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SUMMARY 

The high demand for clean, efficient, and renewable energy and, the necessity for solving 

the CO2 issue and global warming are only a few of the major motivations for exploring renewable 

energy technologies. Since the energy must be stored in order for renewable energy to become part 

of a practical energy solution, there have been many studies of secondary batteries for energy 

storage applications that benefit from high specific energy, high rate capability, high safety, and 

low cost.  

 

Lithium-sulfur (Li-S) batteries have received a great amount attention in recent years, as 

sulfur exhibits an order of magnitude higher theoretical specific capacity than that achievable with 

intercalation-type cathodes in lithium-ion batteries. In addition, sulfur is abundant in nature and 

non-toxic, which leads to low cell cost and significant environmental benefits. However, low 

active material utilization and poor cycle life hinder the commercial application of the Li-S 

chemistry.  

 

In this thesis, two concepts were studied with the aim of improving the performance of Li-

S batteries. 

 

 First, the effects of different electrolyte solvents on the Li-S battery were investigated, as 

electrolyte is one of the key components in determining the performance of this battery. We have 

reported a novel fluorianted electrolyte, 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether 

(TTE), which suppresses the deleterious shuttling effect and improves capacity retention and 

coulombic efficiency in cell tests. The cell containing this electrolyte was reported to deliver an  
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SUMMARY (continued) 

initial discharge capacity of 1400 mAh/g while maintaining a capacity of 1100 mAh/g after 50 

cycles. The coulombic efficiency was also reported to be more than 96% for the first 50 cycles. 

Next, as severe self-discharge has become the major issue for high-loading sulfur cathodes (> 5 

mg (S)/cm2), the effect of different electrolyte systems was investigated with regard to the self-

discharge behavior of Li-S cells. Our test results suggest that utilizing TTE and LiNO3 additive 

can effectively suppress this fatal effect and would pave the way for practical applications of a 

high energy density Li-S battery. 

 In addition, the effect of two fluorinated electrolyte additives was investigated in Li-S 

batteries for the first time. The experimental data showed that cell performance was much 

improved when utilizing fluorinated additives such as lithium difluoro(oxalato) borate (LiDFOB) 

or Tris(pentafluorophenyl)borane (B(C6F5)3); as these additives are effective due to their capability 

of forming a passivation layer on the surface of the sulfur electrode which prevents the dissolution 

of the polysulfides and results in higher coulombic efficiency.  

In the second part of this study, we report on a modification to the traditional Li-S battery 

configuration to achieve high capacity and efficiency with a long cycle life. The performance of 

Li-S batteries using Teflon® coated carbon paper (TCCP) was investigated in this study for the 

first time. The TCCP is composed of carbon microfibers that act as an excellent substrate while 

the hydrophobic Teflon (PTFE) coating facilitates the absorption of soluble polysulfides to the 

cathode. This novel cathode design is not only simpler than methods used in synthesizing sulfur 

carbon composites, but it also improves the capacity and cycle life of the Li-S battery; where the 

cell using this novel cell configuration was shown to deliver an initial discharge capacity of 1400  
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SUMMARY (continued) 

mAh/g while maintaining a capacity of 1000 mAh/g after 50 cycles. The efficiency was also stable 

at 90% for the first 50 cycles. 

 

In summary even though lithium sulfur batteries are very promising for the next generation 

of electric vehicles, the current state of the battery is still far away from the requirements for 

practical applications. Based on our studies, utilizing fluorinated solvents and additive can open a 

new window for engineering Li-S cells with much improved performance. 
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1. INTRODUCTION 

 

1.1 Motivation and Overview 

 

The demand for energy, high petroleum consumption and CO2 emissions, global warming 

and  increasing urban pollution are all global challenges that motivate the exploration for 

renewable energy technologies to meet these challenges (1-3). Although wind and solar generated 

electricity are becoming increasingly popular in several industrialized countries, these kinds of 

energy are intermittent, so the energy must be stored in order for renewable energy to become part 

of a practical energy solution (4). Rechargeable batteries, which convert chemical energy to 

electrical energy during discharge and store electrical energy via the reverse process during 

charging, are the most convenient form to store electrical energy (5). Consequently, there have 

been many studies aimed at designing rechargeable batteries for transportation to replace or 

complement internal combustion engines.  

 

There are three types of electrically powered vehicles, including pure electric vehicles 

(EVs) (such as the Tesla); hybrid electric vehicles (HEVs) (such as the Prius), and plug-in hybrid 

electric vehicles (PHEVs) (such as the Karma) (6). Pure electric vehicles basically use only the 

battery to power the engine. Although using EVs significantly reduces CO2 emissions, the lifetime 

of the battery can provide a range of only 30-50 miles (7). Hybrid electric vehicles (HEVs) are 

designed to use both battery power and the combustion engine, so HEVs are able to travel longer 

distances. Plug-in hybrid electric vehicles (PHEVs) can be charged by plugging them into charging 

stations and use a combination of electricity and an internal combustion engine. The engine is 
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designed to operate serially, and the battery can store enough electricity to significantly reduce 

petroleum consumption (6, 7). Electric cars are estimated to have 35% of the car market by 2025, 

with 10% being pure EVs and 25% HEVs (8). 

 

In order for these vehicles to compete with conventional internal combustion engine cars, they 

need secondary batteries that benefit from high specific energy, high rate capability, high safety 

and low cost (2, 4). Some of these batteries are as the following: 

 

1.1.1 Li-Ion Battery Technology 

 

Lithium batteries were first commercialized by Sony in 1990, although pioneering studies 

had been carried out as early as the 1970s by Whittingham and Goodenough (9). Among all 

rechargeable batteries, lithium-ion secondary batteries are very promising for powering electric 

vehicles due to their high energy density and high durability over many charges and discharge 

cycles. These batteries were born from the determined efforts of many innovators seeking light 

weight, compact electrical power sources in the last century. Military and space programs were in 

search for high-performance battery systems that can function in a wide range of circumstances. 

 

  The motivation for using a lithium-ion battery (LIB) relied on the fact that lithium is the 

most electro positive metal (–3.04 V versus standard hydrogen electrode). In addition, it is the 

lightest metal (equivalent weight 46.94 g mol–1, and specific gravity 40.53 g cm–3); therefore it 

facilitates the design of storage systems with high energy density (10). A typical LIB consists of a 

graphite anode, a lithium transition-metal oxide cathode, and a lithium ion-conducting separator 
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with a non-aqueous electrolyte between the two electrodes. The electrolyte is typically a solution 

of lithium salt in organic solvents (11). During the charge-discharge process, the lithium ions 

shuttle between cathode and anode through electrolyte and separator. LIBs are the most successful 

commercialized secondary power sources and are widely used in many fields including consumer 

electronics, medicine, the military, and research due to their good capacity reversibility, and 

relatively high energy and power densities. While Li-ion batteries rule the present, a number of 

emerging chemistries are competing for a leading role in the future.  Below are some of the primary 

candidates. 

1.1.2 Magnesium Battery Technology  

 

Rechargeable magnesium batteries were first presented more than a decade ago. Their 

components included magnesium metal or an Mg alloy anode, and complex electrolyte solutions. 

Since magnesium compound are highly abundant in the earth and are environmentally friendly, 

this makes magnesium another potential candidate to be used as anode material.  

 

This type of battery has twice the life capacity of the zinc/manganese dioxide (Zn/MnO2) 

battery of same size. It is very durable and storable since it always forms a protective layer on the 

surface of the magnesium anode. In this regard, the magnesium based battery system has gained 

considerable attention as an alternative system making it an attractive candidate for electrical 

storage systems supporting wind and solar energy, energy systems, or grid operations. However, 

these batteries also suffer from several drawbacks where the battery generally loses its storability 

once it has been partially discharged and for this reason it is not very suitable for using in long-

term intermittent applications (12, 13). 
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1.1.3 Li-Air Battery Technology 

 

Since the theoretical specific energy densities for metal-air batteries are higher than for ion-

based approaches, metal-air batteries have received great attention. Recently, lithium-air batteries 

have been proposed as the next step in lithium battery industry, due to the viewpoint that an electric 

car equipped with this type of battery could travel more than 500 miles on a single charge. This 

will finally put battery-driven vehicles on equivalent ground with conventional models. 

 

The lithium-air battery uses the oxidation of lithium at the anode and reduction of oxygen at 

the cathode to induce a current flow and have the potential of 5–15 times the specific energy of 

current lithium-ion batteries (14).  However this battery technology has not been commercialized 

due to several challenges, where the anode which is pure lithium metal and can provide high 

amounts of energy, ignites when exposed to water, carbon dioxide, or other contaminants. In 

addition, the lithium-oxygen can be converted to unwanted lithium carbonate. Therefore, the 

battery would need screening technology to take benefit of this its exceptional properties (14). 

 

 

1.1.4 Lithium- Sulfur Battery Technology 

 

Even though LIBs rule the present generation of batteries and are recognized to be one of 

the best candidates for energy storage, at present they cannot offer a suitably long driving range 

(i.e., >300 km) for plug-in electric vehicles (PEVs) due to their limited theoretical capacity of 

about 170 mAh g-1 (15,16).  In addition, the rapid development of emerging applications, including 

military power supplies, civil transportation, and stationary storage, have placed higher demands 
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on the energy density of the battery. To compete in the market with gasoline-based vehicles and 

fulfill these needs, new batteries are required for the next-generation EV’s to provide much higher 

energy density, and reduce cost factors. Examples include a new group of batteries with triple the 

power of LiB’s (Figure 1).  Lithium–sulfur batteries (Li-S) are considered to be very appropriate 

power sources due to their high energy density of about 2600 Wh/ kg. Also, sulfur has the highest 

theoretical capacity value of 1675 mAh/gr of all known solid-state cathode materials which make 

these batteries appealing for stationary storage of renewable energies, such as solar and wind, if 

long cycle life and high system efficiency can be achieved. In addition, this battery system has a 

wide range of applications due to its high theoretical capacity, intrinsic overcharge protection, 

elemental abundance, low cost and nontoxicity (16-20). 

 

A typical Li-S battery is composed of a lithium anode, a sulfur cathode, and an 

electrolyte in between. A Li-S battery works on the basis of redox reactions between the lithium 

anode and the sulfur cathode. The reaction in these batteries is a reversible conversion reaction as 

shown:  

16Li++ S8+ 16e-⇌8Li2S                                                                                                       (1.1)  
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Figure 1.  Specific energies of various rechargeable batteries. 

 

 

Basic Properties of Sulfur Material 

 

 Sulfur is the seventeenth richest element in the Earth’s crust. In nature, the most common 

form is cyclic octa-sulfur (S8), followed by the cyclic S12 allotrope. Sulfur has a melting point of 

112.8°C (rhombic) or 119.0°C (monoclinic), boiling point of 444.6°C, specific gravity of 2.07 

(rhombic) or 1.957 (monoclinic) at 20°C, and sublimes easily. It is a pale yellow, brittle, odorless 

solid. It is insoluble in water, but soluble in carbon disulfide. In the molten state, the viscosity of 

sulfur exhibits a unique temperature-dependent behavior. During heating, the viscosity of sulfur 

gradually decreases, followed by a significant increase around 160°C. This is due to the 

polymerization of the S8 rings until near 190°C at which point sulfur starts depolymerizing and the 
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viscosity decreases. As a result of this behavior and the minimum viscosity value around 160°C, 

sulfur can be impregnated into porous material such as carbon to synthesize sulfur composite 

materials (18). 

 

Anatomy of a Lithium-Sulfur Battery 

 

A typical Li-S battery is composed of a lithium anode, a sulfur cathode containing 

elemental sulfur, electronic conductors such as carbon or metal powder and binders, and an 

electrolyte. The cathode is separated from the metallic lithium negative electrode by an organic 

electrolyte (Figure 2) (21). The Li-S battery holds a maximum voltage at the open-circuit state, 

which is in direct proportion to the difference between the electrochemical potentials of the Li 

anode and the S cathode. During the discharging process, S reacts with Li by a two-electron 

reduction process to form polysulfide intermediates (Li2Sx, x=2–8), and to generate Li sulfide 

(Li2S) at the end of discharge (22).  Despite the considerable advantages of the Li–S cell, this 

battery technology has not matured to date due to several technological barriers such as rapid 

capacity fading and low coulombic efficiency, which are believed to be mainly associated with the 

loss of sulfur active material during a repeated charge and discharge process. This phenomenon 

happens through the dissolution of lithium polysulfides into the electrolyte and side reactions of 

dissolved polysulfide species with the electrolyte solvent and the lithium anode (15,16,18-20,23). 
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Figure 2. Schematic diagrams of the lithium/sulfur cells. 

 

1.2 General Performance Characteristics 

 

Cell Potential 

The cell potential, E cell, is a measure of the potential difference between two half-cells in 

an electrochemical cell (24). For the Li-S battery, the cell voltage is determined by the following 

equation: 

E cell = E cathode - E anode               (1.2) 

where: 

E Cell = the standard cell potential  

E Cathode = the standard reduction potential for the reduction half-reaction occurring at the 

cathode. 

E Anode = the standard reduction potential for the oxidation half-reaction occurring at the anode. 

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Redox_Chemistry/Standard_Reduction_Potential
http://chemwiki.ucdavis.edu/Reference/Reference_Tables/Electrochemistry_Tables/P1%3A_Standard_Reduction_Potentials_by_Element
http://chemwiki.ucdavis.edu/Reference/Reference_Tables/Electrochemistry_Tables/P1%3A_Standard_Reduction_Potentials_by_Element
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The units of the potentials are typically measured in volts (V). 

 

 The reaction of the sulfur is given by Equation (1.3): 

S+ 2e- ⇌ S2-                                                                                                                                                                                                      (1.3) 

The standard reduction potential of the sulfur reaction relative to the standard hydrogen electrode 

(SHE) is -0.48.  

Equation 1.4 gives the reaction at the lithium anode.  

Li⇌Li++e-                                                                                                                                        (1.4) 

The standard reduction potential of this reaction relative to the standard hydrogen electrode 

(SHE) is -3.05V, therefore the Li-S cell voltage is given by Eq. 1.2 which is 2.57V. 

 

Coulmbic Efficiency 

The coulombic efficiency (CE) is defined as the ratio (expressed as a percentage) between the 

energy removed from a battery during discharge compared with the energy used during charging 

to restore the original capacity (25). CE is described by: 

 

CE=
Discharge Capacity (Ah) 

Charge Capacity (Ah)
                                                                                          (1.5) 

Coulombic efficiency is usually below 100% in a Li-S battery due to losses in charge and other 

reactions such as the redox shuttle effect.  
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Theoretical Capacity 

The theoretical capacity of a cell is the ideal amount of charge it can deliver in the case where 

every single atom of the reactant was completely reduced to its final discharge product which in 

real batteries this does not occur (26). The actual capacity of a cell is always lower than this number 

due to internal losses. The theoretical capacity of sulfur is 1672mAh/g as explained below:  

 

The theoretical capacity of a battery is the quantity of electricity involved in the electro-chemical 

reaction. It is denoted Q and is given by Equation (1.6):  

Q= x.n.F                     (1.6) 

Where: 

Q = Theoretical capacity of battery 

X = number of moles of reaction 

n =number of electrons transferred per mole of reaction  

F= Faraday's constant (96485 C/mol) 

 

However, the capacity is usually given in terms of mass, not the number of moles:  

Q= n.F/Mr                   (1.7) 

Mr = Molecular Mass (atomic weight of sulfur g/mol) 

  

The overall reaction that occurs at the cathode can be shown by Eq. (1.3): 

S+ 2e- ⇌ S2-                      

Therefore, since n=2: 

Q= (2) (96485 C/mol)/ 32.064 (g/mol) = 6018.28 C/g 
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There is 3600 C in 1 A.h therefore the capacity can be converted to: 

 Q= 6018.28 (C/g)/ 3.6 C/mAh = 1672 mAh/g  

 

Capacity and Rate Capability (C-rate) 

The total capacity of a cell is defined as the amount of electric charge that the cell can deliver at a 

rated voltage when discharged from 100 % state of charge to 0% state of charge and is measured 

in units such as amp-hour (A·h) (27). Slow discharge results in minimal losses from resistance and 

heat dissipation which lead to delivery of the maximum charge from a battery. In addition, more 

electrode material and loadings result in greater capacity.  

It is standard practice to define the current levels of a cell by its capacity. For example for a Li-S 

cell with a capacity of 1.6 Ah, it would take 1 hour to discharge the cell with current of 1.6 A. This 

is known as C-rate or discharge/ charge currents which are often given in fractions of this rate. A 

2C rate would mean a discharge current of 3.2 A, over one half-hour.  

 

Theoretical Energy Density and Specific Energy 

Specific energy describes the amount of energy contained within a battery per unit mass (26). 

The theoretical specific energy of the Li-S couple is 2600Wh/kg as shown below. 

 

The Gibbs free energy equation relates the equilibrium cell potential to the energy available from 

that reaction for a spontaneous electrochemical reaction, and is given by Equation 1.8.  

 

∆G= n.F.E                   (1.8) 

http://en.wikipedia.org/wiki/Amp-hour
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where: 

∆G = Gibbs free energy 

 n =number of electrons per mole of product 

F = Faraday's constant (96485 C/mol) 

E =Electrode potential of the reaction 

  

The final discharge product is Li2S which has the atomic weight of: 

W Li2S = 2× 6.941 + 32.064= 45.95 g/mol or 0.04595 kg/mol 

 

Using an average cell potential of 2.23 V, Gibbs free energy can be calculated from Eq. 1.8 as: 

∆G= (2) (96485) (2.23) = 430323.1 J/ mol= 430323.1(J/mol)/ 3600 (J/Wh) = 119.5 Wh/mol 

 

As mentioned, the final discharge product is Li2S which has an atomic weight of 0.04595kg/mol. 

Thus:  

∆G= 119.5 (Wh/mol) / 0.04595 (kg/ mol) = 2600 Wh/kg 

 

Therefore the theoretical specific energy of a lithium sulfur battery is about 2600 Wh/kg.   

 

Energy density is the amount of energy stored in a battery per unit volume. Similarly, the energy 

density is calculated using the atomic volume.  The theoretical energy density for a Li-S battery 

is 2862 W h/L, as shown below.   

V Li2S = 2× 0.0131 L/mol + 0.0155 L/mol= 0.0417 L/mol 

∆G= 119.5 (Wh/mol)/0.0417 (L/mol) = 2860 Wh/L 
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Therefore, the theoretical energy density of a Li-S cell is calculated to be 2860 Wh/L when an 

average cell voltage of 2.23 V is used.  These values are significantly higher than other known 

cell couples.  

 

1.3  Voltage Characteristic of Lithium- Sulfur Battery 

 

Figure 3 shows the discharge and charge profile for the first cycle of a regular Li-S cell. The 

discharge process can be divided into four parts (22, 28, 29). 

 

Section 1: At the beginning of the discharge process, elemental sulfur is reduced initiating 

a series of reactions with lithium ions. When the cell begins to discharge by application of an 

external load, the lithium metal is oxidized, supplying electrons to the load and leaving lithium 

ions at the anode. This first results in the formation of Li2S8 which dissolvesinto the liquid 

electrolyte and leaves numerous voids in the cathode. 

S8 + 2Li+ →Li2S8                                                                                                                           (1.9) 

 

Section 2: A reduction from the dissolved Li2S8 results in the formation of different order 

of lithium polysulfides with the general formula of Li2Sn, where the initially formed polysulfides 

have longer chains (4<n<8) and are more soluble in the electrolyte. During this part, the cell’s 

voltage is gradually decreasing and the solution’s viscosity is increasing with the decrease in the 

length of the S-S chains. 

Li2S8 + 2Li+ →Li2S 8-n + Li2Sn                                                                                                  (1.10) 
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  Section 3: In the later stages of the discharging process, the long chains polysulfides are 

reduced to the lower-order polysulfides (1<n<3). The dissolved polysulfides deposit back on to 

the cathode in the form of insoluble Li2S2 and Li2S and are distributed evenly throughout the 

carbon matrix of the cathode. This forms an insulating passivation layer and increases the internal 

resistance of the Li-S cell.  This region forms the second plateau that contributes to the major 

capacity of the Li-S cell. 

2Li2Sn + (2n-4)Li+ →nLi2S2                                                                                                  (1.11) 

Li2Sn + (2n-2) Li+ →nLi2S                                                                                                    (1.12) 

 

 Section 4: In the final discharging step, a solid-solid reduction takes place from insoluble Li2S2 to 

Li2S. At this point no further reduction of sulfide ions is possible, which it is reflected in the steep 

voltage drop in the discharging profile.  The loss of sulfur-active material through this process 

could be the main factor contributing to the capacity fading of the cell during extended cycling. 

Li2S2 + 2Li+→2Li2S                                                                                                                  (1.13) 
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Figure 3. A typical discharge and charge voltage profile of the first cycle of a Li-S cell. 

 

Studies in the detailed mechanism of charging have not been as extensive as for the 

discharge.  As shown in Figure 3, there is a sharp rise in voltage at the very beginning of charging 

followed by two shallow plateau regions and finally another sharp voltage rise at the end of 

charging. The initial steep rise is due to the resistance of Li2S passivating layer on the cathode 

surface. The subsequent shallow dip may be due to the reduced impedance as the layer has begun 

to be removed. The two plateaus during charging are due to the oxidation of polysulfides. The first 

plateau can be attributed to the oxidation of solid Li2S to longer chain polysulfides and the second 

to the oxidation of polysulfides to sulfur and highest order polysulfides (19, 22, 30). 
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Redox Shuttle Phenomena of Lithium Poly-Sulfides 

Although the dissolution of lithium polysulfides facilitates the cell’s performance, it can cause 

severe redox shuttle between the sulfur cathode and the Li anode (31, 32). This results in low 

coulombic efficiency during the charging process and a fast self-discharge rate for storage.  

 

As mentioned above, during discharge elemental sulfur goes through a reduction reaction 

with lithium ions. This results in the formation of different order of lithium polysulfides which are 

soluble in the electrolyte. In the later stages of the discharging process, the long-chain polysulfides 

are reduced to the lower-order polysulfides (1<n<3), which are less soluble.  In the charging step, 

the shorter polysulfides are then oxidized and transformed to longer forms. However, these higher-

order Li2Sn are soluble and, due to the concentration gradient, can diffuse into the electrolyte and 

get reduced by accepting electrons from the cathode side and react with lithium ion to regenerate 

lower order polysulfides.  Again, low-order polysulfides diffuse back to the sulfur cathode surface 

and get oxidized to higher order polysulfides (Figure 4). The process then repeats itself causing a 

shuttle effect between the two electrodes (19, 30). These parasitic reactions cause significant 

problems such as (1) consuming the sulfur active material (2) decomposing Li anode, and (3) 

polarizing the Li anode since insoluble Li2S and Li2S2 are formed and deposited on the Li surface 

(18). 
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The rate of the shuttle effect depends on the (1) the rate of reaction of polysulfides on the anode 

surface, (2) the solubility of the lithium polysulfides in the electrolyte, (3) the mobility of the 

polysulfides through the electrolyte and the dissolution rates on the electrodes (33). In addition, 

the shuttle effect is very strong at high states of charging where the solubility and activity of the 

polysulfides is at its highest. Accordingly, Sion Power has reported earlier that this shuttle effect 

depends significantly on electrolyte composition and also the charging current, where the cells 

showed high shuttling when the viscosity of the electrolyte was lower, as there was less force to 

oppose the mobility and diffusion of the polysulfides in the organic electrolyte (34). In addition, 

when the charging current is low, the cell takes longer to charge therefore there is more time for 

the diffusion of the polysulfides thus increasing the shuttle effect.  

 

 

 

 

 

 

 

 

 

Figure 4. A typical Li-S cell with redox shuttle behavior 
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1.4 Great Challenges Of Lithium Sulfur Battery 

 

There are several challenges involved with the lithium sulfur battery which prevent them 

from competing in the market (35-37). For example, since sulfur is an insulator, high amounts of 

conductive additives are needed to achieve reasonable utilization of the active material. However, 

sulfur content of at least 70% is required to retain the advantage of sulfur’s high energy density.  

 

In addition, the insoluble products at the end of discharge such as Li2S2 and Li2S will 

accumulate on the cathode after the battery is fully discharged. Since these species are also 

insulating, this can result in the formation of a passivation layer on the electrode and the loss of 

active material.  This Li2S does not contribute to any future electrochemical reactions causing 

irreversible capacity loss. It is also possible that the formation of these species and their build up 

can cause the carbon matrix to break away from the active material. This decreases the active area 

of the cathode material. In addition, when the Li-S cell is cycled at higher currents, there is more 

Li2S build up, and it is not uniformly distributed on the cathode which results in more destruction 

of the cathode structure.  

 

The most common solution to this problem is to synthesize an appropriate carbon-sulfur 

composite cathode, in which the carbon matrix can offer both an electron transport network and 

reaction sites for lithium-sulfur redox reactions. Therefore, many chemical-free processes such as 

ball-milling techniques are used to prepare composite sulfur cathode materials. During the milling 

process, the stainless balls rotate around a horizontal axis in a tumbler, partially filled with the 

sulfur/carbon slurry. The continuous rotation can reduce the size of particles within the sulfur 
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mixture. The sulfur cathode material prepared with ball-milling method can achieve a relatively 

good distribution of sulfur particles.  

 

Another challenge is the significant volumetric increase of about 79% due to the conversion 

process between sulfur and lithium during charge and discharge (18). This is due to the dissolution 

and precipitation of the sulfur active material and final products on the cathode which can result 

in aging of the electrodes and quick fading of the battery’s charge. By trapping sulfur into porous 

carbon, the free volume of thte carbon matrix can provide a buffer for the expansion and 

contraction of sulfur content, which can contribute to the improvement of cycle stability.  

 

The next major problem is the formation of voids at the end of discharge due to the 

dissolution of the sulfur into the organic electrolyte. In addition, Li2S and Li2S2 deposit back on to 

the cathode. Conventional binders such as PVDF are known to swell and cannot retain the porous 

structure of the cathode in the cycling process. Even though some reported sulfur cathodes have 

achieved high specific capacity over 1000 mAh/g at high rates, it is still difficult to retain the high 

and stable capacity of sulfur over 100 cycles (36-38). 

 

The situation at the lithium anode in Li-S batteries is very different from other lithium 

electrodes studied before (39-41).The presence of an unstable interface between the lithium anode 

and the electrolyte solution is reported earlier. The main problem with the lithium anode in this 

system is the low coulombic efficiency and rough morphology of the Li plating, which are both 

related to the polysulfide redox shuttle. The lithium is highly reactive with the organic electrolyte. 

These reactions lead to formation of side products which can also cause the capacity fading of Li-
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S cells. In addition, the reaction between dissolved polysulfides and the lithium anode is 

recognized as the most important factor in initializing thermal runaway of the cell at high 

temperatures.  

 

In addition, the high solubility of sulfur active material and the formation of polysulfides 

dictate that electrolytes used for LIBs can no longer be used for Li-S batteries. Generally, the 

requirements for the electrolyte used in an Li-S battery include high ionic conductivity, moderate 

polysulfide solubility, low viscosity, electrochemical stability, chemical stability against lithium, 

and safety (18). Many studies have been reported earlier on the effect of electrolyte component, 

including 1,2-dimethoxyethane (DME), 1,3-dioxolane (DOL), and tetra(ethylene glycol)dimethyl 

ether (TEGDME), on the electrochemical performance of Li-S batteries. (41-46) It has been 

reported that ether-type solvents such as 1,2-dimethoxyethane (DME) have good solubility of 

elemental sulfur and good stability of polysulfide in electrolyte solution. It also appears that these 

solvents offer faster polysulfide reaction kinetics while being more reactive with the lithium anode. 

Alternatively, cyclic solvents such as DOL are superior for stabilizing the surface of Li metal by 

forming a protective layer over the lithium surface through the ring-opening reaction; while 

providing lower polysulfide solubility. However, it appears relatively difficult for any single 

organic solvent to satisfy all of those conditions of the Li-S battery electrolyte.  A practical solution 

is to use an electrolyte with an optimized formula based on a mixture of solvents and additives. 

Therefore, the combination of these two solvents leads to improved electrochemical performance 

as compared to each solvent alone and is used as the conventional electrolyte for Li-S batteries 

(47,48). As for the salt, chemical compatibility with polysulfides is the highest priority. 

Conventional salts such as LiPF6, LiBOB and LiBF4 cannot be used for the electrolyte in Li-S 
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batteries due to side reactions with lithium polysulfides. LiN(SO2CF3)2 and LiTFSI are found to 

play important roles in reactions that lead to the formation of  a protective film comprising LixNOy 

and/or LixSOy on the lithium anode surface (9,49). 

 

The cell’s self-discharge property is one of the other key factors for commercialization of 

the battery. These batteries suffer from severe self-discharge which is caused by the corrosion of 

the lithium metal anode due to the dissolution of sulfur active materials in the electrolyte. In 

general, a secondary battery will naturally lose its charge capacity when kept for a period of time 

at a certain temperature. This occurrence is referred as battery self-discharge and it basically 

depends on battery chemistry, electrode composition, electrolyte formulation, and the storage 

temperature. There have been only a few studies on the self-discharge behavior of Li/S batteries.  

Mikhaylik and Akridge reported that preventing the redox shuttle effect results in less self-

discharge of the cell (50).  Ryu et al. have reported that cells stored at the full charge state show 

severe self-discharge which is shown to be due to the conversion of elemental sulfur to Li2S and 

intermediate lithium polysulfides resulting in a decrease in discharge capacity. They have also 

reported that stainless steel is not a very appropriate current collector for Li-S cells. By analyzing 

the samples after self-discharge, the researchers found that this behavior is related to the corrosion 

of the stainless current collectors and the formation of lithium polysulfides such as Li2Sn from the 

reaction of lithium and sulfur (51). 
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1.5  Recent Progress of Li-S Battery 

 

1.5.1 Sulfur Active Materials 

 

To overcome the challenges stated above, many efforts have been dedicated to improving 

the performance of the Li-S battery by enhancing the cathode properties. The development of the 

sulfur cathode materials can be divided into several categories: sulfur-carbon composite, sulfur-

graphene composite, and sulfur-polymer composite. During the past decades, various kinds of 

sulfur-carbon (S-C) composites have been developed with the aim to reduce the polysulfide 

diffusion out of the cathode and to increase the conductivity of the electrode. Early work on this 

subject was performed by Shim et al., (43) who reported that more than 10% carbon black is 

necessary to meet cathode conductivity. The capacity fading was influenced by the carbon content 

of the electrode. An increase in the carbon content of the cathode generally resulted in higher initial 

capacity but faster capacity fading. Another example is the composite based on a highly porous 

carbon (HPC) material with good conductivity and high specific surface area (1500 m2/g).  After 

using HPC as the conductive matrix and adsorbent agent for polysulfides, the Li-S cell presented 

a capacity of 770 mAh g-1 at 110 cycles (52). A novel concept regarding the S-C composite is the 

nanostructured polymer-modified (polyethylene glycol) mesoporous carbon sulfur composites 

(CMK-3/S nano-composite) as reported by Ji et al. (23, 35). In this composite, the close contact 

between carbon frameworks and sulfur increases the utilization of sulfur active material, and the 

nano-pores accommodate volume changes of the sulfur species during cycling. Furthermore, the 

polymer coating on the surface of the composite prevents the PS from diffusing out of the 

composite particles. This approach proves to be very effective for improving the performance of 
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the Li-S battery with low sulfur-loading cathode. However, this strategy is still not satisfactory for 

those with high sulfur-loading cathode.  

 

Carbon nanotubes offer a great opportunity for the design of S-C composites, in which the 

carbon nanotubes not only trap PS but also serve as a reservoir for the redox reaction of PS. An 

example is given by Ji et al and Zheng et al. who encapsulated sulfur within the porous carbon 

nanofibers (CNFs) (53)  and reported about a novel conductive sulfur-containing nanocomposite 

cathode material, which was prepared by heating a mixture of sublimed sulfur and multi-walled 

carbon nanotubes (MWNTs) in certain conditions (54). The Li-S cell containing this type of 

cathode shows considerable improvement in the capacity retention and prevents redox shuttle 

behavior, which is attributed to the fact that the MWNTs not only strongly adsorb the sulfur and 

resulting PS within the nanotubes but also are an excellent electronic conductor (55). 

Graphene is a 2-dimensional crystalline allotrope of carbon; it consists of planar sheets of carbon 

atoms and has high electrical conductivity. Due to the superior electrical conductivity, high 

specific surface area of over 2600 m2/g, and excellent chemical tolerance, graphene has attracted 

considerable attention in the research of electrochemical energy storage (56-58). 

 

In addition, Li et al. (59) obtained excellent cycling performance by coating a reduced 

graphene oxide (RGO) onto the S-C nanocomposite. The Li-S cell with this cathode material 

showed a specific capacity of 667 mAh g-1 and a coulombic efficiency of 96% at 0.95C even after 

200 cycles. This excellent performance is partially attributed to the strong adsorption of PS on the 

RGO coating layer in addition to the highly conductive carbon framework that efficiently prevents 

the diffusion of PS out of the cathode structure.  

http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Allotrope
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In order to further enhance the electrical conductivity of sulfur active materials, more 

intimate connection between the sulfur active material and the supporting conductive network can 

be established by attaching sulfur active species onto conductive polymer backbones or 

encapsulating sulfur active species within conductive polymer shells. For example, 

Polyacrylonitrile (PAN) is an excellent precursor for the conductive polymer of sulfur-polymer 

composites (60, 61). The rate capability of sulfurized polyacrylonitrile (SPAN) can be further 

improved by the incorporation of MWCNTs, in which the MWCNTs enhance the structural 

stability and electronic conductivity of SPANs (62,63).  In the same line of work, a pyrolyzed 

PAN-sulfur-graphene nanosheet (pPAN-S-GNS) composite was prepared by impregnating sulfur 

into a PAN-GNS composite synthesized by in-situ polymerization of acrylonitrile and chemical 

reduction of graphene oxide (Figure 5) (64). With 4 wt% GNS added, the composite showed a 

specific capacity of 800 mAh/g at relatively high C-rates (up to 6C) and a 99.9% of coulombic 

efficiency. The excellent performance is attributed to the three-dimensional GNS networks that 

enhance electronic conductivity and facilitate distribution of the active material in the composite. 
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Figure 5. Schematic diagram of the in situ polymerization and synthesis of the pPAN-S/GNS 

composite, in which the insets are cross sectional views of the samples. (64) 

It is evident that the conductive polymer coating on the surface of sulfur active cathode material, 

either being bare elemental sulfur or S-C composite, is beneficial in several ways to the successful 

development of composite sulfur cathodes (65-80). The proven benefits include increasing the 

electronic conductivity, facilitating sulfur distribution, alleviating PS dissolution and the loss of 

sulfur active material during charge/discharge cycling.    

1.5.2 Binder 

  

The discharge procedure results in significant volume changes. The polymer binder that 

ensures the physical integrity of the cathode thus is needed to be capable of retaining the highly 

porous structure during the cycling process. Conventional binders such as polyvinylidene fluoride 

(PVDF) fail to retain structural integrity because they become swollen or gelled by the electrolyte 

solvents. On the other hand, due to the high reactivity of PS, polymers that contain functional 

groups susceptible to nucleophilic attack may not be appropriate for the binder of the sulfur 

cathode. Polymer binder in the Li-S battery is more than an “adhesive” to ensure the mechanical 
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integrity of the sulfur cathode. An ideal binder for the Li-S battery should be able to not only 

endure the structural changes of the electrode, but facilitate ion transport in the charge-discharge 

processes.    

 Polymers such as Nafion, (81) blend of polyvinyl pyrrolidone (PVP) and 

polyethyleneimine (PEI), (82) and cross-linked vinyl ethers (83) are shown to lead to good cycling 

performance of the Li-S battery. In several accounts PEO was studied as the binder (84,85) and 

found to function similarly to the PEO coating on the sulfur cathode and PEGDME solvent in the 

electrolyte, which trap PS and suppress the passivation of the cathode surface (84). 

A class of water-based binders shows promising results in the Li-S battery systems. Wang et al. 

(86) chemically oxidized β-cyclodextrin (β-CD) into water soluble carbonyl-β-cyclodextrin (C-β-

CD), and used C-β-CD as the binder for a SPAN-based cathode. As shown in Figure 6, compared 

with the PVDF and polytetrafluoroethylene (PTFE) binders, C-β-CD was shown to assist the 

distribution of sulfur active material and improve the mechanical stability of the electrode upon 

cycling, leading to the improved cycling performance. Other water-soluble or water-dispersible 

binders include Na-alginate, (87) polyacrylic acid (PAA), (88) poly (acrylamide-co-

diallyldimethylammonium chloride) (AMAC) (89), styrene-butadiene rubber (SBR)-

carboxymethyl cellulose (CMC), (90,91) and PTFE/CMC. (92) As demonstrated by AMAC 

binder, (89) the waster-based binders feature low swellability in the organic liquid electrolytes. As 

a result, during cycling these binders are able to remain the highly porous structure of the sulfur 

cathode, which leads to better capacity retention. Another well-studied water-soluble binder is 

gelatin-based natural polymer. (93-98)  
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Figure 6. Schematic reaction of β-CD with H2O2 (left); cycle performance of cathodes with β-

CD, C-β-CD, PVDF, and PTFE binders at 0.2 C (right). (86) 

 

1.5.3 Electrolyte 

 

Due to the high solubility of PS in the organic electrolytes and the high reactivity of PS 

with the electrolyte components, common electrolytes used in Li-ion batteries are not suitable for 

the Li-S battery. For example, Barchasz et al, (99) reported that carbonate solvents severely react 

with PS, and therefore cannot be used in the electrolyte of the Li-S batteries. It is also reported 

(100) that in discharge, PS may precipitate out of the electrolyte in the forms of elemental sulfur 

and Li2S2 or Li2S due to the disproportionation, which not only clogs the pores of separator but 

also makes these sulfur species electrochemically inactive. This results in the loss of sulfur active 

materials and the capacity fading of the Li-S battery. In view of the battery performance, an ideal 

electrolyte for the Li-S battery should be able to solvate and stabilize PS, and capable of forming 

SEI on the Li surface to protect the Li anode from reaction with PS. Recent efforts regarding the 

Li-S battery electrolytes are summarized in the following sections:  
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  Solvent 

Since carbonate solvents are chemically incompatible with the Li-S chemistry and the 

voltages for charging Li-S batteries are not more than 3 V, the linear and cyclic ethers seem to be 

the best choice for the solvent of Li-S battery electrolytes. Therefore, most of studies have been 

focused on the ether solvents, including 1,2-dimethoxyethane (DME), 1,3-dioxolane (DOL), 

tetra(ethylene glycol)dimethyl ether (TEGDME), and their mixture. It is unlikely that a single 

solvent will satisfy all requirements for Li-S battery electrolytes. A practical solution is to use a 

mixture of solvents and additives. Among common ethers, DME has a good ability to dissolve 

elemental sulfur and PS, and to stabilize PS, whereas DOL is superior for forming a stable SEI to 

protect metallic Li from corrosion (101). Therefore, the combination of DME and DOL has 

become the most popular solvent system for Li-S battery electrolytes, and the electrolytes based 

on their mixture have been often employed as the baseline for the evaluation of new electrolytes.  

 

As reported by Céline Barchasz, (99) ether solvents offer interesting features, making it 

possible to improve the electrochemical performance by combining different ether solvents. This 

is because ether chain length affects the solvation ability. The solvents DME, diethylene glycol 

dibutyl ether (DEGDBE) and DOL can dissolve PS to some extent, which induces the redox shuttle 

and leads to low coulombic efficiency. Since the electrolytes with these solvents often lead to fast 

active material precipitation and positive electrode passivation, polyethylene glycol dimethyl ether 

(PEGDME) has been used to mitigate these problems. The incorporation of PEGDME is shown to 

alleviate the buildup of the electrode passivation layer and increase the length (capacity) of the 

second discharge voltage plateau. By using PEGDME as the co-solvent, a discharge capacity of 
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about 1100 mAh g-1 was reached for the first discharge of a Li-S cell, which remained at 550 

mAh/g after 10 cycles.  

 

In this regard, Wang et al. (102) observed that sulfur has appropriate solubilities and 

undergoes a three-step reduction in the PEGDME-based electrolyte in comparison with the 

DOL/DME electrolyte in which sulfur shows a typical two-step reduction process. These results 

indicate that the discharge mechanism of the Li-S battery is quite complicated and involves many 

intermediate compounds. Shim et al. (43) studied PEGDME 250 and 500 solvents, and found that 

these solvents redcued the redox shuttle of PS and accordingly increased the coulombic efficiency 

of the Li-S battery. In particular, the Li-S cell containing the PEGDME 500 electrolyte showed 

the best cycling behavior, yielding a  specific capacity of more than 100 mAh/g after 600 cycles. 

This is attributed to the higher viscosity and better ability in stabilizing PS of these solvents. The 

viscocity generally influences the penetration of the liquid electrolyte into the sulfur cathode and 

the diffusion of the dissolved PS. Meanwhile, the electrolyte affects the disproportation of PS, the 

utilization of sulfur active material and the capacity retention of the Li-S battery.  

Regarding the effect of solvent composition on the performance of the Li-S cell, Kim et al. (103) 

reported that the specifc capacity and capacity retention depend on the nature of the solvents as 

well as the composition of mixed solvents. Because DOL solvent forms a better SEI with the Li 

anode, the specific capacity of the Li-S battery for a DOL solvent system is shown to increase with 

the content of DOL within a limited content range.  

 

Ruy et al. (104) investigated the effect of temepature on the discharge behavior of the Li-

S cell with TEGDME-based electrolytes. The specific capacity of the Li-S cell fell greatly as the 
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temperature decreased to −10°C due to a dramatic increase in the viscosity of electrolyte, 

especially in the presence of PS. In addition, TEGDME freezes at −27 ◦C, which also limits the 

operation temperature range of TEGDME-based electrolytes. In order to reduce the electrolyte 

viscosity and enable the Li-S battery to operate at low temperature, the TEGDME is often 

combined with the solvents having low viscosity and low melting point, such as DME and DOL.  

 

In the cycling of the Li-S battery, PS undergoes a series of reduction and oxidation 

reactions, and the chemical equilibriums in the electrolyte solution vary with the PS concentration 

(33). Since the PS concentration is determined by the amount of liquid electrolyte in the battery, 

there is an optimized electrolyte/sulfur (E/S) ratio for the cyclability of Li-S cell system.  The E/S 

ratio affects the cell’s performance through the viscosity of PS solution and the chemical stability 

of PS in the solution. It is shown that high PS concentration favors suppressing the 

disproportionation of PS but increases the viscosity of the solution, which oppositely affects the 

cycling performance of the Li-S battery. That is, the reduced disproportionation increases the 

utilization of sulfur active material, whereas the increased viscosity reduces the ionic conductivity 

of the electrolyte. Interaction of these two opposite effects leads to an optimized E/S ratio for each 

Li-S cell system. From Li-S coin cells, Zhang obtained an optimized E/S ratio of 10 mL/g for a 

0.25 m LiSO3CF3-0.25 m LiNO3 DME: DOL (1:1 wt.) electrolyte. By using the optimized E/S 

ratio (10 mL/g), the Li-S cell with a cathode containing 77% sulfur and 2 mg/cm2 sulfur-loading 

is shown to retain a specific capacity of 780 mAh/g after 100 cycles at 0.5 mA/cm2 between 1.7 V 

and 2.8 V. 
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Similar results were demonstrated by Choi et al. (105), who reported that a large amount 

of electrolyte (i.e., high E/S ratio) led to higher initial capacity but faster capacity fading. They 

explained that the high amount of electrolyte increased the utlization of sulfur  active material 

through the dissolution of PS, and meanwhile resulted in more loss of sulfur active material in the 

form of insoluble Li2S and Li2S2 through the disproportionation of PS. They also showed that the 

Li-S cell had good capacity retention when small amount of electrolyte was used as long as the 

bettery components (sulfur cathode, separator and Li anode) could be properly wetted by the liquid 

electrolyte. 

 

The effect of electrolyte composition on cell performance for a TEGDME/DOL binary 

solvent system was investigated by Barchasz et al. (106) It was shown that the best TEGDME/DOL 

ratio was about 15/85 by volume, which formed a high conductive electrolyte with good solvation 

ability for the PS and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). The presence of DOL 

was shown to improve the ionic conductivity and discharge capacity by reducing the electrolyte 

viscosity. However, a high amount of DOL negatively affected the performance of the Li-S battery 

since the conductivity severly decreased. This result suggests that the viscosity may not be the 

only factor determining the ionic conductivity of the electrolyte. The dielectric constant and the 

donor number of the solvents seem not to be sufficient to explain the ionic conductivity and lithium 

salt’s dissociation. A more reasonable explaination could be that the high amount of DOL 

promotes the disproportanation of PS, which produces neither soluble nor conductive elemental 

sulfur, Li2S and Li2S2. Due to precipatation, these sulfur species (disproportionation products) 

become electrochemically inactive and meanwhile clog the pores of the separator, resulting in low 

sulfur utilization and high polarization.  
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Lithium salt has been shown to affect the electrochemical performance of Li/S cells. In 

comparison with LiCF3SO3, LiTFSI provides higher ionic conductivity (106). The concentration 

of lithium salts affects the ionic conductivity of the electrolyte through the salt dissociation, charge 

carrier number, and ionic mobility, which generally results in a maxinum conductivity in a certain 

salt concentration region. A more recent work by Suo et al. showed that when the salt concentration 

in a LiTFSI-TEGDME electrolyte is increased until reversed to a “solvent-in-salt” system, the Li+ 

ion transfer number is dramatically increased to 0.73, and the redox shuttle of PS is greatly reduced 

(107). Using such an electrolyte, the Li-S cell was able to retain over 800 mAh/g at 0.2C for 100 

cycles with nearly 100% coulbomic efficiency. The similar approach was pursued by Dokko et al., 

(108) who first made a glyme–Li salt molten complexe and then mixed it with a nonflammable 

hydrofluoroether solvent (1,1,2,2–tetrafluoroethyl 2,2,3,3–tetrafluoropropyl ether (HFE)) to form 

a [Li(glyme)1][TFSA]/HFE electrolyte, which resulted in improved performancers, including 

higher coulombic efficiency, better cycle stability, and higher rate capability.  

 

Ionic Liquid 

An ionic liquid typically consist of a weakly Lewis acidic cation and a weakly Lewis basic 

anions, and features the non-flammability and involatility. Special significance of the ionic liquids 

in the Li-S battery is their weakly Lewis acidic cations, which are capable of stabilizing polysulfide 

anions. Based on the “hard and soft (Lewis) acids and bases” (HSAB) theory, the cation of ionic 

liquid is a soft acid, and the polysulfide anion is a soft base, and their combination leads to a stable 

compound (salt). In addition to stabilizing the PS anion, the ionic liquid also affects the mobility 

of PS anion (and redox shuttle issue) through the interaction between the ionic liquid cation and 
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PS anion. Ionic liquids have been used in Li-S batteries in two forms: (1) employ as an “ionic” 

solvent to dissolve a lithium salt, and (2) add as an additive into the conventional liquid electrolyte. 

 

Yuan et al. (109) reported a binary salt electrolyte based on a N-methyl-N-butyl-

piperidinium bis(trifluoromethanesulfonyl) imide room temperature ionic liquid (PP14-RTIL) and 

a LiTFSI lithium salt. Cyclic voltammetry (CV) results showed that the RTIL electrolyte has a 

wide potential window of 5.2-0.15 V (vs. Li) and is chemically stable with metallic lithium and 

sulfur active materials. The Li-S cells using the ionic liquid electrolyte showed an initial capacity 

of 1055 mAh g-1 and retained a reversible capacity of 750 mAh g-1 after a few of cycles.  

 

In order to reduce the viscosity and increase the ionic conductivity of the ionic liquid 

electrolyte, Wang et al. (102) added a small amount of DME as the co-solvent into a N-methyl-N-

propylpiperidinium bis(trifluoromethanesulfonyl)imide-LiTFSI (PP13-TFSI) ionic liquid 

electrolyte. It was observed that the PP13-TFSI/DME electrolyte afforded outstanding capacity 

retention and high coulombic efficiency for the Li-S cell. In the similar approach, Park et al. made 

an ionic liquid electrolyte by mixing a N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium 

bis(trifluoromethanesulfonyl)amide (DEME-TFSI) with a LiTFSI salt (110) , and compared it with 

a 0.98 M LiTFSI/ TEGDME liquid electrolyte. The results indicated that the ionic liquid 

electrolyte cell outperformed the liquid electrolyte cell. The performance improvement by the ionic 

liquid electrolyte was attributed to the fact that the ionic liquid suppresses the redox shuttle of PS, 

which results in a higher coulombic efficiency for the Li-S cell.  
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 Polymer electrolyte 

 

 Leakage and flammability are the intrinsic problems for all liquid electrolytes, and the severe 

redox shuttle of PS originates from the high solubility and fast diffusion of PS in the liquid 

electrolyte. For these reasons, polymer electrolytes have been proposed to overcome the problems 

of liquid electrolytes. Based on the composition and ionic conduction mechanism, the polymer 

electrolytes can be classified as the solvent-free solid polymer electrolyte (SPE) and gel polymer 

electrolyte (GPE).  

 

Solid polymer electrolyte  

 Polyethylene oxide (PEO) is the most intensively studied polymer for solvent-free SPE, in 

which the Li+ ions are solvated by the ether oxygen atoms in PEO chains and conducted through 

the segmental motion of the PEO chains (111). The ionic conduction in such SPEs mainly occurs 

in the amorphous phase, therefore, an elevated temperatures (>60 oC) is needed to retain sufficient 

conductivity. In this effort, Carins (112) and Kim (113) independently studied PEO-based 

electrolytes for the Li-S cells, and showed that Li-S cells had a high initial capacity of 1600 mAh/g, 

followed by fast fading with further cycling. This unsatisfactory performance can be attributed to 

the low ionic conductivity of the SPE and the insulating nature of elemental sulfur and its reduction 

products. Unlike in the liquid electrolytes, in the SPE the sulfur reduction products are unable to 

diffuse off the carbon surface, but instead accumulate on the carbon surface as an insulating 

passivation layer to block the outer sulfur from electrical contact with the carbon. As a result, the 

SPE Li-S battery suffers from low utilization of sulfur active material and fast capacity fading. 

Shin et al. (114) found that ball-milling could effectively reduce the crystallinity of PEO, and 
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therefore improved the ionic conductivity of SPE. This led to a significant improvement in the 

specific capacity and capacity retention of the Li-S battery.  

 

Gel polymer electrolyte 

 In order to overcome the low ionic conductivity of solvent-free SPEs, PEO-miscible 

electrolyte solvent has been used as the plasticizer to promote the segmental motion of PEO chains. 

When the amount of the liquid plasticizer reaches such a level that the ionic conduction is 

dominated by the liquid-in-polymer, instead of the segmental motion of polymer chains, the SPE 

becomes a GPE. The GPE combines the advantages of the polymer electrolyte (high 

viscoelasticity) and liquid electrolyte (high ionic conductivity), and is of great significance in the 

Li-S batteries. The earliest practice for this concept was to plasticize the PEO-based SPE with a 

TEGDME solvent, (115) however, latter the fluorinated polymer based GPEs, such as those based 

on PVDF (116) and poly (vinylidenefluoride)-hexafluoropropylene (PVDF-HFP) copolymer 

(117), have been more intensively studied due to the easiness of in-situ formation of these GPEs 

by activating a porous polymer membrane with a liquid electrolyte. The GPEs typically have an 

ionic conductivity ranging from 10-4 to 10-3 S/cm at room temperature, depending on the type and 

amount of liquid electrolyte. Interestingly, ionic liquid is found to be miscible with PVDF-HFP 

polymer and has been successfully prepared into a GPE, showing good thermal property and 

stability towards oxidation (118). The Li-S cell with this GPE exhibited comparable capacities as 

the liquid electrolyte-based cells and had high coulombic efficiencies of over 95%, indicating that 

the GPE effectively suppresses the redox shuttle of PS. 
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Composite polymer electrolyte 

 PEO-based composite electrolyte with inorganic fillers, such as Al2O3, (113) -LiAlO2, 

(119) and SiO2 (120), have been developed for the Li-S batteries. In this practice, Scrosati (121) 

used a nano-ZrO2-PEO-LiCF3SO3 membrane as the separator and Li2S as the sulfur active material 

to assemble an all-solid-state Li-S cell, in which the Li2S is in the discharged state and can be 

coupled with the carbon or silicon anode material to build a metallic lithium- free lithium-ion 

battery. The cell delivered a specific capacity of 900 mAh/g at 90 C and decreased to less than 

400 mAh/g at 70 C, clearly indicating the effect of ionic conductivity of the solid-state electrolyte. 

On the other hand, the cell had a coulombic efficiency of over 99%  even at high temperatures, 

which validates the effectiveness of this solid-state electrolyte in preventing polysulfide shuttling 

redox. Other composite gel polymer electrolytes (CGPEs) are based on a fluorinated polymer and 

an inorganic filler, such as one consisting of a PVDF-HFP and a nano-sized silicate (122) or 

mesoporous silica (123). The CGPEs are typically made by first preparing a porous composite 

membrane and then gelling it with a liquid electrolyte. The incorporated inorganic filler is found 

to be capable of adsorbing PS, being favorable for increasing coulombic efficiency and capacity 

retention over prolonged cycles. The CGPE can also be prepared with high filler content in favor 

of high conductivity and wettability. A composite membrane containing at least 50% SiO2 in high-

molecular weight PEO has been made in the form of an electrode-supporting electrode-membrane-

assemble (EMA), (124) a freestanding membrane, (125) or a coating on a conventional separator. 

The high filler content enables high uptake of liquid electrolyte or ionic liquid without dimensional 

shrinkage. However, the high amount of SiO2 adsorbs PS and makes these PS electrochemically 

inactive by trapping PS in the membrane, resulting in lower specific capacity.  
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Ceramic solid state electrolyte 

 The ceramic solid-state electrolyte is the most effective approach to avoid the PS dissolution 

and the resulting redox shuttle. In this approach, nearly all efforts have been centered on the Li2S-

P2S5 (LPS) family of solid electrolyte glasses mainly because of their chemical compatibility with 

the sulfur cathode and metallic Li.  Liang et al assembled an all-solid-state Li-S cell by using a 

Li3PS4 (namely a form of the 3Li2S-P2S5 glass) as the solid electrolyte and a Li3PS4+n (n = 2~8) as 

the cathode (125). In their cells, nano-structured electrolyte and cathode materials allowed for 

intimate contact to reduce the particle boundary resistance; the similar chemistry of the electrolyte 

and cathode materials allowed to form a favorable electrolyte-electrode interface. As a result, the 

all-solid-state Li-S cell showed a capacity of 1200 mAh/g after 300 cycles at 60 C. Thio-LISICON 

(Li3.25Ge0.25P0.75S4), a version of the Ge-doped LPS glasses, has an ionic conductivity of 2.2×10-3 

S cm-1 at 25 °C, (126,127) and is demonstrated to be suitable for the solid-state electrolyte used in 

the Li-S battery. Hayashi et al systematically studied the Li2S-P2S5 glass electrolytes by coupling 

it with sulfur/copper (128,129) or sulfur/carbon (130) composite cathodes. In particular, an all-

solid-state cell with sulfur/carbon composite cathode and Li2S-P2S5 electrolyte could be cycled 

over a wide temperature range from −20 C to 80 C. The cell performance remained above 800 

mAh/g at ambient temperature for 200 cycles with coulombic efficiency of about 100%. By ball-

milling to reduce the crystallinity and particle size of the electrode and electrolyte materials, an 

all-solid-state Li2S/carbon cell was shown to have a specific capacity of 700 mAh/g when cycled 

between 3.6 V and 0.6 V at 25 C (131). 
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Electrolyte additives 

 

With the aim of eliminating or reducing the mentioned obstacles of Li–S batteries, many 

electrolyte additives have been studied to improving the Li/S battery electrolytes. The functions of 

these additives include: (1) protecting the Li anode, (2) enhancing the solubility and stability of 

PS, and (3) reducing the viscosity of the liquid electrolyte. 

 

The most important finding is (132) that LiNO3 can remarkably inhibit the redox shuttle of 

PS. Using the LiNO3 additive, Liang et al showed that the Li-S cell had a high coulombic efficiency 

of 95% and a discharge capacity of ca. 527 mAh/g after 50 cycles. It is believed that on Li anode, 

the LiNO3 encourages the formation of a passivation film composed of LixNOy and LixSOy, which 

prevents the electrochemical reduction of PS at the anode and the chemical reduction of PS by 

metallic Li. Since stripping of Li in the following discharging destroys the already–formed 

passivation film, new passivation film must be re-formed in the next charging step. Thus, LiNO3 

will be slowly consumed with the repeated cycling of the Li-S battery (133) Beside the above, 

Zhang observed that LiNO3 might be reduced on the cathode at below 1.6 V, which adversely 

affected the cycling performance of the Li-S batteries (31), and concluded that the LiNO3 additive 

is helpful for the Li-S battery only when the irreversible reduction on the sulfur cathode is avoided. 

This can be done easily by raising the discharge cutoff voltage of the Li-S batteries above 1.7 V.  

 

Lithium bis(oxalato) borate (LiBOB) has been studied as the electrolyte additive in a 

concentration range of 1-10 wt.% by Xiong et al. (134) The Li-S batteries containing the LiBOB 

additive demonstrate improvement in both the discharge capacity and cycle performance, with a 
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maximum discharge capacity of 1,191 mAh g-1 when a 4 wt.% LiBOB was added. Based on the 

electrochemical impedance spectroscopy (EIS) and SEM analysis, this improvement was found to 

be due to the formation of a passivating surface film on the Li anode, which reduces the parasitic 

reaction between PS and the Li anode.  

 

In another study by Lin et al., P2S5 was shown to enhance the dissolution of PS and protect 

the Li anode (135). In the electrolyte, P2S5 combines insoluble Li2S and Li2S2 to form soluble LPS 

complexes, which suppresses the precipitation out of sulfur species out of the electrolyte. On the 

Li anode, P2S5 combines with pre-deposited Li2S to form a highly conductive Li3PS4 passivation 

layer, which protects the Li anode from reactions with PS and meanwhile reduces the cell’s 

polarization. As a result, both the specific capacity and capacity retention of the Li-S cell are 

significantly improved, which leads to a specific capacity of 800 mAh/g after 40 cycles. 

 

1.5.4 New Concepts 

 

In recent years, many new concepts have been proposed to improve the performance of Li-

S batteries, which include the use of novel materials and innovative cell designs, as discussed 

below. 

 

Binder-Free Cathode 

Zu et al. (136) introduced a binder-free, interwoven S-C cathode, in which a binder-free 

carbon nanofiber (CNF) paper was used as the current collector and elemental sulfur was directly 

impregnated into the pores of CNFs. This cathode has the advantages of low manufacturing cost 
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and high sulfur-loading in comparison to the conventional sulfur cathodes.  The outstanding 

improvement of this cathode is because (1) the 3D interwoven structure of the CNF paper allows 

sulfur reactions within a confined environment and (2) CNFs offer long and continuous electron 

conduction pathway. SEM and x-ray diffraction (XRD) analyses reveal that crystalline Li2S 

species are found within the large interspaces of the 3D electrode after the first discharge, which 

avoids the formation of a dense passivation layer on the surface of the cathode. A Li-S battery with 

such a cathode exhibited an initial capacity of 1094 mAh g-1 after 80 cycles at a C/5 rate and 

coulombic efficiencies of more than 98% with a sulfur-loading of 1.7 mg/cm2. After increasing 

the sulfur loading to 5.1 mg/cm2, a stable reversible capacity of 900 mAh/g was obtained, making 

this battery configuration very promising for practical applications. In another study, Hassoun et 

al. (137) assembled a new type of Li-S cells by starting with a carbon–lithium sulfide (C-Li2S) 

composite cathode. Cycling tests demonstrate that this cell has a good performance, high 

reversibility, and high coulombic efficiency. It was verified by in-situ XRD that the Li2S formed 

after each discharging step can be converted into sulfur in following charge and re-converted back 

to Li2S again in the next discharge process. In the same principle, Fu et al. (138) reported a novel 

cathode configuration which was composed of pristine Li2S powder sandwiched between two 

layers of self-weaving, binder-free carbon nanotube (CNT) papers. The excellent performances of 

these cells are attributed to: (1) efficient electron conduction within the sandwiched electrode; (2) 

fast ion transport through the nano-space within the carbon nanotube electrode; and (3) trapping 

of dissolved PS within the sandwiched electrode.  
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Carbon Paper Interlayer 

As shown in Figure 7, Su et al (139) designed a new cell configuration by placing a 

bifunctional microporous carbon paper between the cathode and separator, which resulted in 

significant improvement in the capacity retention of the cell. This interlayer improves the cycling 

performances of the Li-S cells by on one hand absorbing the PS diffused out of the cathode and 

on the other hand providing additional reaction sites to accommodate the formed Li2S2 or Li2S. It 

is shown that the pore size of carbon in the carbon interlayer strongly affects the effectiveness of 

the improvement. For example, the improvement by a mesoporous carbon paper (micropores ~ 5 

nm; mesopores ~6 nm) is not as effective as that by the microporous carbon paper under the same 

conditions. In a similar work, Zu et al (37) employed a treated carbon paper, prepared by an 

alcohol-alkaline/thermal treatment of a commercial Toray carbon paper, as the interlayer, and 

showed that the Li–S cells had an initial capacity of 1651 mAh/g at 1.5–2.8 V at a rate of C/5. This 

excellent capacity is attributed to the fact that the treatment introduced hydroxyl functional groups 

and micro-cracks into the carbon surfaces, which enhances the PS’s chemo-adsorption and the 

carbon paper’s surface areas. The insertion of the carbon interlayer generally reduces the 

interfacial resistance of sulfur cathode and delocalizes the PS in the electrolyte. The interlayer 

configuration offers a possible approach for making Li-S batteries more viable for practical 

applications.  
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Figure 7. Schematic configuration of a Li–S cell with a carbon interlayer inserted between the 

sulfur cathode and the separator. (139) 

 

Alternative Anode 

Use of lithium metal is one of the main causes for the safety issues of the Li-S batteries. 

Therefore, much effort has been devoted to the development of the lithium metal-free anodes. For 

example, Yang et al. (140) proposed a Li2S-mesoporous carbon composite as the starting cathode 

and silicon nanowires as the anode. Thus, the Li-S cell is assembled in the discharged state, and 

Li2S is the only source for Li+ ions. By overcoming the poor electrical conductivity and volume 

expansion of the sulfur cathode and silicon anode, the resulting Li-S Li-ion battery is shown to 

have four times theoretical capacity of the current Li-ion battery technology. Following the above 

concept, Hassoun et al. (141) assembled a lithium metal-free silicon–sulfur cell using a high-rate 

S-C composite cathode, a prelithiated Si-C nano-composite anode, and a glycol-based electrolyte. 

Results showed that such a cell could deliver a specific capacity of about 500 mAh/g, which 

declined to 300 mAh/g after 100 cycles. Based on the same cell chemistry, Liu et al. (142) used 

elemental sulfur as the cathode material and prelithiated silicon nanowires as the anode material. 
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They stated that by a 20 min prelithiation process, the amount of lithium equivalent to a capacity 

of ∼2000 mAh g-1 Si could be lithiated into the SiNWs, and that the amount of prelithiation can 

be controlled by changing the prelithiation time. Using this anode material, the Li-free Li-S cell 

can maintain ∼80% of its initial capacity after 10 cycles, however, the capacity fades with a 

constant slope throughout cycling. 

 

Catholyte 

Based on the fact that long-chain PS are highly soluble in the organic electrolytes, Zhang 

et al. (143) used a 0.25 m Li2S9 solution as the catholyte and a porous carbon electrode as the 

current collector to build a “liquid” Li-S cell. In order to protect the Li anode from corrosion and 

increase the cell’s coulombic efficiency, LiNO3 is used as a co-salt in the Li2S9 catholyte. Results 

indicate that Li/Li2S9 “liquid” cells are superior to the conventional Li/S cells in specific capacity 

and capacity retention. The capacity of such cells is affected by two factors: (1) the porosity of the 

carbon electrode, and (2) the PS concentration in the catholyte and the amount of catholyte in the 

cell. Specifically, the former determines how much Li2S can be accommodated by the porous 

carbon electrode, and the latter determines how much sulfur active materials can be contained in 

the battery.  

 

In order to avoid the difficulty of filling highly viscous PS catholyte in the battery assembly 

and increase the PS concentration of the catholyte, Zhang (101) further suggested that the “liquid” 

Li-S cell could be built by using a highly porous carbon cloth and a porous sulfur paper. This 

innovative technique led to a Li/S cell having an initial capacity of 778 mAh/g, equaling to an area 

specific capacity of 10.1 mAh/cm2.  The other significance of this work is to reveal that the initial 
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mixing state of the sulfur and carbon is not important for the performance of the Li-S batteries as 

elemental sulfur will eventually converted to highly soluble Li2S8 and dissolve into the electrolyte 

in the first discharge.  

 

Fu et al. (144) demonstrated the similar approach by using a PS catholyte and a self-

weaving and free-standing MWCNT paper as the carbon electrode. Due to the high porosity and 

high conductivity of the MWCNT paper, the catholyte-based Li/S cell showed high specific 

capacity of 1411 mAh/g after 50 cycles at C/10 rate and much improved rate capability, as 

indicated by a very similar capacity at C/10, C/5, and C/2. 

 

Beside the sealed cell design, the PS catholyte also has been proposed to build an opened semi-

flow battery (145). In this design, the PS catholyte solution is stored in a separate tank, and is 

pumped into the cell as needed, however, the anode still uses metallic Li and is sealed in the cell. 

To maintain the flow of the PS cathode solution, the PS species are controlled to cycle only in the 

solution range (i.e., n≥4 in Li2Sn). A proof-of-concept cell has shown a constant capacity of 200 

mAh/g over 2000 cycles. This excellent cyclability is attributed to the fact that the operation of the 

PS catholyte is only limited within the solution region without the formation of solid state Li2S2 

and Li2S.  

Alternatively, the low concentration PS catholyte can be used as the normal electrolyte to provide 

extra capacity for the conventional Li-S battery. To demonstrate this, Chen et al. (146) used a PS-

containing electrolyte to activate the conventional Li-S cell with a C-S composite as the cathode 

active material. The amount and concentration of PS was shown to affect the capacity as well as 

sulfur utilization. An optimal concentration of PS was found to be 2 M based on sulfur, which 
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maximized the utilization of sulfur active materials as compared with the PS catholyte of higher 

concentration. A specific capacity of 1250 mAh/g was obtained after 40 cycles under optimized 

conditions
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2. EXPERIMENTAL METHODS 

 

2.1 Electrode Fabrication and Battery Assembly 

 

2.1.1 Sulfur Electrode Fabrication 

 

The sulfur-carbon nanocomposite was prepared by impregnating sulfur into a micro-sized 

spherical nanoporous carbon (1). The cathodes for Li/S batteries were prepared by mixing 80 wt% 

of carbon/sulfur composite (75% sulfur), 10 wt% carbon black (Super-P), and 10 wt% 

polyvinylidenedifluoride (PVDF) dissolved in 1-methyl-2-pyrrolidinone (NMP, Aldrich) to form 

a homogeneous slurry. The slurry was then coated onto aluminum foil. The method used in the 

laboratory for electrode fabrications uses the doctor-blade technique. The doctor-blade coating 

technique is prepared by using a vertical spatula in order to control the thickness of the electrode 

film on the aluminum substrate with the distance between the blade tip and the substrate. The 

electrode paste can form a coating on the substrate through the movement of the blade on the 

substrate surface. The coated aluminum foils were then transferred into a vacuum oven and dried 

at 80 °C for 12 hours. After the drying procedure, the coated aluminum foils were cut into round 

disks with a diameter of 14 mm. The electrodes had 56% sulfur with loadings of 1-5 mg /cm2. 
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2.1.2 Chemicals Used For Preparing the Li-S Battery Electrolyte 

 

The chemicals used in this research project are listed in Table 1. Table 1 lists the major 

solvents and additives that were used for the preparation of different electrolytes. All solvents were 

dried over 4Å molecular sieves for 24 hours and distilled prior to use. In addition, all additives 

were dried in a vacuum oven overnight prior to use.  

 

TABLE I.  

LIST OF CHEMICALS USED FOR ELECTROLYTE PREPARATION 

 

 

 

Chemical Name Formula Supplier 

Sulfur S Sigma- Aldrich 

Lithium Sulfide Li2S Sigma- Aldrich 

1,3 dioxolane (DOL)  C3H6O2 Sigma- Aldrich 

1,2-dimethoxyethane (DME) C4H10O2 Sigma- Aldrich 

lithium bis(trifluoromethanesulfonyl)-imide 

(LiTFSI) 

LiN(CF3SO2)2 

 

Sigma- Aldrich 

1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl 

ether (TTE) 

C5H4F8O SynQuest 

Laboratories 

Lithium hexafluorophosphate LiPF6 Sigma- Aldrich 

Lithium Nitrate  LiNO3 Sigma- Aldrich 
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2.1.3 Battery Assembly 

 

In assembling the battery, lithium foils were used as the negative electrode and were 

punched to be the same diameter as the cathode. A Celgard separator was used as separator. Test 

batteries were assembled as type CR2032 coin cells (Figure 1). The solvents mentioned above and 

1.0M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) salt; were used to prepare the 

electrolyte. 

The preparation of the electrolyte and battery assembly were conducted in argon filled glove-boxes 

with both moisture and oxygen levels below 0.1 ppm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  From top to bottom: cathode cap, spacer, sulfur electrode, Celgard separator, lithium 

anode, spacer, anode cap. 
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2.2 Material Characterization                                                         

  

  The material characterization techniques used in this research are explained below: 

2.2.1 Scanning Electron Microscopy 

 

The scanning electron microscope (SEM) is used to explore the structural properties of 

materials by using a focused beam of high energy electrons. The electrons interact with atoms in 

the sample, producing various signals that can be detected. This reveals information about the 

sample's surface topography, chemical composition, and crystalline structure. The SEM is also 

capable of performing analyses of particular points on the sample; where this approach is 

especially beneficial in qualitatively or semi-quantitatively determining chemical compositions by 

means of energy-dispersive X-ray spectroscopy (EDS) (2-4). 

 

For this research study, cycled sulfur electrodes were harvested inside the glove box and 

were thoroughly rinsed with DOL solvent. The samples were then dried inside a vacuum oven at 

70°C and then loaded to the SEM sample holders.  In addition, cycled lithium anode samples were 

also rinsed with DOL solvent and dried in the glove box. The samples were then loaded onto an 

air-tight SEM sample holder. The morphology of the electrodes was examined by a high resolution 

JEOL JSM6610 scanning electron microscopy (SEM) operated at 5–10 kV for imaging and 10–

20 keV for EDS data. 

 

 

2.2.2 High-Performance Liquid Chromatography  

 

http://en.wikipedia.org/wiki/Topography
http://serc.carleton.edu/research_education/geochemsheets/eds.html
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High-performance liquid chromatography (HPLC) is a technique which has the ability to 

separate, categorize and quantify each component that is in any sample that can be dissolved in a 

liquid.  HPLC is basically a form of column chromatography  which relies on pumps to pass a 

sample mixture in a solvent (known as the mobile phase) at high pressure through a column filled 

with a solid adsorbent material (stationary phase). Each component of the sample will interact 

differently and retention times will vary based on the interaction between the stationary phase, the 

sample, and the solvents used. This will cause different flow rates for each component of the 

sample and consequently the separation of these components as they flow out the column (5-7). 

2.2.3 Ultraviolet–Visible Spectroscopy  

 

Ultraviolet visible spectroscopy (UV-Vis) spectroscopy is another method used in analytical 

chemistry for the qualitative and quantitative determination of different species and is used to 

obtain the absorbance spectra of a compound in the sample. UV-Vis refers to the absorbance of 

electromagnetic radiation, which excites electrons of the material from the ground state to the first 

singlet excited state (8-10). The wavelength of the light that the molecule can absorb depends on 

how easily electrons are excited and the easier the longer the wavelength of light it can absorb 

(11). 

 

In this study, coin cells were disassembled inside a glove-box and the electrolyte was 

collected by thoroughly rinsing the cathode and separator with dry, deoxygenated 1,3-dioxolane 

(DOL).  The solution was passed through a 2 µm polytetrafluoroethylene filter to remove residual 

solids.  High-performance liquid chromatography was used to separate the components in a cycled 

electrolyte. The HPLC apparatus (Agilent 1260 Infinity) consisted of an autosampler, a degasser, 

http://en.wikipedia.org/wiki/Adsorption
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a quaternary pump, and a diode array detector (190-950 nm, in steps of 1 nm).  The diode array 

detector (DAD) was used for the qualitative and quantitative determination of the different species.  

In addition, the DAD also yielded ultraviolet–visible (UV/VIS) spectra of the various species.  An 

Ar-purged and filled glove bag was placed over the solvent reservoir tray.  The glove bag was 

purged at least three times with ultra-high purity (UHP) Ar before introducing the solvent reservoir 

bottle. Dry, deoxygenated 1,3-dioxolane (DOL) was used as the mobile phase.  In a typical 

experiment, the solvent reservoir was filled in an Ar-filled glove box and capped with two layers 

of parafilm.  It was then quickly transferred to the glove bag and placed in the bag under a positive 

flow of Ar.  Positive Ar pressure was maintained throughout the HPLC experiment. A Zorbax® 

ODS column (250 x 4.6 mm) was used to separate the electrolyte solution, which was thermostated 

at 25°C.  The flow of the mobile phase was 0.5 mL/min.  Between 1 and 50 µL of electrolyte 

solution was injected using the autosampler. 

 

2.2.4 X-Ray Photoelectron Spectroscopy 

 

X-ray photoelectron spectroscopy (XPS) is a widely used surface-sensitive quantitative 

technique that can analyze the surface chemistry and composition of a material in its as-received 

state, or after treatment at the parts-per-thousand level.   XPS spectras are obtained by irradiation 

of the sample with a beam x-rays rays, causing photoelectrons to be emitted from the sample 

surface, yielding a measurement of the binding energies of the photoelectrons. The elemental 

characteristics, chemical state, and quantity of an element are determined from the binding energy 

measurement (12, 13).  In this study, analyses were performed on a monochromatic Al Kα source 

instrument (Kratos, Axis 165, England) operating at 12 kV and 10 mA for an x-ray power of 120 
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W. Spectra were collected with a photoelectron takeoff angle of 90° from the sample surface plane, 

energy steps of 0.1 eV, and a pass energy of 20 eV for all elements. All spectra were referenced to 

the C 1s binding energy at 284.8 eV. 

 

 

2.3 Electrochemical Investigation 

 

The electrochemical testing techniques that are most common for battery research are 

electrochemical analysis measurements such as cyclic voltammetry, electrochemical impedance 

spectroscopy and galvanostatic charge-discharge tests; where most of these tests were conducted 

with in the voltage window between 1.6 V and 2.6 V. 

2.3.1 Ionic Conductivity  

 

The electrolyte used in Li-S batteries should have a high ionic conductivity. This property 

of the electrolyte is measured by determining the resistance of the solution between the two 

electrodes which are separated by a fixed distance. The conductivity of the electrolytes was 

calculated from the ohmic resistance of coin cells assembled by sandwiching a rubber ring filled 

with electrolyte between two stainless-steel electrodes (Figure 2). The resistance was measured 

using a Solartron Multistat1480 coupled with a 1260 Frequency Response Analyzer System over 

a frequency range of 1 Hz to 106 Hz at different temperature then the conductivity was calculated 

using the following equation: (14) 

σ=L/RA                                                                                                                                     (2.1) 

where σ is the Li+ conductivity in mS/cm , L is the distance between the two electrodes (thickness 

of the rubber ring), R is resistance of the coin cell and A is the area of the rubber ring (inner circle). 

http://en.wikipedia.org/wiki/Electrical_resistance
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Figure 2. Coin cell assembled by sandwiching a rubber ring filled with electrolyte between two 

stainless-steel electrodes for conductivity measurements. 

 

Thickness of the rubber ring with kepton tape: 0.18 cm 

Area of the rubber ring (inner circle): 0.49 cm2 

 

Ionic movement, and therefore the conductivity measurement, is directly proportional to 

temperature, T. 

 The effect is repeatable for most chemicals, and is very significant. The temperature 

dependence of the ionic conductivity is by the traditional Arrhenius equation.  

σ = 
𝜎0

𝑇
 exp (

−𝐸

𝑘𝑇
 )                                                                                                                        (2.2) 

where: 

E= activation energy for ionic conduction 

σ0= material constant 

k =Boltzmann constant  

T= temperature 
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A linear relationship between log σT and 1/T, can be predicted by this equation which will be 

presented in the next sections. 

 

 

2.3.2 Galvanostatic Charge-Discharge Cycling 

 

In order to evaluate the performance of a Li-S cell, capacity retention, coulombic efficiency 

and many other properties of the battery, galvanostatic cycling tests are conducted. The voltage-

capacity (dV/dQ) curves can also be generated from charge-discharge cycle tests which can be 

used for understanding the electrochemical reduction/oxidation mechanisms of the sulfur 

electrode.  

 

In this study, 2032 Li-S coin cells were assembled in a glove box and cycled at the C/10 

rate with a Maccor series 4000 cycler (Figure 3) over a voltage range of 1.6-2.6 V at room 

temperature, or higher temperatures for temperature studies. Different current rates were also 

applied in order to investigate the effect of rate on the performance of the Li-S cells. The specific 

capacity of all the tested electrodes is based on the sulfur weight in the electrode according to the 

following equations: 

Csc = C / Ws                                                                                                                            (2.3) 

Ws = (We - Wa) • (Rs)                                                                                                               (2.4) 

 

Where 

Csc = specific capacity of sulfur within the cathode 
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C =discharge (or charge) capacity attained from the software for cycle tests 

Ws = sulfur mass of particular tested cathode 

We = weight of the electrode which is the total weight of aluminum foil with cathode paste 

Wa =weight of aluminum foil which is used as electrode substrate 

Rs = ratio of sulfur in the electrode (in this study 60%) 

 

 

Figure 3. Picture of a Maccor series 4000 cycler with 96 test channels 
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2.3.3 Cyclic Voltammetry 

 

Cyclic voltammetry (CV) is a widely used method in electrochemical experimenting for 

obtaining qualitative information about electrochemical reactions of batteries, which can be used 

to get valuable kinetic information of the electrode reaction. Cyclic voltammetry is often the first 

experiment performed in an electro-analytical study. During the cyclic voltammetry test, an 

electrode’s potential is controlled while the resultant current is measured. The voltage is swept 

back and forth between the upper and lower limits (1.6- 2.6V) and the corresponding currents are 

monitored. At that point, the received current is plotted as a function of voltage. A CV scan starts 

with zero current flow where no electrode reaction occurs and moves to potentials where an 

oxidation or reduction reaction occurs and a current flow begins to form and eventually reaches a 

peak and then starts to fall. Using this principle, we can determine the potentials of electrochemical 

reactions within a test cell. The CV results depend on the voltage, scan rate, the reactivity of the 

electrode/electrolyte species, and the rate of the electron transfer reactions (15-17).  

 

In general, cyclic voltammetry has many applications such as determining (1) the stability 

of reaction products, (2) the reversibility of a reaction, (3) the existence of intermediates in 

oxidation-reduction reactions, (4) the reaction and electron transfer kinetics, and (5) the diffusion 

coefficient. 
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2.3.4 Electrochemical Impedance Spectroscopy  

 

The concept of resistance is explained first to help understand the definition of impedance. The 

ability of a circuit element to resist the flow of electrical current is known as resistance; where 

Ohm's law (Equation 2.5) defines this term as follows: 

𝑅 =
𝐸

𝐼
                                                                                                                                          (2.5) 

 

where: 

R= Resistance 

E =Voltage 

I = current 

 

Even though this relationship is well known, its use is limited to only one circuit and an 

ideal resistor. Since in reality circuit elements reveal much more complex behavior, a more general 

circuit parameter called impedance is used. 

   

Like resistance, impedance is the response of an electrochemical system to an applied 

potential and a measure of the ability of a circuit to resist the flow of electrical current, but unlike 

resistance, it is not limited to the simplifying properties listed above. 

 

 In an electrochemical impedance spectroscopy (EIS) measurement, a battery is considered 

as a parallel circuit that consists of a capacitance (Cp) and an ohmic resistance (Rp). These values 

can also be represented as complex numbers; therefore, the impedance response is described by a 
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real part-imaginary couple. The data from an impedance measurement is plotted in a complex 

plane with the frequency as a parameter. Impedance measurements are usually applied over a very 

wide frequency range (e.g. from 100 kHz to 0.001 Hz). The impedance changes between its high-

frequency limit and low-frequency limit. (18, 19). 

 

The electrochemical impedance measurements in this study were carried out with a Solartron 

analytical 1400 cell test impedance system by applying a 10 mV voltage over a frequency range 

from 0.01 Hz to 1.0 MHz and the resulting spectrum was fit using ZView softwar
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3. FLUORINATED ETHER CONTAINING LITHIUM-SULFUR BATTERY 

ELECTROLYTE 

3.1 Introduction 

 

There are numerous problems involved with Li–S batteries that arise from a difficult 

multistep discharge process (1-4). The redox shuttling effect of polysulfides originates from its 

high solubility and fast diffusion in an organic electrolyte. Even though the protection of the 

lithium anode has shown to assist in reducing the shuttling effect (5-7), there are still many issues 

regarding the  positive electrode and the electrolyte. Therefore, many researchers have focused 

their efforts on developing new electrolytes which play a pivotal role in Li-S cell performance.  

 

To mitigate the severe shuttling effect of polysulfides in the conventional electrolyte, new 

electrolytes were investigated by incorporating a fluorinated solvent in the electrolyte formulation 

(8, 9). Due to the lower solubility of the lithium polysulfides in this electrolyte system, the idea is 

to reduce the dissolution of the PS and therefore improve the efficiency of the cell. As shown in 

Figure 1, based on this idea the polysulfides are prevented from diffusing into the fluorinated 

electrolyte (DOL/TTE) and reacting with the lithium anode, whereas the polysulfides have high 

solubility in the conventional DOL/DME-1.0M LiTFSI electrolyte.  

 

The fluorinated 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE)  solvent has 

also been reported to enhance the performance of the Li-ion due to the formation of an 

electrochemically stable SEI, which protects the cathode against further decomposition of the 

electrolyte at the electrode surface (10-13). For comparison reasons, a non-fluorinated solvent was 
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used as co-solvent, and the results are shown in figure 2. It is noticed that when a mixture of 

dipropyl ether (DPE) and DOL with 1.0M LiTFSI is used as electrolyte, the charging step is not 

possible for the Li-S battery due to the very low solubility of the polysulfides in this solvent.  

 

1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), as shown in Figure 2, was 

one of the solvents with the highest efficiency and capacity retention that was studied in great 

detail in this project. Based on the density functional theory data shown in Table 1, the fluorine 

substitution in ethyl propyl ether lowers both the lowest unoccupied molecular orbital (LUMO) 

and the highest occupied molecular orbital (HOMO) energy levels, resulting in simultaneously 

high reduction potential and oxidation stability of the fluorinated ether. The theoretical calculation 

indicates that the fluorinated electrolyte solvents are thermodynamically more likely to form a 

passivation layer on both electrodes by means of an electrochemical reduction reaction than their 

non-fluorinated counterparts under certain voltage conditions. Our experimental results 

demonstrated that a binary solvent electrolyte comprising of TTE and 1, 3-dioxolane (DOL) 

displayed superior cycling performance in a Li-S cell employing a carbon/sulfur nanocomposite 

electrode with 75% of sulfur content.  

 

 

http://en.wikipedia.org/wiki/Molecular_orbital
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Figure 1. Schematic showing the diffusion of lithium polysulfides during charge and discharge in 

(top) conventional DOL/DME-1.0M LiTFSI electrolyte and (bottom) a fluorinated DOL/TTE-

1.0M LiTFSI electrolyte. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Voltage profile for cells cycled with different solvents. 
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TABLE I 

THE STRUCTURE, THEORETICAL OXIDATION POTENTIAL (VS. LI+/LI) AND 

HOMO AND LUMO ENERGY 

Ether Structure Pox (V, Theory)     HOMO (au)      LUMO (au) 

EPE O      5.511      -0.26153           0.00596 

TTE         7.24      -0.35426          -0.00356 

 

 

 

3.2 Charge and Discharge Characteristics  

 

The electrochemical performance of a Li-S cell containing a conventional and fluorinated 

electrolyte is presented in Figure 3 (8). Figure 3a shows the initial charge and discharge voltage 

profiles of Li-S cells with 1.0M LiTFSI DOL/DME (5/5) and 1.0M LiTFSI DOL/TTE (5/5) as the 

electrolyte, which consist of two plateaus in the discharge process, in agreement with following 

results. The first plateau at higher voltage (from 2.4 V~2.2 V) is due to the reduction of elemental 

sulfur to high order lithium polysulfides (Li2Sx, where x=4-8) and further reduction of these 

polysulfides to low order species (Li2S2 and/or Li2S) occurs at the lower voltage plateau observed 

at 2.1 V~2.0 V (14, 15). Compared with the Li-S cell using baseline electrolyte 1.0M LiTFSI 

DOL/dimethoxy ethane (DME) (5/5), the fluorinated electrolyte cell showed slightly lower voltage 

and much higher capacity during the first discharge. Nevertheless, a significant difference was 

observed for both cells during the charge process. The TTE-based electrolyte cell displayed a long 

and flat plateau and a drastic voltage rise at the end of the charging step without any shuttling 
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behavior.  In contrast, two plateaus were observed for the baseline cell with the lower voltage 

plateau associated with the oxidation of the longer polysulfides and the second plateau at 2.35 V 

reflecting the shuttle effect of the dissolved polysulfides in the electrolyte, which prevents the cell 

from reaching the charge voltage limit of 2.6 V. The voltage profiles remain unchanged even at 

deep cycles (Fig.3b). The low polarity of the TTE helps reduce the dissolution of polysulfides into 

the electrolyte as confirmed by the fact that the synthesized Li2S9 does not dissolve in the TTE 

solvent. The capacity retention profile of Li-S cells with both electrolytes is presented in Figure 

3c. A stable discharge capacity of 1100 mAh/g (based on the sulfur content in the cathode) was 

maintained for the first 50 cycles after several charge discharge formation cycles for cell containing 

the fluorinated electrolyte. Moreover, the cell containing the TTE electrolyte showed a coulombic 

efficiency of 97.5% during the whole range of the 50 cycles as evidenced in Figure 3d, indicating 

the successful inhibition of the polysulfide shuttling effect in the fluorinated electrolyte. In 

contrast, the baseline cell showed a much lower initial capacity (Figure 3a) and rapid fading of the 

capacity retention (Figure 3c). Actually, in order to enable the normal operation of the baseline 

cell, an arbitrary limit was set to terminate the shuttling of polysulfides during the charging 

process, i.e. the charging of the baseline cell would be complete when the capacity reaches 120% 

of the preceded discharge capacity, accounting for the constant of the coulombic efficiency of 

88.33% (Figure 3d). Such capacity fade and low coulombic efficiency are common features for 

Li-S cells using conventional electrolytes due to the dissolution of lithium polysulfide 

intermediates into the electrolyte, which leads to active sulfur loss and shuttle reactions.  
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Figure 3. Galvanostatic potential profile of the (a) 1st charge and discharge and (b) 30th charge 

and discharge, (c) capacity retention, and (d) coulombic efficiency of Li-S cells with 1.0M LiTFSI 

DOL/DME (5/5) and 1.0M LiTFSI DOL/TTE (5/5) electrolyte with a 0.1 C rate. 
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3.3 Effect of Fluoroether Solvent Ratio 

 

To further prove the effectiveness of this electrolyte solvent, a solubility test was conducted 

by testing different ratios of the fluorinated electrolyte vs. the conventional electrolyte. Li2S8 was 

synthesized by adding stoichiometric amount of Li2S and S in the 1.0 M LiTFSI with each 

electrolyte solvent solution (16). The dark-red catholyte (4.0 M normalized to S) showed much 

higher solubility in the conventional electrolyte, DOL/DME solvent solution as shown in figure 

4a on left. By using the TTE solution, ratios increasing from DOL: TTE (2:1) to (1:1) to (1:2), the 

solubility is significantly reduced due to using the fluorinated solvent. Based on this test result, it 

is manifest that TTE solvent has a significant effect on the performance of the Li-S cell due to 

suppressing the redox shuttling of lithium polysulfides by preventing their diffusion into the 

electrolyte. 

 

 The performance of the first 50 cycles of the cells containing different ratios is also shown 

in figure 4b. The cell containing the electrolyte with a DOL/TTE ratio of 1:2 shows the best 

capacity retention after 50 cycles, whereas the cell containing nonfluorinated electrolyte 

DOL/DME=1:1 results in the lowest capacity within the same cycles. Surprisingly, even without 

the use of the widely adopted LiNO3 additive, the cells containing fluorinated electrolytes showed 

very high coulombic efficiency, as shown in Figure 4c. However, when the ratio is increased to 

DOL/ TTE (1:3) the capacity has dropped due to the very low solubility of the lithium salt and 

sulfur in this electrolyte. The efficiency of the cell containing the (1/3) ratio has the highest value 

among the other solvent ratios due to the higher concentration of the fluorinated electrolyte and 

concentrated effect of the SEI formation and low PS solubility (figure 4c) (17). 
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The 1st discharge and 1st charge voltage profiles for Li-S cells with different ratios of 

fluorinated electrolyte are shown in Figure 4d. As expected, higher TTE ratio electrolyte are low 

in conductivity (data shown later in Figure 7), which results in high over potential and caused huge 

voltage drop for both the high order and the low order polysulfide discharge plateau. Interestingly, 

for the TTE electrolyte cells, the contribution to the overall capacity from the high order 

polysulfide reduction (the first plateau on discharge profile) becomes smaller with an increasing 

amount of TTE in the DOL/TTE electrolyte. For the baseline cell, the high order polysulfide 

contribution is 37.5% (600 out of 1600mAh/g), and this value becomes 33.0% for DOL/TTE 2/1 

(500 out of 1500 mAh/g), 16.5% for DOL/TTE 1/1 (260 out of 1620 mAh/g) and 14.2% for 

DOL/TTE 1/2 (200 out of 1400 mAh/g). This results implies that the reduction reaction from S to 

high order PS is transient and the kinetics of the high order PS further reaction to low order ones 

is more favorable when the fluorinated electrolytes are used. It is worth to be noted that this 

phenomena is always associated with the appearance of a lower discharge voltage around 1.8 V, 

corresponding to the gradual slope at the end of the first discharge process as indicated in Fig.4d, 

and was confirmed by the 1st cycle dQ/dV profile as shown in Fig.5. This behavior is associated 

with the reductive decomposition of the fluorinated TTE solvent on the surface of the sulfur/carbon 

particles during the discharge, forming a passivation layer as the so-called solid-electrolyte 

interphase (SEI) (8). 
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Figure 4. (a) Solubility test with 4.0M Li2S8 in (left to right) DOL/DME (1/1), DOL/TTE (2/1), 

DOL/TTE (1/1), DOL/DME (1/2) and performance of Li-S cells with different solvent ratios of 

DOL/TTE for 50 cycles (b) capacity retention (c) coulombic efficiency profile and (d) first cycle 

voltage profile. 
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3.4 SEI Formation 

 

To further investigate the mechanism of the shuttle inhibition due to the fluorinated 

electrolyte, cyclic voltammetry measurement was carried out (8). For the baseline cell, two 

distinguished cathodic peaks are observed at 2.35 and 2.0 V in the first discharge corresponding 

to the reduction of elemental sulfur and the intermediate polysulfides (Figure 5a). For the 

fluorinated electrolyte, in addition to the 2.24 V and 1.9 V cathodic peaks (Figure 5b), a third 

reduction peak appeared at 1.8 V, corresponding to the gradual slope at the end of the first 

discharge process, and was confirmed by the 1st cycle dQ/dV profile as shown in Figure 5c. The 

intensity of this peak gradually decreased and eventually disappeared with cycling as evidenced 

by Figure.5d. This phenomenon is associated with the reductive decomposition of the fluorinated 

TTE solvent on the surface of the sulfur/carbon particles during the discharge process forming a 

passivation layer called SEI. Another noticeable difference for the TTE electrolyte cell is the 

significant decrease in redox current of the 2nd reduction peak, indicating slow reaction kinetics to 

the discharge product Li2S and/or Li2S2, therefore preventing the loss of active material. 

Interestingly, in the 1st charging process, only one major anodic peak was observed at 2.45 V for 

the TTE electrolyte cell with relatively high intensity accounting for the oxidation reaction of high 

order polysulfides and the small shoulder peak (2.35V) being associated with the transition of low 

concentration Li2S2 and/or Li2S to higher order ones, suggesting that the oxidation reaction of high 

order polysulfides dominates the charging process when fluorinated electrolyte was used. As 

discussed above, the higher order polysulfides are not fully reduced to insoluble low order 

polysulfides during the discharge process, thus can be converted to sulfur with fast kinetics during 

charging. Theoretically, a specific capacity of 1675 mAh/g can be achieved from S to Li2S and 
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837.5 mAh/g from S to Li2S2., therefore a stable capacity of 1100 mAh/g for the fluorinated 

electrolyte Li-S cell indicates the discharged product in this cell could be a mixture of Li2S and 

Li2S2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cyclic voltammograms of the 1st cycle for Li-S cell with (a) 1.0 M LiTFSI DOL/DME 

and (b) 1.0 M LiTFSI- DOL/TTE electrolyte (scanning rate of 27 μV s-1); Differential capacity 

dQ/dV profiles of (c) the 1st discharge and (d) the 50th discharge for Li-S cell with 1.0 M LiTFSI-

DOL/TTE electrolyte. 
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3.5 Electrochemical Impedance Spectroscopy   

 

The formation of this passivation layer on the surface of the sulfur cathode helped retain 

the polysulfides inside the structure of the S/carbon composite thus preventing the shuttle effect. 

It has been reported by Liang et al. (5) that the shuttle reaction can be suppressed by addition of 

LiNO3 to the electrolyte, which could significantly improve the coulombic efficiency. LiNO3 

participates in the formation of a stable passivation film on the surface of Li anode protecting Li 

anode from chemically reacting with the dissolved polysulfides and the electrochemical reduction 

of polysulfides on the Li anode surface. However, the drastic capacity fade was observed indicating 

the LiNO3 could not eliminate the active material loss (6) therefore using the fluorinated electrolyte 

has much more significant effect than to using this additive. It is well known that fluorinated 

compounds are thermodynamically unstable when in contact with lithium metal and tend to 

chemically react with it forming organolithium compounds/inorganic LiF composite deposited on 

the surface of the Li. The formation of this composite layer is speculated to act as a physical barrier 

and an electronic isolating layer inhibiting the chemical and electrochemical reactivity of 

polysulfides with lithium anode.  

 

The essential role of the fluorinated ether in the formation of the passivation film on both 

electrodes is examined by electrochemical impedance spectroscopy and the data are illustrated in 

Figure 6. At 1st and 10th discharge state (Figure 6a and c), the ohmic and interfacial resistance of 

the TTE electrolyte cell is smaller than that of the baseline cell. At charged state, the impedance 

profile of TTE electrolyte cell is composed of two flatted semicircles (Figure 6b and d). In general, 

the semicircles in the high frequency range correspond to the passivation films on the electrode 
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surface and the one in lower frequency range corresponds to the charge-transfer process occurring 

on the electrolyte-electrode interfaces. Compared with baseline cell, the TTE electrolyte cell has 

higher passivation resistance, which is a good indication that the passivation formed in the TTE 

electrolyte is denser and hence more protective.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. AC impedance spectra of Li-S cells measured at stage of (a) 1st discharge, (b) 1st 

charge, (c) 10th discharge, and (d) 10th charge. 

 

3.6 Ionic Conductivity of the Fluorinated Electrolyte 
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conventional DOL/DME-1.0M LiTFSI electrolyte shows higher conductivity, and its conductivity 

increases from 9 mS/cm to 10.5 mS/cm when the temperature is raised from 10 °C to 60 °C; while 

for the cell containing the DOL/TTE-1.0M LiTFSI the conductivity is much lower and increases 

from 2 mS/cm to 3 mS/cm in the same temperature range. The result obtained in this study are 

consistent with the EIS study in which the cell containing the fluorinated electrolyte has higher 

passivation resistance, which is a good indication that the passivation formed in the TTE 

electrolyte is denser and hence more protective.   

 

 

 

 

 

 

 

 

Figure 7. The effect of temperature on the ionic conductivity of (a) DOL/DME-1.0M LiTFSI and 

DOL/TTE-1.0MLiTFSI and (b) Arrhenius relation of σT and 1000/T for DOL/DME-1.0M LiTFSI 

and DOL/TTE-1.0MLiTFSI . 
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Scanning Electron Microscopy 

Sulfur cathode 

We also determined the morphological changes of the sulfur electrode being discharged in 

both electrolytes. Figure 8a is the typical SEM image of the pristine sulfur/carbon electrode. After 

the first discharge in baseline electrolyte, the surface of sulfur cathode was deposited with large 

quantities of crystal-like discharged products (Figure 8b) of insoluble lithium sulfides (Li2S and/or 

Li2S2) species during the discharge process (8). Further analysis of the deposit using energy-

dispersive x-ray (EDS) spectroscopy revealed the dominate sulfur-rich agglomeration as shown in 

Figure 8d. However, the discharged electrode showed morphology similar to the pristine cathode 

filled with fine discharged product particles/flakes hidden in the porous structure of the S/carbon 

composite when using the TTE fluorinated electrolyte as illustrated in Figure 8c. Much less 

polysulfide deposition was observed from the EDS spectrum for the discharged cathode surface 

when 1.0 M LiTFSI DOL/TTE electrolyte was used (Figure 8e). This is evident that the SEI 

formation on the surface of cathode suppresses the dissolution and the agglomeration of the 

discharged species when using the fluorinated electrolytes, an observation which is supported by 

the improved specific capacity with superior coulombic efficiency when the fluorinated electrolyte 

was used.  
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Figure 8. SEM images of (a) pristine electrode, (b) discharged electrode using 1.0M LiTFSI 

DOL/DME, (c) discharged electrode using 1.0M LiTFSI DOL/TTE, and EDS spectra of sulfur 

electrode at the 1st discharged state using (d) 1.0 M LiTFSI DOL/DME and (e)1.0 M LiTFSI 

DOL/TTE. 
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Lithium anode 

Figure 9 shows the morphologies of the lithium anode after being cycled for 1st cycle in 

the baseline electrolyte and the fluorinated electrolyte (18). As observed in figure 9, the pristine 

lithium has a smooth surface; while for the cycled lithium pronounced morphological changes of 

the electrode are observed. The Li anode cycled in DOL/DME electrolyte surface has structures 

which appear to be voids on the surface of the lithium. There is also another layer of material on 

top of the anode which is beam sensitive. This layer of material, which is formed by the deposition 

of insoluble PS, disappears with prolonged exposure to the electron beam. EDS spectrum in Figure 

9c clearly indicates that sulfur has the highest concentration inside these pits on the surface of the 

anode. In comparison, a more dense layer of passivation was observed on the cycled Li anode with 

fluorinated electrolyte (Figure 9d, 9e) and EDS spectrum of this layer showed less sulfur 

deposition (Figure 9f), which is in agreement with the observations reported in our previous study 

(8). The lower diffusion of LiPS and mitigated parasitic reaction of these species with the lithium 

anode results in higher coulombic efficiency and less self-discharge of the Li-S cell.  
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. 

 

 

Figure 9. SEM images and EDS data of lithium anodes cycled after 1st discharge: (a), (b) and (c) 

with DOL/DME-1.0 M LiTFSI; (d), (e), and (f) with DOL/TTE-1.0 M LiTFSI. 

 

 

HPLC/UV-VIS study 

In a Li-S cell, sulfur is electrochemically reduced to polysulfide intermediates through a 

multistep process, in which the long polysulfide chains are soluble in the electrolyte. [3, 4] At the 

final step, insoluble discharge products such as Li2S2 and Li2S are generated through the reactions 

shown below:  

S8 + 2Li+ →Li2S8                                                                                                                        (3.1)               

Li2S8 + 2Li+ →Li2S 8-n + Li2Sn                                                                                                     (3.2) 

2Li2Sn + (2n-4)Li+ →nLi2S2                                                                                                       (3.3)                                                                                          

Li2Sn + (2n-2) Li+ →nLi2S                                                                                                         (3.4)                                                                            

d 
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Li2S2 + 2Li+→2Li2S                                                                                                                  (3.5)                                

The dissolution of these species causes severe capacity fading and redox shuttling effect 

which are of the main obstacles for commercialization of these batteries (19, 20). Better 

understanding of the discharge process in Li-S batteries can assist in solving this problem. 

Recently our group reported about a new electrolyte based on an organo-fluorine solvent that 

prevents the shuttling effect and improves the performance of the Li–S battery (8). 

 

Since in situ measurements of reactions inside the Li-S cell are associated with many 

difficulties, ex situ analysis methods such as HPLC and UV-VIS were employed to characterize 

the active species in the electrolyte after cycling. HPLC was first employed for characterizing 

reference samples of Li2S6 and Li2S4 and also diffused lithium polysulfides after cycling in the 

cell. The HPLC chromatograms associated with five different concentrations of 50.0, 25.0, 12.5, 

6.0, and 3.0 mM M for Li2S6 and Li2S4 reference data are shown in figure 10a-c respectively. As 

shown there are 3 peaks at different retention times (4.8-5 min, 5.8 min and 6.1 min) which are 

associated with the elution of polysulfides with different chain length and size [3] for Li2S6 

reference sample, where the major peaks is observed at 6.1min (Fig. 10b).  As expected higher 

concentrations of the polysulfides show higher absorption at 254nm wavelength. The HPLC data 

for reference Li2S4 solution is also shown in figure 10c. As observed there are 6 different peaks 

were two peaks at 5.8 and 6.1 min are similar to Li2S6. Since the major peak at 6.1 min is 

symmetrical and well-resolved as well as the baseline around this area, its peak position and 

integrated intensity at different concentrations were used to generate the calibration plot (21). 

Based on this plot we can approximately calculate the concentration of dissolved sulfur in the 

cycled electrolyte. 
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Figure 10. HPLC chromatograms of (a) Li2S6 reference sample (b) Li2S6 major peak at 6.1min 

and calibration plot (inset) and (c) Li2S4 reference sample in DOL/DME. 
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In order to characterize the lithium polysulfides in the harvested electrolyte solution, HPLC 

was used to separate the different lithium polysulfide chain length. In this respect, harvested 

electrolyte from cells with the baseline electrolyte, 1M LiTFSI in DME/DOL, and fluorinated 

electrolyte, 1M LiTFSI in DOL/TTE, after 10th discharge was also investigated by using the HPLC 

method. As shown in figure 11, three main peaks are observed for the polysulfides in the harvested 

electrolytes at 4.8, 5.2 and 6.1 min in which the major peak is very similar to the Li2S6 and Li2S4 

reference solution retention time. It is evident from this data that the DOL/DME electrolyte has 

higher solubility for higher order polysulfides where the peak at largest retention time of 6.1 is 

associated with the elution of longer chain polysulfides.  Due to this higher solubility severe 

shuttling is observed when using this baseline electrolyte in the Li-S cell. The absorbance intensity 

for this cell is almost 2 times of the intensity for the cell containing the fluorinated electrolyte. By 

comparing the retention times for the cycled cell and reference catholyte samples, assumptions are 

made about the composition of the polysulfides. Even though the mechanism of the reduction to 

the LiPS is still very controversial, qualitative observations are made from this study where the 

peak at 6.1 min can be associated with the Li2S6 and Li2S4 PS. In this case we can assume that due 

to the following series of disproportionation reactions there is also less deposition of the lower 

insoluble polysulfides such as Li2S2 and Li2S on the electrode surface (3, 4). This is confirmed by 

scanning electron microscopy (SEM) studies in our previous report (8) and XPS results in the 

following section. 

S6 
-2 → 2S3

–                                                                                                                               (3.6) 

3Li2S4 + 2Li+ → 4 Li2S3                                                                                                           (3.7) 

2Li2S3 + 2Li+ → 3Li2S2                                                                                                               (3.8) 

Li2S2 + 2Li+ → 2Li2S                                                                                                                (3.9) 
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Figure 11. HPLC chromatograms of cells after 10th discharge containing DOL/DME-1.0M 

LiTFSI and DOL/TTE-1.0M LiTFSI. 

 

Next, in order to study the ratio effect of the fluorinated electrolyte and to calculate the 

amount of soluble sulfur in these solvents, HPLC measurements were employed for cells 

containing two other ratio solvents of DOL/TTE (1/2) and (1/3) with 1.0M LiTFSI salt after 10th 
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the insoluble discharge product and clearly shows the reason for improved performance of the 

DOL/TTE electrolyte in comparison to the conventional electrolyte.  

 

 

 

 

 

 

 

 

 

 

Figure 12. HPLC chromatograms of cells after 10th discharge containing DOL/DME-1.0M 

LiTFSI and different ratios of DOL/TTE-1.0M LiTFSI. 

 

UV-VIS spectra were also obtained to confirm the consistency of our previous studies. 
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Figure 13. UV-Vis absorption spectra of reference samples in different concentrations (a) Li2S6 

(b) Li2S4 and (c) cells after 10th discharge containing different ratios of DOL/DME-1.0M 

LiTFSI and DOL/TTE-1.0M LiTFSI. 
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XPS Analysis 

To further understand the effect of different solvents on the Li-S battery performance, ex 

situ XPS analysis of the cathode surface retrieved from cycled cells was carried out and the result 

are shown in figure 14 and 15. Figure 14a shows C1S spectra of the sulfur electrodes in DOL-

DME-1.0M LiTFSI electrolyte at different charging and discharging states. In the pristine cathode, 

the C1S peak at 284.8eV is assigned to C-C and peaks at 286.4eV and 290.98eV are assigned to C-

H and C-F from PVDF binder (22-24). At the 1st discharge state, the C1s peaks were covered by 

new species (C=O at 290.2 eV, CF2 at 293.4 eV) due to the SEI formation and the deposition of 

the discharge product on the electrode surface Also, peak at 293.4 eV is assigned to CF2 or CF3 

bonds. At the end of discharge cycles, the C1S signals from PVDF were weaker due to the 

deposition of the discharge products on the surface of the cathode (22, 25, 26).  Also, peak at 

290.2eV is assigned to C=O. This is in agreement from previous reports where the formation of 

ROLi and HCO2Li is confirmed (26). Figure 14b also shows the C1S spectra of the sulfur electrodes 

after cycling in DOL-TTE-1.0M LiTFSI electrolyte. By comparing the XPS spectra for both 

electrolytes, it is observed that, the intensity for peak at 290.2eV after first discharge and peak at 

293.1 eV after first charge is increased after using fluorinated electrolyte which is due to the higher 

ratio of fluorinated solvent and the formation of a SEI on the electrode surface after using the 

fluorinated electrolyte.  

 

Figure 14c and d show S2P spectra of the sulfur electrodes after the 1st cycle in DOL-DME-

1.0M LiTFSI and DOL-TTE-1.0M LiTFSI electrolyte respectively. Peaks at 164.4 eV and 165.7 

eV are the characteristic peaks of S-S bonds of elemental S8 in pristine cathode (25, 26). Also the 

peaks with binding energy over 168 eV are assigned to LiTFSI (S-O from SO2 or SO3) and can be 
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found in all samples (Figure 14 e and f) (25, 26). After the first discharge, the S-S peak disappeared 

and two other peaks at 162.6 and 163.8 eV showed up in the lower energy area at 162.6 and 163.8 

eV,confirming the conversion of elemental S to S2- through electrochemical reduction with 

generation of discharge product Li2S or Li2S2 (22, 25-27) and these peaks remain unchanged even 

at fully charged state, indicating the loss of the active material due to this irreversible reaction. 

After comparing XPS S2p spectra when using the fluorinated electrolyte, two observations are 

made: 

-It is observed that peaks at 162.6ev and 163.8 eV which are assigned to Li2S and Li2S2 still appear 

after first discharge when using any of the two electrolytes. However they have completely 

vanished after the first charge when only using the fluorinated electrolyte (Fig. 14). This is due to 

the lower solubility of the poly-sulfides in the fluorinated electrolyte which indicates the good 

reversibility of the PS and also the formation of the SEI layer on the cathode. This highly reversible 

process explains the high specific capacity and coulombic efficiency of the DOL/TTE cell. The 

lower oxidation S2p peaks exist throughout the cycling and accumulate with cycling for the 

DOL/DME cycled electrode; however, the reversibility maintains with the extent of cycling for 

the DOL/TTE electrode. No recognizable peaks showed up until the 20th cycle and the intensity 

of these S2p peaks is still small when DOL/TTE is used as electrolyte. 
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-It is reported earlier that the formation of LixSOy species from the reaction of the salt with the 

active material increases with cycling and has been negatively effective in increasing the cell’s 

capacity fading due to the active mass irreversible oxidation (26). When comparing both XPS 

spectra from both solvents (Figure 14 e and f), it is clear that when using the fluorinated electrolyte 

the intensity of the peaks are much lower after discharge cycles due to the formation of the SEI 

and less formation of  LixSOy species results in better capacity retention when using the DOL-

TTE-1.0M LiTFSI electrolyte. In addition after 20 cycles, the oxidation state of the sulfur products 

had higher intensity than LiTFSI.  
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Figure 14. C1S  XPS spectra of sulfur cathodes for pristine cathode, cathode of the 1st discharge, 

cathode of the 1st charge, cathode of the 20th discharge, and cathode of the 20th charge in (a) 

DOL-DME-1.0M LiTFSI and (b)  DOL-TTE-1.0M LiTFSI; and S2P XPS spectra of sulfur 

cathodes after 1 cycle in (c) DOL-DME-1.0 LiTFSI and (d) DOL-TTE-1.0 M LiTFSI and after 

20 cycles in in (e) DOL-DME-1.0 M LiTFSI and (f) DOL-TTE-1.0 M LiTFSI. 
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Figure 15 also shows the Li1S and F1S spectra for cathodes at different charge and 

discharging cycles. The peak at 55.5 eV was assigned to Li-S bond from Li2S/Li2S2 at the discharge 

state for the DOL/DME cell (Figure 15a) and DOL/TTE cell (Figure 15b). However, in the charged 

state, this peak disappeared and a new peak showed up at a shifted position at 56.2 eV, 

corresponding to the formation of Li-F bond for the DOL/TTE cell, whereas the peak remains 

unchanged in terms of position and intensity for the DOL/DME cell. The LiF-rich solid electrolyte 

interphase formed on the sulfur surface further improves the coulombic efficiency and capacity 

retention. Figure 15 c and d are F1s XPS profiles. Decomposition products comprising C-F bond 

dominate the spectra for electrodes cycled with both electrolyte cells. For the pristine sulfur 

electrode, the peak centered at 688 eV is attributed to the PVDF binder and the peak shifted when 

LiTFSI was involved in the electrochemical reaction on the electrode surface. However, a larger 

contribution of C-F showed up for the TTE cell due to the reduction of TTE on cathode surface.  
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Figure 15. Li1S XPS spectra of sulfur cathodes for pristine cathode, cathode of the 1st discharge, 

cathode of the 1st charge, cathode of the 20th discharge, and cathode of the 20th charge in (a) 

DOL-DME-1.0M LiTFSI (b)  DOL-TTE-1.0M LiTFSI; and F1S  XPS spectra of sulfur cathodes 

in (c) DOL-DME-1.0 M LiTFSI and (d) DOL-TTE-1.0 M LiTFSI. 
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the storage temperature (28). For Li-S batteries, the self-discharge is a well-known issue due to the 

severe corrosion of lithium metal anode in the presence of the LiPS in the electrolyte (28-30). 

 

Many attempts have been taken in order to overcome the poor cycle life and low sulfur 

utilization of Li-S battery (8,28,31-37). However, there are only a few research focused on solving 

the self-discharge issue of the Li-S battery. Kazazi et al. have reported that the corrosion of the 

aluminum current collector and the shuttle mechanism play a significant role in the self-discharge 

of Li/S cells; therefore, LiNO3 is a suitable candidate for an electrolyte additive candidate to 

prevent self-discharge due to its effect on shuttle prevention (28).  Mikhaylik and Akridge reported 

that self-discharge mainly attributed from the high plateau polysulfide. Electrolytes with higher 

salt concentration showed lower rates of Li corrosion with LiPS and a lower shuttle constant (38) 

Ryu et al. reported that self-discharge of Li-S battery is dependent on the current collectors. The 

stainless steel current collector showed the highest self-discharge rate of 59% per month caused 

by the corrosion of the stainless steel current collectors by LiPS. In comparison, average self-

discharge rate for aluminum current collector is 3% per month (39-41). 

 

 In this study, the effect of different electrolyte systems was investigated on the self-

discharge behavior of Li-S batteries. As severe self-discharge has become the major issue for high-

loading sulfur cathodes (> 5 mg (S)/cm2), our test results suggest that utilizing fluorinated 

electrolyte to effectively suppress this fatal effect shall pave the way for practical applications of 

a high energy density Li-S battery (8, 42). Fluoroether-containing electrolytes have been reported 

by other groups to enhance the performance of the Li-ion battery due to their unique physical and 

chemical properties; (10-13) however, it is our idea to use it as an electrolyte co-solvent/additive 
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for the Li-S battery.The electrolytes used in these self-discharge studies were (1) 1M LiTFSI in 

DME/DOL (v:v=1:1); (2) 1M LiTFSI and 0.2M LiNO3 in DME/DOL (v:v=1:1); (3) 1M LiTFSI 

in DOL/TTE (v:v=1:1); (4) 1M LiTFSI and 0.2M LiNO3 in DOL/TTE (v:v=1:1) and (5) 1M 

LiTFSI and 1.0 M LiNO3 in DME/DOL (v:v=1:1).  For electrolyte (5), LiTFSI salt dissolves easily 

in DOL/DME (v/v, 1/1) to 1.0 M. This solution can further dissolve LiNO3 to the maximum 1.0 

M. The electrolyte (5) is oversaturated and the solution is not completely transparent. Self-

discharge was tested by charging and discharging the cells with a C/10 rate for five cycles and then 

resting them for 10 hours between the fifth charge and sixth discharge step and was then calculated 

by comparing the discharge capacity of the 6th cycle to the 5th cycle.  

 

Low Loading Cathodes- 

To investigate the self-discharge in both electrolytes with low loading sulfur electrodes (2-3 

mg/cm2) the cells were put to rest for 10 hours after 5th charge. As shown in Figure 16, Li-S battery 

suffers from a loss of 8% in discharge capacity after 10 hours resting when using the baseline 

electrolyte with 0.1M LiNO3 at room temperature and increases significantly at elevated 

temperature. Surprisingly, the discharge capacity didn’t decrease but increased after 10h storage 

for the Li-S cell using the fluorinated TTE electrolyte at charged state at room temperature, as 

shown in Figure 16b. This phenomenon became significant when 0.1M LiNO3 was added to the 

TTE electrolyte and a 20% capacity increase was obtained.  
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Figure 16. Self-discharge voltage profiles for Li-S cells with low loading cathode at room 

temperature. (a) Conventional DOL/DME-1.0M LiTFSI-0.1M LiNO3, (b) DOL/TTE-1.0M 

LiTFSI- 0.1M LiNO3 
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after the 10-hour rest, discharge capacity of 790 mAh/g for the 5th cycle dropped below 650 mAh/g 

for the 6th cycle. The shuttle phenomenon of the cell was obvious due to lithium polysulfide 

dissolution during the charge and discharge process, which led to an extremely low coulombic 

efficiency (Figure 17a). Figure 17a demonstrates that the self-discharge in a Li-S cell using the 

conventional electrolyte was severe and more than 17%.  However, as shown in figure 17b, when 

the partially fluorinated electrolyte was used as co-solvent and much lower self-discharge of 4% 

is observed using TTE. Even though using the fluorinated solvent has significantly improved the 

self-discharge, the same behavior is observed which indicates that self-discharge in both cells is 

due to both irreversible loss of sulfur active material, and polysulfide shuttling.  

 

 

 

 

 

 

 

 

 

 

Figure 17- 5th and 6th cycle voltage profile for Li-S cells with high-sulfur-loading cathodes; a) 

DOL/DME-1.0M LiTFSI electrolyte and b) DOL/TTE-1.0M LiTFSI electrolyte. 
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3.8.1 LiNO3 Additive Effect 

 

In the next step, LiNO3 additive was used with high loading sulfur electrodes and the self-

discharge was investigated at two different temperatures for cells containing this additive. As 

shown in figure 18a, when 0.2 M LiNO3 is added to the conventional DOL/DME-1.0M LiTFSI, 

electrolytea loss of 3.8% in discharge capacity is observed after 10 hours resting at room 

temperature, indicating much less self-discharge that occurs during the storage of the battery. 

These observations indicate that LiNO3 efficiently prevented self-discharge in a Li-S cell. In 

addition, the rate of undesirable chemical reactions which cause internal current leakage between 

the sulfur cathode and lithium anode increases with temperature thus increasing the battery self-

discharge rate, and as expected the self-discharge has increased to 8.6% when the temperature was 

increase to 55°C (Figure 18b).  However, by studying this behavior for cells containing DOL/TTE-

1.0M LiTFSI-0.2M LiNO3 electrolyte, a decrease of only 0.7% is observed for cells resting at 

room temperature (Figure 18c). Surprisingly, by even increasing the temperature to 55°C as shown 

in figure 18d, almost no change is observed for the discharge capacity. We should note that all 

self-discharge experiments were conducted with cells which have loadings of more than 5 mg/cm2 

and these cells with high-loading electrodes were fabricated with high amount of electrolyte. It is 

well known that the increased amount of electrolyte can aggravate the polysulfide shuttle effect 

and therefore degrade the performance of the cell. However, no major self-discharge was observed 

regardless of the use of thick cathodes. 
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Figure 18- 5th and 6th cycle voltage profile for Li-S cells with high-sulfur-loading cathodes and 

DOL/DME-1.0M LiTFSI--0.2M LiNO3 electrolyte; a) at room temperature and b) 55°C and 

DOL/TTE-1.0M LiTFSI- 0.2M LiNO3 electrolyte c) at room temperature and d) 55°C. 
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To study the effect of LiNO3 in particular on the self-discharge performance, experiments 

have been conducted with high concentrations of about 1.0M LiNO3 in the electrolyte solvent. As 

reported earlier in literature, LiNO3 is one of the most important additives reported to enhance the 

performance of Li-S batteries and is highly effective in inhibiting the PS redox shuttle. Surface 

analysis shows that LiNO3 generates a protective film composed of LixNOy and LixSOy onto the 

surface of the lithium anode. However, it has been stated that LiNO3 could not eliminate the active 

material loss and the repetition of cycling destroys the protective film. The self-discharge 

procedure has been investigated with cells containing 1.0M LiNO3 as additive and the results are 

reported in Figure 19. It is observed that for cell containing DOL/DME-1.0MLiTFSI-1.0M LiNO3 

at room temperature, a capacity drop of about 2.7%  is observed at room temperature, while at 

55°C the drop is about 5% . Even though using this additive results in lower rate of self-discharge 

than for the Li-S cell containing the conventional electrolyte, using this high concentration of 

LiNO3 additive has a negative effect on the cell performance. This is due to the fact that the 

irreversible reduction of LiNO3 reduces reversibility of Li2S and results in permanent loss in the 

reversibility of the Li-S cell. It is concluded that this additive does not completely prevent the self-

discharge even at high concentration, while the fluorinated solvent is not present in the electrolyte. 

TTE must be combined with LiNO3 for the avoidance of the self-discharge. This could indicate 

that the major part of self-discharge is due to irreversible loss of active material rather than 

polysulfide shuttling and that both lower solubility of lithium polysulfides in the fluorinated 

electrolyte and also the formation of the protective layer as a result of the TTE and LiNO3 reduction 

(combined) on the lithium anode is the most effective in preventing the self-discharge behavior of 

the cell. This is due to much less contact between soluble lithium polysulfides and the lithium 

anode.  
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Figure 19- Discharge capacity and coulombic efficiency for Li-S cells with high-sulfur-loading 

cathodes and DOL/DME-1.0M LiTFSI-1.0M LiNO3 electrolyte; at room temperature and 55°C. 

 

3.8.2 Long Term Self Discharge  

 

Long-term self-discharge behavior of the cells with different electrolyte composition was 

then evaluated by monitoring the voltage decay during resting. As shown in Figure 20a, the cell 

containing DOL/DME-1.0 M LiTFSI electrolyte without LiNO3 additive showed severe shuttling 

during the 1st and 2nd charge. In addition, after the 5th charge, the cell voltage dropped from 2.39 

V to 2.11 V within 7 hours and stabilized at this voltage for the rest of testing period. The voltage 

drop was likely caused by the continuous depletion of the soluble, higher-order LiPS in the 

cathode. The LiPS could diffuse out of the cathode and migrate to the anode until concentration 

equilibrium of the polysulfide species in the electrolyte can be reached. In the meanwhile, the 
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polysulfides may undergo reduction reactions with Li metal and deposit on the anode surface, 

further driving migration of LiPS and resulting in lower capacity in the subsequent discharge step 

(43).In comparison, the cell containing the fluorinated electrolyte exhibited much slower voltage 

drop during resting. The cell voltage maintained at a short plateau above 2.25 V for a period of 14 

hours before slowly decreasing to a stable plateau of 2.13 V in another 34 hours. This result 

suggests that the diffusion of LiPS from the cathode was retarded significantly, although prolonged 

resting still resulted in consumption of the soluble LiPS by Li anode. In the presence of LiNO3 

additive, the self-discharging suppression was found to be much improved for both cells with the 

baseline and fluorinated electrolyte. Figure 20b shows that the baseline cell containing DOL/DME-

1.0 M LiTFSI and 0.2 M LiNO3 promptly underwent complete self-discharge from 2.42 V to 2.14 

V . A short voltage plateau above 2.35 V was observed for the baseline cell, however the cell was 

only able to hold this voltage for 25 hours. The cell containing DOL/TTE-1.0 M LiTFSI with 0.2 

M LiNO3 showed much better performance in suppressing self-discharge. The cell voltage 

remained at the 2.27 V plateau for over 1 week (170 hours) and gradually dropped to 2.16 V after 

another 70 hours. These results indicate that the presence of LiNO3 and thus the protecting layer 

on Li surface effectively inhibited the reaction of polysulfides with Li, and LiPS diffusion was 

only suppressed when the fluorinated ether was present. For the fluorinated electrolyte, the rapid 

voltage drop at the end of resting may be a result of depletion of the protecting layer on Li surface. 

In this regard, more detailed study is required to investigate the stability of this protecting layer 

formed by decomposition of LiNO3 in different types of electrolytes. 
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Figure 20. Voltage profile for Li-S cells with long resting hours with DOL/DME-1.0 M LiTFSI 

and DOL/TTE-1.0 M LiTFSI (a) without LiNO3 and (b) with 0.2 M LiNO3. Inset shows the 

voltage profile for the resting period after the 5th charge. 
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3.9 Conclusion 

 

A deep understanding of high performance Li-S battery with fluorinated electrolyte was obtained 

using electrochemical methods and analytical techniques including HPLC, XPS and SEM. The 

lithium polysulfide species generated in a Li-S cell were quantitatively analyzed. The results  

suggested that the improved performance of a Li-S cell with 1,1,2,2-tetrafluoroethyl-2,2,3,3-

tetrafluoropropyl ether (TTE) as co-solvent is due to multiple reasons: (1) less solubility of high-

order polysulfides as confirmed with solubility test and HPLC experiment mitigates the shuttle 

effect of polysulfide and promotes the reversible electrochemistry of insoluble Li2S/Li2S2; (2) the 

SEI formation on the sulfur cathode by reductive decomposition of fluoroether further prevents 

the dissolution of the polysulfide and improves the sulfur utilization; (3) the 

electrochemical/chemical reaction of fluoroether with lithium anode forms a protective layer 

acting as a physical barrier eliminating the parasitic reactions of dissolved polysulfides with 

lithium. 

 In addition, the self-discharge behavior of lithium sulfur cells was investigated with high- loading 

sulfur electrodes. It is shown that using partially fluorinated electrolyte, DOL-TTE-1.0 M LiTFSI 

with the addition of LiNO3 has an outstanding effect in reducing self-discharge and almost no self-

discharge is reported after 10 hours resting at room temperature and storage temperatures of 55 

°C.  It was shown that combining TTE and LiNO3 can protect both the sulfur cathode due to the 

formation of a stable SEI layer and also the lithium, due to the LiNO3 reduction on the anode. SEM 

and EDX results confirm the low concentration of sulfur on the surface of the lithium anode while 

using the TTE electrolyte which results in lower self-discharge of the cell. It is also shown that 
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using LiNO3 with the conventional electrolyte even at high concentrations had trivial effect on 

self-discharge.  

 For future studies different fluorinated electrolytes should be the main focus for the Li-S battery, 

where in our preliminary experiments it was noticed that solvents having one or two non-

fluorinated alkyl chains (such as DPE) show low or no capacity (figure 21). Finding a correlation 

between the solvent molecular structure and the performance of the lithium sulfur batteries can 

indeed assist in designing cells with much improved features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Molecular structure of different fluorinated solvent used as co-solvent in conventional 

lithium sulfur batter
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4. FLUORINATED MATERIALS AS ELECTROLYTE ADDITIVE FOR LITHIUM-

SULFUR BATTERY 

 

  Various approaches have been investigated to further extend the cycle life and sulfur 

utilization of the Li-S battery. Just as is the case for Li-ion battery electrolytes, functional additives 

play an important role in the Li-S battery. In Li-S batteries, an additive is introduced to the liquid 

electrolyte mainly to passivate the surface of the Li anode and protect Li from chemical and 

electrochemical reaction with the lithium polysulfides. To date, many researchers have focused 

their efforts on developing new sulfur materials with unique structures (1-3), yet the electrolyte 

plays a pivotal role in the Li-S cell performance. Although LiNO3 is widely adopted as an 

electrolyte additive for Li-S batteries (4,5), recent reports about new electrolytes and new additives 

suggest that they can make a major contribution to improving the performance (6-11).  

 

We have reported a new electrolyte based on a fluorinated ether solvent, 1,1,2,2-

tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) (12). This solvent can be reduced on the 

cathode side during discharge, forming a solid-electrolyte interphase (SEI) that prevents the 

dissolution of polysulfides and enables the highly reversible Li-S redox reaction in the cathode. 

Building upon this result, we have studied two different fluorinated compounds, lithium 

difluoro(oxalato) borate (LiDFOB) and Tris(pentafluorophenyl)borane (B(C6F5)3, as additives for 

the Li-S battery.  
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4.1 Lithium Difluoro(Oxalato) Borate (LiDFOB) Additive 

 

In the first study, the effect of lithium difluoro(oxalato) borate (LiDFOB) additive was 

investigated.  Zhang et al. (13) first reported LiDFOB as an effective electrolyte salt for lithium-

ion batteries. Later, Hu et al. (14) found that LiDFOB participates in the formation of an SEI layer 

on graphite anodes and greatly improves the cycling performance and thermal stability of the Li-

ion battery. Very recently, Wu et al. reported that LiDFOB (15) functioned as an efficient additive 

to improve the capacity retention of the Li-S battery when added to the DOL/DME electrolyte due 

to the formation of an LiF-rich passivation layer on the lithium anode surface. In fact, we were 

evaluating LiDFOB as a potential additive for the Li-S battery independently at the same time Wu 

did his study. However, our initial idea is quite different from Wu’s as we conceived of using 

LiDFOB as an electrolyte additive due to the fact that fluorinated ether solvent is capable of 

forming a SEI on the sulfur cathode (12). The two fluorine-boron bonds in the structure of LiDFOB 

might provide the same functionality as fluorinated ether does on the sulfur cathode side. 

 

4.1.1 1.0 M LiPF6 in 1NM3 Electrolyte 

 

Since the redox shuttle effect of polysulfide originates from its high solubility and fast 

diffusion in the organic electrolyte, polymer-based electrolytes with high molecular weight could 

be a potential candidate for restraining the dissolution of the polysulfide and its fast diffusion to 

the anode. It is assumed that the polymer shell acts as a physical barrier and prevents the contact 

of the polysulfides produced at the cathode with the liquid electrolyte (16). The widely studied 

polymer electrolytes for the Li-S battery are based on the high molecular weight of poly(ethylene 

oxide) (PEO). However, high molecular weight PEO has a relatively high glass transition 
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temperature (Tg) and tends to crystallize at temperatures below 60°C, both of which significantly 

reduce the conductivity of the electrolyte (17). This issue can be mitigated by attaching the PEO 

groups onto a flexible siloxane (Si-O-Si) backbone (Tg = -123°C) due to their extremely low 

energy barrier for Si-O bond rotation (18).  

 

In this study, (CH3)3Si(OCH2CH2)3OCH3 (1NM3) was evaluated as a new solvent for Li-

S batteries. The sulfur cathodes were fabricated by mixing sulfur, Super P carbon, and PVDF 

(45%:45%:10% by weight). The electrodes had loadings of ~1-2 mg /cm2. Tri(ethylene glycol)-

substituted trimethylsilane (1NM3) and lithium difluoro(oxalato) borate (LiDFOB) were prepared 

in our laboratory following the literature procedures reported by Dong et al. (18) and Zhang et al. 

(13). The following electrolytes were tested: 1.0 M LiPF6 in 1NM3 with and without LiDFOB 

additive in various concentrations (2%, 5%, and 10%); 1.0 M LiPF6 in 1NM3 with and without 

2% LiNO3 additive, and 1.0M LiTFSI in 1NM3 with and without 2% LiDFOB additive.  

 

1NM3 is a colorless liquid at ambient temperature. Since 1NM3 has a Li+ chelating group 

in the oligo(ethylene glycol) chain, it dissolves most of the lithium salts used in a lithium-ion 

battery electrolyte, including LiPF6, LiTFSI, LiBF4, and LiBOB. The electrolyte solution of 1.0M 

LiPF6 in 1NM3 affords an ambient conductivity of 1.2 ×10-3 S/cm, which is comparable with 

traditional DOL/DME based electrolyte. The electrochemical performance of a Li-S cell using 1.0 

M LiPF6-1NM3 electrolyte is presented in Figure 1. As can be deduced from the voltage profiles 

of the 1st and 10th cycle in Fig. 1a, the first plateau at 2.4-2.3 V is the sulfur reduction reaction to 

high-order lithium polysulfides (Li2Sx, where x=4-8), and further reduction of these polysulfides 

to lower order species (Li2S2 and/or Li2S) occurs at the lower voltage plateau observed at 2.0-1.9 
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V. The formation of these lower-order polysulfides contributes to the major capacity of the Li-S 

cell. The initial discharge capacity was 1200 mAh/g, with 70% of sulfur utilization based on the 

theoretical capacity of sulfur of 1675 mAh/g. It is very surprising that no shuttling effect of lithium 

polysulfide was apparent during the 1st charge, as indicated in Figure 1a, probably due to the low 

solubility of the Li2Sx and the low kinetics of the Li2Sx diffusion in this electrolyte. Although no 

redox shuttling was observed in the subsequent cycles, cell performance faded rapidly with 

cycling. The discharge capacity rapidly declined to 400mAh/g at the 50th cycle, indicating the side 

reaction of LiPF6 with Li2Sx as evidenced by the fluctuations on the voltage profile during charge 

and the decreasing coulombic efficiency with cycling as shown in Figure 1b. 

 

 

 

 

 

 

 

 

 

 Figure 1. (a) Galvanostatic voltage profiles of Li-S cell with 1.0M LiPF6-1NM3 electrolyte at 1st 

and 10th charge and discharge. (b) Capacity retention and coulombic efficiency of Li-S cell with 

1.0M LiPF6-1NM3 electrolyte at 0.1C rate. 
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4.1.2 LiDFOB Electrolyte Additive Effect 

 

When 2% LiDFOB was added to the 1.0M LiPF6-1NM3 electrolyte, Li-S cell performance 

improved significantly. The charge-discharge voltage profile of this Li-S cell is shown in Figure 

2a. Apparently, the performance of the additive cell is improved compared with that of the cell 

without additive (Figure1a) in terms of the specific capacity and the stability of charging. The 

initial coulombic efficiency is 76% and it increased quickly in a couple of cycles and stabilized to 

97%. LiDFOB participates in the reduction reaction during the discharge, as evidenced by the 

presence of the short plateau on the discharge voltage profiles (Figure 2a). This plateau is buried 

by the polysulfide reduction peak and showed up clearly in the voltage profiles from the 

subsequent cycles indicating a gradual reduction of the LiDFOB additive, which forms a protective 

layer over the cathode surface and thus improves the coulombic efficiency. However, when the 

concentration of LiDFOB additive is increased from 2% to 5% and 10%, as illustrated in Figures 

2c and 2d, respectively, the capacity dropped dramatically. This decrease was attributed to the 

formation of a thick and resistive decomposition layer on the electrode surface causing the low 

discharge capacity due to the high interfacial impedance. 
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Figure 2. (a) Galvanostatic potential profile of Li-S cell with 1.0 M LiPF6-1NM3 + 2% LiDFOB 

from 1st to 100th charge and discharge cycle. Capacity retention and coulombic efficiency of Li-

S cells with (b) 1.0 M LiPF6-1NM3 + 2% LiDFOB, (c) 1.0 M LiPF6-1 NM3 + 5% LiDFOB, and 

(d) 1.0 M LiPF6-1NM3 + 10% LiDFOB at a 0.1C rate. 
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addition to the two peaks which are always observed for Li-S batteries due to the reduction of the 

PS at 2.4 and 2.1 V, there is an additional 3rd peak observed at 1.95V when using the LiDFOB 

additive where the intensity of this peak gradually decreased and eventually disappeared after 

about 100 cycles. This is in agreement with our previous findings about the fluorinated electrolyte 

for which the same behavior was noticed (12). This is associated with the reductive decomposition 

of the fluorinated additive on the surface of the sulfur/carbon particles during the discharge and 

confirms that LiDFOB not only protected the Li anode (15) but also sulfur cathode.   
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Figure 3. Differential capacity (dQ/dV) profiles of Li-S cell with 1.0 M LiPF6-1NM3 + 2% 

LiDFOB at (a) the 1st, (b) 10th, (c) 30th, (d) 50th and (e) 100th discharge. 
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LiDFOB additive. The initial discharge capacity was 1300 mAh/g for both cells; however, the cell 

without the LiDFOB additive suffered from a severe redox shuttle reaction during the 1st charge, 

as evidenced by the flat and long plateau on the charge profile (Figure 4a), resulting in a low 

coulombic efficiency (45.5%). An even lower efficiency was observed for subsequent cycles. 

However, with 2% LiDFOB electrolyte additive, the coulombic efficiency significantly increased 

in the first cycle and stabilized in the following cycles, as clearly evidenced by the data shown in 

Figure 4b.  

 

 

 

 

 

 

 

 

Figure 4. Galvanostatic potential profiles of Li-S cell for the 1st through 20th charge and discharge 

cycles at 0.1C rate with (a) 1.0M LiTFSI-1NM3 and (b) 1.0M LiTFSI-1NM3  + 2% LiDFOB 

electrolyte. 
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While LiDFOB additive proved to be effective, we also explored the effect of LiNO3 additive 

when combined with 1NM3 electrolyte. Figure 5 shows the cell data for 2% LiNO3 (or 0.2 M) 

added to the 1.0M LiPF6-1NM3 electrolyte. As shown in Figure 5a, the coulombic efficiency was 

about 100% for all cycles with the LiNO3-additive cell; however, the capacity decline of this cell 

is almost identical to the cell without LiNO3 additive (Figure 5b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. (a) Coulombic efficiency and (b) discharge capacity retention of Li-S cells with 1.0M 

LiPF6-1NM3 and 1.0 M LiPF6-1NM3 + 2% LiNO3 electrolyte. 
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4.1.3 Electrochemical Impedance Spectroscopy  

 

The effect of the LiDFOB additive was investigated by electrochemical impedance spectroscopy 

(EIS). Figure 6a shows the EIS spectra for cells at the 1st discharge stage using 0.8 M LiPF6-1NM3 

and 0.8 M LiPF6-1NM3+2% LiDFOB electrolyte. The frequency-dependent impedance signifies 

the response of several parallel processes occurring in the cell. The Nyquist plots consist of two 

semicircles and a straight sloping line in the low-frequency region. The semicircle in the high-

frequency region corresponds to the ionic conduction at the interphase of the sulfur/electrolyte 

(Rint), and the semicircle in the medium frequency region corresponds to the charge-transfer 

process (Rct) occurring on the conductive agent of the sulfur electrode (19). As shown in Figure 

6b, the charge transfer resistance for the cell containing 0.8 M LiPF6-1NM3+2% LiDFOB (Rct = 

254.7 ohm) was significantly higher than that of the cell without LiDFOB (Rct = 52.1 ohm) at the 

fully discharged state. The much higher Rct for the additive cell is caused by the more discharged 

products (deep discharge) and the insulating property of the discharge products [20]. The 

interphasial resistance (Rint) was higher for the additive cell than that of the no additive cell, which 

was attributed to a resistive SEI layer formed on the cathode surface during the discharge process, 

verifying that the LiDFOB participated in the reductive decomposition reaction as observed in the 

short plateau and the dQ/dV profiles. In contrast, the cell with 2% LiDFOB showed lower cell 

resistance (Re = 12.4 ohm), indicating that the SEI formed by the LiDFOB additive mitigates the 

dissolution of the lithium polysulfides, leading to lower viscosity and the higher conductivity of 

the electrolyte. 
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Figure 6. (a) Nyquist plots of the impedance response for Li-S cells after first discharge with 0.8M 

LiPF6-1NM3 and 0.8M LiPF6-1NM3+2% LiDFOB, and (b) cell resistance (Re), interphasial 

resistance (Rint), and the charge transfer resistance (Rct) fitted from the experimental data for the 

Li-S cell with and without LiDFOB additive.  

 

4.1.4 Electrode Characterization 

 

To understand the LiDFOB additive effect in the Li-S battery, we examined the morphology of 

the discharged sulfur cathode by SEM analysis.  Figure 7a is an SEM image of the sulfur electrode 

after the first discharge in 1.0 M LiPF6-1NM3 electrolyte. The surface of this electrode was 

covered by large quantities of crystal-like discharged products of insoluble lithium polysulfide 

(Li2S2 and Li2S) species (12,21). The formation of these low-order polysulfides has a major effect 

in causing the capacity loss during long-term cycling. In contrast, the sulfur electrode showed a 

different morphology when cycled in 1.0 M LiPF6-1NM3 electrolyte with 2% LiDFOB additive, 

as illustrated in Figure 7b. The particle size in the discharge products on the electrode surface was 

much smaller and uniformly distributed on the electrode surface. This morphology of the cathode 

maintained even at the 10th cycle, as shown in Fig.7c and d. This observation is consistent with the 

electrochemical cell data presented in Figs. 1, 2a, and 2b.  
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Figure 7.  SEM image of sulfur cathode surface after 1st discharge with (a) 1.0 M LiPF6-1NM3, 

(b) 1.0 M LiPF6-1NM3 + 2% LiDFOB electrolyte, and after 10th discharge with (c) 1.0 M LiPF6-

1NM3 and (d) 1.0 M LiPF6-1NM3 + 2% LiDFOB electrolyte. 

 

4.2 Tris(Pentafluorophenyl)Borane (B(C6F5)3) Additive 

 

In the next study of fluorinated electrolyte additives, the effect of Tris(pentafluorophenyl)borane 

(B(C6F5)3) was investigated. (B(C6F5)3) has been previously used as an anion receptor for lithium 

ion batteries (22). This additive has been shown to improve the performance of the Li-ion battery 

by capturing the intermediate oxygen anions. This prevents the oxygen from direct contact with 

the carbonate solvents, and therefore greatly suppresses the side reactions. For the first time in 

lithium sulfur batteries, B (C6F5)3 was used as an electrolyte additive. 

        

 c   d
  



133 

 

4.2.1 Coulombic Efficiency Improvement 

  

Figure 8 shows the performance of the Li-S battery with a conventional electrolyte, and 

DOL/DME-1.0M LiTFSI, with and without the (B(C6F5)3) additive. As shown in Figure 8a, using 

the baseline electrolyte will result in severe shuttling due to the high solubility of polysulfides in 

the electrolyte and their reaction with the lithium anode. This redox shuttle effect prevents the cell 

form charging to its cut-off voltage. However, by adding 5% B(C6F5)3, shuttling is prevented 

significantly and the cell is charged to the 2.8V cut-off voltage (Figure 8b ). By increasing the 

concentration of this additive to 10 and 20%, the initial efficiency has increased as shown in Figure 

8c and d. Yet, as with the LiDFOB effect, using a higher concentration of this additive in the 

electrolyte will result in a significant drop in the capacity. This decrease was attributed to the 

formation of a thick and resistive decomposition layer on the electrode surface causing the low 

discharge capacity due to the high interfacial impedance. 
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Figure 8. (a) Voltage profile for cell with DOL/DME-1.0M LiTFSI, and (b) DOL/DME-1.0M 

LiTFSI- 5% (B(C6F5)3, and (c) discharge capacity retention and efficiency profile for Li-S cells 

with (c) DOL/DME-1.0M LiTFSI- 5% (B(C6F5)3, (d) DOL/DME-1.0M LiTFSI- 10% (B(C6F5)3 

and  (e) DOL/DME-1.0M LiTFSI- 20% (B(C6F5)3. 
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4.2.2  Cyclic Voltammetry  

 

To investigate the mechanism of the shuttle inhibition of the fluorinated additive, cyclic 

voltammetry measurements were conducted for the first 5 cycles on the baseline electrolyte and 

the electrolyte containing 5% (B(C6F5)3). As shown in Figure 9a and b, two distinguished cathodic 

peaks are observed at 2.35 and 2.03 V in the first discharge corresponding to the reduction of 

elemental sulfur and the intermediate polysulfides (Figure 9a). For the cell containing the 

fluorinated additive, a noticeable difference is the significant decrease in redox current of the 2nd 

reduction peak. This is due to the lower formation of insoluble sulfur species after using this 

additive. Interestingly, there is also major decrease in the redox current for the anodic peak at 2.45 

V for the cell containing this additive. This is due to the decomposition of this additive during the 

charging process.  

 

 

  

 

 

 

 

 

 

Figure 9. Cyclic voltammograms of the first 5 cycles for Li-S cell with (a) 1.0 M LiTFSI 

DOL/DME and (b) 1.0 M LiTFSI DOL/DME- 5% (B(C6F5)3). (Scanning rate of 27 μV s-1). 
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4.2.3 Electrode Characterization 

 

Next, x-ray photoelectron spectroscopy (XPS) was used to investigate the elemental composition 

on the cathode’s surface after 1st charge and discharge and also the 20th charging and discharging 

cycles.  

 

Figure 10 shows the S2P spectra of the sulfur electrodes after cycling in DOL-DME-1.0M 

LiTFSI with and without 10% B(C6F5)3 additive. Peaks at 164.4 eV and 165.7 eV are the 

characteristic peaks of S8 in the pristine cathode as shown in Figure 10 a and b (23,24). After the 

first discharge, two other peaks at 162.6 and 163.8 eV appear in all samples which are assigned to 

Li2S or Li2S2 (25, 26). By comparing the XPS S2p spectra, it is clearly observed that the intensity 

of peaks assigned to Li2S and Li2S2 at 162-164 eV, increase by multiple cycling in both electrolytes 

(fig 10 c and d); however when using the fluorinated additive, B(C6F5)3, much less deposition of 

these insoluble sulfur species is observed on the surface of the cathode after the discharge process 

(Fig 10 b and d). This is due to the formation of a SEI on the cathode surface which also reduces 

the deposition of the polysulfides on the cathode surface. Also, a new peak at 164.4 eV appeared 

after the first charge which is assigned to the decomposition products of the additive during the 

charging process.  

 

In addition, peaks at 169.4 eV and 170.4 eV are assigned to sulfone (SO2) from LiTFSI 

salt. It is reported that the formation of LixSOy species from the reaction of the salt with the active 

material increases with cycling and has been negatively effective in increasing the cell’s capacity 

fading due to the active mass irreversible oxidation [24].  By comparing S2P spectra from both 
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electrolytes, it is noticed that at all charge and discharging states, the intensity of these peaks are 

much lower when this fluorinated additive is present in the electrolyte. This is due to the formation 

of a SEI layer on the surface of the cathode which is also confirmed by other electrochemical and 

characterization studies.  
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Figure 10. S2P XPS spectra of sulfur cathodes after cycling for pristine cathode, cathode of the 1st 

discharge, and cathode of the 1st charge, in (a) DOL-DME-1.0M LiTFSI  and (b) DOL-DME-

1.0M LiTFSI- 10% B(C6F5)3 additive and cathode of the pristine to 20th charge in (c) DOL-DME-

1.0M LiTFSI and (d) DOL-DME-1.0M LiTFSI- 10% B(C6F5)3 additive. 

 

Figure 11 shows the F1S and Li1S spectra for cells cycled with and without the B(C6F5)3 
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this peak is assigned to the C-F bond from the PVDF binder in the cathode composition. However, 
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and the formation of the Li-F bond on the surface of the cathode which is also confirmed by the 
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cyclic voltammetry data in Figure 9.  In addition, the Li1S spectra shown in Figure 11c and d, also 

shows a significant difference when 10% B(C6F5)3 additive is added to the electrolyte. Peaks at 

55.5 eV assigned to Li2Sn appear when using the baseline electrolyte while much lower intensity 

is observed for this peak when 10% B(C6F5)3 additive is used. Almost no lithium is detected after 

first discharge due to low Li2S deposition. This confirms the formation of a SEI on the surface of 

the cathode when fluorinated additive is used. 
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Figure 11. F1S  XPS spectra of sulfur cathodes after cycling for Pristine cathode, cathode of the 1st 

discharge, cathode of the 1st charge, cathode of the 20th discharge, and cathode of the 20th charge 

for in (a) DOL-DME-1.0M LiTFSI  (b) in DOL-DME-1.0M LiTFSI- 10% B(C6F5)3 additive and 

Li1S XPS spectra of sulfur cathodes after cycling in (c) DOL-DME-1.0M LiTFSI  and (d) in DOL-

DME-1.0M LiTFSI- 10% B(C6F5)3 additive. 

 

4.3 Conclusion 

 

We evaluated two fluorinated electrolyte additives for Li-S batteries in this study. In the 

first section, the new electrolyte solvent 1NM3 and the effects of the lithium salts and additives 

were investigated. In this work, coin cell data and EIS data showed LiDFOB to be an efficient 

additive in passivating the sulfur cathode surface and enabling reversible sulfur reduction and 

oxidation in the Li-S chemistry. By contrast, 1NM3 solvent with LiNO3 additive in the electrolyte 

showed no improvement over the 1NM3 with no additive. The SEM analysis of a discharged sulfur 

cathode from a cell tested with the 1NM3 electrolyte confirmed that the LiDFOB additive is critical 

in improving the performance of the Li-S cell.  

 

In the second part the effect of another fluorinated additive, Tris(pentafluorophenyl)borane 

(B(C6F5)3), was also investigated with the conventional electrolyte. It was shown that using this 

additive assists in forming a stable SEI on the cathode surface which prevents the dissolution of 

the polysulfides and results in higher coulombic efficiency.
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5. TEFLON-COATED CARBON PAPER ELECTRODES FOR LITHIUM-SULFUR 

BATTERIES 

 

5.1 Introduction 

 

Employing sulfur/carbon composites is currently the main approach attempted to conquer 

the limitations of Li-S batteries (1-5). Early work on this subject was performed by Shim et al. (1) 

who reported that more than 10% carbon black is necessary to meet the cathode conductivity. This 

method places emphasis on enhancing the electrical conductivity of the cathode and restraining 

the loss of soluble polysulfides during cycling. However, the main challenge of active material 

loss still remains. Some new concepts have recently been proposed to improve the performance of 

Li-S batteries by employing novel materials and innovative cell design. For instance, a bifunctional 

microporous carbon paper placed between the cathode and separator led to good capacity retention 

and coulombic efficiency of the cell (6,7). It is believed that the porous carbon interlayer plays a 

significant role in trapping the soluble lithium polysulfides and providing additional reaction sites 

to accommodate the formation of Li2S2 or Li2S on discharge (7). In another example, using PTFE 

as the binder for a sulfur electrode was shown to improve cell performance, which was attributed 

to the high chemical stability and hydrophobicity of PTFE (8,9). Herein we report a simple 

modification to the traditional Li-S battery configuration by using Teflon®-coated carbon paper 

(TCCP) as a porous electrode matrix for the sulfur cathode. The TCCP is composed of interlaying 

carbon microfibers that act as an excellent substrate for mass transfer and electron conduction. The 

porous architecture and the hydrophobic Teflon (PTFE) coating facilitates the absorption and 

confinement of soluble polysulfides to the cathode, leading to high sulfur utilization and excellent 

capacity retention during cycling (9). This novel cathode design is a much simpler approach than 
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synthesizing complex sulfur/carbon composites (10-12) to improve the capacity and cycle life of 

the Li-S battery. 

5.2 Novel Cell Assembly 

 

Due to the now known influence of fluorinated electrolytes on lithium ion (13-16) and Li-

S batteries (17,18), additional investigation was sustained on engineering the electrode for the 

similar effect.   

 

A sulfur/carbon composite (60% wt sulfur) with a sulfur loading of 3-4 mg/cm2 was 

prepared by mixing Super P carbon and sulfur, followed by making a slurry of this material with 

a solution of poly(vinylidene fluoride) (PVDF) in n-methylpyrrolidone (NMP) (sulfur/ Super 

P/PVDF, 60/30/10 by weight). Microfiber carbon paper (MFCP) with 127 µm thickness and TCCP 

(TGP-060) with 190 µm thickness, 5wt % PTFE treatment, and 80% porosity were purchased from 

the Fuel Cell store. Three types of electrodes were made by casting the slurry onto aluminum foil 

(S/Al), microfiber carbon paper (S/MFCP), and the carbon side of TCCP (S/TCCP). The laminates 

were then placed in 70⁰C oven overnight. The laminates were punched into circular disks of 14 

mm in diameter and further dried at 60 C under vacuum for 4 hours.  

 

Single sided Teflon-coated carbon paper (TCCP) was used as the current collector for sulfur 

electrodes in this study, where TCCP carbon microfibers treated with 5wt% PTFE act as an 

excellent substrate (Figure 1). In addition, the PTFE coating facilitates the absorption of soluble 

lithium polysulfides to the cathode, therefore preventing them from diffusing into the electrolyte. 

While this has been shown to lead to high coulombic efficiency it will also result in high sulfur 
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utilization and excellent capacity retention (9). Preliminary experimentation with a double-sided 

PTFE coating carbon paper was also investigated; in which sulfur slurry was coated on the Teflon 

coating. However, due to the hydrophobicity of PTFE and the hydrophilic property of the lithium 

polysulfides, very low solubility and low reduction of the sulfur species resulted in small discharge 

capacity for the Li-S cell. By coating sulfur on the carbon fibers and using the Teflon coating on 

other side in contact with the electrolyte, the polysulfides have the chance to fully reduce to the 

lower order polysulfides on the cathode surface without diffusing into the organic electrolyte.  

(a)                                                                  (b) 

 

 

 

 

Figure 1. (a) From top to bottom: cathode cap, spacer, sulfur coated on TCCP (Teflon coating 

facing the separator), Celgard separator, lithium anode, spacer, anode cap and (b) SEM images 

and elemental mapping of Microfiber carbon paper (MFCP) (top left), Teflon coated carbon paper 

(TCCP) (top right), cross section for (TCCP) (bottom left), and EDS elemental mapping of fluorine 

(bottom right). 
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5.3 Effect Of Teflon Coated Carbon Paper 

 

To investigate the effect of different current collectors on the electrochemical performance of the 

Li-S cell, we first experimented using the conventional DOL/DME-1.0M LiTFSI electrolyte with 

a sulfur cathode coated on an aluminum current collector (S/Al). The results presented in Figure 

2a show an initial specific discharge capacity of only 660 mAh/g; which then decreased to 230 

mAh/g within a few cycles. The low capacity was likely due to the limited capability of PVDF-

bound Super P carbon to accommodate the formed discharge/charge products during cycling. 

Coulombic efficiency of the Li-S cells are also shown in figure 2b; where the cell using the S/Al 

cathode with conventional electrolyte has low coulombic efficiency due to severe shuttling. The 

procedure is modified such that the charge capacity was limited not to exceed 120% of the 

discharge capacity for the previous cycle.   

 

The sulfur/Super P slurry was then coated on a microfiber carbon paper (S/MFCP) in the 

next study. As presented in Figure 2a, the cell with the S/MFCP electrode delivered a much higher 

initial specific capacity of over 1400 mAh/g compared to the S/Al cell. The capacity retention was 

still a major issue, because only 43% of the initial capacity remained after 50 cycles. In addition, 

a severe polysulfide shuttling effect was observed during the charging step, which resulted in very 

low coulombic efficiency (< 20%). Note that no additive, such as LiNO3, was added in the 

electrolyte to protect the Li anode (19,20). Therefore, in order for the cell to cycle within a 

reasonable timeframe, the modification to the charge procedure was again applied. In sharp 

contrast to the sulfur/Al and sulfur/MFCP electrodes, significant improvement in cell performance 

was observed when the same sulfur slurry was coated on TCCP and used as the cathode with the 
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conventional electrolyte. For direct comparison, the sulfur loading (3 mg/cm2) was kept the same 

for all the cathodes regardless of the current collector type. Figure 2a shows that with the S/TCCP 

cathode, the discharge capacity was maintained at 800 mAh/g after 50 cycles. Although the 

coulombic efficiency was still about 80% due to polysulfide shuttling, this effect was much less 

pronounced compared to the S/MFCP electrode so that no charge capacity limit was programed 

into the testing procedures. These results suggest that the TCCP plays the same role as MFCP as 

a conductive carbon support for the sulfur species and, in addition, the Teflon coating may serve 

as a hydrophobic barrier that to some extent was able to resist the diffusion of the soluble 

polysulfides from TCCP to the bulk electrolyte. Nevertheless, some polysulfide shuttling effect 

was still evident from the low coulombic efficiency due to the use of DME as the solvent (21,22), 

which readily dissolves polysulfides and facilitates their diffusion.  

 

We have recently reported a new electrolyte based on an organo-fluorine solvent (TTE) 

that prevents the shuttling effect and improves the performance of the Li-S battery (17). In that 

study, the SEM/EDS analysis confirmed the improved performance was due to the detainment of 

polysulfides inside the electrode (17). When this novel electrolyte was used with the sulfur/TCCP 

cathode, the cell delivered a discharge capacity of 1400 mAh/g with 96% coulombic efficiency in 

the first cycle (Figure 2a). Furthermore, a 980 mAh/g discharge capacity was retained after 50 

cycles and the coulombic efficiency was above 90% for all cycles. This novel electrode/electrolyte 

combination is believed to be capable of “trapping” polysulfides that are formed on the cathode 

during cycling. The fibrous carbon permits effective mass transport of lithium ions while the 

Teflon coating on the surface of the TCCP blocks (hydrophilic) polysulfides from migrating out 

of the carbon paper. With the less solubility of the polysulfides in the fluorinated electrolyte, the 
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diffusion of polysulfides into the bulk electrolyte was further hindered. These results have clearly 

demonstrated by using this cell configuration, sulfur loss from the cathode may be effectively 

minimized during continuous electrochemical cycling. 

  

 

 

 

 

 

 

 

Figure 2. (a) Capacity retention and (b) coulombic efficiency of Li-S cell with: sulfur coated on 

Al current collector with DOL/DME-1.0 M LiTFSI, sulfur coated on MFCP with DOL/DME-1.0 

M LiTFSI, sulfur coated on TCCP with DOL/DME-1.0 M LiTFSI, and sulfur coated on TCCP 

with DOL/TTE-1.0 M LiTFSI. 

 

 

5.4 Cyclic Voltammetry 

 

To study the electrochemical characteristics of S/Al and S/TCCP Li-S cells, cyclic 

voltammetry (CV) was performed at a scan rate of 0.03 mV/s. Cyclic voltammograms of the first 
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5 cycles for three cells with different electrolytes and current collectors are shown in Figure 3a. 

When the cell containing the conventional cathode, S/Al, and electrolyte is first discharged to 

1.6V, two distinguishable reduction peaks are observed at 2.35 and 2.05 V during the first 

discharge, which are attributed to the reduction of elemental sulfur and the intermediate 

polysulfides, respectively. For the second cell containing the conventional electrolyte and the 

S/TCCP cathode there is an additional third reduction peak observed at 1.98 V, corresponding to 

the effect of the Teflon coated carbon paper interlayer. This layer forms a protection film over the 

cathode surface which prevents the diffusion of polysulfides into the organic electrolyte (17). 

When the voltage sweep was reversed, the CV plot exhibited two sharp anodic peaks at 2.3 and 

2.4 V for both cells containing the conventional DOL/DME-1.0M LiTFSI electrolyte. By 

comparing both voltammograms it is clearly observed that the first peak at 2.3V which is assigned 

to the oxidation of low order PS (Li2S and Li2S2) to higher order PS and the second peak at 2.4V 

which is due to the oxidation of those to sulfur almost have similar intensities when using the 

conventional cathode (due to the high concentration of low order PS) while the second peak has 

lower intensity when using the TCCP cathode. In the next case, the CV for the cell containing the 

combined effect of the TCCP cathode and the fluorinated electrolyte shows completely different 

results.  The presence of only one broad reduction peak at 1.8-1.9 V with lower intensity is due to 

the: (1) relatively low reduction to lower order PS as a result of using the TTE electrolyte, (2) their 

negligible solubility in this electrolyte and (3) almost no diffusion of these species into the 

electrolyte as a result of using the Teflon coated carbon paper which results in high capacity and 

efficiency of the cell. This suggests that the higher order polysulfides are not fully reduced to 

insoluble low order polysulfides during the discharge, and thus can be converted to sulfur with fast 
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kinetics and therefore the oxidation reaction of high order polysulfides dominates the charging 

process when TCCP cathode is used as interlayer. 

 

 

 

 

 

 

 

 

Figure 3. Cyclic voltammograms of (a) the first5 cycles and (b) first cycle for Li-S cell at scan 

rate of 0.03 mV/s with an aluminum current collector and 1.0M LiTFSI-DOL/DME, Teflon-

coated carbon paper and 1.0M LiTFSI-DOL/DME, and Teflon-coated carbon paper and 1.0M 

LiTFSI-DOL/TTE electrolyte. 
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5.5 C-Rate Capability 

 

To investigate and compare the effect of different current rates, a C-rate experiment was 

conducted on three cells with different current collectors and electrolytes. The cells were cycled 

at C/10, C/2 and 1C rates, as presented in Figure 4, and were then returned to the C/10 rate. As 

shown in Figure 4a, for the cell containing the sulfur slurry coated on aluminum and the 

conventional DOL-DME electrolyte an initial capacity of about 600mAh/g is observed at the C/10 

current rate. After increasing the current to C/2, the capacity drops significantly as expected and a 

capacity of about 300mAh/g is observed. In addition, by returning the rate to C/10 the capacity 

does not completely recover. However, the capacity increases considerably when the same sulfur 

slurry is coated on TCCP regardless of using the conventional electrolyte, where an initial capacity 

of 1050mAh/g is observed at the C/10 current. At the higher current rates of 1C, the cell still 

delivers almost 400 mAh/g of capacity which is almost 3 times that of the cell containing the 

simple sulfur cathode on aluminum. In addition, the capacity has recovered about 80% by 

decreasing the current to C/10 which is much higher when compared to figure 4a. Finally, by using 

the combination of the fluorinated electrolyte and the TCCP cell configuration an initial capacity 

of 1200 mAh/g is achieved and the cell has recovered more than 90% of its initial capacity after 

increasing the cycling rates. These results clearly demonstrate the excellent rate capability of Li-S 

cells using the combination of the fluorinated electrolyte and Teflon-coated carbon paper where 

the initial capacity is practically recovered. 
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Figure 4. C-rate profiles of Li-S cell using (a) aluminum current collector with 1.0M LiTFSI-

DOL/DME  (b) Teflon coated carbon paper with 1.0M LiTFSI-DOL/DME, and (c) Teflon coated 

carbon paper with 1.0M LiTFSI-DOL/TTE electrolyte. 

 

5.6 Electrode Characterization 

 

To investigate and compare the morphological changes of the sulfur electrode coated on 

MFCP and TCCP at different charge and discharge stages, SEM imaging was employed and the 

results are shown in Figure 5a. As observed, there is homogenous distribution of carbon and sulfur 

on the surface of the pristine electrode (S/TCCP) which ensures an appropriate re-utilization of the 

active material. It is also noticed that after 1st discharge and charge, there is a very uniform 

distribution of sulfur and carbon on the sulfur side of the electrode without any sign of deposited 

polysulfides on the surface of the electrode. This is due to using the Teflon-coated carbon paper 

as a current collector where the residue of the PTFE coating on the carbon side of the electrode 

can also cause lower deposition of the insoluble low order polysulfides. Although this Teflon 

coating in contact with the electrolyte can act as a shield to block the migration of polysulfides out 

of the cathode and improve the efficiency of the cell, it also results in higher capacity retention 
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due to the uniform deposition of the insoluble species and less agglomeration. To distinguish the 

effect of Teflon coated carbon paper and plain carbon paper, SEM images from cycling with 

S/MFCP were also investigated as shown in Figure 5b. Even though carbon paper interlayer has 

been reported to improve the performance (6,7), the surface of the electrode is deposited with 

crystal structure species on the sulfur side after discharge and also layers of insoluble PS products 

on the carbon side as well. This confirms the significant role of Teflon coating on the carbon paper 

which effectively improves the capacity retention and cycling efficiency. In addition Figure 5b 

shows SEM images of the cross-sections of the sulfur cathode coated on the Teflon coated carbon, 

paper which clearly indicate the more diffusion of sulfur into the carbon paper as cycling increases.   

 

 

(a)  

 

 

 

 

 

 

(a) (d) 
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Figure 5. SEM images of (a) sulfur coated on TCCP (top left) and MFCP (bottom left) after 1st 

discharge with EDS elemental mappings of sulfur and (b) cross section of sulfur electrode coated 

on TCCP for pristine (top left) and after 1st discharge (bottom left) with EDS elemental mappings 

of sulfur; all cycled with DOL/DME-1.0M LiTFSI electrolyte. 

 

5.7 Conclusions 

 

In summary for this section, the effect of sulfur coated on Teflon-coated carbon paper was 

investigated. The cycling data, C-rate procedure, and CV and SEM data all confirm the 

improvement of cell performance in comparison to the control cells using either aluminum or plain 

carbon paper as current collector.  Using sulfur coated on Teflon coated carbon paper acts as a 

shield blocking the migration of polysulfides out of the cathode due to the hydrophobic property 

of this material. In this study the effects of plain carbon paper and Teflon coated carbon paper have 

been studied and compared. Although using a carbon paper interlayer has shown improvements in 

the performance of the Li-S battery, deposition of an insoluble sulfur species is detected with SEM 

which results in lower efficiency. Using Teflon as a protective layer on one side of the electrode 

shows improved performance of the cell due to the less loss of the active material and the reduced 

shuttling effect
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6. CONCLUDING REMARKS AND FUTURE PROSPECTIVES 

 

6.1 Conclusions 

 

Lithium sulfur batteries are a promising candidate for the next generation of electric vehicles 

due to their many advantages over lithium ion batteries. Sulfur is abundant, inexpensive, and 

reveals a high theoretical specific capacity and energy of 1672 mAh/g and 2600 W h/kg .  Even 

though these batteries provide us with much hope, there are various problems such as poor cyclic 

ability, low efficiency and severe self-discharge which arise from a complex multi-step discharge 

process. In recent years, great improvement in the cycling performances of the Li-S batteries has 

been made; however, all of these achievements are obtained at the expense of the energy density 

and process cost.  

 

Nano-structured sulfur composites based on various types of carbon materials and 

conducting polymers have driven the specific capacity of sulfur to approach the theoretical value 

with acceptable cycling efficiency and cycle number. However, syntheses of these composites are 

very costly; furthermore the cathodes using these composites contain low sulfur content (< 60 %) 

and low sulfur-loading (< 2 mg/cm2), which dramatically reduces the energy density of Li-S 

batteries. On the other hand, Li-S batteries are fundamentally a liquid electrochemical system, in 

which elemental sulfur must dissolve into the liquid electrolyte in the form of long-chain PS and 

serve as the liquid catholyte. Dissolution of PS in the liquid electrolyte on one hand facilitates the 

electrochemical reactions of insulating sulfur species, and on the other hand causes severe redox 

shuttle and parasitic reactions with the Li anode.  
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In this study, a detailed investigation was conducted on the electrolyte and electrode part of 

this battery. First, the effect of different fluorinated solvents was investigated on the performance 

of the Li-S cell. It was noticed that solvents having one or two non-fluorinated alkyl chains show 

low or no capacity. A more detailed investigation was conducted on the solvent 1,1,2,2-

Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) which when used as co-solvent exhibited a 

significant improvement to cell performance. It was realized that cells containing this electrolyte 

show no sign of a redox shuttling effect and much higher capacity. After conducting a solvent ratio 

study, it was noticed that the cell with a DOL/TTE ratio of 1/2 shows the best capacity retention 

but when the ratio is increased to (1/3) the capacity has dropped due to the very low solubility of 

the lithium salt and sulfur in this electrolyte. However, the efficiency of the cell containing the 

(1/3) ratio has the highest value among the other solvent ratios due to the higher concentration of 

the fluorinated electrolyte and the concentrated effect of SEI formation and low polysulfide 

solubility. 

 

For a better understanding of the complex discharge mechanism in the baseline electrolyte, 

DOL-DME-1.0M LiTFSI, and the fluorinated electrolyte characterization techniques such as 

HPLC, and UV-VIS were used for the harvested electrolyte. The lithium polysulfide species 

generated in a Li-S cell were quantitatively compared in this study. The results suggested that the 

improved performance of a Li-S cell with DOL-TTE-1.0M LiTFSI is due to less solubility of long 

chain polysulfides in the fluorinated electrolyte, which was confirmed with HPLC and UV-VIS 

data.  .  XPS and SEM studies were also used to study the sulfur electrodes after different charging 
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and discharging state. Much lower Li2S and Li2S2 deposition was observed on the surface of the 

cathode cycled with TTE as confirmed with XPS results.  

 

In the next part, the effect of a fluorinated electrolyte on the self-discharge behavior of Li-

S cells was studied. Self-discharge is one of the major issues preventing the commercialization of 

this battery due to the severe corrosion of the lithium metal anode in the presence of the lithium 

polysulfides in the electrolyte. However, this issue has not received much attention in the literature, 

even though these cells suffer from severe self-discharge. Self-discharge was tested by charging 

and discharging the cells with a C/10 rate for five cycles and then resting them for 10 hours 

between the fifth charge and sixth discharge step and was then calculated by comparing the 

discharge capacity of the 6th cycle to the 5th cycle. In this study our test results suggested that 

utilizing the fluorinated electrolyte, 1,1,2,2-Tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether 

(TTE), in combination with the LiNO3 additive can effectively suppress this effect even for high 

loading sulfur cathodes at room temperature and at elevated-temperature storage. This is due to 

the combined effect of lithium anode protection by the LiNO3 operation and also the protection of 

the sulfur cathode due to using the fluorinated electrolyte. In addition, the low solubility of the 

lithium polysulfides in this electrolyte will lead to lower redox shuttle effect and therefore a major 

improvement in the capacity of the cell even after long resting times. Using high concentrations of 

LiNO3 clearly shows that even though using this additive results in lower rate of self-discharge for 

the lithium sulfur cell, it does not completely prevent this behavior. This is due to the fact that the 

irreversible reduction of LiNO3 reduces reversibility of Li2S and this will result in permanent loss 

in the reversibility of the Li-S cell. This could indicate that the major part of self-discharge is due 

to irreversible loss of active material rather than polysulfide shuttling. Lower solubility of lithium 
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polysulfides , higher reversibility of sulfur species in the fluorinated electrolyte and also the 

formation of the protective layer as a result of LiNO3 reduction is the reason that DOL/TTE-1.0M 

LiTFSI- 0.2M LiNO3 is the most effective in preventing the self-discharge behavior of the cell. 

 

Based on the idea that using fluorinated electrolyte solvents can improve cell performance 

due to SEI formation on the cathode surface, other fluorinated additives were also investigated. In 

this part, (CH3)3Si(OCH2CH2)3OCH3 (1NM3) was evaluated as a new solvent for Li-S batteries. 

The effects of lithium salts and electrolyte additives were studied in order to optimize the 

electrolyte for the Li-S chemistry. Our results showed that the cell performance was much 

improved when 1NM3 electrolyte was combined with Lithium difluoro(oxalato) borate (LiDFOB)  

as additive. Impedance spectroscopy studies indicated that LiDFOB is an effective additive due to 

its capability of forming a passivation layer on the surface of the sulfur electrode. Also SEM 

studies confirm the lower deposition of insoluble products on the cathode surface when LiDFOB 

is used as electrolyte additive. In the second section of this part of the study, the effect of another 

fluorinated additive, Tris(pentafluorophenyl)borane (B(C6F5)3), was also investigated with the 

conventional electrolyte. XPS studies show that using this additive assists in forming a stable SEI 

on the cathode surface which prevents dissolution of the polysulfides and results in higher 

coulombic efficiency.  

 

In the last part of this study, we report on a modification to the traditional Li-S battery 

configuration that has shown to result in high capacity and efficiency of the Li-S cell. Teflon-

coated carbon paper (TCCP) was used as an electrode matrix and the sulfur active material are 

embedded inside the pore structures of the paper.  The TCCP was composed of carbon microfibers 
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that act as an excellent substrate for mass transfer and electron conduction while the hydrophobic 

Teflon (PTFE) coating facilitates the absorption and confinement of soluble polysulfides to the 

cathode. The cell containing cathode coated on TCCP showed an initial discharge capacity of 1400 

mAh/g while maintaining a capacity of 1000 mAh/g after 50 cycles. The efficiency was also stable 

at 90% for the first 50 cycles. In the next part of this study excellent capacity recovery is reported 

for cells using the combination of the fluorinated electrolyte and TCCP cell configuration where 

the cell has recovered more than 90% of its initial capacity after increasing the cycling rates. SEM 

studies also confirm the outstanding effect of using TCCP by where no sulfur deposition is 

observed on the surface of the electrode after discharge. However the surface of the electrode using 

MFCP without the Teflon coating is deposited with crystal structure species on the sulfur side after 

discharge and also layers of insoluble PS products on the carbon side as well. This novel cathode 

design is not only simpler than methods used in synthesizing sulfur carbon composites, but also it 

improves the capacity and cycle life of the lithium sulfur battery considerably. 

 

6.2 Future Prospective 

 

Even though significant advancements in Li/S cells have been made in recent years, 

challenges still remain.  In order to enhance the performance of the Li-S batteries more detailed 

research is needed in the area of the electrolyte and the electrodes of this battery. A deep 

understanding of the complex discharge mechanism of the Li-S cell can indeed assist in a better 

understanding of this battery system and lead to improvements in the battery life and performance.  

Future improvements should be made by balancing the various positive and negative effects of the 

polysulfide dissolution, as discussed in the recommendations that follows: 
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1.  Sulfur cathode: To meet the requirements of low cost and high energy density, elemental 

sulfur should be preferentially considered as the cathode active material, and the cathode 

should contain at least 70% sulfur and have a sulfur-loading of not less than 2 mg/cm2. 

Furthermore, the cathode structure should be tolerant enough to stand the large volume 

expansion and contraction incurred by the discharging and charging of the sulfur active 

material.      

2.  Anode material: When metallic Li is used as the anode material, it is essential to develop an 

effective and cost-acceptable approach for protecting the Li anode from reactions with the 

dissolved PS and from the growth of Li dendrites. To completely solve the problem of Li 

dendrites, it is essential to develop an alternative anode material free of Li metal for the 

safety of Li-S batteries. In this case, a facile and cost-acceptable lithiation technique should 

be explored either for the anode or for the sulfur cathode.  

3.  Electrolyte: The electrolyte is key to determining the operational temperature range of Li-S 

batteries, and to the dissolution and chemical stability of PS. The PS in the electrolyte will 

spontaneously disproportionate into low-soluble or insoluble short-chain PS and elemental 

sulfur, which could precipitate out of the liquid electrolyte and clog the pores of the 

separator. Therefore, in view of sulfur utilization and reaction kinetics, a liquid electrolyte 

that can well dissolve and stabilize the PS is in great demand; however, this promotes the 

redox shuttle effect of the polysulfides. The electrolyte also affects the coulombic efficiency 

of the Li anode and the formation of a passivation layer on the Li surface.    

4.  Battery design: The electrochemical process in Li-S batteries is much more complicated 

than that in all other rechargeable batteries. Battery design plays a crucial role in affecting 

the cycling performance of Li-S batteries. As suggested by the fundamental chemistry of 
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the Li-S battery, the dissolution of PS in the liquid electrolyte is essential to enable the 

electrochemical reactions of insulating sulfur species, however, it meanwhile causes a 

severe redox shuttle effect and Li corrosion. All sulfur composites, such as S-C composites 

and S-polymer composites, are designed to confine the dissolved PS within the composites. 

In this case, the electrolyte absorbed in the pores between the composite (and the conducting 

carbon) particles cannot be utilized to dissolve PS, a design that can confine the dissolved 

PS within the cathode, other than within the composite particles, must increase the loading 

and utilization of  sulfur in the Li-S batteries.     

 

Although the current status of the Li-S batteries is still far wary from the requirements for practical 

applications, it is possible that in near future, major advances in the materials and battery designs 

drive the Li-S batteries to the practical applications. 
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