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SUMMARY 

 

An increasing percentage of building and bridge structures across United States are 

exceeding their design life. Ensuring the structural integrity of such structures demands 

health monitoring strategies. Fiber optic and electrical technologies are effective tools to 

monitor the structural displacement and material strains. Development of these sensing 

technologies in the recent years has equipped the structural health monitoring field with 

distributed and real time sensing tools. In this research, I have developed mathematical 

methodologies to determine structural damages based on such sensing tools in cable-stayed 

and building structures.  

Cables of cable-stayed bridges play a critical role in cable-stayed bridges by transmitting 

the forces from the bridge deck to the pylons. Hence, assurance of integrity of the cables 

during the design life of the bridge is inevitable. I have developed two mathematical 

methodologies for detection and quantification of damage in cable-stayed structures.  

The first method uses the distributed measurement of strains along the bridge deck to detect 

the cables that have totally or partially lost their tensile force. The fundamental principle 

employed in formulating the method is the interrelationship between the individual cable 

forces and the bending moment along the bridge span.  The efficiency of the methodology 

was evaluated through both numerical simulations and experimentations on a reduced-

scale cable-stayed bridge. Experimental results revealed that this method was capable of 

detecting the cables that had experienced tension losses of 30% or more. 

The second proposed approach utilizes point-style sensors to estimate the deck element 

shear forces adjacent to the supports. An analytical approach was developed to quantify 

the damage in the cables using the shear forces. The formulations are based on a recursive 
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optimization technique, in which model updating is employed to account for the changes 

in the cable stiffness as a result of damage.  

Furthermore, the current research proposes a hybrid approach based on machine learning 

models and implementation of loads tests to determine damages in the structural elements 

of building structures. The implemented machine learning methods in this thesis are 

Support Vector Machines, Neural Networks and Gaussian Naïve Bayes. The efficiency of 

the proposed approach was evaluated through numerical simulations and actual 

experimentations on a six-story heritage timber-masonry building.
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1. INTRODUCTION 

The content of this chapter was published as “Nazarian E, Ansari F, Zhang X, Taylor T 

(2016) Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed 

Monitoring of Bridge Deck Strains. Journal of Structural Engineering, 142(6), 04016018” 

and “Nazarian E, Ansari F, Azari H (2015). Recursive optimization method for monitoring 

of tension loss in cables of cable-stayed bridges. Journal of Intelligent Material Systems 

and Structures, 1045389X15620043”. Reproduced with permission from ASCE and 

Journal of Intelligent Material Systems and Structures. 

 
1.1. Background 

According to the Federal Highway Administration agency (FHWA), increasing portion of 

structures in the United States are exceeding their design life, As a result, ensuring the 

safety of these structures is a very important task. Over the past years, various structural 

health monitoring approaches have been developed for detection of the intensity and the 

location of damages in various structures such as building and bridges. Advancements in 

structural health monitoring rely on development of sensors and development of 

mathematical approaches that can interpret the sensor data to meaningful information about 

the health of the structure. Current structural health monitoring solutions target different 

applications and they have their own limitations and advantages. 

For instance, in case of a cable-stayed bridges, health-state of the cable stays is important 

because cables play a critical role by transmitting the forces from the deck to the pylons. 

These cables represent a considerable portion of the investment in such bridges because 

approximately 25% of the construction cost is expended on the cables.  Replacement of 

damaged stay cables costs more than the original cost of the cables at the time of 
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construction (Li et al. 2011). Stay cables are prone to deterioration and damage due to 

fatigue, and corrosion (Mehrabi 2006; Sun et al. 2013). As a result, inspection and 

monitoring becomes important in consideration of the importance of cables within the 

structural system. 

Current approaches in health monitoring of cable-stayed bridges include both global and 

localized methods. Changes in cable forces provide indications about either loss in global 

cable stiffness or due to the displacements of individual cables, i.e. bond in anchorages, or 

cable deformations. Computational approaches have been primarily based on global 

vibration response of bridges.  They lack sufficient resolution for health monitoring of the 

cable-stays (Talebinejad et al. 2011).  Localized nondestructive test (NDT) methods have 

been developed either for specific use in monitoring the cable forces or adapted from the 

existing technologies for damage assessment. For instance, magnetic flux leakage has been 

employed for measuring the stress in cables (Kim and Park 2007; Li et al. 2011). This 

approach requires field calibrations with identical cables in order to determine the 

relationship between magnetic permeability and strain in the cables.  The method is 

vulnerable to temperature and proximity to electromagnetic fields (Kim and Park 2007; 

Christen et al. 2003; Sun et al. 2013).  Another approach pertains to the measurement of 

cable forces based on the fundamental vibration frequency of cables. Use of this technique 

is limited to long cables.  Measurement precisions for short cables are low due to boundary 

condition uncertainties, and geometrical constraints (Russell and Lardner 1998; Ren et al. 
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2005; Lanza di Escala et al. 2003).  Discrete sensors such as fiber Bragg Gratings (FBG) 

have proven to be unreliable when embedded inside of the cables for new bridges (Li et al. 

2011; Li et al. 2009).  Embedded sensors often fail either right after embedment within the 

strands or shortly thereafter. In order to overcome the bare FBG shortcomings, Li et al. 

(2011) introduced the FBG-FRP smart cable, which uses high durability glass fibers for 

embedment of the FBG sensors. Smart cables have the potential for widespread usage, once 

issues pertaining to the long-term survivability of the FBGs within the cable system and 

replacement costs are resolved. Large numbers of externally attached strain and 

acceleration-based sensors are required for effective monitoring of all the cables within 

these bridges. Externally attached sensors to the cables are primarily applicable for the 

cables that do not require protective casings. The method based on image processing has 

shown to be effective in application to a cable stayed bridge (Kim et al. 2013).  The 

applicability of the method is limited to favorable weather conditions since the acquired 

images require proper lighting to achieve high resolutions. In general, use of many discrete 

sensors either embedded or attached requires processing of large volumes of data. In such 

cases, the accumulated data requires enormous amounts of time for post processing 

activities (Mehrabi 2006; Fricker and Vogel 2007; Christen et al. 2003; Kang et al. 2009). 

In a similar manner to cable-stayed bridges, various localized and global structural health 

monitoring techniques have been implemented for damage detection in building structures. 

Investigation of the dynamic properties of the buildings has been the primary approach in 
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global damage assessment of such structures. A number of researchers have developed 

computational approaches to interpret structural damage from the dynamic properties. 

Modal frequency is one of the popular methods in dynamic assessment of damage in 

structural systems (Ren et al. 2002; Stubbs et al. 1990; Stubbs et al. 1996). For instance, 

Soyoz (2012) studied vibration response of a reinforced-concrete building before and after 

retrofitting by both ambient and forced-vibration techniques. The results showed that the 

modal frequency increased after retrofitting. Despite the popularity of the modal frequency 

approach in damage detection, it is realized that this approach can detect only moderate to 

larger levels of damage (Cao et al, 2016). Mode-shape method is another dynamic based 

approach have been extensively studied. Mode shapes can detect lower intensities of 

damage compare to the modal frequency approaches (Cao et al, 2016). However, 

determination of mode shapes requires significant number of sensors on the structure 

(Abeykoon et al, 2015).  Measurement of damping is another dynamic based method for 

assessment of the structural behavior (Zarafshan et al, 2014). Even though damping plays 

an important role in structural health monitoring, uncertainty in damping measurements 

has been a drawback and it has been an on-going research topic. The uncertainties are due 

to inherent complexity of damping mechanism, lack of a generalized mathematical model, 

and difficulties in experimental implementations of the method (Cao et al, 2016). In 

general, structural dynamic based methods have been more successful for damage 

assessment of slender structures.  
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An example of localized approaches used for assessment of damage in building structures 

include ultrasonic pulse velocity (UPV). This technology determines the quality of various 

construction materials by measuring the sonic wave velocity in the material (Shaji et al. 

2000; Dilek et al. 2007). This method has sources of uncertainty due to the moisture 

content, transducer contact with the material, and influence of reinforcement (Bungey 

1980). Another example is the application of the widely used rebound hammer. This 

technology estimates the strength of materials, mainly concrete and rock, by measuring the 

rebound of a spring-loaded mass striking the material surface (Gorokhovich, 2010). 

Application of this device is influenced by the hardness of the impact point. Thus, the 

results of the rebound hammer do not reflect information on the overall strength of the 

structural component. In general, use of localized nondestructive testing methods is limited 

to the condition of the material within a small region rather than the overall stiffness of the 

structural component. 

Crack detection and monitoring is another common approach in monitoring the health-state 

of a structure. Cracking can be caused by various reasons such as aging or foundation 

settlements. In monitoring of the large structures, often a series of sensors are installed 

throughout the structure to monitor the overall structural behaviour. Traditionally, the 

sensors were connected to the processing unit through a wired communication. However, 

as the result of developments in wireless communications in the recent years, wireless 

network of sensors can be implemented to employ a large number of  sensors along the 
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entire structure (Potenza et al, 2015). Even though such network of sensors can be 

implemented to study the overall condition of the structure with convenience, monitoring 

the crack development does not provide information about existing condition of the 

structure, rather it provides insight about the changes in the structure after the installation 

of the sensors.  

In structural health monitoring of heritage structures which commonly involve masonry 

elements, acoustic emission (AE) technique can be used to determine the extent of damage 

using the energy released during the crack propogation. The efficiency of this approach 

was evaluated by Carpinteri et al (2005) through implementation in a heritage structure in 

Italy. This method requires signals at the time that the material is subject to damage, hence 

this approach can not be implemented to assess damages of structures with existing 

damages. 

  

1.2. Research Objective 

 
The objective of this research is to develop theoretical approaches, based on machine 

learning and mathematical models, to recognize damages in the cable-stayed and building 

structures using strain sensors data. Three different theoretical solutions were proposed in 

this thesis to advance structural health monitoring solutions in cable-stayed and building 

structures.  
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The first proposed solution addresses detection of damage in cable-stayed bridges using 

distributed sensing. In this case, the objective was to develop a method for quantifying the 

forces in the cables and detecting the support reactions of single plane cable stayed bridges 

by measuring the distributed strains along the lengths of bridge spans.  The analytical 

formulations established here are based on the premise that the distribution of strain along 

the length of the deck is influenced by changes in the amplitudes of the discrete forces 

exerted by the cables. The proposed approach will enable monitoring the change in cable 

forces by measurement of the deck strains alone, and therefore, eliminates the need for 

attaching sensors to the cables of the bridges. Distributed sensing by Brillouin scattering 

has been thoroughly detailed in the technical literature.  It is briefly described next for 

completeness, followed by the description of the proposed analytical method, and 

experimentation by using a scaled model of a cable stayed bridge in the laboratory. 

The objective of the second proposed solution was to determine deficiency in the cables of 

cable stayed bridges by determining the support shear forces using point-style sensors. 

Cable-stayed bridges are typically mid to long span structures in which the primary load 

paths of the structural system (bridge deck) provide important information about the 

condition state of the secondary structural elements (stay cables). For instance, changes in 

the cable forces result in changes in the bridge deck strains. In this case, damage in the 

cables of cable-stayed bridges results in a reduction of the tensile forces in the cables. 

Hence, a significant portion of loss in the cable forces is transmitted to the supports, and 
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as change in internal shear forces in interior sections along the span. The work described 

in this thesis employs a new method that utilizes the change in support reactions to detect 

the location and intensity of the damage in the stay cables. To increase accuracy in 

quantification of damage in cable stays, more sensors can be employed along the deck in 

order to incorporate the effect of deck elements shear as well as the support reactions. The 

proposed analytical approach is formulated as an optimization problem by minimizing the 

difference of measured damage response and the theoretical response. This approach 

eliminates the necessity for attaching sensors on the cables, and it will enable monitoring 

the change in cable forces utilizing the support reactions only. 

The third proposed solution pertains to development of a theoretical approach to detect 

damage in the building structures using point-style sensors. The change in stiffness of 

structural systems is an indication of damage, and the magnitude and distribution of strain 

within the structure is affected by change in the stiffness of elements. Hence, monitoring 

the strain in structural members can provide information about their integrity. The objective 

of in this case study, is to develop a hybrid approach for detection and quantification of 

damage in structural systems by means of machine learning (ML) models and load tests on 

selected frames within a structural system. The structure under study for the experimental 

evaluation is a historical six-story timber frame masonry building that experienced severe 

damage due to differential settlement of its foundation.  Herein, we will first establish the 

robustness of the ML model through numerical simulation using finite element modelling 
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(FEM), and then we show the effectiveness of the method through actual experimentation 

on selected frames of a large structure. The methodology described herein examines the 

application of three different machine learning (ML) techniques for determination of 

stiffness loss in structural components, namely: Support Vector Machines (SVM), Neural 

Networks (NN), and Gaussian Naïve Bayes (GNB). These methods are explained in detail 

in the literature, and they have been concisely explained in the following sections of this 

thesis for completeness.  
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CHAPTER 2 

2. THEORETICAL APPROACH 

The content of this chapter was published as “Nazarian E, Ansari F, Zhang X, Taylor T 

(2016) Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed 

Monitoring of Bridge Deck Strains. Journal of Structural Engineering, 142(6), 04016018” 

and “Nazarian E, Ansari F, Azari H (2015). Recursive optimization method for monitoring 

of tension loss in cables of cable-stayed bridges. Journal of Intelligent Material Systems 

and Structures, 1045389X15620043”. Reproduced with permission from ASCE and 

Journal of Intelligent Material Systems and Structures. 

 

In this chapter, the theoretical approach for interpreting damage in each of the three cases 

mentioned in the introduction chapter are illustrated. As explained in the introduction 

chapter, the mathematical formulations of the first and second proposed methods pertain 

to detection of damage in the cables of cable-stayed bridges using distributed and point-

style strain sensors, respectively. In both these two approaches, mathematical optimization 

techniques are the fundamental principle of the analytical formulations. In the third 

proposed method, the analytical formulations utilize machine learning techniques for 

detection of damage in building structures.  

 

2.1. Constrained Optimization Approach Using Distributed Strain Sensing 

 
2.1.1. Brillouin Scattering Based Measurement of Distributed Strains 

 
 Over the past two decades, distributed sensing using Brillouin scattering has been actively 
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employed in oil and gas exploration activities (Bao 2009). With enhancements to the spatial 

resolution, it gained usage in civil structural applications. Brillouin scattering pertains to 

the interaction of light in optical fibers with time dependent optical density variations that 

result in changes to its energy (frequency) and path. The optical density variations may be 

due to strain or temperature gradients. The Brillouin optical time-domain analysis 

(BOTDA) method employs the stimulated scattering technique by using both a pulse and 

a continuous signal (Horiguchi et al. 1995; Horiguchi and Tateda 1989; Hotate and Tanaka  

2001).  The Pulse-Prepump Brillouin Optical Time Domain Analysis (PPP-BOTDA) 

method is a newer version of BOTDA with a stepped pulse shape.  PPP-BOTDA is capable 

of making dynamic measurements (100 Hz over 1 kilometer) with spatial resolutions as 

low as 20 cm in the dynamic mode (Kishida et al. 2006). Irrespective of the interrogation 

approach, the Brillouin frequency shift is linearly dependent on both the temperature and 

strain in a fiber. The relationships between the Brillouin frequency shift, strain and 

temperature are given as: 

 𝑣𝐵(𝑇𝑟 , 𝜀) = 𝐶𝑆(𝜀 − 𝜀𝑟) + 𝑣𝐵𝑟(𝑇𝑟 , 𝜀𝑟) (1)  

 𝑣𝐵(𝑇, 𝜀𝑟) = 𝐶𝑇(𝑇 − 𝑇𝑟) + 𝑣𝐵𝑟(𝑇𝑟 , 𝜀𝑟) (2)  

Where, 𝑣𝐵 is the Brillouin frequency shift, 𝐶𝑆 and 𝐶𝑇 are the strain and temperature 

coefficients, respectively; 𝑇𝑟 and 𝜀𝑟 are the strain and temperature corresponding to a 

reference Brillouin frequency, 𝑣𝐵𝑟. Brillouin-based sensing approaches utilize the entire 

length of the optical fiber for both signal transmission and sensing purposes, and then a 

http://www.answers.com/topic/brillouin-scattering


12 
 
 
 
 
 

distributed sensing with large monitoring range is realized. For strain sensing an auxiliary 

fiber is employed for temperature compensation.  

 

2.1.2. Analytical Methodology 

In establishing the method, formulations involve relating the effect of individual cable 

forces on the bending moment along the span length of the bridge.  Bridge displacements 

are used in order to account for the interrelationships between all the cables in the bridge 

when cable tensions are changed in one or more cables.  Deck and pylon displacements are 

also employed as constraints in the formulation of the linear least square procedure for 

detection and quantification of the forces in the affected cables.  The cable-stayed bridge 

shown in Figure 1 is employed for deriving the basic equations between the cable forces 

and the deck strain.  In doing so the bridge is represented as a simply supported bridge by 

removing the middle support and replacing it with a force equal to the support reaction. 

The cables are also removed and replaced by concentrated forces representing the vertical 

components of cable forces.  The effect of horizontal components of cable forces on 

flexural strain of the deck is assumed to be negligible. The cable tensions and the 

concentrated forces on the simple supported bridge are related by:  

 𝐹𝑖 =
𝑃𝑖

𝑆𝑖𝑛(𝜃𝑖)
 (3)  
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Figure 1. Idealization of the cable-stayed bridge by a simply supported bridge 

 

Where, Fi is tension in cable i; 𝑃𝑖 at locations i represent the concentrated forces on the 

bridge, i.e. interior support reactions and the vertical components of the cable forces, 𝜃𝑖 is 

the inclination angle of cable i with respect to the deck.  For the support reactions, 𝜃𝑖 is 
𝜋

2
. 

The bending moments at individual sections of the bridge in Figure 1 are given by: 

 𝑀𝑖 = ∑ 𝑃𝑗𝑀𝑖𝑗

𝑛

𝑗=1

 (4)  

Where, 𝑀𝑖 is the bending moment at location i, 𝑀𝑖𝑗 is the bending moment at location i 

due to a unit vertical force at point j and n is the total number of cables and the interior 

supports. By expanding Equation (4) to points along the length of the bridge, a system of 

equations can be developed relating the bending moment distribution along the entire 

length of the bridge to the cable forces: 
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 𝐶 ∙ 𝑋 = 𝐺 (5)  

Where, 

 𝐶 = [
𝑀11 ⋯ 𝑀1𝑛

⋮ ⋱ ⋮
𝑀𝑛1 ⋯ 𝑀𝑛𝑛

] (6)  

The vector G pertains to the distribution of bending moment along the length of the deck, 

and it is experimentally measured, i.e. from the distributed measurement of flexural strains 

by BOTDA.   The relationship between the bending moment 𝑀𝑖 and the flexural strain is 

obtained from the flexure formula: 

 𝑀𝑖 =
𝜖𝑖𝐸𝐼

𝐶
 (9) 

Where I is the moment of inertia of the bridge cross-section, C is the distance from the 

neutral axis to the location of the strain sensor, generally the outermost cross-section fiber, 

E is the modulus of elasticity of the section, and 𝜖𝑖 is the strain at location, i. EI is the 

bending stiffness of the bridge deck. 𝑀𝑖𝑗 are computed through sequential placement of 

unit forces along the span length. Assuming the dead load remains constant prior and after 

the damage, the bending moment is independent of the dead loads once the undamaged 

 𝑋 = [
𝑃1

⋮
𝑃𝑛

] (7)  

 𝐺 = [
𝑀1

⋮
𝑀𝑛

] (8)  
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state of the deck is subtracted from the damaged state. It is then possible to determine the 

cable forces and support reactions (force vector X) from the solution of Equation (5).   

BOTDA provides distributed measurement of strain, but in Equation (5), the bending 

moment terms, 𝑀𝑖 are discretized.  Discretization of distributed strains is accomplished 

considering that the Brillouin sensors provide weighted average of strains within the spatial 

resolution of the system along the sensor length. The averaged strain obtained by BOTDA 

at any section, i, along the sensor length can be written as (Yamauchi et al. 2007): 

 
𝜖𝑖̅ =

1

∫ 𝑤(𝑠)𝑑𝑠
𝑑
2

−
𝑑
2

∫ 𝑤(𝑠)𝜖𝑖(𝑠)𝑑𝑠

𝑑
2

−
𝑑
2

 
(10)  

Where, d is the spatial resolution or the length over which the BOTDA system averages 

the strain, s is the spatial distance along the fiber, 𝜖𝑖(𝑠) is the true strain at a distance, s, 

from the section under consideration, i, and, w, is the weighting function which depends 

on the shape of the pump pulse (and pre-pump pulse when PPP-BOTDA is used). 

Considering a rectangular pump pulse, Equation (10) can be simplified as a moving 

average over the averaging length (Kishida et al. 2005) as follows:  

 𝜖𝑖̅ =
1

𝑑
∫ 𝜖𝑖(𝑠)𝑑𝑠

𝑑
2

−
𝑑
2

 (11)  

Re-writing Equation (11) in summation form, yields: 
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 𝜖𝑖̅ =
1

𝑑
∑ 𝜖𝑖(𝑠)𝛿𝑠

𝑑
2

𝑠=−
𝑑
2

 (12)  

Where, 𝛿𝑠 is the increment between measured strain locations, and by using Equation (9) 

it will be possible to substitute 𝑀𝑖 for 𝜖𝑖 in Equation (12), and therefore, 𝑀𝑖
̅̅ ̅ becomes 

 𝑀𝑖
̅̅ ̅ =

1

𝑑
∑ 𝑀𝑖(𝑠)𝛿𝑠

𝑑
2

𝑠=−
𝑑
2

 (13)  

Substituting Equation (4) into Equation (13) results in 

 𝑀𝑖
̅̅ ̅ =

1

𝑑
∑ ∑ 𝑃𝑗𝑀𝑖𝑗

𝑠

 
𝛿𝑠

𝑛

𝑗=1

𝑑
2

𝑠=−
𝑑
2

 (14)  

Rearranging Equation (14) results in 

 𝑀𝑖
̅̅ ̅ = ∑ 𝑃𝑗

𝑛

𝑗=1

1

𝑑
∑ 𝑀𝑖𝑗

𝑠

 
𝛿𝑠

𝑑
2

𝑠=−
𝑑
2

 (15)  

 𝑀𝑖
̅̅ ̅ = ∑ 𝑃𝑗

𝑛

𝑗=1

𝑀𝑖𝑗
̅̅ ̅̅  (16)  

Where 𝑀𝑖𝑗
𝑠

 
 is the bending moment at a distance s from section i due to a unit vertical force 

at section j. Equation (5) can be re-written in expanded form to account for all the locations 
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along the length of the bridge, but this time in terms of discretized bending moment 

distribution (averaged within spatial resolution) along the entire length of the bridge to the 

cable forces: 

 𝐶.̅ 𝑋 = 𝐺̅ (17) 

Where,  

 𝐺̅ = [
𝑀1
̅̅ ̅̅

⋮
𝑀𝑛
̅̅ ̅̅

] (18) 

 𝐶̅ = [
𝑀11
̅̅ ̅̅ ̅ ⋯ 𝑀1𝑛

̅̅ ̅̅ ̅

⋮ ⋱ ⋮
𝑀𝑛1
̅̅ ̅̅ ̅ ⋯ 𝑀𝑛𝑛

̅̅ ̅̅ ̅̅
] (19) 

In practical applications, the inherent noise associated with the distributed measurements 

with Brillouin based systems needs to be considered in Equation (17).  Depending on the 

spatial resolution selections in the measurement system, the noise levels range between 

seven to fifteen percent of the total output.  At these levels only larger changes in the cable 

forces could be discerned, and the system would fail to recognize the force changes in the 

adjoining cables.  A mere signal smoothing algorithm may not be sufficient to preserve the 

signal details, especially as it involves the interrelationship between the cable forces and 

structural displacements. To account for this, Equation (17) is subjected to bridge 

displacement constraints and solved as a constrained linear least-squares problem.  

Considering that the cables are anchored both to the deck and the pylons, Hegab (1986) 
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developed the following relationship for computing the forces in the cables: 

 𝐹𝑖 =
𝐸𝑖𝐴𝑖

𝐿𝑖
(−𝑌𝑖sinθi ± Δ𝑖cosθi) (20) 

Where 𝐸𝑖, 𝐴𝑖 and 𝐿𝑖 are the young’s modulus, cross-sectional area and length of the cable 

i, respectively. 𝑌𝑖 is the vertical deflection of the deck at point i and Δ𝑖 is the pylon 

horizontal displacement at the connection of cable i with the pylon that is connected to.  

The negative sign in conjunction with the deck deflection term, 𝑌𝑖 signifies that the 

downward Y direction is negative. Moreover, for the pylon displacements, displacements 

away from the cables under consideration are considered positive.  The interrelationship 

between the bridge displacements and the cables is shown in Figure 2. 

 

 

Figure 2. Interrelationship between cables, pylon, and deck displacements 

 

The computational approach employs the imposed constraints in a trial and error procedure 

in order to compute the change in cable forces. As discussed earlier, the Brillouin based 
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measurements provide the change in distributed strains based on reference measurements.  

The trial and error procedure begins by assuming various levels of tension losses in 

individual cables subjected to the imposed displacement constraints, and selects the cable 

that has minimized the error associated with the system noise.  By substituting Equation 

(1) into Equation (20), the interrelationship between the cable forces and bridge 

displacements can be written in the following form: 

 
𝑃𝑖

𝑆𝑖𝑛(𝜃𝑖)
=

𝐸𝑖𝐴𝑖

𝐿𝑖
(−𝑌𝑖sinθi ± Δ𝑖cosθi) (21) 

The relationship between deck displacements and the cable forces can be stated in terms of 

flexibility coefficients: 

 𝑌𝑖 = ∑ 𝑃𝑗𝑓𝑖𝑗
𝑏

𝑛

𝑗=1

 (22) 

Where, 𝑓𝑖𝑗
𝑏 is deflection of the deck at section 𝑖 due to a unit force at section 𝑗.  Similarly, 

the flexibility of the pylon can be stated as: 

 Δ𝑖 = ∑(𝑄𝑗 − 𝑄𝑛𝐿 +2−𝑗)𝑓𝑖𝑗
𝑝

𝑛𝐿

𝑗=1

 

(23) 

Where 𝑄𝑗 = 𝑃𝑗cotθj is the horizontal component of tension in cable j; 𝑓𝑖𝑗
𝑝

 
 is the 

displacement of the pylon, p, at the location of cable number 𝑖 on the pylon due to a unit 

horizontal force at the location of cable 𝑗; 𝑛𝐿 is the number of cables that are connected to 
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the same side of the pylon with respect to cable j, and  𝑛𝐿 + 2 − 𝑗 is the cable that is 

connected at the location of cable j but on the opposing face of the pylon.  Eqs. (22) and 

(23) are used for substituting for 𝑌𝑖 and Δ𝑖 into Equation (21).  After rearranging the terms, 

the constraint relating the cable forces to the deck and pylon displacements for any cable t 

located on the left side of the pylon shown in Figure 1 can be written as:  

 

−
𝐿𝑡

𝐸𝑡𝐴𝑡 sin(𝑡)
𝑃𝑡 + ∑ (−sin𝜃𝑡𝑓𝑡𝑗

𝑏

 
− 𝑐𝑜𝑠𝜃𝑡𝑐𝑜𝑡𝜃𝑗𝑓𝑡𝑗

𝑝

 
)

𝑛𝐿 

𝑗=1

𝑃𝑗

− sin𝜃𝑡𝑓𝑡,𝑛𝐿 +1
𝑏

 
𝑃𝑛𝐿 +1

+ ∑ (−sin𝜃𝑡𝑓𝑡𝑗
𝑏 + 𝑐𝑜𝑠𝜃𝑡𝑐𝑜𝑡𝜃𝑗𝑓𝑡𝑗

𝑝

 
) 𝑃𝑗

𝑛𝐿 +1+ 𝑛𝑅 

𝑗=𝑛𝐿 +2

= 0 

(24) 

Where, 𝑛𝐿 and 𝑛𝑅 are the number of cables on the left and right sides of the pylon, 

respectively. Similarly, the following relationship is obtained for any cable t on the right 

side of the pylon: 

 

−
𝐿𝑡

𝐸𝑡𝐴𝑡 sin(𝑡)
𝑃𝑡 + ∑ (−sin𝜃𝑡𝑓𝑡𝑗

𝑏

 
+ 𝑐𝑜𝑠𝜃𝑡𝑐𝑜𝑡𝜃𝑗𝑓𝑡𝑗

𝑝

 
)

𝑛𝐿 

𝑗=1

𝑃𝑗

− sin𝜃𝑡𝑓𝑡,𝑛𝐿 +1
𝑏

 
𝑃𝑛𝐿 +1

+ ∑ (−sin𝜃𝑡𝑓𝑡𝑗
𝑏 − 𝑐𝑜𝑠𝜃𝑡𝑐𝑜𝑡𝜃𝑗𝑓𝑡𝑗

𝑝

 
) 𝑃𝑗

𝑛𝐿 +1+ 𝑛𝑅 

𝑗=𝑛𝐿 +2

= 0 

(25) 
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Eqs. (24) and (25) are written for each intact cable t of the bridge under consideration. 

Considering the boundary conditions, i.e. zero deflections at bridge supports, the boundary 

condition constraint can be written as: 

 ∑ 𝑃𝑗𝑓𝑛𝐿 +1,𝑗
𝑏

 

𝑛

𝑗=1

= 0 (26) 

Therefore, sufficient numbers of constraints can be established to match the number of 

unknown intact cable forces and interior support reactions. Equation (17) can now be 

solved subjected to the aforementioned constraints with the assumed trial and error values 

for the location and magnitudes of tension force losses.  The trial and error procedure is 

repeated until the assumed cable force returns the minimum norm residual of the least-

square solution, which yields the location and the amount of tension that the damaged cable 

has actually lost. Mathematically, different assumptions for the cable k and 𝑃𝑘 are made to 

minimize Equation (27) and the assumption that minimizes R in Equation (27) is the 

solution.  

 𝑅 = ‖𝐶 ∙ 𝑋 − 𝐺‖2
2 (27)  

Where R is the squared of the Euclidian norm of the vector 𝐶 ∙ 𝑋 − 𝐺, and 𝑋 is the result 

of the constrained linear least squares.  

In summary, the linear least squares approach determines the loss in cable tension by 

solving Equation 27 such that the boundry constraints listed in Equations 24, 25 and 26 are 
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not violated.  In the next chapter, the efficiency of this theoretical approach is evaluated 

through experimentation and finite element analysis.  

Even though distributed sensing has considerable advantages in monitoring the entire cable 

stays using a single line of fiber optic cable, certain projects may benefit from  

implementation of discrete sensors. Examples include physical and geometrical constraints 

for the installation of the distributed sensors. Hence, in the next section, a different 

analytical solution will be introduced to determine the cables tension loss by means of 

discrete sensors. This approach will also utilize optimization of a linear program.  

 

2.2. Recursive Optimization Approach Using Point-style Sensors 

 
The analytical approach proposed in this section utilizes the change in support reactions to 

detect damage in cables of single-plane cable stayed bridges. Considering that the cables 

are anchored both to the deck and the pylons, Hegab (1986) introduced the following 

equation to obtain the cable forces: 

 𝐹𝑗 = 𝐾𝑗(𝑌𝑗sinθj ± Δ𝑗cosθj) (28) 

Where 𝐾𝑗 is the stiffness of the cable j. 𝑌𝑗 and Δ𝑗 are the deck vertical displacement and 

pylon horizontal displacement respectively, at the connection point with the cable j.  It is 

apparent from equation (28) that loss of cable stiffness will result in reduction of the cable 
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force.  Ultimately, the girder deflection and the reaction force at the support will increase. 

The amount of force transferred to the supports depends on the stiffness of the cables, the 

girders and the pylons. Hence, when a cable is damaged, a portion of the cable tension loss 

is transferred to the supports. In essence, changes in the support reactions are effective 

parameters to localize and quantify the damage in stay cables. Change in support reactions 

from each adjacent span can be obtained by computing the change in shear forces of deck 

structural elements.  The shear forces from each adjacent span of the support of the truss 

girder cable-stayed bridges can be obtained using the axial strain in the web members of 

the support region (Figure 3) using the following equation: 

 𝑉 = 𝜀𝐸𝐴𝑠𝑖𝑛𝜃 (29)  
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Figure 3. Detection of support reactions from diagonal truss elements strains 

 

Where 𝜀, 𝐸, 𝐴 and 𝜃 are the axial strain, modulus of elasticity, cross-sectional area and 

inclination angle of the truss web member respectively.  

The support reactions in box girder bridges can be obtained either by strain rosette sensors 

(Gere and Timoshenko, 1990; Bao et al., 2015) or by bending strain gauges and the 

differential relationship between the bending moment and shear, and linearity of the 

bending strain near the supports. The linearity of the bending moment between the support 

and the neighboring cable is due to the fact that the difference in strains prior and after the 

damage are independent of the dead load. By placing strain gauges at the indicated 

locations in Figure 4, the change in shear force from each adjacent span of the support can 

be obtained from the bending moment as follows:  

 𝑉𝑖 
=

∆𝑀𝑖 

∆𝑥𝑖 

 (30) 

Where,  

 ∆𝑀𝑖 
= ∆𝜀𝑖(

𝐸𝐼

𝑦
) (31) 

Where i=1…m, m is the number of adjacent sides of individual supports as shown in Figure 

4, ∆𝑥 is the distance between the bending strain sensors at the support and the neighboring 

cable (Figure 4), ∆𝜀 is the difference between measured strains by the two strain sensors, 
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∆𝑀𝑖 is the change in bending moment between the locations of two strain sensors, I is the 

moment of inertia of the bridge cross-section, y is the distance from the neutral axis to the 

location of the strain sensor, generally the outermost cross-section fiber, and E is the elastic 

modulus of the section material.  

 

 

Figure 4. Locations of bending strain sensors and bridge shear forces 

 

The implementation of this method requires employing strain sensors at both sides of the 

supports in order to determine the change in shear force from adjacent spans. The change 

in shear forces prior and after the damage can be vectorially written as: 

 𝑉 = 𝑉 
𝑑 − 𝑉 

𝑢 (32)  

Where 𝑉 
𝑑 = {𝑉1

𝑑|𝑉2
𝑑| … |𝑉𝑚

𝑑}𝑇 and 𝑉 
𝑢 = {𝑉1

𝑢|𝑉2
𝑢| … |𝑉𝑚

𝑢}𝑇 are the vectors representing the 

bridge shear forces on adjacent sides of individual supports in damaged and undamaged 

cables state, respectively.  The resulting vector 𝑉 is dead load independent assuming the 

dead load remains unchanged prior and after the damage. 
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The location of damaged cables and their damage intensity, i.e. tension losses, can then be 

determined by minimizing the Euclidean norm in equation (33): 

 𝐼 = ‖𝑆 ∙ 𝑋 − 𝑉‖2
2 

 (33)  

Where, 

 𝑆 = [

𝑆11 𝑆12 ⋯ 𝑆1𝑛

𝑆21 𝑆22 ⋯ 𝑆2𝑛

⋮ ⋮ ⋱ ⋮
𝑆𝑚1 𝑆𝑚2 ⋯ 𝑆𝑚𝑛

] (34)  

 𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] (35)  

n is the number of cables, X is the vector of cable forces which represents the location and 

intensity of damaged cables, I is the Euclidean norm and S is the sensitivity matrix, i.e.  𝑆𝑖𝑗 

is the change of the deck shear force at the support face i due to a unit stiffness loss in cable 

j. 𝑆𝑖𝑗 can be determined using finite element model analysis and applying a unit stiffness 

loss in each cable j.  

The optimum solution for X in equation (33) can be obtained when: 

 𝑋 = (𝑆𝑇𝑆)−1𝑆𝑇𝑉 (36)  

The sensitivity matrix needs to be updated when the cable stiffness change. A recursive 

approach is employed for updating the sensitivity matrix, where at each iteration step, the 

cable stiffness are updated as follows: 
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 𝐾𝑗
𝑡 =

𝑥𝑗
𝑡

𝐹𝑗
0 𝐾𝑗

0 (37)  

Where, 𝐾𝑗
0 and 𝐹𝑗

0 are the stiffness and tensile force of cable j in undamaged state, 

respectively, 𝑥𝑗
𝑡 is the calculated loss of tensile force in cable j at iteration step t based on 

equation (36).  Iteration is repeated until the cable force differences between two successive 

iterations remain below an acceptable tolerance value. Mathematically, the final iteration 

is achieved when:  

 |
𝑥𝑗

𝑡

 

 
− 𝑥𝑗

𝑡−1

 

𝑥𝑗
𝑡   | < 𝜏 (38)  

Where, 𝑥𝑗
𝑡 and 𝑥𝑗

𝑡−1 are the detected tension loss in cable j for two successive iterations, 

and 𝜏 is the tolerance level. 

In practical applications, the inherent noise associated with the measured strains can result 

in non-physical solution of equation (36). To account for this, the solution of equation (36) 

is bounded to non-negative results. Negative results are non-physical since they indicate 

increase in the cable tensile force due to loss of cable stiffness.   

In the proposed approach the change in shear force vector: 𝑉 
 = {𝑉1

 |𝑉2
 | … |𝑉𝑚

 }𝑇 is 

computed by measuring the shear strains.  The sensitivity matrix is obtained by assuming: 

𝐾𝑗
1 = 𝐾𝑗

0, for the initial iteration step 𝑡 = 1. Then, equation (36) is solved for the cable 

force losses, 𝑋𝑡.  Equation (37) is employed for updating the cable stiffness, 𝐾𝑗
𝑡, and the 
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sensitivity matrix, 𝑆   is recomputed. The process is recursive and the iteration step is 

increased each time (i.e. 𝑡 = 𝑡 + 1) until 𝜏 in equation (38) converges to the acceptable 

level.  

In the next chapter, the efficiency of this approach is evaluated through experimentations 

and finite element analysis for a series of damage scenarios. The experimentations employ 

strain sensors to determine the shear forces, and then Equation 38 is utilized to determine 

the loss in cable forces.  

The previous two sections pertained to two theoretical approaches for detection of tension 

loss in the cables of cable stayed bridges. In the next section, a different theoretical 

approach based on machine learning will be presented to determine damage in the building 

structures by means of load tests.  

 

2.3. Machine Learning Based Assessment of Damage in Building Structures 

 
Machine Learnings (ML) is a subset of artificial intelligence which is widely used for 

pattern classification. In particular application to the present application, the structural 

model is trained with a set of input data, i.e., the change in strain magnitudes under known 

loading configurations.  Once the model has been trained in this fashion, it will be 

employed to predict the damage for any other loading conditions that the structure was 

previously never exposed to.  Formulation of the method begins by the stiffness equation 
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of the structural system expressed as: 

 𝐹 = 𝐾𝑈 (39) 

Where, F is the load matrix, K is the stiffness matrix, and U is the displacement matrix, 

which is related to the strain in the structural members. By placing strain sensors in the 

selected sections of a structure and imposing known loads, F, the change in strain due to 

the loads can be written as (Figure 5): 

 𝑉 = 𝑉 
𝑑 − 𝑉 

𝑢 (40) 

Where, 𝑉 
𝑑 = {𝜀1,𝑑

𝑖 |𝜀2,𝑑
𝑖 | … |𝜀𝑚,𝑑

𝑖 }
𝑇
 and 𝑉 

𝑢 = {𝜀1,𝑢
𝑖 |𝜀2,𝑢

𝑖 | … |𝜀𝑚,𝑢
𝑖 }

𝑇
 are strain vectors for 

damaged and undamaged states, respectively. 𝜀𝑡,𝑑
𝑖  and 𝜀𝑡,𝑢

𝑖  are the strains at location 𝑡 due 

to the load 𝐹𝑖 in damaged and undamaged states, respectively. The strain vector 𝑉 is the 

difference between the strain magnitudes of undamaged and damaged states. This vector 

is then used as input to the ML models described herein to interpret the output, which in 

this case pertains to structural damage. 



30 
 
 
 
 
 

 

Figure 5. Load and sensor configurations in a series of frame members 

 

2.3.1. Training 

Training of the model is accomplished by simulating a series of possible damage cases 

using finite element analysis. The strain vector, V, is extracted from the finite element 

model for every possible damaged case. The strain vector is used as input, and the damaged 

scenario is used as output to train the model. Once the ML model is trained for all possible 
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damage scenarios, the model will then be capable of predicting the damage for a given 

strain vector. There exists a number of machine learning methods. In this thesis, the 

performance of NN, SVM and GNB are evaluated and compared for damage detection. 

 

2.3.2. Neural Networks 

 
Neural Networks (NN) were inspired by how the human brain works and they act as a 

mathematical tool in predictive modeling (Hippert et al, 2001). Neural networks consist of 

an arbitrary number of layers. One of the most popular networks is multi-layer feed-

forward network. This network consists of input layer, hidden layer(s) and output layer. In 

this study, the input layer pertains to the strain vector, V, as determined in section 2. The 

output layer pertains to the damage case number. The architecture of the applied feed-

forward network which was utilized in this thesis  is depicted in Figure 6.  
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Figure 6. Feed-Forward neural network architecture 

 

Where 𝑉 = (𝑣1, 𝑣2, . . 𝑣𝑛) is the strain vector, as explained in section 2, 𝑓1 is the hyperbolic 

tangent function and 𝑓2 is a linear activation function. In this study, 100 nodes were used 

in the hidden layer. The model is first trained by sending the strain vector, 𝑉, as the input 

to the network for various damage cases. The relationship between the layers is then 

determined by Backpropagation algorithm (Hagan et al, 1994) to achieve the correct 

damage case number for a given training input.  
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2.3.3. Support Vector Machine 

 
SVMs are a relatively new supervised learning approach that are capable of handling noisy 

data. They have been used in a number of applications from cancer diagnosis (Furey et al, 

2000) to text classification (Tong et al, 2001). In simple words, SVMs are hyper planes 

that are chosen such that the strain vectors are separated with a maximal margin. Margin 

is defined as the distance between the closest strain vectors to the hyper plane. In simple 

terms, the hyper plane will separate the strain vectors with hyper planes, such that two sides 

of the hyper plane represent two different damage case scenarios.  

 

 

Figure 7. SVM classifier and margin 

 

One can prove that the hyper plane decision boundary for strain vector, V, can be written 
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as (Furey et al, 2000) 

 𝑓(𝑉) = 𝑠𝑖𝑔𝑛(𝑊𝑇𝜑(𝑉 )
 + 𝑏) (41) 

Where sign is the signum function, b is the bias term, 𝜑(. ) is a mapping function. Mapping 

function allows separation of non-linear strain vectors by mapping the strain vector to a 

higher dimensional space. In this study, radial basis kernel function was employed to map 

the strain vector to a higher dimensional space. W is the weights vector. It has been proven 

that the maximal margin hyper plane between the strain vectors is obtained when (Furey 

et al, 2000): 

 𝑊 = ∑ 𝛼𝑖

𝑛

𝑖=1

𝑦𝑖𝜑(𝑉𝑖) (42) 

where n is the number of the possible damage cases used in training, y is the binary 

output which defines the damage case that a strain vector belongs to, and 𝛼𝑖s are positive 

coefficients that maximize the following equation 

 ∑ 𝛼𝑖

𝑛

𝑖=1

− ∑ 𝛼𝑖𝛼𝑗

𝑛

𝑖,𝑗

𝑦𝑖𝑦𝑗𝜑(𝑉𝑖)
𝑇𝜑(𝑉𝑗) (43) 

such that  

 ∑ 𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 (44) 

Hence, one can determine the alpha coefficients by solving Equation 5 using the method 
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of Lagrange multipliers. In this study, we have more than two damage cases. Hence, a one-

versus-one approach (Milgram et al., 2006) was implemented in order to classify all 

possible damage cases. 

 

2.3.4. Gaussian Naïve Bayes 

 
Gaussian Naïve Bayes (NB) is a statistical approach based on probabilities and Bayes 

theorem (John and Langley, 1995). GNB assumes that the predictors, that are considered 

to be the sensors data in this thesis, are independent from each other. GNB estimates the 

probability for all possible damage cases. The damage case that has the highest probability 

is then considered to be the predicted damage case. Using the Bayes theorem, the 

conditional probability of the damage case 𝑑𝑖 for a given set of sensors data can be written 

as (John and Langley, 1995) 

 𝑃(𝑑𝑖|𝑉) =
𝑃(𝑉|𝑑𝑖)𝑃(𝑑𝑖)

𝑃(𝑉)
 (45) 

Where 𝑉 = (𝑣1, 𝑣2, . . , 𝑣𝑛) is the strain vector and P(.) is the probability function. Since the 

output of sensors are independent from each other, one can write 

 
𝑃(𝑉|𝑑𝑖) = ∏  

𝑡

𝑃(𝑣𝑡|𝑑𝑖) 
(46) 

where 𝑃(𝑣𝑡|𝑑𝑖) is normally distributed. The predicted damage case, d, is then obtained by 
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 𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑃(𝑑𝑖|𝑉) (47) 

Where argmax is arguments of the maxima. In this expression, arguments of maxima 

pertains to the damage case i that maximizes the function 𝑃(𝑑𝑖|𝑉). 

The efficiency of the three machine learning approaches described in this section is 

evaluated through field implementations in chapter 4. 

In summary, in this chapter three different theoretical approaches were proposed for 

structural health monitoring of buildings and cable-stayed structures. Discussion of the 

performance, limitations and advantages of these techniques is an important considertation 

for any structural health monitoring method.  Hence, the next two chapters pertain to 

evaluation of these three theoretical approaches through experimentations and field 

implementations.  
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CHAPTER 3 

3. EXPERIMENTAL VERIFICATION 

The content of this chapter was published as “Nazarian E, Ansari F, Zhang X, Taylor T 

(2016) Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed 

Monitoring of Bridge Deck Strains. Journal of Structural Engineering, 142(6), 04016018” 

and “Nazarian E, Ansari F, Azari H (2015). Recursive optimization method for monitoring 

of tension loss in cables of cable-stayed bridges. Journal of Intelligent Material Systems 

and Structures, 1045389X15620043”. Reproduced with permission from ASCE and 

Journal of Intelligent Material Systems and Structures. 

 

The theoretical damage assessment methodologies for the cable stayed bridge developed 

in the earlier chapter of this thesis are evaluated in this chapter. The two approaches are 

examined using both numerical simulations and laboratory experiments. The structure 

under study is a 
1

60
 reduced-scale cable-stayed bridge. In evaluating the efficiency of the 

proposed methods, various different damage case scenarios were examined on this scaled 

model to ensure the robustness of the methodology.    

 

3.1. Experimental Program 

 
The experimental program was designed to evaluate the efficiency of the proposed method 

for monitoring the cable forces by distributed measurement of strain along the span lengths 

of the bridge.  The approach taken here was to examine the applicability of the method 

through development of a realistic experiment. Therefore, a reduced scale model of an 
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actual bridge, Chongqing Dongshuimen Yangtze River Bridge, which was designed and 

built by earlier researchers in the Smart Sensors and NDT laboratory was employed for 

this purpose.  The main bridge is a double tower single cable plane, cable-stayed steel truss 

Girder Bridge, with three spans of 222.5, 445, and 190.5 meters, respectively. This bridge 

was selected because the method was developed for a single plane cable-stayed bridge, and 

the owners provided access to the bridge plans during the construction of the bridge in 

cooperation on an international program (NSF-PIRE). The bridge opened to traffic in late 

March 2014.   

The scaled dimensions of the model is schematically depicted in Figure 8a, and the photo 

of the bridge in the laboratory along with the BOTDA strain measurement system is shown 

in Figure 8d. A scaling factor of 
1

60
 was employed for the model based on the elastic direct 

method for scaling. In direct modeling, strains and deformations are representative of 

similar quantities of the prototype structure under the same loading conditions and they are 

built as a geometric similitude of the prototype (Harris et al. 1999).  Detailed discussions 

regarding the scaling factors are beyond the scope of this article.  However, it is important 

to indicate that the scaling proportions were selected in order to induce the girder strain 

distributions that are proportional to the real structure under the dead loads and since the 

prototype cross-section is a boxed truss (Figure 9), a hollow boxed cross-section was 

selected for the structural model in order to simulate the shape of the prototype cross-

section. The deck and the pylons were constructed of steel with yield strength of 235 MPa.  
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The cross section of the deck is a box with dimensions shown in Figure 8b.  Steel piano 

wires with a diameter of 0.4 mm and tensile strength of 2,500 MPa were employed to 

represent the stay cables.  The pylons were fixed at their bases to the support structure.  The 

moment of inertia for the two pylons were 132,248 mm4. Additional steel elements were 

attached to the deck at equal intervals in order to adequately model the dead load of the 

prototype (Figs. 8 and 10). The cable forces are shown in Table I. 
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(a) 

 
 

 

(b) 

 
 

(c) 

 
(d) 
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Figure 8. Structural model  

(a) side view; (b) cross-sectional view; (c) steel plates to consider 

the dead load; (d) schematic view 

 
 

(a) 

 
(b) 

 

Figure 9. Prototype bridge: (a) cross-section; (b) side view 
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Figure 10. Steel plates and close up view of the adhered distributed fiber  

 

 

 

Table I. Cable tensions in intact condition   

Cable 

number 

Tension 

(N) 
    

Cable 

number 

Tension 

(N) 
  

Cable 

number 

Tension 

(N) 

1 150.8   13 156.1   25 148.6 

2 152.6   14 155.2   26 145.5 

3 159.7   15 156.1   27 138.8 

4 159.7   16 150.8   28 164.1 

5 164.6   17 150.3   29 161.0 

6 162.8   18 145.0   30 164.1 

7 161.5   19 159.2   31 163.7 

8 151.2   20 161.5   32 162.8 

9 155.2   21 157.0   33 157.0 

10 161.9   22 158.8   34 155.7 

11 161.5   23 154.8   35 153.9 

12 157.9   24 151.7   36 152.6 
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A telecommunication grade optical fiber (Corning’s SMF-28) was employed as strain 

sensor for monitoring the distributed strain along the length of the bridge deck.  A loose 

fiber was spliced to the strain sensor for measurement and separation of distributed 

temperatures from the back-scattered Brillouin signals. The distributed sensor was adhered 

and protected along the entire 14.3-meter length of the deck girder with a silicon-based 

epoxy. Figure 10 corresponds to the close up view of the adhered sensor on the surface of 

the bridge deck.  A series of strain gauges were adhered to several locations along the deck 

as independent measures of strains and for comparison with the distributed measurements.  

The 350 ohms resistance type strain gauges with a range of three percent or 30,000 micro 

strains were employed for this purpose.  Support reactions at the pylons (interior) and edge 

(exterior) supports were measured by using load cells. The maximum load capacity for the 

load cells employed at the interior and exterior supports were 68, and 23kgf, respectively. 

All the load cells were of Wheatstone bridge type with output resistance gauges of 350 

ohms, repeatability of 0.05% and hysteresis of 0.15%. The location of strain gauges and 

the load cells are shown in Figure 11.  FBG sensors were adhered to the piano wire cables 

in order to independently measure the cable forces. The FBGs comprised of Polyimide 

coated SMF-28 fibers with a maximum strain capacity of 10,000 micro strains. The piano 

wires with FBGs were calibrated independently after installation on the model against load 

by successive loading of the wires by external weights.  This allowed for transduction of 

the cable forces during the experiments from the measured FBG strains.  A typical 
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calibration response of instrumented piano wire is shown in Figure 12. 

 

 

Figure 11. Location of sensors along the bridge span 

 

Figure 12. Typical force calibration results for FBG sensor 

 

 

3.2. Distributed Monitoring of Cable-stayed bridges 

3.2.1. Experimental Plan 

The experiments included a series of tests in order to evaluate the capability of the method 

for detection of location as well as the resolution of measurements. Several different 
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damage scenarios were considered in the experiments as shown in Table II.  For instance, 

experiment numbers 1 through 10 corresponded to single cable damage scenarios at 

different spans, and cable tension loss levels.  Test numbers 11 through 18 pertain to 

experiments in which two cables incurred tension losses where the affected cables were 

within various proximities from each other.  Experiments 19 and 20 involved cable tension 

losses in three cables. The experimental program also involved tension losses at levels 

below thirty percent of the original.  However, the resolution of measurements was not 

sufficient to detect their locations and damage levels with the proposed technique.  

Therefore, those experiments are not reported here.  

Distributed strain measurements were obtained at a spatial resolution of 20 cm, sampling 

rate of 1cm and averaging frequency of 1015 with an accuracy of 7 𝜇𝜖/0.3℃. The sampling 

rate of 1 cm and spatial resolution of 20 cm were chosen, since the distance between every 

two cables was about 266 mm. Decreasing the spatial resolution would have increased the 

noise level and increasing the spatial resolution to 50 cm, which is the next possible 

increment would have led to excessive averaging of the local strain changes.  

 

3.2.2. Results and Discussions 

 
Testing of the model bridge involved straining of the bridge deck by reducing the tensile 

forces in the bridge cables according to the experimental program outlined in Table II.  

Turn buckles at the cable anchors were employed for reducing the tension in the cables.  
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Once the cable forces were reduced to the intended levels, BOTDA was employed for 

measuring the distributed deck strains.  Strain gauges were also employed for measurement 

of deck strains at selected locations. FBG sensors monitored the cable forces, and load cells 

measured the support reactions.  Data from strain gauges, load cells and FBG sensors 

provided independent measures for the evaluation of the proposed approach.    
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Table II. Damage Cases 

Damage 

Case 

Number 

Damaged 

Cable 

Number(s) 

Percentage 

of Tension 

Loss 

  

Damage 

Case 

Number 

Damaged 

Cable 

Number(s) 

Percentage 

of Tension 

Loss 

1 4 30% 

 

2 11 30% 

3 4 50% 4 11 50% 

5 4 100% 6 11 100% 

7 18 30% 8 36 30% 

9 18 100% 10 36 100% 

  

11 
12 30% 

12 
12 100% 

23 30% 23 100% 

      

13 
12 30% 

14 
12 100% 

18 30% 18 100% 

      

15 
11 30% 

16 
11 100% 

12 30% 12 50% 

      

17 
4 30% 

18 
4 100% 

11 30% 11 100% 

      

19 

4 100% 

20 

11 50% 

12 50% 12 50% 

23 40% 13 50% 
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In addition to the experiments, behavior of the bridge model was simulated through 

nonlinear finite element analysis under the cable force loss scenarios given in Table II.  The 

two dimensional nonlinear FEM model was constructed using commercial software 

SAP2000. The support conditions, materials and structural properties that were used in 

modeling are identical to the reduced-scale model, which are described in the experimental 

program section of this chapter. Frame elements were used for modeling the pylons and 

deck, and the cables were modeled using cable elements. Figure 13 pertains to the finite 

element model of the bridge. 

 

 

Figure 13. Finite element model of the bridge 

 

Raw data acquired from Brillouin systems contain noise that needs to be processed prior 

to use.  A number of signal processing routines have been employed for smoothing the 

back-scattered Brillouin signals, including direct averaging, least squares, and wavelet 

transforms (Feng et al. 2014). The Savitzky-Golay filter was employed for smoothing the 

back-scattered signals in this study.  This filter uses convolution in filtering the noise by 

the method of linear least squares through fitting low degree polynomials to successive sets 
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of adjacent raw data.  Typical experimental and simulation results for single cable force 

loss scenarios are shown in Figures. 14 through 16.  Figures. 14.a, 15.a, and 16.a 

correspond to the raw and filtered distributed strain data, data from the strain gauges, and 

the finite element simulations. In Figures 14.b, 15.b, and 16.b the change in cable forces 

and support reactions computed from the distributed strains are compared with the finite 

element simulations and measurements by FBG sensors and load cells. In a manner similar 

to the results shown in Figures 14 through 16, Figures 17 through 20 correspond to the 

damage scenarios in which force in multiple cables experienced losses. 

The experimental program was designed in order to examine the capability of the method 

in detecting the location of the damaged cables irrespective of their position along the 

bridge deck or their proximities with respect to each other.  As shown in Figures 14, 15, 

and 16, in the case of single cable with damage, it was possible to detect the location of the 

damaged cable irrespective of the location of the cable along the bridge span. For 

quantification of change in cable forces, the method performed well in the case of cables 

losses that resulted in relatively high change of strain.  In some cases, such as the ones 

shown in Figures 14 and 15, the location of the damaged cable could be directly figured 

out or approximated from the distributed strains on the deck. In other cases, such as the 

one shown in Figure 16, it would be impossible to detect the location of the damaged cable 

without application of the proposed method. As shown in Figures 15b, and 16b, the errors 

in quantifying the change in tension in compare to the nonlinear finite element analysis and 
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direct measurements by the FBG sensors were 2-6 percent. However, in the case of cables 

with lower tension losses, i.e. 30 percent in Figure 14b, the error was 50 percent.  A number 

of experiments were performed for tension losses lower than 30 percent (i.e. 10-20 percent 

loss in cable tension).  However, it was not possible to detect the location of the damaged 

cables with tension losses below 30 percent due to the strain resolution limitations of the 

BOTDA system.  Moreover, in one or two cases, the computational approach resulted in 

false readings by affecting the neighboring cables.  For instance, in the damage scenario 

shown in Figure 14.b, in addition to cable 4, cables 3 and 5 also exhibited slight losses. As 

shown in Figure 21, the change in cable force must be sufficiently large in order to strain 

the bridge deck beyond the 7 micro-strain resolution of the BOTDA.   

Similar discussions can be made for the cases with multiple cable damage scenarios. As 

shown in Figures 17 through 20, the proposed method is capable of detecting the location 

of all the cables that exhibited tension loss.  Specifically, it was possible to detect the 

location of adjacent cables with 30 to 50 percent of tension loss in each cable as shown in 

Figures 17b, and 20b for two and three adjacent cables, respectively.  Further examination 

of Figures 14b through 20b also indicate that the computed interior support reactions based 

on the distributed measurements correlated with the load cell readings and FEM analysis.  

However, in terms of the quantification of tension losses, the proposed approach did not 

yield results comparable to the nonlinear FEM analysis.    
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(a) 

 

 
(b) 

 

 
 

Figure 14. Single cable damage scenario with thirty percent tension loss. 
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(a) 

 

 
(b) 

 

 
 

 

Figure 15. Single cable damage scenario with one hundred percent tension loss 
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(a) 

 

 
(b) 

 

 
 

Figure 16. Single cable damage scenario with one hundred percent tension loss 
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(a) 

 

 
(b) 

 

 
 

Figure 17. Two-cable damage scenario with thirty percent tension loss in each cable 
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(a) 

 

 
(b) 

 

 
 

Figure 18. Two-cable damage scenario with thirty percent tension loss in each 
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(a) 

 

 
(b) 

 

 
 

Figure 19. Three-cable damage scenario with various percent tension losses 
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(a) 

 

 
(b) 

 

 
 

Figure 20. Three-cable damage scenario with fifty percent tension loss 
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Figure 21. Evaluation of the accuracy limits for the BOTDA sensor  

 

Due to lower inherent noise associated with localized strain sensors (Bao et al. 2015), they 

can provide higher resolution measurements along the bridge deck. Numerical simulation 

of several different damage scenarios were employed to evaluate accuracy of the proposed 

technique by using the localized strain sensors. Introduction of various random noise of up 

to 30% percent were involved in the simulations to account for severe noise in field 

measurements. Typical results are shown in Figure 22.  Figure 22.a pertains to the change 

in local strains due to 10% loss in tension of each cable number 35 and 36. As shown in 

Figure 22.b, it is possible to detect cable tension losses as low as 10% by using a series of 

high-resolution discrete sensors along the bridge deck.   
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(a) 

 

 
(b) 

 

 
 

Figure 22. Dual-cable damage scenario with ten percent tension loss 
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finite element analysis.  

 

3.3.1. Experimental Plan 

The damage cases shown in Table III were employed for the evaluation of the proposed 

method, both in the laboratory experiments as well as in the numerical simulations.  The 

objective was to test the resolution of the method in terms of the damage intensity levels, 

here defined in terms of tension loss in the cables, as well as the number and location of 

damaged cables detected simultaneously under various damage cases. 
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Table III. Damage cases considered for the 

evaluation of the method 

Experiment 

Number 

Damaged cable 

number(s) 

Actual  

damage intensity 

 in each cable 

1 23 5% 

2 18 10% 

3 14 20% 

4 11 30% 

5 9 60% 

6 4 100% 

7 4 and 5 5% 

8 13 and 14 10% 

9 13 and 14 20% 

10 14 and 23 30% 

11 5 and 14 60% 

12 11 and 18 100% 

 

 

Accordingly, damage cases shown in Table III encompass a full range from the low level 

of five percent all the way to the total tension loss in the cables (100%). The locations of 

the damaged cables were selected in order to represent various proximities with respect to 

the bridge supports along the deck.  Therefore, it was possible to examine the robustness 

of the method in terms of the affected cable location along the bridge deck. As shown in 

Table III, both single as well as dual cable damage scenarios were considered.  Experiments 

were also performed for cases with damage in three cables. However, it was not possible 

to obtain reasonable results in these experiments, and therefore, they are not included in 
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Table III.  

The Finite Element Model (FEM) of the bridge was constructed using the commercial 

software SAP2000. An interface program was coded to compute the sensitivity matrix at 

each iteration step. Moreover, for each of the damage scenarios shown in Table III, the 

response of the numerical model was compared with the experimental strains.  Frame 

elements were utilized for modeling the pylons and deck elements, and the cables were 

modeled using cable elements.  

 

3.3.2. Experimental results 

 
The experiments were conducted by imposing the damage scenarios shown in Table III to 

the model bridge by varying the tensile force in the bridge cables. Control and adjustment 

of cable forces was achieved by using turnbuckles at the cable anchors. As described 

earlier, FBG sensors were used for monitoring the change in cable forces. The required 

amount of change in cable forces was determined by simulating each damage scenario on 

the FEM of the bridge. For each damage level, the bridge deck flexural strains were 

measured by the strain gauges. Typical experimental and simulation results for single cable 

damage cases are shown in Figures 23 and 24. Figure 25 pertains to a case where two cables 

were damaged. Figures 23(a), 24(a), and 25(a) show the raw strain gauge outputs of the 

eight strain gauges along the bridge deck for the experiments number 6, 3 and 9, presented 

in Table III, respectively. The figures show the numerically computed strains from the 
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finite element simulations as well.  The strains obtained by strain gauges were employed 

for the detection of the change in cable forces at each one of the individual iteration steps.  

Results are shown in Figures 23(b), 24(b), and 25(b).  As demonstrated in Table III, the 

experimental program was designed to consider the damaged cables irrespective of their 

locations along the span or proximity to other cables. In Figure 23(b), the first iteration 

erroneously indicates that two adjacent cables (numbers 4 and 5) were damaged.  However, 

subsequent iterations led to convergence towards the actual failed cable. Figures 24 and 25 

pertain to single and dual-cable damage scenarios, respectively. Due to the fact that there 

are low damage intensities in these two damage cases, the differences in the initial and final 

iteration steps were negligible.  Table IV corresponds to comparison of results between the 

actual damage and those computed based on the experimental results including percentage 

of error.  Results shown in Table IV pertain to situations where the tension loss in the cables 

is 20% or higher.  As earlier shown in Table III, experiments were also performed for lower 

intensity damage scenarios resulting in 5 percent and 10 percent loss in cable tension in 

each of the experiments, respectively. However, the effect of lower cable tension losses on 

deck strains were minute, and below the level of noise associated with the measurements.  

These experiments did not yield satisfactory results.  
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(a) 

 

(b) 

Figure 23. Single cable damage (a) cable strains, (b) detected damage 
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(a) 

 

(b) 

Figure 24. Single cable damage: (a) cable strains, (b) detected damage 
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(a) 

 

(b) 

Figure 25. Dual-cable damage: (a) cable strains, (b) detected damage 
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Table IV. Evaluated damage cases on the laboratory scale model bridge 

Experiment 

Number 

Damaged cable 

number(s) 

Actual  

damage 

intensity 

 in each cable 

Detected cables 

 damage 

intensities, 

respectively 

Relative error 

1 14 20% 19.1% 4.5% 

2 11 30% 29.3% 2.3% 

3 9 60% 61.7% 2.8% 

4 4 100% 92.1% 7.9% 

5 13 and 14 20% 19% and 15% 5% and 25% 

6 14 and 23 30% 24% and 32% 20% and 6.7% 

7 5 and 14 60% 46% and 39% 23% and 35% 

8 11 and 18 100% 91% and 77% 9% and 23% 

 

 

3.3.2. Numerical Simulation Results 

 
Following the experimental proof of concept tests, the efficiency of the proposed technique 

was further evaluated by numerical simulation of damage in the Dongshuimen bridge. The 

damage scenarios shown in Table III were simulated in the finite element model of this 

bridge. The simulations also involved introduction of up to five percent white noise in order 

to account for the field conditions. In the numerical model, the intensity of simulated noise 

was varied in order to examine the robustness of the approach. The simulations show that 

50% tension loss in a cable adjacent to the support, for instance cable number 10, 

introduces 51μϵ at the diagonal truss member of the nearest support. Similarly, 50% of 

tension loss in the furthest cable to the support, for example  cable number 18, introduces 

11μϵ at the diagonal truss member of the nearest support. In these two damage cases, ±5% 
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of noise corresponds to ±2.5μϵ and ±0.5μϵ, respectively, which exceeds the strain sensor 

resolution of 0.1μϵ, allowing room for environmental sources of errors (Li et al., 2004). In 

the case of 10% tension loss, ±5% of noise corresponds to ±0.5μϵ and ±0.1μϵ in the two 

damage cases respectively. The simulations revealed that for noise levels above the 5% 

threshold, it was not possible to acquire meaningful results. The deck-truss strains were 

obtained at the locations shown in Figure 3, in order to compute the shear forces at the 

bridge supports. Figures 26(a) and 27(a) pertain to the deck strains employed in the 

simulations.  In a manner similar to the results shown in Figures 23(b), 24(b) and 25(b), 

typical results from the simulations are shown in Figures 26(b) and 27(b), which 

correspond to the detected cable damage in the Dongshuimen Bridge. The computed and 

actual damage scenarios for the cases considered during the simulations, including the 

percent error are shown in Table V. 
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(a) 

 

(b) 

Figure 26. Single-cable damage: (a) cable strains, (b) detected damage 

  

0  100 200 300 400 500 600 700 800
-80

-60

-40

-20

0

20

S
tr

ai
n

 (

)

Distance along the bridge (m)

 

 

Axial strain in truss web member

0  100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

D
am

ag
e 

P
er

ce
n

ta
g

e 
(%

)

Distance (m)

 

 

Actual Damage

Detected Damage - First Iteration

Detected Damage - Second Iteration

Detected Damage - Third Iteration



70 
 
 
 
 
 

 

(a) 

 

(b) 

Figure 27. Dual-cable damage: (a) cable strains, (b) detected damage 
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Table V. Evaluated damage cases on actual bridge 

Experiment 

Number 

Damaged cable 

number(s) 

Actual  

damage 

intensity 

 in each cable 

Detected cables 

 damage 

intensities, 

respectively 

Relative error 

1 23 5% 5.3% 6.0% 

2 18 10% 9.4% 6.0% 

3 14 20% 19.0% 5.0% 

4 11 30% 28.7% 4.3% 

5 9 60% 58.6% 2.3% 

6 4 100% 88.4% 11.6% 

7 4 and 5 5% 3.8% and 5.6% 24% and 12% 

8 13 and 14 10% 8.4% and 11.6% 16% and 16% 

9 13 and 14 20% 16.3% and 23.4% 18% and 17% 

10 14 and 23 30% 18.5% and 27.2% 38% and 9% 

11 5 and 14 60% 40.3% and 46.6% 33% and 22% 

12 11 and 18 100% 87% and 90.6% 13% and 9.4% 

     

 

As demonstrated in Tables IV and V, in using this method, it was possible to identify the 

locations of the damaged cables for all the cases studied here.  For cases involving damage 

in single cables, the percent error for quantification of the damage level was less than eight 

percent, except for simulation number 6 for cable number 4 in Table V, where the error 

between the actual and computed damage was 11.6 percent. These results also indicate that 

the damage quantification was more accurate for cables near the supports. The proximity 

of the damaged cable to one of the supports is associated with larger change in reaction at 

that particular support, and therefore, more accurate quantification of damage. More errors 

were associated in the quantification of damage in cases involving dual cables, where the 
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effects of redistribution of individual cable strains on the support reactions affected the 

computation of cable tension losses.  However, as shown in Table IV, in a manner similar 

to the quantification of damage in single cables, the quantification errors were less 

pronounced for the cables near the support.  This can be observed in experiment number 

5, where the error due to quantification of tension loss in cable number 13 was five percent, 

whereas, for cable number 14, the error was twenty five percent.  In experiment number 7, 

cables number 5 and 14 were both away from the supports and therefore, both involved 

larger errors.  The damage quantification accuracy can be further improved by employing 

more strain sensors. In order to examine the relationship between the number of sensors 

and the accuracy of measurements, more strain sensors along the interior sections of the 

deck span were used in the simulation. As shown in Figure 28, in compare to the six strain 

sensors shown in Figure 3, the new simulations included four additional sensors for a total 

of ten sensors. Utilization of additional strain sensors resulted in reduction of quantification 

errors, as illustrated in Table VI.  

 

Table VI. Evaluated damage cases on actual bridge  

Experiment 

Number 

Damaged 

cable 

number(s) 

Actual  

damage 

intensity 

 in each 

cable 

Detected cables 

 damage 

intensity 

utilizing 10 

sensors 

Relative error  

with 

employment 

of 6 sensors 

Relative error  

with 

employment of 

10 sensors 

10 14 and 23 30% 34.5% and 34.6% 38% and 9% 15% and 15.3% 

11 5 and 14 60% 68.1% and 67% 33% and 22% 13.5% and 12% 

12 11 and 18 100% 97% and 96% 13% and 9.4% 3% and 4% 
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Figure 28. Employment of additional strain sensors at diagonal truss web members 

 

In general, for all the damage scenarios studied here, three to four iterations were sufficient 

for convergence.  The proposed method was also employed in a series of experiments 

involving three cables.  However, the results were unsatisfactory and it was not possible to 

accurately detect the location of damaged cables in the bridge. The interaction of re-

distributed strains involving more than two cables results in the inability of the method to 

detect the sources of re-distributed strains. Detection of damage in three or more cables 

requires increasing the number of sensors along the bridge span.  
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CHAPTER 4 

4. FIELD IMPLEMENTATIONS 

The content of this chapter was published as “Nazarian E, Ansari F, Zhang X, Taylor T 

(2016) Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed 

Monitoring of Bridge Deck Strains. Journal of Structural Engineering, 142(6), 04016018” 

and “Nazarian E, Ansari F, Azari H (2015). Recursive optimization method for monitoring 

of tension loss in cables of cable-stayed bridges. Journal of Intelligent Material Systems 

and Structures, 1045389X15620043”. Reproduced with permission from ASCE and 

Journal of Intelligent Material Systems and Structures. 

 

In this chapter, the machine learning based approaches described in the second chapter will 

be evaluated on a heritage building located in Chicago. The evaluations involved both 

numerical simulations and actual experimentations on the building structure under study.  

 

4.1. Heritage Building and Structural Properties 

 
Evaluation of the method described herein was accomplished through numerical simulation 

and experimentation on a historical timber-framed masonry building that was built in early 

20th century. The structure under consideration in this study is a historical six-story 

building located in Chicago, Illinois (Figure 29). The exterior of the building includes 

masonry columns and walls (Figure 30). The interior of the building utilizes pinned timber 

frames to support the gravitational loads (Figure 31).   

 



75 
 
 
 
 
 

 

Figure 29. The schematic view of the building under study 
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Figure 30. The structural plan of the building under study  
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Figure 31. Timber structural system 

 

The gravitational loads on the floor are transferred to the simple supported timber beams, 

and the timber beams transfer the loads to the simple supported girders. From the girders, 

the loads are then transferred to the column and finally to the foundation (Figure 32). Figure 

33 depicts the gravitational load path. The original plans of the building indicated that 

Douglas fir was used for the timber framing of the structure. The cross-sectional 

dimensions of the timber beams and girders were measured to be 38.1x19cm, and 
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38.1x38.1cm, respectively. The flooring is approximately 10cm thick. The cross-sectional 

dimensions of the timber columns vary at each floor. The timber columns in the basement 

and first floor have the largest cross-sectional dimension, 38.1x38.1cm. The dimensions of 

the timber columns in the second, third, fourth, fifth and six floors are 33x33cm, 33x33cm, 

28x28cm, 24.1x24.1cm, 24.1x24.1cm, respectively. Similarly, the cross-sectional 

dimensions of the masonry columns were reduced in ascending order per floor. The 

dimensions of the masonry columns facing south at the sixth, fifth, fourth, third, second 

and first floors are approximately 117x46cm, 117x56cm, 117x66cm, 117x76cm, 

117x86cm, respectively. In other words, the thickness is increased by 10cm at every lower 

floor.  
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Figure 32. Typical timber column’s footing 
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Figure 33. Structural system of the building under study 

 

The foundation in the southeast corner of this building was substantially settled in 2015, 

due to nearby construction excavations. The differential settlements caused extensive 

cracks in the masonry elements (Figure 34 and 35). The timber framing did not get 
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damaged, since the simply supported girders were able to translate and rotate freely at the 

column connections (Figure 36). 

 

 

Figure 34. Excavations adjacent to the building 
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Figure 35. Typical cracks in the masonry wall as a result of differential settlements 
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Figure 36. Displacement of timber beams due to settlement 
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To create the finite element model of this building, we first needed to determine the 

modulus of elasticity of the timber and the boundary conditions of the girders. We 

determined the modulus of elasticity of the timber by applying a gravitational load on 

multiple girders and measured their response by means of strain sensors. Figure 37 shows 

the experimental setup and output of a typical experiment. Fiber Optic Bragg Grating 

sensors were employed in the tests, which are comprised of polyimide coated optical fibers 

(Ansari 2007; Meng et al. 2013; Nazarian et al. 2015, 2016). The applied gravitational load 

at the mid-span of the girder was increased in increments to ensure the linear response of 

the girder. The applied load versus the monitored bending strain at the mid-span is shown 

in Figure 38. As it can be seen in Figure 37, only negligible bending strains were observed 

at the two ends of the timber beam, indicating that the girders were designed to act as 

simply supported beams. Based on the cross sectional dimensions of the beams, and the 

measured strains, the modulus of elasticity of the timber employed in the framing of the 

building was computed to be 15.7 GPa.  
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Figure 37. Gravitation loading output of a typical structural frame 

 

 

 

Figure 38. The imposed gravitational load versus the monitored bending strain 
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In a similar manner, the average modulus of elasticity of masonry was determined by 

application of a horizontal load to the masonry wall of the building facing south.  In this 

case, frame number 1 of the building shown in Figure 39 was employed as a reaction 

element during the application of the horizontal load.  Response of the masonry wall was 

measured by strain sensors. Figure 40.b shows the photo of the experimental setup.  The 

experimental plan and the measured strains are shown in Figure 40.a. Two different loading 

configurations were examined to ensure that the same modulus of elasticity was obtained 

from both load tests. Since the thickness of the mortar layer and the FBG sensor are known, 

we determined the modulus of elasticity of the mortar and the brick by distributing the 

strain sensor over one and two layers of mortar as shown in Figure 41. Since the sum of 

the elongation of brick and mortar due to bending strain is equivalent to the elongation of 

the sensor (Figure 42), one can write: 

 𝜀𝑚ℎ𝑚 + 𝜀𝑏(ℎ𝑠 − ℎ𝑚) = ℎ𝑠𝜀𝑠 (48) 

Where, 

 𝜀𝑚 =
𝜎𝑠

𝐸𝑚
 (49) 

 𝜀𝑏 =
𝜎𝑠

𝐸𝑏
 

(50) 

 

𝜀𝑚 is the strain in the mortar, 𝜀𝑏 is the strain in the brick, ℎ𝑚 is the thickness of the mortar, 
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ℎ𝑠 is the gauge length of the sensor, 𝜀𝑠 is strain output of the sensor and 𝜎𝑠 is the average 

stress along the sensor’s gauge length. In this equation, ℎ𝑚 and ℎ𝑠 were measured 

physically (Figure 41.a),  𝜎𝑠 was determined by applying the loading pattern that was 

employed in the finite element model and obtaining the average stress at the location of 

strain sensor. By utilizing Equation 48 for both test scenarios (Figure 41), the modulus of 

elasticity of mortar and brick were obtained to be 1.77GPa, and 2.83GPa respectively. It 

should be noted that the masonry walls were painted. Hence, the authors have modified the 

photos in Figure 41.a to indicate the location of the mortar layers. 
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Figure 39. Structural loading location and frames numbers in the fifth floor 
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a) 

 

b) 

Figure 40. Structural loading: a) strain output; b) experimental setup 
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a) 

  

b) 

Figure 41. Arrangement of strain sensors a) dimensions b) experimental setup 
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Figure 42. Strain distribution over mortar and brick layers 

 

The Finite Element Model (FEM) of the building was constructed by using the commercial 

software SAP2000 (Figure 43). The walls were modeled as shell elements, and frame 

elements were utilized for modeling the columns, beams and girders. In training the 

machine learning models, all possible damage scenarios were simulated. Simulations of all 

the possible damage scenarios are time consuming. Hence, the simulations were automated 

by way of a program using C++ and employed as interface to the SAP2000 software. This 

approach enabled programmed reduction in the stiffnesses of structural elements for 

myriads of damage scenarios, and extraction of the strains from the FEM for training the 
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machine learning models.  

 

Figure 43. Finite element model (FEM) of the building 

 

4.2. Numerical Simulation Results 

 
The efficiency of the proposed technique was first evaluated by numerical simulation of 

damage in the finite element model of the building structure. We simulated multiple 

structural damage scenarios by reducing the stiffness of structural members on the south 

side of the fifth floor of the building. We then applied the loading shown in Figure 44 on 

frames 1 through 4 of the finite element model of the building (Figure 39). The strain 

responses from the simulated sensors shown in Figure 44 were acquired from the model 
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for utilization as input to the ML model. The sensor and loading locations were chosen so 

that they are identical to the experimental verification tests that are discussed in the 

subsequent sections of this article.   

In training of the model the loading configurations shown in Figure 44 was employed for 

every damage scenario. The models could then be trained since both the input strains and 

type of damage were known. The possible damaged elements considered in this study are 

shown in Figure 45, which also shows the identification number for the structural elements. 

The lower masonry elements were excluded, because the FEM results indicated that the 

strains obtained by applying the load test on the fifth floor do not provide information about 

the integrity of the lower three floors. The upper three floors have smaller cross-sectional 

dimensions; hence they have a weaker capacity against horizontal load effects, such as 

wind loads. Testing the fifth floor provides information about the integrity of the sixth, 

fifth and fourth floor elements. Hence the fifth floor was chosen as the test location to 

evaluate the weakest sections of the building.  
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Figure 44. Load and sensor configurations on the structural frames 
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a) 
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b) 

Figure 45. Possible damaged members in; a) masonry walls b) masonry columns 

 

 

Sensor noise was considered in training the model by simulating 1000 different versions 

of white noise of up to 10% of the extracted strains. Table VII shows the prediction 

accuracy of the SVM, NN and GNB approaches for various noise levels. Table VII 

demonstrates that NN model provides the highest accuracy. Furthermore, it can be seen 

that when a noise level of 10% is used, the prediction accuracy drops significantly for all 

the three approaches. Hence, in this study, a noise level of up to 8% was used for training 

of the ML model. The prediction accuracy was determined by k-fold cross validation 
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method with a k factor of 10 (Kohavi, 1995). 

 

Table VII. Prediction Accuracy   

Noise  

Level (%) 
SVM 

Prediction Accuracy 

NN 

Prediction Accuracy 

GNB 

Prediction Accuracy 

2 97% 98% 98% 

4 96% 96% 96% 

6 91% 93% 92% 

8 86% 90% 88% 

10 79% 86% 83% 
 

 

The damage scenarios shown in Table VIII were simulated as stiffness loss for evaluations 

of the three ML methods. For instance, the first row indicates that 20% of stiffness loss 

was simulated in element number 19 (Figure 45). The changes in strains due to the loading 

configurations in Figure 44 were then extracted from the finite element model. Table IX 

shows the strain output of the simulated model due to the proposed loading configuration 

including 8% noise to account for field conditions. These strain results were then employed 

in the machine learning method to determine the location and intensity of damage in 

structural members. Utilizing the ML model, the location of the structural members 

subjected to stiffness losses were determined accurately using all three methods. However, 

the damage intensities were determined with an error. The damage intensities and the 

relative errors using the three ML models are listed in Table X.  
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Table VIII. Simulated 

Damage 

Element 

number 

Damage 

intensity 

19 20 

10 10 

11 15 

14 70 

 

 

Table IX. Simulated strain sensors output 

Sensor ID Strain (με) Sensor ID Strain (με) 

S1 -8.5   S10 -18 

S2 -14   S11 -12 

S3 -16   S12 -15 

S4 -19   S13 -22 

S5 -17   S14 -20 

S6 -13   S15 -10 

S7 -10   S16 -19 

S8 -14   S17 -21 

S9 -21   S18 -28 
 

 

Table X. Percentage of error   

Element 

Number 

Actual 

Damage 

Intensity 

Detected 

Damage 

Intensity 

(NN) 

Relative 

Error 

(%) 

Detected 

Damage 

Intensity 

(SVM) 

Relative 

Error 

(%) 

Detected 

Damage 

Intensity 

(GNB) 

Relative 

Error 

(%) 

19 20 18 -10 18 -10 18 -10 

10 10 10 0 11 10 10 0 

11 15 16 7 14 -7 16 7 

14 70 64 -9 62 -11 63 -10 
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According to the results shown in Table X, the three methodologies were capable of 

determining the intensity of damage. NN provided the best results and SVM yielded larger 

errors. SVM predicted the structural damages with a maximum relative error of 11%.  

 

4.3. Experimental Results 

 
Following the numerical proof of concept tests, the proposed technique was further applied 

to determine the damage by testing the structure. The experiments were conducted by 

imposing horizontal loads in the same manner as in the numerical model. A typical 

structural loading experimental setup is shown in Figure 46.  
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Figure 46. Experimental setup for structural loading 

 

In a similar manner to section 3, Fiber Optic Bragg Grating sensors were employed in the 

tests. A hydraulic jack with pressure gauge was utilized to apply the load between the 

columns. The loading increased to 11.1 KN, in 2.22 kN increments. The strain response 

was recorded at various force increments.  Load tests and the location of strain sensors 

mimicked those in the numerical simulations described earlier (Figure 44). Table XI shows 

the raw strain sensor data for the eighteen strain gauges employed in the experiments.  
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Table XI. Strain sensors output 

Sensor ID Strain (με) Sensor ID Strain (με) 

S1 -8.5   S10 -17 

S2 -14   S11 -10 

S3 -16   S12 -35 

S4 -19   S13 -28 

S5 -17   S14 -48 

S6 -13   S15 -10 

S7 -8   S16 -27 

S8 -15   S17 -38 

S9 -18   S18 -38 

 

 

The strains shown in Table XI were used as input to the ML models. The intensity and 

location of the damaged members were then obtained. Figure 47, 48 and 49 depict the 

predicted loss of stiffness in the structural members using NN, SVM and GNB methods, 

respectively. The x-axis pertains to the element numbers depicted in Figure 45. The 

stiffness losses determined by NN model, the model with highest prediction accuracy, were 

simulated in the finite element model of the building to confirm that the result of the 

simulated sensors and experimental strains are in agreement.  Table XII compares the 

strains of the experiments and the strains obtained using the corresponding simulated 

structure. The results indicate that, except for member S7 and S17, the relative error 

between the strain levels was below 15%. The strain sensor readings for S7 and S17 are 

the lowest in compare to other sensors. Hence, they are significantly affected by the 

inherent sensor noises. This creates higher chance of error.  
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Figure 47. Detected percentage of damage in structural elements using NN 

1 2 3 4 5 6 7 8 9 10111213 14151617181920212223242526 27
0

25

50

75

100
D

a
m

a
g
e
 P

e
rc

e
n
ta

g
e
 (

%
)

Element



103 
 
 
 
 
 

 

Figure 48. Detected percentage of damage in structural elements using SVM 
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Figure 49. Detected percentage of damage in structural elements using GNB 
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Table XII. Strain sensors output     

Actual Experiments   Simulaitons   Relative 

Error 

(%) Sensor ID 

Strain 

(με) Strain (με)   

S1 -8.5   -9.7   14 

S2 -14   -14.8   2 

S3 -16   -18.0   13 

S4 -19   -20.8   10 

S5 -17   -19   12 

S6 -13   -13.3   2 

S7 -8   -10.0   25 

S8 -15   -17.3   15 

S9 -18   -19.0   5 

S10 -17   -18.3   8 

S11 -10   -11.3   13 

S12 -35   -36.5   4 

S13 -28   -29.2   4 

S14 -48   -49.2   2 

S15 -10   -12.2   22 

S16 -27   -27.2   1 

S17 -38   -39.6   4 

S18 -38   -38.6   2 

 

  



106 
 
 
 
 
 

 

CHAPTER 5 

 

5. CONCLUSIONS 

The content of this chapter was published as “Nazarian E, Ansari F, Zhang X, Taylor T 

(2016) Detection of Tension Loss in Cables of Cable-Stayed Bridges by Distributed 

Monitoring of Bridge Deck Strains. Journal of Structural Engineering, 142(6), 04016018” 

and “Nazarian E, Ansari F, Azari H (2015). Recursive optimization method for monitoring 

of tension loss in cables of cable-stayed bridges. Journal of Intelligent Material Systems 

and Structures, 1045389X15620043”. Reproduced with permission from ASCE and 

Journal of Intelligent Material Systems and Structures. 

 

As increasing proportion of infrastructures are exceeding their design life, and therefore, 

safety evaluation of such structures is becoming more important. In this thesis, 

methodologies were developed for damage assessment by means of fiber optic and 

electrical sensors. The developed methodologies utilize mathematical, probabilistic and 

machine learning approaches to quantify and locate damages in building and cable-stayed 

structures.  

The objective of the work described in the first chapter pertained to the development of an 

efficient method for detecting the cables that had either totally or partially lost their tensile 

force carrying capacities by distributed monitoring of the deck strains alone. A distributed 

sensing technology, BOTDA, was used to obtain the change of strain along the bridge deck. 

The methodology was evaluated through numerical simulations and actual experiments. 

The results indicated that the methodology is capable of detecting the cables that have lost 

over 30% of their tensile force.  
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The second chapter pertained to establishment of a structural health monitoring strategy 

based on discrete sensors to determine the tension losses in the cables of cable-stayed 

bridges. Point sensors were used to determine the change in shear forces adjacent to the 

supports. The proposed mathematical methodology then detected the location and intensity 

of damage in the cables using a recursive optimization technique based on finite element 

analysis.  In a similar manner to the first chapter, the efficiency of the methodology was 

evaluated using numerical analysis and actual experimentations. The results indicated that 

the method introduced herein, is capable of identifying the location and intensity of 

damages that involve up to two damaged cables.  

The work described in the third chapter pertains to structural health monitoring of building 

structures using a machine-learning based approach. The objective of this chapter was to 

develop a methodology to determine the location and the level of damage by applying 

selective load tests on the structural frames. The proposed approach utilized three machine 

learning approaches, namely: Neural Networks, Support Vector Machines, and Gaussian 

Naïve Bayes. The methodology was first evaluated by simulating damage in the finite 

element model of the building. The simulation results indicated that the proposed 

methodology is capable of recognizing the structural damages with 86% prediction 

accuracy, if the sensors noise level is within 8%. Furthermore, the efficiency of the 

approach was evaluated by implementing load tests on a six-story heritage building which 

was subjected to differential settlements. 
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