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SUMMARY

The thesis is based on a project whose aim is to study, at a very low level, the mice brains, in

particular, the auditory corticothalamic system. This research takes advantage of an innovative

technology, the calcium imaging technique, that allows the visualization of mice brain neurons

where the firing cells are visible with a high resolution. This is a project developed by the

University of Illinois at Chicago in collaboration with the University of Illinois at Urbana-

Champaign. The project is supervised by the Professor Robert V. Kenyon and the Professor

Tanya Berger-Wolf for the UIC, and the Professor Daniel Llano for the UIUC. The dataset

used in this project are movies obtained from the Department of Neuroscience of the UIUC.

These datasets are passed through a data processing pipeline, that ends with a visualization

tool. This tool provided validation and inspection for the community affiliation of the cells.

The focus of this thesis is the development of the visualization tool used as part of the project.

ix



CHAPTER 1

INTRODUCTION

1.1 The Importance of Data Visualization

It is very difficult for humans to capture patterns in datasets presented as spreadsheets or

reports. When a dataset is composed by few rows, it is possible to compare them and have an

idea of what is happening. But, when the amount of data explodes, it becomes very tough to

analyze all those numbers, because of the way the human brain processes information. This is

why we visualize data.

Data visualization allows visual access to huge amounts of data in easily digestible visuals.

It is used in many different fields. For example, a CEO of a company analyzes many charts

when he has to make decisions, while a scientist visualizes the results of his experiments to

discover new insights. Thus, the visualization becomes the input for a domain expert mind,

that can use his experience to produce new knowledge.

But, the benefits of a good visualization are not limited for experts only. Often, a good

visualization allows also a nondomain expert person to find patterns between the data, using

only his visual capability. This because the human brain is good in recognizing visual patterns.

Moreover, a good visualization can give the ability to verify if the data were processed in a

correct and meaningful way. This last case is what we are going to see in this document.

1
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1.2 The Data Pipeline

To analyze our data, we created a data processing pipeline that concludes with our visual-

ization. The input of the pipeline was a set of movies taken on mice brains.

These movies were produced by the department of neuroscience of the University of Illinois

at Urbana-Champaign, precisely by the neuroscientist Daniel Llano, who used the calcium

imaging technique on mice brains to film the activations of the neurons.

Then, we processed these movies in order to extract the positions and the time courses of

the cells that activate during the movie, using a standard deviation based technique.

The time courses of the cells were then used by our data mining team to compute, through

some algorithms, the correlations and the communities of the cells. These, together, represent

the reconstructed brain network. This construction of the network is based on a relationship

measure, in our case the correlation, that determines if each pair of nodes need to be connected

by an edge or not, and the weight of this edge. Each node of the network represents a cell.

Then, finally, at the end of the pipeline, the network and the other data were visualized by

our visualization tool. This part resulted critically important because it was useful to verify

the correctness of the algorithm used in the previous step. Moreover, the neuroscientists can

interactively explore the data in different visual representations and have the possibility to

control some parameters to modify the network in real-time, in order to extract new insights

[1].

To summarize, the steps of the Data Analysis Pipeline are:

1. Data extraction from the movie.
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2. Computation of the relationship measure. In our case, the correlation.

3. Creation of the network using the relationship measure.

4. Computation of the communities inside the network.

5. Visualization.

These steps contain a loop. This because, after the visualization step, two outcomes are

possible:

1. Some good information is extracted from the final visualized data, increasing our knowl-

edge of the brain function.

2. The created network results to be imprecise if compared with the ground truth data, i.e.

the time courses of the cells. So, there is the need to modify the algorithm that computed

the network or to choose another relationship measure: return to step 2.

Figure 1: Data processing and visualization pipeline

We will see in the experiments section that the visualization tool helped to notice that the

correlation was not a precise factor in building the network since it created many edges between
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cells that should not be connected. Based on this finding, the data mining team could start to

pursue other directions.

Figure 2: Overview of the visualization tool



CHAPTER 2

CALCIUM IMAGING TECHNIQUE

The calcium imaging is an advanced technique that can be used to record cellular activities

inside the brain:

Ca2+ imaging techniques enable us to measure the temporal variation in the intracellular

Ca2+ concentration (Grynkiewicz, Poenie, Tsien, 1985). In the case of nerve cells, the in-

tracellular Ca2+ concentration is closely related to the membrane potential of cells because

Ca2+ is recruited inside through voltage-dependent Ca2+ channels whose conductivities de-

pend on the membrane potential. Therefore, the instantaneous elevation of the intracellular

Ca2+ concentration gives us important information on the time of action potential genera-

tion. Many research groups have developed multi-cellular Ca2+ imaging systems to record

individual cellular activities of a cell assembly in vitro and in vivo. For example, Ikegaya

et al. (2004), Ikegaya, Le Bon-Jego, and Yuste (2005) recorded the spike times of hundreds

of cortical neurons in in vitro Ca2+ imaging and discovered a repeated firing sequence from

particular groups of neurons. Dombeck, Harvey, Tian, Looger, and Tank (2010) recorded

in vivo hippocampal CA1 neurons of a moving rat and showed the spatial distribution of

place cells. [2]

5
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In our case, the calcium imaging technique was used by the Department of Neuroscience at

the University of Illinois at Urbana-Champaign, in particular by the Professor Daniel Llano to

film the auditory corticothalamic projection of the mouse brain. Then, the movie was sent to

us by Professor Llano, and we used it as input for our data processing and visualizing pipeline.



CHAPTER 3

DATA EXTRACTION FROM MOVIE

We received the movie from the neuroscientist as a sequence of thousands of frames in TIF

format, like the one showed in Figure 3. The data that we wanted to obtain from these, and

then visualize, were the time courses of the cells, i.e. a time series for each cell representing its

brightness in the movie over time, and the positions of the cells, i.e. the coordinates of their

centroids.

Three steps were necessary to pass from the raw movie to the time courses, plus a step to

extract the coordinates of the centroids of the cells.

Figure 3: One frame of the movie

7
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3.1 Composed Image Generation

The movie obtained with calcium imaging needed to be composed in a single image that

shows all the cells that activate during the movie. This because the obtained image could be

passed again to the neuroscientist that, thanks to his knowledge, was able to trace the regions

of interest representing the area occupied by each single cell.

Each cell occupies a certain portion of the pixels in each frame. This means that, if a cell is

firing in a certain frame of the movie, its pixels will have a higher brightness value with respect

to the normal value that they have when the cell is not firing. Using this information, it is

possible to observe that the standard deviation of the brightness of each pixel during the entire

movie could determine if that pixel belongs to a firing cell or not. This because, as said before,

during the activation of a cell the brightness value of its pixels will increase rapidly, causing

a higher standard deviation of that pixels with respect to a non-cell pixel. So, we decided to

compose the entire set of frames to create a single image where the value of each pixel is equal to

the standard deviation of that pixel computed through the entire movie. Since the images were

in gray-scale color, we can consider each image as a matrix of W ×H values, where each value

represents the brightness of the pixel in the row i and in the column j. Using this notation,

formally, we computed the composed image of standard deviations SD in this way:

• Given F1, F2, ...Fn matrixes W ×H representing n frames.

• A final matrix SD W ×H representing the composed image.

• ∀ i, j, SD(i, j) =

√∑n
t=1(Ft(i,j)−F (i,j))2

n where F (i, j) =
∑n

t=1 Ft(i,j)
n
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Then, we observed that the image obtained with the standard deviation technique resulted

difficult to analyze, since the cells, even if present, appear to be very dark. So, we decided to

increase the contrast of the composed image, to make the cells more visible. To do this, we

made use of the MATLAB function imadjust. Imadjust work in this way: “scales intensities

linearly such that 1% of pixel values saturate at black (0), and 1% of pixel values saturate at

white” [3]. The result, showed in Figure 4, was good, but not complete. This because the cells

that reached the highest brightness during the movie, resulted in having a very high standard

deviation, making less visible those cells that, even if activated during the movie, resulted with

a lower standard deviation because they reached lower level of brightness.

Figure 4: Standard deviation post contrast enhance
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So, in order to spot also the other cells, we needed a method to reduce the standard deviation

of the brightest cells only. We managed to do this using again the imadjust function. We

increased the contrast of each frame before of the composition with the standard deviation

technique, instead of increase the contrast of the composed image.

Increasing the contrast in each frame makes very bright those cells that in the previous

composed image had the higher standard deviation, while the cells in the dark areas become

just more visible. In this way, when we computed the standard deviation using these enhanced

contrast frames, we obtained, for the very bright cells, a low standard deviation, while for those

cells with an improved visibility we obtained a high standard deviation. This is explainable

because a pixel is visible in the composed image if its standard deviation value is high with

respect to the standard deviation of all the other pixels in the composed image. In the image

obtained using the frames without the contrast enhance (Figure 4), the standard deviation of

the pixels in the central area was very high, so the cells that activated in the darker area were

not visible. Instead, in this composed image, the standard deviation of the pixels in the central

area was very low, because their values remained very high during the entire time course, and

so, as showed in Figure 5, the activated cells in the darker areas became visible, cells that we

weren’t able to see in the previous composed image.

So, the two obtained pictures are complementary, since they shows different cells. We

combined them to obtain most of the cells that activate during the movie.
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Figure 5: Standard deviation pre contrast enhance

3.2 ROIs and Labeling

After we obtained the two composed images, representing the cells that activated during

the movie, we passed them to the neuroscientist, because we needed his knowledge to determine

which illuminated areas in the composed image represent a cell and which not. So, he produced

a Regions Of Interest binary image, with the same dimensions of the composed images, where

each pixel was set to true if it belongs to an area representing a cell, and false if not. The ROIs

image is showed in Figure 6.
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Figure 6: Manual ROIs

Then, when we received this image from the neuroscientist, we needed to label each ROI.

We used a MATLAB function that assigns labels in order from left to right and from top to

bottom. The labeling is very important since in the visualization is important to know which

cell of the frame we are exploring and because we wanted to associate to each cell a time series,

a set of correlations with each other cell, and a community.

3.3 Centroid Coordinates Extraction

For our visualization tool, we needed to know the coordinates of the physical position of

each cell in the frames. This because, as we will see, there is a section of the visualization tool
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that shows the constructed network projected on the observed frame of the movie. To extract

the coordinates of the cells, we computed the centroids of their ROIs.

3.4 Timecourses Extraction

Once that we finally had the physical positions of each cell in the frames, and that we knew

their areas, we were ready to generate the time courses of the cells. This is the main dataset

of the project since it fed the algorithm that computes the correlations and the communities,

i.e., the reconstructed network. We decided to compute them assigning, to each cell, a value of

brightness in each frame equal to the average value of its ROI pixels brightness in that frame.

We obtained a matrix, in CSV format, where each column represents a cell, identified by its

label, and each row represents a frame. So, for example, the value in the position at row 3 and

column 7 represents the average of the pixel values in the ROI of the cell with the label number

7 at the frame number 3.
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INPUT OF THE VISUALIZATION

After we completed the processing phases explained before, including the computation of

the correlations and the communities performed by our data mining team, we ended up with 4

different datasets.

4.1 The Datasets

The first 2 datasets are composed of multiple files, since they change in every timestamp,

while the last 2 consist of single files because their data remain constant in each timestamp.

4.1.1 The Dataset of the Correlations

This dataset consists of a series of files, one file for each timestamp, containing the correla-

tions between each cell. The correlation matrix is complete, so, there is a value of correlation

for each pair of cells.

The file number represents the first timestamp of the window in which the correlations are

computed. So, for example, the file number 40, if we are using a window with a length of 100,

will contain the correlation computed using the time courses of the cells from the timestamp

40 to the timestamp 139.

4.1.2 The Dataset of the Communities

This dataset consists of a series of files, one file for each timestamp, containing the corre-

sponding community for each cell. Since these communities are computed using the correlation

14
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files, also for them the file number represents the first timestamp of the window in which the

correlations are computed.

4.1.3 The Dataset of the Physical Coordinates

This dataset consists of a single file since it contains the coordinates of the center of each

cell, computed using the frame containing the Regions Of Interest. Since the physical positions

of the cells remain constants through the movies, there is no need to have different data for

each timestamp.

4.1.4 The Dataset of the Time Courses

This dataset consists of a single file containing the time course of each cell. That means

that for each cell, there is a list of values, and each value represents the average brightness of

the cell pixels during a certain timestamp. So, the file is a table consisting in N rows × M

columns, where N is the total number of timestamps of a time course and M is the number of

cells in the dataset.

4.2 Datasets Format

In this section, we explain the syntactical structure of the 4 datasets. This is important

because the visual interactive application extracts the data from them, following some precise

parsing rules.

4.2.1 Dataset of the Correlations

This dataset consists of N separated files, where N is the total number of frames minus the

length of the window used to compute the correlation. Each file is structured in this way:
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• There are M rows, each one representing the correlations between two cells. So, if there

are K cells, each file will have K2 rows.

• Each row contains 3 numbers, that can be separated by any number of spaces or by a

comma.

• The first two numbers are the labels of two cells and the third number is their correlation.

4.2.2 Dataset of the Communities

Since it is computed using the Dataset of Correlations, also this dataset consists of N

separated files, where N is the total number of frames minus the length of the window used to

compute the correlations. Each file is structured in this way:

• There are K rows, each one representing the community of a cell. So, if there are K cells,

each file will have K rows.

• Each row contains 2 numbers, that can be separated by any number of spaces or by a

comma.

• The first number is the label of the cell and the second number represents the community

which that cell belongs to.

4.2.3 Dataset of the Physical Coordinates

This dataset consists of a single file. This file is structured in this way:

• There are K rows, each one representing the position of the centroid of a cell in the

frames. So, if there are K cells, each file will have K rows.
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• Each row contains 3 numbers, that can be separated by any number of spaces or by a

comma.

• The first number is the label of the cell, the second number is the x coordinate of the cell

centroid and the third number is the y coordinate of the cell centroid.

4.2.4 Dataset of the Time Courses

This dataset consists of a single file. This file is structured in this way:

• There are N + 1 rows, each one, except for the first, representing a timestamp of the

time courses, or, equivalently, a frame. So, if the movie is composed by N frames, the file

will have N + 1 rows.

• The first row contains K numbers, that are separated by a comma, each one representing

the label of a cell.

• Each successive row contains K numbers, that are separated by a comma since it is a

CSV file. Each one of these rows represents a frame.

• Each number in a row is the value of the brightness of the cell with the label equal to the

number in the first row of that number column, in the frame with number row - 1.



CHAPTER 5

THE VISUALIZATION TOOL

As we have seen, we had many different data to visualize, ranging in thousands of frames

and several correlations. So, instead of creating a series of static visualizations, we decided to

build an interactive visualization application, that allows exploring all the data.

If we had just used the data to plot some static graphs, probably we wouldn’t have obtained

so much. This mainly for two reasons:

• First, it is very hard to know a priori which data are interesting to plot. The data needs

to be visually explored in order to discover interesting patterns. If we had known before

what is interesting to visualize, probably we would not have had so much need for a

visualization.

• Second, we are computer scientists, not experts of the domain of study. The creation of an

interactive application moves the important task of choosing which data to visualize from

the developer to the user, since the tool let the user to decide which data are visualized

and where to perform a deep exploration of them [4].

Moreover, we decided to build this as a web application, accessible by anyone using a modern

browser like Chrome. Most of the existing tools for data visualization need to be downloaded

and installed. The advantages of having a web application are that it is accessible everywhere

you dispose of an Internet connection and that it is simpler. This is an important aspect because

18
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the tool won’t be used only by computer scientist, but especially by researchers that need an

effective and efficient way to visualize their data. Moreover, if they have, for any reason, to

work on another computer, they don’t need to install again the application, the tool is always

on the web.

Those aspects offer a great user experience for those people that don’t want to spend their

time in a complex installation of weight software but want to immediately jump to play with

the data.

5.1 Layout

We built the visualization tool in such a way that all the useful information are presented

to the user in the simplest, but still meaningful, possible way. We had 4 main datasets to

visualize, plus the frames of the movie:

• The correlations between the cells.

• The communities of the cells.

• The physical position of the cells.

• The time courses of the cells.

Assigning too many visual attributes to a single graph to encode all the information could

have brought to a visualization difficult to understand. This because there are visual attributes

that are easier to percept for the human brain, like position and color, and attributes that are

more difficult to get, like shapes, in particular, if someone is searching for patterns. Moreover,



20

sometimes it is useful to visualize the same dataset in different ways since it can bring to

different visual information, as we will see.

So, to maintain the application visually approachable, and to analyze the data from different

prospectives, we decided to divide the application into 3 main sections (Figure 7).

Figure 7: The interactive web application is composed by 3 separate main sections
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5.1.1 The Projection of the Network on the Image Frame

On the top right of the web application, the user can find a quadrant containing a network

projected over an image. This is the graph representing the physical structure of the network.

It is projected on the current frame, the one at the start of the analyzed window.

This graph uses the dataset of the physical positions of the cells to map the nodes of the

network on the image frame. The nodes are represented as empty holes so that the real cells in

the frame are observable inside the relative nodes. It also uses the dataset of the correlations to

visualize the edges between the cells if their respective correlation it’s above a certain threshold.

This threshold is variable and the user can easily modify it using a slider located under the

projection.

The nodes are represented with the color of the community, but, while in the force graph on

the left the user can observe the distribution of the communities with respect to the correlations,

in this graph he can observe the distribution of the communities with respect to the physical

position of the cells. Since the algorithm that computes the communities produces different

datasets on different correlation thresholds, the user can use the selector on the right of the

slider to choose between different meaningful outputs of communities computed with 3 different

threshold cuts or to keep the communities computed without any cut on the network, turning

off this functionality.

5.1.2 The Force Graph

On the top left of the web application, the user can observe a graph composed of colored

circles that present different distances between them.
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This graph is a force graph, a special network based on attraction forces, that uses the

dataset of the correlations between the cells to determine the positions of the nodes, and the

dataset of the communities of the cells to determine the color of the nodes. Thus, it exposes

how the cells group with respect to the correlations and how the communities distribute on the

cells. You can also see a button on the top left that can be used to show only the cells that

present the faster variation in their time courses during the analyzed window.

5.1.3 The Multi-Series Line Chart of the Time Courses

Finally, on the bottom, the user can find a multi-series line chart. This is the graph rep-

resenting the time courses of the cells during the movie, i.e. the average brightness of their

pixels for each frame. It obviously uses the dataset of the time courses of the brightness of the

cells, to draw the relative line chart, and the dataset of the communities, to give the color to

the lines. It can be used to observe where the cells fire, and to compare at the same time the

time courses of different cells, to analyze their relationship. This graph is also the timestamp

or frame selector since it allows the user to click on any point of the time course to move the

analyzed window to that point, loading the correlations and communities datasets relative to

the newly analyzed window. Finally, since we computed the correlations and the communities

either with a window of length 100 and 200 frames, there is a selector on the top right that

allows the user to change the length of the analyzed window, loading the relative datasets.
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5.1.4 The Data

These 3 sections are separated, but the bounded data are the same, so that, for example,

the correlations data visualized on the force graph are the same of the ones that build the

physical network, and the communities are the ones computed with that correlations. Thus,

the 3 sections evolve together, with respect to a common timestamp controlled by the user. The

timestamp determines the start of the window in which the currently visualized correlations

and communities are computed. That window is visualized on the multi-series line chart as a

red quadrant and adapts if a different window length is selected so that the user can be aware

of the portion of the time course used to compute the currently visualized correlations and

communities. The active timestamp corresponds to the frame of the movie that is currently

visualized under the physical graph so that the active data in the visualization reflects what is

physically happening in that moment.

5.2 Projection of the Network

This section visualize a network, that is built in this way:

• The network is an undirected graph G = (V,E), where V are the vertices of the graph

and E the edges.

• Each v ∈ V represents a cell of the analyzed brain section, and the dimension of the set

|V | is equal to the number of cells.

• For each pair (x, y), where x, y ∈ V , the unordered pair {x, y} belongs to the set of the

edges of the graph E if corr(x, y) > t, where corr(x, y) is the correlation between the cells

corresponding to the vertices x and y and t is a threshold that can be set by the user.
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• There is a set of communities C = {c1, c2, ..., cn}, and for each v ∈ V, ∃!ci ∈ C | v ∈ ci.

The color of the vertices of the graph is determined by the belonging community.

The representation of the data in such a way that the observer can quickly find patterns,

thanks to his visual ability, is the main purpose of information visualization [5], and this network

built using a threshold on the correlation to determine the edges gives a rapid understanding

on which are the groups of correlated nodes. But for neuroscientists, it is also important to

be able to relocate patterns or interesting behavior in the real physical structure of the brain.

They could do this looking at labeled data, and then comparing with the previously labeled

images but this would not be so practical and it would take a lot of time. So, we decided to

create this visualization of the network that is projected on the currently visualized frame. In

this way, the user has an immediate idea of what is physically happening in the brain during

each timestamp.

This is a similar operation to the one made for fMRI images, where the visualization of

the activated areas of the brain is projected on the picture of the physical brain [6]. The main

difference is that in fMRI images, each pixel represents several neurons. In our case instead,

the resolution is much higher, and one pixel partially represents a cell, since each cell occupies

a certain portion of the frame. Moreover, there are pixels that stay in empty spaces, i.e. spaces

not containing any cell in the frame, so they do not represent a cell.

So, in order to have the nodes of the network visualized over the physical cells in the frame,

the tools set the position of the nodes on the image using the coordinates of the centroids of

each cell. An example is showed in Figure 8.
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Figure 8: The network projected on the current frame

The nodes are represented with empty circles, as showed in Figure 9, in such a way that

the user is able to look at the physical state of the cell, i.e. the level of brightness of its pixels

in the frame.

The color of the circle represents the community which the cell belongs to. In this way, it

is possible to see the physical distribution of the communities within the brain section.

As explained before, the visible edges depend on the correlations between the two cells of

the nodes that each edge connects. A correlation threshold can be set by the user using the

slider under the visualized frame. This slider goes from 0 to 1, and when it is moved, it updates

the correlation threshold and automatically updates the network, showing in real-time the new

one.
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Figure 9: A node represented by a circle on the relative cell. The number is the label of the
cell

The color of an edge represents instead the relation between the communities of the two

connected nodes: if the communities are the same, the color of the edge will be the color of

the two nodes, to represent that the cells belong to the same community. If instead, the two

connected nodes belong to different communities, the color of the edge will be black, as showed

in Figure 10. This is useful because it could visualize the fact that the algorithm that computes

the communities, which is based on the chosen relationship measure, in our case the correlation,

could not working in the desired way, if there are too many black edges, since two nodes of

different communities should have a weak relationship.

The user has also the possibility to visualize only the nodes connected to a determinate

node instead of visualizing the entire network. To do this, he just needs to go with the mouse

on a cell, and its relative subnetwork will be visualized, as showed in Figure 11.
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Figure 10: A black edge representing a connection between two cells belonging to different
communities

Figure 11: The links of a single cell
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5.2.1 Correlation Cut and Communities

As introduced before, the slider can be used to set the correlation threshold and, so, to

interactively visualize the network with only edges between nodes with a correlation higher

than the threshold. If this helps to have a good visualization of the network connections, it

doesn’t help so much in terms of communities. In fact, not always the algorithm that generates

the communities have the same output with different correlation thresholds, like in our case.

The algorithm that we are using makes use of a technique called Louvain Community Detection

to generate the communities [7]. Since this method is not only based on the weight of the

edges, but also on the presence of the edges between two nodes, it is clear that the communities

generated on the entire network will be different from the one generated on a network with

some edges cut.

To overcome this problem, since it takes days to compute those communities, we chose 3

meaningful correlation cuts, set at 0.5, 0.6, 0.7, and precomputed the communities for those

three different cuts. We also computed the communities obtained without any cut on the

network. The user can use the selector on the right of the slider (Figure 12) to choose the value

of the correlation cut or to turn this functionality off. If the user selects off, the communities

will be the one computed on the entire network without any cut. Instead, if the user selects a

cut, the communities generated with that cut will be loaded and the visualization updated.

Indeed, if we load the communities computed on a network with a certain cut, would make

no sense to set the correlation threshold of the visualized network under the value of that cut,

because all the edges under that value were not considered by the algorithm. So, we made
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Figure 12: On the left, the correlation slider, that can be used to change the correlation
threshold. On the right, the cut selector, that can be used to load the datasets of communities
produced on a network having only edges with weights higher than the cut value, or that can
be switched off to have the communities computed on the fully connected network

the slider to dynamically change such that its minimum value it is equal to the value of the

correlation cut, and it returns to be equal to 0 when this functionality is turned off. For example,

setting a cut of 0.7, the slider will mutate to have a range from 0.7 to 1, as shown in Figure 12.

5.3 Force Graph

The network projected on the graph that we have seen before has two big limits:

• It depends on the correlation threshold set by the user.

• Doesn’t offer a good visualization of the groups of cells highly correlated between them.

In fact, if we want to identify the groups of most correlated cells using the projected network,

to have a global view, we need to go through many plots of the network changing every time the

correlation threshold, until we found interesting patterns. It makes really hard to determine at

a glance who has a lot of connection and instead who is isolated. With that kind of graph, we

have a good idea of the physical distribution of the network and the communities, but a bad

representation of the groups of highly correlated cells, as we can see in Figure 13.
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Figure 13: Even with a high correlation threshold, 0.7, the network results to have too many
edges, and it’s hard to get which are the interesting groups of correlated cells

To overcome these two limits, we created a specialized Force Graph, based on the force-

layout of D3.js. A force-layout is a physic based simulation that set forces between nodes based

on the length of the edges that connect them and, following these forces, computes a good

arrangement for the entire structure. Then there is a gravity that keeps the structure close to

the center of the SVG container.
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The nodes represent the cells, while the correlation is represented by the intensity of attrac-

tion between the nodes. What we wanted to obtain is that cells with higher correlation tend to

be more attracted, so that they result closer in the Force Graph, while cells with lower corre-

lation tend to be less attracted, so that they will appear farther in the graph. To enforce this

behavior, we compute the length of each edge in a way inversely proportional to the correlation

of the cells represented by the two nodes that it connects.

Formally, we set the length of the edges in this way: (1 - corr(A,B)) * K, where A and B

are the two cells represented by the nodes that the edges connect, corr(x, y) is a function which

output is equal to the correlation of the two parameters x and y, and K is a constant.

Then, those lengths are used by the force-layout to generate the forces that will determine

the spatial distribution of the nodes. We can see, in Figure 14, a comparison between the

Network representation and the Force Graph. In the first, on the right, is almost impossible to

understand the relationships between the cells, but it gives a good visualization of the physical

distribution of the communities. The second, on the left, gives instead a good visualization of

the group of cells highly correlated, but the information about the physical position of the cells

is lost.

There is another way, more traditional, to visualize a matrix of correlations between a set

of nodes: the correlation heatmap [8]. This kind of heatmap is able to give some information

about the distribution of the correlation values. The main weakness of a correlation heatmap is

that it cannot provide meaningful global patterns, since, to visualize the intensity of correlation,

it assigns a different color for every couple of objects. So, the groups of cells with the same
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Figure 14: On the left: the force graph of the network. Cells with higher correlations tend to
stay closer, while cells with lower correlations between them tend to repulse. So, the interesting
group of highly correlated cells results well defined. On the right: the network projected on the
frame. It is hard to get the groups of correlated cells, but it gives a view of the physical spatial
distribution of the communities

color that your eyes will capture in the matrix will depend on the order of the items on the rows

and the columns, and that is totally arbitrary. We will show this problem in the next section,

that compares the use of a traditional heatmap of correlations with our Force Graph.

5.3.1 HeatMap VS. Force Graph

In this little experiment, we are going to show why the Force Graph is a better choice to

visually represent the distance measure between multiple nodes with respect to an HeatMap. In

this case, our distance will be the correlation, so, we compare a Force Graph of correlations with

a correlation HeatMap, that are respectively showed in Figure 15 and Figure 16, to determine

which one is a better solution to visualize our data.
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Figure 15: The 3 orange nodes on the right are very close and separated from the rest, since
are really correlated between them and low correlated with the others. It was really easy, for
our eyes, to percept that group of highly correlated cells

Is well known, since the first studies on visual perceptions made by the Gestalt School of

Psychology, in 1912, that humans perceive objects that are close together as a groups [9]. This

becomes totally clear when we look at the Force Graph. In particular, if we look at Figure 15,

it is possible to see at a glance that the 3 orange nodes on the right are very correlated, while

in the correlations HeatMap, it is very hard to notice similar group patterns.

It is true that also objects that share similar attributes, like the color, are perceived as a

group, but in the correlation HeatMap, this fact becomes a deceptive attribute. This because
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Figure 16: An heatmap of correlations. The distribution of the colors in the matrix space
totally depends on the order on which the compared items are presented in the matrix, thus,
it is totally arbitrary and provides no useful global information for the observer. The only
information that you can get is a pairwise one, i.e., the correlation between each couple of
items

the color is determined by the pairwise correlation between the node represented by the row and

the node represented by the column. But if nodes A and B have a correlation of 0.5 between

them, and also nodes C and D have a correlation of 0.5 between them, the relative squares in

the matrix, (A,B) and (B,C), will have the same color, but, in fact, there isn’t any relationship

between them.
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We have another benefit in the force graph with respect to the HeatMap. In Data Visual-

ization, the numbers of good visual attributes that can be used to visualize attributes of the

data is limited. In the case of the HeatMap, we are ”wasting” the attribute of the position

in the space, because, as said before, the position is just used to determine which elements of

the rows and the columns correspond to that square, so, it totally depends on the order of the

elements, that is arbitrary. So, we have to use the color hue as a visual attribute to represent

the correlation values. In the Force Graph this is not necessary, so, it is possible to use the color

hue of the nodes to represent another attribute of the data. In our problem, this is fundamental,

since we have to visualize also the belonging communities of the cells.

In conclusion, the visualization of correlations through a Force Graph offers a really good

global view of the relations between the elements, obtaining an automatic visual clustering of

the nodes, through the relative positions, that the common correlation HeatMaps don’t offer,

and frees the color hue visual attribute, giving the possibility to use it for other purposes, like

showing the communities.

5.3.2 Communities

As introduced before, this visualization also shows the community of each cell. The com-

munities are visualized on the Force Graph using the color of the nodes. This technique gives

a very good representation of the relationship between the communities and the correlations

between elements, since, in the case of strong relations, well defined colored clusters will appear

in the visualization.
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5.4 Multi-Series Line Chart

This section visualizes a multi-series line chart, that is built in this way:

• There is a set of active lines L, and a dynamic line dl.

• Each l ∈ L is a line relative to a cell selected by the user in the network or in the force

graph, and it represents the entire time course of that cell.

• dl is the dynamic line relative to the last cell that the user hovers with the mouse in the

network or in the force graph, and represents the entire time course of that cell.

• Each line is built selecting for each x value, representing a timestamp, an y value that is

equal to the value of the brightness of the relative cell during that timestamp.

We can see the section regarding the visualization of the time courses of the cells in Figure 17.

This quadrant contains a multiple dynamic line chart, where a line represents the time course

of a particular cell.

Figure 17: The time courses section of the tool
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The red line has a stroke wider than the others line, and represent the navigation line. It

is useful to know which is the time course of the cell pointed by the user mouse pointer, and it

changes dynamically when the cursor passes from a cell to another.

Then, the user has the possibility to fix other lines. In order to do this, he has to click on

a node in the force graph or in the network graph. When a node is clicked, its time course is

fixed in the line chart, with the color of its community. This functionality gives the possibility

to compare the time courses of different nodes at the same time, as we can see in Figure 18.

Figure 18: The time courses of the cells number 18 and 39 are set
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We decided to use a simple multi-series line chart, instead of a small multiples graph or a

horizon graph, since the only section of the time courses that we want to analyze is the one

inside the red rectangle, i.e. the current window. It is known that shared-space techniques, like

our simple line graph, are usually more efficient to do comparisons over smaller visual windows,

while techniques that separate time series in different charts, like small multiples or horizon

graphs, are better for comparisons between time series in a larger window [10]. So, for our

purpose, a simple line chart resulted in being the best solution. For a better use of the graph,

the user should limit to 4-5 fixed lines each time.

5.4.1 Moving the analyzed window

The correlations between cells can vary at any moment of the movie, so, the visualization

needed to reflect this behavior. The tool allows the user to navigate through several correlations

and communities files representing the state of the network for each analyzed window of the

time course. The user just needs to click on any point of the line chart, and the analyzed

window will move to that point, dynamically changing the network using the new window files.

This gives the user visual hints about the evolution of the network over time, and the possibility

to observe a particular window of interest.

5.5 Visualizing the Spikes

The visualization composed of the three different sections resulted in being useful, but

still presented a little problem. In fact, what we were really interested in analyzing were the

relationships between those cells that fire during a certain time window, i.e. the ones that

present a spike in their time courses. To show only those cells using the correlation threshold is
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not possible because all the cells that have a slowly decreasing time course during the analyzed

window will result as correlated between them as much as the ones that present a spike.

As we can see in Figure 19, at this time, we set a very high correlation threshold, but

the visualization still shows many cells that don’t present an interesting behavior, like a spike,

during the analyzed window.

Figure 19: A lot of cells result to be highly correlated, but their behavior is not interesting

To overcome this problem, we developed a special functionality that highlights only those

cells that present a very rapid change during the analyzed window. This behavior, most of the

time, corresponds to a spike in their time courses. The user can click on the button located at
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the top left of the first section to activate this functionality. Once this is activated, all the cells

that don’t present an enough rapid change during the analyzed window disappear, leaving only

the most interesting ones. The user can click again on the spike button to come back to the

normal visualization. We can see an example of the network of Figure 19 with this functionality

active in Figure 20.

Figure 20: The spike detector is active: only the cells that present a rapid change during the
analyzed window are visualized



CHAPTER 6

IMPLEMENTATION

We built the tool as an interactive web application, using a client - server paradigm. This

means that the data visualized by the application are stored in a server, and the user can access

the web application from any terminal with an Internet connection, using a browser, preferably

Chrome. We decided to do this also because of the big amount of data that we wanted to

visualize.

The involved technologies are, on the front-end side, HTML, CSS, Javascript and D3.js, the

Javascript library for data visualization. The interaction with the server is instead managed

through AJAX calls.

6.1 Visualization Elements

The visualization is an interactive web application. It is mainly developed using a famous

Javascript library, D3.js [11], that is considered the state of the art for building interactive

web applications for data visualization, used for example, by The New York Times to build

interactive visualization on its web page. It allows binding elements of the DOM, the Document

Object Model of the web page, to the data that you want to visualize. Then, the developer can

set these bounded data as parameters for the attributes of the elements, for example for the

height of a rectangle.

41
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Since D3.js is a pretty recent library, it is recommended to run the visualization web appli-

cation on a modern browser, like Chrome, to have better performances.

6.2 Interaction with the Server

When the user opens the web application, the datasets that remain constant with respect to

every analyzed window, i.e. the dataset of the coordinates and the dataset of the time courses,

are loaded into the user device memory. But the advantage of having a server is that the biggest

part of the data, the correlations and the communities of every possible window, are not loaded

at the startup. This because they are necessary only when the relative window of the time

course is selected by the user to be visualized. So, the only correlations and communities files

that are loaded at the startup, are the ones relative to the window starting from the timestamp

0. When a user changes the timestamp, or when he changes the length of the window, the files

containing the correlations and the communities relative to the newly analyzed window need to

be loaded to the browser, in the user device memory, to be used by the application to update

the visualization. These are retrieved using AJAX calls to the Server [12].

AJAX is a web development technique that allows performing asynchronous calls to the

server in order to get data. Without AJAX, asynchronous calls wouldn’t be possible, and all

the data should be loaded at the startup of the application, offering a very bad user experience,

since loading all these data on the user machine could take several minutes. Moreover, if all

the data are loaded when the web application is open, there is the risk that the memory of the

user device has not enough space to save all of them, making the application crash. This can’t
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happen in the application we built because every time the user loads a new window data, the

data relative to the previously analyzed window are removed from memory.

6.3 Flexibility

In our experiments, we used the tool to visualize correlations between cells of the mouse

brain, and the relative communities generated by algorithms based on correlations. However,

the potential of the tool resides in the fact that the distance measure to determine the network

doesn’t need to be the correlation, but can be substituted by any other measure. This rela-

tionship just needs to be a number between 0 and 1, but it doesn’t need to be a correlation.

In fact, in our experiments, we discovered that, thanks to the use of this tool, the correlation

is not the best factor to build the network, and that it can arise a lot of “false positives”.



CHAPTER 7

EXPERIMENTS AND RESULTS

In this section, we illustrate the experiments that we performed using the visualization tool

and the relative observations.

7.1 Analyzed Dataset

The datasets used in these experiments are extracted from a 6004 frames movie of a mice

brain obtained with the Calcium Imaging technique described before. As explained in the

section regarding the extractions of the time courses, each time course represents the average

value of the pixels of a cell for every frame, and their length is equal to 6004 frames.

The length of the windows chosen to perform the experiments are 100 frames and 200 frames.

This means that, in each window, the visualized correlations and communities are computed

using the frame relative to the first timestamp of the window and the successive 99 or 199

frames.

7.2 Validation of the Correlation as a Cells Relationship Measure

The data visualization techniques are not only useful to discover new information or to find

some patterns in the data, but can also be used to verify that certain theories or algorithms

produce meaningful outputs. Especially in our case, it was very important to have something

at the end of the data processing pipeline that allows us to evaluate the correctness of the work

made in the previous steps.
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We used the tool to verify if the correlation is a good factor in building the network, and if it

is computed in the proper way. We found several spots in the data showing that the correlation

is not the best factor to generate the network because it produces many “false positives” in

terms of edges between nodes.

For example, it is possible to see in Figure 21, that the two the cells 92 and 94 results to be

correlated with a correlation higher than 0.7, since the threshold is set to that value and an edge

still exists between them. Looking at the time courses of these two cells, we can see that they

have nothing in common during the analyzed window, and so, this is a “false positive”, since

it exists an edge between these two cells in the network, but this edge is totally unmeaningful,

since the two time courses have no visible relations.

Playing a bit with the tool it is possible to find many cases where two cells are highly

correlated but their two time courses have not so much in common within the analyzed window.

This was a great result in term of the effectiveness of the visualization tool, since it demon-

strates that can effectively be used to validate or invalidate the cells relationship measure used

to compute the network, in this case, the correlation.

7.3 Calibration of the Window Length

The visualization tool allows also to change the length of the observed window, from 100 to

200. In fact, the algorithm that we use generates different networks depending on the length of

the window, since with a different length the correlations change. Thanks to this functionality,

we can easily observe that the problem exposed in the previous section, relative to the “false

positives” between correlated cells, becomes even worst when we decide to use a larger window.
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Figure 21: The two cells, with labels 92 and 94, result to have a correlation higher than 0.7,
but the sections of their time courses in the considered window have almost nothing in common

For example, if we select a window of length 200 and observe the cells with labels 96 and

104 (Figure 22), we can see that they result to be highly correlated even if their time courses in

that window are pretty different. This didn’t happen when we observed the same cells in the

same window with length 100, as we can see in Figure 23, where the cell labeled 96 disappears

since it is not highly correlated with any other cell.
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Figure 22: The two cells, with labels 96 and 104, result to have a correlation higher than 0.7,
but the sections of their time courses in the considered window have almost nothing in common

Figure 23: The cell with labels 96, that was highly correlated with the cell 104 using a window
of length 200, disappear when the window length is set to 100, since it is not anymore highly
correlated with that cell
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7.4 Validation of the Generated Communities

The visualization allows the user to validate also the algorithm used to compute the com-

munities, thanks to the black edges feature seen in section 5.2 of this document.

We did this for our dataset, and we discover that the Louvain communities present some

undesired behavior in some spots. It is possible to see an example in Figure 24. The correlation

threshold is set really high, so, someone could expect that most of the present edges will be

between nodes that belong to the same community, because the communities were computed

using the correlations. However, in the image (Figure 24) it is possible to see that there are

several black edges. This means that a high number of nodes are connected even if they belong

to different communities.

Figure 24: The correlation threshold is set to 0.7, but there are still many edges between cells
belonging to different communities



CHAPTER 8

CONCLUSION AND FUTURE WORK

Our experiments demonstrated the advantages of having a visualization tool to explore the

data. This can be used to discover new insights or to validate the steps of a data processing

pipeline.

In our case, the tool allowed us to discover that the correlation is not a precise factor to

compute the network. It also showed that using a too wide window to compute the correlations

can bring to less meaningful outputs. Moreover, the spikes highlighting feature resulted in being

pretty effective to visualize only the interesting cells in the analyzed window, and something

similar could be implemented directly in the previous step of the data processing pipeline,

instead of relying only on a correlation cut.

In future, we will get, from the Neuroscience Department of the University of Illinois at

Urbana-Champaign, further movies of different sections of the mouse brain. So, it will become

interesting to compare the networks computed by our algorithms using different movies. In

terms of visualization, this means that the tool could be modified to visualize, at the same

time, multiple networks. And, since the number of data will increase, the visualization part of

the project will become even more important.
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Appendix A

RUNNING THE APPLICATION

The tool is a web application, so you need to use it in a browser. You don’t need to build

anything since javascript is compiled on the fly by the browser. In order to run the application,

you need to run a local server; for example, if you have python installed on your machine, just

write on your terminal ‘python -m SimpleHTTPServer 8000’. Then, open a browser, go to the

address ‘localhost:8000’ and navigate to the ‘visualization’ folder inside the ‘Calcium Network

Visualization’ folder.

If you don’t want to run the visualization tool locally on your machine, you can host the

visualization tool on your server just uploading the ‘Calcium Network Visualization’ folder.

Then, using a browser, navigate to your server address, and go in the ‘visualization’ folder.

The visualization will run faster locally (in a case of slow Internet connection) because

when you change the window position the new correlations and communities datasets need to

be loaded from the server.

The application is already hosted at this address:

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/visualization/

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/visualization/
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Appendix B

APPLICATION STRUCTURE

The application consists of a series of files (HTML, CSS, js, etc..) contained in a folder

called ‘Calcium Network Visualization’.

The only files that you need to change, if you want to visualize different data, are the files

in the ‘data’ and in the ‘frames’ folders.

Inside to the ‘data’ folder, you will find these files and folders:

Figure 25: Content of the ‘data’ folder

In the ‘CONFIG.js’ file (Figure 26), it is possible to:

• Set the extension of your frames files.
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Appendix B (continued)

• Set the window lengths that you used to compute the correlations and communities.

• Set the correlation thresholds relative to the cuts on the network that you used to compute

the communities.

Figure 26: The ‘CONFIG.js’ file

The buttons present in the visualization tool will change accordingly to this file. For ex-

ample, if in this file you set only two correlation cuts, the application will show only the two

buttons relative to these cuts.

The correlations and the communities computed with the windows1 length need to be put

in the folder ‘windows1’, while the ones computed with the window2 length need to be in the

‘window2’ folder.

Inside to the ‘window1’ folder, you will find these folders:

• The folder ‘correlations’ must contain the files relative to the correlations.
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Appendix B (continued)

Figure 27: Content of the ‘window1’ folder

• The folder ‘communities0’ must contain the files relative to the communities computed

on the fully connected network (without cuts).

• The folders ‘communities1’, ‘communities2’, ‘communities3’ can contain the files relative

to the communities computed on a network which edges has been cut using the corre-

sponding correlation thresholds set in the ‘CONFIG.js’ file.

• The folder ‘window2’ has the exact same structure of the folder ‘window1’ and can contain

the files relative to the communities and correlations computed with the window2, in case

you produced them.

• All the files relative to the correlations and the communities need to be named with the

number of the starting frame of the window that they represent, as showed in Figure 28.

The file ‘timeseries.csv’ contains the time series relative to each cell, while the file ‘XYco-

ordinates.txt’ contains the coordinates of the centroids of the cells inside the frames.

The formats of all these files are described in section 4.2, and examples of them can be

explored at this address:

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/data/

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/data/
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Appendix B (continued)

Figure 28: Names of communities and correlations files

Moreover, in the file ‘peaksTables.js’ it is possible to set the boolean matrices relative to the

spikes presents in the time series. In the case that these matrices are not available, set them

‘null’.

Finally, the ‘frames’ folder must contain the frames used to compute all the previous

datasets. They must be named in sequence with numbers, starting from 0, and their extension

must be the one set in the ‘CONFIG.js’ file, as shown in Figure 29. An example of the ‘frames’

folder can be explored at this address:

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/frames/

http://compbio.cs.uic.edu/brain/Calcium%20Network%20Visualization/frames/
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Appendix B (continued)

Figure 29: Names of the frames files
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