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SUMMARY

The last two decades have witnessed an enormous growth in the telecommunication industry. Much

of the technological progress, undeniably, is a consequence of the theory put forth by Claude Shannon in

his landmark paper “A Mathematical Theory of Communications” (1), which also established the field

of information theory. The information theoretic notion of channel capacity, developed by Shannon, has

become the benchmark parameter for the design of many of the communication systems and protocols

used by telecommunication engineers.

Shannon’s theory has been extended from the point-to-point channel to a variety of multi-user chan-

nels such as multiple access and broadcast channels. Most of the results assume a channel models where

transmitters and receivers have almost inexhaustible memory and computing power, are fully synchro-

nized, and have global knowledge of all the communication protocols, number of users and state of the

channel, etc. Clearly, in real world applications, these assumptions are too idealistic and it is of interest

to understand the fundamental limits of more practical models where these assumptions are relaxed.

It has become apparent over the years that classical techniques are no longer sufficient to study

such channel models. For example, random Gaussian codes, that are optimal for many Gaussian noise

channels do not perform well in competitive multi-user scenarios where users share spectrum resources.

In asynchronous multi-user channels, some examples have shown that discrete inputs may outperform

Gaussian signaling. Regrettably, such conclusions have been either drawn from numerical evaluations,

which are difficult to generalize analytically, or existence proofs that show that discrete inputs are opti-

x



SUMMARY (Continued)

mal but give little information about the optimal input distribution. Therefore, it is of interest to develop

a theoretical framework and tools for establishing the optimal performance in such multi-user settings.

Broadly this thesis consists of two parts. In the first part, the necessary machinery required for eval-

uating the performance of discrete inputs is developed. The framework is rooted in novel connections

between information theory, additive combinatorics, number theory and estimation theory. Many of

the tools developed are of interest in and of themselves and lead to interesting connections between the

aforementioned fields that are worthy of further exploration.

In the second part of this thesis, we apply the developed tools to evaluate the performance of discrete

inputs in several important channel models and scenarios.

Our first focus is the capacity region of the interference channel with partial codebook knowledge. A

quite surprising result is shown: that systems with limited codebook knowledge are almost as efficient

as systems with full global codebook knowledge for the practically relevant additive white Gaussian

Noise (AWGN) channels.

Next we focus on a transmission strategy dubbed as treating interference as noise (TIN). TIN is a

very simple and commonly used strategy. In the past this achievable scheme was evaluated by using

the optimal (nearest neighbor) decoding rule in AWGN. This sub-optimal detection rule is equivalent to

assuming the worst (in terms of achievable rates) noise distribution: Gaussian noise. One consequence

of adapting TIN with Gaussian inputs as a strategy is an overly pessimistic view of interference which

suggests that networks are inference limited, and that user orthogonalization is needed; this is the design

paradigm of all commercially available networks. With the tools developed in the first part of the the-

sis,we show that using the correct distribution of noise+interference, TIN can be approximately optimal.

xi



SUMMARY (Continued)

Because the TIN achievable rate region applies to the block asynchronous interference channel we can

make similar conclusions on optimality there as well. Therefore, our result suggests that accounting for

the correct distribution of the noise can bring considerable gain. Moreover, we show that the gain is not

vanishing as SNR→∞ but correspond to a degrees of freedom gain (i.e., grow in dB scale with SNR).

Next we consider a Gaussian channel with one transmitter and two receivers. The goal is to maxi-

mize the communication rate at the intended/primary receiver subject to a disturbance constraint at the

unintended/secondary receiver. The disturbance is measured in terms of the minimum mean square er-

ror (MMSE), of the interference that the transmission to the primary receiver inflicts on the secondary

receiver. This is one of the simplest models in which one can study the effect of interference and in-

terference mitigating strategies. Moreover, even though this model is somewhat simplistic compared to

the Gaussian Interference Channel (G-IC), it may serve as an important building block towards charac-

terizing the capacity of the G-IC. The advantage of this estimation theoretic perspective is that it gives a

very natural explanation of the nature of the gains that may be attributed to the discrete inputs.

xii



CHAPTER 1

INTRODUCTION

Part of this chapter has been previously published in (2; 3; 4; 5; 6; 7; 8; 9). c©[2013] IEEE.

Reprinted, with permission, from (2). c©[2014] IEEE. Reprinted, with permission, from (3) and (4).

c©[2015] IEEE. Reprinted, with permission, from (5), (6) and (7). c©[2016] IEEE. Reprinted, with

permission from (8) and (9).

Many of the current channel models in network information theory use assumptions that are too

idealistic: users have global knowledge of the network protocols, are fully synchronized, and have

almost infinite computing power. Moreover, works that tried to relax these idealistic assumptions, often

due to the lack of analytical tools, have mainly focussed on numerical results. As today’s networks are

constantly increasing in size and demanding higher and higher communication rates, there is an urgent

need to develop tools which may help us analytically address the capacity of more realistic network

models that relax many of these commonly used, but idealistic, assumptions.

One example of a classical, but perhaps unrealistic, assumption in multi-user information theory is

that each node in the network possesses knowledge of the codebooks used by every other node. Knowl-

edge of the codebook implies that the node is aware of the transmission schemes of the all the neigh-

boring nodes and thus can mimic those protocols to decode and remove interference from neighboring

nodes. However, such an assumption might not be practical in heterogeneous, cognitive, distributed or

dynamic networks. For example, in very large ad-hoc networks, where nodes enter and leave at will, it

might not be practical for new nodes to learn the codebooks of old nodes and vice-versa. In cognitive

1



2

radio scenarios, where new cognitive systems coexist with legacy systems, requiring the legacy systems

to know the codebooks of the new cognitive systems might not be viable. This motivates the study of

networks where each node possesses only a subset of the codebooks used in the network. We refer

to such systems as networks with partial codebook knowledge and to nodes with only knowledge of a

subset of the codebooks as oblivious nodes.

In has also become apparent that, in multi-user systems, Gaussian random coding is no longer

sufficient when studying the capacity regions of many multi-user channels. Recently, in some studies

it has been suggested that codes based on discrete random variables instead of Gaussian ones may be

effective and lead to higher overall rates. However, due to the lack of required tools for the analytical

study of different input pdfs, the majority of results have so far been based on numerical simulations.

This work focuses on developing the necessary tools for evaluating the performance (in terms of

achievable rates) when using discrete inputs in multi-user scenarios. With these new tools, we address

several issues that are of theoretical and practical relevance. We assess the potential gains when using

discrete inputs in channels with partial codebook knowledge. We also demonstrate the approximate op-

timality of a very robust transmission strategy referred to as treating interference as noise (TIN), which

sheds light on the capacity of channels with partial codebook knowledge and some block asynchronous

channels. Finally, we apply the developed tools to study communications with a minimum mean squared

error (MMSE) disturbance constraint. This is one of the simplest models in which one can study the

effect of interference and interference mitigating strategies. Even though this model is somewhat sim-

plistic when compared to a classical Gaussian interference channel, G-IC, it can serve as an important

building block towards characterizing the capacity of the G-IC.
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The main contributions and structure of the thesis are as follows. In Chapter 1.4.1 we present all the

relevant notation used through the thesis.

1.1 Contributions: Tools for Evaluating the Performance of Discrete Inputs

In Chapter 2 we develop the necessary tools for enabling an analytical handling of discrete inputs.

The developed tools are of interest in and of themselves, and use techniques from many fields such as

information theory, additive combinatorics, number theory and estimation theory.

We are not the first to consider discrete inputs for Gaussian noise channels. In (10) the authors

considered the point-to-point power-constrained Gaussian noise channel and derived lower bounds on

the achievable rate when the input is constrained to be an equally spaced Pulse Amplitude Modulation

(PAM) in which each point is used with equal probability; such an input was shown to be optimal to

within 0.41 bits per channel use (10, eq.(9)). As pointed out in (11), already in 1948 Claude Shannon in

the unpublished work (12) argued the asymptotically optimality of a PAM input for the point-to-point

power-constrained Gaussian noise channel.

In (13, Theorems 6 and 7), the authors asymptotically characterized the optimal input distribution

over N masses at high and low signal to noise ratio (SNR), respectively, for a point-to-point power-

constrained Gaussian noise channel by assuming that N is not dependent on SNR. For the purpose

of analytically characterizing the capacity of networks under discrete inputs, these bounds cannot be

used, as 1) these bounds are optimized for a specific SNR while we shall need to lower bound the rate

achievable by a discrete input at multiple receivers each characterized by a different SNR; 2) we need a

firm bound that holds at all finite SNR; and 3) we need to properly choose N as a function of SNR, a

question posed but left open in (13).
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The sub-optimality of Gaussian inputs for Gaussian noise channels has been observed before. Past

work on the asynchronous IC (14) and (15) showed that non-Gaussian inputs may outperform i.i.d.

Gaussian inputs by using local perturbations of an i.i.d. Gaussian input: (14, Lemma 3) considers

a fourth order approximation of mutual information, while (15, Theorem 4) uses perturbations in the

direction of Hermite polynomials of order larger than three. In both cases the input distribution is

assumed to have a density, though (14, Fig. 1) numerically shows the performance of a ternary PAM

input as well. For the cases considered in (14) and (15), the improvement over i.i.d. Gaussian inputs

shows in the decimal digits of the achievable rates; it is hence not clear that perturbed continuous

Gaussian inputs as in (14) and (15) can actually provide degrees of freedom (DoF) gains over Gaussian

inputs (note that a strict DoF gain implies an unbounded rate gain as SNR increases) which we seek

in this work. In a way this work follows the philosophy of (16): the main idea is to use sub-optimal

point-to-point codes in which the reduction in achievable rates is more than compensated for by the

decrease in the interference created at the other users.

Finally, it is worth mentioning that there is large body of work, initiated by (17), that demonstrates

that discrete inputs are optimal for Gaussian noise channels, with constraints other than the power

constraint, such as: amplitude constraint (17), duty cycle constraint (18). Regrettably, the employed

technique uses a proof of by contradiction and only demonstrates that discrete inputs are optimal without

specifying the nature of the optimal input distribution.

The main contributions of this part are:
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1. In Section 2.1, Proposition 2.1.1 presents a generalization of a lower bound from (10) on the

mutual information attained by a discrete input on a point-to-point additive noise channel and

compares its performance with other lower bounds available in the literature.

2. In Section 2.1.1, Proposition 2.1.2 and Proposition 2.1.3 present new bounds on the cardinality

and minimum distance of the sum of two discrete constellations. In multi-user communication,

similarly to a point to point communication, the minimum distance between the points of the

received constellation will play a key role. However, in multi-user scenarios due to supperposition

of several discrete constellations the minimum distance of the aggregate received constellation can

have very complicated behavior, for example it can be dependent on whether channel gains take

rational or irrational values. Therefore, in order to provide bounds on the minimum distance and

the size of the aggregate constellation we require the use of sum-set and number theories.

3. Section 2.1.2 serves as an example of how we intend to use the developed tools. First, we show

that discrete inputs are approximately optimal on a point-to-point Gaussian channel. Second, via

an example of a point-to-point channel with discrete state (interference), we show that discrete

interference acts almost as if there is no interference. This is one of the main ideas of the thesis

upon which we will build the majority of our results.

The above mentioned contributions have in part been published in (3; 4; 5; 6; 7; 8) and (9).

1.2 Contributions: The Two User Interference Channel with Lack of Knowledge of the Interference

Codebook at One Receiver

In Chapter 3 we study the capacity of an interference channel with one oblivious receiver (IC-OR).

To the best of our knowledge, systems with oblivious terminals were first introduced in (19). In (19) lack



6

of codebook knowledge was modeled by using codebook indices, which index the random encoding

function that maps the messages to the codewords. If a node has codebook knowledge it knows the

index (or instance) of the random encoding function used; else it does not and the codewords essentially

look like the symbols were produced in an independent identically distributed (i.i.d.) fashion from a

given distribution. In (20) and (21) this concept of partial codebook knowledge was extended to model

oblivious relays and capacity results were derived. However, as pointed out in (20, Section III.A) and

(21, Remark 5), these capacity regions are “non-computable” in the sense that it is not known how to

find the optimal input distribution in general. In particular, the capacity achieving input distribution for

the practically relevant Gaussian noise channel remains an open problem.

The main contributions of this part are:

1. In Section 3.3, Theorem 3.3.2 derives a novel outer bound that incorporates this partial codebook

knowledge explicitly. In this bound, the single rate bounds are valid for a general memoryless

IC-OR while the sum-rate bound is valid for the injective semi-deterministic interference channel

with one oblivious receiver (ISD-IC-OR) only.

2. In Section 3.4 we demonstrate a series of capacity and approximate capacity results for various

regimes and classes of IC-OR. Specifically, by using the achievable region in Proposition 3.4.1

we prove:

(a) In Theorem 3.4.2 we obtain the capacity region for the general memoryless IC-OR in very

strong interference at the non-oblivious receiver;
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(b) In Theorem 3.4.3 we demonstrate the capacity region to within a gap for the injective semi

deterministic interference channel with oblivious receiver (ISD-IC-OR); and

(c) In Corollary 3.4.4 we show that for the injective fully deterministic IC-OR the gap is zero.

3. In Section 3.4.4, we look at the practically relevant Gaussian IC-OR (G-IC-OR) and its corre-

sponding Linear Deterministic Approximation (LDA-IC-OR) in the spirit of (22), which models

the G-IC-OR at high SNR. Surprisingly, for the LDA-IC-OR we numerically demonstrate that

for the proposed achievable scheme in Proposition 3.4.1, i.i.d. Bernoulli(1/2) input bits (known

to be optimal for the LDA-IC with full codebook knowledge (23)) are outperformed by other

(correlated and non-uniform) input distributions.

4. In Section 3.4.5, for the G-IC-OR, we show in Corollary 3.4.5 that our inner and outer bounds

are to within 1/2 bit (per channel use per user) of one another. However, similarly to prior work

on oblivious models, we are not able to find the set of input distributions that exhaust the outer

bound in Theorem 3.3.2, in particular we cannot argue whether i.i.d. Gaussian inputs exhaust the

outer bound. Inspired by the results for the LDA-IC-OR, we numerically show that a larger sum-

capacity is attainable by using a discrete input at the non-oblivious transmitter than by selecting

i.i.d. Gaussian inputs, or using time-division, or treating interference as Gaussian noise (TIN-

G), in the strong interference regime at high SNR. This suggests that the penalty for the lack of

codebook knowledge is not as severe as one might initially expect.

5. For the remainder of the chapter we consider the G-IC-OR, and by building on the intuition from

Section 3.4.5, we demonstrate that even with partial codebook knowledge we are able to achieve

to within 1
2 log (12πe) ≈ 3.34 bits per channel use of the symmetric capacity region of the G-IC
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with full codebook knowledge through the use of mixed inputs (i.e., superposition of Gaussian

and discrete random variables).

With the tools from Chapter 2, in Section 3.5 in Theorems 3.5.1 and 3.5.2, we evaluate the achiev-

able rate region presented in Proposition 3.4.1 for the G-IC-OR when the non-oblivious transmit-

ter uses either a PAM input or a mixed input that comprises a Gaussian component and a PAM

component. Corollaries 3.6.1 and 3.6.2 provide the generalized degrees of freedom (gDoF) char-

acterization of the achievable regions in Theorems 3.5.1 and 3.5.2.

6. In past work on networks with oblivious nodes no performance guarantees were provided as the

capacity regions could not be evaluated. In Section 3.6 we study the gDoF achievable with mixed

inputs. In Theorem 3.6.3, we show that mixed inputs achieve the gDoF of the classical G-IC,

hence implying that there is no loss in performance due to lack of codebooks in a gDoF sense /

at high SNR. This is quite surprising considering that the oblivious receiver cannot perform joint

decoding of the two messages, which is optimal for the classical G-IC in the strong and very

strong interference regimes.

7. Finally, in Section 3.7 we turn our attention to the finite SNR regime and in Theorem 3.7.1 we

show that the capacity of the symmetric G-IC-OR is within 1
2 log (12πe) ≈ 3.34 bits per channel

use of the outer bound to the capacity region of the classical symmetric G-IC with full codebook

knowledge. To the best of our knowledge. this is the first approximated capacity result that has

performance guarantees for systems with partial codebook knowledge.

The above mentioned contributions have in part been published in (2; 3) and (5).
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1.3 Contributions: Approximate Optimality of Treating Interference as Noise

In Chapter 4 we look at the performance of TIN in classical G-IC, and its extension to both codebook

oblivious and block asynchronous channel models.

Recently there has been lots of interest in characterizing when TIN, with or without time sharing

(TS), is approximately optimal. For example, in (24) “It is shown that in the K-user interference chan-

nel, if for each user the desired signal strength is no less than the sum of the strengths of the strongest

interference from this user and the strongest interference to this user (all values in dB scale), then the

simple scheme of using point to point Gaussian codebooks with appropriate power levels at each trans-

mitter and TIN at every receiver achieves all points in the capacity region to within a constant gap. The

generalized degrees of freedom (gDoF) region under this condition is a polyhedron, which is shown to

be fully achieved by the same scheme, without the need for time-sharing.” In this thesis we aim to show

that one can always use treating interference as noise with no time sharing (TINnoTS) and be optimal

to within an additive gap in all parameter regimes, and not just in the very weak interference regime

identified in (24). The key is to use more “friendly” codebooks than Gaussian codebooks. We note

that for an input constrained additive-noise channel where the noise distribution is arbitrary, Gaussian

inputs are known to be optimal to within 1/2 bit (25); what our work shows is that the same is not true

in general in a multi-user competitive scenario.

The main contribution of this part are:

1. In Section 4.2, Proposition 4.2.1 presents an inner bound obtained by evaluating the TINnoTS

region with our proposed mixed inputs, whose performance will then be compared to the outer

bound in Proposition 4.2.2.
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2. Section 4.3 focuses on the symmetric G-IC. Theorem 4.3.1 shows that TINnoTS with mixed

inputs is to within O(1), or O
(

log
(

ln(min(snr,inr))
γ

))
except for a set of Lebesgue measure γ for

any γ ∈ (0, 1], of the outer bound in Proposition 4.2.2, and where snr and inr are the largest

singnal to noise ratio and the largest interference to noise ratio, respectively. From this result we

infer that:

(a) The discrete part of the mixed input behaves as a “common message” whose contribution

can be removed from the channel output of the non-intended receiver, even though explicit

joint decoding of the interference is not employed in TINnoTS;

(b) The continuous part of the mixed input behaves as a “private message” whose power should

be chosen such that it is either received below the noise floor of the non-intended re-

ceiver (26), or to have a rate that is approximately half the target rate; and

(c) Time-sharing may be mimicked by varying the number of points in the discrete part of the

mixed inputs.

3. In Section 4.4 we extend the gap result of Theorem 4.3.1 to some general asymmetric G-IC’s. The

channel parameter regime covered in Theorem 4.4.1 is such that bounds of the form 2R1 +R2 or

R1 + 2R2 are not active in the outer bound in Proposition 4.2.2. The excluded regime, roughly

speaking, is such that the sum of the crosslink gains is upper bounded by the sum of the direct

link gains and lower bounded by the minimum of the direct link gains, all quantities expressed

in dB scale. Numerical experiments suggest that the insights gained in the symmetric case (see
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above item 2) hold for the asymmetric case as well and that the proposed TINnoTS with mixed

inputs is approximately optimal for the general asymmetric G-IC.

4. In Section 4.5, Theorem 4.5.1 shows that TINnoTS with mixed inputs is gDoF optimal almost

everywhere (a.e.), that is, for all channel gains except for an outage set of zero measure.

5. In Section 4.6 shows that our approximate optimality results hold for a variety of channels, such

as for example the block-asynchronous G-IC and the codebook oblivious G-IC, thereby demon-

strating that lack of codeword synchronism or of codebook knowledge at the receivers results in

penalty of at most O(1), or O
(

log
(

ln(min(snr,inr))
γ

))
, compared to the classical G-IC. This sec-

tion generalizes the result of Chapter 3 where we considered only one oblivious receivers to the

case when both receivers are oblivious.

6. In Section 4.7 we discuss some practical implications of our TINnoTS with mixed inputs achiev-

ability scheme, such as

(a) in Section 4.7.1 we discuss an approximate maximum a posteriori probability (MAP) de-

coder for the very strong interference regime that is very simple to implement with TIN-

noTS;

(b) in Section 4.7.2 we show through numerical evaluations that our gap results are very con-

servative and that in practice the achievable rates are much closer to capacity than predicted

by our analytical results; and
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(c) in Section 4.7.3 we show that a gap result can be obtained by using as inputs purely discrete

random variables, i.e., to within an additive gap the Gaussian part of the mixed inputs can

be replaced by another PAM input.

The above mentioned contributions have in part been published in (3; 4; 6; 7) and (8).

1.4 Contributions: Communication under an MMSE Disturbance Constraint

In this Chapter we look at a somewhat simplified scenario compared to the G-IC. We assume that

there is only one message for the primary receiver, and the primary user inflicts interference (distur-

bance) on a secondary receiver. The primary transmitter wishes to maximize its communication rate,

while subject to a constraint on the disturbance it inflicts on the secondary receiver. The disturbance

is measured in terms of MMSE. Intuitively, the MMSE disturbance constraint quantifies the remain-

ing interference after partial interference cancellation or soft-decoding have been performed (27; 11).

The goal here is to give an estimation theoretic explanation for the near optimal performance of mixed

inputs.

The importance of studying models of communication systems with disturbance constraints has been

recognized previously. For example, in (28) authors studied a similar scenario where the disturbance

was measured in terms of the mutual information at the secondary user. However, as will be explained

in Chapter 5, such a disturbance measured is not very suitable for modeling the interference.

Results of this Chapter will also focus on deriving non-asymptotic results, i.e. coding is done over

blocks of length n. The advantage of this approach is two fold: 1) asymptotic results can be recovered

by taking n → ∞; 2) almost all information theoretic and estimation theoretic quantiles experience a

loss of analyticity as n → ∞ (i.e. their derivative with respect to SNR becomes discontinuous). The



13

value of SNR for which the mutual information loses analyticity is referred to as a phase transition.

By looking at a finite n, considerable insight can be gained on the rate of convergence to the phase

transition, in terms of n, which is important for practical systems.

The main contributions of this Chapter are as follows:

1. In Section 5.2 we summarize our main results:

(a) Theorem 5.2.1, our main technical result, provides new upper bounds for the max-MMSE

problem for arbitrary n that complement the single-crossing point property (SCPP) bound.

(b) Proposition 5.2.2 provides a lower bound on the width of the phase transition region of the

order of 1
n .

(c) Proposition 5.2.3 provides a new upper bound for the max-I problem for arbitrary n.

(d) Proposition 5.2.6 shows that, for the case of n = 1 mixed input inputs achieves the proposed

upper bound on the max-I problem from Proposition 5.2.3 to within an additive gap of order

O
(
log log 1

MMSE

)
(where MMSE is the disturbance constraint).

2. In Section 5.3 we develop bounds on the derivative of MMSE, which we use to prove the main

result in this Chapter. In particular, in Proposition 5.3.1 we considerably refines existing bounds

on the derivative of MMSE for n = 1 and generalizes them to any n.

3. In Section 5.4 we explore some interesting relationships between the MMSE constraint and the

power constraint.

The above mentioned contributions have in part been published in (9) and (29) and submitted to

(30).
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1.4.1 Notation

Throughout the thesis we adopt the following notation convention:

• Lower case variables are instances of upper case random variables which take on values in calli-

graphic alphabets.

• log(·) denotes logarithms in base 2 and ln(·) in base e.

• [n1 : n2] is the set of integers from n1 to n2 ≥ n1.

• Y j is a vector of length j with components (Y1, . . . , Yj).

• Whenever vector manipulation will be required (Chapter 5) we will also denote random vectors

by bold bold uppercase letters.

• Ordering notation A � B implies that A− B is a positive semidefinite matrix;

• If A is a random variable we denote its support by supp(A).

• The symbol |·|may denote different things: |A| is the cardinality of the setA, |X| is the cardinality

of supp(X) of the r.v. X , or |x| is the absolute value of the real-valued x.

• For x ∈ R we let bxc denote the largest integer not greater than x.

• For x ∈ R we let [x]+ := max(x, 0) and log+(x) := [log(x)]+.

• dmin(S) := mini 6=j:si,sj∈S |si − sj | denotes the minimum distance among the points in the set S.

With some abuse of notation we also use dmin(X) to denote dmin(supp(X)) for a r.v. X .

• Let f(x), g(x) be two real-valued functions. We use the Landau notation f(x) = O(g(x)) to

mean that for some c > 0 there exists an x0 such that f(x) ≤ c g(x) for all x ≥ x0.
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• Operator co(·) will refer to convex hull operation.

• X ∼ N (µ, σ2) denotes the density of a real-valued Gaussian r.v. X with mean µ and variance

σ2.

• X ∼ PAM
(
N, dmin(X)

)
denotes the uniform probability mass function over a zero-mean PAM

constellation with |supp(X)| = N points, minimum distance dmin(X), and therefore average

energy E[X2] = d2
min(X)

N2−1
12 .

• m(S) denotes Lebesgue measure of the set S.

• We let

Ig(x) :=
1

2
log(1 + x), (1.1)

Id(X) :=

[
H(X)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2
min(X)

)]+

, (1.2)

Nd(x) :=
⌊√

1 + x
⌋
, (1.3)

Id (N, x) :=

[
Ig
(

min
(
N2 − 1, x

))
− 1

2
log
(πe

3

)]+

(1.4)

where the subscript d reminds the reader that discrete inputs are involved, while g that Gaussian

inputs are involved.

• Here H(X) is the entropy of the discrete random variable X , while h(X) is the differential

entropy of the absolutely continuous random variable X .
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• We denote mutual information between input X and output Y as

I(X; Y) := E
[
log

(
pY|X(Y|X)

pY(Y)

)]
. (1.5)

• We denote the minimum mean squared error (MMSE) of estimating X from Y as

mmse(X|Y) :=
1

n
Tr (E [Cov(X|Y)]) , (1.6)

where Cov(X|Y) is the conditional covariance matrix of X given Y and is defined as

Cov(X|Y) := E
[
(X− E[X|Y]) (X− E[X|Y])T |Y

]
.

• When X and Y are related through Y =
√
snrX + Z where Z ∼ N (0, I) and independent of X we

will use

I(X; Y) = I(X, snr) (1.7)

mmse(X|Y) = mmse(X, snr) (1.8)

Since the distribution of the noise is fixed, the quantities I(X; Y) and mmse(X|Y) are com-

pletely determined by X and snr, and there is no ambiguity in using the notation I(X, snr) and

mmse(X, snr).

• We denote the Fisher information matrix of the random vector A by J( A).
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1.4.2 Abbreviations

AWGN additive white Gaussian Noise

DoF degrees of freedom

G-IC Gaussian Interference Channel

G-IC-OR Gaussian IC-OR

gDoF generalized degrees of freedom

i.i.d. independent identically distributed

IC-OR interference channel with one oblivious receiver

ISD-IC-OR injective semi-deterministic interference channel with one oblivious receiver

LDA-IC-OR Linear Deterministic Approximation

MAP maximum a posteriori probability

MMSE minimum mean square error

PAM Pulse Amplitude Modulation

SCPP single-crossing point property

SNR signal to noise ratio

TIN treating interference as noise

TIN-G treating interference as Gaussian noise
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TINnoTS treating interference as noise with no time sharing

TS time sharing



CHAPTER 2

MAIN TOOLS

Part of this chapter has been previously published in (5; 8). c©[2015] IEEE. Reprinted, with permis-

sion, from (5).

In this section we present a set of tools that we will use to evaluate performance of achievable

schemes with discrete (or mixed inputs). Moreover, these tools can be of interest on their own since

they bridge a gap between the seemingly unrelated fields of information theory, additive combinatorics,

number theory and estimation theory.

2.1 Generalization of the Ozarow-Wyner Bound

At the core of our proofs is the following lower bound on the rate achieved by a discrete input on

a point-to-point additive noise channel. The important point here is to derive firm bounds that are valid

for any discrete constellation at any SNR, as opposed to bounds that are either optimized for a fixed

SNR, or hold asymptotically in the low or high SNR regimes.

Proposition 2.1.1 (Ozarow-Wyner-B bound). Let XD be a discrete random variable with minimum

distance dmin(XD) > 0. Let Z be a zero-mean unit-variance random variable independent of XD (not

necessarily Gaussian). Then

Id(XD) :=
[
H(XD)− Gd(Eq. 2.1)

]+ ≤ I(XD;XD + Z) ≤ H(XD), (2.1a)

Gd(Eq. 2.1) :=
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

12

d2
min(XD)

)
. (2.1b)

19
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Proof. The upper bound in (Eq. 2.1a) is trivial. The lower bound follows by the approach used in (10,

Part b)), where the assumption that XD is a PAM is not necessary.

For the lower bound, let X̃ := XD +U withU uniformly distributed on [−dmin(XD)/2,+dmin(XD)/2]

and independent of XD and Z, and let Y := XD + Z. Following the approach of (10, eq(15)) via the

data processing inequality for X̃ → XD → Y we know that

I(XD;Y ) ≥ I(X̃;Y ) = h(X̃)− h(X̃|Y ). (2.2)

The assumption that XD is a PAM used in (10) is not needed and we write (10, eq(16)) as

h(X̃) = H(XD) + log(dmin(XD)). (2.3)

Therefore, it remains to upper bound h(X̃|Y ). The bound follows by the same argument that leads to

(10, eq.(19)), which holds under the assumptions of the proposition, i.e., no need to assume a PAM input

or a Gaussian noise, and states that for any s2 and k:

h(X̃|Y ) ≤ 1

2
log
(
2πs2

)
+

log(e)

2s2
E[(X̃ − kY )2]. (2.4)

Thus, by using s2 = E[(X̃ − kY )2] with k = E[X̃Y ]
E[Y 2]

we write (Eq. 2.4) as

h(X̃|Y ) ≤ 1

2
log

[
2πe

(
d2

min(XD)

12
+

E[X2
D]

E[X2
D] + 1

)]
. (2.5)
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Combining this, by the non-negativity of mutual information, and since E[X2
D]

E[X2
D]+1

≤ 1, the lower bound

in (Eq. 2.1a) with the gap expression in (Eq. 2.1b) follows immediately.

Remark 1. The proof of Proposition 2.1.1 holds for any continuous U such that

supp(U) ⊆ [−dmin(XD)/2,+dmin(XD)/2]. In this case log(dmin(XD)) must be replaced by h(U)

in (Eq. 2.3), and
d2

min(XD)

12 must be replaced by the variance of U in (Eq. 2.5). However, for this more

general case, it may not be easy to analytically express the entropy as a function of the variance, and to

relate them to the bound on the size of the support of the distribution given by dmin(XD).

Remark 2. In the proof of Proposition 2.1.1 we can express E[X2
D]

E[X2
D]+1

= lmmse(XD|Y ), that is, the

linear minimum mean square error of estimating XD from observation Y = XD +Z. This term can be

tightened and replaced by the minimum mean squared error (MMSE) by using the following relationship

between conditional differentiable entropy and the MMSE, from (31, Thm. 8.6.6)

mmse(X|Y ) ≥ 1

2πe
22h(X|Y ) ⇒ h(X|Y ) ≤ 1

2
log ((2πe) mmse(X|Y )) , (2.6)

and the expression in (Eq. 2.5) can be tightened to

h(X̃|Y ) ≤ 1

2
log

[
2πe

(
d2

min(XD)

12
+ mmse(XD|Y )

)]
. (2.7)

The bound in (Eq. 2.7) would lead to a smaller gap than in (Eq. 2.1b) given by

Gd(Eq. 2.8) :=
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

12 mmse(XD|Y )

d2
min(XD)

)
. (2.8)
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Remark 3. If in Proposition 2.1.1 we set Z = ZG ∼ N (0, 1), then we can tighten the upper bound

in (Eq. 2.1a) to

Id(XD) ≤ I(XD;XD + ZG) ≤ min
(
H(XD), Ig(E[X2

D])
)
, (2.9)

since a Gaussian input is capacity achieving for the power-constrained point-to-point Gaussian noise

channel. Moreover, for |supp(XD)| = N , the mutual information bounds in (Eq. 2.1a) are the largest

(i.e. maximizes Id(XD) ) for a PAM constellation. This follows from the fact that PAM is uniformly

distributed and satisfies with equality the general inequality H(XD) ≤ log(N), and we have that

Id
(
N,E[X2

D]
)
≤ I(XD; XD + ZG) (2.10)

≤ Ig
(

min
(
N2 − 1,E[X2

D]
))

. (2.11)

The lower bound in (Eq. 2.10) follows by letting xmin := min(N2−1,E[X2
D]) and xmax := max(N2−

1,E[X2
D]). We have

I(XD;XD + ZG)

from Proposition 2.1.1
≥ 1

2
log
(
1 + (N2 − 1)

)
− 1

2
log

(
1 +

N2 − 1

1 + E[X2
D]

)
− 1

2
log
(πe

6

)

= Ig (xmin) + Ig (xmax)− Ig (xmin + xmax)− 1

2
log
(πe

6

)

= Ig (xmin)− Ig

(
xmin

1 + xmax

)
− 1

2
log
(πe

6

)

≥ Ig (xmin)− 1

2
log
(πe

3

)
,
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since xmin
1+xmax

∈ [0, 1]. This, combined with non-negativity of mutual information, gives the lower bound

in (Eq. 2.10).

We next compare the Ozarow-Wyner-B lower bound in Proposition 2.1.1 to bounds available in the

literature.

Ozarow-Wyner-A, or Fano-based, bound

Proposition 2.1.1 generalizes the approach of (10, Part b)). Had we generalized (10, Part a)), we

would have obtained the following lower bound valid for Gaussian noise only

[
H(XD)− Gd(Eq. 2.12)

]+ ≤ I(XD;XD + ZG), (2.12a)

Gd(Eq. 2.12) := ξ log
1

ξ
+ (1− ξ) log

1

1− ξ + ξ log(N − 1) , (2.12b)

ξ := 2Q

(
dmin(XD)

2

)
, (2.12c)

where ξ is the union-of-events upper bound on the probability of symbol error for a minimum-distance

symbol-by-symbol detector in Gaussian noise from Fano’s inequality. We note that a similar Fano-based

bounding technique was also used in (32, Theorem 3).

In the following we are interested in showing that certain upper and lower bounds are to within

a constant gap of one another, regardless of the channel parameters. For bounds as in (Eq. 2.1), the

quantity “Gd” upper bounds the difference between the upper and lower bounds. The gap in (Eq. 2.12)

(that generalizes (10, Part a)) to any discrete input on the Gaussian noise channel) is bounded if the term



24

ξ log(N − 1) is bounded; by using the Chernoff’s bound for the Q-function, i.e., Q(x) ≤ 1
2e−x

2/2 and

by imposing ξ log(N − 1) ≤ 1 ,we get

bounded gap in (Eq. 2.12)⇐⇒ log(N − 1) ≤ e
d2

min(XD)
/8

⇐⇒ d2
min(XD) ≥ 8 ln(log(N − 1)),

in other words, the minimum distance squared must be of the order of ln(log(N)) for the gap in (Eq. 2.12)

to be bounded. On the other hand, the gap in (Eq. 2.1) (that generalizes (10, Part b)) to any discrete in-

put on any additive noise channel) is bounded as long as the minimum distance is lower bounded by a

constant; for example

bounded gap in (Eq. 2.1), say Gd(Eq. 2.1b) ≤
1

2
log (6πe) ≈ 2.047 bits

⇐⇒ dmin(XD) ≥ 2,

that is, the minimum distance does not need to grow in a particular way with the number of points of

the constellation, but it is required to be bounded by a constant from below.

DTD-ITA’14 bound

By taking a different approach via Jensen’s inequality, we derived the following lower bound for

the mutual information with a discrete input on a Gaussian noise channel. As before, let the noise
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ZG ∼ N (0, 1) be independent of the discrete input XD, and let Pr[XD = sj ] = pj > 0, j ∈ [1 : N ]

such that
∑

j∈[1:N ] pj = 1. We have – the proof can be found in Appendix A:

[
log(N)− Gd(Eq. 2.13)

]+ (2.13a)

≤


− log


 ∑

(i,j)∈[1:N ]2

pipj
1√
4π

e−
(si−sj)2

4


− 1

2
log (2πe)




+

≤ I(XD;XD + ZG), (2.13b)

Gd(Eq. 2.13) :=
1

2
log
( e

2

)
+ log

(
1 + (N − 1)e

−d2
min(XD)

/4
)
. (2.13c)

The advantage of the bound in (Eq. 2.13a) (referred to in the following as ‘simple DTD-ITA’14 bound’)

is its simplicity: it only depends on the constellation through the number of points and the minimum

distance. The bound in (Eq. 2.13b) (referred to in the following as ‘full DTD-ITA’14 bound’) is in

general tighter than the one in (Eq. 2.13a) but requires the knowledge of the whole “distance spectrum”

(all pair-wise distances among constellation points) as well as the “shaping” of the constellation (the

a priori probability of each constellation point), which does not make it amenable for closed form

analytical computations in general.

Again aiming at a bounded gap, we have

bounded gap in (Eq. 2.13)⇐⇒ (N − 1)e−
d2
min(XD)

4 ≤ 1

⇐⇒ d2
min(XD) ≥ 4 ln(N − 1),

in other words, the minimum distance squared must be of the order of log(N) for the gap in (Eq. 2.13c)

to be bounded. Because of this ‘strong’ requirement on the minimum distance, in (4) and (3) we could
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show that a mixed input achieves the capacity region of the classical G-IC to within an additive gap of

the order of O
(

log
(

ln(min(snr,inr))
γ

))
, rather than a constant gap; but it was nonetheless sufficient to

show that TINnoTS with mixed inputs achieves the sum gDoF of the classical G-IC for all channel gains

up to a set of zero measure.

Numerical Comparisons

We conclude this subsection by numerically comparing the lower bounds in (Eq. 2.1), (Eq. 2.12)

and (Eq. 2.13) for the Gaussian noise channel with a PAM input, which is asymptotically capacity

achieving at high SNR (10). In Fig. Figure 1 we plot bounds on I(XD;
√
snr XD + ZG) vs. snr in dB;

here snr represents the SNR at the receiver, ZG ∼ N (0, 1) is the noise, and XD ∼ PAM
(
N,
√

12
N2−1

)

is the input with N = Nd(snr) =
⌊√

1 + snr
⌋
≈ snr

1
2 . In Fig. 1a we plot the rate bounds while in

Fig. 1b the gap to capacity, i.e., the difference between the channel capacity and the different lower

bounds. In both figures we show:

1. The black curve is the channel capacity Ig(snr).

2. The blue curve is the Ozarow-Wyner-B bound in (Eq. 2.1a). From Fig. 1b this bound is asymp-

totically (for snr ≥ 30dB) to within 0.754 bits of capacity, which is much better than the analytic

worst case gap of 1
2 log(6πe) = 2.8395 bits shown before.

3. The magenta curve is the Ozarow-Wyner-A bound in (Eq. 2.12a). This bound is to withinO(log(snr))

of capacity (i.e., straight line as a function of snr|dB).

4. The cyan curve is the simple DTD-ITA’14 bound in (Eq. 2.13a). Here we usedN = Nd(snr1−ε) ≈

snr
1−ε

2 with ε = max
(

0,
log( 1

6
ln(snr))

log(snr)

)
. This choice of ε was derived in (3, Theorem 3) in
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order to have a O(log log(snr)) gap to capacity. Had we chosen ε = 0 then we could only

achieve a ‘gap’ of O(log(snr)). Similarly, for the Ozarow-Wyner-A, had we choose the same

ε = max
(

0,
log( 1

6
ln(snr))

log(snr)

)
a similar O(log log(snr)) gap would have been observed.

5. The green curve is the full DTD-ITA’14 bound in (Eq. 2.13b), which from Fig. 1b achieves asymp-

totically (for snr ≥ 30dB) to within 0.36 bits of capacity.

The quantity 1
2 log

(
πe
6

)
is also shown for reference in Fig. 1b; this is the “shaping loss” for a one-

dimensional infinite lattice and is the limiting gap if the number of points N grows faster than snr1/2.

The “zig-zag” behavior of the curves at low SNR is due to the floor operation in N =
⌊√

1 + snr
⌋
.

We observe that the relative ranking among the bounds at low SNR (roughly less than 27 dB) is

different than at high SNR. In particular we observe a qualitatively different behavior at high SNR: the

Ozarow-Wyner-B bound in (Eq. 2.1a) (blue curve) and the full DTD-ITA’14 bound in (Eq. 2.13b) (green

curve) result in a constant gap, while the Ozarow-Wyner-A bound in (Eq. 2.12a) (magenta curve) and

the simple DTD-ITA’14 bound in (Eq. 2.13a) (cyan curve) result in a gap that grows with SNR; this is

in agreement with the previous discussion that points out that for a constant gap in the latter two cases

the number of points N must grow slower than snr1/2. The smallest gap at high SNR for N u snr1/2

is given by our full DTD-ITA’14 bound in (Eq. 2.13b) (green curve); as pointed out earlier, this bound

is unfortunately not amenable for closed form analytical evaluations, so in the following we shall use

the Ozarow-Wyner-B bound in (Eq. 2.1a) (blue curve) from Proposition 2.1.1 whose simplicity comes

at the cost of a larger gap.
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Figure 1: Comparison of different bounds for a PAM input on a Gaussian noise channel.

2.1.1 Cardinality and Minimum Distance Bounds for Sum-Sets

In multi-user settings, we may wish to select one user’s input as Gaussian, another as discrete, or

both mixtures of discrete and Gaussian. To handle such scenarios, we need bounds on the cardinality

and minimum distance of sums of discrete constellations. If X and Y are two sets, we denote the

sum-set as

X + Y := {x+ y|x ∈ X, y ∈ Y }.

Tight bounds on the cardinality and the minimum distance of X + Y , for general X and Y , are an

open problem in the area of additive combinatorics and number theory (33). The following set of

sufficient conditions for the sum-set obtained with two PAM constellations (actually the probability

with which each point is used does not matter as long as it is strictly positive) will play an important

role in evaluating our inner bound.
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}hxX }hxX }hxX}hxX

}hyY

|hx|dmin(X)|hy|dmin(Y )

Figure 2: Structure of the sum-set under the conditions in Proposition 2.1.2.

Proposition 2.1.2. Let (hx, hy) ∈ R2 be two constants such that hx · hy 6= 0.

Let X ∼ PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )). Then

|hxX + hyY | = |X||Y |, (2.14)

dmin(hxX+hyY ) = min
(
|hx|dmin(X), |hy|dmin(Y )

)
, (2.15)

under the following conditions

either |Y ||hy|dmin(Y ) ≤ |hx|dmin(X), (2.16a)

or |X||hx|dmin(X) ≤ |hy|dmin(Y ). (2.16b)

Proof. The condition in (Eq. 2.16) is such that one PAM constellation is completely contained within

two points of the other PAM constellation, see Fig. Figure 2 for a visual illustration.
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Figure 3: Minimum distance (blue line) for the sum-set hxX + hyY as a function of
hx for fixed hy = 1 and for X ∼ Y ∼ PAM (10, 1). On the right of the
vertical green line Proposition 2.1.2 is valid. On the left of the vertical
green line Proposition 2.1.3 must be used; in this case, the minimum

distance lower bound in (Eq. 2.19a) holds for set of hx’s for which the blue
line is above the red / cyan / green line, where the red, cyan and green lines

represent a different value for the measure of the outage set.
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We will refer to the condition in (Eq. 2.16) as the non-overlap condition. Unfortunately, Proposi-

tion 2.1.2 is not sufficient for our purposes because it restricts the set of channel parameters for which

we can compute the minimum distance to those cases where the non-overlap condition holds. When the

non-overlap condition in (Eq. 2.16) is not satisfied, the minimum distance is very sensitive to the frac-

tional values of hx and hy. Fig. Figure 3 shows, in solid blue line, the minimum distance for the sum-set

hxX + hyY as a function of hx for fixed hy = 1 and where X and Y are the same PAM(10, 1) con-

stellation. It can be observed that there are channel gains for which the minimum distance is zero; those

occur on the left of the vertical green line, which separates the values of hx for which Proposition 2.1.2

is valid (right side) for those where it is not (left side).

Remark 4. To bound the cardinality and the minimum distance when the condition in (Eq. 2.16) is

not satisfied we use the approach of (34) and (35). In (34; 35) it was observed that capacity of G-IC

is sensitive to the fractional values of the channel gains, and the G-IC input out relationship can be

described by

Y1 = h11xdh11eX1 + h12xdh12eX2 + Z1 (2.17a)

Y2 = h21xdh21eX1 + h22xdh22eX2 + Z2 (2.17b)

where hijx and dhije are the fractional and integer parts of the channel gain hij , respectively. In this

representation, the integer part dhije captures the magnitude and coarse structure of the channel gain,

and the fractional part hijx is thought to capture the finer structure of the channel gain.



32

The variations shown on Fig. Figure 3 mainly depend on the fractional part of the channel gains.

Following the approach of (34; 35), we define the “outage set”- that is the set of fractional channel

gains (for fixed integer part) for which the minimum distance falls below a given target. Moreover, the

size of the outage set and the target minimum distance are tunable parameters.

Finally, we remark that for X ∼ PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )) the resulting

sum-set given by hxX + hyY can always be restated as

hxX + hyY = hxxdhxeX + hyydhyeY = hxxX̂ + hyŶ (2.17c)

where (hxx, hy) ∈ [0, 1]2 and where X̂ ∼ PAM(|X|, dmin(dhxeX)) and Ŷ ∼ PAM(|Y |, dmin(dhyeY )).

Therefore, for the remainder of the thesis, we assume that the integer parts dhxe, dhye are fixed and we

consider Lebesgue measure over the fractional parts (hxx, hy) ∈ [0, 1]2.

Applications of discrete and mixed inputs to theG-IC will be investigate in detail in Chapter 4.

We will use the following result to bound the cardinality and the minimum distance when the con-

dition in (Eq. 2.16) is not satisfied.

Proposition 2.1.3. Let X ∼ PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )). Then for (hxx, hyy) ∈

[0, 1]2

|hxxX + hyyY | = |X||Y | almost everywhere (a.e.), (2.18)
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and for any γ > 0 there exists a set E ⊆ [0, 1]2 such that for all (hxx, hyy) ∈ E

dmin(hxxX+hyyY ) ≥ κγ,|X|,|Y | ·min
(
|hxx| dmin(X), |hyy| dmin(Y ),Υ|hxx|,|hyy |,|X|,|Y |

)
, (2.19a)

κγ,|X|,|Y | :=
γ/2

1 + ln(max(|X|, |Y |)) , (2.19b)

Υ|hxx|,|hyy |,|X|,|Y | := max

( |hxx| dmin(X)

|Y | ,
|hyy| dmin(Y )

|X|

)
, (2.19c)

where the Lebesgue measure of the complement of the set E ( Ec = [0, 1]2\E is referred to as the

outage set) satisfies m(Ec) ≤ γ.

Proof.

The reason we need to introduce an outage set in Proposition 2.1.3 is that there are values of (hx, hy)

for which the minimum distance is zero, as it can be seen from Fig. Figure 3. In computing the gap later

on, we want to exclude the set of channel gains for which the minimum distance is too close to zero;

the measure of this set can be controlled through the parameter γ. The green, cyan, and red lines in

Fig. Figure 3 represent lower bounds on the minimum distance that are valid everywhere except for a

set of measure no greater than γ = 0.1, 0.3 and 0.7, respectively. It is important to notice that the set of

channel gains for which the minimum distance is exactly zero satisfies:

Proposition 2.1.4. Let X ∼ PAM(|X|, dmin(X)) and Y ∼ PAM(|Y |, dmin(Y )). Then the set of

(hxx, hyy) ∈ [0, 1]2 such that dmin(hxxX+hyyY ) = 0 has measure zero.
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Proof. The proof follows by observing that the set of channel gains for which dmin(hxxX+hyyY ) = 0

and |hxX + hyY | 6= |X||Y | are equivalent and given by eq.(Eq. B.1) in Appendix B. The rest of the

proof is similar to that of Proposition 2.1.3.

Remark 5. Different minimum distance bounds for sum-sets based on Diophantine approximations

were used in (36). For example, consider the sum-set h1X + h2X , i.e., both transmitters use the same

PAM constellation X , where h2
1 = h2

Ssnr and h2
2 = h2

Isnr
α for some fixed (hS , hI) ∈ R2 and α > 0.

The authors of (36) focused on the degrees of freedom (DoF) for the case when α = 1; in this case the

minimum distance can be lower bounded as follows

dmin(h1X+h2X) = min
x1i,x2i∈X

|h1x1i − h2x2i|

= min
z1i,z2i∈[−N

2
:N

2
],
|hS
√
snrdmin(X) z1i − hI

√
snrdmin(X) z2i|

=
√
snr dmin(X) min

z1i,z2i∈[−N
2

:N
2

],
|hSz1i − hIz2i| (2.20a)

≥ κε
2ε

N ε

√
snr dmin(X), (2.20b)

where the inequality in (Eq. 2.20b) comes from Diophantine approximation results, specifically from the

Khintchine-Groshev theorem, and says that for almost all real numbers (hS , hI) and for any ε > 0 there

exists a constant κε > 0, whose analytical expression is not known, such that the bound in (Eq. 2.20b)

holds.

Unfortunately, bounds such as (Eq. 2.20b) are only well suited for the derivation of DoF (i.e α = 1

but not for gDoF (i.e. α 6= 1), which is of interest here. The fundamental problem is that for α 6= 1,
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the factorization in (Eq. 2.20a) is no longer possible and κε may end up being a function of snr and α.

Moreover, the fact that we have auxiliary constants ε and κε in (Eq. 2.20b), and where κε is essentially

not known in closed form, makes derivation of closed form gap results very difficult.

2.1.2 Examples

In this Section we give an example of how we intend to use discrete inputs for the G-IC by consid-

ering the familiar point-to-point power-constrained additive white Gaussian noise channel. The goal is

to derive some properties / results for a simple setting that we shall use often in the subsequent sections.

Specifically, we aim to show that the unit-energy discrete input XD with a properly chosen number of

points N = |supp(XD)| as a function of snr achieves, roughly speaking (≈)

I(XD;
√
snrXD + ZG) ≈ log(N), where ZG ∼ N (0, 1), (2.21)

I(XG;
√
snrXG +XD + ZG) ≈ Ig(snr), where XG ∼ N (0, 1), (2.22)

that is, the discrete input XD is a “good” input and a “good” interference. To put it more clearly, when

we use a discrete constellation as input, as in (Eq. 2.21), the mutual information is roughly equal to the

entropy of the constellation, which is highly desirable. On the other hand, if the interference, unknown

to transmitter and receiver, is from a discrete constellation as in (Eq. 2.22), the mutual information is

roughly as if there was no interference, which is again highly desirable. In contrast, a Gaussian input

instead of XD would be the “best” input for (Eq. 2.21) but the “worst” interference/noise in (Eq. 2.22).

We next formalize the approximate statements in (Eq. 2.21) and (Eq. 2.22).
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Gaussian Channel

Consider the point-to-point power-constrained Gaussian noise channel

Y =
√
snr X + ZG, (2.23a)

E[X2] ≤ 1, ZG ∼ N (0, 1), (2.23b)

where X is the information carrying signal, independent of the noise ZG. The capacity of this channel,

as a function of the SNR snr, is C (snr) = Ig (snr) and is achieved by X ∼ N (0, 1) for every snr. Con-

sider now the input X = XD ∼ PAM
(
N,
√

12
N2−1

)
on the channel in (Eq. 2.23). By Proposition 2.1.1

and Remark 3

[
log(N)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

N2 − 1

snr

)]+

≤ I(XD;
√
snrXD + ZG) ≤ Ig(snr). (2.24)

By observing the bounds in (Eq. 2.24), we see that for a PAM input to be optimal to within a constant

gap we need that log(N) ≈ Ig(snr) and that N2−1
snr is upper bounded by a constant. By choosing

N =
⌊√

1 + snr
⌋

=: Nd(snr) it is easy to see that a PAM input can achieve the capacity Ig(snr) to

within 1
2 log

(
2πe
3

)
≈ 1.25 bits, where the maximum gap is for snr = 3− ε for some 0 < ε� 1.

Note that, had we kept the term E[X2
D]

E[X2
D]+1

in (Eq. 2.5), the bound in (Eq. 2.24) would have had N2−1
snr+1

in place of N2−1
snr and would have resulted in a gap of at most 1

2 log
(
πe
2

)
≈ 1.047 bits. As always,

bounds which allow for expressions that are easier to manipulate analytically come at the expense of a

larger gap.
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Gaussian Channel with States

The above example showed that a discrete input with log(N) ≈ Ig(snr) is a “good” input in the

sense alluded to by (Eq. 2.21). We now show that a discrete interference is a “good” interference in the

sense alluded to by (Eq. 2.22). We study an extension of the channel in (Eq. 2.23) by considering an

additive state T available neither at the encoder nor at the decoder. The input-output relationship is

Y =
√
snr X + h T + ZG : (2.25a)

E[X2] ≤ 1, ZG ∼ N (0, 1), (2.25b)

T discrete with finite power. (2.25c)

It is well known (37, Section 7.4) that the capacity of the channel with random state in (Eq. 2.25) is

C = max
PX

I(X;Y ) ≤ max
PX

I(X;Y |T ) = Ig(snr). (2.26)

From (25) we know that X = XG ∼ N (0, 1) is at most 1/2 bit from the capacity C, but the value of

the capacity is unknown. In particular it is not know whether the gap to the interference free capacity

Ig(snr)− C is a bounded function of snr.
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Assume we use the input X = XG ∼ N (0, 1), as a Gaussian input is not too bad for an additive

noise channel (25); assume also that dmin(T ) > 0; then the capacity C is lower bounded as:

C ≥ Ig(snr)− Gd(Eq. 2.27), (2.27a)

Gd(Eq. 2.27) :=
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

12

d2
min(T )

)
, (2.27b)

since

I(XG;Y ) = I(XG;
√
snr XG + h T + ZG)

= h(
√
snr XG + h T + ZG)− h(

√
snr XG + ZG)︸ ︷︷ ︸

≥Id
(

h√
1+snr

T
)
≥H(T )−Gd(Eq. 2.27)

− (h(h T + ZG)− h(ZG))︸ ︷︷ ︸
≤H(T )

+
(
h(
√
snr XG + ZG) + h(ZG)

)
︸ ︷︷ ︸

=Ig(snr)

.

Thus, as long as dmin(T ) is lower-bounded by a constant, it is possible to achieve the interference-free

capacity to within the constant gap in (Eq. 2.27b) even when the state is unknown to both the transmitter

and the receiver.

The expression in (Eq. 2.27) can be readily used to obtained inner bounds on the capacity region of

a G-IC where one user has a Gaussian input and the other a discrete input and where the discrete input

is treated as noise, as we shall do in the next sections.



CHAPTER 3

ON THE TWO-USER INTERFERENCE CHANNEL WITH LACK OF

KNOWLEDGE OF THE INTERFERENCE CODEBOOK AT ONE RECEIVER

3.1 Introduction

Part of this chapter has been previously published in (5). c©[2015] IEEE. Reprinted, with permis-

sion, from (5).

A classical assumption in multi-user information theory is that each node in the network possesses

knowledge of the codebooks used by every other node. However, such an assumption might not be

practical in heterogeneous, cognitive, distributed or dynamic networks. For example, in very large ad-

hoc networks, where nodes enter and leave at will, it might not be practical for new nodes to learn

the codebooks of old nodes and vice-versa. In cognitive radio scenarios, where new cognitive systems

coexist with legacy systems, requiring the legacy systems to know the codebooks of the new cognitive

systems might not be viable. This motivates the study of networks where each node possesses only a

subset of the codebooks used in the network. We will refer to such systems as networks with partial

codebook knowledge and to nodes with only knowledge of a subset of the codebooks as oblivious nodes.

We make progress on this front by demonstrating that certain rates are achievable for the Gaussian

noise interference channel with oblivious receivers (G-IC-OR) through the evaluation of a simplified

Han-Kobayashi scheme (38) in which joint decoding of the intended and interfering messages is not

required at the oblivious receiver. The major contribution of this work is the realization that Gaussian

39
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Figure 4: The IC-OR, where F1 and F2 represent codebook indices known to one or
both receivers.

inputs perform poorly in the proposed achievable region. We therefore propose to use a class of inputs

that we termed mixed inputs. A mixed input is a random variable that is a mixture of a continuous and

a discrete part, such as for example a Gaussian random variable and a uniformly distributed random

variable on an equally spaced set of discrete points. We then properly design the distribution of the

mixed input as a function of the channel parameters.

3.2 Channel Model

3.2.1 General Memoryless IC-OR

An IC-OR consists of the two-user memoryless interference channel (X1,X2, PY1Y2|X1X2
,Y1,Y2)

where receiver 2 is oblivious of transmitter 1’s codebook. We use the terminology “codebook” to de-

note a set of codewords and the (one-to-one) mapping of the messages to these codewords. We model

lack of codebook knowledge as in (19), where transmitters use randomized encoding functions, which

are indexed by a message index and a “codebook index” (F1 and F2 in Fig. Figure 4). An oblivi-
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ous receiver is unaware of the “codebook index” (F1 is not given to decoder 2 in Fig. Figure 4) and

hence does not know how codewords are mapped to messages. The basic modeling assumption is that

without the knowledge of the codebook index a codeword looks unstructured. More formally, by ex-

tending (20, Definition 2), a (2nR1 , 2nR2 , n) code for the IC-OR with enabled time sharing is a six-tuple

(PF1|Qn , σ
n
1 , φ

n
1 , PF2|Qn , σ

n
2 , φ

n
2 ), where the distribution PFi|Qn , i ∈ [1 : 2], is over a finite alphabet Fi

conditioned on the time-sharing sequences qn from some finite alphabet Q, and where the encoders σni

and the decoders φni , are mappings

σn1 : [1 : 2nR1 ]× [1 : |F1|]→ X n1 ,

σn2 : [1 : 2nR2 ]× [1 : |F2|]→ X n2 ,

φn1 : [1 : |F1|]× [1 : |F2|]× Yn1 → [1 : 2nR1 ],

φn2 : [1 : |F2|]× Yn2 → [1 : 2nR2 ].

Moreover, when user 1’s codebook index is unknown at decoder 2, the encoder σn1 and the distribution

PF1|Qn must satisfy

P[Xn
1 = xn1 |Qn = qn]

=

2nR1∑

w1=1

|F1|∑

f1=1

PF1|Qn(f1|qn) 2−nR1 δ
(
xn1 − σn1 (w1, f1)

)

=
∏

t∈[1:n]

PX1|Q(x1t|qt), (3.1)
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according to some distribution PX1|Q. In other words, when averaged over the probability of selecting

a given codebook and over a uniform distribution on the message set, the transmitted codeword condi-

tioned on any time sharing sequence has an i.i.d. distribution according to some distribution PX1|Q. We

refer the reader to (20, Remark 1) for further justifications of the condition in (Eq. 3.1).

A non-negative rate pair (R1, R2) is said to be achievable if there exist a sequence of encoding

functions σn1 (W1, F1), σn2 (W2, F2), and decoding functions φn1 (Y n
1 , F1, F2), φn2 (Y n

2 , F2), such that

the average probability of error satisfies maxi∈[1:2] P[Ŵi 6= Wi]→ 0 as n→ +∞. The capacity region

is defined as the convex closure of all achievable rate pairs (R1, R2) (37).

Remark 6. One of the key features of our model is that the codebook index may change from codeword

to codeword. In particular, one can show that the number of codebooks is given by |F | = |X|n2nR

(20). Therefore, communicating the index of the codebook - before the transmission of every codeword -

incurs a non vanishing overhead. For more discussion on which communication schemes are permitted

and which are not we refer reader to (19; 20).

3.2.2 Injective Semi-Deterministic IC-OR

For a general memoryless IC-OR, no restrictions are imposed on the transition probabilityPY1Y2|X1X2
.

The ISD-IC-OR is a special IC-OR with transition probability

PY1Y2|X1X2
(y1, y2|x1, x2) =

∑

t1,t2

PT1|X1
(t1|x1)PT2|X2

(t2|x2)

· δ
(
y1 − g1(x1, t2)

)
δ
(
y2 − g2(x2, t1)

)
, (3.2)



43

for some memoryless transition probabilities PT1|X1
and PT2|X2

, and some deterministic functions

g1(·, ·) and g2(·, ·) that are injective when their first argument is held fixed (39). The ISD property

implies that

H(Y1|X1) = H(T2) and H(Y2|X2) = H(T1), ∀PX1X2 = PX1PX2 , (3.3)

or in other words that the Tu is a deterministic function of the pair (Yu, Xu), u ∈ [1 : 2]. For chan-

nels with continuous alphabets, the summation in (Eq. 3.2) should be replaced with an integral and the

discrete entropies in (Eq. 3.3) with the differential entropies.

3.3 Outer Bounds

In this section we present novel outer bounds for the IC-OR. In particular, we derive the single

rate bounds that are valid for a general memoryless IC-OR and a sum-rate bound that is valid for the

ISD-IC-OR only.

We begin by proving a property of the output distributions that is key to deriving single-letter ex-

pressions in our outer bounds; this property holds for a general memoryless IC-OR.

Proposition 3.3.1. The output of the oblivious decoder has a product distribution conditioned on the

signal whose codebook is known, that is,

PY n2 |Xn
2 ,F2

(yn2 |xn2 , f2) =
n∏

i=1

PY2i|X2i
(y2i|x2i).
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which implies

H(Y n
2 |Xn

2 , F2) =
n∑

i=1

H(Y2i|X2i)

forISD−IC−OR
=

n∑

i=1

H(T1i).

Proof of Proposition 3.3.1. Starting from the joint distribution of Y n
2 , X

n
1 conditioned on Xn

2 , F2 we

have that

PY n2 ,Xn
1 |Xn

2 ,F2
(yn2 , x

n
1 |xn2 , f2)

a)
= PXn

1
(xn1 )

n∏

i=1

PY2i|X1i,X2i
(y2i|x1i, x2i)

b)
=

n∏

i=1

PX1i(x1i)
n∏

i=1

PY2i|X1i,X2i
(y2i|x1i, x2i)

c)
=

n∏

i=1

PY2i,X1i|X2i
(y2i, x1i|x2i)

where the equalities follows from: a) the inputs are independent and the channel is memoryless; b) the

assumption that Xn
1 has a product distribution if not conditioned on F1 as in (Eq. 3.1); and c) the inputs

are independent. By marginalizing with respect to Xn
1 yields

PY n2 |Xn
2 ,F2

(yn2 |xn2 , f2) =
n∏

i=1

∑

x1i

PY2i,X1i|X2i
(y2i, x1i|x2i) =

n∏

i=1

PY2i|X2i
(y2i|x2i),

as claimed.
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The main result of the section is the following upper bound:

Theorem 3.3.2. Any achievable rate pair (R1, R2) for the IC-OR must satisfy

R1 ≤ I(Y1;X1|X2, Q), (memoryless IC-OR) (3.4a)

R2 ≤ I(Y2;X2|Q), (memoryless IC-OR) (3.4b)

R1 +R2 ≤ H(Y1|Q) +H(Y2|U2, Q)

−H(T2|X2, Q)−H(T1|Q) (memoryless ISD-IC-OR)

= I(Y1;X1, X2|Q) + I(Y2;X2|U2, Q), (3.4c)

for some input distribution that factors as

PQ,X1,X2,U2(q, x1, x2, u2) = PQ(q)PX1|Q(x1|q)PX2|Q(x2|q)PT2|X2
(u2|x2), (3.4d)

and with |Q| ≤ 2. We denote the region in (Eq. 3.4) asRout.

Proof of Theorem 3.3.2. By Fano’s inequality H(W1|Y n
1 , F1, F2) ≤ nεn and H(W2|Y n

2 , F2) ≤ nεn

for some εn → 0 as n→∞.
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We begin with the R1-bound (non-oblivious receiver) in (Eq. 3.4a):

n(R1 − εn)
a)

≤ I(W1;Y n
1 , F1, F2)

b)

≤ I(W1;Y n
1 |F1, F2,W2)

c)

≤ I(Xn
1 ;Y n

1 |F1, F2, X
n
2 )

d)
= H(Y n

1 |F1, F2, X
n
2 )−

n∑

i=1

H(Y1i|X1i, X2i)

e)

≤
n∑

i=1

H(Y1i|X2i)−
n∑

i=1

H(Y1i|X1i, X2i)

=
n∑

i=1

I(X1i;Y1i|X2i),

where the (in)-equalities follow from: a) Fano’s inequality, b) giving W2 as side information and using

the fact that F1, F2, W1 and W2 are mutually independent; c) data processing (Fi,Wi) → Xn
i →
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Y n
1 , for i ∈ [1 : 2]; d) because the channel is memoryless; and e) by chain rule of entropy and by

“conditioning reduces entropy”. For the R2-bound (oblivious receiver) in (Eq. 3.4b) we have:

n(R2 − εn)
a)

≤ I(W2;Y n
2 , F2)

b)

≤ I(W2;Y n
2 |F2)

c)

≤ I(Xn
2 ;Y n

2 |F2)

d)
= H(Y n

2 |F2)−
n∑

i=1

H(Y2i|X2i)

e)

≤
n∑

i=1

H(Y2i)−
n∑

i=1

H(Y2i|X2i)

=

n∑

i=1

I(X2i;Y2i),

where the (in)-equalities follow from: a) Fano’s inequality; b) the fact that F2 and W2 are independent;

c) data processing (Fi,Wi) → Xn
i → Y n

1 , for i ∈ [1 : 2]; d) by Proposition 3.3.1; and e) from chain

rule of entropy and “conditioning reduces entropy”.
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Next, by providing U2 as side information to receiver 2 (oblivious receiver) similarly to (39)1, where

U2 is jointly distributed with the inputs according to (Eq. 3.4d), we have:

n(R1 +R2 − 2εn)
a)

≤ I(Xn
1 ;Y n

1 |F1, F2) + I(Xn
2 ;Y n

2 , U
n
2 |F2)

= H(Y n
1 |F1, F2)−H(Y n

1 |F1, F2, X
n
1 )

+H(Un2 |F2)−H(Un2 |F2, X
n
2 )

+H(Y n
2 |F2, U

n
2 )−H(Y n

2 |F2, X
n
2 , U

n
2 )

b)
= H(Y n

1 |F1, F2)−H(Tn2 |F1, F2)

+H(Un2 |F2)−H(Un2 |F2, X
n
2 )

+H(Y n
2 |F2, U

n
2 )−H(Tn1 )

c)
= H(Y n

1 |F1, F2)−H(Tn2 |F1, F2)

+H(Tn2 |F2)−H(Tn2 |F2, X
n
2 )

+H(Y n
2 |F2, U

n
2 )−H(Tn1 )

d)
= H(Y n

1 |F1, F2) +H(Y n
2 |F2, U

n
2 )−H(Tn2 |Xn

2 )−H(Tn1 )

e)

≤
n∑

i=1

H(Y1i|F1, F2) +H(Y2i|F2, U2i)−H(T2i|X2i)−H(T1i),

f)

≤
n∑

i=1

H(Y1i) +H(Y2i|U2i)−H(T2i|X2i)−H(T1i),

1Random variable U2 is obtained by passingX2 through an auxiliary channel described by PT2|X2
. Intuitively,

U2 represents interference caused by X2 plus noise at the output Y1. The idea is that providing a noisy version of
X2 as side information will result in a tighter bound than for example giving just X2.
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where (in)-equalities follow from: a) by Fano’s inequality and by giving U2 as side information and

by proceeding as done for the single rate bounds up to step labeled “c)”; b) by the injective property

in (Eq. 3.2) and the independence of (Xn
1 , T

n
1 ) and Xn

2 ; c) by definition of U2 in (Eq. 3.4d) we have

H(Un2 |F2) = H(Tn2 |F2); d) by independence of the messages we haveH(Tn2 |F1, F2)−H(Tn2 |F2) = 0;

e) since the channel is memoryless and thus H(Tn2 |F2, X
n
2 ) = H(Tn2 |Xn

2 ) =
∑n

i=1H(T2i|X2i) and

since H(Tn1 ) = H(Y n
2 |Xn

2 ) can be single-letterized by using Proposition 3.3.1; and f) by conditioning

reduces entropy.

The introduction of a time-sharing random variable Q ∼ Unif[1 : n] yields the bounds in (Eq. 3.4).

The Fenchel-Eggleston-Caratheodory theorem (40, Chapter 14) guarantees that we may restrict attention

to |Q| ≤ 2 without loss of optimality.

Finally, the equality in (Eq. 3.4c) follows from the injective property in (Eq. 3.2), the independence

of the inputs and the memoryless property of the channel, i.e.,

H(T2|X2) = H(T2|X1, X2) = H(Y1|X1, X2, Q),

H(T1|Q) = H(T1|U2, Q,X2).

This concludes the proof.

3.4 Capacity Results

In this section we prove that the outer bound in (Eq. 3.4) is (approximately) tight in certain regimes

or for certain classes of channels. To start, we propose an achievable rate region based on a simplified
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Han-Kobayashi scheme (38) in which joint decoding of the intended and interfering messages is not

required at receiver 2 (the oblivious receiver) and in which every node uses an i.i.d. codebook.

3.4.1 Inner Bound

Consider an achievability scheme where encoder 1 transmits using an i.i.d. codebook, while encoder

2, corresponding to the oblivious receiver, rate-splits as in the Han and Kobayashi achievability scheme

for the classical IC (38). It may then be shown that the following rates are achievable,

Proposition 3.4.1. The set of non-negative rate pairs (R1, R2) satisfying

R1 ≤ I(Y1;X1|U2, Q), (3.5a)

R2 ≤ I(Y2;X2|Q), (3.5b)

R1 +R2 ≤ I(Y1;X1, U2|Q) + I(Y2;X2|U2, Q), (3.5c)

is achievable for every input distribution that factorizes as

PQ,X1,X2,U2 = PQPX1|QPX2|QPU2|X2Q, (3.5d)

and where |Q| ≤ 8 from (41). We denote the region in (Eq. 3.5) as Rin, which is achievable for any

memoryless IC-OR.

Proof of Proposition 3.4.1. The proof follows by setting the auxiliary r.v. U1 in the Han and Kobayashi

rate region in (37, Section 6.5) to U1 = ∅. Note, that this modified version of the Han and Kobayashi

scheme employs joint decoding (of desired and undesired messages) only at receiver 1 (the non-oblivious
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receiver) and hence knowledge of the codebook of transmitter 1 is not needed at receiver 2 (the oblivious

receiver).

Remark 7. By comparing the outer bound regionRout in Theorem 3.3.2 to the inner bound regionRin

in Proposition 3.4.1 we notice the following differences: 1) in (Eq. 3.4d) the side information random

variable U2 is distributed as T2 conditioned on X2, while in (Eq. 3.5d) the auxiliary random variable

U2 can have any distribution conditioned on X2; 2) the mutual information terms involving Y1 have X2

in the outer bound, but U2 in the inner bound; and 3) the mutual information terms involving Y2 are the

same in both regions.

3.4.2 Capacity in Very Strong Interference at the Non-oblivious Receiver for the General Memoryless

IC-OR

In this section we show that under special channel conditions, akin to the very strong interference

regime for the classical IC, the outer bound region in Theorem 3.3.2 is tight.

A general memoryless IC-OR for which

I(X2;Y2|X1) ≤ I(X2;Y1), ∀PX1,X2 = PX1PX2 , (3.6)

is said to have very strong interference at the non-oblivious receiver (receiver 1). Intuitively, when the

condition in (Eq. 3.6) holds, the non-oblivious receiver should be able to first decode the interfering

signal by treating its own signal as noise and then decode its own intended signal free of interference.

This should “de-activate” the sum-rate bound in (Eq. 3.4c). Next we formalize this intuition.
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Theorem 3.4.2. When the condition in (Eq. 3.6) holds the capacity region of the IC-OR is given by

R1 ≤ I(X1;Y1|X2, Q), (3.7a)

R2 ≤ I(X2;Y2|Q), (3.7b)

taken over the union of all input distributions that factor as PQ,X1,X2 = PQPX1|QPX2|Q and where

|Q| ≤ 2.

Proof of Theorem 3.4.2. By dropping the sum-rate outer bound in (Eq. 3.4c) we see that the region

in (Eq. 3.7) is an outer bound for a general memoryless IC-OR. By setting U2 = X2 in the achievable

region in (Eq. 3.5), the region

R1 ≤ I(X1;Y1|X2, Q), (3.8a)

R2 ≤ I(X2;Y2|Q), (3.8b)

R1 +R2 ≤ I(X1, X2;Y1|Q), (3.8c)
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taken over the union of all PQ,X1,X2 = PQPX1|QPX2|Q, is achievable. We see that the single rate

bounds in (Eq. 3.8) match the upper bounds in (Eq. 3.7). We next intend to show that when the condition

in (Eq. 3.6) holds, the sum-rate bound in (Eq. 3.8c) is redundant. By summing (Eq. 3.8a) and (Eq. 3.8b)

R1 +R2 ≤ I(X1;Y1|X2, Q) + I(X2;Y2|Q)

a)

≤ I(X1;Y1|X2, Q) + I(X2;Y2, X1|Q)

b)
= I(X1;Y1|X2, Q) + I(X2;Y2|X1, Q)

c)

≤ I(X1;Y1|X2, Q) + I(X2;Y1|Q)

= I(X1, X2;Y1|Q) = eq.(Eq. 3.8c),

where in a) we loosened the achievable sum-rate by adding X1 as “side information” to receiver 2; in

b) we used the independence of the inputs; and in c) the condition in (Eq. 3.6). Therefore, the sum-rate

bound in (Eq. 3.8c) can be dropped without affecting the achievable rate region. This shows that the

outer bound in (Eq. 3.7) is achievable thereby proving the claimed capacity result.

Remark 8. For the classical IC, the very strong interference regime is defined as

I(X1;Y1|X2) ≤ I(X1;Y2),

I(X2;Y2|X1) ≤ I(X2;Y1),

for all product input distributions; under these pair of conditions capacity can be shown. For the IC-

OR, the very strong interference constraint at receiver 2 (oblivious receiver) is not needed in order to
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show capacity. Therefore, the very strong interference condition for the IC-OR is less stringent than

that for the classical IC. We believe this is so because the oblivious receiver (receiver 2) cannot decode

the message of user 1 as per the modeling assumption. Indeed, we feel that the “lack of codebook

knowledge” as originally proposed in (19) actually models the inability of a receiver to jointly decode

its message along with unintended ones, as the mapping between the messages and codewords is not

known.

3.4.3 Capacity to within a Constant Gap for the ISD-IC-OR

We now show that Rin in Proposition 3.4.1 lies to within a gap of the outer bound Rout in Theo-

rem 3.3.2 for the general ISD-IC-OR. We have

Theorem 3.4.3. For the ISD-IC-OR, if (R1, R2) ∈ Rout then ([R1 − I(X2;T2|U2, Q)]+, R2) ∈ Rin.

Proof of Theorem 3.4.3. The proof is as in (39). First, we define a new outer bound region R̄out by

replacing X2 with U2 in all positive entropy terms of region Rout, which is permitted as H(Y2|X2) ≤

H(Y2|U2) by the data processing inequality. We conclude that Rout ⊆ R̄out. We next compare R̄out

andRin term by term (we only need to compare the mutual informations invoking Y1 as those involving

Y2 are the same in both bounds, see Remark 7, thus implying a zero gap for rate R2): the difference is

that R̄out has −H(Y1|X1, X2) whereRin has −H(T2|U2, Q); thus the gap is

−H(Y1|X1, X2) +H(T2|U2, Q) = −H(T2|X2) +H(T2|U2, Q) = I(X2;T2|U2, Q).

This concludes the proof.
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Remark 9. Note that

I(X2;T2|U2, Q) = H(T2|U2, Q)−H(T2|X2) ≤ H(T2)−H(T2|X2) ≤ max
pX2

I(T2;X2),

so the gap is finite/constant for all channel PT2|X2
with finite capacity.

We next give an example of constant gap characterization in Section 3.4.5 after having discussed in

Section 3.4.4 a special class of ISD-IC-OR for which the gap to capacity is zero.

3.4.4 Exact Capacity for the Injective Fully Deterministic IC-OR

We now specialize Theorem 3.4.3 to the class of injective fully deterministic ICs (42). For this class

of channels the mappings T1 and T2 in (Eq. 3.2) are deterministic functions of X1 and X2, respectively.

We have

Corollary 3.4.4. For the injective fully deterministic IC-OR the outer bound in Theorem 3.3.2 is tight.

Proof of Corollary 3.4.4. The injective fully deterministic IC-OR has T2 = U2 and therefore I(X2;T2|U2, Q) =

0 in Theorem 3.4.3.

As an application of Corollary 3.4.4 we consider next the Linear Deterministic Approximation

(LDA) of the Gaussian IC-OR at high SNR, whose classical counterpart (where all codebooks are

known) was first proposed in (22). The LDA-IC-OR has input/output relationship

Y1 = Sq−n11X1 + Sq−n12X2, T2 = Sq−n12X2, (3.9a)

Y2 = Sq−n21X1 + Sq−n22X2, T1 = Sq−n21X1, (3.9b)
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where inputs and outputs are binary-valued vectors of length q, S is the q × q shift matrix (22),

(n11, n12, n21, n22) are non-negative integers and q := max{n11, n12, n21, n22}. Summations and mul-

tiplications are bit-wise over the binary field.

For simplicity, we next evaluate the symmetric sum-capacity of the LDA-IC-OR. The symmetric

LDA-IC-OR has parameters n11 = n22 = nS and n12 = n21 = nI := nS α for some non-negative

α. The maximum symmetric rate, or symmetric sum-capacity normalized by the sum-capacity of an

interference-free channel, is defined as

d(α) :=
max{R1 +R2}

2 nS
, (3.10)

where the maximization is over all achievable rate pairs (R1, R2) satisfying Theorem 3.3.2, which is

the capacity region by Corollary 3.4.4. Since we may provide the oblivious receiver in the LDA-IC-OR

with the additional codebook index so as to obtain the classical LDA-IC with full codebook knowledge,

we immediately have

d(α) ≤ d(W )(α) = min
(

1,max
(α

2
, 1− α

2

)
,max (α, 1− α)

)
, (3.11)

where d(W )(α), the so-called W-curve (26), is the maximum symmetric rate of the classical LDA-IC.

In (23) it was shown that i.i.d. Bernoulli(1/2) input bits in the Han and Kobayashi region yield d(W )(α).

Although Theorem 3.3.2 gives the exact capacity region of the LDA-IC-OR, it is not immediately

clear which input distribution achieves the maximum symmetric rate. Instead of analytically deriving the

sum-capacity, we proceeded to numerically evaluate Theorem 3.3.2 for |Q| = 1, which is not necessarily
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optimal. We observe the surprising result that even with |Q| = 1 i.e., without time sharing, some of

the points on the normalized sum-capacity of the LDA-IC-OR are equal to d(W )(α), see Fig. Figure 5

and Table I. Although we lack a formal proof that we can achieve the whole W-curve with a non

i.i.d. Bernoulli(1/2) input we do, however, conjecture that it is indeed possible with the scheme in

Proposition 3.4.1. If true, this implies that partial codebook knowledge at one receiver does not impact

the sum-rate of the symmetric LDA-IC-OR at these points. This is quite unexpected, especially in the

strong interference regime (α ≥ 1) where the optimal strategy for the classical LDA-IC is to jointly

decode the interfering message along with the intended message—a strategy that seems to be precluded

by the lack of codebook knowledge at one receiver. This might suggest a more general principle: there

is no loss of optimality in lack of codebook knowledge as long as the oblivious receiver can remove the

interfering codeword, regardless of whether or not it can decode the message carried by this codeword.

Another interesting observation is that i.i.d. Bernoulli(1/2) input bits may no longer be optimal

(though we do not show their strict sub-optimality). In Table I we report, for some values of α and

nS, nI, the input distributions to be used in Rout in Theorem 3.3.2. We notice that, at least when

evaluating the region in Theorem 3.3.2 for |Q| = 1 only, that the region exhausting inputs are now

correlated. For example, Table I shows that, for α = 4/3 the inputs X1 and X2 are binary vectors of

length log(16) = 4 bits; out of the 16 different possible bit sequences, only 4 are actually used at each

transmitter with strictly positive probability to achieve d(W )(4/3) = 4/6. By using i.i.d. Bernoulli(1/2)

input bits in Theorem 3.3.2 for |Q| = 1 we would obtain a normalized sum-rate of 1/2 = 3/6, the same

as achieved by time division (23).
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TABLE I: LDA-IC-OR: EXAMPLES OF SUM-RATE OPTIMAL INPUT
DISTRIBUTIONS FOR THE CAPACITY REGION IN THEOREM ??.

α, (nS, nI) Probability mass function with |Q| = 1
1
2 , (2, 1) PX1 = [0.5, 0, 0.5, 0]

PX2 = [0, 0.5, 0, 0.5]
2
3 , (3, 2) PX1 = [0, 0, 0.25, 0.25, 0, 0, 0.25, 0.25]

PX2 = [0, 0, 0.25, 0.25, 0, 0, 0.25, 0.25]

1, (2, 2) PX1 = [0, 0, 0.5, 0.5]
PX2 = [0, 0.5, 0, 0.5]

4
3 , (3,4) PX1 = [0, 0, 0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0.25, 0, 0.25]

PX2 = [0, 0, 0, 0.25, 0, 0.25, 0, 0, 0, 0, 0, 0, 0, 0.25, 0, 0.25]

2, (2, 1) PX1 = [0, 0.5, 0, 0.5]
PX2 = [0, 0.5, 0, 0.5]

α1
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3
1 2

1
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Figure 5: The normalized sum-capacity, or maximum symmetric rate, for the
classical LDA-IC (dash-dotted black line). Normalized sum-rates achieved
by the input distributions in Table I (red dots) for the LDA-IC-OR. The

normalized sum-rate achieved by i.i.d. Bernoulli(1/2) inputs and |Q| = 1
(solid blue line) in the capacity region in Theorem 3.3.2 for the LDA-IC-OR.
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Also, i.i.d. Bernoulli(1/2) inputs in the LDA model usually are translated to i.i.d. Gaussian inputs

in the Gaussian noise model. This intuition is reinforced, in the next section, by showing that i.i.d.

Gaussian are also suboptimal for the Gaussian noise model for |Q| = 1. Also, the fact that there exist

other, non i.i.d Bernoulli(1/2), input distributions that are capacity achieving for the LDA stimulates

search for non-Gaussian inputs that might be capacity achieving for a Gaussian noise channel. In fact

the rest of the thesis tries to use intuition gained in this section to construct non-Gaussian inputs that

will be capacity or constant gap capacity approaching.

3.4.5 The Gaussian Noise IC-OR

We now consider the practically relevant real-valued single-antenna power-constrained Gaussian

noise channel, whose input/output relationship is

Y1 = h11X1 + h12X2 + Z1 = h11X1 + T2, T2 = h12X2 + Z1, (3.12a)

Y2 = h21X1 + h22X2 + Z2 = h22X2 + T1, T1 = h21X1 + Z2, (3.12b)

where hij are the real-valued channel coefficients for (i, j) ∈ [1 : 2]2 assumed constant and known to

all nodes, the input Xi ∈ R is subject to per block power constraints 1
n

∑n
i=1X

2
i ≤ 1, i ∈ [1 : 2], and

the noise Zi, i ∈ [1 : 2], is a unit-variance zero-mean Gaussian r.v.

By specializing the result of Theorem 3.4.3 to the G-IC-OR we may show the following:

Corollary 3.4.5. For the G-IC-OR the gap is at most 1/2 bit per channel use.
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Proof of Corollary 3.4.5. For the G-IC-OR T2 = h12X2 + Z1, and thus we set U2 in Theorem 3.3.2 to

U2 = h12X2 + Z∗1 , where Z1 ∼ Z∗1 and mutually independent. We thus have

I(X2;T2|U2, Q) = h(T2|U2, Q)− h(Z2)

≤ h(T2 − U2)− h(Z1)

= h(Z1 − Z∗1 )− h(Z1) =
1

2
log(2),

as claimed.

In the classical G-IC with full codebook knowledge, Gaussian inputs exhaust known outer bounds,

which are achievable to within 1/2 bit per channel use (26). From the rate expression in Theorem 3.3.2

it is not clear whether Gaussian inputs are optimal for Rout. The following discussion shows that in

general the answer is in the negative. For simplicity we focus on the achievable generalized Degrees of

Freedom (gDoF) for the symmetric G-IC-OR. The symmetric G-IC-OR has |h11|2 = |h22|2 = snr and

|h12|2 = |h21|2 = inr, with inr = snrα for some non-negative α. The sum-gDoF is defined as

d(α) := lim
snr→+∞

max{R1 +R2}
2 · 1

2 log(1 + snr)
, (3.13)

where the maximization is over all possible achievable rate pairs. By using the classical G-IC as a trivial

upper bound, we have d(α) ≤ d(W )(α) where d(W )(α) is given in (Eq. 3.11).
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By evaluating Theorem 3.3.2 for independent Gaussian inputs and |Q| = 1 (which we do not claim

to be optimal, but which gives us an achievable rate up to 1/2 bit) we obtain

(R1 +R2)(GG) = min
{
Ig (snr) + Ig

(
snr

1 + inr

)
, Ig

(
snr

inr + 1

)
+ Ig

(
inr +

snr

1 + inr

)}
,

⇐⇒ d(GG)(α) =
1

2
+

[
1

2
− α

]+

,

the superscript “GG” indicates that both transmitters use a Gaussian input. For future reference, with

Time Division (TD) and Gaussian codebooks we can achieve

(R1 +R2)(TD) =
1

2
log (1 + 2 snr) ⇐⇒ d(TD)(α) =

1

2
.

We plot the achievable gDoF vs. α in Fig. Figure 5, together with the gDoF of the classical G-

IC given by d(W )(α) (26). We note that Gaussian inputs are indeed optimal for 0 ≤ α ≤ 1/2, i.e.,

d(GG)(α) = d(W )(α), where interference is treated as noise even for the classical G-IC (which is also

achievable by the G-IC-OR). For α > 1/2 we have d(GG)(α) = d(TD)(α), that is, Gaussian inputs

achieve the same rates as time division. Interestingly, Gaussian inputs are sub-optimal in our achievable

region in general as we show next.

Consider α = 4/3. With Gaussian inputs we only achieve d(GG)(4/3) = d(TD)(4/3) = 1/2. No-

tice the similarity with the LDA-IC-OR: the input distribution that is optimal for the non-oblivious IC

performs as time division for the G-IC-OR. Inspired by the LDA-IC-OR we explore now the possibility

of using non-Gaussian inputs. By following (19, Section VI.A), which demonstrated that binary signal-

ing outperforms Gaussian signaling for a fixed finite snr, we consider a uniform PAM constellation with
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Figure 6: Achievable normalized sum-rate for the symmetric G-IC-OR with α = 4/3
vs snr in dB. Legend: time division in solid blue line; Gaussian inputs at
both transmitters in red stars; X1 is a uniform PAM with N = bsnr 1

6 c
points and X2 is Gaussian in dash-dotted black line.

N points. Fig. Figure 6 shows the achievable normalized sum-rate R1+R2

2· 1
2

log(1+snr)
as a function of snr for

the case whereX1 (the input of the non-oblivious pair) is a PAM constellation withN =
⌊
snr1/6

⌋
points

and X2 (the input of the oblivious pair) is Gaussian; we refer to the achievable gDoF of this inputs as

d(DG)(α). Notice that the number of points in the discrete input is a function of snr. We also report

the achievable normalized sum-rate with time division and Gaussian inputs. Fig. Figure 6 shows that,

for sufficiently large snr, using a discrete input outperforms time division; moreover, for the range of

simulated snr, it seems that the proposed discrete input achieves a gDoF of d(DG)(α) = α/2 = 4/6 as

for the classical G-IC with full codebook knowledge. In the sections that follow we analytically show

that using discrete input (or mixed) at the non-oblivious transmitter indeed achieves the full gDoF and

symmetric capacity region to within a constant gap.
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3.5 Achievable Regions for the G-IC-OR

We now analyze the G-IC-OR by using Remark 3 (i.e., bounds on the mutual information achievable

by a PAM input on a point-to-point power-constrained Gaussian noise channel) and the insight on the

nature of the gap due to a PAM input from Remark ??. We first present a scheme (an achievable rate

region evaluated using a mixed input) that will prove to be useful in strong and very strong interference,

and then present a more involved scheme that will be useful in the somewhat trickier weak and moderate

interference regimes. Although the second scheme includes the first as a special case, we start with a

simpler scheme to highlight the important steps of the derivation without getting caught up in excessive

technical details.

3.5.1 Achievable Scheme I

We first derive an achievable rate region from Proposition 3.4.1 with inputs

Scheme I: X1D ∼ PAM (N) , N ∈ N, independent of (3.14a)

X2G ∼ N (0, 1), (3.14b)

X1 = X1D, X2 = X2G, (3.14c)

U2 = X2, Q = ∅. (3.14d)

which we will show in the next sections to be gDoF optimal and to within a constant gap of the

symmetric capacity of the classical G-IC in the strong and very strong interference regimes. Such results

may not be shown by using i.i.d. Gaussian inputs in the same achievable scheme in Proposition 3.4.1.

The achievable region is derived for a general G-IC-OR and later on specialized to the symmetric case.
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Theorem 3.5.1. For the G-IC-OR the following rate region is achievable by the input in (Eq. 3.14)

R1 ≤ Id
(
N, |h11|2

)
, (3.15a)

R2 ≤ Id

(
N,

|h21|2
1 + |h22|2

)
+ Ig

(
|h22|2

)

− Ig
(
min

(
N2 − 1, |h21|2

))
, (3.15b)

R1 +R2 ≤ Id

(
N,

|h11|2
1 + |h12|2

)
+ Ig

(
|h12|2

)
. (3.15c)

Proof of Theorem 3.5.1. We proceed to evaluate the rate region in Proposition 3.4.1 with the inputs

in (Eq. 3.14), that is, the achievable region in (Eq. 3.8) with |Q| = 1.

The rate of the user 1 is bounded by R1 ≤ I(X1;Y1|X2) = I(X1D;h11X1D + Z1), where

I(X1D;h11X1D + Z1) can be further lower bounded by using (Eq. 2.10) from Remark 3 with snr =

|h11|2; by doing so we obtain the bound in (Eq. 3.15a).
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The rate of the user 2 is bounded by

R2 ≤ I(X2;Y2)

= h(h21X1D + h22X2G + Z2︸ ︷︷ ︸
∼N (0,1+|h22|2)

)− h(h21X1D + Z2)

=

(
h

(
h21√

1 + |h22|2
X1D + Z2

)
− h(Z2)

)

︸ ︷︷ ︸
≥Id
(
N,

|h21|2
1+|h22|2

)
from (Eq. 2.10)

+
1

2
log(1 + |h22|2)

−
(
h (h21X1D + Z2)− h(Z2)

)

︸ ︷︷ ︸
≤Ig(min(N2−1,|h21|2)) from (Eq. 2.11)

,

from which we conclude that the achievable rate for user 2 is lower bounded as in (Eq. 3.15b).

The sum-rate is bounded by R1 + R2 ≤ I(X1, X2;Y1) = I(X1;Y1) + I(X2;Y1|X1), where

I(X1;Y1) can be lower bounded by means of Remark 3 with snr = |h11|2
1+|h12|2 and where I(X2;Y1|X1) =

I(X2G;h12X2G + Z1) = Ig(|h12|2); by combining the two terms we obtain the bound in (Eq. 3.15c).
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3.5.2 Achievable Scheme II

The input in (Eq. 3.14) might not be optimal in general and may be generalized as follows. Consider

the rate region in Proposition 3.4.1 with inputs

Scheme II: X1D, X1G, X2Gc, X2Gp independent and distributed as (3.16a)

X1D ∼ PAM (N) , N ∈ N, (3.16b)

all the others are N (0, 1), (3.16c)

X1 =
√

1− δ1X1D +
√
δ1X1G, δ1 ∈ [0, 1], (3.16d)

X2 =
√

1− δ2X2Gc +
√
δ2X2Gp, δ2 ∈ [0, 1]. (3.16e)

U2 = X2Gc, Q = ∅. (3.16f)

In Scheme II, X2Gc encodes a “common” message, and X2Gp and X1G encode the “private” messages

as in the classical Han-Kobayashi scheme (38). We shall also interpret X1D as encoding a “common”

message even if X1D cannot be decoded at receiver 2 (the oblivious receiver) as receiver 2 lacks knowl-

edge of the codebook(s) used by transmitter 1. The main message of this Chapter is in fact that, even

with lack of codebook knowledge, if there would-be-common message is from a discrete alphabet then

its effect on the rate region—up to a constant gap—is as if the message could indeed be jointly de-

coded. We believe this is because lack of codebook knowledge may be translated as lack of knowledge

of the mapping of the codewords to the messages, but does not preclude a receiver’s ability to perform

symbol-by-symbol estimation of the symbols in the interfering codeword (rather than decoding the mes-

sages carried by the codeword). Correctly estimating and subtracting off the interfering symbols is as
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effective as decoding the actual interfering codeword, as the message carried by the codeword is not

desired anyhow. A similar intuition was pointed out in (19) where the authors write “We indeed see

that BPSK signaling outperforms Gaussian signaling. This is because demodulation is some form of

primitive decoding, which is not possible for the Gaussian signaling.”

In the next sections we will show that Proposition 3.4.1 with the inputs in (Eq. 3.16) is gDoF optimal

and is to within a constant gap of a capacity outer bound for the classical G-IC in the weak and moderate

interference regimes. Also note that with δ1 = δ2 = 0 Scheme II in (Eq. 3.16) reduces to Scheme I

in (Eq. 3.14).

The achievable region is derived for a general G-IC-OR and later on specialized to the symmetric

case. The rate region achievable by Scheme II is:

Theorem 3.5.2. For the G-IC-OR the following rate region is achievable with inputs as in (Eq. 3.16)

R1 ≤ Id

(
N,

|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2δ2

)
+ Ig

( |h11|2δ1

1 + |h12|2δ2

)
, (3.17a)

R2 ≤ Id

(
N,

|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2
)

+ Ig

( |h22|2
1 + |h21|2δ1

)

− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1

))
, (3.17b)

R1 +R2 ≤ Id

(
N,

|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2
)

+ Ig
(
|h11|2δ1 + |h12|2

)
− Ig

(
|h12|2δ2

)

+ Id

(
N,

|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2δ2

)
+ Ig

( |h22|2δ2

1 + |h21|2δ1

)

− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1

))
. (3.17c)
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Proof of Theorem 3.5.2. The proof can be found in Appendix C and follows similarly to the proof of

Theorem 3.5.1.

3.6 High SNR Performance

We now analyze the performance of the schemes in Theorems 3.5.1 and 3.5.2 for the symmetric

G-IC-OR at high-SNR by using the gDoF region as performance metric. The notion of gDoF has been

introduced in (26) and has become an important metric that sheds lights on the behavior of the capacity

when exact capacity results are not available. The gDoF region is formally defined as follows. For an

achievable pair (R1, R2), let

D(α) :=





(d1, d2) ∈ R2
+ : di := lim

inr = snrα,

snr →∞

Ri
1
2 log(1 + snr)

, i ∈ [1 : 2], (R1, R2) is achievable




.

(3.18)

Let DG-IC(α) and DG-IC-OR(α) be the gDoF region of the classical G-IC and of the G-IC-OR, re-

spectively.
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We first present two different achievable gDoF regions based on Theorems 3.5.1 and 3.5.2, which

we will compare to DG-IC(α) given by (26)

DG-IC(α) : d1 ≤ 1, (3.19a)

d2 ≤ 1, (3.19b)

d1 + d2 ≤ max(α, 2− α), (3.19c)

d1 + d2 ≤ max(2α, 2− 2α), (3.19d)

2d1 + d2 ≤ 2, only for α ∈ [1/2, 1], (3.19e)

d1 + 2d2 ≤ 2, only for α ∈ [1/2, 1]. (3.19f)

Corollary 3.6.1 (gDoF region from achievable Scheme I). Let N = Nd(snrβ) and

DI(α, β) : d1 ≤ min(β, 1), (3.20a)

d2 ≤ min(β, [α− 1]+) + 1−min(β, α), (3.20b)

d1 + d2 ≤ min(β, [1− α]+) + α. (3.20c)

for any β ≥ 0. By Theorem 3.5.1, the gDoF region DI(α, β) is achievable.
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Proof of Corollary 3.6.1. We prove the bound in (Eq. 3.20b) only as the other bounds follow similarly.

With inr = snrα and N = Nd(snrβ) we have

lim
snr→∞

log(N2)

log(1 + snr)
= β,

lim
snr→∞

log(1 + inr)

log(1 + snr)
= α.

Therefore d2 can be bounded as

d2 = lim
snr→∞

left hand side of eq.(Eq. 3.15b)
1
2 log(1 + snr)

= min(β, [α− 1]+) + 1−min(β, α),

thus proving (Eq. 3.20b).

Next, by using Theorem 3.5.2 with the power split as in (26) we show yet another achievable gDoF

region.

Corollary 3.6.2 (gDoF region from achievable Scheme II). Let N = Nd(snrβ) and

DII(α, β) : d1 ≤ min(β, 1 + α−max(1, α)) + [1− α]+, (3.21a)

d2 ≤ min(β, [α− 1]+) + 1−min(β, α), (3.21b)

d1 + d2 ≤ min(β, [1 + α−max(1, 2α)]+) + max(α, 1− α)+

+ min(β, [2α−max(1, α)]+) + [1− α]+ −min(β, α). (3.21c)
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for any β ≥ 0. By Theorem 3.5.2, the gDoF region DII(α, β) is achievable.

Proof of Corollary 3.6.2. Let inr = snrα, N = Nd(snrβ), and δ1 = δ2 = 1
1+inr in Theorem 3.5.2 (see

the region in (Eq. C.2) in Appendix C) and take limits similarly to the proof of Corollary 3.6.1.

We are now ready to prove the main result of this section:

Theorem 3.6.3. For the G-IC-OR there is no loss in gDoF compared to the classical G-IC, i.e.,

DG-IC(α) = DG-IC-OR(α).

Proof of Theorem 3.6.3. We consider several regimes:

3.6.1 Very Strong Interference Regime α ≥ 2

In this regime the gDoF region outer boundDG-IC(α) is characterized by (Eq. 3.19a) and (Eq. 3.19b).

For achievability we consider Corollary 3.6.1 with β = 1, that is,

DI(α, 1) : d1 ≤ min(1, 1) = 1,

d2 ≤ min(1, [α− 1]+) + 1−min(1, α) = 1,

d1 + d2 ≤ min(1, [1− α]+) + α = α (redundant because α ≥ 2).

Since the sum-gDoF is redundant, we get that

DI(α, β = 1) = {di ∈ [0, 1], i ∈ [1 : 2]} = DG-IC-OR(α) = DG-IC(α).
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Fig. 7a illustrates the region DI(α, β = 1).

3.6.2 Strong Interference Regime 1 ≤ α < 2

In this regime the gDoF region outer bound DG-IC(α) is characterized by (Eq. 3.19a)-(Eq. 3.19c)

and has two dominant corner points: (d1, d2) = (1, α− 1) and (d1, d2) = (α− 1, 1). For achievability

we consider the following achievable gDoF regions

DI(α, 1) : d1 ≤ 1,

d2 ≤ α− 1,

d1 + d2 ≤ α (redundant).

and

DI(α, α− 1) : d1 ≤ α− 1,

d2 ≤ 1,

d1 + d2 ≤ α (redundant),

Fig. 7b illustrates that

co
(
DI(α, 1) ∪ DI(α, α− 1)

)
= DG-IC(α) = DG-IC-OR(α).
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3.6.3 Moderately Weak Interference Regime 1
2 < α < 1

In this regime the gDoF region outer boundDG-IC(α) is characterized by all the constraints in (Eq. 3.19)

and has four corner points: (d1, d2) = (1, 0), (d1, d2) = (0, 1), and (d1, d2) = (min(4α−2, α), 2−2α)

and (d1, d2) = (2 − 2α,min(4α − 2, α)). The gDoF pair (d1, d2) = (1, 0) is trivially achievable by

silencing user 2, and similarly (d1, d2) = (0, 1) by silencing user 1. For achievability of the remaining

two corner points, we consider the following achievable gDoF regions

DII(α, 2α− 1) : d1 ≤ min(2α− 1, 1 + α− 1) + 1− α = α,

d2 ≤ min(2α− 1, 0) + 1−min(2α− 1, α) = 2− 2α,

d1 + d2 ≤ min(2α− 1, [1 + α−max(1, 2α)]+) + max(α, 1− α)+

+ min(2α− 1, [2α− 1]+) + 1− α−min(2α− 1, α)

= min(2α, 2− α), (redundant for α ∈ [2/3, 1]).

and

DII(α, 1− α) : d1 ≤ min(1− α, 1 + α− 1) + 1− α = 2− 2α,

d2 ≤ min(1− α, 0) + 1−min(1− α, α) = α,

d1 + d2 ≤ min(1− α, [1 + α−max(1, 2α)]+) + max(α, 1− α)+

+ min(1− α, [2α− 1]+) + 1− α−min(1− α, α)

= min(2α, 2− α), (redundant for α ∈ [2/3, 1]).
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Fig. 7c (for α ∈ [2/3, 1]) and Fig. 7d (for α ∈ [1/2, 2/3]) illustrate that

co
({

(d1, d2) = (1, 0)
}
∪
{

(d1, d2) = (0, 1)
}
∪ DII(α, 2α− 1) ∪ DII(α, 1− α)

)
= DG-IC(α)

= DG-IC-OR(α).

3.6.4 Noisy Interference 0 ≤ α ≤ 1
2

In this regime one may achieve the whole optimal G-IC gDoF region by using Gaussian inputs,

treating interference as noise, and power control. Since this strategy is feasible for the G-IC-OR, the

G-IC gDoF region is achievable also for the G-IC-OR.

This concludes our proof.

The result of Theorem 3.6.3 is quite surprising, namely, that for the G-IC-OR we can achieve the

gDoF region of the classical G-IC in all regimes. This is especially surprising in the strong and very

strong interference regimes where joint decoding of intended and interfering messages is optimal for the

classical G-IC—recall that joint decoding appears to be precluded by the absence of codebook knowl-

edge in the G-IC-OR. This seems to suggest that while decoding of the undesired messages is not pos-

sible, one may still estimate (i.e., symbol-by-symbol demodulate) the codeword symbols corresponding

to the undesired messages.

3.7 Finite SNR Performance

In the previous section we showed that the gDoF region of the classical G-IC can be achieved even

when one receiver lacks knowledge of the interfering codebook. One may then ask whether it is possible

to achieve the capacity, possibly up to a constant gap, of the classical G-IC at all finite SNRs. We next
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Figure 7: How to achieve the gDoF region for the G-IC-OR in different parameter
regimes.
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show that this is indeed possible. For future use, the capacity region of the classical G-IC is outer

bounded by (26)

R(G-IC)
out : R1 ≤ Ig (snr) , (3.22a)

R2 ≤ Ig (snr) , (3.22b)

R1 +R2 ≤
[
Ig (snr)− Ig (inr)

]+
+ Ig (snr + inr) , (3.22c)

R1 +R2 ≤ 2Ig

(
inr +

snr

1 + inr

)
, (3.22d)

2R1 +R2 ≤
[
Ig (snr)− Ig (inr)

]+
+ Ig (snr + inr) + Ig

(
inr +

snr

1 + inr

)
, (3.22e)

R1 + 2R2 ≤
[
Ig (snr)− Ig (inr)

]+
+ Ig (snr + inr) + Ig

(
inr +

snr

1 + inr

)
, (3.22f)

which is tight for snr ≤ inr and optimal to with 1/2 bit (per channel use per user) otherwise.

The main result of this section is:

Theorem 3.7.1. For the G-IC-OR it is possible to achieve the outer bound region in (Eq. 3.22) to within

1
2 log (12πe) ≈ 3.34 bits per channel use per user.

Proof of Theorem 3.7.1. We consider different regimes separately.

3.7.1 Very Strong Interference snr(1 + snr) ≤ inr

In the regime the capacity region of the classical G-IC is given by (Eq. 3.22a) and (Eq. 3.22b). For

achievability we consider the achievable region in Theorem 3.5.1 with

N = Nd(snr) (equivalent of β = 1) =⇒ N2 − 1 ≤ snr ≤ inr

1 + snr
≤ inr. (3.23)
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Recall that the achievable region in Theorem 3.5.1 is the region in (Eq. 3.8) with the inputs as in (Eq. 3.14);

the sum-rate in Theorem 3.5.1 is redundant if I(X1;Y1|X2) + I(X2;Y2) ≤ I(X1, X2;Y1), that is, if

I(X2;Y2) ≤ I(X2;Y1), for all input distributions in (Eq. 3.14). With a Gaussian X2 as in (Eq. 3.14):

I(X2;Y2) ≤ I(X2;Y2|X1) = I(X2G;
√
snr X2G + Z2) = Ig(snr),

and

I(X2;Y1) = I(X2G;
√
inr X2G +

√
snr X1D + Z2) ≥ Ig

(
inr

1 + snr

)
,

because a Gaussian noise is the worst noise for a Gaussian input. Since in very strong interference we

have Ig(snr) ≤ Ig
(

inr
1+snr

)
, the condition I(X2;Y2) ≤ I(X2;Y1) is verified for all inputs in (Eq. 3.14)

and hence we can drop the sum-rate constraint in (Eq. 3.15c) from Theorem 3.5.1. Therefore, in this

regime the following rates are achievable

R(G-IC-OR very strong)
in : R1 ≤ Ig(snr)−∆1, (3.24a)

R2 ≤ Ig(snr)−∆2, (3.24b)
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where for N = Nd(snr)

∆1 := Ig(snr)− Id (N, snr)

≤ 1

2
log

(
4πe

3

)
for the reasoning leading to eq.(??), (3.24c)

∆2 := Ig
(
min

(
N2 − 1, inr

))
− Id

(
N,

inr

1 + snr

)

= log(N)−
[
log(N)− 1

2
log
(πe

3

)]+

≤ 1

2
log
(πe

3

)
, (3.24d)

where the equality in (Eq. 3.24d) is a consequence of the relationships in (Eq. 3.23).

It is immediate to see that (Eq. 3.24c) is the gap for R1 and that (Eq. 3.24d) is the gap for R2.

Therefore in this regime the gap is at most 1
2 log

(
4πe
3

)
per channel use per user, and it is due to shaping

loss and integer penalty.

3.7.2 Strong Interference snr ≤ inr < snr(1 + snr)

In this regime the capacity region of the classical G-IC is given by (Eq. 3.22a)-(Eq. 3.22c), and has

two dominant corner points

R(G-IC strong P1)
out : (R1, R2) =

(
Ig (snr) , Ig

(
inr

1 + snr

))
, (3.25a)

and

R(G-IC strong P2)
out : (R1, R2) =

(
Ig

(
inr

1 + snr

)
, Ig (snr)

)
. (3.25b)
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The other two corner points are (R1, R2) = (Ig(snr), 0) and (R1, R2) = (0, Ig(snr)) that can be exactly

achieved by silencing one of the users.

For achievability we mimic the proof of the gDoF region in the same regime (see Fig. 7b), that is,

we show the achievability to within a constant gap of the corner points in (Eq. 3.25a) and (Eq. 3.25b) by

choosing two different values of N in Theorem 3.5.1. For the corner point in (Eq. 3.25a) we consider

the achievable region in Theorem 3.5.1 with

N = Nd(snr) (equivalent of β = 1) =⇒ N2 − 1 ≤ snr ≤ inr ≤ snr(1 + snr), (3.26a)

and for the corner point (Eq. 3.25b) we consider the achievable region in Theorem 3.5.1 with

N = Nd

(
inr

1 + snr

)
(equivalent of β = α− 1) =⇒ N2 − 1 ≤ inr

1 + snr
≤ snr ≤ inr. (3.26b)

For the choice of N in (Eq. 3.26a) the achievable region in Theorem 3.5.1 can be written as

R1 ≤ Id (N, snr)

=

[
log (N)− 1

2
log
(πe

3

)]+

,

R2 ≤ Id

(
N,

inr

1 + snr

)
+ Ig (snr)− Ig

(
min

(
N2 − 1, inr

))

=

[
Ig

(
inr

1 + snr

)
− 1

2
log
(πe

3

)]+

+ Ig(snr)− log(N),

R1 +R2 ≤ Id

(
N,

snr

1 + inr

)
+ Ig (inr)

=

[
Ig

(
snr

1 + inr

)
− 1

2
log
(πe

3

)]+

+ Ig(inr),
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which can further be lower bounded as

R(G-IC strong P1)
in : R1 ≤ log (N)− 1

2
log
(πe

3

)

= Ig (snr)−∆1, (3.27a)

R2 ≤ Ig (snr + inr)− log(N)− 1

2
log
(πe

3

)

= Ig

(
inr

1 + snr

)
−∆2, (3.27b)

R1 +R2 ≤ Ig (snr + inr)− 1

2
log
(πe

3

)

= (Ig (snr)−∆1) +

(
Ig

(
inr

1 + snr

)
−∆2

)
+

1

2
log
(πe

3

)
, (3.27c)

where the sum-rate bound is clearly redundant and where

∆1 := Ig (snr)− log(N) +
1

2
log
(πe

3

)
≤ 1

2
log

(
4πe

3

)
, (3.28a)

∆2 := log(N)− Ig (snr) +
1

2
log
(πe

3

)
≤ 1

2
log
(πe

3

)
. (3.28b)

Therefore, with N as in (Eq. 3.26a) in Theorem 3.5.1, the gap to the corner point in (Eq. 3.25a) is at

most 1
2 log

(
4πe
3

)
per channel use per user, as for the very strong interference regime.

By following similar steps, for the choice ofN in (Eq. 3.26b) in Theorem 3.5.1, the gap to the corner

point in (Eq. 3.25b) is still given by (Eq. 3.28), that is, the gap is at most 1
2 log

(
4πe
3

)
per channel use

per user, as for the very strong interference regime.

3.7.3 Moderately Weak Interference inr ≤ snr ≤ inr(1 + inr)

In this regime the capacity of the G-IC is outer bounded by (Eq. 3.22).
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As we did for the gDoF region (see Figs. 7c and 7d), we show here that we can achieve, up to a

constant gap, all dominant corner points of (Eq. 3.22). By silencing one of the users, we can achieve

(R1, R2) = (Ig(snr), 0) and (R1, R2) = (0, Ig(snr)); these rate points are to within 1 bit of the corner

points of (Eq. 3.22) given by (R1, R2) = (A, Ig (snr)) and (R1, R2) = (Ig (snr) , A) where

A := Ig (snr + inr) + Ig

(
inr +

snr

1 + inr

)
− Ig (snr)− Ig (inr)

= Ig

(
inr

1 + snr

)
+ Ig

(
snr

(1 + inr)2

)

≤ Ig

(
snr

1 + snr

)
+ Ig

(
inr

1 + inr

)
≤ 2 · 1

2
log(2) = 1.

We therefore have to show the achievability of the remaining two corner points obtained by the inter-

section of the sum-rate outer bound (given by min(eq.(Eq. 3.22c),eq.(Eq. 3.22d))) with either (Eq. 3.22e)

or (Eq. 3.22f). For these corner points, the gDoF-optimal choices of β were 2α − 1 and 1 − α, which

we mimic here by choosing the following values ofN in the region in (Eq. C.2) (a simplified achievable

region from Theorem 3.5.2)

N = Nd

(
inr2

1 + snr + 2inr

)
(equivalent of β = 2α− 1)

=⇒ N2 − 1 ≤ inr2

1 + snr + 2inr
≤ min

(
inr2

1 + 2inr
,

inr · snr
1 + snr + 2inr

)
, (3.29)
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because inr ≤ snr, and

N = Nd

(
snr · inr

(1 + inr)2 + snr

)
(equivalent of β = 1− α)

=⇒ N2 − 1 ≤ snr · inr
(1 + inr)2 + snr

≤ min

(
inr2

1 + 2inr
,

inr · snr
1 + snr + 2inr

)
, (3.30)

because snr ≤ inr(1 + inr). In the regime inr ≤ snr ≤ inr(1 + inr) we also have

inr2

(1 + inr)(1 + snr) + inr
≤ inr2

(1 + inr)2 + inr
≤ 1 ≤ N2 − 1, ∀N ≥ 2. (3.31)
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With (Eq. 3.29)-(Eq. 3.31), and by recalling that Ig(x) − 1
2 log(4) ≤ log(Nd(x)) ≤ Ig(x), x ≥ 0, the

region in (Eq. C.2) can be further lower bounded as follows1

R(G-IC-OR weak)
in : R1 ≤ Ig(x)− 1

2
log(4)

− 1

2
log
(πe

3

)
+ Ig

(
snr

1 + 2inr

)
, (3.32a)

R2 ≤ Ig

(
inr2

(1 + inr)(1 + snr) + inr

)
− 1

2
log
(πe

3

)

+ Ig
(snr

2

)
−Ig(x), (3.32b)

R1 +R2 ≤ Ig

(
min

(
inr2

1 + snr + 2inr
,

snr · inr
(1 + inr)2 + snr

))
− 1

2
log(4)

+ Ig

(
inr +

snr

1 + inr

)
− Ig

(
inr

1 + inr

)
+ Ig

(
snr

1 + 2inr

)

− 2 · 1

2
log
(πe

3

)
, (3.32c)

where

x :=
inr2

1 + snr + 2inr
if N as in (Eq. 3.29), or (3.32d)

x :=
snr · inr

(1 + inr)2 + snr
if N as in (Eq. 3.30). (3.32e)

1In order to get the sum-rate, let n = N2 − 1 ∈ N and consider either N = Nd(a) : na := Nd(a)2 − 1 ≤ a ∈
R+ orN = Nd(b) : nb := Nd(a)2−1 ≤ b ∈ R+ in the expression y(n) := Ig(min(n, a))+ Ig(min(n, b))− Ig(n)
that appears in the sum-rate. It follows easily that for N = Nd(a) : y = Ig(min(na, b)) ≥ Ig(min(na, nb)) ≥
Ig(min(a, b)) − 1

2 log(4), and for N = Nd(b) : y = Ig(min(a, nb)) ≥ Ig(min(na, nb)) ≥ Ig(min(a, b)) −
1
2 log(4), where the term 1

2 log(4) is due to the “integer penalty”.
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In Appendix D we show that region in (Eq. 3.32) achieves the classical G-IC outer bound to within

1
2 log (12πe) ≈ 3.34 bits (per channel user per user).

3.7.4 Noisy Interference inr(1 + inr) ≤ snr

In this regime Gaussian inputs, treating interference as noise, and power control is optimal to within

1/2 bit (per channel use per user) for the classical G-IC; since this scheme does not require codebook

knowledge / joint decoding, the gap result applies to the G-IC-OR as well.

This concludes the proof.

3.8 Conclusion

In this part of the thesis we derived capacity results for the interference channel where one of the

receivers lacks knowledge of the interfering codebook, in contrast to a classical model where both

receivers possess full codebook knowledge. For the class of injective semi-deterministic interference

channels with one oblivious receiver, we derived a capacity result to within a constant gap; the gap

is zero for fully deterministic channels, thereby providing an exact capacity characterization. We also

derived the exact capacity region for a general memoryless interference channel with one oblivious

receiver in the regime where the non-oblivious receiver experiences very strong interference.

We next proceeded to the Gaussian noise channel, where, unlike past work on oblivious receivers,

we were able to demonstrate performance guarantees. For the symmetric case we derived the gDoF

region and the capacity region to within a constant gap of 1
2 log (12πe) ≈ 3.34 bits (per channel use

per user). Surprisingly, this lack of codebook knowledge at one receiver does not impact the gDoF at

all, and only the Gaussian capacity region to within a constant gap, compared to having full codebook

knowledge. We believe this is because even though the mapping from codewords to messages may
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not be known, this does not prevent the receiver from estimating (for example by symbol-by-symbol

demodulation) and removing the effect of the interfering codeword itself.

An interesting direction is to consider a generalization with lack of interfering codebook knowledge

at both receivers, where one might surmise that both inputs would have discrete components. However,

this generalization is highly non-trivial and significantly more mathematically challenging, and was left

as an open problem in (20). The major issue that arises when both users employ discrete inputs is the

need to compute the cardinality and minimum distance of the sum of two discrete sets. These quantities

are not only difficult to compute in general, but are also very sensitive to whether channel gains are

rational or irrational (this is an open problem in additive combinatorics). We will make considerable

progress on this problem in Chapter 4 and give an approximate optimality results.

We studied the performance of mixed inputs on the G-IC. Its application to oblivious and asyn-

chronous ICs somewhat surprisingly implies that much less “global coordination” between nodes is

needed than one might initially expect: synchronism and codebook knowledge might not be critical if

one is happy with “approximate” capacity results. Why discrete inputs are able to resolve these issues

might be because even simple expressions such as I(X1;Y1) + I(X2;Y2), which do not appear to em-

ploy joint decoding, may still capture some form of “interference estimation”. This estimation theoretic

explanation will be revisited in detail in Chapter 5.



CHAPTER 4

APPROXIMATE OPTIMALITY OF TREATING INTERFERENCE AS NOISE

4.1 Introduction

Part of this chapter has been previously published in (8).

Consider the two-user memoryless real-valued additive white Gaussian noise interference channel

(G-IC) with input-output relationship

Y n
1 = h11X

n
1 + h12X

n
2 + Zn1 , (4.1a)

Y n
2 = h21X

n
1 + h22X

n
2 + Zn2 , (4.1b)

where Xn
j := (Xj1, · · ·Xjn) and Y n

j := (Yj1, · · ·Yjn) are the length-n vector input and output,

respectively, for user j ∈ [1 : 2], the noise vector Znj has i.i.d. zero-mean unit-variance Gaussian

components, the input Xn
j is subject to a per-block power constraint 1

n

∑n
i=1X

2
ji ≤ 1, and the channel

gains (h11, h12, h21, h22) are fixed and known to all nodes. The input Xn
j , j ∈ [1 : 2], carries the

independent message Wj that is uniformly distributed on [1 : 2nRj ], where Rj is the rate and n the

block-length. Receiver j ∈ [1 : 2] wishes to recover Wj from the channel output Y n
j with arbitrarily

small probability of error. Achievable rates and capacity region are defined in the usual way (37). We

shall denote the capacity region by C.

86
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For simplicity we will focus primarily on the symmetric G-IC defined by

|h11|2 = |h22|2 = snr ≥ 0, (4.2a)

|h12|2 = |h21|2 = inr ≥ 0, (4.2b)

and we will discuss how the results for the symmetric G-IC extend to the general asymmetric setting.

The general discrete memoryless IC was introduced in (43) where it was shown that the capacity

region of an information stable IC (44) is given by

C = lim
n→∞

co




⋃

PXn1 X
n
2

=PXn1
PXn2





0 ≤ R1 ≤ 1
nI(Xn

1 ;Y n
1 )

0 ≤ R2 ≤ 1
nI(Xn

2 ;Y n
2 )






 . (4.3)

For the G-IC in (Eq. 4.1), the maximization in (Eq. 4.3) is further restricted to inputs satisfying the

power constraint 1
n

∑n
i=1X

2
i,j ≤ 1, j ∈ [1 : 2].

An inner bound to the capacity region in (Eq. 4.3) can be obtained by considering i.i.d. inputs

in (Eq. 4.3) thus giving

RTIN+TS
in = co




⋃

PX1X2
=PX1

PX2





0 ≤ R1 ≤ I(X1;Y1)

0 ≤ R2 ≤ I(X2;Y2)






 , (4.4)
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where the superscript “TIN+TS” reminds the reader that the region is achieved by Treating Interference

as Noise (TIN)1 and with Time Sharing (TS), where TS is enabled by the convex hull operation (37).

By further removing the convex hull operation in (Eq. 4.4) we arrive at

RTINnoTS
in =

⋃

PX1X2
=PX1

PX2





0 ≤ R1 ≤ I(X1;Y1)

0 ≤ R2 ≤ I(X2;Y2)




. (4.5)

The region in (Eq. 4.5) does not allow the users to time-share. For the G-IC the maximization in (Eq. 4.4)

and (Eq. 4.5) is further restricted to inputs satisfy average power constraint 1
n

∑n
i=1X

2
i,j ≤ 1, j ∈ [1 :

2].

Obviously

RTINnoTS
in ⊆ RTIN+TS

in ⊆ C.

1We use the terminology “treating interference as noise” to denote the rates obtained when evaluating expres-
sions for the interference channel of the form

Desired rate ≤ I(desired input; output),

without any other rate expressions, mutual information terms, or explicit rate splits. When evaluated with in-
dependent and identically distributed (i.i.d.) Gaussian inputs in the interference channel in (Eq. 4.1), these rate
expressions look like those in which the interference is indeed treated as noise, i.e.,

0 ≤ Ri ≤
1

2
log

(
1 +

snr

1 + inr

)
, i ∈ [1 : 2],

where the ‘effective noise’ (at the denominator within the log) looks like the true noise power plus all the inter-
ferer’s power. Whether this expression has the same “treating interference as noise” interpretation when using
non-Gaussian inputs is open to interpretation, and is one of the focusses of this work. We will however continue
to use this terminology.
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The question of interest in this chapter is how RTINnoTS
in fares compared to C. Note that there are

many advantages in using TINnoTS in practice. For example, TINnoTS does not require codeword

synchronization, as for example for joint decoding or interference cancellation, and does not require

much coordination between users, thereby reducing communications overhead. The goal of this chapter

is to show that despite its simplicity, TINnoTS approximately achieves the capacity C.

Next, we review past work relevant to our investigation. We refer the interested reader to (37) for a

comprehensive literature survey on general discrete memoryless ICs.

4.1.1 Past Work

In general, little is known about the optimizing input distribution in (Eq. 4.3) for the G-IC (or

in (Eq. 4.4) and in (Eq. 4.5)) and only some special cases have been solved. In (45) it was shown

that i.i.d. Gaussian inputs maximize the sum-capacity in (Eq. 4.3) for
√

inr
snr (1 + inr) ≤ 1

2 in the sym-

metric case. In contrast, the authors of (46) showed that in general multivariate Gaussian inputs do

not exhaust regions of the form in (Eq. 4.3). The difficulty arises from the competitive nature of the

problem (15): for example, say X2 is i.i.d. Gaussian, taking X1 to be Gaussian increases I(X1;Y1)

but simultaneously decreases I(X2;Y2), as Gaussians are known to be the “best inputs” for Gaussian

point-to-point power-constrained channels, but are also the “worst noise” (or interference, if it is treated

as noise) for a Gaussian input.

In Chapter 3, for the G-IC with one oblivious receiver, we showed that a properly chosen discrete

input has a somewhat different behavior than a Gaussian input: a discrete X2 may yield a “good”

I(X1;Y1) while keeping I(X2;Y2) relatively unchanged compared to a Gaussian input, thus substan-

tially improving the rates compared to Gaussian inputs in the same achievable region expression. More-
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over, in Chapter 3 we showed that treating interference as noise at the oblivious receiver and joint

decoding at the other receiver is to within an additive gap of 3.34 bits of the capacity. In this work we

seek to analytically evaluate the lower bound in (Eq. 4.5) for a special class of mixed inputs by gener-

alizing the approach taken in Chapter 3 and show that using TINnoTS at both receivers is to within an

additive gap of the capacity. In a way this work follows the philosophy of (16): the main idea is to use

sub-optimal point-to-point codes in which the reduction in achievable rate for the intended receiver is

more than compensated by the decrease in the interference created at the other receiver, which results in

an overall rate region improvement.

We remark that the gDoF optimality of TINnoTS for all channel parameters for the G-IC was pointed

out in (37, Remark 6.12). The proof follows since TINnoTS is always optimal for the Linear Determin-

istic Approximation (LDA) of the G-IC at high-SNR (47). Moreover, a scheme for the LDA can be

translated into a scheme for the real-valued G-IC that is optimal to within at most 18.6 bits (23, The-

orem 2). This line of reasoning based on a universal gap between the LDA and the G-IC, thus giving

a constant gap result, does not provide a concrete practical construction of an approximately optimal

scheme. The idea of ‘lifting’ an LDA optimal scheme to the G-IC has been used in (48) where a

O(log log(snr)), rather than a constant, gap result was proved for the symmetric sum-capacity. Our

proof here extends our original approach in (4) and provides, in closed form, the optimal number of

points in the discrete part of the mixed inputs, as well as of the optimal power split among the discrete

and continuous parts of the mixed inputs. Moreover, our derived gap is in general smaller than 18.6 bits

(this is so because the log-log function grows very slowly in its argument).
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In a conference version of this thesis (4) we demonstrated that TINnoTS is gDoF optimal and can

achieve to within an additive gap the symmetric sum-capacity of the classical G-IC. In (48, Theorem 3.),

the authors showed that the sum-capacity result of (4) can be achieved by an input with purely discrete

marginals, i.e., the Gaussian part of our mixed inputs can be replaced by a discrete random variable.

We conclude this overview of relevant past work by pointing out that in practice it is well known that

a non-Gaussian interference should not be treated as a Gaussian noise. The optimal detector for an addi-

tive non-Gaussian noise channel may however be far more complex than a classical minimum-distance

decoder. Nonetheless, since the performance increase can be substantial for a moderate complexity in-

crease, Network-Assisted Interference Cancellation and Suppression (NAICS) receivers, which account

for the discrete and coded nature of the interference, were adopted in the Long Term Evolution (LTE)

Advanced Release 12 (49; 50; 51). The boost in performance of NAICS-type detectors may be under-

stood as follows. As we pointed out in (5), with TIN the mapping of the codewords to the messages

is unknown but the codeword symbols may be known through soft symbol-by-symbol estimation as

remarked in (19), where the authors write “We indeed see that BPSK signaling outperforms Gaussian

signaling. This is because demodulation is some form of primitive decoding, which is not possible for

the Gaussian signaling.”
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4.2 TINnoTS with Mixed Inputs Achievable Rate Region and an Outer Bound for the G-IC

For the G-IC in (Eq. 4.1) we now evaluate the TINnoTS region in (Eq. 4.5) with inputs

Xi =
√

1− δi XiD +
√
δi XiG, i ∈ [1 : 2] : (4.6a)

XiD ∼ PAM

(
Ni,

√
12

N2
i − 1

)
, (4.6b)

XiG ∼ N (0, 1), (4.6c)

p := [N1, N2, δ1, δ2] ∈ N× N× [0, 1]× [0, 1], (4.6d)

where the random variables Xij are independent for i ∈ [1 : 2] and j ∈ {D,G}. The input in (Eq. 4.6)

has four parameters, collected in the vector p, namely: the number of points Ni ∈ N and the power split

δi ∈ [0, 1], for i ∈ [1 : 2], which must be chosen carefully in order to match a given outer bound.

Proposition 4.2.1. For the G-IC the TINnoTS region in (Eq. 4.5) contains the regionRin defined as

Rin :=
⋃




0 ≤ R1 ≤ Id (S1) + Ig
(
|h11|2δ1

1+|h12|2δ2

)
−min

(
log(N2), Ig

(
|h12|2(1−δ2)
1+|h12|2δ2

))

0 ≤ R2 ≤ Id (S2) + Ig
(
|h22|2δ2

1+|h21|2δ1

)
−min

(
log(N1), Ig

(
|h21|2(1−δ1)
1+|h21|2δ1

))




, (4.7)

where the union is over all possible parameters [N1, N2, δ1, δ2] ∈ N2 × [0, 1]2 for the mixed inputs

in (Eq. 4.6) and where the equivalent discrete constellations seen at the receivers are

S1 :=
1√

1 + |h11|2δ1 + |h12|2δ2

(
√

1− δ1h11X1D +
√

1− δ2h12X2D), (4.8a)

S2 :=
1√

1 + |h21|2δ1 + |h22|2δ2

(
√

1− δ1h21X1D +
√

1− δ2h22X2D). (4.8b)
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Proof. Due to the symmetry of the problem we derive a lower bound on I(X2;Y2) only by following

steps similar to those in (Eq. 2.27); a lower bound on I(X1;Y1) follows by swapping the role of the

users. Let ZG ∼ N (0, 1). Then:

I(X2;Y2) = I(X2;h21X1 + h22X2 + ZG)

=

[
h

(√
1− δ1h21X1D +

√
1− δ2h22X2D√

1 + |h21|2δ1 + |h22|2δ2

+ ZG

)
− h(ZG)

]

︸ ︷︷ ︸
≥Id(S2) by Proposition 2.1.1

−
[
h

( √
1− δ1√

1 + |h21|2δ1

h21X1D + ZG

)
− h(ZG)

]

︸ ︷︷ ︸
≤min

(
log(N1), 1

2
log
(

1+
|h21|2(1−δ1)

1+|h21|2δ1

))
by Remark 3

+
1

2
log
(
1 + |h21|2δ1 + |h22|2δ2

)
− 1

2
log(1 + |h21|2δ1).

By considering the union over all possible choices of parameters for the mixed inputs we obtain the

region in (Eq. 4.7), which is contained within the achievable region in (Eq. 4.5) and hence forms a

lower bound to the capacity region.

In the following sections we shall show that our TINnoTS region with mixed inputs in Proposi-

tion 4.2.1 is to within an additive gap of the outer bound region given by:
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Proposition 4.2.2. The capacity region of the G-IC is contained in

Rout =
{

R1 ≤ Ig
(
|h11|2

)
, cut-set bound, (4.9a)

R2 ≤ Ig
(
|h22|2

)
, cut-set bound, (4.9b)

R1 +R2 ≤
[
Ig
(
|h11|2

)
− Ig

(
|h21|2

) ]+
+ Ig(|h21|2 + |h22|2), from (52), (4.9c)

R1 +R2 ≤
[
Ig
(
|h22|2

)
− Ig

(
|h12|2

) ]+
+ Ig(|h11|2 + |h12|2), from (52), (4.9d)

R1 +R2 ≤ Ig

(
|h12|2 +

|h11|2
1 + |h21|2

)
+ Ig

(
|h21|2 +

|h22|2
1 + |h12|2

)
, from (26), (4.9e)

2R1 +R2 ≤ Ig(|h11|2 + |h12|2) + Ig

(
|h21|2 +

|h22|2
1 + |h12|2

)

+
[
Ig
(
|h11|2

)
− Ig

(
|h21|2

) ]+
, from (26), (4.9f)

R1 + 2R2 ≤ Ig(|h21|2 + |h22|2) + Ig

(
|h12|2 +

|h11|2
1 + |h21|2

)

+
[
Ig
(
|h22|2

)
− Ig

(
|h12|2

) ]+
, from (26)

}
. (4.9g)

For the classical G-IC where all nodes are synchronous and possess full codebook knowledge, this

outer bound is tight in strong interference {|h21|2 ≥ |h11|2, |h12|2 ≥ |h22|2} (53) and achievable to

within 1/2 bit otherwise (26).

The key step to match, to within an additive gap, the outer bound region Rout in Proposition 4.2.2

to our TINnoTS achievable region with mixed inputsRin in Proposition 4.2.1 is to carefully choose the

mixed input parameter vector [N1, N2, δ1, δ2]. This ‘carefully picking of the mixed input parameters’ is

the objective of Section 4.3.
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4.3 Symmetric Capacity Region to within a Gap

The main result of this chapter is:

Theorem 4.3.1. For the symmetric G-IC, as defined in (Eq. 4.2), the TINnoTS achievable region in (Eq. 4.7),

with the parameters for the mixed inputs chosen as indicated in Table II, and the outer bound in (Eq. 4.9)

are to within a gap of:

• Very Weak Interference: snr ≥ inr(1 + inr):

Gd ≤
1

2
bits,

• Moderately Weak Interference Type2: inr ≤ snr ≤ inr(1 + inr), 1+snr
1+inr+ snr

1+inr
>

1+inr+ snr
1+inr

1+ snr
1+inr

:

Gd ≤
1

2
log

(
608 πe

27

)
≈ 3.79 bits,

• Moderately Weak Interference Type1: inr ≤ snr ≤ inr(1 + inr), 1+snr
1+inr+ snr

1+inr
≤ 1+inr+ snr

1+inr

1+ snr
1+inr

:

Gd ≤
1

2
log

(
16πe

3

)
+

1

2
log

(
1 + 45 · (1 + 1/2 ln(1 + min(inr, snr)))2

γ2

)
bits,

except for a set of measure γ for any γ ∈ (0, 1],

• Strong Interference: snr < inr < snr(1 + snr):

Gd ≤
1

2
log

(
2πe

3

)
+

1

2
log

(
1 + 8 · (1 + 1/2 ln(1 + min(inr, snr)))2

γ2

)
bits,
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except for a set of measure γ for any γ ∈ (0, 1],

• Very Strong Interference: inr ≥ snr(1 + snr):

Gd ≤
1

2
log

(
2πe

3

)
≈ 1.25 bits.

Before we move to the proof of Theorem 4.3.1, we would like to offer our thoughts on why a

O
(

log
(

ln(min(snr,inr))
γ

))
gap is obtained in some regimes up to an outage set of controllable measure

(the larger the measure of the channel gains for which the derived gap does not hold, the lower the gap).

We start by noticing that, for the symmetric G-IC, whenever the TINnoTS region with our mixed input

is optimal to within a constant gap then the gap result holds for all channel gains. Otherwise, the

optimality is to within a O
(

log
(

ln(min(snr,inr))
γ

))
gap and holds for all channel gains up to an outage

set. We found a O
(

log
(

ln(min(snr,inr))
γ

))
gap up to an outage set whenever the sum-rate upper bound

min
(
eq.(Eq. 4.9c), eq.(Eq. 4.9d)

)
is active, which in gDoF corresponds to the regime α ∈ (2/3, 2)

meaning that the interference is neither very weak nor very strong. It is thus natural to ask: (a) whether

the O
(

log
(

ln(min(snr,inr))
γ

))
gap and/or the ‘up to an outage set’ condition are necessary (not a conse-

quence of the achievable scheme used), and (b) whether a O
(

log
(

ln(min(snr,inr))
γ

))
gap and the ‘up to

an outage set’ condition are necessarily always together. We do not have answers to these questions, but

we provide our perspective next.

The sum-rate bounds in (Eq. 4.9c) and (Eq. 4.9d) were originally derived for the classical two-user

IC in Gaussian noise in (52) and then extended to any memoryless two-user IC with source cooperation

/ generalized feedback in (54), and then to any memoryless cooperative two-user IC (where each node
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can have an input and an output to the channel) in (55) – see also K-user extensions in (56; 57). In (55)

it was noted that surprisingly these bounds hold for a broad class of two-user IC-type channels, which

includes for example cognitive ICs and certain ICs with cooperation. The difference is that the mutual

information optimization is over all product input distributions for the classical IC, while it is over

all joint input distributions for the cooperative or cognitive IC. The ability to correlate inputs is well

known to only increase the rates by a constant number of bits; thus, up to a constant gap, channel

models from the basic classical IC to the intricate cognitive IC have the same sum-rate upper bound

in some regimes. Note that for the real-valued cognitive G-IC for example, the sum-rate bound is

achievable to within 1/2 bit for all channel gains by using Dirty Paper Coding. It is not clear at this

point whether the O
(

log
(

ln(min(snr,inr))
γ

))
gap up to an outage set for the classical G-IC is thus a

fundamental consequence of the fact that the upper bound can be achieved to within a constant gap with

sophisticated coding techniques (such as Dirty Paper Coding for the cognitive G-IC) but not with simpler

ones (essentially rate splitting and superposition coding as in the Han-Kobayashi scheme) allowed for

the classical G-IC.

Another intriguing observation is that these bounds also determine the optimality of “everybody gets

half the cake”-DoF result for the K-user G-IC (58; 36). For the K-user G-IC with fixed channel gains

it is well known that the DoF are discontinuous at rational channel gains (59). This seems to suggest, at

least for α = 1, that a gap result up to an outage set is actually fundamental and not a consequence of

the achievable scheme used. Whether the converse result of (59) for α = 1 can be extended to the whole

regime α ∈ (2/3, 2) is an open question. We also note that a constant (not O
(

log
(

ln(min(snr,inr))
γ

))
)

gap result up to an outage set for the whole regime α ∈ (2/3, 2) was found in (60); in this case the
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TABLE II: PARAMETERS FOR THE MIXED INPUTS IN (??), AS USED
IN THE PROOF OF THEOREM ??. NOTATION: FOR p = [N1, N2, δ1, δ2]

WE LET p′ = [N2, N1, δ2, δ1]. THE PARAMETER α MEASURES
THE LEVEL OF THE INTERFERENCE WHEN snr→∞

ACCORDING TO THE PARAMETRIZATION inr = snrα.

Regime Input Parameter p in (Eq. 4.6) Gap(bits)
snr ≥ inr(1 + inr), pt ∪ p′t, for all t ∈ [0, 1]; constant gap
α ∈ [0, 1/2] pt := [1, 1, t, 1]; Gd(Eq. 4.49) ≤ 1/2
(very weak)

snr < inr(1 + inr), 1+snr
1+inr+ snr

1+inr
>

1+inr+ snr
1+inr

1+ snr
1+inr

, p1,t ∪ p2,t ∪ p′2,t, for all t ∈ [0, 1]; constant gap

α ∈ (1/2, 2/3) p1,t : values can be found in (Eq. I.1); Gd(Eq. 4.47) ≈ 3.79
(moderately weak 2) p2,t : values can be found in (Eq. I.7);

inr ≤ snr, 1+snr
1+inr+ snr

1+inr
≤ 1+inr+ snr

1+inr

1+ snr
1+inr

, p1,t ∪ p2,t ∪ p′2,t, for all t ∈ [0, 1]; log-log gap

α ∈ [2/3, 1] p1,t values can be found in (Eq. 4.36); Gd(Eq. 4.40)
(moderately weak 1) p2,t values can be found in (Eq. G.5);
snr < inr < snr(1 + snr), pt, for all t ∈ [0, 1]; log-log gap
α ∈ (1, 2) pt : values can be found in (Eq. 4.22); Gd(Eq. 4.21)
(strong)
inr ≥ snr(1 + snr), p = [Nd(snr),Nd(snr), 0, 0]; constant gap
α ∈ [2,∞) Gd(Eq. 4.15) ≈ 1.25
(very strong)

achievable region was based on a multi-letter scheme inspired by compute-and-forward. It is not

clear at this point whether single-letter schemes, such as out TINnoTS, are fundamentally suboptimal

compared to multi-letter ones.

Proof. The parameters of the mixed inputs in (Eq. 4.6) are chosen as indicated in Table II depending on

the regime of operation. We now analyze each regime separately.
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4.3.1 Very Strong Interference, i.e., inr ≥ snr(1 + snr)

Outer Bound

In the very strong interference regime the capacity of the classical G-IC is given by

R(4.3.1)
out =





0 ≤ R1 ≤ Ig (snr)

0 ≤ R2 ≤ Ig (snr)




. (4.10)

Inner Bound

The capacity of the classical G-IC in this regime is achieved by sending only common messages

from Gaussian codebooks; a receiver first decodes the interfering message, strips it from the received

signal, and then decodes the intended message in an equivalent interference-free channel. Even though

joint decoding is not allowed in our TINnoTS region, we shall see that the discrete part of the input

behaves as a common message (as if it could be decoded at the non-intended destination). We therefore

do not send the Gaussian portion of the input (as Gaussian inputs treated as noise increase the noise

floor of the receiver) and in (Eq. 4.6) we set

N1 = N2 = N = Nd (snr) , (4.11a)

δ1 = δ2 = δ = 0, (4.11b)

resulting in

S1 ∼ S2 ∼ S, S :=
√
snrX1D +

√
inrX2D, (4.12)



100

for the received constellations in (Eq. 4.8). The number of points and the minimum distance for the

constellation S in (Eq. 4.12) can be computed from Proposition 2.1.2 as follows. If we identify |hx|2 =

snr, |hy|2 = inr, |X| = |Y | = N , d2
min(X) = d2

min(Y ) = 12
N2−1

, then the condition in (Eq. 2.16) reads

N2snr ≤ inr, which is readily verified since N2snr ≤ (1 + snr)snr by definition of N in (Eq. 4.11a),

and (1 + snr)snr ≤ inr by the definition of the very strong interference regime. We therefore have

|S| = N2, with equally likely points, (4.13)

d2
min(S)

12
= min{snr, inr} 1

N2 − 1
=

snr

N2 − 1
. (4.14)

By plugging these values in Proposition 4.2.1, an achievable rate region is

R(4.3.1)
in =





0 ≤ R1 ≤ r0

0 ≤ R2 ≤ r0





such that (4.15a)

r0 ≥ Id (S)−min (log(N), Ig (inr))

≥
[
log(N2)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

N2 − 1

snr

)]+

− log(N)

≥ Ig (snr)− Gd(Eq. 4.15), (4.15b)

Gd(Eq. 4.15) :=
1

2
log

(
2πe

3

)
≈ 1.25 bits, (4.15c)

where the gap in (Eq. 4.15c) is as for the point-to-point Gaussian channel without states in Section 2.1.2.
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Gap

It is immediate to see that the achievable region in (Eq. 4.15) and the upper bound in (Eq. 4.10) are

at most to within Gd(Eq. 4.15) bits of one another, where Gd(Eq. 4.15) is given in (Eq. 4.15c).

4.3.2 Strong (but not Very Strong) Interference, i.e., snr < inr < snr(1 + snr)

Outer Bound

The capacity region of the G-IC in this regime is

R(4.3.2)
out =





0 ≤ R1 ≤ Ig (snr)

0 ≤ R2 ≤ Ig (snr)

R1 +R2 ≤ Ig(snr + inr)





=
⋃

t∈[0,1]





0 ≤ R1 ≤ 1−t
2 log

(
1 + inr

1+snr

)
+ t

2 log (1 + snr)

=: Ig (snr0,a,t)

0 ≤ R2 ≤ 1−t
2 log (1 + snr) + t

2 log
(

1 + inr
1+snr

)

=: Ig (snr0,b,t)





, (4.16)

where t ∈ [0, 1] is the time-sharing parameter (i.e., by varying t we obtain all points on the dominant

face of the capacity region described by R1 +R2 = Ig(snr + inr)).

Inner Bound

The capacity of the classical G-IC in this regime is achieved by sending only common messages

from Gaussian codebooks, and by performing joint decoding of the intended and interfering messages

at both receivers. Similarly to the very strong interference regime, we do not send the Gaussian portion

of the mixed inputs (i.e., δ1 = δ2 = 0). Differently from the very strong interference regime, here we do
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not set the number of points of the discrete part of the inputs to be the same for the two users since the

corner point of (Eq. 4.16) for a fixed t has R1 6= R2. Moreover, we lower bound the minimum distance

of the sum-set constellations S1 and S2 in (Eq. 4.8) by using Proposition 2.1.3 as follows

d2
min(S1)

12
≥ κ2

γ,N1,N2
min

(
snr

N2
1 − 1

,
inr

N2
2 − 1

,max

(
inr

N2
1 (N2

2 − 1)
,

snr

N2
2 (N2

1 − 1)

))
, (4.17)

d2
min(S2)

12
≥ κ2

γ,N1,N2
min

(
inr

N2
1 − 1

,
snr

N2
2 − 1

,max

(
inr

N2
1 (N2

2 − 1)
,

snr

N2
2 (N2

1 − 1)

))
, (4.18)

κγ,N1,N2 :=
γ/2

1 + ln(max(N1, N2))
, (4.19)

where the minimum distance lower bounds in (Eq. 4.17) and (Eq. 4.18) hold for all channel gains up to

an outage set of Lebesgue measure less than γ for any γ ∈ (0, 1].

By combining the bounds in (Eq. 4.17) and (Eq. 4.18) we obtain

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
min

(
min(snr, inr)

max(N2
1 , N

2
2 )− 1

,
max(snr, inr)

N2
1N

2
2 − 1

)

for snr ≤ inr
= κ2

γ,N1,N2
min

(
snr

max(N2
1 , N

2
2 )− 1

,
inr

N2
1N

2
2 − 1

)
. (4.20)
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With (Eq. 4.20), it can be easily seen that the achievable region in Proposition 4.2.1 can be written as

the union over all (N1, N2) of the region

R(4.3.2)
in ([N1, N2, 0, 0]) =





0 ≤ R1 ≤ r1

0 ≤ R2 ≤ r2





such that (4.21a)

r1 ≥ Id (S1)−min
(

log(N2), Ig (inr)
)
≥ log(N1) + log(2)− Gd(Eq. 4.21), (4.21b)

r2 ≥ Id (S2)−min
(

log(N1), Ig (inr)
)
≥ log(N2) + log(2)− Gd(Eq. 4.21), (4.21c)

Gd(Eq. 4.21) ≤ log(2) +
1

2
log

(
2πe

12

)

+
1

2
log

(
1 +

1

κ2
γ,N1,N2

max

(
max(N2

1 , N
2
2 )− 1

snr
,
N2

1N
2
2 − 1

inr

))
, (4.21d)

where the expression for Gd(Eq. 4.21) comes from the minimum distance expression in (Eq. 4.20).

We next need to pick N1 and N2 in (Eq. 4.21). Our choice is guided by the expression of the

‘compound MAC’ capacity region in this regime given by (Eq. 4.16). In our TINnoTS region, time-

sharing is not allowed, but varying the number of points of the discrete constellations is; we therefore

mimic time-sharing in (Eq. 4.16) by choosing as number of points in the discrete part of the mixed

inputs as follows: for some fixed t we let

N1 = Nd (snr0,a,t) , snr0,a,t :=

(
1 +

inr

1 + snr

)1−t
(1 + snr)t − 1, (4.22a)

N2 = Nd (snr0,b,t) , snr0,b,t :=

(
1 +

inr

1 + snr

)t
(1 + snr)1−t − 1. (4.22b)
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The whole TINnoTS achievable region is obtained by taking union over t ∈ [0, 1] of the region

in (Eq. 4.21) with the number of points as in (Eq. 4.22).

Gap

Since inr
1+snr ≤ snr ≤ inr by the definition of the strong interference regime, we immediately have

that in (Eq. 4.22) the equivalent SNRs satisfy max(snr0,a,t, snr0,b,t) ≤ snr for all t ∈ [0, 1]. Thus, for

the minimum distance expression in (Eq. 4.20), we have

max(N2
1 , N

2
2 )− 1 ≤ max(snr0,a,t, snr0,b,t) ≤ snr = min(snr, inr), (4.23)

N2
1N

2
2 − 1 ≤ (snr0,a,t + 1)(snr0,b,t + 1)− 1 = snr + inr ≤ 2inr. (4.24)

Finally, since Ig(x) ≤ log(Nd(x)) + log(2), the inner bound in (Eq. 4.21) is at most Gd(Eq. 4.21) bits

from the outer bound in (Eq. 4.16), uniformly over all t ∈ [0, 1], where Gd(Eq. 4.21) in (Eq. 4.21d) can be

further upper bounded thanks to (Eq. 4.23)-(Eq. 4.24) as

Gd(Eq. 4.21) ≤
1

2
log

(
2πe

3

(
1 +

max(1, 2)

κ2
γ,N1,N2

))

≤ 1

2
log

(
2πe

3

(
1 + 8 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

))
bits, (4.25)

where γ is the Lebesgue measure of the outage set over which the lower bounds on the minimum

distance in (Eq. 4.20) does not apply. Recall that γ is a tunable parameter that represents a tradeoff

between gap and set of channel gains for which the gap result holds, i.e., by increasing the measure of

the outage set we can reduce the gap, and vice-versa. A similar behavior was pointed out already in (60).
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Remark 10. Note that, had we been able to use Proposition 2.1.2 instead of Proposition 2.1.3 to bound

the minimum distance of the received constellations, we would have obtained a constant gap result

instead of a O
(

log
(

ln(min(snr,inr))
γ

))
gap result. It turns out that in this regime the condition of Propo-

sition 2.1.2 is not satisfied – the proof is very tedious and is not reported here for sake of space.

4.3.3 Moderately Weak Interference, i.e. inr ≤ snr ≤ (1 + inr)inr: General Setup

The weak interference regime is notoriously more involved to analyze than the other regimes. In this

subsection we aim to derive a general framework to deal with the weak (but not very weak) interference

regime. Before we move into the gap derivation for this regime, let us summarize the key trick we

developed in the strong interference regime to obtain a capacity result to within a gap: write the closure

of the capacity outer bound in parametric form so as to get insight on how to choose the number of

points of the discrete part of the mixed inputs. In the weak interference regime we will follow the same

approach but the computations will be more involved because the capacity region outer bound in weak

interference has three dominant faces (and not just one dominant face as in strong interference).
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Outer Bound

In this regime, we express the upper bound in Proposition 4.2.2 as the convex closure of its corner

points, that is

R(4.3.3)
out = co

{
(R1A, R2A) := (Ig(snr), c) , (4.26a)

(R1B, R2B) := (b− a, 2a− b) , (4.26b)

(R1C , R2C) := (2a− b, b− a) , (4.26c)

(R1D, R2D) := (c, Ig(snr))
}
, (4.26d)

where

a := min

(
Ig(inr + snr) + Ig (snr)− Ig (inr) , 2 Ig

(
inr +

snr

1 + inr

))
, (4.26e)

b := Ig

(
inr +

snr

1 + inr

)
+ Ig(snr + inr) + Ig (snr)− Ig (inr) , (4.26f)

c := Ig(inr + snr)− Ig (snr) + Ig

(
inr +

snr

1 + inr

)
− Ig (inr) (4.26g)

= Ig

(
inr

1 + snr

)
+ Ig

(
snr

(1 + inr)2

)

≤ Ig

(
snr

1 + snr

)
+ Ig

(
inr

1 + inr

)
≤ log(2).

Under the constraint snr
1+inr ≤ inr it can be verified numerically that actually c ≤ 0.5537 bits (rather than

c ≤ 1 bit) attained for inr =
√

3 + 1; however, for notational convenience we will use in the following

c ≤ 1 bit.
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An explicit expression forR(4.3.3)
out obtained by time-sharing between the corner points in (Eq. 4.26)

is

R(4.3.3)
out = R(4.3.3)

2R1+R2
∪R(4.3.3)

R1+R2
∪R(4.3.3)

R1+2R2
, where (4.27a)

R(4.3.3)
2R1+R2

=
⋃

t∈[0,1]





R1 ≤ tR1A + (1− t)R1B

R2 ≤ tR2A + (1− t)R2B




, (4.27b)

R(4.3.3)
R1+R2

=
⋃

t∈[0,1]





R1 ≤ tR1B + (1− t)R1C

R2 ≤ tR2B + (1− t)R2C




, (4.27c)

R(4.3.3)
R1+2R2

=
⋃

t∈[0,1]





R1 ≤ tR1C + (1− t)R1D

R2 ≤ tR2C + (1− t)R2D




. (4.27d)

Because the sum-rate upper bound in (Eq. 4.26) is in the form

R1 +R2 ≤ eq.(Eq. 4.26e) = min(eq.(Eq. 4.9d), eq.(Eq. 4.9e)),
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we will distinguish between two cases: when the constraint in (Eq. 4.9d) is active, referred to as Weak1,

and when the constraint in (Eq. 4.9e) is active, referred to as Weak2, that is, within inr ≤ snr ≤

inr(1 + inr) we further distinguish between

Weak1:
1 + snr

1 + inr + snr
1+inr

≤
1 + inr + snr

1+inr

1 + snr
1+inr

, (4.28)

Weak2:
1 + snr

1 + inr + snr
1+inr

>
1 + inr + snr

1+inr

1 + snr
1+inr

. (4.29)

Inner Bound

For the G-IC in weak interference the best know strategy is to send common and private messages

from Gaussian codebooks, and for each of the receivers to jointly decode both common messages and

the desired private message while treating the private message of the interferer as noise. Unlike in the

strong and very strong interference regimes, in this case we will use the Gaussian portion of the mixed

inputs by setting δ1 and δ2 to be non-zero. Moreover, we will vary (δ1, δ2) jointly with (N1, N2) to

mimic time sharing and power control.
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In this regime, we further simplify the achievable rate region in (Eq. 4.7) from Proposition 4.2.1 as

follows

R(4.3.3)
in =

⋃

[N1, N2, δ1, δ2] ∈ N2 × [0, 1]2 :

max(δ1, δ2) ≤ 1
1+inr

R(4.3.3)
in ([N1, N2, δ1, δ2]) , where

R(4.3.3)
in ([N1, N2, δ1, δ2]) :=





0 ≤ R1 ≤ log(N1) + Ig (snrδ1)−∆(Eq. 4.30)

0 ≤ R2 ≤ log(N2) + Ig (snrδ2)−∆(Eq. 4.30)

∆(Eq. 4.30) = 1
2 log

(
πe
3

)
+ 1

2 log

(
1 + 12

mini∈[1:2] d
2
min(Si)

)





, (4.30)

where the received constellations S1 and S2 are given in (Eq. 4.8). Note that, inspired by (26), we

restricted the power splits between the continuous and discrete parts of the mixed inputs to satisfy

max(δ1, δ2) ≤ 1
1+inr . The simplified form of the TINnoTS region with mixed inputs in (Eq. 4.30) is

obtained from (Eq. 4.7) as follows. For the achievable rate R1 we have

R1 ≥ Id (S1) + Ig

(
snrδ1

1 + inrδ2

)
−min

(
log(N2), Ig

(
inr(1− δ2)

1 + inrδ2

))

(a)
=

[
log(N1N2)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2
min(S1)

)]+

+ Ig

(
snrδ1

1 + inrδ2

)
−min

(
log(N2), Ig

(
inr(1− δ2)

1 + inrδ2

))

(b)

≥ log(N1N2)− 1

2
log

(
2πe

12

)
− 1

2
log

(
1 +

12

d2
min(S1)

)
+ Ig

(
snrδ1

1 + inrδ2

)
− log(N2)

(c)

≥ log(N1) + Ig

(
snrδ1

2

)
+

1

2
log(2)−∆(Eq. 4.30)

(d)

≥ log(N1) + Ig (snrδ1)−∆(Eq. 4.30),
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where the (in)-equalities are due to: (a) because regardless of whether we use Proposition 2.1.2 or

Proposition 2.1.3 to compute the minimum distance for the received sum-set constellations S1 and S2

in (Eq. 4.8), these constellations always comprise |S1| = |S2| = N1N2 equally likely points either ex-

actly or almost surely; (b) because [x]+ ≥ x and min(x, y) ≤ x; (c) because we imposed max(δ1, δ2) ≤

1
1+inr and by definition of ∆(Eq. 4.30) in (Eq. 4.30); and (d) because log(1 +x/2) ≥ log(1 +x)− log(2).

The rate expression for user 2 follows similarly.

For the evaluation of ∆(Eq. 4.30), the minimum distance of the received constellations S1 and S2

defined in (Eq. 4.8) will be computed with either Proposition 2.1.2 or Proposition 2.1.3. By using

Proposition 2.1.3, which is valid for all channel gains up to a set of controllable Lebesgue measure less

than γ, for any γ > 0, we have

d2
min(S1)

12
≥ κ2

γ,N1,N2

min
(

(1−δ1)snr
N2

1−1
, (1−δ2)inr

N2
2−1

,max
(

(1−δ2)inr
N2

1 (N2
2−1)

, (1−δ1)snr
N2

2 (N2
1−1)

))

1 + snrδ1 + inrδ2
(4.31a)

≥ κ2
γ,N1,N2

1−max(δ1, δ2)

1 + snrδ1 + inrδ2
min

(
snr

N2
1 − 1

,
inr

N2
2 − 1

,
max(snr, inr)

N2
1N

2
2 − 1

)
(4.31b)

for inr ≤ snr
= κ2

γ,N1,N2

1−max(δ1, δ2)

1 + snrδ1 + inrδ2
min

(
inr

N2
2 − 1

,
snr

N2
1N

2
2 − 1

)
, (4.31c)

d2
min(S2)

12
≥ κ2

γ,N1,N2

1−max(δ1, δ2)

1 + snrδ2 + inrδ1
min

(
inr

N2
1 − 1

,
snr

N2
1N

2
2 − 1

)
, (4.31d)

κγ,N1,N2 =
γ/2

1 + 1/2 ln(max(N2
1 , N

2
2 ))

. (4.31e)

If instead we use Proposition 2.1.2 we have

min
i∈[1:2]

d2
min(Si)

12
= min

(i,i′)∈{(1,2),(2,1)}

1

1 + snrδi + inrδi′
min

(
(1− δi)snr
N2
i − 1

,
(1− δi′)inr
N2
i′ − 1

)
, (4.32a)
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which holds if

inr(1− δi′ )
N2
i′

N2
i′
− 1
≤ snr(1− δi)

N2
i − 1

∀(i, i′) ∈ {(1, 2), (2, 1)}. (4.32b)

We observe that in (Eq. 4.30) each achievable rate is bounded by the sum of two terms: one that

depends on the number of points of the discrete part of the mixed inputs, and the other that depends on

the continuous part of the mixed inputs through the power splits. This is reminiscent of rate-splitting in

the Han-Kobayashi achievable scheme, where each rate is written as the sum of the common-message

rate and the private-message rate. The simplified Han-Kobayashi achievable region in (26) is known to

achieve the outer bound in Proposition 4.2.2 to within 1/2 bit; however, to the best of our knowledge, it

is not known how much information should be conveyed through the private messages and how much

through the common messages for a general rate-pair (R1, R2) on the convex closure of the outer bound

in Proposition 4.2.2 and for a general set of channel parameters. Next we will identify the (to within 1/2

bit) optimal rate splits and use the found analytical closed-form expressions for the common-message

and private-message rates to come up with an educated guess for the values of the parameters of our

mixed inputs.

Let Ru = Ru,p + Ru,c, where Ru,p is the rate of the private message and Ru,c is the rate of the

common message for user u ∈ [1 : 2]. From the analysis of the symmetric LDA in (23, Lemma 4),
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which gives the optimal gDoF region for the symmetric G-IC before Fourier-Motzkin elimination, it is

not difficult to see that it is always optimal to set

Ru,p u min

(
Ig

(
snr

1 + inr

)
,
Ru
2

)
, u ∈ [1 : 2], (4.33)

where with u we mean equality up to an additive term that grows slower than log(snr) when snr→∞.

We found that, with the exception of the sum-capacity for α ∈ (1/2, 2/3), the optimal ‘rate splits’ are

unique and are given by (Eq. 4.33). These ‘rate splits’ shed light on the interplay between private and

common messages, which was not immediately obvious from the outer bound in (Eq. 4.9).

In the following it will turn out to be convenient to think of the discrete part of a mixed input

(contributing to the rate with the term log(Ni), i ∈ [1 : 2]) as a ‘common message’ and of the con-

tinuous part of a mixed input (contributing to the rate with the term Ig(Sδi), i ∈ [1 : 2]) as a ‘private

message’. We shall refer to this ‘mapping’ of our TINnoTS scheme to the Han-Kobayashi scheme

as the discrete→common map. Note that there is a fundamental difference between a common mes-

sage in the Han-Kobayashi achievable scheme and the discrete part of the mixed input in our scheme.

In our scheme the interfering signal is treated as noise while in Han-Kobayashi achievable scheme

the common message is jointly decoded, albeit non-uniquely, with the intended signals at the non-

intended receiver. The discrete→common map is thus just intended to provide an educated guess on

how to pick the parameters of our mixed input in the following analysis. We do not claim here that the

discrete→common map is the only possible way to ‘match’ our TINnoTS scheme to the Han-Kobayashi

scheme. In fact, we will give an example later on where with the proposed discrete→common map we
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obtain a O
(

log
(

ln(min(snr,inr))
γ

))
gap, but with a discrete→private map we obtain a constant gap. Al-

though finding the smallest possible gap in each regime would be desirable, here for sake of simplicity

we consistently use the discrete→common map.

With the inner and outer bounds defined, as well as the ‘rate splits’, we are ready to determine an

optimal (to within a gap) choice of parameters for the mixed inputs in the weak interference regime.

Next, we will focus on the regime in (Eq. 4.28) and the regime in (Eq. 4.29) separately and for each

regime we will match each point on the closure of the outer bound in (Eq. 4.26) with an achievable

region as in (Eq. 4.30).

4.3.4 Moderately Weak Interference, subregime Weak1

The regime of interest here is the subset of inr ≤ snr ≤ inr(1 + inr) for which (Eq. 4.28) holds. For

convenience, we analyze the regime inr ≤ snr ≤ 1 + inr in Appendix F and focus next on the subset of

(1 + inr) ≤ snr ≤ inr(1 + inr) for which (Eq. 4.28) holds. The condition 1 + inr ≤ snr allows us to

state 1+snr
1+inr+ snr

1+inr
≥ 1 in the following.
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Outer Bound Corner Points and Rate Splits

Whenever the condition in (Eq. 4.28) holds, the outer bound in (Eq. 4.9) is given by all the con-

straints in (Eq. 4.9) except for the one in (Eq. 4.9e) – in the symmetric case the constraints in (Eq. 4.9c)

and (Eq. 4.9d) are the same. The corner points for the outer bound region in (Eq. 4.27) are thus

eq.(Eq. 4.9a) = eq.(Eq. 4.9f)⇒ (R1A, R2A) = (Ig(snr), (4.34a)

Ig

(
snr

1 + inr

)
+ Ig

(
inr +

snr

1 + inr

)
− Ig(snr)

)
;

(4.34b)

eq.(Eq. 4.9f) = eq.(Eq. 4.9c)⇒ (R1B, R2B) =

(
Ig

(
inr +

snr

1 + inr

)
, (4.34c)

Ig(snr) + Ig

(
snr

1 + inr

)
− Ig

(
inr +

snr

1 + inr

))
;

(4.34d)

eq.(Eq. 4.9f) = eq.(Eq. 4.9c)⇒ (R1C , R2C) =

(
Ig(snr) + Ig

(
snr

1 + inr

)
− Ig

(
inr +

snr

1 + inr

)
,

(4.34e)

Ig

(
inr +

snr

1 + inr

))
; (4.34f)

eq.(Eq. 4.9b) = eq.(Eq. 4.9g)⇒ (R1D, R2D) =

(
Ig

(
snr

1 + inr

)
+ Ig

(
inr +

snr

1 + inr

)
− Ig(snr),

(4.34g)

Ig(snr)

)
. (4.34h)
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As explained before, inspired by the proposed discrete→common map, we choose to ‘split’ the

rates as:

1. for the sum-rate face / regionRR1+R2 : we set R1,p = R2,p u Ig
(

snr
1+inr

)
.

2. for the other dominant face / regionR2R1+R2 : we set R1p u Ig
(

snr
1+inr

)
and R2p u R2

2 ;

3. we will not explicitly consider the remaining dominant face / region RR1+2R2 because a gap

result can be obtained by proceeding as forR2R1+R2 but with the role of the users swapped.

Outer BoundRR1+R2

With the corner point expressions in (Eq. 4.34) we write the outer bound sum-rate face in (Eq. 4.27c)

as

R(4.3.4)
R1+R2

=
⋃

t∈[0,1]





R1 ≤ t
2 log

(
1+inr+ snr

1+inr

1+ snr
1+inr

)
+ 1−t

2 log
(

1+snr
1+inr+ snr

1+inr

)
+ 1

2 log
(

1 + snr
1+inr

)

=: Ig(snr1,a,t) + Ig
(

snr
1+inr

)

R2 ≤ 1−t
2 log

(
1+inr+ snr

1+inr

1+ snr
1+inr

)
+ t

2 log
(

1+snr
1+inr+ snr

1+inr

)
+ 1

2 log
(

1 + snr
1+inr

)

=: Ig(snr1,b,t) + Ig
(

snr
1+inr

)





.

(4.35)
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Inner Bound forRR1+R2

In order to approximately achieve the points in (Eq. 4.35), we pick

N1 = Nd (snr1,a,t) , snr1,a,t :=

(
1 + inr + snr

1+inr

1 + snr
1+inr

)t(
1 + snr

1 + inr + snr
1+inr

)1−t

− 1, (4.36a)

N2 = Nd (snr1,b,t) , snr1,b,t :=

(
1 + inr + snr

1+inr

1 + snr
1+inr

)1−t(
1 + snr

1 + inr + snr
1+inr

)t
− 1, (4.36b)

δ1 =
1

1 + inr
, (4.36c)

δ2 =
1

1 + inr
. (4.36d)

Gap forRR1+R2

The gap between the outer bound region in (Eq. 4.35) and the achievable rate region in (Eq. 4.30)

with the parameters as in (Eq. 4.36) is

∆R1 = Ig(snr1,a,t) + Ig

(
snr

1 + inr

)
− log(Nd(snr1,a,t))− Ig

(
snr

1 + inr

)
+ ∆(Eq. 4.30)

≤ log(2) + ∆(Eq. 4.30),

where the term log(2) is the “integrality gap” log(Nd(x)) + log(2) ≥ Ig(x); similarly, we have

∆R2 ≤ log(2) + ∆(Eq. 4.30).
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We are thus left with bounding ∆(Eq. 4.30) in (Eq. 4.30), which is related to the minimum distance of

the received constellations S1 and S2 defined in (Eq. 4.8). In Appendix G.0.1 we show that

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
· 3

8
, (4.37)

where κγ,N1,N2 is given in (Eq. 4.31e), and max(N2
1 , N

2
2 )−1 ≤ inr = min(snr, inr). With this, the gap

for this face is bounded by

Gd(Eq. 4.38) ≤ max(∆R1 ,∆R2) = log(2) + ∆(Eq. 4.30)

≤ 1

2
log

(
4πe

3

)
+

1

2
log

(
1 +

8

3
· 1

κ2
γ,N1,N2

)

≤ 1

2
log

(
4πe

3

)
+

1

2
log

(
1 +

32

3
· (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (4.38)

Gap forR2R1+R2

The derivation of the gap and other results for R2R1+R2 are delegated to Appendix G.0.2. The

resulting gap is

Gd(Eq. 4.39) ≤
1

2
log

(
16πe

3

)
+

1

2
log

(
1 + 45 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (4.39)
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Overall Gap for Weak1

To conclude the proof for this sub-regime, the gap is the maximum between the gaps of the different

faces and is given by

Gd(Eq. 4.40) ≤ max
(
Gd(Eq. 4.38),Gd(Eq. 4.39)

)
= Gd(Eq. 4.39). (4.40)

4.3.5 Moderately Weak Interference, subregime Weak2

We focus here on the subset of inr ≤ snr ≤ inr(1 + inr) for which (Eq. 4.29) holds.

Outer Bound Corner Points and Rate Splits

Under the condition in (Eq. 4.29), the outer bound in (Eq. 4.9) is given by all the constraints except

for the ones in (Eq. 4.9c) and (Eq. 4.9d).
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The corner points are thus

eq.(Eq. 4.9a) = eq.(Eq. 4.9f)⇒ (R1A, R2A) = (Ig(snr), (4.41a)

Ig

(
snr

1 + inr

)
+ Ig

(
inr +

snr

1 + inr

)
− Ig(snr)

)
;

(4.41b)

eq.(Eq. 4.9f) = eq.(Eq. 4.9e)⇒ (R1B, R2B) =

(
Ig

(
snr

1 + inr

)
+ Ig(snr)− Ig

(
inr +

snr

1 + inr

)
,

(4.41c)

3Ig

(
inr +

snr

1 + inr

)
− Ig(snr)− Ig

(
snr

1 + inr

))
;

(4.41d)

eq.(Eq. 4.9e) = eq.(Eq. 4.9g)⇒ (R1C , R2C) =

(
3Ig

(
inr +

snr

1 + inr

)
− Ig(snr)− Ig

(
snr

1 + inr

)
,

(4.41e)

Ig

(
snr

1 + inr

)
+ Ig(snr)− Ig

(
inr +

snr

1 + inr

))
;

(4.41f)

eq.(Eq. 4.9b) = eq.(Eq. 4.9g)⇒ (R1D, R2D) =

(
Ig

(
snr

1 + inr

)
+ Ig

(
inr +

snr

1 + inr

)
− Ig(snr),

(4.41g)

Ig(snr)) . (4.41h)

As explained before, inspired by the proposed discrete→common map, we choose to ‘split’ the

rates as:
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1. for the sum-rate face / regionRR1+R2 : we set R1,p u R1
2 and R2,p u R2

2 .

2. for the other dominant face / regionR2R1+R2 : we set R1,p u Ig
(

snr
1+inr

)
and R2,p u R2

2 .

3. we will not explicitly consider the remaining dominant face / region RR1+2R2 because a gap

result can be obtained by proceeding as forR2R1+R2 but with the role of the users swapped.

Outer BoundRR1+R2

With the corner point expressions in (Eq. 4.41) we write the outer bound sum-rate face in (Eq. 4.27c)

as

R(4.3.5)
R1+R2

=
⋃

t∈[0,1]





R1 ≤ 1−t
2 log

(
(1+ snr

1+inr )(1+snr)

1+inr+ snr
1+inr

)
+ t

2 log

(
(1+inr+ snr

1+inr )
3

(1+ snr
1+inr )(1+snr)

)

=: 2 · Ig (snr3,a,t)

R1 ≤ t
2 log

(
(1+ snr

1+inr )(1+snr)

1+inr+ snr
1+inr

)
+ 1−t

2 log

(
(1+inr+ snr

1+inr )
3

(1+ snr
1+inr )(1+snr)

)

=: 2 · Ig (snr3,b,t)





. (4.42)
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Inner Bound forRR1+R2

In order to approximately achieve the points inR(4.3.5)
R1+R2

in (Eq. 4.42) we pick

N1 = Nd (snr3,a,t) , snr3,a,t :=




(
1 + snr

1+inr

)
(1 + snr)

1 + inr + snr
1+inr




1−t
2




(
1 + inr + snr

1+inr

)3

(
1 + snr

1+inr

)
(1 + snr)




t
2

− 1,

(4.43a)

N2 = Nd (snr3,b,t) , snr3,b,t :=




(
1 + snr

1+inr

)
(1 + snr)

1 + inr + snr
1+inr




t
2




(
1 + inr + snr

1+inr

)3

(
1 + snr

1+inr

)
(1 + snr)




1−t
2

− 1,

(4.43b)

δ1 : Ig (snrδ1) = Ig (snr3,a,t)⇐⇒ δ1 =
snr3,a,t
snr

, (4.43c)

δ2 : Ig (snrδ2) = Ig (snr3,b,t)⇐⇒ δ2 =
snr3,b,t
snr

, (4.43d)

where

max(δ1, δ2) =
max(snr3,a,t, snr3,b,t)

snr
≤ 1

1 + inr
,

as required for the achievable rate in (Eq. 4.30); the proof can be found in Appendix H.0.1, eq.(Eq. H.3).
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Gap forRR1+R2

The gap between the outer bound region in (Eq. 4.42) and the achievable rate in (Eq. 4.30) with the

parameters in (Eq. I.1) is

∆R1 = 2Ig (snr3,a,t)− log (Nd (snr3,a,t))− Ig(snr3,a,t) + ∆(Eq. 4.30)

≤ log(2) + ∆(Eq. 4.30),

and similarly

∆R2 ≤ log(2) + ∆(Eq. 4.30).

We are then left with bounding ∆(Eq. 4.30), which depends on minimum distances of the received

sum-set constellations. In Appendix H.0.1 we show

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
· 1

24
, (4.44)

where κγ,N1,N2 is given in (Eq. 4.31e), and max(N2
1 , N

2
2 ) − 1 ≤ inr = min(snr, inr). With this, we

finally get that the gap for this face is bounded by

Gd(Eq. 4.45) ≤ max(∆R1 ,∆R2) = log(2) + ∆(Eq. 4.30)

≤ 1

2
log

(
4πe

3

)
+

1

2
log

(
1 + 96 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (4.45)
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Gap forR2R1+R2

The derivation of the gap and other results for R2R1+R2 are delegated to Appendix H.0.2. The

resulting gap is

Gd(Eq. 4.46) ≤
1

2
log

(
16πe

3

)
+

1

2
log

(
1 + 32 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (4.46)

Overall Gap for Weak2

To conclude the proof for this sub-regime, the gap is the maximum between the gaps of the different

faces and is given by

Gd(Eq. 4.47) = max(Gd(Eq. 4.45),Gd(Eq. 4.46)) = Gd(Eq. 4.46). (4.47)

Another Overall Gap for Weak2

The choice of the mixed input parameters according to the discrete→common map in (Eq. 4.43)

and in (Eq. 4.45) led to the O
(

log
(

ln(min(snr,inr))
γ

))
gap in (Eq. 4.47). This is so because we used

Proposition 2.1.3 to bound the minimum distance. A interesting question is whether Proposition 2.1.2

could be used, possibly with a different choice of mixed input parameters.

With a gDoF-type analysis, one can show that it is possible to verify the condition in Proposi-

tion 2.1.2 with the proposed choice of parameters in (Eq. 4.43) but not with the input parameters

in (Eq. 4.45). So, in this regime we are motivated to look at the discrete→private map as we hope
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to get a constant gap result for the whole region. In Appendix I we show that in this regime it is possible

to use Proposition 2.1.2 and the discrete→private map to get a constant gap, namely,

Gd(Eq. 4.48) ≤
1

2
log

(
608 πe

27

)
≈ 3.79 bits. (4.48)

4.3.6 Very Weak Interference, i.e., inr(1 + inr) ≤ snr

In this regime the capacity of the classical G-IC is achieved to within a constant gap by Gaussian in-

puts, treating interference as noise and power control. This strategy is compatible without the TINnoTS

scheme (i.e., set N1 = N2 = 1 and vary δ1 and δ2), so the gap of

Gd(Eq. 4.49) ≤ 1/2 bit, (4.49)

as shown in (26) holds.

This concludes the proof of Theorem 4.3.1.

4.4 Gap for Some Asymmetric Channels

In this Section we generalize the gap result of Theorem 4.3.1 to some general asymmetric settings.

Theorem 4.4.1. For the general G-IC, except for the regime

|h22|2
1 + |h21|2

< |h12|2 <
|h22|2

1 + |h21|2
(1 + |h11|2), (4.50a)

|h11|2
1 + |h12|2

< |h21|2 <
|h11|2

1 + |h12|2
(1 + |h22|2), (4.50b)
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akin to the moderately weak interference regime for the symmetric setting, the TINnoTS achievable

region and the outer bound in Proposition 4.2.2 are to within an additive gap that is either constant or

of the order O
(

log
ln(max(|h11|2,|h22|2))

γ

)
.

Remark 11 (Why is the regime in (Eq. 4.50) excluded?). The regime identified in (Eq. 4.50) involves

numerous special cases, whose analysis gets very tedious. We do however strongly believe that our gap

result generalizes to this regime as well, by using similar arguments to those developed so far. We note

that the analysis in the rest of this section for the general asymmetric setting (which is characterized

by four channel parameters) is restricted to those cases where it suffices to consider at most one rate

split (thus reducing the number of parameters to be optimize for the mixed inputs) and for which the

approximately optimal rate region does not require bounds on 2R1 + R2 or R1 + 2R2 (thus reducing

the achievability to the sum-capacity dominant face only).

Proof. We shall treat different regimes separately in the rest of the section.

4.4.1 Very Strong Interference

In the general asymmetric case, the very strong interference regime is the regime in which a receiver

can decode the interfering message while treating its intended signal as noise at a higher rate than the

intended receiver in the absence of interference; this is the case when the channel gains satisfy (53)

|h11|2(1 + |h22|2) ≤ |h21|2, (4.51a)

|h22|2(1 + |h11|2) ≤ |h12|2. (4.51b)
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Outer Bound

The capacity region of the classical G-IC in very strong interference coincides with that of two

interference-free point-to-point links given by

R(4.4.1)
out =





0 ≤ R1 ≤ Ig
(
|h11|2

)

0 ≤ R2 ≤ Ig
(
|h22|2

)




. (4.52)

Inner Bound

The outer bound in (Eq. 4.52) can be matched to within a constant gap by our TINnoTS scheme by

choosing, similarly to the symmetric case discussed in Section 4.3.1, the mixed inputs in (Eq. 4.6) with

N1 = Nd

(
β|h11|2

)
: N2

1 − 1 ≤ β|h11|2, (4.53a)

N2 = Nd

(
β|h22|2

)
: N2

2 − 1 ≤ β|h22|2, (4.53b)

δ1 = 0, (4.53c)

δ2 = 0, (4.53d)

for some β ≤ 1. The reason for the factor β in (Eq. 4.53) will be clear shortly (in Appendix I we use

β = 3/4 for similar reasons; we could have used here β = 3/4 as well, but we will find next a value

that gives a smaller gap).
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We next show that Proposition 2.1.2 is applicable for the choice of mixed input parameters as

in (Eq. 4.53). In particular, we aim to show that

N1|h11|dmin(X1) ≤ |h12|dmin(X2) (for the received sum-set constellation at receiver 1) (4.54a)

N2|h22|dmin(X2) ≤ |h21|dmin(X1) (for the received sum-set constellation at receiver 2), (4.54b)

or equivalently that

N2
1

N2
1 − 1

· |h11|2
1 + |h11|2

· N
2
2 − 1

|h22|2
≤ |h12|2
|h22|2(1 + |h11|2)

, (4.55a)

N2
2

N2
2 − 1

· |h22|2
1 + |h22|2

· N
2
1 − 1

|h11|2
≤ |h21|2
|h11|2(1 + |h22|2)

. (4.55b)

The condition in (Eq. 4.55) is verified, given the channel gain relationship in (Eq. 4.51), if

N2
1

N2
1 − 1

· |h11|2
1 + |h11|2

· N
2
2 − 1

|h22|2
≤ 1, (4.56a)

N2
2

N2
2 − 1

· |h22|2
1 + |h22|2

· N
2
1 − 1

|h11|2
≤ 1. (4.56b)

It can be easily seen that β = 0.8277 satisfies (Eq. 4.56) whenever 2 ≤ min(N1, N2). For the found β

we therefore have that the received constellations have |S1| = |S2| = N1N2 equally likely points and

minimum distance

min
i∈[1:2]

d2
min(Si)

12
= min

( |h11|2
N2

1 − 1
,
|h22|2
N2

2 − 1

)
≥ 1

β
. (4.57)
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Thus, by following similar steps as in Section 4.3.1, the achievable region becomes

R(4.4.1)
in =





0 ≤ R1 ≤ r1

0 ≤ R2 ≤ r2





such that (4.58a)

r1 ≥ Id (S1)−min
(
log(N2), Ig

(
|h12|2

))
≥ log(N1)−∆(Eq. 4.58), (4.58b)

r2 ≥ Id (S2)−min
(
log(N1), Ig

(
|h21|2

))
≥ log(N2)−∆(Eq. 4.58), (4.58c)

∆(Eq. 4.58) ≤
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

12

mini∈[1:2] d
2
min(Si)

)
≤ 1

2
log

(
2πe

12
(β + 1)

)
. (4.58d)

Gap

We can easily see, by comparing the inner bound in (Eq. 4.58) with the outer bound in (Eq. 4.52),

that for the general asymmetric G-IC in very strong interference the TINnoTS region is optimal to within

Gd(Eq. 4.59) ≤ ∆(Eq. 4.58) + log(2) +
1

2
log

(
1

β

)

≤ 1

2
log

(
2πe

3

1 + β

β

)
β=0.8277≈ 1.8260 bits, (4.59)

where the term log(2) is the integrality gap and the term 1
2 log

(
1
β

)
because of the reduced number of

points in (Eq. 4.53).
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4.4.2 Strong (but not Very Strong) Interference

For the general asymmetric case, the strong interference regime is defined as

|h21|2 ≥ |h11|2, (4.60a)

|h12|2 ≥ |h22|2. (4.60b)

The strong (but not very strong) interference regime is the set of channel gains that satisfy the condition

in (Eq. 4.60) but not the condition in (Eq. 4.51).

Outer Bound

The capacity region of the general G-IC in the strong interference regime is given by the ‘compound

MAC’ region

R(4.4.2)
out =





0 ≤ R1 ≤ Ig
(
|h11|2

)

0 ≤ R2 ≤ Ig
(
|h22|2

)

R1 +R2 ≤ Ig
(
min

(
|h11|2 + |h12|2, |h22|2 + |h21|2

))





. (4.61)
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Inner Bound

The outer bound in (Eq. 4.61) can be matched to within a gap by our TINnoTS scheme by choosing,

similarly to the symmetric case discussed in detail in Section 4.3.2, the parameters of the mixed inputs

as

N1 = Nd (snr5,a,t) ,

snr5,a,t = (1 + |h11|2)1−t

(
1 + min

(
|h11|2 + |h12|2, |h22|2 + |h21|2

)

1 + |h22|2

)t
− 1 ≤ |h11|2, (4.62a)

N2 = Nd (snr5,b,t) ,

snr5,b,t = (1 + |h22|2)t

(
1 + min

(
|h11|2 + |h12|2, |h22|2 + |h21|2

)

1 + |h11|2

)1−t

− 1 ≤ |h22|2, (4.62b)

δ1 = 0, (4.62c)

δ2 = 0, (4.62d)

where the upper bounds on snr5,a,t and snr5,b,t are a consequence of not being in very strong interference,

i.e.,

min
(
1 + |h11|2 + |h12|2, 1 + |h22|2 + |h21|2

)
≤ (1 + |h11|2)(1 + |h22|2).

Next, by using Proposition 2.1.3 we have

d2
min(S1)

12
≥ κ2

γ,N1,N2
min

( |h11|2
N2

1 − 1
,
|h12|2
N2

2 − 1
,max

( |h12|2
N2

1 (N2
2 − 1)

,
|h11|2

N2
2 (N2

1 − 1)

))
, (4.63a)

d2
min(S2)

12
≥ κ2

γ,N1,N2
min

( |h21|2
N2

1 − 1
,
|h22|2
N2

2 − 1
,max

( |h21|2
N2

1 (N2
2 − 1)

,
|h22|2

N2
2 (N2

1 − 1)

))
, (4.63b)
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where the bounds in (Eq. 4.63) hold up to a set of measure γ and where κγ,N1,N2 is defined in (Eq. 4.31e).

By recalling the channel gain relationship, by noting that

N2
1N

2
2 − 1 ≤ min

(
|h11|2 + |h12|2, |h22|2 + |h21|2

)

and by combining the two bounds in (Eq. 4.63) we get

min
i∈[1:2]

d2
min(Si)

12
≥ min

(
1,

max(|h11|2, |h12|2)

|h11|2 + |h12|2
,
max(|h21|2, |h22|2)

|h22|2 + |h21|2
)
≥ 1

2
.

Gap

By following the same reasoning and bounding steps as we did for the symmetric case in Sec-

tion 4.3.2, we get that the proposed achievable scheme is optimal to within a gap of

Gd(Eq. 4.64) ≤
1

2
log

(
2πe

3

)
+

1

2
log

(
1 + 8 ·

(
1 + 1/2 ln

(
1 + max

(
|h11|2, |h22|2

)))2

γ2

)
bits.

(4.64)

4.4.3 Mixed Interference

The mixed interference regime occurs when one receiver experiences strong interference while the

other experiences weak interference. This regime does not appear in the symmetric case, where both
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receiver are either in strong interference or in weak interference. The mixed interference is defined

as (26)

either
{
|h21|2 ≥ |h11|2, |h12|2 ≤ |h22|2

}
, (4.65a)

or
{
|h21|2 ≤ |h11|2, |h12|2 ≥ |h22|2

}
. (4.65b)

In this Section we shall only focus on the sub-regime

|h21|2 ≥
|h11|2

1 + |h12|2
(1 + |h22|2), |h12|2 ≤ |h22|2, (4.66)

for which the rate region, as we shall see, does not require bounds on 2R1 + R2 or R1 + 2R2. The

regime |h12|2 ≥ |h22|2
1+|h21|2 (1 + |h11|2), |h21|2 ≤ |h11|2 can be analyzed similarly by swapping the role

of the users.
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Outer Bound

An outer bound to the capacity region of the general G-IC when (Eq. 4.66) holds is given by the

‘Z-channel’ outer bound (61)

R(4.4.3)
out =





0 ≤ R1 ≤ Ig
(
|h11|2

)

0 ≤ R2 ≤ Ig
(
|h22|2

)

R1 +R2 ≤ Ig
(
|h22|2

)
+ Ig

(
|h11|2

1+|h12|2

)





=
⋃

t∈[0,1]





0 ≤ R1 ≤ (1− t)Ig
(
|h11|2

)
+ tIg

(
|h11|2

1+|h12|2

)

= Ig(snr6,a,t)

0 ≤ R2 ≤ (1− t)
(
Ig
(
|h22|2

)
− Ig

(
|h11|2

)
+ Ig

(
|h11|2

1+|h12|2

))
+ tIg(|h22|2)

= Ig(snr6,b,t) + 1
2 log

(
1+|h22|2
1+|h12|2

)





.

(4.67)

Inner Bound

The shape of the outer bound in (Eq. 4.67) suggests that a matching, to within a gap, inner region

could be found by following steps similar to those used for the analysis of the strong interference regime

(i.e., parameterize the points on the dominate sum-capacity face). The difference between this sub-

regime and the strong interference regime is that here R2 should be a combination of common and

private rates because receiver 1 experiences weak interference (while receiver 2 experiences strong
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interference). Note that the interfering channel gain at receiver 2, h21, does not appear in the outer

bound in (Eq. 4.67). We therefore set

N1 = Nd (snr6,a,t) : snr6,a,t =

(
1 +

|h11|2
1 + |h12|2

)t (
1 + |h11|2

)1−t − 1 ≤ |h11|2, (4.68a)

N2 = Nd (snr6,b,t) : snr6,b,t =
(
1 + |h12|2

)t
(

1 +
|h12|2

1 + |h11|2
)1−t

− 1 ≤ |h12|2, (4.68b)

δ1 = 0, (4.68c)

δ2 =
1

1 + |h12|2
, (4.68d)

in the achievable region in Proposition 4.2.1, which becomes

R(Eq. 4.69)
in =





0 ≤ R1 ≤ log(N1)−∆(Eq. 4.69)

0 ≤ R2 ≤ log(N2) + Ig
(
|h22|2

1+|h12|2

)
−∆(Eq. 4.69)




, (4.69a)

∆(Eq. 4.69) =
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

12

mini∈[1:2] d
2
min(Si)

)
, (4.69b)

S1 =
1√

1 + |h12|2
1+|h12|2

(
h11X1D +

√
|h12|2

1 + |h12|2
h12X2D

)
, (4.69c)

S2 =
1√

1 + |h22|2 1
1+|h12|2

(
h21X1D +

√
|h12|2

1 + |h12|2
h22X2D

)
. (4.69d)
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Next, by using Proposition 2.1.3, we bound the minimum distance of the received constellations S1 and

S2 as

d2
min(S1)

12 κ2
γ,N1,N2

≥ 1

1 + |h12|2δ2
min

( |h11|2
N2

1 − 1
,
(1− δ2)|h12|2

N2
2 − 1

,max

(
(1− δ2)|h12|2
N2

1 (N2
2 − 1)

,
|h11|2

N2
2 (N2

1 − 1)

))

(a)

≥ 1

1 + |h12|2δ2
min

(
1, (1− δ2),

max
(
(1− δ2)|h12|2, |h11|2

)

N2
1N

2
2 − 1

)

≥ 1− δ2

1 + |h12|2δ2
min

(
1,

max
(
|h12|2, |h11|2

)

N2
1N

2
2 − 1

)

(b)

≥ |h12|2
2 + |h12|2

min

(
1,

max
(
|h12|2, |h11|2

)

|h12|2 + |h11|2

)

(c)

≥ 1

3
min

(
1,

1

2

)
=

1

6
,

where the inequalities follow since: (a) by using the bounds in (Eq. 4.68a) and (Eq. 4.68b), (b) because

N2
1N

2
2−1 ≤ |h12|2+|h11|2 from (Eq. 4.68a) and (Eq. 4.68b), and (c) by assuming |h12|2 ≥ 1. Similarly

we have that

d2
min(S2)

12 κ2
γ,N1,N2

≥ 1

1 + |h22|2δ2
min

( |h21|2
N2

1 − 1
,
(1− δ2)|h22|2

N2
2 − 1

,max

( |h21|2
N2

2 (N2
1 − 1)

,
(1− δ2)|h22|2
N2

1 (N2
2 − 1)

))

(a)

≥ 1− δ2

1 + |h22|2δ2
min

( |h21|2
|h11|2

,
|h22|2
|h12|2

,
max(|h21|2, |h22|2)

|h12|2 + |h11|2
)

(b)

≥ 1− δ2

1 + |h22|2δ2
min


1 + |h22|2

1 + |h12|2
,
|h22|2
|h12|2

,
max

(
|h11|2 1+|h22|2

1+|h12|2 , |h12|2 |h22|2
|h12|2

)

|h12|2 + |h11|2




(b)

≥ 1− δ2

1 + |h22|2δ2

1 + |h22|2
1 + |h12|2

1

2

=
1 + |h22|2

1 + |h12|2 + |h22|2
|h12|2

1 + |h12|2
1

2

(c)

≥ 2

3

1

2

1

2
=

1

6
,
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where the inequalities follow since: (a) by using the bounds in (Eq. 4.68a) and (Eq. 4.68b) and because

N2
1N

2
2 − 1 ≤ |h12|2 + |h11|2, (b) by the channel gain relationship in (Eq. 4.66), and (c) by assuming

1 ≤ |h12|2 and since by assumption of this regime |h12|2 ≤ |h22|2. Note that the assumption 1 ≤

|h12|2 is without loss of generality since if |h12|2 < 1 (i.e., interference below the noise floor of the

receiver) then TIN with Gaussian inputs achieves the capacity outer bound (in this case essentially two

interference-free point-to-point links) to within 1/2 bit.

This shows that

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
· 1

6
, (4.70)

up to an outage set of measure no more than γ, where γ affects κγ,N1,N2 .

Gap

By following the same reasoning and bounding steps as we did for the symmetric case, we get that

the proposed achievable scheme is optimal to within a gap of

∆R1 ≤ Ig(snr6,a,t)− log(Nd(snr6,a,t)) + ∆(Eq. 4.69)

≤ ∆(Eq. 4.69) + log(2),

∆R2 ≤ Ig(snr6,b,t) +
1

2
log

(
1 + |h22|2
1 + |h12|2

)
− log(Nd(snr6,b,t))− Ig

( |h22|2
1 + |h12|2

)
+ ∆(Eq. 4.69)

≤ ∆(Eq. 4.69) + log(2),
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where we used the fact that log(Nd(x)) ≥ Ig(x) − log(2). By including the minimum distance bound

in (Eq. 4.70) into the expression for ∆(Eq. 4.69) in (Eq. 4.69b), and by noticing that max(N2
1 , N

2
2 )− 1 ≤

max(|h11|2, |h12|2) ≤ max(|h11|2, |h22|2) by the channel gain relationship in (Eq. 4.66), we finally get

Gd(Eq. 4.71) ≤
1

2
log

(
2πe

3

)
+

1

2
log

(
1 +

6

κ2
γ,N1,N2

)
,

≤ 1

2
log

(
2πe

3

)
+

1

2
log

(
1 + 24 ·

(
1 + 1/2 ln

(
1 + max

(
|h11|2, |h22|2

)))2

γ2

)
bits.

(4.71)

4.4.4 Weak Interference

For the general asymmetric G-IC, the weak interference is defined as

|h21|2 ≤ |h11|2, (4.72a)

|h12|2 ≤ |h22|2, (4.72b)

which involves numerous special cases whose analysis gets very tedious and is outside of the scope of

this thesis – see also Remark 11.

4.4.5 Very Weak Interference

The very weak interference regime characterized in as (24) is defined as

|h12|2 ≤
|h22|2

1 + |h21|2
, (4.73a)

|h21|2 ≤
|h11|2

1 + |h12|2
. (4.73b)
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In this regime, the outer bound to the capacity region of the classical G-IC is

R(4.4.5)
out =





R1 ≤ Ig
(
|h11|2

)

R2 ≤ Ig
(
|h22|2

)

R1 +R2 ≤ Ig
(
|h12|2 + |h11|2

1+|h21|2

)
+ Ig

(
|h21|2 + |h22|2

1+|h12|2

)





(4.74)

and is achievable to within 1/2 bit by Gaussian inputs with power control and TIN. Since the optimal

strategy for the classical G-IC is compatible with our TINnoTS with mixed inputs, we conclude that a

mixed-input is optimal to within 1/2 bit in this regime.

This concludes the proof of Theorem 4.4.1.

4.5 TINnoTS is gDoF Optimal

In this section we show one of the consequences of Theorem 4.3.1, namely that TINnoTS is gDoF

optimal almost surely. As mentioned in Section 3.6 the gDoF has become an important metric that sheds

lights on the behavior of the capacity when exact capacity results are not available, and has been formally

defined in (Eq. 3.18). The O
(

log
(

ln(min(snr,inr))
γ

))
additive gap result of Theorem 4.3.1 implies that:

Theorem 4.5.1. For the symmetric G-IC the TINnoTS achievable scheme with mixed inputs is gDoF

optimal for all channel gains up to a set of zero measure. The optimal inputs are given in Table II.

Proof. We must show that as snr → ∞ the gap between the TINnoTS inner bound and outer bound in

Proposition 4.2.2, normalized by Ig(snr), goes to zero almost everywhere.
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In the proof of Theorem 4.3.1 we showed that for the very strong, the weak2 and the very weak

interference regimes the gap between inner and outer bounds is O(1) everywhere. Therefore, since

limsnr→∞
O(1)
Ig(snr) = 0, the result follows.

For the strong and weak1 interference regimes the gap is of the form O
(

log
(

ln min(snr,snrα)
γ

))
for

any γ ∈ (0, 1]. Therefore, by choosing γ to be

γ(snr) :=
1

(log min(snr, snrα))p
, for some p > 0 independent of snr,

we have that limsnr→∞
O
(

log
(

ln min(snr,snrα)
γ

))
Ig(snr) = 0 and the measure of the outage set γ(snr) vanishes as

snr→∞. This concludes the proof.

Remark 12. We note that in (62), the authors showed that discrete-continuous mixtures are strictly sub-

optimal in the DoF expression (62, Theorem 4) for K > 2 user. However, this does not mean that for an

equivalent (but different) expression of the DoF continuous and discrete mixtures are not optimal. For

example, in (63) it was shown that Gaussian inputs do not maximize the multi-letter capacity expression

for Gaussian multiple access channels. However, in an equivalent single letter expression of the capacity

Gaussian inputs are optimal. Something similar occurs in the context of K-user interference channel.

On the one hand, in (62) it was shown that discrete-continuous mixtures are not optimal when used in

a particular capacity expression (involving information dimension). On the other hand, from (36) we

know that taking a discrete distribution that depends on the SNR (i.e., the number of points scales with

SNR) and using this in another expression, one can achieve DoF= K
2 a.e.
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Moreover, the result of (62), does not imply that discrete-continuous mixtures can not be capacity

achieving for some parameter regimes. In particular in (24) authors showed that Gaussian inputs are

gDoF optimal (for K ≥ 2) in the so called weak interference regime.

4.6 Totally Asynchronous and Codebook Oblivious G-IC

The only requirement for the implementation of the TINnoTS inner bound in (Eq. 4.5) is to have

symbol synchronization and knowledge of the channel gains at all the terminals. Therefore, our TIN-

noTS achievable strategy applies to a large class of channels, besides the model considered thus far.

Next, we outline two such examples for which very little was known in the past.

The first example is the block asynchronous G-IC, which is information unstable (14) and thus no

single-letter capacity expression can be derived for it. Nonetheless, we are able to show that the capacity

of this channel is to within a gap of the capacity of the fully synchronized channel. The second example

is the G-IC with partial codebook knowledge at both receivers (20), which prevents using joint decoding

or successive interference cancellation at the decoders. Still, we are able to show that the capacity of

this channel is to within a gap of the capacity of the channel with full codebook knowledge.

The applications to oblivious and asynchronous ICs somewhat surprisingly implies that much less

“global coordination” between nodes is needed than one might initially expect: synchronism and code-

book knowledge might not be critical if one is happy with ‘approximate’ capacity results.
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4.6.1 Block Asynchronous G-IC

Consider a G-IC with the following input-output relationship

Y1,t = h11X1,t + h12X2,t−D1 + Z1,t, (4.75a)

Y2,t = h21X1,t−D2 + h22X2,t + Z2,t, (4.75b)

for t ∈ Z+, andXi,j user i’s input to the channel at channel use j, Xi,j = 0 for j < 0 (similarly for Yi,j

and Zi,j), where the delay Di, i ∈ [1 : 2], is chosen at the beginning of the transmission and held fixed

thereafter. The channel is termed totally asynchronous if delay Di is uniform on all n (14). Except for

the introduction of random delay all definitions are identical to those given in Section 4.1. In (14) it has

been shown that RTINnoTS
in in (Eq. 4.5) is achievable for the channel in (Eq. 4.75). Moreover, because

lack of synchronization can only harm communications, the outer bound in Proposition 4.2.2 is a valid

outer bound for the asynchronous G-IC. Therefore, all of our previous results hold and we have:

Lemma 4.6.1. For the block asynchronous G-IC the TINnoTS achievable region is to within an additive

gap of the capacity of the fully synchronized G-IC, where the gap is given in Theorems 4.3.1 and 4.4.1.

4.6.2 IC with No Codebook Knowledge

IC with partial codebook knowledge is practically relevant because it models the inability to use

sophisticated decoding techniques such as joint decoding or successive inference cancellation. In Chap-

ter 3 for the IC-OR with partial codebook knowledge at one receiver, it has been shown that using Gaus-

sian input at the transmitter corresponding to the oblivious receiver and a mixed input at the transmitter

corresponding to non-oblivious receiver is to within a constant gap from the capacity of the classical
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G-IC with full codebook knowledge. In (20) it was shown that for IC-OR with both oblivious receivers

the capacity is given by

CIC-OR =
⋃

PQPX1|QPX2|Q





R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|Q)




. (4.76)

Note that the region in (Eq. 4.76) is very similiar to TINoTS region in (Eq. 4.4) and CIC-OR is upper

bounded by the classical G-IC outer bound in Proposition 4.2.2. The set of optimizing distributions

for (Eq. 4.76) and the cardinality bound for the alphabet of Q are not known (20, Section III.A). Based

on our previous results, we have that:

Lemma 4.6.2. For the G-IC with partial codebook knowledge the TINnoTS achievable region is to

within an additive gap of the capacity of the G-IC with full codebook knowledge, where the gap is given

in Theorems 4.3.1 and 4.4.1.

4.7 TINnoTS with Mixed Inputs in Practice

4.7.1 A Simple TINnoTS Receiver in Very Strong Interference

In the introduction we mentioned that the optimal MAP decoder in an additive non-Gaussian noise

channel, which one could implement for TIN when treating a non-Gaussian interference as noise, could

be very complex. In the following we give an example of an approximate MAP decoder that is very

simple to implement, thus making TINnoTS competitive in practical applications.
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Let X1, X2 be from the PAM (N, d) with N = 2Q + 1, Q ∈ N, and d2 = 12
N2−1

= 3
Q(Q+1) . The

restrictions to an odd number of points is just for simplicity of writing the constellation points. The

received signal is

Y =
(√

snr n1 +
√
inr n2

)
d+ ZG, ZG ∼ N (0, 1),

for some (n1, n2) ∈ [−Q : Q]2 chosen independently with uniform probability. The condition in (Eq. 2.16b)

is verified when

(2Q+ 1)2snr ≤ inr, (4.77)

which corresponds to the very strong interference regime. In the regime identified by (Eq. 4.77), i.e.,

where the received points do not ‘overlap’ as in Fig Figure 2, the decoder could simply “modulo-out”

the interference by “folding” the signal Y onto the interval I := [−
√
inrd/2,+

√
inrd/2]. By doing so

the resulting signal, given by

Y ′ =
[√

snr n1d+ Z ′
]

mod I , Z
′ := [ZG]mod I ,

would be interference-free. Since

Pr[Y ′ 6=
√
snr n1d+ ZG] ≤ Pr[|ZG| ≥

√
inrd/2−

√
snrQd]

from (Eq. 4.77)
≤ Pr[|ZG| ≥

√
snr/2],
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and since Pr[|ZG| ≥
√
snr/2] is also an upper bound to the probability of error for PAM input on a

Gaussian channel, we see that the simple modulo operation at the receiver results in a symbol-error rate

that is at most double that of an interference-free Gaussian channel with the same PAM input.

4.7.2 Actual vs. Analytic Gap

Here we compare the gap derived in Theorems 4.3.1 and 4.4.1 to the actual gap evaluated numer-

ically. The point is to show that our analytical closed-form (worst case scenario) bounds can be quite

conservative and thus underestimate the actual achievable rates.

For example, we showed that in the very strong interference regime the TINnoTS achievable region

with discrete inputs is at most 1
2 log

(
2πe
3

)
bits from capacity; the capacity in this case is the same as

two parallel interference-free links. Consider the symmetric G-IC in very strong interference and the

symmetric rate R1 = R2 = Rsym(snr) with the same PAM input for each user, where the number of

points is chosen as in (Eq. 4.11a). Fig. 8a shows Gd(snr) := Ig(snr) − Rsym(snr) vs. snr expressed in

dB, where

• the red line is the theoretical gap from Theorem 4.3.1, approximately 1
2 log

(
2πe
3

)
= 1.25 bits;

• the green line is the gap by lower boundingRsym(snr) with the Ozarow-Wyner-B bound in Propo-

sition 2.1.1, where the minimum distance of the received constellation was computed exactly

(rather than lower bounded by Proposition 2.1.2); the gap in this case is approximately 0.75 bits;

• the magenta line is the gap by lower boundingRsym(snr) by the ‘full DTD-ITA’14 bound’ in (Eq. 2.13b),

the gap in this case is approximately 0.37 bits;
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• the cyan line is the gap when Rsym(snr) is evaluated by Monte Carlo simulation; the gap in this

case tends to the ultimate “shaping loss” 1
2 log

(
πe
6

)
= 0.25 bits at large snr; this shows that the

actual gap is about 1 bit lower than the theoretical gap;

The figure also shows that the lower bound in (Eq. 2.13b) actually gives the tightest lower bound for the

mutual information, but it is unfortunately not easy to deal with analytically.

We next consider the symmetric G-IC in strong interference. Theorem 4.3.1 upper bounds the gap in

this regime by Gd(snr) ≤ 1
2 log

(
2πe
3

)
+ 1

2 log
(

1 + 8 (1+1/2 ln(1+snr))2

γ2

)
where γ ∈ (0, 1] is the measure

of the outage set (i.e., those channel gains for which the gap lower bound is not valid). If we were to

make the measure of the outage set very small, then we could end up finding that the gap is actually

larger than capacity. Consider the case snr = 30 dB and inr = snr1.49 = 44.7 dB; with γ = 0.1 it easy to

see that 1
2 log

(
2πe
3

)
+ 1

2 log
(

1 + 8 (1+1/2 ln(1+snr))2

γ2

)
= 6.977 bits, which is larger than the interference-

free capacity Ig(snr) = 4.9836 bits. This implies that our bounding steps, done for the sake of analytical

tractability and especially meaningful at high SNR, are too crude for this specific example (where our

result states the trivial fact that zero rate for each user is achievable to within Ig(snr) bits). We aim to

convey next that, despite the fact that the closed-form gap result underestimates the achievable rates, it

nonetheless provides valuable insights into the performance of practical systems, that is, that TINnoTS

with discrete inputs performs quite well in the strong interference regime (where capacity is achieved

by Gaussian codebooks and joint decoding of interfering and intended messages). To this end, Fig. 8b

shows the achievable rate region for the symmetric G-IC with snr = 30 dB and inr = snr1.49 = 44.7 dB

and where the users employ a PAM input with the number of points given by (Eq. 4.22). We observe

• The navy blue line shows the pentagon-shaped capacity region in (Eq. 4.16).
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• The red point at the origin is the lower bound on the achievable rates from Theorem 4.3.1 with

γ = 0.1.

• The green line is the achievable region when the rates are lower bounded by the Ozarow-Wyner-

B bound in Proposition 2.1.1, where the minimum distances of the received constellations were

computed exactly (rather than lower bounded by Proposition 2.1.3).

• For the magenta line we used the DTD-ITA’14-A lower bound in (Eq. 2.13b);

• For the cyan line we evaluated the rates by Monte Carlo simulation.

The reason why the green region has so many ‘ups and downs’ is because the Ozarow-Wyner-B bound

in Proposition 2.1.1 depends on the constellation through its minimum distance; as we already saw

in Fig. Figure 3, the minimum distance is very sensitive to the fractional values of the channel gains,

which makes the corresponding bound looks very irregular. On the other hand, the magenta region is

based on the lower bound in (Eq. 2.13b), which depends on the whole distance spectrum of the received

constellation and as a consequence the corresponding bound looks smoother. The cyan region is the

smoothest of all; its largest gap occurs at the symmetric rate point and is less than 0.7 bits – as opposed

to the theoretical gap of 4.9836 bits. We thus conclude that, despite the large theoretical gap, a PAM

input is quite competitive in this example.

4.7.3 Mixed (Gaussian+Discrete) vs. Discrete (Discrete+Discrete) Inputs

In the previous Sections we showed that TINnoTS with mixed (Gaussian+Discrete) inputs achieves

the capacity to within a gap for several channels of interest. Practically, it may be interesting to un-

derstand what performance can be guaranteed when inputs are fully discrete, i.e., they do not contain a

Gaussian component.
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Figure 8: Comparing Analytic with Numerical Gaps.

For the symmetric G-IC the following can be shown. Consider the TINnoTS region with Xu ∼

PAM(Nu, du) such that the power constraints are met, that is, N2
u−1
12 d2

u ≤ 1 for all u ∈ [1 : 2], and

lower bound the mutual informations with Proposition 2.1.1. Then, TINnoTS achieves the outer bound

in Proposition 4.2.2 in very weak and in strong interference only, that is, for those regimes where ‘rate

splitting’ was not used in Theorem 4.3.1. The proof of this result is omitted for sake of space. Thus

it appears that in the moderately weak interference regime mixed inputs composed of ‘two-layers’ are

necessary.

The next question we ask is thus whether we can show the same gap result of Theorem 4.3.1 for

the moderately weak interference regime by using inputs that are the superposition of two PAM con-

stellations, rather than a PAM and a Gaussian. The next proposition shows that the answer is in the
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affirmative, i.e., it is possible to ‘switch’ between Gaussian+Discrete and Discrete+Discrete inputs up

to an additive gap.

Proposition 4.7.1. Let

XD := Xc +Xp,

where Xc ∼ discrete : dmin(Xc) > 0,

Xp ∼ discrete : dmin(Xp) > 0,

XM := Xc +Xg,

where Xg ∼ N (0,E[|Xg|2]) such that E[|Xp|2] = E[|Xg|2],

where Xc, Xg and Xp are mutually independent. Then, for ZG ∼ N (0, 1) independent of everything

else, we have

I(XD; gXD + ZG)− I(XM ; gXM + ZG) ≤ 1

2
log(2),

I(XM ; gXM + ZG)− I(XD; gXD + ZG) ≤ 1

2
log
(πe

3

)
+

1

2
log

(
1 +

12

g2 d2
min(XD)

)
.
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Proof. The first inequality follows since

I(XD; gXD + ZG) = I(Xc, Xp; gXc + gXp + ZG)

= I(Xp; gXc + gXp + ZG) + I(Xc; gXc + gXp + ZG|Xp)

= I
(
Xp; gXp +N

)
|N :=gXc+ZG + I(Xc; gXc + ZG)

(a)

≤ I
(
Xg; gXg +N

)
|N :=gXc+ZG +

1

2
log(2) + I(Xc; gXc + ZG)

= I(XM ; gXM + Z) +
1

2
log(2),

where in (a) we used (25, Theorem 1), which states that a Gaussian input for non-Gaussian additive

noise channel results in at most 1/2 bit loss.

The second inequality follows since

I(XM ; gXM + ZG) ≤ Ig(g2Var[XM ]) = Ig(g2Var[XD])

(b)

≤ I(XD; gXD + ZG) +
1

2
log
(πe

3

)
+

1

2
log

(
1 +

12

g2 d2
min(XD)

)
,

where in (b) we used the bound in Proposition 2.1.1.

The question left is thus why ‘two-layer’ inputs, i.e., that comprise two random variables, are needed

for approximate optimality in the moderately weak interference regime. Although at this point we do not

have an answer for this question, the intuition for the moderately weak interference regime is as follows.

With ‘single-layer’ PAM inputs and for the given power constraints, the number of points needed to

attain a desired rate pair on the convex closure of the outer bound result in a minimum distance at the
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receivers that is too small. It may be that with ‘two-layer’ PAM inputs one effectively soft-estimates one

of the layers whose effect can thus be removed from the received signal, thereby behaving as if there

was an interfering common message jointly decoded at the non-intended receiver. Further investigation

is needed to understand whether ‘multi-layer’ inputs are indeed necessary.

4.8 Conclusion

In this chapter, we evaluated a very simple, generally applicable lower bound, that neither requires

joint decoding nor block synchronization, to the capacity of the Gaussian interference channel. This

treating-interference-as-noise lower bound without time-sharing was evaluated for inputs that are a mix-

ture of discrete and Gaussian random variables. We showed that, through careful choice of the mixed

input parameters, namely the number of points of the discrete part and the amount of power assigned

to the Gaussian part (that in general depends on the channel gains and on which point on the convex

closure of the outer bound one wants to attain) the capacity of the classical Gaussian interference chan-

nel can be attained to within a gap. This result is of interest in several channels where this lower bound

applies, such as block asynchronous channels and channels with partial codebook knowledge.



CHAPTER 5

ON COMMUNICATION THROUGH A GAUSSIAN CHANNEL WITH AN MMSE

DISTURBANCE CONSTRAINT

Part of this chapter has been previously published in (9). c©[2016] IEEE. Reprinted, with permission

from (9).

Consider a Gaussian noise channel with one transmitter and two receivers:

Y =
√
snr X + Z, (5.1a)

Ysnr0 =
√
snr0 X + Z0, (5.1b)

where Z,Z0,X,Y,Ysnr0 ∈ Rn, Z,Z0 ∼ N (0, I), and X and (Z,Z0) are independent.1 When it will

be necessary to stress the SNR at Y in (Eq. 5.1a) we will denote it by Ysnr.

We also denote the mutual information2 normalized by n as

In(X, snr) :=
1

n
I(X, snr). (5.2)

1Since there is no cooperation between receivers the capacity depends on pY1,Y2|X only thorough the marginals
pY1|X and pY2|X.

2In this Section, for convenience, the mutual information In(X, snr) is measured with respect to base e.

151
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We consider a scenario in which a message, encoded as X, must be decoded at the primary receiver

Ysnr while it is also seen at the unintended/secondary receiver Ysnr0 for which it is an interferer. This

scenario is motivated by the two-user Gaussian Interference Channel (G-IC), whose capacity is known

only for some special cases. The following strategies are commonly used to manage interference in the

G-IC:

1. Interference is treated as Gaussian noise: in this approach the interference structure is neglected.

It has been shown to be sum-capacity optimal in the so called very-weak interference regime (45).

2. Partial interference cancellation: by using the Han-Kobayashi (HK) achievable scheme (38), part

of the interfering message is decoded and subtracted off the received signal, and the remaining

part is treated as Gaussian noise. This approach has been shown to be capacity achieving in the

strong interference regime (53) and optimal within 1/2 bit per channel per user otherwise (26).

3. Soft-decoding/estimation: the unintended receiver employs soft-decoding of part of the interfer-

ence. This is enabled by using non-Gaussian inputs and designing the decoders that treat interfer-

ence as noise by taking into account the correct (non-Gaussian) distribution of the interference.

Such scenarios were considered in Chapter 3 and 4 and shown to be optimal to within either a

constant or a O(log log(snr)) gap.

In this Chapter we look at a somewhat simplified scenario compared to the G-IC as shown in

Fig. Figure 9. Formally, we aim to solve the following problem.
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Figure 9: Channel Model.

Definition 13. (max-I problem.) For some β ∈ [0, 1]

Cn(snr, snr0, β) := sup
X
In(X, snr), (5.3a)

s.t.
1

n
Tr
(
E[XXT]

)
≤ 1, power constraint, (5.3b)

and mmse(X, snr0) ≤ β

1 + βsnr0
, MMSE constraint. (5.3c)

The subscript n in Cn(snr, snr0, β) emphasizes that we seek to find bounds that hold for any input

length n. Even though this model is somewhat simplified, compared to the G-IC, it can serve as an

important building block towards characterizing the capacity of the G-IC (27) and (11).

In (27) the capacity of the channel in Fig. Figure 9 was properly defined and it was shown to be equal

to limn→∞ Cn(snr, snr0, β). The reason why the capacity does not have a ‘single-letter’ expression is

because the MMSE constraint in (Eq. 5.3c) does not ‘single-letterize’. Moreover, in (11, Sec. VI.3) and

(27, Sec. VIII) it was conjectured that the optimal input for C1(snr, snr0, β) is discrete.
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Throughout this Chapter we will plot normalized quantities, where the normalization is with respect

to the same quantity when the input is N ( 0, I). For example, for mutual information In(X, snr) in

(Eq. 5.2) we will plot

d(X, snr) :=
In(X, snr)

1
2 ln(1 + snr)

, (5.4)

while for MMSE in (Eq. 1.6) we will plot

D(X, snr) :=
mmse(X, snr)

1
1+snr

= (1 + snr) ·mmse(X, snr). (5.5)

In particular, at high snr the quantity in (Eq. 5.4) is commonly referred to as the degrees of freedom

(58) and the quantity in (Eq. 5.5) as the MMSE dimension (64). Moreover, it is well known that under

the block-power constraint in (Eq. 5.3b), a Gaussian input maximizes both the mutual information and

the MMSE (31), and thus the quantities d(X, snr), D(X, snr) have a natural meaning of multiplica-

tive loss of the inputs X compared to the Gaussian input. Fig. Figure 10 compares normalized and

unnormalized quantities.

5.1 Past Work and Contributions

The mutual information and the MMSE can be related, for any input X, via the so called I-MMSE

relationship (65, Theorem 1).
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Figure 10: Comparing mutual informations and MMSE’s for BPSK and Gaussian
inputs. Fig. 10b clearly shows the multiplicative loss of BPSK, for both

mutual information and MMSE, compared to a Gaussian input.

Proposition 5.1.1. (I-MMSE relationship (65).) The I-MMSE relationship is given by the derivative

relationship

d

dsnr
In(X, snr) =

1

2
mmse(X, snr), (5.6a)

or the integral relationship (65, Eq.(47))

In(X, snr) =
1

2

∫ snr

0
mmse(X, t)dt. (5.6b)
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In order to develop bounds on Cn(snr, snr0, β) we require bounds on the MMSE. An important

bound on the MMSE is the following linear MMSE (LMMSE) upper bound.

Proposition 5.1.2. (LMMSE bound (65).) For any X and snr > 0 it holds that

mmse(X, snr) ≤ 1

snr
. (5.7a)

If 1
nTr

(
E[XXT]

)
≤ σ2, then for any snr ≥ 0

mmse(X, snr) ≤ σ2

1 + σ2snr
, (5.7b)

where equality in (Eq. 5.7b) is achieved iff X ∼ N (0, σ2I).

Another important bound for the MMSE is the single-crossing point property (SCPP) bound devel-

oped in (66) for n = 1 and extended in (67) to any n ≥ 1.

Proposition 5.1.3. (SCPP (67).) For any fixed X, suppose that mmse(X, snr0) = β
1+βsnr0

, for some

fixed β ≥ 0. Then for all snr ∈ [snr0,∞) we have that

mmse(X, snr) ≤ β

1 + βsnr
, (5.8a)

and for all snr ∈ [0, snr0)

mmse(X, snr) ≥ β

1 + βsnr
. (5.8b)
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In words, Proposition 5.1.3 means that if we know that the value of MMSE at snr0 is given by

mmse(X, snr) = β
1+βsnr0

then for all higher SNR values (snr0 ≤ snr) we have the upper bound

in (Eq. 5.8a) and for all lower SNR values (snr ≤ snr0) we have the lower bound in (Eq. 5.8b). Unfor-

tunately, Proposition 5.1.3 does not provide an upper bound on mmse(X, snr) for snr ∈ [0, snr0) and

one of the goals of this chapter is to fill in this gap. Note that upper bounds on the MMSE are useful,

thanks to the I-MMSE relationship, as tools to derive converse results, and have been used in (68), (66),

(67), and (69) to name a few.

Motivated by the search for the complementary upper bound to the SCPP we define the following

problem.

Definition 14. (max-MMSE problem.) For some β ∈ [0, 1]

Mn(snr, snr0, β) := sup
X

mmse(X, snr), (5.9a)

s.t.
1

n
Tr
(
E[XXT]

)
≤ 1, (5.9b)

and mmse(X, snr0) ≤ β

1 + βsnr0
. (5.9c)

Clearly, Mn(snr, snr0, β) ≤ M∞(snr, snr0, β) for all finite n. Observe that the max-MMSE problem

in (Eq. 5.9) and the max-I problem in (Eq. 5.3) have different objective functions but have the same

constraints. This is also a good place to point out that neither of the max-MMSE and max-I problems

falls under the category of convex optimization. This follows from the fact that the MMSE is a strictly

concave function in the input distribution (70). Therefore, the set of input distributions, defined by

(Eq. 5.3b) and (Eq. 5.3c), over which we are optimizing, might not be convex.
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Note that Proposition 5.1.3 gives a solution to the max-MMSE problem in (Eq. 5.9) for snr ≥ snr0

and any n ≥ 1 as follows:

Mn(snr, snr0, β) =
β

1 + βsnr
, for snr ≥ snr0, (5.10)

achieved by X ∼ N (0, βI). Therefore in the rest of the Chapter the treatment of the max-MMSE

problem will focus only on the regime snr ≤ snr0.

The case n =∞ of the max-MMSE problem in (Eq. 5.9) was solved in (71, Section V-C) and (27,

Theorem 2) as follows:

M∞(snr, snr0, β) =





1
1+snr , snr < snr0,

β
1+βsnr , snr ≥ snr0,

, (5.11)

achieved by using superposition coding with Gaussian codebooks. Clearly there is a discontinuity

in (Eq. 5.11) at snr = snr0 for β < 1. This fact is a well known property of the MMSE, and it is referred

to as a phase transition (71). It is also well known that, for any finite n, mmse(X, snr) is a continuous

function of snr (66). Putting these two facts together we have that, for any finite n, the objective function

Mn(snr, snr0, β) must be continuous in snr and converge to a function with a jump-discontinuity at snr0

as n→∞. Therefore, Mn(snr, snr0, β) must be of the following form:

Mn(snr, snr0, β) =





1
1+snr , snr ≤ snrL,

Tn(snr, snr0, β), snrL ≤ snr ≤ snr0,

β
1+βsnr , snr0 ≤ snr,

(5.12)
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for some snrL. In this Chapter we seek to characterize snrL in (Eq. 5.12) and the continuous function

Tn(snr, snr0, β) such that

Tn(snrL, snr0, β) =
1

1 + snrL
, (5.13a)

Tn(snr0, snr0, β) =
β

1 + βsnr0
, (5.13b)

and give scaling bounds on the width of the phase transition region defined as

Wn := snr0 − snrL. (5.14)
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Back to the max-I problem in (Eq. 5.3). Clearly Cn(snr, snr0, β) in a non-decreasing function of n.

In (27, Theorem. 3) it was shown that

C∞(snr, snr0, β) = lim
n→∞

Cn(snr, snr0, β),

=





1
2 ln(1 + snr), snr ≤ snr0,

1
2 ln(1 + βsnr) + 1

2 ln
(

1 + snr0(1−β)
1+βsnr0

)
, snr ≥ snr0,

=
1

2
ln+

(
1 + βsnr

1 + βsnr0

)
+

1

2
ln (1 + min(snr, snr0)) , (5.15)

which is achieved by using superposition coding with Gaussian codebooks. Fig. Figure 11 shows a plot

of C∞(snr, snr0, β) normalized by the capacity of the point-to-point channel 1
2 ln(1 + snr). The region

snr ≤ snr0 (flat part of the curve) is where the MMSE constraint is inactive since the channel with snr0

can decode the interference and guarantee zero MMSE. The regime snr ≥ snr0 (curvy part of the curve)

is where the receiver with snr0 can no-longer decode the interference and the MMSE constraint becomes

active, which in practice is the more interesting regime because the secondary receiver experiences

‘weak interference’ that can not be fully decoded (recall that in this regime superposition coding appears

to be the best achievable strategy for the G-IC, but it is unknown whether it achieves capacity (26)).

The importance of studying models of communication systems with disturbance constraints has been

recognized previously. For example, in (28) Bandemer et al. studied the following problem related to

the max-I problem in (Eq. 5.3).
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Definition 15. (Bandemer et al. problem.) For some R ≥ 0

In(snr, snr0, R) := max
X

In(X, snr), (5.16a)

s.t.
1

n
Tr
(
E[XXT]

)
≤ 1, (5.16b)

and In(X, snr0) ≤ R. (5.16c)

Observe that the max-I problems in (Eq. 5.3) and the one in (Eq. 5.16) have the same objective func-

tion but have different constraints. The relationship between the constraints in (Eq. 5.3c) and (Eq. 5.16c)

can be explained as follows. The constraint in (Eq. 5.3c) imposes a maximum value on the func-

tion mmse(X, snr) at snr = snr0, while the constraint in (Eq. 5.16c), via the integral I-MMSE rela-

tionship in (Eq. 5.6), imposes a constraint on the area below the function mmse(X, snr) in the range

snr ∈ [0, snr0].

In (28) it was shown that the optimal solution for In(snr, snr0, R), for any n, is attained by X ∼

N (0, αI) whereα = min
(

1, e2R−1
snr0

)
; hereα is such that the most stringent constraint between (Eq. 5.16b)

and (Eq. 5.16c) is satisfied with equality. In other words, the optimal input is i.i.d. Gaussian with power

reduced such that the disturbance constraint in (Eq. 5.16c) is not violated.

Measuring the disturbance with the mutual information as in (Eq. 5.16), in contrast to the MMSE

as in (Eq. 5.3), suggests that it is always optimal to use Gaussian codebooks with the reduced power

without any rate splitting. Moreover, while the mutual information constraint in (Eq. 5.16) limits the

amount of information transmitted to the unintended receiver, it may not be the best choice when one
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models the interference, since any information that can be reliably decoded is not really interference.

For this reason, it has been argued in (27) and (11) that the max-I problem in (Eq. 5.3) with the MMSE

disturbance constraint is a more suitable building block to study the G-IC and understand the key role

of rate splitting.

5.2 Main Results

5.2.1 Max-MMSE Problem: Upper Bounds on Mn(snr, snr0, β)

We start by giving bounds on the phase transition region of Mn(snr, snr0, β) defined in (Eq. 5.12).

The bound in Theorem 5.2.1 is referred to as the D-bound because it was derived through the technique

of bounding the derivative of the MMSE.

Theorem 5.2.1. (D-Bound.) For any X and 0 < snr ≤ snr0, let mmse(X, snr0) = β
1+βsnr0

for some

β ∈ [0, 1]. Then

mmse(X, snr) ≤ mmse(X, snr0) + kn

(
1

snr
− 1

snr0

)
−∆, (5.17a)

kn ≤ n+ 2, ∆ = 0. (5.17b)

If X is such that 1
nTr

(
E[XXT]

)
≤ 1 then

∆ := ∆(Eq. 5.17c) =

∫ snr0

snr

1

γ2(1 + γ)2
dγ.

= 2 ln

(
1 + snr0
1 + snr

)
− 2 ln

(snr0
snr

)
+

1

1 + snr
− 1

1 + snr0
+

1

snr
− 1

snr0
. (5.17c)

Proof. See Section 5.3.1.
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The bound on Mn(snr, snr0, β) in (Eq. 5.17b) is depicted in Fig. 12a, where:

• the red line is the M∞(snr, snr0, β) upper bound on M1(snr, snr0, β), and

• the blue line is the new upper bound on M1(snr, snr0, β) from Theorem 5.2.1.

Observe that the new bound provides a tighter and continuous upper bounds on M1(snr, snr0, β) than

the trivial upper bound given by M∞(snr, snr0, β).

We next show how fast the phase transition region shrinks with n as n→∞.

Proposition 5.2.2. The bound in (Eq. 5.17a) from Theorem 5.2.1 intersects the LMMSE bound in (Eq. 5.7a)

from Proposition 5.1.2 at

snrL = snr0
1 + βsnr0
kn
kn−1 + βsnr0

= O

((
1− 1

n

)
snr0

)
. (5.18a)

Thus, the width of the phase transition region is given, for kn in (Eq. 5.17b), by

Wn =
1

kn − 1

snr0
kn
kn−1 + βsnr0

= O

(
1

n

)
. (5.18b)

Proof. See Appendix H.0.3.

In Proposition 5.2.2 we found the intersection between the LMMSE bound 1
snr in (Eq. 5.7a) and the

bound in (Eq. 5.17a) from Theorem 5.2.1. Unfortunately, for the power constraint case, the intersection

of the LMMSE bound 1
1+snr in (Eq. 5.7b) and the bound in (Eq. 5.17c) cannot be found analytically.

However, the solution can be computed efficiently by using numerical methods. Moreover, the asymp-
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Figure 12: Bounds on Mn(snr, snr0, β) vs. snr.

totic behavior of the phase transition region is still given by O
(

1
n

)
. The bound in Theorem 5.2.1 for

several values of n is shown in Fig. 12b, where:

• the red line is the M∞(snr, snr0, β) bound on Mn(snr, snr0, β), and

• the blue line is the bound on Mn(snr, snr0, β) from Theorem 5.2.1 for n = 1, 3, 15 and 70.

We observe that the new bound provides a refined characterization of the phase transition phenomenon

for finite n and, in particular, it recovers the bound in (Eq. 5.11) as n→∞.
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5.2.2 Max-I Problem: Upper Bounds on Cn(snr, snr0, β)

Using the previous novel bound on Mn(snr, snr0, β) in Theorem 5.2.1 we can find new upper bounds

on Cn(snr, snr0, β) by integration as follows:

Cn(snr, snr0, β) ≤ 1

2

∫ snr

0
Mn(t, snr0, β)dt

=
1

2
ln(1 + snrL) +

1

2

∫ snr0

snrL

Tn(t, snr0, β)dt+
1

2
ln

(
1 + βsnr

1 + βsnr0

)
, for snr0 ≤ snr, (5.19)

and

Cn(snr, snr0, β) ≤ 1

2

∫ snr

0
Mn(t, snr0, β)dt

≤ 1

2
ln(1 + min(snrL, snr)) +

1

2

∫ snr

min(snrL,snr)
Tn(t, snr0, β)dt, for snr0 ≥ snr. (5.20)

By using Theorem 5.2.1 to bound Tn(t, snr0, β) we get the following upper bounds on Cn(snr, snr0, β).

Proposition 5.2.3. For any 0 ≤ snr0, β ∈ [0, 1], and snrL given in Proposition 5.2.2, we have that for

snr0 ≤ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β)−∆(Eq. 5.23), (5.21)

and for snr0 ≥ snr

Cn(snr, snr0, β) ≤ C∞(snr, snr0, β)−∆(Eq. 5.24), (5.22)
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where

0 ≤ ∆(Eq. 5.23) =
1

2
ln

(
1 + snr0
1 + snrL

)
− 1

2

β(snr0 − snrL)

1 + βsnr0
− (n+ 2)

2
ln

(
snr0
snrL

)
+

(n+ 2)(snr0 − snrL)

2snr0

+
1

2

(
(2snrL + 1) ln

(
snr0(1 + snrL)

snrL(1 + snr0)

)
− snr0 − snrL

1 + snr0
− snr0 − snrL

snr0

)
= O

(
1

n

)
, (5.23)

and

0 ≤ ∆(Eq. 5.24) =
1

2
ln

(
1 + snr

1 + min(snrL, snr)

)
− β(snr −min(snrL, snr))

2(1 + βsnr0)

− (n+ 2)

2
ln

(
snr

min(snrL, snr)

)
+

(n+ 2)(snr −min(snrL, snr))

2snr0

+
1

2

(
(2 min(snrL, snr) + 1) ln

(
1 + min(snrL, snr)

min(snrL, snr)

)
− (2snr + 1) ln

(
1 + snr

snr

)

+ 2(snr −min(snrL, snr)) ln

(
1 + snr0
snr0

)
−snr −min(snrL, snr)

snr0
− snr −min(snrL, snr)

1 + snr0

)

= O

(
1

n

)
. (5.24)

Fig. Figure 13 compares the bounds on Cn(snr, snr0, β) in (Eq. 5.15) from Proposition 5.2.3 with

C∞(snr, snr0, β) for several values of n. The figure shows how the new bounds in Proposition 5.2.3

improve on the trivial C∞(snr, snr0, β) bound for finite n.
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5.2.3 Max-MMSE Problem: Achievability of M1(snr, snr0, β)

In this section we propose an input that will be used in the achievable strategy for both the max-I

problem and the max-MMSE problem with input length n = 1. This input is referred to as mixed

input (8) and is defined as

Xmix :=
√

1− δXD +
√
δXG, δ ∈ [0, 1], (5.25)

where XG and XD are independent, XG ∼ N (0, 1), E[X2
D] ≤ 1, and where the distribution of XD

and the parameter δ are to be optimized over. The input Xmix exhibits a decomposition property via

which the MMSE and the mutual information can be written as the sum of the MMSE and the mutual

information of the XD and XG components, albeit at different SNR values.
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Proposition 5.2.4. For Xmix defined in (Eq. 5.25) we have that

I(Xmix, snr) = I

(
XD,

snr(1− δ)
1 + δsnr

)
+ I(XG, snr δ), (5.26a)

mmse(Xmix, snr) =
1− δ

(1 + snrδ)2
mmse

(
XD,

snr(1− δ)
1 + δsnr

)
+ δ mmse(XG, snr δ). (5.26b)

Proof. See Appendix K.

Observe that Proposition 5.2.4 implies that, in order for mixed inputs (with δ < 1) to comply with

the MMSE constraint in (Eq. 5.3c) and (Eq. 5.9c), the MMSE of XD must satisfy

mmse

(
XD,

snr0(1− δ)
1 + δsnr0

)
≤ (β − δ)(1 + δsnr0)

(1− δ)(1 + βsnr0)
. (5.27)

The bound in (Eq. 5.27) will be helpful in choosing the parameter δ later on.

WhenXD is a discrete random variable with supp(XD) = N we use the following bounds from (72,

App. C) and Chapter 2 in Remark 2.

Proposition 5.2.5. For a discrete random variable XD such that pi = Pr(XD = xi), for i ∈ [1 : N ],

we have that

mmse(XD, snr) ≤ d2
max

N∑

i=1

pie
− snr

8
d2
i , (5.28a)

I(XD, snr) ≥ H(XD)− 1

2
ln
(π

6

)
− 1

2
ln

(
1 +

12

d2
min

mmse(XD, snr)

)
, (5.28b)
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where

d` := min
xi∈supp(XD):i 6=`

|x` − xi|, (5.28c)

dmin := min
`∈[1:N ]

d`, (5.28d)

dmax := max
xk,xi∈supp(XD)

|xk − xi|. (5.28e)

Proposition 5.2.4 and Proposition 5.2.5 are particularly useful because they will allow us to design

Gaussian and discrete components of the mixed input independently.

Fig. Figure 14 shows upper and lower bounds on M1(snr, snr0, β) where we show the following:

• The upper bound in (Eq. 5.11) (solid red line);

• The upper bound from Theorem 5.2.1 (dashed cyan line);

• The Gaussian-only input lower bound (green line), with X ∼ N (0, β), where the power has been

reduced to meet the MMSE constraint;

• The mixed input lower bound (blue dashed line), with the input in (Eq. 5.25). We used Proposi-

tion 5.2.4 where we optimized over XD for δ = β snr0
1+snr0

. The choice of δ is motivated by the

scaling property of the MMSE, that is, δmmse(XG, snrδ) = mmse(
√
δXG, snr), and the con-

straint on the discrete component in (Eq. 5.27). That is, we chose δ such that the power of XG is

approximately β while the MMSE constraint on XD in (Eq. 5.27) is not equal to zero. The input

XD used in Fig. Figure 14 was found by a local search algorithm on the space of distributions with

N = 3, and resulted in XD = [−1.8412,−1.7386, 0.5594] with PX = [0.1111, 0.1274, 0.7615],

which we do not claim to be optimal;
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• The discrete-only input lower bound (Discrete 1 brown dashed-dotted line), with

XD = [−1.8412,−1.7386, 0.5594] with PX = [0.1111, 0.1274, 0.7615], that is, the same dis-

crete part of the above mentioned mixed input. This is done for completeness, and to compare

the performance of the MMSE of the discrete component of the mixed input with and without the

Gaussian component; and

• The discrete-only input lower bound (Discrete 2 dotted magenta line), with

XD = [−1.4689,−1.1634, 0.7838] with PX = [0.1282, 0.2542, 0.6176], which was found by

using a local search algorithm on the space of discrete-only distributions with N = 3 points.

The choice of N = 3 is motivated by the fact that it requires roughly N = b√1 + snr0c points for the

PAM input to approximately achieve capacity of the point to point channel with SNR value snr0.

On the one hand, Fig. Figure 14 shows that, for snr ≥ snr0, a Gaussian-only input with power

reduced to β maximizes M1(snr, snr0, β) in agreement with the SCPP bound (green line). On the

other hand, for snr ≤ snr0, we see that a discrete-only input achieves higher MMSE than a Gaussian-

only input with reduced power (brown dashed-dotted line). Interestingly, unlike Gaussian-only inputs,

discrete-only inputs do not have to reduce power in order to meet the MMSE constraint. The reason

discrete-only inputs can use full power, as per the power constraint only, is because their MMSE de-

creases fast enough (exponentially in SNR, as seen in (Eq. 5.28a)) to comply with the MMSE constraint.

However, for snr ≥ snr0, the behavior of the MMSE of discrete-only inputs, as opposed to mixed in-

puts, prevents it from being optimal; this is due to their exponential tail behavior in (Eq. 5.28a). This

further motivates determining whether the MMSE constraint can imply a power constraint, which we

shall investigate in Section 5.4.
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Figure 14: Upper and lower bounds on M1(snr, snr0, β) vs. snr, for β = 0.01, snr0 = 10.

The mixed input (blue dashed line) gets the best of both (Gaussian-only and discrete-only) worlds:

it has the behavior of Gaussian-only inputs for snr ≥ snr0 (without any reduction in power) and the

behavior of discrete-only inputs for snr ≤ snr0. This behavior of mixed inputs turns out to be important

for the max-I problem, where we need to choose an input that has the largest area under the MMSE

curve.

Finally, Fig. Figure 14 shows the achievable MMSE with another discrete-only input (dotted ma-

genta line) that achieves higher MMSE than the mixed input for snr ≤ snr0 but lower than the mixed

input for snr ≥ snr0. This is again due to the tail behavior of the MMSE of discrete inputs. The reason

this second discrete input is not used as a component of the mixed inputs, is because this choice would

violate the MMSE constraint on XD in (Eq. 5.27).
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TABLE III: PARAMETERS OF THE MIXED INPUT IN (??) USED IN THE
PROOF OF PROPOSITION ??.

Regime Input Parameters

Weak Interference (snr ≥ snr0) N =

⌊√
1 + c1

(1−δ)snr0
1+δsnr0

⌋
, c1 = 3

2 ln
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) , δ = β snr0
1+snr0

.

Strong Interference (snr ≤ snr0) N =
⌊√

1 + c2snr
⌋
, c2 = 3

2 ln
(

12(1+βsnr0)
β

) , δ = 0.

The insight gained from analyzing different lower bounds on M1(snr, snr0, β) will be crucial to

show an approximately optimal input for C1(snr, snr0, β), which we consider next.

5.2.4 Max-I Problem: Achievability of C1(snr, snr0, β)

In this section we demonstrate that an inner bound on C1(snr, snr0, β) with the mixed input in (Eq. 5.25)

is to within an additive gap of the outer bound in Proposition 5.2.3.

Proposition 5.2.6. A lower bound on C1(snr, snr0, β) with the mixed input in (Eq. 5.25), with XD ∼

PAM(N) and with input parameters as specified in Table III, is to within O
(

log log( 1
mmse(X,snr0)

)
of

the outer bound in Proposition 5.2.3 with the exact gap value given by

snr ≥ snr0 ≥ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤ Gd1, (5.29a)

snr0 ≥ snr ≥ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤ Gd2, (5.29b)

snr ≤ 1 : C1(snr, snr0, β)− I1(Xmix, snr) ≤
1

2
ln(2), (5.29c)
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where

Gd1 :=
1

2
ln

(
2

3
ln

(
24(1 + (1− β)snr0

β

)
+

6β

1 + βsnr0

)
+

1

2
ln

(
4π

3

)
−∆(Eq. 5.23), (5.29d)

Gd2 :=
1

2
ln

(
1 +

2

3
ln

(
12(1 + βsnr0)

β

))
+

1

2
ln

(
4π

6

)
−∆(Eq. 5.24). (5.29e)

and ∆(Eq. 5.23) and ∆(Eq. 5.24) are given in (Eq. 5.23) and (Eq. 5.24), respectively.

Proof. See Appendix L.

Please note that the gap result in Proposition 5.2.6 is constant in snr (i.e., independent of snr) but

not in snr0.

Fig. Figure 15 compares the inner bounds on C1(snr, snr0, β), normalized by the point-to-point

capacity 1/2 ln(1 + snr), with mixed inputs (dashed magenta line) in Proposition 5.2.6 to:

• The upper bound in (Eq. 5.15), (solid red line);

• The upper bound from Proposition 5.2.3 (dashed blue line); and

• The inner bound with X ∼ N (0, β), where the reduction in power is necessary to satisfy the

MMSE constraint mmse(X, snr0) ≤ β
1+βsnr0

(dotted green line).

Fig. Figure 15 shows that Gaussian inputs are sub-optimal and that mixed inputs achieve large degrees

of freedom compared to Gaussian inputs. Interestingly, in the regime snr ≤ snr0, it is approximately

optimal to set δ = 0, that is, only the discrete part of the mixed input is used. This in particular supports

the conjecture in (27) that discrete inputs may be optimal for n = 1 and snr ≤ snr0.
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Figure 15: Upper and lower bounds on Cn=1(snr, snr0, β) vs. snr, for β = 0.001 and
snr0 = 60 = 17.6815 dB.

The above discussion completes the presentation of our bounds on max-I and max-MMSE problems.

The remainder of the Chapter contains the proof of Theorem 5.2.1 and a discussion of when the MMSE

constraint necessarily implies a power constraint.

5.3 Properties of the First Derivative of the MMSE

A key element in the proof of the SCPP in Proposition 5.1.3 was the characterization of the first

derivative of the MMSE as

−dmmse(X, snr)
dsnr

=
1

n
Tr
(
E
[
Cov2(X|Y

))
:=

1

n
Tr
(
E
[
Cov2(X, snr)

])
, (5.30)

which was given in (66, Proposition 9) for n = 1 and in (67, Lemma 3) for n ≥ 1. The first derivative

in (Eq. 5.30) turns out to be instrumental in proving Theorem 5.2.1 as well.
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For ease of presentation, in the rest of the section, instead of focusing on the derivative we will focus

on Tr
(
E[Cov2(X|Y)]

)
. The quantity Tr

(
E[Cov2(X|Y)]

)
is well defined for any X. Moreover, for the

case of n = 1 it has been shown (66, Proposition 5) that

E
[
Cov2(X|Y )

]
≤ k1

snr2
, where k1 ≤ 3 · 24. (5.31)

Before using (Eq. 5.30) in the proof of Theorem 5.2.1, we will need to sharpen the existing constant

for n = 1 in (Eq. 5.31) (given by k1 ≤ 3 · 24) and generalize the bound to any n ≥ 1, which to the best

of our knowledge has not been considered before.

Proposition 5.3.1. For any X and snr > 0 we have

1

n
Tr
(
E[Cov2(X|Y)]

)
≤ kn

snr2
, (5.32a)

where

kn ≤
n(n+ 2)− n mmse(ZZT|Y)− Tr

(
J2(Y)

)

n
≤ n+ 2. (5.32b)

Proof. See Appendix M.

In Proposition 5.3.1 the bound on k1 in (Eq. 5.31) has been tightened from k1 ≤ 3 · 24 in (Eq. 5.31)

to k1 ≤ 3. This improvement will result in tighter bounds in what follows.

The following tightens kn for power constrained inputs.
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Proposition 5.3.2. If X is such that 1
nTr

(
E
[
XXT

])
≤ 1, then

Tr(J2(Y)) ≥ n

(1 + snr)2
. (5.33)

The equality in (Eq. 5.33) is achieved if X ∼ N ( 0, I).

Proof. See Appendix N.

Observe that, by using the bound in (Eq. 5.32) from Proposition 5.3.1 together with the lower bound

on the Fisher information in Proposition 5.3.2, the bound on the constant kn in (Eq. 5.32b) can be

tightened to

kn ≤
n(n+ 2)− n

(1+snr)2

n
= n+ 2− 1

(1 + snr)2
. (5.34)

By further assuming that X has a finite fourth moment we can arrive at the following bound that

does not blow up around snr = 0+, as opposed to the bound in (Eq. 5.32a).

Proposition 5.3.3. If X such that 1
nTr

(
E
[(

XXT
)2])

<∞ then

Tr
(
E[Cov2(X|Y)]

)

≤ min




Tr

(
E
[((

X−√snrZ
) (

X−√snrZ
)T
)2
])

(1 + snr)4
,Tr

(
E
[
E2
[
XXT|Y

]])

 , (5.35a)
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where we can further bound

Tr
(
E
[
E2
[
XXT|Y

]])
≤ Tr

(
E
[(

XXT)2]) . (5.35b)

Proof. See Appendix O.

Note that evaluation of the first term of the minimum in (Eq. 5.35a) requires only the knowledge of

second and fourth moments of X.

We are now ready to prove our main result.

5.3.1 Proof of Theorem 5.2.1

The proof of Theorem 5.2.1 relies on the fact that the MMSE is an infinitely differentiable function

of snr (66, Proposition 7) and therefore can be written as the difference of two MMSE functions using

the fundamental theorem of calculus

mmse(X, snr)−mmse(X, snr0)

= −
∫ snr0

snr
mmse′(X, γ)dγ

a)
=

∫ snr0

snr

1

n
Tr
(
E[Cov2(X, γ)]

)
dγ

b)

≤
∫ snr0

snr

(n+ 2)

γ2
dγ = (n+ 2)

(
1

snr
− 1

snr0

)
−∆, ∆ = 0,
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where the (in)-equalities follow by using: a) (Eq. 5.30), and b) the bound in Proposition 5.3.1 with

kn ≤ n+ 2. If we further assume that X has finite power, instead of bounding kn ≤ n+ 2, we can use

(Eq. 5.34), to obtain

0 ≤ ∆ = ∆(Eq. 5.17c) =

∫ snr0

snr

1

γ2(1 + γ)2
dγ.

This concludes the proof of Theorem 5.2.1.

5.4 When Does an MMSE Constraint Imply a Power Constraint

In this section we try to determine whether the MMSE constraint may imply a power constraint.

For simplicity we focus on the case of n = 1. This question is motivated by the following limit, which

exists iff E[X2] <∞:

lim
snr→0+

mmse(X, snr) = E[X2]. (5.36)

The limit in (Eq. 5.36) raises the question of whether the MMSE constraint at snr0 around zero would

imply a power constraint. In other words, are we required to reduce power to meet the MMSE constraint

for very small snr0? Surprisingly, the answer to this question is no.

Proposition 5.4.1. There exists an input distribution X with maximum power as in (Eq. 5.3b) that

satisfies the MMSE constraint in (Eq. 5.3c) for any snr0 > 0 and any β > 0.
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Proof. Consider an input distribution given by

Xa = [−a, 0, a], PXa =

[
1

2a2
, 1− 1

a2
,

1

2a2

]
, (5.37)

for any a ≥ 1. Note that for the input distribution in (Eq. 5.37) E[X2
a ] = 1 for any a. The MMSE of Xa

can be upper bounded by

mmse(Xa, snr) ≤ min

(
1, 4(a2 + 1)e−

a2snr
8

)
, (5.38)

where the upper bound in (Eq. 5.38) follows by applying the upper bound in Proposition 5.2.5 together

with the bound mmse(Xa, snr) ≤ E[X2
a ] = 1. Therefore, by choosing a large enough, any MMSE

constraint can be met while transmitting at full power. This concludes the proof.

The MMSE of Xa is shown on Fig. Figure 16. Here are some other properties of Xa that are easy

to verify.

Proposition 5.4.2. The random variable Xa has the following properties

• lima→∞Xa = 0 almost surely (a.s.),

• E[|Xa − 0|n] = anp = E[X2
a ]an−2 = an−2.

The random variableXa serves as a counterexample that shows that a.s. convergence does not imply

Lp convergence.

An interesting question is whether we can characterize a family of input distributions for which

the MMSE constraint implies a power constraint under some non-trivial condition. In other words, we
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Figure 16: mmse(Xa, snr) vs. snr, for a = 10 and a = 20.

want to find a family of input distributions such that the power constraint can be related to the MMSE

constraint at some snr0, that is

E[X2] = f(mmse(X, snr0)) ≤ 1. (5.39)

Towards this end we have the following:

Proposition 5.4.3. For any X and any snr0 ≥ snr > 0, we have that

mmse(X, snr) = mmse(X, snr0) + k · (snr0 − snr), (5.40)
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where for some snrc ∈ (snr, snr0]

k = E
[
Cov2(X, snrc)

]
≤ sup

γ∈(snr,snr0)
E[Cov2(X, γ)] ≤ E[X4]. (5.41)

Moreover, for snr = 0+ the inequality in (Eq. 5.40) is valid iff

lim
snr→0+

E[Cov2(X, snr)] <∞. (5.42)

Proof. The result easily follows by applying the mean value theorem

mmse(X, snr0)−mmse(X, snr) =

∫ snr0

snr
E[Cov2(X, γ)]dγ

= E[Cov2(X, snrc)](snr0 − snr). (5.43)

for some snrc ∈ (snr, snr0). Note that for snr > 0 the quantity E[Cov2(X, γ)] is finite due to Proposi-

tion 5.3.1. Therefore, we focus on the case when snr = 0+.

Observe that since the mmse(X, snr) is an analytic function of SNR for snr > 0, its derivative or

E[Cov2(X, γ)] is also an analytic function of snr > 0. Therefore, if limsnr→0+ E[Cov2(X, snr)] = K <

∞ for some K > 0, by Jensen’s inequality we have that

K = lim
snr→0+

E[Cov2(X, snr)] ≥ (E[X2])2 = (mmse(X, 0))2. (5.44)
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So, in other words the existence of the derivative at snr = 0+ implies the existence of the power

constraint and the integration in (Eq. 5.43) holds for snr = 0+.

Conversely, if the integration in (Eq. 5.43) is finite for snr = 0+ we have that

limsnr→0+ E[Cov2(X, snr)] <∞.

Therefore, the bound in (Eq. 5.40) holds iff limsnr→0+ E[Cov2(X, snr)] < ∞. This concludes the

proof.

From Proposition 5.4.3 we see that necessary and sufficient conditions for the MMSE at snr0 to

imply a reduction in power (i.e., E[X2] < 1) are

1) mmse(X, snr0) + snr0 · E[Cov2(X, snrc)] < 1,

⇔ E[Cov2(X, snrc)] <
1−mmse(X, snr0)

snr0
, (5.45a)

2) lim
snr→0+

E[Cov2(X, snr)] <∞, (5.45b)

where snrc is defined in Proposition 5.4.3.

Since snrc might be difficult to compute, the following slightly stronger (i.e., sufficient condition)

can be useful:

sup
γ∈(0,snr0)

E[Cov2(X, γ)] <
1−mmse(X, snr0)

snr0
. (5.46)
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Finally, observe that lima→∞Xa does not satisfy this moment condition since

lim
a→∞

E[Cov2(Xa|Y )] =





∞ snr = 0,

0 snr > 0.

(5.47)

5.5 Conclusion

In this Chapter we have considered a Gaussian channel with one transmitter and two receivers in

which the maximization of the rate at the primary/intended receiver is subject to a disturbance constraint

measured by the MMSE at the secondary/unintended receiver. We have derived new upper bounds on

the capacity of this channel that hold for vector inputs of any length, and demonstrated a matching lower

bound that is to within an additive gap of the order O
(

log log 1
mmse(X,snr0)

)
of the upper bound. At the

heart of our proof is a new upper bound on the MMSE that complements the SCPP of the MMSE and

may be of independent interest.



CHAPTER 6

CONCLUSION

In this work we have develop several techniques for evaluating the approximate performance of

discrete or more generally mixed inputs. The developed framework was then applied to several multi-

user channels that are of interest in several information theoretic applications.

The first application of discrete and mixed inputs was in the context of the G-IC-OR. At first glance

it appears that a system with oblivious nodes should suffer a considerable degradation since the oblivious

receiver is incapable of doing sophisticated decoding techniques such as joint decoding or successive

interference cancelation. The results of our work demonstrate that this intuition is wrong and almost no

performance degradation takes place.

The intuition behind this result is given in Chapter 2 with an example of the channel with mixed noise

(i.e. discrete+Gaussian). It was shown, provided that the minimum distance of the discrete component

of the noise does not go to zero, that the discrete component of the noise has essentially no effect on the

performance, and only the Gaussian part of the noise has an effect.

This observation was then used to show a quite surprising result – that a simple communication

scheme of treating interference as noise is approximately optimal in the classical G-IC. This result

has potential applications in wireless communications where treating interference as noise, albeit as

Gaussian noise, has been the industry’s standard. Our result suggests that accounting for the correct

distribution of the noise can bring considerable gains.
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In the last part of the thesis we gave an estimation theoretic explanation for the performance of the

discrete inputs. In the past it has been recognized that soft-decoding strategies, in which the interference

is estimated rather than decodes, have be advantageous. For example, soft-decoding strategies are easy

to implement and have low computational complexity. However, no performance guarantees have been

provided for such strategies. Interestingly, our technique of using discrete inputs falls into the category

of soft-decoding, and this work gives a first performance guarantee result. That is, we have shown that

a class of soft-decoding strategies is approximately optimal.

The interplay between estimation theoretic and information theoretic measures offers many potential

advantages. For example, recently in (30), using an estimation framework under a non-quadric cost

function, we have sharpened the gap term in the Ozarow-Wyner bound. This consequently improves all

of the gap results given in this thesis.

Finally, we would like to mention that many of our results have potential applications in other fields.

For example, the new MMSE bound in Chapter 5 has potential applications in the field of statistical

physics. In particular, using recent connections (65) and (71) between information theory, estimation

theory, and statistical physics, the bound in Chapter 5 can be related to the intrinsic free energy of

thermodynamic systems with n particles. In many applications in statistical physics one is interested

in computing thermodynamic limits as the number of particles goes to infinity (i.e. n → ∞). Our

new bound can potentially be useful for determining the thermodynamic limits, which are notoriously

difficult to compute. In the past, this obstacle has led statistical physicists to resort to techniques such

as the replica method or the cavity method, which lack mathematical rigor in general (73).
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Appendix A

PROOF OF EQ. 2.13

To prove the lower bound in (Eq. 2.13) we first find a lower bound on the differential entropy of

output Y = XD+ZG. To that end let pi := P[XD = si], i ∈ [1 : N ] then Y has the following Gaussian

mixture density

Y ∼ PY (y) :=
∑

i∈[1:N ]

piN (y; si, 1). (A.1)
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Appendix A (Continued)

where N (y; si, 1) . We have

−h(Y ) =

∫
PY (y) log(PY (y))dy

(a)

≤ log

∫
PY (y)PY (y)dy

= log

∫ 
 ∑

i∈[1:N ]

piN (y; si, 1)




2

dy

= log


 ∑

(i,j)∈[1:N ]2

pipj

∫
N (y; si, 1)N (y; sj , 1)dy




= log


 ∑

(i,j)∈[1:N ]2

pipj
1√
4π

e
−(si−sj)2

4

∫
N
(
y;
si + sj

2
,
1

2

)
dy




(b)
= log


 ∑

(i,j)∈[1:N ]2

pipj
1√
4π

e−
(si−sj)2

4




(c)

≤ log


 ∑

i∈[1:N ]

p2
i

1√
4π

+
∑

i∈[1:N ]

pi(1− pi)
1√
4π

e−
d2
min(XD)

4




(d)

≤ − log(N
√

4π) + log

(
1 + (N − 1)e−

d2
min(XD)

4

)
,

which implies

I(XD;XD + ZG) = h(Y )− h(ZG) ≥ log(N)− gapAD,

gapAD :=
1

2
log
( e

2

)
+ log

(
1 + (N − 1)e−

d2
min(XD)

4

)
, (A.2)
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Appendix A (Continued)

where the (in)-equalities follow from: (a) Jensen’s inequality, (b)
∫
N (y;µ, σ2)dy = 1, (c) dmin(XD) ≤

|si − sj |, ∀i 6= j, (d) by maximizing over the {pi, i ∈ [1 : N ]}. Combining this bound with the fact that

mutual information is non-negative proves the claimed lower bound.



190

Appendix B

PROOF OF PROPOSITION 2.1.3

For convenience let S := supp(hxxX + hyyY ). To prove that |S| = |X||Y | a.e. we look at the

measure of the set such that |S| 6= |X||Y |, that is, a set for which there exists si = hxxxi + hyyyi and

sj = hxxxj + hyyyj such that si = sj for some i 6= j; hence, we are interested in characterizing the

measure of the set

A :=
{

(hxx, hyy) ∈ [0, 1]2 :
hxxxi + hyyyi = hxxxj + hyyyj

(xi, yi) 6= (xj , yj)

,∀xi, xj ∈ X and ∀yi, yj ∈ Y
}
.

(B.1)

Define

A(i, j) =
{

(hxx, hyy) ∈ [0, 1]2 : hxxxi + hyyyi = hxxxj + hyyyj , s.t. (xi, yi) 6= (xj , yj)
}
. (B.2)

By the sub-additivity of measure we have

m(A) = m


⋃

i,j

A(i, j)


 ≤

∑

i,j

m(A(i, j)). (B.3)

For fixed xi, xj , yi, yj the set A(i, j) is a line in (hxx, hyy) ∈ R2 and hence

m (A(i, j)) = 0.
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Appendix B (Continued)

Thus, in (Eq. B.3) we have a countable sum of sets of measure zero, which implies that m(A) = 0.

Next, we bound the minimum distance dmin(S) := mini 6=j{|si − sj | : si, sj ∈ S} with |si − sj | =

|hxxxi + hyyyi − hxxxj − hyyyj |. We distinguish two cases:

Case 1) xi = xj and yi 6= yj , or xi 6= xj and yi = yj : then trivially

|si − sj | ≥ |hyy|dmin(Y ), or

|si − sj | ≥ |hxx|dmin(X).

Case 2) xi 6= xj and yi 6= yj : Let z∗ ∈ Z, then

|si − sj | = |hxxxi + hyyyi − hxxxj − hyyyj |

= |hxx(xi − xj)− hyy(yj − yi)|

= |hxxdmin(X)(zxi − zxj)− hyydmin(Y )(zyj − zyi)|

= |axxāzx − byy b̄zy|

where zx = (zxi − zxj) and zy = (zyj − zyi) and axxā = hxxdmin(X), byy b̄ = hyydmin(Y ). That

is axx, byy are the fractional parts of and ā and b̄ are the integer parts hxxdmin(X) and hyydmin(Y )

respectively. Hence, by Lemma B.1.1 in Appendix B.1 we have that

|si − sj | ≥ γmax

( |hxx|dmin(X)

2|Y |(1 + log(|X|)) ,
|hyy|dmin(Y )

2|X|(1 + log(|Y |))

)

≥ κγ,|X|,|Y |max

( |hxx|dmin(X)

|Y | ,
|hyy|dmin(Y )

|X|

)
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up to an outage set of measure γ where κγ,|X|,|Y | := γ
1+ln(max(|X|,|Y |) and γ ∈ (0, 1]. Next, by

taking the minimum over both cases we arrive at the result in Proposition 2.1.3.

B.1 Minimum Distance Auxiliary Lemma

Lemma B.1.1. Let (axx, byy) ∈ [0, 1]2 then for fixed integers ā, b̄ ∈ Z

Then the function

f(zx, zy) = min
zx,zy
|axxāzx − byy b̄zy|,

subject to the constrains

zx ∈ [−Nx : Nx]/{0},

zy ∈ [−Ny : Ny]/{0},

satisfies

f(zx, zy) ≥ γmax

(
byy b̄

2Nx(1 + ln(Ny))
,

axxā

2Ny(1 + ln(Nx))

)

for all (axx, byy) ∈ [0, 1]2 except for an outage set of Lebesgue measure γ for any γ ∈ (0, 1].



193

Appendix B (Continued)

Proof. First observe that w.l.o.g. we can assume that axxā, byy b̄ ∈ R+ and zx ∈ [1 : Nx] and zy ∈ [1 :

Ny]. This is because if sign(azx) 6= sign(bzy) then the function is minimized by |zx| = 1 and |zy| = 1

and attains a value of f = |axxā|+ |byy b̄|. Furthermore, we let

Aε =

{
(axx, byy) ∈ [0, 1]2 : min

1≤zx≤Nx, 1≤zy≤Ny
|axxāzx − byy b̄zy| > ε

}

=
⋂

1≤zx≤Nx, 1≤zy≤Ny

{
(axx, byy) ∈ [0, 1]2 : |axxāzx − byy b̄zy| > ε

}

=
⋂

1≤zx≤Nx, 1≤zy≤Ny

A(zx, zy),

where Aε(zx, zy) =
{

(axx, byy) ∈ [0, 1]2 : |axxāzx − byy b̄zy| > ε
}

and for some ε > 0. The shape of

Aε(zx, zy) is shown on Fig. Figure 17. Let Acε be the complement of Aε where we have

Acε =
⋃

1≤zx≤Nx, 1≤zy≤Ny

Acε(zx, zy) (B.4)

where Acε(zx, zy) =
{

(axx, byy) ∈ [0, 1]2 : |axxāzx − byy b̄zy| ≤ ε
}

.

Next, we find the measure of the set Acε as follows:

m(Acε) = m


 ⋃

1≤zx≤Nx, 1≤zy≤Ny

Acε(zx, zy)




≤
∑

1≤zx≤Nx, 1≤zy≤Ny

m(Acε(zx, zy))

where the last inequality is due to the sub-additive of measure.
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1

1
byy =

−� + axxāzx

b̄zy

byy =
� + axxāzx

b̄zy
byy

axx

Point A

Point B

Point C

Point D

A :(axx, byy) =

�
min

�
1,

b̄zy − �

āzx

�
, 1

�

B :(axx, byy) =

�
�

āzx
, 0

�

C :(axx, byy) =

�
b̄zy + �

āzx
, 1

�

D :(axx, byy) =

�
0,

�

b̄zx

�

Figure 17: Shape of the outage strip.

Next, we compute m(Acε(zx, zy)) as follows

m(Acε(zx, zy))

=

∫ axx=PointA

axx=0

ε+ axxāzx
bzy

daxx −
∫ axx=Point A

axx=Point B

−ε+ axxāzx
b̄zy

daxx

=

∫ axx=min
(

1,
b̄zy−ε
āzx

)
axx=0

ε+ axxāzx
bzy

daxx −
∫ axx=min

(
1,
b̄zy−ε
āzx

)
axx= ε

āzx

−ε+ axxāzx
b̄zy

daxx

=
axx (2 ε+ ā axx zx)

2 b̄ zy

∣∣∣∣
axx=min

(
1,
b̄zy−ε
āzx

)
axx=0

−


− axx (2 ε− ā axx zx)

2 b̄ zy

∣∣∣∣
axx=min

(
1,
b̄zy−ε
āzx

)
axx= ε

āzx




=

min

(
1,−(ε−b̄ zy)

ā zx

) (
2 ε+ ā zx min

(
1,−(ε−b̄ zy)

a zx

))

2 b̄ zy
−

(
ε− ā zx min

(
1,−(ε−b̄ zy)

ā zx

))2

2 ā b̄ zx zy

= −
ε

(
ε− 4 ā zx min

(
1,−(ε−b̄ zy)

ā zx

))

2 ā b̄ zx zy
.
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Next, compute m(Acε) as follows

m(Acε)

=
∑

1≤zx≤Nx, 1≤zy≤Ny

−
ε

(
ε− 4 ā zx min

(
1,−(ε−b̄ zy)

ā zx

))

2 ā b̄ zx zy

=
∑

1≤zx≤Nx, 1≤zy≤Ny

−ε2
2 ā b̄ zx zy

+
∑

1≤zx≤Nx, 1≤zy≤Ny

4ε ā zx min

(
1,−(ε−b̄ zy)

ā zx

)

2 ā b̄ zx zy

≤
∑

1≤zx≤Nx, 1≤zy≤Ny

4ε ā zx min

(
1,−(ε−b̄ zy)

ā zx

)

2 ā b̄ zx zy
.

The term min

(
1,−(ε−b̄ zy)

ā zx

)
can be upper bounded in two different ways

min

(
1,−

(
ε− b̄ zy

)

ā zx

)
≤ 1, (B.5)

min

(
1,−

(
ε− b̄ zy

)

ā zx

)
≤ −

(
ε− b̄ zy

)

ā zx
. (B.6)

With the first upper bound in (Eq. B.5) we get

m(Acε) ≤
∑

1≤zx≤Nx, 1≤zy≤Ny

4ε ā zx
2 ā b̄ zx zy

≤ 2εNx(1 + ln(Ny))

b̄
(B.7)
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where for the last inequality we have used
∑Ny

zy=1
1
zy
≤ 1 + ln(Ny). With the second upper bound

in (Eq. B.6) we get

m(Acε) ≤
∑

1≤zx≤Nx, 1≤zy≤Ny

4ε (b̄zy − ε)
2 ā b̄ zx zy

≤
∑

1≤zx≤Nx, 1≤zy≤Ny

4ε

2 ā zx

≤ 2εNy(1 + ln(Nx))

ā
. (B.8)

So by taking the tightest of the two bounds in (Eq. B.7) and in (Eq. B.8) we get

m(Acε) ≤ min

(
2εNx(1 + ln(Ny))

b̄
,
2εNy(1 + ln(Nx))

ā

)
.

Now let m(Acε) = γ for some γ ∈ [0, 1] then we have that

γ ≤ εmin

(
2Nx(1 + ln(Ny))

b̄
,
2Ny(1 + ln(Nx))

ā

)
.

Next, by solving for ε in terms of measure of the outage,

ε ≥ γ

min
(

2Nx(1+ln(Ny))

b̄
,

2Ny(1+ln(Nx))
ā

) = γmax

(
b̄

2Nx(1 + ln(Ny))
,

ā

2Ny(1 + ln(Nx))

)

≥ γmax

(
byy b̄

2Nx(1 + ln(Ny))
,

axxā

2Ny(1 + ln(Nx))

)

This concludes the proof.
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PROOF OF THEOREM 3.5.2

We proceed to evaluate the rate region in Proposition 3.4.1 with the inputs in (Eq. 3.16). With the

chosen inputs, the outputs are

Y1 = h11

√
1− δ1X1D + h11

√
δ1X1G + h12

√
1− δ2X2Gc + h12

√
δ2X2Gp + Z1,

Y2 = h21

√
1− δ1X1D + h21

√
δ1X1G + h22

√
1− δ2X2Gc + h22

√
δ2X2Gp + Z2.

The achievable region in (Eq. 3.5) with Q = ∅, U2 = X2Gc reduces to

R1 ≤ I(X1;Y1|X2Gc)

= h(Y1|X2Gc)− h(Y1|X1, X2Gc)

= h(h11

√
1− δ1X1D + h11

√
δ1X1G + h12

√
δ2X2Gp + Z1)

− h(h12

√
δ2X2Gp + Z1)

= h

(√
|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2δ2
X1D + Z1

)
− h(Z1)

+ Ig
(
|h11|2δ1 + |h12|2δ2

)
− Ig

(
|h12|2δ2

)
;
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therefore, by (Eq. 2.10), we can further lower bound the rate of user 1 as

R1 ≤ Ig

(
min

(
N2 − 1,

|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2δ2

))
− 1

2
log
(πe

3

)
+ Ig

( |h11|2δ1

1 + |h12|2δ2

)
,

thus proving (Eq. 3.17a).

For the rate of user 2 we have

R2 ≤ I(X2;Y2) = h
(
h21

√
1− δ1X1D + h21

√
δ1X1G + h22

√
1− δ2X2Gc + h22

√
δ2X2Gp + Z2

)

− h
(
h21

√
1− δ1X1D + h21

√
δ1X1G + Z2

)

= h

(√
|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2
X1D + Z2

)
− h(Z2) + Ig

(
|h21|2δ1 + |h22|2

)

− h
(√
|h21|2(1− δ1)

1 + |h21|2δ1
X1D + Z2

)
+ h(Z2)− Ig

(
|h21|2δ1

)

therefore, by (Eq. 2.10), we can further lower bound the rate of user 2 as

R2 ≤ Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2
))
− 1

2
log
(πe

3

)
+ Ig

( |h22|2
1 + |h21|2δ1

)

− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1

))

thus proving (Eq. 3.17b).
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Finally for the sum-rate we have

R1 +R2 ≤ I(X1, X2Gc;Y1) + I(X2;Y2|X2Gc)

= h(h11

√
1− δ1X1D + h11

√
δ1X1G + h12

√
1− δ2X2Gc + h12

√
δ2X2Gp + Z1)

− h(h12

√
δ2X2Gp + Z1) + h(h21

√
1− δ1X1D + h21

√
δ1X1G + h22

√
δ2X2Gp + Z2)

− h(h21

√
1− δ1X1D + h21

√
δ1X1G + Z2)′

therefore, by (Eq. 2.10), we can further lower bound the sum-rate as

R1 +R2 ≤ Ig

(
min

(
N2 − 1,

|h11|2(1− δ1)

1 + |h11|2δ1 + |h12|2
))
− 1

2
log
(πe

3

)
+ Ig

(
|h11|2δ1 + |h12|2

)

− Ig
(
|h12|2δ2

)

+ Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1 + |h22|2δ2

))
− 1

2
log
(πe

3

)
+ Ig

(
|h21|2δ1 + |h22|2δ2

)

− Ig

(
min

(
N2 − 1,

|h21|2(1− δ1)

1 + |h21|2δ1

))
− Ig

(
|h21|2δ1

)

thus proving (Eq. 3.17c).
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Remark 16. For future use, we specialized the derived achievable rate region for the power splits

δ1 = 1
1+|h21|2 and δ2 = 1

1+|h12|2 inspired by (26); we thus have that the following region is achievable

for any N ∈ N

R1 ≤ Ig


min


N2 − 1,

|h11|2a
1 + |h11|2

1+|h21|2 + b




− 1

2
log
(πe

3

)
+ Ig




|h11|2
1+|h21|2

1 + b


 , (C.1a)

R2 ≤ Ig

(
min

(
N2 − 1,

|h21|2a
1 + a+ |h22|2

))
− 1

2
log
(πe

3

)
+ Ig

( |h22|2
1 + a

)

− Ig
(
min

(
N2 − 1, |h21|2a

))
, (C.1b)

R1 +R2 ≤ Ig


min


N2 − 1,

|h11|2a
1 + |h11|2

1+|h21|2 + |h12|2




+ Ig

( |h11|2
1 + |h21|2

+ |h12|2
)
− Ig (b)

+ Ig


min


N2 − 1,

|h21|2a
1 + a+ |h22|2

1+|h12|2




+ Ig




|h22|2
1+|h12|2

1 + a




− Ig
(
min

(
N2 − 1, |h21|2a

))
− log

(πe

3

)
. (C.1c)

where a := |h21|2
1+|h21|2 ∈ [0, 1] and b := |h12|2

1+|h12|2 ∈ [0, 1].
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In the symmetric case the region in (Eq. C.1) is further lower bounded by

R1 ≤ Ig

(
min

(
N2 − 1,

snr · inr
1 + snr + 2inr

))
− 1

2
log
(πe

3

)
+ Ig

(
snr

1 + 2inr

)
, (C.2a)

R2 ≤ Ig

(
min

(
N2 − 1,

inr2

(1 + inr)(1 + snr) + inr

))
− 1

2
log
(πe

3

)

+ Ig

(
snr

1

2

)
− Ig

(
min

(
N2 − 1,

inr2

1 + 2inr

))
, (C.2b)

R1 +R2 ≤ Ig

(
min

(
N2 − 1,

snr · inr
(1 + inr)2 + snr

))

+ Ig

(
inr +

snr

1 + inr

)
− Ig

(
inr

1 + inr

)

+ Ig

(
min

(
N2 − 1,

inr2

1 + snr + 2inr

))

+ Ig

(
snr

1 + 2inr

)
− Ig

(
min

(
N2 − 1,

inr2

1 + 2inr

))
− log

(πe

3

)
. (C.2c)
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GAP DERIVATION FOR THE MODERATELY WEAK INTERFERENCE REGIME

In order to show achievability to within a constant gap of the outer bound in (Eq. 3.22) by means

of the achievable region in (Eq. 3.32) (a further lower bound to the region in (Eq. C.2)), we distinguish

two cases.

CASE 1 (regime corresponding to α ∈ [2/3, 1] in 7c)

Assume that the sum-rate in eq.(Eq. 3.32c) is redundant; under this condition we match the corner

point of the rectangular achievable region, given by (R1, R2) = (eq.(Eq. 3.32a), eq.(Eq. 3.32b)), to

R(G-IC mod P1)
out : R1 = Ig

(
inr +

snr

1 + inr

)
, (D.1a)

R2 = Ig (snr)− Ig (inr) + Ig(inr + snr)− Ig

(
inr +

snr

1 + inr

)
, (D.1b)

and

R(G-IC mod P2)
out : R1 = Ig (snr)− Ig (inr) + Ig(inr + snr)− Ig

(
inr +

snr

1 + inr

)
, (D.2a)

R2 = Ig

(
inr +

snr

1 + inr

)
, (D.2b)

which were obtained from the intersection of the sum-rate outer bound in (Eq. 3.22c) with either (Eq. 3.22e)

or (Eq. 3.22f). In particular, for the corner point in (Eq. D.1) we use x in (Eq. 3.32d) (which corresponds
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to N in (Eq. 3.29)), and for the corner point in (Eq. D.2) we use x in (Eq. 3.32e) (which corresponds to

N in (Eq. 3.30)).

The gap is readily computed as follows: for the corner point in (Eq. D.1) we have

∆1 = eq.(Eq. D.1a)-eq.(Eq. 3.32a)|x in (Eq. 3.32d)

≤ Ig

(
inr +

snr

1 + inr

)
− Ig

(
snr

1 + 2inr

)
− Ig

(
inr2

1 + snr + 2inr

)

+
1

2
log(4) +

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log (4) +

1

2
log
(πe

3

)
=

1

2
log

(
8πe

3

)
,

and

∆2 = eq.(Eq. D.1b)-eq.(Eq. 3.32b)|x in (Eq. 3.32d)

≤ Ig (snr)− Ig (inr) + Ig(inr + snr)− Ig

(
inr +

snr

1 + inr

)

− Ig
(snr

2

)
+ Ig

(
inr2

1 + snr + 2inr

)
−Ig

(
inr2

(1 + inr)(1 + snr) + inr

)
+

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log
(πe

3

)
=

1

2
log

(
2πe

3

)
, since inr ≤ snr in weak interfernce;
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while for the corner point in (Eq. D.2) we have

∆1 = eq.(Eq. D.2a)-eq.(Eq. 3.32a)|x in (Eq. 3.32e)

≤ Ig (snr)− Ig (inr) + Ig(inr + snr)− Ig

(
inr +

snr

1 + inr

)

− Ig

(
snr

1 + 2inr

)
− Ig

(
snr · inr

(1 + inr)2 + snr

)
+

1

2
log (4) +

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log (4) +

1

2
log
(πe

3

)
=

1

2
log

(
8πe

3

)
,

and

∆2 = eq.(Eq. D.2b)-eq.(Eq. 3.32b)|x in (Eq. 3.32e)

≤ Ig

(
inr +

snr

1 + inr

)
− Ig

(snr
2

)
+ Ig

(
snr · inr

(1 + inr)2 + snr

)

−Ig
(

inr2

(1 + inr)(1 + snr) + inr

)
+

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log
(πe

3

)
=

1

2
log

(
2πe

3

)
, since inr ≤ snr in weak interference.

CASE 2 (regime corresponding to α ∈ [1/2, 2/3] in 7d)

Assume that the sum-rate in (Eq. 3.32) is not redundant, that is after simple algebraic manipulation,

1 + min
(
x|x in (Eq. 3.32d), x|x in (Eq. 3.32e)

)

<
(1 + 2inr)(1 + snr

2 )

(1 + inr)(1 + snr) + inr︸ ︷︷ ︸
∈[0.7358,1] for inr≤snr≤inr(1+inr) see Appendix E

· (1 + inr)(1 + inr + snr)

(1 + inr)2 + snr︸ ︷︷ ︸
=1+x|x in (Eq. 3.32e)

, (D.3)
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which implies

x|x in (Eq. 3.32d) ≤ x|x in (Eq. 3.32e). (D.4)

Under the condition in (Eq. D.4) we match one of the corner point of the pentagon-shaped achievable

region in (Eq. 3.32) to

R(G-IC weak P1)
out : R1 = 3Ig

(
inr +

snr

1 + inr

)
− Ig (snr + inr)− Ig (snr) + Ig (inr) , (D.5a)

R2 = Ig (snr)− Ig (inr) + Ig (snr + inr)− Ig

(
inr +

snr

1 + inr

)
, (D.5b)

and

R(G-IC weak P2)
out : R1 = Ig (snr)− Ig (inr) + Ig (snr + inr)− Ig

(
inr +

snr

1 + inr

)
, (D.6a)

R2 = 3Ig

(
inr +

snr

1 + inr

)
− Ig (snr + inr)− Ig (snr) + Ig (inr) , (D.6b)

which were obtained from the intersection of the sum-rate outer bound in (Eq. 3.22d) with either (Eq. 3.22e)

or (Eq. 3.22f). In particular, for the corner point in (Eq. D.5) we use x in (Eq. 3.32d) (which corresponds

to N in (Eq. 3.29)), and for the corner point in (Eq. D.6) we use x in (Eq. 3.32e) (which corresponds to

N in (Eq. 3.30)).



206

Appendix D (Continued)

The gap is readily computed as follows: for the corner point in (Eq. D.5) we have

∆1 = eq.(Eq. D.5a)-
(

eq.(Eq. 3.32c)-eq.(Eq. 3.32b)
)
|x in (Eq. 3.32d)

≤ 2Ig

(
inr +

snr

1 + inr

)
− Ig (snr + inr)− Ig (snr) + Ig (inr) + Ig

(
inr

1 + inr

)

− Ig

(
snr

1 + 2inr

)
+ Ig

(snr
2

)
+ Ig

(
inr2

(1 + inr)(1 + snr) + inr

)

− 2Ig

(
inr2

1 + snr + 2inr

)
+

1

2
log (4) +

1

2
log
(πe

3

)

=
1

2
log




(
snr
2 + 1

) (
inr

inr+1 + 1
) (

inr2

inr+(inr+1) (snr+1) + 1
)

(inr + 1)
(
inr + snr

inr+1 + 1
)2

(
inr2

2 inr+snr+1 + 1
)2 (

snr
2 inr+1 + 1

)
(snr + 1) (inr + snr + 1)




+
1

2
log (4) +

1

2
log
(πe

3

)

=
1

2
log

(
(2 inr + 1)2 ( snr

2 + 1
)

(2 inr + snr + 1)

(inr + 1) (snr + 1) (2 inr + snr + inr snr + 1)

)
+

1

2
log
(πe

3

)

≤ 1

2
log(6) +

1

2
log (4) +

1

2
log
(πe

3

)
=

1

2
log (8πe)
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and

∆2 = eq.(Eq. D.5b)-eq.(Eq. 3.32b)|x in (Eq. 3.32d)

≤ Ig (snr)− Ig (inr) + Ig (snr + inr)− Ig

(
inr +

snr

1 + inr

)
− Ig

(snr
2

)

+ Ig

(
inr2

1 + snr + 2inr

)
− Ig

(
inr2

(1 + inr)(1 + snr) + inr

)
+

1

2
log
(πe

3

)

=
1

2
log




(
inr2

2 inr+snr+1 + 1
)

(snr + 1) (inr + snr + 1)

(
snr
2 + 1

) (
inr2

inr+(inr+1) (snr+1) + 1
)

(inr + 1)
(
inr + snr

inr+1 + 1
)




+
1

2
log
(πe

3

)

=
1

2
log

(
2 (snr + 1) (2 inr + snr + inr snr + 1)

(inr + 1) (snr + 2) (2 inr + snr + 1)

)
+

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log
(πe

3

)
=

1

2
log

(
2πe

3

)
,
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while for the corner point in (Eq. D.6) we have

∆1 = eq.(Eq. D.6a)-eq.(Eq. 3.32a)|x in (Eq. 3.32e)

≤ Ig (snr)− Ig (inr) + Ig (snr + inr)− Ig

(
inr +

snr

1 + inr

)
− Ig

(
snr

1 + 2inr

)

− Ig

(
snr · inr

(1 + inr)2 + snr

)
+

1

2
log
(πe

3

)
+

1

2
log(4)

=
1

2
log


 (snr + 1) (inr + snr + 1)(

snr
2 inr+1 + 1

)
(inr + 1)

(
inr snr

snr+(inr+1)2 + 1
) (

inr + snr
inr+1 + 1

)




+
1

2
log (4) +

1

2
log
(πe

3

)

=
1

2
log

(
(2 inr + 1) (snr + 1)

(inr + 1) (2 inr + snr + 1)

)
+

1

2
log (4) +

1

2
log
(πe

3

)

≤ 1

2
log (2) +

1

2
log (4) +

1

2
log
(πe

3

)
=

1

2
log

(
4πe

3

)
,

and

∆2 = eq.(Eq. D.6b)-
(

eq.(Eq. 3.32c)-eq.(Eq. 3.32a)
)
|x in (Eq. 3.32e)

≤ 2Ig

(
inr +

snr

1 + inr

)
− Ig (snr + inr)− Ig (snr) + Ig (inr) + Ig

(
inr

1 + inr

)

+
1

2
log
(πe

3

)

=
1

2
log

(
(1 + 2inr)((1 + inr)2 + snr)

(1 + inr)2(1 + snr)(1 + inr + snr)

)
+

1

2
log
(πe

3

)

≤ 0 +
1

2
log
(πe

3

)
=

1

2
log
(πe

3

)
.

This concludes the proof.
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MINIMUM OF A FUNCTION IN EQ. D.3

The minimum of the function

f(x, y) =
(1 + 2y)(1 + x

2 )

(1 + y)(1 + x) + y
, for (x, y) ∈ R2

+ such that 1 ≤ y ≤ x ≤ y(1 + y),

is found by first taking the partial derivative with respect to x, given my ∂f
∂x = − 2y2+7y+3

2(2x+y+xy+1)2 which

is easily seen to be monotone decreasing in x therefore attaining the minimum

f(y(1 + y), y) =
2y3 + 3y2 + 5y + 2

2y3 + 6y2 + 6y + 2
, for 1 ≤ y.

Now by taking the partial derivative with respect to y, given by ∂f
∂y =

(3y2−4y−1)
2(y+1)4 and setting it equal

to zero we see that the minimum occurs at y =
√

7+2
3 . Hence, the minimum of the function occurs at

f
(√

7+2
3

(
1 +

√
7+2
3

)
,
√

7+2
3

)
= 0.7359. Conditions on the second derivatives can be easily checked

to verify that indeed the claim stationary point is a global minimum (even easier still, by plotting the

function for example with Matlab).
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GAP FOR inr ≤ snr ≤ 1 + inr

Outer Bound for inr ≤ snr ≤ 1 + inr

It is well know that when snr ≈ inr time-division is approximately optimal (26). In this regime we

outer bound the capacity region by the sum-rate constraint in (Eq. 4.9c) only, which in the symmetric

case is

R1 +R2 ≤ Ig (snr)− Ig (inr) + Ig (snr + inr)

= Ig (snr) + Ig

(
snr

1 + inr

)

≤ Ig (snr) +
1

2
log(2),

that is

R(F)
out =

⋃

t∈[0,1]





R1 ≤ t
(
Ig (snr) + 1

2 log(2)
)

R2 ≤ +(1− t)
(
Ig (snr) + 1

2 log(2)
)




.
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Inner Bound for inr ≤ snr ≤ 1 + inr

We only use the discrete part of the mixed inputs and set

N1 = Nd (snr1,t) , snr1,t := (1 + snr)t − 1 ≤ snr, (F.1a)

N2 = Nd (snr2,t) , snr2,t := (1 + snr)1−t − 1 ≤ snr, (F.1b)

δ1 = 0, (F.1c)

δ2 = 0. (F.1d)

Note that

N2
1N

2
2 − 1 ≤ (1 + snr1,t)(1 + snr2,t)− 1 = snr. (F.1e)

We lower bound the minimum distance of the sum-set constellations as in (Eq. 4.20) and we get

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
min

(
min(snr, inr)

max(N2
1 , N

2
2 )− 1

,
max(snr, inr)

N2
1N

2
2 − 1

)

for inr ≤ snr and (Eq. F.1)
≥ κ2

γ,N1,N2
min

(
inr

snr
,
snr

snr

)

for snr ≤ 1 + inr
≥ κ2

γ,N1,N2
min

(
inr

1 + inr
, 1

)

= κ2
γ,N1,N2

inr

1 + inr
for 1 ≤ inr
≥ κ2

γ,N1,N2

1

2
.
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Gap for inr ≤ snr ≤ 1 + inr

Similarly to the strong interference regime, we can upper bound the difference between the upper

and lower bounds as

Gd ≤ max

(
Ig (snr1,t) +

t

2
log(2)− log(Nd (snr1,t)), Ig (snr2,t) +

1− t
2

log(2)− log(Nd (snr2,t))

)

+
1

2
log

(
2πe

12

)
+

1

2
log

(
1 +

2

κ2
γ,N1,N2

)

≤ 1

2
log

(
4πe

3

)
+

1

2
log

(
1 + 8 · (1 + 1/2 ln(1 + snr))2

γ2

)
.
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AUXILIARY RESULTS FOR REGIME WEAK1

We derive here some auxiliary results for the regime in (Eq. 4.28), namely

(1 + inr) ≤ snr ≤ inr(1 + inr),

1 + snr

1 + inr + snr
1+inr

≤
1 + inr + snr

1+inr

1 + snr
1+inr

.

G.0.1 Derivation of (Eq. 4.37)

The parameters of the mixed inputs are given in (Eq. 4.36). We aim to derive bounds on max(N2
1 , N

2
2 )

and N2
1N

2
2 and used them to find the lower bound on minimum distance in (Eq. 4.37).

The mixed input parameters are given in (Eq. 4.36). We have

max(N2
1 , N

2
2 )− 1 ≤ max(snr1,a,t, snr1,b,t)

≤ max

(
1 + inr + snr

1+inr

1 + snr
1+inr

,
1 + snr

1 + inr + snr
1+inr

)
− 1

from (Eq. 4.28)
≤

1 + inr + snr
1+inr

1 + snr
1+inr

− 1

=
inr

1 + snr
1+inr

(G.1)

≤ inr = min(snr, inr),
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and

N2
1N

2
2 − 1 ≤ (snr1,a,t + 1)(snr1,b,t + 1)− 1

from (Eq. 4.36)
≤

(
1 + inr + snr

1+inr

1 + snr
1+inr

)(
1 + snr

1 + inr + snr
1+inr

)
− 1

=
1 + snr

1 + snr
1+inr

− 1

=
inr snr

1+inr

1 + snr
1+inr

(G.2)

≤ inr.

Recall the definition of κγ,N1,N2 in (Eq. 4.31e). By plugging the bounds in (Eq. G.1)-(Eq. G.2)

into (Eq. 4.31) we get

min
i∈[1:2]

d2
min(Si)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + (snr + inr) max(δ1, δ2)
min

(
inr

max(N2
1 , N

2
2 )− 1

,
snr

N2
1N

2
2 − 1

)

≥ inr

1 + snr + 2inr
min

(
inr(1 + snr + inr)

inr(1 + inr)
,
snr(1 + inr + snr)

snrinr

)

=
1 + snr + inr

1 + snr + 2inr
· inr

1 + inr
1≤inr≤snr
≥ 1 + 2inr

1 + 3inr
· inr

1 + inr
≥ 3

8
. (G.3)

Note that the above derivation assumes 1 ≤ inr; this restriction is without loss of generality since for

inr ≤ 1 TIN with Gaussian codebooks is optimal to within 1/2 bit (26). Note also that the minimum

distance lower bound holds up to an outage set of measure less than γ, where γ is a tunable parameter;

the reason why we need an outage set in this regime is the same as in Remark 10.
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G.0.2 Gap Derivation forR2R1+R2 for Regime Weak 1

Outer BoundR2R1+R2

With the corner point expressions in (Eq. 4.34) we write the outer bound in (Eq. 4.27b) as

R(4.3.4)
2R1+R2

=
⋃

t∈[0,1]





R1 ≤ t
2 log

(
1+inr+ snr

1+inr

1+ snr
1+inr

)
+ 1−t

2 log
(

1+snr
1+ snr

1+inr

)
+ 1

2 log
(

1 + snr
1+inr

)

=: Ig(snr2,a,t) + Ig
(

snr
1+inr

)

R2 ≤ t
2 log

(
1+inr+snr

1+inr+ snr
1+inr
· 1+snr

1+inr

)
+ (1− t)c

=: Ig(snr2,b,t) + t
2 log

(
1+snr
1+inr

)
+ (1− t)c





, (G.4)

where (1− t)c ≤ c ≤ log(2), where the parameter c is defined in (Eq. 4.26g).

Inner Bound forR2R1+R2

In order to approximately achieve the points in (Eq. G.4) we pick

N1 = Nd (snr2,a,t) , snr2,a,t :=

(
1 + inr + snr

1+inr

1 + snr
1+inr

)t(
1 + snr

1 + snr
1+inr

)1−t

− 1, (G.5a)

N2 = Nd (snr2,b,t) , snr2,b,t :=

(
1 + inr + snr

1 + inr + snr
1+inr

)t
− 1, (G.5b)

δ1 =
1

1 + inr
, (G.5c)

δ2 : Ig (snrδ2) =
t

2
log

(
1 + snr

1 + inr

)
⇐⇒ δ2 =

((
1 + snr

1 + inr

)t
− 1

)
1

snr
, (G.5d)

where the power split δ2 in (Eq. G.5d) satisfies

δ2 ≤
1− inr/snr

1 + inr
≤ 1

1 + inr
,
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as required for the achievable rate region in (Eq. 4.30).

Gap forR2R1+R2

The gap between the outer bound region in (Eq. G.4) and the achievable rate region in (Eq. 4.30)

with the choice in (Eq. G.5) is

∆R1 = Ig (snr2,a,t) + Ig

(
snr

1 + inr

)
− log (Nd (snr2,a,t))− Ig

(
snr

1 + inr

)
+ ∆(Eq. 4.30)

≤ log(2) + ∆(Eq. 4.30),

and similarly

∆R2 = Ig (snr2,b,t) +
t

2
log

(
1 + snr

1 + inr

)
+ (1− t)c− log (Nd (snr2,b,t))−

t

2
log

(
1 + snr

1 + inr

)
+ ∆(Eq. 4.30)

≤ log(2) + log(2) + ∆(Eq. 4.30),

since (1− t)c ≤ c ≤ log(2), where the parameter c is defined in (Eq. 4.26g).

So we are left with bounding ∆(Eq. 4.30) in (Eq. 4.30), which is related to the minimum distance of

the received constellations S1 and S2 defined in (Eq. 4.8). In Appendix G.0.3 we show that

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
· 4

45
(G.6)
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where κγ,N1,N2 is given in (Eq. 4.31e), and max(N2
1 , N

2
2 ) − 1 ≤ inr = min(snr, inr). With this, we

finally get that the gap for this face is bounded by

Gd(Eq. G.7) ≤ max(∆R1 ,∆R2)

≤ 1

2
log

(
16πe

3

)
+

1

2
log

(
1 +

45

4
· 1

κ2
γ,N1,N2

)

≤ 1

2
log

(
16πe

3

)
+

1

2
log

(
1 + 45 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (G.7)

G.0.3 Derivation of (Eq. G.6)

We aim to derive different bounds involving N2
1 and N2

2 and used them in the minimum distance

lower bound in (Eq. 4.31).

From (Eq. G.5a) we have

N2
1 − 1 ≤ snr2,a,t ≤ max(snr2,a,0, snr2,a,1)

≤
max

(
1 + inr + snr

1+inr , 1 + snr
)

1 + snr
1+inr

− 1

for 1 + inr ≤ snr
≤ 1 + snr

1 + snr
1+inr

− 1

= inr ·
snr

1+inr

1 + snr
1+inr

≤ inr; (G.8)
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from (Eq. G.5b) we have

N2
2 − 1 ≤ snr2,b,t ≤ max(snr2,b,0, snr2,b,1)

≤ 1 + inr + snr

1 + inr + snr
1+inr

− 1

=
inr · snr

1+inr

1 + inr + snr
1+inr

≤ min

(
inr,

snr

1 + inr

)
=

snr

1 + inr
, (G.9)

finally

max(N2
1 , N

2
2 )− 1 ≤ max

(
inr,

snr

1 + inr

)
= inr = min(snr, inr). (G.10)

We also have

N2
1N

2
2 − 1 ≤ (snr2,a,t + 1)(snr2,b,t + 1)− 1

=
(1 + snr)1−t (1 + inr + snr)t

1 + snr
1+inr

− 1

≤ 1 + inr + snr

1 + snr
1+inr

− 1 = inr. (G.11)

In this regime, as we shall soon see, it also important to bound

(1 + snrδ2)(1 + snr2,a,t) =
1 + snr

1 + snr
1+inr

(
1 + inr + snr

1+inr

1 + inr

)t

≤ 1 + snr

1 + snr + inr

(
1 + inr +

snr

1 + inr

)
. (G.12)
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We next bound the minimum distances. Recall that κγ,N1,N2 is given in (Eq. 4.31e).

With (Eq. 4.31c) we have

d2
min(S1)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + snrδ1 + inrδ2
min

(
inr

N2
2 − 1

,
snr

N2
1N

2
2 − 1

)

(a)

≥ inr

1 + snr + 2inr
min

(
inr

N2
2 − 1

,
snr

N2
1N

2
2 − 1

)

(b)

≥ inr

1 + snr + 2inr
min

(
inr (1 + inr)

snr
,
snr

inr

)

= min

(
inr2 (1 + inr)

snr(1 + snr + 2inr)
,

snr

1 + snr + 2inr

)

(c)

≥ min




inr2 (1 + inr)
(

1 + snr
1+inr

)

(1 + snr + 2inr)
(

1 + inr + snr
1+inr

)2 ,
snr

1 + snr + 2inr




(d)

≥ min

(
inr2 (1 + inr + snr)

(1 + snr + 2inr)(1 + 2inr)2 ,
1 + inr

2 + 3inr

)

(e)

≥ min

(
2inr2 (1 + inr)

(2 + 3inr) (1 + 2inr)2 ,
1 + inr

2 + 3inr

)

(f)

≥ min

(
4

45
,
1

3

)
=

4

45
, (G.13)

where the inequalities follow since: (a) δ2 ≤ δ1 = 1
1+inr ; (b) from (Eq. G.9) and (Eq. G.11); (c) from

(Eq. 4.29) we have snr ≤ 1 + snr ≤ (1+inr+ snr
1+inr )

2

1+ snr
1+inr

; (d) where we have used 1 + inr ≤ snr, snr
1+inr ≤ inr

for 1st term must use largest snr
1+inr while for 2nd smallest snr which 1 + inr, (e) since 1 + inr ≤ snr; and

(f) comes from using 1 ≤ inr.
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With (Eq. 4.31d), and recalling that 1+snrδ2 =
(

1+snr
1+inr

)t
from (Eq. G.5d) and snr2,a,t in (Eq. G.5a),

we have

d2
min(S2)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + snrδ2 + inrδ1
min

(
inr

N2
1 − 1

,
snr

N2
1N

2
2 − 1

)

(a)

≥
inr

1+inr

1 + snrδ2 + inr
1+inr

min

(
inr

snr2,a,t
,
snr

inr

)

(b)

≥ min

(
inr2

1+inr

2(1 + snrδ2)(1 + snr2,a,t)
,

snr
1+inr

1 + snr
1+inr + inr

1+inr

)

(c)

≥ min




inr2

1+inr (1 + snr + inr)

(1 + snr)
(

1 + inr + snr
1+inr

) , snr

1 + snr + 2inr




(d)

≥ min

(
inr2(1 + snr + inr)

(1 + inr)(1 + snr) (1 + 2inr)
,

snr

1 + snr + 2inr

)

(e)

≥ min

(
inr2(1 + inr)2

(1 + inr)(1 + inr + inr2) (1 + 2inr)
,

1 + inr

2 + 3inr

)

(f)

≥ min

(
2

9
,
1

3

)
=

2

9
(G.14)

where the inequalities follow since: (a) δ2 ≤ δ1 = 1
1+inr , N

2
1 − 1 ≤ snr2,a,t and (Eq. G.11); (b)

(1 + snrδ2) + inr
1+inr ≤ 2 + snrδ2 ≤ 2(1 + snrδ2) and δ2 ≤ 1

1+inr , and the rest of the inequalities from

the definition of weak interference 1 ≤ inr, 1 + inr ≤ snr ≤ inr(1 + inr); (c) from (Eq. G.12); (d) since

snr
1+inr ≤ inr; (e) where we have used 1 + inr ≤ snr, snr

1+inr ≤ inr for 1st term must use largest snr
1+inr while

for 2nd smallest snr which 1 + inr; and (f) comes from using 1 ≤ inr.

By putting together (Eq. G.13) and (Eq. G.14), we obtain (Eq. G.6).
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AUXILIARY RESULTS FOR REGIME WEAK2

We derive here some auxiliary results for the regime in (Eq. 4.29), namely

(1 + inr) ≤ snr ≤ inr(1 + inr),

1 + snr

1 + inr + snr
1+inr

≥
1 + inr + snr

1+inr

1 + snr
1+inr

.

H.0.1 Derivation of (Eq. 4.44)

We aim to derive different bounds on N2
1 , N

2
2 , δ1 and δ1 so as to obtaine in the minimum distance

lower bound in (Eq. 4.44).

The mixed input parameters are in (Eq. 4.43). We have

N2
1 − 1 ≤ snr3,a,t ≤ max(snr3,a,0, snr3,a,1)

= max




(
1 + snr

1+inr

)
(1 + snr)

1 + inr + snr
1+inr

,

(
1 + inr + snr

1+inr

)3

(
1 + snr

1+inr

)
(1 + snr)




1
2

− 1

from (Eq. 4.29)
=

(
1 +

snr

1 + inr

)√√√√ 1 + snr(
1 + inr + snr

1+inr

)(
1 + snr

1+inr

) − 1

≤ snr

1 + inr
. (H.1)
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Similarly we have

N2
2 − 1 ≤ snr3,b,t ≤

snr

1 + inr
. (H.2)

The bounds in (Eq. H.1)-(Eq. H.2) imply

max(δ1, δ2) ≤ max(snr3,a,t, snr3,b,t)

snr
≤ 1

1 + inr
. (H.3)

Finally we have

max(N2
1 , N

2
2 )− 1 ≤ snr

1 + inr
≤ inr = min(snr, inr), (H.4)

by the definition of this regime.

We also have

N2
1N

2
2 − 1 ≤ (1 + snr3,a,t)(1 + snr3,b,t)− 1

= (1 + snrδ1)(1 + snr3,b,t)− 1

= (1 + snr3,a,t)(1 + snrδ2)− 1

= inr +
snr

1 + inr
≤ 2inr. (H.5)
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With (Eq. 4.31c) we have

d2
min(S1)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + snrδ1 + inrδ2
min

(
inr

N2
2 − 1

,
snr

N2
1N

2
2 − 1

)

(a)
≥

inr
1+inr

1 + snr3,a,t + inr
1+inr

min

(
inr

snr3,b,t
,
snr

2inr

)

(b)
≥ min




inr2

1+inr

2
(

1 + inr + snr
1+inr

) ,
snr inr

1+inr

(1 + snr
1+inr + inr

1+inr )2inr




= min

(
inr2

2 [(1 + inr)2 + snr]
,

snr

2 [1 + 2inr + snr]

)

(c)
≥ min

(
inr2

2 [(1 + inr)2 + inr(1 + inr)]
,

inr(1 + inr)

2 [1 + 2inr + inr(1 + inr)]

)

(c)
≥ min

(
inr2

2 [(1 + inr)2 + inr(1 + inr)]
,

1 + inr

2 [2 + 3inr]

)

= min

(
1

12
,
1

6

)
=

1

12
, (H.6)

where the inequalities follow from: (a) using (Eq. 4.43c), (Eq. H.3) and (Eq. H.5); (b) using (Eq. H.5);

and (c) since 1 ≤ inr and 1 + inr ≤ snr ≤ inr(1 + inr).

By symmetry an equivalent bound can be derived for d2
min(S2).

Hence minimum distance in (Eq. 4.44) is bounded by

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2

1

12
. (H.7)
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H.0.2 Gap forR2R1+R2 using common→ discrete map

Outer BoundR2R1+R2

With the corner point expressions in (Eq. 4.41) we write the outer bound in (Eq. 4.27b) as

R(4.3.5)
2R1+R2

=
⋃

t∈[0,1]





R1 ≤ 1−t
2 log

(
(1+ snr

1+inr )(1+snr)

1+inr+ snr
1+inr

)
+ t

2 log (1 + snr)

=: Ig (snr4,a,t) + Ig
(

snr
1+inr

)

R2 ≤ 1−t
2 log

(
(1+inr+ snr

1+inr )
3

1+snr
(1+inr)

1+inr+snr

)
+ tc

=: Ig(snr4,b,t) + 1−t
2 log

(
(1+inr+ snr

1+inr )(1+inr)

1+inr+snr

)
+ tc





, (H.8)

where tc ≤ c ≤ log(2), where the parameter c is defined in (Eq. 4.26g), and 0 ≤ t ≤ 1.

Inner Bound forR2R1+R2

In order to approximately achieve the points inR2R1+R2 in (Eq. H.8) we pick

N1 = Nd (snr4,a,t) , snr4,a,t :=
1 + snr

(
1 + snr

1+inr

)t (
1 + inr + snr

1+inr

)1−t − 1, (H.9a)

N2 = Nd (snr4,b,t) , snr4,b,t :=

(
(1 + inr + snr

1+inr )
2

1 + snr

)1−t

− 1, (H.9b)

δ1 :=
1

1 + inr
, (H.9c)

δ2 : Ig (snrδ2) =
1− t

2
log

(
1 + inr + snr

1+inr

1 + snr
1+inr

)
⇐⇒ δ2 =



(

1 + inr + snr
1+inr

1 + snr
1+inr

)1−t

− 1


 1

snr
,

(H.9d)
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where in Appendix H.0.3, eq.(Eq. H.15), we show that

δ2 ≤ δ1 =
1

1 + inr
,

as required for the achievable region in (Eq. 4.30).

Gap forR2R1+R2

The gap between the outer bound in (Eq. 4.27b) and achievable region in (Eq. 4.30) with the param-

eters in (Eq. H.9) is

∆R1 = Ig(snr4,a,t) + Ig

(
snr

1 + inr

)
− log(Nd(snr4,a,t))− Ig(snrδ1) + ∆(Eq. 4.30)

≤ log(2) + ∆(Eq. 4.30),

and similarly we have that

∆R2 = Ig(snr4,b,t) +
1− t

2
log




(
1 + inr + snr

1+inr

)
(1 + inr)

1 + inr + snr


+ tc− log(Nd(snr4,b,t))− Ig(snrδ2) + ∆(Eq. 4.30)

≤ log(2) + log(2) + ∆(Eq. 4.30),

since tc ≤ c ≤ log(2), where the parameter c is defined in (Eq. 4.26g), and 0 ≤ t ≤ 1.
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So, we are left with bounding ∆(Eq. 4.30) which is related to the minimum distances of the sum-set

constellations. In Appendix H.0.3 we show that

min
i∈[1:2]

d2
min(Si)

12
≥ κ2

γ,N1,N2
· 1

8
, (H.10)

where κγ,N1,N2 is given in (Eq. 4.31e), and that max(N2
1 , N

2
2 ) − 1 ≤ inr; with this, we finally get that

the gap for this face is bounded by

Gd(Eq. H.11) ≤ max(∆R1 ,∆R2) = 2 log(2) + ∆(Eq. 4.30)

≤ 1

2
log

(
16πe

3

)
+

1

2
log

(
1 + 32 · (1 + 1/2 ln(1 + min(snr, inr)))2

γ2

)
bits. (H.11)

H.0.3 Proof of (Eq. H.10)

We first derive some bounds on N2
1 and N2

2 that will be useful in bounding minimum distance of

the received constellations.

From (Eq. H.9a) we have

N2
1 − 1 ≤ snr4,a,t ≤ max(snr4,a,0, snr4,a,1)

=
1 + snr

min
(

1 + snr
1+inr , 1 + inr + snr

1+inr

) − 1

=
1 + snr

1 + snr
1+inr

− 1

= inr ·
snr

1+inr

1 + snr
1+inr

≤ inr. (H.12)
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Similarly form (Eq. H.9b)

N2
2 − 1 ≤ snr4,b,t ≤ max(snr4,b,0, snr4,b,1)

=
(1 + inr + snr

1+inr )
2

1 + snr
− 1

≤
(1 + snr)(1 + snr

1+inr )

1 + snr
− 1 =

snr

1 + inr
, (H.13)

where inequality follow the definition of the regime in (Eq. 4.29). We also have

N2
1N

2
2 − 1 ≤ (1 + snr4,a,t)(1 + snr4,b,t)− 1

=

(
1 + inr +

snr

1 + inr

)1−t
(

1 + snr

1 + snr
1+inr

)t
− 1

≤ max

(
inr +

snr

1 + inr
, inr

snr
1+inr

1 + snr
1+inr

)

= inr +
snr

1 + inr
≤ 2inr, (H.14)

where the last inequality follows from snr
1+inr ≤ inr.
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From (Eq. H.9d) we have

snrδ2 ≤
1 + inr + snr

1+inr

1 + snr
1+inr

− 1

(a)

≤ 1 + snr

1 + inr + snr
1+inr

− 1

=
inr snr

1+inr − inr

1 + inr + snr
1+inr

≤
inr snr

1+inr

1 + inr + snr
1+inr

≤ min

(
inr,

snr

1 + inr

)

(b)
=

snr

1 + inr
, (H.15)

where inequalities follow from: (a) using definition of the regime in (Eq. 4.29); and (b) using snr
1+inr ≤

inr.

As for the derivation in Section G.0.3, another key bound is

(1 + snrδ1)(1 + snr4,b,t) ≤
(

1 +
snr

1 + inr

)(
(1 + inr + snr

1+inr )
2

1 + snr

)1−t

≤
(

1 +
snr

1 + inr

)
(1 + inr + snr

1+inr )
2

1 + snr

(a)

≤ 1 + inr + snr

1 + snr
· (1 + 2inr)2

1 + inr
(H.16)
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where inequalities follow from: (a) using snr
1+inr ≤ inr; and (b) using 1+inr+snr

1+snr ≤ 2 and 1+2inr
1+inr ≤ 2.

Similarly, we have

(1 + snr4,a,t)(1 + snrδ2) ≤ 1 + snr
(

1 + snr
1+inr

)t (
1 + inr + snr

1+inr

)1−t

(
1 + inr + snr

1+inr

1 + snr
1+inr

)1−t

=
1 + snr

1 + snr
1+inr

≤ 1 + inr. (H.17)

By using (Eq. 4.31c), the minimum distance for S1 can be bounded as

d2
min(S1)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + snrδ1 + inrδ2
min

(
inr

N2
2 − 1

,
snr

N2
1N

2
2 − 1

)

(a)

≥
inr

1+inr

1 + snrδ1 + inrδ2
min

(
inr

snr4,b,t
,
snr

2inr

)

(b)

≥ min

(
inr2

1+inr

2(1 + snrδ1)(1 + snr4,b,t)
,

snr

2(1 + snr + 2inr)

)

(c)

≥ min

(
inr2(1 + snr)

2(1 + inr + snr)(1 + 2inr)2
,

1 + inr

2(2 + 3inr)

)

(d)

≥ min

(
3

8
,
1

6

)
=

1

6

where inequalities follow from: (a) max(δ1, δ2) ≤ 1
1+inr and from (Eq. H.13) and (Eq. H.14) we have

that N2
2 − 1 ≤ snr4,b,t and N2

1N
2
2 − 1 ≤ 2inr; (b) from (Eq. H.15) δ2 ≤ 1

1+inr ; (c) using (Eq. H.15)

we have snr4,b,t(2 + snrδ1) ≤ 2(1 + snr4,b,t)(1 + snrδ1) and (Eq. H.16); and (d) snr ≥ (1 + inr) and

inr ≥ 1.
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Similarly,

d2
min(S2)

12 κ2
γ,N1,N2

≥ 1−max(δ1, δ2)

1 + snrδ2 + inrδ1
min

(
inr

N2
1 − 1

,
snr

N2
1N

2
2 − 1

)

(a)

≥ min

(
inr2

1+inr

2(1 + snrδ2)(1 + snr4,a,t)
,

snr

2(1 + snr + 2inr)

)

(b)

≥ min

(
inr2

2(1 + inr)(1 + inr)
,

1 + inr

2(2 + 3inr)

)

(c)

≥ min

(
1

8
,
1

6

)
=

1

8

where inequalities follow from: (a) (Eq. H.9a) we have N2
1 − 1 ≤ snr4,a,t, from (Eq. H.15) and

(Eq. H.9c) max(δ1, δ2) ≤ 1
1+inr and from (Eq. H.14) N2

1N
2
2 − 1 ≤ inr; (b) snr4,a,t(2 + snrδ2) ≤

2(1 + snr4,a,t)(1 + snrδ2) and (Eq. H.17); and (c) from snr ≥ (1 + inr) and inr ≥ 1.

Hence, the minimum distance in (Eq. H.10) is bounded by

min
i∈[1:2]

d2
min(Si)

12 κ2
γ,N1,N2

≥ 1

8
.
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CONSTANT GAP DERIVATION FOR REGIME WEAK2

I.0.1 Another Inner Bound forRR1+R2

In order to approximately achieve the points inR(4.3.5)
R1+R2

in (Eq. 4.42) we pick

N1 = Nd

(
1

k
snr3,a,t

)
, snr3,a,t in (Eq. 4.43a) (I.1a)

N2 = Nd

(
1

k
snr3,b,t

)
, snr3,b,t in (Eq. 4.43b) (I.1b)

δ1 : Ig (snrδ1) = Ig (snr3,a,t)⇐⇒ δ1 =
snr3,a,t
snr

, (I.1c)

δ2 : Ig (snrδ2) = Ig (snr3,b,t)⇐⇒ δ2 =
snr3,b,t
snr

. (I.1d)

where k is a parameter that we will tune in order to satisfy the non-overlap condition in Proposition 2.1.2.

Indeed, in order to check whether we can use the bound in (Eq. 4.32a) we must check whether the

condition in (Eq. 4.32b) holds. To simplify the analytical computations we choose to satisfy instead

(1− δi′)N2
i′

N2
i′ − 1

≤ k ≤ snr

inr

(1− δi)
N2
i − 1

∀(i, i′) ∈ {(1, 2), (2, 1)},

for some k; since
(1−δi′ )N2

i′
N2
i′−1

≤ N2
i′

N2
i′−1
≤ 4

3 for all Ni′ ≥ 2, we set 4
3 := k. In other words, we accept an

increase in gap of log(k) = log(4/3), due to the reduction of the number of points of the discrete part of
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the mixed inputs from Nd(x) to Nd(3x/4) for some ‘SNR’ x, for ease of computations. Therefore, for

the rest of this section instead of checking condition in (Eq. 4.32b) we will check the simpler condition

4

3
inr ≤ snr(1− δi)

N2
i − 1

∀i ∈ [1 : 2]. (I.2)

The gap between the outer bound region in (Eq. 4.42) and the achievable rate in (Eq. 4.30) with the

parameters in (Eq. I.1) is

∆R1 = 2Ig (snr3,a,t)− log (Nd (3/4 snr3,a,t))− Ig(snr3,a,t) + ∆(Eq. 4.30)

≤ log

(
8

3

)
+ ∆(Eq. 4.30),

and similarly

∆R2 ≤ log

(
8

3

)
+ ∆(Eq. 4.30).

We are then left with bounding ∆(Eq. 4.30), which depends on minimum distances of the received sum-set

constellations. From (Eq. H.1)-(Eq. H.2) we have

N2
1 − 1 ≤ 3

4
snr3,a,t ≤

3

4

snr

1 + inr
, from (Eq. H.1),

N2
2 − 1 ≤ 3

4
snr3,b,t ≤

3

4

snr

1 + inr
, from (Eq. H.2),
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and thus

snr(1− δi)
N2
i − 1

max(δ1,δ2)≤ 1
1+inr

≥ inr
snr

1+inr

N2
i − 1

≥ 4

3
inr, (I.3)

as needed in (Eq. I.2).

Therefore, by (Eq. 4.32a), for d2
min(S1) we have that

d2
min(S1)

12
=

1

1 + snrδ1 + inrδ2
min

(
(1− δ1)snr

N2
1 − 1

,
(1− δ2)inr

N2
2 − 1

)

(a)
≥

inr
1+inr

1 + snrδ1 + inr
1+inr

min

(
snr

N2
1 − 1

,
inr

N2
2 − 1

)

(b)
≥

inr
1+inr

1 + snrδ1 + inr
1+inr

4

3
min

(
1 + inr,

inr

snr3,b,t

)

(c)
≥ 4

3
min

(
inr(1 + inr)

1 + snr + 2inr
,

inr2

1+inr

2(1 + snrδ1)(1 + snr3,b,t)

)

(d)
≥ 4

3
min

(
inr(1 + inr)

1 + snr + 2inr
,

inr2

2(1 + inr)(1 + inr + snr
1+inr )

)

(e)
≥ 4

3
min

(
inr(1 + inr)

1 + 3inr + inr2
,

inr2

2(1 + inr)(1 + 2inr)

)

≥ 4

3
min

(
2

5
,

1

12

)
=

1

9
, (I.4)

where the inequalities follows from: (a) max(δ1, δ2) ≤ 1
1+inr ; (b) from (Eq. H.1) and (Eq. H.2); (c)

max(δ1, δ2) ≤ 1
1+inr ; (d) from (Eq. H.5); and (e) from 1 ≤ inr ≤ snr ≤ inr(1 + inr).

By symmetry,
d2

min(S2)

12 is bounded in the same way, thus

min
i∈[1:2]

d2
min(Si)

12
≥ 1

9
. (I.5)
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Finally the gap for this face is

Gd(Eq. I.6) ≤ max(∆R1 ,∆R2) = log

(
8

3

)
+ ∆(Eq. 4.30)

≤ log

(
8

3

)
+

1

2
log
(πe

3

)
+

1

2
log (1 + 9)

=
1

2
log

(
640πe

27

)
≈ 3.83 bits. (I.6)

I.0.2 Another Inner Bound forR2R1+R2

We choose the mixed input parameters as

N1 = Nd

(
3

4

snr − inr

1 + inr

)
, (I.7a)

N2 = Nd

(
3

4
snr4,b,t

)
, snr4,b,t :=

(
(1 + inr + snr

1+inr )
2

1 + snr

)1−t

− 1
by eq.(Eq. H.13)

≤ snr

1 + inr
, (I.7b)

δ1 =
snr4,a,t
snr

by eq.(Eq. H.12)
≤ inr

snr
, (I.7c)

δ2 =
1 + inr + snr

1+inr(
1 + snr

1+inr

)
(1 + snr)

by eq.(Eq. 4.29)
≤ 1

1 + inr + snr
1+inr

≤ 1

1 + inr
, (I.7d)

where the factor 3
4 in the number of points appears for the same reason as in Section I.0.1.
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An inequality we will need is

snrδ2

1 + inrδ1

(a)

≥
snr

(1+inr+ snr
1+inr )(1+inr)

(1+inr+snr)(1+snr)

inr
snr

(1+snr)

(1+ snr
1+inr )

t
(1+inr+ snr

1+inr )
1−t

=
snr2

(1 + snr)2

(
1 + inr + snr

1+inr

)(
1 + snr

1+inr

)t (
1 + inr + snr

1+inr

)1−t

inr
(

1 + snr
1+inr

)

=
snr2

(1 + snr)2

(
1 + inr + snr

1+inr

)
(1 + inr)1−t

(
1 + inr + snr

1+inr

)1−t

inr (1 + inr + snr)1−t

(b)

≥ 3

4

(
1 + inr + snr

1+inr

1 + snr
1+inr

)1−t

(I.8)

where the inequalities follow from: (a) plugin in values of δ1 and δ2 and lower bounding the denomina-

tor; and (b) using snr ≥ 1 we have that snr2

(1+snr)2 ≥ 1
4 and using snr ≥ (1 + inr) we have

1+inr+ snr
1+inr

inr ≥

2+inr
inr ≥ 3.

Another inequality we will need is

snrδ2 = snr

(
1 + inr + snr

1+inr

)
(1 + inr)

(1 + inr + snr)(1 + snr)

≤

(
1 + inr + snr

1+inr

)
(1 + inr)

(1 + inr + snr)

=

(
1 + inr + snr

1+inr

)

(1 + snr
1+inr )

≤ (1 + 2inr)(1 + inr)

snr
(I.9)

where the last inequality comes from using snr
1+inr ≤ inr and dropping one in the denominator.
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Gap forR2R1+R2

The gap between the outer bound in (Eq. H.8) and the achievable rate in Proposition 4.2.1 with the

choice of parameters in (Eq. I.7) is

∆R1 = Ig (snr4,a,t) + Ig

(
snr

1 + inr

)
− log

(
Nd

(
3

4

snr − inr

1 + inr

))
− Ig (snrδ1) + ∆(Eq. 4.30)

≤ log(2) +
1

2
log(2) + ∆(Eq. 4.30),

Ig

(
snr

1 + inr

)
−Ig

(
3

4

snr − inr

1 + inr

)
=

1

2
log

1 + inr + snr

1 + inr

1 + inr

1 + inr/4 + 3snr/4
≤ 1

2
log

1 + 2snr

1 + snr
≤ 1

2
log(2),

and similarly

∆R2 = Ig(snr4,b,t) +
1− t

2
log




(
1 + inr + snr

1+inr

)
(1 + inr)

1 + inr + snr


+ tc

− log (Nd(snr4,b,t))− Ig log

(
snrδ2

1 + inrδ1

)
− 1

2
log(2) + ∆(Eq. 4.30)

≤ log(2) +
1

2
log

(
4

3

)
+

1

2
log

(
4

3

)
+ log(2)− 1

2
log(2) + ∆(Eq. 4.30) =

1

2
log

(
27

32

)
+ ∆(Eq. 4.30)

where we have used tc ≤ log(2) and the bound in (Eq. I.8); the term ‘−1
2 log(2)’ is because of the

definition of ∆(Eq. 4.30) that assumed max(δ1, δ2) ≤ 1
1+inr , which is not the case here.

So, we are left with bounding ∆(Eq. 4.30), which depends on the minimum distances of the received

constellations. We must verify the condition in (Eq. I.2) at each receiver.
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For receiver 1 we have

snr(1− δ1)

N2
1 − 1

from eq.(Eq. I.7c)
≥ snr − inr

N2
1 − 1

from eq.(Eq. I.7a)
≥ snr − inr

3
4

snr−inr
1+inr

=
4

3
(1 + inr) ≥ 4

3
inr, (I.10)

and therefore

d2
min(S1)

12
=

1

1 + snrδ1 + inrδ2
min

(
(1− δ1)snr

N2
1 − 1

,
(1− δ2)inr

N2
2 − 1

)

(a)

≥ 1

1 + snrδ1 + inr 1
1+inr

min

(
4

3
(1 + inr),

inr2

1+inr
3
4snr4,b,t

)

=
4

3
min


 (1 + inr)

1 + snrδ1 + inr 1
1+inr

,
inr2

1+inr(
1 + snrδ1 + inr 1

1+inr

)
snr4,b,t




(b)

≥ 4

3
min

(
1 + inr

2 + snr inrsnr

,
inr2

1+inr

2(1 + snrδ1)(1 + snr4,b,t)

)

(c)

≥ 4

3
min

(
1 + inr

2 + inr
,

inr2

1+inr

4(1 + 2inr)

)

(d)

≥ 4

3
min

(
2

3
,

1

24

)
=

1

18
,

where the bounds are obtained by: (a) using (Eq. I.10) and δ2 ≤ 1
1+inr and (Eq. H.13); (b) using δ2 ≤ inr

snr

form (Eq. H.12) and (1 + snrδ2 + inr 1
1+inr ) ≤ 2(1 + snrδ2)(1 + snr4,b,t); (c) using (Eq. I.7c) we have

(1 + snrδ2)(1 + snr4,b,t) = (1 + snr4,a,t)(1 + snr4,b,t) and then using (Eq. H.14); and (d) come from

minimizing over inr ≥ 1.
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For receiver 2 we have

snr(1− δ2)

N2
2 − 1

≥
snr inr

1+inr

N2
2 − 1

≥
snr inr

1+inr
3
4

snr
1+inr

=
4

3
inr,

and therefore

d2
min(S2)

12
=

1

1 + snrδ2 + inrδ1
min

(
(1− δ2)snr

N2
2 − 1

,
(1− δ1)inr

N2
1 − 1

)

(a)

≥ 1

1 + snrδ2 + inr inrsnr

min

(
(1− 1

1+inr )snr

N2
2 − 1

,
(1− inr

snr )inr

N2
1 − 1

)

(b)

≥ 4

3

1

1 + snrδ2 + inr inrsnr

min

(
(1− 1

1+inr )snr
snr

1+inr

,
(1− inr

snr )inr(1 + inr)

snr − inr

)

=
4

3

1

1 + snrδ2 + inr inrsnr

min

(
inr,

inr(1 + inr)

snr

)

=
4

3
min

(
inr

1 + snrδ2 + inr inrsnr

,
inr(1 + inr)

(1 + snrδ2 + inr inrsnr )snr

)

(c)

≥ 4

3
min

(
inr

1 + snr 1
1+inr + inr inrsnr

,
inr(1 + inr)

(1 + snrδ2 + inr inrsnr )snr

)

(d)

≥ 4

3
min

(
inr

1 + 2inr
,

inr(1 + inr)

(1 + (1+2inr)(1+inr)
snr + inr inrsnr )snr

)

=
4

3
min

(
inr

1 + 2inr
,

inr(1 + inr)

(snr + (1 + 2inr)(1 + inr) + inr2)

)

(e)

≥ 4

3
min

(
inr

1 + 2inr
,

inr(1 + inr)

(inr(1 + inr) + (1 + 2inr)(1 + inr) + inr2)

)

≥ 4

3
min

(
1

3
,

2

10

)
=

4

15
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where the bounds are obtained by: (a) using δ2 ≤ 1
1+inr and δ1 ≤ inr

snr ; (b) from (Eq. I.7a) we have

that N2
1 − 1 ≤ 3

4
snr−inr
1+inr , (c) using δ2 ≤ 1

1+inr ; (d) used bound in (Eq. I.9); and (e) used bound snr ≤

inr(1 + inr).

So, finally the gap is

Gd(Eq. I.11) ≤ max(∆R1 ,∆R2)

=
1

2
log

(
27

32

)
+

1

2
log
(πe

3

)
+

1

2
log

(
1 +

15

4

)

=
1

2
log

(
608 πe

27

)
≈ 3.79 bits (I.11)

Overall Constant Gap for Weak 1

Therefore, the overall gap for Weak 1 is

Gd ≤ max(Gd(Eq. I.6),Gd(Eq. I.11)) = Gd(Eq. I.6).
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PROOF OF PROPOSITION 5.2.2.

In order to find the point of intersection snrL between (Eq. 5.7a) and (Eq. 5.17a) we must solve the

following equation:

1

snr
− kn

snr
+

kn
snr0

− β

1 + βsnr0
=

1

snr
− kn

snr
+A = 0

where A = kn
snr0
− β

1+βsnr0
. By solving for snr we find that

snrL =
kn − 1

A
=

snr0(1 + βsnr0)(kn − 1)

kn + (kn − 1)βsnr0
= snr0

1 + βsnr0
kn
kn−1 + βsnr0

,

and the width of the phase transition is given by

snr0 − snrL = snr0

(
1− 1 + βsnr0

kn
kn−1 + βsnr0

)
=

1

kn − 1

snr0
kn
kn−1 + βsnr0

,

as claimed in (Eq. 5.18b). This concludes the proof.
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PROOF OF PROPOSITION 5.2.4.

We first show the decomposition for mutual information

I(Xmix, snr) = I(Xmix;Y ) = I(XG, XD;Y )

= I(XD;Y ) + I(XG;Y |XD)

= I

(
XD,

snr(1− δ)
1 + δsnr

)
+ I(XG, snrδ). (K.1)

Next we take the derivative of both sides of (Eq. K.1) with respect to snr. On the left side we get

d
dsnrI(Xmix, snr) = 1

2mmse(Xmix, snr) and on the right we get

mmse(Xmix, snr)

= 2
d

dsnr
I

(
XD,

snr(1− δ)
1 + δsnr

)
+ 2

d

dsnr
I(XG, snrδ)

= mmse

(
XD,

snr(1− δ)
1 + δsnr

)
· d

dsnr

(
snr(1− δ)
1 + δsnr

)
+ mmse(XG, snrδ) ·

d

dsnr
(snrδ)

=
1− δ

(1 + δsnr)2
mmse

(
XD,

snr(1− δ)
1 + δsnr

)
+ mmse(XG, snrδ)δ

=
1− δ

(1 + δsnr)2
mmse

(
XD,

snr(1− δ)
1 + δsnr

)
+

δ

1 + δsnr
,

as claimed in (Eq. 5.26). This concludes the proof.
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PROOF OF PROPOSITION 5.2.6.

By letting XD ∼ PAM(N), and by using (Eq. 5.27) and the bound in Proposition 5.2.5, we further

constrain the MMSE of XD to satisfy

mmse

(
XD,

snr0(1− δ)
1 + δsnr0

)
≤ d2

maxe−
snr0(1−δ)
1+δsnr0

8
d2

min ≤ (1 + snr0δ)(β − δ)
(1− δ)(1 + βsnr0)

, (L.1)

which ensures that the MMSE constraint in (Eq. 5.3c) is met. Since, the minimum distance of PAM is

given by d2
min = 12

N2−1
, solving for N we have that

N ≤


√

1 + c1
(1− δ)snr0
1 + δsnr0

 , (L.2a)

c1 =
3

2 log+
(
d2

max(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) ≤ 3

2 log+
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

) , (L.2b)

where the last inequality is due to the fact that for PAM

d2
max = (N − 1)2d2

min = 12
(N − 1)2

N2 − 1
= 12

N − 1

N + 1
≤ 12. (L.3)

For the case of snr0 ≤ snr we choose the number of points to satisfy (Eq. L.2) with equality and

choose δ = β snr0
1+snr0

:= βc2.
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Next we compute the gap between the outer bound in Proposition 5.2.3 with the achievable mu-

tual information of a mixed input in Proposition 5.2.4, where I
(
XD,

snr(1−δ)
1+δsnr

)
is lower bounded by

Proposition 5.2.5. We obtain

Gd1 + ∆(Eq. 5.23)

= C∞ −
(

log(N)− 1

2
log
(π

6

)
− 1

2
log

(
1 +

12

d2
min

mmse

(
XD,

snr(1− δ)
1 + δsnr

))
+

1

2
log(1 + δsnr)

)

a)

≤ C∞ −
(

1

2
log

(
1 + c1

(1− δ)snr0
1 + δsnr0

)
− log(2)− 1

2
log
(π

6

)

−1

2
log

(
1 +

12

d2
min

mmse

(
XD,

snr(1− δ)
1 + δsnr

))
+

1

2
log(1 + δsnr)

)

=
1

2
log


 1 + snr0(1−β)

1+βsnr0

1 + c1
(1−δ)snr0
1+δsnr0


+

1

2
log

(
1 + βsnr

1 + δsnr

)
+

1

2
log

(
1 +

12

d2
min

mmse

(
XD,

snr(1− δ)
1 + δsnr

))

+
1

2
log

(
4π

6

)
, (L.4)

where inequality in a) follows from getting an extra one bit gap from dropping the floor operation.
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We next bound each term in (Eq. L.4) individually. The first term in (Eq. L.4) can be bounded as

follows:

1

2
log


 1 + snr0(1−β)

1+βsnr0

1 + c1
(1−δ)snr0
1+δsnr0


 =

1

2
log

(
(1 + snr0)(1 + c2βsnr0)

(1 + βsnr0)(1 + c1snr + βc2snr3 − βc1c2snr)

)

b)

≤ 1

2
log

(
(1 + snr0)(1 + c2βsnr0)

(1 + βsnr0)(1 + c1snr + βc2snr3 − βc1snr)

)

=
1

2
log

(
(1 + snr0)(1 + c2βsnr0)

(1 + βsnr0)(1 + (1− β)c1snr + βc2snr0)

)

c)

≤ 1

2
log

(
(1 + snr0)

(1 + (1− β)c1snr + βc2snr0)

)

d)

≤ 1

2
log

(
max

(
(1 + snr0)

(1 + c1snr)
,

(1 + snr0)

(1 + c2snr0)

))

e)

≤ 1

2
log

(
max

(
1

c1
, 2

))
, (L.5)

where the inequalities follow from the facts: b) c2 = snr0
1+snr0

≤ 1; c) used that 1+c2βsnr0
1+βsnr0

≤ 1 since

c2 ≤ 1; d) the denominator term 1 + (1 − β)c1snr + βc2snr0 achieves its minimum at either β = 0 or

β = 1; and e) (1+snr0)
(1+c2snr0) ≤ 1

c2
= 1+snr0

snr0
≤ 2 for snr0 ≥ 1.

The second term in (Eq. L.4) can be bounded as follows:

1

2
log

(
1 + βsnr

1 + δsnr

)
≤ 1

2
log

(
1 + snr0
snr0

)
≤ 1

2
log (2) , (L.6)

where the inequalities follow from using δ = β snr0
1+snr0

and 1+βsnr0
1+δsnr0

≤ 1+snr0
snr0

≤ 2 for snr0 ≥ 1.
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The third term in (Eq. L.4) can be bounded as follows

1

2
log

(
1 +

12

d2
min

mmse

(
XD,

snr(1− δ)
1 + δsnr

))

f)

≤ 1

2
log

(
1 +

12

d2
min

mmse

(
XD,

snr0(1− δ)
1 + δsnr0

))

g)

≤ 1

2
log

(
1 + c1

(1− δ)snr0
1 + δsnr0

mmse

(
XD,

snr0(1− δ)
1 + δsnr0

))

h)

≤ 1

2
log

(
1 + c1

(β − δ)snr0
1 + βsnr0

)

i)

≤ 1

2
log

(
1 + c1

β

1 + βsnr0

)
, (L.7)

where the (in)-equalities follow from: f) the fact that the MMSE is a decreasing function of SNR and

snr(1−δ)
1+δsnr ≥

snr0(1−δ)
1+δsnr0

; g) using the bound on d2
min = 12

N2−1
from (Eq. L.2); h) using the bound in

(Eq. L.1); and i) using δ = βsnr0
1+snr0

≤ β.

By combining the bounds in (Eq. L.5), (Eq. L.6), and (Eq. L.7) we get

Gd1 + ∆(Eq. 5.23) ≤
1

2
log

(
max

(
1

c1
, 2

))
+

1

2
log

(
4π

3

)
+

1

2
log

(
1 + c1

β

1 + βsnr0

)

=
1

2
log

(
max

(
1

c1
, 2

)
+ 2 max (1, 2c1)

β

1 + βsnr0

)
+

1

2
log

(
4π

3

)

j)

≤ 1

2
log

(
max

(
1

c1
, 2

)
+ 6

β

1 + βsnr0

)
+

1

2
log

(
4π

3

)

k)
=

1

2
log


max




2 log
(

12(1−δ)(1+βsnr0)
(1+snr0δ)(β−δ)

)

3
, 2


+ 6

β

1 + βsnr0


+

1

2
log

(
4π

3

)

l)

≤ 1

2
log

(
max

(
2

3
log

(
24(1 + (1− β)snr0

β

)
, 2

)
+ 6

β

1 + βsnr0

)
+

1

2
log

(
4π

3

)

m)
=

1

2
log

(
2

3
log

(
24(1 + (1− β)snr0

β

)
+ 6

β

1 + βsnr0

)
+

1

2
log

(
4π

3

)
,
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where the inequalities follow from: j) the fact that c1 ≤ 3
2 ; k) using the value of c1 in (Eq. L.2); l) using

δ = β snr0
1+snr0

and 1+βsnr0
1+δsnr0

≤ 1+snr0
snr0

≤ 2 for snr0 ≥ 1; and m) the fact that max

(
2 log

(
24(1+βsnr0)

β

)
3 , 2

)
=

2 log
(

24(1+βsnr0)
β

)
3 .

This concludes the proof of the gap result for the snr ≥ snr0 regime.

We next focus on the snr ≤ snr0 regime. We use only the discrete part of the mixed input and set

δ = 0. From (Eq. L.2) we have that the input parameters must satisfy

N ≤
⌊√

1 + c3snr0
⌋
, (L.8a)

c3 ≤
3

2 log
(

12(1+βsnr0)
β

) , (L.8b)

in order to comply with the MMSE constraint in (Eq. 5.3c). However, instead of choosing the number

of points as in (Eq. L.8) we choose it to be

N =
⌊√

1 + c3snr
⌋
≤
⌊√

1 + c3snr0
⌋
. (L.9)

The reason for this choice will be apparent from the gap derivation next.
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Similarly to the previous case, we compute the gap between the outer bound in Proposition 5.2.3

and the achievable mutual information of the mixed input in Proposition 5.2.4, where I (XD, snr) is

lower bounded using Proposition 5.2.5. We have,

Gd2 + ∆(Eq. 5.24) ≤ C∞ − log(N) +
1

2
log
(πe

6

)
+

1

2
log

(
1 +

12

d2
min

mmse(XD, snr)

)

n)

≤ 1

2
log

(
1 + snr

1 + c2snr

)
+

1

2
log

(
4πe

6

)
+

1

2
log

(
1 +

12

d2
min

mmse(XD, snr)

)

o)

≤ 1

2
log

(
1 + snr

1 + c2snr

)
+

1

2
log

(
4πe

6

)
+

1

2
log

(
1 +

c2snr

1 + snr

)

=
1

2
log

(
1 + (1 + c2)snr

1 + c2snr

)
+

1

2
log

(
4πe

6

)

p)

≤ 1

2
log

(
1 +

1

c2

)
+

1

2
log

(
4πe

6

)

r)
=

1

2
log

(
1 +

2

3
log

(
12(1 + βsnr0)

β

))
+

1

2
log

(
4πe

6

)
,

where the (in)-equalities follow from: n) getting an extra one bit gap by dropping the floor operation;

o) using the bound on d2
min = 12

N2−1
from (Eq. L.9) and bound mmse(X, snr) ≤ 1

1+snr ; p) using

1+(1+c2)snr
1+c2snr

≤ 1+c2
c2

= 1 + 1
c2

; and r) using the value of c2 from (Eq. L.8).

Note that had we chosen number of points to be N =
⌊√

1 + c3snr0
⌋
, the inequality in p) would not

hold.

This concludes the proof.
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PROOF OF PROPOSITION 5.3.1.

Observe that

Cov(Z|Y) = E[ZZT|Y]− (E[Z|Y])(E[Z|Y])T,

and so we have that

Cov2(Z|Y) =
(
E[ZZT|Y]− E[Z|Y]E[Z|Y]T

)2

= (E[ZZT|Y])2 − E[Z|Y]E[Z|Y]TE[ZZT|Y]

− E[ZZT|Y]E[Z|Y]E[Z|Y]T + (E[Z|Y]E[Z|Y]T)2

a)
= (E[ZZT|Y])2 − 2E[Z|Y]E[Z|Y]TE[ZZT|Y]

+ (E[Z|Y]E[Z|Y]T)2

b)

� (E[ZZT|Y])2 − 2E[Z|Y]E[Z|Y]TE[Z|Y]E[Z|Y]T

+ (E[Z|Y]E[Z|Y]T)2

= (E[ZZT|Y])2 − (E[Z|Y]E[Z|Y]T)2

c)
= E[ZZT(ZZT)T|Y]−Cov(ZZT|Y)− (E[Z|Y]E[Z|Y]T)2, (M.1)
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where the order operations follow from: a) the fact that E[Z|Y]E[Z|Y]T and E[ZZT|Y] are symmetric

matrices; b) using E[Z|Y]E[Z|Y]T � E[ZZT|Y]; and c) the fact that, since Cov(ZZT|Y) = E[ZZT(ZZT)T|Y]−

E[ZZT|Y](E[ZZT|Y])T and by symmetry of E[ZZT|Y], we have that

E[ZZT|Y](E[ZZT|Y])T = (E[ZZT|Y])2. By using the monotonicity of the trace, properties of the ex-

pected value, and the inequality in (Eq. M.1), we have that

Tr
(
E[Cov2(Z|Y)]

)
≤ Tr

(
E
[
E[ZZT(ZZT)T|Y]−Cov(ZZT|Y)− (E[Z|Y]E[Z|Y]T)2

])

= Tr
(
E
[
E[ZZT(ZZT)T|Y]

])
− Tr

(
E
[
Cov(ZZT|Y)

])

− Tr
(
E
[
(E[Z|Y]E[Z|Y]T)2

])
. (M.2)

We next focus on each term of the right hand side of (Eq. M.2) individually. The first term can be

computed as follows:

Tr
(
E
[
E[ZZT(ZZT)T|Y]

]) d)
= Tr

(
E[ZZTZZT]

)

e)
= E

[
Tr
(
ZZTZZT)]

= E
[
Tr
(
ZTZZTZ

)]

= E



(

n∑

i=1

Z2
i

)2



f)
= n(n+ 2), (M.3)
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where the (in)-equalities follow from: d) using the law of total expectation; e) since expectation is a

linear operator and using fact that the trace can be exchanged with linear operators; and f) observing

that S =
∑n

i=1 Z
2
i is a chi-square distribution of degree n and hence E[S2] = n(n+ 2).

For the second term in (Eq. M.2), by definition of the MMSE, we have

Tr
(
E
[
Cov(ZZT|Y)

])
= nmmse(ZZT|Y). (M.4)

The third term in (Eq. M.2) satisfies

Tr
(
E
[
(E[Z|Y]E[Z|Y]T)2

]) g)
≥ Tr

((
E
[
E[Z|Y]E[Z|Y]T

])2)

= Tr
((

E[ZZT]− E[Cov(Z|Y)]
)2)

h)
= Tr

(
(I− snr E[Cov(X|Y)])2

)

i)
= Tr

(
J2(Y)

)
(M.5)

where the (in)-equalities follow from: g) using Jensen’s inequality; h) using the property snrE[Cov(X|Y)] =

E[Cov(Z|Y)]; and i) using identity (66)

I− snr E[Cov(X|Y)] = J(Y).

By putting (Eq. M.3), (Eq. M.4), and (Eq. M.5) together, we have that

E
[
Cov2(Z|Y)

]
≤ kn :=

n(n+ 2)− n mmse(ZZT|Y)− Tr
(
J2(Y)

)

n
.
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Finally, using the identity E
[
Cov2(Z|Y)

]
= snr2E

[
Cov2(X|Y)

]
concludes the proof.
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PROOF OF PROPOSITION 5.3.2.

Using the Cramer-Rao lower bound (74, Theorem 20) we have that

J(Y) � Cov−1(Y) (N.1)

=
(
snrE[XXT ] + I

)−1
(N.2)

= V−1 Λ−1 V, (N.3)

where Λ is the eigen-matrix of snrE[XXT ] + I, λi = snrσi + 1, and σi is the i-th eigenvalue of matrix

E[XXT ]. Therefore,

Tr
(
J2(Y)

)
≥ Tr

(
V−1Λ−1 V

(
V−1Λ−1 V

)T)

= Tr( Λ−2)

=
n∑

i=1

1

(1 + snrσi)2

≥ n

(1 + snr)2
,

where the last inequality comes from minimizing
∑n

i=1
1

(1+snrσi)2 subject to the constraint that Tr
(
E[XXT ]

)
=

∑n
i=1 σi ≤ n and where the minimum is attained with σi = 1.

Finally, note that all inequalities are equalities if Y ∼ N ( 0, (1 + snr)I) or equivalently if X ∼

N ( 0, I). This concludes the proof.
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PROOF OF PROPOSITION 5.3.3.

First observe that since the conditional expectation is the best estimator under a squared cost function

Cov(X|Y = y) = E
[
(X− E[X|Y])(X− E[X|Y])T|Y = y

]

� E
[
(X− f(Y))(X− f(Y))T|Y = y

]
, (O.1)

for any deterministic function f(·). Therefore, the first bound in (Eq. 5.35a) follows by choosing

f(Y) =
√
snrY

1+snr in (Eq. O.1)

Tr
(
E
[
Cov2(X|Y)

])
≤ Tr

(
E

[
E2

[(
X−

√
snrY

1 + snr

)(
X−

√
snrY

1 + snr

)T

|Y
]])

=
1

(1 + snr)4
Tr
(
E
[
E2
[(

X−
√
snrZ

) (
X−
√
snrZ

)T |Y
]])

≤ 1

(1 + snr)4
Tr

(
E
[((

X−
√
snrZ

) (
X−
√
snrZ

)T
)2
])

,

where the last inequality is due to Jensen’s inequality.

The second bound in (Eq. 5.35a) follows by choosing f(Y) = 0 in (Eq. O.1)

Tr
(
E
[
Cov2(X|Y)

])
≤ Tr

(
E
[
E2
[
(X− 0)(X− 0 )T|Y

]])
= Tr

(
E
[
E2
[
XXT|Y

]])
.

This concludes the proof.
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