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SUMMARY

The primary goal of Geometric Group Theory is to understand the interplay between the ge-

ometric and algebraic properties of discrete groups. Often, surprising connections can be found

which profoundly illuminate the algebraic structure of a group using tools relying on the geo-

metric properties or vice versa. This cross-pollination of ideas and tools has yielded tremendous

insights into group theory as well as geometry and topology. Examples demonstrating the power

of this approach include Mostow-Prasad rigidity (Mostow, 1973; Prasad, 1973), the covering

space proof of the Nielsen-Schreier Theorem, the Seifert-van Kampen Theorem, Poincaré Dual-

ity, see (Hatcher, 2002), Stallings’ proof of the Sphere Theorem (Stallings, 1971), Agol’s proof

of the virtually Haken Conjecture (Agol, 2012), and the numerous approaches to group split-

tings (Bowditch, 1998a; Guirardel and Levitt, 2010a; Guirardel and Levitt, 2010b; Kropholler,

1990; Papasoglu, 2005; Papasoglu and Swenson, 2009; Rips and Sela, 1997; Scott and Swarup,

2003).

It is this last example with which this thesis is concerned. In 1998, Bowditch demonstrated

that a maximal splitting of a hyperbolic group can be recognized by inspecting the topology

of the group’s boundary (Bowditch, 1998a). In particular, he realized that local cut points in

the boundary should correspond to the endpoints of separating tubes in the Cayley graph. In

turn, these correspond to neighborhoods of cosets of two-ended subgroups over which the group

splits. He suggested that a similar analysis might provide insight into splittings of relatively

hyperbolic groups.
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SUMMARY (Continued)

We show that this is the case. One of the main benefits of Bowditch’s work is that it also

establishes that the splitting is invariant under quasi-isometries. This same fact is seen to be

true in this context by the following results, which are the focus of Chapter 2.

Theorem 2.2.1. Let Γ1 and Γ2 be finitely generated groups. Suppose that Γ1 is hyperbolic

relative to a finite collection A1 such that that no A ∈ A1 is properly relatively hyperbolic. Let

q : Γ1 → Γ2 be a quasi-isometry of groups. Then there exists A2, a collection of subgroups of

Γ2, such that the cusped space of (Γ1,A1) is quasi-isometric to that of (Γ2,A2).

Corollary 2.3.1. With (Γ1,A1) and (Γ2,A2) as in Theorem 2.2.1, the cusped spaces X(Γ1,A1)

and X(Γ2,A2) have homeomorphic boundaries.

Corollary 2.3.2. With (Γ1,A1) as in Theorem 2.2.1, the tree describing the maximal peripheral

splitting (Bowditch, 1998b) and the cut-point/cut-pair R-tree (Papasoglu and Swenson, 2006)

for the boundary of the cusped space are quasi-isometry invariant.

In Chapter 3, we analyze the properties of the R-tree obtained by applying the construction

of (Papasoglu and Swenson, 2006). Foremost, this means showing that the topological struc-

ture of the boundary often allows for the construction of a tree which is actually simplicial.

Complicating this step is the existence of cut points, absent in the context of hyperbolic groups.

Nonetheless, we obtain

Theorem 3.1.5. Let Γ be a finitely presented, one-ended group which is hyperbolic relative to

the finite collection A such that for every A ∈ A, A is not properly relatively hyperbolic and A

contains no infinite torsion subgroup. Let T be the combined tree obtained by the action of Γ

on its Bowditch boundary. Then T is simplicial.
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SUMMARY (Continued)

We also show that this tree is a JSJ-tree (Guirardel and Levitt, 2010a), ie it reflects a

splitting which can be described as maximal in a suitable way (see Section 1.6).

Theorem 3.2.1. The cut-pair/cut-point tree T is a JSJ tree over elementary subgroups relative

to peripheral subgroups.

Following this, we identify all of the vertex stabilizers, except for those which are ‘rigid,’

exposing much of the algebraic structure of the group. In fact, we prove that the vertex groups

are individually quasi-isometry invariant. The various types of vertex groups listed are described

in the introduction.

Theorem 3.3.5. Let Γ1 and Γ2 be finitely generated groups. Suppose additionally that Γ1 is

one-ended and hyperbolic relative to the finite collection A1 of subgroups such that no A ∈ A1

is properly relatively hyperbolic or contains an infinite torsion subgroup. Let T be the cut-

point/cut-pair tree of ∂(Γ1,A1). If f : Γ1 → Γ2 is a quasi-isometry then

• T is the cut-point/cut-pair tree for Γ2 with respect to the peripheral structure induced by

Theorem 2.2.1,

• if StabΓ1(v) is one of the following types then StabΓ2(v) is of the same type,

1. hyperbolic 2-ended,

2. peripheral,

3. relatively QH with finite fiber.

Given all of this information regarding quasi-isometries of these groups, an obvious question

is how much information about QI(Γ) can be gained by this analysis. It turns out that all of

x



SUMMARY (Continued)

the structure of QI(Γ) is preserved in its action on T (Γ,A). This is the content of the final

chapter.

Theorem 4.1.1. With the conditions on Γ,A, T as in Theorem 3.3.5, the action of QI(Γ) on

T (Γ,A) is faithful, assuming that T is not a point.

Lastly, we provide reasonable upper and lower bounds on the number of edges that this

induced splitting of QI(Γ) may have in terms of the number of edges of this JSJ-splitting of Γ.

Let Λ = |E(T /Γ)| and let Autqi(T /Γ) be the group of graph automorphisms which respect the

quasi-isometry type of each edge and vertex stabilizer.

Theorem 4.2.1. The graph of groups decomposition of QI(Γ) induced by the JSJ-decomposition

of Γ has at most Λ edges and at least Λ/|Autqi(T /Γ)| edges.
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CHAPTER 1

INTRODUCTION

In this chapter we provide the historical context for the main results as well as a compre-

hensive review of the necessary background material. The first section will be solely descriptive

and so all definitions and precise statements will be deferred to the following sections. See

the following for more detailed background: (Bestvina and Feighn, 1995; Bridson and Hae-

fliger, 1999; Groves and Manning, 2008; Kapovich and Benakli, 2002; Papasoglu and Swenson,

2006; Osin, 2006; Swenson, 2005).

1.1 Historical Notes

Geometric group theory can arguably be said to have started with the work of Max Dehn, as

part of his attempts to answer questions in low dimensional topology and combinatorial group

theory. In 1911, he summarized the main problems of this field concerning the algorithmic

properties of discrete groups and their presentations. These can be stated as follows:

1. the isomorphism problem: is there an algorithm which determines in a finite number of

steps whether two arbitrary group presentations represent isomorphic groups?

2. the conjugacy problem: is there an algorithm which, given a presentation, determines in

a finite number of steps whether two arbitrary elements of a group are conjugate?

1
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3. the word problem: is there an algorithm which determines in a finite number of steps

whether a word in the free group w ∈ F (S) is in the kernel F (S) � 〈S|R〉, or equivalently

if w is in the normal closure 〈〈R〉〉 ⊂ F (S)?

It is known that there can be no solution for any of these questions which works for all

finitely presented groups. In fact, Adyan (Adyan, 1955) and Rabin (Rabin, 1958) proved that

there is no algorithm which even decides whether an arbitrary presentation represents the trivial

group. Still, Dehn did provide a solution for questions (2) and (3), now called Dehn’s Algorithm,

which he applied to the fundamental groups of closed hyperbolic surfaces (Dehn, 1911). His

insight demonstrated the strong connections between geometry, topology, group theory and

decidability. His result has been generalized significantly, most directly to groups satisfying

the C ′(1/6) small cancellation condition (Lyndon, 1966) and to fundamental groups of closed

negatively curved manifolds (Cannon, 1984).

In (Gromov, 1987), Gromov went further and showed that the class of groups for which

Dehn’s algorithm can be applied corresponds exactly to a class of groups which he defined,

δ-hyperbolic groups. These groups are defined by their large scale geometry which is required to

admit a type of coarse negative curvature. They occur in many natural contexts, including free

groups, almost all surface groups and triangle groups, fundamental groups of closed, negatively

curved manifolds and groups which act properly discontinuously and co-compactly by isometries

on any CAT(κ)-space, with κ < 0, among others. In fact, with a suitable probability model, a

group chosen at random will almost surely be hyperbolic (Gromov, 1987).
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Despite their prevalence, these groups have also provided a sufficiently rich context for many

results to be proven. For instance, the isomorphism problem, which is generally much harder

than the other of Dehn’s problems, has been solved for hyperbolic groups by Dahmani and

Guirardel (Dahmani and Guirardel, 2011), and in the torsion free case by (Sela, unpublished),

see (Dahmani and Groves, 2008). In contrast, this problem is unsolvable in many other large

classes of groups, including rather well-structured groups such as free-by-free groups (Miller,

1971). Moreover, hyperbolic groups are of independent interest and there are many results

pertaining to hyperbolic groups beyond the solutions to Dehn’s problems. For instance, a

tremendous amount of work has gone into understanding their subgroups, algebraic structures,

metric properties and finiteness properties.

Despite the power and flexibility of this notion, there is a strictly larger class of groups which

admits a similarly impressive collection of results called relatively hyperbolic groups. These

groups, also originally defined in (Gromov, 1987) but first seriously studied by Farb (Farb,

1994) and then Bowditch (Bowditch, 1997) and many others (Druţu and Sapir, 2005; Groves and

Manning, 2008; Osin, 2006; Sisto, 2012b; Yaman, 2004), have a preferred collection of subgroups

whose cosets are, at least intuitively, arranged in a ‘hyperbolic manner.’1 For example, the Bass-

Serre tree for the group G = A ∗C B is a hyperbolic space on which G acts and this action

reveals much of the geometry of G. If we also assume that C is finite, then the cosets of A and

B are close together only along a set of finite diameter (the copies of C in each A or B coset).

1This description is actually best applied to groups which contain hyperbolically embedded subgroups.
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Consequently, any two paths from a point in A (viewed as a graph) to any points in B must

pass through C. If the points in B are far apart, this should remind the reader of geodesics

diverging exponentially - a fundamental and important feature of hyperbolic spaces.

A critical property of this example is that we are not concerned whatsoever with the struc-

tures of A or B, only how their cosets are arranged in G. In general, the definition of relatively

hyperbolic groups does not allow for much control over the structure of these exceptional sub-

groups. In particular, the geometric structure within a single coset may not resemble anything

hyperbolic and there may be thick triangles or other wild geometry. On the other hand, trian-

gles which span multiple cosets will appear slim whenever the sides cross a junction such as C

in the above example. As we will see, this is often enough to obtain significant control over the

global geometric structure of the group.

Figure 1. Triangles are ‘thin between cosets’ but may be ‘thick within cosets.’
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1.2 Coarse Geometry of Groups

The first hurdle to pass when attempting to study groups from a geometric perspective is

that the geometry of a Cayley graph depends entirely on the chosen presentation. This is a

serious issue even when restricted to finite presentations and easily understood groups. As a

consequence, the class of maps which carry the geometric information of a group should not

be isometries because two distinct presentations for the same group may not produce isometric

Cayley graphs. Instead, a certain amount of flexibility is desired.

Figure 2. Cayley graphs for Z generated by {1} and {2, 3}.

Definition 1.2.1. A map between metric spaces f : X → Y is called a quasi-isometric embed-

ding if there exist constants A,B such that for all pairs x1, x2 ∈ X,

1

A
dX(x1, x2)−B ≤ dY (f(x1), f(x2)) ≤ AdX(x1, x2) +B
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One can easily see that quasi-isometric embeddings are generalizations of bi-Lipschitz maps

(in which B = 0) and therefore of isometric embeddings (in which additionally A = 1). To have

a reasonable generalization of isometry, we also need the map to be coarsely surjective.

Definition 1.2.2. If there also exists a constant C such that for every y ∈ Y there exists x ∈ X

with dY (y, f(x)) ≤ C, then f is called a quasi-isometry.

This resolves the conflict between geometric structures corresponding to different finite

presentations of a single group G = 〈S | RS〉 = 〈T | RT 〉 - the identity map between any two

will be a quasi-isometry, even though it will rarely be an isometry (it is an isometry if and only if

they have the same symmetrized generating set, S∪S−1 = T∪T−1). To see this, write out every

generator of each presentation using the generating set of the other. Set A to be the maximum

length of these words. One can easily verify that the identity map, id : (G, dS) → (G, dT ) is

A-bi-Lipschitz.

An important fact is that quasi-isometries are always (quasi)-invertible. By this we mean

that for every quasi-isometry f : X → Y there exists a quasi-isometry g : Y → X such that

f ◦ g and g ◦ f are bounded distance from idY and idX , respectively, ie there exists D such that

∀x ∈ X, dX(x, g ◦ f(x)) ≤ D. One candidate for such a map which always works is that which

sends each y ∈ Y to an x which minimizes dY (y, f(x)), choosing such an x at random in case

of non-uniqueness.

Unfortunately, quasi-isometries do not have the structure of a group like Isom(X) or Aut(G),

because they need not be bijections. However, because they are ‘coarsely bijections,’ we can

find a group structure on the set of quasi-isometries modulo a certain equivalence relation. For
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any quasi-isometries f, g : X → X define f ∼ g if and only if supx∈X{d(f(x), g(x))} is finite.

Define QI(X) to be the set of quasi-isometries modulo this relation.

Proposition 1.2.3. QI(X) is a group under the operation [f ] ∗ [g] := [f ◦ g].

We can similarly ‘quasify’ many other geometric notions.

Definition 1.2.4. A quasi-geodesic line, arc or ray is a quasi-isometric embedding of R, [0, 1]

or [0,∞], respectively. We sometimes include the coefficients associated to the map and call

such an embedding an (A,B)-quasi-geodesic line, arc or ray.

Definition 1.2.5. A subset A ⊂ X of a geodesic metric space is called quasi-convex if there

exists K such that for each x, y ∈ A, every geodesic connecting x to y is contained in the

K-neighborhood of A, NK(A).

This last notion deserves a brief remark. While we will continue to concern ourselves with

geodesics and quasi-geodesics both, the notion of convexity presents some more difficulties for

studying discrete groups and needs some extra structure to remain useful. As an example,

consider any G generated by a finite set S. Now consider the Cayley graph of G corresponding

to the collection T of all elements of G with S-length either 1 or 4. The convex hull of the ball

of radius 3 (with respect to T ) is all of G (Bridson and Swarup, 1994, Proposition 3.1)!

Definition 1.2.6. Given x1, x2, x3 in the geodesic metric space X and a triangle composed

of geodesics connecting each pair, ∆ = [x1, x2] ∪ [x2, x3] ∪ [x3, x1], we say that ∆ is δ-slim if

[xi, xj ] ⊂ Nδ([xi, xk] ∪ [xj , xk]).
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Figure 3. A slim triangle.

Definition 1.2.7. Let X be a geodesic metric space. If there exists a δ such that every triangle

is δ-slim, then X is called a δ-hyperbolic metric space.

We note that there are numerous definitions for a space to be δ-hyperbolic and not all of them

require that the space be geodesic or even connected. In the context of geodesic spaces, all of

these definitions coincide (Bridson and Haefliger, 1999, Propositions III.H.1.17 and III.H.1.22),

although the value of δ is not stable between definitions.

Definition 1.2.8. Let G be a group generated by the finite set S. If the Cayley graph of G

with respect to S is δ-hyperbolic then G is called a δ-hyperbolic group.

Since Cayley graphs are combinatorial objects, there is little risk of confusing ourselves that

it might admit a Riemannian metric of negative curvature. Therefore we often omit mention
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of δ and simply call such a group hyperbolic. Additionally, this property is a coarse metric

condition and is preserved by quasi-isometries (Bridson and Haefliger, 1999, Theorem III.H.1.9).

Consequently, if a group admits any δ-hyperbolic word metrics then all of its word metrics are

δ′-hyperbolic, at least for finite generating sets. In these processes, the exact value of δ may

change. However, we are generally concerned with qualitative properties of the geometry and

so we will only be concerned with the binary matter of whether any such δ exists.

1.3 The Boundary of a Proper Hyperbolic Space

We begin with the definition of the boundary and then provide some simple but instructive

examples. We first need to define the Gromov product, (x|y)z, which roughly describes how

long two geodesic arcs from z to x and to y stay close together in a metric space.

(x|y)z :=
1

2
[d(x, z) + d(y, z)− d(x, y)]

If the given metric space is a tree, then (x|y)z defines exactly the length that the arcs [z, x]

and [z, y] coincide. In an arbitrary hyperbolic space, this idea still has plenty of power since

triangles will be thin and can be approximated well by tripods.

The definition of the boundary of a δ-hyperbolic space relies on identifying sequences which

‘converge to infinity’ according to an equivalence relation based on the Gromov product. Let

{xi} and {yj} be sequences in a metric space (X, d) and fix some z ∈ X. If

lim inf
i,j→∞

(xi, yj)z =∞
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Figure 4. The length of the bold arc is exactly the Gromov product (based at the leftmost
point) in a tree, and is very close in any δ-hyperbolic space.

then we say that {xi} and {yj} converge at infinity and {xi} ∼ {yj}. It is a brief exercise to

see that this is an equivalence relation and that convergence at infinity does not depend on the

choice of z.

Definition 1.3.1. Let X be a proper δ-hyperbolic metric space. Given x0 ∈ X,

∂X(x0) := XN/ ∼

The topology is defined via the following basis sets which describe collections of sequences

such that geodesics from the product basepoint to the sequential points fellow travel for long

distances:

U(p, r) := {q ∈ ∂X | There are {xi} → q and {yj} → p with lim inf
i,j→∞

(xi, yj)z ≥ r}
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Here, changing the choice of z alters the basis sets but this change does not alter the

topology. Different basepoints will dilate or constrict these sets and this may be important for

applications involving the metric structure of the boundary but not here where we are only

concerned with the topology.

The boundary has several very nice properties which we collect in the following proposition,

noting that they may all be found separately in (Bridson and Haefliger, 1999, Section III.H.3).

Proposition 1.3.2. Given a proper δ-hyperbolic metric space X, ∂X is

1. compact,

2. metrizable,

3. invariant (up to homeomorphism) under quasi-isometries,

4. connected when X is one-ended.

To expand on (3) above, let f be a quasi-isometry between proper δ-hyperbolic metric spaces

X and Y. This map will send sequences in X which fellow travel for a long distance to sequences

in Y with the same property. In other words, f fully respects the topology induced by the basis

elements U(p, r). Since f has a quasi-inverse with the same property, we can see that f induces

a homeomorphism ∂X ' ∂Y.

We conclude this section with some instructive examples. The first and simplest are the

hyperbolic spaces, Hn. Here, the boundary can be best described as the number of directions

in which one can see from a given point, x0. That is to say that the boundary turns out to be

homeomorphic to the unit tangent sphere Sn−1 of x0 ∈ Hn.
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The next simplest example, for opposite reasons, are infinite regular proper trees. Here, the

boundary is a Cantor set. This can be seen by associating each ray from a basepoint with a

series of choices. Each choice can be interpreted as selecting a sub-interval in the next step in

the construction of the Cantor set.

Figure 5. The boundary of a proper infinite regular tree is a Cantor set.

The last example is by far the most complex of the three under consideration. Consider two

surfaces of genus 2, glued along their central curve.

We want to understand the boundary of the universal cover, ˜S2
∐
γ S2. We first consider

a simpler but related space. Fix γ1 ∈ S̃2 which is some particular lift of γ. Now we con-

sider ∂
(
S̃2
∐
γ1
S̃2

)
. The boundary is just two circles glued together along pairs of points,
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Figure 6. Surfaces glued along separating curves.

S1 ∪{a,b}∼{c,d} S1, where these pairs represent the endpoints of γ1 in the closure of each copy of

H2.

To understand the more complex situation, we observe that the main difference is that this

gluing process has to happen for every lift of γ. This causes a massive ‘unfolding’ effect to

happen, as every plane conjoined with this space must itself have many planes glued to it along

further lifts of γ, ad infinitum.

1.4 Relatively Hyperbolic Groups

As previously suggested, the class of relatively hyperbolic groups is characterized by the

same coarse negative curvature as hyperbolic groups except for the cosets of preferred subgroups.

To make this definition precise, we produce a construction which will dramatically alter the

geometry of these cosets. By sufficiently distorting the geometry of the preferred cosets we

force them to be hyperbolic, so that by performing this alteration on every such coset we can

modify the entire Cayley graph to be hyperbolic. The approach we use is adapted from that
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Figure 7. The boundary of conjoined hyperbolic planes.

of (Groves and Manning, 2008); we are not concerned with constructing a simply connected

complex so we dispense with the 2-cells from their original construction.

Definition 1.4.1. (Groves and Manning, 2008, Definition 3.1) Given a connected graph Γ

metrized with edges of length 1, we define the combinatorial horoball over Γ, H(Γ), to be the

graph with vertices V (Γ)× (N ∪ {0}) and with the following collection of edges:

1. edges between (x, n) and (y, n) whenever dΓ(x, y) ≤ 2n

2. edges between (x, n) and (x, n+ 1),

We refer to the edges of type (2) as vertical, those of types (1) as horizontal and the second

coordinate of each pair as called its depth.

This construction has the effect on each horoball to which we have repeatedly alluded.
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Figure 8. This boundary is much more complicated.

Theorem 1.4.2. (Groves and Manning, 2008, Theorem 3.8) Let A be any connected graph

with a length metric with edges length 1. The combinatorial horoball over A is δ-hyperbolic for

some δ ≤ 20.

This allows us to produce the main construction by which we will understand relatively

hyperbolic groups. This construction requires that we have a generating set which also generates

the cusps.

Definition 1.4.3. Let Γ be a group generated by a finite set S and let A be a finitely generated

subgroup. We say that S is compatible with A if 〈S ∩ A〉 = A. Similarly, for a finite collection

of finitely generated subgroups A, we say that S is compatible with A if 〈S ∩Ai〉 = Ai for each

Ai ∈ A.
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Figure 9. The Cayley graph of Z× Z (rescaled) and its combinatorial horoball.

The compatibility of a generating set is important because our definition of combinatorial

horoball begins with a connected graph. From a mathematical perspective this is not strictly

necessary and (Hruska, 2010) has extended the construction of horoballs to graphs which are

not connected but inherit a proper metric from some other context. We choose to avoid the

complications associated with this approach.

Definition 1.4.4. (Groves and Manning, 2008, Definition 3.12) Let A be a collection of sub-

groups of a group Γ generated by a finite set S compatible with A. The cusped space X(Γ, S,A)

is the union of Γ with H(gA) for every coset of A ∈ A, identifying gA with the depth 0 subset

of H(gA). We suppress mention of S,A when they are clear from the context.

For points in X(Γ), we do not distinguish between the depth functions of distinct horoballs

because horoballs only overlap at depth 0 and so this convention is unambiguous. Thus, we can

refer to the depth of any vertex in X(Γ) without mention of the associated horoball or coset.
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Definition 1.4.5. The elements of the collection of subgroups A are called parabolic subgroups

and the subgroups which are conjugate to them are called peripheral subgroups.

Figure 10. The effect of the combinatorial horoball on triangles. As in Figure 8, long edges
tend to descend into the horoball where distances shrink exponentially.

Definition 1.4.6. (Groves and Manning, 2008, Theorem 3.25) A group Γ generated by the

finite set S is hyperbolic relative to a collection of subgroups A if and only if X(Γ, S,A) is

δ-hyperbolic for some δ. We will often say that the pair (Γ,A) is relatively hyperbolic or even

that Γ is relatively hyperbolic when A is clear from context or unimportant.

This definition is not the original one. In fact, there have been several different but equiv-

alent formulations of this notion, beginning with (Gromov, 1987) and (Farb, 1994) (in which

the author uses the terminology ‘relatively hyperbolic with bounded coset penetration’) and

followed by (Bowditch, 1997; Druţu and Sapir, 2005; Osin, 2006; Sisto, 2012b; Yaman, 2004).

By (Szczepański, 1998) and (Groves and Manning, 2008, Theorem 3.25), these are equivalent.
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It is worth considering how the cusped space can fail to be hyperbolic, as it is built of

hyperbolic pieces (the horoballs). The simplest example of this is the fact that Z × Z = 〈a, b〉

is not hyperbolic relative to either Z factor. In particular, given two adjacent cosets of 〈a〉, we

can construct a thick triangle ∆((1, 0), (an, 0), (ban/2, n)) for some large n. Cosets which stay

close together for large distances generally misbehave in this fashion and this is the basis of the

description provided in the introduction - the cosets of the elements of A are ‘hyperbolically

arranged.’

Figure 11. The cusped space can fail to be hyperbolic.

As is the case with hyperbolic groups and the value of δ, substituting S for some other finite

generating set S′ may change the topology of X(Γ, S,A) and the value of δ, but does not affect

the fact of the hyperbolicity of the cusped space.
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Now that we have a definition for relatively hyperbolic groups, we should see why they are

important. First of all, examples of relatively hyperbolic groups are abundant in geometric

group theory.

• π1(M) for M a complete, finite volume manifold with pinched negative sectional curvature

is hyperbolic relative to cusp subgroups (Farb, 1998; Bowditch, 1998b);

• the fundamental group of a graph of groups with finite edge groups is hyperbolic relative

to vertex groups (Bowditch, 1998b);

• a limit group is hyperbolic relative to maximal non-cyclic abelian subgroups (Alibegović,

2005; Dahmani, 2003);

• a group acting geometrically on CAT(0) spaces with isolated flats is hyperbolic relative

to the stabilizers of maximal flats (Druţu and Sapir, 2005; Hruska and Kleiner, 2005);

• a hyperbolic group is hyperbolic relative to {1};

• a hyperbolic group is hyperbolic relative to a conjugacy-closed collection of infinite, quasi-

convex subgroups, where there are finitely many conjugacy classes, each element is equal

to its normalizer and each pair of conjugates of distinct elements has finite intersection

(Bowditch, 1997, Proposition 7.11).

Moreover, relatively hyperbolic groups also have enough structure to allow us to understand

them according to their structure at infinity, as (Bowditch, 1998a) did for hyperbolic groups.
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Definition 1.4.7. (Bowditch, 1997, Definition 1) Given a group Γ hyperbolic relative to A,

the Bowditch boundary, ∂(Γ, S,A) is the Gromov boundary of the associated cusped space,

∂X(Γ, S,A). When there is no ambiguity we simply say the boundary.

In (Bowditch, 1997), the boundary is defined as the ideal boundary of a proper, hyperbolic

space on which the group acts. This is largely motivated by the definition for relatively hy-

perbolic groups given in (Gromov, 1987). Part of the appeal of the characterization of relative

hyperbolicity given in (Groves and Manning, 2008) is that it satisfies the conditions of the

definition of (Gromov, 1987), and so it naturally fits with the notion of boundary developed

in (Bowditch, 1997). In fact, Bowditch constructs a very similar space to the cusped space in

which the edges at depth n are shrunk by a factor of 2n instead of adding extra edges. The two

spaces are quasi-isometric by the natural map on vertices, so the boundaries are the same. We

note that peripheral subgroups present themselves in the following notable way in the boundary.

Lemma 1.4.8. (Groves and Manning, 2008, 3.11) If A is a combinatorial horoball, then the

Gromov boundary of A consists of a single point, denoted eA, which can be represented by a

geodesic ray containing only vertical edges.

Because our proof of Theorem 2.2.1 can be simplified to prove an analogous result for the

coned space, we include its definition.

Definition 1.4.9. (Farb, 1994) Let G be a group with a finite collection of subgroups B. For

every coset gBi of an element of B, we add to the Cayley graph a vertex vgBi and from every

element of gBi we add an edge to vgBi . We call this the coned space of (G,B).
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Definition 1.4.10. (Bowditch, 1997) A graph is fine if for every n > 0 and every edge e, the

number of cycles of length at most n containing e is finite.

Definition 1.4.11 ((Bowditch, 1997) Alternate characterization of relative hyperbolicity). Let

C be the Cayley graph of a group G generated by a finite set S and let A be a collection of

subgroups of G. If the coned space of (G,A) is hyperbolic and fine, then (G,A) is relatively

hyperbolic (Bowditch, 1997, p. 27).

The following three definitions appear in Chapter 4 of (Osin, 2006). This author approaches

relatively hyperbolic groups by understanding their relative presentations, ie those of the form

G = 〈S ∪ A〉.

Definition 1.4.12. An element g of is called hyperbolic if g is not conjugate into any Ai ∈ A.

Definition 1.4.13. Let Γ = 〈S | R〉 be a group hyperbolic relative to A. A subgroup H is

called relatively quasi-convex if there exists σ > 0 such that the following condition holds. Let

f, g be two elements of H, and p an arbitrary geodesic path from f to g in Cay(Γ, S∪A). Then

for any vertex v ∈ p, there exists a vertex w ∈ H such that distS(u,w) ≤ σ.

Definition 1.4.14. If H is relatively quasi-convex and H ∩Ag is finite for all g ∈ Γ and A ∈ A,

then H is called strongly relatively quasi-convex.

Theorem 1.4.15 ((Osin, 2006), Theorem 4.19). The centralizer of a hyperbolic element in a

relatively hyperbolic group is strongly relatively quasi-convex.

Definition 1.4.16. A subgroup of a relatively hyperbolic group is called elementary if it is

either virtually cyclic or a subgroup of a peripheral subgroup.
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Some tremendously important and powerful research on relatively hyperbolic groups has

been accomplished by considering their asymptotic cones, e.g. (Druţu and Sapir, 2005). While

we will not define these, we will be using one of the results from this perspective - relatively

hyperbolic groups are rigid.

Theorem 1.4.17. (Druţu, 2009, Theorem 5.12) Let Γ be a group hyperbolic relative to a finite

family of subgroups A1. If a group Γ′ is (L,C)-quasi-isometric to G then G′ is hyperbolic relative

to A2 where each Ai2 ∈ A2 can be embedded quasi-isometrically in Aj1 ∈ A1 for some j.

Lastly, a brief point on the subgroups of relatively hyperbolic groups.

Lemma 1.4.18. Let Γ be a relatively hyperbolic group. There are finitely many conjugacy

classes of finite order subgroups F such that F is contained in a hyperbolic two-ended subgroup

H with F fixing the ends of H.

Proof. The following argument is adapted from (Mosher, 2012). For every hyperbolic two-ended

subgroup H, take AH ⊂ X(Γ,A) to be the set of all geodesics between the endpoints of H.

There is a uniform width W for all AH which is independent of the choice of H (Hruska, 2010,

Corollary 8.16), ie for a point p ∈ AH ∩Cay(Γ) ⊂ X(Γ,A), the set H \NW (p) is not connected.

It follows that for some k ∈ N, if h ∈ H has the property that [h.NkW (p)] ∩ NkW (p) = ∅

and h fixes the endpoints of H, then h has infinite order.

For F as above, it must be that the F -translates of NkW (p) are not disjoint from NkW (p).

Conjugating by p sends every such F to a subgroup F ′ ⊂ NkW (1) of the same conjugacy class,

and there are only finitely many possible F ′.
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1.5 Convergence Groups

Another definition for relatively hyperbolic groups is dynamical and characterizes these

groups by means of convergence actions on a particular space (Bowditch, 1998b; Yaman, 2004).

Roughly speaking, a convergence action is one which exhibits source-sink or North-South dy-

namics. We describe this property by means of subsequences.

Figure 12. Source-sink dynamics - the source and sink can be the same point (right).

Definition 1.5.1. Suppose that G acts on the space X by homeomorphisms. The sequence of

group elements {gi} is a convergence sequence if there exist points x1, x2 ∈ X such that for any

compact K with x1 6∈ K, {gi(k)} → x2 for all k ∈ K.

Definition 1.5.2. If every sequence of elements of G contains a convergence subsequence then

we say that G acts as a convergence group on X.
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The importance of this definition is not immediately obvious yet it characterizes many

important classes of groups. For instance, both hyperbolic and relatively hyperbolic groups are

characterized by types of convergence actions which they exhibit on their boundaries. Suppose

that M is a non-empty perfect metrisable compactum.

Theorem 1.5.3. (Bowditch, 1998b, Theorem 0.1) Suppose that a group Γ acts by homeomor-

phism on M such that the induced action on the space of distinct triples, Σ3(M), is properly

discontinuous and co-compact. Then, Γ is hyperbolic. Moreover, there is a Γ-equivariant home-

omorphism M ' ∂Γ.

Theorem 1.5.4. (Yaman, 2004, Theorem 0.1) Let Γ be a group acting on M with the conver-

gence property such that M consists only of conical limit points and bounded parabolic points1.

Suppose also that the quotient of the set of bounded parabolic points by Γ is finite and that the

stabilizer of each bounded parabolic point is finitely generated. Then Γ is hyperbolic relative to

the set of its maximal parabolic subgroups and M is equivariantly homeomorphic to ∂(Γ,A).

This allows for the identification of stabilizers of certain topological features in these contexts

and, while we will not apply the full power of this fact, we will use this to identify many vertex

stabilizers in Chapter 3. We also require the classic Convergence Group Theorem:

Theorem 1.5.5. (Casson and Jungreis, 1994; Gabai, 1992) A subgroup G of Homeo(S1) acts

as a convergence group on S1 if and only if G is a discrete subgroup of Möbius transformations

of D2.

1These terms are somewhat technical and will not be used so we omit definitions
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In other words, G is a Fuchsian group or π1(O) for some 2-orbifold O. As it turns out, this

theorem is a specific instance of the power of the convergence property. The recipient space for

a convergence action can, in some cases, identify the group acting with impressive precision.

We summarize these relationships below. We denote by C a perfect, compact, connected metric

space.

TABLE I

Groups which act on specific spaces with particular types of convergence actions.

Space Additional Conditions? Group

{x1} No Any Group
{x1, x2} No Two-Ended
S1 Yes Fuchsian Group
C Yes Hyperbolic (Bowditch, 1998b)
C Yes Rel. Hyp. (Yaman, 2004)

Perhaps the best interpretation of C is as a stand-in for the boundary of a hyperbolic

space. Since (Bowditch, 1998b) and (Yaman, 2004) are trying to deduce hyperbolicity and

relative hyperbolicity, respectively, they cannot assume that they have a boundary a priori.

The motivation for using Σ3 is that ideal hyperbolic triangles in Hn uniquely represent their

circumcenters up to rotation. For instance, Σ3(∂Hn) is the unit tangent bundle of Hn, so we

recover the original space up to the compact fiber. In the more general context, Σ3(C) actually

still replicates the Cayley graph of the group quite closely.
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1.6 Splittings of Groups

1.6.1 JSJ-Decompositions

The JSJ terminology is borrowed from 3-manifold topology. There, the concept of a JSJ

decomposition comes from the work of Jaco-Shalen (Jaco and Shalen, 1979) and, independently,

Johannson (Johannson, 1979). Their work established much of the structure of 3-manifolds by

decomposing them into simpler pieces separated by a canonical collection of tori (and perhaps

annuli). This is similar to studying general manifolds by understanding their prime pieces -

those who do not admit any non-trivial connected sum decompositions. It is the next level of

sophistication.

There is a natural duality between these canonical decompositions for manifolds and split-

tings of groups. The prime decomposition of a 3-manifold corresponds to the Grushko decompo-

sition of its fundamental group and the JSJ decomposition corresponds to splittings over either

Z × Z or over Z. The latter situation arises in manifolds with boundary with an embedded

annulus between boundary components.

This idea was popularized by (Rips and Sela, 1997) after Kropholler applied it to the class of

groups closest to 3-manifold groups: PD(3) groups (Kropholler, 1990). Rips and Sela borrowed

the JSJ terminology and restricted it to splittings over Z; later work extends this to arbitrary

two-ended subgroups (Bowditch, 1998a), and other types of groups (Dunwoody and Sageev,

1999; Fujiwara and Papasoglu, 2006; Guirardel and Levitt, 2010a; Guirardel and Levitt, 2010b).

The main properties which characterize JSJ decompositions of groups are that they are maximal

and the splittings are all mutually compatible - see Definition 1.6.1 below. In other words, this
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type of decomposition is the optimal way of understanding all of the potential splittings of

a group simultaneously. A particularly nice perk is that these splittings are often detectable

geometrically (Bowditch, 1998a; Papasoglu, 2005).

Attempts to understand groups from this JSJ perspective have been quite successful and

have provided a rich understanding of the interplay between the geometric and algebraic proper-

ties of discrete groups. Numerous authors have worked in this direction, including (Papasoglu,

2005; Papasoglu and Swenson, 2009; Sela, 1997; Bowditch, 1998a; Kropholler, 1990; Scott and

Swarup, 2003). We note that the work of Scott and Swarup (Scott and Swarup, 2003) is similar

in spirit to these but of a fairly distinct character and is, in fact, more closely related to the

3-manifold JSJ-decomposition than the others, perhaps excepting (Kropholler, 1990).

Much of the language developed by these various authors differs significantly and only re-

cently has a unifying description been presented by (Guirardel and Levitt, 2010a; Guirardel and

Levitt, 2010b). It is the language presented here which we adopt. Since we are interested only

in the particular type of JSJ-decomposition most naturally associated to relatively hyperbolic

groups we do not include the most general definitions.

Definition 1.6.1. (Guirardel and Levitt, 2010a, Definition 2 and Section 5) Let Γ be hyperbolic

relative to A. An elementary JSJ splitting relative to A is a tree, T , with a Γ-action such that

the following hold.

1. all edge stabilizers are elementary subgroups;

2. (universally elliptic) any edge stabilizer of T fixes a point in any other tree with property

(1);
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3. (maximal for domination) for any tree T ′ satisfying (2), every vertex stabilizer of T

stabilizes a vertex of T ′; and

4. (relative to A) all subgroups of elements of A fix a point in T.

Trees with these properties have been shown to exist in a wide range of scenarios (Guirardel

and Levitt, 2010a; Guirardel and Levitt, 2010b). However, it should be mentioned that the

trees are not unique, suggesting that a different principle object of study may be worthwhile.

In fact, there are a number of permissible transformations of these trees which produce new

trees that describe the same group. Instead, the focus is on collections of these trees.

Definition 1.6.2 ((Guirardel and Levitt, 2010a)). Having the same elliptic subgroups is an

equivalence relation on the set of trees with elementary edge stabilizers. An equivalence class

is called a deformation space.

In the study of JSJ decompositions, one important focus is on understanding those sub-

groups in which there are many mutually incompatible splittings. Such pairs of splittings are

called hyperbolic-hyperbolic in (Rips and Sela, 1997) and are best understood as analogous to

splittings of a surface group G = π1(Sg) over two simple closed curves, γ1 and γ2, with an

essential intersection. Each curve gives a different splitting of G over Z = π1(γi). The graph of

groups with respect to the splitting over 〈γ1〉 can be seen by first inspecting the universal cover

of Sg. Here, the lifts of γ1 provide a tesselation of H2 with the property that each component

is stabilized by a conjugate of π1(Ci), with Ci a component of Sg \ γ1.
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Figure 13. Hyperbolic-hyperbolic splittings.

For a freely indecomposable group, it is impossible to realize both splittings simultane-

ously with a common refinement of the graphs of groups. These are the hyperbolic-hyperbolic

splittings identified above and they derive their name from the fact that each edge group acts

hyperbolically on the tree associated to the other splitting, as illustrated by Figure 13. Give

two curves which do not intersect, this issue does not arise and a common splitting is easy to

produce. To combat the difficulties associated with hyperbolic-hyperbolic splittings, we simply

accept that it is impossible to see these splittings in one graph of groups and we instead consider

splittings over the subgroups which naturally contain many of these crossings.

The subgroups with this property have various names in different contexts, including quadrat-

ically hanging (Rips and Sela, 1997), maximal hanging Fuchsian (Bowditch, 1998a), orbifold
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hanging vertex (Papasoglu, 2005). These names all seek to describe the same central idea:

many pairs of simple closed curves on surfaces intersect. The essential power of these ideas

is that whenever these hyperbolic-hyperbolic splittings occur in finitely presented groups, the

situation is always very close to the surface case. There is a more general definition which

happens to encompass all of the above.

Definition 1.6.3. (Guirardel and Levitt, 2010a, Definition 4.2) Let Γv be a vertex group for

a JSJ tree. If Γv is not universally elliptic, then Γv is called flexible.

For our purposes, this definition falls somewhat short. We are interested in identifying

subgroups up to quasi-isometry and flexibility is not preserved under such maps. For example,

compare closed hyperbolic surface groups with hyperbolic triangle groups. Here, a hyperbolic

triangle group is the fundamental group of a hyperbolic 2-orbifold whose fundamental group is

generated by three cone points. Both groups are the result of a geometric group action on H2,

so the groups are quasi-isometric. However, surface groups have an infinite number of splittings

whereas triangle groups have none!

Figure 14. Hyperbolic Surface and triangle groups are quasi-isometric.
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In the context of relatively hyperbolic groups, there is a larger class of subgroups which

we can use instead of flexible subgroups and which will reflect the coarse geometry directly:

relatively QH subgroups with finite fiber.

Definition 1.6.4. (Guirardel and Levitt, 2010a, Definition 7.3) Given a group with a JSJ tree

relative to A, a vertex stabilizer Q is a relatively QH-subgroup if it satisfies the following:

1. there is an exact sequence, with O a hyperbolic 2-orbifold and a subgroup F called the

fiber :

1→ F → Q→ π1(O)→ 1

2. the images in π1(O) of edge groups incident to Q are either finite or contained in a

boundary subgroup of π1(O).

3. every conjugate of an element of A intersects Q with image in π1(O) either finite or

contained in a boundary component of π1(O).

The main reason that we prefer these to flexible subgroups is that these subgroups are

detectable in the boundary of the relatively hyperbolic group. In Theorem 3.3.5, they appear

as necklace stabilizers in the cut-point/cut-pair tree.

1.6.2 Peripheral Splittings of Relatively Hyperbolic Groups

In (Bowditch, 2001), the topological structure of the Bowditch boundary was analyzed to

understand splittings of relatively hyperbolic groups over their peripheral subgroups. As might

be guessed from Lemma 1.4.8, these splittings are detectable in the boundary as singletons

which separate the boundary.
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Theorem 1.6.5. (Bowditch, 2001, Theorem 1.2) Suppose that ∂Γ is connected. If Γ admits a

non-trivial peripheral splitting, then ∂Γ contains a global cut point.

We ensure a connected boundary by requiring one-endedness of the group. Moreover,

Bowditch remarks that every such cut point is a parabolic fixed point under some mild topo-

logical constraints. The full technical statement is:

Theorem 1.6.6. (Bowditch, 1999, Theorem 0.2) Suppose that Γ is a relatively hyperbolic group

whose boundary, ∂Γ, is connected. Suppose that each peripheral subgroup is finitely presented,

either one-ended or two-ended, and contains no infinite torsion subgroup. Then every global

cut point of ∂Γ is a parabolic fixed point.

Lastly, we can find a complete description of these cut points and express this as a splitting

of Γ.

Theorem 1.6.7. (Bowditch, 2001, Theorem 1.4) : Suppose that Γ is relatively hyperbolic with

connected boundary. Then Γ admits a (possibly trivial) peripheral splitting which is maximal in

the sense that it is a refinement of any other peripheral splitting.

We further note that in a maximal splitting every cut point of the boundary corresponds to

an edge stabilizer in the tree. This is because a maximal splitting has exclusively 2-connected

(ie contains no cut points) components by definition, (Bowditch, 2001, p. 10).

1.7 R-Trees and the Rips Machine

Part of the difficulty of (Bowditch, 2001; Bowditch, 1998a) is that the main constructions

do not produce simplicial trees, but rather R-trees.
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Definition 1.7.1. Let X be a geodesic metric space. If X is 0-hyperbolic then X is called an

R-tree.

The Rips Machine is a collection of theorems which describe actions of groups on R-trees.

It is often used to prove that an R-tree admitting a particular group action is simplicial. Most

of the details can be found in (Bestvina and Feighn, 1995) and we record the most relevant

definitions and theorems here.

Definition 1.7.2. Let Γ act on the R-tree T by homeomorphisms. We say the action is nesting

if there exists a g ∈ Γ and an interval I ⊂ T such that g(I) is properly contained in I. Otherwise,

we say the action is non-nesting.

A non-degenerate arc I is called stable if there is a non-degenerate sub-arc such that for

any non-degenerate arc K ⊂ J , Stab(K) = Stab(J). An action is called stable if any closed arc

I of T is stable.

An action of a group on an R-tree is called minimal if there are no proper invariant subtrees.

Theorem 1.7.3 ((Levitt, 1998) Theorem 1). If a finitely presented group G admits a non-trivial

non-nesting action by homeomorphisms on an R-tree T , then it admits a non-trivial isometric

action on some R-tree T0. A subgroup fixing an arc in T0 fixes an arc in T .

Theorem 1.7.4 ((Bestvina and Feighn, 1995) Theorem 9.4). Let T be a minimal pure stable

G-tree with G finitely presented. Then one of the following holds.

1. (surface) G maps onto a cone-type 2-orbifold group that splits over Z such that the kernel

of this map is in the kernel of the action of G on TG.
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2. (toral) T is a line and G maps onto a finitely generated subgroup of Isom(R) such that

the kernel of this map is in the kernel of the action of G on T .

3. (thin) G splits over a subgroup that fixes an arc of T .

Theorem 1.7.5 ((Bestvina and Feighn, 1995) Theorem 9.5). Let G be a finitely presented

group with a stable and minimal action on a tree T . Then either

1. G splits over an extension E-by-cyclic where E fixes an arc of T or

2. T is a line. In this case, G splits over an extension of the kernel of the action by a free

abelian group.

In any case, G has a nontrivial action on a simplicial tree.

The essential argument which is associated to our application of the Rips Machine is adapted

from that outlined in (Swenson, 1999) and is similar to that of (Papasoglu and Swenson, 2009).

We include citations for the tools which we use to accomplish each step. In summary:

1. Construct an R-tree T with a G action (Papasoglu and Swenson, 2006)

2. Show that this action is non-trivial, stable and non-nesting (Lemmas ??, 3.1.3, 3.1.4)

3. Construct from T an R-tree S with an isometric G-action (Levitt, 1998, Theorem 1)

4. If S is not simplicial, obtain a contradiction with the Rips machine (Bestvina and Feighn,

1995)
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1.8 Continua and R-Trees

A major step in (Bowditch, 1998a) (and here as well) is converting the action of a group on

its boundary into an action on a tree. The work of (Papasoglu and Swenson, 2006) systematizes

this process for any group action on a continuum and it is their approach which we adopt.

Definition 1.8.1. A continuum is a compact connected metric space.

For us, the main examples of continua are group boundaries and certain subsets thereof.

The R-trees constructed using (Papasoglu and Swenson, 2006) have points representing the

topological features of the continuum (cut points and cut pairs). The tree inherits the action

of the group on the continuum. We condense their exposition and will later demonstrate that

this tree is of JSJ type and often simplicial in the context of relative hyperbolicity. For the

remainder of this section we assume that Γ is a relatively hyperbolic group.

Definition 1.8.2. Given a continuum X, a point x ∈ X is a cut point if X \ {x} is not

connected. If {a, b} ⊂ X contains no cut points and X \ {a, b} is not connected, then {a, b} is

a cut pair. A subset Y is called inseparable if no two points of Y lie in different components of

the complement of any cut pair of X.

These separating features occur as the fixed points of peripheral or hyperbolic two-ended

subgroups over which Γ splits. Given that we want to also understand when there are many mu-

tually incompatible splittings (as in Definitions 1.6.3 and 1.6.4), we have terminology reflecting

interlocking cut pairs. These pairs arise in our context as the endpoints of pairs of hyperbolic

two-ended subgroups over which the group splits but which admit no common refinement.
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Definition 1.8.3. Let X be a continuum without cut points. A finite set S is called a cyclic

subset if there is an ordering S = {s1, s2, . . . , sn} and continua M1, . . .Mn such that

1. Mi ∩Mi+1 = {si}, subscripts mod n

2. Mi ∩Mj = ∅ whenever |i− j| > 1

3. ∪Mi = X

An infinite subset in which all finite subsets of cardinality at least 2 are cyclic is also called

cyclic.

Definition 1.8.4. (Papasoglu and Swenson, 2006, p. 1769) A maximal cyclic subset with at

least 3 elements is called a necklace.

Cyclic subsets arise as collections of mutually separable cut pairs. We also note that an

inseparable cut pair can be in the closure of more than one necklace, but if the cut pair is not

inseparable then that necklace is unique.

Definition 1.8.5. (Papasoglu and Swenson, 2006, p. 1762) Given a continuum X, we define

an equivalence relation ∼ such that any cut point is equivalent only to itself and for x, y which

are not cut pairs, x ∼ y if and only if there is no cut point z such that x and y are in different

components of X \ z.

We would like to define a similar notion for cut pairs but the extra structure (particularly

the interaction between maximal inseparable sets and necklaces) makes this difficult. Instead,

we directly construct subsets of the powerset of X which reflect the topology. Let R be the
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Figure 15. Necklaces can be much more complicated than circles or arcs. Attaching thickened
segments to S1 as above results in a continuum with several necklaces, all of which are Cantor

sets.

collection containing all inseparable cut pairs, necklaces and maximal inseparable sets of X. We

claim that this structure is compatible with ∼, ie that R is the union of sets defined similarly

on each class of ∼. This follows from the following lemma, which immediately implies that cut

points do not separate cut pairs.

Lemma 1.8.6. Suppose that T is a connected topological space with a continuum A ⊂ T with

the property that T \ A is not connected. If {y, z} is a cut pair then y and z are in the same

component of T \A.
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Proof. First, replace T by the quotient space with all elements of A identified and let x be the

image of A in the quotient. Let C1 be the component of T \ {y, z} containing x. Let w be a

point in another component, C2. Clearly x separates C1 but not C2. Thus, w and y are in the

same component of T \ {x, z} and w and z are in the same component of T \ {x, y}. Thus, y

and z are in the same component of T \ x.

In (Papasoglu and Swenson, 2006, Theorems 12, 13, 14), ∼ is shown to satisfy a ‘between-

ness’ property so that a process of ‘connecting the dots’ can fill it in to an R-tree. By this we

mean that we can associate an arc to every pair of points and glue the arcs together according

to the betweenness relation. This produces the R-tree from the betweenness relation. For more

information see (Bestvina, 2002).

(Papasoglu and Swenson, 2006, Corollary 31) serves the same purpose for R. The cut point

tree which they construct is of course the peripheral splitting produced by (Bowditch, 2001).

We remark that this tree (ie the tree produced by connecting the dots for ∼) is simplicial

whenever the boundary is connected and locally connected (Bowditch, 2001, Theorem 9.2).

This can be achieved by the following mild constraints on A.

Theorem 1.8.7 ((Bowditch, 2001), Theorem 1.5). Suppose that Γ is relatively hyperbolic and

that each peripheral subgroup is one- or two-ended and contains no infinite torsion subgroup. If

∂Γ is connected then it is locally connected.

Moreover, by the work of (Papasoglu and Swenson, 2011, Theorem 6.6), the cut pair tree is

simplicial for any continuum without cut points.
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Figure 16. A continuum with the associated cut-point tree and combined tree.

It is the combination of the two (which Lemma 1.8.6 justifies) which we show is simplicial

and which is originally discussed in Section 5 of (Papasoglu and Swenson, 2006), see Figure 16.

As the two types of tree are independently simplicial, they can be combined by ‘blowing up’ the

vertices of the cut point tree which correspond to maximal cut-point free subsets, along with

their incident edges according to their individual cut pair structures. We call this the combined

or cut point/cut pair tree and denote it by T .

Theorem 1.8.8. (Papasoglu and Swenson, 2006) For a locally connected continuum the com-

bined R-tree exists.

As we stated, the most important question about an action of a group on an R-tree is

whether it can be promoted to an action on a simplicial tree, or whether the R-tree itself is

simplicial. This is often accomplished via the Rips machine and we will see this in Theorem

3.1.5.
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There are topological examples in which this process produces R-trees which cannot be

made simplicial. This occurs when a cut point vertex appears as an end of the cut pair tree of

one of its adjacent vertices. This pathology is clearly visible in the following example provided

by Eric Swenson.

Figure 17. Swenson’s Spectacles.

Let M be the closure of a union of infinitely many increasingly small ellipses centered at

the origin which pairwise intersect in exactly two points. For instance, take the minor axis of

one to be the same length as the major axis of its successor and arrange them at an angle of

π/2. Let X be the union of two copies of M , connected at their center points by a thickened

arc. The combined tree can never be simplicial because between any cut pair and a cut point

there are infinitely many cut pairs.

We will show in Theorem 3.1.5 that this pathology can never occur in the boundary of a

relatively hyperbolic group. This example shows that even if the cut point tree is simplicial and
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Figure 18. The R-tree constructed from Swenson’s Spectacles.

all cut pair trees are simplicial, we still require the group action to prove that the combined

tree is simplicial.



CHAPTER 2

RIGIDITY OF THE CUSPED SPACE

In this chapter we prove our first main result:

Theorem 2.2.1. Let Γ1 and Γ2 be finitely generated groups. Suppose that Γ1 is hyperbolic

relative to a finite collection A1 such that that no A ∈ A1 is properly relatively hyperbolic. Let

q : Γ1 → Γ2 be a quasi-isometry of groups. Then there exists A2, a collection of subgroups of

Γ2, such that the cusped space of (Γ1,A1) is quasi-isometric to that of (Γ2,A2).

2.1 Quasi-Isometries between Horoballs

We first show that horoballs over quasi-isometric spaces are themselves quasi-isometric. To

that end, we distinguish among types of geodesics which exist in horoballs. We assume that

n2 > n1.

Definition 2.1.1. Let H(T ) be a horoball over the graph T with (t1, n1) and (t2, n2) vertices

of H(T ). We say that the geodesic segment [(t1, n1), (t2, n2)] is vertical or a vertical geodesic

segment if n2 is the maximal depth among vertices of [(t1, n1), (t2, n2)]. See Figure 19.

Lemma 2.1.2. Let q : T → S a (k, c)-quasi-isometry between graphs. There is a (1, C)-

quasi-isometry q̂ : H(T ) → H(S) between combinatorial horoballs such that q̂ extends q.

Furthermore, C depends only on k and c.

Proof. Extend q to q̂ by defining q̂(v, n) = (q(v), n) and let si = q(ti). The proof proceeds

by comparing lengths of geodesics; we show that the length of a segment in H(S) is less than

42
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Figure 19. A vertical geodesic (right) and a non-vertical geodesic.

a linear function of the length of the corresponding segment in H(T ). Since we start with a

quasi-isometry, this argument is also valid in the reverse direction. Moreover, the quasi-inverse

has coefficients which obey the same dependencies which establishes the proof. We partition

the proof into cases by which geodesics are vertical.

[(s1, n1), (s2, n2)] vertical: dH(S) ∈ {n2−n1, n2−n1+1, n2−n1+2, n2−n1+3} and dH(T )+3

is clearly at least as large.

For the remaining two cases we assume that [(s1, n1), (s2, n2)] is not vertical.
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[(t1, n1), (t2, n2)] not vertical:

dH(S)((s1, n1), (s2, n2)) ≤ 2 log2 [dS(s1, s2)] + 3− n2 − n1

≤ 2 log2[kdT (t1, t2) + c] + 3− n2 − n1

≤ 2 log2[(k + c)dT (t1, t2)] + 3− n2 − n1

≤ 2 log2(k + c) + 2 log2[dT (t1, t2)] + 3− n2 − n1

≤ d̂T ((t1, n1), (t2, n2)) + 2 log2(k + c) + 3

[(t1, n1), (t2, n2)] vertical:

dH(S)((s1, n1), (s2, n2)) ≤ 2 log2(dS(s1, s2))− n2 − n1 + 3

≤ 2 log2(k + c) + 2 log2(dT (t1, t2))− n2 − n1 + 3

≤ 2 log2(k + c) + n2 − n1 + 3 (2.1)

≤ 2 log2(k + c) + d̂T (t1, t2) + 3

Since [t1, t2] is not descending, log2(dT (t1, t2)) ≤ n2, justifying (2.1).

The coarse density of the image is clear. Since q is a quasi-isometry, we can also get

identical results in the reverse direction with a symmetric argument so that geodesics in H(T )

are bounded by a linear function of the lengths in H(S). Thus, q̂ is a (1, 2 log2(k + c) + 3)-

quasi-isometry.
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2.2 Reconstructing Geodesics

Theorem 2.2.1. Let Γ1 and Γ2 be finitely generated groups. Suppose that Γ1 is hyperbolic

relative to a finite collection A1 such that that no A ∈ A is properly relatively hyperbolic. Let

q : Γ1 → Γ2 be a quasi-isometry. Then there exists A2, a collection of subgroups of Γ2, such

that the cusped space of (Γ1,A1) is quasi-isometric to that of (Γ2,A2).

Proof. We extend q to a map Q : X(Γ1)→ X(Γ2). First, let Q = q on Cay(Γ1). By the proof of

Theorem 5.12 of (Druţu, 2009), q induces a quasi-isometric embedding of cosets of elements of

A1 into those of A2 and we can take these to have uniform constants. We observe that this can

be made coarsely surjective because no peripheral subgroup is properly relatively hyperbolic.

The reason for this is that if we had a quasi-isometry which was not coarsely surjective then

this would give an element of A2 that would be hyperbolic relative to the image of q of some

coset of an element of A1, again by (Druţu, 2009), contrary to our hypothesis. When the map

is coarsely surjective, we get that this element is hyperbolic relative to itself, which is the trivial

case that we allow.

Now, q might only take a coset to within a bounded distance of the corresponding coset in

Γ2, rather than directly to it as in Lemma 2.1.2. We can still use the induced quasi-isometry

on the subsets of the horoballs which have positive depth but at depth 0 we have to make an

adjustment.

However, the proof of (Druţu, 2009, Theorem 5.12) shows us that there exists a bound T

such that the image of Ai is at most T from the coset to which it is quasi-isometric. Thus, we

have to account only for an extra additive T in the constants.
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Thus we know that q induces quasi-isometries between cosets of peripheral subgroups and

that the constants of these quasi-isometries do not depend on the particular cosets but only on

the constants of q and on (Γ1,A). Therefore, Q restricts to a quasi-isometry on each individual

horoball and on the Cayley graph. We only need to show that these can be combined across

all of X.

Now let [x, y] be a geodesic arc between points of X(Γ1). We divide this arc into several

subarcs by taking the collection of maximal subarcs I1 which have every vertex of depth 0 and

also take the complimentary collection of segments I2. We note that some of these arcs may be

degenerate (length 0, just a singleton) and that our methods account for this. In other words,

we have

[x, y] = [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xn−1, xn] = [x0, xn]

with [x2i, x2i+1] ∈ I1 and [x2i+1, x2i+2] ∈ I2. Essentially, we have divided [x0, xn] into segments

which go between two different horoballs (again, possibly with length 0) and segments which

traverse individual horoballs. We should mention that the subdivision used here has a parity

which suggests that the terminal points x0 and xn must have depth 0, but that this is easily

surmounted. Simply attach a vertical segment to a depth 0 vertex whenever necessary.

We have the following expression:

d̂1(x0, xn) =

n−1∑
i=0

d̂(xi, xi+1) =
∑
I∈I1

length(I) +
∑
I∈I2

length(I)
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We construct a path in Γ2 which tracks the image of [x0, xn]. For each xi, xi+1, we take

any geodesic in X(Γ2), [Q(xi), Q(xi+1)](= [q(xi), q(xi+1)]), see Figure Figure 20. Because q is

a quasi-isometry between Cayley graphs, d1 = d̂1 for any segment in I1, and d2 ≥ d̂2, we get

the following estimate on the lengths of the images of endpoints of segments of I1:

(n−1)/2∑
i=0

d̂2(q(x2i), q(x2i+1)) ≤
(n−1)/2∑
i=0

d2(q(x2i), q(x2i+1))

≤
(n−1)/2∑
i=0

[kd1(x2i, x2i+1) + c] =

(n−1)/2∑
i=0

[kd̂1(x2i, x2i+1) + c]

By Lemma 2.1.2, we know that the horoballs paired by q are quasi-isometric and, by (Druţu,

2009), that the constants can be chosen uniformly. If we let Λ − 2T be the maximum among

those constants and k, c, we get the following length estimate:

Figure 20. A typical geodesic in X(Γ1) and a reconstructed piecewise geodesic in X(Γ2).
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d̂2(q(x0), q(xn)) ≤
(n−1)/2∑
i=0

d̂2(q(x2i), q(x2i+1)) +

(n−1)/2∑
i=1

d̂2(q(x2i−1), q(x2i)) (2.2)

≤
(n−1)/2∑
i=0

[Λd̂1(x2i, x2i+1) + Λ] +

(n−1)/2∑
i=1

[Λd̂1(x2i−1, x2i) + Λ]

Now, since we know that the horoball-transversals have length ≥ 1, we can move the additive

constant Λ from the first sum to the second sum, except for a single summand. We do this to

account for scenarios in which a geodesic is constructed from several paths contained entirely

in horoballs, making the first sum
∑

Λ.

d̂2(q(x0), q(xn)) ≤ Λ +

(n−1)/2∑
i=0

[Λd̂1(x2i, x2i+1)] +

(n−1)/2∑
i=1

[Λd̂1(x2i−1, x2i) + 2Λ]

≤ Λ +

(n−1)/2∑
i=0

[Λd̂1(x2i, x2i+1)] +

(n−1)/2∑
i=1

[3Λd̂1(x2i−1, x2i)]

≤ Λ + 3Λ

(n−1)/2∑
i=0

[d̂1(x2i, x2i+1)] +

(n−1)/2∑
i=1

[d̂1(x2i−1, x2i)]


= 3Λd̂1(x0, xn) + Λ (2.3)

We still need to establish coarse density. However, this is clear for depth 0 vertices since

the Cayley graphs are quasi-isometric and it is clear for the positive depth vertices since the

horoballs are in bijection and this pairing is by quasi-isometries.
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We also need to produce the other bound, but by a symmetric argument using the quasi-

inverse r,

d̂1(r(x0), r(xn)) ≤ 3Λ′d̂2(x0, xn) + Λ′

Therefore,

d̂1(r(q(x0)), r(q(xn))) ≤ 3Λ′d̂2(q(x0), q(xn)) + Λ′

≤ 3Λ′[3Λd̂1(x0, xn) + Λ] + Λ′ = 9ΛΛ′d̂1(x0, xn) + 3ΛΛ′ + Λ

Because q and r are quasi-inverse, there exists an a > 0 such that

d̂1(x0, xn) ≤ d̂1(r(q(x0)), r(q(xn))) + a

Combining these, we get

1

3Λ′
d̂1(x0, xn)− a+ Λ′

3Λ′
≤ d̂2(r(x0), r(xn)) ≤ 3Λ′d̂1(x0, xn) + Λ′

We conclude by maximizing among constants.

As indicated in the introduction, our proof of Theorem 2.2.1 simplifies to prove an analogous

result for the coned space.

Theorem 2.2.2. Let Γ1,Γ2,A1, q be as above. Then there exists a collection of subgroups A2

of Γ2 such that the coned spaces of (Γ1,A1) and (Γ2,A2) are quasi-isometric.
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Proof. Adjust the proof of Theorem 2.2.1 by replacing the intra-horoball arcs with arcs through

the cone-points. These all have length 2 so simply change (2.2) to

d̂2(q(x0), q(xn)) ≤
(n−1)/2∑
i=0

d̂2(q(x2i), q(x2i+1)) +

(n−1)/2∑
i=1

2

2.3 Some Important Corollaries

Corollary 2.3.1. With (Γ1,A1) and (Γ2,A2) as in Theorem 2.2.1, the cusped spaces X(Γ1,A1)

and X(Γ2,A2) have homeomorphic boundaries.

This is the most important corollary for our purposes. Because the R-trees of (Bowditch,

1998a; Papasoglu and Swenson, 2006) are constructed from the topological structure of the

boundary and do not incorporate any metric properties, this allows us to use the structure of

the boundary to acquire splittings which are invariant under quasi-isometries.

Corollary 2.3.2. With (Γ1,A1) as in Theorem 2.2.1, the tree describing the maximal periph-

eral splitting (Bowditch, 1998b) and the cut-point/cut-pair R-trees (Papasoglu and Swenson,

2006) for the boundary of the cusped space are quasi-isometry invariant up to homeomorphism.

Corollary 2.3.3. Let Γ be a group hyperbolic relative to A with finite compatible generating

sets S and T . Then X(Γ, S,A) and X(Γ, T,A) are quasi-isometric. The analogous result for

the coned space also holds.
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Proof. We only need to show that we can drop the condition on peripheral subgroups. In-

specting the proof of Theorem 2.2.1, the requirement that no peripheral subgroup is properly

relatively hyperbolic is used to establish a bijection between cosets of peripheral subgroups

from (Druţu, 2009). Because peripheral cosets will be mapped to themselves under the identity

map, this bijection is automatic and the hypothesis is unnecessary.

We note that this corollary is also new for hyperbolic groups with a non-trivial relatively

hyperbolic structure. See Section 1.4 for conditions characterizing when this can happen.



CHAPTER 3

THE CANONICAL JSJ-TREE

3.1 T (Γ,A) is Simplicial for Finitely Presented Γ

As mentioned in Section 1.7, we seek to apply the Rips machine to the Γ action on the

combined tree T so we first demonstrate that the action is stable, minimal and non-nesting.

Because the cut point tree is simplicial, the only intervals which can be unstable are those which

contain multiple inseparable cut pairs. Thus, we restrict our attention to those.

Lemma 3.1.1. There is a uniform bound on the order of the stabilizer of an interval containing

at least two vertices corresponding to cut pairs.

Proof. Let I be any interval containing at least two inseparable cut pairs, A,B. We show that

Stab(I) is finite. If {gn} ⊂ Stab(I) is an infinite sequence of elements then we may assume that

gn(x) → p for all x ∈ ∂Γ, perhaps after passing to a subsequence. However, each gn must fix

all of the points of both cut pairs. This is a contradiction.

Additionally, this finite subgroup satisfies the hypotheses of Lemma 1.4.18 because it is a

subgroup of Stab(A). There are only finitely many conjugacy classes of such subgroups so there

is a uniform bound on the order of Stab(I). It follows immediately that the action is stable.

Corollary 3.1.2. The action of Γ on T is stable.

Lemma 3.1.3. The action of Γ on T is non-nesting.

52
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Proof. Assume not. Then there exists an interval I ⊂ T and g ∈ Γ (replaced by g2 if necessary)

such that g(I) is a proper subset of I. By the Brouwer fixed point theorem, there is a fixed

point of g in I, call this A. We may assume I = [A,B], g(B) ∈ [A,B). Note that g has infinite

order.

By convergence, there exists p, q ∈ ∂Γ such that gn(x)→ p for every x 6= q. Clearly, p ∈ A.

Because g−n(x) → q, also q ∈ A otherwise q ∈ C ∈ (A,B) but g−n(C) 6= C. However, this

implies that for all x 6= p, g−n(x)→ q ∈ A. Yet g−n(B) 6∈ [A,B] for any n, a contradiction.

Lemma 3.1.4. This action is also minimal.

Proof. Every cut point is stabilized by a peripheral subgroup and every cut pair is stabilized

by a finite or two-ended subgroup. Since the group is one-ended, cut pair stabilizers must be

two-ended, showing that a 2-dense collection of vertices of the cut point tree and of every cut

pair tree have non-trivial stabilizers. Thus, no proper invariant subtree exists.

Theorem 3.1.5. Let Γ be a finitely presented, one-ended group, hyperbolic relative to A such

that for every A ∈ A, A is not properly relatively hyperbolic and A contains no infinite torsion

subgroup. Let T be the combined tree obtained by the action of Γ on its Bowditch boundary.

Then T is simplicial.

Proof. Suppose not. Then because the action is non-nesting, by (Levitt, 1998), there is an

R-tree T ′ equipped with an isometric Γ-action and an equivariant quotient map T → T ′.

Furthermore, stabilizers of non-simplicial segments in T ′ stabilize segments in T , and so are
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finite of uniformly bounded order by Lemma 3.1.1. Therefore, as in Corollary 3.1.2, the Γ-action

is stable.

In all cases of (Bestvina and Feighn, 1995, Theorem 9.5) other than the pure surface case,

one obtains a splitting over a finite group. However, Γ is one-ended, so we reduce to this case.

By (Bestvina and Feighn, 1995, Theorems 9.4(1) & 9.5) Γ admits a splitting over a two-ended

group V , and this two-ended group corresponds to an essential, non-boundary parallel simple

closed curve in the associated orbifold. If g ∈ V corresponds to this curve, then since the

associated lamination on the orbifold has no closed leaves g must act hyperbolically on T ′.

This implies that g also acts hyperbolically on T . However, a splitting of Γ over a two-ended

group must induce a cut pair corresponding to the endpoints of the axis of 〈g〉. This cut pair

must be stabilized by g, so g cannot act hyperbolically. This is a contradiction.

In summary, the combined tree T is simplicial and has one vertex for each of the following

topological structures in the continuum:

1. cut points

2. inseparable cut pairs

3. necklaces

4. equivalence classes of points not separated by cut points or cut pairs

Additionally, there is an edge between two vertices if the corresponding sets in the continua

have intersecting closures. We note that, by the construction of R, points of the continuum

can be contained in multiple elements of R.
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3.2 T (Γ,A) is a JSJ-Tree

Now that we know that T is simplicial in common situations, we are left with the task

of classifying it as a JSJ tree. This effectively labels the splitting as the ideal splitting for

understanding the algebraic content of the group.

Theorem 3.2.1. With Γ,A as in Theorem 3.1.5, T is a JSJ tree over elementary subgroups

relative to peripheral subgroups.

Proof. We show that T satisfies the conditions of Definition 1.6.1. By the construction of

the tree every edge group must be the stabilizer of either a cut point or a cut pair. Because

relatively hyperbolic groups act on their boundaries with a convergence action, these stabilizers

must be elementary subgroups (condition (1)). Every peripheral subgroup fixes a point in the

tree because it fixes a point in the boundary (this point is eA of Lemma 1.4.8), which implies

condition (4). Furthermore, this tree satisfies (3) because every elementary splitting always has

a topological expression in the boundary. In particular, (Bowditch, 2001) implies the existence

of a cut point and (Papasoglu, 2005) implies the existence of a cut pair whenever there is an

peripheral or hyperbolic two-ended splitting, respectively. Thus, every vertex in every such tree

comes from one of these structures and hence is already a vertex stabilizer in T . Finally, every

splitting of this group must reflect the topology of the boundary. In particular, every edge

represents the intersection of topological features. Fixing these features means fixing a vertex

in a tree for another splitting. In essence, the argument that this tree satisfies (3) goes in both

directions. This is (2).
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3.3 Vertex Stabilizers

The first step towards identifying the vertex stabilizers is establishing the quasi-convexity

of vertex groups.

Lemma 3.3.1. Let Γ be finitely presented and one-ended. Additionally suppose that (Γ,A) is

relatively hyperbolic with A finite such that no A ∈ A is properly relatively hyperbolic and no

A contains an infinite torsion subgroup. Let T be the combined tree from the boundary. If Γv

is a vertex group of T then Γv is relatively quasi-convex.

Proof. This is clearly true for vertex groups which are peripheral. It is also true for hyperbolic

two-ended vertex groups by Theorem 1.4.15. Assume Γv is not of these types.

T is a bipartite graph in which all vertices of one color have corresponding groups which

are either peripheral or hyperbolic two-ended. To see this, note that maximal inseparable sets

and necklaces must only be adjacent to cut pairs or points. Furthermore, cut pairs and points

must come between these larger sets. Now, let {Z1, . . . , Zn} and {P1, . . . , Pm} be the collection

of all hyperbolic two-ended subgroups and the collection of all peripheral subgroups incident to

Γv, respectively.

Let γ be any geodesic between points in Γv. Decompose γ into maximal segments of length

≥ 1 which have endpoints in cosets of some Zi, Pj or are contained completely within Γv. The

segments contained in each Zi must stay within a bounded distance of Γv because hyperbolic

two-ended subgroups are strongly relatively quasi-convex (Theorem 1.4.15). Additionally the

Pj segments stay within bounded distance of Pj (Druţu, 2009, Theorem 4.21). Since they are
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peripheral and we are investigating relative quasi-convexity, we are not concerned with how far

they stray from Pj ∩ Γv inside Pj .

Proposition 3.3.2. With Γ,A, T as in Lemma 3.3.1, a vertex group Γv of T , is relatively QH

with finite fiber if and only if Γv is the stabilizer of a necklace in T .

Proof. If Γv is relatively QH with finite fiber, then by Definition 1.6.4 there is a short exact

sequence

1→ F → Γv → π1(O)→ 1

with F finite and O a hyperbolic orbifold. We first determine that Γv 6∈ A. Because F is finite,

Γv 'qi π1(O) and because O is a hyperbolic 2-orbifold, Γv is itself hyperbolic relative to {1}.

By our condition on peripheral subgroups, Γv 6∈ A.

Now, by definition Γv is virtually Fuchsian. Let C be the set of bi-infinite curves in the

universal cover Õ which are not homotopic to a boundary component of Õ. Since F is finite,

Γv is quasi-isometric to π1(O) and so ∂Γv ' ∂π1(O) with respect to the relatively hyperbolic

structure induced byA. Call this set N . LetN be the image of N in ∂Γ induced by the inclusion

of Γv in Γ. This map is well-defined because of relative quasi-convexity of Γv. Specifically, by

(Manning and Mart́ınez-Pedroza, 2010), relative quasi-convexity is equivalent to quasi-convexity

in the cusped space and by general results on δ-hyperbolic spaces the boundary will embed.

We claim that N is a necklace in ∂Γ. By definition, every edge group must be either finite

or contained in a boundary component. Because Γ is one-ended, the finite case is excluded.

Consequently, for any γ ∈ C each coset of an edge group is contained in a single component of
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Figure 21. Interlocking geodesics separate boundary components.

Õ \ γ. Let η ∈ C be any curve which has an essential crossing with γ. Such η exists because if

not then γ must be boundary parallel, but C contains no boundary parallel curves.

Since η+ and η− are in different components of N \{γ+, γ−} and each edge group is attached

to only a single boundary component, it must be that every edge group has image contained in

either the same component of N \ γ as η+ or η−, but never both. Thus, the image of {γ+, γ−}

also separates the image of {η+, η−} in N and the endpoints of γ form a cut pair in ∂Γ.

In the reverse direction, if Γv stabilizes a necklace N then, by the last paragraph of the

proof of (Papasoglu and Swenson, 2006, Theorem 22), it has an action on S1 which preserves the

cyclic order. Since Γv = Stab(N ), Γv inherits the convergence property of Γ and this property

must be realized on N . Any sequence of group elements contained in the kernel of this action
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is not a convergence sequence, so the kernel must be finite. The fiber, F , is the kernel of this

action. By Theorem 1.5.5, the quotient must be a Fuchsian group. Let O be the quotient of H2

by the action of Γv/F , truncating cusps so that O is compact. We are left with showing that

edge groups are boundary parallel.

First, we show that no element of C (again defined as the set of non-boundary bi-infinite

curves on O - those which cross other bi-infinite curves and interlock in ∂N) can be contained

in the image of a peripheral edge group. Because peripheral subgroups have a unique boundary

point (Lemma 1.4.8), such a curve would induce a cut point in N . However, by Lemma 1.8.6

no cut pair can be separated by a cut point. In this context, every cut pair separates another

cut pair with the only exception arising from those cut pairs which are end points of boundary

curves of Õ. In other words, for every cut pair C of N there is an interlocked cut pair unless

C forms the endpoints in Õ of a curve homotopic to a boundary component of O.

Now we are left with only the possibility that some γ ∈ C is identified with a hyperbolic

two-ended edge group. Let {x1, x2} be any cut pair interlocked with {γ+, γ−}. We claim that

{x1, x2} is not actually a cut pair in ∂Γ. ∂Γ \ {γ+, γ−} must have at least 3 components in

this situation. Let Y be a component which does not contain any points of N . In particular,

Y ∩N = {γ+, γ−}. Thus, no cut pair of N separates γ+ from γ− as both are contained in the

component Y . However, then Y must separate {x1, x2}, contrary to Lemme 1.8.6. Thus, we

must have that no such γ exists in C.
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TABLE II

Subgroups which stabilize particular topological features in the boundary.

Stabilizer Topological Feature

hyperbolic 2-ended ←→ cut-pair
peripheral ←→ cut-point

relatively QH with finite fiber ←→ necklace

Lemma 3.3.3. If {x, y} is an inseparable cut pair in ∂Γ then Stab({x, y}) is a hyperbolic

two-ended subgroup of Γ.

Proof. Let Z = Stab({x, y}). Z must be infinite else Γ would not be one-ended. As a subgroup

of Γ, Z acts on ∂Γ with the convergence property. Since Z fixes {x, y}, this implies that Z is

two-ended.

Corollary 3.3.4. With Γ,A, T as in Lemma 3.3.1, there is a correspondence between vertex

groups of T tree and the topological features of the boundary given by Table 2.

Proof. Since hyperbolic 2-ended subgroups are strongly relatively quasi-convex (Osin, 2006),

their boundaries embed (Hruska, 2010). Similarly, (Bowditch, 2001) demonstrates that cut

points correspond to peripheral splittings. As vertex groups, these features must be separating.

The last point is Proposition 3.3.2.

With this in place, we are ready to show:

Theorem 3.3.5. Let Γ1 and Γ2 be finitely generated groups. Suppose additionally that Γ1 is

one-ended and hyperbolic relative to the finite collection A1 of subgroups such that no A ∈ A
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is properly relatively hyperbolic or contains an infinite torsion subgroup. Let T be the cut-

point/cut-pair tree of ∂(Γ1,A1). If f : Γ1 → Γ2 is a quasi-isometry then

• T is the cut-point/cut-pair tree for Γ2 with respect to the peripheral structure induced by

Theorem 2.2.1,

• if StabΓ1(v) is one of the following types then StabΓ2(v) is of the same type,

1. hyperbolic 2-ended,

2. peripheral,

3. relatively QH with finite fiber.

Proof. By Corollary 2.3.1, there exists a relatively hyperbolic structure for Γ2 such that the

boundaries of the cusped spaces are homeomorphic. Since T depends only on the topology of

this continuum, T is the cut-point/cut-pair tree for Γ2.

By the correspondence given in Corollary 3.3.4, these vertex types depend only on the

topology of the boundary. Since these topological features are preserved, the vertex group

types are preserved as well.

We conclude with a consequence of the fact that Out(Γ) acts on ∂Γ by homeomorphisms.

Corollary 3.3.6. Let (Γ,A) be relatively hyperbolic with no A ∈ A properly relatively hy-

perbolic. Then, the Out(Γ) action on the JSJ-deformation space over elementary subgroups

relative to peripheral subgroups fixes T .
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Proof. The action passes to an action on the boundary by homeomorphisms which induces an

action on the combined tree so that vertex groups map to vertex groups and adjacencies are

preserved. Furthermore, because maximal relatively hyperbolic structures are unique (Matsuda

et al., 2012), there is no change in the choice of peripheral structure.



CHAPTER 4

THE ACTION OF QI(Γ) ON T (Γ)

As demonstrated in Theorem 2.2.1, the action of QI(Γ) on the Cayley graph of Γ induces an

action on the cusped space X(Γ,A) and by Proposition 1.3.2 on the boundary ∂(Γ). As stated

in Corollary 2.3.2, this naturally yields an action on the tree T . In this chapter we describe

this action.

4.1 Faithfulness

Theorem 4.1.1. With Γ,A, T as in Lemma 3.3.1, the action of QI(Γ) on T (Γ,A) is faithful,

assuming that T is not a point.

Proof. Given a (k, c)-quasi-isometry φ ∈ QI(Γ) which has a trivial induced action on T (Γ), it

must be that φ coarsely fixes all peripheral subgroups over which G splits. For now, assume

one such subgroup exists and call this A. By the same citation of (Druţu, 2009) applied to

Theorem 2.2.1, φ must map every coset gA within NT (gA). However, given two adjacent cosets,

hA and shA, both must satisfy this condition. Consider adjacent points a ∈ hA, b ∈ shA. It

must be that φ(a) ∈ NT (hA) and φ(b) ∈ NT (shA). Further, as d(a, b) = 1, d(φ(a), φ(b)) ≤ k+c.

Consequently, φ(a) ∈ Nk+c+T (shA) and φ(b) ∈ Nk+c+T (hA) and φ(a), φ(b) ∈ Nk+c+T (hA) ∩

Nk+c+T (shA). This intersection must have a finite diameter which is uniformly bounded over

any chosen pair of cosets. Therefore, d(a, φ(a)) is bounded by this diameter. Since every point
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can be found within such a neighborhood by an appropriate choice of such cosets, φ must be a

finite distance from the identity map.

The two-ended case is similar. These subgroups have been shown to satisfy a similar di-

vergence property called hyperbolically embedded (Dahmani et al., 2012; Sisto, 2012a) and they

are strongly relatively quasi-convex, so the argument is nearly identical.

Figure 22. QI(Γ) acts faithfully on the JSJ tree.

4.2 Bounding the Number of Edges of T /QI(Γ)

We have that Γ and QI(Γ) act on the same tree so that QI splits whenever Γ has a non-

trivial JSJ as described here. We can also control the number of edges which QI admits in this
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induced splitting. Let Λ be |E(T /Γ)| and let Autqi(T /Γ) be the group of graph automorphisms

which respect the quasi-isometry type of each edge and vertex stabilizer.

Theorem 4.2.1. The graph of groups decomposition of QI(Γ) induced by the JSJ-decomposition

of Γ has at most Λ edges and at least Λ/|Autqi(T /Γ)| edges.

Proof. First, note that Γ acts on itself by quasi-isometries and if T is not a point then this

action will have no global fixed points so obviously the same is true for the QI(Γ) action.

Now, each g ∈ Γ acts by (quasi)-isometries on X(Γ,A) which gives the upper bound, and

QI(Γ) acts on T /Γ by graph automorphisms which must preserve the quasi-isometry class of

each stabilizer because the action is filtered through the action on X(Γ,A), thus giving the

lower bound.



CHAPTER 5

CONCLUSION

The theorems proved in this dissertation provide several significant methods for understand-

ing relatively hyperbolic groups and their quasi-isometries. We have seen that the canonical

splitting observed in the boundary of a relatively hyperbolic group is a JSJ-splitting which

exposes much of the algebraic structure of these groups. Furthermore, this allows us to under-

stand the quasi-isometries of these groups and splittings of the group of quasi-isometries since

they act faithfully on the same tree.

Nonetheless, this leaves open some compelling questions. Exactly how much more structure

can we deduce about QI(Γ) by understanding the action of Γ on ∂Γ? We have only used

topological features of ∂Γ here, but there is a rich theory of the metric properties of boundaries

of hyperbolic spaces. Perhaps a great deal more can be said about the structure of QI(Γ). In

fact, if we replace Autqi(T /Γ) in Theorem 4.2.1 by the subgroup which also respects the edge

group inclusion maps, it may be possible to obtain a complete description of the splitting of

QI(Γ).

Moreover, there is a definition of the boundary which does not require that the hyperbolic

space be proper. It may be reasonable to expect that the same analysis carried out here could

be redone with some modifications to understand group splittings in this scenario. In fact,

there is a broad class of groups for which this would be the very natural question to ask:

groups containing hyperbolically embedded subgroups (Dahmani et al., 2012; Sisto, 2012b).
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Even further, Sisto (Sisto, 2012a) has provided a definition for these groups which effectively

mirrors the Groves-Manning definition of relatively hyperbolic groups via the cusped space. Do

groups in this class admit a similar canonical splitting?

Perhaps more directly, we suspect that the theorems contained herein can be applied to sub-

categories of groups which fall within the umbra of relative hyperbolicity. A specific example

could be limit groups, which are studied very closely by means of their JSJ-decompositions.

Perhaps the study of these groups can be expanded to the entirety of the quasi-isometry class

of limit groups, since these may share many properties with limit groups via our theorems.

Perhaps the class of limit groups is even ‘coarsely closed’ under quasi-isometries. This is of

course supposing the existence of an author willing to properly define such a notion.

Answers to any or all of these questions, as unlikely as some of them may be, would certainly

help advance our understanding of groups and their geometric properties.
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