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Summary

Recent cutting-edge scanning tunneling spectroscopy experiments on the heavy fermion

compound CeCoIn5 are analyzed to extract the low-energy electronic structure of the hy-

bridized heavy quasiparticles. The results are used to determine the magnetic interaction

between f -electrons, and under the assumption that this provides the superconducting

pairing interaction, aspects of the superconducting state are calculated theoretically, in

good agreement with experiment. The model is extended to study the detailed line

shapes of the differential conductance of CeCoIn5, where it is found to account for the

observation of a purported pseudo-gap in the normal state, the superconducting state

gap structure, and the local response in the vicinity of defects. The model is then used

to explore the dispersion of the magnetic resonance peak observed in neutron scattering

experiments. These experiments indicate the resonance is likely the signature of a spin-

wave-like magnon, rather than the spin exciton observed in the cuprate superconductors.

A simplified model of a nanoscale heavy fermion system is employed to currents induced

by a finite voltage bias. The current patterns in real space are found to be sensitive

to the presence of defects and of hybridization correlations between the conduction and

f -electrons. The finite bias is also seen to suppress the hybridization in a self-consistent

calculation.

The currents flowing through a nanoscale 2D topological insulator are studied in real

space. It is found that magnetic defects can be placed in the system in order to generate

highly spin-polarized currents over a wide range of material parameters. These effects

are shown to be useful for constructing tunable spin diodes and are also seen in systems

interfacing the topological insulator with a ferro- or antiferromagnet. The results are

robust against various perturbations likely to be realized experimentally. This supports

their relevance for future applications in spintronics or quantum computing.

x



Chapter 1

Introduction

1.1 Correlations in Condensed Matter

It is well-known that the field of condensed matter physics is enormous in scope, ex-

tending from the earliest developments of crystallography to the most cutting-edge ap-

plications of holographic dualities to high temperature superconductors. Despite the

profusion of material systems and theoretical methods, there are a number of paradigms

that serve to orient much of the work in the field. One such set of principles is Landau’s

Fermi liquid theory, which underlies the description of metallic systems [1]. Landau sur-

mised, as was later proven by quantum field theoretical techniques, that the low-lying

excitations of a system of interacting fermions can be described in terms of renormal-

ized ‘quasiparticles’ with the same general behavior as the non-interacting system, but

having an effective mass different from that of the original particles. This approach

provides a good treatment of many simple metals, however, it can fail in systems where

there are strong correlations and/or reduced dimensionalities (as in the one-dimensional

Luttinger liquid, for example [2]).

A notable example of a case where Fermi liquids can survive in the presence of strong

correlations is a heavy fermion material. At high temperatures, a heavy fermion system

can be modeled as a lattice of localized magnetic f -electrons (spins) interacting with a

band of conduction electrons, as shown schematically in Fig. 1.1a. As the temperature

is lowered, there is a crossover to a new state where the conduction electrons screen the

1



Chapter 1. Introduction 2

Figure 1.1: Schematic drawing of (a) layered heavy fermion system (b) Kondo screen-
ing of f -electron spins by conduction electrons. The yellow and red spheres represent

the f -electrons and conduction electrons, respectively.

local moments (Fig. 1.1b), producing a Fermi liquid of residual non-magnetic quasi-

particles. These quasiparticles can have very large effective masses, up to more than a

thousand times the bare mass of the electron (hence the name ‘heavy fermion’). The

emergence of the low temperature Fermi liquid is a surprising and beautiful example of

universality in condensed matter systems, wherein complicated microscopic physics gives

rise to relatively simple behavior at low energies. In general, heavy fermion materials

have complex phase diagrams which can also include magnetism and superconductivity

in addition to Fermi liquid physics. In some cases there are even regions – known as

non-Fermi liquid phases or strange metals – that are not well-described within any of

the traditional paradigms of condensed matter physics, but are instead believed to be

associated with a quantum phase transition at zero temperature [3, 4].

The first part of this thesis focuses on the unconventional superconducting state of

CeCoIn5, one of the most perplexing phenomena in heavy fermion materials. Super-

conductivity was found in this compound at 2.3 K, giving it the highest transition

temperature of the Ce-based materials. The discovery marked the beginning of a con-

certed effort to understand its normal and superconducting states [5]. CeCoIn5 has a

tetragonal crystal structure [5], as shown schematically in Fig. 1.2. There exist two

compounds related to CeCoIn5 which are isostructural to it: CeRhIn5 [6] and CeIrIn5

[7]. The various similarities and differences between the three materials are helpful for

understanding each in its own light as well. The ‘Ce-115 compounds’ are also believed to

be related to the cuprate and iron pnictide superconductors, due to their similar quasi-

2D structures, unconventional superconductivity, and proximity to antiferromagnetic

states [8]. A better understanding of superconductivity in heavy fermions like CeCoIn5
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Figure 1.2: Schematic drawing of the crystal structure of CeCoIn5 [9].

will also likely shed light on the complex physical properties of the high temperature

superconductors, which have resisted a complete description for nearly thirty years.

The significant advances discussed in the present work were made possible by cutting-

edge scanning tunneling microscopy experiments (STM) on CeCoIn5, performed by the

Davis group at Cornell University [9, 10]. These experiments allowed for the extrac-

tion of the low-energy electronic structure by the method of quasiparticle interference

spectroscopy, which is crucial for developing a quantitative understanding of supercon-

ductivity in the material (Chapter 2). Together with the detailed form of the magnetic

interaction between f -electrons, also extracted from the experiments, this information

led to a series of predictions about the superconducting state, including the determi-

nation of the gap symmetry and critical temperature (Chapter 3). This was achieved

primarily on the basis of experimental input relevant for the normal, as opposed to the

superconducting, state of the material. Furthermore, the model developed in this work

has found use in the study of the local response in STM experiments to the presence of

defects, as well as in the analysis of recent neutron scattering experiments (Chapter 4).

The results discussed so far all deal with equilibrium properties of heavy fermion ma-

terials. Nonequilibrium experiments also pose exciting challenges and opportunities for

advancing the theoretical understanding of correlated systems. To this end, a simplified

model of a nanoscale heavy fermion system is studied to determine the currents that

flow through the sample in the presence of an applied voltage. The effect of defects and

correlations on the current patterns are examined, as well as the role of the non-zero

bias on the correlations themselves (Chapter 5).
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Figure 1.3: Schematic drawing of a topological insulator illustrating spin-momentum
locking. Spin-↑ electrons travel clockwise around the edge, whereas spin-↓ electrons

travel counterclockwise.

1.2 Topological Materials

Continuing with the study of current flow, the final chapter turns to the behavior of

nanoscale topological insulators (TIs). In many cases these materials can be understood

in terms of non-interacting physics, but they are nonetheless currently of great interest

due to the existence of certain topological invariants that can be used to characterize

distinct states of the system [11, 12]. The values of these invariants are quantized, and

cannot change between two regions of space without closing the insulating gap at the

Fermi level. Thus, if the material is in a state corresponding to a nontrivial topological

invariant, the fact that the vacuum is an insulator (with trivial invariant) implies that

the system possesses conducting surface or edge states. Furthermore, the edge states are

spin-momentum locked, in the sense that electrons of a given spin are forced to travel

in a particular direction around the edge, while those of the opposite spin propagate

in the opposite direction (Fig. 1.3). This is true not only in a clean system, but even

in the presence of nonmagnetic defects. In this case, time-reversal symmetry protects

against backscattering – roughly speaking, for any given backscattering trajectory, there

is another related by time-reversal symmetry which interferes destructively with the first

[12].

However, by introducing magnetic impurities on the edge of a 2D TI, one explicitly

breaks this symmetry and backscattering may occur. We demonstrate how one can

generate highly spin-polarized currents using magnetic defects appropriately placed on

the surface of a 2D TI. To bolster support for this claim, we show that the results
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are robust against various perturbations of the model and that similar effects can be

achieved by interfacing at TI with a disordered ferromagnet or an antiferromagnet. The

generation of spin-polarized currents is an important goal for the development of next-

generation technology in the fields of spintronics and quantum computing. Hence, we

anticipate that the proposal outlined here will find use in future applications.



Chapter 2

Superconducting gap in CeCoIn5

2.1 Superconducting Gap Symmetry

One of the central questions that can be asked about any bulk superconductor is the

symmetry of its superconducting gap, ∆(k). This gap in the excitation spectrum of the

superconductor is a consequence of the finite energy required to break apart a Cooper

pair [13]. Following the standard BCS theory, the gap is a function of the momenta

of the electrons forming the Cooper pair. While the elemental superconductors and

those composed of simple alloys invariably possess s-wave symmetry (∆(k) = const.),

more complicated systems such as the cuprates, iron pnictides, and heavy fermions can

possess other symmetries of their gap functions [8]. In the case of CeCoIn5, numerous

experimental studies have been undertaken to try to determine the symmetry of the gap.

Early measurements of the angular dependence of the thermal conductivity showed a

fourfold symmetry indicative of dx2−y2 pairing [14]. Some time later, the magnetic field

angle dependence of the specific heat was also found to have a fourfold symmetry, but one

that was suggestive of dxy instead [15]. Thus, although the superconductivity was likely

to be unconventional (i.e. allowing for a change in the phase of the gap as a function of

momentum), it was unclear exactly what was the symmetry of the gap. Furthermore,

these thermodynamic studies of the gap do not constitute direct observations of the gap,

but rather rely on theoretical interpretation, which is uncertain.

6
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2.2 Basics of Scanning Tunneling and Quasiparticle Inter-

ference Spectroscopy

A major advance came with the advent of scanning tunneling spectroscopy (STS) ex-

periments on CeCoIn5 [9, 16]. In these experiments, a scanning tunneling microscope

(STM) is used to probe the electronic structure at the surface of the material. While the

STM was originally developed with the goal of imaging surfaces with atomic resolution,

thereby providing a topographic map of step edges, adsorbates, and other surface phe-

nomena, the STS mode of operation has become a powerful method of directly studying

the underlying electronic structure of materials as well [17–19]. Briefly, in an STS ex-

periment the STM tip is fixed above a given atomic site and the voltage bias between

the tip and sample is varied. Electrons are able to tunnel between the tip and sample

through the insulating barrier of the vacuum (Fig. 2.1). One records the differential

conductance (dI/dV ) as a function of bias V , the former quantity being proportional to

the local density of states (for a single band in the weak tunneling limit) [20].

dI(r, E)

dV
=

2πe

~
Ntt

2Ns(r, E) (2.1)

Here Nt is the density of states of the STM tip, t is the hopping integral between the

tip and sample, and Ns(r, E) is the local density of states of the material at position

r. The measurement is repeated at every site in a two-dimensional field of view on the

sample surface. The tunneling data as a function of energy reveals important information

about the electronic structure of the material. One may detect such features as van

Hove singularities arising from the flatness of a given band, or superconducting [21] or

hybridization [22] gaps around the Fermi level.

The usefulness of the STS technique was extended further with the introduction of quasi-

particle interference (QPI) spectroscopy [23–25]. It is well-known that the placement of

a charged impurity in a homogeneous electron gas leads to oscillations of the electron

density, as the gas attempts to screen the perturbing charge [26]. These oscillations

possess a characteristic wavevector of 2kF , due to the scattering of the electrons across

the Fermi surface (the Fermi sphere in the non-interacting case). These effects has been

observed in solids as well and are known as Friedel oscillations [27], wherein the conduc-

tion electrons scatter off defects in the material, resulting in ripple-like spatial patterns
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Figure 2.1: Schematic drawing of an STM experiment, illustrating how electrons
tunnel between the tip and sample surface.

in the charge density (and correspondingly in the local density of states) around the de-

fect. The oscillations are often readily observed in STM surface maps at fixed bias, and

by Fourier transforming the 2D real space image, one extracts the principal wavevectors

q that occur in them. Since the energy of the probed quasiparticle states is determined

by the bias through E = eV , one obtains q(E), the transferred momentum as a function

of quasiparticle energy. Under the further approximation of a spherical Fermi surface,

q = 2k, the foregoing relation can be inverted to give an experimental determination of

the electronic band structure, E(k) [23, 24].

One might inquire as to the validity of the band structure extracted using the above

procedure, since the STM is sensitive only to states near the surface of the material, and

furthermore only determines the scattering wavevector in the plane (whereas in the bulk

the bands are generically dispersing in three dimensions). In reply, it should be kept in

mind that the systems to which this technique is applied, including CeCoIn5, are quasi-

2D in nature, with the important electronic bands lying within the plane. Thus, there

is good reason to believe that the electronic structure at the surface is also indicative of

the bulk physics, and so the QPI method can provide insight into the general behavior

of such materials.

2.3 Experimental Challenge of QPI for CeCoIn5

We now present the experimental results of Allan et al. [9] and show how they can

be successfully understood using the periodic Anderson model, one of the theoretical

cornerstones for describing the complex physics of heavy fermion materials. Figure 2.2
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Figure 2.2: Sample experimental data obtained from QPI analysis of STS measure-
ments on CeCoIn5 [9]. Numbered circles indicate important scattering wavevectors.

shows three examples of QPI data obtained from a measurement on a sample of CeCoIn5.

As always found for QPI experiments, there is a strong background of intensity near

q = (0, 0) arising from large scale surface modulations. The relevant points in the

data for extracting the quasiparticle dispersions are the regions of high intensity located

at larger wavevectors; these are indicated in the figure by the numbered circles. As

the bias is varied, it is possible to reliably and reproducibly track the movement of

these spots in the q-space. In particular, one may focus on one dimensional cuts along

two of the high symmetry directions in the Brillouin zone, (0, 0) → (0, 2π/a0) and

(0, 0)→ (2π/a0, 2π/a0). The goal of the theorist is to employ the evolution of the QPI

scattering maxima as a function of energy to extract the material’s underlying electronic

structure. The experimental QPI cuts recorded at a temperature of 250 mK are shown

in Fig. 2.3. One immediately notices that it is possible to distinguish between scattering

due to the ’light’ and ’heavy’ parts of the bands. The scattering from the light bands

is highly dispersive, as indicated by the gray circles, and arises from the contribution

of the delocalized conduction electrons in the system (’light’ refers to the fact that the

effective mass of the quasiparticles does not differ greatly from the bare mass of the

electron). On the other hand, the flat regions in the scattering plot, shown with blue

circles, come from the heavy portions of the hybridized quasiparticles bands. In this

region, the quasiparticles have very large effective masses due to the strong correlations

between the conduction electrons and localized f -electrons of the Ce atoms.

2.4 Theoretical Model for CeCoIn5 Band Structure

To try to reproduce the experimental findings presented above one would like to develop

a quantitative theoretical description of the electronic structure. The class of models
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Figure 2.3: One-dimensional cuts along the directions (a) (0, 0) → (0, 2π/a0) and
(b) (0, 0) → (2π/a0, 2π/a0) of QPI analysis on CoIn5 [9]. Numbered arrows indicate

important scattering wavevectors shown in Fig. 2.2.

appropriate for heavy fermion systems like CeCoIn5 has a long history dating back to the

discovery of the first materials in the 1970s [28], up through their continued theoretical

elucidation today [29]. These models are essentially the extension to the lattice of the

models designed to describe individual magnetic impurities in host metals (the Kondo

problem). The Kondo problem itself has a rich history, beginning with the observation

of an anomalous minimum in the temperature dependence of the electrical resistance of

some metals at low temperatures [30]. It was recognized early on that this minimum

could be due to the presence of residual impurities in the host, which was confirmed by

studies demonstrating the change in the location of the minimum under the controlled

addition of defects [31]. The theoretical explanation for the minimum was pioneered by

Jun Kondo [32], who calculated the scattering of conduction electrons by a magnetic

impurity to third order in perturbation theory, thereby showing a log divergence of the

scattering rate with the inverse temperature. This explained the appearance of the

resistance minimum (when the phonon contribution, which decreases with temperature,

is overcome by the magnetic scattering term), but left open the question of what happens

at still lower temperatures where the perturbation expansion breaks down. This became

known as the Kondo problem. Many groups contributed to the understanding of the

problem, but perhaps the most crucial physical idea came from Anderson’s scaling theory
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[33, 34], which suggested that the increased coupling between the conduction electrons

in the metal and the localized magnetic moment eventually leads to the formation of

a singlet bound state between the two. The temperature at which this crossover takes

place is known as the Kondo temperature, TK . Anderson’s ideas were confirmed by

Wilson, using his numerical renormalization group approach [35]. Later studies of the

problem included an effective local Fermi liquid approach [36], conformal field theories

[37], large-N expansions [38–40], and even exact solutions via the Bethe ansatz [41, 42].

In the course of this development, several different theoretical models were proposed

and studied to shed light on the experimental results in Kondo impurity systems. The

Hamiltonian studied by Kondo (now often called the Kondo model) represents the an-

tiferromagnetic interaction between the spins of the local moment and the conduction

electrons:

H = J
∑
k

sk · Simp (2.2)

Here sk and Simp represent the spin operators of the conduction electrons and the local

moment, respectively. This model, like many used in heavy fermion physics, has a

deceptive simplicity to it. In fact, the use of spin operators prevents the straightforward

application of quantum field theory techniques, since the commutation relations imposed

on spins do not admit a Wick theorem [29]. Although alternative perturbation theories

can be developed [43], the standard procedure is to re-write the spin operators in terms

of bosonic or fermionic operators and a constraint. The choice of operators is typically

a matter of convenience for whatever problem is at hand. In magnetic phases, bosonic

representations have been found useful, whereas studies of Fermi liquid states have

tended to use fermionic ones [44]. In the Kondo problem, the constraint has the physical

interpretation that the magnetic moment arises from a localized (usually f or d) electron

at the impurity site; that is, charge fluctuations are neglected.

Another widely used model for the single impurity problem is the eponymous Anderson

model, which is more general in that charge fluctuations are permitted. The Hamiltonian

in this case can be written as

H =
∑
k,σ

εckc
†
k,σck,σ + E0

∑
σ

nfσ + Unf↑n
f
↓ +

∑
k,σ

Vkf
†
σck,σ +H.c. (2.3)
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where c†k,σ (ck,σ) creates (annihilates) a conduction electron with momentum k and spin

σ, f †σ (fσ) creates (annihilates) a localized f -electron with spin σ, and the operator

nfσ = f †σfσ gives the number of f -electrons at the impurity site with a given spin.

Furthermore, the dispersion of the conduction electrons is given by εck, E0 is an on-site

energy) for the f -electron on the impurity, U describes the Coulomb repulsion between

electrons at the impurity (Hubbard potential), and Vk is the hybridization between the

c- and f -electrons. This model is more complex than the Kondo model, but a definite

relation exists between the two, as follows. Taking the Coulomb repulsion U → ∞,

double occupation of the f -electron site is forbidden and the original Hilbert space

is projected down to the subspace of states in which the site is either unoccupied or

singly occupied. Requiring further that the occupation nf↑ + nf↓ = 1, one can perform a

Schrieffer-Wolff transformation to recover the Kondo model [45].

In systems with dense lattices of local moments, interactions between neighboring mo-

ments invalidate the simple single-impurity models discussed above. In this case, the

natural generalizations of models 2.2 and 2.3 are

H = J
∑
r

sr · Simp(r) (2.4)

and

H =
∑
k,σ

εckc
†
k,σck,σ + E0

∑
r

nfr +
∑
r,r′

Ir,r′Sr · Sr′ +
∑
r,r′,σ

Vr,r′f
†
r,σcr′,σ +H.c. (2.5)

We have further added a Heisenberg-like term HH =
∑

r,r′ Ir,r′Sr · Sr′ to allow for

interactions between neighboring magnetic moments. In the Kondo limit nf = 1, the

Anderson lattice model can be mapped onto the Kondo lattice model. Anticipating this

possibility that nf may differ from one for CeCoIn5, we choose to work with the periodic

Anderson model in the following.

We now turn to the approximate solution of this model (in the infinite U limit). The

exclusion of double occupancy on the f site can be conveniently described in the slave

boson approach [39, 40, 46, 47]. One introduces a set of new bosonic operators br, b
†
r to

label unoccupied sites. The hybridization terms, which transfer electrons into or out of

the f orbital, are changed via Vr,r′f
†
r,σcr′,σ → Vr,r′f

†
r,σbrcr′,σ so that the Hamiltonian in
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the slave boson method becomes

H =
∑
k,σ

εckc
†
k,σck,σ + E0

∑
r

nfr +
∑
r,r′,σ

Vr,r′f
†
r,σbrcr′,σ +H.c.+

∑
r,r′

Ir,r′Sr · Sr′ (2.6)

The constraint nf ≤ 1 can now be represented as b†rbr +
∑

σ f
†
rfr = 1, which is to

be enforced at each site r. An explicit form of the constraint and the decoupling of

the Heisenberg interaction term HH is conveniently done in a path integral approach.

First, the spin operators of the conduction and f electrons are replaced with Abrikosov

pseudofermions, Sr = 1
2Ψ†rσΨr, with spinor Ψ†r = (f †r↑ f

†
r↓), and σ = (σ1, σ2, σ3) is a

vector of the Pauli matrices. Next, we decouple the interaction term between f -electrons

using the standard Hubbard-Stratonovich method, introducing a new field tf (r, r′, τ).

The static approximation substitutes for this field its expectation value tf (r, r′), and

similarly for the slave boson operators br → r0(r). Furthermore, the f occupation

constraint is enforced by a Lagrange multiplier λ = εf − E0, also taken in the static

approximation. By minimizing the action with respect to εf and s(r, r′) = Vr,r′r0(r),

one obtains a set of self-consistency equations

s(r, r′) =
Jr,r′

π

∫ ∞
−∞

dωnF (ω)ImGfc(r, r
′, ω) (2.7)

tf (r, r′) = −
Ir,r′

π

∫ ∞
−∞

dωnF (ω)ImGff (r, r′, ω) (2.8)

nf (r) = −
∫ ∞
−∞

dω

π
nF (ω)ImGff (r, r, ω) (2.9)

with f occupation nf = 1 − r2
0 and Jr,r′ = Vr,r′/(εf − E0) > 0. The effective hoppings

s(r, r′) and tf (r, r′) encode the correlations between conduction and f -electrons, and

those among f -electrons, respectively. Finally, the Green’s functions on the right hand

sides of equations 2.7 – 2.9 are

Gcc(k, σ, ω) =
w2
k

ω − Eαk + iΓα
+

x2
k

ω − Eβk + iΓβ
(2.10)

Gff (k, σ, ω) =
x2
k

ω − Eαk + iΓα
+

w2
k

ω − Eβk + iΓβ
(2.11)

Gcf (k, σ, ω) = wkxk

[
1

ω − Eαk + iΓα
− 1

ω − Eβk + iΓβ

]
(2.12)

where the further assumption was made that s(r, r′) = s(r−r′) and tf (r, r′) = tf (r−r′),
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which may then be Fourier transformed into momentum space along with the Green’s

functions. Furthermore, Γα,β is the inverse lifetime of the heavy quasiparticles labeled

by α, β and the coherence factors wk and xk are

w2
k =

1

2
+

(
εck−ε

f
k

2

)2

√(
εck−ε

f
k

2

)2

+ s2
k

 (2.13)

x2
k =

1

2
−

(
εck−ε

f
k

2

)2

√(
εck−ε

f
k

2

)2

+ s2
k

 (2.14)

wkxk =
s2
k

2

√(
εck−ε

f
k

2

)2

+ s2
k

(2.15)

the energies of the quasiparticle states are finally given by

Eα,βk =
εck + εfk

2
±

√√√√(εck − εfk
2

)2

+ s2
k (2.16)

These equations give the band structure for the heavy quasiparticles in the hybridized

Kondo lattice. Note that the f -electrons acquire a dispersion εfk due to the hopping

induced by the Heisenberg term in the Hamiltonian 2.6.

An alternative and instructive way of viewing these results is in the Hamiltonian lan-

guage, wherein the static approximation amounts to the mean-field Hamiltonian

HMF =
∑
k,σ

εckc
†
k,σck,σ +

∑
k,σ

εfkf
†
k,σfk,σ +

∑
k,σ

skf
†
k,σck,σ +H.c. (2.17)

This non-interacting Hamiltonian is diagonalized by the following canonical transforma-

tion

c†k,σ = wkα
†
k,σ + xkβ

†
k,σ (2.18)

f †k,σ = −xkα†k,σ + wkβ
†
k,σ (2.19)
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where wk, xk come from eqs. 2.13 and 2.14, and the final diagonalized form of the

Hamiltonian is

HMF
K =

∑
k,σ

(
Eαkα

†
k,σαk,σ + Eβkβ

†
k,σβk,σ

)
(2.20)

At this point we have a model for the excitations of the low temperature, hybridized

heavy Fermi liquid state, but without superconductivity. To study the superconducting

state, one may proceed in two different ways. The more theoretical approach, developed

in Chapter 3 is to introduce a superconducting pairing interaction between the quasi-

particles which could be used along with the band structure to determine the properties

of the superconducting state in a weak-coupling BCS approach. However, this requires

a definite proposal for the microscopic pairing mechanism, for which there are multiple

possibilities [48–51]. It may be that several different mechanisms are capable of account-

ing for the observed QPI, so in the present chapter we restrict ourselves to the issues

that can be addressed independently of the choice of mechanism.

No matter what the fundamental nature of the pairing mechanism, superconductivity

can be incorporated in a model Hamiltonian at the mean-field (BCS) level by the addition

of pairing terms:

HMF
SC = −

∑′

p
(∆α

kαk,↓α−k,↑ + ∆β
kβk,↓β−k,↑ +H.c.) (2.21)

where the prime on the summation indicates a restriction to states within the Debye

energy of the Fermi energy

|Eα,βk | ≤ ωD (2.22)

Then the total mean-field Hamiltonian in the superconducting state is

HMF
tot = HMF

K +HMF
SC (2.23)
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The Hamiltonian is off-diagonal on account of the pairing terms, but can be diagonalized

with the canonical (Bogoliubov) transformations

αk,↑ = uαkak + vαkb
†
k (2.24)

α−k,↓ = vαka
†
k − u

α
kbk (2.25)

for the α-band, while for the β-band one has

βk,↑ = uβkdk + vβkg
†
k (2.26)

β−k,↓ = vβkd
†
k − u

β
kgk (2.27)

The diagonalized mean-field Hamiltonian in the superconducting state is

H =
∑
p

′
[
Ωα
k(a†kak + b†kbk) + Ωβ

k(d†kdk + g†kgk)
]

(2.28)

where the energies of the Bogoliubov quasiparticle excitations are given by

Ωα,β
k =

√(
Eα,βk

)2
+
(

∆α,β
k

)2
(2.29)

2.5 Theory of Heavy Fermion QPI

Now that the theoretical form of the electronic structure for the superconducting state

of a heavy fermion material has been determined, it remains to connect this to the

experimentally observed QPI, which describes the scattering between states rather than

the states themselves. This theory was developed for URu2Si2 in Ref. [52], along the

following lines. The QPI spectrum is the power spectrum determined from the Fourier

transform of the real space differential conductance, dI/dV . In a heavy fermion material,

the presence of the STM tip introduces a tunneling Hamiltonian

HT = −
∑
r,σ

(
tcc
†
r,σdσ + tff

†
r,σdσ +H.c.

)
(2.30)

with the operator dσ annihilating an electron in the lead with spin σ, tc is the hopping

between the tip and the conduction band, and tf = tf,0r0 is the hopping between the tip

and f-electrons, renormalized by the expectation value of the slave boson. To account
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for the complexity of various tunneling processes between the tip and the system it is

helpful to introduce a matrix notation. The Green’s functions of eqs. 2.10–2.12 (now in

real space) can be combined into compact matrix form:

Ĝσ(r, r, E) =

Gcc(r, r, σ, E) Gcf (r, r, σ, E)

Gfc(r, r, σ, E) Gff (r, r, σ, E)

 (2.31)

with Gfc(r, r, σ, E) = Gcf (r, r, σ, E), as can be shown diagrammatically. The most

general expression for the tunneling current utilizes the Keldysh formalism (employed

in Chapters 5 and 6). However, in the limit of weak tip-system coupling (tc, tf ) dI/dV

one may derive an expression that contains terms proportional to the densities of states

of the c and f -electrons, but also a quantum interference term:

dI(r, E)

dV
=
πe

~
Nt

2∑
i,j=1

[t̂ ImĜ(r, r, E)t̂]ij

=
2πe

~
Nt

[
t2cNc(r, E) + t2fNf (r, E) + tctfNcf (r, E) + tf tcNfc(r, E)

]
(2.32)

in this expression the tip-system hopping matrix is defined via

t̂ =

−tc 0

0 −tf

 (2.33)

and Nt is the tip density of states. Equation 2.32 can be understood pictorially in terms

of the multiple tunneling paths between the STM tip and the sample. For instance, the

term with i = j = 1 represents an electron hopping between the tip and the conduction

band, whereas i = j = 2 is the same for the f -band. The off-diagonal terms on the

other hand represent hopping from the tip to either the c- or f -band and returning from

the other one. As discussed above in section 2.1, QPI measures the oscillations in the

density of states due to the scattering of electrons off defects. To incorporate defect

scattering we may introduce the Born (first-order) scattering approximation, valid in

the dilute limit of defect concentration. Experimentally this will be accessible if the

STM is positioned over a relatively clean portion of the sample. The expression for the

Fourier-transformed QPI signal is given by

ḡ(q, e) ≡ dI(q, e)

dV
=
πe

~
Nt

2∑
i,j=1

[t̂N̂(q, E)t̂]ij (2.34)
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where the factor

N̂(q, E) = − 1

π
Im

∫
d2k

(2π)2
Ĝ(k, E)ÛĜ(k + q, E) (2.35)

now contains the effect of impurity scattering as encoded in

Û =

Ucc Ucf

Ufc Uff

 (2.36)

Here Ucc and Uff are the potentials for scattering in the c- and f -bands, respectively,

whereas Ufc and Ucf scatter electrons between the bands. Equations 2.34–2.36 are the

expressions ultimately needed to model the experimentally determined scattering band

structure of Fig. 2.3. The practical task then is to identify functional forms of εck, εfk, sfk,

and the values of Ucc, Ucf , and Uff that can be used to reproduce the experimental QPI

results. We note that the previous work on QPI in CeCoIn5 [53] considered only a single

band, and thereby neglected the possibility of interference between different tunneling

paths.

Notice that the equations used here to model the overall features of the QPI do not

depend on the superconducting properties. It is to be expected that, given the low

critical temperature of Tc = 2.3K, the magnitudes of the superconducting gaps ∆α,β
k

will also be very small (as follows from the proportionality of ∆ and Tc in BCS theory).

The superconductivity, therefore, will only modify the differential conductance, and

hence the QPI, very close to the Fermi energy. For data on the scale of Fig. 2.3, the

normal state properties (of the low temperature heavy Fermi liquid phase) will suffice

to explain the QPI. Later we will consider the QPI very close to the Fermi level, and

the additional effects of the superconducting gap will need to be included.

2.6 CeCoIn5 QPI at Large Energies

To better understand the complex evolution of the heavy fermion electronic structure,

as revealed in the QPI experiments, we begin with a schematic picture of the low-energy

band dispersions. Fig. 2.4a shows the situation at temperatures above the crossover

to the hybridized Kondo-screened state, TK . The conduction electron band (black line
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Figure 2.4: Schematic band structure for a heavy fermion system in the temperature
regimes (a) Tc < TK < T where the conduction and f -electrons are unhybridized and
(b) Tc < T < TK , the hybridized Kondo-screened state (blue line) and T < Tc < TK ,

the superconducting state (orange line).

in Fig. 2.4a) is highly dispersive, in contrast to the narrow f -electron band (red line),

which has a bandwidth less than 20 meV. Below TK , the two bands hybridize due to

the Kondo screening of the f -electron moments by the conduction electrons, forming

heavy quasiparticle bands α and β with an avoided crossing (blue lines in Fig. 2.4b).

At still lower temperatures, T < Tc, the system becomes superconducting, with a gap

opening at the Fermi surfaces of the α- and β-bands. This phenomenon is indicated by

the orange lines in Fig. 2.4b.

We now seek explicit functional forms for the conduction and f -electron dispersions,

εck and εfk, respectively. To do this, we employ standard tight-binding expressions for

nearest-neighbor, next-nearest, etc. hopping of electrons between sites. One determines

the band structure by requiring that the theoretically calculated QPI (using a given

set of parameters) reproduce the experimentally observed spectrum. The QPI data far

away from the crossing point of the unhybridized bands reflect the electronic structure

at temperatures above TK . This allows one to fit the individual dispersions εck and εfk

for the conduction and f -electrons, respectively. It is found that nearest-neighbor hop-

pings alone do not suffice for obtaining good agreement. Additional further-than-nearest

hoppings were included to improve the agreement, leading to the following dispersions
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Variable Distance Ref. [9] (meV) Ref. [10] (meV)

tc1 (±1, 0) or (0,±1) -50.0 -50.0

tc2 (±1,±1) -13.34 -13.36

tc3 (±2, 0) or (0,±2) 16.7 16.73

µc – 151.51 151.51

tf1 (±1, 0) or (0,±1) -0.85 -0.85

tf2 (±1,±1) -0.45 -0.35

tf3 (±2, 0) or (0,±2) -0.7 -0.8

tf5 (±2,±2) 0.125 0.1

tf7 (±3, 0) or (0,±3) 0.15 0.09

εf – 0.5 0.5

Table 2.1: Tight-binding parameters for c and f electron dispersions of CeCoIn5.

[9, 10]:

εck = −2tc1 [cos(kx) + cos(ky)]− 4tc2 cos(kx) cos(ky)− 2tc3 [cos(2kx) + cos(2ky)]− µ

(2.37)

εfk = −2tf1 [cos(kx) + cos(ky)]− 4tf2 cos(kx) cos(ky)− 2tf3 [cos(2kx) + cos(2ky)]

− 4tf5 cos(2kx) cos(2ky)− 2tf7 [cos(3kx) + cos(3ky)] + εf (2.38)

with the parameters given in Table 2.1, where the spatial forms of the hoppings tr−r′

are identified in the second column by r− r′ = (rx − r′x, ry − r′y). Note that two slightly

different sets of parameters were used in Refs. [9] and [10]. In the former case, the band

structure was determined entirely on the basis of comparison with the experimental QPI

results. In the latter case, the set of parameters was slightly adjusted in order to obtain

good agreement with several other experiments as well (Section 3.4.1).

The QPI data near the avoided crossing of the heavy quasiparticle bands is influenced

by the hybridization, sk, between the conduction and f -electrons. Again requiring that

the theoretically calculated QPI reproduce the experimental results leads to the good fit

sk = s0 + s1[sin(kx) sin(ky)]
2 (2.39)

where s0 = 3.0 meV and s1 = 7.0 meV. The resulting dispersions and Fermi surfaces

(using the parameters of Ref. [9]) are shown in Fig. 2.5. When the QPI is calculated

theoretically using Eq. 2.34 and the intensity maxima are extracted and compared with

those determined experimentally, the results of Fig. 2.6 are obtained. One notices that

the theoretical model reproduces the major branches of the experimental QPI maxima,
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Figure 2.5: Dispersions of the heavy quasiparticle bands in the theoretical model of
CeCoIn5. [9].

Figure 2.6: Comparison of theoretical and experimental maxima in the QPI spectrum
for one-dimensional cuts along the directions (a) (0, 0) → (0, 2π/a0) and (b) (0, 0) →

(2π/a0, 2π/a0) [9].

largely within the experimental uncertainties. Thus, our model allowed us to extract

the complex electronic band structure of CeCoIn5 from the experimental QPI results.
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Figure 2.7: Example of the superconducting gap measured in the differential conduc-
tance of CeCoIn5 at T=0.25 K. [9].

2.7 CeCoIn5 QPI at Small Energies

We now turn to the energy range in the immediate vicinity of the Fermi surface, in

which the effects of superconductivity become important. An example of the measured

superconducting gap in the dI/dV is given in Fig. 2.7. By measuring the magnitude of

the gap (2∆ is the distance between the peaks) at each site in a 2D field of view, the

Davis group at Cornell produced the gap map shown in Fig. 2.8. Notice the high degree

of uniformity in the magnitude of the gap at sites away from the defects in the lattice,

which is a consequence of the high purity attainable in the growth of CeCoIn5. (This

property has made CeCoIn5 intriguing as a possible system to realize the long-sought

Fulde-Ferrell-Larkin-Ovchenikov (FFLO) superconducting state at high magnetic fields

[54–57]).

A more detailed analysis of the superconducting state can be performed using QPI

spectroscopy, which also allows for direct comparison with the theoretical framework of

BCS. To this end, we must first extend the theoretical expressions for the QPI signal to

include superconductivity. The general structure, equations 2.34 and 2.35, is the same

as before, but with the replacements

Û =


Ucc Ucf 0 0

Ufc Uff 0 0

0 0 −Ucc −Ucf
0 0 −Ufc −Uff

 (2.40)
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Figure 2.8: Superconducting gap as a function of spatial position in a 2D field of view
on the surface of CeCoIn5. [9].

t̂ =


−tc 0 0 0

0 −tf 0 0

0 0 tc 0

0 0 0 tf

 (2.41)

and

Ĝ(k, E) =


Gcc(k, σ, E) Gcf (k, σ, E) Fcc(k, E) Fcf (k, E)

Gfc(k, σ, E) Gff (k, σ, E) Ffc(k, E) Fff (k, E)

Fcc(k, E) Fcf (k, E) −Gcc(k, σ,−E) −Gcf (k, σ,−E)

Ffc(k, E) Fff (k, E) −Gfc(k, σ,−E) −Gff (k, σ,−E)

 (2.42)

Furthermore, the forms of the normal Green’s functions (γ, ζ = c, f)

Gγ,ζ(r, r, σ, τ) = −〈Tτγr′,σ(τ)ζ†r,σ(0)〉 (2.43)

are modified in the superconducting state, and new anomalous (or Gor’kov) Green’s

functions are also introduced according to

Fγ,ζ(r, r, σ, τ) = −〈Tτγ†r′,↑(τ)ζ†r,↓(0)〉 (2.44)
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The explicit forms of these Green’s functions in the superconducting state of the heavy

Fermi liquid are

Gcc(k, σ, ω) = w2
k

ω + iΓ + Eαk
(ω + iΓ)2 − (Ωα

k)2
+ x2

k

ω + iΓ + Eβk

(ω + iΓ)2 − (Ωβ
k)2

(2.45)

Gcf (k, σ, ω) = wkxk

[
ω + iΓ + Eαk

(ω + iΓ)2 − (Ωα
k)2
−

ω + iΓ + Eβk

(ω + iΓ)2 − (Ωβ
k)2

]
(2.46)

Gff (k, σ, ω) = x2
k

ω + iΓ + Eαk
(ω + iΓ)2 − (Ωα

k)2
+ w2

k

ω + iΓ + Eβk

(ω + iΓ)2 − (Ωβ
k)2

(2.47)

Fcc(k, ω) = w2
k

∆α
k

(ω + iΓ)2 − (Ωα
k)2

+ x2
k

∆β
k

(ω + iΓ)2 − (Ωβ
k)2

(2.48)

Fcf (k, ω) = wkxk

[
∆α

k

(ω + iΓ)2 − (Ωα
k)2
−

∆β
k

(ω + iΓ)2 − (Ωβ
k)2

]
(2.49)

Fff (k, ω) = x2
k

∆α
k

(ω + iΓ)2 − (Ωα
k)2

+ w2
k

∆β
k

(ω + iΓ)2 − (Ωβ
k)2

(2.50)

with the heavy fermion coherence factors defined in equations 2.13 and 2.14. With these

equations, we may substitute proposed forms of the superconducting gap functions ∆α,β
k

to calculate the QPI theoretically and compare with experiment. First we note that the

overall magnitude of the gap is constrained by the tunneling data. We may consider

three different scenarios to try to reproduce the experimental results in a simple way.

First, we can try dx2−y2-symmetry gaps on both the α and β bands, but with unequal

magnitudes, that is

∆α,β
k =

∆α,β
0

2
(cos(kx)− cos(ky)) (2.51)

with ∆α
0 = 1.0 meV and ∆β

0 = −0.2 meV as determined by comparison of the theoretical

and experimental QPI results. The gap is shown along the Fermi surface in in Fig.

2.9. One should note that with these parameters, the maximum gap on the β-band

is ≈ 50µeV, which is smaller than the experimental resolution of 75µeV. This would

then explain the lack of an easily visible feature in the tunneling spectra associated

with the β-band gap. However, the inclusion of this gap can have consequences for the

QPI spectra. Fig. 2.10 presents the QPI for the experimental (a-c) and theoretical (d-f)

cases (the latter using unequal gaps with dx2−y2-symmetry). The colored circles indicate

key scattering wavelengths in the spectra, which are well-reproduced by the theoretical

model. The corresponding scattering processes across the Fermi surface are shown in
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Figure 2.9: Superconducting gap along the Fermi surface as determined by fitting the
QPI data. The magnitude is indicated by the height of the red line above the xy-plane.
The sign of the gap is given by the background color of the Brillouin zone, which for
the α-band is yellow for positive and blue for negative gap values (the convention is

reversed for the β-band). [9].

panel m using matching colored arrows, and are illustrated on top of the experimental

results in panel n (note that the axes of the experimental q-space are rotated by 45

degrees compared to the theoretical Brillouin zone). While theoretical models of QPI

spectra are known to successfully reproduce the geometric information contained in

experiment, matching the observed intensities is more difficult (although some work has

been done in this direction [58]).

We can compare this result with the one obtained under the assumption of a different

d-wave symmetry, namely, dxy, for which a basis function is

∆α,β
k = ∆α,β

0 (sin(kx) sin(ky)) (2.52)

Using the values ∆α
0 = 1.0 meV and ∆β

0 = −0.2 meV, the resulting QPI patterns are

shown in panels (g-i) of Fig. 2.10. As is readily apparent, this choice of symmetry fails

to reproduce the correct QPI at zero energy, notably the features indicated by the red

and brown circles in the experimental data are absent in the calculations. Under the

assumption of dx2−y2-symmetry, one might attempt to alter the relative magnitudes of

the gaps on the α and β-bands. In doing this, we found that it is necessary that the

magnitude of the β-band gap be considerably smaller than that of the α-band. For

example, if ∆β
0 is adjusted such that the maximum gaps on the two bands are equal
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Figure 2.10: Experimental and theoretical QPI for several possible superconducting
gap symmetries. (a)–(c) Experimental QPI data for the energies -300 µeV, 0 µeV, and
300 µeV, respectively. (d)–(l) Theoretical simulations of QPI for a dx2−y2 -symmetry
gap [(d)–(f)], dxy-symmetry gap [(g)–(i)], and a gap with dx2−y2-symmetry of equal
magnitude on the α- and β-bands [(j)–(l)]. The red and brown circles indicate the
strongest internodal scattering vectors and the blue circles show the strongest β-band
scattering vector. These vectors are shown on the Fermi surface in (m) and overlaid on
the E=0 meV experimental data in (n). Note that only the case (d)–(f) with dx2−y2

and unequal gaps reproduces all the important scattering vectors [9].

(∆β
0 = −2.6 meV), the results in Fig. 2.10j–l are obtained. Unlike the dxy-symmetry,

this reproduces the features of the red and brown circles, but it fails to do so for the

blue circle. Thus we conclude that unequal-magnitude dx2−y2-symmetry gaps are the

best for reproducing the experimental results. This of course does not preclude other

more complicated symmetries but it does limit the space of possibilities considerably.

To conclude, we have shown that it is possible to successfully and quantitatively model

the heavy-fermion band structure of CeCoIn5 in the superconducting state. The rele-

vant empirical input was extracted using the QPI measurement technique of STM-STS

experiments. The theory provided a concrete theoretical picture and a rationalization of

both the high-energy spectra (dominated by the normal state heavy Fermi liquid) and at

very low energies, where superconductivity is significant. This paves the way for further

joint experimental-theoretical studies on CeCoIn5 and other heavy fermion materials.



Chapter 3

Pairing Mechanism in CeCoIn5

3.1 Heavy Fermion Superconductivity

Although superconductivity was discovered in CeCu2Si2 as early as 1979 [59], it took

some time to overcome the conventional wisdom that magnetism was necessarily detri-

mental to Cooper pairing. At present there are several dozen known heavy fermion

superconductors, which display a wide range of behaviors. UPt3 possesses multiple su-

perconducting phases with different symmetries, whereas CeMIn5 (M=Co,Ir,Rh), the

so-called ‘115 materials’, have complex phase diagrams that include superconductivity,

antiferromagnetism, and non-Fermi liquid behavior [60, 61].

A number of superconducting pairing mechanisms have been proposed to provide the

attractive force binding the Cooper pairs. The most widely accepted mechanism is

spin fluctuations between the heavy quasiparticles in the low temperature Fermi liquid

state. A notable feature of this mechanism is its implications for the superconducting gap

symmetry. Assuming total rotational invariance of the system (neglecting the underlying

crystal structure of the lattice), spin fluctuations were found to suppress both singlet and

triplet pairing [48]. However, including the crystal structure in the calculation reveals

that the system can partially avoid the electron repulsion by establishing an anisotropic

superconducting gap (generally of d-wave symmetry) [49, 62–64]. Other more complex

mechanisms have also been proposed [50, 65]. In particular, recent work suggests the

possibility of composite pairing between conduction electrons and local moments [51, 66–

68] as an explanation of fully gapped superconductivity in Yb-doped CeCoIn5 [69].

27
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The quantitative description of superconductivity in any system requires two key pieces

of information. First, one must obtain the detailed low energy band structure in the

normal state, out of which superconductivity emerges. Second, one needs the micro-

scopic form of the pairing interaction responsible for the formation of Cooper pairs and

the resulting well-known phenomena observed in the superconducting state. The QPI

experiments analyzed in the previous chapter provide us with precisely the information

needed for a quantitative study of superconductivity in CeCoIn5, which has never be-

fore been achieved. In the following we discuss how the magnetic interaction f -electrons,

which gives rise to the curvature of the f -bands, may be determined from the QPI data

relevant for the normal state. Under the assumption that this same f -electron inter-

action also provides for the Cooper pairing, we derive a series of predictions about the

superconducting state of CeCoIn5, in good agreement with experiment.

3.2 Extraction of the Magnetic Interaction

In the model proposed in equation 2.5 the interaction between the localized magnetic

f -electrons is captured in the Heisenberg term, Eq. 3.1.

HH =
∑
r,r′

Ir,r′Sr · Sr′ (3.1)

This term was decoupled in Chapter 2 to give a dispersion to the f -electrons, via the

self-consistency equation 2.8. In Chapter 2, this dispersion was obtained by comparison

with the experimental QPI and encoded in the hopping parameters tf1–tf7 and εf of

Table 2.1. The curvature of the f -band directly arises from magnetic interaction I(r, r′)

treated within the mean-field approximation. Inverting the self-consistency equation to

solve for I(r, r′) in terms of tf (r, r′) allows one to quantitatively determine the form of

the magnetic interaction:

Ir,r′ = −
πtf (r, r′)∫∞

−∞ dωnF (ω)ImGff (r, r′, ω)
(3.2)

Ir,r′ will be nonzero only if tf (r, r′) is so, which for the band structure extracted from

experiment (Table 2.1) is true for tf1–tf3, tf5, and tf7. Using the Green’s functions of

eq. 2.11 one may solve eq. 3.2 for the corresponding values of I, thereby obtaining the
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Figure 3.1: Real space form of the magnetic interaction between f -electrons as ex-
tracted from the bandstructure fit to the experiment QPI data. [10].

Variable Distance Value (meV)

I1 (±1, 0) or (0,±1) 6.44

I2 (±1,±1) -20.30

I3 (±2, 0) or (0,±2) 6.04

I5 (±2,±2) -9.65

I7 (±3, 0) or (0,±3) 2.58

Table 3.1: f -electron magnetic interaction parameters extracted from bandstructure
fits to QPI experiments on CeCoIn5.

form of the underlying magnetic interaction between the f -electrons in Eq. 3.3.

I(q) =2I1[cos(qx) + cos(qy)] + 4I2[cos(qx) cos(qy)] + 2I3[cos(2qx) + cos(2qy)]

+ 4I5[cos(2qx) cos(2qy)] + 2I7[cos(3qx) + cos(3qy)] (3.3)

The numerical value of this interaction, employing the experimentally determined pa-

rameters of [10], is shown in real space in Fig. 3.1. The numerical values of the inter-

actions (between nearest, next-nearest, etc. neighbors) are given in Table 3.1. Positive

values of I(r − r′) denote antiferromagnetic interactions, whereas negative ones imply

ferromagnetic correlations.

We now explore the possibility that the same magnetic interaction that produces the

curvature of the f -electron band is also the superconducting pairing interaction. We

recall first that the experiments determining the dispersion were in fact done in the

superconducting state. By using the self-consistency equation in the normal state, Eq.

2.8 to extract I(q), we in fact neglected the feedback effects of superconductivity on

the interaction, an assumption which will be shown reasonable below. The neglect of

feedback is important for making the calculations computationally manageable.
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We proceed by considering the spin-flip part of the Heisenberg term of model 2.5, written

in terms of the Abrikosov pseudofermion representation as

Hsf =
1

2N

∑
k,p,q

I(q)f †k+q,↑fk,↓f
†
p−q,↓fp,↑ (3.4)

In the heavy Fermi liquid state, the appropriate degrees of freedom are not c and f -

electrons but the heavy α and β-band quasiparticles. Thus, we first transform Hsf using

the canonical transformations of equations 2.18 and 2.19, followed by a decoupling in the

singlet particle-particle channels 〈α†k,↑α
†
−k,↓〉 and 〈β†k,↑β

†
−k,↓〉, while neglecting interband

pairing. This is justified due to ‘Fermi surface mismatch’: it is not possible to pair

electrons between the α- and β-Fermi surfaces in such a way that their total momentum

is zero (the lowest energy state in equilibrium).

The superconducting gap functions ∆α,β
k , which were determined phenomenologically in

Chapter 2, can now be explicitly computed since the microscopic form of the pairing

interaction is known. This is the first time such a calculation was achieved for a heavy

fermion superconductor. Following the standard BCS mean-field theory, the gaps obey

the equations 3.5 and 3.6.

∆α
k = −

x2
k

N

∑′

p
VSC(p− k)(x2

p〈α
†
p,↑α

†
−p,↓〉+ w2

p〈β
†
p,↑β

†
−p,↓〉) (3.5)

∆β
k = −

w2
k

N

∑′

p
VSC(p− k)(x2

p〈α
†
p,↑α

†
−p,↓〉+ w2

p〈β
†
p,↑β

†
−p,↓〉) (3.6)

in which N is the number of sites and the pairing interaction VSC(q) = −I(q)/2 is shown

in Fig. 3.2. Note the appearance of the heavy fermion coherence factors xk and wk as

a result of the canonical transformation from c and f operators to α and β operators.

The form of the magnetic interaction I(q)/2, peaked as it is at Q = (π, π), justifies the

lack of interband pairing in Eq. 2.21. The mismatch of the α- and β-Fermi surfaces (see

Fig. 2.10) implies that scattering between the two occurs only for momenta transfers

away from Q where the pairing interaction is weak.

We thus arrive at the same SC mean-field Hamiltonian as was introduced phenomenolog-

ically in equation 2.21 and diagonalized using the Bogoliubov transformations 2.24–2.27

to yield 2.28. Now we apply these transformations to the BCS gap equations as well,
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Figure 3.2: Momentum space form of the magnetic interaction between f -electrons
as extracted from the bandstructure fit to the experiment QPI data. [10].

finding

∆α
k = −

x2
k

N

∑′

p
VSC(p− k)

[
x2
p

∆α
p

2Ωα
p

tanh

(
Ωα
p

2kBT

)
+ w2

p

∆β
p

2Ωβ
p

tanh

(
Ωβ
p

2kBT

)]
(3.7)

∆β
k = −

w2
k

N

∑′

p
VSC(p− k)

[
x2
p

∆α
p

2Ωα
p

tanh

(
Ωα
p

2kBT

)
+ w2

p

∆β
p

2Ωβ
p

tanh

(
Ωβ
p

2kBT

)]
(3.8)

The heavy fermion coherence factors remain in this form of the gap equation as well,

reflecting the fact that the underlying interaction arises from the magnetic f -electrons

alone.

The determination of the gap symmetry may be performed with the linearized form of

the gap equation, which is valid at temperatures near the transition Tc where ∆α,β are

small. This results in a simple eigenvalue-eigenvector equation which is computationally

more tractable than the full non-linear gap equation. Discretizing the Brillouin zone for

k-points with |Eα,βk | ≤ ωD we have

∆̂ = −V̂SC∆̂ (3.9)

(V̂SC)ij =
ξ2
i

N
VSC(kj − ki)

[
ξ2
j

2|Ej |
tanh

(
|Ej |

2kBT

)]
(3.10)
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∆̂ =



∆α
k1

...

∆α
kNα

∆β
k1

...

∆β
kNβ


(3.11)

ξ2
i =


x2
ki
, 1 ≤ i ≤ Nα

w2
ki
, Nα + 1 ≤ i ≤ Nα +Nβ

(3.12)

Ei =


Eαki

, 1 ≤ i ≤ Nα

Eβki
, Nα + 1 ≤ i ≤ Nα +Nβ

(3.13)

Solving this equation for the eigenvectors ∆̂ allows for the determination of the gap

symmetry by direct inspection. Performing the calculation, we find that the SC gaps in

both the α- and β-bands possess dx2−y2-symmetry (shown in Fig. 3.3 for the T = 0 gap).

Thus, rather than explicitly assuming the gap symmetry (as is often done in theoretical

work), we are able to reproduce the correct symmetry of the superconducting gap using

calculations based entirely on the normal state band structure and the assumption of a

magnetic f -electron pairing interaction. As discussed in Chapter 2, the use of dx2−y2-

symmetry in the theoretical calculation of the QPI uniquely reproduces the important

features of the experiments. However, the usual type of QPI experiment (as are the

experiments of Chapter 2) is not sensitive to the phase of the superconducting gap.

In Section 3.3 we discuss a set of phase-sensitive QPI experiments that allows one to

distinguish a sign-changing dx2−y2-symmetry gap and a gap that has nodes but does not

change sign along the Fermi surface. Typically, the symmetry of the gap close to Tc does

not change as the temperature is lowered towards T = 0 (UPt3 is a notable exception).

In subsequent calculations of the full momentum dependence of the superconducting

gap we assume the correct symmetry to reduce the complexity of the problem. That

is, the gap equations 3.7 and 3.8 at T = 0 are solved for momentum-space points along

the Fermi surface in only one eighth of the Brillouin zone, kx ≥ ky ≥ 0, since the gap

everywhere else is related to this gap by symmetry.

A simple argument for the dx2−y2-wave pairing symmetry follows from the real space
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Figure 3.3: Superconducting gap structure shown along the Fermi surface, as cal-
culated from magnetic f -electron pairing interaction. The black arrow shows points
connected by the antiferromagnetic ordering vector Q = (π, π), between which the gap

changes sign. [10].

structure of the pairing interaction, Fig. 3.1. Along the bond directions, the anti-

ferromagnetic couplings I1, I3, and I7 result in attractive pairing potentials VSC(r =

−I(r)/2 < 0, between two anti-parallel spins (we assume spin-singlet Cooper pair-

ing). On the other hand, the ferromagnetic I2 and I5 along the diagonals are repul-

sive (VSC > 0). Thus, the electrons comprising the pairs can minimize their energy

by forming nodes in the Cooper pair wavefunction along the diagonal directions in real

space, where the repulsive interaction would otherwise raise the pair’s total energy. Al-

ternatively, one sees that in momentum-space the large repulsive interaction near the

antiferromagnetic wavevector Q = (π, π) implies from the BCS gap equation that the

gap changes sign between points on the Fermi surface connected by Q, as shown by the

black arrow in Fig. 3.3.

We may now solve the full non-linear gap equations 3.7 and 3.8 numerically, so as

to obtain the momentum space form of the superconducting gaps on the α and β-

bands. The summations are performed for all states with energies satisfying |Eα,βk | ≤ ωD,

with ωD a cutoff energy for the spin-fluctuation pairing. The maximum of the gap is

proportional to ωD (as was checked numerically), and so we adjust it to reproduce the

experimentally observed maximum of ≈ 0.6 meV. The calculation produces gaps on the

α and β-bands with the momentum space structure shown in Fig. 3.4.
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Figure 3.4: Superconducting gap structure as a function of Fermi surface angle cal-
culated from magnetic f -electron pairing interaction. Fermi surface angle is defined in

Fig. 3.3 [10].

We further note that these gap functions can be well fit using the parameterizations of

Eqs. 3.14 and 3.15.

∆α
k =

∆α
0

2
{[cos(kx)− cos(ky)] + α1[cos(2kx)− cos(2ky)] + α2[cos(3kx)− cos(3ky)]}

(3.14)

∆β
k =

∆β
0

2
[cos(kx)− cos(ky)]

3 (3.15)

with ∆α
0 = 0.492 meV, α1 = −0.607, α2 = −0.082, ∆β

0 = −1.040 meV and ωD = 0.66

meV was used.

One may also use the linearized gap equation for determining the transition tempera-

ture by adjusting the temperature T in Eq. 3.10 such that the linearized equation is

satisfied with a maximum eigenvalue λ = 1. Performing this calculation, we find that

Tc = 2.96 K, assuming that the quasiparticle lifetimes are infinite (Γ = 0+). In real

experiments, various sources of dephasing are present, such as scattering from phonons

or impurities, which will reduce the lifetime (or equivalently the mean free path). For

the experimentally determined mean free path of l = 81 nm [70], the dephasing rate is

Γ = 0.05 meV. One may derive alternate forms of the BCS gap equations which allow

for the inclusion of non-zero damping, as given in Eq. 3.16 and 3.17.
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∆α
k = −

x2
k

N

∑′

p
VSC(p− k)

{
−x2

p

∆α
p

2Ωα
p

∫ ∞
−∞

dω

π
ImGa(p, ω) tanh

(
ω

2kBT

)
−w2

p

∆β
p

2Ωβ
p

∫ ∞
−∞

dω

π
ImGd(p, ω) tanh

(
ω

2kBT

)}
(3.16)

∆β
k = −

w2
k

N

∑′

p
VSC(p− k)

{
−x2

p

∆α
p

2Ωα
p

∫ ∞
−∞

dω

π
ImGa(p, ω) tanh

(
ω

2kBT

)
−w2

p

∆β
p

2Ωβ
p

∫ ∞
−∞

dω

π
ImGd(p, ω) tanh

(
ω

2kBT

)}
(3.17)

with

Ga(p, ω) = Gb(p, ω) =
1

ω − Ωα
p + iΓ

(3.18)

Gd(p, ω) = Gg(p, ω) =
1

ω − Ωβ
p + iΓ

(3.19)

Solving these equations we find that the critical temperature is suppressed to Tc =

2.55 K, remarkably close to the experimental value of Tc = 2.3 K. We may emphasize

that apart from the fixing of ωD based on the observed gap magnitude, the critical

temperature was calculated using only normal state properties of the material.

A well-known result of the BCS theory is the universal relation between the gap and the

critical temperature [13] of an s-wave superconductor in the weak-coupling limit:

2∆0

kBTc
= 3.53 (3.20)

We can use this to try to understand the strength of the coupling in our model of

CeCoIn5. Using the theoretical results obtained above, we find that

2∆0

kBTc
= 5.43 (3.21)

However, a straightforward comparison of these values is not possible, for it is known that

in multi-band superconductors the above ratio (with ∆0 the maximum gap considering

all the bands) can exceed the BCS value significantly, even in the weak-coupling regime

[71, 72]. Taking the single band d-wave result of 2∆0
kBTc

= 4.3 as a lower bound, it is
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seen that CeCoIn5 is at most moderately coupled, so that the extension of our BCS-

level model to a full strong-coupling Eliashberg theory would not be likely to introduce

significant changes.

3.3 Phase-sensitive QPI

The QPI measurements in the superconducting state discussed above in Chapter 2 allow

for the determination of the gap magnitude, but not its sign. This prevents them from

distinguishing between the sign-changing dx2−y2-symmetry and (for instance) nodal s-

wave symmetry. The method of phase-sensitive QPI (PQPI) was developed to overcome

this limitation [73, 74]. The assumption is made that in the absence of an external

magnetic field (B = 0), the Bogoliubov quasiparticle scattering is dominated by purely

potential defects. In the presence of a finite field (B 6= 0), additional magnetic scattering

channels will open up, for instance, off of polarized magnetic defects. As discussed below,

the scattering from magnetic defects is sensitive to a sign change in the superconducting

gap ∆k in a different way than the scattering from potential defects. The effects of

potential scattering were encoded in the matrix of equation 2.40. Analogously, one may

define for magnetic scattering the matrix

Û =


Mcc Mcf 0 0

Mfc Mff 0 0

0 0 −Mcc −Mcf

0 0 −Mfc −Mff

 (3.22)

with Mcc and Mff = M
(0)
ff r

2
0 the magnetic scattering potentials for intraband scattering,

whereas Mfc = Mcf = M
(0)
cf r0 describe interband scattering (recall r0 is the expectation

value of the slave boson). Here for simplicity the magnetic scatterers are assumed to

split the spin up and down states, but not introduce spin-flip scattering. Thus, one has

ĝ(q, E,B 6= 0) = ḡpot(q, E) + ḡmag(q, E,B) (3.23)

ĝ(q, E,B = 0) = ḡpot(q, E) (3.24)

The magnetic field dependence of ḡmag(q, E,B) is not known, but one may takeMcf/Mcc =

Ucf/Ucc, Mff/Mcc = Uff/Ucc, and Mcc ≈ −1.7Ucc to obtain reasonable agreement with
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Figure 3.5: Comparison of theoretical (top row) and experimental (bottom row) QPI
spectra in a magnetic field B = 3 T. For the theoretical results, a low pass filter was

applied to simulate the experimental resolution (right side of each panel) [10].

the observed QPI pattern in a B = 3 T field, as shown in Fig. 3.5. The phase-sensitive

QPI spectrum is defined by

∆g(q, E,B) ≡ |ḡ(q, E,B)| − |ḡ(q, E, 0)| (3.25)

Note that the equation 2.35 for the QPI signal only includes terms which have either

normal Green’s functions, or have anomalous Green’s functions, but not combinations of

the two. The crucial point to recognize is that the latter terms contain phase-sensitive

information. To illustrate this, consider the contribution to the QPI signal coming from

scattering within the α-band, due to the anomalous Green’s functions,

ḡααF (q, E) = Im

[
1

N

∑
k

B(k,k + q)
∆α

k

(E + iΓ)2 − (Ωα
k)2

∆α
k+q

(E + iΓ)2 − (Ωα
k+q)2

]
(3.26)

In equation 3.26, the factor B(k,k+ q) has a complicated form involving the tunneling

parameters tc, tf , heavy fermion coherence factors wk, xk, and scattering strengths U

and M . However, none of these factors are sensitive to the phase of the superconducting

gaps. The remaining part of 3.26 is sensitive to the phase, thanks to the product of the

two gap functions ∆α
k∆α

k+q. For instance, at an energy of E = −0.5 meV, the major

scattering processes take place along the vectors q1,2 as shown in Fig. 3.6 (strictly

speaking, the Umklapp vector q′1 = (2π, 2π)− q1 is shown for convenience). Notice how

q1 connects points of different phase of the superconducting gap, whereas q2 connects

points with the same phase. Thus, the sign of the QPI contribution ḡααF (q1, E) is different

than that of ḡααF (q2, E). On the other hand, terms involving only the normal Green’s
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Figure 3.6: Dominant PQPI vectors at E = −0.5 meV. [10].

functions take the form

ḡααG (q, E) = Im

[
1

N

∑
k

A(k,k + q)
ω + iΓ + Eαk

(ω + iΓ)2 − (Ωα
k)2

ω + iΓ + Eαk+q

(ω + iΓ)2 − (Ωα
k+q)2

]
(3.27)

which does not contain any phase information, since it depends only on |∆α,β
k |

2 (inside

of the energies Ωα
k). We next note that the form of the scattering matrices implies that

the anomalous components ḡααF (q, E) have opposite signs for potential and magnetic

scattering:

ḡpot(q, E) = Ucc[ḡG(q, E)− ḡF (q, E)] (3.28)

ḡmag(q, E) = Mcc[ḡG(q, E) + ḡF (q, E)] (3.29)

using the fact that Mcf/Mcc = Ucf/Ucc and Mff/Mcc = Uff/Ucc. Furthermore, direct

calculation shows that for Mcc = −2Ucc the terms in 3.25 have opposite signs, and so

∆g(q, E,B) = sgn[ḡ(q, E,B)]{Ucc[ḡG(q, E)− ḡF (q, E)] +Mcc[ḡG(q, E) + ḡF (q̄, E)]

+ Ucc[ḡG(q, E)− ḡF (q, E)]}

= sgn[ḡ(q, E,B)][(2Ucc +Mcc)ḡG(q, E) + (Mcc − 2Ucc)ḡF (q, E)]

= 2sgn[ḡ(q, E,B)]MccḡF (q, E) (3.30)
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Figure 3.7: Comparison of experimental and theoretical results for PQPI (assuming
dx2−y2 symmetry). For the theoretical results, a low pass filter was applied to simulate

the experimental resolution (right side of each panel) [10].

Thus for this case in particular ∆g(q, E,B) is proportional to ḡF (q, E) alone and so it

is sensitive to the phase of the superconducting order parameter. For Mcc = −1.7Ucc

the calculated and experimental PQPI spectra are in good agreement, as shown in Fig.

3.7. Since the ratio Mcc/Ucc used to obtain agreement with the experiment is close

to the value −2, the PQPI for these parameters is indeed phase-sensitive (dominated

by ḡF (q, E)). Analyzing the dominant wavevectors q1,2 introduced above, we see that

∆g(q1, E,B) < 0 whereas ∆g(q2, E,B) > 0. This indicates that the gap function

changes sign for scattering between k-points on the Fermi surface connected by q1, while

the sign remains the same for scattering of q2. This is shown in Fig.3.8 for the energy E =

−0.5 meV where these q-vectors dominate the scattering. Thus, the superconducting

gap indeed exhibits a sign-changing dx2−y2 symmetry. Another method of checking the

symmetry is to compare these results with the PQPI obtained from the assumption that

the symmetry is nodal s-wave (i.e. the same sign, but varying magnitude, across the

Fermi surface). The calculation of ∆g(q, E,B) for this gap structure is given in Fig.

3.9, and is clearly inconsistent with the experimental results, strengthening the proposal

that the gap changes sign along the Fermi surface. Finally, we note that the details of

the experimental analysis of the PQPI can be found in Ref. [10].
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Figure 3.8: Experiment and theory for PQPI on CeCoIn5, indicating the important
q-vectors at E = −0.5 meV. [10].

Figure 3.9: Theoretical PQPI on CeCoIn5, obtained by assuming s-wave symmetry of
the superconducting gap. These results are clearly inconsistent with the experimental

results in Fig. 3.7 [10].

3.4 Spin Excitations in CeCoIn5

The study of spin excitations in the superconducting state has played an important role

in both conventional and unconventional superconductors. In the former, the prediction

and subsequent observation of the Hebel-Slichter peak in the spin-lattice relaxation rate

below the transition temperature served to garner support for the BCS theory [75]. In

unconventional superconductors, the existence of a ‘magnetic resonance peak’ in the

neutron scattering data in the superconducting states of cuprates, heavy fermions, and

iron pnictides has led to the the speculation that the pairing mechanisms are related in

each case [8]. In the following we discuss the predictions for the magnetic resonance peak

and NMR relaxation rate obtained with the theoretical model developed for CeCoIn5.
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3.4.1 Magnetic Resonance Peak

The observation of a peak in the inelastic neutron scattering data in the superconducting

state of CeCoIn5 [76] has led to several proposed explanations of the phenomenon.

One possibility is that the peak is a spin exciton arising in an RPA calculation of the

spin susceptibility [77]. An alternative picture envisions the resonance as a magnon

that becomes undamped in the superconducting state [78]. These two scenarios will

be explored further in Chapter 4. For now, we consider the description of the spin

exciton with the model developed in Chapter 2 and the present chapter. The localized

f -electrons provide the largest contribution to the magnetic susceptibility of CeCoIn5,

and hence we neglect the explicit contributions from the c-band or from interband terms

in the following. The magnetic susceptibility χ(r− r′, τ) then is defined via

χ(r− r′, τ) = 〈TτSfr (τ) · Sfr′(0)〉

=
1

2
〈TτS+

r (τ)S−r′ (0)〉+ 〈TτS−r (τ)S+
r′ (0)〉+ 〈TτSzr (τ)Szr′(0)〉

= χ±(r− r′, τ) + χ∓(r− r′, τ) + χzz(r− r′, τ) (3.31)

where τ is the imaginary time in the Matsubara formalism for finite temperature calcula-

tions, Sf are the spin operators for thef -electrons with z-components Sz and transverse

components S± = Sx ± iSy. For non-interacting, but hybridized, heavy quasiparticles

the retarded magnetic susceptibility in the superconducting state is found to be

χSC0 (q, ω) =− 1

2N

∑
k

∑
i,j=α,β

ζ2
k,iζ

2
k+q,j

{(
1 +

EikE
j
k+q + ∆i

k∆j
k+q

Ωi
kΩj

k+q

)
nF (Ωi

k)− nF (Ωj
k+q)

ω + iδ + Ωi
k − Ωj

k+q

+

(
1−

EikE
j
k+q + ∆i

k∆j
k+q

Ωi
kΩj

k+q

)
(Ωi

k + Ωj
k+q)

(ω + iδ)2 − (Ωi
k + Ωj

k+q)2

[
1− nF (Ωi

k)− nF (Ωj
k+q)

]}
(3.32)

with

ζ2
k,i =


w2
k if i = α

x2
k if i = β

(3.33)
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Figure 3.10: Real part of non-interacting susceptibility, χN0 (q, ω), calculated in the
normal state of CeCoIn5 [10].

with δ = 0+. Including the spin-flip interaction (Eq. 3.4) between the quasiparticles

and performing a standard RPA summation, one obtains the full susceptibility

χ±SC,RPA(q, ω) =
1

2

χSC0 (q, ω)

1 + Ī0(q)χSC0 (q, ω)
(3.34)

where we defined Ī0(q) ≡ I0(q)/2. Here the important thing to notice is that χ±SC,RPA

contains the bare, unrenormalized magnetic interaction, Ī0(q), whereas the magnetic

interaction extracted from the experiment is the full one. However, at the level of the

RPA approximation these can be related using

[Ī0(q)]−1 = [Ī(q)]−1 − ReχN0 (q, ω = 0) (3.35)

Here the simplification of taking the normal state χN0 (q, ω) at ω = 0 was made, which is

valid since the real part is only weakly dependent on frequency for small ω, as shown in

Fig. 3.10. Now computing the imaginary part of the susceptibility, which is measurable

in neutron scattering experiments, using equations 3.34 and 3.35, we find very good

agreement between the experimental [76] and theoretical results. In particular, we note

that the location of the theoretical peak at Q = (π, π) in energy is very close to the

experimental observation. This is shown in Fig. 3.11. The position of the resonance
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Figure 3.11: Theoretical calculation and experimental results for the magnetic reso-
nance peak observed in neutron scattering experiments in the superconducting state of

CeCoIn5 [10].

peak is determined by the pole of Eq. 3.34, that is, by the equation

1 + Ī0(q)χSC0 (q, ω) = 0 (3.36)

In this case, since the c-electrons enter only through the non-interacting susceptibilities,

and not through Ī(q), their effect on the resonance peak position is small compared to

that of the f -electrons, which determine the behavior of Ī(q).

3.4.2 NMR Spin-lattice Relaxation Rate

The spin-lattice relaxation rate measured in NMR experiments [79] can also be directly

related to the spin susceptibility of eq. 3.34.

1

T1
=
kBT

2~
(~2γnγe)

2A(q)

N

∑
q

lim
ω→0

2Imχ±SC(q, ω)

ω
(3.37)

where γn and γe are the nuclear and electronic gyromagnetic ratios and A(q) is the

hyperfine coupling. The microscopic form of A(q) is unknown, so that for simplicity we

take a direct hyperfine coupling only, which implies momentum independence (A(q) =

A0). For the calculation of the temperature dependence of 1/T1 we first determined the

temperature-dependent superconducting gap using the nonlinear gap equations 3.7 and

3.8 to determine χ±SC,RPA(q, ω). Because of the large temperature range involved, we

now calculate the bare interaction [Ī0(q) using the non-interacting susceptibility in the
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Figure 3.12: Theoretical calculation and experimental results for the spin-latice re-
laxation rate as a function of temperature in the superconducting state of CeCoIn5

[10].

superconducting state,

[Ī0(q)]−1 = [Ī(q)]−1 − ReχSC0 (q, ω = 0) (3.38)

while the full susceptibility is still given by eq. 3.34. The calculated temperature depen-

dence of 1/T1 is given in Fig. 3.12 where it is compared with the experimental results

[79]. One notices the good agreement between the theory and experiment for the relevant

temperature range. Interestingly, the power-law exponent for 1/T1 is found theoretically

to be α ≈ 2.5, which is reduced from the value α = 3 expected for a dx2−y2-wave su-

perconductor [80]. This is understood from the fact that at the experimentally relevant

temperatures, kBT exceeds the magnitude of the gap on the β-band but is smaller than

that of the α-band, leading to a superposition of the power laws appropriate for the

normal (α = 1) and the superconducting states (α = 3).

To conclude, we have demonstrated that a number of important experimental results on

the superconducting gap of CeCoIn5 can be reproduced under the assumption that spin

fluctuations of the f -electrons are the pairing mechanism that drive superconductivity

in the material. These include the symmetry of the gap, the critical temperature, the

observed QPI spectra in the superconducting state (including the phase-sensitive ones),

and the spin excitations of the neutron scattering and NMR experiments. This lends

considerable support to the hypothesis that spin fluctuations provide the pairing in

CeCoIn5 and related materials, and to the theories originally proposed for heavy fermions

along these lines [49, 81].



Chapter 4

Real and Momentum Space

Probes in CeCoIn5: Defect states

in Differential Conductance and

Neutron Scattering Spin

Resonance

4.1 Real-space Study of Defects by STM

The development of scanning tunneling microscopy, specifically its spectroscopic imaging

mode of operation, has enabled detailed studies of the local electronic structures of many

superconductors. In particular, it is now possible to examine the detailed changes in

the electronic structure in the vicinity of defects, whether point-like or extended. Defect

physics has traditionally played an important role in the study of superconductivity, but

its experimentally accessible effects were limited to the modification of bulk properties

such as the critical temperature Tc. With STM experiments, the ability to measure

precise local densities of states provides new and strong constraints on theoretical mod-

els of defects in superconductors. In particular, the local response of unconventional

superconductors to defects can be a signature of the underlying superconducting gap

45
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symmetry [82]. The existence of sub-gap impurity states is one consequence of defects

in superconductors which has been confirmed in a number of cases.

4.1.1 Model

To investigate the form of the differential conductance, dI/dV , in CeCoIn5 in the normal

and superconducting states, we start from the electronic band structure extracted from

QPI spectroscopy (Chapter 2), described by the mean-field Hamiltonian HMF
tot = HMF

K +

HMF
SC as given in eqs. 2.20 and 2.21.

Zhou et al. performed STM-STS measurements on CeCoIn5 in the normal state at

several different temperatures [16]. In particular, they found the development of a

feature at 5.3 K which they attributed to the possibility of a pseudogap regime in

the material, similar to the cuprates [83]. A similar structure was also observed when

superconductivity was suppressed by a magnetic field. These experimental results are

shown in Fig. 4.1a. To test this interpretation, we calculated the expected dI/dV in the

normal state based on the electronic bandstructure extracted in Chapter 2, as shown

in Fig. 4.1b. We note that a similar two-peak structure is found in the calculations as

was observed experimentally. However, in this case the structure does not arise from

pseudogap physics, but simply reflects the existence of van Hove singularities due to

the flatness of the bands in the hybridized heavy Fermi liquid state. These singularities

are clearly visible in the equal energy contours of Fig. 4.1c and d, as indicated by the

arrows. Thus we propose that the signatures observed by Zhou et al. in the normal

state are not due to a pseudogap, but are consequences of the hybridized band structure

in this heavy fermion compound.

Next we discuss the form of dI/dV obtained in the superconducting state of CeCoIn5.

The Fermi surface of Chapter 2 and superconducting gap computed in Chapter 3 are

presented for reference in Fig. 4.2a,b, and will be used in the subsequent discussion. Re-

call that there are gaps on three different sheets of the Fermi surface: two corresponding

to the α-band with ∆α1
max = 0.6 meV and ∆α2

max = 0.2 meV, respectively, and one from

the β-band with ∆β
max = 0.1 meV. This leads to three sets of coherence peaks in the

tunneling data, as shown in Fig. 4.2c. There is also an additional peak indicated at

the energy Ē1, which is associated with the van Hove singularity in the normal state at
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Figure 4.1: (a) Experimental and (b) theoretical differential conductance dI/dV in
the normal state of CeCoIn5. (c), (d) Equal energy contours of the heavy quasiparticle
bands indicating the van Hove singularities (black arrows) at energies E1 and E2,

respectively [84].

E = E1. One also notices a nonlinear rise in the differential conductance at the lowest

energies, due to the higher-harmonic form of the gap in the β-band (eq. 3.15).

A detailed comparison of the theoretical and experimental differential conductance is

given in Fig. 4.3a, in which the calculations have been broadened by a quasiparticle

damping of Γ = 0.06 meV to mimic the experimental resolution. This suppresses and

smooths out the three sets of coherence peaks; in particular those due to the α2 and

β gaps merge into a kink at E ≈ ±0.15 meV, as indicated by the arrows in 4.3a. The

appearance of the kink follows from the differing energy scales of the α1 and β gaps,

as indicated by the linear fits in 4.3b. For 0.2 meV < E < 0.6 meV, inside the α gap

but outside the β gap, the slope of dI/dV is controlled by ∆α1
max. On the other hand

at low energies, E < 0.1 meV, the β-band dominates the behavior, leading to a steeper

slope in the conductance. The departures from linearity between E ≈ ±0.12 meV and

E ≈ ±0.18 meV are close to the predicted coherence peaks of the two smaller gaps,

which suggests that higher resolution experiments may be able to see peaks at these

energies.
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Figure 4.2: (a) Fermi surface, (b) superconducting gap, and (c) differential conduc-
tance in the superconducting state of CeCoIn5 [84].

Having investigated the differential conductance, and thus the electronic structure, far

away from strong local perturbations, we now ask how these are modified in vicinity of

defects. This can be addressed in the T -matrix formalism as follows. First, define the

non-interacting Green’s function matrix in real space for the c and f electrons,

ĝ(r, r′, τ, τ ′, ) = −〈TτΨr(τ)Ψ†r′(τ
′)〉 (4.1)

In this definition the spinor Ψ†r is given by
(
c†r,↑, cr,↓, f

†
r,↑, fr,↓

)
. For a single defect

at position R which is capable of scattering either the c- or f -electrons, the dressed

Matsubara Green’s function is obtained from a geometric series:

Ĝ(r, r′, iωn) = ĝ(r, r′, iωn) + ĝ(r,R, iωn)
[
1̂− Û ĝ(R,R, iωn)

]−1
Û ĝ(R, r′, iωn) (4.2)
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Figure 4.3: Comparison of Theoretical and Experimental dI/dV in the Supercon-
ducting State in the energy ranges (a) ±1.0 meV and (b) ±0.4 meV [84].

with potential scattering matrix

Û =

Ucσz 0

0 Ufσz

 . (4.3)

Here,

Û =

Ucσz 0

0 Ufσz

 . (4.4)

where Uc and Uf are the potentials for scattering electrons in the c- and f -bands and

σz is a Pauli matrix. We then analytically continue from the Matsubara to the retarded

Green’s function, iωn → ω+ iΓ, with the dephasing Γ determined by comparison to the

experimentally determined line widths.

Placing a defect that scatters only the f -electrons at the origin, we calculate the resultant

local density of states for a weak potential Uf = −5 meV and a vacancy of the f -electron

site, modeled by letting Uf → −∞. The two cases are shown in Fig. 4.4a, b, respectively.

Here the local density of states is shown for sites (1,0) and (1,1), along with that of the
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Figure 4.4: Differential conductance in the superconducting state in the presence of
a defect [84].

unperturbed system. It is readily seen that the defect induces sub-gap states at the

nearest neighbor site for both scattering strengths. For stronger potentials, the state is

pulled down in energy towards E = 0, although even in the Uf → −∞ limit the state

remains at finite energies due to the particle-hole asymmetry of the bandstructure.

In addition to examining the energy dependence of the states at a fixed position, much

can be learned by fixing the energy and looking at the spatial structure around the defect

[85]. In Fig. 4.5a, b we show the calculated spatial structure of the density of states at

E = ∓0.05 meV in the presence of a weak f -electron scatterer (Uf = −5 meV). This

is to be compared with the experimental results of Zhou et al. reproduced in panels

c and d of Fig. 4.5. At positive energies, both the theory and experiment show high

intensity along the directions 45◦ from the bond directions, as well as at the origin. For

negative energies, the calculations reproduce the four lobes of high intensity at nearby

sites along the bond directions, but fail to generate the suppression of the density of

states at the defect site which is seen experimentally. There are a number of possible

reasons for this discrepancy, such as the use of point-like rather than extended defects

in the calculations (whereas the actual defects in experiment are clearly extended), or

the lack of more complicated scattering involving the conduction electrons. Another

possibility for improving the agreement would be to include the Wannier wavefunctions

of the appropriate orbitals in the calculations, as was recently done with remarkable

success for the cuprates [86]. Both the experimental and theoretical results shown in 4.5

agree with the expectations for dx2−y2 superconductors [85]. Cuprate superconductors

have also been found to agree with the dx2−y2-symmetry expectations for the spatial

structure of dI/dV [87].
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Figure 4.5: Spatial variation of the differential conductance in the superconducting
state in the presence of a defect. (a), (b) Theoretically calculated dI/dV at energies
E < 0 and E > 0, respectively. (c), (d) Experimentally determined dI/dV for E <
0 and E > 0 [84]. Panels (c) and (d) are reprinted by permission from Macmillan

Publishers Ltd:Nature Physics 9, 474 (2013).

To conclude, we demonstrated how the band structure extracted in Chapter 2 along

with the superconducting gap calculated in Chapter 3 can be used to understand the

real space dI/dV spectra in CeCoIn5 in both the normal and superconducting states.

In the former case, the pseudo-gap-like features that develop around 5.3 K can in fact

be associated with the van Hove singularities of the heavy band structure. In the super-

conducting state, the dI/dV far from impurities is seen to carry definite signatures of

the multiple gaps present in the system. Finally, the agreement between the calculated

and experimental dI/dV near point-like defects reveals the presence of sub-gap impurity

states, with the spatial patterns expected of dx2−y2-symmetry superconductors. Taken

together, these results reinforce the conclusions of the previous chapters about the band

structure of CeCoIn5 and the underlying magnetic f -electron pairing mechanism that

produces superconductivity.
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4.2 Neutron Scattering in CeCoIn5

Section 3.4.1 discussed the magnetic resonance peak in the superconducting state of

CeCoIn5 discovered by Stock et al. [76], along with its recovery in the calculations

within the model developed in Chapters 2 and 3. Recent neutron scattering experiments

on Ce1−xYbxCoIn5 by Song et al. [88] show a dispersion of this resonance, which

presents an additional challenge to theorists to understand the behavior away from

the commensurate antiferromagnetic wavevector Q=(0.5,0.5,0.5). The following section

explores the possibility of describing the dispersing mode within the theory already

developed. It is found that the most straightforward extension of the earlier work, the

spin exciton scenario, fails to reproduce the correct dispersion. We then model the

resonance phenomenologically as a paramagnon (damped remnant of a spin-wave from

the nearby antiferromagnetic phase). Within this model we show that the observed

splitting of the resonance in a magnetic field can be explained by an anisotropy of the

magnetic f -electron interaction. The question of the exciton versus magnon description

mirrors a discussion about a similar resonance observed in neutron scattering in the

cuprates. The magnon scenario represents the strong coupling approach, in which spin-

wave excitations of the f -electrons – which are damped in the normal state – become

undamped in the superconducting state, leading to the resonance, as discussed below

[89]. In practice, the magnon is generated by adding a term of the form Ω2/EF to

the bare spin susceptibility. However, it was found that the weak coupling spin exciton

approach automatically generates a term ∼ Ω2/∆, which overwhelms the former term

[90]. In CeCoIn5 it appears the situation is reversed [78], as verified by the experiments

and analysis discussed below.

Neutron scattering results from Song et al. are presented in Fig. 4.6, where the scat-

tering wavevector is varied along the (H,H,0.5) direction in reciprocal lattice units. The

experimental data are taken at a discrete set of wavelengths and energies, which are fit

by the simple Gaussians shown in Fig. 4.6. Starting at the low energy side, one notices

that as the energy is increased, a strong peak emerges which is centered at Q and has a

maximum width at E = 0.55 meV. As the energy is further increased, the peak narrows

slightly before splitting into two peaks dispersing away from Q. For momentum transfer

fixed at Q, the scattering intensity versus energy shows a strong dependence on temper-

ature as transition is made into the superconducting state (Fig. 4.7). This, along with
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Figure 4.6: Neutron scattering intensity as a function of wavevector (r.l.u.) and
energy (meV) obtained from Gaussian fits to the experimental data.

the observation of similar phenomena in related unconventional superconductors [8],

suggests a close tie between the resonance peak and the superconducting state. Theory

developed in section 3.4.1 can be immediately applied to the question of the resonance

peak dispersion through the calculation of χ±SC,RPA(q, ω) at wavevectors away from Q.

The RPA method has been very successfully applied to other unconventional supercon-

ductors, such as the cuprates [91]. Within this approach the resonance is interpreted as

a spin exciton, a collective excitation arising from the pole in the RPA susceptibility.

Performing the calculation of Imχ±SC,RPA over a wide range in momentum and frequency

leads to the color plots shown in Fig. 4.8 a,b. It is seen that the spin exciton theory

predicts a resonance with a downward dispersion. This is in marked contrast to the

experimental results, overlaid with the blue line to indicate the position of the peak

maximum of the resonance. Thus it appears that the simple spin exciton scenario using

the dispersion and magnetic interaction extracted from the QPI experiments, along with

the calculated form of the superconducting gap, is not able to reproduce the neutron

scattering results away from Q.

In the absence of a microscopic theory of the spin resonance it is still possible to model
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Figure 4.7: Temperature dependence of the resonance peak in neutron scattering at
the AFM wavevector Q=(π,π,π) as a function of energy.

the behavior phenomenologically in the spin-fermion model [89]. The idea is rooted in an

analogy with the cuprate superconductors, where closeness to the parent antiferromag-

netic state was proposed to engender a paramagnon resonance. CeCoIn5 is also believed

to be close to an antiferromagnetic state. This is evidenced by the observation of spin

fluctuations in NMR and NQR measurements [79] and by the existence of non-Fermi

liquid behavior in the phase diagram, which is expected in proximity to an antiferro-

magnetic quantum critical point [3, 5, 56]. In the normal state, the resonance is not

observed, due to damping from the particle-hole continuum. However, the occurrence

of superconductivity opens a gap, which allows the resonance to become undamped if

its energy is below the onset of the particle-hole continuum. To study the resonance in

the paramagnon framework we begin with the assumption that the dispersion obeys

ω2
sw(q) = ∆2

sw + c2
sw(q−QAF )2 (4.5)
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Figure 4.8: (a,b) Theoretical calculation of Imχ±SC,RPA and comparison with the
experimental dispersion of the resonance peak. (c,d) Theoretical model of the resonance

as a paramagnon from fits to experiment.

with ∆sw equal to the spin-wave gap and csw the corresponding velocity. The dressed

spin propagator in the spin-fermion model can be written as

χ−1 = χ̄−1 −Π (4.6)

here χ̄ is the bare spin propagator and Π is the irreducible polarization operator.

Reχ−1 = χ̄−1 − Re Π is determined by the fermionic excitation spectrum at all en-

ergies, and so it cannot be calculated within the low-energy model of Chapters 2 and 3.

Thus it is necessary to use a phenomenological form of the propagator,

Reχ−1 = χ̄−1 − Re Π =
ω2
sw(q)− ω2

α
(4.7)
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Figure 4.9: (a) Imaginary part of the irreducible polarization Π calculated in the
spin-fermion model. (b) Calculation of the resonance peak modeled as a paramagnon.

Inset: wavevector Q of scattering processes determining Im Π and ωc.

with the dispersion given in eq. 4.5 with the parameters ∆sw = 0.5498 meV and csw =

3.2463 Å, to reproduce the experimental results. The parameter α reflects the spectral

weight of the paramagnon in the normal state. We assume in the following that the form

of eq. 4.7 is unchanged upon entry into the superconducting state. Rather, the primary

effects come from Im Π, which reflects the damping of spin excitations via decay into

particle-hole pairs. The lowest order expression for Π in the spin-fermion coupling g is

given by

Π = g2χ0 (4.8)

with χ0 the non-interacting susceptibility of eq. 3.32. In the following we use g2 = 20.0

meV2, noting that only the width, and not the position, of the resonance is affected by

this choice. The key physics that leads to the appearance of the resonance peak inside

the superconducting state can be understood from figure 4.9.

Here, 4.9a displays Im Π in the normal and superconducting states at q = Q as a function

of energy. One notices that in the normal state the imaginary part of Π increases linearly

from zero energy, i.e. damping from decay into particle-hole excitations can occur at

all finite frequencies. This prevents the formation of a resonance peak at finite energy,

since a spin excitation at that energy will spontaneously decay into particle-hole pairs,

for E > 0. On the other hand, the transition to the superconducting state causes Im Π

to vanish below an energy ωc. This onset energy is determined from the fact that in

the superconducting state a minimum energy is required to produce a particle-hole pair

(with momenta k and k+Q): ωc(Q) = |∆k|+ |∆k+Q|. This scattering process is shown
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Figure 4.10: (a) Imaginary part of Π in the superconducting state of CeCoIn5 at
q = 0.955QAF . Onset energies for particle-hole scattering in the superconducting state
are indicated by the green arrows. (b) Momentum dependence of the onset energies in
ImΠ. Dashed vertical line corresponds to the case shown in (a). (c) Scattering vectors

corresponding to the onset energies in (a) shown on the Fermi surface.

on the Fermi surface reproduced in 4.9b. Thus, in the superconducting state the spin

resonance can become undamped if its energy is below the onset ωc. This is illustrated

in the plot of Imχ reproduced in 4.9b. In particular, one notices the sudden drop in

spectral weight around E ≈ 0.75 meV, corresponding to the onset of the particle-hole

continuum in 4.9a.

Moving away from the antiferromagnetic wavevector Q along the [1,1,0] direction, one

finds that multiple onset energies appear as a consequence of the increase in the number

of scattering channels connecting points on the Fermi surface separated by momentum

transfer q. This is shown for the particular case q = 0.95Q in Fig. 4.10a. One can

clearly identify the presence of four onset energies, as indicated by the green arrows.

The three high energy onsets ω
(2)
c –ω

(4)
c come from scattering of 0.95Q between different

parts of the α1 Fermi surface (Fig. 4.10c). These lead to the sudden jumps in Im Π seen

in Fig. 4.10a. The jump arises from the fact the gaps at k and k + 0.95Q have a phase

difference of π, so that the pre-factor of the second term of eq. 3.32 does not vanish at

the Fermi surface, as it would for gaps of the same sign. On the other hand, ω
(1)
c marks

the beginning of a gradual linear onset of Im Π near E ≈ 0.4 meV. This occurs because

q connects momentum points on the α2 and β Fermi surfaces, for which the signs of the

gap are the same and the pre-factor of the second term vanishes on the Fermi surface.

The evolution of the onset energies as a function of momentum transfer is shown in Fig.

4.10b, with the vertical dashed line indicating the case of q = 0.95Q. One sees that

the original onset energy near E ≈ 0.75 meV for q = Q splits into three separate onset

energies away from this point, and that other previously unrealized onsets emerge as

new parts of the Fermi surface can be connected with a given momentum vector. The
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Figure 4.11: The dispersion of the resonance modeled as a paramagnon, including the
energies of some onsets of the particle-hole continuum. Whenever an onset is crossed

there is a corresponding reduction in the amplitude of the mode.

effect of these onsets on the intensity of the paramagnon resonance is demonstrated in

Fig. 4.11. One notices that whenever the dispersion crosses an onset energy for the

particle-hole continuum at a given wavevector, there is a subsequent loss of amplitude

in the resonance mode, due to the damping produced by Imχ±SC,RPA.

4.2.1 Magnetic Anisotropy and External Magnetic Field

Neutron scattering experiments by Stock et al. [92] discovered that the resonance peak

splits into two peaks when a magnetic field is applied in the [1,1̄,0] direction. The

splitting into two modes for the field in the ab-plane is unexpected, as the nominally

spin 1 exciton should split into three peaks upon application of the external field, for

a system with Heisenberg spin symmetry. However, the observation of two modes can

be explained if the system possesses a magnetic easy plane perpendicular to the applied

field (in this case the plane spanned by [1,1,0] and [0,0,1]). Therefore we replace the

previous magnetic interaction Hamiltonian, eq. 3.1, with one including anisotropy and

coupling to the external field

HH =
∑
r,r′

Ir,r′Sr · Sr′ +A
∑
r

(Szr )2 − gµBH
∑
r

Szr (4.9)
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Figure 4.12: (a) Schematic of magnetic easy plane and applied magnetic field. (b)
Splitting of the resonance mode due to applied field in the presence of easy-plane

magnetic anisotropy.

Here the choice A > 0 yields a hard magnetic axis along [1,1̄,0] and an easy plane

perpendicular to it (Fig. 4.12a). For convenience [1,1̄,0] is defined as the z-direction in

spin space.

With the Abrikosov pseudofermion representation also used in Chapter 2,

Sr =
1

2

∑
α,β

f †r,ασαβfr,β (4.10)

we may re-write eq. 4.9 as

H =
1

4N

∑
k,l,q

{
Izz(q)

(
f †k+q↑fk↑ − f

†
k+q↓fk↓

)(
f †l−q↑fkl↑ − f

†
l−q↓fl↓

)
+I±(q)

(
f †k+q↑fk↓f

†
l−q↓fl↑ + f †k+q↓fk↑f

†
l−q↑fl↓

)
−gµBH

∑
k

(
f †k↑fk↑ − f

†
k↓fk↓

)}
(4.11)

where we have defined

Izz(q) = Iq +A (4.12)

I±(q) = Iq (4.13)

near the commensurate antiferromagnetic wavevector Q, one has I(Q) < 0, so that

|Izz(Q)| < |I±(Q)| (4.14)
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Calculating the transverse susceptibility in the RPA approximation yields

χγ(q, ω) =
χγ0(q, ω)

1 + I±χ
γ
0(q, ω)

(4.15)

where γ = ±,∓ and the non-interacting transverse susceptibility is given by [93]

χ±,∓0 (q, ω) = − 1

N

∑
k

∑
i,j=α,β

{
C+
ij

f i,±k+q − f
j,∓
k

ω + iδ + ξi,±k+q − ξ
j,±
k

+
C−ij
2

1− f i,∓k+q − f
j,∓
k

ω + iδ − ξi,∓k+q − ξ
j,∓
k

−
C−ij
2

1− f i,±k+q − f
j,±
k

ω + iδ + ξi,±k+q + ξj,±k

}
(4.16)

where ξi,±k = Ωi
k ±H, f i,±k = nF (ξi,±k ), and

C±ij =
1

2

(
1±

Eik+qE
j
k + ∆i

k+q∆j
k

Ωi
k+qΩj

k

)
(4.17)

Note that χ±0 is given by the right-hand side with the upper signs, whereas χ∓0 is given

by the lower signs. Thus, the magnetic field is treated as a Zeeman splitting of the

two spin directions. We can now see how magnetic anisotropy can lead to the observed

two-peak structure in applied field. For large enough A, one has Izz(q) = Iq + A > 0,

and the longitudinal mode can be located above the onset energy of the particle-hole

continuum, ωc(Q). Thus, it will be strongly damped and not observable in the neutron

scattering. For H = 0, the two transverse modes χ±,∓0 will be degenerate and hence

produce a single peak in the spectrum, as seen in the original experiments [76]. The

applied field will then split the peak into two with energy separation increasing linearly

with H, as seen in the calculation shown in Fig. 4.12b, and also observed experimentally

[92].

One may contrast the behavior in the presence of a magnetic easy-plane with that in

the case of an easy-axis. Assuming that the magnetic field is still along [1,1̄,0], let the

easy-axis be the magnetic x-axis (crystallographic c-axis), shown in Fig. 4.13. Then the

second term in 4.9 is replaced by A
∑

r(S
x
r )2 where now A < 0.
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Figure 4.13: (a) Schematic of magnetic easy-axis and applied magnetic field. (b)
Splitting of the resonance mode due to applied field in the presence of easy-axis magnetic

anisotropy.

In this case the transverse susceptibilities can be written as

χxx(q, ω) =
1

4

χ±0 + χ∓0 + 2χ±0 χ
∓
0 (I+

q − I−q )

(1 + I+
q χ
±
0 )(1 + I+

q χ
∓
0 )− χ±0 χ

∓
0 (I−q )2

(4.18)

χyy(q, ω) =
1

4

χ±0 + χ∓0 + 2χ±0 χ
∓
0 (I+

q + I−q )

(1 + I+
q χ
±
0 )(1 + I+

q χ
∓
0 )− χ±0 χ

∓
0 (I−q )2

(4.19)

and here I±q = (Ixq ± I
y
q)/2, Ixq = Iq + A, and Iyq = Izq = Iq. Since Iq < 0 for q ≈ Q,

we have |Ixq | > |I
y,z
q | and the resonance peak occurs at a lower energy for χxx than for

χyy = χzz (in zero field). As a qualitative demonstration of the behavior with an easy-

axis, we set A = −0.3 meV and Ixq such that the resonance in χxx occurs at ω = 0.6 meV.

One sees in Fig. 4.13b that for H = 0, χxx has the expected behavior, whereas χyy = χzz

possesses a small peak near the edge of the particle-hole continuum. Application of a

finite field H = 0.2 meV then pushes the χxx resonance to lower energy, leaves χzz

unaffected (not shown), and pushes χyy up into the particle-hole continuum where it is

damped away. Thus, in this scenario there is no splitting of the resonance peak by a

field applied in the [1,1̄,0] direction, in clear contradiction with the experiments.

To conclude, in this chapter we investigated further developments of the model of

CeCoIn5 introduced in Chapters 2 and 3. It was found that the model was able to

quantitatively account for the real space differential conductance in the normal and su-

perconducting states, both on clean parts of the surface and in the immediate vicinity

of defects. This lent further support to the proposed low-energy band structure and mi-

croscopic pairing mechanism. We then turned to recent neutron scattering experiments
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on Ce1−xYbxCoIn5 and investigated the dispersion of the magnetic resonance peak in

the superconducting state. It was found that the most straightforward extension of the

model of Chapters 2 and 3, the spin exciton scenario, was not able to account for the

dispersion. We then modeled the resonance as a paramagnon and showed how its ap-

pearance can be understood through the opening of a gap in the particle-hole continuum

below Tc. Finally, we addressed how the unexpected observation of the resonance split-

ting into two peaks in a magnetic field applied in the [1,1̄,0] direction can be explained

as a consequence of magnetic easy-plane anisotropy.



Chapter 5

Transport in Nanoscale Kondo

Lattices

The previous chapters have thoroughly studied an archetypal heavy fermion material,

CeCoIn5, in the normal and superconducting states. The response to several different

probes, primarily scanning tunneling spectroscopy and neutron scattering was examined

and modeled within a mean-field slave boson large-N theory. A common feature of these

experimental techniques is that they study the properties of the system in equilibrium.

Indeed, much of the work on strongly correlated systems has focused on equilibrium

behavior. The reason for this is two-fold. First, the theory of equilibrium statistical

mechanics is much further developed than nonequilibrium theory, which makes it easier

to calculate observables in this framework. In cases where nonequilibrium results are

desired, such as the response to a time-dependent external field, the traditional approach

has been to use linear response theory and the fluctuation-dissipation theorem, which

allows one to obtain the first-order response by calculating only equilibrium quantities

[94]. Second, because strongly correlated systems have proven difficult to understand

even in the equilibrium case, it has perhaps been thought that one should not attempt

a harder problem before the easier one is solved sufficiently. To this one may reply

that nonequilibrium experiments present fundamentally new phenomena that can help

further constrain theoretical models and lead to a more comprehensive understanding

of correlated electron systems. Furthermore, while nonequilibrium calculations are gen-

erally more challenging than equilibrium ones, the rapid growth of computing power

63
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has made them less prohibitive. It seems appropriate therefore to investigate correlated

systems out of equilibrium, in order to further the development of the field.

Picking up the thread of the earlier chapters, we may consider a heavy fermion system

connected to metallic leads with an applied voltage bias. This will produce a charge

current through the system, which can be calculated in a spatially resolved way [95].

Given the early stage of development, we do not attempt to utilize a quantitatively

accurate band structure (as was done for CeCoIn5 in the preceding chapters), but instead

use simplified Kondo lattice model to understand general features.

Recently, the Keldysh Green function approach was applied in real space to model

nanoscale simple metallic systems [95]. Even for systems free of atomic disorder, a wide

variety of current flow patterns are obtained that depend on the detailed spatial struc-

tures of the electronic wavefunctions. Here we extend such calculations to heavy fermion

systems at the nanoscale, which are computationally tractable relative to macroscopic

systems. It is found that the presence of correlations between the conduction and lo-

calized f -electrons, encoded in the hybridization s, has a profound effect on the current

patterns through a Kondo lattice, even when the currents are constrained to flow through

the c-electron subsystem.

In the following we study a nanoscale heavy fermion system consisting of a square

lattice of conduction electron sites coupled to a lattice of f -electrons of the same size.

This system is then connected to two metallic leads, each with a constant density of

states. Working in the large-N slave boson mean field theory as in earlier chapters, the

Hamiltonian is

H = −µ
∑
i

c†ici − t
∑
<i,j>

c†icj +
∑
i

sif
†
i ci +

∑
i

εif
†
i fi +Hlead − tl

∑
i

c†idi + h.c. (5.1)

where ci, fi(c
†
i , f
†
i ) annihilate (create) conduction and f -electrons at site i in the system,

respectively, and di(d
†
i ) annihilates (creates) an electron in the lead at the site connected

to the c-electron site i of the system. The current is calculated in the non-equilibrium

Keldysh Green’s function formalism in real space [96, 97] according to the expression

Irr′ = −2
e

~
t

∫ ∞
−∞

dω

2π
Re
[
Ĝ<rr′(ω)

]
(5.2)
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where Ĝ< is the full lesser Green’s function matrix including the leads and the heavy

fermion system. This formalism is explained in more detail in Appendix A.

5.1 Transport in a Clean System

We start with a clean (defect-free) system with unhybridized and hybridized Fermi

surfaces for an infinitely large system shown in Fig. 5.1. The hybridization si and f -

electron chemical potential εi are determined from the self-consistent equations of the

equilibrium mean field theory [98]. For a finite size system, the lack of periodic boundary

conditions causes si and εi to vary spatially, even in the absence of defects (Fig. 5.2).

Notably, the hybridization is zero along the edge of the system. With narrow leads (width

of one site) attached to the middle of the left and right edges of a 61x61 system, we

calculate the resulting spatially-resolved current pattern. This is presented in Fig. 5.3.

For the system with correlations, that is, non-zero hybridization between c-electron

and f -electron states, (Fig. 5.3a) the current pattern displays a characteristic diamond

shape. This is due to the velocity of the hybridized heavy quasiparticle states. At low

temperatures, the transport will be dominated by the low energy excitations of electrons

near the hybridized Fermi surface of Fig. 5.1. Since the electron velocity is given by

v(k) = (1/~)∇kE(k), one sees that the typical velocities of the quasiparticles obey |kx| ≈

|ky|, explaining the diagonal trajectories of the currents in Fig. 5.3a. At temperatures

above the coherence temperature, Tcoh, of the Kondo lattice, the magnetic moments

are not screened by the conduction electrons. We model this situation by setting the

hybridization s = 0, i.e. decoupling the c- and f -electron subsystems completely. In

this case, the c-electron system behaves as a simple metal. As shown in figure 5.3b,

the resulting current pattern is very different when the correlations are absent. In

particular, the current path is less sharply defined, and largely goes through the center

of the system. Though experimentally challenging, current patterns have been imaged

using SQUIDs [99] (an alternative method using an STM has also been proposed [100]),

and so the transition between the correlated Kondo lattice state and high temperature

uncorrelated state may be observable in the modification of current flow in the system.



Chapter 5. Kondo Lattice Transport 66

Figure 5.1: Unhybridized and hybridized Fermi surfaces for a simplified Kondo lattice
model with µ = −3.618, t = 1.0, and bulk hybridization and f -electron chemical

potentials s = 0.31 and ε = 0.025, respecitively.

Figure 5.2: Self-consistently determined spatial variation of the mean-field (a) hy-
bridization, s, and (b) f -electron chemical potential, εf , for a 61x61 Kondo lattice.

5.2 Transport with Defects

It is natural to ask how the current flow is modified by defects that are invariably present

in real systems. In particular, the effect of non-zero hybridization on the response of

the system to defects provides interesting signatures of the correlations in the system.

To consider this, we introduce an f -electron vacancy (a Kondo hole) directly in the

path of the current through the lower branch, at the site indicated by the purple star in

Fig. 5.4. The resulting current pattern is presented in Fig. 5.4, which shows the dramatic
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Figure 5.3: Charge currents through a clean Kondo lattice (Nx = 61) attached to
narrow leads for (a) si 6= 0 and (b) si = 0. Lead-system coupling is tl = 1.0t.

Figure 5.4: Comparison of the currents in a hybridized Kondo lattice (si 6= 0) for (a)
the clean system (b) a system with a defect at the site indicated by the purple star.

modification caused by the vacancy (Fig. 5.4b) compared to the clean case (Fig. 5.4a).

In interpreting these results it is important to note that because the f -electrons lack

an inter-site hopping term in eq. 5.1, the current is forced to flow entirely through the

c-electron subsystem. The only effect of the f -electron vacancy is to locally modify the

hybridization, but nevertheless this is found to induce strong changes in the resulting

current pattern. On the other hand, the total current through the system remains almost

the same, changing from 0.0011t in the clean case to 0.00109t with the defect.

To understand the qualitative differences that arise by varying the width of the attached

leads, in the following we make the leads the same width as the system itself. We keep the

leads attached to the left and right edges of the system. Furthermore, we apply periodic
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Figure 5.5: Currents in a 41x41 site system with wide leads and periodic boundary
conditions in the y-direction. Current patterns are shown for (a) a clean system, (b)
a Kondo hole at the center of the system (s = 0), and (c) a Kondo hole with phonon

coupling γ = 10−5t.

boundary conditions in the y direction, since we are less interested in the modification

of the current near the edge of the sample than we are in the change in current flow

around a defect. In the absence of a defect, the current flows uniformly across the

sample, as expected from symmetry (Fig. 5.5a). By introducing an f -electron vacancy

at the center of the system, we obtain the current patterns shown in Fig. 5.5b,c. In

these panels, the defect is modeled as a Kondo hole, by setting s = 0 at the central

site. In Fig. 5.5b one notices that the defect induces changes in the current pattern out

to the edge of the system. In Fig. 5.5c we coupled the system to a set of local phonon

modes at each site, using the high temperature approximation developed in Ref. [101]

(see Appendix A). The scattering of the electrons by phonons introduces a finite mean

free path, randomizing the phase of the electronic wavefunctions over distances greater

than this length. This suppresses the long-range effects of coherent scattering off of the

defect, as seen in Fig. 5.5c.

The behavior of a system with defects may also be sensitive to the presence of corre-

lations. To study this, we consider replacing an f -electron site with a non-magnetic

c-electron scatterer. In the Kondo-screened state, there is a localized c-electron poten-

tial in addition to there being zero hybridization at the site of the defect. While the

changes due to the defect still extend to the edge of the system (Fig. 5.6(a)), the current

patterns are considerably more uniform than in the state where correlations are absent

(s = 0), shown in Fig. 5.6(b). In the latter case the hybridization is everywhere zero, but

the translational symmetry of the current pattern is still broken due to the c-electron

scattering potential. The wavelength of the current oscillations in the vertical direction

are approximately 10 lattice spacings, corresponding to the de Broglie wavelength of
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Figure 5.6: Currents for a system with wide leads and a c-electron scatterer (u0 =
5.0t) with (a) si 6= 0 and (b) si = 0.

the c-electrons at the Fermi surface. An experimental determination of the current pat-

tern as a function of temperature may therefore be able to sense the development of a

coherent Kondo lattice.

5.3 Multiple Defects

The real-space approach adopted here easily allows for the examination of systems with

multiple defects. For concreteness, consider the current through a system attached to

wide leads with one percent of the f -electron sites replaced by non-magnetic conduction

electron scatterers. Fig. 5.7 shows the result of calculations for this case, which reveal

complicated current patterns in both the correlated and uncorrelated states. The purple

circles indicate the locations of the defects. In Fig. 5.7b, the correlated state, one notices

the presence of gaps in the current pattern, in addition to various ‘hot spots’ where the

current is large. In contrast, the system without correlations in Fig. 5.7a does not show

changes quite as drastic, except for a nearly complete suppression of the current flowing

through the defect sites.

5.4 Hopping within the f-band

Up until this point we have restricted our consideration to systems in which a com-

pletely localized f -electron level hybridizes with the conduction band. However, it is
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Figure 5.7: Currents for a defect system, with wide leads and multiple defects in the
(a) correlated and (b) uncorrelated states.

Figure 5.8: Currents for a clean system with tf = 0.1 and V = 0.008. (a) Currents in
the c-electron subsystem and (b) Currents in the f -electron subsystem. The calculations
were performed with spatially uniform mean-field parameters εi = 0.025t, s = 0.3t, and

separate phonon couplings in the two bands equal to γc = 10−7t and γf = 10−10t.

also conceivable that the f-band could have a narrow dispersion allowing for direct hop-

ping between f -electron sites. We introduce an additional term −tf
∑

<i,j> f
†
i fj into the

Hamiltonian eq. 5.1 to couple the neighboring f -electrons, but keep the leads coupled to

the c-electrons only. Fig. 5.8a,b show the currents flowing in both the c- and f -electron

subsystems, respectively. One notices that the current pattern is sharper and its mag-

nitude larger in the f -electron subsystem than for the c-electrons (after entering the

system through the left lead attached to the c-electron site, the majority of the current

immediately flows into the f -system through the hybridization at that site).
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5.5 Self-consistency with Finite Bias

In the above results, the local hybridizations and f -electron chemical potentials were

determined self-consistently in equilibrium. These parameters were then fixed while the

bias was applied and the current patterns calculated. While this procedure may be jus-

tified in the limit of small biases, in general the hybridization and chemical potential will

change in the non-equilibrium state. To study this effect, we have also performed fully

self-consistent calculations on a smaller system, using narrow leads. We first discuss the

self-consistency equations out of equilibrium and then the numerical results in this case.

In equilibrium it suffices to consider the imaginary time Matsubara Green’s functions

to develop a self-consistent large-N mean-field theory at finite temperatures. These are

then analytically continued to the retarded and advanced Green’s functions for com-

parison with experimental quantities. Out of equilibrium, the lesser Green’s function

must be specified in addition to the retarded one, leading to a more complicated set of

self-consistency relations [102].

The retarded and advanced Green’s functions take the same form as in equilibrium (the

Dyson equation):

ĜR,Af (ω) =
{

[ĝR,Af (ω)]−1 − ŝĝR,Ac (ω)ŝ
}−1

(5.3)

Here ĝ, Ĝ, and ŝ are matrices in the site indices of the the square lattice. The condition

on the f -electron occupation nf is enforced through the calculation of the lesser Green’s

function, Ĝ<ff (ω), given by

Ĝ<ff (ω) = ĝ<f (ω) + ĝRf (ω)ŝĝRc (ω)ŝĜ<f (ω) + ĝRf (ω)ŝĝ<c (ω)ŝĜAf (ω) + ĝ<f (ω)ŝĝAc (ω)ŝĜAf (ω)

(5.4)

After some algebra, one obtains

Ĝ<ff (ω) = ĜRf (ω)ŝĝ<c (ω)ŝĜAf (ω) + ĜRf (ω)[ĝRf (ω)]−1ĝ<f (ω)[ĝAf (ω)]−1ĜAf (ω) (5.5)

Then self-consistency requires

nf (r) = 1 =

∫ ∞
−∞

dω

π
ImG<ff (r, r, ω)nF (ω) (5.6)
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Figure 5.9: Self-consistently calculated currents in the presence of finite bias, for (a)
V = 0.004t and (b) 0.3t.

We also have a self-consistency condition to determine the hybridization, s,

s(r) =
J

2

∫ ∞
−∞

dω

π
ImG<fc(r, r, ω)nF (ω) (5.7)

where nF (ω) is the Fermi distribution function. Here the dressed lesser cf Green’s

function is given by

Ĝ<fc(ω) = −ĝrcc(ω)ŝĜ<ff (ω)− ĝ<ccŝĜaff (ω) (5.8)

Results for the self-consistently calculated current patterns at V = 0.004t and 0.3t are

shown in Fig. 5.9. As expected, for small bias the results reproduce those of the non-

self-consistent limit. However, with larger bias, the resulting current pattern is highly

damped. We also plot the difference in the hybridizations between the non-equilibrium

and equilibrium states, with V = 0.1t, 0.2t, respectively. This is shown in Fig. 5.10.

We find clear indications of oscillatory behavior in the magnitude of the hybridization,

emanating from the points where the leads are attached. In particular, some sites in

the nanostructure actually have larger hybridization. Such behavior could potentially

be confirmed in scanning tunneling spectroscopy experiments on heavy fermion systems,

and if realized, would provide a dramatic example of the complex interplay of strongly

correlated and non-equilibrium physics.

The correlation between increased voltage bias and the suppression of hybridization can

be seen in a spatial plot of the difference in the hybridization at each site, obtained
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Figure 5.10: Difference in the hybridization between the non-equilibrium and equi-
librium states for (a) V = 0.1t and (b) V = 0.2t.

Figure 5.11: Difference in hybridization, where values for the V = 0.001t case were
subtracted from the (a) V = 0.025t and (b) V = 0.075t cases.

by subtracting from two high bias self-consistent solutions the hybridizations of one

of the low bias cases. In Fig. 5.11a we show the difference in hybridization from the

V = 0.001t to the V = 0.025t case, while 5.11b shows the same for V = 0.075t as the

upper value. The results are uniform in the y-direction due to the use of wide leads and

periodic boundary conditions. While some sites experience an increase in hybridization,

the majority have their hybridization value suppressed, especially for those sites close to

the leads. Thus, increasing the bias has the overall effect of decreasing the hybridization

in the system.

To conclude, this chapter has examined the behavior of a nanoscale heavy fermion

system out of equilibrium. In particular, we have shown how the presence of correlations
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between the conduction and localized f -electrons has a drastic impact on the pattern of

charge currents flowing through the system. The changes on the current pattern induced

by defects were also found to be influenced strongly by correlations. In particular,

correlations appear to smooth out some of the modifications of the current in the vicinity

of a defect, apart from the cross-like features that extend as far as 20 or more unit cells

from the impurity. The addition of hopping in the f -band allows for an even greater

range of behavior, and taking this step reveals the dominance of the f -electron states in

the low energy dynamics. Finally, calculating the mean-field parameters self-consistently

in the presence of a finite applied bias shows oscillations in the hybridization originating

from where the leads are attached. Overall, as the bias (and therefore the current)

increases, the average hybridization in the system is suppressed.



Chapter 6

Charge and Spin Currents in

Nanoscale Topological Insulators

6.1 Introduction

Topological insulators (TIs) have generated sustained interest for nearly a decade. These

materials are characterized by the presence of topological invariants: global properties

of the system that are quantized and therefore cannot be changed under smooth defor-

mations of the underlying Hamiltonian without closing the gap at the Fermi level. An

example is the Berry phase obtained by integrating the gradient of the Bloch wavefunc-

tion of a crystalline insulator around a closed loop in the Brillouin zone [11]. The vacuum

is trivially an insulator, with a Berry phase of zero. If the system possesses a non-zero

Berry phase (say equal to one), then its edge must be conducting. This is because the

quantized Berry phase is forced to take integer values, and thus it cannot go from a value

of one inside the material to zero in the vacuum while remaining an insulator. Over the

years, much theoretical work has been done on the classification of the different topo-

logical states and their possible realization in experiment [103, 104]. Experiments, on

the other hand, have naturally focused on confirming the various theoretical predictions.

Throughout this process, a partial justification for the work in this field has been found

in proposed applications, such as spintronics and quantum computing. As work shifts

away from basic questions and toward applications, new questions arise about the vari-

ous models of topological insulators and their realizations in materials. As an example,

75
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consider the use of TIs in spintronics, where the generation of spin-polarized currents

is a central concern. To spur development in this direction, it is necessary to suggest

concrete procedures by which spin-polarized currents can be realized.

6.2 Model

Although several different models of topological insulators exist, for the sake of definite-

ness consider the one due to Kane and Mele [105] on the two-dimensional honeycomb

lattice (the crystal structure of graphene).

H = −t
∑

<r,r′>,α

c†r,αcr′,α + iΛSO
∑

<<r,r′>>,α,β

νr,r′c
†
r,ασ

z
αβcr′,β − tl

∑
r,r′,α

(d†r,αcr′,α + h.c.) +Hl

(6.1)

The first term gives the ordinary hopping amplitude for electrons between nearest-

neighbor sites, while the second describes the nearest-nearest-neighbor hopping due to

spin-orbit coupling. Here, νr,r′ = −νr′,r = ±1 and σzαβ is a Pauli matrix. The sign of

νr,r′ is determined by the direction of the hopping around the honeycomb: positive for

counterclockwise and negative for clockwise motion. This term is essential for producing

the non-trivial topological behavior. The third term gives the coupling between the leads

and the system, whereas the fourth term describes the Hamiltonian of the leads. In the

following, the leads are modeled via a continuous and flat density of states, as appropriate

for a macroscopic metallic system. Note that Eq. 6.1 differs from that considered by

Kane and Mele, in that it neglects the Rashba coupling for simplicity.

In the following, the spatially-resolved currents through the nanoscale TI are calculated

using the Keldysh Green’s function method [96, 97], which was briefly introduced in

Chapter 5 and is discussed in detail in Appendix A. Apart from the different Hamiltonian

in the case of the Kondo lattice as opposed to the TI, the method for computing the

currents is the same in both systems.
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Figure 6.1: Schematic drawing of the spin-resolved current patterns in a two-
dimensional topological insulator on the honeycomb lattice [106].

6.3 Polarized Spin Currents

We now turn to the demonstration of highly spin-polarized currents in nanoscale TIs

using magnetic defects. This is in fact the first theoretical proposal showing the creation

of highly spin-polarized currents in these systems. The possibility of creating such

currents is found to be robust against variations in the model parameters, such as size

and shape of the TI, the width of the leads, and the strengths of the spin-orbit couplings

and impurity magnetic scatterers. This will be demonstrated in section 6.8. For now,

consider a nanoscale TI whose dimensions along the armchair and zigzag edges are

Na = 9 and Nz = 15, respectively. The TI is connected to two narrow, metallic leads at

L and R, as shown schematically in Fig. 6.1.

The finite size of the system under consideration implies the discreteness of its energy

levels, which appear as sharp peaks in the density of states, broadened by an electronic

dephasing due to the coupling to the leads. The numerically calculated local density

of states at the site of the TI connected to the left lead, Nσ(r = L,E), is shown in

Fig. 6.2. The states with a purple background below the spin-orbit gap are edge states,

as evidenced by their associated current patterns (see below). Those with the green

background above the spin-orbit gap are higher energy edge states that exist outside of

the spin-orbit gap of magnitude ∆SO = 3
√

3ΛSO. Similar results were also found in a

cylindrical geometry [107].
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tld = 0.1t tld = 0.5t

energy E [t]

edge states bulk

states
(x 0.1)

Figure 6.2: Energy dependence of the local density of states(LDOS), N↑,↓, at the
site L attached to the left lead, for two different values of the coupling tl. The purple
background indicates edge states, while green indicates bulk states. Without magnetic
defects, the system is particle-hole symmetric, and the LDOS is therefore presented for
E > 0 only. The states are broadened by an electron dephasing of δ = 10−5t and the
electronic hoppings are t = 1.0 and tl = ΛSO = 0.1t. For visualization purposes, the

LDOS for tl = 0.1t has been multiplied by 0.1.

One may choose a particular state to carry the current by gating the system capacitively

(Fig. 6.3). For a state at energy Ei, applying a gate voltage Vg = Ei/e brings it to the

Fermi level, allowing the current to flow. For a system free of defects and impurities,

the resultant spin-↑ current pattern for the state at E1 = 0.0342t (indicated by the blue

dashed arrow in Fig. 6.2) is shown in Fig. 6.4. As expected for an edge state, the

current is strongly confined to the perimeter of the sample. In addition to the ordinary

flow along the top edge from source to sink, there is quantum-mechanical backflow along

the bottom edge [95]. This leads to a circulating current pattern with a much greater

magnitude than the outgoing current. As the gate voltage Vg is increased, it is found that

the edge states penetrate further into the bulk along the zigzag edge [108], as shown

in Fig. 6.5. Since the system-lead coupling destroys the electronic phase coherence

and thus breaks the macroscopic time-reversal symmetry [12], the current pattern is

dependent on the coupling strength. In particular, for a large coupling of tl = 0.5t, the

backflow is suppressed and the current for spin-↑ and spin-↓ electrons is confined to the

upper and lower branches, respectively, as shown in Fig. 6.6.
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Figure 6.3: Schematic drawing of a TI illustrating the capacitive gating of the system
to select states for transport.

E

spin- current

spin- current

Figure 6.4: Spatial pattern of the spin-↑ current, I↑rr′ , carried by the lowest energy
edge state at E1 = 0.0342t (see blue dashed arrow in Fig. 6.2) for coupling tl = 0.1t.
This state is accessed by applying a gate voltage Vg = E1/e to the TI. Note the existence
of a quantum mechanical backflow branch along the TI’s lower edge where a current

flows opposite to the applied voltage bias.

6.4 Non-magnetic Defects

When non-magnetic defects (such as localized potential scatterers) are added to the

system, the energies of the edge states are subject to modification. This also leads to

local changes in the resulting current pattern, since a strong repulsive potential at a site

leads to a suppression of the current through it. However, potential scatterers are not

spin-dependent, thus maintaining the time-reversal symmetry of the TI and preventing

backscattering from one spin channel to the other. That is, the potential scatterer

does not introduce any terms into the Hamiltonian that allow for transitions between

the spin-↑ and spin-↓ bands (Fig. 6.7). Thus, the spin projection and the momentum

direction remain locked in this scenario, so that backscattering is impossible. These

results are demonstrated in Fig. 6.8 and reveal the marked contrast between impurities



Chapter 6. Currents in TIs 80

bulk

states
bulk

states

edge states 1                    23

Nσ/Nmax

0

1

energy E [t]

L
D
O
S
N
σ
(L
,E
)
[1
/t
]

a

b c dE1=0.0342t E2=0.4512t E3=0.5129t

Figure 6.5: Decay of edge states into the bulk, where (a) shows the local density of
states at the site attached to the left lead and (b)-(d) show the spatial pattern of the
edge states at the energies E1–E3 indicated in (a). The high energy edge states decay

further into the bulk along the zigzag edge.

spin- current spin- current

Irr’ / Imax0 1

Figure 6.6: Spatial pattern of the spin-↑ current, I↑rr′ , and the spin-↓ current, I↓rr′ ,
respectively, carried by the edge state at E1 = 0.0335t for coupling tl = 0.5t. Color (see
legend) and thickness of the arrows represent the magnitude of the normalized current

Iσrr′/I
σ
max (the same normalization is used for both subplots).



Chapter 6. Currents in TIs 81

Figure 6.7: Schematic drawing of potential scattering in a TI. Electrons are not
backscattered due to spin-momentum locking and the absence of a mechanism for tran-

sitions between the spin bands.

spin- current

spin- current

Figure 6.8: Spatial pattern of the spin-↑ current, I↑rr′ , carried by the lowest energy
edge state at E1 = 0.031t in the presence of two potential defects (locations indicated

by red dots) with scattering strength U0 = 10t and tl = 0.1t.

in topological materials and, for instance, the correlated but non-topological Kondo

lattice discussed in Chapter 5.
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6.5 Magnetic Defects

In order to obtain a net spin-polarization of the current through the TI, it is necessary

to introduce magnetic defects that break the time-reversal symmetry inside the system.

Here we introduce the impurities as static, spin-dependent scatterers. Such an approach

will be justified if the magnetic moment is not Kondo screened. However, it is known

that the Kondo temperature [109, 110] can be suppressed in various ways, for instance,

by a lack of edge states near the Fermi energy [111], by using large-spin defects, or

by local magnetic fields [112]. On the other hand, the topological properties of the

system can survive all the way up to room temperatures [113]. Hence, there will be

experimentally accessible regimes in which the magnetic impurities can be treated as

static [114].

In light of this, the Hamiltonian for the point-like magnetic impurities can be written as

HM =
∑
R

JzS
z
R(c†R,↑cR,↑ − c

†
R,↓cR,↓) + J±(S+

Rc
†
R,↓cR,↑ + S−Rc

†
R,↑cR,↓) (6.2)

This Hamiltonian includes two distinct types of magnetic scattering. The first term with

coupling constant Jz represents an Ising-type defect and is akin to the Zeeman effect

of an external magnetic field in that it splits the spin degeneracy by raising (lowering)

the energy of the the spin-↑ (spin-↓) state (for Jz > 0). The second term with coupling

constant J± produces a spin-flip scatterer which allows the electrons to hop between the

two spin bands. We proceed to discuss the two cases in turn.

6.5.1 Ising-type Magnetic Defects

The separation of the spin-↑ and spin-↓ bands by an Ising-type defect (Jz 6= 0, J± = 0)

placed at the edge of the sample is clearly revealed in a numerical calculation of the spin-

resolved local density of states at site L (Fig. 6.9). By gating the system, as discussed

above, one may select a particular state for transport, which now only contains electrons

of one spin projection. Consider, for instance the state E1 = 0.0142t, indicated by the

blue arrow in Fig. 6.9. For the weak lead-system coupling limit, where the width

of the states is much smaller than their separation in energy, calculating the current
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Figure 6.9: Local density of states, Nσ(L,E), in a TI without (black line) and with
(red line for spin-↑, green for spin-↓) a magnetic defect (red dot in Fig. 6.10) with
Ising-type symmetry: JzS = 5t and tl = 0.1t. The blue arrow indicates state used for

transport in Fig. 6.10

charge current

charge current

Figure 6.10: Spatial pattern of the charge current, Icrr′ , carried by the lowest energy
edge state at E1 = 0.0142t [see blue dashed arrow in Fig. 6.9] for a system with an

Ising-type defect.

through the system that is carried by this state yields the current pattern shown in Fig.

6.10. Similar to the case of potential scatterers, the current pattern is locally modified

near the defect (indicated by the red dot in Fig. 6.10). However, a calculation of the

spin-polarization η↓ reveals that the outgoing current is 98% spin-↓polarized. Thus,

Ising-type defects are highly efficient at creating spin-polarized currents in the presence

of weak coupling to the leads.
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6.5.2 Spin-flip-type Magnetic Defects

For the case of strong lead-system coupling, spin-flip scatterers (J± 6= 0, Jz = 0) provide

a mechanism for achieving large spin-polarizations. When an electron of a given spin

projection scatters against a spin-flip defect, it is transferred to the opposite spin band.

This has striking consequences for the case of a topological insulator, in which the spin is

correlated with the direction of motion of the electron around the edge. An electron that

encounters a spin-flip defect is scattered, reversing its direction - the defect effectively

blocks current flow through the branch in which it is located. This is shown in Fig.

6.11, where the particular state chosen is indicated by the blue arrow in Fig. 6.12. With

the spin-flip defect located in the top branch, the spin-↑ current that would naturally

flow along that path is scattered into spin-↓ current, which travels the opposite direction

around the edge. This combines with the spin-↓ current that enters from the left lead,

and exits the system through the right lead. The behavior can be partially understood

from the local density of states, shown for this case in Fig. 6.12. Here the states for spin-

↑ and spin-↓ are strongly overlapping, so that electrons can be scattered between the spin

bands. On the other hand, if the density of states of the spin-↑ (spin-↓) band vanished

at the specified gate voltage, there would be no states for the electrons to scatter out of

(into). Since the spin-↑ current is blocked from reaching the right lead, the net current

is spin-↓ polarized with η↓ = 96.5%. Because of the overlapping of the edge states,

this result is relatively insensitive to variations in the gate voltage Vg. Examining the

total charge current Icout =
∑

α I
α
out, one notices that the counter-propagating spin-↑

and spin-↓ currents in the upper branch cancel, leaving a charge current only along the

bottom branch, as shown in Fig. 6.13.

6.6 Heisenberg Defects and Spin Diodes

Sections 6.5.1 and 6.5.2 considered the cases in which the magnetic impurity had either

Ising or xy symmetry. However, if Jz = J±, the resulting defect is isotropic in spin

space and can be represented by JS · σ, where σ is a vector of the Pauli matrices. Such

Heisenberg symmetry defects can be effective for generating spin-polarizations over a

broad range of lead-system couplings, since one or the other of the mechanisms discussed

above is active in a given regime. Furthermore, this situation allows for the creation
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Figure 6.11: I↑rr′ , and I↓rr′ carried by the edge state at E1 = 0.0175t [see blue dashed
arrow in 6.12] for tl = 0.5t.
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Figure 6.12: Local density of states, Nσ(L,E), for a TI containing two magnetic
defects [red dots in 6.11] with xy symmetry, J±S = 5t and tl = 0.5t.

of “spin diodes” in the following manner. Consider a system with Jz = J± = 5.0t and

tl = 2.5t and two Heisenberg symmetry defects in the upper branch (as shown in Fig.

6.15). The corresponding spin-polarizations η↑,↓ are shown in Fig. 6.14. When the gate

voltage is set to Vg,1, one finds that for forward bias ∆V the spin-↓ polarization η↓ is

large, whereas η↑ is small. This occurs because spin-flip scattering off the defects in the

upper branch suppresses the outgoing spin-↑ current. However, when the bias is reversed

the two polarizations become nearly equal (Fig. 6.14). In this case, since the current

now flows in the opposite direction, the spin-↓ current is blocked by the defect and η↓

is correspondingly reduced. However, this reduction is partially offset by the fact that

the density of states for spin-↓ electrons is greater at the energy Vg,1, in consequence
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spin- current
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Figure 6.13: Spatial pattern of Icrr′ carried by the edge state at E1 = 0.0175t (see
blue dashed arrow in 6.12) for tl = 0.5t.

of the Ising component of the defect, which is responsible for the splitting of the spin-

polarized states. Note that the current is larger because there are more states available

for transport at this energy. While the spin-polarization is therefore changed due to

a bias reversal, the magnitude of the charge current is unaffected. Thus, the system

behaves as a spin diode, with a polarization that can be turned on and off by switching

the bias direction.

Although the magnitude of the charge current stays the same, the spatial pattern is

notably different between the forward and backward bias cases. In the former, the

charge current travels predominantly along the bottom edge of the TI, reminiscent of

the xy symmetry defect. With the backward bias (−∆V ), the current travels equally

in both the upper and lower branches (which is also reflected in the fact that η↑ = η↓).

Thus there is a correlation between the presence of a net spin-polarization (which exists

for forward, but not for backward, bias) and the spatial pattern of the charge current.

This implies that a net spin-polarization can be detected by imaging the charge currents

in the system [99, 100].

At other energies than Vg,1 the behavior of the system under bias reversal is different.

For instance, at Vg,2 the density of states is equal for spin-↑ and spin-↓ electrons, and

for forward bias η↓ > η↑. Upon bias reversal we find η↓ < η↑, so that spin current

has opposite polarization. The magnitude of the difference |η↑ − η↓|, however, remains
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Figure 6.14: TI containing two magnetic defects of Heisenberg symmetry with JzS =
J±S = 5t and tl = 0.275t. (Top panel) η↑,↓ as a function of Vg for forward, ∆V (η↑:
black line, η↓: red line), and backward bias, −∆V (η↑): blue dashed line, η↓: green
dashed line). (Center panel) Nσ (E = eVg) at L. (Bottom panel) Total normalized

charge current Icout(Vg)/I
c
max with Icmax = maxVg

(Icout).

unchanged, although the direction of the current flow is now reversed. As before, the

magnitude of the charge current remains the same, but unlike the previous case, the

spatial pattern of the charge current is not sensitive to the bias reversal - larger current

always flows along the bottom branch. Since the charge current pattern no longer reflects

the spin-polarization, a spin-polarized experimental probe would be needed to detect this

effect.
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Figure 6.15: Spatial pattern of Icrr′ with a Heisenberg-type defect for forward bias
∆V and backward bias −∆V at Vg,1.

6.7 Interface with Ferro- and Antiferromagnets

Another possibility for realizing highly spin-polarized currents is to interface the TI on

the nano- or mesoscale with a ferro- or antiferromagnet. Suppose a magnet is placed

in contact with the TI along the top edge. Assuming the magnet is in a topologically

trivial insulating state (Chern number equal to zero), a conducting surface state will still

exist along the upper edge of the TI. However, the electrons in the TI will experience

the influence of the adjoining magnet through a proximity effect. If we interface the TI

along the top edge with a ferromagnet with an easy-plane parallel to the surface, this

can be modeled as a row of xy-symmetry magnetic impurities that scatter electrons at

the relevant sites.

In experiment one would expect some amount of disorder to exist along the interface,

which would scatter the electrons traveling along the edge. This can be modeled by

introducing random vacancies in the ferromagnet, i.e. sites where the coupling J± = 0.

Performing the calculations for this scenario, we find that the spin-↑ current travels along

the upper edge until it encounters the first vacancy, whereupon it is strongly scattered, as

seen in Fig. 6.16. The spatial pattern strongly resembles the case of a single xy symmetry

defect, Fig, 6.11, with the magnetic impurity in that case being replaced by the hole

in the ferromagnet in the present situation. The resulting spin-polarization is still very

high, with η↓ = 0.99. One can model the Interface of the TI with an antiferromagnet
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Figure 6.16: Spatial pattern of (a) I↑rr′ and (b) I↓rr′ for a TI interfaced with a disor-
dered ferromagnet (J±S = 5t; white circles indicate vacancies with J±S = 0). For this

system, Na = 14, Nz = 15, tl = 0.5t.
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Figure 6.17: Spatial pattern of (a) I↑rr′ and (b) I↓rr′ for a TI interfaced with a antifer-
romagnet (J±S = ±5t; sign of J±S varies between neighboring sites). For this system,

Na = 14, Nz = 15, tl = 0.5t.

by changing the sign of the scattering potential between neighboring sites. This also

yields a strong spin-polarization of η↓ = 0.90, along with the current patterns of Fig.

6.17. One notices that the decay length of the spin-↑ current along the top edge is

much greater than for the ferromagnet or the single magnetic defect cases. The slow

decay of the current indicates that each pair of neighboring anti-aligned spins produces

a small amount of the total spin-polarization. This is confirmed by examining systems

of increasing length along the armchair edge. While the Na = 14 system has η↓ = 0.90,

increasing the length results in η↓ = 0.96 for Na = 18 and η↓ = 0.99 for Na = 25. The

fact that the spin-polarization of these hybrid nanostructures remains very high with

increasing size suggests the effects will persist in the meso- and macroscales as well.

6.8 Robustness of the Spin-polarized Currents

For proposed applications, it is crucial that the phenomenon of spin-polarization ex-

plored in this chapter be robust in the variety of conditions that are likely to be realized
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Figure 6.18: Schematic of nanoscale TI with disordered edges.

in experiments. If the results found above depended heavily on the fine-tuning of model

parameters, it would be difficult to obtain them in realistic systems where it is challeng-

ing, if not impossible, to control various system parameters. Hence, it is important to

examine the robustness of the proposed spin-polarization effects under the variation of

model parameters, as done in the following section for edge disorder, the system size and

geometry, the spin-orbit coupling, the width of the leads, and the strength of magnetic

scattering.

Beginning with possibility of disorder along the edge of the system, consider a TI in

which 30% of edge sites are randomly removed (Fig. 6.18) containing two magnetic

defects of xy symmetry. While in such a TI, the spatial patterns of the spin-↑ and

spin-↓ currents are more disordered (Fig. 6.19); the maximum spin-polarization (as a

function of Vg) of η↓ = 0.975 is similar to that of the non-disordered TI where η↓ = 0.965.

To show that the spin-polarization does not rely on a specific system size or geometry,

consider a system with Na = 14, Nz = 13, which leads to an aspect ratio Na/Nz that is

considerably different than the case considered previously. The importance of consider-

ing different aspect ratios lies in the fact that, for non-topologically-protected nanoscale

networks, the aspect ratio has been found to have a profound influence on the resultant

current patterns [95]. As to be expected, the electronic structure of this finite-size sys-

tem is changed relative to the previous case - the states have moved in energy, consistent

with the different number of sites and changed geometry. Placing an Ising-symmetry
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spin- current spin- current

Figure 6.19: Spin up and down currents through a TI with disordered edges and an
xy defect.

defect of magnitude JzS = 5t in the upper branch, as done above, and gating the sys-

tem to select the spin-↓ polarized state at E = 0.0125t for transport, one finds a current

pattern very similar to the one discussed above in section 6.5. The density of states and

current pattern are shown in Fig. 6.20a,b. More importantly, the spin-polarization of

the outgoing current is 98.9%, almost identical to what was found above (Section 6.5.1).

The same conclusion is also found to hold for defects with xy symmetry, as displayed

in Fig. 6.20c–f. In this case, the edge states are broad enough that the gate voltage

need not be changed relative to the earlier system geometry. Selecting again the state

at E = 0.0175t, one finds similar current patterns as in section 6.5, as well as a very

similar overall spin-polarization of 96.2%.

The fascinating properties of topological insulators depend crucially on the presence of

spin-orbit coupling in those systems [11]. Any proposal to generate spin-polarization

from a topological insulator will require some amount of spin-orbit coupling for its

realization, but ideally it should not rely on coupling strengths which are excessively

large, as these will be difficult to obtain in practice. It is therefore important to check

that the polarization can be produced with weaker values of the spin-orbit coupling than

were employed above. Indeed, if one uses a coupling strength of ΛSO = 0.05t (half the

original value), one finds only a slight reduction in the outgoing spin-polarization from

96.3% to 94.6%. As expected, the resulting spin-orbit gap shrinks as well. However,

the spatial patterns of the current remain similar to those found with the large coupling
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Figure 6.20: For a TI with Na = 14, Nz = 13, (a) local density of states and (b)
charge current pattern in the presence of a defect with Ising symmetry (JzS = 5t). (c)
Local density of states, (d) charge current, (e) spin-↑ current, and (f) spin-↓ current in

the presence of a defect with xy symmetry (J±S = 5t).

strength, though the currents penetrate further into the bulk of the system, as seen in

Fig. 6.21.

The result of high spin-polarization ought to be insensitive not only to the details of the

TI, but to those of the leads as well. It may be possible to fabricate atomically-sharp

leads using STM tips, but other experimental setups will have difficulty achieving the

same level of precision. For instance, typical quantum point contacts possess diameters

on the order of 10 nm [115]. To investigate the possibility that the lead geometry could
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Figure 6.21: (a) Local density of states, (b) charge currents, (c) spin-↑ currents, and
(d) spin-↓ currents for a TI with Na = 14, Nz = 13 and a magnetic defect [red dot]

with xy symmetry, J±S = 5t, tl = 0.1t, and ΛSO = 0.05t.

influence the net spin-polarization, we attach wide leads to the TI and calculate the

current. This is shown in Fig. 6.22. In Fig. 6.22a,b,c the spin-↑, spin-↓, and charge

currents are shown for the case of a clean system. A somewhat surprising result is that

the spin currents predominantly enter the system through a single site (the bottom left

in the case of spin-↑). This leads to a cancellation in the charge current along the left

edge, ensuring that the currents travel the shortest path possible from the source to the

sink.

As a final check of the robustness of the spin-polarization, we consider variations in the

magnetic scattering strength. The spin-polarization obtained using two defects of xy

symmetry is shown in Fig. 6.23 as a function of scattering strength. The blue arrow

in Fig. 6.23a shows the case investigated earlier in figures 6.11, 6.12, and 6.13. The

polarization η↓ only begins to decrease appreciably for J±S . 1.5t. For J±S = 0.5t, the

system with two defects has a polarization of only η↓ = 0.625, close to the unpolarized

limit of η↓ = 0.5. However, one can restore the high spin-polarization in this case simply

by adding additional defects, as shown in Fig. 6.23a. For a system with 7 defects (red
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Figure 6.23: Dependence of spin-polarization on magnetic scattering strength for
defect of xy symmetry. (a) spin-polarization η↓ as a function of J±S for different
numbers of defects along the top edge of the system. (b) Spin-↑ and (c) Spin-↓ current

patterns for a system with 7 defects.

arrow in Fig. 6.23a), one obtains η↓ = 0.962, close to the two defect case with large

J±S. The spin-resolved current patterns in this case are shown in Fig. 6.23b,c, which

is qualitatively similar to the results of Fig. 6.11, but with a larger decay length of the

spin-↑ current along the top edge.



Chapter 7

Conclusion

This work has explored aspects of the complex behavior that arises in correlated and

topological systems. A detailed quantitative study of heavy fermion superconductivity

in CeCoIn5 was developed on the basis of cutting-edge scanning tunneling spectroscopy

experiments [9, 10]. The low-energy heavy quasiparticle band structure and magnetic f -

electron interaction were extracted from the quasiparticle interference data and used to

calculate important properties of the superconducting state, including the gap symmetry

and momentum dependence, the critical temperature, the spin-lattice relaxation rate,

and the resonance peak observed in neutron scattering experiments. The strong agree-

ment between experiment and theory demonstrates that a quantitative understanding

of heavy fermion superconductivity is achievable in practice. This bolsters the case for

similar combined experimental/theoretical studies in the future.

The model was also used to explain the features of the differential conductance both

in the normal and superconducting states. In the former case, the observation of a

purported pseudogap was explained in terms of van Hove singularities due to the flat-

ness of the hybridized quasiparticle bands. In the latter, the gap seen in the dI/dV

was shown to reflect the presence of the multiple superconducting gaps in the sys-

tem. The local changes of the dI/dV in response to defects were also calculated in the

model, in good agreement with experiment. Next, the calculations of the resonance peak

were extended to model its dispersion away from the commensurate antiferromagnetic

wavevector. These suggested that the peak was due to a magnon arising from the nearby

antiferromagnetic phase, unlike the spin exciton observed in cuprate superconductors.
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It was also shown that the observed splitting of the resonance into two peaks under

applied magnetic field can be understood in terms of magnetic anisotropy in the system.

The nonequilibrium behavior of a model nanoscale heavy fermion system was explored

using the Keldysh Green’s function approach. The charge current flow in the presence

of an applied voltage bias was found to be sensitive to the Kondo-screening correlations

between conduction and localized f -electrons, both in clean systems and those with de-

fects. Coupling to phonons introduces a finite mean free path which limits the spatial

extent of the modifications of the current pattern due to defects. The self-consistent

calculation of the hybridization in the presence of a finite bias reveals the overall sup-

pression of the correlations with increasing bias. However, the spatial structure of the

hybridization does not show a monotonic decrease throughout the system, but rather

some sites experience an increase in their hybridization. This could potentially be ob-

served in scanning tunneling spectroscopy experiments.

Current flow in 2D topological insulators was also studied using the Keldysh technique.

Breaking the time-reversal symmetry in the system by introducing magnetic defects,

we show that the edge states can be used to generate highly spin-polarized currents

and design tunable spin diodes. The results are robust against various perturbations

of the model and also found in systems in which TIs are interfaced with disordered

ferromagnets or antiferromagnets. As such, they may find application in the developing

fields of spintronics and quantum computation.



Appendix A

Keldysh Formalism for Transport

Various formalisms exist for the calculation of charge or spin currents in solids, ranging

from semi-classical approaches to fully quantum mechanical ones [116]. Here the Keldysh

Green’s function method is used to determine the current flow in real space [96, 97].

Within this approach, the spin-resolved current between two sites is

Iαrr′ = −2
e

~

∫ ∞
∞

dω

2π
Re[tαrr′G

<
α (r, r′, ω)] (A.1)

where α =↑, ↓, tαrr′ is the electron hopping connecting the two sites (nearest or next-

nearest), and G<α (r, r′, ω) is the non-local dressed lesser Green’s function. This is the

Fourier transform to frequency space of the time domain lesser Green’s function defined

by G<α (r, r′, t, t) = 〈c†r′(t)cr(t)〉. The total charge current through the system is thus

Icout =
∑

α I
α
out and the spin-α polarization of the outgoing current is given by ηα =

Iαout/I
c
out. One induces a current through the system by applying a chemical potential

difference, µL,R = ±eV/2, in the left (L) and right (R) leads (corresponding to a voltage

bias V across the sample). G<α (r, r′, ω) is determined via the following Dyson equations

Ĝ< = Ĝr
[
(ĝr)−1 ĝ< (ĝa)−1 + Σ̂<

ph

]
Ĝa (A.2)

Ĝr = ĝr + ĝr
[
t̂+ Σ̂r

ph

]
Ĝr (A.3)

Here Ĝr and Ĝa are the dressed retarded and advanced Green’s functions, respectively.

These arise from the non-interacting retarded (ĝr) and advanced (ĝa) Green’s functions,
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which represent a lattice of completely decoupled sites. Explicitly,

ĝr,a =

ĝr,aleads 0

0 ĝr,asys

 (A.4)

where ĝrsys is the diagonal matrix with elements

grsys(ω) =
1

ω + iδ − eVg
(A.5)

and ĝasys = (ĝrsys)
∗. Here e is the electron charge and Vg the gate voltage applied to

select states at energy E = eVg for transport. On the other hand, the metallic leads are

modeled using a constant density of states equal to unity,

grleads(ω) = −iπ (A.6)

The matrix t̂ contains all the hopping elements connecting the various sites in the system

and the system to the leads. Depending on the particular case under consideration, it

will also include the effects of nonmagnetic and magnetic defects. The matrix Σ̂r
ph

describes the coupling of the system to phonons (discussed in more detail below). The

non-interacting lesser Green’s function has a similar form to the retarded and advanced

ones:

ĝ< =

ĝ<leads 0

0 ĝ<sys

 (A.7)

Its components are again diagonal matrices, now with elements given by

g<sys(ω) = −2inF (ω)Imgrsys(ω) (A.8)

g<leads(ω) = −2inF (ω + µL,R) Imgrleads(ω) (A.9)

To study the effect of coupling the system sites to local phonon modes, one introduces

an electron-phonon term into the Hamiltonian

He−ph = g
∑
r,σ

c†r,σcr,σ

(
a†r + ar

)
+
∑
r

ω0a
†
rar , (A.10)

Here g is the electron-phonon coupling strength, a†r (ar) creates (annihilates) a phonon
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at site r in the system, and ω0 is the phonon frequency. The summation runs over

whatever sites are connected to local phonon modes. To simplify the calculation of the

part of the electron self-energy arising from phonon interactions, we consider the high-

temperature approximation in which kbT � ω0 [101]. In this approximation one has

nB(ω0)� 1 so that only terms in Σ̂r
ph containing nB(ω0) are kept. In the self-consistent

Born approximation (i.e. using the dressed Green’s function) has one

Σr,<
rr (ω) = ig2

∫
dν

2π
D<(ν)Gr,<rr (ω − ν) , (A.11)

with phonon Green’s functions

D<
0 (ω) =2inB(ω)ImDr

0(ω) (A.12)

Dr
0(ω) =

1

ω − ω0 + iδ
− 1

ω + ω0 + iδ
(A.13)

which are assumed to not be modified by the applied bias. To obtain an analytical

expression for Σr,<
rr (ω) it is useful to further take the limit ω0 → 0, in which case one

has to leading order in kbT/ω0 that

Σr,<
rr (ω) = 2g2kBT

ω0
Gr,<rr (ω) ≡ γGr,<rr (ω) (A.14)

This is conveniently expressed by the introduction of a superoperator D̃, which acting

on a matrix returns a new matrix with all elements equal to zero except those on the

diagonal assigned to sites coupled to phonon modes,

[
D̃Ĝr,<

]
rr′

=


Gr,<rr′ δrr′ if g 6= 0 at site r

0 otherwise

(A.15)

With this notation one may write

Σr,<(ω) = γD̃Ĝr,< (A.16)

It is also useful to define the superoperator Û acting on a matrix X̂ by

ÛX̂ = ĜrX̂Ĝa (A.17)
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Together these superoperators permit the solutions of the Dyson equations to be con-

cisely written as

Ĝ< = Û
[
1− γD̃Û

]−1
Λ̂ (A.18)

Ĝr =
[
1− ĝr

(
t̂+ γD̃Ĝr

)]−1
ĝr (A.19)

where Λ̂ = ĝ−1
r ĝ<ĝ−1

a is a diagonal matrix. The only non-zero elements of Λ̂rr are those

for which r is a site in one of the leads. Expanding Eq. A.18 yields

Ĝ<rr′ =
∑
l

Ĝrrl

[
Λ̂ll + γ

∑
m

Q̂lmΛ̂mm + γ2
∑
m,p

Q̂lmQ̂mpΛ̂pp + ...

]
Ĝalr′ (A.20)

with

Q̂lm =


|Grlm|2 if g 6= 0 at site l

0 otherwise

(A.21)

This may be further simplified by defining the vector λl ≡ Λ̂ll so that

Ĝ<rr′ =
∑
l

Ĝrrl

[(
1− γQ̂

)−1
λ

]
l

Ĝalr′ (A.22)

Now defining the diagonal matrix

Σ̃ll =

[(
1− γQ̂

)−1
λ

]
l

(A.23)

the final expression for the lesser Green’s function in the presence of phonons takes the

simple form

Ĝ< = ĜrΣ̃Ĝa (A.24)
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