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SUMMARY

Let E0 and E1 be the elliptic curves with j-invariant equal to 0 and 1728 respectively. We consider the

µ3−action on E0 and the µ4−action E1. There are two elliptic fibrations E2
0/µ3 → P1 and E2

1/µ4 →

P1. We found the relative minimal models S0 and S1 to each elliptic fibration respectively. S0 and S1

have a singular fiber configuration {IV, IV, IV} and {I I I, I I I, I∗0 } respectively. Moreover, we showed

that a minimal elliptic surface with singular fiber configuration {IV, IV, IV} or {I I I, I I I, I∗0 } is unique

up to isomorphisms between elliptic surfaces. We found pencils of cubics that induce S0 and S1. We

also calculate the Mordell-Weil group of S0 → P1 by applying Shioda-Tate formula.

We further studied the elliptic fibrations E3
0/µ3 → E2

0/µ3 and E3
1/µ4 → E2

1/µ4. We constructed

smooth birational models to each elliptic fibration, X → P2 and Y → P2. We identified their discrim-

inant loci and studied their singular fibers. Based on the discriminant locus of X → P2, we calculated

the Mordell-Weil rank of the elliptic fibration E3
0/µ3 → E2

0/µ3.

ix



CHAPTER 1

INTRODUCTION

This paper mainly focuses on studying elliptic threefolds over rational surfaces, in particular over

P2. The main approach is to study the discriminant locus of an elliptic fibration and find which ge-

ometric and topological invariants of an elliptic threefold can be determined from the geometric and

topological properties of its discriminant locus.

Elliptic threefolds have been studied for decades. Some major results include the following: R.Miranda

constructed a smooth and equidimensional model for any elliptic Weierstrass threefold (Miranda, 1983).

If X and S are smooth and the discriminant locus ΣX/S is a simple normal crossing divisor, Kawamata

showed that the elliptic modular function J : S → P1 is a morphism and π∗(KX/S) is an invertible

sheaf. Kawamata also gave a formula of π∗(KX/S) in terms of ΣX/S and J (Kawamata, 1983). Again

assuming ΣX/S is a simple normal crossing divisor, Fujita had a formula for the canonical bundle KX

(Fujita, 1986). Also, A.Grassi discussed the notion of relative minimal model of an elliptic threefold

(Grassi, 1991). Let π : X → S be an elliptic threefold which is not uniruled. Grassi showed that there

is a birational equivalent fibration π̄ : X̄ → S̄ such that X̄ has at worst terminal singularities and S̄ has

worst log-terminal singularities. Furthermore, the canonical bundle KX̄ is nef and a pullback from S̄.

In our work, we don’t make the assumption that the discriminant locus ΣX/S is a simple normal

crossing divisor. In fact, the invariants of discriminant locus that we consider depend on the complexity

of singularities of ΣX/S.
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We construct the following models. Let E0 be the elliptic curve with j-invariant equal to 0. Consider

the diagonal µ3−action on E3
0. The quotient space E3

0/µ3 is a Calabi-Yau threefold with terminal

singularities. It has been studied in several aspects. In my research, I focus on the elliptic fibration of

E3
0/µ3 → E2

0/µ3. We construct a smooth model X of E3
0/µ3. There is an isotivial elliptic fibration

π : X → P2 with generic fiber isomorphic to E0. We also show that the discriminant locus ΣX/P2

is a dual Hesse arrangement in P2, which is the set of 9 lines and 12 multiple points of order 3. We

study the singular fibers of π : X → P2 over a smooth point and over a triple point of ΣX/P2 . The

Mordell-Weil rank of an elliptic fibration over a rational surface is related to the Alexander polynomial

of the discriminant locus by the work of Cogolludo and Libgober (Cogolludo-Agustín and Libgober,

2014). In this way, we can determine the Mordell-Weil rank of X.

For another model, let E1 be the elliptic curve with j-invariant equal to 1728 and consider the diag-

onal µ4−action on E3
1, we find that the quotient space E3

1/µ4 has a smooth model Y that admits two

isotrivial elliptic fibrations to the base P2. The discriminant loci of the two fibrations are the images

of Cremona transform of each other. The two discriminant loci contain different types of singularities,

such as tacodes and cusps. We will analyze the singular fibers over the singularities of the loci. Our

main goal is to build connections between the invariants of elliptic threefolds to the invariants of their

discriminant loci.

1.1 A Smooth Elliptic Threefold Birational to E3
0/µ3

Let E0 be the elliptic curve with j-invariant equal to 0 and g be the automorphism of order 3 that

generates a cyclic group µ3. We consider the diagonal µ3−action on the surface E2
0. The projection
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π : E2
0 → E0 to the first component is equivariant with respect to the µ3−actions. Therefore, we have

the following diagram:

E2
0 E2

0/µ3

E0 E0/µ3 ∼= P1

π

q2

q1

where q2 and q1 are quotient maps with respect to the µ3−actions. The morphism E2
0/µ3 → P1 has a

general fiber isomorphic to E0. To resolve the singularities of E2
0/µ3, we blow up the µ3−fixed points

in E2
0:

Ẽ2
0 −→ E2

0.

Then the quotient space Ẽ2
0/µ3 is a smooth elliptic surface. After contracting all the (-1)-curves along

the fibers Ẽ2
0/µ3 → S0, we have a relative minimal elliptic surface

S0 −→ P1.

It is a rational elliptic surface and is isotrivial with the modular function J ≡ 0. Also S0 has the singular

fiber configuration {IV, IV, IV}.

A rational elliptic surface with a section can be obtained by blowing up the 9 points of a pencil of

cubics in P2. In order to find such a pencil, we found 9 disjoint sections of S0. Under the blowing down

the 9 disjoint sections, the images of the singular fibers of S0 form a dual Hesse arrangement. Then

we found that there is a pencil of cubics containing a dual Hesse arrangement, which produces S0 by

blowing up its base points. We have the uniqueness of S0 in the following sense:
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Proposition 1.1. The relative minimal model S0 of the elliptic fibration E2
0/µ3 → P1 is the unique

smooth elliptic surface that has the singular fiber configuration {IV, IV, IV}(in Kodaira’s notion of

singular fibers, see Table I ). In particular, S0 is isomorphic to the blowup of P2 at the base points of

the pencil of cubics λ(x3 − y3) + µ(x3 − z3).

Let’s further consider the diagonal µ3−action on E3
0. The projection p : E3

0 → E2
0 to the first two

components is equivariant with respect to the µ3-actions. Then we have the following diagram:

E3
0 E3

0/µ3

E2
0 E2

0/µ3

p

q3

q2

where q3 is the quotient map with respect to the µ3−action on E3
0.

We construct a smooth elliptic threefold over P2 that is birational to E3
0/µ3 as following. We first

blow up E3
0 along the fibers of p : E3

0 → E2
0 over µ3−fixed points in E2

0,

Ẽ3
0 −→ E3

0.

There is a morphism Ẽ3
0 → Ẽ2

0. Then we blow up the curves in Ẽ3
0, on which µ3 acts trivially,

Bl(Ẽ3
0) −→ Ẽ3

0.

Let X = (Bl(Ẽ3
0))/µ3 be the quotient space, and we have an elliptic fibration

X −→ Ẽ2
0/µ3.
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Contracting all the (-1)-curves along the fibers of Ẽ2
0/µ3 → P1, we have X → S0. After further

contracting 9 disjoint sections of S0, we obtain

f : X −→ Ẽ2
0/µ3 −→ S0 −→ P2.

For this elliptic threefold we have the following result:

Theorem 1.2. f : X → P2 is an isotrivial elliptic fibration, with generic fiber isomorphic to E0. The

discriminant locus Σ is a dual Hesse arrangement. Moreover,

• The singular fiber over a smooth point of Σ is isomorphic to the union of 4 rational curves, one

of which intersects the other three transversely, and the other three are disjoint, as shown in

Figure 7.

• The singular fiber over a multiple point of Σ is isomorphic to the rational elliptic surface Ẽ2
0/µ3.

The Alexander polynomial of a dual Hesse arrangement in P2 is ∆(t) = (t − 1)7(t2 + t + 1)2

(Libgober, 2012). Based on Cogolludo and Libgober’s work (Cogolludo-Agustín and Libgober, 2014),

we will have that

rankMW(X) = deg(t2 + t + 1)2 = 4.

Theorem 1.3. The elliptic fibration X →2 has Mordell-Weil rank equal to 4.
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1.2 Another Smooth Elliptic Threefold over P2

Let E1 be the elliptic curve with j-invariant equal to 1728, and let g be an automorphism of E1 of

order 4. Then g generates the cyclic group µ4 acting on E1. Consider the diagonal µ4−action on E2
1, we

have the following:

E2
1 E2

1/µ4

E1 E1/µ4
∼= P1

p

q2

q1

where p is the projection to the first component of E2
1 and q1, q2 are quotient maps with respect to the

µ4-actions. Then we have a rational elliptic surface E2
1/µ4 → P1 with cyclic quotient singularities.

Let Ẽ2
1/µ4 be the minimal resolution of E2

1/µ4. Then Ẽ2
1/µ4 → P1 is a smooth elliptic surface. It

has the relative minimal model S1 → P1. We also found that S1 has the singular fiber configuration

{I∗0 , I I I, I I I}. Similar as the case of S0, we contract several disjoint sections of S1 → P1 and several

singular fiber components. Then we have a representation τ1 : S1 → P2 of S1 as a blowup of P2 at base

points of a pencil of cubics.

We found that such a pencil of cubics could contain 3 singular members:

l1Q1, l2Q2, lL2,

where l1, l2, l and L are lines, and Q1, Q2 are conics in P2. Furthermore, they satisfy the following

configuration, as shown in Figure 12,

• l1 is tangent to Q1 and Q2, and l2 is tangent to Q1 and Q2;

• Q1 and Q2 intersect transversely at 2 points and are tangent at 1 tacnode,
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• The points of tangency l1 ∩Q2, l2 ∩Q1, and the tacnode of Q1 ∩Q2 lie in the line L,

• The intersection point l1 ∩ l2 and the two transversely intersection points of Q1 ∩ Q1 lie in the

line l.

We can choose different sections and singular fiber components to contract and have a different

representation τ2 : S1 → P2, which is the blowup the base points of another pencil of cubics. Such a

pencil of cubics contains 3 singular members:

C1, C2, L1L2L3,

where C1 and C2 are cubic curves with a cusp and L1, L2 and L3 are lines in P2. Furthermore they

satisfy the following configuration, as shown in Figure 13,

• L1 and C1 are tangent, and the tangency point is the cusp of C2;

• L2 and C2 are tangent, and the tangency point is the cusp of C1;

• C1 and C2 intersect transversely at 2 points, and L3 passes through the 2 points;

• C1 and C2 intersect at one point of multiplicity 3, and L1, L2, L3 are concurrent at the same point.

We have the uniqueness of a pencil of cubics that contains such arrangements as following:

Proposition 1.4. A pencil of cubics in P2 that contains the singular members {l1Q1, l2Q2, lL2} or

{C1, C2, L1L2L3} satisfying the conditions as above is unique up to projective transformations. Also,

the pencil containing {l1Q1, l2Q2, lL2} and the pencil containing {C1, C2, L1L2L3} can be obtained by

a Cremona transformation from each other.



8

Then we have the uniqueness of the rational elliptic surface S1:

Proposition 1.5. A minimal elliptic surface with a section that has singular fiber configuration {I∗0 , I I I , I I I}

is unique up to isomorphism. In particular, it is isomorphic to the relative minimal model of E2
1/µ4 →

P1.

Now we consider the diagonal µ4−action on E3
1. The projection E3

1 → E2
1 to the first two compo-

nents induces

E3
1 E3

1/µ4

E2
1 E2

1/µ4

p

q3

q2

where q3 is the quotient map with respect to the µ4−action on E3
1. A similar construction gives us a

smooth birational model to E3
1/µ4,

Y −→ S1,

whose general fiber is isomorphic to E1. Since we have two representations of S1 as 9-fold blowups of

P2 :

τ1, τ2 : S1 −→ P2,

as described above. Then we have two elliptic fibrations,

f1, f2 : Y −→ P2.
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Let Σi be the discriminant locus of fi, i = 1, 2. We have following results about the singular fibers of f1

and f2.

Theorem 1.6. The two elliptic fibrations f1, f2 : X −→ P2 are isotrivial with generic fiber isomorphic

to E1, and they have discriminant loci

Σ1 = l1 ∪Q1 ∪ l2 ∪Q2 ∪ l,

Σ2 = C1 ∪ C2 ∪ L1 ∪ L2 ∪ L3,

satisfying the configurations as above, as shown in Figure 12 and Figure 13. For the singular fibers of

f1, we have the following results,

• Over a smooth point of l ⊂ Σ1, the singular fiber is of Kodaira Type I∗0 (see Table I).

• Over a smooth point of l1, l2, Q1 and Q2, the singular fiber has 4 components of rational curves

as shown in Figure 14.

• Over the transverse points of l1 ∩ l2 and Q1 ∩Q2, the singular fibers are isomorphic to Ẽ2
1/µ4.

• The singular fibers over the tangency points l1 ∩Q1, l1 ∩Q2, l2 ∩Q1, l2 ∩Q2 and the tacnode

of Q1 ∩ Q2 consist of 6 components. One is isomorphic to Ẽ2
1/µ4, one is isomorphic to the

Hirzebruch surface F1 and the other 4 components are isomorphic to the Hirzebruch surface

F0. The 5 Hirzebruch surfaces intersect Ẽ2
1/µ4 along a singular fiber of type I∗0 , as shown in

Figure 16 (The singular fibers of Ẽ2
1/µ4 is shown in Figure 9).

For the singular fibers of f2, we have the following,
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• Over a smooth point of L1, L2 and L3, the singular fiber is of Kodaira Type I∗0 (see Table I).

• Over a smooth point of C1 and C2 the singular fiber has 4 components of rational curves as

shown in Figure 14.

• Over the two points where C1, C2 and L3 intersect transversely with each other the singular fibers

of f2 are isomorphic to Ẽ2
1/µ4.

• The singular fibers of f2 over the cusps of C1 and C2 have 4 components. One is isomorphic to

Ẽ2
1/µ4, one is isomorphic to F0 and the other three are isomorphic to F1. The four Hirzebruch

surfaces intersect Ẽ2
1/µ3 along one of its singular fibers that have 4 components, as shown in

Figure 17.

• The singular fiber of f2 over the concurrent point L1 ∩ L2 ∩ L3 has 7 components. One is iso-

morphic to the K3 surface Ẽ2
1/µ2, one is isomorphic to Ẽ2

1/µ4, one is isomorphic to F1 and the

other four are isomorphic to F1. The 5 Hirzebruch surfaces intersect Ẽ2
1/µ2 and Ẽ2

1/µ4 along

their singular fibers of Kodaira Type I∗0 , as shown in Figure 18.



CHAPTER 2

PRELIMINARIES AND BACKGROUND

In this chapter, we will go over some preliminary materials. This includes basics about elliptic

curves and elliptic surfaces, which will be used in the following chapters. In the first section, we review

the definition of elliptic curve and the group structure on an elliptic curves. In the second section,

we review the definition of elliptic surface and relative minimal model. We also summarize some

important results about minimal elliptic surfaces, such as Kodaira’s classification of singular fibers and

classifications of minimal models. At last we will introduce the Mordell-Weil group of an elliptic

fibration and Shioda-Tate theorem.

2.1 Elliptic Curves

Let K be a field of characteristic zero and K̄ be the algebraic closure of K. We will be particularly

interested in the case K = C or a functional fields over C, say C(x) or C(x, y). Let Pn denote the

projective n−space over K̄. We denote Pn(K) the set of K-rational points in Pn.

Definition 2.1. An elliptic curve (E, O) over a field K is a smooth projective curve E of genus one

defined over K, together with a chosen K-rational point O called its base point.

The following proposition describes Weierstrass form.

Proposition 2.2. Let (E, O) be an elliptic curve over K.

11
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(a) There exist K-valued rational functions x, y ∈ K(E) and the map

φ : E −→ P2, φ = (x : y : 1),

such that φ is an ismorphism of E onto a plane curve defined by a Weierstrass equation

Y2 = X3 + a4X + a6,

in the affine chart (X : Y : 1), with coefficients a4, a6 ∈ K. Moreover, φ(O) = (0 : 1 : 0).

(b) Any two Weierstrass equations for an elliptic curve as in (a) are related by a linear change of coor-

dinates:

X = u2X′ Y = u3Y′,

with u ∈ K̄∗.

(c) Conversely, every smooth Weierstrass plane cubic curve C (defined by a Weierstrass equation) is an

elliptic curve defined over K with the base point O = (0 : 1 : 0).

Proof. See (Silverman, 2009) chapter III Proposition 3.1.

The discriminant of the Weierstrass equation above is

∆ = (4a3
4 + 27a2

6),
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The j-invariant of the corresponding elliptic curve is given by

j = 1728
4a3

4
∆

.

The following theorem tells us how to determine an elliptic curve from its discriminant and j−invariant.

Theorem 2.3. (a) The elliptic curve E given by a Weierstrass equation y2 = x3 + Ax + B has the

following properties

(i) E is nonsingular if and only if ∆ 6= 0.

(ii) E has a node if and only if ∆ = 0 and A 6= 0.

(iii) E has a cusp if and only if ∆ = A = 0.

In the cases (ii) and (iii), E has only one singular point.

(b) Two elliptic curves are isomorphic over K̄ (as algebraic curves) if and only if they have the same

j-invariant.

(c) Let j0 ∈ K̄, there is an elliptic curve defined over K(j0) whose j-invariant equals to j0.

Proof. See (Silverman, 2009) chapter III Proposition 1.4.

There are two ways to realize an elliptic curve (E, O) as an abelian group. For geometric group law

on an elliptic curve, we refer to (Silverman, 2009) Chapter III. The algebraic group law on (E, O) is

given by the following proposition.

Proposition 2.4. Let (E, O) be an elliptic curve.
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(a) For every degree-0 divisor D ∈ Div0(E) there exists a unique point P ∈ E such that

D ∼ (P)− (O).

Then we can define the map σ : Div0(E) −→ E sending D to the point P.

(b) σ induces a bijection of sets

σ̄ : Pic0(E) −→ E.

The following theorem tells us about the automorphism group of an elliptic curve.

Theorem 2.5. Let (E, O) be an elliptic curve defined over a field K. Then its automorphism group

Aut(E) is a finite group. The order of Aut(E) is given by the following table:

|Aut(E)| j(E)

2 j(E) 6= 0, 1728

4 1728

6 0

Proof. See (Silverman, 2009) chapter III Theorem 10.1.

In the case (E, O) is defined over C, E is biholomorphic to a one-dimensional complex torus (Kir-

wan, 1992), i.e.

E ∼= C/Λ,
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where Λ ⊂ C is a lattice of rank 2. The holomorhpic map above is also an isomorphism between

abelian groups, where the group structure of C/Λ is induced from C. Two complex tori are isomorphic

if and only if the corresponding lattices are homothetic (Serre, 2012).

Example 2.6. Let K = C. The Weierstrass equation y2 = x3 + B with B 6= 0 defines an elliptic curve

E0 with j = 0. From Theorem 2.3, we can see that all the ellitpic curves defined by an Weierstrass

equation of such form are isomorphic. E0 has the analytic structure as

E0 ∼= C/(Z⊕ωZ),

where ω is a primitive third root of unity. From Theorem 2.5 we have that

µ3 ⊂ Aut(E0),

where µ3 is the cyclic group of order 3. In fact, E0 is the unique elliptic curve over C that admits an

automorphism of order 3. The multiplication by ω on C induces such automorphism on the complex

torus E0.

Example 2.7. Again let K = C. The Weierstrass equation y2 = x3 + Ax with A 6= 0 defines an elliptic

curve E1 with j = 1728. Its analytic structure is

E1
∼= C/(Z⊕ iZ),
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where i is the imaginary unit. The multiplication by i on C induces an automorphism of order 4 on E1.

Again from Theorem 2.5, we have that E1 is the unique elliptic curve over C that admits an automor-

phism of order 4.

2.2 Elliptic Surfaces

We will consider the case K = C in this section.

Definition 2.8. Suppose X is a complex surface (smooth or singular). A genus one fibration is a proper,

connected and holomorphis map f : X → C, where C is a smooth complex curve, such that a general

fiber is a smooth curve of genus one. If there is a section s : C → X of f , we say that f : X → C is

an elliptic fibration (with a given section), and X is an elliptic surface over C. A smooth elliptic surface

f : X → C is relatively minimal, if all fibers of f do not have (−1)−curve.

Given a smooth elliptic surface X → C over C, we can blow down (−1)−curves along fibers and

have a relative minimal model of X, which is also smooth. We will see that a minimal model of a smooth

elliptic surface is unique in a sense described below.

Definition 2.9. Let f1 : X1 → C and f2 : X2 → C be two elliptic surfaces over C. A morphism of

elliptic surfaces (over C) is a morphism of complex surfaces ψ : X1 → X2 such that f1 = f2 ◦ ψ. If ψ

is also an isomorphism of complex surfaces we say that ψ is an isomorphism of elliptic surfaces (over

C) and X1 and X2 are isomorphic as elliptic surfaces (over C). Furthermore, X1 and X2 are birational

as elliptic surfaces (over C) if there is a birational map φ : X1 → X2 such that f1 = f2 ◦ φ.
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Proposition 2.10. Suppose X1 and X2 are minimal elliptic surfaces over C, which are birational as

elliptic surfaces over C. Let f : X1 → X2 be a birational map that is compatible with the two elliptic

fibrations. Then f is an isomorphism of elliptic surfaces over C.

Proof. See (Miranda, 1989) (II.1.2) Proposition.

Corollary 2.11. Suppose X → C is an elliptic surface over C, then there is a unique minimal elliptic

surface X′ → C that is birational to X as elliptic surfaces over C.

Kodaira classified all possible singular fibers of a minimal elliptic surface as shown in Table I (see

(Kodaira, 1963)). The first column of the Table lists Kodaira’s notations of singular fiber type. In the

second column, a Dynkin diagram represents the intersection matrix of the irreducible components of

a singular fiber. Each solid dot of a Dynkin diagram represents an irreducible component. The number

in each solid dot denotes the multiplicity of corresponding component. There are three types of fibers

that are irreducible: a smooth elliptic curve (I0), a nodal rational curve (I1) and a cuspidal rational

curve (I I). For a reducible singular fiber, all its irreducible components are smooth rational curve with

self-intersection equal to −2.

Let f : X → C be a minimal elliptic surface over C with a section s : C → X. The image of the

section S = s(C) is a divisor on X. Then for each singular fiber, S intersects exactly one of components

with multiplicity 1. We introduce Weierstrass fibration as following (Miranda, 1981).
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TABLE I Kodaira’s Classification of Singular Fibers of A Minimal Elliptic Surface

Kodair Dynkin Diagram Fiber Components

I0 smooth elliptic curve

I1 nodal rational curve

I2 two smooth rational curves

IN , N ≥ 3 N smooth rational curves

I∗N , N ≥ 3 N+5 smooth rational curves

I I a cuspidal rational curve

I I I two smooth rational curves

IV three smooth rational curves

IV∗ 7 smooth rational curves

III* 8 smooth rational curves

II* 9 smooth rational curves

IN,M each component has multiplicity M.
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Definition 2.12. Let X be a surface and C be a smooth curve. A Weierstrass fibration is a flat and proper

map f : X → C such that every geometric fiber is either

1. a smooth genus one curve,

2. a rational curve with a node, or

3. a rational curve with a cusp,

and a general fiber is smooth. Moreover, there is a given section S that dose not pass through nodes or

cusps of any fiber.

Suppose that f : X → C is a minimal elliptic surface with a section S. The matrices of intersection

numbers for irreducible components of singular fibers of f can be represented by Dynkin diagrams in

Table I and, in particular, all of them are negative semi-definite. Due to Grauert’s contractibility criterion

(Grauert, 1962) we can contract the union of all components of each singular fibers that do not intersect

S. Such contraction gives a singular surface X′ that admits a Weierstrass fibration,

X contract−−−−→ X′
Weierstrass f ibration−−−−−−−−−−−→ C.

The singularities of X′ are rational double points of the type denoted by the Dynkin diagrams for the

corresponding singular fibers of X (Miranda, 1981). On the other hand, X → X′ is the minimal

resolution of the singularities of X′.

Let f ′ : X′ → C be a Weierstrass fibration obtained from a minimal elliptic surface f : X → C

with a section S. We still let S to be the corresponding section of X′. The normal bundle of S ⊂ X′ is
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denoted by NS/X′ . Since f ′|S is an isomorphism onto C, f ′∗NS/X′ is a line bundle on C. We denote its

dual bundle by

( f ′∗NS/X′)
−1 = L.

We call L the fundamental line bundle of the Weierstrass fibration f ′ : X′ → C. (See (Miranda, 1989))

A Weierstrass fibration X′ → C, with its fundamental line bundle L can be realized as a divisor

inside a P2−bundle over C, which is P(OC ⊕L−2 ⊕L−3). Furthermore, X′ has a global Weiertrass

form:

y2 = x3 + Ax + B,

where x is a global section of L2, y is a global section of L3, A is a global section of L4 and B is a

global section of L6. We say (L, A, B) is the Weierstrass data of X′. The discriminant of the fibration

is the section ∆ = 4A3 + 27B2 of L12. The divisor (∆) on C is called the discriminant divisor of the

elliptic surface X → C, where X → X′ is the minimal resolution of X′, therefore is a minimal elliptic

surface over C. We also call L the fundamental line bundle of the elliptic surface X → C.

Lemma 2.13. Let (L, A, B) be Weierstrass data over a projective curve C. Then deg(L) ≥ 0. More-

over, if deg(L) = 0, L is torsion of order 1, 2, 3, 4 or 6.

Example 2.14. Let f , g be two irreducible homogeneous polynomials of degree 3 in k[x, y, z]. And

suppose that f and g define two smooth plane curves in P2: C1 = V( f ) and C2 = V(g). Consider the

pencil of cubics

{s f + tg|(s : t) ∈ P1}.
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It has nine base points counting the multiplicities. Let ε : X = P̃2 → P2 be the successive 9-fold

blowup at the base points of the pencil of cubics. Then the pullback of the pencil of cubics is base

point free and induces a morphism f : X → P1. A general fiber of f is the strict transform of a general

member of the pencil of cubics, which is a smooth elliptic curve. Then f : X → P1 is an elliptic surface

with a section. The section S can be chosen to be the exceptional divisor of the last blowup of X → P2.

Since S is a (−1) curve in X, the fundamental line bundle of X → P1 is L ∼= OP1(1). We will see in

Lemma 2.17 below that all minimal rational elliptic surfaces have L = OP1(1).

One has the canonical bundle formula for minimal elliptic surfaces.

Theorem 2.15. Let f : X → C be a minimal elliptic surface and L be the fundamental line bundle.

Then the canonical bundle of X is a pullback bundle from the base curve,

KX = f ∗(KC ⊗L),

where KC is the canonical bundle of C. Furthermore, degL = χ(X), where χ(X) is the Euler charac-

teristic of X

Proof. Cf.(Miranda, 1989) Prop (III.1.1) or (Shioda and Schütt, 2010) Theorem 6.8.

Recall Noether’s formula (Beauville, 1996)

12χ(X) = ω2
X + e(X),
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where ωX is the canonical divisor of X and e(X) is the topological Euler characteristic of X (equal to

the 2nd chern number c2), we have the following corollary,

Corollary 2.16. e(X) = 12degL.

Proof. Theorem 2.15 implies that ωX is a multiple of fiber. Therefore ω2
X = 0 . Then apply Noether’s

formula and degL = χ(X).

We have a classifiaction of minimal elliptic surfaces based on the genus of base curve and the degree

of fundamental line bunlde.

Lemma 2.17. Let f : X → C be a minimal elliptic surface with a section and f ′ : X′ → C be the

corresponding Weierstrass fibration with fundamental line bundle L. Let g = g(C) be the genus of C.

(a) If g = 0, then

• X is a product of an elliptic curve and P1 if deg(L) = 0,

• X is a rational surface if deg(L) = 1,

• X is a K3 surface if deg(L) = 2,

• a properly elliptic surface if deg(L) ≥ 3.

(b) If g = 1, then X is

• an abelian surface (a product of two elliptic curves) if L ∼= OC,

• a hyperelliptic surface if L is torsion of order 2,3,4, or 6,

• a properly elliptic surface if deg(L) ≥ 1.
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(c) If g = 2, then X is a properly elliptic surface.

Proof. See (Miranda, 1989) Lemma (III.4.6).

Lemma 2.18. Let f : X → C be a minimal elliptic surface with a section and L be its fundamental line

bundle. If X is not a product surface, then its Hodge numbers are

1

g g

g + degL− 1 10degL + 2g g + degL− 1

g g

1.

If X is a product surface, then its Hodge numbers are

1

g g

g + degL 10degL + 2g + 2 g + degL

g g

1.

Proof. See (Miranda, 1989) Lemma (IV.1.1).
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In Example 2.14, we have seen how to construct a rational elliptic surface from a pencil of plane

cubics. The following lemma shows that all the rational elliptic surfaces can be constructed in this way.

Lemma 2.19. Let f : X → P1 be a rational minimal elliptic surface. Then X is the 9-fold blowup

of the plane P2 at the base points of a pencil of generically smooth cubic curves which induces the

fibration f .

Proof. See (Miranda, 1989) Lemma (IV.1.2).

2.3 Mordell-Weil Group of An Elliptic Surface

Definition 2.20. Let X → C be an elliptic surface with a chosen section s0. Then the set of sections

is an abelian group with the group addition defined fiber by fiber. This group is called Mordell Weil

group of the elliptic surface, denoted by MW(X). The chosen section s0, which is the zero element of

MW(X) is called the zero section.

Let f : X → C be a minimal ellitpic surface with a section and L be its fundamental line bundle.

We have the following lemmas.

Lemma 2.21. 1. f ∗ : Pic(C)→ Pic(X) is injective.

2. If f : X → C is not a trivial fibration, i.e. X is not a product, then f ∗ : Pic(C) → Pic(X) is an

isomorphism.

3. If deg(L) > 0, then Pic(X)/Pic0(X) is torsion free.

Proof. See (Miranda, 1989) Lemma (VII.1.1) and Lemma (VII.1.2).
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Corollary 2.22. With the notations as above, assume that degL > 0, then Neron-Severi group NS(X)

of X is isomorphic to Pic(X)/Pic0(X). Furthermore, we have that

NS(X)/Z[F] ∼= Pic(X)/Pic0(C),

where Z[F] is the free abelian group generated by the fiber class [F] ∈ NS(X).

Now we introduce some notions of divisors. As we have seen, from a section s of f : X → C we

have a divisor S = s(C) in X. We call a divisor horizontal if it is the image of a section. On the other

hand, we call a divisor vertical, if it is either a fiber or a component of a singular fiber. Let H and V be

the groups generated by horizontal and vertical divisors respectively. We have that

Theorem 2.23. Let A be the subgroup of NS(X) generated by the class of zero section S0 and the

classes of vertical divisors. We have an exact sequence

0→ A ↪→ NS(X)
β−→ MW(X)→ 0.

Proof. See (Miranda, 1989) Theorem (VII.2.1).

Recall that (∆) ⊂ C is the discriminant divisor of f : X → C. For c ∈ (∆), the fiber over c denoted

by f−1(c) = Xc is a singular fiber. Let nc be the number of irreducible components of Xc. Then we

have the Shioda-Tate’s Formula:

Corollary 2.24.

rank NS(X) = 2 + ∑
c∈(∆)

nc + rank MW(X).
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Proof. See (Miranda, 1989) Corollary (VII.2.4).



CHAPTER 3

THE ELLIPTIC SURFACE E2
0/µ3

In this chapter we consider the case that the base field K = C. We will see that there is a µ3-

action on the Abelian surface E2
0 and the quotient space E2

0/µ3 is an elliptic surface with cyclic quotient

singularities. We construct a relative minimal model S of the elliptic surface E2
0/µ3 → P1. We will

analyze singular fibres of the relative minimal elliptic surface S → P1 and compute its Mordell-Weil

group MW(S). Furthermore, we will give a projective model of S as a 9-fold blowup of P2 and show

the uniqueness of S as a minimal elliptic surface with singular fiber configuration {IV, IV, IV}.

3.1 The µ3−actions on E0 and E2
0

In Example 2.6, we have the elliptic curve E0 with j−invariant equal to zero. Theorem 2.5 tells

us that E0 is the unique elliptic curve that admits an automorphism of order 3. Recall that E0 is bi-

holomorphic to the complex torus E0 ∼= C/(Z ⊕ ωZ), where we choose ω = e
2πi

3 . Consider the

map

g : C −→ C

x 7−→ ωx,

it preserves the lattice Λ = Z⊕ ωZ, so it induces an automorphism of E0, which we also denotes by

g. Then g generates the cyclic group µ3 acting on E0. Let P0, P1 and P2 be the cosets of the lattice Λ of

0, 1√
3
e

πi
6 , and 1√

3
e

πi
2 . Then P0, P1 and P2 are the only fixed points under the µ3−action on E0.

27
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Now we consider the quotient map

q1 : E0 −→ E0/µ3

with respect to µ3−action on E0, it is a holomorphic map of degree 3 and ramifies at the three points Pi

with ramification indices 3. Then Riemann-Hurwitz formula gives

2− 2g(E0) = deg(q1)(2− 2g(E0/µ3))− ∑
i=0,1,2

(ePi − 1),

where g(E0) = 1 is the genus of E0. Then the genus of the quotient space is g(E0/µ3) = 0 and we

conclude that

E0/µ3 ∼= P1.

We denote the images of the three µ3−fixed points under q1 by

q1(P0) = [P0],

q1(P1) = [P1],

q1(P2) = [P2].

The µ3−action on the elliptic curve E0 induces the diagonal action on the product surface E2
0 =

E0 × E0 as following

g(P, Q) = (gP, gQ), g ∈ µ3, P, Q ∈ E0.
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There are 9 points in E2
0 fixed by the µ3−action

Pij = (Pi, Pj), i, j = 0, 1, 2.

The quotient map with respect to the diagonal µ3−action

q2 : E2
0 −→ E2

0/µ3

ramifies at the 9 µ3−fixed points Pij, i, j = 0, 1, 2. The algebraic surface E2
0/µ3 has 9 singularities, all

of which are cyclic quotient singularities of type (3,1) (see (Lamotke, 2013) Chapter IV Section 5 and

6).

3.2 A Smooth Resolution of E2
0/µ3

In order to resolve the singularities of E2
0/µ3, it suffices to look into the local pictures. For a µ3-fixed

point, say Pij = (Pi, Pj) ∈ E2
0, we choose a local chart (U, φ) of Pij, where U is an open neighborhood

of Pij, and φ : U → D is a biholomorphic map to the unite disk D ⊂ C2. We can choose coordinates

(x, y) of D such that φ(Pij) = (0, 0) and g ∈ µ3 acts on D via φ as:

φ ◦ g ◦ φ−1(x, y) = (ωx, ωy), (x, y) ∈ D

where ω is a cubic root of unity. In the disk D all the lines passing through the origin will be preserved

by the group action. We blow up the origin D̃ → D. The group action extends to D̃ analytically, as
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following. We have the coordinates on the blowup D̃ = {(x, y, (u : v)|xv = yu)} ⊂ D × P1. The

group action on D̃ is:

g(x, y, (u : v)) = (ωx, ωy, (u : v)).

It is clear that g acts trivially on the exceptional line, which is defiend by x = y = 0. This also can

be seen from the fact that each point in the exceptional line corresponds to a line through the origin in

D, which is preserved by g.

We consider the quotient map D̃ → D̃/µ3. It is totally ramified along the exception line. Then

D̃/µ3 is smooth, see (Prill and others, 1967).

Now we blowup at all the 9 µ3−fixed points: ε : Ẽ2
0 → E2

0. The µ3-action extends analytically to

the exceptional lines. As shown in the local discussion, all the 9 exceptional lines are fixed under the

µ3-action pointwisely. Then we consider the quotient map:

q̃2 : Ẽ2
0 −→ Ẽ2

0/µ3.

This quotient map is totally ramified along the 9 exceptional lines. From the local discussion above, we

have that Ẽ2
0/µ3 is a smooth algebraic surface.

3.3 An Elliptic Fibration of Ẽ2
0/µ3

In this section we will show that Ẽ2
0/µ3 admits an elliptic fibration over P1 and in particular, it is a

rational elliptic surface.

First, we have the following diagram,
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Ẽ2
0 Ẽ2

0/µ3

E2
0 E2

0/µ3

E0 E0/µ3.

q̃2

ε f1

q2

π f2

q1

where ε : Ẽ2
0 −→ E2

0 is the blowup at the 9 µ3−fixed points, π : E2
0 −→ E0 is the projection to the first

component of E2
0, and q1, q2 and q̃2 are the quotient maps with respect to µ3−actions. Both ε and π are

equivariant with respect to µ3-actions. Then we have two vertical morphisms f1 and f2 on the right side

of the diagram above, where the morphism

f1 : Ẽ2
0/µ3 → E2

0/µ3

is the smooth resolution of E2
0/µ3 constructed in previous section. The morphism

f2 : E2
0/µ3 → E0/µ3 ∼= P1

has a genernal fibre isomorphic to E0. Consider the composition

f = f2 ◦ f1 : Ẽ2
0/µ3 −→ E0/µ3 ∼= P1,

it also has a general fiber isomorphic to E0. Moreover, f has a section. We consider a section of

π : E2
0 → E0,
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s0 : E0 −→ E2
0

x 7→ (x, P0)

Notice that s0 is equivariant with respect to the µ3−actions. Then the images of s0 under the quotient

map q̃2 is a section of f : Ẽ2
0/µ3 → P1, which we still denote by s0.

Now we have that Ẽ2
0/µ3 is a smooth elliptic surface over P1 with a general fiber isomorphic to E0

and a chosen section s0. Moreover f : Ẽ2
0/µ3 → P1 have 3 singular fibres with discriminant locus of f

being:

∆( f ) = {[P0], [P1], [P2]}.

In the following sections we will discuss the singular fibers of f and construct a relative minimal model

of Ẽ2
0/µ3 → P1.

3.4 The Singular Fibres

The singular fibres of f : Ẽ2
0/µ3 → P1 can be analyzed as following. Pick a point in the discrim-

inant locus, say, [Pi] ∈ ∆( f ), its preimage under q1 is q−1
1 ([Pi]) = Pi, and Pi has preimage under

π : E2
0 → E0

π−1(Pi) = {(Pi, x)|x ∈ E0},

which is isomorphic to E0. Notice that there are 3 out of the 9 µ3-fixed points belonging to π−1(Pi),

which are Pi0, Pi1 and Pi2. We denote Ci = π−1(Pi). Consider the blowup ε : Ẽ2
0 → E2

0 at Pij
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and let Eij be the exceptional divisor over Pij for i, j = 0, 1, 2. The pullback of the divisor Ci under

ε∗ : Div(E2
0)→ Div(Ẽ2

0) is:

ε∗(Ci) = Ĉi + Ei1 + Ei2 + Ei3,

where Ĉi is the strict transform of Ci. From the previous sections, we have seen that µ3 acts trivially on

Eij, and it acts on Ĉi the same way as on E0. Therefore, q̃2(ε∗(Ci)) has four components. We denote

the four components of q̃2(ε∗(Ci)) by

Di = q̃2(Ĉi)

Dij = q̃2(Eij).

Then Di, Dij, j = 0, 1, 2 are the four components of the fibre f−1[Pi]. Next we are going to determine

the multiplicity of each component.

To compute the multiplicities of each component, we can look into the local picture. Let p ∈ Ĉi be

a general point other than Pij, j = 0, 1, 2. Choose an analytic open neighborhood Up of p in Ẽ2
0, small

enough such that Up ∩ g(Up) ∩ g2(Up) = ∅. Such choice implies that no µ3−fixed points lie in Up.

Then, the restricted map q̃2|Up : UP → q̃2(Up) is biholomorphic and therefore q̃2(Up) is an analytic

neighborhood of q̃2(p) ∈ Ẽ2
0/µ3. We choose a local coordinates (Up, x, y) for Up centred at p and a

local coordinates (q̃2(Up), x′, y′) for q̃2(Up) centred at q̃2(p).

On the other hand, under the projection π, we have that π(Up) is an analytic open neighborhood of

π(p) ∈ E0. Since p ∈ Ĉi, it is projected to π(p) = Pi ∈ E0. We choose a local coordinate (π(Up), s)
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of π(Up) centred at Pi and a local coordinate (V, s′) centred at [P0] ∈ E0/µ3. The following diagram

shows the local maps,

p ∈ (Up, x, y) (q̃2(Up), x′, y′)

P0 ∈ (π(Up), s) [P0] ∈ (V, s′)

q̃2

π f

q1

In the diagram above, q̃2|Up is biholomorphic and it induces an isomorphism between rings of holomor-

phic functions. So we can choose the local coordinates such that

q̃2
∗(x′) = x

q̃2
∗(y′) = y.

Here q̃2
∗ is the pullback homomorphism of rings of holomorphic functions. Since π : E2

0 → E0 is the

projection to the first component, by making a proper choice of coordinate (π(Up), s), we can have

π∗(s) = x.

The quotient map q1 is totally ramified at Pi with ramification index 3. Also Pi ∈ π(UP) is locally

defined by s = 0. We may choose the local coordinates (V, s′) such that

q∗1(s
′) = s3.

Now consider the commutative diagram :
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C[s′] C[s]

C[x′, y′] C[x, y]

q∗1

f ∗ π∗

q̃∗2

Since q̃2
∗ ◦ f ∗ = π∗ ◦ q∗1 , then we have that:

f ∗(s′) = (x′)3.

[Pi] is locally defined by s′ = 0 in V ⊂ E0/µ3 and Di is locally defined by x′ = 0 in Up. The

multiplicity of Di as a component of the fibre f−1([Pi]) is the vanishing order of f ∗(s′) along Di.

Therefore the multiplicity of Di is 3.

The multiplicity of Dij is one, which can be determined by a similar local argument as above. Then

the singular fibre over [Pi] as a divisor in Ẽ2
0/µ3 is

f−1([Pi]) = 3Di + Di0 + Di1 + Di2, i = 0, 1, 2.

The singular fibres are shown in Figure 1.
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D0 D1 D2

D00

D01

D02

D10

D11

D12

D20

D21

D22

E0/µ3 ∼= P1

[P0] [P1] [P2]

Figure 1: Singular Fibres of Ẽ2
0/µ3 −→ P1

All the three singular fibres are not in Kodaira’s classification shown in Table I. We will see that

all three singular fibers have a (-1)-component. Therefore, Ẽ2
0/µ3 → P1 is not a minimal elliptic

surface. In order to construct a relative minimal model of Ẽ2
0/µ3 → P1, we are going to calculate the

self-intersection numbers of the components of each singular fiber.

On the surface E2
0 we have C2

i = 0, since Ci is the fiber over Pi of π : E2 → E0. After blowing

up at the 9 µ3−fixed points, we have Ĉi
2
= −3 on Ẽ2

0. The exceptional divisors are (-1)-cuvers

Eij, i, j = 0, 1, 2. Then we consider the quotient map: q̃2 : Ẽ2
0 → Ẽ2

0/µ3. Recall our notations:

q̃2(Ĉi) = Di and q̃2(Eij) = Dij. In order to compute D2
i and D2

ij on Ẽ2
0/µ3, we need to borrow some

intersection theory (Cf. (Eisenbud and Harris, 2016) and (Fulton, 2013)).
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Now we apply the projection formula Theorem A.7 to the quotient map q̃2 : Ẽ2
0 → Ẽ2

0/µ3. We have

that

q̃2∗(q̃∗2(Di) · Ĉi) = Di · q̃2∗Ĉi

Notice that q̃2|Ĉi
: Ĉi → Di is a degree 3 covering map. We can pull back the divisor Di by Theorem

A.6 and push-forward the divisor Ĉi by Definition A.3. Then we have that

q̃2∗Ĉi = 3Di,

q̃∗2(Di) = Ĉi.

Plug the above two equations into the projection formula, we have that

q̃2∗(Ĉi · Ĉi) = Di · 3Di

−3 = 3D2
i

−1 = D2
i

Since the µ3−action restricted on the exceptional curves Eij is a trivial action, we have that q̃2|Eij :

Eij → Dij is an isomorphism and

q̃2∗Eij = Dij.
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Apply the projection formula Theorem A.7 to Eij and Di, we have

q̃2∗(q̃∗2(Di) · Eij) = Di · q̃2∗Eij

q̃2∗(Ĉi · Eij) = Di · Dij

1 = Di · Dij

Now we consider the singular fibre f−1([Pi]) = Fi = 3Di + Di1 + Di2 + Di3. Since a fibre has

zero self-intersection, we have

0 = F2
i

= (3Di +
2

∑
j=0

Dij)
2

= 9D2
i + 6 ∑

j
Di · Dij + ∑

j
D2

ij

0 = −9 + 18 + ∑
j

D2
ij

−3 = D2
ij.

From the calculation above, we found that each singuler fiber Fi has one (−1)-component Di.

3.5 The Relative Minimal Model of Ẽ2
0/µ3

We have found that the elliptic surface Ẽ2
0/µ3 −→ P1 has 3 singular fibres. Each singluar fibre has

4 irreducible components, all of which are rational curves, and there is one (-1)-curve in each singular
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fiber. Therefore Ẽ2
0/µ3 is not a minimal elliptic surface. To have a relavtive minimal model, we need to

blow down the (-1)-component Di in each singular fibre Fi,

Ẽ2
0/µ3 S

P1

contract Di

f ′

Let denote the image of Dij under the blowdown by D′ij.

The morphism f ′ : S→ P1 has 3 singular fibres F′i = f ′−1([Pi]), i = 0, 1, 2, each of which consists

of 3 concurrent (-2)-curves D′ij, j = 0, 1, 2. All the singular fibers are of Kodaira Type IV (see Table I)

as shown in Figure 2. Also, f ′ has a section. This is because the curves Di we contract Ẽ2
0/µ3 → S

are fiberal components of multiplicity 3. No sections of f : Ẽ2
0/µ3 → P1 intersect Di. The image

of s0 under the contraction map is a section of f ′ : S → P1, which we still denote by s0. Therefore,

f ′ : S→ P1 is a minimal elliptic surface with a chosen section s0.

D′00

D′01

D′02

D′10

D′11

D′12

D′20

D′21

D′22

E0/µ3 ∼= P1

[P0] [P1] [P2]

Figure 2: Singular Fibres of The Minimal Elliptic Surface S→ P1.
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Furthermore, S is a rational elliptic surface, which can be seen as following. Due to Corollary 2.16

and Lemma 2.17, it suffices to calculate the topological Euler characteristic e(S) of S.

Now let’s calculate the topological Euler characteristic of S. Removing the discriminant locus

{[P0], [P1], [P2]} from P1 and the 3 singular fibres from S, we have a trivial elliptic fibration with

all fiber isomorphic to E0,

S−
⋃

i=0,1,2

Fi −→ P1 − {[P0], [P1], [P2]}

where Fi is the singular fibre over [Pi]. Then we have:

e(P1 − {[P0], [P1], [P2]}) · e(E0) = e(S−
⋃

i

Fi).

E0 is homeomorphic to a torus T1, so e(E0) = 0. A singular fiber Fi of Kodaira type IV is homeomor-

phic to three 2-spheres S2 intersecting at one point, so e(Fi) = 4. Then we have that

e(S) = 12.

Corollary 2.16 gives that degL = 1, and S is a rational elliptic surface by the classification Lemma

2.17.

Remark 3.1. The calculation above implies that the topological Euler characteristic of an elliptic surface

X → C equals to the sum of the topological Euler characteristic of each singular fiber,

e(X) = ∑
c∈(∆)

e(Fc)
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where (∆) is the discriminant divisor and Fc is the singular fiber over c.

Lemma 2.19 says that a minimal rational elliptic surface can be represented as a 9-fold blowup of

P2 at the base points of a pencil of cubics. In the following sections we will give a pencil of cubics that

induces the elliptic fibration S −→ P1 by blowing up its base points.

3.6 The Mordell-Weil Group of E2
0/µ3 → P1

In this section we will calculate the Mordell Weil group MW(S) of the minimal elliptic surface

S → P1 we constructed in the previous section. Moreover, we will show that a choice of generators of

NS(S) determines a projective model of S.

Theorem 2.23 implies that it suffices to find NS(S) and the subgroup A generated by vertical divisor

classes and the zero section class. Lemma 2.19 says that S is a 9-fold blowup ε : P̃2 → P2. Therefore

the class [h] = ε∗(H), which is the pull-back under the blowup of a general line H ⊂ P2 and the

classes of the 9 exceptional divisors [Ei] freely generate NS(S) (Cf.(Beauville, 1996)) ,

NS(S) = [h]Z
9⊕

i=1

[Ei]Z.

Our strategy is as following. First, we find 9 disjoint sections of S → P1. Then we show that these

9 sections are the exceptional curves Ei of a 9-fold blowup S → P2. Then we will identify a set of

generators of the subgroup A in terms H and Ei. Finally, the generators of A provide relations in the

quotient NS(S)/A, which is isomorphic to MW(S) by Theorem 2.23.
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Remark 3.2. In fact there are infinitely many representations of S as a 9-fold blowup of P2 (Cf.(Miranda,

1989) Proposition (VIII.1.2)). We will see that MW(S) is an infinite group and therefore S → P1 has

infinitely many disjoint sections. Any set of 9 disjoint sections gives a representations of S as a 9-fold

blowup of P2.

First we claim the following lemma:

Lemma 3.3. Suppose X is a rational minimal elliptic surface. A curve in X is a section of the elliptic

fibration f : X → P1 if and only if it is a (-1)-curve.

Proof. Theorem 2.15 (Kodaira’s formula of canonical divisor) gives

KX = −F,

where F is the class of a fibre. For a curve C ⊂ X, by adjunction formula we have

KX · C + C2 = 2g(C)− 2.

Suppose C is a section. We have KX · C = −1. Moreover, C is rational because the base curve is

P1. Then adjunction formula gives C2 = −1.

On the other hand, suppose C is a (-1)-rational curve. Since g(C) = 0 and C2 = −1, we have

KX · C = −1 and F · C = 1. Therefore C is a section.

Next we are going to find 9 sections of S such that they are disjoint with each other.
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Let’s look into the trivial elliptic fibration: π : E2
0 → E0 projecting E2

0 to its first component. We

consider the following three sections of π:

s0 = {(x, P0)|x ∈ E0}

s1 = {(x, P1)|x ∈ E0}

s2 = {(x, P2)|x ∈ E0}

We consider two automorphisms φ1 and φ−ω on E2
0. Explicitly, their actions on a general point

(x, y) ∈ E2
0 are

φ1(x, y) =

1 0

1 1


x

y

 =

 x

x + y



φ−ω(x, y) =

 1 0

−ω 1


x

y

 =

 x

−ωx + y



Apply φ1 and φ−ω to si, i = 0, 1, 2, we have 9 curves in E2
0 listed in the following table
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curves set description through µ3−fixed points

s0 {(x, P0)|x ∈ E0} (P0, P0), (P1, P0), (P2, P0)

φ1(s0) {(x, x)|x ∈ E0} (P0, P0), (P1, P1), (P2, P2)

φ−ω(s0) {(x,−ωx)|x ∈ E0} (P0, P0), (P1, P2), (P2, P1)

s1 {(x, P1)|x ∈ E0} (P0, P1), (P1, P1), (P2, P1)

φ1(s1) {(x, x + P1)|x ∈ E0} (P0, P1), (P1, P2), (P2, P0)

φ−ω(s1) {(x,−ωx + P1)|x ∈ E0} (P0, P1), (P1, P0), (P2, P2)

s2 {(x, P2)|x ∈ E0} (P0, P2), (P1, P2), (P2, P2)

φ1(s2) {(x, x + P2)|x ∈ E0} (P0, P2), (P1, P0), (P2, P1)

φ−ω(s2) {(x,−ωx + P2)|x ∈ E0} (P0, P2), (P1, P1), (P2, P0)

where we also list the µ3-fixed points that each curve passes through.

Lemma 3.4. The nine curves si, φ1(si) and φ−ω(si),i = 0, 1, 2 are either disjoint or intersect each other

at some µ3-fixed points transversely. Furthermore, they all have zero self-intersection number.

Proof. For the second statement, since si are fibers of another fibration E2
0 → E0, which projects E2

0 to

its second component, si have zero self-intersection. Since an automorphism preserves self-intersection,

all the 9 curves listed above have zero self-intersection.

For the first statement, it is obvious that si ∩ sj = ∅. Therefore, φ1(si) ∩ φ1(sj) = φ−ω(si) ∩

φ−ω(sj) = ∅ for i 6= j.
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We still need to consider si ∩ φ1(sj). For a point (x, y) ∈ E2
0, it belongs to si ∩ φ1(sj) if and only if

it satisfies the equation

x + Pj = Pi

Recall that {P0, P1, P2} is a subgroup of E0 that is isomorphic the cyclic group Z3. We have x = Pk for

some k ∈ {0, 1, 2}.

Similarly, for (x, y) ∈ si ∩ φ−ω(sj), we need to look into the equation

−ωx + Pj = Pi.

It has solution x = −ω2(Pi − Pj), which is also a µ3−fixed point.

For the case (x, y) ∈ φ1(si) ∩ φ−ω(sj), we need to solve the equation

x + Pi = −ωx + Pj.

We can change of variable, by letting t = x + Pk for some k ∈ {0, 1, 2}, then this equation turn into

t = −ωt.

Then Lefschetz trace formula (Dold, 2012) implies that the automorphism−ω has only one fixed point,

which is the zero element, i.e t = P0.

Local presentations of the curves show the transversalities.
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Let ŝi, φ̂1(si) and φ̂−ω(si) denote the strict transforms of si, φ1(si) and φ−ω(si) under the blowup

at the nine µ3−fixed points ε : Ẽ2
0 → E2

0. Now we consider the quotient map q̃2 : Ẽ2
0 −→ Ẽ2

0/µ3. We

denote the images of the strict transforms by

s[i] = q̃2(ŝi)

s1
[i] = q̃2(φ̂1(si))

sω
[i] = q̃2(φ̂−ω(si))

Lemma 3.5. The nine curves s[i], s1
[i] and sω

[i], i = 0, 1, 2 are (-1)-rational curves. Furthermore, they are

disjoint with each other.

Proof. Each of the nine curves si, φ1(si) and φ−ω(si) passes through 3 of the µ3-fixed points (Pi, Pj)

in E2
0. After blowing up the nine µ3−fixed points, the strict transforms ŝi, φ̂1(si) and φ̂−ω(si) have

self-intersection numbers equal to (-3) in Ẽ2
0. Lemma 3.4 implies that ŝi, φ̂1(si) and φ̂−ω(si) are disjoint

with each other for i = 0, 1, 2.
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In order to compute these self-intersection numbers of these nine curves, we apply the Projection

Formula Theorem A.7. Note that q̃2|ŝi : ŝi → s[i] is a degree 3 covering map, we have that q̃2∗(ŝi) =

3s[i]. Then we have

q̃2∗(ŝi · q̃∗2(s[i])) = q̃2∗(ŝi) · s[i]

q̃2∗(ŝi · ŝi) = 3s[i] · s[i]

−3 = 3s[i] · s[i]

−1 = s[i] · s[i]

Similar calculations give

s1
[i] · s

1
[i] = −1

sω
[i] · s

ω
[i] = −1

Applying the Projection formula again, it is easy to see that the disjointness among s[i], s1
[i] and sω

[i]

is directly from the disjointness among ŝi, φ̂1(si) and φ̂−ω(si) for i = 0, 1, 2.

Recall that Ẽ2
0/µ3 is not a relative minimal model, i.e. each singular fibre has a component that is a

(-1)-rational curve Di. It is not hard to see that s[i], s1
[i] and sω

[i] are disjoint from the (−1)-component in

each singular fibre. This is because the (-1)-components Di (see Figure 1) are the quotients of the fibres
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Ci over Pi in the fibration E2
0 −→ E0. The nine curves si, φ1(si) and φ−ω(si) in E2

0 intersect Ci only at

some µ3−fixed points. The blowup at the nine µ3−fixed points separates Ĉi and si, φ1(si) and φ−ω(si)

in Ẽ2
0. Therefore, s[i], s1

[i] and sω
[i] are disjoint from Di = q̃2(Ĉi).

In order to have a minimal elliptic surface, we contract Di for i = 0, 1, 2, Ẽ2
0/µ3 −→ S. We use

the same notation s[i], s1
[i] and sω

[i] to denote their images in S under the blowing down. Since they are

disjoint from Di, their images have the same self-intersections in S. We conclude that the nine curves

s[i], s1
[i] and sω

[i], i = 0, 1, 2 are (-1)-rational curves and therefore they are sections of S −→ P1 due to

Lemma 3.3. In particular, these 9 sections are disjoint from each other.

Recall that we denote D′ij as the image of Dij under the contraction Ẽ2
0 −→ S. The singular fibre of

S −→ P1 over [Pi] ∈ P1 is denoted by Fi and

Fi = D′i0 + D′i1 + D′i2

as shown in Figure 2. In the Table below, we list the singular fibres components of S→ P1, which each

of the nine sections intersects. This is a directly result from which µ3−fixed points the nine curves si,

φ1(si) and φ−ω(si) pass through in E2
0.
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TABLE II Nine Disjoint Sections of The Relative Minimal Model to E2
0/µ3 → P1 and The Singular

Fiber Components They Intersect

Section Intersects Singular Fibers Components

s[0] D′00, D′10, D′20

s[1] D′01, D′11, D′21

s[2] D′02, D′12, D′22

s1
[0] D′00, D′11, D′22

s1
[1] D′01, D′12, D′20

s1
[2] D′02, D′10, D′21

sω
[0] D′00, D′12, D′21

sω
[1] D′01, D′10, D′22

sω
[2] D′02, D′11, D′20
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D′00D′01D′02 D′10D′11D′12 D′20D′21D′22

E0/µ3 ∼= P1

[P0] [P1] [P2]

s[0]
s[1]
s[2]
s1
[0]

s1
[1]

s1
[2]

sω
[0]

sω
[1]

sω
[2]

Figure 3: The 9 Sections of S→ P1.

Now we blow down the 9 disjoint sections of f : S→ P1 listed above,

ε : S −→ S′

We claim that the image S′ of the contraction map ε is P2. This can be seen as following. We had that

S is rational and e(S) = 12. Then the Hodge number h1,1(S) = 10. After contracting the 9 disjoint

sections, which are (-1)-rational curves, we have that h1,1(S′) = 1. Since P2 is the only smooth rational

surface with h1,1 = 1, we conclude that S′ ∼= P2.
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We denote the images of D′ij under ε by

ε(D′ij) = Lij, i, j = 0, 1, 2.

One can see that Lij is the strict transform of D′ij under the blowgup ε : S −→ P2 . One notices that

each component D′ij of singular fibers intersects three of the nine sections. Since D′2ij = −2 in S, its

image Lij in P2 is a smooth rational curve with self-intersection number equal to 1. We conclude that

Lij, i, j = 0, 1, 2 are lines in P2.

Since the singular fibers of f : S → P1 are of Kodaira type IV, which is a triple of concurrent

rational curves (see Figure 2), the image of each singular fiber is a triple of concurrent lines in P2.

Furthermore, Lemma 2.19 implies that all the 3 triples of concurrent lines belongs to one pencil of

cubics in P2, and ε : S → P2 is the blowup at the 9 base points of this pencil of cubics. We will find

such pencil of cubics in the next section, from which we will have a projective model of S.
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As the discussion above {L00, L01, L02},{L10, L11, L12} and {L20, L21, L22} are 3 triples of concur-

rent lines belonging to a pencil of cubics in P2. Denote the 9 base points of the pencil of cubics by

Q1, ..., Q9. To be specific:

Q1 = L00 ∩ L10 ∩ L20,

Q2 = L00 ∩ L11 ∩ L22,

Q3 = L00 ∩ L12 ∩ L21,

Q4 = L02 ∩ L10 ∩ L21,

Q5 = L02 ∩ L11 ∩ L20,

Q6 = L02 ∩ L12 ∩ L22,

Q7 = L01 ∩ L10 ∩ L22,

Q8 = L01 ∩ L11 ∩ L21,

Q9 = L01 ∩ L12 ∩ L20.

We also denote the common point of each triple of concurrent lines by

R1 = L00 ∩ L01 ∩ L01,

R2 = L10 ∩ L11 ∩ L12,

R3 = L20 ∩ L21 ∩ L22,
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as shown in Figure 4

L00

L02

L01

L12L11L10

R1

R2

Q1
Q2

Q3

Q4 Q5 Q6

Q7 Q8 Q9

Figure 4: 6 out of 9 Lines of A Dual Hesse Arrangement

Under such notations, ε : S → P2 is the blowup at Q1, ..., Q9. Let Ei be the exceptional curve

over Qi for i = 1, ..., 9. In fact Ei, i = 1, ..., 9 are the 9 disjoint sections of f : S → P1. Consider the

intersections of the 9 sections with singular fibre components D′ij, we can identify the 9 sections with

the exceptional curves respectively. For example, the exceptional curve E1 over Q1 intersect the strict

transforms of the three lines that are concurrent at Q1, whihc are L00, L10 and L20. So E1 is identified



54

as the section intersecting D′00, D′10 and D′20, which is s[0] (see Table II). Similarly, we can identify all

the 9 section as following

E1 = s[0]

E2 = s1
[0]

E3 = sω
[0]

E4 = s1
[2]

E5 = sω
[2]

E6 = s[2]

E7 = sω
[1]

E8 = s[1]

E9 = s1
[1]

Now we consider the Néron-Severi group NS(S) of S. It is a free abelian group of rank 10 and

generated by [h], and [Ei], i = 1, ..., 9, where h = ε∗(H) is the the pull-back of a general line H in P2,

and [Ei] is the class of the exceptional divisor Ei.

NS(S) = [h]Z⊕
9⊕

i=1

[Ei]Z
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Recall that A ⊂ NS(S) is the subgroup generated by the class of a fiber [F], the class of the zero

section [s[0]] = [E1] and the classes of all the singular fiber components [D′ij], i, j = 0, 1, 2. We are

going to express all the vertical classes, [F] and [D′ij], i, j = 0, 1, 2, in terms of the free generators [h]

and [Ei], i = 1, ..., 9.

In P2, L00 is the line passing through Q1,Q2 and Q3. Therefore, the total transform of L00 under

the blowup ε : S→ P2 is

[h] = ε∗(L00) = [D′00] + [E1] + [E2] + [E3].
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Also, the expression of ε∗(Lij), i, j = 0, 1, 2 gives a relation between [D′ij], [h] and [Ei], i = 1, ..., 9.

Then we have the relations of classes:

[D′00] = [h]− [E1]− [E2]− [E3]

[D′01] = [h]− [E7]− [E8]− [E9]

[D′02] = [h]− [E4]− [E5]− [E6]

[D′10] = [h]− [E1]− [E4]− [E7]

[D′11] = [h]− [E2]− [E5]− [E8]

[D′12] = [h]− [E3]− [E6]− [E9]

[D′20] = [h]− [E1]− [E5]− [E9]

[D′21] = [h]− [E3]− [E8]− [E4]

[D′22] = [h]− [E2]− [E7]− [E6]

Also we can have the class of a fibre

[F] = [D′00] + [D′01] + [D′02]

= 3[h]−
9

∑
i=1

[Ei].
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Due to Theorem 2.23, Mordell-Weil group MW(S) is the quotient group

MW(S) ∼= NS(S)/A

The discussion above gives a set of relations of this quotient group in terms of the free generators of

NS(S),

[E1] = 0

[h] = [E1] + [E2] + [E3]

= [E7] + [E8] + [E9]

= [E4] + [E5] + [E6]

= [E1] + [E4] + [E7]

= [E2] + [E5] + [E8]

= [E3] + [E6] + [E9]

= [E1] + [E5] + [E9]

= [E3] + [E8] + [E4]

= [E2] + [E7] + [E6]
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Some calculations based on the relations show that [E2], [E3] and [E6] already generate MW(S). To be

explicit,

[h] = [E2] + [E3],

[E4] = [E2] + [E6],

[E5] = [E3] + [E6],

3[E6] = 0,

[E8] = −[E6],

[E7] = [E3]− [E6],

[E9] = [E2]− [E6].

Then we find that MW(S) can be generated by two free generators [E2] and [E3] and one torsion

generator [E6] of order 3, i.e.

MW(S) ∼= Z2 ⊕Z/3Z.

3.7 A Pencil of Cubics Inducing The Relative Minimal Model of E2
0/µ3

In the previous section, we have found that S is the blowup at the 9 base points {Q1, ..., Q9} of a

pencil of cubics in P2, which contains three triples of concurrent lines {L00, L01, L02}, {L10, L11, L12}

and {L20, L21, L22}. Let R1, R2, and R3 be the three concurrent points of the three triples of concurrent

lines. The nine lines Lij, i, j = 0, 1, 2 intersect triply at the 12 points Q1, ..., Q9, R1, R2 and R3. Note

that each line passes through 4 triple points. Such arrangement of 9 lines and 12 points in P2 is called a



59

dual Hesse Arrangement. We recall the definition of dual Hesse arrangement (Artebani and Dolgachev,

2006)

Definition 3.6. In the projective plane P2, a dual Hesse arrangement is a collection of 9 distinct reduced

lines such that the 9 lines intersect triply at 12 points. In the dual projective plane P2∗, the set of lines,

which are dual to the 12 triple points of a dual Hesse arrangement is called a Hesse arrangement.

Remark 3.7. In a dual Hesse arrangement each line contains 4 triple points. This can be seen as follows.

Let l be one of the 9 lines in a dual Hesse arrangement, and V be the union of the other 8 lines. Then

l intersects with V at 8 points counting multiplicity. Also l intersects V only at triple points of the

dual Hesse arrangement. For each intersecting point p, the intersection index is (l, V)p = 2. So l ∩V

consists of 4 of the 12 triple points of the dual Hesse arrangement.

Therefore, in a Hesse arrangement each multiple point is a quadruple point and each line contains 3

quadruple points. A Hesse arrangement has 9 quadruple points.

Remark 3.8. A dual Hesse arrangement does not exist in the real projective plane. This is due to

Motzkin’s theorem, see (Motzkin, 1951), which says that a real arrangement of lines has a double point.

We will show that a dual Hesse arrangement is unique up to automorphism of P2.

Lemma 3.9. The 9 quadruple points of a Hesse arrangement can be realized by the 9 inflection points

of a nonsingular plane cubic curve.

Proof. The following claim is well-known and we prove for completeness

Claim 3.10. If there is a nonsingular plane cubic curve C containing the 9 quadruple points of a Hesse

arrangement, then the 9 quadruple points are the inflection points of C.
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Proof. Let {P1, ..., P9} be the 9 quadruple points of the Hesse arrangement. Recall that there are 12

triple points in a dual Hesse arrangement, so there are 12 lines in a Hesse arrangement, each of which

passes through 3 quadruple points. Therefore, there are 12 linear relations among the 9 quadruple points,

which becomes 12 relations among the elements of the Abelian group C,

P1 + P2 + P3 = 0

P1 + P4 + P7 = 0

P1 + P5 + P9 = 0

P1 + P6 + P8 = 0

P2 + P4 + P9 = 0

P2 + P5 + P8 = 0

P2 + P6 + P7 = 0

P3 + P4 + P8 = 0

P3 + P5 + P7 = 0

P3 + P6 + P9 = 0

P4 + P5 + P6 = 0

P7 + P8 + P9 = 0
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Sum the first 3 equations we have

3P1 + (P2 + P4 + P9) + (P3 + P5 + P7) = 0

3P1 = 0

Similarly, all the 9 points are of order 3:

3Pi = 0, i = 1, ..., 9.

Therefore, the 9 quadruple points are inflection points of C. This finishes the proof of the claim.
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Figure 5: The 9 Quadruple Points And 2 out of 4 Triangles of A Hesse Arrangement

The dimension of plane cubic curves is dimP(H0(P2,OP2(3))) = 9. Therefore given any 9 points

in P2, there is at least one plane cubic curve contains them. Next, we need to show that there is a

nonsingular plane cubic curve that contains the 9 quadruple points of a given Hesse arrangement.

By definition of a Hesse arrangement, the 12 lines in a Hesse arrangement consist of 4 triangles

(non-concurrent triples of lines). Each triangle contains all 9 quadruple points. We can choose 2 of the

4 triangles (see Figure 5) to generate a pencil of cubics, whose base points are the 9 quadruple points of

the Hesse arrangement. By Bertini’s Theorem a general member of the pencil of cubics is smooth away



63

from the base points. We need to argue that a general member of the pencil of cubics is also smooth at

each base point.

To see this, pick one of the 9 base points, say p. In a local chart of p, let f1 and f2 be the local

equations of the two generators of the pencil of cubics. Note that the two generators, which are two

triangles, intersect at the nine base points each having multiplicity one. Therefore f1 and f2 both have

vanishing order 1 at p. A general member of the pencil of cubics has local equation µ f1 + λ f2 at p for

a general point (µ : λ) ∈ P1. Hence a general member of the pencil of cubics has multiplicity one at

each base point and therefore it is smooth at the base points.

We conclude that there exists a smooth plane cubic curve C that contains the 9 quadruple points of

a Hesse arrangement. Claim 3.10 implies that the 9 quadruple points are the inflection points of C. This

finishes the proof of the lemma.

Lemma 3.11. For any smooth plane cubic curve C there exists a coordinate system, in which it is

defined by an equation

x3 + y3 + z3 + λxyz = 0

for some λ ∈ C, which is called the Hesse canonical form of C.

Proof. Cf. (Artebani and Dolgachev, 2006) Lemma 1.

Lemma 3.12. All the smooth plane cubic curves in Hesse canonical form share the same 9 inflection

points.
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Proof. The plane curve E defined by a Hesse form x3 + y3 + z3 + λxyz = 0 has its Hessian matrix

formed by the second derivatives of its defining equation. The determinant of its Hessian matrix defines

He(E) the Hessian curve of E,

He(E) : −6λ2(x3 + y3 + z3) + (63 + 2λ3)xyz = 0

The inflection points are the intersection of E with its Hessian curve He(E). Combine the two equations

we have

(63 + 8λ3)xyz = 0

Notice that the curve E is nonsingular if and only if 63 + 8λ3 6= 0. So we have,

xyz = 0,

x3 + y3 + z3 = 0.

The solutions consist of 9 distinct points independent of λ, which are

(1 : −1 : 0), (1 : −ω : 0), (1 : −ω2 : 0),

(1 : 0 : −1), (1 : 0 : −ω), (1 : 0 : −ω2),

(0 : 1 : −1), (0 : 1 : −ω), (0 : 1 : −ω2).
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The three lemmas above implies that

Proposition 3.13. In the projective plane P2, all dual Hesse arrangements are projectively equivalent.

Up to an automorphism of P2, we may assume that the three triples of concurrent lines are defined

by

L00 ∪ L01∪02 : x3 − y3 = 0

L10 ∪ L11∪12 : x3 − z3 = 0

L20 ∪ L21∪22 : z3 − y3 = 0

It is easy to check that the 9 lines above intersect at 12 points of multiplicity 3, and they belong to the

pencil of cubics

λ(x3 − y3) + µ(x3 − z3) = 0.

Now we can identify the minimal elliptic surface S as the blowup at the 9 base points of the pencil

of cubics λ(x3 − y3) + µ(x3 − z3) = 0 in P2.

Proposition 3.14. The relative minimal model S → P1 of the elliptic fibration E2
0/µ3 → P1 is

isomorphic to the elliptic surface obtained by blowing up at the base points of the pencil of cubics

λ(x3 − y3) + µ(x3 − z3) = 0.

.
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The minimal rational elliptic surfaces are classified by their configurations of singular fibres (Pers-

son, 1990). Now we can show that a minimal rational elliptic surface with configuration {IV IV IV}

of singular fibres has a trivial moduli space.

Corollary 3.15. A minimal rational elliptic surface X with a section that has singular fibre configuration

{IV IV IV} is unique up to isomorphism. In particular, X is isomorphic to the relative minimal model

of E2
0/µ3 → E0/µ3.

Proof. By Lemma 2.19, X is biregular to the blowup at the 9 base points of a pencil of cubics in P2,

f : X −→ P2.

In such a model of X, the 9 exceptional curves of the blowup becomes 9 sections of the elliptic surface

X.

Recall that Kodaira Type IV singular fibre consists of a triple concurrent (-2)-rational curves. Notice

that a fibre of the elliptic surface X is the strict transform of a plane cubic curve, which is a member

of the pencil of cubics in P2. Therefore a singular fibre of Kodaira Type IV is the strict transform of a

plane cubic containing three rational components intersecting at a single point. Such a plane cubic has

to be a concurrent triple of lines. Since each component of a singular fibre is a (-2)-curve, it intersects 3

exceptional curves of the blowup.

Suppose the three singular fibres have components {Ei1, Ei2, Ei3}, i = 1, 2, 3 for each fibre. Let

Lij = f (Eij) be the image of blowing down. We have argued that Lij are lines in P2. Let E be an

exceptional curve of the blowup f . Since E is a section of the elliptic surface X, it intersects one of the
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3 components of each singular fibre, say E1i, E2j and, E3k for some 1 ≤ i, j, k ≤ 3. If we blow down

the exceptional curve E, the image of E1i, E2j and, E3k will intersect triply at a single point. If we blow

down the 9 exceptional curves, the image of {Eij}i,j=1,2,3 under blowing down, which is {Lij}i,j=1,2,3

will intersect triply at the 9 base points.

Together with the 3 concurrency points of {Eij} the three singular fibres of Kodaira Type IV, the

image {Lij} of {Eij} under blowing down the 9 exceptional curves consists of 9 lines and 12 triple

points, which form a dual Hesse arrangement by Def.3.6. By the uniqueness of dual Hesse arrangement

in Prop.3.13, there is a unique pencil of cubics contains the dual Hesse arrangement up to projective

equivalence.

Two projectively equivalent pencils of cubics induce two isomorphic elliptic surfaces by blowing up

their base points. Therefore X is unique up to isomorphism. The relative minimal model S of E2
0/µ3

has the same configuration of singular fibres as X. Then X is isomorphic to S as elliptic surfaces by

uniqueness. In particular, a general fibre of S is isomorphic to E0, so X is isotrivial and has the modular

function J ≡ 0.



CHAPTER 4

A SMOOTH BIRATIONAL MODEL OF E3
0/µ3

In the previous chapter we constructed and studied the relative minimal model of the elliptic surface

Ẽ2
0/µ3 → P1. In this chapter we will look into an elliptic fibration E3

0/µ3 → E2
0/µ3. We will construct

a smooth elliptic threefold over P2 that is birational to the elliptic fibration E3
0/µ3 → E2

0/µ3.

4.1 A µ3−action on E3
0

First we look at a µ3-action on E3
0. The µ3−action on E0 induces the diagonal action on the threefold

E3
0 as following,

g(P, Q, R) = (gP, gQ, gR), g ∈ µ3, P, Q, R ∈ E0.

This diagonal µ3−action has 27 fixed points, which are

Pijk = (Pi, Pj, Pk) ∈ E3
0, i, j, k = 0, 1, 2,

where Pi, i = 0, 1, 2 are the µ3−fixed points of E0. We consider the quotient map with respect to this

group action:

q3 : E3
0 −→ E3

0/µ3.

68
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The quotient map q3 ramifies at the 27 µ3−fixed points. The quotient space E3
0/µ3 has 27 cyclic

quotient singularities, which are locally biholomorphic to C3/Γ. Here Γ is the subgroup of SL(3, C)

generated by


ω

ω

ω

, where ω is a primitive third root of unity.

The threefold E3
0/µ3 admits an elliptic fibration. First we consider the projection map

π : E3
0 −→ E2

0

(x, y, z) 7→ (x, y)

It is easy to see that π is equivariant with respect to the µ3−actions on E2
0 and E3

0, so we have the

diagram

E3
0 E3

0/µ3

E2
0 E2

0/µ3.

q3

π f3

q2

The general fiber of f3 is isomorphic to E0.

Both the threefold E3
0/µ3 and the base surface E2

0/µ3 are singular. We have constructed a smooth

resolution Ẽ2
0/µ3 → E2

0/µ3 in the previous chapter. We are going to construct a smooth resolution of

E3
0/µ3, which has an elliptic fibration over Ẽ2

0/µ3.
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4.2 Resolution of C3/Γ

We start with a local construction as following. Consider the diagonal µ3-action on C2 and C3,

(x, y) 7→ (ωx, ωy),

(x, y, z) 7→ (ωx, ωy, ωz).

where ω is a third root of unity. Let π : C3 −→ C2 be the projection onto the first two components. It

is equivariant with respect to the µ3−actions on C3 and C2, then we have the following diagram:

C3 C3/µ3

C2 C2/µ3

π f3

Both C2/µ3 and C3/µ3 are singular and have cyclic quotient singularities. We are going to construct

smooth resolutions of C2/µ3 and C3/µ3 and a map f̃3 between them, which is an extension of f3.

First we blow up the origin O ∈ C2 and the line L = {(x, y, z)|x = y = 0} ⊂ C3. We have

BlOC2 = C̃2 = {(x, y, u : v)|xv = yu}

BlLC3 = C̃3 = {(x, y, z, s : t)|xt = ys}.

The projection π can be extend to :

π̃ : C̃3 −→ C̃2

(x, y, z, s : t) 7→ (x, y, s : t).
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Also the µ3−actions extend holomorphically to the blowups:

on C̃2 : (x, y, u : v) 7−→ (ωx, ωy, u : v)

on C̃3 : (x, y, z, r : s) 7−→ (ωx, ωy, ωz, r : s).

The morphism π̃ is equivariant with respect to the extended µ3-actions. We have the following diagram

C̃3 C̃3/µ3

C̃2 C̃2/µ3

π̃

q̃3

f̃3

q̃2

From the local discussion in previous chapter, C̃2/µ3 is nonsingular. However, the quotient space

C̃3/µ3 is still singular. This is because the µ3−action fixes the curve C = {(0, 0, 0, r : s)} in C̃3. We

further blow up C̃3 along the curve C

BlCC̃3 −→ C̃3.

The µ3-action extends to BlCC̃3. The extended µ3-action on BlCC̃3 acts trivially on the exceptional

divisor over C of the second blowup. Then we conclude that (BlCC̃3)/µ3 is smooth.

Since the composed map BlCC̃3 −→ C̃3 −→ C̃2 is equivariant with respect to the µ3-actions, it

induces a morphism

(
BlCC̃3

)
/µ3 −→ C̃2/µ3,

whose general fiber is isomorphic to E0.
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4.3 A Nonsingular Elliptic Threefold over P2

Now we return to the construction of a nonsingular elliptic threefold over Ẽ2
0/µ3. As above we

consider the isotrivial elliptic fibration f3 : E3
0/µ3 → E2

0/µ3.

Let Lij = π−1(Pij), where π is the projection and Pij is the µ3−fixed points in E2
0. We let

Ẽ3
0 = BlLij E

3
0 −→ E3

0.

denote the blowup along the 9 curves Lij, i, j = 0, 1, 2 in E3
0.

Recall that Ẽ2
0 is the blowup of E2

0 at the 9 µ3−fixed points. We also notice that the two blowups

Ẽ3
0 −→ E3

0,

Ẽ2
0 −→ E2

0,

in a neighborhood of the µ3-fixed points Pijk ∈ E0 and in a neighborhood of Pij ∈ E2
0 are locally

biholomorphic to the blowups,

BlLC3 = C̃3 −→ C3,

BlOC2 = C̃2 −→ C2,

where L = {(x, y, z)|x = y = 0} ∈ C3(x, y, z), and O = (0, 0) ∈ C2(x, y).
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From the local construction in the previous section, we have a morphism:

Ẽ3
0 −→ Ẽ2

0.

Also, the µ3-action extends to Ẽ3
0 and Ẽ2

0 in the same way as the µ3−action extends to C̃3 and C̃2. From

the discussion of the local construction, we can see that the morphism Ẽ3
0 → Ẽ2

0 is equivariant with

respect to the µ3−actions, so we have the following diagram,

Ẽ3
0 Ẽ3

0/µ3

Ẽ2
0 Ẽ2

0/µ3.

We notice that Ẽ3
0/µ3 is not smooth. The local picture shows that the µ3−action on Ẽ3

0 fixes 27 curves,

for which we denote by Cijk, i, j, k = 0, 1, 2. Therefore, Ẽ3
0/µ3 has a singular locus containing 27

curves, each of which has a neighborhood biholomophic to a neighborhood of the singular locus of

C̃3/µ3 as described in the local construction in the previous section.

In order to have a smooth resolution of Ẽ3
0/µ3, we blow up Ẽ3

0 along the 27 curves Cijk, for i, j, k =

0, 1, 2,

BlCijk Ẽ3
0 −→ Ẽ3

0

This blowup is locally biholomorphic to the blowup BlCC̃3 −→ C̃3 in a neighborhood of Cijk ⊂ Ẽ3
0 and

in a neighborhood of C ⊂ C̃3.
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We can extend the µ3−action to BlCijk Ẽ3
0 as we extended the µ3-action from C̃3 to BlCC̃3 in the

local picture in the previous section. The local discussion shows that (BlC Ã3)/µ3 is smooth, therefore(
BlCijk Ẽ3

0

)
/µ3 is also smooth. Since the blowup BlCijk Ẽ3

0 → Ẽ3
0 is equivariant with respect to the

µ3−actions, we have the morphism between quotient spaces

(
BlCijk Ẽ3

0

)
/µ3 −→ Ẽ3

0/µ3.

Composing with Ẽ3
0/µ3 → Ẽ2

0/µ3, we have a morphism

f ′ :
(

BlCijk Ẽ3
0

)
/µ3 −→ Ẽ2

0/µ3,

which is an elliptic fibration with a general fibre isomorphic to E0.

In the previous chapter we have identify c : Ẽ2
0/µ3 −→ P2 as a blowup at the 12 triple points of a

dual Hesse arrangement in P2. Then we have an isotrivial elliptic fibration,

f = c ◦ f ′ :
(

BlCijk Ẽ3
0

)
/µ3 −→ P2.

4.4 The Singular Fibers of The Elliptic Threefold

In this section we are going to analyze the discriminant locus ∆( f ) and the singular fibers of f . We

will prove Theorem 1.2.

We first analyze the discriminant locus ∆( f ′) and singular fibers of f ′. We have the following

proposition,
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Proposition 4.1. The elliptic fibration f ′ :
(

BlCijk Ẽ3
0

)
/µ3 −→ Ẽ2

0/µ3 has discriminant locus ∆( f ′) a

disjoint union of the 9 exceptional curves Di,j, i, j = 0, 1, 2 as shown in Figure 1. All its singular fibers

have 4 components of rational curves as shown in Figure 7.

Proof. Recall Section 3.4 that

Ẽ2
0/µ3 → E0/µ3

is an elliptic surface and its singular fiber over [Pi] ∈ E0/µ3 is 3Di + Di0 + Di1 + Di2 for i = 0, 1, 2

(see Figure 1). One can check directly that for P /∈ Dij, i, j = 0, 1, 2, its fiber f ′−1(P) is isomorphic to

E0.

Now we study the fibers over points of the exceptional curves Dij. We will show that the discrimi-

nant locus of f ′ is the union of Dij for i, j = 0, 1, 2.

We need to recall the construction of
(

BlCijk Ẽ3
0

)
/µ3 and trace the fibers step by step. First we

recall that ε3 : Ẽ3
0 → E3

0 is the blowup along the 9 curves Lij, i, j = 0, 1, 2, where Lij = {(Pi, Pj, z)|z ∈

E0} ⊂ E3
0 is the fiber of the projection π : E3

0 → E2
0 over the µ3−fixed point Pij ∈ E2

0. Let’s denote

the exceptional divisor of ε3 over Lij by Bij ⊂ Ẽ3
0. Let ε2 : Ẽ2

0 → E2
0 be the blowup at the 9 points

Pij ∈ E2
0. We denoted the exceptional curve over Pij by Eij. Since the normal bundle of Lij in E3

0 is a

trivial bundle, we have that

Bij
∼= Lij ×P1.

The restriction of π̃ : Ẽ3
0 → Ẽ2

0 to Bij is a trivial elliptic fibration

π̃|Bij : Lij ×P1 ∼= Bij −→ Eij
∼= P1.
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For a point P ∈ Eij, its fiber π̃−1(P) is isomorphic to E0.

Next we blowup Ẽ3
0 along the 27 curves Cijk, i, j, k = 0, 1, 2:

τ : BlCijk Ẽ3
0 → Ẽ3

0.

We notice that Bij contains three of the 27 curves, i.e. Cij0, Cij1 and Cij2. Let denote the exceptional

divisor of τ over Cijk by Bijk and denote the strict transform of Bij by B̂ij. Then the morphism

π′ = π̃ ◦ τ : BlCijk Ẽ3
0 → Ẽ2

0

restricts to

π′ : B̂ij ∪ Bij0 ∪ Bij1 ∪ Bij2 −→ Eij.

For a point P ∈ Eij, we denote its fiber of π̃ by LP = π̃−1(P). One notices that LP intersects Cijk

transversely in Ẽ3
0 for k = 0, 1, 2. We denote the fiber of π′ over P ∈ Eij by L′P = π′−1(P). Then

L′P consists of four components. One component of L′P is the strict transform of LP under τ, which

we denote by L̂P. We denote Qijk = LP ∩ Cijk for k = 0, 1, 2. Then τ−1(Qijk) are the other three

components of L′P for k = 0, 1, 2. In Claim 4.2 below, We will show that Bijk is a rational ruled surface

over Cijk. We have th τ−1(Qijk) is a fiber of the ruled surface Bijk. Then the singular fiber of π′ over

P ∈ Eij consists of 4 components

π′−1(P) = L′p = L̂P ∪ τ−1(Qij0) ∪ τ−1(Qij1) ∪ τ−1(Qij2),
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as shown in Figure 6.

E3
0 Ẽ3

0 BlCijk Ẽ3
0

E2
0 Ẽ2

0

π π̃

ε3 τ

π′

ε2

τ−1(Qij0) ∼= P1

τ−1(Qij1) ∼= P1

τ−1(Qij2) ∼= P1

L̂P ∼= E0

Figure 6: A Singular Fiber of π′ : BlCijk Ẽ3
0 → Ẽ2

0.

Since π′ is equivariant with respect to the µ3−actions, it induces the morphism f ′. We denote the

image of B̂ij under q3 : BlCijk Ẽ3
0 →

(
BlCijk Ẽ3

0

)
/µ3 by

q3(B̂ij) = Gij.
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We notice that B̂ij
∼= E0 × P1 and the µ3−action on B̂ij is trivial on its second product component.

Then we have that

Gij
∼= (E0 ×P1)/µ3 ∼= (E0/µ3×)P1 ∼= P1 ×P1.

We denote the image of Bijk under q3 by

q3(Bijk) = Gijk.

Since µ3 acts on Bijk trivially, we have that

Gijk
∼= Bijk.

We have the following claim

Claim 4.2. Gijk is isomorphic to the Hirzebruch surface F1.

Proof. The blowup τ : BlCijk Ẽ3
0 → Ẽ3

0 restricted to the exceptional divisor Bijk is the projectivization of

the normal bundle N
Cijk |Ẽ3

0
of Cijk ⊂ Ẽ3

0,

τ|Bijk : Bijk
∼= P

(
N

Cijk |Ẽ3
0

)
−→ Cijk

Notice that Cijk ⊂ Bij ⊂ Ẽ3
0, we have the exact sequence:

0 −→ NCijk |Bij
−→ N

Cijk |Ẽ3
0
−→

(
N

Bij|Ẽ3
0

) ∣∣
Cijk
−→ 0
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This short exact sequence splits. It is because that the curve Cijk is a complete intersection in Ẽ3
0.

Consider the surface

Sk = {(x, y, Pk)|x, y ∈ E0} ⊂ E3
0,

it intersects Lij at the µ3−fixed point Pijk = (Pi, Pj, Pk) transversely. When we blowup E3
0 along Lij we

denote the strict transform of Sk by S̃k, which is the blowup Sk at Pijk. And we have that

Cijk = S̃k ∩ Bij,

is a complete intersection in Ẽ3
0. In particular, Cijk is the exceptional divisor of S̃k → Sk. Then we have

that

N
Cijk |Ẽ3

0
= NCijk |Bij

⊕NCijk |S̃k

= OP1 ⊕OP1(−1).

Therefore, Gijk
∼= Bijk

∼= P (OP1 ⊕OP1(−1)) ∼= F1.

Recall our notation q̃2(Eij) = Dij ⊂ Ẽ2
0/µ3. And q̃2 restricted on Eij is an isomorphism onto Dij.

Consider a point Q ∈ Dij and P = q̃−1
2 (Q) ∈ Eij, the fiber f ′−1(Q) of Q has four components, which

are the images of the four components of L′P = π′−1(P) under the quotient map q3,

f ′−1(Q) = q3(L̂P) ∪ q3(τ
−1(Qij0)) ∪ q3(τ

−1(Qij1)) ∪ q3(τ
−1(Qij2)).
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Recall that µ3 acts trivially on Bijk, we have that

q3(L̂P) ∼= P1,

q3(τ
−1(Qijk)) ∼= P1.

We conclude that the discriminant locus ∆( f ′) of f ′ is the union of Dij, i, j = 0, 1, 2, which are 9

disjoint curves. All the singular fibers consist of four components as shown in Figure 7

q3(τ−1(Cij0)) ∼= P1

q3(τ−1(Cij1)) ∼= P1

q3(τ−1(Cij2)) ∼= P1

q3(L̂P) ∼= P1

Figure 7: A Singular Fiber of f ′ :
(

BlCijk Ẽ3
0

)
/µ3 → Ẽ2

0/µ3.

Now we are going to analyze the discriminant locus ∆( f ) and singular fibers of f :
(

BlCijk Ẽ3
0

)
/µ3 →

P2, which is the composition of f ′ and c : Ẽ2
0/µ3 → P2, where c is a contraction of 12 (−1)−curves.

We first blow down 3 fibral components Ẽ2
0/µ3 → S to get the relative minimal elliptic surface S→ P1.
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Then we further contract 9 disjoint sections S → P2. As we have seen in the previous chapter, the im-

ages of Dij, i, j = 0, 1, 2 under the contraction c is a dual Hesse arrangement. Therefore, we conclude

that the discriminant locus ∆( f ) of f is a dual Hesse arrangement in P2. The singular fiber of f over a

smooth point P of ∆( f ) is isomorphic to the singular of f ′ as shown in Figure 7.

Recall that a dual Hesse arrangement contains 9 lines and 12 triple points. We need to look into the

singular fibers over triply points of ∆( f ). We have denote the 12 triple points by Q1, ..., Q9,R1, R2, and

R3, see Figure 4. The contraction map c : Ẽ2
0/µ3 → P2 is the blowup at the 12 points. First we need to

identify the exceptional curves over each of the 12 points. Secondly, we will look into the preimage of

the exceptional curves under the map f ′. Then we can identify the fiber of each triple point as

f−1(Qi) = f ′−1(c−1(Qi)), i = 1, ..., 9,

f−1(Ri) = f ′−1(c−1(Ri)), i = 1, 2, 3.

Recall that we denote Ci = {(Pi, x)|x ∈ E0} is the fiber of E2
0 → E0 over a µ3−fixed point Pi. We

denote its strict transform under the blowup Ẽ2
0 → E2

0 by Ĉi. And we also let q̃2(Ĉi) = Di. Then the

exceptional curve over Ri ∈ P2 is Di ⊂ Ẽ2
0/µ3, i.e.

c−1(Ri) = Di f or i = 0, 1, 2.
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We consider the projection π : E3
0 → E2

0, we have that

π−1(Ci) = {(Pi, x, y)|x, y ∈ E0}.

Then we denote the strict transform of π−1(Ci) under the blowup ε3 : Ẽ3
0 → E3

0 by π̂−1(Ci). One can

check that π̂−1(Ci) ∼= E2
0 and it intersects Bij transversely for j = 0, 1, 2. Then we blow up Ẽ3

0 along

Cijk, τ : BlCijk Ẽ3
0 → Ẽ3

0. Let’s denote the strict transform of π̂−1(Ci) under τ by
̂̂

π−1(Ci). Then we

have that

̂̂
π−1(Ci) ∼= Ẽ2

0,

where Ẽ2
0 is the blowup E2

0 at the 9 µ3−fixed points. The morphism π′ : BlCijk Ẽ3
0 → Ẽ2

0 restricts to

̂̂
π−1(Ci) we have a morphism

̂̂
π−1(Ci) −→ Ĉi,

which is equivariant with respect to the µ3−actions. It induces a morphism between the quotient spaces,

̂̂
π−1(Ci)/µ3 −→ Ĉi/µ3 = q̃2(Ĉi) = Di,

which is the restriction of f ′ on q3(
̂̂

π−1(Ci)) ⊂
(

BlCijk Ẽ3
0

)
/µ3. Then we have that

f ′−1(Di) ∼= Ẽ2
0/µ3.
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Therefore, we conclude that the singular fiber over Ri

f−1(Ri) ∼= Ẽ2
0/µ3, i = 1, 2, 3.

Similar discussion gives that

f−1(Qi) ∼= Ẽ2
0/µ3, i = 1, ..., 9.

We summarize the discussion above and have the following theorem

Theorem 4.3. The elliptic threefold f :
(

BlCijk Ẽ3
0

)
/µ3 → P2 constructed in the previous section has a

general fiber isomorphic to E0. Its discriminant locus ∆( f ) is a dual Hesse arrangement. Furthermore,

• The singular fiber over a smooth point of ∆( f ) has four components as shown in Figure 7.

• The singular fiber over a triple point of ∆( f ) is isomorphic to the rational surface Ẽ2
0/µ3.

4.5 The Hodge Structure of The Elliptic Threefold

In the previous section we constructed a smooth elliptic threefold f :
(

BlCijk Ẽ3
0

)
/µ3 → P2. We

are going to calculate its Hodge numbers in this section.

The Künneth formula and Hodge decompotisition give us, (See(Voisin, 2002))

Hp,q(E3
0) =

⊕
a1+a2+a3=p
b1+b2+b3=q

Ha1,b1(E0)⊗ Ha2,b2(E0)⊗ Ha3,b3(E0)
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Since Hp,q(E0) = 1 for i, j = 0, 1, we have the Hodge diamond for E3
0,

1

3 3

3 9 3

1 9 9 1

3 9 3

3 3

1

Now we are going to calculate the Hodge numbers of Ẽ3
0, which is the the blowup of E3

0 along the

nine disjoint curves Lij = {(Pi, Pj, x)|x ∈ E0}, i, j = 0, 1, 2. For the integral cohomology of a blownup

space, we have the following theorem, (See (Voisin, 2002) Theorem 7.31 )

Theorem 4.4. Let X be a Kähler manifold and let Z be a submanifold with codimension r. Consider

the blowup τ : X̃Z −→ X of X along Z. Let E = τ−1(Z) be the exceptional diviosr. When τ restricts

on E, τ|E : E → Z, it is a projective bundle of rank r-1 over Z. Let j be the embedding j : E → X̃Z.

We also denote the first Chern class of OE(1) by h = c1(OE(1)) ∈ H2(E, Z). Then we have an

isomorphism of Hodge structures:

τ∗ ⊕∑
i

j∗ ◦ hi ◦ (τ|E)∗ : Hk(X, Z)

(
r−2⊕
i=0

Hk−2i−2(Z, Z)

)
−→ Hk(X̃Z, Z).
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Here hi is given by taking the cup-product with hi ∈ H2i(E, Z) and j∗ is the Gysin morphism induced

by j.

Now we can apply the theorem to Ẽ3
0 → E3

0. The submanifold Lij is of codimension r = 2 and

isomorphic to E0. Apply the theorem above and we have the Hodge diamond of Ẽ3
0:

1

3 3

3 18 3

1 18 18 1

3 18 3

3 3

1.

Next we are going to calculate Hodge numbers of BlCijk Ẽ3
0, which is the blowup of Ẽ3

0 along 27

disjoint rational curves Cijk, for i, j, k = 0, 1, 2. Recall that Cijk
∼= P1. Apply the theorem above, we
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can see that only the Hodge groups H1,1 and H2,2 get additional contributions from the second blowup.

We have the Hodge numbers of BlCijk Ẽ3
0,

1

3 3

3 45 3

1 18 18 1

3 45 3

3 3

1.

Now we are going to calculate the Hodge numbers of the quotient space
(

BlCijk Ẽ3
0

)
/µ3. In order

to do this, we need to study the µ3-action on the (p, q)−forms of BlCijk Ẽ3
0.

Claim 4.5. For a complex manifold X and a group G acting on X, We have that ,

Hp,q(X/G) = Hp,q(X)G,

where Hp,q(X)G is the group of G−invariant (p, q)−forms on X.

Proof. (Smith, 1983).
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From Theorem 4.4 we see that the two blowups τ ◦ ε3 : BlCijk Ẽ3
0 → E3

0 induce isomorphisms

Hp,q(E3
0)
∼= Hp,q

(
BlCijk Ẽ3

0

)

for (p, q) = (0, 0), (0, 1), (1, 0), (0, 2), (2, 0), (0, 3) and (0, 3). Since both blowups are equivariant

with respect to the µ3−actions, it suffices to look into the µ3−actions on the (p, q)−forms of E3
0 for

(p, q) listed above.

The space of (0, 0)−forms on E3
0 is generated by a non-zero constant function, which is obviously

µ3−invariant.

The space of (0, 1)−forms on E3
0 is generated by the forms dz̄i, for i = 1, 2, 3, where zi is the

holomorphic coordinates of the i-th component of E3
0. The the µ3-action transforms dz̄i to ω̄dz̄i. There-

fore, there are no µ3−invariant (0, 1)-forms. The space (0, 2)−forms are generated by dz̄i ∧ dz̄j for

i, j = 1, 2, 3. The µ3−action transforms dz̄i ∧ dz̄j to ω̄2dz̄i ∧ dz̄j. Therefore, there are no µ3-invariant

(0,2)-fomrs. The space of (0,3)-forms of E3
0 are generated by dz̄1 ∧ dz̄2 ∧ dz̄3, which is translated by

µ3 to ω̄3z̄1 ∧ dz̄2 ∧ dz̄3 = dz̄1 ∧ dz̄2 ∧ dz̄3. Therefore all the (0, 3)-forms are µ3-invariant. Similar

discussions can be applied to the (p, 0)-forms. And we have the Hodge numbers

h0,0
((

BlCijk Ẽ3
0

)
/µ3

)
= h0,3 = h3,0 = 1,

h0,1
((

BlCijk Ẽ3
0

)
/µ3

)
= h0,2 = h1,0 = h2,0 = 0
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For the (2, 1)−forms on E3
0, we have

τ∗ : H2,1(Ẽ3
0)
∼= H2,1(BlCijk Ẽ3

0),

where the isomorphism is the pull-back induced by the blowup τ : BlCijk Ẽ3
0 → Ẽ3

0. The (2,1)-forms of

BlCijk Ẽ3
0 can be identified with the (2, 1)−forms of Ẽ3

0, which come from two parts:

H2,1(Ẽ3
0)
∼= ε∗3(H2,1(E3

0))⊕ j∗ ◦ (ε|Eij)
∗(H1,0(Lij)),

where ε3 : Ẽ3
0 → E3

0 is the blowup along Lij and j is the embedding j : Bij → Ẽ3
0 and Bij is the

exceptional divisor over Lij.

The space of the (2,1)-forms of E3
0 are generated by dzi ∧ dzj ∧ dz̄k, which is transformed by µ3 to

ωdzi ∧ dzj ∧ dz̄k. Therefore ε∗3(H2,1(E3
0, Z)) has no µ3−invariant forms.

For the second part, the µ3−action of E3
0 restricted on Lij is the same action as µ3 acting on E0.

Therefore there is no µ3−invariant (1,0)-form on Lij. Also the blowup ε is equivariant with respect to

µ3−actions, and the Gysin map j∗ is a composition of the pull back j∗ and Poincaré duality, which are

both equivariant with respect to the µ3-actions. Therefore there is no µ3−invariant (2,1)-forms of Ẽ3
0

that belong to the second part.

Then we have that H2,1(Ẽ3
0) has no µ3−invariant forms. Since the blowup τ : BlCijk Ẽ3

0 −→ Ẽ3
0 is

equivariant with respect to the µ3−acitons, it induces an equivariant isomorphism between the groups
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of the (2,1)-forms. We conclude that there is no non-zero µ3−invariant (2,1)-forms on BlCijk Ẽ3
0. Similar

discussions apply to the (1,2)-forms. We conclude that

h2,1
((

BlCijk Ẽ3
0

)
/µ3

)
= h1,2 = 0.

At last, we consider the (1, 1)−forms of BlCijk Ẽ3
0, which come from 3 parts: H1,1(E3

0), H0,0(Lij)

and H0,0(Cijk). Recall our notations, ε3 : Ẽ3
0 → E3

0 is the blowup along Lij and τ : BlCijk Ẽ3
0 → Ẽ3

0 is the

blowup along Cijk. We denote the exceptional divisor over Lij by Bij and the exceptional divisor over

Cijk by Bijk. Let j1 : Bij → Ẽ3
0 and j2 : Bijk → BlCijk Ẽ3

0 be the embeddings. Then by Theorem 4.4 we

have

H1,1
(

BlCijk Ẽ3
0

)
∼= τ∗ ◦ ε∗3(H1,1(E3

0))⊕ τ∗ ◦ j1∗ ◦ ε3|∗Bij
(H0,0(Lij))⊕ j2∗ ◦ τ|∗Bijk

(H0,0(Cijk)).

In the first part, H1,1(E3
0) is generated by the forms dzi ∧ dz̄j, which are translated by µ3 to ωω̄dzi ∧

dz̄j = dzi ∧ dz̄j. Therefore H1,1(E3
0) is µ3−invariant. For the second part, H0,0(Lij) is generated by a

non-zero constant function, which is obviously invariant under the µ3−action. By the same argument,

H0,0(Cijk) is invariant under the µ3−action for i, j, k = 0, 1, 2. Since all the blowups and embeddings

are equivariant with respect to the µ3−actions, we have that

h1,1
((

BlCijk Ẽ3
0

)
/µ3

)
= h1,1

(
BlCijk Ẽ3

0

)
= 45.

To conclude, we have the Hodge numbers of
(

BlCijk Ẽ3
0

)
/µ3 as following,
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1

0 0

0 45 0

1 0 0 1

0 45 0

0 0

1.

4.6 The Mordell-Weil Rank of The Elliptic Threefold

Cogolludo and Libgober built a relation between the Mordell-Weil rank of an elliptic threefold

over a rational surface to the Alexander polynomial of the discriminant locus (Cogolludo-Agustín and

Libgober, 2014).

It follows from Theorem 4.3 that the discriminant locus ∆( f ) of f :
(

BlCijk Ẽ3
0

)
/µ3 → P2 is a dual

Hesse arrangement. By the uniqueness of dual Hesse arrangement Prop 3.13, we may let ∆( f ) be the

locus defined by the equation (x3 − y3)(x3 − 1)(y3 − 1) = 0. Moreover, the monodromy

π1(P
2 − ∆( f ))→ AutH1(E0, Z)
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of the elliptic fibration f sends each meridian of any component of ∆( f ) to the same element of µ3. Also

the elliptic fibration f is isotrivial and its modular function J ≡ 0. We have that f :
(

BlCijk Ẽ3
0

)
/µ3 →

P2 is birational to the elliptic threefold defined by u2 + v3 = (x3 − y3)(x3 − 1)(y3 − 1) in C4 and the

elliptic fibration induced by the projection C4(u, v, x, y)→ C2(x, y) (Libgober, 2012).

Based on Cogolludo and Libgober’s work (Cogolludo-Agustín and Libgober, 2014), we have that

Proposition 4.6. Let C be the curve defined by F(x, y) in C2. Suppose that C intersects the line at

the infinity transversely and 3 divides degF(x, y). Consider the elliptic threefold defined by u2 + v3 =

F(x, y) in C4 and the elliptic fibration induced by the projection C4(u, v, x, y) → C2(x, y), if the

Alexander polynomial of the complement of C in P2 is (t2 + t + 1)s(t− 1)k, then the Mordell-Weil

rank of the elliptic threefold is 2s.

The Alexander polynomial of a dual Hesse arrangement in P2 is

∆(t) = (t− 1)7(t2 + t + 1)2

see(Libgober, 1982) and (Libgober, 2012) Remark 4.1. Then we have that

Corollary 4.7. The elliptic fibration f :
(

BlCijk Ẽ3
0

)
/µ3 → P2 has Mordell-Weil rank equal to 4.



CHAPTER 5

THE ELLIPTIC SURFACE E2
1/µ4

5.1 A µ4-Action on The Elliptic Curve with j-Invariant 1728

Recall Example 2.7 the elliptic curve E1 has j-invariant equal to 1728 and is isomorphic to C/Λ as

abelian groups, where the lattice Λ = Z⊕ iZ. It has an automorphism g of order 4, which generates

the cyclic group µ4 = {1, g, g2, g3} acting on E1. Consider the rotation of C by π
2 around the origin,

we notice that such rotation preserves the lattice Λ. Then we let g be the automorphism induced from

the rotation of C.

There are 4 points of E1 that have nontrivial stabilizers with respect the µ4-action. To see this,

we consider the four point P1 = 0, P2 = 1
2 + i

2 , Q1 = 1
2 and Q2 = i

2 in the fundamental domain

{x + iy | 0 ≤ x, y ≤ 1} of the lattice. The rotation acts on the four points as following:

P1 = 0 7−→ 0 = P1

P2 =
1
2
+

i
2
7−→ −1

2
+

i
2
≡ P2 (mod Λ)

Q1 =
1
2
7−→ i

2
= Q2

Q2 =
i
2
7−→ −1

2
≡ Q1 (mod Λ).

92
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Taking the quotient of complex plane C with respect to the lattice Λ, we use the same notation for the

images of the four points P1, P2, Q1 and Q2 in C/Λ ∼= E1. Therefore P1, P2 ∈ E1 are fixed by the

µ4-action, and Q1, Q2 ∈ E2 have a stabilizer {1, g2} ⊂ µ4 since g permutes Q1 and Q2.

We consider the quotient map with respect to the µ4-action:

q1 : E1 −→ E1/µ4,

it ramifies at P1, P2 of ramification index 4 and at Q1, Q2 of index 2. Then Riemann-Hurwitz Formula

(see (Hartshorne, 1977) Chapter IV) says:

2g(E1)− 2 = deg(q1)(2g(E1/µ4)− 2) + ∑
p∈{P1,P2,Q1,Q2}

(ep − 1).

Since deg(q1) = 4 and the genus g(E1) = 1, we have that g(E1/µ4) = 0 and therefore E1/µ4 is

isomorphic to P1.

5.2 The Elliptic Surface E2
1/µ4 and A Smooth Resolution

The µ4-action on E1 induces the diagonal action on the product surface E2
1 = E1 × E1. To be

explicit, for g ∈ µ4, we have

g(x, y) = (gx, gx), f or x, y ∈ E1.



94

There are 16 points of E2
1 that have a nontrivial stabilizer with respect to the µ4−action. The four

points (Pi, Pj), i, j = 1, 2 are fixed by the µ4−action, and the other 12 points (Pi, Qj), (Qi, Pj) and

(Qi, Qj), i, j = 1, 2 have a stabilizer {1, g2}.

Consider the quotient map with respect to the µ4−action on E2
1,

q2 : E2
1 −→ E2

1/µ4,

it ramifies at (Pi, Pj) with ramification index 4 and ramifies at (Pi, Qj), (Qi, Pj) and (Qi, Qj) with ram-

ification index 2. Therefore the quotient space E2
1/µ4 has 10 cyclic quotient singularities as following:

q2(Pi, Pj), i, j = 1, 2, Type(4, 1)

q2(Pi, Q1) = q2(Pi, Q2), i = 1, 2 Type(2, 1)

q2(Q1, Pi) = q2(Q2, Pi), i = 1, 2 Type(2, 1)

q2(Q1, Q1) = q2(Q2, Q2), Type(2, 1)

q2(Q1, Q2) = q2(Q2, Q1), Type(2, 1)

Remark 5.1. Here we use the notations (n, k) from (Lamotke, 2013) for the types of cyclic quotient

singularities defined as following. Consider C2 and the finite group

G =<

α 0

0 αk

 >,
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where α = exp{ 2πi
n }. We say that C2/G has a cyclic quotient singularity of type (n, k).

In order to have a smooth resolution of E2
1/µ4, we blow up the 16 points of E2

1 where q2 ramifies,

ε : Ẽ2
1 −→ E2

1.

The µ4−action extends to Ẽ2
1 continuously. From a similar discussion as in the section 3.2, we can see

that µ4 acts trivially on the exceptional curves over the µ4-fixed points (Pi, Pj), i, j = 1, 2. Then the

generator g permutes the exceptional curves over the points that it permutes on E2
1, and g2 fixes all the

exceptional curves pointwisely. We consider quotient map

q̃2 : Ẽ2
1 −→ Ẽ2

1/µ4.

Since all the cyclic quotient singularities of E2
1/µ4 are of type either (4, 1) or (2, 1), the quotient space

Ẽ2
1/µ4 is a smooth resolution of E2

1/µ4. For a detailed discussion about resolution of cyclic singularities

of complex surfaces, please see (Lamotke, 2013).

We denote EPi Pj , EPiQj , EQi Pj and EQiQj to be the exceptional divisors over (Pi, Pj), (Pi, Qj), (Qi, Pj)

and (Qi, Qj) respectively. The quotient map q̃2 is totally ramified along the 16 exceptional curves with
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ramification index 4 along EPi Pj and index 2 along the others. The images of the exceptional curves

under the quotient map are denoted by

q̃2(EPi Pj) = DPi Pj

q̃2(EPiQ1) = q̃2(EPiQ2) = DPiQ

q̃2(EQ1Pi) = q̃2(EQ2Pi) = DQPi

q̃2(EQ1Q2) = q̃2(EQ2Q1) = DQQ′

q̃2(EQ1Q1) = q̃2(EQ2Q2) = DQQ.

Applying the projection formula, we have that,

D2
Pi Pj

= −4,

D2
PiQ = −2,

D2
QPj

= −2,

D2
QQ′ = −2,

DQQ = −2.

The smooth surface Ẽ2
1/µ4 has an elliptic fibration. We consider the composition of the projection

of E2
1 to its first component π : E2

1 → E1 and the blowup ε : Ẽ2
1 → E2

1,

π̃ = π ◦ ε : Ẽ2
1 −→ E1.
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The general fiber of π̃ is isomorphic to E1. There are 4 singular fibers of π̃, which are the fibers over

P1, P2, Q1 and Q2. We let

CPi = π−1(Pi) = {(Pi, x)|x ∈ E1}

CQi = π−1(Qi) = {(Qi, x)|x ∈ E1}, f or i = 1, 2.

Let’s denote the strict transforms of CPi and CQi under the blowup ε by ĈPi and ĈQi . Then the singular

fibers of π̃ as divisors in Ẽ2
1 are

π̃−1(P1) = ĈP1 + EP1Q2 + EP1Q1 + EP1P2 + EP1P1

π̃−1(P2) = ĈP2 + EP2Q2 + EP2Q1 + EP2P2 + EP2P1

π̃−1(Q1) = ĈQ1 + EQ1Q2 + EQ1Q1 + EQ1P2 + EQ1P1

π̃−1(Q2) = ĈQ2 + EQ2Q2 + EQ2Q1 + EQ2P2 + EQ2P1 ,

as shown in Figure 8.
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ĈP1 ĈP2 ĈQ1 ĈQ2

EP1Q2

EP1Q1

EP1P2

EP1P1

EP2Q2

EP2Q1

EP2P2

EP2P1 EQ1P1

EQ1P2

EQ1Q1

EQ1Q2

EQ2P1

EQ2P2

EQ2Q1

EQ2Q2

E1P1 P2 Q1 Q2

Figure 8: Singular Fibers of π̃ : Ẽ2
1 → E1

Since both π and ε are equivariant with respect to the µ4−actions, so is π̃. Therefore we have the

following diagram,

Ẽ2
1 Ẽ2

1/µ4

E1 E1/µ4

π̃

q̃2

f

q1

where f is induced by π̃ and it is an elliptic fibration over P1 with a general fiber isomorphic to E0.

5.3 The Singular Fibers of Ẽ2
1/µ4 → P1

Now we are going to study the elliptic surface Ẽ2
1/µ4 → P1. First we will study its singular fibers,

then we will construct a relative minimal model. The singular fibers of the relative minimal model will
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be classified in Kodaira’s notations (see Table I). We will see that Ẽ2
1/µ4 is a rational elliptic surface.

We will give a pencil of cubics inducing the relative minimal model in the following sections.

There are three singular fibers of Ẽ2
1/µ4 → P1 over the 3 branched points of q1 : E1 → E1/µ4,

which we denote by

[P1] = q1(P1),

[P2] = q1(P2),

[Q] = q1(Q1) = q1(Q2).

For [P1] ∈ E1/µ4, its preimage in E1 is q−1
1 ([P1]) = P1 and π̃−1(P1) has 5 components in Ẽ2

1 as

shown in Figure 8. Then we take the quotient with respect to the µ4−action q̃2 : Ẽ2
1 → Ẽ2

1/µ4. Let’s

denote the images of ĈPi by

BPi = q̃2(ĈPi), i = 1, 2,

BQ = q̃2(ĈQ1) = q̃2(ĈQ2).

Now we can see that q̃2(π̃−1(P1)) has 4 components, which are

BP1 , DP1P1 , DP1P2 , DP1Q.
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They are the components of the singular fiber f−1([P1]). To find the multiplicity of each components,

we can apply a local calculation as we did in analyzing the singular fibers of Ẽ2
0/µ3 → E0/µ3 (see

Section 3.4). Then we have the singular fiber of f over [P1] as a divisor in Ẽ2
1/µ4,

f−1([P1]) = 4BP1 + DP1P1 + DP1P2 + 2DP1Q.

Similarly we have the singular fibers of f over [P2] and [Q],

f−1([P2]) = 4BP2 + DP2P1 + DP2P2 + 2DP2Q,

f−1([Q]) = 2BQ + DQP1 + DQP2 + DQQ′ + DQQ.

The singular fibers of f : Ẽ2
1/µ4 −→ P1 is shown in Figure 9.
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4BP1 4BP2

2BQ

2DP1Q

DP1P2

DP1P1

2DP2Q

DP2P2

DP2P1 DQP1

DQP2

DQQ

DQQ′

E1/µ4
[P1] [P2] [Q]

Figure 9: Singular Fibers of f : Ẽ2
1/µ4 −→ P1

5.4 The Relative Minimal Model of Ẽ2
1/µ4

In the previous chapter we calculated the self-intersection number of each component of all the

singular fibers of Ẽ2
0/µ3 → P1. Now we do the same calculation for the elliptic surface f : Ẽ2

1/µ4 →

P1. Applying Projection Formula Theorem A.7 to the quotient map q̃2,

q̃2∗(q̃∗2(BPi) · ĈPi) = BPi · q̃2∗(ĈPi)

q̃2∗(ĈPi · ĈPi) = 4BPi · BPi

−4 = 4B2
Pi

−1 = B2
Pi

.
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Here we notice that q̃2 restricted to ĈPi is a 4 to 1 covering of BPi , therefore q̃2∗(ĈPi) = 4BPi . Also

notice that q̃2 restricted to ĈQ1 is a 2 to 1 covering of BQ, therefore q̃2∗(ĈQ1) = 2BQ, and we have

q̃2∗(q̃∗2(BQ) · ĈQ1) = BQ · q̃2∗(ĈQ1)

q̃2∗((ĈQ1 + ĈQ2) · ĈQ1) = 2BQ · BQ

−4 + 0 = 2B2
Q

−2 = B2
Q.

Similarly, we have the self-intersections of the other components of singular fibers

D2
P1Q = D2

P2Q = −2,

D2
P1P2

= D2
P2P2

= −4,

D2
P1P1

= D2
P2P1

= −4,

D2
QP1

= D2
QP2

= D2
QQ = D2

QQ′ = −2.

The singular fiber f−1([Q]) is of Kodaira Type I∗0 (See Table I). And the singular fibers f−1([P1])

and f−1([P2]) have a component BP1 and BP2 of self-intersection (-1). In order to have a relative minimal

model, we first contract B1 and B2. Then the image of f−1([P1]) and f−1([P2]) also have a (-1)-

component, which is the image of DP1Q and DP2Q. We further contract the two (-1)-components. Then

we have a relative minimal model of the elliptic surface Ẽ2
1/µ4 → P1,



103

Ẽ2
1/µ4 S

E1/µ4
∼= P1

c

f
f ′

where c : Ẽ2
1/µ4 → S is the successive contraction of the fibral components BP1 ,BP2 , DP1Q and DP2Q.

Following the discussion above, the minimal elliptic surface f ′ : S → P1 has three singular fibers.

The singular fiber f ′−1([Q]) over [Q] is of Kodaira Type I∗0 as stated above. And the singular fiber

f ′−1([Pi]) over [Pi] has two components D̂Pi P1 and D̂Pi P2 , which are the images of DPi P1 and DPi P2

under the contraction map c. The two components are both (-2)-rational curves and they intersect at a

double point. Therefore the singular fiber over [Pi] is of Kodaria Type I I I for i = 1, 2 (See Table I).

The singular fibers of f ′ : S→ P1 is shown in Figure 10.

D̂P1P1 D̂P1P2 D̂P2P1 D̂P2P2

2BQ

DQP1

DQP2

DQQ′

DQQ

P1
[P1] [P2] [Q]

Figure 10: Singular Fibers of The Minimal Elliptic Surface f ′ : S→ P1
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Due to Remark 3.1, the topological Euler characteristic of S is the sum of the topological Euler

characteristic of its singular fibers and we have

e(S) = e(I I I) + e(I I I) + e(I∗0 )

= 3 + 3 + 6 = 12.

Then Lemma 2.17 and Corollary 2.16 tell us that S is a rational elliptic surface. Furthermore, due to

Lemma 2.19, S can be represented as a blowup of P2 at the base points of a pencil of cubics. We

are going to determine a pencil of cubics that induces the rational elliptic surface S → P1 in the next

section.

5.5 A Pencil of Cubics Inducing The Relative Minimal Model of E2
1/µ4.

In this section, we will find a pencil of cubics in P2, which induces a representation of the relative

minimal elliptic surface S as a 9-fold blowup of P2. We first find several sections of S→ P1. Then we

contract 9 selected curves, sections or singular fiber components, in a chosen order. We will show that

the strict transforms of singular fiber components form 3 cubic curves in P2. We further show that there

is a pencil of cubics in P2 that contains the 3 cubic curves as its singular members. Resolving the base

points of the pencil of cubics is the 9-fold blowup that induces S→ P1.

We look at the two sections of π : E2
1 −→ E1:

s1 = {(x, P1)|x ∈ E1},

s2 = {(x, P2)|x ∈ E1}.
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Let ŝ1 and ŝ2 be their strict transforms in Ẽ2
1. It is easy to see that ŝ2

i = −4, since si passes through the

4 points (P1, Pi), (P2, Pi), (Q1, Pi) and (Q2, Pi). Then we denote their images under the composition

of the quotient map q̃2 : Ẽ2
1 → Ẽ2

1/µ4 and the contraction map c : Ẽ2
1/µ4 → S by

s[i] = c ◦ q̃2(ŝi).

By the projection formula, we have

s2
[i] = −1.

Due to Lemma 3.3, we have that s[i] is a section of S→ P1 for i = 1, 2.

We can find more sections of S → P1 as we did in Section 3.6. Let g be a generator of µ4 acting

on E1. We consider the following three automorphisms φ1, φ−1 and φi of E2
1, which act on a point

(x, y) ∈ E2
1 as following

φ1 =

1 0

1 1


x

y

 =

 x

x + y



φ−1 =

 1 0

−1 1


x

y

 =

 x

−x + y



φi =

1 0

g 1


x

y

 =

 x

gx + y

 .
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Here 1 is regarded as the identity map on E1 and −1 is the involution of E1. These automorphisms of

E2
1 act on s1 and s2, then we have the following curves:

φ1(s1) =


1 0

1 1


 x

P1

 |x ∈ E1

 = {(x, x + P1)|x ∈ E1} = d1,

φ1(s2) =


1 0

1 1


 x

P2

 |x ∈ E1

 = {(x, x + P2)|x ∈ E1} = d2,

φi(s1) =


1 0

g 1


 x

P1

 |x ∈ E1

 = {(x, gx + P1)|x ∈ E1} = b1,

φi(s2) =


1 0

g 1


 x

P2

 |x ∈ E1

 = {(x, gx + P2)|x ∈ E1} = b2,

φ−1(s1) =


 1 0

−1 1


 x

P1

 |x ∈ E1

 = {(x,−x + P1)|x ∈ E1} = c1,

φ−1(s2) =


 1 0

−1 1


 x

P2

 |x ∈ E1

 = {(x,−x + P2)|x ∈ E1} = c2.

Let b̂i, ĉi and d̂i be the strict transforms of bi, ci and di in Ẽ2
1 and let b[i], c[i] and d[i] be the images of b̂i,

ĉi and d̂i under the map c ◦ q̃2 : Ẽ2
1 → S. One can check that b[i], c[i] and d[i] are sections of S → P1

for i = 1, 2.
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Now we have 8 sections of S→ P1, which are

s[1], s[2], b[1], b[2], c[1], c[2], d[1], d[2].

First we notice that all the 8 sections are disjoint. This is because that s1, s2, b1, b2, c1, c2, d1 and d2

intersect each other transversely only at the points, at which we blow up E2
1. In order to find which fiber

components that each section intersects, we can apply a similar discussion as we did in Section 3.6.

We list the singular fiber components that the 8 sections intersect in Table III, as shown in Figure 11,

TABLE III Eight Disjoint Sections of The Relative Minimal Model to E2
1/µ4 → P1 and The Singular

Fiber Components They Intersect

Section Intersects Singular Fibers Components

s[1] D̂P1P1 , D̂P2P1 , DQP1

s[2] D̂P1P2 , D̂P2P2 , DQP2

b[1] D̂P1P1 , D̂P2P2 , DQQ′

b[2] D̂P1P2 , D̂P2P1 , DQQ

c[1] D̂P1P1 , D̂P2P2 , DQQ

c[2] D̂P1P2 , D̂P2P1 , DQQ′

d[1] D̂P1P1 , D̂P2P2 , DQQ

d[2] D̂P1P2 , D̂P2P1 , DQQ′



108

D̂P1P1 D̂P1P2 D̂P2P1 D̂P2P2

DQP1 DQP2

DQQ DQQ′

2BQ

P1
[P1] [P2] [Q]

s[1]

s[2]

d[2]

d[1]

c[2]

c[1]

b[2]

b[1]

Figure 11: The 8 Sections of f ′ : S −→ P1
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Now we contract 6 sections in the following order

s[1], s[2], b[1], b[2], c[2], d[2].

One notices that after we contract the chosen 6 sections, the images of the following three curves are

(-1)-curves:

DQP1 , DQP2 , DQQ.

Then we further contract the three curves above. Let’s denote the contraction of all the 9 curves by

τ1 : S −→ P2.

Here we notice that since S is a rational elliptic surface, the second Betti number b2(S) = 10 due

to Lemma 2.18. τ1 is the successive contraction of 9 (-1)-curves, then b2(τ1(S)) = 1. Since τ1(S)

is smooth and rational surface with b2 = 1, we have that τ1(S) ∼= P2. We will see that τ1 is a

representation of S as the blowup of P2 at the base points of a pencil of cubics.
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Let us look at the images of the other singular fiber components that are not contracted by τ1. We

denote them by

τ1(D̂P1P1) = l1

τ1(D̂P1P2) = Q1

τ1(D̂P2P1) = Q2

τ1(D̂P2P2) = l2

τ1(BQ) = L

τ1(DQQ′) = l.

We have the following claim:

Claim 5.2. l1, l2, l and L are lines in P2 and Q1, Q2 are conics in P2. Furthermore, the lines and

conics satisfy the following configuration, which we denote by (†), as shown in Figure 12

• l1 is tangent to Q1 and Q2, and l2 is tangent to Q1 and Q2;

• Q1 and Q2 intersect transversely at 2 points and are tangent at 1 tacnode,

• The points of tangency l1 ∩Q2, l2 ∩Q1, and the tacnode of Q1 ∩Q2 lie in the line L,

• l1 ∩ l2 and the two transversely intersecting points of Q1 and Q1 lie in the line l.

Proof. Let’s look at D̂P1P2 . Among the 6 sections we contract, D̂P1P2 intersects s[2], b[2], c[2] and d[2].

After the contraction of the 6 sections, the image of D̂P1P2 intersects DQP2 and DQQ, which will be
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further contracted. So by the end the self-intersection of D̂P1P2 increase from (-2) by 6. We conclude

that Q2
1 = 4 and Q1 is a conic curve. Similar argument can be applied to the other curves.

When we contract b[2], the images of D̂P1P2 , D̂P2P1 and DQQ are concurrent at a point. Since we

will further contract DQQ, there is a tacnode of Q1 ∩Q2. Similar argument can be applied to verify the

other conditions in (†).

Figure 12: Q1(Blue) and Q2(Red) are conics, l1, l2, l and L are lines. B1, B2, B3, and B4 are tangency

points. M0 is a tacnode.

We have the following proposition:
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Proposition 5.3. Let l1, l2, l and L be lines in P2 and Q1 and Q2 be conics in P2 satisfying (†). There

is a pencil of cubics in P2 containg l1Q1, l2Q2, and lL2 as its singular members, with 6 base points

A1, A2, A3, B3, B4 and M0 as shown in Figure 12. Moreover, such a pencil of cubics is unique up to

automorphisms of P2.

Proof. Without loss of generality, we can assume l1 = {(x, y, z)|x = 0}, l2 = {(x, y, z)|y = 0} and

L = {(x, y, z)|z = 0}. We can also assume the line tangent to both Q1 and Q2 at the the tacnode to be

l′ = {(x, y, z)|x + y + z = 0}. Notice that Aut(P2) allows us to make such assumptions.

Now the conic Q1 is tangent to l2 = {(x, y, z)|y = 0} and l′ = {(x, y, z)|x + y + z = 0} and the

two tangency points lie on L = {(x, y, z)|z = 0}. It follows that the equation of Q1 is

Q1 : z2 + αy(x + y + z) = 0.

for some α ∈ C. Similarly, we can write the equation of Q2 as

Q2 : z2 + βx(x + y + z) = 0.

for some β ∈ C.

Next we need to determine possible values for α and β such that the conditions of (†) satisfied.

Notice that Q1 is also tangent to l1 = {(x, z, y)|x = 0}. Plug x = 0 into Q1, we have

z2 + αyz + αy2 = 0,
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which is supposed to have a double root. Then we have that

α = 4.

Similarly, Q2 is also tangent to l2 = {(x, y, z)|y = 0}, and by the same argument we have that

β = 4.

Now we have that

l1Q1 = xz2 + 4xy(x + y + z),

l2Q2 = yz2 + 4xy(x + y + z).

And

l1Q1 − l2Q2 = z2(x− y) = lL2,

where l = {(x, y, z)|x − y = 0}. Then the pencil of cubics generated by l1Q1 and l2Q2 have three

singular members: l1Q1, l2Q2 and lL2, which satisfy the conditions of configuration (†). In particular,

one can see from the proof that such a pencil of cubics is unique up to projective automorphisms.
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Such a pencil of cubics gives a representation of the rational minimal elliptic surface S → P1. We

have that τ1 : S→ P2 is the 9-fold blowup at the base points of the pencil of cubics

sx
[
z2 + 4y(x + y + z)

]
+ ty

[
z2 + 4x(x + y + z)

]
, (s : t) ∈ P1,

upto automorphisms.

5.6 Another Pencil of Cubics.

In this section, we will give another representation of S as a 9-fold blouwup of P2. In fact there are

infinitely many representations of S, since an automorphism of P2 will give another pencil of cubics

that induces the same elliptic surface. However, we will find another pencil of cubics that is not in the

orbit of the one we constructed in the previous section with respect to the action of Aut(P2).

We find that there is another way to successively contract 9 (-1)-curves in S,

τ2 : S −→ P2

such that S is a 9-fold blowup at the base points of another pencil of cubics. To be explicit, let τ2 be the

successive contraction of 9 curves in the following order (see Figure 11),

b[2], DQQ, BQ, c[2], d[2], s[2], D̂P2P2 , s[1], D̂P1P1 .
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We denote the images of the other singular fiber components that are not contracted by:

τ2(D̂P2P1) = C1,

τ2(D̂P1P2) = C2,

τ2(DQP1) = L1,

τ2(DQP2) = L2,

τ2(DQ1Q2) = L3.

We have the following claim:

Claim 5.4. C1 and C2 are cubic curves with a cusp and L1, L2 and L3 are lines in P2. Furthermore they

satisfy the following configuration, which we denote by (††), as shown in Figure 13,

• L1 and C1 are tangent, and the tangency point is the cusp of C2,

• L2 and C2 are tangent, and the tangency point is the cusp of C1,

• C1 and C2 intersect transversely at 2 points, and L3 passes through the 2 points.

• C1 and C2 intersect at another point with index 3, and L1, L2 and L3 are concurrent at the same

point.

Proof. Let’s look at D̂P2P1 . After we contract b[2], the image of D̂P2P1 intersects DQQ. Then we contract

DQQ and the image of D̂P2P1 intersects BQ. We further contract BQ, c[2], d[2] and s[2], all of which

intersect the image of D̂P2P1 transversely. The self-intersection of the image of D̂P2P1 increases from

-2 by 5. Then we contract D̂P2P2 , which is tangent to D̂P2P1 , and the self-intersection of the image of
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D̂P2P1 increases by 4. Further, we contract s[1] then the image of D̂P2P1 intersect D̂P1P1 , which is the last

curve we contract. By the end the self-intersection of D̂P2P1 increases from -2 by 11. We conclude that

C2
1 = 9 and C1 is cubic curve in P2. Also when we contract D̂P2P2 , the tangency point of D̂P2P1 and

D̂P2P2 becomes a cusp of the image of D̂P2P1 .

Similar argument can be applied to C2 and Lis and to verify the other conditions in (††).

Figure 13: C1(Blue) and C2(Red) are cuspidal curves, L1, L2 and L3 are lines. R1 and R2 are cusps of

C1 and C2. T0 is the concurrent point of Lis.
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Remark 5.5. Given an arrangement {l1, l2, l, L, Q1, Q2} satisfying (†), we can make a Cremona trans-

form of P2 such that the images of the given arrangement form an arrangement satisfying (††).

We have the following proposition:

Proposition 5.6. Let L1, L2 and L3 be lines and C1 and C2 be cuspidal curves in P2 satisfying (††).

There is a pencil of cubics in P2 containg C1, C2, and L1L2L3 as its singular members, with 5 base

points R1, R2 S1, S2 and T0 as shown in Figure 13. In particular, such a pencil of cubics is unique up to

automorphisms of P2.

Proof. It follows from Remark 5.5 and Prop 5.3.

Corollary 5.7. A minimal rational elliptic surface with singular fibers configuration {I I I, I I I, I∗0 }(see

Table I) is unique up to isomorphism.

Proof. Suppose that X is such a rational elliptic surface and τ1 : X → P2 is a represestation of X as

a 9-fold blowup at the base points of a pencil of cubics in P2. Considet a singular fiber F of Kodaira

Type I I I, which consists of 2 tangent rational curves, its image τ1(F) is a singular member of the pencil

of cubics. Then τ1(F) is either a cuspidal curve if τ1 contracts one of the component of F, or τ1(F)

consists of a line and a conic, which are tangent to each other, if τ1 dose not contract a component of F.

Consider the intersections of plane curves, the images of two singular fibers of Kodaira Type I I I must

be isomorphic. Then the pencil of pencil either contains two cuspidal curves or contains two singular

members, which consist of a line and a conic tangent to each other. One can check that, in order to have
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another singular fiber of Kodaira type I∗0 , the pencil of cubics is either the one as in Prop 5.3 or the one

as in Prop 5.6.

By Remark 5.5, two minimal elliptic surfaces induced from pencils of cubics in Prop 5.3 and Prop

5.6 are birational to each other and therefore isomorphic to each other by Corollay 2.11. Then the

uniqueness of X is followed by the uniquenesses in Prop 5.3 or Prop 5.6.

Remark 5.8. U.Persson gave all the possible singular fiber configurations of minimal rational elliptic

surfaces (Persson, 1990). Miranda and Persson classified the extremal rational elliptic surfaces. Also

they found the corresponding pencil(s) of cubics for each extremal rational elliptic surface (Miranda and

Persson, 1986).



CHAPTER 6

A SMOOTH BIRATIONAL MODEL OF E3
1/µ4

6.1 The Elliptic Threefold E3
1/µ4

In this section we consider the diagonal µ4-action on the threefold E3
1. We have the diagram

E3
1 E3

1/µ4

E2
1 E2

1/µ4

q3

π f

q2

where π : E3
1 → E2

1 is the projection to the first two components, q2 and q3 are quotient maps with

respect to the µ4−actions. The map f is induced by π and its general fiber is isomorphic to E1. We

have seen in the previous chapter that E2
1/µ4 is a rational surface with cyclic quotient singularities. Our

aim is to construct a smooth birational model of E3
1/µ4 that admits an elliptic fibration over P2.

6.2 A Smooth Elliptic Model with Two Fibrations

The construction is similar to the construction of the smooth model of E3
0/µ3. We make the follow-

ing notations. Let’s denote the π-preimages of (Pi, Pj), (Pi, Qj), (Qi, Pj) and (Qi, Qj) by

LPi Pj = π−1((Pi, Pj)) = {(Pi, Pj, x)|x ∈ E1},

LPiQj = π−1((Pi, Qj)) = {(Pi, Qj, x)|x ∈ E1},

LQi Pj = π−1((Qi, Pj)) = {(Qi, Pj, x)|x ∈ E1},

LQiQj = π−1((Qi, Qj)) = {(Qi, Qj, x)|x ∈ E1}.

119
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We denote the blowup of E3
1 along the 16 curves LPi Pj , LPiQj , LQi Pj and LQiQj for i, j = 1, 2 by

ε3 : Ẽ3
1 −→ E3

1.

Recall the blowup of E2
1 at the 16 points (Pi, Pj), (Pi, Qj), (Qi, Pj) and (Qi, Qj) for i, j = 1, 2,

ε2 : Ẽ2
1 → E2

1.

From a local construction as in Section 4.2, there is a map

π̃ : Ẽ3
1 −→ Ẽ2

1.

All the fibers of π̃ are isomorphic to E1. We denote the exceptional divisors over LPi Pj , LPiQj , LQi Pj and

LQiQj by BPi Pj , BPiQj , BQi Pj and BQiQj respectively. Since the normal bundle of LPi Pj in E3
1 is trivial, we

have that BPi Pj
∼= LPi Pj ×P1 is a product surface and the restriction of ε3 on BPi Pi

ε3|BPi Pj
: BPi Pi

∼= LPi Pi ×P1 −→ LPi Pi

is the projection to the first component. On the other hand the restriction of π̃ on BPi Pj

π̃|BPi Pj
: BPi Pj

∼= LPi Pj ×P1 −→ EPi Pj

is the projection to the second component. Recall that EPi Pj is the exceptional divisor in Ẽ2
1 over (Pi, Pj).
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The curve LPi Pj contains 4 points with non-trivial stabilizer with respect to the µ4−action, which

are (Pi, Pj, P1), (Pi, Pj, P2), (Pi, Pj, Q1), and (Pi, Pj, Q2). We denote their ε3-preimages by

CPi PjPk = ε−1
3 ((Pi, Pj, Pk)) ∼= P1,

CPi PjQk = ε−1
3 ((Pi, Pj, Qk)) ∼= P1.

There are 64 such curves in Ẽ3
1, which are CPi PjPk , CPi PjQk , CPiQjPk , CQi PjPk , CPiQjQk , CQiQjPk , CQi PjQk ,

and CQiQjQk , for i, j, k = 1, 2. The quotient map Ẽ3
1 → Ẽ3

1/µ3 with respect to the µ4−action ramifies

along the 64 curves. In order to have a smooth quotient space, we further blow up Ẽ3
1 along the 64

curves as we did for Ẽ3
0. We denote the blowup by

τ : BlCẼ3
1 −→ Ẽ3

1.

A local discussion similar to Section 4.2 implies that the µ4−action extends to BlCẼ3
1 and the quo-

tient space
(

BlCẼ3
1

)
/µ4 is smooth. We denote the quotient map by

q3 : BlCẼ3
1 −→

(
BlCẼ3

1

)
/µ4.

Since the composition map π′ = τ ◦ π̃ : BlCẼ3
1 → Ẽ2

1 is equivariant with respect to the µ4−actions, it

induces

f ′ :
(

BlCẼ3
1

)
/µ4 −→ Ẽ2

1/µ4,
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which has a general fiber isomorphic to E1. We recall that Ẽ2
1/µ4 is a rational elliptic surface and let S

be its relative minimal model. Let c : Ẽ2
1/µ4 → S to be the contraction of (-1) fibral components. In

Chapter 5, we have seen that S has two distinct representations as a 9-fold blowup of P2,

τ1 : S −→ P2,

τ2 : S −→ P2.

Composing f ′ with c and τ1 or τ2, we have two elliptic fibrations:

f1 = τ1 ◦ c ◦ f ′ :
(

BlCẼ3
1

)
/µ4 −→ P2,

f2 = τ2 ◦ c ◦ f ′ :
(

BlCẼ3
1

)
/µ4 −→ P2,

whose general fibers are isomorphic to E1.

6.3 The Singular Fibers

In the previous section we constructed two distinct elliptic firations f1, f2 :
(

BlCẼ3
1

)
/µ4 → P2.

In this section we will study their discriminant locus ∆( f1) and ∆( f2), which are divisors in P2. Fur-

thermore we will look into their singular fibers, especially over multiple points of discriminant loci. We

will prove Theomre 1.6 by the end.

We start with the elliptic fiberation f ′ :
(

BlCẼ3
1

)
/µ4 → Ẽ2

1/µ4. Before taking quotient with

respect to the µ4−actions, the morphism π̃ : BlCẼ3
1 → Ẽ2

1 has disriminant locus ∆(π′) the collection
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of the 16 exceptional curves of the blowup ε2 : Ẽ2
1 → E2

1. Recall that in the previous chapter we denoted

the exceptional curves over (Pi, Pj), (Pi, Qj), (Qi, Pj) and (Qi, Qj) by EPi Pj , EPiQj , EQi Pj , and EQiQj for

i, j = 1, 2. Then

∆(π′) =
⋃

i,j=1,2

EPi Pj

⋃
i,j=1,2

EPiQj

⋃
i,j=1,2

EQi Pj

⋃
i,j=1,2

EQiQj .

One can check that the discriminant locus of f ′ is the the images of ∆(π′) under the quotient map q3.

Recall our notations for q3(EPi Pj), see Figure 9, we have that ∆( f ′) is the union of the 10 curves,

∆( f ′) =
⋃

i,j=1,2

DPi Pj

⋃
i=1,2

DPiQ
⋃

i=1,2

DQPi

⋃
DQQ

⋃
DQQ′ .
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We make the following notations. Recall the blowup of Ẽ3
1 along 64 curves, τ : BlCẼ3

1 → Ẽ3
1, we

denote the exceptional divisors over the 64 curves by

BPi PjPk = τ−1(CPi PjPk), i, j, k = 1, 2,

BPi PjQk = τ−1(CPi PjQk), i, j, k = 1, 2,

BPiQjPk = τ−1(CPiQjPk), i, j, k = 1, 2,

BQi PjPk = τ−1(CQi PjPk), i, j, k = 1, 2,

BPiQjQk = τ−1(CPiQjQk), i, j, k = 1, 2,

BQi PjQk = τ−1(CQi PjQk), i, j, k = 1, 2,

BQiQjPk = τ−1(CQiQjPk), i, j, k = 1, 2,

BQiQjQk = τ−1(CQiQjQk), i, j, k = 1, 2.

We claim that

Lemma 6.1. All the 64 exceptional divisors BPi PjPk , ..., BQiQjQk are isomorphic to the Hirzebruch surface

F1.

Proof. The argument is the same as the proof of Claim 4.2.
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We also denote the strict transform of BPi Pj under τ by B̂Pi Pj , similar notations for BPiQj and others.

Then the morphism π′ : BlCẼ3
1 → Ẽ2

1 restricts to

π′ : B̂Pi Pj

⋃
BPi PjP1

⋃
BPi PjP2

⋃
BPi PjQ1

⋃
BPi PjQ2 −→ EPi Pj ,

π′ : B̂PiQj

⋃
BPiQjP1

⋃
BPiQjP2

⋃
BPiQjQ1

⋃
BPiQjQ2 −→ EPiQj ,

π′ : B̂Qi Pj

⋃
BQi PjP1

⋃
BQi PjP2

⋃
BQi PjQ1

⋃
BQi PjQ2 −→ EQi Pj ,

π′ : B̂QiQj

⋃
BQiQjP1

⋃
BQiQjP2

⋃
BQiQjQ1

⋃
BQiQjQ2 −→ EQiQj .

We further denote the images of B̂Pi Pj and BPi PjPk under q3 by

q3(B̂Pi Pj) = GPi Pj ,

q3(B̂PiQ1) = q3(B̂PiQ2) = GPiQ,

q3(B̂Q1Pi) = q3(B̂Q2Pi) = GQPi ,

q3(B̂Q1Q1) = q3(B̂Q2Q2) = GQQ,

q3(B̂Q1Q2) = q3(B̂Q2Q1) = GQQ′ ,
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and

q3(BPi PjPk) = GPi PjPk ,

q3(BPi PjQ1) = q3(BPi PjQ2) = GPi PjQ,

q3(BPiQ1Pk) = q3(BPiQ2Pk) = GPiQPk ,

q3(BPiQ1Q1) = q3(BPiQ2Q2) = GPiQQ,

q3(BPiQ1Q2) = q3(BPiQ2Q1) = GPiQQ′ ,

q3(BQ1Pi Pk) = q3(BQ2Pi Pk) = GQPi Pk ,

q3(BQ1PiQ1) = q3(BQ2PiQ2) = GQPiQ,

q3(BQ1PiQ2) = q3(BQ2PiQ1) = GQPiQ′ ,

q3(BQ1Q1Pi) = q3(BQ2Q2Pi) = GQQPi ,

q3(BQ1Q1Q1) = q3(BQ2Q2Q2) = GQQQ,

q3(BQ1Q1Q2) = q3(BQ2Q2Q1) = GQQQ′ ,

q3(BQ1Q2Pi) = q3(BQ2Q1Pi) = GQQ′Pi ,

q3(BQ1Q2Q1) = q3(BQ2Q1Q2) = GQQ′Q,

q3(BQ1Q2Q2) = q3(BQ2Q1Q1) = GQQ′Q′ .
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Then f ′ :
(

BlCẼ3
1

)
/µ4 −→ Ẽ2

1/µ4 restricts to the following union of surfaces

f ′ : GPi Pj

⋃
GPi PjP1

⋃
GPi PjP2

⋃
GPi PjQ −→ DPi Pj ,

f ′ : GPiQ
⋃

GPiQP1

⋃
GPiQP2

⋃
GPiQQ

⋃
GPiQQ′ −→ DPiQ,

f ′ : GQPi

⋃
GQPi P1

⋃
GQPi P2

⋃
GQPiQ

⋃
GQPiQ′ −→ DQPi ,

f ′ : GQQ
⋃

GQQP1

⋃
GQQP2

⋃
GQQQ

⋃
GQQQ′ −→ DQQ,

f ′ : GQQ′
⋃

GQQ′P1

⋃
GQQ′P2

⋃
GQQ′Q

⋃
GQQ′Q′ −→ DQQ′ .

The singular fibers of f ′ are as following.

• If p ∈ DPi Pj , its singular fiber f ′−1(p) has 4 components, each of which is isomorphic to P1, as

shown in Figure 14.

• If p ∈ DPiQ, DQPi , DQQ or DQQ′ , f ′−1(p) has 5 components and it is of Kodaira Type I∗0 , see

Table I.
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P1

P1

P1

P1

Figure 14: Singular Fiber of f ′ :
(

BlCẼ3
1

)
/µ4 → Ẽ2

1/µ4 over A Point in DPi Pj .

Recall that c : Ẽ2
1/µ4 → S is the successive contraction of four (-1)-fibral components BP1 , BP2 ,

DP1Q and DP2Q, and S is the minimal elliptic surface with singular fibers {I I I, I I I, I∗0 } as shown in

Figure 10. Let

f0 = c ◦ f ′ :
(

BlCẼ3
1

)
/µ4 → S.

From the discussion above, the discriminant locus of f0 consists 8 curves

∆( f0) = D̂P1P1

⋃
D̂P1P2

⋃
D̂P2P1

⋃
D̂P2P2

⋃
DQQ

⋃
DQQ′

⋃
DQP1

⋃
DQP2

For a general point of D̂Pi Pj , i, j = 1, 2, its singular fiber of f0 is as shown in Figure 14. For a general

point of DQQ, DQQ′ , DQP1 and DQP2 , its singular is of Kodair Type I∗0 , see Table I.
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As shown in Figure 10, D̂P1P1 and D̂P1P2 are tangent to each other. We denote the two tangency

points by

B1 = D̂P1P1 ∩ D̂P1P2 ,

B2 = D̂P2P1 ∩ D̂P2P2 .

We need to look into the singular fibers of f0 over the two tangency points B1 and B2. Since c contracts

BPi and DPiQ to Bi for i = 1, 2, we have

f−1
0 (Bi) = f ′−1(BPi)

⋃
f ′−1(DPiQ)

= f ′−1(BPi)
⋃

GPiQ
⋃

GPiQP1

⋃
GPiQP2

⋃
GPiQQ

⋃
GPiQQ′ .

Let’s denote Gi = f ′−1(BPi). We claim that

Claim 6.2. Gi is isomorphic to Ẽ2
1/µ4. Moreover, f ′|Gi : Gi → BPi is the elliptic surface Ẽ2

1/µ4 → P1.

Proof. Recall that BPi = q̃2(ĈP1) and ĈPi
∼= {(Pi, x)|x ∈ E1}. Then π−1(ĈPi)

∼= {(Pi, x, y)|x, y ∈

E1} and q3(π−1(ĈPi))
∼= {(Pi, x, y)|x, y ∈ E1}/µ4

∼= E2
1/µ4. One can check that Gi is the minimal

resolution of q3(π−1(ĈPi)), which is isomorphic to Ẽ2
1/µ4.

For the second statement, the restriction

π|π−1(ĈPi )
: π−1(ĈPi) −→ ĈPi

induces f ′|Gi : Gi → BPi , which is the elliptic fibration Ẽ2
1/µ4 → P1.
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Recall that Gi → BPi has one singular fiber of Kodaira Type I∗0 , see Figure 10. Furthermore, Gi

intersect the other 5 components of the singular fiber f−1
0 (Bi) along its singular of Kodaira Type I∗0 as

shown in Figure 15.

Figure 15: The Singular Fiber of f0 over Bi
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For the next step, we recall the two representations of S as a 9-fold blowup of P2,

τ1, τ2 : S −→ P2,

where τ1 is a successive contraction of 9 curves of S in the following order

s[1], s[2], b[1], b[2], c[2], d[2], DQP1 , DQP2 , DQQ,

and τ2 contracts successively 9 curves of S in the following order

b[2], DQQ, BQ, c[2], d[2], s[2], D̂P2P2 , s[1], D̂P1P1 .

All the curves in S are shown in Figure 11. Composing with f0, we have the two elliptic fibrations f1

and f2 over P2.
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6.3.1 The Singular Fibers of f1

Let’s first look into singular fibers of f1. Since τ1 contracts DQP1 , DQP2 and DQQ, the discriminant

locus of f1 consists of the images of D̂P1P1 , D̂P1P2 , D̂P2P1 , D̂P2P2 , and DQQ′ under τ1. Recall our notations

in Section 5.5,

τ1(D̂P1P1) = l1,

τ1(D̂P1P2) = Q1,

τ1(D̂P2P1) = Q2,

τ1(D̂P2P2) = l2,

τ1(BQ) = L,

τ1(DQQ′) = l.

where l1, l2, l, L are lines in P2 and Q1 and Q2 are smooth plane conics satisfying the configuration (†)

in Claim 5.2. Then we have the discriminant locus of f1,

∆( f1) = l1 ∪ l2 ∪ l ∪Q1 ∪Q2.

The singular fibers over smooth points of ∆( f1) are the same as singular fibers of f ′. Now we need look

into the singular fibers over multiple points of ∆( f1).

We further make the following notations. Let B1 be the tangency point of l1 and Q1 and B2 be the

tangency point of l2 and Q2. Let B3 be the tangency point of l1 and Q2, and B4 be the tangency point of
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l2 and Q1. Let A3 be the common point of l1, l2 and l, and M0 be the tacnode of Q1 and Q2. Let A1

and A2 be the two transverse points of Q1 ∩Q2. The curves and points are shown in Figure 12.

The singular fibers over the two tangency points B1 and B2 are the same as f−1
0 (B1) and f−1

0 (B2)

as shown in Figure 15. For the other multiple points, we notice the following

• τ1 contracts s[1] and DQP1 to B3,

• τ1 contracts s[2] and DQP2 to B4,

• τ1 contracts b[1] to A3,

• τ1 contracts b[2] and DQQ to M0,

• τ1 contracts c[2] to A1,

• τ1 contracts d[2] to A2.

Therefore we have that

f−1
1 (B3) = f ′−1(s[1]) ∪ f ′−1(DQP1),

f−1
1 (B4) = f ′−1(s[2]) ∪ f ′−1(DQP2),

f−1
1 (A3) = f ′−1(b[1]),

f−1
1 (M0) = f ′−1(b[2]) ∪ f ′−1(DQQ),

f−1
1 (A1) = f ′−1(c[2]),

f−1
1 (A2) = f ′−1(d[2]).



134

Similar to Claim 6.2, we have that

f ′−1(S[1]) ∼= f ′−1(S[2]) ∼= f ′−1(b[1]) ∼= f ′−1(b[2]) ∼= f ′−1(c[2]) ∼= f ′−1(d[2]) ∼= Ẽ2
1/µ4.

and

f ′−1(DQP1) = GQP1

⋃
GQP1P1

⋃
GQP1P2

⋃
GQP1Q

⋃
GQP1Q′ ,

f ′−1(DQP2) = GQP2

⋃
GQP2P1

⋃
GQP2P2

⋃
GQP2Q

⋃
GQP2Q′ ,

f ′−1(DQQ) = GQQ
⋃

GQQP1

⋃
GQQP2

⋃
GQQQ

⋃
GQQQ′ .

We have that f−1
1 (B3), f−1

1 (B4), f−1
1 (M0) are all isomorphic to f−1

0 (B1) containg 6 components as we

described above. We have seen that GQPi and GQQ are ismorphic to P1 ×P1, which is denoted by F0.

Due to Lemma 6.1, the sufaces GQPi Pj , ..., GQQQ′ and GQQQ are isomorphic to F1.

We summerize the singular fibers of f1 over multiple points of ∆( f1) as following:

• Over the concurrent points A1, A2 and A3, the singular fiber is isomorphic to the elliptic surface

Ẽ2
1/µ4.

• Over the tangency points B1, B2, B3, B4 and the tacnode M0, the singular fiber has 6 components.

One is isomorphic to the elliptic surface Ẽ2
1/µ4, one is isomorphic to the Hirzebruch surface F0

and the other four are isomorphic to the Hirzebruch surface F1. Furthermore, the elliptic surface

intersects the 5 Hirzebruch surfaces along its singular fiber of Kodaria Type I∗0 . See Figure 16.
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Figure 16: The Singular Fiber of f1 over Bi for i = 1, 2,

Which Is Isomorphic To The Singular Fibers over B3, B4 And M0.
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6.3.2 The Singular Fibers of f2

Next we are going to study the singular fibers of f2. Recall our notations in the previous chapter

τ2(D̂P1P2) = C2,

τ2(D̂P2P1) = C1,

τ2(D̂QP1) = L1,

τ2(D̂QP2) = L2,

τ2(D̂QQ′) = L3.

where C1, C2, L1, L2, L3 satisfy the configuration (††) as stated in Claim 5.4. The discriminant locus of

f2 is

∆( f2) = C1 ∪ C2 ∪ L1 ∪ L2 ∪ L3.

The singular fibers of f2 over smooth points of ∆( f2) is the same as singular fibers of f ′. Now we need

to look into the singular fibers over multiple points of ∆( f2). There are 5 multiple points. Let R1 be the

cusp of C1 and R2 be the cusp of C2. Let S1 and S2 be the two transverse points of C1 ∩ C2, and let T0

be the common point of L1, L2 and L3. The curves and points are shown in Figure 13.

τ2 contracts curves to multiple points of ∆( f2) as following: (see Figure 11)

• τ2 contracts b[2], DQQ and BQ to T0,

• τ2 contracts c[2] to S2,
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• τ2 contracts d[2] to S1,

• τ2 contracts s[2] and D̂P2P2 to R2

• τ2 contracts s[1] and D̂P1P1 to R1.

Then we have the following singular fibers

f−1
2 (T0) = f ′−1(b[2]) ∪ f ′−1(DQQ) ∪ f ′−1(BQ),

f−1
2 (R1) = f ′−1(s[1]) ∪ f ′−1(D̂P1P1),

f−1
2 (R2) = f ′−1(s[2]) ∪ f ′−1(D̂P2P2),

f−1
2 (S1) = f ′−1(d[2]),

f−1
2 (S2) = f ′−1(c[2]).

As we have seen above, the preimage of a section is isomorphic to the elliptic surface Ẽ2
1/µ4,

f ′−1(b[2]) ∼= f ′−1(s[1]) ∼= f ′−1(s[2]) ∼= f ′−1(d[2]) ∼= f ′−1(c[2]) ∼= Ẽ2
1/µ4.

Also, we have

f ′−1(DQQ) = GQQ
⋃

GQQP1

⋃
GQQP2

⋃
GQQQ

⋃
GQQQ′ ,

f ′−1(D̂P1P1) = GP1P1

⋃
GP1P1P1

⋃
GP1P1P2

⋃
GP1P1Q,

f ′−1(D̂P2P2) = GP2P2

⋃
GP2P2P1

⋃
GP2P2P2

⋃
GP2P2Q.
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Now we denote GQ = f ′−1(BQ). Then f ′ restrcit to f ′|GQ : GQ → BQ is an elliptic fibration. By

looking into the µ4−actions on Ẽ2
1, we have that

BQ
∼= E1/µ2 ∼= P1,

where µ2 =< e, g2 > and g is a generator of µ4. In particular, g2 = −IdE1 is the involution on E1. On

the other hand, by looking into the µ4−actions on E3
1 and its blowups Ẽ3

1 and BlCẼ3
1, we have that the

preimage of BQ is

GQ
∼= Ẽ2

1/µ2.

Recall that Ẽ2
1 → E2

1 is the blowup at the 16 points fixed by g2, i.e. the 16 2-torsion points of E2
1. Since

Ẽ2
1/µ2 is a minimal resolution of E2

1/µ2, we have that GQ is a Kummer surface , which is typically

denoted by Km(E1 × E1) (Barth et al., 2015). In particular, GQ is a K3 surface. Furthermore,

f ′|GQ : GQ −→ BQ

is an elliptic K3 surface ( see the classification of elliptic surfaces Lemma 2.17), and it has four singular

fibers of Kodaira Type I∗0 (see Table I).

We summarize the singular fibers over multiple points of ∆( f2) as following:

• For S1 and S2, f−1
2 (Si) is isomorphic to the elliptic surface Ẽ2

1/µ4.

• For R1 and R2, f−1
2 (Ri) has 5 components. One is isomorphic to the elliptic surface Ẽ2

1/µ4, one

is isomorphic to Hirzebruch surface F0, the other three are isomorphic to Hirzebruch surface F1.
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Furthermore, the four Hirzebruch surfaces intersect the elliptic surface along one of its singular

fibers with 4 components, see Figure 17.

• For T0, f−1
2 (T0) has 7 components. One is isomorphic to the elliptic surface Ẽ2

1/µ4, one is

GQ isomorphic to the K3 surface Ẽ2
1/µ2, one is GQQ isomorphic to Hirzebruch surface F0 and

the other four are isomorphic to Hirzebruch surface F1. Furthermore, the 5 Hirzebruch surfaces

intersect the elliptic surfaces Ẽ2
1/µ4 and Ẽ2

1/µ2 along their singular fiber of Kodaira Type I∗0 . See

Figure 18.

The results of this chapter is summarized to Theorem 1.6.
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Figure 17: The Singular Fiber of f2 over R1.
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Figure 18: The Singular Fiber of f2 over T0.
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APPENDIX

A. AN INTRODUCTION TO INTERSECTION THEORY

Let X be a scheme. The group of cycles Z(X) on X is the free abelian group generated by the set

of subvarieties(reduced and irreducible subschemes) of X. The group is graded by dimension:

Z(X) =
⊕

k

Zk(X)

where ZK(X) is generated by subvarieties of dimension k.

Definition A.1. The Chow group of X is the quotient

A∗(X) = Z(X)/Rat(X)

Here Rat(X) ⊂ Z(X) is generated by A− B, where A and B are rational equivalent subvarieties.

The Chow group is graded by dimension:

A∗(X) =
dimX⊕
k=0

Ak(X)

where Ak(X) is the group of rational equivalence classes of k-cycles. If Y ⊂ X is a subvariety, we

denote [Y] its rational equivalence class.
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APPENDIX (Continued)

We say that subvarieties A, B ⊂ X are generically transverse if they meet transversely at a gen-

eral point of each component of A ∩ B. The Chow group A(X) has a ring structure with respect to

intersections:

Theorem A.2. If X is a smooth quasi-projective variety, then there is a unique product structure on

A(X) satisfying:

[A][B] = [A ∩ B].

This structure makes

A∗(X) =
dimX⊕
c=0

Ac(X)

into an associative, commutative ring, graded by codimension. Where Ac(X) is generated by the ratio-

nal equivalence classes of codimensional c. A∗(X) is called the Chow ring of X

Definition A.3. Let f : X → Y be a proper morphism of schemes and let A ⊂ Y be a subvariety. Then

the push-forward for cycles induced by f is a linear map f∗ : Z(X) −→ Z(Y) defined as following,

(a) If dim f (A) < dimA, then we set f∗A = 0.

(b) If dim f (A) = dimA and f |A has degree n, then we set f∗A = n( f (A)).

(c) We extend f∗ to all cycles on X by linearity.

Theorem A.4. If f : X → Y is a proper map of schemes, then the pushforward map f∗ : Z(X)→ Z(Y)

induces a map of Chow groups f∗ : Ak(X)→ Ak(Y) for each k ∈N.
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APPENDIX (Continued)

Definition A.5. Let f : X → Y be a morphism of smooth varieties. We say a subvariety A ⊂ Y is

generically transverse to f if the preimage f−1(A) is generically reduced and codimX( f−1(A)) =

codimY(A).

Theorem A.6. Let f : X → Y be a map of smooth quasi-projective varieties. There is a unique map of

groups

f ∗ : Ac(Y)→ Ac(X)

such that whenever A ⊂ Y is a subvariety generically transverse to f we have

f ∗([A]) = [ f−1(A)].

Moreover, f ∗ is a ring homomorphism.

Theorem A.7. Let f : X −→ Y be a map of smooth quasi-projective varieties. If α ∈ Ak(Y) and

β ∈ Al(X), then

f∗( f ∗α · β) = α · f∗β ∈ Al−k(Y).
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