The Function And Molecular Mechanism Of Asxl2 In The Mammalian Heart

BY

Hsiao-Lei Lai B.S. Kaohsiung Medical University, 2001 M.S. Chicago State University, 2005

Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in Biological Sciences in the Graduate College of the University of Illinois at Chicago, 2013 Chicago, Illinois

Defense committee: Jennifer Schmidt, Chair Qun Tian Wang, Advisor Peter Okkema Teresa Orenic David Geenen, Physiology and Biophysics

#### ACKNOWLEDGEMENT

I would like to thank Qun Tian Wang, my thesis advisor, for giving me an opportunity to pursue research in epigenetics. Without her continued advice, guidance, and support, I could not have completed my Ph.D. study. I also want to thank my committee members, Teresa Orenic, Peter Okkema, Jennifer Schmidt and David Geenen, for their advice and encouragement over the years. I need to give special thanks to the current and former members, especially Andrea McGinley, of Wang lab for their friendships, scientific or non-scientific advice during my graduate career. I am also really grateful that I had a chance to work alongside some of the wonderful fellow graduate students who have become my dear friends.

I am also very grateful for the endless love and support from my dad, Show-Suey Lai, my brother, Alex Lai, my sister, Elaine Cartier, and Kao family. I could never have had succeeded without them. Finally, I am really thankful for the continued support, encouragement and love of my husband, Nick. This entire journey in science began many years ago and would not have been possible without him.

I dedicate this work in memory of my dearest mother, Wei-Chuang Ho, who passed away in April, 2011.

# **TABLE OF CONTENTS**

| <u>CHAPTER</u>                                                                | PAGE |
|-------------------------------------------------------------------------------|------|
| I. INTRODUCTION                                                               | 1    |
| 1.1.The function of mammalian heart                                           |      |
| 1.2.Epigenetic regulation in heart development                                |      |
| 1.3.Role of histone acetylation in heart development                          |      |
| 1.4.Chromatin remodeling in heart development                                 |      |
| 1.5.Polycomb Group (PcG) and Trithorax Group (TrxG) proteins                  |      |
| 1.5.1 What are PcG and TrxG Proteins?                                         |      |
| 1.5.2 Recruiting PcG proteins to target                                       |      |
| 1.5.3 Regulating PRC2 enzyme activity                                         |      |
| 1.5.4 Enhancer of Trithorax and Polycomb Group (ETP) proteins                 |      |
| 1.5.5 PcG and TrxG proteins in heart development and function                 |      |
| 1.6 Purpose of this study                                                     |      |
|                                                                               |      |
| II. MATERIALS AND METHODS                                                     | 16   |
| 2.1.Animal breeding                                                           |      |
| 2.2.Echocardiography                                                          |      |
| 2.3.Hemodynamic measurements                                                  |      |
| 2.4. Myofibril protein preparation                                            |      |
| 2.5.High resolution SDS-PAGE gel electrophoresis                              |      |
| 2.6.Silver staining                                                           |      |
| 2.7.Blood pressure measurement                                                |      |
| 2.8.Quantitative RT-PCR                                                       |      |
| 2.9.Chromatin immunoprecipitation                                             |      |
| 2.10 Histology and immunofluorescence                                         |      |
| 2.11 Adult cardiomyocyte size measurement                                     |      |
| 2.12 Biochemical fractionation                                                |      |
| 2.13 Immunoprecipitation                                                      |      |
| 2.14 Western blot analysis                                                    |      |
| 2.15 Microarray                                                               |      |
|                                                                               |      |
| III. ADDITIONAL SEX COMBS-LIKE 2 IS REQUIRED FOR THE MAINTEN                  | ANCE |
| OF ADULT CARDIAC FUNCTION                                                     | 25   |
| 3.1 Abstract                                                                  | 25   |
| 3.2.Introduction                                                              |      |
| 3.3.Materials and Methods                                                     |      |
| 3.3.1 SDS-PAGE gel electrophoresis                                            |      |
| 3.3.2 Chromatin immunoprecipitation                                           |      |
| 3.4 Result                                                                    |      |
| 3.4.1 Asxl2 <sup>-/-</sup> mice in B6/129 F1 background are partially lethal  |      |
| 3.4.2 ASXL2 is required for the maintenance of ventricular function           |      |
| 3.4.3 Asxl2 <sup>-/-</sup> mice have low arterial blood pressure at older age | 33   |
| 3.4.4 Asxl2 <sup>-/-</sup> hearts exhibit increased PKA signaling             | 35   |
| 3.4.5 Asxl2 <sup>-/-</sup> hearts exhibit de-repression of <i>Myh7</i>        |      |
| 3.4.6 ASXL and the PcG protein EZH2 co-localize to Myh7 promoter              |      |

| 3.4.7 <i>Asxl2</i> <sup>-/-</sup> hearts are not hypertrophic                            | 42   |
|------------------------------------------------------------------------------------------|------|
| 3.4.8 ASXL2 is down-regulated in the hearts of patients with ischemic or idiopathic      |      |
| dilated cardiomyopathy                                                                   |      |
| 3.5 Discussion                                                                           |      |
| 3.5.1 The molecular basis for ventricular dysfunction in $Asxl2^{-/-}$ heart             |      |
| 3.5.2 The role of ASXL2 in cardiomyocyte hypertrophy                                     |      |
| 3.5.3 The role of chromatin factors in the long-term maintenance of cardiac gene         | •••• |
| expression and function                                                                  | 48   |
| 3.5.4 Implication of ASXL2 in human heart disease                                        | 49   |
|                                                                                          |      |
| IV. ADDITIONAL SEX COMBS-LIKE 2 IS REQUIRED FOR POLYCOMB                                 |      |
| REPRESSIVE COMPLEX 2 BINDING AT SELECT TARGETS                                           | 51   |
| 4.1.Abstract                                                                             | 51   |
| 4.2.Introduction                                                                         | 52   |
| 4.3.Materials and Methods                                                                | 53   |
| 4.3.1 Chromatin immunoprecipitation                                                      | 53   |
| 4.3.2 Immunoprecipitation                                                                |      |
| 4.4.Results                                                                              | 55   |
| 4.4.1 ASXL2 is associated with chromatin                                                 | 55   |
| 4.4.2 ASXL2 is required for the normal expression of multiple cardiac genes              | 57   |
| 4.4.3 ASXL2 and PRC2 components co-localize at select target loci                        |      |
| 4.4.4 H3K27me3 is significantly reduced at de-repressed Asxl2 target loci                |      |
| 4.4.5 Acetylation of histone H3 (AcH3) is significantly increased at de-repressed        |      |
| Asxl2 target loci                                                                        | 69   |
| 4.4.6 PRC2 core subunits are expressed and form complexes in Asxl2 <sup>-/-</sup> hearts |      |
| 4.4.7 ASXL2 is required for PRC2 binding at target loci                                  |      |
| 4.4.8 ASXL2 interacts with PRC2 core components in the adult heart                       |      |
| 4.4.9 ASXL2 is specifically required for the addition of the third methyl group to       |      |
| H3K27                                                                                    | 76   |
| 4.4.10 ASXL2 interacts with BAP1 and is required for efficient uH2A                      |      |
| deubiquitination <i>in vivo</i>                                                          | 78   |
| 4.4.11 Asxl <sup>2</sup> is highly expressed in adult heart                              |      |
| 4.5.Discussion                                                                           |      |
| 4.5.1 ASXL2 regulates PRC2-chromatin association                                         |      |
| 4.5.2 ASXL2 and PHF1 use different mechanisms to promote H3K27                           |      |
| trimethylation                                                                           | 83   |
| 4.5.3 A potential link between histone H2A deubiquitination and H3K27                    |      |
| trimethylation?                                                                          | 84   |
| 4.5.4 Potential PR-DUB-independent mechanisms to regulate PRC2 binding                   |      |
| 4.5.5 Functional divergence between Asx and ASXL                                         |      |
|                                                                                          |      |
| V. GENERAL DISCUSSION                                                                    | 88   |
| 5.1.ETP proteins modulate gene expression via interaction with different partners        |      |
| 5.2. Functional divergence in ASXL family might be due to their protein divergence       |      |
| 5.3.Whether ASXL2 has a role in cellular memory?                                         |      |
|                                                                                          |      |
| APPENDICES                                                                               | 97   |
| Appendix A                                                                               | 97   |

| Appendix B       | 100 |
|------------------|-----|
| Appendix C       | 102 |
| Appendix D       | 103 |
| Appendix E       |     |
| Appendix F       |     |
| Appendix G       |     |
| Appendix H       |     |
| Appendix I       |     |
| Appendix J       |     |
| Appendix K       | 116 |
| Appendix L       | 118 |
| Appendix M       |     |
|                  |     |
| CITED LITERATURE | 140 |
|                  |     |
| VITA             | 151 |

# LIST OF TABLES

| TABLE        | PAGE                                                    |
|--------------|---------------------------------------------------------|
| TABLE I.     | GENOTYPE COMPOSITION OF B6/129 F1 ANIMALS AT<br>WEANING |
| TABLE II.    | ETP GENES AND THEIR KNOWN MOLECULAR MECHANISMS89        |
| TABLE III.   | PRIMERS USED IN CHIP ASSAY97                            |
| TABLE IV.    | PRIMERS USED IN QRT-PCR ASSAY100                        |
| TABLE V.     | ANTIBODIES USED IN CHIP ASSAY102                        |
| TABLE VI.    | ANTIBODIES USED IN WESTERN BLOTTING103                  |
| TABLE VII.   | ANTIBODIES USED FOR IMMUNOPRECIPITATION (IP) ASSAY 106  |
| TABLE VIII.  | ANTIBODIES USED FOR IMMUNOFLUORESCENCE (IF)107          |
| TABLE VIIII. | PLASMIDS108                                             |
| TABLE X.     | SHRNA PLASMIDS109                                       |
| TABLE IX     | PRIMERS USED IN UH2A CHIP ASSAY                         |
| TABLE IIX    | GENES THAT ARE DE-REPRESSED BY AT LEAST TWO-FOLD IN     |
|              | ASXL2 MUTANT HEARTS AS DETERMINED BY MICROARRAY118      |
| TABLE IIIX   | GENES THAT ARE REPRESSED BY AT LEAST TWO-FOLD IN        |
|              | ASXL2 MUTANT HEARTS AS DETERMINED BY MICROARRAY128      |

# LIST OF FIGURES

| FIGURE     | PAGE                                                                                           |  |
|------------|------------------------------------------------------------------------------------------------|--|
| Figure 1.  | Evaluation of systolic function in <i>Asxl2<sup>-/-</sup></i> mice and wild-type littermates32 |  |
| Figure 2.  | Blood pressure in wild-type (black lines) and Asxl2 <sup>-/-</sup> mice (gray lines) 34        |  |
| Figure 3.  | Expression of phosphorylated myofibril proteins in wild-type and                               |  |
|            | <i>Asxl2</i> <sup>-/-</sup> hearts                                                             |  |
| Figure 4.  | Expression and phosphorylation of TNNI3 and PLB in wild-type and                               |  |
|            | <i>Asxl2</i> <sup>-/-</sup> hearts                                                             |  |
| Figure 5.  | Asxl2-/- heart exhibited progressive de-repression of Myh7                                     |  |
| Figure 6.  | ASXL2 binds to Myh7 promoter and co-localizes with EZH2 histone                                |  |
|            | methyltransferase                                                                              |  |
| Figure 7.  | Asxl2 <sup>-/-</sup> hearts did not develop hypertrophy                                        |  |
| Figure 8.  | Asxl2 expression in human cardiomyopathy patients                                              |  |
| Figure 9.  | ASXL2 is associated with chromatin                                                             |  |
| Figure 10. | Epigenetic profiles at Sfrp2, Acta1 and Grk5 loci in ES cells                                  |  |
| Figure 11. | ASXL2 is required for the repression of select cardiac genes                                   |  |
| Figure 12. | ASXL2 and PRC2 core components co-localize at select target loci62                             |  |
| Figure 13. | ASXL2 is not enriched at the coding regions of Sfrp2 and Grk5                                  |  |
| Figure 14. | ASXL2 is not enriched at the S100a10 locus                                                     |  |
| Figure 15. | De-repression of ASXL2 target genes is accompanied by reduced levels                           |  |
|            | of H3K27me366                                                                                  |  |
| Figure 16. | ChIP-qPCR analysis of H3K27me3 enrichment at the Hoxb5 locus67                                 |  |

# LIST OF FIGURES (continued)

| <u>FIGURE</u> | PAGE                                                                                                             |
|---------------|------------------------------------------------------------------------------------------------------------------|
| Figure 17     | <i>Hoxb5</i> transcription levels were detected very low in both wild-type and <i>Asxl2<sup>-/-</sup></i> hearts |
| Figure 18.    | De-repression of Asxl2 target genes is accompanied by increased levels                                           |
|               | of AcH370                                                                                                        |
| Figure 19.    | ASXL2 is not required for the protein stability of PRC2 core components                                          |
|               | or the integrity of PRC2 complex72                                                                               |
| Figure 20.    | Comparison of EZH2 level in wild-type and <i>Asxl2<sup>-/-</sup></i> hearts                                      |
| Figure 21.    | ASXL2 interacts with PRC2 and is required for recruitment of PRC2 to                                             |
|               | select target genes in the mouse heart77                                                                         |
| Figure 22.    | ASXL2 interacts with BAP1 in vivo and is required for efficient                                                  |
|               | deubiquitination of uH2A79                                                                                       |
| Figure 23.    | Expression of Asxl genes in the adult mouse heart                                                                |
| Figure 24.    | Nuclear localization of FLAG-ASXL2 and BMI-1 in HEK293 and                                                       |
|               | U2OS cells respectively                                                                                          |
| Figure 25.    | Full-length ASXL2 and various ASXL2 deletion/truncation constructs are                                           |
|               | predominantly associated with chromatin115                                                                       |

# LIST OF ABBREVIATIONS

| μgMicrogramμlMicroliterAAmino acidADPAdenosine diphosphateAbAntibodyATPAdenosine-5'-triphosphateBDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrSoluble nuclear fractionCNNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitolEEmbryonic day of development |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AAmino acidADPAdenosine diphosphateAbAntibodyATPAdenosine-5'-triphosphateBDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrSoluble nuclear fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                      |
| ADPAdenosine diphosphateAbAntibodyATPAdenosine-5'-triphosphateBDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrSoluble nuclear fractionCNNSoluble nuclear fractionCM2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                    |
| AbAntibodyATPAdenosine-5'-triphosphateBDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrSoluble nuclear fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                         |
| ATPAdenosine-5'-triphosphateBDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrSoluble nuclear fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                   |
| BDMButanedione monoximebpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                     |
| bpBase pairsBSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                            |
| BSABovine serum albuminCHDCongenital heart diseaseChIPChromatin immunoprecipitationChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                        |
| CHDCongenital heart diseaseChIPChromatin immunoprecipitationChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                               |
| ChIPChromatin immunoprecipitationChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                          |
| ChrChromatin fractionSNSoluble nuclear fractionC/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                           |
| C/SNCytosol fractioncm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                                                                          |
| cm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                                                                                              |
| cm2Centimeters squaredDEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                                                                                              |
| DEPCDiethylpyrocarbonatediH2ODeionized waterDNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                                                                                                                    |
| DNADeoxyribonucleic acidDTTDithiothreitol                                                                                                                                                                                                                                                                                                                                                                                                |
| DTT Dithiothreitol                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| E Embryonic day of development                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EDTA Ethylene diamine tetraacetic acid                                                                                                                                                                                                                                                                                                                                                                                                   |
| EtBr Ethidium bromide                                                                                                                                                                                                                                                                                                                                                                                                                    |
| g Gram                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hox Homeotic genes                                                                                                                                                                                                                                                                                                                                                                                                                       |
| kb Kilogram base pair(s)                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L Liter                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Inc RNA Long non coding RNAs                                                                                                                                                                                                                                                                                                                                                                                                             |
| M Molar                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| mg Milligram                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ml Milliliter                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mM Millimolar                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mRNA Messenger RNA                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Neo Neomycin resistance gene                                                                                                                                                                                                                                                                                                                                                                                                             |
| ng Nanograms                                                                                                                                                                                                                                                                                                                                                                                                                             |
| °C Degree Celsius                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PCR polymerase chain reaction                                                                                                                                                                                                                                                                                                                                                                                                            |
| RA Retinoic acid                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RNA ribonucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                     |
| RNA POLII RNA polymerase II                                                                                                                                                                                                                                                                                                                                                                                                              |

# LIST OF ABBREVIATIONS

| RNA POLII | RNA polymerase II                                         |
|-----------|-----------------------------------------------------------|
| rpm       | Revolutions per minute                                    |
| SDS-PAGE  | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
| SHF       | Second heart field                                        |
| TAC       | Transverse aortic constriction                            |
| TOF       | Tetralogy of Fallot                                       |
| TrxG      | Trithorax Group                                           |
| TSS       | Transcriptional start site                                |
| U         | Units                                                     |
| V         | Volt                                                      |
| WT        | Wild type                                                 |
| X-gal     | 5-bromo-4-chloro-3-indoyl $\beta$ –D-galactoside          |
| β-gal     | Beta-galactosidase                                        |
| PBS       | Phosphate buffered saline                                 |

#### SUMMARY

*Polycomb Group* (PcG) and *Trithorax Group* (TrxG) genes were originally identified in Drosophila as repressors and activators of *Hox* genes, respectively (Schuettengruber et al., 2007). In *PcG* and *TrxG* mutants, the expression of *Hox* genes is mis-regulated, leading to homeotic transformation phenotypes of body segments (Lewis, 1978, 1982). In addition, PcG and TrxG proteins are found to be regulators of numerous genes involved in cell fate decision, stem cell identity and cancer (Aloia et al., 2013; Kohler and Hennig, 2010; Martinez et al., 2006; Sparmann and van Lohuizen, 2006); At the molecular level, PcG and TrxG proteins form multiple complexes that silence and activate chromatin, respectively (Pirrotta, 1998). A hallmark of PcG proteins activity is tri-methylation of histone H3 lysine 27 (H3K27me3), which is associated with a repressed transcriptional state (Cao et al., 2002). In contrast, tri-methylation of histone H3 lysine 4 (H3K27me4) is a product of TrxG activity, and is associated with transcriptional activation (Byrd and Shearn, 2003; Cao et al., 2002).

A class of genes known as *Enhancers of Trithorax and Polycomb (ETP)* genetically interacts with both *PcG* and *TrxG*. *Additional sex combs* (*Asx*) of Drosophila is a member of the *ETP* group because *Asx* mutations enhance both *PcG* and *TrxG* mutant phenotypes (Milne et al., 1999). A recent study has shown that a newly characterized Drosophila PcG protein, Calypso, forms a complex with Asx (Scheuermann et al., 2010). This new PcG complex is named Polycomb Repressive Deubiquitinase (PR-DUB). Biochemical analysis has shown that recombinant Calypso interacts with the Asx-N terminus (aa2-337), and this interaction enhances deubiquitination of nucleosomal H2A by Calypso *in vitro*. The enzyme activity of Calypso is required for repression of the *Hox* gene *Ubx* in Drosophila.

### **SUMMARY** (continued)

Three mammalian homologs of *Asx*, named *Asx-like 1, 2,* and *3*, have been identified in mice and humans (Fisher et al., 2003; Katoh, 2003, 2004). Like Drosophila Asx and Calypso, mammalian ASXL1 and BAP1, the mammalian homolog of Calypso, form a stable PR-DUB complex *in vitro* (Scheuermann et al., 2010).

We have generated an *Asxl2*  $\stackrel{-}{\sim}$  mouse line to study *Asxl* in a mammalian system by taking advantage of a gene-trapped ES cell line from the Gene Trap Consortium [www.genetrap.org] (Baskind et al., 2009). The ES cell gene trap line contains a  $\beta$ -geo cassette with a polyadenylation site at the 3' end which is integrated into the first intron of *Asxl2* (Baskind et al., 2009). The truncated mRNA encodes a protein product that is missing all the conserved domains of ASXL2.

*Asxl2* is highly expressed in embryonic and adult hearts (Baskind et al., 2009). In collaboration with Dr. David Geenen's laboratory, we have conducted a series of physiological and biochemical assays of  $Asxl2^{-/-}$  mice in the B6/129 F1 background to assess the role of ASXL2 in heart function. Our results show that  $Asxl2^{-/-}$  mice can survive to adulthood but gradually develop ventricle dysfunction. Microarray analysis shows more than 753 cardiac genes are mis-regulated in the absence of Asxl2. These results suggest that Asxl2 functions to maintain normal cardiac function and gene expression in postnatal stages.

The axial skeletons of *Asxl2<sup>-/-</sup>* mice exhibit both posterior and anterior transformations, which are classic *PcG/TrxG* phenotypes, respectively (Baskind et al., 2009). This indicates that *Asxl2* has *ETP* function. Furthermore, *Asxl2* deficiency results in a reduction in the level of bulk H3K27me3, a repressive mark generated by the Polycomb Repressive Complex 2 (PRC2) (Baskind et al., 2009). Our goal is to determine the mechanism by which ASXL2 regulates H3K27me3 level. I show that ASXL2 interacts with PRC2 in the adult heart. The loss of *Asxl2* 

xii

results in loss of H3K27me3 as well as loss of PRC2 enrichment surrounding the de-repressed target promoters. The loss of PRC2 and H3K27me3 enrichment at these loci is not due to degradation of PRC2 core components or a failure of these components to form the PRC2 complex in *Asxl2*<sup>-/-</sup> hearts. In addition, we tested whether PR-DUB function is conserved in ASXL2. Our results show that ASXL2 interacts with BAP1 and is required for mono-deubiquitination of H2A at lysine 119 (H2AK119ub1) in the heart.

In summary, I have made several contributions to further our understanding of ASXL2's biological and functional mechanisms. Specifically, I have shown that (1) ASXL2 is required for normal ventricular function in adult heart; (2) ASXL2 is required for the homeostasis of two important histone marks, H3K27me3 and uH2A; (3) ASXL2 specifically affects the conversion of H3K27me2 to H3K27me3; (4) ASXL2 maintains the repression of select cardiac genes by facilitating the binding of PRC2 to target loci. Taken together, these data show that ASXL2 is a novel epigenetic regulator in the adult heart. In-depth studies of mouse ASXL2 will provide valuable insight on the diagnostic and/or therapeutic value of human ASXL2 in heart disease.

#### I. GENERAL INTRODUCTION

#### **1.1** The function of mammalian heart

The mammalian adult heart is a four-chambered muscular organ that pumps blood throughout the blood vessels by a sequence of alternating contractions and relaxations, which is essential for nutrient and oxygen supply to the cells of the whole body (Walker and Spinale, 1999).

The basic contractile unit of the heart is the cardiomyocyte, which contains bundles of myofibrils. The myofibrils are organized into repeating segments of sarcomeres. The sarcomere is composed of myosin and actin which are known as thick and thin filaments, respectively. Myosin has a globular head and binds to adenosine-5'-triphosphate (ATP) (Sieck and Regnier, 2001). The myosin head can hydrolyze ATP into adenosine diphosphate (ADP). The ATP hydrolysis subsequently releases the phosphate group which causes contraction. Contraction occurs when the myosin head interacts with actin, causing two filaments to come close to each other. Tropomyosin also attaches to actin filaments. In the relaxing heart muscle, tropomyosin blocks the binding sites of the myosin head from actin, thus preventing contraction. Cardiac contraction is triggered by the elevation of intracellular  $Ca^{+2}$  levels. The troponin complex is another important contractility protein that attaches to tropomyosin under the groove of actin filaments. Troponin changes shape when exposed to  $Ca^{+2}$ , which in turn changes the confirmation of tropomyosin, exposing the actin filaments to myosin. This network of proteins orchestrates the hearts ability to contract and relax (Solaro et al., 2008).

# 1.2 Epigenetic regulation in heart development

The formation of the heart is a precisely coordinated process that involves multiple molecular pathways. A network of transcription factors direct cardiac cell fates specification, 1

differentiation, and proliferation. Mutations in these regulators can result in congenital heart disease (Sachdeva et al., 1964). For example, tetralogy of fallot (TOF) is a type of congenital heart disease (CHD) and a common cause of blue baby syndrome (Bailliard and Anderson, 2009). The causes of TOF were originally linked to environmental factors. Later, mutations in transcription factors such as NKX2.5 (Benson et al., 1999) and GATA4 (Kodo and Yamagishi, 2010) were discovered to be linked to TOF and other CHDs (Clark et al., 2006). The causes of many CHDs and other cardiac diseases are known to be influenced by a mix of epigenetic, environmental, and transcription factors (Benson et al., 1999; Clark et al., 2006; Kodo et al., 2012; McCulley and Black, 2012; Nanda et al., 2012; Wang, 2012).

The importance of epigenetic mechanisms in transcriptional regulation has been gradually recognized. The nucleosome is the basic subunit of chromatin. It consists of an octamer of four core histone proteins (H3, H4, H2A, and H2B) wrapped with DNA. Histones can be covalently modified with a wide range of post-translational modifications, such as acetylation, methylation, phosphorylation, ubiquitylation, sumoylation and ADP ribosylation (Bartova et al., 2008). These modifications occur mostly on the N-terminal tails. A large number of histone modifications have been discovered. Some of them, most notably histone acetylation and histone methylation, have been implicated in regulation of heart development and function.

Besides histone modifiers, chromatin structures can be regulated by ATP-dependent chromatin remodeling (Clapier and Cairns, 2009). Chromatin remodeling locally disrupts or shifts nucleosomes to increase or decrease DNA accessibility from regulatory factors by using the energy from ATP hydrolysis. This leads to either activation or repression of gene expression.

Many studies have begun to uncover the importance of epigenetic processes, such as histone modifications and chromatin remodeling, in cardiogenesis and function. Such factors activate or repress transcriptional activities at target genomic loci by altering chromatin structure. Many chromatin regulators are involved in the regulation of cardiac differentiation, maturation, and morphogenesis (Bruneau, 2010; El-Osta, 2011; Takeuchi et al., 2011). Studying the function of epigenetic regulators and their targets will provide new insights into the transcriptional regulation networks in the heart. Below I will briefly review several epigenetic processes and the evidence supporting how these processes are important for the development and function of the heart.

## 1.3 <u>Role of histone acetylation in heart development</u>

Histone acetylation was the first discovered histone modification and is normally correlated with gene activation (Graff and Tsai, 2013). Histone acetyltransferase (HAT) and histone deacetylase (HDAC) are two main enzymes that regulate acetylation. HAT adds acetyl groups to the histone tails which relaxes nucleosome interactions and allows transcription factor binding. In contrast, HDAC promotes chromatin compaction by removing acetyl groups from histone tails, resulting in gene silencing (Graff and Tsai, 2013). Studies of HAT and HDAC knockout mice and their target genes have revealed important roles of HAT and HDAC in cardiac development.

P300 is a well-studied HAT and a transcriptional activator. Mice homozygous for *P300* knockout die between E9.5 and E11.5. The mutant hearts display thin myocardium and diminished trabeculation. The cardiac defects in *P300* mutant mice might be associated with low expression of actinin, alpha (*Actn*) and myosin, heavy chain 7, cardiac muscle, beta (*Myh7*), which encodes a myosin heavy chain beta in embryonic hearts (Yao et al., 1998).

Mice with double mutations in *Histone deacetylase 1 (Hdac1)* and *Histone deacetylase 2 (Hdac2)* die two weeks after birth, their hearts exhibiting dilated cardiomyopathy and cardiac

arrhythmia (Montgomery et al., 2007). *Hyperpolarization-activated cyclic nucleotide-gated channel* (*Hcn*), the *T-type Ca2+ current* (*Cacna1g*), and *actin, alpha skeletal muscle* (*Acta1*) are fetal genes which are only expressed during embryonic stage (Montgomery et al., 2007). ChIP assays show that they are direct targets of HDAC1 and HDAC2. Loss of *Hdac1* and *Hdac2* results in de-repression of these fetal genes in the adult mutant heart. These observations lead to a hypothesis that the abnormalities in double mutation mice may be due to fetal gene re-activation in adulthood (Montgomery et al., 2007).

### 1.4 <u>Chromatin remodeling in heart development</u>

All known chromatin remodeling ATPases belong to the SNF2 family. Based on sequence and structure analysis, the ATPases can be divided into four subfamilies: SWI/SNF, ISWI, CHD and INO80 (Clapier and Cairns, 2009).

Brahma-associated factor (BAF) complex is one of the complexes of SWI/SNF family. BAF interacts with transcription factors and other chromatin factors to maintain normal cardiac development and function. In mice, the knock down of the BAF subunit *Baf60c* causes multiple cardiac defects, such as a shortened outflow tract, hypoplastic ventricle and abnormal cardiac looping (Lickert et al., 2004). BAF60C interacts with GATA4 and recruits BAP chromatin remodeling complexes to *Nkx2.5* enhancer region during mouse embryonic stages (Takeuchi and Bruneau, 2009). Both BAF and GATA4 are important for the activation of *Nkx2.5*, an essential transcription factor in cardiogenesis.

In mice, a mutation in the BAF subunit *Baf180* results in embryonic death between E12.5 and E15.5 with cardiac defects such as ventricular septal malformation and hypoplastic ventricles (Wang et al., 2004b). Mouse embryos with a mutation in a *retinoid X receptor* gene, a component of the retinoic acid (RA) pathway, have similar cardiac abnormalities as *Baf180*  mutants (Subbarayan et al., 2000). BAF180 is required for the expression of a subset of RA target genes such as *RAR* $\beta$ 2 and *CRABPII* (Wang et al., 2004b) suggesting that BAF180 interacts with the RA pathway to regulate cardiac chamber formation.

Overall, many histone modifiers and chromatin modifiers have been implicated in heart formation; however, their roles in cardiac function are largely unknown due to most of their gene knockout mice dying at early embryonic stages, preventing functional analysis of the adult heart.

## 1.5 <u>Polycomb Group (PcG) and Trithorax Group (TrxG) proteins</u>

Accumulated evidence suggests that Polycomb Group (PcG) and Trithorax Group (TrxG) proteins also have roles in cardiac formation and function (Wang, 2012). PcG and TrxG proteins are key epigenetic activators and repressors, respectively. They regulate developmental gene expression in many tissues and organs. Here, I will first review the general knowledge about PcG/TrxG proteins, then review existing evidence that they are important regulators in the heart.

## 1.5.1 <u>What are PcG and TrxG proteins?</u>

*Homeotic* genes (*Hox*) are a set of transcription factors that specify the anterior and posterior axis of the body plan. *PcG* and *TrxG* genes have been discovered to function antagonistically in maintaining the expression patterns of *Hox* genes (Ingham, 1985; Kennison and Tamkun, 1988; Lewis, 1978). Mutations in *PcG* and *TrxG* disrupt specific anterior and posterior body plans and result in homeotic transformations (Lewis, 1978; Lewis, 1982). Posterior and anterior transformations are the hallmark phenotypes of *PcG* and *TrxG* mutations, respectively.

PcG and TrxG proteins regulate gene expression through modulation of target chromatin structures (Zink and Paro, 1989). Biochemical activities of PcG and TrxG proteins are mainly involved in the generation and maintenance of histone modifications of target chromatin (Beisel et al., 2002; Cao et al., 2002). In addition to histone modifications, it has been shown that PcG proteins promote chromatin compaction (Francis et al., 2004) and TrxG proteins regulate chromatin remodeling (Crosby et al., 1999).

PcG proteins consist of at least four distinct multi-protein complexes that work together. They are known as PhoRC, Polycomb repressive complex 1 and 2 (PRC1 and 2), and Polycomb repressive deubiquitinase (PR-DUB) (Czermin et al., 2002; Scheuermann et al., 2010; Shao et al., 1999). PhoRC contains the DNA binding protein Pho (Fujioka et al., 2008). Initially PhoRC is recruited to target chromatin and then aides in the recruitment of PRC2 (Fujioka et al., 2008; Kuzmichev et al., 2002). EZH2 is a core component of PRC2 that specifically generates mono, di, and trimethylation of Histone H3 at lysine 27 (H3K27me1/2/3) (Cao et al., 2002). H3K27me3 is the hallmark of PcG-dependent gene silencing. H3K27me3 has been associated with promoting compact nucleosomes by recruiting PRC1 which prevents regulatory protein binding (Black et al., 2012). Extra sex comb (ESC) is a subunit of PRC2 (Lu et al., 2013). A knockout study of *esc* in *Drosophila* embryos shows its target genes are de-repressed. The de-repressed genes exhibit H3K27me3 reduction and increased levels of associated RNA polymerase II (RNA POLII) (Chopra et al., 2011). These data are interpreted as H3K27me3 being required for silencing by impeding RNA POLII binding at target promoters.

PRC1 subunit Polycomb (Antipchuk Iu, 1966) specifically recognizes H3K27me3 via its chromo- domain. PRC1 inhibits nucleosome remodeling and promotes chromatin compaction. A subunit of PRC1, Ring1 contains an E3 ligase activity for mono-ubiquitination of histone H2A (uH2A). Depletion of Ring1 results in de-repression of PRC1 targets, suggesting H2A ubiquitination is required for PRC1 mediated silencing (Wang et al., 2004a). However, a recent study suggests that PRC1- mediated chromatin compaction is independent of uH2A activity (Eskeland et al., 2010). uH2A activity of PRC1-mediated repression is required for genes that are crucial for the maintenance of ESC identity (Endoh et al., 2012).

A recently discovered PcG complex, Polycomb repressive deubiquitinase (PR-DUB) further complicates the role of H2A ubiquitination in PcG silencing (Scheuermann et al., 2010). Calypso is a Drosophila PcG protein which encodes an H2A deubiquitinating enzyme. PR-DUB consists of Calypso and Additional sex combs (Asx) (Gaytan de Ayala Alonso et al., 2007). *In vitro* experiments demonstrated that PR-DUB removes ubiquitin from nucleosomal H2A, and this catalytic activity is strongly enhanced by the interaction between Asx and Calypso (Scheuermann et al., 2010). Furthermore, deubiquitination of H2A is required for repression of a *Hox* gene (Scheuermann et al., 2010). Genetic studies in Drosophila show that PR-DUB and Ring1 co-localize at select target genes which supports the hypothesis that the balance of ubiquitination and deubiquitination might contribute to PcG silencing. Further investigation is needed to decipher the actual role of de-ubiquitination in gene repression.

TrxG proteins also form several protein complexes, such as SET-1 Like, MLL and BRM. The SET-1 like complex maintains transcriptional activation by H3K4 trimethylation (Rozovskaia et al., 2000). BRM contains an ATP dependent chromatin remodeling factor which mediates nucleosome sliding (Tamkun et al., 1992). The MLL complex generates histone methylation marks on target chromatin and promotes chromatin remodeling activity (Nakamura et al., 2002; Yokoyama et al., 2004).

## 1.5.2 <u>Recruiting PcG proteins to targets</u>

PcG proteins targeting to specific chromatin loci is required for PcG-mediated repression (Muller and Kassis, 2006). In Drosophila, special regulatory elements have been identified from PcG target genes that are required for PcG mediated repression. These elements are known as Polycomb Response Elements (PREs) (Muller and Kassis, 2006). PREs are several hundred base pairs in length and often found at distances of ten kilobases or more from the promoters that they regulate. Pleiohomeotic (Pho) protein is a core component of the Pho-RC complex in Drosophila. Pho has DNA binding motifs and binds to PREs (Mohd-Sarip et al., 2002). However, the DNA binding site of Pho alone is not sufficient to repress expression of a *Hox* gene, suggesting more elements are required for PcG targeting (Mohd-Sarip et al., 2002). Other DNA binding proteins such as Dsp1 (Salvaing et al., 2006), GAGA factor (Okada and Hirose, 1998), and Pipsqueak (Schwendemann and Lehmann, 2002) are shown to associate with PREs in Drosophila. However, genome-wide ChIP assays show that the binding profiles of these DNA binding proteins do not completely overlap, suggesting there is no single protein which is necessary for PcG protein recruitment to targets (Schuettengruber et al., 2009).

In mammals, two PRE-like elements, PRE-kr (Sing et al., 2009) and D11.12 (Woo et al., 2010), have been identified. Both elements can repress gene expression through recruiting PcG proteins to target promoter in reporter gene assays. However, PRE-kr and D11.12 do not have consensus sequences (Sing et al., 2009; Woo et al., 2010), suggesting PRE-like elements are not the essential molecular players that recruit PcG proteins to targets. YY1 is the mammalian homolog of Drosophila Pho (Basu and Atchison, 2010). Both PRE-like elements require the presence of the YY1 DNA binding site for repression. YY1 was found to co-localize with PRC2 subunit EED and PRC1 subunit BMI1 to upstream *Hoxc8* and *Hoxa5* (Kim et al., 2006). Genome-wide ChIP assays show that YY1 and PcG proteins co-localize only a subset of genes (Kim et al., 2006), suggesting there are other components required for PcG protein recruitment to targets.

It has been proposed that PRC2 is recruited to its targets by JARID2 (Li et al., 2010) and PHF1 (Qin et al., 2013) in specific cell lines. JARID2 interacts with PRC2 in embryonic stem cells. ChIP seq data shows that the binding profiles of JARID2 and a PRC2 component, EZH2 are very similar. In the absence of *Jarid2*, PRC2 targets are de-repressed, and there is significant loss of both H3K27me3 and PRC2 binding (Li et al., 2010). PHD finger protein 1 (PHF1) contains a tudor domain and two PHD domains (Qin et al., 2013). *In vitro* assays showed that PHF1 interacts with EZH2 via the PHD domain (Qin et al., 2013). PHF1 co-localizes with EZH2 at PcG target genes such as a *Hoxa* locus and the non-*Hox MYT1* and *WNT1* loci in HeLa cells (Sarma et al., 2008). PHF1 interacts with PHF1 can somehow stabilize the interaction of EZH2 and target chromatin (Sarma et al., 2008).

In addition, long non coding RNAs (Inc RNA) have been implicated in the targeting of PcG proteins in mammal. X inactivation is known to be dependent on an IncRNA, *Xist* that initiates inactivation of one of the X chromosomes (Penny et al., 1996). A non-coding RNA within the Xist region, called *RepA*, is required for EZH2 recruitment to inactive X chromosome (Zhao et al., 2008). *RepA* is also essential for *Xist* expression (Zhao et al., 2008). *Kcnq1ot1* is an IncRNA that is transcribed from the imprinted *Kcnq1* gene cluster. *Kcnq1ot1* can be immunoprecipitated with PRC2 and the H3K9 histone methyltransferase. *Kcnq1ot1* is required for recruitment of these histone methyltransferases to generate repressive marks, H3K27me3 and H3K9me3, at target chromatin (Pandey et al., 2008). *HOTAIR* is a 2.2 kb lncRNA transcribed from the *HOXC* locus. Depletion of *HOTAIR* results in *HOXD* de-repression. *HOTAIR* binds to PRC2, which stimulates PRC2 enzymatic activity to generate H3K27me3 marks at the HOXD

locus (Rinn et al., 2007). This suggests that *HOTAIR* has a role in PRC2 targeting and its enzymatic activity (Rinn et al., 2007).

PRC1 is well known to be recruited to target chromatin through recognition of the PRC2mediated H3K27 methylation mark by the chromo domain of Pc (Min et al., 2003). Recently, alternative mechanisms, which are independent of PRC2, have been proposed to be responsible for recruiting PRC1 to targets. A variant PRC1 complex cannot recognize H3K27me3 marks due to the lack of the Pc subunit. This PRC1 variant contains a histone demethylase, KDM2B, which is required for PRC1 recruitment to target genes in pluripotent stem cells (Wu et al., 2013). The transcription factors REST (Dietrich et al., 2012) and RUNX1 (Yu et al., 2012) were also discovered to be required for PRC1 targeting in ES cells. These data suggest that PRC2 is not absolutely required for PRC1 targeting in all contexts.

In summary, no dominant recruitment mechanism has been identified in mammals. One possible reason might be due to the fact that PcG complexes are formed with different subunits depending on the targets and cell contexts. Alternative variants of PcG proteins may be recruited by distinct mechanisms.

## 1.5.3 <u>Regulating PRC2 enzyme activity</u>

PRC2-mediated H3K27me3 is the hallmark of PcG silencing (Cao et al., 2002). EZH2 is a methyltransferase and catalyzes mono, di, and tri-methylation of H3K27 (Cao et al., 2002). EZH2 enzyme activity can be regulated in several ways. (1) EZH2 is not active without SUZ12 and EED. SUZ12 binds to EZH2 through its C-terminal VEFS domain (Cao and Zhang, 2004), thereby promoting PRC2 assembly. EED is a WD-repeat protein that binds specifically to trimethylated lysine. When PRC2 binds to H3K27me3 through EED, it stimulates EZH2 methyltransferase activity (Han et al., 2007). (2) Certain genes have been shown to play a role in PcG complex recruitment and have an effect on EZH2 enzymatic activity, such as *Jarid2* and *PHF1*. PHF1 is required for conversion of H3K27me2 to H3K27me3 (Sarma et al., 2008). (3) It has been shown that PRC2 enzyme activity can be regulated by the phosphorylation of EZH2 at multiple threonine residues. Cyclin-dependent kinase 1 (CDK1) phosphorylates EZH2 at Thr487 (Wu and Zhang, 2011). Phosphorylation of EZH2 disrupts EED and SUZ12 binding, thereby impairing EZH2 methyltransferase activity (Wu and Zhang, 2011).

## 1.5.4 Enhancer of Trithorax and Polycomb Group (ETP) protein

A group of genes, *Enhancers of Trithorax and Polycomb (ETP)*, were originally identified as *PcG* genes, but later were discovered to genetically regulate both PcG and TrxG protein activities. Double mutation of an *ETP* with either *PcG* or *TrxG* enhances *PcG* or *TrxG* mutations, respectively (Lopez et al., 2001).

It has been proposed that ETP proteins can regulate PcG and TrxG protein activities in several ways (Brock and van Lohuizen, 2001). (1) ETP proteins are part of PcG and TrxG complexes; (2) ETP proteins transcriptionally regulate *PcG* and *TrxG* gene expression; (3) ETP proteins are co-activators/repressors of PcG and TrxG proteins; (4) ETP proteins are required for PcG and TrxG recruitment to targets. Additional Sex Combs (Asx) is an ETP protein. The mammalian homolog of Asx, Additional sex combs-like 1 (ASXL1) co-localizes with PRC2 at select target loci in hematopoietic cell lines (Abdel-Wahab et al., 2012). The loss of *Asxl1* results in compromised PRC2 binding and H3K27me3 enrichment at target promoters, and the corresponding genes are de-repressed. These results suggest that ASXL1 is required for PRC2 binding and H3K27me3 enrichment at target chromatin (Abdel-Wahab et al., 2012). Whether ASXL1 is required for recruitment of PRC2 to target remains uncertain. However, the discovery of ASXL1 function in PRC2 binding supports the ETP protein model (4). There is no direct

evidence in *Drosophila* or mammalian systems to support ETP protein models (1), (2), and (3). However, some ETP proteins are known to interact with PcG proteins (Perry, 2006; Peterson et al., 2004).

*Asx* genetically interacts with both *PcG* and *TrxG* genes, as *Asx* mutations enhance both *PcG* and *TrxG* mutant phenotypes (Milne et al., 1999). Asx binds to distinct loci on polytene chromosomes; 70% of those loci overlap with the binding sites of the PcG proteins Pc and Ph (Milne et al., 1999). In addition to genetic evidence found with Drosophila Asx, ASXL1 has been shown to interact with PRC2 in a hematopoietic cell line by immunoprecipitation assays (reference). Yet, there is a lack of biochemical evidence supporting the direct interaction of PcG complexes with Asx or other ETP proteins.

# 1.5.5 PcG and TrxG proteins in heart development and function

Multiple PcG and TrxG proteins are expressed in mammalian hearts (Vallaster et al., 2012). Most constitutive *PcG* or *TrxG* knockout mice succumb to early embryonic lethality. Therefore, conditional knockout mice aid in the discovery of the roles of PcG and TrxG proteins in heart development and function. RAE28 is a subunit of the PRC1 complex. *Rae28* knockout mice develop outflow tract septation defects and aortic valve stenosis during E8.5-9.5 (Shirai et al., 2002). These defects are similar to the phenotypes of *Nkx2.5* knockout mice. This study also shows that RAE28 is required for maintaining *Nkx2.5* expression (Shirai et al., 2002). It is known that PRC1 is a transcriptional repressor. Therefore, RAE28 may indirectly regulate activation of *Nkx2.5* expression. The molecular function(s) of PRC1 in heart development remains to be determined (Koga et al., 2002).

It has been shown that PRC2 has roles in regulation of mammalian heart development and adult heart function. Inactivation of the PRC2 subunit EZH2 in ventricular cardiomyocytes causes compact myocardial hypoplasia, hypertrabeculation, and ventricular septal defect (He et al., 2012). Another study inactivated *Ezh2* beginning at E7.5 in cardiac progenitors of the second heart field (SHF). Interestingly, these mice did not exhibit defects in cardiac morphogenesis. Instead, the mutant animals survived to adulthood but developed cardiac hypertrophy and fibrosis in the SHF- derived right ventricle.

BRG1 is a TrxG protein that functions in the myocardium to regulate cardiac growth and differentiation (Delgado-Olguin et al., 2012; Hang et al., 2010). Myosin heavy polypeptide 6, cardiac muscle, alpha (Myh6) and myosin, heavy chain 7, cardiac muscle, beta (Myh7) are the main myosin heavy chain (MHC) isoforms expressed in adult and embryonic heart, respectively. BRG1 forms a complex with HDAC and PARP to repress Myh6 and activate Myh7 in the embryonic stage. Loss of Brg1 in the embryonic stage results in premature cardiomyocyte differentiation due to switching fetal of form (MYH7) to the adult form (MYH6). Brg1 is normally repressed during adulthood. Brg1 will be reactivated when the adult heart is stressed. De-repressed Brg1 induces cardiac hypertrophy, and reactivates fetal gene (Myh7) expression in the adult heart. Overexpressed Brg1 in adult heart is associated with MHC switch and cardiac hypertrophy. These observations suggest that the ATP-dependent chromatin remodeler BRG1 has an important role in both embryonic heart development and in adult heart disease (Hang et al., 2010).

Taken together, many studies have demonstrated the role of epigenetic regulation in cardiac development and function. A full understanding of how they regulate cardiogenesis and function is still limited because only a small number of epigenetic factors been functionally analyzed in the heart. Future studies of epigenetic mechanisms in cardiac development and function will be important not only for our understanding of the causes of the diseases but also for potential applications to medical strategies.

## 1.6 <u>Purpose of this study</u>

Three homologs of *Asx*, named *Asx- like1*, *2*, and *3*, have been identified in mouse and human (Fisher et al., 2003; Katoh, 2003, 2004). We have undertaken a study of the mouse *Asxl2* gene to understand the function of ETP proteins. An *Asxl2* mutant mouse line was generated in our laboratory by taking advantage of a gene-trapped ES cell line from the Gene Trap Consortium [www.genetrap.org]. The ES cell gene trap line contains a  $\beta$ -geo cassette with a polyadenylation site at the 3' end which is integrated into the first intron of *Asxl2* (Baskind et al., 2009). This cassette disrupts endogenous splicing, resulting in a truncated mRNA. The truncated mRNA encodes a protein product that is missing all the conserved domains of ASXL2. This *Asxl2* gene trap also contains a *lacZ* reporter under control of the *Asxl2* promoter. *LacZ* expression can be used to check the *Asxl2* expression pattern. Based on X-gal staining, *Asxl2* is highly expressed in the heart at all developmental stages examined, starting in E9.5 dpc and throughout the postnatal stages. Surviving adult *Asxl2*<sup>-/-</sup> mice have higher heart-to-body weight ratios compared to wild-type (WT) (Baskind et al., 2009).

Baskind *et al.* reported that  $Asxl2^{-/-}$  axial skeletons showed highly penetrant posterior transformations and less penetrant anterior transformations. As previously mentioned, posterior and anterior transformations of the axial skeletons are classic  $PcG^{-/-}$  and  $TrxG^{-/-}$  phenotypes, respectively. This suggests that ASXL2 has conserved ETP protein function. H3K27me3 and H3K4me3 are the hallmarks of PcG and TrxG protein activity, respectively. *Asxl2*<sup>-/-</sup> hearts have reduced bulk level of H3K27me3 but no observable differences in the level of H3K4me3 when compared to wild-type (WT) (Baskind et al., 2009). This suggests that ASXL2 likely has a

bigger role in the regulation of PcG than TrxG protein activities. The goal of this study was to determine the effect of the *Asxl2* mutation on cardiac function as well as the molecular mechanism through which ASXL2 regulates H3K27me3 levels in the adult heart.

#### **II. MATERIALS AND METHODS**

#### 2.1 Animal breeding

All mice used in this study were in the C57BL/6 J×129Sv F1 background because  $Asxl2^{-/-}$  animals in either C57BL/6 J or 129Sv inbred background die postnatally.  $Asxl2^{+/-}$  females in the 129Sv inbred background were mated to  $Asxl2^{+/-}$  males in the C57BL/6 J inbred background to produce  $Asxl2^{-/-}$  animals and wild-type littermates. The genetic compositions of the experimental and control animals were identical except at the Asxl2 locus.

## 2.2 Echocardiography

Transthoracic echocardiography was performed while under isoflurane anesthesia and positive pressure ventilation. Transthoracic two-dimensional targeted M-mode and pulsed-wave Doppler echocardiography was performed with a 30-MHz mechanical transducer attached to a VisualSonics Vevo 770 system (Visual Sonics, Toronto, ON, Canada). Fractional shortening (FS) was calculated by left ventricular internal dimension in diastole (LVIDd) minus left ventricular internal dimension in systole (LVIDs) and all divided by the left ventricular internal dimension in diastole (LVIDd). Ejection fraction (EF) is the amount of blood in the ventricles at the end of diastole that is ejected during each beat. EF was calculated by stroke volume (SV) divided by end-diastolic volume (EDV).

# 2.3 <u>Hemodynamic measurements</u>

Hemodynamic measurements were performed on 5-month-old wild-type and  $Asxl2^{-/-}$  mice. Mice were anesthetized with isoflurane (1.5%) and injected with etomidate (10 mg/kg body weight; I.P.) for intubation. Anesthesia was maintained at 1% isoflurane and mice were ventilated with a Harvard Respirator at a rate of 140 breaths per minute and a 250 µm volume. A medial laparotomy exposed the diaphragm and a Millar Pressure/Volume transducer (SPR-839)

was inserted into the left ventricle through an apical puncture. Steady state measurements of pressure/volume loops were recorded and the inferior vena cava was occluded to derive load-independent measurements of the end-systolic pressure/volume relation.

# 2.4 <u>Myofibril protein preparation</u>

The left ventricle (~ 30-50 mg) was homogenized in 1 ml of SRB-X100 buffer (75mM KCl, 10mM imidazole pH7.2, 2mM MgCl<sub>2</sub>, 2mM EDTA, 1mM NaN<sub>3</sub>) using a 2 ml Dounce homogenizer. The homogenate was spun down for 1 minute at 13,000 rpm at 4 °C. The supernatant was decanted and the pellet was re-suspended in 1 ml of SRB-X100. The resuspended pellet was homogenized again using Dounce homogenizer. The homogenate was spun down at 13,000 rpm for 1 minute at 4 °C. The supernatant was removed and the weight of pellet was determined in a pre-weighted eppendorf tube. The pellet was re-suspended in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) industrial buffer (8M urea, 2M thiourea, 0.05M Tris pH 6.8, 75mM Dithiothreitol (DTT), 3% SDS and 0.05% bromophenol blue) based on a 1:20 (W/V) ratio ( $1mg = 1\mu l$ ). The re-suspended pellet was homogenized using Dounce homogenizer at room temperature (RT). The homogenate was sonicated for 10 minutes at 4°C using a water bath sonicator (Benson 1510). Samples were denatured at 100 °C for 3 minutes and were spun down at 13,000 rpm for 5 minutes. The supernatant contained myofibril proteins. The concentration of myofibril proteins was determined using Pierce 660 nm Protein Assay (Thermo Scientific) with ionic detergent compatibility reagent (Thermo Scientific). The samples were stored at -80 °C.

# 2.5 <u>High resolution SDS-PAGE gel electrophoresis</u>

For separation of myofibril proteins, An SE600 Hoefer gel system (Pharmacia) was used with 0.75-mm gel spacers. Glass plates were 16x18 cm and coated with Rain X to allow

removing the gel from the glass plate easily. 7-10  $\mu$ g/ lane of myofibril proteins were separated on 12 % SDS-PAGE (resolving gel: 10% acrylamide cross-linked with 0.5% DATD, 0.375M Tris pH8.8, 10% glycerol, 0.1% SDS, 0.064% APS, 0.064% TEMED; stacking gel: 2.95% Acrylamide cross-linked with 15% DATD, 0.125M Tris pH6.8, 10% glycerol, 0.1% SDS, 0.064% APS, 0.064% TEMED) as previously described (Arteaga et al., 2005). The gels were subjected to either Coomassie staining to visualize all proteins or to Pro-Q Diamond staining (Invitrogen) to visualize phosphorylated proteins. Alternatively, separated proteins were transferred to a PVDF membrane and subjected to western blot analysis. For high-resolution SDS-PAGE for separation of MYH6 and MYH7 proteins, an SE400 Vertical Unit Hoefer gel system was used with 1.5-mm gel spacers (GE healthcare). Myofibril samples were loaded on 6% SDS-PAGE (6% acrylamide, 0.5% DATD, 0.375M Tris pH8.8, 10% glycerol, 0.1% SDS, 0.064% APS, 0.064% TEMED; stacking gel: 4% Acrylamide, 15% DATD, 0.125M Tris pH6.8, 10% glycerol, 0.1% SDS, 0.064% APS, 0.064% TEMED), run at 100V until the samples passed the stacking gel and then run at 150V for 8 hours at 4 °C. The acrylamide gel was subjected to silver staining. Proportions of protein of interest were determined using densitometry.

### 2.6 <u>Silver staining</u>

The gel was soaked in fixing solution (40% methanol, 5% formaldehyde) overnight at room temperature. The gel was washed in diH<sub>2</sub>O twice for 5 minutes each and then soaked in 0.02% Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> for 1 minute. The gel was washed in washed in diH<sub>2</sub>O twice for 5 minutes each and then soaked in 0.1% AgNO<sub>3</sub> for 10 minutes. Fresh-made developing solution (3% sodium carbonate, 0.0185% formaldehyde, 0.000016% Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) was added to the gel until protein band intensities were adequate. 2.3M citric acid was added to the developing solution to stop the reaction.

## 2.7 <u>Blood pressure measurement</u>

Blood pressures of male mice ranging from 1-month to 10-months of age were measured in un-anesthetized mice using an NIBP-8 tail-cuff blood pressure monitor (Columbus Instruments, Columbus, Ohio). The Animals were acclimated to the restrainer and the warming compartment for 30 min/day for at least 3 days. On the day of the experiment, animals were acclimated in the apparatus for 20 min before measurements were taken. The sensor cuff pressure was set at 45 mm Hg and the occlusion cuff pressure was 200 mm Hg. Each data point (for one animal at a specific age) represents the average of 10 or more sequential measurements, spaced at a minimum of one minute intervals.

# 2.8 **Quantitative RT-PCR**

RNA was isolated from the adult left ventricle using Trizol (Invitrogen) and followed with DNAase treatment. Quantitative RT-PCRs were performed on an ABI Prism7900HT sequence detection system (Applied Biosystems) using the SuperScript<sup>TM</sup> III Platinum SYBR Green One-Step qRT-PCR kit (Invitrogen). The expression level of each gene analyzed was normalized against that of 18S rRNA or  $\beta$ -Actin in the same sample. For each gene, two wildtype and two mutant animals were analyzed. 100 ng of RNA was used for each reaction. The qRT-PCR program was as follows: (1) 50° 30 min (2) 95° 15 min (3) 95° 30 sec. (4) 60° 30 sec. (5) repeat step (3) - (4) for 39 times, (6) melting curve cycle.

Detailed information on primer sequences is given in Appendix A.

## 2.9 <u>Chromatin immunoprecipitation (ChIP)</u>

The whole heart (~100mg) was minced with scissors and then was formaldehyde-fixed at the final concentration of 1% for 10 minutes at RT. The fixed tissue was homogenized in 1ml Cell Lysis buffer (5mM HEPES; 85mM KCl; 0.5% NP-40; 1X protease inhibitor; 0.1mM

PMSF). The cell lysate was incubated on ice for 30 minutes. Nuclei were pelleted from cell lysate at 10,000 rpm for 5 minutes at 4 °C. The nuclei were re-suspended in 2 ml Nuclei Lysis buffer (50mM Tris-HCl pH8.0; 10mM EDTA; 1% SDS; 1X protease inhibitor; 0.1mM PMSF) and incubated on ice for 1 hour. Chromatin was sheared by sonication three times in the length of 3 minutes (Biorupter) to an average length of approximately 100-500bp. The sheared chromatin was spun down at 13,500 rpm to remove insoluble chromatin. Soluble chromatin (one heart; 2ml) was pre-cleared by adding 50µl Dynabeads® Protein G beads (the beads were preincubated with 1µg of Mock IgG serum and rocked at 4 °C for 2 hours). Dynabeads® Protein G beads were removed from the chromatin lysate. 300 µl of chromatin lysate was incubated with desired amount of anti-protein of interest (POI) antibody and mock serum, respectively, overnight at 4 °C. The total input sample was prepared from 300 µl of chromatin lysate. 30 µl of Dynabeads® Protein G beads were added to each chromatin lysate except total input sample. The chromatin samples were rocked at 4°C for 2 hours. The chromatin bound-beads were washed 30 seconds with 1 ml of RIPA buffer for 3X (50mM; 150mM NaCl; 0.1% SDS; 0.5% Deoycholate; 1% NP-40; 1mM EDTA in water); 1 ml of High Salt buffer for 3X (50mM Tris-HCl pH8.0; 0.1% SDS; 0.5% Deoxycholate; 1% NP-40; 1mM EDTA in water); 1 ml of LiCl buffer for 3X (50mM Tris-HCl pH 8.0; 1mM EDTA; 250mM LiCl; 1% NP-40; 0.5% Deoxycholate in water) and 1 ml of TE buffer for 3X (10mM Tris-HCl; 1mM EDTA in water). The chromatin boundbeads were re-suspended in 300 µl of TE buffer. ChIPed and total input samples were incubated at 37 °C for 30 minutes with 1 µl of RNase A (10mg/mL). Subsequently, each sample was incubated at 55 °C for 2 hours with 15 µl of 10% SDS. All the samples were reverse cross-linked at 65°C for overnight. The ChIP-ed DNA was extracted by phenol/chloroform twice using the phase-log DNA purification system (5 Prime) and followed by ethanol precipitation. 1 µl from

each ChIPed-DNA and total input was analyzed by qPCR using primers specific for conserved regions in the gene of interest (GOI) promoter.

The antibodies, PCR program, and primers sequences are listed in Chapters III, IV, and Appendices A and C.

### 2.10 <u>Histology and immunofluorescence</u>

Paraffin embedded heart sections were made using standard protocols. H&E stainings were performed on 8 um sections; wheat-germ agglutinin-fluorescein staining was performed on 5 um sections.

### 2.11 Adult cardiomyocyte size measurement

Cardiomyocyte size was measured for two pairs of 6-month-old *Asxl2<sup>-/-</sup>* and wild-type hearts. Isolation of adult cardiomyocytes was performed as previously described (Louch et al., 2011). The cardiomyocytes were plated in the presence of butanedione monoxime (BDM), a contraction inhibitor, and allowed to attach for 3 h. Images of live cardiomyocytes were taken. The length, width, and area of the cells were measured using Image J. 124–262 individual cardiomyocytes were measured for each heart.

## 2.12 **Biochemical fractionation of cellular proteins**

Whole hearts were cut into pieces and homogenized in Buffer A (10 mM HEPES pH 7.9, 10mM KCl, 1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 1mM DTT, and protease inhibitors) using a Tissue Master homogenizer (OMNI International). Triton X-100 was added to the homogenate to a final concentration of 0.1% and rocked on ice for 15 minutes. The homogenate was spun down at 1300 g for 5 minutes at 4 °C to generate the supernatant (S1; cytosolic fraction) and pellet (P1) fraction. S1 was spun down at 20,000 g for 10 minutes to remove insoluble proteins. On the other hand, P1 was washed with Buffer A1 and then spun down at

1300g for 5 minutes. P1 was re-suspended in 1ml of Buffer B1 (3mM EDTA; 0.2mM EGTA, 1mM DTT; 1X proteinase inhibitors) and rocked on ice for 1 hour. The re-suspended pellet was spun down at 1700g for 10 minutes to generate the supernatant (S3; soluble nuclei fraction) and pellet (P2; chromatin fraction) fractions. All the fractions were denatured in 5X SDS sample buffer (Mendez and Stillman, 2000).

## 2.13 <u>Immunoprecipitation</u>

The whole heart (~100mg) was minced with scissors and then was homogenized in 2 ml of HB buffer (20mM HEPES, 5mM NaF, 10 µM Na2MoO4, 0.1mM EDTA, 1X proteinase inhibitors) using a Tissue Master homogenizer (OMNI International). The homogenate was spun down at 13,000 rpm at 4 °C for 5 minutes to generate the cytosolic and nuclei fractions. The pellet was re-suspended in 1.5 ml of nuclear lysis buffer (50mM HEPES, 300mM NaCl, 10mM NaF, 1mM EDTA, 1% Triton-X, 1mM Na3VO4, 1mM PMSF, 1X proteinase inhibitors) and rocked on ice for 1 hr. 20µl of micrococcal nuclease (NEB) and micrococcal nuclease buffer (NEB, final concentration 1X) was added to nuclei extract, followed by a 37 °C incubation for 20 minutes. The final concentration of 0.05M EDTA was added to the nuclei extracts to stop the micrococcal nuclease reaction. The nuclei extract was spun down at 13,000 rpm at 4 °C for 1 minute to remove nuclear debris (pellet). The supernatant fraction (nuclei extract) was precleared with 20 µl of Dynabeads® Protein G beads which were pre-incubated with 1µg of IgG serum, for 1 hour at 4 °C. The Dynabeads® Protein G beads were removed from nuclei extract. The chromatin lysate was equally divided into 3 parts for immunoprecipitation with anti-POI; mock serum and total input, respectively. 10 µl of Dynabeads<sup>®</sup> Protein G beads were used to capture 1 µg of the antibody. The protein bound-beads were washed for 30 seconds with 1 ml of RIPA buffer twice (50mM; 150mM NaCl; 0.1% SDS; 0.5% Deoycholate; 1% NP-40; 1mM

EDTA); 1 ml of High Salt buffer twice (50mM Tris-HCl pH8.0; 0.1% SDS; 0.5% Deoxycholate; 1% NP-40; 1mM EDTA); 1 ml of LiCl buffer twice (50mM Tris-HCl pH 8.0; 1mM EDTA; 250mM LiCl; 1% NP-40; 0.5% Deoxycholate) and 1 ml of TE buffer twice (10mM Tris-HCl; 1mM EDTA). Immunoprecipitations were performed using various antibodies. After washing, beads were boiled in 150 µl of 2X Laemmli Buffer and the IPed proteins were analyzed by Western blot with the indicated antibodies.

The information of the antibodies and concentration used is listed in Chapters III, IV, and Appendix E.

### 2.14 <u>Western blot analysis</u>

The samples were run on a 7-15% SDS-PAGE. The gel was running at 100V in cold buffer (25mM Tris, 0.192mM Glycine, 0.1% SDS). Filter paper (Whatman) and PVDF membrane transfer paper (Millipore) was cut to the gel size. The PVDF membrane was activated by placing it in methanol for a few seconds. The gel was run at 100V for 2 hours to complete the transfer. Next, the PVDF membrane was blocked in 5% non-fat milk for at least 1 hour at RT. The PVDF membrane was then rocked in the chosen antibody at the required dilution with 2.5% non-fat milk in PBST (1x PBS, 0.1% Tween 20) overnight at 4°C. The membrane was then washed with 5 ml of PBST at room temperature for 10 minutes, and this wash was repeated 5 times. Next, the membrane was incubated in the chosen secondary antibody at the required dilution with 2.5% non-fat milk in PBST (1x PBS, 0.1% Tween 20) and rocked at RT for 1 hour. The membrane was then washed with 5 ml of PBST at room temperature for 10 minutes, and this wash was repeated 5 times. The membrane was then transferred to X-ray film for detection. Immobilon Western chemiluminescent HRP substrate (Millipore) was added to the membrane for 5 minutes before X-ray film detection. Finally, the membrane was covered in plastic wrap and exposed 5-30 seconds before being developed.

The information and condition of the antibodies are listed in Chapters III, IV, and Appendix D.

#### 2.15 <u>Microarray</u>

RNA was isolated from the adult left ventricle using Trizol (Invitrogen) and followed with DNase Treatment. RNA was cleanup using RNeasy mini kit (Qiagen). ~ 2  $\mu$ g total RNA were converted into first-strand cDNA using T7-Oligo (dT) primers. The second-strand synthesis reaction was performed immediately to generate double-strand cDNA. The cDNA was cleaned up using phenol chloroform extraction. The cDNA pellet was dissolved in 12  $\mu$ l of DEPC-H<sub>2</sub>O. The cDNA were biotin-labeled using GeneChip IVT Labeling Kit. The biotin-labeled cDNA was cleaned up using phenol chloroform extraction. The biotin-labeled cDNA pellet was dissolved in 23  $\mu$ l of DEPC-H<sub>2</sub>O. 10  $\mu$ l of the biotin-labeled cDNA were proceeded to fragmentation reaction (5x fragmentation buffer: 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM Mg (OAc)<sub>2</sub>• 4H<sub>2</sub>O). The biotin-labeled cDNA fragments were hybridized to Affymetrix Mouse Genome 430 2.0 Array. The microarray results were analyzed using Affymetrix dChIP software.

# III. ADDITIONAL SEX COMBS-LIKE 2 IS REQUIRED FOR THE MAINTENANCE OF ADULT CARDIAC FUNCTION

#### 3.1 <u>Abstract</u>

During development and differentiation, cell type-specific chromatin configurations are set up to facilitate cell type-specific gene expression. Defects in the establishment or the maintenance of the correct chromatin configuration have been associated with diseases ranging from leukemia to muscular dystrophy. The heart expresses many chromatin factors, and we are only beginning to understand their roles in heart development and function. We have previously shown that the chromatin regulator *Asxl2* is highly expressed in the murine heart both during development and adulthood. In the absence of *Asxl2*, there is a significant reduction in trimethylation of H3K27, a histone mark associated with lineage-specific silencing of developmental genes.

Here we present evidence that ASXL2 is required for the long-term maintenance of ventricular function and for the maintenance of normal cardiac gene expression.  $Asxl2^{-/-}$  hearts displayed progressive deterioration of ventricular function. By 10 months of age, there was ~37% reduction in fractional shortening in  $Asxl2^{-/-}$  hearts when compared to wild-type. Analysis of the expression of myofibril proteins suggests that ASXL2 is required for the repression of Myh7, which encodes the fetal form of myosin heavy chain.  $Asxl2^{-/-}$  hearts did not exhibit hypertrophy, suggesting that the de-repression of Myh7 was not the result of hypertrophic response. Instead, ASXL2 and the histone methyltansferase EZH2 co-localize Myh7 promoter, suggesting that ASXL2 directly represses Myh7. We propose that chromatin factors like ASXL2 function in the adult heart to regulate cell type- and stage-specific patterns of gene expression,

and the disruption of such regulation may be involved in development of certain forms of mammalian heart disease.

#### 3.2 Introduction

Transcriptional regulation plays critical roles in heart development and function (Bruneau, 2002; Clark et al., 2006; Cripps and Olson, 2002; Hatcher et al., 2003; Nemer and Nemer, 2001; Olson, 2006). During embryonic development, the process of heart morphogenesis requires precise regulation of gene expression. Aberrations in the temporal or spatial pattern of gene expression lie at the root of multiple forms of congenital heart defects (Sachdeva et al., 1964). Postnatally, gene expression is fine-tuned to meet the contractile need of adult life. And the appropriate gene expression pattern has to be maintained for a life time. Mutations in a number of transcription factors or changes in the dosage of transcription factors have been shown to cause cardiac dysfunction in humans or in animal models, highlighting the importance of transcriptional regulation in the adult heart (Aries et al., 2004; Balza and Misra, 2006; Oka et al., 2006; Parlakian et al., 2005; Toko et al., 2002).

In recent years, chromatin has emerged as an important layer of transcriptional regulation. Many chromatin-associated proteins have been identified, and studies have shed light on how these chromatin factors can modify chromatin configuration to either facilitate or inhibit transcription. Accumulating evidence suggests that a substantial amount of transcriptional regulation in the heart takes place at the chromatin level (Bingham et al., 2007; Bovill et al., 2008; Chan et al., 2003; Hang et al., 2010; Koga et al., 2002; Lee et al., 2000; Shirai et al., 2002; Takihara et al., 1997; Zhang et al., 2002) . However, much remains to be learned about which chromatin factors are involved, which genes they regulate, what functional mechanisms are used and whether/how deregulation contributes to heart diseases. Polycomb Group (PcG) and

Trithorax Group (TrxG) proteins are two highly conserved protein families that regulate transcription by modifying chromatin structure (Levine et al., 2004; Orlando, 2003; Ringrose and Paro, 2007) . PcG proteins form several complexes to create repressive chromatin structure and maintain long-term silencing of target genes. For example, PRC2 generates H3K27me3, a histone mark of silent chromatin. PRC1 has chromatin compaction activity. TrxG proteins also form multiple complexes but create active chromatin structure and antagonize PcG-mediated repression. Components of the PcG/TrxG system are expressed in the heart both during development and in the adult.

Several pieces of evidence have implicated the PcG/TrxG system in transcriptional regulation in both embryonic and postnatal hearts. For example, studies of mice mutant for *Rae28* suggest that proper heart morphogenesis requires PcG protein activity. *Rae28* mutant mice display severe defects in an early and important step of cardiac morphogenesis, cardiac looping, which takes place between E8.5 and E9.5 (Takihara et al., 1997). Postnatal overexpression of *Rae28* causes dilated cardiomyopathy, cardiomyocyte apoptosis, abnormal myofibrils, and severe heart failure (Koga et al., 2002).

The TrxG protein BRG1 promotes cardiomyocyte proliferation and regulates the activity of multiple cardiac transcription factors in a dosage-dependent manner during heart development (Hang et al., 2010; Takihara et al., 1997). In adult cardiomyocytes, BRG1 is required for stressinduced hypertrophy and the pathological myosin heavy chain alpha (MYH6) to myosin heavy chain beta (MYH7) shift (Hang et al., 2010).

We have previously generated a mutant mouse model for the chromatin factor ASXL2. We showed that ASXL2 is an enhancer of PcG activity and that *Asxl2* deficiency has a significant impact on the level of bulk H3K27me3 (Baskind et al., 2009). *Asxl2* is highly expressed in the heart throughout development and during adult life. To better understand the role of ASXL2 in the heart, we carried out a longitudinal study of  $Asxl2^{-/-}$  mice. Our data indicate that ASXL2 is required for the long-term maintenance of ventricular function and for repression of *Myh7*. ASXL2 is likely a direct regulator of *Myh7* and this regulation may involve the PcG protein EZH2.

#### 3.3 <u>Materials and Methods</u>

#### 3.3.1 SDS-PAGE gel electrophoresis

5% of total myofibril proteins/lane was loaded on 15% SDS-PAGE (resolving gel: 15% acrylamide with 0.4% bis, 0.37M Tris pH8.8, 0.1% SDS, 0.05% APS, 0.067% TEMED; stacking gel: 4% acrylamide with 0.173% bis, 0.37M Tris pH8.8, 0.1% SDS, 0.05% APS, 0.067% TEMED). The proteins were transfered to a 0.2 μm PVDF (Bio-Rad) at 100V for 1 hour. The membrane was subjected to western blot analysis as described in 2.14. The primary antibodies which were used in this study are anti-phosphorylated TNNI3<sup>ser23</sup>, which recognizes cardiac muscle Troponin I (1:1000; ~26KDa; anti-rabbit HRP 1:40,000); anti-ACTIN (1:3000; ~40KDa; anti-mouse HRP 1:50,000); anti-ASXL2 (KC17; 1:500; ~170KDa; anti-rabbit HRP 1:10,000); anti-total TNNI3 (1:5000; ~25KDa; anti-mouse HRP 1:50,000); anti-phosphorylated PLB<sup>ser16</sup> (1:2000; ~21KDa; anti-mouse HRP 1:10,000); anti-GAPDH (1:2000; ~35KDa; anti-mouse HRP 1:10,000); anti-total PLB (1:5000; ~20KDa; anti-mouse HRP 1:20,000).

#### 3.3.2 Chromatin immunoprecipitation

The experimental procedure was followed as previously described in 2.9. The antibodies which were used in this study are: anti-ASXL2 (8  $\mu$ l per 300 $\mu$ l chromatin); anti-EZH2 (BD transduction laboratories; 8  $\mu$ l per 300 $\mu$ l chromatin); rabbit IgG (Invitrogen; 2  $\mu$ g per 300 $\mu$ l chromatin); mouse IgG (Invitrogen; 2  $\mu$ g per 300 $\mu$ l chromatin). ChIPed DNAs were subjected to

PCR analysis. The PCR program used was as follows; (1) 95° 30 sec. (2) 95° 30 sec. (3) 57-60° 30 sec. (4) 72° 1 min. (5) go to step 2, (6) repeat steps 2-5 31 times (7) 72° 5 min

#### 3.4 <u>Results</u>

# 3.4.1 Asxl2<sup>-/-</sup> mice in B6/129 F1 background are partially lethal

We have previously shown that in B6/129 mixed genetic background, only half of the expected number of  $Asxl2^{-/-}$  pups was recovered at weaning (Baskind et al., 2009). The relative contribution of B6 versus 129 background in those animals differed from mouse to mouse. Thus, whether  $Asxl2^{-/-}$  animals survive or not may depend on the combination of genetic modifiers that it inherited. Since then, we have backcrossed the  $Asxl2^{-}$  allele into B6 and 129 backgrounds to create B6- $Asxl2^{+/-}$  and 129- $Asxl2^{+/-}$  congenic mice, respectively. When B6- $Asxl2^{+/-}$  congenic mice are mated to 129- $Asxl2^{+/-}$  mice, the genetic composition of the F1 animals is uniform: each mouse is 50% B6 and 50% 129. Nevertheless, B6/129 F1  $Asxl2^{-/-}$  animals exhibited interindividual variation in survival: approximately half of the expected number died before weaning (Table I). This suggests that the cause of partial lethality in  $Asxl2^{-/-}$  animals is not due to genetically unbalanced mice but results from the effect of loss Asxl2.

| Genotype                             | +/+ | +/-                 | -/-        |
|--------------------------------------|-----|---------------------|------------|
| Observed                             | 48  | 88                  | 25         |
| Expected                             | 48  | 96                  | 48         |
| Degree of freedom (df)               |     | 1                   | 1          |
| Chi-square $(X^2)$                   |     | 0.67                | 11.02      |
| <i>Chi</i> -square test ( <i>p</i> ) |     | 0.4142 <sup>1</sup> | $0.0009^2$ |

#### **TABLE I: GENOTYPE COMPOSITION OF B6/129 F1 ANIMALS AT WEANING**

<sup>1</sup> Our study has found that the distribution of +/+ to +/- is 48 and 96 at the 0.05 significance level.  $H_0$ : The distribution of +/+ to +/- mice is 48 and 96

 $H_A$ : The distribution of +/+ to +/- mice is not 48 and 96 <sup>2</sup> Our study has found that the distribution of +/+ to -/- is not 48 and 48 at the 0.05 significance level.

 $H_0$ : The distribution of +/+ to +/- mice is 48 and 48

H<sub>A</sub>: The distribution of +/+ to +/- mice is not 48 and 48

#### 3.4.2 ASXL2 is required for the maintenance of ventricular function

Ventricular systolic function was measured by fractional shortening (Hofsteen et al., 2013) and ejection fraction (EF) at 2 months, 4 months and 10 months of age (Fig. 1).While FS and EF of  $Asxl2^{-/-}$  hearts were comparable to that in wild-type littermates at 2 months, both parameters deteriorated over time. We observed reduced FS in  $Asxl2^{-/-}$  mice at 4 months, and by 10 months FS was ~38% lower in  $Asxl2^{-/-}$  mice compared to wild-type littermates (Fig. 1C). EF followed a similar trend and was ~30% lower in  $Asxl2^{-/-}$  mice compared to wild-type littermates by 10 months (Fig. 1D). The progressive deterioration of contractility in  $Asxl2^{-/-}$  mice suggests that ASXL2 is required for long-term maintenance of ventricular function.

Ventricular dysfunction in older  $Asxl2^{-/-}$  mice was confirmed by hemodynamic measurements. At 5 months, two  $Asxl2^{-/-}$  mice exhibited decreased left ventricular pressure (61 and 81 mm Hg) and maximum dP/dt (3368 and 4751 mmgHg/s) compared to a wild-type littermate (108 mm Hg and 6399 mm Hg/s). Furthermore, contractile performance as measured by the end-systolic pressure volume relation (Rao et al., 2013) and time varying maximal elastance (Emax) were markedly lower in the two  $Asxl2^{-/-}$  mice (Ees: 10.96 and 4.11 mm Hg/µl; and Emax:13.73 and 6.01 mm Hg/µl) compared to the wild-type littermates (Ees: 14.8 mm Hg/µl and Emax: 25.4 mm Hg/µl). These data demonstrate that by 5 months of age,  $Asxl2^{-/-}$  mice were already exhibiting depressed ventricular function, independent of loading conditions.

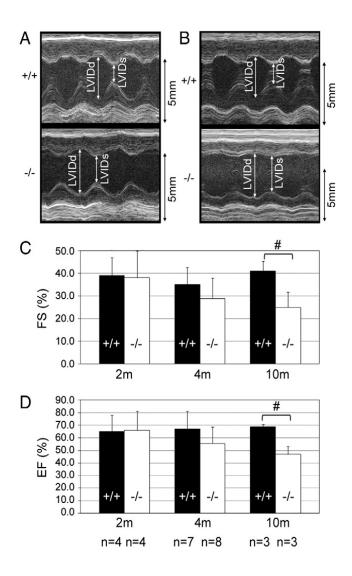
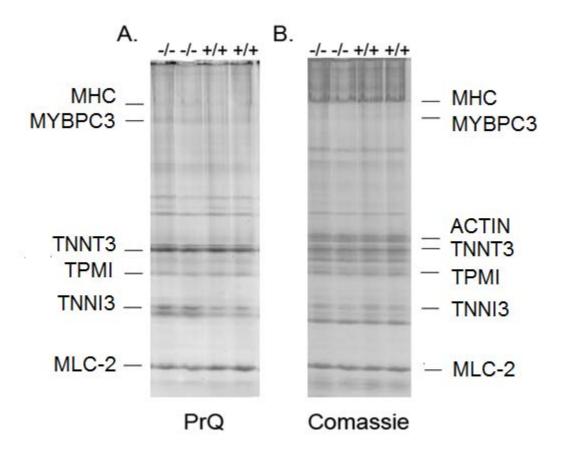


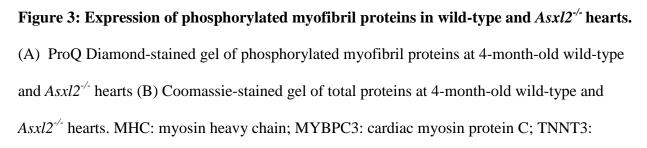

Figure 1: Evaluation of systolic function in  $Asxl2^{-/-}$  mice and wild-type littermates. (A, B) Representative M-mode images of wild-type and  $Asxl2^{-/-}$  hearts at 4 months (A) and 10 months (B), respectively. Left ventricular internal dimension in diastole (LVIDd); left ventricular internal dimension in systole (LVIDs). (C, D) Fractional shortening (C) and ejection fraction (D) in wild-type and  $Asxl2^{-/-}$  hearts at 2 months, 4 months and 10 months. The numbers (n) of animals examined for each genotype at each time point are indicated at the bottom. The error bars represent standard deviations. #p < 0.05.

# 3.4.3 <u>Asxl2<sup>-/-</sup> mice have low arterial blood pressure at older age</u>

Because hypertension is often associated with systolic dysfunction (McDonagh et al., 1997), we asked if the  $Asxl2^{-/-}$  mice had hypertension. Arterial blood pressure was measured in un-anesthetized mice at six time points from 1 month to 10 months. Both systolic and diastolic arterial pressures were comparable between  $Asxl2^{-/-}$  mice and wild-type littermates up through 6 months of age. Systolic blood pressure (SBP) in  $Asxl2^{-/-}$  mice decreases sharply between 6 months and 8 months and was significantly lower than that of wild-type littermates at 8 months (p=0.0083) and 10 months (p=0.0281) (Fig. 2A). Diastolic blood pressure (DBP) was also lower in  $Asxl2^{-/-}$  mice at 8 months and 10 months, and the difference with wild-type DBP reached statistical significance at 10 months (p=0.0385) (Fig. 2B). Thus,  $Asxl2^{-/-}$  mice are not hypertensive, and older  $Asxl2^{-/-}$  mice exhibited a significant reduction in arterial blood pressure, which may be a secondary effect of systolic function impairment.




Figure 2: Blood pressure in wild-type (black lines) and *Asxl2<sup>-/-</sup>* mice (gray lines).


(A) Systolic blood pressure. (B) Diastolic blood pressure. The error bars represent standard deviations. \* p < 0.01; # p < 0.05.

## 3.4.4 Asx12<sup>-/-</sup> hearts exhibit increased PKA signaling

To determine the molecular basis for ventricular dysfunction in  $Asxl2^{-/-}$  mice, we compared the expression and phosphorylation of myofibril proteins in Asxl2<sup>-/-</sup> and wild-type hearts. We observed an increase in the level of phosphorylated troponin I, cardiac 3 (TNNI3) in 4-month-old Asxl2<sup>-/-</sup> hearts on Pro-Q Diamond stained gels (Fig. 3). TNNI3 contains multiple phosphorylation sites. Of particular importance is phosphorylation at Ser23/Ser24 by PKA, which increases the kinetics of  $Ca^{2+}$  exchange with troponin C, cardiac/slow skeletal (TNNC1) (Solaro and van der Velden, 2010). To examine the level of PKA-phosphorylated TNNI3, we performed Western blot analysis using an antibody specific to TNNI3 phosphorylated at Ser23/Ser24. The levels of both total TNNI3 and PKA-phosphorylated TNNI3 in Asxl2<sup>-/-</sup> hearts were comparable to wild-type littermates at 2 months (Figs. 4A, B). However, the level of PKAphosphorylated TNNI3 was significantly higher in  $Asxl2^{-/-}$  hearts at 4 months (Figs. 4C, D). Western blot analysis of phospholamban (PLB), another PKA substrate, corroborated the TNNI3 result. PLB binds to the Ca<sup>2+</sup> pump SERCA and inhibits SERCA function. Phosphorylation of PLB by PKA relieves this inhibition and activates SERCA Ca<sup>2+</sup> ATPase. At 2 months, we observed an increase in both total and phosphorylated PLB in Asxl2<sup>-/-</sup> hearts (Figs. 4E–G). At 4 months, the level of total PLB is decreased in  $Asxl2^{-/-}$  heart but the level of phosphorylated PLB is increased (Figs. 4H–J).

Taken together, these results showed that PKA signaling was enhanced in  $Asxl2^{-/-}$  hearts. This enhancement was observed at a young age (2 months), when systolic function and blood pressure were both normal in  $Asxl2^{-/-}$  mice. Therefore, it is likely a primary phenotype associated with the loss of Asxl2, instead of a secondary result of sympathetic activity stimulation via baroreflex.





cardiac troponin T3; TNNI3: cardiac Troponin I; MLC-2: myosin light chain 2.

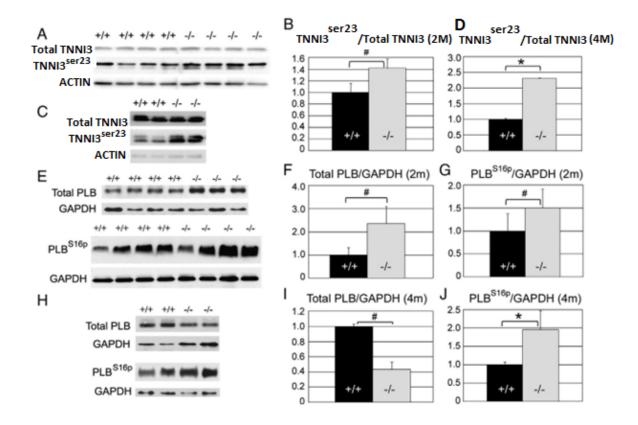



Figure 4: Expression and phosphorylation of TNNI3 and PLB in wild-type and *Asxl2<sup>-/-</sup>* hearts.

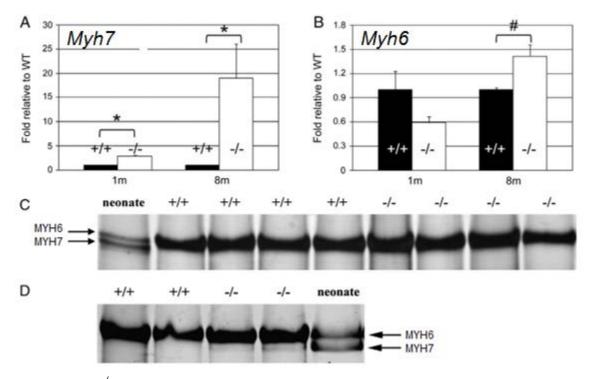
(A–D) Western blot analysis of total and PKA-phosphorylated TNNI3<sup>ser23</sup> at 2 months (A, B) and 4 months (C, D). The ratio of PKA-phosphorylated TNNI3ser23 to total TNNI3 was quantified by densitometry and shown in C (2 m) and D (4 m). (E–J) Western blot analysis of total and phosphorylated PLB at 2 months (E–G) and 4 months (H–J). F and G show the levels of total PLB and PLB<sup>S16p</sup> normalized to that of GAPDH at 2 months. I and J show the levels of total PLB and PLB<sup>S16p</sup> normalized to that of GAPDH at 4 months. \* p < 0.01; # p < 0.05.

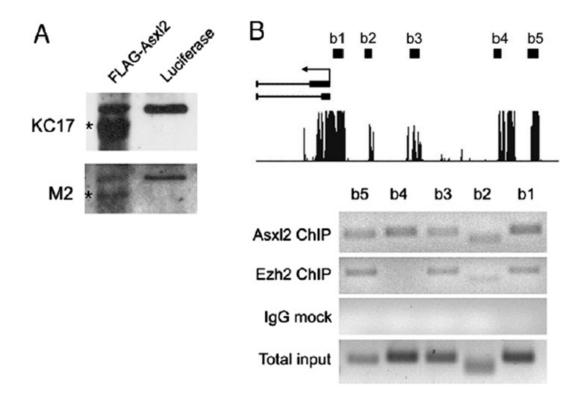
# 3.4.5 Asxl2<sup>-/-</sup> hearts exhibit de-repression of Myh7

A recent study showed that BRG1, a chromatin remodeling ATPase and the mammalian homolog of the Drosophila TrxG protein BRM, is required for re-expression of *Myh7* during hypertrophic response (Hang et al., 2010). The normal adult mouse heart only expresses *Myh6*, which has a higher  $Ca^{2+}$  ATPase activity than *Myh7*. Myosin fibers composed entirely of MYH6 have higher actin filament sliding velocity than those composed of a mixture of MYH6 and 7. Transgenic studies have shown that even a slight re-expression of *Myh7* in the adult mouse heart can result in physiologically significant changes in cardiac contractility (Tardiff et al., 2000).

Because PcG and TrxG proteins often act antagonistically on the same set of target genes, we reasoned that ASXL2, which is required for PcG activity, might have a role in the repression of *Myh7* in the adult heart. We first used quantitative RT-PCR to examine the transcript level of *Myh7* in *Asxl2*<sup>-/-</sup> and wild-type hearts. One-month-old *Asxl2*<sup>-/-</sup> heart exhibited ~3 fold de-repression of *Myh7* in comparison to wild-type (Fig. 5A). The degree of de-repression increased with age, and the level of *Myh7* transcript in 8-month-old *Asxl2*<sup>-/-</sup> heart was ~19 fold of that in the wild-type heart (Fig. 5A). Quantitative RT-PCR analysis of *Myh6* showed that there was a ~40% decrease in *Asxl2*<sup>-/-</sup> heart at 1 month and ~50% increase at 8 months (Fig. 5B).

We then examined the level of MYH7 protein with high-resolution SDS-PAGE. Expression of MYH7 could be consistently detected in protein extract from 4-month-old  $Asxl2^{-/-}$  hearts but never in the wild-type control hearts (Fig. 5D). We could not detect MYH7 on SDS-PAGE in protein extract from 2-month-old  $Asxl2^{-/-}$  hearts, despite quantitative RT-PCR data suggesting that Myh7 was de-repressed as early as 1 month (Fig. 5C). While this may be due to different sensitivity of silver staining and quantitative RT-PCR, both protein and transcript data suggest that Myh7 de-repression in  $Asxl2^{-/-}$  heart become more pronounced with age.





Figure 5: *Asxl2<sup>-/-</sup>* heart exhibited progressive de-repression of *Myh7*.

(A) Quantitative RT-PCR analysis of *Myh7* transcripts in wild-type and *Asxl2*<sup>-/-</sup> hearts. Derepression of *Myh7* became more pronounced with age. \* p < 0.01. (B) Quantitative RT-PCR analysis of *Myh6* transcripts in wild-type and *Asxl2*<sup>-/-</sup> hearts. # p < 0.05. (C, D) High-resolution SDS-PAGE analysis of  $\alpha$ - and MYH7 proteins in wild-type and *Asxl2*<sup>-/-</sup> hearts at 2 months (C) and 4 months (D). MYH7 protein became detectable in *Asxl2*<sup>-/-</sup> heart extract at 4 months.

#### 3.4.6 <u>ASXL2 and the PcG protein EZH2 co-localize to *Myh7* promoter</u>

We have previously shown that ASXL2 functions as an enhancer of PcG protein activity (Baskind et al., 2009).  $Asxl2^{-/}$  hearts exhibited a significant reduction in the bulk level of H3K27me3, which is the product of PcG histone methyltransferase activity and a mark of silenced chromatin. To better understand the functional mechanism of ASXL2, we generated a polyclonal antibody against ASXL2, KC17. We made FLAG-tagged ASXL2 using a rabbit reticulocyte *in vitro* transcription/translation kit and performed Western blot analysis using either KC17 or the M2 monoclonal antibody against FLAG (Fig. 6A). KC17 and M2 recognized the same band in the FLAG-ASXL2 translation mixture, but not in the control luciferase translation mixture, confirming that KC17 recognizes ASXL2. Next, we performed chromatin immunoprecipitation (Chiplunkar et al.) assay with KC17 to examine the association between ASXL2 and the *Myh7* promoter. It has been previously reported that there are 5 conserved regions, designated b1-b5, within 5 kb upstream of the *Myh7* transcription start site (Koga et al., 2002). The TrxG protein BRG1 is associated with 4 of these 5 regions.

We found that ASXL2 was enriched at all 5 regions (Fig. 6B). Furthermore, the PcG protein EZH2, which is the histone methyltransferase responsible for PcG's histone methylation activity, co-localized with ASXL2 at 4 out of 5 of these regions. These results suggest that ASXL2 plays a direct role in the repression of *Myh7*, and this repression may involve EZH2 histone methyltransferase activity.



# Figure 6: ASXL2 binds to *Myh7* promoter and co-localizes with EZH2 histone methyltransferase.

(A) The polyclonal antibody KC17 recognizes ASXL2 on Western blot. FLAG-tagged ASXL2 or luciferase was expressed using rabbit reticulocyte *in vitro* transcription/ translation system and probed with KC17 anti-ASXL2 antibody (top panel) or M2 anti-FLAG antibody (bottom panel). Both antibodies detected a band corresponding to the molecular weight of ASXL2 (asterisk) in the FLAG-ASXL2 translation mixture but not in the luciferase translation mixture. A non-specific band of higher molecular weight was detected in both mixtures and by both antibodies.
(B) Alignment of mouse, rat and human genomic sequences, showing regions of sequence conservation in the *Myh7* promoter (top panel). Chromatin immunoprecipitation assays of ASXL2 and EZH2 enrichment at 5 conserved regions in the *Myh7* promoter. EZH2 and ASXL2 co-localize at 4 of the 5 regions analyzed (bottom panel).

## 3.4.7 Asxl2<sup>-/-</sup> hearts are not hypertrophic

De-repression of *Myh7* is often observed during hypertrophy, when the heart responds to stress by increasing the size of cardiomyocytes. De-repression of *Myh7* in  $Asxl2^{-/-}$  heart could be the result of hypertrophic response — thus a secondary effect to ventricular dysfunction. Alternatively, it could be a primary effect of the loss of Asxl2 and (at least part of) the cause of ventricular dysfunction. Indeed, transgenic expression of *Myh7* can cause ventricular dysfunction without inducing hypertrophy [32]. To distinguish the two possibilities, we examined the histology of  $Asxl2^{-/-}$  hearts for signs of hypertrophy.  $Asxl2^{-/-}$  hearts were not hypertrophic at any stage examined (Figs. 7A, B). WGA staining of wild-type and  $Asxl2^{-/-}$  heart sections showed that cardiomyocyte diameter was comparable (Figs. 7C, D).

To further evaluate the size of cardiomyocytes, cardiomyocytes were isolated from 6month-old wild-type and  $Asxl2^{-/-}$  hearts. Consistent with the WGA staining result, wild-type and  $Asxl2^{-/-}$  cardiomyocytes exhibited similar width (Fig. 7E). However, in comparison to wild-type, the average length of  $Asxl2^{-/-}$  cardiomyocytes was 13% shorter, and the average area was 17% smaller (Figs. 7F, G). We conclude that  $Asxl2^{-/-}$  hearts did not develop cellular hypertrophy. The gene *Nppa*, which encodes the atrial natriuretic factor (ANP), is normally highly expressed in the atria but not in the ventricles. Re-expression of *Nppa* in the ventricles is observed during hypertrophic response and considered a molecular hallmark of hypertrophy. We examined the expression of *Nppa* in  $Asxl2^{-/-}$  LV by quantitative RT-PCR. Instead of observing *Nppa* derepression, we observed ~67% down-regulation in  $Asxl2^{-/-}$  LV at 1 month and ~52% down-regulation at 8 months (Fig. 7E). Therefore,  $Asxl2^{-/-}$  heart did not develop hypertrophic response at the molecular level.



Figure 7: *Asxl2<sup>-/-</sup>* hearts did not develop hypertrophy.

(A, B) Wild-type and *Asxl2*<sup>-/-</sup> heart sections were stained with hematoxylin and eosin. (C, D) WGA stainings (green) of heart sections. Nuclei were stained with DAPI and pseudocolored in red. Both fluorescent images are shown at the same magnification. (E-G) Measurement of the average width (E), length (F) and area (G) of cardiomyocytes isolated from wild-type and *Asxl2*<sup>-/-</sup> hearts. (H) Quantitative RT-PCR analysis of *Nppa* transcription at 1 month and 8 months. \* p <0.01.

# 3.4.8 <u>ASXL2 is down-regulated in the hearts of patients with ischemic or idiopathic</u> <u>dilated cardiomyopathy</u>

The CardioGenomics project has analyzed global gene expression pattern in the hearts of healthy individuals and patients with ischemic or idiopathic dilated cardiomyopathy by microarray. Expression in the LV was compared between 11 organ donors whose hearts could not be used in transplant, 15 patients with heart failure arising from idiopathic dilated cardiomyopathy and 11 patients with heart failure arising from ischemic cardiomyopathy.

We examined the expression of *Asx1* genes in the publically available microarray dataset (http://cardiogenomics.med.harvard.edu/public-data). There are three probe sets designated as *Asx12* on the HgU133 Plus 2.0 array but only two of them, 218658\_at and 1555266\_a\_at, map to the *Asx12* locus. The third probe set, 226251\_at, maps to an intergenic region downstream of *Asx12* 3'UTR. Although 218659\_at consistently showed higher signal intensity than 1555266\_a\_at, the two probe sets displayed the same trend showing that *Asx12* expression is significantly down-regulated in both idiopathic and ischemic cardiomyopathy patients (Fig. 8). This suggests that the reduction of *Asx12* expression may play a role in the etiology of some types of human cardiomyopathy. We were not able to determine with certainty whether the expression of *Asx11* changes in human cardiomyopathy based on the microarray data because different probe sets (all of which map correctly to the *Asx11* locus) gave different results (data not shown). *Asx13* expression was not detected above noise level in the microarray dataset (data not shown).

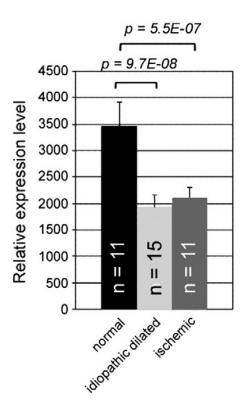



Figure 8: *Asxl2* expression in human cardiomyopathy patients.

Graphs were made using microarray data generated by the CardioGenomics project. Expression levels of *Asxl2* in the hearts of normal people (organ donors whose heart were healthy but could not be used in transplant), patients with idiopathic dilated cardiomyopathy, and patients with ischemic cardiomyopathy. Data shown in the graph represent probe set 218658\_at, which gave the higher signal intensity. Probe set 1555266\_a\_at had lower signal intensity but similar trend.

#### 3.5 Discussion

#### 3.5.1 The molecular basis for ventricular dysfunction in Asxl2<sup>-/-</sup> heart

Contractility of  $Asxl2^{-/-}$  hearts was comparable to that in wild-type at young age but deteriorated progressively over time. This suggests that ASXL2 has a specific role in the long-term maintenance of ventricular function. In parallel with the progressive decrease in contractility, we observed progressive de-repression of Myh7 in  $Asxl2^{-/-}$  hearts. The de-repression of Myh7 was not a secondary result of stress induced hypertrophy, since  $Asxl2^{-/-}$  hearts did not develop hypertrophy. Given that the TrxG protein BRG1 has been shown to be directly required for Myh7 activation (Hang et al., 2010) , we reasoned that ASXL2, a PcG protein, may be directly required for Myh7 repression.

ChIP assays showed that ASXL2 is enriched at the *Myh7* promoter, supporting a direct role for ASXL2 in *Myh7* repression. Thus, *Myh7* de-repression was likely a direct consequence of *Asxl2* deficiency. Interestingly, BRG1 functions not only as a *Myh7* activator but also as a *Myh6* repressor (Hang et al., 2010). The role of ASXL2 in *Myh6* expression remains to be addressed, but it is formally possible that ASXL2 normally stimulates *Myh6* expression, in which case the loss of *Asxl2* could lead to both direct and compensatory de-repression of *Myh6*. It has been previously shown that even a slight change in myosin composition – 12% of total myosin being MYH7 – can result in significant reduction in contractility (Tardiff et al., 2000). The protein level of MYH7 in *Asxl2*<sup>-/-</sup> hearts is ~6% of total myosin at 4 months. While this is a small change in myosin composition, it could have a detectable impact on contractility. The proportion of MYH7 in total myosin is likely much higher by 10 months, given that *Myh7* de-repression becomes more severe over age (Fig. 5A). Thus, we hypothesize that ventricular dysfunction in *Asxl2*<sup>-/-</sup> hearts could, at least partly, result from a failure to maintain *Myh7* in a silenced state.

Interestingly,  $Asxl2^{-/-}$  hearts exhibited increased PKA phosphorylation of TNNI3 and PLB, both of which should increase the kinetics of Ca<sup>2+</sup> transient and enhance contraction. Thus, contractility in  $Asxl2^{-/-}$  hearts reflects the net result of a tug-of-war between abnormal myosin composition and enhanced PKA signaling. Additional, as-yet unidentified factors may also contribute to this tug-of-war. A proteomic approach would be well suited for the identification of such factors in the future.

#### 3.5.2 <u>The role of ASXL2 in cardiomyocyte hypertrophy</u>

Systolic dysfunction usually induces cardiomyocyte hypertrophy as a compensatory mechanism. However, there is a disconnection between systolic function and hypertrophy in *Asx12<sup>-/-</sup>* hearts. This is uncommon but not unprecedented. For example, *Myh7* transgenic mice have been reported to exhibit systolic dysfunction without developing hypertrophy (Tardiff et al., 2000). Furthermore, mutations in several genes – including the transcription factor Gata4 and the chromatin factor BRG1 – have been shown to significantly attenuate hypertrophic response induced by transverse aortic constriction (TAC), a powerful form of pressure overload that normally causes rapid development of hypertrophy (Hang et al., 2010; Oka et al., 2006). These reports suggest that while systolic function and cardiomyocyte growth are usually intricately connected, it is possible to uncouple them. An important task in future studies would be to characterize molecular pathways downstream of ASXL2, in particular pathways that regulate cellular growth. The ability to manipulate such pathways could facilitate the prevention of hypertrophy and its deleterious effects.

# 3.5.3 <u>The role of chromatin factors in the long-term maintenance of cardiac gene</u> <u>expression and function</u>

The adult mammalian heart has very limited regeneration capability. Cardiomyocytes need to maintain a cell type-appropriate gene expression pattern for a life time while constantly adjusting performance and metabolism in response to changes in physiological conditions, such as exercise, hormones, and pregnancy. Previous research has identified an array of transcription factors as important regulators of gene expression in the adult heart. Deficiency or mutation in these transcription factors leads to malfunction of cardiomyocytes and of the whole heart. For example, MEF2a, a typical transcription factor with both DNA binding and transactivating activities, is required for the maintenance of appropriate mitochondrial content and cyto-architectural integrity in the adult mouse heart (Naya et al., 2002).

In the past two decades, studies have revealed the importance of transcriptional regulation at the level of chromatin. Many chromatin factors have been reported. Among these, PcG proteins are particularly recognized for their role in creating and maintaining gene silencing. TrxG proteins, the antagonists of PcG proteins, can relieve PcG-mediated silencing. It has recently been shown that the TrxG protein BRG1 is required for MHC isoform switching during hypertrophic response in the adult mouse heart (Hang et al., 2010). BRG1 binds to 4 of the 5 conserved regions in the *Myh7* promoter and can activate *Myh7* reporters in an HDAC independent manner. If a TrxG protein is required for *Myh7* activation, do PcG proteins play a role in *Myh7* repression?

Our results suggest the answer is yes. ASXL2 is a chromatin factor and a regulator of histone methylation (Baskind et al., 2009) and histone ubiquitylation [H. Lai, submitted results]. *Asxl2<sup>-/-</sup>* hearts had decreased levels of bulk H3K27me3, a mark for silenced chromatin,

suggesting that ASXL2 normally promotes PcG-mediated gene repression. Here we report that Myh7 is progressively de-repressed in  $Asxl2^{-/-}$  hearts; furthermore, ASXL2 and the PcG histone methyltransferase EZH2 co-localize to 4 out of 5 conserved regions in the Myh7 promoter. Thus, the expression of Myh7 is likely controlled by opposing actions of PcG and TrxG proteins. In this model, PcG proteins, with the help of ASXL2, functions keep the Myh7 locus in a silenced chromatin configuration. In the absence of Asxl2, PcG activity is reduced, resulting in progressive deterioration of the silenced chromatin configuration and thereby progressive Myh7 de-repression. It is conceivable that there are more genes that require ASXL2/PcG proteins for repression in the adult heart. The identification and study of these genes will increase our understanding of the role of the chromatin based mechanisms in the long-term maintenance of cardiac gene expression and function.

#### 3.5.4 Implication of ASXL2 in human heart disease

Heart diseases have been associated with mutations in a variety of genes that encode transcription factors, cytoskeleton components and signaling molecules. However, the molecular basis for a large number of heart diseases remains elusive. While genetic factors are certainly critical, epigenetic factors may be just as important. Epidemiological studies have led to the theory that many adult disorders, including cardiac disorders, may originate from fetal or early postnatal programming through epigenetic mechanisms (Wadhwa et al., 2009). Epigenetic programming can be influenced by maternal and infantile diet, by environmental factors, by mutations in genes that encode epigenetic regulators, or by the combinatorial effect of the above. We showed that *Asxl2* is down-regulated in the hearts of patients with ischemic or idiopathic dilated cardiomyopathy. Down-regulation of *Asxl2* may be a mere consequence of these heart conditions and may not play any active role; in this case, it may serve as a molecular marker in

diagnosis. Alternatively, it may actively contribute to the onset or development of these conditions. This would raise the question of whether restoring ASXL2 function, or boosting the activity of histone modification enzymes that are regulated by ASXL2, can prevent or hinder disease progression.

## IV. ADDITIONAL SEX COMBS-LIKE 2 IS REQUIRED FOR POLYCOMB REPRESSIVE COMPLEX 2 BINDING AT SELECT TARGETS

#### 4.1 <u>Abstract</u>

Polycomb Group (PcG) proteins are epigenetic repressors of gene expression. The Drosophila *Additional sex combs (Asx)* gene and its mammalian homologs exhibit PcG protein function in genetic assays; however, the mechanism by which Asx family proteins mediate gene repression is not well understood. ASXL2, one of three mammalian homologs for Asx, is highly expressed in the mammalian heart and is required for the maintenance of cardiac function. We have previously shown that *Asxl2* deficiency results in a reduction in the bulk level of histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark generated by the Polycomb Repressive Complex 2 (PRC2).

Here we identify several ASXL2 target genes in the heart and investigate the mechanism by which ASXL2 facilitates their repression. We show that the *Asxl2*-deficient heart is defective in converting H3K27me2 to H3K27me3 and in removing ubiquitin from mono-ubiquitinated histone H2A (uH2A). ASXL2 and PRC2 interact in the adult heart and co-localize to target promoters. Additionally, ASXL2 is required for the binding of PRC2 and for the enrichment of H3K27me3 at target promoters. These results add a new perspective to our understanding of the mechanisms that regulate PcG protein activity and gene repression.

#### 4.2 Introduction

During the development and life of multicellular organisms, there is a need to both set up and maintain distinct identities in different types of cells and tissues. Epigenetic mechanisms play critical roles in the establishment and maintenance of cellular identity. Polycomb Group (PcG) proteins were originally identified in Drosophila as repressors of homeotic genes (*Hox* genes) [for a review of the early genetic studies that identified PcG proteins, see (Kennison, 1995)]. The balanced action of PcG proteins and their antagonists, the Trithorax Group (TrxG) protein epigenetic activators, is crucial for the maintenance of *Hox* expression domains along the anterior-posterior axis (Gould, 1997; Kennison, 1995). It has been discovered that PcG and TrxG proteins play essential roles in mammalian development, regulating the differentiation of a wide array of cell lineages (Ng and Gurdon, 2008; Schuettengruber and Cavalli, 2009; Surface et al., 2010).

PcG proteins form multi-subunit complexes and function at the level of chromatin. One of the best characterized PcG complexes is the Polycomb Repressive Complex 2 (PRC2). PRC2 is responsible for generation of histone H3 lysine 27 trimethylation (H3K27me3), a mark that is associated with a silent chromatin state (Cao et al., 2002; Kuzmichev et al., 2002). The core components of PRC2 are EZH2, SUZ12 and EED, and are necessary and sufficient for PRC2's histone methyltransferase (HMTase) activity (Cao et al., 2002; Cao and Zhang, 2004; Kuzmichev et al., 2002; Montgomery et al., 2005). The SET-domain protein EZH2 is the catalytic subunit (Cao et al., 2002; Kuzmichev et al., 2002; SUZ12 is required for the integrity of the PRC2 complex and for preventing proteolytic degradation of EZH2 (Cao and Zhang, 2004; Pasini et al., 2004). EED binds to H3 tails carrying trimethylated K27 and stimulates the

HMTase activity of EZH2, thereby facilitating the spread of the H3K27me3 mark to neighboring nucleosomes (Margueron et al., 2009).

The Drosophila *Additional sex combs (Asx)* gene was initially identified based on PcGlike mutant phenotypes and genetic interaction with other PcG genes (Simon et al., 1992). Recently, Asx was shown to associate with the histone deubiquitinase Calypso to form the Polycomb Repressive Deubiquitinase (PR-DUB) complex (Scheuermann et al., 2010). Asx plays at least two roles in the PR-DUB complex: to stabilize the Calypso protein and to stimulate its deubiquitinase activity, which is specific for mono-ubiquitinated histone H2A (uH2A). The deubiquitinase activity of PR-DUB is required for repression of *Ubx* in Drosophila wing disc. These results provided important insight into the biological function of Asx and PR-DUB. However, it remains unclear how H2A deubiquitination contributes to the repression of PcG protein target genes.

There are three Asx homologs in human and mouse genomes, *Asx-like 1 (Asxl1)*, *Asxl2* and *Asxl3* (Fisher et al., 2010a; Katoh, 2003, 2004). We have previously presented evidence suggesting functional conservation between *Asxl2* and *Asx* (Baskind et al., 2009). *Asxl2* is highly expressed in the heart. Interestingly, *Asxl2*<sup>-/-</sup> hearts exhibit significant reduction in the level of bulk H3K27me3, suggesting that ASXL2 regulates PRC2 activity (Baskind et al., 2009). Here we explore the molecular basis for this reduction and present evidence that ASXL2 is required for PRC2 binding at select target genes.

#### 4.3 <u>Materials and Methods</u>

#### 4.3.1 <u>Chromatin immunoprecipitation</u>

The experimental procedure was followed as previously described in 2.9. The antibodies used in this study were: rabbit anti- ASXL2 (8 µl per 300µl chromatin); mouse anti-EZH2 (BD

transduction laboratories; 8 µl per 300µl chromatin); rabbit IgG (Invitrogen; 2 µg per 300µl chromatin); mouse IgG (Invitrogen; 2 µg per 300µl chromatin); rabbit anti-H3K27me3 (cell signaling, 6 µl per 300µl chromatin); rabbit anti-SUZ12 (8µl per 300 µl chromatin, active motif); and rabbit anti-AcH3 (7 µl per 300 µl chromatin, Active motif). ChIPed DNAs were subjected to PCR analysis. The PCR program used for EZH2 and SUZ12 ChIP assay was as follows; (1) 95° 30 sec. (2) 95° 30 sec. (3) 57-60° 30 sec. (4) 72° 1 min. (5) repeat steps 2-4 for 31 times, (6) 72° 5 min. The qPCR program used for ASXL2, EZH2, H3K27me3, and AcH3 was as follows; (1) 95° 30 sec. (2) 95° 30 sec. (3) 57-60° 30 sec. (4) 72° 1 min. (5) repeat step 2-4 for 39 times (7) melting curve analysis

#### 4.3.2 Immunoprecipitation

The experimental procedure was followed as previously described in 2.13. Antibodies used in this study were as follows: anti-pre-absorbed ASXL2\* (16  $\mu$ l per 600 $\mu$ l nuclei extract); anti-EZH2 (Millipore; 12  $\mu$ l per 600  $\mu$ l nuclei extract); rabbit IgG (Invitrogen; 2  $\mu$ g 600 $\mu$ l nuclei extract); mouse IgG (Invitrogen; 2  $\mu$ g per 600 $\mu$ l nuclei extract); and rabbit anti-SUZ12 (Active motif, 8 $\mu$ l per 600 $\mu$ l nuclei extract).

\*100 μl Anti-ASXL2 was diluted in 100 μl of PBS and then was pre-absorbed in methanol fixed HEK293 cells for 1 hour at 4 °C (pre-ASXL).

#### 4.3.3 Western blot

The experimental procedure was followed as previously described in 2.14. The antibodies used in this study were: anti- ASXL2 (1:500; ~170KDa; anti rabbit HRP 1:10,000); anti- H3 (Active motif; 1:5000; ~15KDa; anti rabbit HRP 1:50,000 ); anti-GAPDH (Millipore; 1:1000; ~40KDa; anti mouse HRP 1:10,000); anti-EED (Millipore; 1:3000; ~36-72KDa; anti rabbit HRP 1:10,000); anti-SUZ12 (Active motif; 1:2000; ~85KDa; anti rabbit HRP 1:10,000); anti-EZH2

(BD transduction laboratories, 1:2000; ~90KDa; anti mouse HRP 1:10,000); anti-BAP1 (Millipore, 1:2000; ~100 KDa; anti mouse HRP 1:10,000); anti-ubiquityl-H2B (1:2000; ~25KDa; anti mouse HRP 1:10,000); and anti-ubiquityl-H2A (Millipore, 1:2000; ~27KDa; anti mouse IgM HRP 1:10,000).

#### 4.4 <u>Results</u>

#### 4.4.1 ASXL2 is associated with chromatin

Drosophila Asx is a chromatin-associated protein. Immunostaining of polytene chromosomes identified 90 Asx binding sites, ~70% of which overlapped with binding sites of other PcG proteins (Scheuermann et al., 2010). A recent ChIP-on-chip study identified 879 PR-DUB binding sites with high confidence in the Drosophila genome (Scheuermann et al., 2010). To confirm that murine ASXL2 is also associated with chromatin, we expressed FLAG-tagged ASXL2 in HEK293 cells and used biochemical fractionation (Mendez and Stillman, 2000) to separate chromatin-associated proteins from soluble nuclear proteins. Probing the fractions with either the anti-ASXL2 antibody KC17 or with anti-FLAG antibody M2 (Sigma) detected ASXL2 predominantly in the chromatin fraction (Fig. 9A). Similar results were obtained with endogenous ASXL2 in murine heart tissue (Fig. 9B).

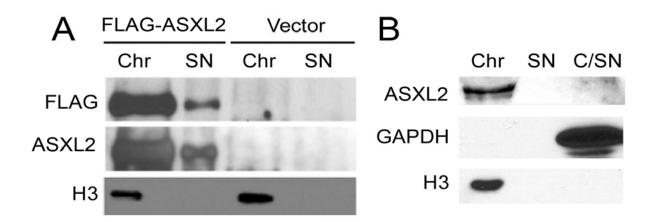



Figure 9: ASXL2 is associated with chromatin.

Biochemical fractions of cellular proteins were probed with antibodies indicated. (A) FLAG-ASXL2 is associated with chromatin in HEK293 cells. Fractions were prepared from HEK293 cells transfected with FLAG-ASXL2 and probed with M2 anti-FLAG antibody and KC17 anti-ASXL2 antibody, respectively. An anti-histone H3 antibody (Active Motif) was used to confirm the quality of fractionation. (B) Endogenous ASXL2 is associated with chromatin. Fractions were prepared from heart tissue and probed with KC17 antibody. Anti-GAPDH (Millipore) and anti-histone H3 antibodies were used to confirm the quality of fractionation. Chr: chromatin fraction. SN: soluble nuclear fraction. C/SN: cytosol fraction with trace soluble nuclear proteins.

#### 4.4.2 ASXL2 is required for the normal expression of multiple cardiac genes

We have recently shown that ASXL2 is required for the long-term maintenance of cardiac function in adult mice (Lai et al., 2012). The loss of cardiac function in  $Asxl2^{-/-}$  hearts is correlated with de-repression of *myosin, heavy chain 7, cardiac muscle, beta (Myh7)*, and the fetal form of myosin heavy chain (MHC) that has lower ATPase activity than the adult alpha form (Lai et al., 2012). We showed that ASXL2 and the PRC2 core component EZH2 co-localized to multiple conserved regions within the *Myh7* promoter. This, along with our previous observation that the level of bulk H3K27me3 is significantly reduced in  $Asxl2^{-/-}$  hearts, led us to hypothesize that ASXL2 and PRC2 may act together to regulate the expression of *Myh7* and other target genes.

To investigate this hypothesis, we first sought to identify additional targets of ASXL2 in the murine heart. We performed a microarray analysis on 1-month-old wild-type and  $Asxl2^{-/-}$ hearts and identified 753 genes that are either induced or repressed more than 2 fold in  $Asxl2^{-/-}$ hearts (Appendices L and M). The mis-expression of these genes is unlikely a secondary effect due to cardiac stress, because ventricular function is largely normal in  $Asxl2^{-/-}$  hearts at this early stage (Lai et al., 2012). We chose to examine three genes, in addition to Myh7, in more detail: *Secreted frizzled-related protein 2 (Sfrp2); Actin, alpha 1, skeletal muscle (Acta1)*; and *G protein-coupled receptor kinase 5 (Grk5)*. First, query of the Broad Institute ChIP-seq database revealed that the promoters of these genes are enriched for PRC2 components and H3K27me3 in embryonic stem (ES) cells (Fig. 10). This suggests that these loci contain regulatory elements needed to recruit PcG protein activity. Therefore, they are good candidates as PcG protein target genes in not only ES cells but also in differentiated cells/tissues, including the heart. In fact, *Sfrp2* has been shown to be a PcG target in human embryonic fibroblasts (Bracken et al., 2006). Second, all three genes have been implicated in congenital or acquired heart diseases/conditions in human and/or mouse (Chen et al., 2001; Feng and Marston, 2009; Huang et al., 2011; Kobayashi et al., 2009), suggesting that an understanding of their regulation could be clinically important. Using quantitative RT-PCR, we confirmed that *Sfrp2*, *Acta1* and *Grk5* are derepressed in *Asx12<sup>-/-</sup>* hearts by 4.6, 5.8, and 5.9 folds, respectively (Fig. 11).

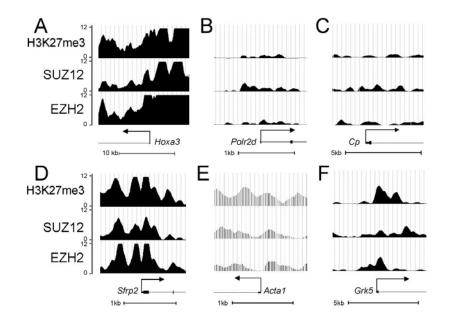



Figure 10: Epigenetic profiles at Sfrp2, Acta1 and Grk5 loci in ES cells.

The Broad Institute ChIP-seq database (http://www.broadinstitute.org/scientific-

community/science/programs/epigenomics/chip-seqdata) was queried for the enrichment of H3K27me3, SUZ12, and EZH2 at the loci of interest. For each gene, only the genomic region around the transcriptional start site (TSS) is shown. Arrow points to the direction of transcription. The y axis is the relative level of enrichment. The scale bar for each panel is shown at the bottom of the panel. (A-C) Representative epigenetic profiles for three types of genes in ES cells: those that are repressed by PcG protein activity, those that are constitutively expressed and not regulated by PcG protein activity, and those that are repressed via PcG-independent mechanism. (A) The chromatin region near the TSS of *Hoxa3*, a classical PcG protein target gene, displays high levels of enrichment of H3K27me3, SUZ12 and EZH2. (B) The profile for *Polr2d*, a housekeeping gene that encodes an RNA polymerase II subunit, shows no enrichment of H3K27me3, SUZ12 or EZH2. (C) H3K27me3 and PRC2 components are not enriched near the TSS of *Cp*, a gene that is repressed in ES cells. (D-F) The epigenetic profiles around the TSS of *Sfrp2*, *Acta1* and *Grk5* resemble that for *Hoxa3*.

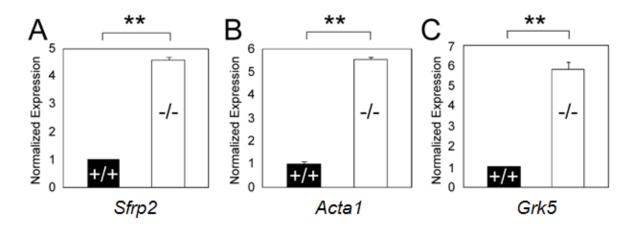
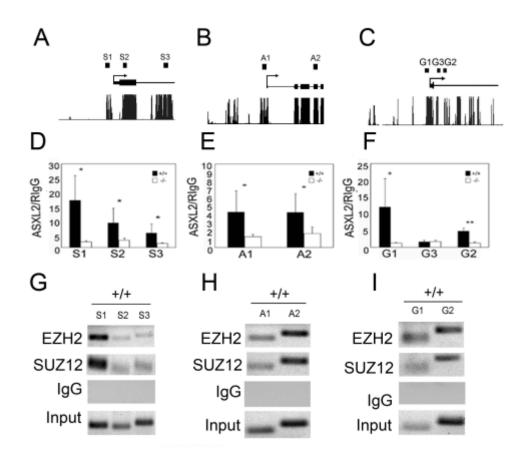
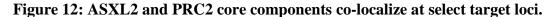



Figure 11: ASXL2 is required for the repression of select cardiac genes.


The mRNA levels of *Sfrp2* (A), *Acta1* (B), and *Grk5* (C) in 1mo-old wild-type and *Asxl2*<sup>-/-</sup> hearts were analyzed by quantitative RT-PCR. The expression level of each gene analyzed was normalized against that of ACTIN in the same sample. Each column shown is the mean value of data generated from three independent samples. \*\* p < 0.01; Error bar: standard deviation.


#### 4.4.3 ASXL2 and PRC2 components co-localize at select target loci

Genome-wide studies have consistently found PRC2 components to be enriched at chromatin regions near the transcription start sites (TSSs) of target genes (Bernstein et al., 2006; Ku et al., 2008; Meissner et al., 2008; Mikkelsen et al., 2008; Mikkelsen et al., 2007; Schuettengruber et al., 2009; Zhao et al., 2007). To determine whether *Sfrp2*, *Acta1* and *Grk5* are directly repressed by ASXL2 and PRC2, we examined enrichment of ASXL2 and PRC2 components at these loci by ChIP-qPCR assays, focusing on regions between -2 kb and +2 kb of the TSS. For each locus, we selected 2-3 genomic sites that are conserved between mouse, rat and human (Fig. 12A-C). ASXL2 was enriched at most of these sites (Fig. 12D-F). Most of the ASXL2-enriched sites also exhibited enrichment of PRC2 core components EZH2 and SUZ12 (Fig. 12G-I).

To investigate the distribution of ASXL2 along target loci, we selected a series of conserved sites within the gene bodies of *Sfrp2* and *Grk5* and examined the level of ASXL2 enrichment by ChIP-qPCR assays. For both genes, ASXL2 was most highly enriched at the promoter, and the level of enrichment decreases from the 5' to 3' end of the gene body (Fig. 13A-B).

To confirm that we are detecting site-specific binding of ASXL2 instead of promiscuous binding to chromatin, ChIP assays were also performed for the *S100a10* locus, which was active in both wild-type and  $Asxl2^{-/-}$  hearts. ASXL2 enrichment was not detected at any of the six sites that we analyzed for the *S100a10* locus (Fig. 14).





(A-C) Alignment of mouse, rat and human genomic sequences from -2kb to +2kb of *Sfrp2* (A), *Acta1* (B), and *Grk5* (C). The peaks correspond to regions of sequence conservation. For each gene, 2-3 highly conserved regions (black bars on top of the graphs, designated S1-3, A1-2 and G1-3, respectively) were selected for ChIP-qPCR analysis. (D-F) ChIP-PCR assays of ASXL2 enrichment near *Sfrp2* (D), *Acta1* (E) and *Grk5* (F) TSSs in 1-month-old wild-type and *Asxl2*<sup>-/-</sup> hearts. Mock ChIPs were performed with rabbit IgG. Input: qPCR assays of 1:100 diluted total input. (G-I) ChIP-PCR assays of EZH2 and SUZ12 enrichment near *Sfrp2* (G), *Acta1* (H) and *Grk5* (I) TSSs in 1-month-old wild-type mouse hearts. \* p < 0.05; \*\* p < 0.01; Error bar: standard deviation.

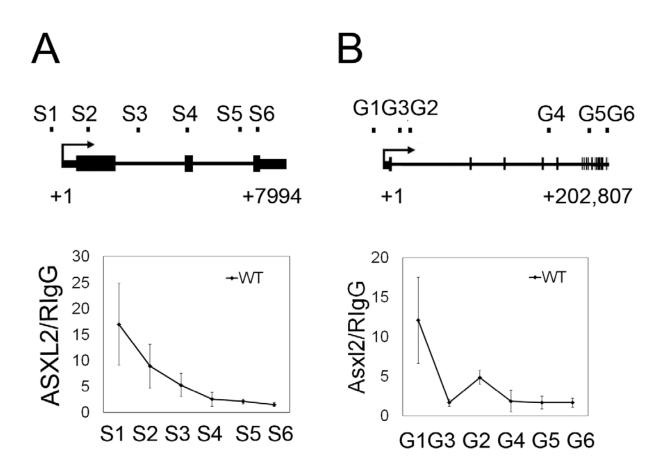
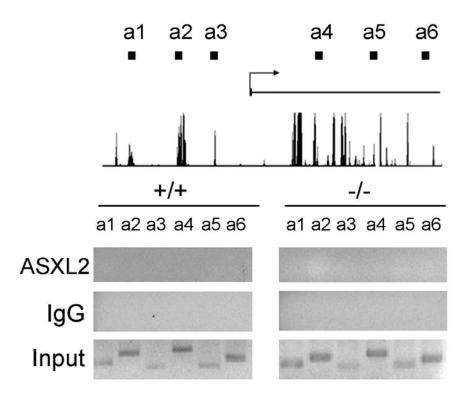




Figure 13: ASXL2 is not enriched at the coding regions of *Sfrp2* and *Grk5*.

ChIP-qPCR analysis of ASXL2 enrichment at *Sfrp2* (A) and *Grk5* (B) in 1-month-old wild-type hearts. Mock ChIPs were performed with rabbit IgG. Each column represents the mean value of data from three independent samples; Error bar: standard deviation. The x axis indicates the regions that were analyzed, as shown in the schematic representations of the *Sfrp2* and *Grk5* promoters and coding regions.



**Figure 14: ASXL2 is not enriched at the** *S100a10* **locus.** *S100a10* encodes a calcium binding protein and is highly expressed in both wild-type and *Asxl2<sup>-/-</sup>* hearts. Shown is anti-ASXL2 ChIP-PCR results for six chromatin sites (a1-a6) within -5kb to +5kb of *S100a10* TSS. Mock ChIP was performed with normal rabbit IgG. Input: PCR assay of 1:100 diluted total input chromatin.

#### 4.4.4 H3K27me3 is significantly reduced at de-repressed Asxl2 target loci

We have previously shown that the bulk level of H3K27me3 is decreased in  $Asxl2^{-/-}$  hearts (Baskind et al., 2009). This is consistent with genetic evidence in both Drosophila and mouse suggesting that Asx and Asx-like genes promote PcG protein activity (Baskind et al., 2009; Fisher et al., 2010a; Milne et al., 1999). We hypothesized that de-repression of Myh7, Sfrp2, Acta1 and Grk5 in the  $Asxl2^{-/-}$  heart is due to a deficiency of H3K27me3 at these loci. ChIPqPCR assay showed that in comparison to wild-type hearts,  $Asxl2^{-/-}$  hearts exhibited significant reductions in the level of H3K27me3 enrichment at Myh7, Sfrp2, Acta1 and Grk5 promoters (Fig. 15A-D), confirming our hypothesis. In contrast, the level of H3K27me3 enrichment at the Hoxb5 locus did not change in  $Asxl2^{-/-}$  hearts (Fig. 16). Additionally, qRT-PCR detected extremely low, if any, Hoxb5 transcription in both wild-type and  $Asxl2^{-/-}$  hearts (Figure 17), suggesting that it does not require ASXL2 for repression. These results suggest that ASXL2 is specifically involved in the regulation of a subset of PcG protein targets.

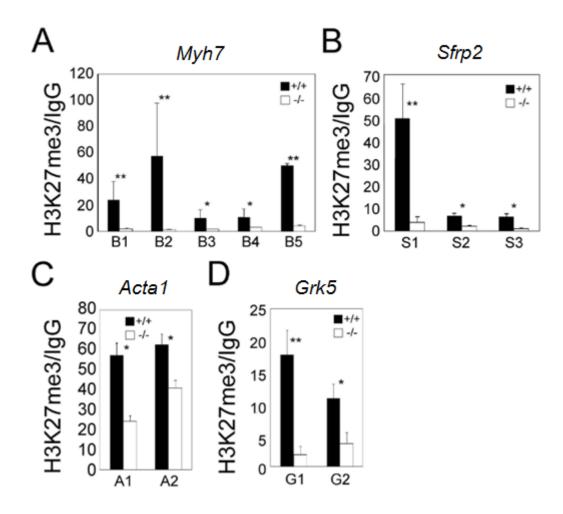



Figure 15: De-repression of ASXL2 target genes is accompanied by reduced levels of H3K27me3.

ChIP-qPCR assays were used to compare the levels of H3K27me3 at conserved regions surrounding *Myh7* (A), *Sfrp2* (B), *Acta1* (C), and *Grk5* (D) TSS in wild-type and *Asxl2*<sup>-/-</sup> hearts. Data from H3K27me3 ChIP were normalized against those from IgG mock ChIP. Each column represents the mean value of data from three independent samples. The five conserved regions in the *Myh7* promoter, B1-5, are as previously described (79). \* p < 0.05; \*\* p < 0.01; Error bar: standard deviation.

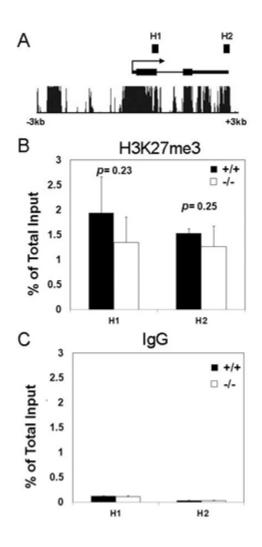
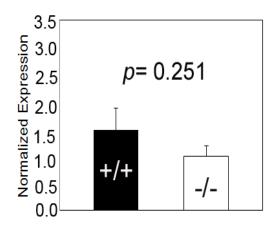
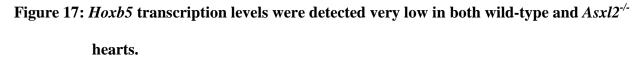





Figure 16: ChIP-qPCR analysis of H3K27me3 enrichment at the Hoxb5 locus.

(A) Alignment of mouse, rat and human genomic sequences from -3kb to +3kb of *Hoxb5*.H1 and H2 are two highly conserved regions that were selected for ChIP-qPCR analysis. (B)H3K27me3 ChIP. (C) Mock IgG ChIP. Each column represents the mean value of data from three independent samples. Error bar: standard deviation.

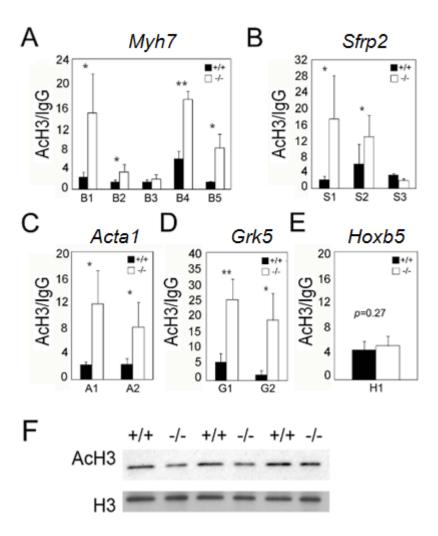


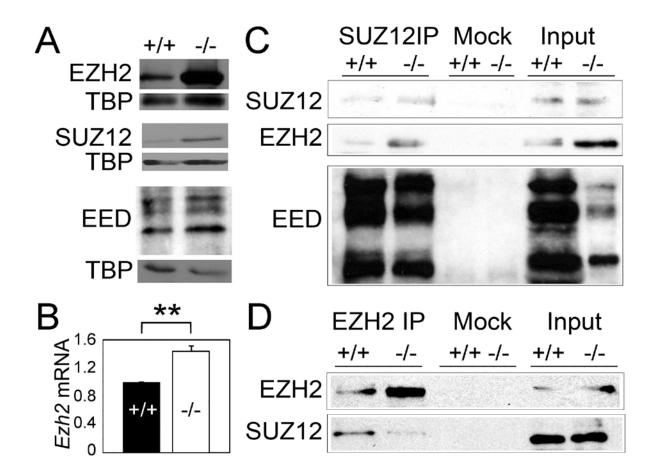


The mRNA levels of *Hoxb5* in 1mo-old wild-type and *Asxl2<sup>-/-</sup>* hearts were analyzed by quantitative RT-PCR. Each column shown is the mean value of data generated from two independent samples.

## 4.4.5 <u>Acetylation of histone H3 (AcH3) is significantly increased at de-repressed *Asxl2* target loci</u>

To test the possibility that the loss of *Asxl2* may result in depletion of nucleosomes or indiscriminate reduction of all histone modifications at target loci, we examined the enrichment of AcH3, an active histone mark (Delgado-Olguin et al., 2012). In the absence of *Asxl2*, the level of AcH3 enrichment increased significantly at *Myh7, Sfrp2, Acta1 and Grk5* – loci that are dependent on ASXL2 for repression (Fig. 18A-D). No increase of AcH3 was observed at the *Hoxb5* locus, which does not require ASXL2 for repression (Fig. 18E). The bulk level of AcH3 is comparable in wild-type and *Asxl2*<sup>-/-</sup> hearts (Fig. 18F). Taken together, *Asxl2* deficiency specifically affects H3K27 methylation.





Figure 18: De-repression of ASXL2 target genes is accompanied by increased levels of AcH3.

ChIP-PCR assays were used to compare the levels of AcH3 (Active Motif) at conserved regions surrounding *Myh7* (A), *Sfrp2* (B), *Acta1* (C), *Grk5* (D) and *Hoxb5* (E) TSS in wild-type and *Asxl2<sup>-/-</sup>* hearts. Data from AcH3 ChIP were normalized against those from IgG mock ChIP. Each column represents the mean value of data from three independent samples. The five conserved regions in the *Myh7* promoter, B1-5, are as previously described (Lai et al., 2012). Position of H1 within the *Hoxb5* locus is shown in Figure 8. \* p < 0.05; \*\* p < 0.01; Error bar: standard deviation. (F) Western blot analysis of bulk AcH3.

#### 4.4.6 PRC2 core subunits are expressed and form complexes in Asxl2<sup>-/-</sup> hearts

To understand the mechanism by which ASXL2 regulates H3K27me3 levels at target chromatin loci, we first asked whether ASXL2 is required for the stability of PRC2 core subunits. Nuclear protein extracts from wild-type and  $Asxl2^{-/-}$  hearts were separated on SDS-PAGE and probed with antibodies against EZH2, SUZ12, and EED (Fig. 19A). The level of EZH2 protein in wild-type is by approximately of 3/8-fold in  $Asxl2^{-/-}$  hearts (Fig. 20). The levels of SUZ12 and EED also increased but to lesser degrees. Quantitative RT-PCR showed that transcription of EZH2 is increased by 1.4-fold in  $Asxl2^{-/-}$  hearts (Fig. 19B). Thus, the higher level of EZH2 protein in  $Asxl2^{-/-}$  hearts is regulated at both the transcript and the protein levels. Taken together, these results suggest that Asxl2 is not required for the expression of EZH2, SUZ12 or EED. Instead, the loss of Asxl2 and the subsequent reduction in bulk H3K27me3 may have triggered a compensation pathway to express more PRC2 components.

Next, we asked whether deficiency in *Asxl2* affects the association between PRC2 core components. We immunoprecipitated SUZ12 and proteins associated with it from wild-type and *Asxl2*<sup>-/-</sup> heart extracts. Western blot analysis showed that EZH2 and EED co-IPed with SUZ12 in both wild-type and *Asxl2*<sup>-/-</sup> hearts (Fig. 19C). In addition, immunoprecipitation of EZH2 pulled down SUZ12 (Fig. 19D). These results suggest that *Asxl2* is dispensable for the formation of the PRC2 core complex.



## Figure 19: ASXL2 is not required for the protein stability of PRC2 core components or the integrity of PRC2 complex.

(A) Western blot analysis of protein levels of EZH2, SUZ12, and EED in wild-type and  $Asxl2^{-/-}$  hearts. Western blot of TATA-binding protein (TBP) was used as a loading control. Three pairs of hearts were analyzed and a representative result was shown for each protein. (B) Quantitative RT-PCR analysis of EZH2 transcription in wild-type and  $Asxl2^{-/-}$  hearts. (C, D) Co-IP analysis of PRC2 components. Wild-type and  $Asxl2^{-/-}$  heart extracts were IPed using either an anti-SUZ12 antibody (C) or an anti-EZH2 antibody (D). Mock IP was performed with pre-immune serum (IgG). IPed samples were analyzed by Western blot using the indicated antibodies. \*\* p < 0.01; Error bar: standard deviation.

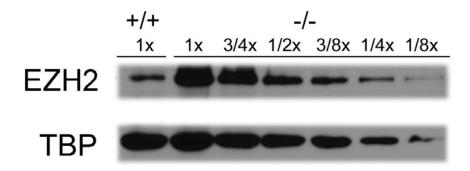
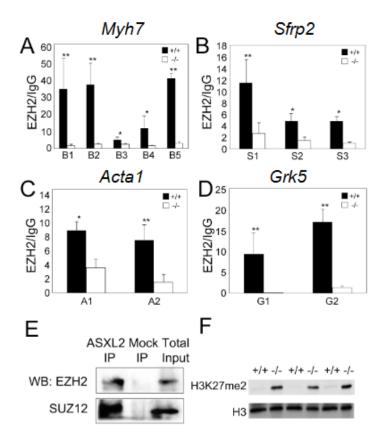



Figure 20: Comparison of EZH2 level in wild-type and *Asxl2<sup>-/-</sup>* hearts.

Serial dilutions of heart extracts were analyzed by SDS-PAGE and then probed with anti-EZH2

antibody. Western blot of TBP was used as a loading control.

#### 4.4.7 ASXL2 is required for PRC2 binding at target loci

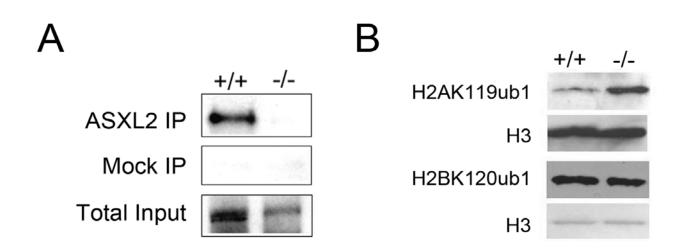

Next, we asked whether ASXL2 plays a role in the localization of PRC2 to target chromatin. We compared the level of EZH2 enrichment at *Myh7*, *Sfrp2*, *Acta1* and *Grk5* loci in wild-type and *Asxl2*<sup>-/-</sup> hearts by ChIP-qPCR. For all the sites that exhibited EZH2 enrichment above background in wild-type hearts, there is a significant reduction in chromatin-bound EZH2 in *Asxl2*<sup>-/-</sup> hearts (Fig. 21A-D). Therefore, although *Asxl2*<sup>-/-</sup> hearts expressed a much higher level of EZH2 protein (Fig. 19A), it failed to bind to ASXL2 target loci, which may account for reduced H3K27me3 levels at these loci and thereby de-repression.

#### 4.4.8 ASXL2 interacts with PRC2 core components in the adult heart

Given that ASXL2 co-localizes with PRC2 at target loci and is required for PRC2 binding, we tested whether ASXL2 interacts with PRC2 *in vivo*. We immunoprecipitated ASXL2 from heart extracts and examined the presence of EZH2 and SUZ12. As shown in Fig. 21E, both PRC2 core components co-IPed with ASXL2. This suggests that ASXL2 associates with PRC2 in the heart and may regulate chromatin binding of PRC2 directly.

#### 4.4.9 ASXL2 is specifically required for the addition of the third methyl group to H3K27

PRC2 mediates the mono-, di- and tri- methylation of H3K27. It has been proposed that a stable association of PRC2 with chromatin is specifically required for the conversion of H3K27me2 to H3K27me3 (Sarma et al., 2008). Since the loss of *Asxl2* resulted in a significant decrease in the bulk level of H3K27me3 (Baskind et al., 2009) and, at the same time, a decrease in PRC2 association with target loci (Fig. 21A-D), we asked whether ASXL2 is specifically required for the addition of the third methyl group. Western blot analysis showed a striking increase in the level of bulk H3K27me2 in *Asxl2*<sup>-/-</sup> hearts (Fig. 21F). This further confirms that PRC2 complex is intact and enzymatically active but fails to stably associate with chromatin in the absence of *Asxl2*.




## Figure 21: ASXL2 interacts with PRC2 and is required for recruitment of PRC2 to select target genes in the mouse heart.

The level of EZH2 enrichment at *Myh7* (A), *Sfrp2* (B), *Acta1* (C) and *Grk5* (D) in wild-type and *Asxl2<sup>-/-</sup>* hearts was compared by ChIP-qPCR. Data from EZH2 ChIP were normalized against those from IgG mock ChIP. Each column represents the mean value of data from three independent samples. (E) Co-IP analysis of the interaction between ASXL2 and PRC2 components. Wild-type heart extract was IPed using anti-ASXL2 antibody. Mock IP was performed with pre-immune serum (IgG). IPed samples were analyzed by Western blot using the indicated antibodies. \**p* < 0.05 ; \*\**p* < 0.01; Error bar: standard deviation. (F) Western blot analysis of bulk H3K27me2 in three pairs of wild-type and *Asxl2<sup>-/-</sup>* hearts. To control for comparable protein loading, the blot was stripped and re-blotted for histone H3.

### 4.4.10 <u>ASXL2 interacts with BAP1 and is required for efficient uH2A deubiquitination *in* <u>vivo</u></u>

Drosophila Asx is a component of the PR-DUB complex and is required for efficient deubiquitination of uH2A (Scheuermann et al., 2010). To determine whether this function is conserved in ASXL2, we examined the interaction between ASXL2 and BAP1, the mammalian homolog of Calypso, and the effect of *Asxl2* deficiency on bulk uH2A level. We found that BAP1 co-IPed with ASXL2 from wild-type heart extract (Fig. 22A). In addition, the level of bulk uH2A was significantly increased in *Asxl2*<sup>-/-</sup> hearts (Fig. 22B). The level of bulk uH2B did not change, consistent with previous report that PR-DUB specifically deubiquitinates uH2A but not uH2B (Scheuermann et al., 2010). These results suggest that ASXL2 is a critical component of mammalian PR-DUB in the heart.



# Figure 22: ASXL2 interacts with BAP1 *in vivo* and is required for efficient deubiquitination of uH2A.

(A) Co-IP analysis of interaction between ASXL2 and BAP1. Wild-type and  $Asxl2^{-/-}$  heart extracts were IPed using anti-ASXL2 antibody. Mock IP was performed with pre-immune rabbit serum (IgG). IPed samples were analyzed by Western blot using anti-BAP1 (Millipore; 1:1500; ~100KDa). (B) Western blot analysis of protein levels of uH2A and uH2B in wild-type and  $Asxl2^{-/-}$  hearts. Western blot of H3 was used as a loading control. Three pairs of hearts were analyzed and a representative result was shown for each protein.

#### 4.4.11 The loss of Asxl2 is not compensated by Asxl1 or Asxl3

The *Asxl* family has three genes. To determine whether there is functional redundancy in the *Asxl2<sup>-/-</sup>* adult heart, we examined the mRNA levels of *Asxl1*, *2*, and *3* in 1 month-old wild-type and mutant hearts. *Asxl2* is the only *Asxl* gene that highly expressed in adult hearts. Also, the expression levels of *Asxl1* and *Asxl3* are not up-regulated in loss of *Asxl2*, suggesting *Asxl1* and *3* do not compensate upon loss of *Asxl2* in adult heart (Fig. 23).

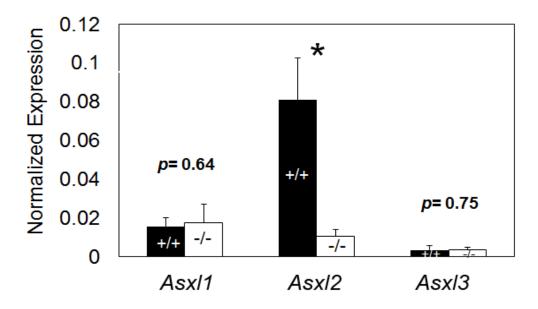



Figure 23: Expression of *Asxl* genes in the adult mouse heart.

The mRNA levels of *Asxl1*, *Asxl2*, and *Asxl3* in wild-type and *Asxl2<sup>-/-</sup>* hearts were analyzed by quantitative RT-PCR. Each column shown is the mean value of data generated from three independent samples. \*p < 0.05; Error bar: standard deviation.

#### 4.5 Discussion

#### 4.5.1 ASXL2 regulates PRC2-chromatin association

We have previously observed that the level of bulk H3K27me3 was reduced in *Asxl2<sup>-/-</sup>* hearts, suggesting an important role for ASXL2 in the homeostasis of the H3K27me3 mark (Baskind et al., 2009). H3K27 methylation is catalyzed by the PRC2 complex. PRC2 alone is sufficient for the mono- and di- methylation of H3K27 both *in vitro* and *in vivo* (Nekrasov et al., 2007), and it has been proposed that H3K27 di-methylation may be accomplished prior to histone deposition (Sarma et al., 2008). On the other hand, efficient conversion of H3K27me2 to H3K27me3 is thought to require stable association of PRC2 with target chromatin (Nekrasov et al., 2007; Sarma et al., 2008).

Here we show that ASXL2 co-IPs with PRC2 and co-localizes with PRC2 at selected target loci. The loss of *Asxl2* results in loss of H3K27me3 enrichment at target promoters and gene de-repression. Further investigation showed that *Asxl2* deficiency did not reduce the expression of PRC2 components or prevent the formation of PRC2 complex, but specifically affected the association of PRC2 complex to target chromatin. Consistent with a requirement for *Asxl2* in PRC2 binding to chromatin,  $Asxl2^{-/-}$  hearts exhibit a significant increase in the level of bulk H3K27me2. Taken together, these results strongly suggest that ASXL2 is a regulator of PRC2-chromatin association and specifically promotes the addition of the third methyl group to H3K27.

A recent paper has shown that ASXL1 is required for PRC2 binding at target loci in human hematopoietic cells (Abdel-Wahab et al., 2012), suggesting that it is a conserved function of ASXL proteins. Like ASXL2 in the heart, ASXL1 is required in hematopoietic cells for maintaining the normal level of bulk H3K27me3. It will be interesting to determine whether there is an increase in H3K27me2 in *ASXL1* deficient blood cells. While the functional mechanism of ASXL1 and 2 may be similar, the two proteins are expressed in different tissues and have different target genes. *Asxl2* is the only *Asxl* gene that is highly expressed in the heart, and *Asxl2*<sup>-/-</sup> hearts did not exhibit up-regulation of either *Asxl1* or *Asxl3* (Fig. 22). ASXL1 is required for the enrichment of PRC2 and H3K27me3 at the *HOXA* gene cluster in the hematopoietic lineage (Abdel-Wahab et al., 2012). In the absence of *ASXL1*, *HOXA* genes are de-repressed. In contrast, ASXL2 appears dispensable for *Hox* gene repression in the heart (Appendix Table I); the loss of *Asxl2* did not disrupt PRC2 and H3K27me3 enrichment at the *Hoxb5* locus (Fig. 16, Fig. 17E). What could account for this difference? We propose that ASXL proteins are general facilitators of PRC2 recruitment and through their interaction with additional partners, such as transcription factors, target specificity in a given tissue can be achieved.

#### 4.5.2 ASXL2 and PHF1 use different mechanisms to promote H3K27 trimethylation

The function of ASXL2 in promoting H3K27 trimethylation is reminiscent of PHF1 (also known as PCL1), which interacts with EZH2 (Cao et al., 2008; O'Connell et al., 2001; Sarma et al., 2008) and is essential for converting H3K27me2 to H3K27me3 at target loci (Nekrasov et al., 2007; Sarma et al., 2008). However, there are three important distinctions. First, PHF1 can be an integral component of PRC2 and co-purifies with the core components (Cao et al., 2008; Nekrasov et al., 2007; Sarma et al., 2007; Sarma et al., 2008). Although ASXL2 co-IPs with PRC2 from heart extract, neither Asx nor any ASXL proteins have been found to be part of PRC2. The interaction between ASXL2 and PRC2 may be indirect.

Secondly, PHF1 deficiency does not affect the level of bulk H3K27me2 or H3K27me3

(Nekrasov et al., 2007). Thus, ASXL2 appears to play a broader role than PHF1 in the regulation of PRC2. One possible scenario is that different genes require different proteins for the promotion of H3K27 trimethylation. The effect of *Asxl2* deficiency on bulk H3K27me2/3 levels suggests that in the adult heart, most PRC2 targets require ASXL2. In contrast, PHF1 may be required for the regulation of just a small number of targets.

Finally, although a GAL4-PHF1 fusion protein is able to recruit PRC2 to transgenic UAS sites, EZH2 enrichment at target chromatin is independent of PHF1 (Sarma et al., 2008). In comparison, ASXL2 is more critically required for PRC2-chromatin association at its target loci. This suggests that the two proteins use different mechanisms for promoting H3K27 trimethylation. For example, for PRC2 to efficiently convert H3K27me2 to H3K27me3 on chromatin substrate, there might be two prerequisites: stable chromatin association, followed by stimulation of enzymatic activity by a co-factor that can be independently recruited to target chromatin. We propose that ASXL2 regulates the first step, while PHF1 acts as a PRC2 co-factor.

### 4.5.3 <u>A potential link between histone H2A deubiquitination and H3K27</u> trimethylation?

Asx and ASXL proteins are core components of the PR-DUB complex, which specifically removes ubiquitin from histone H2A that is mono-ubiquitinated at lysine 119 (Scheuermann et al., 2010). The discovery that ASXL is required for PRC2 binding at target genes raises the question of whether PR-DUB deubiquitinase activity is involved in the regulation of PRC2 binding. In the mouse heart, ASXL2 is required for the homeostasis of both H3K27me3 and uH2A: the loss of *Asxl2* resulted in a decrease in the level of bulk H3K27me3 (Baskind et al., 2009) as well as an increase in the level of bulk uH2A (Fig. 21B). It remains to be answered whether there is any causative link between the changes in these two histone marks. On the other hand, in the hematopoietic cell lines studied by Abdel-Wahab *et al.*, the loss of *ASXL1* disrupted PRC2 and H3K27me3 enrichment at the *HOXA* gene cluster without disrupting the level of uH2A (Abdel-Wahab et al., 2012).

Furthermore, knocking down *Bap1* in the hematopoietic cell lines inactivated PR-DUB but did not reproduce the de-repression of *HOXA* genes as observed in *ASXL1*deficient cells (Abdel-Wahab et al., 2012). This seems to suggest that PR-DUB and PRC2 act independently of each other at the *HOXA* cluster, and that the loss of PRC2 recruitment in *ASXL1*- deficient cells did not result from inactivation of PR-DUB. A comprehensive study of more gene loci is needed to answer whether there is a functional relationship between histone H2A deubiquitination and cells.

#### 4.5.4 Potential PR-DUB-independent mechanisms to regulate PRC2 binding

ASXL1 and 2 are large proteins that interact with multiple proteins other than BAP1 (Cho et al., 2006; Lee et al., 2010; Yu et al., 2010). Interaction with histone and DNA has also been proposed (Aravind and Iyer, 2012). These interactions could translate into PR-DUB-independent regulation of PRC2 binding. In mammalian cells, ASXL1 and ASXL2 co-purify with the YY1 protein in a >1 MD, multi-subunit complex (Yu et al., 2010). The Drosophila homolog of YY1, Pleiohomeotic (Pho), is a sequence- specific DNA-binding protein that mediates the recruitment of other PcG proteins, including PRC2, to a subset of target chromatin sites (Brown et al., 2003; Brown et al., 1998; Mohd-Sarip et al., 2002). When expressed in Drosophila, YY1 can rescue the homeotic phenotypes in homozygous *Pho* mutants, suggesting a high degree of functional conservation (Atchison et al., 2003; Kim et al., 2006). In mouse embryos, YY1 was found to co-localize with other PcG proteins and with

H3K27me3 to upstream regulatory regions of *Hoxc8* and *Hoxa5* (Kim et al., 2006). Through its interaction with YY1, ASXL2 could potentially regulate YY1's ability to bind regulatory elements or other PcG proteins, thereby regulating PRC2 binding.

Asx and all ASXL proteins contain a highly conserved plant homeo domain (PHD) at the C- terminus (Atchison et al., 2003). The PHD finger is not involved in interaction with Calypso/Bap1 (Scheuermann et al., 2010), yet is required for repression of *Ubx* in the wing primordial (Bienz, 2006; Fisher et al., 2006). PHD fingers are found in many chromatin proteins and can mediate interactions with histones or non-histone protein partners [reviewed in (Bienz, 2006). For example, the PHD finger of Pcl is involved in binding to E(z) (O'Connell et al., 2001), and that of BPTF binds H3K4me3 (Li et al., 2006; Wysocka et al., 2006). If the PHD finger of ASXL2 interacts with PRC2 component(s) and/or with the nucleosome, it could directly contribute to PRC2 binding and/or to stabilizing PRC2 association with target chromatin.

A recent computational modeling study of ASXL proteins identified an N-terminal winged helix- turn-helix (wHTH) domain that is predicted to bind DNA (Aravind and Iyer, 2012). This domain is also found in a number of other eukaryotic and prokaryotic proteins that are known to bind DNA, including certain restriction endonucleases, DNA glycosylases, and the RNA polymerase delta subunit of Gram-positive bacteria. A wHTH-DNA interaction may increase the affinity of ASXL2/PRC2 to chromatin.

#### 4.5.5 <u>Functional divergence between Asx and ASXL</u>

The level of bulk H3K27me3 was dependent on ASXL1/2 in mammalian cells but was unaffected in Drosophila embryos carrying a homozygous null mutation of *Asx* (Scheuermann et al., 2010). Moreover, RNAi knock-down of *Trx* severely disrupted binding

of Asx, but not of PRC2, to polytene chromosomes (Petruk et al., 2008), suggesting that PRC2 does not require Asx for chromatin association. What could account for this apparent discrepancy between the functional requirements for Drosophila Asx and for mouse ASXL1/2?

While the mechanism that regulates PRC2 binding is far from well understood, differences between mammals and Drosophila have been observed (Schuettengruber and Cavalli, 2009). ASXL proteins may have evolved new functions, not possessed by Asx, to meet the specific needs of PRC2 regulation in mammals. Two lines of evidence are consistent with the scenario of functional divergence. First, although Asx family proteins range in size from 1370 to 2204-aa, homology between Asx and ASXL is largely restricted to the 32-aa PHD domain and the 120-aa ASXH domain (Fisher et al., 2006). Secondly, while PRC2 and ASXL1/2 co-IP in human cells (Abdel-Wahab et al., 2012) and mouse tissue (this study), Asx did not co-purify with Drosophila PRC2 in cultured cells (Scheuermann et al., 2010).

Alternatively, the role of Asx/ASXL in PRC2 binding to chromatin may be dependent on the chromatin loci and/or on the cell type. For example, we showed that not all PcG protein targets require *Asxl2* for H3K27 trimethylation in the heart (Fig. 16, Fig 17E). The ratio of Asx/ASXL- dependent targets versus independent targets in a given tissue at a given developmental time may determine whether there is a detectable change in the level of bulk H3K27me3 in the mutant.

#### **V. GENERAL DISCUSSION**

#### 5.1 <u>ETP proteins modulate gene expression via interaction with different partners</u>

ETP proteins genetically regulate both PcG and TrxG protein activities, and mutations in *ETP* genes result in both anterior and posterior transformation phenotypes. The functional mechanisms of a number of ETP proteins have been studied (Table II). Many ETP proteins are known to interact with PcG and/or TrxG proteins. Additionally, some ETP proteins have been shown to partially co-localize with PcG/TrxG proteins at multiple chromatin sites. For example, Asx binds ~ 90 loci on polytene chromosome, but only shares 63 binding sites with PRC1 subunits Pc and Ph (Milne et al., 1999). ETP proteins also interact with various non-PcG/TrxG partners, and some of these interactions have been shown to be functionally important.

| ETP protein | Species    | Molecular mechanism                                                                                                                                                           |
|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asx         | Drosophila | <ul> <li>Forms the PR-DUB complex with Calypso; stabilizing</li> <li>Calypso protein and promoting its deubiquitinase</li> <li>activity (Abdel-Wahab et al., 2012)</li> </ul> |
| ASXL1       | Human      | - Acts as co-activator of RAR and RXR through<br>association with SRC-1, a c-Src tyrosine kinase (Cho<br>et al., 2006)                                                        |
|             |            | - Acts as co-repressor through recruitment of LSD1 and<br>HP-1 to target genes in a cell-type specific manner<br>(Lee et al., 2010)                                           |
|             |            | - Component of the PR-DUB complex (Scheuermann et al., 2010)                                                                                                                  |
|             |            | - Required for EZH2 enrichment at the promoters of <i>HOX A</i> gene cluster (Abdel-Wahab et al., 2012)                                                                       |
| ASXL2       | Human      | - Acts as co-activator for PPARγ together with the TrxG protein MLL1 (Park et al., 2011)                                                                                      |
| ASXL2       | Mouse      | <ul> <li>Required for PRC2 enrichment at target promoters and<br/>promoting the conversion of H3K27me2 to<br/>H3K27me3 (Lai submitted manuscript).</li> </ul>                 |

#### TABLE II: ETP GENES AND THEIR KNOWN MOLECULAR MECHANISMS

| Corto  | Drosophila    | - An activator when interacting with Dsp1 on Scr      |
|--------|---------------|-------------------------------------------------------|
|        |               | maintenance element (ME) (Salvaing et al., 2006)      |
|        |               | - A repressor when localizing alone on Scr ME         |
| Dsp1   |               | (Salvaing et al., 2006)                               |
|        | Drosophila    | - Binds to PREs and facilitates Pho binding to PREs.  |
|        | Diosopiniu    | Once bound, Pho recruits PRC2 to targets (Dejardin et |
|        |               | al., 2005)                                            |
| EPL1 S | Saccharomyces | - A component of the NuA4 histone acetyltransferase   |
|        | cerevisiae    | complex (Boudreault et al., 2003)                     |
| EPC    | Human         | - A component of the NuA4 histone acetyltransferase   |
|        |               | complex (Doyon et al., 2004)                          |
|        |               | -Interacts with RET finger protein, a transcriptional |
|        |               | repressor (Shimono et al., 2000)                      |
| Rm62   | Drosophila    | - Interacts with Dsp1 (Lamiable et al., 2010)         |
| Psc    | Drosophila    | - Recruits histone deacetylases (HDACs) to targets    |
|        |               | (Breiling et al., 2001).                              |
|        |               | - A component of PRC1 (Francis et al., 2001)          |
| Scm    | Drosophila    | - A component of PRC1 (Peterson et al., 2004)         |

My study has primarily focused on the functional mechanism of ASXL2, in particular the mechanism of its repressor function. I have shown that ASXL2 interacts with both PRC2 and BAP1. ASXL2 is required for PRC2 enrichment at target promoters. The *Asxl2*<sup>-/-</sup> heart is defective in conversion of H3K27me2 to H3K27me3 and in deubiquitination of uH2A. Studies by others have shown that ASXL2 can also interact with the TrxG protein MLL1 and function as an activator (Park et al., 2011).

ASXL2's protein interactions also include O-linked N acetylglucosamine transferase (OGT), HCF-1, and LSD1. LSD1 is a H3K4 demethylase and required for *Hox* gene expression in Drosophila (Di Stefano et al., 2007). OGT modification of transcription factors is an important mechanism that modulates transcription activity (Ozcan et al., 2010). HCF-1 is a transcription factor and is involved in control of the cell cycle (Li et al., 2008).

While ASXL2 interacts with BAP1 and is required for BAP1 activity in the adult heart, it is unclear what the functional importance of this interaction is. Since *Bap1* mutant mice do not survive embryogenesis, a conditional knockout *Bap1* in adult heart is required for further investigation of their roles in heart. The interaction of Drosophila Asx and Calypso (Drosophila homolog of *Bap1*) has repressive role in the regulation of *Ubx*. I hypothesize that the ASXL2-BAP1 interaction in the heart is functionally important for the repression of at least a subset of, if not all, ASXL2 target genes. To test this hypothesis, we first need to identify genes that are directly regulated by both ASXL2 and BAP1. Such genes should meet two criteria:1) their expression should be mis-regulated in *Bap1*<sup>-/-</sup> and *Asx12*<sup>-/-</sup> hearts, and 2) BAP1 and ASXL2 should co-localize at their promoter regions. *Asx12*<sup>-/-</sup> hearts exhibit an increased level of bulk uH2A, suggesting ASXL2 is required for BAP1 activity. Once we have identified common target genes of ASXL2 and BAP1, we will test whether the loss of ASXL2/BAP1 has the same effect

on uH2A distribution/levels at the target genes by ChIP assay. If there is a positive correlation between distribution/levels of uH2A with gene expression states, it will support our hypothesis that ASXL2 regulates gene expression by associating with BAP1. On the other hand, it is also possible that (1) there will be no common targets identified or (2) they have common target genes but there will be no or different effects on uH2A distribution/levels upon loss of *Asxl2/Bap1*. These alternative scenarios would suggest that ASXL2 regulates cardiac gene expression independently of BAP1 activity.

#### 5.2 <u>Sequence and functional divergence within ASXL members</u>

Although ASXL1, 2, and 3 share a few conserved domains and some conserved protein interactions, their sequence similarity is only 14.38 % (Fisher et al., 2010a). Some protein interactions appear to be specific to certain member(s) of the family. For example, an HP1 binding motif resides in ASXL1 and ASXL3, but is absent from the corresponding region in ASXL2 (Lee et al., 2010). Consistently, HP1 only interacts with ASXL1 but not with ASXL2 (Lee et al., 2010). Overexpression of *Asxl1* inhibits peroxisome proliferator-activated receptor's (PPAR $\gamma$ ) target gene expression by associating with HP1 (Abdel-Wahab et al., 2012). In contrast, overexpression of *Asxl2* activates PPAR $\gamma$  target gene expression by associating with TrxG protein MLL (Abdel-Wahab et al., 2012). Deletion of the HP1 binding site from ASXL1 results in a mutant protein that enchances PPAR $\gamma$  target gene expression, suggesting the HP1 binding site is required for the repressive role of ASXL1 in PPAR $\gamma$  targets (Park et al., 2011). Thus, ASXL1 and ASXL2, two members of the same family, have opposite roles in the transcription of PPAR $\gamma$  target genes due to the divergence in their protein sequences. Why is there sequence and functional divergence between different ASXL proteins? I propose that divergence at the protein sequences in the ASXL family is important for ASXL proteins to interact with different protein partners that are expressed in different tissues. This would facilitate differential regulation of distinct sets of target genes; as well allow regulation by different pathways that are present in different tissues.

First, ASXL proteins are expressed in different tissues. Each gene may have evolved differently to meet the transcriptional needs in the tissues that express it. Northern blot analysis suggested that Asxl1 is highly expressed in brain, kidney, and lung and expressed very low in heart and skeletal muscle (Fisher et al., 2006). The expression of the Asxl2 gene trap was detected in the heart, the retina, the ovary and the testis, but not in the liver, the brain, the spleen, the pancreas, or the lung by X-gal staining (Baskind et al., 2009). We have specifically confirmed that Asxl2 is highly expressed in mouse embryonic and adult hearts by qRT-PCR assay (A. McGinley unpublished data; Lai submitted). The mRNA levels of Asxl1 and Asxl3 are barely detected in the heart, and Asxl1 and Asxl3 are not up-regulated in Asxl2<sup>-/-</sup> hearts. Second, in different tissues, there are different target genes that need to be expressed or repressed, and there are different transcription factors to activate or repress them. For example, repression of *Ubx* in the wing blade is important for wing development in Drosophila, and de-repression of Ubx in Drosophila wing results in the wing defects. In contrast, de-repression of Ubx in the central nerve system (CNS) has no significant effect (Bischoff et al., 2009; Milne et al., 1999). Accumulated evidence suggests that ASXLs regulate transcriptional repression and activation of homeotic and non-homeotic genes in a cell context-dependent manner (Abdel-Wahab et al., 2012; Cho et al., 2006; Fisher et al., 2010b; Lai et al., 2012; Lamiable et al., 2010; Milne et al., 1999).

In summary, the ability of ASXL family to interact with diverse partners is consistent with the roles of other ETP proteins in transcriptional regulation. These partners allow flexibility in adapting regulation needs to target-, cell-, and situation- specific contexts.

#### 5.3 Whether ASXL2 has a role in cellular memory?

Transcription factors are responsible for the establishment of cell identities during development. "Cellular memory" mechanisms enable cells to remember their fate long after the initiating factors are gone (Hemberger et al., 2009). PcG proteins are known to maintain the repressed state of developmental genes in succeeding cell cycles (Dejardin and Cavalli, 2005; Ringrose and Paro, 2004; Struhl and Akam, 1985). For example, Hox genes are essential developmental genes that control the body plan of the embryo along the anterior-posterior axis (Hughes and Kaufman, 2002). Mutations in Hox genes lead to transformation of body segments from one into the identity of another. PcG proteins are required to maintain Hox gene repression outside of their expression domains throughout developmental stages (Lewis, 1982). Mutations in PcG genes result in homeotic transformation phenotypes (Lewis, 1978). PcG proteins also have been implicated in responsible for mediating the silencing of one of the X chromosomes (Plath et al., 2003). X-inactivation is a classic epigenetic phenomenon by which one of the X chromosomes present in female is inactivated, resulting in only a copy of the X chromosome gene product is generated in female (Penny et al., 1996). PRC2 subunits, EED and EZH2 were found to be required for long-term X inactivation by establishment of the H3K27me3 marks on one of the X chromosomes. Thus, PcG proteins might be the molecular basis of the cellular memory.

PcG proteins must be able to perform three functions to have a role in maintaining cellular memory (1) PcG proteins need to find the target gene; (2) PcG proteins must deposit the histone mark that can implement the repressive state. (3) PcG proteins will assure the histone marks are renewed correctly in every cell cycle.

Deposition of H3K27 methylation marks to target chromatin is tightly associated with PcG- mediated gene repression. Several mechanisms have been proposed to explain how PcG proteins guarantee the histone marks regenerated correctly at each cell division. Old histones are disrupted but the core H3/H4 tetramer is randomly redistributed to the two daughter DNA molecules during DNA replication. New histones must be deposited to newly replicated DNA to fill the gaps. Also, the histone marks that are on the old chromatin would be diluted to two-fold. PRC2 complex can associate with the replication fork and recognize the H3K27me3 mark through PRC2 subunit EED. This allows its own self- renewal by recruiting more PRC2 complexes to newly replicated DNA (Han et al., 2007). Loss of ESC, Drosophila EED homolog, results in de-repression of Hox genes, and dramatic depletion of both H3K27me3 and H3K27me2 at target chromatin. Furthermore, it is essential to restore full H3K27me3 to maintain the PRC2 activity. Recombinant PRC2 complex generate mono, di, and tri methylation of H3K27. However, the presence of H3K27me3 peptides in the reaction can greatly stimulate the catalytic activity.

How does PcG protein recognize target chromatin? Several molecules have been implicated in PcG targeting to target chromatin (See 1.5.2). Here, we have shown that ETP protein ASXL2 interacts with PRC2 in adult heart. ASXL2 is also required for PRC2 binding and the enrichment of H3K27me3 at target chromatin. Loss of Asxl2 results in a significant decrease in the bulk level of H3K27me3 and a concomitant increase in H3K27me2y, suggesting that ASXL2 is specifically required for the addition of the third methyl group to H3K27. It has been proposed that H3K27 di-methylation may be accomplished prior to histone deposition. Also, the efficient conversion of H3K27me2 to H3K27me3 is thought to be required for stable association of PRC2 with target chromatin. Thus, we hypothesize that ASXL2 is required for PRC2 complexes stabilization at target chromatin. PRC2 will then further be stimulated to catalyze H3K27me3 formation to maintain repressive state of target genes. In order to test the hypothesis, we have to first determine whether loss of ASXL2 would affect the H3K27me2 level at target chromatin. If we see the increase level of H3K27me2 at target chromatin upon loss of ASXL2, it would strengthen our hypothesis that ASXL2 is required for PRC2 stability at target chromatin. A tetracycline-inducible Gal4-tagged EZH2 in the 293 Trex TK Luc cell line gave rise to H3K27me2 but not H3K27me3 at the TK promoter (Sarma et al., 2008). We can test whether overexpressed GAL-ASXL2 fusion protein in above system can stabilize EZH2 at TK promoter, which should result in generation of full strength of H3K27methylaton. On the other hand, if H3K27me2 level is decreased at target chromatin, ASXL2 may play a role in PRC2 recruitment to target chromatin.

The hallmark of PcG activity is to establish and maintain long-term developmental decisions. Histone modifications, PcG proteins and their interacting proteins seem to play an essential role in this process.

## **VI. APPENDICES**

## APPENDIX A: PRIMERS USED IN CHIP ASSAY

| ChIP primers    | Sequence (5'-3')     | Tm |
|-----------------|----------------------|----|
| Grk5-1-F (G1F)  | AGACAGTTGCAGGGACGAGT | 60 |
| Grk5-1-R (G1R)  | ATTGGCACGTTTTCTTGCTT | 60 |
| Grk5-2-F (G2F)  | AACACGGTCTTGCTGAAAGC | 60 |
| Grk5-2-R (G2R)  | CACTCGCACCAACTCACTGT | 60 |
| Grk5-3-F (G3F)  | GAGGAGAATGGAGTGACAGA | 60 |
| Grk5-3-R (G3R)  | CTTCTTCCTCCCTCTGTGT  | 60 |
| Grk5-4-F (G4F)  | GCTTCCATTGCCCTACTTCA | 58 |
| Grk5-4-R (G4R)  | TCAGACAGCACTTTCCATGC | 58 |
| Grk5-5-F (G5F)  | TGCTATGCCATTGTCCTTCA | 58 |
| Grk5-5-R (G5R)  | CAAGGGACCTGCATCATCTT | 58 |
| Grk5-6-F (G6F)  | CCTGGCCTATGCCTATGAAA | 58 |
| Grk5-6-R (G6R)  | TAAGGCTCGCTCTTCCTCAA | 58 |
| Acta1-1-F (A1F) | CCCTTGCACAGGTTTTTA   | 60 |
| Actal-1-R (A1R) | AAATATGGCTTGGAAGG    | 60 |
| Acta1-2-F (A2F) | CCACGCTCAGTGAGGATTTT | 60 |
| Acta1-2-R (A2R) | TGCCCATCTATGAGGGCTAT | 60 |
| Sfrp2-1-F (S1F) | CAGCCCGACTTCTCCTACAA | 60 |
| Sfrp2-1-R (S1R) | AGCCGCATGTTCTGGTACTC | 60 |

## TABLE III: PRIMERS USED IN CHIP ASSAY

| ChIP primers      | Sequence (5'-3')     | Tm |
|-------------------|----------------------|----|
| Sfrp2-2-F (S2F)   | CCAGCCCCAGAAAGTAGT   | 60 |
| sfrp2-2-R (S2R)   | AATCTGGAGGTGGAGGAG   | 60 |
| Sfrp2-4-F (S4F)   | ACGACAACGACATCATGGAA | 58 |
| Sfrp2-4-R (S4R)   | GACTTTAGGGACCGGGAGAG | 58 |
| Sfrp2-5-F (S5F)   | TCCAATAGGGGAGTCGTTTG | 58 |
| Sfrp2-5-R (S5R)   | TTCCAACCAGCTATCGTTCC | 58 |
| Sfrp2-6-F (S6F)   | GAGAGTTCAAGCGCATCTCC | 58 |
| Sfrp2-6-R (S6R)   | GGAGCGGAAGTGGTCTACAG | 58 |
| β-MHC-F1 (B1F)    | GGAACCAGCGGAGTACAAAA | 58 |
| β-MHC-R1 (B1R)    | TGTATCCCCTGACCTTGGAG | 58 |
| β-MHC-F2 (B2F)    | CTGCCCCTTTGTCTTGTCTC | 58 |
| β-MHC-R2 (B2R)    | CCCAGGCTTCAGAGTACAGC | 58 |
| β-MHC-F3 (B3F)    | TGCAACTGCATTCTGAGGAC | 58 |
| β-MHC-R3 (B3R)    | ACCAAAGCAGGGGTAAGGAT | 58 |
| β-MHC-F4 (B4F)    | CAACTTCCTATCTGCTGAGG | 58 |
| β-MHC-R4 (B4R)    | GATCCATTTAAGTGCTTTGC | 58 |
| β-MHC-F5 (B5F)    | GGGGAGGATACTGGAAATAG | 58 |
| β-MHC-R5 (B5R)    | GAGAGTAAGCTGACCACGAC | 58 |
| S100a10-1-F (a1F) | GGGGTTTCTGAGGGTAAAGG | 60 |
| S100a10-1-R (a1R) | AGAGCACATACGTGGCACTG | 60 |
| S100a10-2-F (a2F) | GCCTAGCTGGTTGCTGATTC | 60 |
|                   |                      |    |

| ChIP primers      | Sequence (5'-3')         | Tm |
|-------------------|--------------------------|----|
| S100a10-2-R (a2R) | GGCAGCTCAGACAAGAAAC      | 60 |
| S100a10-3-F (a3F) | AGCTCCTGAAGCTGACAAGC     | 60 |
| S100a10-3-R (a3R) | TGTTGAGTGCAGAACCAAGG     | 60 |
| S100a10-4-F (a4F) | CCTGAGATTTCCTCCACAGC     | 60 |
| S100a10-4-R (a4R) | AATTCTCTATGCGCCACCAC     | 60 |
| S100a10-5-F (a5F) | TGATGTTGTTGGTTGGGTTG     | 60 |
| S100a10-5-R (a5R) | AAAGGAAGCTCCAGATGCAA     | 60 |
| S100a10-6-F (a6F) | CACCCCATCTGGAGTGAAGT     | 60 |
| S100a10-6-R (a6R) | GTCCTAACCAATCCCCCATT     | 60 |
| Hoxb5-1-F (H1F)   | TGAGGAAGCTTCACATCAGCCACG | 58 |
| Hoxb5-1-R (H1R)   | CCAAGCTTTGCTCGCCCCAC     | 58 |
| Hoxb5-2-F (H2F)   | TGCCAGGCCTGTCTCAGTGATT   | 58 |
| Hoxb5-2-R (H2R)   | ACAAGTAGAGGGCACTGGAGTGG  | 58 |
|                   |                          |    |

#### **RT-PCR** primers Sequence (5'-3')Tm Acta1-F ACCGCTCTTGTGTGTGACAA 60 Acta1-R GGAGTCCTTCTGACCCATACC 60 β-Actin-F TCACCCACACTGTGCCCATCTACGA 60 TGGTGAAGCTGTAGCCACGCT β-Actin-R 60 ANP-F AGGAGAAGATGCCGGTAGAAGA 60 ANP-R GCTTCCTCAGTCTGCTCACTCA 60 Asxl1-F TAAAGAGGAGCCCAAAGTCCCG 58 Asxl1-R GGCAGGAGGACTCCGTGATG 58 Asxl2-F CTCCTGAAATGCAGGTGAGA 58 TTGCTTTGGGATCACTTGAG Asxl2-R 58 Asxl3-F CTTCAAAATCCCTGGAAAGTCG 58 Asxl3-R ATCTCAGCGCCATCCAGGTC 58 Ezh2-F ATCTGAGAAGGGACCGGTTT 60 Ezh2-R TGTGCACAGGCTGTATCCTC 60 Grk5-F GGAAGGGGGGGGGGAGGAAAG 60 Grk5-R AGAACTGTCGAAAAAGCAGTCTC 60 αMHC-F GTCACCAACAACCCATACGACTAC 60 aMHC -R CAGCACATCAAAGGCACTATCAGT 60 TCTCCTGCTGTTTCCTTACTTGCT βMHC-F 60 CAGGCCTGTAGGAGAGCTGTACTC βMHC -R 60 Sfrp2-F CGTGGGCTCTTCCTCTTCG 60 ATGTTCTGGTACTCGATGCCG Sfrp2-R 60

## APPENDIX B: PRIMERS USED IN QUANTITATIVE RT-PCR ASSAY TABLE IV: PRIMERS USED IN QUANTITATIV RT-PCR ASSAY

| <b>RT-PCR</b> primers | Sequence (5'-3')      | Tm |
|-----------------------|-----------------------|----|
| rBap1-1F              | AGCCAGCATGGATATGAAGG  | 58 |
| rBap1-R               | TCTCAAGGAGGTGGAGA     | 58 |
| rAsxl1-F              | TTCCAGCAGCAACTCCTCTT  | 58 |
| rAsxl1-R              | GCGTGGGTGAAAAACTCATT  | 58 |
| rAsxl2-F              | GGAGAAAAGACCACGGATCA  | 58 |
| rAsxl2-R              | ATCGGGGAGATTCTGGAGAC  | 58 |
| rAsxl3-F              | GGGTTCCCCCTCTCAAGATA  | 58 |
| Aurkb-F               | AGGTCTGCAGGGAGAACTGA  | 58 |
| Aurkb-R               | TCATCTCTGGGGGGCAGATAG | 58 |
| Ccnb1-F               | GCGTGTGCCTGTGACAGTTA  | 58 |
| Ccnb1-R               | CCTAGCGTTTTTGCTTCCCTT | 58 |
| Ccnd1-F               | CCCAACAACTTCCTCTCCTG  | 58 |
| Ccnd1-R               | TCCAGAAGGGCTTCAATCTG  | 58 |
| Cdk1-F                | TGCCAGAGCGTTTGGAATAC  | 58 |
| Cdk1-R                | GATGTCAACCGGAGTGGAGT  | 58 |
| Cdk4-F                | CTGGTACCGAGCTCCTGAAG  | 58 |
| Cdk4-R                | GTCGGCTTCAGAGTTTCCAC  | 58 |
| Rb1-F-1               | TTCACCCTTACGGATTCCTG  | 58 |
| Rb1-R-1               | TGTCCCAAATGATTCACCAA  | 58 |
| P130-F                | TGAGAGCAGAAGCCATCAGA  | 58 |
| P130-R                | CCGTGAGTCGAGTTGGTGTA  | 58 |

## APPENDIX C: ANTIBODIES USED IN CHIP ASSAY

| ChIP Ab    | Catalog<br>number | Carrier                       | Concentration<br>of the stock<br>antibody | Amount<br>used (µ1)<br>per 300µ1<br>chromatin |
|------------|-------------------|-------------------------------|-------------------------------------------|-----------------------------------------------|
| ASXL2      |                   | Biomatik                      | 5 mg/ml                                   | 8                                             |
| (KC17)     |                   |                               |                                           |                                               |
| AcH3       | 39139             | Active motif                  | n/d                                       | 7                                             |
| EZH2       | 612667            | BD Transduction<br>laboratory | n/d                                       | 8                                             |
| H3K27me3   | C36B11            | Cell signaling                | n/d                                       | 6                                             |
| SUZ12      | 39357             | Active motif                  | n/d                                       | 8                                             |
| Rabbit IgG | FL1021            | Invitrogen                    | 2.5 mg/ml                                 | 1.6 (4µg)                                     |
| Mouse IgG  | 02-6502           | Invitrogen                    | 2.5 mg/ml                                 | 1.6 (4µg)                                     |

## TABLE V: ANTIBODIES USED IN CHIP ASSAY

n/d: not determined

## APPENDIX D: ANTIBODIES USED IN WESTERN BLOTTING

| WB Ab | Dilution | Size  | 2°Ab di          | lution            | Carrier<br>(Catalog number) |
|-------|----------|-------|------------------|-------------------|-----------------------------|
|       |          | (KDa) | (α-mouse<br>HRP) | (α-rabbit<br>HRP) |                             |
| AcH3  | 1:2000   | ~15   |                  | 1:10,000          | Active motif                |
|       |          |       |                  |                   | (39139)                     |
| ASXL2 | 1:500    | ~170  |                  | 1:10,000          | Biomatik                    |
| ACTIN | 1:3000   | ~40   |                  |                   | Solaro Lab                  |
| BAP1  | 1:1500   | ~100  | 1:10,000         |                   | Millipore                   |
|       |          |       |                  |                   | (05-671)                    |
| EZH1  | 1:2000   | ~100  |                  | 1:10,000          | Abcam                       |
|       |          |       |                  |                   | (ab64850)                   |
| EZH2  | 1:2000   | ~90   | 1:10.000         |                   | Millipore                   |
|       |          |       |                  |                   | (17-662)                    |
| EED   | 1:3000   | 36-76 |                  | 1:10,000          | Millipore                   |
|       |          |       |                  |                   | (09-774)                    |
| GAPDH | 1:2000   | ~35   | 1:10,000         |                   | Millipore                   |
|       |          |       |                  |                   | (MAB374)                    |
| H3    | 1:5000   | ~15   |                  | 1:50,000          | Active motif                |
|       |          |       |                  |                   | (39163)                     |

## TABLE VI: ANTIBODIES USED IN WESTERN BLOTTING

|        | Size                                                               | 2 AU                                                                                                                                                                                                                          | dilution                                                                                                                         | Carrier                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (KDa)                                                              | (α-mouse                                                                                                                                                                                                                      | (a-rabbit                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                    | HRP)                                                                                                                                                                                                                          | HRP)                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1:2000 | ~25                                                                | 1:1                                                                                                                                                                                                                           | 0,000                                                                                                                            | Millipore                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                    | (α-mouse                                                                                                                                                                                                                      | IgM HRP)                                                                                                                         | (05-678)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1:2000 | ~20                                                                | 1:20,000                                                                                                                                                                                                                      |                                                                                                                                  | Millipore                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                                                                    |                                                                                                                                                                                                                               |                                                                                                                                  | (05-1312)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1:5000 | ~20                                                                | 1:20,000                                                                                                                                                                                                                      |                                                                                                                                  | Solaro Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1:2000 | ~21                                                                | 1:10,000                                                                                                                                                                                                                      |                                                                                                                                  | Solaro Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1:3000 | ~170                                                               | 1:10,000                                                                                                                                                                                                                      |                                                                                                                                  | Sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                    |                                                                                                                                                                                                                               |                                                                                                                                  | (ab5408)                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1:2000 | ~130                                                               |                                                                                                                                                                                                                               | 1:10.000                                                                                                                         | Santa Cruz                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                    |                                                                                                                                                                                                                               |                                                                                                                                  | (C-20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1:2000 | ~130                                                               |                                                                                                                                                                                                                               | 1:10,000                                                                                                                         | Santa Cruz                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                    |                                                                                                                                                                                                                               |                                                                                                                                  | (C-15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1:1000 |                                                                    |                                                                                                                                                                                                                               | 1:10,000                                                                                                                         | Sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                    |                                                                                                                                                                                                                               |                                                                                                                                  | (F7425)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1:5000 | ~25                                                                | 1:50,000                                                                                                                                                                                                                      |                                                                                                                                  | Solaro's Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | 1:2000<br>1:5000<br>1:2000<br>1:3000<br>1:2000<br>1:2000<br>1:2000 | 1:2000       ~25         1:2000       ~20         1:5000       ~20         1:2000       ~21         1:3000       ~170         1:2000       ~130         1:2000       ~130         1:2000       ~130         1:2000       ~130 | HRP)  1:2000 ~25 1:14 (α-mouse  1:2000 ~20 1:20,000  1:2000 ~21 1:10,000  1:3000 ~170 1:10,000  1:2000 ~130  1:2000 ~130  1:1000 | HRP)       HRP)         1:2000       ~25       1:10,000         (α-mouse IgM HRP)       (α-mouse IgM HRP)         1:2000       ~20       1:20,000         1:5000       ~20       1:20,000         1:2000       ~20       1:20,000         1:2000       ~20       1:20,000         1:2000       ~21       1:10,000         1:3000       ~170       1:10,000         1:2000       ~130       1:10,000         1:2000       ~130       1:10,000         1:1000       -130       1:10,000 |

| WB Ab                  | Dilution | Size  | 2°Ab     | dilution  | Carrier      |
|------------------------|----------|-------|----------|-----------|--------------|
|                        |          | (KDa) | (a-mouse | (α-rabbit |              |
|                        |          |       | HRP)     | HRP)      |              |
| PKA-                   | 1:1000   | ~26   |          | 1:40,000  | Solaro's Lab |
| TNNI3 <sup>ser23</sup> |          |       |          |           |              |
| TBP                    | 1:3000   | ~40   | 1:10.000 |           | Sigma        |
|                        |          |       |          |           | (58C9)       |
| SUZ12                  | 1:2000   | ~85   |          | 1:10,000  | Active motif |
|                        |          |       |          |           | (39357)      |

## APPENDIX E: ANTIBODIES USED FOR IMMUNOPRECIPITATION (IP) ASSAY

| IP Ab                       | Catalog number | Carrier                                | Amount used<br>(µl) per 600µl<br>Nucleus<br>extract |
|-----------------------------|----------------|----------------------------------------|-----------------------------------------------------|
| Pre-ASXL2<br>(KC17)<br>EZH2 | Ac22           | Biomatik<br>BD Transduction laboratory | 16<br>12                                            |
| SUZ12                       | 39357          | Active motif                           | 8                                                   |
| Rabbit IgG                  | FL1021         | Invitrogen                             | 2 (5µg)                                             |
| Mouse IgG                   | 02-6502        | Invitrogen                             | 2 (5µg)                                             |

## TABLE VII: ANTIBODIES USED FOR IMMUNOPRECIPITATION (IP) ASSAY

## APPENDIX F: ANTIBODIES USED FOR IMMUNOFLUORESCENCE (IF)

| IF Ab               | Dilution | 2°Ab di                | lution                  | Carrier               |
|---------------------|----------|------------------------|-------------------------|-----------------------|
|                     |          | (α-mouse<br>Alexa 488) | (α-rabbit<br>Texas Red) |                       |
| Pre-ASXL2<br>(KC17) | 1:25     |                        | 1:2000                  | Biomatik              |
| BMI-1               | 1:50     | 1:2000                 |                         | Helin Lab             |
| EED                 | 1:50     | 1:2000                 |                         | Millipore<br>(09-774) |

## TABLE VIII: ANTIBODIES USED FOR IMMUNOFLUORESCENCE (IF)

## **APPENDIX G: PLASMIDS**

## **TABLE VIIII: PLASMIDS**

| Plasmid                  | Note                             |
|--------------------------|----------------------------------|
| pCAG-ASXL2 (1-390)       | Destination vector               |
| pCAG-Asx12(72-1370)      | Destination vector               |
| pCAG-Asxl2(1-660)        | Destination vector               |
| pCAG-Asxl2(FL)           | Destination vector               |
| pCAG-Asxl2(Δ240-350)     | Destination vector               |
| pCAG-Asxl1(Δ PHD)        | Destination vector               |
| pCAG-Asxl2(1-720)        | Destination vector               |
| pCR8-Asx12(1-720)        | Entry clone                      |
| pCR8-Asxl1(Δ PHD)        | Entry clone                      |
| pCR8-Asxl2(72-1370)      | Entry clone                      |
| pCR8-Asx12(1-660)        | Entry clone                      |
| pCR8-Asx12(1-390)        | Entry clone                      |
| pCR8-Asxl2(FL)           | Entry clone                      |
| pCR8-Asxl2(Δ240-350)     | Entry clone                      |
| pTREX-DEST30-BAP1 (C91S) | Dominant negative mutant of BAP1 |
|                          |                                  |

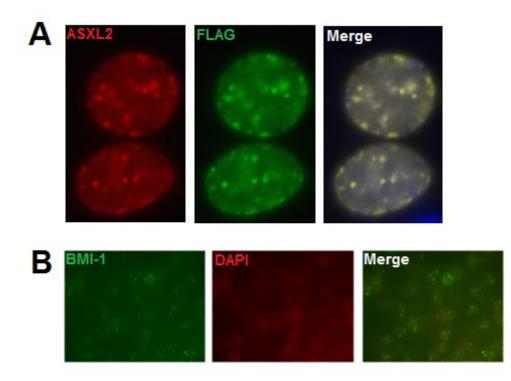
## **APPENDIX H: SHRNA PLASMIDS**

## TABLE X: SHRNA PLASMIDS

| Plasmid                                   | shRNA Sequence (5'-3')                         |
|-------------------------------------------|------------------------------------------------|
| Bap1-Rat, shRNA in retroviral GFP vector  |                                                |
| pGFP-V-RS (GI723441)                      | ACCAGTTCTGCCATCAGATACAAGCGGAA                  |
| pGFP-V-RS (GI723442)                      | AACCTGGTGGAGCAGAACATCTCAGTGCG                  |
| pGFP-V-RS (GI723443)                      | ACGGACACAGCCTCTGAGATTGGCAGTGC                  |
| pGFP-V-RS (GI723444)                      | AGTCACAACTGCCTGAGGAGAGCAAGCCA                  |
| ASXL2-Rat, shRNA in retroviral GFP vector |                                                |
| pGFP-V-RS (GI726225)                      | AACCAGTTGCCTCTGCTGAACAAGAATCT                  |
| pGFP-V-RS (GI726226)                      | ACAGGTTGGTCCAGACGGCTTGATGAAGT                  |
| pGFP-V-RS (GI726227)                      | TGCCTCCAGCACCTGTTAGCGACCACATC                  |
| pGFP-V-RS (GI726228)                      | AGCAGCCTCTCCTTGCCACTCGCAAAGAAC                 |
| TR30013                                   | Scrambled negative control non-effective shRNA |

#### **APPENDIX I: THE SUBCELLULAR LOCALIZATION OF ASXL2 IN HEK293 CELLS**

#### I.1 Purpose and objective


PcG proteins form a unique discrete nuclear structure called PcG bodies (Pirrotta and Li, 2012). Drosophila Asx co-localizes at ~ 63 loci with Ph and Pc on polytene chromosome (Milne et al., 1999). Our study also shows that ASXL2 co-localizes with PRC2 at target promoter regions in adult heart. To determine whether ASXL2 is associated with PcG proteins in nucleus, immunofluorescence assay was used to detect the subcellular localization of ASXL2 and a PRC1 protein BMI-1 in HEK293 cells.

#### I.2 <u>Materials and Methods</u>

1 μg of pCDNA3.1 FLAG-Asxl2 plasmid was overexpressed in HEK293 cells for 24 hours using 3 μl polyethylenimine (PEI) transfection reagent. The cells were fixed with methanol for 15 minutes at RT and then blocked with 5% donkey and goat serum overnight at 4°C. ASXL2 subcellular localization was determined by double staining with mouse anti-FLAG (1:500; Sigma) and anti-pre-absorbed ASXL2 (1:25; KC17) in HEK293 cells. After several wash steps with PBS buffer, the cells were double stained with anti-rabbit Texas Red (1:2000; Jackson) and anti-mouse Alexa Fluor 488 (1:2000; Jackson) for 2 hours at RT. U2OS cells were stained with anti- BMI-1 (1:25; Helin Lab) overnight at 4 °C and then stained with anti-mouse Alexa Fluor 488 (1:2000; Jackson) for signal detection. DAPI stain was used to stain the nucleus in cells. All images were collected on a Zeiss Axiovert 200M equipped with a digital camera.

#### I.3 Result and conclusion

The FLAG and ASXL2 signals were overlapped in the nucleus of HEK293 cells, suggesting the detected signals are specific to FLAG-ASXL2 (Fig. 24A). Endogenous BMI-1 staining was detected in the nuclei of U2OS cells (Fig 24B). No cell was stained in the negative control experiments (data not shown). The punctate staining pattern of ASXL2 and BMI-1 were similar in two cell lines. However, we cannot be certain whether ASXL2 co-localizes with BMI-1 in the cell. Double staining of both proteins in one cell line is necessary to confirm the co-localization of ASXL2 and BMI1. If ASXL2 co-localizes with BMI-1 in cells, this would suggest that ASXL2 may be associated with PcG bodies.



# Figure 24: Nuclear localization of FLAG-ASXL2 and BMI-1 in HEK293 and U2OS cells, respectively.

HEK293 cells were transfected with an FLAG-ASXL2 expression construct and double stained with anti-FLAG and an anti-ASXL2 (A). The localization of endogenous BMI-1 was detected by staining with anti-BMI-1 (B). DAPI stain was used to label nuclei.

## APPENDIX J: ALLTHE TESTED ASXL2 DELETION/TRUNCATION FRAGMENTS INTERACT WITH CHROMATIN

#### J.1 <u>Purpose and objective</u>


Based on our preliminary data, we know that ASXL2 (1) is a chromatin associated nuclear protein; (2) regulates PRC2 and (3) PR-DUB activities. However, the structural basis for ASXL2 function is not well understood. ASXL2 contains four conserved domains: ASXL-BOX1, ASX-H, ASXL-BOX2, and PHD domains (Fisher et al., 2006). To gain a better understanding of the function of ASXL2 domains, I tested which domain(s) of ASXL2 is/are necessary for chromatin association.

#### J.2 <u>Materials and Methods</u>

Full-length pCAG-FLAG-ASXL2 and various ASXL2 deletion/truncations (pCAG-ASXL2(1-390); pCAG-ASXL2(1-660); pCAG-ASXL2(1-720); pCAG-ASXL2(82-1370); pCAG(Δ240-350)) were transiently expressed separately in HEK293 cells. The cells transfected with empty vector were a negative control. Chromatin fractionation was performed to separate each cell lysate into whole cell lysate (WL), chromatin (P3), soluble nuclear (SN) and cytosolic fractions (C). FLAG-ASXL2 fragments were detected by Western blot analysis using anti-rabbit FLAG (1:2000; Sigma).

#### J.3 Result and conclusion

Western blot analysis shows that full-length ASXL2 and all five ASXL2 deletion/truncation forms were present in the whole cell lysate, and chromatin fractions, suggesting they are associated with chromatin (Fig 24). Negative control lysates did not have detectable proteins, suggesting the protein band in the experimental group is specific. More deletion/truncation constructs will need to be generated in the future to determine which domain is necessary for chromatin association of ASXL2.



# Figure 25: Full-length ASXL2 and various ASXL2 deletion/truncation constructs are predominantly associated with chromatin.

HEK293 cell proteins were separated into four fractions: chromatin (Chr); soluble nuclear proteins (SN), cytosol proteins (C), and whole cell lysate (WL). Western blot analysis of FLAG-ASXL2 protein fragments with anti-FLAG antibody in the four fractions.

## APPENDIX K: PRIMERS USED IN UH2A CHIP ASSAY

## TABLE IX: PRIMERS USED IN UH2A CHIP ASSAY

| Primer         | Sequence (5'-3')      | Tested and |
|----------------|-----------------------|------------|
|                |                       | worked     |
| Sfrp2-(+750)F  | ACTCCCAAGAAGCCTGAGGT  |            |
| Sfrp2-(+750)R  | GCAAGGAGAGCTGCCATATC  |            |
| Sfrp2-(+418)F  | ACGAGACCATGAAGGAGGTG  |            |
| Sfrp2-(+418)R  | GAAGAGCGAGCACAGGAACT  |            |
| Sfrp2-(+1096)F | GCCTCTCTCTGCACGTTCTT  | х          |
| Sfrp2-(+1096)F | CACCTGGGGGAGTTAAAACCA | х          |
| Grk5-(+976)F   | GTGAGTTGGTGCGAGTGGTA  | х          |
| Grk5-(+976)R   | ACTCGTCCCTGCAACTGTCT  | х          |
| Grk5-(+831)F   | AATGGAGCTGGAAAACATCG  | Х          |
| Grk5-(+831)R   | CACTCGCACCAACTCACTGT  | Х          |
| Grk5-(+248)F   | GGTTTCGTTTTGGCTGAGTC  | Х          |
| Grk5-(+248)R   | CTCTATTGCACCGGGACTGT  | Х          |
| Grk5-(+183)F   | CTTGTGCTTTCCGCTTTCTC  | Х          |
| Grk5-(+183)R   | GGCAGGAGTCAAAAACGACT  | Х          |
| bMHC(+494)F    | GGGCTACCAGGAAATGATGA  | Х          |
| bMHC(+494)R    | GCAGAATGTCTGCCCTCTTC  | х          |
| bMHC(+730)F    | CAATGTCACCTTGCTCCTGA  | х          |
| bMHC(+730)R    | TGGCTCCATGGACAACACTA  | х          |

| Primer        | Sequence (5'-3')     | Tested and |
|---------------|----------------------|------------|
|               |                      | worked     |
| bMHC(+293)F   | CCCAAGCCTTGTGGTTAGAG |            |
| bMHC(+293)R   | GTGCAAAAGGAGGACCTGAA |            |
| bMHC(+1018)F  | GGGGAGGTGGGAACTAAAGA |            |
| bMHC(+1018)R  | ACCACGTCCAGCTAAGCACT |            |
| bMHC(+77)F    | ATCAGGTGGAGGGTAGGTGA |            |
| bMHC(+77)R    | TCCTTCCAGCTCCAAACCTA |            |
| Acta1(+709)F  | TGCAGGGGATATCCTGAGAC |            |
| Acta1(+709)R  | GCAGCGTGCCTTAATACCTC |            |
| Acta1(+113)F  | CCCCCAGGCATATCCTAAAT |            |
| Acta1(+113)R  | TTGAGCCTTGGGCTTGTATT |            |
| Acta1(+862)F  | TCCGCTTAACCCATCTTCAC |            |
| Acta1(+862)R  | AGCACAGCCTTAAGCTGGAA |            |
| Acta1(+1086)F | GCAGCCTGACCTGGTGAC   |            |
| Acta1(+1086)R | TTGTGTGTGACAACGGCTCT |            |

### APPENDIX L: GENES THAT ARE DE-REPRESSED BY AT LEAST TWO-FOLD IN

#### **ASXL2 MUTANT HEARTS**

## TABLE IIX: GENES THAT ARE DE-REPRESSED BY AT LEAST TWO-FOLD IN ASXL2 MUTANT HEARTS AS DETERMINED BY MICROARRAY ANALYSIS

| GeneID | gene                                                           |
|--------|----------------------------------------------------------------|
| 71911  | 3-hydroxybutyrate dehydrogenase (heart, mitochondrial)         |
| 22628  | 3-monooxygenase/tryptophan 5-monooxygenase activation protein, |
|        | gamma polypeptide                                              |
| 11431  | acid phosphatase 1, soluble                                    |
| 11459  | actin, alpha 1, skeletal muscle                                |
| 71985  | Acyl-Coenzyme A dehydrogenase family, member 10                |
| 77794  | ADAMTS-like 2                                                  |
| 269959 | ADAMTS-like 3                                                  |
| 110532 | adenosine deaminase, RNA-specific, B1                          |
| 211673 | ADP-ribosylation factor guanine nucleotide-exchange factor     |
|        | 1(brefeldin A-inhibited)                                       |
| 11569  | AE binding protein 2                                           |
| 22589  | alpha thalassemia/mental retardation syndrome X-linked homolog |
|        | (human)                                                        |
| 235633 | ALS2 C-terminal like                                           |
| 11820  | Amyloid beta (A4) precursor protein                            |
| 70827  | amyotrophic lateral sclerosis 2 (juvenile) chromosome region,  |
|        | candidate 3 (human)                                            |
| 74018  | Amyotrophic lateral sclerosis 2 (juvenile) homolog (human)     |
| 57875  | angiopoietin-like 4                                            |
| 68743  | anillin, actin binding protein (scraps homolog, Drosophila)    |
| 17345  | antigen identified by monoclonal antibody Ki 67                |
| 11622  | aryl-hydrocarbon receptor                                      |
| 66929  | ASF1 anti-silencing function 1 homolog B (S. cerevisiae)       |
| 23808  | ash2 (absent, small, or homeotic)-like (Drosophila)            |
| 104112 | ATP citrate lyase                                              |
| 70472  | ATPase family, AAA domain containing 2                         |
| 235574 | ATPase, Ca++-sequestering                                      |
| 320940 | Atpase, class VI, type 11C                                     |
| 76184  | ATP-binding cassette, sub-family A (ABC1), member 6            |
| 13876  | avian erythroblastosis virus E-26 (v-ets) oncogene related     |
| 17940  | baculoviral IAP repeat-containing 1a                           |
| 17948  | baculoviral IAP repeat-containing 1b                           |
| 11798  | baculoviral IAP repeat-containing 4                            |
| 11799  | baculoviral IAP repeat-containing 5                            |

| Gene ID        | gene                                                                 |
|----------------|----------------------------------------------------------------------|
| 94043          | beta-amyloid binding protein precursor                               |
| 12064          | brain derived neurotrophic factor                                    |
| 12372          | calsequestrin 1                                                      |
| 12349          | carbonic anhydrase 2                                                 |
| 12319          | carbonic anhydrase 8                                                 |
| 55987          | carboxypeptidase X 2 (M14 family)                                    |
| 12894          | carnitine palmitoyltransferase 1a, liver                             |
| 13030          | cathepsin B                                                          |
| 235505         | CD109 antigen                                                        |
| 12484<br>68916 | CD24a antigen<br>CDK5 regulatory suburit associated protein 1 like 1 |
| 105278         | CDK5 regulatory subunit associated protein 1-like 1                  |
|                | cell cycle related kinase                                            |
| 12534          | cell division cycle 2 homolog A (S. pombe)                           |
| 107995         | cell division cycle 20 homolog (S. cerevisiae)                       |
| 52276          | cell division cycle associated 8                                     |
| 216991         | centaurin, alpha 2                                                   |
| 12585          | cerebellar degeneration-related 2                                    |
| 12870          | ceruloplasmin                                                        |
| 12772          | chemokine (C-C motif) receptor 2                                     |
| 13051          | chemokine (C-X3-C) receptor 1                                        |
| 57266          | chemokine (C-X-C motif) ligand 14                                    |
| 57349          | chemokine (C-X-C motif) ligand 7                                     |
| 224796         | chloride intracellular channel 5                                     |
| 13004          | chondroitin sulfate proteoglycan 3                                   |
| 12667          | chordin                                                              |
| 107932         | chromodomain helicase DNA binding protein 4                          |
| 67337          | cleavage stimulation factor, 3' pre-RNA, subunit 1                   |
| 66983          | coiled-coil domain containing 16                                     |
| 235415         | complexin 3                                                          |
| 194231         | connector enhancer of kinase suppressor of Ras 1                     |
| 69274          | CTD (carboxy-terminal domain, RNA polymerase II                      |
|                | polypeptide A) small phosphatase-like                                |
| 23845          | c-type lectin domain family 5, member a                              |
| 74322          | CXXC finger 1 (PHD domain)                                           |
| 12428          | cyclin A2                                                            |
| 12576          | cyclin-dependent kinase inhibitor 1B (P27)                           |
| 50766          | cysteine-rich motor neuron 1                                         |
| 230459         | cytochrome P450, family 2, subfamily j, polypeptide 1                |

| Gene ID | gene                                                                |
|---------|---------------------------------------------------------------------|
| 74519   | cytochrome P450, family 2, subfamily j, polypeptide 9               |
| 70101   | cytochrome P450, family 4, subfamily f, polypeptide 16              |
| 12877   | cytoplasmic polyadenylation element binding protein 1               |
| 80986   | cytoskeleton associated protein 2                                   |
| 212880  | DEAD (Asp-Glu-Ala-Asp) box polypeptide 46                           |
| 13388   | delta-like 1 (Drosophila)                                           |
| 14357   | deltex 1 homolog (Drosophila)                                       |
| 13356   | diGeorge syndrome critical region gene 2                            |
| 66369   | dihydrouridine synthase 2-like (SMM1, S. cerevisiae)                |
| 13482   | dipeptidylpeptidase 4                                               |
| 80915   | dual specificity phosphatase 12                                     |
| 13429   | dynamin 1                                                           |
| 13591   | early B-cell factor 1                                               |
| 93685   | ectonucleoside triphosphate diphosphohydrolase 7                    |
| 230316  | EGF-like-domain, multiple 5                                         |
| 13639   | ephrin A4                                                           |
| 13642   | ephrin B2                                                           |
| 77781   | EPM2A (laforin) interacting protein 1                               |
| 71889   | epsin 3                                                             |
| 192193  | ER degradation enhancer, mannosidase alpha-like 1                   |
| 269587  | erythrocyte protein band 4.1                                        |
| 170812  | erythroid associated factor                                         |
| 26380   | estrogen related receptor, beta                                     |
| 239528  | eukaryotic translation initiation factor 2C, 2                      |
| 116701  | fibroblast growth factor receptor-like 1                            |
| 20378   | frizzled-related protein                                            |
| 56095   | FtsJ homolog 3 (E. coli)                                            |
| 73068   | fucosyltransferase 11                                               |
| 233079  | G protein-coupled receptor 43                                       |
| 14773   | G protein-coupled receptor kinase 5                                 |
| 118454  | gap junction membrane channel protein alpha 12                      |
| 233863  | general transcription factor III C 1                                |
| 23885   | germ cell-less homolog (Drosophila)                                 |
| 384009  | GLI pathogenesis-related 2                                          |
| 14585   | glial cell line derived neurotrophic factor family receptor alpha 1 |
| 21847   | kruppel-like factor 10                                              |
| 14809   | glutamate receptor, ionotropic, kainate 5 (gamma 2)                 |

| Gene ID           | gene                                                                    |
|-------------------|-------------------------------------------------------------------------|
| 14809             | glutamate receptor, ionotropic, kainate 5 (gamma 2)                     |
| 76282             | glutamic pyruvic transaminase 1, soluble                                |
| 14594             | glycoprotein galactosyltransferase alpha 1, 3                           |
| 94221             | golgi associated PDZ and coiled-coil motif containing                   |
| 13197             | growth arrest and DNA-damage-inducible 45 alpha                         |
| 210710            | growth factor receptor bound protein 2-associated protein 3             |
| 14544             | guanine deaminase                                                       |
| 14695             | guanine nucleotide binding protein, beta 3                              |
| 70676             | GULP, engulfment adaptor PTB domain containing 1                        |
| 56422             | Hbs1-like (S. cerevisiae)                                               |
| 233490            | HCF-binding transcription factor Zhangfei                               |
| 15482             | heat shock protein 1-like                                               |
| 23908             | Heparan sulfate 2-O-sulfotransferase 1                                  |
| 171285            | hepatitis A virus cellular receptor 2                                   |
| 50926             | heterogeneous nuclear ribonucleoprotein D-like                          |
| 433785 /// 433788 | high mobility group box 2 /// similar to high mobility group protein B2 |
| 15466             | histamine receptor H 2                                                  |
| 15115             | histidyl-tRNA synthetase                                                |
| 14950             | histocompatibility 13                                                   |
| 319165            | histone 1, H2ad /// CDNA clone MGC:103288 IMAGE:5150365, complete cds   |
| 79221             | histone deacetylase 9                                                   |
| 27281             | HRAS-like suppressor                                                    |
| 330790            | hyaluronan and proteoglycan link protein 4                              |
| 15366             | hyaluronan mediated motility receptor (RHAMM)                           |
| 15586 /// 56441   | hyaluronidase 1 /// N-acetyltransferase 6                               |
| 15483             | hydroxysteroid 11-beta dehydrogenase 1                                  |
| 16324             | inhibin beta-B                                                          |
| 16150             | inhibitor of kappaB kinase beta                                         |
| 16319             | inner centromere protein                                                |
| 233011            | inositol 1,4,5-trisphosphate 3-kinase C                                 |
| 223272            | integrin, beta-like 1                                                   |
| 57444             | interferon-stimulated protein                                           |
| 16477             | Jun-B oncogene                                                          |
| 19348             | kinesin family member 20A                                               |
| 16570             | kinesin family member 3C                                                |
| 67557             | la ribonucleoprotein domain family, member 6                            |
| 71835             | lanC (bacterial lantibiotic synthetase component C)-like 2              |

| Gene ID | gene                                                                            |
|---------|---------------------------------------------------------------------------------|
| 93730   | leucine zipper transcription factor-like 1                                      |
| 329252  | leucine-rich repeat-containing G protein-coupled receptor 6                     |
| 74201   | leucine-rich repeats and IQ motif containing 2                                  |
| 16840   | leukocyte cell derived chemotaxin 1                                             |
| 16881   | ligase I, DNA, ATP-dependent                                                    |
| 16826   | LIM domain binding 2                                                            |
| 69605   | limb and neural patterns                                                        |
| 64899   | lipin 3                                                                         |
| 100702  | macrophage activation 2 like                                                    |
| 54484   | makorin, ring finger protein, 1                                                 |
| 17389   | matrix metalloproteinase 16                                                     |
| 104362  | meiosis expressed gene 1                                                        |
| 17765   | metal response element binding transcription factor 2                           |
| 17768   | methylenetetrahydrofolate dehydrogenase (NAD+ dependent),                       |
|         | methenyltetrahydrofolate cyclohydrolase                                         |
| 216760  | microfibrillar-associated protein 3                                             |
| 171580  | microtubule associated monoxygenase, calponin and LIM domain                    |
|         | containing 1                                                                    |
| 225164  | mindbomb homolog 1 (Drosophila)                                                 |
| 17215   | minichromosome maintenance deficient 3 (S. cerevisiae)                          |
| 17218   | minichromosome maintenance deficient 5, cell division cycle 46                  |
| 17210   | (S. cerevisiae)                                                                 |
| 17219   | minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae) |
| 26400   | mitogen activated protein kinase kinase 7                                       |
| 17344   | Msx-interacting-zinc finger                                                     |
| 76626   | Musashi homolog 2 (Drosophila)                                                  |
| 27418   | Muskelin 1, intracellular mediator containing kelch motifs                      |
| 17153   | myelin and lymphocyte protein, T-cell differentiation protein                   |
| 233199  | myosin binding protein C, fast-type                                             |
| 74376   | myosin XVIIIb                                                                   |
| 18104   | NAD(P)H dehydrogenase, quinone 1                                                |
| 234258  | nei like 3 (E. coli)                                                            |
| 235627  | neurobeachin-like 2                                                             |
| 74513   | neuropilin (NRP) and tolloid (TLL)-like 2                                       |
| 74455   | NOL1/NOP2/Sun domain family 6                                                   |
| 108907  | nucleolar and spindle associated protein 1                                      |
| 67528   | nudix (nucleoside diphosphate linked moiety X)-type motif 7                     |
| 68767   | open reading frame 19                                                           |
| 231805  | paired immunoglobin-like type 2 receptor alpha                                  |

#### Gene ID gene 18933 paired related homeobox 1 19228 parathyroid hormone receptor 1 18771 Pbx/knotted 1 homeobox 56376 PDZ and LIM domain 5 PDZ domain containing 2 170761 237504 peptidylglycine alpha-amidating monooxygenase COOH-terminal interactor 75725 PHD finger protein 14 74769 phosphatidylinositol 3-kinase, catalytic, beta polypeptide 18578 phosphodiesterase 4B, cAMP specific 107272 phosphoserine aminotransferase 1 18792 plasminogen activator, urokinase 71785 platelet-derived growth factor, D polypeptide 67448 plexin domain containing 2 20873 polo-like kinase 4 (Drosophila) 218832 polymerase (RNA) III (DNA directed) polypeptide A 19285 polymerase I and transcript release factor 16526 potassium channel, subfamily K, member 2 16513 potassium inwardly-rectifying channel, subfamily J, member 10 potassium inwardly-rectifying channel, subfamily J, member 14 211480 70673 PR domain containing 16 18514 Pre B-cell leukemia transcription factor 1 12828 procollagen, type IV, alpha 3 12837 procollagen, type VIII, alpha 1 12817 procollagen, type XIII, alpha 1 12818 procollagen, type XIV, alpha 1 67505 prolactin like protein O 19200 proline-serine-threonine phosphatase-interacting protein 1 19183 proteasome (prosome, macropain) 26S subunit, ATPase 3, interacting protein 80708 protein kinase C and casein kinase substrate in neurons 3 19106 protein kinase, interferon-inducible double stranded RNA dependent 69847 protein kinase, lysine deficient 4 protein phosphatase 3, catalytic subunit, alpha isoform 19055 233406 protein regulator of cytokinesis 1 19263 protein tyrosine phosphatase, receptor type, B 19268 protein tyrosine phosphatase, receptor type, F 53601 protocadherin 12 14083 PTK2 protein tyrosine kinase 2 Purkinje cell protein 4 18546

| Gene ID         | gene                                                         |
|-----------------|--------------------------------------------------------------|
| 26934           | Rac GTPase-activating protein 1                              |
| 19362           | RAD51 associated protein 1                                   |
| 19361           | RAD51 homolog (S. cerevisiae)                                |
| 58185           | radical S-adenosyl methionine domain containing 2            |
| 192786          | Rap guanine nucleotide exchange factor (GEF) 6               |
| 51869           | Rap1 interacting factor 1 homolog (yeast)                    |
| 19883           | RAR-related orphan receptor alpha                            |
| 192656          | receptor (TNFRSF)-interacting serine-threonine kinase 2      |
| 19724           | regulatory factor X, 1 (influences HLA class II expression)  |
| 214742          | REST corepressor 3                                           |
| 65079           | reticulon 4 receptor                                         |
| 19889           | retinitis pigmentosa 2 homolog (human)                       |
| 328365          | retinoic acid induced 17                                     |
| 105014          | retinol dehydrogenase 14 (all-trans and 9-cis)               |
| 103142          | retinol dehydrogenase 9                                      |
| 75415           | Rho GTPase activating protein 12                             |
| 19819           | ribonuclease H1                                              |
| 382985          | ribonucleotide reductase M2 B (TP53 inducible)               |
| 20088           | ribosomal protein S24                                        |
| 110651          | ribosomal protein S6 kinase polypeptide 3                    |
| 30054           | ring finger protein 17                                       |
| 19881           | rod outer segment membrane protein 1                         |
| 230257          | ROD1 regulator of differentiation 1 (S. pombe)               |
| 229675          | rosbin, round spermatid basic protein 1                      |
| 20202           | S100 calcium binding protein A9 (calgranulin B)              |
| 83997           | sarcolemma associated protein                                |
| 20319           | secreted frizzled-related sequence protein 2                 |
| 22287           | secretoglobin, family 1A, member 1 (uteroglobin)             |
| 56747           | seizure related 6 homolog (mouse)-like                       |
| 233878          | seizure related 6 homolog (mouse)-like 2                     |
| 20347           | sema domain, immunoglobulin domain (Ig), short basic domain, |
|                 | secreted, (semaphorin) 3B                                    |
| 20360           | sema domain, transmembrane domain (TM), and cytoplasmic      |
|                 | domain, (semaphorin) 6C                                      |
| 214968          | sema domain, transmembrane domain (TM), and cytoplasmic      |
| 10707           | domain, (semaphorin) 6D                                      |
| 18787           | serine (or cysteine) proteinase inhibitor, clade E, member 1 |
| 20817           | serine/arginine-rich protein specific kinase 2               |
| 20437 /// 20438 | seven in absentia 1A /// seven in absentia 1B                |

| Gene ID | gene                                                             |
|---------|------------------------------------------------------------------|
| 269016  | SH3 domain containing ring finger 2                              |
| 59009   | SH3 multiple domains 2                                           |
| 20419   | Shc SH2-domain binding protein 1                                 |
| 20612   | sialoadhesin                                                     |
| 272713  | Similar to development- and differentiation-enhancing factor 2;  |
|         | PYK2 C terminus-associated protein                               |
| 546041  | similar to p47 protein isoform a                                 |
| 384254  | similar to ribosomal protein L18a                                |
| 20292   | small chemokine (C-C motif) ligand 11                            |
| 30927   | snail homolog 3 (Drosophila)                                     |
| 399548  | sodium channel, type IV, beta                                    |
| 65221   | solute carrier family 15, member 3                               |
| 105355  | solute carrier family 17 (sodium phosphate), member 3            |
| 20515   | solute carrier family 20, member 1                               |
| 67712   | solute carrier family 25, member 37                              |
| 215085  | solute carrier family 35, member F1                              |
| 106957  | solute carrier family 39 (metal ion transporter), member 6       |
| 20533   | solute carrier family 4 (anion exchanger), member 1              |
| 20537   | solute carrier family 5 (sodium/glucose cotransporter), member 1 |
| 20658   | son cell proliferation protein                                   |
| 20662   | son of sevenless homolog 1 (Drosophila)                          |
| 20411   | sorbin and SH3 domain containing 1                               |
| 109552  | sorcin                                                           |
| 20660   | sortilin-related receptor, LDLR class A repeats-containing       |
| 432572  | spectrin domain with coiled-coils 1                              |
| 66234   | sterol-C4-methyl oxidase-like                                    |
| 67902   | sulfatase modifying factor 2                                     |
| 20975   | synaptojanin 2                                                   |
| 54525   | synaptotagmin 7                                                  |
| 269397  | synovial sarcoma translocation gene on chromosome 18-like 1      |
| 268996  | synovial sarcoma translocation, Chromosome 18                    |
| 20617   | synuclein, alpha                                                 |
| 230908  | TAR DNA binding protein                                          |
| 21923   | tenascin C                                                       |
| 217449  | tetratricopeptide repeat domain 15                               |
| 73666   | THO complex 3                                                    |
| 58916   | titin immunoglobulin domain protein (myotilin)                   |
| 21899   | toll-like receptor 6                                             |

| Gene ID         | gene                                                      |
|-----------------|-----------------------------------------------------------|
| 21973           | topoisomerase (DNA) II alpha                              |
| 21974           | topoisomerase (DNA) II beta                               |
| 21419           | transcription factor AP-2 beta                            |
| 81004           | transducin (beta)-like 1X-linked receptor 1               |
| 67226           | transmembrane protein 19                                  |
| 224090          | transmembrane protein 44                                  |
| 80890           | tripartite motif protein 2                                |
| 217069          | tripartite motif protein 25                               |
| 94089           | tripartite motif protein 7                                |
| 22004           | tropomyosin 2, beta                                       |
| 21953           | troponin I, skeletal, fast 2                              |
| 22035           | tumor necrosis factor (ligand) superfamily, member 1      |
| 79202           | tumor necrosis factor receptor superfamily, member 22     |
| 22222           | ubiquitin protein ligase E3 component n-recognin 1        |
| 230484          | ubiquitin specific protease 1                             |
| 319651          | ubiquitin specific protease 37                            |
| 252870          | ubiquitin specific protease 7                             |
| 140499          | ubiquitin-conjugating enzyme E2, J2 homolog (yeast)       |
| 68612           | ubiquitin-conjugating enzyme E2C                          |
| 56791           | ubiquitin-conjugating enzyme E2L 6                        |
| 18140           | ubiquitin-like, containing PHD and RING finger domains, 1 |
| 320011          | UDP-glucose ceramide glucosyltransferase-like 1           |
| 22229           | uncoupling protein 3 (mitochondrial, proton carrier)      |
| 171530          | urocortin 2                                               |
| 22310 /// 22311 | vomeronasal 2, receptor, 4 /// vomeronasal 2, receptor, 5 |
| 73674           | WD repeat domain 75                                       |
| 22376           | Wiskott-Aldrich syndrome homolog (human)                  |
| 229055          | zinc finger and BTB domain containing 10                  |
| 268294          | zinc finger and BTB domain containing 24                  |
| 16969           | zinc finger and BTB domain containing 7a                  |
| 106205          | zinc finger CCCH type containing 7                        |
| 22697           | zinc finger proliferation 1                               |
| 22666           | zinc finger protein 161                                   |
| 193452          | zinc finger protein 184 (Kruppel-like)                    |
| 101095          | zinc finger protein 282                                   |
| 68910           | zinc finger protein 467                                   |
| 218820          | zinc finger protein 503                                   |

| Gene ID | gene                                             |  |
|---------|--------------------------------------------------|--|
| 22775   | zinc finger protein interacting with K protein 1 |  |
| 22764   | zinc finger protein X-linked                     |  |
| 224454  | zinc finger, DHHC domain containing 14           |  |
| 75965   | zinc finger, DHHC domain containing 20           |  |

### APPENDIX M: GENES THAT ARE REPRESSED BY AT LEAST TWO-FOLD IN

#### **ASXL2 MUTANT HEARTS**

#### TABLE IIIX: GENES THAT ARE REPRESSED BY AT LEAST TWO-FOLD IN ASXL2

| GeneID | gene                                                          |
|--------|---------------------------------------------------------------|
| 246729 | 2'-5' oligoadenylate synthetase 1H                            |
| 246728 | 2'-5' oligoadenylate synthetase 2                             |
| 18640  | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2         |
| 13522  | a disintegrin and metalloprotease domain 28                   |
| 11475  | actin, alpha 2, smooth muscle, aorta                          |
| 11474  | actinin alpha 3                                               |
| 216739 | acyl-CoA synthetase long-chain family member 6                |
| 75302  | additional sex combs like 2 (Drosophila)                      |
| 11450  | adiponectin, C1Q and collagen domain containing               |
| 11537  | adipsin                                                       |
| 218639 | ADP-ribosylation factor related protein 2                     |
| 11875  | ADP-ribosyltransferase 5                                      |
| 14266  | AF4/FMR2 family, member 2                                     |
| 93736  | AF4/FMR2 family, member 4                                     |
| 211064 | alkB, alkylation repair homolog (E. coli)                     |
| 232345 | alpha-2-macroglobulin                                         |
| 23923  | aminoadipate aminotransferase                                 |
| 72823  | Amyotrophic lateral sclerosis 2 (juvenile) chromosome region, |
|        | candidate 19                                                  |
| 11600  | angiopoietin 1                                                |
| 70008  | angiotensin I converting enzyme (peptidyl-dipeptidase A) 2    |
| 70797  | ankyrin repeat and IBR domain containing 1                    |
| 208117 | anterior pharynx defective 1b homolog (C. elegans)            |
| 110542 | anti-Mullerian hormone type 2 receptor                        |
| 11800  | apoptosis inhibitor 5                                         |
| 11829  | aquaporin 4                                                   |
| 11831  | aquaporin 6                                                   |
| 70882  | armadillo repeat containing 3                                 |
| 11899  | astrotactin 1                                                 |
| 72174  | ataxin 7-like 4                                               |
| 11946  | ATP synthase, H+ transporting, mitochondrial F1 complex,      |
|        | alpha subunit, isoform 1                                      |
| 50771  | ATPas, class II, type 9B                                      |
| 70472  | ATPase family, AAA domain containing 2                        |
| 74772  | ATPase type 13A2                                              |

### MUTANT HEARTS AS DETERMINED BY MICROARRAY

| GeneID          | gene                                                         |
|-----------------|--------------------------------------------------------------|
| 109880          | braf transforming gene                                       |
| 108100          | brain-specific angiogenesis inhibitor 1-associated protein 2 |
| 76960           | breast carcinoma amplified sequence 1                        |
| 192197          | breast carcinoma amplified sequence 3                        |
| 76809           | bri3 binding protein                                         |
| 22385           | bromodomain adjacent to zinc finger domain, 1B               |
| 12300           | calcium channel, voltage-dependent, gamma subunit 2          |
| 12288           | calcium channel, voltage-dependent, L type, alpha 1C subunit |
| 227541          | calcium/calmodulin-dependent protein kinase ID               |
| 12374           | calcium-sensing receptor                                     |
| 442829          | calicin                                                      |
| 231991          | cAMP responsive element binding protein 5                    |
| 12350           | carbonic anhydrase 3                                         |
| 104158          | carboxylesterase 3                                           |
| 17079           | CD180 antigen                                                |
| 12478           | CD19 antigen                                                 |
| 171486          | Cd99 antigen-like 2                                          |
| 229776          | CDC14 cell division cycle 14 homolog A (S. cerevisiae)       |
| 14311           | cell death-inducing DFFA-like effector c                     |
| 212285          | centaurin, delta 1                                           |
| 108000          | centromere autoantigen F                                     |
| 12622           | cerberus 1 homolog (Xenopus laevis)                          |
| 12405           | cerebellin 2 precursor protein                               |
| 105513          | CHMP family, member 7                                        |
| 75677           | claudin 22                                                   |
| 12739           | claudin 3                                                    |
| 66098           | coiled-coil-helix-coiled-coil-helix domain containing 6      |
| 320924          | collagen and calcium binding EGF domains 1                   |
| 14219           | connective tissue growth factor                              |
| 21367           | contactin 2                                                  |
| 18488           | contactin 3                                                  |
| 12808           | cordon-bleu                                                  |
| 224912          | crumbs homolog 3 (Drosophila)                                |
| 12965 /// 12966 | crystallin, gamma B /// crystallin, gamma C                  |
| 51811           | c-type lectin domain family 4, member f                      |
| 74100           | cyclic AMP-regulated phosphoprotein, 21                      |

| GeneID           | gene                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 51813            | cyclin C                                                                                                                    |
| 94219            | cyclin M2                                                                                                                   |
| 13008            | cysteine and glycine-rich protein 2                                                                                         |
| 12583            | cysteine dioxygenase 1, cytosolic                                                                                           |
| 13075            | cytochrome P450, family 19, subfamily a, polypeptide 1                                                                      |
| 13106            | cytochrome P450, family 2, subfamily e, polypeptide 1                                                                       |
| 231162           | cytokine like 1                                                                                                             |
| 229459           | Dachsous 2 (Drosophila)                                                                                                     |
| 66573            | DAZ interacting protein 1                                                                                                   |
| 74351            | DEAD (Asp-Glu-Ala-Asp) box polypeptide 23                                                                                   |
| 66705            | deoxyribonuclease 1-like 2                                                                                                  |
| 13367            | diaphanous homolog 1 (Drosophila)                                                                                           |
| 50781            | dickkopf homolog 3 (Xenopus laevis)                                                                                         |
| 12305            | discoidin domain receptor family, member 1                                                                                  |
| 330938           | DIX domain containing 1                                                                                                     |
| 13434            | DNA methyltransferase 2                                                                                                     |
| 73284            | DNA-damage-inducible transcript 4-like                                                                                      |
| 13447            | double C2, beta                                                                                                             |
| 13175            | double cortin and calcium/calmodulin-dependent protein kinase-<br>like 1                                                    |
| 216164           | downstream of Stk11                                                                                                         |
| 18218            | dual specificity phosphatase 8                                                                                              |
| 13656            | early growth response 4                                                                                                     |
| 67868            | Elastase 3B, pancreatic                                                                                                     |
| 106389           | ELL associated factor 2                                                                                                     |
| 269344           | elongation factor RNA polymerase II-like 3                                                                                  |
| 13796            | empty spiracles homolog 1 (Drosophila)                                                                                      |
| 13797            | empty spiracles homolog 2 (Drosophila)                                                                                      |
| 107522           | endothelin converting enzyme 2                                                                                              |
| 13839            | Eph receptor A5                                                                                                             |
| 18612            | Ets variant gene 4 (E1A enhancer binding protein, E1AF)                                                                     |
| 13664 /// 266459 | eukaryotic translation initiation factor 1A /// similar to<br>eukaryotic translation initiation factor 1A (eIF-1A) (eIF-4C) |

| GeneID          | gene                                                                              |
|-----------------|-----------------------------------------------------------------------------------|
| 230861          | eukaryotic translation initiation factor 4 gamma, 3                               |
| 13684           | eukaryotic translation initiation factor 4E                                       |
| 14050           | eyes absent 3 homolog (Drosophila)                                                |
| 14104           | fatty acid synthase                                                               |
| 314322          | FBJ murine osteosarcoma viral oncogene homolog                                    |
| 57443           | F-box only protein 3                                                              |
| 14119           | fibrillin 2                                                                       |
| 14167           | fibroblast growth factor 12                                                       |
| 14169           | fibroblast growth factor 14                                                       |
| 14264           | fibromodulin                                                                      |
| 15227           | forkhead box F1a                                                                  |
| 114142          | forkhead box P2                                                                   |
| 14221           | four jointed box 1 (Drosophila)                                                   |
| 14266           | fragile X mental retardation 2 homolog                                            |
| 14352           | friend virus susceptibility 4                                                     |
| 57265           | frizzled homolog 2 (Drosophila)                                                   |
| 67391           | FUN14 domain containing 2                                                         |
| 213054          | GA repeat binding protein, beta 2                                                 |
| 14403           | Gamma-aminobutyric acid (GABA-A) receptor, subunit delta                          |
| 14611           | gap junction membrane channel protein alpha 3                                     |
| 14617           | gap junction membrane channel protein alpha 9                                     |
| 66790           | GH regulated TBC protein 1                                                        |
| 14537           | glucosaminyl (N-acetyl) transferase 1, core 2                                     |
| 14538           | glucosaminyl (N-acetyl) transferase 2, I-branching enzyme                         |
| 14810           | glutamate receptor, ionotropic, NMDA1 (zeta 1)                                    |
| 14583           | glutamine fructose-6-phosphate transaminase 1                                     |
| 68312           | glutathione S-transferase, mu 7                                                   |
| 78926           | growth arrest-specific 2 like 1                                                   |
| 14559 /// 93898 | growth differentiation factor 1 /// longevity assurance homolog 1 (S. cerevisiae) |
| 227960          | grancalcin                                                                        |

| GeneID | gene                                                            |
|--------|-----------------------------------------------------------------|
| 14702  | guanine nucleotide binding protein (G protein), gamma 2 subunit |
| 14709  | guanine nucleotide binding protein (G protein), gamma 8 subunit |
| 14955  | H19 fetal liver mRNA                                            |
| 15439  | haptoglobin                                                     |
| 26386  | heat shock transcription factor 4                               |
| 59026  | HECT, UBA and WWE domain containing 1                           |
| 84506  | hepcidin antimicrobial peptide 1                                |
| 15388  | heterogeneous nuclear ribonucleoprotein L                       |
| 14950  | histocompatibility 13                                           |
| 14968  | histocompatibility 2, class II antigen E alpha                  |
| 68024  | histone 1, H2bc                                                 |
| 15394  | homeo box A1                                                    |
| 15424  | homeo box C5                                                    |
| 75828  | HORMA domain containing 2                                       |
| 330723 | HtrA serine peptidase 4                                         |
| 53323  | huntingtin interacting protein 2                                |
| 77042  | hyaluronoglucosaminidase 4                                      |
| 18518  | immunoglobulin (CD79A) binding protein 1                        |
| 16061  | immunoglobulin heavy chain (J558 family)                        |
| 16017  | immunoglobulin heavy chain 4 (serum IgG1)                       |
| 16071  | immunoglobulin kappa chain, constant region                     |
| 16142  | immunoglobulin lambda chain, variable 1                         |
| 209268 | immunoglobulin superfamily, member 1                            |
| 54725  | immunoglobulin superfamily, member 4A                           |
| 27993  | IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast)     |
| 16438  | Inositol 1,4,5-triphosphate receptor 1                          |
| 75426  | insulin-like growth factor binding protein-like 1               |
| 16398  | integrin alpha 2                                                |
| 270110 | interferon regulatory factor 2 binding protein 2                |
| 66845  | mitochondrial ribosomal protein L33                             |

| GeneID | gene                                                                             |
|--------|----------------------------------------------------------------------------------|
| 16190  | interleukin 4 receptor, alpha                                                    |
| 75605  | jumonji, AT rich interactive domain 1B (Rbp2 like)                               |
| 57340  | junctophilin 3                                                                   |
| 63830  | KCNQ1 overlapping transcript 1                                                   |
| 16673  | keratin complex 1, acidic, gene 5                                                |
| 110308 | keratin complex 2, basic, gene 5                                                 |
| 16578  | kinesin family member 9                                                          |
| 84035  | kringle containing transmembrane protein 1                                       |
| 237339 | l(3)mbt-like 3 (Drosophila)                                                      |
| 79235  | lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) |
| 70361  | lectin, mannose-binding, 1                                                       |
| 76612  | leucine rich repeat containing 27                                                |
| 216028 | leucine rich repeat transmembrane neuronal 3                                     |
| 329252 | leucine-rich repeat-containing G protein-coupled receptor 6                      |
| 16871  | LIM homeobox protein 3                                                           |
| 16876  | LIM homeobox protein 9                                                           |
| 68311  | ly6/Plaur domain containing 2                                                    |
| 23934  | lymphocyte antigen 6 complex, locus H                                            |
| 16842  | lymphoid enhancer binding factor 1                                               |
| 15064  | major histocompatibility complex, class I-related                                |
| 320772 | MAM domain containing 1                                                          |
| 17174  | mannan-binding lectin serine protease 1                                          |
| 17160  | mannosidase 2, alpha B2                                                          |
| 17184  | matrin 3                                                                         |
| 17387  | matrix metalloproteinase 14 (membrane-inserted)                                  |
| 17122  | max dimerization protein 4                                                       |
| 56524  | membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)                 |
| 170813 | membrane-spanning 4-domains, subfamily A, member 3                               |
| 17752  | metallothionein 4                                                                |
| 17150  | microfibrillar-associated protein 2                                              |
| 71306  | microfibrillar-associated protein 3-like                                         |
| 328329 | microtubule associated serine/threonine kinase family member 4                   |
| 17318  | midline 1                                                                        |
| 60441  | mitochondrial ribosomal protein L38                                              |

| Gene ID | gene                                                         |
|---------|--------------------------------------------------------------|
| 23939   | mitogen activated protein kinase 7                           |
| 60597   | mitogen-activated protein kinase 8 interacting protein 2     |
| 83456   | moloney leukemia virus 10-like 1                             |
| 109731  | monoamine oxidase B                                          |
| 67973   | m-phase phosphoprotein 10 (U3 small nucleolar                |
|         | ribonucleoprotein)                                           |
| 67014   | myc induced nuclear antigen                                  |
| 17536   | myeloid ecotropic viral integration site-related gene 1      |
| 17260   | myocyte enhancer factor 2C                                   |
| 17918   | myosin Va                                                    |
| 17901   | myosin, light polypeptide 1                                  |
| 17896   | myosin, light polypeptide 4                                  |
| 17898   | myosin, light polypeptide 7, regulatory                      |
| 98932   | myosin, light polypeptide 9, regulatory                      |
| 217214  | N-acetylglutamate synthase                                   |
| 230899  | natriuretic peptide precursor type A                         |
| 53885   | nephronophthisis 1 (juvenile) homolog (human)                |
| 57764   | netrin 4                                                     |
| 80883   | netrin G1                                                    |
| 18011   | neuralized-like homolog (Drosophila)                         |
| 235627  | neurobeachin-like 2                                          |
| 320840  | neuronal growth regulator 1                                  |
| 18211   | neurotrophic tyrosine kinase, receptor, type 1               |
| 18188   | neurturin                                                    |
| 66866   | NHL repeat containing 2                                      |
| 18092   | NK2 transcription factor related, locus 6 (Drosophila)       |
| 18124   | nuclear receptor subfamily 4, group A, member 3              |
| 18226   | nucleoporin 62                                               |
| 218121  | o-acyltransferase (membrane bound) domain containing 1       |
| 18300   | oncoprotein induced transcript 1                             |
| 15379   | one cut domain, family member 1                              |
| 56374   | open reading frame 18                                        |
| 80909   | opposite strand transcription unit to Stag3                  |
| 330962  | organic solute transporter beta                              |
| 70061   | orphan short chain dehydrogenase/reductase                   |
| 105689  | pam, highwire, rpm 1                                         |
| 93742   | Par-3 (partitioning defective 3) homolog (C. elegans)        |
| 53318   | PDZ and LIM domain 3                                         |
| 18599   | peptidyl arginine deiminase, type I                          |
| 19132   | peripherin 1                                                 |
| 19679   | phosphatidylinositol transfer protein, membrane-associated 2 |

| Gene ID | gene                                                         |
|---------|--------------------------------------------------------------|
| 29863   | phosphodiesterase 7B                                         |
| 227120  | phospholipase C-like 1                                       |
| 110094  | phosphorylase kinase alpha 2                                 |
| 56460   | plakophilin 3                                                |
| 68797   | platelet-derived growth factor receptor-like                 |
| 215632  | pleckstrin and Sec7 domain containing 4                      |
| 231999  | pleckstrin homology domain containing, family A              |
|         | (phosphoinositide binding specific) member 8                 |
| 211945  | pleckstrin homology domain containing, family H (with        |
|         | MyTH4 domain) member 1                                       |
| 378460  | PML-RAR alpha-regulated adaptor molecule 1                   |
| 319655  | podocalyxin-like 2                                           |
| 16519   | potassium inwardly-rectifying channel, subfamily J, member 3 |
| 16509   | potassium voltage-gated channel, Isk-related subfamily,      |
|         | member 1                                                     |
| 16508   | potassium voltage-gated channel, Shal-related family, member |
|         | 2                                                            |
| 211468  | potassium voltage-gated channel, subfamily H (eag-related),  |
|         | member 8                                                     |
| 64243   | Prader-Willi chromosome region 1 homolog (human)             |
| 237759  | procollagen, type XXIII, alpha 1                             |
| 74229   | progestin and adipoQ receptor family member VIII             |
| 170952  | proline rich membrane anchor 1                               |
| 65116   | proline-rich Gla (G-carboxyglutamic acid) polypeptide 2      |
| 19220   | prostaglandin F receptor                                     |
| 67151   | proteasome (prosome, macropain) 26S subunit, non-ATPase, 9   |
| 19088   | protein kinase, cAMP dependent regulatory, type II beta      |
| 19091   | protein kinase, cGMP-dependent, type I                       |
| 320472  | protein phosphatase 1E (PP2C domain containing)              |
| 68507   | protein tyrosine phosphatase, receptor type, f polypeptide   |
|         | (PTPRF), interacting protein (liprin), alpha 4               |
| 211712  | protocadherin 9                                              |
| 93886   | protocadherin beta 15                                        |
| 230596  | PRP38 pre-mRNA processing factor 38 (yeast) domain           |
|         | containing A                                                 |
| 101631  | PWWP domain containing 2                                     |
| 18770   | pyruvate kinase liver and red blood cell                     |
| 29809   | RAB GTPase activating protein 1-like                         |
| 98710   | RAB interacting factor                                       |
| 227746  | rab9 effector protein with kelch motifs                      |
| 114714  | rad51 homolog c (S. cerevisiae)                              |

| Gene ID                 | gene                                                              |
|-------------------------|-------------------------------------------------------------------|
| 78255                   | ral GEF with PH domain and SH3 binding motif 2                    |
| 19765                   | ralA binding protein 1                                            |
| 320292                  | RasGEF domain family, member 1B                                   |
| 51801                   | receptor (calcitonin) activity modifying protein 1                |
| 19715                   | reduced expression 2                                              |
| 19716                   | reduced expression 3                                              |
| 51791                   | regulator of G-protein signaling 14                               |
| 50779                   | regulator of G-protein signaling 6                                |
| 243923                  | regulator of G-protein signalling 9 binding protein               |
| 328280                  | regulator of sex-limitation candidate 24                          |
| 57262                   | resistin like alpha                                               |
| 104001                  | reticulon 1                                                       |
| 19662                   | retinol binding protein 4, plasma                                 |
| 171207                  | Rho GTPase activating protein 4                                   |
| 19989                   | ribosomal protein L7                                              |
| 68925                   | RNA polymerase II associated protein 1                            |
| 20191                   | ryanodine receptor 2, cardiac                                     |
| 66402                   | sarcolipin                                                        |
| 140740                  | SEC63-like (S. cerevisiae)                                        |
| 20338                   | Sel1 (suppressor of lin-12) 1 homolog (C. elegans)                |
| 20350                   | sema domain, immunoglobulin domain (Ig), short basic              |
|                         | domain, secreted, (semaphorin) 3 F                                |
| 20700 /// 20701/3/4 /// | serine (or cysteine) proteinase inhibitor, clade A, member 1a /// |
| 544889                  | 1b /// 1d /// 1e /// similar to Serpina1a protein                 |
| 12406                   | serine (or cysteine) proteinase inhibitor, clade H, member 1      |
| 56726                   | SH3-binding domain glutamic acid-rich protein like                |
| 20404                   | SH3-domain GRB2-like 2                                            |
| 237979                  | sidekick homolog 2 (chicken)                                      |
| 107513                  | signal sequence receptor, alpha                                   |
| 432700                  | similar to Ig heavy chain V-III region J606                       |
| 546611                  | similar to kelch-like 9                                           |
| 435350                  | similar to NK13                                                   |
| 546020                  | similar to secreted gel-forming mucin                             |
| 20473                   | sine oculis-related homeobox 3 homolog (Drosophila)               |
| 75345                   | SLAM family member 7                                              |
| 20563                   | slit homolog 2 (Drosophila)                                       |
| 20365                   | small EDRK-rich factor 1                                          |
| 20269                   | sodium channel, voltage-gated, type III, alpha                    |
| 20493                   | solute carrier family 10 (sodium/bile acid cotransporter          |
|                         | family), member 1                                                 |
| 56643                   | solute carrier family 15 (oligopeptide transporter), member 1     |

| Gene ID | gene                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------|
| 20519   | solute carrier family 22 (organic cation transporter), member 3                                               |
| 22232   | solute carrier family 35 (UDP-galactose transporter), member                                                  |
|         | 2                                                                                                             |
| 58246   | solute carrier family 35, member B4                                                                           |
| 53945   | solute carrier family 40 (iron-regulated transporter), member 1                                               |
| 246787  | solute carrier family 5 (sodium/glucose cotransporter), member 2                                              |
| 230612  | solute carrier family 5 (sodium/glucose cotransporter), member 9                                              |
| 20541   | solute carrier family 8 (sodium/calcium exchanger), member 1                                                  |
| 226999  | solute carrier family 9 (sodium/hydrogen exchanger), member 2                                                 |
| 77031   | solute carrier family 9 (sodium/hydrogen exchanger), member 8                                                 |
| 69024   | sorting nexin 15                                                                                              |
| 75469   | spermatogenesis associated 19                                                                                 |
| 57815   | spermatogenesis associated 5                                                                                  |
| 27401   | s-phase kinase-associated protein 2 (p45)                                                                     |
| 56632   | sphingosine kinase 2                                                                                          |
| 278240  | spindlin-like                                                                                                 |
| 114715  | sprouty protein with EVH-1 domain 1, related sequence                                                         |
| 20775   | squalene epoxidase                                                                                            |
| 20669   | SRY-box containing gene 14                                                                                    |
| 20680   | SRY-box containing gene 7                                                                                     |
| 20447   | ST6 (alpha-N-acetyl-neuraminyl-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 3 |
| 56018   | START domain containing 10                                                                                    |
| 20249   | stearoyl-Coenzyme A desaturase 1                                                                              |
| 74480   | sterile alpha motif domain containing 4                                                                       |
| 78925   | steroid 5 alpha-reductase 1                                                                                   |
| 20655   | superoxide dismutase 1, soluble                                                                               |
| 93762   | SWI/SNF related, matrix associated, actin dependent regulator                                                 |
|         | of chromatin, subfamily a, member 5                                                                           |
| 214804  | synapse defective 1, Rho GTPase, homolog 2 (C. elegans)                                                       |
| 64176   | synaptic vesicle glycoprotein 2 b                                                                             |
| 52440   | Tax1 (human T-cell leukemia virus type I) binding protein 1                                                   |
| 83993   | T-box 19                                                                                                      |
| 57246   | T-box 20                                                                                                      |
| 319939  | tensin 3                                                                                                      |
| 60600   | testis specific gene A8                                                                                       |
| 223431  | TGF-beta1-induced anti-apoptotic factor 2                                                                     |

| Gene ID | gene                                                   |
|---------|--------------------------------------------------------|
| 223431  | TGF-beta1-induced anti-apoptotic factor 2              |
| 234723  | thioredoxin-like 4B                                    |
| 21834   | thyroid hormone receptor beta                          |
| 76367   | TP53 regulating kinase                                 |
| 69014   | TRAF2 and NCK interacting kinase                       |
| 21419   | transcription factor AP-2 beta                         |
| 252973  | transcription factor CP2-like 3                        |
| 57259   | transducer of ERBB2, 2                                 |
| 21372   | transducin (beta)-like 1 X-linked                      |
| 22059   | transformation related protein 53                      |
| 21808   | transforming growth factor, beta 2                     |
| 331046  | transglutaminase 4 (prostate)                          |
| 67564   | transmembrane protein 35                               |
| 235135  | transmembrane protein 45b                              |
| 227331  | trinucleotide repeat containing 15                     |
| 229644  | tripartite motif-containing 45                         |
| 67525   | tripartite motif-containing 62                         |
| 50876   | tropomodulin 2                                         |
| 319953  | tubulin tyrosine ligase-like 1                         |
| 67534   | tubulin tyrosine ligase-like family, member 4          |
| 233276  | tubulin, gamma complex associated protein 5            |
| 24099   | tumor necrosis factor (ligand) superfamily, member 13b |
| 21939   | tumor necrosis factor receptor superfamily, member 5   |
| 22070   | tumor protein, translationally-controlled 1            |
| 13345   | twist homolog 2 (Drosophila)                           |
| 234724  | tyrosine aminotransferase                              |
| 83813   | tyrosine kinase, non-receptor, 1                       |
| 93961   | UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase,     |
|         | polypeptide 5                                          |
| 14425   | UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-      |
|         | acetylgalactosaminyltransferase 3                      |
| 22227   | uncoupling protein 1 (mitochondrial, proton carrier)   |
| 22256   | Uracil-DNA glycosylase                                 |
| 103149  | ureidopropionase, beta                                 |
| 338362  | Uronyl-2-sulfotransferase                              |
| 22268   | uroplakin 1B                                           |
| 100647  | uroplakin 3B                                           |
| 22283   | Usher syndrome 2A (autosomal recessive, mild) homolog  |
|         | (human)                                                |
| 195434  | UTP14, U3 small nucleolar ribonucleoprotein, homolog B |
|         | (yeast)                                                |
| 212190  | UBX domain containing 3                                |

| Gene ID          | gene                                                      |
|------------------|-----------------------------------------------------------|
| 74199            | vitrin                                                    |
| 83767            | WASP family 1                                             |
| 22408            | wingless-related MMTV integration site 1                  |
| 22416            | Wingless-related MMTV integration site 3A                 |
| 24117            | Wnt inhibitory factor 1                                   |
| 22402            | WNT1 inducible signaling pathway protein 1                |
| 74254            | XPA binding protein 1                                     |
| 235320           | zinc finger and BTB domain containing 16                  |
| 75580            | zinc finger and BTB domain containing 4                   |
| 16969            | zinc finger and BTB domain containing 7a                  |
| 56869            | zinc finger protein 109                                   |
| 57908            | zinc finger protein 318                                   |
| 328977           | zinc finger protein 532                                   |
| 241494           | zinc finger protein 533                                   |
| 233887           | zinc finger protein 553                                   |
| 69234            | zinc finger protein 688                                   |
| 213436           | zinc finger, CCHC domain containing 5                     |
| 433204 /// 66980 | zinc finger, DHHC domain containing 6 /// similar to Zinc |
|                  | finger DHHC domain containing protein 6 (H4 homolog)      |
| 53604            | zona pellucida binding protein                            |
| 80292            | ZXD family zinc finger C                                  |

#### **CITED LITERATURE**

- Abdel-Wahab, O., Adli, M., LaFave, L.M., Gao, J., Hricik, T., Shih, A.H., Pandey, S., Patel, J.P., Chung, Y.R., Koche, R., *et al.* (2012). ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer cell *22*, 180-193.
- Aloia, L., Di Stefano, B., and Di Croce, L. (2013). Polycomb complexes in stem cells and embryonic development. Development *140*, 2525-2534.
- Antipchuk Iu, P. (1966). [Structure and function of the reptile heart]. Doklady Akademii nauk SSSR *169*, 1465-1466.
- Aries, A., Paradis, P., Lefebvre, C., Schwartz, R.J., and Nemer, M. (2004). Essential role of GATA-4 in cell survival and drug-induced cardiotoxicity. Proceedings of the National Academy of Sciences of the United States of America *101*, 6975-6980.
- Arteaga, G.M., Warren, C.M., Milutinovic, S., Martin, A.F., and Solaro, R.J. (2005). Specific enhancement of sarcomeric response to Ca2+ protects murine myocardium against ischemia-reperfusion dysfunction. American journal of physiology Heart and circulatory physiology 289, H2183-2192.
- Bailliard, F., and Anderson, R.H. (2009). Tetralogy of Fallot. Orphanet journal of rare diseases *4*, 2.
- Balza, R.O., Jr., and Misra, R.P. (2006). Role of the serum response factor in regulating contractile apparatus gene expression and sarcomeric integrity in cardiomyocytes. The Journal of biological chemistry 281, 6498-6510.
- Bartova, E., Krejci, J., Harnicarova, A., Galiova, G., and Kozubek, S. (2008). Histone modifications and nuclear architecture: a review. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society *56*, 711-721.
- Baskind, H.A., Na, L., Ma, Q., Patel, M.P., Geenen, D.L., and Wang, Q.T. (2009). Functional conservation of Asxl2, a murine homolog for the Drosophila enhancer of trithorax and polycomb group gene Asx. PloS one *4*, e4750.
- Basu, A., and Atchison, M.L. (2010). CtBP levels control intergenic transcripts, PHO/YY1 DNA binding, and PcG recruitment to DNA. Journal of cellular biochemistry *110*, 62-69.
- Beisel, C., Imhof, A., Greene, J., Kremmer, E., and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature *419*, 857-862.
- Benson, D.W., Silberbach, G.M., Kavanaugh-McHugh, A., Cottrill, C., Zhang, Y., Riggs, S., Smalls, O., Johnson, M.C., Watson, M.S., Seidman, J.G., *et al.* (1999). Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. The Journal of clinical investigation 104, 1567-1573.
- Bernstein, E., Duncan, E.M., Masui, O., Gil, J., Heard, E., and Allis, C.D. (2006). Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Molecular and cellular biology *26*, 2560-2569.
- Bienz, M. (2006). The PHD finger, a nuclear protein-interaction domain. Trends in biochemical sciences *31*, 35-40.
- Bingham, A.J., Ooi, L., Kozera, L., White, E., and Wood, I.C. (2007). The repressor element 1silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes. Molecular and cellular biology 27, 4082-4092.
- Bischoff, K., Ballew, A.C., Simon, M.A., and O'Reilly, A.M. (2009). Wing defects in Drosophila xenicid mutant clones are caused by C-terminal deletion of additional sex combs (Asx). PloS one 4, e8106.

- Boudreault, A.A., Cronier, D., Selleck, W., Lacoste, N., Utley, R.T., Allard, S., Savard, J., Lane, W.S., Tan, S., and Cote, J. (2003). Yeast enhancer of polycomb defines global Esa1dependent acetylation of chromatin. Genes & development 17, 1415-1428.
- Bovill, E., Westaby, S., Reji, S., Sayeed, R., Crisp, A., and Shaw, T. (2008). Induction by left ventricular overload and left ventricular failure of the human Jumonji gene (JARID2) encoding a protein that regulates transcription and reexpression of a protective fetal program. The Journal of thoracic and cardiovascular surgery *136*, 709-716.
- Bracken, A.P., Dietrich, N., Pasini, D., Hansen, K.H., and Helin, K. (2006). Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes & development 20, 1123-1136.
- Breiling, A., Turner, B.M., Bianchi, M.E., and Orlando, V. (2001). General transcription factors bind promoters repressed by Polycomb group proteins. Nature *412*, 651-655.
- Brock, H.W., and van Lohuizen, M. (2001). The Polycomb group--no longer an exclusive club? Current opinion in genetics & development *11*, 175-181.
- Bruneau, B.G. (2002). Transcriptional regulation of vertebrate cardiac morphogenesis. Circulation research *90*, 509-519.
- Bruneau, B.G. (2010). Chromatin remodeling in heart development. Current opinion in genetics & development 20, 505-511.
- Byrd, K.N., and Shearn, A. (2003). ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci U S A *100*, 11535-11540.
- Cao, R., Wang, H., He, J., Erdjument-Bromage, H., Tempst, P., and Zhang, Y. (2008). Role of hPHF1 in H3K27 methylation and Hox gene silencing. Molecular and cellular biology 28, 1862-1872.
- Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039-1043.
- Cao, R., and Zhang, Y. (2004). SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molecular cell *15*, 57-67.
- Chan, J.K., Sun, L., Yang, X.J., Zhu, G., and Wu, Z. (2003). Functional characterization of an amino-terminal region of HDAC4 that possesses MEF2 binding and transcriptional repressive activity. The Journal of biological chemistry 278, 23515-23521.
- Chen, E.P., Bittner, H.B., Akhter, S.A., Koch, W.J., and Davis, R.D. (2001). Myocardial function in hearts with transgenic overexpression of the G protein-coupled receptor kinase 5. The Annals of thoracic surgery 71, 1320-1324.
- Chiplunkar, A.R., Lung, T.K., Alhashem, Y., Koppenhaver, B.A., Salloum, F.N., Kukreja, R.C., Haar, J.L., and Lloyd, J.A. (2013). Kruppel-like factor 2 is required for normal mouse cardiac development. PloS one 8, e54891.
- Cho, Y.S., Kim, E.J., Park, U.H., Sin, H.S., and Um, S.J. (2006). Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. The Journal of biological chemistry 281, 17588-17598.
- Chopra, V.S., Hendrix, D.A., Core, L.J., Tsui, C., Lis, J.T., and Levine, M. (2011). The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Molecular cell *42*, 837-844.
- Clapier, C.R., and Cairns, B.R. (2009). The biology of chromatin remodeling complexes. Annual review of biochemistry 78, 273-304.

- Clark, K.L., Yutzey, K.E., and Benson, D.W. (2006). Transcription factors and congenital heart defects. Annual review of physiology 68, 97-121.
- Cripps, R.M., and Olson, E.N. (2002). Control of cardiac development by an evolutionarily conserved transcriptional network. Developmental biology *246*, 14-28.
- Crosby, M.A., Miller, C., Alon, T., Watson, K.L., Verrijzer, C.P., Goldman-Levi, R., and Zak, N.B. (1999). The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol *19*, 1159-1170.
- Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell *111*, 185-196.
- Dejardin, J., Rappailles, A., Cuvier, O., Grimaud, C., Decoville, M., Locker, D., and Cavalli, G. (2005). Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434, 533-538.
- Delgado-Olguin, P., Huang, Y., Li, X., Christodoulou, D., Seidman, C.E., Seidman, J.G., Tarakhovsky, A., and Bruneau, B.G. (2012). Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nature genetics 44, 343-347.
- Di Stefano, L., Ji, J.Y., Moon, N.S., Herr, A., and Dyson, N. (2007). Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development. Current biology : CB *17*, 808-812.
- Dietrich, N., Lerdrup, M., Landt, E., Agrawal-Singh, S., Bak, M., Tommerup, N., Rappsilber, J., Sodersten, E., and Hansen, K. (2012). REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS genetics 8, e1002494.
- Doyon, Y., Selleck, W., Lane, W.S., Tan, S., and Cote, J. (2004). Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Molecular and cellular biology *24*, 1884-1896.
- El-Osta, A. (2011). Remodeling is at the heart of chromatin: the heartaches of chromatin. Epigenetics : official journal of the DNA Methylation Society *6*, 884-887.
- Endoh, M., Endo, T.A., Endoh, T., Isono, K., Sharif, J., Ohara, O., Toyoda, T., Ito, T., Eskeland, R., Bickmore, W.A., *et al.* (2012). Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS genetics 8, e1002774.
- Eskeland, R., Leeb, M., Grimes, G.R., Kress, C., Boyle, S., Sproul, D., Gilbert, N., Fan, Y., Skoultchi, A.I., Wutz, A., *et al.* (2010). Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell *38*, 452-464.
- Feng, J.J., and Marston, S. (2009). Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscular disorders : NMD *19*, 6-16.
- Fisher, C.L., Berger, J., Randazzo, F., and Brock, H.W. (2003). A human homolog of Additional sex combs, ADDITIONAL SEX COMBS-LIKE 1, maps to chromosome 20q11. Gene *306*, 115-126.
- Fisher, C.L., Lee, I., Bloyer, S., Bozza, S., Chevalier, J., Dahl, A., Bodner, C., Helgason, C.D., Hess, J.L., Humphries, R.K., *et al.* (2010a). Additional sex combs-like 1 belongs to the enhancer of trithorax and polycomb group and genetically interacts with Cbx2 in mice. Developmental biology 337, 9-15.
- Fisher, C.L., Pineault, N., Brookes, C., Helgason, C.D., Ohta, H., Bodner, C., Hess, J.L., Humphries, R.K., and Brock, H.W. (2010b). Loss-of-function Additional sex combs like

1 mutations disrupt hematopoiesis but do not cause severe myelodysplasia or leukemia. Blood *115*, 38-46.

- Fisher, C.L., Randazzo, F., Humphries, R.K., and Brock, H.W. (2006). Characterization of Asxl1, a murine homolog of Additional sex combs, and analysis of the Asx-like gene family. Gene *369*, 109-118.
- Francis, N.J., Kingston, R.E., and Woodcock, C.L. (2004). Chromatin compaction by a polycomb group protein complex. Science *306*, 1574-1577.
- Francis, N.J., Saurin, A.J., Shao, Z., and Kingston, R.E. (2001). Reconstitution of a functional core polycomb repressive complex. Molecular cell *8*, 545-556.
- Fujioka, M., Yusibova, G.L., Zhou, J., and Jaynes, J.B. (2008). The DNA-binding Polycombgroup protein Pleiohomeotic maintains both active and repressed transcriptional states through a single site. Development 135, 4131-4139.
- Gaytan de Ayala Alonso, A., Gutierrez, L., Fritsch, C., Papp, B., Beuchle, D., and Muller, J. (2007). A genetic screen identifies novel polycomb group genes in Drosophila. Genetics *176*, 2099-2108.
- Gould, A. (1997). Functions of mammalian Polycomb group and trithorax group related genes. Current opinion in genetics & development 7, 488-494.
- Graff, J., and Tsai, L.H. (2013). Histone acetylation: molecular mnemonics on the chromatin. Nature reviews Neuroscience 14, 97-111.
- Han, Z., Xing, X., Hu, M., Zhang, Y., Liu, P., and Chai, J. (2007). Structural basis of EZH2 recognition by EED. Structure *15*, 1306-1315.
- Hang, C.T., Yang, J., Han, P., Cheng, H.L., Shang, C., Ashley, E., Zhou, B., and Chang, C.P. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62-67.
- Hatcher, C.J., Diman, N.Y., McDermott, D.A., and Basson, C.T. (2003). Transcription factor cascades in congenital heart malformation. Trends in molecular medicine *9*, 512-515.
- He, A., Ma, Q., Cao, J., von Gise, A., Zhou, P., Xie, H., Zhang, B., Hsing, M., Christodoulou, D.C., Cahan, P., *et al.* (2012). Polycomb repressive complex 2 regulates normal development of the mouse heart. Circulation research *110*, 406-415.
- Hofsteen, P., Mehta, V., Kim, M.S., Peterson, R.E., and Heideman, W. (2013). TCDD inhibits heart regeneration in adult zebrafish. Toxicological sciences : an official journal of the Society of Toxicology *132*, 211-221.
- Huang, Z.M., Gold, J.I., and Koch, W.J. (2011). G protein-coupled receptor kinases in normal and failing myocardium. Frontiers in bioscience : a journal and virtual library *16*, 3047-3060.
- Ingham, P.W. (1985). A clonal analysis of the requirement for the trithorax gene in the diversification of segments in Drosophila. J Embryol Exp Morphol *89*, 349-365.
- Katoh, M. (2003). Identification and characterization of ASXL2 gene in silico. International journal of oncology 23, 845-850.
- Katoh, M. (2004). Identification and characterization of ASXL3 gene in silico. Int J Oncol 24, 1617-1622.
- Kennison, J.A. (1995). The Polycomb and trithorax group proteins of Drosophila: transregulators of homeotic gene function. Annual review of genetics *29*, 289-303.
- Kennison, J.A., and Tamkun, J.W. (1988). Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A *85*, 8136-8140.

- Kim, S.Y., Paylor, S.W., Magnuson, T., and Schumacher, A. (2006). Juxtaposed Polycomb complexes co-regulate vertebral identity. Development *133*, 4957-4968.
- Kobayashi, K., Luo, M., Zhang, Y., Wilkes, D.C., Ge, G., Grieskamp, T., Yamada, C., Liu, T.C., Huang, G., Basson, C.T., *et al.* (2009). Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nature cell biology 11, 46-55.
- Kodo, K., Nishizawa, T., Furutani, M., Arai, S., Ishihara, K., Oda, M., Makino, S., Fukuda, K., Takahashi, T., Matsuoka, R., *et al.* (2012). Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circulation journal : official journal of the Japanese Circulation Society *76*, 1703-1711.
- Kodo, K., and Yamagishi, H. (2010). GATA transcription factors in congenital heart defects: a commentary on a novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. Journal of human genetics *55*, 637-638.
- Koga, H., Kaji, Y., Nishii, K., Shirai, M., Tomotsune, D., Osugi, T., Sawada, A., Kim, J.Y., Hara, J., Miwa, T., *et al.* (2002). Overexpression of Polycomb-group gene rae28 in cardiomyocytes does not complement abnormal cardiac morphogenesis in mice lacking rae28 but causes dilated cardiomyopathy. Laboratory investigation; a journal of technical methods and pathology 82, 375-385.
- Kohler, C., and Hennig, L. (2010). Regulation of cell identity by plant Polycomb and trithorax group proteins. Current opinion in genetics & development *20*, 541-547.
- Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S., *et al.* (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS genetics *4*, e1000242.
- Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes & development *16*, 2893-2905.
- Lai, H.L., Grachoff, M., McGinley, A.L., Khan, F.F., Warren, C.M., Chowdhury, S.A., Wolska, B.M., Solaro, R.J., Geenen, D.L., and Wang, Q.T. (2012). Maintenance of adult cardiac function requires the chromatin factor Asxl2. Journal of molecular and cellular cardiology 53, 734-741.
- Lamiable, O., Rabhi, M., Peronnet, F., Locker, D., and Decoville, M. (2010). Rm62, a DEADbox RNA helicase, complexes with DSP1 in Drosophila embryos. Genesis 48, 244-253.
- Lee, S.W., Cho, Y.S., Na, J.M., Park, U.H., Kang, M., Kim, E.J., and Um, S.J. (2010). ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. The Journal of biological chemistry *285*, 18-29.
- Lee, Y., Song, A.J., Baker, R., Micales, B., Conway, S.J., and Lyons, G.E. (2000). Jumonji, a nuclear protein that is necessary for normal heart development. Circulation research *86*, 932-938.
- Levine, S.S., King, I.F., and Kingston, R.E. (2004). Division of labor in polycomb group repression. Trends in biochemical sciences 29, 478-485.
- Lewis, E.B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565-570.
- Lewis, E.B. (1982). Control of body segment differentiation in Drosophila by the bithorax gene complex. Progress in clinical and biological research *85 Pt A*, 269-288.
- Li, G., Margueron, R., Ku, M., Chambon, P., Bernstein, B.E., and Reinberg, D. (2010). Jarid2 and PRC2, partners in regulating gene expression. Genes & development 24, 368-380.

- Li, H., Ilin, S., Wang, W., Duncan, E.M., Wysocka, J., Allis, C.D., and Patel, D.J. (2006). Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91-95.
- Li, J., Ebata, A., Dong, Y., Rizki, G., Iwata, T., and Lee, S.S. (2008). Caenorhabditis elegans HCF-1 functions in longevity maintenance as a DAF-16 regulator. PLoS biology *6*, e233.
- Lickert, H., Takeuchi, J.K., Von Both, I., Walls, J.R., McAuliffe, F., Adamson, S.L., Henkelman, R.M., Wrana, J.L., Rossant, J., and Bruneau, B.G. (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature *432*, 107-112.
- Lopez, A., Higuet, D., Rosset, R., Deutsch, J., and Peronnet, F. (2001). corto genetically interacts with Pc-G and trx-G genes and maintains the anterior boundary of Ultrabithorax expression in Drosophila larvae. Mol Genet Genomics *266*, 572-583.
- Louch, W.E., Sheehan, K.A., and Wolska, B.M. (2011). Methods in cardiomyocyte isolation, culture, and gene transfer. Journal of molecular and cellular cardiology *51*, 288-298.
- Lu, Y.X., Denlinger, D.L., and Xu, W.H. (2013). PRC2 protein ESC regulates insect developmental timing by mediating H3K27me3 and activating PTTH gene expression. The Journal of biological chemistry.
- Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury, W.J., 3rd, Voigt, P., Martin, S.R., Taylor, W.R., De Marco, V., *et al.* (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762-767.
- Martinez, A.M., Colomb, S., Dejardin, J., Bantignies, F., and Cavalli, G. (2006). Polycomb group-dependent Cyclin A repression in Drosophila. Genes & development 20, 501-513.
- McCulley, D.J., and Black, B.L. (2012). Transcription factor pathways and congenital heart disease. Current topics in developmental biology *100*, 253-277.
- McDonagh, T.A., Morrison, C.E., Lawrence, A., Ford, I., Tunstall-Pedoe, H., McMurray, J.J., and Dargie, H.J. (1997). Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. Lancet *350*, 829-833.
- Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., *et al.* (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766-770.
- Mendez, J., and Stillman, B. (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Molecular and cellular biology 20, 8602-8612.
- Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B.E., Jaenisch, R., Lander, E.S., and Meissner, A. (2008). Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49-55.
- Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., *et al.* (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature *448*, 553-560.
- Milne, T.A., Sinclair, D.A., and Brock, H.W. (1999). The Additional sex combs gene of Drosophila is required for activation and repression of homeotic loci, and interacts specifically with Polycomb and super sex combs. Molecular & general genetics : MGG 261, 753-761.
- Min, J., Zhang, Y., and Xu, R.M. (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes & development *17*, 1823-1828.

- Mohd-Sarip, A., Venturini, F., Chalkley, G.E., and Verrijzer, C.P. (2002). Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Molecular and cellular biology 22, 7473-7483.
- Montgomery, N.D., Yee, D., Chen, A., Kalantry, S., Chamberlain, S.J., Otte, A.P., and Magnuson, T. (2005). The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Current biology : CB *15*, 942-947.
- Montgomery, R.L., Davis, C.A., Potthoff, M.J., Haberland, M., Fielitz, J., Qi, X., Hill, J.A., Richardson, J.A., and Olson, E.N. (2007). Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes & development 21, 1790-1802.
- Muller, J., and Kassis, J.A. (2006). Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Current opinion in genetics & development *16*, 476-484.
- Nakamura, T., Mori, T., Tada, S., Krajewski, W., Rozovskaia, T., Wassell, R., Dubois, G., Mazo, A., Croce, C.M., and Canaani, E. (2002). ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell *10*, 1119-1128.
- Nanda, S., Nelson-Piercy, C., and Mackillop, L. (2012). Cardiac disease in pregnancy. Clin Med *12*, 553-560.
- Naya, F.J., Black, B.L., Wu, H., Bassel-Duby, R., Richardson, J.A., Hill, J.A., and Olson, E.N. (2002). Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nature medicine 8, 1303-1309.
- Nekrasov, M., Klymenko, T., Fraterman, S., Papp, B., Oktaba, K., Kocher, T., Cohen, A., Stunnenberg, H.G., Wilm, M., and Muller, J. (2007). Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. The EMBO journal 26, 4078-4088.
- Nemer, G., and Nemer, M. (2001). Regulation of heart development and function through combinatorial interactions of transcription factors. Annals of medicine *33*, 604-610.
- Ng, R.K., and Gurdon, J.B. (2008). Epigenetic inheritance of cell differentiation status. Cell Cycle 7, 1173-1177.
- O'Connell, S., Wang, L., Robert, S., Jones, C.A., Saint, R., and Jones, R.S. (2001). Polycomblike PHD fingers mediate conserved interaction with enhancer of zeste protein. The Journal of biological chemistry 276, 43065-43073.
- Oka, T., Maillet, M., Watt, A.J., Schwartz, R.J., Aronow, B.J., Duncan, S.A., and Molkentin, J.D. (2006). Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circulation research *98*, 837-845.
- Okada, M., and Hirose, S. (1998). Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Molecular and cellular biology 18, 2455-2461.
- Olson, E.N. (2006). Gene regulatory networks in the evolution and development of the heart. Science *313*, 1922-1927.
- Orlando, V. (2003). Polycomb, epigenomes, and control of cell identity. Cell 112, 599-606.
- Ozcan, S., Andrali, S.S., and Cantrell, J.E. (2010). Modulation of transcription factor function by O-GlcNAc modification. Biochimica et biophysica acta *1799*, 353-364.
- Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G.A., Stewart, R., and Thomson, J.A. (2007). Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell stem cell 1, 299-312.

- Pandey, R.R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., Nagano, T., Mancini-Dinardo, D., and Kanduri, C. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular cell 32, 232-246.
- Park, U.H., Yoon, S.K., Park, T., Kim, E.J., and Um, S.J. (2011). Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}. The Journal of biological chemistry 286, 1354-1363.
- Parlakian, A., Charvet, C., Escoubet, B., Mericskay, M., Molkentin, J.D., Gary-Bobo, G., De Windt, L.J., Ludosky, M.A., Paulin, D., Daegelen, D., *et al.* (2005). Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation *112*, 2930-2939.
- Pasini, D., Bracken, A.P., Jensen, M.R., Lazzerini Denchi, E., and Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. The EMBO journal 23, 4061-4071.
- Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature *379*, 131-137.
- Perry, J. (2006). The Epc-N domain: a predicted protein-protein interaction domain found in select chromatin associated proteins. BMC genomics 7, 6.
- Peterson, A.J., Mallin, D.R., Francis, N.J., Ketel, C.S., Stamm, J., Voeller, R.K., Kingston, R.E., and Simon, J.A. (2004). Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression. Genetics 167, 1225-1239.
- Pirrotta, V. (1998). Polycombing the genome: PcG, trxG, and chromatin silencing. Cell *93*, 333-336.
- Pirrotta, V., and Li, H.B. (2012). A view of nuclear Polycomb bodies. Current opinion in genetics & development 22, 101-109.
- Qin, S., Guo, Y., Xu, C., Bian, C., Fu, M., Gong, S., and Min, J. (2013). Tudor domains of the PRC2 components PHF1 and PHF19 selectively bind to histone H3K36me3. Biochemical and biophysical research communications 430, 547-553.
- Rao, V.S., Korte, F.S., Razumova, M.V., Feest, E.R., Hsu, H., Irving, T.C., Regnier, M., and Martyn, D.A. (2013). N-terminal phosphorylation of cardiac troponin-I reduces lengthdependent calcium sensitivity of contraction in cardiac muscle. The Journal of physiology 591, 475-490.
- Ringrose, L., and Paro, R. (2007). Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 134, 223-232.
- Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., *et al.* (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell *129*, 1311-1323.
- Rozovskaia, T., Rozenblatt-Rosen, O., Sedkov, Y., Burakov, D., Yano, T., Nakamura, T., Petruck, S., Ben-Simchon, L., Croce, C.M., Mazo, A., *et al.* (2000). Self-association of the SET domains of human ALL-1 and of Drosophila TRITHORAX and ASH1 proteins. Oncogene 19, 351-357.
- Sachdeva, B.S., Prakash, C., and Singh, I.D. (1964). Hepatic Function and Structure in Congestive Heart Failure. Indian journal of physiology and pharmacology *8*, 52-59.
- Salvaing, J., Decoville, M., Mouchel-Vielh, E., Bussiere, M., Daulny, A., Boldyreva, L., Zhimulev, I., Locker, D., and Peronnet, F. (2006). Corto and DSP1 interact and bind to a

maintenance element of the Scr Hox gene: understanding the role of Enhancers of trithorax and Polycomb. BMC biology 4, 9.

- Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V., and Reinberg, D. (2008). Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Molecular and cellular biology 28, 2718-2731.
- Scheuermann, J.C., de Ayala Alonso, A.G., Oktaba, K., Ly-Hartig, N., McGinty, R.K., Fraterman, S., Wilm, M., Muir, T.W., and Muller, J. (2010). Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465, 243-247.
- Schuettengruber, B., and Cavalli, G. (2009). Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development *136*, 3531-3542.
- Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B., and Cavalli, G. (2007). Genome regulation by polycomb and trithorax proteins. Cell *128*, 735-745.
- Schuettengruber, B., Ganapathi, M., Leblanc, B., Portoso, M., Jaschek, R., Tolhuis, B., van Lohuizen, M., Tanay, A., and Cavalli, G. (2009). Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS biology 7, e13.
- Schwendemann, A., and Lehmann, M. (2002). Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proceedings of the National Academy of Sciences of the United States of America *99*, 12883-12888.
- Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J.R., Wu, C.T., Bender, W., and Kingston, R.E. (1999). Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37-46.
- Shimono, Y., Murakami, H., Hasegawa, Y., and Takahashi, M. (2000). RET finger protein is a transcriptional repressor and interacts with enhancer of polycomb that has dual transcriptional functions. The Journal of biological chemistry 275, 39411-39419.
- Shirai, M., Osugi, T., Koga, H., Kaji, Y., Takimoto, E., Komuro, I., Hara, J., Miwa, T., Yamauchi-Takihara, K., and Takihara, Y. (2002). The Polycomb-group gene Rae28 sustains Nkx2.5/Csx expression and is essential for cardiac morphogenesis. The Journal of clinical investigation 110, 177-184.
- Sieck, G.C., and Regnier, M. (2001). Invited Review: plasticity and energetic demands of contraction in skeletal and cardiac muscle. J Appl Physiol *90*, 1158-1164.
- Simon, J., Chiang, A., and Bender, W. (1992). Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development *114*, 493-505.
- Sing, A., Pannell, D., Karaiskakis, A., Sturgeon, K., Djabali, M., Ellis, J., Lipshitz, H.D., and Cordes, S.P. (2009). A vertebrate Polycomb response element governs segmentation of the posterior hindbrain. Cell 138, 885-897.
- Solaro, R.J., Rosevear, P., and Kobayashi, T. (2008). The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochemical and biophysical research communications *369*, 82-87.
- Solaro, R.J., and van der Velden, J. (2010). Why does troponin I have so many phosphorylation sites? Fact and fancy. Journal of molecular and cellular cardiology *48*, 810-816.
- Sparmann, A., and van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature reviews Cancer *6*, 846-856.
- Subbarayan, V., Mark, M., Messadeq, N., Rustin, P., Chambon, P., and Kastner, P. (2000). RXRalpha overexpression in cardiomyocytes causes dilated cardiomyopathy but fails to rescue myocardial hypoplasia in RXRalpha-null fetuses. The Journal of clinical investigation 105, 387-394.

- Surface, L.E., Thornton, S.R., and Boyer, L.A. (2010). Polycomb group proteins set the stage for early lineage commitment. Cell stem cell 7, 288-298.
- Takeuchi, J.K., Lou, X., Alexander, J.M., Sugizaki, H., Delgado-Olguin, P., Holloway, A.K., Mori, A.D., Wylie, J.N., Munson, C., Zhu, Y., *et al.* (2011). Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nature communications 2, 187.
- Takihara, Y., Tomotsune, D., Shirai, M., Katoh-Fukui, Y., Nishii, K., Motaleb, M.A., Nomura, M., Tsuchiya, R., Fujita, Y., Shibata, Y., *et al.* (1997). Targeted disruption of the mouse homologue of the Drosophila polyhomeotic gene leads to altered anteroposterior patterning and neural crest defects. Development *124*, 3673-3682.
- Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., and Kennison, J.A. (1992). brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68, 561-572.
- Tardiff, J.C., Hewett, T.E., Factor, S.M., Vikstrom, K.L., Robbins, J., and Leinwand, L.A. (2000). Expression of the beta (slow)-isoform of MHC in the adult mouse heart causes dominant-negative functional effects. American journal of physiology Heart and circulatory physiology 278, H412-419.
- Toko, H., Zhu, W., Takimoto, E., Shiojima, I., Hiroi, Y., Zou, Y., Oka, T., Akazawa, H., Mizukami, M., Sakamoto, M., *et al.* (2002). Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart. The Journal of biological chemistry 277, 24735-24743.
- Vallaster, M., Vallaster, C.D., and Wu, S.M. (2012). Epigenetic mechanisms in cardiac development and disease. Acta biochimica et biophysica Sinica 44, 92-102.
- Wadhwa, P.D., Buss, C., Entringer, S., and Swanson, J.M. (2009). Developmental origins of health and disease: brief history of the approach and current focus on epigenetic mechanisms. Seminars in reproductive medicine 27, 358-368.
- Walker, C.A., and Spinale, F.G. (1999). The structure and function of the cardiac myocyte: a review of fundamental concepts. The Journal of thoracic and cardiovascular surgery 118, 375-382.
- Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. (2004a). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873-878.
- Wang, Q.T. (2012). Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Developmental dynamics : an official publication of the American Association of Anatomists 241, 1021-1033.
- Wang, Z., Zhai, W., Richardson, J.A., Olson, E.N., Meneses, J.J., Firpo, M.T., Kang, C., Skarnes, W.C., and Tjian, R. (2004b). Polybromo protein BAF180 functions in mammalian cardiac chamber maturation. Genes & development 18, 3106-3116.
- Woo, C.J., Kharchenko, P.V., Daheron, L., Park, P.J., and Kingston, R.E. (2010). A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell *140*, 99-110.
- Wu, S.C., and Zhang, Y. (2011). Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of enhancer of zeste 2 (Ezh2) regulates its stability. The Journal of biological chemistry 286, 28511-28519.
- Wu, X., Johansen, J.V., and Helin, K. (2013). Fbx110/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Molecular cell 49, 1134-1146.

- Wysocka, J., Swigut, T., Xiao, H., Milne, T.A., Kwon, S.Y., Landry, J., Kauer, M., Tackett, A.J., Chait, B.T., Badenhorst, P., *et al.* (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86-90.
- Yao, T.P., Oh, S.P., Fuchs, M., Zhou, N.D., Ch'ng, L.E., Newsome, D., Bronson, R.T., Li, E., Livingston, D.M., and Eckner, R. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361-372.
- Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W., and Cleary, M.L. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24, 5639-5649.
- Yu, H., Mashtalir, N., Daou, S., Hammond-Martel, I., Ross, J., Sui, G., Hart, G.W., Rauscher, F.J., 3rd, Drobetsky, E., Milot, E., *et al.* (2010). The ubiquitin carboxyl hydrolase BAP1 forms a ternary complex with YY1 and HCF-1 and is a critical regulator of gene expression. Molecular and cellular biology 30, 5071-5085.
- Yu, M., Mazor, T., Huang, H., Huang, H.T., Kathrein, K.L., Woo, A.J., Chouinard, C.R., Labadorf, A., Akie, T.E., Moran, T.B., *et al.* (2012). Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Molecular cell 45, 330-343.
- Zhang, C.L., McKinsey, T.A., Chang, S., Antos, C.L., Hill, J.A., and Olson, E.N. (2002). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479-488.
- Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., and Lee, J.T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science *322*, 750-756.
- Zhao, X.D., Han, X., Chew, J.L., Liu, J., Chiu, K.P., Choo, A., Orlov, Y.L., Sung, W.K., Shahab, A., Kuznetsov, V.A., *et al.* (2007). Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell stem cell 1, 286-298.
- Zink, B., and Paro, R. (1989). In vivo binding pattern of a trans-regulator of homoeotic genes in Drosophila melanogaster. Nature *337*, 468-471.

### VITA

### **EDUCATION**

University of Illinois at Chicago, Chicago, IL. Ph.D. candidate of Biological Sciences

Chicago State University, Chicago, IL. M.S. of Molecular Biology, 2005-2008

Kaohsiung Medical University, Taiwan, Bachelor of Biomedical technology, 1997-2001

### **RESEARCH EXPERIENCE**

Chicago State University, Chicago, IL September 2005 – July 2008 Research Assistant (September 2005 – July 2008)

Tri-Service General Hospital, Taipei, Taiwan August 2003 – July 2005 Research Assistant

National Taiwan University, Taipei, Taiwan August 2002 – July 2003 Research Assistant

### **TEACHING EXPERIENCE**

Cell Biology Laboratory, University of Illinois at Chicago, 2011

Microbiology laboratory teaching assistant, University of Illinois at Chicago, 2008-2013

TILT (Training in Interdisciplinary Laboratory Techniques) Instructor, *Chicago State University*, 2007

### **AWARDS and HONORS**

University of Illinois at Chicago, Chancellor's Student Service and Leadership Award, 2013

University of Illinois at Chicago, Research Achievement Award, 2013

University of Illinois at Chicago, Excellent Teaching Award, 2010

Chicago State University, Outstanding Research Award, 2008

Phi Tau Phi Scholastic Honor Society of America, Outstanding Youth Researcher Award, 2007

### UNIVERSITY AND COMMUNITY SERVICES

Event coordinator of the Biology Graduate Students Association, University of Illinois at Chicago, 2008-2013

Society for Developmental Biology member, 2008-present

### **PUBLICATIONS**

Hsiao-Lei Lai, Q. T. Wang. Additional sex combs-like 2 is required for Polycomb Repressive Complex 2 binding at select targets. 2013. PloS One, In press.

**<u>Hsiao-Lei Lai</u>**, M. Grachoff, A. McGinley, F. F. Khan, C. Warren, S. Chowdhury, B. Wolska, D. Geenen, Q. T. Wang. *Maintenance of adult cardiac function requires the chromatin factor Asxl2*. **2012**. Journal of Molecular and Cellular Cardiology, 53(5):734-41.

H.L. Wu, L.R. Huang, C.C. Huang, <u>Hsiao-Lei Lai</u>, C.J. Liu, Y.T. Huang, Y.W. Hsu, C.Y. Lu, D.S. Chen, P.J. Chen, *RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant*. **2005**. Gastroenterology, 128(3): 708–716.

C. Tzao, H.S. Hsu, G.H. Sun, <u>Hsiao-Lei Lai</u>, Y.C. Wang, H.J. Tung, C.P. Yu, Y.L. Cheng, S.C. Lee, *Promotor methylation of the hMLH1 gene and protein expression of human mutL homolog 1 and human mutS homolog 2 in resected esophageal squamous cell carcinoma*. **2005**. J Thorac Cardiovasc Surg, 130 (5): 1371.

### PRESENTATIONS

<u>Hsiao-Lei Lai</u>, Milana Grachoff, Andrea L. Marion, Farida F. Khan, Meeri Lee, Annie Lin, David L. Geenen, Q. Tian Wang. The chromatin factor Asxl2 is a novel regulator of ventricular function. 2011. American Heart Association, Orlando, FL

<u>Hsiao-Lei Lai</u>, Qun Tian Wang. Additional Sex Combs-like 2 regulates the recruitment of Polycomb Repressive Complex 2. 2011. Abcam Meeting, Chromatin: Structure and Function, Aruba