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SUMMARY 

 

Power, energy and resource minimization subject to a latency constraint are important 

optimization objectives in operation scheduling in high-level synthesis. The research work 

presented herein aims to address each of the objective as follows. 

First, we proposed that the degree of optimization achievable in high-level synthesis 

(HLS) designs with functional unit (FU) or module selection is significantly dependent on how 

the FUs in the resource library are parameterized. For power minimization, our proposal is that 

appreciably more power optimization is possible when: 

• the FUs for each function type (FT) have a wide range of both power and delay metrics; 

• their pair-wise power-delay product ratios are close to 1, say, in the range [0.8, 1.25], than 

when these criteria are not satisfied. 

We showed that it is possible to achieve these parameter ranges for arithmetic FTs due to design 

variety and flexibility to hierarchically combine different design approaches. We also provided a 

probabilistic rationale for our hypotheses and further bolster it empirically by constructing 

different FU libraries that either meet or do not meet the above FU parameter criteria. Using a 

new power-driven simulated annealing (SA) based algorithm PSA, we consistently found that 

the power consumption of designs using libraries that meet our criteria are significantly lower 

than those that do not. 

Then, we proposed a leakage energy (LE) minimization scheduling algorithm LPR-GPS. 

It co-explores unit-time leakage power (LP) and latency spaces in order to minimize their 

product. LPR-GPS extends the classical force-directed scheduling (FDS) by: 
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• an initial probabilistic distribution graph (DG) based on a non-uniform probability-driven 

randomized scheduling that yields the final starting scheduling probabilities that are 

conducive to LE minimization; 

• a root-mean-square (RMS) based estimation of the maximum FU usage distributed across cc’s 

that contributes to LE minimization; 

• a fast and greedy noncommittal scheduling algorithm for estimating the latency by scheduling 

output operations first. 

Experimental results show LPR-GPS reduces total LE by an average of 44% compared to the 

power-driven FDS and 12% compared to a version of LPR-GPS that only minimizes unit-LP. 

Finally, we proposed an iterative list scheduling (LS) type algorithm FALLS to minimize 

the total number of FUs allocated, and thus the total area, in HLS designs. FALLS incorporates a 

novel lookahead technique to selectively schedule available non-0-slack operations by allocating 

the needed FUs earlier or reserving available FUs for scheduling more timing-urgent operations 

later, such that no additional FU is needed and a higher FU utilization is obtained. Further, a 

fractional search framework is developed to iteratively estimate the number of FUs of each FT 

required in the final design based on the current scheduling and FU utilization, and reiterate the 

lookahead-based list scheduling with the new FU allocation estimate to further increase FU 

utilization. Experimental results comparing FALLS with several state-of-the-art algorithms using 

a non-trivial FU library show an average 18.9% to 71.4% FU reduction while only has 5.5% 

optimality gap compared to an optimal integer linear programming (ILP) formulation. FALLS 

also performs much better in architectural area (FU + mux/demux + register area), interconnect  
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congestion and number of interconnects than state-of-the-art approximate algorithms, and is at 

most 4.0% worse in these metrics than the optimal ILP method. 



 

1 

 

1. INTRODUCTION

 

1.1. High-Level Synthesis 

As the semiconductor technology node keeps moving towards the nanometer regime, and 

the transistor count on a chip significantly increases, it becomes more and more challenging to 

effectively and efficiently design modern integrated circuits (ICs). Thus, IC designers pay their 

attention to specifying the design in high-level languages like systemC, Verilog and VHDL, 

while relying on design tools to automatically transform the high-level design specification into 

the corresponding digital hardware implementation. The process executed by the tool is known 

as high-level synthesis (HLS) or behavioral synthesis. 

HLS is crucial in the IC design flow, as the optimization applied at an earlier level is 

much more effective and efficient than a later one. For power optimization surveyed in [7], 

power saving opportunity at HLS is 8 to 12.5 times more than that at register-transfer level (RTL) 

and 20 times more than that at logic or physical level. Further, optimization effort at HLS is 

hundreds of times less than that at RTL and at least thousands of times less than that at logic and 

physical level. 

1.2. Operation Scheduling 

HLS tools schedule operations in the design specification to control steps or clock cycles 

(cc’s), perform module selection to determine which speed type (see Section 1.3 for definition) 

functional unit (FU) to be used for each operation, allocate FUs and bind the operations to 

allocated FUs, to maximize or minimize an objective function subject to various design 

constraints. The first functionality, known as operation scheduling, is an important optimization 

problem to be solved, since the scheduling solution determines FU allocation and an approximate 
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binding, and hence plays a key role in the IC design flow. The operation scheduling problem is 

known to be NP-hard, and thus requires effective and efficient heuristic or stochastic algorithms 

to be developed. 

1.3. Problem Category 

Conventional operation scheduling problems in HLS are: 

• Minimum-latency resource-constrained scheduling (ML-RCS): minimizing latency of the 

scheduling solution given resource constraints; 

• Minimum-resource latency-constrained scheduling (MR-LCS): minimizing the total number 

of resources or a weighted sum of the number of resources of each type (functional type 

combined with one or more parameter values, like speed, power and area) used in the 

scheduling solution given a latency constraint. 

In modern semiconductor industry, performance is no longer a main design objective. 

Instead, power and energy have become first-order design consideration for most computational 

devices. High power-consuming ICs deplete battery energy rapidly and cause reliability 

problems due to localized hot spots and phenomenon such as electromigration. Area is another 

consideration for some wearable and size-sensitive devices. All these make ML-RCS a less 

attractive problem. 

Latency-constrained operation scheduling problems are therefore more interesting 

problems to be solved. MR-LCS is important since resource usage is strongly correlated to 

leakage energy (LE) and area. It also reduces interconnect complexity. However, although MR-

LCS has been investigated for decades, current algorithms and methods cannot achieve good 

optimization quality and low runtime simultaneously. Besides, performance-constrained power 
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and energy minimization have become new problems to be solved. Thus, in addition to the well-

known ML-RCS and MR-LCS problems, we define: 

• Minimum-power latency-constrained scheduling (MP-LCS): minimizing the total power (sum 

of dynamic power and leakage power) of the scheduling solution given a latency constraint; 

• Minimum-energy latency-constrained scheduling (ME-LCS): minimizing the total energy 

(sum of dynamic energy [DE] and leakage energy [LE]) of the scheduling solution given a 

latency constraint; 

If a resource library has only one combination of delay, area, dynamic power (DP) and 

leakage power (LP) for each function type (FT) in the library, we call such library a single-speed 

library. Likewise, if there are more than one combination of delay, area, dynamic power and 

leakage for each FT in a resource library, we call such library a multi-speed library. If the input 

to ME-LCS is a single-speed library, the total dynamic power of the design will be a constant. 

Therefore, ME-LCS with a single-speed library is equivalent to minimize the total LE of the 

scheduling solution given a latency constraint. More details are presented in Section 5.1. 

1.4. Previous Works 

There has been a considerable amount of work on operation scheduling. In this section, 

we will review the previous works in different problem categories. 

1.4.1. Power Minimization 

There is already a rich body of power minimization algorithms for HLS at different 

design levels. Some typical and recent works for each major approach are briefly discussed. 

Module selection in terms of multi-Vdd and multi-Vth assignment of FUs has been extensively 

studied. In [8], a near-optimal dynamic power optimization algorithm by achieving maximum 

number of low-Vdd operations and minimum switching activity by solving a min-cost network 
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flow problem is proposed. Works in [9] [10] present heuristic approaches for incremental high-

Vth reassignment for minimizing LP. Other popular techniques like bus binding, clock/power 

gating and dynamic voltage and frequency scaling use extra control logic to slowdown or turn 

off inactive FUs or registers to save power. The work in [11] performs optimal bus binding 

optimization and rescheduling simultaneously to reduce total bus switching activity. An ILP 

formulation aiming at low-power area-efficient clock gating is proposed in [12]. All the 

algorithms and techniques discussed above have some similarities: they either adopt a scheduling 

solution from any known scheduling algorithm as one of the inputs to their algorithm, or 

iteratively modify an initial scheduling solution to explore new solution space for a different 

optimization objective. Apparently, a good scheduling solution can help these algorithms to 

achieve higher optimization quality on their objectives of interest.  

There are a few works that are motivated by the well-known force-directed scheduling 

(FDS) [13] [14]. The technique in [15] enumerates all resource sharing combinations and 

evaluates the switching activity associated with them, to reduce the total dynamic power. In [16], 

multi-Vdd assignment is used to reduce average and peak dynamic power across all cc’s. The 

iterative scheduling process of FDS is maintained while a dynamic power force is used to evenly 

schedule operations to cc’s and hence minimizes peak dynamic power. Besides, a post-

rescheduling process to rebind operations from high-Vdd to low-Vdd FUs is proposed to minimize 

the average power.  

1.4.2. Energy Minimization 

A few research works minimize energy from different directions. Early scheduling 

algorithms tried to indirectly minimize energy by minimizing a correlated optimization objective. 

In [17], a FDS-type algorithm was developed to iteratively schedule an operation to a cc, which 
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is greedily guided by an energy function. The energy function is in fact balancing operations 

across cc’s and thus is similar to FDS for minimizing FUs. Later, an ILP formulation with multi-

Vdd was proposed in [18] that yields optimal energy solutions. However, it is impractical for 

large designs due to its exponential runtime complexity. Recent heuristic works also utilized 

multi-Vdd to minimize energy. A convex cost network flow model and a branch and bound 

method to assign frequency for each cc were proposed in [19].  

To the best of our knowledge, and as indicated in a recent survey of low-power HLS [7], 

no previous scheduling algorithm with a single-speed library has addressed the issue of directly 

minimizing the total LE of a computation, or, equivalently, of the corresponding data-flow graph 

(DFG), which is the most important metric to minimize in systems that do not operate 

continuously. 

1.4.3. FU Minimization 

The ILP formulation proposed in [20] [21] provides optimal scheduling solutions for FU 

minimization, but it is impractical for large designs due to its exponential runtime complexity. 

FDS presented in [13] [14] schedules operations iteratively by choosing the best scheduling 

option that best balances the operation execution distribution across all cc’s using the concept of 

minimum “force”, and thereby minimizes the number of FUs required. The sub-optimality of 

FDS stems from its greedy and sequential scheduling option selection and a lack of lookahead. In 

addition, the high runtime complexity of O(n3) (n is the number of operations) motivates several 

refinements [22] [23]. The technique in [22] gradually reduces the time frame in which an 

operation can be scheduled by eliminating the current worst scheduling option. In addition, they 

modify the formulation of the spring constant in FDS forces which only consider the operation 

distribution in local cc’s, to a global spring constant that considers the maximum operation 
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distribution in all cc’s. In [23], an incremental force calculation was proposed by utilizing the 

fact that many operations have their time frame unchanged after an operation is scheduled. Some 

stochastic methods to solve the FU minimization problem have also been widely investigated. A 

simulated annealing (SA) approach was proposed in [24] and its move set guarantees that the 

complete solution space can be explored (i.e., the solution space graph is connected). In [25], the 

authors develop an ant-colony based algorithm to gradually approach a good solution by 

iteratively and probabilistically generating scheduling solutions based on which the scheduling 

probabilities are updated. In [26], the scheduling order of operations are determined by a genetic 

algorithm and then they can be scheduled by a constructive scheduling technique. All the above 

stochastic methods have high runtime for a good quality solution to be found, which prevents 

them to be effective for large problem sizes. 

List scheduling (LS) is a classical algorithm for latency-constrained FU minimization. It 

schedules operations in as early cc’s as possible if FUs are available, while greedily avoiding 

allocating new FUs unless it is mandatory for satisfying the latency constraint. Though the 

scheduling solution of LS is far from optimal due to many FUs allocated in intermediate and late 

cc’s being sparsely utilized, its runtime complexity of O(n log n) is very scalable. Therefore, 

several research works like [26] [27] [28] use LS or LS-type algorithms as an iterative internal 

sub-routine to achieve good optimization quality for their objectives of interests. Lookahead in 

LS has been studied in scheduling problems in non-HLS fields [29] [30]. Early lookahead in 

instruction scheduling like [29] helps LS with a bad “precedence function” (different from the 

one we will discuss) to avoid failed scheduling by tentatively scheduling some or all unscheduled 

operations. Recent works like [30] in heterogeneous computing use a lookahead approach to 
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exhaustively evaluate all candidate resources that can execute the scheduled operation, and 

chooses the resource that is most likely to lead to the smallest estimated latency. 

1.4.4. Resource Library Construction 

To the best of our knowledge, there is no previous work aiming at multi-speed library 

construction. Further, we note here that previous module selection works used multi-speed 

libraries without paying attention to having appropriately parameterized FUs in them. For 

example, in [31] [32] [33] library characterizations are impractical or sub-optimal: the 

parameters of FUs in the library are not based on design realities and set artificially to meet the 

requirements of their designs. For example, the three adders considered in [31] have the same 

power-delay-products (PDPs), which is unrealistic in practice. The work in [32] also uses three 

adders but with PDP ratios of 1: 1.5: 1.33, which is somewhat sub-optimal as discussed later in 

the thesis (it is possible to design arithmetic FUs to have PDP ratios closer to but a little higher 

than 1). These simplifications neglect the importance of resource library construction that will be 

discussed later in the thesis.  

1.5. Contributions 

In this thesis, we propose the following three operation scheduling algorithms aim to 

three different optimization objectives. The algorithms and their advantages are as below: 

• Our Power-driven Simulated Annealing (PSA) algorithm solves the MP-LCS problem given a 

multi-speed library: 

• The simulated annealing (SA) framework of PSA can be combined with any good 

scheduling algorithm for enhancing different optimization objectives. 

• Compared to the optimal integer linear programming (ILP) for MP-LCS, it has an average 

optimality gap of only 5.9% and is 193 times faster. 
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• Latency times unit Power minimization via our RMS-driven Global Probability map based 

Scheduling (LPR-GPS) algorithm that solves ME-LCS problem given a single-speed library: 

• ME-LCS has never been investigated in previous works. 

• Compared to two algorithms that only optimize the leakage power, LPR-GPS significantly 

reduces total LE by an average 37.05% and 12.41%, respectively, with reasonable runtime 

overhead. 

• Our FrActional search and Lookahead based List Scheduling (FALLS) algorithm to solve 

MR-LCS problem given a single-speed library: 

• Compared to several state-of-the-art algorithms, FALLS reduces the total number of FUs 

allocated by [18.9%, 71.4%]. 

• Compared to the optimal ILP for MR-LCS, it has an average optimality gap of only 5.5%. 

• FALLS is extremely fast: it is 278k times faster than ILP and yields good solutions for a 

DFG of 1300 operations in less than a second. 

Besides the algorithms above, we proposed power-delay criteria for multi-speed library 

construction for better power optimization, in a direction that no previous work has targeted. 

Using PSA as an experimental platform, designs using the libraries that meet our criteria has 

significantly lower power consumption than those that do not, including when the former have 

fewer combinations of power and delay per FT (i.e., fewer speeds and hence a smaller solution 

space) than the latter. 

1.6. Thesis Outline 

The rest of the thesis is organized as follows. In Chapter 1, we formally formulate the 

operation scheduling problem and review several conventional scheduling algorithms to which 

our algorithms will be compared to. Our power minimization scheduling algorithms PSA [1] [2] 
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and its experimental results are presented in Chapter 3. We then present our library construction 

hypotheses proposed in [1] [3] for power optimization and provide a theoretical justification for 

them in Chapter 4. In the same chapter, we present library construction examples and use PSA as 

a platform to empirically prove our hypotheses. Our energy minimization scheduling algorithm 

LPR-GPS [4] and its experimental results are presented in Chapter 5. Our scheduling algorithm 

FALLS [5] [6] for FU minimization and its experimental results are presented in Chapter 6. 

Finally, we conclude in Chapter 7.  
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2. BACKGROUND

 

In this chapter, we first give the formal and general formulation of operation scheduling 

problems with single-speed library and multi-speed library. Then several conventional 

scheduling algorithms that frequently appear in literatures are reviewed and discussed. Our 

algorithms introduced in later chapters are motivated and based on the algorithms in this chapter. 

Our experiments will compare our algorithms to some of these algorithms. 

2.1. General Problem Formulation 

We consider the following general operation scheduling problem with the optimization 

objective unspecified. Given: 

• An unscheduled DFG G (V, E), where V is the set of operations, and E is the set of arcs 

representing data dependencies between the operations; 

• A legal upper-bound latency constraint Lc in number of cc’s that is no smaller than the ASAP 

latency or the critical path delay; 

• An FU library K that includes FU designs for each FT that appears in the operations in V. The 

library can be a single-speed library or a multi-speed library. 

For any two operations u, v ϵ V and a data dependency arc (u, v) ϵ E, if u and v are 

scheduled in cc’s tu and tv, respectively, the dependency constraint is:  

𝑡𝑢 + 𝑑𝑢 ≤ 𝑡𝑣                                                             (2.1) 

where du ≥ 1 is the operation delay of u in number of cc’s, u is the predecessor of v and v is the 

successor of u.  

Our objective is to schedule each operation in V to a certain cc and choose an appropriate 

FU design to execute the operation if a multi-speed library is used. Meanwhile, the optimization 
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objective, cost, is minimized, the achieved latency L ≤ Lc and all dependency constraints are 

satisfied. The costs that we are interested in this thesis are power, energy and total number of 

FUs, which we will further define in later chapters. 

2.2. As-Soon-As-Possible Scheduling 

As-Soon-As-Possible (ASAP) scheduling is one of the two simplest scheduling 

algorithms in HLS. As indicated by its name, the algorithm schedules each operation in the DFG 

to the earliest cc in which the operation can possibly be scheduled. Thus, the solution yielded by 

ASAP scheduling has the minimum latency, called the ASAP latency or the critical path delay, 

but is very likely to unnecessarily allocate extra FUs. ASAP scheduling can be performed if only 

the operation delays are known. 

The ASAP scheduling is formulated as follows. For any operation u that has no 

predecessors, i.e., pred(u) = Ø, its ASAP scheduled cc 𝑡𝑢
𝐴𝑆𝐴𝑃 is simply: 

𝑡𝑢
𝐴𝑆𝐴𝑃 = 1                                                               (2.2) 

For u that has at least one predecessors, its ASAP scheduled cc 𝑡𝑢
𝐴𝑆𝐴𝑃 is determined by: 

𝑡𝑢
𝐴𝑆𝐴𝑃 = 𝑚𝑎𝑥

𝑣 ∈ 𝑝𝑟𝑒𝑑(𝑢)
(𝑡𝑣

𝐴𝑆𝐴𝑃 + 𝑑𝑣)                                      (2.3) 

Let the number of operations in V be n. The algorithm analyzes all operations in O(n) time and in 

the worst case evaluates all predecessors of all operations in O(n) time. The time complexity is 

thus O(n2). However, each operation usually has limited predecessors that can be counted as a 

constant c that is far smaller than n in practice. Thus, ASAP scheduling is very fast. The pseudo 

code of ASAP scheduling is presented in Figure 1.  
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Figure 1. The pseudo code of ASAP scheduling. 

 

2.2.1. ASAP Time Updating 

ASAP scheduling itself is not practically useful due to its excessive hardware usage. 

However, it provides important timing information for more advanced scheduling algorithms to 

make better scheduling decisions. For example, ASAP time provides the upper bound of the cc’s 

in which an operation can possibly be scheduled in FDS and SA. In these algorithms, ASAP 

times often requires updating every time an operation is scheduled to provide the most up-to-date 

timing information. For example, let the ASAP time of operation u and v be 1 and 2, 

respectively, {u, v} = V, (u, v) = E and Lc = 4. If u is scheduled in cc 2 and v is still unscheduled, 

the updated ASAP time of u and v is 2 and 3, respectively, since the ASAP time of u is equal to 

its scheduled cc and v can no longer be scheduled in cc 2. The ASAP time updating can be done 

by reperforming the entire ASAP scheduling with the timing of scheduled operations updated in 

Figure 1, but also can be done by an updating strategy that only explores the operations that are 

affected.  

The ASAP time updating algorithm recursively explores the predecessors of current 

operation, which is the newly scheduled operation initially. For each current predecessor being 

explored, all its successors are examined: if any of them results in an updating of the current 

predecessor’s ASAP time, the predecessors of the current predecessor are examined in the next 

Algorithm ASAP(DFG G(V, E), a single-speed library K) 

1.  While (there are unscheduled operations) 

2.  If (the unscheduled operation u has no predecessor) 

3.  Schedule u per Equation (2.2) 

4.  Else if (the predecessors of u are all scheduled) 

5.  Schedule u per Equation (2.3) 

6.  End If 

7.   End While 

8.  Return the scheduling solution 
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recursion. The recursion stops when no further predecessors’ ASAP time need to be examined. 

In fact, the algorithm uses depth-first search to traverse the partial DFG that is only affected by 

the newly scheduled operation, and hence has a complexity of O(n) which is much faster than 

reperforming ASAP scheduling. The pseudo code of the ASAP time updating algorithm is 

presented in Figure 2. 

 

 
Figure 2. The pseudo code of ASAP time updating algorithm. 

 

2.3. As-Late-As-Possible Scheduling 

As-Late-As-Possible (ALAP) scheduling is the other simplest scheduling algorithms in 

HLS and is symmetry to ASAP scheduling. As indicated by its name, the algorithm schedules 

each operation in the DFG to the latest cc in which the operation can possibly be scheduled. Thus, 

the solution yielded by ALAP scheduling has the maximum latency that is equal to the latency 

constraint, but is also very likely to unnecessarily allocate extra FUs. ALAP scheduling can be 

performed if only the operation delays are known. 

Algorithm updateASAP(newly scheduled operation u) 

1.  If (this is not the initial function call) 

2.  For (each predecessor v of u) 

3.  If (𝑡𝑣
𝐴𝑆𝐴𝑃 + 𝑑𝑣 > 𝑡𝑢

𝐴𝑆𝐴𝑃) 

4.   𝑡𝑢
𝐴𝑆𝐴𝑃 = 𝑡𝑣

𝐴𝑆𝐴𝑃 + 𝑑𝑣 

5.  End if 

6.  End for 

7.  If (𝑡𝑢
𝐴𝑆𝐴𝑃 is not updated in the for-loop above) 

8.  Return 

9.  End if 

10. End if 

11. For (each successor w of u) 

12.  If (w is not scheduled) 

13.  updateASAP(w); 

14.  End if 

15. End for 

16. Return 

17. 

18.  Schedule u per Equation 2.3 

19.  End If 

20.   End While 

21.  Return the scheduling solution 
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Given a legal latency constraint Lc that is no smaller than the ASAP latency, the ALAP 

scheduling is formulated as follows. For any operation u that has no successor, i.e., succ(u) = Ø, 

its ALAP scheduled cc 𝑡𝑢
𝐴𝐿𝐴𝑃 is simply: 

𝑡𝑢
𝐴𝑆𝐴𝑃 = 𝐿𝑐 − 𝑑𝑢 + 1                                                     (2.4) 

For u that has at least one successor, its ALAP scheduled cc 𝑡𝑢
𝐴𝐿𝐴𝑃 is determined by: 

𝑡𝑢
𝐴𝐿𝐴𝑃 = 𝑚𝑖𝑛

𝑣 ∈ 𝑠𝑢𝑐𝑐(𝑢)
(𝑡𝑣

𝐴𝐿𝐴𝑃) − 𝑑𝑢                                          (2.5) 

Similar to ASAP scheduling, the algorithm also has a time complexity O(n2) and is very fast in 

practice. The pseudo code of ALAP scheduling is presented in Figure 3. 

 

 
Figure 3. The pseudo code of ALAP scheduling. 

 

2.3.1. ALAP Time Updating 

Similar to ASAP scheduling, ALAP scheduling itself is not practically useful but 

provides important timing information for more advanced scheduling algorithms to make better 

scheduling decisions. For example, ALAP time provides the lower bound of the cc’s in which an 

operation can possibly be scheduled in FDS and SA; it also provides timing-urgency of available 

operations in LS. In some of these algorithms, ALAP times often requires updating every time an 

operation is scheduled to provide the most up-to-date timing information. For example, let the 

Algorithm ALAP(DFG G(V, E), a single-speed library K, a legal latency constraint Lc) 

1.  While (there are unscheduled operations) 

2.  If (the unscheduled operation u has no successor) 

3.  Schedule u per Equation (2.4) 

4.  Else if (the successor of u are all scheduled) 

5.  Schedule u per Equation (2.5) 

6.  End If 

7.  End While 

8.  Return the scheduling solution 
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ALAP time of operation u and v be 3 and 4, respectively, {u, v} = V, (u, v) = E and Lc = 4. If v is 

scheduled in cc 3 and u is still unscheduled, the updated ALAP time of u and v is 2 and 3, 

respectively, since the ALAP time of v is equal to its scheduled cc and u can no longer be 

scheduled in cc 3. Symmetry to ASAP time, the ALAP time updating can be done by 

reperforming the entire ALAP scheduling with the timing of scheduled operations updated in 

Figure 3, but also can be done by an updating strategy that only explores the operations that are 

affected as presented in Figure 4.  

 

 
Figure 4. The pseudo code of ALAP time updating algorithm. 

 

2.4. List Scheduling 

Here we discuss the classical latency-constrained list scheduling (LS) algorithm for MR-

LCS problem using a single-speed library. In each cc, LS always schedules the most timing-

urgent operations to available FUs. Starting with a minimum FU allocation, a new FU is only 

allocated when there is an available operation that needs to be scheduled immediately to satisfy 

Algorithm updateALAP(newly scheduled operation u) 

1.  If (this is not the initial function call) 

2.  For (each successor v of u) 

3.  If (𝑡𝑣
𝐴𝐿𝐴𝑃 − 𝑑𝑢 < 𝑡𝑢

𝐴𝐿𝐴𝑃) 

4.   𝑡𝑢
𝐴𝐿𝐴𝑃 = 𝑡𝑣

𝐴𝐿𝐴𝑃 − 𝑑𝑢 

5.  End if 

6.  End for 

7.  If (𝑡𝑢
𝐴𝐿𝐴𝑃 is not updated in the for-loop above) 

8.  Return 

9.  End if 

10. End if 

11. For (each predecessor w of u) 

12.  If (w is not scheduled) 

13.  updateALAP(w); 

14.  End if 

15. End for 

16. Return 

17. 

18.  Schedule u per Equation 2.3 

19.  End If 

20.   End While 

21.  Return the scheduling solution 
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the latency constraint, but there is no allocated FU of that FT currently available due to being 

busy executing other operations. By only allocating new FUs when it is mandatory, LS was 

expected to come close to minimizing the number of allocated FUs in the final scheduling 

solution. However, LS fails to achieve this goal due to the low FU utilization mentioned later in 

the section. 

The pseudo code of LS is presented in Figure 5. Initially, only one FU per FT is allocated. 

The ALAP time tALAP is computed for each operation. Then in each cc t in chronological order, 

for each FT k, an available unscheduled operation set Ut, k ϵ V, which includes all unscheduled 

operations of FT k whose predecessors have all finished execution, is determined. The slack su of 

each operation u in Ut, k is then computed as: 

𝑠𝑢 = 𝑡𝑢
𝐿 − 𝑡  𝑢 𝜖 𝑈𝑡,𝑘                                                      (2.6) 

If su = 0, u is 0-slack and must be scheduled in cc t, i.e., one additional FU needs to be allocated 

if all FUs of FT k are busy executing other operations. The other operations in Ut, k are non-0-

slack. If there are still available FUs after all 0-slack operations are scheduled, the non-0-slack 

operations are scheduled in t and bound to the available FUs in slack-increasing order. This 

slack-based scheduling process iterates for each t, until all operations are scheduled.  

We term the FU allocation vector r (one element per FT) before any operation is 

scheduled as pre-allocation; it is only one FU per FT in LS; Similarly, the FU allocation vector r 

after all operations are scheduled is termed as post-allocation. In practice, the number of FUs in 

post-allocation is significantly more than that in pre-allocation in the solutions of LS, indicating 

many FUs are allocated in intermediate cc’s. This results in the FUs allocated in later cc’s being 

sparsely utilized. Due to the insufficient FU utilization, excessive FUs are likely to be allocated 

in the solutions of LS. 
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Figure 5. The pseudo code of list scheduling. 

 

2.4.1. Complexity 

The time complexity of LS is Ɵ(n log n), since each sorting or searching operation in a 

balanced binary search tree based on ALAP times (equivalent to slack) takes Ɵ(log n) time, and 

the total number of searches = total number of available FUs across all clock cycles = Ɵ(n). 

2.5. Force-Directed Scheduling 

Force-directed scheduling (FDS) introduced in [13] [14] also target on MR-LCS problem 

with a single-speed library. As discussed earlier, FDS reduces the number of FUs in the design 

by evenly scheduling operations in all cc’s to balance the FU distribution. In each scheduling 

iteration, FDS evaluates all scheduling options, the unscheduled operations and the candidate 

cc’s where they can possibly be scheduled, and chooses the scheduling option to make 

scheduling that is probabilistically expected to minimize the sum of number of FUs allocated 

across all FTs. The fact, however, is that, conceptually and analytically speaking, FDS has some 

weakness in achieving this. The steps of FDS are summarized as follows and the pseudo code is 

presented in Figure 6. 

Algorithm LS(DFG G(V, E), a single-speed library K, a legal latency constraint Lc) 

1.   r = (1, 1, ..., 1), t = 1   //allocate one FU per FT before scheduling 

2.   Compute the ALAP times tALAP per Lc 

3.   While (there are unscheduled operations) 

4.   For (each FT k) 

5.   Determine the available unscheduled operation set Ut, k 

6.  Compute slack su for all u ϵ Ut, k by Equation (2.6) 

7. Schedule 0-slack operations in Ut, k to t, allocate new FUs if needed, update rk if 

 new FUs are allocated 

8. Schedule non-0-slack operations in Ut, k to t in slack-increasing order and bind 

 them to remaining available FUs 

9. End For 

10.  t = t + 1 

11. End while 

12. Return the scheduling solution 
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2.5.1. Scheduling Probabilities Determination 

First, the ASAP and ALAP times of all operations are determined by ASAP and ALAP 

scheduling, respectively. Then the mobility µu, the number of cc’s in which an operation u can be 

scheduled, is: 

𝜇𝑢 = 𝑡𝑢
𝐴𝐿𝐴𝑃 − 𝑡𝑢

𝐴𝑆𝐴𝑃 + 1                                                  (2.7) 

and the mobility range (MR) of u MRu is [tu
ASAP, tu

ALAP]. The uniform scheduling probability pu(i) 

of u in cc i is: 

𝑝𝑢(𝑖) = {
  

1

𝜇𝑢
          𝑖 ∈ 𝑀𝑅𝑢

  0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (2.8) 

Note that at any intermediate stage during the scheduling process, i.e., after some 

operations have been scheduled, the 𝑡𝑢
𝐴𝑆𝐴𝑃 and 𝑡𝑢

𝐴𝑆𝐴𝑃 of an unscheduled operation u are updated 

by substituting the scheduled cc tv of each scheduled predecessor and successor v, if any, in place 

of 𝑡𝑣
𝐴𝑆𝐴𝑃 and 𝑡𝑣

𝐴𝐿𝐴𝑃 in Equations (2.2) to (2.5), respectively. 

2.5.2. Distribution Graph Construction 

For each FT, a distribution graph (DG) provides the expected FU usage in each cc. It is 

constructed by summing up all scheduling probabilities of operations of the same FT in each cc. 

The distribution value DG(k, i) of FT k in cc i is computed as: 

𝐷𝐺(𝑘, 𝑖) = ∑ 𝑝𝑢(𝑖)

𝑢∈𝑉(𝑘)

                                                (2.9) 

where V(k) is the set of operations of FT k. Note that DG(k, i) is the expected number of 

operations and thus FUs of FT k executing in cc i. Also, DG(k) = {DG(k, i): 1 ≤ i ≤ Lc} is the DG 

of FT k, and DG = {DG(k): k is a FT in the DFG} is the overall DG for the given DFG. It should 

be noted that the largest distribution value DGmax(k) gives a probabilistic estimate of the number 

of FUs of FT k to be allocated in the design. The value is more accurate with more operations 
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scheduled and finally becomes deterministic after all operations are scheduled. The goal of FDS 

is to minimize 

∑ 𝐷𝐺𝑚𝑎𝑥(𝑘)

𝑘∈𝐾

                                                        (2.10) 

after all operations are scheduled. In every scheduling iteration, in which an operation u is 

scheduled, all affected DG(k, i)’s are updated to account for the zeroing of scheduling 

probabilities of u in cc’s other than the one in which it has been scheduled or in general will be 

executing (in which this probability is 1), the shrinking of the MRs of some predecessors and 

successors of u and thus changes in their corresponding scheduling probabilities in the cc’s of 

their original MR’s. At any stage of the scheduling process, the DG provides a snapshot of 

scheduling probabilities across the operation and cc spaces, and thus the expected number of 

operations and FUs of each FT k in each cc. This also means that for each scheduling decision, 

we can estimate the global metric of interest, like Equation (2.10). 

2.5.3. Self-Force Formulation 

A self-force is calculated for each scheduling option. The self-force SFu(i) for scheduling 

operation u of FT k in cc i is defined as: 

𝑆𝐹𝑢(𝑖) = ∑ ∑ 𝐷𝐺(𝑘, 𝑦) × ∆𝑝𝑢(𝑥)

𝑦 ∈ 𝐷𝑅𝑢(𝑥)𝑥 ∈ 𝑀𝑅𝑢

                        (2.11) 

where DRu(x) is the delay or execution range [x, x + du – 1] of u scheduled in cc x, and 

∆𝑝𝑢(𝑥) = {
 1 − 𝑝𝑢(𝑥)                           𝑥 = 𝑖

 −𝑝𝑢(𝑥)              𝑥 ∈ 𝑀𝑅𝑢 − {𝑖}
                              (2.12) 

The self-force formulation assigns high weights to the probability changes ∆pu(x)’s in cc’s that 

have high DG values, indicating scheduling in such cc’s increases the risk to have an unbalanced 

FU distribution. On the other hand, if an operation is scheduled in a cc that has a low DG value, 

the weighted positive probability increment is comparably small, and the weighted negative 
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probability decrement in other cc’s in u’s MR are comparably large, reflecting a good choice to 

flatten the DG and reduce the high DG values. Thus, a scheduling option with the smallest self-

force is expected to minimize the maximum DG value, and hence the number of FUs of u’s FT. 

2.5.4. Predecessor/Successor and Total Force Formulation 

A predecessor/successor (PS) force is calculated for each scheduling option in a way 

similar to the self-force. Scheduling an operation is very likely to shrink the MR of its 

unscheduled predecessors and successors (by potentially decreasing their ALAP times or 

increasing their ASAP times, respectively), resulting in fewer opportunities to schedule them in 

cc’s of low DG values at later scheduling iterations. Such an effect should also be considered by 

an overall force formulation. The PS-force PSFu(i) for scheduling operation u in cc i is defined 

as: 

𝑃𝑆𝐹𝑢(𝑖) = ∑ ∑ ∑ 𝐷𝐺(𝑡𝑦𝑝𝑒(𝑣), 𝑦) × ∆𝑝𝑣(𝑥)

𝑦 ∈ 𝐷𝑅𝑣(𝑥)𝑥 ∈ 𝑀𝑅𝑣𝑣 ∈ 𝑃𝑆𝑢

              (2.13) 

where PSu = pred(u) ∪ succ(u) and type(v) is the FT of a PS operation v, and 

∆𝑝𝑣(𝑥) = 𝑝′
𝑣

(𝑥) − 𝑝𝑣(𝑥)                                              (2.14) 

where p'v(x) is the tentatively updated scheduling probability in cc x of the PS operation v for 

evaluating the scheduling option and pv(x) is v’s current scheduling probability in cc x. For 

example, suppose operation v, a predecessor of operation u, has a MR of 3 cc’s, i1, i2 and i3. 

According to Equation (2.8), the current scheduling probabilities pv(i1) = pv(i2) = pv(i3) = 1/3. If 

u is tentatively scheduled and hence v’s MR temporarily shrinks to 2 cc’s, i1 and i2, due to a 

decrease in v’s ALAP time. The tentatively updated MR of v leads to a tentatively updated 

scheduling probability p’v(i1) = p’v(i2) = 1/2 and p’v(i3) = 0. Similar to the self-force, the PS-

force of a scheduling option measures its probabilistic effect on the sum of DG values of all FTs 

among its predecessors and successors; the smaller the PS force, the smaller the sum of weighted 
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probability changes of the local (within the MRs of u’s predecessors and successors) DG values 

among all related FTs. 

Finally, the total force Fu(i) to evaluate the scheduling of operation u in cc i is given as: 

𝐹𝑢(𝑖) = 𝑆𝐹𝑢(𝑖) + 𝑃𝑆𝐹𝑢(𝑖)                                             (2.15) 

 

 
Figure 6. The pseudo code of force-directed scheduling. 

 

2.5.5. Complexity and Optimality Analysis 

The time complexity of FDS is analyzed as follows. FDS schedules one operation per 

iteration, therefore there are Ɵ(n) scheduling iterations. In each scheduling iterations, there are 

O(n) unscheduled operations to be evaluated: the worst case happens in the first iteration when 

all operations are unscheduled. Finally, there are O(n) PS operations that need to consider in the 

PS-force. The nested triple n’s results in a total time complexity of O(n3).  

As suggested by Equation (2.10), the objective of FDS is minimizing the sum of 

maximum distribution values of all FTs, a min-max goal. The problem with the FDS force 

formulation is that it essentially captures the difference between the DG value of the to-be-

scheduled cc and the average DG value of all other cc’s in the MR of each unscheduled 

Algorithm FDS(DFG G(V, E), a single-speed library K, a legal latency constraint Lc) 

1.  While (there are unscheduled operations) 

2.  Update ASAP and ALAP times of unscheduled operations 

3.  Update the distribution graph per Equation (2.9) based on the updated ASAP and 

 ALAP times and the scheduled cc’s of scheduled operations 

4.  For (each unscheduled operation u) 

5.  For (each cc i in MRu) 

6.  Calculate self-force, PS-force and total force per Equations (2.11) to (2.15)  

7.  End For 

8.  End For 

9.  Pick the scheduling option with the minimum total force to schedule 

10. End while 

11. Return the scheduling solution 



22 

 

operation being evaluated, while any estimate of the increase or decrease in the maximum DG 

value(s) is not accounted for unless the maximum DG value lies in the MR of an operation. 

Further, across the forces of all scheduling options, the least force generally does not correspond 

to the largest decrease or smallest increase of the maximum DG value due to the aforementioned 

property of what the force measures. Thus, the scheduling decisions are actually not made based 

on this most important consideration, and hence FDS cannot guarantee a good approximation of 

the min–max goal. 

To frame the above discussion more analytically, the self-force expression of Equation 

(2.11) for scheduling operation u in cc i, assuming uniform probabilities and a single cc delay, 

can be re-formulated as: 

𝑆𝐹𝑢(𝑖) = 𝐷𝐺(𝑘, 𝑖) − ∑ 𝐷𝐺(𝑘, 𝑥)×𝑝𝑢(𝑥)

𝑥 ∈ 𝑀𝑅𝑢

 

= 𝐷𝐺(𝑘, 𝑖)  −
1

|𝑀𝑅𝑢|
∑ 𝐷𝐺(𝑘, 𝑥)

𝑥 ∈ 𝑀𝑅𝑢

                           (2.16) 

This shows that the force formulation of FDS yields the lowest force among all 

scheduling possibilities to be the one that corresponds to the largest difference between the 

average DG value in an operation’s MR and the DG value in its scheduling cc. Clearly, this has a 

weak correlation to reducing the current maximum DG value. Therefore, the scheduling option 

evaluation in FDS is significantly flawed.  

2.6. Simulated Annealing 

Simulated annealing (SA) is a probabilistic method for approximating the global 

minimum of a cost function. It is often used when the solution space is discrete. Various SA 

formulations are thus proposed for operation scheduling problem. Many optimization objectives 
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in operation scheduling can be solved by SA with the corresponding cost functions. We will 

introduce the SA formulation for general latency-constrained scheduling with a single-speed 

library in this section. Based on [24] [25], our literature review and experiments, we believe this 

SA formulation provides the best scheduling solutions with a reasonable runtime. 

The main idea of SA is that it considers some neighboring state P’ of the current state P, 

and probabilistically determines whether to move the system to the new state P’ or stay in state P. 

These moves ultimately lead the system to a state of near-optimal cost. The steps are summarized 

as follows: 

1. Generate an initial state and configure the initial temperature T0 and the freezing temperature 

Tf. 

2. Generate a new state in the neighborhood of the current state.  

3. Change to the new state with a probability 𝑚𝑖𝑛{1, 𝑒−
𝑐𝑛𝑒𝑤−𝑐

𝑇 }, where 𝑐𝑛𝑒𝑤 (𝑐) is the cost of the 

new (current) solution and T is the current temperature.  

4. Repeat steps 2 and 3 until the cost of new solutions does not change much, then decrease T 

base on a cooling scheme. 

5. Repeat steps 2 to 4 until T ≤ Tf.  

There are several performance-related configurations that can be applied to SA. Each of 

the configurations that we choose is detailed in the following subsections. The pseudo code of 

our SA is presented in Figure 7. 

2.6.1. Initial Solution 

The initial solution of SA determines the optimization starting point. It is supposed to be 

generated fast and has a not-too-bad cost. As discussed in [25], ASAP and ALAP scheduling do 

not yield good initial solutions since they tend to cluster operations in earlier or later cc’s, which 
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is bad for minimizing resource usage. Further, ALAP scheduling is even worse in energy 

minimization since the latency of the solution is not minimized and it also makes SA moves 

harder to change the initial solution towards a low-cost direction. LS also suffers from the same 

limitation of ASAP and ALAP scheduling. FDS is too slow for large DFGs due to its high time 

complexity. Therefore, we construct an initial solution by randomly picking an operation, 

scheduling it to a random cc to its MR, updating the MRs of unscheduled operations and 

iterating the random scheduling process until all operations are scheduled. The runtime 

complexity of the randomized scheduling process is O(n2), since there are n iterations and at 

most n options (in the first iteration) for the randomization algorithm to choose. 

2.6.2. Temperature 

Similar to the SA introduced in [25], we use the well-known geometric cooling scheme 

that is also used in [34]. The temperature decreasing factor is set to 0.9. When the current 

temperature reaches the freezing temperature, the best solution is reported.  

However, it is not clear how the initial and freezing temperatures are determined in [25]. 

We adopt the idea in [35] that is also used in [24]: set the initial temperature so that the statistical 

probability to accept a cost-increasing move is high (e.g., 80%), and set the freezing temperature 

so that the statistical probability to accept such a move is very low (e.g., 1%). To be specific, 

before the annealing process, we generate a number of moves (e.g., 2n) to the initial solution and 

get the average cost of new solutions that have increased costs. We can then set the initial and 

freezing temperatures based on the average cost and the Boltzmann probability 𝑒−
𝑐𝑛𝑒𝑤−𝑐

𝑇  for 

accepting cost-increasing moves. This allows the SA to fully explore the global solution space at 

the beginning and the local minimum at the end. 
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2.6.3. Local Search and Move Set 

The local search is to generate a number (e.g., 2n as in [25]) of successful moves in the 

current temperature.  

Though the move sets in [24] [25] can guarantee that the entire solution space can be 

reached by the moves, every move makes only a little modification (e.g., reschedule an operation 

to the neighboring later cc in its MR and push the scheduled cc’s of affected successors to their 

neighboring later cc’s) the current solution. This is hard for SA to explore the solution space that 

is very different from the current solution and hence is less likely to fully explore the solution 

space for searching the global minimum. Further, the moves in [25] are very likely to fail since a 

move would be rejected if rescheduling an operation would violate the dependency constraint in 

its predecessor or successors. Checking dependency constraints for this situation is also time-

consuming. 

Our move set has 3 moves: up-move, down-move and random-move. The first two 

moves cover all four moves in [24], and the last move enables broader and more efficient 

solution space searching. Each of the moves are defined as follows: 

• Up-move: Randomly choose an operation to reschedule it to a neighboring earlier cc in its 

MR and reschedule affected predecessors to their neighboring earlier cc’s. The move fails if 

the randomly chosen operation was scheduled in the earliest cc in its MR. 

• Down-move: Randomly choose an operation to reschedule it to a neighboring later cc in its 

MR and reschedule affected successors to their neighboring later cc’s. The move fails if the 

randomly chosen operation was scheduled in the latest cc in its MR; 

• Random-move: Randomly choose an operation and randomly reschedule it to another cc in its 

MR. The move fails if the randomly chosen operation has a MR = 1. 
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Figure 7. The pseudo code of simulated annealing. 

 

2.7. Integer Linear Programming 

The integer linear programming (ILP) formulation proposed in [20] [21] yields optimal 

solutions for MR-LCS problems with a single-speed library. Although it has a very high runtime 

compared to other heuristic and stochastic algorithms and is not applicable to large problems due 

to excessive memory usage, we can compare the solutions of our algorithms to ILP solutions to 

see how close we are from the optimum. With minor algorithmic improvement, we will briefly 

introduce and summarize the ILP formulation in [20] [21] that is used in our experiments. 

The objective function to be minimized is: 

∑ 𝑐𝑘 × 𝑀𝑘

𝑎𝑙𝑙 𝑘∈𝐾

                                                        (2.17) 

where ck is the cost of FT k and Mk is the number of FUs of FT k allocated in the scheduling 

solution. For MR-LCS problems with a single-speed library, the cost of each FT is simply 1. The 

weighted sum can be applied if area minimization is desired, where the cost of each FT is the 

area of FUs of the FT. 

 There are a number of constraints that must be satisfied as follows: 

Algorithm SA(DFG G(V, E), a single-speed library K, a legal latency constraint Lc) 

1.  ASAP and ALAP scheduling to determine initial MRs 

2.  Generate an initial scheduling solution S by randomization 

3.  Adaptively calculate the initial temperature t = t0 and the freezing temperature te 

4.  While (t > te) 

5.  For (i from 0 to 2n) 

6.  Randomly generate a successful move and hence a new solution Sn 

7.  S = Sn according to the probability 𝑚𝑖𝑛 {1, 𝑒−
𝑆𝑛.𝑐𝑜𝑠𝑡−𝑆.𝑐𝑜𝑠𝑡

𝑇 } 

8.  i = i + 1 

9.  End for 

10.  t = 0.9t 

11. End While 

12. Return the scheduling solution 
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• One operation can only be scheduled in one cc of its MR: 

∑ 𝑡𝑢,𝑖

𝑖∈𝑀𝑅𝑢

= 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑛                                       (2.18) 

where tu,i is a 0/1 integer variable associated with operation u: tu,i = 1 if u is scheduled in cc i 

in its MR; tu,i = 0 otherwise. 

• Dependency constraints: 

∑ 𝑖 × 𝑡𝑣,𝑖

𝑖∈𝑀𝑅𝑣

− ∑ 𝑖 × 𝑡𝑢,𝑖

𝑖∈𝑀𝑅𝑢

≥ 𝑑𝑢, 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑢, 𝑣)                        (2.19) 

where du is the delay of operation u. 

• The number of operations of the same FT executed in the same cc can never exceed the 

number of allocated FUs of the FT:  

∑ 𝑡𝑢,𝑖

𝑢 ∈ 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑇 𝑘

≤ 𝑀𝑘, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝐿𝑐, 𝑘 ∈ 𝐾               (2.20) 

Using this ILP formulation, the solution returned by any ILP solver like IBM CPLEX 

includes the lowest/optimal cost and the values of all tu,i’s, which is the scheduling solution. The 

number of tu,i’s in [20] [21] is n×Lc. In our implementation, we decreased this number to 

∑ 𝑀𝑅𝑢𝑢∈𝑉 , that is, we only define tu,i’s in the MR of each operation in V. Meanwhile, we have to 

modified Equation (2.20) to: 

∑ 𝑡𝑢,𝑖

𝑢 ∈ 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑇 𝑘 𝑎𝑛𝑑 𝑖∈𝑀𝑅𝑢 

≤ 𝑀𝑘, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝐿𝑐, 𝑘 ∈ 𝐾      (2.21) 

This modification significantly reduces the number of variables and the complexity of constraints 

in the ILP formulation and hence improves its efficiency. However, it is still much slower than 

other heuristic and stochastic algorithms and fails to tackle larger input DFGs due to excessive 

memory usage that will be shown in our experiments.   
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3. PSA: NEW POWER MINIMIZATION ALGORITHM

 

The work in this chapter has been presented in [1] [2]. 

In this chapter, we propose a SA-based module selection scheduling algorithm power 

simulated annealing (PSA) for total power minimization (the MP-LCS problem) with a multi-

speed library. The algorithm is built from a SA-based hierarchical framework that effectively and 

rapidly explores the speed options of each operation, and an internal fast scheduler that is 

modified from the well-known list scheduling algorithm. PSA has the following properties: 

• Stochastic- and constructive-heuristics in PSA have complementary characteristics. The 

stochastic-heuristic, represented by the SA-based hierarchical framework, obtains the speed of 

each operation (module selection) as the partial solution. Then, the constructive-heuristics, 

represented by the modified list scheduling, efficiently generates reasonably good complete 

solutions to evaluate the partial solutions of the stochastic-heuristic. The evaluation results are 

then fed to the stochastic-heuristic for further solution space exploration. The combination of 

both yields good solutions while keeping the runtime low.  

• The constructive-heuristic in PSA is very flexible: it can be any scheduler that can handle 

scheduling operations with known speeds (power and delay characteristics). This makes PSA 

easier to adapt to different optimization objectives and provides more options in tradeoff 

between optimization effort and runtime. 

The experimental results show that PSA provides an average of 8.8% leakage power 

improvement over the state-of-the-art approximate algorithms. Further, compared to an optimal 

0/1-ILP formulation for total (dynamic and leakage) power optimization under latency 
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constraints, it has an average optimality gap of only 5.9%, and offers a significant runtime 

advantage by a factor of 193. 

3.1. Power Model 

To evaluate a scheduling solution for the objective of optimizing the total power, the DP 

and LP should be determined respectively. We define a configuration c(ui) of an operation ui as 

c(i) = (ki, si), where 1 ≤ i ≤ n (n is the number of operations in the input DFG), ki is the FT of ui 

and si is the speed of ui. For example, for a triple-speed FU library, si is defined as:  

𝑠𝑖 = {

1     𝑖𝑓 𝑢𝑖 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑙𝑜𝑤𝑒𝑠𝑡 𝐹𝑈
2       𝑖𝑓 𝑢𝑖  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑎𝑠𝑡𝑒𝑟 𝐹𝑈
3     𝑖𝑓 𝑢𝑖  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑎𝑠𝑡𝑒𝑠𝑡 𝐹𝑈

                  (4.1) 

Further, we define the speeds of all operations of a DFG as a speed vector SV = [s1, s2, …, sn]. 

The dynamic energy of the DFG is then determined as: 

𝐸𝐷 = ∑ 𝑑𝑝(𝑐(𝑢𝑖)) × 𝑑(𝑐(𝑢𝑖))

𝑛

𝑖=1

                                            (4.2) 

where dp(c(ui)) and d(c(ui)) is the dynamic energy consumed per cc and the delay of ui which is 

bound to an FU of configuration c(ui), respectively. Note that the dynamic energy is irrespective 

to the scheduling solution. 

 Different from dynamic energy, the leakage energy of the DFG is correlated to the 

scheduling solution. Given a scheduling solution, the leakage energy of the solution is: 

𝐸𝐿 = ∑ ∑ 𝑙𝑝(𝑖, 𝑗) × 𝑛𝑢𝑚(𝑖, 𝑗) × 𝐿

𝑗∈𝑎𝑙𝑙 𝑠𝑝𝑒𝑒𝑑𝑠 𝑜𝑓 𝐹𝑇 𝑖𝑖∈𝑎𝑙𝑙 𝐹𝑇𝑠

                     (4.3) 

where lp(i, j) is the leakage energy consumed per cc of FUs of FT i and speed j, num(i, j) is the 

number of FUs of FT i and speed j and L is the achieved latency of the solution. 

 The total energy consumption is simply the sum of ED and EL. For power minimization, 

the transformation from total energy to total power PT is:  
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P𝑇 =
𝐸𝐷 + 𝐸𝐿

𝐿𝑐
                                                          (4.4) 

 By using this power model, total power minimization is equivalent to energy 

minimization, since the latency constraint is a constant.  

3.2. Simulated Annealing Framework 

The SA framework in PSA has the same good temperature and local search scheme to the 

basic SA algorithm introduced in Section 2.6. However, the initial solution generation, the local 

search including the move set and the post-move processing are different due to the difference 

between the problems.  

3.2.1. Initial Solution 

Different from the SA in Section 2.6, the added dimension of speed for each operation 

makes generating initial solutions randomly more difficult. We thus need to determine the speed 

of each operation first, since it is important to make every individual solution generation fast, 

and separating the speed determination and the scheduling process is a key for this purpose.  

There are 3 initial speed configurations: all operations are at the slowest speed (all 

executed by the slowest FUs), at the fastest speed and at random speeds. Based on our 

experiments, we choose the first configuration: the slowest FUs usually have the lowest overall 

power consumption, since the PDP ratios of FUs of faster speeds are practically hard to below 1.  

After making the initial speed configuration, we can then generate the initial solution for 

the SA framework of PSA by using the modified list scheduling to schedule all operations. As 

will be shown in Section 3.3, the scheduler has very similar or even lower runtime than the 

randomized scheduling. Further, its solution quality is reasonably good and more consistent: the 

randomized scheduling sometimes generates very sub-optimal solutions, and may hamper the 

subsequent solution space exploration and the quality of the final scheduling solution. 
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3.2.2. Move Set 

The moves in PSA only work on the speed vector, the module selection part of the 

solution. Based on the speed vector, the internal scheduler determines the scheduling and the 

complete solution. There are four types of moves in PSA as follows: 

• Move 1: Randomly choose an FU is not the fastest speed, then increase the operations that are 

bound to the FUs to a neighboring faster speed; 

• Move 2: Randomly choose an FU is not the slowest speed, then increase the operations that 

are bound to the FUs to a neighboring slower speed; 

• Move 3: Randomly choose two FUs that are of the same FT but not of the same speed, 

randomly choose the same number of operations from the two FUs, then exchange the speeds 

between the operations of the two FUs; 

• Move 4: Randomly choose a starting point m (1 ≤ m ≤ n, where n is the number of operations) 

and an endpoint m’ (m ≤ m’ ≤ n), then randomly reconfigure the speed of each operations in 

the range [m, m’]. 

For example, let a dual speed vector SVdual = [0, 1, 0, 0, 1] with operation 1, 3, 4 binding to the 

slow FU and operation 2, 5 binding to the fast FU. Assuming all operations are of the same FT. 

The new speed vector SV’dual after Move 1 and 2 is [1, 1, 1, 1, 1] and [0, 0, 0, 0, 0], respectively. 

There are several possible speed vectors after applying Move 3: if only one operation in each of 

the FUs are chosen, a possible speed vector SV’dual is [1, 0, 0, 0, 1], where operation 1 and 2 are 

chosen in the slow and fast FU, respectively; if two operations in each of the FUs are chosen, a 

possible speed vector SV’dual is [1, 0, 1, 0, 0], where operation 1, 3 and operation 2, 5 are chosen 

in the slow and fast FU, respectively. Similarly, a possible speed vector SV’dual is [0, 1, 1, 1, 1] 

after applying Move 4, where m = 2 and m’ = 4. 
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 Among all the moves, the first three make FU-centric speed modifications to the speed 

vector and generally lead to a solution with a small power change. Move 4, on the other side, is 

not FU-centric and may lead to large “jumps” in the solution space. The apparent randomness of 

the distribution of a subsequence of operations among different FUs is an interesting point for 

Move 4. This randomness can make Move 4 to generate significant gaps (either better or worse) 

from previous solutions. Based on Move 4, it is possible to obtain any speed vector from the 

current module selection configuration, and thus, using all the moves, the solution space 

exploration is continuous in the speed or module selection dimension, which is a desirable 

property of SA algorithms. 

3.2.3. Post-Move Processing 

The post-move processing is the steps executed every time a move is generated and the 

speed vector is modified. Different from the SA in Section 2.6, the new speed vector generated 

by the moves is not a complete solution. Therefore, the new speed vector is passed into the 

internal scheduler, where a new scheduling solution is generated. The total power consumption 

of the new solution is calculated by our power model, followed by the normal SA steps. 

3.3. Internal Scheduler 

The internal scheduler is to generate a scheduling solution according to a speed vector. It 

does not handle module selection directly but should be able to handle operations with different 

speeds. Since a speed vector is evaluated by its corresponding scheduling solution and the final 

solution quality is ultimately determined by the scheduling quality, the scheduler should be 

effective in power minimization. Besides, due to the SA nature, the runtime of the scheduler 

should also be low. These requirements above make the scheduler important and non-trivial. 
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For these purposes, we slightly modified the efficient list scheduling (LS) introduced in 

Section 2.4 and significantly improved its effectiveness in FU minimization, which is indirectly 

related to power minimization. We observed that many FUs are under-utilized in LS and many 

operations are schedule in late cc’s due to the lack of available FUs in earlier cc’s. Such 

operations could be scheduled earlier by allocating new FUs earlier, which leads to an average 

higher FU utilization and ultimately reduces the number of FUs in the final scheduling solution.  

First, we define the utilization rate urw(k, s) of an FU w of FT k and speed s as:  

𝑢𝑟(𝑘, 𝑠) =
𝐴𝑤 × 𝑑(𝑘, 𝑠)

𝐿
                                                (4.5) 

where Aw is the number of operations that bind to FU w and d(k, s) is the delay of FUs of FT k 

and speed s and L is the achieved latency. Thus, the utilization rate sum UR(k, s) of new FUs 

(allocated during scheduling process rather than allocated initially before any operation is 

scheduled) of FT k and speed s is: 

𝑈𝑅(𝑘, 𝑠) = ∑ 𝑢𝑟𝑖(𝑘, 𝑠)

𝑛𝑢𝑚𝑛𝑒𝑤(𝑘,𝑠)

𝑖=1

                                          (4.6) 

where numnew(k, s) is the number of new FUs of FT k and speed s. The ceiling of the utilization 

rate sum is an optimistic estimate of the additional number of FUs to be allocated before any 

operation is scheduled. We can thus iteratively perform LS to schedule with an incrementally 

updated initial FU allocation for each FT and speed using the utilization rate sum as a guideline, 

until the initial FU allocation is all the same to the final allocation, i.e., no new FUs are allocated 

during the scheduling process. 

The pseudo code of PSA is presented in Figure 8. 
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Figure 8. The pseudo code of PSA with the modified list scheduling. 

Algorithm PSA(DFG G(V, E), a multi-speed library K, a legal latency constraint Lc) 

1. Initialize the speed vector SV 

2.  Generate an initial scheduling solution S = MLS(G, K, Lc, SV) 

3.  Adaptively calculate the initial temperature t = t0 and the freezing temperature te 

4.  While (t > te) 

5.  For (i from 0 to 2n) 

6.  Randomly generate a successful move and hence a new speed vector SVn 

7.  Generate a new scheduling solution Sn = MLS(G, K, Lc, SVn) 

8.  S = Sn according to the probability 𝑚𝑖𝑛 {1, 𝑒−
𝑆𝑛.𝑐𝑜𝑠𝑡−𝑆.𝑐𝑜𝑠𝑡

𝑇 } 

9.  i = i + 1 

10.  End for 

11.  t = 0.9t 

12. End While 

13. Return the scheduling solution 

 

Algorithm MLS(G, K, Lc, speed vector SV) 

1.  r = (1, 1, ..., 1)   //allocate one FU per FT and speed before scheduling 

2.  Compute the ALAP times tALAP per Lc 

3.  Repeat 

4.  Unschedule all operations 

5.  While (there are unscheduled operations) 

6.  For (each FT k) 

7.  For (each speed s) 

8.  Determine the available unscheduled operation set Ut, k 

9.  Compute slack su for all u ϵ Ut, k by Equation (2.6) 

10.  Schedule 0-slack operations in Ut, k to t, allocate new FUs if needed, 

 update rk if new FUs are allocated 

11.  Schedule non-0-slack operations in Ut, k to t in slack-increasing order and 

 bind them to remaining available FUs 

12.  End For 

13.  End For 

14.   t = t + 1 

15.  End while 

16.  If (there are new FUs allocated) 

17.  Calculate utilization rate sum URk, s for each FT k and speed s for which 

 there are new FU allocated and update rk, s as rk, s = rk, s + URk, s 

18.  End if 

19. Until (there are no new FUs allocated) 

20. Return the scheduling solution 
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3.4. Experimental Results 

We implemented our PSA algorithm in C++. Experiments were conducted on a machine 

with Core i7-4710HQ (3.5GHz) and 16GB RAM in Windows 10. We constructed 2-speed and 4-

speed FU libraries by [36] with 65nm technology. TABLE I shows the power-delay 

characteristics of our 4-speed libraries for the main FTs: addition, multiplication and division. 

The ratio of dynamic to leakage power for all designs is 3:1. The 2-speed library only includes 

the slowest and the fastest speeds of the 4-speed library as in TABLE I. For non-arithmetic FTs, 

like shift registers and SRAM, there is only one speed in the libraries, since the power and delay 

of these FTs are far less than the arithmetic FTs and it is hard to obtain design variations for 

them, as discussed in more details in Section 4.4. The latency constraint Lc was defined as a 

fraction of the ASAP latency using FUs of all slowest speeds: Lc = α × Lasap(slowest), where α is 

the fraction controlling the latency constraint and Lasap(slowest) is the ASAP latency using FUs 

of all slowest speeds. The input DFGs are from [37]. 

We also implemented an extended version of SA in Section 2.6 considering module 

selection. The moves set was modified to randomly shift a randomly chosen operation to a new 

configuration, that is, changing either its scheduled cc, speed or both to generate a new solution 

from the current solution. To make a fair comparison to PSA, the initial solution generation, 

temperature scheme and acceptance criteria of this SA is all the same to PSA. For the local 

search configuration at each temperature, the number of moves M generated is h × n, where h is 

a constant control variable and n is the number of operations. The total power and runtime results 

of the modified SA and PSA-LS using the 2-speed FU library with a latency parameter of 1.2 is 

presented in TABLE II. We can see that PSA with LS (PSA-LS) reduces the total power by an 

average 6.5% to 10.7% compared to the extended SA meanwhile the runtime of PSA-LS is 



36 

 

95.2% to 97.9% less than that of the SA, across all the DFGs and local search configurations. We 

then choose h = 4 for the local search part of the SA-based algorithms in the remaining 

experiments in this section. 

We then compare the LP and runtime among competing algorithms ILP, MWIS [38], 

Min-Cut [39], and PSA-MLS with 2-speed library in TABLE III, since MWIS and Min-Cut 

techniques are for LP minimization and can only handle scheduling with 2-speed FU libraries. 

Both techniques must be significantly extended to utilize libraries with more than 2 speeds. 

Besides, we implemented MWIS and experimented with two initial solution configurations: the 

maximum resource sharing and the least resource sharing by duplicating all module instances as 

in [38]. The best solution out of the two is reported. Min-Cut requires to assign the slowest speed 

to all operations before the scheduling such that the ASAP latency is greater than the latency 

constraint. To adapt to the limitation of the algorithm, we choose α = 0.6. From the results in 

TABLE III, we can see that PSA-MLS has an average LP improvement of 12.4% and 5.2% 

compared to MWIS and Min-Cut while keeping the runtime close to them. Further, compared to 

the optimal ILP results, PSA-MLS only has an 13.4% optimality gap in average and is 84 times 

faster.  

Finally, we present the results of total power minimization for ILP, the extended SA and our 

PSA with various internal schedulers with 2/4-speed libraries in TABLE IV. The latency 

constraint is 2 times of that used in TABLE III. To demonstrate the flexibility of the proposed 

SA framework and the effectiveness of our MLS scheduler, we nested LS (detailed in Section 

2.4), FDS (detailed in Section 2.5) and MLS. “*” signs in the table means the solution of ILP 

was still not available after running 24 hours, hence we took the latest solution after 24 hours and 

record the runtime when the solution was available for the first time. From the results, we can 
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see that PSA-MLS with the 2-speed library only has an average optimality gap of 5.9% and is 

193 times faster. The optimality gap is even closer when the 4-speed library is used: it is only 

4.8%. Besides, the various PSA formulations are significantly better than the extended SA by at 

least 23.7% in average for the 2 libraries. The results also show that PSA with MLS consistently 

achieves better average results than PSA with FDS with significantly reduced runtime (179 times 

faster). 

The results above demonstrate the efficacy and efficiency of PSA in power optimization 

with module selection. 

 

TABLE I 

POWER-DELAY CHARACTERISTICS OF ARITHMETIC FTS OF THE 4-SPEED FU 

LIBRARY 

FT Design Delay (cc) Power (mW) 

Addition 

Kogge-Stone 1 0.673 

Carry Select (Brent-Kung) 2 0.612 

Carry Select (Ripple-Carry) 3 0.612 

Ripple-Carry Adder 4 0.556 

Multiplication 

Tree-Multiplier-Add 4 9.725 

Dadda (with Kogge-Stone) 6 9.007 

Wallace Tree (with Brent-Kung)  8 9.007 

CSvA-Based-Multi-Add 10 5.004 

Division 

Radix-8 (Kongge-Stone based) 8 14.68 

Radix-4 (Kongge-Stone based) 12 11.65 

Radix-8 (Brent-Kung based) 16 11.65 

Radix-4 (Brent-Kung based) 24 9.174 
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TABLE II 

TOTAL POWER AND RUNTIME COMPARISON BETWEEN PSA-LS AND THE EXTENDED SA 

 

 

TABLE III 

LEAKAGE POWER AND RUNTIME COMPARISON AMONG THE COMPETING ALGORITHMS 

 

a DFG sizes are indicated by the number of operations.  

h = 1 h = 2 h = 4 h = 8 h = n h = 1 h = 2 h = 4 h = 8 h = n h = 1 h = 2 h = 4 h = 8 h = n h = 1 h = 2 h = 4 h = 8 h = n

hal 26 36.1 35.6 35.6 35.0 35.6 34.5 34.5 34.5 34.5 34.5 2.8 4.9 8.8 19.0 25.3 0.1 0.2 0.3 0.7 0.9

arf 60 132.3 127.7 126.6 124.3 121.5 115.4 115.4 115.4 115.4 115.4 9.5 19.7 42.5 98.0 575.0 0.5 1.2 1.6 2.9 9.2

motion 28 111.8 111.5 109.4 108.4 106.5 106.0 106.0 103.3 103.3 103.3 11.5 22.2 48.9 121.0 958.4 0.4 0.7 1.0 2.0 8.2

ewf 88 83.5 83.0 82.5 80.1 81.0 69.0 69.0 69.0 69.0 69.0 11.3 21.9 52.8 129.0 261.0 0.7 1.2 2.4 4.7 19.5

Avg 51 90.9 89.5 88.5 87.0 86.2 81.2 81.2 80.6 80.6 80.6 8.8 17.2 38.3 91.8 454.9 0.4 0.8 1.3 2.6 9.5

Runtime (s)

SA PSA-LSDFG Lc

Total Power ( mW∙cc/GHz)

SA PSA-LS

ILP MWIS Min-Cut PSA-MLS ILP MWIS Min-Cut PSA-MLS

hal 13 11 18.0 18.0 18.0 18.0 0.2 0.2 0.2 0.4

arf 30 28 49.0 49.0 49.0 49.0 0.3 1.5 1.5 1.5

motion 14 32 37.3 37.3 37.3 37.6 0.5 1.8 1.5 1.1

ewf 44 34 34.1 37.4 35.7 34.1 7.3 4.0 3.5 2.1

feedback 18 53 53.2 58.4 56.1 54.2 9.3 6.2 6.0 2.3

collapse 18 56 40.8 49.2 46.3 45.0 11.3 8.3 7.6 2.8

write 17 106 25.4 32.6 30.8 29.6 16.7 4.1 3.1 3.4

aux 21 108 117.9 141.0 132.8 125.1 25.2 7.1 6.4 7.6

matmul 25 109 109.1 150.2 135.8 130.5 104.9 6.7 6.8 8.7

idctcol 40 114 73.0 114.7 90.4 84.4 1212.5 8.7 7.3 16.2

jpeg 36 134 93.3 138.3 119.6 112.6 2975.1 12.1 10.3 21.2

smooth 36 197 185.7 257.7 249.1 228.8 3354.1 25.2 23.3 24.6

Avg 26 81.8 69.7 90.3 83.4 79.1 643.1 7.2 6.5 7.7

DFG Lc Size
a Runtime (s)LP ( mW∙cc/GHz)
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TABLE IV 

TOTAL POWER AND RUNTIME COMPARISON AMONG ILP, SA AND VARIOUS VERSIONS OF PSA WITH 2/4-SPEED 

LIBRARIES 

 

 

ILP SA
PSA-

LS

PSA-

FDS

PSA-

MLS
ILP SA

PSA-

LS

PSA-

FDS

PSA-

MLS
ILP SA

PSA-

LS

PSA-

FDS

PSA-

MLS

hal 26 34.5 35.6 34.5 34.5 34.5 0.3 8.8 0.3 1.9 0.3 34.5 36.6 34.5 34.5 34.5

arf 60 99.2 126.6 115.4 99.2 106.8 1.9 42.5 1.6 52.7 1.1 98.6 127.7 109.6 99.2 101.7

motion 28 89.4 109.4 103.3 91.0 94.2 2.1 48.9 1.0 19.1 1.1 88.4 111.5 103.9 90.5 91.9

ewf 88 69.0 82.5 69.0 81.5 69.0 16.4 52.8 2.4 169.0 1.6 68.5 85.2 69.0 71.2 69.0

feedback 37 106.6 150.0 125.8 108.7 112.5 3.5 153.0 5.3 204.7 2.7 106.6 155.8 123.9 108.7 108.5

collapse 37 79.5 107.4 104.6 84.4 84.7 18.1 40.6 1.8 161.0 2.6 79.5 109.1 103.1 81.1 82.3

write 34 49.4 81.9 55.2 51.7 51.1 68.4 91.2 6.9 2468.0 9.7 49.4 81.9 53.6 51.7 50.4

aux 42 230.4 354.8 256.5 241.5 233.0 146.4 151.3 7.9 1423.0 11.0 230.4 359.6 253.7 243.4 233.0

matmul 50 242.3 352.0 288.4 263.6 256.6 593.6 227.1 7.6 1675.0 11.0 241.36* 362.4 286.7 262.5 254.9

idctcol 80 187.5 322.9 219.1 204.5 194.8 1417.0 194.4 11.1 3162.0 17.5 179.62* 322.9 232.2 204.1 190.1

jpeg 73 236.4 409.0 264.5 261.1 253.9 1986.0 381.1 14.4 4521.0 21.1 236.4* 409.0 258.1 260.3 244.9

smooth 73 457.5 693.9 520.3 482.3 502.5 18072 720.6 28.2 6916.0 36.2 445.3* 727.6 542.0 482.3 486.0

Avg 52.3 156.8 235.5 179.7 167.0 166.1 1860.5 176.0 7.4 1731.1 9.7 154.9 240.8 180.9 165.8 162.3

4-Speed Library

Total Power ( mW∙cc/GHz)

2-Speed Library

Total Power ( mW∙cc/GHz) Runtime (s)
DFG Lc
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4. NEW CRITERIA FOR POWER-DRIVEN RESOURCE LIBRARY 

CONSTRUCTION

 

The work in this chapter has been partially presented in [1] and published in [3]. 

In the chapter, we propose that the degree of optimization achievable in HLS with 

module selection (essentially a multi-speed library) significantly depends on how the mix of FUs 

in the library are parameterized. In particular, for MP-LCS problem, after introducing module 

selection in HLS and showing our motivation examples, we propose that appreciably better 

power optimization is possible when:  

• the FUs for each FT have a wide range of both power and delay metrics; 

• their pair-wise power-delay product ratios are close to 1, say, in the range [0.8, 1.25], than 

when these criteria are not satisfied. 

For this, we provide a probabilistic justification. We also briefly show that it is possible to 

achieve these parameter ranges for arithmetic FTs, which form the bulk of FUs in HLS problems, 

due to: 

• the variety of designs that have been proposed for such functions; 

• the flexibility of combining different design approaches in a hierarchical manner to yield 

hybrid designs that satisfy the aforementioned parameter constraints in case the original 

designs do not.  

This is justified by an analysis of theoretical design examples. 

The work in this chapter has been published in [3] and partially presented in [1]. 
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4.1. Introduction of Module Selection 

An additional dimension in the design space of HLS, module selection, can provide a 

significant space to improve the power cost in HLS. FUs with different designs (design diversity) 

potentially offer a much larger range of power and delay characteristics than is available with 

current approaches such as multi-Vdd and multi-Vth FUs that have been used in prior power-

driven HLS works. We can judiciously select from a diverse set of FU designs to obtain a 

minimal power cost. Different FU designs have different power and delay characteristics, can 

execute significantly different numbers of operations with a given latency constraint and have 

different fragmentation (to be defined later) amount. For example, a ripple-carry adder (RCA) 

has a delay and power consumption (sum of DP and LP) of Ɵ(n), where n is the number of input 

bits. In this analysis, we realistically assume that the dynamic as well as LP are proportional to 

the total number of gate inputs across the circuit, which is Ɵ(n) for an RCA and Ɵ(2n) for a 

carry-lookahead adder (CLA). Thus, an RCA’s power per throughput metric is Ɵ(n2) (throughput 

∝ 1/delay). On the other hand, a CLA has a delay of Ɵ(2log n), and power consumption of 

Ɵ(2n), giving a power per throughput metric of Ɵ(4nlog n), which is much lower than that of an 

RCA. However, this does not necessarily mean that a CLA is always better than an RCA, since 

dynamic power, which is lower per computation for a CLA, is consumed only during operations, 

but total LP, which is more for a CLA than an RCA (Ɵ(2n) versus Ɵ(n)), is consumed 

throughout the latency constraint of the design (or over periods in which the FU is on). At the 

same time, since fewer CLAs could be used to replace, say, k RCAs (by a factor roughly 

proportional to their delay ratio of Ɵ((2log n) / n) if allowed by precedence constraints, it is not 

necessary that all the CLAs in the design will expend more LP than all the RCAs they have 

replaced. 
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Let us consider the example illustrated in Figure 9, where the RCAs (slow FUs) have a 

delay of 4 clock cycles (cc’s) and CLAs (fast FUs) with a delay of 2 cc’s. Figure 9(a) shows a 

scheduling and binding solution using only RCAs for four addition operations u, v, w and x. The 

precedence constraint w→x and the latency constraint requires an allocation of 3 RCAs. 

However, these operations can be scheduled and bound to CLAs so that only one CLA is 

required as shown in Figure 9(b). Thus, even if the power cost of one CLA is 2.5 times that of 

one RCA, the solution in Figure 9(b) still saves 0.5 time of the power consumption of an RCA. 

In terms of total power, whether a set of RCAs or CLAs is better for a group of 

operations depends on the dependency constraints and available slacks for these operations, and 

the corresponding utilization (or conversely, fragmentation) they impose on these FUs. In 

general, considering a mix of CLAs and RCAs (and in general, slow/low-power and fast/high-

power FUs) should provide more power-efficient solutions under given latency constraints. 

 

 
Figure 9. An example for power reduction with module selection. The colors represent different 

operations and they are bound to FUs represented by large rectangles. 
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4.2. Motivation of Resource Library Construction 

Although module selection can effectively reduce power consumption as demonstrated in 

Figure 9, it significantly depends on the FUs in the library. If the power of a CLA is at least 3 

times greater than that of a RCA, substituting the CLA for RCAs will increase the power 

consumption. On the other hand, if the delay of a CLA is increased to 3 cc’s, two CLAs will be 

allocated for substituting the RCAs, since operations executed on one CLA will violate the 

latency constraint as shown in Figure 10. Such module selection results in even more power 

consumption. 

 

 
Figure 10. An example for unsuccessful power reduction with module selection. The colors 

represent different operations and they are bound to FUs represented by large rectangles. 

 

 Therefore, module selection does not help power minimization if the library it uses 

includes too many FUs that have undesired power and delay characteristics. Such FUs are called 
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bad FUs hereafter and should be avoided when constructing the library. However, as we have 

discussed in Section 1.4.4, no previous work noticed this issue and a lot of HLS works like [31] 

[32] [33] are still using these bad FUs. We will provide our hypotheses for better resource library 

construction and justify them in the following subsections.  

4.3. Hypotheses for Effective Library Construction 

Henceforth, unless otherwise specified, by power we mean the sum of dynamic and 

leakage energy consumed per clock cycle (cc). We first define the power-delay-product (PDP) of 

an FU as the product of the power and delay in cc’s of the FU to execute an operation. Delay and 

power generally form a design trade-off, and it is desirable that as we move from a slow FU to a 

fast one, the ratio of the fast to slow PDPs (the PDP ratio) remains in the neighborhood of 1 (this 

can happen for arithmetic FUs like adder, multiplier and divider, as we have found via literature 

search and also by considering hybrid” designs—more on these issues later). A PDP ratio of 1 

indicates that the speed increase of a fast FU has been obtained by a proportionate increase in 

total power to perform that operation in relation to the slower FU; a PDP ratio less than 1, 

indicates that the power increase is by a smaller factor than the speed increase (this also happens, 

as we show later, and means that the slower FU design is less power-efficient, i.e., its power-per-

performance is more, than the faster one); a PDP ratio greater than 1 indicates the opposite trend. 

4.3.1. The First Hypothesis 

Our first hypothesis is: 

HYPOTHESIS 1. (a) A larger delay range along with a larger power range among a mix 

of FUs, and (b) a PDP ratio between the slowest FU and any of the faster FUs that is in the 

neighborhood of 1, say, in the range [0.8, 1.25], allows for better power optimization compared 

to smaller delay or power ranges or larger PDP ratios. 
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Justification: We first illustrate this by our discussion in Section 4.2. If the delay range is smaller 

by increasing the delay of the CLA to 3 cc’s, two CLA’s will be needed and the power 

consumption will be increased significantly. Note that the PDP ratio of the CLA to the RCA here 

is increased from 1.25 to 1.875. On the other hand, if the delay range remains the same while the 

power range is increased by increasing the power of the CLA to more than 3 times of the RCA, 

substituting the CLA for the RCA also increases the power. Note that the PDP ratio of the CLA 

to the RCA here becomes greater than 1.5. 

The desirability of a wide range of delay and power metrics is clear, since only FUs are 

appreciably distinguished by these metrics, will the module-selection search space be rich 

enough for proper exploration by a module-selection algorithm to arrive at a good tradeoff 

between the competing metrics. Empirical evidence for this aspect of Hypothesis 1 is provided in 

Section 4.4. We also note that a large delay or power range does not necessarily imply a large 

power or delay range, respectively, as is the case with FU libraries based solely on multi-Vth or 

multi-Vdd but with single designs. In these cases, the power ranges are greater than delay ranges, 

sometimes significantly, since: a) in the case of multi-Vth based FUs, the delay is roughly 

linearly proportional to Vth (it is inversely proportional to Vdd - Vth) but the LP is inversely 

proportional exponentially to Vth; and b) in the case of multi-Vdd based FUs, the delay is 

inversely proportional to Vdd but the DP is proportional quadratically to Vdd (the LP is 

proportional to Vdd). For example, in the 90nm dual-Vth ALU/adder and multiplier library of 

[40], the delay ranges are small: 1 to 2 cc’s and 2 to 3 cc’s, respectively, while the LP ranges are 

very high: 0.3 to 19.5μW and 2.3 to 124.6μW, respectively. Thus, the PDP ratios of the fast FUs 

are also very high, 32.5 and 36.1 for the adders/ALUs and multipliers, respectively. This implies 

that the fast FUs with low Vth’s are rendered almost useless and should not be selected by a 
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quality HLS algorithm for moderate-speed designs (those whose latency requirements are set to 

be greater than or equal to the critical path delay Ds of the DFG determined assuming operation 

delays correspond to the slowest FUs for each FT). In fact, our experiments with a state-of-the-

art power-driven scheduling and module selection algorithm PSA [2] (details are in Chapter 4.5) 

on this library with latency constraints Lc = (1 + α)Ds, for α ϵ [0, 1], showed exactly that: for all 

DFG’s in the media benchmark suite [37] we use in all our experiments, the solutions did not use 

any fast FU. Thus, both analytical reasoning and empirical evidence, including our results in 

section 0, point to that only multi-Vth and multi-Vdd based FU designs do not satisfy Hypothesis 

1 and are not good enough for low-power design, and that mainly design diversity based FUs 

(possibly coupled with multi-Vth and multi-Vdd) are needed for this purpose. 

We now perform a probabilistic analysis to theoretically support Hypothesis 1 in terms of 

the PDP ratio criterion. Let p1 = the probability that any cc t an operation is available for 

scheduling on an FU A at any stage during the HLS process. This means that if t is an 

available/idle cc in the FU in question, and there are d – 1 consecutive slots available after cc t 

on FU A, where d is the delay of an operation on the FU, then an operation can be scheduled on 

A with a probability of p1. Let p2 = the probability that if an operation is available at an available 

cc t and t is available in FU A, then the d – 1 slots following t are available in A (we term this as 

the slot t on A being fragmentation-free). Since we can schedule at most Lc / d operations on A, 

where Lc is the latency constraint, we can schedule at most Lc / d cc’s; thus, the average number 

of operations scheduled on FU A is p1 p2 Lc / d. Further, let u, 0 < u ≤ 1 be the average utilization 

factor of FUs (fraction of cc’s which are used to execute operations) in the final synthesized 

design. This implies that the average number of operations scheduled on an FU with delay d is u 
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Lc / d. We thus have p1 p2 Lc / d = u Lc / d → p1 p2 = u. For simplicity, assuming p1 ≈ p2, we get 

𝑝1 ≈ √𝑢. 

Our extensive experiments using a strong power-driven simulated annealing based 

scheduler PSA [2] on several media benchmark DFGs with sizes of up to about 200 operations, 

and using 11 different latency constraints for each DFG, show that the average u is around 0.5 

with a small standard deviation of 0.09. We thus get p1 ≈ 0.7. 

Next, we consider the average number of operations that can be accommodated in a fast 

FU that replaces a slower one, including those that are transferred from the slower FU. Consider 

a slow FU A with delay d with m operations scheduled on it (m = u Lc / d in average), and a 

faster FU B with delay d / s (a speedup of s) and with no operation on it. We want to determine 

the average number of operations that can be scheduled on B after the m operations of A are 

mapped to it. In average, A will have (1 – u)Lc slots available. If we transfer the m operations 

from A to B without changing their scheduling times, we will have (1 – u)Lc + m(d – d / s) slots 

available on B for scheduling. Of these: 

(a) m(d – d / s) slots are available due to the shrinking of the delay of m operations transferred 

from A by a factor of s (see Figure 11)—we call these the freed time slots on B; 

(b) Of the remaining (1 / u)Lc available slots on B, one category is the set of available slots 

transferred from A on which operations could not be scheduled due to fragmentation (see 

Figure 12); we will call the latter A-fragmented (A-f) time slots; 

(c) The second category of the (1 – u)Lc available slots on B are those that were fragmentation-

free on A, but in which operations could not be scheduled due to unavailability of operations 

for A at those slots. Part of the reason for this is that more slow FUs were available at such 

fragmentation-free slots/cc’s t than there were operations of that FT available at t. Thus, 
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some of these slow FUs like A have no operations scheduled in such fragmentation-free 

slots. However, in the scenario where we are using fast FUs to replace some slower ones, 

there will be approximately a factor of s fewer fast FUs than slow ones, and thus for a cc 

like t on a fast FU B, there is a higher likelihood of operations being available for scheduling. 

We can thus schedule some extra operations in B at such fragmentation-free slots.  

We next analyze the increased number of operations that can be scheduled on B 

compared to A for the three scenarios above. 

(a) Scheduling operations on freed time slots on a fast FU. 

We first analyze the average number of operations that can be scheduled on a set of freed 

time slots corresponding to a single operation on A mapped to B. There are (d – d / s) such 

consecutive slots available on B; see Figure 11. Given k consecutive available slots/cc’s on an 

FU with delay l, the average number of operations schedulable in the k slots is p1 k / λ, since 

operations are available to be scheduled in the k / λ starting cc’s among the k slots with a 

probability of p1. Thus, the average number of operations that can be scheduled in the freed slots 

on B corresponding to a single mapped operation from A is: 

𝑝1(𝑑 −
𝑑
𝑠)

𝑑/𝑠
= 𝑝1(𝑠 − 1)                                                   (3.1) 
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Figure 11. Mapping operations from slow FUs to a fast FU. 

(b) Scheduling operations on slow FU fragmented time slots on a fast FU. 

 An available slot t on A is fragmented (A-f slot) if some operation w is scheduled on A in 

any time slot in the range [t + 1; t + d – 1]. As illustrated in Figure 12, the slot on B 

corresponding to the A-f slot in cc t is schedulable as long as w (which will also be mapped to B 

at the same slot on which it was scheduled on A) is not scheduled in the range [t + 1, t +(d / s) – 

1] (d / s = 2 in Figure 12). In general, we may be able to schedule more than one extra operation 

(those not scheduled on A) on B in the range [t + 1, t + d – 1 – (d / s)], depending to the cc that 

w is scheduled in the range [t + 1, t + d – 1]. We can estimate the average number of such extra 

operations we can schedule on B corresponding to the A-f cc t, by dividing up the range [t + 1, t 

+ d – 1] into s contiguous regions, with the first s – 1 of them having d / s cc’s each, and the last 

one having (d / s) – 1 cc’s. If w is scheduled in the i’th such region, 1 ≤ i ≤ s, then we can 
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schedule i – 1 extra operations (if available) on B in the i – 1 preceding regions. The probability 

that w is scheduled in any of the s regions is approximately 1 / s (it would be exactly 1 / s if the 

last region also had d / s instead of (d / s) – 1 cc’s). Thus, the average number of extra operations, 

if available, that can be scheduled on B corresponding to the A-f time slot t is: 

1

𝑠
× ∑ 𝑖 − 1

𝑠

𝑖=1

=
𝑠 − 1

2
                                                        (3.2) 

Next, we need to determine the probability of operation availability to be scheduled in the i – 1 

regions preceding the aforementioned i’th region in which w is scheduled, and multiply it with i 

– 1 in Equation (3.2) to obtain the average number of extra operations we can schedule on B 

corresponding to the A-f time slot in cc t. If w is scheduled at exactly the first cc in the i’th 

region, then to schedule i – 1 extra operations in the preceding regions, we need to have an 

operation available to schedule at exactly the first cc in each region. The probability for this is p1 

in each of the i – 1 regions, and thus the average number of extra operations that we can schedule 

is p1(i – 1). However, if w is scheduled in the 2nd cc of the i’th region, we have the flexibility to 

schedule one of the extra operations in the preceding i – 1 regions in either the 1st or 2nd cc of 

its region, and the overall probability of being able to schedule i – 1 extra operations in the 

preceding i – 1 regions is a little more than p1: 

1

𝑖 − 1
[(𝑖 − 2)𝑝1 + 1 − (1 − 𝑝1)2]                                        (3.3) 

where 1 – (1 – p1)2 ≥ p1 is the probability for having an operation available to schedule in either 

the 1st or 2nd cc of its region. The probability expressions for operation availability become 

more complex as there is more flexibility to schedule operations in the preceding i – 1 regions 

based on w being scheduled anywhere from the 3rd to (d / s)’th cc in the i’th region. However, 

based on numerical examples, we can approximate the average probability to be 1.2 p1, and thus 
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the number of extra operations that can be scheduled on B as 1.2 p1(s – 1) / 2, where we 

introduce a small fudge factor of 1.2 to account for the probability of operation availability 

across an average of (s – 1) / 2 regions being greater than p1. For example, for d / s ≥ 3 and s = 2, 

if w is scheduled in the 2nd region, then the probability pavail of having an operation available for 

scheduling in the 1st region when w is scheduled in the k’th cc in the 2nd region, 1 ≤ k ≤ 3 are: 

• if k = 1, pavail = p1 = 0.7; 

• if k = 2, pavail = 1 – (1 – p1)
2 = 0.91; 

• if k = 3, pavail = 1 – (1 – p1)
3 = 0.973. 

Thus, the average pavail = 0.861 = 1.23 p1, assuming w has an equal probability of being 

scheduled in any cc 1 to 3 in the 2nd region. Thus, the average number of extra operations we 

can schedule in FU B in the previously fragmented space in FU A corresponding to the A-f slot t 

is 1.23 p1(s – 1) / 2 in this example. 

Further, the position of potential A-f cc’s that we need to consider for extra operation 

scheduling are right after the end of the execution of a scheduled operation on A (if we use any 

available cc after such positions in the same fragmented space, then we will be counting the extra 

operation schedules multiple times for each such maximal fragmented space between two 

consecutive operation schedules on A that are mapped to B). Of the µLc / d such positions at the 

end of each operation’s execution on A, the A-f ones are those that are fragmented, the 

probability of which is 1 – p2 ≈ 1 – p1 (based on our initial assumption that p1 ≈ p2). There are 

thus (1 – p1) µLc / d such A-f slots, and we call these maximal A-f slots, since they are starting 

slots of maximal fragmented spaces. Thus, since there are µLc / d operations scheduled on A in 

average, and we can only schedule extra operations on B corresponding to its maximal A-f slots, 

the fractional increase of extra operations on B due to these schedulings is: 
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(1 − 𝑝1)1.2𝑝1(𝑠 − 1)

2
                                                    (3.4) 

 

 
Figure 12. Mapping operations from a slow FU to a fast FU does not always cause fragmentation 

in the latter, allowing more scheduling flexibility on the latter than the former. 

 

(c) Scheduling operations on slow FUs’ fragmentation-free time slots on a fast FU. 

There will be p2 µLc / d ≈ p1 µLc / d fragmentation-free available spaces in A occurring 

right after a p2 ≈ p1 fraction of the average number of scheduled µLc / d operations on A. By 

definition, there are at least d cc’s in these spaces between two consecutive operations scheduled 

on A, and are available for scheduling on B. Thus at least s operations of delay d / s can be 

scheduled in each such space. As mentioned earlier, while 

there were no operations available for A in these fragmentation-free slots/cc’s, there is a 

reasonable likelihood of operations being available for scheduling on B in the scenario of 

replacing some slow FUs with faster ones: there will be fewer fast FUs used than the slow ones 
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that they are replacing by about a factor of s, and thus in each of these cc’s the ratio of the 

number of operations available for scheduling to the number of available FUs will be much 

higher than in the slow FUs case. We will assume that the probability of this availability is the 

general operation availability probability p1. Thus, the number of operations that can be 

scheduled in the fragmentation-free available spaces of A mapped to B is (p1 µLc / d) p1 s, which 

represents a fractional increase in these number of operations compared to those on A of: 

𝑝1𝜇𝐿𝑐

𝑝1𝑠
𝜇𝐿𝑐

𝑑

= 𝑝1
2𝑠                                                          (3.5) 

Adding the fractional increases of operations scheduled on B compared to those in A from 

Equations (3.1), (3.4) and (3.5), we have a total fractional increase of: 

𝑝1(𝑠 − 1) +
1.2𝑝1(1 − 𝑝1)(𝑠 − 1)

2
+ 𝑝1

2𝑠                                 (3.6) 

which for p1 = 0.7 is 1.32s – 0.826. Thus, the average total number of operations scheduled on B 

is the following factor of the number of operations of A: 

1 + 1.32𝑠 − 0.826 = 1.32𝑠 + 0.174 ≈ 1.32𝑠                              (3.7) 

Thus, if B’s PDP ratio is around 1.32 (i.e., B’s power factor over A is 1.32s), we about break 

even in power by utilizing fast FUs B to replace some slow FU’s A. Hence, for there to be some 

reasonable power reduction of at least 5% by choosing fast FUs to replace some slow ones, we 

choose a more beneficial PDP ratio of 1.25, which will afford us a (1.32 – 1.25) / 1.25 = 5.6% 

power reduction. 

The lower PDP ratio range of 0.8 in Hypothesis 1 is based on our design experiences, as 

well as on FU designs available in literature like [41] [42] [43], that show that it is possible to get 

a PDP ratio of a fast FU to be less than 1, and a pragmatic lower limit is 0.8. 
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4.3.2. The Second Hypothesis 

Our second hypothesis is based on our exploration of hybrid designs of various arithmetic 

FTs as well as our literature search of a variety of designs for these FTs, and concerns the 

attainability of the PDP ratio range mentioned in Hypothesis 1. 

HYPOTHESIS 2. It is possible to design a mix of slow to fast FUs for arithmetic 

functions that satisfy the criteria of Hypothesis 1. 

Justification: The availability of a wide range of delay and power metrics across different FU 

designs for various arithmetic FTs is well-known. The designs range from completely sequential 

processing (e.g., RCA for addition, add/subtract and shift for multiplication and division) 

resulting in linear to quadratic delays, to highly parallel processing resulting in Ɵ(log n) delays 

(e.g., CLA, Wallace-tree multiplier) with delay functions in between (e.g., Ɵ(√𝑛) for a carry-

select adder [CSA]), where n is the input size. This wide range of delays come with the attendant 

wide range of power consumption. 

The more interesting issue is that of attaining a PDP ratio of a fast FU to the slowest FU 

in the library that lies in the range mentioned in Hypothesis 1. Firstly, we have looked at 

numerous arithmetic designs like [41] [42] [43] to determine if the original designs are such that 

they fit this criterion. As shown in TABLE V, a carefully chosen set of dual FU designs from 

these works easily satisfies this criterion. 

Further, irrespective of the variety of available designs (that may or may not fit the PDP 

ratio criterion) across more than two FUs for each FT, we contend that it is possible to obtain 

hybrid designs that hierarchically combine different well-known designs (e.g., RCA, CLA and 

CSA for addition, array and Wallace-tree multiplier for multiplication) to satisfy the PDP ratio 

criterion. Let us take the example of an n-bit RCA and an n-bit CLA with 4-bit basic carry-and-
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P/G generation units. We will consider gate cost (i.e., number of basic gates) in units of 2-input 

gates, and critical path delay in terms of number of inputs encountered in the path with the 

maximum number of this parameter. We assume for simplicity of exposition, that the dynamic as 

well as leakage power is linearly proportional to the gate cost—the total switching activity is 

linearly proportional to the number of gates (assuming a more or less uniform switching 

probability among the gates in a design), as is the leakage power. Thus, we will simply use total 

gate cost as a measure of total power expended by gates. 

An n-bit RCA has gate cost = 7n, and a critical path delay of 5n. For n = 64, these 

numbers are 448 units and 320 units, respectively. A CLA has a gate cost = 36 × (n / 4) + 16(n – 

1), and a critical path delay of 8log4 n + 2log4 n = 10log4 n (the 1st term is for P, G generation, 

and the 2nd is for the subsequent carry generation). For n = 64, these numbers are 1584 and 30 

units, respectively. Further, we need to consider interconnect delay and interconnect dynamic 

power consumption. The layout of an RCA is easily accomplished by almost “unit-length" 

interconnects between adjacent full adders (FAs). However, the average interconnect length will 

be much longer in a tree-structured circuit such as a CLA, and we conservatively assume that the 

average interconnect in a CLA is 2.5 times as long as in an RCA. We also assume that an RCA 

interconnect will expend as much dynamic power as a 2-input gate and 1.5 times of the delay 

(delay on an interconnect will be approximately quadratic in its length), and that dynamic and 

leakage power are roughly equal for a 2-input gate. Thus, the total power units in a 64-bit RCA is 

448 + 448 / 2 = 672 (the first term is dynamic + leakage power in gates, and the second term is 

the dynamic power on interconnects), and its delay is 320 + 1.5 × 320 = 800 units. The 

corresponding numbers for a 64-bit CLA will be 1584+2.5 × 800 = 3564 units of power, and 30 

+ 1.5 × 2.52 × 30 = 311 delay units. Thus, the PDP ratio of a 64-bit CLA to a 64-bit RCA is 3564 
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× 311 / 672 × 800 = 2.06, which does not fall in the desired range. However, if we obtain a 

hybrid design for a fast adder, in which we have four 16-bit CLAs, with the carries rippling 

between them, then the gate cost is 4 × 384 = 1536, and the delay is 8log4 16 + 4 × 2log4 16 = 32 

units (the P, G computations take place in parallel in the four 16-bit CLAs: 8log4 16, and then the 

carry generation is 2log4 16 in each of them, and is sequential between them, i.e., the carry 

ripples between the 16-bit CLAs). The interconnect length ration between this hybrid design and 

an RCA will be less than 2.5, and we assume it is 2. Then, the total power units of the 64-bit 

hybrid design is 1536+2 × 768 = 3072, and delay is 32 + 1.5 × 22 × 32 = 224 units. The PDP 

ratio of this design to an RCA is 3072 × 224 / 672 × 800 = 1:28, which falls almost in the desired 

range. 

Similarly, since multipliers and dividers can be constructed hierarchically using a divide-

and-conquer approach, we can use different designs at different levels to yield a hybrid design. 

For example, the multiplication P = X × Y, where X, Y are n-bit numbers, can be broken up into: 

𝑃 = (2
𝑛
2×𝑋ℎ + 𝑋𝑙) × (2

𝑛
2×𝑌ℎ + 𝑌𝑙) 

= 2𝑛(𝑋ℎ×𝑌ℎ) + 2
𝑛
2(𝑋ℎ×𝑌𝑙) + 2

𝑛
2(𝑋𝑙×𝑌ℎ) + (𝑋𝑙×𝑌𝑙)    (3.8) 

Here Xh(Xl) is the higher (lower) n / 2 bits of X. Each of the above 4 sub-products is an (n 

/ 2)-bit multiplication; the 2i place value multiplications of these sub-products only represent 

proper place-value alignment during their summation. To obtain a hybrid Wallace-tree and array 

multiplication, we can use Wallace-Tree for each of the 4 sub-products to yield 2 summands for 

each, and then use the array multiplication structure (sequence of 8 carry-save additions) on the 

total of 8 summands. The final 2 summands can be summed by an adder to yield P. Thus, we 

believe that there is reasonable flexibility available to develop hybrid designs for various 

arithmetic functions in order to attain the desired PDP ratio given in Hypothesis 1. Furthermore, 
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if even hybrid design does not satisfy the desired PDP ratio constraint, the different designs, 

hybrid or original, can also be combined with careful gate sizing and gate Vth selection to yield 

the desired PDP ratios. Not that this cannot be achieved just by gate sizing and/or Vth selection, 

as these physical synthesis transforms do not offer enough delay and power variation to reduce 

say a 2.06 PDP ratio of a CLA to fall in the desired range, but combined with different design 

structures, the final FUs can be fine-tuned to have the desired PDP ratios. 

The following is a corollary to Hypothesis 2. 

COROLLARY 1. Slow and fast FUs derived via design variation can much more easily 

meet desired speed and power ranges, and PDP ratios mentioned in Hypothesis 1, compared to 

applying multi-Vdd and multi-Vth to a single design. 

Justification: In current technology, Vdd’s as well as Vth’s have very small ranges, and thus they 

can affect the delay and power ranges and the PDP ratio (compared to a slow base design) of a 

given design in only a small way. This is empirically established in the following section. 

4.4. Resource Library Construction Examples 

We have identified many FU design works like [41] [42] [43] [44] [45] [46] to obtain for 

several FTs, FUs with different designs that have power and delay characteristics that satisfy the 

criteria of Hypothesis 1. The power and delay characteristics of FUs with different designs are 

presented in TABLE V. All of them are based on 0.18μm technology and a Vdd of 1.8V. For non-

arithmetic FTs such as “SRAM(Write)", “SRAM(Read)", “Shift Register" and “AND", since 

either design variety does not lead to enough delay range (e.g., in SRAMs that we could find in 

[46]) or there is almost no design variety available (in “Shift Register" and “AND), in order to 

obtain dual-speed FUs, we just scale the Vdd up to 2.5V for these FTs to get a faster power-delay 

characterized speed with reasonable delay ranges (see the delay ratio column in TABLE V). 
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These non-arithmetic FUs, however, has a miniscule effect on power, as: they consume very 

little power compared to the arithmetic FUs, and about 70% of operations use the first 3 

arithmetic FTs in TABLE V. For arithmetic FTs, we provide two different published designs that 

satisfy the criteria of Hypothesis 1. These FU designs thus empirically prove Hypothesis 2. 

We also determined dual-Vdd FUs for all the FTs in TABLE VI to demonstrate Corollary 

1. For an apples-to-apples comparison of PSA results obtained using dual-design and dual-Vdd 

FUs, we scale Vdd so that we achieve similar delay ratios to those for dual-design FUs (as in 

TABLE V) via a least mean-square error (LMSE) fitting of the delay ratios. The Vdd-scaling is 

based on the facts that the delay ratio is the inverse of the Vdd ratio, leakage power change is 

linearly proportional to Vdd change, and dynamic power is quadratically proportional to Vdd. 

Further, we assume that the percentage of dynamic and leakage powers are 60% and 40%, 

respectively, though the specific percentages assumed do not affect the verification of our 

hypotheses. From our calculations, Vdd needs to be scaled to 2.8V to obtain LMSE fitting of 

delay ratios to those in TABLE V. The resulting power and delay characteristics of FUs with Vdd 

of 1.8V and 2.8V are shown in TABLE VI. Comparing Tables 1 and 2, we can see that the FUs 

with different designs have desirable PDP ratios, and FUs with different Vdd’s that achieve 

similar delay ratios to FUs with different designs, have larger PDP ratios. This empirically 

proves Corollary 1. 
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TABLE V 

POWER-DELAY CHARACTERISTICS OF FUS WITH DUAL DESIGNS 

FT Design DP (mW) LP (mW) Delay (ns) PDP (pJ) 
Delay 

ratioc 

PDP 

ratioc 

Addition 
Slow (RCA) [41] 0.51 0.34 5.86 4.98 

0.38 0.96 
Fast (CLA) [41] 1.31 0.87 2.2 4.80 

Multiplication 
Slow (PR3a) [42] 17.83 11.89 11 326.92 

0.65 0.99 
Fast (tree9to4) [42] 27.07 18.05 7.18 323.96 

Division 
Slow (Aqa-SMa) [43] 58.8 39.24 55 5392.20 

0.65 0.99 
Fast (Aqa-FMb) [43] 89.33 59.56 35.9 5345.15 

SRAM (Write) Slow (6T) [46] 2.10E-08 1.40E-08 0.1 3.50E-09 
0.72 1.21 

  Fast (2.5v) 4.00E-08 1.90E-08 0.072 4.25E-09 

SRAM (Read) Slow (6T) [46] 5.50E-07 3.70E-07 0.1 9.20E-08 
0.72 1.26 

  Fast (2.5v) 1.10E-06 5.10E-07 0.072 1.16E-07 

Shift Register 
Slow (MFF) [45] 0.31 0.2 0.23 0.12 

0.74 1.26 
Fast (2.5v) 0.59 0.28 0.17 0.15 

And 
Slow [44] 3.40E-09 2.20E-09 0.1 5.60E-10 

0.72 1.23 
Fast (2.5v) 6.50E-09 3.10E-09 0.072 6.91E-10 

 

a SM = slow multiplier. It is used in the slow Aqa divider. 

b FM = fast multiplier. It is used in the fast Aqa divider. 

c The ratio is the corresponding metrics of the fast FU to the slow FU. 
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TABLE VI 

POWER-DELAY CHARACTERISTICS OF FUS WITH DUAL VDDS 

FT Vdd (V) DP (mW) LP (mW) Delay (ns) PDP (pJ) Delay ratioa PDP ratioa 

Addition 
1.8 0.51 0.34 5.86 4.98 

0.64 1.33 
2.8 1.23 0.53 3.77 6.64 

Multiplication 
1.8 17.83 11.89 11.00 326.92 

0.64 1.33 
2.8 43.14 18.50 7.07 435.88 

Division 
1.8 58.8 39.24 55.00 5392.20 

0.64 1.33 
2.8 142.28 61.04 35.36 7188.87 

SRAM (Write) 1.8 2.10E-08 1.40E-08 0.10 3.50E-09 
0.64 1.33 

 
2.8 5.08E-08 2.18E-08 0.06 4.67E-09 

SRAM (Read) 1.8 5.50E-07 3.70E-07 0.10 9.20E-08 
0.64 1.33 

 
2.8 1.33E-06 5.76E-07 0.06 1.23E-07 

Shift Register 
1.8 0.31 0.2 0.23 0.12 

0.64 1.34 
2.8 0.75 0.31 0.15 0.16 

And 
1.8 3.40E-09 2.20E-09 0.10 5.60E-10 

0.64 1.34 
2.8 8.23E-09 3.42E-09 0.06 7.49E-10 

 

a The ratio is the corresponding metrics of the fast/2.8V FU to the slow/1.8V FU. 
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4.5. Hypotheses Verification Using PSA 

In Section 3.4, we have demonstrated the effectiveness and efficiency of PSA in power 

optimization with module selection. Thus, it is an appropriate platform for empirically testing 

our library construction hypotheses proposed in Section 4.3. 

For our subsequent experiments on the power results of different libraries, for each DFG, 

we used a reasonably high-speed latency constraint of Lc = LASAP(fastest) + 0.1(LASAP(slowest) – 

LASAP(fastest)), where LASAP(slowest) (LASAP(fastest)) is the ASAP latency of the DFG assuming 

the slowest (fastest) speed for all operations. TABLE VII shows results of 14 media benchmark 

DFGs (from [37]) of PSA using dual-Vdd FUs (see TABLE V) and PSA using dual-design FUs 

(see TABLE VI). The results show that PSA using dual-design FUs achieves up to 29.19% and 

an average 16.83% energy improvement (equivalently, power improvement) over PSA using 

dual-Vdd FUs. These results especially show that FUs with different designs that typically have 

larger power and delay ranges than that of different-Vdd FUs, can provide us much better power 

optimization, thus proving the delay and power range aspect of Hypothesis 1 in Section 4.3.1. 

We also constructed more extensive 3- and 4-speed design-based libraries based on the 

extrapolation of the power-delay characteristics of the arithmetic circuits listed in TABLE V—as 

we argued earlier and demonstrated in TABLE V, it is possible to design arithmetic functions 

with a wide range of power and delay, as well as with desired PDP ratios via hierarchically 

constructed hybrid designs using different known design approaches at different levels of the 

hierarchy. Our intention here was to test our hypotheses not only between multi-design and 

multi-Vdd libraries, but also between different multi-design libraries that either satisfy or do not 

satisfy the PDP ratio aspect of Hypothesis 1. To that end, we constructed a 4-speed good” library 

(the PDP ratios of all the three faster FUs to the slowest FU for each FT are in the range of [1, 
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1.25]) that satisfies Hypothesis 1 and a 4-speed library with one “bad” FU (the PDP ratio of a 

faster FU to the slowest FU for each FT is in the range of [1.5, 2]) per FT that does not satisfy 

Hypothesis 1. Thus, the latter library does not satisfy Hypothesis 1 in only a minor way for only 

25% of the speeds, but as we will see in the results, this causes a significant increase in power of 

the corresponding designs compared to using the 4-speed good library. We stressed Hypothesis 1 

verification further by constructing a 3-speed library with the same delay and power ranges as 

the 4-speed libraries, for an apples-to-apples comparison, in which all FUs satisfy Hypothesis 1 

and are a proper subset of the FUs in the 4-speed good library. The motivation is to check if our 

hypothesis holds up for an all-good but smaller design space (3-speed library compared to 4-

speed library) than that of the 4-speed 1-bad library. TABLE VIII shows the results of the 

comparisons between the three libraries. The experiments show that PSA using either the good 

4-speed or good 3-speed library gives significant power improvements of 17.26% and 10.57% in 

average, respectively, over the 4-speed library with only one bad speed per FT. Another 

interesting phenomenon can be seen in the “Bad FU” column, which gives the number of bad 

FUs chosen for each DFG by PSA for the 4-speed 1-bad-FU library. For six DFG’s, PSA 

correctly does not choose any bad FU, but still suffers a power deterioration, though almost 

always in single-digit percentages (in 9 out of 12 comparisons across these 6 DFG’s), compared 

to the other two libraries. This most probably is due to the reduction of available delay and 

power ranges in some cases, and the general loss of solution space, resulting from ignoring the 

bad FUs. However, when PSA chooses one or more bad FUs, for many DFG’s it has a 20+% to 

30+% power deterioration compared to the 4-speed all-good library. This bolsters Hypothesis 1 

further:  
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When a module-selection algorithm is smart enough not to choose any bad FU of a 

library not satisfying Hypothesis 1, it still has power deterioration compared to a library 

satisfying Hypothesis 1 due to the relative loss of solution space, and when the algorithm is not 

so smart and chooses a few bad FUs, it suffers even greater power increase. Further, for 

reasonably high-speed (but not the highest possible speed) designs with latency constraints that 

are a little above the smallest critical path delay of the DFG (critical path delay assuming 

operations delays are those of the fastest FUs in the library), it is almost always better for power 

optimization to have a smaller library with FUs that satisfy Hypothesis 1 versus a larger library 

where some FUs (that can include the fastest FUs) do not satisfy the hypothesis.  
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TABLE VII 

TOTAL ENERGY (EQUIVALENTLY, POWER) RESULTS FOR PSA USING DUAL-VDD 

FUS AND PSA USING DUAL-DESIGN FUS 

 

 

a DFG sizes are indicated by the number of operations and the number of dependency arcs.   

Energy 

(pJ)

Slow 

FUs

Fast   

FUs

Energy 

(pJ)

Slow 

FUs

Fast   

FUs

hal 11, 8 34 2322 4 2 2252 4 1

horner 18, 16 73 3674 1 4 2966 2 2

arf 28, 30 85 7096 1 2 5779 1 2

motion 32, 29 23 7177 10 9 5809 9 7

ewf 34, 47 130 2933 2 1 2794 2 1

h2v2 51, 52 109 1484 3 3 1155 5 1

feedback 53, 50 28 8615 19 5 6284 13 4

epic 56, 73 92 10750 4 4 9320 5 3

bmp 106, 88 89 8068 8 8 6670 6 3

aux 108, 104 32 17969 20 16 13935 21 8

mul 109, 116 71 16678 12 8 15186 14 2

idcot 114, 164 115 13731 10 13 11967 16 4

jpeg 134, 169 58 18711 31 17 13250 24 5

smooth 197, 196 54 41653 39 29 32836 31 16

Avg 75.1, 81.6 70.9 11490.1 11.7 8.6 9300.2 10.9 4.2

Dual-Design

DFG size
a Lc

Dual-Vdd
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TABLE VIII 

POWER RESULTS AND FU STATISTICS FOR PSA WITH 4-SPEED-ALL-GOOD 

LIBRARY, PSA WITH 3-SPEED-ALL-GOOD LIBRARY AND PSA WITH 4-SPEED-ONE-

BAD LIBRARY 

 

 

 

Total 

Power (10
5 

units)

Improv. 

vs 4-Sp-

1-Bad

Total 

Power (10
5 

units)

Improv. 

vs 4-Sp-

1-Bad

Total 

Power (10
5 

units)

Bad FUs

hal 71 171.2 23.37% 202.1 9.53% 223.4 1

horner 153 205.5 16.16% 219.9 10.28% 245.1 1

arf 181 430.1 9.26% 463.2 2.28% 474.0 0

motion 88 398.3 22.59% 453.1 11.93% 514.5 0

ewf 283 239.4 17.53% 269.3 7.23% 290.3 0

h2v2 243 105.5 0.19% 105.7 0.00% 105.7 0

feedback 106 453.2 9.70% 494.5 1.47% 501.9 0

epic 112 472.0 30.65% 526.6 22.63% 680.6 1

bmp 107 272.0 36.55% 291.9 31.91% 428.7 1

aux 123 1030.8 10.33% 1094.4 4.80% 1149.6 1

mul 155 1093.2 11.14% 1165.1 5.29% 1230.2 4

idcot 244 786.2 6.79% 845.0 -0.18% 843.5 0

jpeg 223 986.2 12.02% 1058.1 5.61% 1121.0 1

smooth 204 1810.5 24.86% 1949.1 19.10% 2409.4 4

Avg 163.8 603.9 17.26% 652.7 10.57% 729.9 1.0

DFG Lc

4-Speed-All-Good 3-Speed-All-Good 4-Speed-1-Bad
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5. LPR-GPS: NEW DIRECTION FOR ENERGY MINIMIZATION

 

The work in this chapter has been published in [4]. 

In this chapter, we propose a scheduling algorithm LPR-GPS with a single-speed library 

to minimize the total leakage energy (LE) of a computation (the ME-LCS problem), which is the 

most important power/energy metric to minimize in systems that do not operate continuously. 

This problem is motivated further in Section 5.2 after the energy model is formulated in Section 

5.1.  

Our LPR-GPS algorithm is still able to obtain significant total LE reduction without 

considering orthogonal power/energy reduction techniques like module selection of different 

power-speed characterized FUs for each function [8] [9] [10], bus switching probability 

reduction [11] and power gating [12]. It thus provides a good optimization starting point for 

other low-power techniques (which are all orthogonal to our approach) to achieve better results 

than they do otherwise. For example, techniques [8] [9] [10] that switch low-Vth and/or high-Vdd 

FUs on non-critical paths to high-Vth and low-Vdd FUs, respectively, to reduce power but 

increase the path latencies close to the latency constraint, can be combined with latency space 

exploration similar to that in our algorithm, so that a good sweet spot of less than the most 

aggressive low-power Vth/Vdd reassignment and a latency smaller than the latency constraint is 

reached where the total LE is minimized. 

We then give the detailed formulation of our LPR-GPS algorithm in Section 5.3, where 

the following major improvements of LPR-GPS compared to FDS are detailed:  
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• An initial probabilistic distribution graph of the number of functional units used in each 

control step based on a first-pass non-uniform probability driven randomized scheduling that 

yields the final starting probabilities that are conducive to LE minimization; 

• A root-mean-square based estimation of the maximum functional unit usage distributed across 

control steps that contributes to minimizing either the overall unit-time leakage power or total 

leakage energy; 

• a fast and greedy noncommittal scheduling algorithm for the purpose of estimating the latency 

for scheduling output operations in order to minimize the product of estimated unit-time leakage 

power and estimated latency. 

Experimental results on 11 media benchmarks demonstrate a total LE reduction of up to 

64% and an average of 44% compared to conventional FDS with a power-driven modification 

that only minimizes unit-time LP (which is also what other low-power approaches do), and a 

total LE reduction of up to 39% and an average of 12% compared to a version of our algorithm 

that has the first two aforementioned improvements, but does not explore the latency space for 

total leakage energy minimization. This demonstrates the efficacy of co-exploring unit-time 

leakage power and latency spaces for leakage energy minimization. 

5.1. Energy Model 

We formulate the LE minimizing scheduling problem as follows. 

First, we define unit LP LPunit as the amount of leakage energy expended per cc by the 

HLS design: 

𝐿𝑃𝑢𝑛𝑖𝑡 = ∑ 𝑙𝑝(𝑘) × 𝑛𝑢𝑚(𝑘)

 𝑘∈𝑎𝑙𝑙 𝐹𝑇𝑠

                                      (5.1) 

where lp(k) is the leakage energy consumption per cc of FUs of FT k, and num(k) is the number 

of allocated FUs of FT k. Note that while LPunit is strictly speaking an energy metric and not a 
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power one in the conventional sense (i.e., it is not energy per second), we have preferred to use 

the term “power” in it for purposes of distinguishing it from the term “total LE”, and the fact that 

it is still energy per some unit time (which is not necessarily a second).  

 Then, we define total LE LEtotal is the total amount of leakage energy expended by the 

design per computation:  

𝐿𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑃𝑢𝑛𝑖𝑡  × 𝐿                                                           (5.2) 

where L ≤ Lc, the latency constraint, is the achieved latency of the scheduling solution. Total LE 

is the minimization objective of our LPR-GPS algorithm.  

 Finally, we note that the total dynamic energy DEtotal expended by the design is: 

𝐷𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑑𝑝(𝑢) × 𝑑(𝑢)

𝑢∈𝑉

                                             (5.3) 

where dp(u) is the dynamic energy consumed per cc of FUs of the FT that can execute operation 

u and d(u) is the operation delay of u. Since operations are dependent on the DFG of the design 

and there is only one speed per FT, thus d(u) and dp(u) are constants for a given single-speed 

library and DEtotal is independent of the scheduling solution, i.e., the dynamic energy consumed 

by an operation is identical for all scheduling solutions. Therefore, the only component of energy 

consumed per computation in a HLS design with a single-speed library, that can be minimized in 

a scheduling solution is the total LE. 

5.2. Motivation of Leakage Energy Minimization 

Current digital designs generally have a target speed determined by the overall 

application they are a part of. They need to operate by consuming as little energy as possible and 

not necessarily as fast as possible. Our work in this chapter that minimizes total LE of a 

computation processed by a digital system, either ASIC or FPGA-based, is especially applicable 

to systems that perform one or a stream of computations for a period of time and then become 
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idle for some time, for which point they can be powered off (power-gated) or put in sleep-mode 

(for example, a low Vdd state) before it “wakes up” at a later time to perform another stream of 

computations. Examples of such systems are embedded systems that are only active when 

controlling a larger system that works sporadically (for example, implanted drug delivery 

systems and cell phones) and hardware accelerators in a system-on-chip that are used 

occasionally [47]. In such an operating scenario, it is important to minimize the LE consumed 

per computation so that total energy consumption over the lifetime of the digital system is 

minimized, or, alternatively, for a battery power device, the battery-charge lifetime is maximized. 

Minimizing LE per computation is equivalent to minimizing the product of unit LP and the 

achieved latency L of the computation. These considerations apply to both non-pipelined and 

pipelined systems—in the latter, the latency comes into the picture as the fill-time of the pipeline, 

and can represent a significant portion of the total LE for short bursts or streams of computation. 

Conventional scheduling algorithms exploit the entire latency constraint for the computation to 

reduce the number of FUs needed in the corresponding HLS design, or to reduce power 

(examples of such algorithms include those that use multiple supply or threshold voltage 

techniques to replace fast but high power-consuming FUs with slow ones on non-critical paths). 

However, as we show below, minimizing power does not minimize computation energy, which, 

as we have discussed above, is the important objective to minimize in not-always-in-use but 

always powered-on systems and devices that contain the digital system whose energy 

consumption we aim to minimize. To minimize computation LE, the product of unit LP and 

latency needs to be minimized. However, latency is rarely considered as a part of an energy 

optimization objective. To the best of our knowledge, our work is the first one that considers this 

aspect explicitly for LE minimization.  
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As we mentioned above, most digital systems do not need to perform their computations 

as fast as possible, but instead have a target speed and need to minimize power/energy as much 

as possible. This indicates that the latency constraints for such designs will be larger than the 

critical path delay of the DFG of the corresponding computation. Thus, in our experiments, we 

use a latency constraint that is somewhat larger, by factors ranging from 1.5 to 2 of the critical 

path delay of the DFG, which is the minimum achievable latency in a corresponding design. 

In Figure 13, we illustrate the optimization space that is available for minimizing the total 

LE of a computation with a given latency constraint Lc. Using as an example of LP minimization 

algorithms, a sophisticated but latency-agnostic LP minimization (not total LE minimization) 

algorithm PR-GPS that we will discuss in Section 5.3.2, we plotted both unit LP and total LE of 

a DFG idctcol with different latency constraints in Figure 13(a) and (b), respectively. The 

latencies are given as factors of the critical path delay of the DFG, which is in the range [1, 2] 

with a granularity of 0.05. Similar plots were obtained for other DFGs, and we present the 

idctcol plots as representative of a typical DFG. Since PR-GPS only minimizes unit LP, as 

expected, the final latencies of the designs it synthesizes is exactly or very close to the given Lc’s 

(as using as much the available latency as possible minimizes the number of FUs and thus LP). 

Thus, the plots in Figure 13 are essentially the unit LP and total LE of different designs for the 

same DFG but with different latencies. As expected, the unit LP is monotonically non-increasing 

as the design latency increases as the increased latencies provide opportunities to increase 

resource sharing and hence reduce the number of high power-consuming FUs. However, total LE 

fluctuates with design latency increasing, and the best results are frequently seen at somewhat 

lower latency designs. For example, for an Lc factor of 1.6, the minimum total LE is obtained for 

a latency factor of 1.35. Therefore, to achieve better total LE minimization, an algorithm should 



71 

 

be able to determine such smaller latencies, if they exist (they will not always exist, as the plot 

also shows—for example, for an Lc factor of 1.35, there does not exist a lower-latency design 

with lower LE), rather than exploiting the entire latency constraint to minimize the unit LP and 

expecting the total LE to be minimized as well.  

 

 
(a) 

 
(b) 

Figure 13. (a) Unit LP results and (b) total LE results obtained by PR-GPS under different 

latency constraints for the DFG idctcol. 
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Finally, we note that once scheduling is completed, it is straightforward to bind 

operations to actual FUs if there are no other considerations except the optimization metric and 

the latency constraint that were considered during scheduling. This can be achieved by scanning 

the scheduled operations in increasing order of cc’s, binding them to available FUs (at that point 

in the binding process) and allocating new FUs if all FUs of that FT are busy, so that the number 

of active FUs in each cc for each FT is exactly the number of FUs on which operations are 

executed as determined after scheduling. This is essentially the same as using the polynomial-

time left-edge algorithm [48] for minimizing the number of colors in an interval graph that can 

be used to model operation execution in FUs across cc’s. 

5.3. Our Scheduling Algorithm for Leakage Energy Minimization 

In this section, we present our leakage energy optimization algorithm that explores the 

dimension of minimizing the product of unit-time leakage power (unit LP) and latency. The 

algorithm can be coupled with any other leakage and dynamic power optimizing techniques [8] 

[9] [10] [11] [12] as it does not compete with these existing techniques but supplements them to 

achieve a better energy optimization than can be achieved by these techniques alone. 

The main beneficial aspect of FDS, which we retain in our algorithm, is its global 

cognizance of the min-max optimizing metric’s estimated value based on all scheduling options 

as captured by the DG(k) for each FT k. This min-max metric is the number of FUs in FDS and it 

is unit LP in our case. Using this global information, in each scheduling iteration, in which it 

schedules one unscheduled operation, FDS evaluates each scheduling option via the self and PS 

forces (see Section2.5.3 and 2.5.4) to choose a scheduling option that minimizes the total force 

and, according to FDS’s rationale, the minimization of the corresponding expected total number 

of FUs across all FTs. However, as we analyzed in Section 2.5.5, there are a few drawbacks in 
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FDS for optimizing a min-max objective. We have made significant modifications to FDS to 

rectify these drawbacks, as well as to optimize a non-min-max objective such as total LE (which 

has as a component a max function, unit LP, for each DG(k)) as follows. 

Firstly, instead of associating the DG(k, i) values, where k is the FT and i is the cc, as 

spring constants and the probability changes ∆pu(i) as displacements, thus bringing the concept 

of force = (spring constant) × (displacement) that needs to be minimized as in [13] [14], we 

consider the DG(k, i) values across the 2-dimensional cc and FT space as a global probability 

map (GPM) of all possible scheduling events, and we choose the best scheduling event to 

schedule so that a more direct estimate of Equation (5.2) than the forces is minimized. This and 

other issues of our new GPM based algorithm are explained in detail in the subsequent 

discussions. 

1. The use by self and PS forces in FDS to minimize Equation (5.5) is somewhat flawed, and as 

one of our major improvements to FDS, we modify this formulation in Section 5.3.2 to get a 

more accurate estimate of the final value of the min-max objective of interest (number of FUs 

in FDS or, in our case, unit LP, which is part of minimizing total LE) for each FT across all 

cc’s. 

2. Another drawback in FDS is the assumption of uniform scheduling probabilities across all 

cc’s in the mobility range (MR) of an operation. We rectify this in Section 5.3.1 with a more 

accurate scheduling probability determination and hence more accurate DG(k, i)’s that are 

conducive to the min-max optimization metric of interest. 

3. Finally, we develop our most significant extension of an FDS-type evaluation of scheduling 

options for LP minimization, in which, along with unit LP estimation, we heuristically 
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estimate the latency of the final solution for each scheduling option, and thereby estimate the 

total LE. 

We then choose the scheduling option that minimizes the product of estimated latency 

and estimated unit LP, the total LE. Note that earlier LP minimization HLS techniques [9] [10] 

[38] only minimized the unit LP assuming that the achieved latency will be the same as the 

latency constraint. In fact, empirically, they use up all or almost all the latency space available to 

get their final solution as this minimizes unit LP; however, this does not minimize total LE as 

discussed in Section 5.2. Furthermore, since the latency estimation part is somewhat time-

consuming, we reasoned that: 

1. We really need to do this estimation for scheduling only output operations (operations that 

have no successors), as the maximum latency only across all output operations is the final 

latency of the design. 

2. We can also schedule all output operations first, thereby obtaining a pre-determined latency 

for the partial design in which only output operations are scheduled, and which 

probabilistically minimizes the total LE while satisfying the latency constraint. We can then 

schedule the rest of the operations without the latency estimation, that is, the design latency is 

now a pre-determined constant and we only minimize unit LP. This allows us to obtain the 

solution faster with little impact on the solution quality. 

Our experiments have borne out the efficacy of the above approach. The three main steps 

of our algorithm are summarized as follows: 

1. Determine more accurate low-energy oriented scheduling probabilities and thus DG(k, i)’s by 

an initial low unit LP driven randomized scheduling process coupled with a statistical analysis 
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of the results. Note that unit LP can be substituted by any other min-max metric of interest 

like number of FUs or total area to obtain accurate DGs for that metric using our approach. 

2. Use a more accurate selective root-mean-square (RMS) based estimate of the final maximum 

DG values across FTs for each scheduling option. This gives us a highly accurate unit LP 

estimate for each scheduling option. 

3. Scheduling output operations first by evaluating both the estimated unit LP and the estimated 

latency for their scheduling options using a greedy and quick noncommittal scheduling of 

unscheduled output operations, and choosing the scheduling option that minimizes their 

product, i.e., the estimated total LE of the design. After all output operations are scheduled 

and thus the probabilistically minimized total LE is determined, the remaining operations are 

scheduled based on minimizing only the estimated unit LP.  

These ideas and the steps of our algorithm which we call LPR-GPS (for Latency times 

unit Power minimization via RMS-driven Global Probability map based Scheduling) are 

explained in subsequent subsections in greater detail. The pseudo code for LPR-GPS is given in 

Figure 14. 
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Figure 14. The pseudo code of LPR-GPS algorithm. 

 

5.3.1. Energy-Driven Scheduling Probability Determination 

We determine the energy-driven scheduling probabilities via first-pass unit LP based 

probability driven Monte Carlo simulation to obtain multiple randomized scheduling solutions. 

From these, the final energy-driven probabilities are determined to construct the DG. The main 

idea is that as a first-pass probability, we want to assign a low probability to a scheduling option 

that is more likely to increase the unit LP in the scheduling solution, to lower the chance that it is 

chosen to schedule. On the contrary, a good scheduling option that is more likely to lower or to 

keep the unit LP unchanged should be assigned with a high probability. The uniform scheduling 

probability assumed by FDS does not achieve this, and is a drawback of FDS. We then perform 

multiple randomized schedulings based on these first-pass probabilities and select those solutions 

that have low LE, and determine second-pass scheduling probabilities based on these solutions. 

These serve as the initial probabilities for DG construction, and our deterministic LE 

Algorithm LPR-GPS(DFG G(V, E), latency constraint Lc, single-speed library K) 

1.  Determine low-energy oriented scheduling probabilities (refer to Section 5.3.1) 

2.  While there are unscheduled output operations Do 

3.  Update tASAP and tALAP of unscheduled output operations 

4.  For each scheduling option of output operations Do 

5.  Perform noncommittal greedy scheduling (refer to Section 5.3.3) 

6.  Calculate the unit LP estimate LPunit and latency L estimates and the corresponding total LE 

 estimate LEest = LPunit ∙ L of the greedy scheduling solution 

7.  End for 

8.  Choose the scheduling option with the smallest LEest to schedule 

9.   End while 

10.  While there are unscheduled operations Do 

11.  Update tASAP and tALAP and scheduling probabilities of unscheduled operations 

12.  For each scheduling option Do 

13.  Calculate RMS-based unit LP estimate LPunit (refer to Section 5.3.2) 

14.  End for 

15.  Choose the scheduling option with the smallest LPunit to schedule /* Note that the latency has 

 already been determined after output node scheduling, and thus at this point LPunit 

 minimization is equivalent to total LE minimization */ 

16.  End while 
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minimization algorithm that co-explores unit LP and latency spaces for minimizing their product. 

According to our experiments, just this change of initial scheduling probabilities achieves an 

average of 4.2% total LE reduction compared to having uniform scheduling probabilities. Since 

the scheduling probability determination is orthogonal to the issue of force formulation, it can 

also be incorporated with other FDS-like algorithms for improving their solution quality. 

An example to illustrate the rationale of using energy-driven scheduling probabilities 

based on several scheduling solutions is given in Figure 15. For scheduling the two addition 

operations with a delay of one ccc shown in Figure 15(a) into 3 cc’s, there are three possible 

solutions as shown in Figure 15(b). Since the two additions are executed in sequence, all 

solutions need one adder and hence their unit LP’s are the same. However, by Equation (5.2), 

their total LE is different due to the difference in the achieved latency, i.e., the two solutions on 

the right in Figure 15(b) have 1.5 times of the total LE than the one on the left, and hence should 

be avoided by the scheduler. Furthermore, according to Equation (2.8), the scheduling 

probabilities of op1 and op2 in cc 1 and cc 2 are all 0.5. Such uniform scheduling probability 

does not differentiate between scheduling options that correspond to good or bad scheduling 

solutions, and thus does not help to achieve the total LE minimization goal. A good scheduling 

probability formulation, as we have in our energy-driven scheduling probability formulation, 

assigns probabilities for op1 in cc 1 and op2 in cc 2 that are much higher than that for op1 in cc 2 

and op2 in cc 3. This makes the scheduling option corresponding to low energy solutions more 

likely to be chosen in the final scheduling solution.  



78 

 

 
Figure 15. (a) An unscheduled DFG with two operations op1 and op2. (b) All three solutions to 

schedule the DFG subject to a latency constraint of 3 cc’s. 

 

An outline of our energy-driven scheduling probability formulation is as follows. We 

perform several energy-driven random schedulings and derive the energy-driven scheduling 

probabilities from the statistics of low-energy scheduling solutions. The randomization is guided 

by first-pass version of low unit LP oriented scheduling probabilities, called modified 

probabilities. The final probabilities determined from the statistics of low-energy randomized 

scheduling solutions are used for DG construction (refer to Section 2.5.2). 

A DG with uniform scheduling probabilities is constructed first for each FT in the same 

way of FDS. For each unscheduled operation, the modified scheduling probability of a 

scheduling option is inversely proportional to the DG values of the corresponding FT in its MR, 

since the objective of FDS-like algorithms is to minimize the maximum value of a metric (i.e., 

for optimizing a min-max objective metric) for that FT. For a single-cc operation u of FT k, if its 

MR is MRu, its modified scheduling probability mpu(i) in cc i is: 
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𝑚𝑝𝑢(𝑖) =

1
𝐷𝐺(𝑘, 𝑖)

∑
1

𝐷𝐺(𝑘, 𝑗)𝑗 ∈𝑀𝑅𝑢

                                             (5.4) 

This formulation is extended for multi cc operations as follows. For a multi-cc operation u of FT 

k, if its delay is du and mobility range is MRu, its energy-driven random scheduling probability 

mpu(i) in cc i is: 

𝑚𝑝𝑢(𝑖) =

1
𝐸𝐷𝐺(𝑘, 𝑖)

∑
1

𝐸𝐷𝐺(𝑘, 𝑗)𝑗 ∈𝑀𝑅𝑢

                                            (5.5) 

where EDG(k, i) is the effective DG (EDG) value of FT k in cc i. The EDG is meant to capture 

an average-type function of the DG values in the delay range [i, i + du – 1] of an operation u with 

delay du scheduled in cc i, which gives more prominence to higher DG values, since we use it to 

determine scheduling probabilities that are inversely proportional to the high DG value(s) in its 

delay range. Once again, this is desirable so that we schedule to minimize the maximum DG 

value of the final scheduled solution. The EDG value is formally defined as: 

𝐸𝐷𝐺(𝑘, 𝑖) = 𝑅𝑀𝑆
𝑚 ∈[𝑖,𝑖+𝑑𝑢−1]

(𝐷𝐺(𝑘, 𝑚))                                    (5.6) 

where RMS is the root-mean square function defined as: 

𝑅𝑀𝑆
𝑚 ∈[1,𝑛]

(𝑥𝑚) = √
𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2

𝑛
                                       (5.7) 

where xm is a numerical value. 

We prefer RMS over arithmetic average here and in the RMS-based power estimate 

formulation to be discussed later, because it assigns higher than a linear weight to larger values 

in the set. Since the unit LP is very likely determined by the current largest DG values among the 

set of considered DG values, RMS average allows us to focus on the maximum and near-
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maximum values while also considering some effect of other lower values. Note that, any of the 

maximum and near-maximum current DG values have good likelihoods of becoming the final 

maximum DG values (across all FTs) at the end of scheduling, and thus determining the final 

unit LP. It is thus useful to not just take the maximum value but a higher-value prioritized 

average, such as RMS, of these DG values. Otherwise, for example, we will not be able to 

distinguish between DG value subsets that: a) have several near-max values and thus have a high 

likelihood of the breaching the current max DG value during subsequent schedulings and 

determining the final unit LP, and b) have very few or no near-max values, making it much less 

likely to lead to the final max DG value and thus determining the final unit LP. The RMS value 

of the latter subset is lower than the former, and the latter thus represents a more preferable 

subset of cc’s to schedule an operation in to minimize the final unit LP. 

After determining the modified scheduling probabilities, several energy-driven 

randomized scheduling solutions are generated based on these probabilities. Each solution is 

obtained by scheduling operations in a topological order, randomly choosing one cc i in their 

mobility ranges with a probability of mpu(i), until all operations are scheduled. In our 

experiments, the number of energy-driven random scheduling solutions we generate is the 

product of latency constraint Lc and the number of operations |V| in order to obtain a reasonable 

sample size of randomized solutions for problems of different sizes, and thus more accurate 

energy-driven final scheduling probabilities with which to construct the DG. 

Not all energy-driven random scheduling solutions are accepted for final scheduling 

probability determination: only the top 10% of low total LE results are considered to calculate 

the energy-driven scheduling probabilities. If there are N such low-energy random scheduling 

solutions, and the scheduling option of scheduling operation u in cc i appears n(u, i) times among 
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all the results, we determine the final scheduling probability to schedule operation u in cc i as: 

𝑝𝑢(𝑖) =
𝑛(𝑢, 𝑖)

𝑁
                                                        (5.8) 

 A caveat is that it is possible to miss some m scheduling options of an operation in the 

set of low-energy random scheduling solutions, in the case that such scheduling options only 

appears in high-energy solutions. For a DFG and a library that provide sufficient low-energy 

random scheduling solutions, a quick fix is to assign the lowest scheduling probability of 1/N to 

each such scheduling options and proportionally scale the other scheduling probabilities of the 

same operation by a factor of (1 – m/N) so that the sum of scheduling probabilities for the 

operation is 1. This maintains a complete solution space while ensuring a low likelihood for a 

bad scheduling option to be chosen during the actual scheduling phase. 

5.3.2. RMS-Based Power Estimation 

The RMS-based power estimate minimizes the sum of unit LP’s of all FTs during 

scheduling by keeping its increment as low as possible, or on the flip side, making its decrement 

as high as possible. Our RMS-based power estimation function gives maximum and near-

maximum DG values higher prominence, since at least one of these values are most likely to be 

the maximum ones after all operations are scheduled. At the same time, in order to reduce 

“noise”, it ignores DG values that are smaller than a threshold fraction of the current maximum 

DG value for the corresponding FT.  

We first observe that the force formulation in FDS is not strongly correlated with 

minimizing the maximum DG values, the min-max goal. Based on the analysis of this drawback 

discussed in Section 2.5.5, we propose a root-mean-square (RMS) based power estimate that is 

proven to yield better results than the FDS force formulation. A conceptual example is given in 

Figure 16. In a particular scheduling iteration, consider two single-cc delay operations, u and v, 
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whose MR’s are [i, i + 1] and [j, j + 1], respectively. Besides the four cc’s in the MRs, there is 

another cc shown in Figure 16 between the two, whose DG value is 9. The current maximum DG 

value in the DFG is 10. Between u and v, there are four scheduling options available: u in i, u in i 

+ 1, v in j and v in j + 1. For the sake of clarity, we only calculate self-forces in this example, as 

PS-forces have a similar effect. The FDS forces of the four scheduling options are: 

𝑆𝐹𝑢(𝑖) = 10(0.5) + 8(−0.5) = 1,     𝑆𝐹𝑢(𝑖 + 1) = −1, 

𝑆𝐹𝑣(𝑗) = 3(0.5) + 6(−0.5) = −1.5,     𝑆𝐹𝑣(𝑗 + 1) = 1.5. 

Clearly, scheduling of v in cc j is chosen by FDS in the current iteration, since it has the smallest 

force.  

Calculating the RMS-based power estimates of the four scheduling options with a 

threshold fraction of 0.9, i.e., only DG values ≥ 0.9 DGmax(k) are included in the RMS function, 

by Equation (5.7), we get:  

𝑃𝑢𝑛𝑖𝑡(𝑢, 𝑖) = 𝑅𝑀𝑆(10.5) = 10.5,     𝑃𝑢𝑛𝑖𝑡(𝑢, 𝑖 + 1) = 𝑅𝑀𝑆(9.5, 9) = 9.25,  

𝑃𝑢𝑛𝑖𝑡(𝑣, 𝑗) = 𝑅𝑀𝑆(10, 9) = 9.51,     𝑃𝑢𝑛𝑖𝑡(𝑣, 𝑗 + 1) = 𝑅𝑀𝑆(10, 9) = 9.51. 

Based on the RMS formulation, our algorithm chooses to schedule u in cc i + 1 in the current 

iteration. For the min-max goal, the scheduling option chosen by our algorithm reduces the max 

DG value by 0.5 while FDS’s choice does not change the max DG. As we discussed in Section 

2.5.5, the problem with the FDS force formulation is that it essentially captures the difference 

between the DG value of the to-be-scheduled cc and the average DG value of all other cc’s in the 

MR of each unscheduled operation being evaluated, while any estimate of the increase or 

decrease in the maximum DG value(s), post-scheduling, is not accounted for unless the 

maximum DG value lies in the MR of an operation. Further, as the example above illustrates, 

across the forces of all scheduling options, the least force will generally not correspond to the 
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largest decrease or smallest increase of the maximum DG value due to the aforementioned 

property of what the force measures. Thus, the scheduling decisions are actually not made based 

on this most important consideration and hence FDS cannot guarantee a good approximation of 

the min-max goal. 

 

 
Figure 16. An example to illustrate that the RMS-based metric estimate is an improvement over 

FDS force for a min-max goal. 

In our RMS-based power estimate, a power distribution graph (PDG) is introduced to 

estimate the unit LP distribution across cc’s for each FT. As we mentioned in Section 2.5.2, the 

maximum DG value DGmax(k) for FT k operations at any stage in the scheduling process gives us 

a probabilistic estimate of the number of FUs of that FT, since it has the highest likelihood to 

become the maximum final DG value, which determines the final number of FUs of FT k needed 

after all operations have been scheduled. For the sake of unit LP estimation, we transform the 

DG value DG(k, i) of FT k in cc i to PDG value PDG(k, i) as: 
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9 

3 → 3.5 

6 → 5.5 

j j + 1 i i + 1 

u’s MR v’s MR 

cc 

Changes in DG 

values for u 

scheduled in cc i + 1 

Changes in DG 

values for v 

scheduled in cc j 
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𝑃𝐷𝐺(𝑘, 𝑖) = 𝑙𝑝(𝑘) × 𝐷𝐺(𝑘, 𝑖)                                       (5.9) 

where lp(k) is the leakage energy of FT k per cc. Intuitively, the maximum PDG value PDGmax(k) 

is the probabilistic estimate of the unit LP of FUs of FT k. A straightforward use of PDG values 

instead of DG values in FDS yields a straightforward power-driven FDS (PFDS) algorithm for 

unit LP minimization to which we compare our LPR-GPS algorithm. 

In our selective RMS formulation for determining the goodness of a scheduling option 

for minimizing unit LP, we only consider a few PDG values. There are two sets of candidate 

PDG values to be included in the RMS function: a local set and a global set. The former includes 

some candidate PDG values that are directly affected by the scheduling option, while the latter 

includes certain values that are indirectly affected. It is desirable to include more candidate PDG 

values in the local set than in the global set of the RMS-based unit LP estimation, since the PDG 

value changes caused directly by a scheduling option are more deterministic as compared to the 

more probabilistic nature of the changes in the global PDG values due to shrinking of the MRs of 

predecessors and successors of the operation whose scheduling option is being evaluated. 

The criteria to pick candidate PDG values when a scheduling option is evaluated are as 

follows. For a scheduling option to schedule operation u of FT k, we define the local range Rlocal 

of u to be PDG values of FT k in the range 𝑀𝑅𝑢 ∪ 𝐷𝑅𝑢(𝑡𝑢
𝐴𝐿𝐴𝑃), which is [𝑡𝑢

𝐴𝑆𝐴𝑃 , 𝑡𝑢
𝐴𝐿𝐴𝑃 + 𝑑𝑢 −

1], where recall that 𝑡𝑢
𝐴𝑆𝐴𝑃and 𝑡𝑢

𝐴𝐿𝐴𝑃 are the earliest and latest cc’s for scheduling u, respectively, 

and du is the delay of u. The local candidate PDG value set Slocal (u, i, k) is formulated as: 

𝑆𝑙𝑜𝑐𝑎𝑙(𝑢, 𝑖, 𝑘) = {𝑃𝐷𝐺(𝑘, 𝑖)|𝑃𝐷𝐺(𝑘, 𝑖) ≥ 𝛼×𝑃𝐷𝐺𝑚𝑎𝑥(𝑘), 𝑃𝐷𝐺(𝑘, 𝑖) ∈ 𝑅𝑙𝑜𝑐𝑎𝑙}  (5.10) 

where 0 ≤ α ≤ 1 is the local threshold fraction, and PDGmax(k) is the maximum PDG value of FT 

k. For the same operation, we define the global range Rglobal(k') to be PDG values of FT k' that is 
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in the range [1, Lc] if k’ ≠ k, and in the range [1, Lc] – Rlocal if k’ = k. The global candidate PDG 

value set Sglobal (u, i, k') of a FT k' is formulated as: 

𝑆𝑔𝑙𝑜𝑏𝑎𝑙(𝑢, 𝑖, 𝑘′) = {𝑃𝐷𝐺(𝑘′, 𝑖)|𝑃𝐷𝐺(𝑘′, 𝑖) ≥ 𝛼′×𝑃𝐷𝐺𝑚𝑎𝑥(𝑘′), 

𝑃𝐷𝐺(𝑘′, 𝑖) ∈ 𝑅𝑔𝑙𝑜𝑏𝑎𝑙(𝑘′)}                                             (5.11) 

where 0 ≤ α’ ≤ 1 is the global threshold fraction. To include more candidate PDG values from 

the local set, we set α < α’. Also, both local and global threshold fractions should gradually 

increase with more operations scheduled, as rationalized below. The dynamic threshold fraction 

formulation for α is given as: 

𝛼 = 𝛼𝑐 +
𝑁𝑠𝑐ℎ𝑑

2

𝑁𝑢𝑛𝑠𝑐ℎ𝑑
2

(1 − 𝛼𝑐)                                            (5.12) 

where αc is the initial local threshold fraction, Nschd and Nunschd are the numbers of scheduled 

operations and unscheduled operations, respectively, at any stage in the scheduling process. 

There is a similar dynamic fraction formulation for the global threshold α’. This dynamic 

fraction formulation matches the fact that with more operations scheduled, the PDG values 

become more deterministic and the likelihood for smaller PDG values to become the maximum 

value at the end of scheduling decreases. Therefore, the size of both Slocal and Sglobal become 

smaller, and they eventually only contain the maximum PDG values after all operations are 

scheduled. Our experiments show that the best average results are obtained when αc = 0.7 and αc' 

= 0.8. 

Finally, the RMS-based unit leakage power estimate LPunit(u, i, k) for scheduling 

operation u of FT k in cc i is: 

𝐿𝑃𝑢𝑛𝑖𝑡(𝑢, 𝑖, 𝑘) = 𝑅𝑀𝑆
𝑃𝐷𝐺(𝑘,𝑗) ∈ 𝑆𝑙𝑜𝑐𝑎𝑙(𝑢,𝑖,𝑘) ∪ 𝑆𝑔𝑙𝑜𝑏𝑎𝑙(𝑢,𝑖,𝑘)

𝑃𝐷𝐺(𝑘, 𝑗) +                             

∑ 𝑅𝑀𝑆
𝑃𝐷𝐺(𝑘′,𝑗) ∈ 𝑆𝑔𝑙𝑜𝑏𝑎𝑙(𝑢,𝑖,𝑘′)

𝑃𝐷𝐺(𝑘′, 𝑗)

𝑘′ ∈ 𝐾−{𝑘}

                              (5.13) 
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where K is the set of all FTs in the DFG. 

We term the scheduling algorithm that incorporates the new scheduling probabilities 

discussed in Section 5.3.1 and RMS-based power estimate to schedule all operations discussed 

above, without any latency estimation and thus without minimizing the unit LP and latency 

product, as PR-GPS (for unit Power minimization via RMS-driven Global Probability map based 

Scheduling). 

5.3.3. Greedy Scheduling for Latency Estimation 

As mentioned earlier, we schedule all output operations first in a way that the product of 

the estimated unit LP and estimated latency is minimized. Unit LP estimation was described in 

Section 5.3.2. Latency estimation is relatively more complex. For this purpose, we use a 

noncommittal fast greedy algorithm that is geared to minimize latency with minimum increase of 

the unit LP, thereby approximately minimizing the product of estimated unit LP and estimated 

latency. 

For evaluating a scheduling option of an output operation, we perform noncommittal 

greedy scheduling of all remaining unscheduled operations in topological order as follows. We 

determine the cc to schedule an unscheduled operation u by determining in its current MR if 

there exists at least one cc, where scheduling u does not require allocating a new FU (beyond the 

max number of currently allocated FUs for u’s FT), and if so, we schedule u in the earliest cc 

among these cc, thereby greedily minimizing both unit LP and latency for this local scheduling. 

If such a cc does not exist, we schedule u in the earliest cc in its current MR. This simple 

scheduling strategy is reasonably effective since it keeps FU allocation and thus unit LP growth 

as slowly increasing as possible while always trying to schedule as early as possible, which is 

correlated to the goal of minimizing the product of unit LP and latency in LPR-GPS. 
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5.4. Experimental Results 

Our LPR-GPS algorithm is implemented in C++ and experiments were performed on a 

machine with Core i7-4710HQ (3.5GHz) and 16GB RAM in Windows 10. We use 11 DFG 

benchmarks from [37]. The sizes of the benchmarks range from 11 to 197 operations. We have 

identified many works such as [42] [43] [44] [45] [46] [49] on FU design to obtain power/delay 

characteristics for several FTs as presented in TABLE IX. All FUs are based on 180 nm CMOS 

technology and for 16-bit input data. The latency constraints for the DFGs are determined as a 

latency constraint factor times the critical path delay. In our experiments, the latency constraint 

factor is in the range of [1.5, 2], as we need to represent typical embedded system requirements 

here in which there is a target speed but it is not the fastest possible, and in which total leakage 

energy minimization is a significant goal. The detailed results for a latency constraint factor of 

1.8 is presented in TABLE X, while results for other latency constraint factors are captured by a 

plot in Figure 17. 

As we noted earlier, it is not meaningful to compare LPR-GPS to other power 

optimization techniques in HLS, since they use orthogonal approaches such as Vdd or Vth based 

module selection and interconnect switching minimization, and since they can be combined with 

LPR-GPS to get better results than they would get using those approaches alone. In other words, 

LPR-GPS’s exploration is not competing with those of other known power minimization 

approaches, but in fact can supplement them. In TABLE X, we do the more meaningful 

comparisons of LPR-GPS to two versions of our internal techniques that have competing 

approaches to some of LPR-GPS’s sub-techniques and do not consider the dimension of 

obtaining an “optimal” latency to minimize total LE: PFDS and PR-GPS (both discussed in 

Section 5.3.2). For PFDS results, the latency achieved always turns out to be equal to the latency 
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constraint, although the moderate latency constraint provides an appreciable optimization space. 

It is almost the same for PR-GPS; however, compared to PFDS, PR-GPS reduces the total 

number of FUs by an average of 40.19%, yielding an average total LE reduction of 37.05%. This 

demonstrates the efficacy of both random-scheduling based metric-conducive determination of 

scheduling probabilities, and the RMS-based leakage power estimation (or any min-max 

objective estimation) that are present in PR-GPS but not PFDS. After incorporating greedy-

scheduling based latency estimation and scheduling based on minimizing estimated total LE, the 

total LE results of LPR-GPS are significantly better than both PFDS and PR-GPS: an average 

44.86% (12.41%) of total LE reduction is achieved comparing to PFDS (PR-GPS). Although the 

FU usage, and thus unit LP, of LPR-GPS is slightly increased compared to PR-GPS, as expected 

(and as also demonstrated by the conceptual plot in Figure 13), the latency is decreased by 

21.83%. This clearly establishes the benefit of considering estimates of both unit LP and latency 

during scheduling. 
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TABLE IX 

CHARACTERISTICS OF FUS 

Function Type 
Characteristics 

LP (mW) Delay (cc) 

Adder/Subtractor [16] 0.11 10 

AND [17] 0.02 1 

Multiplier [18] 1.76 22 

ASR/LSR [19] 0.20 1 

SRAM Read [20] 0.11 1 

SRAM Write [20] 0.22 2 

Divider [21] 5.28 88 

 

It can be seen that PR-GPS fails to minimize total LE compared to PFDS for DFGs h2v2 

and collapse due to extra FU usage in the latter. Besides, both algorithms have the same total LE 

for DFG “horner”. However, with latency considered, LPR-GPS can obtain superior scheduling 

solutions for these 3 DFGs compared to PR-GPS: the total LE of each of the three DFGs are 

decreased by more than 30%. This occurs due to the total number of FUs in the 3 DFGs not 

increasing or increasing very little in LPR-GPS compared to the other two algorithms, while the 

latency realized by LPR-GPS is decreased by about 38%. This observation further demonstrates 

the importance of considering latency as a part of total LE optimization in HLS. 

It can also be noted that for four of the DFGs, LPR-GPS obtains less than 4% total LE 

improvement over PR-GPS. To identify the reason, we used a similar approach to that in Figure 

13, i.e., ran PR-GPS with various latency constraints and plotted the total LE results across 

different latency constraint factors from 1 to 2. It turns out that the total LE differences between 

the given Lc’s and a smaller latency with minimum total LE are all lower than 10% and an 

average of 5% for the four DFGs. Thus, the fact that LPR-GPS does not obtain significant total 

LE improvements compared to PR-GPS for these DFG’s is mainly due to the inherent 
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characteristics of the DFG’s and not due to a deficiency in LPR-GPS. The overall results in 

TABLE X thus demonstrate that LPR-GPS can search the solution space that is neglected by PR-

GPS (and in general, by algorithms minimizing unit LP only), efficiently and effectively to yield 

latencies ≤ the given Lc so that close to the lowest possible total LE for the given DFG is 

obtained. 

To further demonstrate the efficacy of LPR-GPS with various moderate latency 

constraints, we also run PR-GPS and LPR-GPS under six different latency constraint factors in 

the range [1.5, 2], with a step size of 0.1. The average total LE of the two algorithms under 

different latency constraints are plotted in Figure 17. The average LPR-GPS results are more 

stable than the average PR-GPS results, showing that LPR-GPS is capable of locating the sweet 

spot latency L ≤ Lc, where the unit LP and latency product is minimized. 

Finally, we present the runtime comparison among the initial energy-driven scheduling 

probability determination step (for initial DG construction), PFDS, PR-GPS and LPR-GPS in 

Figure 18. The runtime of scheduling probability determination step is about half of that of PR-

GPS and LPR-GPS. PFDS is very fast, but has a much lower solution quality than our algorithms. 

Also, while much slower than PFDS, our algorithms are not slow in an absolute sense: they take 

only about 900 seconds to obtain results for a DFG with 197 operations, which we believe is fast 

enough from a practical point of view. 
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TABLE X 

TOTAL LE COMPARISON AMONG PFDS, PR-GPS AND LPR-GPS 

 

 

hal 11 86 86 6 497.286 86 5 344.28 -30.77% 70 5 280.22 -43.65% -18.61%

horner 18 178 178 6 732.363 178 6 732.36 0.00% 122 6 501.96 -31.46% -31.46%

arf 28 208 208 6 1526.55 208 5 1156.48 -24.24% 138 6 1012.81 -33.65% -12.42%

h2v2 51 262 262 6 665.27 255 7 675.85 1.59% 148 8 408.72 -38.56% -39.53%

collapse 56 167 167 10 1668.23 167 12 1705.37 2.23% 100 11 1165.74 -30.12% -31.64%

write 106 178 178 23 1765.91 178 10 1444.45 -18.20% 99 17 891.44 -49.52% -38.29%

interpolate 108 140 140 24 2317.06 140 17 2161.38 -6.72% 134 18 2083.65 -10.07% -3.60%

matmul 109 174 174 24 4024.55 174 14 2321.86 -42.31% 169 13 2236.34 -44.43% -3.68%

idctcol 114 257 257 15 2272.03 257 11 1652.77 -27.26% 254 10 1605.23 -29.35% -2.88%

jpeg 134 235 235 45 6219.51 235 16 2452.04 -60.58% 185 16 2218.33 -64.33% -9.53%

smooth 197 243 243 34 7457.96 243 16 3701.96 -50.36% 239 17 3667.6 -50.82% -0.93%

Average 84.73 193.45 193.45 18.09 2649.70 192.82 10.82 1668.07 -37.05% 150.73 11.55 1461.09 -44.86% -12.41%

LPR-GPS

Latency
# of 

Fus
LEtotal (pJ) Latency

DFG
# of 

operations

Latency 

Constraint

PFDS PR-GPS
LPRDS to 

PFDS

LPRDS to 

PRDS

# of 

FUs
LEtotal (pJ)

PRDS to 

PFDS
Latency

# of 

FUs
LEtotal (pJ)
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Figure 17. Average total LE comparison between PR-GPS and LPR-GPS subject to different 

latency constraints. 

 

 

 

Figure 18. Runtime comparisons among initial scheduling probability determination, PFDS, PR-

GPS and LPR-GPS. 
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6. FALLS: FAST AND EFFICIENT FU MINIMIZATION

 

The work in this chapter has been presented in [5] and accepted for publication in [6]. 

In this chapter, we propose a latency-constrained scheduling algorithm FrActional search 

and Lookahead based List Scheduling (FALLS) with a single-speed library to minimize the total 

number of FUs (the classical MR-LCS problem), and thus the total area, in HLS designs. Based 

on LS and inherits its efficiency, we have made the following two major innovations: 

• A novel lookahead technique to selectively schedule available operations by allocating the 

needed FUs earlier or reserving available FUs for scheduling more timing-urgent operations 

later, such that no additional FU is needed and higher FU utilization is obtained;  

• A fractional search framework is developed to iteratively estimate the number of FUs of each 

function type required in the final design based on the current scheduling solution and FU 

utilization, and reiterate the lookahead-based list scheduling with the new FU allocation 

estimate to further increase FU utilization. 

Extensive experiments conducted over several DFGs and a wide range of latency 

constraints demonstrate that FALLS is much more effective than other approximate state-of-the-

art algorithms in both number of FUs and total FU area, and has a much smaller runtime. Results 

also show that FALLS has only an average 5.5% optimality gap compared to an optimal integer 

linear programming (ILP) formulation, but is 278k times faster.  FALLS also performs much 

better in architectural (FU + mux/demux + register) area, interconnect congestion and number of 

interconnects than the competing approximate algorithms, and is at most 6% worse in them than 

the ILP method. 
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6.1. Formulation of the Optimization Objective 

The objective, minimizing the total number of FUs of a scheduling solution, is: 

∑ 𝑤(𝑘) × 𝑛𝑢𝑚(𝑘)

𝑘 ∈ 𝐾

                                             (6.1) 

where w(k) is the weight of FT k and is equal to 1 for FU minimization, num(k) is the number of 

FUs of FT k and K is the set of all FTs. For area minimization, w(k) is the area of FUs of FT k. 

As we can see from the experimental results, minimizing the total number of FUs has a close 

indirect relationship with area minimization. 

6.2. Our Scheduling Algorithm for FU Minimization 

We present our FALLS algorithm in this section. FALLS schedules in chronological 

order of cc’s and utilizes slack to determine the timing-urgency of available unscheduled 

operations, which are the beneficial aspects of the classical LS algorithm. However, to rectify the 

drawback of LS, we have made significant extensions as follows: 

• We schedule non-0-slack operations following a novel lookahead technique that allocates new 

FUs earlier than they would be in LS or reserves available FUs in the current cc for 

scheduling future 0-slack operations, such that the average FU utilization is increased. 

• An estimate based extension of binary search, which we call fractional search, is proposed to 

incrementally estimate the number of FUs required for the design and finally accurately pre-

allocate FUs at the last scheduling iteration to further increase FU utilization. 

• We use FU utilization rate as a general guideline to dynamically adjust pre-allocation, pre-

allocation expansion technique for conservatively pre-allocating more FUs to increase FU 

utilization and pre-allocation pruning technique for eliminating redundant FUs. 

A general view of FALLS is given first: the pseudo code is presented in Figure 21. The 

internal scheduler of FALLS, Lookahead, is based on LS but improved by our lookahead 
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technique. Nesting the enhanced scheduler (in line 4 and 9), fractional search iteratively 

determines a more accurate pre-allocation by the pre-allocation expansion (line 5) and pruning 

(line 6 to line 16) technique, which are based on the pre-allocation and post-allocation of the 

previous iteration (call to Algorithm Lookahead). The final solution is the latest solution after the 

last iteration where there is no improvement to the current solution after FU expansion and 

pruning techniques. 
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Figure 19. The pseudo code of our FALLS algorithm.   

Algorithm FALLS (DFG G(V, E), Lc, FU library R) 

1.  soln.rpre = (1,1, ..., 1)   //pre-allocate one FU per FT 

2.   Compute the ALAP times tL for Lc 

3.   Repeat   //fractional search begins 

4.  soln = Lookahead (tL, soln.rpre) 

5.   For each FT k where soln.𝑟𝑘
𝑝𝑜𝑠𝑡

 > soln.𝑟𝑘
𝑝𝑟𝑒

, increase soln.𝑟𝑘
𝑝𝑟𝑒

 by Equation (6.7) 

 (𝑟𝑘
𝑝𝑟𝑒/𝑝𝑜𝑠𝑡

 is the k’th element of vector rpre/post) 

6.    For each FT k where soln.𝑟𝑘
𝑝𝑜𝑠𝑡

 ≤ soln.𝑟𝑘
𝑝𝑟𝑒

 Do 

7.   Get 𝑟_𝑚𝑎𝑗𝑜𝑟𝑘
𝑝𝑟𝑒

 by major pruning (see section 6.2.4) of soln.𝑟𝑘
𝑝𝑟𝑒

 

8.   Temporarily update soln.rpre with 𝑟_𝑚𝑎𝑗𝑜𝑟𝑘
𝑝𝑟𝑒

 

9.   Get a new solution = Lookahead (tL, soln.rpre) 

10.   If the cost of the new solution is improved Do 

11.   Linear search the range [𝑟𝑘
𝑝𝑟𝑒−𝑚𝑖𝑛

, 𝑟_𝑚𝑎𝑗𝑜𝑟𝑘
𝑝𝑟𝑒

] to determine a better 

 𝑟_𝑚𝑖𝑛𝑜𝑟𝑘
𝑝𝑟𝑒

, where 𝑟𝑘
𝑝𝑟𝑒−𝑚𝑖𝑛

 is the previous largest unsuccessful soln.𝑟𝑘
𝑝𝑟𝑒

 that 

 was tried  

12.   Else 

13.   Binary search the range (𝑟_𝑚𝑎𝑗𝑜𝑟𝑘
𝑝𝑟𝑒

, soln.𝑟𝑘
𝑝𝑟𝑒

] to determine a better 

 𝑟_𝑚𝑖𝑛𝑜𝑟𝑘
𝑝𝑟𝑒

 

14.   End If 

15.   Update soln.rpre with the best 𝑟_𝑚𝑖𝑛𝑜𝑟𝑘
𝑝𝑟𝑒

 or 𝑟_𝑚𝑎𝑗𝑜𝑟𝑘
𝑝𝑟𝑒

 

16.   End For 

17. Until no improvement in soln.rpost 

18. Return the latest scheduling solution 

 

Algorithm Lookahead (ALAP times tL, pre-allocation vector rpre) 

1.   rpost = rpre, t = 1 

2.   Unschedule all operations if they are scheduled 

3.   While there are unscheduled operations Do 

4.   For each FT k Do 

5.   Determine the available unscheduled operation set Ut, k 

6.   Compute slack su for all u ϵ Ut, k by Equation (2.6) 

7.   Schedule 0-slack operations in Ut, k to t, allocate new FUs if needed, update 𝑟𝑘
𝑝𝑜𝑠𝑡

 if 

 an FU is used for the first time 

8.   Apply the lookahead technique (see section 6.2.1) to schedule non-0-slack 

 operations in Ut, k to t, allocate new FUs if needed and update 𝑟𝑘
𝑝𝑜𝑠𝑡

 if an FU is used 

 for the first time 

9.   End For 

10.   t = t + 1 

11. End while 

12. Return rpre, rpost and the scheduling solution as soln 
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6.2.1. Lookahead Scheduling 

The lookahead technique makes better scheduling decisions than LS for non-0-slack 

operations. In the current scheduling cc t, it detects operations that are currently unavailable and 

will become 0-slack in some near-future cc’s. To allow these operations to be executed on 

currently available FUs when they are available and 0-slack, some available FUs are reserved for 

this purpose in the current cc t. Moreover, it aggressively allocates new FUs in cc t to schedule 

certain non-0-slack operations under the condition that if the operations are not scheduled in cc t, 

the same number of new FUs are still needed to be allocated for scheduling them in later cc’s. By 

preventing allocating avoidable new FUs in later cc’s and allocating new FUs earlier that are 

unavoidable later, the average FU utilization is increased and hence the number of FUs needed is 

minimized. 

The advantage of reserving FUs for later use is illustrated by the example in Figure 20. 

The DFG in Figure 20(a) has only two FTs: addition of 1-cc delay and multiplication of 2-cc 

delay. The latency constraint is 5 cc’s. In Figure 20(b), LS schedules op5, whose slack is 3, in cc 

1, since it is the only available multiplication operation in cc 1 and there is an available 

multiplier. The overlapping of execution time of op2 and op5 results in a new multiplier being 

allocated in cc 2. On the other hand, in cc 1, our lookahead scheduling detects that op2 will 

become 0-slack in cc 2 and hence reserves the multiplier for scheduling op2 in cc 2 to avoid the 

new multiplier being allocated, as in Figure 20(c). As the scheduling proceeds, op5 eventually 

becomes 0-slack in cc 4, and the multiplier being busy in cc’s 2-3 becomes available for op5. 

Therefore, by reserving the multiplier in cc 1 and scheduling op5 later, one multiplier is saved. 

The other aspect of the lookahead scheduling, aggressive early new FU allocation, is 

illustrated by the example in Figure 21 with the same set of FTs and latency constraint as in 
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Figure 20. The scheduling quality here solely depends on the allocation of adders. In Figure 

21(b), after op4 is scheduled in cc 1, LS schedules op5 in cc 3, since op5 is non-0-slack in cc 2 

and there is no available multiplier then. Although a new multiplier must be allocated no matter 

where op5 is scheduled, LS fails to detect this situation due to the limited information provided 

by slack alone. This forces op6 to be scheduled in cc 5, where op3 is concurrently scheduled. 

This leads to a new adder to be allocated. Different from LS, our lookahead scheduling in Figure 

21(c) realizes that a new multiplier is unavoidable for scheduling op5, hence allocates it when 

op5 is first available in cc 2 and schedules op5 there. Such scheduling decision makes no change 

in multiplier allocation, but reduces the number of adders by one: op6 can be scheduled one cc 

earlier and hence avoid being executed concurrently with op3. 

 

 

Figure 20. Illustration of the advantage of reserving FUs for later use in the lookahead 

scheduling of FALLS. “opi” denotes operation i. FU allocation results shown below solutions. (a) 

An unscheduled DFG; (b) The solution of LS; (c) The solution of lookahead scheduling. 
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Figure 21. Illustration of the benefit of early allocation of new FUs in the lookahead scheduling 

of FALLS. FU allocation results shown below solutions. (a) An unscheduled DFG; (b) The 

solution of LS; (c) The solution of lookahead scheduling. 
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𝐴𝑣𝑎𝑖𝑙(𝑖) = 𝑚𝑎𝑥{0, 𝐴𝑣𝑎𝑖𝑙(𝑖 − 1) + 𝑎(𝑖) − [𝑧(𝑖) − 𝑧′(𝑖)]}              (6.2) 

At the recursion boundary of cc t, Avail(t) is the number of available FUs after scheduling all 0-

slack operations in t. Based on Avail(i), we can determine new(i), the number of new FUs needed 

in i for scheduling the z'(i) 0-slack operations of i, as: 

𝑛𝑒𝑤(𝑖) = 𝑚𝑎𝑥{0, 𝑧′(𝑖) − 𝐴𝑣𝑎𝑖𝑙(𝑖)}                                      (6.3) 

This needs to be followed by an update of Avail(i) in order to compute Avail(i + 1) by Equation 

(6.2): Avail(i) = 0 if new(i) > 0, otherwise Avail(i) = Avail(i) – z'(i). As is hopefully clear from 

the formulation, new FUs are only allocated for scheduling z’(i) 0-slack operations when there 

are not enough available FUs after scheduling the z(i) – z’(i) 0-slack operations. The updated 

Avail(i) that accounts for scheduling z’(i) operations becomes the number of available FUs in i 

after scheduling all its z(i) 0-slack operations. 

After all cc’s in the cc range R(t) are explored, we can determine S(t), the maximum 

number of available non-0-slack operations to be scheduled in cc t by:  

𝑆(𝑡) = 𝑚𝑎𝑥 {0, 𝑚𝑖𝑛
𝑗∈[𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗)} + ∑ 𝑛𝑒𝑤(𝑗)
𝑡+𝑑𝑘−1

𝑗=𝑡+1
               (6.4) 

where 

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑖) = 𝐴𝑣𝑎𝑖𝑙(𝑡) + ∑ {𝑎(𝑗) − [𝑧(𝑖) − 𝑧′(𝑖)]}
𝑡+𝑑𝑘−1

𝑗=𝑡+1
               (6.5) 

Surplus(i) is thus the number of available FUs in cc i after scheduling z(j) – z'(j) 0-slack 

operations in each cc j in [t + 1, i] without allocating any new FUs in any of these cc’s; it can 

thus be negative. Equation (6.4) incorporates both aspects of the lookahead technique that are 

illustrated in Figure 20 and Figure 21. The first term with Surplus(i) allows use of only 

𝑚𝑎𝑥 {0, 𝑚𝑖𝑛
𝑗 𝜖 [𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗)}   of the available FUs in cc t for available non-0 slack 

operations in it and reserves the rest for later use in R(t). The second term with new(i) is for early 
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allocation and use of the appropriate number of new FUs in cc t. The idea of Surplus(i) is that if 

it is positive, and for the sake of argument we ignore other Surplus(j) values, then we can 

schedule at most min(Surplus(i), z'(i)) available non-0-slack operations in cc t of the z'(i) 0-slack 

operations of cc i, on the already available FUs in t (after its 0-slack operations are scheduled), 

without incurring any extra new FU in R(t) compared to scheduling these operations in cc i. 

However, for this to be true for all cc's in R(t), we can only schedule 𝑚𝑖𝑛
𝑗 𝜖 [𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗) (if 

it is positive) available non-0-slack operations in cc t (in slack increasing order—these are the 

operations that become 0-slack earliest among all the z'(i) operations in R(t)) without allocating 

any extra new FUs in R(t). If any more are scheduled in cc t, then the minimum positive Surplus 

point r in R(t) will become negative, meaning that extra new FU(s) will be needed to schedule 

some of the z(r) – z’(r) 0-slack operations in cc r. 

Thus, accounting for both the minimum Surplus(i) and early allocation of new FUs in cc t, 

we schedule S(t) available non-0 slack operations in slack increasing order in cc t. 

Now we illustrate the lookahead formulation by the example in Figure 20 for scheduling 

multiplication op5 in cc t = 1. The FT assumed below is multiplication. Since the delay of 

multiplication is 2 cc’s, from cc 1 we lookahead up to cc 2. Since we have an available multiplier 

in cc 1 (Avail(1) = 1) and there is one 0-slack operation in cc 2 (z(2) = 1), but none of the two 

multiplications in the DFG is a z’(2) operation (z'(2) = 0) as op2 is not available in cc 1 and op5, 

which is available in cc 1,  becomes 0-slack in cc 4. Avail(2) = 0 and Surplus(2) = 0 according to 

Equation (6.2) and (6.5), respectively, meaning that no FU allocated till cc 1 is available after 

scheduling z(2) – z’(2) = 1 operations in cc 2. Since z’(2) = 0, which means no z’(2) operations 

needs to be scheduled in cc 1, new(2) = 0. Therefore, from Equation (6.4), S(t) = 0 and hence no 

operation is scheduled in cc 1, though there is an available multiplier and an available operation 
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(op5). We are thus reserving this multiplier for use in cc 2 by another operation (op2) that only 

becomes available and 0-slack in cc 2. This gives us the best scheduling solution in Figure 20(c). 

Similar calculation can be done for the other example in Figure 21 that illustrates the early new 

FU allocation aspect of our lookahead technique. 

We present the following formal result of the lookahead technique, where we assume for 

simplicity of exposition that 𝑚𝑖𝑛
𝑗 𝜖 [𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗) is positive. 

Theorem 1: (a) By reserving 𝐴𝑣𝑎𝑖𝑙(𝑡) − 𝑚𝑖𝑛
𝑗 𝜖 [𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗)  available FUs of cc t for later 

use in the cc range [t + 1, t + dk – 1], given the configuration of cc t, the lookahead technique 

minimizes the number of new FUs allocated in this cc range. (b) Additionally, by early allocation 

of ∑ 𝑛𝑒𝑤(𝑗)𝑡+𝑑𝑘−1
𝑗=𝑡+1  new FUs in cc t, the lookahead technique does not allocate any extra new 

FUs for scheduling 0-slack operations in the cc range, compared to not doing this early 

allocation. 

Proof Outline: (a) Let Surplus(r) = 𝑚𝑖𝑛
𝑗 𝜖 [𝑡,𝑡+𝑑𝑘−1]

𝑆𝑢𝑟𝑝𝑙𝑢𝑠(𝑗) = x. Thus, x available non-0-slack 

operations of cc t that become 0-slack in the cc range [t + 1, t + dk – 1] are scheduled in 

increasing slack order in cc t. These are the first x z’(i) operations in this cc range, and assume 

they are the z’(i) operations in the range [t + 1, t + j], j ≤ dk – 1. This means that the “new” 

surplus of every cc in the cc range reduces by x, but none becomes negative. For the first j cc’s in 

this range, no new FUs are needed to schedule any of their 0-slack operations, as, by definition 

of Surplus(i), all their z(i) – z’(i) 0-slack operations are to be scheduled on available FUs in each 

of these cc’s, and the remaining z’(i) 0-slack operations are scheduled on available FUs in cc t.  

For the remaining cc’s in the above range, after the reduction by x of their surpluses, the number 

of FUs available to schedule their z’(i) operations is exactly the same as under the scheduling 

scenario where each of the z’(i) operations of cc’s in [t + 1, t + j], are scheduled in exactly those 
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cc’s (where they need to be scheduled at the latest), instead of earlier in cc t. Thus, any new FUs 

that need to be allocated in the range [j + 1, t + dk – 1] to schedule their z’(i) 0-slack operations 

are also unchanged, and is a minimum number, since they are based on only scheduling 0-slack 

operations of earlier cc’s (that are mandatory to schedule).  On the other hand, had we scheduled 

x + m, m > 0, non-0-slack operations of cc t, then the new surpluses of some cc’s q in the range [t 

+ 1, t + dk – 1] (there will be at least one, cc r) will become a negative value –yq, meaning that in 

each of them yq > 0 more new FUs will be needed to schedule their 0-slack operations (the z’(i) 

ones and/or the z(i) – z’(i) ones) than needed in either of the above two scheduling scenarios. 

(b) It follows from the definition of new(i) that these are the minimum number of new FUs 

needed in cc i in the range [t + 1, t + dk – 1] to schedule their z’(i) 0-slack operations irrespective 

of how the available FUs in cc t are used to schedule their non-0-slack available operations (for 

our lookahead based scheduling, this will also be the exact number of new FUs needed). Thus, 

by allocating a portion of them earlier in cc t for the purpose of scheduling exactly the same z’(i) 

operations in cc t that would be scheduled on them if they had not been allocated in cc t, but in 

each later cc i in the above range, we do not need any extra new FUs compared to the latter 

scheduling scenario. Further, by allocating these new FUs earlier in cc t and scheduling the 

respective operations on them at that time, we will make them available earlier (after cc t + dk – 

1), thus increasing the likelihood that fewer new FUs will be needed after cc t + dk – 1 due to 

earlier allocated FUs being available.  ∎ 

Finally, for operations of single-cc delay, a different lookahead approach to aggressively 

schedule non-0-slack operations in cc t is as follows. For any cc t, the number of available FUs 

of FT k in cc t + 1 is number of all FUs of k that are either available or busy in cc t. If in cc t + 1, 

the number of 0-slack operations that are not available in cc t is greater than the number of 
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available FUs in cc t + 1, then let m be the difference. We allocate m new FUs in cc t on them 

and schedule available operations in minimal slack order in cc t. In this way, we allocate new 

FUs that are mandatory one cc earlier to maximize their utilization potential. 

6.2.2. Fractional Search 

Our fractional search framework contains two sub-techniques: pre-allocation expansion 

and pre-allocation pruning. Both techniques rely on an indicator of FU utilization, utilization 

rate, to determine the number of FUs to be adjusted in the pre-allocation. The utilization rate (ur) 

of an FU is the fraction of cc’s in which the FU is busy executing operations over the entire 

scheduling latency. For the p’th FU of FT k with nk, p operations bound to it, its utilization rate 

urk, p is:  

𝑢𝑟𝑘,𝑝 =
𝑛𝑘,𝑝 × 𝑑𝑘

𝐿
                                                       (6.6) 

where dk is the delay of FT k and L is the achieved latency of the current scheduling solution. 

Intuitively, FUs allocated in earlier cc’s have a greater potential to have high utilization rates 

compared to those allocated in later cc’s.  

We first conceptually illustrate fractional search in Figure 22. For any FT k of a solution, 

we determine the new pre-allocation by the pre-allocation and post-allocation of the previous 

iteration. If the former is smaller than the later, we expand the pre-allocation by adding the sum 

of utilization rates of new FUs (an optimistic estimate) to it. Otherwise, we attempt to prune pre-

allocated FUs by a utilization rate based major pruning followed by minor binary or linear 

pruning steps to gradually approach the accurate pre-allocation. Unlike binary search, which 

iteratively eliminates half of the search space, fractional search makes the new estimate based on 

utilization rate to more efficiently locate the target value. Fractional search terminates when the 
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latest round of prunings for each FT that satisfies the pruning condition, no further solution 

improvement can be obtained. 

An example of applying fractional search to our lookahead scheduling to improve the 

scheduling solution is given in Figure 23. We consider another DFG in Figure 23(a) and an FU 

library which is the same as the one in Figure 20. Here, the latency constraint is 3 cc’s and the 

scheduling quality solely depends on the scheduling of addition operations. In cc 1 of Figure 

23(b), since adder has a single-cc delay, our lookahead technique without considering single-

cycle operations (but we do handle these operations by a different lookahead approach at the end 

of Section 6.2.1) cannot search beyond cc 1, the behavior of our lookahead scheduling is same to 

LS. As a result, op2, op4 and op6 are pushed into cc 3 and become 0-slack operations, which 

makes two new adders to be allocated in cc 3. Therefore, a total of 3 adders are needed in the 

final solution. The two adders newly allocated in cc 3 are significantly under-utilized as they are 

idle in the first two cc’s. On the other hand, the solution of our lookahead scheduling with 

fractional search in Figure 23(c) that allocates only two adders, is derived as follows. The 

solution of the first scheduling iteration is the same to the solution in Figure 23(b). Since there 

are two new FUs allocated in the last cc, both have a utilization rate of 1/3, and since ⌈1/3×2⌉ =

1, the pre-allocation expansion technique estimates that only one additional adder, i.e., a total of 

2 adders is needed in the pre-allocation, compared to only 1 adder in pre-allocation in the current 

iteration. Note that the pre-allocation pruning technique is not able to prune any FU in this 

example as there are new adders allocated and there is only one multiplier. In the second 

scheduling iteration, with two adders in the pre-allocation, both non-0-slack op1 and op5 can to 

be scheduled in cc 1, which makes operation 2 to be available in cc 2 rather than the last cc as in 

the first iteration. This avoids op2, op4 and op6 all being scheduled in cc 3 as occurs in Figure 



106 

 

23(b) and increases the utilization rate of the newly pre-allocated FU from 1/3 to 2/3 and the 

overall FU utilization rate from 5/9 to 5/6. We thus obtain the solution of Figure 23(c) with 

reduced cost that requires only 2 adders. This example demonstrates the benefits of fractional 

search to minimize the number of FUs. 
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Figure 22. Graphical illustration of a single iteration of fractional search for a FT. 

 

 

Figure 23. Illustration of the benefit of FU pre-allocation estimate in fractional search of FALLS. (a) An unscheduled DFG; (b) The 

solution of the lookahead scheduling; (c) The solution of the lookahead scheduling with fractional search. 
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6.2.3. Pre-allocation Expansion Technique 

Given a solution of an iteration, for any FT k, if its pre-allocation 𝑟𝑘
𝑝𝑟𝑒

 is smaller than its 

post-allocation 𝑟𝑘
𝑝𝑜𝑠𝑡

, the pre-allocation expansion technique is applied. The number of FUs to be 

increased in the pre-allocation 𝑟𝑘
𝑛𝑒𝑤

 of FT k is: 

𝑟𝑘
𝑛𝑒𝑤 = ⌈∑ 𝑢𝑟𝑘,𝑝

𝑝 𝜖 𝐹𝑈𝑛𝑒𝑤(𝑘)

⌉                                              (6.7) 

where FU_new(k) is the set of new FUs of FT k allocated in the current scheduling iteration. The 

pre-allocation expansion is performed in a conservative way in which it only allocates the 

minimum number of FUs which can handle all operations bound to the new FUs with an ideal 

utilization rate of 100%. This allows fractional search to gradually approach the minimum 

number of required FUs. 

6.2.4. Pre-allocation Pruning Technique 

Given a solution of an iteration, for any FT k, if its pre-allocation 𝑟𝑘
𝑝𝑟𝑒

 is not smaller than 

its post-allocation 𝑟𝑘
𝑝𝑜𝑠𝑡

, the pre-allocation pruning technique is applied. The pruning is 

performed when 𝑟𝑘
𝑝𝑟𝑒 > 𝑟𝑘

𝑝𝑜𝑠𝑡
, since the unutilized 𝑟𝑘

𝑝𝑟𝑒 − 𝑟𝑘
𝑝𝑜𝑠𝑡

 pre-allocated FUs that have no 

operations bound to should obviously be pruned. Further, when 𝑟𝑘
𝑝𝑟𝑒 = 𝑟𝑘

𝑝𝑜𝑠𝑡
, it is potentially 

beneficial to prune some of the utilized pre-allocated FUs, since these over-allocated FUs may be 

used to over-schedule less timing-urgent non-0-slack operations that have slacks greater or equal 

to the delay, making the FUs sparsely utilized in later cc’s. This pruning includes a major 

pruning followed by minor prunings that are either based on binary or linear search. 

Besides pruning the unused FUs, if any, the idea of major pruning is to adaptively 

increase the utilization rates of the most under-utilized FUs. Let the maximum and minimum 

utilization rate among all the used FUs in the current solution be urmax and urmin, respectively. 
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We can evenly partition the range [urmin, urmax] into α (α ≥ 2; α = 4 in our experiments) 

partitions. The most under-utilized FUs are in the 1st partition, which is the range 𝑢𝑟𝑟1 =

[𝑢𝑟𝑚𝑖𝑛, 𝑢𝑟𝑚𝑖𝑛 +
𝑢𝑟𝑚𝑎𝑥−𝑢𝑟𝑚𝑖𝑛

𝛼
). We attempt to increase the utilization rates of these FUs to the 

adjacent partition with a higher average utilization rate range uur2 so that fewer FUs are in the 

pre-allocation and this is expected to translate to fewer FUs in the post-allocation by reducing 

over scheduling. To execute the same number of operations that were bound to the most under-

utilized FUs whose utilization rates are in urr1 with fewer but fully-utilized FUs whose 

utilization rates are in urr2, the least number of FUs required m is determined as: 

𝑚 =
∑ 𝑢𝑟𝑘,𝑝𝑝 𝜖 𝐹𝑈(𝑘,𝑢𝑟𝑟1)

𝑢𝑟𝑎𝑣𝑔(𝑘, 𝑢𝑟𝑟2)
                                                 (6.8) 

where FU(k, urr1) is the set of FUs of FT k whose utilization rates are in uur1 and 𝑢𝑟𝑎𝑣𝑔(𝑘, 𝑢𝑟𝑟2) 

is the average utilization rate of FUs whose utilization rates are in uur2. The number of pruned 

FU is thus |𝐹𝑈(𝑘, 𝑢𝑟𝑟1)| − 𝑚. 

As illustrated in Figure 22, after major pruning, there are a series of minor prunings using 

either linear or binary search. If major pruning leads to a lower-cost solution, we perform linear 

search to further prune the number of FUs of FT k by the smallest granularity of one and re-

schedule, and iterate until no better solution is found. On the other hand, if the new solution is 

worse than the previous one, we perform binary search in the range of the current pre-allocation 

and the previous pre-allocation until the best lower-cost solution is found or no lower-cost 

solution can be found. We apply linear and binary searches on the two situations respectively 

since the target value in the former is much closer than that in the later.  
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6.2.5. Time Complexity 

The time complexity of the lookahead technique is O(n log n + ndmax), where dmax is the 

maximum delay among all FTs. The n log n term comes from LS’s time complexity, and the 

ndmax term from the fact that an FU executing an operation of FT k with delay dk cc’s, will be 

accessed dk times to determine a(i) and related parameters for lookahead processing. Further, if 

nk is the number of operations of FT k and there are q FTs, fractional search will determine at 

most O(log nk) new pre-allocations (and thus calls to lookahead scheduling) for FT k, and thus it 

overall makes O(q log n) ~ O(log n) (q being a small constant compared to n) calls to lookahead 

scheduling. Thus, the total time complexity of FALLS is O(n log2 n + (n log n)dmax) ~ O(max(n 

log2 n, (n log n)dmax) ~ O(n log2 n) if dmax is a small constant which is most likely to be. 

6.3. Experimental Results 

We first present results of FALLS comparing to several state-of-the-art algorithms in this 

section. Then we discuss our implementation and experimental results of ACO [25], since it is 

the most recent work on FU minimization in operation scheduling and our implementation 

according to [25] yields lower quality results than that reported in [25]. 

6.3.1. Results of FALLS 

We implemented FALLS in C++. Experiments were conducted on a machine with Core 

i7-4710HQ (3.5GHz) and 16GB RAM in Windows 10. First, we make a direct comparison 

between FALLS and ant colony optimization (ACO) in [25]. The trivial FU library in [25] has 

only two FTs of FUs: multiplier of 2-cc delay, denoted by “*”, for multiplication and division, 

and ALU of 1-cc delay, denoted by “+”, for the remaining arithmetic and non-arithmetic FTs. 

For each DFG, the latency constraints are set to be a factor, called Lc factor, of the critical path 

delay. Due to the stochastic nature of ACO, it is hard to obtain consistent good results for all 
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DFGs. To make a fair comparison, we compare FALLS to ACO in TABLE XI for two large 

DFGs which are the only ones for which FU allocation results (nFU) of ACO for specified 

latency constraints are presented in [25]. The DFG sizes are indicated by the number of 

operations and data dependencies pair. The results show that across 11 different latency 

constraints, for the two DFGs, FALLS allocates an average of 8.1% and 9.8% fewer FUs than 

ACO, respectively. Further, the average FU area of FALLS is 10.7% and 7.4% smaller than that 

of ACO for the two DFGs, respectively, due to overall fewer FU allocation. 
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TABLE XI 

FU ALLOCATION AND AREA COMPARISON BETWEEN ACO AND FALLS USING THE TRIVIAL LIBRARY 

 

 

nFU +, * FU Area nFU +, * FU Area nFU +, * FU Area nFU +, * FU Area

1.0 11 5, 6 861.76 11 6, 5 852.48 0.0% 1.1% 47 25, 22 3648.32 46 22, 24 3593.6 2.1% 1.5%

1.1 10 4, 6 788.48 10 6, 4 769.92 0.0% 2.4% 42 23, 19 3254.08 42 18, 24 3300.48 0.0% -1.4%

1.2 9 4, 5 705.92 9 5, 4 696.64 0.0% 1.3% 36 20, 16 2786.56 34 14, 20 2677.12 5.6% 3.9%

1.3 8 3, 5 632.64 8 5, 3 614.08 0.0% 2.9% 34 19, 15 2630.72 30 12, 18 2365.44 11.8% 10.1%

1.4 8 3, 5 632.64 7 4, 3 540.8 12.5% 14.5% 30 17, 13 2319.04 26 11, 15 2044.48 13.3% 11.8%

1.5 7 3, 4 550.08 7 4, 3 540.8 0.0% 1.7% 28 16, 12 2163.2 25 10, 15 1971.2 10.7% 8.9%

1.6 7 3, 4 550.08 6 4, 2 458.24 14.3% 16.7% 26 15, 11 2007.36 22 9, 13 1732.8 15.4% 13.7%

1.7 7 3, 4 550.08 6 4, 2 458.24 14.3% 16.7% 25 14, 11 1934.08 21 9, 12 1650.24 16.0% 14.7%

1.8 7 3, 4 550.08 5 3, 2 384.96 28.6% 30.0% 23 13, 10 1778.24 20 9, 11 1567.68 13.0% 11.8%

1.9 6 3, 3 467.52 5 3, 2 384.96 16.7% 17.7% 23 13, 10 1778.24 19 8, 11 1494.4 17.4% 16.0%

2.0 6 3, 3 467.52 5 3, 2 384.96 16.7% 17.7% 22 13, 9 1695.68 18 7, 11 1421.12 18.2% 16.2%

Avg 7.8 3.4, 4.5 620.67 7.2 4.3, 2.9 554.53 8.1% 10.7% 30.5 17.1, 13.5 2367.65 27.5 11.7, 15.8 2192.99 9.8% 7.4%

Area % 

Improv.

invert (333, 354)
L c 

Factor
FU % 

Improv.

FU % 

Improv.

ACO FALLS ACO FALLS

idctcol (114, 164)

Area % 

Improv.
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In TABLE XII, we compare FALLS to LS, FDS [13] [14], SA [25] and ILP [20] [21] 

(implemented in CPLEX) with 15 DFG benchmarks from [37], to show their effectiveness in FU 

minimization and the indirectly minimized total area. For this, we constructed a 16-bit non-trivial 

FU library that has eight FTs: adder/subtractor of 4-cc delay, multiplier of 10-cc delay, divider of 

24-cc delay, arithmetic and logical shift register, memory read and write, and logical AND, all 1-

cc delay. The delay and area of the FU designs from [36] are theoretically derived based on the 

number of gate inputs along the critical path and the total number of transistors (T), respectively, 

which are close enough practical approximations. Each number of FU (nFU) and FU area result 

in TABLE XII is the average for a DFG for 6 latency constraints with Lc factors in the range [1, 

2] with a granularity of 0.2. The results show that FALLS reduces the total number of FUs by an 

average of 22.4% to 59.4% compared to LS, FDS and SA with similar area reductions. It also 

shows that FALLS has only 3.6% optimality gap in the number of FUs and merely 2.4% greater 

FU area compared to the optimal ILP for the 15 DFGs. Further, though the following are not our 

optimization objectives, we also determined the architectural area as follows. We use the linear-

time binding techniques developed in [50] that uses simple augmentations of the well-known 

left-edge algorithm [48] to optimally bind operations to FUs while also using heuristics to share 

as many interconnects between FUs as possible for multiple data communication (and thereby 

heuristically minimize mux and demux sizes, and interconnects needed). We also use the 

algorithm implemented in [50] for optimal post-binding allocation of registers. The architectural 

area is then determined as the sum of the areas of FUs, mux’s/demux’s and registers. According 

to [50], while we do not perform binding explicitly with scheduling and module selection, the 

optimal binding of operations to FUs post the above functions uses the exact number of FUs as 

determined during the scheduling and module selection stage. There is thus no disadvantage in 
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number of FUs of different FTs and thus FU power in not performing binding simultaneously 

with the above stage. The results presented in TABLE XII and TABLE XIII show that FALLS 

has 18.8% to 53.0% average architectural area reduction compared to the competing approximate 

algorithms. Further, the average maximum congestion, defined as the maximum in- and out-

degree of an FU, of FALLS is 3.5% to 14.7% smaller than these algorithms, and its average 

number of interconnects is 9.6% to 37.2% fewer. Also, FALLS has very close results to ILP: the 

average architectural area and number of interconnects of FALLS is only 2.7% and 4.0% greater 

than that of ILP, while the average max congestion is even slightly fewer.  

We also performed the experiments with the trivial library used by [25]: the 

corresponding results are presented in TABLE XIV and TABLE XV. The results are consistently 

(comparable to the experiments with our non-trivial library) good compared to LS, FDS and SA. 

Further, the solution quality of FALLS is even closer to that of ILP: the optimality gap of 

FALLS in FU minimization is merely 1.2% compared to ILP. The abundant experiments using 

two distinct libraries demonstrate that FALLS is widely applicable to various FU libraries.  

Finally, the average runtimes in milliseconds for the experiments in TABLE XII are 

presented in TABLE XVI. The results show that FALLS is extremely fast that taking only 

0.62ms for the smallest DFG and 69.85ms for the largest using the non-trivial 8-speed library. 

The runtimes of SA and ILP are very high, preventing them from solving practical large-size 

problems. In fact, for the largest DFG rand-1300, CPLEX runs out of memory for even the 

smallest latency constraint (and thus the smallest solution space) imposed. This is indicated by 

“*” symbols in the tables. On the contrary, FALLS is merely about 3 times slower than the 

extremely fast but extremely sub-optimal LS as shown in the runtime plots of LS and FALLS in 

Figure 24. The linear curve fitting function for the average runtime of LS and FALLS is 
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0.01466869 n + 0.4143267 and 0.05515652 n – 0.03750594, respectively, where n is the number 

of operations. The polynomial curve fitting function for them is – 0.5733374 + 0.02756854 n – 

0.000009815745 n2 and –2.095263 + 0.08203282 n – 0.00002045069 n2, respectively. Note that 

only the linear terms in both fitting functions matter most: the square term in the polynomial 

fitting function has too small constants considering most DFGs have far fewer than 200 

operations. For both curve fitting functions, the ratio of the constants of the linear terms of LS 

and FALLS is about 1: 4, which is somewhat close to the theoretical complexity ratio of log n, if 

n is not a large value. This thus empirically demonstrate the time complexity of FALLS. The 

sharp runtime slope of FALLS on DFG size 200 to 300 operations is due to the extra FTs in the 

DFG (not all DFGs have the same # of the FTs: the more FTs a DFG has, the more time needed 

in FALLS’ lookahead and hence longer runtime) and fluctuation on runtime measurement. 

FALLS is also 68, 873 and 278k times faster than FDS, SA and ILP, respectively, as indicated in 

TABLE XVI. Considering that FALLS obtains solutions to the largest DFG with 1300 

operations in a miniscule 69.85 milliseconds, and that it has an average optimality gap of only 

5.5%, one can conclude that it has very good runtime and solution quality scalability.  
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TABLE XII 

AVERAGE NUMBER OF FUS AND AREA (INCLUDING FU AREA AND ARCHITECTURAL AREA) COMPARISONS 

AMONG COMPETING ALGORITHMS USING THE NON-TRIVIAL LIBRARY 

 

  

nFU
FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU

FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU

FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU

FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU

FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area

1 hal 11 6.2 388.8 8.0 31.7 428.5 5.7 347.5 9.4 16.4 373.4 5.8 361.3 9.8 16.4 387.5 5.7 347.5 9.1 14.7 371.3 5.7 347.5 10.7 14.7 372.9

2 horner 18 6.3 350.5 10.6 130.2 491.3 5.7 308.5 11.0 16.4 335.9 5.3 320.0 10.7 18.8 349.5 5.0 292.5 9.4 17.0 318.9 5.0 292.5 7.8 15.8 316.2

3 arf 28 9.3 588.4 16.6 194.2 799.2 6.0 339.2 15.2 32.9 387.3 6.0 339.2 18.9 37.5 395.6 4.7 268.2 10.2 29.3 307.7 4.7 281.2 7.4 27.0 315.5

4 motion 32 21.0 1258.9 17.6 68.6 1345.1 13.5 785.0 21.1 38.7 844.8 14.0 820.3 22.7 36.4 879.4 12.7 749.2 18.4 32.9 800.5 12.7 736.2 21.1 30.5 787.8

5 ewf 34 4.2 174.8 6.1 271.0 451.9 4.5 202.3 11.4 22.9 236.6 4.3 188.6 14.2 24.1 226.9 3.3 145.1 6.4 15.3 166.7 3.3 145.1 6.2 14.7 166.0

6 h2v2 51 10.7 373.5 20.8 31.7 426.0 7.2 287.9 14.1 28.7 330.7 7.5 224.3 19.4 38.1 281.8 6.3 219.1 14.2 34.6 267.9 6.5 232.9 13.8 37.5 284.2

7 feedback 53 21.2 1114.5 41.8 129.1 1285.3 13.8 733.4 43.8 60.4 837.7 14.5 746.3 51.5 59.8 857.7 11.3 595.3 38.7 55.1 689.2 11.5 605.5 42.2 51.6 699.4

8 collapse 56 29.2 1571.1 48.2 172.5 1791.7 13.5 809.6 40.0 71.6 921.2 14.0 786.9 48.2 73.9 909.0 11.5 695.1 39.8 63.4 798.3 11.5 695.1 38.6 59.8 793.5

9 write 106 69.2 2035.0 48.6 52.8 2136.4 14.3 557.8 44.6 65.1 667.5 15.5 545.5 58.6 75.1 679.2 11.2 442.9 35.4 56.9 535.1 12.0 484.0 43.5 63.9 591.5

10 interpolate 108 41.8 2018.0 110.4 245.2 2373.7 25.5 1298.5 91.0 100.3 1489.8 27.7 1533.8 105.0 99.7 1738.5 20.5 1089.1 93.1 82.1 1264.3 20.7 1095.8 87.2 83.9 1266.9

11 matmul 109 37.2 2182.0 126.2 28.7 2337.0 21.0 1204.7 90.4 112.1 1407.1 21.7 1271.4 106.7 127.3 1505.4 16.3 976.3 80.6 98.6 1155.5 17.3 1015.3 85.9 102.7 1203.8

12 idctcol 114 41.8 1781.2 97.3 126.1 2004.6 22.8 998.3 75.4 183.6 1257.3 16.5 757.9 81.6 176.0 1015.5 11.7 533.5 48.8 149.6 731.9 12.2 535.4 54.6 156.1 746.0

13 jpeg 134 36.8 1625.3 139.7 167.2 1932.2 26.2 1151.1 105.1 159.0 1415.3 23.2 1162.8 132.6 172.5 1467.9 15.8 759.4 92.2 143.7 995.3 16.8 768.3 96.0 147.3 1011.6

14 smooth 197 76.2 3963.1 217.8 53.4 4234.2 31.3 1785.2 170.2 136.1 2091.5 33.7 1854.8 203.7 177.8 2236.3 26.2 1516.6 161.3 141.4 1819.3 26.5 1533.5 176.5 147.8 1857.9

15 invert 333 100.5 5971.1 437.9 237.0 6646.0 58.5 3398.9 338.1 292.2 4029.2 57.8 3547.3 398.9 306.8 4253.0 38.3 2353.4 333.6 224.1 2911.1 41.3 2476.6 342.6 259.3 3078.5

92 34.1 1693.1 89.8 129.3 1912.2 18.0 947.2 72.1 89.1 1108.4 17.8 964.0 85.5 96.0 1145.5 13.4 732.2 66.1 77.2 875.5 13.8 749.7 68.9 80.8 899.4

59.4% 55.7% 23.3% 37.5% 53.0% 22.9% 20.9% 4.3% 9.3% 18.8% 22.4% 22.2% 19.4% 15.8% 21.5% -3.6% -2.4% -4.3% -4.7% -2.7% 0.0% 0.0% 0.0% 0.0% 0.0%FALLS % Improv.

DFG
# of 

ops

LS FDS SA ILP    FALLS

Average
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TABLE XIII 

AVERAGE ARCHITECTURE AREA, MAX CONGESTION AND INTERCONNECTION COMPARISON AMONG 

COMPETING ALGORITHMS USING THE NON-TRIVIAL LIBRARY 

 

  

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

1 hal 428.5 5.0 10.7 373.4 5.3 10.8 387.5 5.2 11.2 371.3 5.3 10.5 372.9 5.5 11.2

2 horner 491.3 7.3 12.2 335.9 7.7 11.7 349.5 8.3 11.5 318.9 7.5 10.5 316.2 7.2 9.5

3 arf 799.2 12.2 20.0 387.3 9.8 15.5 395.6 10.8 18.2 307.7 8.2 11.7 315.5 7.7 9.8

4 motion 1345.1 8.2 32.8 844.8 9.7 26.8 879.4 9.8 28.8 800.5 9.2 24.3 787.8 9.7 25.2

5 ewf 451.9 6.5 8.0 236.6 8.7 11.7 226.9 9.3 13.7 166.7 6.3 7.7 166.0 6.3 7.5

6 h2v2 426.0 10.0 25.0 330.7 10.0 16.3 281.8 10.3 20.7 267.9 9.3 16.3 284.2 9.3 16.7

7 feedback 1285.3 10.3 45.3 837.7 13.0 39.8 857.7 13.0 45.8 689.2 11.5 35.0 699.4 12.3 36.5

8 collapse 1791.7 14.5 60.2 921.2 14.7 39.5 909.0 14.7 44.8 798.3 14.3 36.7 793.5 14.2 35.7

9 write 2136.4 15.7 94.7 667.5 11.5 41.0 679.2 13.3 51.2 535.1 11.2 32.7 591.5 12.0 38.3

10 interpolate 2373.7 15.5 106.2 1489.8 18.3 78.3 1738.5 19.7 90.3 1264.3 17.8 74.0 1266.9 17.0 71.3

11 matmul 2337.0 17.0 111.7 1407.1 18.3 74.2 1505.4 17.8 85.3 1155.5 16.3 64.0 1203.8 16.0 67.8

12 idctcol 2004.6 22.7 110.8 1257.3 22.2 79.5 1015.5 21.8 77.0 731.9 18.2 52.2 746.0 18.7 56.7

13 jpeg 1932.2 23.5 124.8 1415.3 23.2 93.2 1467.9 25.7 108.2 995.3 21.7 76.5 1011.6 21.8 79.3

14 smooth 4234.2 19.0 203.3 2091.5 21.0 127.8 2236.3 25.7 151.7 1819.3 18.0 119.2 1857.9 17.5 127.3

15 invert 6646.0 22.2 355.0 4029.2 30.0 251.2 4253.0 31.5 287.8 2911.1 28.5 226.5 3078.5 27.0 236.5

1912.2 14.0 88.0 1108.4 14.9 61.2 1145.5 15.8 69.7 875.5 13.6 53.2 899.4 13.5 55.3

53.0% 3.5% 37.2% 18.8% 9.5% 9.6% 21.5% 14.7% 20.7% -2.7% 0.6% -4.0% 0.0% 0.0% 0.0%

Average

FALLS Improv.

LS FDS SA ILP    FALLS

DFG
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TABLE XIV 

AVERAGE NUMBER OF FUS AND AREA (INCLUDING FU AREA AND ARCHITECTURAL AREA) COMPARISONS 

AMONG COMPETING ALGORITHMS USING THE TRIVIAL LIBRARY 

 

  

nFU
FU 

Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area
nFU Area

Mux+De 

mux Area

Registe

r Area

Arch. 

Area

1 hal 11 4.8 380.5 4.0 14.7 399.1 3.5 276.6 3.7 14.1 294.3 3.5 278.1 5.4 13.5 297.1 3.5 278.1 4.5 12.3 294.9 3.5 276.6 3.7 13.5 293.8

2 horner 18 3.8 301.0 6.2 15.8 323.1 3.2 250.6 5.8 15.3 271.6 3.0 236.9 6.7 17.6 261.2 2.8 223.1 5.3 15.8 244.2 2.8 223.1 4.5 14.7 242.2

3 arf 28 9.7 771.8 14.9 34.6 821.3 5.3 421.8 11.0 30.5 463.3 4.8 383.6 13.8 29.9 427.3 4.5 357.6 7.4 27.6 392.5 4.5 357.6 6.6 24.6 388.8

4 motion 32 12.5 985.6 19.7 31.7 1037.0 7.7 605.1 15.4 20.5 641.0 8.2 644.9 18.2 21.7 684.8 7.3 579.1 15.2 19.9 614.3 7.5 591.4 10.9 21.1 623.4

5 ewf 34 5.0 386.5 6.1 15.3 407.8 4.3 337.7 8.6 21.1 367.4 3.7 282.6 10.1 22.9 315.6 3.3 258.2 6.6 15.8 280.6 3.3 258.2 4.2 17.0 279.4

6 h2v2 51 9.0 678.1 34.4 61.0 773.5 5.2 397.2 13.4 31.1 441.7 4.7 351.3 17.3 35.2 403.7 4.2 314.6 13.9 30.5 359.0 4.2 314.6 8.0 34.0 356.6

7 feedback 53 12.7 982.3 50.9 58.1 1091.3 8.2 635.6 35.4 45.8 716.7 8.0 621.8 41.1 46.3 709.3 7.3 573.0 38.2 44.0 655.2 7.3 573.0 20.3 41.1 634.3

8 collapse 56 15.5 1196.2 58.6 81.0 1335.7 9.5 734.8 50.2 58.1 843.1 9.8 760.8 54.6 62.2 877.5 9.0 695.1 52.0 56.3 803.4 9.0 695.1 26.1 62.2 783.4

9 write 106 43.0 3160.3 111.2 139.6 3411.1 10.8 803.1 103.7 72.2 979.0 11.0 815.4 105.1 71.0 991.5 10.8 803.1 102.2 69.2 974.6 10.8 803.1 50.2 72.2 925.5

10 interpolate 108 25.5 1993.9 121.6 101.5 2217.0 14.8 1164.3 89.3 58.1 1311.7 16.2 1269.8 99.8 72.2 1441.8 13.3 1048.2 86.9 67.5 1202.6 13.3 1048.2 46.7 65.1 1160.1

11 matmul 109 26.5 2057.9 135.5 153.7 2347.1 13.0 1020.7 105.4 82.7 1208.9 14.5 1138.3 120.2 95.0 1353.5 12.7 994.7 110.2 85.1 1190.0 12.7 994.7 55.7 85.1 1135.5

12 idctcol 114 19.5 1520.2 84.6 142.0 1746.8 9.3 725.7 38.1 113.8 877.6 9.3 721.1 58.7 129.7 909.4 7.2 553.0 39.8 114.4 707.3 7.2 553.0 13.9 112.6 679.6

13 jpeg 134 19.8 1527.6 163.2 160.7 1851.6 14.3 1112.2 90.1 112.6 1314.9 14.0 1090.9 115.2 129.1 1335.1 10.7 828.1 83.8 114.4 1026.3 10.8 838.7 36.3 117.3 992.4

14 smooth 197 44.3 3511.7 282.7 196.5 3990.9 22.0 1729.7 205.9 117.9 2053.5 25.0 1955.7 244.0 148.4 2348.2 20.3 1596.7 209.1 115.0 1920.9 21.3 1679.3 114.2 126.1 1919.7

15 invert 333 51.0 4000.2 486.1 323.8 4810.1 35.2 2745.6 426.9 227.0 3399.5 35.8 2819.2 461.4 242.3 3522.9 27.8 2183.5 427.8 193.0 2804.3 28.2 2212.5 209.3 195.4 2617.2

92 20.2 1563.6 105.3 102.0 1770.9 11.1 864.0 80.2 68.1 1012.3 11.4 891.3 91.4 75.8 1058.6 9.7 752.4 80.2 65.4 898.0 9.8 761.3 40.7 66.8 868.8

51.6% 51.3% 61.3% 34.5% 50.9% 11.9% 11.9% 49.2% 1.8% 14.2% 14.6% 14.6% 55.5% 11.9% 17.9% -1.2% -1.2% 49.2% -2.2% 3.3% 0.0% 0.0% 0.0% 0.0% 0.0%FALLS % Improv.

DFG
# of 

ops

LS FDS SA ILP    FALLS

Average
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TABLE XV 

AVERAGE ARCHITECTURE AREA, MAX CONGESTION AND INTERCONNECTION COMPARISON AMONG 

COMPETING ALGORITHMS USING THE TRIVIAL LIBRARY 

 

 

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

Arch. 

Area

Max 

Conges.

# of 

Intercon.

1 hal 399.1 4.7 7.5 294.3 4.7 6.2 297.1 5.0 6.8 294.9 4.8 6.3 293.8 5.0 6.5

2 horner 323.1 6.7 7.7 271.6 6.2 6.8 261.2 6.2 7.5 244.2 5.8 6.3 242.2 5.8 6.3

3 arf 821.3 11.3 19.2 463.3 8.5 12.8 427.3 8.8 13.8 392.5 7.2 9.7 388.8 7.3 10.7

4 motion 1037.0 9.8 24.5 641.0 9.0 16.8 684.8 9.0 18.8 614.3 8.2 16.3 623.4 8.8 17.3

5 ewf 407.8 6.7 9.0 367.4 8.2 9.8 315.6 7.5 10.5 280.6 6.5 7.5 279.4 6.7 8.2

6 h2v2 773.5 11.2 31.3 441.7 9.2 14.5 403.7 9.2 16.0 359.0 8.2 13.7 356.6 9.7 15.8

7 feedback 1091.3 13.7 42.7 716.7 13.7 29.3 709.3 13.8 32.7 655.2 13.3 30.2 634.3 12.5 29.0

8 collapse 1335.7 16.7 52.2 843.1 15.0 39.8 877.5 15.7 43.0 803.4 15.0 40.2 783.4 14.8 41.7

9 write 3411.1 16.7 108.0 979.0 17.5 69.3 991.5 16.5 70.2 974.6 16.3 68.0 925.5 16.2 69.8

10 interpolate 2217.0 18.2 95.2 1311.7 18.5 64.7 1441.8 19.2 73.3 1202.6 17.8 63.0 1160.1 17.8 63.0

11 matmul 2347.1 24.0 105.7 1208.9 20.7 73.0 1353.5 22.2 83.5 1190.0 21.3 75.7 1135.5 19.7 73.8

12 idctcol 1746.8 18.5 78.2 877.6 16.2 40.8 909.4 17.7 53.7 707.3 15.3 40.3 679.6 15.5 42.2

13 jpeg 1851.6 26.0 117.3 1314.9 19.8 71.0 1335.1 21.8 85.8 1026.3 18.8 65.5 992.4 18.7 66.2

14 smooth 3990.9 21.7 203.3 2053.5 22.8 137.0 2348.2 26.2 162.0 1920.9 23.8 136.7 1919.7 24.7 145.3

15 invert 4810.1 29.0 325.0 3399.5 34.2 271.8 3522.9 34.3 293.8 2804.3 33.8 263.8 2617.2 33.2 265.0

1770.9 15.6 81.8 1012.3 14.9 57.6 1058.6 15.5 64.8 898.0 14.4 56.2 868.8 14.4 57.4

50.9% 7.8% 29.8% 14.2% 3.4% 0.3% 17.9% 7.2% 11.4% 3.3% 0.0% -2.1% 0.0% 0.0% 0.0%

Average

FALLS Improv.

DFG

LS FDS SA ILP    FALLS



120 

 

TABLE XVI 

AVERAGE RUNTIME COMPARISON AMONG THE COMPETING ALGORITHMS USING 

THE NON-TRIVIAL LIBRARY 

 

  

Size (# of 

operations, 

# of arcs)

LS FDS SA ILP FALLS

1 hal 11, 8 0.07 11.9 294.5 147 0.62

2 horner 18, 16 0.14 38.9 340.0 337 0.58

3 arf 28, 30 0.22 72.8 471.8 787 0.98

4 motion 32, 29 0.19 43.0 413.6 325 2.02

5 ewf 34, 47 0.20 96.8 640.9 1635 0.98

6 h2v2 51, 52 0.34 158.4 505.5 1625 1.24

7 feedback 53, 50 0.27 76.7 433.6 788 2.29

8 collapse 56, 73 0.36 74.9 433.6 819 1.95

9 write 106, 88 1.28 223.9 645.5 8654 2.88

10 interpolate 108, 104 0.95 199.1 853.6 3031 4.91

11 matmul 109, 116 1.68 228.5 857.3 4522 5.16

12 idctcol 114, 164 4.09 389.8 1033.6 390114 6.80

13 jpeg 134, 169 5.15 501.5 1181.8 20255043 10.22

14 smooth 197, 196 6.32 734.7 2040.9 100033 10.56

15 invert 333, 354 6.02 2391.8 3998.2 849116 26.40

16 rand_1300 1300, 1300 18.72 676558.8 114615 * 69.85

92.3, 99.7 1.82 350 943 1441132 5.17

167.8, 174.8 2.87 42613 8047 * 9.22

DFG

DFG 1-15 Avg

DFG 1-16 Avg
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Figure 24: Average runtime comparison in milliseconds between FALLS and LS. 

 

6.3.2. Our ACO Implementation 

Since ACO proposed in [25] is the most recent operation scheduling algorithm for FU 

minimization to the best of our knowledge, it would be more convincing to compare FALLS to 

ACO to demonstrate the former’s efficacy and efficiency. However, our ACO implementation 

referring to all the details provided in [25] fails to achieve the same or close results explicitly 

presented in [25]1. Thus, to be fair, we do not present the results of our ACO implementation 

across all DFGs in our benchmark suite in the general comparison tables of Section 6.3.1. In 

TABLE XI, we compare FALLS to only published ACO results for only two DFGs for which 

[25] has explicitly published absolute results. However, we present our ACO implementation 

                                                 
1 We contacted the senior author of [19] with our ACO results and asked for ACO parameter values they used 

(especially for parameter avg discussed later in the section) in their ACO runs that are not specified in [19]. The 

main response we got was ACO is stochastic but should produce stable results, and that our implementation must be 

different from theirs. We did not get a response to our parameter value query nor an offer of their ACO code. 
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results and compare these to FALLS’ results in subsequent tables. More details regarding our 

ACO implementation and our ACO experimental results are as follows.  

For the implementation, we initially set the two main parameters, the number of ants and 

the number of iterations to be 10 and 150, respectively, as reported in [19]. The other constant 

parameters were also all set according to the paper. However, the parameter avg, defined as the 

average size of the decision choices over all solution construction iterations, is not explicitly 

configured. We make an optimistic configuration as follows. For each ant in any stage of a 

scheduling solution construction, it probabilistically chooses an unscheduled operation and an cc 

in its mobility range. Therefore, the product of the average number of unscheduled operation and 

the average mobility range of an unscheduled operation is avg according to the definition. It is 

thus: 

𝑎𝑣𝑔 =
𝑛 + 1

2
 × 

∑ 𝑀𝑅𝑢𝑢∈𝑉

𝑛
 

where n is the number of operations in V and MRu is the mobility range of operation u. We tried 

other more complex and accurate avg formulations, but the results hardly changed (change was 

an average of 0.4% improvement). 

 In TABLE XVII, we compare the results of our ACO implementation (all settings other 

than for avg are the same to [25] to the best of our knowledge) to the explicitly published ACO 

results. The published results are 17.31% and 26.96% better than our results for the two DFGs in 

average.  

 To further explore our ACO implementation, we increased the number of ants and the 

number of iterations (indicated as a pair in TABLE XVIII), which clearly are parameter 

configurations whose increase can improve the solution quality of any ant-colony-based 

algorithm. The results in TABLE XVIII show a consistent, though small, solution quality 
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improvements with the parameters increased by factors of 2, and a runtime increment that has a 

similar trend (proportional to the product of the number of ants and the number of iterations). 

Since the ACO paper [25] does not present the absolute results of the 13 DFGs (other than 

idctcol and invert), we can only compare FALLS results to our ACO results for these DFGs. The 

results in TABLE XVIII show that FALLS is on the average 21.3%, 18.3% and 15.3% better 

than our implementation of ACO for its three parameter configurations in increasing order. 

Another issue that can be noticed is that our ACO results are very close to FALLS results for 

DFGs 1 to 9 (which are generally small and less complex) but ACO’s solution quality 

deteriorates significantly when DFG size and complexity increases. Finally, the average runtime 

of FALLS is 194k smaller than ACO based on our experiments using the same parameters (10 

ants and 150 iterations) as in [25]; ACO runtime increases significantly as these parameters 

increase beyond this initial setting, as Table XVIII shows.  

 

TABLE XVII 

FU ALLOCATION COMPARISON BETWEEN EXPLICITLY PUBLISHED AND OUR ACO 

RESULTS USING THE TRIVIAL LIBRARY 

 

nFU +, * nFU +, * nFU +, * nFU +, *

1.0 11 5, 6 13 6, 7 18.18% 47 25, 22 68 28, 40 44.68%

1.1 10 4, 6 12 7, 5 20.00% 42 23, 19 58 22, 36 38.10%

1.2 9 4, 5 11 6, 5 22.22% 36 20, 16 50 19, 31 38.89%

1.3 8 3, 5 10 5, 5 25.00% 34 19, 15 47 17, 30 38.24%

1.4 8 3, 5 10 6, 4 25.00% 30 17, 13 40 17, 23 33.33%

1.5 7 3, 4 9 5, 4 28.57% 28 16, 12 39 13, 26 39.29%

1.6 7 3, 4 9 5, 4 28.57% 26 15, 11 35 13, 22 34.62%

1.7 7 3, 4 8 4, 4 14.29% 25 14, 11 31 11, 20 24.00%

1.8 7 3, 4 8 4, 4 14.29% 23 13, 10 32 11, 21 39.13%

1.9 6 3, 3 7 4, 3 16.67% 23 13, 10 31 11, 20 34.78%

2.0 6 3, 3 7 4, 3 16.67% 22 13, 9 29 10, 19 31.82%

Avg 7.8 3.4, 4.5 9.5 4.3, 3.2 20.93% 30.5 17.1, 13.5 41.8 15.6, 26.2 36.90%

L c 

Factor

idctcol (114, 164) invert (333, 354)

Published Results Our Results
% Diff.

Published Results Our Results
% Diff.
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TABLE XVIII 

AVERAGE NFU AND RUNTIME RESULTS OF FALLS AND OUR ACO 

IMPLEMENTATION WITH DIFFERENT NUMBER OF ANTS AND ITERATIONS USING 

THE TRIVIAL LIBRARY 

  

nFU
% Impro. 

of FALLS

Runtime 

(s)
nFU

% Impro. 

of FALLS

Runtime 

(s)
nFU

% Impro. 

of FALLS

Runtime 

(s)
nFU

Runtime 

(ms)

1 hal 11 3.5 1.3% 46.7 3.5 1.3% 153.0 3.5 1.3% 554.7 3.5 0.62

2 horner 18 2.8 -0.5% 78.6 2.7 -3.7% 285.8 2.7 -3.7% 1095.0 2.8 0.58

3 arf 28 4.9 9.1% 114.7 4.8 7.1% 434.4 4.7 5.1% 1677.3 4.5 0.98

4 motion 32 8.0 6.7% 126.3 7.9 5.5% 451.1 7.7 3.0% 1762.5 7.5 2.02

5 ewf 34 3.4 0.9% 145.8 3.3 -1.8% 561.2 3.2 -4.5% 2168.7 3.3 0.98

6 h2v2 51 4.5 9.1% 313.0 4.5 6.9% 1232.8 4.3 2.5% 4854.9 4.2 1.24

7 feedback 53 8.3 12.8% 258.6 8.0 9.1% 1001.9 7.6 4.1% 3970.0 7.3 2.29

8 collapse 56 9.6 7.1% 211.0 9.5 6.1% 811.9 9.5 6.1% 3207.0 9.0 1.95

9 write 106 11.3 4.1% 730.4 11.2 3.2% 2862.6 10.9 0.7% 11362.5 10.8 2.88

10 interpolate 108 16.5 24.1% 774.6 16.2 21.4% 3036.3 15.5 16.6% 11957.7 13.3 4.91

11 matmul 109 14.9 17.7% 755.8 14.6 15.6% 2971.3 14.3 12.7% 11744.7 12.7 5.16

12 idctcol 114 9.3 29.4% 1088.8 9.1 26.8% 4296.9 8.9 24.3% 16633.5 7.2 6.80

13 jpeg 134 14.1 30.1% 1294.9 13.6 25.9% 5091.2 13.3 22.5% 19891.8 10.8 10.22

14 smooth 197 24.4 14.2% 2190.2 23.6 10.8% 8643.3 23.6 10.8% 34078.6 21.3 10.56

15 invert 333 42.1 49.4% 6936.2 40.7 44.6% 27266.8 39.0 38.5% 107177.2 28.2 26.40

165.8 20.2 27.5% 2173.4 19.7 24.2% 8551.0 19.1 20.9% 33580.6 15.6 10.7

92.3 11.8 21.3% 1004.4 11.6 18.3% 3940.0 11.3 15.3% 15475.7 9.8 5.2

ACO (40, 600)

Avg (all)

DFG
# of 

ops

ACO (10, 150) ACO (20, 300)

Avg (10 - 15)

FALLS
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7. CONCLUSIONS

 

In this thesis, we proposed criteria for low-power high-level synthesis resource library 

construction and three operation scheduling algorithms for power, energy, resource minimization, 

respectively. We first introduced high-level synthesis, reviewed previous works for optimizing 

different objectives in high-level synthesis and categorized the operation scheduling problem. 

Then we discussed some important classical operation scheduling algorithms, including their 

objective, complexity and optimality. Motivated by power issues in module selection, we 

proposed two hypotheses for functional-unit construction for enhanced power optimization and 

empirically proved them by a flexible simulated-annealing based algorithm PSA. Further, we see 

that power optimization is not equivalent to energy optimization and the importance of 

simultaneous power and latency minimization. By improving the classical force-directed 

scheduling with scheduling probability determination, root-mean-square-based power 

optimization and greedy scheduling, our LPR-GPS algorithm yields decent energy minimization 

results. Finally, we solved the classical latency-constrained resource minimization scheduling 

problem with a new algorithm FALLS that incorporates a novel lookahead technique and 

fractional search, which produces close to optimal results with very low runtime.  
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