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Summary

This thesis is dedicated to the study of theories of physics Beyond the Standard Model

(BSM), specifically minimal extensions in which the Standard Model (SM) gauge group

is extended by a new U(1)′ factor. We study the implications and applications of such

U(1)′ extensions in the context of BSM and, in particular, in connection to Dark Matter

(DM).

We consider the possibility that DM interactions with the SM states are mediated though

a new Z ′ gauge boson which couples only to top quarks and DM. We call this scenario

the Top-philic Vector Portal. We present a comprehensive study of top-philic DM models

which can reproduce the correct DM relic density via the conventional freeze-out mecha-

nism and which satisfy the current constraints from: the Large Hadron Collider (LHC),

direct detection, indirect detection and electroweak precision tests. Additionally, we de-

velop a method for identifying whether a vector is truly top-philic, or couples to both t

and b, by considering the ratio of cross sections in the mono-jet and mono-photon searches

for DM at the LHC.

Subsequently, we discuss the case that the Z ′ gauge boson only has axial couplings to the

SM fermions. Such axial vector mediators are particularly interesting as portals between

the SM and DM, as the direct detection constraints on such models are weak. However,

additional U(1)′ gauge groups, under which the SM states are charged, generically lead

to gauge anomalies unless new exotic anomaly cancelling fermions are introduced. We

provide explicit examples and general methods for constructing anomaly free spectra

and argue that in certain classes of models the axial vector Z ′ mass is expected to be

comparable to the fermion exotics, in which case these models may be tested at current

and forthcoming experiments.

xi



Chapter 1

INTRODUCTION AND

BACKGROUND

1.1 The Standard Model and Beyond the Standard Model

The Standard Model (SM) of particle physics describes our visible world of fundamen-

tal particles and interactions nearly perfectly so far. Written in the language of quantum

field theory (QFT) and gauge theory, the SM explains the electromagnetic and weak force

between leptons and an additional strong nuclear force among quarks by the gauge medi-

ators photon, W and Z bosons, and gluons respectively. Moreover, the Higgs mechanism

[1] successfully addresses the difficulties of generating the SM massive particles in the

gauge theory framework including fundamental particles and gauge bosons except photon

and gluon. By introducing a fundamental scalar boson, Higgs boson, which plays the role

to give masses to the above mentioned massive gauge bosons via spontaneous symmetry

breaking (SSB) of electro-weak(EW) gauge symmetry and Yukawa couplings to massive

fermions respectively. On July 4 2012, a SM-like Higgs boson with mass 125 GeV [2, 3]

and the SM predicted interactions with fermions and decay channels was discovered at

the Large Hadron Collider (LHC) which affirms the foundation of the SM.

The understanding of our visible world is not complete since the SM still has several

theoretical and phenomenological loopholes and issues even though it has the above men-

tioned successes. First of all, the Hierarchy Problem challenges the SM with the large

discrepancy between electro-weak interaction and gravity force. More explicitly, it is an

1
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open question why Higgs is so light compared to the Planck scale MPlanck ∼ 1018 GeV and

how the Higgs boson mass survives the quantum correct divergence. According to QFT,

the Higgs boson mass receives divergent quantum corrections which requires one cutoff

regulation and it further implies there must be new physics present at about the cutoff

energy scale. If there is no new physics, then the Higgs mass correction is expected to be

order of MPlanck and is phenomenologically impossible to be the 125 GeV boson found at

the LHC without large fine tuning. Therefore, physics beyond the Standard Model (BSM)

is believed to be the answer to the hierarchy problem. Supersymmetry (SUSY) is one of

the most acceptable theories beyond Standard Model to solve the hierarchy problem. It

also can lead to unification of the gauge couplings at high scale. SUSY is a symmetry

that relates bosons and fermions which form superpartners pairs, i.e. fermions and bosons

are mass degenerate at MSUSY unless SUSY is broken. This can address the Higgs mass

issue due to cancellations between quantum corrections contribution from fermions and

bosons.

In addition to the hierarchy problem, the SM is short of explaining the existence of

dark matter (DM) which was initially inferred from deviations in long range gravitational

measurements by Fritz Zwicky in 1933 [4]. Zwicky observed the motion of the galaxies

in Coma galaxy cluster and found that there was a two-order of deviation on the total

mass by the luminosity of the Coma cluster and the number of galaxies. He further

proposed the deviation was caused by non-visible particle, dark matter which dominates

the gravitational force contribution since the visible matter is not sufficient enough to

stabilize the galaxy cluster. Moreover, there is more evidence in support of the existence

of from both the collisions between galaxy clusters, the Bullet Cluster [5] shown in Figure

1.1 and rotation velocity curves of galaxy [6] shown in Figure 1.2.

This thesis is dedicated to the study of theories beyond the SM involving minimal exten-

sions of the SM, U(1)′ Extension of the SM, the application of BSM to DM and collider

searching of DM at the LHC. In the following sections of this chapter, U(1)′ Extension

of the SM will be discussed first. Followed by DM physics discussion including DM relic

density production, DM phenomenology and searching for DM at the LHC.

In Chapter 2, we present the possibility that DM interactions with the SM are mediated

though a new vector Z ′ which couples to top quarks solely. We call this scenario the

top-philic vector portal. Moreover, we construct a comprehensive study of top-philic DM
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Figure 1.1: The Bullet Cluster provides the evidence for dark matter where the cen-
tral red region in this figure refers the hot gas distribution of the two colliding cluster
components observed in X-ray emission by the Chandra telescope. On the two separated
ends of this figure, the blue region infers the gravitational lensing of dark matter which
does not get affected by the cluster collision. In other wards, if dark matter doesn’t exist

then there should be just hot gas red regions after the collision.

Figure 1.2: The observation on the interstellar rotation velocity respect to the distance
from the center of galaxy NGC 2403 indicates the visible matter lacks the explanation to
the deviation of rotation velocity at the far edge of galaxy. According to Newton gravity,
the rotation velocity drops as the distance increases for a constant mass distribution
object, however, this figure shows the majority of the galaxy is dominated by a hypothesis

dark matter halo which contributes the rotation velocity distribution.
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models with the correct DM relic density via conventional freeze-out mechanism and

current LHC collider, direct and indirect detection limits.

In Chapter 3 and 4, we will discuss Z ′ gauge boson with only axial coupling to the SM

fermions by constructing several motivated models. With the introduction of the new

abelian U(1)′ , anomaly cancellation requires new exotics fermions. We argue that in

certain classes of models the axial vector Z ′ mass is comparable to the exotics. Further-

more, axial vector mediators can be portals between the SM and DM and the study of

the parameter space of DM density due to freeze-out via the axial vector is presented. A

summary of this thesis is presented in Chapter 5.

1.2 Gauge Extension of the Standard Model

This section follows treatments of [7, 8]

There are many proposed extensions of gauge symmetries in the SM or even in the Mini-

mal Supersymmetric Standard Model (MSSM) involving the extension of EW symmetry

SU(2)L×U(1)Y . For example, SU(2)L×U(1)Y ×U(1)′ with addition abelian U(1) sym-

metry, which is considered as the minimal extension of the SM from the bottom-up point

of view. If we consider a top-down example with a larger symmetry group, say SU(N)

which is broken spontaneously by a real adjoint scalar φ with its vacuum expectation

value 〈φ〉 (VEV or vev) and 〈φ〉 can be presented by an SU(N) transformation with un-

broken U(1)N subgroup. There are extra gauge bosons correlate with the introduction

of extended gauge symmetries. In this thesis, we focus on the neutral gauge bosons Z ′s

which is widely studied in the context of BSM, especially for being mediators between the

SM and DM.

In this section, the SM gauge structure and Higgs mechanism will be reviewed first. Then

we will focus on U(1)′ extension of the SM and the searches for the new neutral boson

Z ′. Finally we will discuss anomaly cancellation in the SM and in the case when a new

gauge is introduced.
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1.2.1 The Gauge Structure of the Standard Model and Higgs Mecha-

nism

The SM is formed by the gauge symmetries SU(3)C × SU(2)L × U(1)Y and we summa-

rize the fermion contents and gauge bosons with their SU(3)C × SU(2)L × U(1)Y gauge

representations and charges in Table 1.1:

Fermion (Nf=3) SU(3) SU(2)L U(1)Y

QL 3 2 1/3

uR 3 1 4/3
dR 3 1 -2/3
LL 1 2 -1
eR 1 1 -2

Scalar Boson SU(3) SU(2)L U(1)Y

Φ =

(
φ+

φ0

)
1 2 1

Vector Bosons g W i B

Table 1.1: The gauge structure of the SM contents.

where QL =

uL
dL

 and LL =

eL
νL

 are the SU(2)L doublets for left-handed quarks and

leptons.

The generic gauge invariant Lagrangian of the SM:

LSM = −1

4
FµνFµν + if̄i /Dfi + Yij f̄ iLΦf jR + |DµΦ|2 − V (Φ) + h.c. (1.1)

where FµνFµν is the field strength tensor operator of gauge field interactions, fi are

the three flavor fermion content of the SM including quarks and leptons and /D is the

corresponding gauge invariant and Lorentz invariant covariant derivative.

/D ≡ Dµγ
µ; (1.2)

Dµ = ∂µ + ig ~W · ~T +
1

2
ig′BµQY , for SU(2)L ×U(1)Y (1.3)

Dµ = ∂µ + igs ~G · ~T , for SU(3)C (1.4)

~W and ~G are SU(2)L and SU(3)C gauge fields with isospin operator ~T = ~σ/2 where ~σ

are 2 × 2 Pauli matrices. We can further express ~W · ~T = W+T+ + W−T− + W3T3 in
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terms of raising and lower operators of isospin T± = (T1 + iT2)/
√

2. g′, g, gs are the

U(1)Y , SU(2)L and SU(3)C gauge couplings respectively.

Yij is the Yukawa matrix of the SM fermion, Dµφ is Higgs field kinetic term and V (Φ) is

Higgs potential.

V (Φ) = −µ2|Φ|2 + λ|Φ|4, (µ2 > 0, λ > 0) (1.5)

When Φ acquires a non-zero vev v = ±
√

µ2

λ from Higgs potential, it breaks EW symmetry

SU(2)L×U(1)Y → U(1)EM spontaneously 1 and gives mass to the SU(2)L gauge bosons

W± and Z.

Φ =

 0

v+H√
2

 (1.6)

where H is the Higgs Boson and its Lagrangian becomes

LHiggs =
1

2
(∂H)2 +

1

4
g2W+W− (v +H)2 +

1

8
g2
ZZZ(v +H)2 − V

(
1

2
(v +H)2

)
(1.7)

which gives the mass of gauge bosons and Higgs boson:

mW =
1

2
gv; mZ =

mW

cos θW
; mH =

√
λ

2
v (1.8)

and photon is still massless after rotating the mass matrix of gauge bosons with Weinberg

angle θW : Z
A

 ≡
cos θW −sin θW

sin θW cos θW

W3

B

 . (1.9)

On the other hand, the SM fermions f i also receive mass from the Yukawa interaction in

Eq. (1.1) when Φ gets vev and mass Lagrangian is2:

Lmass = −Me
ij ē

i
Le

j
R −Mu

ij ū
i
Lu

j
R −Md

ij d̄
i
Ld

j
R + h.c. (1.10)

1SU(2)L × U(1) symmetry is still invariant in Eq. (1.1) but not for the ground state at non-zero vev.
2Neutrinos are massless in the SM since there is no right-handed neutrino in the SM. However, neutrino

oscillations observation provides the experimental evidence for non-zero neutrino masses and this will lead
to a mixing matrix as known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in the leptonic sector.
[9, 10]



Chapter 1. Introduction and Background 7

where Mu
ij and Md

ij are in the EW gauge eigenstate basis. Thsi can be diagonalized into

flavor basis by applying unitary matrices:

U−1
R MuUL =


mu 0 0

0 mc 0

0 0 mt

 (1.11)

and

D−1
R MdDL =


md 0 0

0 ms 0

0 0 mb

 (1.12)

where the unitary matrices are:


u1

u2

u3


L,R

= UL,R


u

c

t


L,R

(1.13)


d1

d2

d3


L,R

= DL,R


d

s

b


L,R

(1.14)

The EW charge current term from Eq. (1.1) indeed indicates there are flavor mixing

features for the SM quarks sector:

−LCC = i
g√
2
W+
µ

(
ū1L ū2L ū3L

)
γµ


d1L

d2L

d3L

+ h.c. (1.15)

= i
g√
2
W±µ

(
ūL c̄L t̄L

)
U†LDLγµ


dL

sL

bL

+ h.c. (1.16)

and we define the mixing matrix

V ≡ U †LDL (1.17)
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which leads to standard Cabibbo-Kobayashi-Maskawa (CLM) matrix [11, 12] with three

rotation matrices and one CP violation phase [13].

V ≡ R2(θ23)R3(θ13, δ)R1(θ12)

=


c12c13 s12c13 s13e

−iδ

−c23s12 − c12s23s13e
−iδ −c12c23 − s12s23s13e

−iδ c13s23

s12s23 − c12c23s13e
−iδ −c12s23 − c23s12s13e

−iδ c12c23

 (1.18)

where cij and sij are cosθij and sinθij the mixing angles of generation i with j the rotation

matrices are :

R1(θij) =


cij sij 0

−sij cij 0

0 0 1

 , (1.19)

R2(θij) =


1 0 0

0 cij sij

0 −sij cij

 , (1.20)

R3(θij , δ) =


cij 0 sije

−iδ

0 1 0

−sije−iδ 0 cij

 (1.21)

The diagonal values of CKM matrix in (1.18) are O(1) and off-diagonal values are small

and the current experiment measurement is reviewed in Review of Particle Physics from

Particle Date Group [14].



Chapter 1. Introduction and Background 9

The neutral current of Z boson in Eq. (1.1) doesn’t have mixing behaviors since

−LNC ≡ gZJ
µ
ZZµ (1.22)

= igLZµ

(
ū1L ū2L ū3L

)
γµ


d1L

d2L

d3L

+ L↔ R (1.23)

= igLZµ

(
ūL c̄L t̄L

)
γµU†LUL


uL

cL

tL

+ L↔ R (1.24)

= igLZµ

(
ūL c̄L t̄L

)
γµ


uL

cL

tL

+ L↔ R (1.25)

where gL,R ≡ gZPL,R and the projector operator PL ≡ 1−γ5
2 and PR ≡ 1+γ5

2 .

Due to the chirality of the SM fermion sector, the neutral current can be further expressed

into the vector and axial-vector:

− LNC =
∑
f

Zµf̄(gVf γ
µ + gAf γ

µγ5)f (1.26)

with gVf ≡ 1
2(gfL + gfR) and gAf ≡ 1

2(gfR − gfL). A more detail discussion of vector and

axial-vector coupling will be discussed in the context of a new gauge U(1)′ symmetry

below.

1.2.2 U(1)′ Extension

The generic neutral current Lagrangian of U(1)′ with the SM fermions (without the kinetic

mixing) can be expressed in terms of the SM neutral current with additional U(1)′ current:

−LNC = g′JµYBµ + gJµ3 W
3
µ + gXJ

µ
XXµ

= eJµQAµ + gZJ
µ
ZZµ + gZ′J

µ
Z′Z

′
µ (1.27)
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where X and Z ′ are the new gauge boson in gauge and mass eigenstate. g′Z is the new

U(1)′ gauge coupling and Zµ and Aµ are the SM neutral currents. Then we can express

the neutral current into vector and axial-vector combination as in Eq. (1.26) for the SM:

Jµi = gif̄γ
µ(QLPL +QRPR)f

= f̄γµ(gVi + gAi γ
5)f (1.28)

where i = Z, Z ′ and QL and QR are the gauge charges of left-handed and right-handed

fermions respectively. Using the chirality projector operators PL = 1−γ5
2 and PR = 1+γ5

2 .

This leads to the vector coupling gVi = gi
2 (QL + QR) and axial vector coupling gAi =

gi
2 (QL −QR). There are rich phenomenology studies arising due to the vector and axial

vector couplings. Here we present one example to illustrate the consequence for the case

of DM mono-jet searches at the LHC with the final state Z (or Z ′) with an energetic

jet in Appendix A. Furthermore, note that the vector coupling vanishes if it couples to

Majorana fermions ΨM due to Majorana fermion’s charge conjugation definition:

C−1ΨMC = ΨM, C−1ΨMC = ΨM (1.29)

and

C−1(γµ)C = −γµ (1.30)

leads to ΨMγ
µΨM = 0 for Majorana fermions. In SUSY, the fermionic superpartner of

neutral gauge bosons, neutralinos, are good theoretical candidates for Majorana fermions.

Z

f

f

Z ′

Figure 1.3: Kinetic mixing appears at loop when fermions have both U(1) and U(1)′

charges.

Kinetic mixing effect arises though loop correction when fermions carry both U(1) and

U(1)′ charges. [15] Figure 1.3 and mass mixing between the SM neutral bosons and new
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gauge boson can also arise. Consider a Lagrangian [16]:

Lmixing = −1

4
B̂µνB̂µν −

1

4
X̂µνX̂µν +

1

2
m2
Ẑ
ẐµẐµ +

1

2
m2
X̂
X̂µX̂µ

−1

2
sinεB̂µνX̂µν + δm2ẐµX̂µ (1.31)

where the hatted field contents are the canonical gauge interaction fields with mixing

effects. The mass mixing term can be realized if the SM Higgs has non-zero U(1)′ charge

δm2 = 1
2

eg′

ŝW ĉW
Q′Hv

2 or loop-induced if Higgs is neutral under U(1)′. The SM neutral

gauge boson Ẑ ≡ ĉW Ŵ 3 − ŝW B̂ with sine (ŝW ) and cosine (ĉW ) of Weinberg angle.

The mass eigenstates of neutral bosons in Eq. (1.31) can be expressed by applying a

rotation matrix to the hatted gauge fields to the canonical (non-hatted) gauge interaction

bases first and then diagonalized:


Bµ

W 3
µ

Xµ

 =


1 0 tε

0 1 0

0 0 cε



B̂µ

Ŵ 3
µ

X̂µ

 (1.32)


Aµ

Zµ

Z ′µ

 =


1/ĉW ŝW cξ −ŝW sξ
−ŝW 1/ĉW cξ ĉW sξ

0 −sξ 1/cξ



Bµ

W 3
µ

Xµ

 (1.33)

where

t2ξ =
−2cε(δm

2 +m2
Ẑ
ŝW sε)

m2
X̂
−m2

Ẑ
c2
ε +m2

Ẑ
ŝ2
W s

2
ε + 2δm2ŝW sε

(1.34)

Here we omit the mass mixing term ÂµX̂µ, although this can have implication for DM

millicharge studies.[17] The resulting Z ′ neutral current interaction becomes:

LZ′ = − e

2ĉW ŝW
cξZ

′
µf̄γ

µ
(
T f3 (ŝW tε − tξ) +Qf

(
ŝ2
W − ŝW tε

))
f (1.35)

and the SM neutral current can be expressed in the terms of electroweak precision tests

parameters (EWPT) [16, 18] with constraint of new physics [19–21]:

LZ = − e

2ŝW ĉW

(
1 +

αT

2

)
Zµf̄γ

µ

((
T f3 − 2Qf

(
ŝ2
W +

αS − 4ĉ2
W ŝ

2
WαT

4
(
ĉ2
W − ŝ2

W

) ))
− T f3 γ5

)
f

(1.36)

where T f3 and Qf are the fermion weak isospin and electric charge. The electric charge
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here remains non-hatted so α = e2

4π in Eq. (1.36). The EWPT parameters S and T are

defined:

S =
4

α
ĉ2
W ŝW ξ (ε− ŝW ξ) (1.37)

T =
ξ2

α

(
m2
Z′

m2
Z

− 2

)
+ 2ŝW ξε (1.38)

where mZ and mZ′ are physical masses of the Z and Z ′. The current limits on new

contribution to the EWPT parameters are referenced in [14].

The physical massive neutral bosons Z and Z ′ masses are obtained after we diagonalize

Eq. (1.33):

mZ =
√
mẐ2(1 + ŝW tξtε) + δm2c−1

ε tξ (1.39)

mZ′ =

√
mX̂2+δm2(ŝW sε−cεtξ)

c2
ε (1 + ŝW tξtε)

(1.40)

and the physical Weinberg angle and physical mZ satisfy the identity

sW cWmZ = ŝW ĉWmẐ . (1.41)

If we fix ŝW and mẐ , then Fermi constant is correct:

s2
W c

2
W =

πα(mZ)√
2GFm2

Z

(1.42)

Searching for new neutral bosons at the LHC is model-dependent which includes conven-

tional Drell-Yan production [22], pp → Z ′ → ll̄ or di-jet and in general there are a total

21 possible couplings to the SM fermions ui, diL, eiL, (L ↔ R) and νiL. In addition to

the final states of the SM fermions, Z ′ could also be a mediator to exotics fermions or

scalars and even DM which implies Z ′ decays to missing transverse energy (MET) and

other final state contents.

1.2.3 Anomaly Cancellation

When we introduce a new U(1) gauge symmetry with the SM gauge symmetries, there is

a fundamental constraint arising: the requirement is that there are no gauge anomalies
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since the SM is gauge anomaly free unless there are extra exotic fermions involved. Gauge

anomalies appear when conserved currents of a gauge theory is no longer conserved in

the presence of quantum corrections. For example, the vector current for a fermion with

U(1) gauge charge α is conserved when ψ → eiαψ:

Jµ ≡ ψ̄γµψ, and ∂µJ
µ = 0 (1.43)

However, the chirality of ψ leads to the non-conserved axial current for a massive fermion:

Jµ5 ≡ ψ̄γµγ5ψ, and ∂µJ
µ5 = 2imψψ̄γ

5ψ 6= 0 (1.44)

ψ

ψ

ψ

Figure 1.4: The Blue triangular vertex refers J5µ which has the chiral anomaly
contribution ∂µJ

µ5 = 2imψψ̄γ
5ψ 6= 0 in Eq. (1.44).

Anomaly cancellation generally requires additional exotics or non-chiral structure, e.g.

vector-like exotics in new physics. However, model-building of anomaly-free spectrum

is not trivial as many works have shown either by the bottom-up construction [5, 23]

or top-down approaches [24, 25]. In Chapter 3 and 4, we consider the case of anomaly

cancellation when Z ′ is a pure axial vector which has rich phenomenology especially in

DM searches. We further highlight the additional constraints from gauge coupling running

effect and the unitarity condition of Z ′ s-channel scattering process.

1.3 Dark Matter Physics

The majority of this thesis is related to the study of DM which has both theoretical and

phenomenological motivation from BSM. For a experimental point of view, DM can be

detected in three main methods:
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• Direct detection: When DM scatters with the SM particles at the detectors, the

scattering signal can produce the recoil energy for atomic nuclei in the direct de-

tection experiments, e.g. LUX and PandaX, which have the most recent direct

detection limits from the null result of DM searches [26–28]. The direct detection is

illustrated in Figure 1.5(a).

• In-direct detection: The annihilation process of DM not only settles the relic abun-

dance but also provides a source of the cosmic rays from galaxies, e.g. Fermi-LAT,

AMS-02 and PAMELA [29–31]. The illustration of in-direct detection is shown in

Figure 1.5(b)

• Collider search at the LHC: If DM is produced at the LHC, it will become an

apparent imbalance of the total transverse momentum with SM final states, for

example, mono-jet or mono-photon with MET[32, 33] shown in Figure 1.5(c). There

are other search channels at the LHC which are model-dependent. In Chapter 2,

we focus on a simplified model in which the new vector boson Z ′ only couples to

right-handed top quark and DM. We will discuss the mono-jet and tt̄ + MET [34]

search of DM.

SM

DM

SM

DM

(a) DM direct detection

DM

DM

SM

SM

(b) DM indirect detection

SM

SM

SM

DM

DM

(c) DM collider search

Figure 1.5: The three different DM detection and search channels: (a) the scattering
between DM and the SM particles at the detector gives us the direct detection of DM;
(b) the annihilation of DM from the galaxies provides the search of cosmic rays excess
experiments; (c) searching DM at the LHC requires the associate the SM state along

with DM production which becomes MET.

In this section, DM relic density will be discussed since it provides a good foundation for

the discussion of parameters space in phenomenological studies. Following we discuss the

search for DM in both effective field theory (EFT) and simplified model scenarios.
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1.3.1 Dark Matter Relic Density

In the early Universe, most of the elements of the Universe were in the thermal equilibrium

and then it expanded and cooled with the Hubble rate H. The number density abundance

of massive particles (mass = M) becomes exponentially small and frozen when the tem-

perature is not able to produce those massive particles from the hot bath (Tbath < M) in

the expanding universe. The number density is called Relic Density which is controlled

by two factors: the expansion rate of the Universe H and the thermal annihilation cross

section 〈σann〉 of the species. The Boltzman equation of the number density of a massive

particle X with respect to time:

d

dt
nX + 3HnX = −〈σannv〉(n2

X − n(eq)2
X ) (1.45)

where 〈σannv〉 is the particle-antiparticle XX̄ annihilation cross section times the relative

velocity of two particles annihilating, n
(eq)
X is the equilibrium density without the chemical

potential:

n
(eq)
X ∼ gX

2π3

∫
1

eE/kT ± 1
d3p (1.46)

gX is the degrees of freedom(d.o.g.) (gX = 1 for a real scalar, gX=2 for a massive vector

boson or a fermion). In the non-relativsitc limit ( kT � m),

n
(eq)
X = gX(

mkT

2π
)3/2em/kT (1.47)

where 3HnX tells us the expanding effect of the Universe and the number density of

particle in a co-volume nXa
3 or in terms of temperature nXT

−3 shall be a constant

without the annihilation process. Here we further define two parameters to rewrite Eq.

(1.45):

YX ≡
nX
s
, s =

2π2

45
gs∗T

3, gs∗(Ti) =
∑
boson

gi(
Ti
T

)3 +
7

8

∑
fermion

gi(
Ti
T

)3 (1.48)

and a new defined parameter

x ≡ mX

T
. (1.49)
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Thus Boltzman equation Eq. (1.45) becomes:

d

dx
YX ≡ −λx−n−2(Y 2

X − Y (eq)2
X )

= − 1

xn+2

s

H(mX)
〈σannv〉(Y 2

X − Y (eq)2
X ) (1.50)

where

λ = 0.264Mpl(
gs∗√
g∗

)mX〈σannv〉 (1.51)

Yeq = 0.145(
g

gs∗
)x3/2e−x (1.52)

The Boltzman equation in Eq. (1.50) can be solved in the mechanism of freeze-out which

means at early time (x � xf ) the co-moving number density Y follows the thermal

equilibrium co-volume number density Yeq very closely Y ≈ Yeq. At the later time (x �
xf ), Y looses tracking Yeq and becomes Y∞ at freeze-out temperature xf :

Y∞ =
n+ 1

λ
xn+1
f (1.53)

xf = Log

(
(2 + c)λac−

(
n+

1

2

)
Log (Log (2 + c)) + . . .

)
(1.54)

with the numerical input constant c ∼ O(1), a = 0.145( ggs∗
), and the order n of Taylor

expansion of annihilation cross section refers to s-wave channel (n =0), p-wave (n=1)

channel, etc.

We illustrate the evolution of Y from solving Eq. (1.50) with respect to x in Figure 1.6

for freeze-out mechanism. In general, the freeze-out co-moving number density of particle

X is controlled by the mass of particle and the thermal annihilation cross section 〈σannv〉:

Y FO
∞ ∼ 1

mX〈σannv〉Mpl
(1.55)

where Mpl ≈ 1018 GeV.

The measured relic density of DM is related to Y by:

Ωχ =
somχ

ρc
Yχ (1.56)

where the entropy density today so = 2.8 × 10−3cm−3 and the critical density ρc =

10−5h2 GeVcm−3.
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Yeq

Y H<Σv> is smallerL
Y H<Σv> is largerL

1 5 10 50 100 500 1000

-30
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g@Y
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Figure 1.6: The co-volume number density Y keeps tracking along with Yeq at the early
universe and then freezes-out at temperature xf . Note that the co-volume density after

freeze-out depends on the thermal average annihilation cross section 〈σannv〉.

DM relic density is observed Ωχh
2 ' 0.12 and it applies 〈σannv〉 ≈ O(10−26) cm3s−1 fro

freeze-out DM [35].

1.3.2 Search of Dark Matter in Simplified Models and Effective Field

Theory

Following the discussion of the DM relic density, if there is such a weakly interacting

massive particle (WIMP) with the correct relic density Ωχh
2 ' 0.12 (WIMP mircle),

then the search for DM can be understood using the three methods highlighted above.

However, the knowledge of hidden sectors is the missing part of the SM and the current

detection results nearly rule out the possibility of Higgs or Z as the mediators of DM

[36]. Therefore new physics is needed to construct viable DM models. In this thesis, we

consider a minimal extension of the SM by considering DM simplified models [37, 38].

The models can be s-channel portal which are further categorized into two groups by the

spin-state of DM mediator3:

LV ⊃
∑
f

f̄Vµ
(
gVf γ

µ + gAf γ
µγ5
)
f + χ̄

(
gVχ γ

µ + gAχ γ
µγ5
)
χ (1.57)

Lφ ⊃
∑
f

f̄φ
(
ySf + yPf γ

5
)
f + φχ̄

(
ySχ + yPχ γ

5
)
χ (1.58)

3Here DM is assumed to be Dirac fermion. Majorana DM only has axial-vector or pseudo-scalar
interaction and there is a factor of 1/2 for the couplings compared to Dirac DM cases.
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where Eq. (1.57) and Eq. (1.58) are the vector portal and scalar portal DM simplified

models respectively. This thesis is mainly focus on the vector portal models. The couplings

of the mediators refer to the g(y)if for the SM couplings and g(y)iχ for DM couplings

where i can be V for vector, A for axial-vector, S for scalar and P for pseudo-scalar

mediators respectively. For s-channel simplified models, DM search is controlled by five

parameters (mχ, mmed, g(y)if , g(y)iχ, Γmed): DM mass, mediator mass, the SM coupling,

DM coupling and the decay width of the mediator. Here the decay width is considered in

the minimal width assumption:

Γ ≡ ΓV (φ)→χχ̄ + ΓV (φ)→ff̄ + Γφ→gg (1.59)

where the last term is forbidden for vector mediators due to Landau-Yang theorem. [39,

40]

In the collider search for DM with simplified models, the mediator can be produced either

on-shell(mmed > 2mχ(q)) or off-shell (mmed < 2mχ(q)). Furthermore, if the mediator

mass is heavier than the collider kinetic allowed region, i.e. mmed �
√
s, ( where

√
s

is the center mass energy of the collider) then simplified models reach the effective field

theory (EFT) region which means we can integrate the mediator mass and then study

DM search with the effective operator Oeff .

Leff =
1

Λn
O4+n
eff (1.60)

where Λ is EFT scale, for example, the dimension-6 operator Λ ≡ mmed√
gfgχ

. In the collider

search for DM, we can express the matrix element for the production cross section of DM

with EFT scale:

M∝ gfgχ

m2
med − s

≈ 1

Λ2
(1.61)

and the null DM search result from the LHC provides the lower limits for the different

search channels. Thus far, the current LHC model-dependent bound Λ ∼ O(102) GeV to

O(103) GeV for O(102) GeV DM. In Chapter 2, we study both EFT and simplified model

scenarios within a vector portal DM simplified model in which the new gauge neutral

boson Z ′ only couples to top quark. We name this model the top-philic vector portal.
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Additionally, there is another simplified model which focuses on the mediator coupling

one SM fermion and one DM particle:

L ⊃ gφ
∑
f

φ∗i χ̄fR + φf̄Lχ (1.62)

where DM χ is a SM singlet and the scalar mediator carries appropriate SM charges to

keep Eq. (1.62) gauge invariant. The scalar here is similar to the sfermion in Minimal

Supersymmetric Standard Model (MSSM).

In direct detection search for DM, generally speaking, the recoil energy of the detectors

is below the mass of mediator, therefore we will apply low energy nuclear EFT with DM-

SM EFT approach and also non-relativistic limits (vDM ∼ 10−3c) for direct detections.

[41, 42] Note that there are two EFTs involved in direct detection:

LχN =
1

m2
med

χOχeffχNONeffN (1.63)

where Oχeff is from Eq. (1.60) and ONeff is EFT from nucleon energy scale by integrating

out EW scale which includes the sum of quarks couplings in the nucleons of the detectors:

ONeff ⊃ (GNv N̄γµN + GNa N̄γµγ5N) (1.64)

where N is for nucleons including protons (p) and neutrons (n) and the couplings GN are

the sum of quarks couplings within the nucleon:

Gpv = 2Guv + Gdv
Gnv = Guv + 2Gdv

GNa =
∑

q=u,d,s

Gqa∆N
q (1.65)

the axial vector charges ∆N
q are the light quark contribution to the spin of the nucleon

N. The details of G are calculated and reviewed in [42]. After matching two EFTs and we
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can evaluate DM-nucleon interaction matrix elements to non-relativistic limit:

MχN ≡ 〈χN |LµNχN |χN〉

=
1

m2
med

OχeffONeff

'
∑
i

CNχ,iONRi (1.66)

where CNχ,i are the non-relativistic effective operator coefficient of the model-dependent

ONRi operators which implies spin-independent and spin-dependent DM-nucleon scatter-

ing cross sections corresponding to different combinations of OχeffONeff in Eq. (1.66):

σχNSI =
∑
i

µχN
π

(g(y)χGNi )2

m4
med

σχNSD =
∑
i

3µχN
π

(g(y)χGNi )2

m4
med

(1.67)

with the reduce mass of DM-nucleon system µχN =
mχMN

mχ+MN
. The current direct detection

limits from LUX [26, 27] for spin-independent and spin-dependent scattering cross section

(including LZ projected limits) in Figure 1.7 and Figure 1.8.
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Figure 1.7: The current spin-independent scattering cross section between DM and
nucleon from LUX [27].

If DM annihilation occurs in the high DM density region in our universe, they can produce

the fluxes of cosmic rays of the SM particles, for example, the gamma rays detection from
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Figure 1.8: The current spin-independent (including neutron and proton) scattering
cross section between DM and nucleon from LUX and LZ projected limits with other

direct detection experiments bounds. [26]

Fermi Large Area Telescope (Fermi-LAT) [29] which presents 6 years gamma ray observa-

tion data from the dwarf spheroidal satellite galaxies (dSphs) of the Milly Way. In Fermi-

LAT experiment, the gamma ray signal flux φ ( ph cm−2s−1, photon per cm2 per second)

integrated over a solid angle ∆Ω at Fermi-LAT detector is defined:

φ(∆Ω) =
1

4π

〈σv〉
2m2

χ

∫ Emax

Emin

dNγ

dEγ
dEγ︸ ︷︷ ︸

particle physics

×
∫

∆Ω

∫
l.o.s.

ρ2
DM (r)dldΩ′︸ ︷︷ ︸

J−factor

(1.68)

where the coordinate r in the J-factor is the Galactic Center coordinate r =
√
r2
� + l2 − 2r�lcosθ

with r� = 8.33kpc(kiloparsec), l is the line of sight (l.o.s.) and θ is the angle between the

direction of l.o.s and the axis of connecting the Earth to the Galactic Center. Milky Way

dSphs can give the gamma ray excess raise from J-factor of O(1019) GeV2cm−5 [29, 43, 44]
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with ρDM = 0.3 GeVcm−3. However, there is no excess beyond the background gamma

ray excesses being observed which leads the upper bound for DM annihilation cross sec-

tions dependent on DM primary decay channels, for example, χχ̄→ bb̄ or χχ̄→ τ τ̄ which

and then decay to photons in Figure 1.9. As we can see from Fermi-LAT results, the

in-direct detection limits are shown on the annihilation cross sections for light DM (mχ <

100 GeV) and we will discuss the impacts on the parameter space in our studies.
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Figure 1.9: With the null extra gamma excess observed from Fermi-LAT, the annihi-
lation cross section upper limits for χχ̄→ bb̄ or χχ̄→ τ τ̄ from Eq. (1.68).



Chapter 2

TOP-PHILIC VECTOR PORTAL

DARK MATTER

2.1 Introduction

From an effective field theory stance, portal operators involve a gauge and Lorentz invariant

combination of both the SM fields and operators of hidden sector fields Ohidden should be

present. For example, the Higgs portal, |H|2Ohidden [45, 46] is well motivated. In this case,

diagrams through the SM fermions couple to hidden sector states involve a Higgs VEV

insertion 〈H〉, and thus characterized by Yukawa couplings yq = mq/〈H〉. For instance,

the dimension six operator coupling fermion DM χ and Standard Model quarks q after

electroweak symmetry breaking is typically of the form:

mq

Λ2
χχqq , (2.1)

where Λ is characteristically the mass of a new (heavy) scalar mediator. Indeed, deviations

from Yukawa-like couplings näıvely run foul of minimal flavor violation (MFV) constraints

[47].

Since interactions involving the Higgs portal are Yukawa suppressed, collider searches are

typically substantially weaker than compared to universal interactions. The reason for

this is that light fermions are heavily suppressed due to their small Yukawa couplings, and

the heavy quark content of the nucleons is very small. Therefore the main production

23



Chapter 2. Top-Philic Vector Portal Dark Matter 24

process for such yq-suppressed operators is via gluon fusion involving loops of top and

bottom quarks [48].

It is intriguing to consider alternative scenarios involving different mediators states in

which the dominant production of DM at colliders occurs through loops. We will primarily

consider the implications of a new spin one mediator which couples to only hidden sector

states and the top quark. We call this the top-philic vector portal. Since this new vector

only couples directly to top quarks of all the Standard Model states, as with the Higgs

portal DM will be essentially be only produced via loops. Moreover, the parameter space

of the universal coupling Z’ or H models suffers severe constraints on the both couplings

and the masses of DM and mediator [36].

New spin one degrees of freedom are ubiquitous in BSM physics [8], and can potentially

mediate interactions between the DM and SM states. At the effective field theory level,

contact operators between DM χ and quarks q mediated by vector bosons are of the form

χγµχqγ
µq, while for axial vectors the operators generated are χγµγ

5χqγµγ5q. This implies

the spin-independent and spin-dependent scattering cross sections respectively. Examples

appear in the meson sector of QCD [49] exhibits a rich spectrum of spin-1 bosons, those

with odd parity JPC = 1−± are vectors, while even parity JPC = 1+± states are axial

vectors. The vector mesons and axial vector mesons are the 1+− state h1(1170) and the

1++ state f1(1285).

The purpose of this chapter is to study the phenomenology of new vector and axial vector

states which couple preferentially to top quarks. First, we start with a simplified model in

which only the right-handed top couples to the new spin one mediator Z ′. Such top-philic

scenarios arise in a range of scenarios, as we discuss shortly, and aspects of the collider

phenomenology [50–52] and their potential for generating interesting indirect detection

signals [53, 54] have previously attracted attention. In particular, this scenario is of

interest in the context of certain DM models, specifically, the Fermi 130 GeV line(s)[54,

55], and the Galactic Centre excess observed by Fermi-LAT [56]. Finally, we develop a

phenomenological method for clarifying the ambiguity arising from the chirality of top

quark which has not been studied in the literature.
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2.2 LHC Constraints of Z ′ coupled to only tR

For hidden sector states χ which interact with the SM states, in our case via their interac-

tions with top quarks, particle collisions at the LHC can potentially produce these states.

If the hidden sector states are stable on collider timescales (for instance DM which is sta-

ble on cosmological timescales). Once DM is produced, it will escape the detector and its

presence can only be inferred through the observation of anomalous amounts of missing

transverse energy (MET). Thus searches [57, 58] for events with missing energy, such as

mono-jets (pp→ j+MET), mono-photons (pp→ γ+MET) or tt+MET can provide model

independent limits on the interactions of χ with quarks and gluons [48, 59–70].

In this section, we explore the current bounds on hidden sector states coupled to the

SM states via top-philic vectors or axial vectors. We present both a model independent

effective field theory (EFT) analysis based on dimension six operators χγµχqγ
µq and

χγµγ
5χqγµγ5q, and a UV complete analysis in the context of the model outlined in Section

2.6. We shall focus on the constraints which arise from the null searches for mono-jet and

tt+MET events. Finally, we will discuss the prospect of using complementary channels to

distinguish between vector and axial vector couplings, in the event of an observed excess

in these searches for missing energy.

Searching for DM as the missing transverse energy with a high energetic jet [33, 57, 58]

is a relatively clean signal at the LHC. We consider the case that mZ′ is present from

10 GeV to 10 TeV. 1 For the current mono-jet and tt+MET studies, mχ is taking to be

inthe mass range of 1 GeV to 1 TeV. We also consider that the couplings gt and gχ are

equal (i.e. both DM and top have the same U(1)′ charge), the couplings of gt and gχ are

both O(1) or less in order to maintain the acceptable perturbative behavior. As we shall

show, if the DM relic density is set due to thermal freeze-out process via the top-philic

vector, the corresponding Z ′ mass range consistent with LHC searches for mono-jet and

tt+MET is between 100 GeV to 10 TeV and the DM mass should lie in the range 1 GeV

to 1 TeV.

1When DM coupling disappears, the lower bound of mZ′ is constraints from the decay channels to the
SM states. Here we take the conservative lower limit due to its non-zero invisible decay and small mixing
angle between Z-Z′. [36]
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First of all, we consider the simplest top-philic Z ′ DM model by coupling the top quark

tR and Dirac DM χ to a new U(1) gauge boson Z ′ with qtL, tR and qχL, χR charges:

L = t̄γµ (gZ′qtLPL + gZ′qtRPR) tZ ′µ + χ̄γµ (gZ′qχLPL + gZ′qχRPR)χZ ′µ

= t̄γµ
(
gZ′qtL

(
1− γ5

2

)
+ gZ′qtR

(
1 + γ5

2

))
tZ ′µ

+χ̄γµ
(
gZ′qχL

(
1− γ5

2

)
+ gZ′qχR

(
1 + γ5

2

))
χZ ′µ

= t̄
(gZ′

2
qtL
(
1− γ5

)
γµ +

gZ′

2
qtR
(
1 + γ5

)
γµ
)
tZ ′µ

+χ̄
(gZ′

2
(qχL + qχR) γµ +

gZ′

2
(qχL − qχR) γµγ5

)
χZ ′µ

≡ t̄
(
gtL
(
γµ − γµγ5

)
+ gtR

(
γµ + γµγ5

))
tZ ′µ + χ̄

(
gχV γ

µ + gχAγ
µγ5
)
χZ ′µ (2.2)

where in the last equation we have introduced:

gtL ≡ gZ′

2
× qtL; gtR ≡

gZ′

2
× qtR (2.3)

gχV ≡ gZ′

2
× (qχL + qχR); gχA ≡

gZ′

2
× (qχL − qχR) (2.4)

Furthermore, we observe that in that case of qtL = 0, Eq. (2.2) reduces to

L = t̄(gtR(γµ + γµγ5))tZ ′µ + χ̄(gχV γ
µ + gχAγ

µγ5)χZ ′µ (2.5)

We find that vector contributions is negligible in Eq. (2.2) due to either the center mass

energy
√
s suppression i.e. the loop structure of vector coupling contributions are the box-

diagrams which is relatively harder for a pair of initial gluons to generate Z ′ plus either

mono-jet or top quark. The difference between vector and axial-vector contribution is

about two orders of magnitude. More details are discussed in Appendix A.

It is not immediate to obtain information regarding the chirality of a given vector op-

erator. We note that the fact that the SM fermion content is chiral under SU(2) gives

an opportunity to quickly break this ambiguity, since the left-handed top and bottom

form a SU(2) doublet. Thus if Z ′ coupled to the left handed top it must couple to the

left handed bottom leading to a top-bottom-philic Z ′ vector boson rather than purely

top-philic model. This ambiguity has been neglected in the literature and we develop a

phenomenological method to address this in Section 2.5.
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2.2.1 Effective Field Theory Approach

One can consider an EFT approach in which the heavy mediator Z ′ state is integrated

out leading to effective operator description. For instance, a Z ′ which couples to fermion

DM and quarks, when integrated out, leads to the following dimension six operator:

L ⊃ 1

Λ2
O6 , O6 = gtgχ(χγµγ5χ)(tγµγ5t) (2.6)

where Λ ≡ mZ′/
√
gtgχ is the scale of the effective operator.

The effective operator O6 can further induce the gluon fusion effective operator by apply-

ing the partial axial vector current conservation [71]

O6 = gtgχ (χγµγ5χ) (gµν)
(
tγνγ

5t
)

= gtgχ (χγµγ5χ)

gµν − kµkν

k2︸ ︷︷ ︸
=0

+
kµkν

k2

(tγνγ5t
)

=
gtgχ
k2

∂µ (χγµγ5χ) ∂ν
(
tγνγ

5t
)

=
gtgχ
k2

(2imχχγ5χ)×

 2imttγ
5t︸ ︷︷ ︸

−αs
4π
I(k2,m2

q)G
(a)
µν G̃(a)µν

+
αs
4π
G(a)
µν G̃

(a)µν


M →

(
2mχ

Λ4
∗

)
(χ iγ5 χ)

{αs
4π

[1− I(k2,m2
t )]G

(a)
µν G̃

(a)µν
}

(2.7)

where Λ∗ =
mZ′

(gtgχ)1/4
and the loop function is given as:

I(k2,m2
t ) = 2!

∫ 1

0

∫ 1−y

0

dx dy

1− k2xy/m2
t − iε

(2.8)

This function is explicitly known, I(k2,m2
t ) = f(τ)/τ , with τ = k2/(4m2

t ), and

f(τ) = Θ(1− τ) arcsin2√τ −Θ(τ − 1)
1

4
(ln

1 +
√

1− 1/τ

1−
√

1− 1/τ
− iπ)2 (2.9)

We study the 13 TeV LHC mono-jet limits at luminosity L = 3.2 fb−1. Specifically, we

use FeynRules [72], FeynArts[73] to generate model files, MadGraph5 [74] for the events

generation, Pythia 6 [75] for parton showering and Delphes 3 for the LHC detector re-

sponse simulation[76] based on the event selection rules from the ATLAS mono-jet+MET

[33].
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The simulation events are identified as signal events if the following critiques are all

satisfied:

• MET > 250 GeV

• The leading jet pt >250 GeV and |η| < 2.4

• At most four jets with pt > 30GeV and |η| < 2.8

• ∆φ(jet, ~p miss
T ) > 0.4

• No muons with pt >10 GeV or electrons with pt >20 GeV

and the inclusive signal region of MET:

Inclusive signal region IM1 IM2 IM3 IM4 IM5 IM6 IM7

MET (GeV) > 250 > 300 > 350 > 400 > 500 > 600 > 700

Table 2.1: The inclusive signal region.

The EFT scale Λ∗ in Eq. (2.7) determines the production cross section σMonojet which

sets the number of event yields # = σMonojet×L× efficiency from the selection rules (the

best limit in the selection inclusive regions with 95% CLs). By rescaling the Λ, we obtain

from MadGraph + Pythia + Delphes (for short, we refer to these packages as MPD):

#MPD

#ATLAS
=
σMPD × L× eff.

#ATLAS
∝ (

ΛATLAS

ΛMPD
)8 (2.10)

where ΛMPD is given by the input parameters ΛMPD =
mZ′

(gAtgAχ)1/4
and ΛATLAS is the

effective scale Λ∗ in Eq. (2.7) for the mono-jet DM search.

Eq. (2.10) can be expressed as following:

ΛATLAS = ΛMPD × (
#MPD

#ATLAS
)1/8 (2.11)

and we extract the limits on Λ with respect to different DM masses in Figure 2.1

For the tt+MET search [34] at the 13 TeV LHC collider with luminosity L = 2.2 fb−1,

there are two event selection categories depending on the number of leptons in the final

state. Since the top quark mainly decays to bW and W can either decay to di-jets or one
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Figure 2.1: EFT scale Λ∗ lower limit respect to DM mass 1 GeV to 1TeV from ATLAS
mono-jet search. We use Eq. (2.11) to interpret Λ∗ in Eq. (2.7) from MPD simulation

results.

lepton and one neutrino: semi-leptonic final state which has exactly one lepton and fully

hadronic final state which has no any leptons shown in Figure 2.2:

g

g

t̄

χ̄

t

t
Z ′

t

χ

Figure 2.2: DM production with top quark pair via gluon t-channel at LHC which
leads to EFT after integrating out Z’.

The semi-leptonic selection rules are:

• MET > 160 GeV

• Jet pt > 30GeV, 3 or more jets of which at least one b-tagged jet

• |η| < 4 and ∆φ(~p miss
T , jeti) > 1.2 up to the two leading jets

• Exactly one lepton which has pt > 30GeV and and |η| < 2.1

• The transverse mass mT =
√

2plt E
miss
T (1− cos∆φ(~p miss

T , lepton)) > 160 GeV

• No muons with pt >10 GeV or electrons with pt >20 GeV



Chapter 2. Top-Philic Vector Portal Dark Matter 30

• MW
T2 > 200 GeV

where the MW
T2 [77] variable is defined as the minimal mass for the mother particle which

is compatible enough for all the transverse momenta and production W boson in top

quark pair system. The MW
T2 contains a kinematic end-point which can help us to address

the ambiguity of MET araising from neutrinos or DM.

While the fully hadronic selection rules are:

• MET > 200 GeV

• Jet pt > 30GeV, at least 4 jets of which at least two b-tagged jet

• |η| < 4 and ∆φ(~p miss
T , jeti) > 1 up to the six leading jets

• Leptons with looser criteria which has pt > 10GeV and |η| < 2.1

The lower limit on Λ arises from the maximum number of event yields allowed by null

seraches with respect to different DM masses from (95% CL) given in Figure 2.3.

1 5 10 50 100 5001000

1000

2000

1500

mΧ HGeVL

L *
HGe

V
L

ttMET �13 TeV, 2.2 fb-1, tR-philic

Figure 2.3: EFT scale Λ∗ lower limit respect to DM mass 1 GeV to 1TeV from CMS
tt+MET search. We use Eq. (2.11) to interpret Λ∗ in Eq. (2.7) from MPD simulation

results.

To summarize, we use the null result of the DM search at LHC to set up the lower limit

bounds of EFT scale Λ from two different searching channels mono-jet and tt+MET. The

mono-jet search has about a 20% stronger bound than tt+MET for the same DM mass

and both bounds are Λ∗ ∼ O(1.5 TeV).
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2.2.2 Simplified Models Approach

We further study the light Z ′ mass (mZ′ < 1 TeV) parameter space by considering the

simplified model of Eq. (2.2). In addition to the above discussed collider limits, the

unitarity of self-scattering amplitude of top-quark or DM provides another bound [20]:

mZ′ &
(gf

1

)( mf

1 GeV

)
GeV, (2.12)

where mf , gf are top-quark, DM or further exotics [78] mass and coupling. Moreover, the

decay width of the Z ′ needs to be considered in the simplified model scenario. Here we

use MadGraph to generate the decay width with the narrow width approximation so that

the Z ′ is produced on-shell within certain kinetic regions. The production cross section

for either mono-jet or a top pair with DM is determined by (mZ′ , mχ, gχ, gt). Here we

fix the couplings of Z ′ to investigate the allowed parameter space of (mZ′ , mχ) with O(1)

couplings. Following the same process for the effective operator approach, we simulate

the events with MadGraph 5, Pythia 6 and Delphes 3.

First, we consider the case in which Z ′ couples to DM axially and right-handed top solely:

L = t̄(gtR( γµ︸︷︷︸
�

+γµγ5))tZ ′µ + gχAχ̄γ
µγ5χZ ′µ

≡ gtt̄γ
µγ5tZ ′µ + gχχ̄γ

µγ5χZ ′µ (2.13)

and we fix the couplings to make gt = gχ = 1 such that the collider bounds are highly

constraining, but the couplings remain in the acceptable perturbative region. Note that

the vector contribution is negligible compared to the axial-vector contribution.

We show the constraints from the mono-jet and tt+MET searches in Figure 2.4 and Figure

2.5. These figures show the unitarity bounds and the LHC limits on the mono-jet and a

top pair with DM production cross section based on the number of events from [33] and

[34] respectively. The gray shaded area indicates the unitarity bound and this overlaps

with the collider limits. Then in Figure 2.6 and Figure 2.7 we take gt = gχ = 0.5 to

show how the parameter space changes.

The parameter space allowed regions from mono-jet or tt+MET are both larger than the Z ′

universal coupling simplified models [79] with gq = 0.25 and gχ = 1. This indicates that

the LHC search limits have severe constraints on universal simplified models compared
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Figure 2.4: LHC mono-jet bounds mZ′ and mχ with gt = gχ = 1. The Gray area is
excluded by the unitary constraints mZ′ & gχmχ and mZ′ & gtmt since gt = gχ = 1
the boundary of the grey area is simply mZ′ = Max(mχ,mt). The Blue region presents
the excluded parameter space form the null result of mono-jet search at LHC at 13 TeV.
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Figure 2.5: LHC tt+MET bounds mZ′ and mχ with gt = gχ = 1. The Gray area is
excluded by the unitary constraints mZ′ & gχmχ and mZ′ & gtmt since gt = gχ = 1
the boundary of the grey area is simply mZ′ = Max(mχ,mt). The Red region presents
the excluded parameter space form the null result of tt+MET search at LHC at 13 TeV.
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Figure 2.6: LHC mono-jet bounds mZ′ and mχ with gt = gχ = 0.5. The Gray
area is excluded by the unitary constraints mZ′ & gχmχ and mZ′ & gtmt since now
gt = gχ = 0.5 the boundary of the grey area is simply mZ′ = 1

2 ×Max(mχ,mt). The
Blue region presents the excluded parameter space form the null result of mono-jet search

at LHC at 13 TeV.
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Figure 2.7: LHC tt+MET bounds mZ′ and mχ with gt = gχ = 0.5. The Gray
area is excluded by the unitary constraints mZ′ & gχmχ and mZ′ & gtmt since now
gt = gχ = 0.5 the boundary of the grey area is simply mZ′ = 1

2 ×Max(mχ,mt). The
Red region presents the excluded parameter space form the null result of tt+MET search

at LHC at 13 TeV.
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to the top-philic simplified model presented here. Moreover, both mono-jet and tt+MET

constraints become smaller when couplings gt and gχ are made smaller, and the excluded

area quickly reduces to the unitary bounds, which is also weaker for reduced couplings.

To summarize the DM collider search based on mono-jet and tt+MET of top-philic Z ′

models here are present for both EFT and simplified models. We find the lower limits

for the EFT cut-off scale is Λ ∼ O(1.5TeV) and these are relatively weaker collider limits

compared to unitary bounds which are stringent for simplified top-philic model when

gt = gχ . O(1). These collider limits will be weaker or even negligible for gt = gχ �
O(1). This will be relevant when we discuss the DM relic density in the following Section

2.3 since the dominate annihilation channels, χχ̄→ tt̄ and χχ̄→ Z ′Z ′, require relatively

small couplings in order to reproduce the DM relic density Ωχh
2 ≈ 0.12. [35, 80]

2.3 Relic Density and In-direct Detection

If the DM relic density is set by its annihilation cross section, as in the traditional WIMP

picture, then the requirement that the scenario reproduces the observed value fixes the

annihilation cross section for a given mass.2 Following the previous discussion on the pa-

rameter spaces (mZ′ , mχ, gχ, gt). DM annihilation channels naturally can be categorized

into two cases:

• For mχ > mZ′ , then χ̄χ→ Z ′Z ′ via t/u-channel shown in Figure 2.8

〈σv〉(χχ̄→ Z ′Z ′) ≈
g4
χ

16πm2
χ(1− m2

Z′
2m2

χ
)2

(1− m2
Z′

m2
χ

)3/2 (2.14)

• mχ < mZ′ , the annihilation of DM is controlled by the decay branching ratios of Z ′

which depends on mZ′ . This behavior can be classified into three subgroups:

1. mZ′ > 2mt, χ̄χ→ Z ′ → t̄t shown in Figure 2.9

〈σv〉(χχ̄→ t̄t) ≈
3g2
t g

2
χm

2
t

8πm4
Z′

√
1− m2

t

m2
χ

(2.15)

2We focus on the minimal freeze-out scenario, however that if the DM relic density is set due to
annihilation to other hidden sectors states, or is diluted due to subsequent entropy generation, then the
constraints derived below will be different. [81, 82]
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2. (mZ + mh)/2 < mZ′ < 2mt, χ̄χ → Z ′ → tWb though one off-shell top and

χ̄χ→ Z ′ → Zh via top-loop shown in Figure 2.10(a) and 2.10(b) and we use

the form factors from [54].

3. mZ′ < (mZ +mh)/2, χ̄χ→ Z ′ → b̄b via top-W-loop shown in Figure 2.11

〈σv〉(χχ̄→ b̄b) ≈
3g2
b,effg

2
χm

2
b

8πm4
Z′

√
1− m2

b

m2
χ

(2.16)

where gb,eff ≈ gt× 7.5× 10−3 [56] and the final state bottom quarks are left-handed.

However, the last two are suppressed by the either three-body phase space or loop

effects.
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Figure 2.8: χ̄χ→ Z ′Z ′ via t/u-channel when mχ > mZ′ .
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Figure 2.9: χ̄χ→ Z ′ → t̄t via Z ′ when mZ′ > 2mt.
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Figure 2.10: χ̄χ → Z ′ → tWb though one off-shell top and χ̄χ → Z ′ → Zh via
top-loop when (mZ +mh)/2 < mZ′ < 2mt.
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Figure 2.11: χ̄χ→ Z ′ → b̄b via top-loop when mZ′ < (mZ +mh)/2.

All of the above annihilation channels contribute to the total annihilation cross section

〈σannv〉,. The thermal relic density of DM can be calculated via the Boltzmann equation

of DM number density. From which one can derive the following form of the thermal

freeze-out abundance assuming s-wave annihilation:

Ωχh
2 ' 1.07× 109

GeV

xf
MPl ×

√
g∗ × 〈σannv〉

' 0.12 (2.17)

where g∗ is the degree of freedom at the freeze-out temperature Tf and xf =
mχ
Tf
≈ 20 for

mχ ≈ 100 GeV and O(0.1) couplings.

For fixed couplings gχ = gt, we present the coupling required to make the relic density

Ωχh
2 ≈ 0.12 in the parameter space of mχ and mZ′ and only logarithm sensitive to

changes in gi and mχ in Figure 2.12

The plot shows contours with values of gχ which reproduces Ωχh
2 ≈ 0.12. This can be

understood in three parts:

• O(0.1) couplings region refers to when tt̄ and Z ′Z ′ annihilation are accessible and

dominate the most of bottom-right region in Figure 2.12.

• When Zh channel is open but Z ′Z ′ is closed, the coupling is about O(1) and appears

in the upper-right and bottom-left region in Figure 2.12.

• Finally, when bb̄ channel becomes the only annihilation channel leads larger cou-

plings O(10) or even larger than 4π. (the gray shaded region in Figure 2.12.)

So far, we have discussed the requirements that the DM relic abundance is produced

due to DM freeze-out via the top-philic portal. DM annihilation today may occur in

the high DM density region in our universe and produce the fluxes of cosmic rays of



Chapter 2. Top-Philic Vector Portal Dark Matter 37

0.01
0.1

0.1

0.3

3

3

10

1

1

3

10 102 mt 103 104
10

102

103

104

mΧHGeVL

m
Z'

HGe
V

L

W Χh2 » 0.12

Figure 2.12: The contours show the value of gt = gχ to make Ωχh
2 ≈ 0.12 and the

framed-boxes show values of gt = gχ. The right-bottom part of the plot indicates the
relic abundance is dominated by tt̄ and Z ′Z ′ channel whereas gt = gχ � O(1) and the
right-top part is for Zh chaneel with gt = gχ ≈ O(1). On the left side of the plot are
bb̄ annihilation channel with gt = gχ � O(1). Note that we do not include the mass
resonance region of mZ′ = 2mχ in our parameter space. The gray region indicates

regions of parameter space where the coupling is non-perturbative gt = gχ & O(10).

the SM particles dependent on the primary annihilation channels. Here the majority of

DM annihilate to tt̄ directly or through cascade decays of Z ′ and the secondary or final

state cosmic rays can be light the SM charged particles [83, 84], photons[85], neutrinos,

protons, antiprotons [84] and recently considered Inverse Compton gamma rays [86–88].

We consider the most recent DM indirect detection search of energetic gamma rays results

from Fermi Large Area Telescope (Fermi-LAT) [29], which present null results of 6 years

gamma ray observation data from the dwarf spheroidal satellite galaxies (dSphs) of the

Milly Way.

However, the lack of a significant detection signal can provide a constraint on the DM self-

annihilation cross section 〈σv〉. Fermi-LAT presents the upper limits on the bb̄ annihilation

cross section from the combined analysis of 15 dSphs. However, the limit is only strong

for mχ < 100 GeV where the major annihilation channel is a Z ′ pair final state which can
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further cascade decay to bbb̄b̄ [89, 90]. Indirect detection will not meaningfully constrain

the parameter space in Figure 2.12 by the current Fermi-LAT limits.

2.4 Direct Detection

If DM interacts with the SM particles, this can lead to recoil of atomic nuclei in the direct

detection experiments that produce detectable signals [26–28]. However, the null DM

direct detection experimental results gives us constraints on the parameter space. The

DM scattering with nucleons in the top-philic model of 2.2 is loop-induced by the Z −Z ′

kinetic mixing ε via top-loop shown in Figure 2.13(a) and after integrating out Z ′ and

tops in Figure 2.13(b) for the non-relativistic limit. The kinetic mixing coefficient ε can

be further related to UV physics as follows [54, 56]:

ε =
1

4π2
[gχg

Z′
t g

Z
t log(

m2
Z′

m2
t

)] ∼ O(10−4)× [gχg
Z′
t log(

mZ′

mt
)] (2.18)

which leads to the effective operator:

Leff =
εgχgtχ̄γ

µγ5χq̄γµγ5q

m2
Z′

, q = u, d, s (2.19)

N

χ

N

Z ′

χ

tt

Z

(a) DM scattering with proton: loop

N

χ

N

χ

(b) DM scattering with proton: EFT

Figure 2.13: The direct detection scattering of DM with proton and neutron in the
nucleons of targets in the detectors. (a): the kinetic mixing of Z ′ −Z though a top-loop

(b): DM scattering process is EFT at the detector energy scale.

However, the loop-induced effective operator described neglects complete gauge coupling

running which runs though two EFTs, one is the low energy scale (below EW) EFT

and another one is loop-induced Z ′-Z mixing effective operator scale. Since DM-nuclear

scattering needs an understaning of nuclear matrix element, this requires matching of the

two energy scales. In other words, RG flow of the gauge coupling gt must run from the high
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energy scale O(mZ′) down to the detector nuclear recoil energy scale (µN ∼ GeV)[41, 42].

Here we apply the package RunDM [42] to evolve RG running effect and calculate the

non-relativistic (NR) DM-nucleon matrix element NROps [91] which uses the current LUX

and future LZ projected limits[26, 27, 92].

RunDM uses Lagrangian:

LµNχN = − 1

m2
Z′
gχχ̄γµγ

5χ (GNv N̄γµN + GNa N̄γµγ5N)︸ ︷︷ ︸
RunDM

(2.20)

where N is for nucleons including protons (p) and neutrons (n) and the couplings GN here

are the sum of quarks couplings within the nucleon:

Gpv = 2Guv + Gdv
Gnv = Guv + 2Gdv

GNa =
∑

q=u,d,s

Gqa∆N
q (2.21)

the axial vector charges ∆N
q are the light quark contribution to the spin of the nucleon

N . The details of running G calculations are in [42] and here we highlight the couplings

relevant for our model:

Guv ' gtαt
2π

(3− 8s2
θw)log(

mZ′

mZ
)

Gdv ' −gtαt
2π

(3− 4s2
θw)log(

mZ′

mZ
)

Gua ' −Gda ' −Gsa ' −
3gtαt

2π
(3− 4s2

θw)log(
mZ′

mZ
) (2.22)

DM-nucleon matrix elements are expressed in the above effective operator in terms of NR

operators and coefficients of NR effective theory:

MχN ≡ 〈χN |LµNχN |χN〉

=
1

m2
Z′
〈gχGNv χ̄γµγ5χNγµN + gχGNa χ̄γµγ5χNγµγ5N〉

'
∑
i

CNχ,iONRi

=
8gχm

2
χ

m2
Z′
{GNv [MN (~sχ · ~v⊥) + ~sχ · (~sN × ~qR)]− 2GNa MN (~sχ · ~sN )} (2.23)
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where ~v is DM-nucleon relative velocity, ~sχ and ~sN are DM spin and nucleon spin respec-

tively, ~qR is the nuclear recoil momentum, MN is the nucleon mass and the transverse

velocity is ~v⊥ ≡ ~v+ ~qR
µχN

with the reduce mass of DM-nucleon system µχN =
mχMN

mχ+MN
. Af-

ter integrating the differential DM-nuclei cross section over the nuclear recoil energy with

correct nuclear response function [41], we have the spin-dependence cross section(SD) and

the vector coupling Gv contribution is suppressed by the DM velocity (∼ 10−3c) and recoil

momentum:

σχNSD =
3µχN
π

(gχGNa )2

m4
Z′

(2.24)

We take Eq. (2.24) and scan over the couplings and masses of Z ′ and DM to obtain the

limits in Figure 2.12 using RunDM and NROps for the current LUX SD limit [26] and

the LZ-projected limit [26] in Figure 2.14
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Figure 2.14: The red region shows the LZ projected limit on SD direct detection
and the yallow region is the current LUX SD limit. The box framed numbers are the
couplings gχ = gt of relic density Ωχh

2 ≈ 0.12 before running down the nuclear EFT. The
excluded parameters mainly happen in the larger coupling region when DM annihilation

channel is dominated by bb̄.

The summary of the top-philic vector portal model taking into account the collider study,

relic density, in-direct and direct detection is shown in Figure 2.14, observe the allow
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parameter space.

2.5 Mono-jet v.s. Mono-photon in tR-philic Z ′ Models

In this section, we develop a phenomenological method of addressing the top-philic cou-

pling Z ′ ambiguity raised from Eq. (2.2). In other words, we consider what kind of collider

signals can indicate that Z ′ only couples to tR (and not QL) as required in a top-philic

scenario.

DM signals can also appear as the missing transverse energy with a high energetic photon

[93] at the LHC and the signal is relatively weaker than mono-jet searches, however, the

ratio of mono-photon and mono-jet events can distinguish the flavors of loop fermions.

Specifically, we investigate when the ratio of production cross section of mono-jet to

mono-photon with DM can be inferred by the ratio of γµγ5 to γµ couplings as shown in

Figure 2.15. The γµ coupling part of Z ′ contributes the box-diagrams solely whereas γµγ5

coupling contributions are mainly from the triangular diagram. From now on, we will refer

� as the box loop diagram and 4 as the triangular loop diagram. Below describes the

analytical relation of cross section between γµγ5 and γµ and mono-jet and mono-photon

as well:

σj,γ
µγ5

tR

σj,γ
µ

tR

≡ F jtR(pt) =
σj4tR

σj�tR

(2.25)

σjtR
σγtR

≡ F γtR(pt) =
σj4tR + σj�tR

σγ�tR

(2.26)

where the jet/photon transverse momentum (pt) kinetics factor Fj/γ(pt) is the consequence

of different channels.

2.5.1 Mono-j/Mono-γ Complementarity

On the other hand, the mono-photon only has the box diagram. Here we neglect the

photon propagator contribution in the mono-photon channel (from the quark-qurak initial

state). The mono-jet and mono-photon cross section ratio are presented in Eq. (2.26).

Here we simulate mono-jet signals with MadGraph 5 and present the cross section with

respect to different transverse momentum of the jet in Figure 2.16 Left by setting gt =
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Figure 2.15: The diagrams relevant to mono-jet and mono-photon due to Z ′ coupled
to tR only. The red box vertex is the γµ coupling of Z ′ and the blue triangular

vertex is the γµγ5 vector coupling of Z ′.

tR-Monojet: Γ ΜΓ5

tR-Monojet: Γ Μ

20 50 100 200 50010-16
10-15
10-14
10-13
10-12
10-11
10-10

pt HGeVL

Σ m
on

oj
et

Hpb
L Σj,ΓΜ Γ5

tR �Σj,ΓΜ
tR

Σj
tR �ΣΓ

tR

20 50 100 200 5000.1

1

10

100

1000

ptHGeVL

FHp
tL

Figure 2.16: Left: When Z ′ couples to tR only, the mono-jet cross section trends for
the γµ and γµγ5 couplings with respect to the transverse momentum of the jet. Right:
The ratio of the cross-section for the mono-jet vs mono-photon and γµγ5 vs γµ is inferred
by the kinetic factor F (pt). Here mZ′ = 20TeV , gV t = gAt = gV χ = 0.1 and the kinetic
factor F (pt) is derived by

σmono−jet
σmono−photon

× αEM
αS

for the mono-jet vs mono-photon line and
σaxial
σvector

for γµγ5 vs γµ line. Here we only consider light DM (mχ = 1GeV ) and Z ′ only
axially couples to DM.
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gχ = 0.1 ,mZ′ = 20 TeV and mχ = 1 GeV. Within the chosen parameters, the cross

section is determined by the loop structure and pt of the jet or photon. As a result, the

mono-jet channel receives a contribution from the γµγ5 coupling because the jet from the

triangular loop is the initial state radiation (ISR) jet and the jet from the γµ coupling is

box loop induced. The mono-photon is solely box-loop induced. Thus Eq. (2.26) becomes:

σjtR
σγtR

=
σj4tR + σj�tR

σγ�tR

'
σj4tR

σγ�tR

=
αs
αem

× F jtR(pt) (2.27)

where αs
αem
× F jtR(pt) = F γtR(pt). This implies the ratio of mono-jet to mono-photon is

proportional to ratio of the axial vector (γµγ5) to vector (γµ) contributions, as shown in

Figure 2.16 Right .

2.5.2 The Inverse Problem

Since both left-handed tL and right-handed tR have γµγ5 and γµγ5 couplings but up to a

sign flip for γµγ5 coupling, this leads to a sign degeneracy on the cross sections discussed

above. However, if Z ′ only couples to the third generation SU(2) doublet QL, then the

quark neutral current part in Eq. (2.2) is:

L ≡ QL(gQL(γµ − γµγ5))QLZ
′
µ (2.28)

= tL(gQL(γµ − γµγ5))tLZ
′
µ + bL(gQL(γµ − γµγ5))bLZ

′
µ (2.29)

and this gives us the additional tree level diagrams from bottom quark PDF at LHC in

Figure 2.17.

Consequently the ambiguity can be broken due to both the tree level contributions and the

triangular loop from the γµγ5 coupling which is comparable to the tree level contributions.

Thus Eq. (2.25), Eq. (2.26) and Eq. (2.27) are changed to be:

σj,γ
µγ5

QL

σj,γ
µ

QL

≡ F jQL(pt) =
σj,γ

µγ5

tree +σj4QL
σj,γ

µ

tree+σj�QL

' σj,γ
µγ5

tree +σj4QL
σj,γ

µ

tree

∼ 1 +
σj4QL
σj,γ

µ

tree

(2.30)

σjQL
σγQL

≡ F γQL(pt) =
σjtree+σ

j4
QL

+σj�QL
σγtree+σ

γ�
QL

' σjtree+σ
j4
QL

σγtree
∼ αs

αem
(1 +

σj4QL
σjtree

) (2.31)

and the simulations are shown in Figrue 2.19. The rapidity and F (pt) of mono-jet for tR

only and QL only are shown in 2.20.
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Figure 2.17: The additional tree diagrams relevant to mono-jets and mono-photons
due to Z ′ coupled to QL only while the loop diagrams are the same as those for tR only.
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Figure 2.18: The tree and loop contribution of the mono-jet cross section in terms of
pt for the axial vector coupling in QL-philic scenario. mZ′ = 20 TeV, gQL = gχ = 0.1

and mχ = 1 GeV
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Figure 2.19: Left: When Z ′ couples to QL only, the mono-jet cross section trends for
the γµ and γµγ5 couplings with respect to the transverse momentum of the jet. Right:
The ratio of the cross-section for the mono-jet vs mono-photon and γµγ5 vs γµ is inferred
by the kinetic factor F (pt). Here mZ′ = 20TeV , gQL = gχ = 0.1 and the kinetic factor

F (pt) is derived by
σmono−jet

σmono−photon
× σγtree

σjtree
for the mono-jet vs mono-photon line and σaxial

σvector

for γµγ5 vs γµ line. mZ′ = 20 TeV, gQL = gχ = 0.1 and mχ = 1 GeV
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Figure 2.20: The rapidity and the kinetic factor F (pt) of mono-jet with respect to tR
only and QL only.

The kinetic factors of QL-philic have different behaviors in the case of top-philic. More-

over, the loop contribution is comparable to the tree-level contribution in QL-philic model

whereas there is only loop diagrams in top-philic model. Here all the productions are gen-

erated without applying the LHC selection rules.

In order to distinguish the difference arisen from the chirality, for example, Fγ(tR) =

σj/σγ |tR ≈ 100 at 50 GeV pt cut and Fγ(QL) ≈ 1

Fγ(tR)

Fγ(QL)
≈ 100 (2.32)

→ σj/σγ |tR
σj/σγ |QL

≈ 100 (2.33)

→ σj/σγ |tR ≈ 100 and σj/σγ |QL ≈ 1 (2.34)

Therefore, QL-philc model is valid only if the ratio for the signals of mono-jet and mono-

photon are O(1) otherwise the signals might be from the top-philic model for the given

luminosity and selection rules.

2.6 UV Complete Theory and Mass Gerneration

So far we have discussed top-philic simplified model in Eq. (2.2) without considering

the UV completeness. However, the sensitivity of UV theory will affect some of the

above discussion. For example, the loop induced operators OZ′bb and OZ′ZH should be

considered for the behavior of UV complete theory. Here we extend Eq. (2.2) and discuss

the mass generation of the SM top quark and DM.
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2.6.1 Top Mass Generation and Mixing

There are several scenarios to generate the mass term of top-philic model, for example,

we can introduce a U(1)′ charged private Higgs Ht for the top specially [94], however,

which leads mZ ∼
√
v2
SM + 〈Ht〉2 ∼ 91GeV, but for mZ′ ∼ 〈Ht〉 , the mass Z ′ becomes

EW scale from the Z boson mass constraint.

Here we discuss a EFT theory and a UV complete model which is outlined in [53] related

to the top partner in little Higgs model [95, 96]. We will not discuss the quadratically

divergent cancellation with little Higgs model.

2.6.1.1 EFT

A Froggatt-Nielsen [97] effective operator by integrating out heavy chiral top partners as

follows:

LFN =
yt
Λ1
S1H

†Q̄LtR →
yt
Λ1
〈S1〉〈H〉t̄LtR ≡ mtt̄LtR (2.35)

where the SM singlet scalar S1 carrying U(1)′ charge to make Eq. (2.35) gauge invariant.

Specifically, we will discuss the UV completion model [53] in the next subsection. Note

that this spectrum is anomaly free and more details will be discussed in Chapter 3 and 4.

The mass term for the physical top can be generated via a dimension five operator of

Eq. (2.35) after integrating out the heavy eigenstate T , as illustrated in Figure 2.21. In

the decoupling limit mt ' yt〈H〉/
√

2 ≈ 172 GeV and mT ' 〈S1〉.

QL

H

TR TL tR

S1

Figure 2.21: The dimension-5 effective operator 1
Λ1
S1H

†Q̄LtR raises by integrating out
heavy fermion TL and TR.
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2.6.1.2 UV Complete Model

Here the UV complete model is outlined in [53]. In this model, the SM top is neutral under

U(1)′ and the top partners T̃L,R are U(1)′ charged vectorially therefore it is anomaly free.

The extra scalar S̃1 is needed to make the new yukawa terms gauge invariant:

Field SU(3) SU(2) U(1)Y U(1)′

Q̃L 3 2 1/3 0

t̃R 3 1 4/3 0
H 1 2 2 0

T̃L 3 1 4/3 1

T̃R 3 1 4/3 1
S1 1 1 0 1

Table 2.2: The gauge charges assignments of UV complete top-philic model.

The t̃− T̃ mass mixing behavior:

Lmass ≡ ytH
† ¯̃QLt̃R + m̃T

¯̃TLT̃R + yT S̃1
¯̃TLt̃R (2.36)

→ m̃t
¯̃tLtR + m̃T

¯̃TLT̃R + x ¯̃TLt̃R (2.37)

where x ≡ yT 〈S1〉. The mass matrix becomes

Mt̃, T̃ ≡
(
t̃R,L T̃R,L

)m̃t x

0 m̃T

 t̃R,L
T̃R,L

 (2.38)

and we rotate Mt̃, T̃ with an unitary operator U to be Mt, T

Mt, T ≡
(
tR,L TR,L

)mt 0

0 mT

 tR,L
TR,L

 (2.39)

and U is defined tR,L
TR,L

 ≡ U
 t̃R,L
T̃R,L

 =

cos θR,L −sin θR,L

sin θR,L cos θR,L

 t̃R,L
T̃R,L

 (2.40)
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The eigenvalues of Eq. (2.39) are

mt =
√

(m̃2
t + m̃2

T + x2 −∆)/2 (2.41)

mT =
√

(m̃2
t + m̃2

T + x2 + ∆)/2 (2.42)

and the mass splitting parameter ∆

∆ ≡
√

(m̃2
t + m̃2

T + x2)2 − 4(m̃tm̃T )2. (2.43)

The rotation angles in Eq.(2.40) are

tan θL =
m̃2
t − m̃2

T + x2 + ∆

2xm̃T
(2.44)

tan θR =
m̃2
t + m̃2

T − x2 + ∆

2xm̃t
(2.45)

The mixing angles are infinitesimal sin θR, L � 1 in the limit of m̃t = mt ≈ 172GeV and

the heavier eigenstate of Eq. (2.39) has the mass scale as 〈S1〉.

Now the interactions among t− T becomes

L = i t̄ /Dtt+ i T̄ /DTT +
g√
2

(sLT̄ − cLt̄)γµWµPL b+ h.c

+ T̄ γµZ ′µ gZ′(cLsLPL + cRsRPR) t+ h.c

+ cLsL[gZ
t̃R
− gZ

t̃L
] T̄ γµZµ PL t+ h.c (2.46)

+ ytcLcR H t̄ t+ ytsLsR H T̄ T − yt H t̄(sRcLPR + sLcRPL)T + h.c

− λ1sLcR S1 t̄ t+ λ1cLsR S1 T̄ T + λ1 S1 t̄(sLsRPR − cLcRPL)T + h.c

where cL, R and sL, R are short hand for cos θL, R and sin θL, R respectively and the

covariant derivatives are

Dtµ = ∂µ − i
[
(gZ
t̃R
s2
L + gZ

t̃L
c2
L)PL + gZ

t̃R
PR

]
Zµ − igZ′(s2

RPR + s2
LPL)Z ′µ − igt̃RAµ (2.47)

and

DT µ = ∂µ − i
[
(gZ
t̃R
c2
L + gZ

t̃L
s2
L)PL + gZ

t̃R
PR

]
Zµ − igZ′(c2

RPR + c2
LPL)Z ′µ − igt̃RAµ (2.48)
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where g = e/ sin θw, gt̃R = 2e/3, and gZ
t̃R/L

= e cos θ−1
w sin θ−1

w (T3 − (2e/3) sin2 θw) are the

regular the SM couplings.

2.6.2 Electroweak Precision and LHC Constraints on Top Quark Part-

ner Fermion

As shown in Eq. (2.47), there are additional BSM mixing terms of Z-T-t and W-T-

b interaction terms, therefore, EW interactions might be modified by those non-zero

interactions. We discuss the limit of the mixing effect sL,R in Eq. (2.40) and the mass of

the partner of top, i.e. mT by considering the EW oblique Peskin-Takeuchi parameters

S, T, U [18]. It was shown and performed that ∆S and ∆U are very small in [54, 98, 99]

when mT > mt > mZ in which case:

∆T = TSM [−(1 + C2
L) + rs2

L + 2c2
L

r

r − 1
log(r)]

∆S = −NC

18π
s2
L{log(r) + c2

L[
5(r2 + 1)− 22r

(r − 1)2
+

3(r + 1)(r2 − 4r + 1)

(1− 3)2
log(r)]} ' 0

∆U = ∆S +
NC

9π
s2
Llog(r) ' 0 (2.49)

and r ≡ m2
T

m2
t

, NC = 3 and TSM = NC
16π

1
simθw

mt
m2
W
' 1.19. We present the current SU(2)

singlet vector-like top quark partner mass lower limit 890 GeV from ATLAS search of

vector-like top partner in Zt + X channel [100] with the ∆T . 0.14(0.10) at 95 (68) %

CLs limit in Figure (2.22) which indicates mT . 3 TeV when sL ≈ 0.1 and sL . 0.15 for

mT & 890 TeV.

The loop function modification including H → gg and H → γγ for both top and top

partner for Higgs measurements are relatively small since the Higgs-top coupling in Eq.

(2.47) is still the SM-like when top partner mass is decouple mT � mt and also due to

the sL,R suppression.
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Figure 2.22: The Blue and Red lines are the 95(68)% CLs limits on ∆T and the
Dashed line is the current lower mass limit for mT from T → Z + t searching channel

of vector-like top partner fermion at ALTAS.

2.6.3 Kinetic and Mass Mixing of Z-Z ′

The kinetic mixing and mass mixing effect between Z and Z ′ has been discussed in Chapter

1 and here we focus the the constraints of EWPT from the loop-induced mixing:

Lmixing = −1

4
B̂µνB̂µν −

1

4
Ẑ ′
µν
Ẑ ′µν +

1

2
m2
Ẑ
ẐµẐµ +

1

2
m2
Ẑ′
Ẑ ′
µ
Ẑ ′µ

−1

2
sinεB̂µνẐ ′µν + δm2ẐµẐ ′µ (2.50)

where the hatted field contents are the canonical gauge interaction fields with mixing

effect and the mass mixing term here is top-loop induced [56]

ε ≈ 2

3

Ncgtg

(4π)2
log

Λ2

m2
t

(2.51)

δm2 ≈ 1

2
m2
t

Ncgtg
′

(4π)2
log

Λ2

m2
t

(2.52)

We estimate the mixing parameter by considering Λ ≈ 1 TeV when mZ′ . 1 TeV and

Λ ≈ mZ′ when mZ′ & 1 TeV. The resulting the SM neutral current after applying rotation

matrices can be expressed with EWPT parameters in mass eigenstate basis:

LZff = − e

2sW cW

(
1 +

αT

2

)
Zµf̄γ

µ

((
T f3 − 2Qf

(
s2
W +

αS − 4c2
W s

2
WαT

4
(
c2
W − s2

W

) ))
− T f3 γ5

)
f

(2.53)
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where the Z is the SM neutral boson and cW , sW are cosine and sine function of θW .

S =
4

α
c2
W sW ξ (ε− sW ξ) (2.54)

T =
ξ2

α

(
m2
Z′

m2
Z

− 2

)
+ 2sW ξε (2.55)

with

t2ξ =
−2cε(δm

2 +m2
ZsW sε)

m2
Z′ −m2

Zc
2
ε +m2

Zs
2
W s

2
ε + 2δm2sW sε

. (2.56)

We plot the S and T parameters with respect to mZ′ region in our relic density parameter

and set up the upper limit of gt in Figure 2.233

T

S

10 mZ 103 104

10

1

0.1

0.01

mZ ' HGeVL

g t

EWPT for Z-Z'

Figure 2.23: The Blue and Red contourss are 90 % CLs limits on gt for EWPT S and
T parameters for mZ′ from 1 GeV to 1 TeV. As we can see, T has stronger bound than
S. When mZ′ < O(102) GeV, gt . O(0.1) and gt ∼ O(1) when mZ′ > O(102) GeV.

Finally, we observe that the parameter space including all theory and experiment con-

straints in Figure 2.24 has the following exclued regions:

1. When mχ > mt, the excluded area is when mZ′ ∼ O(mZ).

2. When mχ < mt, all mZ′ region is excluded by direct detection and EWPT expect.

3There is a marginal improvement by considering the di-lepton resonance limits. [56, 101, 102]
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Figure 2.24: The contours show the value of gt = gχ to make Ωχh
2 ≈ 0.12 and the

framed-boxes show values of gt = gχ. The Gray region is when couplings reach non-
perturbative coupling region. The Yellow and Red regions are the current LUX and
projected LZ direct detection limits respectively. The Orange region is the EWPT
limit from T parameter of Z-Z ′ mixing. The Blue region indicates the unitarity

constraint mZ′ & gfmf where f is either top or DM.

2.6.4 Majorana Dark Matter and Scalar Portal Model

So far, our DM candidate is U(1)′ charged Dirac fermion and we mainly focus on axial

vector coupling to Z ′ which indeed can be extended to Majorana fermionic DM since

Majorana only has axial vector coupling to Z ′ due to its charge conjugation feature. We

will specify a simplified top-philic Majorana DM model.

In the previous discussions, we are using the pair of Dirac fields χL and χR to describe our

DM field. Economically, we can use only one χL and its own charge conjugate to describe

the Majorana DM. We assume an U(1)′ charged Weyl spinor χL and its charged conjugate

εχ∗L ≡ χ′R where ε is the Levi-Civita matrix (or simply iτ2). Then the four-component

fermion χ is composed from χL and χ′R

χ ≡ χL + χ′R =

χL
χ′R

 = χL + εχ∗L =

 χL

εχ∗L

 (2.57)
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which is a Majorana fermion

χc ≡ Cχ̄T = C

−εχL
χ∗L

 =

ε 0

0 ε

−εχL
χ∗L

 =

 χL

εχ∗L

 = χ (2.58)

And its mass comes from the Yukawa term with a charged scalar S:

Lmass = λDMSχ
T
LεχL + h.c. = λDMSχ̄

′
RχL + h.c. = λDMSχ̄χ (2.59)

where S carries U(1)′ charge to keep the mass term U(1)′ gauge invariant and the non-zero

〈S〉 gives mass to the Majorana χ mass and breaks U ′(1) symmetry spontaneously. We

construct a Majorana DM χ which only has axial vector coupling to Z ′. Now, Eq. (2.5)

becomes

L = t̄(gtR(γµ + γµγ5))tZ ′µ +
1

2
χ̄(gχAγ

µγ5)χZ ′µ + Sχ̄χ (2.60)

which is a simplified top-philic Majorana DM model. Note that there is a factor of 1/2

difference in Z ′ axial vector interaction term compared to Eq. (2.5) due to Majorana

condition χc = χ which makes our previous results effected by this symmetric factor.

Since Majorana DM has scalar S interaction term in Eq. (2.60), this leads to a Scalar

and Vector Potral Majorana DM simplified model [37, 103–105]. Meanwhile, with some

specific U(1)′ charges assignment, there is a possible di-jet or di-photon scalar resonance

search at LHC [106] when the mass term of exotics top partner in Eq. (2.36) becomes

mT
¯̃TLT̃R = λT 〈S〉 ¯̃TLT̃R, i.e. the top partner gets mass from breaking U(1)′ as well. That

means two searches of new physics can be linked by this scalar S illustrated in Figure

2.25(a) and 2.25(b).

T

T

S

T T

T

T

g

g

γ, j

γ, j

(a) gg → S → γγ (or j, j)

T

T
S

T

g

g

χ

χ

(b) gg → S → χ̄χ

Figure 2.25: The di-photon or di-jet resonance of scalar S which is also the mediator
of DM.
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We can apply the mono-jet and tt̄ + MET collider searches for the scalar mediator.

However, this scalar portal DM model is beyond the scope of this work and we will not

have further discussion.

2.7 Future Outlook and Discussion

In this work, we study top-philic vector portal DM models in a comprehensive manner.

When the new gauge boson Z ′ only couples to right-handed quarks, the axial vector

coupling contribution dominates the mono-jet search at the LHC. This leads to a non-

suppress spin-dependent scattering cross section in DM direct detection experiments in

the case that DM is axially coupled to Z ′ as well. We find the current LHC collider limits

from both mono-jet and tt̄+MET are relatively weak for top-philic vector portal models.

For the direct detection experiment and DM relic density studies, we study the details of

the scattering cross section between the DM and the SM contents. We use the current

LUX and future projected LZ limits to constrain the parameter space in which DM relic

abundance ΩDMh
2 ≈ 0.12 via DM freeze-out annihilation mechanism.

When gamma rays comes from DM annihilation in the galaxy which provides the indirect

detection search of DM and the photon flux for specific spectra are linked with DM

annihilation to a pair of top quarks. Since the tt̄ annihilation channel mainly dominates

in our DM relic abundance parameter space and the current Fermi-LAT limits has no

impact on our parameter space in the case the correct DM relic density arises from freeze-

out mechanism.

We present a new phenomenological method to break down the ambiguity caused by the

chirality of top quark by introducing two kinetic factors:

• The first one is defined as the ratio of axial vector and vector cross sections of

mono-jet for purely right-handed top-philic Z ′.

• The second one is defined as the ratio of mono-jet and mono-photon to distinguish

the difference between the right-handed top-philic and the third generation specific

models.
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In addition to the top-philic simplified model, we discuss a minimal UV complete model

and the EWPT limits on the associated exotics. The EWPT for Z-Z ′ mixing sets up

another sharp bound on our existing parameter space.



Chapter 3

ANOMALY CANCELLATION

WITH AXIAL VECTOR Z ′

3.1 Introduction

Couplings between chiral fermions fL, fR and a vector boson Z ′ associated to a U(1)

gauge symmetry are of the form

f /Df =fγµ

(
∂µ − ig(qfL + qfR)

1

2
Z ′µ − ig(qfL − qfR)

γ5

2
Z ′µ
)
f . (3.1)

For the special case in which qfL = −qfR the gauge boson is a pure axial vector. Many

phenomenological studies contemplate a new axial vector which couples to Standard Model

(SM) fermions. In particular, they are common in various scenarios for providing a portal

between dark matter (DM) and SM states, e.g. [20, 69, 107, 108], partially because if either

the DM or SM fermions couple only axially to the vector mediator, the direct detection

cross section is either spin-dependent or suppressed by factors of the DM velocity or

momentum exchange.

Charging the SM fermions under a new U(1)′, in the absence of additional chiral fermions,

generically leads to the U(1)′ being anomalous. However, many studies neglect to specify

the field content which would lead to an anomaly free theory [20, 66, 69, 108–110]. Notably,

any anomalous set of fermions can be embedded into a larger set which is anomaly free

and whose members carry only rational charges [23, 111]. Still, the associated extra

56
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states are typically charged under the SM gauge group.1 As we will argue, these new

states can not be arbitrarily separated from the mass scale of the axial vector. Thus it

is important to consider the UV theory since such states are in principle observable at

collider experiments. While there are many occurrences of complete anomaly free models

of Z ′ with general couplings in the literature [8], there is a lack of examples for pure axial

vectors.2 Thus it is of interest to find anomaly free spectra for different scenarios in which

the SM fermions interact with a new axial vector.

We also note that new abelian gauge bosons are motivated from a GUT perspective,

as large gauge groups naturally break to the Standard Model group supplemented with

abelian factors. The breaking pattern may include U(1)′ factors and anomaly cancellation

can be inherited from the matter content under the larger gauge group, as in the case

of the 27 of E6 under its axial subgroup U(1)ψ [8]. However, finding GUT completions

for specific charge assignments can be challenging, and thus here we examine systematic

‘bottom-up’ methods of anomaly cancellation without references to GUTs. Moreover,

the GUT structure adds extra states not involved in anomaly cancellation and, to avoid

proton decay, the U(1)′ scale is restricted to be near the GUT scale. Without requiring

gauge coupling unification, by contrast, there is greater freedom in cancelling anomalies

with new chiral exotics.

This chapter and next chapter are structured as follows: In 3.2 we discuss the require-

ments for anomaly cancellation when the gauge structure of the SM is supplemented with

a new U(1)′ factor, focusing on the case in which the U(1)′ gauge boson has only axial

vector couplings to the SM fermions (and DM). In 3.3 we explore systematic methods for

generating anomaly free models by adding new chiral fermions to the spectrum. Subse-

quently, we use these techniques to identify a number of anomaly free spectra for axial

vector models of interest. For completeness we give some anomaly free models for the case

of a pure vector Z ′ in 3.4. We also show alternative sets of anomaly free sets of fermions

with axial vector Z ′ in 3.5 and we give an explicit example of the algebraic constructions

of anomaly free spectra in 3.6.

1 Cancellation mechanisms beyond new field content are avaliable in extra dimensional gauge theories,
most prominently the Green-Schwarz mechanism [112] and anomaly inflow [113]. For reviews see e.g. [114,
115]. Here we restrict our discussion to anomaly cancellation through new chiral fermions.

2Note that examples of axial vector models with anomaly cancelling exotics are presented in [107];
model ‘Axial-A’ is anomaly free, ‘Axial-B’ is anomalous, and ‘Axial-Leptophobic’ is anomaly free if one
adds exotics ψlR and ψeL with U(1)′ charge zero.
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In the next chapter 4.1 considers the model building requirements for giving mass to the

SM and exotic fermions. In section 4.2 we ask at what scale the effective low energy

description breaks down due to a loss of renormalisability, necessitating the introduction

of new fermions, as well as the perturbativity bound on the U(1)′ coupling induced by

the fermions. As one of the main motivations for these models is to use the axial vec-

tor as a portal to connect SM fermions and DM, section 4.3 considers the requirements

for obtaining the observed DM relic density due to freeze-out via the axial vector, and

the corresponding constraints from direct and indirect detection experiments and LHC

searches. Section 4.4 presents some concluding remarks.

3.2 Gauge Anomalies and Axial Vectors

Noether’s theorem implies that any gauge symmetries are conserved if and only if when

their associated currents are conserved ∂µj
µ = 0 and in chiral gauge theories, unless the

charges are appropriately arranged, anomalies from loop diagrams generically spoil gauge

invariance:

∂µj
µ5 ∼ Aabc = Tr[γ5ta{tb, tc}] 6= 0 . (3.2)

whereA is the anomaly coefficient, γ5 refers the chirality and ti is the gauge representation.

As is well known, SM anomaly conditions arise from triangle diagrams involving the

following gauge interaction structures: SU(2)2 ×U(1)Y , SU(3)2 ×U(1)Y , [Gravity]2 ×
U(1)Y , U(1)3

Y .

U(1)Y

SU(2)

SU(2)

U(1)Y

SU(3)

SU(3)

U(1)Y

Gravity

Gravity

U(1)Y

U(1)

U(1)

Figure 3.1: Anomaly Cancellation in SM.
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The requirement that the anomaly coefficients satisfy A ∝ ∂µjµ = 0 for each of the

triangle diagrams above gives rise to the following four conditions, respectively:

AWWB :=
∑

fL/w SU(2)

C2[fL]d3[fL]Y [fL] −
∑

fR/w SU(2)

C2[fR]d3[fR]Y [fR] = 0 ,

AggB :=
∑

fL/w SU(3)

C2[fL]d2[fL]Y [fL] −
∑

fR/w SU(3)

C2[fR]d2[fR]Y [fR] = 0 ,

AGGB :=
∑
fL

d2[fL]d3[fL]Y [fL] −
∑
fR

d2[fR]d3[fR]Y [fR] = 0 ,

ABBB :=
∑
fL

d2[fL]d3[fL](Y [fL])3 −
∑
fR

d2[fR]d3[fR](Y [fR])3 = 0 ,

(3.3)

where dN and C2 are the dimension and quadratic Casimir of a given representation under

SU(N), and Y is the hypercharge of a given state. The sums run over the left-handed

(LH) and right-handed (RH) fermions respectively, and in the first/second condition the

sum is restricted to representations of SU(2)/SU(3) only. Note that the other triangle

diagrams cancel trivially.

There is also the Witten anomaly [116] which places additional restrictions on field content

transforming under groups which are equivalent to Sp(N). In particular, an SU(2)L ∼=
Sp(1) gauge theory with an odd number of LH-fermion doublets (and no other SU(2)-

charged fermions) is inconsistent. However, as the SM is anomaly free and here we add

fermions in vector-like pairs under the SM gauge group, or mimicking the SM generations,

the Witten anomaly will not constrain our constructions. Furthermore, we restrict our

field content to states with rational charges. This is motivated from charge quantisation

considerations. In particular, this constraint plays a role in simple UV completions into

larger GUT groups. While no theorems forbid irrational charges in field theories, they

are disfavoured in UV completions to GUTs [117], and forbidden in quantum theories of

gravity [118].

3.2.1 U(1)′ Anomaly Conditions

An extension of the SM gauge symmetry by an abelian factor, SU(3)×SU(2)L×U(1)Y ×
U(1)′, introduces further anomaly conditions in addition to those of eq. (3.3). The van-

ishing of these new anomalies constrains the charges z of states transforming under U(1)′,
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including any new fermions [119]. First there are the four analogues to those involving

U(1)Y , namely,

SU(2)2 × U(1)′, SU(3)2 × U(1)′, [Gravity]2 × U(1)′, U(1)′3.

The coefficients AWWZ′ , AggZ′ , AGGZ′ , and AZ′Z′Z′ are direct analogues of eq. (3.3)

except with Y replaced by z. Two further anomaly conditions arise from mixed U(1)-

U(1)′ diagrams

U(1)Y × U(1)′2, U(1)′ × U(1)2
Y .

The associated anomalies vanish given the following conditions

AZ′Z′B :=
∑
fL

d2[fL]d3[fL]Y [fL](z[fL])2 −
∑
fR

d2[fR]d3[fR]Y [fR](z[fR])2 = 0 ,

ABBZ′ :=
∑
fL

d2[fL]d3[fL]z[fL](Y [fL])2 −
∑
fR

d2[fR]d3[fR]z[fR](Y [fR])2 = 0 .
(3.4)

There could also be an SU(3)3 anomaly with the addition of new chiral fermions. However,

if the exotics are added in vector-like pairs under the SM group this vanishes automatically.

In what follows, we will use the compact notation zX ≡ z[X] for a given field X.

3.2.2 Coloured Exotics and Anomaly Free U(1)′ Extensions

The case in which a U(1)′ gauge boson has only axial couplings to the SM fermions is

distinguished as it implies:

z(i)
q := z

(i)
Q = −z(i)

u = −z(i)
d and z

(i)
l := z

(i)
L = −z(i)

e . (3.5)

The index i = 1, 2, 3 denotes the SM generation. Furthermore, if DM states χL and χR

are present and couple axially to the Z ′, it follows that

zDM := zχL = −zχR . (3.6)

Interestingly, the anomaly condition for SU(3)2 × U(1)′ alone immediately yields some

useful information. Consider an axial vector which couples to quarks, thus z
(i)
q 6= 0. In
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the absence of new colored states the SU(3)2 × U(1)′ anomaly AggZ′ is

AggZ′ = 2
(
z(1)
q + z(2)

q + z(3)
q

)
. (3.7)

In the case that the U(1)′ charge assignments for the SM fermions are mirrored in each

generation (z
(1)
q = z

(2)
q = z

(3)
q ), or only one generation is charged under U(1)′ (for in-

stance z
(1)
q = z

(2)
q = 0), then AggZ′ will not vanish unless new colored chiral fermions

are introduced. Notably, the constraints from collider searches for colored exotics are

substantially more stringent than for uncolored states. In the absence of new colored

fermions the anomaly condition of eq. (3.7) enforces

z(1)
q + z(2)

q + z(3)
q = 0 , (3.8)

which requires different U(1)′ charges between generations of SM quarks. Allowing the

U(1)′ charge assignments to differ between different generations introduces substantial

freedom. In what follows we restrict ourselves to the cases where either the U(1)′ charges

are replicated in the generation structure, or only one generation is charged under the

U(1)′.

It is worth noting that in the pure vector case this anomaly cancels trivially, as when

z
(i)
Q = z

(i)
u = z

(i)
d , AggV = 0 automatically without new colored states. In 3.6 we present

some anomaly free models for the pure vector case, to illustrate that anomaly cancellation

is typically much simpler in this scenario.

3.3 Construction of Anomaly-Free Axial Vector Models

To calculate the anomaly coefficients one sums over all loops of chiral fermions, cf. eq. (3.3),

including any chiral fermion exotics. Anomaly cancellation generically requires, and con-

strains, new exotic field content. For certain choices the exotic fermions automatically

preserves the anomaly cancellation of the SM group. For instance, the exotics can mirror

the SM fermion U(1)′ charges in order to cancel anomalies (Section 3.3.1). Alternatively,

the exotics can constitute vector-like pairs under the SM gauge group, but have chiral

charges under U(1)′ (Sections 3.3.2 and 3.3.3). Moreover, with appropriate charges and
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Field Name U(1)Y SU(2)L SU(3)

QiL, Q′L,R 1/3 2 3

uiR, u′L,R 4/3 1 3

diR, d′L,R −2/3 1 3

LiL, L′L,R −1 2 1

eiR, e′L,R −2 1 1

νR, χL,R 0 1 1

H 1 2 1

Table 3.1: The representation structure of the SM states, along with fermion exotics
in matching representations. Here we assume the dark matter χ is a SM singlet; the νR
entry indicates other singlets which do not constitute the dark matter. For the SM fields
the index i indicates the generation structure (i = 1, 2, 3), there could also be multiple
copies of any given exotic. The notation permits for an index z for a U(1)′ charge and

we will give anomaly free assignments for z.

representations one can cancel anomalies arising from diagrams involving the U(1)′ gauge

bosons.

While, in principle, one can introduce exotics in a variety of representations to arrange

for anomaly cancellation, the most straightforward approach is to restrict the new field

content to the fundamental representations of the SM group. Thus we restrict our analysis

to the case that the exotics emulate the SM fermions, including hypercharge assignments

(although this could be relaxed). We denote the new exotics as primed versions of their

SM counterparts, and list them in Table 3.1. In this section we will outline manners

to systematically construct anomaly free sets of fermions. These techniques will be sub-

sequently used in the construction of a selection of motivated scenarios of axial vector

extensions of the SM.

3.3.1 Mirror Constructions

In the case that the new exotics mirror the SM fields there is a simple manner to cancel

any anomalies involving U(1)′ gauge bosons which we outline below. However, as we

discuss in Section 4.1, this model requires a doubling of the exotics, or a non-minimal

scalar sector in order to give masses to the anomaly cancelling fermions.
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Each generation of the SM is an anomaly free set. However, if the SM fields are charged

under the U(1)′, this introduces new anomaly contributions. Notably, anomaly cancella-

tion is automatic if for every SM fermion an exotic in the same representation of SU(2)

and SU(3) is introduced which either i). has the same U(1)Y and U(1)′ charges but oppo-

site chirality, or ii). with matching chirality, but opposite U(1)Y and U(1)′ charges. For

instance, suppose that QL carries U(1)′ charge zq, which we denote as (3, 2) 1
3
,zq

, one might

add either a LH exotic in the representation (3, 2)− 1
3
,−zq or a RH exotic in (3, 2) 1

3
,zq

. We

call this approach the mirror construction for generating anomaly free sets of fermions.

For each SM fermion, one adds a corresponding exotic. Therefore the mirror construction

ensures that anomaly cancellation occurs state by state, and thus generation by genera-

tion. In the case that one adds opposite chirality mirror partners, then each exotic forms

a vector-like pair with one of the SM fermions. If additional SM singlet states charged

under U(1)′ are also introduced, such as DM fields χL and χR, the contributions from

these states can be cancelled via the addition of RH neutrino states νR with appropriate

U(1)′ charges. Note that SM fermions that do not carry U(1)′ charges must still have

exotic partners (with U(1)′ charge zero) to cancel the anomalies of the SM gauge group,

unless the set of states uncharged under U(1)′ have the correct representations to fill out

a full SM generation.

If only certain SM fermions carry U(1)′ charges, such as a single generation, then such

mirror constructions have relatively minimal fermion spectra. However, if all or many

SM fermions carry U(1)′ charges then, it implies the introduction of a large number of

exotics. Note that there are generically flavor constraints on non-universal Z ′ models,

which are somewhat alleviated in the case that the first two generations have the same

U(1)′ charge [120].

In the rightmost two columns of Table 3.2 we show two examples in which a single SM

generation is charged under U(1)′ and the anomalies are cancelled through mirror exotics.

In the remainder of this section we consider more general algebraic approaches which can

present smaller anomaly free sets of fermions.
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3.3.2 An Algebraic Construction

Requiring anomaly cancellation gives a set of equations, which for a definite set of charges

can be solved directly. Specifically, consider the case that the SM gauge group is extended

by a U(1)′ factor, with no additional states except for those required to cancel anomalies

and that all of the SM fermions couple to the gauge boson with only axial vector couplings,

thus the charges satisfy eq. (3.5). Further, we assume the charges are the same for each

generation: z
(1)
q = z

(2)
q = z

(3)
q (similarly for leptons). To simplify the Higgs sector required

to give Yukawa couplings to the SM fermions (as we discuss in Section 4.1.1) we also take

z
(i)
q = z

(i)
l , for all generations i. We refer to this scenario as ‘Model ]1’ in later sections.

To emphasize the relation between charges we write zSM := zq = zl.

Field ]1 ]2 ]3 ]4 ]5 ]6

z[QL] 1 1 1 0 1 1

z[uR] -1 -1 -1 0 -1 -1
z[dR] -1 -1 -1 0 -1 -1
z[LL] 1 1 0 1 1 0
z[eR] -1 -1 0 -1 -1 0
z[χL] - 9 9 -9/4 1 1
z[χR] - -9 -9 9/4 -1 -1

z[Q′L] 1 1 1 - - -

z[Q′R] 3 -1 0 - 1 1
z[u′L] -3 -2 -2 -2 -1 -1
z[u′R] 4 3 -1 5/2 - -
z[d′L] 3 -6 -2 2 -1 -1
z[d′R] 4 5 11 -5/2 - -
z[L′L] -9 -82/3 -49/12 -157/48 - -
z[L′R] -3 -28/3 95/12 -13/48 1 0
z[e′L] -13 -100/3 103/6 -85/24 -1 0
z[e′R] -16 -127/3 67/6 -121/24 - -

z[νR] - - - - 1 1

N [νR] - - - - 2 2

bmz 45 207 198 153/8 17 14

bmz + bM 860 15038/3 14065/12 90697/192 34 28

ASM
Z′Z′Z′ +ADM

Z′Z′Z′ 45 45+1458 36+1458 9− 729/32 15+2 12+2

Table 3.2: Charge assignments z[f ] and multiplicities N [f ] of states which give anomaly
free spectra. For Models ]1-]4 the U(1)′ charges are mirrored in each SM generation.
In Models ]5-]6, only one generation carries U(1)′ charge. A dash ‘-’ indicates that
the corresponding state is absent in a given model. See Table 3.1 for representations and
charge assignments of states under the SM gauge group. We also give bmZ and (ASM

Z′Z′Z′+
ADM
Z′Z′Z′), the β-function and U(1)3 anomaly contributions from the SM fermions plus
DM, and bM the exotics β-function contribution, which are referenced in Section 4.2.
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We will assume that the anomaly cancelling exotic fermions form a single full generation

of vector-like fermions under the SM group Q′L, Q
′
R, u

′
L, u

′
R, d

′
L, d

′
R, l

′
L, l

′
R, e

′
L, e

′
R,

which mimic their SM namesakes (see Table 3.1 for definitions of the representations).

That this set of fermions is vector-like under the SM group implies that the SM chiral

anomalies and the Witten anomaly are resolved automatically. Interestingly in this case

the equations which ensure anomaly cancellation can be solved directly to arrive at a

general, unique set of seven conditions which generically determine anomaly free sets of

fermions with rational charges:3

zQ′R = zQ′L + 2zSM, zu′R = 7zSM + zu′L ,

zd′R = zd′L + zSM, zL′R = zL′L + 6zSM,

ze′L =
1

3
(zd′L+6zL′L − 2zQ′L − 28zSM − 14zu′L), zeR′ = zeL′ − 3zSM

zL′L =
1

Ω

(
− 8z2

d′L
− 4zd′LzQ

′
L
− 32z2

Q′L
− 74zd′LzSM + 58zQ′LzSM

− 404z2
SM − 28zd′Lzu

′
L

+ 56zQ′Lzu
′
L

+ 469zSMzu′L + 133z2
u′L

)
,

(3.9)

with Ω = 606zSM + 168zu′L − 12zd′L + 24zQ′L 6= 0.

The above set of equations uniquely characterizes the solution set. Since the charges are

all related through anomaly cancellation, fixing a subset of the charges determines the

remaining charges; e.g. taking zSM = zQ′L = 1 and zu′L = −zd′L = −3 one obtains that for

anomaly cancellation the other charges are required to be

zQ′R = 3, zu′R = 4 zd′R = 4,

zL′L = −9, zL′R = −3, ze′L = −13, ze′R = −16.
(3.10)

If any LH-RH pair obtains the same U(1)′ charge, the states are redundant for anomaly

cancellation, and thus can be removed from the model if desired.

For models which also include fermion DM χL and χR with U(1)′ charges which also

have only axial couplings to the U(1)′ gauge boson, the situation is somewhat different.

The additional freedom, due to the undetermined charge assignment of zDM, means that

3Other possible solution sets generically yield irrational charges, which are theoretically disfavoured
[117, 118].
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solving the conditions for anomaly cancellation with a single full generation of SM-vector-

like fermions leads to six sets of solutions which each provide anomaly free spectra with

rational charges. This is in contrast to the unique set found without the inclusion of DM.

In this case, if one removes the u′L and u′R exotics (or make them vector-like under U(1)′

such that zu′L = zu′R) then again there is a unique set of equations which determine the

anomaly free sets of fermions. However, it is useful to use a full generation of SM-vector-

like fermions as this makes it easier to find anomaly free models with simpler charge

assignments, avoiding fractional charges with large numerators and denominators. For

brevity, we neglect to give the sets of equations which ensure anomaly cancellation with

the addition of DM, but these can readily derived using Mathematica [121] or an analogous

equation solver.

3.3.3 General Algebraic Constructions

A more general approach to finding anomaly free sets of fermions with arbitrary charges

was outlined in the work of Batra, Dobrescu and Spivak [23], providing algebraic expres-

sions for the U(1)′ charge assignments of the exotics and multiplicities of the SM singlets,

as a function of the U(1)′ charges of the SM fermions. Indeed, using this method one can

systematically embed any anomalous set of fermions into a larger theory which is anomaly

free and where the fermions carry only rational charges.

To systematically find anomaly free spectra for SM fermions with arbitrary charges under

U(1)′, one should introduce at least one chiral pair of states transforming under SU(3),

one chiral pair transforming under SU(2) and one chiral pair charged under hypercharge.

This set of exotics provides sufficient freedom to cancel the anomalies arising from the

diagrams between mixed U(1)′ and SM gauge bosons. Following [23], we introduce pairs

of exotics d′L, d
′
R, L

′
L, L

′
R, e

′
L, e

′
R, which are vector-like under the SM group. (Note that,

unlike the previous sections, we do not introduce Q′ or u′ exotics here.)

Firstly, from the requirement of vanishing anomalies for the three diagrams involving two

SM gauge bosons (U(1)2
Y ×U(1)′, SU(2)2×U(1)′, SU(3)2×U(1)′), one can readily obtain

equations for the difference between the charges of the LH and RH exotics, i.e. (zd′L−zd′R),

(zL′L − zL′R), (ze′L − ze′R). The next step in the construction is to posit a basis for the

sum of the exotic charges in terms of a linear combination of the U(1)′ charges of the SM
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fields:

(zX′L + zX′R) = CX1 zq + CX2 zDM + CX3 zl for X = d, L, e . (3.11)

Given the difference of the charges of the LH and RH exotics, and the above form of

the sum of these charges, one can take linear combinations of these equations to obtain

expressions for the U(1)′ charges of each of the exotics in terms of the SM charges and

the constants CXi . Then demanding the vanishing of the U(1)′2 × U(1)Y anomaly for

arbitrary SM U(1)′ charge assignments leads to relations between the various constants

CXi . This typically leaves a number of constants undetermined.

It remains to arrange for the [Gravity]2×U(1)′, and U(1)′3 anomalies to vanish. We

assume the spectrum contains two types of RH neutrinos N1 × ν(1)
R and N2 × ν(2)

R which

are SM singlets with U(1)′ charges z[ν
(1)
R ] = −1 and z[ν

(2)
R ] = 2, and Nα indicate the

number of copies of these states. Then insisting that the two remaining anomalies vanish,

one obtains an equation for multiplicities Nα of the RH neutrinos states. If Nα < 0 this

implies that |Nα| RH (or LH) SM singlets with charge z[−ν(α)
R ] (with charge z[ν

(α)
R ]) are

required.

Then fixing the SM charges and the undetermined CXi , any choice which yields integer

values for N1 and N2 gives a consistent anomaly free fermion spectrum. This commonly

leads to high multiplicities N1 and N2. However, following the procedures outlined in [23],

the number of SM singlets can often be replaced with a smaller set of RH neutrinos with

larger U(1)′ charges. 3.5 gives anomaly free sets of fermions for various models which

are derived via an application of the method of [23]. Additionally, in 3.4 we present an

explicit derivation using this method.

3.3.4 A Selection of Axial Vector Models

There are many scenarios involving axial vectors which could be of interest. Here, we

highlight a number of motivated extensions of the SM here and construct anomaly free

spectra which realise these scenarios. Specifically, we will consider the following cases:

• Model ]1: The simplest scenario is the extension of the SM gauge group with an

additional U(1)′ factor, where all of the SM fermions couple axially to the Z ′, and
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the U(1)′ charge assignments of the SM fermions are replicated in the generation

structure.4

• Model ]2: A minimal extension of Model ]1 is to include chiral fermion DM states

which are SM singlets, and also couple axially to the gauge boson of U(1)′. We shall

also assume the scenario of fermion DM charged under U(1)′ in Models ]3-]6.

• Model ]3: A slight modification to Model ]2 is the case the axial vector has no

tree level couplings to leptons by enforcing zl = 0, thus yielding a leptophobic axial

vector.

• Model ]4: Conversely, one might consider a leptophilic case with zl 6= 0 and zq = 0.

• Model ]5: Not all SM generations need be charged under U(1)′ and we consider

the case that only a single generation (1G) has U(1)′ charges. For example z
(1)
q =

z
(1)
l = z

(2)
q = z

(2)
l = 0.

• Model ]6: Moreover, it could be that only a small subset of SM fermions carry U(1)′

charge. Specifically, we consider the case that only z
(3)
Q = −z(3)

u = −z(3)
d 6= 0, with

all other SM fields neutral under U(1)′. This realises a single generation leptophobic

model.

A summary of the above models is given in Table 3.3. In Table 3.2 we present anomaly

free sets of fermions which realise Models ]1-]6 outlined above. The anomaly free sets

presented for Models ]1-]4 are generated via the method of Section 3.3.2, while the spectra

for Models ]5 & ]6 come from the mirror construction, as discussed in Section 3.3.1.

Alternative anomaly free sets for Models ]1-]6 which eliminate some of the colored exotics

at the price of introducing RH neutrinos, as discussed in Section 3.3.3, are given in 3.5.

3.4 A Selection of Anomaly Free Vector Models

We provide Table 3.4 of the charge assignments which lead to anomaly cancellation for

the case of pure vector couplings to the SM fermions (and dark matter), for analogues

of Models ]1-]6. This is given both for completeness and to demonstrate that the axial

vector case typically requires far more exotics in order to arrange for anomaly cancellation

4Model ]1 is also relevant when including scalar DM or fermion DM with vector couplings to Z′.
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Name nG Lepto-phobic/philic?

]1. Universal Model 3 7

]2. /w DM Model 3 7

]3. L-phobic Model 3 Leptophobic

]4. L-philic Model 3 Leptophilic

]5. 1G-Model 1 N/A

]6. t-b-Model 1 Leptophobic

Table 3.3: Summary of the models we study. nG is the number of SM generations
charged under U(1)′.

compared to the vector case. This also highlights that there is no need of colored exotics

in the pure vector case.

Field ]1V ]2V ]3V ]4V ]5V ]6V

z[QL] 1 1 1 0 1 1

z[uR] 1 1 1 0 1 1
z[dR] 1 1 1 0 1 1
z[LL] 1 1 0 1 1 0
z[eR] 1 1 0 1 1 0
z[χL] - 1 1 1 1 1
z[χR] - -1 -1 -1 -1 -1

z[L′L] -1 -6 -4 -1 -2 -1

z[L′R] 11 6 5 2 2 2
z[e′L] 11 6 5 2 2 2
z[e′R] -1 -6 -4 -1 -2 -1

z[ν
(1)
R ] 1 -1 1 1 1 1

z[ν
(2)
R ] 2 2 -4 -2 -2 -2

z[ν
(3)
R ] -3 -5 -5 - - -

z[ν
(4)
R ] -7 -7 - - - -

z[ν
(5)
R ] -10 - - - - -

N [ν
(1)
R ] 1 7 2 4 3 1

N [ν
(2)
R ] 5 6 1 1 2 1

N [ν
(3)
R ] 1 1 1 - - -

N [ν
(4)
R ] 1 1 - - - -

N [ν
(5)
R ] 1 - - - - -

Table 3.4: Similar to Table 3.2, charge assignments for Models ]1-]6 but for the case
of a gauge boson with pure vector couplings to states (as can be seen from the charge

assignments).
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3.5 An Alternative Set of Anomaly Free Axial Vector Mod-

els

In this appendix we give alternative anomaly free sets of fermions for the case in which the

SM fermions (and dark matter) have only axial vector coupling with a new U(1)′ gauge

boson. These charges assignments are derived using the method of [23], see Section 3.3.3.

While some colored exotics are removed, the price is the introduction of a multitude of

RH neutrinos:

Field ]1b ]2b ]3b ]4b ]5b ]6b

z[QL] 1 1 1 0 1 1

z[uR] -1 -1 -1 0 -1 -1

z[dR] -1 -1 -1 0 -1 -1

z[LL] 1 1 0 1 1 0

z[eR] -1 -1 0 -1 -1 0

z[χL] - 1 1 1 1 1

z[χR] - -1 -1 -1 -1 -1

z[d′L] -6 -6 -6 - -2 -2

z[d′R] 6 6 6 - 2 2

z[L′L] -6 -6 1 1 -2 -1

z[L′R] 6 6 10 4 2 2

z[e′L] - - 18 -4 - 2

z[e′R] - - 15 -1 - 1

z[ν
(1)
R ] 2 2 1 -1 1 1

z[ν
(2)
R ] -3 -3 -2 2 -4 2

z[ν
(3)
R ] -5 -5 -4 -6 - -3

z[ν
(4)
R ] -10 -10 -9 - - -

z[ν
(5)
R ] - 1 - - - -

N [ν
(1)
R ] 8 8 2 2 1 1

N [ν
(2)
R ] 2 2 1 5 1 1

N [ν
(3)
R ] 1 1 1 1 - 2

N [ν
(4)
R ] 2 2 1 - - -

N [ν
(5)
R ] - 2 - - - -

Table 3.5: Similar to Table 3.2, alternative charge assignments z[f ] and multiplicities
N [f ] of states which give anomaly free spectra for Models ]1-]6 derived using the method

of [23].
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3.6 Algebraic Construction of Axial Vector Examples

Next we give a worked example of the algebraic construction of [23] discussed in Sec-

tion 3.3.3 and 3.5. We consider the scenario in which there are nG generations charged

under U(1)′, each generation with identical charge assignments, such that the SM fermions

have axial couplings to the new vector boson, and we include chiral fermion DM states

which also couple axially to the U(1)′ gauge boson. Following [23], the requirement that

the anomaly cancellation occurs for U(1)2
Y × U(1)′, SU(2)2 × U(1)′, and SU(3)2 × U(1)′

implies

(zd′L − zd′R) = −4nGzq, (zL′L − zL′R) = −nG(zl + 3zq), (ze′L − ze′R) = nG(zq − zl) .

Taking the sum of the LH and RH charges to be a linear combination of the U(1)′ charges

of the SM fields (zX′L + zX′R) = CX1 zq + CX2 zDM + CX3 zl, for X = d, L, e and where the

CXi are arbitrary integers, it follows that the charges of the exotics can be expressed in

terms of the U(1)′ charges of the SM fields

zd′L =
1

2

[
− CL2 zDM + Cd3 (zl − 9zq)− 2Ce1zq − 4nGzq

]
zd′R =

1

2

[
− CL2 zDM + Cd3 (zl − 9zq)− 2Ce1zq + 4nGzq

]
zL′L =

1

2

[
CL2 zDM + Ce1(3zq − zl)− 4Cd3 (zl − 3zq)− nG(3zq + zl)

]
zL′R =

1

2

[
CL2 zDM + Ce1(3zq − zl)− 4Cd3 (zl − 3zq) + nG(3zq + zl)

]
ze′L =

1

2

[
− CL2 zDM + 4Cd3zl + Ce1(zq + zl)− nG(zl − zq)

]
ze′R =

1

2

[
− CL2 zDM + 4Cd3zl + Ce1(zq + zl) + nG(zl − zq)

]
.

(3.12)

Note that those CXi absent in the above have been fixed by anomaly cancellation condi-

tions.5 Finally, the multiplicities Nα (for α = 1, 2) of the SM singlet RH-fermions ν
(α)
R

5This fixes six constants: Cd2 = Ce2 = −CL2 and CL1 = 3Ce3 = −3CL3 = 3(4Cd3 + Ce1) and Cd1 =
−2Ce1 − 9Cd3 .
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required by anomaly cancellation are given by

N1 =
1

3

(
3nGz

3
l − 12nGzl + 12nGz

3
q − 48nGzq + 3z3

dL
− 12zdL + 2z3

DM − 8zDM

− 3z3
dR

+ 12zdR + z3
eL
− 4zeL − z3

eR
+ 4zeR + 2z3

LL
− 8zLL − 2z3

LR
+ 8zLR

)
N2 =

1

2

(
N1 + 2zDM + 3nGzl + 12nGzq + 3zdL − 3zdR + zeL − zeR + 2zLL − 2zLR

)
.

(3.13)

Anomaly-free spectra can be found by choosing U(1)′ charges for the SM fermions (pro-

vided N1, N2 ∈ Z), but are not unique and may not be the most minimal. Specifically,

one obtains Model ]2b for

nG = 3, zDM = zl = zq = 1, CL2 = −2Cd3 =
2

3
Ce1 . (3.14)

The above parameter values leads to N1 = −687 and N2 = −350 but these can be

manipulated to obtain the set of RH neutrinos in Table 4.1 using the method described

in [23].
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AXIAL VECTOR Z ′ MODELS

4.1 Mass Generation

In this chapter, we follow the previous discussion of axial-vector models and then consider

what form of scalar sector is required to give masses to the SM and exotic fermions for

the axial vector models outlined in the previous section. These considerations are often

absent in phenomenological studies, but regularly require non-trivial model building. We

do not attempt to be comprehensive, but rather make some general remarks.

4.1.1 Mass Generation for Standard Model Fermions

If all SM fermions couple axially to U(1)′, then gauge invariance forbids a full set of

SM Yukawa couplings from a single Higgs. The reason is that the U(1)′ charge of the

bilinears is z[Q̄LuR] = z[Q̄LdR] = 2zq for axial vector couplings. To form a gauge invariant

operator H†Q̄LuR requires z[H†] = −2zq, but this forbids the Yukawa couplings for the

down-quarks and leptons since in the SM these involve the conjugate field. This difference

in SM fermion bilinears is even more apparent if only some generations are charged under

U(1)′. Finally, electroweak precision data also constrains the U(1)′ charge of the SM

Higgs because of the induced Z-Z ′ mixing. The remaining mass terms could still arise

via renormalisable terms involving additional Higgses, as in a Type II Two Higgs Doublet

Model [122], or due to higher dimension operators. Perhaps the simplest manner to

give masses to all of the SM fermions is for the Higgs to be uncharged under U(1)′ and

introduce a scalar S which is charged under U(1)′, but is a SM singlet, such that there

73
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are dimension five effective operators for the remaining SM fermions: (1/Λ∗)SH
†Q̄LuR,

etc. This operator is generated by physics integrated out at the scale Λ∗, and the theory

must UV complete to a renormalisable Lagrangian at energies approaching Λ∗. This is

reminiscent of the Froggatt-Nielsen mechanism [97].

Since S is a SM singlet, gauge invariant dimension five operators can be formed using S

and S†, which give mass terms to all SM fermions once S acquires a VEV 〈S〉. The 〈S〉
breaks the U(1)′, and thus the fermion masses are connected to the axial vector mass.

This scenario is no longer UV complete, and one expects additional states to enter at

the scale which generates the higher dimension operators, which could be near the TeV

scale. For mass terms induced due to 〈S〉n this yields effective Yukawa couplings of order

(〈S〉/Λ∗)n. However, a good effective field theory (EFT) requires 〈S〉 . Λ∗, and thus it is

challenging to obtain O(1) Yukawa couplings via high dimension operators. Hence, from

a model building stance, the use of high dimension operators to generate the top Yukawa

is disfavoured.

In an EFT with a Z ′, where the scalar S responsible for breaking U(1)′ has been integrated

out, the VEV of this scalar 〈S〉 ≡ v′ introduces an order parameter, which acts as a cutoff

of the EFT. The VEV responsible for breaking U(1)′ generates the Z ′ mass mZ′ ' g′v′,

and the mass of the associated scalar is parametrically mS ∼ λSv
′, where λS is the S

quartic coupling. Unitarity of the EFT describing the light SM fermions f , DM, and Z ′

requires that mf , mDM .
mZ′
g′ ' v′ and the bosons should satisfy mZ′ ,mS . v′; see

e.g. [20] for further discussion. For example, giving the top a U(1)′ coupling g′ ∼ 1 would

imply a lower bound on the Z ′ mass of mZ′ & 175 GeV. This bound is stronger for heavy

DM states

mZ′ & 1 TeV

(
g′

1

)( mDM

1 TeV

)
. (4.1)

4.1.2 Mass Generation for Pairs of Exotic Fermions

Anomaly cancellation in models with axial vector Z ′ requires an array of exotics with

chiral charge under U(1)′, and, as can be seen from Table 3.2, the pattern of U(1)′ charge

assignments of these exotics is often complicated. As such these new fermions can not

typically be given dimension four Yukawa couplings involving the Standard Model Higgs.

The simplest manner to give masses to the exotic fermions is through the introduction
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of exotic Higgses, new SM singlet scalars charged under U(1)′ which acquire VEVs, and

give masses to the various exotics via renomalisable interactions. In the case where the

exotics come in pairs that are vector-like under the SM, they may acquire masses through

renormalisable interactions involving the exotic Higgses. Due to the different U(1)′ charges

of the new fermions, this generally requires one exotic Higgs for each exotic fermion

pair. In addition to the LH-RH mass bilinears (e.g. Q̄′LQ
′
R), the exotics could also have

chiral mass bilinears (e.g. Q̄′Lu
′
R). However, exotic fermion mass operators using these

bilinears must include the SM Higgs field as well as an exotic Higgs, and are thus non-

renormalisable. An alternative approach is to add fewer exotic Higgses, such that some of

the exotic fermions do not have renormalisable mass terms, but higher dimension operators

respecting the gauge symmetries can give masses after VEV insertions.

When the exotics acquire mass through U(1)′-breaking VEVs at the scale ∼ v′, we expect

that the masses of the gauge boson (mZ′ ∼ gv′) and the exotics (M ∼ y′v′) should be

comparable: mZ′ ∼ M . Any hierarchical splitting of mZ′ or M from v′ arises primarily

Bilinear ]1 ]2 ]3 ]4

SM LH-RH bilinears (e.g. z[Q̄LuR]) -2 -2 -2 -2

z[χ̄LχR] - - 18 -18 9/2

z[Q̄′LQ
′
R] 2 -2 -1 -

z[ū′Lu
′
R] 7 5 1 9/2

z[d̄′Ld
′
R] 1 11 13 -9/2

z[L̄′LL
′
R] 6 18 12 3

z[ē′Le
′
R] -3 -9 -6 -3/2

z[Q̄′Lu
′
R] 3 2 -2 -

z[Q̄′Ld
′
R] 3 4 10 -

z[Q̄′Ru
′
L] -6 -1 2 -

z[Q̄′Rd
′
L] 0 -5 -2 -

z[L̄′Le
′
R] -7 -15 61/4 -85/48

z[L̄′Re
′
L] -10 -24 37/4 -157/48

No. scalars for Yukawa terms 5 5 4 3

Min. number of scalars 2 3 2 2

Table 4.1: Charges of fermion bilinears for Models ]1-]4. Also shown is the number of
exotic scalars needed to give vector-like masses to all exotics after VEV insertions (not
including SM Higgs), and to give masses to all exotics via a combination of renormalisable
and non-renormalisable operators with mass dimension six or less. These models need

multiple scalars to give all fermions masses.
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due to couplings. Moreover, perturbativity of y′ implies

M . v′ ' mZ′

g′(mZ′)
. (4.2)

Thus separating the Z ′ from the exotics requires a tuning of the Yukawa couplings such

that g′ � y′. In addition, the exotic fermions can not be made significantly heavier than

v′.

4.1.3 The Scalar Sector of Model ]1

Let us consider a specific example. Below, we outline a scalar sector for Model ]1 which

can give masses to all of the SM fermions and chiral exotics. To understand the charges

required for exotic Higgses we should look at the net charge of the bilinear operators

involving chiral exotic pairs. We give these for Models ]1-]4 in Table 4.1. In Model

]1, observe that most of these bilinears have different net charge, and thus five different

scalars (with |z| = 1, 2, 3, 6, 7) are required for these states to acquire vector-like mass

terms via renormalisable Yukawa terms with VEV insertions. We denote by Sq an exotic

Higgs with z[Sq] = q.

Note that one could replace terms involving S−6 with non-renormalisable terms involving

S−2 and S−3. For example, instead of S−6L̄
′
LL
′
R mass terms can also arise from

[
c1

Λ∗
〈S−3〉2 +

c2

Λ2
∗
〈S−2〉3

]
L̄′LL

′
R , (4.3)

where Λ∗ is the cutoff of the EFT. The operator involving S2
−3 is dimension five, while the

others are dimension six. However, if its coefficient is small, c1 � c2, or if 〈S−3〉 � 〈S−2〉,
this operator will not necessarily dominate. Thus the number of exotic Higgses required

can be reduced (cf. Table 4.1), but at the expense of UV completeness.

Now let us consider an example Lagrangian for the scalar sector of Model ]1. Suppose the

SM Higgs H has charge z[H] = −2 and introduce two SM singlet scalars S1 and S4 with

U(1)′ charges z[S1] = 1 and z[S4] = 4. With these states the SM Yukawa couplings can be

constructed with a renormalisable interaction for the up-like quarks (useful for obtaining

the large top Yukawa) and dimension five operators responsible for the down and lepton
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Yukawas

LSM ⊃ yiuH†Q̄LuR +
yid
Λ∗
S4HQ̄LdR +

yil
Λ∗
S4HL̄LeR + h.c. (4.4)

The scale suppression of the higher dimension operators can help realise the fermion

hierarchy, as in the Froggatt-Nielsen mechanism [97]. For the exotic fermions one can

obtain vector-like masses via gauge invariant Yukawa terms involving the SM singlet

scalars,

LEx ⊃
yQ′

Λ∗
S†1

2
Q̄′LQ

′
R +

yu′

Λ2
∗
S†4

2
S1ū

′
Lu
′
R + yd′S

†
1d̄
′
Ld
′
R +

yL′

Λ2
∗
S†4S

†
1

2
L̄′LL

′
R +

ye′

Λ∗
S4S

†
1ē
′
Le
′
R + · · ·
(4.5)

None of the leading SM mass terms involve S1, and in contradistinction all of the exotic

fermion mass terms involve S1. Thus the magnitude of the 〈S1〉 is not restricted by the

requirement that one reproduces the SM fermion masses and a large S1 VEV can be used

to decouple the exotic fermions. This results in a hierarchy between the exotic fermions,

but we will not discuss this here. Moreover, a large 〈S1〉 breaks U(1)′ at a high scale,

allowing for a Z ′ which is much heavier than the weak scale. This avoids electroweak

precision constraints from tree-level Z-Z ′ mixing [16, 20, 49, 123], which for mZ′ � mZ

require mZ′ & g′(14 TeV).

There are also mass terms from chiral bilinears, such as Q̄′Lu
′
R, which must be paired with a

Higgs H field for SU(2) invariance and a combination of S1 and S4 fields to conserve U(1)′

charge. As discussed above, mass operators containing these bilinears, e.g. S†4S1H
†Q̄′Lu

′
R,

are non-renormalisable, but can affect the mass splittings between exotic fermions.

Giving mass to certain fields via higher dimension operators implies that the EFT should

break down around Λ∗, and one might ask what manner of physics can give rise to such

operators. As an example, consider the dimension five operator S4HL̄LeR in Eq. (4.4)

which is responsible for the electron mass. This operator can arise from a vector-like pair

of fermions ψL, ψR in the representation (1, 1)−2,3 entering in the Lagrangian of the UV

theory

LUV ⊃ yψHL̄LψL + y′ψS4ψ̄LeR +mψψ̄LψR + h.c. (4.6)

After integrating out ψ, one recovers the contact operator which gives mass to the electrons

and the EFT cutoff can identified as Λ∗ =
mψ
yψy
′
ψ

. While the introduction of high dimension

operators necessitates new physics (for instance new fermions) in the UV theory, these

states could be significantly above the weak scale.
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4.1.4 Mass Generation for Exotic Mirror Fermions

In anomaly free models arising from mirror constructions, such as Models ]5 & ]6, the

situation is somewhat different. Since the exotic fermions are not introduced in pairs

that are vector-like under the SM, but rather as copies of SM generations, one requires a

new scalar which is a doublet under SU(2)L to construct renormalisable Yukawa terms.

Since the VEV of such a scalar breaks electroweak symmetry, it is constrained by elec-

troweak precision and Higgs measurements. Moreover, in this case the exotics can not be

much above the weak scale. Viable exotics require Yukawas near the perturbative limit,

which implies new physics at the TeV scale, and thus such scenarios will be generically

constrained by collider searches.

Alternatively, we may introduce further exotic fermions which do not disrupt the anomaly

cancellation, and then give masses to the exotics in the same fashion as in Section 4.1.2.

This can be achieved if one supplements the mirror constructions, such as Models ]5 &

]6, with a full set of states with identical SM representations, zero U(1)′ charge, and

opposite chirality to the existing exotic fermions. For example, for Model ]5 one would

add Q′L, u′R, d′R, L′L, e′R with z[Q′L] = z[u′R] = z[d′R] = z[L′L] = z[e′R] = 0. Since they

are uncharged under U(1)′, they obviously do not contribute to any anomalies involving

U(1)′. Furthermore, since these states mimic an entire generation of SM fermions, and

the anomalies in the SM cancel generation by generation, it follows that this spectrum is

anomaly free.

The benefit of doubling the number of exotics is that now one can form Yukawa terms for

the anomaly cancelling exotics which give vector-like masses after VEV insertions, similar

to Section 4.1.2. For a given anomaly cancelling RH exotic XR one can form a LH-RH

bilinear which has net charge z[X̄LXR] = z[XR] (similarly for LH anomaly cancelling

exotics). For Models ]5 & ]6, supplemented by a generation with opposite chirality and

zero U(1)′ charge, all of the exotic LH-RH bilinears have net charge 1. Thus one can

give mass to all of the exotic fermions through a single new SM singlet scalar field S with

z[S] = −1

LMir ⊃ SQ̄′LQ′R + Sū′Lu
′
R + Sd̄′Ld

′
R + SL̄′LL

′
R + Sē′Le

′
R . (4.7)

This model has a minimal scalar sector, and is UV complete, at the price of doubling the

fermion content of the theory.
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4.2 Breakdown of Low Energy Theories

In this section we examine at what scale new physics is needed to mitigate a breakdown in

the low energy theory, either due to a loss of renormalisability from uncancelled anomalies

or, after introducing new fermions for anomaly cancellation, due to a loss of perturbativity

of the U(1)′ gauge coupling g′.

4.2.1 The Non-Perturbative Limit

In the SM the hypercharges of fields are all O(1) and as a result the gauge coupling

remains perturbative well beyond the Planck scale. However, as can be seen from Table

3.2, the exotics required for anomaly cancellation in axial vector extensions of the SM

often carry large U(1)′ charges. As a result the U(1)′ gauge coupling g′ may quickly

run non-perturbative. Indeed, shortly after the coupling nears the non-perturbative limit

one must reach a U(1)′ Landau pole. Near the scale at which the U(1)′ becomes non-

perturbative either the theory enters a strong coupling regime or new physical states

appear which maintain the theory in a weakly coupled completion.1 In principle such

new physics could be observable at collider experiments if it occurs near the TeV scale.

The running of g′ is only initiated above the Z ′ mass, thus g′(mZ) = g′(mZ′). At energies

Q < mZ′ running is inhibited by the Z ′ mass, much as the Fermi constant GF does not

run. Above mZ′ the U(1)′ coupling strength α′ ≡ g′2/4π runs with the energy scale Q,

dα′−1

d lnQ
= − b

2π
with b =

∑
f

2

3
z2
f +

∑
s

1

3
z2
s , (4.8)

where the sum runs over all U(1)′ charged Weyl fermions f and complex scalars s with

charge zi that are accessible at the scale Q and includes color and representation factors.

The scale at which g′ becomes non-perturbative depends not only on the field content

and charge assignments, but also the masses of any new fields. Below the TeV scale, we

assume that only the SM fields, and DM states χL and χR (except for Model ]1), are

present. If the new fermions enter at the scale M , the running of g′ to some UV scale Λ

1New physics which enters at the Landau pole does not necessarily need to take part in anomaly
cancellation. The low energy theory could transition to a different weakly coupled theory which remains
anomalous, and now anomaly cancelation must take place in the new theory.
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is described by

α′−1(Λ) = α′−1(mZ′)−
∫ M

mZ′

bmZ
2π

d lnQ−
∫ Λ

M

bmZ + bM
2π

d lnQ , (4.9)

where bmZ and bM are defined as in Eq. (4.8), but now for bmZ the sum is over the

SM states and DM, and for bM we sum over only the new fermions required by anomaly

cancellation. Specifically, the U(1)′ coupling runs non-perturbative (α′(Λ 6P ) ∼ 1) at the

scale Q = Λ6P

Λ6P = M exp

[
1

bM + bmZ

(
bmZ log

[mZ′

M

]
+

2π

α′(mZ)
− 2π

α′(Λ 6P )

)]
. (4.10)

There could be additional vector-like pairs of fermions, or new scalars, charged under

U(1)′ which will increase running without altering the anomaly cancellation requirements.

Indeed, one typically introduces scalars charged under U(1)′ to give masses to the exotics

through a Higgs mechanism, as discussed in Section 4.1. Furthermore, certain states

charged under U(1) might be integrated out at some scale Λ∗ leading to higher dimension

operators in the low energy theory (as may be useful to give mass to some SM fermions

or exotics, cf. eq. 4.6). If Λ∗ < Λ6P , however, then these states must also in principle

be included in the running of the U(1)′ gauge coupling above Λ∗. Here for simplicity

we include only the new fermions required by anomaly cancellation in the U(1)′ gauge

coupling running. Thus, our constraints may be weaker than in a complete model, but

qualitatively they usually will not change. Note that for the spectra we consider, the pole

for U(1)Y always lies above Λ6P .

Figure 4.1 shows the RG evolution of the U(1)′ coupling g′ in Models ]1-]6 with the

assumption that mZ′ ∼ TeV. The purple contours indicate the scale Λ 6P at which g′

becomes non-perturbative for a given g′(mZ) and M . If g′ starts out sufficiently small

at the electroweak scale and the new fields are heavy, the Landau pole is reached only

at very high scales. But observe that for weak scale couplings g′(mZ) ∼ 0.1 − 1 Landau

poles can be a concern for all models we consider. At the threshold of strong coupling

Λ 6P one expects new physics with observable consequences. In particular, TeV scale non-

perturbativity is evident in Models ]1-4 with weak scale exotics, as indicated by the

lightest contours in Figure 4.1. On the other hand, for sufficiently small g′(mZ) the U(1)′
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coupling may not run to strong coupling until above 1018 GeV (which coincides with the

Planck scale), as indicated by the darkest contour.

In the grey region, Λ6P < M and the running due to the low energy content alone will

cause g′ to reach its pole before the anomaly cancelling fermions enter, so that new physics

is expected at this scale regardless of anomaly cancellation considerations. The boundary

of this region saturates this bound, thus M = Λ6P and g′(M) =
√

4π, and the scale at

which g′ runs non-perturbative can be read from the LH axis. The coupling at the weak

scale is determined by the RG evolution, according to Eq. (4.10), from the UV scale

M = Λ6P

α′(mZ) =

(
1

α′(Λ 6P )
− bmZ

2π
log

[
mZ

Λ 6P

])−1

. (4.11)

In order words, the trajectory of the boundary curve enveloping the grey region relates

the scale M and g′(mZ) by the RG evolution backward from g′(M) =
√

4π with only SM

particle content plus the added DM (if present).

4.2.2 The Non-Renormalisable Limit

If a set of fermions is anomalous at a given energy scale, it should be anticipated that this is

an EFT and at some higher scale M additional fermions (or another mechanism) enters to

cancel the anomalies. Below the scale M the heavy chiral fermions which are integrated

out generate Wess-Zumino terms which cancel the apparent anomalies in low energy

theory [124–126]. However, the cutoff of the EFT in which the anomaly cancelling fermions

are integrated out can not be made arbitrarily high without losing calculability. If a gauge

anomaly remains uncancelled it eventually results in a loss of renormalisability. For an

EFT with gauge anomalies there is a fundamental cutoff Λ6R at which renormalisibility is

lost, and for an anomalous U(1) gauge theory this is given by [126]

M . mZ′

(
64π3

|g′6R3AZ′Z′Z′ |

)
≡ Λ6R , (4.12)

where g′6R ≡ g′(Λ 6R) and AZ′Z′Z′ = Tr[z3] is the U(1)′3 anomaly coefficient in the EFT

below the scale of the exotics M . Therefore, the requirement that the gauge theory

remains renormalisable places an upper limit on the scale of the anomaly cancelling exotics

M .
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Figure 4.1: Assuming mZ′ ' 1 TeV and mDM ∼ mZ the purple contours show the
scale Λ 6P at which the U(1)′ coupling g′ runs non-perturbative in Models ]1-]6. The boxes
show values of Log10[Λ 6P /GeV]. The scale Λ 6P depends on g′(mZ), and M , the scale of
the anomaly cancelling fermions. Only the contributions from the SM fermions, DM, and
anomaly cancelling fermions are used in the RG evolution. The grey region indicates
that Λ6P < M , and new physics enters at Λ 6P regardless of M . The red curves show
the maximum scale at which exotics must enter to prevent the loss of renormalisability
Λ 6R for mZ′ ∼ 1 TeV (dashed), and 100 TeV (solid). For exotics which acquire mass
through v′, the VEV that breaks U(1)′, M and mZ are related. We show the restriction
M . v′ ' mZ′/g

′, as Yellow curves for mZ′ ∼ 1 TeV (dashed), and 100 TeV (solid).
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The anomaly cancelling exotics must enter at, or prior to, the scale Λ6R, as determined by

Eq. (4.12). Moreover, if we suppose that the exotics enter at the highest possible scale,

M = Λ6R, then Eq. (4.12) implies the following model independent upper bound on the

coupling for a given set of charges

|g′6R3AZ′Z′Z′ |
64π3

.
mZ′

M
. 1 , (4.13)

since a reliable EFT must satisfy mZ′ . Λ 6R. For mZ′ ∼ M this requirement does not

significantly constrain the parameter space, but stronger bounds are obtained for specific

values of mZ′ . To derive a useful constraint we take a range of values for M and find

the coupling g6R which saturates the inequality Eq. (4.13) for m′Z =1 TeV and 100 TeV.

Running g′6R from M to the scale mZ′ (via Eq. (4.9)), gives a bound on the low energy

coupling g′(mZ).

For mZ′ �M the exotics must enter to prevent the loss of renormalisability prior to the

scale at which one anticipates a Landau pole, i.e. Λ 6R � Λ 6P . Furthermore, the mass scale

of the exotics is characteristically set by the U(1)′ breaking scale v′, i.e. M . v′ ' mZ′
g′(mZ′ )

(cf. Eq. (4.2)). In this case the exotics must typically enter earlier than dictated by

perturbativity or renormalisibility considerations. The scale of EFT breakdown Λ 6R and

the requirement that M . v′ are both shown in Figure 4.1 for mZ′ = 1 TeV, and 100

TeV.

4.3 Dark Matter Freeze-out via an Axial Vector

One of the leading motivations for considering a new abelian gauge boson with only axial

vector couplings to the SM fermions is the prospect of providing a potential mediator be-

tween DM and SM fermion interaction. As such it is of interest to consider the possibility

of successful thermal freeze-out of the DM, with the relic density of DM determined by

annihilation to SM states mediated by the axial vector. Here we will restrict ourselves to

the scenario in which the charges of the DM χ and SM fermions f are fixed to be Model

]2 of Table 3.2. Further, we assume that the Higgs is not charged under U(1)′, and only

consider χ̄χ → f̄f annihilation. A similar analysis could be carried out for alternative

models.
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Figure 4.2: Constraints on Dirac DM χ coupling to the SM via 1
Λ2 χ̄γ

µγ5χf̄γµγ
5f

coming from pico60 (red) [130], pico2L (orange) [131], and CMS monojet searches
(blue) [132]. The LH panel shows the σSD-mχ plane. The RH plot gives the same
information in the Λ-mχ plane. The black curve shows the Λ such that DM freeze-
out reproduces the correct relic density, the curve is dashed where such couplings are
in tension with direct searches. For DM with mass 600 GeV. mχ .10 TeV the correct
relic density can be reproduced without conflicting with direct constraints. The green
shaded region indicates parameter regions where the DM density set by freeze-out is
below the observed relic density. The thin dotted line on RH plot indicates the regime

mχ & Λ where the EFT is not reliable.

If the Z ′ is heavy relative to the DM and SM states, the mediator can be integrated out

yielding a dimension six operator 1
Λ2 χ̄γ

µγ5χf̄γµγ
5f connecting DM with SM fermions,

with Λ ≡ mZ′/g
′√(2zq)(2zDM). For Model ]2 we have

√
4zqzDM = 6. The cross section

for Dirac DM annihilating to SM quarks via this operator is [63]

σannv =
3m2

χ

2πΛ4

∑
q

(
1−

m2
q

m2
χ

)1/2 [
m2
q

m2
χ

+ v2

(
8m4

χ − 22m2
qm

2
χ + 17m4

q

24m2
χ(m2

χ −m2
q)

)]
+O(v4).

(4.14)

where v is the DM relative velocity. Thus the requirement that the annihilation cross

section is appropriate to give the observed DM relic density constrains the magnitude of

Λ for a given DM mass mχ. Following [127–129], in Figure 4.2 we show the value of Λ

required to obtain the observed relic density as mχ varies. Note that the EFT is no longer

reliable if the DM mass exceeds the cutoff, so we require mDM . Λ, as indicated by the

dashed line in the RH panel of Figure 4.2. This EFT requirement can be re-expressed as

a constraint on the Z ′ mass and coupling g′, as in Eq. (4.1).

The operator induces spin-dependent DM-nucleon scattering and thus can be searched for

via direct detection experiments. For Dirac fermion DM scattering with quarks, mediated

via a heavy axial vector the spin-dependent scattering cross section with protons is [127–

129]

σp ≈
4

πΛ4
µ2
p

 ∑
q=u,d,s

∆p
q

2

, (4.15)
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where µp ≡ mχmp
mχ+mp

is the reduced mass, and ∆p
q is the spin content of the nucleon [133]; we

use
∑

q ∆p
q ≈ 0.37. A smaller Λ, from larger couplings or equivalently lighter mediators,

corresponds to a higher scattering rate. Given the scattering cross section σp we can apply

the current direct detection limits to the EFT, and derive a lower bound on Λ. We use

the limit from the pico experiment [130, 131] to put a constraint on Λ, see Figure 4.2.

We have not included RG running, see e.g. [42], but this is expected to have only a mild

effect in this case.

Additionally, indirect detection signals due to DM annihilation producing photons and

neutrinos are searched for by Fermi [29], IceCube [134] and Super-Kamiokande [135]; these

can provide complementary constraints. A full analysis is beyond the scope of this work,

however see e.g. [105, 128] for further discussion.

The axial vector can also mediate DM production through collisions of SM states, and

thus searches at colliders for events with missing energy constrain the production cross

section. Figure 4.2 displays limits from CMS searches with
√
s = 13 TeV and 12.9 fb−1

[132]. The CMS analysis shown assumes a simplified model with zqg
′ = zχg

′ = 0.05.

In this limit the mediator is heavy enough that it is not kinematically accessible, and

we cutoff the limit before on-shell effects affect the line shape; small variations in the

couplings can be absorbed into mZ′ with little impact. An EFT should give a similar

limit, and in the RH plot we refashion the CMS limit in terms of an EFT by identifying

Λ ≡ mZ′/g
′√(2zq)(2zDM); this is strictly only reliable for

√
s < mZ′ . If the axial vector

mass is comparable to LHC energies (mZ′ .
√
s = 13 TeV) the EFT may break down and

this requires a UV completion, examples of which we have outlined above. For discussions

of on-shell medaitor effects see e.g. [20, 63, 66, 69, 108–110].

For 600 GeV. mχ .10 TeV the DM relic density can be reproduced without conflict with

constraints. This viable parameter space corresponds to 1 TeV. Λ . 10 TeV, thus for

moderate couplings (say 0.01 . g′ . 1) the axial vector is of order 60 GeV . mZ′ . 60

TeV. However, LHC constraints typically require mZ′ & 1 TeV for couplings g′ ∼ O(0.1)

[136].

The above discussion assumes the DM relic abundance is set by freeze-out, in alternative

scenarios these requirements will vary. For instance, in Asymmetric Dark Matter [137] one

desires that the density of DM-antiDM pairs is reduced below the observed relic density,

such that a DM-antiDM asymmetry can be responsible for the late time abundance. Thus
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this scenario requires even more efficient annihilation, which shrinks the viable parameter

space; see [63, 138] for studies of DM annihilation via χ̄γµγ5χf̄γµγ
5f in Asymmetric

Dark Matter. Furthermore, in parameter regions in which the DM density is not reduced

below the observed relic density, the correct abundance might still be obtained via other

mechanisms, e.g. entropy injection (e.g. [139]), DM freeze-in (e.g. [140–142]), or thermal

inflation (e.g. [143, 144]).

4.4 Discussion

Axial vectors have been motivated in a number of different contexts. For instance, they

appear commonly as mediators for DM interactions with SM states. While many studies

consider scenarios with axial vector gauge bosons, they often neglect to confront the

challenges of anomaly cancellation. Ensuring that a model is anomaly free is crucial for

the gauge theory to be consistent, and successful anomaly cancellation typically requires

new states which are charged under the SM gauge group. Moreover, as we have argued

here, these new fermions can not be arbitrarily separated in mass from the axial vector.

Thus it is important to consider UV completions as these new exotics required for anomaly

cancellation are potentially observable at colliders. In particular, unless U(1)′ charges

differ in each SM generation, an axial vector which couples to quarks requires new colored

fermions for anomaly cancellation. In the case of a universal axial vector with couplings

to DM that thermally produce the observed relic density, the new colored fermions should

be at the 1-10 TeV scale, and can be probed in the future.

Additionally, when the Z ′ is accessible at colliders, limits arise from resonance searches.

Current LHC limits from dijet (dilepton) searches for axial vectors with g′ ∼ 0.1 typically

require mZ′ & 1 TeV (mZ′ & 3 TeV) [66, 105, 136, 145], which would weaken somewhat if

the Z ′ has a large branching fraction to DM, or not be applicable if the Z ′ is leptophilic

(leptophic). Both of these scenarios occur in the models we have discussed. In the case

of Z-Z ′ mixing, there are also limits from electroweak precision constraints [16, 49, 123].

Moreover, if there are exotic Higgs states to give mass to the new fermions, this can lead

to other bounds such as variations in Higgs couplings to SM states, see e.g. [146], or

contributions to the invisible Higgs width [147, 148]. Furthermore, after U(1)′ breaking

states with the same SM quantum numbers will generically mix (and beforehand if the
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states have identical charges) this f -f ′ mixing is constrained by electroweak precision

and flavour observables. However, these constraints are typically model dependent, see

e.g. [149]. A full analysis of the constraints, and model dependence, of each of the scenario

considered here is beyond the scope of this work.

In conclusion the purpose of Chapter 3 and 4 has been two-fold: Firstly we have provided

anomaly free, UV complete reference models for axial vector gauge bosons coupling to

SM fermions. In the course of deriving the anomaly-free sets of fermions we have ex-

plored a number of general methods for constructing such models. Secondly, we wished to

highlight that in neglecting the additional states required for anomaly cancellation, one

omits a number of potentially important constraints, such as collider searches for anomaly

cancelling exotics, the need for new scalars to give mass to exotics, the possibility of low

U(1)′ Landau poles, and potentially the loss of renormalisibility, all which should be taken

into consideration in any full model.



Chapter 5

CONCLUSION

This thesis has explored SM and BSM phenomenology in the case of U(1)′ extension of the

SM and the application to DM physics including the direct, in-direct detection of DM, and

collider search at LHC. A comprehensive study of top-philic vector portal DM simplified

models and anomaly cancellation for axial-vector DM mediators have been presented.

In the top-philic model study, the parameter space of DM and Z ′ masses are presented

in order to reproduce the current relic density ΩDMh
2 ≈ 0.12. We find that direct

detection searches and EWPT of Z-Z ′ mixing provides the sharpest limits compared to

in-direct and collider searches in the case that the DM and top couplings are fixed from

the relic density. We further developed the first phenomenology method for addressing

the ambiguity arising from the chirality of top by considering the ratio of cross sections

in the mono-jet and mono-photon searches of DM at LHC.

Anomaly cancellation for U(1)′ extension of SM has been extensively studied in this thesis

especially for the case that the Z ′ is a pure axial-vector. We have developed anomaly-free

spectra and UV complete models for different motivated purposes. The theoretical and

phenomenological limits coming from the anomaly cancelling exotics have been considered

and these determine the parameter space for the future search of axial-vector Z ′ and the

exotics. Moreover, we provide further constrains for the parameter space in the case

that DM relic density is set by the freeze-out mechanism via the axial-vector Z ′ portal.

Following our work, there has been further exploration of anomaly free models [150, 151]

which build upon our results.
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Searching for DM driven from the theory and phenomenology of BSM is an ongoing

journey and we rely on the forthcoming experimental results to guide today’s and the

next generation physicists. This thesis provides a new insight for BSM in a minimal

extension of SM scenario and has a potential to be tested in the near future.



Appendix A

AXIAL VECTOR VERSUS

VECTOR IN SM AND BSM

A.1 Axial-Vector Verse Vector in gg → Z(orZ ′) + j

In this appendix, we investigate the difference between the axial vector and vector con-

tribution in loop-induced process, gg → Z(or Z ′) + j, which strongly related to our DM

mono-jet study for top-philic model. The production cross section of gg → Z(or Z ′) + j

is determined generically by four parameters:

• the momentum of the jet pt

• the loop fermion mass mf

• the gauge coupling

• the mass of vector boson MZ or MZ′

When a vector boson couples to SM fermion contents with both axial and vector couplings,

we find the axial vector contribution has the larger branch ratio for the cross section due to

the loop structure in Figure A.1. The states of the jet: the jet from axial vector coupling

is mainly a initial state radiation (ISR) and the vector coupling channel only has final

state radiation (FSR) because of Furry theorem. We show the cross section difference in

Figure A.2 and it shows the cross section for axial vector is about O(1) larger than the
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vector for a given jet pt. Then we further study the mass of loop fermion effect in the

following subsections.
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Figure A.1: The Feynman diagrams for gg → Z(or Z ′) + j. The red box vertex is
the vector coupling of Z and the blue triangular vertex is the axial vector coupling
of Z. The jet from the axial vector coupling channel mainly is a initial state jet. On the

other hand, the vector coupling diagram only has the final state jet.
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Figure A.2: g g → Z + j with all favor quarks in the fermion loop.

A.1.1 In Standard Model MZ = 91 GeV

In Figure A.2, we consider all flavor of quarks in the loop and we will study the effect

from SM quark mass hierarchy, i.e. mt � mq where q are other light flavor quarks, which

leads to the the result that mass influences the production cross section which indeed is

controlled by mass of top quark[152].
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We assume the light flavor quarks are massless and massive top in the loop process of

gg → Z + j, i.e. mu = md = mc = ms = mb = 0 and mt =172 GeV and the axial-vector

and vector couplings of Z are in the convention (for simplification purpose, gZ ≡1):

gV u = gz × (
1

4
− 2

3
sin2θw) ≈ 0.096; gAu = gz × (

1

4
) = 0.25; (A.1)

gV d = gz × (−1

4
+

1

3
sin2θw) ≈ −0.17; gAu = gz × (−1

4
) = −0.25; (A.2)

Then we scan the individual quark contribution for the axial vector Z production cross

section at jet pt = 20 GeV (gAu = −gAd and gZ =1 ) and the cross section is indeed

deterninated by mass of top in Eq. (A.5):

σup,A = 155.1 pb ;

σdonw,A = 155.8 pb

≈ σup,A;

σcharm,A = 157.6 pb

≈ σup,A;

σuc,A = 623.2 pb

≈ (2× gAu)2 × σup,A
g2
Au

= 4× σup,A;

σudc,A = 157.6 pb

≈ (2× gAu + 1× gAd)2 × σup,A
g2
Au

(A.3)

= (2× gAu − 1× gAu)2 × σup,A
g2
Au

= σup,A;

σudcsb,A = 155 pb

≈ (2× gAu + 3× gAd)2 × σup,A
g2
Au

(A.4)

= (2× gAu − 3× gAu)2 × σup,A
g2
Au

= σup,A;

σtop,A = 79.87 pb
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σudcsb+ massless top,A = 0 pb

≈ (3× gAu + 3× gAd)2 × σup,A
g2
Au

= (3× gAu − 3× gAu)2 × σup,A
g2
Au

= 0× σup,A;

σudcsb+ 172 GeV top,A = 79.71 pb

≈ (2× gAu + 3× gAd)2 × σup,A
g2
Au

− σtop,A

= σudcsb,A − σtop,A (A.5)

While the vector Z production cross section at the same jet pt = 20 GeV (gV u = 0.096,

gV d = -0.17 and gZ =1):

σup,V = 1.198 pb ;

σdonw,V = 3.721 pb ;

σcharm,V = 1.188 pb

≈ σup,V ;

σuc,V = 4.788 pb

≈ (2× gV u)2 × σup,V
g2
V u

= 4× σup,V ;

σudc,V = 0.06274 pb

≈ (2× gV u + 1× gV d)2 × σup,V
g2
V u

; (A.6)

σudcsb,V = 13.14 pb

≈ (2× gV u + 3× gV d)2 × σup,V
g2
V u

; (A.7)

σtop,V = 0.004511 pb

σudcsb+ massless Top,V = 6.4 pb

≈ (3× gV u + 3× gV d)2 × σup,V
g2
V u

;

σudcsb+ 172 GeV Top,V = 13.1 pb

≈ (2× gV u + 3× gV d)2 × σup,V
g2
V u

− σtop,V

= σudcsb,V − σtop,V

≈ σudcsb,V ; (A.8)
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We show the σ − pt as in Figure A.2 for axial vector and vector for the above individual

channels:
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Figure A.3: Left: g g → Z + j with only up quark. Right: g g → Z + j with only
charm quark
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Figure A.4: Left: g g → Z + j with up and charm. Right: g g → Z + j with up,
down and charm. These two plots show the cross section combination from Eq. (A.3)

and Eq. (A.6).
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Figure A.5: Left: g g → Z + j with u+d+c+s+’b’. Right: g g → Z + j with top
only. The combination of these two plots will lead to Figure A.2 and cancellation effect
from Eq. (A.5) only happens for avail vector coupling since the vector contribution from

Eq. (A.8) is negligible.
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The contribution from massive top to the cross section for vectorial Z is relatively smaller

than light quarks. It can be understood by considering the threshold of the center mass

energy
√
s to produce massive top in the loop plus a loop-induced radiative jet (FSR)

which is harder than the axial vector case which has a ISR jet. We demonstrate the

histogram plot for the threshold energy differences in Figure A.6 and A.7 (jet pt = 20

GeV and total number of events = 1,000):

0 200 400 600 800 1000

sqrt(s)(GeV)

0

200

400

600

800

1000

n
u
m

b
e
r 

o
f 

e
v
e
n
ts

Axial (Up Only)

0 200 400 600 800 1000

sqrt(s)(GeV)

0

200

400

600

800

1000

n
u
m

b
e
r 

o
f 

e
v
e
n
ts

Vector (Up Only)

Figure A.6: The histogram plot of
√
s to produce Z(91 GeV) + j(20 GeV) with only

massless up quark in the loop. Left: g g → Z91GeV (Axial) + j with up only. Right:
g g → Z91GeV (Vector) + j with up only. Both plots show the threshold of

√
s are about

the same for axial vector and vector coupling for ISR or FSR since the loop fermion is
massless.
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Figure A.7: The histogram plot of
√
s to produce Z(91 GeV) + j(20 GeV) with only

massive top in the loop. Left: g g → Z91GeV (Axial) + j with top only. Right: g g
→ Z91GeV (Vector) + j with top only. The production of a FSR from vector coupling Z

needs more
√
s due to the massive top in the loop.
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A.1.2 Heavy Z ′ with fixed couplings gA=gV =0.1

We rescale the coupling gA=gV =0.1 for simplification purpose and discuss the case of

heavy vector boson Z ′ production. We follow the same procedure as the discussion in

SM. In Figure A.8, we show the axial vector and vector production difference of Z in the

cases of light loop fermion and massive top quark with our couplings simplification which

is consistent with our previous results. The vector coupling contribution is suppressed by

the FSR when massive top is in the loop.
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Figure A.8: Left: g g→ Z + j with up only when gA=gV =0.1. MZ = 91 GeV. Right:
g g → Z + j with top only when gA=gV =0.1. MZ = 91 GeV

Then we increase the vector boson mass to 1 TeV:
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Figure A.9: Left: g g → Z ′ + j with up only when gA=gV =0.1. MZ′ = 1 TeV.
Right: g g → Z + j with top only when gA=gV =0.1. MZ′ = 1 TeV

When Z ′ mass becomes heavier than the top mass, the cross section differences become

the same for both light quark and top. The center mass energy threshold histograms have

shown the minimal
√
s & 1 TeV in Figure A.10 and A.10.
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Figure A.10: Left: g g → Z1TeV (Axial) + j with up quark only. Right: g g →
Z91GeV (Vector) + j with up quark only
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Figure A.11: Left: g g → Z1TeV (Axial) + j with top quark only. Right: g g →
Z91GeV (Vector) + j with top quark only

The summary of this appendix is the axial vector coupling of a vector boson Z (or Z ′)

dominating contribution the to the gg → Z (or Z ′) + j production cross section. We

investigate the loop structure and show the center mass energy threshold difference due

to the state of the jet along with Z (or Z ′) which supports our top-philic Z ′ and axial

vector studies where we mainly focus on the axial vector coupling of Z ′.
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