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CHAPTER 1

INTRODUCTION

1.1 Motivation

In order to ensure built structures functionality and assess their remaining service life, it is essential

to detect microstructural damages in structural elements. The use of ultrasonic testing in detecting

damages in materials is well established. Linear ultrasonics techniques provide satisfactory detection

capabilities for defects with a length scale much larger than the ultrasound wavelength. However, when

the defect size is close to or smaller than the ultrasound wavelength, linear ultrasound technique is

not applicable (1). Detecting large cracks, sometimes, is too late to prevent a catastrophic failure of a

structure because the damage has developed enough to deteriorate the structure rapidly. Investigating

damages in early stages, therefore, is of utmost benefit, but beyond the bounds of possibility for linear

ultrasonics. Due to the limited capability of linear ultrasonics, nonlinear ultrasonic methods are used in

order to detect smaller damage.

Under the nonlinear ultrasonics, the damage in the material alters the nonlinear material properties,

which can be quantified by the phase changes or wave speed changes of the ultrasound waves. Acoustic

nonlinearity parameter, is one of the most popular tools for measuring the material nonlinearity, which is

proportional to the ratio of the second harmonic amplitude to the square of the first harmonic amplitude:

A2

A2
1

((2), (3)). However, it is challenging to understand how the effects of various damage modes cor-

relate with the changes of nonlinear material properties by merely using experimental techniques. The

1
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numerical modeling, therefore, plays an important role for predicting and correlating the behavior of

nonlinear ultrasound throughout a variety of damage conditions and offers a means to gain insight into

the contribution of different damage modes such as microstructural evolution, meso-scale heterogeneity,

geometrical variation, etc. and the ultrasound signal.

There are many cases where the initiation of macroscale damage in a structure is preceded by evo-

lution of the microstructure of the material. Material heterogeneity, creep and fatigue are some of the

forms of microstructural variation.

The ultrasound predicted in a heterogeneous medium is crucial due to many applications such as

detecting damage in porous media, composites, granular material, or in diagnostic and therapeutic ultra-

sound (4). The heterogeneous components distort the wave resulting in changing the phase and generat-

ing higher order harmonics. There are many experimental studies showing the greater sensitivity of the

third harmonic to the microstructural evolutions. When plastic strain is localized, the third harmonic ra-

tio A3

A3
1

appears to increase with a greater value in comparison to the second harmonic. Moreover, further

research shows that higher-order-harmonics are present when variations exist in any scale. Microscale

variations (such as grain boundaries, dislocations), meso-scale variations (such as precipitates, inter-

metallics, etc) and macroscale variations (such as holes, welds) also contribute to higher order harmonic

generations. However, their specific role in the nonlinearity of the material is still under investigation.

Numerical methods have been used for solving linear and nonlinear wave propagation problems in

homogenous and heterogeneous solids for more than 50 years. In spite of great success of finite element

method in solving boundary value problems, there has been growing interest in improving the method

even further. Although considerable effort has been made to developing finite elements methods, the
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currently available techniques become computationally less efficient as the problem requires smaller

mesh size or complicated structures. The errors incorporated in wave propagation analyses using the

piecewise polynomial approximations of standard Finite Element methods have been recognized and

analyzed (5) (6). As far as time harmonic wave propagation problems are concerned, the fact that the

accuracy of the numerical solution gets diminished rapidly with increasing the wave number is well

understood (7)(8)(9)(10)(11). Hence, to obtain valid and feasible solutions for problems with very short

waves, very fine mesh needs to be maintained in the model, to such extent that the computational solution

effort may be limiting. When dealing with wave propagation problems, numerical wave propagation

velocity might not equate to the physical velocity, due to the numerical period elongation and amplitude

decay (12) leading to the dispersion and dissipation errors (12) (13) (14) (15) (16) (17) (18) (19) (20)

(21).

As a wave travels, the dispersion and dissipation errors accumulate and the numerical solution be-

comes inaccurate. Therefore, whenever high-frequency components are present in the solution, signif-

icant errors are present in the numerical solution unless the mesh is fine enough to model the high-

frequency wave. Although there are few numerical studies on nonlinear ultrasonics, a more advanced

and accurate numerical modeling is required to overcome the accuracy and efficiency shortcomings in

nonlinear ultrasonics problems, especially when harmonics higher than the second harmonic is needed

to be captured. Accurately capturing higher harmonics requires an even smaller element size. As the

dispersion accuracy is demanded, the element size in FE needs to be 20 times smaller than the wave-

length of the harmonics (22). This issue affects the computational efficiency and accuracy, which further
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demonstrates the demand for a more efficient computational technique to solve nonlinear wave propa-

gation problems.

To enhance computational efficiency while achieving solution accuracy for the prediction of high

frequency responses, one approach is to use higher-order elements (23)(24)(25) (26) (27). This method

generally provides us with a more accurate solution; however, the computational cost increase may

surpass the gain it may offer, often due to additional degrees of freedom added. Another approach is to

introduce problem-specific enrichment functions as the basis function in the numerical method so that

it can capture the higher-order-harmonics more effectively.

1.2 Objective

The objective of this research is divided into two main parts. The first part describes numerical

simulation of nonlinear ultrasonic wave propagation with an intention to acquire deep understanding

on how different-scale non-homogeneity sources can contribute to higher-order-harmonics. To do so

gives us an insight when quantifying the nonlinearities or damage of the material and enables us to

effectively mitigate the possibility of failure and anticipate the service life of a structure. The numerical

results are verified with experimental testing. Since the NLUT relies on high frequency components

in order to detect damages shorter than the linear UT wavelength, the second part of the dissertation

deals with enhancing the existing numerical methods such that they are capable of solving the high

frequency wave propagation problem more accurately and efficiently. Numerical results were validated

with several benchmark problems and analytical predictions. Specific research development made are

summarized as follows:
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(1) Post processing techniques based on Fast Fourier Transform and Wavelet Transform are studied

and advantages and disadvantages of each method is described. The accuracy of each method on calcu-

lating the nonlinearity parameter from an ultrasound signal is discussed. The influences of the sampling

rate, frequency range and duration of the time domain response to the result of frequency spectrum in

calculating the nonlinearity parameter were examined. Results show that wavelet transform has better

resolution for extracting high order harmonics. All NLUT nonlinearity calculations in this thesis were

conducted based on the Wavelet Transform post processing technique.

(2) The relationship between statistical variation of microstructure and the predicted ultrasound in

the mesoscale model is studied. The study quantifies how the statistical variation in heterogeneity size,

volume fraction, standard deviation, and distribution in microstructure affect the received ultrasound

in the continuum level. The numerical results suggest that the third harmonic has greater sensitivity

with regards to the random heterogeneity characteristics, which is supported by numerical studies in the

literature.

(3) A thorough study has been done to investigate the contribution of different scales variations

and heterogeneities on higher-order-harmonics. Numerical models representing micro-scale variations,

mesoscale heterogeneities and macroscale variations are constructed and acoustic nonlinearity param-

eters are derived for each case. A broader understanding of the sources of higher-order-harmonics are

obtained and the greater contribution of the third-order-harmonic when the above-mentioned variation

exist is confirmed. The results are verified with NLUT experiments and XRD image processing.

(4) An enriched finite element method is employed to effectively obtain numerical solutions of

nonlinear wave propagation problems. One-dimensional and two-dimensional benchmark problems
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are verified. Three dimensional problems are approached similarly. The method merges the assets of

finite element (FE) and spectral methods while conserving the core properties of FE. Additional degrees

of freedom corresponding to higher harmonic terms are added to the nodes of standard FE elements.

The essential boundary conditions in the enriched finite element method can be imposed by Nitsche’s

method to further reduce the solution error. Efficiency and accuracy of the numerical method have

been discussed. A User-defined element (UEL) and user-defined material (UMAT) are developed and

incorporated in Abaqus to solve nonlinear wave propagation problems.

(5) A harmonic-enriched reproducing kernel particle method (RKPM) is developed with the aim of

enhancing the accuracy of the high frequency wave propagation problems while increasing the com-

putational efficiency even further. One-dimensional and two-dimensional problems are studied and the

results are compared with FE, standard RKPM, enriched FE and analytical solutions. In this method,

higher harmonic terms are inserted into the basis function, without adding degrees of freedom. Spe-

cial consideration of the essential boundary conditions is required and as for the enriched FE, Nitsche’s

method is employed to handle the essential boundary conditions imposition. Von Neumann analyses

have been conducted to assess the dispersion and stability properties of the newly developed method.

The organization of the thesis is as follows. Chapter 2 will review the critical literature on Non-

linear ultrasonics and numerical methods to solve nonlinear wave propagation problems. The theory

of nonlinear wave propagation will be described in Chapter 3. In Chapter 4, a review and comparative

study of signal processing techniques is offered. Higher harmonics in nonlinear ultrasound testing and

their relationship to microstructural evolution is discussed in Chapter 5. Numerical studies on the influ-

ence of different scale heterogeneities on higher order harmonics under plastic deformation is described
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in Chapter 6. In Chapter 7, enriched finite element methods are applied to solve wave propagation

problems. Chapter 8 describes the harmonic-enriched RKPM method for solving the wave propagation

problems. Lastly, conclusions and future work will be discussed in Chapter 9.



CHAPTER 2

LITERATURE REVIEW

A literature review is presented here on the subjects of nonlinear ultrasonic wave propagation and

numerical modeling. Since the objective of this study is more numerically oriented, the literature re-

view therefore has an emphasis on the numerical aspects of nonlinear ultrasound testing. In Section

2.1 , early studies of nonlinear ultrasonic testing and signal processing methods are reviewed. More

Enriched numerical techniques previously utilized are described. Based on these reviews, challenges to

nonlinear wave propagation and multiscale study in heterogenous media are summarized. Later, studies

on numerical methods to solve wave propagation problems regarding ultrasound testing and developing

correlation between damage and higher harmonics are reviewed. Enhanced numerical methods to solve

for wave propagation problems and their challenges are reviewed next.

2.1 Nonlinear ultrasonic testing and signal processing

Theories of finite amplitude wave propagation dates back to the 18th and early 19th centuries by

Euler, Poisson, and Lagrange (28). Investigation was continued in the 19th century by Earnshaw (29).

In 1935 Thuras et al. (30) discussed harmonic generation phenomena in air. In the late 1950’s, interest in

nonlinear acoustics began to increase. Krassilnikov et al. (31) published an experimental observation of

the harmonics in a traveling wave of finite amplitude in 1957. Romanenko (32) performed experimental

studies of finite amplitude spherical waves in 1959. Ryan et al. (33) measured harmonic content as a

function of propagation distance in 1962. Studies of harmonic generation in solids began in the early

8
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1960’s. Breazeale and Thompson (2) and Hikata et al. (34) measured harmonic generation in aluminum.

The development of nonlinear acoustics has been widely reviewed, for example by Bjørnoø(28) and by

Breazeale and Philip (35). Of particular importance was the discovery in the early 1970’s by Gits et al.

(36) of the correlation of fatigue damage in aluminum with nonlinear distortion of ultrasonic waves.

Since then, Ultrasonic technique (UT) has been used as a nondestructive evaluation (NDE) technique

that characterizes the material state the propagation of high frequency sound waves within the material

and has been vastly employed to identify the presence of surface flaws such as cracks as well as internal

flaws such as voids or inclusions in materials (37) (38). Although linear UT has many applications,

it becomes considerably less accurate when the defect’s size is smaller than the ultrasound signal’s

wavelength, which limits the capability of characterizing the microstructural defects, such as early stages

of fatigue and creep damage. On the other hand, microstructural defects or heterogeneities scatter

and distort the sound wave leads to further nonlinearity making the use of nonlinear UT inevitable

(39),(40)(41). The material nonlinearity in the nonlinear wave propagation theory is assumed to be

associated with the homogenized properties of microstructural defects or heterogeneities which can be

determined by stress dependent ultrasonic wave speed known as acoustoelasticity (42)(43)(44)(45) or

the detection of higher harmonics (46)(2)(47)(48).

When the fundamental wave mode propagates in a material, the interaction of the fundamental wave

mode with microstructural damage generates higher order harmonic frequencies. The material nonlin-

earity can be quantified and correlated with material damage by determining the amplitude of higher

order harmonics. Thus far, there are several applications of nonlinear ultrasonics to assess microstruc-

tural changes in metallic alloys, such as fatigue damage (49)(50), creep damage (51)(52)(53), radiation
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damage (48), thermal aging (54)(55), and cold work (56). The ultrasonic testing can be achieved by

monitoring longitudinal waves (57)(53), Rayleigh waves (58)(48) or Lamb waves (49). Shui et al.(59)

quantified the plastic damage in magnesium-aluminum alloy using longitudinal waves, and Pruell et

al.(49)studied the plastic damage in aluminum using Lamb wave modes. Zeitvogel et al. (60) utilized

nonlinear Rayleigh waves to detect stress corrosion cracking. Matlack et al. (48) reported a comprehen-

sive review of the second harmonic generation method for detecting microstructural damage. In general,

nonlinearity parameter β increases with the increase of the density of microscopic heterogeneity, e.g.,

dislocation density or porosity. However, significant variations in the reported data and high errors in

repeated measurements require more robust signal processing tool to decompose harmonic frequencies.

To extract the amplitudes of the fundamental and second harmonic frequencies, the most com-

mon signal processing method is to transform time domain signal into frequency domain by Fast

Fourier Transform (FFT), and read the amplitudes of each frequency from the frequency spectrum

(61)(51)(58)(62) . The major drawbacks of this approach are that temporal information is not preserved

and that the transformation is ineffective in dealing with truncated signals or ones with discontinuity.

If the frequency is constant in time, FFT can work properly (63). However, in the nonlinear ultrasonic

testing, the objective is to find the complex nonstationary second order harmonic signals. Moreover,

there are inherent characteristics of FFT that might affect the accuracy of signal decomposition. FFT

uses some global basis functions and any perturbations in the transient signal in the time domain can

dramatically affect the frequency spectrum (64); therefore, FFT is less accurate and unable to handle the

local discontinuity in the time varying signal with transient properties (65). To solve this problem, short

time Fourier transform (STFT) approach was implemented and introduced in the literature to overcome
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the spatial limitations of FFT. In this method, an implicit assumption is made that the signal within the

processing frame is repetitive and the signal can only be sampled for a limited time period (66). Time

resolution is improved by decreasing the window size to calculate FFT; however, frequency resolution

is reduced when FFT window has limited data points (67); thus, cannot provide good resolution in time

and frequency simultaneously(68) (65) (69). As FFT cannot decompose non-stationary transient signal

accurately, it is important to apply more robust signal decomposition approach to extract the acoustic

nonlinearity parameter.

Goupillaud et al. (70) introduced the Wavelet Transform (WT) method to analyze the seismic signals

simultaneously in time and frequency domain (70). WT offers an effective means in processing data

(71) and has been applied to many signal and image processing applications. These investigations

refer to different applications of WT, e.g. system identification and damage detection (72), damage

localization (73), ultrasonic wave denoising (74) , and mechanical fault diagnosis (75) . In contrast

to FFT, WT uses functions that are localized in both time domain and Fourier space called wavelets

(76). By reconstructing signals into the mother wavelets, frequency components with the window of

each wavelet can be identified. The window size in WT is a function of frequency. In higher frequency

components, the window size gets smaller to maintain higher frequency resolution while in signals

with lower frequency, higher frequency resolution is obtained by a larger window size (68) . WT has

been successfully applied in obtaining time-frequency images in both linear (77) and nonlinear (78)

systems. It has been also developed in the form of Discrete Wavelet transform, Fast Wavelet Transform,

and Continuous Wavelet Transform (79). Kim et al. (80) compared short time Fourier transformation

and wavelet transformation and found out that the continuous wavelet transform is a promising method
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to analyze the acoustic signals. Later in the thesis, we’ll conduct an error analysis to compare each

method’s accuracy.

2.2 Simulations and predictions

The prediction of ultrasound wave in a heterogeneous medium is crucial due to many applications

such as detecting damage in porous media, composites, granular material, or in diagnostic and therapeu-

tic ultrasound (4). The heterogeneous components distort the wave resulting in changing the phase and

generating higher-order-harmonics (HOH). Recently, there are more studies showing the relationship

between heterogeneity and HOH.

Extensive studies have been done to experimentally determine the correlation between the acoustic

nonlinearity parameter and the microstructural defects in the literature. These studies show that the

morphological variations can influence microstructural damage nucleation to a significant extent (81)

(82)(83)(84). Hikata et al. (85) showed that the dislocation in high-purity single crystal aluminum can

contribute to both the second and third-harmonic generations. They discussed that tension-compression

asymmetry and ultrasonic perturbation are necessary for the second-harmonic generation. However,

the tension-compression asymmetry is not essential for generating the third-harmonics. In recent years,

the study of HOH and their relation to microstructural heterogeneities have gained even more attention

(39)(86)(87). Sablik et al. (88) studied the relationship between the microstructural attributes of steel

and HOH in a magnetic induction test, and observed that monotonic decrease of third-harmonic ampli-

tude occurs as the square root of dislocation density increases. They also observed a similar behavior

for the first and the fifth harmonics. Shah et al. (89) considered concrete as a heterogeneous material

and discovered the relation between the second and the third-harmonic ratios and damage severity in
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concrete. They also reported that the third-harmonic is more sensitive to damage. Nonlinear ultrasonic

guided waves have been employed by Liu et al. (90) for microstructural characterization of a steel hol-

low cylinder . They presented the effect of localized microstructural evolution on HOH. Chillara et al.

(91) have addressed the issue of localized microstructure evolution in an inhomogeneous waveguide.

They noticed that increase in the third-harmonic amplitude is proportional to the ratio of the plastic

zone to propagation distance. In a later work, Chillara and Lissenden (92) also showed that tension-

compression asymmetry led to even harmonic generation, while its symmetry resulted in odd harmonic

generation.

Alongside experimental advancements, the numerical modeling has been employed to study the

wave propagation in damaged materials. Shen and Giurgiutiu (22) studied Lamb wave propagation in a

plate containing breathing crack using FEM. In their study, the crack was generated during cyclic fatigue

loading of the plate. They introduced a baseline free damage index, which could be used to determine

the density of cracks. Hong et al. (Hong et al. 2014) studied fatigue damage with the assumption

of homogeneity of material and geometrical nonlinearities. They simplified the model by ignoring the

non-uniform deformation and the localization of fatigue damage. Nonlinear Lamb wave simulation in

thin plates was carried out by Wan et al. Wan2014. Their study only focused on single microcrack, and

they proposed an amplitude ratio indicator for the detection of microcrack. Shen and Giurgiutiu (22)

studied the generation of HOH due to the interaction of wave with a nonlinear breathing crack using two

nonlinear FEM models: The element activation/deactivation method and contact analysis. They con-

cluded that two methods could simulate the nonlinear behavior of breathing crack equally well. Despite

close agreement between their results, no experimental data were reported to support their predictions.
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They then developed an analytical predictive modeling to simulate guided wave interaction with damage

which they concluded was faster than FEM. Considering the cumulative effect on the second-harmonic

amplitude, Rauter et al. (93) modeled both geometrical and material nonlinearity. They concluded that

the effect of cumulative second-harmonic is visible if the structure is excited at a suitable frequency

extracted from the dispersion curve. Also, they noticed that the hyperelastic material modeling could

appropriately model the micromechanically damaged material. Nonlinear ultrasonic response due to

plastic deformation in welded joints was investigated by Xiang et al.(94). They considered the effects

of dislocation length, geometrical, and plastic-induces nonlinearities within the acoustic nonlinearity

coefficient. They observed that 4% plastic deformation results in an increase of 100% in the acoustic

nonlinearity coefficient.

While much research has been placed in the second harmonic generation, the understanding and

knowledge of HOH in detecting different damage types is still limited. Moreover, despite the studies

in experimental assessment of second and third harmonics, few numerical analysis has been done to

review and compare different harmonics. The fact that the solid continuum theory does not establish a

well-grounded theory when dealing with mesoscale heterogeneity, such as the precipitants in metals is

another motivation to predict the ultrasonic wave through numerical simulation.

2.3 Finite element methods

There are many studies investigating the relationship between damage and ultrasonic wave proper-

ties theoretically and experimentally. As described in previous chapter, acoustic nonlinearity parameter

is the most popular tool for measuring the material nonlinearity which is proportional to the ratio of the

second harmonic amplitude to the square of the first harmonic amplitude : A2

A2
1

(2) (3) .
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On the other hand, predictive modeling offers a means to gain insight into the relationship between

the damage mode and the ultrasound signal. Shen and Giurgiutiu (22) conducted FEM modeling of

nonlinear Lamb wave in a plate with surface-breathing crack which are generated under cyclic fatigue

loading. They studied the features of wave packets at receiver and introduced a baseline free damage

index to assess the presence and severity of cracks. Hong et al. (95) modeled fatigue damage with

Abaqus/EXPLICIT™ software with the assumption that material and geometric nonlinearities are ho-

mogenous within the fatigued material, neglecting the fact that fatigue damage may be localized and

non-uniformly distributed. Wan et al. (96) modeled nonlinear Lamb waves in thin plates and proposed

an amplitude ratio indicator for the detection of micro-cracks. However, they have only focused on

single micro-crack type of damage. Shen and Giurgiutiu (97) have used ANSYS software package to

model the guided wave generated by interaction with a nonlinear breathing crack which have been mod-

eled with two different techniques which compared quite well; however, no experimental analysis has

been done to verify their predictions. Rauter et al. (93) have modeled both material and geometrical

nonlinearity with ANSYS considering the cumulative effect on second harmonic amplitude by choos-

ing certain excitation frequencies and concluded that micro-mechanical damages can be modeled with

appropriate nonlinear material model. Xiang et al. (94) have studied nonlinear ultrasonic response

due to plastic deformation in welded joints. They developed an FEM model and considered the effect

of geometric and plasticity-induced nonlinearities and dislocation length on the acoustic nonlinearity

parameter and observed 100% increase in the acoustic nonlinearity parameter under 4% plastic strain.
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2.4 Enriched numerical methods

The development of the finite element method for wave propagation problems was the subject of

a fair amount of research for so many years. Kohno et al. (98) presented a finite element scheme

that merges advantages of the finite element and spectral methods. Low-order finite elements enriched

with harmonic functions are used in this technique. The amount of enrichment is variable and can be

represented by additional element degrees of freedom. One-dimensional time-harmonic multiscale wave

problems with waves of dramatically different lengths in different regions and with wave conversions

was solved. It was shown that, remarkably more accurate results can be obtained compared to using

the traditional finite element for the solution of one-dimensional problems. For some decades, the

general approach to enrich the conventional finite element basis functions with functions that can more

accurately solve for the aimed solution, has been investigated (99). For the solution of specific problems

this approach can be efficient. For instance, in the case of pipe analyses problem, specific functions were

incorporated that are known to capture pipe ovalization effects more accurately (100). Utilizing these

elements can lead to much more accurate and precise solutions both in linear and nonlinear analyses.

In the development of beam elements, the same technique has been adopted to include warping effects

(101), or in the case of fluid flow analyses, the approach is used such that the flow conditions represented

more accurately (102), whereas in solid mechanics, the method is applied to predict locally nonsmooth

features such as voids and cracks (103). In all the methods mentioned, the nature of the solution pursued

is incorporated in the solution space. Evidently, a suitable enrichment of the standard finite element

functions is of concern whenever specific problems are dealt with.
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Considerable research has been conducted on the development of numerical methods such element

free methods to deal with high frequency harmonic wave propagation problems. Many researchers

(104)(105)(106) proposed the partition of unity finite element method (PUFEM) for solving high fre-

quency Helmholtz problems. Specific wave propagation solutions are incorporated in the solution space

in this technique. In this method, the computational cost increases by adding the solution to the degrees

of freedom of the interpolation function. To alleviate the ill-conditioning problem in PUFEM, the gen-

eralized finite element method (GFEM) was introduced (107) which is an extension of PUFEM and was

applied to time-harmonic acoustics (108). In this method, the homogenous solutions are multiplied by

the standard FE shape functions.

Massimi et al. (109) and Peterson et al. (110) developed a discontinuous enriched method (DEM)

in which nonconforming homogenous solution of governing problems are used for each element in ad-

dition to the FE approximations while continuity is enforced in the variational formulation (111). The

enriched field is added to the polynomial rather than multiplied by it.The discontinuous approximation

leads to diagonal mass matrix and saves computational cost. However, in these methods, the discon-

tinuity between the elements need to be dealt with using methods such as penalty factors or Lagrange

multipliers.

Other researchers proposed the spectral element method (SEM) as a generalization of FE in which

higher order polynomials or harmonic functions are utilized in the solution space (23)(24)(25). In these

methods, harmonic functions are used as basis functions and the problem is solved in the frequency

domain. In this method, the accuracy is increased simply by enhancing the algebraic degree of these

polynomials and adding to the degrees of freedom and thus increasing the computational cost. The
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Spectral Finite Element Method proposed later (26) proved to be very effective in solving high frequency

wave propagation problems, however, due to the transformation of the governing wave equation to the

frequency domain and solving the problem in frequency domain and transforming back to time domain

spectral methods are computationally costly.

Ham et al. (112) has developed an enriched FE method which combines the advantages of standard

FE and spectral FE by introducing additional degrees of freedom to the nodes. In this method, a ”priori”

specific wave solution is not embedded and instead harmonic functions as a general solution of the wave

is added to the standard FE interpolation functions. In this method, the mesh size must be fine enough

or the number of harmonics used must be large enough to obtain accurate approximation.

Reproducing kernel particle method (RKPM) proposed by Liu et al. (113) uses a continuous re-

producing kernel in a Lagrangian particle method to enhance both efficiency and accuracy of the other

mesh-free methods. Liu et al. (114) applied RKPM in large deformation structural dynamics. Uras et al.

(115) applied Reproducing Kernel Particle Method (RKPM) to acoustic problems. They used a multiple

scale adaptive refinement technique through which they inserted additional particles in critical regions

to enhance accuracy. The enrichment of finite element computations has been developed to enable the

local treatment of computational domain with RKPM while solving the global problem with a standard

finite element formulation(116).

Li et al. (117)(118) proposed a reproducing kernel hierarchical partition of unity method for effi-

cient large scale computations. Classes of basis wavelet functions were introduced to form hierarchical

partitions. These wavelet kernels were inserted into the primary interpolation function basis as multi-

scale basis to numerically solve partial differential equations as refinements. They tested the so-called
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pseudo-spectral basis by solving wave propagation and acoustic related problems. The method could

efficiently capture the high frequency part of the solution where the regular FE method show deficiency

and drastically improved the accuracy of the solution. However, the method requires careful tackling of

ill-conditioning in the resultant mass and stiffness matrix.



CHAPTER 3

NONLINEAR ACOUSTICS

In this chapter nonlinear acoustic wave theory is reviewed and its application in nondestructive

testing is discussed.

3.1 Theory and background

The governing equations for the motion of nonlinear wave propagation in elastic media can be de-

rived from the conservation laws. With the stress-strain relationship for nonlinear material, the solution

of the wave propagation can be obtained. Let X be the original configuration of undeformed body Ω0

with density ρ0 and x the current configuration of deformed body Ω with density ρ. (Figure 1)

Ω"
Ω

𝜌"

𝜌

𝑋
X

Figure 1. Original configuration Ω0 vs. current configuration Ω

20



21

From the principle of the conservation of mass, we have:

∫
Ω0

ρ0dΩ0 =

∫
Ω
ρd Ω (3.1)

It can be shown that:

d Ω = JdΩ0 (3.2)

where J is the determinant of F, which is the deformation gradient. In the general form, F is defined as

below:

F = I +∇u (3.3)

where I is the identity tensor and ∇u is the displacement gradient. Therefore Equation 3.1 can be

rewritten as:

∫
Ω0

(ρ0 − ρJ)dΩ0 = 0 (3.4)

The linear momentum of a body in the current configuration is described as below:

P =

∫
Ω
ρvd Ω (3.5)
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In order to calculate the rate of linear momentum, the integral over current configuration needs to be

converted to the original configuration:

d

dt

∫
Ω
ρvd Ω =

d

dt

∫
Ω0

ρvJdΩ =

∫
Ω0

dv

dt
ρ0dΩ =

∫
Ω

dv

dt
ρd Ω (3.6)

Therefore,

dP

dt
=

∫
Ω
ρ
dv

dt
d Ω (3.7)

In current configuration, the total force ft acting on the volume is:

ft =

∫
Ω
ρbd Ω +

∫
Γ
td Γ (3.8)

where b is the body force. The traction force on the surface Γ can be rewritten as:

∫
Γ
tdΓ =

∫
Γ
σndΓ =

∫
Ω
∇.σd Ω (3.9)

From the principal of balance of linear momentum, one can show:

dP

dt
= ft (3.10)
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Substituting Equation 3.7, Equation 3.8 and Equation 3.9 in Equation 3.10 leads to:

∫
Ω
ρ
dv

dt
d Ω =

∫
Ω
∇.σd Ω +

∫
Ω
ρbd Ω (3.11)

Equation 3.11 holds for all x in Ω. Therefore,

ρ
d2u

dt2
= ∇.σ + ρb (3.12)

in which u is the particle displacement and σ is the Cauchy stress tensor and can be obtained from the

strain energy density function by:

σ = J−1F
∂W

∂E
FT (3.13)

Under the finite deformation and the assumption of purely longitudinal motion, the deformation

gradient takes the following form:

F =


l 0 0

0 1 0

0 0 1

 (3.14)
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in which l is the stretch in longitudinal direction. Considering the Green Lagrange strain tensor as

below:

E =
1

2
(FTF− I) (3.15)

The general strain energy density function for isotropic solids forms the following expression:

W (E) =
λ

2
(trE)2 + µtrE2 +

A

3
trE3 +BtrEtrE2 +

C

2
(trE)3 + ... (3.16)

where λ and µ are Lamé parameters and A, B and C represent the third order elastic constants (TOE).

It can be shown in references that in the absence of viscosity, a single equation of motion for purely

longitudinal motion can be written as:

∂2u

∂t2
= c2

l

∂2u

∂x2
g(
∂u

∂x
) (3.17)

where cl is the linear wave speed and

g(n) = 1 + (3 +
c111

ρ0c2
l

)n+ (3 +
3c111 + c1111

ρ0c2
l

)
n2

2!
+ ... (3.18)
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and when solved along its characteristics, it is found that the wave speed changes with the coefficient of

nonlinearity as below:

c = cl + βν (3.19)

where ν is the particle velocity and β has the following relationship with TOE:

β = −(
3

2
+

C111

2ρ0c2
0

) (3.20)

where C111 = 2A + 6B + 2C. A sinusoidal excitation u(0, t) = u0sinωt produces the solution of

Equation 3.17 as follows (Zarembo and Krasilnikov 1971):

u = U0︸︷︷︸
A1

sinω(t− x

cl
) +

β

4
k2U2

0x︸ ︷︷ ︸
A2

cos2ω(t− x

cl
) +

β2

8
k4U3

0x
2︸ ︷︷ ︸

A3

sin3ω(t− x

cl
) + ... (3.21)

The coefficients of second and third term in the equation above, indicate the second and third harmonic

amplitude respectively. Therefore, the relative nonlinearity parameters attributed to the second and third

harmonic ratio are defined as below:

β′ =
A2

A2
1

(3.22)

γ′ =
A3

A3
1

(3.23)
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The Equation 3.22 and Equation 3.23 provides us a practical means to assess the damage state or char-

acterize a material.



CHAPTER 4

SIGNAL PROCESSING TECHNIQUES

All this chapter has been previously published in (119). As described earlier in the previous chapters,

nondestructive testing methods are more efficient and accurate using nonlinear ultrasound or nonlinear

acoustic methods. The wave is distorted by presence of a damage and this distortion when quantified

can be used as a measure to assess the material damage state. The accessibility for nonlinear acoustic

methods is high. This allows fast investigation of complete objects, often done in one single test or more

localized testing.

In earlier chapters, it is discussed that the most common measurement of the material nonlinearity

is based on measuring the acoustic nonlinearity parameter β , which is proportional to the ratio of the

second harmonic amplitude A2 to the square of the first harmonic amplitude A1 (2) (3). To date, there

are several applications of nonlinear ultrasonics to assess microstructural changes in metallic alloys,

such as fatigue damage (49) (50), creep damage (51) (52) (53), radiation damage (48), thermal aging

(54) (55), and cold work (56). In order to measure higher harmonics’ amplitudes, the signal needs to

decompose into different frequencies.

In this chapter, the Fast Fourier Transform (FFT) method and the proposed Wavelet Transform

(WT)-based method are both implemented to decompose frequency amplitudes. The fundamental the-

ories and equations of both signal processing methods are described and their advantages and disad-

vantages in extracting higher harmonics is reviewed. At the last section, the analytical solution of the

27
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nonlinear longitudinal wave is used to verify the accuracy and effectiveness of WT in comparison to

FFT.

4.1 Fast Fourier transform

FFT is the most commonly used signal processing tool to find the frequency content of transient

signals based on the Fourier series expansion. The Fourier series of a time-dependent signal h(t) within

the limit of −T < t < T is:

h(t) =
∞∑
−∞

cne
iπn
T
t (4.1)

cn =
1

2T

∫ T

−T
x(t)e−

iπn
T
tdt (4.2)

Where cn corresponds to the nth coefficient in Fourier series. To process a signal with finite discrete

values, Discrete Fourier Transform (DFT) is used. DFT of sequence hn with N values is is transformed

to the frequency domain as:

Hk =
N−1∑
n=0

xne
−2iπnk
N , k = 0, ..., N − 1 (4.3)

where k is the wave number and Hk is the corresponding sequence in the frequency domain. DFT is

seldom utilized due to the large computational cost especially for largeN . Instead, by rearranging some

multiplications and sums, a simple yet effective algorithm called Fast Fourier Transform (FFT) which

is an efficient method to compute the Fourier transform, is used. FFT decreases the computational cost
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by reducing N, the number of points needed for computation from 2N2to 2NlogN . If the frequency is

constant in time, FFT works effectively (63). However, in the nonlinear ultrasonic testing, the objective

is to find the complex nonstationary higher-order harmonic signals, which potentially poses a challenge

for FFT.

A thorough review of FFT and its limitations are discussed in Section 2.1. In conclusion, FFT is

ineffective to decompose non-stationary transient signal accurately, and it is important to apply a more

robust signal decomposition approach to extract the acoustic nonlinearity parameter.

4.2 Wavelet transform

In contrast to FFT, WT uses functions that are localized in both real and Fourier spaces, called

wavelets (76). By reconstructing signals into the mother wavelets, ψ(t), frequency components with

the window of each wavelet can be identified. Short time Fourier transform (STFT) requires a constant

window length (called ’window size’) ,which slides through the time axis to calculate the FFT in each

window and to add the temporal information of the signal into FFT (69). Unlike the STFT method, the

window size in WT is not constant, and it is a function of frequency. In higher-frequency components,

the window size becomes smaller to maintain higher frequency resolution while in signals with lower

frequency, higher frequency resolution is obtained by a larger window size (68). A thorough review of

WT and its characteristics are brought in Section 2.1.

The fundamental equation of wavelet transform can be expressed as:

wn(s, τ) =

∫ ∞
−∞

h(t)ψ∗s,τd(t) (4.4)
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Where h(t) is the time domain signal and (∗) denotes the complex conjugate and Ψ(s,τ) is called the

daughter wavelet and can be characterized with the dilation and translation parameters, s and τ , respec-

tively, as:

ψs,τ =
1√
s
ψ(
t− τ
s

) (4.5)

The dilation and translation parameters s and τ , vary continuously to represent different times in the

time domain signal and different contractions and dilations of the mother wavelet. The wavelet function

should have zero mean and be localized in both time and frequency (120). In additional, the mother

wavelets Ψ(t) must satisfy the following admissibility condition:

∫ ∞
−∞

∣∣∣Ψ̂(ω)
∣∣∣2

|ω|
dω <∞ Ψ̂(ω) =

∫
Ψ(t)e−jωtdt (4.6)

where Ψ̂(ω) is the Fourier transform of Ψ(t). Among many wavelets, Morlet wavelet has been

shown to have the best temporal and spatial resolution (75). In this study, the complex Morlet wavelet

obtained by the product of a complex exponential and a Gaussian function is selected as the mother

wavelet. The exponential decay in complex Morlet results in very precise time localization. This

wavelet provides the best resolution in time and frequency; therefore, it is the most suitable wavelet

for spectrogram analysis (121)(122). The complex Morlet wavelet has the following forms in the time

and frequency domains (123):
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ΨM (t) =
1
√
πωb

e2iπωcte
− t2

ωb (4.7)

ΨM (ω) = eπ
2ωb(ω−ωc)2 (4.8)

where ωb and ωc are the parameters controlling the frequency bandwidth and the central frequency,

respectively. Figure 2 shows the complex Morlet wavelet with the central frequency of 1.5 Hz and

bandwidth of 1 Hz.
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Figure 2. Complex Morlet with central frequency of 1.5 Hz and bandwidth of 1 Hz, (a) time domain
(b) frequency domain.
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4.3 Acoustic nonlinearity parameter obtained by WT-based method and FFT-based method

In this section, the acoustic nonlinearity parameter obtained by both FFT and WT is compared for a

one dimensional nonlinear wave problem, according to the analytical solution shown in Equation 3.21.

The time-frequency spectrogram is first obtained with the selected mother wavelet, after the time-history

signal is recorded, and then wavelet coefficients (amplitude) of the first and second harmonics with

respect to time, A1(ti) and A2(ti) , respectively, are extracted. Here the subscript i denotes the ith

data point. In this study, the time history signals consist of 2048 discrete points. The first harmonic

frequency occurs at 2.25 MHz, and the second harmonic frequency is twice the first harmonic at 5 MHz,

as shown in Figure 3. Two red lines in Figure 3(c) show the positions of first and second harmonics on

the wavelet spectrum. Once the two modes are decomposed, the acoustic nonlinearity parameter can be

obtained by β(ti) = A2(ti)
A2

1(ti)
. This algorithm provides a detailed variation of β values and how it varies

with time due to different incidents with respect to time.

The acoustic nonlinearity parameter β is an inherent material property and should not be dependent

on the excitation amplitude or frequency. However, if in the signal processing the errors from the

extraction of A1 and A2 are of the same order, the error of calculated β depends on the A2 value. This

can be concluded from the sensitivity analysis of β formulation, which demonstrates the error A2±ε
(A1±ε)2

from Equation 3.22 is in the order of O(2 ε
A1

+ ε
A2

), where ε is the error from signal processing of A1

and A2. The error of the calculated β is amplified when A2 is much smaller than A!, which is typically

the case as the amplitude of the second harmonic frequency due to the microstructural damage is weak.

Therefore, it is imperative that the amplitudes of A1 and A2 for nonlinear UT techniques be accurately

measured and extracted.
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To verify the effectiveness of the wavelet-based schemes for calculating the acoustic nonlinearity

parameter, the analytical solution in Equation 3.21 is employed as the input signal to completely remove

measurement errors. The values of material parameters used are as follows:

The input signal u(x, t) is generated according to Equation 3.22 with various input amplitudes, u0,

and a fundamental frequency of 2 MHz. Figure 3 a, b and c show u(x, t) for a given u0, its time-

frequency spectrogram from WT, and its frequency domain from FFT, respectively. The variables to

perform WT are 100 MHz sampling rate and the scale of 1000, whereas the parameters to calculate

FFT are 100 MHz sampling rate, and 16384 data points. In this study, the complex Morlet with 1.5

Hz central frequency ωc and a bandwidth ωb of 1Hz is implemented. The scale a in Equation 4.9 is
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TABLE I

Material parameters

A(Pa) B(Pa) C(Pa) ρ( kg
m3 ) λ(Pa) µ(Pa)

3.51× 1011 1.444× 1011 1.028× 1011 2700 51.05× 109 26.32× 109

increased from 500 to 10k and the convergence in the spectrogram is reached at the scale of 5000 or

greater. The pseudo frequency Fa is 30 kHz with a scale of 5000 and sampling frequency of 100 MHz

(124).

Fa =
ωc
aδ

(4.9)
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Figure 4. A comparison of nonlinearity parameter calculated by WT vs FFT



CHAPTER 5

HIGHER HARMONICS AND THEIR RELATIONSHIP TO MICROSTRUCTURAL

FEATURES

All this chapter is submitted to be published in Ultrasonics journal. In this chapter the numerical

studies conducted in order to find the relationship between microstructural variation and higher har-

monic emergence have been discussed.

5.1 Introduction

In Chapter 2, we discussed the necessity of predicting ultrasound waveform in heterogenous mate-

rials. In particular, the use of nonlinear ultrasound in assessing microstructural evolution enables the

prediction of the remaining life of the structure earlier. There are many cases showing the initiation of

a macroscale damage by microscale evolution such as the process of incipient fatigue damage in metals

(125) (126). The detection and characterization of variety of microstructures such as dislocation den-

sity, precipitates and embrittlement can provides us with information regarding the structure’s safety and

shifting the earliest possible remaining life prediction (91). Lately, high amplitudes of third harmonics

are reported in the presence of different damages such as cracks and grain boundaries (89) . The cur-

rent study is aimed to address the issue of damage detection by nonlinear ultrasonics in heterogeneous

media numerically. In this work, the second phase heterogeneities are explicitly modeled to study the

correlation of mesoscale and micro scale heterogeneity and higher order harmonics. Accordingly, a

heterogeneous material is constructed, with the Aluminum 1100 to represent the homogeneous part and

36
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inclusions which differ in material property, size and volume fraction and study the influence of plastic

deformation on the nonlinear acoustic parameters. To this end, several different Representative Volume

Elements (RVEs) are fashioned to create blocks representing the neck area of a dog bone sample. RVEs

are chosen such that the macroscopic constitutive model can represent the average constitutive response.

Therefore, they are large enough so that their variations are statistically insignificant yet smaller than

the wave length of ultrasound.

To obtain the nonlinear acoustic parameter, the time domain response obtained from the numerical

model needs to be transformed into to frequency domain. In order to enhance accuracy, Wavelet Trans-

form is used to calculate the frequency domain response. We also study the mesh sensitivity of finite

element analysis in the nonlinear wave propagation and suggest a minimum element size per wavelength

to control the error of the calculated nonlinear acoustic parameter and validate our model with the ana-

lytical solution of nonlinear wave. The results are validated by several experimental studies done in the

past.

5.2 Methodology

In previous chapters, it was described how harmonic amplitudes are related to the nonlinearity of

materials. Moreover, the microstructural complexity can govern the mesoscale properties such as ductil-

ity, nonlinearity, fracture toughness and overall mechanical behavior. In this section, the development of

a numerical simulation capable of assessing the relationship between higher harmonics and heterogene-

ity in material is described. In this framework, it is assumed that the mesoscale model is constructed

from a simplified form of micrographs.
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There exist numerous techniques to produce digital data from microstructure. Scanning electron

microscopy (SEM) and Optical microscopy are among these methods. The geometry and properties

of the microstructure are extracted from the digital data by different image segmentation techniques.

The segmentation approach can enable us to conduct numerical analysis on the digital image of the

microstructure. In the process of digitalized data incorporation into the numerical model, it is important

to ensure the numerical microstructure is statistically identical to the actual microstructure. In order

to make this happen and have a realistic macroscopic modeling considering microscopic evolution,

the model is represented as an assemblage of independent elements, interacting with one another. The

assumption is that the material can be approximated as assemblies of discrete elements attached together

by different properties.

Through this scheme, heterogeneities are modeled in such a way that almost any heterogeneous

model can fit. Industrially relevant cases from the precipitates in Aluminum’s second phase to the ag-

gregates in concrete can be simulated through varying the heterogeneity size, material properties and

volume fraction. In this way, the size of each element can equate with the size of second phase pre-

cipitates or with larger heterogeneities through blocks of elements. The heterogeneous blocks then are

randomly distributed over the whole domain. The predictive capability of the computational model using

simplified representation of microstructures is then used to simulate wave propagation, thus measuring

the nonlinearity parameter β′.

Predicting the mechanical response of such materials from the information of their microstructure

and behavior of single components has been a challenging issue. Therefore, homogenization methods

will be discussed in future works.
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Modeling the material is one of the main challenges in constructing an accurate numerical simu-

lation and better predicting the nonlinearity parameter. For this purpose and as the base simulation,

Aluminum 1100 has been considered to have a heterogeneous microstructure. This heterogeneity in the

microstructure is portrayed by fine spherical precipitates, intermetallics and the presence of micro-scale

second phase particles in the matrix. Scanning the Aluminum sample will give us the chance to access

the statistical data regarding the second phase particles using ImageJ™ .

Figure 5. Left: Al1100 Optical Micrographs (200X), Right: Numerical microscale model

According to these statistics we can see that there is a volume fraction of 2% for second phase

particles. In another study (127), it has been shown that concrete can have a volume fraction up to

60% aggregate to texture. In this research, several models have been prepared and tested using different

heterogeneity parameters including values mentioned above.
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Figure 6. Second phase particle area distribution statistics

In order to introduce the plastic deformation, a loading and unloading stage is conducted. The

unloading response in heterogeneous materials is much more complex than the conventional recovery

process observed in single-phase metals. The reason is that the plastic deformation is observed to occur

during the unloading process (128). In order to capture the mechanical behavior in the microscale, an

isotropic plasticity material model is used. In this method, the plasticity calculations are based on the

classical metal plasticity model with isotropic hardening. For this matter, experimental test data for

Aluminum 1100 are used along with the von Mises yield criterion, which can be expressed as follows:

J2 =
1

2
tr(S.S) (5.1)

where S is the deviatoric part of the stress tensor:
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S = σ − 1

3
(tr(σ))I (5.2)

Hence, the yield function is described as:

f(J2) =
√
J2 − α(εp) (5.3)

where α is the material’s yield stress under pure shear which in turn is a function of the plastic strain εp.

It is assumed that this material model has the capability to capture dislocations happening during plastic

deformation.

Using this method, one can determine the property of the material using heterogeneity once and

only at the beginning the analysis using micrographs. By doing so, one can forward predict the β′

change due to plastic deformation. Taking advantage from this forward prediction, there is no need to

observe microstructutral evolution and dislocation density variation or rearrangements during the plastic

deformation process.

5.3 Validation and convergence study

Generally, a finer mesh will lead to better results; however, it will have a negative effect on ef-

ficiency. For nonlinear analysis, it is essential to consider a maximum limit for the element size to

ensure accuracy. It has been suggested to have at least 20 elements per wavelength to avoid numerical

dispersion and dissipation error (22):
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element size: ∆h ≤ λ

20
(λ = wavelength) (5.4)

time step size: ∆t ≤ 1

20f
(f = frequency) (5.5)

(5.6)

In order to make sure the mesh size and time step size used is satisfactory, a convergence study is

done. A homogeneous three dimensional model is constructed and its boundary conditions are enforced

such that the model imitates a one dimensional problem (see Figure 7). For a 2MHz signal, according to

Equation 5.4, the calculated maximum element size and time step are 0.3 mm and 0.05 µs. Therefore, a

mesh size of 0.08 mm and a time step of 0.001 µs are sufficient to ensure accuracy and capture higher

harmonics.

In order to define the Landau and Lifshitz’s hyperelastic material model (129), a User Material

(UMAT) script is written and incorporated into the implicit finite element code Abaqus™ . Within the

UMAT, the system of nonlinear equation is solved by the Newton-Raphson method given the incremen-

tal strains. Proper definition of stress and the Jacobian is required. Knowing strain energy density, with

the following relationship the Second Piola-Kirchhoff stress tensor can be defined:

S =
∂w

∂E
(5.7)
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Figure 7. One dimensional model problem

Following Equation 5.7 and Equation 3.16, the second Piola-Kirchhoff stress tensor can be ex-

pressed as below:

S = λtrE + 2µE + CtrE2 +BtrE2 + 2B(trE)E +Atr(E2) (5.8)

The material properties used for Aluminum is as below:

A sine wave is applied uniformly at one edge and the results are measured at the nodes on the edge

across from it and then averaged. Comparing with the analytical solution, it can be demonstrated in

Figure 8 and Figure 9 that the mesh used is sufficient to preserve accuracy of the nonlinear wave:
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TABLE II

Hyperelastic material property [Aluminum]

A(Pa) B(Pa) C(Pa) ρ( kg
m3 ) λ(Pa) µ(Pa)

3.51× 1011 1.444× 1011 1.028× 1011 2700 51.05× 109 26.32× 109
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Figure 8. Numerical Vs. Analytical solution of nonlinear wave

An additional convergence study is performed to evaluate the mesh size accuracy in the presence

of heterogeneity. In this study, two 2-dimensional heterogeneous models have been simulated, having

the exact same material, geometry, loading and heterogeneity characteristics. One of them is spatially

discretized with the element size used mentioned in the previous section, while the second model is

discretized with elements half of the size utilized before. Again, as can be observed in the results shown

in Figure 10 and Figure 11 the utilized element size of 0.08 mm meets the requirements of the accuracy

of the solution:
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5.4 Numerical damage detection in statistically variable heterogeneous media under plastic deformation

FEM commercial software Abaqus™ is used to model the nonlinear wave propagation through the

specimen. To model a three dimensional dog bone specimen, the size of the model has been reduced

to the neck part, and symmetric boundary conditions are used to decrease the computational cost of

the numerical simulation. The model is discretized by first order reduced integration linear hexahedral

elements (C3D8R). In order to introduce different stages of damage in the material, plastic deformation

is applied at 1%, 2%, 3% and 4% strains. The applied strains are deactivated for a sufficient amount of

time in order to simulate the unloading stage and then the wave propagation stage is modeled.
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The excitation of a 10 cycle tone burst Hanning window with the frequency of 1MHz is realized

through a circular area to replicate the transducer. The expression of the excitation is shown in Figure 12:

f(t) = sin(2πft)(0.5(1− cos(2πf t

N
))) (5.9)

The temporal and spectral waveform is plotted: Implicit time integration dynamic simulations were

performed and the resulting waves were output and averaged exactly at the opposite side of the trans-

ducer. Figure 13 shows the geometry with associated mesh of the used model:

The heterogeneities are considered as 27 groups of different material models. Each of these material

heterogeneity models has been considered to have 5 different random positions through out the model.

In this study, different aspects of heterogeneities including volume fraction, standard deviation and het-

erogeneity size are considered as variables. The aim of this study is to observe the correlation between
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each of these factors and the production of the higher harmonic. Moreover, the importance factor of

each of these variants is discussed. The following table represents the guide for this parametric study:

The heterogeneities are considered as 27 groups of different material models. Each of these material

heterogeneity models has been considered to have 5 different random positions through out the model.

In this study, different aspects of heterogeneities including volume fraction, standard deviation and het-

erogeneity size are considered as variants. The aim of this study is to observe the correlation between

each of these factors and the production of higher harmonic. Moreover, the importance factor of each

of these variants is discussed. The following table represents the guide for this parametric study:
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According to (119) Wavelet Transform (WT) is a more accurate tool to convert the signal to the fre-

quency domain and measure nonlinearity. Therefore, the results are post-processed by WT, considering

the complex Morlet wavelet as the mother wavelet Ψ(t):

ψM (t) =
1
√
πωb

ei2πωcte
− t2

ωb (5.10)
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TABLE III

Parametric study guide

Heterogeneity Size Volume Fraction Standard Deviation

1 element 2% 10%

4 elements 10% 30%

18 elements 20% 60%

ψM (ω) = eπ
2ωb(ω−ωc)2 (5.11)

where ωb and ωc are the parameters controlling the frequency bandwidth and the central frequency,

respectively. The received time-domain signals from a pristine plate and damaged plates with plas-

tic strains up to 4% are illustrated in Figure 14. The series of figures are pertained to one of the 27

simulations.

As observed in these figures, the third harmonic mode’s amplitudes are greater than those of the sec-

ond harmonic and have more explicit waveforms. From the above figures the second and third harmonic

nonlinearity factors are derived for each time instance according to Equation 3.22 and Equation 3.23

and plotted as below:

It is worth mentioning that the comprehensive description of measuring nonlinearity using the afore-

mentioned method can be found at (119). As can be observed in Figure 15, an average quantity is con-

sidered to represent the magnitude of second and third order nonlinearity parameters in a certain time

period. These calculations are repeated according to the statistical study guide for different heterogene-
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ity parameters and at different stages of damage and the second and third harmonic nonlinearities are

plotted and shown in Figure 16 and Figure 17.

The plots in Figure 16 and Figure 17 are quite informative. It is clear that the result of second-

harmonic based nonlinearity cannot provide the link to the plastic strain and β′ in the material. There is

no obvious pattern, especially when dealing with lower amounts of volume fraction and heterogeneity

sizes. In all these cases, no matter how much the standard deviation rises, there is no significance

change in β′. However, moving towards higher amounts of volume fractions and heterogeneity sizes,

the standard deviation also makes considerable difference, and in the last model, an increase of up to

50% is observable.

On the other hand, the third harmonic nonlinearity parameter is much more sensitive to any hetero-

geneity parameter than the second harmonic nonlinearity. Even in the first model with volume fraction
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of 2% and very fine heterogeneity, higher standard deviation clearly shows higher nonlinearities. In

fact, even with different positions of heterogeneities, there exists a distinct bundle for each correspond-

ing standard deviation. Moving towards higher volume fractions and heterogeneity sizes, the increase

of γ′ is distinctly noticeable and in the last model, an increase of up to 200% is seen. Therefore, in the

case of the third harmonic-based measurement of nonlinearity, all the heterogeneity characteristics play

an important role. In particular, standard deviation is the most effective factor, especially when dealing

with smaller amounts of volume fraction and finer heterogeneities. Even for the cases that nonlinearity

is measured by second harmonic ratio, it can be observed that samples with higher standard deviations

show an increasing trend and have greater magnitudes, whereas varying the heterogeneity size or vol-

ume fraction cannot affect the second harmonic ratio. This can further demonstrate the presence of voids

in cases where there is creep or granular material can affect the third harmonic ratio the most regardless
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of their size or volume fraction. Thus, third harmonic detection can be a more effective tool to predict

damage.

5.5 Validation

Experimental studies to demonstrate the relationship between damage in structures and higher har-

monics have been conducted for a few decades. In this study the relationship between microstructural

variations in a heterogenous medium and second and third harmonics are of particular interest. The

results in the previous section depicted an enhanced capability of the third harmonic nonlinearity cal-

culation to detect the flaws in heterogenous media. However, only recently the significance of third

harmonics in diagnosis of microstructural evolution has only recently been explored. One of the ear-

liest studies regarding the aforementioned relationship was done by Hikata at 1966 (85). In this study

the generation of ultrasonic second and third harmonics due to dislocations are discussed. The authors

have measured the amplitude of third harmonics as well as second harmonics as a function of impurity

content, static bias stress, plastic deformation and amplitude of the fundamental wave. They concluded

that the third harmonic lends itself to study of the interactions between dislocations and point defects

more directly than the second harmonic. Moreover, it was shown that amplitude of third harmonic is

dependent on dislocation loop length and small amount of plastic deformation leads to a considerable

increase in the effective dislocation loop, hence increasing the third harmonic mode’s amplitude.

In a later study (130) Elbaum and Hikata have investigated two anharmonic properties of vibrating

dislocations: lattice and dislocation. They analytically showed that in a solid containing dislocation,

the dislocation component is much larger than the lattice component for the third harmonic. They
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therefore concluded that by investigating the third harmonic, it is possible to obtain detailed information

on dislocation dynamics.

Another experimental study on plain concrete (131) demonstrated that the third harmonic in the case

of microcracks is an indicator of damage level, especially in the models with quadratic nonlinearity. In

another study on composite materials (132), Meo showed the dependence of both second and third

harmonics on damage level, however, the third harmonic shows more sensitivity.

Later on Shah et al. (89) calculated the second and third harmonic at different damage and power

levels on concrete. They noted that abnormally high levels of the third harmonic are observed in the

presence of cracks and grain boundaries. Considering their experimental studies, the third harmonic

has greater level of amplitudes for different levels of water to cement ratio in concrete. In this case,

both second and third harmonics showed extraordinary sensitivity. This fact is in line with the present

study since concrete could have up to 60% standard deviation and 20% volume fraction with large

heterogeneities, and hence easily comparable to the diagrams shown in Figure 16 and Figure 17. From

the numerical study conducted in previous section, it is clearly observed that in the case of severe

heterogeneity characteristics, both the second harmonic and third harmonic demonstrate considerable

sensitivity, with the third harmonic showing a stronger correlation.

One of the most relevant studies to the numerical study conducted in this work is the experimental

study of Lissenden et al.(133) on Aluminum plates. They have shown that the plastic deformation

increases the third harmonic amplitude by up to a factor of five. In their study, the authors reported the

results of another study on an Aluminum 1100 plate that was plastically deformed up to 1.7% without

registering any significant change in the plastic strain level.
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Moreover, in a later study by Chillara et al. (92) it is demonstrated that for an elastoplastic spring

mass system, the time-domain signal is symmetric and the frequency domain contains all the odd har-

monics but not any even harmonics. They discuss the fact that the tension-compression asymmetry is

responsible for even harmonic generation. Ideally, the numerical model used in the current study fol-

lows an elastoplastic material model relationship, hence there is no bias in tension and compression of

the model, preventing the generation of second harmonics due to material nonlinearity.

Third harmonics have been studied more recently with a variety of wave types. Liu et al (90)

studied the shear horizontal and Rayleigh lamb waves in a mathematical approach with the objective of

predicting the cumulative behavior of the third harmonic due to interaction of two collimated waves in

an isotropic elastic plate with cubic nonlinearity. They provide theoretical guidance for primary mode

selection in order to cumulatively generate third harmonics due to material microstructure change. They

showed that all points on the primary dispersion curves are internally resonant with third harmonics,

which is not the case for second harmonics. While it is worth mentioning that in a numerical study (91)

conducted later on the influence of microstructure evolution on second harmonics in guided waves, it

was noticed that even though all the conditions for a cumulative second harmonics were met, the second

harmonic did not accumulate linearly with propagation distance, and the researchers have related this

phenomenon to the inhomogeneous nature of the plate.

All in all, the authors believe the above analytical and experimental studies can be valuable points

of reference to validate the current numerical study.
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5.6 Conclusions

In this paper, the correlation between higher harmonics and different heterogeneity characteristics

and randomness has been established using several numerical models. Different heterogeneous models

were constructed and simulated in Abaqus™ . The heterogeneity in material has been modeled explic-

itly as blocks of elements and an elastoplastic material model is taken to represent the dislocation in

the model. Heterogeneity characteristics including the volume fraction, the standard deviation, het-

erogeneity sizes and their positions throughout the media are set to different values and the nonlinear

ultrasonic testing conditions are modeled to see the effect of different heterogeneous characteristics on

the higher harmonics. The spatial discretization of the models is verified with the analytical solution

of the nonlinear wave propagation in a hyperelastic medium in which the material model is written in

a UMAT script and incorporated in the simulation. Two-dimensional heterogeneous models are also

used for another convergence study. Harmonic generations are then investigated. The second harmonic

nonlinearity parameter β′ and the third harmonic nonlinearity parameter γ′ are calculated. It is evident

that in the case of heterogeneity, the third harmonic is more sensitive than the second harmonic. There

is a distinct upward trend observed in γ′ calculations with respect to increasing plastic strain, whereas,

β′ does not show sensitivity with increasing plastic strain. These results are in line with previous ex-

perimental studies in the literature. In addition, samples with higher standard deviation in their material

property show a higher β′ overall. Also, the contribution of standard deviation to the harmonic gen-

eration is higher than the volume fraction and heterogeneity size. Nonetheless, the effect of volume

fraction and heterogeneity size is not negligible. All in all, there is a direct relationship between in-

creasing all heterogeneity attributes and the third harmonic. This is essential in detecting damage due to



56

plastic deformation in heterogeneous material. It was found that the third harmonic generation is a much

greater asset when dealing with heterogeneous media. Moreover, using elastoplastic material modeling

along with explicit modeling of heterogeneities provides the analyst with the opportunity of utilizing the

same microstructure under different types of loading and monitoring the change of microstructure. It

is worth mentioning that the nonlinearity of the material is solely due to heterogeneities and there is no

other source of nonlinearity. Multiscale numerical modeling of heterogeneous media using micrographs

and improving the numerical model to capture higher harmonics efficiently are the next steps for this

research.
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vf=2% vf=10% vf=20%
heterogeneity size = 1 element

heterogeneity size = 4 elements

heterogeneity size = 18 elements

Figure 16. 2nd harmonic based nonlinearity (β′) vs. Plastic strain
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vf=2% vf=10% vf=20%
heterogeneity size = 1 element

heterogeneity size = 4 elements

heterogeneity size = 18 elements

Figure 17. 3rd harmonic based nonlinearity (γ′) vs. Plastic strain



CHAPTER 6

INFLUENCE OF MESOSCALE AND MACROSCALE HETEROGENEITIES IN

METALS ON HIGHER ORDER HARMONICS

This chapter is submitted to be published in the ”Journal of Nondestructive Evaluation”.

Nonlinear ultrasonic techniques are known to be sensitive to material nonlinearity, some of which

can be attributed to microstructural damages. The material nonlinearity is observable in the ultrasonic

signal through the generation of higher-order-harmonics (HOH). The HOH generation, however, can be

triggered by many sources. Any variation in the micro-, meso-, and macroscopic scales of the structure

may collectively lead to HOH generation.

This chapter presents a finite element approach with mesoscale heterogeneities explicitly modeled

for the nonlinear wave propagation. The aim of this study is to understand HOH generation due to

the non-mesoscale variation and non-uniform deformations introduced by the uniaxial tensile test. The

study is divided into two parts: First, the effect of non-uniform plastic deformation resulted by geomet-

rical variation of structures on HOH is studied. Next, the effect of non- uniformity due to mesoscale

variations on HOH is analyzed. For this purpose, wavelet-based algorithms are applied to measure

the acoustic nonlinearity parameter. The numerical studies and predictions are crossly validated with

nonlinear ultrasonic experiments and microscale imaging, including X-ray Diffraction (XRD) scan-

ning. Numerical and experimental studies both indicate that non-uniform variations in different length

scales affect the generation of both the second and the third-harmonics, and that both second- and

third-harmonics acoustic nonlinearity parameters grow with the increase of plastic strain level. How-

59
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ever, the third-harmonics acoustic nonlinearity coefficient is more sensitive when micro-, meso- and

macrostructural variations exist. Accordingly, this parameter is a more beneficial indicator of nonlinear-

ity in materials when non-uniform deformation is present.

6.1 Introduction

Nonlinear ultrasonics testing (NLUT) has been applied to the detection of microstructural changes

in the earliest stage of degradation in metallic structures due to fatigue and creep (53). One of the

successful methods is based on the correlation between the higher-order-harmonics (HOH) genera-

tion and materials nonlinearity (134). HOH generation, however, can be attributed to many different

sources, including, dislocation, grain boundary, precipitates, microcracks, voids/defeats, surface rough-

ness/boundary or geometry of the specimen. The sources can be generally viewed as variations at three

different length scales, namely, a scale much smaller than the wavelength (referred to as microscale),

one comparable with the wavelength (mesoscale), and one much larger than the wavelength (structural

level). In practice, all the sources contribute to the HOH generation, and thus the experimental identifi-

cation of the main source of HOH generation is challenging. While there are many experimental studies

into NLUT in the literature, few investigations have used numerical techniques to predict the relation-

ship between material nonlinearities and HOH. Numerical modeling offers a means to gain valuable

insight into the relationship between different damage modes such as non-uniform deformation and the

ultrasound signal. The numerical model for NLUT is based on finite amplitude wave equation, and

the correlation between HOH and nonlinear material properties is established using continuum theory

with nonlinear elastic constitutive models. Therefore, the continuum-based nonlinear constitutive model

is suited to describe the mechanical behavior of materials with microscale heterogeneities. However,



61

when mesoscale heterogeneities exist and contribute to a non-negligible volume fraction in material,

their effect on wave propagation cannot be fully captured by the continuum-based constitutive models.

Moreover, the structural-level geometry and loading condition induce non-uniform plastic deformations,

which in turn introduce non-uniform microscale damages, and further complicate the tasks to understand

the sources of HOH generation. This study presents a finite element approach with mesoscale hetero-

geneities explicitly modeled for the nonlinear wave propagation. Crossly validating with nonlinear

ultrasonic experiments and microscale imaging, the aim of this study is to understand HOH generation

due to the non-mesoscale variation and non-uniform deformations introduced by the uniaxial tensile test.

In the literature, non-uniform stress distribution at the structural level can occur near the intersection of

different geometric forms, whereas the precipitations along grain boundaries can be attributed as the

dominant source of the non-uniform deformation and thus material nonlinearity at the microstructural

level (135). As the level of deformation increases, dislocations begin to appear, which leads to release of

the stored energy and also redistribution of internal stress field. Accordingly, plastic deformations and

damage growth occur near the material inhomogeneity or morphological variation. When exceeding

a certain threshold, damage emerges as the form of microcracks, which ultimately nucleate and form

macroscopic cracks in the material. Microstructural defects or heterogeneities lead to further nonlinear-

ity in material and scatter and distort the ultrasonic wave (39) (40) (41). There are different approaches

to measure the nonlinearity using ultrasonic method. As the fundamental wave mode propagates in the

material, the interaction of this wave with microstructural damage generates HOH frequencies. Thus,

the material nonlinearity can be quantified and correlated with material damage by determining the am-

plitudes of HOH. Acoustic nonlinearity parameter is one of the popularly used tools for measuring the
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material nonlinearity which is proportional to the ratio of the HOH amplitude to the square or cube of

the first harmonic amplitude. A thorough literature review of the numerical and experimental studies to

determine the correlation between the acoustic nonlinearity parameter and the microstructural defects

and wave propagation in damaged material is given in Section 2.2.

Despite numerous studies on the second-harmonic generation, the contribution of different damage

types on the HOH generation is still unknown. This present study experimentally and numerically

examines the effects of nonlinearity caused by non-uniform deformation, which are emerged either by

geometrical variations at the structural level and/or variations at the microstructure of material due to

plastic deformation to the generation of HOH in aluminum. The sensitivities of the second- and third-

order harmonics to geometric and materials nonlinearities are compared.

6.2 Numerical modeling

The governing equations of the physical problems considered, the finite element procedure, and the

important attributes of the numerical solution technique have been brought in Chapter 3 and Section 5.2.

6.3 Experimental design

6.3.1 Materials preparation

Aluminum 1100 with the composition in Table IV was selected to investigate the effects of non-

uniform deformation and plastic deformation on HOH. Nine samples were machined from a 6.3mm

thick cold rolled plate according to ASTM standard E8 to the dimensions shown in Figure 18. All sam-

ples were stress relieved at 250C for 15 min prior to tensile testing. An MTS tensile machine, model

1125 was used for the tensile tests using a strain rate of 2.54 mm/min. The first sample was tested

to failure to obtain the stress-strain curve and to determine the yield and tensile strengths, as well as
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the Young’s Modulus and the strain at the ultimate tensile stress (UTS), which are reported in Table 2

Table V. The remaining samples were plastically deformed between 0.5% and 4% at 0.5% strain in-

crements to produce different uniform plastic deformations through the gage area to avoid non-uniform

plastic deformation at the onset of necking at the ultimate tensile strength (UTS). Figure 19 shows the

stress-strain curves for all the samples tested. Figure 20 shows the two sections from gage length and the

shoulder area, which were used in both numerical and experimental studies to understand the influence

of uniform and non-uniform deformation on acoustic nonlinearity coefficients, respectively.

TABLE IV

Typical chemical composition of Aluminum 1100

Aluminum 1100 Al Cu Mn P Si+Fe Zn Others
Weight% 99 (min) 0.05− 0.2 0.05 max 0− 0.03 0.95 max 0.1 max 0.15 total

Figure 18. Tensile sample dimensions (in mm)
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TABLE V

Experimentally determined mechanical properties of aluminum 1100

Yield Stress 90MPa

Ultimate Tensile Strength (UTS) 120.0MPa

Strain at UTS 0.048

Young Modulus 72.0GPa

6.3.2 Description of ultrasonic testing

Figure 21 shows the NLUT experimental setup. The transducers applied in this test were commercial

piezoelectric transducers manufactured by Olympus Inc., with the effective diameter of 9.52 mm (0.375

in). The central frequencies of the transducers were 2.25 and 5 MHz as the transmitter and receiver,

respectively. Figure 21(c) shows the calibration curves of transducers. The receiving transducer had

a bandwidth in the range of 3.28-7.67 MHz such that the second and the third-harmonic frequencies

could be measured. The transducers were placed facing to each other on the opposite sides of the

specimen (Figure 21(a) and (b)), and light lubricant oil was applied between the surfaces as the couplant.

The input signal was a 10-cycle, 100-Volt tone burst (i.e., harmonic signal with 10 cycles as shown in

Figure 21(d)) at 2.25 MHz, which was generated by the Pocket UT system manufactured by MISTRAS

Inc. The time-history signal of the 5 MHz receiver was recorded using the same UT system with the

sampling frequency of 100 MHz and a band-pass filter of 1-20 MHz. Twenty signals were averaged to

increase the signal to noise ratio (SNR).
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Figure 19. Stress-strain curves of samples with different strain levels

6.3.3 Signal processing method to extract harmonic amplitudes

Figure 22 shows the wavelet-based signal decomposition method to calculate acoustic nonlinearity

coefficients following the procedure described in Mostavi et al. (119). The first step in this method is to

identify the harmonic frequencies of the received signal. These frequencies are visible in the frequency

spectrum obtained by processing the measured time-domain signal with fast Fourier transform (FFT).

As shown in Figure 22(a), the first harmonic frequency is near 2 MHz, the second-harmonic frequency

is near 4 MHz and, the third-harmonic frequency is near 6 MHz. These frequencies are marked by three

red lines on the wavelet spectrogram obtained by wavelet transformation (WT). The complex Morlet

wavelet was implemented as the mother wavelet function. This mother wavelet is suitable for nonlinear

ultrasonic testing, because it provides the best resolution in time and frequency, as well as precise



66

Figure 20. Shoulder and gage sections used to study the effects of uniform and non-uniform
deformation

time localization (122)(121). The spectral amplitudes over time, related to the red lines, are shown in

Figure 22(c). The second- and third- order acoustic nonlinearity coefficients (β and γ) were calculated

over time using time-history signal of the harmonics and referring to Equation 3.22 and Equation 3.23

as shown in Figure 22(d). This procedure was repeated for each measurement and the average of βand γ

over a specific time interval with constant plateau (in this research 3.0−4.0µs) were calculated for each

specimen. The measurements were performed along the gage length and shoulders of the specimens.

6.3.4 X-ray diffraction (XRD)

The X-ray diffraction technique was used to assess the plastic deformation in the materials with

different strain levels and at two different locations, the shoulder of the tensile sample and at the center

of the gage length for each strain. For this purpose, 15× 15mm samples were cut from the same place

as the numerical model shown in Figure 23. The uniform and non-uniform plastic deformation was

examined by full width at half maximum (FWHM) of XRD profile. XRD was carried out on a Siemens

/ Bruker D5000 X-ray Powder Diffraction (XRD) system with Cu-K radiation ( λ= 1.5418Å). The X-
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Figure 21. NLUT setup, (a) and (b) experimental setup, (c) transducers calibration curves, and (d)
schematic of experimental setup

Ray generator was run using a voltage of 40 KV and a current of 30 mA, with the samples scanned at

0.02◦/step and 3s/step using a 2θ angle diffraction range from 30 to 80◦.

6.4 Numerical modeling and results

In this section, the numerical simulation procedures and results of HOH generation in the aluminum

specimen are presented.
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Figure 22. Wavelet-based signal decomposition method to calculate acoustic nonlinearity coefficients,
(a) FFT of the received signal, (b) spectrogram of the received signal, (c) the harmonic waveforms
extracted from the wavelet transform and (d) the second and third acoustic nonlinearity coefficients

6.4.1 HOH changes at different positions of the specimen

Numerical simulation of NLUT was used to investigate the changes of HOH generation produced

near the shoulder and the gage length of a dog-bone specimen. The specimen and its measurements

shown in Figure 23 were modeled using Abaqus. To reduce the computation effort, only a quarter of the

actual specimen was modeled and symmetric boundary conditions were imposed.
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Figure 23. Schematic of the numerical model; (a) shoulder and (b) gage

Experimental data obtained by tensile tests (Figure 18 and Table IV) along with isotropic harden-

ing plasticity model described in Section 5.2 were used for the plasticity model. The model was first

subjected to plastic deformation up to 4%. After the unloading stage, the ultrasound perturbation was

introduced. The excitation area was modeled to generate the perturbation both on the shoulder and

the gage according to Figure 23. After recording displacement histories from the area across from the

excitation area, the acoustic nonlinearity parameter was calculated as described in Section 6.3.3. The

waveforms and the frequency response for the gage and the shoulder for 4% plastic deformation are

shown in Figure 24. Since the bandwidth of the fundamental frequency response from the numerical

simulation is wide due to numerical resolution, it covers the second-harmonic’s frequency so that the

second-harmonic cannot be observed explicitly. Nonetheless, for the nonlinearity calculations, it’s am-

plitude has been taken into account. The acoustic nonlinearity parameters based on the second and

third-harmonic amplitudes for different strain levels are calculated and shown in Figure 25. In the mid-

dle of the specimen (gage), the third-harmonic acoustic nonlinearity coefficient (γ) increases up to 8%,
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while the second-harmonic acoustic nonlinearity coefficient (β) increases up to 2%. Near the shoulder

area, γ increases up to 1130% and β increases up to about 396%, both showing a clear upward trend.

In order to gain better insight into sources of HOH, two other numerical simulations were conducted.

First the simulation is conducted for the shoulder part of the specimen and the linear elastic material

model is assumed. No nonlinearity is inherent to the material model and the material is considered to be

homogenous. The simulation result shows that although the geometrical variation exists in the model,

no HOH is observed. It suggests that mere presence of the geometry variation does not contribute to

the HOH, which could be artificially generated by the wave refraction/reflection within the geometric

boundaries of non-uniform section. Secondly, the simulation is conducted for the middle part of the

specimen and the J2 plasticity model along with the experimental data is used for the material model.

The simulation specimen is first subjected to plastic deformation up to 4%. After the unloading stage,

a homogeneous plastic deformation is present in the model. The ultrasound perturbation is introduced

afterward to analyze the HOH. No HOH generation was observed. It suggests that even though a plas-

ticity model is used, mere homogeneous plasticity deformation does not significantly contribute to the

nonlinearity of the model.

It is observed that as the distribution of plastic deformation gets non-uniform around shoulders, a

better upward trend can be seen in β, while in both locations, γ shows a higher sensitivity to deformation

and can be a better indicator of nonlinearity within the specimen. The higher values of both nonlinearity

indicators in shoulder areas of the dog-bone specimen are due to the non-uniformity of deformation as

a result of geometry variation, which causes a higher plastic deformation and therefore excessive dislo-

cation density in the mentioned areas (136). It is worth mentioning that in the shoulder area, mesoscale
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heterogeneities do not have a major effect on the nonlinearity indicators since the geometrical variation

provides large values of HOH. However, when monitoring the gage length of the specimen, since there

is uniform strain distribution, mesoscale heterogeneities play an effective role in the nonlinearity of the

material.

Figure 24. Time history waveforms and frequency responses for the gage and the shoulder at 4%
plastic deformation

6.4.2 HOH changes due to heterogeneities

In this section, the mesoscale heterogeneities such as participates and second-phase particles, are

considered in the model. To minimize the uniform-deformation condition induced by the geometry of

the specimen, the gage part is chosen and modeled. The heterogeneous and elastoplastic material model

used is described according to Section 5.2. To reduce the computational cost, only a fraction of the
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Figure 25. Acoustic nonlinearity coefficients on the gage and on the shoulder

sample was simulated, however, the full thickness of the sample was modeled to sustain the validity of

ultrasonic testing (Figure 25).

The model was loaded up to strain levels of 1, 2, 3 and 4% and unloading, and then the ultrasonic

excitation took place. The displacement history recorded on the receiving surface was used to calculated

nonlinear acoustic nonlinearity coefficients. Figure 26 shows the calculated second- and third-harmonic

acoustic nonlinearity parameters in heterogeneous media with respect to strain levels. As observed in

Section 6.4.1, γ is more sensitive than β. Increasing plastic deformation up to 4% leads to an increase

of 28% in γ while β manifests a total of 6% increase in the plastic deformation of 4%, not showing a

clear trend with the increase of plastic deformation.
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Figure 26. Numerical modeling of the gage considering heterogeneity; the dimensions are 66.2512
(mm) and different colors represent different young modulus and plasticity test data

6.5 Experimental validation

6.5.1 NLUT results

1 To characterize the effect of non-uniform plastic deformation on HOH, the shoulder area and gage

area were experimentally studied. NLUT was performed three times at each location. Then, acoustic

nonlinearity parameters were calculated as discussed in Section 6.3.3. Figure 28 shows the results of

the NLUT measurements for the specimens subjected to different levels of plastic deformation. The

points represent the mean value of the repeated measurements normalized by the pristine specimen,

and the error bars represent the range of variation in the repeated measurements. Comparing the values

1This sections results are courtesy of Amir Mostavi
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Figure 27. Second- and third-harmonic acoustic nonlinearity coefficients versus plastic deformation
level on the gage area considering a heterogeneous model

of β and γ, it is observable that γ increases 2.8 times (780%) more than β (275%) in the shoulder

area. To characterize the effect of microscale heterogeneity on the second- and third-harmonic acoustic

nonlinearity coefficients, NLUT was performed on the gage area where the deformation was uniform,

and microstructure was heterogeneous. Comparing the values of β and γ, it is observable that γ increases

3.8 times (202%) more than β (53%), which indicates a higher sensitivity of γ to plastic deformation.

6.5.2 X-ray diffraction
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Figure 28. Acoustic nonlinearity coefficients experimentally measured for the gage area and the
shoulder area

1 X-ray diffraction (XRD) is one of the techniques used to measure the local strains and distinguish

between uniform and non-uniform plastic deformations. The peak shift is usually associated with uni-

form strains and peak broadening is caused by non-uniform strains. This information on the plastic

deformation in the material is due to changes in the crystal interplanar spacing and other lattice im-

perfections such as an increase in dislocation density. However, one major weakness of this method

is its low penetration depth of the X-Ray beam, which is about 10µm in most metals that makes the

measurements only reliable at the surface of the material (137).

1This sections results are courtesy of Niloofar Tehrani
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Figure 29 shows the full X-Ray diffraction pattern of the two samples, one from the center of the

gage length and the other from the shoulder location of the specimen strained 2.5%. It is seen that all

peaks shifted to higher 2θ angles compared to the strain-free sample (according to standard XRD pattern

for Aluminum,(PDF no. 04-0787), and this shift is larger in the shoulder compared to the center of the

gage length. This indicates that the residual stresses are larger at the shoulder.

Figure 29. XRD patterns of the 2.5% strain sample at two locations: gage and shoulder

In assessing the gradual deformation produced by the systematic increments in strain, all samples

were scanned near 2θ= 78◦. This range was selected since the inter-planar spacing of the high index

planes are much smaller and any small fluctuations are easier to detect. Based on Bragg’s law (λ =

2dsinθ), since λ is constant for all the samples, there is a reverse relation between the d-spacing and
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2θ. As the space between the planes decreases due to the previously applied tensile stress, 2θ shifts to

higher angles. Figure 30 shows such for all the samples at two locations. The displacements for the

samples from the shoulder showed larger displacements as shown in Figure 31, as well as the increase

in 2θ displacement with higher strains. Note that the peak for the shoulder area strained to 4% the peak

shifted to angles lower than 2θ of the standard aluminum 1100 peak at this particular 2 angle. This can

be due to the fact that at this strain level, the tension and compression stresses are both present because

of the non-rectangular shape and drastic geometric change of the specimen from shoulder to gage length.

In this case, the compression strains may have become dominant and shift the peak to lower 2θ values.

In addition, although the samples are all from the same plate, the rolling might not be uniform, and the

machining of the specimen might leave residual stresses that already can affect the crystals d-spacing

for each sample before any applied strain.

As mentioned earlier, the XRD test only monitors the surface of the material. A numerical test

is conducted to further support the XRD results. The above numerical simulations are carried out, this

time considering only the surface layer elements in the model. The maximum of through-thickness strain

(ε33) is measured on the surface layer for strains up to 4%. As the strain is increased in the loading stage,

the remaining compressive strains through the specimen are also increased. The maximum through-

thickness strain on the surface layer has a positive sign when the plastic deformation is increased from 0

to 3% with a tendency to decrease in value. However, at 4% strain, the sign of ε33 changes to a negative

value. The ε33 values are shown in Figure 32. This result is in line with the XRD results that show the

dominance of the compression strains in the 4% samples due to the irregular geometry and therefore

the non-uniform deformation. However, when analyzing the gage length, the tensile test accompanied
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a) b)

Figure 30. XRD patterns of all the samples at about 2θ = 78◦ for (a) gage, and (b) shoulder

by Poisson’s effect introduces compressive through-thickness uniform strains from the very beginning.

The deformation is uniform and therefore there is no tensile strain ε33 present in the sample. The

compressive strain value increases as the tension increases throughout the sample.

Figure 33 shows the results of the line broadening effects. As indicated earlier, line broadening in

X-Ray peaks is associated with non-uniform strains, which in this investigation is primarily expected in

the shoulders of the tensile specimen caused by the geometrical changes due to the transition from the

grip areas into the gage length. The line broadening was calculated using full width at half maximum

(FWHM). FWHM can be used to determine the relative non-uniform plastic deformation. As the amount

of non-uniform plastic deformation increases, the broadening in the peaks increases. In the cases that the
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Figure 31. Displacements with degree of strain for gage and shoulder

uniform and non-uniform plastic deformations are both present, a mixture of peak shift and broadening

can be observed. Based on the observations in Figure 33, the FWHM for the shoulder area is higher than

the gage area for each sample at different strain levels, except at the strain level 0.15, which indicates

higher non-uniform plastic deformation in this region due to the significant geometrical changes. The

small increases in line broadening observed for the samples extracted from the gage length ( 15%) is

further evidence that a uniform straining occurs at the gage location. On the other hand, the shoulder

sample shows an 83% increase in FWHM from 0.5% to 4% strain. This high increase in broadening re-

confirms the presence of non-uniform plastic deformation in the shoulder compared to the gage length.
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Figure 32. The maximum through-thickness strain in the surface layer of shoulder part measured
numerically

6.6 Discussions

To investigate the effect of non-uniform plastic deformation due to the geometry of the specimen,

the acoustic nonlinearity parameters are measured at different locations of dog-bone specimens. As the

nonlinearity is measured near the shoulder, the numerical analysis shows up to 1130% increase in the

third-harmonic acoustic nonlinearity coefficient (γ), while the second-harmonic acoustic nonlinearity

coefficient (β)shows up to about 396% increase. On the other hand, measuring the nonlinearity param-

eters near the shoulder experimentally shows about 780% increase in γ, while this increase is about

275% for β. In both numerical and experimental studies, γ is approximately 2.8 times more sensitive

than β in the shoulder part of the specimen. On the other hand, when the deformation in macroscale

is considered uniform in the middle of the specimen, numerical analysis shows up to 8% increase in γ,
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Figure 33. FWHM of the samples with different strain levels at 2θ ≈ 78◦

while this increase is about 2% for β with no clear trend. Experiments show an increase of 200% in γ

and 53% in β, confirming the higher sensitivity of γ .

Considering the mesoscale heterogeneity, numerical analyses indicate that the mesostructural vari-

ations distort the ultrasound waveform, stimulating γ increase up to 30%, however β does not show a

clear trend when plastic deformation increases.

Series of XRD tests are carried to observe the non-uniform plastic deformation effect in microscale.

Observing the microstructural level, line broadening in XRD results expresses the fact that the defor-

mation is non-uniform in the irregular geometry of the shoulder area compared to the gage section. The

non-uniformity of stress results in localized plastic deformation and contributes to the higher nonlinear-

ity of the material in the shoulder area which can be assessed with the HOH generations.
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6.7 Conclusions

The source of nonlinearity in materials can be attributed to many physical phenomena. In this

study, the subject of generating HOH in ultrasonic waves due to non-uniform deformation produced by

different scales of irregularities under plastic deformation has been investigated numerically and experi-

mentally. Understanding the correlation between non-uniform plastic deformation and HOH generation

provides a quantitative method to assess the nonlinearity and therefore damage in structures and predict

the eventual fracture. For this purpose, different length scales of material have been considered for the

nonlinearity characterization.

To understand the correlation between meso- and macro- scale irregularities and material nonlinear-

ity, the HOH acoustic nonlinearity coefficients need to be measured under different plastic deformations.

When a specimen is under plastic deformation, the non-uniform plastic deformation is generated in the

areas with meso- and macro-structural variations, which distort the ultrasound waveform.

Both numerical and experimental studies confirm that non-uniform plastic deformation increases

HOH, whether the non-uniformity is due to microscale heterogeneity or macroscale variations. XRD

studied on the microstructure of the samples reveals the effect of macroscale variations on the mi-

crostructure of the material, providing an extra magnified insight into the material nonlinearity and their

sources. In addition, the third-harmonic acoustic nonlinearity coefficient proves to be a more sensi-

tive indicator of the material nonlinearity in dealing with microstructural heterogeneity or geometric

variations in the structure.

This study provides an insight of the sources of nonlinearity in materials with different scales of

structural irregularities. Future analysis of the contribution of different nonlinearity stimulators in HOH
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generation can lead to a more thorough understanding of NLUT and better interpreting its results. Hav-

ing a clear understanding of the nonlinearity sources can deliver more accurate experimental results by

eliminating external and unwanted factors that contribute to HOH. Moreover, higher sensitivity of the

third-harmonic acoustic nonlinearity coefficient under the presence of non-uniform deformation can be

explored further in other materials such as composite, steel etc.



CHAPTER 7

ENRICHED FINITE ELEMENT METHOD FOR NONLINEAR ACOUSTICS

Computational acoustics has been an area of active research for almost half a century. It also has

been applied to other fields, such as geophysics, meteorology, electromagnetics, etc. In particular, the

challenge of efficient computation at high wave numbers is one of the problems still unresolved by

current numerical methods. Standard FE methods are inherently demanding while tackling problems

with high wave numbers because they require an excessive computational effort in order to resolve

the waves and control numerical dispersion errors. The deficiency to a decent representation of sub-

mesh scales not only misses the fine-scale part of the solution, but often causes the so-called numerical

dissipation and dispersion errors in the solution on the resolved scale as well. This phenomenon is

related to the deterioration of numerical stability due to accumulation of dispersion error. In order to

cope with such error effectively, many current discretization techniques are being developed. In this

chapter, an enriched numerical method is discussed and some benchmark problems are solved. To solve

for nonlinear wave propagation problems, a user element (UEL) with enriched FE characteristics is

developed in Abaqus™ , and the results are discussed.

7.1 Formulation of the method

As described in the previous chapter, consider the governing continuum mechanics equations for the

body Ω are derived as below.

84
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Figure 34. Boundary condition imposed on body Ω

ρ
d2u

dt2
= ∇.σ(u) + b (7.1)

In this boundary value problem, the body of interest Ω has a boundary Γ with the displacement specified

on Dirichlet boundary ( ΓD )

u = uD (7.2)

and on Neumann boundary ΓN , tractions are specified,

σ(u).n = h (7.3)
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where h is the imposed boundary traction vector, n is the outward unit normal and b represents the body

force acting on Ω .

Taking the strong form of the differential equation, multiplying by a test function will result in the

variational form of the governing continuum mechanics equations:

∫
Ω
ρδu.

∂2u

∂t2
dΩ =

∫
Ω
δu.∇.σdΩ +

∫
Ω
δu.bdΩ (7.4)

after integration by parts and the divergence theorem, we have:

∫
Ω
∇δu : σdΩ +

∫
Ω
ρδu.

∂2u

∂t2
dΩ =

∫
ΓN

δu.hdΓ +

∫
Ω
δu.bdΩ (7.5)

we approximate the variational form with the Galerkin weak formulation as:

∫
Ω
∇δu : σhdΩ +

∫
Ω
ρδu.

∂2u

∂t2
dΩ =

∫
ΓN

δu.hdΓ +

∫
Ω
δu.bdΩ (7.6)

Equation 7.6 will be discretized in space which leads to the matrix form as presented below:

[
M

]
Ü +

[
K

]
U = R (7.7)

where M and K are mass and stiffness matrices and U and R are nodal displacements and externally

applied forces respectively.
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7.1.1 Spatial discretization

While we consider one and two-dimensional analysis of solids, the basic equations can directly be

generalized to multi-dimensional solutions. Considering only one typical solution variable u the element

interpolation functions or shape functions for Equation 7.5 for two-dimensional analyses are given by

(27):

u(ξ, η) =

NP∑
I

hI(ξ, η)[U(I,0,0) +

m∑
j

{sin(
πj

2hxx
)U s(I,j,0) + cos(

πj

2hx
x)U c(I,j,0)}+

k∑
l

{sin(
πl

2hy
y)U s(I,0,l) + cos(

πl

2hy
y)U c(I,0,l)}+

m∑
j

k∑
l

{
sin(

πj

2hx
x+

πl

2hy
y)U s

+

(I,j,l) + cos(
πj

2hx
x+

πl

2hy
y)U c

+

(I,j,l)

}
+

m∑
j

k∑
l

{
sin(

πj

2hx
x− πl

2hy
y)U s

−

(I,j,l) + cos(
πj

2hx
x− πl

2hy
y)U c

−

(I,j,l)

}
]

(7.8)

where U with superscripts are the nodal degrees of freedom. NP is the number of shape functions

in each element, m and k are number of sin and cos functions, respectively, considered. 2j and 2l are

the number of cycles of harmonic functions within one element which are called ”the cutoff numbers”.

In this approach, the conventional interpolation functions are enriched by harmonic functions and

interpolation used for displacements are obtained. We use NI in the natural space ξ and η. In Equa-

tion 7.8, hx and hy are the typical element sizes is x and y directions. In particular, in our numerical

technique, fundamental frequency of the enrichment functions has been chosen such that an integer

number of harmonics are within one element.
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This particular interpolation function is chosen on purpose to benefit from its applicability and accu-

racy in solving ultrasonic wave propagation problems. The advantages include the fact that we already

know the fundamental frequency range in UT and moreover, second harmonic’s frequency is also known

which is twice the fundamental frequency. Therefore, with those known harmonics embedded in the so-

lution space, more accurate solutions can be obtained.

7.1.2 Boundary conditions

Due to the enrichment function in Equation 7.8, the Kronecker delta properties existing in the con-

ventional finite element may not be guaranteed after the enrichment. To overcome the issue while men-

taining optimal convergence. Nitsche’s method is introduced to impose essential boundary conditions.

Nitsche’s approach is a scheme to overcome the (possible) accuracy deficiency on boundaries. The

are other method like penalty method or Lagrange-multiplier methods. The traditional way of impos-

ing Dirichlet boundary conditions can be problematic. Nitsche discusses techniques for incorporating

Dirichlet boundary conditions in the weak form of the model problem. Let’s consider the Poisson’s

problem:

−∆u = f in Ω (7.9)

u = g on Γ = ∂Ω (7.10)
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multiplying the strong form by a test function, we obtain

∫
Ω fwdΩ = −

∫
Ω ∆uw =

∫
Ω∇u.∇wdΩ−

∫
∂Ω∇u.nwds =∫

Ω∇u.∇wdΩ−
∫
∂Ω∇u.nwds−

∫
∂Ω(u− g)∇w.nds

(7.11)

where in the last part u − g = 0 has been added. Rearranging the terms to linear and bilinear parts,

another term η
∫
∂Ω(u− g)wds is added for sufficiently large η > 0 to ensure coercivity.

∫
Ω∇.u∇wdΩ−

∫
∂Ω∇u.nwds−

∫
∂Ω u∇w.nds+ η

∫
∂Ω uwds =

−
∫
∂Ω g∇w.nds+ η

∫
∂Ω gwds+

∫
Ω fwdΩ

(7.12)

7.2 One dimensional problem

In this part, the performance of enriched FE is assessed by solving a one dimensional transient wave

propagation problem.

7.2.1 numerical example and results

The problem considered is dynamic analysis of a one dimensional bar with length L and Young

modulus of E with enriched FE method. For this problem, the solution of u is governed by

∂2u

∂t2
− c2

l

∂2u

∂x2
= 0 (7.13)

with the boundary conditions:

u(0, t) = 0 (7.14)
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∂u

∂x
(L, t) = u0

πE

L
sin(cl

π

L
t) + u1

2πE

L
sin(cl

2π

L
t) (7.15)

And initial conditions:

u(x, 0) = 0 (7.16)

∂u

∂t
(x, 0) = −u0cl

π

L
sin

π

L
x+ u1cl

2π

L
sin

2π

L
x (7.17)

the analytical solution of this problem has the following expression:

u = u0sin
π

L
xsin(cl

π

L
t) + u1sin

2πE

L
xsin(cl

2π

L
t) (7.18)

In Figure 35 the exact solution of u alongside both FE method and enriched FE method is illustrated

and the absolute difference error value eh = u(x) − uh(x) is calculated using equal sized elements in

each solutions. The error in FE solution is due to wavelength elongation and amplitude decay known as

numerical dispersion and dissipation error.

It is clearly observable that FE method with 60 elements and 61 degrees of freedom has an accuracy

in the order of 10−3 while enriched FE is capable to maintain the accuracy in order of 10−4 with only 8

elements and 45 degrees of freedom (cutoff number =2).

Incorporating Nitsche’s approach on imposing boundaries, the results are as below:
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Figure 35. Top: Analytical Solution vs Enriched FEM-Left: wave profile,Right:Absolute value error
bottom: Analytical Solution vs FEM-Left: wave profile,Right:Absolute value error

Comparing the error from imposing the boundary condition directly and by Nitsche’s method, it can

be clearly observed that the latter enhances the accuracy of the solution by almost 100 times.

7.3 Two dimensional problems

In this section, we illustrate the performance of the enriched finite element method by solving time

harmonic transient scalar wave problems and the results are discussed.
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Figure 36. Enriched FEM using Nitsche’s method to apply boundary conditions -Left: wave
profile,Right:Absolute value error

7.3.1 Problem statement

The scalar wave equation with a Ricker wavelet source at the center of a two dimensional domain is

modeled.

∂2u

∂x2
+
∂2u

∂y2
+ F (0, 0, t) =

1

c2

∂2u

∂t2
(7.19)

F (0, 0, t) = 10(1− 2π2f2(t− 0.25)2)exp(−π2f2(t− 0.25)2) (7.20)

where u is the displacement solution, c is the wave velocity (in this example c = 1), f is the central

frequency, (in this example f = 6Hz). Due to symmetry, only a quarter of the area is used for FE

solution which is a [0, 1] × [0, 1] domain. Generally, in dealing with wave propagation problems, ab-

sorbing boundary conditions are used, however, here for the time considered 0.95s, the wave does not
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get to the boundary, hence there will be no reflections and no need for the absorbing boundary condi-

tions. Quadratic elements are used both for standard FE and enriched FE solutions. the FE model has

been discretized with 60 by 60 mesh leading to 3721 degrees of freedom while enriched FE model is

discretized by 8× 8 mesh with cutoff numbers (k,m) = (1,1) leading to 729 degrees of freedom.

In both models, trapezoidal rule of time integration is used with time step size δt = 0.00625

7.3.2 Results

The snapshots of results are given at time 0.95s. As expected, the numerical solution of the enriched

model shows better accuracy, while using less time and space in the machine memory.
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Figure 38. top: Enriched FEM-Left: wave profile, Right: Snapshot at 0.95s bottom: standard
FEM-Left: wave profile, Right: Snapshot at 0.95s

7.4 Nonlinear enriched FEM

As discussed in the previous chapters, nonlinear ultrasonic methods have strong potential to identify

damage and flaws in materials, hence increasing the possibility of correctly predicting the remaining life

of structures. In previous section, the capability and accuracy of an enriched FE method was discussed.

In this section, enriched FE method is applied to solve for nonlinear wave propagation, aiming to obtain
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an efficient yet accurate waveform results. To this end, a User Element (UEL) script is written and

incorporated in to the Abaqus™ finite element code.

User subroutines can be written in Fortran or C-codes. With UEL subroutine, a maximum of 30 de-

grees of freedom becomes possible. The main objective of a user element is to provide Abaqus™śolver

with the stiffness matrix and the residual vector, which is in line with the context of solving a nonlinear

system of equation using a Newton-Raphson method. At the end of this section, the simulation results

are demonstrated and compared with Abaqus™ standard elements.

7.4.1 An enriched FE user element framework

The enriched FE subroutine is written with Fortran code. In this subroutine, 10 degrees of freedom

per each node is used, reach of which represent different displacement enrichments demonstrated in

Equation 7.8. As discussed before, in order to solve the nonlinear system of equations, the right hand

side (residual) vector and the tangent (stiffness) matrix are needed. Following equations are resumed

after the weak form of the momentum balance Equation 7.5 which in general, requires the application of

an iterative solution scheme such as Newton-Raphson. Considering this, the system of equations have

to be linearized. Consequently, FN is defined as a residual quantity by:

FN = FNext − FNint (7.21)

in which FNext is the external nodal forces (depending on the problem, can be moments, heat flow, etc. )

due to applied loads and FNint is the internal nodal forces (due to stress, etc.) at node N and they depend

on the values at nodal degree of freedom uN at node N.
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Another requirement of solving the iterative nonlinear system of equations is to define the stiffness

matrix (Jacobian):

KNM = −dF
N

duM
(7.22)

In the case of dynamic analysis, the forces and the Jacobian are specified and correspond to the

integration procedure used as:

FN = −MNM üMt+∆t + (1 + α)GN
t+∆t − αGN

t (7.23)

KNM = −MNM (
1

β∆t2
) + (1 + α)KNM

s (7.24)

neglecting the damping in the model. In the above equations, KNM
s is the static tangent stiffness matrix,

β = (1/4)(1−α2) is the Newmark-β operator, α is the Hughes-Hilbert-Taylor integration operator. For

simplicity α is set to zero and β and γ are 0.25 and 0.5 to simulate the trapezoidal rule of integration.

In general, a summary of the procedure utilizing the user subroutine can be viewed in the following

flow chart:
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Figure 39. Flow Chart
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7.4.2 Numerical example

The enriched FEM is tested for a nonlinear wave propagation problem against Abaqus standard

elements. The Neo-Hookean model with parameters C10 = 1325GPa and D1 = 2.89E − 005GPa−1

are employed as hyperelastic material. For the enriched FE, 8 additional degrees of freedom are used.

The configuration of the problem is depicted as below:

Sin(t)

Figure 40. Two dimensional model used to test enriched FE

A sine wave is applied uniformly at one edge and the results are measured at the nodes on the edge

across from it and then averaged. The following figure demonstrates the results of both enriched FE and

standard FE with different element numbers:

In the enriched FE solution there are 39 elements and 800 degrees of freedom used and for the

standard FE two models with 1500 elements and 6000 degrees of freedom and 75 elements and 152

degrees of freedom are used. The accuracy of enriched FE with only 39 elements is comparable to the

converged standard FE model with 1500 elements. 1500 elements are required to provide the maximum

element size used allowed for nonlinear wave propagation analysis.The computational efficiency for

both time and space of the enriched FE algorithm is higher than standard FE. The time used for enriched
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Figure 41. A nonlinear wave analyzed by different Enriched and Standard FE

FE analysis is one fourth of the standard FE analysis time and the memory used in the enriched FE is

also almost one fourth. The results clearly show the accuracy as well as the efficiency of enriched FE

with respect to the standard FE model.

7.5 Conclusions

In this chapter, different linear and nonlinear wave propagation problems are discussed and com-

pared with standard FE solutions. For both cases, it is observed that when conventional FE interpolation

functions are enriched with the specific solution of the problem, a more accurate yet efficient solution

can be obtained.



CHAPTER 8

HARMONIC-ENRICHED RKPM FOR WAVE PROPAGATION PROBLEMS

In this chapter an implicit enrichment scheme based on reproducing kernel particle method (RKPM)

to effectively solve high frequency wave propagation problems is presented. The characteristic function

are embedded in the basis function for constructing RK approximation. This approach allows better so-

lution accuracy without adding to the degrees of freedom. As a result, the high frequency wave problem

can be solved using less nodes, enhancing both computational efficiency and accuracy. Application of

this techniques is particularly useful for the numerical simulation of ultrasonic testing (UT) of structures

due to the high frequency of the utilized transducer. Specially in numerical simulation of nonlinear UT

when higher harmonics are sought in the received wave response, and the traditional FE needs to have a

very fine mesh to produce desirable results, employing this technique shows to be even more functional.

The proposed method is assessed through von Neumann analyses and verified with several numerical

examples.

8.1 Introduction

A thorough literature review of the enhanced numerical methods (Spectral methods, Partition of

unity methods, element free methods, etc.) for solving wave propagation problems and the challenges

for accurate and efficient simulations are given in Section 2.4. In numerical modeling of nonlinear

ultrasonic testing (NLUT), as looking for the second harmonic and, in the heterogeneous material cases,

the third harmonic, the mesh size is required to be very small. Decreasing mesh size will in turn cause

100
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dispersion and dissipation problems (99)(140)(5)(10) while increasing the computational effort to the

extent that the numerical modeling requires excessive effort.

In this chapter, tackling the issue of computational efficiency in high frequency wave propagation

problems using harmonic basis functions to implicitly enrich RKPM is discussed. This technique en-

ables the solution to take advantage of both element free and spectral methods without adding to the

degrees of freedom.

The organization of this chapter is as follows. In 8.2 the interpolation scheme in RKPM method and

governing equation is reviewed and the newly developed H-RKPM is proposed. In 8.3 the dispersion

and stability analysis of H-RKPM is calculated and compared with the standard RKPM and FE. In 8.4

one dimensional and two dimensional numerical examples are solved to illustrate the performance of

implicit enrichment. In 8.5 remarks are provided to conclude the paper.

8.2 Theory and implementation

In this section a brief overview of the RKPM method is presented and the implicit enrichment of

RKPM for solving wave propagation problems is introduced.

8.2.1 RK approximation

As described in the Section 8.1, the development of interpolation functions in computational meth-

ods in an attempt to approximate the solution field u(x) is the ultimate target of many computational

methods. Consider a close domain Ω discretized by a set ofNP points. The RK approximation function

is as below:

u(x) ≈ uh(x) =
NP∑
I=1

ΨI(x)uI (8.1)
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where ΨI represents the RK shape function and uI is the corresponding nodal coefficients.

ΨI(x) = φ(x)[aJ + bIjfj(x)] (8.2)

The RK shape functions are constructed by two main functions, a kernel function φa and a correction

function C.

ΨI(x) = C(x; x− xI)φa(x− xI) (8.3)

where kernel function is defined on a bounded space centered at xI and a is the radius (support domain

size) of the kernel function. Kernel determines the smoothness (order of continuity) and locality of shape

functions. Usually, B-splines of different orders are used as the kernel functions. The most common

kernel used for constructing RK shape functions is cubic B-spline which provides C2 continuity.

On the other hand, the correction function C(x; x−xI) is introduced for obtaining monomial repro-

ductivity below,
NP∑
I=1

ΨI(x− xI)xi1Ix
j
2Ix

k
3I = xi1x

j
2x
k
3 (8.4)

where i+ j + k = 0, 1, · · · , n. n is the highest order of complete monomials.

The correction function is introduced in the form below,

C(x; x− xI) = HT (x− xI)b(x) (8.5)
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where HT (x− xI) is the basis vector shown in Equation 8.6 and b(x) is the coefficient vector which is

obtained in Equation 8.7 by introducing Equation 8.5 into Equation 8.4,

HT (x− xI) = [1 x1 − x1I x2 − x2I · · · (x3 − x3I)
n] (8.6)

b(x) = M−1(x)H(0) (8.7)

where M(x) is called the moment matrix, which plays an important role in constructing RK shape

functions. A required minimum number of points are needed for constructing moment matrix such that

it is invertible. Moment matrix is in form of Equation 8.8

M(x) =

NP∑
I=1

H(x− xI)HT (x− xI)φa(x− xI) (8.8)

Finally, by substituting Equation 8.7 into Equation 8.5 and then Equation 8.1, RK shape function is

obtained as,

ΨI(x) = HT (0)M−1(x)H(x− xI)φa(x− xI) (8.9)

8.2.2 Harmonic-enriched reproducing kernel formulation

As discussed in the previous section, in conventional way of constructing RK shape functions, cor-

rection function C(x; x− xI) is introduced such that monomial reproductivity are obtained, as shown in

Equation (Equation 8.4). For this purpose, components of basis vector H(x−xI) are selected as a set of

complete polynomial terms up to the desired order n. Although polynomial-based RK shape functions

provide algebraic error convergence rate, obtaining promising accuracy for non-polynomial functions
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approximation and also PDE solutions may need considerably fine discretization (or high number of

source points in mesh-free methods) to obtaining a desirable level of accuracy. Even though increasing

the nodes/points in both methods can help to overcome this issue to some level, computational efficiency

and machine’s memory management still remain as main challenges. Using explicit enrichment in the

FEM frame-work is shown to relax the oscillations (27), however increasing the number of degrees of

freedom (DOFs) could be still recognized as a computational efficiency issue.

To address discussed issues above, in this work, basis vector used in the correction function is proposed

to be chosen such that it satisfies the trigonometric (harmonic) reproducing conditions. The idea comes

from the fact that wave propagation problems have harmonic behavior in nature. Satisfying trigonomet-

ric reproducing conditions enhances accuracy of the function approximation and also approximating

the solution of the wave propagation problems. With the same idea as in polynomial-based RK shape

functions where the terms of Taylor expansion is used, for harmonic-enriched RK, the terms of Fourier

(trigonometric) series could be chosen as the basis-vector’s terms.

A trigonometric (Fourier) is the expansion of periodic function in terms of sin and cos, making use of

the orthogonality property of the harmonic functions. Considering a single-valued function f(ωx). The

trigonometric expansion of f(ωx) is written as in (Equation 8.10),

f(ωx) =
1

2
a0 +

∞∑
k=1

ak cos(ωkx) +

∞∑
k=1

bk sin(ωkx) (8.10)

A complete trigonometric basis terms of order m for the Fourier series are all the term including

sines and cosines for k = 0, · · · ,m and a constant term. With the same approach as extracting monomial
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basis terms from Taylor expansion, by ignoring the coefficients of the Fourier series, the harmonic basis

vector H(x) of order m for one-dimensional case could be written as,

HT (x) = [1, sin(ωx), cos(ωx), · · · , sin(mωx), cos(mωx)] (8.11)

By definition of Fourier series, for a periodic function f(ωx) with continuous first and second

derivatives, it is guaranteed that the trigonometric series of f(ωx) converges uniformly to f(ωx) for

all x, also known as Dirichlet conditions. In other words, by selecting adequate complete terms of the

Fourier series as the components of the basis order, more accurate numerical results are expected when

approximating function.

However, including more terms in the basis vector results in a larger basis vector and consequently a

larger moment matrix M and an increase in its condition number. All these result in an increase in the

computational cost and also a decrease in accuracy of the numerical solution.

To address both CPU-time and accuracy issues, in this paper, the idea of harmonic based RK shape

functions is proposed by choosing the basis vector terms’ frequency, same as the characteristics avail-

able or the excitation frequency of the problem. For instance, assuming analytical solution of a wave

propagation problem as in (Equation 8.12),

u(x) = A sin(ω1x) sin(ω2t) +B cos(ω1x) cos(ω2t) (8.12)

The basis vector could be constructed as H(x) = [1, sin(ω1x), cos(ω1x)] including sin and cos

of arguments shown in the equation (here ω1x). It will be shown in the following that for harmonic
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reproducing conditions, a set of complete trigonometric terms must be chosen in the basis vector. By

definition, a complete set of trigonometric terms are those which can satisfy the partition of unity (con-

stant term in Fourier series) and reproducing condition for all terms included in the basis vector. For the

cases which analytical solution is not provided, excitation frequency is observed to be used for acquiring

the most accurate solution.

An expansion by a complete set of functions can be easily generalized for higher dimensions, as well.

Assuming a two-dimensional function of f(ω1x, ω2y), formed of an orthonormal complete system of

functions cos(ω1x) cos(ω2y),sin(ω1x) cos(ω2y), cos(ω1x) sin(ω2y), and sin(ω1x) sin(ω2y) expansion

of f(ω1x, ω2y) can be written as,

f(ω1x, ω2y) =
∞∑
k=1

∞∑
l=1

λkl.{akl cos(ω1kx) cos(ω2ly)

+ bkl sin(ω1kx) sin(ω2ly) + ckl cos(ω1kx) sin(ω2ly)

dkl sin(ω1kx) sin(ω2ly)}

(8.13)

For both one and two dimensional cases, basis vector’s terms must be selected such that the shifted

reproducing conditions are obtained. For instance, for one-dimensional case with trigonometric terms,

it can be shown that both sin(ω1x) and cos(ω1x) must be included in the basis vector for satisfying the

reproducing conditions. Defining the harmonic-enriched RK shape-function as,

ΨI(x) = C(x;x− xI)φa(x− xI) (8.14)
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Considering the first order trigonometric terms for one-dimensional case, correction function C can

be written as,

C(x;x− xI) = b0(x) + b1(x) sinω(x− xI) + b2(x) cosω(x− xI)

=: HT (x− xI)b(x),

(8.15)

where the coefficients bi(x), (i = 0, 1, 2) are determined by satisfying the partition of unity and

reproducing conditions for harmonic terms shown below,

NP∑
I=1

ΨI(x) = 1 (8.16a)

NP∑
I=1

ΨI(x) sin(xI) = sin(x) (8.16b)

NP∑
I=1

ΨI(x) cos(xI) = cos(x) (8.16c)

For showing the shifted reproducing conditions, from (Equation 8.16), multiplying (Equation 8.16b)

by cos(x) and (Equation 8.16c) by sin(x) can show,

NP∑
I=1

ΨI(x) sin(xI) cos(x) = sin(x) cos(x) (8.17a)

NP∑
I=1

ΨI(x) sin(x) cos(xI) = cos(x) sin(x) (8.17b)
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By subtracting (Equation 8.17b) from (Equation 8.17a),

NP∑
I=1

ΨI(x)[sin(xI) cos(x)− sin(x) cos(xI)] =

NP∑
I=1

ΨI(x) sin(x− xI) = 0 (8.18)

Similarly, multiplying (Equation 8.16b) by sin(x) (Equation 8.16c) by cos(x),

NP∑
I=1

ΨI(x) sin(xI) sin(x) = sin2(x) (8.19a)

NP∑
I=1

ΨI(x) cos(x) cos(xI) = cos2(x) (8.19b)

Summation of (Equation 8.19a) and (Equation 8.19a),

NP∑
I=1

ΨI(x)[sin(xI) sin(x) + cos(x) cos(xI)] =
NP∑
I=1

ΨI(x) cos(x− xI) = 1 (8.20)

Eventually, the partition of unity and shifted harmonic reproducing conditions can be equivalently

written as,

NP∑
I=1

ΨI(x) = 1 (8.21a)

NP∑
I=1

ΨI(x) sin(x− xI) = 0 (8.21b)

NP∑
I=1

ΨI(x) cos(x− xI) = 1 (8.21c)
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where we can eventually express the reproducing conditions as,

NP∑
I=1

ΨI(x)H(x− xI) = H(0), HT (0) = [1, 0, 1] (8.22)

Substituting (Equation 8.14) and (Equation 8.15) into (Equation 8.22),

M(x)b(x) = H(0) (8.23)

where M(x) is the moment matrix constructed using newly-proposed harmonic basis vector

H(x − xI). Consequently, harmonic-enriched RK shape-functions could be constructed same as the

polynomial-based ones as shown in Equation (Equation 8.6) with the only difference that the basis vec-

tor includes a complete set of trigonometric terms instead on monomial terms.

ΨI(x) = HT (0)M−1(x)H(x− xI)φa(x− xI) (8.24)

This is obvious from the procedure shown above that for reproducing and approximating harmonic

(semi-harmonic) functions, both sin and cos terms of the same argument are needed. Otherwise the

reproducing conditions could not be satisfied. Considering the same approach for two-dimensional

case, in general form, all sin and cos terms of arguments ωx and ωy must be included in the basis vector.

These terms can be shown that are needed for satisfying the reproducing conditions for interactive terms

of sin and cos. The first order harmonic reproducing conditions for two-dimensional case can be shown

as,
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NP∑
I=1

ΨI(x) = 1 (8.25a)

NP∑
I=1

ΨI(x) sin[ωx(x− xI)] = 0 (8.25b)

NP∑
I=1

ΨI(x) cos[ωx(x− xI)] = 1 (8.25c)

NP∑
I=1

ΨI(x) sin[ωy(y− yI)] = 0 (8.25d)

NP∑
I=1

ΨI(x) cos[ωy(y− yI)] = 1 (8.25e)

NP∑
I=1

ΨI(x) sin[ωx(x− xI)] sin[ωy(y− yI)] = 0 (8.25f)

NP∑
I=1

ΨI(x) sin[ωx(x− xI)] cos[ωy(y− yI)] = 0 (8.25g)

NP∑
I=1

ΨI(x) cos[ωx(x− xI)] sin[ωy(y− yI)] = 0 (8.25h)

NP∑
I=1

ΨI(x) cos[ωx(x− xI)] cos[ωy(y− yI)] = 1 (8.25i)

8.2.3 System of equations using harmonic-enriched RK shape-functions

Considering the wave equation as,

ü = c2
0∆u (8.26)
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Where c0 represents the one-dimensional elastic wave speed defined as c0 =
√

E
ρ , the variational form

of the wave equation could be derived as,

∫
Ω
δu · ρüdΩ +

∫
Ω
E∇δu · ∇udΩ−

∫
Γd

Eδu(∇u · n))dΓ =

∫
Γh

Eδu gndΓ (8.27)

In Equation 8.27, Ω represents the problem’s domain, Γd and Γh indicates the Dirichlet and Neu-

mann boundaries, respectively such that Γd ∪ Γh = Γ and Γ is the domain’s boundary. n is the outward

normal of the boundary and gn = ∇u · n is the boundary traction.

In mesh-free methods, because of lack of Kronecker-delta property, applying the Dirichlet boundary

condition need special treatment. For this purpose, Nitsche’s method is employed for imposing the

essential boundary conditions as discussed in Chapter 7 . By having the weak-form of the wave propa-

gation problem in hand, the discretized dynamic equation could could be written as,

Md̈ + Kd = F (8.28)

where mass matrix M, stiffness matrix K, and force vector F in Equation 8.28 are defined as

MIJ =

∫
Ω

ΨIρΨJdΩ (8.29a)

KIJ =

∫
Ω

ΨI,iEΨJ,idΩ−
∫

Γd

E[ΨIΨJ,ini + ΨJΨI,ini − βΨIΨJ ]dΓ (8.29b)

FI =

∫
Γh

EΨIgn −
∫

Γd

E[udΨI,ini − βudΨI ]dΓ (8.29c)
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8.3 Dispersion and stability properties of harmonic-enriched RKPM semi-discritizations

In order to assess the numerical performance of the Harmonic-Enriched RKPM, the von Neumann

method is introduced to investigate the dispersion and stability characteristics. The von Neumann results

of Harmonic-Enriched RKPM is carried out for the dispersion of one-dimensional second order wave

propagation problem and then compared with the standard RKPM and FEM. In section 8.3.2 the von

Neumann is employed to study temporal stability for solving the one dimensional second order wave

equation and again the result is compared with standard RKPM and FEM.

8.3.1 Dispersion

For a non-dispersive physical model of wave propagation, the numerical solution of hyperbolic par-

tial differential equations are dispersive due to the discretization. The difference between the numerical

wave speed and the exact wave speed can characterize the dispersion errors. In a dispersive medium,

the wave speed is a function of frequency or wavelength of the propagating wave. In order to assess

the numerical dispersion error of the Harmonic-Enriched RKPM semi-descretization equation, the von

Neumann method is utilized. consider the Equation 7.1. The body force is ignored due to concentra-

tion on the dispersion associated with the disturbance propagation as a result of initial conditions. The

associated spatial semi-discretization of the second order wave equation is as presented in Equation 7.7.

Advancing towards the Fourier analysis, the plane wave of continuum wave Equation 7.1 can be

expressed as:

u(x, y, t) = u0exp[ik0(xcosθ + ysinθ)− iω0t] (8.30)
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where u0 is the amplitude, θ is the propagation direction of the plane wave and for a non-dispersive

medium with the wave number k0 and the circular frequency as ω0 the following relationship with the

wave velocity exists:

c0 =
ω0

k0
(8.31)

The numerical plane wave solution at point (i, j) with coordinates (xi, yj) is as follows:

uh(xi, yj , t) = u0exp[ik(xicosθ + yjsinθ)− iωt] (8.32)

where ω is numerical circular frequency and c = ω
k is the numerical wave speed. By considering a

uniform spatial discretization xi+m = xi + m∆x,m + i = 1, ..., NPx, yj+n = yj + n∆y, j + n =

1, ..., NPy, where NPx and NPy are the number of points in x and y directions, respectively, the plane

wave solution to the semi-discrete equations at point (i+m, j + n) is:

uh(xi+m, yj+n, t) = ui,jexp[ik(m∆xcosθ + n∆ysinθ)− iωt] (8.33)

Let U(t) = Nd(t) be the displacement vector evaluated at points (xi, yj). Equation 7.7 can be rewritten

in terms of U(t) as:

MN−1︸ ︷︷ ︸
M∗

Ü +KN−1︸ ︷︷ ︸
K∗

U = 0 (8.34)

Therefore, the semi-discrete wave Equation 8.34 at point (xi, yj) can be expressed as:

NPx∑
i+m=1

NPy∑
j+n=1

[M∗(i,j)(i+m,j+n)üi+m,j+n + K∗(i,j)(i+m,j+n)u i+m,j+n] = 0 (8.35)
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Substituting Equation 8.33 into Equation 8.35, we obtain the equation for the circular frequency ω:

− ω2
NPx∑
i+m=1

NPy∑
j+n=1

M∗(i,j)(i+m,j+n)exp[ik(m∆xcosθ + n∆ysinθ)]

NPx∑
i+m=1

NPy∑
j+n=1

K∗(i,j)(i+m,j+n)exp[ik(m∆xcosθ + n∆ysinθ)] = 0

(8.36)

Introducing the normalized phase velocity c−c0
c0

, where c = ω
k is numerical phase velocity, we have:

c− c0

c0
=

1

ck

√√√√∑NPx
i+m=1

∑NPy
j+n=1 K∗(i,j)(i+m,j+n)exp[ik(m∆xcosθ + n∆ysinθ)]∑NPx

i+m=1

∑NPy
j+n=1 M∗(i,j)(i+m,j+n)exp[ik(m∆xcosθ + n∆ysinθ)]

− 1 (8.37)

For one-dimension with symmetry, the normalized phase velocity in Equation 8.37 reduces to:

c− c0

c0
=

1

ck

√√√√∑NP
i+m=1 K∗i,i+mcos(km∆x)∑NP
i+m=1 M∗i,i+mcos(km∆x)

− 1 (8.38)

In the following analysis, a one-dimensional wave equation is considered:

∂2u

∂t2
= c2

0

∂2u

∂x2
(8.39)

M and K matrices are constructed by FE, standard RKPM and Harmonic-Enriched RKPM, the domain

0 ≤ x ≤ L is discretized by a set of uniformly distributed points, and wave speed is set to be c0 = 1.

It is worth noting that M matrix is a consistent mass matrix. In order to minimize the boundary effects

we consider a relatively large domain with L = 100. The number of points are NP = 101, with a nodal

distance h = 1. A non-dimensional wave number defined as h
λ/2 versus normalized phase velocity.
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As shown in Figure 42, the dispersion errors are less than 4% for the standard RKPM for any wave

length. For the Harmonic-Enriched RKPM case, the error reduces further to 2% when it gets close

to the discretization limit ( h
λ/2). As can be seen, Harmonic-Enriched RKPM exhibits much smaller

dispersion errors compared to finite elements.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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λ/2

-0.2

-0.1

0
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c 0
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FE

Standard RKPM

Harmonic RKPM

Figure 42. Normalized wave velocity of FE, standard RKPM and Harmonic-Enriched RKPM

8.3.2 Stability of harmonic-enriched RKPM with central difference temporal discretization

The von Neumann method determines the stability by examining the amplification of the Fourier

representation of the temporal discretization errors. In the stability analysis, we consider the RKPM
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spatial discretization of one-dimensional wave. Considering the central difference temporal discretiza-

tion of Equation 8.26 we have:

(Un+1 − 2Un + Un−1) = c2
0∆t2Ndn (8.40)

To estimate the stability condition of the full discrete equation in Equation 8.40, we consider the von

Neumann method. Let unm be the m− th component of Un, and express it in the following form:

unm = γneimkh (8.41)

where γ is the amplitude, h is the nodal distance, and k is the wave number. By substituting Equa-

tion 8.41 into Equation 8.40, and evaluating the m− th row, we have:

m̂(γ − 1)2 + ∆t2k̂γ = 0 (8.42)

By requiring the following condition for bounded solution, we have the stability curve in Figure 43:

|γ| ≤ 1 (8.43)

The results show that RK formulations allow a larger critical time step than FEM, which is particularly

noticeable when h
λ/2 is closer to 1.
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Figure 43. Critical time step sizes for FEM, RKPM and H-RKPM

8.4 Numerical examples

A number of problems were analyzed using the RKPM implementation. These include continuous

bi-harmonic and 10-cycle sin wave propagations in a bar and the solution of a scalar two-dimensional

wave. Details and results of each analysis are given in the sections that follow.

8.4.1 Bi harmonic wave propagation in a bar

In this section we illustrate the performance of H-RKPM by solving a one dimensional wave prop-

agation problem in which the double frequency wave is present as well as the main frequency wave.

This type of problem occurs in the solution of nonlinear ultrasonic waves, when the wave with the main

frequency is distorted and generates the higher harmonics. To be able to correctly predict the higher

harmonics is significant because of their correlation to damage prediction in the material. To simulate
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the biharmonic wave phenomena, a bar with length of 5 meters, Young modulus of 3 × 108Gpa and

density of 800 kg
m3 is considered. The solution of u is governed by:

∂2u

∂t2
= c2

0

∂2u

∂x2
(8.44)

in which c0 = 1. The boundary conditions are as below:

u(0, t) = 0 (8.45)

u′(L, t) = u0ω2sin(ω1t) + u12ω2sin(2ω1t) (8.46)

where ω2 = 8π
L and ω1 =

√
E
ρ ω2 and u0 and u1 are the amplitude corresponding to the harmonic terms

and equal to 1.

The initial conditions for this problem is shown below:

u(x, 0) = 0 (8.47)

u̇(x, 0) = u0ω1sin(ω2x) + u12ω1sin(2ω2x) (8.48)

And the analytical solution of the wave is as follows:

u = u0sin(ω2x)sin(ω1t) + u1sin(2ω2x)sin(2ω1t) (8.49)



119

This problem was analyzed using H-RKPM, RKPM, enriched FE and FE method.For H-RKPM, basis

described in section 8.2.3 is utilized with analytical solution’s main frequency in the harmonic terms.

A B-spline formulation is used for the kernel. 11 points are used for the discretization. Newmark

trapezoidal rule with a time step size of 1×10−5s is used for dynamic analysis. For the standard RKPM,

Linear basis functions were employed and a B-spline was used for the kernel. At least 100 elements

must be used to get acceptable results and a 5×10−6s is employed for the time step size. Enriched FE is

used with 20 elements, 105 degrees of freedom are generated as a result of using harmonic functions and

their double frequencies and same time step size as H-RKPM. Standard FE is used with 200 elements

and 5× 10−6s time step size. The wave profiles of the problem solved with above-mentioned methods

and the absolute error (eh = uexact − unumerical) are presented below:

Figure 44. a) Wave profile of bi-harmonic wave propagation in a one-dimensional bar b) Error
comparison
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As can be observed in Figure 44, H-RKPM approximates the solution with considerably fewer

number of points compared to other methods. Time history of the biharmonic wave problem and the

associated error are as given in Figure 45:

Figure 45. a) Time history of bi-harmonic wave propagation in a one-dimensional bar b) Error
comparison

Figure 45 it is observed that H-RKPM performs very well. The frequency responses presented in

Figure 46 the newly proposed method has approximated both the fundamental wave and the second-

harmonic’s frequencies more accurate than other methods with lower computational cost.

8.4.2 10-cycle Sin wave propagation in a bar

Another one dimensional wave propagation problem with sin wave excitation is solved with H-

RKPM, RKPM, enriched FE and FE. A Hamming windowed tone-burst consisting of 10 cycles at a fre-
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Figure 46. Frequency response

quency of 32× 103 π
L is used as the excitation signal. A tone-burst Hamming window is used frequently

when dealing with ultrasound testing problems. Therefore this one dimensional problem provides in-

sight into numerical modeling of high-frequency ultrasound wave as the frequency prediction becomes

important when correlating with the nonlinearities in materials. The Hamming window formulation

used is shown below:

h(t) = A(0.5(1− cos(2π f
N
t)sin(2πft) (8.50)

In which h is the amplitude of the windowed tone-burst signal, A is the amplitude of the excitation, f is

the excitation frequency andN is the number of cycles used. The solution is governed by Equation 8.44.

H-RKPM and RKPM, enriched FE and FE are discretized using 81 degrees of freedom within the

domain, and for the first three method a time step size of 1 × 10−5s is used and for the standard FE
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solution a time step size of 5E − 6s is used to get acceptable results. Newmark trapezoidal rule is

chosen for the implicit dynamic analysis. The results are compared with the analytical solution.The

wave profile and frequency responses are shown below: As can be observed in the results, with

Figure 47. a): Wave profile of hamming one dimensional wave, b) Frequency response

same discretization, RKPM, enriched FE and FE show oscillations in the solution. However, H-RKPM

performs very well which can be observed in approximating the frequency response too.
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8.4.3 Solution of a scalar two-dimensional wave

The scalar wave equation with a Ricker wavelet source at the center of a two dimensional domain is

modeled. The governing equation of the solution is:

∂2u

∂x2
+
∂2u

∂y2
+ F (0, 0, t) =

1

c2
0

∂2u

∂t2
(8.51)

in which:

F (0, 0, t) = 10(1− 2π2f2(t− 0.25)2)exp(−π2f2(t− 0.25)2) (8.52)

where u is the displacement solution, c0 is the wave velocity (in this example c0 = 1), f is the

central frequency, (in this example f = 6Hz). Due to symmetry, only a quarter of the area is used

for numerical solutions which is a [0, 1] × [0, 1] domain. Generally, in dealing with wave propagation

problems, absorbing boundary condition is used, however, here for the time considered 0.95s, the wave

does not get to the boundary, hence there will be no reflections and no need for the absorbing boundary

conditions. H-RKPM, RKPM, enriched FE and FE models have been discretized with 40 by 40 mesh.

The 200 by 200 discretization solution is used as a reference. In all models, Newmark trapezoidal rule

of time integration with time step size 0.00625s is used.8.4.3 shows snapshots of the wave at 0.95s for

all the simulations. Wave profiles and frequency responses are presented and compared at 8.4.3.

For the given discretization, FE and enriched FE give results not as good as obtained with H-RKPM

and RKPM. H-RKPM approximation matches well with the analytical solutions, providing us with a

more accurate and efficient solution for the scalar two-dimensional wave problem.
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8.5 Discussions and conclusion

A Harmonic-enriched Reproducing Kernel Particle Method for solving high frequency wave prop-

agation problems in solids with higher accuracy has been presented. Following the same procedure for

constructing polynomial-based RK shape functions, a set of harmonic terms are introduced into the basis

vector to satisfy the harmonic reproducing conditions and therefore accurately approximate harmonic

and semi-harmonic functions. The constitutive models originally developed for FEM models can be

implemented as Harmonic-enriched RKPM is developed based on the Galerkin formulation.

Since the H-RKPM approximation is constructed based on Fourier terms, the method is capable of

handling various range of wave propagation problems with more accuracy and less computational cost

than the traditional methods. In particular, tuning the frequency of the harmonic terms used in the basis

vector can provide a means to improve the results even further.

The dispersion and stability properties shown to be better than the traditional methods, ensuring the

higher numerical accuracy in wave propagation problems.

The solutions are compared with the traditional RKPM and FE . In addition, same harmonic terms

are added to the nodes of standard FE elements as additional degrees of freedom, making an explicitly

enriched FE and the results are compared. The use of the method is illustrated in one-dimensional and

two-dimensional solutions, but the concept directly applies to three-dimensional solutions as well. Both

H-RKPM and enriched FE require special attention while imposing the boundary condition.

The method requires additional harmonic terms in the basis functions as the discretization gets

coarser. However, this is done without adding to the degrees of freedom, therefore, the computational
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cost is still lower than explicitly enriching the numerical method. In this way, accurate solutions can be

obtained with reasonable meshes and solution data.

According to numerical results, H-RKPM performs very well in wave propagation problems and

does not show redundant oscillations in the solution which is crucial for frequency response analyses.

In further research on the method, some problems should be tackled. In this paper, the potential

of the method to spatially resolve the desired solution is assessed and the computational cost is not

analyzed directly. Hence further research should primarily focus on reaching cost effectiveness when

using the method. For transient analyses, we have employed the method with a consistent mass matrix

and implicit time integration schemes, and obtained accurate solutions. However, the use of lumped

mass approximations and explicit time integration, typically used for wave propagation solutions, should

be explored. The numerical integration of the stiffness and mass matrices should be studied in detail with

the aim to find optimal schemes. We used the standard Gauss integration rules with many integration

stations on the elements as the harmonic term numbers increases.

The method has good capability for the analysis of nonlinear ultrasonic problems as it can tackle

high frequency wave problems more accurately and with less computational cost. The results showed

that H-RKPM is a better predictor of the fundamental and higher-harmonics in the wave propagation

problems. However, the solution of nonlinear wave propagation problems can be considered for future

studies.
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Figure 48. Wave snapshot at 0.95s a) FE b) Enriched FE c) RKPM d) H-RKPM e ) Analytical solution
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Figure 49. a) Wave profile at 0.95s b) frequency response



CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusions

The concluding remarks of thesis are divided into two topics.

In NLUT, the measurement of the amplitude of higher harmonics is required. This measurement

is derived from the frequency response of the ultrasonic signal. In order to enhance the measurement

of the higher-order-harmonics, the signal processing methods based on the FFT and the WT utilizing

an analytical solution as the input signal are compared and the calculated β from the WT method is

seen to agree well with the analytical solution regardless of the input amplitude while the result from

the FFT displays strong dependence on the amplitude. This dependence becomes problematic as an

inherent material property should not be dependent on the excitation amplitude or frequency. WT can

successfully overcome this issue and as a result a WT-based NLUT is established.

The WT-based algorithms are introduced to obtain the relative second harmonic-based and third

harmonic-based acoustic nonlinearity parameter β′ and γ′. The wavelet-based schemes are employed to

investigate the change of relative acoustic nonlinearity parameters caused by plastic deformation in het-

erogeneous media. Several heterogenous models are simulated with statistically variable heterogeneity

characteristics and the correlation between these characteristics and higher harmonics are assessed. It

is shown that the third harmonic is an effective tool to detect damage in heterogenous media. More-

over, the standard deviation of material strength is shown to have the utmost significance compared to

128
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other heterogeneity properties like volume fraction and heterogeneity size in the generation of higher

harmonics. In addition to the above, it is shown that explicit modeling of heterogeneities once and only

at the beginning of analysis, equips the simulation with sufficient information for undergoing any future

types of loading, hence monitoring the change in the model more efficiently.

The material nonlinearity is observable in the ultrasonic signal through the generation of higher-

order-harmonics (HOH). The HOH generation, however, can be triggered by many sources. Any vari-

ation in the micro-, meso-, and macroscopic scales of the structure may collectively lead to HOH gen-

eration. A finite element approach with mesoscale heterogeneities explicitly modeled for the nonlinear

wave propagation is presented. The aim of this study is to understand HOH generation due to the non-

mesoscale variation and non-uniform deformations introduced by the uniaxial tensile test. This study

is divided into two parts: First, the effect of non-uniform plastic deformation resulted by geometrical

variation of structures on HOH is studied. Next, the effect of non-uniformity due to mesoscale varia-

tions on HOH is analyzed. For this purpose, WT-based algorithms are applied to measure the acoustic

nonlinearity parameter. The numerical studies and predictions are crossly validated with nonlinear ul-

trasonic experiments and microscale imaging, including X-ray Diffraction (XRD) scanning. Numerical

and experimental studies both indicate that non-uniform variations in different length scales affect the

generation of both the second and the third-harmonics, and that both second- and third-harmonics acous-

tic nonlinearity parameters grow with the increase of plastic strain level. However, the third-harmonics

acoustic nonlinearity parameter is more sensitive when micro-, meso- and macrostructural variations

exist. Accordingly, this parameter is a more beneficial indicator of nonlinearity in materials when non-

uniform deformation is present.
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Since the frequency of ultrasonic signals are generally high, extremely fine mesh is required to ob-

tain reasonable solution particularly in nonlinear wave problems. Therefore, the second part of this

thesis is devoted to the development of an enriched numerical model to solve for linear and nonlinear

wave propagation problems and handle them more effectively. Two specific enriched methods are de-

veloped: enriched FE and Harmonic-Enriched RKPM. In enriched FE, standard FE shape functions are

enriched with the characteristic solution of the wave propagation problem which are harmonic func-

tions. The primary advantage of this approach is that all the fundamental properties of standard method

is applicable. Moreover, when solving for nonlinear UT problems, the fact that the excitation frequency

and higher harmonic frequencies are already known, accents the benefit of applying enrichment func-

tions that can accurately capture the characteristics of the solution. The method is verified by comparing

with standard FEM and the analytical solution of the wave propagation in hyperelastic media. Since the

enrichment function does not possess Kronecker delta property, the Nitsche’s method is introduced for

applying the boundary, which leads to better solution accuracy. In order to solve for large scale non-

linear wave propagation, a User Element is implemented and incorporated into Abaqus. The results

from comparing enriched and standard FE shows enriched FE has improved efficiency and accuracy in

nonlinear wave propagation problems. Overall, enriched FEM is proved to be an effective method for

nonlinear wave propagation problems, hence applicable to effectively predict the ultrasonic waveform

and quantify the damage.

In order to even further reduce the computational cost and benefit from the advantages of element

free methods, Harmonic-enriched RKPM (H-RKPM) is introduced. The method is developed based

on an implicit enrichment formulation under the RKPM framework. The desired harmonic function is
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introduced as the basis function for construction of reproducing kernel and the reproducing condition

is enforced. This approach allows the characteristic function to be embedded in the approximation

without adding more degrees of freedom. As a result, the high frequency wave problem can be solved

using fewer nodes, enhancing both computational efficiency and accuracy. The dispersion analysis

shows the method is more accurate than the standard RKPM with the same discretization. Stability

analyses predicted the critical time step sizes for H-RKPM to be larger than standard RKPM and FE. The

performance of this method is demonstrated using one-dimensional and two- dimensional benchmark

problems. H-RKPM also requires special attention while imposing the boundary condition. Nitsche’s

method is used to apply the essential boundary conditions. The method was capable of predicting the

higher harmonics amplitude more accurately when compared with standard RKPM, enriched FE and

FE.

9.2 Future work

The future work that can be extended from this thesis should focus on the numerical issues that

require further studies and enhancements of the current numerical frameworks for the nonlinear wave

propagation modeling. It can be summarized as follows:

(1) H-RKPM and enriched FE both need many Gaussian integration points for the domain integra-

tion in the Galerkin formulation. Domain integration methods can still be improved to enhance stability

and efficiency, while preserving accuracy.

(2) In this thesis, consistent mass matrices and implicit dynamic approach is utilized to solve the

wave propagation problems. However, lumped mass and explicit dynamic methods are attractive in wave
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propagation problems due to their computational efficiency. Implementation of the explicit dynamic

method is suggested.

(3) The implementation of H-RKPM in nonlinear wave propagation problems are suggested. In this

thesis, the nonlinear wave propagation solver by enriched FE was modeled through a User Element in

Abaqus and the results were compared with nonlinear FE. Implementing the same technique to observe

H-RKPM’s performance in nonlinear wave propagation can be of interest.

Moreover, the numerical NLUT simulation can be improved and applied to other damage types such

as follows:

(4) Different microstructural damage types like creep are suggested to be considered and incor-

porated using microstructural images and the correlation between these damages and higher-order-

harmonics can be investigated numerically.

(5) Multiscale framework is suggested to be established to effectively simulate nonlinear ultrasonics

in media with microstructural evolution. The microstructure of material at different scales collectively

causes the material nonlinearity and affects the wave propagation properties. However, modeling de-

tailed microstructure of material directly from the dislocation scale to the structural scale is practically

impossible. Thus, multiscale modeling can be introduced to provide us with better predicting the re-

ceived ultrasound and understanding its characteristics.
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