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Chapter 1

Summary.

In this chapter, we introduce the main definitions regarding the nonlinear geometry of
Banach spaces, discuss some of the main problems in the field and its main results, as well
as give a detailed description of the main results contained in this dissertation. The Banach
space theory notation and terminology used here is standard (see [AlKa] for example), and
we assume that the reader is familiarized with it throughout this chapter. For an overview
of Banach space theory, we direct the reader to Chapter 2, where the necessary background
and notation will be recalled.

This dissertation is mainly based on four papers. Coarse and uniform embeddings (see [Br2]
or Chapter 3), On weaker notions of nonlinear embeddings between Banach spaces (see [Br4]
of Chapter 4), and Asymptotic structure and coarse Lipschitz geometry of Banach spaces (see
[Br3] or Chapter 6) were written by the author of this dissertation, while Coarse embeddings

into superstable spaces (see [BrSw| of Chapter 5) is a joint work with Andrew Swift.

1.1 Basic definitions.

Recently, there has been a significant increase in the study of Banach spaces as metric
spaces. For that, instead of studying linear isomorphisms and embeddings between Banach

spaces, we look at a Banach space (X, |- |) as a metric space endowed with the metric ||-—- |,

1



1.1. BASIC DEFINITIONS. 2

and study embeddings and equivalences given by different notions of nonlinear maps. The
fundamental question regarding the nonlinear geometry of Banach spaces is to understand
to which extent the metric structure of a Banach space can enlighten us regarding its linear
structure. As it turns out, in many instances, the metric structure of some Banach spaces
can completely determine their linear structure. Those concepts have been used in many
different areas, and have many applications, e.g., in topology (see [NoYu]), geometric group

theory (see [Gr]), and computer science (see [OstR]).

Let (M,d) and (N, 0) be metric spaces, and consider a map f : (M,d) — (N, 7). We define

the modulus of continuity of f as

wy(t) = sup{d(f(x), f(y)) | d(z,y) < t}, (1.1.1)

and the expansion modulus of f as

ps(t) = inf{o(f(z), f(y)) | d(z,y) = t}, (1.1.2)

for all t > 0. So, we have that

prld(z,y)) < o(f(2), f(y) < wpld(z,y)),

for all ,y € M. The map f is uniformly continuous if lim,_,o, ws(t) = 0, and it is easy to see
that the inverse f~1: f(M) — M exists and is uniformly continuous if and only if ps(t) > 0,
for all £ > 0. We call f a uniform embedding if both f and f~! are uniformly continuous,
and we call f a uniform equivalence if f is a surjective uniform embedding. The map f is
called coarse if wy(t) < oo, for all ¢ = 0, and expanding if lim,_,,, ps(t) = co. If f is both
expanding and coarse, f is called a coarse embedding. A coarse embedding f which is also
cobounded, i.e., sup,cy 0(y, f(M)) < o, is called a coarse equivalence. If f is both a coarse

and a uniform embedding, we call f a strong embedding.
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We call f Lipschitz if there exists some L > 0 such that w(t) < Lt, for all ¢ > 0, and
we call f L-Lipschitz if we want to specify the constant L. It is easy to see that, if there
exists L > 0 such that ps(t) > Lt, then f~': f(M) — M exists and it is Lipschitz. If f
and f~! are Lipschitz, then f is a Lipschitz embedding. A surjective Lipschitz embedding is
called a Lipschitz isomorphism. The map f is called coarse Lipschitz if there exists L = 0
such that ws(t) < Lt + L, for all t > 0. If f is coarse Lipschitz and there exists L > 0 such
that ps(t) = L't — L, for all ¢ > 0, then f is called a coarse Lipschitz embedding. If f is a
cobounded coarse Lipschitz embedding, then f is a coarse Lipschitz equivalence.

Notice that a coarse (resp. coarse Lipschitz) function does not need to be continuous, and
a coarse (resp. coarse Lipschitz) equivalence does not need to be either injective or surjective.
However, if f: M — N is a coarse (resp. coarse Lipschitz) equivalence, then there exists a

coarse (resp. coarse Lipschitz) equivalence g : N — M such that

supd(z, g(f(x))) <0 and  suply, fg(y)) < . (1.1.3)

zeM yeN

Indeed, as f is a coarse (resp. coarse Lipschitz) equivalence, let ¢ = sup, .y d(y, f(M)) < o,
and let us define g : N — M as follows. For each y € N, pick x,, € M such that d(y, f(x,)) <
2e, and set g(y) = x,. It is easy to check that g is a coarse (resp. coarse Lipschitz) equivalence
and that (1.1.3) holds. A coarse (resp. coarse Lipschitz) map g : N — M satisfying (1.1.3) is
called a coarse inverse (resp. coarse Lipschitz inverse) of f. In fact, a coarse map f : M — N
is a coarse (resp. coarse Lipschitz) equivalence if and only if f has a coarse (resp. coarse
Lipschitz) inverse.

The next two simple propositions are very important for the understanding of the different

notions of embeddings and equivalences above. See [Ka2], Lemma 1.4 and Proposition 1.5.

Proposition 1.1.1. Let X be a Banach space, M be a metric space, and consider a map

f:X — M. Then the following are equivalent.

(i) f is a coarse map, and
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(i1) f is a coarse Lipschitz map.
In particular, if f is uniformly continuous, then f is both coarse and coarse Lipschitz.

Proof. 1t is enough to show that if there exists ¢, > 0 such that wy(ty) < o0, then there exists

L > 0 such that wy(t) < Lt + L, for all t > 0. Fix such ¢y > 0. Let z,y € X, and fix n e N

such that (n — 1)ty < |z — y|| < nty. Then there exist zo,...,x, € X so that zg =z, z, =y
and |z; — x;i11| < o, for all i € {0,...,n — 1}. Hence, we have that
wy(to)
| f(x Z [£(z:) = flzia)| < m - wilto) < =5 = o =yl + wy(to).
[

Let (M,d) be a metric space and a,b > 0. A subset A < M is called an (a,b)-net if
d(x,A) < b, for all z € M, and d(x,y) = a, for all x,y € A, with z # y. A subset A c M is
called a net if it is an (a, b)-net for some a,b > 0. By Zorn’s lemma, every metric space has

an (a, a)-net, for all a > 0.

Proposition 1.1.2. Let X and Y be infinite dimensional Banach spaces. Then the following

are equivalent.
(i) X is coarsely equivalent to 'Y,
(i) X is coarse Lipschitz equivalent to Y, and
(i1i) any net of X is Lipschitz equivalent to any net of Y.
Moreover, all the conditions above hold if
(iv) X is uniformly equivalent to Y.

Proof. (i)<(ii). As (ii) clearly implies (i), we only need to show that (i) implies (ii). Let

f X — Y be a coarse equivalence. By Proposition 1.1.1, f is coarse Lipschitz. As f
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is cobounded, we only need to show that p(t) is bounded below by an affine map. As
discussed above, f has a coarse inverse g : Y — X. In particular, there exists C' > 0 such
that |z — g(f(z))| < C, for all x € X. By Proposition 1.1.1, there exists L > 0 such that

wy(t) < Lt + L, for all t > 0. Hence, we have that

L[ f(x) = f)l + L = llg(f (=) = 9(f(¥))]
> o —y| =z = g(f@)] =y = 9(F W)l

> |z —yl —2C.

for all z,y € X. So, f is a coarse Lipschitz equivalence.

(il)=>(iii). Let f: X — Y be a coarse Lipschitz equivalence. So, there exists L > 0 such
that ps(t) = L't — L and wy(t) < Lt + L, for all t > 0. By Proposition 10.22 of [BenLi], any
two given nets in an infinite dimensional Banach space are Lipschitz equivalent to each other.
Hence, it is enough to show that there exists a net in X which is Lipschitz equivalent to a
net in Y. Let N « X be an (2L% 2L?)-net. Then, f(N) isanet in Y and fIN : N — f(N)

is a Lipschitz equivalence.

(iii)=(ii). Let N < X and M < Y be nets and f : N — M be a Lipschitz equivalence. In
particular, there exists L > 0 such that for all x € X, there exists y € N with |z — y|| < L.
Hence, we can pick a map ¢ : X — N such that ||z — g(z)| < L, for all x € X. It easily

follows that f oy : X — Y is a coarse Lipschitz equivalence. O

Remark 1.1.3. The terminologies above are still not completely established in the literature.
For example, in [Ro4] coarse maps are called “bornologous”; and in [Ka4], the author refers
to coarse maps as “coarsely continuous”. As coarse maps are not continuous, and as we are
interested in studying coarse maps which are also continuous, we prefer a different terminol-
ogy. Also, we should mention that, in geometric group theory, coarse Lipschitz embeddings

are usually called “quasi-isometries”.
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1.2 Main questions.

1.2.1 Relation with the linear structure.

As mentioned above, one of the main questions regarding the nonlinear geometry of Ba-
nach spaces is to which extent the existence of certain kinds of nonlinear embeddings (resp.
equivalences) between Banach spaces is enough to give us information regarding the linear
structure of the Banach spaces. Precisely, the following general question is a central problem

when dealing with nonlinear embeddings between Banach spaces.

Problem 1.2.1. Let P and P’ be two classes of Banach spaces and £ be a kind of nonlinear

embedding between Banach spaces. If a Banach space X £-embeds into a Banach space Y

in P, does it follow that X is in P’?

For example, if a separable Banach space X coarse Lipschitz embeds into a super-reflexive
Banach space, then X is also super-reflexive (this follows from Proposition 1.6 of [Ka2] and
Theorem 2.4 of [Ka2], but it was first proved for uniform equivalences in [Ri|, Theorem 1A).
Another example was given by M. Mendel and A. Naor in [MeN2] (Theorem 1.9 and Theorem
1.11), where they showed that if a Banach space X either coarsely or uniformly embeds into
a Banach space Y with cotype ¢ and nontrivial type, then X has cotype ¢ + ¢, for all € > 0.

If we look at nonlinear equivalences between Banach spaces, the following is a central

problem in the theory.

Problem 1.2.2. Let X be a Banach space and £ be a kind of nonlinear equivalence between
Banach spaces. If a Banach space Y is £-equivalent to X, what can we say about the

isomorphism type of Y7 More precisely:

(i) Is the linear structure of X determined by its E-structure, i.e., if a Banach space Y is

E-equivalent to X, does it follow that Y is linearly isomorphic to X7

(ii) Let P be a class of Banach spaces. If Y is £-equivalent to X, does is follow that Y is

linearly isomorphic to X @ Z, for some Banach space Z in P?
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Along those lines, it was shown in [JoLiS] (Theorem 2.1) that the coarse (resp. uniform)
structure of ¢, completely determines its linear structure, for any p € (1,0). For p = 1, we do
not even know if the Lipschitz structure of ¢; determines its linear structure. N. Kalton and
N. Randrianarivony proved in [KaRa] (Theorem 5.4) that, for any py,...,p, € (1,00) with
2¢ {p1,...,pn}, the linear structure of £, ®@. . . @Y, is determined by its coarse (resp. uniform)
structure (see also [JoLiS|, Theorem 2.2). This problem is still open if 2 € {py,...,p,}.

Let T denote the Tsirelson space introduced by T. Figiel and W. Johnson in [FiJo|. For
each p € [1, ), let TP be the p-convexification of T' (see Subsection 6.1.5 for definitions). W.
Johnson, J. Lindenstrauss and G. Schechtman addressed Problem 1.2.2(ii) above by proving
the following (see [JoLiS|, Theorem 5.8): suppose that either 1 < p; < ... < p, < 2 or
2<p1<...<ppandset X =TP@...®TP", then a Banach space Y is coarsely equivalent

(resp. uniformly equivalent) to X if and only if Y is linearly isomorphic to X & ier Up;» for

5

some F < {1,...,n}.

1.2.2 Conceptual problems.

These notions of embeddings are fundamentally very different. Indeed, while coarse and
coarse Lipschitz embeddings deal with the large scale geometry of the metric spaces con-
cerned, uniform embeddings only deal with their local (uniform) structure. However, despite
this conceptual difference, their actual differences are still not completely understood. M.

Ribe proved the following important result in 1984 (see [Ri], Theorem 1).

Theorem 1.2.3. (M. Ribe, 1984) Let q > 1 and (p,)"_, be a sequence such that lim,, p,, =

1 and p, > 1, for all n € N. Then (®,Ly,)s, is uniformly equivalent to (®,Ly,)s, ® Ly. In

q
particular, there are separable Banach spaces which are uniformly equivalent but are not

linearly isomorphic. Moreover, reflexivity is not stable under uniform equivalences.

On the other hand, it was not until 2012 that N. Kalton was able to show that there are

coarsely equivalent separable Banach spaces (i.e., with Lipschitz equivalent nets) which are
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not uniformly equivalent. Precisely, N. Kalton proved the following two results (see [Ka4],

Theorem 8.8 and Theorem 8.9).

Theorem 1.2.4. (N. Kalton, 2012) Let X be a asymptotically uniformly smooth Banach
space and (Y,)*_, be a sequence of Banach spaces whose unit balls uniformly embed into a
reflezive space. If there exists a coarse Lipschitz embedding X — (D,Yn)e, which is also

uniformly continuous, then X is reflexive

Theorem 1.2.5. (N. Kalton, 2012) There exists sequence of Banach spaces (Y;)¥_,,
with Y, = {1, for all n € N, such that (®,Y,)e, 1s coarsely equivalent to (D,Yn)e @ Co-
In particular, there exist separable Banach spaces which are coarsely equivalent but are not

uniformly equivalent to each other.

Although Theorem 1.2.5 settles that the concepts of coarse and uniform equivalences are
distinct in the Banach space setting, it remains widely open whether the existence of those
embeddings are equivalent in the Banach space setting. Precisely, the following problem

remains open.

Problem 1.2.6. Let X and Y be Banach spaces. Are the following equivalent?

(i) X coarsely embeds into Y.
(ii) X uniformly embeds into Y.

(iii) X strongly embeds into Y.

In [Ran], N. Randrianarivony has shown that a Banach space coarsely embeds into a
Hilbert space if and only if it uniformly embeds into a Hilbert space. In [Ka3], N. Kalton
showed that the same also holds for embeddings into ¢, (Theorem 5.3). C. Rosendal made
some improvements on the problem above by showing that if X uniformly embeds into Y,
then X simultaneously uniformly and coarsely embeds into ¢,(Y’), for any p € [1,00) (see

[Ro4], Theorem 2). In particular, if X uniformly embeds into ¢,, then X simultaneously
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coarsely and uniformly embeds into £,. On the other hand, A. Naor had recently proven that
there exist separable Banach spaces X and Y, and a Lipschitz map f from a net N < X into

Y such that

sup |[F'(x) — f(z)] = o,

zeN
for all uniformly continuous maps F': X — Y (see [N], Remark 2). Such result suggests that
it may not be true (or at least not easy to show) that X uniformly embeds into Y, given

that X coarsely embeds into Y.

1.3 Coarse and uniform embeddings.

In Chapter, 3 we study the relation between coarse embeddings (resp. coarse equivalences)
and uniform embeddings (resp. uniform equivalences) between Banach spaces as well as
some properties shared by those notions. We are specially interested in narrowing down
the difference between those concepts, and we show that, in many cases, the real difference
between a coarse and a uniform embedding is in the uniform continuity of the map, but
not in its continuity or in the uniform continuity of its inverse. For example, we prove the

following.

Theorem 1.3.1. Let X be a Banach space and Y be a minimal Banach space.

(i) If X wuniformly embeds into Y, then X simultaneously coarsely and uniformly embeds

mto Y.

(ii) If X coarsely embeds into Y, then X simultaneously coarsely and homeomorphically

embeds into Y by a map with uniformly continuous inverse.

Therefore, Theorem 1.3.1 can be seen as a strengthening of C. Rosendal’s result about
uniform embeddings into £, mentioned above. In order to prove Theorem 1.3.1(ii), we study

how to approximate coarse maps (M,d) — (E,| - ||) by continuous coarse maps and what
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kind of properties of the original coarse map we can preserve. More precisely, in Section 3.3,
we prove Theorem 1.3.2 below, which is a strengthening of Theorem 4.1 of [Dul].

Let E be a vector space, and let A < E. Then we denote the convex hull of A by conv(A).

Theorem 1.3.2. Let (M,d) be a metric space, and let A = M be a closed subspace. Let E
be a normed space, and let ¢ : M — FE be a map such that p|A is continuous. Then, for all
0 > 0, there exists a continuous map ® : M — conv(p(M)) such that 1A = ¢l A and

sup | p(x) — B(x) | < inf wy(s) + inf wyra(s) + 6.
zeM s>0 s>0

In particular, if @ is coarse (resp. coarse embedding), so is ®.
As a corollary of Theorem 1.3.2, get the following.

Corollary 1.3.3. Let X be a Banach space and A < X be a closed subset. If there exists a

coarse retraction X — A, then there exists a continuous coarse retraction X — A.

In Section 3.4, we use techniques of [Ro4], and Theorem 1.3.2, in order to prove Theorem

1.3.1(ii). In particular, as a subproduct of Theorem 1.3.1(ii), we obtain the following.

Theorem 1.3.4. Let X and Y be Banach spaces, and let £ be a 1-unconditional basic
sequence. If X coarsely embeds into Y, then there exists a continuous coarse embedding
X — (®Y)e with uniformly continuous inverse. In particular, X simultaneously homeomor-

phically and coarsely embeds into (Y )s.

In Section 3.5, we look at N. Kalton’s example of separable Banach spaces which are
coarsely equivalent but are not uniformly equivalent, and show that we can actually get a

stronger result. Precisely, we prove the following.

Theorem 1.3.5. Let X and Y be Banach spaces, and @) : Y — X be a quotient map. If
Q admits a coarse section, then ) admits a continuous coarse section. In particular, Y 1is

simultaneously homeomorphically and coarsely equivalent to Ker(Q) ® X.
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Corollary 1.3.6. There exist separable Banach spaces X and Y which are simultaneously

homeomorphically and coarsely equivalent but not uniformly equivalent.

The following problem lies in the core of the nonlinear geometry of Banach spaces and it

remains open (see [Os2], Problem 11.17).

Problem 1.3.7. Does {5 coarsely (resp. uniformly) embed into every infinite dimensional

Banach space?

In [Osl], Theorem 5.1, M. Ostrovskii has shown that ¢y coarsely embeds into any Banach
space containing a subspace with an unconditional basis and finite cotype. We prove the

following stronger result in Section 3.2.

Theorem 1.3.8. Let X be an infinite dimensional Banach space with an unconditional basis

and finite cotype. Then ly strongly embeds into X.

At last, we dedicate Section 3.6 to study unconditional sums of coarsely equivalent (resp.
uniformly equivalent) Banach spaces. In [Kab|, Theorem 4.6(ii), N. Kalton had shown that
if X and Y are coarsely equivalent (resp. uniformly equivalent), then ¢,(X) and ¢,(Y) are
coarsely equivalent (resp. uniformly equivalent). However, as N. Kalton himself noticed, his
proof seems to be more complicated than necessary, and relies on the concepts of close (resp.
uniformly close) Banach spaces. In Section 3.6, we present an easy argument which give us

N. Kalton’s result as a corollary.

Theorem 1.3.9. Say X and Y are two coarsely equivalent (resp. uniformly equivalent,
or simultaneously homeomorphically and coarsely equivalent) Banach spaces. Let € be a
normalized 1-unconditional basic sequence. Then (BX)e and (®Y )e are coarsely equivalent

(resp. uniformly equivalent, or simultaneously homeomorphically and coarsely equivalent).
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1.4 Weaker notions of nonlinear embeddings.

In Chapter 4, we study some different notions of nonlinear embeddings between Banach
spaces which were introduced in [Ro4] and are weakenings of the notions of coarse and uniform
embeddings. The main goal of this chapter is to provide the reader with evidence that the
existence of those kinds of embeddings may represent a stronger restriction than one would
think.

Given a map f : (M,d) — (N, ) between metric spaces, we say that f is uncollapsed if
there exists some ¢ > 0 such that ps(¢) > 0. The map f is called solvent if, for each n € N,

there exists R > 0, such that
d(z,y) € [R,R+n] implies 0(f(x), f(y)) > n,
for all z,y € M. For each t > 0, we define the exact expansion modulus of f as

py(t) = inf{o(f (), f(y)) | d(z,y) = t}.

The map f is called almost uncollapsed if there exists some ¢ > 0 such that p,(t) > 0.

It is clear from its definition, that expanding maps are both solvent and uncollapsed. Also,
as ps(t) < pg(t), for all t € [0,00), uncollapsed maps are also almost uncollapsed. As a map
f:(M,d) — (N, 0) has uniformly continuous inverse if and only if ps(¢) > 0, for all ¢ > 0,

Diagram 1.4.1 holds.

Expanding Uniformly continuous inverse

— T,

Solvent Uncollapsed

\/

Almost uncollapsed
(1.4.1)

None of the arrows in Diagram 1.4.1 reverse. Indeed, any bounded uniform embedding is
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uncollapsed (resp. almost uncollapsed), but it is not expanding (resp. solvent). Examples
of uncollapsed maps which are not uniformly continuous are easy to be constructed, as you
only need to make sure the map is not injective. At last, Proposition 4.2.3 below provides an
example of a map R — ¢5(C) which is Lipschitz, solvent and collapsed (i.e., not uncollapsed),
which covers the remaining arrows.

In [Ro4], Theorem 2, C. Rosendal showed that if there exists a uniformly continuous
uncollapsed map X — Y between Banach spaces X and Y, then X strongly embeds into
0,(Y), for any p € [1,0). C. Rosendal also showed that there exists no map ¢y — E which
is both coarse and solvent (resp. uniformly continuous and almost uncollapsed), where E
is any reflexive Banach space (see [Ro4], Proposition 63 and Theorem 64). This result is
a strengthening of a result of N. Kalton that says that ¢y does not coarsely embed (resp.
uniformly embed) into any reflexive space (see [Kal], Theorem 3.6).

Those results naturally raise the following question.

Problem 1.4.1. Let X and Y be Banach spaces. Are the statements in Problem 1.2.6

equivalent to the following weaker statements?

(iv) X maps into Y by a map which is coarse and solvent.

(v) X maps into Y by a map which is uniformly continuous and almost uncollapsed.

Although we will not directly deal with Problem 1.2.6 and Problem 1.4.1 for an arbitrary
Y, we intend to provide the reader with evidence that those problems either have a positive
answer or that any possible differences between the aforementioned embeddings are often
negligible.

For a Banach space X, let gx = inf{q € [2,00) | X has cotype ¢} (see Section 2.7 for
definitions regarding type and cotype). As mentioned above, M. Mendel and A. Naor proved
that if a Banach space X either coarsely or uniformly embeds into a Banach space Y with
nontrivial type, then ¢x < gy (see [MeN2], Theorem 1.9 and Theorem 1.11). In Section 4.3,

we prove the following strengthening of this result.
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Theorem 1.4.2. Let X and Y be Banach spaces, and assume that'Y has nontrivial type. If

either

(i) there exists a coarse solvent map X — Y, or

(i1) there exists a uniformly continuous almost uncollapsed map X —Y,

then, qx < qy-
Theorem 1.4.2 gives us the following corollary.

Corollary 1.4.3. Let p,q € [1,0) be such that ¢ > max{2,p}. Any uniformly continuous

map f: L, — {, (resp. f: L, — L,) must satisfy

sup inf [[f(x) = fy)| = 0.

t [e—yl=t

While the unit balls of the £,’s are all uniformly equivalent to each other (see [OScl],
Theorem 2.1), Corollary 1.4.3 says that those uniform equivalences cannot be extended in
any reasonable way.

In Section 4.4, we look at N. Kalton’s Property Q. This property was introduced by in
[Kal], Section 4, in order to study coarse and uniform embeddability into reflexive spaces.
Let us recall the definition of Property Q. Let k € N and let Ml ¢ N be an infinite subset.
Define P (M) as the set of all subset of M with exactly k elements. If n € Pr(M), we always
write 7 = {nj,...,ng} in increasing order, i.e., ny < ... < ni. We make Pr(M) into a
graph by saying that two distinct elements n = {ny, ..., ng},m = {mq,...,my} € Pr(M) are

connected if they interlace, i.e., if either

N <M KN < ...<N <M O My <Ny <Moo < ...Mg < N,

We write n < m if ni < m;. We endow Pr(M) with the shortest path metric. A Banach

space X has Property Q if there exists a constant (Jx > 0 such that for all £ € N, all L-
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Lipschitz map f : Px(N) — X, and all A > 1, there exists an infinite subset M N such that
diam(f (P(M))) < AQy'L.

The following were proved in [Kal], Corollary 4.3 and Corollary 4.6.

Theorem 1.4.4. (N. Kalton, 2007) Let X be a Banach space. If either

(i) X coarsely embed into a reflexive space, or

(1) the unit ball of X uniformly embeds into a reflexive space,

then X has Property Q

Theorem 1.4.5. (N. Kalton, 2007) Let X be a Banach space with Property Q and

nontrivial type. Then X is reflexive.
Kalton proposed the following problem in [Kal], Problem 6.5.

Problem 1.4.6. Let X be a separable Banach space. Does X have Property Q if and only
if X coarsely embeds into a reflexive Banach space? Does X have Property Q if and only if

the unit ball of X uniformly embeds into a reflexive Banach space?

In Section 4.4, we prove that Property Q is stable under those weaker kinds of embed-
dings (see Theorem 4.4.2). Although the stability of Property Q under coarse and uniform
embeddings is implicit in [Kal], to the best of our knowledge, this is not explicitly written
in the literature. Theorem 4.4.2 allows us to obtain the following result (see Theorem 4.4.3

below for a stronger result).

Theorem 1.4.7. Let X and Y be Banach spaces, and assume that Y is reflexive (resp.

super-reflexive). If either

(i) there exists a coarse solvent map X — Y, or

(i1) there exists a uniformly continuous almost uncollapsed map X —'Y,
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then, X is either reflexive (resp. super-reflexive) or X has a spreading model equivalent to

the {1-basis (resp. trivial type).

Theorem 1.4.7 was proven in [Kal], Theorem 5.1, for uniform and coarse embeddings into
super-reflexive spaces. Although the result above for uniform and coarse embeddings into
reflexive spaces is implicit in [Kal], we could not find this result explicitly written anywhere
in the literature.

It is worth noticing that Theorem 1.4.7 cannot be improved for embeddings of X into super-
reflexive spaces in order to guarantee that X either is super-reflexive or has a spreading model
equivalent to the ¢1-basis (see Remark 4.4.4 below).

As mentioned above, Problem 1.2.6 has a positive answer for Y = ¢, for all p € [1, 2] (see
[No2], Theorem 5, and [Ran], page 1315). In Section 4.5, we show that Problem 1.4.1 also

has a positive answer in the same settings. Precisely, we show the following.

Theorem 1.4.8. Let X be a Banach space, and Y = {,, for any p € [1,2]. Then Problem

1.4.1 has a positive answer.

In Section 4.6, we give a positive answer to Problem 1.4.1 for Y = ¢,,. This is a strength-
ening of Theorem 5.3 of [Ka3], where N. Kalton shows that Problem 1.2.6 has a positive
answer for Y = (. Moreover, N. Kalton showed that uniform (resp. coarse) embeddability

into {, is equivalent to Lipschitz embeddability.

Theorem 1.4.9. Let X be a Banach space, and Y = lo,. Then Problem 1.4.1 has a positive
answer. Moreover, for Y = Uy, items (iv) and (v) of Problem 1.4.1 are also equivalent to

Lipschitz embeddability into {y.

Even though we do not give a positive answer to Problem 1.2.6 and Problem 1.4.1, we
believe that the aforementioned results provide considerable suggestive evidence that all the
five different kinds of embeddings X < Y above preserve the geometric properties of X in a

similar manner.
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1.5 Coarse embeddings into superstable spaces.

D. Aldous showed in [Ald], Theorem 1.1, that every subspace of L; contains an isomorphic
copy of ¢,, for some p > 1. In order to generalize Aldous’ result, J. Krivine and B. Maurey
introduced the notion of stable Banach spaces in [KrMau]. A metric space (M, d) is called
stable if

for all bounded sequences (7;);2; and (y;)72, in M, and all nonprincipal ultrafilters ¢/ and V
over N. A Banach space X is called stable if (X, |- —-|) is stable as a metric space. As L, is

stable for all p > 1 (see [KrMau], Theorem I1.2), the following is a generalization of Aldous’s

result (see [KrMau], Theorem IV.1).

Theorem 1.5.1. (J. Krivine and B. Maurey, 1981) Let X be a stable Banach space.

There ezists p € [1,0) such that X contains an (1 + €)-isomorphic copy of £,, for all e > 0.

In order to prove the theorem above, J. Krivine and B. Maurey looked at types on a stable
Banach space X, i.e., functions o : X — R given by o(z) = |z + a|, where a is an element
of some ultrapower of X. In [KrMau|, the authors showed that every stable Banach space
must contain what was called an /,-type, which results in the existence of almost isometric
copies of ¢, inside X, for some p > 1.

As shown in [Ray]|, J. Krivine and B. Maurey’s result can be extendded to the nonlinear
setting as follows. We say that a Banach space X is superstable if every Banach space which
is finitely representable in X is also stable. Raynaud proved the following in [Ray] (see the

corollary in page 34 of [Ray]).

Theorem 1.5.2. (Y. Raynaud, 1983) If a Banach space X wuniformly embeds into a

superstable Banach space, then X contains an isomorphic copy of {,, for some p € [1,0).

Raynaud’s proof is also based on analyzing a space of types over the Banach space X.

Precisely, the author shows that if X uniformly embeds into a superstable Banach space, then
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there exists an invariant stable metric d on X uniformly equivalent to the metric induced by

the norm. Once one has an invariant stable metric, it is possible to define the space of types

o : R x X — R as the closure of the family of maps ((A,y) € R x X — d(Az,y))__, in the

product space R®*X. Studying this new space of types, Raynaud shows that the type space

of X must contain a so called ¢,-type, for some p € [1,00), which results in ¢, — X, for some

p € [1,00). For more on stability and types on Banach spaces see [G-D], [HayMau| and [I].
N. Kalton asked the following in [Kal], Problem 6.6.

Problem 1.5.3. Assume that a Banach space X coarsely embeds into a superstable Banach

space. Does it follow that X contain an isomorphic copy of ¢, for some p € [1,0)?

In a joint work with Andrew Swift, although we were not able to obtain an answer to N.

Kalton’s problem, we obtained the following result.

Theorem 1.5.4. If a Banach space X coarsely embeds into a superstable Banach space,
then X has a basic sequence with an associated spreading model isomorphic to ¢,, for some

pe[l, o).

N. Kalton proved in [Kal], Theorem 2.1, that any stable metric space embeds into some
reflexive Banach space by a map which is both a uniform and a coarse embedding. In the
same paper, N. Kalton asked if the converse of this result also holds. Precisely, the following

is open (see [Kal], Problem 6.1)

Problem 1.5.5. Does every (separable) reflexive Banach space embed coarsely (resp. uni-

formly) into a stable space?

By Raynaud’s result, it is clear that there are separable reflexive spaces which do not
embed into superstable spaces. However, to the best of our knowledge, it was unknown
whether every reflexive Banach space coarsely embeds into a superstable Banach space. As

a corollary of Theorem 1.7.3, we obtain the following.

Corollary 1.5.6. There are separable reflexive Banach spaces which do not coarsely embed

into any superstable Banach space.
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1.6 Coarse Lipschitz geometry and asymptotic struc-
ture.

In Chapter 6, we will be mainly interested in coarse Lipschitz embeddings and equivalences,
and in what kind of stability properties these notions of nonlinear embeddings and nonlin-
ear equivalences may have. Furthermore, we will mainly work with Banach spaces having
some kind of asymptotic property. More specifically, we are concerned with asymptotically
uniformly smooth Banach spaces, asymptotically uniformly convex Banach spaces, and Ba-
nach spaces having several different Banach-Saks-like properties. In order not to make this
introduction too extensive, we will postpone some technical definitions from Banach space
theory for later as well as our more technical results. The reader will find all the remaining
background and notation in Section 6.1.

Along the lines of Problem 1.2.1, we prove the following in Section 6.2.

Theorem 1.6.1. Let Y be a reflexive asymptotically uniformly smooth Banach space, and

assume that a Banach space X coarse Lipschitz embeds into Y. Then X has the Banach-Saks

property.

As the Banach-Saks property implies reflexivity, Theorem 1.6.1 above is a strengthening
of Theorem 4.1 of [BKaL], where the authors showed that if a separable Banach space X
coarse Lipschitz embeds into a reflexive asymptotically uniformly smooth Banach space,
then X must be reflexive. As the Tsirelson space T is a reflexive Banach space without the

Banach-Saks property, Theorem 1.6.1 gives us the following new corollary.

Corollary 1.6.2. The Tsirelson space does not coarse Lipschitz embed into any reflexive

asymptotically uniformly smooth Banach space.

In Section 6.2, we also prove some results on the linear theory of Banach spaces. Precisely,
we show that an asymptotically uniformly smooth Banach space X must have the alternating

Banach-Saks property (see Corollary 6.2.2). Using descriptive set theoretical arguments,
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we also show that the converse does not hold, i.e., that there are Banach spaces with the
alternating Banach-Saks property which do not admit an asymptotically uniformly smooth
renorming (see Proposition 6.2.8).

In Section 6.3, we study coarse embeddings f : X — Y between Banach spaces X and
Y with specific asymptotic properties, and obtain a general result on how close to an affine
map the expansion modulus py can be (see Theorem 6.3.1). Precisely, E. Guentner and J.
Kaminker introduced the following quantity in [GuKa]: for Banach spaces X and Y, define
ay(X) as the supremum of all a > 0 for which there exists a coarse embedding f: X — Y
and L > 0 such that ps(t) > L™ — L, for all t > 0. We call ay(X) the compression
exponent of X in Y. As a simple consequence of Theorem 6.3.1, we obtain Theorem 1.6.3
below.

We denote by S the Schlumprecht space introduced in [Scl], and, for each p € [1, ), we
let SP be the p-convexification of S and TP be the p-convexification of the Tsirelson space T'

(see Subsection 6.1.5 for definitions).

Theorem 1.6.3. Let 1 < p < q. Then

(i) ard(TP) < p/q, and

(11) asa(S?) < p/q.
In particular, T? (resp. SP) does not coarse Lipschitz embed into T (resp. S?).

The proof of Theorem 1.6.3 is asymptotic in nature, hence we obtain equivalent estimates
for the compression exponent ay (X), where X and Y are Banach spaces satisfying some
special asymptotic properties. In particular, the spaces T? and S? can be replaced in Theorem
1.6.3 by (®,F,)7re and (B, E,,)sq, where (E,)_; is any sequence of finite dimensional Banach
spaces. See Theorem 6.3.3, Theorem 6.3.5 and Corollary 6.3.7 for precise statements.

We also apply our results to the hereditarily indecomposable Banach spaces X? defined by

N. Dew in [D], and obtain that ax«(X?) < p/q, for 1 < p < g (see Corollary 6.3.8).
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In Section 6.4, we prove a general theorem regarding the non existence of coarse Lipschitz
embeddings X — Y] @ Y,, for Banach spaces X, Y7, Y, with specific asymptotic properties

(see Theorem 6.4.6). With that result in hands, we prove the following.

Theorem 1.6.4. Let 1 < p; <...<p, <, andp € [1,0)\{p1,...,pn}. Then neither TP
nor £, coarse Lipschitz embed into TP @...@TP". In particular, T? does not coarse Lipschitz

embed into T, for all p,q € [1,0) with p # q.
At last, we use Theorem 1.6.4 in order to obtain the following characterization.

Theorem 1.6.5. Let 1 < p; < ... <p, < © with 2 ¢ {p1,...,pa}. A Banach space Y is
coarsely equivalent (resp. uniformly equivalent) to X = TP* @ ... @ TP if and only if Y is

linearly isomorphic to X @ El—)jeF Cy., for some F < {1,...,n}.

Clearly, Theorem 1.6.5 is a strengthening of Theorem 5.8 of [JoLiS] mentioned above.
However, just as in the case for £, @ ... ®¢,,, we still do not know whether the theorem

above holds if 2 € {p1,...,pn}.

1.7 The isomorphism group of the Gurarij space.

Chapter 7 differs slightly from the previous chapters of this dissertation, as we will not re-
strict ourselves only to Banach spaces. Precisely, in this chapter, we deal with embeddability
of Polish groups into the isometry group of a Banach space. Recall, a Polish space is a sep-
arable topological space which is completely metrizable, i.e., there exists a complete metric
compatible with its topology. A Polish group is a Polish space which is also a topological
group.

A separable Banach space G is said to be a Gurarij space if, for all € > 0, and all finite
dimensional Banach spaces £ < F', any isometry from E into G can be extended to an
(1 4 e)-isomorphism from F into G. In [Lu], W. Lusky proved that every two separable

Banach spaces with this extension property are linearly isometric to each other. Therefore,
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the Gurarij spaces are unique up to isometry, and we refer to any such space as the Gurarij

space G.

Let X be a Banach space, and Aff(X) be the group of affine isometries of X endowed
with the pointwise convergence topology. So, Aff(X) is a Polish group. By Mazur-Ulam’s
theorem, every surjective isometry f : X — X is affine. So Aff(X) is the group of surjective
isometries of X. I. Yaacov showed (see [Y], Theorem 3.10) that the isometry group of the
Gurarij space is universal for all Polish groups, i.e., every Polish group can be simultaneously
homomorphically and homeomorphically embedded into Aff(G). However, 1. Yaacov’s result
does not say anything regarding whether the large scale geometry of the Polish spaces can
be preserved by those embeddings. Precisely, under which conditions can a Polish space
be simultaneously homomorphically and homeomorphically embedded into Aff(G) by a map

which is also a coarse or a coarse Lipschitz embedding?

Given a Polish group H, one can find a left-invariant metric d on H which is compatible
with H’s topology (see [Ke|, Theorem 9.1). However, the metric d is by no means intrinsically
defined, and different such metrics give us a different geometry on H. Therefore, the question
above may sound vague and imprecise. To address this issue, we follow the approach of [Ro3].
Precisely, in [Ro3], C. Rosendal studied the problem of when a given Polish group H has a
well-defined coarse type (resp. coarse Lipschitz type). For this, we need to introduce some

terminology.

Let H be a metrizable topological group. A subset A c H is said to have property (OB)
with respect to H if A has finite diameter with respect to every compatible left-invariant
metric on H. The Polish group H is said to have property (OB) if H has property (OB) with
respect to itself, and H is said to be locally (OB) if there exists an open neighborhood of the
identity with property (OB) with respect to H. Also, we say that H is (OB) generated if H

is generated by an open set with property (OB) with respect to H.

A metric d on H is said to be metrically proper if all subsets of H with finite d-diameter

have finite diameter with respect to any other compatible left-invariant metric on H, and
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d is said to be maximal if, for any compatible left-invariant metric ¢ on H, there exists
K > 0 such that 0 < K -d + K. Clearly, if d is maximal, then d is metrically proper. Also,
any two metrically proper compatible left-invariant metrics on a Polish space H are coarsely
equivalent, and every two maximal compatible left-invariant metrics on a Polish space H are
coarse Lipschitz equivalent (see [Ro3]).

Rosendal proved the following in [Ro3|, Theorem 1 and Theorem 3.
Theorem 1.7.1. (C. Rosendal, 201/) Let H be a Polish group. Then

(i) H has a metricaly proper compatible left-invariant metric if and only if H is locally

(OB), and
(i) H has a mazimal compatible left-invariant metric if and only if H is (OB) generated.

Therefore, a locally (OB) Polish group H has a well-defined coarse type, i.e., one can
unambiguously talk about coarse maps between locally (OB) Polish groups without specifying
the metrics on the respective spaces. Precisely, let H be a locally (OB) Polish group and
(G, 0) be a metric space, then a map f : (H,d) — (G,0) (resp. f : (G,0) — (H,d)) is a
coarse embedding, where d is some compatible left-invariant metrically proper metric on H,
if and only if f : (H,d) — (G,0) (resp. f: (G,0) — (H,d)) is a coarse embedding, for all
compatible left-invariant metrically proper metric d on H. Hence, for locally (OB) Polish
spaces H and G, we say that a map f: H — G is a coarse embedding if f : (H,d) — (G, 0)
is a coarse embedding, where d and ¢ are compatible left-invariant metrically proper metrics
on H and G, respectively.

Similarly, a (OB) generated Polish group H has a well-defined coarse Lipschitz type, and
we say that a map f : H — G is a coarse Lipschitz embedding if f : (H,d) — (G,0) is a
coarse Lipschitz embedding, where d and ¢ are compatible left-invariant maximal metrics on
H and G, respectively.

For a Banach space X, let Isor,(X) be the closed subgroup of Aff(X) consisting of all the

linear isometries of X. Along these lines, we prove the following theorems.



1.7. THE ISOMORPHISM GROUP OF THE GURARIJ SPACE. 24

Theorem 1.7.2. The group of linear isometries Isor(G) has property (OB). In particular,
Aff(G) is (OB) generated and the map g € Af(G) — g(x) € G is a coarse Lipschitz equiva-

lence, for all x € G.

The next theorem is a strengthening of Theorem 3.10 of [Y] on the point of view of large

scale geometry.

Theorem 1.7.3. Let G be the Gurariy space, and H be a Polish group.

(i) If H is locally (OB), then there exists a simultaneously homomorphic and homeomorphic

embedding ¢ : H — Aff(G) which is also a coarse embedding.

(i) If H is (OB) generated, then there exists a simultaneously homomorphic and homeo-

morphic embedding ¢ : H — Af(G) which is also a coarse Lipschitz embedding.

Theorem 1.7.3 can be reformulated in the language of affine isometric actions. An affine
isometric action o : H —~ X can be written as a(h)(x) = w(h)(z) + b(h), for all h € H, and
all z € X, where 7 : H —~ X is a linear isometric action and b : H — X a cocycle of 7 (see

Subsection 7.2). Precisely, Theorem 1.7.3 is a corollary of the following result.

Theorem 1.7.4. Let G be the Gurarij space, and (H,d) be a separable metric topological
group. There exists an affine isometric action o : H —~ G with a linear part 1 : H = G
which induces a simultaneously homomorphic and homeomorphic embedding H — Isor(G),

and a cocycle b: H — G which is an isometric embedding.

The theorem above can be seen as a strengthening of Theorem 45 of [Ro3]. Indeed,
Theorem 45 of [Ro3] says that given a metric topological group (H, d), there exists a Banach
space X for which the conclusion of Theorem 1.7.4 holds. Theorem 1.7.4 says that, if H is
separable, then X can always be taken to be the Gurarij space.

At last, Theorem 1.7.2 and Proposition 79 of [Ro4] allow us to obtain the following.

Corollary 1.7.5. Let M be a metric space and assume that there exists an isometric action

A(G) —~ M with an unbounded orbit. Then G maps into M by a coarse solvent map.



Chapter 2

Background and notation.

In this chapter, we give the basic backgroud needed for this dissertation regarding classic
Banach space theory. Some of the most technical definitions will be introduced as needed
during the chapters of this dissertation. For more on Banach space theory, we refer to Topics
in Banach Space Theory, by F. Albiac and N. Kalton ([AlKa]), Classical Banach spaces, Vol.
I and II, by J. Lindenstrauss and L. Tzafriri ([LiTz] and [LiTz]), and Sequences and series

in Banach spaces, by J. Diestel ([Di]).

2.1 Banach space theory.

Throughout this dissertation, N = {1,2,...} and Ny = N u {0}. Let K be either R or
C. Recall that (X, | - |lx) is called a Banach space if X is a vector space over K and | - | x
is a norm on X generating a complete topology. In this dissertation, all Banach spaces are
over the reals, unless explicitly noted. We usually omit the index X in || - |x, and simply
write | - |, as long as this does not cause any confusion. Also, we usually omit the norm of
(X, | - |) when referring to it and simply refer to this space as X. We denote by By the
closed unit ball of X, i.e., Bx = {r € X | |z| < 1}, and by 0Bx the unit sphere of X, i.e.,
0Bx = {z e X | ||| = 1}. A sequence (z,)r_, in a Banach space X is called normalized if

|z, = 1, for all n € N, and semi-normalized if it is bounded and bounded away from zero,

25



2.1. BANACH SPACE THEORY. 26

i.e., inf, ||z, > 0.

Let X and Y be Banach spaces. Recall that a linear map f : X — Y is continuous if and
only if it is bounded, i.e., if its norm || f| = sup,.p, |f(z)| is finite. The map f is called
an isomorphism if f is a bijection and both f and f~! are bounded. If f is an isomorphism
with its image, i.e., f: X — f(X) is an isomorphism, we call f an isomorphic embedding. If
Ifll = 1/7Y =1, f is called a linear isometry. If Y = R, we denote the space of continuous
linear functionals f : X — R by X*. The space X* with the norm defined above is a Banach

space, and it is called the dual of X.

Say X and Y are Banach spaces. We write X =Y to denote that X is linearly isometric
to Y, and we write X = Y to denote that X is (linearly) isomorphic to Y. A linear map
Q@ :Y — X is called a quotient map if it is bounded and surjective. By the open mapping
theorem, quotient maps are always open. A map ¢ : X — Y is called a section for @ if
Qo =Idy.

Given a Banach space X, we say that a sequence (z,,)%_, in X is a Schauder basis for X if

oe]

every element of X can be uniquely written as an infinite linear combination of (z,)%_;,

ie.,
for all z € X there exists a unique (a,)®_; € RY such that z = > a,x,. If X has a Schauder
basis (x,,)%_, we can define, for all n € N, natural projections P,(}.~, a;x;) = >, a;x;. The
uniform boundedness principle gives us that the norm of those projections are uniformly
bounded. If K = sup,, | P,|, we say that the Schauder basis (z,)%_, has basis constant K.

Say (z,)X_, is a basis for the Banach space X. Forz = Y. _ a,z, € X, we write supp(z) =
{n € N|a, # 0}. For all finite subsets E, F < N, we write £ < F (resp. E < F) if
max £ < min F' (resp. max £ < min F'). We call a sequence (y,);_; in X a block sequence
of (x,)5_y if supp(y,) < supp(yn+1), for all n e N.

A sequence (z,)¥_, is called a basic sequence if it is a Schauder basis for its closed linear

span. Equivalently, (x,)%_; is a basic sequence if its elements are not zero and there exists

K > 0 such that

Y

k
H Z Q;T;
i=1

n
i=1
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for all k,n € N with k£ < n, and for all ay,...,a, € R. The infimum of the constants K for
which the inequality above holds is called the basic constant of (x,,)_,. Given two sequences

(xn)>_, and (y,)_,, we say that they are equivalent if there exists C' > 1 such that

Y

k k
i=1 =1

k

for all k€ N, and all ay,...,a; € R.

If a basis (resp. basic sequence) has the property that it remains a basis (resp. basic
sequence) no matter how one reorders it, then the basis (resp. basic sequence) is called an
unconditional basis (resp. unconditional basic sequence). Equivalently, a sequence (x,,)%_; is

unconditional if its elements are not zero and there exists K > 0 such that

)

n
H 2 a;T;
i=1

i=1

for all n € N, and all ay, ..., ay, b1, ...,b, € R such that |a;| < |b;], for all i € {1,...,n}. The

infimum of this constants is called the unconditional constant of (x,)x_;.

2.2 Examples.

2.2.1 C(C(K) spaces.

An important class of Banach spaces are the C'(K) spaces. Let K be a compact metric
space. Let C(K) = {f : K — R | f is continuous}, and we endow C(K) with the norm
[f| = supsex |f(t)]. This makes C'(K) into a Banach space. If K = [0, 1], the space C[0, 1]
is universal for the class of separable Banach spaces, i.e., every separable Banach space X is

linearly isometric to a subspace of C[0, 1].
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2.2.2 ¢j and {, spaces.

For p € [1,0), we define £, = {(z;)%2, € RY | (372, |2:|P)/P < o0}, and endow £, with the

norm
(@2l = (2 )"

Similarly, we let co = {(z;)%, € RY | lim; |;| = 0} and £y, = {(z;)2, € RY | sup; |z;] < o0},

and endow both ¢y and ¢, with the norm
[(i)iZ1 o0 = sup |z

The spaces ¢,(C) and ¢y(C) are defined analogously as above, but with its elements having
coordinates in C. Also, for each n € N and p € [1, 0], we define the spaces £} (resp. £;;(C))

as being R" (resp. C") endowed with the restriction of || - |, to R™ (resp. C").

An infinite dimensional Banach space X is called minimal if X isomorphically embeds into

all of its infinite dimensional subspaces. The spaces ¢y and ¢, are all minimal.

2.2.3 Tsirelson and Schlumprecht spaces.

In 1974, B. Tsirelson constructed the first example of a (reflexive) Banach space which
does not contain isomorphic copies of neither ¢y nor ¢, for all p € [1,00) (see the theorem in
page 57 of [Ts]). In the same year, T. Figiel and W. Johnson gave an implicit definition for
the norm of the dual of Tsirelson’s original space, and showed that this dual space shared the
same property of not containing isomorphic copies of neither ¢y nor ¢, for all p € [1,00) (see
[FiJo]). Nowadays, T. Figiel and W. Johnson’s space is the space which is usually referred to
as being the Tsirelson space. We now describe this space. Let ¢oy denote the set of sequences
of real numbers which are eventually zero, and let | - |o be the max norm on cyy. We denote

by T the Tsirelson space defined in [FiJo|, i.e., T is the completion of ¢y under the unique
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norm | - || satisfying
k
1
o] = max { o, 5 - sup ( ) |1Bsal]) }.
j=1

where the inner supremum above is taken over all finite sequences (Ej)le of finite subsets
of N such that k£ < F; < ... < Ej. Tsirelson’s original space is the dual of T

Another Banach space which will be important for applications in this dissertation is the
Schlumprecht space S. This space was constructed in [Scl] and provided the first example of

an arbitrarily distortable Banach space. We say that a Banach space (X, | - |) is arbitrarily

distortable if for all A > 1 there exists an equivalent norm || - ||| on X such that
Y
sup {M | z,y € S(X,H-H)} >\
Il
We define S as the completion of ¢y under the unique norm | - || satisfying

1 k
_ Y
el = e { el swp (s 2151

where the inner supremum above is taken over all finite sequences (Ej);?:l of finite subsets

of N such that Fy < ... < E.

2.3 Unconditional sums.

Let (X, | - [ln)y_; be a sequence of Banach spaces. Let £ = (e,,)_; be a l-unconditional
basic sequence generating a space (E, || - |g). We define the sum (@, X,)s to be the space of

sequences (z,)%_,, where z,, € X,,, for all n € N, such that

@)zl o= | 3 l2alea| < .
E
neN
One can check that (®,X,)s endowed with the norm | - | defined above is a Banach space.

If the X,,’s are all the same, say X,, = X, for all n € N, we write (®X)e. Whenever £ is
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the standard basis of either ¢y or £, for some p € [1,0), we write (©,Xy)q, or (©,Xn)e,

respectively. Moreover, if X,, = X, for all n € N, we write ¢(X) and ¢,(X) instead.

2.4 Spreading models.

Let X be a Banach space and (x,,)°_; be a bounded sequence without Cauchy subsequences,
and let U be a nonprincipal ultrafilter on N. Then there exists a Banach space (S, || - ||)
containing X and a sequence ((,)r_; in S which is linearly independent over X such that,

for all y € X, and all aq,...,a; € R, we have

k k
Sl -t gl » S
J= =

Without loss of generality, S = X @ span{(, | n € N} (see [G-D], Chapter 2, Section 2, for
a proof of this fact). The space S is called a spreading model of (x,)%_; and the sequence
(Cn)_y is called the fundamental sequence of the spreading model S. Notice that, if X is

separable, by going to a subsequence of (x,)x_; if necessary, we can assume that

=lim...lim
ng ni

k k
‘Hy + Z O-/jCj Y+ Z QT
j=1 J=1

k
= lim H + QT ||
(n1,...,nE)—00 y Z I
7j=1
A fundamental sequence ((,)_, of a spreading model is 1-spreading, i.e., ((,)y, is 1-
equivalent to all of its subsequences. Also, the sequence (,)x_; is l-sign unconditional,

where &, = (an—1 — Con, for all n € N (see [G-D], Proposition I1.3.3). We refer to [ArT] and

[G-D] for the theory of spreading models.

Remark 2.4.1. Spreading models are more usually defined in a slightly different manner.

Precisely, we say that ({,);"_; is a spreading model of a sequence (z,)ir_; if, for all € > 0,
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there exists ¢ € N such that

k k
H Z Q;Tn; | — H’ Z a; Gill|| < &,
i=1 i=1

forall { <ny <...<ng and all ay,...,a, € [—1,1].

2.5 Finite representability.

Let X and Y be Banach spaces. We say that Y is finitely representable in X if for every
finite dimensional subspace F' and every € > 0 there exists an isomorphism f : F' — X such
that |z| < ||f(z)| < (1 +¢)|z|, for all x € F.

If P stand for a class of Banach spaces (e.g., reflexive, stable, etc), we say that a Banach
space X is super-P if every Banach space which is finitely representable in X has property
P. Notice that, as a Banach space X is always finitely representable into itself, then if X is
super-P, then X is P.

2.6 Ultrapowers.

Let X be a Banach space, I be an index set, and I/ be a nonprincipal ultrafilter on I. We
define
XU = {(wi)ier € X" | sup || < o0}/ ~,
el

ic
where (z;)ier ~ (Yi)ier if lim;y |z — yi| = 0. X?/U is a Banach space with norm |z|| =
lim; g |z, where (z;)%2, is a representative of the class x € X' /U. By abuse of notation, we
will not distinguish between (x;), and its equivalence class. The space X!/U is called an
ultrapower of X.

Notice that every ultrapower X’/U of a Banach space X is finitely representable in X
(see [AlKa|, Proposition 11.1.12(i)). On the other hand, if a separable Banach space Y is

finitely representable in X, then Y is linearly isometrically embeddable into some ultrapower
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of X (see [AlKa|, Proposition 11.1.12(ii)). In particular, as a Banach space X is reflexive
(resp. stable) if and only if every separable subspace of itself is reflexive (resp. stable), it
follows that a Banach space X is super-reflexive (resp. superstable) if and only if all of its

ultrapowers are reflexive (resp. stable).

2.7 Type and cotype.

Let X be a Banach space and p € (1,2]. We say that X has type p if there exists 7' > 0

such that, for all z1,..., 2, € X,

E,

n
PILES
j=1

P n
< TP |y,
j=1

where the expectation above is taken with respect to a uniform choice of signs € = (g;)7_, €
{—1,1}". The smallest T for which this holds is denoted 7},(X). We say that X has nontrivial
type if X has type p, for some p € (1,2].

Let ¢ € [2,0). We say that X has cotype ¢ if there exists C' > 0 such that, for all
T1,...,Tp € X,

E.

Yeii| = = 2l
j=1 J=1

where the expectation above is taken with respect to a uniform choice of signs ¢ = (5]-)?:1 €
{—1,1}". The smallest C' for which this holds is denoted C,(X). We say that X has nontrivial

cotype if X has cotype ¢, for some ¢ € [2, ).



Chapter 3

Coarse and uniform embeddings.

(Previously published as M. Braga, Bruno (2017) Coarse and uniform embeddings, J.

Funct. Anal. 272, no. 5, 1852-1875)

In this chapter, we study the diference between coarse and uniform embeddings between
Banach spaces. For that, we will go over the results in Section 1.3, which are contained in

the paper Coarse and uniform embeddings (see [Br2]).

3.1 Space of positively homogeneous maps.

Let X and Y be Banach spaces. We denote by H(X,Y) the set consisting of all maps

f X — Y which are bounded on By and positively homogeneous, i.e.,
flaz) = af(x), forall «a=0.

We define a norm on H(X,Y") by setting ||f| = sup{||f(x)| | z € Bx}. The space H(X,Y)
endowed with the norm || - | above is a Banach space. Clearly, ||f(x)| < |f] - |z|, for all

z € X. Denote by HC(X,Y') the subset of H(X,Y") consisting of continuous maps.

33
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For € > 0, we define ||f|. as the infimum of all L > 0 such that L > | f|| and

[f(x) = F(y)| < Lmax{|z —y|, ]|, ey},

for all z,y € X. Clearly, we have
I <[ f]e < max{L, 2~ }| f],

for all fe H(X,Y).
Let f: (N,d) — (M,0) be a map and fix L,e > 0. We say that f is of cL-type (L,¢) if
wr(t) < Lt + ¢, for all £ > 0. The next proposition is a simple computation, and it can be

found in [Ka4], Proposition 7.3.

Proposition 3.1.1. Let X and Y be Banach spaces, and ¢ : 0Bx — Y be a bounded map.
Let f: X =Y be given by

0, xz =0,

lele (%), = 0.

Then f e H(X,Y). If v is also continuous, then f € HC(X,Y ). Moreover, let L > 1, € > 0,
and K = 0. If  is of cL-type (L,€), and |p(z)| < K, for all x € 0By, then | f|. < 2K +4L.

3.2 Strong embeddings into Banach spaces.

In this section, we show that if X uniformly embeds into a minimal Banach space Y, then
X simultaneously coarsely and uniformly embeds into Y. For that, we will need Lemma 16

of [Ro4].

Lemma 3.2.1. (C. Rosendal, 2016) Suppose X and E are Banach spaces and P, : E — E

is a sequence of bounded projections onto subspaces E, < E so that E,, < Ker(P,), for all
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m # n. Assume also that, for all n € N, there exists a uniform embedding o, : X — FE,.

Then X admits a strong embedding into E.

Proof Theorem 1.3.1(i). Let ¢ : X — Y be a uniform embedding. By W. Gowers’ dichotomy,
Y must contain either a hereditarily indecomposable Banach space or an unconditional basic
sequence (see [Gow], Theorem 2). As Y is minimal, and a hereditarily indecomposable
Banach space is not isomorphic to any of its proper subspaces (see [Gow|, Theorem 4), Y
must contain an unconditional basic sequence, say (e,)>_;. Let (A4,)%_; be a partition of N
into infinite subsets, and set E = span{e; | j € N} and E,, = span{e; | j € A,,}, for all n e N.
As Y is minimal, there exists a sequence of isomorphic embeddings 7}, : Y — E,,. So, T,, 0 ¢
is a uniform embedding of X into E,,, for all n € N. For each n € N, let P, : E — FE,, denote

the natural projection. We can now apply Lemma 3.2.1, so, X strongly embeds into Y. [J

Theorem 1.3.1(i) allows us to obtain some new examples. Let 7' denote the Tsirelson
space introduced by T. Figiel and W. Johnson, and let S denote the Schlumprecht space. It
is well known that both 7 and S are minimal Banach spaces (see [CSh], Theorem VI.a.l,
and [AnS], Theorem 2.1, respectively). The following corollary is a trivial consequence of

Theorem 1.3.1(i).

Corollary 3.2.2. If a Banach space X uniformly embeds into T* (resp. S), then X strongly

embeds into T* (resp. S).

Proof of Theorem 1.3.8. By Corollary 3.3 of [AMauMi], there exists a uniform embedding
f 4y — By,. Let (e,)¥_; be an unconditional basis for X. Let (A,)y_; be a partition of N
into infinite subsets. For each n € N, let X,, = span{e; | j € A,}. By Theorem 2.1 of [OSc1],
there exists a uniform equivalence o,, : By, — By, , for each n € N. By Lemma 3.2.1, we are

done. 0

Corollary 3.2.3. Let X be an infinite dimensional space with an unconditional basis and
finite cotype. Then L, strongly embeds into X, for all p € [1,2]. In particular, ¢, strongly
embeds into X, for all p € [1,2].
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Proof. This is a simple consequence of the fact that L, strongly embeds into Ly = ¢5, for all

p € [1,2] (see Remark 5.10 of [MeN1]). O

We finish this section with the following natural question.

Problem 3.2.4. Does /5 strongly embed into every infinite dimensional Banach space?

3.3 Approximating coarse maps by continuous coarse
maps.

In this section, we study when a coarse map can be assumed to be also continuous. Our
goal is to prove a general theorem (Theorem 1.3.2) and then use it to obtain applications
to the Banach space setting. Precisely, we end this section showing that the existence of
a coarse retraction X — Y, where X and Y and Banach spaces and Y < X, implies the
existence of a continuous coarse retraction X — Y (Corollary 1.3.3). In Section 3.4, we use
Theorem 1.3.2 in order to show that if a Banach space X coarsely embeds into a minimal
Banach space Y, then X simultaneously coarsely and homeomorphically embeds into Y by
a map with uniformly continuous inverse (Theorem 1.3.1(ii)). Finally, in Section 3.5, we use
Theorem 1.3.2 to prove that the existence of a coarse section for a quotient map implies the
existence of a continuous coarse section.

J. Dugundji proved (see [Du], Theorem 4.1) the following: let M be a metric space, A ¢ M
be a closed subspace, E be a normed space (or, more generally, a locally convex topological
vector space), and f : A — F be a continuous map, then f can be extended to a continuous
map ¢ : M — E. However, J. Dugundji was only interested in continuous maps and did
not care about having any control over the value of ||p(x) — p(a)|, for z € M, and a € A.
Proposition 3.3.2 below is the modification of Theorem 4.1 of [Du] that we will need for our

settings.
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Lemma 3.3.1. Let M be a metric space, A < M be a closed subspace, and o« > 0. There

exists a locally finite open cover U of M\A such that
(i) diam(U) < a, for all U e U, and

(i1) for all a € A, and all neighborhoods V' of a, there exists a neighborhood V' < V' of a
such that, for allU eU, U nV' # & implies U < V.

The lemma above is Lemma 2.1 of [Du]. Although, item (i) above does not explicitly
appear in Lemma 2.1 of [Du], it is clear from its proof that the diameters of the elements of

U can be taken to be arbitrarily small.

Proposition 3.3.2. Let (M, d) be a metric space, and A < M be a closed subspace. Let E
be a normed space, and let f : A — E be a continuous coarse map. Then, for all A > 1, and

all v > 0, there exists a continuous map ¢ : M — conv(f(A)) extending f such that

lo(z) = pla)]| < wr(A-d(z, A) + d(z,a) + ),

for all x € M, and all a € A.

Proof. Without loss of generality, assume A < 2. Let U = {U,}e; be a locally finite open
cover for the metric space M\ A given by Lemma 3.3.1 for o = /(1 + \). For each j € J, pick
zj € Uj, and a; € A such that d(z;,a;) < \-d(z;, A). For each j € J, let ¢;(x) = d(z,US),
for all z € M.

Let W =}, ;¢;, and define ¢ : M — conv(f(A)) by

f(z), if xeA,

oo = ¥i(x) .
Dies v @), iz ¢ A

Clearly, ¢ extends f, and, as U is locally finite, ¢ is continuous on M\ A. Let us observe that

¢ is also continuous on A. Pick a € A, and let € > 0. By the continuity of f, there exists
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0 > 0 such that d(a,a’) < § implies ||f(a) — f(d')| < ¢, for all @’ € A. Pick ¢’ € (0,d/6) such
that, for all j € J, Ujn B(a, ") # & implies U; < B(a,§/6). Say x € B(a,')\A, so x belongs
to only finitely many elements of U, say Uy, ..., U;, . By our choice of ', d(z, ;) < 0/3 and
d(a;;, ;) < X6/6 < /3, for all j e {1,...,k}. Hence,

o)< o)y ) ) < S <

for all j € {1,...,n}. By our choice of ¢, this gives us that

N

lo(z N f(ai,) = fa)] <e.

3:1

So ¢ is continuous.
Let x € M, and a € A. If z € A, it follows that |¢(z) — p(a)| < ws(d(z,a)), so assume
r¢ A Let U,,..., U, be the only elements of I containing z. As diam(U;) < v/(1+ \), for

all j € J, it follows that d(x;;,z) <~/(1+ A), for all j € {1,...,k}. Hence, we must have

;) — fla)]

<
ngke
SIS
=
=

lp(z) — p(a)| < '

N
M=
qlw

cwy(d(ai;, zi,) + d(zg;, ) + d(z, a))

cwp(N-d(x, A) + (14 A) - d(a,, x) + d(z, a))

N
M=
Elw

<wi(\-d(x, A) + v + d(x,a)),

and we are done. O

We can now prove the main theorem of this section.

Proof of Theorem 1.3.2. Let 6 : M — E be the continuous extension of ¢ [ A given by Propo-
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sition 3.3.2 for A = 2, and some v > 0 such that

Wy (7) + wpra(4y) < 1nf ww( ) + inf wpra(s) + 0.

s>0

Let U = {x € M | d(z,A) < v}, and let U = {U,};e; be an open cover for the metric
space M\A such that diam(U,) < v, for all j € J. So, U’ = {U,U,};es is an open cover for
M, and, as M is paracompact, U’ has a locally finite refinement (see [Mu|, Theorem 41.4).
Hence, there exists a family of open sets V = {V;},c; refining U such that {U,V;}s is a
locally finite open cover of M. For each i € I, pick z; € V;, let ¢;(x) = d(z;, V©), and let
Yy(x) = max{0,1 — d(x, A)/v}, for all z € M. So ¢Yy(x) = 1, if v € A, and Yy(x) = 0, if
r¢U.

Let ¥ = ¢y + >,.; ¥s, and define ® : M — conv(¢(M)) by

b(z) = U<:C Z Uil ;;

W) p

As {U, V;}ier is locally finite, ® is continuous. Also, as ¢;(xz) =0, for all z € A, and all i € I,
it is clear that ®1A = pA.

Let x € M\A, and let V;,,...,V; be the only elements of V containing . As diam(V}) <+,

for all i € I, we have that d(z,x;,) <, for all j € {1,...,k}. Hence,

lote) - ()] < S5 o Z @) — (e
Yy (@) :
< ‘IJ(JZ') ’ HSO(:U) - H + wSO

If z ¢ U, this shows that ||p(z) — ®(z)| < wy(y). If x € U, pick a € A such that d(z,a) < 7.
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Then, as 0#(a) = p(a), we have that

lp(z) = 0(2)] < le(z) —w(a)] + [0(a) — 0(2)]
S wy(Y) + wera(A - d(z, A) + d(z,a) +7)

< Wy (7Y) + wera(4y).

So, we are done. n

Corollary 3.3.3. Let Y be a Banach space and A 'Y be a closed subset. Let p: Y — A be
a retraction. Then, for all 6 > 0, there exists a continuous retraction ® :' Y — conv(A) such
that

sup [¢(z) — ®(z)| < inf wy(s) + 6.

ey s>0

In particular, if @ is coarse, so is P.

Proof. As ¢l A =1d| A, we have that wyx(t) = ¢, for all . A straightforward application of

Theorem 1.3.2 finishes the proof. m

Proof of Corollary 1.3.3. This is a particular case of Corollary 3.3.3 above. [

In the case where A = ¢F, the ® given by Theorem 1.3.2 is not only continuous, but even
locally Lipschitz. Let (M, d) and (N, d) be metric spaces. We call a map f: M — N locally

Lipschitz if for each z € M, there exists a neighborhood of z in which f is Lipschitz.

Proposition 3.3.4. Let (M, d) be a metric space, and let E' be a normed space. Let p : M —
E be a map. Then, for all 6 > 0, there exists a locally Lipschitz map ® : M — conv(p(M))
such that

sup | p(x) — B()| < inf w,(s) + 6.
xeM s>0

In particular, if M coarsely embeds into E, then M coarsely embeds into E by a locally

Lipschitz map.
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Proof. Let v, V = {Vi}ier, {i}icr, (¥i)ien, ¥ and @ be as in the proof of Theorem 1.3.2
(with A = &, and U = ¢J). We only need to notice that ® is locally Lipschitz. Let z € M.
Then, there exists ¢ > 0 such that B(z,¢) intersects only finitely many elements of V, say
Vi -, Vi, Without loss of generality, we can assume that x € V;,, and that B(z,2¢) < V;,.
So U(y) = e, for all y € B(x,e). Therefore, as ¢;(y)/V(y) < 1, for all y e M, and all i € I,

we have that

¥i(2) %(y)’ < [%i(2) — ¥i(y)] n [V (z) —Y(y)| iy)
V) Tyl (e v(z) Y(y)

< (#)d(z, Y),

for all z,y € B(x,¢). Hence, letting L = max{|¢(z;,)| | 1 <1<k}, we have

kE+ k2

9(2) = @) < L(——)d(=p).

for all z,y € B(z,¢). O

We had just shown that if (M, d) coarsely embeds into a Banach space E, then it coarsely
embeds by a continuous map. We would like to obtain that the existence of coarse embeddings
actually guarantee us the existence of simultaneously coarse and homeomorphic embeddings.

In the next proposition, we show that injectivity of the embedding is not a problem.

Proposition 3.3.5. Let (M, d) be a separable metric space and let E be an infinite dimen-
sional Banach space. Let o : M — E be a map. Then, for all 6 > 0, there exists an injective

continuous map ® : M — E such that

sup [[p(z) — @(z)| < infw,y(s) + 9.
xeM s>0

In particular, if a separable Banach space X coarsely embeds into a Banach space Y, then X

coarsely embeds into Y by an injective continuous map.
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Proof. Let ¢ : M — E be a coarse map, and > 0. Pick v > 0 such that w,(v) + 27 <
inf,-ow,(s)+0. Let Z < E be a closed infinite dimensional separable subspace such that the
quotient space E/Z is infinite dimensional. As M is separable, M isometrically embeds into
the space of continuous function on [0, 1] with the supremum norm, C0, 1] (see [FHHaMoZ],
Corollary 5.9). Therefore, as C[0, 1] is homeomorphic to Bz (see [K]), it follows that M
homeomorphically embeds into v - Bz. Say 6 : M — ~ - Bz is such embedding.

Let U = {U,}nen be a countable locally finite cover of M such that diam(U,,) < =, for all
n € N. For each n € N, pick z,, € U, and let ¢,,(x) = d(z, Uf), for all x € M.

Define a sequence (y,)s_, in E as follows. Pick y; € B(p(z1),7)\Z. Say v1,...,yr had
been chosen. Then pick yi41 € B(@(xk11), Y)\(Z @span{yi, ..., yx}). Let ¥ = > 1y, and

define & : M — E by

Yu(z)
U(z) ™

®(x) =0(z) + >

for all z € M. Clearly, ® is continuous, and satisfies the required inequality. To notice that
® is injective, notice that, by our choice of (y,)¥_;, if ®(z) = ®(y), then ¥, (x)/¥(z) =
Un(y)/¥(y), for all n € N. So, O(x) = 0(y), which implies z = y.

The last claim follows from the facts that (i) if dim(X) < oo, then dim(Y) > dim(X) (see
[NoYu|, Theorem 2.2.5 and Example 2.2.6), and (ii) if an infinite dimensional Banach space

X coarsely embeds into Y, then Y is also infinite dimensional. O]

3.4 Simultaneously homeomorphic and coarse embed-
dings.

In this section, we show that if a Banach space X coarsely embeds into a minimal Banach
space Y, then X simultaneously homeomorphically and coarsely embeds into Y. In order to
show that, we show that there exists a map X — (@Y )g, where £ is any l-unconditional
basic sequence, which is simultaneously a homeomorphic and coarse embedding.

The following lemma is an application of the methods of [Ro4] to our specific setting (see
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[Ro4], Lemma 16).

Lemma 3.4.1. Suppose X and E are Banach spaces and P, : E — FE is a sequence of
bounded projections onto subspaces E,  E so that E,, = Ker(P,), for all m # n. Assume
also that, for all n € N, there exists a coarse embedding o, : X — E, which is also continu-
ous. Then X homeomorphically coarsely embeds into E by a map with uniformly continuous

nuerse.

Proof. Let us define a continuous coarse map 1 : X — Ker(P;) such that ¢! exists and is
uniformly continuous. Then, by setting ¥ : X — F as V(z) = o1(z) +¢(x), for all z € X, we
have that U is a continuous coarse embedding with uniformly continuous inverse. Indeed, W is
clearly coarse and continuous. As oy () —o1(y)| = |P1(¥(z) =Y ()| < [|P]-[¥(x)—T(y)|,
for all z,y € X, it follows that U is expanding. As [ (z)—1(y)| = [|[(Id—P) (¥ (z) —¥(y))| <

Id— Py - | (z) — W(y)|, for all z,y € X, it follows that ¥ has uniformly continuous inverse.

Without loss of generality, we can assume that ¢,(0) = 0, for all n € N. As each o, is a
coarse embedding, there exist sequences (L, )nen and (A,)nen of positive numbers such that
Wy, (t) < Lyt + L, (see Proposition 1.1.1) and p,, (A,) > 1, for all n € N, and all ¢ € [0, 0).

We can assume that A, > 1, for all n € N. For each n € N, let v,, : X — FE,, be given by

on(nA,x)
T

and let ¢¥(x) = >, ., ¥n(2), for all z € X. Clearly, 1,(0) = 0, for all n € N, and (0) = 0.
Claim: v is well defined, coarse, continuous, and ©~! is uniformly continuous.

For all z,y € X, and all n € N, there are x, ..., x, € X, such that xg = nA,z, x, = nA,y,

and |z;_1 — x| = A,llz —y|, for all 1 < j < n. So, by the triangle inequality,

lon(nAnz) = on(nBny)| < D lon(j-1) = onl(@)]| < n - we, (Au|z = y]).
j=1
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Hence, as A, > 1, for all n € N, we have that

0~ St « 5 s zolenal

m

Zwan (Anllz —yl) _ [z -yl +1
S A, L,2" h 2l-1

In particular, as ¢, (0) = 0, for all n € N, we have that | Y"1, (z)| < (|z| + 1)/2"71, for
all x € X, and all [,m € N, with [ < m. Hence, ¥ is well defined. Similarly, the argument

above gives us that wy () <t + 1, for all ¢ > 0, so 1 is coarse.

Let x € X, and € > 0. Choosing N € N such that 1/2" < £/4, we have that, for all y € X,

with |z —y[ < 1

i) @) < 3 Pnla) — )] + 3 AL

n<N n>N

< D (e 1 + 5

n<N
By the continuity of each v, at x, there exists § € (0, 1) such that > _ [|v¥n(2) = (y)|| < /2,
whenever |x — y| < 8. Then, |¢(z) — ¥ (y)| < e, if |x — y| < 4. So 1 is continuous.

Let us show that 1! exists and it is uniformly continuous. For this, we only need to show

that, for all € > 0, there exists 6 > 0 such that, for all x,y € X,
|z =yl >e = |v(@) =) > d

As p,. (A,) > 1, foralln e N, if z,y € X and |z —y| > 1, then |0, (A,x) — 0, (Azy)| > 1.

Fix € > 0, and pick n € N such that 1/n < e. Then, if |z — y|| > ¢, we have that

|lon(nAyz) — 0n(nALY)|
l(z) —¢(y)| = |PanA, Ly2m
1
=z
| Pal[nAnLn2”
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Hence, »~! is uniformly continuous, and we are done. O]

Proof of Theorem 1.3.1(ii). Let ¢ : X — Y be a coarse embedding. By Theorem 1.3.2, we
can assume that ¢ is also continuous. As in the proof of item (i) of Theorem 1.3.1, ¥ contains
an unconditional basic sequence (). Let (A4,)>_, be a partition of N into infinite subsets,
and set E = span{e; | j € N} and E,, = Span{e; | j € A,}, for all n € N. As Y is minimal,
there exists a sequence of isomorphic embeddings T;, : Y — E,. So, T,, o ¢ is a continuous
coarse embedding of X into F,, for all n € N. For each n € N, let P, : F — F,, denote the
natural projection. We can now apply Lemma 3.4.1, so, X simultaneously homeomorphically

and coarsely embeds into Y by a map with uniformly continuous inverse. O

The following corollary is a trivial consequence of Theorem 1.3.1(ii).

Corollary 3.4.2. If a Banach space X coarsely embeds into T* (resp. S), then X simulta-
neously homeomorphically and coarsely embeds into T* (resp. S) by a map with uniformly

continuous inverse.

Proof of Theorem 1.3.4. 1f X coarsely embeds into Y, by Theorem 1.3.2, X coarsely embeds
into Y by a continuous map. Let £ = (®Y )¢, and E,, = {(x,);, € E|Vj #n, z; = 0}, for
all n € N. Then, by Lemma 3.4.1, X homeomorphically coarsely embeds into £ by a map

with uniformly continuous inverse. O]

The following simpler version of Problem 1.2.6 could be slightly easier to prove, and it

would be a significant advance on this problem.

Problem 3.4.3. Let X and Y be Banach spaces, and assume that X coarsely embeds into

Y. Does Bx uniformly embed into Y7 What if Y is minimal?

It is worth noticing that one cannot hope that X coarsely embeds into Y if and only if
Bx uniformly embeds into Y (even if we restrict ourselves to minimal spaces Y). Indeed,
it is well known that all the ¢,’s have uniformly equivalent balls (see [OScl], Theorem 2.1),
but ¢, does not coarsely embed into ¢, for any p > 2 (see [JoRan|, Theorem 1, or [MeN2],

Theorem 1.11).
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3.5 Continuous coarse sections.

In [Ka4], N. Kalton proved (Theorem 8.9) that the concepts of coarse and uniform equiv-
alences are actually distinct concepts, i.e., N. Kalton presented two Banach spaces X and Y
which are coarsely equivalent but not uniformly equivalent. However, the coarse equivalence
presented in [Ka4] only preserves the large scale geometries of X and Y and does not need to
be a homeomorphism. In this section, we show that N. Kalton’s example is actually an ex-
ample of Banach spaces which are simultaneously homeomorphically and coarsely equivalent,
but not uniformly equivalent.

Let X and Y be Banach spaces, and let () : Y — X be a quotient map. If A ¢ X, we
say that f: A — Y is a section of Q if Qo f =1d4. N. Kalton’s argument is based on the
construction of a quotient map @ : Y — X for which a coarse section X — Y exists, but
X does not coarse Lipschitz embed into Y by map which is also uniformly continuous (see
[Ka4], Theorem 8.8). In particular, @) has no uniformly continuous section X — Y. In this
section, we show that if a quotient map @) : Y — X admits a coarse section, then it admits
a continuous coarse section. As a corollary, we get the strengthening of N. Kalton’s result

mentioned above.

The proof of the following lemma uses ideas in the proof of Proposition 6.5 of [Kad4].

Lemma 3.5.1. Let X and Y be Banach spaces, and let () :' Y — X be a quotient map.
Assume that there exists a coarse section ¢ : X — Y. Then, there exists L > 1 such that,

for every e > 0, there exists a continuous section v : 0Bx — Y of cL-type (L,¢).

Proof. Let ¢ : X — Y be a coarse section. So, there exists L > 1 such that w,(t) < Lt+L, for
all t > 0 (see Proposition 1.1.1). Fix € € (0, 1), and let us show that the required continuous
section ¢ of cL-type (L, ¢) exists.

For each n € N, let ¢, (z) = p(nx)/n. So, each ¢, is a coarse section, and w,, (t) <

Lt + Ln~!, for all t > 0. For each n € N, let ®,, : X — Y be the continuous map given by
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Theorem 1.3.2 applied to ¢,, L/n, and A = . Hence, we have that

2L
sup [lon(z) — Pn(2)| < —,
zeX n

for all n € N. In particular, wg, (t) < Lt + 5L/n, and

2L|Q
J— Q@) < |2~ Qea(a)] + [Qeu(a) — Q)] < 22
for all n € N, and all # € X. Let A € (0,1) be such that >, A" < 7. Fix ng € N large
enough so that 2L[|Q|/no < A, and 5L/ng < £/2.
Let h: X — Y be given by
0, if =0,

”_2H<q)n(”_H> —q)no(—u_ﬁu))’ if 2 #0.

Then h is continuous, positively homogeneous, and bounded on bounded sets. Also, it is
clear that ||z — Q(h(x))| < A|z|, for all z € X. Let g(z) = v — Q(h(z)). Then, as g is
positively homogeneous, we have that |g"(z)| < A"|z|, for all n € N, and all z € X. Set
¢°(z) = z and let

Y(a) = Y by (@),

for all x € 0Bx.

As h is positively homogeneous, the series above converges uniformly on bounded sets, so

1 is well defined and continuous. Also, as ¢"(z) — Q(h(g"(z))) = g™ (x), we have that

Q(x)) = D (g"(x) — g"(x)) = =,

for all x € X. So ¢ : dBx — Y is a continuous section of Q).

It remains to notice that 1 is of cL-type (L, ). Notice that, as 5L/ny < £/2, we have that
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SUP,ep, |A(2)| < 2L and wy,, (t) < Lt +¢/2, for all ¢t > 0. Then

[(@) =4 (y)| < |z !+Z\Ih )H+Z|\h(9
LHx—y||+ +2. sup |h(x Zw

for all z,y € dBx. So, v is of cL-type (L, ), and we are done. O

The next technical lemma is the continuous version of Lemma 7.4 of [Ka4], and it will play

a fundamental role in the proof of Theorem 1.3.5.

Lemma 3.5.2. Let X andY be Banach spaces and consider a mapt € [0,0) — f; € H(X,Y)

with the property that, for some K > 0,
[ file-2 < K, and |fi — fs| < K|t —s|, Vit s=0.
Define F: X - Y as

fo(z), [z <1
fimjz) (), [z > 1.

F(z) =

Then F' is coarse. Moreover, if fy € HC(X,Y), for allt = 0, then F is continuous.

In Lemma 7.4 of [Kad], the author shows that the map F' above is coarse, and, under the
assumption that f; is uniformly continuous, for all ¢ > 0, the author shows that F' is also
uniformly continuous. Therefore, we only present the proof that F' is continuous if each f; is

SO.

Sketch of the proof. For convenience, let f; = fo, if ¢ < 0. In the proof of Lemma 7.4 of
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[Ka4], N. Kalton shows that
|F(x) = F(2)| < 3Kz — 2| + 2K min{[j], 2|~} + 2K min{] ], 2]}, (3.5.1)
for all z,z € X. In particular, wp(t) < 3Kt + 4K, so F' is coarse.

Let us show that F' is continuous if each f; € HC(X,Y), and the map ¢ — f; is continuous.
Note that, as F'(z) = fo(x) if || € [0,1), F is continuous at x if |z| € [0,1). Therefore, we

only need to show that F' is continuous at z if ||| > 1.

Let z € X, with ||z| > 1, and fix ¢ > 0. Pick dy € (0,1) such that Ky < £/6, and a > 1
such that 4K /a < /2. If |z| > a, pick 6; € (0, min{dy, |z| — a}). By Equation 3.5.1, if
| — z| < 01, we have

|F(z) — F(2)| <3K6& +4Ka™' <e.

Say |z| < a. Let b = In(a+1). Pick N > b such that Kb/N < ¢/(3¢’). Then |s —t| < b/N

implies || fs — fi| < &/(3¢€°).

By the continuity of each f;, there exists d; € (0, min{b/N,1}) such that |z — z| < &2
implies

| froyn (x) = foryn(2)| <€/3, forall 0<k<N.

Making d5 smaller if necessary, we can also assume that |z —z| < dy implies | In |z|—1In |z]]| <

b/(2N).

Fiz z € X with || — z| < d2. As |z| € [1,a], we have that In|z|, max{ln|z|,0} € [0,d].

Therefore, as |In |z|| — In|z|| < b/(2N), there exists k € {0,..., N} such that

kb kb
e - 5] [ 1,0 - 3 <

b
N SN
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As |z — z| < 8y, we have that ||z[/e’, |z]|/e® < 1. Therefore, we conclude that

|F(2) = F(2)| < [F(2) = froyn (@) + [ froyw () = froyn (2)]

+ [ oy (2) = F(2)]

elzll e, elzll _

3¢t 3 3eb

~

So, F'is continuous at x. O

Proposition 3.5.3. Let Q : Y — X be a quotient map. Assume that there exist a constant
L > 1, a sequence (,)%_, of positive real numbers converging to zero, and a sequence of
continuous sections ¢, : 0Bx — 'Y such that ¢, is of cL-type (L,e,), for alln € N. Then Q

has a continuous coarse section.

Proof. Without loss of generality, we may assume that ¢, < e~2", for all n € N. For each
neN, let ¥, (x) = 1/2(on(x) — pn(—2)), for all z € Bx. So, each 1, is a continuous section
of @ of cL-type (L,e,,) and ||¢,(x)| < 2L, for all n € N, and all z € dBy.

By Proposition 3.1.1, we can extend each v, to an f,_1 € HC(X,Y) so that f,—1 is a
section of @, and | f,—1[c-2» < 8L, for all n € N. For each ¢ > 0, we define f; : X — Y as

follows. If t € [n — 1, n], let

filw) = (n =) fua(2) + (t =1+ 1) ful).

Clearly t — f; is continuous. Indeed, ||f; — fs| < 4L|t — s, for all t,s € [n — 1, n].
Notice that | f;]e-2c < 8L, for all t = 0. Let F' be the map obtained by Lemma 3.5.2 for

the maps (f;)i=0. Then F' is a continuous coarse section of Q. O

Proof of Theorem 1.3.5. 1f the quotient map ) : Y — X has a coarse section X — Y, it
follows from Lemma 3.5.1 and Proposition 3.5.3 that () has a continuous coarse section. Let
¢ : X — Y besuch section. Then, the map y — (y—p(Q(y)), @(y)) is both a homeomorphism

and a coarse equivalence between Y and Ker(Q) @ X with inverse (z, z) — x + p(2). O
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Proof of Corollary 1.3.6. By Proposition 8.4 and Theorem 8.8 of [Ka4], there exist separable
Banach spaces X and Y, and a quotient map () : Y — X which admits a coarse section
v : X — Y, but X does not coarse Lipschitz embed into Y by a uniformly continuous
map. Hence, Y and Ker(Q)) @ X are not uniformly equivalent. By Theorem 1.3.5, Y and

Ker(Q) @ X are simultaneously homeomorphically and coarsely equivalent. O

This raises the question of when two Banach spaces are simultaneously homeomophically
and coarsely equivalent. It is well known that any two Banach spaces with the same density
character are homeomorphic (see [K], and [To]). But what about if X and Y are coarsely
equivalent? Can we get both coarse equivalence and topological equivalence at the same

time?

Problem 3.5.4. Let X and Y be Banach spaces, and assume that X and Y are coarsely

equivalent. Are X and Y simultaneously coarsely and homeomorphically equivalent?

It is worth noticing that, for separable spaces, the existence of a coarse equivalence easily

implies the existence of a measurable coarse equivalence.

Proposition 3.5.5. Let X andY be separable Banach spaces, and assume that X is coarsely
equivalent to Y. Then, there exists a coarse equivalence X — Y which is also a Borel

bijection.

Proof. Without loss of generality, we can assume that X and Y are infinite dimensional (see
Proposition 2.2.4, and Theorem 2.2.5 of [NoYu]). Let {z,}, and {y,}, be (1,1)-nets in X and
Y such that z,, — y, defines a Lipschitz isomorphism. Let A; = B(z1,1)\ u;=1 B(x;,1/2),

and
A, = Bla,, D\( U A; U U B(r,1/2)),

for all n > 1. We define a sequence of subsets (C,,)¥_; of Y analogously. It is clear that
X =u,A,, Y = u,C,, that A,, and C,, are Borel, and that A, and C,, are Borel isomorphic

(see [Ke], Theorem 15.6), for all n € N. Let f, : A, — C,, be Borel isomorphisms. Define
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amap ¢ : X — Y by setting o(x) = f.(z), if x € A,. It should be clear that ¢ is both a

coarse equivalence and a Borel bijection. O]

3.6 Unconditional sums of coarse and uniform equiva-

lences.

In [Kab], N. Kalton proved (Theorem 4.6(ii)) that if X and Y are coarsely equivalent
(resp. uniformly equivalent), then £,(X) and ¢,(Y") are coarsely equivalent (resp. uniformly
equivalent). However, as N. Kalton pointed out, his proof seems to be much more complicated
than necessary, and it relies on results about close (resp. uniformly close) Banach spaces. In
this section, we give a direct proof for a general theorem (see Theorem 3.6.1 below) which

gives us N. Kalton’s result as a corollary.

Proof of Theorem 1.3.9. Let ¢ : X — Y be a coarse equivalence (resp. uniform equivalence).
Assume ¢(0) = 0. For each n € N, let ¢,(-) = 27"¢(2"). Define ® : (®X)e — (®Y)e by
letting ®(x) = (pn(z,))r,, for all z = (x,)7_; € (BX)e.

n=1>

Claim: & is well defined and coarse (resp. uniformly continuous).

Let L > 0, be such that w,(t) < Lt+ L, for all t > 0. So, w,,, (t) < Lt+ L2, for all t > 0.
Let us first notice that ® is well defined. Let x = (x,)7_, € (®X)e. For e > 0, pick N e N

so that | >, -y |znlen] <e/2L, and >, _ 27" < e/2L. Then, for k > [ > N, we have

n>N

k k L
| len@nllen] < | 3 (Lllzal + 55 )en
n=l[ n=l

"L
+ HZZ—nen < E.
n=I[

k
<| 2} Lleales
n=l[

Hence, the sum )} _ ¢n(z) converges for every x, so ® is well defined.
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Say x,y € (®X)e. Then

@) = @) = | X lsn(@n) = Gulvm) len

neN
L
< H Z L)z, — ynlen| + H 2 2—nen
neN neN

< Ljz —y| + L.

So @ is coarse.
Assume ¢ is uniformly continuous, let us show that ® is also uniformly continuous. Fix

e > 0. Pick N € N such that >, 27" < ¢/3L. Choose § > 0 such that 6 < ¢/3L, and

n>N

lon(zn) — @n(yn)| < /3N, for all n < N, and all x,,,y, € X such that |z, —y,| <. Then,

if |2 —y| < 8, we have

| () —2(y)]

<[ 3 leontn) = ealom)len
n<N

| 3 Ll —allea] + | 3 e
n>N n>N

<e/3+¢/3+¢/3=¢

This shows that ® is uniformly continuous.

Say ¢ is a uniform equivalence. Notice that ¢, () = 27"p~1(2"), therefore, ®~!(-) =
(o 1), and, by the same arguments as above, ®~! is uniformly continuous. Hence,
(@X)e and (®Y)g are uniformly equivalent.

If  is a coarse equivalence, let ¢ : Y — X be a coarse inverse for ¢. Let 1, (-) = 27" (2™),
and U = (¢,,)%_;. Then, by the same arguments above, U is coarse. One can easily see that

® and ¥ are coarse inverses of each other, so we are done.

The case of simultaneous homeomorphic and coarse equivalences follows analogously. [

The proof above actually gives us the following slightly stronger result.

Theorem 3.6.1. Let (X,,)_, and (Y,,)¥_, be sequences of Banach spaces, and let o, : X,, —

Y, be a coarse equivalence (resp. uniform equivalence, or simultaneously homeomorphic and



3.6. UNCONDITIONAL SUMS OF COARSE AND UNIFORM EQUIVALENCES. o4

coarse equivalence), for each n € N. Let £ be a normalized 1-unconditional basic sequence.
Assume that

sup 7:lim Y <o and inf tlim — > 0.
n 72X n t—o

Then (B, X,)e and (B,Y,)e are coarsely equivalent (resp. uniformly equivalent, or simulta-

neously homeomorphically and coarsely equivalent).

Proof. Let us work with the uniform equivalence case. Without loss of generality, we assume
that ¢,(0) = 0, for all n € N. Let L > 0 be large enough so that lim; ., w,, (¢)/t < L, and
limy o py, (t)/t > 1/L, for all n € N. For each n € N, pick ¢,, > 0 such that w,, (t) < Lt, and

pe,(t) > t/L, for all n € N, and all ¢ > ¢,,. Then,

1 1
Wy, (t) < Lt + Lt, and p,, (t) > Zt - Ztn’

for all n € N, and all ¢t > 0. Hence, it is easy to check that wwgl(t) < Lt + t,, for all n, and

all £ > 0. Setting

- 1 n
Spn(x) = ngn@ tnx)a

we have that each ¢, is a uniform equivalence between X,, and Y,,, and that

L 1
wg, (t) < Lt + o and  wg-1(t) < Lt + o0

for all n € N, and all £ > 0. The proof now follows analogously the proof of Theorem 1.3.9.
For the coarse equivalence case we only need to work with the coarse inverses of ¢,,’s instead

of its inverses, and proceed similarly. O

Corollary 3.6.2. Let X and Y be coarsely equivalent (resp. uniformly equivalent, or simul-
taneously homeomorphically and coarsely equivalent) Banach spaces, then £,(X) and €,(Y)
are coarsely equivalent (resp. uniformly equivalent, or simultaneously homeomorphically and

coarsely equivalent).
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Remark 3.6.3. The conditions on w,,, and p,, in Theorem 3.6.1 cannot be omitted. Indeed,
let gx = inf{q € [2,0) | X has cotype ¢}, for any Banach space X. Then, by Theorem 1.11
(resp. Theorem 1.9) of [MeN2], if a Banach space X coarsely (resp. uniformly) embeds into
a Banach space Y with nontrivial type, then ¢x < g¢y. Therefore, (®,0 )2 does not coarsely

(resp. uniformly) embed into (®,05)s = la, as q(g,em), = © and g, = 2.

Clearly, the method above gives us that, if X coarse Lipschitz embeds into Y, then (©X)¢
coarse Lipschitz embeds into (@Y )s. However, the same does not work for coarse and uniform
embeddings. Indeed, we know that ¢; strongly embeds into ¢,. However, ¢5(¢1) neither
coarsely nor uniformly embeds into o = l5(f2) (see page 1108 of [NS]). On the other hand,

if £ is the standard basis of ¢y, we do have an analogous result. Indeed, if ¢ : X — Y is a

0

uniform embedding and ¢(0) = 0, then ® = (¢);°_; is a uniform embedding of (®X),, into

0
(@BY ). If ¢ is a coarse embedding, then ® = (¢)*_; does not need to be well defined, so
the same argument does not work. However, without loss of generality, we can assume that

o(x) = 0, for all x € Bx. Then, the map ® = (¢)¥_; is well defined, and it is a coarse

embedding.

Remark 3.6.4. We should notice that, in [Kab], N. Kalton only deals with what he calls
“coarse homeomorphisms”, i.e., a coarse equivalence which is also a bijection. However it is
easy to show that X and Y are coarsely homeomorphic if and only if X and Y are coarsely
equivalent, for all Banach spaces X and Y. This follows from the easy fact that if X and
Y are coarsely equivalent, then X and Y have the same density character, which equals the
cardinality of any net in X and Y (for separable Banach spaces this follows from Proposition

3.5.5).



Chapter 4

Weaker notions of nonlinear

embeddings.

In this chapter, we study some notions of nonlinear embeddings which are weakenings of
the notions of coarse and uniform embeddings. More precisely, we study what we can say
when a Banach space X maps into another Banach space Y by a map which is both solvent
and coarse (resp. almost uncollapsed and uniformly continuous). The main goal is to provide
the reader with evidence that those notions may not be as weaker as one would think. For
that, we will go over the results contained in Section 1.4, which are in the paper Weaker

notions of nonlinear embeddings between Banach spaces (see [Brd]).

4.1 Preliminaries.

The following proposition, proved in [Ro4], Lemma 60, gives us a useful equivalent defini-

tion of solvent maps.

Proposition 4.1.1. Let X be a Banach space and M be a metric space. Then a coarse map

[ X — M is solvent if and only if sup,ops(t) = .

Although the statement of the next proposition is different from Proposition 63 of [Ro4],

26
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its proof is the same. However, as its proof is very simple and as this result will play an

important role in this chapter, for the convenience of the reader, we include its proof here.

Proposition 4.1.2. Let X and Y be a Banach space, and let £ be an 1-unconditional basic
sequence. Assume that there exists a uniformly continuous almost uncollapsed map ¢ : X —

Y. Then, there exists a uniformly continuous solvent map ® : X — (®Y )¢.

Proof. Let ¢ : X — Y be a uniformly continuous almost uncollapsed map. As ¢ is almost
uncollapsed, pick ¢ > 0 such that p,(t) > 0. As ¢ is uniformly continuous, pick a sequence

of positive reals (g,,)°_; such that

1

—y| < e, — < —,
lo =yl <en = lol@) =)l < =

for all x,y € X.

For each n € N, let ®,,(z) =n- gp(%x), for all z € X. Then, for ng € N, and =,y € X, with

|z — y|| < np, we have that

1

|@a() = @uly)] = - o (220) —o(229)] < 52

for all n = ng. Define & : X — (®Y)¢ by letting ®(x) = (P, (z))r,, for all z € X. By the
above, ® is well-define and it is uniformly continuous. Now notice that, if |z — y| = tn/e,,
then |22 — €2y| = ¢. Hence, if ||z — y| = tn/e,, we have that

@) = @)] > |@a(2) = 2u)] = n- [(2) = 0(29) | = - 5y(0).

n

So, as p,(t) > 0, we have that lim, pg(tn/c,) = o0. By Proposition 4.1.1, ® is solvent. [
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4.2 Cocycles.

By the Mazur-Ulam Theorem (see [MazU]), any surjective isometry A : Y — Y of a
Banach space Y is affine, i.e., there exists a surjective linear isometry 7' : Y — Y, and some
Yo € Y, such that A(y) = T'(y) + vo, for all y € Y. Therefore, if G is a group, every isometric
action o : G —~ Y of GG on the Banach space Y is an affine isometric action, i.e., there exists

an isometric linear action 7 : G —~ Y, and a map b : G — Y such that

ay(y) = m4(y) + b(g),

forallge G, and all y e Y. The map b: G — Y is called the cocycle of a, and it is given by

b(g) = a4(0), for all g € G. As « is an action by isometries, we have that

[b(9) = b(A)]| = llag(0) — n(0)]| = flen-14(0)]| = [b(h"g)]

for all g, h € G. Hence, if G is a metric group, a continuous cocycle b : G — Y is automatically

uniformly continuous.

Remark 4.2.1. 1f (X, | -||) is a Banach space, we look at (X, +) as an additive group with a
metric given by the norm | - ||. So, we can work with affine isometric actions o : X —~ Y of

the additive group (X, +) on a Banach space Y.

Let o : G —~ Y be an action by affine isometries. Its cocycle b is called a coboundary if
there exists £ € Y such that b(g) = & — 7,(§), for all g € G. Clearly, b is a coboundary if
and only if a has a fixed point. Also, if Y is reflexive, then Im(b) is bounded if and only
if b is a coboundary. Indeed, if b is a coboundary, it is clear that Im(b) is bounded. Say
Im(b) is bounded and let O be an orbit of the action a.. Then the closed convex hull conv(O)
must be bounded, hence weakly compact (as Y is reflexive). Therefore, by Ryll-Nardzewski

fixed-point theorem (see [R-NJ), there exists { € Y such that o,(§) = &, for all g € G. So,

blg) =& —my(§), forall g e G.
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The discussion above is well-known, and we isolate it in the proposition below.

Proposition 4.2.2. Let G be a group and Y be a Banach space. Let a: G —~'Y be an action
by affine isometries with cocycle b. Then b is a coboundary if and only if o has a fized point.

Moreover, if Y is reflexive, then b is a coboundary if and only if b is bounded.

As we are interested in studying the relations between maps which are expanding, solvent,
uncollapsed, and almost uncollapsed, it is important to know that those are actually different
classes of maps. The next proposition shows that there are maps which are both solvent and
collapsed (see [Ed], Theorem 2.1, for a similar example). In particular, such maps are not

expanding.

Proposition 4.2.3. There ezists an affine isometric action R —~ {5(C) whose cocycle is

Lipschitz, solvent, and collapsed.

Proof. Define an action U : R —~ CN by letting

for all t € R, and all z = (z,)*, € CY. Let w = (1,1,...) € CN and define an action
a:R~CNaso(z) =w+ Ulr —w), for all t e R, and all z € CN. So,

2mit

(o (x))m = exp <22—m>xm +1—exp <

2mit )

22m (421)

for all t € R, all x = (z,)%, € CY, and all m € N. As |1 — exp(6i)| < |6], for all 0 € R, it
follows that (1 — exp(2mit/22"))*_, € £5(C), for all t € R. Hence, ay(z) € £5(C), for all t € R,
and all x € £5(C). So, « restricts to an action a : R —~ /5(C). By Equation 4.2.1, it follows

that a : R — l5(C) is an affine isometric action.

Let b: R — /5(C) be the cocycle of a: R — £5(C), i.e., b(t) = a(0), for all ¢ € R. Then,
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2
an easy induction gives us that b(t) = w — Uy(w), for all t e R. Let C' =} (222—’Z> , then

o)z = 3 1 —ep () < 3 () = .
N

ne neN

for all t € R. So, b is Lipschitz.

For t # 0, 0 € CR is the only fixed point of U,. Hence, w is the only fixed point of ;. So,
as w ¢ l2(C), a : R —~ ¢5(C) has no fixed points. Therefore, b is unbounded (see Proposition
4.2.2). By Proposition 4.1.1, b is solvent.

Pick L > 0 such that Ls < 2° —1, for all s € N. If k£ € N is large enough, say 27?/22]”3 <1,

we have that

1925\ |2 27927\ 2
% T
bR = 31 —en () < X ()
n>

n>k

- Z <22k 251 ) ;( 3’33)2

seN
2T

2L 1
Hence, |b(22°)| — 0, as k — o0. So, b is collapsed. O

Problem 4.2.4. [s there a map X — Y which is collapsed, almost uncollapsed and bounded

(in particular not solvent), for some Banach spaces X and Y7

4.3 Preservation of cotype.

M. Mendel and A. Naor solved in [MeN2] the long standing problem in Banach space
theory of giving a completely metric definition for the cotype of a Banach space. As a
subproduct of this, they have shown that if a Banach space X coarsely (resp. uniformly)
embeds into a Banach space Y with nontrivial type, then ¢x < gy (see [MeN2], Theorem 1.9
and Theorem 1.11). In this section we prove Theorem 1.4.2, which shows that the hypothesis

on the embedding X < Y can be weakened.
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For every m € N, we denote by 7Z,, the set of integers modulo m. For every n,m € N, we
denote the normalized counting measure on Z;, by g = i, m, and the normalized counting

measure on {—1,0,1}" by o = 0,,.

Definition 4.3.1. (Metric cotype) Let (M,d) be a metric space and ¢, T > 0. We say
that (M, d) has metric cotype ¢ with constant I' if, for all n € N, there exists an even integer

m, such that, for all f : Z — M,

Zn: Jm d<f (f’f + %%’) : f(f)f)>qdu($) (4.3.1)

< [Mm? Ll,O,l}" L d(f(z +e), f(z)) du(z)do(e).

n
m

The infimum of the constants ' for which (M,d) has metric cotype q with constant T" is
denoted by I'y(M). Given n € N and I' > 0, we define my(M,n,I") as the smallest even
integer m such that Inequality 4.3.1 holds, for all f : Z}', — M. If no such m exists we set
mg(M,n,T") = 0.

The following is the main theorem of [MeN2|. Although we will not use this result in this

dissertation, we believe it is worth mentioning.

Theorem 4.3.2. (M. Mendel and A. Naor, 2008) Let X be a Banach space and

q € [2,00). Then X has metric cotype q if and only if X has cotype q. Moreover,

1
%Oq(X) < Fq(X) < 900q(X),

where Cy(X) is the q-cotype constant of X.
We start by proving a simple property of solvent maps.

Proposition 4.3.3. Let (M,d) and (N, 0) be metric spaces, ¢ : M — N be a solvent map,

and S > 0. If [an, b, ], is a sequence of intervals of the real line such that lim, a, = oo,
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b, —a, <S and a1 —a, < S, for all n € N, then, we must have
supinf{p,(t) | t € [a,, b,]} = 0.

Proof. Let k > 0. Pick N € N so that N > {a; + S,k,2S}, and let R > 0 be such that
d(xz,y) € [R,R + N| implies o(f(z), f(y)) > N, for all z,y € M. Then there exists n € N
such that [a,,b,] < [R, R+ N]. Indeed, if a1 < R let n = max{j € N | a; < R} + 1, and if

R < ay let n = 1. Hence,
inf{p,(t) | t € [an,b,]} = inf{p (t) [t e [R,R+ N]} = N = k.

As k was chosen arbitrarily, we are done. O]

The following lemma is a version of Lemma 7.1 of [MeN2] in the context of the modulus p
instead of p. It’s proof is analogous to the proof of Lemma 7.1 of [MeN2] but we include it
here for completeness. Let n € N and r € [1,00]. In what follows, £]'(C) denotes the complex

Banach space (C", | - |,), where | - |, denotes the ¢,-norm in C".

Lemma 4.3.4. Let (M,d) be a metric space, n € N, ¢,T' > 0, and r € [1,0]. Then, for

every map f: (F(C) — M, and every s > 0, we have

9 1/r
nl/qﬁf(2s) <T'-my(M,n,T) - wy < on >

mg(M,n,T")
(if r = o0, we use the notation 1/r = 0).

Proof. In order to simplify notation, let m = my(M,n,I") and assume r < oo (if r = oo, the
same proof holds with the £,-norm substituted by the max-norm below). Let eq,... e, be

the standard basis of £*(C). Let h : Z', — *(C) be given by
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for all x = (x;); € Z7},, and define g : Z7, — M by letting g(x) = f(h(z)), for all x = (z;); €

Z7 . Then, as

d(g(z +¢),9(z)) <wy (s( z”: |62”fj _ ]_|7‘> 1/r) < wf(QWSnl/r)’
j=1

m
for all € = (g;)7_, € {~1,0,1}" and all x = (z;)}_, € Z;,, we must have

2w sn /T

J;_l 0,1} JZ” d(g(x +e), g(:ll'))qd,u(:c)dg(g) < Wf( m )q.

Also, as |h(z + Fe;) — h(z)|| = 2s, for all z € Z7,, and all j € {1,...,n}, we have that

m?

d(g(x + Fej), g(x)) = ps(2s), for all x € Z7, and all j e {1,...,n}. Hence,

Jifm d<g <x - %ej) : g(x)>qdu(:c) > npy(2s)".

Therefore, by the definition of my(M,n,I'), we conclude that

2wsnt/T

w)

Raising both sides to the (1/q)-th power, we are done. O

npp(2s)? < quqwf(

We can now prove the main result of this section.

Proof of Theorem 1.4.2. First, let us notice that we only need to prove the case in which ¢
is coarse and solvent. Indeed, let ¢ : X — Y be a uniformly continuous almost uncollapsed
map, then X maps into ¢3(Y") by a uniformly continuous solvent map (see Proposition 4.1.2).
As pg, vy = py and g, (v) = gy, there is no loss of generality if we assume that ¢ is solvent.
If gy = oo we are done, so assume gy < 00. Suppose ¢x > qy. Pick q € (gy, ¢x) such that
1/g—1/qx <1, and let « = 1/q — 1/qx (if gx = o0, we use the notation 1/qx = 0).
Let (e,)%_, be a sequence in (0,1) such that (1 4+ ¢,)n* < n® + 1, for all n € N. By

Maurey-Pisier Theorem (see [MauP1i]), ¢, is finitely representable in X. Considering ¢,(C)

ax
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as a real Banach space, we have that ¢,(C) is finitely representable in ¢, so £,(C) is finitely
representable in X. Therefore, looking at Eg((C) as real Banach spaces, we can pick a (real)
isomorphic embedding f, : £ (C) — X such that |z| < [fu(z)] < (1 + &,)[2z], for all

z € ly (C). For each n e N, let g, = p o f,. Hence,

Py, (1) = it {[[o(fu(@)) — oSl ||z =yl =1}
= inf{p, ([ fa(z) = fu(W)]) | |z -yl =t}

> inf{p,(a) | a € [t, (1 +e,)t]},

for all n € N, and all ¢ € [0,20). Also, as ¢, € (0,1), we have that wg, (t) < w,(2t), for all

neN, and all ¢ € [0, 00).

As Y has nontrivial type and as ¢ > ¢y, Theorem 4.1 of [MeN2] gives us that, for some I' >
0, my(Y,n,T') = O(n*9). Therefore, there exists A > 0 and ng € N such that m,(Y,n,T) <
An'4_for all n > ng. On the other hand, by Lemma 2.3 of [MeN2], m,(Y,n,T') = n'/4/T, for

all n € N. Hence, applying Lemma 4.3.4 with s = n® and r = qx, we get that, for all n > ny,

inf{p,(2a) | a € [2n%,2n* + 2]} < ['Aw, (47T).

As a < 1, we have that sup, [(n + 1)® — n®| < . Therefore, by Proposition 4.3.3, the
supremum over n of the left hand side above is infinite. As ¢ is coarse, this gives us a

contradiction. ]

Proof of Corollary 1.4.3. If p > 1, this follows straight from Theorem 1.4.2, the fact that
qe, = max{2,p} and that ¢, has nontrivial type. If p = 1, let g : {; — ¢, be a uniform
embedding (see [No2|, Theorem 5). Then the conclusion of the corollary must hold for the

map g o f : {4 — {5, which implies that it holds for f as well. O]
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4.4 Property Q.

For each k € N, let P (N) denote the set of all subset of N with exactly k elements endowed
Pr(N) with the metric given in Section 1.4. For £, > 0, a metric space (M,d) is said to
have Property Q(e,d) if for all k e N, and all f : Px(N) - M with w;(1) < 6, there exists an

infinite subset Ml © N such that
d(f(n), f(m)) <e, forall n<meP(M).

For each ¢ > 0, we define Ay/(¢€) as the supremum of all 6 > 0 so that (M, d) has Property
Q(e,d). For a Banach space X, it is clear that there exists Qx = 0 such that Ax(e) = Qxe,

for all e > 0. The Banach space X is said to have Property Q if Qx > 0.

Remark 4.4.1. Notice that this definition of Property Q is slightly different from the definition
given in Section 1.4. However, the definition above is N. Kalton’s original definition and it
is easy to see that they are equivalent to each other. The reason why we introduce this

equivalent definition here will be clear in the proof of Theorem 4.4.2 below.

Theorem 4.4.2. Let X and Y be Banach spaces, and assume that 'Y has Property Q. If

either

(i) there exists a coarse solvent map X — Y, or

(ii) there exists a uniformly continuous map ¢ : Bx — Y such that p,(t) > 0, for some

te(0,1),

then, X has Property Q. In particular, if there exists a uniformly continuous almost uncol-

lapsed map X — Y, then, X has Property Q.

Proof. (i) Assume ¢ : X — Y is a coarse solvent map. In particular, w,(1) > 0. Fix j € N,

and pick R > 0 such that

|z —yll € [R,R+j] implies [¢(z)—(y)| > J, (4.4.1)
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for all z,y € X. Assume that X does not have Property Q. So, Ax(R) = 0, and there
exists k € N, and f : Px(N) — X with ws(1) < 1, such that, for all infinite M < N, there
exists n < m € Pr(M) such that ||f(n) — f(m)| > R. By standard Ramsey theory (see [T],

Theorem 1.3), we can assume that | f(n) — f(m)|| > R, for all n < m € Pr(M).

Pick a positive § < j. As ws(1) < 1, we have that |f(n) — f(m)|| € [R,k], for all
n < m € P(M). Therefore, applying Ramsey theory again, we can get an infinite subset
M’ < M, and a € [R, k| such that | f(n) — f(m)| € [a,a + 0], for all n < m € Pr(M’). By our

choice of 6, it follows that

H_ -nﬁ m)| e [R,R+ ], forall i < e Py(M). (4.4.2)

Let Qy > 0 be the constant given by the fact that Y has Property Q. Let g = (R/a)f.
As R/a < 1, we have that w,og(1) < w,(1). As Ay (2w,(1)Qy') = 2w, (1), we get that there

exists M” < M such that

le(g(R) = elg(m))] < 2w, (1)Qy ", (4.4.3)

for all n < m € Pr(M"). As j was chosen arbitrarily, (4.4.1), (4.4.2) and (4.4.3) above gives

us that j < 2w, (1) {,1, for all 7 € N. As ¢ is coarse, this gives us a contradiction.
(ii) Assume ¢ : Bx — Y is a uniformly continuous map, and let ¢ € (0,1) be such that
Py(t) > 0. As ¢ is uniformly continuous, we can pick p € (¢,1), s,7 € (0,p) with s <t <r,

and v > 0, such that

|z —ylels,r] implies [o(x)—w(y)| >, (4.4.4)

for all x,y € pBx. Assume that X does not have Property Q. So, Ax(s) = 0. Fix j € N.
Then, there exists k € N, and f : Px(N) — X with w;(1) < 57!, such that, for all infinite

M < N, there exists n < m € Pr(M) such that | f(7)— f(m)| > s. Without loss of generality,
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we can assume that | f(n) — f(m)| > s, for all n < m € Pr(M).

Pick a positive § < (r — s). As |f(n) — f(m)| € [s, k], we can use Ramsey theory once
again to pick an infinite M/ ¢ M, and a € [s, k] such that | f(7) — f(m)| € [a,a + 0], for all
n < m e Pr(M'). By our choice of 6, it follows that
|

2pm) =g €5l forall < me P, (1.4.5)

Let mg be the first k elements of M/, and M" = M'\myq. For each n € P,,(M"), let h(n) =
(s/a)(f(n)— f(mg)). Then, h(n) € pBx, and ||h(n) — h(m)|| € [s,r], for all n < m € Pr(M").
As s/a < 1, we have wy(1) < wy(1). Hence, weon(1) < wy,(571).

Let @y > 0 be the constant given by the fact that Y has Property Q. Hence, as

Ay (2w,(77HQ") = 2w, (j71), there exists M” = M” such that

le(h(R)) — e(h(m))] < 2w, () @y (4.4.6)

for all n < m € P(M"”). As j was chosen arbitrarily, (4.4.4), (4.4.5) and (4.4.6) gives
us that v < 2w,(j71)Qy", for all j € N. As ¢ is uniformly continuous, this gives us a

contradiction. O]
We can now prove the following generalization of Theorem 5.1 of [Kal].

Theorem 4.4.3. Let X and Y be Banach spaces, and assume that Y is reflexive (resp.

super-reflexive). If either
(i) there exists a coarse solvent map X — Y, or

(ii) there exists a uniformly continuous map ¢ : Bx — Y such that p,(t) > 0, for some

te(0,1),

then, X is either reflexive (resp. super-reflexive) or X has a spreading model equivalent to

the l1-basis (resp. trivial type).
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Proof. By Corollary 4.3 of [Kal], any reflexive Banach space has Property Q. By Theorem
4.5 of [Kal], a Banach space with Property Q must be either reflexive or have a spreading
model equivalent to the ¢;-basis (in particular, have nontrivial type). Therefore, if YV is
reflexive, the result now follows from Theorem 4.4.2.

For an index set I and an ultrafilter &4 on I, denote by X! /U the ultrapower of X with
respect to U. Say Y is super-reflexive. In particular, by Corollary 4.3 of [Kal], every
ultrapower of Y has Property Q. If X maps into Y by a coarse and solvent map, then
XT/U maps into Y!/U by a coarse and solvent map. Therefore, it follows from Theorem
4.4.2 that every ultrapower of X has Property (). Suppose X has nontrivial type. Then,
all ultrapowers of X have nontrivial type. Therefore, by Theorem 4.5 of [Kal], we conclude
that all ultrapowers of X are reflexive. Hence, item (i) follows.

Similarly, if there exists ¢ : Bx — Y as in item (ii), then the unit balls of ultrapowers of
X are mapped into ultrapowers of Y by maps with the same properties as ¢, and item (ii)

follows. u

Proof of Theorem 1.4.7. Ttem (ii) of Theorem 1.4.7 follows directly from item (ii) of Theorem

4.4.3. [l

Remark 4.4.4. The statement in Theorem 1.4.7 cannot be improved so that if X embeds
into a super-reflexive space, then X is either super-reflexive or it has an ¢;-spreading model.
Indeed, it was proven in Proposition 3.1 of [NS] that ¢5(¢;) strongly embeds into L, for all
p = 4. As (@07, < l2(f1), it follows that (D,l7)s, strongly embeds into Ls. However

(Dnl7)e, is neither super-reflexive nor contains an ¢;-spreading model.

4.5 Embeddings into Hilbert spaces.

In [Ran|, N. Randrianarivony showed that a Banach space X coarsely embeds into a
Hilbert space if and only if it uniformly embeds into a Hilbert space. This result together

with Theorem 5 of [No2], gives a positive answer to Problem 1.2.6 for Y = ¢, for p € [1,2].
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In this section, we show that Problem 1.4.1 also has a positive answer if Y is ¢,, for any
pe[l,2].
First, let us prove a simple lemma. For 6 > 0, a subset S of a metric space (M, d) is called

d-dense if d(x,S) < ¢, for all x € M.

Lemma 4.5.1. Let (M,d) and (N,0) be Banach spaces and S < M be a d-dense set, for

some 6 > 0. Let f: M — N be a coarse map such that f|S is solvent. Then f is solvent.

Proof. Let n e N. As f15 is solvent and wy(0) < o0, we can pick R > 0 such that

d(z,y) € [R—26, R+n+25] implies 0J(f(x), f(y)) > n+ 2w (6),

forall z,y € S. Pick z,y € X, with d(x,y) € [R, R+n]. As S is §-dense, we can pick ',y € S
such that d(x,2") < 0 and d(y,y’) < d. Hence, d(2/,y') € [R — 2d, R + n + 26], which gives us
that o(f(2), f(v')) > n + 2w (). Therefore, we conclude that o(f(z), f(y)) > n. O

The next lemma is an adaptation of Proposition 2 of [Ran|, and its proof is analogous
to the proof of Theorem 1 of [JoRan]. Before stating the lemma, we need the following
definition: a map K : X x X — R is called a negative definite kernel (resp. positive definite
kernel) if

(i) K(z,y) = K(y,x), for all x,y € X, and

(i) 5, K (@i xj)cic; < 0 (resp. D, ; K(xi,z5)cic; = 0), for all n e N, all zq,... 2, € X,
and all ¢,...,¢, € R, with >}, ¢; = 0.

A function f : X — R is called negative definite (resp. positive definite) if K(z,y) = f(x—y)

is a negative definite kernel (resp. positive definite kernel).

Lemma 4.5.2. Let X be a Banach space and assume that X maps into a Hilbert space by
a map which is coarse and solvent. Then there exist a« > 0, a map p : [0,0) — [0,0), with

limsup,_,, p(t) = 0, and a continuous negative definite function g : X — R such that
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(i) g(0) =0, and

(ii) p(lz]) < g(x) < [, for all z € X.

Sketch of the Proof of Lemma 4.5.2. Let H be a Hilbert space and consider a coarse solvent
map f: X — H. Without loss of generality, we may assume that || f(z) — f(y)|| < ||z — vyl
for all z,y € X, with |z —y|| > 1.

Claim 1: Let a € (0,1/2). Then X maps into a Hilbert space by a map which is a-Hdolder
and solvent.

As H is Hilbert, the assignment (z,y) — ||f(z) — f(y)|? is a negative definite kernel on X
(this is a simple computation and it is contained in the proof of Proposition 3.1 of [Nol]).
Hence, for all a € (0,1), the kernel N(z,y) = |f(z) — f(y)|** is also negative definite (see
[Nol], Lemma 4.2). So, there exists a Hilbert space H, and a map f, : X — H, such that

N(x,y) = | fa(x) — faly)|?, for all z,y € X (see [Nol], Theorem 2.3(2)). This gives us that

@l =yD)* < Ifalz) = fa)| < 2 =y

for all z,y € X, with |« — y|| = 1. In particular, f, is solvent. Hence, if N < X is a 1-net
(i.e., a maximal 1-separated set), the restriction fun : N — H, is a-Holder and solvent.
Using that « € (0,1/2), Theorem 19.1 of [WWi| gives us that there exists an a-Holder map
F, : X — H, extending f,n. By Lemma 4.5.1, F}, is also solvent. This finishes the proof of
Claim 1.

By Claim 1 above, we can assume that f : X — H is an a-Holder solvent map, with

ae (0,1/2). Set N(x,y) = ||f(z) — f(y)|?, for all z,y € X. So, N satisfies

(Bl —yl))* < N(a.y) < | —y|>, (4.5.1)

for all z,y € X. Let u be an invariant mean on the bounded functions X — R (see [BenLi],

Appendix C, for the definition of an invariant mean, and [BenLi|, Theorem C.1, for the
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existence of such invariant mean), and define

g(x) = J Ny + z,y)du(y), forall ze X.
X

Let p(t) = (p;(t))? for all t = 0. As {, 1dp = 1, Inequality 4.5.1 gives us that items (i) and
(ii) are satisfied. As f is solvent, we also have that limsup,_,, p(t) = 0. The proof that g is
a negative definite kernel is contained in Step 2 of [JoRan] and the proof that g is continuous

is contained in Step 3 of [JoRan]. As both proofs are simple computations, we omit them

here. O

We can now prove the main theorem of this section. For that, given a probability space
(Q, A, ), we denote by Lo(u) the space of all measurable functions 2 — C with metric

determined by convergence in probability.

Theorem 4.5.3. Let X be a Banach space. Then the following are equivalent.

(i) X coarsely embeds into a Hilbert space.
(i) X uniformly embeds into a Hilbert space.
(111) X strongly embeds into a Hilbert space.
(iv) X maps into a Hilbert space by a map which is coarse and solvent.

(v) X maps into a Hilbert space by a map which is uniformly continuous and almost un-

collapsed.

(vi) There is a probability space (2, A, ) such that X is linearly isomorphic to a subspace
of Lo(k)-

Proof. We only need to show that (iv) implies (vi). Indeed, the equivalence between (i), (ii),
and (vi) were established in [Ran], Theorem 1 (see the paragraph preceeding Theorem 1 of

[Ran] as well). By [Ro4], Theorem 2, if X uniformly embeds into a Hilbert space H then X
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strongly embeds into ¢5(H). Hence, (ii) and (iii) are also equivalent. Using Proposition 4.1.2
with € being the standard basis of {5, we get that (v) implies (iv). Hence, once we show that
(iv) implies (vi), all the equivalences will be established.

Let H be a Hilbert space and f : X — H be a coarse solvent map. Let a > 0, p and
g : X — R be given by Lemma 4.5.2. Define F(z) = ¢ 9@ for all x € X. So, F is a
positive definite function (see [Nol|, Theorem 2.2). As F'is also continuous, by Lemma 4.2
of [AMauMi] applied to F', there exist a probability space (£2,.4, 1) and a continuous linear

operator U : X — Lg(u) such that

F(tx) = f eV@W dy(w), forall teR, andall ze X.
Q

As U is continuous, we only need to show that U is injective and its inverse is continuous.
Suppose false. Then there exists a sequence (x,)y_; in the unit sphere of X such that
lim,, U(z,) = 0. By the definition of convergence in Ly(u), this gives us that lim,, F'(tz,) = 1,
for all t € R. As limsup,_,,, p(t) = o, we can pick t; > 0 such that e ) < 1/2. Hence, we
have that

F(tox,) = e 9ltomn)  emP(ltoznl) — o=plto) %, forall neN.

As lim,, F'(tox,) = 1, this gives us a contradiction. O

Proof of Theorem 1.4.8. This is a trivial consequence of Theorem 4.5.3 and the equivalence

between coarse and uniform embeddability into ¢, for p € [1,2] (see [No2], Theorem 5). [

4.6 Embeddings into /...

Kalton proved in [Ka3], Theorem 5.3, that uniform embeddability into ¢, coarse embed-
dability into /., and Lipschitz embeddability into ¢, are all equivalent. In this section, we
show that Problem 1.4.1 also has a positive answer if Y = /.

The following lemma is Lemma 5.2 of [Ka3]. Although in [Ka3] the hypothesis on the map
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are stronger, this is not used in their proof.

Lemma 4.6.1. Let X be a Banach space and assume that there exists a Lipschitz map

X — Uy that is also almost uncollapsed. Then X Lipschitz embeds into £y .

Proof. Let f : X — {4 be a Lipschitz almost uncollapsed map. Pick ¢ > 0 such that
ps(t) > 0. Define a map F : X — (,(Q, x N) by setting F(z)(¢,n) = ¢~ ' f(qz)n, for all
re X, and all (¢,n) € Q; x N. Then

|F(z) = F(y)| = W Nq‘llf(qfv)n — f(qy)n| < Lip(f) - |z —y|.

So, F'is also Lipschitz. Now notice that, as f is continuous, we have that

|F(z) — F(y)| =supq ' f(qz) — f(qv)]-

q>0
Hence, if z # y, by letting ¢ = t|x — y|| ™!, we obtain that

t

1Pta) = P > B () 1 () > P el

S
~—

So, F'is a Lipschitz embedding. O

Proof of Theorem 1.4.9. By Theorem 5.3 of [Ka3|, items (i), (ii) and (iii) of Problem 1.2.6
are all equivalent. Using Proposition 4.1.2 with £ being the standard basis of ¢y, we have
that item (v) of Problem 1.4.1 implies item (iv) of Problem 1.4.1. Hence, we only need to
show that item (iv) of Problem 1.4.1 implies that X Lipschitz embeds into ¢,. For that,
let f: X — {4, be a coarse solvent map. Without loss of generality, we may assume that
[f(x) = f(y)| < |z —yl, for all x,y € X, with |z —y| > 1. Let N < X be a 1-net. Then
fIN is 1-Lipschitz and solvent. Recall that ¢, is a 1-absolute Lipschitz retract, i.e., every
Lipschitz map ¢g : A — {y, where M is a metric space and A < M, has a Lip(g)-Lipschitz
extension (see [Ka2], Subsection 3.3). Let F' be a Lipschitz extension of f|N. By Lemma

4.5.1, F is solvent. Hence, by Lemma 4.6.1, it follows that X Lipschitz embeds into £,. [J
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4.7 Open questions.

Besides Problem 1.2.6 and Problem 1.4.1, there are many other interesting questions re-
garding those weaker kinds of embeddings. We mention a couple of them in this section.

Raynaud proved in [Ray| (see the corollary in page 34 of [Ray]) that if a Banach space X
uniformly embeds into a superstable space (see [Ray] for definitions), then X must contain
an £,, for some p € [1,0). Hence, in the context of those weaker embeddings, it is natural

to ask the following.

Problem 4.7.1. Say an infinite dimensional Banach space X maps into a superstable space
by a map which is both uniformly continuous and almost uncollapsed. Does it follow that X

must contain ¢, for some p € [1, ).

We refer to Problem 5.8.6 below for a similar question.
The properties of a map being solvent (resp. almost uncollapsed) are not necessarily stable
under Lipschitz isomorphisms. Hence, the following question seems to be really important

for the theory of solvent (resp. almost uncollapsed) maps between Banach spaces.

Problem 4.7.2. Assume that there is no coarse solvent (resp. uniformly continuous almost

uncollapsed) map X — Y. Is this also true for any renorming of X7

At last, we would like to notice that we have no results for maps X — Y which are coarse

and almost uncollapsed. Hence, we ask the following.

Problem 4.7.3. What can we say if X maps into Y by a map which is coarse and almost

uncollapsed map? Is this enough to obtain any restriction in the geometries of X and Y?



Chapter 5

Coarse embeddings into superstable

Banach spaces.

In this chapter, we study nonlinear embeddability into superstable spaces. The goal of
this chapter is to show that if a Banach space X coarsely embeds into a superstable Banach
space, then X must contain an ¢,-spreading model, for some p € [1,00). For that, we will
go over the results contained in Section 1.5, which are in the paper Coarse embedings into

superstable spaces (see [BrSwl).

5.1 Preliminaries.

Given a Banach space X, we define stability and superstability as in Section 1.5. By
Theorem II.1 of [KrMau| and Theorem 0.1 of [Ray], both stability and superstability are
closed under taking ¢,-sums, for p € [1,0). Precisely, given p € [1,00), if X is stable (resp.
superstable), then £,(X) is also stable (resp. superstable). We will be using this property
without mentioning throughout this chapter.

We say that (M,d) is a pseudometric space if d : X x X — R, is a pseudometric, i.e., if
d is symmetric map satisfying the triangular inequality. Given pseudometric spaces (M, d),

(N,0) and a map f : M — N, we define wy and p; by the formulas given in Equation

75
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1.1.1 and Equation 1.1.2; and define uniform and coarse embeddings, and solvent and almost

uncollapsed maps analogously as in Chapter 1.

5.2 Baire class 1 functions.

Let X and Y be metrizable topological spaces. A function f: X — Y is called Baire
class 1 if the inverse image of any open subset of Y under f is an F, subset of X. If YV is
separable, then the set of continuity for f is a comeager Gs subset of X. If Y is separable
and (f,: X — Y)®_, is a sequence of Baire class 1 functions, then (f,)®* ,: X — YN is a
Baire class 1 function. The pointwise limit of a sequence of continuous functions from X to
Y is a Baire class 1 function. The restriction of a Baire class 1 function is a Baire class 1
function. For proofs of these facts and more information about Baire class 1 functions, see

[Ke] and [Kur].

Lemma 5.2.1. Let X be a metrizable o-compact topological space, Y a topological space, and
let f: X xY — R be separately continuous. Given a metric d inducing the topology of X and
a countable family K of compact subsets of X such that X = g K ; if there is 6 > 0 such
that for each x € X, Bs(x) n K # & for only finitely many K € IC, then f is the pointwise

limit of a sequence of continuous functions.

Proof. For each n € N, let {z,;},~, be a ﬁ—dense set in (X, d) such that |{z,;}7, N K| <

o for every K € K. For each n,i € N, define g,,: X — Ry by

Gni(z) = max{ —d(xp,7) ,O}

n+1

for every x € X. Note that g, ; is continuous and given x € X, g, ; 5, () is a nonzero function

In,i
0

for some but only finitely many ¢ € N. Thus the function A, ; := - is well-defined and
J

j=19n,
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continuous. For each n € N| define f,,: X xY — R by

0
Z (Tnis y) hni(2)

for every (z,y) € X x Y and note that f, is itself continuous by the separate continuity of f
and the observation on gn | p;,(x)- The sequence (fn)_; converges pointwise to f. Indeed,
take any (z,y) € X x Y and any € > 0. Let N € N be such that |f(z,y) — f(2',y)| < € when
d(z,2') < £. Then, for n > N,

F@y) = Fuly)l = | 2 (F@) = F (@05:9) hoa(2)

1

E‘f xnuy)’hnZ( )

=1

<e- Z hi()
i=1

Il
™

O

Given a set X and a family of functions F from X x X to X, define the sequence of subsets

(]—“[k])zo: L of X X recursively by

FO = {2 2}

FE = {w o f(w,g(@) | f & F.ge FH}.

The following lemma will give us Lemma 5.5.5 below, which is essential for the proof of

Theorem 1.7.3.

Lemma 5.2.2. Let X be a separable metric space and F a countable family of Baire class 1
functions from X x X to X. There is a comeager Gs subset E of X such that g is continuous

on E for all g € |, F¥!
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Proof. Certainly, ¢ is continuous on E, = X for g € FI%. Suppose k € Ny is such that
there is a comeager G subset Ej, of X such that g is continuous on Ej, for all g € FI*I. For
each g € FI¥ let T, = {(v,9(x)) | € E;}. Since F is a countable family of Baire class 1
functions with separable codomain X, there is a comeager G subset Fy, of I'; such that fIp,
is continuous on Fy for all f € F. Let m: X x X — X be the first coordinate projection.
Consider U = T'y n'V x W, where V,W are open subsets of X; and suppose z € w(U), so
that (x,g(z)) € U. As W is open and g(x) € W, there is r; > 0 such that B, (g(z)) € W.
Since g is continuous on Ej, there is ro > 0 such that g(B,,(z) n Ex) < B, (g(z)). Thus
(V n B,,(z)) n Ej, is an open neighborhood of z in Ej, contained in w(U). Since x € 7(U) was
arbitrary, m(U) is open in Ej. And U was an arbitrary element in a basis for the topology
on I'y, so w(U) is open in Ej whenever U is open in I'y. It follows easily that m(F}) is a
comeager G subset of Ej, since Fy is a comeager G subset of I'y. Let Ejy1 = ﬂge}'[k] m(Fy).
Since FI¥! is countable, Ej,; is a comeager (G5 subset of Fy, and therefore also of X, since Fj,
is a comeager Gy subset of X. Now take any g € F*+1. Then there is f € F and ¢ € FI*
such that g(x) = f(x, ¢ (x)) for all z € X. And if z € Ej 4, then by construction z is a point
of continuity for ¢’ and (z,¢'(x)) is a point of continuity for fr . Therefore x is a point of
continuity for g. Thus, we have constructed a comeager G5 subset Fjy,1 of E} such that g is

k+1

continuous on Fj,q for all g € F [k+1] - And so we can recursively define such Fj, for all k£ € N.

The result follows by taking F = (,_, Ek. O]

5.3 Making coarse maps “invariant”.

In this section, we use Markov-Kakutani’s fixed-point theorem in order to show that coarse
embeddings may be modified and made more “tamed” if we allow ourselves to substitute its
codomain by an ultrapower of the ¢;-sum of the original space. Precisely, we have the

following.

Theorem 5.3.1. Let X and Y be Banach spaces and f: X — Y a coarse map. Then there
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exists an ultrafilter U on an index set I, and a map F : X — (,(Y)! /U, such that

prle =yl) < |F(x) = Fly)| < ws(lz —yl),

and

|F(z) = F(y)| = | F(x—y)l, foral z,yeX.

Proof. Define C € R**X by letting D € C if and only if

prle =yl) < D(,y) < wsle —yl),

for all z,y € X. So, C is relatively compact. Indeed, one only needs to notice that

ce [] 0we—yhl

(z,y)eX xX

Hence, as f is coarse, C' is relatively compact. Let d : X x X — R be given by d(z,y) =
|f(xz)— f(y)], for all z,y € X. So, de C.

For each z € X, define 2: R¥*X — RX*X by letting 2(g)(z,y) = g(x + 2,y + 2) for all
g e R**X and all 2,y € X. Let A = conv{2(d) | z € X} < R¥*X. By the definition of
the pointwise convergence topology on R**X we have that A = C. The family {2|4}.cx
is easily seen to be a commuting family of continuous, affine self-mappings of the compact
convex subset A of R**X. Hence, by Markov-Kakutani’s fixed-point theorem, there exists
D e Asuch that 2(D) = D for all z€ X. That is, D(z+z,y+2) = D(z,y) for all z,y, z € X.
Say D = lim;g D;, where I is an index set, U is some nonprincipal ultrafilter on I, and
D; € conv{(d) | z € X}, for all i € I. For each i € I, we have that D; = ng a; ;2 i(d),
for some finite sequence (a”)jg of non negative real numbers such that ng a;; = 1, and
(__Z)l in X.

some finite sequence (z;;);
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For y1,...,y, € Y, we denote (y1,...,4s,0,0,...) € £1(Y) by ®}_,y;. Consider the map

F=(F)er: X — Y)Y U

s(i

i (Do + 5 - 1)

j=

iel

As supje; | Fi(2) |, vy < wy(|z]), for all € X, the map F is well-defined. By the definition

of the norm on ¢, (Y)! /U, we have that

|E(2) = EW)levyru = D(x,y),

for all z,y € X. Therefore, as D(z,y) = D(z — y,0), for all z,y € X, and F(0) = 0, we are
done. O

Corollary 5.3.2. Let (X,| - |) be a Banach space. If X is coarsely embeddable into a
superstable Banach space, then there exists an invariant stable pseudometric d on X such

that the identity map I1d: (X, | - ||) — (X, d) is a coarse equivalence.

Proof. Suppose Y is a superstable Banach space and f: X — Y is a coarse embedding. Let
F: X — (,(Y)? /U be obtain from Theorem 5.3.1 applied to f. The map d: X x X — R,
defined by d(z,y) = |F(z) — F(y)|| for all z,y € X can easily be seen to be an invariant
pseudometric on X, and the stability of d follows from the stability of ¢;(Y)Z/U. Finally,
Id: (X,|-]) = (X,d) is a coarse equivalence since pq = py and wiq = wy, by the definitions

of F and d. O

Remark. Although this will not be needed for the main result in these notes, Corollary 5.3.2
can actually be improved to show the existence of a coarsely equivalent invariant stable metric
on X. Indeed, by Theorem 1.3.4 (see [Br2], Theorem 1.6) if X and Y are Banach spaces
and f: X — Y is a coarse embedding, then there is a coarse embedding f : X — 01(Y) with
uniformly continuous inverse (meaning p;(¢) > 0 whenever ¢ > 0). Raynaud has shown (see

[Ray], Theorem 0.1) that the £,-sum of a superstable space is again superstable, and so the
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same proof as in Corollary 5.3.2 with ¢;(Y) replacing Y and f replacing f will yield that
Id: (X,||-|) — (X,d) is a coarse embedding with uniformly continuous inverse. In particular,

d is a metric.
In the remaining of this section, we use Theorem 5.3.1 to prove a result on the uniform

embeddability of the ball of a given Banach space into a superstable space (Theorem 5.3.3).

Theorem 5.3.3. If a Banach space X maps into a superstable space by a map which is both
uniformly continuous and almost uncollapsed, then Bx uniformly embeds into a superstable

space.
Before proving Theorem 5.3.3, we need the following proposition.

Proposition 5.3.4. Let X and Y be Banach spaces and f : X — 'Y be a solvent map such
that | f(x)—f(y)| = |f(x—2y)| for all x,y € X. Then, for every norm bounded subset B < X,

f 1B has a Lipschitz inverse.

Proof. First notice that,

If (@) = 1f(z) = FO)] = [£0) = f(@)] = [f(=2)],

for all x € X. Therefore,

[f(mz)| = 1f((m = Dz) = f(=2)[ < [f((m = Dz)]| + | f(2)],

for all z € X, and all m € N. So, |f(mz)| < m - |f(x)|, for all z € X, and all m € N.
Let N € N be such that B < N - Bx. As f is solvent, we can find n, R > 2N such that
|z| € [R, R + n] implies | f(x)| > n. By our choice of n and R, for each x € 2N - Bx we can
pick m, € N such that |m,z| € [R, R + n]. Hence,

n n

— >
@) > 2 >

=],
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for all z € 2N - Bx. This gives us that | f(x) — f(y)| = g5 |z —yl, for all z,y € B. O

Proof of Theorem 5.3.3. If X maps into a superstable space by a uniformly continuous almost
uncollapsed map, then, by Proposition 63 of [Ro4], X maps into a superstable space by a
map which is both uniformly continuous and solvent. Notice that Theorem 5.3.2 remains
valid replacing py by p;. Indeed, the exact same proof remains valid replacing py by p;.
Therefore, X maps into a superstable space Y by a uniformly continuous solvent map F
such that |F(z) — F(y)| = |F(x —y)|, for all ,y € X. By Proposition 5.3.4, F'|g, has a

Lipschitz inverse. In particular, Bx uniformly embeds into a superstable space. O

5.4 Type space.

From now on, we consider a separable infinite dimensional Banach space (X, | - ||) which
admits an invariant stable pseudometric d coarsely equivalent to | - |, and the corresponding
identity map Id: (X, | - |) — (X, d). By Corollary 5.3.2, such d exists as long as X coarsely

embeds into a superstable space.

Remark 5.4.1. Notice that, by Remark 5.3, we can actually assume that d is a metric.
However, in order to obtain the isomorphism constant in Remark 5.8 below, we need to work

with d being the pseudometric given by Corollary 5.3.2.

Let A be a countable | - ||-dense Q-vector subspace of X. Given z € A, define the function
T € RY® by T(\,y) = d(A\z,y) for all (\,y) € Q x A. The space of types on (A, d}axn),
which we denote by T, is defined to be the closure of {Z},ea in RE*2 (with the topology of
pointwise convergence). An element o of T is called a type, and is called a realized type if
o = 7 for some x € A, in which case o is also called the type realized by z. The type 0 is
called the null or trivial type.

Note that the countability of Q@ x A implies that 7 is metrizable, and so every o € T
can be expressed as lim,,_, T, for some sequence (z,):_; in A. Such a sequence is called

a defining sequence for o. Note also that in this case o(\,x) = lim,y d(Ax,,z) for every
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(A, x) € Q x A and every nonprincipal ultrafilter & over N. In particular, lim,, . d(z,,0)
exists, and so (z,)%_; is a d-bounded (and therefore also | - |-bounded) sequence in A.

For every M € Ry, welet Ty = {oc € T | 0(1,0) < M}. We will need the following lemma.
Lemma 5.4.2. Say M € R,. Then Ty is compact.
Proof. Say o € Ty, and (z,)%_; is a defining sequence for o. As lim,,_,o d(x,,0) = 0(1,0) <
M, we may suppose that the defining sequence for ¢ is contained in the d-ball of radius
M +1 around 0. As Id: (X, | -|) — (X, d) is expanding, there exists R < oo such that ¢t < R
whenever prq(t) < M + 1. Then, since pa(|z,|) < d(x,,0) < M + 1 for every n € N, we have

o(A z) = limd(Azy, z) < lim(d(Ax,,0) + d(0,2)) < wia(|A[R) + d(0, z)

n

for all (A, z) € Q@ x A. That is, we have

TM - H [07(")(’)"R> —i—d(;U,O)],

(A z)eQxA

since o € Ty was arbitrary. By Tychonoff’s theorem and the fact that 7, is closed, we are

finished. O

Corollary 5.4.3. The metric space T is o-locally compact.

0

Oy (@)X, are defining sequences for o and

Lemma 5.4.4. Suppose o,7 € T. Then if (w,)

(Yn)2_1, (20)2, are defining sequences for T, then
(i) The limits lim,, aw,, and lim, @z, exist and are equal for every a € Q.

(i1) The limits lim,, lim,, w, + Yy, and lim, lim,, z, + z,, exist and are equal.

Proof. Ttem (i) follows immediately from the definitions. By a straightforward argument

using the invariance and stability of d, item (ii) also follows. ]
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Definition 5.4.5. Let 0,7 € T and let (2,)5_1, (Ym)so_, be any defining sequences for o and
T, respectively. We define the dilation operation on T by (a,0) € Q x T +— «- 0 € T, where
a -0 = lim, az,. We define the convolution operation on T by (o,7) €T xT —o*TeT,
where o =T = lim,, lim,, =, + Y. By Lemma 5.4.4, both dilation and the convolution are well
defined. For (o;)%_, = T, we define x%_, o; in the obvious way, and we allow dilation to bind

more strongly than convolution in our notation, i.e., we write o - o * T meaning (- o) * T.

It follows easily from the definition above that, given o € 7 and a defining sequence (x,,)%_,
for o, we have a - o(\,z) = o(Aa,x) for every (\,z) € Q x A and o * 7 = lim, T, * 7 for
every 7 € T. Furthermore, using the invariance and stability of d, it is easily shown that the

convolution is associative and commutative, and that dilation distributes over convolution.

Lemma 5.4.6. Dilation is a right-continuous map from Q x T to T.

Proof. Fix a € Q and suppose (0,)r_; is a sequence in T converging to o € 7. Then
a-o(Nx) =0, z) =lim, oo, A, z) = lim, o, a - 0,(\, z) for all (A\,z) € Q x A. Thus
-0 =lim, 4 a-0,. This was for an arbitrary converging sequence in 7T, so dilation is right

continuous. O

Lemma 5.4.7. Convolution is a separately continuous map from T x T to T.

Proof. Let D be a metric compatible with the topology on 7. Fix 7 € T and suppose
(0n)2_; is a sequence in T converging to o € 7. For each n € N, let (2,,,)55_; be a defining
sequence for o,, and let m,, € N be such that D(0,,ZTnm,) < % and D(Tym, * T, 00 % T) < %
Then (Z,m, )y is a defining sequence for o by the triangle inequality; and so, again by
triangle inequality, o = 7 = lim,, o, * 7. This was for an arbitrary converging sequence in 7T,

so convolution (which is commutative) is separately continuous. ]

Corollary 5.4.8. Convolution is a Baire class 1 map from T x T to T.
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Proof. Given (A\,z) e Qx A, let @, ,: T xT — R be defined by @, ,(0,7) = 0#7(\, z) for all
0,7 € T. Choose a compatible metric D for the topology on 7 and note that there is 6 > 0
such that D(o,7) = § whenever |o(1,0) —7(1,0)] is large enough. Now, by Lemma 5.4.7 and
the topology on T, ®, , is separately continuous; and by Lemma 5.4.2, Ty is compact for
every M € R, . Thus; applying Lemma 5.2.1 with 7 replacing both X and Y, ®, , replacing
f, D replacing d, {Tar+1\intTy}3_o replacing K, and with § as above in the statement of
Lemma 5.2.1; we have that ®, , is the pointwise limit of a sequence of continuous functions,
and is therefore Baire class 1. As this is true for any (A, ) € Q x A, the convolution is itself

Baire class 1. n

The sequence in the statement of our main theorem will be a defining sequence for one of

the types in 7. We already know that a defining sequence (x,,)x_; for a type o is bounded

0

©_, is eventually bounded

in norm, but we want to put a condition on o that guarantees (z,)

away from zero in norm. This motivates our next definition.
Definition 5.4.9. A type 0 € T is called admissible if o(1,0) > inf;~qwiq(t).

Note that if o is an admissible type and (z,)?_; is a defining sequence for o, then
liminf, w(||z,]) = lim, d(z,,0) = o(1,0) > inf;~owia(t). Thus, since wyq is an increas-
ing function, we can find § > 0 such that (z,)r_, is eventually d-bounded in norm away from

zero. From this point forward, we will let the Greek letter v stand for the value infy- wiq(?).

Remark. If 1d : (X, ] - ||) — (X,d) is uniformly continuous, then v = 0. If, in addition, d
is a metric, then the inequality in our definition is trivial, and every nontrivial type will be
admissible. Given our assumption that d is coarsely equivalent to | - ||, we do not need to
place any additional conditions on a type to guarantee its defining sequences to be norm
bounded. Had this not been the case, we would have had to include such a condition in
our definition of admissibility. One condition we could use would be to require a type o to
also satisfy the inequality o(1,0) < sup,_, pra(t) (a trivial inequality in our case). In [Ray],

where the author is concerned with an invariant stable metric d uniformly equivalent to || - |,
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the author does exactly this.

We have established a condition to put on a type to guarantee its defining sequences are
bounded in norm and eventually bounded away from zero in norm. In our goal to obtain a
basic sequence, we now need an extra condition which will guarantee that a type’s defining

sequences contain no norm Cauchy subsequences.

Definition 5.4.10. We say that a type o is symmetric if o = (=1) - o, i.e., if c(\,x) =
o(=\z), for all (\,z) e Q x A. Let S ={o €T | o is symmetric} and let Spy = S N Tay.

Note that by Lemma 5.4.6, S is closed, and therefore Sy, is compact for all M € R,.

Proposition 5.4.11. Say o € T is an admissible symmetric type and (x,)>_, is a defining

sequence for . Then (z,)¥ has no | - ||-Cauchy subsequence.

Proof. Suppose false. By taking a subsequence, we can assume that (x,)’_; converges in

norm to some x € X. Then, as ¢ is symmetric, we have that

liminf d(Az,, — A\z,,)

n—0o0

— lim inf (d(mn, “Az) — (A —Aan) + o (A, —)\xn)>

n—0

— liminf lim (d(/\xn, “Az) — AN, —ATn) + d(— AT, —)\xn)>

n—o m—0

< liminf lim (d()\:pn,Aa:m) + d(—A:pm,—Amn)>

n—o m—0

< 2-liminf iminf wig(|A] - |20 — 2m]])
n—o0 m—00

= 27,

for all A € Q. This gives us that pa([|Az|) < liminf, pa(2|Az,|) < 27, for all A € Q. As
d is coarsely equivalent to the norm of X, this can only happen if + = 0. But then the
admissibility of o yields

v <o(1,0) = lim d(z,,0) < liminfwy(|z.]) =7,
n—o0

n—o0
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a contradiction. O

5.5 Conic classes.

We will need the following definition for a minimality argument later on.

Definition 5.5.1. A nonempty subset C of S is called a conic class if

(i) C # {0},
(ii)) A-o€C for all \e Q and 0 € C, and

(i1i) o =71 €C forall o,7€C.

Moreover, C is called admissible if C contains an admissible type, i.e., if there exists o € C

such that o(1,0) > .
Lemma 5.5.2. The set S is a closed admissible conic class.

Proof. That S is closed follows from Lemma 5.4.6. The properties (ii) and (iii) follow easily
from the definitions of dilation and convolution and from the invariance of d. All that remains
is to show that there is an admissible (and therefore nontrivial) type o in S. Let R < «©
be such that pq(t) > 7 whenever ¢ > R. By the infinite-dimensionality of X, there is a

bounded R-separated sequence (x,,)%_; in (X, | -|). After possibly taking a subsequence, we

ee}
n=

may suppose that (x,)%_; is a defining sequence for some o € 7. In this case,

(0% (=1) - 0)(1,0) = lim lim d(, — Zum, 0)

n m

> inf d(z, — T, 0)

n#m

> pa(R)

>
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That is, the symmetric type o = (—1) - ¢ is admissible. Therefore S is a closed admissible

conic class. O

Lemma 5.5.3. Let o0 be an admissible type. Given any 0 < r1 < ro, there is a € Q4 such

that pa(r1) < a-o(1,0) < wia(ra).

Proof. Let (x,,)x_, be a defining sequence for o. The admissibility of ¢ implies that (x,)7r_,
is a | - |-bounded sequence which is eventually | - [-bounded away from 0. Thus, we may
suppose after possibly taking a subsequence that lim,, |z, | exists and is nonzero. Let a € Q.

be such that lim, ||az,| € [r1,72]. As - o(1,0) = lim,, d(az,,0), we then have

pra(ri) < a-o(1,0) < wia(ra).

O

Proposition 5.5.4. Every closed admissible conic class contains a minimal closed admissible

conic class.

Proof. Fix a closed admissible conic class C. Let F be the family of closed admissible conic
classes contained in C ordered by reverse set inclusion and let {C;},c; be some chain in F.

Claim: ()

.7 Ci 1s a closed admissible conic class.

Certainly, (),.;C; < S is closed and satisfies conditions (ii) and (iii) in the definition of

conic class. So we only need to show that (),_;C; contains an admissible type. For that, fix

iel
R < oo such that pia(t) > v whenever t > R and let B; = C; n (To, (r+1)\int Ty, (r)) for all
i € I. By Lemma 5.4.2, B; is compact. Given i € I, let o; € C; be admissible. By the previous
lemma, there is o; € Q. such that «; - 0; € B;, so B; is nonempty. Hence, {B;},; is a family
of compact sets with the finite intersection property, which gives us that (,_; B; < ();c;Ci

is nonempty. By our choice of R, [,.; B; can only contain admissible types, hence (,_;C;

el
contains an admissible type, and the claim is proved.

As (),.; C; is a closed admissible conic class, it is an upper bound for the chain {C;};e; in F.



CHAPTER 5. COARSE EMBEDDINGS INTO SUPERSTABLE SPACES. 89

By Zorn’s lemma, F has a maximal element. That is, C contains a minimal closed admissible

conic class. O

Lemma 5.5.5. Let C be a closed admissible conic class. Then there is an admissible o € C
such that o is a common point of continuity for the family of functions {o — *7_, a;-o |ne

N,a e Q} < CC.

Proof. By Lemma 5.2.2 and Corollary 5.4.8 (with C replacing X and {o — «a-0=5-0 |, B € Q}
replacing F), there is a comeager G5 subset E of C such that g is continuous on E for all
gefo—*'_ja;-0|neNaeQ"} < C° ButCis closed, and so is locally compact, by
Corollary 5.4.3. Therefore E is dense in C, by the Baire category theorem, and the statement

follows by the admissibility of C. O

5.6 Model associated to an admissible symmetric type.

Let o be an admissible symmetric type and (z,)_; be a defining sequence for o. Then
the sequence (x,,)*_; is bounded, and by Proposition 5.4.11, has no | - ||-Cauchy subsequence.
Thus, given a nonprincipal ultrafilter & on N, we may define a spreading sequence ((,)_,
and a spreading model S = X @span{(, | n € N} associated to (z,)>_; and U as in Section
2.4. As in Section 2.4, we let (&,)%_; be given by &, = (2,1 — Con, for all n € N,

Let 7 = 0% (—1)-0. As 0 = lim, T,, we may assume after taking a subsequence that
7 = lim, 7, where y, = Zon_1 — T2,. As (x,)_; has no | - [|-Cauchy subsequence, we may
further assume after taking another subsequence that inf,, .., |z, — x| > 0. As 7(1,0) =
lim,, d(Yn, 0) = pra(inf, 2 |z, —xm), by dilating o, we can also assume that 7 is an admissible
type. It is clear that (&,) ", is the spreading model of (y,,)"_, for the ultrafilter U.

From this point forward, we fix a minimal closed admissible conic class C and an admissible
¢ € C that is a common point of continuity for the family of functions F = {o — 7_, a; -
o|neNaeQ"} < Csuch that ) = ¢+ (—1) - ¢ is admissible (this is possible by Lemma

5.5.5). We also fix a defining sequence (x,,)_; for ¢ with unique (see Section 2.4) spreading
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model (S, ||| - [|) such that y, = x9,_1 — x9, is a defining sequence for 1. We will let ((,)%,

be the spreading sequence associated with S and &, = (5,1 — (o, for every n € N.

Definition 5.6.1. Given k € N, @ = (o), € QF, we say that Z?=1 ;¢; realizes the type

*?:1 Oéj N (b

Remark 5.6.2. Notice that, if u = 251:1 a;(; realizes o, and v = Z;Zklﬂ B;¢; realizes T, it

follows that « + v realizes o * 7.

5.6.1 Basic properties of || - ||

We will now prove some technical lemmas which will be important in the proof of the main

theorem of these notes.

Lemma 5.6.3. Say u # v € spang{(, | n € N} realize 0 and 7, respectively. Then for every
(A y) e Qx A,

sup  pua([AlllJu = vl =) < o (A y) +7(Ay)

O<e<|Alflu—v||
and

o0 9) ~ T 9)| < infera(Alllu — o] + )
In particular, we have for each § > 0 that

(1) |ul| > & implies o(1,0) = p1a(0), and

(11) o(1,0) > wia(0) implies ||u| = 4.
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Proof. Say u = Z?:l a;¢ and v = 2521 B;¢;, for some o, ..., ag, fi,. .., Bk € Q. Then

)

pra(JAJlu — v =€) < lim sup Jim sup pId(H)\ Z — By,

7j=1
k
<lim...limd — B)ta,,
im...lim ( Zl )T )
k
17111,? hm( < Z xnj,y) —i—d()\Zﬁ]xn],y))
j=1 7=1
= oA y) +7(A\ )
for every 0 < e < |Al[|u — v]||. Similarly,
k k
lo(Ay) — 17\ y)| = 111121 . lilrln d()\ Z Ty, y) - d()\Z BiTn,, y)’
j=1 j=1

< lim...lim d<)\ (o — Bj)n,, O)

ng ni

)

Nk

k
< liminf. .. liminf wld(H)\ Z(aj — Bj)xn,
ni 1

< wia([Alflu = vl +¢)
for all € > 0. The particular case follows by letting v = 0 and A = 1. O]

Let H = spang{ | i € N} = S. Given @ = ()7, € Q=N, we define a bounded linear

map Ty: H — H as follows. For each n € N let

(fn) = Z O-/jgmn-&-j—l
j=1

and extend Ty linearly to H. As (&,)%_, is l-spreading, we have that ||Tx(u)|| < [af1]||w],
for all w e H. Hence, we can extend Ty to a bounded operator Ty : H — H. If @ = () is a

sequence of length 1, then Txu is just the scaling of u by ay, and we write T, u = Tzu = a;u.
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We also define the function 7 %: C — C by letting

for all 0 €C.

Lemma 5.6.4. Let @ = ()i, B = (8;)7y € Q7. Let 7 = ()™ € Q<N where v = i3,

A~

whenever k =n(j —1) +1i. Then T, 0Tz =T, and T, ofﬁ =T,.
Proof. For any k € N,

(Ta o T5) (&) = Ta <i/8j§mk+j—1>

j=1

Z Oézﬁ]fn(mk+] 1)+i—1

i=1

n
Z zﬁ]gnmk+n] 1)+i—1

[
Ms

<.
Il
—_

I
M§ LPs

Egnmk-‘rf— 1

~
Il
—

= T5(&)

Therefore Ty o T = T, by linearity and continuity. Similarly,

A~

a;f0 = Z>1<1 Yo = T5(0).

I'3s

(T o Ty)(0) = Tu( % By0) - & &

for all o € C, and so f’ao B:fV' O]
The previous lemma justifies the following definition.

Definition 5.6.5. Let @ = (a;),, 8 = (B;)72, € Q<N We define @ 0B = (y)pm e Q<N
by e = uf3; whenever k = n(j — 1) +i. We define a°* recursively by letting @' = @ and

okl =@ oa® for every k e N.

Remark 5.6.6. Notice that, T = Too for all @ € Q<N and all k € N.
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Lemma 5.6.7. Let @ = (a;)7, € QN. Say u € H realizes the type 7. Then, Tx(u) realizes

A~

T=(7).

Proof. Suppose u = > | A&, so 7 = %, \; - 1. Then

n m m n
= Z Ai Z Oéjfmwjﬂ = Z Z aj)\zfmzﬁrjfl
i=1  j=1 =14

which realizes the type

Lemma 5.6.8. Say u,v € H realize o and 7, respectively. Let (@)Y, (B,)X, < Q<N and

(b)), € QN. Then for every (A, y) € Q x A, we have that

b Tao(hy) = % b T5, 70 y)| < mfwld(\)\\Z]M 1T = Tl + ).

=1

I %=

7

Proof. For each m € N, let s,,,: H — H be the linear map given by s,,(£,) = &,om for each
n € N. We construct sequences (u;)Y,, (v;)Y, € H recursively as follows. Let u; = b, Ty, u
and v = biT5 v. Given u;,v; for some 1 <4 < N, let m; = max{supp(u;) v supp(v;)} and
then let w1 = biv18m, (15, u) and Vi1 = bir1sm, (T3, v). Clearly, both sequences (us)N,

and (v;)Y, have disjoint supports. Hence, by Lemma 5.6.7 and Remark 5.6.2, Zf\il u; and

ZiN:1 v; realize kN, b; - faia and N b; - fgr, respectively. Thus, by Lemma 5.6.3 and the
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fact that (&,)r_, is 1-spreading, we have that

N ~ N
s b Tro(\y) = % b Ty 7O\ y) | < infwna (] |||Z — )l +¢)
=1 =1

< infwia (| 2 s = vill + )

N
= inf wrg (| 23 Wi = T ol + ).

5.7 Coarse approximating sequences.

The goal of this section is to show that the type v satisfies the conclusion of Proposition
5.7.7 below. For that, we introduce the notion of coarse approximating sequences.

Definition 5.7.1. Let u = Zle ;& € spanf{&, | n € N}. We say that a vector v € spanf{&, |

n € N} is a spreading of u if v = Zle ;&p, for someny < ... <njeN.

Definition 5.7.2. Let (a;)Y, < Q<N and ()N, € RY. A sequence of types (0,) -, < C

is called a coarse (aj, B;)Y -approximating sequence if there exists a sequence (u,)*_, < H

and sequences (u;p)w_y < H for each 1 <i < N such that

(i) u, realizes o, for alln €N,
(11) win is a spreading of u, for eachneN and 1 <i < N, and

(1) lim, || T, (un) — Bivinl| = 0 for all 1 <i < N.

Lemma 5.7.3. Suppose @ € Q<N, 8 >0, and (u,)?_, < H. If there is a spreading (u.,)®

n=1
of (un)_y such that lim, ||T5(u,) — Bul|| = 0, then for every k € N there is a spreading
(u")*_, of (un,)_, such that lim, ||T&(u,) — g*u”|| = 0.
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Proof. For k = 1 the result is trivial. Suppose the result holds for some k € N. Let (u/)>_,
be a spreading of (u,)*_; such that lim, ||7%(u,) — B*u”|| = 0. By the definition of Ty, it
follows that (Tx(ul))r_, is a spreading of (Tx(u,,))_;, so there exists a spreading (u")*_, of

(un)y_, such that also (Tz(ul) — pull)e_, is a spreading of (Tx(u,) — ful,)r_,. Thus, by the

l-equivalence of (&,)*_; with all its subsequences,

T3 (un) = Bl < T (un) = Ta(Brup) |l + 1 Tw(8%y) — Byl
= I1Ta(T5 (un) — Brup)l + B Ta(uy) — Buil|

< N Tslll - 175 (un) = Bl + B¥ | T (wn) — Bus,l.

Therefore lim,, || 75 (u,) — ¥ u”|| = 0, so the result holds for k£ + 1. By induction, we are

finished. u
With the above lemma and Lemma 5.6.4, we have the following corollary.

Corollary 5.7.4. If (0,)“_, is a coarse (a;, 3;)Y,-approvimating sequence, then it is also a

coarse (5%, BF)N | -approzimating sequence for every k € N.

Lemma 5.7.5. Suppose (a;)Y.; € Q<N is such that a;oa; = ajow; for alll <i,j < N. Then
there are (3;)N., € RN and (0,)%_, < C such that (c,)*_; is a coarse (a;, 5;) ., -approzimating
sequence and B; € [||@;|co, [|ai]1] for each 1 < i < N. Moreover, we may choose (0,)_; so

that for alln € N, by < 0,(1,0) < by for some v < by < by not depending on n.

Proof. For those @;’s that are length 1 sequences, the proposition is clear with {3;} = @;. So
suppose for each 1 < i < N that @; is a sequence of length at least 2. As the basis (§,)%_; of
H is 1-unconditional and 1-spreading, we have that |[a;] ||| u|] < ||Tw, ()| < @] [|u]], for all
ue H and all 1 <7 < N. Also, for each 1 <i < N, it is clear from the definition of Ty, that
|7, (u) — & || > 0 for all w € H, and so Ty, is not invertible. Hence, the spectrum of Ty, has a
real non-negative boundary point, and so 75, has a real non-negative approximate eigenvalue

for each 1 < i < N by Proposition IV.1 of [KrMau]. By Lemma 5.6.4, T, commutes with



5.7. COARSE APPROXIMATING SEQUENCES. 96

T, for all 1 < i,j < N. Thus, by Proposition 12.18 of [BenLi], there exists (6;)X, € RY
and a single normalized sequence (u,)*_, € H such that lim,, ||Tx,u, — Biu,|| = 0 for every
1 <i < N. As |[|uy]|] = 1 for each n € N, the bounds above for ||T5,(u)|| yield that
Bi € [||a oo, |@ill1] for each 1 < i < N. By density, one may assume that (u,)_; < H and
1 < ||un|| < 2 for all n € N. Finally, let § > 0 be such that pq(d/2) > v and let o,, be
the type realized by du, for each n € N. The result now follows by letting b; = p1q(d) and

by = wia(30) (see Lemma 5.6.3). O

Lemma 5.7.6. Suppose (a;)Y., € Q<N is such that a;0a; = ajow; for alll <i,j5 < N. Then
there is (B;)Y., € RN such that every o € C is the limit of a coarse (@, 3;),-approzimating

sequence and B; € [|®il|ow, |@ll1] for all 1 < i< N.

Proof. Let v < by < by, ()Y, € RN and (0,)%_, be given by Lemma 5.7.5, so that (o,,)%_,
is a coarse (@, 3;)N -approximating sequence and b; < 0,(1,0) < by for every n € N. Let
C be the subset of C consisting of all types of C which are the limit of a coarse (@, 5;)Y -
approximating sequence. As Ty, 4, == {0 € T | by < 0(1,0) < be} is compact and metriz-
able, (0,)7_; has a converging subsequence which converges to an element o € C N Ty, p,.
A subsequence of a coarse (@, 3;)Y ,-approximating sequence is still a coarse (a@;, ;)Y ;-
approximating sequence, so we have that C # {0}, and in particular C contains an admissible
type.

By the minimality of C, it is enough to show that C is a closed conic class. Suppose o € C
and (0,)%_, is a coarse (@;, 3;) ¥ ;-approximating sequence converging to o. Then, by Lemma
5.4.6, -0 is the limit of (A-0,)%_;, which is easily seen to be a coarse (@;, 5;)-approximating
sequence for every A € Q. Thus C is closed under dilation by any A € Q.

Let D be a metric compatible with the topology of 7. Say o,7 € C and let us show
that o« 7 € C. Let (0,)%, and (7,)°_, be coarse (@, 3;)Y ,-approximating sequences in C

converging to ¢ and 7, respectively. As the convolution is separately continuous, we have

limy o * 7 = 0 = 7 and, for a fixed k € N, lim,, o * 7, = o}, = 7. For each k € N, let n(k) > k
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be such that

D(0y * Tpky, Ok * T) < 27k,

If we set 0}, = 0y, * Tok), then limy 0}, = 0 * 7.

For each 1 < i < N, let (un)y_y, (Uin)iy, (vn)r_y and (v;,)°_; be sequences realizing
(0,)_, and (1,,)%_; respectively, as given by the definition of coarse (@, 3;)Y ,-approximating
sequences. By translating the supports of v,y and v;, @) if necessary, we may assume that
supp(ur) < supp(vn)) and supp(u;r) < supp(vinm) for all 1 < i < N and k € N. Let
(2)71 = (Uk + Un@r) ) 721, SO 2, realizes oy, for each k € N. Set (2;)7; = (Ui + Vin@) )iz for
all 1 <4 < N, 50 2 is a spreading of zj,. This gives us that (¢7,)%, is a coarse (@;, 3;)N -
approximating sequence. Thus o =7 € C, and so C is closed under convolution.

Finally, let us show that C is closed. Say (k)7 is a sequence in C converging to o € C. For
each k € N, there exists a coarse (a;, ;)X ;-approximating sequence (oy,,)%_; in C converging
to 0. For each k € N, let (ug,);_; be a sequence realizing (oy,, )i, and let (uy;n)m_q be a
spreading of (ug ), for each 1 < i < N as given by Definition 5.7.2. For each k € N, choose
an integer n(k) > k such that D(ognm),or) < 1/k and ||T, (uknw)) — Bitkinm || < 1/k
for each 1 <7 < N. Set 7, = 04 ) for each k € N. Then ()}, is a coarse (ay, BN ,-
approximating sequence converging to o. That is, o € C. Thus C is closed since o was an

arbitrary limit point. By what was shown, C is a closed admissible conic class contained in

C and by the minimality of C, we are finished. O]

Proposition 5.7.7. Suppose (a;)X., < Q<N is such that @;oa; = ajoq; for all1 <i,j < N.

There exists B = (B;)~, € RN such that §; € [|@|w, [@i]1] for all 1 <i < N and

limsup | sk b; - To'h(A @) — % b5 - (N x)| <7~
i=1 ‘ i=1 k

m

for every (b)Y, € QV, every (k;)Y, € NV, every (\,z) € Q x A, and every sequence
(Bm)%_y < QY converging to B, where 3,, = (Bim)X, for all m € N.

Proof. Let (B;)Y, € RY be given by Lemma 5.7.6 and let (¢,)*_; be a coarse (@, 3;)Y ;-
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approximating sequence converging to ¢, also given by Lemma 5.7.6. For each n € N let

Yn = ¢ * (—1) - ¢p. Then, by our choice of ¢ (see Lemma 5.5.5) we have that

. N Nk N Nk
lim sk b; - To'h, (N, ) = 3k b; - T3 (N, o)
' ! i=1 !

n =1

and

. N k. N k;
tim % 0,65, - va(0) = & b, (0 )

n =1

for all (\,z) € Q x A and all m € N.

By Corollary 5.7.4, (¢,)%_, is a coarse (@™, )N -approximating sequence and we can

pick a sequence (uy,);_; realizing (¢,),_, and sequences (u;,),_, which are spreadings of
(un)®_, and satisfy lim,, || Thyors tt, — B usn|| = 0 for every 1 < i < N. For each n € N, let
u,, € H have the same basis coordinates as u,, except shifted over so that the supports of u,

and u/, are disjoint. It is easy to see that, for each 1 < i < N and n € N, we can pick a

I
@,

spreading of w,, say w;,, so that T _oxu;, — Bk, is a spreading of T ok (un) — B*u;,, and

such that u;, and u;, have disjoint supports.

Notice that both w,, — u!, and u;,, — u;, realize v,,. Therefore, by Lemma 5.6.8, we have

\n

that

N k. N ki
s b TR ) = % 0Bl va(\ )

N ~ N k.
= | # b T tn (0 2) = % 5Bl Unl(,2)]

1=

N
< infwra (A 1ol - I (o — ) = B, (w0 = )l + )

i=1

N
< infura (210 10 Tt = Byt + )

i=1

N
< infena (200 ( D I0il - (I1Tenctm = B wall + 185 = 55| uall) ) +¢)
e>0 P— i

for all (\,z) € Q x A. As the sequence (u,)¥_; is bounded (see Lemma 5.6.3), taking the
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limit superiors over n and m in the inequality above yields the result. O

5.8 Coarse (,-types and coarse cj-types.

In this section, we will define a notion of ¢,-type and co-type and use Proposition 5.7.7 in
order to show that v satisfies this property. Finally, we will show that H is isomorphic to

some £,

Definition 5.8.1. Let p € [1,0). We say that ¢ is a coarse {,-type if there exists L > 0

such that, for all (\,y) € Q x A, and all @ = ()Y, € Q<N we have

N
i=1

m

for all (tn)y_y < Q converging to |al|,. The type ¢ is called a coarse co-type if, for all
(A y) e Qx A, and all ()X, € Q<N we have

N
a0\ y) - max foil - v\ y)| < L

1<isN

Proposition 5.8.2. The type ¢ is either a coarse cy-type or a coarse {,-type for some p €

[1,0).

Proof. Let ay = (1,1) and @3 = (1,1,1), and notice that @, o @3 = @3 oay. Let fs, 53 € R be
given by Proposition 5.7.7 for @, = (1) and @ = (1, 1), respectively. Let (Ba.m)e_1, (B3m )y S
Q be nonzero increasing sequences converging to (o, f3 respectively. By our choice of 85 and

(3, we have that

-k
limsup |b - ]>i< (A x) — bﬁfm PN\ T)| <y
m i=1 ’

for all j € {2,3}, all be Q, all ke N, and all (\,z) € Q x A.
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Let £,k € N be such that 3* < 2¢ < 381 As (£,)*_, is 1-unconditional, we have

k:+1

| el <36l <] %l

Let a; € Q be between 1] Z?il &l and || Z?il &ll- Then, for any pu > 0,

ol B8

AsId: (X, | ]) — (X,d) is expanding, we can pick u € Q such that prg(u/2) > 2wia(1) +7y
and 1 € Q such that pa(n]&1]/2) > 2wia(1) + . Let M € N be such that

gk+1 BZ
B 7% w(,0) - B -¢(1,0)‘ <7+ wa(l)
Ay i=1 ay

and let N > M be such that

*w(l 0) — 77621\/

BQvM i=1 Z,M ¢(17 O)‘ < Y + Wld(l).

Then as (u/ay) - (Z‘:’:l &) realizes (p/a;) - %3, 4, by Lemma 5.6.3(i), we have that

3k+1 N5k+1
2wra(1) + 7 < % (1,0) <
Ay =1 Qy

~(1,0) + v 4+ wia(1).

Therefore, as (uﬁg}r\}/ag) & realizes (M,Bk+1/a4) ¥, by Lemma 5.6.3(ii), we have

By

Qg

1<

& I- (5.8.1)

Similarly, by Lemma 5.6.3(i) and the fact that (nS5 /B35 ,,) - &1 realizes (955 5/B5 ) - 1,

we have
Y]
2¢ 77ﬁ2,N

n
<k YP(1,0) = ——
55,1\4 i=1 (1.0) BS,M

~(1,0) — v — wia(1) > wia(1).
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Hence, as (1/85 ) - (Zfil &) realizes (1/65 ) - 2., 9, Lemma 5.6.3(ii) gives us

£
n Z?:1 &

B a1

2na,

Bom

> | > 1 (5.8.2)

Combining Inequalities (5.8.1) and (5.8.2), we obtain

= l1m = .
655 M 55,1\/1 20 B[] &1 |l

gy o Baar 1

The lower bound for 55 /55 above does not depend on k and ¢, as long as 2 < 3**!. Similarly,
we get a lower bound for 85/3%, which also does not depend on k and ¢, as long as 3% < 2°.
We conclude that there exist a,b > 0 such that for all k£ and ¢, with 3* < 2 < 3! we have
Bs

Bl
2

a < <b.

Therefore, there exists L > 0 such that 8, = 2%, and B3 = 3%. Also, as 35 < 2, we must have
L € [0,1]. The same argument works for arbitrary n,m € N instead of 2 and 3. Hence, we

have 3, = n’, for all n € N, where f3, is given by Proposition 5.7.7 for

Case 1: Say L # 0. Then v is a coarse {,-type, for p = 1/L.

Fix @ = ()Y, € QY and a sequence (t,,)%_, < Q converging to |a|,. Let ¢ > 0 and, for
each 1 < j < N, let r; € Q4 be such that ||o;| — rjl-/p| < e. Find a common denominator
m € N so that for each 1 < j < N there is n; € Ny such that r; = n;/m. Let s > 0 be a

rational number such that |s — (1/m)Y?| < e. For each 1 < j < N, let (8j,m)%—; < Q be a

m=1 =
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By Lemma 5.6.8,

N N N
i aj 0 a) = % 5B v, )| < wia (1A Y los = silllg I + )
1 j=1 -1

=

and

[58m - b (A @) =t - (A, )| < wia(IN]|s8m — tm| [0l + €)-

for all (A\,z) € Q x A. By Proposition 5.7.7 and what was shown above with L = 1/p, we

have that

N N n;
lim sup A>l<1 $Bim - (N x) — ‘>¥<1 S5 - %@D(Aa x)‘ <7y
m J= J= 1=

and

N nj
timsupls - s 3% w(\,2) = 56 O\, )| <y

j=14i=1

for all (\,z) € Q x A.

Combining the four inequalities above with the triangle inequality, taking a limit superior

over m, and letting ¢ — 0, one obtains
) N
limsup | %k a; - ¥\, x) —t, - (A )| <4y
m Jj=1

for all (A, z) € Q x A. Therefore ¢ is a coarse £,-type.
Case 2: Say L = 0. Then v is a coarse cy-type.

Fix @ = (), € QY such that oy = 1 and a; < 1 for 2 < j < N (the general case will
follow by dilation). Using Proposition 5.7.7, find § > 1 and a nonzero increasing sequence

(Bm)¥_; < Q converging to [ such that

limsup [b - TE(A, ) — b, - (A, 7)| < 7
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forall b € Q, k € N and (\,x) € Q x A. We will show § < 1. Fix k£ € N and note that
Tk = gk (TTh, ai,)-¥ (using the definition of T and the distributivity of dilation
over convolution). After combining like terms using the commutativity of convolution, by

Proposition 5.7.7 and what was shown above with L = 0, we have

where F = {1 = (n;)}_, € N{ | Z; (nj = k} for every be Q and (A, z) € Q x A. Now, take
any p € Q such that prq(pf|€1/2) > 2wia(1) + 2. Fix M € N, and let N > M be such that

|5k Thyp(1,0) — ”BN -1(1,0)] <7+ wia(1). Then combining the two inequalities above yields

w

10
g, v

k
: Ha] < 29 + wia(1).

_ K
3k
Pt j=

ne
s (nB%/Bh,)é realizes (upl/BY) - ¥, we have, by Lemma 5.6.3(1), #- - sacr([])_, o)
¥(1,0) = wia(1). So, as ;EZH&F(HJ L @) - Ergmy realizes @ : *ﬁep(l—[le aj’) -4 for any

injective map I: F' — N, we have, by Lemma 5.6.3(ii),

k
M n
e S

F j=1

u|||§1||| 1—[
< 1-— 04]

But this was for any k, M € N, and so we must have § < 1. That is, § = 1. Therefore ¢ is a

coarse co-type. [

We can now prove the following.

Proposition 5.8.3. If ¢ is a coarse {,-type, for some p € [1,0), then (&,); is equivalent

to the £,-basis. If 1 is a coarse co-type, then (&) is equivalent to the cy-basis.

Proof. Say ¢ € T is a coarse {,-type for some p € [1,00) (the ¢y case will be analogous).

Say L > 0 is such that, for all (a;)}., € Q<N, all (t,);_; S Q converging to |[@],, and all
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(AN, y) € Q x A, we have

N
lim sup ‘>i<1 aj - (A y) —tm -\ y)| < L. (5.8.3)
e

m

Let (e,);; be the standard basis of £,, and let Y = span{e,, | n € N}. Let us show that
the map T: Y — span{¢, | n € N} defined by sending e, to &,/||¢1]| for each n € N and
extending linearly is an isomorphism. Hence, 7" extends to an isomorphism between /¢, and

span{&, | n € N}, and we are done.

We first show that 7" bounded. Fix ¢ > 0 and let b € Q be such that 1/[|&]] < b <
/||&l + . For each @ = (o)X, € Q<N let tz € Q be such that |ty — |a@],] < ¢ and

| %I, aj - p(b,0) — tz - ¥(b,0)] < L +e. By Lemma 5.6.3 and Inequality 5.8.3, we have that

N fj N
ra(| Zepeqll=2) <l Zeed] <)

Q- @0(57 0)

1

<

I %=

7

<tz Y(0,0)+L+¢
< wra (BllEillts +2) + L+

< wra([aly + 26 + el @l + 2lér]) + L +e,

for all @ = ()Y, € Q<N. Hence, as Id : (X, |- |) — (X, d) is expanding, there exists K > 0

such that |@[, < 1 implies || 3 azmm < K. Therefore T is bounded.

Clearly, T is a bijection. Let us show that 7! is bounded. By Lemma 5.6.3 and Inequality
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5.8.3, we have that

pua(faly = 2) = L — & < pra (Wtallésll = 2) = L — =

<taw(b,0)—L—€

< Wid

A A
|2 ol el S oy l):

for all @ = (o), € Q<N. Hence, as Id : (X, |- |) — (X, d) is expanding, there exists some

R > 0 such that || 22V, aim | <1 implies [[all, < R. So T~! is bounded. O

Proof of Theorem 1.7.3. By Corollary 5.3.2, if X coarsely embeds into a superstable space
Y, there exists an invariant stable pseudometric d on X which is coarsely equivalent to the
norm of X. Hence, we can define the type space 7 as in Section 5.4. By Proposition 5.5.4,
there exists a minimal closed admissible conic class C. Let ¢ € C be given by Lemma 5.5.5.
Without loss of generality, 1) = ¢ = (—1) - ¢ is admissible. By Proposition 5.8.2, 1 is either
a co-type or an (,-type, for some p € [1,0). Hence, by Proposition 5.8.3, X has either an
¢,-spreading model or a cy-spreading model.

Assume that X has a cp-spreading model. In particular, ¢y is finitely represented in X.
Hence, ¢ isomorphically embeds into an ultrapower of X. As ultrapowers of X coarsely
embed into ultrapowers of Y, this gives us that ¢y coarsely embeds into an ultrapower of Y,
which is a stable space. By Theorem 2.1 of [Kal], stable spaces coarsely embed into reflexive
spaces. Therefore, ¢y coarsely embeds into a reflexive space. By Theorem 3.6 of [Kal], this
cannot happen, so we have a contradiction. Therefore, X contains an £,-spreading model,
for some p € [1,00).

Let (x,)X_; be a bounded sequence in X without Cauchy subsequences whose spreading

model is isomorphic to ¢,. Let us observe now that (z,);_, can be assumed to be a basic
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sequence. By Rosenthal’s ¢1-Theorem, either (x,,)*_; has a subsequence which is isomorphic
to ¢4, or it has a weakly Cauchy subsequence. Assume that (z,);_; is weakly Cauchy. Then
(Yn)_y is weakly null and it has an ¢,-spreading model, where y,, = x, — 41, for all n € N.

Hence, by taking a subsequence, we can assume that (y,)r_; is basic. O

Remark. By the last inequality of Case 1 in Proposition 5.8.2, and by following the proof of

Proposition 5.8.3, we find an upper bound of

2
(inf sup pig! ([0, wia(1) + 57 + <))

for the Banach-Mazur distance between £, and the spreading model associated to (y,)s_;.

Proof of Corollary 1.5.6. This follows from the fact that the original Tsirelson space (see

[Ts]) does not have an ¢,-spreading model. O

Remark 5.8.4. Another example of a reflexive Banach space that does not coarsely embed
into any superstable space is the space constructed by E. Odell and Th. Schlumprecht in
[OSc2|. Indeed, this follows from Theorem 1.7.3 and the fact that every spreading model of

their space contains neither a subspace isomorphic to ¢y nor to ¢, (see [OSc2], Theorem 1.4).

As mentioned in the introduction, our work is not enough to solve Problem 1.5.3. The
following is a natural approach to give a negative answer to Problem 1.5.3, given Theorem

1.7.3.

Problem 5.8.5. Let T" be the Tsirelson space. Does T or TP (i.e., the p-convexification of

T) for some p € [1,00) coarsely embed into a superstable Banach space?
At last, in the spirit of Chapter 4, we ask the following.

Problem 5.8.6. Say an infinite dimensional Banach space X maps into a superstable space
by a map which is both coarse and solvent. Does it follow that X must contain an £,-spreading

model, for some p € [1, ).



Chapter 6

Coarse Lipschitz geometry and

asymptotic structure

(Previously published as M. Braga, Bruno (2017) Asympttic structure and coarse

Lipschitz geometry of Banach spaces, Studia Mathematica 237, no. 1, 71-97)

In this chapter, we study coarse Lipschitz embeddings and equivalences between Banach
spaces and what kind of stability properties this notions of nonlinear embeddings and non-
linear equivalences may have. Furthermore, we will mainly work with Banach spaces having
some kind of asymptotic property. For that, we will go over the results contained in Section
1.6, which are in the paper Asymptotic structure and coarse Lipschitz geometry of Banach

spaces (see [Br3]).

6.1 Preliminaries.

In this section, we will introduce some notation and terminology which will be essential

for this chapter.

107
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6.1.1 p-convex and p-concave Banach spaces.

Let X be a Banach space with 1-unconditional basis (e,)?_;, and let p € (1,00). We say

n=1»

that the basis (e,)r_; is p-convex with convezity constant C' (resp. p-concave with concavity

constant C), if

k
p
[ Dbl + o fab)ees| < €2 Y
jeN n=1
,  k
(resp. CPH Sl + ...+ ) e = Hx””p),
jeN n=1
for all z! = Z;O:1 riej, ... ah = ZJOO:1 z¥e; € X. We say that the basis (e, )y, satisfies an

upper £,-estimate with constant C' (resp. lower {,-estimate with constant C'), if

k k
o4t anl? < €Yl (vesp. CPlar + b al = Y e,
n=1 n=1
for all 21, ..., z, € X with disjoint supports. Clearly, a p-convex (resp. p-concave) basis with

constant C' satisfies an upper (resp. lower) /,-estimate with constant C'.

6.1.2 p-convexification.

Let X be a Banach space with a 1-unconditional basis (e,)?_;. For any p € [1,0), we

define the p-convexification of X as follows. Let

XP = {(xn)fle eRY | a? = Y [zlPen X},

neN

and endow X? with the norm |z], = |2?|"?, for all z € X?. By abuse of notation, we
denote by (e,)¥_; the sequence of coordinate vectors in XP. It is clear that (e,)*_; is a
1-unconditional basis for X? and that X! = X. Also, the triangle inequality gives us that

XP? is p-convex with constant 1.
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6.1.3 Asymptotically p-uniformly smooth and convex spaces.

Let X be a Banach space. We define the modulus of asymptotic uniform smoothness of X
as

D+ (t) = su inf sup |z + th| — 1.
Px(1) veoby dim(X/E)<0 heomy | ”

We say that X is asymptotically uniformly smooth if lim, .o, px(t)/t = 0. If there exists
pe (1,00) and C > 0 such that py(t) < Ct?, for all t € [0, 1], we say that X is asymptotically
p-uniformly smooth. Every asymptotically uniformly smooth Banach space is asymptotically
p-uniformly smooth for some p € (1, 0) (this was first proved in [KnOSc]| for separable Banach
spaces, and later generalized for any Banach space in [Ra], Theorem 1.2).

Let X be a Banach space. We define the modulus of asymptotic uniform convexity of X
as

dx(t) = xelgléx dim&l;g)@c héggE |z + th]| — 1.

We say that X is asymptotically uniformly convex if 0x(t) > 0, for all t > 0. If there exists
pe (1,0) and C > 0 such that §x(t) = Ct?, for all t € [0, 1], we say that X is asymptotically
p-uniformly conver.

The following proposition is straight forward.

Proposition 6.1.1. Let p € (1,0) and let X be a Banach space with a 1-unconditional
basis satisfying an upper {,-estimate (resp. lower {,-estimate) with constant 1. Then X is

asymptotically p-uniformly smooth (resp. asymptotically p-uniformly convez).

6.1.4 Banach-Saks properties.

A Banach space X is said to have the Banach-Saks property if every bounded sequence

k

(2a)y2; in X has a subsequence (z,,)%2, such that (3 Dij—1Tn;)pey converges. A Banach

space X is said to have the alternating Banach-Saks property if every bounded sequence

k

(zn)y=; in X has a subsequence (7,,);Z, such that (%ijl €jTn; )i=1 converges, for some

(g5)72, € {=1,1}". For a detailed study of this properties, we refer to [Be].
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Let p € (1,00). A Banach space X is said to have the p-Banach-Saks property (resp. p-
co-Banach-Saks property), if for every semi-normalized weakly null sequence (z,,)%_; in X,

there exists a subsequence (z,,);2; and ¢ > 0 such that
|Zn, + .o+, | < ckMP o (vesp.  |Tn, F ... F 2, | = cEYP),

forall ke N, and all kK <n; <...<ng.

The following is a combination of Proposition 1.2, Proposition 1.3, and Proposition 1.6
of [DimGoJ] (Proposition 1.6 of [DimGoJ] only mentions the p-Banach-Saks property, but

a straight forward modification of their proof gives us the result for the p-co-Banach-Saks

property).

Proposition 6.1.2. Let p € (1,0) and let X be a Banach space. If X asymptotically p-
uniformly smooth (resp. asymptotically p-uniformly convex), then X has the p-Banach-Saks

property (resp. p-co-Banach-Saks property)

6.1.5 Convexifications of the Tsirelson and Schlumprecht spaces.

As in Subsection 2.2.3, we define the Tsirelson space T" as the completion of ¢og under the

unique norm | - | satisfying

k
uxuznmx@mmf—sup(iju%mo}

where the inner supremum above is taken over all finite sequences (Ej);?zl of finite subsets
of N such that k¥ < E; < ... < Ej. Therefore, for each p € (1,00), the norm | - |, of the

p-convexified Tsirelson space T? satisfies

k
up=mwﬂﬂmy@sw(Z]Eﬂﬂ g
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where the inner supremum above is taken over all finite sequences (Ej)le of finite subsets
of N such that k < E; < ... < Ej (see [CSh], Chapter X, Section E).

As T" satisfies an upper ¢,-estimate with constant 1, it follows that 7% is asymptotically
p-uniformly smooth and it has the p-Banach-Saks property. Also, T? has the p-co-Banach-
Saks property. Indeed, let (e,); be the standard basis for T7. If (z,)%_; is a normalized

block subsequence of (e,)*_;, then

2k—1 1/p 2k—1
o-1/pp1/p _ 2—1/:0( 3 ||an§> < H 3 e, r
n=~k n=

for all k € N. Therefore, as for any normalized weakly null sequence (z,)7_; in 7%, one can

ee]

©_1, we conclude

find a block sequence (y,)*_; which is equivalent to a subsequence of (z,,)

that TP has the p-co-Banach-Saks.

Remark 6.1.3. Let p e (1,00). Then T? does not contain ¢, for any r € [1,00) (this is shown
in [Jo2| for T, and the result for T? follows analogously). Similarly, by duality arguments,
T?* does not contain ¢, for any r € [1,00) (the reader can find more on TP and similar duality

arguments in [CSh]).

As in Subsection 2.2.3, we define the Schlumprecht space S as the completion of ¢y under

the unique norm | - | satisfying

1 k
_ sup (A Y5l
) = mas { el sup (o 151

where the inner supremum above is taken over all finite sequences (Ej)?:1 of finite subsets
of N such that F; < ... < Ejy. Similarly as with the p-convexified Tsirelson space, the norm

| - ||, of the p-convexified Schlumprecht space S? is given by

k
1 » 1/p
el = mas {Jalo sop (o M 155el)

where the inner supremum above is taken over all finite sequences (Ej);‘?:l of finite subsets
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of N such that E; < ... < Ej (see [D], page 59).
Similarly to T?, S? is asymptotically p-uniformly smooth and has the p-Banach-Saks prop-

erty, for p € (1,00).

6.1.6 Almost p-co-Banach-Saks property.

Although TP has the p-co-Banach-Saks property, SP does not. However, SP satisfies a
weaker property that will be enough for our goals. Let p € (1,00). We say that a Banach
space X has the almost p-co-Banach-Saks property if for every semi-normalized weakly null
sequence (z,,);_, in X there exists a subsequence ()72, and a sequence of positive numbers

(6;)72, in [1,00) such that lim; ., j*0; ' = oo, for all & > 0, and
[@ny + ot @, ]| = KPO

for all £k € N, and all £ < ny < ... < ng. Clearly, SP has the almost p-co-Banach-Saks

property, with 6 = log,(k + 1)/, for all k € N.

6.2 Asymptotic uniform smoothness and the alternat-
ing Banach-Saks property.

In this section, we are going to show that asymptotically uniformly smooth Banach spaces
must have the alternating Banach-Saks property (Corollary 6.2.2), but the converse does not
hold (see Proposition 6.2.8). Also, we show that if a Banach space X coarse Lipschitz embeds
into a reflexive space Y which is also asymptotically uniformly smooth, then X must have
the Banach-Saks property (Theorem 1.6.1). As any space with the Banach-Saks property is
reflexive, this is a strengthening of Theorem 4.1 of [BKaL], which says that, under the same

hypothesis, X must be reflexive.
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Proposition 6.2.1. Let X be a Banach space with the p-Banach-Saks property, for some
€ (1,0), and assume that X does not contain ¢;. Then X has the alternating Banach-Saks

property. In particular, if X is also reflexive, then X has the Banach-Saks property.

Proof. Assume X does not have the alternating Banach-Saks property. Then, there exist
9 > 0 and a bounded sequence (z,)_; in X such that, for all ke N, all €1,...,¢, € {—1,1},

and all ny < ... < n, €N, we have

(6.2.1)

1 k
H—Z€j$n,.
I

(see [Be], Theorem 1, page 369). As X does not contain ¢;, by Rosenthal’s ¢;-theorem (see
[Ros|), we can assume that (z,)r_; is weakly Cauchy. Hence, the sequence (x9,_1 — T2,)7_,

is weakly null. By Equation (6.2.1), it is also semi-normalized. Therefore, as X has the

p-Banach-Saks property, by taking a subsequence if necessary, we have that

1
< ck'P,

k
H Z xn% x”%

for all k£ € N, and some constant ¢ > 0 independent of k. By Equation (6.2.1), we get that

k .
(—1) "y,

2
c
< kYL
<z X :
As this holds for all £ € N, and p > 1, if we let & — o0, we get that 6 = 0, which is a
contradiction.
For reflexive spaces, the alternating Banach-Saks property and the Banach-Saks property

are equivalent (see [Be|, Proposition 2), so the last statement of the proposition follows. [

Corollary 6.2.2. Let X be an asymptotically uniformly smooth Banach space. Then X has
the alternating Banach-Saks property. In particular, if X is also reflexive, then X has the

Banach-Saks property.
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Proof. As X is asymptotically uniformly smooth, X cannot contain ¢;. Therefore, we only
need to notice that X has the p-Banach-Saks property, for some p € (1,00), and apply
Proposition 6.2.1. By Theorem 1.2 of [Ra], X is asymptotically p-uniformly smooth, for
some p € (1,00). Therefore, by Proposition 6.1.2 above, we have that X has the p-Banach-

Saks property, so we are done. n

For each k € N, we want to define a new metric on Py(N) (see Section 1.4). In order to
avoid confusion, we use a diferent notation for Py (N) in this chapter. Let k € N, and M < N,
be an infinite subset. Define G (M) as the set of all subsets of Ml with k elements. We write
n = (ni,...,nk) € Gx(M) always in an increasing order, i.e., ny < ... < ng. We define a

metric d = dj, on Gx(M) by letting

d(m,m) = [{j | n; # ms}l,

forall m = (nq,...,n), M = (M, ...,my) € Gx(M).

The following will play an important role in many of the results in this chapter. This result

was proved in [KaRa|, Theorem 4.2 (see also Theorem 6.1 of [KaRa]).

Theorem 6.2.3. Let pe (1,0), and let Y be a reflexive asymptotically p-uniformly smooth
Banach space. There exists K > 0 such that, for all infinite subset Ml < N, all k € N, and

all bounded map f : GL(M) — Y, there exists an infinite subset MI' ¢ M such that

diam(f(G(M'))) < K Lip(f)k"?.

Proof of Theorem 1.6.1. Let f : X — Y be a coarse Lipschitz embedding. Pick C' > 0 so
that wy(t) < Ct + C, pp(t) = C7't — C, for all t > 0. Assume that X does not have the

Banach-Saks property. By [Be], page 373, there exists § > 0 and a sequence (z,);r_; in Bx
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such that, for all £ € N, and all n; < ... < ng, € N, we have that

k

1
H 2k Z l(a:”j B xnk+j) = 0.
J=

For each k € N, define ¢y : Gx(N) — X by setting ox(n1,...,n5) = Tp, + ... + xy,, for
all (nq,...,ng) € Gg(N). Therefore, diam(pg(Gr(M))) = 2kd, and we have that diam(f o
or(Gr(M))) = 2k6C~! — C, for all k € N, and all infinite M < N.

As, Lip(er) < 2, we have that Lip(f o ) < 3C. As Y is asymptotically uniformly
smooth, there exists p € (1,00) for which Y is asymptotically p-uniformly smooth (see [Ral,
Theorem 1.2). By Theorem 6.2.3, there exists K = K(Y) > 0 and M < N such that
diam(f o o (Gr(M))) < 3KCE'Y?, for all k € N. We conclude that

2k6C™! — C < 3KCKYP,

for all k € N. As p > 1, this gives us a contradiction if we let k — oo. n
The following was asked in [GLZi], Problem 2, and it remains open.

Problem 6.2.4. If a Banach space X coarse Lipschitz embeds into a reflexive asymptotically
uniformly smooth Banach space Y, does it follow that X has an asymptotically uniformly

smooth renorming?

Problem 6.2.5. Let N be a metric space. We say that a family of metric spaces (Mj)5, uni-
formly Lipschitz embeds into N if there exists C' > 0 and Lipschitz embeddings f; : My — N
such that Lip(f)-Lip(f~!) < C, for all k € N. Does the family (Gx(N), d){_, uniformly Lips-

chitz embed into any Banach space without an asymptotically uniformly smooth renorming?

As noticed in [GLZi], Problem 6, a positive answer to Problem 6.2.5 together with Theorem
6.2.3 would give us a positive answer to Problem 6.2.4.
It is worth noticing that the Banach-Saks property is not stable under uniform equivalences,

hence, it is not stable under coarse Lipschitz isomorphisms either. Indeed, if (p,)>_; is a
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sequence in (1, 00) converging to 1, then (®,£,, )¢, is uniformly equivalent to (B,¢,, ), Bl (see
[BenLi], page 244). The space (®nfp, )s, has the Banach-Saks property, while (©,,0,, )e, @ (1
does not.

Let G(N) denote the set of finite subsets of N. We endow G(N) with the metric D given
by

D(n,m) = |[nAm]|,

for all m = (nq,...,n,),m = (mq,...,my) € G(N), where mAm denotes the symmetric
difference between the sets n and m.
Proposition 6.2.6. G(N) Lipschitz embeds into any Banach space X without the alternating

Banach-Saks property. Moreover, for any € > 0, the Lipschitz embedding f : G(N) — X can

be chosen so that Lip(f) - Lip(f~') < 1+e¢.

Proof. By Theorem 1 of [Be|, page 369, for all n > 0, there exists a bounded sequence (x,,)*_;

in X such that, for all k e N, all €1,...,e, € {—1,1}, and all ny < ... < ng, we have

Define ¢ : G(N) — X by setting ¢(ni,...,nk) = Tp, + ... + Ty, for all (ng,...,ng) €
GIN\{g}, and ¢(F) = 0. Then, we have that

(1 =n)- D@, m) < [er(m) — we(m)| < (1 +n) - D(m,m)

for all m,m € G(N). O

Problem 6.2.7. If X has the Banach-Saks property, does it follow that G(N) does not
Lipschitz embed into X7 In other words, if X is a reflexive Banach space, do we have that

G(N) Lipschitz embed into X if and only if X does not have the Banach-Saks property?

By Corollary 6.2.2 above, any Banach space with an asymptotically uniformly smooth

renorming has the alternating Banach-Saks property. To the best of our knowledge, there is
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no known example of a Banach space which has the alternating Banach-Saks property but
does not admit an asymptotically uniformly smooth renorming. However, using descriptive
set theoretical arguments, one can show the existence of such spaces. Recall, (X, ) is called
a standard Borel space if X is a set and () is a o-algebra on X which is the Borel o-algebra
associated to a Polish topology on X (i.e., a topology generated by a complete separable
metric). A subset A ¢ X is called analytic if it is the image of a standard Borel space under
a Borel map. We refer to [Do] and [Brl], Section 2, for more details on the descriptive set

theory of separable Banach spaces.

Let C[0,1] be the space of continuous real-valued functions on [0, 1] endowed with the

supremum norm. Let
SB = {X € C[0,1] | X is a closed linear subspace},
and endow SB with the Effros-Borel structure, i.e., the o-algebra generated by
{XeSB| X nU# @}, for Uc C[0,1] open.

This makes SB into a standard Borel space and, as C|0, 1] contains isometric copies of every
separable Banach space, SB can be seen as a coding set for the class of all separable Banach

spaces. Therefore, we can talk about Borel and analytic classes of separable Banach spaces.

By [Brl], Theorem 17, the subset ABS < SB of Banach spaces with the alternating Banach-
Saks is not analytic. On the other hand, letting AUS = {X € SB | X is asymptotically

uniformly smooth}, we have
X eAUS < VeeQ,36 € Q, Vi e @+(t < 6= py(t) < 51&).

As {X € SB | dim(C[0,1]/X) < oo} is Borel, it is easy to check that the condition A(t,e) <
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SB given by

X e A(t,e) < py(t) <et

defines an analytic subset of SB (for similar arguments, we refer to [Do], Chapter 2, Section
2.1). So, AUS must be analytic. Hence, letting AUSable < SB be the subset of Banach

spaces with an asymptotically uniformly smooth renorming, we have that
X € AUSable < 3Y € AUS such that X > Y.

As the isomorphism relation in SB x SB forms an analytic set (see [Do], page 11), it follows

that AUSable is analytic. This discussion together with Corollary 6.2.2 gives us the following.

Proposition 6.2.8. AUSable = ABS. In particular, there exist separable Banach spaces
with the alternating Banach-Saks property which do not admit an asymptotically uniformly

smooth renorming.

6.3 Asymptotically p-uniformly convex/smooth spaces.

In this section, we will use results from [KaRa] in order to obtain some restrictions on
coarse embeddings X — Y, where the spaces X and Y are assumed to have some asymptotic
properties (see Theorem 6.3.1). We obtain restrictions on the existence of coarse embeddings
between the convexified Tsirelson spaces (Theorem 1.6.3(i)), convexified Schlumprecht spaces
(Theorem 1.6.3(ii)), and some specific hereditarily indecomposable spaces introduced in [D]

(Corollary 6.3.8).

Theorem 6.3.1. Let p,q € (1,00). Let X be an infinite dimensional Banach space with
the p-co-Banach-Saks property and not containing (1. Let Y be a reflexive asymptotically
q-uniformly smooth Banach space. Then, there exists no coarse embedding f : X — Y such

that
7 (KP)

T = 0.

lim sup
k—o0
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Proof. Let f : X — Y be a coarse embedding. So, there exists C' > 0, such that ws(t) <
Ct+ C, for all t > 0. As X does not contain ¢;, by Rosenthal’s ¢;-theorem, we can pick a
normalized weakly null sequence (x,)>_, in X, with inf, .., |z, — 2| > 0. For each k € N,

define a map ¢y : Gx(N) — X by letting

Op(N1, ..., NE) = Tpy + ... + Tp,,

for all (ny,...,nx) € Gp(N). So, ¢y is a bounded map.
Ifd((ny,....mk), (ma,...,mp)) < 1, then | Y7 @ =375 @ | < 2. So, Lip(fopr) < 3C.

By Theorem 6.2.3, there exists K = K(Y) > 0 and an infinite subset M, < N such that

diam(f o o (Gr(My))) < 3KCEY4.

Without loss of generality, we may assume that M., < M, for all k € N. Let M < N
diagonalize the sequence (My);2,, say M = (n;)7Z;. If a sequence (y,);_, is weakly null, so
i (Yan—1 — Yon)_;. Therefore, using the fact that X has the p-co-Banach-Saks property to
the weakly null sequence (2, , — xnzj);@:l, we get that there exists ¢ > 0 such that, for all

k € N, there exists my; < ... < mg, € M, such that

> ckV/P.

k
H Z(xmzj—l - "L‘mzj)
j=1

Therefore, we have that diam (¢ (Gy(My))) = ck'/?, which implies that diam( fop(Gr(My))) =
ps(ckP), for all k e N. So,
pr(ck'?) < 3KCEYY,

for all k € N. Therefore, if limsup,_,, p;(k¥P)k~17 = o0, we get a contradiction. O

0

Remark 6.3.2. Let X be any Banach space containing a sequence (z,)_; which is asymp-

totically /1, i.e., there exists L > 0 such that, for all m € N, there exists k£ € N such that
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0

(zn;)7L is L-equivalent to (e;)7L,, for all k <ny < ... <n, € N, where (e;)}2, is the stan-

=1
dard /¢;-basis. Then, proceeding exactly as above, we can show that there exists no coarse

embedding f : X — Y such that

. pr(k) _
ln}rﬂn_}sogp e = 00,

where ¢ € (1,00) and Y is a reflexive asymptotically g-uniformly smooth Banach space.

Let X and Y be Banach spaces. We define ary (X) as the supremum of all & > 0 for which

there exists a coarse embedding f : X — Y and L > 0 such that

L —yl* = L<|f(x) = f(W)l,

for all z,y € X. We call ay (X) the compression exponent of X in'Y, or the Y -compression
of X. If, for all @ > 0, no such f and L exist, we set ay(X) = 0. As wy is always bounded
by an affine map (as X is a Banach space), it follows that ay (X) € [0,1]. Also, ay(X) =0
if X does not coarsely embed into Y.

The quantity ay (X) was first introduced by E. Guentner and J. Kaminker in [GuKa]. For
a detailed study of ay,(¢,), ar,(€p), ag,(Lp), and ar, (L), where p, g € (0, 00), we refer to [B].

Using this terminology, let us reinterpret Theorem 6.3.1.

Theorem 6.3.3. Let 1 < p < q. Let'Y be a reflexive asymptotically q-uniformly smooth

Banach space. The following holds.

(1) If X contains a sequence which is asymptotically ¢y, then ay(X) < 1/q.

(i1) If X is an infinite dimensional Banach space with the p-co-Banach-Saks property and

not containing £y, then ay(X) < p/q.

In particular, X does not coarse Lipschitz embed into Y .
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Proof. (ii) Let L > 0 and f : X — Y be a coarse embedding such that p(t) > L™'t* — L,

for all ¢ > 0. By Theorem 6.3.1, we must have

lim sup kP~ V4= — L~V < op,

k—o0

Therefore, a/p — 1/q < 0, and the result follows.

(i) This follows from Remark 6.3.2 and the same reasoning as item (ii) above. O

Notice that Y being reflexive in Theorem 6.3.3 cannot be removed. Indeed, ¢y contains
a Lipschitz copy of any separable metric space (see [A]), and it is also asymptotically g-

uniformly smooth, for any ¢ € (1, ).

Corollary 6.3.4. Let 1 < p < q. Let X be asymptotically p-uniformly conver, and Y be

reflexive and asymptotically q-uniformly smooth. Then ay(X) < p/q.

Asking the Banach space X to have the p-co-Banach-Saks property in Theorem 6.3.3 is
actually too much, and we can weaken this condition by only requiring X to have the almost

p-co-Banach-Saks property. Precisely, we have the following.

Theorem 6.3.5. Let 1 < p < q. Let X be an infinite dimensional Banach space with the
almost p-co-Banach-Saks property. Let'Y be a reflexive asymptotically q-uniformly smooth

Banach space. Then ay (X) < p/q. In particular, X does not coarse Lipschitz embed into 'Y .

Proof. Let f: X — Y be a coarse embedding and pick C' > 0 such that w(t) < Ct + C, for
all t > 0. If X contains ¢y, the result follows from Theorem 6.3.3(i). If X does not contain ¢,
we can pick a normalized weakly null sequence (z,)_; in X, with inf,, .., |z, — 2| > 0. By
taking a subsequence of (z,,)r_; if necessary, pick (0;)_; as in the definition of the almost p-
co-Banach-Saks property. Define ¢y, : Gx(N) — X by letting i (ni,...,ng) = Tp, +...+Tp,,
for all (nq,...,n;) € Gi(N).

Following the proof of Theorem 6.3.1, we get that

pr(KYP01) < 3KCEYA,
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for all k€ N. Let L > 0 and « > 0 be such that ps(t) = L™'t* — L, for all ¢ > 0. Then,
kelr=tag el 4K C,

for big enough k € N. As limy_, k70, = oo, for all 8 > 0, we must have that a/p — 1/q <
0. O

Remark 6.3.6. Let (z,)7°_; be a bounded sequence in a Banach space X with the following
property: there exists a sequence of positive reals (6;)%; in [1,0) such that lim;_, j%0;" =
oo, for all a > 0, and

RO < |y + .+ (+)

for all ny < ... < ny € N. The proof of Theorem 6.3.5 gives us that ay(X) < 1/g, for any

reflexive asymptotically g-uniformly smooth Banach space Y, with ¢ > 1.

Let ¢ > 1, and let (E,) ", be a sequence of finite dimensional Banach spaces. Let
& be a l-unconditional basic sequence. Notice that, if £ generates a reflexive asymptoti-
cally g-uniformly smooth Banach space, then (®,FE, )¢ is also reflexive and asymptotically
g-uniformly smooth. Hence, Theorem 6.3.3 and Theorem 6.3.5 gives us the following corol-

lary.

Corollary 6.3.7. Let 1 <p < q, and let (E,)r_, be a sequence of finite dimensional Banach
spaces. Let € be a 1-unconditional basic sequence generating a reflexive asymptotically q-

uniformly smooth Banach space. The following holds.

(i) If X contains a sequence with Property (), then o, k,).(X) < 1/q.

(i1) If X is an infinite dimensional Banach space with the almost p-co-Banach-Saks property,

In particular, X does not coarse Lipschitz embed into (D, E,)e.
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Proof of Theorem 1.6.3. (i) As noticed in Subsection 6.1.5, 77 has the p-co-Banach-Saks
property, and is asymptotically p-uniformly smooth, for all p € (1,0). Therefore, as T? is
reflexive (see [OScZs], Proposition 5.3(b)), for all p € [1,20), the result follows from Theorem
6.3.3 (or Corollary 6.3.7).

(i) For any p € (1,0), SP has the almost p-co-Banach-Saks property and is asymptotically
p-uniformly smooth. By Theorem 8 and Proposition 2(2) of [CKaKutMa], S? is reflexive, for

all p € [1,0). So, the result follows from Corollary 6.3.7. O]

A Banach space X is called hereditarily indecomposable if none of its subspaces can be

decomposed as a sum of two infinite dimensional Banach spaces. In Chapter 5 of [D], for

0
n=1

each p € (1, 0), Dew constructed a hereditarily indecomposable space X, with a basis (e,,)
satisfying the following properties: (i) X, is reflexive, (ii) the base (e, )i, satisfies an upper
{,-estimate with constant 1, and (iii) if (x,);~; is a block sequence of (e, )y, then, for all

n=1»

neN,

n
| 2
j=1

where f : N — [0,00) is a function such that, among other properties, lim,, . n®f(n)™*

> 1 ( 3 hat?)
j=1

= oo, for all @ > 0. In particular, X, has the almost p-co-Banach-Saks property, and
it is asymptotically p-uniformly smooth. This, together with Theorem 6.3.5, gives us the

following.

Corollary 6.3.8. Let 1 < p < q. Then ax«(X?) < p/q. In particular, X, does not coarse

Lipschitz embeds into X,.

Problem 6.3.9. Let 1 < p < ¢. Does agq(TP) = agq(SP) = p/q? If p > 1, does ax«(XP) =
p/q hold?

Remark 6.3.10. It is worth noticing that, if p > max{q, 2}, then apq(T?) = 0. Indeed, for all
r =2, T" has cotype r + € for all € > 0 (see [DiJT], page 305). On the other hand, if r < 2,

then T has cotype 2. This follows from the fact that, for any € > 0, T" has an equivalent norm
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satisfying a lower £, ,.)-estimate (we explain this in the proof of Corollary 1.6.4 below), then,
by Theorem 1.f.7 and Proposition 1.£.3(i) of [LiTz], 7" has cotype 2. Similarly, by Theorem
1.£.7 and Proposition 1.£.3(ii), 7" has nontrivial type, for all r € (1,00). By Theorem 1.11 of
[MeN2], if a Banach space X coarsely embeds into a Banach space Y with nontrivial type,
then

inf{q € [2,0) | X has cotype ¢} < inf{q € [2,00) | Y has cotype ¢}.

Therefore, we conclude that 77 does not coarsely embed into 79, if p > max{q,2}. So,

Qg (Tp) = 0.
Problem 6.3.11. Let 1 < ¢ < p < 2. What can we say about arpq(TP)?

We finish this section with an application of Theorem 6.3.3, Theorem 6.3.5, and Theorem
3.4 of [AIB]. By looking at the proof of Theorem 3.4 of [AlB], one can easily see that the
authors proved a stronger result than the one stated in their paper. Precisely, the authors

proved the following.

Theorem 6.3.12. Let 0 < p < q. There exist maps (; : R — R)2, such that, for all
r,yeR,

Apglr =yl < max{[;(x) —;(y)[* | 7 € N}

and

Z |1hj(@) — i (W)|* < Bpglz —yl”,

jeN
where A, 4, By 4 are positive constants.
Proposition 6.3.13. Let 1 < p < q. There ezists a map f : TP — (®T9)ra which is
simultaneously a coarse and a uniform embedding such that ps(t) = Ct?/1, for some C > 0.

In particular, a@ray,. (T7) = p/q.

Proof. Let (¢;)7,, Apg, and B, be given by Theorem 6.3.12. Define f : TP — (®T})r« by

letting

0

F) = (Wslan) = v5(O)7) .

n=1
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for all x = (z,,)7_, € T?. One can easily check that f satisfies
Al =yl < | f(2) = F)] < Bygle — yl?7,

for all z,y € TP.
As T is g-convex, it is easy to see that (@T7)rq is asymptotic g-uniformly smooth. Hence,

as (@T1'9)rq is reflexive, we conclude that ogra),, (17) = p/q. O
Corollary 6.3.14. T strongly embeds into a super-reflexive Banach space.

Proof. Tt is easy to check that (@717?)r2 is super-reflexive. Indeed, super-reflexivity is equiv-
alent to a uniformly convex renorming. Hence, if £ is a 1-unconditional basis generating a
super-reflexive space, and X is a super-reflexive space, then so is (BX)¢ (see [LiTz|, page

100). [
Similarly as above, we get the following proposition.

Proposition 6.3.15. Let 1 < p < q. There exists a map f : S? — (BS9)sa which is
simultaneously a coarse and a uniform embedding such that ps(t) = Ct?1, for some C > 0.

In particular, cgsa)q, (S?) = p/q.

6.4 Coarse Lipschitz embeddings into sums.

In this last section, we will be specially interested in the nonlinear geometry of the Tsirelson
space and its convexifications. In order to obtain Theorem 1.6.4, we will prove a technical
result on the coarse Lipschitz non embeddability of certain Banach spaces into the direct
sum of Banach spaces with certain p-properties (Theorem 6.4.6). The main goal of this sec-
tion is to characterize the Banach spaces which are coarsely (resp. uniformly) equivalent to

™ @...@Tr, for pr,....,pne(1,...,0), and 2 ¢ {p1,...,Dn}
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Given x,y € X, and 0 > 0 the approximate midpoint between x and y with error d is given
by
Mid(z,y,0) = {z € X | max{|z — 2|, |y — 2|} < 27'(1 + )|z — y|}.

The following lemma is an asymptotic version of Lemma 1.6(i) of [JoLiS] and Lemma 3.2 of

[KaRa].

Lemma 6.4.1. Let X be an asymptotically p-uniformly smooth Banach space, for some
p € (1,00). There exists ¢ > 0 such that, for all x,y € X, all § > 0, and all weakly null

sequence (x,)r_, in Bx, there exists ng € N such that, for all n > ng, we have
u+ 67| 2, € Mid(x,y, cd),

where u = L (x +y), and v = 3(x —y).

Proof. By Proposition 1.3 of [DimGolJ], there exists ¢ > 0 such that, for all weakly null

sequence (z,)%_; in By, we have
limsup |z + x,|? < |z|? + ¢ - limsup |z, [
n n
Fix such sequence. As |z — (u + §Y7|v|z,)| = |v — 6YP|v|z,|, we get

lim sup Hx - (u + 51/pHvHxn>

D<)l

Therefore, as (1 4+ ¢6)/? < 1 + ¢, there exists ng € N such that |z — (u + §"7|jv]z,)| <
(1+cd)|v], for all n > ng. Similarly, we can assume that |y — (u + §Y7|v||z,)| < (1+cd)|v],

for all n > ny. O

The following lemma is a simple modification of Lemma 3.3 of [KaRa], or Lemma 1.6(ii)

of [JoLiS], so we omit its proof.
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Lemma 6.4.2. Suppose 1 < p < o0, and let X be Banach space with a 1-unconditional basis
(en)yy satisfying a lower {,-estimate with constant 1. For all z,y € X, and all § > 0, there

exists a compact subset K < X, such that
Mid(z,y,0) ¢ K + 26"?|v| By,
where u = L(x +y), and v = 3(xz —y).

For each s > 0, let

wy(t)

Lipy(f) = sup

t=s

and Lip,.(f) = inf Lip, (/).
s>
We will need the following proposition, which can be found in [KaRa| as Proposition 3.1.

Proposition 6.4.3. Let X be a Banach space and M be a metric space. Let f: X — M be
a coarse map with Lip,,(f) > 0. Then, for alle,t >0, and all 6 € (0, 1), there exists x,y € X

with ||z — y| >t such that
f(Mid(z,y,0)) = Mid(f(x), f(y), (1 + €)d).

The following lemma will play the same role in our settings as Proposition 3.5 did in

[KaRal.

Lemma 6.4.4. Let 1 < q < p. Let X be an asymptotically p-uniformly smooth Banach
space, and Y be a Banach space with a 1-unconditional basis satisfying a lower {,-estimate
with constant 1. Let f : X — Y be a coarse map. Then, for any t > 0, and any ¢ € (0,1),
there exists x € X, 7 > t, and a compact subset K < Y such that, for any weakly null

sequence (x,)>_, in Bx, there exists ng € N such that

flz + 7x,) € K4+ 6TBy, forall n>ny.
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Proof. 1f Lip,,(f) = 0, then there exists 7 > ¢ such that Lip_(f) < . Hence, w(7) < 07,

and the result follows by letting = 0 and K = {f(0)}. Indeed, if z € Bx, we have
[£(m2) = FO)] < wy([m2]) < we(T) < o,

Assume Lip (f) > 0. In particular, C' = Lip,(f) > 0, for some s > 0. Let ¢ > 0 be
given by Lemma 6.4.1 applied to X and p. As ¢ < p, we can pick v € (0,1) such that
20(2c)Yayt/a=tr < §. By Proposition 6.4.3, there exists u,v € X such that |u — v| >
max{s, 2tv~/?} and

fMid(u, v, cv)) < Mid(f(u), f(v),2cv).

0

Let = 2(u+v), and 7 = vY?|3(u — v)|| (so 7 > ). Fix a weakly null sequence (),

in Bx. Then, by Lemma 6.4.1, there exists ng € N such that « + 7z,, € Mid(u, v, cv), for all

n > ng. S0,

flz+712,) c fMid(u, v, cv)) < Mid(f(u), f(v),2cv),

for all n > ng. Let K < Y be given by Lemma 6.4.2 applied to Y, f(u), f(v) € Y, and 2cv.
So,

Mid(f(u). £(0). 200) & K + 2(26) 0 LD~ SO g

As Lip,(f) = C, and as |Ju — v|| > s, we have | f(u) — f(v)| < C|lu — v| = 2CTv~"/?. Hence,

2(20)1/qyl/q Hf<u> — f(U)H < 20(26)1/qyl/q71/p7_ < o7
9 )

and we are done. O

Remark 6.4.5. Lemma 6.4.4 remains valid if we only assume that X has an equivalent norm
with which X becomes asymptotically p-uniformly smooth. Indeed, let M > 1 be such that
B(X,H-H) c M- B(X,|\|-||\)- Fix t > 0, and 0 € (0, 1). Applying Lemma 6.4.4 to (X, W : HD with

t' =M.t and &' = §/M, we obtain x € X, 7/ > t/, and a compact set K < Y. The result now
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follows by letting 7 = 7//M.
Theorem 6.4.6. Let 1 < q; < p < qo. Assume that

(i) X is an asymptotically p-uniformly smooth Banach space with the p-co-Banach-Saks

property, and it does not contain (1,

(11) Y1 is a Banach space with a 1-unconditional basis satisfying a lower {4, -estimate with

constant 1, and
(111) Ys is a reflexive asymptotically go-uniformly smooth Banach space.

Then X does not coarse Lipschitz embed into Y1 @ Y.

Proof. Let Y1 ®; Ys denote the space Y @Y, endowed with the norm || (y1, y2)|| = [yl + [lv2],
for all (y1,y92) € Y1®Ya. Assume f = (f1, f2) : X — Y1@®; Y3 is a coarse Lipschitz embedding.
As f is a coarse Lipschitz embedding, there exists C' > 0 such that p¢(t) > C~'t — C, and
wp,(t) < Ct+C, for all t > 0.

Fix ke N, and § € (0,1). Then, by Lemma 6.4.4, there exists 7 > k, z € X, and a compact
subset K < Y7, such that, for any weakly null sequence (y,)*_, in By, there exists ng € N,
such that

fi(z + 1y,) € K + 07 By,

for all n > ny.

As X does not contain ¢;, by Rosenthal’s ¢;-theorem, we can pick a normalized weakly null
sequence (x,)5_; in X, with inf, ., |z, — 2| > 0. As X has the p-Banach-Saks property
(Proposition 6.1.2), there exists ¢ > 0 (independent of k) such that, by going to a subsequence

if necessary, we have

[0, + v+ | < R,

for all ny < ... < ng € N. Define a map ¢ s : Gg(N) — X by letting

T, _
Yrs(ny, ... ,ng) = + Ek l/p(:cm + ot Ty,
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for all (nq,...,n;) € Gi(N).
As d((nq,...,ng),(my,...,my)) < 1 implies | Z?zl T, — Z?zl T, | < 2, we have that
Lip(fy 0 prs) < 27Ck~YPct + C. Therefore, by Theorem 6.2.3, there exists My, s = N such

that
diam(fz 0 o 5(Gr(Mys))) < 2K7CEYe2 Vel  KOEY %,

for some K > 0 independent of k and §.
Notice that, if (n],...,n?)%, is a sequence in Gy (M), with n? < n]*?, for all j € N, then
1 k/)j=1 ; k 1 J

(xnjl' +...+ aﬁni)?o:l is a weakly null sequence in ck'/? - Bx. Therefore,
fl o @k,é(n{, o ,ni) e K + 5TBY1,

for large enough j. This argument and standard Ramsey theory, gives us that, by passing to

a subsequence of My, 5, we can assume that, for all (ny,...,ng) € Gp(My),
fiogrs(ni,...,ng) € K + 67By,.

Therefore, as K is compact, by passing to a further subsequence, we can assume that diam( f;o
ors(Gr(My5))) < 307 (see Lemma 4.1 of [KaRal).
We have shown that, for all £ € N, and all § € (0,1), there exists a subsequence M, s € N

such that
diam(f o ¢y 5(Gr(My4))) < 2K7CkY2~VPe™t 4 KCEYe 4 367, (6.4.1)

We may assume that M., 5 < My, for all £ € N, and all § € (0,1). For each § € (0,1), let
M; < N diagonalize the sequence (M 5)¢,.
As X has the p-co-Banach-Saks property, arguing similarly as in the proof of Theorem

6.3.1, we get that there exists d > 0 (independent of k) such that, for all £ € N, there exists
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ny < ... <ng €My, such that

> dkP.

k
| 2 =)

Therefore, diam(yy, s(Gr(Ms))) = 7d/c, which implies that

diam(f o ¢y, 5(Gx(My))) = 7d(cC) ™" - C, (6.4.2)

for all k€ N, and all 6 € (0,1). So, Equation (6.4.1) and Equation (6.4.2) give us that

7d(cC)™! — C < 2K7CkY 2= Vremt L KCEYe 4+ 367,

for all ke N, and all € (0,1). As 7 > k, this gives us that

d(cC)™ — Ck™" < 2KCkYeVrel 4 KORY®! 4+ 35

for all k € N, and all § € (0,1). As go > p > 1, by letting k& — o0 and 0 — 0, we get a

contradiction. O

UT=(T1,T3) : X > Y1 ®Y5 is a linear isomorphic embedding, then either 77 : X — Y]
or Ty : X — Y5 is not strictly singular, i.e., T; : Xg — Y; is a linear isomorphic embedding,
for some infinite dimensional subspace X, < X, and some i € {1,2}. Is there an analog of

this result for coarse Lipschitz embeddings? Precisely, we ask the following.

Problem 6.4.7. Let X, Y] and Y5 be Banach spaces and consider a coarse Lipschitz embed-
ding f = (f1, f2) : X = Y1 @Y5. Is there an infinite dimensional subspace Xy < X such that

either f; : Xg — Yj or f5: Xy — Y5 is a coarse Lipschitz embedding?

We can now prove Theorem 1.6.4, which will be essential in the proof of Theorem 1.6.5.

Proof of Theorem 1.6.4. Say m € {1,...,n — 1} is such that p € (pm, Pm+1) (the other cases

have analogous proofs). Then (TPm+' @ ... @ T?"),, is reflexive (see [OScZs|, Proposition

0
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5.3(b)). Also, it is easy to see that (TPm+' @ ...&® TP"),, is asymptotically p,,;i-uniformly

o0

smooth. By Theorem 6.4.6, it is enough to prove the following claim.

Claim: Fix € > 0 such that p,, + e <p. (T ®...®TP) can be renormed so that it

Lo,
has a 1-unconditional basis satisfying a lower £, ,.)-estimate with constant 1.

For each k € N and p € [1,00), denote by P, = P : T? — TP the projection on the first
k coordinates, and let Qy = Id — P;. By Proposition 5.6 of [JoLiS], there exists M € [1, )
and N € N such that Qn(7%/) has an equivalent norm with (p; + €)-concavity constant M,
for all j € {1,...,m} (precisely, the modified Tsirelson norm has this property, see [CSh] for
definition).

As the shift operator on the basis of TP is an isomorphism onto Q1(77), we have that
TP = Q(T?), for all k € N, and all p € [1,00). Therefore, it follows that (I" @®...®T""),,
has an equivalent norm with (p,, + €)-concavity constant M. By Proposition 1.d.8 of [LiTz],

we can assume that M = 1. As a g-concave basis with constant 1 satisfies a lower ¢,-estimate

with constant 1, we are done. O

Before given the proof of Theorem 1.6.5, we need a lemma. For that, we must introduce
some natation. Let p € (1,00). A Banach space X is said to be as. £, if there exists A > 1
so that for every n € N there is a finite codimensional subspace ¥ < X so that every n-
dimensional subspace of Y is contained in a subspace of X which is A-isomorphic to L,(u),
for some 1. As noticed in [JoLiS], Proposition 2.4.a, an as. £, space is super-reflexive. Also,
the p-convexifications TP are as. L, (see [JoLiS|, page 440).

The following lemma, although not explicitily written, is contained in the proof of Propo-

sition 2.7 of [JoLiS]. For the convenience of the reader, we provide its proof here.

Lemma 6.4.8. Say 1 <p; <...<p, <0 and X = X" @...® X", where XPi is as. L.,

forall je{1,...,n}. Assume that'Y is coarsely equivalent to X.

(i) Then there exists a separable Banach space W such that Y @ W is Lipschitz equivalent

to @;_,(XP @ Ly,).
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(ii) Moreover, if Y = YP @ ...@YP", where YP is as. L,,, for all i € {1,...,n}, then
D (YP @ Ly,) is Lipschitz equivalent to @;_, (X? @ Ly,).

Proof. Let Z be a Banach space and U/ be an ultrafilter on N. In order to simplify notation,
let Zy = ZN /U, where ZN /U is the ultrapower of Z with respect to U. Notice that z € Z
(2)%_, € Zy is a linear isometric embedding. If Z is reflexive, Z is 1-complemented in the
ultrapower Z;; (where the projection is given by (z,)%_; € Zy — w-lim,gy 2, € Z), and we
write Zy = Z® Zy . Also, we have that (Z@FE)y = Zy® Ey. We can now prove the lemma.
For simplicity, let us assume that n = 2.

(i) Let U be a nonprincipal ultrafilter on N. As Y is coarsely equivalent to X, Yy, is
Lipschitz equivalent to Xy = XI' @ X]? (see [Ka2], proposition 1.6). As the spaces X/
are reflexive, using the separable complementation property for reflexive spaces (see [FiJoP],
Section 3), we can pick complemented separable subspaces W < Yy, and X, XZ{O, for
j € {1, 2}, such that Y @W is Lipschitz equivalent to (X?*@X; o) ®(XP2@Xs,). By enlarging
X0 and W, if necessary, we can assume that X;o = L, , for j € {1,2} (this follows from
Proposition 2.4.a of [JoLiS], Theorem I(ii) and Theorem III(b) of [LiRos]).

(ii) The same argument as why X 0@ Xs can be enlarged so that X; @ X0 = Ly, @ Ly,

gives us that W can also be assumed to be L, @ L,,. O

We can now prove Theorem 1.6.5. As mentioned in Section 1.2, Theorem 1.6.5 was proved
in [JoLiS] (Theorem 5.8) for the cases 1 < p; < ... <p, <2and 2 <p; <...<p, < 0.
In our proof, Theorem 1.6.4 will play a similar role as Corollary 1.7 of [JoLiS] did in their
proof. Also, we use ideas in the proof of Theorem 5.3 of [KaRa| in order to unify the cases
l<p<...<pp,<2and 2 <p; <...<p, <o0. In order to avoid an unnecessarily
extensive proof, we will only present the parts of the proof that require Theorem 1.6.4 above,

and therefore are different from what can be found in the present literature.

Sketch of the proof of Theorem 1.6.5. By Proposition 5.7 of [JoLiS], T? is uniformly equiva-
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lent to TP@®¢,, for all p € [1,00). So, the backwards direction follows. Let us prove the forward
direction. As uniform equivalence implies coarse equivalence, it is enough to assume that Y
is coarsely equivalent to X. By Theorem 1.6.4, Y does not contain ¢5. Let m e {1,...,n—1}
be such that 2 € (py, Pms1) (if such m does not exist, the result simply follows from Theorem

5.8 of [JoLiS)).
Claim 1: X ®@)_, L,, and Y ® @D)_, L,, are Lipschitz equivalent.

By Lemma 6.4.8(i), there exists a separable Banach space W so that Y @ W is Lipschitz
equivalent to @_, (7% @ L,,). Hence, the image of Y through this Lipschitz equivalence is
the range of a Lipschitz projection in @®}_, (7% @ L,,). Therefore, by Theorem 2.2 of [HeM],
we have that Y is isomorphic to a complemented subspace of (—B?:l(ij ®Ly,). Let A be this
isomorphic embedding. For each i € {m +1,...,n}, let m; : Y — L, be the composition of
A with the projection @®J_, (1% @ Ly,;) — Ly, As'Y does not contain {5, 7; factors through
l,, (see [Jol]). Hence, Y is isomorphic to a complemented subspace of

D eL,)® B (e,
=1

j= j=m+1

As Zy = @ (T" @ Ly,;) and Zy = @_,, . (T" @ {,,) are totally incomparable (i.e.,
none of their infinite dimensional subspaces are isomorphic), Y =~ Y] @ Y, where Y; and Y;
are complemented subspaces of Z; and Z,, respectively (see [EWo], Theorem 3.5). Hence, Y;*
is complemented in Z7. Notice that, as Y is coarsely equivalent to the super-reflexive space
X, Y is also super-reflexive (see [Ri], Theorem 1A). Hence, Y] is super-reflexive, and so is Y}*.
As Y] has cotype 2 (see Remark 6.3.10) and Y7* has nontrivial type (as Y;* is super-reflexive),
it follows that Y7* has type 2 (see the remark below Theorem 1 in [Pi]). So, Y;* does not

contain a copy of f5. Indeed, otherwise Y;* would contain a complemented copy of ¢y (see

[Mau]), contradicting that Y7 does not contain a copy of 45.

Proceeding similarly as above and using that Y;* does not contain ¢, the main theorem of

[Jo1] implies that Y/* is isomorphic to a complemented subspace of P, (T%* @ {;,), where
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each p; is the conjugate of p; (i.e., 1/p; + 1/p; = 1). Therefore, Y7 embeds into @;n:l(TpJ' @
lp,;) as a complemented subspace. This gives us that Y embeds into D]_,(T" @ {,,) as a
complemented subspace.

As the spaces (TP @ {,,)}_, are totally incomparable, we can write Y as ¥, ®...®Y,,,
where each Y, is a complemented subspace of TP @ (,,; (see [EWo|, Theorem 3.5) and it is
an as. L, (see [JoLiS], Lemma 2.5 and Proposition 2.7). By Lemma 6.4.8(ii), we have that
X @?:1 Ly, and Y ® @?:1 Ly, are Lipschitz equivalent.

Claim 2: There exists a quotient W of L, ®...® L,, such that Y @ W is isomorphic to
X® @;;1 Ly,.

The prove of Claim 2 is the same as the proof of the claim in Proposition 2.10 of [JoLiS],
so we do not present it here. Let us assume the claim and finish the proof. As X does not
contain any /, every operator of X into @®}_, Ly, is strictly singular (see [KrMau], Theorem
I1.2 and Theorem IV.1). Therefore, by [EWo] (or [LiTz], Theorem 2.c.13), Y = Yx @Y},
and W =~ Wx @ Wy, where Yy and Wy are complemented subspaces of X, Y, and W, are
complemented subspaces of @7_; L, and X = Yx@®Wx. Proceeding as in the proof of Claim
1 above, we get that Y7, is complemented in @7_,¢, .. So, Y7, is either finite dimensional or
isomorphic to @jerly,, for some F' < {1,...,n}.

Let us show that Wy is finite dimensional. Suppose this is not the case. As W is a

quotient of @7_; L., and Wx is complemented in W, we have that W& embeds into @}_, L,

where each p; is the conjugate of p;. Therefore, it follows that W§ must contain some /g
(see [KrMau|, Theorem II1.2 and Theorem IV.1). As W% embeds into X*, and X* does not
contain any /£, this gives us a contradiction.

As X = Yy ®@ Wy, and dim(Wx) < oo, we have that dim(X /Yy) < oo. Therefore, as X is

isomorphic to its hyperplanes, we conlude that Yy =~ X. So, we are done. O
Problem 6.4.9. Does Theorem 1.6.5 hold if 2 € {py,...,p,}?

Problem 6.4.10. What can we say if a Banach space X is either coarsely or uniformly

equivalent to the Tsirelson space 17
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Remark 6.4.11. It is worth noticing that, using Remark 6.4.5 and adapting the proofs of
Theorem 5.5 and Theorem 5.7 of [KaRa] to our settings, one can show that (®7},)7, does not

coarse Lipschitz embed into T, ® T}, for all p,q € [1,00) with p # q.



Chapter 7

The isomorphism group of the Gurarij

space.

In this chapter, we study homeomorphic embeddings of Polish groups into the isometry
group of the Gurarij space, and how make sure those maps also preserve the large scale

geometry of the Polish group.

7.1 The Gurarij space

Let X and Y be Banach spaces, and let ¢ > 0. We say that a linear map f: X — Y is an
(1 + ¢)-isomorphism if

(L+e) el < [f(@)] < @ +e)|],

for all z € X. As we saw in Chapter 1, a Banach space X is said to be a Gurarij space if for
all finite dimensional Banach spaces F < F', for all ¢ > 0, and all linear isometry f : £ — X,
there exists an (1 + €)-isomorphism g : F' — X extending f. W. Lusky was the first one to
show that the Gurarij space is unique up to isomorphism (see [Lu]). In [KuS], W. Kubis, and
S. Solecki gave an elementary prove of the uniqueness of the Gurarij space. In particular,

they showed the following (see [KuS], Theorem 1.1).

137
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Theorem 7.1.1. (W. Kubis, S. Solecki, 2013) Let G be the Gurarij space, and € > 0.
Let F < G be a finite dimensional subspace and f : F — G be an (1+¢)-isomorphism. Then,

there exists a linear surjective isometry g : G — G such that g F — f| < e.

7.2 Group of affine isometries.

If (X,d) is a metric space, we denote by Iso(X) the group of isometries of X endowed
with the pointwise convergence topology. If X is a Banach space, we denote the group of
affine isometries of X by Aff(X), and endow Aff(X) with the pointwise convergence topology.
Denote by Isor,(X) the closed subgroup of Aff(X) consisting of the linear isometries of X.
As we saw in Section 4.2, by Mazur-Ulam’s theorem, every surjective isometry f : X — X
is affine, i.e., there exists g € Isor,(X), and x € X, such that f(y) = g(y) + z, for all y € X.
So, for a Banach space X, we have that Aff(X) = Iso(X). The group Aff(X) can be seen as
the semi-direct product

Aff(X) = Isop,(X) x X,

where Isor,(X) x X is the topological product space Isor,(X) x X endowed with the group

operation (f,x)«(g,y) = (fog,z + f(y))-
A homomorphism ¢ : H — Aff(X) can be seen as an affine isometric action o : H —~ X
with a linear part # : H —~ X and a cocycle b : H — X. That is, 7 : H —~ X is a linear

isometric action on X, b is a map satisfying the cocycle equation for the action 7, i.e.,

b(hg) = m(h)(b(g)) + b(h),

for all h,g € H, and a(h)(xz) = w(h)(x) + b(h), for all he H, and all x € X.

If Isor(X) has property (OB), then Aff(X) is (OB) generated. Indeed, by Example 39
of [Ro3], Bx has property (OB) relative to (X, +). Hence, as the product of two subsets

A, B ¢ G with property (OB) relative to a Polish proup G still has property (OB) relative
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to G (see [Ro3|, Lemma 7), we have that
Isop(X) x By = ({Id} x BX> . (IsoL(X) x {0})

has property (OB) relative to Aff(X), if Isor(X) has property (OB). As Isop(X) x Bx
generates Aff(X), it follows that Aff(X) is (OB) generated. C. Rosendal proved the following

in [Ro3], page 21.

Lemma 7.2.1. If Isor(X) has property (OB), then the map g € AfiX) — g(z) € X is a

coarse Lipschitz equivalence, for all x € X.

7.3 Approximately oligomorphic subgroups.

In this section, we prove a lemma which will give us a more Banach space theoretical
characterization of approximately oligomorphic subgroups G < Isor,(X), where X is a Banach
space. First, we need a couple of definitions.

Let (X,| - |) be a Banach space. For n € N, we view B% as a metric space with the
supremum metric | - — - o induced by | - ||. The natural action of a subgroup G < Isor,(X)
on X extends to an action on B% coordinatewise, i.e., if = (z1,...,2,) € X", and g € G, we

have g - 7 = (g(x1), ..., g9(xy,)). For a subset A < BY%, we write G- A={g-a|geG, ae A}

Definition 7.3.1. Let (X, |- |) be a normed space and let G < Isor(X). We say that G is
approximately oligomorphic if, for all n € N, and all ¢ > 0, there exist a finite set A < B

such that G - A is e-dense in BY%.

For a metric space (X, d), let £(X) = {K < X | K is compact}. If d is bounded, we can

define a metric on K(X), called Hausdorff metric, by saying that, given K, L € K(X),
dy(K,L) <e< K < B(L,e) and L c B(K,e¢),

for all € = 0. For more on Hausdorff metric see [Ke].
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A normalized basis {z;}!" ; of an n-dimensional Banach space X is called a Auerbach basis if

there exists a normalized sequence of biorthogonal vectors for {z;}! ,, i.e., there are {z¥}";

and |z;| = |zf]| = 1, for all j,i € {1,...,n}. By Lemma

in X* such that af(x;) = d;,

2.22 of [Os2], every finite dimensional Banach space has an Auerbach basis. If {x;}?_; is an

Auerbach basis for X, its basic constant is at most n — 1. Indeed, for all x € X, we have

—_ \" *
=,z (z)x;. Hence, for m < n, we have

H ixf(m)xi < i lzF ()| < (n—1)-||z|.

In particular, if {z;}, is an Auerbach basis for its span, € € (0,1/2), and {y;}, is such that
|2 — yill < e/2n?, for all i € {1,...,n}, then {y;}", is also a basis for its span, and its basic
constant is at most 3n (see [AlKa], Theorem 1.3.9).

A topological group G is called Roelcke precompact if for any open neighborhood of the

identity V there exists a finite set F' such that G = VFV.

Lemma 7.3.2. Consider a Banach space X and a subgroup G < Isor(X). Then, the follow-

g are equivalent.

(i) ¥n € N, Ve > 0, there exist finite dimensional subspaces Fi, ..., F, < X such that, for
all subspace E < X with dimension at most n, there exists i € {1,...,k} and g € G such

that dH(BE, Bg(Fi)) < €.
(i1) G is approximately oligomorphic.

(i1i) G is Roelcke precompact.

In particular, in the point of view of the model theory of metric structures, if G = Isor(X),

(i) holds for G if and only if the theory of By, i.e., Th(Bx), is w-categorical.

A word or two on the last statement of the lemma above is neeeded. Informally speaking,

the theory of By, i.e., Th(Byx), consists of all the “sentences” which are true in By, and the
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fact that Th(By) is w-categorical means that any other bounded metric space M such that
every “sentence” which is true in By is also true in M is isometric to Bx. As model theory
is not the focus of this dissertation, we refer to [Sch] for more details and precise definitions

regarding the model theory of metric structures, Th(By ), and w-categoricity.

Proof of Lemma 7.53.2. (i)=(ii) Fix n € N, and ¢ > 0. By (i), we can pick Fi,..., F} such
that for all subspace F < X with dimension at most n, there exists i € {1,...,k} and g € G
such that dy(Bg, Byr,)) < /2. For each i € {1, ..., k}, pick a finite ¢/2-net A; of By, . Set
A= UF A so Ais finite and A = BY.

Let 7 € BY%, and set £ = span{z}. Then dim F < n, so there exists i € {1,...,k} and g€ G
such that dy(Bp, Byr,)) < €/2. Pick z € Bl ) such that |z — z[lc < &/2, and pick § € A
such that [g7! -z — | < &/2. Hence, |T — g 3| < ¢, so G- A is e-dense in BY.

(ii)= (i) Fixn € N, and € € (0,1/2). By (ii), we can pick a finite subset A = B% such that,
for all T € BY there exists § € A and g € G such that [T —g- 7| < /6n% Let Fy, ..., F, < X
be given by the linear spans of all the n-tuples of A.

Let E ¢ X be an m-dimensional subspace, with m < n. By Auerbach’s theorem, F
has an Auerbach basis, say z1,..., 2. Let T = (x1,...,2,,0,...,0) € B%, and pick g € A
and g € G such that |7 — g - ] < £/6n%. Without loss of generality, we can assume that
U= (Y1, ., Ym,0,...,0). Pick i € {1,...,k} such that F; = span{y}. In particular, y1,...,yy, is
a basis for Fj, with basic constant at most 3n.

Let us show that dy(Bp, Byr,) < €. Pick v € By, so v = Y7 vf(z)r;. Let y =
> v (2)g(ys), and ¥ = y/(1 +&/2). Then

= £ 5
lo =yl < D125 @) - |25 — g(yy)] < ez M lel <3,

j=1 "
so |y| <14 ¢/2. Hence, |y'| € Byr,), and, as |y — ¢'| < /2, we have that |z —¢/| <e. On

the other hand, let y € By(r,), say y = D 1_ a;jg(y;). Let v = 37, a5, and 2" = z/(1+¢/2).
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Then

% 5 5
ly =l < X5 lagl - lg(y;) — 5 < oz Moyl <5,
=1 "
so |z < 14 ¢/2. Hence |2'|| € Bg, and, as ||z — 2| < £/2, we have that ||y — 2’| < e. This
concludes the proof of the lemma.

The equivalence (ii)<(iii) is given by Proposition 1.22 of [Ro2]. The last statement of the
Lemma follows from Theorem 4.25 of [Sch]. O

7.4 Proof of the Theorems.

A minor modification of Theorem 5.2 of [Rol], gives us the following.

Theorem 7.4.1. (C. Rosendal, 2009) Let (X, | -|) be a Banach space and G be a closed

subgroup of Isor(X). If G is approximately oligomorphic, then G has property (OB).

Theorem 7.4.2. Iso(G) is approximately oligomorphic, Roeckle precompact, and Th(Bg)

is w-categorical. In particular, Isor(G) has property (OB).

Proof. For this, we only need to show that (i) of Lemma 7.3.2 holds for G = Iso(G). Fix
n € N, and € > 0. For each m € N, let F,, be the set of equivalence classes of m-dimensional
Banach spaces with respect to the equivalence relation of isometry between Banach spaces.
Let D be the Banach-Mazur distance on F,,. Then (F,,, D) is a compact metric space,
for all m € N. Let ¢; = log(1 + &?). There exist finitely many finite dimensional Banach
spaces F1, ..., Fj such that for any m-dimensional Banach space F, with m < n, there exists
i€ {l,....k} such that D(F, F;) < €1. As the Gurarij space is isometrically universal for all
separable Banach spaces, we can assume that F}, ..., F, c G.

Let E ¢ G be an m-dimensional subspace, with m < n. Pick i € {1,...,k} such that
D(E,F;) <e. Let f: F; > E be an (1 + &5)-isomorphism, for some 5 > 0 such that log(1 +
£9)? < &1 (s0 &3 < €). By Theorem 7.1.1, there exists g € Isor,(G) such that |gF; — f| < ea.

Clearly, dy(BEg, By(r,)) < €2, and we are done. ]
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Proof of Theorem 1.7.2. This follows from Theorem 7.4.2, Lemma 7.2.1 and the discussion

preceding Lemma 7.2.1. [

Definition 7.4.3. Let X and Y be Banach spaces. We say that a linear isometric embedding
i : X — Y is a g-embedding if there exists a continuous homomorphism © : Isor(X) —

Isor(Y) such that ©(g)(i(x)) = i(g(x)), for all g € Isor(X), and all v € X.

Considering the notation of Definition 7.4.3, let i~' : Im(i) € Y — X be the inverse of
the linear isometric embedding ¢ : X < Y. Notice that, as the restriction map g € Im(0) —

il ogoielsor(X) is continuous, the map © is automatically a homeomorphic embedding.

Proof of Theorem 1.7.3 and Theorem 1.7.4. Let H be a separable metrizable topological group,
and pick a compatible left-invariant metric d on H. If H is locally (OB), we also assume that

d is metrically proper, and if H is (OB) generated, we assume that d is maximal.

Consider the Banach space A (H,d), i.e., the the Arens-Eells space associated to (H,d)
(see [Ro3], Section 3.1, for a precise definition). By Theorem 45 of [Ro3|, there exists a

continuous homomorphism « : H — Aff(£(H, d)) such that

|(9)(0) = a(h)(0)] = d(g, h),

for all h,ge H. So, a: H — Aff(£(H,d)) is also a homeomorphic embedding.

By Theorem 3.10 of [Y], there exists a linear g-embedding ¢ : A(H,d) — G. Let O :
Aff(E(H,d)) — Aff(G) be as in Definition 7.4.3. Define ¢ : H — Aff(G) by ¢ = © 0 a,

so ¢ is a homorphism and a homeomorphic embedding. Then g € H — ¢(g)(0) € G is an
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isometric embedding of (H,d) into G. Indeed, for all g, h € H, we have

[£(9)(0) = @(R)(0)[| = [©(a(9))(0) = O(a(h))(0)]
= [[i{a(9)(0)) = i(a(h)(0))]
= a(g)(0) = a(h)(0)]

=d(g,h).

Therefore, as the map f € Aff(G) — f(0) € G is a coarse Lipschitz equivalence (Theorem
1.7.2), the map ¢ is a coarse Lipschitz embedding of (H,d) into Aff(G). This completes the

proof. O
At last, let us prove Corollary 1.7.5.

Proof of Corollary 1.7.5. By Theorem 1.7.2, Aff(G) has property (OB). By [Lu] (see the
theorem and Remark (ii) in page 633), (G, |-||) is almost transitive, i.e., the action Isor,(G) —~
G induces a dense orbit on the unit sphere of G. Hence, by Proposition 70 and Proposition
79 of [Ro4], the existence of an isometric action Aff(G) —~ M with an unbounded orbit gives

us that G maps into M by a coarse solvent map. O
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Core Mathematics 4

Core Mathematics 3

Grader

Linear Algebra

Summer 2015

Summer 2014

Spring 2017
Summer 2016
Fall 2015

Fall 2014

Fall 2014

Spring 2013
Fall 2012
Spring 2012
Fall 2011
Spring 2011
Spring 2011

Fall 2010

Spring 2012
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Universidade Federal do Rio de Janeiro

Teaching Assistant

Calculus 11T Fall 2009

Scholarships and Grants

2013-present Graduate Assistantship from University of Illinois at Chicago.
2010-2013 Graduate Assistantship from Kent State University.
2008-2010 Coordenagao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES).

2007-2008 Conselho Nacional de Desenvolvimento Cientifico e Tecnoldgico (CNPq).

Service to the Mathematical Community

Refereed for

1. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A, Matematicas

(RACSAM).
2. The Quarterly Journal of Mathematics.
Reviewer for

1. Mathematical Reviews.

Languages

Portuguese - Native
English - Fluent

Russian - Beginner
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Conference Presentations

1. Spring Eastern Sectional Meeting Hunter College, City University of New York, NY,
USA (05/2017). Title of the talk: Asymptotic structure and coarse Lipschitz geometry

of Banach spaces.

2. Infinite Dimensional Analysis: Celebrating Richard Aron’s Work and Impact, Kent
State University, OH, USA (10/2016). Title of the poster: On weak nonlinear embed-

dings between Banach spaces.

3. Metric Spaces: Analysis, Embeddings into Banach Spaces, and Applications, Texas
A&M University, TX, USA (07/2016). Title of the talk: On weak nonlinear embeddings

between Banach spaces.

4. Conference on Geometric Functional Analysis in Honour of Nicole Tomczak-Jaegermann,
University of Alberta, AL, Canada (05/2016). Title of the poster: On weak nonlinear

embeddings between Banach spaces.

5. AMS Spring Western Sectional Meeting University of Utah, Salt Lake City, UT, USA

(04/2016). Title of the talk: Coarse and uniform embeddings.

6. Midwest Descriptive Set Theory Day, Chicago, 1L, USA (03/2016). Title of the talk:

Coarse and uniform embeddings.

7. First Brazilian Workshop in the Geometry of Banach Spaces, Maresias, Sao Paulo,

Brazil (08/2014). Title of the talk: Duality on Banach spaces as a Borel definable map.

Conferences Attended

1. Infinite Dimensional Analysis: Celebrating Richard Aron’s Work and Impact, Kent
State University, OH, USA (10/2016).
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10.

11.

12.

13.

14.

. Metric Spaces: Analysis, Embeddings into Banach Spaces, and Applications, Texas

A&M University, TX, USA (07/2016).

Conference on Geometric Functional Analysis in Honour of Nicole Tomczak-Jaegermann,

University of Alberta, AL, Canada (05/2016).

. AMS Spring Western Sectional Meeting, University of Utah, Salt Lake City, UT, USA

(04/2016).

. Midwest Descriptive Set Theory Day, Chicago, IL, USA (03/2016).

. First Brazilian Workshop in the Geometry of Banach Spaces, Maresias, Sao Paulo,

Brazil (08/2014).

Kent State Informal Analysis Seminar, Universality, Kent, OH, USA (04/2014).

. AMS Spring Southeastern Sectional Meeting, University of Mississippi, Oxford, MS,

USA (03/2013).

. Kent State Informal Analysis Seminar, Lecture Series in Ergodic Theory and Proba-

bility, Kent, OH, USA (04/2012).

Kent State Informal Analysis Seminar, Lecture Series in Analysis, Kent, OH, USA
(11/2012).

Kent State Informal Analysis Seminar, Kent, OH, USA (10/2012).
Ergodic Methods in the Theory of Fractal, Kent, OH, USA (06/2011).
Kent State Informal Analysis Seminar, Kent, OH, USA (04/2011).

27th Brazilian Colloquium of Mathematics, Rio de Janeiro, RJ, Brazil (07/2009).



