computations

lead the experimental investigations. Solid oxide fuel cells (SOFCs) offer an alternative for

new, cleaner and more efficient ways of generating energy. However, the high temperature at

which SOFCs operate as well as the stability of their components impose severe restrictions for

their applicability in modern technologies. Lower temperature SOFC are also desirable due to

the fact that a higher efficiency could be attained by lowering the operational temperature. Most

of the characteristics of a SOFC are determined by the solid oxide electrolyte that allows the

diffusion of oxygen ions from the cathode towards the anode, thus restoring the charge balance

inside the cell. One of the best candidates for intermediate temperature SOFC is the perovskite

LaGaO3 (LGO), which exhibits a very high ionic conductivity when either doped with Sr or Mg.

However, there are several reasons to search for different alternatives to doping. First, doping

typically introduces disorder, which in turns lowers the conductivity. Second, these dopants can

interact with charged carriers and trap them into forming clusters, which again is detrimental
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for the ionic conductivity of LGO. The idea I developed in Chapter 5 was to increase the number

of ionic carriers in LGO by computational design of a heterostructure containing a negatively

charged LGO//MgAl2O4 (MAO) interface. From the theory of polar interfaces it is known

that such an interface requires some mechanism of charge compensation, which in this case, as

explained in the introduction, was expected to be accomplished by the spontaneous formation

of oxygen vacancies in LGO. This hypothesis was tested in Chapter 5, where I showed that

oxygen vacancies are not only a very favorable compensation mechanism, but the LGO//MAO

interface is also stable, in the sense that there is no migration of charge towards or from the

interface. In addition, I verified that the LGO//MAO polar interface remains insulating, which

is another prerequisite for a good ionic conductor (to be impervious to electronic conduction).

In the last part of Chapter 5, I combined the Poisson-Boltzmann equation with the DFT results

in order to obtain the distribution of vacancies at finite temperatures. I found that even at high

temperatures, vacancies remain located in the LGO planes close to the interface region. Finally,

I concluded in Chapter 5 that by synthesizing such a polar LGO//MAO heterostructure it could

be possible to enhance the ionic conductivity of LGO. It is worth mentioning that experiments

along these lines are presently being carried out at the Argonne National Laboratory.

Although not shown in this thesis (but following the same principles employed in Chapter

5), part of my research during my PhD was also devoted to the computational design and

study of other polar interfaces, such as LGO//CaHfO3 and LGO//SrZrO3. Currently, I am

studying metal-insulator transitions in the SrFeO3//LaFeO3 interface. The latter has the pec-

ularity of exhibiting polaron transport, which in the case of the superlattice transitions towards
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electronic/hole conductivity at a much lower Sr concentration than the alloy with the same sto-

ichiometry. In the near future my research is going to continue to focus on the computational

design of complex oxide interfaces, but more specifically on systems that exhibit or may exhibit

multi-ferroic phenomena. I expect that the techniques that I have learned and the expertise

that I have gained during my PhD in computational materials modeling will certainly be very

useful in elucidating structure/property relationships in these and many other technologically

and scientifically important complex oxide materials.
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