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SUMMARY

A large variety of modern applications including autonomous cars, energy systems and med-

ical devices are referred to as Cyber-Physical Systems (CPSs). Runtime monitoring of CPSs

is an important method to verify if an execution of the system violates a given correctness

property de�ned over the system state. Regarding safety properties of which the violation can

cause disastrous consequences, an alarm raised timely allows mitigation or even corrective ac-

tion to take before the disastrous consequences. A threshold based monitor was proposed in our

previous work. It evaluates the rejection probability, which is the probability that the system

is in one of the states that violate the property, against a prede�ned threshold. The evolution

of property automata, which model the correctness properties, is driven by the internal state

of the Probabilistic Hybrid Automaton (PHA), which is the mathematical dynamical model of

the CPS. Therefore, the belief propagation is the core technique in this threshold based moni-

tor. Particle Filter (PF), an Monte Carlo implementation of Bayes Filter, is employed for the

estimation/belief propagation of the internal hybrid state.

However, for one class of CPS of our interest which consist of multiple concurrent compo-

nents, existing particle �ltering methods are often ine�ective due to the state explosion and lead

to particle depletion. Associated with the local and link variables, which are formally de�ned

in concurrent probabilistic hybrid automata (cPHA), the interaction among concurrent subsys-

tems is studied. We focus on a special type of concurrency, locally parallel operation where the

state explosion would occur. Then, we propose a new particle �ltering approach, hierarchical

ix



SUMMARY (Continued)

particle �lter, to reduce the computational complexity in the mode of locally parallel operation

by decoupling the local variables in subsystems. A train example demonstrate the e�ectiveness

and performance of the proposed algorithm.

An important application of runtime monitoring is Fault Detection and Diagnosis (FDD). It

extends the the faults studied in FDD to a more general form, i.e., the violation of properties.

In the proposed property-based fault detection and diagnosis (PB-FDD), hierarchical faults

are de�ned as system level faults and component level faults. Furthermore, the causes for

particle inconsistency which would fail the belief propagation are further studied. Besides the

particle depletion occurred during particle propagation step in PF, another hypothesis is system

model inconsistency, which corresponds to an unknown component level fault. Based on the

distribution of the importance weights in PF, two hypothesis tests are formalized to �rst detect

particle inconsistency and further diagnose the causes. The application of PB-FDD on an

automotive project shows the practical meaning of the proposed framework in industrial product

veri�cation.

x



CHAPTER 1

INTRODUCTION

(Parts of) this chapter was previously published as Sistla, A. Prasad and �efran, Milo² and

Feng, Yao, "Runtime Monitoring of Stochastic Cyber-Physical Systems with Hybrid State",

Runtime Veri�cation (Springer Berlin Heidelberg, 2012), pp. 276--293 and Sistla, A. Prasad

and �efran, Milo² and Feng, Yao, "Monitorability of stochastic dynamical systems", in Pro-

ceedings of the 23rd international conference on Computer aided veri�cation (Berlin, Heidelberg:

Springer-Verlag, 2011), pp. 720--736.

Autonomous cars, energy systems and medical devices are examples of systems that integrate

computation, communication and control; they are commonly called Cyber-Physical Systems

(CPSs). CPSs have attracted signi�cant attention in the research community. A variety of

applications and subjects are promising to develop the technology to transform our world [1].

According to the National Science Foundation, some important research applications in CPSs

are �systems that respond more quickly (e.g., autonomous collision avoidance), are more precise

(e.g., robotic surgery and nano-tolerance manufacturing), work in dangerous or inaccessible

environments (e.g., autonomous systems for search and rescue, �re�ghting, and exploration),

provide large-scale, distributed coordination (e.g., automated tra�c control), are highly e�cient

(e.g., zero-net energy buildings), augment human capabilities, and enhance societal well-being

(e.g., assistive technologies and ubiquitous health care monitoring and delivery)� [2].

1
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One important class of CPSs are safety-critical cyber-physical systems. Important applica-

tions of the safety-critical CPSs include automobiles, aircraft, medical devices, robots and more,

since failure can have catastrophic consequences. They are often complex systems that consist

of subsystems/components whose operation is coordinated and integrated.

As a CPS evolves, its high-level behavior often changes in response to the environment

or an external signal. Such changes are often considered to correspond to di�erent modes

of operation. Formally, modes can be associated with integer-valued (discrete) states whose

evolution is governed by an automaton (with �nite or countable number of states), while in each

mode the physical system is described by a set of real-valued state variables whose evolution

is governed by a set of di�erential/di�erence equations. Hybrid automata [3, 4] can be used

to describe such systems. However, it is often necessary to capture the stochastic nature of

the CPS evolution in the presence of noise and disturbances. Probabilistic hybrid automata

(PHA) [5�7] have been proposed to describe such stochastic CPSs.

For safety-critical CPSs, the speci�cations that focus on the safety and reliability are safety

speci�cations. For such systems, it is therefore necessary to verify that they do not violate

desirable safety speci�cations. Formal veri�cation of safety speci�cations has been shown to be

undecidable for systems modeled as hybrid automata [8]. Testing can increase the con�dence

in a system design, but cannot guarantee its correctness. Runtime monitoring is an alternative

way to testing or veri�cation.

A monitor observes the inputs and outputs of the system and checks whether its behavior is

consistent with the expected behavior. One advantage of monitors is the easy implementation
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in principle. Also, there are many factors in the system design process and in the system imple-

mentation that might lead to faulty behavior. Another important advantage of monitors is that

they can be designed independently of both the speci�cs of the design and the implementation.

They are thus often able to detect such faults.

Safety speci�cations are typically described by safety properties and liveness properties [9,10].

These properties are expressed as formulas in an appropriate logic formalism such as Linear

Temporal Logic (LTL) or equivalently, as automata [11] speci�ed on the in�nite sequences of

the states of the system.

In [12], we presented a runtime monitoring approach for safety-critical CPSs and introduced

so-called threshold based monitor. The decision to reject a system execution α with respect to

a property was based on the rejection probability � the probability that the system is in one of

the states that violate the property. Particle Filters (PFs) were employed to estimate the lower

bound on the rejection probability. A PF is the sequential Monte Carlo implementation of a

Bayes �lter [13], a recursive state estimation/belief propagation algorithm. At each time step,

like the Bayes �lter algorithm, PF algorithm consists of two steps, prediction and correction.

In the prediction step, a set of particles at time t is generated from the set of particles at time

t − 1 using the system evolution model. In the correction step, the observation model is used

to make the distribution of the particle set consistent with the measured output.

The performance of a PF is inherently limited by the statistical nature of the representation

of the belief distribution. In monitoring, the performance of the monitor critically depends on

the performance of the PF. In this thesis, we focus on a phenomenon that may cause the PF
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estimation � and thus monitor � to fail, particle inconsistency. Particle inconsistency can occur

during the prediction step when no particles are generated that can adequately describe the

behavior of the system suggested by the measured output. In the case of CPS with several

modes, particle inconsistency would occur if none of the particles generated in the prediction

step would correspond to the true mode of the system.

There are multiple causes of particle inconsistency in CPSs. One possibility is particle

propagation depletion, and the other possibility is system model inconsistency. In the case of

particle propagation depletion, a critical discrete transition in the system model or a possible

trajectory of the continuous state is not captured by any particle in the predicted set. It may

occur, for example, if the discrete transition has very low probability, or because a limited

number of particles can not cover a large state space. In the case of system model inconsistency,

the system model does not su�ciently describe the actual system behavior so no particle can

correctly keep track of the actual state.

We show that in certain situations we can improve the PF algorithm to prevent particle

inconsistency. For example, in monitoring a concurrent CPS with N components where the

state space can be exponential in N , particle propagation depletion is likely to happen because

the number of particles is inherently limited. By modeling the interaction among components

represented as subsystems, we can explore di�erent types of concurrency in the subsystem

operation. In turn, we identify the type of concurrency that would result in state space explosion

and propose a new algorithm that improves the performance of the particle �lter.
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Runtime monitoring is a rather general procedure that can be used beyond guaranteeing

safety. An application of great industrial relevance that is extensively studied in this thesis

is fault detection and diagnosis (FDD). In this case, the violation of the desired properties in

monitoring can be mapped to faults in FDD, and the decision to reject a system execution can

be interpreted as the detection of a fault. We call this application of monitoring Property-Based

FDD (PB-FDD).

The faults in PB-FDD are de�ned at two levels: system level and component level. Compared

with existing fault detection algorithms which rely on explicit modeling of faults described as

violations of range constraints, PB-FDD describes the system level faults using a set of properties

which are independent of the system model. This allows us to study much more complex system

level faults that involve interactions between di�erent parts of the system and timing constraints.

The component level faults instead speci�cally identify possible causes of the system level faults

at the component level; they are included in the model of each subsystem. By structuring the

faults in this way, the fault can be detected when a system level fault speci�cation is violated.

But furthermore, by identifying which component level fault has been violated, the fault can

also be diagnosed.

The fault detection algorithm in PB-FDD is based on the threshold based monitoring al-

gorithm that uses PF to evaluate the rejection probability. So, particle inconsistency is still

a challenge in PB-FDD. However, one of the possible causes, system model inconsistency, has

special meaning in the context of FDD.
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Most model-based fault detection techniques assume the system model as well as the fault

model are well established with the correct operational parameters and have su�cient knowledge

of the environment where the system operates. However, every system may fail unexpectedly,

even carefully designed and tested systems [14]. One reason for this is that physical components

degrade over time. Another is that the computational process rarely has complete knowledge of

the situations that the physical components may encounter [15]. For example, in the automotive

industry, Failure Mode and E�ect Analysis (FMEA) is performed to guarantee the reliability

of the system. FMEA is a systematic analysis of the failure modes, and its e�ect, cause and

control strategy. It provides good knowledge of faults/failures, but it still does not guarantee

the completeness of the analysis. Moreover, an unexpected fault may be related to a design

defect that requires additional analysis to diagnose.

As described, the diagnosis of an unexpected fault is an important part in FDD of practical

signi�cance. However, by its de�nition, an unexpected fault is not explicitly modeled and is

therefore di�cult to diagnose. In PB-FDD, the unexpected faults are described as unknown

component level faults. The occurrence of an unexpected component level fault would lead

to particle inconsistency in PF due to system model inconsistency. Therefore, we propose

a formal framework to detect such particle inconsistency and thus unknown component level

faults through hypothesis testing.

1.1 Related Work

(Parts of) this chapter was previously published as Sistla, A. Prasad and �efran, Milo² and

Feng, Yao, "Runtime Monitoring of Stochastic Cyber-Physical Systems with Hybrid State",
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in Khurshid, Sarfraz and Sen, Koushik, ed., Runtime Veri�cation (Springer Berlin Heidelberg,

2012), pp. 276--293 and Sistla, A. Prasad and �efran, Milo² and Feng, Yao, "Monitorability of

stochastic dynamical systems", in Proceedings of the 23rd international conference on Computer

aided veri�cation (Berlin, Heidelberg: Springer-Verlag, 2011), pp. 720--736.

Fault detection and diagnosis is a well established subject (see e.g. textbooks [16,17]) span-

ning a variety of disciplines ranging from signal processing, to control and Arti�cial Intelligence

(AI). In recent years, a number of researchers have developed approaches for fault detection

and diagnosis of hybrid systems. A problem that has been extensively studied is monitoring

and diagnosis of hybrid automata [15, 18�25]. Basically, it is to detect when a fail state of the

automaton is reached. Similar work has been done in the AI community on failure detection

and recovery from failures using Hidden Markov models [26]. In most cases, these works employ

techniques that depend on the speci�c possible modes of failure and require the system to be

monitored for correct functioning.

There has been much work done in the literature on monitoring violations of safety properties

in distributed systems, for example [27]. This work assumes that it can fully observe the system

state and it instruments the program with commands to gather its state information and use

it for monitoring. In contrast, we assume that the system is not directly observable. The

works [28,29] consider monitoring non-hybrid systems whose states are not observable. In these

works, the monitored property refers to the output values and not the system state variables,

which is required for complex robot systems. A method for monitoring and checking quantitative

and probabilistic properties of real-time systems has been given in [30, 31]. These works take
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speci�cations in a probabilistic temporal logic (called CSL) and monitor for its satisfaction.

The probabilities are deduced from the repeated occurrence of events in a computation. The

work presented in [32] considers monitoring interfaces for faults using game-theoretic framework.

Run-time monitoring is used to verify that the interface has a winning strategy. Conservative

run time monitors were proposed in [33, 34]. In this scheme, one identi�es a safety property

that implies the given property f (in general, f is the intersection/conjunction of a safety and

a liveness property). Monitoring of programs modeled as Hidden Markov Models subject to

observations has been studied in [35]. None of these works is intended for monitoring of hybrid

systems.

A wealth of literature is available for the modeling and analysis of hybrid systems and we

refer the reader to the overview articles [36,37] and the books [38,39]. A number of models were

proposed for stochastic hybrid system and introduced di�erent types of randomness. Stochastic

hybrid system proposed by Hu [40] introduced stochastic di�erential equations (SDE) in the

evolution of continuous state, and the discrete transitions are deterministic speci�ed by a guard

function on the continuous state. A piecewise deterministic Markov Process [5] has deterministic

continuous state evolution in each discrete state, but assigns a stochastic transition frequency

for transitions between discrete states. Switching di�usion processes [41] combine SDE and

controlled Markov Chain to capture the randomness both in continuous and discrete states.

Several review papers [6, 7, 42] list and compare a variety types of stochastic hybrid system

models. In monitoring of such systems, safety requirements are described by a set of system

states which are permissible, or equivalently, by a set of system states that are forbidden. A
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closely related problem is checking liveness properties, where in general it is required that a

set of states is visited in�nitely often. Formally, safety and liveness properties can be described

using temporal logic [43,44]. Safety and liveness veri�cation thus becomes a veri�cation problem

for a hybrid automaton modeling the robotic system [8, 45]. It was shown that except for the

simplest hybrid automata, this veri�cation problem is undecidable [8, 46].

Traditional model based fault diagnosis techniques have been extended for hybrid systems

in [47�50]. In these works it is typically assumed that the system is observable, and that dif-

ferent discrete modes can be distinguished (the system is discrete-mode observable [22]), and

that switching between di�erent modes is slow enough that the correct mode can be precisely

identi�ed. But none of these works address the general problem of monitoring system behaviors

against speci�cations given in an expressive formal system such as the hybrid automata. Fur-

thermore, they do not address the problem of monitoring liveness properties, and they can not

deal with systems where the evolution of discrete modes is uncertain.

For stochastic hybrid systems, one important approach used in FDD is hybrid state esti-

mation [15, 24, 51�53]. In these works, multiple mode estimation approach [51, 53, 54] applies a

bank of �lters on each discrete mode, and particle �lters [24, 55�57] are used to handle more

general estimation problems with less restrictions of the system model. However, both methods

require large computational resources for complex systems. To improve the performance of esti-

mation, [24] proposed Interacting Multiple Model (IMM) particle �lter which combines particle

�ltering with multiple model approach. Rao-Blackwellised Particle Filter (RBPF) [55, 58, 59]

combines particle �ltering with Kalman �lter, an optimal �lter for �nite-dimensional linear sys-
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tems to achieve better accuracy . Gaussian Particle Filter (GPF) [56] looks one-step ahead

to make the algorithm computationally e�cient. Several adaptive particle �lters [60�62] are

proposed to adapt the number of particle and the proposal distribution at each iteration. These

works all tried to improve the performance of particle �lters in general. Our work targets on

a speci�c weakness of particle �lters which is not completely solved using these proposed ap-

proaches. One closely related work is [52]. A concurrent hybrid system, which is also a focus

in this thesis, is modeled and analyzed in this work. The interconnection among components in

the concurrent system is represented by a causal graph and by partitioning the causal graph,

the �lter used on the whole causal graph is reduced to multiple �lters to individual pieces from

the partition.

FDD approaches with unknown faults are of interest in many works for the past several

decades and we refer the readers to some surveys papers [63, 64]. It is typically assumed that

the unknown disturbances are structured as parameter changes or additive noises on the nominal

system model and the residual is generated such that it is not sensitive to the unknown faults.

However, unknown faults could be the targeted concern in diagnosis, i.e., the occurrence of

unknown faults needs to be detected. There works are mainly on the isolation of the unknown

faults rather than diagnosis.

1.2 Contributions

The aim of this work is to propose a fault detection and diagnosis strategy for safety-critical

CPSs. Particle �lter that is employed as an e�cient tool is studied as the core part of the work.

The main contributions are as follows:
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• A concurrent PHA (cPHA) with subsystems is proposed to model a concurrent CPS, and

di�erent types of concurrency in subsystem operation are studied with notions of local

and link variables.

• A novel PF, hierarchical PF with reduced complexity, is proposed when the cPHA is

running in a speci�c type of concurrency, locally parallel operation, which introduces

exponential complexity using the classical PF algorithm. The e�ectiveness of the algorithm

is shown in a simulated train example.

• The notions of system level faults and component level faults are proposed and modeled

according to the scopes of the system requirements and component requirements, respec-

tively. The de�nition of the system level faults introduces a general way to describe a

fault without being referred to a nominal system model.

• Hypothesis testing is formalized to detect particle inconsistency and further system model

inconsistency using the importance weights in PF algorithm.



CHAPTER 2

PRELIMINARIES

2.1 State and State variable

The state variables of a dynamical system [65] are a smallest ordered set of variables x such

that given the value of the variables at t1, the values of the variables at any t > t1 can be

determined using a system model. A possible value of the state variables is called a state. At

each time t, the value of the state variables, that is, the state, is denoted by xt.

In stochastic dynamical systems, the evolution of the state can be described by stochastic

di�erential/di�erence equations. The state xt is a realization of xt at time t whose probability

distribution function is p(xt).

2.2 State-Space Model

The state space representation of a discrete-time, time-invariant stochastic dynamical system

is given by the following equations [65]:

xt+1 = f(xt, ut+1) + wx,t (2.1)

yt = g(xt, ut) + wy,t (2.2)

where xt is the state, ut is the input (value of the input variables u) and yt is the output (value of

the output variables y), respectively, at time t; {wx,t} and {wy,t} are generated by sequences of

12
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independent identically-distributed (i.i.d.) random variables that are independent of the initial

condition; the mappings f and h are time-invariant and continuous in x and u.

A dynamical system is autonomous [66] if there are no independent input variables u.

2.3 Bayes Filter

2.3.1 Bayes Rule

Considering the random variables a and b de�ned on R, Bayes rule is stated by the equation

[67]:

p(a|b) =
p(b|a)p(a)

p(b)
(2.3)

In Bayesian applications, p(a|b) is the posterior distribution of a given b = b, and p(a) is the

prior distribution of a, and p(b|a) is the likelihood function, and p(b) is probability that b = b.

Consider a more general form of Bayes rule given an additional variable c, we have

p(a|b, c) =
p(b|a, c)p(a|c)

p(b|c) (2.4)

2.3.2 Bayes Rule in Recursive State Estimation

The stochastic dynamical system model has two parts: the evolution model described by (2.1)

and the observation model described by (2.2). Equivalently, the equations give the conditional

distributions: 



p(xt|xt−1, ut)

p(yt|xt, ut)
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Both models are assumed Markovian, i.e.,

p(xt|Xt−1, Ut, Yt−1) = p(xt|xt−1, ut) (2.5)

p(yt|Xt, Ut, Yt−1) = p(yt|xt, ut) (2.6)

whereXt−1 = {x1, . . . , xt−1}, Ut−1 = {u1, . . . , ut−1} and Yt−1 = {y1, . . . , yt−1} are the sequences

of states, input and output, respectively. In other word, in the evolution model, given xt−1 and

ut−1, xt is conditionally independent of all the other history states and input; similarly, for the

observation model, given xt and ut, yt is conditionally independent of all the other history states

and input.

The state variables of a system are often not observed directly. The knowledge of the state

variables is referred to as the belief. The belief distribution of the state variables at time t, xt,

is the conditional probability distribution given all the observed data up to time t, p(xt|Ut, Yt),

denoted as bel(xt).

By substituting a by xt, b by yt and c by (Ut, Yt−1) in Bayes rule (2.4), we get:

p(xt|Ut, Yt) =
p(yt|xt, Ut, Yt−1)p(xt|Ut, Yt−1)

p(yt|Ut, Yt−1)
(2.7)

p(yt|xt, Ut, Yt−1) is simpli�ed to p(yt|xt, ut) according to (2.6), then (2.7) is reduced to

bel(xt) =
p(yt|xt, ut)p(xt|Ut, Yt−1)

p(yt|Ut, Yt−1)
(2.8)
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The denominator,

p(yt|Ut, Yt−1) =
∑

xt

p(yt|xt, ut)p(xt|Ut, Yt−1)

is computed to the normalizing constant 1
η using the law of total probability [67].

p(xt|Ut, Yt−1) is the belief distribution of xt without the knowledge of current input and

output observations yt. We denote it as bel(xt). It can be obtained by the law of total probability:

bel(xt) =

ˆ
p(xt|xt−1, Ut, Yt−1)p(xt−1|Ut−1, Yt−1)dxt−1

According to (2.5), it can be simpli�ed to be

bel(xt) =

ˆ
p(xt|xt−1, ut)p(xt−1|Ut−1, Yt−1)dxt−1

where p(xt−1|Ut−1, Yt−1) is the belief distribution of xt−1, bel(xt−1).

In brief, the belief distribution is recursively obtained by

bel(xt) = ηp(yt|xt, ut)
ˆ
p(xt|xt−1, ut)bel(xt−1)dxt−1 (2.9)

2.3.3 Bayes Filter Algorithm

Recursively, the generic algorithm for Bayes �lter is depicted as follows [13]:
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Algorithm 1 Bayes �lter (bel(xt−1), ut, yt)

for all xt do

Prediction: bel(xt) =
´
p(xt|xt−1, ut)bel(xt−1)dxt−1

Correction: bel(xt) = ηp(yt|xt, ut)bel(xt)

2.4 Hypothesis Testing

Hypothesis Testing is a form of statistical inference. It is a decision process which accept

or reject a hypothesis according to the observed data. A general hypothesis test includes the

following steps:

1. Null and Alternative Hypotheses formulation

2. Test statistics selection

3. Decision rule making

4. Decision to accept or reject the null hypothesis based on observed data

The null hypothesis is the hypothesis to test, denoted as H0. Null hypothesis is usually the

default statement that we wish to prove false. The alternative hypothesis is the negation of the

null hypothesis, denoted as H1. H0 is a simple hypothesis [68] if it only leads to one distribution;

otherwise, H0 is a composite hypothesis [68].

A hypothesis testing is associated with two types of errors, Type I error and Type II error.

Basically, a type I error is the incorrect rejection of a true null hypothesis, and a type II error is
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Hypothesis Ho is true Hypothesis Ho is false

Hypothesis Ho is accepted Right Decision Type II error

Hypothesis Ho is rejected Type I error Right Decision

TABLE I: ERRORS IN HYPOTHESIS TESTING

an incorrect acceptance of a false hypothesis, as described in Table I. The probability of these

two types of error are denoted as γ and β, respectively.

Signi�cance Level [68]. The signi�cance level is the maximum probability of erroneously

rejecting a true null hypothesis.

If H0 is a simple hypothesis, the signi�cance level is the the probability of a type I error, γ.

2.4.1 Goodness of Fit Testing

An important class of hypothesis testing is the goodness of �t testing. It is a non-parametric

test used to measure how well the observed data �t the hypothesized probability distribution

model. Common tests include Chi-squared test, Kolmogorov�Smirnov test, Anderson�Darling

test and Cramér�von Mises test [68�70].

Null and Alternative Hypotheses Formulation

H0 : The observed data is drawn from the reference distributionF ∗(x)

H1 : The observed data is not drawn from the reference distributionF ∗(x)
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Test Statistic Selection

A test statistic is selected di�erently in di�erent tests, but commonly, the sampling distribu-

tion of the test statistic is known under the null hypothesis H0. For example, the test statistic

selected in Chi-squared test follows a chi-squared distribution, and the test statistic selected in

Kolmogorov�Smirnov test follows a Kolmogorov distribution.

Decision Rule Making

Critical Region [68]. The critical region is the set of all points in the sample space of the

test statistic that result in null hypothesis rejection.

For a given signi�cance level γ, a corresponding critical region is constructed. The decision

rule is that H0 is rejected if the test statistic from observed data is in the critical region, and

accepted otherwise.



CHAPTER 3

PREVIOUS WORK

(Parts of) this chapter was previously published as Sistla, A. Prasad and �efran, Milo² and

Feng, Yao, "Runtime Monitoring of Stochastic Cyber-Physical Systems with Hybrid State",

Runtime Veri�cation (Springer Berlin Heidelberg, 2012), pp. 276--293 and Sistla, A. Prasad

and �efran, Milo² and Feng, Yao, "Monitorability of stochastic dynamical systems", in Pro-

ceedings of the 23rd international conference on Computer aided veri�cation (Berlin, Heidelberg:

Springer-Verlag, 2011), pp. 720--736.

This chapter presents our preliminary research on monitoring partially observable systems

with respect to a single property given by an automaton or a logical formula using Hidden

Markov Chains (HMC) as models, and shows how the formalism can be used for systems speci�ed

by probabilistic hybrid automata (PHA).

We start by providing precise de�nitions of accuracies of monitors and notions of moni-

torability and strong monitorability. Then, we exactly characterize systems that satisfy these

properties. For ease of presentation we assume that the continuous variables are quantized (but

not necessarily bounded); as a result, HMCs can be used to model such systems (see [71] for

details). However, all these results were also extended to hybrid systems that employ continuous

as well as discrete variables, without quantization, using Extended Hidden Markov systems [12].

Sequences. Let S be a set. Let σ = s0, s1, . . . be a possibly in�nite sequence over S. For

any i ≥ 0, σ[0, i] denotes the pre�x of σ up to si. If α1 is a �nite sequence and α2 is either a

19
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�nite or an ω-sequence then α1α2 denotes the concatenation of the two sequences in that order.

We let S∗, Sω denote the set of �nite sequences and the set of in�nite sequences over S. If

C ⊆ Sω and α ∈ S∗ then αC denotes the set {αβ : β ∈ C}. We use subsets of Sω to denote

properties of in�nite sequences. Given a property C ⊆ Sω and σ ∈ Sω, we say that σ satis�es

C i� σ ∈ C.

Safety Properties. Safety Properties For any σ ∈ Sω, let prefixes(σ) denote the set of

pre�xes of σ and for any C ⊆ Sω, let prefixes(C) = ∪σ∈C(prefixes(σ)). We say that C ⊆ Sω is

a safety property if the following condition holds: for any σ ∈ Sω, if prefixes(σ) ⊆ prefixes(C)

then σ ∈ C. For any C ⊆ Sω, let closure(C) be the smallest safety property such that

C ⊆ closure(C). We say that a �nite sequence σ ∈ S∗, violates the safety property C i�

σ /∈ prefixes(C).

Liveness Properties. Properties Let S∗ be the set of all �nite sequences on S. A property

C ⊆ Sω is a liveness property [72] if there exist an in�nite sequence β ∈ Sω such that for every

pre�x of elements in C, α ∈ S∗, the concatenation sequence αβ ∈ C. In other word, a property

C ⊆ Sω is not a liveness property if there exist a �nite sequence α ∈ S∗such that for every

in�nite sequence β ∈ Sω, the concatenation sequence αβ /∈ C.

Automata. We use deterministic Streett automata to specify properties over in�nite se-

quences. Each such automaton P has an input alphabet Σ and de�nes a language L(P) ⊆ Σω.

These automata can have countable number of states. Throughout Sections 3 and 3.1, an au-

tomaton refers to a Streett automaton. We also consider Büchi automata, a subclass of Streett

automata, and a subclass of Büchi automata called safety automata whose language is a safety
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property. Linear Temporal Logic (LTL) is a logical formalism that can used to satisfy safety

and liveness properties elegantly. LTL formulas can be easily translated into equivalent Streett

Automata. For this reason, we concentrate on using automata for specifying properties.

Markov Chains. We assume that the reader is familiar with basic probability theory, ran-

dom variables and Markov chains. We consider stochastic systems given as Markov Chains [73]

and monitor their computations for satisfaction of a given property speci�ed by an automaton or

a temporal formula. A Markov chain G = (S,R, φ) is a triple satisfying the following: S is a set

of countable states; R ⊆ S × S is a total binary relation (i.e., for every s ∈ S, there exists some

t ∈ S such that (s, t) ∈ R); and φ : R→ (0, 1] is a probability function such that for each s ∈ S,
∑

(s,t)∈R φ((s, t)) = 1. Note that, for every (s, t) ∈ R, φ((s, t)) is non-zero. Intuitively, if at any

time the system is in a state s ∈ S, then in one step, it goes to some state t such that (s, t) ∈ R

with probability φ((s, t)). A �nite path p of G is a sequence s0, s1, . . . , sn of states such that

(si, si+1) ∈ R for 0 ≤ i < n. For any such p, if n > 0, then let φ(p) =
∏

0≤i<n φ((si, si+1)); if

n = 0 then let φ(p) = 1. An in�nite path of G is an in�nite sequence of states s0, s1, ... such that

∀i ≥ 0, (si, si+1) ∈ R. We let Paths(G) and Paths(G, s) for any s ∈ S, respectively, denote the

set of all in�nite paths in G and the set of all in�nite paths in G starting from s.

For any Markov chain G, as given above, we de�ne a class EG of measurable sets of in�nite

sequences over S. E is the σ-algebra [73] generated by sets of sequences of the form pSω where

p ∈ S∗. Now, for any system state r ∈ S, we de�ne a probability function FG,r de�ned on EG as

follows. Intuitively, for any C ∈ EG, FG,r(C) denotes the probability that a sequence of states

generated from the system state r, is in C. FG,r is the unique probability measure satisfying all
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the probability axioms [73], such that for every p ∈ S∗ and C = pSω, if p is the empty sequence

then FG,r(C) = 1, if p is a �nite path starting from state r then FG,r(C) = φ(p), otherwise

FG,r(C) = 0.

Although, for convenience, we have considered all sequences in Sω in de�ning EG, sequences

that are not paths inG do not contribute to the probability of any C ∈ EG, as shown below. Since

S is a countable set, it is not di�cult to see that Paths(G), Paths(G, r) ∈ EG. Further more,

for any C ∈ EG, it can be shown that FG,r(C) = FG,r(CPPaths(G)) = FG,r(CPPaths(G, r)).

For any D ∈ EG, we let FG,r|D denote the conditional probability function given D; formally,

for any C,D ∈ EG, FG,r|D(C) =
FG,r(CPD)
FG,r(D) . For any α ∈ S∗ and C = αSω, we let FG,r(α)

denote the probability FG,r(C) and FG,r|α denote the conditional probability function FG,r|C .

For a set C ⊆ S∗, we let FG,r(C) denote FG,r(CSω).

We will use automata to specify properties over sequences of states of a Markov chain G.

The input symbols to the automata are states of G, i.e., members of S. It has been shown that,

for any automaton P, L(P) is measurable [74]. We will be interested in monitoring sequences of

states of a system modeled by G, i.e., computations generated by G, to ensure that it satis�es

the property given by an automaton P. However, the monitor can not observe the actual states

of the system.

Hidden Markov Chains. A Hidden Markov Chain (HMC) [75] H = (G,O, r0) is a triple

where G = (S,R, φ) is a Markov chain, O : S → Σ is the output function and r0 ∈ S is

the initial state. Intuitively, for any s ∈ S, O(s) is the output generated in state s and this

output is generated when ever a transition entering state s is taken. The generated symbols
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become inputs to the monitor. H is called Hidden Markov chain because one only observes the

outputs generated in each state but not the actual state1. We extend the output function O

to paths of G as follows. For any �nite or in�nite path p = s0, s1, . . . , si, . . . in G, O(p) =

O(s0), O(s1), . . . , O(si), . . .. For any �nite or in�nite sequence α in Σ∗ ∪ Σω, we let O−1(α)

denote the set of p ∈ S∗ ∪ Sω such that O(p) = α. For any C ′ ⊆ Σ∗ ∪ Σω, we let O−1(C ′) =

∪α∈C′(O−1(α)).

For any HMC H as given above, we de�ne a class EH of sets of in�nite sequences over Σ

and for any r ∈ S, we de�ne a probability measure FH,r on EH as follows. EH is the σ-algebra

generated by the sets αΣω for α ∈ Σ∗. For any system state r ∈ S and C ′ ∈ EH , FH,r(C ′) =

FG,r(O−1(C ′)). Intuitively, FH,r(C ′) denotes the probability that an output sequence generated

from the system state r, is in C ′.

Quantized Probabilistic Hybrid Automata. Quantized probabilistic hybrid automata

(QPHA) are probabilistic hybrid automata [25] whose continuous variables are quantized. Their

semantics is given by a HMC, but they provide a convenient formalism for specifying systems.

A quantized probabilistic hybrid automaton A is a tuple (Q,V,∆t, E , T , c0) where Q is a �nite

set of discrete states (modes); V = {xq}q∈Q ∪ {yq}q∈Q ∪ {nq}q∈Q is the �nite set of real-valued

continuous, output and noise variables, respectively, that will be assumed to be quantized;∆t

is the sampling time; E is a function that with each q ∈ Q associates a set E(q) of di�erence

1In the traditional de�nition of HMCs considered in literature, the output of a state can be any
symbol in Σ generated with a probability distribution that is speci�c to the state; since Σ is a countable
set, it is not di�cult to see that by duplicating each state as many times as there are output symbols,
such a HMC can be converted into an equivalent HMC consistent with our model.
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equations describing the evolution of the continuous state and the output at time t + ∆t as a

function of the state at t and the noise variables; T is a function that assigns to each q ∈ Q

a set of transitions which are triples of the form (φ, p, ψ), where φ is the guard which is a

predicate over the set of continuous and discrete variables, p is a probability distribution over

the discrete states, and ψ is the reset relation which is a set of assignments that update or reset

some of the continuous variables; and c0 denotes the initial discrete and continuous states of the

automaton. If no noise variables are present and for each transition triple (φ, p, ψ) associated

with each discrete state q, the set of discrete states for which p speci�es non-zero probability is

a singleton, then QPHA is a normal hybrid automaton (QHA) [3]. A property can be speci�ed

if an appropriate acceptance condition is de�ned for a QHA. In fact, in this case the QHA is

equivalent to a Streett automaton.

Within each mode q, the evolution of the QPHA is given by the di�erence equations. For

simplicity we will assume that equations describing the continuous evolution of the system have

been linearized1 and discretized [78], resulting in a set of linear di�erence equations. Since the

continuous, noise and output variables are assumed to be quantized, these transitions can be

interpreted as an HMC. When a guard φi becomes satis�ed, a transition takes place from q to

some target mode q′ according to the probability distribution pqi. The overall evolution of the

QPHA can be thus interpreted as the evolution of an appropriate HMC. See [25,52] for details.

1The extensive literature on piecewise-linear approximations [76, 77] provides a justi�cation for such
an assumption.
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Monitors. A monitorM : Σ∗ → {0, 1} is a function with the property that, for any α ∈ Σ∗,

if M(α) = 0 then M(αβ) = 0 for every β ∈ Σ∗. For an α ∈ Σ∗, we say that M rejects α, if

M(α) = 0, otherwise we say M accepts α. Thus if M rejects α then it rejects all its extensions.

For an in�nite sequence σ ∈ Σω, we say that M rejects σ i� there exists a pre�x α of σ that

is rejected by M ; we say M accepts σ if it does not reject it. Let L(M) denote the set of

in�nite sequences accepted by M . It is not di�cult to see that L(M) is a safety property and

O−1(L(M)) is measurable (it is in EG).

Note that for a monitor to be implementable,M has to be a computable function as observed

in [79] for deterministic systems.

Accuracy Measures. Let P be an automaton on states of H. The acceptance accu-

racy of M for P with respect to the HMC H, denoted by AA(M,H,P), is the probability

FG,r0|L(P)(O
−1(L(M))) where r0 is the initial state of H. Intuitively, it is the conditional prob-

ability that a sequence generated by the system is accepted by M , given that it is in L(P). We

de�ne the rejection accuracy of M for P with respect to H, denoted by RA(M,H,P), to be the

probability that a sequence generated by the system is rejected by M , given that it is not in

L(P); formally, it is the probability FG,r0|C(D), where C,D are the complements of L(P) and

O−1(L(M)) respectively.

Monitorability. We say that a system H is strongly monitorable with respect to an au-

tomaton P if there exists a monitor M such that AA(M,H,P) = RA(M,H,P) = 1, i.e.,

both of its accuracies are 1. We say that a system H is monitorable with respect to an au-

tomaton P if for every x ∈ [0, 1) there exists a monitor M such that AA(M,H,P) ≥ x and
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RA(M,H,P) ≥ x. Strong monitorability is a property that is di�cult to satisfy. In the next

section, we give necessary and su�cient conditions for these properties to be satis�ed.

It is worth noting that monitorability, while related to the classical notion of observability,

is fundamentally di�erent from it. It is not di�cult to construct hybrid systems that are not

observable or even discrete-state observable but are monitorable.

3.1 Characterization of Monitorabilities

Let H = (G,O, r0) be a HMC where G = (S,R, φ) is the associated Markov chain. Let

P be an automaton with input alphabet S. H,G,P are �xed throughout this section unless

otherwise stated.

3.1.1 Strong Monitorability

We de�ne a set of in�nite paths OverlapSeq(H,P) that intuitively captures non-trivial

overlap, based on the generated outputs, between sets of in�nite paths of G that are accepted

and those that are rejected by P. We say that a �nite path p in G is good if it starts from

r0 and the set C of in�nite paths, accepted by P, having p as a pre�x, has non-zero measure,

i.e., FG,r0(C) > 0 where C = (pSωPPaths(G, r0)PL(P)). Let GoodPaths(H,P) be the

set of in�nite paths in G having only good pre�xes. Now we de�ne OverlapSeq(H,P) =

(Paths(G, r0) − L(P))P O−1(O(GoodPaths(H,P))). Intuitively, OverlapSeq(H,P) is the set

of p ∈ Paths(G, r0) such that p is rejected by P and each of its pre�x generates the same output

sequence as some good path in G, i.e., it can not be distinguished from a good path based on

the outputs.
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3.1.1.1 Precise Characterization of Strong Monitorability

The HMC H is strongly monitorable with respect to P i� FG,r0(OverlapSeq(H,P)) = 0,

i.e., the measure of overlap sequences is zero. Also, given a �nite HMC H and a �nite state

automaton P, the problem of determining if H is strongly monitorable with respect to P is

PSPACE-complete.

If H is strongly monitorable with respect to P, using the techniques employed in the proof of

the above results, we can construct a monitor M ′ both of whose accuracies equal 1. M ′ simply

constructs a deterministic automaton C and runs it on the output generated by H. It rejects i�

C rejects. M ′ does not estimate any probabilities.

3.1.2 Monitorability

Consider any α ∈ Σ∗. According to our notation FH,r(α) is the probability that H ini-

tially generates the output sequence α, i.e., outputs α during the �rst n states, where n is the

length of α. Let α ∈ Σ∗ be such that FH,r(α) > 0. Now, we de�ne a probability measure

GoodProb(α) which is the conditional probability that an execution of the system H that ini-

tially generated the output sequence α is accepted by P,i.e., the execution is good. Formally,

GoodProb(α) = FH,r0|C(L(P)) where C = O−1(α)Sω. Let BadProb(α) = 1−GoodProb(α).

Observe that BadProb(α) is the conditional probability that an execution of the system that

initially generated the output sequence α is rejected by P, i.e., is bad.

Recall that for any β ∈ Σω and integer i ≥ 0, β[0, i] denotes the pre�x of β of length i+ 1.

Now, let OneSeq(H,P) be the set of all β ∈ Σω such that limi→∞GoodProb(β[0, i]) exists

and its value is 1. Similarly, let ZeroSeq(H,P) be the set of all β ∈ Σω such that the above
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limit exists and is equal to 0. Let ZeroOneSeq(H,P) = OneSeq(H,P) ∪ ZeroSeq(H,P).

It has been shown in [71] that the sets ZeroSeq(H,P), OneSeq(H,P) and their union are all

measurable.

3.1.2.1 Characterization of Monitorability

The HMC H is monitorable with respect to P i� FH,r0(ZeroOneSeq(H,P)) = 1, i.e.,

almost all of its output sequences are zero- or one-sequences. Also, the problem of deciding if a

�nite state HMC is monitorable with respect to a �nite state automaton is undecidable.

3.1.3 Threshold-Based Monitors

Although, the problem of determining if a HMC is monitorable with respect to an automaton

P for �nite state systems, is undecidable, we can give su�cient conditions that ensure mon-

itorability. Intuitively, H is going to be monitorable with respect to an automaton P if the

statistics (i.e., probability distributions) of outputs generated in paths that are accepted by P

is di�erent from those generated in paths that are rejected by P. Many times, this property

may be known. For example, consider a system that can fail, i.e., can get into any of a set of

failure states and once it gets into these states, it remains in these states. Further more, assume

that the probability distributions of outputs generated in failure states is di�erent from that in

non-failure states. Such systems are monitorable with respect to properties that hold only on

computations without failure states.

Assume that H is monitorable with respect to P. Now, we address the problem of con-

structing accurate monitors for it. Here we choose some probability threshold value z. After

each output symbol generated by H, if α is the output sequence generated thus far, we compute
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BadProb(α) and reject (i.e., raise an alarm) if BadProb(α) ≥ z. It can be shown that by

choosing arbitrary high values for z, we can obtain monitors whose accuracies approach 1. This

method can be implemented using product construction and state estimation as given below.

3.1.3.1 Monitoring Safety Properties

Assume that the system is modeled using a probabilistic hybrid automaton A and a property

is speci�ed by a safety automaton P. We construct the product of A and P to obtain the

product automaton A×P. As the system executes, after each output, generated by the actual

system, we estimate the probability that the system execution is bad. This is estimated to be

the probability that the component denoting the state of P is an error state in the product

automaton, given that it has generated the observed output sequence. If this estimated value

is ≥ z then we reject.

In order to estimate the probability that the property automaton P enters the bad state

we use belief (probability distribution over the states of the product automaton) propagation.

At each time step, the belief is propagated from the current state to the next state, given the

new observation [26]. A similar approach has been used in [23]. Particle �lters were devel-

oped as a computationally e�cient approximation of the belief propagation [80�82]. They have

been successfully applied in the hybrid system community for state estimation [19, 20, 24, 83].

These methods become impractical for realistic systems with high number of states and several

improvements have been suggested in recent years that make them practical for monitoring of

stochastic cyber-physical systems.
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3.1.3.2 Monitoring Liveness Properties

Monitoring of properties speci�ed by liveness automata can be achieved using the methods

given in [33, 34]. Let P be a Büchi automaton (The construction can be easily extended to an

arbitrary Streett automaton.). We convert P into a safety automaton P ′ by using timeouts.

Let T ′ be positive time out value. P is modi�ed so that if an accepting state is not reached

within T ′ units from the start or from the last time an accepting state is reached, then the

automaton goes to the error state. It is fairly easy to show that any input sequence that is

rejected by P is also rejected by P ′; however P ′ rejects more input sequences. Thus, P ′ is an

approximation of P. Note that we get better approximations by choosing larger values of T ′.

The above construction can be incorporated by including a counter variable in the QHA model.

The details are straightforward.



CHAPTER 4

HIERARCHICAL PARTICLE FILTERS FOR RUNTIME MONITORING

OF CONCURRENT CYBER-PHYSICAL SYSTEMS

4.1 Introduction

(Parts of) this chapter was previously published as Sistla, A. Prasad and �efran, Milo² and

Feng, Yao, "Runtime Monitoring of Stochastic Cyber-Physical Systems with Hybrid State",

Runtime Veri�cation (Springer Berlin Heidelberg, 2012), pp. 276--293 and Sistla, A. Prasad

and �efran, Milo² and Feng, Yao, "Monitorability of stochastic dynamical systems", in Pro-

ceedings of the 23rd international conference on Computer aided veri�cation (Berlin, Heidelberg:

Springer-Verlag, 2011), pp. 720--736.

In [12], we presented a runtime monitoring technique where a monitor observes the inputs

and outputs of the system and checks whether the execution of the system is consistent with

the expected behavior (1). The CPS is modeled as a probabilistic hybrid automaton (PHA)

A [25,52], referred to as the system automaton. The desired behavior of the system is speci�ed

by a Linear Temporal Logic (LTL) formula; the LTL formula can be translated to a deterministic

Streett automaton P [11], referred to as the property automaton. In [12], a threshold based mon-

itor is proposed that, given a (�nite) sequence of outputs α, evaluates the rejection probability,

RejProb(α), and rejects the system execution (i.e., raises an alarm) if RejProb(α) ≥ z, where

z is a chosen threshold. The rejection probability RejProb(α) is the conditional probability

31
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Figure 1: Runtime Monitoring Framework for CPS

that an execution of the system that generated the output sequence α violates the correctness

speci�cation. In the case of safety properties [9, 10], fault modes can be de�ned as a subset of

discrete states of the property automaton where the property is violated. In this case, the lower

bound on the RejProb(α) is the probability Pfault(α) that a fault mode is reached [71]. Failure

to accurately estimate RejProb(α) results in missed alarms and false alarms; [71] introduces

the related concepts of acceptance accuracy and rejection accuracy.
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Formally, the computation of Pfault(α) can be formulated as belief propagation on the prod-

uct automaton B = A×P, which is again a probabilistic hybrid automaton (PHA). Computation

of the belief for a PHA is thus the main technical challenge for runtime monitoring of CPSs.

In [12], particle �lters (PFs) [84] were employed to implement the threshold based monitor. PFs

are well suited for this task since they can deal with high dimensional and hybrid state space,

nondeterministic state-dependent transitions and nonlinearities.

PFs utilize a set of samples (particles) to approximate the belief � the probability distribution

of state variables given a sequence of observed outputs. Thus, an important factor that a�ects

the performance of a PF is the size of the particle set (number of particles). A hybrid state

in PHA is comprised of a discrete component (state) � an integer that corresponds to di�erent

modes of the system, and a continuous component (state) � a vector of reals that describes the

physical state. To obtain a good estimate of the state of a PHA, the number of particles should

be at least large enough to cover all the possible transitions between the discrete states. As

the particle �lter recursively propagates the belief, if a critical transition between two modes

or a possible trajectory of the continuous state is not captured by any of the particles, particle

propagation depletion [58,85] occurs. Particle propagation depletion is a serious problem because

it can lead to the failure of the particle �lter to converge.

Over the past several decades, many researchers have investigated modi�cations of PF al-

gorithms in order to improve the estimation performance without increasing the number of

particles. Interacting Multiple Model (IMM) particle �lter employs exact theoretical Bayesian

equations for both accuracy and e�ciency improvement [24]. Rao-Blackwellised Particle Filter
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(RBPF) combines particle �ltering with Kalman �lter, an optimal �lter for �nite-dimensional

linear systems to achieve better accuracy [55,58,59]. And Gaussian Particle Filter (GPF) looks

one-step ahead to make the algorithm computationally e�cient [56].

Although the above modi�cations of PF algorithms were proven to be e�ective in improving

the estimation performance, in certain applications they do not address the particle propagation

depletion problem. Risk sensitive particle �lters (RSPF) [15,86,87] focus on mitigating particle

propagation depletion due to low probability of discrete transitions. However, particle prop-

agation depletion still presents a considerable challenge for hybrid systems, where phenomena

other than low transition probability can cause it as discussed later in the thesis.

One important class of CPSs are systems where multiple components are executing con-

currently and are interacting with each other during the execution. In such concurrent CPSs,

the state space of the combined hybrid state is the product of the hybrid state spaces of the

individual components. Thus, the cardinality of the product state space, in particular the num-

ber of discrete states, grows exponentially with the number of components. When computing

Pfault(α) during the process of the monitoring of such concurrent CPSs, particle propagation

depletion is a major concern.

In this chapter, we formally de�ne a concurrent cyber-physical system with N components

and propose the notion of a concurrent probabilistic hybrid automaton (cPHA) to model it. We

introduce the concepts of link variable and local variable that allow us to characterize di�erent

types of concurrent operation of system components. An algorithm is provided to identify a

special type of concurrent operation called locally parallel operation, when the particle �lter
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needs to operate on the complete set of discrete states � that can be exponential in the number

of components. Finally, we propose a novel particle �ltering approach, a Hierarchical Particle

Filter, that exploits di�erent types of concurrency to avoid particle propagation depletion while

maintaining high accuracy of belief approximation.

This chapter is organized as follows. Section 4.2 introduces a modeling framework for con-

current CPSs, discusses safety speci�cations and describes monitoring. Link and local variables

are introduced and di�erent types of concurrent operation are de�ned. The generic PF algo-

rithm and some existing modi�ed algorithms (Risk-Sensitive PF and Rao-Blackwellised PF) are

reviewed in Section 4.3.1. In Section 4.4, Hierarchical PF algorithm is proposed; this Section is

the main contribution of the thesis. Finally, Section 4.5 demonstrates the e�ectiveness of the

algorithm using the example of a train with electronically controlled brakes.

4.2 Problem Formulation

4.2.1 System Automata

In this work, we focus on stochastic CPS. A number of models were proposed for stochastic

hybrid system and introduced di�erent types of randomness. Stochastic hybrid systems proposed

by Hu [40] introduced stochastic di�erential equations (SDE) in the evolution of continuous state,

and the discrete transitions are deterministically speci�ed by a guard function on the continuous

state. A piecewise deterministic Markov Process [5] has deterministic continuous state evolution

in each discrete state, but assigns a stochastic transition frequency for transitions between

discrete states. Switching di�usion processes [41] combine SDE and controlled Markov Chain to

capture the randomness both in continuous and discrete states. Several review papers [6, 7, 42]
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list and compare a variety types of stochastic hybrid system models. In this thesis, based on

the model proposed by Hu [40], we de�ne a model of stochastic hybrid systems which include

uncertainty/randomness in the continuous state evolution, the timing and destination of discrete

mode transitions.

We start by formally de�ning Probabilistic Hybrid Automata, the modeling framework we

will use.

4.2.1.1 Probabilistic Hybrid Automata with External Variables

A probabilistic hybrid automaton with external variables (PHAe)A is a tuple (Q,V,∆t, E , T , c0)

where Q is a countable set of discrete states (modes) described with Q-valued discrete state

variable q; V consists of four disjoint sets of real-valued variables: a set x =
{
x1,x2, . . . ,xnx

}

of nx continuous state variables, a set u =
{
u1,u2, . . . ,unu

}
of nu external variables, a set

y =
{
y1,y2, . . . ,yny

}
of ny output variables and a set w =

{
w1, . . . ,wnx ,wnx+1, . . . ,wnx+ny

}

of nx + ny noise variables, where nx, nu and ny are positive integers; ∆t is the sampling time;

E is a function that with each q ∈ Q associates a set E(q) of discrete-time state equations de-

scribing the evolution of the continuous state, i.e., the value of x at time t + ∆t and output,

i.e., the value of y at time t as functions of the value of the state variables in x, the value of the

external variables in u and the value of the noise variables in w at time t; T is a function that

assigns to each q ∈ Q a set of transitions T (q) = {(φ, p)q,λ}λ∈Jq , where Jq ⊂ N is an index set,

the guard φq,λ is a measurable predicate over the set of continuous (and possibly discrete) state

variables parameterized by the value of u and pq,λ is a probability distribution over Q, again

parameterized by the value of u ; and c0 = (q0, µq0) is a pair giving the initial discrete state
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q0 and an initial continuous probability density function µq0 of the continuous state variables

x. We require that for each q ∈ Q, the state equations in E(q) have noise variables on the

right hand side and that the set of guards on the transitions in T (q) be mutually exclusive (if

φq,λ0(x, u) = 1 for some λ0 ∈ Jq, then φq,λ(x, u) = 0 for all other λ 6= λ0).

We will assume that all variables in V (continuous state, external, output and noise, respec-

tively) are ordered so that we can consider their values as a vector.

To formally de�ne the semantics of a PHAe A we would need to introduce the concept of

Extended Hidden Markov Chain [12]. We omit the details in the interest of space and refer

the reader to [88]. Intuitively, within each mode q, the evolution of the PHAe is given by the

di�erence equations E(q). When a guard φq,λ of a transition (φ, p)q,λ ∈ T (q) becomes satis�ed,

a transition takes place from q to target mode q′ according to the probability distribution pq,λ.

A Probabilistic Hybrid Automaton (PHA) is a special class of PHAe without external inputs,

u = ∅.

While the evolution of a PHAe can be quite general, we will assume that it is governed by

the following equations:

qt+1 = g(qt, xt, ut) (4.1)

xt+1 = fqt+1(xt, ut) + wx,t (4.2)

yt = hqt(xt, ut) + wy,t (4.3)
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where qt ∈ Q, xt ∈ Rnx , ut ∈ Rnu and yt ∈ Rny , are discrete state (value of the discrete state

variable q), continuous state (vector value of the continuous state variables x), external input

(vector value of the external variables u), and output (vector value of the output variables

y), respectively, at time t; wx,t ∈ Rnx and wy,t ∈ Rny are vector values of the process noise

variable wx and the measurement noise variable wy which partition noise variables w, at time

t, where {wx,t} and {wy,t} are generated by sequences of independent identically-distributed

(i.i.d.) random variables that are independent of the initial condition; the mappings fq and

hq are time-invariant and continuous in x and u for any q ∈ Q; and g(qt, xt, ut) is a random

variable over Q whose probability distribution is governed by pqt,λ provided that the predicate

φqt,λ evaluated for (xt, ut) is satis�ed, or is an identity on qt otherwise.

A hybrid state of a PHAe at time t , denoted by st, is a pair consisting of the continuous

state and the discrete state, st = (qt, xt) .

4.2.1.2 Concurrent Dynamical Systems

Systems that implement complex tasks can often be decomposed into several components

during the design phase. This strategy provides �exibility in system veri�cation and failure anal-

ysis as well. Each component can be viewed as a subsystem implementing a function/procedure

for the overall system. The overall system is a concurrent system that is the composition of the

interacting subsystems.
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Assume we have an autonomous concurrent dynamical system C which is comprised of N

subsystems {Ci, i = 1, . . . , N}. For simplicity, assume each Ci is described by a linear state space

model [89] which we will denote by a subscript i,

xi,t+1 = Aixi,t +Biui,t

yi,t = Cixi,t

where xi,t is the vector value of state variables xi =
{
x1
i ,x

2
i , . . . ,x

ni
i

}
, ui(t) is the vector value

of input variables ui =
{
u1
i ,u

2
i , . . . ,u

pi
i

}
, and yi,t is the vector value of output variable yi, at

time t; Ai, Bi and Ci are the state matrix, input matrix and output matrix, respectively.

The interaction among subsystems is speci�ed by

u = Sx, (4.4)

where u = (u1, u2, . . . , uN ) is the joint input vector, x = (x1, x2, . . . , xN ) is the joint state

vector, and S is a real-valued constant matrix of dimension
∑N

i=1 npi ×
∑N

i=1 nxi .Observe that

S has zero matrices of dimension nui × nxi , i = 1, . . . , N on the diagonal since the system is

never connected to itself (possible feedback loops are already part of the subsystem model).

The linear interaction model de�nes how the external input variables of the subsystem Ci are

connected to the state variables of the other subsystems.
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The state space model for the resulting concurrent linear dynamical system C with joint state

variables x = (x1,x2, . . . ,xN ) and joint output variable y = (y1,y2, . . . ,yN ) is the combination

of the models of each Ci and the interaction model described by (4.4). This results in

xt+1 = Axt

yt = Cxt

where A is derived by substituting {ui,t, i = 1, . . . , N} with the linear transformation of the

joint state xt as described by (4.4), and

C =




C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · CN




.

The input term Biui,t of each subsystem is also incorporated into the state matrix A through

the interaction model.

The dependency of subsystem evolution determines the type of concurrency among subsys-

tems.

De�nition 1 (Input decoupled subsystem) A subsystem Ci is input decoupled from the

overall system C if it is an autonomous system, ui = ∅.
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The simplest type of concurrency among subsystems is parallel operation. In this case,

ui = ∅, i = 1, . . . , N . Equivalently, each subsystem is an input decoupled system and there is

no interaction among subsystems.

Then, the state matrix A for the concurrent linear dynamical system C has the diagonal

form

A =




A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · AN




The opposite of the parallel operation is a fully coupled operation. In this case, none of the

subsystems Ci can be input decoupled from the overall system C.

If there exist an index set Ξ ⊂ {1, 2, . . . , N}, such that for every i ∈ Ξ, Aij is a zero matrix

for all j 6= i, then subsystems {Ci, i ∈ Ξ} are input decoupled from the overall C. Then the

concurrent subsystem evolution at each time step can be decomposed into a parallel evolution

of subsystems {Ci, i ∈ Ξ} followed by a coupled evolution of the remaining subsystems of C.

Remark 1 The types of concurrency in subsystem operation for a linear dynamical system can

be extended to a concurrent non-linear dynamical system.

4.2.1.3 Modeling of Concurrent CPSs

A concurrent CPS can be modeled as the composition of N interacting subsystems. Each

subsystem is modeled as a PHAe, where the external variables of a subsystem correspond to

the continuous state variables of other subsystems. Thus, we model a concurrent CPS by a
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concurrent probabilistic hybrid automaton (cPHA). To distinguish di�erent subsystems, we will

use subscript i to indicate the i subsystem. Its model is denoted by Ai = (Qi, Vi,∆ti, Ei, Ti, c0
i ),

where Vi = xi ∪ ui ∪ yi ∪wi.

An autonomous concurrent probabilistic hybrid automaton (cPHA) A is a tuple A = (Â, S)

where Â = {A1,A2, . . . ,AN} denotes the set of PHAe-s representing N subsystems, and S is

a real-valued constant matrix of dimension
∑N

i=1 nui ×
∑N

i=1 nxi that models how subsystems

interact

u = Sx (4.5)

where u = (u1, u2, . . . , uN ) is the joint input vector (vector value of the joint input variable

u = (u1,u2, . . . ,uN )) and x = (x1, x2, . . . , xN ) is the joint state vector (vector value of the joint

continuous state variables x = (x1,x2, . . . ,xN )). The linear interaction model de�nes how the

external variables of the subsystem Ai are connected to the continuous state variables of the

other subsystems.

Similar to a concurrent dynamical system, S has zero matrices of dimension nui × nxi , i =

1, . . . , N on the diagonal since the system is never connected to itself (possible feedback loops

are already part of the subsystem model).

The dependency of the subsystem evolution speci�ed by the interaction model determines

the type of concurrency in the subsystem operation. However, in a cPHA, the concurrency of

operation is linked to a discrete mode.

We �rst de�ne a subsystem Ai without input dependency in qi ∈ Qi.
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De�nition 2 (Input decoupled subsystem in a cPHA) A subsystem Ai is input decou-

pled from the overall cPHA A if,

1. ui = ∅, or

2. the evolution of the discrete mode and the continuous state does not depend on ui.

Compared with a concurrent dynamical system, condition 2 is an additional case that sub-

system Ai of a cPHA is input decoupled. It refers to a situation in which the evolution of the

discrete mode and the continuous state depends on ui in discrete mode q′i, but does not depend

on ui in another discrete mode q′′i .

If all the subsystems are input decoupled, the evolution for each subsystem is fully decoupled.

In other words, the type of concurrency among subsystems is a parallel operation.

If none of the subsystems is input decoupled, the subsystem evolution is fully coupled [90].

However, if there exist an index set Ξ ⊂ {1, 2, . . . , N}, such that for every i ∈ Ξ, Ai is input

decoupled, then the concurrent subsystem evolution at each time step can be decomposed into

a parallel evolution of subsystems {Ai, i ∈ Ξ} followed by a coupled evolution of the remaining

subsystems of A.

By substituting the input variables {ui, i = 1, . . . , N} with the state variables using the

interaction model (4.5), a concurrent probabilistic hybrid automaton A can be viewed as one

monolithic PHA.

Speci�cally, a concurrent probabilistic hybrid automaton (cPHA) A can be seen as a PHA

(Q,V,∆t, E , T , c0), where Q =
N∏
i=1

Qi, the Cartesian product of discrete state space of all sub-

systems which is associated with the discrete joint variable q = (q1, . . . ,qN ); V consists of three
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disjoint sets of variables: a set x =
N⋃
i=1

xi of continuous state variables, a set y =
N⋃
i=1

yi of output

variables and a set w =
N⋃
i=1

wi of noise variables, that when ordered as x = (x1,x2, . . . ,xN ),

y = (y1,y2, . . . ,yN ) and w = (w1,w2, . . . ,wN ), take values in R
∑
i
nx,i

, R
∑
i
ny,i

, R
∑
i
nx,i+

∑
i
ny,i

,

respectively, where nx,i and ny,i are positive integers representing the cardinality (dimension)

of xi and yi of subsystem Ai; ∆t is the sampling time; E is a function that with each q ∈ Q

associates a set E(q) of discrete-time state equations describing the evolution of the continuous

state, i.e., value of x and output, i.e., value of y) at time t+∆t as functions of the state at t, and

the value of the noise variable w; T is a function that assigns to each q ∈ Q a set of transitions

T (q) = {(φ, p)q,λ}λ∈Jq , where Jq ⊂ N is an index set, the guard φq,λ is a measurable predicate

over the set of continuous (and possibly discrete) state variables and pq,λ is a probability distri-

bution over Q; and c0 = (q0, µq0) is a pair giving the initial joint discrete state q0 = (q0
1, . . . , q

0
N )

and an initial continuous probability density function µq0 =
N∏
i=1

µq0i
of the continuous variable

x.

When a cPHA is in discrete state q = (q1, . . . , qN ), the discrete-time state equations E(q)

describing the evolution of joint continuous state (value of x =
N⋃
i=1

xi) are the combination

of {Ei(qi), i = 1, . . . , N} and the model of interaction. Speci�cally, the state equations E(q)

are derived by substituting ui,t with the corresponding transformation of of xt described by S.

Please note that E(q), q ∈ Q is an empty set when q is not reachable.

Transitions T (q) are extended from {Ti(qi), i = 1, . . . , N}. Basically, each transition in

{Ti(qi), i = 1, . . . , N} where qi ∈ Qi is a transition of the overall cPHA. For example, if the

system is in state q′ = (q′1, . . . , q
′
i, . . . , q

′
N ), and a transition with guard φq′i,λi(xi, ui) in subsystem
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Ai takes place from mode q′i to q
′′
i with distribution pq′i,λi , then it's a transition of the cPHA with

guard φq′,λ(x) which is obtained from φq′i,λi(xi, ui) by substituting ui with the corresponding

transformation of of xt described by S, and the target state is q′′ = (q′1 . . . , q
′′
i , . . . , q

′
N ) with

distribution pq′,λ=pq′i,λi over the joint discrete state space Q′ = {q′1} × . . . ×
{
q′i−1

}
× Qi ×

{
q′i+1

}
× . . . × {q′N} (i.e., the discrete states of the other subsystems remain the same). If in

state q′, the guard φq′i,λi(xi, ui) of Ai and φq′j ,λj (xj , uj) of Aj (assuming i < j) are essentially

the same after substituting ui and uj with the corresponding transformations of of xt described

by S, then the target state is q′′ = (q′1 . . . , q
′′
i , q
′′
j , . . . , q

′
N ) with distribution pq′,λ=pq′i,λi × pq′j ,λj

over the joint discrete state space Q′ = {q′1}× . . .×
{
q′i−1

}
×Qi×

{
q′i+1

}
× . . .×Qj× . . .×{q′N}.

Reachable set of joint discrete states, QR can be recursively built from its de�nition.

De�nition 3 (Reachable Set of Joint Discrete States) Formally, the reachable set of joint

discrete states QR ⊆ Q is the smallest subset of Q such that

• q0 = (q0
1, . . . , q

0
N ) ∈ QR

• For every q′ ∈ QR and every λ ∈ Jq′ , if pq′,λ(q′′) > 0, then q′′ ∈ QR.

4.2.1.3.1 Link Variables and Local Variables

While the notion of external input variables is merged into the continuous state variables in

cPHA, the continuous state variables that are used to characterize the interaction are of interest

to further investigate the concurrency in subsystem operation. We refer to these variables as

link variables. Formally,
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De�nition 4 (Link variables) For subsystem Ai, a continuous variable xki ∈ xi, k ∈ {1, . . . , nxi}

is a link variable if its value is shared with other subsystems.

Equivalently, xki ∈ xi, k ∈ {1, . . . , nxi}is a link variable if the column (
∑i−1

j=1 nxj + k) in S

has non-zero entry.

The set of link variables in Ai is denoted as x̂i, and the set of link variables of overall system

is de�ned as z =
N⋃
i=1

x̂i.

De�nition 5 (Local variables) For subsystem Ai, a continuous variable xki ∈ xi is a local

variable if

xki /∈ z.

Equivalently, xki ∈ xi, k ∈ {1, . . . , nxi}is a local variable if the column (
∑i−1

j=1 nxj + k) in S

is zero.

The set of local variables of subsystem Ai is denoted as li. Intuitively, local variables

{li, i = 1, . . . , N} are the internal state variables that are not �visible� from other subsystems.

In this way, we partition the state variables of the overall system,
N⋃
i=1

xi, into N + 1 pieces, N

sets of local variables {li, i = 1, . . . , N} for N subsystems, and a set of link variables z.

By regrouping the continuous state variables in cPHA as link and local variables, the evolu-

tion of cPHA can be described by the following equations:
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qt+1 = g(qt, l1,t, . . . , li,t, . . . , lN,t, zt) (4.6)

li,t+1 = f̃qt+1,i(li,t, zt) + wi,t, i = 1, . . . , N (4.7)

zt+1 = rqt+1(l1,t, . . . , li,t, . . . , lN,t, zt) + wz,t (4.8)

yt = hqt(l1,t, . . . , li,t, . . . , lN,t, zt) + wy,t (4.9)

where qt = (q1,t, . . . , qN,t) ∈
N∏
i=1

Qi, li,t ∈ Rnli zt ∈ Rnz , yt ∈ Rny represent joint discrete state,

local states, link states, and outputs at time t, with dimensions nli , nz and ny, respectively;

wi,t ∈ Rnli , wz,t ∈ Rnz wy,t ∈ Rny represent vector values of process noise variables wi and

wz for local variables, link variables and measurement noise variable wy which partition noise

variable w, at time t, where {wi,t}, {wz,t}, and {wy,t} are generated by sequences of i.i.d.

random variables that are independent of the initial condition; the mappings f̃q,i, rq, hq are

time-invariant and continuous in li and z for any q ∈ Q; and g(qt, l1,t, . . . , li,t, . . . , lN,t, zt) is a

random variable over Q whose probability distribution is governed by pqt,λ provided that the

predicate φqt,λ evaluated for (l1,t, . . . , li,t, . . . , lN,t, zt) is satis�ed, or identity on qt otherwise.

It is not di�cult to derive functions f̃qt+1,i and rqt+1 from the corresponding fqt+1 in (4.2)

describing the individual subsystems modeled by PHAe-s.

Using link and local variables, a hybrid state of cPHA at time t becomes a tuple st =

(qt, l1,t, . . . , lN,t, zt) of discrete state, local states and link states.
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4.2.1.4 Concurrency in Subsystem Operation in a cPHA

In the context of cPHA, concurrency analysis has to be performed for each discrete mode.

Also by using the notions of local variables {li, i = 1, . . . , N} and link variables z, we can further

exploit the system structure. To start with, it will be useful to take all the link variables and

consider them as an additional separate subsystem; this will allow us to possibly identify subsets

of subsystem variables that can be input decoupled even though the subsystem themselves are

not. In particular, in the joint discrete mode q, for a subsystem Ai we separately consider the

local variables li and determine whether they are input decoupled, the link variables in xi are

considered separately.

Moreover, the guard of discrete mode switch depends on the continuous state variables. For

subsystem Ai to be considered as input decoupled from the overall cPHA in joint discrete mode

q′ = (q′1, . . . , q
′
N ), not only the evolution of local state li , but also every guard φqi,λi , λi ∈ Jqi

should not depend on link variables.

De�nition 6 (Linking Transition) For subsystem Ai, a transition Ti(qi) = {(φ, p)qi,λi}λi∈Jqi ,qi ∈

Qi, is a linking transition if the transition guard φqi,λi depends on any link variable in z. The

corresponding transition in T (q) is also a linking transition.

De�nition 7 (Locally Input Decoupled subsystem of a cPHA) For subsystem Ai, if in

discrete state q∗i ∈ Qi,

1. The evolution of the local state does not depend on the link states: f̃q∗i ,i(li,t, zt) = f̃q∗i ,i(li,t),

and
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2. When Jq∗i 6= ∅, there is no λi ∈ Jq∗i , such that Ti(q∗i ) = {(φ, p)q∗i ,λi} is a global transition,

then Ai is said to be locally input decoupled from overall system A in discrete state q∗i . In turn,

discrete state q∗i is a parallel operated discrete state.

The concurrency in the operation of the overall system is determined by the dependency of

the evolution of the discrete, link and local state. A general case is that the evolution of the

discrete, link and states is fully coupled so that none of the subsystem is locally input decoupled,

as shown in Figure 2. If the link state does not depend on any local state, and the evolution of

local state from some subsystems depends on link state, then the evolution of overall system is

decomposed into the evolution of the link state followed by a parallel evolution of discrete mode

and local states, as shown in Figure 3.

Figure 4 shows another case. At each time step, if each subsystem is locally input decoupled,

and the evolution of link state is dependent on local state, the evolution of the overall system

can be decomposed into a parallel evolution of the discrete and local states followed by a coupled

evolution of link states. Furthermore, if the evolution of link state does not depend on local

states, then the cPHA is in parallel operation. However, if, instead of all subsystems, there

exist an index set Ξ ⊂ {1, 2, . . . , N}, such that for every i ∈ Ξ, Ai is locally input decoupled,

then the concurrent subsystem evolution at each time step can be decomposed into a parallel

evolution of local states in subsystems {Ai, i ∈ Ξ} followed by a coupled evolution of the local

states in the remaining subsystems of A and the link state, as shown in Figure 5. These two

cases are referred to as fully locally parallel operation and locally parallel operation, respectively.

Formally,
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De�nition 8 (Locally Parallel Operation) If, in joint discrete state q∗ = (q∗1, . . . , q
∗
N ) , at

least two subsystems are locally input decoupled from overall system A, the cPHA is said to be

in locally parallel operation. A cPHA is said to be in fully locally parallel operation if all the

subsystems are locally input decoupled from A.

Correspondingly, if the system is not in locally parallel operation, it is in non-parallel oper-

ation.

Note that by de�nition, the evolution of the local state li of subsystem i as well the local

discrete state qi can not depend on the local state of another subsystem. In addition, when a

system is in fully locally parallel operation, the evolution of li and qi is also independent from

the link variables. This observation is fundamental to the discussion in Section 4.4.

For cPHA, the notion of concurrency is linked to each discrete mode. Therefore, the type of

concurrent operation of subsystems may change when the cPHA transition occurs. By analyzing

E(q) and T (q), we can determine if a subsystem Ai is decoupled in mode qi ∈ Qi. For each

subsystem, Qi,Parallel ∈ Qi is the set of discrete modes when subsystem Ai is locally input

decoupled from the overall system A. We give a generic algorithm for the analysis of a cPHA

A which is a composition of N subsystems {Ai, i = 1, . . . N}.

4.2.1.5 Generic Algorithm for Subsystem Decomposition in cPHA

4.2.2 Property Automata

Correctness requirements to be monitored for safety-critical CPSs are speci�ed on system

hybrid state s = (qS , l1, . . . , lN , z) of a system modeled by concurrent PHA A. Speci�cally,

the correctness requirements are described by Linear Temporal (LT) properties over the atomic
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Algorithm 2 cPHA Concurrency Analysis {Ai, i = 1, . . . , N}
Step 1: Continuous state variables regrouped to {l1, . . . , lN , z}

for each Ai do

for k in {1, . . . , nxi} do

if The corresponding (
∑i−1

j=1 nxj + k)th column of S has any non-zero entry then

Identify xki as a link variable and add xki in z

else

Identify xki as a local variable and add xki in li

Step 2: Subset of discrete states in locally parallel operation, Qi,Parallel

for each Ai do

if Ai is locally input decoupled in qi ∈ Qi then

Add qi in Qi,parallel
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propositions speci�ed on system hybrid state s over time. We can model LT properties by a

deterministic Streett automaton. P.

4.2.2.1 Streett Automata

Formally, a deterministic Streett automaton P is a tuple (QP ,ΣP , δP , q
0
P , F ) where QP is it

set of states associated with discrete state variable qP , Σ is its input alphabet, δP : QP ×ΣP →

QP is the next state function, q0
P is the starting state and F is a collection of pairs of subsets of

states of the form (RED,GREEN). Runs and accepting runs of the automata on an in�nite

string of inputs are de�ned naturally. An in�nite input string is accepted if there is an accepting

run of the automaton on the input starting from the initial state. We let L(P) denote the set of

strings accepted by P. An automaton P, as given above, is called a safety automaton [71] if F

has a single pair ({qerror}, ∅) where qerror is an absorbing state/mode, i.e., all transitions from

it go back to itself. The state qerror is called the error state/mode and it is easy to see that an

in�nite input sequence is accepted i� the error state is never reached on this input.

Any LT property can be decomposed to be the conjunction of a safety property and a live-

ness property [9,10]. Safety property is modeled by a safety automaton, and liveness property is

modeled by a liveness automaton. Safety automaton is a deterministic Streett automaton con-

taining a subset of special absorbing states/modes called error states/modes with all the other

states being the accepting states/modes. The set of sequences accepted by a safety automaton

is a safety property. Similarly, a liveness automaton is a property automaton whose accepting

set of sequences is a liveness property.
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In a safety automaton Ps modeling a safety property, the error mode is reached if the safety

property is violated. Considering a property automaton is driven by the hybrid state execution

of system automaton A. Thus, we need to construct a product automaton of A and the Ps.

Liveness property is more complicated because the correctness is considered not to be vi-

olated until it is asserted that after some time, the accepting mode is never reachable [9, 10].

Strictly, it can only be veri�ed in in�nite horizon which is infeasible in experiment. So, we con-

vert a liveness automaton Pl into a safety automaton using a timeout T ′. If an accepting mode

is not reached within T ′ time units, the property automaton goes to a designed error mode,

meaning that the speci�cation is violated. It is easy to show that the value of timeout variable

T ′ can be increased to get a better approximation. So, in this way, the liveness property Pl is

approximated by a safety property and can be veri�ed using the same approach introduced in

safety property monitoring.

These two types of error modes in safety and liveness automaton are referred to as fault

modes. A discrete state sequence of P containing fault modes indicates that the hybrid state

execution of system automaton A is a bad run, violating the correctness property.

4.2.3 Monitors

Assuming a partially observable hybrid system is monitorable [71] with respect to a given

property, we can design a monitor for it. In [71], a threshold based monitor is proposed. For

a observation sequence α, the monitor evaluates RejProb(α), and rejects the system execution

which generated α if RejProb(α) > z, a preset threshold probability. RejProb(α) is de�ned as

the conditional probability that an execution of the system that generated the output sequence
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α is rejected by the property. It can be approximated to be the probability Pfault(α) that the

state run of P driven by the system execution which generated α reaches a fault mode.

Formally, the computation of Pfault(α) can be formulated as belief propagation on the

product automaton A × P, where AS is partially observable probabilistic hybrid automaton

describing the CPS to monitor, and P is a deterministic Streett automaton describing correctness

requirements to be veri�ed. Thus, the core part of the runtime monitoring of CPS is the hybrid

state estimation of a PHA.

4.2.3.1 Monitorability

Monitorability of the system has to be checked before the design of a threshold based monitor.

In [71], necessary and su�cient conditions are given for the monitorability of a system with

respect to a given property. Basically, it states that if a systemA ismonitorable, with probability

1, given any in�nite output generated by A, the state execution can be classi�ed as good or bad

with respect to a property automaton P.

If the system is monitorable, it is possible to �nd a monitor that achieves arbitrarily high

levels of both acceptance accuracy and rejection accuracy. Furthermore, it has been shown

in [71] that a speci�c monitoring algorithm, called threshold-based monitor, can be used to do

so. A threshold-based monitor uses hybrid state estimation to compute Pfault(α) . Monitora-

bility is related to, but fundamentally di�erent from observability. To start with, monitorability

is de�ned with respect to a given property which is independent of the system model. Instead,

observability is an intrinsic property of the system itself. However, at least intuitively, if the

system is observable then it is monitorable. This is because the observability implies complete
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knowledge of the state trajectories; these trajectories can in turn be used to evaluate the evolu-

tion of the property automaton. On the other hand, the system can be monitorable even when

it is not observable. For example, if the property only depends on the observable part of the

state, the system will be monitorable.

Note also that even if the system is observable, monitoring typically does not require the

knowledge of the complete state so a full state estimator is not needed. This can signi�cantly

reduce the computational cost, especially when the system is complex.

4.3 Hybrid State Estimation

In the estimation problem of the product automaton B = A×P, the high dimensional hybrid

state space, nonlinearity and nondeterministic state-dependent transitions, are intractable using

the conventional estimation techniques. Particle Filtering (PF) is considered as an e�cient tool

for such a computational problem, and has been applied to many complicated, nonlinear systems

in a variety of areas, including navigation [91], fault detection of complex systems [15] and visual

tracking [92].

This section provides the generic particle �ltering algorithm and two important modi�ca-

tions: Risk-Sensitive particle �ltering and Rao-Blackwellized particle �ltering.
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4.3.1 Particle Filters

In general, a probabilistic hybrid automaton is described by the following di�erence equa-

tions, on [0, T ]:

qt+1 = g(qt, xt)

xt+1 = fqt+1(xt) + wx,t

yt = hqt(xt) + wy,t

where qt ∈ Q, xt ∈ Rnx , and yt ∈ Rny , represent discrete state (value of the discrete state

variable q), continuous state (vector value of the continuous state variables x), and output

(vector value of the output variables y), respectively, at time t; wx,t ∈ Rnx , wy,t ∈ Rny represent

the vector value of the process noise variable wx and the measurement noise variable wy which

partition noise variable w, at time t, where {wx,t} and {wy,t} are generated by sequences of

i.i.d. random variables that are independent of the initial condition; the mappings fq and hq

are continuous in x for every q ∈ Q; and g(qt, xt) is a random variable over Q whose probability

distribution is governed by pqt,λ provided that the predicate φqt,λ evaluated for xt is satis�ed,

or identity on qt otherwise.

This state space model can be extended to represent the product automaton, B = A ×

P. Thus, xt and qt are used to represent continuous state and discrete state of the product

automaton, at time t, respectively.
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The task of state estimation is to obtain the posterior distribution bel(st) = p(st|Yt) =

p(xt, qt|Yt), where Yt = {yi, i = 1, . . . , t} denoting the observations history up to time t. We

use notation bel(st) = p(xt, qt|Yt−1) to described the prior distribution, belief of st without the

knowledge of the current observation at time t.

In brief, particle �lter is a sequential Monte Carlo implementation of Bayes �lter. Particle

Filter recursively follows the two essential steps in Bayes �lter (1), prediction and correction.

In the Monte Carlo implementation, a set of M random samples (particles) are drawn

from the distribution bel(st−1),
{
s

(i)
t−1 = (x

(i)
t−1, q

(i)
t−1), i = 1, . . . ,M

}
, and the distribution can

be approximated by

bel(st−1) = p(xt−1, qt−1|Yt−1) (4.10)

≈
M∑

i=1

δ
(x

(i)
t−1,q

(i)
t−1)

(dxt−1, dqt−1) (4.11)

The intuition behind this particle presentation is that the more likely the states in a region,

the more particles are drawn from the region. So, the number of samples is a key factor to

characterize a distribution. With enough particles, this non-parametric representation can de-

scribe any type of distribution, as opposed to parametric probability distributions, for example,

Gaussian.

Assuming that the posterior distribution at time t− 1, bel(st−1) is approximated by St−1 =

{
s

(i)
t−1, i = 1, . . . ,M

}
, the predicted bel(st) in the prediction step can be obtained by Sequential
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Importance Sampling (SIS) [93]. In this context, it propagates the particles in St through the

probabilistic hybrid model of the system to generate the possible future state at time t. The

resulting set St =
{
s

(i)
t , i = 1, . . . ,M

}
is the Monte Carlo approximation of bel(st).

Then, based on Bayes rule, the di�erence between the proposal distributions bel(st) and

target distribution bel(st) is described by the likelihood p(yt|st). To obtain the Monte Carlo

approximation of bel(st−1), the correction step is implemented by Sequential Importance Re-

sampling (SIR) [93], in short Resampling. For each particle s(i)
t in set St, the likelihood of the

observation yt which describes the distance away from the actual observation is referred to as

importance weight,

w
(i)
t = p(yt|s(i)

t ) ∝ (4.12)

Then, according to the importance weights
{

w
(i)
t , i = 1, . . . ,M

}
, particles are resampled

with replacement from particle set St. The set of resampled particles St is the estimated

approximation of bel(st). Recursively, St is used as prior knowledge towards the next time step.

Note that the particles in St are equally weighted.

Next, we will introduce two important modi�cations that improve the estimation perfor-

mance.
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4.3.2 Particle Filtering Modi�cations

4.3.2.1 Risk-Sensitivity

In fault detection and identi�cation applications, faults are low-probability but high-risk

events. In this case, one drawback of the algorithm is that it requires a very large number of

particles to keep track of these faults e�ectively and thus, is computationally expensive.

Risk-Sensitive PF (RSPF) incorporates some cost function into particle �ltering to improve

the tracking of these critical fault modes using a smaller amount of particles [15, 86, 87]. To be

speci�c, an intentional probability increase of the occurrence of the faults is used to propagate

particles, thus there are more particles to represent the critical fault modes to during SIS step.

4.3.2.2 Rao-Blackwellization

Another drawback of the generic PF is that in a hybrid system with high-dimensional state

space, sampling can be ine�cient. However, in some cases, the dimension of the state space

to be sampled can be reduced by marginalizing out some variables. This technique is called

Rao-Blackwellization, and the PF incorporated with this technique is called Rao-Blackwellized

PF (RBPF) [55].

A hybrid state st at time t can be divided into the continuous state xt, and the discrete

mode qt,st = (xt, qt).

Then using chain rule, the posterior distribution can be separated as follows:

p(st|Yt) = p(xt, qt|Yt) = p(qt|Yt)p(xt|qt, Yt)
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By marginalizing out xt, particle �ltering is only used to obtain p(qt|Yt) in the state space

with a reduced dimension, which makes resampling more e�cient, compared with the generic

PF which is used on full-dimensional st. The marginalization of xt can be implemented by

Kalman Filter if the noise in state space equations is Gaussian, or some other existing optimal

algorithm. The detailed algorithm can be found in [55].

Risk-Sensitivity and Rao-Blackwellization are two important improvements for particle �l-

tering aimed at state space coverage by particle set and e�ciency of resampling, respectively.

4.4 Hierarchical Particle Filter

In threshold-based monitors, particle �lter is used to evaluate Pfault(α). However, in moni-

toring of concurrent cyber-physical systems modelled by cPHAs, particle propagation depletion

becomes a challenge, especially when the cPHA is in locally parallel operation.

At each time t, particle �lter recursively calculates the Monte Carlo approximations of

bel(st) and bel(st), namely prior belief distribution and posterior belief distribution. As de-

scribed in the correction step in the particle �lter algorithm in Section 4.3.1, the set of particles

St =
{
s

(i)
t , i = 1, . . . ,M

}
which represents the prior distribution bel(st) is resampled according

to importance weights
{

w
(i)
t , i = 1, . . . ,M

}
to obtain the posterior distribution bel(st). Resam-

pling algorithm draws M particles with replacement from St to obtain St and doesn't generate

new particles. Therefore, if a critical transition is not captured in the prediction step, the true

state is missing in St and as a consequence the posterior distribution bel(st) will be inaccurate

� what is called particle propagation depletion. Moreover, if the missing/depleted states are re-
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lated to the computation of Pfault(α), particle propagation depletion would result in monitoring

failure.

In a risk-sensitive PF, for the risk-critical but low-probable discrete modes, the particles

propagated in SIS steps take a cost function into consideration so that a increased number of

particles would be in the risk-critical modes [86, 87]. But RSPF doesn't prevent the depletion

problems in other cases, for example, a cPHA running in locally parallel operation. The local

variables and the discrete state variables in locally input decoupled subsystems are mutually

independent in locally parallel operation, so the hybrid state space would increase exponentially.

In this case, the number of particlesM has to be large to cover the state space which dramatically

increase the complexity of the algorithm; otherwise, particle propagation depletion in St in

the prediction step is likely to occur and deteriorate the performance of the threshold-based

monitors.

4.4.1 Complexity Analysis

In a cPHA, the hybrid state space of B = A × P is the reachable set of the Cartesian

product of hybrid state space of system automaton and state space of property automaton,

N∏
i=1

(R|li| × Qi) × R|z| × QP . To avoid particle propagation depletion, the number of particles

required, M would be su�cient to cover the reachable set of hybrid state space
N∏
i=1

(R|li|×Qi)×

R|z| (Since property automaton P is deterministically driven by the system automaton, QP

doesn't a�ect M). Considering the probability distribution of system model p(st|st−1), M can

be even larger. When the overall system is running in fully locally parallel operation where

{li, i = 1, . . . , N} and the discrete state variables are independent, the reachable state space
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is exponentially increasing with the number of components, N . If N = 10, and assuming the

smallest size of the discrete state space is of cardinality 3, the size of the state space will be

310 = 59049. Potentially, this means that the number of particles should be 310 = 59049 to

guarantee correct state estimation.

In the case of cPHA, di�erent types of concurrency may require dramatically di�erent num-

bers of particles for adequate estimation performance. We start with the lemma that directly

follows from the discussion above.

Lemma 1 When a concurrent probabilistic hybrid automaton with N subsystems is in fully

locally parallel operation, RBPF algorithm has the worst case complexity of O(cN ), c > 1. When

it is in locally parallel operation where N ′(N ′ < N) subsystems are locally input decoupled, RBPF

algorithm has the worst case complexity of O(cN
′
), c > 1

It turns out that by taking advantage of the interconnection structure, it is possible to avoid

high computation load and obtain a good estimate when a cPHA is in locally parallel operation.

We thus propose a novel particle �ltering approach, a Hierarchical Particle Filter (HPF).

4.4.2 HPF Algorithm

M is the number of particles used in hierarchical particle �ltering algorithm. Recursively,

the hierarchical particle �ltering algorithm for a concurrent PHA is given as follows:
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Algorithm 3 Hierarchical Particle �lter St−1 =
{
s

(j)
t−1

}
=

{
(q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1), j = 1, . . . ,M

}
, yt

St = Ŝt = St = ∅

Step 1: Prediction

for j = 1 to M do

sample q(j)
t ∼ p(qt|s

(j)
t−1)

sample (l
(j)
1,t , l

(j)
2,t , . . . , l

(j)
N,t, z

(j)
t ) ∼ p(l1,t, l2,t, . . . , lN,t, zt|q(j)

,t , l
(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

w
(j)
t = p(yt|s(j)

t )

St = St + s
(j)
t

Step 2: Hierarchical adaptation of St

for i = 1 to N do

Identify the index set Ki of indeces j where q
(j)
i,t−1 = q∗i ∈ Qi,Parallel

if size(Ki) > P% ∗M then

A: Identify the set of discrete modes Q∗i that are successors of q
(j)
i,t−1, j ∈ Ki

Normalize w
(j)
t ← w

(j)
t /

∑
w

(j)
t , j ∈ Ki

for j = 1 to size(Ki) do

Draw m with probability ∝ w
(Ki(j))
t

Ŝt = Ŝt + s
(Ki(m))
t

Marginalize the distribution of the discrete mode qi,t from Ŝt:

wi,t(q) =
1

size(Ki)

∑

s
(j)
t ∈Ŝt

δ(q
(j)
i,t = q), ∀q ∈ Q∗i
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HPF is developed based on RBPF. The belief distribution of the discrete state variables

p(qt|Yt) is obtained by particle �ltering method, and the belief of continuous state variables xt

given qt is obtained by an optimal algorithm. Step 1 and step 3 are not di�erent from a RBPF.

The main improvement is with step 2 where the prior/proposal distribution of qt is adapted.

Proposal distribution obtained from SIS step is a prediction of st without knowledge from the

current observation yt. When particle propagation depletion occurs in the proposal distribution,

the adaptation of the proposal distribution is performed in step 2 with the current observation

The proposal distribution of the discrete state variables of locally input decoupled subsystems

are incorporated to made the �distance� between the proposal and target distributions closer.

4.4.2.1 Hierarchical adaptation

In locally parallel operation, the local states and the discrete modes from locally input decou-

pled subsystems are evolving independently, therefore the adaptation of the proposal distribu-

tion of local states and corresponding discrete mode from one locally input decoupled subsystem

would not a�ect another locally input decoupled subsystem. With Rao-Blackwellization, the

distribution of the discrete mode of a locally input decoupled subsystem is �rst adapted. Then,

the corresponding local states are adapted given the discrete mode.

At time t − 1, if subsystem Ai is believed to be locally input decoupled (more than P%

of the particles have discrete mode qi,t−1 = q∗i where q∗i ∈ Qi,Parallel and P is a parameter in

percentage), we label the particles that have a discrete mode that is a parallel operated discrete

state by index set Ki. From repeated experiments, we choose P to be 70 as a good number to

be adequate to represent the majority as well as maintain the variety of the particles.
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Algorithm 3 Hierarchical Particle �lter St−1 =
{
s

(j)
t−1

}
=

{
(q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1), j = 1, . . . ,M

}
, yt (continued)

B: Initialize the discrete mode q̃(j)
i,t , j = 1, . . . , size(Ki) to be uniform distributed over

Q∗i , and initialize l̃(j)i,t , j = 1, . . . , size(Ki) to be uniformly distributed over the admissible

portions of the state space.

w̃
(j)
i,t = wi,t(q̃

(j)
i,t ), j = 1, . . . , size(Ki)

Normalize w̃
(j)
i,t ← w̃

(j)
i,t /

∑
j∈Ki

w̃
(j)
i,t , j = 1, . . . , size(Ki)

for j = 1 to size(Ki) do

Draw m with probability ∝ w̃
(j)
i,t

Replace (q
(Ki(j))
i,t , l

(Ki(j))
i,t ) in St by (q̃

(m)
i,t , l̃

(m)
i,t )

Update z(j)
t , j = 1, . . . ,M corresponding to the adapted (q

(j)
i,t , l

(j)
i,t−1) for each locally decoupled

subsystem in St

C: Evaluate importance weights for particles in the adapted set St, w
(j)
t = p(yt|s(j)

t ), j =

1, . . . ,M

Step 3: Correction

Normalize w
(j)
t ← w

(j)
t /

∑
w

(j)
t , j = 1, . . . ,M

for j = 1 to M do

draw m with probability ∝ w
(j)
t

Apply optimal �lter to obtain (l
(m)
1,t , l

(m)
2,t , . . . , l

(m)
N,t , z

(m)
t ) ∼ Optimal(q(m)

t , s
(m)
t−1, yt)

St = St + s
(m)
t
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Then, at time t, instead of propagating all the particles from time t − 1 using the system

model to obtain St, we could use the current observation yt to adapt the discrete mode and the

local state of subsystem Ai in the particles indexed by Ki. Note that the observation is often

not made directly on local states of individual subsystems.

Of the particles in St indexed by Ki, we �rst resample according to their importance weights

obtained from step 1 which is essentially the likelihood of the particles. The resulting set of

particles Ŝt has the joint posterior distribution associated with the discrete mode of Ai, though

particle propagation depletion may have already occurred in the prior distribution represented

by St. Then, the desired distribution of the discrete mode of subsystem Ai for adaptation can

be marginalized from the joint posterior distribution.

wi,t(q) =
1

size(Ki)

∑

s
(j)
t ∈Ŝt

1(q
(j)
i,t = q), ∀q ∈ Q∗i

We assume that the local states from the locally input decoupled subsystems are condition-

ally independent given the obseration yt, then by naive bayes model [94], the joint distribution

of all the independent local states is the product of their marginal distributions. The conditional

independence assumption is not valid in this case, however, heuristically, the marginal distribu-

tions gives the most likely region of the local state, and the independence of the evolution of

the local states from locally input decoupled subsystems makes the adaptation of local states

from locally independent subsystems not a�ect each other. So, the combination of marginal

distributions re�ects the most likely region of the joint state.
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To obtain the adapted set of particles whose discrete mode of Ai follows the marginal

distribution wi,t(q), we initialize the discrete mode qi,t in the set of the particles indexed by

Ki to be uniformly distributed over Q∗i , the set of successors of q∗i , and resample to obtain

q̃
(j)
i,t , j ∈ Ki (the tilda mark is used to indicate the adapted parts of proposal distribution

St) using the marginal distribution as the importance weight function for each particle. The

local states l̃(j)i,t , j ∈ Ki are updated accordingly given q̃(j)
i,t . Then,

{
(q̃

(j)
i,t , l̃

(j)
i,t ), j ∈ Ki

}
replace

{
(q

(j)
i,t , l

(j)
i,t ), j ∈ Ki

}
in set St. Essentially, other than taking blind propagated discrete modes

and local states for the locally input decoupled subsystem in the proposal distribution, the

adapted proposal distribution of (qi,t, li,t) for subsystem Ai would pick the most probables

discrete modes and local states considering the current observation.

The procedure for adaptation is implemented for every locally input decoupled subsystem,

and then the importance weights of the adapted particles are evaluated for resampling in step

3.

4.4.2.2 Complexity Reduction

In locally parallel operation, without using an exponentially increasing number of particles

that would cause exponentially increasing complexity in an existing particle �ltering algorithm,

HPF divides each particle based on the concurrency in subsystem operation, and applies adap-

tation for the corresponding divided part of the particles in the proposal distribution for each

individual locally input decoupled subsystems. Therefore, the number of particles, M is only

required to be su�cient to cover the state space of each individual locally input decoupled

subsystem.
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Lemma 2 When a concurrent probabilistic hybrid automaton with N components is running in

the mode of fully locally parallel operation when all the subsystems are fully decoupled, hierar-

chical particle �ltering algorithm has the space complexity of O(c ·N).

4.4.2.3 More discussion

Algorithm 3 assumes the general case that the observation model is on both link and local

states, yt = hqt(l1,t, . . . , li,t, . . . , lN,t, zt)+wy,t, and the current observation yt is be used to obtain

the marginal distribution of the discrete mode qi of the locally input decoupled subsystems for

the adaptation in proposal distribution at time t.

Next we take a look at other cases about the observation model and discuss the necessary

modi�cation of HPF accordingly.

• Case 1: The observation only depends on link variables.

yt = hqt(l1,t, . . . , li,t, . . . , lN,t) + wy,t

When system is in fully locally parallel operation,

bel(st) = p(qt, l1,t, . . . , lN,t, zt|Yt) = p(qt, l1,t, . . . , lN,t|Yt)p(zt|qt, l1,t, . . . , lN,t, Yt−1)

The second part is simply the conditional prediction of zt. The �rst part is a reduced

dimensional �ltering/estimation problem on {li, i = 1, . . . N} and qt which follows the HPF

algorithm introduced above.
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If the system is in locally parallel operation, but not in fully locally parallel operation, then

there is at least one subsystem which is not decoupled. AssumeAi is a non-decoupled subsystem,

and the evolution of li,t or qi,t is dependent on zt−1. In resampling with weights based on li,t in

step 3, the propagated zt is not correlated to the current observation yt in time. Therefore, as

of resampling in step 3, the posterior belief should be for (zt−1, qt, li,t) in every time step. So,

the modi�cation is in step 1, prediction from (li,t−2, zt−2, qt−1, li,t−1) to (zt−1, qt, li,t).

Algorithm 4 Hierarchical Particle �lter � Case 1 St−1 =

{
(q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−2), j = 1, . . . ,M

}
, yt

Step 1: Prediction

for j = 1 to M do

sample z(j)
t−1 ∼ p(zt−1|q(j)

t−1, l
(j)
t−2, z

(j)
t−2)

sample q(j)
t ∼ p(qt|q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

sample (l
(j)
1,t , l

(j)
2,t , . . . , l

(j)
N,t) ∼ p(l1,t, l2,t, . . . , lN,t|q

(j)
t , l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

w
(j)
t = p(yt|l(j)1,t , l

(j)
2,t , . . . , l

(j)
N,t)

St = St + s
(j)
t

• Case 2: The observation only depends on the link variables.

yt = hqt(zt) + wy,t
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At time t, local states (l1,t, . . . , lN,t) is not observed. The evolution of link states at time t

is dependent on the local states at time t − 1, (l1,t−1, . . . , lN,t−1). So, in this case, the �ltering

of (l1,t−1, . . . , lN,t−1) is actually smoothing, which requires the future observation yt. So, the

posterior belief should be made for (li,t−1, qt, zt) recursively. Similarly, in step 1, prediction is

modi�ed to be from (li,t−2, zt−2, qt−1, zt−1) to (li,t−1, qt, zt).

If the system is in locally parallel operation, then the proposal distribution adaptation in

step 2 is towards independent (li,t−1, qi,t) for the decoupled subsystems. Besides, zt should also

be updated re�ecting the adaptation of the local states li,t−1 and the discrete modes qi,t for the

decoupled subsystems.

• Case 3: The observations can be decoupled into cases 1 and 2.

yat = haqt(l1,t, . . . , li,t, . . . , lN,t) + way,t, y
b
t = hbqt(zt) + wby,t

This is a special case where the observation can be divided into two group, (yat , y
b
t ) such that

ya is a function of local states, and yb is a function of link states. The weight of a particle in

the proposal distribution is

w
(j)
t = p(yt|s(j)

t ) = p(yat , y
b
t |s(j)

t )

= p(yat |l(j)1,t , . . . , l
(j)
N,t)p(y

b
t |z(j)

t )

= w
a (j)
t w

b (j)
t
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Algorithm 5 Hierarchical Particle �lter � Case 2 St−1 =

{
(q

(j)
t−1, l

(j)
1,t−2, l

(j)
2,t−2, . . . , l

(j)
N,t−2, z

(j)
t−1), j = 1, . . . ,M

}
, yt

Step 1: Prediction

for j = 1 to M do

sample (l
(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1) ∼ p(l1,t−1, l2,t−1, . . . , lN,t−1|q(j)

t−1, l
(j)
t−2, z

(j)
t−2)

sample q(j)
t ∼ p(qt|q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

sample z(j)
t ∼ p(zt|q

(j)
t , l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

w
(j)
t = p(yt|z(j)

t )

St = St + s
(j)
t

Step 2: Hierarchical adaptation of St

for i = 1 to N do

Identify the index set Ki of j where q
(j)
i,t−1 = q∗i ∈ Qi,Parallel

if size(Ki) > P% ∗M then

...

B: Initialize the discrete mode l̃(j)i,t−1, j = 1, . . . , size(Ki) to be uniform distributed,

and update q̃(j)
i,t , j = 1, . . . , size(Ki) over Q∗i correspondingly

...

Update z(j)
t , j = 1, . . . ,M corresponding to the adapted (q

(j)
i,t , l

(j)
i,t−1) for each locally decoupled

subsystem in St

...
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To improve the e�ciency of resampling, similarly as in case 2, the prediction is for (li,t−1, qt, zt),

so after the adaptation of (li,t−1, qi,t) for decoupled subsystems, zt is also updated for adapted

proposal distribution. In this case, to obtain Ŝt in part A of step 2, which is used to calculate

the marginal distribution of wi,t(q) for adaptation of (li,t−1, qi,t), we take the set of particles

indexed by Ki resampled according to wa
t−1 = p(yat−1|l1,t−1, . . . , lN,t−1). Then, for resampling

done in step 3, we would only use w
b (j)
t = p(ybt |z(j)

t ) as the importance weights.
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Algorithm 6 Hierarchical Particle �lter � Case 3 St−1 =

{
(q

(j)
t−1, l

(j)
1,t−2, l

(j)
2,t−2, . . . , l

(j)
N,t−2, z

(j)
t−1), j = 1, . . . ,M

}
, yt

Step 1: Prediction

for j = 1 to M do

sample (l
(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1) ∼ p(l1,t−1, l2,t−1, . . . , lN,t−1|q(j)

t−1, l
(j)
t−2, z

(j)
t−2)

sample q(j)
t ∼ p(qt|q

(j)
t−1, l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

sample z(j)
t ∼ p(zt|q

(j)
t , l

(j)
1,t−1, l

(j)
2,t−1, . . . , l

(j)
N,t−1, z

(j)
t−1)

w
a (j)
t−1 = p(yat−1|l

(j)
1,t−1, . . . , l

(j)
N,t−1)

w
b (j)
t = p(ybt |z(j)

t )

St = St + s
(j)
t

Step 2: Hierarchical adaptation of St

for i = 1 to N do

Identify the index set Ki of j where q
(j)
i,t−1 = q∗i ∈ Qi,Parallel

if size(Ki) > P% ∗M then

A: Identify the set of discrete modes Q∗i of successors of q
∗
i

Normalize w
a (j)
t−1 ← w

a (j)
t−1 /

∑
w
a (j)
t−1 , j ∈ Ki

for j = 1 to size(Ki) do

Draw m with probability ∝ w
a (Ki(j))
t−1

Ŝt = Ŝt + s
(Ki(m))
t

Marginalize the distribution of the discrete mode qi,t from Ŝt:

wi,t(q) =
1

size(Ki)

∑

s
(j)
t ∈Ŝt

1(q
(j)
i,t = q), ∀q ∈ Q∗i
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Algorithm 6 Hierarchical Particle �lter � Case 3 St−1 =

{
(q

(j)
t−1, l

(j)
1,t−2, l

(j)
2,t−2, . . . , l

(j)
N,t−2, z

(j)
t−1), j = 1, . . . ,M

}
, yt (continued)

B: Initialize the discrete mode l̃(j)i,t−1, j = 1, . . . , size(Ki) to be uniform distributed,

and update q̃(j)
i,t , j = 1, . . . , size(Ki) over Q∗i correspondingly

...

Update z(j)
t , j = 1, . . . ,M corresponding to the adapted (q

(j)
i,t , l

(j)
i,t−1) for each locally decoupled

subsystem in St

C: Evaluate importance weights w
b (j)
t for the particles in the adapted set St, w

b (j)
t =

p(ybt |z(j)
t ), j = 1, . . . ,M

...

In the next section, we demonstrate a monitoring example on a multi-car train system, and

show the experimental results of hybrid state estimation using the Hierarchical Particle �lter.

4.5 Experiment

A train with electronically-controlled pneumatic (ECP) brakes [71] is used as an example.

The train has N cars in a sequence connected by rigid links between every two neighbor cars.

Each car has its own braking apparatus, and each brake works and fails independently. When
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the train runs normally, the velocity is controlled by the engine operation. Due to disturbances

or noises, when it's running too fast, a braking signal is sent to all the cars simultaneously,

then each car starts engaging their own brakes independently to help bring the velocity down to

its normal range. After some random dwell time, The brake may fail with a small probability

po = 0.1. As long as at least one brake works, the train slows down. When the velocity of

the train falls back to the preset point, all the brakes are released simultaneously and all the

cars are controlled by the engine again. During the whole process, a speed sensor measures the

velocity of the whole train, and two force sensors measure the forces only on the �rst and last

rigid links.

The desired behavior of the train is given by the following speci�cations. First, the train

itself shall adjust the velocity v when the it is beyond the desired range due to noises or some

other disturbances, which is a liveness property. Second, the forces exerted on the links between

each neighboring car cannot exceed the limit force it can a�ord. A disaster such as the rupture

of the whole train would occur if this is not prevented, which is a safety property.

A concurrent probabilistic hybrid automaton A is used to model the train. Formally, it is

comprised of two types of subsystems: velocity subsystem Av and braking subsystem Ab.

The velocity subsystem Av (6) gives how the velocity (v) evolves. Three modes (three states

of discrete variable qv) are included in the velocity subsystem. The train starts in the discrete

mode qv = 1 and remains in that mode until the velocity exceeds the threshold VU = 28.5, then

it switches to the mode qv = 2. The train remains in qv = 2 until one of the brakes engages

and it switches to state qv = 3.
N∑
i=1
bi in the guard condition of transition from qv = 2 to qv = 3
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Velocity Subsystem

Notes: n1 ∼ N(0, 1)

n2 ∼ N(0, 0.1)

n3 ∼ N(0, 0.5)

qv = 1

v(k + 1) = 0.1353v(k) + 0.8647× (25 + 2.5sin(k)) + n1

qv = 2

v(k + 1) = v(k) + n2

qv = 3

v(k + 1) =

{
v(k)− acclr(b1, . . . , bm) + n3, if v(k)− acclr(b1, . . . , bm) + n3 ≥ 0

0, otherwise

Observation

yv(k) = v(k) + n3

v > 28.5

m∑
i=1

bi > 0
m∑
i=1

bi = 0

Figure 6: Velocity subsystem

represents the number of brakes that are engaged in the braking subsystems. When all the

brakes disengage, the velocity subsystem switches back to the state qv = 1. When qv = 1, the

velocity is controlled to oscillate around 25 with amplitude 2.5, which lies in range [22.5, 27.5].

When qv = 2, the velocity keeps constant, and decreases with a deceleration which depends on

the braking pattern when qv = 3.

The individual braking system Ab is described in Figure 7.

The braking subsystem starts in the discrete mode qb = 1 and remains in that mode until

the velocity exceeds a threshold VU = 28.5, when it switches to the mode qb = 2. The braking

subsystem remains in qb = 2 until the timer c1 reaches T1 (modeling delay in actuation and

computational delays). Note that the initial value of the timer c1 in the state qb = 2 is not

deterministic, so the duration of time the system remains in qb = 2 is a random variable. After
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Braking Subsystem

Notes: n4 ∼ N(0, 3)

n5 ∼ N(0, 3)

qb = 1

b(k + 1) = 0

c1(k + 1) = −|n4|
c2(k + 1) = c2(k)

qb = 2

b(k + 1) = 0

c1(k + 1) = c1(k) + 1

c2(k + 1) = c2(k)

qb = 2

b(k + 1) = 0

c1(k + 1) = c1(k)

c2(k + 1) = c2(k)

qb = 4

b(k + 1) = 1

c1(k + 1) = c1(k)

c2(k + 1) = −|n5|

qb = 5

b(k + 1) = 1

c1(k + 1) = c1(k)

c2(k + 1) = c2(k) + 1

v > 28.5 c1 > 1

p = 0.1

c1 > 1

p = 0.9

v < 20

c2 > 1

Figure 7: Braking subsystem

the timer reaches T1, the braking system can fail with a probability po = 0.1 and permanently

switch to qb = 3, or switch to qb = 4 with probability 1 − po = 0.9 and engages in the brake.

When the brake engages, the variable b is set to be 1, thereby a�ecting the velocity of the train

as described above. When the velocity falls below VL = 20, the brake disengages after a random

amount of time (modeled by the timer c2 in mode qb = 5, another modeled random delay in

actuation and computation), when it switches to the state qb = 1.

The braking subsystem Ab described above (7) is for a single car. However, the braking

parameters are not identical for all the N cars, so the computation of acceleration is dependent

on the braking pattern. With each of the N = 5 brakes engaged or not, there are 25 = 32
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braking patterns. Speci�cally, the 5 cars have exactly the same mass m = 12, and the braking

power of each car in unit N is con�gured to be F (n) = 11.7+9.6×1.2n, n = 1, . . . , N. Therefore,

by Newton's Law, for each of the 32 braking pattern, the acceleration of the whole train and the

forces on links between neighboring cars can be calculated, and listed in Figure 8. The patterns

that would cause the violation of link force property.

Braking pattern Car 1 4 0 4 4 4 4 0 4 4 4 0 4 4 0 4

Car 2 4 4 0 4 4 4 0 0 4 4 4 0 4 4 0

Car 3 4 4 4 0 4 4 4 0 0 4 0 4 0 4 4

Car 4 4 4 4 4 0 4 4 4 0 0 4 0 4 0 4

Car 5 4 4 4 4 4 0 4 4 4 0 4 4 0 4 0

Link forces (N) Link 1 -5.625 -24.2 -0.521 0.032 0.696 1.492 -19.1 5.137 6.354 7.813 -18.54 5.801 7.15 -17.88 6.597

Link 2 -8.95 -22.88 -24.26 2.37 3.696 5.288 -38.19 -12.95 15.01 17.93 -11.56 -11.62 16.6 -10.24 -10.03

Link 3 -9.50 -18.79 -19.71 -20.82 9.46 11.85 -29 -31.03 -1.855 30.81 -30.11 -0.749 0.534 0.172 1.64

Link 4 -6.742 -11.39 -11.85 -12.4 -13.06 21.73 -16.49 -17.5 -18.72 15.41 -17.04 -18.17 16.07 -17.71 16.62

Acclr (m/s^2) 2.40 2.02 1.98 1.93 1.877 1.811 1.591 1.507 1.406 1.284 1.545 1.452 1.339 1.49 1.385

Braking pattern Car 1 0 0 4 4 0 0 4 0 0 4 0 4 0 0 0 0

Car 2 4 0 0 4 4 4 0 0 0 0 4 0 4 0 0 0

Car 3 4 0 0 0 0 4 4 4 4 0 0 0 0 4 0 0

Car 4 4 4 0 0 0 0 0 0 4 4 4 0 0 0 4 0

Car 5 0 4 4 0 4 0 0 4 0 0 0 0 0 0 0 4

Link forces (N) Link 1 -17.08 -13.44 11.46 13.47 -12.22 -10.76 12.92 -12.78 -11.98 12.25 -11.43 18.58 -5.105 -5.658 -6.321 -7.118

Link 2 -8.644 -26.88 -0.303 29.25 1.079 3.999 2.62 -25.55 -23.96 1.29 2.67 13.93 15.31 -11.32 -12.64 -14.24

Link 3 2.561 -40.32 -12.06 19.5 -11.14 21.53 20.60 -10.04 -7.65 -9.68 -8.75 9.29 10.21 11.32 -18.96 -21.35

Link 4 17.08 -22.15 -23.83 9.749 -23.37 10.76 10.3 -22.81 11.98 10.97 11.43 4.644 5.105 5.658 6.321 -28.47

Acclr (m/s^2) 1.424 1.12 0.98 1.625 1.019 0.897 0.86 1.06 1.00 0.91 0.95 0.39 0.43 0.47 0.53 0.59

4:  brake engaged; 

0:  brake not engaged

4: brake engaged; 

0: brake not engaged

Figure 8: Calculated link forces and accelerations for braking patterns of N = 5 cars

The output of the system is the measured velocity

yv = v + n3
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where n3 ∼ N(0, 1
2) and the measured link forces on the �rst and last links, ff and fl,





yff = ff + n6

yfl = fl + n7

where n6 ∼ N(0, 1
3) and n7 ∼ N(0, 1

6).

According to the speci�cations, the property automaton P describing the speci�cations are

given in Figure 9:

The speci�cations contain a liveness property regarding v and safety property regarding link

forces. The liveness automaton for the liveness property is converted to a safety automaton

with a timer counter1. The starting and accepting mode is q1 = 1, when the v > VU for more

than counter1 time units continuously, the speci�cation is considered to be violated, and it

permanently comes to fault mode q1 = 3. The second safety automaton speci�es the link force

safety property. The starting mode is q2 = 1, and the accepting modes are q2 = 1 and q2 = 2.

q2 = 3 is the fault mode when the maximum force on all the 4 links fmax > 30 for more than a

continuous time interval of counter2 time units.

Upon analyzing the cPHA A, which is the composition of the velocity subsystem Av and

N copies of the braking subsystems Ab, the link variables are velocity v, and variables {bi, i =

1, . . . , N}. For the velocity subsystem Av, there's no local variable, so Av is never decoupled;

for braking subsystems Ab, 2 timers c1 and c2 are local variables, and Qb,parallel = {2, 5} where

Ab is decoupled.
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Property Automaton

q1 = 1

counter1(k + 1) = counter1(k)

q1 = 2

counter1(k + 1) = counter1(k)− 1

q1 = 3

counter1(k + 1) = counter1(k)

q2 = 1

counter2(k + 1) = counter2(k)

q2 = 2

counter2(k + 1) = counter2(k)− 1

q2 = 3

counter2(k + 1) = counter2(k)

v > 28.5

counter1 := T ′

(v < 20)&&(counter1 > 0)

counter1 ≤ 0

fmax > flim

counter2 := T ′′

fmax < flim)&&(counter2 > 0)

counter2 ≤ 0

Figure 9: Property automaton
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When qb = 2 at time t for the ith braking subsystem, then depending on the local state c1,

qb can be propagated to 3 modes at time t + 1, i.e., Q∗b(q
∗
b = 2) = {2, 3, 4} as the set of the

successors of q∗b = 2. When qb = 5 at time t for the ith braking subsystem, depending on the

local state c2, qb can be propagated to 2 modes at time t + 1, i.e., Q∗b(q
∗
b = 5) = {1, 5} as the

set of the successors of q∗b = 5.

A sample of discrete trajectory of system automaton would be
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The execution will be repeated every time the velocity subsystem switches back to qv = 1,

and we call such a repetition an operation cycle. During an operation cycle, when the guard

condition v > 28.5 is satis�ed in joint discrete mode q = (1, 1, . . . 1), the velocity subsystem and

all the braking subsystems are switched to q∗b = 2 at the same time. Then, with N = 5, the size

of the discrete state space explodes to 3N = 243 resulting 32 braking patterns related to the

link force safety property. So, the estimation failure may happen when the stochastic failure of
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each braking subsystem occurs after the braking signal is sent (e.g., v > 28.5). So, hierarchical

PF is used in this situation until less than two braking subsystems stays in q∗b = 2.

An estimation failure is a divergent estimate of hybrid state which leads to a misalarm or

false alarm based on the property automata. Therefore, with each individual timer c1 expired

randomly, Ab starts braking in qb = 4 with probability 1 − po. When v < 20, Ab switches to

another q∗b = 5 with Q∗b(q
∗
b = 5) = {1, 5}, and the discrete state space explodes to 25 = 32.

However, since no failure would occur after timer c2 in qb = 5 expires, then the explosion of the

discrete state space is temporary and unrelated to the two properties to verify. Therefore we

don't take hierarchical adaptation for particles in proposal distribution in this situation.

4.5.1 Performance Evaluation

From simulation, the Figure 10 gives an example execution of the train system. The blue

and green lines are the trajectories of velocity v of the velocity subsystem, and the discrete state

q1 of the liveness automaton regarding the velocity. The red and black lines are the calculated

maximum link force fmax and the discrete state q2 of the safety automaton regarding the link

force. It is observed that at about time step 400, the force property is violated (the maximum

link force fmax > 30, and then q2 = 3).

Figure 11 shows estimation results from RBPF and HPF, respectively. With M = 400

particles, the RBPF estimate fails when the train system is in locally parallel operation in all

the four operation cycles. On the other side, hierarchical PF shows a signi�cant improvement

in performance. This is the situation of case 3 where two observations are made on local states

and link states, respectively.
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Figure 10: "True" hybrid state trajectory of the train system

In the train example, a single run can have multiple operation cycles that require the brakes

to be engaged and that could violate the link force property. By running a simulation 1000

times and counting each operation cycle, the rate of estimation failure is less than 3%, which

dramatically improves the estimation performance.
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Figure 11: Comparison of Estimated hybrid state trajectory by RBPF and Hierarchical PF



CHAPTER 5

FAULT DETECTION AND DIAGNOSIS FOR SAFETY-CRITICAL

CYBER-PHYSICAL SYSTEMS

5.1 Introduction

For safety-critical systems, there is a growing need to guarantee system safety on-the-�y.

Runtime Fault Detection and Diagnosis (FDD) has been developed and applied to achieve

safety and reliability of systems. Fault detection entails recognizing that a fault happened,

while fault diagnosis requires �nding the cause and location of the fault. An extensive range of

research has been done to develop e�ective FDD methods, especially on model-based FDD [95].

Many solutions were developed and investigated since 1980s in the control community. Some

important developments include parity equations, state observer/estimation, and parametric-

based approaches [17, 63, 95, 96]. Since 1990s, model-based FDD publications focused more

on speci�c aspects such as robustness and sensitivity, diagnosis-oriented modeling, or robust

isolation. Today, the model-based FDD is considered as a mature �eld of research.

Researchers have also extended the existing model-based fault detection and diagnosis meth-

ods to hybrid systems. Hybrid state estimation techniques for both discrete mode and continuous

state were developed in [24, 52, 97�99]; Structural partity residual was used in Fault Detection

and Diagosis for hybrid systems in [50]; In [100], based on the model of hybrid bond graphs,

an online hybrid observer is designed for parameter fault detection and used qualitative and

89
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quantitative methods for fault isolation; [101] used analytic redundancy method for mode de-

tection, and extended minimal structurally overdetermined (MSO) approach for to hybrid MSO

(HMSO) for fault diagnosis in hybrid systems.

In modern safety-critical cyber-physical systems, e.g. automobiles, with ever more functions

integrated in a more compact system, it is expensive to locate the root cause of a fault/failure.

Failure Mode and E�ect Analysis (FMEA) is widely used in automotive industry as a tool to

analyze the root causes of detected failures [102]. Design FMEA (DFMEA) [103] is performed

during product development to achieve robust system design. Process FMEA (PFMEA) [103] is

applied to evaluate potential process induced failures before production phase begins. Society for

Automotive Engineers (SAE) in 1994 �rst published related standard J1739 which standardizes

the process and provides the worksheet which guides the FMEA process.

In the process of FMEA, it is important to identify all the potential e�ects and causes of a

potential failure mode thoroughly. For each of the potential e�ects/causes, three rankings are

assigned: Severity, Occurrence, and Detection. Action taken to eliminate or reduce high-risk

failure mode is based on Risk Priority Number (RPN), which is calculated as the product of the

3 rankings. Note that each potential failure mode can have more than one potential e�ect, and

each potential e�ect also can have multiple potential causes. The severity ranking is evaluated

on a potential e�ect, and the occurrence and detection rankings are evaluated on the potential

causes of the failure mode.

A person with expertise for FMEA (for example, the design engineer for a DFMEA and

process or process engineer for a PFMEA process) can bring tremendous insight to the whole
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team, speci�cally, the detailed knowledge of the potential e�ects and causes of each potential

failure mode. However, the existing process cannot guarantee a systematic analysis on the pos-

sible causes of each potential failure mode. Currently, brainstorming to list all the potential

failure modes as well as the corresponding e�ects and causes is the main method used in au-

tomotive industry. Therefore, if a potential cause of a speci�c failure mode is not listed, then

the remaining processes, e.g., prioritizing the failure modes and actions to take to eliminate or

reduce failure modes, will not meet the expected outcome.

Motivated by this industrial process and our previous work on monitoring on safety-critical

hybrid systems, we propose a new model-based FDD framework for hybrid systems. The pro-

posed framework attempts to address shortcomings of existing model-based FDD approaches

and provide a better �t for applications. In particular:

1. The fault models in modern hybrid systems can be complex, e.g. not just de�ned on

quantitative deviation (constant or adaptive thresholds) of parameter, internal states or

output, which is typical to see in existing model-based FDD. In modern hybrid systems,

time is often a critical aspect of a fault. For example, a fault-tolerant control system should

be able to perform adaptive control for self-recovery within a certain amount of time t0; a

fault thus occurs when the system deviates from the expected behavior continuously for

a period of time t > to.

2. Performing fault diagnosis usually requires prior knowledge of the faults, including the

modeling of faults. In existing model-based FDD, the faults are usually classi�ed into two

types: additive faults representing faults of actuators and sensors and multiplicative faults
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representing faults leading to a parameter change. Modern hybrid systems need a more

general way to represent complex faults, including random faults and temporal patterns

of safety violations.

3. Model-based approaches for FDD rely on the analytic model of the system and the faults.

However, the analysis of faults and their e�ects may not be accurate or even complete.

Although the knowledge about certain faults may be incomplete, we still need to identify

their occurrences and provide as much information as possible to correct them.

4. In existing model-based FDD of hybrid systems, diagnosis is mostly done o�ine using

generated residual signals and the analysis/knowledge of system faults. These methods

often include learning and other soft computing techniques. There is a growing need for

runtime robust diagnosis of system faults which does not need large existing data sets.

5. Most existing algorithms are con�ned to single fault diagnosis.

All these call for an alternative framework for model-based FDD. In this work, we propose

such novel framework, Property-Based FDD (PB-FDD) with a focus on safety-critical hybrid

systems. To distinguish Property-Based FDD from the existing model-based FDD, we name

the latter classical model-based FDD. The major improvements made in property-based FDD

include the following:

1. We use Linear Temporal Logic (LTL) to de�ne faults. This enables us to specify complex

time-dependent faults.
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2. Traditionally, faults are de�ned based on the nominal model of the system or a component.

As a result, existing methods are mainly con�ned to FDD at the component level, where

models are available. In contrast, in our framework, fault is de�ned more generally as

a violation of a system speci�cation. In particular, the speci�cation can often be given

without actually knowing the model of the system. In addition, hybrid automata formalism

also allows us to model the faults as a discrete transition to a faulty mode that is explicitly

included in the model of the component; this approach mirrors the traditional way of

de�ning a fault, but without the need to identify it as an additive or a multiplicative fault.

3. Our methodology uses particle �ltering algorithm to generate a fault signature; particle

distribution is used to detect the fault. However, this approach also allows us to use the

information provided by the importance weight distribution of the particle set. In partic-

ular, using the importance weight distribution, it is possible to identify the inconsistency

of the particle �lter and possibly of the combined system/fault model.

4. Since our PB-FDD is model based, a violation of the property can be directly traced to a

particular component, thus naturally providing the fault diagnosis.

5. Multiple violations can easily be detected and diagnosed in parallel in the proposed

property-based FDD.

5.2 Background

The motivation for the property-based FDD work is product design veri�cation for automo-

tive products, where DFMEA is the key resource/input to plan for e�ective design veri�cation.
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An e�cient framework of FDD can help expedite the design-veri�cation-debugging phase and

dramatically cut the time and cost.

5.2.1 DFMEA and Product Design

FMEA techniques have been around in safety applications for more than �fty years, and

now is widely applied as standard in industries, especially in automotive industry for quality

control purpose.

DFMEA is conducted in the product design stage, focused on preventing defects, enhancing

safety and increasing customer satisfaction. The objective of DFMEA is to identify how well

the system requirements are met and perform product improvement early in the product design

phase. A design veri�cation procedure is created according to the results from DFMEA to

maximize the e�ectiveness of product veri�cation or testing to detect the defects in the product.

In the DFMEA process, based on the knowledge of every member in the DFMEA team, all

the possible ways of potential failure should be considered in the process, including the problems

in product design as well as the possible user mistakes and environmental disturbances. For

each potential failure mode, all the potential e�ects and corresponding potential causes (one or

multiple for each potential e�ect) are listed, and a Risk Priority Number (RPN) is assigned to

each pair of e�ect and cause.

RPN = S ×O ×D

where
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• S is the Severity ranking of the potential e�ects on a scale of 1− 10;

• O is the Occurrence ranking of the potential causes on a scale of 1− 10;

• D is the Detection ranking of the detection control strategy on a scale of 1− 10.

To eliminate the failure modes with high RPN or reduce RPN for some failure modes, the

occurrence ranking can be reduced/eliminated by the investigation the root cause and im-

provement/�x of the defect, and the detection ranking can be reduced by the improvement

of test/veri�cation to increase the detectability of the failure. An update RPN is calculated

again upon the action taken.

An important advantage of FMEA is its completeness. With an e�ective DFMEA, failures

in the design can be easily detected and their root causes identi�ed. However, in practice, since

brainstorming to list all the potential failure modes and the corresponding e�ects and causes is

the main method applied, DFMEA cannot be guaranteed to cover all the e�ects and causes of

the possible failure modes. If a failure is detected, and the actual root cause is unlisted, then

the debugging could be costlier, including ruling out all the listed root causes and identifying

the actual defects. Moreover, since a proper RPN is not assigned for the unknown root cause

of the failure, the action has to be put on hold, too.

In the product development process in automotive industry, since an unlisted root cause is

likely to be a product design defect, it has important practical meaning to recognize the unlisted

root causes and locate the most recently working con�guration. While in the design phase, it is

necessary for design and testing to be repeated several times to debug all the software/hardware
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defects. Therefore, diagnosing an unlisted root cause can greatly increase the chance to product

design improvement.

We propose a framework of property-based fault detection and diagnosis to formalize the

process where FMEA result is taken into the account. On the other side, the proposed framework

is able to supplement the missing pieces of FMEA analysis.

5.2.2 A Motivating Project

5.2.2.1 Auxiliary Transmission Fluid Pump Motor Controller

For hybrid electric vehicles, one important feature is �idle-o�� which turns o� the conven-

tional engine when the vehicle is stopped temporarily at stoplights or in tra�c to save fuel,

also known as a start-stop system. The electric motor can start the vehicle again once the stop

condition is removed. An auxiliary transmission �uid pump is used to provide the transmission

with proper hydraulic pressure required to support the restart process.

A Brushless DC (BLDC) motor is used to drive the pump so it is necessary to design

a pump motor Electronic Control Unit (ECU). The controller takes inputs from the Engine

Control Module (ECM), and provides information on its own operation status. A project at

Magna Electronics Inc is the controller design for the BLDC motor.

5.2.2.2 System Requirements

The most critical system requirement for the ECU (the auxiliary transmission �uid pump

motor controller) is that the pump should run continuously at the desired speed once a start

signal followed by a proper speed command is received from the ECM, unless an exception is

detected, in which case the cause of the exception should be reported.
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Motor Operation Status PWM output DC (%)

Running Normal 47.5± 2.5

Stopped Over Current Exception 22.5± 2.5

Stopped Over Temperature Exception 37.5± 2.5

Stopped Over Speed Exception 67.5± 2.5

TABLE II: Motor Status vs. PWM Output DC

The start signal and the speed command are mapped to Pulse-Width Modulation (PWM)

signals. The start signal has a �xed duty cycle (DC) of 15%. The relationship between the DC of

the PWM signal and the speed command is described by a linear equation RPM = 20∗DC+300.

Basically, the speed command linearly maps the interval[800, 2000]rpm to the DC range of

[25, 85]%.

The output of the ECU is a PWM signal, with the DC indicating its operation status, i.e.,

normal operation or an exception condition. The mapping is described in Table II:

5.2.2.3 Software Design Diagram

The software design diagram is shown in Figure 12. In software design, there are seven modes

of operation, Init, Wait, Shutdown, Alignment, Startup and Operation and Exception. The

system enters Init when the ECU is powered up, and switched to Wait when a PWM signal is

received regardless of its DC. Upon receiving a start signal, the system switches to Shutdown. In
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Init Wait Shutdown 

Alignment Startup 

Operation 

Exception 

             Motor Control 

Start Signal  

Received 

Speed Cmd  

Signal Received 

Stop Signal Received 

Exception Condition Detected 

Exception timer matures 

Figure 12: State�ow of Software design for ePump Controller

Shutdown, if a valid speed command is received, the motor control starts to work. The motor

control algorithm has three modes: Alignment, Startup and Operation. The system �rst

switches to Alignment to reset the rotor position of the BLDC motor, and then in Startup,

the motor is controlled to start in an open-loop mode without rotor position feedback. In

Operation, the motor is controlled to operate at the desired speed continuously in a closed-loop

mode. When a stop command signal is received, the system switches back to Shutdown. If any

exception listed in Table II is found in Operation, the system would switch to Exception mode

and trigger a maturing timer. If the exception vanishes before the timer matures, the system

switches back to Operation; if the exception persists until the timer matures, the system would

switch to Wait, and wait for the next start signal.
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5.2.2.4 Problems

DFMEA is performed for the pump motor Electronic Control Unit (ECU) in the early stage

shown in Table III. The three exceptions listed in Table II are root causes for the failure mode in

which the motor stops, it has high severity since the engine would be stopped without enough

hydraulic pressure. The occurrence is obtained with actual testing data. The detection is

built in the software design, so it has low detection ranking. More potential failure modes are

investigated, including that the motor couldn't start, the motor runs at a lower speed and the

motor speed �uctuates.

During the actual testing, another fault, rough motor start, occurred. The motor attempted

to start for about 3 seconds and stopped permanently without any known exception indicated

by PWM out DC. There are also no matching root causes according to the FMEA worksheet

in Table III. Battery voltage was in good range; motor was not stalled; all faults were cleared

before the motor started; transmission �uid was good condition.

5.3 Modeling

5.3.1 Hybrid Systems

First of all, property-based FDD is a model-based FDD where the nominal system and

fault model are known. We focus on hybrid systems which is modeled by Probabilistic Hybrid

Automata (PHA).

Please refer to Section 4.2.1.1 for a detailed description of a PHA and its semantics.



100

Function

Potential

Failure

Mode

Potential

E�ects

Seve-

rity

Potential

Causes

Occu-

rrence

Current

Control

Dete-

ction
RPN

Motor
spins at
desired
speed

Motor
stops

Engine
stopped

8
Stall (Over

Current Fault
matures)

2 None 4 48

8

Ambient
temperature too

high (Over
Temperature
Fault matures)

1 None 1 8

8
Over Speed

Fault matures
4 None 3 32

Motor
couldn't
start

Engine
not

starting
up

9
An old matured
fault was not

cleared
1

Software
fault
table
check

1 9

Motor runs
at a lower
speed

Engine
may not
starting

up

4
Battery level
gets low

2
Battery
level

2 8

4
Transmission
Fluid viscosity

increases
1 None 3 12

Motor
speed

oscillates

Rough
Engine
start up

6

Motor control
algorithm is not
sensitive to the
EMF waveform
zero crossing

6 None 5 180

TABLE III: FMEA WORKSHEET
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5.3.2 Fault Models

The modeling of faults is one of the most important parts of model-based fault detection

and diagnosis.

Generally, a fault is de�ned as follows:

De�nition 9 (Fault) Generally speaking, a fault is an unpermitted violation of at least one of

the requirements.

Since in PB-FDD, faults are de�ned implicitly through requirements, it helps to clearly

de�ne the scope of these requirements. Following the industrial product development process,

the system requirements are �rst collected and analyzed without determination of the soft-

ware/hardware design. The ability to de�ne faults at this level, also called system level faults,

is an important advantage of PB-FDD. As the design of individual components starts, the cor-

responding requirements for each component are developed; the violations of these are called

component level faults.

An example would be an automotive embedded electronic control unit (ECU). System re-

quirements describe the expected behavior of the product from the user's perspective including

but not limited to the functional, performance, and security requirements. Instead, compo-

nent requirements are limited to the function of speci�c components, e.g., application software,

control algorithm, hardware, etc. This motivates the following de�nitions:

De�nition 10 (System level fault) A system level fault is a fault which violates the system

requirements independent of the system design.
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De�nition 11 (Component level fault) A component level fault is a fault which violates the

component requirement. The component requirement may or may not refer to the component

design.

5.3.2.1 System Level Faults

A system level fault indicates the violation of the system requirements. This can be caused

by many factors including a bad component design, a stochastic failure, an uncontrollable dis-

turbance or a slow deterioration of hardware. System level faults are the potential failure modes

in FMEA and system level fault detection is often an integral part of the design veri�cation

process.

The system requirements are created from a user's perspective, and thus, are independent

of the system design (model). The system requirements are de�ned on the hybrid state of the

system, and quite often, time is an important element in the description of the desired behavior.

Because of that, it is convenient to describe system requirements using Linear Temporal Logic

(LTL) formulas, typically in the form of safety and/or liveness properties [11, 104]. Any LTL

formula can be transformed to a Streett automaton (4.2.2.1) P such that the language accepted

by P is equivalent to the LTL formula [105,106]. While classical FDD typically relies on residual

signals or parameter change detection, PB-FDD provides a much more general decision rule.

Namely, a fault is detected when an execution of a system is rejected by the Streett automaton

P (the absorbing error state of P is reached in in�nite horizon).
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5.3.2.2 Component Level Faults

Component level faults refer to the violation of component requirements. They correspond

to failures or malfunctions of components. Within the framework of FMEA, they are the root

causes of the failure modes. In PB-FDD, we only consider the component level faults that would

lead to a system level fault, i.e., the violation of system requirements.

Using hybrid automata formalism, it is natural to model a component level fault as a discrete

mode qF ∈ QF , where QF is the set of all the discrete fault modes. The structural knowledge of

the component level faults is given by results obtained from FMEA process. In FMEA, for each

failure mode (formalized to be a system level fault), multiple potential root causes are identi�ed.

From either data-driven or analytic analysis, ∀qF ∈ QF , the behavior of the system under the

condition of a particular root cause is modeled by continuous dynamics ε(qF ). The onset of

the root cause is triggered by a transition from some other discrete state q which has a set of

transitionsT (q) = {(φ, p)q,λ}λ∈Jq when∃λ ∈ Jq such that pq,λ(qF ) > 0. Compared with the

classical FDD where faults are modeled either as additive or multiplicative faults, our proposed

model of component level faults is much more general.

With component level faults properly incorporated into the system model, their detection

essentially diagnoses a system level fault at the same time.

However, as discussed in Section 5.2.1, a root cause that is not listed is also important in

product design since it is likely to be a neglected design defect. We thus formally de�ne unlisted

potential root causes as unknown component level faults.
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Unknown Component Level Faults

Similar to known component level faults, an unknown component level fault is also modeled

by a discrete mode qUF . Without any information from FMEA, the dynamics of the unknown

faults as well as the triggering transition are unknown. Therefore, a single discrete mode qUF

represents an entire family of unknown component level faults. Unknown component level faults

can occur at any discrete mode q ∈ Q. So, implicitly we assume that there is a transition from

any q ∈ Q to qUF .

5.4 Structure of Property-Based Fault Detection and Diagnosis

The PB-FDD scheme, illustrated in Figure 13, consists of two parts: fault detection and

fault diagnosis.

Fault detection is to detect system level faults, the violation of correctness de�ned in systems

requirements. The correctness is speci�ed by a deterministic Streett automaton P, referred as

property automaton [12]. The component level faults are incorporated into the system model A.

The input alphabet for P is a sequence of hybrid state of A. The rejection probability given a

(�nite) sequence of output α is computed and compared with a probability threshold z. The fault

occurrence is con�rmed when RejProb(α) > z. The lower bound on the rejection probability

is the probability Pfault(α) that any absorbing error state of P is reached. The computation

Pfault(α) is formulated as belief propagation on the product automaton B = A×P using PF.

In classical FDD, fault diagnosis is triggered by the detection of a fault based on a generated

residual. However, in PB-FDD, fault diagnosis is performing at the same time as fault detection.
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The diagnoser is monitoring on particle inconsistency in PF, which basically indicates that PF

doesn't yield a reliable estimate. Formally,

De�nition 12 (Particle Inconsistency) There are no particles in the predicted set of parti-

cles in the true discrete mode or that adequately describes the true continuous state.

If particle inconsistency is not detected, diagnosis is essentially the identi�cation of the

component level faults modeled by qF in the system model; if a particle inconsistency is detected,

two hypotheses of the cause are proposed. One hypothesis is particle propagation depletion where

no particle is propagated to be close to the actual state during SIS, and the other hypothesis is

an unmodeled component level fault. Unmodeled component level fault indicates system model

inconsistency, thus PF doesn't have a precise model to keep track of a speci�c component level

fault. Hypotheses testing is employed to detect both particle inconsistency in PF and system

model inconsistency.

In Section 4.4, we focused on particle propagation depletion. However, it was assumed that

this is caused by the state space explosion due to a speci�c type of concurrency in subsystem

operation. Then, hierarchical PF was proposed to avoid the estimation failure. In this chapter,

we focus on the detection of general particle inconsistency rather than one solution in a speci�c

case.

5.5 Fault Detection

The fault detection is con�rmed when Pfault(α) > z, where z is a preset threshold. This is

the threshold based monitor proposed in Section 3.1.3. The belief propagation of Pfault(α) is

essentially the implemented by using the particle �lter , a recursive hybrid estimation technique.
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Figure 13: PB-FDD architecture
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In estimation problem of the complex hybrid systems, the high dimensional hybrid state

space, nonlinearity and stochastic state-dependent transitions, are intractable using the con-

ventional estimation techniques. PF is considered as an e�cient tool for such a computational

problem. Please refer to the detail of a generic PF and its variations in Section 4.3.

Moreover, in the proposed property-based fault detection strategy, multiple requirements

can be represented by multiple property automata, and there is no restriction to detect multiple

violations in parallel.

5.5.1 Monitorability

Before a particle �ltering algorithm is implemented for fault detection problem for hybrid

systems as described above, note that the aim is to estimate the probability that the error state

of the property automaton has been reached; we are not speci�cally interested in the information

about the internal states of the system automaton. Therefore, rather than observability, fault

detection in the case of PB-FDD only requires monitorability [12] of the system with respect to

the speci�c property.

5.5.2 Design of property automaton

We limit the system requirements in the thesis to be Linear Temporal Logic (LTL) formulas,

which can be always represented by the conjunction of a safety and a liveness properties [9,10].

For a safety property, safety automaton speci�es a set of absorbing error modes/states. For

a liveness property, modeled by a liveness automaton, in�nite horizon would be required to

verify that the property has been violated. To implement the fault detection in that case, an

extra timer is introduced to convert a liveness automaton to a safety automaton so that after
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a certain amount of time speci�ed by the timer, if the system remains in the error state the

liveness property is considered to be violated.

Multiple properties can be converted to multiple parallel property automata where the error

states are de�ned independently. Thus, in fault detection, by evaluating the probability of the

error state for each property automaton, multiple faults can be detected simultaneously.

5.6 Fault Diagnosis

The purpose of fault diagnosis is to locate the root cause of a fault. In PB-FDD, FMEA

analysis results are used to model component level faults. Then, when a system level fault is

detected, diagnosis entails identifying which component level fault occurred. With particle �lter,

the estimate of the discrete state variable of the system automaton identi�es the component level

fault.

However, diagnosing the fault in this way assumes that the particle �lter yields reliable

results. To test this, we should evaluate the performance of the particle �lter. In the PF

algorithm, the importance weight contains the information that can be used for this purpose.

5.6.1 Importance Weights

In the particle �ltering algorithm introduced in Section 4.3.1, in prediction step, the prior

distribution bel(st) = p(st|Yt−1), represented by a set of Monte Carlo particles St, is obtained

by SIS, and each particle s(i)
t in St is weighted by the likelihood of the observation yt given s

(i)
t ,

w
(i)
t = p(yt|s(i)

t ). In the correction step, SIR is performed on the set of particles St according to

their importance weights {w(i)
t , i = 1, . . . ,M}.
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The importance weights re�ect the distance between two distributions, bel(st) and bel(st),

named proposal and target distribution, respectively,

wt(st) = p(yt|st) ∝
bel(st)

bel(st)
.

De�nition 13 A set of random samples {s(i), i = 1, . . . ,M} is properly weighted by {w(s(i)), i =

1, . . . ,M} with respect to the posterior distribution π if for any integrable function h,

lim
M→∞

∑M
i=1 h(s(i))w(s(i))
∑M

i=1 w(s(i))
= Eπ(h(S)).

If a set of random samples {s(i), i = 1, . . . ,M} is properly weighted by {w(s(i)), i =

1, . . . ,M} then {(s(i),w(s(i))), i = 1, . . . ,M} are statistically equivalent to the set of samples

resampled from {s(i), i = 1, . . . ,M} according to {w(s(i)), i = 1, . . . ,M}. For particle �lters, it

can be shown that the proposal distribution is properly weighted by the weight function which

is the likelihood of the particle in the proposal distribution.

It is commonly known that in a particle �lter, particle degeneracy and particle impoverish-

ment are the two di�cult challenges [13]. If the set of propagated particles after SIS tend to

have all but a few particles with negligible weights, particle degeneracy occurs. It can be usually

addressed by the procedure of resampling, implemented in the PF introduced in Section 4.3.1.

However, resampling could bring another problem, particle impoverishment, where the �impor-

tant� particles are duplicated many times and other particles with small weights are discarded.
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It could dramatically decrease the diversity of the particles. The extreme case would be that

all the survived particles are duplicated from one particle.

An important measure, E�ective Sample Size (ESS) based on importance weights was pro-

posed to detect particle degeneracy in the proposal distribution.

ESS =
M

1 + varbel(st)(wt)

Heuristically, ESS can be interpreted as the number of i.i.d. random samples drawn from

the target distribution. The detection of degeneracy is usually based on a certain threshold, i.e.,

when ESS is below the threshold.

5.6.2 Detection of Particle Inconsistency

In PF, resampling doesn't generate new particles but duplicates or discards particles, so with

a limited number of particles M , if the actual state which is being observed is missing from the

proposal distribution, ine�ective resampling would occur, resulting in PB-FDD failure. Thus,

we focus on such a speci�c phenomenon, particle inconsistency (12). It occurs before resampling

but should be distinguished from the degeneracy problems which ESS is helpful to detect. Com-

pared with particle impoverishment where the general diversity of particle is reduced, particle

inconsistency is associated with the observed actual state which may be depleted.

Moreover, by using RBPF, in the assumption that the process noise for the continuous

state evolution is Gaussian, the continuous state in each particle is represented by a Gaussian

distribution with the two parameters, mean and variance. Even though particle impoverishment
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may occur after resampling, the actual state may not be depleted. In hybrid systems, the discrete

mode evolution is based on the continuous state, so we resample every step to increase ESS at

time t so that the particle propagation to the next time step t + 1 can cover all the possible

transitions and avoid particle inconsistency in the next time step.

When particle inconsistency in proposal distribution occurs, no particle in the set of propa-

gated particles is in the vicinity of the actual state. So one manifestation is that the importance

weights for all the particles are low, in other words, the importance weight sample mean is low.

Therefore, the importance weight sample mean is selected to detect the occurrence of particle

inconsistency.

A hypothesis test is employed for the detection. Recall that hypothesis testing has four steps

introduced in Section 2.4:

1. Null and Alternative Hypotheses formulation

2. Test statistics selection

3. Decision rule making

4. Decision to accept or reject the null hypothesis based on observed data.

The hypothesis test is used for every time step sequentially. So, �rst, we assume that the

estimate result from the last time step is reliable.

Assumption. At time t − 1, in the proposal particle set St−1 = {s(i)
t−1, i = 1, . . .M}, it is

assumed that there is no particle inconsistency.

Null and Alternative Hypotheses. The hypothesis to be tested is
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H0 : There is no particle inconsistency in the proposal particle set St

and the alternative hypothesis is

H1 : There is particle inconsistency in the proposal particle set

Test Statistic. We choose the importance weight sample mean wt = 1
M

∑M
i=1 w

(i)
t .

Sampling Distribution of Importance Weight Sample Mean. Let the sample mean

of random samples {x(i), i = 1, . . . , N} drawn from a distribution p(x) be denoted as x̄ =

1
N

∑N
i=1 x

(i). The mean and the variance of p(x) are denoted as µ and σ2, respectively. According

to central limit theorem, with a large sample size (N > 30), the sample mean is approximately

normally distributed, x̄ ∼ N(µx̄, σ
2
x̄) with mean µx = µ, and variance σ2

x̄ = σ2

N .

Let µwt and σ
2
wt

be the mean and variance of the importance weight variablewt at time t, re-

spectively. Then, the sampling distribution of importance weight sample mean is approximately

normally distributed with mean of µwt and variance of
σ2
wt
M .

Next, we will need to �nd the µwt and σ
2
wt

of the importance weight variable wt.

For w ∈ [0, 1], the underlying cumulative distribution function of wt can be obtained:
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Fwt(w) = P(wt 6 w)

= Pbel(st)(p(yt|st) 6 w)

=

ˆ
p(yt|st)6w

bel(st)dst

=

ˆ
pwy,t (yt−rqt (xt))6w

bel(st)dst

(5.1)

St−1 = {s(i)
t−1, i = 1, . . . ,M} is the particle representation of distribution bel(st−1). Note

particles in St−1 are equally weighted. Then analytically, bel(st) can be represented by

bel(st) =
1

M

M∑

i=1

p(st|s(i)
t−1)

=
1

M

M∑

i=1

pwx,t(xt − fqt(x(i)
t−1))

(5.2)

By replacing bel(st) by (5.2), we get

Fwt(w) =
1

M

ˆ
pwy,t (yt−rqt (xt))6w

M∑

i=1

pwx,t(xt − fqt(x(i)
t−1))dst (5.3)

If p(yt|st) is de�ned to be a distribution with parametric model, p(yt|st) 6 w can be solved,

and Fwt(w) can be obtained analytically.

The mean µwt and variance σ2
wt

of wt can be computed given cumulative distribution func-

tion Fwt(w). So, the sample mean wt = 1
M

∑M
i=1 w

(i)
t is approximately normally distributed

with wt ∼ N(µwt ,
σ2
wt
M ).
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Decision. Upon evaluating the test statistics, if the test falls into the critical region, the

null hypothesis is rejected. Otherwise, the null hypothesis is accepted.

For a signi�cance level γ, the critical value for the test is:

t∗γ = µwt +
σwt√
M

Φ−1(γ)

where Φ(x) is the cumulative distribution function of the standard normal distribution.

Therefore, if the observed sample mean wt < t∗γ , the null hypothesis is rejected.

5.6.3 Causes for particle inconsistency

It could be that the error resulted from the random propagation in SIS step following the

system model, where the observation is not taken into account, and the actual state is depleted,

referred to as particle propagation depletion. This is the error introduced by the algorithm.

However, it's not the only cause. Another cause is related to the unknown discrete fault, which

is the lack of a priori knowledge to be modeled in the system model, referred to as system

modeling inconsistency. By identifying the occurrence of the system modeling inconsistency, an

unmodeled fault is detected. Both causes would lead to particle inconsistency, causing a PF

failure.

Distinguishing these two causes has signi�cant meaning in veri�cation/testing in industrial

applications. Particle propagation depletion is the error from the particle �ltering algorithm,

which is the tool to perform the veri�cation task. Meanwhile, with system modeling inconsis-

tency, the system model provided is not consistent with the behavior of the system, which could

be a design problem.



115

5.6.3.1 Particle Propagation Depletion

At time t, during the propagation step from bel(st−1), if the set of propagated particle, St =

{s(i)
t , i = 1, . . . ,M} doesn't keep track of a discrete mode or the vicinity of a continuous state

which turns out to be the actual state, it would lead to ine�cient resampling, thus estimation

failure. Particle propagation depletion could be due to a large hybrid state space and/or low-

probable transitions so that the propagated particles miss the critical piece of information from

the system model.

5.6.3.2 System Modeling Inconsistency

System model is used as input for PF. In the case of system modeling inconsistency, there

is no particle in PF which carry the information of the unmodeled mode. If the system is in a

speci�c unmodeled mode, then particle inconsistency occurs.

The di�erence between the two causes is whether the missing mode is known by the PF

algorithm. In the �rst scenario, the correct system model is used in SIS, but the set of propagated

particles doesn't cover the �important� states which have relatively higher weights, therefore the

corresponding importance weight distribution doesn't meet the expected Fwt(w). However, in

the second scenario, the distribution of the importance weights of the propagated particles is

close to the expected weight distribution.

As analyzed, the cause of particle inconsistency is essentially determined by how well the

importance weights of the particles in the propagated set �t the expected distribution of impor-

tance weights. Thus, the decision is made by a goodness of �t test (2.4.1).
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5.6.3.3 Kolmogorov-Smirnov Test

The Kolmogorov�Smirnov test (K-S test) [68] is a statistical hypothesis test that is widely

used for non-parametric goodness of �t test. It is used to compare a empirical distribution to a

hypothesized distribution. When particle inconsistency is detected, we compare the importance

weights of the particles in the propagated set to the expected importance weight distribution

Fwt(w) derived in (5.3). If the importance weights matches Fwt(w), system modeling inconsis-

tency occurs; otherwise, particle propagation depletion occurs.

Null and Alternative Hypotheses. The importance weights of particles in the propa-

gated set are independently distributed with the expected distribution Fwt(w). The null hy-

pothesis is the occurrence of system modeling inconsistency. And the alternative hypothesis is

the occurrence of particle propagation depletion in the proposal distribution.

H0 : There is system modeling inconsistency

H1 : There is particle propagation depletion

Test statistic. The test statistic is the distance between the two cumulative distribution

functions (cdf).

The expected cdf of wt (5.3) is

Fwt(w) =

ˆ
pwy,t (yt−rqt (xt))6w

bel(st)dst
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where

bel(st) =
1

M

M∑

i=1

pwt(xt − fqt(x(i)
t−1))

The empirical distribution function is FMwt
(w) = 1

M

∑M
i=1 1(−∞,w](w

(i)
t ).

So, the test statistics is

DM = sup
w

∣∣FMwt
(w)− Fwt(w)

∣∣

By the Glivenko�Cantelli theorem [107] , if the sample comes from distribution Fwt(w), then

DM converges to 0 almost surely in the limit when M goes to in�nity.

Under null hypothesis that the sample comes from the hypothesized distribution Fwt(w),

√
MDM is converged to Kolmogorov distribution [68].

Decision. For a given signi�cance level γ, the null hypothesis is rejected when
√
MDM > d∗γ ,

where d∗γ is the critical value for γ, d∗γ = Kγ/
√
M . By looking up the Kolmogorov distribution

table [68], for γ = 0.01, Kγ = 1.52.

5.7 Case study

5.7.1 Controller Design for a Auxiliary Transmission Fluid Pump Motor

As introduced in Section 5.2.2, the software design for the auxiliary transmission �uid pump

motor controller is illustrated in Figure 12. As system initiated, it stays inWait. Upon receiving

a start signal, a PWM signal with DC 15%, system transit to Shutdown. With a valid speed

command, a PWM signal with DC SpdCmd% (SpdCmd ∈ [25.85]), the speed is controlled by

the motor control algorithm. The motor stops given a stop signal, a PWM signal with DC 15%.
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5.7.1.0.1 ePump System Automaton with Modeled Faults

To verify the safety requirements using the the proposed framework, PB-FDD. FMEA results

in Table III are incorporated to the nominal system model, which results again a probabilistic

hybrid automaton represented in Figure 14. In Wait and Standby, the motor is not spinning

and PWM output is sending signals with DC of 87.5% and 47.5%, respectively. In motor control,

spd in Alignment depends on the initial rotor position, and is modeled as a one step noise. After

100ms, system transits to Startup. Spd builds fast to reach 90% of the expected RPM with

maximum torque in a open loop control. Then, in Operation, Spd is controlled in a closed loop

with speed estimation based on the Back Electromotive Force (BEMF) zero-crossing timing.

Gaussian noises are assumed for both the speed evolution in the three modes in motor control

and the DC of the PWM out signal across the whole system.

The exceptions listed in Table II are not reported until the system is in Operation. The

three exceptions are modeled to be triggered by stochastic events. The probabilities p1, p2 and

p3 are calculated beforehand, and known to the system automaton. If a exception matures in

Exception, the system transits back toWait. The exception code is cleared when the system

transits to Shutdown upon receiving another start signal. F1 is the component level fault mode

that the exception code cannot be cleared modeled by a discrete mode transitioning from Wait.

Mode F2 is the component level fault that Motor runs at a lower speed (less than 95% of the

expected speed) due to low battery or the increased �uid viscosity. F2 can be reached from

Startup or Operation depending on the peak motor speed spd the pump reaches. Mode F3

represents the the situation that the motor speed spd oscillates in an amplitude bigger than 5%
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System Automaton with Fault Model Incorporated

Notes :

n1 ∼ N(0, 3)

n2 ∼ N(0, 10)

n3 ∼ N(0, 15)

Wait : q = 1

RPM(k + 1) = 0

DC(k + 1) = DC(k) + n1

DC set to 87.5DC set to 87.5

Shutdown : q = 2

RPM(k + 1) = 0

DC(k + 1) = 47.5 + n1

T0(k + 1) = 1

Alighment : q = 3

RPM(k + 1) = n2

DC(k + 1) = 47.5 + n1

T0(k + 1) = T0(k)− 1;

Startup : q = 4

RPM(k + 1) = 0.9 ∗RPM(k) + 400 + n3

DC(k + 1) = 47.5 + n1

Operation : q = 5

RPM(k + 1) = 0.14 ∗RPM(k) + 17.2 ∗ SpdCmd+ 258 + n3

DC(k + 1) = 47.5 + n1

T1(k + 1) = 5

T2(k + 1) = 5

T3(k + 1) = 4

Exception1 : q = 6

RPM(k + 1) = RPM(k) + n3

DC(k + 1) = 22.5 + n1

T1(k + 1) = T1(k)− 1

Exception2 : q = 7

RPM(k + 1) = RPM(k) + n3

DC(k + 1) = 37.5 + n1

T2(k + 1) = T2(k)− 1

Exception3 : q = 8

RPM(k + 1) = RPM(k) + n3

DC(k + 1) = 67.5 + n1

T3(k + 1) = T3(k)− 1

F1 : q = 9

RPM(k + 1) = 0

DC(k + 1) = DC(k) + n1

F2 : q = 10

RPM(k + 1) = 0.14 ∗RPM(k) + 15.5 ∗ SpdCmd+ 232 + n3

DC(k + 1) = 47.5 + n1

F3 : q = 11

RPM(k + 1) = 0.14 ∗RPM(k) + 19.8 ∗ SpdCmd+ 297 + sin(0.2 ∗ k)n3
DC(k + 1) = 47.5 + n1

F4 : q = 11

CmdDC = 15

CmdDC = SpdCmd

T0 < 0

RPM > 0.9 ∗ (SpdCmd ∗ 20 + 300)

CmdDC = 15

p1T1 < 0

p2T2 < 0

p3T3 < 0

p4

p5

p4

p6

p7

Figure 14: System Automaton with Modeled Faults for ePump Control System
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Property Automaton

qP = 1

counter1(k + 1) = counter1(k)

qP = 2

counter1(k + 1) = counter1(k)− 1

qP = 3

counter1(k + 1) = counter1(k)

(valid PWM siganl with DCSpdCmd%)&&

spd is not in the range of RPM ± 5%

counter1 := T ′

(valid PWM siganl with DCSpdCmd%)&&

spd is in the range of RPM ± 5%

counter1 ≤ 0

Figure 15: Property Automaton for ePump Control System

of the expected speed. F3 can be reached from Operation mode. All the three component level

faults are also triggered by stochastic event and represented by probabilities, p4, p5 and p6.

The observations yp and yd are the motor speed measured by a encoder with white Gaus-

sian noises, and the PWM out DC measured by a digital channel with white Gaussian noises,

respectively.

5.7.1.0.2 ePump Property Automaton

The safety requirement to verify is that after a valid PWM speed command with DC

SpdCmd% is received followed by a start signal, the motor is able to run continuously in the

speed range RPM ± 5%, where RPM = 20 ∗ SpdCmd+ 300 where SpdCmd ∈ [25.85]. This is

a liveness property, shown in Figure 15.

The system run is simulated with another component level fault F4 unknown to the system

model with all the FMEA analysis results incorporated. The fault is modeled as a discrete
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Figure 16: Sample Run for the ePump Control System

mode transitioning from Startup. In F4, the motor control is reading a faulty sensing of DC

bus current due to a ADC channel over�ow such that motor control stops driving spd to increase

to the desired level. Then, the system tries to restart the pump and keep repeating the same

startup process. The controller is forced to quit after 3 seconds due to the hardware limit. A

sample run with this unknown fault is given in Figure 16. The PWM command is given in a

sequence of DC 5% for 5 time steps, 15% for 15 time steps, and 85% for 80 time stamps.
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Figure 17: Unmodeled Fault Detection in ePump Control System

Most of the system modes are easily distinguished by PWM out DC and motor speed. But

in motor control without any known exception, it always outputs DC 47.5%, and then for an

unknown fault, it is di�cult to tell from motor speed where an it is originated.

To locate this fault using PB-FDD, the importance weight distribution in SIS step using PF

is evaluated at every time step, and two hypothesis tests are performed sequentially.

The result shown in Figure 17 successfully gives the detection of an unmodeled fault when

t = 23 when the mode estimation stuck at q = 4 which is the Startup mode.



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we proposed a novel framework of fault detection and diagnosis, property-based

fault detection and diagnosis (PB-FDD). Inspired by our previous work on runtime monitoring

on hybrid systems with respect to a given property, we hierarchically de�ned faults according to

the scope of the requirements. The system level fault is described as the violation of the system

requirements which is independent of the system design, and the component level fault is de�ned

as violation of component requirements based on the results from the FMEA process. So the

detection of system level faults is essentially another application of the monitoring technique

and the diagnosis turns out to be the identi�cation of component level faults which are modeled

in each subsystem.

The particle �ltering algorithm is the core part of a threshold based monitor [12] This

sequential Monte Carlo method subjects to the deterioration of performance when particle

inconsistency is detected. We studied two di�erent causes for particle inconsistency, particle

propagation depletion and system model inconsistency.

In the thesis, we studied a class of CPSs, concurrent CPSs with N components. In monitor-

ing of such systems, particle inconsistency is caused by particle propagation depletion due to the

exponential state explosion introduced by interaction among components. We formally de�ned

123
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concurrent probabilistic hybrid automata with subsystems and analyzed di�erent types of con-

currency in subsystem operation. With notions of local and link variables, we studied a special

type of concurrency, locally parallel operation. In this case, we proposed a new particle �ltering

approach, hierarchical Particle Filter to balance the computation load and the performance of

the algorithm.

In PB-FDD where particle �lter is adapted in fault detection algorithm, an important im-

provement of the proposed PB-FDD is the diagnosis of unknown component level faults. The

occurrence of an unknown component level faults would inherently lead to particle inconsis-

tency in PF due to system model inconsistency. By analyzing the importance weights for the

predicted set of particles, we construct hypothesis testing using importance weights to detect

particle inconsistency and further unmodeled component level faults.

A train system with multiple cars equipped with ECP brakes was simulated. Particle prop-

agation depletion happens when cars are braking independently. Experimental results showed

the e�ectiveness of hierarchical particle �lter using a small set of particles.

A project in Magna Electronics Inc, controller design for an auxiliary transmission �uid

pump motor, is used to validate the hypothesis testing to detect the particle inconsistency, and

further to recognize an unmodeled fault.

6.2 Future Work

6.2.1 Output Decoupling Analysis

In the analysis of a cPHA, based on the interaction among subsystems, we have considered

di�erent types of concurrency in subsystem operation. In one speci�c type of concurrency,
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locally parallel operation, the subsystem operation can be interpreted as a parallel operation of

the local variables in locally input decoupled subsystems followed by a coupled operation of the

other local variables and the link variables.

However, this concurrency analysis is based on the dependency of input of each subsystem.

It is often the case that the output in a subsystem is not decoupled (the output of the subsystem

only depends on the state variables in the same subsystem ). In the train example used in this

thesis, the model of the link force observation is speci�ed on all the braking subsystems. In

Section 4.4.2.3, we discussed scenarios of di�erent types of dependency of output, but it is

only focused on how speci�c types of output dependency a�ect HPF implementation in locally

parallel operation.

Similar to HPF � Case 3 in Section 4.4.2.3, if the observations are divided into two groups,

yt = (yat , y
b
t )
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and yat and ybt are speci�ed on 2 exclusive subsets of st, sat and sbt , respectively, then yat and

ybt are conditional independent given the state st. The importance weight can be accordingly

rewritten as the product of two partial importance weights,

w
(j)
t = p(yt|s(j)

t ) = p(yat , y
b
t |s(j)

t )

= p(yat |s(j)
t )p(ybt |s(j)

t )

= p(yat |sa (j)
t )p(ybt |sb (j)

t )

= w
a (j)
t w

b (j)
t

Then wa
t may be used to adapt the partial sat of the particles in the predicted set. Therefore,

the analysis of the subsystem output dependency can directly connect the partial importance

weight to a subset of the state variables, and thus improving the adaptation of the set of particles

representing the proposal distribution, St.

6.2.1.1 Particle Filter Performance Related to Resampling

In this thesis, we studied a phenomenon that a�ects the performance of particle �lter, namely

particle inconsistency and also further looked into its causes. By the de�nition 12, particle

inconsistency is de�ned for set of propagated particles in prediction step.

In the hypothesis testing used to detect particle inconsistency, the assumption made to

derive the distribution of importance weight variable wt is for the proposal particle set St−1

at time t − 1, and it is assumed that the resampling step is implemented properly to obtain
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St, the set of particles representing target distribution. Furthermore, this assumption is made

across the whole thesis. However, the second step in particle �lter, correction, is implemented

by resampling which could also bring error/failure for particle �lter. One example is particle

impoverishment discussed in Section 5.6.1. In the context of sequential Monte Carlo techniques,

another hypothesized cause of particle inconsistency at time t could be resampling inconsistency

at time t− 1.
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