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SUMMARY

Graphs are ubiquitous and have become increasingly important in modeling diverse kinds of

objects. In many real-world applications, instances are not represented as feature vectors, but as

graphs with complex structures, e.g., chemical compounds, program flows, XML web documents

and brain networks. One central issue in graph mining research is graph classification, which

has a wide variety of real world applications, e.g. drug activity predictions, toxicology tests

and kinase inhibitions.

There are some major challenges in real-world graph classification problems as follows:

•Learning from graphs with multiple labels: For example, in Figure 2, a chemical compound

can inhibit the activities of multiple types of kinases, e.g., ATPase and MEK kinase; One drug

molecular can have anti-cancer e�cacies on multiple types of cancers.

•Learning from a small number of labeled graphs: In many real world applications, the labels

of graph data are very expensive or di�cult to obtain. Creating a large training dataset can

be too expensive, time-consuming or even infeasible. For example, in molecular medicine, it

requires time, e↵orts and excessive resources to test drugs’ anti-cancer e�cacies by pre-clinical

studies and clinical trials, while there are often copious amounts of unlabeled drugs or molecules

available from various sources.

•Learning from uncertain graphs: For example, in neuroimaging, the functional connectiv-

ities among di↵erent brain regions are highly uncertain (5; 6; 7; 8). In such applications, each

human brain can be represented as an uncertain graph, instead of a certain graph.

xiii



SUMMARY (Continued)

In this thesis, we explore four di↵erent settings of graph classification: multi-label setting,

semi-supervised setting, active learning setting, and uncertain graph setting. In the multi-

label setting, each graph object can be assigned with multiple labels. In semi-supervise setting

and active learning setting, we explore two di↵erent settings to reduce the labeling costs in

graph classification problems. In uncertain graph setting, we explore how to incorporate the

uncertainty information in the graph structure for graph classification problems.

xiv



CHAPTER 1

INTRODUCTION

1.1 Thesis Outline

The objective of my thesis research is to design computational systems that are capable of

analyzing and processing big data. The term “big data” usually refers to 3V’s, i.e., Volume

(the amount of data), Velocity (the speed of data generated), and Variety (the kinds of data

available). My thesis research mainly focuses on addressing the variety issues of big data. Data

variety is about the increasing number of data types that need to be handled di↵erently from

simple logs and conventional data records, and also many di↵erent data sources that need to

be fused together. These include data collected from scientific studies, health care records,

social networks and social media: user activities, events, locations, etc. Although technology

advances (e.g., Apache Hadoop) have helped us enormously in dealing with the first two V’s

(volume and velocity), data variety remains a challenging problem to solve programmatically,

and once it succeeds, it will represent a fundamental advance in big data research with great

benefits to diverse fields, such as biomedical research, social computing, business, etc.

The data variety issues are di�cult to solve because the data usually have complex structures

and involve many di↵erent types of information interrelated in a complex way. For example,

in computational system biology, if we want to predict the e�cacy of a molecular drug for a

certain disease, there are many challenging issues we need to address. Chemical compounds have

1
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Figure 1. Big data: expending in three fronts.

complex molecular structures that standard computational methods cannot handle directly.

The biology system is also extremely complex, involving multiple concepts, such as di↵erent

genes, pathways, tissues, that are interrelated. In computational neuroscience, if we want to

analyze the connectivity pattern among di↵erent regions of the human brian, we also need to

address many challenging issues, such as the uncertainty in the linkage structure between brain

regions.

A successful data model for data variety must be able to formulate the complex structures

and multiple types of information of the data in a holistic perspective. Graphs are becoming

increasingly important in modeling real-world data with complex structures. Examples include

chemical compounds, brain networks and social networks. These data are quite di↵erent from

traditional data objects, which have flat features and thus can be processed easily using conven-

tional methods. A graph object (e.g., a chemical compound) usually has a complex structure,

represented as a set of nodes (e.g., atoms) interconnected through a set of edges (e.g., chemical

bonds). There is no feature readily available.
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In the following sections, I will outline our work on modeling various structural data as

graph objects, and extracting important subgraph patterns in many di↵erent scenarios: drug

discovery tasks where the labeling costs are very high or when we want to explore multiple

gene targets; neuroimaging tasks where the structures of brain networks are highly noisy and

uncertain. In such scenarios, significant, discriminative and reliable patterns for structural data

would be of great utility and the prerequisite for any true analytics.

1.2 Multi-label Graph Classification

Graph classification has been showing critical importance in a wide variety of applications,

e.g. drug activity predictions and toxicology analysis. Current research on graph classification

focuses on single-label settings. However, in many applications, each graph data can be assigned

with a set of multiple labels simultaneously. Extracting good features using multiple labels of

the graphs becomes an important step before graph classification. In Chapter 2, we study the

problem of multi-label feature selection for graph classification and propose a novel solution,

called gMLC, to e�ciently search for optimal subgraph features for graph objects with multiple

labels. Di↵erent from existing feature selection methods in vector spaces which assume the

feature set is given, we perform multi-label feature selection for graph data in a progressive

way together with the subgraph feature mining process. We derive an evaluation criterion to

estimate the dependence between subgraph features and multiple labels of graphs. Then a

branch-and-bound algorithm is proposed to e�ciently search for optimal subgraph features by

judiciously pruning the subgraph search space using multiple labels. Empirical studies demon-
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strate that our feature selection approach can e↵ectively boost multi-label graph classification

performances and is more e�cient by pruning the subgraph search space using multiple labels.

1.3 Semi-supervised Graph Classification

Current research on graph classification also assumes the existence of large amounts of

labeled training graphs. However, in many applications, the labels of graph data are very ex-

pensive or di�cult to obtain, while there are often copious amounts of unlabeled graph data

available. In Chapter 3, we study the problem of semi-supervised feature selection for graph

classification and propose a novel solution, called gSSC, to e�ciently search for optimal sub-

graph features with labeled and unlabeled graphs. Di↵erent from existing feature selection

methods in vector spaces which assume the feature set is given, we perform semi-supervised

feature selection for graph data in a progressive way together with the subgraph feature mining

process. We derive a feature evaluation criterion, named gSemi, to estimate the usefulness of

subgraph features based upon both labeled and unlabeled graphs. Then we propose a branch-

and-bound algorithm to e�ciently search for optimal subgraph features by judiciously pruning

the subgraph search space. Empirical studies on several real-world tasks demonstrate that

our semi-supervised feature selection approach can e↵ectively boost graph classification per-

formances with semi-supervised feature selection and is very e�cient by pruning the subgraph

search space using both labeled and unlabeled graphs.

1.4 Dual Active Feature and Sample Selection for Graph Classification

Current research on graph classification focuses on mining discriminative subgraph features

under supervised settings. The basic assumption is that a large number of labeled graphs are
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available. However, labeling graph data is quite expensive and time consuming for many real-

world applications. In order to reduce the labeling cost for graph data, we address the problem

of how to select the most important graph to query for the label. This problem is challenging

and di↵erent from conventional active learning problems because there is no predefined feature

vector. Moreover, the subgraph enumeration problem is NP-hard. The active sample selection

problem and the feature selection problem are correlated for graph data. Before we can solve the

active sample selection problem, we need to find a set of optimal subgraph features. To address

this challenge, in Chapter 4, we demonstrate how one can simultaneously estimate the usefulness

of a query graph and a set of subgraph features. The idea is to maximize the dependency

between subgraph features and graph labels using an active learning framework. We propose

a branch-and-bound algorithm to search for the optimal query graph and optimal features

simultaneously. Empirical studies on nine real-world tasks demonstrate that the proposed

method can obtain better accuracy on graph data than alternative approaches.

1.5 Uncertain Graph Classification for Brain Networks

Mining discriminative features for graph data has attracted much attention in recent years

due to its important role in constructing graph classifiers, generating graph indices, etc. Most

measurement of interestingness of discriminative subgraph features are defined on certain graphs,

where the structure of graph objects are certain, and the binary edges within each graph rep-

resent the “presence” of linkages among the nodes. In many real-world applications, however,

the linkage structure of the graphs is inherently uncertain. Therefore, existing measurements of

interestingness based upon certain graphs are unable to capture the structural uncertainty in



6

these applications e↵ectively. In Chapter 5, we study the problem of discriminative subgraph

feature selection from uncertain graphs. This problem is challenging and di↵erent from con-

ventional subgraph mining problems because both the structure of the graph objects and the

discrimination score of each subgraph feature are uncertain. To address these challenges, we

propose a novel discriminative subgraph feature selection method, Dug, which can find discrim-

inative subgraph features in uncertain graphs based upon di↵erent statistical measures including

expectation, median, mode and '-probability. We first compute the probability distribution

of the discrimination scores for each subgraph feature based on dynamic programming. Then

a branch-and-bound algorithm is proposed to search for discriminative subgraphs e�ciently.

Extensive experiments on various neuroimaging applications (i.e., Alzheimer’s Disease, ADHD

and HIV) have been performed to analyze the gain in performance by taking into account

structural uncertainties in identifying discriminative subgraph features for graph classification.



CHAPTER 2

MULTI-LABEL GRAPH CLASSIFICATION

2.1 Introduction

Due to the recent advances of data collection technology, many application fields are facing

various data with complex structures, e.g., chemical compounds, program flows and XML web

documents. Di↵erent from traditional data in feature spaces, these data are not represented as

feature vectors, but as graphs which raise one fundamental challenge for data mining research:

the complex structure and lack of vector representations (9; 10; 11; 12). An e↵ective model

for graph data should be able to extract or find a proper set of features for these graphs in

order to perform analysis or management steps. Motivated by these challenges, graph mining

research problems, in particular graph classification, have received considerable attention in the

last decade.

In the literature, graph classification problem has been extensively studied. Conventional

approaches focus on single-label classification problems (13; 14; 15; 16), which assume, explicitly

or implicitly, that each graph has only one label. However, in many real-world applications, each

graph can be assigned with more than one label. For example, in Figure 2, a chemical compound

can inhibit the activities of multiple types of kinases, e.g., ATPase and MEK kinase; One

drug molecular can have anti-cancer e�cacies on multiple types of cancers. The selection and

discovery of drugs or kinase inhibitors can be significantly improved if these chemical molecules

7



8

O

O

 +  ATPase

 −  MEK Kinase

  +  Janus kinase 2

...

 −  PERK 

(a) Kinase Inhibitor (CID = 6763)

O

N

NH
2

NH
2

  +  Breast Cancer

 −  Lung Cancer

 +  Melanoma

...

 −  Leukemia

(b) Anti-Cancer Drug (CID = 9500)

HO

N

NN  +  Female Mice

  −  Male Mice

O

 +  Male Rats

 −  Female Rats

(c) Toxicology Analysis
(ID = TR222)

Figure 2. Examples of multi-label graphs. a) In kinase inhibition, each molecule can inhibit
the activities of multiple types of kinases; b) In anti-cancer prediction, each molecular

medicine can have anti-cancer e�cacies on multiple types of cancers; c) In toxicology analysis,
each chemical compound has carcinogenicity activities in multiple animal models.

are automatically tagged with a set of multiple labels or potential e�cacies. This setting

is also known as multi-label classification where each instance can be associated with multiple

categories. It has been shown useful in many real-world applications such as text categorization

(17; 18) and bioinformatics (19). Multi-label classification is particularly challenging on graph

data. The reason is that, in the single-label case, conventional graph mining methods can

extract or find one set of discriminative subgraph features for the single label concept within

the graph dataset. But in multi-label cases, each graph contains multiple label concepts, and

multiple sets of subgraph features should be mined, one for each label concept, in order to

decide all the possible categories for each graph using binary classifiers (one-vs-all technique

(20)). Thus the time and memory used for classifying multi-label graph data is much larger

than for the single-label graphs. A major di�culty in performing multi-label classification on
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(a) One-vs-All Single-label Feature Selection Process for Multi-label Graph Classification

(b) gMLC Feature Selection Process for Multi-label Graph Classification

Figure 3. Two types of Feature Selection Processes for Multi-label Graph Classification

graph data lies in the complex structure of graphs and lack of features which is useful for

multiple labels concepts. Selecting a proper set of features for graph data becomes an essential

and important procedure for multi-label graph classification.

Despite its value and significance, the multi-label feature selection problem for graph data

has not been studied in this context so far. If we consider graph mining and multi-label

classification as a whole, the major research challenges on multi-label feature selection for

graph classification are as follows:

1. Graph Data: One fundamental problem in multi-label feature selection on graph data

lies in the complex structures and lack of feature representations of graphs. Conventional

feature selection approaches in vector spaces assume, explicitly or implicitly, that a full set
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of features is given before the feature selection. In the context of graph data, however, the

full set of features for a graph dataset, are usually too large or even infeasible to obtain.

For example, in graph mining, the number of subgraph features grows exponentially with

the size of the graphs, which makes it impossible to enumerate all the subgraph features

before the feature selection.

2. Multiple Labels: Another fundamental problem in multi-label feature selection on graph

data lies in the multiple label concepts for each graph, i.e. how to utilize the multiple

label concepts in a graph dataset to find a proper set of subgraph features for classification

tasks. Conventional feature selection in graph classification approaches focuses on single-

labeled settings (21; 13; 14). The mining strategy of discriminative subgraph patterns

strictly follows the assumption that each graph has only one label. However, in many real-

world applications, one graph can usually be assigned with multiple labels simultaneously.

Directly applying single-label graph feature selection methods by adopting the popular

one-versus-all binary decomposition (3(a)), which performs feature selection on each label

concept, will result in di↵erent sets of subgraph features on di↵erent classes. Thus most

state-of-the-art multi-label classification approaches in vector spaces cannot be used, since

they assume that the instances should have a same set of features in the input space

(18; 19).

3. Label Correlations: In many real-world applications, the multiple labels of graphs are

usually correlated, not independent from each other. For example, in anti-cancer drug

activity prediction tasks, chemical compounds which are active to one type of cancer are
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more likely to be active to some other related cancers. It is much desirable that the

correlations between di↵erent labels be exploited in the feature selection process.

3(a) illustrates the process of directly applying single-label graph feature selection methods

by adopting the popular one-versus-all binary decomposition. The problems with this approach

are as follows:

• multiple sets of discriminative subgraph features, one for each label or label combination,

should to be mined before the classification, which could be too expensive when the

number of labels is large;

• the correlations among multiple labels of the graphs are ignored in the feature selection

process. In addition, the correlations among labels may result in similar feature sets for

di↵erent labels. Redundancies in these sets of discriminative subgraph features cause

unnecessary time and memory costs, since many of the features are mined multiple times.

In this chapter, we introduce a novel framework to the above problems by mining subgraph

features using multiple labels of graphs. Our framework is illustrated in 3(b). Di↵erent from

existing single-label feature selection methods for graph data, our approach, called gMLC,

can utilize multiple labels of graphs to find an optimal set of subgraph features for graph

classification. We first derive an evaluation criterion for subgraph features, named gHSIC, based

upon a given graph dataset with multiple labels. Then in order to avoid exhaustive enumeration

of all subgraph features, we propose a branch-and-bound algorithm to e�ciently search for

optimal subgraph features by pruning the subgraph search space using multiple labels of graphs.
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Label correlations can also be considered in our proposed framework. In order to evaluate

our proposed model, we perform comprehensive experiments on real-world multi-label graph

classification tasks, which consist three real-world multi-label graph classification tasks, built

on 18 conventional binary graph classification datasets. The experiments demonstrate that our

feature selection approach can e↵ectively boost multi-label graph classification performances.

Moreover, we show that gMLC is more e�cient by pruning the subgraph search space using

multiple labels.

The rest of the chapter is organized as follows. We start by a brief review on related work

of graph feature selection and multi-label classification in Section 2.2. Then introduce the pre-

liminary concepts, give the problem analysis and present the gHSIC criterion in Section 2.3 and

Section 2.4; In Section 2.5, we derive a branch and bound algorithm gMLC based upon gHSIC.

In Section 2.6, we discuss how to incorporate label correlations into the gMLC framework. Then

Section 2.7 reports the experiment results. In Section 2.8, we conclude the chapter.

2.2 Related Work

To the best of our knowledge, this chapter is the first work addressing the multi-label feature

selection problem for graph classification. Our work is related to both multi-label classification

techniques and subgraph feature based graph mining. We briefly discuss both of them.

Multi-label learning deals with the classification problem where each instance can belong

to multiple di↵erent classes simultaneously. Conventional multi-label approaches are focused

on instances in vector spaces. One well-know type of approaches is binary relevance (one-vs-all

technique (20)), which transforms the multi-label problem into multiple binary classification
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problems, one for each label. Ml-knn(22) is one of the binary relevance methods, which

extends the lazy learning algorithm, kNN, to a multi-label version. It employs label prior

probabilities gained from each example’s k nearest neighbors and use maximum a posteriori

(MAP) principle to determine label set. Elissee↵ and Weston (19) presented a kernel method

Rank-svm for multi-label classification, by minimizing a loss function named ranking loss.

Extension of other traditional learning techniques have also been studied, such as probabilistic

generative models (17; 23), decision trees (24), maximal margin methods (25; 26) and ensemble

methods(27), etc.

Extracting subgraph features from graph data have also been investigated by many re-

searchers. The goal of such approaches is to extract informative subgraph features from a set

of graphs. Typically some filtering criteria are used. Upon whether considering the label infor-

mation, there are two types of approaches: unsupervised and supervised. A typical evaluation

criterion is frequency, which aims at collecting frequently appearing subgraph features. Most of

the frequent subgraph feature extraction approaches are unsupervised. For example, Yan and

Han develop a depth-first search algorithm: gSpan (28). This algorithm builds a lexicographic

order among graphs, and maps each graph to an unique minimum DFS code as its canonical

label. Based on this lexicographic order, gSpan adopts the depth-first search strategy to mine

frequent connected subgraphs e�ciently. Many other frequent subgraph feature extraction ap-

proaches have been developed, e.g. AGM (29), FSG (30), MoFa (31), FFSM (32), and Gaston

(33). Supervised subgraph feature extraction approaches have also been proposed in literature,
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such as LEAP (13), CORK (14), which look for discriminative subgraph patterns for graph

classifications, and gSSC (34) for semi-supervised classification.

Our approach is also relevant to graph feature selection approaches based on Hilbert-Schmidt

independence criterion (35), but there are significant di↵erences between them. Previous graph

feature selection approaches assume each graph object only has one label and they focus on

evaluating subgraph features e↵ectively using HSIC criterion and perform feature selection using

frequent subgraph mining methods (gSpan) as black-boxes. However, our approach assumes

that each graph can have multiple labels, and focuses on extracting good subgraph features

e�ciently by pruning the subgraph search space using branch and bound method inside gSpan.

So, our method searches the pruned gSpan tree. In fact, we only generated and searched a

much smaller tree than gSpan as the size of the search tree dominates the execution time.

2.3 Problem Formulation

Before presenting the feature selection model for multi-label graph classification, we first

introduce the notations that will be used throughout this chapter. Multi-label graph classifica-

tion is the task of automatically classifying a graph object into a subset of predefined classes.

Let D = {G1, · · · , Gn} denote the entire graph dataset, which consists of n graph objects, rep-

resented as connected graphs. The graphs in D are labeled by {y1, · · · ,yn}, where yi 2 {0, 1}Q

denotes the multiple labels assigned to Gi. Here Q is the number of all possible labels within

a label concept set C.

Definition 1 (Connected Graph) A graph is represented as G = (V, E, L, l), where V is a

set of vertices V = {v1, · · · , vnv}, E ✓ V ⇥ V is a set of edges, L is the set of labels for the
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vertices and the edges. l : V [ E ! L, l is a function assigning labels to the vertices and the

edges. A connected graph is a graph such that there is a path between any pair of vertices.

Definition 2 (Multi-label Graph) A multi-label graph is a graph assigned with multiple

class labels (G,y), in which y = [y1, · · · , yQ] 2 {0, 1}Q denotes the multiple labels assigned

to the graph G. yk = 1 i↵ graph G is assigned with the k-th class label, 0 otherwise.

Definition 3 (Subgraph) Let G0 = (V 0, E0, L0, l0) and G = (V, E, L, l) be connected graphs.

G0 is a subgraph of G (G0 ✓ G) i↵ there exist an injective function  : V 0 ! V s.t. (1) 8v 2 V 0,

l0(v) = l ( (v)); (2) 8(u, v) 2 E0, ( (u), (v)) 2 E and l0(u, v) = l ( (u), (v)). If G0 is a

subgraph of G, then G is a supergraph of G0.

In our current solution, we focus on the subgraph-based graph classification problem, which

assumes that a graph object Gi is represented as a binary vector xi = [x1
i , · · · , xm

i ]> associated

with a set of subgraph patterns {g1, · · · , gm}. Here xk
i 2 {0, 1} is the binary feature of Gi

corresponding to the subgraph pattern gk, and xk
i = 1 i↵ gk is a subgraph of Gi (gk ✓ Gi).

The key issue of feature selection for multi-label graph classification is how to find the most

informative subgraph patterns from a given multi-label graph dataset. So, in this chapter, the

studied research problem can be described as follows: in order to train an e↵ective multi-label

graph classifier, how to e�ciently find a set of optimal subgraph features using multiple labels

of graphs?

Mining the optimal subgraph features for multi-label graphs is a non-trivial task due to the

following problems:
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1) How to properly evaluate the usefulness of a set of subgraph features based upon multiple

labels of graphs?

2) How to determine the optimal subgraph features within a reasonable amount of time by

avoiding the exhaustive enumeration using multiple labels of the graphs? The subgraph

feature space of graph objects are usually too large, since the number of subgraphs grows

exponentially with the size of graphs. It is infeasible to completely enumerate all the

subgraph features for a given graph dataset.

3) How to incorporate the correlations among di↵erent labels in the feature selection process?

In the following sections, we will first introduce the optimization framework for selecting

informative subgraph features from multi-label graphs, and propose an e�cient subgraph mining

strategy using branch-and-bound to avoid exhaustive enumeration. Then we propose solutions

to incorporate label correlations into the feature selection process.

2.4 Optimization Framework

In this section, we address the problem 1) discussed in Section 2.3 by defining the subgraph

feature selection for multi-label graph classification as an optimization problem. The goal is to

find an optimal set of subgraph features based on the multiple labels of graphs. Formally, let

us introduce the following notations:

• S = {g1, g2, · · · , gm}: a given set of subgraph features, which we use to predict a set

of multiple labels for each graph object. Usually there is only a subset of the subgraph

features T ✓ S relevant to the multi-label graph classification task.
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• T ⇤: the optimal set of subgraph features T ⇤ ✓ S.

• E(T ): an evaluation criterion to estimate the usefulness of subgraph feature subsets T .

• X: the matrix consisting binary feature vectors using S to represent the graph dataset

{G1, G2, · · · , Gn}. X = [x1,x2, · · · ,xn] = [f1,f2, · · · ,fm]> 2 {0, 1}m⇥n, where X =

[Xij ]m⇥n, Xij = 1 i↵ gi ✓ Gj .

We adopt the following optimization framework to select an optimal subgraph feature set:

T ⇤ = arg max
T ✓S

E(T ) (2.1)

s.t. |T |  t,

where t denotes the maximum number of feature selected, | · | is the size of the feature set.

Similar optimization framework to select an optimal subgraph feature set has also been defined

in the context of single-label graph feature selection in (14; 35). In Equation 2.1 the objective

function has two parts: the evaluation criterion E and the subgraph features of graphs S.

For evaluation criterion, we assume that the optimal subgraph features should have the

following property, i.e. Dependence Maximization: Optimal subgraph features should maximize

the dependence between the subgraph features of graph objects and their multiple labels. This

indicates that two graph objects with similar sets of multiple labels are likely to have similar

subgraph features. Similar assumptions have also been used for multi-label dimensionality

reduction in vector spaces (36).
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Many criteria that can be used as dependence evaluation between subgraph features and

multiple labels. In this chapter, we derive a subgraph evaluation criterion for multi-label graph

classification based upon a dependence evaluation criterion named Hilbert-Schmidt Indepen-

dence Criterion (HSIC) (37). We briefly introduce the Hilbert-Schmidt Independence Criterion

as a dependence measure between two variables in kernel space. In our case, the target is

to derive a dependence measure between the graph objects using a set of subgraph features

and their multiple labels. Suppose we have two reproducing kernel Hilbert spaces (RKHS) of

functions G and F , with feature mapping �(Gi) 2 G and  (yi) 2 F . The corresponding kernel

functions are denoted as h�(Gi),�(Gj)iG = k(Gi, Gj) and h (yi), (yj)iF = k0(yi,yj). Let C

be a covariance operator defined as

C = E
�
[p(Gi)� E(p(Gi))][p

0(yi)� E(p0(yi))]
 

for all p 2 G and p0 2 F .

Then the HSIC is defined as the Hilbert-Schmidt norm of the operator C, i.e. kCk2HS .

Given a sample of data, an empirical estimate of HSIC is HSIC = tr(K H L H), where tr(·) is

the trace of matrix and H = [Hij ]n⇥n, Hij = �ij � 1/n, �ij is the indicator function which takes

1 when i = j and 0 otherwise. K and L are kernel matrices on the samples with respect to the

kernel functions k(·, ·) and l(·, ·).

There are basically two reasons for using HSIC measure for feature selection:
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• The HSIC can evaluate the dependence of two variables in kernel space, which is more

general than measuring dependence in the original space. HSIC has been widely used for

feature selection on single-label cases. It can also be extended to feature selection in multi-

label cases. Moreover, correlations among di↵erent labels can naturally be considered in

our framework by adopting advanced kernels into the HSIC. Thus it is more e↵ective and

flexible to measure the dependence in the kernel space.

• In addition to many good theoretical properties, HSIC has a very simple empirical esti-

mator, tr(KHLH), which we can use to estimate the dependencies between input and

output variables. The feature selection problem corresponds to selecting a subset of fea-

tures such that the dependence between the input of the graph objects and the outputs

(multiple labels) are maximized.

According to our Dependence Maximization assumption on the optimal subgraph features

for multi-label graph classification, we can adopt the HSIC criterion to evaluate the dependence

between the graph objects using a set of subgraph features and their multiple label outputs.

Suppose we select a set of subgraph features T , and each graph object Gi can be mapped into

a feature space G by �(Gi) = DT xi with the kernel function k(Gi, Gj) = h�(Gi),�(Gj)i =

hDT xi, DT xji. Here DT = diag(�T ) is a diagonal matrix indicating which features are selected

into feature set T from S. And �T = [�1T , �2T , · · · , �m
T ]> 2 {0, 1}m is an indicator vector, and

�i
T = 1 i↵ gi 2 T . Then the kernel matrix on the graph objects with subgraph features T is

denoted as KT . Suppose L = [Lij ]n⇥n is a kernel matrix based upon the multiple labels of each

graph, and the kernel function is l(yi,yj) = h (yi), (yj)i. In our current implementation,
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l(yi,yj) = hyi,yji is used as the default label kernel. Other kernels can also be directly used,

which will be discussed in Section 2.6. Then we can evaluate the dependence between graph

objects using feature set T and the multiple labels as follows:

HSIC = tr(KT HLH)

The subgraph feature selection task corresponds to the selection of a subset of features in S,

such that the dependence between graph objects and their multiple labels are maximized.

In detail, we can rewrite the optimization problem in Equation 2.1 as follows:

arg max
T ✓S

tr (KT H L H) (2.2)

s.t. |T |  t,

The formula in Equation 2.2 can be rewritten as follows:

tr (KT HLH) = tr
⇣
X>DT

>DT XHLH
⌘

= tr
⇣
DT XHLHX>DT

>
⌘

=
X

gi2T

⇣
fi

>HLHfi

⌘
=

X

gi2T

⇣
fi

>Mfi

⌘

where M = HLH. By denoting function h(gi,M) = fi
>Mfi, the optimization (Equation 2.2)

can be written as

max
T

X

gi2T
h(gi,M)

s.t. T ✓ S, |T |  t

(2.3)
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Definition 4 (gHSIC) Suppose we have a multi-labeled graph dataset D = {(G1,y1), · · · , (Gn,yn)}.

Let L be a kernel matrix defined on the multiple label vectors, and M = HLH. We define a

quality criterion q called gHSIC, for a subgraph feature g as

q(g) = h(g,M) = fg
>Mfg

where fg = [f (1)
g , · · · , f (n)

g ]> 2 {0, 1}n is the indicator vector for subgraph feature g, f (i)
g = 1 i↵

g ✓ Gi (i = 1, 2, · · · , n). Since matrix L and M are positive semi-definite, for any subgraph

pattern g, we have q(g) � 0.

The optimal solution to the problem in Equation 2.2 can be found by using gHSIC to

forward feature selection on a set of subgraphs S. Suppose the gHSIC values for all subgraphs

are denoted as q(g1) � q(g2) � · · · � q(gm) in sorted order. Then the optimal solution to the

optimization problem in Equation 2.3 is:

T ⇤ = {gi|i  t}.

2.5 The Proposed Solution

Now we address the second problem discussed in Section 2.3, and propose an e�cient method

to find the optimal set of subgraph features from a given multi-label graph dataset.

Exhaustive enumeration: One of the most simple and straightforward solution for finding an

optimal feature set is the exhaustive enumeration, i.e., we first enumerate all subgraph patterns

in a multi-label graph dataset, and then calculate the gHSIC values for all subgraph patterns.
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However, in the context of graph classification, the number of subgraphs grows exponentially

with the size of graphs, which makes the exhaustive enumeration approach usually impractical

in real-world data.

Inspired by recent advances in graph classification approaches, e.g. (13; 34), which put

their evaluation criteria into the subgraph pattern mining steps and develop constraints to

prune search spaces, we take a similar approach by deriving a di↵erent constraint for multi-

label cases. In order to avoid the exhaustive search, we proposed a branch-and-bound algorithm,

named gMLC, which is summarized as follows: a) Adopt a canonical search space where all

the subgraph patterns can be enumerated. b) Search through the space, and find the optimal

subgraph features by gHSIC. c) Propose an upper bound of gHSIC and prune the search space.

2.5.1 Subgraph Enumeration

In order to enumerate all subgraphs from a graph dataset, we adopted an e�cient algorithm,

gSpan, proposed by Yan et al(28). We briefly review the general idea of gSpan approach: Instead

of enumerating subgraphs and testing for isomorphism, they first build a lexicographic order

over all the edges of a graph, and then map each graph to an unique minimum DFS code as its

canonical label. The minimum DFS codes of two graphs are equivalent i↵ they are isomorphic.

Details can be found in (28). Based on this lexicographic order, a depth-first search (DFS)

strategy is used to e�ciently search through all the subgraphs in a DFS code tree. By a depth-

first search through the DFS code tree’s nodes, we can enumerate all the subgraphs of a graph

in their DFS code’s order. And the nodes with non-minimum DFS codes can be directly pruned

in the tree, which saves us from performing an explicit isomorphic test among the subgraphs.
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2.5.2 Upper Bound of gHSIC

Now, we can e�ciently enumerate all the subgraph patterns of a graph dataset in a canonical

search space using gSpan’s DFS Code Tree. Then, we derive an upper bound for the gHSIC

value which can be used to prune the search space as follows:

Theorem 1 (Upper bound of gHSIC) Given any two subgraphs g, g0 2 S, g0 is a super-

graph of g (g0 ◆ g). The gHSIC value of g0 (q(g0)) is bounded by q̂(g) (i.e., q(g0)  q̂(g)), where

q̂(g) is defined as follows:

q̂(g) = fg
>M̂fg (2.4)

where the matrix M̂ = [M̂ij ]n⇥n is defined as M̂ij = max ( 0, Mij ). fg = {I(g ✓ Gi)}n
i=1 2

{0, 1}n is a vector indicating which graphs in a graph dataset {G1, · · · , Gn} contain the subgraph

g, I(·) is the indicator function. Suppose the gHSIC value of g is q(g) = fg
>Mfg.

Proof 1

q
�
g0� = fg0>Mfg0 =

X

i,j:Gi,Gj2G(g0)

Mij
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where G(g0) = {Gi|g0 ✓ Gi, 1  i  n}. Since g0 is the supergraph of g (g0 ◆ g), according to

anti-monotonic property, we have G(g0) ✓ G(g). Also M̂ij = max(0, Mij), we have M̂ij � Mij

and M̂ij � 0. So,

q
�
g0� =

X

i,j:Gi,Gj2G(g0)

Mij


X

i,j:Gi,Gj2G(g0)

M̂ij


X

i,j:Gi,Gj2G(g)

M̂ij = q̂ (g)

Thus, for any g0 ◆ g, q(g0)  q̂(g).

2.5.3 Subgraph Search Space Pruning

In this subsection, we make use of the the upper bound of gHSIC to e�ciently prune the

DFS Code Tree using a branch-and-bound method, which is similar to (34) but under di↵erent

problem context: In depth-first search through the DFS Code Tree, we maintain the temporally

suboptimal gHSIC value (denoted by ✓) among all the gHSIC values calculated before. If

q̂(g) < ✓, the gHSIC value of any supergraph g0 (g0 ◆ g) is no greater than ✓. Now, we can

safely prune the subtree from g in the search space. If q̂(g) � ✓, we can not prune this space

since there might exist a supergraph g0 ◆ g (q(g0) � ✓).

Figure 4 shows the algorithm gMLC. We first initialize the subgraphs T as an empty set.

Then we prune the search space by running gSpan, while always maintaining the top-t best

subgraphs according to q. In the course of mining, whenever we search to a subgraph g with

q̂(g)  mingi2T q(gi), such that for any supergraph g0 ◆ g (q(g0)  q̂(g)) according to the bound

defined in Equation 2.4, we can prune the branches of the search tree originating from g . In
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T = gMLC(D, min sup, t)

Input:
D : Multi-label graphs {(G1,y1), · · · , (Gn,yn)}

min sup : Minimum support threshold
t : Maximum number of subgraph feature selected

Process:
1 T = ;, ✓ = 0;
2 Recursively visit the DFS Code Tree in gSpan:
3 g = currently visited subgraph in DFS Code Tree
4 if |T | < t, then
5 T = T [ {g};
6 else if q(g) > ming02T q(g0), then
7 gmin = argming02T q(g0) and T = T /gmin;
8 T = T [ {g} and ✓ = ming02T q(g0);
9 if q̂(g) > ✓ and freq(g) � min sup, then

10 Depth-first search subtree rooted from node g;
11 return T ;

Output:
T : Set of optimal subgraph features

Figure 4. The gMLC algorithm
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the other hand, as long as the resulting subgraph g can still improve the gHSIC value of any

subgraph gi 2 T , it is accepted into T and the last best subgraph is dropped o↵ from T .

Note that in our experiments with the three datasets, the gHSIC criterion based on multiple

labels provides such a bound that we can even omit the support threshold min sup and still

find a set of optimal subgraphs within a reasonable time cost.

2.6 Exploiting Label Correlations

Now we address the third problem discussed in Section 2.3, and explain how label corre-

lations can be considered in gMLC framework by adopting more informative and advanced

kernels.

In the previous sections, we used the simple kernel function, l(yi,yj) = hyi,yji, to generate

the label kernel matrix L. The linear kernel treats each label as being independent without

considering the correlations among di↵erent labels. However in many real world applications,

the multiple labels of the graphs are usually correlated. For example, in anti-cancer drug

activity prediction tasks, chemical compounds which are active to one type of cancer are more

likely to be active to some other related cancers. Subgraph patterns that corresponds to such

label co-occurrences can be very useful for multi-label graph classification. In order to put

label correlations into consideration during feature mining process, we need to adopt more

informative kernels for L than linear kernel.

One simple solution is that the label correlations can be exploited by adopting more ad-

vanced kernels like polynomial or RBF kernels in the label kernel calculation. i.e., the label vec-
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tor y is mapped to a new feature space using  (y) with kernel function l(yi,yj) = h (yi), (yj)i,

and the correlations among di↵erent labels are explicitly considered in the new feature space.

For example, suppose we use a polynomial kernel with degree 2, l(yi,yj) = hyi,yji2, as the

label kernel function. Given any two label vectors ↵ = [↵1,↵2] 2 {0, 1}2 and � = [�1,�2] 2

{0, 1}2, we have

l(↵,�) = h↵,�i2

= (↵1�1 + ↵2�2)
2

=
Dh
↵1

2,↵2
2,
p

2↵1↵2

i
,
h
�1

2,�2
2,
p

2�1�2

iE

= h (↵),  (�)i

Here,  (↵) =
⇥
↵1

2,↵2
2,
p

2↵1↵2

⇤
, and the component (

p
2↵1↵2) considers the correlations

between label l1 and l2 explicitly. Intuitively, by adopting polynomial kernels with degree 2,

the second-order correlations among di↵erent labels can be exploited in our gMLC framework.

Higher orders of correlations among labels can also be exploited by adopting polynomial kernels

with higher degrees or even RBF kernels to construct the label kernel L.

After using these kernel functions, the new label kernel matrix L can be directly plugged in

the subgraph evaluation criterion, q(g) = fg
>HLHfg. Subgraph patterns that best corresponds

to the co-occurrence of di↵erent labels will get high values, thus being selected into the optimal

feature set for multi-label graph classification.



28

TABLE I. Summary of experimental tasks studied. “AvgL” denotes the average number of
labels assigned to each graph.

Prediction Task Dataset # Graphs # Labels AvgL

Anti-cancer NCI1 812 10 4.36
Toxicology PTC 253 4 1.60
Kinase Inhibition NCI2 5,660 4 1.04

TABLE II. Details of the anti-cancer activity prediction task (NCI1 dataset). Each label
represents the assay result for one type of cancer. “Pos (%)” denotes the average percentage

of positive instances for each cancer assay.
Assay ID Class Name Pos (%) Cancer Type

1 NCI-H23 35.6 Non-Small Cell Lung
33 UACC-257 47.7 Melanoma
41 PC-3 38.5 Prostate
47 SF-295 34.1 Central Nerve System
81 SW-620 17.5 Colon
83 MCF-7 59.2 Breast
109 OVCAR-8 42.2 Ovarian
123 MOLT-4 73.5 Leukemia
145 SN12C 54.8 Renal
330 P388 33.4 Leukemia

TABLE III. Details of toxicology prediction task (PTC dataset), where each of the multiple
labels represents the toxicology test result on one type of animal. “Pos (%)” denotes the

average percentage of positive instances for each cancer assay.
Class Name Pos (%) Animal Model

MR 41.9 Male Rats
FR 36.0 Female Rats
MM 38.7 Male Mice
FM 43.1 Female Mice

TABLE IV. Details of kinase inhibition prediction task (NCI2 dataset), where each of the
multiple labels represents the inhibition of one type of kinase. “Pos (%)” denotes the average

percentage of positive instances for each cancer assay.
Assay ID Pos (%) Kinase Type

1416 6.11 PERK
1446 40.5 JAK2
1481 15.9 ATPase
1531 41.4 MEK
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2.7 Experiments

2.7.1 Experimental Setup

2.7.1.1 Data Collections

In order to evaluate the multi-label graph classification performances, we tested our al-

gorithm on three real-world multi-label graph classification tasks as follows: (Summarized in

Table I.)

1) Anti-cancer activity prediction (NCI1): The first task is to classify chemical compounds’

anti-cancer activities on multiple types of cancer. We build up a multi-label graph dataset

using a benchmark dataset, NCI1 (13), which consists of records of chemical compounds’

anti-cancer activities against a set of 10 types of cancer (e.g. Leukemia, Prostate, Breast),

and each chemical compound is represented as a graph. After removing compounds with

incomplete records for 10 types of cancer, we thus have a multi-label graph classification

dataset with 812 graphs assigned with 10 candidate labels. Table II provides a brief

description of the 10 types of cancer in NCI1 dataset.

2) Toxicology prediction of chemical compounds (PTC): The second task is to classify chem-

ical compounds’ carcinogenicity on multiple animal models. We build up our second

multi-label graph dataset using a benchmark dataset, PTC2 (38), which consists carcino-

genicity records of 417 chemical compounds on 4 animal models: MM (Male Mouse),

1http://pubchem.ncbi.nlm.nih.gov

2http://www.predictive-toxicology.org/ptc/
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FM (Female Mouse), MR (Male Rat) and FR (Female Rat). Each chemical compound is

assigned with carcinogenicity labels for the 4 animal models. On each animal model the

carcinogenicity label is one of {CE, SE, P, E, EE, IS, NE, N}. We assume {CE, SE, P} as

‘positive’ labels, {NE, N} as ‘negative’ and { E, EE IS} labels are removed, which is the

same setting as (39; 21). Each chemical compound is represented as a graph with an aver-

age of 25.7 vertices. After removing compounds with incomplete records for the 4 animal

models, we thus have a multi-label graph classification dataset with 253 graphs assigned

with four candidate labels (MR, FR, MM, FM). Table III provides a brief description of

the 4 animal models in PTC dataset.

3) Kinase inhibition prediction of chemical compounds (NCI2): The third task is to clas-

sify the ability of chemical compounds to inhibit multiple kinases’ activity, which is a

important problem in finding e↵ective inhibitors for kinase associated diseases (e.g. infec-

tious diseases, cancers). We build up our third multi-label graph dataset also from NCI

database, which consists kinase inhibition records of 5,660 chemical compounds against a

set of 4 types of kinases (i.e. ATPase, PERK, MEK, JAK2). After removing compounds

with incomplete records for the 4 types of kinases, we thus have a multi-label graph clas-

sification dataset with 5,660 graphs assigned with 4 candidate labels. Table IV provides

a brief description of the 4 types of kinases in NCI2 dataset.

2.7.1.2 Evaluation Metrics

Multi-label classification requires di↵erent evaluation metrics than conventional single-label

classification problems. Here we adopt some metrics used in (18; 19; 22) to evaluate the
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multi-label graph classification performance. Assume we have a multi-label graph dataset

D = {(G1,y1), · · · , (Gn,yn)}, where graph Gi is labeled as yi 2 {0, 1}Q. Let f(Gi, k) de-

note the classifier’s real-value outputs for Gi on the k-th label (lk), and h(Gi) 2 {0, 1}Q denotes

the classifier’s binary output label vector. According to f(Gi, k) we can define a ranking func-

tion rankf (Gi, k) 2 {1, 2, · · · , Q}, and rankf (Gi, k0) < rankf (Gi, k) i↵ f(Gi, k0) < f(Gi, k).

We have the following evaluation criteria:

• Ranking Loss (19): evaluates the performance of classifier’s real-value outputs f(Gi, k).

It is calculated as the average fraction of incorrectly ordered label pairs:

RankLoss =
1

n

nX

i=1

1

1>
yi1>

yi

Lossf (Gi,yi)

Where the yi denotes the complementary of yi in {0, 1}Q.

Lossf (Gi,yi) =
X

k:yk
i =1

X

k0:yk0
i =0

Jf(Gi, k)  f(Gi, k
0)K

For any predicate ⇡, J⇡K equals 1 if ⇡ holds and 0 otherwise. RankLoss 2 [0, 1]. The

smaller the value, the better the performance.

• Average Precision (22): evaluates the average fraction of labels ranked above a particular

label y s.t. y is in the ground-truth label set. This criterion is originally used in infor-
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mation retrieval (IR) systems to evaluate the document ranking performance for query

retrieval:

AvgPrec =
1

n

Xn

i=1

1

1>
yi

X

k:yk
i =1

Precf (Gi, k)

rankf (Gi, k)

which measure the number of assigned class labels that are ranked before k-th class. Here

Precf (Gi, k) =
X

k0:yk0
i =1

Jrankf (Gi, k
0)  rankf (Gi, k)K

And AvgPrec 2 [0, 1], the larger the value, the better the performance.

• One error : evaluates how many times the top-ranked label is not in the set of ground-truth

labels of the instance.

OneError =
1

n

Xn

i=1
Jyki

i = 0K

where ki = argmaxk2[1,Q] f(Gi, k). OneError 2 [0, 1], the smaller the value, the better

the performance.

• Coverage: evaluates the performance by considering how far, on average, we need to go

down the ranked label list to cover all the ground-truth labels of the instance.

Coverage =
1

n

Xn

i=1
max

k:yk
i =1

rankf (Gi, k)� 1

where Coverage 2 [0, Q� 1]. The smaller the coverage, the better the performance.
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• Hamming loss: evaluates how many times an instance-label pair is misclassified. For

single-label problems, it equals the classification error.

HammingLoss =
1

n

Xn

i=1
✓(h(Gi),yi)

where

✓(h(Gi),yi) =
1

Q

XQ

k=1
Jyk

i 6= h(Gi)
k)K

and HammingLoss 2 [0, 1], the smaller the value, the better the performance.

In our experiment, we will show the value of 1� AvePrec instead of Average Precision. Thus

under all these evaluation criteria, smaller values are all indicating better performances. Note

that all the criteria evaluate the performance of multi-label classification systems from di↵erent

aspects. Usually few algorithms could outperform another algorithm on all those criteria. All

experiments are conducted on machines with 4 GB RAM and Intel XeonTMQuad-Core CPUs

of 2.40 GHz.

2.7.1.3 Comparing Methods

In order to demonstrate the e↵ectiveness of our multi-label graph feature selection approach,

we test with following methods:

• Binary decomposition + single-label feature selection + binary classifications (Binary IG+

SVM): We first compare with a baseline using a binary decomposition method similar

to (20): The multi-label graph dataset is first divided into multiple single-label graph

datasets by one-vs-all binary decomposition. For each binary classification task, we use
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the Information Gain (IG), an entropy based measure, to select a subset of discriminative

features from frequent subgraphs. Then SVMs are used as the binary classification models

to classify the graphs into multiple binary classes respectively. We use SVM-light software

package1 to train the SVMs, where the parameters are set as default settings.

• Multi-label feature selection (gMLC) + binary classifications (SVM): gMLC is used to

find a set of optimal subgraph features. Then the one-vs-all deduction with one SVM

trained for each class is used as the multi-label classifier.

• Top-k frequent subgraph features (Freq) + multi-label classification (BoosTexter): We

also compare with another baseline: multi-label classification using the top-k frequent

subgraphs as features, i.e., we use the top-k frequent subgraph features in the graph

dataset without the gHSIC selections on the subgraph features. Then BoosTexter(18)

is used as the multi-label classifier. The number of boosting rounds for BoosTexter is

set as 500, which does not significantly a↵ect the classification performance.

• Multi-label feature selection (gMLC) + multi-label classification (BoosTexter): gMLC

is used to find a set of optimal subgraph features. Then BoosTexter is used as the

multi-label classifier.

• Top-k frequent features (Freq) + multi-label classification (Ml-knn): multi-label clas-

sification using the top-k frequent subgraphs as features. Ml-knn (22) is used as the

multi-label classifier. The number of neighbors is set as the default value 10.

1http://svmlight.joachims.org/
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Figure 5. Multi-label graph classification performances on Anti-cancer Activity Prediction
(NCI1 dataset)

• Multi-label feature selection (gMLC) + multi-label classification (Ml-knn): We first use

gMLC to find a set of optimal subgraph features. Then Ml-knn is used as the multi-label

classifier.

2.7.2 Performances on Multi-label Graph Classification

In our experiment, we use 10-round 10-fold cross validation to evaluate the multi-label

graph classification performance. Each graph dataset is evenly partitioned into 10 parts. Only

one part is used as testing graphs and the other nine are used as training graphs for frequent

subgraph mining, feature selection and multi-label classification. We repeat the 10-fold cross
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Figure 6. Multi-label graph classification performances on Kinase Inhibition Prediction
(NCI2 dataset)

validation 10 times and we report the average results for the 10 rounds. The result of the

feature selection methods for multi-label graph classification on NCI1, NCI2 and PTC datasets

are displayed in Figure 5, Figure 6 and Figure 7. We show the number of selected subgraphs t

among frequent subgraphs using min sup = 10%, together with evaluation metrics mentioned

before.

Now, we first study the e↵ectiveness of selecting subgraph features by comparing two ap-

proaches: gMLC+SVM, Binary IG+ SVM, where the binary SVMs are used as base learners.

It is worth noticing that, this comparison is only used for reference, since di↵erent number
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Figure 7. Multi-label graph classification performances on Toxicology Prediction Task
(PTC dataset)

of features are used in the two methods. Our gMLC is designed for conventional multi-label

classification methods, thus in the baseline gMLC+SVM, we select one set of subgraph features

which is used on multiple SVMs separately. However, Binary IG+ SVM selects a di↵erent set

of subgraph features for each label concept and these feature sets are used on multiple SVMs

separately. Hence, Binary IG+ SVM method has an advantage over our method by using di↵er-

ent feature sets for di↵erent SVMs, while gMLC uses the same set of feature for all the SVMs.

Figure 5, Figure 6 and Figure 7 indicate that gMLC+SVM can achieve comparable or even

better performances than Binary IG+ SVM in most cases. This is because the multiple labels
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Figure 8. Average CPU time for nested gMLC versus un-nested gMLC with varying min sup.
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Figure 9. Average number subgraph patterns explored during mining for nested gMLC versus
un-nested gMLC with varying min sup.

of the graphs usually have certain correlations, and the useful subgraph features on one label

concept are also likely to be useful on some other label concepts. Thus our gMLC method can

achieve better performances over Binary IG+ SVM even though we use a same set of feature

for all binary SVMs. Utilizing the potential relations among multiple label concepts to select

subgraph features are crucial to the success of our method in this case.
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We further study the e↵ectiveness of subgraph features using the general purposed multi-

label classification methods, i.e. BoosTexter and Ml-knn, as the base classifiers. It is

also worth noticing that, to the best of our knowledge, gMLC is the first multi-label feature

selection method for graph data. Thus we cannot find any other baseline which select one

set of features for multiple label concepts in order to make a fair comparison. So our only

choices are comparing the following methods: gMLC+BoosTexter v.s. Freq+BoosTexter

and gMLC+Ml-knn v.s. Freq+Ml-knn. We observe that on most tasks the performances

of gMLC+BoosTexter are better than Freq+BoosTexter, i.e. multi-label classification

approaches without gHSIC subgraph feature selection. Similar results can also be found with

the cases when Ml-knn is used as the base classifier. These results support our intuition that

the gHSIC evaluation criterion in gMLC can find better subgraph patterns for multi-label graph

classification than unsupervised top-k frequent subgraph approaches. The exception is only the

case on PTC dataset when the number of features selected is small (less than 15). Nonetheless,

the Freq+BoosTexter can never reach the best performance achievable by gMLC with a

larger number of features. This is because the top 15 frequent features happen to be good

classification features. However, the Freq cannot find other good features that are not that

frequent.

Now, we first study the e↵ectiveness of selecting subgraph features by comparing two ap-

proaches: gMLC+SVM, Binary IG+ SVM, where the binary SVMs are used as base learners.

It is worth noticing that, our gMLC is specially designed for conventional multi-label classifica-

tion methods which require one set of features for all labels concepts. Thus gMLC only selects
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one set of subgraph features and uses it on multiple SVMs separately. However, Binary IG+

SVM selects a di↵erent set of subgraph features for each label concept and these feature sets

are used on multiple SVMs separately. Hence, Binary IG+ SVM method has an advantage over

our method by using di↵erent feature sets for di↵erent SVMs, while gMLC uses the same set

of feature for all the SVMs. Figure 5, Figure 6 and Figure 7 indicate that gMLC+SVM can

achieve compariable or even better performances than Binary IG+ SVM in most cases. This

is because the multiple labels of the graphs usually have certain correlations, and the useful

subgraph features on one label concept are also likely to be useful on some other label concepts.

Thus our gMLC method can achieve better performances over Binary IG+ SVM even though

we use a same set of feature for all binary SVMs. Utilizing the potential relations among mul-

tiple label concepts to select subgraph features are crucial to the success of our method in this

case.

We further observe that in all tasks and evaluation criteria, our multi-label feature selection

algorithm with multi-label classification (gMLC+BoosTexter) outperforms the binary de-

composition approach using single-label feature selections (Binary IG+ SVM). gMLC+BoosTexter

can achieve good performances with only a small number of features. We note that the big

improvement can both be counted on the good performance of gMLC feature selection and

the state-of-the-art multi-label classification method, BoosTexter. However, this result can

just be used for a reference to the relative performances of the two types of multi-label graph

classification methods, binary decomposition based and gMLC based. These results support
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the importance of the proposed multi-label feature selection method in the multi-label graph

classification problems.

Additionally, by comparing over di↵erent evaluation criteria, we can find that gMLC shows

more improvements over other baselines on criteria, e.g. Ranking Loss, which are most related

to multi-label performances, than Hamming Loss. For Hamming Loss, gMLC gets better perfor-

mances over other baselines on PTC dataset, but comparible performances on NCI1 and NCI2

dataset. This can be explained that Hamming Loss evaluates the classification performance in

a binary way, simply averaging the binary classification error on each label without considering

the ranking of all labels which is more important for multi-label classification evaluation.

2.7.3 E↵ectiveness of Subgraph Search Space Pruning

In our second experiment, we evaluated the e↵ectiveness of the upper-bound for gHSIC

proposed in Section 2.5.2. So, in this section we compare the runtime performance of two

versions of implementation for gMLC: “nested gMLC” versus “un-nested gMLC”. The “nested

gMLC” denotes the proposed method using the upper-bound proposed in Section 2.5.2 to prune

the search space of subgraph enumerations; the “un-nested gMLC” denotes the method without

the gHSIC’s upper-bound pruning, which first uses gSpan to find a set of frequent subgraphs,

and then selects the optimal set of subgraphs via gHSIC. We run both approaches on the three

tasks and record the average CPU time used on feature mining and selection. The result is

shown in Figure 8.

In the NCI1, NCI2 and PTC dataset, we observe that as we decrease the min sup in the

frequent subgraph mining, the un-nested gMLC would need to explore larger subgraph search
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spaces, and this size increases exponentially with the decrease of min sup. In the NCI1 dataset,

when the min sup get too low (min sup < 4%), the subgraph feature enumeration step in un-

nested gMLC can run out of the computer memory. However, the nested gMLC’s running time

does not increase as much, because the gHSIC can help pruning the subgraph search space

using the multi-label information of the graphs. As we can see, the min sup can go to very low

value in all datasets for the “nested gMLC”.

Figure 9 shows the number of subgraph feature explored in the process of subgraph pattern

enumeration in the three tasks. In all tasks, we observe that the number of searched subgraph

patterns in nested gMLC is much smaller than that of un-nested gMLC (the gSpan step). In

our experiments, we further noticed that on most datasets, nested gMLC provides such a strong

bound that we may even allow nested gMLC to omit the minimum support threshold min sup

and still receive an optimal set of subgraph features within a reasonable time.

2.7.4 E↵ectiveness of Embedding Label Correlations

In our third experiment, we evaluated the e↵ectiveness of the label kernels after incorporat-

ing the label correlations in Section 2.6. In order to consider label correlations of first-order,

second-order and higher-orders etc., we use the following kernel functions to produce the label

kernel matrix L:

• gMLC(Linear) denotes our gMLC method with linear kernels for L, which does not con-

sider the label correlation. The kernel function is l(yi,yj) = hyi,yji.

• gMLC(Poly) denotes the gMLC method with polynomial kernels with di↵erent degrees,

which can consider label correlations of second-orders or even higher-orders. The kernel
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Figure 10. Performances of gMLC with/without considering label correlations on anti-cancer
activity prediction task (NCI1 dataset)

function is l(yi,yj) = (� hyi,yji+ ⌘)d. The � is set as the default value � = 1
#features ,

and ⌘ = 0. d denotes the degree of polynomial kernels. For example, gMLC(Poly2)

corresponds to the polynomial kernel with degree two (d = 2).

• gMLC(RBF) denotes our gMLC method with RBF kernels for L, which can consider label

correlations of any orders. The kernel function is l(yi,yj) = exp (��|yi � yj |2). The � is

set as the default value � = 1
#features .

In all methods, Ml-knn is used as the base classifier, with default parameter settings (k = 10).

The result of NCI1 dataset is illustrated in Figure 10. From the results, we can see that gMLC
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with polynomial kernel and RBF kernels can get better performances than gMLC with linear

kernels, by considering label correlations in the label kernel matrix L. Here we only use simple

strategies to consider label relationship in our gMLC model, and greater improvements are

likely to be obtain by defining more advanced kernels for label matrix L.

2.8 Conclusion

In this chapter, we study the problem multi-label feature selection for graph classification.

It is significantly more challenging than the conventional single-label feature selection in graph

data because of the multiple labels assigned to each graph. To address this challenge, we

propose an evaluation criterion gHSIC to evaluate the dependence of subgraph features with

the multiple labels of graphs, and derived an upper-bound for gHSIC to prune the subgraph

search space. Then we propose a branch-and-bound algorithm to e�ciently find a compact

set of subgraph feature which is useful for the classification of graphs with multiple labels.

Empirical studies on real-world tasks show that our feature selection method for multi-label

graph classification, gMLC, can e↵ectively boost multi-label graph classification performances

and is more e�cient by pruning the subgraph search space using multiple labels. Additionally,

the correlations among di↵erent labels can be exploited e↵ectively by adopting more informative

and advanced kernels for label kernel matrix.

In our current implementation, we only use simple strategies to construct label kernel matrix.

Actually various other types of label kernels can also be used to exploit the label correlations

among multiple labels more e↵ectively. We will leave related discussions to potential future

works.



CHAPTER 3

SEMI-SUPERVISED GRAPH CLASSIFICATION

3.1 Introduction

A major di�culty in graph classification lies in the complex structure of graphs and lack

of vector representations. Selecting a proper set of features for graph data is an essential and

important procedure for graph classification. The general problem of feature selection is well

studied in the literature. Semi-supervised feature selection problem for graph data, however,

has not been studied in this context so far. Conventional feature selection approaches on

graph data assume, explicitly or implicitly, that there exists a large amount of labeled training

data. However, in many real world applications, the labels of graph data are very expensive

or di�cult to obtain. Creating a large training dataset can be too expensive, time-consuming

or even infeasible. For example, in molecular medicine, it requires time, e↵orts and excessive

resources to test drugs’ anti-cancer e�cacies by pre-clinical studies and clinical trials, while

there are often copious amounts of unlabeled drugs or molecules available from various sources.

Thus it is much desired that the large amounts of unlabeled graphs can be e↵ectively utilized

to select better features for graphs, and improve the graph classification performances. For

example, in Figure 11, we show a dataset with two labeled graphs and four unlabeled graphs.

Based only on the two labeled graphs, subgraph feature “a-b” and “a-c” are both discriminative

features. Clearly, when we consider the distribution of the four unlabeled graphs, “a-b” is more

45
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likely to be useful than “a-c”. This is because the unlabeled graphs are not separable based on

the subgraph feature “a-c”.

Despite its value and significance, the semi-supervised feature selection for graph classifica-

tion is a much more challenging task due to the specific characteristics of the task. The reasons

are listed as follows.

Figure 11. An example of semi-supervised feature selection on graph data. The subgraph
feature “a-b” is more useful than “a-c” based on both labeled and unlabeled graphs.

1. Lack of labels. Conventional feature selection in graph classification approaches focuses on

supervised settings (21; 13; 14). The mining strategy of discriminative subgraph patterns

strictly follows the assumption that there exists a large amount of labeled graphs. How-
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ever, many real-world graph classifications usually su↵er from a lack of training graphs.

It is usually laborious, or even infeasible to create a large training set of graph instances.

2. Lack of features. Another fundamental problem in semi-supervised feature selection on

graph data lies in the complex structures and lack of feature representations of graphs.

Conventional feature selection approaches in vector spaces, which assume a candidate

feature set is available, cannot be directly applied to graph data, because it is usually

infeasible to generate all the subgraph features of a graph dataset before feature selec-

tion. The number of subgraphs is usually too large to be fully generated, since it grows

exponentially with the graph size. Furthermore checking subgraph isomorphism is NP-

complete.

In order to e�ciently find discriminative subgraph features, conventional supervised sub-

graph feature mining approaches rely on the label information from a large training set to

prune the subgraph search space and select useful features (13). However, when the num-

ber of labeled graphs is not large enough, the usefulness of the mined subgraph features

can be weak, and the pruning of the subgraph mining process can be ine↵ective.

12(a) illustrates the feature selection process in conventional graph classification approaches.

Obviously, when there is only a small number of labeled graphs available, supervised approaches

cannot work well due to two reasons: (1) During the subgraph features mining procedure, su-

pervised feature selection approaches for graph classification need to employ evaluation criteria

to select discriminative subgraph features based on labeled graphs. However, when the labeled

graphs are too few, the usefulness of the selected subgraph features can be weak, and thus detri-
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ment to the classification performances. (2) During the subgraph feature mining procedure,

most supervised graph classification approaches require a branch-and-bound search to avoid

exhaustive enumeration of all subgraphs in a dataset. However, when there are not enough

labeled graphs, the pruning ability of the upper-bound based on labeled graphs can be poor,

thus making it infeasible to find discriminative subgraph features within a reasonable amount

of time.

In this chapter, we introduce a novel framework to the above problems by mining sub-

graph features using both labeled and unlabeled graphs. Our framework is illustrated in 12(b).

Di↵erent from existing supervised feature selection methods for graph classification, our ap-

proach, called gSSC, can utilize both labeled and unlabeled graphs to find optimal subgraph

features for graph classification. We first derive a feature evaluation criterion, named gSemi,

based upon a given graph dataset with both labeled and unlabeled graphs. Then we propose

a branch-and-bound algorithm to e�ciently search for optimal subgraph features by deriving

an upper-bound of gSemi and pruning the subgraph search space using labeled and unlabeled

graphs. In order to evaluate our model, we perform comprehensive experiments on real-world

graph classification tasks. The experiments demonstrate that the proposed semi-supervised

feature selection method for graph classification outperforms supervised approaches and is very

e�cient by pruning the subgraph search space using both labeled and unlabeled graphs.

The rest of the chapter is organized as follows. We start by a brief review on related

works of graph feature selection and semi-supervised feature selection in Section 3.2. We then

introduce the preliminary concepts, give the problem analysis and present the gSemi criterion in
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Section 3.3. In Section 3.4, we derive an upper-bound of gSemi and propose the gSSC method.

Then Section 3.5 reports the experiment results on real-world graph classification tasks. In

Section 3.6, we conclude the chapter.

(a) Supervised Feature Selection Process for Graph Clas-
sification

(b) gSSC Semi-Supervised Feature Selection Process for
Graph Classification

Figure 12. Di↵erent Feature Selection Frameworks for Graph Classification

3.2 Related Work

To the best of our knowledge, this chapter is the first work on semi-supervised feature

selection problem for graph classification. Some research works have been done in related

areas.
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Dimensionality reduction and feature selection in vector spaces have also been studied. Sev-

eral recent works use pairwise constraints as weak supervision for dimensionality reduction, i.e.

must-link constraints (40) (pairs of instances with the same class) and cannot-link constraints

(41) (pairs of intstances with di↵erent classes). Feature selection methods in vector spaces

using both labeled and unlabeled instances have also been proposed (42; 43), which select use-

ful features within a pre-defined feature set. These methods assume that a set of candidate

features is given before the feature selection. However, conventional semi-supervised feature

selection approaches cannot be directly applied to graph data, because it is usually infeasible

to generate all the subgraph features of a graph dataset before feature selection. The number

of subgraphs is usually too large to be fully generated, since it grows exponentially with the

graph size. Instead, our proposed semi-supervised feature selection for graph data works in

a progressive way: the semi-supervised feature selection is integrated to the subgraph feature

generation, which can skip most of the bad subgraph features without even generating them.

3.3 Problem Formulation

In this section, we formulate the semi-supervised feature selection problem for graph classi-

fication based on subgraph features.

3.3.1 Semi-Supervised Feature Selection

Before presenting the semi-supervised feature selection model for graph classification, we

first introduce the notations that will be used throughout this chapter. Let D = {G1, · · · , Gn}

denote the entire graph dataset, which consists of n graph objects, represented as connected

graphs. The data set includes both labeled and unlabeled graphs. We assume that the first l
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graphs within D are labeled by {y1, · · · , yl}, where yi 2 {�1, +1} denotes the binary class label

assigned to Gi. For convenience, we also denote the labeled graph dataset by Dl = {G1, · · · , Gl},

and the unlabeled graph dataset as Du = {Gl+1, · · · , Gn}, D = Dl [Du.

Definition 5 (Connected Graph) A graph is represented as G = (V, E, L), where V is a

set of vertices V = {v1, · · · , vnv}, E ✓ V ⇥ V is a set of edges, L is the set of symbols for the

vertices and the edges. A connected graph is a graph such that there is a path between any pair

of vertices.

Definition 6 (Subgraph) Let G0 = (V 0, E0, L0) and G = (V, E, L) be connected graphs. G0 is

a subgraph of G(G0 ✓ G) i↵: (1) V 0 ✓ V, (2) E0 ✓ E, (3) L0 ✓ L. If G0 is a subgraph of G,

then G is a supergraph of G0.

In this chapter, we adopt the idea of subgraph-based graph classification approaches, which

assume that each graph object Gi is represented as a feature vector xi = [x1
i , · · · , xm

i ]> corre-

sponding to a set of subgraph patterns {g1, · · · , gm}. Denote xk
i as the binary feature associated

with the subgraph pattern gk. xk
i = 1 i↵ gk is a subgraph of Gi (gk ✓ Gi), otherwise xk

i = 0.

The key issue of semi-supervised feature selection for graph classification is how to find

the most informative subgraph patterns from a limited number of labeled graphs and a large

number of unlabeled graphs. So, in this chapter, the studied research problem can be described

as follow: in order to train an e↵ective graph classifier, how to e�ciently find a set of optimal

subgraph features from both labeled and unlabeled graphs?
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Mining the optimal subgraph features from both labeled and unlabeled graphs is a non-

trivial task due to the following problems:

(P1) How to properly evaluate the usefulness of a set of subgraph features based upon both

labeled and unlabeled graphs?

(P2) How to find the optimal subgraph features within a reasonable amount of time by avoiding

the exhaustive enumeration? The subgraph feature space of graph objects is usually too

large, because the number of subgraphs grows exponentially with the size of the graphs. It

is infeasible to completely enumerate all the subgraph features for a given graph dataset.

In the following sections, we will first introduce the optimization framework for selecting in-

formative subgraph features from labeled and unlabeled graphs. Next we will describe our

subgraph mining strategy using the evaluation criteria derived from the optimization solution.

3.3.2 Optimization Framework

We first address the problem (P1) discussed in Section 3.3.1 by defining the subgraph feature

selection as an optimization problem. Our target is to find an optimal set of subgraph features

from both labeled and unlabeled graphs. Formally, let us introduce the following notations:

• S = {g1, g2, · · · , gm}: the given set of all the subgraph features, which are used to predict

class membership of graph instances. Usually there is only a subset of the subgraph

features T ✓ S relevant to the graph classification task.

• T ⇤: the optimal set of subgraph features T ⇤ ✓ S.

• J(T ): an evaluation criterion to estimate the usefulness of subgraph feature subset T .
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• X: the matrix consisting binary feature vectors using S to represent the graph dataset

{G1, G2, · · · , Gn}. X = [x1,x2, · · · ,xn] = [f1,f2, · · · ,fm]> 2 {0, 1}m⇥n, where X =

[Xij ]
m⇥n, Xij = 1 i↵ gi ✓ Gj . The first l graphs are labeled as y1, · · · , yl.

• C and M: C = {(i, j)|yiyj = �1} denotes the cannot-link pairwise constraint sets among

labeled graphs. M = {(i, j)|yiyj = 1} denotes the must-link pairwise constraint sets

among labeled graphs.

We propose the following general optimization framework to select optimal subgraph feature

set:

T ⇤ = argmax
T ✓S

J(T ) s.t. |T |  t, (3.1)

where | · | denotes the size of the feature set and t is the maximum number of feature selected.

The objective function in Equation 3.1 has two components: the evaluation criterion J(T ) and

the subgraph features of graphs S.

We assume that the optimal subgraph features set should have the following properties: (a)

cannot-link : labeled graphs in di↵erent classes should be far away from each other; (b) must-

link : labeled graphs in the same class should be close to each other; (c) separability : unlabeled

graphs should be able to be separated from each other. Intuitively, (a) and (b) only consider the

constraints from labeled graphs, and tend to select the most discriminative subgraph features

based on the graph labels. They are similar to the LDA (44) criterion. Note (c) incorporates

the distribution of unlabeled graphs, and tends to select the subgraph features that can separate

graphs far from each other. It is similar to the PCA’s assumption, which is expressed as the
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average squared distance between unlabeled samples. An opposite example for property (c) is:

The subgraph features that are too rare or too frequent in the dataset are not useful at all,

because unlabeled graphs cannot be separated from each other using these subgraph features.

Similar assumptions have also been used by previous works on dimensionality reduction in

vector spaces (42).

Based upon the above properties, we derive an evaluation criterion J(T ) as follow:

J(T ) =
↵

2|C|
X

yiyj=�1

(DT xi �DT xj)
2

� �

2|M|
X

yiyj=1

(DT xi �DT xj)
2

+
1

2|Du|2
X

Gi,Gj2Du

(DT xi �DT xj)
2

(3.2)

where DT = diag(d(T )) is a diagonal matrix indicating which features are selected into feature

set T from S, d(T )i = I(gi 2 T ). ↵, � are two parameters, which control the weights of the

three types of constraints. Di↵erent settings of ↵ and � can refer to di↵erent scenarios, and

reflect di↵erent beliefs we have for the problem. A discussion on the parameter setting will be

presented analytically in Section 3.4.4 and empirically in Section 3.5.4.
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By defining a matrix W = [Wij ]n⇥n as

Wij =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

↵
|C| if yiyj = �1

� �
|M| if yiyj = 1

1
|Du|2 if Gi, Gj 2 Du

0 otherwise

(3.3)

we can rewrite the J(T ) in Equation 3.2 as follow:

J(T ) =
1

2

X

i,j

(DT xi �DT xj)
2 Wij

= tr(DT
>X (D �W ) X>DT )

= tr(DT
>XLX>DT )

=
X

gk2T
(fk

>Lfk)

(3.4)

where tr(·) is the trace of a matrix, D is a diagonal matrix whose entries are column sums of

W , i.e. Dii =
P

j Wij . L = D �W is a Laplacian matrix.

By denoting function h(gk, L) = fk
>Lfk, the optimization in Equation 3.1 can be written

as

max
T

X

gk2T
h(gk, L)

s.t. T ✓ S, |T |  t

(3.5)



56

Definition 7 (gSemi) Let D = {G1, · · · , Gn} denote a graph dataset, with first l graphs labeled

as y1, · · · , yl. Suppose W is a matrix defined as Equation 3.3. L is a Laplacian matrix defined

as L = D �W , where D is a diagonal matrix, Dii =
P

j Wij. We define a quality criterion q

called gSemi, for a subgraph feature g as

q(g) = h(g, L) = fg
>Lfg (3.6)

where fg = [f (1)
g , · · · , f (n)

g ]> 2 {0, 1}n is the indicator vector for subgraph feature g, f (i)
g = 1

i↵ g ✓ Gi (i = 1, 2, · · · , n). Since the Laplacian matrix L is positive semi-definite, for any

subgraph pattern g, q(g) � 0.

The optimal solution to the problem in Equation 3.5 can be found by using gSemi to make

feature selection on a set of subgraphs S. Suppose the gSemi values for all subgraphs are

denoted as q(g1) � q(g2) � · · · � q(gm) in sorted order. Then the optimal solution to the

optimization problem in Equation 3.5 is:

T ⇤ = {gi|i  t}. (3.7)

3.4 gSSC

In this section, we address the problem (P2) discussed in Section 3.3.1 by proposing an

e�cient method to find the optimal set of subgraphs features from a dataset with both labeled

and unlabeled graphs.
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The straightforward method is the exhaustive enumeration: We first enumerate all subgraph

patterns in the graph dataset, and then calculate the gSemi values for all subgraph patterns.

This method is usually impractical, because the number of subgraphs grows exponentially with

the size of the graphs. Inspired by recent graph classification approaches, e.g. (13), which put

their evaluation criteria into the subgraph pattern mining process and develop constraints to

prune search spaces, we take a similar approach by deriving a di↵erent constraint from both

labeled and unlabeled graphs. In order to avoid the exhaustive search, we proposed a branch-

and-bound algorithm, named gSSC, which is summarized as follow: a) Adopt a canonical search

space where all the subgraph patterns can be enumerated. b) Search through the space, and

find the optimal subgraph features by gSemi. c) Propose an upper bound of gSemi and prune

the search space. Details with these three steps will be described in the next subsections.

3.4.1 Subgraph Mining

In this chapter, we adopted a depth first search algorithm, gSpan proposed by Yan et al(28),

to enumerate all subgraphs from a graph dataset. The key idea of gSpan(28) is that, instead of

enumerating subgraphs and testing for isomorphism, they first build a lexicographic order of all

the edges of a graph, and then map each graph to an unique minimum DFS code as its canonical

label. The minimum DFS codes of two graphs are equivalent i↵ they are isomorphic. Details

can be found in (28). Based on this lexicographic order, a depth-first search (DFS) strategy is

used to e�ciently search through all the subgraphs in a DFS code tree. By a depth-first search

through the DFS code tree’s nodes, we can enumerate all the subgraphs of a graph in their
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DFS codes’ order. And the nodes with non-minimum DFS codes can be directly pruned in the

tree, which saves us from performing an explicit isomorphic test among the subgraphs.

3.4.2 Upper Bound of gSemi

By adopting gSpan’s DFS Code Tree, we can e�ciently enumerate all the subgraph patterns

of a graph dataset in a canonical search space. We now derive an upper bound for the gSemi

value which can be used to prune the subgraph search space. A convenient method to compute

a upper-bound on gSemi value is given as follow:

Theorem 2 (Upper bound of gSemi) Given any two subgraphs g, g0 2 S, g0 is a supergraph

of g (g0 ◆ g). The gSemi value of g0 (q(g0)) is bounded by q̂(g) (i.e., q(g0)  q̂(g)). q̂(g) is

defined as follow:

q̂(g) , fg
>L̂fg (3.8)

where the matrix L̂ is defined as L̂ij , max(0, Lij). fg = {I(g ✓ Gi)}n
i=1 2 {0, 1}n is a vector

indicating which graphs in a graph dataset {G1, · · · , Gn} contain the subgraph g, I(·) is the

indicator function. Suppose the gSemi value of g is q(g) = fg
>Lfg.

Proof 2

q
�
g0� = fg0>Lfg0 =

X

i,j:Gi,Gj2G(g0)

Lij
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where G(g0) , {Gi|g0 ✓ Gi, 1  i  n}. Since g0 is the supergraph of g (g0 ◆ g), according

to anti-monotonic property, we have G(g0) ✓ G(g). Also L̂ij , max(0, Lij), we have L̂ij � Lij

and L̂ij � 0. So,

q
�
g0� =

X

i,j:Gi,Gj2G(g0)

Lij 
X

i,j:Gi,Gj2G(g0)

L̂ij


X

i,j:Gi,Gj2G(g)

L̂ij = q̂ (g)

Thus, for any g0 ◆ g, q(g0)  q̂(g).

3.4.3 Pruning Search Space

We can now utilize the upper bound to e�ciently prune the DFS Code Tree with a branch-

and-bound method. During the depth-first search through the DFS Code Tree, we always

maintain the temporally suboptimal gSemi value (denoted by ✓) among all the gSemi values

calculated before. If q̂(g) < ✓, the gSemi value of any supergraph g0 of g (g0 ◆ g) is no greater

than ✓. Thus, we can safely prune the subtree from g in the search space. If q̂(g) � ✓, we

cannot prune this space since there might exist a supergraph g0 ◆ g that q(g0) � ✓.

The algorithm gSSC is summarized in Figure 13. We initialize a set of selected subgraphs T

as an empty set. In order to speed up the mining process, we can prune the search space from

gSpan by always maintaining the currently top-t best subgraphs according to q. During the

course of mining, whenever we reach a subgraph g with q̂(g)  mingi2T q(gi), we can prune the

branches originating from g. This is because for any supergraph g0 ◆ g we have q(g0)  q̂(g),

according to the bound defined in Equation 3.8. As long as the resulting subgraph g can improve
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T = gSSC(D, yl, min sup, t)
Input:

D : Graph data set {G1, · · · , Gn}
yl : The first l graphs’ labels, where

yl = [y1, · · · , yl]>

min sup : Minimum support threshold
t : number of subgraph feature selected

Process:
1 T = ;, ✓ = 0;
2 Recursively visit the DFS Code Tree in gSpan:
3 g = currently visited subgraph in DFS Code

Tree
4 if |T | < t, then
5 T = T [ {g};
6 else if q(g) > ming02T q(g0), then
7 gmin = argming02T q(g0) and T = T /gmin;
8 T = T [ {g} and ✓ = q(gmin);
9 if q̂(g) � ✓ and freq(g) � min sup, then

10 Depth-first search the subtree rooted from
node g;

11 return T ;
Output:
T : Set of optimal subgraph features

Figure 13. The gSSC algorithm

the gSemi value of any subgraphs gi 2 T , it is accepted into T and the least best subgraph is

dropped o↵ from T . And then we start searching for the next subgraph in the DFS Code Tree.

We further note that in our experiments among almost all datasets gSemi provides such

a bound that we can even omit the support threshold min sup and still find a set of optimal

subgraphs within a reasonable time cost.
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3.4.4 Discussion

In this section we show the connection between our framework and various application

scenarios of graph classification.

Parameter Setting: There are two parameters in the objective function: ↵ and �, which

represent the weights of di↵erent constraints based on both labeled and unlabeled graphs.

Di↵erent settings of these parameters fit the optimization to di↵erent scenarios of graph classi-

fication:

• ↵ 6= 0, � = 0. In this case, we only consider the cannot-link constraints and unlabeled

graph’s separability in subgraph feature selection. No must-link constraint is considered,

i.e. labeled graphs within the same classes are not necessarily close together. ↵ controls

how much we assume labeled graphs within di↵erent classes should be far from each other.

This setting of parameters is useful when there is a large diversity within graphs from the

same class. For example, drug molecules that have the same toxicology activities on one

animal can have very di↵erent structures. Furthermore, if ↵ = +1, we only trust the

cannot-link constraints. This reduce the problem into a supervised feature selection task.

• ↵ = 0, � 6= 0. In this setting of parameter, we only consider the must-link constraints

and unlabeled graph’s separability in subgraph feature selection. The larger � is, the

more we trust the must-link constraints in feature selection. No cannot-link constraint is

considered, i.e. labeled graphs in di↵erent classes are not necessarily far from each other.
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• ↵ = 0, � = 0. In this case, we don’t trust label constraints. Only unlabeled graph’s

separability is considered in subgraph feature selection. This reduce the problem into an

unsupervised feature selection task for the unlabeled graph data.

• ↵ 6= 0, � 6= 0. In this case, we consider all constraints (must-link, cannot-link, unlabeled

separability) with di↵erent weights. This setting is a typical setting for semi-supervised

feature selection, where we need to consider both labeled and unlabeled graphs. The

smaller the values of ↵ and �, the more we trust the separability constraints from unlabeled

graphs.
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Figure 14. Classification accuracy with di↵erent number of features. (#label=30)
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Figure 15. Classification accuracy with di↵erent number of features. (#label=50)

3.5 Experiments

In this section, we conduct extensive experiments to examine the e↵ectiveness and e�ciency

of gSSC in semi-supervised feature selection for graph classification.

3.5.1 Experimental Setup

Data Collections: In order to evaluate the performances of our semi-supervised feature

selection approach for graph classification, we tested our algorithm on five real-world graph

classification datasets including the following tasks: (Summarized in Table V)
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Figure 16. Classification accuracy with di↵erent number of features. (#label=70)

1) Anti-cancer activity prediction: The first three benchmark datasets are collect from Pub-

Chem Website1. The task is to classify chemical compounds’ anti-cancer activities on

three types of cancers, i.e. breast, lung and ovarian. The datasets consist information

on the biological activities of small molecules, containing anti-cancer activity records of

more then 10,000 chemical compounds against the three types of cancers. Each chemi-

cal compound is represented as a graph. We collected 3 graph datasets with active and

inactive labels from PubChem Website. The original datasets are unbalanced, where the

1http://pubchem.ncbi.nlm.nih.gov
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active class is around 5%. We randomly sample 500 inactive compounds and 500 active

compounds from each dataset for performance evaluation.

2) Toxicology prediction (PTC): The last two benchmark datasets are collected from PTC

datasets1 (38). The task is to classify chemical compounds’ carcinogenicity on two an-

imal models, i.e. MM (Male Mouse) and FM (Female Mouse). The datasets consist

carcinogenicity records of more than 300 chemical compounds. Each chemical compound

is assigned with carcinogenicity labels for these animal models. On each animal model

the carcinogenicity label is one of {CE, SE, P, E, EE, IS, NE, N}. We assume {CE, SE,

P} as ‘positive’ labels, and {NE, N} as ‘negative’, which is the same setting as (39; 21).

Each chemical compound is represented as a graph with an average of 25.7 vertices.

1http://www.predictive-toxicology.org/ptc/

TABLE V

SUMMARY OF EXPERIMENTAL DATASETS. “POS%” DENOTES THE AVERAGE
PERCENTAGE OF POSTIVE GRAPHS IN EACH DATASET.

Name #Graph Pos% Details
MCF-7 27784 8.19 Breast Cancer

NCI-H23 40460 5.06 Lung Cancer
OVCAR-8 40626 5.08 Ovarian Cancer
PTC-MM 336 41.0 Male Mice Toxicology
PTC-FM 349 38.4 Female Mice Toxicology
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Comparing Methods: In order to demonstrate the e↵ectiveness of our semi-supervised

features selection approach for graph classification, we compare our methods with two baseline

methods, including a supervised feature selection approach and an unsupervised approach.

The compared methods are summarized as follows:

• Semi-Supervised (gSSC): The proposed semi-supervised feature selection method for

graph classification. We first use gSSC to find a set of subgraph features. The parameters

in gSSC are set to ↵ = � = 1 unless otherwise specified.

• Supervised (IG): We compare with a supervised feature selection method for graph clas-

sification. In this approach, a set of frequent subgraphs within labeled graphs are first

mined. Then a supervised feature selection based upon Information Gain (IG), an en-

tropy based measure, is used to select a subset of discriminative features from frequent

subgraphs.

• Unsupervised (Top-k): We also compare with an unsupervised feature selection method.

In this approach, the evaluation criterion for subgraph feature selection is based upon

frequency. The top-k frequent subgraph features in labeled graphs are selected.

All experiments are conducted on machines with 4 GB RAM and Intel XeonTMQuad-Core

CPUs of 2.40 GHz.

3.5.2 Performances on Graph Classification

In our experiments, the labeled training graphs are randomly sampled from each datasets.

All the remaining graphs are used as unlabeled testing graphs. The results are average of over
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30 runs of randomly sampled graph dataset. After the subgraph feature sets are selected by

each method, the nearest neighbor (1-NN) classifier is used for classification.

The result of the feature selection methods with di↵erent number of labeled training graphs

are displayed in Figure 14 (# labeled graphs =30), Figure 15 (# labeled graphs =50) and

Figure 16 (# labeled graphs =70). We show the number of selected subgraphs t among frequent

subgraphs (min sup = 10%), together with classification accuracy as the evaluation metric.

In all these datasets, our semi-supervised feature selection algorithm (gSSC) outperform the

supervised approach (IG). gSSC can achieve a good performances with a few labeled training

graphs together with a large amount of unlabeled graphs. Although the performance of IG

improves with a larger number of features, the IG cannot reach the best performance achievable

by gSSC. These results support our first intuition that semi-supervised feature selection methods

based on gSemi can boost the performance of graph classification with large amount of unlabeled

graphs.

We further observe that gSSC’s performances are better than our second baseline Top-k, i.e.

unsupervised feature selection approaches without label information. These results support our

second intuition that the gSemi evaluation criterion in gSSC can find better subgraph patterns

for graph classification than unsupervised top-k frequent subgraph selection approaches.

3.5.3 Pruning Search Space

In our second experiment, we evaluated the e↵ectiveness of the upper-bound for gSemi

proposed in Section 3.4.2. In this section we compare the runtime performance of two versions

of implementation for gSSC: ‘nested gSSC’ versus ‘un-nested gSSC’. The ‘nested gSSC’ denotes
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Figure 17. Average CPU time for nested gSSC versus un-nested gSSC with varying min sup.
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Figure 18. Average number subgraph patterns explored during mining for nested gSSC versus
un-nested gSSC with varying min sup.

the proposed method using the upper-bound proposed in Section 3.4.2 to prune the search

space of subgraph enumerations; the ‘un-nested gSSC’ denotes the method without the gSemi’s

upper-bound pruning, which first uses gSpan to find a set of frequent subgraphs, and then

selects the optimal set of subgraphs via gSemi. We run both approaches and record the average

CPU time used on feature mining and selection. The result is shown in Figure 17.
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Figure 19. Classification accuracy of gSSC with di↵erent ↵ and �. (#label=50)

In all these datasets, the un-nested gSSC needs to explore increasingly larger subgraph

search spaces as we decrease the min sup in the frequent subgraph mining. The size increases

exponentially when decreasing min sup. In the MCF-7 dataset, when the min sup get too low

( min sup < 8%), the subgraph feature enumeration step in un-nested gSSC can run out of

the computer memory. However, the nested gSSC’s running time does not increase as much,

because the gSemi can help pruning the subgraph search space using both labeled and unlabeled

graphs. As we can see, the min sup can go to very low value in all datasets for the “nested

gSSC”.

Figure 18 shows the number of subgraph feature explored in the process of subgraph pattern

enumeration. In all datasets, we observe that the number of searched subgraph patterns in

nested gSSC is much smaller than that of un-nested gSSC. In our experiments, we further

noticed that on most datasets, nested gSSC provides such a strong bound that we may even

allow nested gSSC to omit the minimum support threshold min sup and still receive an optimal

set of subgraph features within a reasonable time.
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3.5.4 Parameter Settings

In our model we can take di↵erent weights on constraints from labeled graphs and unlabeled

graphs. If we use di↵erent setting for the two parameters ↵ and �, we can take the feature

selection with di↵erent weights for the three types of constraints: must-link, cannot-link and

unlabeled separability. ↵ represents how much we weight the cannot-link constraints, and �

denotes how much we weight the must-link constraints. The larger ↵ is, the further away

the graphs with di↵erent classes are separated from each other. The larger � is, the closer

the graphs with the same classes are from each other. We test ↵ and � with values among

{0.001, 0.01, · · · 10000} separately. The result in Figure 19 shows that the performance of our

model using ↵ with large values and � with small values is often better than other settings.

The reason is that in these real-world graph classification tasks, graphs in the same class are

not always similar with each other, actually graphs can be very di↵erent within a same class.

In Figure 19, we find the best parameter setting for MCF-3 dataset is ↵ = 1, � = 0.1

(accuracy = 0.526), and with our default parameter setting (↵ = � = 1) the accuracy is 0.523.

For NCI-H23 dataset, the best parameter setting is ↵ = 1, � = 0.1 (accuracy= 0.556), and the

accuracy with default setting is 0.553. For OVCAR-8 dataset, the best parameter setting is

↵ = 1, � = 0.1 (accuracy= 0.539), and the accuracy with default setting is 0.530. Generally,

we can see that the performance of gSSC with default setting ( ↵ = � = 1) is pretty good. If

we try to optimize the selection of ↵ and � value, the accuracy improvement relative the two

base line schemes will be even bigger.
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3.6 Conclusion

In this chapter, we study the problem of semi-supervised feature selection for graph classi-

fication. It is significantly more challenging than the conventional setting of supervised feature

selection in graph data because of the lack of labeled training graphs. To address this chal-

lenge, we propose a feature evaluation criterion, named gSemi, to evaluate subgraph features

with both labeled and unlabeled graphs, and derive an upper-bound for gSemi to prune the

subgraph search space. Then we propose a branch-and-bound algorithm to e�ciently find a

set of optimal subgraph feature which is useful for graph classification. Empirical studies on

real-world tasks show that our semi-supervised feature selection approach for graph classifica-

tion outperforms supervised and unsupervised approaches and is very e�cient by pruning the

subgraph search space using both labeled and unlabeled graphs.



CHAPTER 4

DUAL ACTIVE FEATURE AND SAMPLE SELECTION FOR GRAPH

CLASSIFICATION

4.1 Introduction

Conventional approaches on graph classification focus on mining discriminative subgraph

features (45) under supervised settings. They assume explicitly or implicitly that a large num-

ber of labeled graphs are available. However, in many real-world applications, labeling graph

data can be very expensive and time consuming. For example, in molecular medicine, it is very

expensive to test the anticancer activity by preclinical studies and clinical trials; in software

engineering, human experts have to examine a program flow carefully in order to find soft-

ware bugs. The labeling cost for graph data can be significantly reduced by training a model

that can select the most important graph to query for the label. This setting is also known

as active learning or active query selection. It aims to exploit unlabeled data e↵ectively by

selecting important examples to query for labels. Thus, active learning approaches can usually

achieve performance comparable to supervised approaches, while using less labeled data. Active

learning has been shown to be useful in many real-world applications (46; 47).

Formally, the active learning problem for graph data corresponds to learning a model to

select important graphs to obtain class labels. Active learning is particularly challenging in

graph data. Conventional active learning approaches estimate the importance of unlabeled

72
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Figure 20. An example of dual active feature and sample selection in graph data.

examples, and assume that all useful features are given. However, in graph data the useful

features are not available. Thus, additional steps of subgraph feature mining and selection are

required to estimate the usefulness of subgraphs. What makes this problem even more inter-

esting and challenging is that subgraph enumeration and graph isomorphism testing problems

are NP-complete. Thus, it is impossible to enumerate all subgraph features and adopt existing

approaches for active learning.
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In active learning for graph data, the active query selection problem and the subgraph

feature selection problem are closely related to each other. The reasons are summarized as

follows:

• In active query selection, we need to estimate the importance of each unlabeled graph in

order to select the most important graph to query for the label. However, before the most

important graph can be determined, we need to find a set of useful subgraph features.

Graph data are not directly represented in a meaningful feature space. The performance of

the active sample selection directly depends on the quality of the subgraph features mined

from the graph dataset. For example, in Figure 20, G3 is the most important graph which

we want to query for the label. G3 is close to the class boundary like graph G4. Moreover,

G3 is representative of a cluster of unlabeled graphs. However, the informativeness and

representativeness of a graph object depends on which feature set is used. The better the

feature set we use, the better we will be able to estimate the importance of the query

graphs.

• In the subgraph feature selection problem, we also need to select a set of important

subgraph features for the graph classification task. Conventional feature selection ap-

proaches for graph data focus on supervised settings (13; 48). The feature evaluation

strategies strictly follow the assumption that a large number of labeled graphs are avail-

able. However, in the active learning settings, we can only a↵ord to query a small number

of unlabeled graphs and obtain their labels. The performance of the feature selection pro-

cess depends strongly on the quality of the queried graphs in the active sample selection
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process. For example, in Figure 20, suppose we are given two labeled graphs (G1 and

G2). Only a small number of the useful subgraph features (F1 and F2) appear in the

labeled graphs. If we query the graph G3 that is both representative and informative,

we are more likely to find new features like F3. The process of query selection can assist

the process of feature selection in finding useful subgraph features. In other words, the

better the query graph we select, the more e↵ectively we can discover the useful subgraph

features.

Thus, the active sample selection problem and the subgraph feature selection problem are

correlated and should be considered simultaneously. The combined problem is referred to as dual

active feature and sample selection for graph classification. This problem can be summarized

as follows: in order to minimize the labeling cost in graph classification, we need to determine

how one can actively select the most important graph to obtain the class label.

To the best of our knowledge, the dual active feature and sample selection for graph classi-

fication has not been studied in this context. A straightforward solution to this problem would

be the two-stage active learning framework as shown in 21(a). In this framework, the feature

selection problem and the active sample selection problem are considered in two separate steps.

In the first step, we select a set of subgraph features based upon the labeled graphs. In the

second step, we estimate the importance of query graphs based upon the feature set selected

in the first step. Obviously, only the subgraph features that appear in the label graphs can be

found in the first step. The useful features that only appear in the unlabeled graphs can not
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(a) Two-stage active learning in graph data

(b) Dual active feature and sample selection

Figure 21. Di↵erent active learning frameworks for graph classification.

be found. Thus, when we only use the features found in the first step, the estimation of the

importance of query graphs will not be accurate.

In this chapter we introduce a novel framework for the above problems by exploiting useful

subgraph features and optimal query graphs simultaneously. Our framework is illustrated in

21(b). Unlike the two-stage active learning method, the proposed approach, called gActive, can

estimate the usefulness of a query graph and e↵ectiveness of subgraph features simultaneously.

The gActive method maximizes the dependence between subgraph features and graph labels

based upon an active learning framework. Furthermore, we propose a branch-and-bound algo-

rithm to search for optimal features e�ciently by pruning the subgraph search space. Empirical
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studies on real-world tasks demonstrate that the proposed method can obtain promising results

using fewer labeled graphs than alternative approaches.

4.2 Related Work

Active learning aims at reducing the labeling cost by querying the most informative example.

Many methods have been proposed based upon di↵erent active learning settings. Please see (49)

for a detailed survey. Conventional active learning approaches focus on data in vector space.

One approach is to query the most informative instance. The active learners select the uncertain

instances based upon a single classifier (46; 50) or a committee of classifiers (51; 52; 53). The

problems with this approach are that it can be sensitive to outliers or noise, and can not exploit

the structures of unlabeled data. The alternative approach is to query the most representative

instance. The active learners exploit the structure of unlabeled data using clustering methods

(54; 55) or optimal experimental design approaches (56). The major problems are that this

approach is unsupervised and can not use the labeled data. Some work has also been done to

combine informativeness and representativeness measures to find the optimal query examples

(57; 58).

4.3 Problem Formulation

Suppose we are given a graph dataset D = {G1, · · · , Gn} that consists of n graphs. y =

[y1, · · · , yn]> denotes the vector of labels, where yi 2 {+1, 0,�1} is the label of Gi. yi = 0

implies that Gi is unlabeled. Active learning in graph data is the task of selecting one graph

Gs from the pool of unlabeled graphs to query for its label. For convenience, we partition the

graph dataset into three parts: the labeled graphs D`, the query graph Gs, and the remaining
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TABLE VI. Important Notations.
Symbol Definition

D = {G1, · · · , Gn} given graph dataset, Gi denotes the i-th graph in the dataset.
n`, na and nu number of labeled graphs, unlabeled graphs including and excluding the query graph in D
l = {1, · · · , n`} index set for labeled graphs in D
s and u index of selected graph and the index set of the other unlabeled candidate graphs in D.
a = {n` + 1, · · · , n} index set for all unlabeled graphs in the pool including the selected graph. a = {s} [ u

y = [y1, · · · , yn]> class label vector for graphs in D, yi 2 {+1, �1, 0}
S = {g1, · · · , gm} set of all subgraph patterns in the graph dataset D.

xi = [x1
i , · · · , xm

i ]> binary vector for Gi using subgraph features in S, xk
i 2 {0, 1} and xk

i = 1 i↵ gk ✓ Gi

fi = [f1
i , · · · , fn

i ]> binary vector for subgraph pattern gi in the D
X = [Xij ](m⇥n) matrix of all binary feature vectors in the dataset, X = [x1, · · · , xn] = [f1, · · · , fm]>

T set of selected subgraph patterns, T ⇢ S
K(T ) = [Kij ](n⇥n) kernel matrix of all graphs using the selected subgraph features T
L(ys, y`) = [Lij ](n⇥n) label kernel matrix of all graphs based upon the class labels

H = [Hij ](n⇥n) centering matrix, Hij = �ij � n�1. (�ij = 1 i↵ i = j, otherwise 0)

DT an m ⇥ m diagonal matrix indicating which features are selected from S into T
⇧`, ⇧u and ⇧s mapping matrices, ⇧` 2 {0, 1}(n`⇥n), ⇧s 2 {0, 1}(1⇥n), ⇧u 2 {0, 1}(nu⇥n) and [⇧>

` , ⇧>
s , ⇧>

u ] = In

unlabeled graphs Du. Da = Du[{Gs} denotes all unlabeled graphs. The vector y is partitioned

as follows:

y =

2

666664

y`

ys

yu

3

777775
=

2

64
y`

ya

3

75 and ya =

2

64
ys

yu

3

75

where y`, ys and yu represent the class labels assigned to the graphs in D`, {Gs} and Du

respectively. We denote the number of labeled graphs by n`. nu is the number of unlabeled

graphs excluding the query graph, and na is the number of all unlabeled graphs. na = nu + 1.

We assume the first n` graphs in the dataset D are labeled.

Definition 8 (Graph) A graph is represented as G = (V, E, L, l). V is the set of vertices,

and V = {v1, · · · , vnv}. E ✓ V ⇥V is the set of edges. L is the set of labels for the vertices and

edges. l : V [ E ! L is the function assigning labels to the vertices and edges.

We focus on using subgraph patterns to define the feature space of graph classification. It is

assumed that a graph object Gi is represented as a binary vector xi = [x1
i , · · · , xm

i ]> associated



79

with a set of subgraph patterns {g1, · · · , gm}. Here, xk
i 2 {0, 1} is the binary feature of Gi

corresponding to the subgraph pattern gk. xk
i = 1 i↵ gk is a subgraph of Gi. Now suppose

the full set of subgraph features in the graph dataset D is S = {g1, · · · , gm}, which we use

to predict the class labels of the graph objects. The full feature set S is very large. Only a

subset of the features (T ✓ S) is relevant to the graph classification task. Let X denote the

matrix consisting of the binary feature vectors based on S to represent the graph dataset D.

X = [x1,x2, · · · ,xn] = [f1, f2, · · · , fm]> 2 {0, 1}m⇥n, where X = [Xij ]m⇥n, Xij = 1 i↵ gi ✓ Gj .

We briefly summarize the notations used in this chapter in Table VI.

Definition 9 (Subgraph) Let G0 = (V 0, E0, L0, l0) and G = (V, E, L, l) be graphs. G0 is a

subgraph of G (G0 ✓ G) i↵ there exists an injective function  : V 0 ! V. 8v 2 V 0, l0(v) =

l ( (v)). 8(u, v) 2 E0, ( (u), (v)) 2 E and l0(u, v) = l ( (u), (v)). If G0 is a subgraph of G,

then G is a supergraph of G0.

The key issue of dual active feature and sample selection is to find the most important query

graph and a set of optimal subgraph patterns simultaneously. The problems studied in this

chapter are as follows:

1) How can one estimate the importance of a query graph among unlabeled graphs?

2) How can one estimate the usefulness of a set of features for the graph classification task?

3) How can one determine the optimal subgraph features within a reasonable amount of time,

and avoid the exhaustive enumeration of all features?
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Figure 4: Graph distances using two optimal feature sets (T +
s and T �

s ) respectively depending on the label
of the query graph.

We select a subset of subgraph features T from S, such that
the feature selection evaluation function J(Gs, ys, D,y`, T )
is maximized.

2.1.1 The Intuition
Now, we show the key ideas of this paper from the follow-

ing views.
Query Selection View: from the active query selection

view, we assume that the optimal query graph should satisfy
the following properties:

(a) Dependence maximization: based upon a feature set
T , the query graph Gs should be able to maximize the
dependence between features of graphs and labels in a
max-min view as in Eq. 1.

(b) Informative and representative: the selected query graph
should be both informative and representative among
the pool of unlabeled graphs. The query graph Gs

should be close to some of the unlabeled graphs in the
dataset, such that Gs is likely to be representative of a
group of unlabeled graphs instead of being an outlier.
The query graph Gs should also be far from the labeled
graphs in D`, such that the label of Gs is unlikely to
be redundant.

Feature Selection View: from the subgraph feature se-
lection view, the optimal feature set can be very di�erent
depending on which graph we query, and what class label
we get from the domain expert. For example, in Figure 4,
we have a graph dataset with seven graph objects. Sup-
pose the selected query graph is Gs. We denote the optimal
feature set as T +

s , when Gs is positive. T �
s represents the

optimal feature set, when Gs is negative. From the feature
selection perspective, the optimal subgraph features should
also satisfy the following properties:

(a) Dependence maximization: graphs with the same class
labels should have similar subgraph features, and be
close to each other; while graphs with di�erent labels
should have di�erent features and be far away from
each other.

(b) Informative and representative: the query graph Gs

should be close to the other unlabeled graphs, and be
far from the existing labeled graphs.

2.1.2 The Solution
Many criteria can be used to evaluate the dependence be-

tween subgraph features and graph labels. In this paper we

adopt the Hilbert-Schmidt Independence Criterion (HSIC)
[12] for subgraph evaluation. HSIC measures the depen-
dence between two variables (X, Y ) in the kernel space. We
briefly review the definition of HSIC. Suppose we have two
reproducing kernel Hilbert spaces (RKHS) of functions G
and F . Let a covariance operator be

C = E {[p(X) � E(p(X))][q(Y ) � E(q(Y ))]} , �p � G, q � F

Then the HSIC is defined as the Hilbert-Schmidt norm of
the operator C, i.e., �C�2

HS . Given a data sample, HSIC has
an empirical estimator HSIC = tr(K H L H). Here, tr(·) is
the trace of a matrix. H = [Hij ]n⇥n, where Hij = �ij �1/n.
�ij is the indicator function. �ij = 1 i� i = j, otherwise
�ij = 0. K and L are kernel matrices on the samples.

Based upon the HSIC measure, we propose the following
evaluation function for active feature selection:

J(Gs, ys, D,y`, T ) =tr [ K(T ) H L(ys,y`) H ]

+ �
1>Ku,s(T )

nu
� �

1>Kl,s(T )
n`

(3)

where K(T ) = [Kij ](n⇥n) denotes the kernel matrix of graphs
based upon a subgraph feature T . Kij = �DT xi, DT xj�.
DT = diag(dT ) is a diagonal matrix, where dT = [d(T )i](m⇥1)

and d(T )i = I(gi � T ) � {0, 1}. L(ys,y`) = [Lij ](n⇥n) =

yy> denotes the kernel matrix based on the labels of the
graphs, where y = [ y>

` , ys,y
>
u ]>. Lij = �yi, yj� is used in

our current implementation. Other kernels can also be di-
rectly used in this formulation. � and � are two parameters
that control the weights of the three terms in the evaluation
function. The first term denotes the dependence between
the features and labels of the graphs. The second term rep-
resents the average similarity between the query graph and
the unlabeled graphs. The third term represents the average
similarity between the query graph and the labeled graphs.

The evaluation function in Eq. 3 can be simplified as fol-
lows:

tr
⇣
K(T )Hyy>H

⌘
= tr

⇣
X>DT DT X H yy> H

⌘

= tr
⇣
DT X H yy> H X>DT

⌘

=
�

gi2T

⇣
f>
i H yy> H fi

⌘

Figure 22. Graph distances using two optimal feature sets (T +
s and T �

s ) respectively
depending on the label of the query graph.

4.3.1 Optimization Framework

We propose an optimization framework to select the optimal query graph by maximizing

the minimum score of an evaluation function.

G⇤
s = arg max

Gs2Da

min
ys2{±1}

E(Gs, ys, D,y`) (4.1)

where Da denotes the pool of all unlabeled graphs. E denotes the evaluation function for

querying a graph Gs in Da. Because the label of the selected graph Gs can be either 1 or �1,

we need to consider both alternatives and select the worst case to maximize. In this max-min

view of active learning, it guarantees that the selected graph Gs will lead to a large value for

the function E(Gs, ys, D,y`).

Note that in graph data the useful features are not given. We need to make use of the label

information to select a subset of optimal subgraph features. If we know the class label of the
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selected query graph Gs, we can select the optimal feature set by maximizing the following

function.

E(Gs, ys, D,y`) = max
T ✓S,|T |=t

J(Gs, ys, D,y`, T ) (4.2)

We select a subset of subgraph features T from S, such that the feature selection evaluation

function J(Gs, ys, D,y`, T ) is maximized.

4.3.1.1 The Intuition

Now, we show the key ideas of this chapter from the following views.

Query Selection View: from the active query selection view, we assume that the optimal

query graph should satisfy the following properties:

(a) Dependence maximization: based upon a feature set T , the query graph Gs should be

able to maximize the dependence between features of graphs and labels in a max-min

view as in Equation 4.1.

(b) Informative and representative: the selected query graph should be both informative and

representative among the pool of unlabeled graphs. The query graph Gs should be close

to some of the unlabeled graphs in the dataset, such that Gs is likely to be representative

of a group of unlabeled graphs instead of being an outlier. The query graph Gs should

also be far from the labeled graphs in D`, such that the label of Gs is unlikely to be

redundant.

Feature Selection View: from the subgraph feature selection view, the optimal feature

set can be very di↵erent depending on which graph we query, and what class label we get
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from the domain expert. For example, in Figure 22, we have a graph dataset with seven graph

objects. Suppose the selected query graph is Gs. We denote the optimal feature set as T +
s ,

when Gs is positive. T �
s represents the optimal feature set, when Gs is negative. From the

feature selection perspective, the optimal subgraph features should also satisfy the following

properties:

(a) Dependence maximization: graphs with the same class labels should have similar subgraph

features, and be close to each other; while graphs with di↵erent labels should have di↵erent

features and be far away from each other.

(b) Informative and representative: the query graph Gs should be close to the other unlabeled

graphs, and be far from the existing labeled graphs.

4.3.1.2 The Solution

Many criteria can be used to evaluate the dependence between subgraph features and graph

labels. In this chapter we adopt the Hilbert-Schmidt Independence Criterion (HSIC) (37) for

subgraph evaluation. HSIC measures the dependence between two variables (X, Y ) in the kernel

space. We briefly review the definition of HSIC. Suppose we have two reproducing kernel Hilbert

spaces (RKHS) of functions G and F . Let a covariance operator be

C = E {[p(X)� E(p(X))][q(Y )� E(q(Y ))]} , 8p 2 G, q 2 F

Then the HSIC is defined as the Hilbert-Schmidt norm of the operator C, i.e., kCk2HS . Given

a data sample, HSIC has an empirical estimator HSIC = tr(K H L H). Here, tr(·) is the trace
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of a matrix. H = [Hij ]n⇥n, where Hij = �ij � 1/n. �ij is the indicator function. �ij = 1 i↵

i = j, otherwise �ij = 0. K and L are kernel matrices on the samples.

Based upon the HSIC measure, we propose the following evaluation function for active

feature selection:

J(Gs, ys, D,y`, T ) =tr [ K(T ) H L(ys,y`) H ]

+ ↵
1>Ku,s(T )

nu
� �

1>Kl,s(T )

n`

(4.3)

where K(T ) = [Kij ](n⇥n) denotes the kernel matrix of graphs based upon a subgraph feature

T . Kij = hDT xi, DT xji. DT = diag(dT ) is a diagonal matrix, where dT = [d(T )i](m⇥1) and

d(T )i = I(gi 2 T ) 2 {0, 1}. L(ys,y`) = [Lij ](n⇥n) = yy> denotes the kernel matrix based

on the labels of the graphs, where y = [ y>
` , ys,y>

u ]>. Lij = hyi, yji is used in our current

implementation. Other kernels can also be directly used in this formulation. ↵ and � are two

parameters that control the weights of the three terms in the evaluation function. The first

term denotes the dependence between the features and labels of the graphs. The second term

represents the average similarity between the query graph and the unlabeled graphs. The third

term represents the average similarity between the query graph and the labeled graphs.

The evaluation function in Equation 4.3 can be simplified as follows:

tr
⇣
K(T )Hyy>H

⌘
= tr

⇣
X>DT DT X H yy> H

⌘

= tr
⇣
DT X H yy> H X>DT

⌘

=
X

gi2T

⇣
f>
i H yy> H fi

⌘
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Input:
D: the graph dataset {G1, · · · , Gn} t: the maximum number of features.
y`: the vector of class labels for labeled graphs, min sup: the minimum frequency.

Initialize:
- Construct the feature evaluation functions h(g,M) and initialize candidate feature lists:

1. Calculate 2 ⇥ na matrices using Equation 4.4 by considering each case for Gs and ys as follows:

M+
i = H L(yi = +1,y`) H + ↵

nu
⇧i1>⇧>

u � �
n`

⇧i1>⇧>
` , (8 i, n` < i  n)

M�
i = H L(yi = �1,y`) H + ↵

nu
⇧i1>⇧>

u � �
n`

⇧i1>⇧>
` , (8 i, n` < i  n)

2. Initialize 2 ⇥ na empty lists for candidate subgraph features as follows:

8 i (n` < i  n), let T +
i = T �

i = ; with maximum size t, and pruning thresholds ✓+
i = ✓�

i = �1

Recursive Feature Mining:
- Depth-first search the gSpan’s code tree and update the feature lists as follows:

1. Update each of the candidate feature lists using the current subgraph feature gc:

8 i, if h(gc,M+
i ) is larger than the worst feature in T +

i , replace it and update ✓+
i = min

g2T +
i

h(g,M+
i )

8 i, if h(gc,M�
i ) is larger than the worst feature in T �

i , replace it and update ✓�
i = min

g2T �
i

h(g,M�
i )

2. Test pruning criteria for the sub-tree rooted from node g as follows:
if freq(gc) < min sup, prune the sub-tree of gc

if 8 i (n` < i  n), eh(gc,M+
i )  ✓+

i and eh(gc,M�
i )  ✓�

i , prune the sub-tree of gc

3. Recursion: Depth-first search the sub-tree rooted from node gc

Active Query Selection:
- Select the query graph using Equation 4.5

Output:
Gs: The selected query graph.

T +
s : the optimal subgraph features if Gs is labeled as a positive graph.

T �
s : the optimal subgraph features if Gs is labeled as a negative graph.

Figure 23. The gActive algorithm

We can rewrite J(Gs, ys, D,y`, T ) in Equation 4.2 as

J(Gs, ys, D,y`, T )

=
X

gi2T
f>
i

✓
H yy> H +

↵

nu
⇧s1

>⇧>
u �

�

n`
⇧s1

>⇧>
`

◆
fi

=
X

gi2T
f>
i M fi
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Input:
D: the graph dataset {G1, · · · , Gn} t: the maximum number of features.
y`: the vector of class labels for labeled graphs, min sup: the minimum frequency.

Initialize:
- Construct the feature evaluation functions h(g,M) and initialize candidate feature lists:

1. Calculate 2 ⇥ na matrices using Eq. 4 by considering each case for Gs and ys as follows:

M+
i = H L(yi = +1,y`) H + ↵

nu
⇧i1>⇧>

u � �
n`

⇧i1>⇧>
` , (8 i, n` < i  n)

M�
i = H L(yi = �1,y`) H + ↵

nu
⇧i1>⇧>

u � �
n`

⇧i1>⇧>
` , (8 i, n` < i  n)

2. Initialize 2 ⇥ na empty lists for candidate subgraph features as follows:

8 i (n` < i  n), let T +
i = T �

i = ; with maximum size t, and pruning thresholds ✓+
i = ✓�

i = �1

Recursive Feature Mining:
- Depth-first search the gSpan’s code tree and update the feature lists as follows:

1. Update each of the candidate feature lists using the current subgraph feature gc:

8 i, if h(gc,M+
i ) is larger than the worst feature in T +

i , replace it and update ✓+
i = min

g2T +
i

h(g,M+
i )

8 i, if h(gc,M�
i ) is larger than the worst feature in T �

i , replace it and update ✓�
i = min

g2T �
i

h(g,M�
i )

2. Test pruning criteria for the sub-tree rooted from node g as follows:
if freq(gc) < min sup, prune the sub-tree of gc

if 8 i (n` < i  n), eh(gc,M+
i )  ✓+

i and eh(gc,M�
i )  ✓�

i , prune the sub-tree of gc

3. Recursion: Depth-first search the sub-tree rooted from node gc

Active Query Selection:
- Select the query graph using Eq. 5

Output:
Gs: The selected query graph.

T +
s : the optimal subgraph features if Gs is labeled as a positive graph.

T �
s : the optimal subgraph features if Gs is labeled as a negative graph.

Figure 5: The gActive algorithm

We can rewrite J(Gs, ys, D,y`, T ) in Eq. 2 as

J(Gs, ys, D,y`, T )

=
�

gi2T
f>
i

�
H yy> H +

↵

nu
⇧s1

>⇧>
u �

�

n`
⇧s1

>⇧>
`

�
fi

=
�

gi2T
f>
i M fi

where �` and �u are projection matrices. X` = X�`, Xu =
X�u and xs = X�s.

M = H yy> H +
↵

nu
⇧s1

>⇧>
u �

�

n`
⇧s1

>⇧>
` (4)

Given the evaluation function h(gi, Gs, ys, D,y`) = f>
i M fi,

we can define the optimization problem of dual active fea-
ture and sample selection as follows:

G�
s = arg max

Gs2Da

min
ys2{±1}

max
T ✓S,|T |=t

�

gi2T
h(gi, Gs, ys, D,y`) (5)

Definition 3 (gFScore). Let D = {G1, · · · , Gn} denote a
graph dataset, with first n` graphs labeled as y1, · · · , yn` . Suppose
we have a query graph Gs with its potential label ys. We define
a quality criterion h(gi, Gs, ys, D,y`) = h(gi,M) = f>

i M fi,
called gFScore, for a subgraph feature gi. M is a matrix defined
in Eq. 4.

The optimal solution to Eq. 5 can be found by the fol-
lowing method: we go through each unlabeled graph one by
one. Suppose Gs is the currently selected graph. We need
to go through a positive case (ys = 1) and a negative case
(ys = �1). In each case, we mine the top-t best subgraph
features according to the gFScore. As shown in Figure 6,
we need to mine 2 � na optimal feature sets from the graph
dataset. T +

i denotes the optimal feature set, when the i-th
graph is queried and labeled as a positive graph. T �

i denotes

Top t candidate
pattern list

yn`+1 = +1 �1

Gn`+1

yn`+2 = +1

�1

Gn`+2

yn = +1 �1

Gn

T +
n`+1 T �

n`+1 T +
n`+2 T �

n`+2 T +
n T �

n

Figure 6: Candidate subgraph pattern lists

the optimal feature set, when Gi is queried and labeled as
negative. Then, we can directly use Eq. 5 to find the optimal
query graph.

2.1.3 Upper Bound of gFScore
Now we address the problem on how to mine the opti-

mal feature sets without exhaustive enumeration of all sub-
graphs. Note that the number of subgraphs in a graph
dataset can be extremely large. It grows at an exponential
rate as the size of the graphs increases. Thus, it is computa-
tionally intractable to enumerate all subgraphs in the graph
dataset.

Some recent graph classification approaches [26, 24, 18]
incorporate constraints to prune the search space of gSpan
[27]. In this paper we derive a new constraint to prune the
search space in the DFS-code tree. A straightforward upper-
bound of gFScore is defined as follows:

Theorem 1 (Upper bound of gFScore). Suppose we have
two subgraph patterns gi, gj 2 S, and gj is a supergraph of gi

Figure 24. Candidate subgraph pattern lists

where ⇧` and ⇧u are projection matrices. X` = X⇧`, Xu = X⇧u and xs = X⇧s.

M = H yy> H +
↵

nu
⇧s1

>⇧>
u �

�

n`
⇧s1

>⇧>
` (4.4)

Given the evaluation function h(gi, Gs, ys, D,y`) = f>
i M fi, we can define the optimization

problem of dual active feature and sample selection as follows:

G⇤
s = arg max

Gs2Da

min
ys2{±1}

max
T ✓S,|T |=t

X

gi2T
h(gi, Gs, ys, D,y`) (4.5)

Definition 10 (gFScore) Let D = {G1, · · · , Gn} denote a graph dataset, with first n` graphs labeled as

y1, · · · , yn` . Suppose we have a query graph Gs with its potential label ys. We define a quality criterion

h(gi, Gs, ys, D,y`) = h(gi,M) = f>
i M fi, called gFScore, for a subgraph feature gi. M is a matrix

defined in Equation 4.4.
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The optimal solution to Equation 4.5 can be found by the following method: we go through

each unlabeled graph one by one. Suppose Gs is the currently selected graph. We need to go

through a positive case (ys = 1) and a negative case (ys = �1). In each case, we mine the

top-t best subgraph features according to the gFScore. As shown in Figure 24, we need to mine

2⇥ na optimal feature sets from the graph dataset. T +
i denotes the optimal feature set, when

the i-th graph is queried and labeled as a positive graph. T �
i denotes the optimal feature set,

when Gi is queried and labeled as negative. Then, we can directly use Equation 4.5 to find the

optimal query graph.

4.3.1.3 Upper Bound of gFScore

Now we address the problem on how to mine the optimal feature sets without exhaustive

enumeration of all subgraphs. Note that the number of subgraphs in a graph dataset can be

extremely large. It grows at an exponential rate as the size of the graphs increases. Thus, it is

computationally intractable to enumerate all subgraphs in the graph dataset.

Some recent graph classification approaches (13; 14; 34) incorporate constraints to prune

the search space of gSpan (28). In this chapter we derive a new constraint to prune the search

space in the DFS-code tree. A straightforward upper-bound of gFScore is defined as follows:

Theorem 3 (Upper bound of gFScore) Suppose we have two subgraph patterns gi, gj 2 S, and gj

is a supergraph of gi (gj ◆ gi). The gFScore value of gj is bounded by eh(gi,M) , i.e., h(gj ,M)  eh(gi,M).

eh(gi,M) is defined as follows:

eh(gi,M) , fi
>fMfi (4.6)

where the matrix fM is defined as fMpq , max(0, Mpq).
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Proof 3

h (gj ,M) = fj
>Mfj =

X

p,q:Gp,Gq2D(gj)

Mpq (4.7)

where D(gj) , {Gk|gj ✓ Gk, 1  k  n}. Since gj is a supergraph of gi (gj ◆ gi), we have D(gj) ✓ D(gi)

according to the anti-monotonic property. fMpq , max(0, Mpq). We have fMpq � Mpq and fMpq � 0.

Thus,

h (gj ,M) =
X

p,q:Gp,Gq2D(gj)

Mpq 
X

p,q:Gp,Gq2D(gj)

fMpq


X

p,q:Gp,Gq2D(gi)

fMpq = eh (gi,M)

(4.8)

For any gj ◆ gi, h(gj ,M)  eh(gi,M).

We now utilize the upper bound to prune the DFS-code tree in gSpan by the branch-and-bound

pruning. The top-t best features are maintained in 2⇥ na candidate lists. Figure 24 shows an

example of the candidate lists. During the course of the subgraph pattern mining, we calculate

the upper-bound of each subgraph pattern in the search tree. If a subgraph pattern node with

its children nodes cannot update any of the candidate feature lists, we can prune the subtree

of gSpan rooted from this node. It is guaranteed by the upper-bound that we will not miss any

better features for any of the candidate feature lists. Thus, the subgraph feature mining process

can be speeded up without loss of performance. The algorithm of gActive is summarized in

Figure 23.

4.4 Experiments

Data Collection: in order to evaluate the performance of the proposed approach for graph

classification, we tested our algorithm on nine real-world datasets as summarized in Table VII.



88

1) Anti-cancer activity prediction (NCI): the first eight benchmark datasets are collected

from the PubChem website1. The datasets contain records of anticancer activities for

more than 20,000 chemical compounds against eight types of cancer. Each chemical

compound is represented as a graph. We collected eight graph data sets with active and

inactive labels from the PubChem website. The original datasets are unbalanced, where

the percentage of positive compounds is around 5%. We randomly sampled 500 inactive

compounds and 500 active compounds from each dataset for performance evaluation.

2) AIDS anti-virus prediction (HIV): the last benchmark dataset is collected from the AIDS

anti-viral screening program2. The dataset consists of screening records of more than 7700

chemical compounds. Each compound is described by its activity against HIV, which is

one of the following categories: confirmed active (CA), confirmed moderately active (CM)

and confirmed inactive (CI). We treat CA+CM as the positive label, and CI as the negative

label. This is the same setting used in (59). The original data set is unbalanced, where

the percentage of positive compounds is around 3%. We randomly sampled 266 inactive

compounds and used the original 266 active compounds for performance evaluation.

Comparative Methods: in order to demonstrate the e↵ectiveness of the proposed ap-

proach, we compare our method against four baseline methods. These baseline methods include

1http://pubchem.ncbi.nlm.nih.gov

2http://dtp.nci.nih.gov/
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TABLE VII

SUMMARY OF EXPERIMENTAL DATASETS. “# POS” DENOTES THE NUMBER OF
ACTIVE GRAPHS IN THE DATASET.

Dataset # Pos # Graph Details

NCI1 2040 40526 Lung Cancer
NCI33 1636 40209 Melanoma
NCI41 1561 27585 Prostate Cancer
NCI47 2011 40447 Central Nerve System
NCI81 1396 40700 Colon Cancer
NCI83 2276 27992 Breast Cancer
NCI123 3112 40152 Leukemia
NCI145 1940 40164 Renal Cancer
AIDS 266 7781 HIV Anti-virus

both supervised and unsupervised feature selection approaches combined with active sample

selection approaches. The compared methods are summarized as follows:

• Dual Active Feature and Sample Selection (gActive): the proposed method in this chapter.

The default parameter setting for the gActive method is ↵ = � = 10�3.

• Supervised Feature Selection + Random Sampling (IG + Random): we compare with a

supervised feature selection method combined with random sampling. A set of frequent

subgraphs within the graph dataset is first mined. Then a supervised feature selection

method based upon Information Gain (IG) is used to select a subset of discriminative

features from the frequent subgraphs. We randomly select query graphs from the pool.

Note that discriminative features are recomputed after each iteration of feature and graph

selection.
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• Supervised Feature Selection + Margin (IG + Margin): we compare with a two-stage

active learning approach. A supervised feature selection method is combined with a

margin-based active learning method. In this approach, a set of frequent subgraphs within

the graph dataset are first mined. Then we iteratively use information gain to select a

subset of discriminative features from the frequent subgraphs. We use a margin-based

active learning approach (46) to select informative graphs to query for labels.

• Unsupervised Feature Selection + Random Sampling (Top-k + Random): we compare

with an unsupervised feature selection method combined with random sampling. In this

approach, we use the top-k frequent subgraph features in the pool dataset. Then we

randomly select query graphs from the pool.

• Unsupervised Feature Selection + Margin (Top-k + Margin): we compare with an unsu-

pervised feature selection method combined with a margin-based active learning method.

In this approach, we use the top-k most frequent subgraphs in the pool dataset. Then

margin-based active learning is used to select informative graphs to query.

• Unsupervised Feature Selection + Sequential TED (Top-k + TED): we compare with

an unsupervised feature selection method combined with experimental designs. In this

approach, we use the top-k most frequent subgraphs in the pool dataset. Then the

sequential transductive experimental design (56) is used to select representative graphs

from the pool dataset.

All experiments are conducted on machines with Intel XeonTM Quad-Core CPUs of 2.27

GHz and 24 GB RAM. LibSVM (60) with the linear kernel is used as the base classifier for all
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compared methods. min sup =10% in the gSpan. The default number of selected features in

all compared methods is set as 500.

4.4.1 Performance on Graph Classification

In our experiments, we first randomly sample two labeled graphs, i.e., one positive and one

negative graph. They are used as the initial training set. Then we partition the remaining

graphs into two groups with equal size: one group is used as the pool dataset; the other group

is used as the testing dataset for performance evaluation. In each iteration, the active learner

selects one unlabeled graph in the pool dataset and queries the label. Then, the queried graph

is put into the training set, and the base classifier is trained to classify the testing graphs. We

report the average results of 50 runs on randomly sampled graph datasets.

The results of all compared methods are summarized in Figure 25. We run each of the

methods for 50 iterations and compare the learning curves. In all datasets, the proposed dual

active feature and sample selection algorithm (gActive) consistently outperforms other baseline

methods. Note that in the NCI33 and NCI145 datasets, all the baselines with margin-based

active learning (IG + Margin and Top-k + Margin) are unable to achieve better performance

than randomized baselines (IG + Random and Top-k + Random). However, our method

can achieve substantially better performance than other baselines. This result supports the

intuition of this chapter: the feature selection problem and the active query selection problem

are correlated, and should be considered simultaneously. Moreover, we notice that in the NCI41

dataset, all the baselines using margin-based active learning can improve the performance over
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randomized baselines. In this dataset, the improvements by the proposed gActive method can

be even more significant.

4.4.2 Parameter Settings

In the proposed model, di↵erent weights can be assigned to the three terms in Equation 4.3.

If we use di↵erent settings for the two parameters, ↵ and �, we can perform the dual active

feature and sample selection with di↵erent weights for the three constraints: dependence max-

imization, representativeness and informativeness. To be precise, ↵ represents how much we

weight the representativeness, and � denotes how much we weight the informativeness. The

larger the value of ↵ is, the closer the query graph is with other unlabeled graphs. The larger

the value of � is, the further away the query graph is from the other labeled graphs. We test

↵ and � with values among {100, 10, 1, 0.1, 0.01, 0.001, 0} separately. The average results

for our model in the first 50 iterations are reported. As shown in Figure 26, the performance

of our model using ↵ and � with similar values is often better than other settings. In these

real-world graph classification tasks, the constraints for informativeness and representativeness

are equally important for our active feature and sample selection problem.

In 26(a), we find that the best parameter setting for NCI47 dataset is ↵ = 0.001, � = 0.001,

and the accuracy is 63.5%. This setting is the same as our default parameter setting. The best

parameter setting for NCI145 dataset is ↵ = 0, � = 0.001, and the resulting accuracy is 65.5%.

Under our default setting, the accuracy is 65.4%. We find that the performance of our gActive

model with the default setting is satisfactory. If we try to optimize the selection of ↵ and �

values, the accuracy improvement over other baselines will be even larger.
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We also compare gActive models with and without pruning in the subgraph search space

as summarized in Figure 27. The average CPU time with di↵erent min sup during the first

iteration is reported. gActive can improve the e�ciencies by pruning the subgraph search space.

4.5 Conclusions

In this chapter we studied the dual active feature and sample selection problem for graph

classification. The objective was to minimize the labeling e↵orts in graph classification. We

demonstrated how to find a useful query graph and a set of optimal features simultaneously.

We proposed to maximize the dependence between subgraph features and labels based upon

an active learning framework. Our approach can find the most representative and informative

graph and an optimal feature set. Then a branch-and-bound algorithm was proposed to prune

the subgraph search space e�ciently.
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(c) NCI41
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(d) NCI47
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(e) NCI81
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Figure 25. Graph classification accuracy after di↵erent number of graphs being queried.
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Figure 26. gActive accuracies with di↵erent ↵ and �.
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Figure 27. CPU time with/without pruning.



CHAPTER 5

UNCERTAIN GRAPH CLASSIFICATION FOR BRAIN NETWORKS

5.1 Introduction

Much of the past research in discriminative subgraph feature mining has focused on certain

graphs, where the structure of the graph objects are certain, and the binary edges represent

the “presence” of linkages between the nodes. Conventional subgraph mining methods (13)

utilize the structures of the certain graphs to find discriminative subgraph features. However,

in many real-world applications, there is inherent uncertainty about the graph linkage structure.

Such uncertainty information will be lost if we directly transform uncertain graphs into certain

graphs.

For example, in neuroimaging, the functional connectivities among di↵erent brain regions

are highly uncertain (5; 6; 7; 8). In such applications, each human brain can be represented as

an uncertain graph as shown in Figure 28, which is also called the “brain network” (61). In

such brain networks, the nodes represent brain regions, and edges represent the probabilistic

connections, e.g., resting-state functional connectivity in fMRI (functional Magnetic Resonance

Imaging). Since these functional connectivities are derived based upon processing steps, such as

temporal correlations in spontaneous blood oxygen level-dependent (BOLD) signal oscillations,

each edge of the brain network is associated with a probability to quantify the likelihood

that the functional connection exists in the brain. Resting-state functional connectivity has

96
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shown alterations related to many neurological diseases, such as ADHD (Attention Deficit

Hyperactivity Disorder), Alzheimer’s disease and virus infections that may a↵ect the brain

functioning, such as HIV (62). Researchers are interested in analyzing the complex structure and

uncertain connectivities of the human brain to find biomarkers for neurological diseases. Such

biomarkers are clinically imperative for detecting injury to the brain in the earliest stages before

it is irreversible. Valid biomarkers can be used to aid diagnosis, monitor disease progression

and evaluate e↵ects of intervention.

Motivated by these real-world neuroimaging applications, in this chapter, we study the

problem of mining discriminative subgraph features in uncertain graph datasets. Discrimina-

tive subgraph features are fundamental for uncertain graphs, just as they are for certain graphs.

They serve as primitive features for the classification tasks on uncertain graph objects. Despite

the value and significance, the discriminative subgraph mining for uncertain graph classifica-

tion has not been studied in this context. If we consider discriminative subgraph mining and

uncertain graph structures as a whole, the major research challenges are as follows:

Structural Uncertainty: In discriminative subgraph mining, we need to estimate the dis-

crimination score of a subgraph feature in order to select a set of subgraphs that are most

discriminative for a classification task. In conventional subgraph mining, the discrimination

scores of subgraph features are defined on certain graphs, where the structure of each graph

object is certain, and thus the containment relationships between subgraph features and graph

objects are also certain. However, when uncertainty is presented in the structures of graphs,

a subgraph feature only exists within a graph object with a probability. Thus the discrimina-
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(a) positive uncertain graph (b) negative uncertain graph

Figure 28. An example of uncertain graph classification task.

tion scores of a subgraph feature are no longer deterministic values, but random variables with

probability distributions.

Thus, the evaluation of discrimination scores for subgraph features in uncertain graphs is

di↵erent from conventional subgraph mining problems. For example, in Figure 29, we show an

uncertain graph dataset containing 4 uncertain graphs eG1, · · · , eG4 with their class labels, + or

�. Subgraph g1 is a frequent pattern among the uncertain graphs, but it may not relate to the

class labels of the graphs. Subgraph g2 is a discriminative subgraph features when we ignore

the edge uncertainties. However, if such uncertainties are considered, we will find that g2 can

rarely be observed within the uncertain graph dataset, and thus will not be useful in graph

classification. Accordingly, g3 is the best subgraph feature for uncertain graph classification.

E�ciency & Robustness: There are two additional problems that need to be considered

when evaluating features for uncertain graphs: 1) In an uncertain graph dataset, there are
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(a) positive uncertain graph (b) negative uncertain graph

Figure 1: An example of uncertain graph classification
task.

to aid in the diagnosis, monitor disease progression and
to evaluate treatment e↵ect of new drugs and therapies.

Motivated by these real-world neuroimaging appli-
cations, in this paper, we study the problem of min-
ing discriminative subgraph features in uncertain graph
datasets. Discriminative subgraph features are funda-
mental for uncertain graphs, just as they are for cer-
tain graphs. They serve as primitive features for the
classification tasks on uncertain graph objects. Despite
the value and significance, the discriminative subgraph
mining for uncertain graph classification has not been
studied in this context so far. If we consider discrimi-
native subgraph mining and uncertain graph structures
as a whole, the major research challenges are as follows:
Structural Uncertainty: In discriminative subgraph
mining, we need to estimate the discrimination score
of a subgraph feature in order to select a set of sub-
graphs that are most discriminative for a classification
task. In conventional subgraph mining, the discrimina-
tion scores of subgraph features are defined on certain
graphs, where the structure of each graph object is cer-
tain, and thus the containment relationships between
subgraph features and graph objects are also certain.
However, when uncertainty is presented in the struc-
tures of graphs, a subgraph feature only exists within
a graph object with a probability. Thus the discrimi-
nation scores of a subgraph feature are no longer deter-
ministic values, but random variables with probability
distributions.

Thus, the evaluation of discrimination scores for
subgraph features in uncertain graphs is di↵erent from
conventional subgraph mining problems. For example,
in Figure 2, we show an uncertain graph dataset con-
taining 4 uncertain graphs eG1, · · · , eG4 with their class
labels, + or �. Subgraph g1 is a frequent pattern among
the uncertain graphs, but it may not relate to the class
labels of the graphs. Subgraph g2 is a discriminative
subgraph features when we ignore the edge uncertain-
ties. However, if such uncertainties are considered, we
will find that g2 can rarely be observed within the uncer-
tain graph dataset, and thus will not be useful in graph
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classification. Accordingly, g3 is the best subgraph fea-
ture for uncertain graph classification.
E�ciency & Robustness: There are two additional
problems need to be considered when evaluating fea-
tures for uncertain graphs: 1) In an uncertain graph
dataset, there are an exponentially large number of pos-
sible instantiations of a graph dataset [17]. How can we
e�ciently compute the discrimination score of a sub-
graph feature without enumerating all possible implied
datasets? 2) When evaluating the subgraph features,
we should choose a statistical measure for the proba-
blity disctribution of discrimination scores which is ro-
bust to extreme values. For example, given a subgraph
feature with (score, probability) pairs as (0.01, 99.99%)
and (+1, 0.01%), the expected score of the subgraph is
+1, although this value is only associated with a very
tiny probability.

In order to address the above problems, we pro-
pose a general framework for mining discriminative sub-
graph features in uncertain graph datasets, which is
called Dug (Discriminative feature selection for Uncer-
tain Graph classification). The Dug framework can ef-
fectively find a set of discriminative subgraph features
by considering the relationship between uncertain graph
structures and labels based upon various statistical mea-
sures. We propose an e�cient method to calculate the
probability distribution of the scoring function based on
dynamic programming. Then a branch-and-bound algo-
rithm is proposed to search for the discriminative sub-
graphs e�ciently by pruning the subgraph search space.
Empirical studies on resting-state fMRI images of dif-
ferent brain diseases (i.e., Alzheimer’s Disease, ADHD
and HIV) demonstrate that the proposed method can
obtain better accuracy on uncertain graph classification
tasks than alternative approaches.

Figure 29. Di↵erent types of subgraph features for uncertain graph classification

an exponentially large number of possible instantiations of a graph dataset (16). How can

we e�ciently compute the discrimination score of a subgraph feature without enumerating

all possible implied datasets? 2) When evaluating the subgraph features, we should choose

a statistical measure for the probablity disctribution of discrimination scores which is robust

to extreme values. For example, given a subgraph feature with (score, probability) pairs as

(0.01, 99.99%) and (+1, 0.01%), the expected score of the subgraph is +1, although this value

is only associated with a very tiny probability.

In order to address the above problems, we propose a general framework for mining dis-

criminative subgraph features in uncertain graph datasets, which is called Dug (Discriminative

feature selection for Uncertain Graph classification). The Dug framework can e↵ectively find

a set of discriminative subgraph features by considering the relationship between uncertain

graph structures and labels based upon various statistical measures. We propose an e�cient
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TABLE VIII

IMPORTANT NOTATIONS.
Symbol Definition

eD = { eG1, · · · , eGn} uncertain graph dataset, eGi denotes the i-th uncertain graph in the dataset.

y = [y1, · · · , yn]> class label vector for graphs in eD, yi 2 {+1, �1}.
eD+ and eD� the subset of eD with only positive/negative graphs, eD+ = { eGi| eGi 2 eD, yi = +1}.

n+ and n� number of positive graphs and number of negative graphs in eD, n+ = | eD+| and n� = | eD�|.
D = {G1, · · · , Gn} a certain graph dataset implied from eD, Gi denotes the certain graph implied from eGi.
g ✓ G graph G contains subgraph feature g
ng

+ and ng
� number of graphs in D+ / D� that contains subgraph g, ng

+ = |{Gi|g ✓ Gi, Gi 2 D+}|.
eG ) G and eD ) D certain graph G is implied from uncertain graph eG; D is implied from eD.

W( eG) and W( eD) the possible worlds of eG and eD, W( eG) = {G| eG ) G}, W( eD) = {D| eD ) D}.

E( eGi) and E(Gi) the set of edges in eGi and Gi
eD+(k) and eD�(k) the first k graphs in eD+ or eD�

method to calculate the probability distribution of the scoring function based on dynamic pro-

gramming. Then a branch-and-bound algorithm is proposed to search for the discriminative

subgraphs e�ciently by pruning the subgraph search space. Empirical studies on resting-state

fMRI images of di↵erent brain diseases (i.e., Alzheimer’s Disease, ADHD and HIV) demonstrate

that the proposed method can obtain better accuracy on uncertain graph classification tasks

than alternative approaches.

For the rest of the chapter, we first introduce preliminaries in Section 5.3. Then we introduce

our Dug subgraph mining framework in Section 5.4. Discrimination score functions based

upon di↵erent statistic measures are discussed in Section 5.4.1. An e�cient algorithm for

computing the score distribution based upon dynamic programming is proposed in Section 5.4.2.

Experimental results are discussed in Section 5.5. In Section 5.6, we conclude the chapter.



101

5.2 Related Work

Our work is related to subgraph mining techniques for uncertain graphs. Recently, there has

been a growing interest in exploiting data uncertainty, especially structural uncertainty in graph

data. There are some recent works on mining frequent subgraph features for uncertain graphs

(63; 16; 64; 65). The problem of mining frequent subgraph in uncertain graphs are more di�cult

to those of certain graphs. The authors (63) proposed a method to estimate approximately the

expected support of a subgraph feature in uncertain graph datasets. In (16), the authors

studies the '-probabilities for frequent subgraph features within uncertain graph datasets. The

di↵erence between these works and our chapter are as follows: 1) In this chapter, we study

how to find discriminative subgraph features for uncertain graph data. The class labels of the

graph objects are considered during the subgraph mining. 2) The graph model in our chapter

is di↵erent from previous uncertain graph data, since we assume di↵erent graph object shares

the same set of nodes as inspired by the neuroimaging applications. Thus, our method compute

the exact discrimination scores of each subgraph features, instead of approximate scores. There

are also many other works on uncertain graphs, which focus on di↵erent problems, e.g., reliable

subgraph mining (66), k-nearest neighbor discovery (67), subgraph retrieval (68) etc.

Our work is also motivated by the recent advances in analyzing neuroimaging data using

data mining and machine learning approaches (5; 6; 7; 8). Huang et. al. (5) developed a

sparse inverse covariance estimation method for analyzing brain connectivities in PET images

of patients with Alzheimer’s disease.
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5.3 Problem Formulation

In this section, we formally define the model of uncertain graphs and the problem of dis-

criminative subgraph mining in uncertain graph datasets. Suppose we are given an uncertain

graph dataset eD = { eG1, · · · , eGn} that consists of n uncertain graphs. eGi is the i-th uncertain

graph in eD. y = [y1, · · · , yn]> denotes the vector of class labels, where yi 2 {+1,�1} is the

class label of eGi. We also denote the subset of eD that contains only positive/negative graphs

as eD+ = { eGi| eGi 2 eD
V

yi = +1} and eD� = { eGi| eGi 2 eD
V

yi = �1} respectively.

Definition 11 (Certain Graph) A certain graph is an undirected and deterministic graph

represented as G = (V, E). V = {v1, · · · , vnv} is the set of vertices. E ✓ V ⇥ V is the set of

deterministic edges.

Definition 12 (Uncertain Graph) An uncertain graph is an undirected and nondeterminis-

tic graph represented as eG = (V, E, p). V = {v1, · · · , vnv} is the set of vertices. E ✓ V ⇥ V

is the set of nondeterministic edges. p : E ! (0, 1] is a function that assigns a probability of

existence to each edge in E. p(e) denotes the existence probability of edge e 2 E.

Consider an uncertain graph eG(V, E, p) 2 eD, where each edge e 2 E is associated with a

probability p(e) of being present. As in previous works (63; 16), we assume that the uncertainty

variables of di↵erent edges in an uncertain graph are independent from each other, though most

of our results are still applicable to graphs with edge correlations. We further assume that all

uncertain graphs in a dataset eD share a same set of nodes V and each node in V has a unique

node label, which is reasonable in many applications like neuroimaging, since each human brain
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consists of the same number of regions. The main di↵erence between di↵erent uncertain graphs

is on their linkage structures, i.e., the edge sets E( eG) and the edge probabilities p(e).

Possible instantiations of an uncertain graph eG are usually referred to as worlds of eG, where

each world corresponds to an implied certain graph G. Here G is implied from uncertain graph eG

(denoted as eG) G), i↵ all edges in E(G) are sampled from E( eG) according to their probabilities

of existence in p(e) and E(G) ✓ E( eG). There are 2|E( eG)| possible worlds for uncertain graph eG,

denoted as W( eG) = {G| eG ) G}. Thus, each uncertain graph eG corresponds to a probability

distribution over W( eG). We denote the probability of each certain graph G 2 W( eG) being

implied by the uncertain graph eG as Pr( eG) G), and we have

Pr
h
eG) G

i
=

Y

e2E(G)

Pr eG(e)
Y

e2E( eG)�E(G)

�
1� Pr eG(e)

�

Similarly, possible instantiations of an uncertain graph dataset eD = { eG1, · · · , eGn} are referred

to as worlds of eD, where each world corresponds to an implied certain graph dataset D =

{G1, · · · , Gn}. A certain graph dataset D is called as being implied from uncertain graph

dataset eD (denoted as eD ) D), i↵ |D| = | eD| and 8i 2 {1, · · · , |D|}, eGi ) Gi. There are

Q| eD|
i=1 2|E( eGi)| possible worlds for uncertain graph dataset eD, denoted as W( eD) = {D | eD ) D}.

An uncertain graph dataset eD corresponds to a probability distribution over W( eD). We denote
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the probability of each certain graph dataset D 2 W( eD) being implied by eD as Pr( eD ) D).

By assuming that di↵erent uncertain graphs are independent from each other, we have

Pr
h
eD ) D

i
=

| eD|Y

i=1

Pr[ eGi ) Gi]

The concept of subgraph is defined based upon certain graphs. Di↵erent from conventional sub-

graph mining problems where each subgraph feature can have multiple embeddings within one

graph object, in our data model, each subgraph feature g can only have one unique embedding

within a certain graph G.

Definition 13 (Subgraph) Let g = (V 0, E0) and G = (V, E) be two certain graphs. g is a

subgraph of G (denoted as g ✓ G) i↵ V 0 ✓ V and E0 ✓ E. We use g ✓ G to denote that graph

g is a subgraph of G. We also say that G contains subgraph g.

For an uncertain graph eG, the probability of eG containing a subgraph feature g is defined as

follows:

Pr(g ✓ eG) =
X

G2W( eG)

Pr( eG) G) · I(g ✓ G)

=

8
>>>><

>>>>:

Q
e2E(g) p(e) if E(g) ✓ E( eG)

0 otherwise

which corresponds to the probability that a certain graph G implied by eG contains subgraph g.
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We focus on mining a set of discriminative subgraph features to define the feature space

of graph classification. It is assumed that a graph object eGi is represented as a feature vector

xi = [x1
i , · · · , xm

i ]> associated with a set of subgraph features {g1, · · · , gm}. Here, xk
i = Pr(gk ✓

eGi) is the probability that eGi contains the subgraph feature gk. Now suppose the full set of

subgraph features in the graph dataset eD is S = {g1, · · · , gm}, which we use to predict the class

labels of the graph objects. The full feature set S is very large. Only a subset of the subgraph

features (T ✓ S) is relevant to the graph classification task, which is the target feature set we

want to find within uncertain graphs.

The key issues of discriminative subgraph mining for uncertain graphs can be described as

follows:

(P1) How can one properly evaluate the discrimination scores of a subgraph feature considering

the uncertainty of the graph structures?

(P2) How can one e�ciently compute the probability distribution of a subgraph’s discrimina-

tion score by avoiding the exhaustive enumeration of all possible worlds of the uncertain graph

dataset? Moreover, since the subgraph enumeration is NP-hard, it is also infeasible to fully

enumerate all the subgraph features for an uncertain graph dataset.

In the following sections, we will introduce the proposed framework for mining discriminative

subgraphs from uncertain graphs.
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5.4 The Proposed Framework

5.4.1 Discrimination Score Distribution

In this subsection, we address the problem (P1) discussed in the previous section. In con-

ventional discriminative subgraph mining, the discrimination scores of subgraph features are

usually defined for certain graph datasets, e.g., information gain and G-test score (13). The

score of a subgraph feature is a fixed value indicating the discriminative power of the subgraph

feature for the graph classification task. However, such concepts don’t make sense to uncertain

graph datasets, since an uncertain graph only contains a subgraph feature in a probabilis-

tic sense. Now we extend the concept of discriminative subgraph features in uncertain graph

datasets. Suppose we have an objective function F (g, D) which measures the discrimination

score of a subgraph g in a certain graph dataset D. The corresponding objective function on

an uncertain graph dataset eD can be written as F (g, eD) accordingly. Note that F (g, eD) is no

longer a deterministic function. F (g, eD) corresponds to a random variable over all possible

outcomes of F (g, D) (i.e., Range(F )) with probability distribution:

s1 s2 · · · si · · ·

Pr[F (g, eD) = s1] Pr[F (g, eD) = s2] · · · Pr[F (g, eD) = si] · · ·
where si 2 Range(F ).

The probability distribution of the discrimination score values can be defined as follows:

Pr
h
F (g, eD) = s

i
=

X

D2W( eD)

Pr[ eD ) D] · I (F (g, D) = s)
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where I(⇡) 2 {0, 1} is an indicator function, and I(⇡) = 1 i↵ ⇡ holds. In other words,

8s 2 Range(F ), Pr[F (g, eD) = s] is the summation over the probabilities of all worlds of eD

in which the discrimination score F (g, D) is exactly s. Based on the discrimination score func-

tion on uncertain graphs, we define four statistical measures that evaluate the properties of the

distribution of F (g, eD) from di↵erent perspectives.

Definition 14 (Mean-Score) Given an uncertain graph dataset eD, a subgraph feature g and a

discrimination score function F (·, ·), we define the expected discrimination score Exp(F (g, eD))

as the mean score among all possible worlds of eD:

Exp

⇣
F (g, eD)

⌘
=

X

D2W( eD)

Pr[ eD ) D] · F (g, D)

=
+1X

s=�1
s · Pr[F (g, eD) = s]

The mean discrimination score is the expectation of the random variable F (g, eD). The ex-

pectation is usually used in conventional frequent pattern mining on uncertain datasets (63; 16).

However, it’s worth noting that the expectation of discrimination scores may not be robust to

extreme values. In discriminative subgraph mining, the value of a score function (e.g., frequency

ratio(69), G-test score(13)) can be +1. Such cases can easily dominate the computation of

expectation, even if the probabilities are extremely small. For example, suppose we have a

subgraph feature with the (score, probability) pairs as (0.01, 99.99%) and (+1, 0.01%). The

expected score will be +1. In order to address this problem, we either need to bound the
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maximum value of the objective function like min(F (g, eD), 1
✏ ), or we need to introduce other

statistical measures which are robust to extreme values.

Definition 15 (Median-Score) Given an uncertain graph dataset eD, a subgraph feature g

and a discrimination score function F (·, ·) on certain graphs, we define the median discrimina-

tion score Median(F (g, eD)) as the median score among all possible worlds of eD:

Median

⇣
F (g, eD)

⌘
= arg max

S

(
SX

s=�1
Pr

h
F (g, eD) = s

i
 1

2

)

The median score is relatively more robust to extreme values than expectation, although in some

cases the median score can still be infinite. The same results can also hold for any quantile or

k-th order statistic.

Another commonly used statistic is the mode score, i.e., the score value that has the largest

probability. The mode score of a distribution means that the score is most likely to be observed

within all possible worlds of eD.

Definition 16 (Mode-Score) Given an uncertain graph dataset eD, a subgraph feature g and

a discrimination score function F (·, ·), we define the mode discrimination score Mode(F (g, eD))

as the score that is most likely among all possible worlds of eD:

Mode

⇣
F (g, eD)

⌘
= arg max

s
Pr
h
F (g, eD) = s

i
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Next we consider the probability of a subgraph feature being observed as a discriminative

pattern within all possible worlds of eD, i.e., Pr[F (g, eD) � ']. It is called '-probability. The

higher the value, the more likely that the subgraph feature is a discriminative pattern with a

score larger or equals to a threshold '.

Definition 17 ('-Probability) Given an uncertain graph dataset eD, a subgraph feature g

and a discrimination score function F (·, ·), we define the '-probability for discrimination score

function F (g, eD) as the sum of probabilities for all possible worlds of eD, where the score is

greater than or equals to ':

'-Pr
⇣
F (g, eD)

⌘
=

X

D2W( eD)

Pr[ eD ) D] · I (F (g, D) � ')

=
+1X

s='

Pr[F (g, eD) = s]

The '-probability is robust to extreme values of the objective function. For the previous

example, we have a subgraph feature with score distribution: (0.01, 99.99%), (+1, 0.01%). The

'-probability is 0.01%, when ' = 1.

We have already introduced four statistical measures of the distribution of a discrimination

score function. Now the central problem for calculating all these measures is how to calculate

Pr[F (g, eD) = s] e�ciently, which we will discuss in the following section.

5.4.2 E�cient Computation

In this subsection, we address the problem (P2) discussed in Section 5.3. Given a certain

graph dataset D, we denote the subsets of all positive graphs and all negative graphs as D+
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TABLE IX

SUMMARY OF DISCRIMINATION SCORE FUNCTIONS.
Name f(ng

+, ng
�, n+, n�)

confidence
ng

+

ng
++ng

�

frequency ratio
���log

ng
+·n�

ng
�·n+

���

G-test 2ng
+ · ln

ng
+·n�

ng
�·n+

+ 2(n+ � ng
+) · ln

n�·(n+ � ng
+)

n+·(n� � ng
�)

HSIC(linear)
(ng

+·n��ng
�·n+)2

(n++n��1)2(n++n�)2

and D�, respectively. Suppose the supports of subgraph feature g in D+ and D� are ng
+ and

ng
�. ng

+ = |{G; G 2 D+, g ✓ G}|. Most of the existing discrimination score functions can be

written as a function of ng
+, ng

�, n+ and n�:

F (g, D) = f
�
ng

+, ng
�, n+, n�

�
(5.1)

The definition in Equation 5.1 covers many discrimination score functions including confi-

dence(70), frequency ratio(69), information gain, G-test score(13) and HSIC(71), as shown

in Table IX. For example, frequency ratio can be written as r(g) = | log
ng

+·n�
ng

�·n+
|. The G-test

score can be written as G-test(g) = 2ng
+ · ln

ng
+·n�

ng
�·n+

+ 2
�
n+ � ng

+

�
· ln

n�·(n+�ng
+)

n+·(n��ng
�)

. Because

n+ and n� are fixed numbers for di↵erent subgraph features, we simply use f(ng
+, ng

�) for

f
�
ng

+, ng
�, n+, n�

�
.

Based on the above definitions, we find that the number of possible outcomes of F (g, eD)

is bounded by n+ ⇥ n�, because 0  ng
+  n+ and 0  ng

�  n�. Thus, the probabilities
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Pr[F (g, eD) = s] can be exactly computed via dynamic programming in O(n2) time, without

enumerating all possible worlds of eD. Instead, we can just enumerate all possible combinations

of (ng
+, ng

�) and calculate the probability for each pair (ng
+, ng

�), denoted as Pr[ng
+, ng

�, eD] =

Pr
h
F (g, eD) = f(ng

+, ng
�)
i
. Then the values of F (g, eD) in all possible worlds with non-zero

probabilities can be covered by the n+ ⇥ n� cases.

Moreover, because di↵erent uncertain graphs are independent from each other, we have

Pr[ng
+, ng

�, eD] = Pr[ng
+, eD+] · Pr[ng

�, eD�] (5.2)

where Pr[ng
+, eD+] denotes the probability of the cases when there are ng

+ graphs in eD+ that

contain the subgraph g. Pr[ng
�, eD�] corresponds to the cases when there are ng

� graphs in eD�

that contain subgraph g. Now we just need to compute the probabilities Pr[ng
+, eD+] (8ng

+, 0 

ng
+  n+) and Pr[ng

�, eD�] (8ng
�, 0  ng

�  n�) separately.

Let eD(k) denote the first k uncertain graphs in eD, i.e., eD(k) = { eG1, · · · , eGk}. eD+(k)

and eD�(k) denote the first k graphs in eD+ and eD� respectively. All the values of Pr[ng
+, eD+]

and Pr[ng
�, eD�] can be calculated using the recursive equation in Figure 32. The Pr[i, eD(k)]

denotes the probability when there are i graphs containing g in eD(k). And the target values to

calculate are Pr[i, eD+(n+)] (8i, 0  i  n+) and Pr[i, eD�(n�)] (8i, 0  i  n�) by substituting

the eD+ and eD� into the Equation 5.3, respectively. In Figure 31, we showed the dynamic

programing algorithm to compute the target values using Equation 5.3. Figure 30 illustrates
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0 1

n+

0

1

n+

k

i

· · ·· · ·

··
·

··
·

Pr

h
ng

+ = 0, eD+

i

··
·

··
·

Pr

h
ng

+ = 1, eD+

i

Pr

h
ng

+ = n+, eD+

i

Pr

h
ng

+ = i, eD+(k)

i

Figure 3: The dynamic programming process for com-

puting Pr
h
ng

+, eD+

i
. The same process applies for

Pr
h
ng

�, eD�

i
.

All the values of Pr[ng
+, eD+] and Pr[ng

�, eD�] can be
calculated using the recursive equation in Figure 5. The
Pr[i, eD(k)] denotes the probability when there are i
graphs containing g in eD(k). And the target values
to calculate are Pr[i, eD+(n+)] (8i, 0  i  n+) and
Pr[i, eD�(n�)] (8i, 0  i  n�) by substituting the eD+

and eD� into the Eq. 3.3, respectively. In Figure 4, we
showed the dynamic programing algorithm to compute
the target values using Eq. 3.3. Figure 3 illustrates
the computation process of the dynamic programing
algorithm for Pr[ng

+, eD+], while the same process also

applies for Pr[ng
�, eD�].

For details of the recursive equations in Figure 5, we
have the base cases, Pr[0, eD0] = 1 and Pr[i, eD(k)] = 0
(if i > k or i < 0). For other cases, the probability
value can be calculated through the recursive equation
in Eq. 3.3. Then, Pr[ng

+, ng
�, eD] can be calculated via

Eq. 3.2. Thus all the statistical measures mentioned
in Section 3.1 can be calculated within O(n2) time as
follows:

Exp

⇣
F (g, eD)

⌘
=

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · f(ng
+, ng

�)

Median

�
F (g, �D)

�
= arg max

s

�
��

��

s�

x=��

�

f(ng
+,ng

�)=x

Pr[ng
+, ng

�, �D)] �
1

2

�
��

��

Mode

�
F (g, �D)

�
=arg max

s

n+�

ng
+=0

n��

ng
�=0

Pr[ng
+, ng

�, �D)]·I(f(ng
+, ng

�)=s)

'-Pr
�
F (g, �D)

�
=

n+�

n
g
+=0

n��

n
g
�=0

Pr[ng
+, ng

�, �D)]·I(f(ng
+, ng

�)�')

Input:
�D+: the set of positive graphs
�D�: the set of negative graphs

Dynamic Programming:
for ng

+ � 0 to n+

for k � ng
+ to n+

compute Pr[ ng
+, �D+(k) ] via Eq. 3.3;

for ng
� � 0 to n�

for k � ng
� to n�

compute Pr[ ng
�, �D�(k) ] via Eq. 3.3;

Output:
Pr[ng

+, �D+ ] (� ng
+, 0 � ng

+ � n+)

Pr[ng
�, �D� ] (� ng

�, 0 � ng
� � n�)

Figure 4: The dynamic programming algorithm for
probability computation.

We will show later that the dynamic programming
process is highly e�cient in all the applications studied
in Section 4. For dataset with even larger number of
graphs, the divid-and-conquer method in [12] could also
be used here to further optimize the computational cost.

3.3 Upper-Bounds for Subgraph Pruning In
order to avoid the exhaustive enumeration of sub-
graph features, we derive some subgraph pruning
methods. One natural pruning bound for subgraph
search is the expected frequency of a subgraph feature,

Exp-Freq(g, eD) =
�n

i Pr(g� �Gi)
n , since it’s can be easily

proved with anti-monotonic property. For the expec-
tation and '-probability, we can also derive additional
bounds for subgraph pruning. Let F̂ (g, D) = f̂(ng

+, ng
�)

be the estimated upper-bound function for g and its su-
pergraphs in certain graph dataset D. We can derive
the corresponding upper-bounds as follows:

UB-Exp(g, eD) =

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · f̂(ng
+, ng

�)

UB-'-Pr(g, �D) =

n+�

n
g
+=0

n��

n
g
�=0

Pr[ng
+, ng

�, �D)]·I(f̂(ng
+, ng

�) � ')

For the median and mode measures, it is di�cult to
derive a meaningful bound, thus we simply use the
expected frequency to perform the subgraph pruning.

We now utilize the above bounds to prune the
DFS-code tree in gSpan [15] by the branch-and-bound
pruning. The top-t best features are maintained in
a candidate list. During the subgraph mining, we
calculate the upper-bound of each subgraph feature
in the search tree. If a subgraph feature with its
children pattern cannot update the candidate feature
list, we can prune the subtree of gSpan rooted from this
node. It is guaranteed by the upper-bounds that we
will not miss any better subgraph features. Thus, the

Figure 30. The dynamic programming process for computing Pr
h
ng

+, eD+

i
.

the computation process of the dynamic programing algorithm for Pr[ng
+, eD+], while the same

process also applies for Pr[ng
�, eD�].

For details of the recursive equations in Figure 32, we have the base cases, Pr[0, eD0] = 1

and Pr[i, eD(k)] = 0 (if i > k or i < 0). For other cases, the probability value can be calculated

through the recursive equation in Equation 5.3. Then, Pr[ng
+, ng

�, eD] can be calculated via

Equation 5.2. Thus all the statistical measures mentioned in Section 5.4.1 can be calculated

within O(n2) time as follows:

Exp

⇣
F (g, eD)

⌘
=

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · f(ng
+, ng

�)
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Input:
eD+: the set of positive graphs
eD�: the set of negative graphs

Dynamic Programming:
for ng

+  0 to n+

for k  ng
+ to n+

compute Pr[ ng
+, eD+(k) ] via Equation 5.3;

for ng
�  0 to n�

for k  ng
� to n�

compute Pr[ ng
�, eD�(k) ] via Equation 5.3;

Output:

Pr[ng
+, eD+ ] (8 ng

+, 0  ng
+  n+)

Pr[ng
�, eD� ] (8 ng

�, 0  ng
�  n�)

Figure 31. The dynamic programming algorithm for probability computation.

Median

⇣
F (g, eD)

⌘
= arg max

s

8
<

:

sX

x=�1

X

f(ng
+,ng

�)=x

Pr[ng
+, ng

�, eD)]  1

2

9
=

;

Mode

⇣
F (g, eD)

⌘
=arg max

s

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · I(f(ng
+, ng

�)=s)

'-Pr
⇣
F (g, eD)

⌘
=

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · I(f(ng
+, ng

�)�')

We will show later that the dynamic programming process is highly e�cient in all the ap-

plications studied in Section 5.5. For dataset with even larger number of graphs, the divid-

and-conquer method in (72) could also be used here to further optimize the computational

cost.
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Pr
h
i, eD(k)

i
=

8
><

>:

⇣
1 � Pr[g ✓ eGk]

⌘
· Pr[i, eD(k � 1)] + Pr[g ✓ eG(k)] · Pr[i � 1, eD(k � 1)] if i  k

1 if i = k = 0

0 if i > k or i < 0

(5.3)

Figure 32. Recursive equation for dynamic programming.

Input:
eD: the uncertain graph dataset { eG1, · · · , eGn} t: the maximum number of subgraphs.
y: the vector of class labels for uncertain graphs, min sup: the minimum expected frequency.

M : the statistic measure (Expectation/Median/Mode/'-Pr)

Recursive Subgraphs Mining:
- Depth-first search the gSpan’s code tree and update the feature list as follows:

1. Update the candidate feature list using the current subgraph feature gc:

Calculate the probability vector Pr[ngc
+ , eD+ ] and Pr[ngc

� , eD� ] using the dynamic programing algorithm in Figure 31

Compute the statistic measure M
⇣
F (gc, eD)

⌘
based on the discrimination score function F (gc, eD).

If the score is larger than the worst feature in T , replace it and update ✓ = ming2T M
⇣
F (g, eD)

⌘

2. Test pruning criteria for the sub-tree rooted from node g as follows:
if Exp-Freq(gc)  min sup, prune the sub-tree of gc

if Bound-M
⇣
F (gc, eD)

⌘
 ✓, prune the sub-tree of gc

3. Recursion: Depth-first search the sub-tree rooted from node gc

Output:
T : the discriminative subgraph features for uncertain graph classification.

Figure 33. The Dug framework for discriminative subgraph mining.

5.4.3 Upper-Bounds for Subgraph Pruning

In order to avoid the exhaustive enumeration of subgraph features, we derive some subgraph

pruning methods. One natural pruning bound for subgraph search is the expected frequency

of a subgraph feature, Exp-Freq(g, eD) =
Pn

i Pr(g✓ eGi)
n , since it’s can be easily proved with anti-

monotonic property. For the expectation and '-probability, we can also derive additional

bounds for subgraph pruning. Let F̂ (g, D) = f̂(ng
+, ng

�) be the estimated upper-bound function
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for g and its supergraphs in certain graph dataset D. We can derive the corresponding upper-

bounds as follows:

UB-Exp(g, eD) =

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · f̂(ng
+, ng

�)

UB-'-Pr(g, eD) =

n+X

ng
+=0

n�X

ng
�=0

Pr[ng
+, ng

�, eD)] · I(f̂(ng
+, ng

�) � ')

For the median and mode measures, it is di�cult to derive a meaningful bound, thus we simply

use the expected frequency to perform the subgraph pruning.

We now utilize the above bounds to prune the DFS-code tree in gSpan (28) by the branch-

and-bound pruning. The top-t best features are maintained in a candidate list. During the

subgraph mining, we calculate the upper-bound of each subgraph feature in the search tree.

If a subgraph feature with its children pattern cannot update the candidate feature list, we

can prune the subtree of gSpan rooted from this node. It is guaranteed by the upper-bounds

that we will not miss any better subgraph features. Thus, the subgraph mining process can be

speeded up without loss of performance. The algorithm of Dug is summarized in Figure 33.

5.5 Experiments

In order to evaluate the performance of the proposed approach for uncertain graph classifi-

cation, we tested our algorithm on real-world fMRI brain images as summarized in Table X.
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5.5.1 Data Collection

In order to evaluate the performance of the proposed approach for uncertain graph classifi-

cation, we tested our algorithm on real-world fMRI brain images.

• Alzheimer’s Disease (ADNI): The first dataset is collected from the Alzheimer’s Disease

Neuroimaging Initiative1. The dataset consists of records of patients with Alzheimer’s Dis-

ease (AD) and Mild Cognitive Impairment (MCI). We downloaded all records of resting-

state fMRI images and treated the normal brains as negative graphs, and AD+MCI as

the positive graphs. We applyed Automated Anatomical Labeling (AAL2) to extract a

sequence of responds from each of of the 116 anatomical volumes of interest (AVOI),

where each AVOI represents a di↵erent brain region. The correlations of brain activities

among di↵erent brain regions are computed. Positive correlations are used as uncertain

links among brain regions. For details, we used SPM8 toolbox3, and functional images

were realigned to the first volume, slice timing corrected, and normalized to the MNI tem-

plate and spatially smoothed with an 8-mm Gaussian kernel. Resting-State fMRI Data

Analysis Toolkit (REST4) was then used to remove the linear trend of time series and

1http://adni.loni.ucla.edu/

2
http://www.cyceron.fr/web/aal__anatomical_automatic_labeling.html

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

4http://resting-fmri.sourceforge.net
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temporally band-pass filtering (0.01-0.08 Hz). Each brain is represented as an uncertain

graph with 90 nodes corresponding to 90 cerebral regions, excluding 26 cerebellar regions.

• Attention Deficit Hyperactivity Disorder (ADHD): The second dataset is collected from

ADHD-200 global competition dataset 1. The dataset contains records of resting-state

fMRI images for 776 subjects, which are labeled as real patients (positive) and normal

controls (negative). Similar to the ADNI dataset, the brain images are preprocessed using

Athena Pipeline2. The original dataset is unbalanced, we randomly sampled 100 ADHD

patients and 100 normal controls from the dataset for performance evaluation.

• Human Immunodeficiency Virus Infection (HIV): The third dataset is collected from

the Chicago Early HIV Infection Study in Northwestern University (62). The dataset

contains fMRI brain images of patients with early HIV infection (positive) as well as

normal controls (negative). The same preprocessing steps as in ADNI dataset were used

to extract a functional connectivity network from each image.

5.5.2 Comparative Methods

We compared our method using di↵erent statistical measures and discrimination score func-

tions summarized as follows:

• Frequent Subgraphs + Expectation (Exp+Freq): The first baseline method is finding fre-

quent subgraph features within uncertain graphs. This baseline is similar to the method

1http://neurobureau.projects.nitrc.org/ADHD200/

2
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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TABLE X

SUMMARY OF EXPERIMENTAL DATASETS.
| eD| | eD+| | eD�| |V | avg. |E| avg. edge prob

ADHD 200 100 100 116 484.7 0.55
ADNI 36 18 18 90 2019.8 0.59

HIV 50 25 25 90 480.48 0.88

introduced in (63). In our data model, this baseline method computes the exact expected

frequency of each subgraph features, instead of approximated values. The top ranked

frequent patterns are extracted as used as features for graph classification.

• Dug with HSIC based discrimination scores: we compare with four di↵erent versions of

our Dug method based upon HSIC criterion, which maximize the dependence between

subgraph features and graph labels (71). “Exp-HSIC” computes the expected HSIC value

for each subgraph feature, and find the top-k subgraphs with the largest values. “Med-

HSIC” computes the median HSIC value for each subgraph feature, while “Mod-HSIC”

computes the mode HSIC value. “'Pr-HSIC” computes the '-probability of HSIC value

for each subgraph feature.

• Dug with Frequency Ratio based discrimination scores : we also compare our method

based upon Frequency Ratio, i.e., “Exp-Ratio”, “Med-Ratio”, “Mod-Ratio” and “'Pr-

Ratio”.

• Dug with G-test based discrimination scores: we then compare our method based upon

G-test criterion, i.e., “Exp-Gtest”, “Med-Gtest”, “Mod-Gtest” and “'Pr-Gtest”.
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TABLE XI. Results on the ADNI (Alzheimer’s Disease) dataset with di↵erent number of
features(t = 100, · · · , 500). The results are reported as “average performance + (rank)”.

Error Rate # F1 "

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500

Exp-HSIC 0.400 (9) 0.367 (8) 0.367 (10) 0.317 (4) 0.333 (9) 0.699 (9) 0.725 (9) 0.725 (9) 0.753 (6) 0.743 (10)
Med-HSIC 0.433 (14) 0.350 (5) 0.333 (6) 0.350 (8) 0.317 (7) 0.667 (13) 0.741 (7) 0.757 (4) 0.734 (9) 0.766 (7)
Mod-HSIC 0.367 (6) 0.333 (3) 0.300 (1)* 0.317 (4) 0.300 (2) 0.703 (8) 0.750 (4) 0.776 (3) 0.766 (3) 0.775 (4)
'Pr-HSIC 0.283 (1)* 0.283 (1)* 0.333 (6) 0.333 (7) 0.300 (2) 0.778 (1)* 0.785 (1)* 0.757 (4) 0.750 (7) 0.776 (3)

HSIC 0.450 (16) 0.467 (19) 0.467 (17) 0.500 (18) 0.500 (18) 0.615 (18) 0.597 (19) 0.622 (17) 0.583 (18) 0.584 (18)

Exp-Ratio 0.433 (14) 0.383 (10) 0.317 (4) 0.300 (2) 0.300 (2) 0.667 (13) 0.715 (10) 0.756 (6) 0.766 (3) 0.766 (7)
Med-Ratio 0.450 (16) 0.417 (15) 0.450 (16) 0.383 (11) 0.383 (11) 0.639 (17) 0.653 (16) 0.608 (20) 0.689 (12) 0.684 (11)
Mod-Ratio 0.317 (3) 0.350 (5) 0.433 (15) 0.417 (13) 0.467 (15) 0.776 (2) 0.744 (6) 0.659 (13) 0.657 (13) 0.612 (15)
'Pr-Ratio 0.400 (9) 0.317 (2) 0.300 (1)* 0.300 (2) 0.267 (1)* 0.692 (10) 0.764 (2) 0.784 (1)* 0.778 (2) 0.809 (1)*

Ratio 0.500 (19) 0.483 (20) 0.533 (22) 0.567 (22) 0.533 (20) 0.581 (20) 0.603 (18) 0.533 (21) 0.519 (22) 0.550 (20)

Exp-Gtest 0.300 (2) 0.367 (8) 0.317 (4) 0.350 (8) 0.383 (11) 0.774 (3) 0.693 (11) 0.729 (9) 0.702 (10) 0.672 (12)
Med-Gtest 0.517 (21) 0.450 (18) 0.400 (11) 0.500 (18) 0.483 (17) 0.562 (21) 0.597 (19) 0.655 (14) 0.567 (19) 0.589 (17)
Mod-Gtest 0.517 (21) 0.550 (22) 0.500 (21) 0.500 (18) 0.517 (19) 0.531 (22) 0.491 (22) 0.527 (22) 0.545 (20) 0.558 (19)
'Pr-Gtest 0.450 (16) 0.417 (15) 0.417 (13) 0.383 (11) 0.300 (2) 0.648 (16) 0.675 (14) 0.665 (12) 0.701 (11) 0.768 (6)

Gtest 0.500 (19) 0.500 (21) 0.467 (17) 0.433 (14) 0.550 (21) 0.583 (19) 0.580 (21) 0.612 (19) 0.656 (14) 0.547 (21)

Exp-Conf 0.367 (7) 0.333 (3) 0.300 (1)* 0.283 (1)* 0.300 (2) 0.744 (6) 0.762 (3) 0.780 (2) 0.795 (1)* 0.780 (2)
Med-Conf 0.333 (4) 0.350 (5) 0.350 (8) 0.350 (8) 0.317 (7) 0.760 (4) 0.747 (5) 0.752 (7) 0.740 (8) 0.770 (5)
Mod-Conf 0.417 (12) 0.383 (10) 0.350 (8) 0.317 (4) 0.333 (9) 0.690 (11) 0.728 (8) 0.742 (8) 0.759 (5) 0.750 (9)
'Pr-Conf 0.400 (9) 0.417 (15) 0.467 (17) 0.467 (16) 0.433 (13) 0.685 (12) 0.648 (17) 0.619 (18) 0.592 (17) 0.632 (13)

Conf 0.400 (9) 0.400 (13) 0.417 (13) 0.450 (15) 0.467 (15) 0.655 (15) 0.667 (15) 0.645 (15) 0.618 (15) 0.610 (16)

Exp-Freq 0.383 (8) 0.383 (10) 0.400 (11) 0.467 (16) 0.433 (13) 0.705 (7) 0.685 (13) 0.675 (11) 0.607 (16) 0.632 (13)
Freq 0.350 (5) 0.400 (13) 0.483 (20) 0.550 (21) 0.550 (21) 0.747 (5) 0.692 (12) 0.627 (16) 0.539 (21) 0.547 (21)

• Dug with Confidence based discrimination scores: the 5th group of methods are based

upon G-test criterion, i.e., “Exp-Conf”, “Med-Conf”, “Mod-Conf” and “'Pr-Conf”.

• Simple Thresholding : Another group methods we have compared are the feature selection

methods for certain graphs. In order to get the certain graphs from the uncertain graphs

in the dataset, we perform simple tresholding over the weights of the links to get the binary

links. These baseline methods include: “F req”, “H ISC”, “Ratio”, “Gtest” and “Conf”,

which correspond to the discrimination scores used in previous 5 groups separately.

LibSVM (60) with the linear kernel is used as the base classifier for all compared methods.

The min sup in the gSpan for ADHD, ADNI and HIV datasets are 20%, 40% and 40% respec-

tively. Since the range of di↵erent discrimination functions can be extremely di↵erent. We set
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TABLE XII. Results on the ADHD (Attention Deficit Hyperactivity Disorder) dataset with
di↵erent number of features (t = 100, · · · , 500). The results are reported as “average

performance + (rank)”.
Error Rate # F1 "

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500

Exp-HSIC 0.423 (10) 0.438 (13) 0.455 (14) 0.455 (11) 0.448(12) 0.593 (10) 0.564 (13) 0.543 (14) 0.547 (11) 0.549 (12)
Med-HSIC 0.420 (9) 0.405 (8) 0.413 (8) 0.448 (10) 0.433 (6) 0.569 (13) 0.597 (7) 0.593 (5) 0.549 (10) 0.562 (7)
Mod-HSIC 0.390 (4) 0.405 (8) 0.403 (4) 0.393 (1)* 0.410 (2) 0.614 (3) 0.599 (6) 0.596 (4) 0.594 (1)* 0.584 (2)
'Pr-HSIC 0.432 (12) 0.470 (17) 0.475 (16) 0.513 (22) 0.503 (21) 0.597 (7) 0.563 (14) 0.554 (13) 0.508 (17) 0.525 (18)

HSIC 0.529 (22) 0.510 (20) 0.488 (17) 0.455 (11) 0.485 (17) 0.505 (22) 0.494(18) 0.498 (18) 0.538 (13) 0.526 (17)

Exp-Ratio 0.388 (3) 0.400 (5) 0.415 (10) 0.440 (8) 0.420 (4) 0.613 (4) 0.604 (5) 0.587 (9) 0.556 (8) 0.576 (4)
Med-Ratio 0.450 (16) 0.418 (11) 0.388 (1)* 0.428 (6) 0.410 (2) 0.554 (15) 0.586 (12) 0.619 (1)* 0.571 (5) 0.579 (3)
Mod-Ratio 0.400 (7) 0.370 (1)* 0.408 (5) 0.435 (7) 0.428 (5) 0.595 (8) 0.634 (1)* 0.591 (7) 0.558 (7) 0.560 (9)
'Pr-Ratio 0.372 (1)* 0.430 (12) 0.410 (7) 0.415 (2) 0.408 (1)* 0.630 (1)* 0.589 (9) 0.590 (8) 0.591 (2) 0.589 (1)*

Ratio 0.515 (20) 0.520 (21) 0.490 (18) 0.475 (17) 0.498 (19) 0.550 (16) 0.461 (22) 0.461 (21) 0.503 (19) 0.517 (20)

Exp-Gtest 0.393 (6) 0.403 (7) 0.413 (8) 0.420 (3) 0.435 (9) 0.610 (5) 0.588 (10) 0.582 (10) 0.586 (3) 0.563 (5)
Med-Gtest 0.437 (13) 0.400 (5) 0.408 (5) 0.420 (3) 0.453 (15) 0.559 (14) 0.590 (8) 0.600 (2) 0.580 (4) 0.551 (10)
Mod-Gtest 0.448 (15) 0.383 (4) 0.398 (2) 0.428 (5) 0.433 (6) 0.571 (12) 0.622 (4) 0.593 (5) 0.565 (6) 0.551 (10)
'Pr-Gtest 0.450 (16) 0.445 (14) 0.443(12) 0.455 (11) 0.433 (6) 0.544 (19) 0.555 (16) 0.552 (12) 0.538 (13) 0.562 (7)

Gtest 0.440 (14) 0.505 (19) 0.501 (21) 0.486 (19) 0.471 (16) 0.542 (20) 0.492 (19) 0.490 (20) 0.499 (21) 0.534 (16)

Exp-Conf 0.405 (8) 0.415 (10) 0.453 (13) 0.455 (11) 0.448 (12) 0.595 (8) 0.587 (11) 0.539 (15) 0.543 (12) 0.535 (15)
Med-Conf 0.378 (2) 0.373 (2) 0.438 (11) 0.463 (15) 0.435 (9) 0.629 (2) 0.632 (2) 0.555 (11) 0.536 (15) 0.545 (13)
Mod-Conf 0.392 (5) 0.373 (2) 0.400 (3) 0.440 (8) 0.435 (9) 0.606 (6) 0.627 (3) 0.600 (2) 0.556 (8) 0.563 (5)
'Pr-Conf 0.468 (19) 0.460 (15) 0.495 (20) 0.505 (21) 0.485 (17) 0.547 (18) 0.556 (15) 0.519 (16) 0.507 (18) 0.540 (14)

Conf 0.455 (18) 0.500 (18) 0.460 (15) 0.464 (16) 0.450 (14) 0.514 (21) 0.479 (20) 0.510 (17) 0.498 (22) 0.519 (19)

Exp-Freq 0.423 (10) 0.465 (16) 0.508 (22) 0.498 (20) 0.505 (22) 0.579 (11) 0.549 (17) 0.496 (19) 0.513 (16) 0.498 (22)
Freq 0.515 (20) 0.520 (21) 0.490 (18) 0.475 (17) 0.498 (19) 0.550 (16) 0.461 (21) 0.461 (21) 0.503 (19) 0.517 (20)

the default ' for HSIC criterion, G-test score, frequency ratio and confidence as 0.03, 200, 1

and 0.5, respectively.

5.5.3 Performance on Uncertain Graph Classification

In our experiments, we first randomly sample 80% of the uncertain graphs as the training

set, and the remaining graphs as the test set. This random sampling experiment was repeated

20 times. The average performances with the rank of each method are reported. The reason

for using classification performances to evaluate the quality of subgraph features is that clas-

sification methods can usually achieve higher accuracy with features of better discriminative

powers. We measure the classification performance by error rate and F1 score.
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TABLE XIII. Results on the HIV (Human Immunodeficiency Virus) dataset with di↵erent
number of features (t = 100, · · · , 500). The results are reported as “average performance +

(rank)”.
Error Rate # F1 "

Methods t = 100 t = 200 t = 300 t = 400 t = 500 t = 100 t = 200 t = 300 t = 400 t = 500

Exp-HSIC 0.480 (15) 0.470 (10) 0.489 (12) 0.505 (16) 0.498 (13) 0.526 (13) 0.531 (8) 0.517 (11) 0.491 (14) 0.492 (13)
Med-HSIC 0.498 (17) 0.500 (18) 0.470 (7) 0.484 (11) 0.507 (16) 0.501 (18) 0.493 (18) 0.526 (8) 0.510 (10) 0.474 (16)
Mod-HSIC 0.502 (18) 0.489 (15) 0.482 (11) 0.498 (14) 0.500 (14) 0.501 (18) 0.501 (16) 0.495 (14) 0.481 (17) 0.467 (19)
'Pr-HSIC 0.523 (19) 0.511 (19) 0.516 (18) 0.525 (19) 0.523 (20) 0.484 (20) 0.492 (19) 0.481 (16) 0.474 (19) 0.482 (14)

HSIC 0.464 (6) 0.495 (17) 0.566 (21) 0.500 (15) 0.505 (15) 0.526 (13) 0.460 (20) 0.405 (21) 0.489 (15) 0.471 (18)

Exp-Ratio 0.475 (13) 0.477 (11) 0.491 (13) 0.516 (18) 0.484 (8) 0.541 (8) 0.533 (7) 0.509 (13) 0.477 (18) 0.519 (8)
Med-Ratio 0.466 (8) 0.464 (8) 0.470 (7) 0.457 (5) 0.473 (6) 0.541 (8) 0.528 (9) 0.524 (9) 0.534 (6) 0.521 (6)
Mod-Ratio 0.450 (3) 0.452 (5) 0.466 (4) 0.480 (9) 0.484 (8) 0.558 (5) 0.547 (5) 0.528 (6) 0.509 (11) 0.500 (12)
'Pr-Ratio 0.473 (11) 0.480 (12) 0.466 (4) 0.470 (8) 0.468 (5) 0.544 (7) 0.519 (13) 0.538 (5) 0.531 (7) 0.538 (5)

Ratio 0.530 (21) 0.486 (13) 0.589 (22) 0.411 (1)* 0.520 (19) 0.456 (21) 0.495 (17) 0.376 (22) 0.562 (4) 0.443 (20)

Exp-Gtest 0.468 (9) 0.466 (9) 0.468 (6) 0.466 (7) 0.482 (7) 0.562 (4) 0.565 (4) 0.548 (4) 0.537 (5) 0.520 (7)
Med-Gtest 0.464 (6) 0.461 (7) 0.507 (17) 0.507 (17) 0.511 (17) 0.534 (11) 0.520 (11) 0.480 (17) 0.483 (16) 0.474 (16)
Mod-Gtest 0.477 (14) 0.486 (13) 0.475 (10) 0.491 (13) 0.489 (11) 0.529 (12) 0.507 (14) 0.523 (10) 0.497 (13) 0.501 (11)
'Pr-Gtest 0.430 (1)* 0.420 (2) 0.425 (1)* 0.418 (2) 0.425 (2) 0.617 (1)* 0.633 (1)* 0.630 (1)* 0.637 (1)* 0.633 (1)*

Gtest 0.473 (11) 0.550 (21) 0.493 (14) 0.534 (20) 0.493 (12) 0.514 (16) 0.426 (22) 0.491 (15) 0.509 (11) 0.477 (15)

Exp-Conf 0.457 (4) 0.430 (4) 0.441 (2) 0.443 (4) 0.441 (3) 0.576 (3) 0.590 (2) 0.572 (2) 0.570 (3) 0.573 (4)
Med-Conf 0.445 (2) 0.427 (3) 0.441 (2) 0.441 (3) 0.443 (4) 0.579 (2) 0.588 (3) 0.572 (2) 0.579 (2) 0.574 (3)
Mod-Conf 0.457 (4) 0.455 (6) 0.473 (9) 0.482 (10) 0.484 (8) 0.556 (6) 0.545 (6) 0.527 (7) 0.518 (9) 0.508 (9)
'Pr-Conf 0.534 (22) 0.552 (22) 0.545 (19) 0.548 (21) 0.541 (22) 0.454 (22) 0.443 (21) 0.444 (20) 0.443 (22) 0.438 (21)

Conf 0.468 (9) 0.416 (1)* 0.502 (15) 0.489 (12) 0.339 (1)* 0.515 (15) 0.528 (9) 0.468 (19) 0.462 (20) 0.621 (2)

Exp-Freq 0.525 (20) 0.520 (20) 0.548 (20) 0.550 (22) 0.527 (21) 0.503 (17) 0.520 (11) 0.473 (18) 0.457 (21) 0.423 (22)
Freq 0.489 (16) 0.489 (15) 0.502 (15) 0.461 (6) 0.514 (18) 0.535 (10) 0.505 (15) 0.517 (11) 0.520 (8) 0.502 (10)

Table XII and Table XI show the evaluation results in terms of classification error rates and

F1 scores with di↵erent number of selected subgraph features (t = 100, · · · , 500). The results

of each method are shown with average performance values and their ranks among all the

other methods. Values with ⇤ stand for the best performance for the corresponding evaluation

criterion. It is worth noting that the neuroimaging tasks are generally very hard to predict very

accurately. According to a global competition on ADHD dataset1, the average performance of

all winning teams is about 8% over the prediction accuracy of chance (i.e., randomly assigning

1http://www.childmind.org/en/posts/press-releases/2011-10-12-johns-hopkins-team-wins-adhd-200-
competition
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diagnoses). Thus in neuroimaging tasks, it is very hard for classification algorithms to achieve

even moderate error rates. And in ADHD dataset, the best performance that Dug can achieve

is with error rate 37%, which is 13% improvement over the prediction error rate of chance.

We find that our discriminative subgraph mining method with di↵erent settings outperforms

the baseline method (Exp-Freq) for frequent subgraph mining, which selects subgraph features

based upon expected frequencies in the uncertain graph dataset. This is because that frequent

subgraph features in uncertain graph dataset may not be relevant to the classification task.

Moreover, we can see that almost all the Dug methods outperform the simple thresholding

methods which directly convert the uncertain graphs into certain graphs and then use di↵erent

discimination functions to select subgraph features. This is because that simply converting

uncertain graphs into certain graph can loss the uncertainty information about the linkage

structures of the graphs, thus the classification performances on certain graphs are not as good

as the performance of uncertain graphs.

A third observation is that the performance of each method on di↵erent dataset can be

quite di↵erent. However, the best methods that consistently outperforms other methods in

all datasets are Med-Conf and '-Pr-Ratio. They both have their advantages in di↵erent per-

spectives. Med-Conf method has one less parameter than that of '-Pr-Ratio. '-Pr-Ratio

method has an additional subgraph pruning bound compared to Med-Conf method, which can

be important for datasets with even larger graphs.
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Figure 34. Parameter Studies (ADNI dataset).

5.5.4 Influence of Parameter

In the '-Pr based methods, there is an additional threshold parameter than the other

methods. In 34(a) and 34(b), we tested the '-Pr-HSIC with ' values among {0.01, 0.02, · · · 0.06}

separately. We can see that the method is not sensitive to the parameter '. Generally, the

performance of '-Pr-HSIC with default setting (' = 0.03) is pretty good. If we try to optimize

the selection of ' value, the accuracy can be even better.

We also compare Dug models with and without pruning in the subgraph search space as

summarized in 34(c). The CPU time with di↵erent min sup for Exp-HSIC in ADNI dataset
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is reported. Dug can improve the e�ciencies by pruning the subgraph search space. In other

datasets Dug shows similar trends. 34(d) shows the running time for mod-HISC with di↵erent

number of graphs in the dataset. In addition to the dynamic programming method we used in

Dug, we also find that the brute-force searching method that enumerates all possible worlds of

the uncertain graph dataset cannot work on small datasets with even 40 graphs. The running

time of Dug scales almost linearly with the number of graphs in the dataset. Althought the

dynamic programming process of Dug is O(n2), which is quadratic to the number of graphs in

the dataset. However, in the ADHD dataset, the main computational cost of Dug algorithm is

for the subgraph enumeration step, which is linear to the number of the graphs in the dataset.

In cases of even larger datasets, the dynamic programming process could eventually dominant

the computational cost. In these cases, the divide-and-conquer method in (72) could be used

to further optimize the computational cost.

5.6 Conclusion

In this chapter, we studied the problem of discriminative subgraph feature selection for

uncertain graph classification. We proposed a general framework, called Dug, for finding

discriminative subgraph feature in uncertain graphs based upon various statistical measures.

The probability distributions of the scoring function are e�ciently computed based on dynamic

programming.



CHAPTER 6

CONCLUSION

In this thesis, we have studied four di↵erent settings of graph classification: multi-label

setting, semi-supervised setting, active learning setting, and uncertain graph setting.

In the multi-label setting, we studied the problem of multi-label feature selection for graph

classification and propose a novel solution, called gMLC, to e�ciently search for optimal sub-

graph features for graph objects with multiple labels. Di↵erent from existing feature selection

methods in vector spaces which assume the feature set is given, we perform multi-label feature

selection for graph data in a progressive way together with the subgraph feature mining pro-

cess. We derived an evaluation criterion to estimate the dependence between subgraph features

and multiple labels of graphs. Then a branch-and-bound algorithm was proposed to e�ciently

search for optimal subgraph features by judiciously pruning the subgraph search space using

multiple labels. Empirical studies demonstrated that our feature selection approach can e↵ec-

tively boost multi-label graph classification performances and is more e�cient by pruning the

subgraph search space using multiple labels.

In the semi-supervised setting, we studied the problem of semi-supervised feature selection

for graph classification and propose a novel solution, called gSSC, to e�ciently search for

optimal subgraph features with labeled and unlabeled graphs. Di↵erent from existing feature

selection methods in vector spaces which assume the feature set is given, we perform semi-

supervised feature selection for graph data in a progressive way together with the subgraph
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feature mining process. We derived a feature evaluation criterion, named gSemi, to estimate

the usefulness of subgraph features based upon both labeled and unlabeled graphs. Then we

proposed a branch-and-bound algorithm to e�ciently search for optimal subgraph features

by judiciously pruning the subgraph search space. Empirical studies on several real-world

tasks demonstrated that our semi-supervised feature selection approach can e↵ectively boost

graph classification performances with semi-supervised feature selection and is very e�cient by

pruning the subgraph search space using both labeled and unlabeled graphs.

In the active learning setting, we addressed the problem of how to select the most important

graph to query for the label. This problem is challenging and di↵erent from conventional active

learning problems because there is no predefined feature vector. The active sample selection

problem and the feature selection problem are correlated for graph data. Before we can solve

the active sample selection problem, we need to find a set of optimal subgraph features. We

demonstrated how one can simultaneously estimate the usefulness of a query graph and a set

of subgraph features. The idea is to maximize the dependency between subgraph features and

graph labels using an active learning framework. We proposed a branch-and-bound algorithm

to search for the optimal query graph and optimal features simultaneously. Empirical studies

on nine real-world tasks demonstrated that the proposed method can obtain better accuracy

on graph data than alternative approaches.

In the uncertain graph setting, we studied the problem of discriminative subgraph feature

selection from uncertain graphs. This problem is challenging and di↵erent from conventional

subgraph mining problems because both the structure of the graph objects and the discrimi-
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nation score of each subgraph feature are uncertain. To address these challenges, we proposed

a novel discriminative subgraph feature selection method, Dug, which can find discriminative

subgraph features in uncertain graphs based upon di↵erent statistical measures including ex-

pectation, median, mode and '-probability. We first computed the probability distribution of

the discrimination scores for each subgraph feature based on dynamic programming. Then a

branch-and-bound algorithm was proposed to search for discriminative subgraphs e�ciently.

Extensive experiments on various neuroimaging applications (i.e., Alzheimer’s Disease, ADHD

and HIV) have been performed to analyze the gain in performance by taking into account

structural uncertainties in identifying discriminative subgraph features for graph classification.
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