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Chapter 1

Summary.

In this chapter, we introduce the main definitions regarding the nonlinear geometry of

Banach spaces, discuss some of the main problems in the field and its main results, as well

as give a detailed description of the main results contained in this dissertation. The Banach

space theory notation and terminology used here is standard (see [AlKa] for example), and

we assume that the reader is familiarized with it throughout this chapter. For an overview

of Banach space theory, we direct the reader to Chapter 2, where the necessary background

and notation will be recalled.

This dissertation is mainly based on four papers. Coarse and uniform embeddings (see [Br2]

or Chapter 3), On weaker notions of nonlinear embeddings between Banach spaces (see [Br4]

of Chapter 4), and Asymptotic structure and coarse Lipschitz geometry of Banach spaces (see

[Br3] or Chapter 6) were written by the author of this dissertation, while Coarse embeddings

into superstable spaces (see [BrSw] of Chapter 5) is a joint work with Andrew Swift.

1.1 Basic definitions.

Recently, there has been a significant increase in the study of Banach spaces as metric

spaces. For that, instead of studying linear isomorphisms and embeddings between Banach

spaces, we look at a Banach space pX, } ¨ }q as a metric space endowed with the metric } ¨´¨},

1



1.1. BASIC DEFINITIONS. 2

and study embeddings and equivalences given by different notions of nonlinear maps. The

fundamental question regarding the nonlinear geometry of Banach spaces is to understand

to which extent the metric structure of a Banach space can enlighten us regarding its linear

structure. As it turns out, in many instances, the metric structure of some Banach spaces

can completely determine their linear structure. Those concepts have been used in many

different areas, and have many applications, e.g., in topology (see [NoYu]), geometric group

theory (see [Gr]), and computer science (see [OstR]).

Let pM,dq and pN, Bq be metric spaces, and consider a map f : pM,dq Ñ pN, Bq. We define

the modulus of continuity of f as

ωf ptq “ suptBpfpxq, fpyqq | dpx, yq ď tu, (1.1.1)

and the expansion modulus of f as

ρf ptq “ inftBpfpxq, fpyqq | dpx, yq ě tu, (1.1.2)

for all t ě 0. So, we have that

ρf pdpx, yqq ď Bpfpxq, fpyqq ď ωf pdpx, yqq,

for all x, y PM . The map f is uniformly continuous if limtÑ0` ωf ptq “ 0, and it is easy to see

that the inverse f´1 : fpMq ÑM exists and is uniformly continuous if and only if ρf ptq ą 0,

for all t ą 0. We call f a uniform embedding if both f and f´1 are uniformly continuous,

and we call f a uniform equivalence if f is a surjective uniform embedding. The map f is

called coarse if ωf ptq ă 8, for all t ě 0, and expanding if limtÑ8 ρf ptq “ 8. If f is both

expanding and coarse, f is called a coarse embedding. A coarse embedding f which is also

cobounded, i.e., supyPN Bpy, fpMqq ă 8, is called a coarse equivalence. If f is both a coarse

and a uniform embedding, we call f a strong embedding.
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We call f Lipschitz if there exists some L ě 0 such that ωf ptq ď Lt, for all t ě 0, and

we call f L-Lipschitz if we want to specify the constant L. It is easy to see that, if there

exists L ą 0 such that ρf ptq ě Lt, then f´1 : fpMq Ñ M exists and it is Lipschitz. If f

and f´1 are Lipschitz, then f is a Lipschitz embedding. A surjective Lipschitz embedding is

called a Lipschitz isomorphism. The map f is called coarse Lipschitz if there exists L ě 0

such that ωf ptq ď Lt ` L, for all t ě 0. If f is coarse Lipschitz and there exists L ą 0 such

that ρf ptq ě L´1t ´ L, for all t ě 0, then f is called a coarse Lipschitz embedding. If f is a

cobounded coarse Lipschitz embedding, then f is a coarse Lipschitz equivalence.

Notice that a coarse (resp. coarse Lipschitz) function does not need to be continuous, and

a coarse (resp. coarse Lipschitz) equivalence does not need to be either injective or surjective.

However, if f : M Ñ N is a coarse (resp. coarse Lipschitz) equivalence, then there exists a

coarse (resp. coarse Lipschitz) equivalence g : N ÑM such that

sup
xPM

dpx, gpfpxqqq ă 8 and sup
yPN

Bpy, fpgpyqqq ă 8. (1.1.3)

Indeed, as f is a coarse (resp. coarse Lipschitz) equivalence, let ε “ supyPN Bpy, fpMqq ă 8,

and let us define g : N ÑM as follows. For each y P N , pick xy PM such that Bpy, fpxyqq ď

2ε, and set gpyq “ xy. It is easy to check that g is a coarse (resp. coarse Lipschitz) equivalence

and that (1.1.3) holds. A coarse (resp. coarse Lipschitz) map g : N ÑM satisfying (1.1.3) is

called a coarse inverse (resp. coarse Lipschitz inverse) of f . In fact, a coarse map f : M Ñ N

is a coarse (resp. coarse Lipschitz) equivalence if and only if f has a coarse (resp. coarse

Lipschitz) inverse.

The next two simple propositions are very important for the understanding of the different

notions of embeddings and equivalences above. See [Ka2], Lemma 1.4 and Proposition 1.5.

Proposition 1.1.1. Let X be a Banach space, M be a metric space, and consider a map

f : X ÑM . Then the following are equivalent.

(i) f is a coarse map, and
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(ii) f is a coarse Lipschitz map.

In particular, if f is uniformly continuous, then f is both coarse and coarse Lipschitz.

Proof. It is enough to show that if there exists t0 ą 0 such that ωf pt0q ă 8, then there exists

L ą 0 such that ωf ptq ă Lt ` L, for all t ą 0. Fix such t0 ą 0. Let x, y P X, and fix n P N

such that pn´ 1qt0 ď }x´ y} ă nt0. Then there exist x0, . . . , xn P X so that x0 “ x, xn “ y

and }xi ´ xi`1} ď t0, for all i P t0, . . . , n´ 1u. Hence, we have that

}fpxq ´ fpyq} ď
n´1
ÿ

i“0

}fpxiq ´ fpxi`1q} ď n ¨ ωf pt0q ď
ωf pt0q

t0
}x´ y} ` ωf pt0q.

Let pM,dq be a metric space and a, b ą 0. A subset A Ă M is called an pa, bq-net if

dpx,Aq ă b, for all x P M , and dpx, yq ě a, for all x, y P A, with x ‰ y. A subset A Ă M is

called a net if it is an pa, bq-net for some a, b ą 0. By Zorn’s lemma, every metric space has

an pa, aq-net, for all a ą 0.

Proposition 1.1.2. Let X and Y be infinite dimensional Banach spaces. Then the following

are equivalent.

(i) X is coarsely equivalent to Y ,

(ii) X is coarse Lipschitz equivalent to Y , and

(iii) any net of X is Lipschitz equivalent to any net of Y .

Moreover, all the conditions above hold if

(iv) X is uniformly equivalent to Y .

Proof. (i)ô(ii). As (ii) clearly implies (i), we only need to show that (i) implies (ii). Let

f : X Ñ Y be a coarse equivalence. By Proposition 1.1.1, f is coarse Lipschitz. As f
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is cobounded, we only need to show that ρf ptq is bounded below by an affine map. As

discussed above, f has a coarse inverse g : Y Ñ X. In particular, there exists C ą 0 such

that }x ´ gpfpxqq} ď C, for all x P X. By Proposition 1.1.1, there exists L ą 0 such that

ωgptq ď Lt` L, for all t ą 0. Hence, we have that

L}fpxq ´ fpyq} ` L ě }gpfpxqq ´ gpfpyqq}

ě }x´ y} ´ }x´ gpfpxqq} ´ }y ´ gpfpyqq}

ě }x´ y} ´ 2C.

for all x, y P X. So, f is a coarse Lipschitz equivalence.

(ii)ñ(iii). Let f : X Ñ Y be a coarse Lipschitz equivalence. So, there exists L ą 0 such

that ρf ptq ě L´1t´L and ωf ptq ď Lt`L, for all t ą 0. By Proposition 10.22 of [BenLi], any

two given nets in an infinite dimensional Banach space are Lipschitz equivalent to each other.

Hence, it is enough to show that there exists a net in X which is Lipschitz equivalent to a

net in Y . Let N Ă X be an p2L2, 2L2q-net. Then, fpNq is a net in Y and fæN : N Ñ fpNq

is a Lipschitz equivalence.

(iii)ñ(ii). Let N Ă X and M Ă Y be nets and f : N ÑM be a Lipschitz equivalence. In

particular, there exists L ą 0 such that for all x P X, there exists y P N with }x ´ y} ď L.

Hence, we can pick a map ϕ : X Ñ N such that }x ´ gpxq} ď L, for all x P X. It easily

follows that f ˝ ϕ : X Ñ Y is a coarse Lipschitz equivalence.

Remark 1.1.3. The terminologies above are still not completely established in the literature.

For example, in [Ro4] coarse maps are called “bornologous”, and in [Ka4], the author refers

to coarse maps as “coarsely continuous”. As coarse maps are not continuous, and as we are

interested in studying coarse maps which are also continuous, we prefer a different terminol-

ogy. Also, we should mention that, in geometric group theory, coarse Lipschitz embeddings

are usually called “quasi-isometries”.
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1.2 Main questions.

1.2.1 Relation with the linear structure.

As mentioned above, one of the main questions regarding the nonlinear geometry of Ba-

nach spaces is to which extent the existence of certain kinds of nonlinear embeddings (resp.

equivalences) between Banach spaces is enough to give us information regarding the linear

structure of the Banach spaces. Precisely, the following general question is a central problem

when dealing with nonlinear embeddings between Banach spaces.

Problem 1.2.1. Let P and P 1 be two classes of Banach spaces and E be a kind of nonlinear

embedding between Banach spaces. If a Banach space X E-embeds into a Banach space Y

in P , does it follow that X is in P 1?

For example, if a separable Banach space X coarse Lipschitz embeds into a super-reflexive

Banach space, then X is also super-reflexive (this follows from Proposition 1.6 of [Ka2] and

Theorem 2.4 of [Ka2], but it was first proved for uniform equivalences in [Ri], Theorem 1A).

Another example was given by M. Mendel and A. Naor in [MeN2] (Theorem 1.9 and Theorem

1.11), where they showed that if a Banach space X either coarsely or uniformly embeds into

a Banach space Y with cotype q and nontrivial type, then X has cotype q ` ε, for all ε ą 0.

If we look at nonlinear equivalences between Banach spaces, the following is a central

problem in the theory.

Problem 1.2.2. Let X be a Banach space and E be a kind of nonlinear equivalence between

Banach spaces. If a Banach space Y is E-equivalent to X, what can we say about the

isomorphism type of Y ? More precisely:

(i) Is the linear structure of X determined by its E-structure, i.e., if a Banach space Y is

E-equivalent to X, does it follow that Y is linearly isomorphic to X?

(ii) Let P be a class of Banach spaces. If Y is E-equivalent to X, does is follow that Y is

linearly isomorphic to X ‘ Z, for some Banach space Z in P?
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Along those lines, it was shown in [JoLiS] (Theorem 2.1) that the coarse (resp. uniform)

structure of `p completely determines its linear structure, for any p P p1,8q. For p “ 1, we do

not even know if the Lipschitz structure of `1 determines its linear structure. N. Kalton and

N. Randrianarivony proved in [KaRa] (Theorem 5.4) that, for any p1, . . . , pn P p1,8q with

2 R tp1, . . . , pnu, the linear structure of `p1‘. . .‘`pn is determined by its coarse (resp. uniform)

structure (see also [JoLiS], Theorem 2.2). This problem is still open if 2 P tp1, . . . , pnu.

Let T denote the Tsirelson space introduced by T. Figiel and W. Johnson in [FiJo]. For

each p P r1,8q, let T p be the p-convexification of T (see Subsection 6.1.5 for definitions). W.

Johnson, J. Lindenstrauss and G. Schechtman addressed Problem 1.2.2(ii) above by proving

the following (see [JoLiS], Theorem 5.8): suppose that either 1 ă p1 ă . . . ă pn ă 2 or

2 ă p1 ă . . . ă pn and set X “ T p1 ‘ . . .‘T pn , then a Banach space Y is coarsely equivalent

(resp. uniformly equivalent) to X if and only if Y is linearly isomorphic to X ‘
À

jPF `pj , for

some F Ă t1, . . . , nu.

1.2.2 Conceptual problems.

These notions of embeddings are fundamentally very different. Indeed, while coarse and

coarse Lipschitz embeddings deal with the large scale geometry of the metric spaces con-

cerned, uniform embeddings only deal with their local (uniform) structure. However, despite

this conceptual difference, their actual differences are still not completely understood. M.

Ribe proved the following important result in 1984 (see [Ri], Theorem 1).

Theorem 1.2.3. (M. Ribe, 1984) Let q ą 1 and ppnq
8
n“1 be a sequence such that limn pn “

1 and pn ą 1, for all n P N. Then p‘nLpnq`q is uniformly equivalent to p‘nLpnq`q ‘ L1. In

particular, there are separable Banach spaces which are uniformly equivalent but are not

linearly isomorphic. Moreover, reflexivity is not stable under uniform equivalences.

On the other hand, it was not until 2012 that N. Kalton was able to show that there are

coarsely equivalent separable Banach spaces (i.e., with Lipschitz equivalent nets) which are



1.2. MAIN QUESTIONS. 8

not uniformly equivalent. Precisely, N. Kalton proved the following two results (see [Ka4],

Theorem 8.8 and Theorem 8.9).

Theorem 1.2.4. (N. Kalton, 2012) Let X be a asymptotically uniformly smooth Banach

space and pYnq
8
n“1 be a sequence of Banach spaces whose unit balls uniformly embed into a

reflexive space. If there exists a coarse Lipschitz embedding X Ñ p‘nYnq`1 which is also

uniformly continuous, then X is reflexive

Theorem 1.2.5. (N. Kalton, 2012) There exists sequence of Banach spaces pYnq
8
n“1,

with Yn – `1, for all n P N, such that p‘nYnq`1 is coarsely equivalent to p‘nYnq`1 ‘ c0.

In particular, there exist separable Banach spaces which are coarsely equivalent but are not

uniformly equivalent to each other.

Although Theorem 1.2.5 settles that the concepts of coarse and uniform equivalences are

distinct in the Banach space setting, it remains widely open whether the existence of those

embeddings are equivalent in the Banach space setting. Precisely, the following problem

remains open.

Problem 1.2.6. Let X and Y be Banach spaces. Are the following equivalent?

(i) X coarsely embeds into Y .

(ii) X uniformly embeds into Y .

(iii) X strongly embeds into Y .

In [Ran], N. Randrianarivony has shown that a Banach space coarsely embeds into a

Hilbert space if and only if it uniformly embeds into a Hilbert space. In [Ka3], N. Kalton

showed that the same also holds for embeddings into `8 (Theorem 5.3). C. Rosendal made

some improvements on the problem above by showing that if X uniformly embeds into Y ,

then X simultaneously uniformly and coarsely embeds into `ppY q, for any p P r1,8q (see

[Ro4], Theorem 2). In particular, if X uniformly embeds into `p, then X simultaneously
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coarsely and uniformly embeds into `p. On the other hand, A. Naor had recently proven that

there exist separable Banach spaces X and Y , and a Lipschitz map f from a net N Ă X into

Y such that

sup
xPN

}F pxq ´ fpxq} “ 8,

for all uniformly continuous maps F : X Ñ Y (see [N], Remark 2). Such result suggests that

it may not be true (or at least not easy to show) that X uniformly embeds into Y , given

that X coarsely embeds into Y .

1.3 Coarse and uniform embeddings.

In Chapter, 3 we study the relation between coarse embeddings (resp. coarse equivalences)

and uniform embeddings (resp. uniform equivalences) between Banach spaces as well as

some properties shared by those notions. We are specially interested in narrowing down

the difference between those concepts, and we show that, in many cases, the real difference

between a coarse and a uniform embedding is in the uniform continuity of the map, but

not in its continuity or in the uniform continuity of its inverse. For example, we prove the

following.

Theorem 1.3.1. Let X be a Banach space and Y be a minimal Banach space.

(i) If X uniformly embeds into Y , then X simultaneously coarsely and uniformly embeds

into Y .

(ii) If X coarsely embeds into Y , then X simultaneously coarsely and homeomorphically

embeds into Y by a map with uniformly continuous inverse.

Therefore, Theorem 1.3.1 can be seen as a strengthening of C. Rosendal’s result about

uniform embeddings into `p mentioned above. In order to prove Theorem 1.3.1(ii), we study

how to approximate coarse maps pM,dq Ñ pE, } ¨ }q by continuous coarse maps and what
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kind of properties of the original coarse map we can preserve. More precisely, in Section 3.3,

we prove Theorem 1.3.2 below, which is a strengthening of Theorem 4.1 of [Du].

Let E be a vector space, and let A Ă E. Then we denote the convex hull of A by convpAq.

Theorem 1.3.2. Let pM,dq be a metric space, and let A Ă M be a closed subspace. Let E

be a normed space, and let ϕ : M Ñ E be a map such that ϕæA is continuous. Then, for all

δ ą 0, there exists a continuous map Φ : M Ñ convpϕpMqq such that ΦæA “ ϕæA and

sup
xPM

}ϕpxq ´ Φpxq} ď inf
są0

ωϕpsq ` inf
są0

ωϕæApsq ` δ.

In particular, if ϕ is coarse (resp. coarse embedding), so is Φ.

As a corollary of Theorem 1.3.2, get the following.

Corollary 1.3.3. Let X be a Banach space and A Ă X be a closed subset. If there exists a

coarse retraction X Ñ A, then there exists a continuous coarse retraction X Ñ A.

In Section 3.4, we use techniques of [Ro4], and Theorem 1.3.2, in order to prove Theorem

1.3.1(ii). In particular, as a subproduct of Theorem 1.3.1(ii), we obtain the following.

Theorem 1.3.4. Let X and Y be Banach spaces, and let E be a 1-unconditional basic

sequence. If X coarsely embeds into Y , then there exists a continuous coarse embedding

X Ñ p‘Y qE with uniformly continuous inverse. In particular, X simultaneously homeomor-

phically and coarsely embeds into p‘Y qE .

In Section 3.5, we look at N. Kalton’s example of separable Banach spaces which are

coarsely equivalent but are not uniformly equivalent, and show that we can actually get a

stronger result. Precisely, we prove the following.

Theorem 1.3.5. Let X and Y be Banach spaces, and Q : Y Ñ X be a quotient map. If

Q admits a coarse section, then Q admits a continuous coarse section. In particular, Y is

simultaneously homeomorphically and coarsely equivalent to KerpQq ‘X.
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Corollary 1.3.6. There exist separable Banach spaces X and Y which are simultaneously

homeomorphically and coarsely equivalent but not uniformly equivalent.

The following problem lies in the core of the nonlinear geometry of Banach spaces and it

remains open (see [Os2], Problem 11.17).

Problem 1.3.7. Does `2 coarsely (resp. uniformly) embed into every infinite dimensional

Banach space?

In [Os1], Theorem 5.1, M. Ostrovskii has shown that `2 coarsely embeds into any Banach

space containing a subspace with an unconditional basis and finite cotype. We prove the

following stronger result in Section 3.2.

Theorem 1.3.8. Let X be an infinite dimensional Banach space with an unconditional basis

and finite cotype. Then `2 strongly embeds into X.

At last, we dedicate Section 3.6 to study unconditional sums of coarsely equivalent (resp.

uniformly equivalent) Banach spaces. In [Ka5], Theorem 4.6(ii), N. Kalton had shown that

if X and Y are coarsely equivalent (resp. uniformly equivalent), then `ppXq and `ppY q are

coarsely equivalent (resp. uniformly equivalent). However, as N. Kalton himself noticed, his

proof seems to be more complicated than necessary, and relies on the concepts of close (resp.

uniformly close) Banach spaces. In Section 3.6, we present an easy argument which give us

N. Kalton’s result as a corollary.

Theorem 1.3.9. Say X and Y are two coarsely equivalent (resp. uniformly equivalent,

or simultaneously homeomorphically and coarsely equivalent) Banach spaces. Let E be a

normalized 1-unconditional basic sequence. Then p‘XqE and p‘Y qE are coarsely equivalent

(resp. uniformly equivalent, or simultaneously homeomorphically and coarsely equivalent).
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1.4 Weaker notions of nonlinear embeddings.

In Chapter 4, we study some different notions of nonlinear embeddings between Banach

spaces which were introduced in [Ro4] and are weakenings of the notions of coarse and uniform

embeddings. The main goal of this chapter is to provide the reader with evidence that the

existence of those kinds of embeddings may represent a stronger restriction than one would

think.

Given a map f : pM,dq Ñ pN, Bq between metric spaces, we say that f is uncollapsed if

there exists some t ą 0 such that ρf ptq ą 0. The map f is called solvent if, for each n P N,

there exists R ą 0, such that

dpx, yq P rR,R ` ns implies Bpfpxq, fpyqq ą n,

for all x, y PM . For each t ě 0, we define the exact expansion modulus of f as

ρf ptq “ inftBpfpxq, fpyqq | dpx, yq “ tu.

The map f is called almost uncollapsed if there exists some t ą 0 such that ρf ptq ą 0.

It is clear from its definition, that expanding maps are both solvent and uncollapsed. Also,

as ρf ptq ď ρf ptq, for all t P r0,8q, uncollapsed maps are also almost uncollapsed. As a map

f : pM,dq Ñ pN, Bq has uniformly continuous inverse if and only if ρf ptq ą 0, for all t ą 0,

Diagram 1.4.1 holds.

Expanding

uu ))

Uniformly continuous inverse

tt

Solvent

))

Uncollapsed

uu

Almost uncollapsed

(1.4.1)

None of the arrows in Diagram 1.4.1 reverse. Indeed, any bounded uniform embedding is
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uncollapsed (resp. almost uncollapsed), but it is not expanding (resp. solvent). Examples

of uncollapsed maps which are not uniformly continuous are easy to be constructed, as you

only need to make sure the map is not injective. At last, Proposition 4.2.3 below provides an

example of a map RÑ `2pCq which is Lipschitz, solvent and collapsed (i.e., not uncollapsed),

which covers the remaining arrows.

In [Ro4], Theorem 2, C. Rosendal showed that if there exists a uniformly continuous

uncollapsed map X Ñ Y between Banach spaces X and Y , then X strongly embeds into

`ppY q, for any p P r1,8q. C. Rosendal also showed that there exists no map c0 Ñ E which

is both coarse and solvent (resp. uniformly continuous and almost uncollapsed), where E

is any reflexive Banach space (see [Ro4], Proposition 63 and Theorem 64). This result is

a strengthening of a result of N. Kalton that says that c0 does not coarsely embed (resp.

uniformly embed) into any reflexive space (see [Ka1], Theorem 3.6).

Those results naturally raise the following question.

Problem 1.4.1. Let X and Y be Banach spaces. Are the statements in Problem 1.2.6

equivalent to the following weaker statements?

(iv) X maps into Y by a map which is coarse and solvent.

(v) X maps into Y by a map which is uniformly continuous and almost uncollapsed.

Although we will not directly deal with Problem 1.2.6 and Problem 1.4.1 for an arbitrary

Y , we intend to provide the reader with evidence that those problems either have a positive

answer or that any possible differences between the aforementioned embeddings are often

negligible.

For a Banach space X, let qX “ inftq P r2,8q | X has cotype qu (see Section 2.7 for

definitions regarding type and cotype). As mentioned above, M. Mendel and A. Naor proved

that if a Banach space X either coarsely or uniformly embeds into a Banach space Y with

nontrivial type, then qX ď qY (see [MeN2], Theorem 1.9 and Theorem 1.11). In Section 4.3,

we prove the following strengthening of this result.
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Theorem 1.4.2. Let X and Y be Banach spaces, and assume that Y has nontrivial type. If

either

(i) there exists a coarse solvent map X Ñ Y , or

(ii) there exists a uniformly continuous almost uncollapsed map X Ñ Y ,

then, qX ď qY .

Theorem 1.4.2 gives us the following corollary.

Corollary 1.4.3. Let p, q P r1,8q be such that q ą maxt2, pu. Any uniformly continuous

map f : `q Ñ `p (resp. f : Lq Ñ Lp) must satisfy

sup
t

inf
}x´y}“t

}fpxq ´ fpyq} “ 0.

While the unit balls of the `p’s are all uniformly equivalent to each other (see [OSc1],

Theorem 2.1), Corollary 1.4.3 says that those uniform equivalences cannot be extended in

any reasonable way.

In Section 4.4, we look at N. Kalton’s Property Q. This property was introduced by in

[Ka1], Section 4, in order to study coarse and uniform embeddability into reflexive spaces.

Let us recall the definition of Property Q. Let k P N and let M Ă N be an infinite subset.

Define PkpMq as the set of all subset of M with exactly k elements. If n̄ P PkpMq, we always

write n̄ “ tn1, . . . , nku in increasing order, i.e., n1 ă . . . ă nk. We make PkpMq into a

graph by saying that two distinct elements n̄ “ tn1, . . . , nku, m̄ “ tm1, . . . ,mku P PkpMq are

connected if they interlace, i.e., if either

n1 ď m1 ď n2 ď . . . ď nk ď mk or m1 ď n1 ď m2 ď . . .mk ď nk.

We write n̄ ă m̄ if nk ă m1. We endow PkpMq with the shortest path metric. A Banach

space X has Property Q if there exists a constant QX ą 0 such that for all k P N, all L-
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Lipschitz map f : PkpNq Ñ X, and all λ ą 1, there exists an infinite subset M Ă N such that

diampfpPkpMqqq ď λQ´1
X L.

The following were proved in [Ka1], Corollary 4.3 and Corollary 4.6.

Theorem 1.4.4. (N. Kalton, 2007) Let X be a Banach space. If either

(i) X coarsely embed into a reflexive space, or

(ii) the unit ball of X uniformly embeds into a reflexive space,

then X has Property Q

Theorem 1.4.5. (N. Kalton, 2007) Let X be a Banach space with Property Q and

nontrivial type. Then X is reflexive.

Kalton proposed the following problem in [Ka1], Problem 6.5.

Problem 1.4.6. Let X be a separable Banach space. Does X have Property Q if and only

if X coarsely embeds into a reflexive Banach space? Does X have Property Q if and only if

the unit ball of X uniformly embeds into a reflexive Banach space?

In Section 4.4, we prove that Property Q is stable under those weaker kinds of embed-

dings (see Theorem 4.4.2). Although the stability of Property Q under coarse and uniform

embeddings is implicit in [Ka1], to the best of our knowledge, this is not explicitly written

in the literature. Theorem 4.4.2 allows us to obtain the following result (see Theorem 4.4.3

below for a stronger result).

Theorem 1.4.7. Let X and Y be Banach spaces, and assume that Y is reflexive (resp.

super-reflexive). If either

(i) there exists a coarse solvent map X Ñ Y , or

(ii) there exists a uniformly continuous almost uncollapsed map X Ñ Y ,
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then, X is either reflexive (resp. super-reflexive) or X has a spreading model equivalent to

the `1-basis (resp. trivial type).

Theorem 1.4.7 was proven in [Ka1], Theorem 5.1, for uniform and coarse embeddings into

super-reflexive spaces. Although the result above for uniform and coarse embeddings into

reflexive spaces is implicit in [Ka1], we could not find this result explicitly written anywhere

in the literature.

It is worth noticing that Theorem 1.4.7 cannot be improved for embeddings of X into super-

reflexive spaces in order to guarantee that X either is super-reflexive or has a spreading model

equivalent to the `1-basis (see Remark 4.4.4 below).

As mentioned above, Problem 1.2.6 has a positive answer for Y “ `p, for all p P r1, 2s (see

[No2], Theorem 5, and [Ran], page 1315). In Section 4.5, we show that Problem 1.4.1 also

has a positive answer in the same settings. Precisely, we show the following.

Theorem 1.4.8. Let X be a Banach space, and Y “ `p, for any p P r1, 2s. Then Problem

1.4.1 has a positive answer.

In Section 4.6, we give a positive answer to Problem 1.4.1 for Y “ `8. This is a strength-

ening of Theorem 5.3 of [Ka3], where N. Kalton shows that Problem 1.2.6 has a positive

answer for Y “ `8. Moreover, N. Kalton showed that uniform (resp. coarse) embeddability

into `8 is equivalent to Lipschitz embeddability.

Theorem 1.4.9. Let X be a Banach space, and Y “ `8. Then Problem 1.4.1 has a positive

answer. Moreover, for Y “ `8, items (iv) and (v) of Problem 1.4.1 are also equivalent to

Lipschitz embeddability into `8.

Even though we do not give a positive answer to Problem 1.2.6 and Problem 1.4.1, we

believe that the aforementioned results provide considerable suggestive evidence that all the

five different kinds of embeddings X ãÑ Y above preserve the geometric properties of X in a

similar manner.
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1.5 Coarse embeddings into superstable spaces.

D. Aldous showed in [Ald], Theorem 1.1, that every subspace of L1 contains an isomorphic

copy of `p, for some p ě 1. In order to generalize Aldous’ result, J. Krivine and B. Maurey

introduced the notion of stable Banach spaces in [KrMau]. A metric space pM,dq is called

stable if

lim
i,U

lim
j,V

dpxi, yjq “ lim
j,V

lim
i,U

dpxi, yjq,

for all bounded sequences pxiq
8
i“1 and pyjq

8
j“1 in M , and all nonprincipal ultrafilters U and V

over N. A Banach space X is called stable if pX, } ¨´ ¨ }q is stable as a metric space. As Lp is

stable for all p ě 1 (see [KrMau], Theorem II.2), the following is a generalization of Aldous’s

result (see [KrMau], Theorem IV.1).

Theorem 1.5.1. (J. Krivine and B. Maurey, 1981) Let X be a stable Banach space.

There exists p P r1,8q such that X contains an p1` εq-isomorphic copy of `p, for all ε ą 0.

In order to prove the theorem above, J. Krivine and B. Maurey looked at types on a stable

Banach space X, i.e., functions σ : X Ñ R given by σpxq “ }x ` a}, where a is an element

of some ultrapower of X. In [KrMau], the authors showed that every stable Banach space

must contain what was called an `p-type, which results in the existence of almost isometric

copies of `p inside X, for some p ě 1.

As shown in [Ray], J. Krivine and B. Maurey’s result can be extendded to the nonlinear

setting as follows. We say that a Banach space X is superstable if every Banach space which

is finitely representable in X is also stable. Raynaud proved the following in [Ray] (see the

corollary in page 34 of [Ray]).

Theorem 1.5.2. (Y. Raynaud, 1983) If a Banach space X uniformly embeds into a

superstable Banach space, then X contains an isomorphic copy of `p, for some p P r1,8q.

Raynaud’s proof is also based on analyzing a space of types over the Banach space X.

Precisely, the author shows that if X uniformly embeds into a superstable Banach space, then
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there exists an invariant stable metric d on X uniformly equivalent to the metric induced by

the norm. Once one has an invariant stable metric, it is possible to define the space of types

σ : R ˆX Ñ R as the closure of the family of maps
`

pλ, yq P R ˆX ÞÑ dpλx, yq
˘

xPX
in the

product space RRˆX . Studying this new space of types, Raynaud shows that the type space

of X must contain a so called `p-type, for some p P r1,8q, which results in `p ãÑ X, for some

p P r1,8q. For more on stability and types on Banach spaces see [G-D], [HayMau] and [I].

N. Kalton asked the following in [Ka1], Problem 6.6.

Problem 1.5.3. Assume that a Banach space X coarsely embeds into a superstable Banach

space. Does it follow that X contain an isomorphic copy of `p, for some p P r1,8q?

In a joint work with Andrew Swift, although we were not able to obtain an answer to N.

Kalton’s problem, we obtained the following result.

Theorem 1.5.4. If a Banach space X coarsely embeds into a superstable Banach space,

then X has a basic sequence with an associated spreading model isomorphic to `p, for some

p P r1,8q.

N. Kalton proved in [Ka1], Theorem 2.1, that any stable metric space embeds into some

reflexive Banach space by a map which is both a uniform and a coarse embedding. In the

same paper, N. Kalton asked if the converse of this result also holds. Precisely, the following

is open (see [Ka1], Problem 6.1)

Problem 1.5.5. Does every (separable) reflexive Banach space embed coarsely (resp. uni-

formly) into a stable space?

By Raynaud’s result, it is clear that there are separable reflexive spaces which do not

embed into superstable spaces. However, to the best of our knowledge, it was unknown

whether every reflexive Banach space coarsely embeds into a superstable Banach space. As

a corollary of Theorem 1.7.3, we obtain the following.

Corollary 1.5.6. There are separable reflexive Banach spaces which do not coarsely embed

into any superstable Banach space.
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1.6 Coarse Lipschitz geometry and asymptotic struc-

ture.

In Chapter 6, we will be mainly interested in coarse Lipschitz embeddings and equivalences,

and in what kind of stability properties these notions of nonlinear embeddings and nonlin-

ear equivalences may have. Furthermore, we will mainly work with Banach spaces having

some kind of asymptotic property. More specifically, we are concerned with asymptotically

uniformly smooth Banach spaces, asymptotically uniformly convex Banach spaces, and Ba-

nach spaces having several different Banach-Saks-like properties. In order not to make this

introduction too extensive, we will postpone some technical definitions from Banach space

theory for later as well as our more technical results. The reader will find all the remaining

background and notation in Section 6.1.

Along the lines of Problem 1.2.1, we prove the following in Section 6.2.

Theorem 1.6.1. Let Y be a reflexive asymptotically uniformly smooth Banach space, and

assume that a Banach space X coarse Lipschitz embeds into Y . Then X has the Banach-Saks

property.

As the Banach-Saks property implies reflexivity, Theorem 1.6.1 above is a strengthening

of Theorem 4.1 of [BKaL], where the authors showed that if a separable Banach space X

coarse Lipschitz embeds into a reflexive asymptotically uniformly smooth Banach space,

then X must be reflexive. As the Tsirelson space T is a reflexive Banach space without the

Banach-Saks property, Theorem 1.6.1 gives us the following new corollary.

Corollary 1.6.2. The Tsirelson space does not coarse Lipschitz embed into any reflexive

asymptotically uniformly smooth Banach space.

In Section 6.2, we also prove some results on the linear theory of Banach spaces. Precisely,

we show that an asymptotically uniformly smooth Banach space X must have the alternating

Banach-Saks property (see Corollary 6.2.2). Using descriptive set theoretical arguments,
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we also show that the converse does not hold, i.e., that there are Banach spaces with the

alternating Banach-Saks property which do not admit an asymptotically uniformly smooth

renorming (see Proposition 6.2.8).

In Section 6.3, we study coarse embeddings f : X Ñ Y between Banach spaces X and

Y with specific asymptotic properties, and obtain a general result on how close to an affine

map the expansion modulus ρf can be (see Theorem 6.3.1). Precisely, E. Guentner and J.

Kaminker introduced the following quantity in [GuKa]: for Banach spaces X and Y , define

αY pXq as the supremum of all α ą 0 for which there exists a coarse embedding f : X Ñ Y

and L ą 0 such that ρf ptq ě L´1tα ´ L, for all t ě 0. We call αY pXq the compression

exponent of X in Y . As a simple consequence of Theorem 6.3.1, we obtain Theorem 1.6.3

below.

We denote by S the Schlumprecht space introduced in [Sc1], and, for each p P r1,8q, we

let Sp be the p-convexification of S and T p be the p-convexification of the Tsirelson space T

(see Subsection 6.1.5 for definitions).

Theorem 1.6.3. Let 1 ď p ă q. Then

(i) αT qpT
pq ď p{q, and

(ii) αSqpS
pq ď p{q.

In particular, T p (resp. Sp) does not coarse Lipschitz embed into T q (resp. Sq).

The proof of Theorem 1.6.3 is asymptotic in nature, hence we obtain equivalent estimates

for the compression exponent αY pXq, where X and Y are Banach spaces satisfying some

special asymptotic properties. In particular, the spaces T q and Sq can be replaced in Theorem

1.6.3 by p‘nEnqT q and p‘nEnqSq , where pEnq
8
n“1 is any sequence of finite dimensional Banach

spaces. See Theorem 6.3.3, Theorem 6.3.5 and Corollary 6.3.7 for precise statements.

We also apply our results to the hereditarily indecomposable Banach spaces Xp defined by

N. Dew in [D], and obtain that αXqpX
pq ď p{q, for 1 ă p ă q (see Corollary 6.3.8).
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In Section 6.4, we prove a general theorem regarding the non existence of coarse Lipschitz

embeddings X Ñ Y1 ‘ Y2, for Banach spaces X, Y1, Y2 with specific asymptotic properties

(see Theorem 6.4.6). With that result in hands, we prove the following.

Theorem 1.6.4. Let 1 ď p1 ă . . . ă pn ă 8, and p P r1,8qztp1, . . . , pnu. Then neither T p

nor `p coarse Lipschitz embed into T p1‘ . . .‘T pn. In particular, T p does not coarse Lipschitz

embed into T q, for all p, q P r1,8q with p ‰ q.

At last, we use Theorem 1.6.4 in order to obtain the following characterization.

Theorem 1.6.5. Let 1 ă p1 ă . . . ă pn ă 8 with 2 R tp1, . . . , pnu. A Banach space Y is

coarsely equivalent (resp. uniformly equivalent) to X “ T p1 ‘ . . . ‘ T pn if and only if Y is

linearly isomorphic to X ‘
À

jPF `pj , for some F Ă t1, . . . , nu.

Clearly, Theorem 1.6.5 is a strengthening of Theorem 5.8 of [JoLiS] mentioned above.

However, just as in the case for `p1 ‘ . . . ‘ `pn , we still do not know whether the theorem

above holds if 2 P tp1, . . . , pnu.

1.7 The isomorphism group of the Gurarij space.

Chapter 7 differs slightly from the previous chapters of this dissertation, as we will not re-

strict ourselves only to Banach spaces. Precisely, in this chapter, we deal with embeddability

of Polish groups into the isometry group of a Banach space. Recall, a Polish space is a sep-

arable topological space which is completely metrizable, i.e., there exists a complete metric

compatible with its topology. A Polish group is a Polish space which is also a topological

group.

A separable Banach space G is said to be a Gurarij space if, for all ε ą 0, and all finite

dimensional Banach spaces E Ă F , any isometry from E into G can be extended to an

p1 ` εq-isomorphism from F into G. In [Lu], W. Lusky proved that every two separable

Banach spaces with this extension property are linearly isometric to each other. Therefore,
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the Gurarij spaces are unique up to isometry, and we refer to any such space as the Gurarij

space G.

Let X be a Banach space, and AffpXq be the group of affine isometries of X endowed

with the pointwise convergence topology. So, AffpXq is a Polish group. By Mazur-Ulam’s

theorem, every surjective isometry f : X Ñ X is affine. So AffpXq is the group of surjective

isometries of X. I. Yaacov showed (see [Y], Theorem 3.10) that the isometry group of the

Gurarij space is universal for all Polish groups, i.e., every Polish group can be simultaneously

homomorphically and homeomorphically embedded into AffpGq. However, I. Yaacov’s result

does not say anything regarding whether the large scale geometry of the Polish spaces can

be preserved by those embeddings. Precisely, under which conditions can a Polish space

be simultaneously homomorphically and homeomorphically embedded into AffpGq by a map

which is also a coarse or a coarse Lipschitz embedding?

Given a Polish group H, one can find a left-invariant metric d on H which is compatible

with H’s topology (see [Ke], Theorem 9.1). However, the metric d is by no means intrinsically

defined, and different such metrics give us a different geometry on H. Therefore, the question

above may sound vague and imprecise. To address this issue, we follow the approach of [Ro3].

Precisely, in [Ro3], C. Rosendal studied the problem of when a given Polish group H has a

well-defined coarse type (resp. coarse Lipschitz type). For this, we need to introduce some

terminology.

Let H be a metrizable topological group. A subset A Ă H is said to have property (OB)

with respect to H if A has finite diameter with respect to every compatible left-invariant

metric on H. The Polish group H is said to have property (OB) if H has property (OB) with

respect to itself, and H is said to be locally (OB) if there exists an open neighborhood of the

identity with property (OB) with respect to H. Also, we say that H is (OB) generated if H

is generated by an open set with property (OB) with respect to H.

A metric d on H is said to be metrically proper if all subsets of H with finite d-diameter

have finite diameter with respect to any other compatible left-invariant metric on H, and



CHAPTER 1. SUMMARY. 23

d is said to be maximal if, for any compatible left-invariant metric B on H, there exists

K ą 0 such that B ď K ¨ d `K. Clearly, if d is maximal, then d is metrically proper. Also,

any two metrically proper compatible left-invariant metrics on a Polish space H are coarsely

equivalent, and every two maximal compatible left-invariant metrics on a Polish space H are

coarse Lipschitz equivalent (see [Ro3]).

Rosendal proved the following in [Ro3], Theorem 1 and Theorem 3.

Theorem 1.7.1. (C. Rosendal, 2014) Let H be a Polish group. Then

(i) H has a metricaly proper compatible left-invariant metric if and only if H is locally

(OB), and

(ii) H has a maximal compatible left-invariant metric if and only if H is (OB) generated.

Therefore, a locally (OB) Polish group H has a well-defined coarse type, i.e., one can

unambiguously talk about coarse maps between locally (OB) Polish groups without specifying

the metrics on the respective spaces. Precisely, let H be a locally (OB) Polish group and

pG, Bq be a metric space, then a map f : pH, dq Ñ pG, Bq (resp. f : pG, Bq Ñ pH, dq) is a

coarse embedding, where d is some compatible left-invariant metrically proper metric on H,

if and only if f : pH, dq Ñ pG, Bq (resp. f : pG, Bq Ñ pH, dq) is a coarse embedding, for all

compatible left-invariant metrically proper metric d on H. Hence, for locally (OB) Polish

spaces H and G, we say that a map f : H Ñ G is a coarse embedding if f : pH, dq Ñ pG, Bq

is a coarse embedding, where d and B are compatible left-invariant metrically proper metrics

on H and G, respectively.

Similarly, a (OB) generated Polish group H has a well-defined coarse Lipschitz type, and

we say that a map f : H Ñ G is a coarse Lipschitz embedding if f : pH, dq Ñ pG, Bq is a

coarse Lipschitz embedding, where d and B are compatible left-invariant maximal metrics on

H and G, respectively.

For a Banach space X, let IsoLpXq be the closed subgroup of AffpXq consisting of all the

linear isometries of X. Along these lines, we prove the following theorems.
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Theorem 1.7.2. The group of linear isometries IsoLpGq has property (OB). In particular,

AffpGq is (OB) generated and the map g P AffpGq ÞÑ gpxq P G is a coarse Lipschitz equiva-

lence, for all x P G.

The next theorem is a strengthening of Theorem 3.10 of [Y] on the point of view of large

scale geometry.

Theorem 1.7.3. Let G be the Gurarij space, and H be a Polish group.

(i) If H is locally (OB), then there exists a simultaneously homomorphic and homeomorphic

embedding ϕ : H Ñ AffpGq which is also a coarse embedding.

(ii) If H is (OB) generated, then there exists a simultaneously homomorphic and homeo-

morphic embedding ϕ : H Ñ AffpGq which is also a coarse Lipschitz embedding.

Theorem 1.7.3 can be reformulated in the language of affine isometric actions. An affine

isometric action α : H ñ X can be written as αphqpxq “ πphqpxq ` bphq, for all h P H, and

all x P X, where π : H ñ X is a linear isometric action and b : H Ñ X a cocycle of π (see

Subsection 7.2). Precisely, Theorem 1.7.3 is a corollary of the following result.

Theorem 1.7.4. Let G be the Gurarij space, and pH, dq be a separable metric topological

group. There exists an affine isometric action α : H ñ G with a linear part π : H ñ G

which induces a simultaneously homomorphic and homeomorphic embedding H Ñ IsoLpGq,

and a cocycle b : H Ñ G which is an isometric embedding.

The theorem above can be seen as a strengthening of Theorem 45 of [Ro3]. Indeed,

Theorem 45 of [Ro3] says that given a metric topological group pH, dq, there exists a Banach

space X for which the conclusion of Theorem 1.7.4 holds. Theorem 1.7.4 says that, if H is

separable, then X can always be taken to be the Gurarij space.

At last, Theorem 1.7.2 and Proposition 79 of [Ro4] allow us to obtain the following.

Corollary 1.7.5. Let M be a metric space and assume that there exists an isometric action

AffpGqñM with an unbounded orbit. Then G maps into M by a coarse solvent map.



Chapter 2

Background and notation.

In this chapter, we give the basic backgroud needed for this dissertation regarding classic

Banach space theory. Some of the most technical definitions will be introduced as needed

during the chapters of this dissertation. For more on Banach space theory, we refer to Topics

in Banach Space Theory, by F. Albiac and N. Kalton ([AlKa]), Classical Banach spaces, Vol.

I and II, by J. Lindenstrauss and L. Tzafriri ([LiTz] and [LiTz]), and Sequences and series

in Banach spaces, by J. Diestel ([Di]).

2.1 Banach space theory.

Throughout this dissertation, N “ t1, 2, . . .u and N0 “ N Y t0u. Let K be either R or

C. Recall that pX, } ¨ }Xq is called a Banach space if X is a vector space over K and } ¨ }X

is a norm on X generating a complete topology. In this dissertation, all Banach spaces are

over the reals, unless explicitly noted. We usually omit the index X in } ¨ }X , and simply

write } ¨ }, as long as this does not cause any confusion. Also, we usually omit the norm of

pX, } ¨ }q when referring to it and simply refer to this space as X. We denote by BX the

closed unit ball of X, i.e., BX “ tx P X | }x} ď 1u, and by BBX the unit sphere of X, i.e.,

BBX “ tx P X | }x} “ 1u. A sequence pxnq
8
n“1 in a Banach space X is called normalized if

}xn} “ 1, for all n P N, and semi-normalized if it is bounded and bounded away from zero,

25



2.1. BANACH SPACE THEORY. 26

i.e., infn }xn} ą 0.

Let X and Y be Banach spaces. Recall that a linear map f : X Ñ Y is continuous if and

only if it is bounded, i.e., if its norm }f} – supxPBX }fpxq} is finite. The map f is called

an isomorphism if f is a bijection and both f and f´1 are bounded. If f is an isomorphism

with its image, i.e., f : X Ñ fpXq is an isomorphism, we call f an isomorphic embedding. If

}f} “ }f´1} “ 1, f is called a linear isometry. If Y “ R, we denote the space of continuous

linear functionals f : X Ñ R by X˚. The space X˚ with the norm defined above is a Banach

space, and it is called the dual of X.

Say X and Y are Banach spaces. We write X ” Y to denote that X is linearly isometric

to Y , and we write X – Y to denote that X is (linearly) isomorphic to Y . A linear map

Q : Y Ñ X is called a quotient map if it is bounded and surjective. By the open mapping

theorem, quotient maps are always open. A map ϕ : X Ñ Y is called a section for Q if

Q ˝ ϕ “ IdX .

Given a Banach space X, we say that a sequence pxnq
8
n“1 in X is a Schauder basis for X if

every element of X can be uniquely written as an infinite linear combination of pxnq
8
n“1, i.e.,

for all x P X there exists a unique panq
8
n“1 P RN such that x “

ř8

n“1 anxn. If X has a Schauder

basis pxnq
8
n“1 we can define, for all n P N, natural projections Pnp

ř8

i“1 aixiq “
řn
i“1 aixi. The

uniform boundedness principle gives us that the norm of those projections are uniformly

bounded. If K “ supn }Pn}, we say that the Schauder basis pxnq
8
n“1 has basis constant K.

Say pxnq
8
n“1 is a basis for the Banach space X. For x “

ř8

n“1 anxn P X, we write supppxq “

tn P N | an ‰ 0u. For all finite subsets E,F Ă N, we write E ă F (resp. E ď F ) if

maxE ă minF (resp. maxE ď minF ). We call a sequence pynq
8
n“1 in X a block sequence

of pxnq
8
n“1 if supppynq ă supppyn`1q, for all n P N.

A sequence pxnq
8
n“1 is called a basic sequence if it is a Schauder basis for its closed linear

span. Equivalently, pxnq
8
n“1 is a basic sequence if its elements are not zero and there exists

K ą 0 such that
›

›

›

k
ÿ

i“1

aixi

›

›

›
ď K

›

›

›

n
ÿ

i“1

aixi

›

›

›
,
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for all k, n P N with k ď n, and for all a1, ..., an P R. The infimum of the constants K for

which the inequality above holds is called the basic constant of pxnq
8
n“1. Given two sequences

pxnq
8
n“1 and pynq

8
n“1, we say that they are equivalent if there exists C ě 1 such that

1

C

›

›

›

k
ÿ

i“1

aixi

›

›

›
ď

›

›

›

k
ÿ

i“1

aiyi

›

›

›
ď C

›

›

›

k
ÿ

i“1

aixi

›

›

›
,

for all k P N, and all a1, ..., ak P R.

If a basis (resp. basic sequence) has the property that it remains a basis (resp. basic

sequence) no matter how one reorders it, then the basis (resp. basic sequence) is called an

unconditional basis (resp. unconditional basic sequence). Equivalently, a sequence pxnq
8
n“1 is

unconditional if its elements are not zero and there exists K ą 0 such that

›

›

›

n
ÿ

i“1

aixi

›

›

›
ď K

›

›

›

n
ÿ

i“1

bixi

›

›

›
,

for all n P N, and all a1, ..., an, b1, ..., bn P R such that |ai| ď |bi|, for all i P t1, ..., nu. The

infimum of this constants is called the unconditional constant of pxnq
8
n“1.

2.2 Examples.

2.2.1 CpKq spaces.

An important class of Banach spaces are the CpKq spaces. Let K be a compact metric

space. Let CpKq “ tf : K Ñ R | f is continuousu, and we endow CpKq with the norm

}f} “ suptPK |fptq|. This makes CpKq into a Banach space. If K “ r0, 1s, the space Cr0, 1s

is universal for the class of separable Banach spaces, i.e., every separable Banach space X is

linearly isometric to a subspace of Cr0, 1s.
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2.2.2 c0 and `p spaces.

For p P r1,8q, we define `p “ tpxiq
8
i“1 P RN | p

ř8

i“1 |xi|
pq1{p ă 8u, and endow `p with the

norm

}pxiq
8
i“1}p “

´

8
ÿ

i“1

|xi|
p
¯1{p

.

Similarly, we let c0 “ tpxiq
8
i“1 P RN | limi |xi| “ 0u and `8 “ tpxiq

8
i“1 P RN | supi |xi| ď 8u,

and endow both c0 and `8 with the norm

}pxiq
8
i“1}8 “ sup

i
|xi|.

The spaces `ppCq and c0pCq are defined analogously as above, but with its elements having

coordinates in C. Also, for each n P N and p P r1,8s, we define the spaces `np (resp. `np pCq)

as being Rn (resp. Cn) endowed with the restriction of } ¨ }p to Rn (resp. Cn).

An infinite dimensional Banach space X is called minimal if X isomorphically embeds into

all of its infinite dimensional subspaces. The spaces c0 and `p are all minimal.

2.2.3 Tsirelson and Schlumprecht spaces.

In 1974, B. Tsirelson constructed the first example of a (reflexive) Banach space which

does not contain isomorphic copies of neither c0 nor `p, for all p P r1,8q (see the theorem in

page 57 of [Ts]). In the same year, T. Figiel and W. Johnson gave an implicit definition for

the norm of the dual of Tsirelson’s original space, and showed that this dual space shared the

same property of not containing isomorphic copies of neither c0 nor `p, for all p P r1,8q (see

[FiJo]). Nowadays, T. Figiel and W. Johnson’s space is the space which is usually referred to

as being the Tsirelson space. We now describe this space. Let c00 denote the set of sequences

of real numbers which are eventually zero, and let } ¨ }0 be the max norm on c00. We denote

by T the Tsirelson space defined in [FiJo], i.e., T is the completion of c00 under the unique
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norm } ¨ } satisfying

}x} “ max
!

}x}0,
1

2
¨ sup

´

k
ÿ

j“1

}Ejx}
¯)

,

where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets

of N such that k ď E1 ă . . . ă Ek. Tsirelson’s original space is the dual of T .

Another Banach space which will be important for applications in this dissertation is the

Schlumprecht space S. This space was constructed in [Sc1] and provided the first example of

an arbitrarily distortable Banach space. We say that a Banach space pX, } ¨ }q is arbitrarily

distortable if for all λ ą 1 there exists an equivalent norm ||| ¨ ||| on X such that

sup
!

|||y|||

|||x|||
| x, y P SpX,}¨}q

)

ě λ.

We define S as the completion of c00 under the unique norm } ¨ } satisfying

}x} “ max
!

}x}0, sup
´ 1

log2pk ` 1q

k
ÿ

j“1

}Ejx}
¯)

,

where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets

of N such that E1 ă . . . ă Ek.

2.3 Unconditional sums.

Let pXn, } ¨ }nq
8
n“1 be a sequence of Banach spaces. Let E “ penq8n“1 be a 1-unconditional

basic sequence generating a space pE, } ¨ }Eq. We define the sum p‘nXnqE to be the space of

sequences pxnq
8
n“1, where xn P Xn, for all n P N, such that

}pxnq
8
n“1} :“

›

›

›

ÿ

nPN

}xn}nen

›

›

›

E
ă 8.

One can check that p‘nXnqE endowed with the norm } ¨ } defined above is a Banach space.

If the Xn’s are all the same, say Xn “ X, for all n P N, we write p‘XqE . Whenever E is



2.4. SPREADING MODELS. 30

the standard basis of either c0 or `p, for some p P r1,8q, we write p‘nXnqc0 or p‘nXnq`p ,

respectively. Moreover, if Xn “ X, for all n P N, we write c0pXq and `ppXq instead.

2.4 Spreading models.

LetX be a Banach space and pxnq
8
n“1 be a bounded sequence without Cauchy subsequences,

and let U be a nonprincipal ultrafilter on N. Then there exists a Banach space pS, ||| ¨ |||q

containing X and a sequence pζnq
8
n“1 in S which is linearly independent over X such that,

for all y P X, and all α1, . . . , αk P R, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
y `

k
ÿ

j“1

αjζj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“ lim

nk,U
. . . lim

n1,U

›

›

›
y `

k
ÿ

j“1

αjxnj

›

›

›
.

Without loss of generality, S “ X ‘ spantζn | n P Nu (see [G-D], Chapter 2, Section 2, for

a proof of this fact). The space S is called a spreading model of pxnq
8
n“1 and the sequence

pζnq
8
n“1 is called the fundamental sequence of the spreading model S. Notice that, if X is

separable, by going to a subsequence of pxnq
8
n“1 if necessary, we can assume that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
y `

k
ÿ

j“1

αjζj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“ lim

nk
. . . lim

n1

›

›

›
y `

k
ÿ

j“1

αjxnj

›

›

›

“ lim
pn1,...,nkqÑ8

›

›

›
y `

k
ÿ

j“1

αjxnj

›

›

›
.

A fundamental sequence pζnq
8
n“1 of a spreading model is 1-spreading, i.e., pζnq

8
n“1 is 1-

equivalent to all of its subsequences. Also, the sequence pξnq
8
n“1 is 1-sign unconditional,

where ξn “ ζ2n´1 ´ ζ2n, for all n P N (see [G-D], Proposition II.3.3). We refer to [ArT] and

[G-D] for the theory of spreading models.

Remark 2.4.1. Spreading models are more usually defined in a slightly different manner.

Precisely, we say that pζnq
8
n“1 is a spreading model of a sequence pxnq

8
n“1 if, for all ε ą 0,
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there exists ` P N such that

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

k
ÿ

i“1

aixni

›

›

›
´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

i“1

aiζi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε,

for all ` ď n1 ă . . . ă nk, and all a1, . . . , ak P r´1, 1s.

2.5 Finite representability.

Let X and Y be Banach spaces. We say that Y is finitely representable in X if for every

finite dimensional subspace F and every ε ą 0 there exists an isomorphism f : F Ñ X such

that }x} ď }fpxq} ď p1` εq}x}, for all x P F .

If P stand for a class of Banach spaces (e.g., reflexive, stable, etc), we say that a Banach

space X is super-P if every Banach space which is finitely representable in X has property

P . Notice that, as a Banach space X is always finitely representable into itself, then if X is

super-P , then X is P .

2.6 Ultrapowers.

Let X be a Banach space, I be an index set, and U be a nonprincipal ultrafilter on I. We

define

XI
{U “

!

pxiqiPI P X
I
| sup
iPI
}xi} ă 8

)

{ „,

where pxiqiPI „ pyiqiPI if limi,U }xi ´ yi} “ 0. XI{U is a Banach space with norm }x} “

limi,U }xi}, where pxiq
8
i“1 is a representative of the class x P XI{U . By abuse of notation, we

will not distinguish between pxiq
8
i“1 and its equivalence class. The space XI{U is called an

ultrapower of X.

Notice that every ultrapower XI{U of a Banach space X is finitely representable in X

(see [AlKa], Proposition 11.1.12(i)). On the other hand, if a separable Banach space Y is

finitely representable in X, then Y is linearly isometrically embeddable into some ultrapower
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of X (see [AlKa], Proposition 11.1.12(ii)). In particular, as a Banach space X is reflexive

(resp. stable) if and only if every separable subspace of itself is reflexive (resp. stable), it

follows that a Banach space X is super-reflexive (resp. superstable) if and only if all of its

ultrapowers are reflexive (resp. stable).

2.7 Type and cotype.

Let X be a Banach space and p P p1, 2s. We say that X has type p if there exists T ą 0

such that, for all x1, . . . , xn P X,

Eε
›

›

›

n
ÿ

j“1

εjxj

›

›

›

p

ď T p
n
ÿ

j“1

}xj}
p,

where the expectation above is taken with respect to a uniform choice of signs ε “ pεjq
n
j“1 P

t´1, 1un. The smallest T for which this holds is denoted TppXq. We say that X has nontrivial

type if X has type p, for some p P p1, 2s.

Let q P r2,8q. We say that X has cotype q if there exists C ą 0 such that, for all

x1, . . . , xn P X,

Eε
›

›

›

n
ÿ

j“1

εjxj

›

›

›

q

ě
1

Cq

n
ÿ

j“1

}xj}
q,

where the expectation above is taken with respect to a uniform choice of signs ε “ pεjq
n
j“1 P

t´1, 1un. The smallest C for which this holds is denoted CqpXq. We say that X has nontrivial

cotype if X has cotype q, for some q P r2,8q.



Chapter 3

Coarse and uniform embeddings.

(Previously published as M. Braga, Bruno (2017) Coarse and uniform embeddings, J.

Funct. Anal. 272, no. 5, 1852-1875)

In this chapter, we study the diference between coarse and uniform embeddings between

Banach spaces. For that, we will go over the results in Section 1.3, which are contained in

the paper Coarse and uniform embeddings (see [Br2]).

3.1 Space of positively homogeneous maps.

Let X and Y be Banach spaces. We denote by HpX, Y q the set consisting of all maps

f : X Ñ Y which are bounded on BX and positively homogeneous, i.e.,

fpαxq “ αfpxq, for all α ě 0.

We define a norm on HpX, Y q by setting }f} “ supt}fpxq} | x P BXu. The space HpX, Y q

endowed with the norm } ¨ } above is a Banach space. Clearly, }fpxq} ď }f} ¨ }x}, for all

x P X. Denote by HCpX, Y q the subset of HpX, Y q consisting of continuous maps.

33
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For ε ą 0, we define }f}ε as the infimum of all L ą 0 such that L ě }f} and

}fpxq ´ fpyq} ď Lmaxt}x´ y}, ε}x}, ε}y}u,

for all x, y P X. Clearly, we have

}f} ď }f}ε ď maxt1, 2ε´1
u}f},

for all f P HpX, Y q.

Let f : pN, dq Ñ pM, Bq be a map and fix L, ε ą 0. We say that f is of cL-type pL, εq if

ωf ptq ď Lt ` ε, for all t ě 0. The next proposition is a simple computation, and it can be

found in [Ka4], Proposition 7.3.

Proposition 3.1.1. Let X and Y be Banach spaces, and ϕ : BBX Ñ Y be a bounded map.

Let f : X Ñ Y be given by

fpxq “

$

’

&

’

%

0, x “ 0,

}x}ϕ
´

x
}x}

¯

, x ‰ 0.

Then f P HpX, Y q. If ϕ is also continuous, then f P HCpX, Y q. Moreover, let L ě 1, ε ą 0,

and K ě 0. If ϕ is of cL-type pL, εq, and }ϕpxq} ď K, for all x P BBX , then }f}ε ď 2K`4L.

3.2 Strong embeddings into Banach spaces.

In this section, we show that if X uniformly embeds into a minimal Banach space Y , then

X simultaneously coarsely and uniformly embeds into Y . For that, we will need Lemma 16

of [Ro4].

Lemma 3.2.1. (C. Rosendal, 2016) Suppose X and E are Banach spaces and Pn : E Ñ E

is a sequence of bounded projections onto subspaces En Ă E so that Em Ă KerpPnq, for all
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m ‰ n. Assume also that, for all n P N, there exists a uniform embedding σn : X Ñ En.

Then X admits a strong embedding into E.

Proof Theorem 1.3.1(i). Let ϕ : X Ñ Y be a uniform embedding. By W. Gowers’ dichotomy,

Y must contain either a hereditarily indecomposable Banach space or an unconditional basic

sequence (see [Gow], Theorem 2). As Y is minimal, and a hereditarily indecomposable

Banach space is not isomorphic to any of its proper subspaces (see [Gow], Theorem 4), Y

must contain an unconditional basic sequence, say penq
8
n“1. Let pAnq

8
n“1 be a partition of N

into infinite subsets, and set E “ spantej | j P Nu and En “ spantej | j P Anu, for all n P N.

As Y is minimal, there exists a sequence of isomorphic embeddings Tn : Y Ñ En. So, Tn ˝ ϕ

is a uniform embedding of X into En, for all n P N. For each n P N, let Pn : E Ñ En denote

the natural projection. We can now apply Lemma 3.2.1, so, X strongly embeds into Y .

Theorem 1.3.1(i) allows us to obtain some new examples. Let T denote the Tsirelson

space introduced by T. Figiel and W. Johnson, and let S denote the Schlumprecht space. It

is well known that both T ˚ and S are minimal Banach spaces (see [CSh], Theorem VI.a.1,

and [AnS], Theorem 2.1, respectively). The following corollary is a trivial consequence of

Theorem 1.3.1(i).

Corollary 3.2.2. If a Banach space X uniformly embeds into T ˚ (resp. S), then X strongly

embeds into T ˚ (resp. S).

Proof of Theorem 1.3.8. By Corollary 3.3 of [AMauMi], there exists a uniform embedding

f : `2 Ñ B`2 . Let penq
8
n“1 be an unconditional basis for X. Let pAnq

8
n“1 be a partition of N

into infinite subsets. For each n P N, let Xn “ spantej | j P Anu. By Theorem 2.1 of [OSc1],

there exists a uniform equivalence σn : B`2 Ñ BXn , for each n P N. By Lemma 3.2.1, we are

done.

Corollary 3.2.3. Let X be an infinite dimensional space with an unconditional basis and

finite cotype. Then Lp strongly embeds into X, for all p P r1, 2s. In particular, `p strongly

embeds into X, for all p P r1, 2s.
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Proof. This is a simple consequence of the fact that Lp strongly embeds into L2 ” `2, for all

p P r1, 2s (see Remark 5.10 of [MeN1]).

We finish this section with the following natural question.

Problem 3.2.4. Does `2 strongly embed into every infinite dimensional Banach space?

3.3 Approximating coarse maps by continuous coarse

maps.

In this section, we study when a coarse map can be assumed to be also continuous. Our

goal is to prove a general theorem (Theorem 1.3.2) and then use it to obtain applications

to the Banach space setting. Precisely, we end this section showing that the existence of

a coarse retraction X Ñ Y , where X and Y and Banach spaces and Y Ă X, implies the

existence of a continuous coarse retraction X Ñ Y (Corollary 1.3.3). In Section 3.4, we use

Theorem 1.3.2 in order to show that if a Banach space X coarsely embeds into a minimal

Banach space Y , then X simultaneously coarsely and homeomorphically embeds into Y by

a map with uniformly continuous inverse (Theorem 1.3.1(ii)). Finally, in Section 3.5, we use

Theorem 1.3.2 to prove that the existence of a coarse section for a quotient map implies the

existence of a continuous coarse section.

J. Dugundji proved (see [Du], Theorem 4.1) the following: let M be a metric space, A ĂM

be a closed subspace, E be a normed space (or, more generally, a locally convex topological

vector space), and f : AÑ E be a continuous map, then f can be extended to a continuous

map ϕ : M Ñ E. However, J. Dugundji was only interested in continuous maps and did

not care about having any control over the value of }ϕpxq ´ ϕpaq}, for x P M , and a P A.

Proposition 3.3.2 below is the modification of Theorem 4.1 of [Du] that we will need for our

settings.
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Lemma 3.3.1. Let M be a metric space, A Ă M be a closed subspace, and α ą 0. There

exists a locally finite open cover U of MzA such that

(i) diampUq ă α, for all U P U , and

(ii) for all a P A, and all neighborhoods V of a, there exists a neighborhood V 1 Ă V of a

such that, for all U P U , U X V 1 ‰ H implies U Ă V .

The lemma above is Lemma 2.1 of [Du]. Although, item (i) above does not explicitly

appear in Lemma 2.1 of [Du], it is clear from its proof that the diameters of the elements of

U can be taken to be arbitrarily small.

Proposition 3.3.2. Let pM,dq be a metric space, and A Ă M be a closed subspace. Let E

be a normed space, and let f : AÑ E be a continuous coarse map. Then, for all λ ą 1, and

all γ ą 0, there exists a continuous map ϕ : M Ñ convpfpAqq extending f such that

}ϕpxq ´ ϕpaq} ď ωf pλ ¨ dpx,Aq ` dpx, aq ` γq,

for all x PM , and all a P A.

Proof. Without loss of generality, assume λ ă 2. Let U “ tUjujPJ be a locally finite open

cover for the metric space MzA given by Lemma 3.3.1 for α “ γ{p1`λq. For each j P J , pick

xj P Uj, and aj P A such that dpxj, ajq ď λ ¨ dpxj, Aq. For each j P J , let ψjpxq “ dpx, U c
j q,

for all x PM .

Let Ψ “
ř

jPJ ψj, and define ϕ : M Ñ convpfpAqq by

ϕpxq “

$

’

&

’

%

fpxq, if x P A,
ř

jPJ
ψjpxq

Ψpxq
fpajq, if x R A.

Clearly, ϕ extends f , and, as U is locally finite, ϕ is continuous on MzA. Let us observe that

ϕ is also continuous on A. Pick a P A, and let ε ą 0. By the continuity of f , there exists
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δ ą 0 such that dpa, a1q ă δ implies }fpaq ´ fpa1q} ă ε, for all a1 P A. Pick δ1 P p0, δ{6q such

that, for all j P J , UjXBpa, δ
1q ‰ H implies Uj Ă Bpa, δ{6q. Say x P Bpa, δ1qzA, so x belongs

to only finitely many elements of U , say Ui1 , . . . , Uik . By our choice of δ1, dpx, xijq ă δ{3 and

dpaij , xijq ă λδ{6 ă δ{3, for all j P t1, . . . , ku. Hence,

dpaij , aq ď dpaij , xijq ` dpxij , xq ` dpx, aq ă
δ

3
`
δ

3
` δ1 ă δ,

for all j P t1, . . . , nu. By our choice of δ, this gives us that

}ϕpxq ´ ϕpaq} ď
k
ÿ

j“1

ψijpxq

Ψpxq
¨ }fpaijq ´ fpaq} ă ε.

So ϕ is continuous.

Let x P M , and a P A. If x P A, it follows that }ϕpxq ´ ϕpaq} ď ωf pdpx, aqq, so assume

x R A. Let Ui1 , . . . , Uik be the only elements of U containing x. As diampUjq ă γ{p1`λq, for

all j P J , it follows that dpxij , xq ă γ{p1` λq, for all j P t1, . . . , ku. Hence, we must have

}ϕpxq ´ ϕpaq} ď
k
ÿ

j“1

ψijpxq

Ψpxq
¨ }fpaijq ´ fpaq}

ď

k
ÿ

j“1

ψijpxq

Ψpxq
¨ ωf

`

dpaij , xijq ` dpxij , xq ` dpx, aq
˘

ď

k
ÿ

j“1

ψijpxq

Ψpxq
¨ ωf

`

λ ¨ dpx,Aq ` p1` λq ¨ dpxij , xq ` dpx, aq
˘

ď ωf pλ ¨ dpx,Aq ` γ ` dpx, aqq,

and we are done.

We can now prove the main theorem of this section.

Proof of Theorem 1.3.2. Let θ : M Ñ E be the continuous extension of ϕæA given by Propo-
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sition 3.3.2 for λ “ 2, and some γ ą 0 such that

ωϕpγq ` ωϕæAp4γq ď inf
są0

ωϕpsq ` inf
są0

ωϕæApsq ` δ.

Let U “ tx P M | dpx,Aq ă γu, and let U “ tUjujPJ be an open cover for the metric

space MzA such that diampUjq ă γ, for all j P J . So, U 1 “ tU,UjujPJ is an open cover for

M , and, as M is paracompact, U 1 has a locally finite refinement (see [Mu], Theorem 41.4).

Hence, there exists a family of open sets V “ tViuiPI refining U such that tU, ViuiPI is a

locally finite open cover of M . For each i P I, pick xi P Vi, let ψipxq “ dpxi, V
c
i q, and let

ψUpxq “ maxt0, 1 ´ dpx,Aq{γu, for all x P M . So ψUpxq “ 1, if x P A, and ψUpxq “ 0, if

x R U .

Let Ψ “ ψU `
ř

iPI ψi, and define Φ : M Ñ convpϕpMqq by

Φpxq “
ψUpxq

Ψpxq
θpxq `

ÿ

iPI

ψipxq

Ψpxq
ϕpxiq.

As tU, ViuiPI is locally finite, Φ is continuous. Also, as ψipxq “ 0, for all x P A, and all i P I,

it is clear that ΦæA “ ϕæA.

Let x PMzA, and let Vi1 , . . . , Vik be the only elements of V containing x. As diampViq ă γ,

for all i P I, we have that dpx, xijq ă γ, for all j P t1, . . . , ku. Hence,

}ϕpxq ´ Φpxq} ď
ψUpxq

Ψpxq
¨ }ϕpxq ´ θpxq} `

k
ÿ

j“1

ψijpxq

Ψpxq
¨ }ϕpxq ´ ϕpxijq}

ď
ψUpxq

Ψpxq
¨ }ϕpxq ´ θpxq} ` ωϕpγq ¨

k
ÿ

j“1

ψijpxq

Ψpxq
.

If x R U , this shows that }ϕpxq ´ Φpxq} ď ωϕpγq. If x P U , pick a P A such that dpx, aq ă γ.
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Then, as θpaq “ ϕpaq, we have that

}ϕpxq ´ θpxq} ď }ϕpxq ´ ϕpaq} ` }θpaq ´ θpxq}

ď ωϕpγq ` ωϕæApλ ¨ dpx,Aq ` dpx, aq ` γq

ď ωϕpγq ` ωϕæAp4γq.

So, we are done.

Corollary 3.3.3. Let Y be a Banach space and A Ă Y be a closed subset. Let ϕ : Y Ñ A be

a retraction. Then, for all δ ą 0, there exists a continuous retraction Φ : Y Ñ convpAq such

that

sup
xPY

}ϕpxq ´ Φpxq} ď inf
są0

ωϕpsq ` δ.

In particular, if ϕ is coarse, so is Φ.

Proof. As ϕæA “ IdæA, we have that ωϕæXptq “ t, for all t. A straightforward application of

Theorem 1.3.2 finishes the proof.

Proof of Corollary 1.3.3. This is a particular case of Corollary 3.3.3 above.

In the case where A “ H, the Φ given by Theorem 1.3.2 is not only continuous, but even

locally Lipschitz. Let pM,dq and pN, Bq be metric spaces. We call a map f : M Ñ N locally

Lipschitz if for each x PM , there exists a neighborhood of x in which f is Lipschitz.

Proposition 3.3.4. Let pM,dq be a metric space, and let E be a normed space. Let ϕ : M Ñ

E be a map. Then, for all δ ą 0, there exists a locally Lipschitz map Φ : M Ñ convpϕpMqq

such that

sup
xPM

}ϕpxq ´ Φpxq} ď inf
są0

ωϕpsq ` δ.

In particular, if M coarsely embeds into E, then M coarsely embeds into E by a locally

Lipschitz map.
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Proof. Let γ, V “ tViuiPI , txiuiPI , pψiqiPN, Ψ and Φ be as in the proof of Theorem 1.3.2

(with A “ H, and U “ H). We only need to notice that Φ is locally Lipschitz. Let x P M .

Then, there exists ε ą 0 such that Bpx, εq intersects only finitely many elements of V , say

Vi1 , . . . , Vik . Without loss of generality, we can assume that x P Vi1 , and that Bpx, 2εq Ă Vi1 .

So Ψpyq ě ε, for all y P Bpx, εq. Therefore, as ψipyq{Ψpyq ď 1, for all y P M , and all i P I,

we have that

ˇ

ˇ

ˇ

ψipzq

Ψpzq
´
ψipyq

Ψpyq

ˇ

ˇ

ˇ
ď
|ψipzq ´ ψipyq|

Ψpzq
`
|Ψpzq ´Ψpyq|

Ψpzq
¨
ψipyq

Ψpyq

ď

´1` k

ε

¯

dpz, yq,

for all z, y P Bpx, εq. Hence, letting L “ maxt}ϕpxilq} | 1 ď l ď ku, we have

}Φpzq ´ Φpyq} ď L
´k ` k2

ε

¯

dpz, yq,

for all z, y P Bpx, εq.

We had just shown that if pM,dq coarsely embeds into a Banach space E, then it coarsely

embeds by a continuous map. We would like to obtain that the existence of coarse embeddings

actually guarantee us the existence of simultaneously coarse and homeomorphic embeddings.

In the next proposition, we show that injectivity of the embedding is not a problem.

Proposition 3.3.5. Let pM,dq be a separable metric space and let E be an infinite dimen-

sional Banach space. Let ϕ : M Ñ E be a map. Then, for all δ ą 0, there exists an injective

continuous map Φ : M Ñ E such that

sup
xPM

}ϕpxq ´ Φpxq} ď inf
są0

ωϕpsq ` δ.

In particular, if a separable Banach space X coarsely embeds into a Banach space Y , then X

coarsely embeds into Y by an injective continuous map.
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Proof. Let ϕ : M Ñ E be a coarse map, and δ ą 0. Pick γ ą 0 such that ωϕpγq ` 2γ ă

infsą0 ωϕpsq`δ. Let Z Ă E be a closed infinite dimensional separable subspace such that the

quotient space E{Z is infinite dimensional. As M is separable, M isometrically embeds into

the space of continuous function on r0, 1s with the supremum norm, Cr0, 1s (see [FHHaMoZ],

Corollary 5.9). Therefore, as Cr0, 1s is homeomorphic to BZ (see [K]), it follows that M

homeomorphically embeds into γ ¨BZ . Say θ : M Ñ γ ¨BZ is such embedding.

Let U “ tUnunPN be a countable locally finite cover of M such that diampUnq ă γ, for all

n P N. For each n P N, pick xn P Un, and let ψnpxq “ dpx, U c
nq, for all x PM .

Define a sequence pynq
8
n“1 in E as follows. Pick y1 P Bpϕpx1q, γqzZ. Say y1, . . . , yk had

been chosen. Then pick yk`1 P Bpϕpxk`1q, γqzpZ ‘ spanty1, . . . , ykuq. Let Ψ “
ř

nPN ψn, and

define Φ : M Ñ E by

Φpxq “ θpxq `
ÿ

nPN

ψnpxq

Ψpxq
yn.

for all x P M . Clearly, Φ is continuous, and satisfies the required inequality. To notice that

Φ is injective, notice that, by our choice of pynq
8
n“1, if Φpxq “ Φpyq, then ψnpxq{Ψpxq “

ψnpyq{Ψpyq, for all n P N. So, θpxq “ θpyq, which implies x “ y.

The last claim follows from the facts that (i) if dimpXq ă 8, then dimpY q ě dimpXq (see

[NoYu], Theorem 2.2.5 and Example 2.2.6), and (ii) if an infinite dimensional Banach space

X coarsely embeds into Y , then Y is also infinite dimensional.

3.4 Simultaneously homeomorphic and coarse embed-

dings.

In this section, we show that if a Banach space X coarsely embeds into a minimal Banach

space Y , then X simultaneously homeomorphically and coarsely embeds into Y . In order to

show that, we show that there exists a map X Ñ p‘Y qE , where E is any 1-unconditional

basic sequence, which is simultaneously a homeomorphic and coarse embedding.

The following lemma is an application of the methods of [Ro4] to our specific setting (see
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[Ro4], Lemma 16).

Lemma 3.4.1. Suppose X and E are Banach spaces and Pn : E Ñ E is a sequence of

bounded projections onto subspaces En Ă E so that Em Ă KerpPnq, for all m ‰ n. Assume

also that, for all n P N, there exists a coarse embedding σn : X Ñ En which is also continu-

ous. Then X homeomorphically coarsely embeds into E by a map with uniformly continuous

inverse.

Proof. Let us define a continuous coarse map ψ : X Ñ KerpP1q such that ψ´1 exists and is

uniformly continuous. Then, by setting Ψ : X Ñ E as Ψpxq “ σ1pxq`ψpxq, for all x P X, we

have that Ψ is a continuous coarse embedding with uniformly continuous inverse. Indeed, Ψ is

clearly coarse and continuous. As }σ1pxq´σ1pyq} “ }P1pΨpxq´Ψpyqq} ď }P1}¨}Ψpxq´Ψpyq},

for all x, y P X, it follows that Ψ is expanding. As }ψpxq´ψpyq} “ }pId´P1qpΨpxq´Ψpyqq} ď

}Id´P1} ¨ }Ψpxq´Ψpyq}, for all x, y P X, it follows that Ψ has uniformly continuous inverse.

Without loss of generality, we can assume that σnp0q “ 0, for all n P N. As each σn is a

coarse embedding, there exist sequences pLnqnPN and p∆nqnPN of positive numbers such that

ωσnptq ď Lnt ` Ln (see Proposition 1.1.1) and ρσnp∆nq ą 1, for all n P N, and all t P r0,8q.

We can assume that ∆n ě 1, for all n P N. For each n P N, let ψn : X Ñ En be given by

ψnpxq “
σnpn∆nxq

n∆nLn2n
,

and let ψpxq “
ř

ną1 ψnpxq, for all x P X. Clearly, ψnp0q “ 0, for all n P N, and ψp0q “ 0.

Claim: ψ is well defined, coarse, continuous, and ψ´1 is uniformly continuous.

For all x, y P X, and all n P N, there are x0, . . . , xn P X, such that x0 “ n∆nx, xn “ n∆ny,

and }xj´1 ´ xj} “ ∆n}x´ y}, for all 1 ď j ď n. So, by the triangle inequality,

}σnpn∆nxq ´ σnpn∆nyq} ď
n
ÿ

j“1

}σnpxj´1q ´ σnpxjq} ď n ¨ ωσnp∆n}x´ y}q.
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Hence, as ∆n ě 1, for all n P N, we have that

›

›

›

m
ÿ

n“l

ψnpxq ´
m
ÿ

n“l

ψnpyq
›

›

›
ď

m
ÿ

n“l

}σnpn∆nxq ´ σnpn∆nyq}

n∆nLn2n

ď

m
ÿ

n“l

ωσnp∆n}x´ y}q

∆nLn2n
ď
}x´ y} ` 1

2l´1
.

In particular, as ψnp0q “ 0, for all n P N, we have that }
řm
n“l ψnpxq} ď p}x} ` 1q{2l´1, for

all x P X, and all l,m P N, with l ď m. Hence, ψ is well defined. Similarly, the argument

above gives us that ωψptq ď t` 1, for all t ą 0, so ψ is coarse.

Let x P X, and ε ą 0. Choosing N P N such that 1{2N ă ε{4, we have that, for all y P X,

with }x´ y} ď 1,

}ψpxq ´ ψpyq} ď
ÿ

nďN

}ψnpxq ´ ψnpyq} `
ÿ

nąN

}x´ y} ` 1

2n

ď
ÿ

nďN

}ψnpxq ´ ψnpyq} `
ε

2
.

By the continuity of each ψn at x, there exists δ P p0, 1q such that
ř

nďN }ψnpxq´ψnpyq} ă ε{2,

whenever }x´ y} ă δ. Then, }ψpxq ´ ψpyq} ă ε, if }x´ y} ă δ. So ψ is continuous.

Let us show that ψ´1 exists and it is uniformly continuous. For this, we only need to show

that, for all ε ą 0, there exists δ ą 0 such that, for all x, y P X,

}x´ y} ą ε ñ }ψpxq ´ ψpyq} ą δ.

As ρσnp∆nq ą 1, for all n P N, if x, y P X and }x´ y} ą 1, then }σnp∆nxq ´ σnp∆nyq} ą 1.

Fix ε ą 0, and pick n P N such that 1{n ă ε. Then, if }x´ y} ą ε, we have that

}ψpxq ´ ψpyq} ě
}σnpn∆nxq ´ σnpn∆nyq}

}Pn}n∆nLn2n

ě
1

}Pn}n∆nLn2n
,



CHAPTER 3. COARSE AND UNIFORM EMBEDDINGS. 45

Hence, ψ´1 is uniformly continuous, and we are done.

Proof of Theorem 1.3.1(ii). Let ϕ : X Ñ Y be a coarse embedding. By Theorem 1.3.2, we

can assume that ϕ is also continuous. As in the proof of item (i) of Theorem 1.3.1, Y contains

an unconditional basic sequence penq
8
n“1. Let pAnq

8
n“1 be a partition of N into infinite subsets,

and set E “ spantej | j P Nu and En “ spantej | j P Anu, for all n P N. As Y is minimal,

there exists a sequence of isomorphic embeddings Tn : Y Ñ En. So, Tn ˝ ϕ is a continuous

coarse embedding of X into En, for all n P N. For each n P N, let Pn : E Ñ En denote the

natural projection. We can now apply Lemma 3.4.1, so, X simultaneously homeomorphically

and coarsely embeds into Y by a map with uniformly continuous inverse.

The following corollary is a trivial consequence of Theorem 1.3.1(ii).

Corollary 3.4.2. If a Banach space X coarsely embeds into T ˚ (resp. S), then X simulta-

neously homeomorphically and coarsely embeds into T ˚ (resp. S) by a map with uniformly

continuous inverse.

Proof of Theorem 1.3.4. If X coarsely embeds into Y , by Theorem 1.3.2, X coarsely embeds

into Y by a continuous map. Let E “ p‘Y qE , and En “ tpxnq
8
n“1 P E | @j ‰ n, xj “ 0u, for

all n P N. Then, by Lemma 3.4.1, X homeomorphically coarsely embeds into E by a map

with uniformly continuous inverse.

The following simpler version of Problem 1.2.6 could be slightly easier to prove, and it

would be a significant advance on this problem.

Problem 3.4.3. Let X and Y be Banach spaces, and assume that X coarsely embeds into

Y . Does BX uniformly embed into Y ? What if Y is minimal?

It is worth noticing that one cannot hope that X coarsely embeds into Y if and only if

BX uniformly embeds into Y (even if we restrict ourselves to minimal spaces Y ). Indeed,

it is well known that all the `p’s have uniformly equivalent balls (see [OSc1], Theorem 2.1),

but `p does not coarsely embed into `2 for any p ą 2 (see [JoRan], Theorem 1, or [MeN2],

Theorem 1.11).
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3.5 Continuous coarse sections.

In [Ka4], N. Kalton proved (Theorem 8.9) that the concepts of coarse and uniform equiv-

alences are actually distinct concepts, i.e., N. Kalton presented two Banach spaces X and Y

which are coarsely equivalent but not uniformly equivalent. However, the coarse equivalence

presented in [Ka4] only preserves the large scale geometries of X and Y and does not need to

be a homeomorphism. In this section, we show that N. Kalton’s example is actually an ex-

ample of Banach spaces which are simultaneously homeomorphically and coarsely equivalent,

but not uniformly equivalent.

Let X and Y be Banach spaces, and let Q : Y Ñ X be a quotient map. If A Ă X, we

say that f : A Ñ Y is a section of Q if Q ˝ f “ IdA. N. Kalton’s argument is based on the

construction of a quotient map Q : Y Ñ X for which a coarse section X Ñ Y exists, but

X does not coarse Lipschitz embed into Y by map which is also uniformly continuous (see

[Ka4], Theorem 8.8). In particular, Q has no uniformly continuous section X Ñ Y . In this

section, we show that if a quotient map Q : Y Ñ X admits a coarse section, then it admits

a continuous coarse section. As a corollary, we get the strengthening of N. Kalton’s result

mentioned above.

The proof of the following lemma uses ideas in the proof of Proposition 6.5 of [Ka4].

Lemma 3.5.1. Let X and Y be Banach spaces, and let Q : Y Ñ X be a quotient map.

Assume that there exists a coarse section ϕ : X Ñ Y . Then, there exists L ą 1 such that,

for every ε ą 0, there exists a continuous section ψ : BBX Ñ Y of cL-type pL, εq.

Proof. Let ϕ : X Ñ Y be a coarse section. So, there exists L ą 1 such that ωϕptq ď Lt`L, for

all t ą 0 (see Proposition 1.1.1). Fix ε P p0, 1q, and let us show that the required continuous

section ψ of cL-type pL, εq exists.

For each n P N, let ϕnpxq “ ϕpnxq{n. So, each ϕn is a coarse section, and ωϕnptq ď

Lt ` Ln´1, for all t ą 0. For each n P N, let Φn : X Ñ Y be the continuous map given by
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Theorem 1.3.2 applied to ϕn, L{n, and A “ H. Hence, we have that

sup
xPX

}ϕnpxq ´ Φnpxq} ď
2L

n
,

for all n P N. In particular, ωΦnptq ď Lt` 5L{n, and

}x´QpΦnpxqq} ď }x´Qpϕnpxqq} ` }Qpϕnpxqq ´QpΦnpxqq} ď
2L}Q}

n

for all n P N, and all x P X. Let λ P p0, 1q be such that
ř

nPN λ
n ă ε

8L
. Fix n0 P N large

enough so that 2L}Q}{n0 ă λ, and 5L{n0 ă ε{2.

Let h : X Ñ Y be given by

hpxq “

$

’

&

’

%

0, if x “ 0,

}x}
2

´

Φn0

´

x
}x}

¯

´ Φn0

´

´ x
}x}

¯¯

, if x ‰ 0.

Then h is continuous, positively homogeneous, and bounded on bounded sets. Also, it is

clear that }x ´ Qphpxqq} ď λ}x}, for all x P X. Let gpxq “ x ´ Qphpxqq. Then, as g is

positively homogeneous, we have that }gnpxq} ď λn}x}, for all n P N, and all x P X. Set

g0pxq “ x and let

ψpxq “
8
ÿ

n“0

hpgnpxqq,

for all x P BBX .

As h is positively homogeneous, the series above converges uniformly on bounded sets, so

ψ is well defined and continuous. Also, as gnpxq ´Qphpgnpxqqq “ gn`1pxq, we have that

Qpψpxqq “
8
ÿ

n“0

pgnpxq ´ gn`1
pxqq “ x,

for all x P X. So ψ : BBX Ñ Y is a continuous section of Q.

It remains to notice that ψ is of cL-type pL, εq. Notice that, as 5L{n0 ă ε{2, we have that
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supxPBX }hpxq} ă 2L and ωh|BBX ptq ď Lt` ε{2, for all t ą 0. Then

}ψpxq ´ ψpyq} ď }hpxq ´ hpyq} `
8
ÿ

n“1

}hpgnpxqq} `
8
ÿ

n“1

}hpgnpyqq}

ď L}x´ y} `
ε

2
` 2 ¨ sup

xPBX

}hpxq} ¨
8
ÿ

n“1

λn

ď L}x´ y} ` ε,

for all x, y P BBX . So, ψ is of cL-type pL, εq, and we are done.

The next technical lemma is the continuous version of Lemma 7.4 of [Ka4], and it will play

a fundamental role in the proof of Theorem 1.3.5.

Lemma 3.5.2. Let X and Y be Banach spaces and consider a map t P r0,8q ÞÑ ft P HpX, Y q

with the property that, for some K ą 0,

}ft}e´2t ď K, and }ft ´ fs} ď K|t´ s|, @ t, s ě 0.

Define F : X Ñ Y as

F pxq “

$

’

&

’

%

f0pxq, }x} ď 1,

fln }x}pxq, }x} ą 1.

Then F is coarse. Moreover, if ft P HCpX, Y q, for all t ě 0, then F is continuous.

In Lemma 7.4 of [Ka4], the author shows that the map F above is coarse, and, under the

assumption that ft is uniformly continuous, for all t ě 0, the author shows that F is also

uniformly continuous. Therefore, we only present the proof that F is continuous if each ft is

so.

Sketch of the proof. For convenience, let ft “ f0, if t ă 0. In the proof of Lemma 7.4 of
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[Ka4], N. Kalton shows that

}F pxq ´ F pzq} ď 3K}x´ z} ` 2K mint}x}, }x}´1
u ` 2K mint}z}, }z}´1

u, (3.5.1)

for all x, z P X. In particular, ωF ptq ď 3Kt` 4K, so F is coarse.

Let us show that F is continuous if each ft P HCpX, Y q, and the map t ÞÑ ft is continuous.

Note that, as F pxq “ f0pxq if }x} P r0, 1q, F is continuous at x if }x} P r0, 1q. Therefore, we

only need to show that F is continuous at x if }x} ě 1.

Let x P X, with }x} ě 1, and fix ε ą 0. Pick δ0 P p0, 1q such that Kδ0 ă ε{6, and a ą 1

such that 4K{a ă ε{2. If }x} ą a, pick δ1 P p0,mintδ0, }x} ´ auq. By Equation 3.5.1, if

}x´ z} ă δ1, we have

}F pxq ´ F pzq} ď 3Kδ1 ` 4Ka´1
ă ε.

Say }x} ď a. Let b “ lnpa`1q. Pick N ą b such that Kb{N ă ε{p3ebq. Then |s´ t| ď b{N

implies }fs ´ ft} ă ε{p3ebq.

By the continuity of each ft, there exists δ2 P p0,mintb{N, 1uq such that }x ´ z} ă δ2

implies

}fkb{Npxq ´ fbk{Npzq} ă ε{3, for all 0 ď k ď N.

Making δ2 smaller if necessary, we can also assume that }x´z} ă δ2 implies | ln }x}´ ln }z}| ă

b{p2Nq.

Fiz z P X with }x ´ z} ă δ2. As }x} P r1, as, we have that ln }x},maxtln }z}, 0u P r0, bs.

Therefore, as | ln }x} ´ ln }z}| ă b{p2Nq, there exists k P t0, . . . , Nu such that

ˇ

ˇ

ˇ

ˇ

ln }x} ´
kb

N

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

maxtln }z}, 0u ´
kb

N

ˇ

ˇ

ˇ

ˇ

ď
b

N
.
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As }x´ z} ă δ2, we have that }x}{eb, }z}{eb ď 1. Therefore, we conclude that

}F pxq ´ F pzq} ď }F pxq ´ fkb{Npxq} ` }fkb{Npxq ´ fkb{Npzq}

` }fkb{Npzq ´ F pzq}

ď
ε}x}

3eb
`
ε

3
`
ε}z}

3eb
ď ε.

So, F is continuous at x.

Proposition 3.5.3. Let Q : Y Ñ X be a quotient map. Assume that there exist a constant

L ą 1, a sequence pεnq
8
n“1 of positive real numbers converging to zero, and a sequence of

continuous sections ϕn : BBX Ñ Y such that ϕn is of cL-type pL, εnq, for all n P N. Then Q

has a continuous coarse section.

Proof. Without loss of generality, we may assume that εn ă e´2n, for all n P N. For each

n P N, let ψnpxq “ 1{2pϕnpxq´ϕnp´xqq, for all x P BBX . So, each ψn is a continuous section

of Q of cL-type pL, εnq and }ψnpxq} ď 2L, for all n P N, and all x P BBX .

By Proposition 3.1.1, we can extend each ψn to an fn´1 P HCpX, Y q so that fn´1 is a

section of Q, and }fn´1}e´2n ď 8L, for all n P N. For each t ě 0, we define ft : X Ñ Y as

follows. If t P rn´ 1, ns, let

ftpxq “ pn´ tqfn´1pxq ` pt´ n` 1qfnpxq.

Clearly t ÞÑ ft is continuous. Indeed, }ft ´ fs} ď 4L|t´ s|, for all t, s P rn´ 1, ns.

Notice that }ft}e´2t ď 8L, for all t ě 0. Let F be the map obtained by Lemma 3.5.2 for

the maps pftqtě0. Then F is a continuous coarse section of Q.

Proof of Theorem 1.3.5. If the quotient map Q : Y Ñ X has a coarse section X Ñ Y , it

follows from Lemma 3.5.1 and Proposition 3.5.3 that Q has a continuous coarse section. Let

ϕ : X Ñ Y be such section. Then, the map y ÞÑ py´ϕpQpyqq, Qpyqq is both a homeomorphism

and a coarse equivalence between Y and KerpQq ‘X with inverse px, zq ÞÑ x` ϕpzq.
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Proof of Corollary 1.3.6. By Proposition 8.4 and Theorem 8.8 of [Ka4], there exist separable

Banach spaces X and Y , and a quotient map Q : Y Ñ X which admits a coarse section

ϕ : X Ñ Y , but X does not coarse Lipschitz embed into Y by a uniformly continuous

map. Hence, Y and KerpQq ‘ X are not uniformly equivalent. By Theorem 1.3.5, Y and

KerpQq ‘X are simultaneously homeomorphically and coarsely equivalent.

This raises the question of when two Banach spaces are simultaneously homeomophically

and coarsely equivalent. It is well known that any two Banach spaces with the same density

character are homeomorphic (see [K], and [To]). But what about if X and Y are coarsely

equivalent? Can we get both coarse equivalence and topological equivalence at the same

time?

Problem 3.5.4. Let X and Y be Banach spaces, and assume that X and Y are coarsely

equivalent. Are X and Y simultaneously coarsely and homeomorphically equivalent?

It is worth noticing that, for separable spaces, the existence of a coarse equivalence easily

implies the existence of a measurable coarse equivalence.

Proposition 3.5.5. Let X and Y be separable Banach spaces, and assume that X is coarsely

equivalent to Y . Then, there exists a coarse equivalence X Ñ Y which is also a Borel

bijection.

Proof. Without loss of generality, we can assume that X and Y are infinite dimensional (see

Proposition 2.2.4, and Theorem 2.2.5 of [NoYu]). Let txnun and tynun be p1, 1q-nets in X and

Y such that xn ÞÑ yn defines a Lipschitz isomorphism. Let A1 “ Bpx1, 1qz Yią1 Bpxi, 1{2q,

and

An “ Bpxn, 1qz
`

ď

iăn

Ai Y
ď

iąn

Bpxi, 1{2q
˘

,

for all n ą 1. We define a sequence of subsets pCnq
8
n“1 of Y analogously. It is clear that

X “ \nAn, Y “ \nCn, that An and Cn are Borel, and that An and Cn are Borel isomorphic

(see [Ke], Theorem 15.6), for all n P N. Let fn : An Ñ Cn be Borel isomorphisms. Define
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a map ϕ : X Ñ Y by setting ϕpxq “ fnpxq, if x P An. It should be clear that ϕ is both a

coarse equivalence and a Borel bijection.

3.6 Unconditional sums of coarse and uniform equiva-

lences.

In [Ka5], N. Kalton proved (Theorem 4.6(ii)) that if X and Y are coarsely equivalent

(resp. uniformly equivalent), then `ppXq and `ppY q are coarsely equivalent (resp. uniformly

equivalent). However, as N. Kalton pointed out, his proof seems to be much more complicated

than necessary, and it relies on results about close (resp. uniformly close) Banach spaces. In

this section, we give a direct proof for a general theorem (see Theorem 3.6.1 below) which

gives us N. Kalton’s result as a corollary.

Proof of Theorem 1.3.9. Let ϕ : X Ñ Y be a coarse equivalence (resp. uniform equivalence).

Assume ϕp0q “ 0. For each n P N, let ϕnp¨q “ 2´nϕp2n¨q. Define Φ : p‘XqE Ñ p‘Y qE by

letting Φpxq “ pϕnpxnqq
8
n“1, for all x “ pxnq

8
n“1 P p‘XqE .

Claim: Φ is well defined and coarse (resp. uniformly continuous).

Let L ą 0, be such that ωϕptq ă Lt`L, for all t ą 0. So, ωϕnptq ă Lt`L2´n, for all t ą 0.

Let us first notice that Φ is well defined. Let x “ pxnq
8
n“1 P p‘XqE . For ε ą 0, pick N P N

so that }
ř

nąN }xn}en} ă ε{2L, and
ř

nąN 2´n ă ε{2L. Then, for k ą l ą N , we have

›

›

›

k
ÿ

n“l

}ϕnpxnq}en

›

›

›
ď

›

›

›

k
ÿ

n“l

´

L}xn} `
L

2n

¯

en

›

›

›

ď

›

›

›

k
ÿ

n“l

L}xn}en

›

›

›
`

›

›

›

k
ÿ

n“l

L

2n
en

›

›

›
ă ε.

Hence, the sum
ř

nPN ϕnpxq converges for every x, so Φ is well defined.
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Say x, y P p‘XqE . Then

}Φpxq ´ Φpyq} “
›

›

›

ÿ

nPN

}ϕnpxnq ´ ϕnpynq}en

›

›

›

ď

›

›

›

ÿ

nPN

L}xn ´ yn}en

›

›

›
`

›

›

›

ÿ

nPN

L

2n
en

›

›

›
ď L}x´ y} ` L.

So Φ is coarse.

Assume ϕ is uniformly continuous, let us show that Φ is also uniformly continuous. Fix

ε ą 0. Pick N P N such that
ř

nąN 2´n ă ε{3L. Choose δ ą 0 such that δ ă ε{3L, and

}ϕnpxnq ´ ϕnpynq} ă ε{3N , for all n ď N , and all xn, yn P X such that }xn ´ yn} ă δ. Then,

if }x´ y} ă δ, we have

}Φpxq´Φpyq}

ď

›

›

›

ÿ

nďN

}ϕnpxnq ´ ϕnpynq}en

›

›

›
`

›

›

›

ÿ

nąN

L}xn ´ yn}en

›

›

›
`

›

›

›

ÿ

nąN

L

2n
en

›

›

›

ď ε{3` ε{3` ε{3 “ ε

This shows that Φ is uniformly continuous.

Say ϕ is a uniform equivalence. Notice that ϕ´1
n p¨q “ 2´nϕ´1p2n¨q, therefore, Φ´1p¨q “

pϕ´1
n p¨qq

8
n“1, and, by the same arguments as above, Φ´1 is uniformly continuous. Hence,

p‘XqE and p‘Y qE are uniformly equivalent.

If ϕ is a coarse equivalence, let ψ : Y Ñ X be a coarse inverse for ϕ. Let ψnp¨q “ 2´nψp2n¨q,

and Ψ “ pψnq
8
n“1. Then, by the same arguments above, Ψ is coarse. One can easily see that

Φ and Ψ are coarse inverses of each other, so we are done.

The case of simultaneous homeomorphic and coarse equivalences follows analogously.

The proof above actually gives us the following slightly stronger result.

Theorem 3.6.1. Let pXnq
8
n“1 and pYnq

8
n“1 be sequences of Banach spaces, and let ϕn : Xn Ñ

Yn be a coarse equivalence (resp. uniform equivalence, or simultaneously homeomorphic and
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coarse equivalence), for each n P N. Let E be a normalized 1-unconditional basic sequence.

Assume that

sup
n

lim
tÑ8

ωϕnptq

t
ă 8 and inf

n
lim
tÑ8

ρϕnptq

t
ą 0.

Then p‘nXnqE and p‘nYnqE are coarsely equivalent (resp. uniformly equivalent, or simulta-

neously homeomorphically and coarsely equivalent).

Proof. Let us work with the uniform equivalence case. Without loss of generality, we assume

that ϕnp0q “ 0, for all n P N. Let L ą 0 be large enough so that limtÑ8 ωϕnptq{t ă L, and

limtÑ8 ρϕnptq{t ą 1{L, for all n P N. For each n P N, pick tn ą 0 such that ωϕnptq ă Lt, and

ρϕnptq ą t{L, for all n P N, and all t ě tn. Then,

ωϕnptq ă Lt` Ltn and ρϕnptq ą
1

L
t´

1

L
tn,

for all n P N, and all t ą 0. Hence, it is easy to check that ωϕ´1
n
ptq ă Lt ` tn, for all n, and

all t ą 0. Setting

ϕ̃npxq “
1

2ntn
ϕnp2

ntnxq,

we have that each ϕ̃n is a uniform equivalence between Xn and Yn, and that

ωϕ̃nptq ă Lt`
L

2n
and ωϕ̃´1

n
ptq ă Lt`

1

2n
,

for all n P N, and all t ą 0. The proof now follows analogously the proof of Theorem 1.3.9.

For the coarse equivalence case we only need to work with the coarse inverses of ϕn’s instead

of its inverses, and proceed similarly.

Corollary 3.6.2. Let X and Y be coarsely equivalent (resp. uniformly equivalent, or simul-

taneously homeomorphically and coarsely equivalent) Banach spaces, then `ppXq and `ppY q

are coarsely equivalent (resp. uniformly equivalent, or simultaneously homeomorphically and

coarsely equivalent).
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Remark 3.6.3. The conditions on ωϕn and ρρn in Theorem 3.6.1 cannot be omitted. Indeed,

let qX “ inftq P r2,8q | X has cotype qu, for any Banach space X. Then, by Theorem 1.11

(resp. Theorem 1.9) of [MeN2], if a Banach space X coarsely (resp. uniformly) embeds into

a Banach space Y with nontrivial type, then qX ď qY . Therefore, p‘n`
n
8q2 does not coarsely

(resp. uniformly) embed into p‘n`
n
2 q2 – `2, as qp‘n`n8q2 “ 8 and q`2 “ 2.

Clearly, the method above gives us that, if X coarse Lipschitz embeds into Y , then p‘XqE

coarse Lipschitz embeds into p‘Y qE . However, the same does not work for coarse and uniform

embeddings. Indeed, we know that `1 strongly embeds into `2. However, `2p`1q neither

coarsely nor uniformly embeds into `2 ” `2p`2q (see page 1108 of [NS]). On the other hand,

if E is the standard basis of c0, we do have an analogous result. Indeed, if ϕ : X Ñ Y is a

uniform embedding and ϕp0q “ 0, then Φ “ pϕq8n“1 is a uniform embedding of p‘Xqc0 into

p‘Y qc0 . If ϕ is a coarse embedding, then Φ “ pϕq8n“1 does not need to be well defined, so

the same argument does not work. However, without loss of generality, we can assume that

ϕpxq “ 0, for all x P BX . Then, the map Φ “ pϕq8n“1 is well defined, and it is a coarse

embedding.

Remark 3.6.4. We should notice that, in [Ka5], N. Kalton only deals with what he calls

“coarse homeomorphisms”, i.e., a coarse equivalence which is also a bijection. However it is

easy to show that X and Y are coarsely homeomorphic if and only if X and Y are coarsely

equivalent, for all Banach spaces X and Y . This follows from the easy fact that if X and

Y are coarsely equivalent, then X and Y have the same density character, which equals the

cardinality of any net in X and Y (for separable Banach spaces this follows from Proposition

3.5.5).



Chapter 4

Weaker notions of nonlinear

embeddings.

In this chapter, we study some notions of nonlinear embeddings which are weakenings of

the notions of coarse and uniform embeddings. More precisely, we study what we can say

when a Banach space X maps into another Banach space Y by a map which is both solvent

and coarse (resp. almost uncollapsed and uniformly continuous). The main goal is to provide

the reader with evidence that those notions may not be as weaker as one would think. For

that, we will go over the results contained in Section 1.4, which are in the paper Weaker

notions of nonlinear embeddings between Banach spaces (see [Br4]).

4.1 Preliminaries.

The following proposition, proved in [Ro4], Lemma 60, gives us a useful equivalent defini-

tion of solvent maps.

Proposition 4.1.1. Let X be a Banach space and M be a metric space. Then a coarse map

f : X ÑM is solvent if and only if suptą0 ρf ptq “ 8.

Although the statement of the next proposition is different from Proposition 63 of [Ro4],

56
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its proof is the same. However, as its proof is very simple and as this result will play an

important role in this chapter, for the convenience of the reader, we include its proof here.

Proposition 4.1.2. Let X and Y be a Banach space, and let E be an 1-unconditional basic

sequence. Assume that there exists a uniformly continuous almost uncollapsed map ϕ : X Ñ

Y . Then, there exists a uniformly continuous solvent map Φ : X Ñ p‘Y qE .

Proof. Let ϕ : X Ñ Y be a uniformly continuous almost uncollapsed map. As ϕ is almost

uncollapsed, pick t ą 0 such that ρϕptq ą 0. As ϕ is uniformly continuous, pick a sequence

of positive reals pεnq
8
n“1 such that

}x´ y} ă εn ñ }ϕpxq ´ ϕpyq} ă
1

n2n
,

for all x, y P X.

For each n P N, let Φnpxq “ n ¨ϕ
`

εn
n
x
˘

, for all x P X. Then, for n0 P N, and x, y P X, with

}x´ y} ď n0, we have that

}Φnpxq ´ Φnpyq} “ n ¨
›

›

›
ϕ
´εn
n
x
¯

´ ϕ
´εn
n
y
¯›

›

›
ď

1

2n
,

for all n ě n0. Define Φ : X Ñ p‘Y qE by letting Φpxq “ pΦnpxqq
8
n“1, for all x P X. By the

above, Φ is well-define and it is uniformly continuous. Now notice that, if }x ´ y} “ tn{εn,

then } εn
n
x´ εn

n
y} “ t. Hence, if }x´ y} “ tn{εn, we have that

}Φpxq ´ Φpyq} ě }Φnpxq ´ Φnpyq} “ n ¨
›

›

›
ϕ
´εn
n
x
¯

´ ϕ
´εn
n
y
¯›

›

›
ě n ¨ ρϕptq.

So, as ρϕptq ą 0, we have that limn ρΦptn{εnq “ 8. By Proposition 4.1.1, Φ is solvent.
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4.2 Cocycles.

By the Mazur-Ulam Theorem (see [MazU]), any surjective isometry A : Y Ñ Y of a

Banach space Y is affine, i.e., there exists a surjective linear isometry T : Y Ñ Y , and some

y0 P Y , such that Apyq “ T pyq ` y0, for all y P Y . Therefore, if G is a group, every isometric

action α : Gñ Y of G on the Banach space Y is an affine isometric action, i.e., there exists

an isometric linear action π : Gñ Y , and a map b : GÑ Y such that

αgpyq “ πgpyq ` bpgq,

for all g P G, and all y P Y . The map b : GÑ Y is called the cocycle of α, and it is given by

bpgq “ αgp0q, for all g P G. As α is an action by isometries, we have that

}bpgq ´ bphq} “ }αgp0q ´ αhp0q} “ }αh´1gp0q} “ }bph
´1gq}

for all g, h P G. Hence, if G is a metric group, a continuous cocycle b : GÑ Y is automatically

uniformly continuous.

Remark 4.2.1. If pX, } ¨ }q is a Banach space, we look at pX,`q as an additive group with a

metric given by the norm } ¨ }. So, we can work with affine isometric actions α : X ñ Y of

the additive group pX,`q on a Banach space Y .

Let α : G ñ Y be an action by affine isometries. Its cocycle b is called a coboundary if

there exists ξ P Y such that bpgq “ ξ ´ πgpξq, for all g P G. Clearly, b is a coboundary if

and only if α has a fixed point. Also, if Y is reflexive, then Impbq is bounded if and only

if b is a coboundary. Indeed, if b is a coboundary, it is clear that Impbq is bounded. Say

Impbq is bounded and let O be an orbit of the action α. Then the closed convex hull convpOq

must be bounded, hence weakly compact (as Y is reflexive). Therefore, by Ryll-Nardzewski

fixed-point theorem (see [R-N]), there exists ξ P Y such that αgpξq “ ξ, for all g P G. So,

bpgq “ ξ ´ πgpξq, for all g P G.
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The discussion above is well-known, and we isolate it in the proposition below.

Proposition 4.2.2. Let G be a group and Y be a Banach space. Let α : Gñ Y be an action

by affine isometries with cocycle b. Then b is a coboundary if and only if α has a fixed point.

Moreover, if Y is reflexive, then b is a coboundary if and only if b is bounded.

As we are interested in studying the relations between maps which are expanding, solvent,

uncollapsed, and almost uncollapsed, it is important to know that those are actually different

classes of maps. The next proposition shows that there are maps which are both solvent and

collapsed (see [Ed], Theorem 2.1, for a similar example). In particular, such maps are not

expanding.

Proposition 4.2.3. There exists an affine isometric action R ñ `2pCq whose cocycle is

Lipschitz, solvent, and collapsed.

Proof. Define an action U : R ñ CN by letting

Utpxq “
´

exp
´2πit

22n

¯

xn

¯8

n“1
,

for all t P R, and all x “ pxnq
8
n“1 P CN. Let w “ p1, 1, . . .q P CN and define an action

α : R ñ CN as αtpxq “ w ` Utpx´ wq, for all t P R, and all x P CN. So,

pαtpxqqm “ exp
´2πit

22m

¯

xm ` 1´ exp
´2πit

22m

¯

, (4.2.1)

for all t P R, all x “ pxnq
8
n“1 P CN, and all m P N. As |1 ´ exppθiq| ď |θ|, for all θ P R, it

follows that p1´ expp2πit{22nqq8n“1 P `2pCq, for all t P R. Hence, αtpxq P `2pCq, for all t P R,

and all x P `2pCq. So, α restricts to an action α : R ñ `2pCq. By Equation 4.2.1, it follows

that α : R ñ `2pCq is an affine isometric action.

Let b : R Ñ `2pCq be the cocycle of α : R ñ `2pCq, i.e., bptq “ αtp0q, for all t P R. Then,
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an easy induction gives us that bptq “ w ´ Utpwq, for all t P R. Let C “
ř

nPN

´

2π
22n

¯2

, then

}bptq}2 “
ÿ

nPN

ˇ

ˇ

ˇ
1´ exp

´2πit

22n

¯
ˇ

ˇ

ˇ

2

ď
ÿ

nPN

´2πt

22n

¯2

“ C|t|2,

for all t P R. So, b is Lipschitz.

For t ‰ 0, 0 P CR is the only fixed point of Ut. Hence, w is the only fixed point of αt. So,

as w R `2pCq, α : R ñ `2pCq has no fixed points. Therefore, b is unbounded (see Proposition

4.2.2). By Proposition 4.1.1, b is solvent.

Pick L ą 0 such that Ls ď 2s ´ 1, for all s P N. If k P N is large enough, say 2π{22kL ă 1,

we have that

}bp22k
q}

2
“

ÿ

nąk

ˇ

ˇ

ˇ
1´ exp

´2πi22k

22n

¯
ˇ

ˇ

ˇ

2

ď
ÿ

nąk

´2π22k

22n

¯2

“
ÿ

sPN

´ 2π

22kp2s´1q

¯2

ď
ÿ

sPN

´ 2π

22kLs

¯2

ď
2π

22kL ´ 1
.

Hence, }bp22kq} Ñ 0, as k Ñ 8. So, b is collapsed.

Problem 4.2.4. Is there a map X Ñ Y which is collapsed, almost uncollapsed and bounded

(in particular not solvent), for some Banach spaces X and Y ?

4.3 Preservation of cotype.

M. Mendel and A. Naor solved in [MeN2] the long standing problem in Banach space

theory of giving a completely metric definition for the cotype of a Banach space. As a

subproduct of this, they have shown that if a Banach space X coarsely (resp. uniformly)

embeds into a Banach space Y with nontrivial type, then qX ď qY (see [MeN2], Theorem 1.9

and Theorem 1.11). In this section we prove Theorem 1.4.2, which shows that the hypothesis

on the embedding X ãÑ Y can be weakened.
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For every m P N, we denote by Zm the set of integers modulo m. For every n,m P N, we

denote the normalized counting measure on Znm by µ “ µn,m, and the normalized counting

measure on t´1, 0, 1un by σ “ σn.

Definition 4.3.1. (Metric cotype) Let pM,dq be a metric space and q,Γ ą 0. We say

that pM,dq has metric cotype q with constant Γ if, for all n P N, there exists an even integer

m, such that, for all f : Znm ÑM ,

n
ÿ

j“1

ż

Znm
d
´

f
´

x`
m

2
ej

¯

, fpxq
¯q

dµpxq (4.3.1)

ď Γqmq

ż

t´1,0,1un

ż

Znm
d
`

fpx` εq, fpxq
˘q
dµpxqdσpεq.

The infimum of the constants Γ for which pM,dq has metric cotype q with constant Γ is

denoted by ΓqpMq. Given n P N and Γ ą 0, we define mqpM,n,Γq as the smallest even

integer m such that Inequality 4.3.1 holds, for all f : Znm Ñ M . If no such m exists we set

mqpM,n,Γq “ 8.

The following is the main theorem of [MeN2]. Although we will not use this result in this

dissertation, we believe it is worth mentioning.

Theorem 4.3.2. (M. Mendel and A. Naor, 2008) Let X be a Banach space and

q P r2,8q. Then X has metric cotype q if and only if X has cotype q. Moreover,

1

2π
CqpXq ď ΓqpXq ď 90CqpXq,

where CqpXq is the q-cotype constant of X.

We start by proving a simple property of solvent maps.

Proposition 4.3.3. Let pM,dq and pN, Bq be metric spaces, ϕ : M Ñ N be a solvent map,

and S ą 0. If ran, bns
8
n“1 is a sequence of intervals of the real line such that limn an “ 8,
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bn ´ an ă S and an`1 ´ an ă S, for all n P N, then, we must have

sup
n

inftρϕptq | t P ran, bnsu “ 8.

Proof. Let k ą 0. Pick N P N so that N ě ta1 ` S, k, 2Su, and let R ě 0 be such that

dpx, yq P rR,R ` N s implies Bpfpxq, fpyqq ą N , for all x, y P M . Then there exists n P N

such that ran, bns Ă rR,R ` N s. Indeed, if a1 ă R let n “ maxtj P N | aj ă Ru ` 1, and if

R ď a1 let n “ 1. Hence,

inftρϕptq | t P ran, bnsu ě inftρϕptq | t P rR,R `N su ě N ě k.

As k was chosen arbitrarily, we are done.

The following lemma is a version of Lemma 7.1 of [MeN2] in the context of the modulus ρ

instead of ρ. It’s proof is analogous to the proof of Lemma 7.1 of [MeN2] but we include it

here for completeness. Let n P N and r P r1,8s. In what follows, `nr pCq denotes the complex

Banach space pCn, } ¨ }rq, where } ¨ }r denotes the `r-norm in Cn.

Lemma 4.3.4. Let pM,dq be a metric space, n P N, q,Γ ą 0, and r P r1,8s. Then, for

every map f : `nr pCq ÑM , and every s ą 0, we have

n1{qρf p2sq ď Γ ¨mqpM,n,Γq ¨ ωf

ˆ

2πsn1{r

mqpM,n,Γq

˙

(if r “ 8, we use the notation 1{r “ 0).

Proof. In order to simplify notation, let m “ mqpM,n,Γq and assume r ă 8 (if r “ 8, the

same proof holds with the `r-norm substituted by the max-norm below). Let e1, . . . , en be

the standard basis of `nr pCq. Let h : Znm Ñ `nr pCq be given by

hpxq “ s ¨
n
ÿ

j“1

e
2πixj
m ej,
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for all x “ pxjqj P Znm, and define g : Znm Ñ M by letting gpxq “ fphpxqq, for all x “ pxjqj P

Znm. Then, as

dpgpx` εq, gpxqq ď ωf

´

s
´

n
ÿ

j“1

|e
2πiεj
m ´ 1|r

¯1{r¯

ď ωf

´2πsn1{r

m

¯

,

for all ε “ pεjq
n
j“1 P t´1, 0, 1un and all x “ pxjq

n
j“1 P Znm, we must have

ż

t´1,0,1un

ż

Znm
d
`

gpx` εq, gpxq
˘q
dµpxqdσpεq ď ωf

´2πsn1{r

m

¯q

.

Also, as }hpx ` m
2
ejq ´ hpxq} “ 2s, for all x P Znm, and all j P t1, . . . , nu, we have that

dpgpx` m
2
ejq, gpxqq ě ρf p2sq, for all x P Znm, and all j P t1, . . . , nu. Hence,

n
ÿ

j“1

ż

Znm
d
´

g
´

x`
m

2
ej

¯

, gpxq
¯q

dµpxq ě nρf p2sq
q.

Therefore, by the definition of mqpM,n,Γq, we conclude that

nρf p2sq
q
ď Γqmqωf

´2πsn1{r

m

¯q

.

Raising both sides to the p1{qq-th power, we are done.

We can now prove the main result of this section.

Proof of Theorem 1.4.2. First, let us notice that we only need to prove the case in which ϕ

is coarse and solvent. Indeed, let ϕ : X Ñ Y be a uniformly continuous almost uncollapsed

map, then X maps into `2pY q by a uniformly continuous solvent map (see Proposition 4.1.2).

As p`2pY q “ pY and q`2pY q “ qY , there is no loss of generality if we assume that ϕ is solvent.

If qY “ 8 we are done, so assume qY ă 8. Suppose qX ą qY . Pick q P pqY , qXq such that

1{q ´ 1{qX ă 1, and let α “ 1{q ´ 1{qX (if qX “ 8, we use the notation 1{qX “ 0q.

Let pεnq
8
n“1 be a sequence in p0, 1q such that p1 ` εnqn

α ď nα ` 1, for all n P N. By

Maurey-Pisier Theorem (see [MauPi]), `qX is finitely representable in X. Considering `ppCq
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as a real Banach space, we have that `ppCq is finitely representable in `p, so `ppCq is finitely

representable in X. Therefore, looking at `np pCq as real Banach spaces, we can pick a (real)

isomorphic embedding fn : `nqX pCq Ñ X such that }x} ď }fnpxq} ď p1 ` εnq}x}, for all

x P `nqX pCq. For each n P N, let gn “ ϕ ˝ fn. Hence,

ρgnptq “ inft}ϕpfnpxqq ´ ϕpfnpyqq} | }x´ y} “ tu

ě inftρϕp}fnpxq ´ fnpyq}q | }x´ y} “ tu

ě inftρϕpaq | a P rt, p1` εnqtsu,

for all n P N, and all t P r0,8q. Also, as εn P p0, 1q, we have that ωgnptq ď ωϕp2tq, for all

n P N, and all t P r0,8q.

As Y has nontrivial type and as q ą qY , Theorem 4.1 of [MeN2] gives us that, for some Γ ą

0, mqpY, n,Γq “ Opn1{qq. Therefore, there exists A ą 0 and n0 P N such that mqpY, n,Γq ď

An1{q, for all n ą n0. On the other hand, by Lemma 2.3 of [MeN2], mqpY, n,Γq ě n1{q{Γ, for

all n P N. Hence, applying Lemma 4.3.4 with s “ nα and r “ qX , we get that, for all n ą n0,

inftρϕp2aq | a P r2n
α, 2nα ` 2su ď ΓAωϕ p4πΓq .

As α ă 1, we have that supn |pn ` 1qα ´ nα| ă 8. Therefore, by Proposition 4.3.3, the

supremum over n of the left hand side above is infinite. As ϕ is coarse, this gives us a

contradiction.

Proof of Corollary 1.4.3. If p ą 1, this follows straight from Theorem 1.4.2, the fact that

q`p “ maxt2, pu and that `p has nontrivial type. If p “ 1, let g : `1 Ñ `2 be a uniform

embedding (see [No2], Theorem 5). Then the conclusion of the corollary must hold for the

map g ˝ f : `q Ñ `2, which implies that it holds for f as well.
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4.4 Property Q.

For each k P N, let PkpNq denote the set of all subset of N with exactly k elements endowed

PkpNq with the metric given in Section 1.4. For ε, δ ą 0, a metric space pM,dq is said to

have Property Qpε, δq if for all k P N, and all f : PkpNq ÑM with ωf p1q ď δ, there exists an

infinite subset M Ă N such that

dpfpn̄q, fpm̄qq ď ε, for all n̄ ă m̄ P PkpMq.

For each ε ą 0, we define ∆Mpεq as the supremum of all δ ą 0 so that pM,dq has Property

Qpε, δq. For a Banach space X, it is clear that there exists QX ě 0 such that ∆Xpεq “ QXε,

for all ε ą 0. The Banach space X is said to have Property Q if QX ą 0.

Remark 4.4.1. Notice that this definition of Property Q is slightly different from the definition

given in Section 1.4. However, the definition above is N. Kalton’s original definition and it

is easy to see that they are equivalent to each other. The reason why we introduce this

equivalent definition here will be clear in the proof of Theorem 4.4.2 below.

Theorem 4.4.2. Let X and Y be Banach spaces, and assume that Y has Property Q. If

either

(i) there exists a coarse solvent map X Ñ Y , or

(ii) there exists a uniformly continuous map ϕ : BX Ñ Y such that ρϕptq ą 0, for some

t P p0, 1q,

then, X has Property Q. In particular, if there exists a uniformly continuous almost uncol-

lapsed map X Ñ Y , then, X has Property Q.

Proof. (i) Assume ϕ : X Ñ Y is a coarse solvent map. In particular, ωϕp1q ą 0. Fix j P N,

and pick R ą 0 such that

}x´ y} P rR,R ` js implies }ϕpxq ´ ϕpyq} ą j, (4.4.1)
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for all x, y P X. Assume that X does not have Property Q. So, ∆XpRq “ 0, and there

exists k P N, and f : PkpNq Ñ X with ωf p1q ď 1, such that, for all infinite M Ă N, there

exists n̄ ă m̄ P PkpMq such that }fpn̄q ´ fpm̄q} ą R. By standard Ramsey theory (see [T],

Theorem 1.3), we can assume that }fpn̄q ´ fpm̄q} ą R, for all n̄ ă m̄ P PkpMq.

Pick a positive θ ă j. As ωf p1q ď 1, we have that }fpn̄q ´ fpm̄q} P rR, ks, for all

n̄ ă m̄ P PkpMq. Therefore, applying Ramsey theory again, we can get an infinite subset

M1 ĂM, and a P rR, ks such that }fpn̄q ´ fpm̄q} P ra, a` θs, for all n̄ ă m̄ P PkpM1q. By our

choice of θ, it follows that

›

›

›

R

a
fpn̄q ´

R

a
fpm̄q

›

›

›
P rR,R ` js, for all n̄ ă m̄ P PkpM1

q. (4.4.2)

Let QY ą 0 be the constant given by the fact that Y has Property Q. Let g “ pR{aqf .

As R{a ď 1, we have that ωϕ˝gp1q ď ωϕp1q. As ∆Y p2ωϕp1qQ
´1
Y q “ 2ωϕp1q, we get that there

exists M2 ĂM1 such that

}ϕpgpn̄qq ´ ϕpgpm̄qq} ď 2ωϕp1qQ
´1
Y , (4.4.3)

for all n̄ ă m̄ P PkpM2q. As j was chosen arbitrarily, (4.4.1), (4.4.2) and (4.4.3) above gives

us that j ă 2ωϕp1qQ
´1
Y , for all j P N. As ϕ is coarse, this gives us a contradiction.

(ii) Assume ϕ : BX Ñ Y is a uniformly continuous map, and let t P p0, 1q be such that

ρϕptq ą 0. As ϕ is uniformly continuous, we can pick ρ P pt, 1q, s, r P p0, ρq with s ă t ă r,

and γ ą 0, such that

}x´ y} P rs, rs implies }ϕpxq ´ ϕpyq} ą γ, (4.4.4)

for all x, y P ρBX . Assume that X does not have Property Q. So, ∆Xpsq “ 0. Fix j P N.

Then, there exists k P N, and f : PkpNq Ñ X with ωf p1q ď j´1, such that, for all infinite

M Ă N, there exists n̄ ă m̄ P PkpMq such that }fpn̄q´fpm̄q} ą s. Without loss of generality,
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we can assume that }fpn̄q ´ fpm̄q} ą s, for all n̄ ă m̄ P PkpMq.

Pick a positive θ ă pr ´ sq. As }fpn̄q ´ fpm̄q} P rs, ks, we can use Ramsey theory once

again to pick an infinite M1 Ă M, and a P rs, ks such that }fpn̄q ´ fpm̄q} P ra, a ` θs, for all

n̄ ă m̄ P PkpM1q. By our choice of θ, it follows that

›

›

›

s

a
fpn̄q ´

s

a
fpm̄q

›

›

›
P rs, rs, for all n̄ ă m̄ P PkpM1

q. (4.4.5)

Let m̄0 be the first k elements of M1, and M2 “ M1zm̄0. For each n̄ P PkpM2q, let hpn̄q “

ps{aqpfpn̄q ´ fpm̄0qq. Then, hpn̄q P ρBX , and }hpn̄q ´ hpm̄q} P rs, rs, for all n̄ ă m̄ P PkpM2q.

As s{a ď 1, we have ωhp1q ď ωf p1q. Hence, ωϕ˝hp1q ď ωϕpj
´1q.

Let QY ą 0 be the constant given by the fact that Y has Property Q. Hence, as

∆Y p2ωϕpj
´1qQ´1

Y q “ 2ωϕpj
´1q, there exists M3 ĂM2 such that

}ϕphpn̄qq ´ ϕphpm̄qq} ď 2ωϕpj
´1
qQ´1

Y , (4.4.6)

for all n̄ ă m̄ P PkpM3q. As j was chosen arbitrarily, (4.4.4), (4.4.5) and (4.4.6) gives

us that γ ă 2ωϕpj
´1qQ´1

Y , for all j P N. As ϕ is uniformly continuous, this gives us a

contradiction.

We can now prove the following generalization of Theorem 5.1 of [Ka1].

Theorem 4.4.3. Let X and Y be Banach spaces, and assume that Y is reflexive (resp.

super-reflexive). If either

(i) there exists a coarse solvent map X Ñ Y , or

(ii) there exists a uniformly continuous map ϕ : BX Ñ Y such that ρϕptq ą 0, for some

t P p0, 1q,

then, X is either reflexive (resp. super-reflexive) or X has a spreading model equivalent to

the `1-basis (resp. trivial type).
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Proof. By Corollary 4.3 of [Ka1], any reflexive Banach space has Property Q. By Theorem

4.5 of [Ka1], a Banach space with Property Q must be either reflexive or have a spreading

model equivalent to the `1-basis (in particular, have nontrivial type). Therefore, if Y is

reflexive, the result now follows from Theorem 4.4.2.

For an index set I and an ultrafilter U on I, denote by XI{U the ultrapower of X with

respect to U . Say Y is super-reflexive. In particular, by Corollary 4.3 of [Ka1], every

ultrapower of Y has Property Q. If X maps into Y by a coarse and solvent map, then

XI{U maps into Y I{U by a coarse and solvent map. Therefore, it follows from Theorem

4.4.2 that every ultrapower of X has Property Q. Suppose X has nontrivial type. Then,

all ultrapowers of X have nontrivial type. Therefore, by Theorem 4.5 of [Ka1], we conclude

that all ultrapowers of X are reflexive. Hence, item (i) follows.

Similarly, if there exists ϕ : BX Ñ Y as in item (ii), then the unit balls of ultrapowers of

X are mapped into ultrapowers of Y by maps with the same properties as ϕ, and item (ii)

follows.

Proof of Theorem 1.4.7. Item (ii) of Theorem 1.4.7 follows directly from item (ii) of Theorem

4.4.3.

Remark 4.4.4. The statement in Theorem 1.4.7 cannot be improved so that if X embeds

into a super-reflexive space, then X is either super-reflexive or it has an `1-spreading model.

Indeed, it was proven in Proposition 3.1 of [NS] that `2p`1q strongly embeds into Lp, for all

p ě 4. As p‘n`
n
1 q`2 Ă `2p`1q, it follows that p‘n`

n
1 q`2 strongly embeds into L4. However

p‘n`
n
1 q`2 is neither super-reflexive nor contains an `1-spreading model.

4.5 Embeddings into Hilbert spaces.

In [Ran], N. Randrianarivony showed that a Banach space X coarsely embeds into a

Hilbert space if and only if it uniformly embeds into a Hilbert space. This result together

with Theorem 5 of [No2], gives a positive answer to Problem 1.2.6 for Y “ `p, for p P r1, 2s.



CHAPTER 4. WEAKER NOTIONS OF NONLINEAR EMBEDDINGS. 69

In this section, we show that Problem 1.4.1 also has a positive answer if Y is `p, for any

p P r1, 2s.

First, let us prove a simple lemma. For δ ą 0, a subset S of a metric space pM,dq is called

δ-dense if dpx, Sq ă δ, for all x PM .

Lemma 4.5.1. Let pM,dq and pN, Bq be Banach spaces and S Ă M be a δ-dense set, for

some δ ą 0. Let f : M Ñ N be a coarse map such that fæS is solvent. Then f is solvent.

Proof. Let n P N. As fæS is solvent and ωf pδq ă 8, we can pick R ą 0 such that

dpx, yq P rR ´ 2δ, R ` n` 2δs implies Bpfpxq, fpyqq ą n` 2ωf pδq,

for all x, y P S. Pick x, y P X, with dpx, yq P rR,R`ns. As S is δ-dense, we can pick x1, y1 P S

such that dpx, x1q ď δ and dpy, y1q ď δ. Hence, dpx1, y1q P rR´ 2δ, R` n` 2δs, which gives us

that Bpfpx1q, fpy1qq ą n` 2ωf pδq. Therefore, we conclude that Bpfpxq, fpyqq ą n.

The next lemma is an adaptation of Proposition 2 of [Ran], and its proof is analogous

to the proof of Theorem 1 of [JoRan]. Before stating the lemma, we need the following

definition: a map K : X ˆX Ñ R is called a negative definite kernel (resp. positive definite

kernel) if

(i) Kpx, yq “ Kpy, xq, for all x, y P X, and

(ii)
ř

i,jKpxi, xjqcicj ď 0 (resp.
ř

i,jKpxi, xjqcicj ě 0), for all n P N, all x1, . . . , xn P X,

and all c1, . . . , cn P R, with
ř

i ci “ 0.

A function f : X Ñ R is called negative definite (resp. positive definite) if Kpx, yq “ fpx´yq

is a negative definite kernel (resp. positive definite kernel).

Lemma 4.5.2. Let X be a Banach space and assume that X maps into a Hilbert space by

a map which is coarse and solvent. Then there exist α ą 0, a map ρ : r0,8q Ñ r0,8q, with

lim suptÑ8 ρptq “ 8, and a continuous negative definite function g : X Ñ R such that
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(i) gp0q “ 0, and

(ii) ρp}x}q ď gpxq ď }x}2α, for all x P X.

Sketch of the Proof of Lemma 4.5.2. Let H be a Hilbert space and consider a coarse solvent

map f : X Ñ H. Without loss of generality, we may assume that }fpxq ´ fpyq} ď }x ´ y},

for all x, y P X, with }x´ y} ě 1.

Claim 1: Let α P p0, 1{2q. Then X maps into a Hilbert space by a map which is α-Hölder

and solvent.

As H is Hilbert, the assignment px, yq ÞÑ }fpxq ´ fpyq}2 is a negative definite kernel on X

(this is a simple computation and it is contained in the proof of Proposition 3.1 of [No1]).

Hence, for all α P p0, 1q, the kernel Npx, yq “ }fpxq ´ fpyq}2α is also negative definite (see

[No1], Lemma 4.2). So, there exists a Hilbert space Hα and a map fα : X Ñ Hα such that

Npx, yq “ }fαpxq ´ fαpyq}
2, for all x, y P X (see [No1], Theorem 2.3(2)). This gives us that

`

ρf p}x´ y}q
˘α
ď }fαpxq ´ fαpyq} ď }x´ y}

α,

for all x, y P X, with }x ´ y} ě 1. In particular, fα is solvent. Hence, if N Ă X is a 1-net

(i.e., a maximal 1-separated set), the restriction fα|N : N Ñ Hα is α-Hölder and solvent.

Using that α P p0, 1{2q, Theorem 19.1 of [WWi] gives us that there exists an α-Hölder map

Fα : X Ñ Hα extending fα|N . By Lemma 4.5.1, Fα is also solvent. This finishes the proof of

Claim 1.

By Claim 1 above, we can assume that f : X Ñ H is an α-Hölder solvent map, with

α P p0, 1{2q. Set Npx, yq “ }fpxq ´ fpyq}2, for all x, y P X. So, N satisfies

`

ρf p}x´ y}q
˘2
ď Npx, yq ď }x´ y}2α, (4.5.1)

for all x, y P X. Let µ be an invariant mean on the bounded functions X Ñ R (see [BenLi],

Appendix C, for the definition of an invariant mean, and [BenLi], Theorem C.1, for the
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existence of such invariant mean), and define

gpxq “

ż

X

Npy ` x, yqdµpyq, for all x P X.

Let ρptq “ pρf ptqq
2, for all t ě 0. As

ş

X
1dµ “ 1, Inequality 4.5.1 gives us that items (i) and

(ii) are satisfied. As f is solvent, we also have that lim suptÑ8 ρptq “ 8. The proof that g is

a negative definite kernel is contained in Step 2 of [JoRan] and the proof that g is continuous

is contained in Step 3 of [JoRan]. As both proofs are simple computations, we omit them

here.

We can now prove the main theorem of this section. For that, given a probability space

pΩ,A, µq, we denote by L0pµq the space of all measurable functions Ω Ñ C with metric

determined by convergence in probability.

Theorem 4.5.3. Let X be a Banach space. Then the following are equivalent.

(i) X coarsely embeds into a Hilbert space.

(ii) X uniformly embeds into a Hilbert space.

(iii) X strongly embeds into a Hilbert space.

(iv) X maps into a Hilbert space by a map which is coarse and solvent.

(v) X maps into a Hilbert space by a map which is uniformly continuous and almost un-

collapsed.

(vi) There is a probability space pΩ,A, µq such that X is linearly isomorphic to a subspace

of L0pµq.

Proof. We only need to show that (iv) implies (vi). Indeed, the equivalence between (i), (ii),

and (vi) were established in [Ran], Theorem 1 (see the paragraph preceeding Theorem 1 of

[Ran] as well). By [Ro4], Theorem 2, if X uniformly embeds into a Hilbert space H then X
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strongly embeds into `2pHq. Hence, (ii) and (iii) are also equivalent. Using Proposition 4.1.2

with E being the standard basis of `2, we get that (v) implies (iv). Hence, once we show that

(iv) implies (vi), all the equivalences will be established.

Let H be a Hilbert space and f : X Ñ H be a coarse solvent map. Let α ą 0, ρ and

g : X Ñ R be given by Lemma 4.5.2. Define F pxq “ e´gpxq, for all x P X. So, F is a

positive definite function (see [No1], Theorem 2.2). As F is also continuous, by Lemma 4.2

of [AMauMi] applied to F , there exist a probability space pΩ,A, µq and a continuous linear

operator U : X Ñ L0pµq such that

F ptxq “

ż

Ω

eitUpxqpwqdµpwq, for all t P R, and all x P X.

As U is continuous, we only need to show that U is injective and its inverse is continuous.

Suppose false. Then there exists a sequence pxnq
8
n“1 in the unit sphere of X such that

limn Upxnq “ 0. By the definition of convergence in L0pµq, this gives us that limn F ptxnq “ 1,

for all t P R. As lim suptÑ8 ρptq “ 8, we can pick t0 ą 0 such that e´ρpt0q ă 1{2. Hence, we

have that

F pt0xnq “ e´gpt0xnq ď e´ρp}t0xn}q “ e´ρpt0q ă
1

2
, for all n P N.

As limn F pt0xnq “ 1, this gives us a contradiction.

Proof of Theorem 1.4.8. This is a trivial consequence of Theorem 4.5.3 and the equivalence

between coarse and uniform embeddability into `p, for p P r1, 2s (see [No2], Theorem 5).

4.6 Embeddings into `8.

Kalton proved in [Ka3], Theorem 5.3, that uniform embeddability into `8, coarse embed-

dability into `8 and Lipschitz embeddability into `8 are all equivalent. In this section, we

show that Problem 1.4.1 also has a positive answer if Y “ `8.

The following lemma is Lemma 5.2 of [Ka3]. Although in [Ka3] the hypothesis on the map
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are stronger, this is not used in their proof.

Lemma 4.6.1. Let X be a Banach space and assume that there exists a Lipschitz map

X Ñ `8 that is also almost uncollapsed. Then X Lipschitz embeds into `8.

Proof. Let f : X Ñ `8 be a Lipschitz almost uncollapsed map. Pick t ą 0 such that

ρf ptq ą 0. Define a map F : X Ñ `8pQ` ˆ Nq by setting F pxqpq, nq “ q´1fpqxqn, for all

x P X, and all pq, nq P Q` ˆ N. Then

}F pxq ´ F pyq} “ sup
pq,nqPQ`ˆN

q´1
ˇ

ˇfpqxqn ´ fpqyqn
ˇ

ˇ ď Lippfq ¨ }x´ y}.

So, F is also Lipschitz. Now notice that, as f is continuous, we have that

}F pxq ´ F pyq} “ sup
qą0

q´1
}fpqxq ´ fpqyq}.

Hence, if x ‰ y, by letting q “ t}x´ y}´1, we obtain that

}F pxq ´ F pyq} ě
}x´ y}

t
¨

›

›

›
f
´ tx

}x´ y}

¯

´ f
´ ty

}x´ y}

¯›

›

›
ě
ρf ptq

t
¨ }x´ y}.

So, F is a Lipschitz embedding.

Proof of Theorem 1.4.9. By Theorem 5.3 of [Ka3], items (i), (ii) and (iii) of Problem 1.2.6

are all equivalent. Using Proposition 4.1.2 with E being the standard basis of c0, we have

that item (v) of Problem 1.4.1 implies item (iv) of Problem 1.4.1. Hence, we only need to

show that item (iv) of Problem 1.4.1 implies that X Lipschitz embeds into `8. For that,

let f : X Ñ `8 be a coarse solvent map. Without loss of generality, we may assume that

}fpxq ´ fpyq} ď }x ´ y}, for all x, y P X, with }x ´ y} ě 1. Let N Ă X be a 1-net. Then

fæN is 1-Lipschitz and solvent. Recall that `8 is a 1-absolute Lipschitz retract, i.e., every

Lipschitz map g : A Ñ `8, where M is a metric space and A Ă M , has a Lippgq-Lipschitz

extension (see [Ka2], Subsection 3.3). Let F be a Lipschitz extension of fæN . By Lemma

4.5.1, F is solvent. Hence, by Lemma 4.6.1, it follows that X Lipschitz embeds into `8.
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4.7 Open questions.

Besides Problem 1.2.6 and Problem 1.4.1, there are many other interesting questions re-

garding those weaker kinds of embeddings. We mention a couple of them in this section.

Raynaud proved in [Ray] (see the corollary in page 34 of [Ray]) that if a Banach space X

uniformly embeds into a superstable space (see [Ray] for definitions), then X must contain

an `p, for some p P r1,8q. Hence, in the context of those weaker embeddings, it is natural

to ask the following.

Problem 4.7.1. Say an infinite dimensional Banach space X maps into a superstable space

by a map which is both uniformly continuous and almost uncollapsed. Does it follow that X

must contain `p, for some p P r1,8q.

We refer to Problem 5.8.6 below for a similar question.

The properties of a map being solvent (resp. almost uncollapsed) are not necessarily stable

under Lipschitz isomorphisms. Hence, the following question seems to be really important

for the theory of solvent (resp. almost uncollapsed) maps between Banach spaces.

Problem 4.7.2. Assume that there is no coarse solvent (resp. uniformly continuous almost

uncollapsed) map X Ñ Y . Is this also true for any renorming of X?

At last, we would like to notice that we have no results for maps X Ñ Y which are coarse

and almost uncollapsed. Hence, we ask the following.

Problem 4.7.3. What can we say if X maps into Y by a map which is coarse and almost

uncollapsed map? Is this enough to obtain any restriction in the geometries of X and Y ?



Chapter 5

Coarse embeddings into superstable

Banach spaces.

In this chapter, we study nonlinear embeddability into superstable spaces. The goal of

this chapter is to show that if a Banach space X coarsely embeds into a superstable Banach

space, then X must contain an `p-spreading model, for some p P r1,8q. For that, we will

go over the results contained in Section 1.5, which are in the paper Coarse embedings into

superstable spaces (see [BrSw]).

5.1 Preliminaries.

Given a Banach space X, we define stability and superstability as in Section 1.5. By

Theorem II.1 of [KrMau] and Theorem 0.1 of [Ray], both stability and superstability are

closed under taking `p-sums, for p P r1,8q. Precisely, given p P r1,8q, if X is stable (resp.

superstable), then `ppXq is also stable (resp. superstable). We will be using this property

without mentioning throughout this chapter.

We say that pM,dq is a pseudometric space if d : X ˆX Ñ R` is a pseudometric, i.e., if

d is symmetric map satisfying the triangular inequality. Given pseudometric spaces pM,dq,

pN, Bq and a map f : M Ñ N , we define ωf and ρf by the formulas given in Equation

75
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1.1.1 and Equation 1.1.2, and define uniform and coarse embeddings, and solvent and almost

uncollapsed maps analogously as in Chapter 1.

5.2 Baire class 1 functions.

Let X and Y be metrizable topological spaces. A function f : X Ñ Y is called Baire

class 1 if the inverse image of any open subset of Y under f is an Fσ subset of X. If Y is

separable, then the set of continuity for f is a comeager Gδ subset of X. If Y is separable

and pfn : X Ñ Y q8n“1 is a sequence of Baire class 1 functions, then pfnq
8
n“1 : X Ñ Y N is a

Baire class 1 function. The pointwise limit of a sequence of continuous functions from X to

Y is a Baire class 1 function. The restriction of a Baire class 1 function is a Baire class 1

function. For proofs of these facts and more information about Baire class 1 functions, see

[Ke] and [Kur].

Lemma 5.2.1. Let X be a metrizable σ-compact topological space, Y a topological space, and

let f : XˆY Ñ R be separately continuous. Given a metric d inducing the topology of X and

a countable family K of compact subsets of X such that X “
Ť

KPKK; if there is δ ą 0 such

that for each x P X, Bδpxq XK ‰ H for only finitely many K P K, then f is the pointwise

limit of a sequence of continuous functions.

Proof. For each n P N, let txn,iu
8

i“1 be a δ
2pn`1q

-dense set in pX, dq such that
ˇ

ˇtxn,iu
8

i“1 XK
ˇ

ˇ ă

8 for every K P K. For each n, i P N, define gn,i : X Ñ R` by

gn,ipxq “ max
! δ

n` 1
´ d pxn,i, xq , 0

)

for every x P X. Note that gn,i is continuous and given x P X, gn,iæBδ{2pxq is a nonzero function

for some but only finitely many i P N. Thus the function hn,i :“
gn,i

ř8
j“1 gn,j

is well-defined and
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continuous. For each n P N, define fn : X ˆ Y Ñ R by

fnpx, yq “
8
ÿ

i“1

f pxn,i, yqhn,ipxq

for every px, yq P X ˆ Y and note that fn is itself continuous by the separate continuity of f

and the observation on gn,iæBδ{2pxq. The sequence pfnq
8
n“1 converges pointwise to f . Indeed,

take any px, yq P X ˆ Y and any ε ą 0. Let N P N be such that |fpx, yq ´ fpx1, yq| ă ε when

dpx, x1q ă δ
N

. Then, for n ě N ,

|fpx, yq ´ fnpx, yq| “
ˇ

ˇ

ˇ

8
ÿ

i“1

pfpx, yq ´ f pxn,i, yqqhn,ipxq
ˇ

ˇ

ˇ

ď

8
ÿ

i“1

|fpx, yq ´ f pxn,i, yq|hn,ipxq

ă ε ¨
8
ÿ

i“1

hn,ipxq

“ ε.

Given a set X and a family of functions F from XˆX to X, define the sequence of subsets
`

F rks
˘8

k“1
of XX recursively by

F r0s
“ tx ÞÑ xu

F rk`1s
“
 

x ÞÑ fpx, gpxqq | f P F , g P F rks
(

.

The following lemma will give us Lemma 5.5.5 below, which is essential for the proof of

Theorem 1.7.3.

Lemma 5.2.2. Let X be a separable metric space and F a countable family of Baire class 1

functions from XˆX to X. There is a comeager Gδ subset E of X such that g is continuous

on E for all g P
Ť8

k“1 F rks.
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Proof. Certainly, g is continuous on E0 “ X for g P F r0s. Suppose k P N0 is such that

there is a comeager Gδ subset Ek of X such that g is continuous on Ek for all g P F rks. For

each g P F rks, let Γg “ tpx, gpxqq | x P Eku. Since F is a countable family of Baire class 1

functions with separable codomain X, there is a comeager Gδ subset Fg of Γg such that fæΓg

is continuous on Fg for all f P F . Let π : X ˆ X Ñ X be the first coordinate projection.

Consider U “ Γg X V ˆW , where V,W are open subsets of X; and suppose x P πpUq, so

that px, gpxqq P U . As W is open and gpxq P W , there is r1 ą 0 such that Br1pgpxqq Ď W .

Since g is continuous on Ek, there is r2 ą 0 such that gpBr2pxq X Ekq Ď Br1pgpxqq. Thus

pV XBr2pxqqXEk is an open neighborhood of x in Ek contained in πpUq. Since x P πpUq was

arbitrary, πpUq is open in Ek. And U was an arbitrary element in a basis for the topology

on Γg, so πpUq is open in Ek whenever U is open in Γg. It follows easily that πpFgq is a

comeager Gδ subset of Ek since Fg is a comeager Gδ subset of Γg. Let Ek`1 “
Ş

gPF rks πpFgq.

Since F rks is countable, Ek`1 is a comeager Gδ subset of Ek, and therefore also of X, since Ek

is a comeager Gδ subset of X. Now take any g P F rk`1s. Then there is f P F and g1 P F rks

such that gpxq “ fpx, g1pxqq for all x P X. And if x P Ek`1, then by construction x is a point

of continuity for g1 and px, g1pxqq is a point of continuity for fæΓg1
. Therefore x is a point of

continuity for g. Thus, we have constructed a comeager Gδ subset Ek`1 of Ek such that g is

continuous on Ek`1 for all g P F rk`1s. And so we can recursively define such Ek for all k P N.

The result follows by taking E “
Ş8

k“0Ek.

5.3 Making coarse maps “invariant”.

In this section, we use Markov-Kakutani’s fixed-point theorem in order to show that coarse

embeddings may be modified and made more “tamed” if we allow ourselves to substitute its

codomain by an ultrapower of the `1-sum of the original space. Precisely, we have the

following.

Theorem 5.3.1. Let X and Y be Banach spaces and f : X Ñ Y a coarse map. Then there
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exists an ultrafilter U on an index set I, and a map F : X Ñ `1pY q
I{U , such that

ρf p}x´ y}q ď }F pxq ´ F pyq} ď ωf p}x´ y}q,

and

}F pxq ´ F pyq} “ }F px´ yq}, for all x, y P X.

Proof. Define C Ď RXˆX by letting D P C if and only if

ρf p}x´ y}q ď Dpx, yq ď ωf p}x´ y}q,

for all x, y P X. So, C is relatively compact. Indeed, one only needs to notice that

C Ď
ź

px,yqPXˆX

r0, ωf p}x´ y}qs.

Hence, as f is coarse, C is relatively compact. Let d : X ˆ X Ñ R be given by dpx, yq “

}fpxq ´ fpyq}, for all x, y P X. So, d P C.

For each z P X, define ẑ : RXˆX Ñ RXˆX by letting ẑpgqpx, yq “ gpx ` z, y ` zq for all

g P RXˆX and all x, y P X. Let A “ convtẑpdq | z P Xu Ď RXˆX . By the definition of

the pointwise convergence topology on RXˆX , we have that A Ď C. The family tẑæAuzPX

is easily seen to be a commuting family of continuous, affine self-mappings of the compact

convex subset A of RXˆX . Hence, by Markov-Kakutani’s fixed-point theorem, there exists

D P A such that ẑpDq “ D for all z P X. That is, Dpx`z, y`zq “ Dpx, yq for all x, y, z P X.

Say D “ limiPU Di, where I is an index set, U is some nonprincipal ultrafilter on I, and

Di P convtẑpdq | z P Xu, for all i P I. For each i P I, we have that Di “
řspiq
j“1 αi,j ẑi,jpdq,

for some finite sequence pαi,jq
spiq
j“1 of non negative real numbers such that

řspiq
j“1 αi,j “ 1, and

some finite sequence pzi,jq
spiq
j“1 in X.
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For y1, . . . , yn P Y , we denote py1, . . . , yn, 0, 0, . . .q P `1pY q by ‘nj“1yj. Consider the map

F “ pFiqiPI : X ÝÑ `1pY q
I
{U

x ÞÝÑ
´
spiq
à

j“1

αi,j
`

fpx` zi,jq ´ fpzi,jq
˘

¯

iPI
.

As supiPI }Fipxq}`1pY q ď ωf p}x}q, for all x P X, the map F is well-defined. By the definition

of the norm on `1pY q
I{U , we have that

}F pxq ´ F pyq}`1pY qI{U “ Dpx, yq,

for all x, y P X. Therefore, as Dpx, yq “ Dpx ´ y, 0q, for all x, y P X, and F p0q “ 0, we are

done.

Corollary 5.3.2. Let pX, } ¨ }q be a Banach space. If X is coarsely embeddable into a

superstable Banach space, then there exists an invariant stable pseudometric d on X such

that the identity map Id : pX, } ¨ }q Ñ pX, dq is a coarse equivalence.

Proof. Suppose Y is a superstable Banach space and f : X Ñ Y is a coarse embedding. Let

F : X Ñ `1pY q
I{U be obtain from Theorem 5.3.1 applied to f . The map d : X ˆ X Ñ R`

defined by dpx, yq “ }F pxq ´ F pyq} for all x, y P X can easily be seen to be an invariant

pseudometric on X, and the stability of d follows from the stability of `1pY q
I{U . Finally,

Id : pX, } ¨ }q Ñ pX, dq is a coarse equivalence since ρId “ ρf and ωId “ ωf , by the definitions

of F and d.

Remark. Although this will not be needed for the main result in these notes, Corollary 5.3.2

can actually be improved to show the existence of a coarsely equivalent invariant stable metric

on X. Indeed, by Theorem 1.3.4 (see [Br2], Theorem 1.6) if X and Y are Banach spaces

and f : X Ñ Y is a coarse embedding, then there is a coarse embedding f̂ : X Ñ `1pY q with

uniformly continuous inverse (meaning ρf̂ ptq ą 0 whenever t ą 0). Raynaud has shown (see

[Ray], Theorem 0.1) that the `p-sum of a superstable space is again superstable, and so the
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same proof as in Corollary 5.3.2 with `1pY q replacing Y and f̂ replacing f will yield that

Id : pX, }¨}q Ñ pX, dq is a coarse embedding with uniformly continuous inverse. In particular,

d is a metric.

In the remaining of this section, we use Theorem 5.3.1 to prove a result on the uniform

embeddability of the ball of a given Banach space into a superstable space (Theorem 5.3.3).

Theorem 5.3.3. If a Banach space X maps into a superstable space by a map which is both

uniformly continuous and almost uncollapsed, then BX uniformly embeds into a superstable

space.

Before proving Theorem 5.3.3, we need the following proposition.

Proposition 5.3.4. Let X and Y be Banach spaces and f : X Ñ Y be a solvent map such

that }fpxq´fpyq} “ }fpx´yq} for all x, y P X. Then, for every norm bounded subset B Ď X,

fæB has a Lipschitz inverse.

Proof. First notice that,

}fpxq} “ }fpxq ´ fp0q} “ }fp0q ´ fpxq} “ }fp´xq},

for all x P X. Therefore,

}fpmxq} “ }fppm´ 1qxq ´ fp´xq} ď }fppm´ 1qxq} ` }fpxq},

for all x P X, and all m P N. So, }fpmxq} ď m ¨ }fpxq}, for all x P X, and all m P N.

Let N P N be such that B Ď N ¨ BX . As f is solvent, we can find n,R ą 2N such that

}x} P rR,R` ns implies }fpxq} ą n. By our choice of n and R, for each x P 2N ¨BX we can

pick mx P N such that }mxx} P rR,R ` ns. Hence,

}fpxq} ą
n

mx

ě
n

R ` n
}x},
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for all x P 2N ¨BX . This gives us that }fpxq ´ fpyq} ě n
R`n

}x´ y}, for all x, y P B.

Proof of Theorem 5.3.3. IfX maps into a superstable space by a uniformly continuous almost

uncollapsed map, then, by Proposition 63 of [Ro4], X maps into a superstable space by a

map which is both uniformly continuous and solvent. Notice that Theorem 5.3.2 remains

valid replacing ρf by ρf . Indeed, the exact same proof remains valid replacing ρf by ρf .

Therefore, X maps into a superstable space Y by a uniformly continuous solvent map F

such that }F pxq ´ F pyq} “ }F px ´ yq}, for all x, y P X. By Proposition 5.3.4, FæBX has a

Lipschitz inverse. In particular, BX uniformly embeds into a superstable space.

5.4 Type space.

From now on, we consider a separable infinite dimensional Banach space pX, } ¨ }q which

admits an invariant stable pseudometric d coarsely equivalent to } ¨ }, and the corresponding

identity map Id: pX, } ¨ }q Ñ pX, dq. By Corollary 5.3.2, such d exists as long as X coarsely

embeds into a superstable space.

Remark 5.4.1. Notice that, by Remark 5.3, we can actually assume that d is a metric.

However, in order to obtain the isomorphism constant in Remark 5.8 below, we need to work

with d being the pseudometric given by Corollary 5.3.2.

Let ∆ be a countable } ¨ }-dense Q-vector subspace of X. Given x P ∆, define the function

x P RQˆ∆
` by xpλ, yq “ dpλx, yq for all pλ, yq P Q ˆ ∆. The space of types on p∆, dæ∆ˆ∆q,

which we denote by T , is defined to be the closure of txuxP∆ in RQˆ∆ (with the topology of

pointwise convergence). An element σ of T is called a type, and is called a realized type if

σ “ x for some x P ∆, in which case σ is also called the type realized by x. The type 0 is

called the null or trivial type.

Note that the countability of Q ˆ ∆ implies that T is metrizable, and so every σ P T

can be expressed as limnÑ8 xn for some sequence pxnq
8
n“1 in ∆. Such a sequence is called

a defining sequence for σ. Note also that in this case σpλ, xq “ limn,U dpλxn, xq for every
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pλ, xq P Q ˆ ∆ and every nonprincipal ultrafilter U over N. In particular, limnÑ8 dpxn, 0q

exists, and so pxnq
8
n“1 is a d-bounded (and therefore also } ¨ }-bounded) sequence in ∆.

For every M P R`, we let TM “ tσ P T | σp1, 0q ďMu. We will need the following lemma.

Lemma 5.4.2. Say M P R`. Then TM is compact.

Proof. Say σ P TM , and pxnq
8
n“1 is a defining sequence for σ. As limnÑ8 dpxn, 0q “ σp1, 0q ď

M , we may suppose that the defining sequence for σ is contained in the d-ball of radius

M ` 1 around 0. As Id: pX, } ¨ }q Ñ pX, dq is expanding, there exists R ă 8 such that t ď R

whenever ρIdptq ďM ` 1. Then, since ρIdp}xn}q ď dpxn, 0q ďM ` 1 for every n P N, we have

σpλ, xq “ lim
n
dpλxn, xq ď lim

n
pdpλxn, 0q ` dp0, xqq ď ωIdp|λ|Rq ` dp0, xq

for all pλ, xq P Qˆ∆. That is, we have

TM Ď
ź

pλ,xqPQˆ∆

r0, ωp|λ|Rq ` dpx, 0qs,

since σ P TM was arbitrary. By Tychonoff’s theorem and the fact that TM is closed, we are

finished.

Corollary 5.4.3. The metric space T is σ-locally compact.

Lemma 5.4.4. Suppose σ, τ P T . Then if pwnq
8
n“1, pxnq

8
n“1 are defining sequences for σ and

pynq
8
n“1, pznq

8
n“1 are defining sequences for τ , then

(i) The limits limn αwn and limn αxn exist and are equal for every α P Q.

(ii) The limits limn limmwn ` ym and limn limm xn ` zm exist and are equal.

Proof. Item (i) follows immediately from the definitions. By a straightforward argument

using the invariance and stability of d, item (ii) also follows.
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Definition 5.4.5. Let σ, τ P T and let pxnq
8
n“1, pymq

8
m“1 be any defining sequences for σ and

τ , respectively. We define the dilation operation on T by pα, σq P Qˆ T ÞÑ α ¨ σ P T , where

α ¨ σ :“ limn αxn. We define the convolution operation on T by pσ, τq P T ˆ T ÞÑ σ ˚ τ P T ,

where σ ˚τ :“ limn limm xn ` ym. By Lemma 5.4.4, both dilation and the convolution are well

defined. For pσjq
k
j“1 Ď T , we define ˚k

j“1 σj in the obvious way, and we allow dilation to bind

more strongly than convolution in our notation, i.e., we write α ¨ σ ˚ τ meaning pα ¨ σq ˚ τ .

It follows easily from the definition above that, given σ P T and a defining sequence pxnq
8
n“1

for σ, we have α ¨ σpλ, xq “ σpλα, xq for every pλ, xq P Q ˆ ∆ and σ ˚ τ “ limn xn ˚ τ for

every τ P T . Furthermore, using the invariance and stability of d, it is easily shown that the

convolution is associative and commutative, and that dilation distributes over convolution.

Lemma 5.4.6. Dilation is a right-continuous map from Qˆ T to T .

Proof. Fix α P Q and suppose pσnq
8
n“1 is a sequence in T converging to σ P T . Then

α ¨ σpλ, xq “ σpλα, xq “ limnÑ8 σnpλα, xq “ limnÑ8 α ¨ σnpλ, xq for all pλ, xq P Qˆ∆. Thus

α ¨σ “ limnÑ8 α ¨σn. This was for an arbitrary converging sequence in T , so dilation is right

continuous.

Lemma 5.4.7. Convolution is a separately continuous map from T ˆ T to T .

Proof. Let D be a metric compatible with the topology on T . Fix τ P T and suppose

pσnq
8
n“1 is a sequence in T converging to σ P T . For each n P N, let pxn,mq

8
m“1 be a defining

sequence for σn, and let mn P N be such that Dpσn, xn,mnq ă
1
n

and Dpxn,mn ˚ τ, σn ˚ τq ă
1
n
.

Then pxn,mnq
8
n“1 is a defining sequence for σ by the triangle inequality; and so, again by

triangle inequality, σ ˚ τ “ limn σn ˚ τ . This was for an arbitrary converging sequence in T ,

so convolution (which is commutative) is separately continuous.

Corollary 5.4.8. Convolution is a Baire class 1 map from T ˆ T to T .
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Proof. Given pλ, xq P Qˆ∆, let Φλ,x : T ˆT Ñ R be defined by Φλ,xpσ, τq “ σ ˚τpλ, xq for all

σ, τ P T . Choose a compatible metric D for the topology on T and note that there is δ ą 0

such that Dpσ, τq ě δ whenever |σp1, 0q´ τp1, 0q| is large enough. Now, by Lemma 5.4.7 and

the topology on T , Φλ,x is separately continuous; and by Lemma 5.4.2, TM is compact for

every M P R`. Thus; applying Lemma 5.2.1 with T replacing both X and Y , Φλ,x replacing

f , D replacing d, tTM`1zintTMu8M“0 replacing K, and with δ as above in the statement of

Lemma 5.2.1; we have that Φλ,x is the pointwise limit of a sequence of continuous functions,

and is therefore Baire class 1. As this is true for any pλ, xq P Qˆ∆, the convolution is itself

Baire class 1.

The sequence in the statement of our main theorem will be a defining sequence for one of

the types in T . We already know that a defining sequence pxnq
8
n“1 for a type σ is bounded

in norm, but we want to put a condition on σ that guarantees pxnq
8
n“1 is eventually bounded

away from zero in norm. This motivates our next definition.

Definition 5.4.9. A type σ P T is called admissible if σp1, 0q ą inftą0 ωIdptq.

Note that if σ is an admissible type and pxnq
8
n“1 is a defining sequence for σ, then

lim infn ωIdp}xn}q ě limn dpxn, 0q “ σp1, 0q ą inftą0 ωIdptq. Thus, since ωId is an increas-

ing function, we can find δ ą 0 such that pxnq
8
n“1 is eventually δ-bounded in norm away from

zero. From this point forward, we will let the Greek letter γ stand for the value inftą0 ωIdptq.

Remark. If Id : pX, } ¨ }q Ñ pX, dq is uniformly continuous, then γ “ 0. If, in addition, d

is a metric, then the inequality in our definition is trivial, and every nontrivial type will be

admissible. Given our assumption that d is coarsely equivalent to } ¨ }, we do not need to

place any additional conditions on a type to guarantee its defining sequences to be norm

bounded. Had this not been the case, we would have had to include such a condition in

our definition of admissibility. One condition we could use would be to require a type σ to

also satisfy the inequality σp1, 0q ă suptă8 ρIdptq (a trivial inequality in our case). In [Ray],

where the author is concerned with an invariant stable metric d uniformly equivalent to } ¨ },
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the author does exactly this.

We have established a condition to put on a type to guarantee its defining sequences are

bounded in norm and eventually bounded away from zero in norm. In our goal to obtain a

basic sequence, we now need an extra condition which will guarantee that a type’s defining

sequences contain no norm Cauchy subsequences.

Definition 5.4.10. We say that a type σ is symmetric if σ “ p´1q ¨ σ, i.e., if σpλ, xq “

σp´λ, xq, for all pλ, xq P Qˆ∆. Let S “ tσ P T | σ is symmetricu and let SM “ S X TM .

Note that by Lemma 5.4.6, S is closed, and therefore SM is compact for all M P R`.

Proposition 5.4.11. Say σ P T is an admissible symmetric type and pxnq
8
n“1 is a defining

sequence for σ. Then pxnq
8
n has no } ¨ }-Cauchy subsequence.

Proof. Suppose false. By taking a subsequence, we can assume that pxnq
8
n“1 converges in

norm to some x P X. Then, as σ is symmetric, we have that

lim inf
nÑ8

dpλxn,´ λxnq

“ lim inf
nÑ8

´

dpλxn,´λxnq ´ σpλ,´λxnq ` σp´λ,´λxnq
¯

“ lim inf
nÑ8

lim
mÑ8

´

dpλxn,´λxnq ´ dpλxm,´λxnq ` dp´λxm,´λxnq
¯

ď lim inf
nÑ8

lim
mÑ8

´

dpλxn, λxmq ` dp´λxm,´λxnq
¯

ď 2 ¨ lim inf
nÑ8

lim inf
mÑ8

ωIdp|λ| ¨ }xn ´ xm}q

“ 2γ,

for all λ P Q. This gives us that ρIdp}λx}q ď lim infn ρIdp2}λxn}q ď 2γ, for all λ P Q. As

d is coarsely equivalent to the norm of X, this can only happen if x “ 0. But then the

admissibility of σ yields

γ ă σp1, 0q “ lim
nÑ8

dpxn, 0q ď lim inf
nÑ8

ωIdp}xn}q “ γ,
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a contradiction.

5.5 Conic classes.

We will need the following definition for a minimality argument later on.

Definition 5.5.1. A nonempty subset C of S is called a conic class if

(i) C ‰ t0u,

(ii) λ ¨ σ P C for all λ P Q and σ P C, and

(iii) σ ˚ τ P C for all σ, τ P C.

Moreover, C is called admissible if C contains an admissible type, i.e., if there exists σ P C

such that σp1, 0q ą γ.

Lemma 5.5.2. The set S is a closed admissible conic class.

Proof. That S is closed follows from Lemma 5.4.6. The properties (ii) and (iii) follow easily

from the definitions of dilation and convolution and from the invariance of d. All that remains

is to show that there is an admissible (and therefore nontrivial) type σ in S. Let R ă 8

be such that ρIdptq ą γ whenever t ě R. By the infinite-dimensionality of X, there is a

bounded R-separated sequence pxnq
8
n“1 in pX, } ¨ }q. After possibly taking a subsequence, we

may suppose that pxnq
8
n“1 is a defining sequence for some σ P T . In this case,

pσ ˚ p´1q ¨ σqp1, 0q “ lim
n

lim
m
dpxn ´ xm, 0q

ě inf
n‰m

dpxn ´ xm, 0q

ě ρIdpRq

ą γ
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That is, the symmetric type σ ˚ p´1q ¨ σ is admissible. Therefore S is a closed admissible

conic class.

Lemma 5.5.3. Let σ be an admissible type. Given any 0 ď r1 ă r2, there is α P Q` such

that ρIdpr1q ď α ¨ σp1, 0q ď ωIdpr2q.

Proof. Let pxnq
8
n“1 be a defining sequence for σ. The admissibility of σ implies that pxnq

8
n“1

is a } ¨ }-bounded sequence which is eventually } ¨ }-bounded away from 0. Thus, we may

suppose after possibly taking a subsequence that limn }xn} exists and is nonzero. Let α P Q`

be such that limn }αxn} P rr1, r2s. As α ¨ σp1, 0q “ limn dpαxn, 0q, we then have

ρIdpr1q ď α ¨ σp1, 0q ď ωIdpr2q.

Proposition 5.5.4. Every closed admissible conic class contains a minimal closed admissible

conic class.

Proof. Fix a closed admissible conic class C. Let F be the family of closed admissible conic

classes contained in C ordered by reverse set inclusion and let tCiuiPI be some chain in F .

Claim:
Ş

iPI Ci is a closed admissible conic class.

Certainly,
Ş

iPI Ci Ď S is closed and satisfies conditions (ii) and (iii) in the definition of

conic class. So we only need to show that
Ş

iPI Ci contains an admissible type. For that, fix

R ă 8 such that ρIdptq ą γ whenever t ě R and let Bi “ Ci X pTωIdpR`1qzintTρIdpRqq for all

i P I. By Lemma 5.4.2, Bi is compact. Given i P I, let σi P Ci be admissible. By the previous

lemma, there is αi P Q` such that αi ¨ σi P Bi, so Bi is nonempty. Hence, tBiuiPI is a family

of compact sets with the finite intersection property, which gives us that
Ş

iPI Bi Ď
Ş

iPI Ci

is nonempty. By our choice of R,
Ş

iPI Bi can only contain admissible types, hence
Ş

iPI Ci

contains an admissible type, and the claim is proved.

As
Ş

iPI Ci is a closed admissible conic class, it is an upper bound for the chain tCiuiPI in F .
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By Zorn’s lemma, F has a maximal element. That is, C contains a minimal closed admissible

conic class.

Lemma 5.5.5. Let C be a closed admissible conic class. Then there is an admissible σ P C

such that σ is a common point of continuity for the family of functions tσ ÞÑ ˚n
j“1 αj ¨σ | n P

N, α P Qnu Ď CC.

Proof. By Lemma 5.2.2 and Corollary 5.4.8 (with C replacingX and tσ ÞÑ α¨σ˚β¨σ | α, β P Qu

replacing F), there is a comeager Gδ subset E of C such that g is continuous on E for all

g P tσ ÞÑ ˚n
j“1 αj ¨ σ | n P N, α P Qnu Ď CC. But C is closed, and so is locally compact, by

Corollary 5.4.3. Therefore E is dense in C, by the Baire category theorem, and the statement

follows by the admissibility of C.

5.6 Model associated to an admissible symmetric type.

Let σ be an admissible symmetric type and pxnq
8
n“1 be a defining sequence for σ. Then

the sequence pxnq
8
n“1 is bounded, and by Proposition 5.4.11, has no } ¨ }-Cauchy subsequence.

Thus, given a nonprincipal ultrafilter U on N, we may define a spreading sequence pζnq
8
n“1

and a spreading model S “ X ‘ spantζn | n P Nu associated to pxnq
8
n“1 and U as in Section

2.4. As in Section 2.4, we let pξnq
8
n“1 be given by ξn “ ζ2n´1 ´ ζ2n, for all n P N.

Let τ “ σ ˚ p´1q ¨ σ. As σ “ limn xn, we may assume after taking a subsequence that

τ “ limn yn where yn “ x2n´1 ´ x2n. As pxnq
8
n“1 has no } ¨ }-Cauchy subsequence, we may

further assume after taking another subsequence that infn‰m }xn ´ xm} ą 0. As τp1, 0q “

limn dpyn, 0q ě ρIdpinfn‰m }xn´xm}q, by dilating σ, we can also assume that τ is an admissible

type. It is clear that pξnq
8
n“1 is the spreading model of pynq

8
n“1 for the ultrafilter U .

From this point forward, we fix a minimal closed admissible conic class C and an admissible

φ P C that is a common point of continuity for the family of functions F “ tσ ÞÑ ˚n
j“1 αj ¨

σ | n P N, α P Qnu Ď CC such that ψ “ φ ˚ p´1q ¨ φ is admissible (this is possible by Lemma

5.5.5). We also fix a defining sequence pxnq
8
n“1 for φ with unique (see Section 2.4) spreading
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model pS, ||| ¨ |||q such that yn “ x2n´1 ´ x2n is a defining sequence for ψ. We will let pζnq
8
n“1

be the spreading sequence associated with S and ξn “ ζ2n´1 ´ ζ2n for every n P N.

Definition 5.6.1. Given k P N, α “ pαiq
k
i“1 P Qk, we say that

řk
j“1 αjζj realizes the type

˚k
j“1 αj ¨ φ.

Remark 5.6.2. Notice that, if u “
řk1
j“1 αjζj realizes σ, and v “

řk2
j“k1`1 βjζj realizes τ , it

follows that u` v realizes σ ˚ τ .

5.6.1 Basic properties of ||| ¨ |||.

We will now prove some technical lemmas which will be important in the proof of the main

theorem of these notes.

Lemma 5.6.3. Say u ‰ v P spanQtζn | n P Nu realize σ and τ , respectively. Then for every

pλ, yq P Qˆ∆,

sup
0ăεď|λ||||u´v|||

ρIdp|λ||||u´ v||| ´ εq ď σpλ, yq ` τpλ, yq

and

|σpλ, yq ´ τpλ, yq| ď inf
εą0

ωIdp|λ||||u´ v||| ` εq.

In particular, we have for each δ ą 0 that

(i) |||u||| ą δ implies σp1, 0q ě ρIdpδq, and

(ii) σp1, 0q ą ωIdpδq implies |||u||| ě δ.
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Proof. Say u “
řk
j“1 αjζj and v “

řk
j“1 βjζj, for some α1, . . . , αk, β1, . . . , βk P Q. Then

ρIdp|λ||||u´ v||| ´ εq ď lim sup
nk

. . . lim sup
n1

ρId

´
›

›

›
λ

k
ÿ

j“1

pαj ´ βjqxnj

›

›

›

¯

ď lim
nk
. . . lim

n1

d
´

λ
k
ÿ

j“1

pαj ´ βjqxnj , 0
¯

ď lim
nk
. . . lim

n1

´

d
´

λ
k
ÿ

j“1

αjxnj , y
¯

` d
´

λ
k
ÿ

j“1

βjxnj , y
¯¯

“ σpλ, yq ` τpλ, yq

for every 0 ă ε ă |λ||||u´ v|||. Similarly,

|σpλ, yq ´ τpλ, yq| “ lim
nk
. . . lim

n1

ˇ

ˇ

ˇ
d
´

λ
k
ÿ

j“1

αjxnj , y
¯

´ d
´

λ
k
ÿ

j“1

βjxnj , y
¯
ˇ

ˇ

ˇ

ď lim
nk
. . . lim

n1

d
´

λ
k
ÿ

j“1

pαj ´ βjqxnj , 0
¯

ď lim inf
nk

. . . lim inf
n1

ωId

´
›

›

›
λ

k
ÿ

j“1

pαj ´ βjqxnj

›

›

›

¯

ď ωIdp|λ||||u´ v||| ` εq

for all ε ą 0. The particular case follows by letting v “ 0 and λ “ 1.

Let H “ spanQtξi | i P Nu Ď S. Given α “ pαjq
m
j“1 P QăN, we define a bounded linear

map Tα : H Ñ H as follows. For each n P N let

Tαpξnq “
m
ÿ

j“1

αjξmn`j´1

and extend Tα linearly to H. As pξnq
8
n“1 is 1-spreading, we have that |||Tαpuq||| ď }α}1|||u|||,

for all u P H. Hence, we can extend Tα to a bounded operator Tα : H Ñ H. If α “ pα1q is a

sequence of length 1, then Tαu is just the scaling of u by α1, and we write Tα1u :“ Tαu “ α1u.
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We also define the function pTα : C Ñ C by letting

pTαpσq “
m
˚
j“1

αj ¨ σ

for all σ P C.

Lemma 5.6.4. Let α “ pαiq
n
i“1, β “ pβjq

m
j“1 P QăN. Let γ “ pγkq

nm
k“1 P QăN, where γk “ αiβj

whenever k “ npj ´ 1q ` i. Then Tα ˝ Tβ “ Tγ and pTα ˝ pTβ “ pTγ.

Proof. For any k P N,

pTα ˝ Tβqpξkq “ Tα

´

m
ÿ

j“1

βjξmk`j´1

¯

“

m
ÿ

j“1

n
ÿ

i“1

αiβjξnpmk`j´1q`i´1

“

m
ÿ

j“1

n
ÿ

i“1

αiβjξnmk`npj´1q`i´1

“

nm
ÿ

`“1

γ`ξnmk``´1

“ Tγpξkq

Therefore Tα ˝ Tβ “ Tγ, by linearity and continuity. Similarly,

ppTα ˝ pTβqpσq “
pTα

´

m
˚
j“1

βjσ
¯

“
m
˚
j“1

n
˚
i“1

αiβjσ “
nm
˚
`“1

γ`σ “ pTγpσq.

for all σ P C, and so pTα ˝ pTβ “
pTγ.

The previous lemma justifies the following definition.

Definition 5.6.5. Let α “ pαiq
n
i“1, β “ pβjq

m
j“1 P QăN. We define α ˝ β “ pγkq

nm
k“1 P QăN

by γk “ αiβj whenever k “ npj ´ 1q ` i. We define α˝k recursively by letting α˝1 “ α and

α˝k`1 “ α ˝ α˝k for every k P N.

Remark 5.6.6. Notice that, pT kα “
pTα˝k for all α P QăN and all k P N.
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Lemma 5.6.7. Let α “ pαjq
m
j“1 P QăN. Say u P H realizes the type τ . Then, Tαpuq realizes

pTαpτq.

Proof. Suppose u “
řn
i“1 λiξi, so τ “ ˚n

i“1 λi ¨ ψ. Then

Tαpuq “
n
ÿ

i“1

λi

m
ÿ

j“1

αjξmi`j´1 “

m
ÿ

j“1

n
ÿ

i“1

αjλiξmi`j´1

which realizes the type

m
˚
i“1

n
˚
j“1

αjλi ¨ ψ “
m
˚
j“1

αj ¨
n
˚
i“1

λi ¨ ψ “ pTαpτq.

Lemma 5.6.8. Say u, v P H realize σ and τ , respectively. Let pαiq
N
i“1, pβiq

N
i“1 Ď QăN and

pbiq
N
i“1 P QN . Then for every pλ, yq P Qˆ∆, we have that

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTαiσpλ, yq ´
N
˚
i“1

bi ¨ pTβiτpλ, yq
ˇ

ˇ

ˇ
ď inf

εą0
ωId

´

|λ|
N
ÿ

i“1

|bi| ¨ |||Tαiu´ Tβiv||| ` ε
¯

.

Proof. For each m P N, let sm : H Ñ H be the linear map given by smpξnq “ ξn`m for each

n P N. We construct sequences puiq
N
i“1, pviq

N
i“1 Ď H recursively as follows. Let u1 “ b1Tα1u

and v1 “ b1Tβ1
v. Given ui, vi for some 1 ď i ă N , let mi “ maxtsupppuiq Y supppviqu and

then let ui`1 “ bi`1smipTαi`1
uq and vi`1 “ bi`1smipTβi`1

vq. Clearly, both sequences puiq
N
i“1

and pviq
N
i“1 have disjoint supports. Hence, by Lemma 5.6.7 and Remark 5.6.2,

řN
i“1 ui and

řN
i“1 vi realize ˚N

i“1 bi ¨
pTαiσ and ˚N

i“1 bi ¨
pTβiτ , respectively. Thus, by Lemma 5.6.3 and the
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fact that pξnq
8
n“1 is 1-spreading, we have that

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTαiσpλ, yq ´
N
˚
i“1

bi ¨ pTβiτpλ, yq
ˇ

ˇ

ˇ
ď inf

εą0
ωId

´

|λ| ¨ |||
N
ÿ

i“1

pui ´ viq||| ` ε
¯

ď inf
εą0

ωId

´

|λ|
N
ÿ

i“1

|||ui ´ vi||| ` ε
¯

“ inf
εą0

ωId

´

|λ|
N
ÿ

i“1

|bi| ¨ |||Tαiu´ Tβiv||| ` ε
¯

.

5.7 Coarse approximating sequences.

The goal of this section is to show that the type ψ satisfies the conclusion of Proposition

5.7.7 below. For that, we introduce the notion of coarse approximating sequences.

Definition 5.7.1. Let u “
řk
i“1 αiξi P spantξn | n P Nu. We say that a vector v P spantξn |

n P Nu is a spreading of u if v “
řk
i“1 αiξni for some n1 ă . . . ă nk P N.

Definition 5.7.2. Let pαiq
N
i“1 Ď QăN and pβiq

N
i“1 P RN

` . A sequence of types pσnq
8
n“1 Ď C

is called a coarse pαi, βiq
N
i“1-approximating sequence if there exists a sequence punq

8
n“1 Ď H

and sequences pui,nq
8
n“1 Ď H for each 1 ď i ď N such that

(i) un realizes σn for all n P N,

(ii) ui,n is a spreading of un for each n P N and 1 ď i ď N , and

(iii) limn |||Tαipunq ´ βiui,n||| “ 0 for all 1 ď i ď N .

Lemma 5.7.3. Suppose α P QăN, β ě 0, and punq
8
n“1 Ď H. If there is a spreading pu1nq

8
n“1

of punq
8
n“1 such that limn |||Tαpunq ´ βu1n||| “ 0, then for every k P N there is a spreading

pu2nq
8
n“1 of punq

8
n“1 such that limn |||T

k
αpunq ´ β

ku2n||| “ 0.
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Proof. For k “ 1 the result is trivial. Suppose the result holds for some k P N. Let pu2nq
8
n“1

be a spreading of punq
8
n“1 such that limn |||T

k
αpunq ´ βku2n||| “ 0. By the definition of Tα, it

follows that pTαpu
2
nqq

8
n“1 is a spreading of pTαpunqq

8
n“1, so there exists a spreading pu3nq

8
n“1 of

punq
8
n“1 such that also pTαpu

2
nq ´ βu

3
nq
8
n“1 is a spreading of pTαpunq ´ βu

1
nq
8
n“1. Thus, by the

1-equivalence of pξnq
8
n“1 with all its subsequences,

|||T k`1
α punq ´ β

k`1u3n ||| ď |||T
k`1
α punq ´ Tαpβ

ku2nq||| ` |||Tαpβ
ku2nq ´ β

k`1u3n |||

“ |||TαpT
k
αpunq ´ β

ku2nq||| ` β
k
|||Tαpu

2
nq ´ βu

3
n |||

ď |||Tα||| ¨ |||T
k
αpunq ´ β

ku2n||| ` β
k
|||Tαpunq ´ βu

1
n|||.

Therefore limn |||T
k`1
α punq ´ β

k`1u3n ||| “ 0, so the result holds for k` 1. By induction, we are

finished.

With the above lemma and Lemma 5.6.4, we have the following corollary.

Corollary 5.7.4. If pσnq
8
n“1 is a coarse pαi, βiq

N
i“1-approximating sequence, then it is also a

coarse pα˝ki , β
k
i q
N
i“1-approximating sequence for every k P N.

Lemma 5.7.5. Suppose pαiq
N
i“1 Ď QăN is such that αi˝αj “ αj˝αi for all 1 ď i, j ď N . Then

there are pβiq
N
i“1 P RN and pσnq

8
n“1 Ď C such that pσnq

8
n“1 is a coarse pαi, βiq

N
i“1-approximating

sequence and βi P r}αi}8, }αi}1s for each 1 ď i ď N . Moreover, we may choose pσnq
8
n“1 so

that for all n P N, b1 ď σnp1, 0q ď b2 for some γ ă b1 ď b2 not depending on n.

Proof. For those αi’s that are length 1 sequences, the proposition is clear with tβiu “ αi. So

suppose for each 1 ď i ď N that αi is a sequence of length at least 2. As the basis pξnq
8
n“1 of

H is 1-unconditional and 1-spreading, we have that }αi}8|||u||| ď |||Tαipuq||| ď }αi}1|||u|||, for all

u P H and all 1 ď i ď N . Also, for each 1 ď i ď N , it is clear from the definition of Tαi that

|||Tαipuq´ξ1||| ą 0 for all u P H, and so Tαi is not invertible. Hence, the spectrum of Tαi has a

real non-negative boundary point, and so Tαi has a real non-negative approximate eigenvalue

for each 1 ď i ď N by Proposition IV.1 of [KrMau]. By Lemma 5.6.4, Tαi commutes with
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Tαj for all 1 ď i, j ď N . Thus, by Proposition 12.18 of [BenLi], there exists pβiq
N
i“1 P RN

`

and a single normalized sequence punq
8
n“1 Ď H such that limn |||Tαiun ´ βiun||| “ 0 for every

1 ď i ď N . As |||un||| “ 1 for each n P N, the bounds above for |||Tαipuq||| yield that

βi P r}αi}8, }αi}1s for each 1 ď i ď N . By density, one may assume that punq
8
n“1 Ď H and

1 ď |||un||| ď 2 for all n P N. Finally, let δ ą 0 be such that ρIdpδ{2q ą γ and let σn be

the type realized by δun for each n P N. The result now follows by letting b1 “ ρIdpδq and

b2 “ ωIdp3δq (see Lemma 5.6.3).

Lemma 5.7.6. Suppose pαiq
N
i“1 Ď QăN is such that αi˝αj “ αj˝αi for all 1 ď i, j ď N . Then

there is pβiq
N
i“1 P RN such that every σ P C is the limit of a coarse pαi, βiq

N
i“1-approximating

sequence and βi P r}αi}8, }αi}1s for all 1 ď i ď N .

Proof. Let γ ă b1 ď b2, pβiq
N
i“1 P RN and pσnq

8
n“1 be given by Lemma 5.7.5, so that pσnq

8
n“1

is a coarse pαi, βiq
N
i“1-approximating sequence and b1 ď σnp1, 0q ď b2 for every n P N. Let

C̃ be the subset of C consisting of all types of C which are the limit of a coarse pαi, βiq
N
i“1-

approximating sequence. As Tb1,b2 :“ tσ P T | b1 ď σp1, 0q ď b2u is compact and metriz-

able, pσnq
8
n“1 has a converging subsequence which converges to an element σ P C X Tb1,b2 .

A subsequence of a coarse pαi, βiq
N
i“1-approximating sequence is still a coarse pαi, βiq

N
i“1-

approximating sequence, so we have that C̃ ‰ t0u, and in particular C̃ contains an admissible

type.

By the minimality of C, it is enough to show that C̃ is a closed conic class. Suppose σ P C̃

and pσnq
8
n“1 is a coarse pαi, βiq

N
i“1-approximating sequence converging to σ. Then, by Lemma

5.4.6, λ ¨σ is the limit of pλ ¨σnq
8
n“1, which is easily seen to be a coarse pαi, βiq-approximating

sequence for every λ P Q. Thus C̃ is closed under dilation by any λ P Q.

Let D be a metric compatible with the topology of T . Say σ, τ P C̃ and let us show

that σ ˚ τ P C̃. Let pσnq
8
n“1 and pτnq

8
n“1 be coarse pαi, βiq

N
i“1-approximating sequences in C

converging to σ and τ , respectively. As the convolution is separately continuous, we have

limk σk ˚ τ “ σ ˚ τ and, for a fixed k P N, limn σk ˚ τn “ σk ˚ τ . For each k P N, let npkq ě k
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be such that

Dpσk ˚ τnpkq, σk ˚ τq ď 2´k.

If we set σ1k “ σk ˚ τnpkq, then limk σ
1
k “ σ ˚ τ .

For each 1 ď i ď N , let punq
8
n“1, pui,nq

8
n“1, pvnq

8
n“1 and pvi,nq

8
n“1 be sequences realizing

pσnq
8
n“1 and pτnq

8
n“1 respectively, as given by the definition of coarse pαi, βiq

N
i“1-approximating

sequences. By translating the supports of vnpkq and vi,npkq if necessary, we may assume that

supppukq ă supppvnpkqq and supppui,kq ă supppvi,npkqq for all 1 ď i ď N and k P N. Let

pzkq
8
k“1 “ puk` vnpkqq

8
k“1, so zk realizes σ1k for each k P N. Set pzi,kq

8
k“1 “ pui,k` vi,npkqq

8
k“1 for

all 1 ď i ď N , so zi,k is a spreading of zk. This gives us that pσ1kq
8
k“1 is a coarse pαi, βiq

N
i“1-

approximating sequence. Thus σ ˚ τ P C̃, and so C̃ is closed under convolution.

Finally, let us show that C̃ is closed. Say pσkq
8
k“1 is a sequence in C̃ converging to σ P C. For

each k P N, there exists a coarse pαi, βiq
N
i“1-approximating sequence pσk,nq

8
n“1 in C converging

to σk. For each k P N, let puk,nq
8
n“1 be a sequence realizing pσk,nq

8
n“1 and let puk,i,nq

8
n“1 be a

spreading of puk,nq
8
n“1 for each 1 ď i ď N as given by Definition 5.7.2. For each k P N, choose

an integer npkq ě k such that Dpσk,npkq, σkq ď 1{k and |||Tαipuk,npkqq ´ βiuk,i,npkq||| ă 1{k

for each 1 ď i ď N . Set τk “ σk,npkq for each k P N. Then pτkq
8
k“1 is a coarse pαi, βiq

N
i“1-

approximating sequence converging to σ. That is, σ P C̃. Thus C̃ is closed since σ was an

arbitrary limit point. By what was shown, C̃ is a closed admissible conic class contained in

C and by the minimality of C, we are finished.

Proposition 5.7.7. Suppose pαiq
N
i“1 Ď QăN is such that αi˝αj “ αj ˝αi for all 1 ď i, j ď N .

There exists β “ pβiq
N
i“1 P RN such that βi P r}αi}8, }αi}1s for all 1 ď i ď N and

lim sup
m

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pT
ki
αi
ψpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψpλ, xq

ˇ

ˇ

ˇ
ď γ

for every pbiq
N
i“1 P QN , every pkiq

N
i“1 P NN , every pλ, xq P Q ˆ ∆, and every sequence

pβmq
8
m“1 Ď QN

` converging to β, where βm “ pβi,mq
N
i“1 for all m P N.

Proof. Let pβiq
N
i“1 P RN be given by Lemma 5.7.6 and let pφnq

8
n“1 be a coarse pαi, βiq

N
i“1-
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approximating sequence converging to φ, also given by Lemma 5.7.6. For each n P N let

ψn “ φn ˚ p´1q ¨ φn. Then, by our choice of φ (see Lemma 5.5.5) we have that

lim
n

N
˚
i“1

bi ¨ pT
ki
αi
ψnpλ, xq “

N
˚
i“1

bi ¨ pT
ki
αi
ψpλ, xq

and

lim
n

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq “

N
˚
i“1

biβ
ki
i,m ¨ ψpλ, xq

for all pλ, xq P Qˆ∆ and all m P N.

By Corollary 5.7.4, pφnq
8
n“1 is a coarse pα˝kii , βkii q

N
i“1-approximating sequence and we can

pick a sequence punq
8
n“1 realizing pφnq

8
n“1 and sequences pui,nq

8
n“1 which are spreadings of

punq
8
n“1 and satisfy limn |||Tα˝kiun ´ βkii ui,n||| “ 0 for every 1 ď i ď N . For each n P N, let

u1n P H have the same basis coordinates as un except shifted over so that the supports of un

and u1n are disjoint. It is easy to see that, for each 1 ď i ď N and n P N, we can pick a

spreading of un, say u1i,n, so that T
α
˝ki
i
u1n ´ βkiu1i,n is a spreading of T

α
˝ki
i
punq ´ βk1ui,n and

such that ui,n and u1i,n have disjoint supports.

Notice that both un ´ u1n and ui,n ´ u1i,n realize ψn. Therefore, by Lemma 5.6.8, we have

that

ˇ

ˇ

ˇ

N
˚
i“1

bi¨pT
ki
αi
ψnpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

N
˚
i“1

bi ¨ pTα˝kii
ψnpλ, xq ´

N
˚
i“1

biβ
ki
i,m ¨ ψnpλ, xq

ˇ

ˇ

ˇ

ď inf
εą0

ωId

´

|λ|
N
ÿ

i“1

|bi| ¨ |||Tα˝kii
pun ´ u

1
nq ´ β

ki
i,mpui,n ´ u

1
i,nq||| ` ε

¯

ď inf
εą0

ωId

´

2|λ|
N
ÿ

i“1

|bi| ¨ |||Tα˝kii
un ´ β

ki
i,mui,n||| ` ε

¯

ď inf
εą0

ωId

´

2|λ|
´

N
ÿ

i“1

|bi| ¨
´

|||T
α
˝ki
i
un ´ β

ki
i un||| ` |β

ki
i ´ β

ki
i,m| ¨ |||un|||

¯¯

` ε
¯

for all pλ, xq P Q ˆ ∆. As the sequence punq
8
n“1 is bounded (see Lemma 5.6.3), taking the
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limit superiors over n and m in the inequality above yields the result.

5.8 Coarse `p-types and coarse c0-types.

In this section, we will define a notion of `p-type and c0-type and use Proposition 5.7.7 in

order to show that ψ satisfies this property. Finally, we will show that H is isomorphic to

some `p.

Definition 5.8.1. Let p P r1,8q. We say that ψ is a coarse `p-type if there exists L ą 0

such that, for all pλ, yq P Qˆ∆, and all α “ pαiq
N
i“1 P QăN, we have

lim sup
m

ˇ

ˇ

ˇ

N
˚
i“1

αi ¨ ψpλ, yq ´ tm ¨ ψpλ, yq
ˇ

ˇ

ˇ
ď L.

for all ptmq
8
m“1 Ď Q converging to }α}p. The type ψ is called a coarse c0-type if, for all

pλ, yq P Qˆ∆, and all pαiq
N
i“1 P QăN, we have

ˇ

ˇ

ˇ

N
˚
i“1

αi ¨ ψpλ, yq ´ max
1ďiďN

|αi| ¨ ψpλ, yq
ˇ

ˇ

ˇ
ď L.

Proposition 5.8.2. The type ψ is either a coarse c0-type or a coarse `p-type for some p P

r1,8q.

Proof. Let α2 “ p1, 1q and α3 “ p1, 1, 1q, and notice that α2 ˝α3 “ α3 ˝α2. Let β2, β3 P R be

given by Proposition 5.7.7 for α2 “ p1q and α3 “ p1, 1q, respectively. Let pβ2,mq
8
m“1, pβ3,mq

8
m“1 Ď

Q be nonzero increasing sequences converging to β2, β3 respectively. By our choice of β2 and

β3, we have that

lim sup
m

ˇ

ˇ

ˇ
b ¨

jk

˚
i“1

ψpλ, xq ´ bβkj,m ¨ ψpλ, xq
ˇ

ˇ

ˇ
ď γ

for all j P t2, 3u, all b P Q, all k P N, and all pλ, xq P Qˆ∆.
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Let `, k P N be such that 3k ď 2` ă 3k`1. As pξnq
8
n“1 is 1-unconditional, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3k
ÿ

i“1

ξi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2`
ÿ

i“1

ξi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3k`1
ÿ

i“1

ξi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
.

Let a` P Q be between 1
2
|||
ř2`

i“1 ξi||| and |||
ř2`

i“1 ξi|||. Then, for any µ ą 0,

µ ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
µ ¨

ř3k`1

i“1 ξi
a`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
.

As Id : pX, } ¨ }q Ñ pX, dq is expanding, we can pick µ P Q such that ρIdpµ{2q ą 2ωIdp1q`γ

and η P Q such that ρIdpη}ξ1}{2q ą 2ωIdp1q ` γ. Let M P N be such that

ˇ

ˇ

ˇ

µ

a`
¨

3k`1

˚
i“1

ψp1, 0q ´
µβ`3,M
a`

¨ ψp1, 0q
ˇ

ˇ

ˇ
ď γ ` ωIdp1q

and let N ěM be such that

ˇ

ˇ

ˇ

η

β`2,M
¨

2`

˚
i“1

ψp1, 0q ´
ηβ`2,N
β`2,M

¨ ψp1, 0q
ˇ

ˇ

ˇ
ď γ ` ωIdp1q.

Then as pµ{a`q ¨ p
ř3k`1

i“1 ξiq realizes pµ{alq ¨˚
3k`1

i“1 ψ, by Lemma 5.6.3(i), we have that

2ωIdp1q ` γ ă
µ

a`
¨

3k`1

˚
i“1

ψp1, 0q ď
µβk`1

3,M

a`
¨ ψp1, 0q ` γ ` ωIdp1q.

Therefore, as pµβk`1
3,M {a`q ¨ ξ1 realizes pµβk`1

3,M {a`q ¨ ψ, by Lemma 5.6.3(ii), we have

1 ď
βk`1

3,Mµ

a`
¨ |||ξ1|||. (5.8.1)

Similarly, by Lemma 5.6.3(i) and the fact that pηβ`2,N{β
`
2,Mq ¨ ξ1 realizes pηβ`2,N{β

`
2,Mq ¨ ψ,

we have

η

β`2,M
¨

2`

˚
i“1

ψp1, 0q ě
ηβ`2,N
β`2,M

¨ ψp1, 0q ´ γ ´ ωIdp1q ą ωIdp1q.
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Hence, as pη{β`2,Mq ¨ p
ř2`

i“1 ξiq realizes pη{β`2,Mq ¨˚
2`

i“1 ψ, Lemma 5.6.3(ii) gives us

2ηa`
β`2,M

ě

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

η
ř2`

i“1 ξi
β`2,M

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ě 1. (5.8.2)

Combining Inequalities (5.8.1) and (5.8.2), we obtain

βk3
β`2
“ lim

M

βk3,M
β`2,M

ě
1

2ηµβ3|||ξ1|||
.

The lower bound for βk3 {β
`
2 above does not depend on k and `, as long as 2` ă 3k`1. Similarly,

we get a lower bound for β`2{β
k
3 , which also does not depend on k and `, as long as 3k ď 2`.

We conclude that there exist a, b ą 0 such that for all k and `, with 3k ď 2` ă 3k`1, we have

a ď
βk3
β`2
ď b.

Therefore, there exists L ě 0 such that β2 “ 2L, and β3 “ 3L. Also, as β2 ď 2, we must have

L P r0, 1s. The same argument works for arbitrary n,m P N instead of 2 and 3. Hence, we

have βn “ nL, for all n P N, where βn is given by Proposition 5.7.7 for

α “ p1, . . . , 1q
l jh n

n

.

Case 1: Say L ‰ 0. Then ψ is a coarse `p-type, for p “ 1{L.

Fix α “ pαiq
N
i“1 P QN and a sequence ptmq

8
m“1 Ď Q converging to }α}p. Let ε ą 0 and, for

each 1 ď j ď N , let rj P Q` be such that ||αj| ´ r
1{p
j | ă ε. Find a common denominator

m P N so that for each 1 ď j ď N there is nj P N0 such that rj “ nj{m. Let s ą 0 be a

rational number such that |s ´ p1{mq1{p| ă ε. For each 1 ď j ď N , let pβj,mq
8
m“1 Ď Q be a

sequence converging to n
1{p
j and let pβmq

8
m“1 Ď Q be a sequence converging to p

řN
j“1 njq

1{p.
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By Lemma 5.6.8,

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, xq ´
N
˚
j“1

sβj,k ¨ ψpλ, xq
ˇ

ˇ

ˇ
ď ωId

´

|λ|
N
ÿ

j“1

|αj ´ sβj,k||||ξj||| ` ε
¯

and

|sβm ¨ ψpλ, xq ´ tm ¨ ψpλ, xq| ď ωIdp|λ||sβm ´ tm||||ξ1||| ` εq.

for all pλ, xq P Q ˆ ∆. By Proposition 5.7.7 and what was shown above with L “ 1{p, we

have that

lim sup
m

ˇ

ˇ

ˇ

N
˚
j“1

sβj,m ¨ ψpλ, xq ´
N
˚
j“1

s ¨
nj
˚
i“1

ψpλ, xq
ˇ

ˇ

ˇ
ď γ

and

lim sup
m

ˇ

ˇ

ˇ
s ¨

N
˚
j“1

nj
˚
i“1

ψpλ, xq ´ sβm ¨ ψpλ, xq
ˇ

ˇ

ˇ
ď γ

for all pλ, xq P Qˆ∆.

Combining the four inequalities above with the triangle inequality, taking a limit superior

over m, and letting εÑ 0, one obtains

lim sup
m

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, xq ´ tm ¨ ψpλ, xq
ˇ

ˇ

ˇ
ď 4γ

for all pλ, xq P Qˆ∆. Therefore ψ is a coarse `p-type.

Case 2: Say L “ 0. Then ψ is a coarse c0-type.

Fix α “ pαiq
N
i“1 P QN such that α1 “ 1 and αj ď 1 for 2 ď j ď N (the general case will

follow by dilation). Using Proposition 5.7.7, find β ě 1 and a nonzero increasing sequence

pβmq
8
m“1 Ď Q converging to β such that

lim sup
m

|b ¨ pT kαψpλ, xq ´ bβ
k
m ¨ ψpλ, xq| ď γ
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for all b P Q, k P N and pλ, xq P Q ˆ ∆. We will show β ď 1. Fix k P N and note that

pT kαψ “ ˚N
ik“1 ¨ ¨ ¨˚

N
i1“1p

śk
`“1 αi`q¨ψ (using the definition of pTα and the distributivity of dilation

over convolution). After combining like terms using the commutativity of convolution, by

Proposition 5.7.7 and what was shown above with L “ 0, we have

ˇ

ˇ

ˇ
b ¨ pT kαψpλ, xq ´ b ¨ ˚

nPF
p

k
ź

j“1

α
nj
j q ¨ ψpλ, xq

ˇ

ˇ

ˇ
ď γ

where F “ tn “ pnjq
k
j“1 P Nk

0 |
řk
j“1 nj “ ku for every b P Q and pλ, xq P Qˆ∆. Now, take

any µ P Q such that ρIdpµ|||ξ1|||{2q ą 2ωIdp1q ` 2γ. Fix M P N, and let N ě M be such that

|
µ
βkM

pT kαψp1, 0q ´
µβkN
βkM

¨ψp1, 0q| ď γ ` ωIdp1q. Then combining the two inequalities above yields

ˇ

ˇ

ˇ

µβkN
βkM

¨ ψp1, 0q ´
µ

βkM
¨ ˚
nPF
p

k
ź

j“1

α
nj
j q ¨ ψp1, 0q

ˇ

ˇ

ˇ
ď 2γ ` ωIdp1q.

As pµβkN{β
k
Mqξ1 realizes pµβkN{β

k
Mq ¨ ψ, we have, by Lemma 5.6.3(i), µ

βkM
¨ ˚nPF p

śk
j“1 α

nj
j q ¨

ψp1, 0q ě ωIdp1q. So, as µ
βkM

ř

nPF p
śk

j“1 α
nj
j q ¨ ξIpnq realizes µ

βkM
¨ ˚nPF p

śk
j“1 α

nj
j q ¨ ψ for any

injective map I : F Ñ N, we have, by Lemma 5.6.3(ii),

1 ď
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

µ

βkM

ÿ

nPF

p

k
ź

j“1

α
nj
j q ¨ ξIpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
ď
µ|||ξ1|||

βkM

ź

αjă1

1

1´ αj
.

But this was for any k,M P N, and so we must have β ď 1. That is, β “ 1. Therefore ψ is a

coarse c0-type.

We can now prove the following.

Proposition 5.8.3. If ψ is a coarse `p-type, for some p P r1,8q, then pξnq
8
n“1 is equivalent

to the `p-basis. If ψ is a coarse c0-type, then pξnq is equivalent to the c0-basis.

Proof. Say ψ P T is a coarse `p-type for some p P r1,8q (the c0 case will be analogous).

Say L ą 0 is such that, for all pαjq
N
j“1 P QăN, all ptmq

8
m“1 Ď Q converging to }α}p, and all
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pλ, yq P Qˆ∆, we have

lim sup
m

ˇ

ˇ

ˇ

N
˚
j“1

αj ¨ ψpλ, yq ´ tm ¨ ψpλ, yq
ˇ

ˇ

ˇ
ď L. (5.8.3)

Let penq
8
n“1 be the standard basis of `p, and let Y “ spanten | n P Nu. Let us show that

the map T : Y Ñ spantξn | n P Nu defined by sending en to ξn{|||ξ1||| for each n P N and

extending linearly is an isomorphism. Hence, T extends to an isomorphism between `p and

spantξn | n P Nu, and we are done.

We first show that T bounded. Fix ε ą 0 and let b P Q be such that 1{|||ξ1||| ă b ă

1{|||ξ1||| ` ε. For each α “ pαiq
N
i“1 P QăN, let tα P Q be such that |tα ´ }α}p| ă ε and

|˚N
j“1 αj ¨ ψpb, 0q ´ tα ¨ ψpb, 0q| ď L` ε. By Lemma 5.6.3 and Inequality 5.8.3, we have that

ρId

´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

αi
ξj
|||ξ1|||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
´ ε

¯

ď ρId

´
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

αibξj

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
´ ε

¯

ď
N
˚
i“1

αi ¨ ψpb, 0q

ď tα ¨ ψpb, 0q ` L` ε

ď ωId

´

b|||ξ1|||tα ` ε
¯

` L` ε

ď ωId

´

}α}p ` 2ε` ε}ξ1}}α}p ` ε
2
}ξ1}

¯

` L` ε,

for all α “ pαiq
N
i“1 P QăN. Hence, as Id : pX, } ¨ }q Ñ pX, dq is expanding, there exists K ą 0

such that }α}p ď 1 implies |||
řN
i“1 αi

ξi
|||ξ1|||
||| ď K. Therefore T is bounded.

Clearly, T is a bijection. Let us show that T´1 is bounded. By Lemma 5.6.3 and Inequality
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5.8.3, we have that

ρId

´

}α}p ´ 2ε
¯

´ L´ ε ď ρId

´

btα|||ξ1||| ´ ε
¯

´ L´ ε

ď tα ¨ ψpb, 0q ´ L´ ε

ď
N
˚
i“1

αi ¨ ψpb, 0q

ď ωId

´

b
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

αiξi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¯

ď ωId

´ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

αi
ξi
|||ξ1|||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
` ε|||ξ1|||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i“1

αi
ξi
|||ξ1|||

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¯

.

for all α “ pαiq
N
i“1 P QăN. Hence, as Id : pX, } ¨ }q Ñ pX, dq is expanding, there exists some

R ą 0 such that |||
řN
i“1 αi

ξi
|||ξ1|||
||| ď 1 implies }α}p ă R. So T´1 is bounded.

Proof of Theorem 1.7.3. By Corollary 5.3.2, if X coarsely embeds into a superstable space

Y , there exists an invariant stable pseudometric d on X which is coarsely equivalent to the

norm of X. Hence, we can define the type space T as in Section 5.4. By Proposition 5.5.4,

there exists a minimal closed admissible conic class C. Let φ P C be given by Lemma 5.5.5.

Without loss of generality, ψ “ φ ˚ p´1q ¨ φ is admissible. By Proposition 5.8.2, ψ is either

a c0-type or an `p-type, for some p P r1,8q. Hence, by Proposition 5.8.3, X has either an

`p-spreading model or a c0-spreading model.

Assume that X has a c0-spreading model. In particular, c0 is finitely represented in X.

Hence, c0 isomorphically embeds into an ultrapower of X. As ultrapowers of X coarsely

embed into ultrapowers of Y , this gives us that c0 coarsely embeds into an ultrapower of Y ,

which is a stable space. By Theorem 2.1 of [Ka1], stable spaces coarsely embed into reflexive

spaces. Therefore, c0 coarsely embeds into a reflexive space. By Theorem 3.6 of [Ka1], this

cannot happen, so we have a contradiction. Therefore, X contains an `p-spreading model,

for some p P r1,8q.

Let pxnq
8
n“1 be a bounded sequence in X without Cauchy subsequences whose spreading

model is isomorphic to `p. Let us observe now that pxnq
8
n“1 can be assumed to be a basic
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sequence. By Rosenthal’s `1-Theorem, either pxnq
8
n“1 has a subsequence which is isomorphic

to `1, or it has a weakly Cauchy subsequence. Assume that pxnq
8
n“1 is weakly Cauchy. Then

pynq
8
n“1 is weakly null and it has an `p-spreading model, where yn “ xn´ xn`1, for all n P N.

Hence, by taking a subsequence, we can assume that pynq
8
n“1 is basic.

Remark. By the last inequality of Case 1 in Proposition 5.8.2, and by following the proof of

Proposition 5.8.3, we find an upper bound of

´

inf
εą0

sup ρ´1
Id pr0, ωIdp1q ` 5γ ` εsq

¯2

for the Banach-Mazur distance between `p and the spreading model associated to pynq
8
n“1.

Proof of Corollary 1.5.6. This follows from the fact that the original Tsirelson space (see

[Ts]) does not have an `p-spreading model.

Remark 5.8.4. Another example of a reflexive Banach space that does not coarsely embed

into any superstable space is the space constructed by E. Odell and Th. Schlumprecht in

[OSc2]. Indeed, this follows from Theorem 1.7.3 and the fact that every spreading model of

their space contains neither a subspace isomorphic to c0 nor to `p (see [OSc2], Theorem 1.4).

As mentioned in the introduction, our work is not enough to solve Problem 1.5.3. The

following is a natural approach to give a negative answer to Problem 1.5.3, given Theorem

1.7.3.

Problem 5.8.5. Let T be the Tsirelson space. Does T or T p (i.e., the p-convexification of

T ) for some p P r1,8q coarsely embed into a superstable Banach space?

At last, in the spirit of Chapter 4, we ask the following.

Problem 5.8.6. Say an infinite dimensional Banach space X maps into a superstable space

by a map which is both coarse and solvent. Does it follow thatX must contain an `p-spreading

model, for some p P r1,8q.



Chapter 6

Coarse Lipschitz geometry and

asymptotic structure

(Previously published as M. Braga, Bruno (2017) Asympttic structure and coarse

Lipschitz geometry of Banach spaces, Studia Mathematica 237, no. 1, 71-97)

In this chapter, we study coarse Lipschitz embeddings and equivalences between Banach

spaces and what kind of stability properties this notions of nonlinear embeddings and non-

linear equivalences may have. Furthermore, we will mainly work with Banach spaces having

some kind of asymptotic property. For that, we will go over the results contained in Section

1.6, which are in the paper Asymptotic structure and coarse Lipschitz geometry of Banach

spaces (see [Br3]).

6.1 Preliminaries.

In this section, we will introduce some notation and terminology which will be essential

for this chapter.

107
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6.1.1 p-convex and p-concave Banach spaces.

Let X be a Banach space with 1-unconditional basis penq
8
n“1, and let p P p1,8q. We say

that the basis penq
8
n“1 is p-convex with convexity constant C (resp. p-concave with concavity

constant C), if
›

›

›

ÿ

jPN

p|x1
j |
p
` . . .` |xkj |

p
q
1{pej

›

›

›

p

ď Cp
k
ÿ

n“1

}xn}p,

´

resp. Cp
›

›

›

ÿ

jPN

p|x1
j |
p
` . . .` |xkj |

p
q
1{pej

›

›

›

p

ě

k
ÿ

n“1

}xn}p
¯

,

for all x1 “
ř8

j“1 x
1
jej, . . . , x

k “
ř8

j“1 x
k
j ej P X. We say that the basis penq

8
n“1 satisfies an

upper `p-estimate with constant C (resp. lower `p-estimate with constant C), if

}x1 ` . . .` xk}
p
ď Cp

k
ÿ

n“1

}xn}
p
´

resp. Cp
}x1 ` . . .` xk}

p
ě

k
ÿ

n“1

}xn}
p
¯

,

for all x1, . . . , xk P X with disjoint supports. Clearly, a p-convex (resp. p-concave) basis with

constant C satisfies an upper (resp. lower) `p-estimate with constant C.

6.1.2 p-convexification.

Let X be a Banach space with a 1-unconditional basis penq
8
n“1. For any p P r1,8q, we

define the p-convexification of X as follows. Let

Xp
“

!

pxnq
8
n“1 P RN

| xp :“
ÿ

nPN

|xn|
pen P X

)

,

and endow Xp with the norm }x}p “ }xp}1{p, for all x P Xp. By abuse of notation, we

denote by penq
8
n“1 the sequence of coordinate vectors in Xp. It is clear that penq

8
n“1 is a

1-unconditional basis for Xp and that X1 “ X. Also, the triangle inequality gives us that

Xp is p-convex with constant 1.
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6.1.3 Asymptotically p-uniformly smooth and convex spaces.

Let X be a Banach space. We define the modulus of asymptotic uniform smoothness of X

as

ρXptq “ sup
xPBBX

inf
dimpX{Eqă8

sup
hPBBE

}x` th} ´ 1.

We say that X is asymptotically uniformly smooth if limtÑ0` ρXptq{t “ 0. If there exists

p P p1,8q and C ą 0 such that ρXptq ď Ctp, for all t P r0, 1s, we say that X is asymptotically

p-uniformly smooth. Every asymptotically uniformly smooth Banach space is asymptotically

p-uniformly smooth for some p P p1,8q (this was first proved in [KnOSc] for separable Banach

spaces, and later generalized for any Banach space in [Ra], Theorem 1.2).

Let X be a Banach space. We define the modulus of asymptotic uniform convexity of X

as

δXptq “ inf
xPBBX

sup
dimpX{Eqă8

inf
hPBBE

}x` th} ´ 1.

We say that X is asymptotically uniformly convex if δXptq ą 0, for all t ą 0. If there exists

p P p1,8q and C ą 0 such that δXptq ě Ctp, for all t P r0, 1s, we say that X is asymptotically

p-uniformly convex.

The following proposition is straight forward.

Proposition 6.1.1. Let p P p1,8q and let X be a Banach space with a 1-unconditional

basis satisfying an upper `p-estimate (resp. lower `p-estimate) with constant 1. Then X is

asymptotically p-uniformly smooth (resp. asymptotically p-uniformly convex).

6.1.4 Banach-Saks properties.

A Banach space X is said to have the Banach-Saks property if every bounded sequence

pxnq
8
n“1 in X has a subsequence pxnjq

8
j“1 such that p 1

k

řk
j“1 xnjq

8
k“1 converges. A Banach

space X is said to have the alternating Banach-Saks property if every bounded sequence

pxnq
8
n“1 in X has a subsequence pxnjq

8
j“1 such that p 1

k

řk
j“1 εjxnjq

8
k“1 converges, for some

pεjq
8
j“1 P t´1, 1uN. For a detailed study of this properties, we refer to [Be].
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Let p P p1,8q. A Banach space X is said to have the p-Banach-Saks property (resp. p-

co-Banach-Saks property), if for every semi-normalized weakly null sequence pxnq
8
n“1 in X,

there exists a subsequence pxnjq
8
j“1 and c ą 0 such that

}xn1 ` . . .` xnk} ď ck1{p (resp. }xn1 ` . . .` xnk} ě ck1{p),

for all k P N, and all k ď n1 ă . . . ă nk.

The following is a combination of Proposition 1.2, Proposition 1.3, and Proposition 1.6

of [DimGoJ] (Proposition 1.6 of [DimGoJ] only mentions the p-Banach-Saks property, but

a straight forward modification of their proof gives us the result for the p-co-Banach-Saks

property).

Proposition 6.1.2. Let p P p1,8q and let X be a Banach space. If X asymptotically p-

uniformly smooth (resp. asymptotically p-uniformly convex), then X has the p-Banach-Saks

property (resp. p-co-Banach-Saks property)

6.1.5 Convexifications of the Tsirelson and Schlumprecht spaces.

As in Subsection 2.2.3, we define the Tsirelson space T as the completion of c00 under the

unique norm } ¨ } satisfying

}x} “ max
!

}x}0,
1

2
¨ sup

´

k
ÿ

j“1

}Ejx}
¯)

,

where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets

of N such that k ď E1 ă . . . ă Ek. Therefore, for each p P p1,8q, the norm } ¨ }p of the

p-convexified Tsirelson space T p satisfies

}x}p “ max
!

}x}0,
1

21{p
¨ sup

´

k
ÿ

j“1

}Ejx}
p
p

¯1{p)

,
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where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets

of N such that k ď E1 ă . . . ă Ek (see [CSh], Chapter X, Section E).

As T p satisfies an upper `p-estimate with constant 1, it follows that T p is asymptotically

p-uniformly smooth and it has the p-Banach-Saks property. Also, T p has the p-co-Banach-

Saks property. Indeed, let penq
8
n“1 be the standard basis for T p. If pxnq

8
n“1 is a normalized

block subsequence of penq
8
n“1, then

2´1{pk1{p
“ 2´1{p

´

2k´1
ÿ

n“k

}xn}
p
p

¯1{p

ď

›

›

›

2k´1
ÿ

n“k

xn

›

›

›

p
,

for all k P N. Therefore, as for any normalized weakly null sequence pxnq
8
n“1 in T p, one can

find a block sequence pynq
8
n“1 which is equivalent to a subsequence of pxnq

8
n“1, we conclude

that T p has the p-co-Banach-Saks.

Remark 6.1.3. Let p P p1,8q. Then T p does not contain `r for any r P r1,8q (this is shown

in [Jo2] for T , and the result for T p follows analogously). Similarly, by duality arguments,

T p˚ does not contain `r for any r P r1,8q (the reader can find more on T p and similar duality

arguments in [CSh]).

As in Subsection 2.2.3, we define the Schlumprecht space S as the completion of c00 under

the unique norm } ¨ } satisfying

}x} “ max
!

}x}0, sup
´ 1

log2pk ` 1q

k
ÿ

j“1

}Ejx}
¯)

,

where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets

of N such that E1 ă . . . ă Ek. Similarly as with the p-convexified Tsirelson space, the norm

} ¨ }p of the p-convexified Schlumprecht space Sp is given by

}x}p “ max
!

}x}0, sup
´ 1

log2pk ` 1q

k
ÿ

j“1

}Ejx}
p
p

¯1{p)

,

where the inner supremum above is taken over all finite sequences pEjq
k
j“1 of finite subsets
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of N such that E1 ă . . . ă Ek (see [D], page 59).

Similarly to T p, Sp is asymptotically p-uniformly smooth and has the p-Banach-Saks prop-

erty, for p P p1,8q.

6.1.6 Almost p-co-Banach-Saks property.

Although T p has the p-co-Banach-Saks property, Sp does not. However, Sp satisfies a

weaker property that will be enough for our goals. Let p P p1,8q. We say that a Banach

space X has the almost p-co-Banach-Saks property if for every semi-normalized weakly null

sequence pxnq
8
n“1 in X there exists a subsequence pxnjq

8
j“1, and a sequence of positive numbers

pθjq
8
j“1 in r1,8q such that limjÑ8 j

αθ´1
j “ 8, for all α ą 0, and

}xn1 ` . . .` xnk} ě k1{pθ´1
k ,

for all k P N, and all k ď n1 ă . . . ă nk. Clearly, Sp has the almost p-co-Banach-Saks

property, with θk “ log2pk ` 1q1{p, for all k P N.

6.2 Asymptotic uniform smoothness and the alternat-

ing Banach-Saks property.

In this section, we are going to show that asymptotically uniformly smooth Banach spaces

must have the alternating Banach-Saks property (Corollary 6.2.2), but the converse does not

hold (see Proposition 6.2.8). Also, we show that if a Banach space X coarse Lipschitz embeds

into a reflexive space Y which is also asymptotically uniformly smooth, then X must have

the Banach-Saks property (Theorem 1.6.1). As any space with the Banach-Saks property is

reflexive, this is a strengthening of Theorem 4.1 of [BKaL], which says that, under the same

hypothesis, X must be reflexive.
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Proposition 6.2.1. Let X be a Banach space with the p-Banach-Saks property, for some

p P p1,8q, and assume that X does not contain `1. Then X has the alternating Banach-Saks

property. In particular, if X is also reflexive, then X has the Banach-Saks property.

Proof. Assume X does not have the alternating Banach-Saks property. Then, there exist

δ ą 0 and a bounded sequence pxnq
8
n“1 in X such that, for all k P N, all ε1, . . . , εk P t´1, 1u,

and all n1 ă . . . ă nk P N, we have

›

›

›

1

k

k
ÿ

j“1

εjxnj

›

›

›
ą δ (6.2.1)

(see [Be], Theorem 1, page 369). As X does not contain `1, by Rosenthal’s `1-theorem (see

[Ros]), we can assume that pxnq
8
n“1 is weakly Cauchy. Hence, the sequence px2n´1 ´ x2nq

8
n“1

is weakly null. By Equation (6.2.1), it is also semi-normalized. Therefore, as X has the

p-Banach-Saks property, by taking a subsequence if necessary, we have that

›

›

›

k
ÿ

j“1

pxn2j´1
´ xn2j

q

›

›

›
ď ck1{p,

for all k P N, and some constant c ą 0 independent of k. By Equation (6.2.1), we get that

δ ă
›

›

›

1

2k

2k
ÿ

j“1

p´1qj`1xnj

›

›

›
ď
c

2
k1{p´1.

As this holds for all k P N, and p ą 1, if we let k Ñ 8, we get that δ “ 0, which is a

contradiction.

For reflexive spaces, the alternating Banach-Saks property and the Banach-Saks property

are equivalent (see [Be], Proposition 2), so the last statement of the proposition follows.

Corollary 6.2.2. Let X be an asymptotically uniformly smooth Banach space. Then X has

the alternating Banach-Saks property. In particular, if X is also reflexive, then X has the

Banach-Saks property.
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Proof. As X is asymptotically uniformly smooth, X cannot contain `1. Therefore, we only

need to notice that X has the p-Banach-Saks property, for some p P p1,8q, and apply

Proposition 6.2.1. By Theorem 1.2 of [Ra], X is asymptotically p-uniformly smooth, for

some p P p1,8q. Therefore, by Proposition 6.1.2 above, we have that X has the p-Banach-

Saks property, so we are done.

For each k P N, we want to define a new metric on PkpNq (see Section 1.4). In order to

avoid confusion, we use a diferent notation for PkpNq in this chapter. Let k P N, and M Ă N,

be an infinite subset. Define GkpMq as the set of all subsets of M with k elements. We write

n̄ “ pn1, . . . , nkq P GkpMq always in an increasing order, i.e., n1 ă . . . ă nk. We define a

metric d “ dk on GkpMq by letting

dpn,mq “ |tj | nj ‰ mju|,

for all n “ pn1, . . . , nkq,m “ pm1, . . . ,mkq P GkpMq.

The following will play an important role in many of the results in this chapter. This result

was proved in [KaRa], Theorem 4.2 (see also Theorem 6.1 of [KaRa]).

Theorem 6.2.3. Let p P p1,8q, and let Y be a reflexive asymptotically p-uniformly smooth

Banach space. There exists K ą 0 such that, for all infinite subset M Ă N, all k P N, and

all bounded map f : GkpMq Ñ Y , there exists an infinite subset M1 ĂM such that

diampfpGkpM1
qqq ď KLippfqk1{p.

Proof of Theorem 1.6.1. Let f : X Ñ Y be a coarse Lipschitz embedding. Pick C ą 0 so

that ωf ptq ď Ct ` C, ρf ptq ě C´1t ´ C, for all t ě 0. Assume that X does not have the

Banach-Saks property. By [Be], page 373, there exists δ ą 0 and a sequence pxnq
8
n“1 in BX
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such that, for all k P N, and all n1 ă . . . ă n2k P N, we have that

›

›

›

1

2k

k
ÿ

j“1

pxnj ´ xnk`jq
›

›

›
ě δ.

For each k P N, define ϕk : GkpNq Ñ X by setting ϕkpn1, . . . , nkq “ xn1 ` . . . ` xnk , for

all pn1, . . . , nkq P GkpNq. Therefore, diampϕkpGkpMqqq ě 2kδ, and we have that diampf ˝

ϕkpGkpMqqq ě 2kδC´1 ´ C, for all k P N, and all infinite M Ă N.

As, Lippϕkq ď 2, we have that Lippf ˝ ϕkq ď 3C. As Y is asymptotically uniformly

smooth, there exists p P p1,8q for which Y is asymptotically p-uniformly smooth (see [Ra],

Theorem 1.2). By Theorem 6.2.3, there exists K “ KpY q ą 0 and M Ă N such that

diampf ˝ ϕkpGkpMqqq ď 3KCk1{p, for all k P N. We conclude that

2kδC´1
´ C ď 3KCk1{p,

for all k P N. As p ą 1, this gives us a contradiction if we let k Ñ 8.

The following was asked in [GLZi], Problem 2, and it remains open.

Problem 6.2.4. If a Banach space X coarse Lipschitz embeds into a reflexive asymptotically

uniformly smooth Banach space Y , does it follow that X has an asymptotically uniformly

smooth renorming?

Problem 6.2.5. Let N be a metric space. We say that a family of metric spaces pMkq
8
k“1 uni-

formly Lipschitz embeds into N if there exists C ą 0 and Lipschitz embeddings fk : Mk Ñ N

such that Lippfq ¨Lippf´1q ă C, for all k P N. Does the family pGkpNq, dq8k“1 uniformly Lips-

chitz embed into any Banach space without an asymptotically uniformly smooth renorming?

As noticed in [GLZi], Problem 6, a positive answer to Problem 6.2.5 together with Theorem

6.2.3 would give us a positive answer to Problem 6.2.4.

It is worth noticing that the Banach-Saks property is not stable under uniform equivalences,

hence, it is not stable under coarse Lipschitz isomorphisms either. Indeed, if ppnq
8
n“1 is a



6.2. AUS-NESS AND THE ALTERNATING BANACH-SAKS PROPERTY. 116

sequence in p1,8q converging to 1, then p‘n`pnq`2 is uniformly equivalent to p‘n`pnq`2‘`1 (see

[BenLi], page 244). The space p‘n`pnq`2 has the Banach-Saks property, while p‘n`pnq`2 ‘ `1

does not.

Let GpNq denote the set of finite subsets of N. We endow GpNq with the metric D given

by

Dpn,mq “ |n∆m|,

for all n “ pn1, . . . , nkq,m “ pm1, . . . ,mlq P GpNq, where n∆m denotes the symmetric

difference between the sets n and m.

Proposition 6.2.6. GpNq Lipschitz embeds into any Banach space X without the alternating

Banach-Saks property. Moreover, for any ε ą 0, the Lipschitz embedding f : GpNq Ñ X can

be chosen so that Lippfq ¨ Lippf´1q ă 1` ε.

Proof. By Theorem 1 of [Be], page 369, for all η ą 0, there exists a bounded sequence pxnq
8
n“1

in X such that, for all k P N, all ε1, . . . , εk P t´1, 1u, and all n1 ă . . . ă nk, we have

1´ η ď
›

›

›

1

k

k
ÿ

j“1

εjxnj

›

›

›
ď 1` η.

Define ϕ : GpNq Ñ X by setting ϕpn1, . . . , nkq “ xn1 ` . . . ` xnk , for all pn1, . . . , nkq P

GpNqztHu, and ϕpHq “ 0. Then, we have that

p1´ ηq ¨Dpn,mq ď }ϕkpnq ´ ϕkpmq} ď p1` ηq ¨Dpn,mq

for all n,m P GpNq.

Problem 6.2.7. If X has the Banach-Saks property, does it follow that GpNq does not

Lipschitz embed into X? In other words, if X is a reflexive Banach space, do we have that

GpNq Lipschitz embed into X if and only if X does not have the Banach-Saks property?

By Corollary 6.2.2 above, any Banach space with an asymptotically uniformly smooth

renorming has the alternating Banach-Saks property. To the best of our knowledge, there is
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no known example of a Banach space which has the alternating Banach-Saks property but

does not admit an asymptotically uniformly smooth renorming. However, using descriptive

set theoretical arguments, one can show the existence of such spaces. Recall, pX,Ωq is called

a standard Borel space if X is a set and Ω is a σ-algebra on X which is the Borel σ-algebra

associated to a Polish topology on X (i.e., a topology generated by a complete separable

metric). A subset A Ă X is called analytic if it is the image of a standard Borel space under

a Borel map. We refer to [Do] and [Br1], Section 2, for more details on the descriptive set

theory of separable Banach spaces.

Let Cr0, 1s be the space of continuous real-valued functions on r0, 1s endowed with the

supremum norm. Let

SB “ tX P Cr0, 1s | X is a closed linear subspaceu,

and endow SB with the Effros-Borel structure, i.e., the σ-algebra generated by

tX P SB | X X U ‰ Hu, for U Ă Cr0, 1s open.

This makes SB into a standard Borel space and, as Cr0, 1s contains isometric copies of every

separable Banach space, SB can be seen as a coding set for the class of all separable Banach

spaces. Therefore, we can talk about Borel and analytic classes of separable Banach spaces.

By [Br1], Theorem 17, the subset ABS Ă SB of Banach spaces with the alternating Banach-

Saks is not analytic. On the other hand, letting AUS “ tX P SB | X is asymptotically

uniformly smoothu, we have

X P AUS ô @ε P Q`Dδ P Q`@t P Q`
´

t ă δ ñ ρXptq ă εt
¯

.

As tX P SB | dimpCr0, 1s{Xq ă 8u is Borel, it is easy to check that the condition Apt, εq Ă
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SB given by

X P Apt, εq ô ρXptq ă εt

defines an analytic subset of SB (for similar arguments, we refer to [Do], Chapter 2, Section

2.1). So, AUS must be analytic. Hence, letting AUSable Ă SB be the subset of Banach

spaces with an asymptotically uniformly smooth renorming, we have that

X P AUSable ô DY P AUS such that X – Y.

As the isomorphism relation in SBˆ SB forms an analytic set (see [Do], page 11), it follows

that AUSable is analytic. This discussion together with Corollary 6.2.2 gives us the following.

Proposition 6.2.8. AUSable Ĺ ABS. In particular, there exist separable Banach spaces

with the alternating Banach-Saks property which do not admit an asymptotically uniformly

smooth renorming.

6.3 Asymptotically p-uniformly convex/smooth spaces.

In this section, we will use results from [KaRa] in order to obtain some restrictions on

coarse embeddings X Ñ Y , where the spaces X and Y are assumed to have some asymptotic

properties (see Theorem 6.3.1). We obtain restrictions on the existence of coarse embeddings

between the convexified Tsirelson spaces (Theorem 1.6.3(i)), convexified Schlumprecht spaces

(Theorem 1.6.3(ii)), and some specific hereditarily indecomposable spaces introduced in [D]

(Corollary 6.3.8).

Theorem 6.3.1. Let p, q P p1,8q. Let X be an infinite dimensional Banach space with

the p-co-Banach-Saks property and not containing `1. Let Y be a reflexive asymptotically

q-uniformly smooth Banach space. Then, there exists no coarse embedding f : X Ñ Y such

that

lim sup
kÑ8

ρf pk
1{pq

k1{q
“ 8.
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Proof. Let f : X Ñ Y be a coarse embedding. So, there exists C ą 0, such that ωf ptq ď

Ct ` C, for all t ą 0. As X does not contain `1, by Rosenthal’s `1-theorem, we can pick a

normalized weakly null sequence pxnq
8
n“1 in X, with infn‰m }xn ´ xm} ą 0. For each k P N,

define a map ϕk : GkpNq Ñ X by letting

ϕkpn1, . . . , nkq “ xn1 ` . . .` xnk ,

for all pn1, . . . , nkq P GkpNq. So, ϕk is a bounded map.

If dppn1, . . . , nkq, pm1, . . . ,mkqq ď 1, then }
řk
j“1 xnj´

řk
j“1 xmj} ď 2. So, Lippf ˝ϕkq ď 3C.

By Theorem 6.2.3, there exists K “ KpY q ą 0 and an infinite subset Mk Ă N such that

diampf ˝ ϕkpGkpMkqqq ď 3KCk1{q.

Without loss of generality, we may assume that Mk`1 Ă Mk, for all k P N. Let M Ă N

diagonalize the sequence pMkq
8
k“1, say M “ pnjq

8
j“1. If a sequence pynq

8
n“1 is weakly null, so

is py2n´1 ´ y2nq
8
n“1. Therefore, using the fact that X has the p-co-Banach-Saks property to

the weakly null sequence pxn2j´1
´ xn2j

q8j“1, we get that there exists c ą 0 such that, for all

k P N, there exists m1 ă . . . ă m2k PMk, such that

›

›

›

k
ÿ

j“1

pxm2j´1
´ xm2j

q

›

›

›
ě ck1{p.

Therefore, we have that diampϕkpGkpMkqqq ě ck1{p, which implies that diampf˝ϕkpGkpMkqqq ě

ρf pck
1{pq, for all k P N. So,

ρf pck
1{p
q ď 3KCk1{q,

for all k P N. Therefore, if lim supkÑ8 ρf pk
1{pqk´1{q “ 8, we get a contradiction.

Remark 6.3.2. Let X be any Banach space containing a sequence pxnq
8
n“1 which is asymp-

totically `1, i.e., there exists L ą 0 such that, for all m P N, there exists k P N such that
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pxnjq
m
j“1 is L-equivalent to pejq

m
j“1, for all k ď n1 ă . . . ă nm P N, where pejq

8
j“1 is the stan-

dard `1-basis. Then, proceeding exactly as above, we can show that there exists no coarse

embedding f : X Ñ Y such that

lim sup
kÑ8

ρf pkq

k1{q
“ 8,

where q P p1,8q and Y is a reflexive asymptotically q-uniformly smooth Banach space.

Let X and Y be Banach spaces. We define αY pXq as the supremum of all α ą 0 for which

there exists a coarse embedding f : X Ñ Y and L ą 0 such that

L´1
}x´ y}α ´ L ď }fpxq ´ fpyq},

for all x, y P X. We call αY pXq the compression exponent of X in Y , or the Y -compression

of X. If, for all α ą 0, no such f and L exist, we set αY pXq “ 0. As ωf is always bounded

by an affine map (as X is a Banach space), it follows that αY pXq P r0, 1s. Also, αY pXq “ 0

if X does not coarsely embed into Y .

The quantity αY pXq was first introduced by E. Guentner and J. Kaminker in [GuKa]. For

a detailed study of α`qp`pq, αLqp`pq, α`qpLpq, and αLqpLpq, where p, q P p0,8q, we refer to [B].

Using this terminology, let us reinterpret Theorem 6.3.1.

Theorem 6.3.3. Let 1 ă p ă q. Let Y be a reflexive asymptotically q-uniformly smooth

Banach space. The following holds.

(i) If X contains a sequence which is asymptotically `1, then αY pXq ď 1{q.

(ii) If X is an infinite dimensional Banach space with the p-co-Banach-Saks property and

not containing `1, then αY pXq ď p{q.

In particular, X does not coarse Lipschitz embed into Y .
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Proof. (ii) Let L ą 0 and f : X Ñ Y be a coarse embedding such that ρf ptq ě L´1tα ´ L,

for all t ą 0. By Theorem 6.3.1, we must have

lim sup
kÑ8

kα{p´1{qL´1
´ Lk´1{q

ă 8.

Therefore, α{p´ 1{q ď 0, and the result follows.

(i) This follows from Remark 6.3.2 and the same reasoning as item (ii) above.

Notice that Y being reflexive in Theorem 6.3.3 cannot be removed. Indeed, c0 contains

a Lipschitz copy of any separable metric space (see [A]), and it is also asymptotically q-

uniformly smooth, for any q P p1,8q.

Corollary 6.3.4. Let 1 ă p ă q. Let X be asymptotically p-uniformly convex, and Y be

reflexive and asymptotically q-uniformly smooth. Then αY pXq ď p{q.

Asking the Banach space X to have the p-co-Banach-Saks property in Theorem 6.3.3 is

actually too much, and we can weaken this condition by only requiring X to have the almost

p-co-Banach-Saks property. Precisely, we have the following.

Theorem 6.3.5. Let 1 ă p ă q. Let X be an infinite dimensional Banach space with the

almost p-co-Banach-Saks property. Let Y be a reflexive asymptotically q-uniformly smooth

Banach space. Then αY pXq ď p{q. In particular, X does not coarse Lipschitz embed into Y .

Proof. Let f : X Ñ Y be a coarse embedding and pick C ą 0 such that ωf ptq ď Ct` C, for

all t ě 0. If X contains `1, the result follows from Theorem 6.3.3(i). If X does not contain `1,

we can pick a normalized weakly null sequence pxnq
8
n“1 in X, with infn‰m }xn´ xm} ą 0. By

taking a subsequence of pxnq
8
n“1 if necessary, pick pθkq

8
k“1 as in the definition of the almost p-

co-Banach-Saks property. Define ϕk : GkpNq Ñ X by letting ϕkpn1, . . . , nkq “ xn1` . . .`xnk ,

for all pn1, . . . , nkq P GkpNq.

Following the proof of Theorem 6.3.1, we get that

ρf pk
1{pθ´1

k q ď 3KCk1{q,
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for all k P N. Let L ą 0 and α ą 0 be such that ρf ptq ě L´1tα ´ L, for all t ą 0. Then,

kα{p´1{qθ´αk L´1
ď 4KC,

for big enough k P N. As limkÑ8 k
βθ´αk “ 8, for all β ą 0, we must have that α{p ´ 1{q ď

0.

Remark 6.3.6. Let pxnq
8
n“1 be a bounded sequence in a Banach space X with the following

property: there exists a sequence of positive reals pθjq
8
j“1 in r1,8q such that limjÑ8 j

αθ´1
j “

8, for all α ą 0, and

kθ´1
k ď } ˘ xn1 ` . . .`˘xnk}, (˚)

for all n1 ă . . . ă nk P N. The proof of Theorem 6.3.5 gives us that αY pXq ď 1{q, for any

reflexive asymptotically q-uniformly smooth Banach space Y , with q ą 1.

Let q ą 1, and let pEnq
8
n“1 be a sequence of finite dimensional Banach spaces. Let

E be a 1-unconditional basic sequence. Notice that, if E generates a reflexive asymptoti-

cally q-uniformly smooth Banach space, then p‘nEnqE is also reflexive and asymptotically

q-uniformly smooth. Hence, Theorem 6.3.3 and Theorem 6.3.5 gives us the following corol-

lary.

Corollary 6.3.7. Let 1 ă p ă q, and let pEnq
8
n“1 be a sequence of finite dimensional Banach

spaces. Let E be a 1-unconditional basic sequence generating a reflexive asymptotically q-

uniformly smooth Banach space. The following holds.

(i) If X contains a sequence with Property p˚q, then αp‘nEnqE pXq ď 1{q.

(ii) If X is an infinite dimensional Banach space with the almost p-co-Banach-Saks property,

then αp‘nEnqE pXq ď p{q.

In particular, X does not coarse Lipschitz embed into p‘nEnqE .
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Proof of Theorem 1.6.3. (i) As noticed in Subsection 6.1.5, T p has the p-co-Banach-Saks

property, and is asymptotically p-uniformly smooth, for all p P p1,8q. Therefore, as T p is

reflexive (see [OScZs], Proposition 5.3(b)), for all p P r1,8q, the result follows from Theorem

6.3.3 (or Corollary 6.3.7).

(ii) For any p P p1,8q, Sp has the almost p-co-Banach-Saks property and is asymptotically

p-uniformly smooth. By Theorem 8 and Proposition 2(2) of [CKaKutMa], Sp is reflexive, for

all p P r1,8q. So, the result follows from Corollary 6.3.7.

A Banach space X is called hereditarily indecomposable if none of its subspaces can be

decomposed as a sum of two infinite dimensional Banach spaces. In Chapter 5 of [D], for

each p P p1,8q, Dew constructed a hereditarily indecomposable space Xp with a basis penq
8
n“1

satisfying the following properties: (i) Xp is reflexive, (ii) the base penq
8
n“1 satisfies an upper

`p-estimate with constant 1, and (iii) if pxnq
8
n“1 is a block sequence of penq

8
n“1, then, for all

n P N,
›

›

›

n
ÿ

j“1

xj

›

›

›
ě fpnq´1{p

´

n
ÿ

j“1

}xj}
p
¯1{p

,

where f : N Ñ r0,8q is a function such that, among other properties, limnÑ8 n
αfpnq´1

“ 8, for all α ą 0. In particular, Xp has the almost p-co-Banach-Saks property, and

it is asymptotically p-uniformly smooth. This, together with Theorem 6.3.5, gives us the

following.

Corollary 6.3.8. Let 1 ă p ă q. Then αXqpX
pq ď p{q. In particular, Xp does not coarse

Lipschitz embeds into Xq.

Problem 6.3.9. Let 1 ď p ă q. Does αT qpT
pq “ αSqpS

pq “ p{q? If p ą 1, does αXqpX
pq “

p{q hold?

Remark 6.3.10. It is worth noticing that, if p ą maxtq, 2u, then αT qpT
pq “ 0. Indeed, for all

r ě 2, T r has cotype r ` ε for all ε ą 0 (see [DiJT], page 305). On the other hand, if r ă 2,

then T r has cotype 2. This follows from the fact that, for any ε ą 0, T r has an equivalent norm



6.3. ASYMPTOTICALLY P -UNIFORMLY CONVEX/SMOOTH SPACES. 124

satisfying a lower `pr`εq-estimate (we explain this in the proof of Corollary 1.6.4 below), then,

by Theorem 1.f.7 and Proposition 1.f.3(i) of [LiTz], T r has cotype 2. Similarly, by Theorem

1.f.7 and Proposition 1.f.3(ii), T r has nontrivial type, for all r P p1,8q. By Theorem 1.11 of

[MeN2], if a Banach space X coarsely embeds into a Banach space Y with nontrivial type,

then

inftq P r2,8q | X has cotype qu ď inftq P r2,8q | Y has cotype qu.

Therefore, we conclude that T p does not coarsely embed into T q, if p ą maxtq, 2u. So,

αT qpT
pq “ 0.

Problem 6.3.11. Let 1 ď q ă p ď 2. What can we say about αT qpT
pq?

We finish this section with an application of Theorem 6.3.3, Theorem 6.3.5, and Theorem

3.4 of [AlB]. By looking at the proof of Theorem 3.4 of [AlB], one can easily see that the

authors proved a stronger result than the one stated in their paper. Precisely, the authors

proved the following.

Theorem 6.3.12. Let 0 ă p ă q. There exist maps pψj : R Ñ Rq8j“1 such that, for all

x, y P R,

Ap,q|x´ y|
p
ď maxt|ψjpxq ´ ψjpyq|

q
| j P Nu

and
ÿ

jPN

|ψjpxq ´ ψjpyq|
q
ď Bp,q|x´ y|

p,

where Ap,q, Bp,q are positive constants.

Proposition 6.3.13. Let 1 ď p ă q. There exists a map f : T p Ñ p‘T qqT q which is

simultaneously a coarse and a uniform embedding such that ρf ptq ě Ctp{q, for some C ą 0.

In particular, αp‘T qqTq pT
pq “ p{q.

Proof. Let pψjq
8
j“1, Ap,q, and Bp,q be given by Theorem 6.3.12. Define f : T p Ñ p‘TqqT q by

letting

fpxq “
´

pψjpxnq ´ ψjp0qq
8
j“1

¯8

n“1
,
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for all x “ pxnq
8
n“1 P T

p. One can easily check that f satisfies

A1{q
p,q }x´ y}

p{q
ď }fpxq ´ fpyq} ď B1{q

p,q }x´ y}
p{q,

for all x, y P T p.

As T q is q-convex, it is easy to see that p‘T qqT q is asymptotic q-uniformly smooth. Hence,

as p‘T qqT q is reflexive, we conclude that αp‘T qqTq pT
pq “ p{q.

Corollary 6.3.14. T strongly embeds into a super-reflexive Banach space.

Proof. It is easy to check that p‘T 2qT 2 is super-reflexive. Indeed, super-reflexivity is equiv-

alent to a uniformly convex renorming. Hence, if E is a 1-unconditional basis generating a

super-reflexive space, and X is a super-reflexive space, then so is p‘XqE (see [LiTz], page

100).

Similarly as above, we get the following proposition.

Proposition 6.3.15. Let 1 ď p ă q. There exists a map f : Sp Ñ p‘SqqSq which is

simultaneously a coarse and a uniform embedding such that ρf ptq ě Ctp{q, for some C ą 0.

In particular, αp‘SqqSq pS
pq “ p{q.

6.4 Coarse Lipschitz embeddings into sums.

In this last section, we will be specially interested in the nonlinear geometry of the Tsirelson

space and its convexifications. In order to obtain Theorem 1.6.4, we will prove a technical

result on the coarse Lipschitz non embeddability of certain Banach spaces into the direct

sum of Banach spaces with certain p-properties (Theorem 6.4.6). The main goal of this sec-

tion is to characterize the Banach spaces which are coarsely (resp. uniformly) equivalent to

T p1 ‘ . . .‘ T pn , for p1, . . . , pn P p1, . . . ,8q, and 2 R tp1, . . . , pnu.
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Given x, y P X, and δ ą 0 the approximate midpoint between x and y with error δ is given

by

Midpx, y, δq “ tz P X | maxt}x´ z}, }y ´ z}u ď 2´1
p1` δq}x´ y}u.

The following lemma is an asymptotic version of Lemma 1.6(i) of [JoLiS] and Lemma 3.2 of

[KaRa].

Lemma 6.4.1. Let X be an asymptotically p-uniformly smooth Banach space, for some

p P p1,8q. There exists c ą 0 such that, for all x, y P X, all δ ą 0, and all weakly null

sequence pxnq
8
n“1 in BX , there exists n0 P N such that, for all n ą n0, we have

u` δ1{p
}v}xn P Midpx, y, cδq,

where u “ 1
2
px` yq, and v “ 1

2
px´ yq.

Proof. By Proposition 1.3 of [DimGoJ], there exists c ą 0 such that, for all weakly null

sequence pxnq
8
n“1 in BX , we have

lim sup
n

}x` xn}
p
ď }x}p ` c ¨ lim sup

n
}xn}

p.

Fix such sequence. As }x´ pu` δ1{p}v}xnq} “ }v ´ δ
1{p}v}xn}, we get

lim sup
n

›

›

›
x´

´

u` δ1{p
}v}xn

¯
›

›

›

p

ď p1` cδq}v}p.

Therefore, as p1 ` cδq1{p ă 1 ` cδ, there exists n0 P N such that }x ´ pu ` δ1{p}v}xnq} ď

p1` cδq}v}, for all n ą n0. Similarly, we can assume that }y´pu` δ1{p}v}xnq} ď p1` cδq}v},

for all n ą n0.

The following lemma is a simple modification of Lemma 3.3 of [KaRa], or Lemma 1.6(ii)

of [JoLiS], so we omit its proof.
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Lemma 6.4.2. Suppose 1 ď p ă 8, and let X be Banach space with a 1-unconditional basis

penq
8
n“1 satisfying a lower `p-estimate with constant 1. For all x, y P X, and all δ ą 0, there

exists a compact subset K Ă X, such that

Midpx, y, δq Ă K ` 2δ1{p
}v}BX ,

where u “ 1
2
px` yq, and v “ 1

2
px´ yq.

For each s ą 0, let

Lipspfq “ sup
těs

ωf ptq

t
and Lip8pfq “ inf

są0
Lipspfq.

We will need the following proposition, which can be found in [KaRa] as Proposition 3.1.

Proposition 6.4.3. Let X be a Banach space and M be a metric space. Let f : X ÑM be

a coarse map with Lip8pfq ą 0. Then, for all ε, t ą 0, and all δ P p0, 1q, there exists x, y P X

with }x´ y} ą t such that

fpMidpx, y, δqq Ă Midpfpxq, fpyq, p1` εqδq.

The following lemma will play the same role in our settings as Proposition 3.5 did in

[KaRa].

Lemma 6.4.4. Let 1 ď q ă p. Let X be an asymptotically p-uniformly smooth Banach

space, and Y be a Banach space with a 1-unconditional basis satisfying a lower `q-estimate

with constant 1. Let f : X Ñ Y be a coarse map. Then, for any t ą 0, and any δ P p0, 1q,

there exists x P X, τ ą t, and a compact subset K Ă Y such that, for any weakly null

sequence pxnq
8
n“1 in BX , there exists n0 P N such that

fpx` τxnq P K ` δτBY , for all n ą n0.
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Proof. If Lip8pfq “ 0, then there exists τ ą t such that Lipτ pfq ă δ. Hence, ωf pτq ă δτ ,

and the result follows by letting x “ 0 and K “ tfp0qu. Indeed, if z P BX , we have

}fpτzq ´ fp0q} ď ωf p}τz}q ď ωf pτq ď δτ.

Assume Lip8pfq ą 0. In particular, C “ Lipspfq ą 0, for some s ą 0. Let c ą 0 be

given by Lemma 6.4.1 applied to X and p. As q ă p, we can pick ν P p0, 1q such that

2Cp2cq1{qν1{q´1{p ă δ. By Proposition 6.4.3, there exists u, v P X such that }u ´ v} ą

maxts, 2tν´1{pu and

fpMidpu, v, cνqq Ă Midpfpuq, fpvq, 2cνq.

Let x “ 1
2
pu ` vq, and τ “ ν1{p}1

2
pu ´ vq} (so τ ą t). Fix a weakly null sequence pxnq

8
n“1

in BX . Then, by Lemma 6.4.1, there exists n0 P N such that x ` τxn P Midpu, v, cνq, for all

n ą n0. So,

fpx` τxnq Ă fpMidpu, v, cνqq Ă Midpfpuq, fpvq, 2cνq,

for all n ą n0. Let K Ă Y be given by Lemma 6.4.2 applied to Y , fpuq, fpvq P Y , and 2cν.

So,

Midpfpuq, fpvq, 2cνq Ă K ` 2p2cq1{qν1{q }fpuq ´ fpvq}

2
BY .

As Lipspfq “ C, and as }u´ v} ą s, we have }fpuq ´ fpvq} ď C}u´ v} “ 2Cτν´1{p. Hence,

2p2cq1{qν1{q }fpuq ´ fpvq}

2
ď 2Cp2cq1{qν1{q´1{pτ ă δτ,

and we are done.

Remark 6.4.5. Lemma 6.4.4 remains valid if we only assume that X has an equivalent norm

with which X becomes asymptotically p-uniformly smooth. Indeed, let M ě 1 be such that

BpX,}¨}q Ă M ¨ BpX,|||¨|||q. Fix t ą 0, and δ P p0, 1q. Applying Lemma 6.4.4 to pX, ||| ¨ |||q with

t1 “M.t and δ1 “ δ{M , we obtain x P X, τ 1 ą t1, and a compact set K Ă Y . The result now
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follows by letting τ “ τ 1{M .

Theorem 6.4.6. Let 1 ď q1 ă p ă q2. Assume that

(i) X is an asymptotically p-uniformly smooth Banach space with the p-co-Banach-Saks

property, and it does not contain `1,

(ii) Y1 is a Banach space with a 1-unconditional basis satisfying a lower `q1-estimate with

constant 1, and

(iii) Y2 is a reflexive asymptotically q2-uniformly smooth Banach space.

Then X does not coarse Lipschitz embed into Y1 ‘ Y2.

Proof. Let Y1‘1 Y2 denote the space Y1‘Y2 endowed with the norm }py1, y2q} “ }y1}` }y2},

for all py1, y2q P Y1‘Y2. Assume f “ pf1, f2q : X Ñ Y1‘1Y2 is a coarse Lipschitz embedding.

As f is a coarse Lipschitz embedding, there exists C ą 0 such that ρf ptq ě C´1t ´ C, and

ωf2ptq ď Ct` C, for all t ą 0.

Fix k P N, and δ P p0, 1q. Then, by Lemma 6.4.4, there exists τ ą k, x P X, and a compact

subset K Ă Y1, such that, for any weakly null sequence pynq
8
n“1 in BX , there exists n0 P N,

such that

f1px` τynq P K ` δτBY1 ,

for all n ą n0.

As X does not contain `1, by Rosenthal’s `1-theorem, we can pick a normalized weakly null

sequence pxnq
8
n“1 in X, with infn‰m }xn ´ xm} ą 0. As X has the p-Banach-Saks property

(Proposition 6.1.2), there exists c ą 0 (independent of k) such that, by going to a subsequence

if necessary, we have

}xn1 ` . . .` xnk} ď ck1{p,

for all n1 ă . . . ă nk P N. Define a map ϕk,δ : GkpNq Ñ X by letting

ϕk,δpn1, . . . , nkq “ x`
τ

c
k´1{p

pxn1 ` . . .` xnkq,
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for all pn1, . . . , nkq P GkpNq.

As dppn1, . . . , nkq, pm1, . . . ,mkqq ď 1 implies }
řk
j“1 xnj ´

řk
j“1 xmj} ď 2, we have that

Lippf2 ˝ ϕk,δq ď 2τCk´1{pc´1 ` C. Therefore, by Theorem 6.2.3, there exists Mk,δ Ă N such

that

diampf2 ˝ ϕk,δpGkpMk,δqqq ď 2KτCk1{q2´1{pc´1
`KCk1{q2 ,

for some K ą 0 independent of k and δ.

Notice that, if pnj1, . . . , n
j
kq
8
j“1 is a sequence in GkpMk,δq, with njk ă nj`1

1 , for all j P N, then

pxnj1
` . . .` xnjk

q8j“1 is a weakly null sequence in ck1{p ¨BX . Therefore,

f1 ˝ ϕk,δpn
j
1, . . . , n

j
kq P K ` δτBY1 ,

for large enough j. This argument and standard Ramsey theory, gives us that, by passing to

a subsequence of Mk,δ, we can assume that, for all pn1, . . . , nkq P GkpMk,δq,

f1 ˝ ϕk,δpn1, . . . , nkq P K ` δτBY1 .

Therefore, asK is compact, by passing to a further subsequence, we can assume that diampf1˝

ϕk,δpGkpMk,δqqq ď 3δτ (see Lemma 4.1 of [KaRa]).

We have shown that, for all k P N, and all δ P p0, 1q, there exists a subsequence Mk,δ Ă N

such that

diampf ˝ ϕk,δpGkpMk,δqqq ď 2KτCk1{q2´1{pc´1
`KCk1{q2 ` 3δτ. (6.4.1)

We may assume that Mk`1,δ Ă Mk,δ, for all k P N, and all δ P p0, 1q. For each δ P p0, 1q, let

Mδ Ă N diagonalize the sequence pMk,δq
8
k“1.

As X has the p-co-Banach-Saks property, arguing similarly as in the proof of Theorem

6.3.1, we get that there exists d ą 0 (independent of k) such that, for all k P N, there exists
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n1 ă . . . ă n2k PMk,δ, such that

›

›

›

k
ÿ

j“1

pxn2j´1
´ xn2j

q

›

›

›
ě dk1{p.

Therefore, diampϕk,δpGkpMδqqq ě τd{c, which implies that

diampf ˝ ϕk,δpGkpMδqqq ě τdpcCq´1
´ C, (6.4.2)

for all k P N, and all δ P p0, 1q. So, Equation (6.4.1) and Equation (6.4.2) give us that

τdpcCq´1
´ C ď 2KτCk1{q2´1{pc´1

`KCk1{q2 ` 3δτ.

for all k P N, and all δ P p0, 1q. As τ ą k, this gives us that

dpcCq´1
´ Ck´1

ď 2KCk1{q2´1{pc´1
`KCk1{q2´1

` 3δ

for all k P N, and all δ P p0, 1q. As q2 ą p ą 1, by letting k Ñ 8 and δ Ñ 0, we get a

contradiction.

If T “ pT1, T2q : X Ñ Y1 ‘ Y2 is a linear isomorphic embedding, then either T1 : X Ñ Y1

or T2 : X Ñ Y2 is not strictly singular, i.e., Ti : X0 Ñ Yi is a linear isomorphic embedding,

for some infinite dimensional subspace X0 Ă X, and some i P t1, 2u. Is there an analog of

this result for coarse Lipschitz embeddings? Precisely, we ask the following.

Problem 6.4.7. Let X, Y1 and Y2 be Banach spaces and consider a coarse Lipschitz embed-

ding f “ pf1, f2q : X Ñ Y1‘ Y2. Is there an infinite dimensional subspace X0 Ă X such that

either f1 : X0 Ñ Y1 or f2 : X0 Ñ Y2 is a coarse Lipschitz embedding?

We can now prove Theorem 1.6.4, which will be essential in the proof of Theorem 1.6.5.

Proof of Theorem 1.6.4. Say m P t1, . . . , n ´ 1u is such that p P ppm, pm`1q (the other cases

have analogous proofs). Then pT pm`1 ‘ . . . ‘ T pnq`8 is reflexive (see [OScZs], Proposition
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5.3(b)). Also, it is easy to see that pT pm`1 ‘ . . . ‘ T pnq`8 is asymptotically pm`1-uniformly

smooth. By Theorem 6.4.6, it is enough to prove the following claim.

Claim: Fix ε ą 0 such that pm ` ε ă p. pT p1 ‘ . . .‘ T pmq`pm can be renormed so that it

has a 1-unconditional basis satisfying a lower `ppm`εq-estimate with constant 1.

For each k P N and p P r1,8q, denote by Pk “ P p
k : T p Ñ T p the projection on the first

k coordinates, and let Qk “ Id ´ Pk. By Proposition 5.6 of [JoLiS], there exists M P r1,8q

and N P N such that QNpT
pjq has an equivalent norm with ppj ` εq-concavity constant M ,

for all j P t1, . . . ,mu (precisely, the modified Tsirelson norm has this property, see [CSh] for

definition).

As the shift operator on the basis of T p is an isomorphism onto Q1pT
pq, we have that

T p – QkpT
pq, for all k P N, and all p P r1,8q. Therefore, it follows that pT p1 ‘ . . .‘ T pmq`pm

has an equivalent norm with ppm` εq-concavity constant M . By Proposition 1.d.8 of [LiTz],

we can assume that M “ 1. As a q-concave basis with constant 1 satisfies a lower `q-estimate

with constant 1, we are done.

Before given the proof of Theorem 1.6.5, we need a lemma. For that, we must introduce

some natation. Let p P p1,8q. A Banach space X is said to be as. Lp if there exists λ ě 1

so that for every n P N there is a finite codimensional subspace Y Ă X so that every n-

dimensional subspace of Y is contained in a subspace of X which is λ-isomorphic to Lppµq,

for some µ. As noticed in [JoLiS], Proposition 2.4.a, an as. Lp space is super-reflexive. Also,

the p-convexifications T p are as. Lp (see [JoLiS], page 440).

The following lemma, although not explicitily written, is contained in the proof of Propo-

sition 2.7 of [JoLiS]. For the convenience of the reader, we provide its proof here.

Lemma 6.4.8. Say 1 ă p1 ă . . . ă pn ă 8 and X “ Xp1 ‘ . . .‘Xpn, where Xpj is as. Lpj ,

for all j P t1, . . . , nu. Assume that Y is coarsely equivalent to X.

(i) Then there exists a separable Banach space W such that Y ‘W is Lipschitz equivalent

to
Àn

j“1pX
pj ‘ Lpjq.
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(ii) Moreover, if Y “ Y p1 ‘ . . . ‘ Y pn, where Y pj is as. Lpj , for all i P t1, . . . , nu, then
Àn

j“1pY
pj ‘ Lpjq is Lipschitz equivalent to

Àn
j“1pX

pj ‘ Lpjq.

Proof. Let Z be a Banach space and U be an ultrafilter on N. In order to simplify notation,

let ZU “ ZN{U , where ZN{U is the ultrapower of Z with respect to U . Notice that z P Z ÞÑ

pzq8n“1 P ZU is a linear isometric embedding. If Z is reflexive, Z is 1-complemented in the

ultrapower ZU (where the projection is given by pznq
8
n“1 P ZU ÞÑ w- limnPU zn P Z), and we

write ZU “ Z‘ZU ,0. Also, we have that pZ‘EqU “ ZU‘EU . We can now prove the lemma.

For simplicity, let us assume that n “ 2.

(i) Let U be a nonprincipal ultrafilter on N. As Y is coarsely equivalent to X, YU is

Lipschitz equivalent to XU “ Xp1
U ‘ Xp2

U (see [Ka2], proposition 1.6). As the spaces X
pj
U

are reflexive, using the separable complementation property for reflexive spaces (see [FiJoP],

Section 3), we can pick complemented separable subspaces W Ă YU ,0, and Xj,0 Ă X
pj
U ,0, for

j P t1, 2u, such that Y ‘W is Lipschitz equivalent to pXp1‘X1,0q‘pX
p2‘X2,0q. By enlarging

Xj,0 and W , if necessary, we can assume that Xj,0 “ Lpj , for j P t1, 2u (this follows from

Proposition 2.4.a of [JoLiS], Theorem I(ii) and Theorem III(b) of [LiRos]).

(ii) The same argument as why X1,0‘X2,0 can be enlarged so that X1,0‘X2,0 “ Lp1 ‘Lp2

gives us that W can also be assumed to be Lp1 ‘ Lp2 .

We can now prove Theorem 1.6.5. As mentioned in Section 1.2, Theorem 1.6.5 was proved

in [JoLiS] (Theorem 5.8) for the cases 1 ă p1 ă . . . ă pn ă 2 and 2 ă p1 ă . . . ă pn ă 8.

In our proof, Theorem 1.6.4 will play a similar role as Corollary 1.7 of [JoLiS] did in their

proof. Also, we use ideas in the proof of Theorem 5.3 of [KaRa] in order to unify the cases

1 ă p1 ă . . . ă pn ă 2 and 2 ă p1 ă . . . ă pn ă 8. In order to avoid an unnecessarily

extensive proof, we will only present the parts of the proof that require Theorem 1.6.4 above,

and therefore are different from what can be found in the present literature.

Sketch of the proof of Theorem 1.6.5. By Proposition 5.7 of [JoLiS], T p is uniformly equiva-
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lent to T p‘`p, for all p P r1,8q. So, the backwards direction follows. Let us prove the forward

direction. As uniform equivalence implies coarse equivalence, it is enough to assume that Y

is coarsely equivalent to X. By Theorem 1.6.4, Y does not contain `2. Let m P t1, . . . , n´1u

be such that 2 P ppm, pm`1q (if such m does not exist, the result simply follows from Theorem

5.8 of [JoLiS]).

Claim 1: X ‘
Àn

j“1 Lpj and Y ‘
Àn

j“1 Lpj are Lipschitz equivalent.

By Lemma 6.4.8(i), there exists a separable Banach space W so that Y ‘W is Lipschitz

equivalent to
Àn

j“1pT
pj ‘ Lpjq. Hence, the image of Y through this Lipschitz equivalence is

the range of a Lipschitz projection in
Àn

j“1pT
pj ‘Lpjq. Therefore, by Theorem 2.2 of [HeM],

we have that Y is isomorphic to a complemented subspace of
Àn

j“1pT
pj ‘Lpjq. Let A be this

isomorphic embedding. For each i P tm ` 1, . . . , nu, let πi : Y Ñ Lpi be the composition of

A with the projection
Àn

j“1pT
pj ‘ Lpjq Ñ Lpi . As Y does not contain `2, πi factors through

`pi (see [Jo1]). Hence, Y is isomorphic to a complemented subspace of

m
à

j“1

pT pj ‘ Lpjq ‘
n
à

j“m`1

pT pj ‘ `pjq.

As Z1 :“
Àm

j“1pT
pj ‘ Lpjq and Z2 :“

Àn
j“m`1pT

pj ‘ `pjq are totally incomparable (i.e.,

none of their infinite dimensional subspaces are isomorphic), Y – Y1 ‘ Y2, where Y1 and Y2

are complemented subspaces of Z1 and Z2, respectively (see [EWo], Theorem 3.5). Hence, Y ˚1

is complemented in Z˚1 . Notice that, as Y is coarsely equivalent to the super-reflexive space

X, Y is also super-reflexive (see [Ri], Theorem 1A). Hence, Y1 is super-reflexive, and so is Y ˚1 .

As Y1 has cotype 2 (see Remark 6.3.10) and Y ˚1 has nontrivial type (as Y ˚1 is super-reflexive),

it follows that Y ˚1 has type 2 (see the remark below Theorem 1 in [Pi]). So, Y ˚1 does not

contain a copy of `2. Indeed, otherwise Y ˚1 would contain a complemented copy of `2 (see

[Mau]), contradicting that Y1 does not contain a copy of `2.

Proceeding similarly as above and using that Y ˚1 does not contain `2, the main theorem of

[Jo1] implies that Y ˚1 is isomorphic to a complemented subspace of
Àm

j“1pT
pj˚ ‘ `p̃jq, where
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each p̃j is the conjugate of pj (i.e., 1{pj ` 1{p̃j “ 1). Therefore, Y1 embeds into
Àm

j“1pT
pj ‘

`pjq as a complemented subspace. This gives us that Y embeds into
Àn

j“1pT
pj ‘ `pjq as a

complemented subspace.

As the spaces pT pj ‘ `pjq
n
j“1 are totally incomparable, we can write Y as Yp1 ‘ . . . ‘ Ypn ,

where each Ypj is a complemented subspace of T pj ‘ `pj (see [EWo], Theorem 3.5) and it is

an as. Lpj (see [JoLiS], Lemma 2.5 and Proposition 2.7). By Lemma 6.4.8(ii), we have that

X ‘
Àn

j“1 Lpj and Y ‘
Àn

j“1 Lpj are Lipschitz equivalent.

Claim 2: There exists a quotient W of Lp1 ‘ . . .‘Lpn such that Y ‘W is isomorphic to

X ‘
Àn

j“1 Lpj .

The prove of Claim 2 is the same as the proof of the claim in Proposition 2.10 of [JoLiS],

so we do not present it here. Let us assume the claim and finish the proof. As X does not

contain any `s, every operator of X into ‘nj“1Lpj is strictly singular (see [KrMau], Theorem

II.2 and Theorem IV.1). Therefore, by [EWo] (or [LiTz], Theorem 2.c.13), Y – YX ‘ YL

and W – WX ‘WL, where YX and WX are complemented subspaces of X, YL and WL are

complemented subspaces of ‘nj“1Lpj , and X – YX‘WX . Proceeding as in the proof of Claim

1 above, we get that YL is complemented in ‘nj“1`pj . So, YL is either finite dimensional or

isomorphic to ‘jPF `pj , for some F Ă t1, . . . , nu.

Let us show that WX is finite dimensional. Suppose this is not the case. As W is a

quotient of ‘nj“1Lpj , and WX is complemented in W , we have that W ˚
X embeds into ‘nj“1Lp̃j ,

where each p̃j is the conjugate of pj. Therefore, it follows that W ˚
X must contain some `s

(see [KrMau], Theorem II.2 and Theorem IV.1). As W ˚
X embeds into X˚, and X˚ does not

contain any `s, this gives us a contradiction.

As X – YX ‘WX , and dimpWXq ă 8, we have that dimpX{YXq ă 8. Therefore, as X is

isomorphic to its hyperplanes, we conlude that YX – X. So, we are done.

Problem 6.4.9. Does Theorem 1.6.5 hold if 2 P tp1, . . . , pnu?

Problem 6.4.10. What can we say if a Banach space X is either coarsely or uniformly

equivalent to the Tsirelson space T?
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Remark 6.4.11. It is worth noticing that, using Remark 6.4.5 and adapting the proofs of

Theorem 5.5 and Theorem 5.7 of [KaRa] to our settings, one can show that p‘TpqTq does not

coarse Lipschitz embed into Tp ‘ Tq, for all p, q P r1,8q with p ‰ q.



Chapter 7

The isomorphism group of the Gurarij

space.

In this chapter, we study homeomorphic embeddings of Polish groups into the isometry

group of the Gurarij space, and how make sure those maps also preserve the large scale

geometry of the Polish group.

7.1 The Gurarij space

Let X and Y be Banach spaces, and let ε ą 0. We say that a linear map f : X Ñ Y is an

p1` εq-isomorphism if

p1` εq´1
}x} ă }fpxq} ă p1` εq}x},

for all x P X. As we saw in Chapter 1, a Banach space X is said to be a Gurarij space if for

all finite dimensional Banach spaces E Ă F , for all ε ą 0, and all linear isometry f : E Ñ X,

there exists an p1 ` εq-isomorphism g : F Ñ X extending f . W. Lusky was the first one to

show that the Gurarij space is unique up to isomorphism (see [Lu]). In [KuS], W. Kubis, and

S. Solecki gave an elementary prove of the uniqueness of the Gurarij space. In particular,

they showed the following (see [KuS], Theorem 1.1).

137
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Theorem 7.1.1. (W. Kubis, S. Solecki, 2013) Let G be the Gurarij space, and ε ą 0.

Let F Ă G be a finite dimensional subspace and f : F Ñ G be an p1`εq-isomorphism. Then,

there exists a linear surjective isometry g : GÑ G such that }gæF ´ f} ă ε.

7.2 Group of affine isometries.

If pX, dq is a metric space, we denote by IsopXq the group of isometries of X endowed

with the pointwise convergence topology. If X is a Banach space, we denote the group of

affine isometries of X by AffpXq, and endow AffpXq with the pointwise convergence topology.

Denote by IsoLpXq the closed subgroup of AffpXq consisting of the linear isometries of X.

As we saw in Section 4.2, by Mazur-Ulam’s theorem, every surjective isometry f : X Ñ X

is affine, i.e., there exists g P IsoLpXq, and x P X, such that fpyq “ gpyq ` x, for all y P X.

So, for a Banach space X, we have that AffpXq “ IsopXq. The group AffpXq can be seen as

the semi-direct product

AffpXq “ IsoLpXq ˙X,

where IsoLpXq ˙ X is the topological product space IsoLpXq ˆ X endowed with the group

operation pf, xq ˚ pg, yq “ pf ˝ g, x` fpyqq.

A homomorphism ϕ : H Ñ AffpXq can be seen as an affine isometric action α : H ñ X

with a linear part π : H ñ X and a cocycle b : H Ñ X. That is, π : H ñ X is a linear

isometric action on X, b is a map satisfying the cocycle equation for the action π, i.e.,

bphgq “ πphqpbpgqq ` bphq,

for all h, g P H, and αphqpxq “ πphqpxq ` bphq, for all h P H, and all x P X.

If IsoLpXq has property (OB), then AffpXq is (OB) generated. Indeed, by Example 39

of [Ro3], BX has property (OB) relative to pX,`q. Hence, as the product of two subsets

A,B Ă G with property (OB) relative to a Polish proup G still has property (OB) relative
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to G (see [Ro3], Lemma 7), we have that

IsoLpXq ˆBX “

´

tIdu ˆBX

¯

˚

´

IsoLpXq ˆ t0u
¯

has property (OB) relative to AffpXq, if IsoLpXq has property (OB). As IsoLpXq ˆ BX

generates AffpXq, it follows that AffpXq is (OB) generated. C. Rosendal proved the following

in [Ro3], page 21.

Lemma 7.2.1. If IsoLpXq has property (OB), then the map g P AffpXq ÞÑ gpxq P X is a

coarse Lipschitz equivalence, for all x P X.

7.3 Approximately oligomorphic subgroups.

In this section, we prove a lemma which will give us a more Banach space theoretical

characterization of approximately oligomorphic subgroups G ď IsoLpXq, where X is a Banach

space. First, we need a couple of definitions.

Let pX, } ¨ }q be a Banach space. For n P N, we view Bn
X as a metric space with the

supremum metric } ¨ ´ ¨ }8 induced by } ¨ }. The natural action of a subgroup G ď IsoLpXq

on X extends to an action on Bn
X coordinatewise, i.e., if x̄ “ px1, ..., xnq P X

n, and g P G, we

have g ¨ x̄ “ pgpx1q, ..., gpxnqq. For a subset A Ă Bn
X , we write G ¨ A “ tg ¨ ā | g P G, ā P Au.

Definition 7.3.1. Let pX, } ¨ }q be a normed space and let G ď IsoLpXq. We say that G is

approximately oligomorphic if, for all n P N, and all ε ą 0, there exist a finite set A Ă Bn
X

such that G ¨ A is ε-dense in Bn
X .

For a metric space pX, dq, let KpXq “ tK Ă X | K is compactu. If d is bounded, we can

define a metric on KpXq, called Hausdorff metric, by saying that, given K,L P KpXq,

dHpK,Lq ă εô K Ă BpL, εq and L Ă BpK, εq,

for all ε ě 0. For more on Hausdorff metric see [Ke].
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A normalized basis txiu
n
i“1 of an n-dimensional Banach space X is called a Auerbach basis if

there exists a normalized sequence of biorthogonal vectors for txiu
n
i“1, i.e., there are tx˚i u

n
i“1

in X˚ such that x˚i pxjq “ δij, and }xi} “ }x˚i } “ 1, for all j, i P t1, ..., nu. By Lemma

2.22 of [Os2], every finite dimensional Banach space has an Auerbach basis. If txiu
n
i“1 is an

Auerbach basis for X, its basic constant is at most n ´ 1. Indeed, for all x P X, we have

x “
řn
i“1 x

˚
i pxqxi. Hence, for m ă n, we have

›

›

›

m
ÿ

i“1

x˚i pxqxi

›

›

›
ď

m
ÿ

i“1

|x˚i pxq| ď pn´ 1q ¨ }x}.

In particular, if txiu
n
i“1 is an Auerbach basis for its span, ε P p0, 1{2q, and tyiu

n
i“1 is such that

}xi ´ yi} ă ε{2n2, for all i P t1, ..., nu, then tyiu
n
i“1 is also a basis for its span, and its basic

constant is at most 3n (see [AlKa], Theorem 1.3.9).

A topological group G is called Roelcke precompact if for any open neighborhood of the

identity V there exists a finite set F such that G “ V FV .

Lemma 7.3.2. Consider a Banach space X and a subgroup G ď IsoLpXq. Then, the follow-

ing are equivalent.

(i) @n P N, @ε ą 0, there exist finite dimensional subspaces F1, ..., Fk Ă X such that, for

all subspace E Ă X with dimension at most n, there exists i P t1, ..., ku and g P G such

that dHpBE, BgpFiqq ă ε.

(ii) G is approximately oligomorphic.

(iii) G is Roelcke precompact.

In particular, in the point of view of the model theory of metric structures, if G “ IsoLpXq,

(i) holds for G if and only if the theory of BX , i.e., ThpBXq, is ω-categorical.

A word or two on the last statement of the lemma above is neeeded. Informally speaking,

the theory of BX , i.e., ThpBXq, consists of all the “sentences” which are true in BX , and the
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fact that ThpBXq is ω-categorical means that any other bounded metric space M such that

every “sentence” which is true in BX is also true in M is isometric to BX . As model theory

is not the focus of this dissertation, we refer to [Sch] for more details and precise definitions

regarding the model theory of metric structures, ThpBXq, and ω-categoricity.

Proof of Lemma 7.3.2. (i)ñ(ii) Fix n P N, and ε ą 0. By (i), we can pick F1, ..., Fk such

that for all subspace E Ă X with dimension at most n, there exists i P t1, ..., ku and g P G

such that dHpBE, BgpFiqq ă ε{2. For each i P t1, ..., ku, pick a finite ε{2-net Aj of Bn
Fj

. Set

A “ Yki“1Aj, so A is finite and A Ă Bn
X .

Let x̄ P Bn
X , and set E “ spantx̄u. Then dim E ď n, so there exists i P t1, ..., ku and g P G

such that dHpBE, BgpFiqq ă ε{2. Pick z̄ P Bn
gpFiq

such that }x̄ ´ z̄}8 ă ε{2, and pick ȳ P A

such that }g´1 ¨ z̄ ´ ȳ}8 ă ε{2. Hence, }x̄´ g ¨ ȳ} ă ε, so G ¨ A is ε-dense in Bn
X .

(ii)ñ (i) Fix n P N, and ε P p0, 1{2q. By (ii), we can pick a finite subset A Ă Bn
X such that,

for all x̄ P Bn
X there exists ȳ P A and g P G such that }x̄´ g ¨ ȳ}8 ă ε{6n2. Let F1, ..., Fk Ă X

be given by the linear spans of all the n-tuples of A.

Let E Ă X be an m-dimensional subspace, with m ď n. By Auerbach’s theorem, E

has an Auerbach basis, say x1, ..., xm. Let x̄ “ px1, ..., xm, 0, ..., 0q P B
n
X , and pick ȳ P A

and g P G such that }x̄ ´ g ¨ ȳ}8 ă ε{6n2. Without loss of generality, we can assume that

ȳ “ py1, ..., ym, 0, ..., 0q. Pick i P t1, ..., ku such that Fi “ spantȳu. In particular, y1, ..., ym is

a basis for Fi, with basic constant at most 3n.

Let us show that dHpBE, BgpFiqq ă ε. Pick x P BE, so x “
řm
j“1 x

˚
j pxqxj. Let y “

řm
j“1 x

˚
j pxqgpyjq, and y1 “ y{p1` ε{2q. Then

}x´ y} ď
m
ÿ

j“1

|x˚j pxq| ¨ }xj ´ gpyjq} ă
ε

6n2
¨m ¨ }x} ă

ε

2
,

so }y} ă 1` ε{2. Hence, }y1} P BgpFiq, and, as }y ´ y1} ă ε{2, we have that }x´ y1} ă ε. On

the other hand, let y P BgpFiq, say y “
řm
j“1 ajgpyjq. Let x “

řm
j“1 ajxj, and x1 “ x{p1`ε{2q.
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Then

}y ´ x} ď
m
ÿ

j“1

|aj| ¨ }gpyjq ´ xj} ă
ε

6n2
¨m ¨ 3n ¨ }y} ă

ε

2
,

so }x} ă 1 ` ε{2. Hence }x1} P BE, and, as }x ´ x1} ă ε{2, we have that }y ´ x1} ă ε. This

concludes the proof of the lemma.

The equivalence (ii)ô(iii) is given by Proposition 1.22 of [Ro2]. The last statement of the

Lemma follows from Theorem 4.25 of [Sch].

7.4 Proof of the Theorems.

A minor modification of Theorem 5.2 of [Ro1], gives us the following.

Theorem 7.4.1. (C. Rosendal, 2009) Let pX, } ¨ }q be a Banach space and G be a closed

subgroup of IsoLpXq. If G is approximately oligomorphic, then G has property (OB).

Theorem 7.4.2. IsoLpGq is approximately oligomorphic, Roeckle precompact, and ThpBGq

is ω-categorical. In particular, IsoLpGq has property (OB).

Proof. For this, we only need to show that (i) of Lemma 7.3.2 holds for G “ IsoLpGq. Fix

n P N, and ε ą 0. For each m P N, let Fm be the set of equivalence classes of m-dimensional

Banach spaces with respect to the equivalence relation of isometry between Banach spaces.

Let D be the Banach-Mazur distance on Fm. Then pFm, Dq is a compact metric space,

for all m P N. Let ε1 “ logp1 ` ε2q. There exist finitely many finite dimensional Banach

spaces F1, ..., Fk such that for any m-dimensional Banach space E, with m ď n, there exists

i P t1, ..., ku such that DpE,Fiq ă ε1. As the Gurarij space is isometrically universal for all

separable Banach spaces, we can assume that F1, ..., Fk Ă G.

Let E Ă G be an m-dimensional subspace, with m ď n. Pick i P t1, ..., ku such that

DpE,Fiq ă ε. Let f : Fi Ñ E be an p1` ε2q-isomorphism, for some ε2 ą 0 such that logp1`

ε2q
2 ă ε1 (so ε2 ă ε). By Theorem 7.1.1, there exists g P IsoLpGq such that }gæFj ´ f} ă ε2.

Clearly, dHpBE, BgpFiqq ă ε2, and we are done.
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Proof of Theorem 1.7.2. This follows from Theorem 7.4.2, Lemma 7.2.1 and the discussion

preceding Lemma 7.2.1.

Definition 7.4.3. Let X and Y be Banach spaces. We say that a linear isometric embedding

i : X ãÑ Y is a g-embedding if there exists a continuous homomorphism Θ : IsoLpXq Ñ

IsoLpY q such that Θpgqpipxqq “ ipgpxqq, for all g P IsoLpXq, and all x P X.

Considering the notation of Definition 7.4.3, let i´1 : Impiq Ă Y Ñ X be the inverse of

the linear isometric embedding i : X ãÑ Y . Notice that, as the restriction map g P ImpΘq ÞÑ

i´1 ˝ g ˝ i P IsoLpXq is continuous, the map Θ is automatically a homeomorphic embedding.

Proof of Theorem 1.7.3 and Theorem 1.7.4. LetH be a separable metrizable topological group,

and pick a compatible left-invariant metric d on H. If H is locally (OB), we also assume that

d is metrically proper, and if H is (OB) generated, we assume that d is maximal.

Consider the Banach space ÆpH, dq, i.e., the the Arens-Eells space associated to pH, dq

(see [Ro3], Section 3.1, for a precise definition). By Theorem 45 of [Ro3], there exists a

continuous homomorphism α : H Ñ AffpÆpH, dqq such that

}αpgqp0q ´ αphqp0q} “ dpg, hq,

for all h, g P H. So, α : H Ñ AffpÆpH, dqq is also a homeomorphic embedding.

By Theorem 3.10 of [Y], there exists a linear g-embedding i : ÆpH, dq ãÑ G. Let Θ :

AffpÆpH, dqq Ñ AffpGq be as in Definition 7.4.3. Define ϕ : H Ñ AffpGq by ϕ “ Θ ˝ α,

so ϕ is a homorphism and a homeomorphic embedding. Then g P H ÞÑ ϕpgqp0q P G is an
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isometric embedding of pH, dq into G. Indeed, for all g, h P H, we have

}ϕpgqp0q ´ ϕphqp0q} “ }Θpαpgqqp0q ´Θpαphqqp0q}

“ }ipαpgqp0qq ´ ipαphqp0qq}

“ }αpgqp0q ´ αphqp0q}

“ dpg, hq.

Therefore, as the map f P AffpGq ÞÑ fp0q P G is a coarse Lipschitz equivalence (Theorem

1.7.2), the map ϕ is a coarse Lipschitz embedding of pH, dq into AffpGq. This completes the

proof.

At last, let us prove Corollary 1.7.5.

Proof of Corollary 1.7.5. By Theorem 1.7.2, AffpGq has property (OB). By [Lu] (see the

theorem and Remark (ii) in page 633), pG, }¨}q is almost transitive, i.e., the action IsoLpGqñ

G induces a dense orbit on the unit sphere of G. Hence, by Proposition 70 and Proposition

79 of [Ro4], the existence of an isometric action AffpGqñM with an unbounded orbit gives

us that G maps into M by a coarse solvent map.
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de Mathématiques de la SMC. Springer, New York, 2011.

[FiJo] T. Figiel, and W. B. Johnson, A uniformly convex Banach space which contains no

`p, Compositio Math. 29 (1974), 179-190.

[FiJoP] T. Figiel, W. B. Johnson, and A. Pe lczyński, Some approximation properties of
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