Oxidative Transformations of Allenes (Part I) and Enyne Ring-Closing Metathesis (Part II)

BY

VENKATA REDDY SABBASANI

B.Sc. Acharya Nagarjuna University, 2005M.Sc. Osmania University, 2008

THESIS

Submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:	Daesung Lee, Advisor and Chair, Chemistry
	Vladimir Gevorgyan, Chemistry
	Duncan Wardrop, Chemistry
	Justin Mohr, Chemistry
	Hee Yeon Cho, Loyola University Chicago

This thesis is dedicated to my beloved family

ACKNOWLEDGEMENTS

This thesis owes a great deal to the efforts and support of many people and without their help none of this would have been possible.

First and foremost, I would like to express my gratitude to my advisor, Professor Daesung Lee, for his tremendous scientific guidance and encouragement. He is an excellent mentor and naturally gifted chemist. I feel honored to work under his supervision. I am grateful for the scientific knowledge and research experience I acquired with his continuous support. I really appreciate the freedom and motivation he provided in pursuing my research over these years.

Special thanks to my committee, Professor Vladimir Gevorgyan, Professor Duncan Wardrop, Professor Justin Mohr from UIC, and Professor Hee Yeon Cho from Loyola University Chicago for their time, helpful comments and suggestions to make this thesis better. I also thank Professor Xia and his group members in Wenzhou University for helpful discussions and DFT calculations for reaction mechanisms. I also thank Professor Neal Mankad from UIC and Mr. Rodger F. Henry from Abbvie for their help to solve X-ray structures.

I also need to thank all the members of Lee's group with whom I had an opportunity to work with -Dr. Sang Young Yun, Dr. Jingwei Li, Dr. Chunrui Sun, Dr. Kung-Purn Wang, Dr. Aditi Patil, Dr. Dimitra Kontokosta, Dr. Huaqing Liu, Dr. Nam-Kyu Lee, Dr. Ivan Volchkov, Dr. Phani (Pavan) Mamidipalli, Dr. Matthew J. O'Connor, Rajdip Karmakar, Hyunjin Lee, Xinyu Guan, Ken Lee, Saswata Gupta and Ahn Le. It was a great pleasure to work with them and the years we spent together will be the most memorable time in my life and I wish them the best in their future endeavors. Specifically, I have enormous gratitude to Dr. Phani Mamidipalli for his help in growing professionally and personally. I also like thank Hyunjin Lee, who worked with me and made an important contribution to this thesis. I should also thank Prof. Mohr group Jenny Martinez, Nabeelah Kauser, Xiaoguang Liu, Dr. Xiaohong Chen, and Yuanlin Deng for their support and helpful suggestions during our group meetings. In regards to the Chemistry Department staff, I would also like to extend my appreciation to Ms. Silvia Solis, Ms. Rhonda Staudohar, Ms. Patricia Ratajczyk, Dr. Randall Puchalski, Brian Schwandt, Dr. Dan McElheny, and entire staff of Department of Chemistry for their help.

Lastly, I am sincerely grateful to my family for their love, caring, and support through many years. Their confidence in me has been the source of motivation in every stage of my life. I specially thank to my friend Rajasekhar Reddy Kesari and my brother Ranga Reddy Sabbasani for their help and support in my professional and personal life. I also thank to my friends Srinivas Thanneeru, Dr. Venkata Suresh Reddy Vajrala and Dr. Raghu Vannam for their help. Finally, my wife Sudha Rani and my little girl Chaithra Sree's smiling faces encouraged me to finish my research in all these years. Thank you.

VRS

2016 in Chicago

TABLE OF CONTENTS

<u>CHAPTER</u>

PAGE

PART I

OXIDATIVE TRANSFORMATIONS OF ALLENES

1. Nitration of Silylallenes to Form Functionalized Nitroalkenes	1
1.1. Introduction and Background Information	2
1.2. Synthesis of Nitro Compounds	2
1.2.1. Nitration of Aromatic Compounds	2
1.2.2. Nitration of Alkanes	4
1.2.3. Nitration of Alkyl Halides	4
1.2.4. Nitration of Alkenes	5
1.2.5. Nitration of Alkynes	9
1.2.6. Nitration of Allenes	10
1.3. Reactions of Nitro Compounds	11
1.3.1. Henry Reaction	12
1.3.2. Michael Reactions	13
1.3.2.1. Conjugate addition to Nitroalkenes	13
1.3.2.2. Addition of Nitroalkanes to α , β -Unsaturated Enones	15
1.3.3. Nef Reaction	15
1.4. Nitration of Silylallenes	16
1.5. Summary	24
1.6. Experimental Details	24
1.6.1. General Information	24
1.6.2. General Procedure for Silylallene Synthesis	25
1.6.3. General Procedures for Nitration of Silylallenes with NaNO ₂ /AcOH	25
1.6.4. General Procedure for Nitration of Silylallenes with Fe(NO ₃) ₃ ·9H ₂ O/FeCl ₃	25
1.6.5. General Procedure for the Conversion of Silyloximes to Isooxazolidinones	
1.6.6. Selected Characterization Data	
1.7. References	
2. Oxidative Dimerization of Silylallenes via Activation of the Allenic $C(sp^2)$ -H Bond Catal	lyzed by
Copper(I) Chloride and N-Hydroxyphthalimide	
2.1. Introduction	
2.2. Phthalimide N-Oxyl Radical Reactions	
2.2.1. Phthalimide N-Oxyl Radical-Catalyzed Reactions	40
2.2.2. Stoichiometric Reactions of Phthalimide N-Oxyl Radical	
2.2.2.1. Cu-Catalyzed Allylic and Benzylic C-H Bond Activation Reactions	
2.2.2.2. Cu-Catalyzed Phthalimide N-Oxyl Radical Addition to Alkenes	
2.3. Results and Discussion	47
2.4. Summary	54
2.5. Experimental Details	54
2.5.1. General Information	54
2.5.2. General Procedure for Dimerization of Silylallenes	54
2.5.3. Selected Characterization Data	55
2.6. References	59

TABLE OF CONTENTS (continued)

CHAPTER	
3. Facile Alder Ene Reactions of Silylallenes Involving an Allenic C(<i>sp</i> ²)–H Bond	63
3.1. Introduction	64
3.2. Types of Ene Reactions	64
3.2.1. Ene Reaction with Azodicarboxylates	65
3.2.2. Carbonyl Ene Reaction	67
3.2.3. Nitroso Ene Reaction	71
3.2.4. Imino Ene Reaction	72
3.2.5. Aryne Ene Reaction	74
3.2.6. Singlet Oxygen Ene Reaction	75
3.3. Ene Reaction of Silylallenes with Triplet Molecular Oxygen	77
3.4. Results and Discussion	79
3.5. Summary	
3.6. Experimental Details	
3.6.1. General Information	
3.6.2. General Procedure for Ene Reaction of Silylallenes	
3.6.3. Selected Characterization Data	89
3.7. References	
4. Iron-Catalyzed Complementary Oxidative Transformations of Allenes with Different	t
Oxidants	101
4.1. Introduction	
4.2. Iron-Catalyzed Oxidative Transformations Using DDQ	103
4.3. Iron-Catalyzed Oxidative Transformations Using <i>t</i> -BuOOH	107
4.4. Allenes to Indenes via an Allylic Cation	
4.5. Results and Discussion	
4.6. Summary	
4.7. Experimental Details	
4.7.1. General Information	
4.7.2. Representative Procedure for Alkyl and Silylallenes Preparation	
4.7.3. General Procedure of Aryl-Substituted Allenes with DDQ	127
4.7.4. General Procedure of Aryl-Substituted Allenes with <i>t</i> -BuOOH	
4.7.5. General Procedure of Silyl-Substituted Allenes with DDQ	
4.7.6. General Procedure of Silyl-Substituted Allenes with <i>t</i> -BuOOH	
4.7.7. Selected Characterization Data	
4.8. References	

PART II

RING-CLOSING ENYNE METATHESIS

5. Structure and Reactivity of Sulfonamide- and Acetate-Chelated Ruthenium Alkylidene	
Complexes	145
5.1. Introduction	146
5.1.1. Brief Historical Background	146
5.1.2. Metathesis Reaction Types and Catalysts	146
5.1.2.1. Classification of Metathesis Reactions	146
5.1.2.2. Grubbs-Type Ruthenium Alkylidene Complexes	148

TABLE OF CONTENTS (continued)

<u>CHAPTER</u>

5.1.2.3. Schrock-Type Molybdenum and Tungsten Complexes	150
5.1.2.4. Diyne Metathesis Complexes	152
5.2. Enyne Metathesis	153
5.3. Metallotropic [1,3]-Shift in Enyne Metathesis	157
5.4. Results and Discussion	160
5.5. Summary	171
5.6. Experimental Details	171
5.6.1. General Information	171
5.6.2. General Procedure for Starting Material Preparation	172
5.6.3. General Procedure for Metal Complex Formation	172
5.6.4 Selected Characterization Data	173
57 References	179
	172
6. Structure and Reactivity of Hydroxy- and Ether-Chelated Ruthenium Alkylidene Complex	es . 187
6.1. Introduction	188
6.2. Results and Discussion	191
6 3 Summary	199
6.4 Experimental Details	199
6.4.1 General Information	199
6.4.2 General Procedure for Prenaration of Starting Materials	100
6.4.3 General Procedure for Metal Complex Formation	200
6.4.4. Selected Characterization Data	200
6.5 References	200
0.5. References	205
7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209
7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 223
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 223 225
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 223 225 228 228 228
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 223 223 225 228 228 228
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 228 228
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes 7.1. Introduction 7.2. Alkene-Chelated Ruthenium Alkylidenes 7.3. Results and Discussion 7.3.1. Ring-Closing Metathesis (RCM) of 1,7-Diynes 7.3.2. RCM of 1,n-Diynes to Form <i>trans</i>-1,5-Chelates 7.3.3. Enyne RCM-Induced Formation of <i>trans</i>-1,5-Chelates 7.3.4. New Reactivity of Enediynes to Form <i>trans</i>-1,5-Chelates 7.3.5. Enyne RCM of 1,n-Enynes to Form <i>n</i>³-Complexes 7.3.6. Metathesis Activity of Alkene-Chelated Ruthenium Alkylidenes 7.4. Summary 7.5. Experimental Details 7.5.1. General Information 7.5.2. General Procedure for Metal Complex Formation 7.5.3. Selected Characterization Data 7.6. References 	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 229 241
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 223 225 228 228 228 228 228 228 228 229 241
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 228 229 241
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 228 229 241 243 244
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes 7.1. Introduction 7.2. Alkene-Chelated Ruthenium Alkylidenes 7.3. Results and Discussion 7.3.1. Ring-Closing Metathesis (RCM) of 1,7-Diynes 7.3.2. RCM of 1,n-Diynes to Form <i>trans</i>-1,5-Chelates 7.3.3. Enyne RCM-Induced Formation of <i>trans</i>-1,5-Chelates 7.3.4. New Reactivity of Enediynes to Form <i>trans</i>-1,5-Chelates 7.3.5. Enyne RCM of 1,n-Enynes to Form η³-Complexes 7.3.6. Metathesis Activity of Alkene-Chelated Ruthenium Alkylidenes 7.4. Summary. 7.5. Experimental Details 7.5.1. General Information 7.5.2. General Procedure for Metal Complex Formation 7.5.3. Selected Characterization Data 7.6. References 8. Thermal Bicyclization of Ynamide-Tethered 1,3,8-Triynes 8.1. Introduction 8.2. Intramolecular [4+2] Cycloaddition Reactions of Ynamide Derivatives 	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 228 224 241 243 244 244
 7. Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidene Complexes	209 210 211 213 215 217 220 220 220 223 225 228 228 228 228 228 228 228 224 241 243 244 244 245

TABLE OF CONTENTS (continued)

<u>CHAPTER</u>

PAGE

8.3. Intramolecular [2+2+2] Cycloaddition Reactions Ynamide-Tethered Triynes	250
8.4. Gold-Catalyzed Cyclization of Ynamide Tethered Alkynes	251
8.5. Results and Discussion	252
8.6. Summary	261
8.7. Experimental Details	262
8.7.1. General Procedure for Substrate Preparation	262
8.7.2. General Procedure for Thermal Bicyclization	263
8.7.3. Selected Characterization Data	263
8.8. References	274

APPENDICES		
Appendix I	Selected NMR Spectra for Chapter 1	
Appendix II	Selected NMR Spectra for Chapter 2	
Appendix III	Selected NMR Spectra for Chapter 3	
Appendix IV	Selected NMR Spectra for Chapter 4	
Appendix V	Selected NMR Spectra for Chapter 5	
Appendix VI	Selected NMR Spectra for Chapter 6	
Appendix VII	I Selected NMR Spectra for Chapter 7	
Appendix VII	II Selected NMR Spectra for Chapter 8	
Appendix IX	Copyright Permissions	
VITA		585
VIIA		

<u>SCHE</u>	<u>ME</u>	AGE
1.1.	Aromatic Nitration of Toluene	3
1.2.	Nitration of Adamantane	4
1.3.	Nitration in Greenery Solvent PEG-400	5
1.4.	Nitration of Alkyl Halides in Ionic Liquids	5
1.5.	Nitration with Amberlite Resin	5
1.6.	Nitration of Alkene Using Nitric Acid	6
1.7.	Nitration of Methyl Acrylate	6
1.8.	Nitration of Styrene Derivatives	6
1.9.	Nitration of Alkene with CAN	7
1.10.	Proposed Nitration Mechanism with CAN	7
1.11.	Iron-Mediated Nitro-Cyclization of 1,6-Dienes	8
1.12.	Iron-Mediated Halo-Nitration of Alkenes	8
1.13.	Nitration of Olefins with AgNO ₂ and TEMPO	9
1.14.	Nitration of Alkynes to Nitroalkynes	10
1.15.	Nitration of Terminal Alkynes to Nitroalkenes	10
1.16.	Nitration of Enynes	10
1.17.	Nitration of Di- <i>tert</i> -butylallenes	11
1.18.	Nitration of Monosubstituted Allenes	11
1.19.	Reactions of Nitroalkenes	11
1.20.	Henry Reaction with Common Bases	12
1.21.	Transformations of Nitro-Aldol Product	13
1.22.	Conjugate Addition to Nitroalkenes	14

LIST OF SCHEME

<u>SCHE</u>	CHEME	
1.23.	Transformations of Michael Adducts Derived from Nitroalkenes	14
1.24.	Addition of Nitroalkanes to α, β -Unsaturated Enones	15
1.25.	Nef Reaction in Presence of Acid	15
1.26.	Nef Reaction with Oxidation Method	16
1.27.	Nitroalkenes to Ketones	16
1.28.	Nitration of Simple Alkene versus Silylallene	17
1.29.	One-Step Synthesis of Silylallenes	17
1.30.	Plausible Mechanism for the Formation of α -Nitro α , β -Unsaturated Silyl Oximes	24
2.1.	Total Synthesis of (–)-Histrionictoxin	39
2.2.	Nitration of Silylallenes	40
2.3.	First N-hydroxyphthalimide Catalyzed Reactions	40
2.4.	Oxidation of Cyclohexane to Adipic Acid	41
2.5.	Oxidation of Arylic C(<i>sp</i> ³)–H Bonds	41
2.6.	Oxidation of Alcohols to Ketones	
2.7.	Allylic and Propargylic Oxidation of Alcohols	
2.8.	Aerobic Oxidation of Indane	
2.9.	Proposed Mechanism for Oxygenation with Stoichiometric NHPI	45
2.10.	Cu(II)-Catalyzed Dioxygenation of Alkenes Using NHPI	45
2.11.	Proposed Mechanism of Cu-Catalyzed Dioxygenation of Alkenes	46
2.12.	Cu(I)-Catalyzed Dioxygenation of Alkenes Using NHPI	46
2.13.	Catalyst-Control Dioxygenation of Alkenes	47
2.14.	Initial Observation of Silylallene Dimerization	

<u>SCHE</u>	<u>CHEME</u>	
2.15.	A Proposed Reaction Mechanism	53
3.1.	Ene Reaction	64
3.2.	Aza-Ene Reaction of Allenes	67
3.3.	Carbonyl Ene Reaction	67
3.4.	Titanium-BINOL Catalyzed Intermolecular Carbonyl Ene Reaction	68
3.5.	Menthol Synthesis Using Type-I Intramolecular Ene Reaction	69
3.6.	Type II Ene Reaction for Carbocyles Synthesis	70
3.7.	Type III Carbonyl Ene Cyclization in Total Synthesis of (–)-Laurenyne	70
3.8.	Intramolecular Imino Ene Reaction	72
3.9.	Intamolecular Imino Ene Reaction in Total Synthesis of Papuamine	73
3.10.	Intramolecular Alkene Imino Ene Reaction	73
3.11.	Intramolecular Direct Imino Ene Reaction	73
3.12.	Intermolecular Enantioselective Imino Ene Reaction	74
3.13.	Intramolecular Aryne Ene Reaction	74
3.14.	Applications of Allylic Hydroperoxides	76
3.15.	Autooxidation of Disubstituted Silylallenes	77
3.16.	Alder-Ene Reactions of Alkyl-Substituted Allenes with Azodicarboxylate	
3.17.	Application to a Chiral Pyrazoline Containing an Amino-Tertiary Centre	
3.18.	Ene Reactions of Silylallenes with Ethyl Glyoxylate and Benzyne	
4.1.	Polar Reaction vs. Radical Mediated Processes of Allenes	102
4.2.	FeCl ₂ -Catalyzed Benzylic Alkylation and Proposed Mechanism	
4.3.	Proposed Mechanism Iron-Catalyzed Oxidative Arylation of a Benzylic C–H Bond	105

<u>SCHE</u>	EME	<u>PAGE</u>
4.4.	Iron-Catalyzed Dehydrogenative Coupling of Indoles and Benzylic C–H Bonds	106
4.5.	Iron-Catalyzed C–O Bond Forming Reaction and Plausible Mechanism	106
4.6.	Iron-Catalyzed Benzylic Oxidation	107
4.7.	Iron-Catalyzed Oxidative C–H Amination	109
4.8.	Iron-Catalyzed Oxidative Coupling Reactions of 1,3-Dicarbonyl Compounds	109
4.9.	Plausible Mechanism of Iron-Catalyzed Carbonylation–Peroxidation of Alkenes	110
4.10.	Arylvinylidenecyclopropanes with Acetals	112
4.11.	Electrophilic Addition of Carbocations to Allenes	113
4.12.	Imino-Nazarov Cyclization of Allenamides	114
4.13.	Summary of Initial Proof of Complementary Reactivity of non-Silylated and Silylated Allen	es with
	DDQ and TBHP	117
4.14.	Abnormal Reactivity of Silyl-Substituted Allenes with DDQ with FeCl ₂	122
4.15.	Mechanisms for the Transformations of Alkyl- and Silylsubstituted Allenes with DDQ Rela	tive
	Free Energies (in kcalmol ⁻¹) were Calculated at the M06-2X/6-31+G* Level of Theory	124
4.16.	Mechanism of Iron-Catalyzed Reaction of Silylallenes with TBHP	125
5.1.	Tungsten-Catalyzed RCM for Synthesis of Nakadomarin A and Epothilone C	151
5.2.	Example of First Enyne Metathesis	153
5.3.	Pd-Catalyzed Enyne Metathesis	154
5.4.	Pt-Catalyzed Ring-Closing Enyne Metathesis	154
5.5.	First Catalytic Ruthenium Carbene-Based Enyne RCM	154
5.6.	Tandem Ring-Closing Metathesis of Dienynes	155
5.7.	Possible Mechanism for Envne RCM	156

<u>SCHE</u>	<u>IEME</u> PAG	
5.8.	Mode Selectivity in Enyne RCM	157
5.9.	Metallotropic [1,3]-Shift Induced by Enyne RCM	158
5.10.	Reactivity of Alkynyl Ruthenium Alkylidenes	158
5.11.	Formation of Oligoenynes via Metallotropic [1,3]-Shift	159
5.12.	Enyne RCM and Metallotropic [1,3]-Shift for Natural Product Synthesis	159
5.13.	RCM Strategy for the Formation of Chelated Ruthenium Alkylidene	162
5.14.	Designing New Structural Motifs of Sulfonamide-Chelates	163
5.15.	Designing New Structural Motifs of Acetate-Chelates	163
5.16.	Unexpected Formation of Carbon Monoxide Complex	165
5.17.	Formation of Octahedral Complex with trans NHC–Carbene Geometry Induced by CO	
	Coordination	165
5.18.	Metathesis Activity of CO-Bound Octahedral Complex and Sulfonamide-Chelates	166
5.19.	RCM of Sulfonamide-Tethered 1,6-Enynes	167
5.20.	Metathesis Activity of Acetate-Chelate	170
5.21.	CO-Binding to a 6-Membered Acetate-Chelate Promote Acetate Migration with Concurre	nt Ru=C
	Cleavage	170
6.1.	Chelation Effect in Enyne Cross Metathesis	188
6.2.	Intramolecular Chelation with Hydroxy-Alkyl Functionalities	190
6.3.	Enyne Cross Metathesis to Form Ether- and Hydroxy-Chelated Ruthenium Alkylidenes	190
6.4.	Designing of Enyne RCM Substrates	191
6.5.	Initial Attempts for Hydroxy-Chelated Ruthenium Alkylidene	192
6.6.	Effect of <i>gem</i> -Dialkyl Substituent in Alkyne-Chelated Ruthenium Alkylidenes	193

<u>SCHE</u>	<u>SCHEME</u> PAG	
6.7.	Strategy for the Hydroxy-Chelated Ruthenium Alkylidenes	193
6.8.	Unexpected Behaviors of Related Enynes	198
6.9.	Competing Chelation between Hydroxyl and Sulfonamide or Acetate Moieties	198
7.1.	Initial Steps in G-I and G-II Catalyzed Olefin Metathesis	210
7.2.	G-I Derived First Alkene-Chelated Ruthenium Alkylidene	211
7.3.	η^3 -Vinylcarbene Complexes Derived from Ruthenium-Based Olefin Metathesis	
7.4.	Alkene-Chelated Ruthenium N-Heterocyclic Alkylidene	
7.5.	Alkene-Chelated Ruthenium Alkylidene Derived from 7-8 with Acenaphthylene	
7.6.	Alkyne-Chelated Ruthenium Alkylidene	
7.7.	RCM of 1,n-Diynes for the Formation Various Alkene Chelated Ruthenium Alkylidenes	
7.8.	RCM of 1,7-Diynes Without <i>gem</i> -Dimethyl Group	
7.9.	RCM of <i>gem</i> -Dimethyl Group Containing 1,7-Diynes with G-I, G-II and HG-II	216
7.10.	RCM of 1,7-Diynes in Presence of an External Alkenes	216
7.11.	Possible Mechanism for the Formation of 7-25c	
7.12.	Metathesis Activity of <i>trans</i> -1,5-Chelates Derived from 1,n-Diynes	225
7.13.	Metathesis Activity of <i>trans</i> -1,5-Chelates Derived from Dienynes	226
7.14.	Metathesis Activity of Alkene Chelated n ³ -Complex 7-24b	227
7.15.	Metathesis Activity of Sulfonamide Chelate 7-26d	227
8.1.	Intramolecular [4+2] Cycloaddition of Ynamide-Tethered 1,3-Dienes	245
8.2.	Thermal [4+2] Cycloaddition of 1,3-Eneynamide Tethered Alkynes	
8.3.	[4+2] Cycloaddition of Aryl Substituted 1,3-Eneynamide Tethered Alkynes	
8.4.	[4+2] Cycloaddition of Ynamide Tethered 1,3-Enynes for	

<u>SCHE</u>	<u>SCHEME</u> PAG	
8.5.	HDDA Reaction of Triynes	
8.6.	Alkane C-H Activation by Aryne Intermediates Catalyzed by Silver	
8.7.	Hydrogenation of Arynes with Silyl C $_{\beta}$ –H Bonds	
8.8.	Hydroarylation of Arynes Catalyzed by a Silver Ion	
8.9.	Aryne Ene Reaction with Ynamide having Tetraynes	
8.10.	Regioselectivity in the Nucleophile Trapping of Arynes	
8.11.	[2+2+2] Cycloaddition Reactions Ynamide-Tethered Triynes	
8.12.	[2+2+2] Cycloaddition Reaction for the Synthesis of Antiostatin A_1	
8.13.	[2+2+2] Cycloaddition Reaction for Synthesis of (–)-Herbindole	
8.14.	Possible Cyclization Pathways of 1,5-Diynes	
8.15.	Possible Cyclization Pathways of Ynamide-Tethered Alkynes	
8.16.	RCM Strategy for Synthesis of Herbindole Core	
8.17.	Model Substrate for RCM	
8.18.	Unexpected Bicyclization During Ynamide Synthesis	
8.19.	Modified Synthetic Sequence for Ene-ynamide-Tethered Diyne 8-47a	
8.20.	Unexpected Cyclization of Ynamide-Tethered Triyne Functionality	
8.21.	Plausible Mechanism for Cyclization of a Ynamide-Tethered Triyne	
8.22.	Ene-Reaction Followed Diels-Alder Cyclization of Ynamide	
8.23.	Different Cyclization Behaviors	
8.24.	Deuterium Labelling Experiments	
8.25.	Possibility of Intramolecular Cation Trapping	
8.26.	Probes for a Radical Intermediate	

LIST OF TABLE

TABLE		PAGE
1.1.	Optimization of Reaction Conditions	19
1.2.	Scope of the Reaction with NaNO ₂ /AcOH with and without CAN	20
1.3.	Nitration Reaction with Iron(III) Nitrate	22
1.4.	Conversion of α -Nitro α , β -Unsaturated Silyl Oximes to Isooxazolidinones	23
2.1.	Cu-Catalyzed Oxygenation with Stoichiometric NHPI	44
2.2.	Optimization of Reaction Condition for Dimerization of Silylallenes	
2.3.	Dimerization of Silylallenes Derived from Cyclic Ketones	51
2.4.	Dimerization/Oxidation of Silylallenes Derived from Acyclic Ketones	
3.1.	First Lewis Acid Promoted Aza-Ene Reaction	65
3.2.	First Metal-Catalyzed Aza-Ene Reaction	66
3.3.	First Catalytic Asymmetric Carbonyl Ene Reaction	68
3.4.	Cu-Catalyzed Asymmetric Carbonyl Ene Reaction	69
3.5.	Intramolecular Nitroso Ene Reaction	71
3.6.	Intermolecular Nitroso Ene Reaction	72
3.7.	Aryne Ene Reaction of Tetraynes	75
3.8.	Regioselectivity in Schenck Ene Reaction	77
3.9.	Autooxidation of Trisubstituted Silylallenes	78
3.10.	Alder-Ene Reaction of Silylallenes with Azodicarboxylate	
3.11.	Ene Reaction Selectivity of Cycloalkyl-Based Silylallenes	85
3.12.	Computational Results for Selected Allenes (in kcal/mol)	86
4.1.	Iron-Catalyzed Oxidative Arylation of the Benzylic C–H Bond	105
4.2.	Synthesis of tert-Butyl Peroxyacetals via Iron-Catalysis	

LIST OF TABLE (continued)

BLE	<u>PAGE</u>
Iron-Catalyzed Carbonylation–Peroxidation of Alkenes	110
Rearrangement of Arylvinylidenecyclopropanes	111
Lewis Acid Promoted Reaction of Allenes to Indenes	112
FeCl ₃ -Catalyzed Allenes to Indenes	113
Optimization of Reaction Conditions with DDQ for non-Silylated Allene	114
Optimization of Reaction Conditions with TBHP for non-Silylated Allene	115
Optimization of Reaction Conditions with DDQ for Silylallene	115
Optimization of Reaction Conditions with TBHP for Silylallene	116
Iron-Catalyzed Reaction of Alkyl, Aryl-Substituted Allenes with DDQ	118
Iron-Catalyzed Reaction of Alkyl, Aryl-Substituted Allenes with TBHP	119
Iron-Catalyzed Oxidative Transformation of Silylallenes with DDQ	121
Iron-Catalyzed Oxidative Transformation of Silylallenes and TBHP	123
Formation of Various Sulfonamide-Chelates	164
Acetate-Chelated Ruthenium Alkylidene Complexes	169
Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes by Relying on Exo-Th	orp-
Ingold-Effect	195
Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes	197
RCM of 1,n-Diynes to Form <i>trans</i> -1,5-Chelates	218
Enyne RCM-Induced Formation of <i>trans</i> -1,5-Chelates	219
New Reactivity of Enediynes to Form <i>trans</i> -1,5-Chelates	221
Enyne RCM of 1,n-Enynes to Form η ³ - Vinylcarbene Complexes	224
	LE Iron-Catalyzed Carbonylation–Peroxidation of Alkenes Rearrangement of Arylvinylidenecyclopropanes Lewis Acid Promoted Reaction of Allenes to Indenes FeCl3-Catalyzed Allenes to Indenes Optimization of Reaction Conditions with DDQ for non-Silylated Allene Optimization of Reaction Conditions with TBHP for non-Silylated Allene Optimization of Reaction Conditions with DDQ for Silylalene Optimization of Reaction Conditions with TBHP for Silylalene Optimization of Reaction Conditions with TBHP for Silylallene Iron-Catalyzed Reaction of Alkyl, Aryl-Substituted Allenes with DDQ Iron-Catalyzed Reaction of Alkyl, Aryl-Substituted Allenes with DDQ Iron-Catalyzed Oxidative Transformation of Silylallenes and TBHP Formation of Various Sulfonamide-Chelates Acetate-Chelated Ruthenium Alkylidene Complexes Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes by Relying on Exo-Th Ingold-Effect Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes RCM of 1,n-Diynes to Form trans-1,5-Chelates Enyne RCM-Induced Formation of trans-1,5-Chelates Enyne RCM of 1,n-Enynes to Form $r3$ -Vinylcarbene Complexes

LIST OF TABLE (continued)

TABLE		<u>PAGE</u>	
8.1.	First Thermal [4+2] Cycloaddition of Ynamide Tethered Triynes	245	
8.2.	Cyclization Reaction of Ynamide Tethered Triyne		

LIST OF FIGURES

<u>FIGURE</u> <u>PAGE</u>		
1.1.	Most Common Transformations of Nitro Group into Other Functional Groups	
1.2.	Selected for Synthesis of Nitro Compounds2	
2.1.	Homopropargylic Alcohols from Allenyl Reagents	
3.1.	Intramolecular Ene Reaction Classification	
3.2.	Calculated Energies and Geometries for the Ene Reaction of <i>t</i> -Bu- and Me ₃ Si-Substituted Allenes	
	with Azodicarboxylate	
5.1.	Classifications of Metathesis Reactions147	
5.2.	Elementary Steps in Diene, Enyne and Diyne Metathesis	
5.3.	Grubbs-Type Ruthenium Alkylidene Complexes	
5.4.	Schrock-Type Molybdenum and Tungsten Complexes150	
5.5.	Diyne Metathesis Complexes	
5.6.	Possibility of Metallotropic [1,3]-Shift in Enyne RCM157	
5.7.	Chelated Ruthenium Alkylidene Complexes161	
6.1.	Hoveyda-Grubbs 1 st and 2 nd Generation Catalysts	
6.2.	X-ray Structures of 6-14d and 6-14e 196	
7.1.	X-Ray Structures	
8.1.	Structure of Herbindole A, B and C 253	

LIST OF ABBREVIATIONS

Ac	Acetyl (CH3C=O)
BINOL	1,1'-Bi-2-naphthol
Boc	<i>t</i> -Butyloxycarbonyl [COC(CH ₃) ₃]
Bn	Benzyl
Bu	Butyl
BTCEAD	bis(2,2,2- trichloroethyl)azodicarboxylate
CAN	Ceric ammonium nitrate
Cat.	Catalyst
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCE	1,2-Dichloroethane
DCM	Dichloromethane
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
de	Diastereomeric excess
DEAD	Diethyl azodicarboxylate
DIAD	Diisopropyl azodicarboxylate
DIBAL	Diisobutylaluminum Hydride
DMAP	4-Dimethylaminopyridine (base catalyst)
DMF	Dimethylformamide (solvent)
DMSO	Dimethyl sulfoxide (solvent)
DTBP	Di-tert-butylperoxide
ee	Enantiomeric Excess
LA	Lewis acid
LAH	Lithium aluminum hydride (LiAlH ₄)
LDA	Lithium diisopropylamide

LIST OF ABBREVIATIONS (continued)

LHMDS	Lithium hexamethyldisilazide (LiN(SiMe ₃) ₂)
МСРВА	meta-Chloroperoxybenzoic acid
Ms	Methanesulfonyl (Mesyl, CH ₃ SO ₂)
NBS	N-Bromosuccinimide
NHPI	N-Hydroxyphthalimide
NMO	<i>N</i> -Methylmorpholine <i>N</i> -oxide
PCC	Pyridiniumchlorochromate
PDC	Pyridinium dichromate
PEG	Polyethylene glycol
PINO	Pthalimide N-oxyl radical
PMB	<i>p</i> -Methoxybenzyl
PPTS	pyridinium <i>p</i> -toluenesulfonate
Pyr	pyridine; solvent, base, catalyst
RCM	Ring-closing metathesis
RT	Room temperature
SET	Single electron transfer
TASF	Tris(dimethylamino)sulfoniumdifluorotrimethylsilicate
TBAF	Tetra-n-butylammonium fluoride
TBDMS	t-Butyldimethylsilyl
TBDPS	t -Butyldiphenylsilyl
TBHP	t-Butylhydroperoxide
TBS	t-Butyldimethylsilyl (also TBDMS)
TEA	Triethylamine
TEMPO	2,2,6,6-Tetramethyl-1-piperidinyloxy

LIST OF ABBREVIATIONS (continued)

TES	Triethylsilyl
Tf	Trifluoromethanesulfonyl
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
THP	Tetrahydropyran
TIPS	Triisopropylsilyl
TMEDA	N,N,N',N'-Tetramethylethylenediamine
TMG	1,1,3,3-Tetramethylguanidine
TMP	2,2,6,6-Tetramethylpiperidide
TMS	Trimethylsilyl
TPAP	Tetrapropylammonium perruthenate
Tol	<i>p</i> -Tolyl
Troc	2,2,2-Trichloroethoxycarbonyl
Ts	<i>p</i> -Toluenesulfonyl

SUMMARY

This thesis has two main parts. Part I is composed of four chapters describing new oxidative transformations of silylallenes comparing with alkyl allenes. Part II consists of four chapters describing the enyne ring-closing metathesis derived sulfonamide, acetate, hydoxy, ether and alkene chelated Grubbs type ruthenium alkylidenes and their reactivity. Part II also consists the unexpected thermal bicyclization of metathesis substrates ynamide tethered diynes.

More specifically, in Chapter 1; nitration of silylallenes with nitrogen dioxide radical, generated from NaNO₂ and AcOH, to form α -nitro- α , β -unsaturated silyl oximes and also using Fe(NO₃)₃·9H₂O and FeCl₃·6H₂O, to form regioisomeric chloride-trapped products depending on the steric bulk of the silyl group. Another novel class of compound isooxazolidinones were obtained upon treating the initially formed α -nitro- α , β -unsaturated silyl oximes with TBAF. In Chapter 2; silylallenes with a catalytic system of copper(I) chloride and *N*-hydroxyphthalamide (*N*-Hpth) along with a stoichiometric amount of a terminal oxidant diacetoxyiodobenzene were favored mainly for the formation of dimer products with or without 1,3-enynes, and *N*-Hpth adducts.

In Chapter 3, activation of allenic $C(sp^2)$ –H bond over an allylic $C(sp^3)$ –H bond was described. In this ene reaction linear silylallenes preferentially engage an allenic $C(sp^2)$ –H bond with high selectivity but cycloalkyl-substituted silylallenes showed low or reversed selectivity. On the other hand, non-silylated allenes engage allylic $C(sp^3)$ –H bonds favorably regardless of their structural feature. DFT calculations were provided for further insight into the selectivity trend. In Chapter 4, substituent and oxidant-dependent transformations of allenes are described using alkyl- and silyl-substituted allenes with DDQ (2,3-dichloro-5,6-dicyano-p-benzoquinone) and TBHP (*tert*-butyl hydroperoxide). The reactions of non-silylated allenes involve allylic cation intermediate via forming C–O bond at the *sp*-hybridized C2 carbon and the reactions of silylated allenes favor the formation of propargylic cation intermediates via transferring the allenic hydride to the oxidant, generating 1,3-enynes or propargylic TBHP ethers. In Chapter 5, sulfonamide-, and acetate-chelated ruthenium alkylidenes were prepared via enyne ringclosing metathesis. All 5-membered sulfonamide chelates and 6-membered acetate chelates have the chelated oxygen and the NHC ligand in cis relationship. Upon exposure to carbon monoxide, the sulfonamide chelates formed unprecedented CO-bound octahedral ruthenium alkylidene complex and the corresponding acetate chelate decomposed to generate vinyl acetates as pure organic product concurrently with dimeric ruthenium CO-complex. In Chapter 6, structure and reactivity of 5-membered hydroxy- and ether-chelated ruthenium alkylidenes were described. The chelated oxygen bound to the metal center in cis to the NHC ligand. In Chapter 7, alkene-chelated ruthenium alkylidene complexes are prepared via enyne ring-closing metathesis (RCM), and their structures and reactivity are explored. The RCM of diynes, enediynes and ynamide tethered alkynes using stoichiometric amount of Grubbs 2nd-generation complex led the formation of alkene-chelated ruthenium alkylidenes, where the chelated alkene is trans to the NHC. This chelation behavior is somewhat different from that observed by Grubbs. On the other hand, the reaction with ene-ynamides generate η^3 -vinylcarbene complexes. These complexes show very good metathesis activity contrary to a related η^3 -vinylcarbene complex generated from diphenyl acetylene by Grubbs, which was metathesis-inactive.

Finally, in Chapter 8, the unexpected thermal bicyclization of metathesis substrates ynamide tethered triynes to generate novel class of tetrahydropyranopyridines were explored. Where the ynamide tethered triynes smoothly underwent 6-*exo*-mode ring-closure reaction by heating at 85 °C. The reaction has been explored by varying anion- and cation-stabilizing groups, including the ether side chain, and the alkyne substituent to provide broad range of tetrahydropyranopyridine derivatives.

PART I

OXIDATIVE TRANSFORMATIONS OF ALLENES

CHAPTER 1

NITRATION OF SILYLALLENES TO FORM FUNCTIONALIZED NITROALKENES

1.1. Introduction and Background Information*

Nitro group is one of the most extensively studied among the functional groups. Its strong electronwithdrawing nature and its facile conversion to other functional groups makes nitro compounds versatile building blocks in chemical synthesis (**Figure 1.1**).¹ Nitro compounds are avoided for long time to be used in medicine due to potential toxicity issues; however, later many nitro group-containing drugs are successfully used in medicine for the treatment of several diseases.² Nitro compounds are also widely used as fuel, solvents and raw material in chemical industry.³

Figure 1.1 Most Common Transformations of Nitro Group into Other Functional Groups

1.2. Synthesis of Nitro Compounds

The nitro group can be easily introduced to organic molecules (**Figure 1.2**) and easily exploited in the complex molecule synthesis. The most common method to introduce nitro group into organic compounds is the nitration of alkanes, alkenes, and aromatic compounds. Also, nucleophilic substitution of alkyl halides with metal nitrites is widely utilized. Other functional groups such as amines, oximes, azides, as well as carbonyl compounds were also converted to nitro compounds.¹

Figure 1.2 Selected for Synthesis of Nitro Compounds

1.2.1. Nitration of Aromatic Compounds

Aromatic nitration is one of the most widely studied reactions, which was extensively used in the

^{*} Reproduced in part with permission from Sabbasani, V. R.; Lee, D. "Nitration of Silylallenes to Form Functionalized Nitroalkenes" *Org. Lett.* **2013**, *15*, 3954–3957.

synthesis of useful materials in industrial processes such as plastics, perfumes, pharmaceuticals and dyes as well as explosives. The most classical method of aromatic nitration is the use of an excess nitric acid in the presence of concentrated sulfuric acid. This classical method, however, generates large amounts of highly polluted nitrogen oxide fumes and waste acids. Later several methods of acid catalyzed nitration reactions were developed using strong acids or Lewis acid and nitric acid, alkyl nitrate, nitryl chloride and dinitrogen tetra-/pent-oxides are the source of nitrating agent. Also, other methods using a nitronium ion source such as nitronium tetrafluoroborate, nitronium hexafluorophosphate, and *N*-nitropyridinium salts were studied to minimize the byproducts in classical nitration reactions. To minimize acid waste, several recoverable and easily removable environmentally friendly solid acid catalysts were developed. Solid acid resins such as Nafion-H and other polysulfonic acid catalysts reduces the harshness of the reaction. However, these reactions suffer from low regioselectivity by forming mixtures of ortho- and para-nitration products. The other type of solid acid catalysts with high surface area are Nafion resin within porous silica, copper nitrate on montmorillonite K-10, zeolite ZSM-5 and iron nitrate clay, have improved the regioselectivity and reduced the amount of acid wastes.⁴

Scheme 1.1 Aromatic Nitration of Toluene

Aromatic nitration using stoichiometric amount of nitric acid in the presence of recoverable zeolite- β catalyst and acetic anhydride provided *para*-nitration product as a major product in 79% yield by forming acetic acid the only byproduct in the reaction (**Scheme 1.1**).⁵ The catalytic reaction with recoverable lanthanide triflate (Yb(OTf)₃) also reduced the acid waste in the reaction, but did not improve the

regioselectivity.⁶ The nitration reaction with 2 to 3 equivalents of vanadium(V) oxytrinitrate as the direct source of nitrating agent, devoid of acids in the reaction provided ortho-, meta- and para-nitration products in 99% yield with low regioselectivity (**Scheme 1.1**).⁷

1.2.2. Nitration of Alkanes

Nitration of saturated aliphatic hydrocarbons requires forced reaction conditions due to the low reactivity of the substrate towards the conventional nitrating reagents. Although the gas phase nitration in the synthesis of nitro alkanes (eg; nitromethane, nitroethane, 1-nitropropane etc.) was used in the industry,⁴ the same reaction in typical laboratory operations is often challenging because of the difficulty in selective $C(sp^3)$ —H functionalization under the conditions. There are several attempts reported for the nitration of adamantane to form 1-nitroadamantane,⁸ and the best results were observed using nitrogen dioxide in the presence of ozone at low temperature, providing 1-nitroadamantane in 90% yield (**Scheme 1.2**).⁹ On the other hand, the nitration with dinitrogen pentoxide in the presence of methane sulfonic acid gave a mixture of several compounds.¹⁰

Scheme 1.2 Nitration of Adamantane

1.2.3. Nitration of Alkyl Halides

Nucleophilic substitution of alkyl halides with metal nitrites is widely utilized for the synthesis of primary and secondary nitro alkanes. The most common metal nitrites used in the substitution reaction are silver nitrite (AgNO₂), sodium nitrite (NaNO₂), and potassium nitrite (KNO₂). The reaction with primary and secondary alkyl halides (bromides and iodides) with NaNO₂ in DMF or DMSO provided nitration products in good to moderate yields (50–70%). On the other hand, the reaction with AgNO₂ with primary alkyl halides provided nitro alkanes in higher yields (75–80%), whereas the reaction with secondary alkyl halides delivered only about 15% yield.¹¹

To avoid using traditional volatile organic solvents, nitration of alkyl halides with $NaNO_2$ in the presence of greenery solvent PEG-400 was developed. The reaction of 3-iodopropyl acetate using $NaNO_2$ in PEG-400 provided 3-nitro propyl acetate in good yield (**Scheme 1.3**).¹²

Scheme 1.3 Nitration in Greenery Solvent PEG-400

Nitration of primary alkyl halides using phosphonium bistriflimide ionic liquids were also demonstrated, where the reaction of alkyl halide with NaNO₂ in the presence of ionic liquids provided nitration products in 80–90% yields (**Scheme 1.4**).¹³

Scheme 1.4 Nitration of Alkyl Halides in Ionic Liquids

In the synthesis of primary and secondary nitro alkanes using strong nucleophiles (NaNO₂ and/or AgNO₂) in polar aprotic solvents (DMF or DMSO), the initially formed primary and secondary nitro alkanes were further oxidized to the corresponding aldehydes and ketones (Nef reaction). To avoid such side reactions and tedious work-up procedures, several nitrite ion-bounded macroporous quaternary ammonium amberlite resin were developed, and the amberlite IRA-900-NO₂⁻ showed a good nitrite transforming profile. The reaction of ethyl-3-bromo propionate with amberlite resin delivered ethyl-3- nitro propionate in 100% yield by avoiding other side reactions (**Scheme 1.5**).¹⁴

Scheme 1.5 Nitration with Amberlite Resin

1.2.4. Nitration of Alkenes

Nitration of alkenes to form conjugated nitroalkenes, is a very useful synthetic method to form versatile

intermediates in organic synthesis. The most common methods to synthesize nitroalkene are the nitration of alkenes or the dehydration of 2-nitro alcohols. In early days, nitration of alkenes employed nitric acid but, the use of corrosive nitric acid often led to the decomposition of alkene and/or the lack of selectivity with low yields. The first example of unusual nitration using nitric acid was demonstrated with steroid **1-1** in the presence of acetic anhydride, which provided nitration product **1-2** in 52% yield (**Scheme 1.6**).¹⁵

Scheme 1.6 Nitration of Alkene Using Nitric Acid

There are several methods reported for synthesis of nitroalkenes using various nitrating agents.¹⁶ The most important breakthrough came from the nitration of methyl acrylate using two step protocol of dinitrogen tetraoxide (N_2O_4) and iodine addition followed by treatment of the reaction mixture with sodium acetate, which provided methyl-3-nitroacrylate (**Scheme 1.7**).¹⁷ However, the disadvantage of this reaction is to use gaseous N_2O_4 .

$$\bigcirc CO_2 Me \xrightarrow{1. N_2O_4, I_2} O_2 N \xrightarrow{CO_2 Me}$$

Scheme 1.7 Nitration of Methyl Acrylate

Later, the reaction conditions were further simplified by using in situ generated nitryl iodide from AgNO₂ and iodine. The nitration of trimethoxy styrene **1-3** using AgNO₂ and iodine followed by triethyl amine treatment provided potent serotonine agonists **1-4** in very good yield as a single stereoisomer

Scheme 1.8 Nitration of Styrene Derivatives

(Scheme 1.8).¹⁸ An alternative protocol was developed by replacing $AgNO_2/I_2/Et_3N$ with KNO_2/I_2 /pyridine in 18-crown-6 to generate conjugate nitroalkenes in 49–89% yields.¹⁹

In 1996, Hwu and coworkers developed one of the most efficient nitration methods by employing a new ultra-sonication method, where cerium ammonium nitrate (CAN), NaNO₂ and acetic acid (AcOH) were irradiated in a sealed tube at 600 W and 22–55 °C. The nitration of cyclohexene in the presence of CAN, excess of NaNO₂ and AcOH provided nitrocyclohexene in excellent yield (99%) (**Scheme 1.9**).²⁰

Scheme 1.9 Nitration of Alkene with CAN

The proposed mechanism of nitration with CAN, acetic acid and sodium nitrite involves the formation of nitrogen dioxyl, which then reacts with alkene to form a carbon centered radical intermediate **1-5**. Subsequently, radical intermediate **1-5** is oxidized to carbocation **1-6** by transforming the single electron to CAN. Carbocation **1-6** then undergoes elimination to provide the observed conjugated nitro alkene (**Scheme 1.10**). When the reaction is performed in acetonitrile, carbocation **1-6** trapped with acetonitrile to form *N*-(2-nitrocyclohexyl)acetamide in 58% yield.²¹

In 2010, Taniguchi and Ishibashi developed iron-mediated radical nitro-cyclization of 1,6-dienes. The reactions of 1,6-dine **1-7** in the presence of $Fe(NO_3)_3 \cdot 9H_2O$ and $FeCl_3$ provided **1-8** in 91% yield (**Scheme 1.11**). The proposed mechanism of the reaction involves thermal decomposition of $Fe(NO_3)_3 \cdot 9H_2O$ to nitrogen dioxyl, which then reacts with alkene moiety followed by radical cyclization to form a new propagating radical, which then trapped with chloride salt to afford the five-membered-cyclized products.²²

Scheme 1.11 Iron-Mediated Nitro-Cyclization of 1,6-Dienes

The authors extended the iron-mediated radical nitration to simple alkenes; alkenes **1-9a** and **1-9b** under the optimized conditions by replacing THF with acetonitrile provided **1-10a** and **1-10b** in good yields (**Scheme 1.12**). On the other hand, by treating the initially formed halo-nitration product derived from **1-9c** with lithium hydroxide, conjugated nitro alkene **1-11c** was obtained.²³

Scheme 1.12 Iron-Mediated Halo-Nitration of Alkenes

Most recently Maiti and coworkers reported highly efficient regio- and stereoselective nitration of mono- and disubstituted olefins using the AgNO₂ and TEMPO. The Alkenes **1-9d**–**f** in the presence of excess AgNO₂ and 40 mol % TEMPO in DCE at 70 °C delivered nitration products **1-11d**–**f** in excellent yields and stereoselectivity (**Scheme 1.13**). The proposed mechanism of the reaction, involves the formation of nitro radical from AgNO₂, which then reacts with mono- or disubstituted alkene to generate carbon centered radical intermediate **1-12**. From **1-12**, nitroalkene can be formed via Path A or B. TEMPOH is generated upon abstraction of hydrogen atom either directly from **1-12** (Path A) or from **1-13** (Path B). Most likely, TEMPOH oxidize back to TEMPO by reacting with an excess AgNO₂.²⁴ The authors also

reported the facile nitration of alkenes with ferric nitrate and catalytic TEMPO in the presence of air, which provides conjugated nitroalkenes in good to excellent yields (56-90%).²⁵ Similar concept extended to the metal free nitration of alkenes using *t*BuONO and TEMPO to provide nitroolefins stereoselectively in 46-89% yields.²⁶

Scheme 1.13 Nitration of Olefins with AgNO2 and TEMPO

1.2.5. Nitration of Alkynes

Alkynes can undergo two types of nitration reaction; 1) the direct functionalization of terminal alkynes to form nitroalkynes, and 2) the direct addition of nitro group to provide nitroalkenes. Nitroalkynes are very useful substrates in organic synthesis, but these compounds are very unstable under thermal reaction conditions.²⁷ In 1986, Bedford and coworkers reported mild reaction condition for the synthesis of nitroalkynes. Relaying on this method 1-nitro-2-(trimethylsily1)acetylene was synthesized from bis(trimethylsily1)acetylene and nitronium tetrafluoroboroate (**Scheme 1.14**).²⁸

$Me_{3}Si - SiMe_{3} \xrightarrow{NO_{2}BF_{4}} Me_{3}Si - NO_{2}NO_{2}$

Scheme 1.14 Nitration of Alkynes to Nitroalkynes

Maiti et al. reported metal free nitration of terminal alkynes to form nitroalkenes by using the *t*BuNO and TEMPO. Aryl substituted alkynes **14a-c** under the optimized conditions provided nitroalkenes **15a-c** in excellent yields. However, the reaction of alkylated terminal alkynes delivered the nitration product in low yield from (23–35%). Mechanistically, *t*BuONO is proposed to decompose to NO radical and subsequent oxidation to NO₂ radical, which then reacts with alkyne **14** to generate a carbon centered vinyl radical followed by trapping with TEMPO to provide nitro-oxoamination product **15**.²⁹

Scheme 1.15 Nitration of Terminal Alkynes to Nitroalkenes

Most recently the similar reaction condition (*t*BuONO/TEMPO) was used for the nitration of 1,6enynes. Enyne **16a** under the optimized reaction conditions provided carbocyclic product **18a** in good yield (**Scheme 1.16**). Mechanistically, the generated nitro radical reacts with an internal alkyne to generate carbon centered aryl vinyl radical **17a**, which then undergoes carbocyclization followed by β –H elimination to deliver the carbocylic nitration product.³⁰

Scheme 1.16 Nitration of Enynes

1.2.6. Nitration of Allenes

In 1975, Berndt and Wieser were reorted the first nitration reaction of allenes. In this study the nitration

of di-*tert*-butylallene **19** was treated with dinitrogen tetraoxide. After careful work-up at 0 °C dinitration product **20** was observed. Upon heating, nitroalkene **20** smoothly underwent first order cyclization to provide oxazete *N*-oxides **21** in good yields (**Scheme 1.17**).³¹

Scheme 1.17 Nitration of Di-tert-butylallenes

Most recently, Ma and coworkers reported the nitro-oxoamination of monosubstituted allenes by optimizing known olefin nitration conditions. Allene **22** upon treatment of NaHCO₃, AgNO₂ and TEMPO, provided nitro-oxoamination product **23** in 91% with high regio- and stereoselectivity (**Scheme 1.18**).³²

Scheme 1.18 Nitration of Monosubstituted Allenes

1.3. Reactions of Nitro Compounds

Nitro compounds constitute a powerful source of stabilized carbanion because of the strong electron withdrawing nature of a nitro group. Nitroalkane **1-24** in the presence of base is converted to nitronate anion **1-25** (Scheme 1.19).^{1,2} This anion can be used for various reactions employing a broad range of

Scheme 1.19 Reactions of Nitroalkenes

electrophiles. The reaction of nitronate anion with an aldehyde to produce nitro aldol product **1-26**, which is called Henry reaction. The reaction with electron deficient alkenes provides **1-27** via a Michel reaction. Quenching nitronate anion **1-25** with protic acid delivers the corresponding carbonyl compound **1-28**, which is known as Nef reaction. While other electrophiles can be used to trap the nitronate anion **1-25**, nitro alkenes themselves are also used as Michael acceptors.

1.3.1. Henry Reaction

common bases in Henry reaction: DBU, Et_3N , DBN, NaOR, TMG, Al_2O_3 , KF- Al_2O_3 , Amberlyst- A_{21} , Amberlite IRA-420, NaOH+CTACI

In 1985, Henry discovered nitro-aldol reaction between nitroalkanes and carbonyl compounds to produce β -nitro alcohols.³³ Since then, the nitro-aldol reaction was studied extensively and used in many synthetic transformations. In general, the Henry reaction provides a mixture of diastereomers. The lack of stereoselectivity is due to the reversible nature of the reaction as well as easy epimerization at the nitro carbon center.

General reaction conditions for the Henry reaction involves a catalytic amount of base to generate a
nitronate anion. The most common bases for the classical nitro-aldol reactions are hydroxides, alkoxides, carbonates, and bicarbonates in common solvents such as water or ethanol.¹ Nitro-aldol reaction between nitroalkanes **1-24** and aldehydes **1-29** with some common bases are briefly summarized in **Scheme 1.20**.³⁴

The general transformations of nitro-aldol products to other functional groups are shown in **Scheme 1.21**. The nitro-aldol product can be reduced to form an amino alcohol or denitrated to form alcohols also oxidation followed by radical denitration provides corresponding ketones. The most well studied reaction of these compounds is the direct formation of nitro alkenes by dehydration during the nitro-aldol reaction, which after careful acidic work-up, ultimately provides corresponding ketone.¹

Scheme 1.21 Transformations of Nitro-Aldol Product

1.3.2. Michael Reaction

Michael addition is the one of most important tools in organic synthesis for the creation of carboncarbon bond and carbon-hetereoatom bond. Nitro compounds were used as Michael acceptors as well as Michael donors. Nitroalkenes are good Michael acceptors because of the strong electron withdrawing nature of the nitro group. On the other hand, nitroalkanes are good Michael donors for 1,4-addition to electron deficient conjugated alkenes, under basic reaction conditions.¹

1.3.2.1. Conjugate addition to Nitroalkenes

Michael addition of nitroalkenes using some selected nucleophiles were showed in Scheme 1.22. Nitroalkene 1-27a, with in situ generated sulfur, selenium, and oxygen centered nucleophiles from the corresponding alcohols, smoothly formed Michael adducts 1-29a, 1-29b and 1-29c in good yields.³⁵ The reaction of nitroalkenes 1-27b and 1-27c with amines and carbon-centered nucleophiles were provided Michael adducts 1-29d and 1-29e in good yields.³⁶

Scheme 1.22 Conjugate Addition to Nitroalkenes

The newly formed carbon-carbon and/or carbon-heteroatom bonded Michael adducts were used for various oxidative and reductive transformations. The most classical transformation of Michael adducts derived from conjugate addition of nucleophiles to nitroalkenes are shown in **Scheme 1.23**. These adducts can be oxidized to ketones, can be reduced to amines, denitrated to alkanes/functionalized hydrocarbons, and nitrile oxides.¹

Scheme 1.23 Transformations of Michael Adducts Derived from Nitroalkenes

1.3.2.2. Addition of Nitroalkanes to α,β-Unsaturated Enones

Nitroalkanes were widely used as Michael donors under basic conditions. Bases are used to generate nitronate anions are same as the Henry reaction. The selected examples of Michael reaction of nitroalkanes under basic reaction conditions are briefly summarized in **Scheme 1.24**.³⁷

Scheme 1.24 Addition of Nitroalkanes to α,β-Unsaturated Enones

1.3.3. Nef Reaction

Nef reaction is one of the most useful transformations of nitro compounds, where the conversion of primary/secondary nitroalkanes and nitroalkens to the corresponding aldehydes, ketones and/or carboxylic acids. The most classical method for these transformations is the treatment of nitronate with acid. The other possible methods are oxidation of nitronates and the reduction of nitroalkenes.^{1,38} The general example for classical method of Nef reaction is shown in **Scheme 1.25**, where nitroalkanes **1-33** and **1-35** are converted

to the corresponding ketone 1-34 and acetal 1-36 using silica gel and sulfuric acid.³⁹

Selected examples of nitronate oxidation using different oxidants are shown in **Scheme 1.26**. The nitronate derived from nitroalkanes **1-37**, **1-39**, **1-41** and **1-43** in the presence of KMnO₄, TPAP, O₃, and NaNO₂/AcOH, were converted to ketones **1-38**, **1-40**, **1-42** and **1-44** in good yields.⁴⁰

Scheme 1.26 Nef Reaction with Oxidation Method

Nitroalkenes are directly converted to corresponding ketones using various reaction conditions such as Raney Ni, CrCl₂, CdCl₂, and electrochemical-Pb to provide ketone **1-46** in good yield as shown in **Scheme 1.27**.⁴¹

Scheme 1.27 Nitroalkenes to Ketones

1.4. Nitration of Silylallenes[†]

The most representative nitration method is based on the addition of nitrogen dioxide with an alkene starting material (**Scheme 1.28**, eq 1).¹ Alkene **1-47** reacts with nitrogen dioxyl radical to form carbon centered radical **1-48**, which can deliver the addition or the elimination product **1-49** or **1-59**. To generate structurally more elaborate nitro compounds, we envisioned the corresponding nitration of silylallenes **1**-

[†] Reproduced with permission from Sabbasani, V. R.; Lee, D. "Nitration of Silylallenes to Form Functionalized Nitroalkenes" *Org. Lett.* **2013**, *15*, 3954–3957.

50, which so far has not been reported in the literature (eq 2).³¹ Compared to the addition of a nitrogen dioxyl with alkene, we expected that the addition of a radical species with silylallenes **1-50** should be more favorable due to the formation of a relatively more stable allylic radical intermediate **1-51**. The resulting radical intermediate will be directly captured by another radical species or be oxidized to the corresponding allylic cation, which then reacts with a nucleophile. Herein we studied the result of our investigation for the nitration of silylallenes under two different conditions, and facile 5-*endo-dig* cyclization of the products of nitroso-nitration of silylallenes, α -nitro- α , β -unsaturated silyl oximes, upon treatment with TBAF to form isooxazolidinone derivatives.

Scheme 1.28 Nitration of Simple Alkene versus Silylallene

While developing a method for the synthesis of differently substituted allenes and exploring their reactivities,⁴² we prepared a series of trisubstituted silylallenes **1-50** via a three component coupling reaction involving ketone **1-52**, lithium trimethylsilyldiazomethane, and free trimethylsilyldiazomethane (**Scheme 1.29**).^{42a} Occasionally in this study, we observed the instability of some of these silylallenes under air.⁴³ Unaware of any reported instability of the corresponding alkylsubstituted allenes, we inferred that the instability of silylallenes should be caused by the silyl substituent. This property, we envisioned, can be exploited in developing new chemical processes such as nitration, which were extensively studied with

Scheme 1.29 One-Step Synthesis of Silylallenes

alkenes under conditions that generate nitrogen dioxyl, and most representative conditions are: NaNO₂/AcOH/cerium ammonium nitrate (CAN),²¹ AgNO₂/TEMPO,²⁴ Fe(NO₃)₃·9H₂O/FeCl₃,²³ and tBuONO/TEMPO.²⁶

Not knowing which conditions are most suitable for silylallenes, we decided to screen these systems to find the optimal conditions (**Table 1.1**). When trimethylsilylallene **1-50a** was used as the substrate under sodium nitrite (NaNO₂)/acetic acid (AcOH)/cerium ammoniumnitrate (CAN) in chloroform (CHCl₃) or acetonitrile (CH₃CN), only decomposition of the substrate was observed (entry 1 and 2). Changing the conditions to silver nitrite/TEMPO in chloroform or 1,2-dichloroethane resulted in the same negative outcome (entry 3 and 4). Then, we changed the substrate from **1-50a** to **1-50b** where the trimethylsilyl group is replaced with a tertbutyldimethylsilyl group since we believed that substrate **1-50a** containing a trimethylsilyl group might not be compatible with the acidic conditions that cause protodesilylation.⁴⁴

Gratifyingly, tert-butyldimethylsilyl allene **1-50b** smoothly participated in the addition reaction under NaNO₂/AcOH/CAN in CHCl₃ at room temperature to deliver the product α -nitro- α , β -unsaturated silyl oxime **1-53b** in 81% yield with a 1:1 ratio of E/Z isomers (entry 5). Running the reaction at higher temperature (50 °C) considerably shortened the reaction time and further improved the yield to 89% (entry 6). Reactions without AcOH or NaNO₂ did not proceed at all and returned the starting material intact (entry 7 and 8). On the other hand, the same reaction without CAN showed a similar reaction profile as that with CAN, providing product **1-53b** in 85% yield (entry 9). When another reagent combination of AgNO₂/TEMPO was tried, product **1-53b** was produced but only in 45% yield (entry 10). For the better solubility of NaNO₂ in AcOH, ultra-sonication method was used at 50 °C.

With the optimized reaction condition for nitration of silylallene in hand, we examined the substrate scope by using a variety of silylallenes (**Table 1.2**). Although CAN additive did not play any major role for the reaction of **1-50b**, we ran additional reactions with other substrates with and without CAN in parallel (entries 1, 2, 4, 5, and 8). From these data, we conclude that not only with **1-50b** but also with most of other silylallenes examined in general the CAN additive was unnecessary.

First, we probed the influence of the steric bulk of the silyl group by comparing the reactivity between

triethyl and triisopropylsilyl allenes **1-50c** and **1-50d**. Both substrates reacted smoothly to provide silyl oxime products **1-53c** and **1-53d** in 91 and 85% yield, respectively, both with 1:1 ratio of E/Z isomers (entries 1 and 2). The slightly inferior yield of the latter implies that the steric bulk of the silyl group plays a certain role but only to a minor extent. On the other hand, tert-butyl-substituted allene **1-50e** decomposed when treated under identical conditions (entry 3), which clearly indicates the important role of the silyl group to promote the current nitration reaction.

	\int	Me SiR ₃	conditions solvent, temp, til sonication	→ me	\int	NO ₂ N Me	SiR ₃	
1-50a SiR₃= SiMe₃, 1-50b SiR₃ = SiMe₂ ^t Bu					1-53a, 1-53b			
entry	allene	conditions	solvent	T (°C)	time	(h) product	yield (%) ^a	
1	1-50a	NaNO ₂ /AcOH/CAN	CHCI ₃	25	2	decompose	-	
2	1-50a	NaNO ₂ /AcOH/CAN	CH ₃ CN	25	2	decompose	-	
3	1-50a	AgNO ₂ / TEMPO	CICH ₂ CH ₂ CI	25	8	decompose	-	
4	1-50a	AgNO ₂ /TEMPO	CHCI ₃	25	8	decompose	-	
5	1-50b	NaNO ₂ /AcOH/CAN	CHCI ₃	25	24	1-53b	81 (1:1) ^b	
6	1-50b	NaNO ₂ /AcOH/CAN	CHCI ₃	50	3	1-53b	89 (1:1) ^b	
7	1-50b	NaNO ₂ /CAN	CHCI ₃	50	3	no reaction ^c		
8	1-50b	AcOH/CAN	CHCI ₃	50	3	no reaction ^c		
9	1-50b	NaNO ₂ /AcOH	CHCI ₃	50	3	1-53b	85 (1:1) ^b	
10 ^d	1-50b	AgNO ₂ /TEMPO	CICH ₂ CH ₂ CI	60	10	1-53b	45 (1:1) ^b	

^a Isolated yields after purification by flash chromatography. ^b *E*/*Z* ratio were determined by ¹H NMR. ^c Most starting material was recovered. ^d Similar yield in CHCl₃

Table 1.1 Optimization of Reaction Conditions

Next, we examined the effect of extra π -systems on the allene containing benzyl/phenethyl (1-50f), phenyl (1-50g), 4-pentenyl (1-50h), and 3-adamentylidene (1-50i) groups (entries 4–7). Other than a slight difference in yields, no byproducts involving these extra π -systems were observed. While benzyl-substituted substrate 1-50f provided product 1-53f in 83% yield (entry 4), phenyl and 4-pentenyl group-substituted substrate 1-50g and 1-50h afforded 1-53g and 1-53h in 88 and 86% yield, respectively (entry 5 and 6). The differences in E/Z ratio for the products should be the consequence of the steric bias of these

	R ² SiR ₃	NaNO ₂ (5 equiv) NO ₂ AcOH (5 equiv) $R^2 \downarrow \sim N_2$	
	۲ R ¹ 1-50	CHCl ₃ , 50 °C, 3 h sonication R ¹ 1-53	
entry	allene	product (<i>E/Z</i>) ^b	yield (%) ^a
	Me	R NO ₂ NOR Me	
1	1-50c R = SiEt ₃	1-53c (1:1)	91 (87) ^c
2	1-50d R = Si [/] Pr ₃	1-53d (1:1)	85 (80) ^c
3	1-50e R = <i>t</i> -Bu	decomposed	—
4	PhSiMe ₂ ^t	^{Bu} Ph NO ₂ NOSiMe ₂ ^t Bu Ph 1-53f (1.2:1)	83 (86) ^c
5	SiMe R 1-500 R = Ph	e₂ ^t Bu R 1-53g (2.8:1)	88 (85) ^c
6	1-50h R = \	1-53h (1:1)	86
7	Me 1-50i	NO2 Me2 ['] Bu Me 1-53i (1.2:1)	67
	Me_Me	Me	
8	Ne 1-50j	2 ^t Bu	93
9	^t BuPh ₂ SiO Me 1-50k	^t BuPh ₂ SiO Me 1-53k (1:1)	96 (91) ^c
10	/BuMe ₂ SiO Me 1-50	Pr ₃ ^{<i>i</i>} BuMe ₂ SiO Me 1-53I (1.1:1)	83
11	1-50m	le ₃ decomposed	_
	RO	Et ₃ RO NO2 NOSiEt ₃	
12	R = SiMe ₂ (<i>t</i> Bu) 1-5	Dn 1-53n (1.3:1)	88 (86) ^c
13	R = Ac 1-50	Jo 1-53o (1.1:1)	81
14	Ph SiEt	³ no reaction ^d	_

^{*a*} Isolated yields. ^{*b*} *E/Z* ratios were determined by ¹H NMR. ^{*c*} The yields in the parentheses are for the reactions with CAN. ^{*d*} Starting material was recovered even after heating to 70 °C.

substituents. Allene **1-50i** containing a 3-adamantylidene moiety provided product **1-53i** in 67% yield without complication by the trisubstituted alkenyl functionality (entry 7). Based on these results, we concluded that the silyl allene moiety is much more reactive than simple alkene functionality toward nitrogen dioxyl. Other silyl allenes **1-50j**, **1-50k** and **1-50l** containing oxygen-based functional groups such as ketal or silyl ether moieties were tested (entries 8–10). While, ketal functional group containing silylallene **1-50j** smoothly afforded nitration product **1-53j** in 93% yield with the E/Z ratio 1.7:1 (entry 8). Allenes **1-50k** and **1-50l** having the silyl ether functionality delivered the nitration products **1-53k** and **1-53l** in 96, and 83% yield with E/Z ratios are almost 1:1 (entries 9 and 10).

Even though cyclooctanylidene allene **1-50m** containing trimethylsilyl substituent decomposed (entry 11), cyclohexanylidene allene **1-50n** and **1-50o** substituted with triethysilyl group smoothly afforded nitration products **1-53n** and **1-53o** in 88% and 81% yield, respectively (entries 12 and 13). Unexpectedly, disubstituted silyl allene **1-50p** was recovered intact under identical reaction conditions (entry 14), which is probably due to the difficulty in forming a relatively unstable secondary carbon-centered radical intermediate form **1-50p** as opposed to the tertiary from trisubstituted silyl allenes.

Having silylallenes successfully engaged in nitration with metal nitrites, we next examined their nitration using $Fe(NO_3)_3 \cdot 9H_2O$ as the source of nitrite under oxidative conditions (**Table 1.3**). Even though silylallene **1-50b** decomposed when exposed to $Fe(NO_3)_3 \cdot 9H_2O$ alone, by adding an oxidant such $FeCl_3 \cdot 6H_2O$ to the reaction, chlorinated nitroalkenes **1-54b** and **1-55b** were obtained in 83% yield with a 1:1 ratio (entry 1). Gratifyingly, silylallene **1-50q** containing a sterically less encumbered trimethylsilyl group, not a viable substituent in the previous reaction, is not only compatible with the conditions but also controlled the regioselectivity, affording products **1-54q** and **1-55q** in 82% yield with a 10:1 ratio (entry 2). The reaction of tert-butyl allene **1-50r** afforded **1-54r** and **1-55r** in 70% combined yield without regioselectivity (entry 3). A related pair of cyclooctanylidene allenes **1-50m** and **1-50s** showed similar behaviors where both trimethylsilyl and tert-butyl groups efficiently controlled the regioselectivity, providing **1-54m/1-55m** and **1-54s/1-55s** in 78 and 80% yield with 25:1 and 20:1 ratio, respectively (entries 4 and 5). Cycloheptanylidene allene **1-50t** also afforded a mixture of **1-54t** and **1-55t** in 79% yield with 20:1 selectivity (entry 6). Carvone-derived cyclopropane-containing silylallene **1-50u** resulted in 64% yield of only the cyclopropane ring-opened product **1-55u** in a 2:1 ratio (entry 8).

	R ² SiR ₃ Fe(NO ₃)) ₃ • 9H ₂ O (1.2 equiv)			3
	∫ R ¹ 1-50 FeCl ₃ •	6H ₂ O (1.5 equiv)	Ĭ́ Ĭ + R ¹ SiR₃	$\mathbf{R}^2 \mathbf{R}^1$	•
	-	THF, 45 °C	1-54 [°]	1-55	
entry	silylallene	prod	duct	yield (%) ^a	1-54:1-55 ^{b,c}
1	SiMe ₂ ^t Bu C ₆ H ₁₃ 1-50b	NO ₂ SiMe ₂ ^t B H ₁₃ C ₆ Cl 1-54b	u + CI C ₆ H ₁₃ 1-55b	∕le₂ ^t Bu 83	1:1
	Ph	Ph Cl	+ Ph Cl	R	
2	1-50q , R = SiMe ₃	1-54q	1-55q	82	10:1
3	1-50r , R = <i>t</i> -Bu	1-54r	1-55r	70	1:1
	R	R CI	+ CI	R	
4	1-50m , R = SiMe ₃	1-54m	1-55m	78	25:1
5	1-50s , R = <i>t</i> -Bu	1-54s	1-55s	80	20:1
6	SiMe ₃	NO ₂ SiMe	P3 + Cl 1-55t	SiMe ₃ 79	20:1
7	SiMe ₃	CI I,,,,	NO ₂ SiMe ₃	64	2:1

^a Combined yields after purification. ^b The ratios of **1-54** and **1-55** were determined by ¹H NMR analysis. ^c The double-bond geometry of **1-55** was determined by NOE experiments

Table 1.3 Nitration Reaction with Iron(III) Nitrate

Next, we examined the behavior of functionalized nitroalkenes **1-53** by treating them with desilylating agent (**Table 1.4**). Upon treatment of **1-53** with TBAF, novel isooxazolidinone derivatives **1-56** were obtained in moderate yields, which is the consequence of a spontaneous Nef reaction initiated by *5-endodig* Michael addition of the oxime oxygen onto the electron-deficient nitroalkene moiety. Nitroalkenes **1-50b**, **1-50f** and **1-50g** in presence of TBAF/AcOH provided isooxalidinones **1-56b**, **1-56f** and **1-56g** in moderate yield 54, 58 and 35% respectively (entries 1–3). In the case of **1-50j** (dr = 1.7:1), the nitronate intermediate, however, was not hydrolyzed, preserving the nitro group delivered **1-56j** in 68% yield (entry 4). The desilylation of **1-50k** was chemoselective such that even a primary silyl ether moiety in **1-50k** was untouched while the silyl ether of oxime moiety was desilylated and participated in subsequent Michael reaction (entry 5) gave the cyclized product **1-56k** in 52% yield (entry 5).

^a Isolated yields. ^b A 1:1 mixture with 1-phenylheptan-1-one.

Table 1.4 Conversion of α-Nitro α,β-Unsaturated Silyl Oximes to Isooxazolidinones

A plausible reaction mechanism for the formation of 1-53 and 1-54/1-55 are depicted in Scheme 1.30. The given reagents combinations would generate nitrogen dioxyl, which then react with silylallene 1-50 to generate allylic radical 1-51. In the case with NaNO₂/AcOH, 1-51 reacts with nitroxyl, resulting in the formation of 1-57, which then undergoes tautomerization to provide observed product 1-53. On the other hand, under the conditions with $Fe(NO_3)_3 \cdot 9H_2O/FeCl_3$, intermediate radical 1-51 would react with ferric

chloride either directly or indirectly via an electron-transfer process to form ion pair **1-58** followed by chloride transfer to give **1-54** or **1-55** depending on the substituents on **1-58**.

Scheme 1.30 Plausible Mechanism for the Formation of α-Nitro α,β-Unsaturated Silyl Oximes 1.5. Summary

In summary, an efficient method for the nitration of silylallenes with two different reaction conditions NaNO₂/AcOH and Fe(NO₃)₃•9H₂O/FeCl₃ has been developed. The reaction with NaNO₂/AcOH provided a new class of nitroalkenes, α -nitro- α , β -unsaturated silyl oximes, and the reaction with Fe(NO₃)₃•9H₂O/FeCl₃, allylic chloro substituted nitroalkenes were generated. Another novel class of compounds isooxazolidinones were obtained upon treating the initially formed α -nitro- α , β -unsaturated silyl oximes with TBAF in acetic acid.

1.6. Experimental Details

1.6.1. General Information

Reactions were carried out in oven or flame-dried glassware unless otherwise noted. Compounds were purchased from Aldrich or Acros or TCI America unless otherwise noted. Chloroform (CHCl₃) was purchased from Aldrich and used as received. Tetrahydrofuran (THF) was distilled over sodium and benzophenone under nitrogen atmosphere. Flash chromatography was performed using silica gel 60 Å (32–63 mesh) purchased from Silicycle Inc. Analytical thin layer chromatography (TLC) was performed on 0.25 mm E. Merck pre-coated silica gel 60 (particle size 0.040–0.063 mm). Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX-500 spectrometer and DPX-400 spectrometers. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), sext (sextet), m (multiplet), b (broad), and app (apparent). ¹H NMR signals that fall within a ca. 0.3 ppm range are generally reported as a multiplet, with a single chemical shift value corresponding to the center of the peak. Coupling constants, J, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Waters Micromass Q-Tof Ultima in the University of Illinois at Urbana-Champaign. Electron impact (EI) mass spectra and Chemical Ionization (CI) mass spectra were obtained using a Micromass 70-VSE in the University of Illinois at Urbana– Champaign.

1.6.2. Representative Procedure for Silylallene Synthesis

Silylallenes 1-50m, 1-50q, 1-50t and 1-50u were prepared by published three component coupling involving ketones, lithiated trimethylsilyl diazomethane and trimethylsilyl diazomethane as shown.^{42a} Silylallenes 1-50a–l, 1-50n and 1-50o were prepared by the reported procedure from the corresponding propargylic alcohols via the Brook rearrangement followed by mesylation and cuprated-based S_N2' substitution.⁴⁵

1.6.3. General Procedures for Nitration of Silylallenes with NaNO₂/AcOH: Silylallene 1-50b (0.40 mmol, 1 equiv) in 10 mL chloroform (CHCl₃) was taken into a thick walled Schlenk tube, and then NaNO₂ (2 mmol, 5 equiv) and AcOH (2 mmol, 5 equiv) were added to the reaction tube. The reaction mixture was degassed under vacuum at -78 °C, and then sonicated for 3 hours at 50 °C. The tube was opened to air at room temperature and 10 mL water added to the reaction mixture, which than extracted with dichloromethane (CH₂Cl₂) and dried (MgSO₄). After removal of the solvent, the crude product was purified by column chromatography (EtOAc/hexanes, 1:9) to give α -nitro- α , β -unsaturated silyl oximes 1-53b as yellow oil (89%).

1.6.4. General Procedures for Nitration of Silylallenes with Fe(NO₃)₃·9H₂O/FeCl₃: Substrate silylallene 1-50b (0.20 mmol, 1 equiv), Fe(NO₃)₃·9H₂O (0.24 mmol, 1.2 equiv) and FeCl₃·6H₂O (0.30 mmol, 1.5 equiv) were dissolved in THF in a thick-walled Schlenk tube equipped with a magnetic stir bar. The reaction mixture was degassed under vacuum at -78 °C, and then stirred at 45 °C for 8 hours. The tube was opened to air at room temperature and the solvent was removed under reduced pressure. The organic product was isolated by flash column chromatography on silica gel (EtOAc/hexanes, 1:9) to give nitro alkene **1-54b** and **1-55b** (83%).

1.6.5. General Procedure for the Conversion of Silyloximes to Isooxazolidinones: α -Nitro- α , β unsaturated silyl oximes **1-53b** (0.20 mmol, 1 equiv) and DMF (6 mL) were taken into a round bottom flask under nitrogen, and then AcOH (0.20 mmol, 1 equiv) and 1 M tetrabutyl ammonium fluoride (TBAF) in THF (0.20 mmol, 1 equiv) were added to the reaction mixture. The reaction mixture was then stirred for 5 hours at room temperature, which was quenched with saturated aqueous NH₄Cl solution, extract with ethyl acetate and dried (MgSO₄). After concentration, the crude product was purified by column chromatography (EtOAc/hexanes, 1:9) to give isooxazolidinones **1-56b** (54%).

1.6.6. Selected Characterization Data

31.5, 31.4, 29.2, 28.8, 27.7, 27.3, 25.6, 22.4, 19.0, 18.9, 17.9, 13.9; HRMS (ESI) calcd for C₁₆H₂₂N₂O₃Si [M+H]⁺ 329.2260, found 329.2260.

1-53c (1:1 mixture of *E/Z* isomers, 91% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.42 and 7.40 (2S, 1H), 2.30-2.27 (m, 1H), 2.20-2.17 (m, 1H), 2.01 and 1.90 (2S, 3H), 1.53-1.48 (m, 2H), 1.28-1.24 (m, 6H), 0.98-0.86 (m, 12H),

0.70-0.65 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 146.9, 146.6, 141.6, 141.4, 139.7, 139.2, 34.8, 34.4, 31.5, 31.4, 29.7, 29.2, 28.9, 27.6, 27. 4, 22.5, 22.4, 19.1, 18.9, 13.9, 6.4, 6.3, 4.1; HRMS (ESI) calcd for C₁₆H₂₂N₂O₃Si [M+H]⁺ 329.2263, found 329.2261.

1-53d (1:1 mixture of *E/Z* isomers, 85% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.41 and 7.39 (2S, 1H), 2.31-2.27 (m, 1H), 2.21-2.18 (m, 1H), 2.01 and 1.91 (2S, 3H), 1.52-1.48 (m, 2H), 1.34-1.28 (m, 6H), 1.22-1.16 (m, 3H),

1.04-1.00 (m, 18H), 0.89-0.86 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.6, 146.3, 141.2, 141.0, 139.7, 139.1, 34.8, 34.4, 31.5, 31.4, 29.2, 28.9, 27.7, 27.5, 22.5, 22.4, 19.1, 19.0, 18.5, 18.4, 17.6, 14.0, 12.0, 11.8; HRMS (ESI) calcd for C₁₉H₃₉N₂O₃Si [M+H]⁺ 371.2730, found 371.2738.

^{NO2} ^{Ph} ^{NO2} ^{Ph} ^{NO2} ^{NO2</sub> ^{NO2} ^{NO2} ^{NO2} ^{NO2} ^{NO2} ^{NO2} ^{NO2} ^{NO2} ^{NO}}

1-53g (2:1 mixture of *E/Z* isomers, 88% yield): **Major Isomer**: ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.22 (m, 5H), 6.86 (s, 1H), 2.53-2.49 (m, 2H),

1.41-1.18 (m, 8H), 0.93 (s, 9H), 0.84 (t, J = 7.0 Hz, 3H), 0.16 (s, 6H);

Minor Isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.56 (s, 1H), 7.35-7.18 (m, 5H), 2.55-2.53 (m, 2H), 1.41-1.18 (m, 8H), 0.89 (s, 9H), 0.86-0.85 (m, 3H), 0.16 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 147.2, 142.2, 140.8, 140.6, 136.3, 135.6, 129.7, 129.0, 128.8, 128.6, 128.5, 126.6, 34.4, 34.2, 31.4, 31.3, 29.1, 28.9, 28.0, 27.1, 25.7, 25.6, 22.4, 17.9,14.0, -5.5; HRMS (ESI) calcd for C₂₁H₃₅N₂O₃Si [M+H]⁺ 391.2417, found 391.2416.

NO₂ N 137.2, 115.8, 115.4, 33.7, 33.3, 32.3, 32.1, 31.6, 31.5, 31.4, 29.4, 29.1, 28.0, 27.2, 27.1, 22.4, 17.9, 14.0, -5.5.

1-53i (1.2:1 mixture of *E/Z* isomers, 67% yield): **Major Isomer**: ¹H NMR (500 MHz, CDCl₃) δ 7.44 (s, 1H), 5.00-4.98 (m, 1H), 2.72 (s, 1H), 2.25-2.21 (m, 6H), 1.92 (m, 6H), 1.88-1.65 (m, 8), 0.89 (s, 9H), 0.14 (s, 6H);

Minor Isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.40 (s, 1H), 5.02-4.96 (m, 1H), 2.79 (s, 1H), 2.35-2.32 (m, 6H), 2.00 (s, 3H), 1.88-1.81 (m, 11H), 0.90 (s, 9H), 0.15 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 150.2, 149.6, 146.3, 145.8, 141.6, 141.4, 140.2, 139.5, 113.9, 113.2, 40.6, 40.5, 39.0, 38.9, 37.2, 37.1, 35.3, 35.1, 32.2, 32.1, 28.6, 28.5, 26.3, 26.2, 25.7, 24.9, 24.6, 19.4, 19.1, 17.9, -5.5; HRMS (ESI) calcd for C₂₃H₃₉N₂O₃Si [M+H]⁺ 419.2742, found 419.2740.

1-53j (1.7:1 mixture of *E*/*Z* isomers, 93% yield): *E*-Isomer: ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 3.70 (d, *J* = 15 Hz, 1H), 3.50 (d, *J* = 10 Hz, 1H), 3.31-3.28 (m, 2H), 2.78 (dd, *J* = 13.2, 2.4 Hz, 1H), 2.68 (d, *J* = 13.2 Hz, 1H), 2.29 (dd, *J* = 13.0, 10.91 Hz, 1H), 1.96 (s, 3H), 1.70-1.49 (m, 4H),

1.30-1.10 (m, 7H), 0.87 (s, 9H), 0.72 (s, 3H), 0.12 (s, 3H), 0.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 146.3, 141.9, 140.9, 98.0, 69.7, 69.5, 44.9, 33.2, 29.9, 27.4, 27.3, 27.1, 26.3, 25.9, 25.8, 25.6, 25.2, 23.4, 22.5, 22.2, 19.2, -5.5; **Z-Isomer**: ¹H NMR (500 MHz, CDCl₃) δ 7.40 (s, 1H), 3.73 (d, *J* = 11.3 Hz, 1H), 3.56 (d, *J* = 11.3 Hz, 1H), 3.29 (d, *J* = 11.3 Hz, 2H), 2.74 (dd, *J* = 13.4, 3.0 Hz, 1H), 2.63 (dd, J = 13.4, 10.5 Hz, 2H), 1.89 (s, 3H), 1.74-1.69 (m, 1H), 1.62-1.1.46 (m, 3H), 1.36-1.20 (m, 2H), 1.19-0.99 (m, 5H), 0.88 (s, 9H), 0.71 (s, 3H), 0.13 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 146.2, 141.6, 140.5, 98.1, 69.8, 69.4, 44.4, 32.4, 29.8, 27.4, 27.1, 25.6, 25.2, 23.4, 22.3, 22.2, 19.0, -5.5; HRMS (ESI) calcd for C₂₂H₄₀N₂O₅Si [M+H]⁺ 441.2785, found 441.2775.

¹BuPh₂SiO NO2 Me **1-53k** (1:1 mixture of *E*/*Z* isomers, 96% yield): **Isomer-1**: ¹H NMR (500 MHz, CDCl₃) δ 7.70-7.41 (m, 11H), 3.92 (t, *J* = 6.2 Hz, 2H), 2.64 (t, *J* = 6.2 Hz, 2H), 1.94 (s, 3H), 1.10 (s, 9H), 0.95 (s, 9H), 0.21 (s, 6H); **Isomer-2**: 7.70-7.41 (m, 11H), 3.84 (t, *J* = 6.0 Hz, 2H), 2.49 (t, *J* = 6.0 Hz, 2H), 1.90 (s, 3H), 1.10 (s, 9H), 0.95 (s, 9H), 0.20 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 144.1, 142.7, 141.6, 141.5, 141.4, 140.4, 135.8, 135.6, 133.3, 132.9, 130.0, 129.8, 127.9, 127.8, 62.0, 61.0, 37.2, 26.9, 25.7, 19.9, 19.2, 19.1, 18.8, 18.0, - 5.4; HRMS (ESI) calcd for C₂₈H₄₃N₂O₄Si₂ [M+H]⁺ 527.2761, found 527.2765.

^{NO2}
^tBuMe₂SiO
Me
1-53l (1:1 mixture of *E*/*Z* isomers, 83% yield): **Major isomer**: ¹H NMR
(500 MHz, CDCl₃)
$$\delta$$
 7.41 (s, 1H), 3.85 (t, *J* = 6.2 Hz, 2H), 2.56 (t, *J* = 6.2
Hz, 2H), 1.99 (s, 3H), 1.22-1.15 (m, 3H), 1.04 (m, 18H), 0.87 (s, 9H), 0.04

(s, 6H); **Minor Isomer**: ¹H NMR (500 MHz, CDCl₃) δ 7.50 (s, 1H), 3.78 (t, *J* = 6.0 Hz, 2H), 2.44 (t, *J* = 6.0 Hz, 2H), 2.01 (s, 3H), 1.22-1.15 (m, 3H), 1.03 (m, 18H), 0.07 (m, 9H), 0.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 144.5, 142.9, 141.3, 141.1, 140.0, 61.6, 60.6, 37.6, 37.5, 25.9, 25.8, 20.4, 19.2, 10.7, 17.6, 11.8, 11.5, -5.4, -5.5; HRMS (ESI) calcd for C₂₂H₄₅N₂O₄Si₂ [M+H]⁺ 445.2918, found 445.2910.

 $\begin{array}{c} \text{ACO} \\ & \begin{array}{c} \text{NO}_2 \\ \text{OSiEt}_3 \end{array} \\ & \begin{array}{c} \text{I-530} \ (1.3:1 \text{ mixture of } E/Z \text{ isomers, } 81\% \text{ yield}): \ ^1\text{H NMR } (500 \text{ MHz, CDCl}_3) \\ & \begin{array}{c} \text{OSiEt}_3 \end{array} \\ & \begin{array}{c} \text{\delta } 7.45 \ (\text{s, 1H}), \ 5.05-5.03 \ (\text{m, 1H}), \ 2.70 \ (\text{dd, } J = 14.2, \ 6.6 \ \text{Hz, 1H}), \ 2.57 \ (\text{dd, } J = 14.2, \ 3.5 \ \text{Hz}, \ 1\text{H}), \ 2.36-2.23 \ (\text{m, 2H}), \ 2.03 \ (\text{s, 3H}), \ 1.91-1.70 \ (\text{m, 4H}), \ 0.94 \ (\text{t, } J = 14.2, \ 9\text{Hz}, \ 9\text{H}), \ 0.68 \ (\text{q, } J = 7.9 \ \text{Hz}, \ 6\text{Hz}, \ 1\text{H}), \ 1^3\text{C NMR } \ (125 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 170.1, \ 144.0, \ 141.0, \ 136.3, \ 70.6, \ 34.6, \ 30.2, \ 30.0, \ 22.5, \ 21.1, \ 6.3, \ 4.1. \end{array}$

 $\begin{array}{c} \text{NO}_2 \\ \text{I-54b } \text{Me} \ \text{Cl} \end{array} \begin{array}{c} \text{I-54b } (1:1 \text{ mixture of } E/Z \text{ isomers}): E-\text{Isomer: }^1\text{H NMR } (500 \text{ MHz, CDCl}_3) \\ \delta \ 4.47 \ (\text{s}, 1\text{H}), 2.20\text{-}2.16 \ (\text{m}, 2\text{H}), 1.90 \ (\text{s}, 3\text{H}), 1.34\text{-}1.25 \ (\text{m}, 8\text{H}), 0.97 \ (\text{s}, 9\text{H}), 0.93\text{-}0.89 \ (\text{m}, 3\text{H}), 0.28 \ (\text{s}, 3\text{H}), 0.08 \ (\text{s}, 3\text{H}); \ ^{13}\text{C NMR } (125 \text{ MHz, CDCl}_3) \\ \delta \ 148.7, 138.5, 41.3, 35.2, \end{array}$

34.9, 31.6, 31.5, 29.3,27.7, 26.9, 26.4, 22.5, 19.8, 17.8, 14.0, 6.5; **Z-Isomer**: ¹H NMR (500 MHz, CDCl₃) δ 4.42 (s, 1H), 2.15-2.12 (m, 2H), 1.87 (s, 3H), 1.34-1.25 (m, 8H), 0.97 (s, 9H), 0.91-0.86 (m, 3H), 0.28 (s, 3H), 0.08 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 148.3, 137.0, 41.5, 35.2, 31.6, 31.5, 29.3, 27.7, 27.6, 26.9, 22.6, 18.7, 14.1, 6.7; HRMS (EI) calcd for C₁₆H₃₂O₂ClNSi [M]⁺ 333.1890, found 333.1894.

 $1-55b: {}^{1}H NMR (500 MHz, CDCl_3) \delta 6.03 (s, 1H), 2.05-2.01 (m, 2H), 1.79$ (s, 3H), 1.45-1.25 (m, 8H), 0.91 (s, 9H), 0.89 (t, *J* = 6.8 Hz, 3H), 0.09 (s, 3H), 0.08 (s, 3H); {}^{1}C NMR (125 MHz, CDCl_3) \delta 165.4, 123.9, 69.9, 43.3, 31.5, 29.9, 28.9, 26.3, 25.0, 22.5, 16.8, 14.0, -6.9; HRMS (EI) calcd for C₁₆H₃₂O₂ClNSi [M]⁺ 333.1890, found 333.1891.

 $\begin{array}{c} \text{NO}_2 \\ \text{Ph} \underbrace{\qquad} & \text{SiMe}_3 \\ \text{Me} \quad & \text{Cl} \\ 1-54q \; (E/Z = 1:1) \end{array} \\ \begin{array}{c} \text{1-54q} \; (1:1 \text{ mixture of } E/Z \text{ isomers}): \ ^1\text{H NMR } (500 \text{ MHz, CDCl}_3) \; \delta \; 7.35-7.17 \; (m, 5\text{H}), \; 4.22\text{-isomer1, } 4.17\text{-isomer2 } (s, 1\text{H}), \; 2.90\text{-}2.73 \; (m, 2\text{H}), \; 2.58\text{-}2.36 \; (m, 2\text{H}), \\ 1.91\text{-isomer1, } 1.90\text{-isomer2 } (s, 3\text{H}), \; 0.19\text{-isomer1, } 0.17\text{-isomer2 } (s, 9\text{H}); \ ^{13}\text{C NMR} \\ (125 \text{ MHz, CDCl}_3) \; \delta \; 148.7, \; 148.3, \; 140.4, \; 140.0, \; 138.0, \; 136.4, \; 128.9, \; 128.8, \; 128.6, \; 128.5, \; 128.4, \; 128.3, \\ 128.2, \; 126.7, \; 126.4, \; 126.2, \; 45.2, \; 44.7, \; 37.1, \; 36.5, \; 34.1, \; 34.0, \; 19.7, \; 18.7, \; -2.3, \; -2.4; \; \text{HRMS (EI) calcd for} \\ \text{C}_{15}\text{H}_{22}\text{O}_2\text{CINSi } [\text{M}]^+ \; 311.1108, \; \text{found } 311.1113. \end{array}$

 $\begin{array}{l} \text{Ph} \underbrace{\qquad \text{Hom}}_{\text{Me} \quad \text{Cl}} \\ \text{1-54r} \ (1:1 \text{ mixture of } E/Z \text{ isomers}): \text{ Isomer-1: }^{1}\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 7.35-\\ \text{Torm} \ 1^{-54r} \ (E/Z = 1:1) \end{array} \\ \begin{array}{l} \text{1-54r} \ (E/Z = 1:1) \end{array} \\ \text{Torm} \ 1.04 \ (s, 9\text{H}); \text{ Isomer-2: }^{1}\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 7.35-7.16 \ (m, 5\text{H}), 4.70 \ (s, 1\text{H}), \\ 1.04 \ (s, 9\text{H}); \text{ Isomer-2: }^{1}\text{H} \text{ NMR} \ (500 \text{ MHz}, \text{CDCl}_3) \ \delta \ 7.35-7.16 \ (m, 5\text{H}), 4.70 \ (s, 1\text{H}), \\ 2.90-2.83 \ (m, 2\text{H}), \ 2.35-2.27 \ (m, 2\text{H}), 1.91 \ (s, 3\text{H}), 1.07 \ (s, 9\text{H}); \ ^{13}\text{C} \text{ NMR} \ (125 \text{ MHz}, \text{CDCl}_3) \ \delta \ 147.6, \\ 147.0, \ 140.2, \ 140.0, \ 137.6, \ 134.2, \ 128.8, \ 128.6, \ 128.5, \ 128.3, \ 128.2, \ 126.7, \ 126.4, \ 64.2, \ 63.9, \ 45.5, \ 37.6, \\ 37.3, \ 37.1, \ 35.5, \ 34.1, \ 33.6, \ 31.5, \ 29.7, \ 29.0, \ 28.9, \ 26.8, \ 19.2, \ 18.2; \ \text{HRMS} \ (\text{EI}) \ \text{calcd for } \text{C}_{16}\text{H}_{22}\text{O}_2\text{CIN} \ [\text{M}]^+ \\ 295.1339, \ \text{found} \ 293.1341. \end{array}$

NO₂ SiMe₃ Cl 1-54m (78% yield): ¹H NMR (500 MHz, CDCl₃) δ 4.27 (s, 1H), 2.36 (t, *J* = 5 Hz, 2H), 2.25-2.22 (m, 2H), 1.77-1.44 (m, 10H), 0.21 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 147.1, 144.1, 45.3, 32.6, 30.5, 28.5, 27.6, 26.0, 25.4, 24.1, -2.0; HRMS (EI) calcd for

C₁₃H₂₄O₂ClNSi [M]⁺ 289.1264, found 289.1260.

 $\begin{array}{c} \overset{\text{NO}_2}{\overset{\text{tBu}}{\text{l}}} \\ \overset{\text{tBu}}{\overset{\text{cl}}{\text{l}}} \\ \overset{\text{cl}}{\overset{\text{cl}}{\text{l}}} \\ \overset{\text{cl}}{\text{l}} & \overset{\text{cl}}{\text{l}} \\ \overset{\text{cl}}{\text{l}} & \overset{\text{cl}}$

 $C_{14}H_{24}O_2CIN [M]^+ 273.1495$, found 273.1490.

1-54t (80% yield): ¹H NMR (500 MHz, CDCl₃) δ 4.26 (s, 1H), 2.41-2.34 (m, 2H), 2.31-2.25 (m, 2H), 1.81-1.79 (m, 1H), 1.71-1.67 (m, 2H), 1.62-1.52 (m, 4H), 1.47-1.41 (m, 1H), 0.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8, 142.5, 44.6, 32.3, 31.7,

28.6, 28.1, 27.0, 26.7, -2.3; HRMS (EI) calcd for $C_{12}H_{22}O_2CINSi \ [M]^+ 275.1108$, found 275.1104.

 $\begin{array}{c} \text{I-54u} (2:1 \text{ mixture of } \textit{E/Z isomers}): \textit{Z-isomer: }^{1}\text{H NMR} (500 \text{ MHz, CDCl}_3) \delta \\ \text{5.97 (s, 1H), 4.78 (s, 1H), 4.77 (s, 1H), 3.72-3.70 (m, 1H), 3.50-3.46 (m, 1H), } \\ \text{(E/Z = 1:2)} & 2.52-1.97 (m, 6H), 1.76 (s, 3H), 1.70 (s, 3H), 0.21 (s, 9H); \textit{E-isomer: }^{1}\text{H NMR} \\ \text{(500 MHz, CDCl}_3) \delta 7.18 (s, 1H), 4.73-4.70 (m, 2H), 3.74-3.70 (m, 1H), 3.41-3.36 (m, 1H), 2.52-1.97 (m, 6H), 1.76 (s, 3H), 1.66 (s, 3H), 0.16 (s, 9H); \\ \text{130.0, 128.1, 109.6, 45.9, 45.6, 13.1, 36.0, 35.8, 35.7, 35.1, 29.7, 29.0, 28.8, 20.8, 19.4, 19.0, -1.0, -1.2. \end{array}$

Ph $\rightarrow 0^{-N}$ 1-56f (58% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.28-7.10 (m, 10H), 3.12 (d, J = 15.0, 1H), 3.02 (d, J = 15.0, 1H), 2.61-2.58 (m, 1H), 2.41-2.35 (m, 1H), 2.19-2.13 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 205.6, 147.0, 140.2, 133.1, 130.2, 128.5, 128.3, 127.4, 126.3, 87.9, 42.0, 37.8, 29.1; HRMS (EI) calcd for C₁₈H₁₇O₂N [M]⁺ 279.1259, found 279.1254.

1-56g (58% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.49-7.44 (m, 2H), 7.38-7.30 (m, 3H), 2.17-2.01 (m, 2H), 1.37-1.21 (m, 8H), 0.84 (t, J = 5.0 Hz, 3H); Ρń 1-56g ¹³C NMR (125 MHz, CDCl₃) δ 203.1, 146.2, 135.3, 128.6, 128.1, 124.9, 87.7, 38.5,

31.4, 24.4, 23.4, 22.6, 22.5, 14.1; HRMS (EI) calcd for C₁₅H₁₉O₂N [M]⁺ 245.1415, found 245.1412.

1-56 (68% yield): Major diastereomer: ¹H NMR (500 MHz, CDCl₃) δ 7.21 (s, 1H), 6.32 (s, 1H), 3.75 (d, J = 11.4 Hz, 1H), 3.61 (d, J = 11.6 Hz, 1H), 3.34-3.31 (m, 2H), 2.71 (dd, J = 15.1, 2.3 Hz, 1H), 2.62 (d, J = 14.6 Hz, 1H), 1.78-1.74 (m, 1H), 1.61-1.53 (m, 4H), 1.37 (s, 3H), 1.45-1.14 (m, 4H), 1.22 (s, 3H), 0.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 140.4, 98.5, 95.3, 89.0, 69.6, 69.5, 41.7, 40.1, 31.8, 26.8, 25.3, 23.7, 22.4, 22.3, 22.1,

21.2; HRMS (ESI) calcd for C₁₆H₂₇N₂O₅ [M+H]⁺ 327.1923, found 327.1920.

1-56k (52% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.60 (dd, J =15.8, 6.7 Hz, 4H), 7.44-7.37 (m, 6H), 3.70-3.66 (m, 1H), 3.70-3.51 (m, 1H), 2.28-2.22 (m, 1H), 2.02-1.99 (m, 1H), 1.39 (s, 3H), 0.98 (s, 9H); ¹³C NMR (125

MHz, CDCl₃) δ 204.9, 146.8, 135.6, 135.5, 133.0, 132.8, 129.8, 129.7, 127.7, 82.6, 58.6, 40.4, 26.6, 22.2, 19.0; HRMS (ESI) calcd for C₂₂H₂₈NO₃Si [M+H]⁺ 382.1838, found 382.1845.

1.7. References

- (1) (a) Feuer, H.; Nielsen, T. Nitro Compounds: Recent Advances in Synthesis and Chemistry; VCH: New York, 1990. (b) Ono, N. The Nitro Group in Organic Synthesis, Wiley-VCH: New York, 2001.
- (a) Lorian, V. Antibiotics in Laboratory Medicine, Lippincott Williams & Wilkins, 2005. (b) (2)Boelsterli, U. A.; Ho, H. K.; Zhou, S.; Leow, K. Y. Curr Drug Metab. 2006, 7, 715. (c) Patterson, S.; Wyllie, S. Trends in Parasitology 2014, 30, 289.
- (3) Agrawal, J.P.; Hodgson, R.D. Organic Chemistry of Explosives, Wiley-VCH, 2007.

- (4) (a) Laszlo, P. Preparative Chemistry Using Supported Reagents, Academic Press, London, 1987. (b)
 Smith, K. Solid supports and Catalysts in Organic Synthesis, Ellis Horwood, Chichester, 1992. (c)
 Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 1996, 25, 3445.
- (5) (a) Smith, K.; Musson, A.; DeBoss, G. A. Chem. Commun. 1996, 469. (b) Smith, K.; Musson, A.;
 DeBoss, G. A. J. Org. Chem. 1998, 63, 8448.
- (6) (a) Waller, F. J.; Barrett, A. G. M.; Braddock, D. C.; Ramprasad, D. *Chem. Commun.* 1997, 613. (b)
 Waller, F. J.; Barrett, A. G. M.; Braddock, D. C.; McKinnell, A. M.; Ramprasad, D. *J. Chem. Soc., Perkin Trans 1* 1999, 867.
- (7) Dove, M. F. A.; Manz, B.; Montogomery, J.; Pattenden, G.; Wood, S. A. J. Chem. Soc., Perkin Trans
 1 1998, 1589.
- (8) (a) Olah, G. A.; Lin. C. H. J. Am. Chem. Soc. 1971, 93, 1259. (b) Olah, G. A.; Ramaixh, P.; Rao, C. B.; Sandfold, G.; Golam, R.; Trivedi, N. T.; Olah, J. A. J. Am. Chem. Soc. 1993, 115, 7246. 35.
- (9) Suzuki, H.; Nonomiya. N. Chem. Commun. 1996, 1783. 34.
- (10) Tabushi, I.; Kojo, S.; Yoshida. Z. Chem. Lett. 1971, 1431.
- (11) (a) Kornblum, N. Org. React. 1962, 12, 101. (b) Feuer, H.; Leston, G. Org. Synth. 1963, 4, 368. (c)
 Kornblum, N.; Ungnade, H. E. Org. Synth. 1963, 4, 724.
- (12) Ballini, R.; Barboni, L.; Palmieri, A. Green Chem. 2008, 10, 1004.
- (13) Mc Nulty, J.; Nair, J. J.; Cheekoori, S.; Larichev, V.; Capretta, A.; Robertson, A. J. *Chem. Eur. J.* **2006**, *12*, 9314.
- (14) (a) Gelbard, G.; Colonna, S. Synthesis 1972, 113. (b) Crumbie, R. L.; Nmitz, J. S.; Mosher, H. S.; J. Org. Chem. 1982, 47, 4040.
- (15) (a) Megges, R.; Weiland, J.; Undeutsch, B.; Buchting, H.; Schon, R. *Steroids* 1997, *62*, 762. (b) Bull, J. R.; Jones, E. R. H.; Meakins, G. D. *J. Chem. Soc.* 1965, 2601.

- (16) (a) Larkin, J. M.; Kreuz, K. L. J. Org. Chem. 1973, 36, 2574. (b) Lachowicz, D. R.; Kreuz, K. L. J. Org. Chem. 1967, 32, 3885. (c) Stevens, T. E.; Emmons, W. D. J. Am. Chem. Soc. 1958, 80, 338. (d) Shechter, H; Conrad, F.; Daulton, A. I. L.; Kaplan, R. B. J. Am. Chem. Soc. 1952,74, 3052. (e) Bordwell, G.; Garbisch, E. W.; J. Am. Chem. Soc. 1960, 82, 3588.
- (17) McMurray, J. E.; Musser, J. H.; leming, I.; ortunak, J.; Nubling, C. Org. Synth. Coll. 1988, 6, 799.
- (18) (a) Sy, W.; By, A. W. *Tetrahedron Lett.* 1985, 26, 1193. (b) Waldman, S. R.; Monte, A. P.; Bracey, A.; Nichols, D. E. *Tetrahedron Lett.* 1996, *37*, 7889.
- (19) (a) Jew, S. S.; Kim, H. D.; Cho, Y. S.; Cook, C. H. Chem. Lett. 1986, 1747. (b) Ghosh, D.; Nichols, D. E. Synthesis 1996, 195.
- (20) Hwu, J. R.; Chen, K. L.; Ananthan, S. Patel, H. V. Organometallics 1996, 15, 499.
- (21) Reddy, M. V. R.; Mehrotra, B.; Vankar, Y. D. Tetrahedron Lett. 1995, 36, 4861.
- (22) Taniguchi, T.; Ishibashi, H. Org. Lett. 2010, 12, 124.
- (23) Taniguchi, T.; Fujii, T.; Ishibashi, H. J. Org. Chem. 2010, 75, 8126.
- (24) Maity, S.; Manna, S.; Rana, S.; Naveen, T.; Mallick, A.; Maiti, D. J. Am. Chem. Soc. 2013, 135, 3355.
- (25) Naveen, T.; Maity, S.; Sharma, U.; Maiti, D. J. Org. Chem. 2013, 78, 5949.
- (26) Maity, S.; Naveen, T.; Sharma, U.; Maiti, D. Org. Lett. 2013, 15, 3384.
- (27) Jager, V.; Mott, J. C.; Viehe, H. G. *Chimica* 1975, 29, 516. Schmitt, R. J.; Bedford, C. D. *Synthesis* 1984, 132. Schmitt, R. J.; Bottaro, J. C.; Malhotra, R.; Bedford, C. D. *J. Org. Chem.* 1987, 52, 2294.
- (28) (a) Schmitt, R. J.; Bedford, C. D. Synthesis 1984, 132. (b) Schmitt, R. J.; Bottaro, J. C.; Malhotra, R.; Bedford, C. D. J. Org. Chem. 1987, 52, 2294.
- (29) Dutta, U.; Maity, S.; Kancherla, R.; Maiti, D. Org. Lett. 2014, 16, 6302.
- (30) Hao, X.-H.; Gao, P.; Song, X.-R.; Qiu, Y.-F.; Jin, D.-P.; Liu X.-Y.; Liang, Y.-M. Chem. Commun.

2015, 51, 6839.

- (31) Wieser, K.; Berndt, A. Angew. Chem., Int. Ed. 1975, 14, 69.
- (32) Xue, C.; Fu, C.; Ma, S. Chem. Commun. 2014, 50, 15333.
- (33) Henry, L.; Seances, C. R. H. Acad. Sci. 1895, 120, 1265.
- (34) (a) Simoni, D.; Invidiata, D.P.; Manfredini, S.; Derroni, R.; Lampronti, H.; Roberti, M.; Pollini, G. P. *Tetrahedron Lett.* 1997, 38, 2749. (b) Ono, N.; Katayama, H.; Nishiyama, S.; Ogawa. T.; *J. Heterocyclic Chem.* 1994, 31, 707. (c) Ono, N.; Kawamura, H.; Maruyama, K.; *Bull. Chem. Soc. Jp.* 1989, 62, 3386. (d) Morao, I.; Cossio, D. P.; *Tetrahedron Lett.* 1997, *38*, 6461. (e) Williams, T. M.; Crumbie, R.; Mosher. H. S. *J. Org. Chem.* 1985, *50*, 91. (f) Melot, J. M.; Texier-Boullet, D.; Doucaud, A. *Tetrahedron Lett.* 1986, *27*, 493.
- (35) (a) Kamimura, A.; Sasatani, H.; Hashimoto, T.; Kawai, T.; Hori, K.; Ono, N. J. Org. Chem. 1990, 55, 2437. (b) Ono, N.; Kamimuta, A.; Kawai, T.; Kaji, A. J. Chem. Soc., Chem. Commun. 1987, 1550.
 (c) Kamimura, A.; Ono, N Tetrahrdron Lett. 1989, 30, 731. (c) Hori, H.; Higuchi, S.; Kamimura, A. J. Org. Chem. 1990, 55, 5900.
- (36) (a) Faulques, M.; Rene, L.; Royer, R. Synthesis 1982, 260. (b) Rene, L.; Royer, R. Synthesis 1981, 878. (c) Tokumitsu, T.; Hayashi, T. J. Org. Chem. 1985, 50, 1547. (d) Flintoft, R. J.; Buzby, J. C.; Tucker, J. A. Tetrahedron Lett. 1999, 40, 4485.
- (37) (a) Chasar, D. W. Synthesis 1982, 841. (b) Clark, J. H.; Cork, D. G.; Gibbs, H. W. J. Chem. Soc. Perkin Trans l 1983, 2253. (c) Andruszkiewicz, R.; Silverman, R. B. Synthesis 1989, 954. (d) Jouglet, B.; Blanco, L.; Rousseau, G. Synlett 1991, 907. (e) Mdoe, J. E. G.; Clark, J. H.; Macquarrie, D. J. Synlett 1998, 625.
- (38) Reviews on Nef Reaction: (a) Ballini, R.; Petrini, M. *Tetrahedron* 2004, 60, 1017. (b) Ballini, R.;
 Petrini, M. Adv. Synth. Catal. 2015, 357, 2371.

- (39) (a) Keinan, E.; Mazur. Y. J. Am. Chem. Soc. 1977, 99, 3861. (b) Jacobsen, R. M. Tetrahedron Lett.
 1974, 3215.
- (40) (a) Shechter, H.; Williams, E. T. J. Org. Chem. 1962, 27, 369. (b) Kornblum, N.; Erickson, A. S.; Kelley, J.; Henggeler, B.; J. Org. Chem. 1982, 47, 4534. (c) Steliou, K.; Poupart, M. A. J. Org. Chem., 1985, 50, 4971. (d) Cookson, R. C.; Ray, P. S. Tetrahedron Lett. 1982, 23, 3521. (e) Tokunaga, Y.; Ihara, M.; Eukumoto, K. J. Chem. Soc. Perkin Trans 1 1997, 207. (f) McMurry, J. E.; Melton, J.; Padgett, H. J. Org. Chem. 1974, 39, 259. (g) Matt, C.; Wagner, A. Mioskowski, C. J. Org. Chem. 1997, 62, 234.
- (41) (a) Monti, D.; Gramatica, P.; Speranza, G.; Manitto, P. *Tetrahedron Lett.* 1983, 24, 417. (b) Varma, R. S.; Barma, M.; Kabalka, G. W. *Tetrahedron Lett.* 1985, 26, 3777. (c) Mourad, M. S.; Varma, R. S.; Kabalka, G. W. *Synthesis* 1985, 654. (d) Bordoloi, M. *J. Chem. Soc. Chem. Commun.* 1993, 922. (e) Torii, S.; Tanaka, H.; Katoh, T. *Chem. Lett.* 1983, 607.
- (42) (a) Zheng, J.-C.; Yun, S. Y.; Sun, C.; Lee, N.-K.; Lee, D. J. Org. Chem. 2011, 76, 1086. (b) Sabbasani,
 V. R.; Phani, M.; Lu, H.; Xia, Y.; Lee, D. Org. Lett. 2013, 15, 1552.
- (43) Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 1236.
- (44) Kim, S.; Kim, B.; In, J. Synthesis 2009, 12, 1963.
- (45) Adachi, Y.; Kamei, N.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2011, 13, 4446.

CHAPTER 2

OXIDATIVE DIMERIZATION OF SILYLALLENES VIA ACTIVATION OF THE ALLENIC C(*sp*²)–H BOND CATALYZED BY COPPER(I) CHLORIDE AND *N*-HYDROXYPHTHALIMIDE

2.1. Introduction*

Allenes play an important role for the development of new synthetic methods especially with transition metal catalysts.¹ The vast array of reactions involving allenes is the consequence of the two cumulated alkenes connected by an *sp*-hydridized central carbon, which ultimately provides the increased reactivity of their π -bonds in allenes. Especially, stannylallenes,² boronylallenes,³ chromylallenes and silylallenes⁴ are important class of building blocks in organic synthesis. These allenes have been extensively used for the synthesis of homopropargylic alcohols due to their versatile reactive nature of these allenes with the carbonyl compounds (**Figure 2.1**).^{5,6,7,8} Allenyl metal species are known to undergo two types of reactions with aldehydes, where, allene **2-1** reacts with the aldehydes **2-2** in the presence of a Lewis acid to deliver the homopropargylic alcohols **2-3** (eq 1). On the other hand, silylallene **2-4** is also known to undergo ene type reaction with aldehydes to provide the homopropargyl alcohols **2-5** (eq 2). These homopropargylic alcohols are important synthetic intermediates in various settings because of their versatility for further elaboration in subsequent steps.^{1,9}

Figure 2.1 Homopropargylic Alcohols from Allenyl Reagents

The applications of these homopropargylic alcohols for the synthesis of natural products has been extensively studied.^{1b} Most recently, Fukuyama and coworkers reported the total synthesis of (–)-histrionictoxin using silylallene **2-6** as a chirality transfer substrate (**Scheme 2.1**),^{8g} where the silylallene

^{*} Reproduced in part with permission from Sabbasani, V. R.; Lee, D. "Oxidative Dimerization of Silylallenes via Activation of the Allenic $C(sp^2)$ -H Bond Catalyzed by Copper(I) Chloride and *N*-Hydroxyphthalimide" *Org. Lett.* **2015**, *17*, 4878–4881.

was reacted with paraformaldehyde in the presence of titanium tetrachloride to provide homopropargylic alcohol **2-7**. Alcohol **2-7** was treated with Grubbs first-generation catalyst to form bicyclic ring-closing metathesis product **2-8**, which was further converted to a natural product (—)-histrionictoxin.

(–)-histrionicotoxin

Scheme 2.1 Total Synthesis of (-)-Histrionictoxin

Recently, the Lee group reported a one-step protocol for the synthesis of trisubstituted silylallenes by treating with ketones with (trimethylsilyl)diazomethane (**Scheme 2.1**).¹⁰ The easy access as well as the unknown reactions of these silylallenes prompts us to explore their unique reactivity. Although silylallenes have been employed in many synthetic transformations their utility has not been broadly defined especially for trisubstituted silylallenes.

The availability of these silylallenes allowed us to examine their reactivity, which resulted in novel nitration to form functionalized nitroalkenes (**Scheme 2.2**).¹¹ In this transformation, the initial addition of a nitrogendioxyl radical occurs on the *sp*-hybridized carbon to form an allylic radical intermediate which is then trapped by the nitroxyl radical or by the chloride nucleophile (Sn1 reaction) depending on the reaction conditions (Eqs 1 and 2).

Based on this facile addition of radical species with silvallenes, we envisioned that various other radical species might also react with these silvallenes under appropriate conditions to generate diversely

functionalized alkene products. We thus studied the behavior of silylallenes with the oxygen-centered radical reactions. For this new reactivity we have chosen a well-known oxygen-centered phthalimide *N*-oxyl radical that could be easily generated from the *N*-hydroxyphthalimide using environmental friendly Cu-catalyst.

Scheme 2.2 Nitration of Silylallenes

2.2. Phthalimide N-Oxyl Radical Reactions

Phthalimide *N*-oxyl radical (PINO) is one of the most studied oxygen-centered radicals that can generate in situ from *N*-hydroxyphthalimide in the presence and/or absence of metal complexes. *N*-Hydroxyphthalimide (NHPI) is cheap and nontoxic material that can be easily synthesized from phthalic anhydride and hydroxylamine.¹² It has been extensively used for the radical functionalization of C—H bonds, which also, used for the direct addition to double bonds to produce the hydroxylamine derivatives.

2.2.1. Phthalimide N-Oxyl Radical-Catalyzed Reactions

Scheme 2.3 First N-hydroxyphthalimide Catalyzed Reactions

PINO-catalyzed reactions were first reported by Grochowski and coworkers, where they used NHPI as

a catalyst for the transformations of $C(sp^3)$ —H amination of ethers using ethyl diazodicarboxylate (DEAD), and for the oxidation of 2-propanol to acetone using *m*-chloroperbenzoic acid (*m*-CPBA) (**Scheme 2.3**).¹³ Mechanistically, DEAD reacts with NHPI to generate PINO radical, which then abstract a hydrogen to generate an alkoxy alkyl carbon-centered radical, which added to DEAD.

Later, PINO radical-catalyzed reactions have been extensively used for the oxidation of allylic, benzylic and propagylic $C(sp^3)$ —H bonds as well as the oxidation of alkanes, alcohols and also epoxidation of alkenes. Industrial two-step protocol for the oxidation of cyclohexane to adipic acid is based on the use of air followed by nitric acid. Because of the environmental issues, it requires to avoid the use of nitric acid.

metal salts = $Mn(acac)_2$, $Mn(acac)_3$, $Co(OAc)_2$

Scheme 2.4 Oxidation of Cyclohexane to Adipic Acid

To solve this problem Ishi and coworkers developed a new method using NHPI and metal salts as a catalyst in acetic acid (**Scheme 2.4**). In this reaction, they used Mn(II), Mn(III) and Co(II) salts as catalysts and oxygen as an oxidant.¹⁴ For commercial applications, this process has been further evaluated in pilot scale.¹⁵ Thereafter, several studies has been made for the oxidation of alkanes using NHPI and related radicals.¹⁶

Scheme 2.5 Oxidation of Arylic C(sp³)–H Bonds

The oxidation of benzylic $C(sp^3)$ —H bonds was studied using various oxidants, and NHPI is one of the

most studied catalysts together with many metal catalysts. The combination of $Co(OAc)_2$ and NHPI catalysts under aerobic oxidation has been utilized for oxidation of toluene derivatives **2-15** to benzoic acid derivatives **2-16** (Scheme 2.5).¹⁷ Similar conditions, by adding Mn(OAc)₂ as an extra catalyst was converted the *p*-xylene **2-17** to terephthalic acid **2-19**, which is used in industries to produce tons of polyethylene terephthalate.¹⁸

The aerobic oxidation of alcohols to ketones was first reported in 1977 using PINO radical-catalyzed electrolytic method.¹⁹ After that, non-electrolytic aerobic oxidation of alcohols to ketones using various metal complexes were reported.²⁰ The best conversions and yields were observed using catalytic combination of cobalt acetate, NHPI and *m*-CPBA (**Scheme 2.6**).²¹

Scheme 2.6 Oxidation of Alcohols to Ketones

The allylic oxidation of alkenes has been studied extensively, where alkenes 2-20 and 2-22 in the presence of NHPI catalyst and dibenzoyl peroxide provided the corresponding ketones 2-21 and 2-23 in low to moderate yields (**Scheme 2.7**).¹⁸ The low yields of the reaction was due to low conversion, and the

Scheme 2.7 Allylic and Propargylic Oxidation of Alcohols

side reactions induced by the generated peroxy radicals as well as PINO-radical.²² PINO radical also oxidize propargylic position of alkynes, where the reaction with 4-octyne using catalytic amounts of Cu(II) and NHPI in the presence of oxygen provided 4-octyn-3-one with good conversion and yield.

NHPI was also widely used as catalyst for the epoxidation of alkenes as well as oxidation of silyl ethers, acetals, amines, amides, sulfides and silanes.¹⁴

2.2.2. Stoichiometric Reactions of Phthalimide N-Oxyl Radical

Aerobic oxidation of benzylic compounds using catalytic combination of CuCl and NHPI was first reported by Einhorn and coworkers. They have studied the oxidation of benzylic compounds by using various NHPI derivatives. They found that the NHPI is less efficient for the conversion Inadane to indanone in presence of oxygen. The best results was obtained with **2-24**, which provided indanone in very good yield (**Scheme 2.8**).²³

Scheme 2.8 Aerobic Oxidation of Indane

Thereafter, several groups published copper-catalyzed stoichiometric NHPI reactions for allylic and benzylic $C(sp^3)$ —H oxidation to form an oxygenated products, along with addition reactions of in situ generated PINO radical to alkenes to form phthalimidoxy derivatives. In these transformations, various oxidants ranging from diacetoxy iodobenzene, dialkylpeoxides, hydroperoxides and oxygen have been used.

2.2.2.1. Cu-Catalyzed Allylic and Benzylic C-H Bond Activation Reactions

In 2008, Chang and coworkers reported a Cu-catalyzed new C–O bond forming method using NHPI and diacetoxy iodobenzene as an oxidant. In this study a broad range of substrates are selectively

oxygenated at allylic and benzylic positions using stoichiometric amounts of NHPI and diacetoxy iodobenzene in the presence of CuCl catalyst (**Table 2.1**).²⁴

Table 2.1 Cu-Catalyzed Oxygenation with Stoichiometric NHPI

The proposed mechanism of the Cu-catalyzed oxygenation reaction commences with CuCl reacting with the diacetoxy iodobenzene to form acetoxychlorocopper **2-27**, which converts NHPI into PINO radical by regenerating CuCl catalyst. The resulting PINO radical abstracts an allylic/benzylic hydrogen to form allylic/benzylic carbon centered radical **2-28**. The carbon-centered radical combines with a nitroxyl radical to form oxygenated product **2-26** (Scheme 2.9).

Scheme 2.9 Proposed Mechanism for Oxygenation with Stoichiometric NHPI

2.2.2.2. Cu-Catalyzed Phthalimide N-Oxyl Radical Addition to Alkenes

Copper-catalyzed deoxygenation of styrene derivatives using stoichiometric NHPI in the presence of

Scheme 2.10 Cu(II)-Catalyzed Dioxygenation of Alkenes Using NHPI

air to form β -keto-*N*-alkoxyphthalimides has been described by Punniyamurthy and coworkers. The described reaction is relatively mild and efficient with a broad range of aryl substituted alkene substrates (**Scheme 2.10**).²⁵ However, no reaction was observed with 1-octene to form alkoxyphthalimide **2-30f**.

The proposed mechanism of the reaction an initial reaction between $Cu(OAc)_2$ and NHPI to produce a PINO radical, CuOAc and AcOH. The resulting PINO radical then added to an alkene to form carbon-

centered radical **2-31**, which then reacts with oxygen in presence of CuOAc to generate intermediate **2-32**. Metal peroxy intermediate **2-32** decomposes to dioxygenated product **2-30** by releasing Cu(OAc)OH. The released Cu(OAc)OH further reacts with AcOH to regenerate Cu(OAc)₂ catalyst (**Scheme 2.11**).

Scheme 2.11 Proposed Mechanism of Cu-Catalyzed Dioxygenation of Alkenes

Scheme 2.12 Cu(I)-Catalyzed Dioxygenation of Alkenes Using NHPI

Woerpel and coworkers also reported the similar oxidation protocol using different a copper-catalyst. In this dioxygenation reaction, 5 mol% of $[Cu(MeCN)_4]ClO_4$ catalyst and 1.2 equivalence of NHPI under oxygen balloon were used. Compared to this reaction, the previous reaction is less efficient when the alkenyl substituent is electron-withdrawing aryl group and/or inactive for the alkyl substituted alkenes. In Woerpel's method the electron withdrawing-group-containing styrene derivatives and terminal alkens are also reactive, and provided high yields of β -keto-*N*-alkoxyphthalimides (**Scheme 2.12**).²⁶

Xia and coworker also reported catalyst control dioxygenation of olefins using stoichiometric NHPI (**Scheme 2.13**). The CuCl-catalyzed deoxygenation of alkenes using *tert*-butylhydroperoxide (TBHP) and NHPI provided dioxygenated dialkyl peroxide products in good to moderate yields. On the other hand, the reaction catalyzed by CuBr₂ using di-*tert*-butylperoxide (DTBP) provided β -keto-*N*-alkoxyphthalimides in moderate yields.²⁷

Scheme 2.13 Catalyst-Control Dioxygenation of Alkenes

2.3. Results and Discussion[†]

Based on the Cu-catalyzed dioxygenation of alkenes using NHPI and the behavior of silylallenes in nitration reaction (Scheme 2.14), we expected that silylallene 2-38 in the presence of CuCl and NHPI might behave similarly to form bis-oxygenated product 2-39. Surprisingly, however, dimer 2-40 was isolated as a sole product (Scheme 2.3.1). Clearly, this dimerization event to form 1,5-enynes implies that the putative PINO radical derived from NHPI did not add to the central carbon of silylallene. Instead it abstracted the allenic $C(sp^2)$ —H hydrogen²⁸ to generate a propargylic radical, which then dimerize²⁹ to form structurally

[†] Reproduced with permission from Sabbasani, V. R.; Lee, D. "Oxidative Dimerization of Silylallenes via Activation of the Allenic C(*sp*²)–H Bond Catalyzed by Copper(I) Chloride and *N*-Hydroxyphthalimide" *Org. Lett.* **2015**, *17*, 4878–4881.

demanding 1,5-envnes having two quaternary carbons next to each other.

Scheme 2.14 Initial Observation of Silylallene Dimerization

On the basis of this initial observation of silylallene dimerization, we further investigated the dimerization behavior of silylallenes containing different structural features. We commenced our investigation with optimizing the reaction conditions in terms of the catalyst loading, stoichiometry of reagents and oxidant, reaction time, and temperature (**Table 2.2**). Using cycloheptanylidyl allene **2-38a** as a test substrate with catalytic amount of CuCl (10 mol %) and a stoichiometric amounts of N-hydroxyphthalimide (NHPI) and PhI(OAc)₂ in CH₃CN at 70 °C gave the dimer product of 1,5-diyne **2-40a** in 76% yield (entry 1). By lowering the reaction temperature from 70 °C to 36 °C, slightly increased the

\frown	SiMe	₃ N-Hy	CuCl droxyphthalin	nide	$\langle \rangle$	SiMe ₃
	2-38a	Phl	(OAc) ₂ , CH ₃ C	N Me ₃ Si	2-40a	
entry	catalyst (10 mol%)	<i>N</i> -Hpth (equiv)	PhI(OAc) ₂ (equiv)	temp (^o C)	time (h)	yield (%) ^a
1	CuCl	1	1	70	12	76
2	CuCl	1	1	36	14	78
3	CuCl	1	0	36	14	N/R
4	CuCl	0	1	36	14	N/R
5	CuCl	0.5	1	36	14	78
6	CuCl	0.3	1	36	14	40
7	CuOAc	0.5	1	36	12	unknown
8	Cu(OAc) ₂	0.5	1	36	12	unknown

^a Isolated yields

Table 2.2 Optimization of Reaction Condition for Dimerization of Silylallenes
yield of reaction up to 78% (entry 2). Next, we explored the effect of the amounts of NHPI and PhI(OAc)₂; without oxidant and/or NHPI, no reaction occurred (entries 3 and 4). Lowering the amount of NHPI down to 50 mol % did not affect the yield of the reaction (entry 5). However, further lowering NHPI to 30 mol % significantly lower the yield of **2-40a** (entry 6). Changing the catalyst from CuCl to CuOAc or Cu(OAc)₂ provided unknown mixture of products (entries 7 and 8).

With the optimized reaction condition for the dimerization of silvallenes in hand, we next examined the substrates differing in their ring sizes ranging from five to eight, twelve and fifteen as well as the substitution pattern around the allene skeleton (Table 2.3). A small ring-based allenes 2-38b and 2-38c having five and six membered rings derived from cyclopentanone and 3-methyl cyclohexanone afforded dimers 2-40b and 2-40c in 62 and 58% yield (entries 1 and 2), and cyclooctanone derived silylallene 2-38d containing cyclooctylidene moiety provided dimeric product 2-40d in 72% yield (entry 3). For the reaction of allene 2-38e containing an extra double bond on the eight-membered ring also yielded only dimer 2-40e in 68% yield, without any other side-product derived from the involvement of the double bond to form bisoxygenated product and/or oxygenation of the allylic $C(sp^3)$ -H bond cyclooctene moiety (entry 4). Unexpectedly, however, increasing the ring size beyond eight diverted the product distribution. The reaction of allenes 2-38f with twelve-membered ring afforded 2:1 mixture of dimer 2-40f and 1,3-envne 2-41f in 70% combined yield (entry 5), and that of 2-38g containing 15-membered ring generated 1,3-enyne 2-41g in 75% yield as a sole product (entry 6). Carvone-derived cyclopropane-containing silvallene 2-38h resulted in 55% combined yield of cyclopropane-opened³⁰ conjugated dienyne 2-41h and 1,3-enyne 2-41h' in a 2:1 ratio (entry 7). On the other hand, adamantanone-derived silvallene 2-38h generated an acetoxy group-trapped product 2-42i in 45% yield (entry 8). The reaction of 2-38a-t-Bu where trimethylsilyl of 2-38a is replaced with a tert-butyl group led to only decomposition under identical conditions (entry 9). The stark difference in reactivity between silvallene 2-38a and the corresponding tert-butylallene counterpart **2-38a-t-Bu** suggests that silv group plays a crucial role in weakening the allenic $C(sp^2)$ -H bond.

^a Isolated yields. ^b The ratio was determined by 1H NMR. ^c Protodesilylation of SiMe₃ was observed.

Table 2.3 Dimerization of Silylallenes Derived from Cyclic Ketones

Having seen the general trend of reactivity of cycloalkane-based silylallenes in dimerization, we next examined the reactivity of acyclic alkane-based silylallenes toward dimerization (**Table 2.4**). Silylallene **2-38j** bearing a prenyl group afforded dimer **2-40j** as a single diastereomer in 72% yield (entry 1), yet a cyclopropyl group-containing silylallene **2-38k** derived from cyclopropyl methyl ketone resulted in severe decomposition with only a trace amount of dimer **2-40k** (entry 2). Surprisingly, silylallene **2-38l** did not generate an expected dimer product, instead pthalamide *N*-oxyl radical trapped product **2-43l** was generated in 34% yield. By employing a stoichiometric amount of NHPI, the yield of **2-43l** increased to 61% (entry 3). The results obtained from silylallenes **2-38j**, **2-38k** and **2-38l** imply that even a remote unsaturated functional groups such as a prenyl or a phenyl group may significantly affects the dimerization of these silylallenes. This notion is further strengthened by the reaction of silylallenes **2-38m** - **2-38p**. Although the reaction of silylallene **2-38m** containing a terminal double delivered only single diastereomer of dimer product **2-40m** in good yields (entry 4) the corresponding silylallene **2-38n** containing a styryl group afforded a mixture of dimer **2-40n** and 1,3-enyne **2-41n** in 69% combined yield (entry 5). Interestingly, silylallenes **2-38o** and **2-38p** containing different silyl groups such as SiEt₃ and SiMe₂t-Bu, respectively, delivered only the propargylic aminoxy ethers **2-43o** and **2-43p** in moderate yields (entries 6 and 7). On the

R R'	SiR ₃	CuCl (10 mol %) <i>N</i> -Hydroxyphthalimide (0.5 equiv) PhI(OAc) ₂ (1 equiv) CH ₃ CN, 35 °C, 12 h	R ₃ Si R' 2-40	SiR ₃ and/or R R ₃ Si	R' 0 N R 2-43
entry	Sil	lallene	Pro	duct	yield (%) ^a
1	2-38j	SiMe ₃)—// Me ₃ Si	SiMe ₃	72
2	ے 2-38ا	SiMe ₃	Me ₃ Si	SiMe ₃	trace ^b
3	Ph 2-38	SiMe ₃	Ph	2-431°	34 (61) ^{c,d}
4	2-381	SiMe ₃	 Me ₃ Si	2-40m ^{d,e}	66
5	Ph 2-38	SiMe ₃	Ph Me ₃ Si Me ₃ Si	SiMe ₃ Ph 2-40n ^d + 2-40n:2-4 2-41n	l1n = 1.3:1 69
	~~~	R	Ph—//		
6 7	2-380	<b>b</b> , R = SiEt ₃ <b>b</b> R = SiMes ^t Bu	Ŕ	2-430	38 (67) ^c
'	2-30	, n = Siwe ₂ Bu		2-43p	31 (58)°
8	Ph	`SiMe ₃ 2-38g	Dec	mposed	

^a Isolated yields. ^b Trace amounts of dimeric product was observed by HRMS. ^c Yields in the parenthesis are from reactions with 1 equiv of *N*-hydroxypthalimide. ^d Single diastereomer was observed. ^e Protodesilylation was observed.

# Table 2.4 Dimerization/Oxidation of Silylallenes Derived from Acyclic Ketones

other hand, disubstituted silylallene **2-38q** did not produce any identifiable product but decomposition under identical reaction conditions (entry 8).



Scheme 2.15 A Proposed Reaction Mechanism

On the basis of this general trend and selectivity we proposed a tentative mechanism for the dimerization (Scheme 2.15). As the first step in the catalytic cycle, Cu(I)Cl is oxidized to AcOCu(II)Cl by PhI(OAc)₂, which then reacts with *N*-hydroxyphthalimide to generate adduct 2-44. Upon homolysis of 2-44, phthalimide *N*-oxyl radical³¹ PINO is generated together with Cu(I)Cl which is oxidized back to AcOCu(II)Cl to reenter the catalytic cycle. In the next step, PINO radical reacts with a substrate silylallene by abstracting the allenic  $C(sp^2)$ –H hydrogen to generate a propargylic carbon-centered radical 2-45 and *N*-hydroxyphthalimide, which complete the full catalytic cycle. The main downstream events of radical 2-5 are its dimerization to form product 2-40 or further oxidation to the corresponding carbocation 2-46, which then undergoes an elimination and/or substitution to generate products 2-41 and/or 2-43, respectively.

# 2.4. Summary[‡]

In summary, a novel oxidative dimerization reaction of silylallenes using a catalytic system of copper(I) chloride and *N*-hydroxyphthalamide along with a stoichiometric amount of a terminal oxidant diacetoxyiodobenzene. Noticeable dependency on substrate structure for the formation of dimers, 1,3-enynes, and phathalamide *N*-oxyl adducts was recognized; silylallenes containing a small ring substructure afforded only head-to-head dimers whereas large ring-containing silylallenes provide 1,3-enynes as an accompanying minor or exclusive product depending on the size of the macrocycle. On the other hand, silylallenes containing an acyclic substituent generated dimers except in a few cases where phathalamide *N*-oxyl radical react at the propargylic center predominantly to form the corresponding aminoxy ethers. Inferred from these different products, we proposed a plausible mechanism for the reaction, which involved the abstraction of the allenic  $C(sp^2)$ –H hydrogen by phathalamide *N*-oxyl radical to generate a propargylic carbon-centered radical as the key intermediate.

#### 2.5. Experimental Details

#### 2.5.1. General Information: See chapter 1 section 1.6.1 for general information

**2.5.2.** General Procedure for Dimerization of Silylallenes: CuCl (2.5 mg, 0.0125 mmol, 0.1 equiv) and *N*-hydroxyphthalimide (20.5 mg, 0.125 mmol, 0.5 equiv) were dissolved in 2 mL CH₃CN in a thick-walled Schlenk tube under nitrogen followed by addition of silylallene **2-38a** (50 mg, 0.25 mmol, 1 equiv) in 2 mL CH₃CN and iodobenzene diacetate (161 mg, 0.5 mmol, 1 equiv) at room temperature. The reaction mixture was degassed under vacuum at -78 °C and stirred at 35 °C for 14 h. The tube was opened to air at room temperature and the solvent was removed under reduced pressure. The residual crude oil was purified was purified by column chromatography (Hexanes) to give dimer **2-40a** as a white solid (37.5 mg, 78%).

[‡] Reproduced with permission from Sabbasani, V. R.; Lee, D. "Oxidative Dimerization of Silylallenes via Activation of the Allenic C(*sp*²)–H Bond Catalyzed by Copper(I) Chloride and *N*-Hydroxyphthalimide" *Org. Lett.* **2015**, *17*, 4878–4881.

#### 2.5.3. Selected Characterization Data





**2-40b** (25.6 mg, white solid, 62%): ¹H NMR (500 MHz, CDCl₃) δ 1.98–1.97 (m, 4H), 1.79–1.78 (m, 8H), 1.67–1.65 (m, 4H), 0.12 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ113.5, 85.4, 50.7, 37.7, 25.3, 0.3; HRMS (EI) calcd for

C₂₀H₃₄Si₂ [M]⁺ 330. 2199, found 330.2204.



**2-40c** (28 mg, white solid, 58%): ¹H NMR (500 MHz, CDCl₃) δ 1.77–1.62 (m, 12H), 1.54–1.50 (m, 2H), 1.25–1.20 (m, 4H), 0.89–0.87 (m, 6H), 0.14 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 111.3, 88.8, 45.5, 40.5, 37.1, 34.9, 32.6,

31.7, 31.5, 29.2, 0.4; HRMS (EI) calcd for C₂₄H₄₂Si₂ [M]⁺ 386.2825, found 386.2816.



**2-40d** (37.5 mg, white solid, 72%): ¹H NMR (500 MHz, CDCl₃) δ 1.99–1.94 (m, 4H), 1.86–1.78 (m, 8H), 1.69–1.64 (m, 10H), 1.46–1.43 (m, 6H), 0.13 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 113.1, 87.1, 47.4, 32.5, 28.4, 24.8, 23.6, 0.2; HRMS (EI) calcd for C₂₆H₄₆Si₂ [M]⁺ 414.3138, found 414.3130.



2-40e (35 mg, white solid, 68%): ¹H NMR (500 MHz, CDCl₃) δ 5.82–5.77 (m, 2H), 5.52–5.47 (m, 2H), 2.64–2.52 (m, 4H), 2.05–1.78 (m, 10H), 1.54–1.45 (m, 6H), 0.16 (s, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 131.9, 129.2, 110.0, 89.8, 36.9, 29.7, 26.4, 24.3, 23.6, 0.3; HRMS (EI) calcd for C₂₆H₄₂Si₂ [M]⁺ 410.2825,

found 410.2822.

SiMe₃ 2-40f (31 mg, white solid, 47%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  1.88–1.82 (m, 4H), 1.63–1.56 (m, 8H), 1.37–1.34 (m, 32H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  112.8, 87.9, 44.3, 32.2, 27.1, 26.2, 22.9, 22.4, 21.0, 0.1; HRMS (EI) calcd for C₃₄H₆₂Si₂ [M]⁺ 526.4390, found 526.4397.

**2-41f** (15 mg, color less liquid, 23% yield):¹H NMR (500 MHz, CDCl₃)  $\delta$  5.81 (t, J **2-41f** = 7.7 Hz, 1H), 2.34–2.31 (m, 2H), 2.16–2.14 (m, 2H), 1.57 (m, 4H), 1.39–1.28 (m, 12H), 0.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  141.2, 122.4, 104.5, 98.2, 36.1, 30.2, 26.9, 26.1, 25.8, 25.2, 24.8, 24.6, 24.4, 0.1; IR (neat): 2927, 2855, 1710, 1678, 1466, 1445, 1248 cm⁻¹.

**2-41g** (57 mg, colorless liquid, 75%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.66 (5.66 (t, **2-41g** J = 7.4 Hz, 1H), 2.35–2.32 (m, 2H), 2.15–2.13 (m, 2H), 1.56–1.53 (m, 2H), 1.48– 1.46 (m, 2H), 1.36–1.26 (m, 18H), 0.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  140.0, 123.5, 104.4, 98.1, 36.0, 29.6, 28.5, 27.6, 27.3, 27.2, 27.1, 26.9, 26.8, 26.6, 25.7, 0.2; HRMS (EI) calcd for C₂₀H₃₆Si [M]⁺ 304.2586, found 304.2589.



**2-41h:2-41h'** (12 mg, colorless liquid, 55%): **2-41h'** (major isomer): ¹H NMR (500 MHz, CDCl₃) δ 5.89 (d, *J* = 2.5 Hz, 1H), 4.76 (s, 1H), 4.73 (s, 1H), 2.95 (s, 1H), 1.71 (s, 3H), 2.56–2.52 (m, 1H), 1.31 (s, 3H), 1.27–1.24 (m, 1H), 1.15–1.11 (m, 1H), 0.88 (t, *J* = 7.0 Hz, 1H), 0.74 (t, *J* = 5.1 Hz, 1H),

0.61–0.59 (m, 1H); **2-41h** (minor isomer): ¹H NMR (500 MHz, CDCl₃)  $\delta$ 5.05 (s, 1H), 4.91 (s, 1H), 4.77 (s, 1H), 4.74 (s, 1H), 3.30 (s, 1H), 2.31–2.23 (m, 2H), 2.08 (m, 3H), 2.01–1.99 (m, 1H), 1.75 (s, 3H), 1.63–1.57 (m, 2H); **2-41h** and **2-41h'**: ¹³C NMR (125 MHz, CDCl₃)  $\delta$  148.2, 147.5, 144.0, 135.4, 126.3, 111.5, 110.9, 109.5, 83.6, 82.8, 76.9, 41.3, 39.9, 37.0, 36.2, 24.9, 22.9, 22.4, 21.1, 20.7, 20.6, 18.3, 16.9, 15.7, 14.1; HRMS (EI) calcd for C₁₃H₁₇ [M+H]⁺ 173.1330, found 173.1332.

OAc 2-42i (32 mg, colorless liquid, 45%): ¹H NMR (500 MHz, CDCl₃) δ 2.43 (s, 2H), 2-42i 2.21–2.18 (m, 2H), 2.07 (s, 3H), 1.98–1.95 (m, 2H), 1.82–1.72 (m, 6H), 1.61–1.59 (m, 2H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.8, 105.7, 91.6, 80.2, 37.6, 36.0, 35.5, 34.9, 32.0, 26.9, 26.4, 21.9, 0.0; HRMS (ESI) calcd for C₁₇H₂₆O₂SiNa [M+Na]⁺ 313.1600, found 313.1608.



**2-40j** (37 mg, white solid, 72%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.19–5.16 (m, 2H), 2.27-2.19 (m, 2H), 2.08-2.91 (m, 2H), 1.70 (s, 6H), 1.63 (s, 6H), 1.51-1.47 (m, 2H), 1.25 (s, 3H), 1.30–1.26 (m, 2H), 1.23 (s, 3H), 0.13 (s, 18); ¹³C NMR (125 MHz, CDCl₃) δ 131.5, 124.8, 111.2, 87.0, 43.4, 36.6, 36.3, 25.7,

24.5, 24.4, 21.6, 21.3, 17.6, 0.3; HRMS (EI) calcd for C₂₆H₄₆Si₂ [M]⁺ 414.3138, found 414.3153.



**2-43I** (49 mg, colorless liquid, 61%): ¹H NMR (500 MHz, CDCl₃) δ 7.88–7.86 (m, 2H), 7.78–7.76 (m, 2H), 7.32–7.27 (m, 4H), 7.22–7.19 (m, 1H), 3.11–3.05 (m, 1H), 3.02–2.96 (m, 1H), 2.60 (s, 1H), 2.34–2.28 (m, 1H), 2.24–2.18 (m, 1H), 1.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) & 164.8, 141.5, 134.5, 129.2, 128.5, 128.5, 126.0, 123.6, 84.7,

82.6, 76.4, 42.5, 31.0, 26.9; HRMS (ESI) calcd for C₂₀H₁₈NO₃ [M+H]⁺ 320.1287, found 320.1274.



2-40m (47 mg, colorless liquid, 74%): ¹H NMR (500 MHz, CDCl₃) δ 5.90–5.85 (m, 2H), 5.07–5.04 (m, 2H), 4.97–4.95 (m, 2H), 2.32–2.29 (m, 2H), 2.20–2.17 (m, 2H), 2.15 (s, 1H), 1.80–1.75 (m, 2H), 1.62–1.56 (m, 2H), 1.29 (s, 3H), 0.13 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 139.3, 139.1, 114.3, 114.3, 110.4, 87.9, 87.8, 71.6, 43.3, 42.5, 35.8, 35.4, 30.2, 30.1, 21.8, 21.6, 0.2; HRMS (EI) calcd for  $C_{19}H_{29}Si [M-H]^+ 285.2038$ , found 285.2043.



**2-40n** (24 mg, white solid, 37%): ¹H NMR (500 MHz, CDCl₃) δ 7.36 (d, J = 7.7 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.20 (d, J = 7.1 Hz, 1H), 6.43 (d, J = 15.8 Hz, 1H), 6.32–6.27 (m, 1H), 2.51–2.48 (m, 1H), 2.37–2.31 (m, 1H), 1.88–1.82 (m, 1H), 1.70–1.84 (m, 1H), 1.30 (s, 9H), 0.15 (s, 9H); ¹³C NMR

(125 MHz, CDCl₃) δ 137.9, 131.3, 129.7, 128.5, 126.8, 125.9, 110.7, 87.7, 43.4, 36.3, 29.5, 21.7, 0.3; HRMS (EI) calcd for C₃₄H₄₆Si₂ [M]⁺ 510.3138, found 510.3129.

2-41n:2-41n' (2:1, 20 mg, colorless liquid, 32%): SiMe₃ Major isomer 2-41n: ¹H NMR (500 MHz, CDCl₃) δ Ph SiMe₃ Ph 7.36 (d, J = 7.4 Hz, 2H), 7.3 (t, J = 7.6 Hz, 2H), 7.21 2-41n 2-41n' (t, J = 7.3 Hz, 1H), 6.45-6.42 (m, 1H), 6.27-6.17 (m, 1H), 5.42 (d, J = 1.2 Hz, 1H) 5.30 (d, J = 1.2 Hz, 1H)1H), 2.49–2.44 (m, 2H), 2.33 (t, J = 7.5 Hz, 1H), 0.22 (s, 9H); Minor isomer 2-41n': ¹H NMR (500 MHz,  $CDCl_3$   $\delta$  7.36 (d, J = 7.4 Hz, 2H), 7.3 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 6.45–6.42 (m, 1H), 6.27–6.17 (m, 1H), 5.79–5.76 (m, 1H), 3.18 (t, J = 7.0 Hz, 2H), 1.89 (s, 3H), 0.28 (s, 9H); 2-41n+2-41n': ¹³C NMR (125 MHz, CDCl₃) δ 137.7, 136.1, 131.0, 130.6, 130.5, 129.6, 128.5, 128.3, 127.9, 127.0, 127.0, 126.0, 122.5, 105.4, 104.4, 98.2, 94.4, 36.9, 34.4, 31.6, 22.9, 0.2, 0.1; HRMS (EI) calcd for C₁₇H₂₂Si [M]⁺ 254.1490, found 254.1487.



**2-430** (colorless liquid, 67%): ¹H NMR (500 MHz, CDCl₃) δ 7.83–7.82 (m, 2H), 7.74–7.73 (m, 2H), 2.05–1.90 (m, 1H), 1.92–1.86 (m, 1H), 1.73–1.66 (m, 1H), 1.71 (s, 3H), 1.61–1.57 (s, 1H), 1.40–1.32 (m, 6H), 0.90 (t, J = 6.5

Hz, 3H), 0.83 (t, J = 7.9 Hz, 9H), 0.43 (q, J = 7.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  164.5, 134.2, 129.3, 123.3, 123.1, 105.1, 91.1, 86.7, 41.1, 31.7, 29.4, 27.3, 24.9, 22.6, 14.1, 7.3, 4.1; HRMS (ESI) calcd for C₂₄H₃₆NO₃Si₂ [M+H]⁺ 414.2464, found 414.2463.



**2-43p** (60 mg, colorless liquid, 58%): ¹H NMR (500 MHz, CDCl₃) δ 7.84– 7.82 (m, 2H), 7.74–7.73 (m, 2H), 2.04–1.98 (m, 1H), 1.92–1.86 (m, 1H), 1.70 (s, 3H), 1.69–1.65 (m, 1H), 1.60–1.54 (m, 1H), 1.40–1.31 (m, 6H), 0.90 (t, J = 6.7 Hz, 3H), 1.70 (s, 9H), -0.06 (s, 6H);  13 C NMR (125 MHz, CDCl₃)  $\delta$  164.4, 134.2, 129.2, 123.4, 104.6, 91.9, 86.6, 41.9, 31.7, 29.4, 27.2, 25.9, 24.9, 22.6, 14.1, -5.0; HRMS (ESI) calcd for

 $C_{24}H_{36}NO_{3}Si_{2}$  [M+H]⁺ 414.2464, found 414.2472.

#### 2.6. References

- Recent reviews: (a) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994. (b) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074. (c) Lu, T.; Lu, Z.; Ma, Z.-X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862. (d) La Bras, J.; Muzart, J. Chem. Soc. Rev. 2014, 43, 3003. (e) Munoz, M. P. Chem. Soc. Rev. 2014, 43, 3164.
- (2) Synthesis of stannylallenes: (a) Marshall, J. A.; Wang, X.-j. *J. Org. Chem.* 1991, *56*, 3211. (b) For previous work in this area, see: Ruitenberg, K.; Westmijze, H.; Kleijn, H.; Vermeer, P. *J. Organomet. Chem.* 1984, *277*, 227.
- (3) Synthesis of boronylallenes: (a) Leung, T.; Zweifel, G. J. Am. Chem. Soc. 1974, 96, 5620. (b) Midland, M. M. J. Org. Chem. 1977, 42, 2650. (c) Shimizu, M.; Kurahashi, T.; Kitagawa, H.; Hiyama, T. Org. Lett. 2003, 5, 225. (d) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774.
- (4) Synthesis of silylallenes: (a) Carroll, L.; Mccullough, S.; Rees, T.; Claridge, T. D. W.; Gouverneur, V. Org. Biomol. Chem. 2008, 6, 1731. (b) Ohmiya, H.; Ito, H.; Sawamura, M. Org. Lett. 2009, 11, 5618. (c) Okada, T.; Oda, N.; Suzuki, H.; Sakaguchi, K.; Ohfune, Y. Tetrahedron Lett. 2010, 51, 3765. (d) Vyas, D. J.; Hazra, C. K.; Oestreich, M. Org. Lett. 2011, 13, 4462.
- (5) Selected for stannylallene (a) Marshall, J. A. *Chem. Rev.* 1996, 96, 31. (b) Marshall, J. A. *Chem. Rev.* 2000, 100, 3163. (c) Marshall, J. A. J. Org. Chem. 2007, 72, 8153. (d) Keck, G. E.; Krishnamurthy, D.; Chen, X. *Tetrahedron Lett.* 1994, 35, 8323. (e) Yu, C. M.; Yoon, S.-K.; Choi, H.-S.; Baek, K. *Chem. Commun.* 1997, 763.
- (6) Selected for boronylallenes (a) Chen, M.; Roush, W. R. J. Am. Chem. Soc. 2012, 134, 10947. (b) Tsai,
  A. S.; Chen, M.; Roush, W. R. Org. Lett. 2013, 15, 1568. (c) Zhao, T. S. N.; Zhao, J.; Szabo, J. Org. Lett. 2015, 17, 2290.

- (7) Selected for chromylallene (a) Liu, S.; Kim, J. T.; Dong, C.; Kishi, Y. *Org. Lett.* 2009, *11*, 4520. (b) Usanov, D. L.; Yamamoto, H. *Angew. Chem., Int. Ed.* 2010, *49*, 8169. (c) Harper, K. C.; Sigman, M. S. *Science* 2011, *333*, 1875.
- (8) Transformations of silylallenes: (a) Yogo, T.; Koshino, J.; Suzuki, A. Synth. Commun. 1981, 11, 769.
  (b) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. J. Org. Chem. 1986, 51, 3870. (c) Danheiser, R. L.; Stoner, E. J.; Koyama, H.; Yamashita, D. S.; Klade, C. A. J. Am. Chem. Soc. 1989, 111, 4407.
  (d) Marshall, J. A.; Maxson, K. J. Org. Chem. 2000, 65, 630. (e) Brawn, R. A.; Panek, J. S. Org. Lett. 2009, 11, 4362. (f) Ogasawara, M.; Okada, A.; Subbarayan, V.; Soergel, S.; Takahashi, T. Org. Lett. 2010, 12, 5736. (g) Adachi, Y.; Kamei, N.; Yokoshima, S.; Fukuyama, T. Org. Lett. 2011, 13, 4446.
  (h) Okada, T.; Shimoda, A.; Shinada, T.; Sakaguchi, K.; Ohfune, Y. Org. Lett. 2012, 14, 6130. (i) Hwu, J. R.; Swain, S. P. Chem. Eur. J. 2013, 19, 6556. Reviews: (j) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293. (k) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
- (9) (a) Marshall, J.; Johns, B. J. Org. Chem. 1998, 63, 7885. (b) Marshall, J. A.; Schaaf, G. M. J. Org. Chem. 2003, 68, 7428. (c) Lepage, O.; Kattnig, E.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 15970.
  (d) Belardi, J. K.; Micalizio, G. C. Org. Lett. 2006, 8, 2409. (e) Coleman, R. S.; Lu, X.; Modolo, I. J. Am. Chem. Soc. 2007, 129, 3826. (f) Brodmann, T.; Janssen, D.; Kalesse, M. J. Am. Chem. Soc. 2010, 132, 13610.
- (10) Zheng, J.-C.; Yun, S. Y.; Sun, C.; Lee, N.-K.; Lee, D. J. Org. Chem. 2011, 76, 1086.
- (11) Sabbasani, V. R.; Lee, D. Org. Lett. 2013, 15, 3954.
- (12) Karakurt, A.; Dalkara, S.; Ozalp, M.; Ozbey, S.; Kendi, E.; Stables, J. P. Eur. J. Med. Chem. 2001, 36, 421.
- (13) Grochowski, E.; Boleslawska, T.; Jurczak, J. Synthesis 1977, 718.

- (14) (a) Ravens, D. A. S. *Trans. Faraday Soc.* 1959, 55, 1768. (b) Kamiya, Y.; Nakajima, T.; Sakoda, K. *Bull. Chem. Soc. Jpn.* 1966, *39*, 519. (c) Shimizu, A.; Tanaka, K.; Ogawa, H.; Matsuoka, Y.; Fujimori, M.; Nagamori, Y.; Hamachi, H.; Rimura, K. *Bull. Chem. Soc. Jpn.* 2003, *76*, 1993.
- (15) Focus on Catalysts, 2004, Issue 1, January 2004, p 7.
- (16) Recupero, F.; Punta, C. Chem. Rev. 2007, 107, 3800.
- (17) (a) Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1997, 62, 6810. (b)
  Tashiro, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. Adv. Synth. Catal. 2001, 343, 220.
- (18) Saha, B.; Koshino, N.; Espenson, J. H. J. Phys. Chem. A 2004, 108, 425.
- (19) (a) Grochowski, E.; Boleslawska, T.; Jurczak, J. Synthesis 1977, 718. (b) Masui, M.; Ueshima, T.;
  Ozaki, S. Chem. Commun. 1983, 479.
- (20) Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.; Iwahama, T.; Nishiyama, Y. J. Org. Chem. 1995, 60, 3934.
- (21) Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. Tetrahedron Lett. 1995, 36, 6923.
- (22) Coseri, S.; Mendenhall, G. D.; Ingold, K. U. J. Org. Chem. 2005, 70, 4629.
- (23) Nechab, M.; Einhorn, C.; Einhorn, J. Chem. Commun. 2004, 1500.
- (24) Lee, J. M.; Park, E. J.; Cho, S. W.; Chang, S. J. Am. Chem. Soc. 2008, 130, 7824.
- (25) Bag, R.; Sar, D.; Punniyamurthy, T. Org. Lett. 2015, 17, 2010
- (26) Andia, A. A.; Matthew, R. M.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.
- (27) Xia, X.-F.; Zhu, S.-L.; Gu, Z.; Wang, H.; Li, W.; Liu, X.; Liang, Y.-M. J. Org. Chem. 2015, 80, 5572.
- (28) (a) Laporterie, A.; Dubac, J.; Manuel, G.; Delé ris, G.; Kowalski, J.; Dunogues, J.; Calas, R. *Tetrahedron* 1978, *34*, 2669. (b) Borzilleri, R. M.; Weinreb, S. M. *J. Am. Chem. Soc.* 1994, *116*, 9789.
  (c) Borzilleri, R. M.; Weinreb, S. M.; Parvez, M. *J. Am. Chem. Soc.* 1995, *117*, 10905. (d) Jin, J.;

Smith, D. T.; Weinreb, S. M. J. Org. Chem. 1995, 60, 5366. (e) Jin, J.; Weinreb, S. M. J. Am. Chem.
Soc. 1997, 119, 2050. (f) Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 5773. (g) Weinreb, S.
M.; Smith, D. T.; Jin, J. Synthesis 1998, 29, 509.

- (29) Radical dimerization reactions: (a) Yang, F.; Zhao, G.; Ding, Y.; Zhao, Z.; Zheng, Y. *Tetrahedron Lett.* 2002, 43, 1289. (b) Lathrop, S. P.; Kim, J.; Movassaghi, M. *Chimia* 2012, 66, 389. Review: (c) Melikyan, G. G. Acc. Chem. Res. 2015, 48, 1065.
- (30) Cyclopropane ring opening recent review: Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804.
- (31) (a) Recupero, F.; Punta, C. *Chem. Rev.* 2007, 107, 3800. (b) Ishii, Y.; Iwahama, T.; Sakaguchi, S.; Nakayama, K.; Nishiyama, Y. *J. Org. Chem.* 1996, *61*, 4520. (c) Wentzel, B. B.; Donners, M. P. J.; Alsters, P. L.; Feiters, M. C.; Nolte, R. J. M. *Tetrahedron* 2000, *56*, 7797. (d) Yang, G.; Ma, Y.; Xu, J. *J. Am. Chem. Soc.* 2004, *126*, 10542. (f) Tan, B.; Toda, N.; Barbas, C. F., III. *Angew. Chem., Int. Ed.* 2012, *51*, 12538. (g) Patil, A. S.; Mo, D.-L.; Wang, H.-Y.; Mueller, D. S.; Anderson, L. L. *Angew. Chem., Int. Ed.* 2012, *51*, 7799.

# CHAPTER 3

# FACILE ALDER-ENE REACTIONS OF SILYLALLENES INVOLVING AN ALLENIC C(sp²)—H BOND

#### 3.1. Introduction*

The ene reaction is a sigmatropic process by which an allylic H–C bond is activated by the  $\pi$ -bond of an enophile, replacing a H–C bond with a C–C or C–X (X = O, N) bond with a concomitant double bond transposition. This sigmatropic process was first made known by Alder in 1943 and documented in his Nobel Lecture in 1950.¹ Alkenes having allylic C–H bonds in a substrate with enophile (X=Y) undergoes 1,5-H shift² to form a new a C–C or C–X bond as shown in **Scheme 3.1**. The formal ene reaction proceeds through a concerted process via suprafacial interaction between HOMO of ene and the LUMO of enophile. On the other hand, it may proceeds through a stepwise radical process when the system is too strained to achieve a necessary geometry. In step wise mechanism, the observed side reaction is the cyclobutane formation.³



**Scheme 3.1 Ene Reaction** 

#### 3.2. Types of Ene Reactions



Figure 3.1 Intramolecular Ene Reaction Classification

^{*} Reproduced in part with permission from Sabbasani, V. R.; Lee, D. "Facile Alder-Ene Reactions of Silylallenes Involving an Allenic C(*sp*²)–H Bond" *Chem.–Eur. J.* **2015**, *21*, 17210–17214.

Both the inter- and intramolecular ene reactions are well developed by using various enophiles and they have been widely utilized in the organic synthesis.⁴ The most common enophiles used in ene reactions are azo-compounds, carbonyls, nitroso compounds, imino compounds, arynes, and singlet oxygen. The mode of reactivity and connectivity of the ene donor and enophiles in intramolecular ene reaction is classified into three major types Type I, Type II and Type III (**Figure 3.1**).

#### 3.2.1. Ene Reaction with Azodicarboxylates

Azodicarboxylates have been widely studied as enophiles in ene reactions with alkenes and allenes. The reaction of azo compounds with alkene provides useful allylic amination products by activating allylic  $C(sp^3)$ –H bond. The earlier developments of thermal ene reaction with azodicarboxylates were often required elevated temperature.⁵ The most improved thermal azodicarboxylate-based ene reaction was developed by Leblanc and coworkers by employing more reactive bis(2,2,2-trichloroethyl) azodicarboxylate (BTCEAD) as an enophile.⁶ Later in 1993, Heathcock and coworkers reported the first Lewis acid-promoted diazocarboxylate ene reaction with various alkenes (**Table 3.1**). The aza-ene reaction of alkenes **3-1** with diethylazodicarboxylate (DEAD) in the presence of stoichiometric amount of SnCl₄

R	DEAD, C SnCl ₄ , –	$\begin{array}{c} H_2 CI_2 \\ \hline 60 \ ^{\circ}C \end{array} \qquad R \begin{array}{c} H_1 \\ N_1 \\ \hline N_2 \\ \hline 00 \\ 3-2 \end{array} \begin{array}{c} H_2 \\ CO_2 \\ \hline CO_2 \\ $	CO ₂ Et t
entry	alkene	ene adduct	yield (%)
1	3-1a	$\frac{H}{CO_2Et}$	86
2	3.1b	$ \begin{array}{c}                                     $	74
3	3-1c	$ \begin{array}{c}                                     $	72

Table 3.1 First Lewis Acid Promoted Aza-Ene Reaction

provided allylic amination products **3-2** in good yield and excellent E/Z selectivity in case of **3-2a** (entries 1 to 3).⁷ The other Lewis acids such as BF₃·OEt₂, Et₂BBr, ZnBr₂ and Ti(OiPr)₄ were also tested, however they were ineffective, leading to no reaction or the decomposition of the azo-compounds.

Recently, Jørgensen and coworkers reported the first transition metal-catalyzed aza-ene reaction using BTCEAD (**Table 3.2**). This metal-catalazed aza-ene reaction was optimized by testing series of metal trifilates, and it was found that Cu(OTf)₂ and Yb(OTf)₂ were most effective in providing amination products **3-4** in good yields up to 99%.⁸

Troc

	$R^1$ $R^3$	+ N ⁻¹	Froc cor	ndition A	A: Cu(O	Tf) ₂ (20 mol%)	$\rightarrow$ R ¹ N.	Troc	
	R ²   H R ⁴ <b>3-3</b>	Troc ^{-N}	cor	ndition E	3: Yb(OT CH ₂ Cl ₂	Γf) ₃ (10 mol%) ₉ , rt	R ² R ³ R ⁴ <b>3-4</b>	H	
entr	y alkene	product	condition	yield	entry	alkene	product	condition	yield
1	3-3a	Troc NH N 3-4a	A B	76% 95%	4 ^t E	^{3u}	^t Bu 3-4d	A c	96%
2	3-3b	Troc NH N 3-4b	A B	44% 43%	5 Et		H Troc ^N N Et <b>3-4e</b>	A B	85% 92%
3	3-3c	Troc N-NH Tr <b>3-4c</b>	A oc B	98% 99%	6 6	3u	N N Tro troc 3-4f	c B	98% 93%

 Table 3.2 First Metal-Catalyzed Aza-Ene Reaction

Corey and coworkers developed the reverse aza-indolene reaction, where the ene reaction with indole derivative in the presence of 4-methyl-1,2,4-triazoline-3,5-dione in dichloromethane at 0 °C provided indole-ene product, the reverse reaction was performed at 150 °C to remove the enophile. This protection and deprotection strategy was utilized in the total synthesis of a natural product okaramine N.⁹

Aza-ene reactions of alkyl- and silvallenes were also briefly studied (Scheme 3.2). Thermal aza-ene reaction of alkylallene 3-5 in the presence of DEAD at 80 °C provided diene 3-6 by activating allylic  $C(sp^3)$ -

H bond.¹⁰ On the other hand, thermal aza-ene reaction of silylallene **3-7** with 4-phenyl-1,2,4-triazoline-3,5dione at 80 °C afforded only the propargyl amination product **3-8** via the activation of an allenic  $C(sp^2)$ –H bond.¹¹



Scheme 3.2 Aza-Ene Reaction of Allenes

#### 3.2.2. Carbonyl Ene Reaction

The carbonyl ene reaction is one of the most extensively investigated ene reactions, where the carbonyl containing enophiles and the all carbon ene-donor are widely used to generate synthetically valuable homoallylic alochols (**Scheme 3.3**). Thermal as well as Lewis and Brønsted acid-catalyzed carbonyl ene reactions were developed.

$$R$$
 +  $R_1$  Thermal or Lewis acid  $R_1$   $R$   $R_1$ 

**Scheme 3.3 Carbonyl Ene Reaction** 

In 1982, the first asymmetric intermolecular carbonyl ene reaction was developed by Whitesell and coworkers by using chiral glyoxylate as an enophile in the presence of stoichiometric amounts of Lewis acid, which provided diastereomeric excess up to 99%.¹² In 1988, the first catalytic asymmetric intermolecular carbonyl ene reaction was reported by Yamamoto and coworkers. In this transformations, they have used chiral binaphthol-derived aluminum complex **3-9**, and achieved enantioselectivity of the

0 R 3-10	+	<b>3-9</b> (2 CH ₂ Cl M	20 mol %)   ₂ , −78 °C  S 4Å	OH R ₁ 3-12
entry	R	R ₁	yield (%)	ee (%)
1	$C_6F_5$	Ph	35	78
2	Cl ₃ C	Ph	43	73
3	$C_6F_5$	SPh	88	88
4	Cl ₃ C	Me	79	78

reaction up to 88% with good to moderate yields of homoallylic alcohols (Table 3.3).¹³

Table 3.3 First Catalytic Asymmetric Carbonyl Ene Reaction

Mikami and coworkers developed an asymmetric carbonyl ene reaction with an in situ generated chiral titanium-BINOL complex from diisopropoxytitanium dihalide and optically active binaphthol (BINOL).¹⁴ The best results were obtained with (R)-BINOL and TiCl₂(ⁱPrO)₂ to form chiral homoallylic alcohol up to 86% ee with 82% yield. After this report, various asymmetric carbonyl ene reactions were developed extensively by using chiral titanium complexes. For example, the ene reaction between enophile **3-13** and alkene **3-14** using dihalo titanium-BINOL complex **3-16** provided an homoallylic alcohol in excellent yield and enatioselectivity (**Scheme 3.4**). Even the chiral complex derived from (R)-BINOL having 33% ee also provided ene product with 92% ee in 92% yield. It was believed that, the high enatioselectivity obtained from this titanium-BINOL complex is the result of isostructural dinuclear chelate complex. The dimerized



Scheme 3.4 Titanium-BINOL Catalyzed Intermolecular Carbonyl Ene Reaction

dinuclear complexes may exist as (R,R) or (S,S) and meso-forms, and the authors believed that the less reactive meso-compound may allowing excess (R)-BINOL to form preferentially (R,R)-dimer after consumption of (S)-BINOL. The formed (R,R)-BINOL dimer complex resulting the high enantioselctivite homoallylic alcohol.^{15,16}

A Cu-catalyzed asymmetric carbonyl ene reaction was developed by Evans and coworkers, where the carbonyl-ene reaction of alkene **3-17** with ethyl glyoxylate using Cu-Box catalyst **3-19** and/or **3-20** provided homoallylic alcohol **3-18** in excellent yields and enatioselectivity (**Table 3.4**).¹⁷



Table 3.4 Cu-Catalyzed Asymmetric Carbonyl Ene Reaction

Intramolecular carbonyl ene reactions have been extensively utilized in the natural product synthesis. For example, in industrial process intramolecular carbonyl ene reaction for the facile and quicker production of menthol from  $\beta$ -pinene (**Scheme 3.5**). The established menthol synthesis starts from readily available



Scheme 3.5 Menthol Synthesis Using Type-I Intramolecular Ene Reaction

 $\beta$ -pinene **3-19** by converting it to (*R*)-citronellal **3-20**, which then was easily converted to L-isopulegol **3-22** via Type I carbonyl ene cyclization using Lewis acid ZnBr₂. The stereoselective formation of **3-22** can be explained by adopting chair like transition state **3-21**. L-Isopulegol **3-22** can be easily converted to

menthol 3-23 by hydrogenation.¹⁸



Scheme 3.6 Type II Ene Reaction for Carbocyles Synthesis

The Snider group and also the Yamamoto group reported the Lewis acid promoted carbonyl ene cyclization to form carbocyles in high selectivity (**Scheme 3.6**). In Snider's work, carbonyl-ene reaction of **3-22** in presence of dimethylaluminum chloride afforded *syn-* and *anti-*carbocyles **3-24a** and **3-24b** in 9:1 ratio.¹⁹ On the other hand, in Yamamoto's work the same carbonyl-ene substrate **3-22** provided *anti-*carbocyle **3-24b** in high selectivity upon treating with MABR.²⁰ The reversal of selectivity of these



Scheme 3.7 Type III Carbonyl Ene Cyclization in Total Synthesis of (-)-Laurenyne

reactions can be explained by two different transition states, where substrate 3-22 with AlMeCl₂ proceed

via transition state **3-23a** whereas that with MABR proceeds preferentially via boat-like transition state **3-23b**.²¹

A type III carbonyl ene cyclization was successfully employed by Overman in the total synthesis of (–)-laurenyne (**Scheme 3.7**). Acetal **3-25** in the presence of SnCl₄ afforded carbocylization product **3-27** via oxocarbonium intermediate **3-26**. The type III carbonyl ene cyclization is an enabling tool for the effective construction of the required oxocene core of (–)-laurenyne.²²

#### 3.2.3. Nitroso Ene Reaction

The most common method for acylnitroso ene reaction was first developed by the Keck and Kirby groups. In their two-step protocol, the generated acylnitroso intermediate was reacted with alkene under thermal condition.²³ Most recently, Read de Alaniz and coworkers developed an efficient acylnitroso ene reaction from the corresponding oximes,²⁴ where *N*-hydroxycarbamate **3-28** was treated with CuCl in the



**Table 3.5 Intramolecular Nitroso Ene Reaction** 

presence of base and air to provide intramolecular nitroso ene product **3-29** in excellent yield (**Table 3.5**). In this transformation, mild reaction conditions were employed for the formation of acylnitroso intermediate. Similarly, inter molecular nitrosoene reactions under optimized conditions, by using the excess alkene was achieved (**Table 3.6**). Srivastava and coworkers also developed an iron(II)-catalyzed intermolecular nitros ene reaction for  $\beta$ -alkyl-*N*-aryl aza Baylis–Hillman adducts in good to moderate yields.²⁵



**Table 3.6 Intermolecular Nitroso Ene Reaction** 

#### **3.2.4. Imino Ene Reaction**

The imino ene reaction is a powerful synthetic method to generate homoallylic and homopropargylic amines, although the imino ene reaction was less developed compared to the carbonyl ene. First, the intramolecular imono ene cyclization of silylallenes were extensively studied by Weinreb. This cyclization



**Scheme 3.8 Intramolecular Imino Ene Reaction** 

protocol cleverly utilized in the natural product synthesis (**Scheme 3.8**). The first report of intramolecular imino ene reaction employed two different diastereomers of silylallenes **3-33a** and **3-33b** having a tethered aldehyde. Treating these compounds with benzyl amine and Lewis acid under reflux afforded bicyclic homopropargyl amines **3-35a** and **3-35b** in good yield. The stereochemistry of the allene moiety was effectively transferred to the products via transition states **3-34a** and **3-34b** generate **3-35a** and **3-35b**, respectively. This intramolecular ene reaction was used in the total synthesis of papuamine, where

silylallene aldehyde **3-33a** was refluxed with propylenediamine to provide the tetracyclic bishomopropargyl amine **3-37** stereoselectively in 70% yield. The resulting dimeric product **3-37** was further converted to a natural product in three steps.²⁶ The intramolecular ene reaction was also applied to the total synthesis of (–)-monanine, (–)-coccinine, (–)-pancracine, (–)-brunsvigine and (–)-manthine alkaloids.²⁷



Scheme 3.9 Intamolecular Imino Ene Reaction in Total Synthesis of Papuamine

The intramolecular ene reaction of in situ generated iminium ion from alkenyl amines **3-39** with an aldehyde **3-40** in the presence of Lewis acid provided the cyclized product **3-41** in good to moderate yields (Scheme 3.10).²⁸



Scheme 3.10 Intramolecular Alkene Imino Ene Reaction



**Scheme 3.11 Intramolecular Direct Imino Ene Reaction** 

Recently, Chen and coworkers reported a Lewis acid-catalyzed intramolecular imino ene reaction of indoles. In this study the authors described alkene tethered indole **3-42** upon treating with of AlCl₃ provided cyclic product **3-44** with complete diastereoselectivity via intermediate **3-43** (**Scheme 3.11**).²⁹

Intermolecular imino ene reaction with alkenes and imines have also been reported. The best enantioselective imino ene reactions to obtain  $\alpha$ -imino esters was reported by Lectka and Jørgensen using a chiral Lewis acid copper-BINAP system (**Scheme 3.12**). In this reaction, high enantioselctivity was achieved up to 92% with good yields.³⁰



#### Scheme 3.12 Intermolecular Enantioselective Imino Ene Reaction

#### 3.2.5. Aryne Ene Reaction

The strong electrophilic nature of arynes invites investigations on their ene reaction behavior by several groups after the first report in 1969 by Oda. The application of this aryne ene reaction have also been used





in natural product synthesis. Recently, Lautens and coworkers reported an intramolecular aryne ene reaction with alkene tethered with bromobenzenes and its application to total synthesis of  $(\pm)$ -crinine (Scheme 3.13). The internal alkene containing aryl bromide 3-45, upon treatement with LDA, afforded aryne ene cyclization product 3-47 in good to moderate yields. For the synthesis of natural product, aryl bromide 3-48 was subjected to LDA to provide 3-49 in 50% yield.

Recently, The Lee and Hoye groups also reported the aryne ene reaction, the aryne has been generated from tetrayne and/or triyne via hexadehydro Diels-Alder (HDDA) reaction. In Lee's report, tetraynes **3-50** has been used to generate aryne **3-51** in refluxing toluene (**Table 3.7**), which underwent cyclization with a tethered alkene to form **3-52** in good to moderate yields depending on the ring size as well as the substituents in the ene tether.



**Table 3.7 Aryne Ene Reaction of Tetraynes** 

## 3.2.6. Singlet Oxygen Ene Reaction

Ene reactions with singlet oxygen were first discovered by Schenck. Due to the abundance of molecular oxygen, Schenck ene reaction has been studied extensively and also extensively used in organic synthesis. The products in Shenck ene reaction are allylic hydroperoxides, which are important synthetic intermediates

that can be used for various transformations. The most common transformations are reduction to allylic alochols (**Scheme 3.14**, eq 1), epoxidation with Ti(IV) (eq 2), and dehydration to form  $\alpha$ , $\beta$ -unsaturated carbonyl compounds (eq 3).



Scheme 3.14 Applications of Allylic Hydroperoxides

The regioselectivity in Schenck ene reaction can be controlled by using classical *cis*-effect, *gem*directing and non-bonded interactions of large group as well as the silyl and stannyl substituent effects. Stephenson and Rautenstrauch demonstrated the *cis*-substituent effect (**Table 3.8**, eq 1) in the Schenck ene reaction, where they have observed high selectivity by abstracting the hydrogen at more-hindered side (**3**-**53a** to **3**-**53d**).³¹ Based on the observed results, several models have been proposed. However, most of the models and the calculations data suggests the existence of interaction between the incoming singlet-oxygen and two allylic hydrogens that are on the same side highly preferred.³²

On the other hand, several groups have studied the large group germinal substituent effect in oxygen ene reaction (**Table 3.8**, eq 2). It was observed that the allylic hydrogens next to a large alkyl substituent are more reactive than the allylic hydrogen next to small alkyl substituent in the ene reaction of non-symmetrical *cis*- and *trans*-alkyl substituted alkenes (**3-54a** to **3-54c**). It was rationalized through a repulsive 1,3-nonbonded interactions of oxygen with small and large group in the transition state.³³

The highly regioselective allylic hydrogen abstraction from the group that is *geminal* to larger substituent of the double bond occurred predominately in the reaction with singlet oxygen (**Table 3.8**, eq

3).³⁴ The allylic hydrogen abstraction can also be affected by silicon-substituent, which is similar to the *germinal* large group effect (**Table 3.8**, eq 4).³⁵



Numerical values indicate percentage of double-bond formation in the ene adducts.

## **Table 3.8 Regioselectivity in Schenck Ene Reaction**

## 3.3. Ene Reaction of Silylallenes with Triplet Molecular Oxygen



Scheme 3.15 Autooxidation of Disubstituted Silylallenes

Suziki and coworkers briefly studied the oxidation of disubstituted silylallenes with triplet oxygen. In this transformation silylallene **3-57** in the presence of triplet oxygen at 45 °C afforded peroxide **3-58**, which



then was directly oxidized to ketone 3-59 in good to moderate yields (Scheme 3.15).³⁶

**Table 3.9 Autooxidation of Trisubstituted Silylallenes** 

Our group has extensively studied the autooxidation of trisubstituted silylallenes to afford propargy hydroperoxides (**Table 3.9**). Acyclic as well as cyclic ketones-derived silylallenes provided the corresponding peroxides in excellent yields (entries 1-3). The reaction with prenyl tethered silylallene **3-60d** delivered a mixture of peroxide and the double bond involved endoperoxides in different ratio's depending on the reaction conditions (entry 4). The mechanism for the formation of propargyl hydroperoxides is proposed to involve ene-type reaction by abstracting hydrogen selectively from the allenic carbon.³⁷

#### 3.4. Results and Discussion[†]

In general, ene reactions involve electron-rich ene-donors containing allylic C–H bonds and enophiles of electron-withdrawing  $\pi$ -systems, and the orbital alignment of the allylic C(*sp*³)–H bonds is an important factor (eq 1). Although less common, ene reactions involving the activation of C(*sp*²)–H bond that generate allene or alkyne products are reported (eq 2), where the involvement of allylic C–H bonds is to be nullified. To the best of our knowledge, the favorable participation of an allenic C(*sp*²)–H over an equally available allylic C(*sp*³)–H bond in Alder ene reaction has not been reported (eq 3).



Based on the reactivity of silyl allenes sporadically reported in literature, we surmised that the reactivity and selectivity of silylallenes toward ene reaction would be strongly influenced by the silyl substituent on the allene moiety whereby the less common reaction involving allenic  $C(sp^2)$ –H under typical environment might become more favorable. To explore this possibility, we examined the azodicarboxylate-mediated ene reaction profiles of various silyallenes derived from acyclic and cyclic ketones, and herein we report the general trend of the ene reactions of silylallenes favorably engaging allenic  $C(sp^2)$ –H over  $C(sp^3)$ –H bonds.

We commenced our investigation by examining the ene reaction of acyclic ketone-derived silvallenes

[†] Reproduced in part with permission from Sabbasani, V. R.; Lee, D. "Facile Alder-Ene Reactions of Silylallenes Involving an Allenic C(*sp*²)–H Bond" *Chem.–Eur. J.* **2015**, *21*, 17210–17214.

**3-62a–g** with systematic variation in their structural characteristics (**Table 3.10**). Under typical reaction conditions (1.2 equiv diisopropyl-azodicarboxylate, CH₂Cl₂, 28 °C, 16–24 h), tri- and disubstituted silylallenes **3-62a** and **3-62b** provided tertiary and secondary propargylic hydrozodicarboxylate **3-63a** and **3-63b** in 76 and 63% yield, respectively, without forming **3-64a** and **3-64b** (entries 1 and 2). The ene reaction of silylallenes **3-62c** and **3-62d** with a prenyl group tethered with one or two methylene units provided products **3-63c** and **3-62d** in 68 and 55% yields (entries 3 and 4). Ene reaction product of the



^[a] Conditions: diisopropylazodicarboxylate (1.2 equiv), CH₂Cl₂, 28 °C, 16–24 h. ^[b] Isolated yields after purification.

#### Table 3.10 Alder-Ene Reaction of Silylallenes with Azodicarboxylate

tethered prenyl group was not observed in appreciable amounts. Different silyl groups other than trimethylsilyl (SiMe₃) in allene **3-62e** (SiEt₃) and **3-63f** (SiMe₂t-Bu) did not affect the reaction efficiency and thus products **3-63e** and **3-63f** were obtained in 77 and 72% yields, respectively (entries 5 and 6). Similarly, silylallene **3-62g** containing a cyclopropyl group afforded **3-63g** in 72% yield (entry 7).

The most salient features of these ene reactions in **Table 3.10** is the selective participation of the allenic  $C(sp^2)$ –H bond next to the silyl group without involvement of allylic  $C(sp^3)$ –H bonds. The contrasting reactivity of the corresponding alkyl group-substituted allenes clearly demonstrated with the ene reaction of **3-62h** and **3-62i** (Scheme 3.16). When subject to the identical conditions, *t*-butyl and *n*-butyl-substituted allenes **3-62h** and **3-62i** provided **3-64h-1** and **3-64h-b** (2:1) in 93% yield, and **3-64i-1** and **3-64i-b** (2:1) in 91% yield, respectively. The ene reaction products **3-63h** and **3-63i** involving allenic  $C(sp^2)$ –H bonds were not observed. This contrasting ene reaction preference of **3-62h** and **3-62i** compared to silylated allenes implies a strong activating role of the silyl substituent for the Alder ene reactions involving allenic  $C(sp^2)$ –H bonds.



Scheme 3.16 Alder-Ene Reactions of Alkyl-Substituted Allenes with Azodicarboxylate

The delicate influence of the substituent on allenes for their reactivity was further illustrated by a deuterium-labeled allene **3-62a-***d*. Compared to **3-62a** that exclusively engaged allenic  $C(sp^2)$ –H for its ene reaction within 20 h, generating **3-63a**, the corresponding mono-deuterated substrate **3-62a-***d* provided a mixture of **3-64a**-*d* and **3-64a**-*d* in a 1:3 ratio after 48 h. This stark contrast in reactivity between **1a** and **3-62a**-*d* clearly indicates that silylallene **3-62a**-*d* has significantly lower reactivity for the ene reaction involving allenic  $C(sp^2)$ –H bond (high deuterium kinetic isotope effect), such that the other mode of ene reaction involving allylic C–H bonds outcompete to afford **3-64a**-*d* predominantly.

To understand the substituent-dependent ene reactivity and selectivity of allenic  $C(sp^2)$ –H and allylic  $C(sp^3)$ –H bonds, Density Functional Theory (DFT) calculations for the reactions of **3-62a** and **3-62h** were carried out with a slightly simplified azodicarboxylate (CO₂Me instead of CO₂*i*-Pr) (**Figure 3.2**). Optimization and frequency calculations were performed in CH₂Cl₂ at the (SMD)M06-2X/6-311++G(2d,p) level of theory.³⁸ The calculated free energy values ( $\Delta G$ ) are in good agreement with the experimental results where the silyl-substituted transition state **a-TS-H**_b is preferred to **a-TS-H**_a by 2.3 kcal/mol for **3-62a**, leading favorably to **3-63a** (**Figure 3.4.1a**). On the contrary, the reaction of *tert*-butyl-substituted allene **3-62h** proceeds via **h-TS-H**_a, which is 6.1 kcal/mol lower in energy than **h-TS-H**_b, thus only **3-64h** was obtained.

Based on these geometric structures, we surmised that the activation energy for the reaction with allylic  $C(sp^3)$ -H bond via **TS-H**_a should be determined predominately by the interaction between N₂ and C₂, and thus the electron-rich allene should be more reactive. This is further supported by the fact that the relative energy for **h-TS-H**_a is 1.2 kcal/mol lower than that for **a-TS-H**_a, as natural population analysis (NPA) showed the C₂ atom is less positively charged in **1h** than in **1a** (**Figure 3.2c**).³⁹ On the other hand, the energy required for allenic  $C(sp^2)$ -H activation should be more relevant to the strength of the C₁-H_b bond, which is substantially being broken in **TS-H**_b. Theoretical support for this supposition was obtained by the calculated bond dissociation energies in **Figure 3.2c**, where the D₀ (C₁-H_b) is quite close to the D₀ (C₄-H_a) for *t*-butyl-substituted allene **1h**, and only marginal variation in D₀ (C₄-H_a) is predicted upon changing





Substituted Allenes with Azodicarboxylate

*t*-butyl to SiMe₃ for **1a**. On the other hand, lowering as much as 5 kcal/mol in D₀ (C₁–H_b) was calculated for **1a**, indicating dramatic activation of the  $\alpha$ -C(*sp*²)–H bond by the silyl group.⁴⁰

The relatively low bond dissociation energy of the  $\alpha$ -C(*sp*²)–H bond in silylallenes is believed to be a major factor rendering different reactivity and selectivity for silylallenes in their Alder ene reaction, otherwise **TS-H**_b would be disfavored due to the higher energy required for distortion of the silylated allene moiety and its hybridization pattern change.

Next, we examined the reactivity of cyclic silvallenes 3-62j-t derived from cyclic ketones (Table **3.11**), and the results of typical substrates were subsequently validated by DFT calculations (Table 3.12). Under the typical conditions, 3-phenylcyclobutanone-derived allene 3-62j generated two ene reaction products 3-63j and 3-64j with a 4.6:1 ratio in 76% yield (entry 1), but cyclopentanone derived allene 3-62k provided only 3-64k in 92% yield without forming 3-62k (entry 2). The calculated energy difference between TS-H_a and TS-H_b for 3-62k was found to be 1.6 kcal/mol, favoring 3-64k over 3-63k, which is in qualitative agreement with the observed ratio of these products. Cyclohexanone-derived allenes 3-621 provided **3-631** and **3-641** in 90% combined yield with a 1.8:1 ratio (entry 3). The low selectivity in this reaction is consistent with the marginal energy difference between l-TS-H_b (28.5 kcal/mol) and l-TS-H_a (29.1 kcal/mol). The reaction of more substituted cyclohexanone derived silvallenes **3-62m** and **3-62n** showed much higher selectivity but in opposite preference, generating only 3-63m and 3-64n in good yields (entries 4 and 5). These contrasting behavior of 2-62m and 2-62n can be explained by the steric effect of their substituents in the vicinity of the allene moiety. Probably, the isopropyl group in **2-62m** significantly hinders the approach of the reacting azodicarboxylate to the allylic hydrogen prohibiting the formation of 3-64m. On the other hand, the quaternary carbon on the bicyclo[4.1.0]heptane system in 2-62n would hiders the formation of the incipient C-N bond at the vicinity, prohibiting the formation of 2-63m. Cycloheptylcontaining silylallene **3-620** afforded **3-630** and **3-640** in 75% combined yield with a 1:2 ratio (entry 6), yet the corresponding t-butyl and n-butyl substituted allenes 3-62p and 3-62q afforded 3-64p and 3-64q exclusively (entries 7 and 8). These examples further bolster the conclusion that the silyl group promotes


Table 3.11 Ene Reaction Selectivity of Cycloalkyl-Based Silylallenes

Allene	$\Delta G(TS-H_a)$	$\Delta G(TS-H_b)$	$\Delta\Delta G^{a}$	2:3
3-62k	25.2	26.8	-1.6	0:1
3-621	29.1	28.5	0.6	1.8 : 1
3-62r	26.9	25.7	1.2	1:0
3-62s	26.0	31.9	-5.9	0:1

Table 3.12 Computational Results for Selected Allenes (in kcal/mol)

the ene reaction with the allenic  $C(sp^2)$ –H bond, which is further demonstrated by the contrasting reactivity between cyclooctane-based allenes **3-62r** and **3-62s** (entries 9 and 10). The reaction of silyl groupcontaining allene **3-62r** engaged an allenic  $C(sp^2)$ –H bond, affording product **3-63r** in 72% yield (entry 9), while that of *t*-butyl-containing allene **3-62s** afforded an alternative ene product **3-64s** (80% yield) involving an allylic  $C(sp^3)$ –H bond (entry 10). The contrasting behaviors of **3-62r** and **3-62s** were reproduced by computations, where the activation energy for the allenic  $C(sp^2)$ –H bond of **3-62r** is 1.2 kcal/mol lower than that with the allylic  $C(sp^3)$ –H bond. On the other hand, *t*-butyl-substituted allenes **3-62s** showed the opposite preference by 5.9 kcal/mol, which is consistent with the formation of **3-64s** as the sole product. Cyclooctadiene-derived silylallene **3-62t** containing an extra double bond provided **3-63t** in 84% yield without any other product involving the activation of its allylic C–H bonds (entry 11).





The concerted nature of the Alder ene reaction of silylallenes with azodicarboxylate was illustrated by the reaction of chiral silylallene **3-62u** (optically pure) (**Scheme 3.17**). After the conversion of **3-63u** (the *e.e* was not determined at this stage) to pyrazoline **3-65u**, its enantiomeric ratio was determined to be 92:8, which suggests that the ene reaction proceeded mainly in a concerted manner.⁴¹ The result not only validates the DFT predictions for the concerted mechanism but also bodes well for potential utility of the process to construct various chiral molecules containing an amino-tertiary center.⁴²



Scheme 3.18 Ene Reactions of Silylallenes with Ethyl Glyoxylate and Benzyne

The general trend of the ene reaction of representative silylallenes **3-62u** and **3-62r** was further illustrated by other enophile such as ethyl glyoxylate and benzyne⁴³ (**Scheme 3.18**). For linear silylallene **3-62u**, ene reactions with both ethyl glyoxylate and benzyne enophiles preferred to generate allenic  $C(sp^2)$ – H ene product **3-66u** and **3-67u** in 62% and 68% yield. On other hand, from the corresponding cycloalkyl-substituted silylallene **3-62r**,  $C(sp^3)$ –H ene product **3-68r** with ethyl glyoxylate and **3-69r** with benzyne

became major products. On other hand, from the corresponding cycloalkyl-substituted silylallene **3-62r**, the reaction with ethyl glyoxylate provided only protodesilylated  $C(sp^3)$ —H ene product **3-68r**, whereas that with benzyne delivered protodesilylated  $C(sp^2)$ —H ene product **3-70r** as a major product.

## 3.5. Summary

In summary, we have observed an unexpected ene reaction selectivity of silylallenes with azodicarboxylates. In general, regardless of the substituent pattern, acyclic ketone-derived silylallenes promote ene reaction with an allenic  $C(sp^2)$ –H bond exclusively. On the other hand, the selectivity between allenic  $C(sp^2)$ –H vs allylic  $C(sp^3)$ –H bonds in cyclic ketone-derived silylallenes are significantly affected by the ring size and the substituent pattern in the vicinity of the allene moiety. Comparison of the reactivity of silylallenes with the corresponding alkyl-substituted allenes clearly indicates that silyl group has a critical role for the allenic  $C(sp^2)$ –H bond to participation in the ene reaction. DFT calculations provide further insight into these reactions that the distortion energies for both the reacting allene and azodicarboxylate moieties to reach the transition state is one of the major factors that dictate the selectivity between the two reaction pathways.

#### **3.6. Experimental Details**

### 3.6.1. General Information: See chapter 1 section 1.6.1 for general information

## 3.6.2. General Procedure for Ene Reaction of Silylallenes

Ene Reaction with Diisopropyl Azodicarboxylate: Silylallene 3-62a (100 mg, 0.43 mmol) and diisopropyl azodicarboxylate (0.1 mL, 0.52 mmol) were dissolved in  $CH_2Cl_2$  in a thick-walled Schlenk tube equipped with a magnetic stir bar. The reaction mixture was degassed briefly under vacuum at -78 °C, and stirred at 28 °C for 20 h. The tube was opened to air at room temperature and the solvent was removed under reduced pressure. Product 3-63a (yield 76%) was isolated by flash column chromatography (EtOAc/hexanes, 1:4) on silica gel.

Ene Reaction with Ethyl Glyoxylate: Titanium tetrachloride (31  $\mu$ L, 0.29 mmol) in CH₂Cl₂ (3 mL) was added to THF (3 mL) dropwise at 0 °C. The mixture was warmed to room temperature over 10 min, which than concentrated and the residue was redissolved in CH₂Cl₂ (5 mL). To this solution, were added ethyl glyoxylate (50% in toluene, 75  $\mu$ L, 0.38 mmol) followed by silylallene **3-62u** (40 mg, 0.19mmol) at 0 °C. The mixture was stirred for 20 min at the same temperature, quenched with saturated aqueous sodium bicarbonate, extracted with dichloromethane (2x10 mL), and dried over magnesium sulfate. The filtrate was concentrated and purified by column chromatography (EtOAc/hexanes, 5:1) to give product **3-66u** in 62% yield.

Ene Reaction with Ethyl Benzyne: A solution containing 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (92  $\mu$ L, 0.38 mmol), silylallene 3-62u (40 mg, 0.19 mmol) and CsF (58 mg, 0.38 mmol) in CH₃CN (3 mL) was stirred at 0 °C for 5 h. The reaction mixture was concentrated and the residue was redissolved in EtOAc (15 mL), washed with water (8 mL) and dried over magnesium sulfate. The filtrate was concentrated and purified by column chromatography (EtOAc/hexanes, 20:1) to give product 3-66u in 68% yield.

### 3.6.3. Selected Characterization Data





128.6, 128.3, 125.9, 102.5, 89.4, 70.1, 50.8, 35.1, 32.2, 22.0, 0.0; HRMS (ESI) calcd for C₂₂H₃₅N₂O₄Si [M+1]⁺ 419.2366, found 419.2359.

**3-63c**: (colorless oil, 68% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.40-6.37 (bs, 1H), 5.12-5.11 (m, 1H), 4.94-4.88 (m, 2H), 2.37-2.29 (m, 2H), 2.01-2.00 (m, 2H) ⁱPrO₂C^{^N} ĊO₂ⁱPr 3-63c 1.72-1.71 (s, 6H), 1.67 (s, 3H), 1.61 (s, 1H), 0.14 (s, 9H); ¹³C NMR (125 MHz,  $CDCl_3$ )  $\delta$  158.7, 139.8, 126.7, 106.5, 89.4, 69.8, 69.3, 63.6, 39.8, 29.9, 25.6, 24.1, 24.0, 22.0, 17.5, 0.0; HRMS (ESI) calcd for C₂₁H₃₉N₂O₄Si [M+1]⁺ 411.2679, found 411.2679.

**3-63d**: (colorless oil, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.42-6.36 (bs, SiMea 1H), 5.11 (m, 1H), 4.94-4.90 (m, 2H), 2.25-1.82 (m, 6H), 1.69 (s, 6H), 1.58 ⁱPrO₂C^NN^H ĊO₂ⁱPr (s, 3H), 1.26-1.22 (m, 12H), 0.13 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 3-63d 155.9, 131.6, 124.4, 106.83, 88.7, 69.6, 63.2, 39.9, 28.0, 26.8, 25.7, 25.3, 22.0, 17.7, 0.0; HRMS (ESI) calcd for C₂₂H₄₁N₂O₄Si [M+1]⁺ 411.2836, found 425.2838.



**3-63e**: (colorless oil 77% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.44-6.16 (bs, 1H), 4.96-4.88 (m, 2H), 2.35-1.76 (m, 2H), 1.70 (s, 3H), 1.50-1.46 (m, 2H), 1.28-1.21 (m, 18H), 0.97 (t, J = 7.9 Hz, 9H), 0.87 (t, J = 6.1 Hz, 3H), 0.56 (q, J = 7.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  155.7, 154.4, 108.0, 86.1, 69.7, 63.7, 40.2, 31.7, 29.4, 29.1,

26.8, 25.0, 22.5, 22.0, 21.9, 14.0, 7.4, 4.4; HRMS (ESI) calcd for  $C_{24}H_{47}N_2O_4Si [M+1]^+$  455.3305, found 455.3299.



**3-63f**: (colorless oil, 72% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.44-6.20 (bs, 1H), 4.91-4.86 (m, 2H), 2.27-1.75 (m, 2H), 1.67 (s, 3H), 1.56-1.44 (m,

2H), 1.25-1.19 (m, 18H), 0.99 (s, 9H), 0.85 (t, *J* = 6.1 Hz, 3H), 0.04 (s, 6H);

¹³C NMR (125 MHz, CDCl₃) & 155.7, 107.3, 87.0, 69.7, 63.5, 40.1, 31.6, 29.3, 29.1, 26.7, 26.3, 26.0, 22.5, 22.0, 21.9, 16.5, 14.0, -4.6; HRMS (ESI) calcd for C₂₄H₄₇N₂O₄Si [M+1]⁺ 455.3305, found 455.3300.

SiMe₃ **3-63g**: (colorless oil, 72% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.45-6.23 (bs, 1H), ¹PrO₂C^{-N}N^{-H} **3-63g** ^{CO₂iPr (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  156.0, 103.4, 88.1, 69.4, 63.8, 29.7, 28.0, 27.8, 22.0, 18.5, -0.0; HRMS (ESI) calcd for C₁₈H₃₃N₂O₄Si [M+1]⁺ 369.2210, found 369.2215.}

 $\begin{array}{c} CO_{2}^{i}Pr \\ PrO_{2}C \\ N \\ N \\ H \\ + \\ 3-64h-l \\ + \\ 2:1 \\ 3-64h-b \\ + \\ 3-64h-b \\ + \\ 2:1 \\ 3-64h-b \\ + \\ 3-64h-b \\ + \\ 3-64h-b \\ + \\ 3-29 \\ (m, 2H), \\ 1.85-1.81 \\ (bs, 3H), \\ 1.10 \\ (s, 9H), \\ 2.45-2.41 \\ (m, 2H), \\ 1.04 \\ (s, 9H); \\ 3-64h-1 \\ \& 3-64h-b \\ + \\ 3-64h-b \\$ 

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$ 

SiMe₃ **3-63j**: (colorless oil, 62% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.31-7.20 (m, 5H), Ph- $CO_2^{i}Pr$  6.36 (bs, 1H), 5.02-4.96 (m, 2H), 3.73 (bm, 1H), 3.49-3.46 (m, 1H), 2.94 (m, 1H), **3-63j** H^{-N}CO₂ⁱPr 2.62-2.47 (m, 2H), 1.29-1.27 (m, 12H), 0.18 & 0.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  156.6, 144.5, 128.4, 126.8, 126.3, 126.1, 107.1, 87.4, 70.8, 69.8, 55.7, 33.0, 32.7, 29.7, 22.0, 0.0; HRMS (ESI) calcd for C₂₃H₃₅N₂O₄Si [M+1]⁺ 431.2366, found 431.2368.

91



142.8, 136.4, 128.4, 128.3, 126.8, 126.3, 126.1, 110.0, 87.4, 70.8, 70.5, 69.8, 55.7, 43.4, 41.3, 33.0, 32.7, 21.9, 0.0.

 $\begin{array}{c} {}_{\mathsf{CO_2}^{\mathsf{i}}\mathsf{Pr}} & \mathbf{3-64k:} \text{ (colorless oil, 92\% yield); }^{\mathsf{I}}\mathsf{H} \,\mathsf{NMR} \,(500 \,\mathsf{MHz},\mathsf{CDCl_3}) \,\delta \,6.53-6.36 \,(\mathsf{bs}, 1\mathsf{H}), 5.80 \,\mathsf{M}_{\mathsf{Pr}} \\ & (\mathsf{m}, 1\mathsf{H}), 5.44 \,(\mathsf{bs}, 1\mathsf{H}), 4.99-4.90 \,(\mathsf{m}, 2\mathsf{H}), 2.40-2.37 \,(\mathsf{m}, 4\mathsf{H}), 1.94-1.89 \,(\mathsf{m}, 2\mathsf{H}), 1.31-1.22 \,(\mathsf{m}, 12\mathsf{H}), 0.06 \,(\mathsf{s}, 9\mathsf{H}); \, {}^{\mathsf{13}}\mathsf{C} \,\mathsf{NMR} \,(125 \,\mathsf{MHz}, \mathsf{CDCl_3}) \,\delta \,155.7, \,148.6, \,141.3, \,132.7, \\ & 119.4, 70.3, 34.8, 32.7, 23.5, 22.0, 21.9, 0.3; \,\mathsf{HRMS} \,(\mathsf{ESI}) \,\mathsf{calcd} \,\mathsf{for} \,\mathsf{C}_{18}\mathsf{H}_{33}\mathsf{N}_2\mathsf{O}4\mathsf{Si} \,[\mathsf{M}+1]^+ \end{array}$ 

369.2210, found 369.2214.





383.2366, found 383.2372.

 $\begin{array}{cccc} & \mathbf{3-63m:} \ (colorless \ oil, 73\% \ yield); \ ^1H \ NMR \ (500 \ MHz, CDCl_3) \ \delta \ 6.43 \ and \\ & 6.11 \ (s, 1H), 4.91-4.86 \ (m, 2H), 3.92-3.91 \ (m, 1H), 2.84-2.73 \ (m, 1H), 2.43-\\ & 6.11 \ (s, 1H), 4.91-4.86 \ (m, 2H), 3.92-3.91 \ (m, 1H), 2.84-2.73 \ (m, 1H), 2.43-\\ & 6.11 \ (s, 1H), 4.91-4.86 \ (m, 2H), 3.92-3.91 \ (m, 1H), 2.84-2.73 \ (m, 1H), 2.43-\\ & 6.13 \ (m, 1H), 2.15-1.94 \ (m, 2H), 1.72-1.45 \ (m, 2H), 1.29-1.14 \ (m, 13H), \\ & 0.90-0.97 \ (m, 3H), 0.9 \ (s, 9H), 0.86-0.84 \ (m, 6H), 0.13 \ (s, 9H), 0.03 \ (s, 3H), 0.02 \ (s, 3H); \ ^{13}C \ NMR \ (125 \ MHz, CDCl_3) \ \delta \ 155.4, 104.9, 93.6, 72.3, 70.2, 69.4, 39.4, 39.0, 38.9, 37.4, 36.9, 36.6, 35.2, 34.9, 31.9, 20.1, \\ \end{array}$ 

22.1, 20.0, 19.3, 18.3, 14.2, 0.1, -4.6. HRMS (ESI) calcd for C₂₉H₅₇N₂O₅Si₂ [M+1]⁺ 569.3806, found 569.3801.

**3-64n**: (colorless oil, 22h, 91% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.50 & 6.29 (bs, CO₂ⁱPr N^NH 1H), 5.60-5.54 (m, 2H), 4.96-4.92 (m, 2H), 4.74-4.72 (m, 2H), 2.47 (bm, 1H), 2.01-1.99 (bm, 1H), 1.70 (s, 3H), 1.66-1.64 (m, 1H), 1.23-1.22 (m, 12H), 1.14-1.13 (m, 1H), 1.08 SiMe₃ 3-64n (s, 3H), 0.82 (m, 1H), 0.56 (m, 1H), 0.07 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 154.3, 147.4, 140.7, 129.6, 119.8, 119.7, 110.5, 70.3, 69.4, 39.4, 24.0, 22.6, 22.1, 22.0, 21.9, 21.2, 17.6, 15.4, 0.4; HRMS (ESI) calcd for  $C_{24}H_{41}N_2O_4Si [M+1]^+ 449.2836$ , found 449.2845.

SiMea `Ń⊂CO2ⁱPr н[́] `CO₂ⁱPr 3-630

**3-630**: (colorless oil, 25% yield); ¹H NMR (500 MHz, CDCl₃) & 6.37 & 6.14 (s, 1H), 4.96-4.91 (m, 2H), 2.35-2.06 (m, 4H), 1.66-1.53 (m, 8H), 1.25-1.21 (m, 12H), 0.15 (s, 9H).



**3-640**: (colorless oil, 50% yield); ¹H NMR (500 MHz, CDCl₃) & 6.49 (bs, 1H), 5.32 (t, J = 5.3 Hz, 1H), 5.32 (bs, 1H), 4.97-4.89 (m, 2H), 2.16 (m, 4H), 1.71-1.70 (m, 2H), 1.55-1.54 (m, 4H), 1.23-1.22 (m, 12H), 0.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.7, 141.5, 134.5, 118.3, 117.4, 70.3, 69.6, 31.9, 31.0, 29.0, 26.4, 26.3, 22.1, 22.0, 0.7; HRMS (ESI) calcd for C₂₀H₃₇N₂O₄Si [M+1]⁺ 397.2523, found 397.2524.

CO₂ⁱPr ⁱPrO₂C_N[']N_H t-Bu 3-64p

**3-64p**: (colorless oil, 25h, 94% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.33 (bs, 1H), 5.73 (t, J = 6.2 Hz, 1H), 5.48 (bs, 1H), 4.95 - 4.89 (m, 2H), 2.18 - 2.12 (m, 4H), 1.71 - 1.67 (m, 2H), 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.61 - 1.62H), 1.52 (m, 4H), 1.25-1.21 (m, 12H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.3, 138.8, 138.2, 137.9, 135.6, 69.9, 32.4, 32.0, 31.8, 30.9, 28.8, 26.8, 26.6, 22.0;

HRMS (ESI) calcd for C₂₁H₃₇N₂O₄ [M+1]⁺ 381.2753, found 381.2758.



**3-64q**: (colorless oil, 28h, 78% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.46, 5.81 (t, J = 6.4 Hz, 1H), 5.51 (bs, 1H), 4.95-4.89 (m, 2H), 2.18-2.11 (m, 6H), 1.74-1.71 (m, 2H), 1.52-1.49 (m, 4H), 1.33-1.28 (m, 4H), 1.28-1.20 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H);  ${}^{13}C$  NMR (125 MHz, CDCl₃) δ 155.6, 141.2, 138.2, 134.8, 127.2, 70.0, 69.5, 32.4, 31.8, 31.2, 28.7, 28.0, 26.9, 26.4, 22.1, 21.9, 21.7, 13.9; HRMS (ESI) calcd for C₂₁H₃₇N₂O₄ [M+1]⁺ 381.2753, found 381.2756.

SiMe₃ **3-63r**: Colorless oil (72% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.36 & 6.14 (s, 1H), N^{-CO₂ⁱPr H^{-N}_{CO₂ⁱPr **3-63r** 1.21 (m, 12H), 0.13 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 107.3, 88.4, 69.7, 65.9, 35.2, 33.8, 28.3, 27.5, 24.4, 22.0, 22.5, 22.1, 0.0; C₂₁H₃₉N₂O₄Si [M+1]⁺ 411.2679, found 411.2672.}}



**3-64s**: (colorless oil, 25h, 80% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.29 (bs, 1H), 5.64-5.62 (bs, 1H), 5.57 (t, *J* = 8.1 Hz, 1H), 4.94-4.86 (m, 2H), 2.22 (m, 2H), 2.13-2.09 (m, 2H), 1.51-1.44 (m, 8H), 1.22-1.16 (m, 12H), 1.02 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 140.0, 138.5, 134.9, 134.0, 69.8, 69.4, 32.3, 30.8, 29.6, 29.5, 28.9, 26.5,

26.3, 21.9; HRMS (ESI) calcd for  $C_{22}H_{39}N_2O_4$  [M+1]⁺ 395.2910, found 395.2903.

SiMe₃ **3-63t**: (colorless oil, 84% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.45-6.24 (bs, 1H), N^{-CO₂ⁱPr 3-63t 5.77-5.76 (m, 1H), 5.53-5.47 (m, 1H), 4.94-4.88 (m, 2H), 2.50-2.31 (m, 3H), 2.12-1.76 (m, 6H), 1.52-1.47 (m, 1H), 1.25-1.20 (m, 12H), 0.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 131.3, 128.8, 104.8, 93.0, 70.0, 69.5, 66.9, 37.9, 34.9, 34.4, 24.8, 24.0, 23.9, 23.4, 23.0, 22.1, 22.0, 0.0.}





72.0, 70.6, 69.5, 31.7, 29.3, 24.2, 22.5, 22.1, 21.9, 14.0; HRMS (ESI) calcd for C₁₈H₃₃N₂O₄ [M+1]⁺ 341.2440, found 341.2438.



14.3, 14.1, 0.2; HRMS (EI) calcd for  $C_{17}H_{32}O_3Si$  [M]⁺312.2121, found 312.2126.

**3-68r**: (colorless oil, 58% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.91 (t, J = 8.2 Hz, 1H), 5.26 (s, 1H), 5.15 (s, 1H), 4.86 (d, J = 5.3 Hz, 1H), 4.22 (q, J = 7.1 Hz, 2H), 3.11 (d, J = 5.3 Hz, 1H), 2.41-2.39 (m, 2H), 2.20-2.18 (m, 2H), 1.54-1.45 (m, 8H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  174.2, 145.8, 137.4, 129.3, 114.3, 72.9, 61.9, 30.1, 28.7, 27.4, 27.0, 26.4, 26.0, 14.1; HRMS (EI) calcd for C₁₄H₂₂O₃ [M]⁺ 238.1563, found 238.1635.

SiMe₃ **3-67u**: (colorless oil, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.54 (m, Ph **3-67u** 2H), 7.36-7.31 (m, 3H), 1.79-1.74 (m, 2H), 1.56 (s, 3H), 1.23 (m, 8H), 0.86 (t, J = 10.0 Hz, 3H), 0.38 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 128.1, 127.5, 126.4, 112.2, 87.4, 44.2, 36.3, 31.9, 30.3, 29.5, 25.4, 22.7, 14.1; HRMS (EI) calcd for C₁₉H₃₀Si 286.2117, found 286.2122.

 $\begin{array}{l} \textbf{3-69r: (colorless oil, 46\% yield); ^{1}H NMR (500 MHz, CDCl_3) \delta 7.39-7.37 (m, 2H), 7.30-5.569 \\ \textbf{3-69r} \end{array} \\ \begin{array}{l} \textbf{3-69r: (colorless oil, 46\% yield); ^{1}H NMR (500 MHz, CDCl_3) \delta 7.39-7.37 (m, 2H), 7.30-7.37 (m, 2H), 7.30-7.36 (m, 2H), 7.24 (m, 3H), 5.73 (t, <math>J = 8.1 \text{ Hz}, 1\text{H}$ ), 5.57 (s, 1H), 2.26-2.22 (m, 2H), 2.16-2.14 (m, 2H), 1.67-1.61 (m, 4H), 1.52-1.50 (m, 2H), 1.28-1.26 (m, 2H), 0.10 (s, 9H); ^{13}C NMR \\ \textbf{(125 MHz, CDCl_3)} \delta 161.4, 143.6, 142.3, 129.6, 128.3, 127.7, 127.6, 127.3, 30.7, 29.4, 29.2, 26.5, 26.3, 26.2, 0.6; HRMS (EI) calcd for C₁₉H₂₈Si [M]⁺ 284.1960, found 284.1947. \end{array}

**3-70r**: (colorless oil, 33% yield); ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.58 (d, J = 8.0 Hz, 2H), Ph 7.33 (t, J = 7.7 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 2.36 (s, 1H), 2.12-2.00 (m, 4H), 1.88-1.85 (m, 2H), 1.63-1.62 (m, 8H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  148.8, 128.2, 126.3, 90.5, 70.9, 44.1, 37.0, 28.3, 24.3, 23.2; HRMS (EI) calcd for C₁₆H₂₀ [M]⁺ 212.1565, found 212.1566.

## 3.7. References

- (1) (a) Alder, K.; Pascher, F.; Schmidt, H., *Berichte der Deutschen Chemischen Gesellschaft* 1943, 76, 27. (b) Nobel Lectures-Chemistry, 1942-1962. *Elsevier: Amsterdam* 1964, p 253- 305.
- (2) Woodward, R. B.; Hoffmann, R. J. Am. Chem. Soc. 1965, 87, 2511.
- (3) Hoffmann, H. M. R. Angew. Chem., Int. Ed. 1969, 8, 556.
- (4) (a) Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4693. (b) Oppolzer, W.; Snieckus, V. Angew. Chem. Int., Ed. 1978, 17, 476. (c) Stephenson, L. M.; Grdina, M. J.; Orfanopoulos, M. Acc. Chem. Res. 1980, 13, 419. (d) Dubac, J.; Laporterie, A. Chem. Rev. 1987, 87, 319. (e) Mikami, K.; Shimizu, M. Chem. Rev. 1992, 92, 1021. (f) Borzilleri, R. M.; Weinreb, S. M. Synthesis 2005, 347. (g) Adam, W.; Krebs, O. Chem. Rev. 2003, 103, 4131. (h) Clarke, M.; France, M. B. Tetrahedron 2008, 64, 9003.
- (5) (a) Huisgen, R.; Pohl, H. Chem. Ber. 1960, 93, 527. (b) Thaler, W. A.: Franzus. B. J. Om. Chem. 1964, 29.2226. (c) Fitzsimmons, B. J.; Leblanc, Y.; Rokach, J. J. Am. Chem. Soc. 1987, 109, 286.
- (6) Leblanc, Y.; Zamboni, R.; Bemstein, M. A. J. Org. Chem. 1991, 56, 1971.
- (7) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5261.
- (8) Aburl, P. S.; Zhuang, W.; Hazell, R. G.; Jørgensen, K, A. Org. Biomol. Chem. 2005, 3, 2344.
- (9) (a) Baran, P. S.; Guerreo, C. A.; Corey, E. J. Org. Lett. 2003, 5, 1999. (b) Baran, P. S.; Guerreo, C. A.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 5628.
- (10) (a) Lee, C. B.; Taylor, D. R. J. Chem. Soc., Perkin Trans. 1 1977, 1463. (b) Lee, C. B.; Taylor, D. R. J. Chem. Soc., Perkin Trans. 1 1978, 1161.

- (11) Laporterie, A.; Dubac, J.; Manuel, G.; Déléris, G.; Kowalski, J.; Dunogués, J.; Calas, R. *Tetrahedron* 1978, 34, 2669.
- (12) (a) Whitesell, J. K.; Bhattacharya, A.; Aguilar, D.A; Henke, K. J. Chem. Soc. Chem. Commun. 1982, 989. (b) Whitesell, J.K. Acc. Chem. Res. 1985, 18, 280.
- (13) Maruoka, K.; Hoshino, Y.; Shirasaka, T.; Yamamoto, H. Tetrahedron Lett. 1988, 29, 3967.
- (14) (a) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1989, 111, 1940. (b) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112, 3949.
- (15) Terada, M.; Matsukawa, S.; Mikami, K. Chem. Commun. 1993, 327.
- (16) (a) Mikami, K.; Terada, M.; Sawa, E.; Nakai, T. *Tetrahedron Lett.* 1991, *32*, 6571. (b) Mikami, K.;
  Sawa, E.; Terada, M. *Tetahedron:Asymmetry* 1991, *2*, 1403.
- (17) (a) Evans, D. A.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T.; Tregay, S. W. J. Am. Chem. Soc. 1998, 120, 5824. (b) Kanemasa, S.; Oderaotoshi, Y.; Sakaguchi, S.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran, D. P. J. Am. Chem. Soc., 1998, 120, 3074. (c) Evans, D. A.; Johnson, J. S.; Burgey, C. S.; Campos, K. R. Tetrahedron Lett. 1999, 40, 2879.
- (18) Nakatano, Y.; Kawashima, K. Synthesis 1978, 147.
- (19) Johnston, M. I.; Kwass, J. A.; Beal, R. B.; Snider, B. B. J. Org. Chem. 1987, 52,5419.
- (20) (a) Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1990, 112, 9011. (b) Ooi, T.; Maruoka, K.; Yamamoto, H. Tetrahedron 1994, 50, 6505.
- (21) (a) Braddock, D. C.; Hii, K. K. M.; Brown, J. M. Angew. Chem., Int. Ed. 1998, 37,1720.
- (22) (a) Overman, L. E.; Thompson, A. S. J. Am. Chem. Soc. 1988, 110, 2248. (b) Blumenkopf, T. A.;
  Look, G. C.; Overman, L. E. J. Am. Chem. Soc. 1990, 112,4399.
- (23) (a) Keck, G. E.; Webb, R. R.; Yates, J. B. *Tetrahedron* 1981, *37*, 4007. (b) Kirby, G. W.; McGuigan, H.; McLean, D. J. Chem. Soc., Perkin Trans. 1 1985, 1961.

- (24) Frazier, C. P.; Engelking, J. R.; Read de Alaniz, J. J. Am. Chem. Soc. 2011, 133, 10430.
- (25) Murru, S.; Gallo, A. A.; Srivastava, R. S. J. Org. Chem. 2012, 77, 7119.
- (26) (a) Borzilleri, R. M.; Weinreb, S. M. J. Am. Chem. Soc. 1994, 116, 9789. (b) Borzilleri, R. M.;
  Weinreb, S. M.; Parvez, M. J. Am. Chem. Soc. 1995, 117, 10905.
- (27) (a) Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 2050. (b) Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 5573.
- (28) Bondalapati, S.; Indukuri, K.; Ghosh, P.; Saikia, A. K. Eur. J. Org. Chem. 2013, 952.
- (29) Han, B.; Xiao, Y.-C.; Yao, Y.; Chen, Y.-C. Angew. Chem., Int. Ed. 2010, 49, 10189.
- (30) (a) Drury, W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 11006.
  (b) Ferraris, D.; Young, B.; Cox, C.; Dudding, T.; Drury, W. J.; Ryzhkov, L.; Taggi, A. E.; Lectka, T. J. Am. Chem. Soc. 2002, 124, 11006. (c) Yao, S.; Fang, X.; Jorgensen, K. A. Chem. Commun. 1998, 2547.
- (31) (a) Orfanopoulos, M.; Grdina, M. B.; Stephenson, L. M. J. Am. Chem. Soc. 1979, 101, 275. (b)
  Schulte-Elte, K. H.; Rautenstrauch, V. J. Am. Chem. Soc. 1980, 102, 1738.
- (32) (a) Thomas, A. F.; Pawlak, W. *Helv. Chim. Acta* 1971, *54*, 1822. (b) Rautenstrauch, V.; Thommen,
  W.; Schulte-Elte, K. H. *Helv. Chim. Acta* 1986, *69*, 1638. (c) Orfanopoulos, M.; Stratakis, M.; Elemes,
  Y. *TetrahedronLett*.1989, *30*, 4875.
- (33) (a) Ensley, H. E.; Carr, R. V. C.; Martin, R. S.; Pierce, T. E. J. Am. Chem. Soc. 1980, 102, 2836. (b) Orfanopoulos, M.; Foote, C. S. Tetrahedron Lett. 1985, 26, 5991. (c) Adam, W.; Griesbeck, A. Angew. Chem., Int. Ed. Engl. 1985, 24, 1070. (d) Akasaka, T.; Takeuchi, K.; Ando, W. Tetrahedron Lett. 1987, 28, 6633. (e) Akasaka, T.; Misawa, Y.; Goto, M.; Ando, W. Tetrahedron 1989, 45, 6657. (f) Clennan, E. L.; Chen, X.; Koola, J. J. J. Am. Chem. Soc. 1990, 112, 5193. (g) Adam, W.; Bru"nker, H.-G.; Nestler, B. Tetrahedron Lett. 1991, 32, 1957.

- (34) Orfanopoulos, M.; Stratakis, M.; Elemes, Y. J. Am. Chem. Soc. 1990, 112, 6417.
- (35) (a) Fristad, W. E.; Bailey, T. R.; Paquette, L. A.; Gleiter, R.; Bo⁻hm, M. C. J. Am. Chem. Soc. 1979, 101, 4420. (b) Fristad, W. E.; Bailey, T. R.; Paquette, L. A. J. Org. Chem. 1980, 45, 3028.. (c) Adam, W.; Richter, M. Tetrahedron Lett. 1992, 33, 3461. (d) Adam, W.; Klug, P. J. Org. Chem. 1993, 58, 3416.
- (36) Yogo, T.; Koshino, J.; Suzuki, A. Synth. Commun. 1981, 11, 769.
- (37) Lee, N.-K.; Lee, D. "Allenylsilane Synthesis and Reactivity of Them (Part I) and Group 11 Metal-Catalyzed Reactions (Part II)" UIC Dissertations and Theses 2014.
- (38) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
- (39) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735.
- (40) Zhang, S.; Zhang, X.-M.; Bordwell, F. G. J. Am. Chem. Soc. 1995, 117, 602.
- (41) Chirality transfer from allenes, see: (a) Krause, N.; Hoffmann-Roeder, A. *Tetrahedron* 2004, 60, 11671. (b) Ma, S. M. *Pure Appl. Chem.* 2006, 78, 197. (c) Adams, C. S.; Boralsky, L. A.; Guzei, I. A.; Schomaker, J. M. *J. Am. Chem. Soc.* 2012, *134*, 10807.
- (42) (a) Mish, M. R.; Guerra, F. M.; Carreira, E. M. J. Am. Chem. Soc. 1997, 119, 8379. (b) Yamashita, Y.;
  Kobayashi, S. J. Am. Chem. Soc. 2004, 126, 11279. (c) Sibi, M. P.; Stanley, L. M.; Nie, X.;
  Venkatraman, L.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 2007, 129, 395. (d) Maity, P.; Lepore,
  S. D. Angew. Chem., Int. Ed. 2011, 50, 8338. Reviews: (e) Kissane, M.; Maguire, A. R. Chem. Soc.
  Rev. 2010, 39, 845. (f) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947.
- (43) Reactions of benzyne with allenes: (a) Wasserman, H. H.; Keller, L. S. J. Chem. Soc. D. Chem. Comm. **1970**, 1483. (b) Hwu, J. R.; Swain, S. P. Chem. Eur. J. **2013**, *19*, 6556.

# **CHAPTER 4**

# IRON-CATALYZED COMPLEMENTARY OXIDATIVE TRANSFORMATIONS OF ALLENES WITH DIFFERENT OXIDANTS

# 4.1. Introduction*

Our investigations on new reactions of silylated allenes toward nitration chemistry,¹ oxidative dimerization reaction² and Alder ene reactions³ using various reacting counterparts revealed that the silyl substituent has profound influence on their reaction course. For example, in Alder ene reaction, allenic  $C(sp^2)$ –H bond becomes more prone to participate in the reaction than allylic  $C(sp^3)$ –H bonds.³ Density Functional Theory (DFT) calculations revealed that the main reason for this unexpected reactivity is the weakening of the allenic  $C(sp^2)$ –H bond (Scheme 4.1). Compared to non-silylated allene 4-1, the corresponding silylated counterpart 4-2 has an unusually low bond strength of the allenic  $C(sp^2)$ –H bond (82.2 kcal/mol), which is even lower than that of a typical allylic  $C(sp^3)$ –H bond by 5 kcal/mol. In addition, the natural population analysis (NPA) indicates that the *sp*-hybridized C2 carbon in 4-2 imparts significantly less positively charged character relative to that of 4-1.



Scheme 4.1 Polar Reaction vs. Radical-Mediated Processes of Allenes

^{*} Reproduced in part with permission from Sabbasani, V. R.; Lee, H.; Xia, Y.; Lee, D. "Iron-Catalyzed Complementary Iron(II)-Catalyzed Oxidative Transformations of Allenes with Different Oxidants" *Angew. Chem., Int. Ed.* **2015**, *54*, DOI: 10.1002/anie.201510006.

Based on this strong electronic impact of a silyl substituent on allene moiety (**Scheme 4.1**, Eq 1 and 2), we expected that non-silylated and silylated allenes may show complementary reactivity toward other electrophiles or oxidants. We expect that typical tri-substituted alkyl allene **4-1** would prefer to interact with an electrophile at the more positively charged C2 carbon to generate an allylic cation **IN-4-1** (Eq 1), whereas the corresponding silylated counterpart **4-2** with less positive nature at the C2 may favor electron movements involving both the  $\pi$ -bond and C–H bond to generate propargyl cation **IN-4-2** (Eq 2). Therefore, depending on the choice of electrophiles or oxidants, the subtle difference in reactivity of structurally different allenes can be manifested to generate different final products. We have chosen the DDQ (2,3-dichloro-5,6-dicyano-*p*-benzophenone) and/or *t*-BuOOH (tert-butyl hydroperoxide) as oxidants and non-toxic, environmentally friendly iron-catalyst as an initiator.

#### 4.2. Iron-Catalyzed Oxidative Transformations Using DDQ

Among oxidizing agents available to chemists, 2,3-dichloro-5,6-dicyano-*p*-benzophenone (DDQ) has played an indispensable role in organic chemistry because of its high oxidizing power and readily soluble nature in typical organic solvent.⁴ DDQ has been employed for the oxidation of ketones to the corresponding  $\alpha$ , $\beta$ -unsaturated ketones,⁵ alcohols to the corresponding carbonyls,⁶ for the formation of phenols,⁷ and heterocycles,⁸ and various allylic and benzylic C–H bonds to form C–heteroatom⁹ and C–C bonds.^{10,11}

The reaction of DDQ with cyclic silylenol ethers was first reported by Bhattacharya, which was recently further investigated by Mayr through kinetic studies with the employment of various other  $\pi$ -nucleophiles (electron-rich alkenes), such as cyclic and acyclic silyl enol ethers derived from aldehydes and ketones, silyl ketene acetals, enamino esters, and allylsilanes.¹²

In 2007, Li and coworkers reported the first example of Iron-catalyzed cross dehydroginative coupling between two  $C(sp^3)$ –H bonds for the construction of a C–C bond reaction (**Scheme 4.2**).¹³ In this method, a cross dehydroginative coupling between 1,3-dicarbonyl compounds and benzylic C–H bond as a coupling partners using di-*tert*-butyl peroxide as an oxidant to provide  $\alpha$ -branched alkyl- $\beta$ -dicarbonyl compounds in

25–87% yield. The proposed mechanism of the reaction involves oxidative cleavage of di-*tert*-butyl by Fe(II) to generate radical intermediates Fe(III)O'Bu and *tert*-butoxyl radical, which then abstracts a benzylic hydrogen to generate carbon centered benzyl radical **4-6**. On the other hand, Fe(III) compound reacts with dicarbonyl compound to form intermediate **4-7**. Combining both the generated radicals delivers the cross coupled product **4-5** and regenerate the Fe(II)-catalyst. Thereafter, several more Iron-catalyzed oxidative cross coupling reaction have been published.¹⁴



Scheme 4.2 FeCl₂-Catalyzed Benzylic Alkylation and Proposed Mechanism

Based on Li's Fe-catalyzed dehydrogenative coupling using 'BuOO'Bu, Shi reported the first ironcatalyzed cross dehydrogenative arylation of benzylic C–H bonds with arenes by using DDQ as an oxidant.¹⁵ After screening several catalysts and oxidants, FeCl₂ and DDQ are the choice of a catalyst and an oxidant to generate coupling products in excellent yields (**Table 4.1**). They also conducted mechanistic studies and proposed a plausible mechanism. The reaction is initiated by single electron transfer from Fe(II) to DDQ followed by abstraction of a benzylic hydrogen to generate carbon centered benzyl radical **4-11**  and Fe(III) complex **4-12**. Single electron transfer from benzyl radical **4-11** to the Fe(III) complex to form benzyl cation **4-13** and then Friedel–Crafts-type alkylation with **4-8** followed by abstraction of proton to afford the product **4-10** and reduced DDQ with regenerated catalyst (**Scheme 4.3**).



Table 4.1 Iron-Catalyzed Oxidative Arylation of the Benzylic C-H Bond



Scheme 4.3 Proposed Mechanism Iron-Catalyzed Oxidative Arylation of a Benzylic C-H Bond

Most recently, Chen and coworkers utilized the same method for the cross dehydrogenative coupling

of indoles and benzylic C–H bonds.¹⁶ In this transformation, the oxidative cross-coupling reaction of indoles at the C-3 position with diarylmethane derivatives was achieved with good to moderate yields (**Scheme 4.4**). The proposed mechanism of the reaction is similar to that of Shi's mechanism.



Scheme 4.4 Iron-Catalyzed Dehydrogenative Coupling of Indoles and Benzylic C-H Bonds



Scheme 4.5 Iron-Catalyzed C-O Bond Forming Reaction and Plausible Mechanism

In 2012, the Jiao group reported an iron-catalyzed oxidative dehydrogenative coupling for formation

C–O bond. The authours used arylpropargyl azides derivied from the corresponding propargyl halides followed by oxidative coupling with carboxylic acids (**Scheme 4.5**).¹⁷ They have used FeCl₂ as a catalyst and DDQ as an oxidant were employed for smooth coupling to form a new C–O bond at the propargyl center. This reaction was also tested with other oxidants and solvents, which were were not successful. The proposed mechanism of the reaction is similar to that depicted in **Scheme 4.2**. The reaction proceeds through a propargyl radical, which is then oxidized to the corresponding propargyl cation and trapped with a carboxylic acid.

#### 4.3. Iron-Catalyzed Oxidative Transformations Using *t*-BuOOH

After Li's first report on the oxidative transformation using FeCl₂ and 'BuOO'Bu (**Scheme 4.6**), several methods have been developed using *tert*-butyl hydroperoxide (TBHP). In 2007, Bolm and coworkers reported the oxidation of benzylic C–H bonds to the corresponding carbonyl derivatives. In this new oxidation protocol, several benzylic compounds were oxidized to ketones in good to excellent yields (**Scheme 4.3.1**).¹⁸ On the other hand, the reaction with *p*-methoxy toluene under the optimized condition directly generated *p*-methoxy benzoic acid, but the reaction with triphenyl methane delivered 'BuOO radical/anion-trapped products.



#### Scheme 4.6 Iron-Catalyzed Benzylic Oxidation

In 2012, Urabe and coworkers further investigated the iron-catalyzed C–H bond oxygenation for the synthesis of *tert*-butyl peroxyacetals. Under the optimized conditions, a series of *tert*-butyl peroxyacetals

were synthesized in good yields (**Table 4.2**). The proposed mechanism of the reaction has two possible pathways to explain the formation of the observed products. The initiation step generating a *tert*-butyl peroxy radical may start efficiently in the presence of iron-catalyst. Then the peroxy radical abstracts a hydrogen atom on ether substrates to form a benzylic radical. This benzylic radical may directly combine with *tert*-butyl peroxy radical or its further oxidized to carbocation, which then captured with *tert*-butyl peroxy anion to provide peroxyacetal products.



Table 4.2 Synthesis of tert-Butyl Peroxyacetals via Iron-Catalysis

Hong and coworkers reported an iron-catalyzed oxidative cleavage of alkenes and alkynes by using TBHP. The reaction with styrene derivatives and/or aryl acetylenes provided aromatic carboxylic acids in good yields. However, the reaction with linear alkenes or alkynes provided the carboxylic acids in low yields.¹⁹

In 2010, Lee and coworkers reported an iron-catalyzed oxidative C—N bond formation using TBHP as an oxidant. In this method, authors used azoles and ethers for oxidative coupling to provide C—N bond forming products in good yields (**Scheme 4.7**).²⁰ The proposed mechanism of the reaction is initiated by iron-catalyzed oxidative cleavage of TBHP into a *tert*-butoxyl radical and hydroxide (step 1). The generated hydoxy anion deprotonates the azole to afford the corresponding anion (step 2). On the other hand, the *tert*-butoxyl radical abstracts hydrogen from the carbon adjacent to the oxygen atom to generate a carbon centered radical, which is oxidized to oxonium ion (step 3) and trapped with an azole anion (step 4).



Scheme 4.7 Iron-Catalyzed Oxidative C-H Amination

In 2009, Li and coworkers reported highly efficient synthesis of methylene-bridged bis-1,3-dicarbonyl compounds using an iron-catalyst and TBHP. In this transformation, 1,3-dicarbonyl compound and phenyl dimethyl amine can undergo oxidative coupling to generate  $\gamma$ -amino-1,3-dicarbony compounds, and which can undergo direct substitution with another 1,3-dicarbonyl compound to afford methylene-bridged bis-1,3-dicarbonyl compounds (Scheme 4.8).²¹



Scheme 4.8 Iron-Catalyzed Oxidative Coupling Reactions of 1,3-Dicarbonyl Compounds

In 2011, Li and coworkers reported a highly novel protocol of carbonylation-peroxidation of alkenes with an iron catalyst in excess of TBHP. In this protocol the authors synthesized a series of  $\beta$ -peoxy ketones

4-18 by three component coupling reaction of alkenes 4-16, aldehydes 4-17 and TBHP (Table 4.3).²²



Table 4.3 Iron-Catalyzed Carbonylation–Peroxidation of Alkenes

Based on the observed results and the reaction in presence of TEMPO, they have proposed a plausible reaction mechanism (**Scheme 4.9**). The reaction of Fe(II) with TBHP generates *tert*-butyloxyl and *tert*-butylperoxyl radicals (step 1 and 2). Hydrogen abstraction by *tert*-butyloxyl radical from an aldehyde generates acyl radical intermediate (step 3), adds to alkene to provide carbon centered  $\beta$ -radical ketones (step 4). The generated  $\beta$ -ketone radical reacts with *tert*-butylperoxyl radical to produce  $\beta$ -peoxy ketones. The authors believe the oxidation of the  $\beta$ -ketone radical to the corresponding carbocation might be difficult under the reaction conditions.²³ The reaction in the presence of TEMPO provided only the acyl radical trapped TEMPO-adduct in quantitative yield.



Scheme 4.9 Plausible Mechanism of Iron-Catalyzed Carbonylation–Peroxidation of Alkenes

# 4.4. Allenes to Indenes via an Allylic Cation

Indenes are important class of compounds in organic chemistry mainly because of their novel core structure that can serve as building blocks for many pharmaceutical compounds²⁴ and bioactive materials.²⁵ Indenes have also been used in catalysis as ligands in metallocene-based olefin polymerization reactions.²⁶ The synthesis of a novel class of indenes have been widely studied²⁷ and one of the most common methods using the Lewis acid catalyzed Friedel–Crafts reactions of arynes.²⁸ Recently, the formation of indene derivatives from allenes by using Lewis acid and/or metal-complex has been reported.

Shi and coworkers developed an efficient Lewis acid-catalyzed rearrangement of arylvinylidenecyclopropanes **4-19** having different substituents on cyclopropane to generate a novel class of indene derivatives **4-20** via a double intramolecular Fridel-Crafts reaction under mild reaction conditions using  $Sn(OTf)_2$  as a Lewis acid catalyst (**Table 4.4**).²⁹



Table 4.4 Rearrangement of Arylvinylidenecyclopropanes

The same group also reported a facile synthetic protocol for preparation of different types of indene derivatives by using Lewis acid-catalyzed reaction of arylvinylidenecyclopropanes **4-21** and **4-22** with acetals (**Scheme 4.10**).³⁰ In this transformation best results were observed with Sn(OTf)₃, where the Lewis

acid first reacts with acetals to generate an oxonium ion, which then adds regioselectivity to the allene generates an allylic cation and further cyclization, providing the indene derivatives **4-22** and **4-24**.



Scheme 4.10 Arylvinylidenecyclopropanes with Acetals

In 2010, Yamazaki and coworkers reported the synthesis of indenes from the reaction between arylallene **4-25** and ethenetricarboxylates **4-26** in the presence of various Lewis acids (**Table 4.5**). The best results were observed with SnCl₄ as catalytic and/or stoichiometric amounts. The other Lewis acids AlCl₃ and ZnI₂ were also effective for the indene formation. Mechanistically, the ethenetricarboxylates **4-26** is activated by a Lewis acid and a Michael addition of central carbon of allene generates an allylic cation, which further cyclizes to generate indene product.³¹



**Table 4.5 Lewis Acid Promoted Reaction of Allenes to Indenes** 

Ma and Meng reported the electrophilic addition of a carbocation to allenes. The disubstituted aryl

allene **4-25** reacts with an allylic carbocation generated from the corresponding allylic alcohol **4-28** upon treating with stoichiometric amount Lewis acid ZnCl₂. The generated carbocation regioselectively added to the central allenic carbon and followed by Friedel-Crafts cyclization provides indene derivative **4-29** in good yields (**Scheme 4.11**).³²



Scheme 4.11 Electrophilic Addition of Carbocations to Allenes

Tian and coworkers reported an approach similar to Ma's for the synthesis of indene derivatives by generating carbocation intermediates from *N*-benzylic/allylic sulfonamides with iron-catalyst (**Table 4.6**). In this reaction the di- and trisubstituted allenes **4-30** and sulfonamides **4-31** catalyzed by FeCl₃ provided alkylated indene derivatives **4-32** in good to moderate yields.³³



Table 4.6 FeCl₃-Catalyzed Allenes to Indenes

Hsung et al. reported a gold catalyzed imino-Nazarov cyclization of  $\alpha$ -aryl-substituted allenamides (**Scheme 4.12**). In this transformation, allenamide **4-30** in the presence of gold catalyst produces an allylic cation type intermediate that further cyclized to form indene products **4-31** in excellent yields.³⁴



Scheme 4.12 Imino-Nazarov Cyclization of Allenamides

## 4.5. Results and Discussion[†]

Described herein are clear demonstrations of novel complementary reactivity of allenes under different reaction conditions to generate structurally diverse oxidation products. In general, non-silylated allenes provided products via traditional reaction pathways involving cation intermediate **IN-1** (Scheme 1.1), whereas the corresponding silylated counterparts led to either E1 or  $S_N1$  products via unprecedented oxidation pathways involving propargylic cation intermediate **IN-2**. The mechanistic aspects of these two different modes of reactions were further verified by DFT calculations.



^[a] Isolated yield after purification

## Table 4.7 Optimization of Reaction Conditions with DDQ for non-Silylated Allene

The initial differentiation of the reactivity between allenes 4-1a and 4-2a was made with two different

[†] Reproduced in part with permission from Sabbasani, V. R.; Lee, H.; Xia, Y.; Lee, D. "Iron-Catalyzed Complementary Iron(II)-Catalyzed Oxidative Transformations of Allenes with Different Oxidants" *Angew. Chem., Int. Ed.* **2015**, *54*, DOI: 10.1002/anie.201510006.

oxidants, DDQ and TBHP under iron-catalyzed conditions. First, the reaction of phenyl substituted allene **4-1a** with DDQ was briefly optimized by changing the solvents, amount of DDQ and mainly the reaction temperature (**Table 4.7**). The reaction of **4-1a** with DDQ (1.5 equivalence) and 10 mol% FeCl₂·4H₂O in dichloroethane (DCE) at 70 °C provided the indene-DDQ adduct **4-35a** in 78% yield (entry 1). By changing the reaction solvent from DCE to acetonitrile (CH₃CN) the reaction yield was improved to 86% (entry 2). The reaction by using stoichiometric amount of DDQ did not change yield of the reaction (entry 3). However, the reaction at 25 °C afforded the indene derivative **4-35a** in 91% yield (entry 4).

	4-1a	` <i>t</i> Bu	FeCl ₂ •4H (10 mol % <i>t</i> BuOOF	$2^{O}$	fBu =0 '''00'ft 4-36	3u a
entry	FeCl ₂ •4H ₂ O (mol %)	<i>t</i> BuOOH (equiv)	solvent	temp ( ^o C)	time (h)	yield (%) ^[a]
1	10	2.0	CH ₃ CN	25	32	36
2	10	2.0	CH ₃ CN	70	8	48
3	10	4.0	CH ₃ CN	70	4	90
4	10	4.0	CH ₃ CN	50	4	91

^[a] Isolated yield after purification

## Table 4.8 Optimization of Reaction Conditions with TBHP for non-Silylated Allene

After the optimization of **4-1a** with DDQ, we used same allene to optimize the reaction with TBHP (**Table 4.8**). The reaction of allene **4-1a** with two equivalence of TBHP at 25 °C and/or 70 °C provided only the indanone **4-36a** in very low yield (entries 1 and 2). However, the reaction with 4 equivalence of TBHP

	Ph T	BS _	FeCl ₂ •4H ₂ C (10 mol %)	) Ph	TBS	
	4-2a	$\frown$	DDQ	ب 4-37a	$\sim$	
entry	FeCl ₂ • 4H ₂ O (mol %)	DDQ (equiv)	solvent	temp (°C)	time (h)	yield (%) ^[a]
1	10	1.0	CH ₃ CN	25	24	76
2	10	1.0	CH ₃ CN	80	8	98

^[a] Isolated yield after purification

# Table 4.9 Optimization of Reaction Conditions with DDQ for Silylallene

at 70 °C afforded indanone **4-36a** in 90% yield (entry 3). Also, even the lowering of the reaction temperature to 50 °C, the yield was slightly increased to 91% (entry 4). In this transformation single diastereomerer of **4-36a** was obtained.

Optimization of non-silylallene **4-1a** with DDQ and TBHP, we next turned our attention to test the behavior of silylallene **4-2a** with DDQ and TBHP using FeCl₂·4H₂O catalyst. Initially, the reaction of silylallene **4-2a** with DDQ at room temperature afforded the 1,3-enyne **4-37a** as a single isomer in 76% yield (**Table 4.9**, entry 1). By increasing the reaction temperature to 80 °C not only shorten the reaction time from 24 h to 8 h, but also increased yield of the reaction to 98% (entry 2).

Similarly, the reaction of silylallene **4-2a** with TBHP also optimized and the best results were obtained by using 2.5 equivalence of TBHP and 10 mol % of FeCl₂·4H₂O at 70 °C afforded the propargyl peroxy ether 4-38a in excellent yield (**Table 4.10**, entry 2).

	Ph	TBS	FeCl ₂ •4 (10 mo	iH ₂ O  %) →	Pr		BS
	4-2a	$\sim$	<i>i</i> BuO	UН	4-38a	00124	
entry	FeCl ₂ •4H ₂ O (mol %)	<i>t</i> BuOOH (equiv)	solvent	temp ( ^o C)	time (h)	conv (%)	yield (%) ^[a]
1	10	2.5	CH ₃ CN	25	32	~ 20	
2	10	2.5	CH ₃ CN	70	6	100	93

^[a] Isolated yield after purification

#### Table 4.10 Optimization of Reaction Conditions with TBHP for Silylallene

The optimized reaction conditions with allenes **4-1a** and **4-2a** with DDQ and TBHP in presence of FeCl₂·4H₂O catalyst were summarized in **Scheme 4.13**. Condition A and B are the non-silylated allene **4-**1**a** with DDQ and TBHP to provide the indene derivatives **4-35a** and **4-36a** via an intermediate **IN-4-1**. On the other hand, conditions C and D are the reaction of silyllated allene **4-2a** with DDQ and TBHP to provide corresponding substitution and elimination products **4-37a** and **4-38a** via an intermediate **IN-4-2**.



Scheme 4.13 Summary of Initial Proof of Complementary Reactivity of non-Silylated and Silylated Allenes with DDQ and TBHP

On the basis of these diverse reactivity of allenes observed, we further explore reactions of other allenes with the variation of steric and electronic factors. First, a series of phenyl group-containing trisubstituted allenes were examined under Condition A (**Table 4.11**). Both *gem*-phenyl, methyl- and *gem*-phenyl, benzyl-substituted allenes **4-1b** and **4-1c** provided 1,3-enynes **4-35b'** and **4-35c'** as a minor component together with major product **4-35b** and **4-35c** in 76% (**4-35b':4-35b** = 1:18) and 88% (**4-35c':4-35c** = 1:7.8) yields, respectively (entries 1 and 2), while trisubstituted allene **4-1d** containing  $\gamma$ -silyloxypropyl group provided **4-35d** exclusively in good yield (81%, entry 3). When a competing nucleophile such as a hydroxyl group exists on the allene **4-1e**, it participated preferentially over a phenyl group, generating a mixture of **4-35e** and **4-35e'** in 84% combined yield and 1:6.5 ratio (entry 4). Disubstituted allenes **4-1f** and **4-1g** with *tert*-butyl and phenyl groups did not afford products **4-35f** and **4-35g** instead the starting material was recovered (entry 5). Cycloalkyl-based allene **4-1h** afforded DDQ-incorporated 1,3-diene **4-35h** and

	Condi Ph R ² FeCl ₂ •4H ₂ C	tion A $R_2$ Cl	CI
		(1  equiv)	Д—ОН
	<b>4-1</b> CH ₃ Cl	N, rt, 2 h <b>4-35</b> R ₁ NĆ	ĊN
entry	allene	product	yield (%) ^[a]
	Ph, <i>t</i> Bu	tBu tBu	ı
	Ť	OAr Ph	
	R	R	
1	<b>4-1b</b> , R = H	4-35b R 18 : 1 ^[b] 4-35b'	76
2	<b>4-1c</b> , R = Ph	<b>4-35c</b> 7.8 : 1 ^[b] <b>4-35c'</b>	88
3	<b>4-1d</b> , R =CH ₂ CH ₂ OTBS	<b>4-35d</b> 1:0	81
		tBu OAr	
4	Ph, <i>t</i> Bu		
	¥	$- \mathbf{U} = \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} + \mathbf{U} + \mathbf{U} = \mathbf{U} + \mathbf{U} $	84
	4-1e OH	4-35e OH 4-35e'	
	+-10	+000 +000	
	Ph. B		
5		OAr 4-35t, 4-35g	_
	4-1f, R = <i>t</i> Bu	(not observed) ^[0]	
	4-1g, R = Pn	<u>^</u>	
		OAr OAr	
6	tBu		78
		tBu tBu	
	4-1h	4-35h 4-35h' ^[d]	
		R	
7	Phy R 4 4: D = 4Du		05
8	4-1i, R = Et	OAr 4-351	80
	Ph <b>- j</b> , K - Et	∽ ( <b>4-33</b> ) Ph	93
		tBu tBu	
	PhtBu		
	f.		٨r
	Ar	R	
9	<b>4-1k</b> , Ar = 4-F-Ph	Ai Ph 4-35k 10 · 1 ^[b] 4-35k'	02
10	<b>4-1I</b> , R = 4-OMe-Ph	<b>4-35I</b> 1 : 3.5 ^[b] <b>4-35I'</b>	78
	OMe	OMe o	
	MeO	MeO,	
11		-OAr	
	MeO / / / / / / / / / / / / / / / / / / /	MeO	
	<b>4-1m</b> Ph	Ph <b>4-35m</b>	92

^[a] Yield of isolated product. ^[b] The ratio was determined by ¹H NMR analysis. ^[c] Recovered starting material. ^[d] During purification 3h was oxidized to the corresponding naphthalene derivative 3h' (ca. 10%).





^[a] Isolated yields after purification.^[b] Single diastereome.

# Table 4.12 Iron-Catalyzed Reaction of Alkyl, Aryl-Substituted Allenes with TBHP

oxidized naphthalene derivative **4-35'** in 78% yield (entry 6). *gem*-Diphenyl-substituted allenes **1-4i** and **1-4j** bearing *tert*-butyl and ethyl groups behaved similarly, generating **4-35i** and **4-35j** in 85 and 93% yield, respectively (entries 7 and 8). Unsymmetrical *gem*-diphenyl-substituted allenes **4-1k** and **4-1l** carrying *p*-fluoro and *p*-methoxy substituent provided a mixture of **4-35k/4-35k'** (10:1) and **4-35l/4-35l'** (1:3.5),

showing the preferential participation of the more electron-rich aryl group (entries 9 and 10). This is further demonstrated by allene **4-1m** with phenyl and 3,4,5-trimethoxyphenyl groups, which exclusively afforded indene derivative **4-35m** in excellent yield (entry 11).

We further examined the reactivity of these phenyl-substituted allenes under Condition B (**Table 4.12**). *gem*-phenyl, methyl-substituted allene **4-1b** provided the indanone peroxy ether derivative **4-36b** as single diastereomer in 83% yield (entry 1). The reaction with *gem*-diphenyl-substituted allenes **4-1j** delivered the indanone derivative **4-36j** in excellent yield (91%, entry 2). The relative stereochemistry of indanone peroxy ethers **4-36** was further confirmed by single x-ray diffraction analysis of compound **4-36j**. Also, allene **4-1m** with phenyl and 3,4,5-trimethoxyphenyl groups generated indanone **4-36m** as a single regioisomer involving the electron rich trimethoxyphenyl in very good yield (89%, entry 3). On the other hand, allene **4-1k** containing phenyl and 4-fluorophenyl groups generated isomeric products **4-36k** and **4-36k'** in a 1:1 ratio (entry 4). Allenes **4-1n–4-1p** bearing a cinnamyl group were provided cyclopentenone derivatives **4-36n–4-36p** without incorporation of peroxy ether in marginal yields (entries 5–7). The relative stereochemistry of **4-36n–4-36p** was confirmed by nOe experiments.

Next, we investigated the reaction profiles of structurally diversified silylated allenes under condition C (**Table 4.13**). Unsymmetrically substituted silylallenes **4-2b**, **4-2c** and **4-2d** having different silyl groups TES, TBS and TIPS afforded regioisomeric 1,3-enynes **4-37b**, **4-37c** and **4-37d** in good to moderate yields, where different silyl substitution has little effect the 1,3-enyne yields (entries 1, 2 and 3). A cyclopropyl-substituted silylallene **4-2e** derivied from cyclopropyl methyl ketone afforded 1,3-enyne **5e** in low yield, which is mainly due to its volatility (entry 4). Cyclpentanone, 4-*tert*-butyl cyclohexanone and carvone derived silylallenes **4-2f**, **4-2g** and **4-2h** provided the 1,3-enynes **4-37f**, **4-37g** and **4-37h** in 64%, 67%, and 78% yields, respectively (entries 5, 6 and 7). The Symmetrical cyclic *gem*-dialkyl-substituted silylallenes **4-2i-4-2l** derived from cycloheptanone, cyclooctanone, cyclododecanone and cyclopentadecanone provided 1,3-enynes **4-37i-4-37l** as the only products in 73%, 81%, 75% and 74% yields, respectively (entries 8, 9, 10 and 11).


[a] Isolated yields. [b] The ratio was determined by ¹H NMR

# Table 4.13 Iron-Catalyzed Oxidative Transformation of Silylallenes with DDQ

Products other than 1,3-enynes were also observed for certain silylallenes (**Scheme 4.14**). For example, the reaction of *gem*-diphenyl-substituted allene **4-2q** afforded DDQ-incorporated indene derivative **SiMe₃**-**4-35** similar to that of non-silylated allenes, which is the consequence of the lack of any protons to be eliminated from an intermediate involved. For disubstituted silyl allene **4-2r** and adamantane-derived

silylallene **4-2s** provided  $H_2$ -DDQ-added aryl propargylic ethers **4-39r** and **4-39s**. The formation of **4-39r** can be justified by a favorable nucleophilic substitution over elimination pathway at the sterically less hindered secondary carbon center, whereas **4-39s** is the consequence of a favorable substitution over the unlikely elimination of the bridgehead protons.



Scheme 4.14 Abnormal Reactivity of Silyl-Substituted Allenes with DDQ with FeCl₂

The reactivity of these silylated allenes were further explored under Condition D (**Table 4.14**). Different silyl groups having silylallenes **4-2b** (SiEt₃), **4-2c** (SiMe₂*t*Bu) and **4-2d** (Si*i*Pr₃) reacted smoothly to provide propargylic peroxides **4-38b**, **4-38c** and **4-38d** in good yields (entry 1, 2 and 3). While cyclopropyl methyl ketone derived silylallene **4-2e** delivered the *tert*-butyl propargylic peroxide **4-38e** in 70% yield (entry 4). On other hand, benzyl acetone derived silylallene **4-2m** obtained the propargylic peroxide **4-38m** in excellent yields (93%, entry 5). Silylallene **4-2n** with a prenyl group tether was interestingly formed only the corresponding propargylic peroxide product **4-38n** in very good yields, without affecting the double bond on the prenyl group (93%, entry 6). Cyclopentanone, cyclohexanone, cyclohexanone, cyclohexanone and cyclopentadecanone derived silylallenes **4-2f**, **4-2o**, **4-2i**, **4-2i**, **4-2i**, **4-2i** were reacted smoothly to provide corresponding propargylic *tert*-butyl propargylic *tert*-butyl propargylic



[a] Yield of isolated product

## Table 4.14 Iron-Catalyzed Oxidative Transformation of Silylallenes and TBHP

peroxides **4-38i**, **4-38j**, **4-38k**, and **4-38l** in excellent yields (entries 7 to 12). Cycloadamantanone derived silylallene **4-2p** afforded the propargylic peroxide product **4-38p** in moderate yield (56%, entry 13).

To gain further insights into the reactivity and selectivity of these allene-based transformations, DFT calculations were carried out (**Scheme 4.15**). For non-silylated allene, clearly the *t*Bu-**TS1** (19.8 kcal/mol)

with DDQ interacting at the C2 carbon to generate *t*Bu-**IN1** (5.9 kcal/mol) is significantly more favorable than its reaction through *t*Bu-**TS1'** (22.9 kcal/mol) involving a hydride transfer to generate *t*-Bu-**IN1'** (5.1 kcal/mol). On the contrary, silylated allenes show the opposite preference; the reaction through transition state SiMe₃-**TS1'** (18.8 kcal/mol) involving a hydride transfer to generate SiMe₃-**IN1'** (5.1 kcal/mol) is



Scheme 4.15 Mechanisms for the Transformations of Alkyl- and Silylsubstituted Allenes with DDQ Relative Free Energies (in kcalmol⁻¹) were Calculated at the M06-2X/6-31+G* Level of Theory

lower in energy by 1.6 kcal/mol than that of transition state SiMe₃-**TS1** (20.4 kcal/mol) where DDQ interacts at the C2 carbon to generate SiMe₃-**IN1** (6.2 kcal/mol). These calculated energy profiles of the initial bond-forming step leading to different products clearly support the observed mode-selective transformations of non-silylated and silylated allenes. The generated allylic cation further undergo Nazarov

cyclization to lead the DDQ incorporated products **4-35**. On the other hand, the generated propargylic cation can undergo deprotenation and/or substitution lead to the corresponding 1,3-enynes **4-37** and/or  $H_2$ -DDQ-added aryl propargylic ethers **4-39**.

A plausible mechanism for this iron-catalyzed propargylic peroxide formation is proposed in **Scheme 4.16**. In the initial Fe(II)-promoted homolytic cleavage of the weak O–O bond of *tert*-butyl hydroperoxide would generate a tert-butoxyl radical, which abstract the allenic  $C(sp^2)$ –H hydrogen from substrate silylallene **4-2** to generated a propargylic radical by forming *t*-BuOH as by product. The resulting carbon-centered propargylic radical then undergoes an electron transfer process with Fe(III)– OOtBu to an ion-pair of propargylic cation and [Fe(II)–OOtBu], which then form the observed *tert*-butyl propargylic peroxide products **4-38** and regenerated Fe(II)-catalyst. However, formation of C–OOtBu bond directly by the initially formed carbon-centered propargyl radical and a free or metal-bounded *tert*-butyl proval radical cannot be excluded.



Scheme 4.16 Mechanism of Iron-Catalyzed Reaction of Silylallenes with TBHP

## **4.6.** Summary[‡]

In summary, we have discovered efficient and mode-specific reactions of non-silylated and silylated allenes with DDQ and/or tBuOOH in presence of iron catalyst. Trisubstituted allenes containing geminal aryl-aryl or aryl-alkyl substitution patterns provide oxidant-incorporated indene/indanone derivatives via the addition of oxidant to the central carbon of the allenes to generate an allylic cation followed by electrophilic aromatic substitution/Nazarov cyclization on one of the existing aryl/alkenyl groups on the allene moiety. On the other hand, silyl-substituted allenes regardless of the nature of the other substituents consistently generate a formal 1,4-dehydogenated 1,3-enynes as the major products with DDQ with few exceptions. For certain structural characteristics of silylallenes, however, disfavor the 1,4-dehydrogenation pathway, and thus selectively generate DDQ-incorporated propargylic ethers. However, silyl-substituted allenes with *t*-BuOOH consistently delivered the *tert*-butyl propargylic peroxides. The DFT-calculated energy profiles associated the initial bond-forming step in each reaction pathway with DDQ was nicely justify the experimental observations.

#### 4.7. Experimental Details

## 4.7.1. General Information

Reactions were carried out in oven or flame-dried glassware unless otherwise noted. Compounds were purchased from Aldrich or Acros or TCI America unless otherwise noted. Acetonitrile (CH₃CN) was distilled over calcium hydride under nitrogen atmosphere. Tetrahydrofuran (THF) was distilled over sodium and benzophenone under nitrogen. Flash chromatography was performed using silica gel 60 Å (32–63 mesh) purchased from Silicycle Inc. Analytical thin layer chromatography (TLC) was performed on 0.25 mm E. Merck pre-coated silica gel 60 (particle size 0.040–0.063 mm). Yields refer to chromatographically and

[‡] Reproduced in part with permission from Sabbasani, V. R.; Lee, H.; Xia, Y.; Lee, D. "Iron-Catalyzed Complementary Iron(II)-Catalyzed Oxidative Transformations of Allenes with Different Oxidants" *Angew. Chem., Int. Ed.* **2015**, *54*, DOI: 10.1002/anie.201510006.

spectroscopically pure compounds unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DR-500 spectrometer. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), sext (sextet), m (multiplet), b (broad), and app (apparent). ¹H NMR signals that fall within a ca. 0.3 ppm range are generally reported as a multiplet, with a single chemical shift value corresponding to the center of the peak. Coupling constants, *J*, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Waters Micromass Q-Tof Ultima in the University of Illinois at Urbana–Champaign. Electron impact (EI) mass spectra and Chemical Ionization (CI) mass spectra were obtained using a Micromass 70-VSE in the University of Illinois at Urbana-Champaign.

# 4.7.2. Representative Procedure for Alkyl and Silylallenes Preparation

Alkyl allenes **4-1** were prepared from the corresponding ketones via their conversion to propargylic alcohols followed by acetylation and cuprate-based  $S_N2'$  substitution.

$$\begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ R_{2} \end{array} \xrightarrow{} \\ \hline THF, \ 0 \ ^{\circ}C \ to \ rt \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \hline \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} Ac_{2}O, \ Pyridine \\ DMAP \ (10 \ mol\%) \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} CuCN, \ tBuLi \\ R_{2} \end{array} \xrightarrow{} \\ \hline \\ \\ THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} tBu \\ R_{2} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} tBu \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ R_{2} \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} THF, \ -78 \ ^{\circ}C \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{2} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \\ \begin{array}{c} R_{1} \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \\ \end{array} \xrightarrow{} \end{array} \xrightarrow$$

Preparation of silvlallenes see section **1.6.2**.

**4.7.3. General Procedure of Aryl-Substituted Allenes with DDQ:** Arylalkylallene **4-1a** (50 mg, 0.2 mmol) and FeCl₂·4H₂O (4 mg, 0.02 mmol) in 3 mL acetonitrile (CH₃CN) was taken into a thick walled Schlenk tube equipped with a magnetic stir bar, and then DDQ (50 mg, 0.22 mmol) was added to the reaction tube under nitrogen and stirred for 2 hours at room temperature. The tube was opened to air and the solvent was removed under reduced pressure. The organic product isolated by flash column chromatography on silica gel (EtOAc/hexanes, 20:1) to give indene product **4-35a** (88 mg, 91%).

**4.7.4.** General Procedure of Aryl-Substituted Allenes with *t*-BuOOH: Arylalkylallene **4-1a** (50 mg, 0.2 mmol) and FeCl₂·4H₂O (3 mg, 0.02 mmol) in 3 mL acetonitrile (CH₃CN) was taken into a round-bottom flask equipped with a magnetic stir bar, and then *tert*-BuOOH (5–6 M in decane, 0.16 mL, 0.8 mmol) was added to the flask under nitrogen and stirred for 4 hours at 50 °C. The reaction was opened to air and the solvent was removed under reduced pressure. The organic product isolated by flash column chromatography on silica gel (EtOAc/hexanes, 20:1) to give peroxyindanone product **4-36a** (65 mg, 91%).

**4.7.5.** General Procedure of Silyl-Substituted Allenes with DDQ: Silylallene **4-2a** (50 mg, 0.16 mmol) and FeCl₂·4H₂O (3.1 mg, 0.016 mmol) in 3 mL acetonitrile (CH₃CN) was taken into a thick walled Schlenk tube equipped with a magnetic stir bar under nitrogen, and then DDQ (38.6 mg, 0.17 mmol) was added to the reaction tube under nitrogen. The reaction mixture was degassed under vacuum at -78 °C, and then stirred at 80 °C for 8 hours. The tube was opened to air and the solvent was removed under reduced pressure. The organic product isolated by flash column chromatography on silica gel (EtOAc/hexanes, 1:50) to give 1,3-enyne product **4-37a** (49 mg, 98%).

**4.7.6. General Procedure of Silyl-Substituted Allenes with** *t***-BuOOH:** Silylallene **4-2a** (50 mg, 0.16 mmol) and FeCl₂•4H₂O (3 mg, 0.016 mmol) in 3 mL acetonitrile (CH₃CN) was taken into a thick walled Schlenk tube equipped with a magnetic stir bar under nitrogen, and then *tert*-BuOOH (5–6 M in decane, 80 mL, 0.4 mmol) was added to the reaction tube under nitrogen. The reaction mixture was degassed under vacuum at -78 °C, and then stirred at 70 °C for 6 hours. The tube was opened to air and the solvent was removed under reduced pressure. The organic product isolated by flash column chromatography on silica gel (EtOAc/hexanes, 1:50) to give 1,3-enyne product **4-38a** (60 mg, 93%).

#### 4.7.7. Selected Characterization Data



150.9, 142.5, 140.1, 131.7, 129.3, 129.3, 128.2, 128.5, 126.8, 126.6, 125.3, 124.5, 119.2, 112.0, 111.6, 101.7, 58.6, 34.8, 31.5, 30.3, 29.5, 28.6, 27.9, 23.8, 22.6, 14.1; IR (neat): 3182, 2955, 2929, 2859, 2244, 1736, 1634, 1410, 1251, 1202, 1163, 1148 cm⁻¹; HRMS (ESI) calcd for  $C_{27}H_{29}N_2O_2Cl_2$  [M+H]⁺ 483.1606, found 483.1601.

**4-35b** (76% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.40 (d, J = 7.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.16–7.14 (m, 2H),6.60 (bs, 1H), 3.42 (s, 1H), 1.67 (s, 3H), 1.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  157.5, 151.4, 151.0, 143.2, 139.7, 132.0, 128.6, 127.9, 126.9, 126.7, 125.1, 124.6, 122.6, 121.1, 118.7, 111.6, 111.4, 101.6, 58.6, 34.8, 28.6, 8.6; IR (neat): 3167, 2957, 2248, 1644, 1412, 1395, 1364, 1345, 1198, 1163, 1148, 1105, 1081 cm⁻¹; HRMS (ESI) calcd for C₂₂H₁₉N₂O₂Cl₂ [M+H]⁺ 413.0824, found 413.0829.

*t*^{Bu} **4-35c'** (10% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.01 (d, J = 7.7 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.39 (dt, J = 7.7, 2.9 Hz, 4H), 7.30 (dd, J = 14.2, 7.2 Hz, 2H), 7.11 (s, 1H), 1.40 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  140.2, 136.9, 133.2, 129.0, 128.4, 128.1, 128.0, 127.7, 126.4, 122.2, 106.7, 78.3, 32.1, 30.8; IR (neat): 2964, 2926, 2864, 2211, 1597, 1494, 1450, 1361, 1255, 1203, 1185 cm⁻¹; HRMS (EI) calcd for C₂₀H₂₀ [M+H]⁺ 260.1565, found 260.1568.

**4-35c** (78% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.50 (d, J = 7.4 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.19–7.14 (m, 5H), 6.86 (bm, 2H), 6.29 (bs, 1H), 3.74–3.72 (m, IH), 3.59 (s, 1H), 3.47–3.46 (m, 1H), 1.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$ 159.9, 151.3, 150.7, 143.2, 139.5, 137.5, 132.0, 128.4, 127.3, 127.1, 126.7, 125.3, 124.7, 123.4, 119.1, 111.6, 111.3, 101.2, 59.2, 35.1, 29.3, 28.7; IR (neat): 3357, 2957, 2917, 2238, 1630, 1494, 1479, 1440, 1417, 1359, 1334, 1210, 1078, 1030 cm⁻¹; HRMS (ESI) calcd for  $C_{28}H_{23}N_2O_2Cl_2$  [M+H]⁺ 489.1137, found 489.1137.



**4-35d** (81% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 7.4 Hz, 1H), 7.34– 7.24 (m, 2H), 7.16–7.13 (m, 1H), 6.29 (bs, 1H), 3.59 (t, *J* = 5.7 Hz, 2H), 3.41 (s, 1H), 2.35 (bm, 1H), 2.13–2.07 (bm, 1H), 1.75–1.74 (bm, 1H), 1.62–1.61 (bm, 1H),

1.10 (s, 9H), 0.88 (s, 9H), 0.03 (s, 3H), 0.02 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  156.8, 151.5, 150.9, 140.0, 131.5, 128.5, 128.2, 126.9, 126.4, 125.4, 124.6, 119.3, 111.8, 111.5, 101.8, 85.8, 62.9, 58.6, 34.8, 31.8, 28.5, 26.9, 20.3, 18.4, -5.3; IR (neat): 3300, 2954, 2928, 2857, 2231, 1643, 1417, 1360, 1253, 1214, 1162 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₇N₂O₃Cl₂Si [M+H]⁺ 571.1951, found 571.1956.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Ph} & \text{NC} \\ \begin{array}{c} \text{OH} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \end{array} \\ \begin{array}{c} \text{H} \\ \end{array} \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$ 

(s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 155.8, 152.5, 147.0, 144.6, 135.1, 127.8, 127.1, 126.2, 116.4, 111.7, 111.6, 110.5, 101.6, 87.0, 68.4, 39.3, 32.8, 31.6, 24.8; IR (neat): 3236, 2951, 2256, 2235, 1738, 1644, 1480, 1439, 1418, 1268, 1242, 1190 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₃N₂O₃Cl₂ [M+H]⁺ 457.1086, found 457.1079.



**4-35h** (78% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 7.5 Hz, 1H), 7.25–7.23 (m, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.13 (d, *J* = 7.3 Hz, 1H), 6.38 (t, *J* = 4.5 Hz, 1H), 4.89 (s, 1H), 2.89 (bm, 2H), 2.42–2.38 (m, 2H), 1.03 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 152.0, 149.9, 147.9, 135.4, 135.2, 134.1, 132.7, 132.5, 127.7, 127.6, 127.2,

126.9, 126.8, 125.4, 121.7, 111.9, 111.6, 110.3, 101.5, 31.7, 30.9, 27.3, 23.2; IR (neat): 3239, 2959, 2233, 1679, 1557, 1475, 1434, 1416, 1361, 1344, 1262, 1200, 1131, 1091, 1043 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₁N₂O₂Cl₂ [M+H]⁺ 439.0980, found 439.0977.

**4-35i** (85% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.51 (d, J = 7.3 Hz, 1H), 7.24– **7.10** (m, 8H), 6.22 (bs, 1H), 3.62 (s, 1H), 1.30 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  158.9, 151.8, 149.6, 144.3, 139.1, 132.9, 131.8, 128.8, 128.1, 127.8, 127.0, 125.1, 124.3, 122.4, 119.4, 112.0, 111.3, 58.7, 35.2, 28.7; IR (neat): cm⁻¹; IR (neat): 3271, 2958, 2239, 1632, 1596, 1479, 1458, 1442, 1366, 1343, 1276, 1210, 1099 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₁N₂O₂Cl₂ [M+H]⁺ 475.0980, found 475.0981.



4-35j (93% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.41–7.39 (m, 1H), 7.25–7.19
(m, 5H), 7.13–7.12 (m, 2H), 6.90–6.89 (m, 1H), 3.84 (t, J = 5.5 Hz, 1H), 2.25–
2.19 (m, 1H), 2.15–2.09 (m, 1H), 1.05 (t, J = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 152.0, 148.9, 144.1, 139.9, 133.3, 131.7, 128.8, 128.1, 127.6,

127.1, 126.9, 124.8, 122.8, 120.3, 119.5, 111.4, 111.2, 109.1, 100.8, 49.1, 23.1, 9.8; IR (neat): 3305, 2960, 2927, 2873, 2231, 1633, 1595, 1491, 1416, 1344, 1312, 1299, 1274, 1201, 1162, 1093, 1073, 1028 cm⁻¹; HRMS (ESI) calcd for C₂₅H₁₇N₂O₂Cl₂ [M+H]⁺ 447.0667, found 447.0663.



4-35k (92% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.2 Hz, 1H), 7.21–
7.10 (m, 4H), 6.93 (t, J = 8.4 Hz, 2H), 6.83 (bm, 1H), 6.62 (bs, 1H), 3.60 (s, 1H),
1.27 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 163.2, 161.2, 151.6, 139.1, 132.7,
130.6, 127.7, 127.1, 126.9, 125.2, 124.5, 124.3, 119.2, 115.3, 115.2, 111.1, 58.7,

35.2, 28.7; IR (neat): 3253, 2954, 2243, 1638, 1598, 1478, 1448, 1396, 1366, 1253, 1098, 1090 cm⁻¹; HRMS (ESI) calcd for C₂₇H₂₀N₂O₂Cl₂F [M+H]⁺ 493.0886, found 493.0888.



**4-35**I' (78% yield): ¹H NMR (500 MHz, acetone–D₆) δ 7.26–7.20 (m, 3H), 7.14–7.09 (m, 3H), 6.78–6.76 (m, 2H), 6.71 (bs, 1H), 3.79 (s, 3H), 3.62 (s, 1H), 1.28 (s, 9H); ¹³C NMR (125 MHz, acetone–D₆) δ 157.5, 140.8, 132.4,

132.1, 129.9, 128.6, 128.1, 127.7, 127.0, 124.9, 119.4, 113.6, 113.0, 111.9, 111.4, 50.4, 54.9, 28.1, 28.0; IR (neat): 3191, 2957, 2868, 2251, 1693, 1640, 1604, 1584, 1440, 1397, 1350, 1314 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₃N₂O₃Cl₂ [M+H]⁺ 505.1086, found 505.1084.

131



4-35m (92% yield): ¹H NMR (500 MHz, CDCl₃) δ 7.22–7.19 (m, 3H), 7.10 (bm, 2H), 6.93 (bs, 1H), 6.18 (s, 1H), 3.92 (s, 3H), 3.84 (s, 3H), 3.69 (s, 3H), 3.69 (s, 1H), 1.23 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 153.1, 151.8, 150.5,

149.6, 141.7, 132.6, 131.6, 128.9, 128.2, 128.0, 127.0, 123.5, 111.8, 111.3, 100.8, 100.0, 61.1, 60.6, 57.7, 56.2, 36.7, 29.3; IR (neat): 3250, 2940, 2236, 1695, 1597, 1463, 1442, 1411, 1365, 1343 cm⁻¹; HRMS (ESI) calcd for  $C_{30}H_{27}N_2O_5Cl_2$  [M+H]⁺ 565.1297, found 565.1299.



**4-36a** (colorless oil, 91%): ¹H NMR (500 MHz, CDCl₃) δ 7.47–7.42 (m, 2H), 7.34– 7.30 (m, 2H), 3.23 (s, 1H), 1.89–1.81 (m, 2H), 1.22-1.28 (m, 6H) 1.11 (s, 9H), 0.99 (s, 9H) 0.89–0.84 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ ¹³C NMR (126 MHz,

CDCl₃) δ 215.93, 171.92, 142.47, 140.76, 128.14, 127.17, 126.44, 125.28, 87.37, 79.73, 60.53, 35.73, 35.01, 28.95, 26.33, 22.62, 14.07; IR (neat): 2957, 2930, 2872, 1759, 1464, 1363, 1272, 1243cm⁻¹; HRMS (ESI) calcd for C₂₃H₃₆O₃Na [M+Na]⁺ 383.2562, found 383.2560.

**4-36b** (colorless oil, 83%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.44 (dd, *J*=5.5Hz, *J*=7.8Hz, **4-36b** (colorless oil, 83%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.44 (dd, *J*=5.5Hz, *J*=7.8Hz, 1H), 7.34 (dd, *J*=5.5Hz, *J*=9.1Hz, 1H), 3.26 (s, 1H), 1.46 (s, 3H), 1.08 (s, 9H), 0.98 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  216.4, 142.7, 140.6, 128.3, 127.4, 126.4, 124.6, 85.1, 79.5, 60.5, 35.6, 28.6, 26.3, 20.0; IR (neat): 2975, 2932, 2870, 1756, 1477, 1387, 1363, 1312 cm⁻¹; HRMS (ESI) calcd for C₁₈H₂₆O₃Na [M+Na]⁺ 313.1780, found 313.1783.

**4-36i** (colorless oil, 73%): ¹H NMR (500 MHz, CDCl₃) δ 7.57–7.54 (m, 4H), 7.47–7.45 (m, 2H), 7.33–7.30 (m, 4H), 3.32 (s, 1H), 1.09 (s, 9H), 0.87 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2, 141.8, 140.4, 135.6, 128.8, 128.7, 128.4, 127.9, 127.5, 127.4, 126.6,

121.6, 80.1, 60.9, 35.4, 30.9, 28.6, 26.4; IR (neat): 2969, 1755, 1600, 1465, 1448, 1413, 1363, 1342 cm⁻¹; HRMS (EI) calcd for C₂₃H₂₈O₃Na [M+Na]⁺ 375.1936, found 375.1935.



**4-36m** (yellow oil, 89%): ¹H NMR (500 MHz, CDCl₃) δ 7.65–7.60 (m, 2H), 7.35 (m, 3H), 6.84 (s, 1H), 3.90 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 3.30 (s, 1H), 1.00 (s, 9H), 0.70 (s, 9H) ¹³C NMR (125 MHz, CDCl₃) δ 212.3, 153.9, 150.5, 143.0, 135.7, 135.0,

129.1, 128.0, 105.7, 79.8, 61.0, 60.3, 59.6, 56.1, 36.3, 29.3, 26.3; IR (neat): 2973, 2934, 1755, 1587, 1504, 1463, 1432, 1363, 1334, 1235 cm⁻¹; HRMS (EI) calcd for C₂₂H₂₇O₃ [M+H]⁺ 339.1960, found 339.1960.



^{tBu} ^{tBu</sub> ^{tBu} ^{tBu} ^{tBu} ^{tBu</sub> ^{tBu} ^{tBu</sub> ^{tBu} ^{tBu</sub> ^{tBu} ^{tBu</sub> ^{tBu} ^{tBu</sub> ^{tBu} ^{tBu</sub> ^{tBu</sub> ^{tBu} ^{tBu</sub>}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

**4-360** (colorless oil, 52%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.52–7.48 (m, 1H), 7.33–7.31 (m, **2H**), 7.25–7.23 (m, 1H), 7.16–7.14 (m, 2H), 6.22–6.20 (m, 1H), 3.94 (s, 1H), 2.15 (d,, *J*=2.4Hz, 1H), 1.04 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  211.6, 165.1, 134.0, 128.9, 127.6, 63.9, 51.1, 34.5, 27.8; IR (neat): 2955, 2868, 1729, 1594, 1494, 1464, 1453, 1396, 1367, 1334 cm⁻¹; HRMS (EI) calcd for C₁₅H₁₉O [M+H]⁺ 215.1436, found 215.1437.

**4-36p** (colorless oil, 50%): ¹H NMR (500 MHz, CDCl₃) δ 7.22–7.18 (m, 1H), 7.06 (d, J=1.2Hz, 1H), 7.01–6.99 (m, 1H), 6.89 (dd, J=7.9Hz, J=15.0Hz, 1H), 4.28 (d, J=2.2Hz, **4-36p** 

1H), 3.83 (s, 1H), 2.27 (d, *J*=2.2Hz, 1H), 1.78 (s, 1H), 0.99 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) 211.7, 159.3, 140.6, 130.4, 128.4, 127.7, 120.8, 110.9, 63.0, 55.3, 41.6, 34.2, 27.6, 10.0; IR (neat): 2953, 1694, 1598, 1490, 1462, 1438, 1366, 1326, 1288, 1244 cm⁻¹; HRMS (EI) calcd for C₁₇H₂₃O₂ [M+H]⁺ 259.1698, found 259.1705.

**4-37a** (98% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.61 (d, J = 7.8 Hz, 2H), 7.34 (t, J =SiMe₂^tBu Ph. 7.6 Hz, 2H), 7.28–7.25 (m, 1H), 6.48 (t, J = 7.6 Hz, 1H), 2.53 (q, J = 7.5 Hz, 2H), 1.55– 4-37a 1.52 (m, 2H), 1.39-1.37 (m, 4H), 1.03 (s, 9H), 0.93 (t, J = 7.0 Hz, 3 H), 0.21 (s, 6H);¹³C NMR (125 MHz, CDCl₃) δ 139.9, 138.0, 128.3, 127.3, 125.9, 123.7, 103.0, 98.5, 31.6, 31.3, 28.7, 26.2, 22.5, 16.7, 14.1, -4.4; IR (neat): 2954, 2928, 2857, 2172, 1729, 1647, 1494, 1449, 1410, 1250, 1036 cm⁻¹; HRMS (EI) calcd for C₂₁H₃₂Si [M]⁺ 312.2273, found 312.2276.





**4-37c–1: Characteristic signals:** ¹H NMR (500 MHz, CDCl₃) δ 5.35 SiMe₂^tBu (d, J = 1.9 Hz, 1H), 5.25 (s, 1H), 2.15 (t, J = 7.5 Hz, 2H); 4-37c-2: **Characteristic signals:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.72–5.68 (m, 1H), 2.27–2.23 (m, 2H), 1.83 (d, J = 1.1 Hz, 3H); 4-37c–1 and 4-37c–2: ¹³C NMR (125 MHz, CDCl₃)  $\delta$ 139.6, 132.0, 121.6, 118.0, 106.4, 105.5, 95.4, 92.0, 37.1, 31.7, 31.5, 30.7, 28.8, 28.0, 26.1, 22.9, 22.6, 22.5, 16.7, 16.6, 14.1, -4.5, -4.6; IR (neat): 2954, 2927, 2856, 2142, 1462, 1389 cm⁻¹; HRMS (EI) calcd for

C₁₆H₃₀Si [M]⁺ 250.2117, found 250.2126.



**4-37d–1: Characteristic signals**^[9]**:** ¹H NMR (500 MHz, CDCl₃) δ 5.34 (d, i = 1.5 Hz, 1H), 5.22 (s, 1H), 2.16 (t, J = 7.45 Hz, 2H); 4-37d–2: **Characteristic signals**: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.70 (t, J = 7.4 Hz,

1H), 2.27 (q, J = 7.4 Hz, 2H), 1.84 (s, 3H); 4-37d–1 and 4-37d–2: ¹³C NMR (125 MHz, CDCl₃)  $\delta$  139.1, 139.0, 132.3, 121.3, 118.3, 107.7, 106.7, 93.3, 90.8, 37.3, 31.7, 31.6, 30.8, 28.8, 28.5, 28.0, 23.0, 22.6, 22.5, 18.7, 14.1, 11.3; IR (neat): 2941, 2864, 2171, 1649, 1462, 1367, 1193 cm⁻¹; HRMS (EI) calcd for C₁₉H₃₆Si [M]⁺ 292.2586, found 292.2591.

SiMe₃ **4-37e:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.35 (d, J = 1.4 Hz, 1H), 5.32 (d, J = 1.7 Hz, 1H), **4-37e** 1.53 (s, 3H), 1.52–1.51 (m, 1H), 0.70–0.65 (m, 4H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  119.5, 16.0, 5.8, -0.06; HRMS (EI) calcd for C₁₀H₁₇Si [M+1]⁺ 165.1099, found 165.1096.

SiMe₃ **4-37f** (64% yield): ¹H NMR (500 MHz, CDCl₃) δ 6.12–6.11 (m, 1H), 2.48–2.39 (m, 4H), **4-37f** 1.92–1.86 (m, 2H), 0.10 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 139.4, 124.6, 102.6, 95.3, 36.4, 33.3, 23.4, 0.0; IR (neat): 2955, 2853, 2150, 1713, 1463, 1248 cm⁻¹.

SiMe₃ **4-37g** (67% yield): ¹H NMR (500 MHz, CDCl₃) δ 6.18 (bm, 1H), 2.23–2.14 (m, 3H), t-Bu **4-37g** 1.87–1.80 (m, 2H), 1.29–1.13 (m, 2H), 0.85 (s, 9H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 136.6, 120.5, 107.0, 91.1, 43.1, 32.1, 30.6, 27.4, 27.1, 23.7, 0.1.

**4-37h** (58% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.85 (d, J = 2.6 Hz, 1H), 4.75 (s, 1H), 4.72 (s, 1H), 2.54–2.50 (m, 1H), 2.02–1.97 (m, 1H), 1.70 (s, 3H), 1.59–1.53 (m, 1H), 1.28 (s, 3H), 1.14–1.10 (m, 1H), 0.75 (t, J = 5.2 Hz, 1H), 0.58 (dd, J = 8.3, 4.61 Hz, 1H), 0.20 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  147.6, 134.7, 127.2, 110.7, 105.1, 93.8, 39.9, 24.7, 23.0, 21.1, 20.5, 18.0, 15.7, 0.0; HRMS (EI) calcd for C₁₆H₂₄Si [M+1]⁺ 245.1330, found 245.1324.

SiMe₃ **4-37i** (73% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.36 (t, J = 6.7 Hz, 1H), 2.33–2.31 (m, 2H), 2.19–2.17 (m, 2H), 1.72–1.71 (m, 2H), 1.57–1.55 (m, 2H), 1.51–1.49 (m, 2H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  141.3, 126.9, 108.9, 90.6, 34.0, 32.0, 29.2, 26.5, 26.4, 0.1; IR (neat): 2924, 2858, 2170, 1677, 1456, 1249 cm⁻¹; HRMS (EI) calcd for C₁₂H₂₀Si [M]⁺ 192.1334, found 192.1328.

SiMe₃ **4-37j** (81% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  6.1 (t, J = 8.4 Hz, 1H), 2.30–2.27 (m, **4-37j** 2H), 2.17–2.13 (m, 2H), 1.60–1.48 (m, 8H), 0.17 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  138.8, 123.9, 108.0, 90.2, 29.9, 29.6, 28.4, 27.0, 26.3, 25.8, 0.2. **4-37k** (75% yield):¹H NMR (500 MHz, CDCl₃)  $\delta$  5.81 (t, J = 7.7 Hz, 1H), 2.34–2.31 (m, 2H), 2.16–2.14 (m, 2H), 1.57 (m, 4H), 1.39–1.28 (m, 12H), 0.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  141.2, 122.4, 104.5, 98.2, 36.1, 30.2, 26.9, 26.1, 25.8, 25.2, 24.8, 24.6, 24.4, 0.1; IR (neat): 2927, 2855, 1710, 1678, 1466, 1445, 1248 cm⁻¹.



4-371 (74% yield): ¹H NMR (500 MHz, CDCl₃) δ 5.66 (t, J = 7.4 Hz, 1H), 2.35–
2.31 (m, 2H), 2.15–2.13 (m, 2H), 1.55–1.1.53 (m, 2H), 1.48–1.45 (m, 2H), 1.35–1.25 (m, 18H), 0.19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 140.0, 123.4,

104.4, 98.1, 35.9, 29.5, 28.4, 27.5, 27.2, 27.1, 27.0, 26.9, 26.8, 26.5, 25.7, 0.1; IR (neat): 2924,2855, 1679, 1459, 1249 cm⁻¹; HRMS (EI) calcd for C₂₀H₃₆Si [M]⁺ 304.2586, found 304.2589.

 $\begin{array}{c} \text{SiMe}_{3}\text{-4-35q} (83\% \text{ yield}): {}^{1}\text{H NMR} (500 \text{ MHz}, \text{CDCl}_{3}) \delta 7.40-7.39 \text{ (m, 3H)}, 7.19-7.15 \text{ (m, 5H)}, 7.09-7.08 \text{ (m, 2H)}, 6.97 \text{ (bs, 1H)}, 3.81 \text{ (s, 1H)}, 0.23 \text{ (s, 9H)}; {}^{13}\text{C NMR} \\ \text{SiMe}_{3}\text{-4-35q} (125 \text{ MHz}, \text{CDCl}_{3}) \delta 158.8, 151.7, 149.3, 143.4, 137.9, 132.2, 129.1, 128.0, 127.5, \\ \text{SiMe}_{3}\text{-4-35q} (125 \text{ MHz}, \text{CDCl}_{3}) \delta 158.8, 151.7, 149.3, 143.4, 137.9, 132.2, 129.1, 128.0, 127.5, \\ 125.5, 123.8, 122.7, 119.5, 111.6, 111.3, 100.9, 44.3, -2.3; \text{HRMS} \text{ (ESI)} \text{ calcd for } \text{C}_{26}\text{H}_{21}\text{N}_{2}\text{O}_{2}\text{Cl}_{2}\text{Si} \text{ [M+H]}^{+} \\ 491.0749, \text{ found } 491.0748. \end{array}$ 

^{SiMe₃} **4-39r** (63% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.32–7.22 (m, 5H), 5.10 (t, J = 6.2 **4-39r** (Cl Hz, 1H), 2.98 (t, J = 7.9 Hz, 2H), 2.42–2.32 (m, 2H), 0.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  152.4, 150.3, 140.6, 135.5, 128.5, 126.9, 126.2, 112.4, 111.7, 100.8, 100.2, 97.1, 74.9, 37.3, 31.1, -0.5; IR (neat): 3225, 2951, 2250, 1603, 1496, 1450, 1411, 1278, 1249, 1157, 1081 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₁N₂O₂SiCl₂ [M+1]⁺ 443.0749, found 443.0753.

**4-39s** (67% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  2.58 (bs, 2H), 2.51 (d, J = 12.4 Hz, **4-39s** (67% yield): ¹H NMR (500 MHz, CDCl₃)  $\delta$  2.58 (bs, 2H), 2.51 (d, J = 12.4 Hz, 2H), 2.12–2.09 (m, 2H), 1.91–1.72 (m, 8H), 0.01 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  151.9, 151.5, 137.6, 126.2, 113.5, 112.4, 111.9, 103.0, 100.5, 98.9, 93.3, 39.3, 37.4, 36.5, 31.9, 26.5, 26.4, -0.5; IR (neat): 3211, 2902, 2857, 2257, 1704, 1556, 1438, 1417, 1249, 1210 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₅N₂O₂SiCl₂ [M+1]⁺ 459.1062, found 459.1075. **Ph OO'BU 4-38a** (colorless liquid, 93%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  ¹H NMR 7.62 **4-35a** SiMe₂^{*t*}Bu (d, *J* = 7.3 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.3 Hz, 1H), 2.00– 1.95 (m, 1H), 1.82–1.77 (m, 1H), 1.26 (m, 17H), 1.01 (s, 9H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  141.9, 127.8, 127.4, 126.5, 106.7, 89.5, 83.4, 79.9, 42.6, 31.6, 29.3, 26.8, 26.2, 24.6, 22.6, 16.7, 14.1, -4.6; HRMS (ESI) calcd for C₁₈H₃₄O₂NaSi [M+Na]⁺ 425.2852, found 425.2852.

**4-38b** (colorless liquid, 73%): ¹H NMR (500 MHz, CDCl₃) δ 1.76–1.70 (m, 1H), **4-38b** (colorless liquid, 73%): ¹H NMR (500 MHz, CDCl₃) δ 1.76–1.70 (m, 1H), 1.61–1.54 (m, 1H), 1.44 (s, 3H), 1.30–1.26 (m, 8H), 1.24 (s, 9H), 1.00–0.97 (m, 6H), 0.89–0.87 (m, 3H), 0.60–0.56 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 109.4, 85.2, 79.4, 78.2, 39.9, 31.7, 29.4, 26.7, 25.6, 24.4, 22.5, 14.0, 7.4, 4.4; HRMS (ESI) calcd for C₂₀H₄₀O₂NaSi [M+Na]⁺ 363.2695, found 363.2710.

**4-38c** (colorless liquid, 93%): ¹H NMR (500 MHz, CDCl₃) δ 1.76–1.70 (m, **4-38c** SiMe₂^{*l*}Bu 1H), 1.62–1.56 (m, 1H), 1.49–1.44 (m, 5H), 1.32–1.29 (m, 6H), 1.24 (s, 9H), 0.93 (s, 9H), 0.89–0.87 (m, 3H), 0.09 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 108.8, 86.2, 79.4, 78.1, 39.8, 31.7, 29.4, 26.7, 26.0, 25.5, 24.3, 22.5, 16.6, 14.0, –4.6; HRMS (ESI) calcd for C₂₀H₄₀O₂NaSi [M+Na]⁺ 363.2695, found 363.2702.

4-38d (colorless liquid, 82%): ¹H NMR (500 MHz, CDCl₃) δ 1.77–1.71 (m, 1H),
4-38d Si[/]Pr₃ 1.63–1.56 (m, 1H), 1.54–1.48 (m, 5H), 1.32–1.26 (m, 6H), 1.24 (s, 9H), 1.09–
1.01 (m, 18H), 0.89–0.87 (m, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 110.1, 84.0, 79.2, 78.2, 39.9, 31.7, 29.5,
26.7, 24.5, 22.5, 18.6, 14.0, 11.2; HRMS (ESI) calcd for C₂₃H₄₆O₂NaSi [M+Na]⁺ 405.3165, found 405.3165.

4-38e (colorless liquid, 70%): ¹H NMR (500 MHz, CDCl₃) δ 1.53 (s, 3H), 1.25 (s, 9H), 4-38e SiMe₃ 1.06–1.00 (m, 1H), 0.72–0.67 (m, 1H), 0.49–0.39 (m, 3H), 0.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 104.5, 88.9, 80.6, 79.6, 26.7, 26.2, 17.8, 2.8, 1.5, 0.0; HRMS (EI) calcd for C₁₄H₂₅O₂Si [M–H]⁺ 253.16239, found 253.16316. **4-38m** (colorless liquid, 93%): ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.17 (m, 4H), **a**-38m (colorless liquid, 93%): ¹H NMR (500 MHz, CDCl₃) δ 7.29–7.17 (m, 4H), **b**-4-38m SiMe₃ 2.83–2.79 (m, 2H), 2.10–2.05 (m, 1H), 1.97–1.86 (m, 1H), 1.50 (s, 1H), 1.26 (s, 9H), 0.21 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 142.3, 128.4, 128.3, 125.7, 107.6, 88.6, 79.6, 77.7, 41.8, 30.9, 26.7, 25.4, 0.0; HRMS (ESI) calcd for C₁₉H₃₀O₂NaSi [M+Na]⁺ 341.1913, found 341.1913.

**4-38n** (colorless liquid, 58%): ¹H NMR (500 MHz, CDCl₃) δ 5.13–5.10 (m, 1H), **4-38n** SiMe₃ 1.99–1.98 (m, 2H), 1.75–1.70 (m, 2H), 1.68 (s, 1H), 1.62–1.57 (m, 5H), 1.53– 1.49 (m, 2H), 1.43 (s, 3H), 1.24 (s, 9H), 0.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 131.5, 124.5, 108.1, 87.9, 79.5, 78.0, 39.5, 28.1, 26.7, 25.7, 25.4, 24.6, 17.2, 0.0; HRMS (ESI) calcd for C₁₈H₃₄O₂NaSi [M+Na]⁺ 333.2226, found 333.2233.

**4-38f** (colorless liquid, 72%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  2.14–2.10 (m, 2H), 1.88–1.83 (m, 2H), 1.71–1.67 (m, 4H), 1.24 (s, 9H), 0.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  108.7, 87.1, 84.4, 79.3, 38.6, 26.5, 24.1, -0.1; HRMS (ESI) calcd for C₁₄H₂₆O₂NaSi [M+Na]⁺ 277.1600, found 277.1613.

4-380 (colorless liquid, 88%): ¹H NMR (500 MHz, CDCl₃) δ 1.94–1.91 (2H, m), 1.67–
4-380 SiMe₃
4-380 (colorless liquid, 88%): ¹H NMR (500 MHz, CDCl₃) δ 1.94–1.91 (2H, m), 1.67–
1.64 (m, 2H), 1.58–1.50 (m, 6H), 1.25 (s, 9H), 0.16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)
δ 108.0, 89.1, 79.3, 78.4, 35.6, 26.7, 25.5, 22.8, 0.0; HRMS (ESI) calcd for C₁₅H₂₈O₂NaSi [M+Na]⁺
291.1756, found 291.1768.

00^tBu 4-38i SiMe₃ **4-38i** (colorless liquid, 85%): ¹H NMR (500 MHz, CDCl₃) δ 2.02–1.97 (m, 2H), 1.85– 1.80 (m, 2H), 1.64–1.52 (m, 8H), 1.24 (s, 9H), 0.15 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 109.2, 88.2, 81.8, 79.3, 38.0, 28.7, 26.7, 22.5, 0.0; HRMS (ESI) calcd for C₁₆H₃₀O₂NaSi

[M+Na]⁺ 305.1913, found 305.1923.



**4-38j** (colorless liquid, 82%): ¹H NMR (500 MHz, CDCl₃) δ 1.99–1.95 (m, 2H), 1.90– 1.85 (m, 2H), 1.61–1.44 (m, 10H), 1.25 (s, 9H), 0.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  108.7, 88.2, 81.5, 79.3, 33.4, 28.0, 26.8, 26.7, 24.9, 22.2, 0.0; HRMS (ESI) calcd for C₁₇H₃₂O₂NaSi [M+Na]⁺ 319.2069, found 319.2078.

**4-38k** (white solid, 73%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  1.84–1.79 (m, 2H), 1.67–1.61 (m, 2H), 1.50–1.28 (m, 18H), 1.24 (s, 9H), 0,19 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  108.7, 87.9, 80.7, 79.3, 31.6, 26.8, 26.1, 22.4, 22.1, 19.3, 0.0; HRMS (ESI) calcd for

 $C_{21}H_{40}O_2NaSi \ [M+Na]^+ 375.2695$ , found 375.2681.

**4-381** (white solid, 89%): ¹H NMR (500 MHz, CDCl₃) δ 1.77–1.63 (m, 4H), 1.36– **4-381** (white solid, 89%): ¹H NMR (500 MHz, CDCl₃) δ 1.77–1.63 (m, 4H), 1.36– 1.27 (m, 24H), 1.24 (s, 9H), 0.15 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 108.6, 88.1, 80.8, 79.3, 35.3, 27.5, 26.9, 26.8, 26.7, 26.4, 21.9, 0.0; HRMS (ESI) calcd for C₂₄H₄₆O₂NaSi [M+Na]⁺ 417.3165, found 417.3172.



HRMS (ESI) calcd for C₁₉H₃₂O₂NaSi [M+Na]⁺ 343.2069, found 343.2079.

## 4.8. References

- (1) V. R. Sabbasani, D. Lee, Org. Lett. 2013, 15, 3954.
- (2) V. R. Sabbasani, D. Lee, Org. Lett. 2015, 17, 4878.
- (3) V. R. Sabbasani, G. Huang, Y. Xia, D. Lee, Chem. Eur. J. 2015, 21, 17210.
- (4) (a) Thiele, J.; Günther, F. *Liebigs Ann. Chem.* 1906, 349, 45. (b) Walker, D.; Hiebert, J. D. *Chem. Rev.* 1967, 67, 153. (c) Bharate, S. B. *Synlett* 2006, 496. (d) Buckle, D. R. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. *In Encyclopedia of Reagents for Organic Synthesis*; John Wiley & Sons, Inc.: New York, 2010.

- (5) (a) Carretto, P. J.; Simalti, M. *Tetahedron Lett.* 1973, *36*, 3445. (b) Jung, M. E.; Pan, Y.-G. J. Org. *Chem.* 1977, *42*, 3961. (c) Ryu, I.; Murai, S.; Hatayama, Y.; Sonoda, N. *Tetrahedron Lett.* 1978, *19*, 3455. (d) Bockman, T. M.; Shukla, D.; Kochi, J. K. J. Chem. Soc. Perkin Trans. 2 1996, 1623.
- (6) (a) Iwamura, J.; Hirao, N. *Tetrahedron Lett.* 1973, 27, 2447. (b) Cacchi, S.; La Torre, F.; Paolucci, G. Synthesis 1978, 848. (c) Becker, H.-D.; Björk, A.; Adler, E. J. Org. Chem. 1980, 45, 1596. (d) Hayashi, Y.; Mukaiyama, T. Chem. Lett. 1987, 16, 1811. (e) Kalena, G. P.; Jadhav, S. M.; Banerji, A. Molecules 2000, 5, 240. (f) Joshi, B. P.; Sharma, A.; Sinha, A. K. Tetrahedron 2006, 62, 2590. (g) Cosner, C. C.; Cabrera, P. J.; Byrd, K. M.; Adams, A. M.; Thomas, A.; Helquist, P. Org. Lett. 2011, 13, 2071. (h) Shen, Z.; Dai, J.; Xiong, H.; Mo, W.; Hu, B.; Sun, N.; Hu, X. Adv. Synth. Catal. 2011, 353, 3031. (i) Wang, L.; Li, J.; Yang, H.; Lv, Y.; Gao, S. J. Org. Chem. 2012, 77, 790.
- (7) (a) Becker, H.-D. J. Org. Chem. 1965, 30, 982. (b) Becker, H.-D. J. Org. Chem. 1965, 30, 989. (c) Becker, H.-D. J. Org. Chem. 1969, 34, 1203. (d) Findlay, J. W. A.; Turner, A. B. J. Chem. Soc. C 1971, 23. (e) Chiba, K.; Arakawa, T.; Tada, M. Chem. Commun. 1996, 1763. (f) Kim, S.; Kitano, Y.; Tada, M.; Chiba, K. Tetrahedron Lett. 2000, 41, 7079. (g) Matsumoto, T.; Singh, I. P.; Etoh, H.; Tanaka, H. Chem. Lett. 2001, 210.
- (8) (a) Oikawa, Y.; Yonemitsu, O. J. Org. Chem. 1977, 42, 1213. (b) Cain, M.; Mantei, R.; Cook, J. M. J. Org. Chem. 1982, 47, 4933. (c) Hagen, T. J.; Narayanan, K.; Names, J.; Cook, J. M. J. Org. Chem. 1989, 54, 2170. (d) Eynde, J. J. V.; Delfosse, F.; Lor, P.; Haverbeke, Y. V. Tetrahedron 1995, 51, 5813. (e) Gryko, D. T.; Jadach, K. J. Org. Chem. 2001, 66, 4267. (f) Chang, J.; Zhao, K.; Pan, S. Tetrahedron Lett. 2002, 43, 951. (g) Gosh, S. K.; Buchanan, G. S.; Long, Q. A.; Wei, Y.; Al-Rashid, Z. F.; Sklenicka, H. M.; Hsung, R. P. Tetrahedron 2008, 64, 883. (h) Sakakura, A.; Umemura, S.; Ishihara, K. Synlett 2009, 1647. (i) Qin, C.; Zhou, W.; Chen, F.; Ou, Y.; Jiao, N.; Angew. Chem., Int. Ed. 2011, 50, 12595. (j) Xu, T.; Mu, X.; Peng, H.; Liu, G. Angew. Chem., Int. Ed. 2011, 50, 8176. (k) Cui, Y.; Floreancig, P. E. Org. Lett. 2012, 14, 1720. (l) Li, X.; Li, C.; Yin, B.; Li, C.; Liu, P.; Li, J.;

Shi, Z. Chem. Asian J. 2013, 8, 1408. (m) Wang, Z.-L.; Li, H.-L.; Ge, L.-S.; Zhang, Z.-G.; Luo, X. J. Org. Chem. 2014, 79, 1156. (n) Jang, Y. H.; Youn, S. W. Org. Lett. 2014, 16, 3720.

- (9) (a) Lemaire, M.; Guy, A.; Imbert, D.; Guetté J.-P. J. Chem. Soc. Chem. Commun. 1986, 741. (b) Lemaire, M.; Doussot, J.; Guy, A. Chem. Lett. 1988, 1581. (c) Guy, A.; Lemor, A.; Imbert, D.; Lemaire, M. Tetrahedron Lett. 1989, 30, 32. (d) Guy, A.; Doussot, J.; Lemaire, M. Synthesis 1991, 460. (e) Guy, A.; Doussot, J.; Guetté, J.-P.; Garreau, R.; Lemaire, M. Synlett 1992, 821. (f) Aubry, S.; Pellet-Rosstaing, S.; Lemaire, M. Eur. J. Org. Chem. 2007, 5212. (g) Li, Y.; Bao, W. L. Adv. Synth. Catal. 2009, 351, 865. (h) Jin, J.; Li, Y.; Wang, Z. J.; Qian, W. X.; Bao, W. L. Eur. J. Org. Chem. 2010, 1235. (i) Wang, Z.; Mo, H.; Cheng, D.; Bao, W. Org. Biomol. Chem. 2012, 10, 4249. (j) Qiu, J.; Zhang, R. Org. Biomol. Chem. 2013, 11, 6008.
- (10) Reviews of C-H functionalization by iron catalysis: (a) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (b) Jia, F.; Li, Z. Org. Chem. Front. 2014, 1, 194.
- (11) (a) Hayashi, Y.; Mukaiyama, T. Chem. Lett. 1987, 1811. (b) Xu, Y.-C.; Kohlman, D. T.; Liang, S. X.; Erikkson, C. Org. Lett. 1999, 1, 1599. (c) Ying, B.-P.; Trogden, B. G.; Kohlman, D. T.; Liang, S. X.; Xu, Y.-C. Org. Lett. 2004, 6, 1523. (d) Zhang, Y.; Li, C. -J. Angew. Chem., Int. Ed. 2006, 45, 1949.
  (e) Zhang, Y.; Li, C. -J. J. Am. Chem. Soc. 2006, 128, 4242. (f) Tu, W.; Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2008, 47, 4184. (g) Dubs, C.; Hamashima, Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.; Hashizume, D.; Sodeoka, M. J. Org. Chem. 2008, 73, 5859. (h) Cheng, D.; Bao, W. J. Org. Chem. 2008, 73, 6881. (i) Cheng, D.; Bao, W. L. Adv. Synth. Catal. 2008, 350, 1263. (j) Yu, B.; Jiang, T.; Li, J.; Su, Y.; Pan, X.; She, X. Org. Lett. 2009, 11, 3442. (k) Tu, W.; Floreancig, P. E. Angew. Chem., Int. Ed. 2009, 48, 4567. (l) Liu, L.; Floreancig, P. E. Org. Lett. 2009, 11, 3152. (m) Liu, L.; Floreancig, P. E. Angew. Chem., Int. Ed. 2009, Med. Chem. 2011, 19, 2666. (o) Han, X.; Floreancig, P. E. Org. Lett. 2012, 14, 3808. (p) Peh, G.; Floreancig, P. E. Org. Lett. 2012, 14, 5614. (q) Clausen, D. J.; Floreancig, P. E. J. Org. Chem. 2012, 77, 6574. (r) Cui, Y.; Villafane, L. A.; Clausen, D. J.; Floreancig, P. E. J. Org. Chem. 2012, 77, 6574. (r) Cui, Y.; Villafane, L. A.; Clausen, D. J.;

Floreancig, P. E.; *Tetrahedron* **2013**, *69*, 7618. (s) Meng, Z.; Sun, S.; Yuan, H.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. **2014**, *53*, 543.

- (12) (a) Bhattacharya, A.; DiMichele, L. M.; Dolling, U.-H.; Douglas, A. W.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 3318. (b) Bhattacharya, A.; DiMichele, L. M.; Dolling, U.-H.; Grabowski, E. J. J.; Grenda, V. J. J. Org. Chem. 1989, 54, 6118. (c) Guo, X.; Mayr, H. J. Am. Chem. Soc. 2013, 135, 12377.
- (13) Li, Z.; Cao, L.; Li, C.-J. Angew. Chem., Int. Ed. 2007, 46, 6505.
- (14) (a) Zhang Y.; Li, C.-J. Eur. J. Org. Chem. 2007, 4654. (b) Pan, S.; Liu, J.; Li, Y.; Li, Z. Chin. Sci. Bull. 2012, 57, 2382.
- (15) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem., Int. Ed. 2009, 48, 3817.
- (16) Guo. S.; Li, Y.; Wang, Y.; Guo, X.; Meng, X.; Chen, B. Adv. Synth. Catal. 2015, 357, 950.
- (17) Wang, T.; Zhou, W.; Yin, H.; Ma, J.-A.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 10823.
- (18) Nakanishi, M.; Bolm, C. Adv. Synth. Catal. 2007, 349, 861.
- (19) Shaikh, T. M.; Hong, F.-E. Adv. Synth. Catal. 2011, 353, 1491.
- (20) Pan, S.; Liu, J.; Li, H.; Wang, Z.; Guo, X.; Li, Z. Org. Lett. 2010, 12, 1932.
- (21) Li, H.; He, Z.; Guo, X.; Li, W.; Zhao, X.; Li, Z. Org. Lett. 2009, 11, 4176.
- (22) Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133, 10756.
- (23) (a) Van Humbeck, J. F.; Simonovich, S. P.; Knowles, R. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 10012. (b) Graham, T. H.; Jones, C. M.; Jui, N. T.; MacMillan, D. W. C. J. Am. Chem. Soc. 2008, 130, 16494. (c) Sibi, M. P.; Hasegawa, M. J. Am. Chem. Soc. 2007, 129, 4124.
- (24) (a) Guillon, J.; Dallemagne, P.; Léger, J.-M.; Sopkova, J.; Bovy, P. R.; Jarry, C.; Rault, S. *Bioorg. Med. Chem.* 2002, *10*, 1043. (b) Kolanos, R.; Siripurapu, U.; Pullagurla, M.; Riaz, M.; Setola, V.; Roth, B. L.; Dukat, M.; Glennon, R. A. *Bioorg. Med. Chem. Lett.* 2005, *15*, 1987. (c) Watanabe, N.; 142

Nakagava, H.; Ikeno, A.; Minato, H.; Kohayakawa, C.; Tsuji, J. *Bioorg. Med. Chem. Lett.* 2003, *13*, 4317. (d) Karaguni, I.-M.; Glusenkamp, K.-H.; Langerak, A.; Geisen, C.; Ullrich, V.; Winde, G.; Moroy, T.; Muller, O. *Bioorg. Med. Chem. Lett.* 2002, *12*, 709.

- (25) (a) Barber, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. *Angew. Chem., Int. Ed.* **1998**, *37*, 296. (b) Yang, J.; Lakshmikantham, M. V.; Cava, M. P.; Lorcy, D.; Bethelot, J. R. *J. Org. Chem.* **2000**, *65*, 6739.
- (26) Alt, H. G.; Köppl, A. Chem. Rev. 2000, 100, 1205.
- (27) For recent examples, see: (a) Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229. (b) Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Org. Lett. 2008, 10, 1783. (c) Kuninobu, Y.; Nishina, Y.; Takai, K. Org. Lett. 2006, 8, 2891. (d) Peng, L.; Zhang, X.; Zhang, S.; Wang, J. J. Org. Chem. 2007, 72, 1192. (e) Odedra, A.; Datta, S.; Liu, R.-S. J. Org. Chem. 2007, 72, 3289. (f) Brummond, K. M.; Chen, D. Org. Lett. 2008, 10, 705.
- (28) (a) Olah, G. A.; Krishnamurit, R.; Prakash, G. K. S. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds; Pergamon Press: Oxford, **1991**; Vol. *3*, p 293. (b) Heaney, H. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds; Pergamon Press: Oxford, **1991**; Vol. *2*, p 753. (c) Johnson, W. S. *Org. React.* **1944**, *2*, 114. (d) Womack, G. B.; Angeles, J. G.; Fanelli, V. E.; Heyer, C. A. *J. Org. Chem.* **2007**, *72*, 7046. (e) Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Klumpp, D. A. *J. Org. Chem.* **2004**, *69*, 2340. (f) Ho, T.-L.; Lee, K.-Y.; Chen, C.-K. *J. Org. Chem.* **1997**, *62*, 3365. (g) Zhou, X.; Zhang, H.; Xie, X.; Li, Y. *J. Org. Chem.* **2008**, *73*, 3958. (h) Basavaiah, D.; Reddy, K. R. *Org. Lett.* **2007**, *9*, 57. (i) Fillion, E.; Fishlock, D. *Tetrahedron* **2009**, *65*, 6682. (j) Zhang, X.; Teo, W. T.; Chan, P. W. H. *Org. Lett.* **2009**, *11*, 4990. (k)Wang, S.; Zhu, Y.; Wang, Y.; Lu, P. *Org. Lett.* **2009**, *11*, 2615. (l) Reeves, J. T.; Fandrick, D. R.; Tan, Z.; Song, J. J.; Yee, N. K.; Senanayake, C. H. *Tetrahedron Lett.* **2009**, *50*, 3077. (m) Shi, M.; Xu, B.; Huang, J.-W. *Org. Lett.* **2004**, *6*, 1175.
- (29) Xu, G.-C.; Liu, L.-P.; Lu, J.-M.; Shi, M. J. Am. Chem. Soc. 2005, 127, 14552.

- (30) Lu, J.-M.; Shi, M. Org. Lett. 2006, 8, 5317.
- (31) Yamazaki, S.; Yamamoto, Y.; Fukushima, Y.; Takebayashi, M.; Ukai, T.; Mikata, Y. J. Org. Chem.
  2010, 75, 5216.
- (32) Meng, B.; Ma, S. Org. Lett. 2012, 14, 2674.
- (33) Liu, C.-R.; Wang, T.-T.; Qi, Q.-B.; Tian, S.-K. Chem. Comm. 2012, 48, 10913.
- (34) Ma, Z.-X.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14, 5736.

# PART II

**ENYNE RING-CLOSING METATHESIS** 

# CHAPTER 5

STRUCTURE AND REACTIVITY OF SULFONAMIDE- AND ACETATE-CHELATED RUTHENIUM ALKYLIDENE COMPLEXES

#### **5.1. Introduction**

#### 5.1.1. Brief Historical Background

Metathesis has emerged as a powerful synthetic tool to create molecular complexity in modern organic synthesis.¹ First olefin metathesis reaction was known as double bond scrambling reaction, which was reported in mid-1950s.² Earlier, the mechanism of metathesis reaction was unclear, and it was first proposed by Chauvin in 1971 to use a propagating metal carbene species that reacts with an alkene via a [2+2]-cycloaddition to form metallocyclobutane intermediate.³ Since Chauvin's proposed the metal alkylidene-bond mechanism of olefin metathesis, extensive investigations have been devoted to the developments of catalytically active metathesis catalysts, and the first major breakthroughs came in early 1990's from the Schrock and Grubbs groups. In 1990, Schrock reported highly metathesis active first well-defined molybdenum-based alkylidene complex.⁴ However, the molybdenum-based alkylidenes are sensitive to air and moisture, and typical polar functional groups intolerant. In 1992, Grubbs reported the first air stable and efficient ruthenium-alkylidene metathesis catalyst.⁵ After this, the development of more effective and user-friendly catalyst⁶ systems as well as their application to a variety of metathesis reactions have been realized.

## 5.1.2. Metathesis Reaction Types and Catalysts

#### 5.1.2.1. Classification of Metathesis Reactions

Depending on the type of unsaturated  $\pi$ -systems involved in the events of metathesis, it can be classified into three major types (a) diene, (b) enyne, and (c) diyne metathesis (**Figure 5.1**).⁷ Based on the structural change involved in the metathesis, these metathesis events are further categorized into different classes and the most general three major class of these events are cross metathesis (CM), ring-closing metathesis (RCM), and ring-opening metathesis (ROM).

The most developed diene metathesis can be further categorized into four types: (1) an intermolecular metathesis reaction between two alkenes to form a new alkene product and ethylene as by-product is called

as diene cross metathesis,8 (2) an intramolecular metathesis reaction between two alkenes

#### (a) Diene Metathesis

Cross metathesis (CM)

$$R^{1} + R^{2} \stackrel{[M]}{\longleftarrow} R^{1} + \|$$

Ring-closing metathesis (RCM)

Ring-opening metathesis (ROM)



Ring-opening metathesis polymerization (ROMP)



#### (b) Enyne Metathesis

Enyne cross metathesis

$$R^1$$
 +  $R^2$   $R^1$   $R^2$ 





#### (c) Diyne Metathesis

Alkyne cross metathesis (ACM)

Ring-closing alkyne metathesis (RCAM)



Ring-opening alkyne metathesis polymerization (ROAMP)



Acyclic diyne metathesis polymerization (ADIMET)



#### **Figure 5.1 Classifications of Metathesis Reactions**

to form a new cycloalkene product and ethylene side product is called diene ring-closing metathesis,⁹ (3) an intermolecular metathesis reaction between a cyclic- and acyclic alkene to form an acyclic diene product is named as ring-opening metathesis, and (4) a self-metathesis process of strained cycloalkene to generate a polymeric acyclic alkene is called ring-opening metathesis polymerization.¹⁰ The metathesis reaction between an alkene and alkyne to generate a conjugated 1,3-diene is known as enyne metathesis, which is

classified into two major categories; enyne cross metathesis and enyne ring-closing metathesis.¹¹ Similar to diene metathesis, diyne metathesis is also categorized into four types; cross metathesis, ring-closing metathesis, ring-opening metathesis polymerization and ring-opening metathesis.¹²

Although each of these three metathesis processes involves different combinations of unsaturated functionalities, all of them share two identical elementary steps. These are [2+2] cycloaddition between metal alkylidene or alkylidyne with appropriate  $\pi$ -systems to form metallacyclobutane (in diene metathesis), metallacyclobutene (in enyne metathesis), and metallacyclobutadiene (in diyne metathesis) intermediate, and their cycloreversion in subsequent step (**Figure 5.2**).



Figure 5.2 Elementary Steps in Diene, Enyne and Diyne Metathesis

## 5.1.2.2. Grubbs-Type Ruthenium Alkylidene Complexes

Based on the availability, functional group tolerance, and their relatively air-stable nature, Grubbs ruthenium-carbene complexes ranging from **Ru-1** to **Ru-10** are extensively used as common initiators in diene and enyne metathesis reaction (**Figure 5.3**). In 1992, Grubbs and coworkers first reported the well-defined ruthenium-based alkylidene complex **Ru-1a** of type  $[RuCl_2(PPh_3)(=CH-CH=CPh_2)]$ .⁵ To improve the catalytic activity of this ruthenium alkylidene complex, triphenylphosphine (PPh₃) ligand of **Ru-1a** was replaced with tricyclohexylphosphine (PCy₃), which has shown much increased metathesis activity with a very good functional group tolerance.¹³ After that, in 1995, a new ruthenium alkylidene complex **G-I** (**Ru-2**) having benzylidene carbene known as Grubbs first-generation catalyst (**G-I**) was reported by Grubbs.¹⁴

The **G-I** complex has been extensively used in diene and enyne metathesis of variety substrate classes. Thereafter, in 1999 Grubbs and coworkers further modified **G-I** complex by replacing the PCy₃ ligand with a *N*-heterocyclic carbene (NHC) ligand, which is known as the second-generation Grubbs catalyst (**G-II** or **Ru-3**).¹⁵ The replacement of PCy₃ with a stronger  $\sigma$ -donor NHC ligand, thus facilitates the dissociation of PCy₃ to activate the catalyst as a 14-electron species, which is essential for the initiation of metathesis catalytic cycle. In 1999, Hoveyda and coworkers made an important discovery by replacing one of the Ltype PCy₃ ligand of **G-I** with a *o*-isopropoxybenzylidene ligand which further improved the stability of the catalyst.¹⁶ Shortly thereafter, variations of *o*-isopropoxybenzylidene **G-II** has been developed by both Hoveyda and Blechert groups (**Ru-5**).¹⁷ The replacement of PCy₃ ligand with chelated *o*isopropoxybenzylidene was found to impart exceptional stability especially with respect to air and moisture.



Figure 5.3 Grubbs-Type Ruthenium Alkylidene Complexes

Moreover, the use of phosphine-free complexes can prevent the phosphine-mediated catalyst decomposition pathways. The introduction of a nitro group to the *o*-isopropoxybenzylidene of **HG-II** further improves metathesis reactions (**Ru-6**).¹⁸ Also, there are several other commercially available ruthenium alkalidene complexes **Ru-7** to **Ru-10** are known, which further improve the thermal stability of

the original catalyst. Complex **Ru-7** is known to be highly reactive even with sterically hindered alkenes, and **Ru-8** is known to catalyze reactions even at very low temperatures. Complex **Ru-9** is widely used for ring-opening polymerizations, and **Ru-10** is known to initiate metathesis reaction rapidly.¹⁹

# 5.1.2.3. Schrock-Type Molybdenum and Tungsten Complexes

Molybdenum- and tungsten-based catalysts have been widely used in metathesis reactions, and some of the most common complexes that are used extensively in the diene metathesis are summarized in **Figure 5.4**. Molybdenum- and tungsten-based alkylidene complexes **Mo-1/W-1** were first prepared by Schrock and coworkers. The general formula of these complexes is  $[M(=CHMe_2Ph)(=N-Ar)(OR_2)]$  where M is Mo or W.⁴ These Schrock-type alkylidene complexes are the most reactive alkene metathesis catalysts. However, the high oxophilicity of the metal center makes these catalysts are extremely air and moisture



Figure 5.4 Schrock-Type Molybdenum and Tungsten Complexes

sensitive.²⁰ Although Schrock-type molybdenum-based alkylidene complex **Mo-2** is commercially available, it requires thoroughly purified reagents and solvents, and even under these reaction conditions, its use is limited only to a relatively narrow range.²¹ Hoveyda and coworkers demonstrated Schrock-type **Mo-3** complex having stereogenicity Mo-center was tested for *endo*-selective enyne ring-closing metathesis. Similar molybdenum-based alkylidene complexes **Mo-4**, **Mo-5** and **Mo-6** were well developed for enantioselective diene ring-closing metathesis, and highly *Z*-selective diene ring-closing metathesis of dienes using bulky and freely rotating monodentate alkoxide ligand in **Mo-6**.²² It was also demonstrated that **Mo-6** catalyst can overcome the inherent thermodynamic preference of the metathesis process in forming *E*-alkene products such that a non-reversible reaction regime operates to selectively generate *Z*-alkenes.²³



Scheme 5.1 Tungsten-Catalyzed RCM for Synthesis of Nakadomarin A and Epothilone C

Hoveyda and coworkers also reported high Z-selective diene ring-closing metathesis using tungstenbased alkylidene complex **W-1**. This complex has been employed for the synthesis of natural products such as epothilone C and nakadomarin A. The Z-cycloalkenes in these macrocyclic natural products was obtained in high Z-selectivity in excellent yields (**Scheme 5.1**).²⁴

## **5.1.2.4.** Diyne Metathesis Complexes

The development of new catalysts with good functional group tolerance and high catalytic activity is required for their practical use. All alkyne metathesis catalysts known to date belong to either in situ generated systems (Mortreux's system) or well-defined single-component catalysts (Schrock-type complexes) (**Figure 5.5**).²⁵ All well-defined single-component catalysts are variants of Schrock-type alkylidyne complexes of high oxidation state molybdenum or tungsten complexes. Except the Mortreux's system, all classical Schrock-type alkylidyne complexes suffer from high sensitivity toward moisture, molecular oxygen, and even molecular nitrogen for catalyst **Mo-8**. The first well-defined, commercially available and widely used alkyne metathesis catalyst is Schrock complex **W-3**, which is benefited by having



**Figure 5.5 Diyne Metathesis Complexes** 

the bulky alkoxide ligands to prevent or slow down bimolecular decomposition of the alkylidyne intermediates in the catalytic cycle. Bulky ligands having thiolates, alkyl, and amides did not show much improvement for catalyst activity. Recently, significant improvements of the performance of Schrock-type

complexes have been realized mainly by the Fürstner group, and their broad range of applications in complex natural product synthesis have been demonstrated. Complex **Mo-13** is air stable for several weeks and also capable of performing large scale reactions.²⁶

#### 5.2. Enyne Metathesis

Among diene, enyne and diyne metathesis, enyne metathesis is the most atom economical process that can generate conjugated 1,3-diene via a formal addition reaction between an alkene and alkyne both in inter and intra manners. In enyne metathesis (cross metathesis and/or ring-closing metathesis), the generated propagating ruthenium alkylidene species can easily undergo tandem reaction sequences that would enable the formation of multiple bonds and rings in one step.

In 1985, Katz and coworkers reported the first example of enyne ring-closing metathesis using Fischer tungsten complexes **W-5** and **W-6** (Scheme 5.2). In this intramolecular enyne metathesis, enyne 5-1 in the presence of catalytic and/or stoichiometric amount of tungsten complexes provided the metathesis products 5-2 and 5-3. The proposed mechanism involves metallocyclobutene formation and its cycloreversion to generate a vinyl carbene complex.²⁷ Thereafter, Hoye and Mori independently studied chromium Fischer carbene mediated enyne ring-closing metathesis. These reactions however suffers with high catalyst loading, low yields with undesired product formation and poor functional group tolerance.²⁸



Scheme 5.2 Example of First Enyne Metathesis

Trost and coworkers disclosed the palladium-catalyzed enyne RCM reactions (**Scheme 5.3**).²⁹ In this metathesis transformation, low valent palladium complex **Pd-1** has been used, and two products **5-5** and **5-6** were obtained in a 1:1 ratio.



Scheme 5.3 Pd-Catalyzed Enyne Metathesis

Murai reported platinum-catalyzed enyne ring-closing metathesis. In this study, 1,6-enynes were treated with a catalytic amount of  $PtCl_2$  to generate 1-vinylcycloalkene in high yields (**Scheme 5.4**).³⁰ The suggested mechanism for the formation of ring-closer products might involve non-classical carbocations.³¹



Scheme 5.4 Pt-Catalyzed Ring-Closing Enyne Metathesis

Ruthenium-catalyzed enyne metathesis was first reported by Mori and Kinoshita.³² Enyne **5-7** upon treatment a catalytic amount of **Ru-1b** (2 mol%), efficiently provided diene **5-8** in 86% yield (**Scheme 5.5**).



Scheme 5.5 First Catalytic Ruthenium Carbene-Based Enyne RCM

After the first report from Mori group, Grubbs and coworkers extended this RCM of enyne metathesis to dienynes using **Ru-1b** (Scheme 5.6).³³ Dienyne 5-9 having a symmetrical alkenyl tether provided bicyclic product 5-11 in excellent yield when treated with **Ru-1b**. However, the reaction with dienyne 5-

**12** having unsymmetrically tethered alkene afforded a mixture of bicyclic products in 1:1 ratio. Thereafter, numerous synthetic applications of enyne metathesis has been evolved by using various Grubbs-type ruthenium alkylidenes.^{34,35}



Scheme 5.6 Tandem Ring-Closing Metathesis of Dienynes

Comparing to the ring-closing metathesis of dienes and diynes, which ultimately generate only one product regardless of the initiation events, ring-closing metathesis of enynes has potentially three different initiation events, which lead to two different "Ene-First" pathways and two different "Yne-First" pathways. These pathways involve unique propagating alkylidene species, yet ignored only two distinct RCM products are observed (1,2-substituted or 1,3-substituted dienes) via isomeric vinyl ruthenium alkylidene intermediates (Scheme 5.7). Several groups have investigated the mechanism of enyne metathesis, however, there are still some uncertainties.³⁶ Mori and coworkers observed the formation of *endo*-RCM products when disubstituted alkenes are present in the substrate.³⁷ Hoveyda and coworkers also demonstrated the enyne metathesis catalyzed by group VI metals (W, Mo) which generally initiates at an alkyne counterpart. Computational studies did not show any preference for "Ene-First" and "Yne-First" mechanism, yet calculations showed the preferential formation either *endo-* or *exo*-product depending on the nature of substituents.



Scheme 5.7 Possible Mechanism for Enyne RCM

The *exo/endo-*selectivity in enyne RCM has been nicely demonstrated by Lee and Hansen by varying the ring sizes from small to medium and to macrocycles (**Scheme 5.8**). In their study, the small and medium ring forming substrates generally favor the formation of *exo-*mode ring-closer product **5-18**. On the other hand, the RCM to form macrocycles preferentially generates the *endo-*mode ring-closer products. The formation of *endo-*products rationalized by the "Ene-First" mechanism, where the initially formed ruthenium alkylidene favors to add to the tethered alkyne such a way to generate a more alkyl substituted alkylidene intermediate. However, the reactions under ethylene provides 1,3-diene **5-17**, which then underwent diene RCM to generate formal *endo-*mode products **5-20** exclusively.³⁸


Scheme 5.8 Mode Selectivity in Enyne RCM

### 5.3. Metallotropic [1,3]-Shift in Enyne Metathesis

Alkynyl alkylidene complexes can undergo [1,3]-transposition known as metallotropic [1,3]-shift. It can be considered as a special case RCM of enynes, where metallotropic [1,3]-shift can be initiated by *exo*-mode ring closure by a propagating alkylidene species. The regioselective termination with an appropriate substituent on the alkyne moiety seems to be necessary (**Figure 5.6**).



Figure 5.6 Possibility of Metallotropic [1,3]-Shift in Enyne RCM

The regioselective RCM of ene-1,3-diynes followed by metallotropic [1,3]-shift was reported by Lee and coworkers (**Scheme 5.9**).³⁹ In their report, metallotropic [1,3]-shift of an initial generated alkynyl alkylidene was controlled by the R¹ substituent at the terminus of the 1,3-diyne moiety. In the reaction, if R¹ is hydrogen and/or unhindered alkyl group such as in **5-21**, the metallotropic shift occurs to generate 1,5-diene-3-yne **5-26** via initially formed **5-23** to **5-24**. However, if the R¹ is sterically hindered substituent such as a triethylsilyl group **5-25** was generated without metallotropic shift. It can be concluded that the

equilibrium between alkynyl alkylidenes **5-23** and **5-24** would mainly depend on the nature of the substituent on the diyne tethers.



Scheme 5.9 Metallotropic [1,3]-Shift Induced by Enyne RCM

The substituent effect on metallotropic shift in RCM of enynes was further probed by Lee and coworkers (**Scheme 5.10**).⁴⁰ Ene-triyne **5-27** having triethyl silyl substituent upon treatment with a catalytic amount **G-II**, provided simple RCM product **5-29** as a sole product. However, the reaction of triyne **5-28** with stoichiometric amount of **G-II** afforded alkynyl alkylidene complex **5-30**.



Scheme 5.10 Reactivity of Alkynyl Ruthenium Alkylidenes

Lee and coworkers nicely utilized this enyne RCM followed by metallotropic [1,3]-shift for the synthesis of oligoenynes (**Scheme 5.11**).⁴¹ Diene tethered multiynes in the presence of catalytic amount of **G-II** catalyst underwent multiple enyne RCM with multiple metallotropic [1,3]-shift to afford oligoenynes

in good to moderate yields.



Scheme 5.11 Formation of Oligoenynes via Metallotropic [1,3]-Shift



Scheme 5.12 Enyne RCM and Metallotropic [1,3]-Shift for Natural Product Synthesis

This metallotropic shift process also successfully implemented in the total synthesis of natural products, such as (+)-asperpentyne, (-)-harveynone and (-)-tricholomenyn (**Scheme 5.12**).⁴² The relay tethered enediynes in the presence of **G-II** complex, undergoes RCM to generate ruthenium alkylidene **5-35**. After RCM with the tethered alkyne to produce alkynyl alkylidene **5-36**, a metallotropic shift process followed by termination affords 1,5-diene-3-yne **5-37**. Further functional group modifications of **5-37** led to the target natural products. A similar metalltropic shift process was also applied to the synthesis of (3R,9R,10R)-panaxytriol.⁴³

#### 5.4. Results and Discussion

The favorable coordination of alkene or alkyne to the coordinatively unsaturated ruthenium metal center along the catalytic cycle is necessary for productive alkene and enyne metathesis catalyzed by Grubbs-type ruthenium alkylidene complexes.¹ Occasionally, however, other polar functional groups containing lone pair electrons, alkenes, or alkynes near the metal center preferentially occupy the coordination site over the substrate such that the catalytic cycle is arrested at various resting stages either temporarily or permanently in alkene and enyne metathesis. To minimize these non-productive metathesis events involving the trapped propagating alkylidene species, it is crucial to understand what functionality and structural features and how they promote or discourage such events.

There are many known heteroatom-chelated ruthenium alkylidenes, and the earliest and most prominent complex of this type is **HG-I** (**Ru-3**),¹⁶ an oxygen-chelate discovered by Hoveyda and coworkers, which is now developed as the Grubbs-Hoveyda complex **HG-II** (**Ru-5**)¹⁷ and its variants.^{18,44} The development of this phosphine-free complex gave an important breakthrough for metathesis because of its exceptionally stability to air and moisture. Thus, other phosphine-free heteroatom-chelated ruthenium alkylidenes complexes are emerged, and many research groups have continued to develop heteroatom-chelated ruthenium alkylidene complexes and studied their structure and reactivity.

Sulfur-chelated ruthenium alkylidene complexes **Ru-11** and **Ru-12** were reported by Lemkoff ⁴⁵ and Grela,⁴⁶ respectively (**Figure 5.7**). Six-membered chelates with sulfonyl oxygen⁴⁷ (**Ru-13**, **Ru-14**) and imino-nitrogen⁴⁸ (**Ru-15**) were also reported. All these ruthenium alkylidenes have a chelated heteroatom and the *N*-heterocyclic carbene (NHC) ligands with a trans-relationship. In earlier study, Snapper reported alkene-chelated ruthenium complex **Ru-16**, where an alkene is chelated to the metal trans to the phosphine

ligand.⁴⁹ Vinyl alkylidene complex⁵⁰ **Ru-17** and styryl-chelated complex **Ru-18** were also reported by Grubbs,⁵¹ which display a cis-relationship between the NHC ligand and the chelated alkene.



Figure 5.7 Chelated Ruthenium Alkylidene Complexes

Recently, our group also reported the first well-defined alkyne-chelated ruthenium alkylidene complex **5-39**, which was generated by employing a sequential process of tandem ring-closing enyne metathesis and metallotropic [1,3]-shift of enetriyne **5-38** (Scheme **5.13**).⁵² Interestingly complex **5-39** shows that the alkyne is coordinated to the metal center trans to the NHC ligand. On the basis of the reactivity of ruthenium based alkylidene complex in enyne metathesis and metallotropic [1,3]-shift, we envisioned that the RCM of enediynes would be one of most effective methods to deliver the ruthenium alkylidene moiety at an appropriate location such that the metal center and the installed chelating group would interact to form heteroatom chelates. For the RCM of enediynes, the metallotropic [1,3]-shift of the initially formed

ruthenium alkylidene would be facilitated by a chelation event and vice versa and the thermodynamic advantage of metallotropic [1,3]-shift to generate a fully conjugated system would force the metal center to be positioned near the chelating group. Here in we studied the structure and reactivity of acetate- and sulfonamide-chelated ruthenium alkylidene complexes formed via a tandem reaction involving enyne ring-closing metathesis and metallotropic [1,3]-shift. Also, we tested the behavior of these acetate- and sulfonamide-chelates toward carbon monoxide.



Scheme 5.13 RCM Strategy for the Formation of Chelated Ruthenium Alkylidene

To gain further insight into the chelation behavior of ruthenium alkylidenes, we investigated the factors that promote chelation by oxygen functionality (**Scheme 5.14** and **Scheme 5.15**). The design of 5-membered sulfonamide chelates is modeled by replacing the  $sp^2$ - $sp^2$  carbon moiety of the phenyl group in the Hoveyda complex with a N–S(O) moiety of sulfonamides (**Scheme 5.14**). We believe that the 1-ene-6,8-diyne having a sulfonamide attached to the diyne as an ynamide can undergo enyne RCM followed by metallotropic shift might generate a sulfonamide chelated ruthenium alkylidene more favorably. Similarly, for a less common 6-membered ester chelates, the  $sp^2$ - $sp^2$  carbon moiety of the phenyl group in the complexes reported by Fürstner⁵³ and Slugovc⁵⁴ are modeled by the (R'₂)C–O moiety of acetate chelates (**Scheme 5.15**). We expected that the formation of acetate-based chelates might be less favorable than that of Fürstner's ester chelate because of the more flexible nature of the C–O linker than the phenyl linker,

which will be partially compensated by the gem-dialkyl effect of the (R'₂)C–O linker.



Scheme 5.14 Designing New Structural Motifs of Sulfonamide-Chelates



Scheme 5.15 Designing New Structural Motifs of Acetate-Chelates

First, to prove the validity of the 5-membered sulfonamide chelates, terminal ynamide-containing enediynes **5-40** were tested with a stoichiometric amount of Grubbs second-generation catalyst (**G-II**) (**Table 5.1**). In the reaction of yanamide-containing enediyne **5-40a** with a stoichiometric amount of **G-II** complex in CH₂Cl₂ at 45 °C, spectroscopic characterization of the newly formed material (78%) clearly indicates the characteristics of structure **5-41a**, which was further confirmed by single crystal X-ray diffraction analysis. Unexpectedly, the complex shows a cis relationship between the NHC and the chelated oxygen of the sulfonyl group. The favorable formation of a cis sulfonamide-chelate can be explained by the steric repulsion, between alkyne substituent of ruthenium alkylidene and NHC ligand, in the trans chelated complex that might cause a ligand rearrangement to form a more stable cis complex. An enediyne substrate **5-40b** containing a hydroxyl group was subjected to a stoichiometric amount of **G-II**, which

generated the corresponding ruthenium sulfonamide-chelate **5-41b** in 62% yield with a 1:1 diastereomeric ratio. The chelation behavior and the cis relationship between NHC and the chelated oxygen of the sulfonyl group were further confirmed by X-ray structure of **5-41b**, which shows that the ligand disposition around the metal center in **5-41b** is virtually identical to that of **5-41a**. Enediyne **5-40c** was also tested with **G-II** to afford sulfonamide-chelate **5-41c** in 62% yield.



**Table 5.1 Formation of Various Sulfonamide-Chelates** 

To our surprise, however, when **5-41c** was kept in a mixed solvent system of  $CH_2Cl_2/EtOAc/Et_2O$  over 10 days, high quality single crystals were obtained, X-ray diffraction analysis of showed that the obtained

material was not the expected sulfonamide-chelate **5-41c** but its carbon monoxide-coordinated form **5-42c** (Scheme 5.16).



Scheme 5.16 Unexpected Formation of Carbon Monoxide Complex



Scheme 5.17 Formation of Octahedral Complex with trans NHC–Carbene Geometry Induced by CO Coordination

To further confirm this CO coordination event, both **5-41a** and **5-41c** were treated with CO (balloon) in  $CH_2Cl_2$ , which provided the same type of complex **5-42a** and **5-42c** within 15 minutes in 87% and 89%

yield, respectively (**Scheme 5.17**). During this time a characteristic green color of **5-41a** and **5-41c** changed to pink. The formation of CO-coordinated complexes **5-42a** and **5-42c** is in stark contrast to Diver's observation where Buchner reaction products were formed upon treating Grubbs-II with carbon monoxide,⁵⁵ and Grubbs-Hoveyda chelate did not generate Buchner products.⁵⁶

These CO-bound octahedral ruthenium alkylidene complexes chelated with a sulfonamide moiety display a trans relationship between NHC ligand and the carbenic carbon ligand. This is a rare example of Grubbs-type ruthenium alkylidenes to have this unique ligand geometry. This can be explained by the electronic effect of the initially coordinated CO ligand to the ruthenium center of the complex **5-41**, which might force the rearrangement of ligands through pseudorotation at the metal center.



Scheme 5.18 Metathesis Activity of CO-Bound Octahedral Complex and Sulfonamide-Chelates

Next, the metathesis activity of CO-bound octahedral complexes with dimethyl-2,2-diallylmalonate was tested at 40 °C in CH₂Cl₂ or 100 °C in toluene (**Scheme 5.18**). However, as expected, complexes **5-42a** and **5-42c** are devoid of metathesis activity because of their coordinatively saturated environment, which would not allow either associative nor dissociate ligand-substrate exchange with alkene substrates. On the other hand, sulfonamide-bound octahedral complex precursor **5-41a** is metathesis-active. Upon treating dimethyl-2,2-diallylmalonate with **5-41a** (5 mol %) in toluene- $d_8$  at 80 °C, the corresponding RCM product

was obtained in 78% yield (95% conversion) after 10 h, but at 45 °C in CDCl₃, only around 10 % conversion was observed after 24 h.



Scheme 5.19 RCM of Sulfonamide-Tethered 1,6-Enynes

Next, we explore the formation of 6-membered sulfonamide chelates and their ligand disposition. Grela and coworkers have demonstrated that the chelated oxygen of the 6-membered sulfone and sulfonamide maintain a trans relationship to the NHC (**Scheme 5.19**).⁴⁷ Based on these examples, we expected that the RCM of ynamide-tethered 1,6-enyne **5-43a,b** would undergo ring-closure to form either *trans*-**5-44a,b** or *cis*-**5-44a,b**. Although C–C–N–S of **5-44a,b** connecting the metal center and a chelated oxygen is different

from C–C–C–S of **Ru-13** or **Ru-14**, the overall ligand disposition of these complexes are expected to be similar. To our surprise, however, ynamide **5-43a** upon treating with stoichiometric **G-II** provided only metathesis product **5-45a** instead of either sulfonamide chelate *trans*-**5-44a** or *cis*-**5-44a**. From the reaction of **5-43b**, under otherwise identical conditions, only acetate-chelated *cis*-complex **5-44b'** was obtained in 91% yield without forming the expected *trans*-**5-44b** or *cis*-**5-44b**. The result from the reaction of **5-43b** suggest that, as opposed to the 5-membered sulfonamide chelates, the corresponding 6-membered chelates **5-44a** and **5-44b** should be relatively unfavorable, thus favorably generating **5-45a** and **5-44b'**, respectively. The ligand environment of the formed acetate-chelated complex **5-44b'** was further confirmed by single crystal X-ray diffraction analysis.

The formation of these 5- and 6-membered sulfonamide chelates of ruthenium alkylidenes prompted us to further explore carbonyl-based *sp*²-oxygen chelates. To facilitate the delivery of the ruthenium alkylidene moiety near the chelating acetate functionality, we first employed a ring-closing metathesis strategy rather than cross metathesis with substrates 1,3-diynes **5-46a–5-46d** (**Table 5.2**). Upon treatment of 1,3-diynyl propargylic acetates **5-46a** a containing hydroxyl group with a stoichiometric amount of **G-II**, the corresponding acetate-chelated complex **5-47a** was formed in 86% yield (entry 1). The cis relationship between the NHC and the chelated oxygen of the acetate in complex **5-47a** is evident in its Xray structure. Enediyne of cyclopentyl propargylic acetate **5-46b** with a stoichiometric amount of **G-II** complex generated acetate chelate **5-47b** only in 45% (entry). The low yield of **5-47b** is the consequence of its turn over to the final metathesis product (13%). Propargyl-sulfonamide tethered diyne propargyl acetate **5-46c** with **G-II** in the presence of 1-octene undergoes cross metathesis with propagyl sulfonamide followed by enyne RCM and metallotropic [1.3]-shift afforded acetate chelated complex **5-47c** in good yield (85%, entry 3). For triynyl propargylic acetate **5-46d**, its cross metathesis with styrene and 1-octene followed by metallotropic [1,3]-shift provided chelates **5-47d**, and **5-47d'** in 78% and 81% yield, respectively (entries 4 and 5).



Table 5.2 Acetate-Chelated Ruthenium Alkylidene Complexes

These results suggest that the subtle steric and electronic influence of the substituent on the carbenic carbon is critical for the formation of these chelates. The corresponding substrates devoid of a *gem*-dialkyl substituent at the propargylic carbon did not form chelates. Compared to Fürstner's and Slugovc's trans chelates containing either a vinyl group or a proton, the formation of 6-membered cis chelates is primarily due to the presence of an alkynyl group at the carbenic carbon. For **5-47a–5-67d** and **5-47d'** to form trans

chelates, 90° rotation of the Ru=C axis is required, which will bring the linear alkynly group to the same space where one of the mesityl groups. Metathesis activity of this acetate-chelate **5-47a** was tested with dimethyl-2,2-diallylmalonate; RCM of dimethyl-2,2-diallylmalonate catalyzed by **5-47a** (5 mol %) provided the corresponding ring-closed product in 89% within 2 h (**Scheme 5.20**).



Scheme 5.20 Metathesis Activity of Acetate-Chelate

The complexation behavior of these acetate-chelated ruthenium alkylidenes toward carbon monoxide was found to be different from that of sulfonamide chelates. Upon exposure of a green colored CH₂Cl₂ solution of **5-47a** to carbon monoxide, the solution became colorless as opposed to pink with sulfonamide chelates. Characterization of the newly formed material shows that CO-promoted decomplexation of **5-47a** to generate vinyl acetates **5-48a** and CO-bound C₂-symmetrical dimeric ruthenium complex⁵⁷ **5-49a** in quantitative yield (**Scheme 5.21**). The structure of **5-49a** was further confirmed by single X-ray



Scheme 5.21 CO-Binding to a 6-Membered Acetate-Chelate Promote Acetate Migration with

**Concurrent Ru=C Cleavage** 

crystallography. Regarding this transformation, we propose that the CO-coordination would decrease the electron density from the carbonic carbon because of the strong  $\pi$ -acceptor capacity of CO, which promotes the acetate to rearrange with concurrent cleavage of Ru=C bond.

#### 5.5. Summary

In summary, novel sulfonamide- and acetate-chelated ruthenium alkylidene complexes were synthesized from appropriately functionalized enediynes via ring-closing metathesis. In all 5-membered sulfonamide- and 6-membered acetate-chelated complexes prepared in this study, the sulfonamide and acetate moieties are disposed in a cis relationship relative to the NHC ligands. Upon exposure to carbon monoxide, the sulfonamide chelates generated a CO-bound octahedral ruthenium alkylidene complex where the alkylidene carbene moiety and the NHC ligand maintain a trans relationship. This is the first example of Grubbs-type ruthenium alkylidenes to have this unique trans geometry. On the other hand, under the same conditions, the corresponding acetate chelate decomposed to generate a vinyl acetate as pure organic product concurrently with a dimeric ruthenium CO-complex. The CO-bound octahedral ruthenium alkylidenes are metathesis inactive because the ligand environment of the ruthenium center is completely locked, which does not allow ligand-substrate exchange.

#### **5.6. Experimental Details**

**5.6.1. General Information:** Reactions were carried out in oven or flame-dried glassware unless otherwise noted. Compounds were purchased from Aldrich or Acros or TCI America or Oakwood or GFS or Strem chemicals unless otherwise noted. Dichloromethane (DCM) were distilled over calcium hydride (CaH₂) under nitrogen atmosphere. Flash chromatography was performed using silica gel 60 Å (32–63 mesh) purchased from Silicycle Inc. Analytical thin layer chromatography (TLC) was performed on 0.25 mm E. Merck precoated silica gel 60 (particle size 0.040–0.063 mm). Yields refer to chromatographically and spectroscopically pure compounds unless otherwise stated. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker DRX-500 spectrometer. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qn (quintet), sext (sextet), m (multiplet), b (broad), and app (apparent). 1H NMR signals that fall

within a ca. 0.3 ppm range are generally reported as a multiplet, with a single chemical shift value corresponding to the center of the peak. Coupling constants, *J*, are reported in Hz (Hertz). Electrospray ionization (ESI) mass spectra were recorded on a Waters Micromass Q-Tof Ultima in the University of Illinois at Urbana-Champaign. Electron impact (EI) mass spectra and Chemical Ionization (CI) mass spectra were obtained using a Micromass 70-VSE in the University of Illinois at Urbana–Champaign. Single-crystal X-ray diffraction (XRD) studies were performed using a Bruker SMART X2S benchtop diffractometer fitted with a Oxford Cryostreams Desktop Cooler. Solution and refinement was accomplished with the SHELXTL suite of programs, using standard methods.

**5.6.2. General Procedure for Starting Material Preparation:** Cuprous chloride (7.3 mg, 0.074 mmol) was added to an aqueous solution of n-BuNH₂ (30%, 6 mL) at 0 °C. A few crystals of hydroxylamine hydrochloride were added to discharge the blue color. A solution of *N*-phenyl *p*-toluensulfonylynamide (200 mg, 0.74 mmol) in CH₂Cl₂ (2 mL) was added to the solution, upon which the color of the solution became yellow. Bromoalky diethyl 2-allyl-2-(3-bromoprop-2-yn-1-yl)malonate (285 mg, 0.90 mmol) in CH₂Cl₂ (15 mL) was added dropwise to this solution for 15 min under nitrogen purging. During the addition, a small amount of hydroxylamine hydrochloride was added occasionally to keep the color of the reaction light yellow. After the addition of the bromoalkyne, the reaction was stirred while warming up to room temperature over 20 min and then quenched with water (10 mL). The organic layer was separated and the aqueous layer was further extracted with CH₂Cl₂ (10 mL x 3). The combined organic layers were dried over anhydrous Mg₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂, hexane: EtOAc = 3 : 2), affording enediyne **5-40a** (259 mg, 69 %).



**5.6.3. General Procedure for Metal Complex Formation:** Compound **5-40a** (36 mg, 0.071 mmol) and Grubbs second generation complex (55 mg, 0.065 mmol) was dissolved in CH₂Cl₂ (6 mL) in an air-free

sealed tube and heated up to 45 °C over 3 h. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (SiO₂, hexane: EtOAc :  $CH_2Cl_2 = 1 : 2 : 1$ ) to afford **5-41a** (49.3 mg, 78%) as a green solid.

General Procedure for Carbon Monoxide Complexes: Compound 5-41a (10 mg, 0.010 mmol) in  $CH_2Cl_2$  (5 mL) was subjected to carbon monoxide ballon and stirred for 15 minutes at room temperature. The reaction mixture filtered through a short pad of silica using EtOAc/CH₂Cl₂ (1:1) and concentred to afford 5-42a as a pink solid.

#### 5.6.4. Selected Characterization Data

Characterization data of 5-40a: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.53 (d, ³J N Ph = 8.3Hz, 2H), 7.29–7.25 (m, 5H), 7.16–7.15 (m, 2H), 5.64–5.55 (m, 1H),  $EtO_{2}C$  5-40a 5.17–5.09 (m, 2H), 4.18 (q, J = 7.1 Hz, 4H), 2.91 (s, 2H), 2.76 (d, ³J = 7.4 Hz, 2H), 2.41 (s, 3H), 1.22 (t, ³J = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.49 (CO₂Et), 145.41, 137.99, 132.91, 131.64, 129.74, 129.27, 128.72, 128.15, 126.37, 120.04, 78.59, 68.52, 67.26, 61.81, 57.82, 56.80, 36.69, 23.87, 21.74, 14.10; HRMS (ESI) calcd for C₂₈H₃₀NO₆S [M+H]⁺ 508.1794 found, 508.1793.



(s, 3H), 1.24–1.21 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 225.06 (Ru=CN), 214.29 (Ru=C(N)C), 171.37 (CCO₂Et), 171.31 (CCO₂Et), 146.11, 140.50, 140.06, 139.59, 138.37, 137.96, 137.21, 136.38, 136.19, 135.57, 130.69, 130.59, 130.18, 130.05, 129.93, 129.79, 129.69, 129.36, 129.16, 128.17, 124.14, 111.40, 96.86, 61.83, 58.71, 52.40, 51.11, 42.22, 42.03, 21.80, 21.46, 20.94, 20.14, 19.45, 18.89, 18.40, 14.07; HRMS (ESI) calcd for C₄₉H₅₀Cl₂N₃O₇SRu [M+CO–3H]+ 996.1790 found, 996.2591.



**Characterization data of 5-40b:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.58 (d, ³J = 8.2 Hz, 2H), 7.33-7.26 (m, 5H), 7.21-7.19 (m, 2H), 5.85-5.78 (m, 1H), 5.10-5.07 (m, 2H), 4.18 (d,  ${}^{3}J = 5.5$  Hz, 1H), 2.44 (s, 3H), 2.19–2.09 (m, 2H), 1.94 (d,  ${}^{2}J =$ 5.7 Hz), 0.98 (s, 3H), 0.97 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.46, 137.94, 134.64, 132.98, 129.78, 129.33, 128.79, 128.20, 126.42, 118.04, 82.28, 71.22, 70.89, 70.33, 57.30, 42.78,

39.24, 22.77, 22.64, 21.77; HRMS (ESI) calcd for C₂₄H₂₆NO₃S [M+H]⁺ 408.1633 found, 408.1634.



Characterization data of 4-41b: ¹H NMR (500 MHz, CDCl₃) & 8.00-7.96 (m, 2H), 7.14-7.01 (m, 10H), 6.87-6.81 (m, 1H), 6.67-6.61 (s, 1H), 5.75-5.66 (s, 1H), 4.38–4.11 (m, 5H), 3.09 (s, 1H), 2.69–2.14 (m, 23H), 1.08–0.92 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 225.86 (Ru=CN), 225.29 (Ru=CN), 214.11

(Ru=C(N)C), 213.95 (Ru=C(N)C), 146.15, 145.02, 140.59, 140.53, 140.26, 140.09, 139.55, 139.19, 138.32, 138.23, 138.05, 137.81, 137.44, 137.06, 136.39, 136.34, 136.26, 135.61, 135.55, 130.68, 130.60, 130.55, 130.10, 129.95, 129.89, 129.69, 129.46, 129.43, 129.23, 129.09, 128.34, 128.16, 116.10, 115.95, 97.55, 97.44, 83.64 (HC-OH), 52.35, 52.30, 51.19, 47.43, 47.34, 42.56, 27.74, 27.54, 26.42, 22.39, 22.16, 21.79, 21.45, 21.03, 20.98, 20.14, 19.47, 19.07, 18.93, 18.37; HRMS (ESI) calcd for C₄₄H₄₉Cl₁N₃O₃SRu [M-Cl]⁺ 836.2227 found, 836.2266.

Characterization data of 5-40c: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.57 (d, ³J = 8.3 Hz, 2H), 7.32–7.31 (m, 3H), 7.28 (d, ³J=8.2 Hz, 2H), 7.20–7.18 (m, 2H), 5.92–5.84 5-40c (m, 1H), 5.30 (dd,  ${}^{3}J = 1.5$  Hz,  ${}^{3}J = 17.2$  Hz, 1H), 5.21 (dd,  ${}^{3}J = 1.1$  Hz,  ${}^{3}J = 10.4$ Hz, 1H), 4.25 (s, 2H), 4.05 (d,  ${}^{3}J$  = 5.7 Hz, 2H), 2.43 (s, 3H);  ${}^{13}C$  NMR (125 MHz, CDCl₃)  $\delta$  145.53, 137.92, 133.80, 132.94, 129.80, 129.34, 128.81, 128.17, 126.33, 118.10, 79.12, 71.19, 70.79, 70.58, 57.90, 57.48, 21.77; HRMS (ESI) calcd for C₂₁H₂₀NO₃S [M+H]⁺ 366.1164 found, 366.1155.



2.49 (s, 3H), 2.42 (s, 3H), 2.35 (s, 3H), 2.33 (s, 3H), 2.29 (s, 3H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 224.49 (Ru=CN), 214.07 (Ru=C(N)C), 146.20, 140.57, 140.06, 139.48, 138.29, 137.92, 137.23, 136.42, 135.62, 133.83, 130.70, 130.61, 130.06, 129.95, 129.89, 129.71, 129.46, 129.24, 128.19, 123.30, 106.51, 98.74, 77.01, 75.39, 52.43, 51.14, 21.78, 21.44, 21.03, 20.13, 19.44, 18.86, 18.36; HRMS (ESI) calcd for C₄₂H₄₀S₁Cl₂O₄N₃Ru [M+CO-3H]⁺ 854.1155 found, 854.1961.





**Characterization data of 5-42c:** ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, ³*J* = 7.8 Hz, 2H), 7.33–6.86 (m, 11H), 6.12 (s, 1H), 4.52 (s, 2H), 4.19 (s, 2H), 4.06 (s, 3H), 3.84 (s, 1H), 2.56 (s, 6H), 2.52 (s, 6H), 2.44 (s, 3H), 2.31–2.25 (m, 6H); ¹³C NMR

(125 MHz, CDCl₃) δ 264.53 (Ru=CN), 212.73 (Ru=C(N)C), 198.83 (RuC=O),

146.99, 139.50, 137.64, 131.11, 130.21, 129.83, 129.72, 129.27, 121.74, 121.59, 96.14, 76.80, 75.63, 51.94, 51.88, 21.98, 19.02, 18.89; HRMS (ESI) calcd for C₄₂H₄₀S₁Cl₂O₄N₃Ru [M-3H]⁺ 854.1155 found, 854.1961.



CDCl₃) δ 143.81, 136.50, 133.92, 130.15, 129.60, 128.51, 128.14, 126.21, 125.42, 122.38, 122.07, 93.54, 81.42, 49.52, 29.74, 28.44, 21.60; HRMS (ESI) calcd for C₂₁H₂₀NO₂S [M+H]⁺ 350.1215 found, 350.1213.

Ph Characterization data of 5-45a: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.82 (d, ³J = 8.3 Hz, Ts 2H), 7.75–7.73 (m, 2H), 7.40–7.28 (m, 5H), 6.05 (s, 1H), 5.82 (s, 1H), 5.62 (t, ³J = 3.1 Hz, 1H), 3.81 (t, ³J = 9.0 Hz, 2H), 2.47–2.42 (m, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, 125 MHz, 125

CDCl₃) δ 143.81, 136.50, 133.92, 130.15, 129.60, 128.51, 128.14, 126.21, 125.42, 122.38, 122.07, 93.54, 81.42, 49.52, 29.74, 28.44, 21.60; HRMS (ESI) calcd for C₂₁H₂₀NO₂S [M+H]⁺ 350.1215 found, 350.1213.

Characterization data of 5-43b: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.76 (d, J = 8.3 Hz), 7.34 (d, J = 8.1 Hz, 2H), 5.67–5.60 (m, 1H), 5.06 (dd, J = 1.4 Hz, 17.1 Hz, 1H), 5.02 (d, J = 10.3 Hz, 1H), 3.35 (t, J = 7.4 Hz, 2H), 2.44 (s, 3H), 2.37–2.32 (m, 2H), 2.00 (s, 3H), 1.65 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.29 (O=C(Me)O), 145.10, 134.61,

133.17, 130.01, 127.58, 118.07, 82.68, 72.09, 71.62, 68.75, 58.10, 50.91, 32.19, 28.79, 21.84, 21.70; HRMS (ESI) calcd for C₂₀H₂₄NO₄S [M+H]⁺ 374.1426 found, 374.1420.

Characterization data of 5-44b': ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.62 (d, ³*J* = 8.1 Hz, 2H), 7.27 (d, ³*J* = 7.3 Hz, 2H), 7.12 (bs, 1H), 7.06 (bs, 1H), 6.89 (bs, 2H), 6.20 (t, ³*J* = 3.1 Hz, 1H), 4.36 (bs, 1H), 4.12–4.10 (m, 2H), 3.98 (bs, 1H), 3.92–3.87 (m, 1H), 3.52–3.46 (m, 1H), 2.70 (s, 3H), 2.43 (s, 3H), 2.35 (s, 9H), 2.27 (s, 3H), 2.18 (s, 3H), 1.93 (s, 3H), 1.53 (s, 3H), 1.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  260.71 (Ru=CN), 214.74 (Ru=C(C)C), 179.81 (RuO=C(Me)O), 143.87, 132.90, 130.82, 129.90, 129.78, 129.38, 129.24, 127.93, 126.80, 114.99, 111.92, 98.96, 52.18, 51.27, 49.20, 30.45, 25.03, 24.91, 23.17, 21.56; HRMS (ESI) calcd for C₄₀H₄₇Cl₁N₃O₄RuS [M–Cl]⁺ 802.2026 found, 802.2016.



**Characterization data of 5-46a:** ¹H NMR (500 MHz, CDCl₃) δ 5.83–5.75 (m, 1H), 5.07–5.04 (m, 2H), 4.11 (s, 1H), 2.16 2.16–2.12 (m, 2H), 2.08–2.04 (m, 1H), 2.00 (s, 3H), 1.64 (s, 6H), 0.95 (s, 3H), 0.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.31 (O=C(Me)O), 134.57, 117.99, 80.01, 79.43, 71.79, 70.56, 70.14, 68.50,

42.67, 39.11, 28.69, 22.68, 22.53, 21.77; HRMS (ESI) calcd for C₁₆H₂₂O₃Na [M+Na]⁺ 285.1467 found, 285.1463.

Characterization data of 5-47a: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.04 (bs, 2H), NHC CI-R CL 6.84-6.76 (m, 2H), 6.15 and 6.11 (s, 1H), 4.56 and 4.42 (s, 1H), 4.12-3.85 (m, 4H), 3.84 and 3.63 (s, 1H), 2.64–2.61 (m, 2H), 2.35–2.16 (m, 15H), 1.86–1.66 (m, 5-47a 'nн 3H), 1.42–0.98 (m, 15H); ¹³C NMR (125 MHz, CDCl₃) δ 262.52 (Ru=CN), 261.93 (Ru=CN), 214.12 (Ru=C(C)C), 214.04 (Ru=C(C)C), 179.99 (RuO=C(Me)O), 140.63, 140.45, 139.54, 138.21, 138.04, 137.62, 135.47, 134.49, 133.31, 133.26, 133.12, 132.44, 130.69, 130.24, 129.33, 128.89, 123.11, 122.84, 110.24, 97.84, 97.60, 83.89, 83.67, 52.36, 51.34, 47.89, 47.83, 42.43, 27.96, 27.70, 27.03, 26.94, 26.41, 26.07, 25.36, 25.20, 25.02, 23.22, 22.63, 22.33, 21.31, 21.11, 20.50, 18.89, 17.49; HRMS (ESI) calcd for C₃₆H₄₆ClN₂O₃Ru [M-Cl]⁺ 691.2235 found, 691.2244.



Characterization data of 5-46b: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.89–5.81 (m, 1H), 5.28 (dd,  ${}^{3}J = 1.4$  Hz,  ${}^{3}J = 17.2$  Hz, 1H), 5.19 (d,  ${}^{3}J = 10.4$  Hz, 1H), 4.19 (s, 2H), 4.03-4.02 (m, 2H), 2.15-2.14 (m, 4H), 2.00 (s, 3H), 1.73-1.71 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 169.41 (O=C(Me)O), 133.72, 118.06, 80.23, 78.98, 76.59, 70.69, 70.45, 68.90, 57.58,

40.35, 23.41, 21.55.



**Characterization data of 5-47b:** ¹H NMR (500 MHz, CDCl₃) δ 6.97–6.88 (m, 4H), 6.42 (s, 1H), 4.77 (bs, 2H), 4.34 (bs, 2H), 4.12–4.08 (m, 4H), 2.30–2.27 (bm, 18H), 2.17 (s, 3H), 1.86–1.83 (m, 4H), 1.68–1.61 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 260.59 (Ru=CN), 215.06 (Ru=C(C)C), 179.27 (RuO=C(Me)O), 135.18, 130.89, 129.73, 125.62, 114.76, 109.80, 108.60, 77.39, 75.68, 51.73, 38.77, 37.65, 29.69, 25.87, 24.03, 23.09, 21.08; HRMS (ESI) calcd for C₃₅H₄₂Cl₁N₂O₃Ru [M–Cl]⁺ 675.1934 found, 6751936.



169.07 (O=C(Me)O), 144.15, 134.82, 129.68, 127.88, 79.02, 76.04, 74.43, 72.87, 71.45, 69.84, 68.11,

36.93, 36.56, 28.64, 21.72, 21.57; HRMS (ESI) calcd for  $C_{20}H_{21}NO_4NaS$  [M+Na]⁺ 394.1089 found, 394.1085.

C₆H₁₃ NHC Characterization data of 5-47c: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.72 (d, J = 8.1 Hz, 2H), 7.32 (d, ³J = 8.1 Hz, 2H), 7.10–6.64 (m, 4H), 6.48–6.20 (m, 1H), 5.91–5.73 (m, 1H), 4.36–3.85 (m, 8H), 2.70 (bs, 2H), 2.40–2.01 (m, 21H),1.40–1.25 (m, 14H), 0.97–0.87 (m, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  285.59 (Ru=CN), 214.29 (Ru=C(C)C), 179.68 (RuO=C(Me)O), 143.83, 138.97, 136.78, 133.59, 130.01, 127.56, 125.12, 118.45, 115.09, 114.43, 97.63, 57.09, 55.59, 55.43, 54.29, 52.32, 51.22, 33.69, 31.72, 28.96, 28.48, 25.51, 25.45, 23.15, 22.64, 21.59, 14.16.

Characterization data of 5-46d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  3.75 (s, 6H), Characterization data of 5-46d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  3.75 (s, 6H), 3.08 (s, 2H), 2.98 (d, ³J = 2.6 Hz, 1H), 2.95 (d, ³J = 2.5 Hz, 1H), 2.02 (s, 1H), 1.99 (s, 3H), 1.62 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.17 (O=C(Me)O), 168.77 (CCO₂Et), 78.14, 75.48, 72.03, 71.78, 71.73, 68.79, 67.63, 56.43, 53.28, 28.69, 23.60, 22.94, 22.68, 21.78; HRMS (ESI) calcd for C₁₈H₂₀O₆K [M+K]⁺ 371.0891 found, 371.0898.

Characterization data of 5-47d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.12 (s, 1H), Characterization data of 5-47d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.12 (s, 1H), 7.06 (s, 1H), 6.52 (s, 1H), 6.75 (s, 1H), 6.50 (d, ³*J* = 15.8 Hz, 1H), 6.02–5.96 (m, 1H), 4.36–4.34 (m, 1H), 4.11–4.06 (m, 2H), 3.93–3.91 (m, 1H), 3.77 (s, 3H), 3.76 (s, 3H), 3.54–3.43 (m, 2H), 2.78–2.73 (m, 5H), 2.41 (s, 3H), 2.35 (s, 3H), 2.25 (s, 3H), 2.22 (s, 3H), 2.18 (s, 6H), 2.04–2.01 (m, 2H), 1.89 (s, 3H), 1.48 (s, 3H), 1.45 (s, 3H), 1.31–1.27 (m, 8H), 0.91–0.88 (m, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  259.82 (Ru=CN), 215.18 (Ru=C(C)C), 179.55 (RuO=C(Me)O), 172.21 (CCO₂Me), 172.11 (CCO₂Me), 142.57, 140.51, 139.77, 138.20, 137.53, 135.71, 135.57, 130.90, 130.54, 129.31, 128.83, 127.32, 121.02, 120.04, 114.38, 97.84, 57.65, 53.04, 52.33, 51.15, 43.00, 41.58, 33.74, 31.82, 29.08, 28.71, 25.81, 25.70, 23.18, 22.70, 21.37, 21.05, 20.57, 19.31, 18.80, 17.44, 14.21; HRMS (ESI) calcd for C₄₆H₆₀Cl₁N₂O₆Ru [M–Cl]⁺ 873.3193 found, 873.3195.



**Characterization data of 5-47d':** ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, ³*J* = 7.3 Hz, 2H), 7.59 (d, ³*J* = 16.2 Hz, 1H), 7.32–7.25 (m, 2H), 7.09–6.86 (bm, 4H), 6.82 (d, ³*J* = 16.2 Hz, 1H), 4.34–4.07 (m, 4H), 3.82 (s, 3H), 3.80 (s, 3H), 3.54–3.44 (m, 2H), 2.97–2.86 (m, 2H), 2.31 (bs, 18H), 2.19 (s, 3H), 1.51 (s,

3H), 1.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  259.19 (Ru=CN), 214.66 (Ru=C(C)C), 179.60 (RuO=C(Me)O), 172.13 (CCO₂Me), 171.86 (CCO₂Me), 144.63, 137.84, 132.20, 128.88, 128.73, 127.97, 127.73, 127.48, 126.41, 123.65, 118.89, 115.39, 97.89, 57.73, 53.15, 42.94, 41.37, 25.83, 25.66, 23.16, 27.17; HRMS (ESI) calcd for C₄₆H₅₂Cl₁N₂O₆Ru [M-Cl]⁺ 865.2567 found, 865.2551.

Characterization data of 5-48a: ¹H NMR (500 MHz, CDCl₃) δ 6.14 (s, 1H), 4.19 (s, 1H), 2.17 (s, 3H), 1.94 (s, 3H), 1.83 (bm, 2H), 1.69 (s, 3H), 1.09 (s, 3H), 1.03 (s, 3H);
¹³C NMR (125 MHz, CDCl₃) δ 168.77, 137.57, 133.08, 126.77, 125.64, 88.82, 85.71, 84.98, 46.21, 42.37, 27.90, 22.24, 21.20, 20.78, 17.70; HRMS (ESI) calcd for C₁₅H₂₀O₃Na [M+Na]⁺ 271.1310 found, 271.1310.

NHC Characterization data of 5-49a: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.00 (s, 4H), 4.09 (s, Classical Cla

#### 5.7. References

 Reviews: (a) Grubbs, R. H.; Chang, S. *Tetrahedron* **1998**, *54*, 4413. (b) Fürstner, A. *Angew. Chem.*, *Int. Ed.* **2000**, *39*, 3012. (c) Schrock, R. R.; Hoveyda, A. H. *Angew. Chem.*, *Int. Ed.* **2003**, *42*, 4592.
 (d) Poulsen, C. S.; Madsen, R. *Synthesis* **2003**, 1. (e) Deiters, A.; Martin, S. F. *Chem. Rev.* **2004**, *104*, 2199. (f) Giessert, A. J.; Diver, S. T. *Chem. Rev.* **2004**, *104*, 1317.

- (2) (a) Eleuterio, H. S. J. Mol. Catal. 1991, 65, 55. (b) Eleuterio, H. S. CHEMTECH 1991, 92. (c) Banks,
  R. L. CHEMTECH 1986,112. (d) Anderson, A. W.; Merckling, N. G. U.S. Patent 2,721,189, 1955;
  Chem. Abstr. 1956, 50, 3008i.
- (3) Hérisson, J.-L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
- (4) Bazan, G. C.; Oskam, J. H.; Cho, H.-N.; Park, L. Y.; Schrock, R. R. J. Am. Chem. Soc. 1991, 113, 6899.
- (5) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974.
- (6) (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858. (b) Schwab, P.;
  France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039. (c) Scholl, M.;
  Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. (d) Trnka, T. M.; Morgan, J. P.; Sanford,
  M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am. Chem.
  Soc. 2003, 125, 2546. (e) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. J. Am.
  Chem. Soc. 2012, 134, 694. (f) Rosebrugh, L. E.; Herbert, M. B.; Marx, V. M.; Keitz, B. K.; Grubbs,
  R. H. J. Am. Chem. Soc. 2013, 135, 1276. (g) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J. Jr.;
  Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791. (h) Grela, K.; Harutyunyan, S.; Michrowska, A.
  Angew. Chem., Int. Ed. 2002, 41, 4038. (i) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 794.
- (7) Grubbs, R. H., Ed. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003.
- (8) Recent reviews on catalytic CM: (a) Prunet, J.; Grimaud, L. Cross-Metathesis in Natural Products Synthesis. In *Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts*; Cossy, J.; Arseniyadis, S.; Meyer, C., Eds; VCH-Wiley: Weinheim, Germany, 2010; pp 287-312. (c) Connon, S. J.; Blechert, S. *Angew. Chem., Int. Ed.* 2003, *42*, 1900.
- (9) Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748. (b) Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760.

- (10) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565. (b) Slugovc, C. Macromol. Rapid Commun. 2004, 25, 1283.
- (11) For reviews of enyne metathesis: (a) Mori, M. *Top. Organomet. Chem.* 1998, *1*, 133. (b) Poulsen, C. S.; Madsen, R. *Synthesis* 2003, *1*, 1. (c) Mori, M. In *Handbook of Metathesis*; Grubbs, R. H., Ed.; Wiley-VCH: Weinheim, Germany, 2003; pp 176-204. (d) Giessert, A. J.; Diver, S. T. *Chem. Rev.* 2004, *104*, 1317. (e) Mori, M. Synthesis of Natural Products and Related Compounds Using Ene–Yne Metathesis. In *Metathesis in Natural Product Synthesis: Strategies, Substrates and Catalysts*; Cossy, J.; Arseniyadis, S.; Meyer, C., Eds; VCH-Wiley: Weinheim, Germany, 2010; pp 183-204.
- (12) Zhang, W.; Moore, J. S. Adv. Syn. Catal. 2007, 349, 93.
- (13) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858.
- (14) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (b) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
- (15) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
- (16) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.
- (17) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
  (b) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973.
- (18) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem., Int. Ed. 2002, 41, 4038.
- (19) (a) Stewart, I. C.; Ung, T.; Pletnev, A. A.; Berlin, J. M.; Grubbs, R. H.; Schrodi, Y. Org. Lett. 2007, 9, 1589. (b) Romero, P. E.; Piers, W. E.; McDonald, R. Angew. Chem., Int. Ed. 2004, 43, 6161. (c) Ung, T.; Hejl, A.; Grubbs, R. H.; Schrodi, Y. Organometallics 2004, 23, 5399. (d) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H. Angew. Chem., Int. Ed. 2002, 41, 4035.
- (20) (a) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. (b) Schrock, R. R. Tetrahedron 1999, 55, 8141.

- (21) Lee, Y.-J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 10652.
- (22) Alexander, J. B.; La, D. S.; Cefalo, D. R.; Hoveyda, A. H.; Schrock, R. R., J. Am. Chem. Soc. 1998, 120, 4041.
- (23) Meek, S. J.; O'Brien, R. V.; Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461.
- (24) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, J.; Schrock, R. R.; Hoveyda, A. H. *Nature* 2011, 479, 88.
- (25) (a) Wengrovius, J. H.; Sancho, J.; Schrock, R. R., J. Am. Chem. Soc. 1981, 103, 3932. (b) Listemann,
  M. L.; Schrock, R. R. Organometallics 1985, 4, 74. (c) Schrock, R. R. Polyhedron 1995, 14, 3177.
- (26) (a) Fürstner, A.; Davies, P. W., *Chem. Commun.* 2005, 2307. (b) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A. *J. Am. Chem. Soc.* 2010, *132*, 11045. (c) Willwacher, J.; Kausch-Busies, N.; Fürstner, A. *Angew. Chem., Int. Ed.* 2012, *51*, 12041.(d) Radkowski, K.; Sundararaju, B.; Fürstner, A. *Angew. Chem., Int. Ed.* 2013, *52*, 355. (e) Sundararaju, B.; Fürstner. A. *Angew. Chem., Int. Ed.* 2013, *52*, 355. (e) Sundararaju, B.; Fürstner. A. *Angew. Chem., Int. Ed.* 2013, *52*, 14050. (f) Willwacher, J.; Fürstner, A. *Angew. Chem., Int. Ed.* 2014, *53*, 4217.
- (27) (a) Katz, T. J.; Sivavec, T. M. *Tetrahedron Lett.* 1985, 26, 2159. (b) Katz, T. J.; Sivavec, T. M. J. Am. *Chem. Soc.* 1985, 107, 737.
- (28) (a) Korkowski, P. F.; Hoye, T. R.; Rydberg, D. B. J. Am. Chem. Soc. 1988, 110, 2676. (b) Hoye, T. R.; Rehberg, G. M. J. Am. Chem. Soc. 1990, 112, 2841. (c) Watanuki, S.; Ochifuji, N.; Mori, M. Organometallics 1994, 13, 4129. (d) Watanuki, S.; Mori, M. Organometallics 1995, 14, 5054. (e) Watanuki, S.; Ochifuji, N.; Mori, M. Organometallics 1995, 14, 5062.
- (29) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1998, 110, 1636. (b) Trost, B. M.; Chang, V. K. Synthesis 1993, 824.
- (30) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996, 15, 901.
- (31) Fürstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305.

- (32) Kinoshita, A.; Mori, M. Synlett 1994, 1020.
- (33) Kim, S.-H.; Bowden, N.; Grubbs, R. H. J. Am. Chem. Soc. 1994, 116, 10801.
- (34) Selected for enyne ring-closing metathesis and its application in natural product synthesis: (a) Maifeld, S. V.; Lee, D. *Chem. Eur. J.* 2005, *11*, 6118. (b) Villar, H.; Fringsa, M.; Bolm, C. *Chem. Soc. Rev.* 2007, *36*, 55. (c) Mori, M. *Materials* 2010, *3*, 2087. For leading references: (d) Guo, H.; Madhushaw, R. J.; Shen, F.-M.; Liu, R. *Tetrahedron*, 2002, *58*, 5627. (e) Tomita, T.; Kita, Y.; Kitamura, T.; Sato, Y.; Mori, M. *Tetrahedron*, 2006, *62*, 10518. (f) Kim, B. G. Snapper, M. L. *J. Am. Chem. Soc.* 2006, *128*, 52. (g) Ben-Othman, R.; Othman, M.; Coste, S.; Decroix, B. *Tetrahedron*, 2008, *64*, 559. (h) Takahashi, H.; Yoshida, K.; Yanagisawa, A. *J. Org. Chem.* 2009, *74*, 3632. (i) Harvey, J. S.; Giuffredi, G. T.; Gouverneur, V. *Org. Lett.* 2010, *12*, 1236. (j) Betkekar, V. V.; Panda, S.; Kaliappan, K. P. *Org. Lett.* 2012, *14*, 198. (o) Chang, L.; Jiang, H.; Fu, J.; Liu, B.; Li, C.-C.; Yang, Z. *J. Org. Chem.* 2012, *77*, 3609. (p) Wei, H.; Qiao, C.; Liu, G.; Yang, Z.; Li, C.-C. *Angew. Chem., Int. Ed.* 2013, *52*, 620.
- (35) Selected references for enyne cross metathesis: (a) Kinoshita, A.; Sakakibara, N.; Mori, M. *Tetrahedron*, **1999**, *55*, 8155. (b) Rodríguez-Conesa, S.; Candal, P.; Jiménez, C.; Rodríguez, J. *Tetrahedron Lett.* **2001**, *42*, 6699. (c) Kotha, S.; Halder, S.; Brahmachary, E. *Tetrahedron* **2002**, *58*, 9203. (d) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. **2003**, *125*, 11360 and references therein. (e) Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. J. Am. Chem. Soc. **2005**, *127*, 5762. (f) Giessert, A. J.; Diver, S. T. *Org. Lett.* **2005**, *7*, 351. (g) Mix, S.; Blechert, S. *Org. Lett.* **2005**, *7*, 2015. (h) Middleton, M. D.; Peppers, B. P.; Diver, S. T. *Tetrahedron* **2006**, *62*, 10528. (i) Clark, D. A.; Kulkarni, A. A.; Kalbarczyk, K.; Schertzer, B.; Diver, S. T. *J. Am. Chem. Soc.* **2006**, *128*, 15632. (j) Clark, D. A.; Basile, B. S.; Karnofel, W. S.; Diver, S. T. *Org. Lett.* **2008**, *10*, 4927. (k) Murelli, R. P.; Catalán, S.; Gannon, M. P.; Snapper, M. L. *Tetrahedron. Lett.* **2008**, *49*, 5714. (l) Kalbarczyk, K. P.; Diver, S. T. *J. Org. Chem.* **2009**, *74*, 2193. (m) Kotha, S.; Bansal, D.;

Singh, K.; Banerjee, S. J. Organomet. Chem. 2011, 696, 1856. (n) Kotha, S.; Waghule, G. T. J. Org. Chem. 2012, 77, 6314.

- (36) For a recent mechanistic study of enyne metathesis, see: (a) Lippsteau, J. J.; Straub, B. F.; *J. Am. Chem. Soc.* 2005, *127*, 7444. (b) Galan, B. R.; Giessert, A. J.; Keister, J. B.; Diver, S. T. *J. Am. Chem. Soc.* 2005, *127*, 5762. (c) Giessert, A. J.; Diver, S. T. *Org. Lett.* 2005, *7*, 351. (d) Lloyd-Jones, G. C.; Margue, R. G.; de Vries, J. G. *Angew. Chem., Int. Ed.* 2005, *44*, 7442. e) Dieltiens, N.; Moonen, K.; Stevens, C. V. *Chem. Eur. J.* 2007, *13*, 203. (f) Marshall, J. E.; Keister, J. B.; Diver, S. T. *Organometallics* 2011, *30*, 1319. (g) NuÇez-Zarur, F.; Solans-Monfort, X.; Rodrguez-Santiago, L.; Pleixats, *Chem. Eur. J.* 2011, *17*, 7506.
- (37) (a) Kitamura, T.; Sato, Y.; Mori, M. *Chem. Commun.* 2001, 1258. (b) Kitamura, T.; Sato, Y.; Mori, M. *Adv. Synth. Catal.* 2002, *344*, 678.
- (38) (a) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2003, 125, 9582. (b) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2004, 126, 15074.
- (39) Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818.
- (40) Yun, S. Y.; Kim, M.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 24.
- (41) Kim, M.; Lee, D. J. Am. Chem. Soc. 2005, 127, 18024.
- (42) Li, J.; Park, S.; Miller, R. L.; Lee, D. Org. Lett. 2009, 11, 571.
- (43) Cho, E. J.; Lee, D. Org. Lett. 2008, 10, 257.
- (44) Grubbs-Hoveyda complex variants (a) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 794. (b) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 2403. (c) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 12502. (d) Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. Org. Lett. 2007, 9, 1339. (e) Gatti, M.; Vieille-Petit, L.; Luan, X.; Mariz, R.; Drinkel, E.; Linden, A.; Dorta, R.

J. Am. Chem. Soc. 2009, 131, 9498. (f) Zaja, M.; Connon, S. J.; Dunne, A. M.; Rivard, M.;
Buschmann, N.; Jiricek, J.; Blechert, S. *Tetrahedron* 2003, 59, 6545. (g) Vinokurov, N.; GarabatosPerera, J. R.; Zhao-Karger, Z.; Wiebcke, M.; Butenschön, H. Organometallics 2008, 27, 1878. (h)
Rix, D.; Caijo, F.; Laurent, I.; Boeda, F.; Clavier, H.; Nolan, S. P.; Mauduit, M. J. Org. Chem. 2008, 73, 4225. (i) Thiel, V.; Hendann, M.; Wannowius, K.-J.; Plenio, H. J. Am. Chem. Soc. 2012, 134, 1104. (j) Kos, P.; Savka, R.; Plenio, H. Adv. Synth. Catal. 2013, 355, 439. (k) Nelson, D. J.; Queval, P.; Rouen, M.; Magrez, M.; Toupet, L.; Caijo, F.; Borre, E.; Laurent, I.; Crevisy, C.; Basle, O.;
Mauduit, M.; Percy, J. M. ACS Catal. 2013, 3, 259. (l) Engle, K. M.; Lu, G.; Luo, S.-X.; Henling, L.
M.; Takase, M. K.; Liu, P.; Houck, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2015, 137, 5782. For review: (m) Vidavsky, Y.; Anaby, A.; Lemcoff, N. G. Dalton Trans. 2012, 41, 32.

- (45) (a) Ben-Asuly, A.; Tzur, E.; Diesendruck, C. E.; Sigalov, M.; Goldberg, I.; Lemcoff, N. G. *Organometallics* 2008, 27, 811. (b) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N. G. *J. Organomet. Chem.* 2008, 693, 2200. (c) Ginzburg, Y.; Anaby, A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G. *Organometallics* 2011, 30, 3430.
- (46) Szadkowska, A.; Makal, A.; Woźniak, K.; Kadyrov, R.; Grela, K. Organometallics 2009, 28, 2693.
- (47) Szadkowska, A.; Żukowska, K.; Pazio, A. E.; Woźniak, K.; Kadyrov, R.; Grela, K. Organometallics 2011, 30, 1130.
- (48) (a) van der Schaaf, P. A.; Kolly, R.; Kirner, H.-J.; Rime, F.; Mühlebach, A.; Hafner, A. J. Organomet. Chem. 2000, 606, 65. (b) Barbasiewicz, M.; Szadkowska, A.; Bujok, R.; Grela, K. Organometallics 2006, 25, 3599. (c) Hejl, A.; Day, M. W.; Grubbs, R. H. Organometallics 2006, 25, 6149. (d) Peeck, L. H.; Savka, R. D.; Plenio, H. Chem. –Eur. J. 2012, 18, 12845.
- (49) Tallarico, J. A.; Bonitatebus, P. J., Jr.; Snapper, M. L. J. Am. Chem. Soc. 1997, 119, 7157.
- (50) Trnka, T. M.; Day, M. W.; Grubbs, R. H. Organometallics 2001, 20, 3845.

- (51) (a) Anderson, D. R.; Hickstein, D. D.; O'Leary, D. J.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 8386. (b) Anderson, D. R.; O'Leary, D. J.; Grubbs, R. H. Chem. –Eur. J. 2008, 14, 7536. (c) Stewart, I. C.; Benitez, D.; O'Leary, D. J.; Tkatchouk, E.; Day, M. W.; Goddard, W. A., III.; Grubbs, R. H. J. Am. Chem. Soc. 2009, 131, 1931.
- (52) Wang, K.-P.; Yun, S. Y.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 15114.
- (53) Fürstner A,; Thiel, O. R.; Lehmann, C. W. Organometallics 2002, 21, 331.
- (54) (a) Slugovc, C.; Perner, B.; Stelzer, F.; Mereiter, K. *Organometallics* 2004, 23, 3622. (b) Zirngast, M.; Pump, E.; Leitgeb, A.; Albering, J. H.; Slugovc, C. *Chem. Commun.* 2011, 47, 2261. (c) Pump, E.; Poater, A.; Zirngast, M.; Torvisco, A.; Fischer, R.; Cavallo L.; Slugovc, C. *Organometallics* 2014, 33, 2806.
- (55) Galan, B. R.; Gembicky, M.; Dominiak, P. M.; Keister, J. B.; Diver, S. T. J. Am. Chem. Soc. 2005, 127, 15702.
- (56) Galan, B. R.; Pitak, M.; Gembicky, M.; Keister, J. B.; Diver, S. T. J. Am. Chem. Soc. 2009, 131, 6822.
- (57) For trichloro-bridged ruthenium dimer-type complexes, see; (a) Sauvage, X.; Borguet, Y.; Noels, A. F.; Delaude, L.; Demonceau, A. Adv. Synth. Catal. 2007, 349, 255. (b) Leitao, E. M.; Dubberley, S. R.; Piers, W. E.; Wu, Q.; McDonald, R. Chem. –Eur. J. 2008, 14, 11565.

## **CHAPTER 6**

# STRUCTURE AND REACTIVITY OF HYDROXY- AND ETHER-CHELATED RUTHENIUM ALKYLIDENE COMPLEXES

#### **6.1. Introduction**

The coordination of an alkene or alkyne of a substrate to the unsaturated ruthenium metal center is required for the productive alkene and enyne metathesis catalyzed by Grubbs-type ruthenium alkylidene complexes. However, polar functional groups contains lone pair electrons near the reacting metal center occasionally occupy the coordination site more favorably over the substrate alkenes or alkynes such that the catalytic cycle is arrested at various resting states either temporarily or permanently. In the earlier developments of metathesis, it was found that, the involvement of lone pair to chelate with metal center was recognized as a potential problem.¹ In 1999, Mori and coworkers widely studied the cross metathesis of enynes, and they found that the alkynes having heteroatoms



Scheme 6.1 Chelation Effect in Enyne Cross Metathesis

close to the reactive site was harmful and led to lower yields of expected products (**Scheme 6.1**).² For example, the reaction of homopropargyl sulfonamide **6-1a** with 5 mol% first-generation Grubbs catalyst

under ethylene provided cross metathesis product **6-3a** in 11% yield. Also, the homopropargyl ether tethered alkyne **6-1b** generated the cross metathesis product **6-3b** only in 4%. The low yields of these reactions can be rationalized by the involvement of the lone pairs on the substrates to chelate with the metal center to generate relatively stable **6-2a** and **6-2b**. Contrasting behavior of alkynes **6-1c** and **6-1d** having the methyl ether and silyl ether provided cross metathesis products **6-3c** were observed, which the former yielded, whereas the latter provided **6-3d** in 60% yield, respectively. This can be explained by strongest chelation of the methyl ether compared to that of silyl ether. However, there were only limited evidences for observed chelates of a heteroatom with a metal center. Therefore, it is important to understand the structure and dynamic properties of chelated ruthenium alkylidene complexes to design more effective catalysts and their substrates.

In this regard, known heteroatom-chelated ruthenium alkylidenes would provide important insight. The earliest and most important heteroatom-chelated ruthenium alkylidene is **HG-I**, discovered by Hoveyda and it involves oxygen-chelated alkylidene ligand with one phosphine (Figure 1).³ Subsequently, a highly active and more stable oxygen-chelated *N*-heterocyclic ruthenium alkylidene **HG-II** was developed, which is commercially available as Hoveyda-Grubbs catalyst second-generation.⁴ Thereafter, several heteroatom-chelated *N*-heterocyclic ruthenium alkylidene⁵



Figure 6.1 Hoveyda-Grubbs 1st and 2nd Generation Catalysts

Fürstner and coworkers first reported the hydroxy-chelated ruthenium alkylidine (**Scheme 6.2**).⁶ Trimethylsilyl ether containing *N*-heterocyclic ruthenium alkylidene **6-4** was treated with ethereal solution HCl to provide a free hydroxy ethyl-containing ruthenium alkylidene **6-5**. On the other hand, the same complex upon treating with pyridine generated a bench-stable hydroxy ethyl side chain chelated octahedral complex **6-6**. This is the first example of new type of Grubbs complex. However, this octahedral complex was found to be metathesis inactive due to the pyridine ligands that are tightly bound to the metal center, which is stable even upon adding *p*-TsOH.



Scheme 6.2 Intramolecular Chelation with Hydroxy-Alkyl Functionalities



Scheme 6.3 Enyne Cross Metathesis to Form Ether- and Hydroxy-Chelated Ruthenium Alkylidenes

Based on this initial observation, they further studied the ether and hydroxy-chelation behaviors (Scheme 6.3).⁷ They first tested the chelation behavior relying on enyne metathesis with the Grubbs firstgeneration and third-generation complexes (G-I and G-III). Cross metathesis of both complexes with 1ethylene 2-*iso*-propoxybenzene afforded the Hoveyda type ether-chelated complexes 6-7 and 6-8. Next, they examined the behavior of the internal alkyne 6-9 having a methyl succinate moiety and trimethlsilyl ether moiety with G-I complex. The reaction with methyl succinate derived propargyl ether favored the formation of complex 6-10, whereas the latter delivered only silyl ether oxygen-chelated ruthenium alkylidene 6-11. Deprotection of trimethyl silyl group from 6-11 with HCl provided hydroxy-chelated ruthenium alkylidene 6-12. The metathesis activity of these complexes were tested and the best results were observed with the silyl ether oxygen-chelated complex 6-11.

The hydroxy-chelated *N*-heterocyclic ruthenium alkylidene derivatives were synthesized by using second-generation Grubbs complexes except *N*-heterocyclic alkyl tethered hydroxy-chelated octahedral complex **6-6**. To generate other types of hydroxy-chelated ruthenium alkylidenes, which are structurally similar to the Hoveyda complexes, we plan on using enyne RCM of alkenyl tethered propargylic alcohols and Grubbs second-generation complex.

#### 6.2. Results and Discussion

To gain further insight into the hydroxy- and ether-chelation behaviors of ruthenium alkylidenes, we plan to explore the factors that facilitate the chelate formation with the oxygen functionality in enyne ringclosing metathesis (**Scheme 6.4**). In this regard, we envisioned that the ring-closing metathesis (RCM) of



Scheme 6.4 Designing of Enyne RCM Substrates

enynes would be one of most effective method to allocate the ruthenium alkylidene moiety at an appropriate location such that the metal center and the installed chelating group would interact to form the expected oxygen-chelates. Toward this goal, we have designed several enynes such as **6-13a** and **6-13b** propagylic alcohol, and subjected to a typical enyne RCM conditions with a stoichiometric amount of **G-II** (**Scheme 6.5**).



Scheme 6.5 Initial Attempts for Hydroxy-Chelated Ruthenium Alkylidene

First, 1,6-enyne **6-13a** was treated with a stoichiometric amount of **G-II** in CH₂Cl₂ at 45 °C, however, the expected chelate *cis/trans-6-14a*, nor the ring-closed product were not observed. We believe that the ring size of the chelates may play a crucial role for stability of the ruthenium alkylidene generated after the ring-closing metathesis of enyne. Thus, we have further tested 1,7-enyne **6-13b**, but neither trapped propagating alkylidene *cis/trans-6-14b* nor the ring-closed metathesis product was observed.

The negative results from 1,n-enynes **6-13a** and **6-13b** were assumed to be the consequence of lacking *gem*-dialkyl substituent, which is crucial for the formation of alkyne chelated ruthenium alkylidenes (**Scheme 6.6**). For example, the tandem enyne RCM of substrate **6-15a** having no *gem*-dialkyl substituent
provided only metathesis product 1,5,7-trienyne **6-16a** in 77% yield, whereas that of substrate **6-15b** having *gem*- dimethyl substituent delivered alkyne-chelated ruthenium alkylidene complex **6-17b** in 79% yield, without forming any metathesis product.⁸



Scheme 6.6 Effect of gem-Dialkyl Substituent in Alkyne-Chelated Ruthenium Alkylidenes

Based on the *gem*-dialkyl substituent effect in the formation of alkyne chelated ruthenium alkylidenes, we installed the *gem*-dialkyl substituents in alkenynol **6-13** (Scheme 6.7). due to presence of this gem-dialkyl substituent we expected that the Thorpe-Ingold effect-based control of not only the structural



Scheme 6.7 Strategy for the Hydroxy-Chelated Ruthenium Alkylidenes

properties of trapped complexes stabilized by this structural elements. Compared to the traditional Thorp-Ingold effect of *gem*-dialkyl group for the RCM, the beneficial effect induced by this functionality can be defined as the exo-Thrope-Ingold effect because it exists outside of the ring system of the chelate.

In order to prove the validity of exo- and endo-Thorpe-Ingold effect to form oxygen-chelated ruthenium alkylidenes, 1,n-enynes containing propagylic alcohols and ethers 6-13c-6-13h were treated with a stoichiometric amount of Grubbs second-generation complex (G-II) in CH₂Cl₂ at 45 °C (Table 6.1). Gratifyingly, 1,6-enyne 6-13c reacted smoothly with G-II to afford hydroxy-chelated ruthenium alkalidene 6-14c in 92% yield (entry 1). The spectroscopic characterization of the newly formed material clearly indicates the characteristics of structure 6-14c. The cis relationship between the chelated oxygen and NHC was further confirmed by single X-ray diffraction analysis. The formation of complex 6-14c further supports the importance of *gem*-dimethyl substituent effect because the corresponding structure **6-14a** could not be generated. The envne 6-13d containing a *n*-butyl substituent on the alkyne in 6-13c instead of phenyl group, also reacted smoothly to generate 5-membered hydroxy-chelated complex 6-14d in 84% yield (entry 2). 1,7-Enyne and 1,8-enyne 6-13d and 6-13e, also provided 5-membered hydroxy-chelated ruthenium alkylidenes 6-14d and 6-14e in 94% and 80% yield, respectively (entries 3 and 4). We further examined the behavior the 1,6-envnes 6-13f and 6-13g having methy propargyl ether and a trimethylsilyl propargyl ether, and both compounds smoothly underwent enyne ring-closing metathesis followed by chelate formation to provide 5-membered methyl ether and trimethyl silvl ether chelated ruthenium alkalidenes 6-14f and 6-14g in 86% and 92% yield, respectively (entries 5 and 6). These results are not only validate the exo-Thorp-Ingold effect in forming the oxygen-chelated ruthenium alkylidenes. Also, it is interesting note that all cis ruthenium alkalidene chelates obtained in the current study shows a cis relationship between the NHC ligand and the oxygen chelated moiety. The ligand disposition around the metal center of hydoxychelated ruthenium alkalidenes 6-14d and 6-14e were further confirmed by single crystal X-ray diffraction analysis (Figure 6.2).



^a Isolated yield after purification

# Table 6.1 Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes by Relying on Exo-

# **Thorp-Ingold-Effect**



X-ray structure of 6-14e

Figure 6.2 X-ray Structures of 6-14d and 6-14e

After successful formation of hydroxy- and ether-chelates putatively promoted by the exo-Thorp-Ingold effect, we next studied the endo-Thrope-Ingold effect with 1,6-enynes under the same reaction condition (**Table 6.2**). 1,6-Enynes **6-13i** and **6-13j** derived from jasmone and 2-allylcyclohexanone were subjected to a stoichiometric amount of **G-II**. Both enynes reacted smoothly to deliver 5-membered alcohol-chelated ruthenium alkylidenes **6-14i** and **6-14j** in 91% and 90% yield, respectively (entries 1 and 2). Based on these results, we conclude that the endo-*gem*-dialkyl substituent also plays an important role for chelation. 1,5-Enyne **6-13k** having two dimethyl substituents, underwent enyne RCM to generate 5-membered hydroxy-chelated ruthenium alkalidene (entry 3).

After demonstrating that enynes **6-13c—6-13k** form oxygen-chelates successfully, we next examined the behavior of the enynes having two possible chelating elements to form 5-membered and/or 6-membered chelates (**Scheme 6.8**). Enyne **6-13l** having the possibility to form 5-membered exo-cyclic hydroxy-chelate **6-14l** and/or 6-membered endo-cyclic **6-14l'** was converted exclusively to enyne RCM product **6-18l** without forming any chelated ruthenium alkylidene. On the other hand, enyne **6-13m**, upon treating with



^a Isolated yield after purification

Table 6.2 Formation of Hydroxy- and Ether-Chelated Ruthenium Alkylidenes

Grubbs first-generation complex **G-I**, provided only the corresponding *N*-phenyl sulfonamide, derived from C–N bond cleavage. However, with Grubbs second-generation complex (**G-II**) smoothly converted to endo-cyclic 5-memered sulfonamide-chelate **6-20m**, without forming the exo-cyclic 5-membered hydroxy-chelate **6-14m**. The single X-ray diffraction analysis of **6-20m** shows a cis relationship between the NHC and the chelated sulfonyl oxygen. This clearly indicates the endo *gem*-dialkyl substituent of **6-13m** has more steric and electronic influence on the carbenic carbon to stabilize the generated ruthenium alkylidene to provide only **6-20m**.

To further probe the steric and electronic influence for chelate formation, we next examined the chelation behavior of the ruthenium alkylidenes derived from enediynes **6-21a** and **6-23a**. These enediynes



Scheme 6.8 Unexpected Behaviors of Related Enynes



Scheme 6.9 Competing Chelation between Hydroxyl and Sulfonamide or Acetate Moieties

can undergo metallotropic [1,3]-shift of the initially formed ruthenium alkylidene species, which would be even more facilitated by the chelation event and vice versa (**scheme 6.9**). The thermodynamic advantage

of the metallotropic [1,3]-shift to generate a fully conjugated system would force the metal center to be positioned near the strong chelating group. The reaction of enediyne **6-21a** with **G-II** provided only sulfonamide-chelated ruthenium alkylidene **6-22a** in 78% yield. Enediyne **6-23a** also prefer to form 6-membered acetate-chelated ruthenium alkylidene **6-24a** (86%). In both cases, the corresponding hydroxy-chelation was not observed, this might be the consequence of forming more conjugated 1,5-diene-3-yne rather than 1,3-dien-4-yne.

#### 6.3. Summary

In summary, we have examined the chelation behavior of hydroxy and ether functional groups that can capture propagating ruthenium alkylidene intermediate to prevent the expected metathesis process. We trapped propagating ruthenium alkylidenes in enyne ring-closing metathesis by relying on the exo and endo *gem*-dialkyl substituent effect. The structural features of stable oxygen-chelates are explored by single crystal X-ray diffraction analysis. All chelates generated in this study have the disposition of the oxygen and NHC ligands in cis relationship. The competing chelation between hydroxyl vs a sulfonamide or an acetate-chelate was were also examined.

#### **6.4. Experimental Details**

**6.4.1. General Information:** For general information see section 6.6.1.

# 6.4.2. General Procedure for Preparation of Starting Materials:



Enynes 6-13a–6-13f, 6-13i and 6-13j were synthesized from the know aldehydes and/or ketones using the alkynyl lithium.⁹

Enynes **6-13g** and **6-13h** were prepared from **6-13c** by methylation and trimethylsilyl protection of an alcohol.



**6.4.3.** General Procedure for Metal Complex Formation: Compund 6-13c (16 mg, 0.074 mmol) and Grubbs second generation complex (59 mg, 0.07 mmol) was dissolved in  $CH_2Cl_2$  (4 mL) in an air-free sealed tube and heated up to 45 °C over 3 h. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (SiO₂, EtOAc :  $CH_2Cl_2 = 1 : 1$ ) to afford 6-14c (43.7 mg, 92%) as a green solid.

#### 6.4.4. Selected Characterization Data

Characterization data of 6-13d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.89-5.81 (m, 1H), 5.08-5.05 (m, 2H), 4.05 (s, 1H), 2.22 (dt, J = 2.0 Hz, 7.0 Hz, 2H), 2.18-2.07 (m, 2H), 1.69 (bs, 1H), 1.52-1.47 (m, 2H), 1.45-1.39 (s, 2H), 0.95 (s, 3H), 0.95 (s, 3H), 0.91 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  135.19, 117.49, 86.76, 79.50, 70.53, 42.83, 38.75, 30.82, 22.67, 22.55, 21.97, 18.41, 13.59; HRMS (ESI) calcd for C₁₃H₂₃O [M+H]⁺ 195.1749, found 195.1751.

Characterization data of 6-13e: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.44-7.42 (m, 2H), 7.32-7.31 (m, 3H), 5.89-5.81 (m, 1H), 5.06-5.03 (m, 1H), 4.96-4.94 (m, 1H), 4.32 (s, 1H), 2,12-2.07 (m, 2H), 1.83 (bs, 1H), 1.57-1.52 (m, 2H), 1.05 (s, 3H), 1.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  139.39, 131.70, 128.37, 128.32, 122.78, 114.18, 88.77, 86.08, 70.91, 38.63, 37.56, 28.43, 22.76, 22.54; HRMS (ESI) calcd for C₁₆H₂₁O [M+H]⁺ 229.1592, found 229.1592.

Characterization data of 6-13f: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.45-7.43 (m, 2H), 7.31-7.29 (m, 3H), 5.94-5.86 (m, 1H), 5.30-5.27 (m, 1H), 5.20-5.17 (m, 1H), 4.43 (s, 1H), 4.02-6-13f Ph 4.00 (m, 2H), 3.68 (d, J = 8.9 Hz, 1H), 3.62 (bs, 1H), 3.30 (d, J = 8.9 Hz, 1H), 1.15 (s, 3H), 1.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.41, 131.71, 128.27, 128.23, 123.05, 117.14, 88.90, 85.47, 78.11, 72.53, 70.99, 39.48, 22.25, 21.17; HRMS (ESI) calcd for C₁₆H₂₀O₂ [M]⁺ 244.1463, found 244.1462. Characterization data of 6-13g: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.48-7.46 (m, 2H), 7.33-7.31 (m, 3H), 5.91-5.82 (m, 1H), 5.11-5.08 (m, 2H), 3.83 (s, 1H), 3.49 (s, 3H), 2.26-2.17 (m, 2H), 1.06 (s, 3H), 1.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.99, 131.75, 128.29, 128.21, 123.10, 117.55, 86.98, 86.94, 79.63, 57.45, 43.22, 38.67, 29.77, 23.33, 22.97; HRMS (ESI) calcd for C₁₆H₂₁O [M+H]⁺ 229.1592, found 229.1590.

OSiMe3Characterization data of 6-13h:  1 H NMR (500 MHz, CDCl3) & 7.45-7.44 (m, 2H),6-13h7.33-7.31 (m, 3H), 5.91-5.84 (m, 1H), 5.11-5.08 (m, 2H), 4.27 (s, 1H), 2.20 (d, J = 7.3Hz, 2H), 1.02 (s, 3H), 1.01 (s, 3H), 0.23 (s, 9H);  13 C NMR (125 MHz, CDCl3) & 135.28,131.52, 128.28, 128.07, 123.35, 117.30, 89.67, 85.53, 70.84, 42.78, 39.24, 22.80, 22.56, 0.25; HRMS (ESI)calcd for C18H27OSi [M+H]+ 287.1826, found 287.1823.



(s, 3H), 0.99 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.87, 132.82, 131.70, 128.33, 128.17, 126.26, 94.48, 86.06, 84.40, 62.96, 43.34, 40.14, 32.82, 25.95, 25.02, 20.71, 14.20; HRMS (ESI) calcd for C₁₈H₂₁O [M+H]⁺ 253.1592, found 253.1589.





134.9, 133.0, 129.6, 129.1, 128.3, 128.2, 126.2, 117.7, 79.8, 70.4, 70.2, 42.9, 39.2, 22.9, 22.8, 21.7; HRMS (ESI) calcd for C₂₂H₂₆NO₃S [M+H]⁺ 384.1633, found 384.1626.

Characterization data of 6-13k: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.87-5.78 (m, 1H), 5.07-5.04 (m, 2H), 4.07 (s, 1H), 2.62 (bs, 1H), 2.37 (bs, 1H), 2.17-2.06 (m, 2H), 1.51 (s, 6H), 0.95 (s, 3H), 0.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.92, 117.70, 90.91, 81.58, 69.96, 65.16, 42.82, 38.69, 31.47, 31.41, 22.73, 22.53; HRMS (ESI) calcd for C₁₂H₁₉O [M–H+H₂O]⁺ 179.1436, found 179.1433.

Characterization data of 6-13l: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.86–5.77 (m, 1H), 5.08–5.02 (m, 2H), 4.06 (s, 1H), 2.33 (s, 1H), 2.16–2.05 (m, 2H), 1.99 (s, 3H), 1.63 (s, 6-13I  $\circ$  6H), 0.94 (s, 3H), 0.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.34, 135.05, 117.55, 86.88, 83.84, 71.95, 69.87, 42.76, 38.82, 29.04, 28.97, 22.66, 22.54, 21.93; HRMS (ESI) calcd for C₁₄H₂₂O₃Na [M+Na]⁺ 261.1467 found, 261.1466.

Characterization data 6-14c (43.7 mg, 92%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.24 (d, J = 7.2 Hz, 1H), 7.08-7.06 (m, 3H), 7.00-6.95 (m, 4H), 6.70 (s, 1H), 5.78 (s, 1H), 4.97 (d, J = 11.1 Hz, 1H), 4.28-4.23 (m, 2H), 4.12-4.08 (m, 1H), 3.92-3.90 (m, 1H), 2.51 (s, 3H), 2.44 (s, 3H), 2.36 (s, 9H), 2.20 (d, J = 11.2 Hz, 1H), 1.84 (m, 5H), 1.20 (s, 3H), 0.79 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  285.24, 216.84, 164.91, 155.07, 140.22, 140.07, 139.01, 138.09, 137.98, 135.65, 135.13, 131.26, 131.03, 130.58, 129.31, 128.49, 127.37, 126.11, 124.29, 112.16, 93.61, 53.10, 51.06, 42.78, 26.42, 21.60, 21.34, 21.08, 20.16, 19.01, 18.57, 18.28; HRMS (ESI) calcd for C₃₅H₄₀Cl₁N₂ORu [M–Cl–2H]⁺ 641.1879, found 641.1875.



**Characterization data 6-14d:** (39 mg, 84%): ¹H NMR (500 MHz, CDCl₃) δ 7.17 (s, 1H), 6.96 (s, 2H), 6.81 (s, 1H), 5.78 (s, 1H), 4.93 (s, 1H), 4.34-4.30 (m, 1H), 4.11-4.04 (s, 2H), 3.99-3.94 (m, 1H), 3.33-3.30 (m, 2H), 2.76 (s, 3H), 2.51 2.76 (s, 3H), 2.37 (s, 3H), 2.33 (s, 3H), 2.21 (s, 3H), 2.11-2.07 (m, 1H), 1.92 (s, 3H), 1.90-1.86 (m, 4H), 1.51-1.47 (m, 1H),

1.08 (s, 3H), 0.90 (s, 3H), 0.73 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  305.80, 218.08, 160.42,

140.33, 139.97, 138.69, 138.52, 137.81, 136.20, 135.97, 136.20, 135.97, 131.17, 130.02, 129.06, 128.51, 107.64, 106.11, 92.16, 52.68, 52.27, 52.17, 50.74, 41.39, 28.43, 26.76, 24.25, 22.73, 21.27, 21.04, 19.92, 19.31, 19.09, 18.46, 13.50; HRMS (ESI) calcd for C₃₃H₄₆Cl₁N₂ORu [M-Cl]⁺ 623.2348, found 623.2346.

NHC Characterization data 6-14e (45.6 mg, 94%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.14 (m, ^{Cl}, ^{Nu}, ^{Ph}, ^{Su}, ^{Nu}, ^{Nu},



**Characterization data 6-14f** (39.7 mg, 80%): ¹H NMR (500 MHz, CDCl₃) δ 7.11-7.08 (m, 2H), 7.01-6.96 (m, 4H), 6.84 (s, 1H), 6.41 (s, 1H), 6.39 (s, 1H), 5.99 (bs, 1H), 4.79 (d, *J* = 8.0 Hz, 1H), 4.34-4.28 (m, 1H), 4.18-3.97 (m, 3H), 3.65 (dd, *J* = 4.5 Hz, 17.5 Hz, 1H), 3.56 (d, *J* = 12.5 Hz), 3.43 (d, *J* = 12.4 Hz, 1H), 3.28 (d, *J* = 17.4 Hz, 1H), 2.76 (d,

*J* = 8.7 Hz, 1H), 2.60 (s, 3H), 2.42 (s, 3H), 2.35 (s, 3H), 2.34 (s, 3H), 2.26 (s, 3H), 2.23 (s, 3H), 1.01 (s, 3H), 0.70 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.44, 160.57, 157.68, 140.26, 139.75, 139.03, 138.63, 137.42, 136.05, 135.88, 130.77, 130.49, 128.97, 128.33, 126.43, 126.30, 122.77, 114.04, 84.15, 80.58, 71.13, 52.74, 51.23, 40.71, 24.95, 21.36, 21.12, 19.95, 19.27, 19.15, 18.77, 18.12; HRMS (ESI) calcd for C₃₆H₄₂Cl₁N₂O₂Ru [M–Cl–2H]⁺ 671.1985, found 671.1985.

NHC Characterization data 6-14g (42 mg, 86%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.24 (bs, 2H), Ru Cl Me 6-14g 7.55 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.5 Hz, 2H), 7.06 (s, 1H), 7.02 (s, 1H), 6.40 (s, 1H), 5.90 (s, 1H), 4.99 (d, J = 5.2 Hz), 4.34 (s, 1H), 4.24-4.18 (m, 2H), 3.88-3.86 (m, 1H), 3.70-3.68 (m, 1H), 2.81 (s, 3H), 2.79 (s, 3H), 2.57 (s, 3H), 2.30 (s, 3H), 2.19 (s, 3H), 1.98-1.94 (m, 1H), 1.86 (s, 3H), 1.85 (s, 3H), 1.68 (m, 1H), 1.18 (s, 3H), 1.05 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  281.29, 214.66, 141.92, 139.66, 139.41, 138.35, 137.51, 135.78, 134.31, 130.75, 130.37, 129.86, 129.46, 128.94, 128.05, 88.58, 86.65, 79.65, 60.73, 52.41, 52.25, 49.50, 46.10, 27.01, 26.38, 14.63, 23.38, 21.26, 20.84, 20.38, 18.96, 18.89, 17.91.

NHC Cl., Ph Ru Characterization data 6-14h (44 mg, 92%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  9.08 (bs, 1H), 7.54 (t, *J* = 7.0 Hz, 2H), 7.17 (bm, 2H), 7.06 (s, 1H), 7.17 (s, 1H), 6.37 (s, 1H), 5.91 (s, 1H), 4.96 (s, 1H), 4.86 (d, *J* = 3.5 Hz, 1H), 4.25-4.17 (m, 2H), 3.87-3.86 (m, 1H), 3.70-3.68 (m, 1H), 2.79 (s, 3H), 2.58 (s, 3H), 2.30 (s, 3H), 2.20 (s, 3H), 1.94 (dd, *J* = 5.4 Hz, 14.0Hz, 1H), 1.86 (s, 3H), 1.83 (s, 3H), 1.59 (d, *J* = 14.3 Hz, 1H), 1.16 (s, 3H), 0.96 (s, 3H), -0.43 (s, 9H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  281.44, 214.57, 142.63, 139.69, 139.45, 138.19, 137.43, 135.83, 134.74, 134.13, 133.04, 130.74, 129.87, 129.48, 128.83, 91.47, 79.23, 52.40, 52.34, 50.22, 45.21, 24.17, 22.78, 21.25, 20.87, 20.46, 18.97, 17.85, 0.15; HRMS (ESI) calcd for C₃₈H₅₁Cl₂N₂ORuSi [M+H]⁺ 751.2195, found 751.1168.

NHC **Characterization data 6-14j** (44 mg, 90%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.06 (bm, 2H), Cl₁, Ph 7.56 (t, J = 7.3 Hz, 1H), 7.19 (t, J = 7.6 Hz, 2H), 7.10 (s, 1H), 7.05 (s, 1H), 6.27 (s, 1H), 6.03 (s, 1H), 4.34 (s, 1H), 4.30-4.14 (m, 2H), 3.87-3.69 (m, 2H), 2.83 (s, 3H), 2.64 (s, 3H), 2.41 (bs, 1H), 2.33 (s, 3H), 2.24 (s, 3H), 1.85 (s, 3H), 1.81-1.75 (m, 2H), 1.51-1.28 (m, 8H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  283.37, 212.49, 142.86, 139.66, 139.04, 138.28, 137.56, 135.46, 134.61, 134.17, 133.97, 130.95, 130.73, 130.00, 129.49, 128.73, 128.61, 96.43, 80.84, 73.82, 52.36, 41.03, 36.93, 33.09, 22.93, 21.24, 20.98, 20.84, 20.60, 20.48, 19.31, 19.17, 17.88; HRMS (ESI) calcd for C₃₇H₄₃N₂ORu [M-2Cl-H]⁺ 633.2413, found 633.2411.

Characterization data 6-14k (38 mg, 82%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.06 (s, 1H), Cl, H 6.92 (s, 1H), 6.84 (s, 1H), 6.80 (s, 1H), 5.16 (s, 1H), 4.91 (s, 1H), 4.34-4.37 (bs, 1H), 4.25-6-14k 6.92 (s, 1H), 4.12-4.07 (m, 2H), 3.70 (s, 1H), 2.51 (s, 3H), 2.32 (s, 3H), 2.28 (s, 6H), 2.26 (s, 3H), 2.25 (s, 3H), 2.04-1.99 (m, 2H), 1.40 (s, 3H), 1.17 (s, 3H), 1.14 (s, 3H), 0.93 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  283.59, 216.98, 159.01, 140.76, 140.22, 138.78, 138.12, 137.65, 135.69, 135.48, 130.65, 130.48, 130.34, 129.99, 129.83, 128.81, 119.51, 116.16, 95.15, 84.13, 52.67, 51.03, 46.74, 41.99, 27.28, 27.05, 26.96, 26.43, 26.21, 25.06, 23.10, 21.60, 21.34, 20.98, 20.07, 18.90, 18.35.

#### 6.5. References

- (a) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 5426. (b) Fu, G. C.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324.
- (2) Kinoshita, A.; Sakakibara, N.; Mori, M. Tetrahedron 1999, 55, 8155.
- (3) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J., Jr.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.
- (4) (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
  (b) Gessler, S.; Randl, S.; Blechert, S. Tetrahedron Lett. 2000, 41, 9973.
- (5) Selected for hetero-atom chelation (a) van der Schaaf, P. A.; Kolly, R.; Kirner, H.-J.; Rime, F.; Mühlebach, A.; Hafner, A. J. Organomet. Chem. 2000, 606, 65. (b) Fürstner, A.; Thiel, O. R.; Lehmann, C. W. Organometallics 2002, 21, 331. (c) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 794. (d) Wakamatsu, H.; Blechert, S. Angew. Chem., Int. Ed. 2002, 41, 2403. (e) Grela, K.; Harutyunyan, S.; Michrowska, A. Angew. Chem., Int. Ed. 2002, 41, 4038. (f) Van Veldhuizen, J. J.; Gillingham, D. G.; Garber, S. B.; Kataoka, O.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125,

12502. (g) Zaja, M.; Connon, S. J.; Dunne, A. M.; Rivard, M.; Buschmann, N.; Jiricek, J.; Blechert, S. Tetrahedron 2003, 59, 6545. (h) Slugovc, C.; Perner, B.; Stelzer, F.; Mereiter, K. Organometallics 2004, 23, 3622. (i) Barbasiewicz, M.; Szadkowska, A.; Bujok, R.; Grela, K. Organometallics 2006, 25, 3599. (j) Hejl, A.; Day, M. W.; Grubbs, R. H. Organometallics 2006, 25, 6149. (k) Berlin, J. M.; Campbell, K.; Ritter, T.; Funk, T. W.; Chlenov, A.; Grubbs, R. H. Org. Lett. 2007, 9, 1339. (1) Zhan, Z.-Y. J. Recyclable Ruthenium Catalysts for Metathesis Reactions. U.S. Patent US20070043180 A1, Feb 22, 2007. (m) Ben-Asuly, A.; Tzur, E.; Diesendruck, C. E.; Sigalov, M.; Goldberg, I.; Lemcoff, N. G. Organometallics 2008, 27, 811. (n) Vinokurov, N.; Garabatos-Perera, J. R.; Zhao-Karger, Z.; Wiebcke, M.; Butenschön, H. Organometallics 2008, 27, 1878. (o) Rix, D.; Caijo, F.; Laurent, I.; Boeda, F.; Clavier, H.; Nolan, S. P.; Mauduit, M. J. Org. Chem. 2008, 73, 4225. (p) Kost, T.; Sigalov, M.; Goldberg, I.; Ben-Asuly, A.; Lemcoff, N. G. J. Organomet. Chem. 2008, 693, 2200. (q) Shu, C.; Zeng, X.; Hao, M.-H.; Wei, X.; Yee, N. K.; Busacca, C. A.; Han, Z.; Farina, V.; Senanayake, C. H. Org. Lett. 2008, 10, 1303. (r) Gatti, M.; Vieille-Petit, L.; Luan, X.; Mariz, R.; Drinkel, E.; Linden, A.; Dorta, R. J. Am. Chem. Soc. 2009, 131, 9498. (s) Farina, V.; Shu, C.; Zeng, X.; Wei, X.; Han, Z.; Yee, N. K.; Senanayake, C. H. Org. Process Res. Dev. 2009, 13, 250. (t) Tzur, E.; Szadkowska, A.; Ben-Asuly, A.; Makal, A.; Goldberg, I.; Wozniak, K.; Grela, K.; Lemcoff, N. G. Chem. -Eur. J. 2010, 16, 8726. (u) Szadkowska, A.; Żukowska, K.; Pazio, A. E.; Wozniak, K.; Kadyrov, R.; Grela, K. Organometallics 2011, 30, 1130. (v) Ginzburg, Y.; Anaby, A.; Vidavsky, Y.; Diesendruck, C. E.; Ben-Asuly, A.; Goldberg, I.; Lemcoff, N. G. Organometallics 2011, 30, 3430. (w) Lexer, C.; Burtscher, D.; Perner, B.; Tzur, E.; Lemcoff, N. G.; Slugovc, C. J. Organomet. Chem. 2011, 696, 2466. (x) Peeck, L. H.; Savka, R. D.; Plenio, H. Chem. -Eur. J. 2012, 18, 12845. (y) Thiel, V.; Hendann, M.; Wannowius, K.-J.; Plenio, H. J. Am. Chem. Soc. 2012, 134, 1104. (z) Barbasiewicz, M.; Michalak, M.; Grela, K. Chem. -Eur. J. 2012, 18, 14237. (aa) Nelson, D. J.; Queval, P.; Rouen, M.; Magrez, M.; Toupet, L.; Caijo, F.; Borre, E.; Laurent, I.; Cre visy, C.; Basle , O.; Mauduit, M.; Percy, J. M. ACS Catal. 2013, 3, 259. (ab) Kos, P.; Savka, R.; Plenio, H. Adv. Synth. Catal. 2013, 355, 439. Review (ac) Vidavsky, Y.; Anaby, A.; Lemcoff, N. G. Dalton Trans. 2012, 41, 32.

- (6) Prühs, S.; Lehmann, W. L.; Fürstner, A. Organometallics 2004, 23, 280.
- (7) Fürstner, A.; Davies, P. W.; Lehmann, C. W. Organometallics 2005, 24, 4065.
- (8) Wang, K.-P.; Yun, S. Y.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 15114.
- (9) (a) Tejedor, D.; Leandro Cotos, L.; Méndez-Abt, G.; García-Tellado, F. J. Org. Chem. 2014, 79, 10655. (b) Turlington, M.; Yue, Y.; Yu, X-Q.; Pu, L. J. Org. Chem. 2010, 75, 6941. (c) Kobayashi, T.; Koga, Y.; Narasaka, K. J. Organomet. Chem. 2001, 624, 73.

# CHAPTER 7

# STRUCTURE AND REACTIVITY OF ALKENE-CHELATED RUTHENIUM ALKYLIDENE COMPLEXES

#### 7.1. Introduction

Olefin metathesis catalyzed by ruthenium alkylidenes developed by Grubbs and others is one of the most versatile synthetic tools for carbon-carbon double bond construction.¹ The catalysts **G-I²** and **G-II³** developed by Grubbs and coworkers, have received significant attention and widely used in the diverse areas of chemistry, because of their relatively high catalytic activity, functional group tolerance, and commercial availability.⁴ The general steps in Chauvin's proposed mechanism of olefin metathesis catalyzed by metal alkylidenes involve olefin binding to the metal alkylidene to generate a metallocyclobutane followed by cycloreversion to produce another olefin chelated metal alkalidene species (**Scheme 7.1**).⁵ Based on the Chauvin's proposed mechanism, Grubbs and coworker's initial mechanistic studies on **G-I⁶** and **G-II⁷** in olefin metathesis mainly focused on the catalyst initiation to generate coordinatively unsaturated species **7-1**. In their catalyst initiation studies, it was found that the loss of poshphine ligand is the rate-limiting step to generate catalytically active 14-electron intermediate **7-1**, particularly for the catalyst **G-II**.⁸ The generated active species **7-1** interact with an alkene in two possible orientations relative to ligand L to produce alkylidene/olefin complex *trans-***7-2** and *cis-***7-2**. Cycloaddition of **7-2** to afford metallacyclobutane **7-3**, followed by cycloreversion and olefin dissociation regenerates



Scheme 7.1 Initial Steps in G-I and G-II Catalyzed Olefin Metathesis

active species **7-1**. It is important to understand the key intermediate's ligand disposition around the metal center to design more metathesis active, diastereoselective, and enantioselective as well as *Z*-selective olefin

metathesis catalysts.⁹ Even though a lot of information provided by mechanistic studies, the ligand orientation of the alkene-chelated ruthenium alkyldene¹⁰ **7-2** and metallacyclobutane¹¹ complexes **7-3** relative to ligand (L) remained unclear. In this chapter, the ligand orientation of the alkene-chelated ruthenium alkyldene **7-2** is mainly described.

#### 7.2. Alkene-Chelated Ruthenium Alkylidenes

The first alkene-chelated ruthenium alkylidene was derived from the Grubbs first-generation complex **G-I** was reported by Snapper and coworkers.¹² The ring-opening metathesis of cyclobutene **7-4** with stoichiometric amount of **G-I** afforded alkene-chelated ruthenium alkylidene **7-5** in 70 % yield (**Scheme 7.2**). The crystal structure of **7-5** shows the alkene chelated to the metal center trans to the PCy₃ ligand, which is also called bottom bound alkene chelated ruthenium alkylidene. The newly generated bottom bound complex **7-5** showed good metathesis activity.



Scheme 7.2 G-I Derived First Alkene-Chelated Ruthenium Alkylidene

In 2001, Grubbs and coworkers reported **G-II**-derived  $\eta^3$ -vinylcarbene complexes (**Scheme 7.3**).¹³ The Grubbs second-generation complex **G-II** reacted cleanly with an excess amount of diphenyl acetylene and/or 1-phenyl-1-propyne to afford phosphine free complex **7-6**. The crystal structure of **7-6** shows several interesting features where the alkene bound cis to the *N*-heterocyclic (NHC) ligand. The newly generated  $\eta^3$ -vinylcarbene complex **7-6** was found to be metathesis inactive.

In 2006, Grubbs and coworkers reported the *N*-heterocyclic ruthenium complex derived chelated with an alkene moiety (**Scheme 7.4**).¹⁴ The reaction of Grubbs third-generation complex **G-III** with divinyl benzene afforded a mixture of two alkene-chelated ruthenium alkylidenes. The minor isomer was



Scheme 7.3 η³-Vinylcarbene Complexes Derived from Ruthenium-Based Olefin Metathesis

crystallized and its crystal structure shows the alkene-chelated to ruthenium center in cis to the NHC ligand (side bound). After the careful NMR analysis of the mixture under various temperature the major isomer was assigned as 7-7', which is also the side bound ruthenium alkylidene. The equilibrium ratio of these alkylidenes 7-7 and 7-7' is 2:3. More interestingly, the authors did not observe the bottom bound complex 7-7'', which is similar to the Snapper alkene-chelated ruthenium alkylidene. Based on the observed cis alkene-chelated complex, further investigation was carried out with the variation of both NHC and a ligand precursor. All these studies preferentially favored the alkene-chelation cis to the NHC ligand.¹⁵



Scheme 7.4 Alkene-Chelated Ruthenium N-Heterocyclic Alkylidene

Similarly, alkene chelated complexes using ruthenium complex **7-8** and acenaphthylene was reported by Piers and coworkers.¹⁶ Based on the NMR characterization data, they believed that alkene-chelation occurs trans to the NHC ligand (bottom bound complex **7-9**") rather than with a cis relationship (side bound complex). However, without having more definitive evidences, they are unable to assign geometry of the observed complex. Based on the DFT calculations of **7-9**, **7-9**' and **7-9**'', Goddard and coworkers predicted that more favorable complex is **7-9**.¹⁷



Scheme 7.5 Alkene-Chelated Ruthenium Alkylidene Derived from 7-8 with Acenaphthylene

Recently, the closely related alkyne-chelated complex have been reported by our group (**Scheme 7.6**). Well-defined alkyne-chelated ruthenium alkylidene complex **7-11** was generated by employing the tandem ring-closing enyne metathesis and metallotropic [1,3]-shift of enetriyne **7-10**.¹⁸ Interestingly complex **7-11** shows that a chelated alkyne binds to the metal center trans to the NHC ligand. Interestingly, it was found that the alkyne chelated complex **7-11** was metathesis inactive.



Scheme 7.6 Alkyne-Chelated Ruthenium Alkylidene

### 7.3. Results and Discussion

Because of only a small set of examples of  $\pi$ -system-bound complexes, observed by Snapper, Grubbs and Piers, it is premature to generalize or predict the preferred chelation mode of a tethered alkene or alkyne to the ruthenium center, which call for further investigations. We assume that the combined effect of the ligand on the metal and the structure of the tether between the metal and the chelating alkene should play a crucial role to dictate the preference for different mode of alkene chelation. To examine the involvement of these parameters, we envisioned that the ring-closing metathesis (RCM) of 1,n- diyne **7-12** would provide an ideal platform for systematic exploration (**Scheme 7.7**).



Scheme 7.7 RCM of 1,n-Diynes for the Formation Various Alkene Chelated Ruthenium Alkylidenes

It is expected that the cross metathesis (CM) between one of the terminal alkyne moieties in **7-12** and ruthenium alkylidene initiator **G-I** or **G-II** would generate the first propagating alkylidene species, where the generated ruthenium alkylidene complex has two possibilities to chelate with an alkyne or alkene. If the tethered alkyne is chelated with the metal center complex **7-13** would be formed, which might have a similar ligand orientation as reported complex **7-11**. On the other hand, if the metal center prefers to be chelated with an alkene, then  $\eta^3$ -vinylcarbene complex **7-14** will be formed. The ligand disposition of complex **7-14** would be is expected to have a similarity to Grubbs  $\eta^3$ -vinylcarbene complex **7-6**. If the RCM of **7-13** is kinetically viable, it would generate three possible alkene-chelated alkylidenes, one might be  $\eta^3$ -vinylcarbene complex **7-16** and **7-17**. It will be interesting to note the possibility of competition between cis-1,3-chelate **7-14** and cis-1,5-chelate **7-16**, as well as cis-1,5-chelate **7-16** and *trans-1,5-chelate* **7-17**. The requirement for this reaction (with a stoichiometric amount of an initiator) to generate one of these alkene-chelates is a rapid initiation and strong chelation such that these complexes don't enter the next catalytic cycle that

ultimately leads to oligomerization/polymerization.

#### 7.3.1. Ring-Closing Metathesis (RCM) of 1,7-Diynes

The alkene-chelation behavior to the ruthenium center was first examined with simplest 1,7-diyne 7-12a (X = CH₂) and 7-12b (X = NTs) and Grubbs second-generation catalyst G-II (Scheme 7.8); treating 7-12a with a stoichiometric amount of G-II in CH₂Cl₂ at 45 °C led to a full conversion but the isolated redcolored material was identified as oligomers of 7-12a. Similarly, 7-12b was treated with a stoichiometric amount of G-II, but again led the same result as with 7-12a. Presumably, the expected 7-17a and 7-17b were indeed generated, but due to their relatively weak chelation of the styryl moiety to the ruthenium center, they readily react with diyne 7-12a,b to enter into next catalytic cycle, leading to oligomerization or polymerization.



Scheme 7.8 RCM of 1,7-Diynes Without gem-Dimethyl Group

On the basis of our previous studies where the *gem*-dimethyl group at the  $\beta$ -position on the alkynechelated ruthenium alkylidene **7-11** is indispensable for it stability, we expected the same stabilizing effect by a *gem*-dimethyl group for structurally related alkene-chelates (**Scheme 7.9**). To our delight, treatment of 1,7-diyne **7-12c** containing a *gem*-dimethyl moiety with **G-II**, under otherwise identical conditions, provided a crystalline material in 91% yield (E/Z = 9 : 1). The spectroscopic characterization data ¹H- and ¹³C-NMR signals of newly formed complex are consistent with trans chelated ruthenium alkylidene **7-17c**, which was further confirmed by single X-ray crystallography analyses. There was no evidence for the formation of the corresponding *cis*-complex in this reaction. We next tested the same diyne **7-12c** with stoichiometric **G-I**, but no reaction was observed. However, diyne **7-12c** with Hoveyda-Grubbs secondgeneration complex (**HG-II**) smoothly reacted to afford an alkene-bound ruthenium alkylidene **7-17c'** in 88% yield (E/Z = 14: 1), the ligand disposition around the metal center was further confirmed by X-ray crystallography analyses.



Scheme 7.9 RCM of gem-Dimethyl Group Containing 1,7-Diynes with G-I, G-II and HG-II



Scheme 7.10 RCM of 1,7-Diynes in Presence of an External Alkenes

After the successful formation of alkene-chelated ruthenium alkylidenes from diyne **7-12c** with **G-II** and **HG-II**, we next tested the same diyne **7-12c** with **G-II** in the presence of an external alkenes (**Scheme** 

**7.10**). The reaction with excess 1-octene provided alkene chelated product **7-17c''** in 96% yield. On the other hand, the reaction with 3 equivalent of vinyl ferrocene afforded a mixture of vinyl ferrocene cross metathesis followed by ring-closed product **7-17c'''** and benzylidene cross metathesized product **7-17c** in a 3.5:1 ratio with 84% combined yield.

The selective formation of *trans*-1,5-chelates **7-17c**, **7-17c**'', and **7-17c**''' from 1,7-diyne **7-12c** contrasts to the preferred formation of cis-1,5-chelates **7-7** from *o*-vinylstyryl system of Grubbs and coworkers. These contrasting chelation behaviors imply that the seemingly minor differences in the structure of alkene ligand such as a substituent on the terminal position on the vinyl group and the *gem*-dimethyl group at the  $\beta$ -carbon from the carbene center may favor the formation of these trans chelates.

#### 7.3.2. RCM of 1,n-Diynes to Form trans-1,5-Chelates

Encouraged by the results in **Scheme 7.9** and **Scheme 7.10**, an RCM approach for the formation 1,5trans alkene chelates was further implemented for structurally diverse 1,n-diynes (**Table 7.1**). 1,6-Enyne **7-12d** derived from 1,1-dimethylpropargylamine was subjected to a stoichiometric amount of **G-II** in CH₂Cl₂ at 45 °C. Although a full conversion of enyne was observed the isolated red-colored material was identified as oligomers of **7-12d**, and *trans*-1,5-chelate **7-17d** in 5% yield (entry 1). On the other hand, 1,6-enyne **7-12e** derived from 1,1-dimethylpropargylalochol was completely converted to oligomers without forming any alkene-chelated complex (entry 2). The oligomerization of these enynes suggests that the 5-membered ring's bond angels are not suitable to form the expected chelates so that these complexes promote oligomerizations and polymerizations. By replacing the propargyl carbon of **7-12e** with diphenyl silyl group, gratifyingly, silyl ether tethered 1,6-enyne **7-2f** under otherwise identical conditions, provided *trans*-1,5-chelate **7-17f** in 82% yield without forming any oligomer or polymer (entry 3).

Having these results in hand, we next examined the behavior of 1,7-enynes having the propygl ether moiety. The 1,7-enyne **7-12g** containing a 1,3-dioxolane moiety was treated with **G-II** provide a 1:10 mixture of alkene- and ether-chelated products **7-17g** and **7-18g** in 78% combined yield. This indicates the generated ruthenium alkylidene favorably form a chelate with an oxygen functionalized to generate a



Table 7.1 RCM of 1,n-Diynes to Form *trans*-1,5-Chelates

Hoveyda type complex (entry 4). Enyne **7-12h** was treated with **G-II** in the presence of an excess 1-octene afforded *trans*-1,5-chelate **7-17h** in 93% yield (entry 5).



Table 7.2 Enyne RCM-Induced Formation of trans-1,5-Chelates

Subsequently, formation of *trans*-1,5-chelates with 1,8-enynes (entries 6–9) were explored. 1,8-Enyne **7-12i** having a *gem*-dimethyl moiety was treated with **G-II** under otherwise identical conditions but only

decomposition was observed (entry 6). By replacing the *gem*-dimethyl group of **7-12i** with a diphenyl silyl ether moiety (**7-12j**), smooth conversion was observed to generate *trans*-1,5-chelate **7-17j** in excellent yield (92%, entry 7). Also, 1,8-enynes **7-12k** and **7-12l** afforded only *trans*-1,5-chelates **7-17k** and **7-17l** in 81% and 83% yield, respectively (entries 8 and 9). Interestingly, ether-chelated Hoveyda-type ruthenium alkylidene complexes were not observed with both ethyl silyl ether **7-12k** and *tert*-butyl silyl ether **7-12l**.

#### 7.3.3. Envne RCM-Induced Formation of *trans*-1,5-Chelates

Next, we investigated the formation of *trans*-1,5-chelates using tandem enyne RCM of endiynes (**Table 7.2**). Enediyne **7-19a** derived from 3-butynamine upon treating with **G-II**, provided only metathesis product 1,3,6-triene **7-20a'** in 43% yield, by initiating the reaction at the terminal alkyne instead of the terminal alkene (entry 1). On the other hand, the reaction of endiyne **7-19b** containing an internal alkyne provided *trans*-1,5-chelate **7-20b** and sulfonamide-chelated ruthenium alkylidene **7-21b** in a 4:1 ratio (71%, entry 2). Tandem RCM of endiynes **7-19c** and **7-19d** smoothly afforded *trans*-1,5-chelates **7-20c** and **7-20d** in 71% and 78% yield, respectively (entries 3 and 4). Linear endiyne **7-19e** underwent enyne RCM catalyzed by **G-II** to generate ruthenium alkylidene, which did not further cyclize to form a seven-membered ring, instead underwent cross metathesis occurred to produce **7-20e'** in 42% yield (entry 5). On the other hand, endiyne **7-19f** containing a diphenyl silyl ether reacted smoothly with **G-II** to afford **7-20f** in 84% yield (entry 6).

#### 7.3.4. New Reactivity of Enediynes to Form trans-1,5-Chelates

The successful use of 1,n-diynes and endiynes to form *trans*-1,5-chelates, we next examined ynamide containing endiynes (**Table 7.3**). It is interesting to note that the metathesis reaction of **7-19a** initiates at the alkyne moiety not the alkene to provide **7-20a'**. The chemoselectivity for the initiation at terminal alkyne instead of terminal alkene is somewhat unusual. To further probe this unusual initiation, we have synthesized endiyne **7-19g** having *gem*-dimethyl moiety at the propargylic carbon.



Table 7.3 New Reactivity of Enediynes to Form trans-1,5-Chelates



**Figure 7.1 X-Ray Structures** 

Endiyne **7-19g** reacted smoothly to provide *trans*-1,5-chelate **7-22g** via initiating the reaction at sterically hindered terminal alkyne (entry 1). Interestingly, the reaction not only generate an alkyne-initiated *trans*-1,5-chelate but also was prevented from further cyclization with the tethered alkene moiety. The same substrate **7-19g** was also tested with **HG-II** and **G-I** complexes. The reaction with **HG-II** led the alkene-chelated complex **7-22g'** (entry 2), whereas with **G-I** no reaction was observed (entry 3). The structures of *trans*-1,5-chelates **7-22g** and **7-22g'** were further confirmed by single crystal X-ray diffraction analysis (**Figure 7.1**). Less sterically hindered allyl ether-tethered endiyne **7-19h** reacted with **G-II** to afford *trans*-1,5-chelate **7-22h** in 88% yield. The structure of *trans*-1,5-chelate **7-22h** was further confirmed by X-ray

crystallography analysis (entry 4). On the other hand, substrate **7-19i** devoid of a *gem*-dimethyl group provided **7-22i** in 34% yield (entry 5). The formation *trans*-1,5-chelate can be explained by the increased flexibility of C–C bond rotation due to lack of *gem*-dimethyl group. The surprising new reactivity of these endiynes encouraged us to examine the reactivity of 1,7-diyne **7-12m**. Similar to the previous cases the reaction initiated at a more hindered alkyne near a *gem*-dimethyl substituent instead of an electron-rich terminal ynamide providing 1,5-chelate **7-17m** in 68% yield (entry 6). Unexpectedly, however, the reaction of diyne **7-12n** led only decompose product under the reaction conditions (entry 7). The new mode of enyne metathesis for ynamide-containing diynes and endiynes might be the consequence of the sulfonamide coordination with the reacting ruthenium complex such that initiation occurs selectively even at the alkyne near the *gem*-dimethyl substituent.

#### **7.3.5.** Enyne RCM of 1,n-Enynes to Form $\eta^3$ -Complexes

The failure of forming the expected chelate from diyne **7-12n** in **Table 7.3**, promoted us to introduce an alkene instead of the terminal alkyne. Surprisingly, treatment of enyne **7-23a** with **G-II** under otherwise identical conditions smoothly afforded a green solid in 94% yield (**Table 7.4**, entry 1). The spectroscopic data of this green complex agree with *cis*-dichloro complex chelated either with the sulfonyl oxygen or the alkene. The crystal structure of this green solid clearly identifies cis alkene-chelated η³-complex **7-24a**. 1,5-Enyne **7-23b** also provided alkene-chelated η³-complex **7-24b** in 92% yield (entry 2), and a propargyl acetate substituent 1,5-enyne of **7-23c** provided **7-25c** in 88% yield (entry 3). The formation of compound **7-25c** can be explained by the formation of ruthenium alkylidene **7-24c** followed by its rearrangement via an intermediate **7-27c** and **7-28c** (**Scheme 7.11**). The enynes were further modified by changing the sulfonamide position. Enyne **7-23d** with stoichiometric **G-II** smoothly generated a new crystalline red colored complex **7-26d** in 86% yield (entry 4). The X-ray crystallographic analysis of the red colored crystal clearly identified the sulfonamide-chelated ruthenium alkylidene rather than alkene-chelated ruthenium alkylidene **7-24d**. Interestingly, a terminal alkyne tethered enyne **7-23e** just decomposed under the same reaction condition (entry 5). The reaction of differently substituted 1,6-diynes **7-23f** and **7-23g** with **G-II**  also led only decomposition (entry 6).



Table 7.4 Enyne RCM of 1,n-Enynes to Form  $\eta^3$ - Vinylcarbene Complexes



Scheme 7.11 Possible Mechanism for the Formation of 7-25c

The chelation behavior of 1,n-diynes, enynes, and enediynes suggest that the subtle steric and electronic influence of the substituent on the carbenic carbon is critical for the formation of these chelates. The corresponding diynes and endiynes devoid of the *gem*-dialkyl substituent at the propargylic carbon did not form *trans*-1,5-chelates rather provided the oligomerization/polymerization.

# 7.3.6. Metathesis Activity of Alkene-Chelated Ruthenium Alkylidenes

The metathesis activity of some of these new ruthenium chelates was examined (**Scheme 7.12**). Chelates **7-17c** and **7-17j**, when treated with ethylene were recovered unchanged. On the other hand, RCM



Scheme 7.12 Metathesis Activity of trans-1,5-Chelates Derived from 1,n-Diynes

of dienes **7-29a** and **7-29b** using 1–3 mol% of diyne-derived chelates in  $CH_2Cl_2$  at 40 °C provided ringclosed products **7-30a** and **7-30b**. Cross metathesis with these chelates was also examined for 1-octene, the at 45 °C for 12 h, which provided cross metathesis product **7-32a** in 82% yield. Interestingly, in all cases >95% of catalyst was recovered.

Next, metathesis activity of *trans*-1,5-chelate **7-22** derived from endiynes were tested (**Scheme 7.13**). The RCM of diene **7-29a** in the presence of a catalytic amount of **7-22g** for 12 h in toluene-d₈ at 90 °C provided a mixture of metathesis products **7-30a** and **7-33a** in a 2.5:1 ratio, whereas no reaction was observed in CDCl₃ at 45 °C. The formation of product **7-33a** can be explained by the ruthenium catalyzed cyclization of diene to generate **7-34** and which then undergo  $\beta$ -hydride elimination (**7-35**) followed by reductive elimination to provide product **7-33a**.



Scheme 7.13 Metathesis Activity of trans-1,5-Chelates Derived from Dienynes

Finally, η³-vinylcarbene complex **7-24b** was tested in both RCM and CM reactions (**Scheme 7.14**). The RCM of dienes **7-29a** and **7-29b** with 1 mol% of **7-24b** in CDCl₃ at 40 °C smoothly converted ring-closed products **7-30a** and **7-30b** in 98% and 96% yield, respectively. After the purification, 90% of catalyst **7-24b** was recovered. The RCM of highly hindered diene **7-29c** was also tested with 5 mol% of **7-24b** under

the same reaction conditions to provide cyclized product **7-30c** in 69% yield with some recovered starting material. The cross metathesis of 1-octene with 1 mol% of **7-24b** afforded the cross metathesis product in 88% yield. (Note:  $\eta^3$ -vinylcarbene complexes **7-6** reported by Grubbs were found to be metathesis inactive.)



Scheme 7.14 Metathesis Activity of Alkene Chelated n³-Complex 7-24b



Scheme 7.15 Metathesis Activity of Sulfonamide Chelate 7-26d

The metathesis activity of sulfonamide-chelate **7-26d** was also tested (**Scheme 7.15**). The RCM of diene **7-29a** with 2 mol % of **7-26d** in CDCl₃ at 40 °C, returned only starting materials, however, the same reaction in toluene-d₈ at 90 °C slowly promoted cyclization to provide **7-30b** in 82% yield. The cross metathesis of this catalyst was very slow, leading to 50% conversion after 24 h.

# 7.4. Summary

In summary, novel metathesis active *trans*-1,5-alkene-chelated ruthenium alkylidene complexes were prepared via enyne cross metathesis (CM) and ring-closing metathesis (RCM). The RCM of 1,n-diynes and ene-1,n-diynes using stoichiometric amount of Grubbs second-generation complex led to the formation of alkene-chelated ruthenium alkylidenes, where the chelated alkene is trans to the *N*-heterocyclic carbene. This chelation behavior is somewhat different from that observed by Grubbs where a 2:3 equilibrium ratio of cis chelates were observed upon treatment of 1,2-divinyl styrene with the Grubbs third-generation complex. The diyne derived *trans*-1,5-alkene-chelates showed metathesis activity with dienes and a recovered catalyst. On the other hand, under the same conditions ene-ynamides generate  $\eta^3$ -vinylcarbene complexes. These complexes show good metathesis activity contrary to a related  $\eta^3$ -vinylcarbene complexes generated from diphenyl acetylene/phenyl-1-propyne by Grubbs, which were metathesis-inactive.

#### 7.5. Experimental Details

7.5.1. General Information: For general information see section 6.6.1.

**7.5.2. General Procedure for Metal Complex Formation:** Compund **7-12c** (9 mg, 0.066 mmol) and Grubbs II (51 mg, 0.06 mmol) was dissolved in  $CH_2Cl_2$  (4 mL) in an air-free sealed tube and heated up to 45 °C over 4 h. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (SiO2, Hexanes : EtOAc = 5 : 1) to afford **7-17c** (38 mg, 91%) as a red solid.
### 7.5.3. Selected Characterization Data

**7-12c:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  2.20 (dt, J = 7.1, 2.8 Hz, 2H), 2.06 (s, 1H), 1.94 (t, J = 2.6 Hz, 1H), 1.71–1.65 (m, 2H), 1.50–1.46 (m, 2H), 1.20 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 91.5, 84.3, 68.5, 68.0, 42.2, 30.8, 29.1, 24.4, 18.8; HRMS (ESI) calcd for C₁₀H₁₃ [M-H]⁺ 133.1017, found 133.1018.

**7-17c** (38 mg, 91%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  16.56 (s, 1H), 7.20 (t, J = 7.0 Hz, N-Mes Mes-N 1H), 7.10–7.03 (m, 5H), 6.99 (bs, 1H), 6.54 (bs, 1H), 5.41 (d, J = 13.0 Hz, 1H), 4.48 (d, J = 13.0 Hz, 1H), 4.01–3.95 (m, 4H), 2.32–2.23 (m, 15H), 1.32 (m, 4H), 0.71 (s, 7-17c *E/Z* = 9 : 1 6H); ¹³C NMR (125 MHz, CDCl₃) δ 312.7, 207.1, 167.0, 160.4, 138.4, 137.7, 137.5, 137.1, 135.3, 134.1, 130.0, 129.5, 128.5, 126.6, 123.3, 107.6, 52.2, 51.7, 38.3, 34.5, 33.5, 28.6, 27.7, 26.6, 26.2, 21.1, 21.0, 19.7, 18.8, 18.6; HRMS (ESI) calcd for C₃₈H₄₆N₂Cl₂Ru [M]⁺ 702.2082 found, 702.2083.



**7-17c'** (40 mg, 88%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  16.65 (s, 1H), 7.15 (d, J = 7.1 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.98 (s, 2H), 6.68 (d, J = 8.2 Hz, 1H), 6.62 (s, 2H), 6.54 (t, J = 7.4 Hz, 1H), 5.22–5.21 (m, 2H), 4.41–4.38 (m, 1H), 4.02-3.95 (m, 4H), 2.49 (s, 6H), 2.32 (s, 3H), 2.30 (s, 6H), 2.26 (s, 3H), 1.72–1.63 (m, 4H), 1.36–1.33 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.3,

207.5, 166.9, 160.6, 154.8, 138.3, 137.9, 137.5, 137.3, 134.6, 130.0, 129.7, 127.5, 126.7, 126.4, 125.1, 121.3, 113.5, 102.0, 70.2, 52.3, 51.9, 38.5, 34.7, 33.6, 28.7, 22.0, 21.2, 21.0, 19.9, 18.9, 18.7; HRMS (ESI) calcd for C₄₁H₅₂Cl₂N₂ORu [M]⁺ 760.2505, found 760.2486.



**7-17c**" (41 mg, 96%): ¹H NMR (500 MHz, CDCl₃) δ 16.52 (s, 1H), 6.96 (s, 2H), 6.91 (s, 2H), 4.78 (d, J = 12.9 Hz, 1H), 4.10 (m, 4H), 3.76–3.70 (m, 1H), 2.57 (s, 6H), 2.29 (s, 3H), 2.27 (s, 3H), 1.27–1.25 (m, 6H), 1.77–1.13 (m, 16H), 0.87 (t, J = 7.2 Hz, 6H), 0.64 (bs, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 311.1, 208.3, 167.2, 158.2,

139.2, 138.8, 138.5, 137.6, 136.9, 129.8, 129.3, 128.0, 113.1, 52.3, 51.2, 38.2, 34.0, 33.5, 31.7, 31.3, 31.2,

30.8, 30.7, 29.2, 27.8, 27.7, 26.6, 22.7, 21.1, 21.0, 20.6, 14.2; HRMS (ESI) calcd for C₃₈H₅₃N₂Ru [M-2Cl-H]⁺ 639.3252 found, 639.3285.



**7-12d:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 7.6 Hz, 2H), 4.38 (d, J = 2.3 Hz, 2H), 2.41 (s, 3H), 2.39 (s, 1H), 2.31 (t, J = 2.3 Hz, 1H), 1.72 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  143.2, 139.6, 129.4, 127.3, 85.8, 81.2, 72.4, 72.3, 56.7, 36.9, 30.1.



calcd for CHO [M+H]⁺. HRMS (ESI) calcd for C₄₃H₄₈N₃O₂SCl₂Ru [M–H]⁺ 842.1888, found 842.1920.

Ph  $=-$^{\text{Ph}}_{\text{s}i-\text{Ph}}$   $=-$^{\text{o}}_{\text{s}i-\text{Ph}}$   $=-$^{\text{o}}_{\text{s}i-\text{Ph}}$  $=-$^{\text{o}}_{\text{s}i-\text{Ph}$ 



311.9, 204.9, 182.6, 159.8, 138.0, 137.9, 137.2, 137.0, 135.1, 134.3, 133.6, 130.6, 129.8, 129.4, 128.8, 128.0, 126.9, 126.3, 123.7, 107.8, 86.2, 51.8, 51.6, 28.2, 21.3, 21.1, 19.7, 18.8; HRMS (ESI) calcd for C₄₇H₄₉N₂OSiRu [M-2Cl-H]⁺787.2658, found 787.2637.

**7-12g:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  4.08–4.05 (m, 2H), 3.97–3.95 (m, 2H), 2.49 (s, 1H), 2.24 (dt, J = 2.6 Hz, J = 7.1 Hz, 2H), 2.01–1.99 (m, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.79–1.74 (m, 2H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  102.6, 83.9, 81.4, 72.1, 68.7, 64.7, 37.9, 22.8, 18.2; HRMS (ESI) calcd for C₁₀H₁₁O₂ [M–H]⁺ 163.0759, found 163.0766.



**7-17g** and **7-18g** (34 mg, 78%): ¹H NMR (500 MHz, CDCl₃) Characteristic signal of **7-18g**  $\delta$  18.04 (s, 1H); Characteristic signal of **7-17g**  $\delta$  16.43 (s, 1H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  285.2, 269.4, 218.1, 208.8, 160.0, 153.9, 138.6, 130.4, 230.3,

230.0, 129.9, 129.7, 129.6, 129.4, 129.3, 129.2, 129.9, 128.9, 128.9, 128.6, 128.2, 127.9, 127.1, 126.8, 126.7, 126.6, 124.4, 108.3, 107.4, 70.0, 67.8, 64.6, 64.4, 64.2, 52.8, 52.0, 51.7, 50.6, 35.7, 34.0, 29.7, 28.4, 27.0, 26.9, 26.8, 26.4, 26.2, 25.5, 21.4, 21.3, 21.2, 20.2, 19.3, 18.1; HRMS (ESI) calcd for C38 H₄₄N₂O₂ClRu [M–Cl]⁺ 697.2135, found 697.2134.



7-17h (47 mg, 93%): ¹H NMR (500 MHz, CDCl₃) δ 16.43 (s, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.37 (t, J = 7.4 Hz, 4H), 7.31 (d, J = 7.1 Hz, 4H), 6.94 (s, 2H), 6.20 (s, 2 H), 5.07 (d, J = 13.0 Hz, 1H), 4.09–4.05 (m, 4H), 3.97–3.86 (m, 3H), 2.56 (s, 6H), 2.34 (s, 3H), 2.30 (s, 6H), 2.02 (t, J = 4.9 Hz, 2H), 1.73 (s, 3H), 1.60 (m, 2H),

1.28–1.12 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  312.2, 206.7, 171.7, 155.8, 139.3, 138.9, 138.1, 136.9, 136.4, 135.2, 133.7, 133.4, 131.7, 130.4, 130.0, 129.5, 129.4, 127.0, 112.7, 60.6, 52.3, 51.1, 37.9, 31.7, 30.8, 30.7, 29.1, 27.8, 26.3, 22.7, 20.9, 20.6, 18.8, 14.2; HRMS (ESI) calcd for C₄₆H₅₅N₂OSiRu [M–2Cl–H]⁺781.3127, found 781.3052.

 $= \sqrt{7-12i: {}^{1}H NMR (500 MHz, CDCl_{3}) \delta 2.21 (m, 2H), 2.07 (s, 1H), 1.94 (s, 1H), 1.55 (m, 4H),} \\ = \sqrt{7-12i} \sqrt{7$ 

Ph  $=-s_{i}^{Ph}$   $=-s_{i}^{Ph}$  $=-s_{i}^$ 

Mes-NPh7-17j (47 mg, 92%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  16.38 (s, 1H), 7.50 (t, J = 7.2Hz, 2H), 7.42 (t, J = 7.3 Hz, 4H), 7.35 (d, J = 7.0 Hz, 4H), 7.24–7.23 (m, 1H), 7.18Hz, 2H), 7.42 (t, J = 7.3 Hz, 4H), 7.35 (d, J = 7.0 Hz, 4H), 7.24–7.23 (m, 1H), 7.18(d, J = 7.6 Hz, 2H), 7.09 (t, J = 7.53 Hz, 2H), 6.55 (bs, 2H), 6.05 (bs, 2H), 5.67 (d,J = 12.7 Hz, 1H), 4.91 (d, J = 12.7 Hz, 1H), 3.92 (bm, 6H), 2.29–2.24 (m, 18H),

1.46 (s, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 315.1, 206.2, 181.2, 157.5, 137.8, 137.8, 136.3, 135.3, 135.1, 134.6, 133.9, 133.9, 130.2, 129.8, 129.5, 128.7, 128.3, 128.1, 128.0, 126.8, 126.6, 109.5, 65.3, 52.3, 51.7, 37.6, 28.9, 26.4, 26.2, 21.2, 20.5, 20.0, 19.9, 18.7, ; HRMS (ESI) calcd for C₄₄H₄₉N₂O₂SiRu [M–2Cl–H]⁺ 767.2618, found 767.2575.

OEt J-12k: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.75–7.73 (m, 2H), 7.45–7.40 (m, 3H), 3.91 (q, J J = 5.0 Hz, 2H), 2.55 (s, 1H), 2.39–2.35 (m, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.90–1.86 (m, 2H), 1.41 (s, 6H), 1.27 (t, J = 5.0 Hz, 3H), ; ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.1, 133.8, 130.5, 127.9, 93.8, 85.6, 85.1, 75.9, 67.9, 59.3, 43.2, 29.4, 29.3, 18.1, 13.7; HRMS (ESI) calcd for  $C_{17}H_{22}O_2SiNa [M+Na]^+$  309.1287, found 309.1282.



1.20–1.12 (m, 9H), 0.96 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 316.6, 206.2, 181.0, 156.3, 138.5, 137.7,

136.4, 136.2, 135.4, 134.7, 134.1, 130.0, 129.6, 129.5, 128.7, 127.6, 126.6, 126.4, 73.9, 58.9, 52.1, 51.8, 40.2, 35.6, 29.5, 21.2, 21.0, 20.0, 19.5, 19.1, 18.6, 18.2, ; HRMS (ESI) calcd for C₄₅H₅₄ N₂O₂ClRuSi [M-Cl]⁺ 819.2687 found, 819.2675.

 $\begin{array}{c} O^{r}Bu \\ \hline & \mathbf{7-12l:} \ ^{1}H \ NMR \ (500 \ MHz, \ CDCl_{3}) \ \delta \ 7.80 - 7.78 \ (m, \ 2H), \ 7.44 - 7.40 \ (m, \ 3H), \ 2.57 \ (s, \ Ph \ NH), \ 2.57 \ (s, \ Ph \ NH), \ 2.40 - 2.36 \ (m, \ 2H), \ 1.95 \ (t, \ J = 2.6 \ Hz, \ 1H), \ 1.89 - 1.86 \ (m, \ 2H), \ 1.43 - 1.37 \ (m, \ 15H); \ ^{1}C \ NMR \ (125 \ MHz, \ CDCl_{3}) \ \delta \ 136.3, \ 134.0, \ 130.1, \ 127.7, \ 94.9, \ 93.3, \ 87.9, \ 85.2, \ 75.7, \ 67.9, \ 43.3, \ 31.8, \ 29.4, \ 13.7; \ HRMS \ (ESI) \ calcd \ for \ C_{19}H_{26}O_{2}NaSi \ [M+Na]^{+} \ 337.1600, \ found \ 337.1595. \end{array}$ 



**7-17I** (44 mg, 83%): ¹H NMR (500 MHz, CDCl₃) δ 16.07 (s, 1H), 7.45–7.37 (m, 5H), 7.21–7.19 (m, 1H), 7.06–7.03 (m, 4H), 6.86 (s, 2H), 6.35 (s, 1H), 5.67 (d, *J* = 12.6 Hz, 1H), 5.22 (s, 1H), 4.45 (d, *J* = 12.6 Hz, 1H), 4.04–3.86 (m, 4H), 2.74 (s, 3H), 2.44 (s, 3H), 2.30 (s, 3H), 1.98 (s, 3H), 1.87 (s, 3H), 1.83 (s, 3H), 1.78 (m, 2H),

1.38 (m, 5H), 1.21 (s, 9H), 1.13 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 317.5, 206.4, 179.4, 158.4, 138.6, 138.3, 138.1, 137.6, 137.2, 136.0, 135.6, 134.6, 134.1, 130.2, 129.9, 129.7, 129.4, 129.1, 128.7, 127.4, 126.4, 126.2, 125.7, 104.9, 74.1, 73.5, 51.8, 40.2, 35.5, 31.8, 31.7, 31.5, 31.3, 31.2, 28.2, 27.7, 26.6, 21.2, 21.1, 20.1, 19.3, 19.2, 18.4; HRMS (ESI) calcd for C₄₇H₅₈Cl₁N₂O₂RuSi [M–Cl]⁺ 847.3009, found 847.2999.

**7-19a:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.76 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), **5.88–5.80** (m, 1H), 5.26–5.16 (m, 2H), 4.24 (s, 2H), 3.95 (d, *J* = 5.6 Hz, 2H), 3.48 (t, *J* = **7-19a 7.6** Hz, 2H), 2.49 (dt, *J* = 2.4 Hz, 7.7 Hz, 2H), 2.41 (s, 3H), 1.96 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145.0, 134.5, 134.1, 129.9, 127.6, 117.7, 79.6, 79.0, 70.7, 70.1, 68.0, 57.5, 50.0, 18.4; HRMS (ESI) calcd for C₁₇H₂₀O₃NS [M+H]⁺ 318.1164, found 318.1160.



δ 144.1, 136.9, 133.1, 130.6, 129.7, 129.3, 128.8, 128.1, 127.9, 127.7, 126.4, 121.7, 76.0, 49.6, 29.2, 21.7; HRMS (ESI) calcd for C₂₃H₂₄NO₃S [M+H]⁺ 394.1477 found, 394.1472

Ph 7-19b: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.2 Hz, 2H), 7.36–7.26 (m, 7H), 5.89–5.84 (m, 1H), 5.30–5.19 (m, 2H), 4.28 (s, 2H), 3.98 (d, J = 5.7 Hz, 2H), 3.61 (t, J = 7.5 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 134.7, 131.7, 129.9, 128.2, 128.0, 127.7, 123.2, 117.8, 85.2, 82.7, 79.2, 70.2, 68.0, 57.6, 50.2, 21.7, 19.5.

 $\begin{array}{l} \begin{array}{l} \textbf{NHC} \\ \textbf{Cl} \\ \textbf{Ph} \\ \textbf{r-20b} \\ \textbf{N} \\ \textbf{K} \\ \textbf{K} \\ \textbf{K} \\ \textbf{H} \\ \textbf{K} \\ \textbf{K$ 

**7-19c:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.93–5.85 (m, 1H), 5.28 (dd, J = 1.6 Hz, J = 17.2Hz, 1H), 5.18 (dd, J = 1.5 Hz, J = 10.4 Hz, 1H), 4.12 (m, 2H), 4.04–4.02 (m, 2H), **7-19c** 2.25–2.22 (m, 2H), 2.06 (s, 1H), 1.69–1.65 (m, 2H), 1.49–1.46 (m, 2H), 1.19 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.2, 117.6, 91.5, 86.7, 76.1, 70.4, 68.0, 57.7, 42.4, 37.5, 29.1, 14.6, 19.2; HRMS (ESI) calcd for C₁₄H₂₁O [M+H]⁺ 205.1592, found 205.1588.



**7-20c** (36 mg, 71%): ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.31-6.86 (m, 8H), 6.46 (s, 1H), 6.29 (m, 2H), 4.92 (d, *J* = 12.1 Hz, 1H), 4.67 (s, 1H), 4.49 (d, *J* = 12.1 Hz, 1H), 4.22 (d, *J* = 18.4 Hz, 1H), 4.00-3.75 (m, 5H), 3.53-3.37 (m, 2H), 2.77 (s, 3H), 2.63 (s, 3H), 2.44 (m, 5H), 2.34 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H), 1.83

(s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 282.2, 203.9, 169.3, 145.0, 139.2, 129.1, 138.3, 137.4, 134.6, 131.0, 130.2, 130.0, 129.8, 129.4, 128.9, 128.2, 127.7, 125.6, 112.3, 96.1, 87.6, 69.8, 66.9, 53.1, 52.9, 52.0, 26.9,

26.4, 21.8, 21.2, 20.6, 19.3, 19.1, 18.8; HRMS (ESI) calcd for C₄₃H₄₆N₃O₃SRu [M-2Cl-H]⁺ 786.2303 found, 786.2277

**7-19d:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.69 (d, *J* = 8.1 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 5.73–5.65 (m, 1H), 5.23 (d, *J* = 17.2 Hz, 1H), 5.16 (d, *J* = 10.1 Hz, 1H), 4.01 (s, 2H), **7-19d** 3.75 (d, *J* = 6.3 Hz, 2H), 2.37 (s, 3H), 2.03 (s, 1H), 1.88 (t, *J* = 6.9 Hz, 2H), 1.41–1.39 (m, 2H), 1.27–1.25 (m, 2H), 1.12 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  143.2, 136.2, 132.2, 129.3, 127.8, 119.5, 91.3, 85.9, 72.6, 68.1, 48.9, 42.3, 36.3, 30.7, 29.1, 24.3, 21.5, 18.8; HRMS (ESI) calcd for C₂₁H₂₈NO₂S [M+H]⁺ 358.1841, found 358.1837.



**7-20d** (38 mg, 78%): ¹H NMR (500 MHz, CDCl₃) δ 16.10 (s, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.12–7.06 (m, 2H), 7.06 (s, 1H), 6.95 (s, 1H), 6.77 (s, 1H), 5.00 (d, *J* = 10.8 Hz, 1H), 4.19–4.01 (m, 4H), 3.82–3.80 (m, 1H), 3.50 (d, *J* = 5.2 Hz, 1H), 3.05 (d, *J* = 12.7 Hz, 1H), 2.94 (s, 3H), 2.63 (s, 3H), 2.58 (s, 3H), 2.42

(m, 5H), 2.32 (s, 3H), 2.25 (s, 3H), 2.18 (s, 3H), 1.93–1.83 (m, 2H), 1.46–1.44 (m, 2H), 0.78 (s, 3H), 0.34 (s, 3H);  13 C NMR (125 MHz, CDCl₃)  $\delta$  313.7, 205.9, 167.3, 160.8, 143.4, 139.6, 137.5, 136.5, 132.9, 132.6, 130.5, 130.1, 129.6, 129.4, 128.9, 128.2, 127.4, 127.2, 125.7, 124.3, 101.4, 62.2, 53.6, 53.2, 52.1, 51.7, 51.3, 46.6, 46.4, 38.5, 38.1, 35.6, 35.1, 33.6, 33.0, 29.8, 27.8, 27.0, 26.9, 26.4, 26.2, 21.5, 20.9, 20.2, 19.3, 18.6, 18.1; HRMS (ESI) calcd for C₄₁H₅₂N₃O₂SCl₂Ru [M+H]⁺ 822.2201, found 822.2194.

7-19e: ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.93–5.85 (m, 1H), 5.30–5.18 (m, 2H), 4.12 (t, J = 2.1 Hz, 2H), 4.03 (d, J = 5.7 Hz, 2H), 2.27–2.24 (m, 2H), 1.59–1.53 (m, 6H), 1.33 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.2, 125.1, 117.6, 86.2, 76.4, 70.5, 57.7, 40.6, 32.4, 28.5, 26.7, 24.5, 18.6.

**7-20e'** (16 mg, 84%, 10 mol% of Grubbs II used): ¹H NMR (500 MHz, CDCl₃)  $\delta$  5.84 (s, 1H), 5.00 (s, 1H), 4.76 (s, 4H), 2.30 (t, J = 7.0 Hz, 2 H), 2.08 (s, 1H), 1.52-1.41 (m, 6H), 1.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  140.7, 121.5, 118.6, 112.9, 92.0, 77.5, 76.6, 75.3, 67.7, 43.0, 34.1, 31.0, 29.7, 29.2, 28.9, 25.2; LRMS (ESI) calcd for C₁₅H₂₀OLi [M–2H+Li]⁺ 223.2, found, 223.2.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} Ph \\ = & Si-Ph \\ 0 \end{array} & \begin{array}{c} \textbf{7-19f: } ^{1}H \ \text{NMR} \ (500 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 7.73-7.72 \ (m, \ 4H), \ 7.43-7.39 \ (m, \ 6H), \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{5.85-5.80} \ (m, \ 1H), \ 5.13-5.09 \ (m, \ 1H), \ 5.08-5.04 \ (m, \ 1H), \ 4.10 \ (s, \ 2H), \ 3.92 \ (t, \ J= \\ \begin{array}{c} \begin{array}{c} \textbf{5.9} \ \text{Hz}, \ 2H), \ 3.53 \ (t, \ J= \ 6.6 \ \text{Hz}, \ 2H), \ 2.75-2.72 \ (m, \ 4H), \ 2.37-2.33 \ (m, \ 3H), \\ \begin{array}{c} \begin{array}{c} 1.86-1.83 \ (m, \ 2H); \ ^{13}\text{C} \ \text{NMR} \ (125 \ \text{MHz}, \ \text{CDCl}_{3}) \ \delta \ 134.6, \ 133.0, \ 130.6, \ 128.0, \ 96.6, \ 86.2, \ 84.8, \ 76.3, \ 69.1, \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{62.8}, \ 58.6, \ 34.0, \ 31.2, \ 15.4. \ \text{HRMS} \ (\text{ESI}) \ \text{calcd} \ \text{for} \ C_{24}H_{26}O_{2}\text{SiNa} \ [\text{M+Na}]^{+} \ 397.1600, \ \text{found} \ 397.1596. \end{array} \end{array}$ 



**7-20f:** (42 mg, 84%): ¹H NMR (500 MHz, CDCl₃) δ 16.51 (s, 1H), 7.50–7.44 (m, 2H), 7.41–7.34 (m, 5H), 7.31–7.30 (m, 2H), 6.97 (s, 1H), 6.87 (s, 1H), 6.30 (s, 1H), 5.89 (s, 1H), 5.45 (d, *J* = 14.4 Hz, 1H), 4.60 (d, *J* = 3.4 Hz, 1H), 4.52 (d, *J* = 14.4 Hz, 1H), 4.16–3.98 (m, 4H), 3.90–3.79 (m, 3H), 3.29 (td, *J* = 11.0, 5.4 Hz, 1H),

3.05–3.00 (m, 1H), 2.62 (s, 3H), 2.59 (s, 3H), 2.45 (s, 3H), 2.27 (s, 3H), 2.22 (s, 3H), 2.10–1.90 (m, 4H), 1.66–1.57 (m, 2H), 1.53 (m, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  309.8, 205.0, 177.6, 155.6, 139.7, 139.2, 138.9, 137.7, 136.6, 136.2, 135.6, 135.2, 135.0, 134.5, 133.4, 132.7, 130.2, 130.1, 129.9, 129.1, 127.0, 102.7, 63.7, 62.8, 52.4, 51.0, 34.2, 27.9, 24.7, 21.0, 20.7, 20.6, 20.5, 18.9, 18.7; HRMS (ESI) calcd for C₄₄H₄₉N₂O₂RuSi [M–2Cl–H]⁺ 767.2618, found 767.2575.

**7-19g:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.76 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, EtO₂C 2H), 5.03–5.55 (m, 1H), 5.14–5.03 (m, 2H), 4.16 (q, J = 7.1 Hz, 4H), 3.45–3.41 (m, 2H), 2.83 (s, 3H), 2.71 (d, J = 7.4 Hz, 2H), 2.43 (s, 3H), 2.09 (s, 1H), 1.89–1.85 (m, 2H), 1.21 (t, J = 7.1 Hz, 6H), 1.18 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.8, 144.5, 134.8, 131.9, 129.8, 127.6, 119.7, 89.8, 75.9, 69.1, 65.0, 61.6, 57.0, 48.7, 40.2, 36.5, 29.5, 29.1, 22.8, 21.6, 14.1; HRMS (ESI) calcd for C₂₇H₃₆NO₆S [M+H]⁺ 502.2263, found 502.2259.



**7-22g** (56 mg, 87%): ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.1 Hz, 2H), 7.29 (d, *J* = 7.9 Hz, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 7.04–7.00 (m, 4H), 6.92 (d, *J* = 7.7 Hz, 2H), 6.84 (s, 1H), 6.21 (2, 1H), 5.90–5.81 (m, 1H), 5.66 (d, *J* = 13.2 Hz, 1H), 5.04–4.97 (m, 2H), 4.42 (d, *J* = 15.9 Hz, 1H), 4.27–4.16 (m, 3H), 4.05–3.93 (m, 5H), 3.74–3.73 (m, 1H), 3.63 (d, J = 14.6 Hz, 1H), 3.25–3.18 (m, 1H), 2.66 (s, 3H), 2.69–2.67 (m, 1H), 2.46 (s, 3H), 2.40 (s, 3H), 2.38 (s, 3H), 2.30–2.27 (m, 4H), 2.20 (s, 3H), 2.10–2.07 (m, 1H), 1.98 (s, 3H), 1.31–1.24 (m, 6H), 0.91 (s, 3H), 0.83 (bm, 2H), 0.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  318.2, 205.0, 171.1, 169.4, 163.7, 155.9, 143.3, 138.6, 137.7, 137.6, 137.3, 137.0, 136.9, 136.2, 135.5, 133.9, 131.6, 130.7, 129.8, 129.4, 129.3, 128.5, 126.9, 126.6, 117.5, 104.0, 96.2, 61.7, 60.8, 60.7, 55.3, 53.0, 52.1, 45.1, 42.2, 37.2, 33.2, 30.4, 26.0, 21.5, 21.3, 20.5, 19.2, 18.8, 14.1, 13.9; HRMS (ESI) calcd for C₅₅H₆₇N₃O₆SCl₂Ru [M]⁺ 1069.3171 found, 1069.3180.



7-22g' (61 mg, 91%): ¹H NMR (500 MHz, CDCl₃) δ 7.95 (d, J = 7.2 Hz),
7.29 (d, J = 8.1 Hz, 2H), 7.04–7.00 (m, 1H), 6.96 (d, J = 2.8 Hz, 2H), 6.90 (s, 1H), 6.67 (d, J = 8.2 Hz, 1H), 6.54 (d, J = 7.5 Hz, 1H), 6.44 (s, 1H), 6.41 (t, J = 7.5 Hz, 1H), 5.87–5.80 (m, 1H), 5.75 (d, J = 13.1 Hz, 1H), 4.99 (d, J

= 16.8 Hz, 1H), 4.92 (dd, J = 1.9 Hz, 10.1 Hz, 1H), 4.77–4.73 (m, 2H), 4.37–4.30 (m, 1H), 4.20–4.11 (m, 4H), 3.97 (m, 3H), 3.74–3.73 (m, 1H), 3.67–3.64 (m, 1H), 3.18–3.12 (m, 1H), 2.89 (s, 3H), 2.53 (s, 3H), 2.38 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H), 2.21 (m, 3H), 2.13 (s, 3H), 1.29 (t, J = 7.1Hz, 3H), 1.26–1.21 (m, 3H), 1.12 (d, J = 6.1 Hz, 3H), 0.91 (s, 3H), 0.68 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  318.0, 205.1, 171.0, 170.2, 163.2, 156.2, 155.7, 143.3, 138.6, 138.1, 137.6, 137.2, 136.9, 136.7, 135.7, 135.0, 131.5, 130.8, 129.9, 129.5, 129.4, 128.1, 126.3, 121.1, 117.4, 113.7, 107.4, 94.1, 70.6, 61.2, 60.5, 56.7, 53.0, 52.5, 45.3, 40.5, 36.9, 33.0, 30.4, 26.0, 22.5, 22.0, 21.5, 21.3, 20.5, 19.7, 19.5, 18.9, 14.2, 13.8; HRMS (ESI) calcd for C₅₈H₇₃Cl₂N₃O₇RuS [M–H]⁺ 1128.3608, found 1128.3564.

**7-19h:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.78 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), **5.91–5.83** (m, 1H), 5.29–5.18 (m, 2H), 4.27 (s, 2H), 3.98 (d, J = 5.6 Hz, 2H), 3.53–3.50 **7-19h** (m, 2H), 2.43 (s, 3H), 2.11 (s, 1H), 1.75–1.71 (m, 2H), 1.20 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.7, 134.7, 134.1, 129.8, 127.6, 117.8, 89.8, 79.7, 70.1, 69.1, 67.4, 57.6, 48.8, 40.4, 29.6, 29.2, 21.2; HRMS (ESI) calcd for C₂₀H₂₆NO₃S [M+H]⁺ 360.1633, found 360.1628.



**7-22h** (49 mg, 88%): ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 2H), 7.00 (bs, 1H), 6.93 (m, 4H), 6.33 (s, 1H), 5.82 (m, 1H), 5.71 (d, *J* = 13.4 Hz, 1H), 5.21 (s, 1H), 5.18 (s, 1H), 5.08 (m, 1H), 4.10–3.71 (m, 8H), 2.97 (dd, *J* = 20.3, 7.9 Hz, 1H),

2.85 (s, 3H), 2.58 (d, J = 15.0 Hz, 1H), 2.46 (s, 3H), 2.39 (s, 3H), 2.32 (s, 6H), 2.11 (s, 3H), 1.83 (s, 3H), (d, J = 13.8 Hz, 1H), 0.85 (s, 6H), 0.81 (d, J = 3.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  318.5, 205.7, 162.6, 155.4, 143.3, 139.1, 138.0, 137.7, 137.2, 136.7, 136.1, 135.8, 133.9, 131.7, 131.0, 129.6, 129.4, 129.3, 128.8, 128.5, 127.1, 127.0, 115.2, 105.0, 98.7, 85.5, 72.2, 52.5, 52.3 44.5, 36.8, 34.1, 30.7, 26.4, 21.6, 21.2, 20.4, 19.1, 18.9, 18.8; HRMS (ESI) calcd for C₄₈H₅₇N₃O₃SCIRu [M–Cl]⁺ 892.2853 found, 892.2845.

**7-19i:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.79 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), **7-19i 7.0** Hz, 2H), 2.44 (m, 1H), 5.30–5.19 (m, 2H), 4.28 (s, 2H), 3.98 (d, J = 5.7 Hz, 2H), 3.44 (t, J = 7.19 **7.0** Hz, 2H), 2.44 (s, 3H), 2.24 (dt, J = 2.5 Hz, 7.0 Hz, 2H), 1.97 (t, J = 2.5 Hz, 1H), 1.87 ( p, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.8, 134.6, 134.1, 129.8, 127.7, 117.8, 82.7, 79.4, 70.2, 69.4, 67.6, 57.6, 50.3, 26.9, 21.7, 15.6; HRMS (ESI) calcd for C₁₈H₂₂NO₃S [M+H]⁺332.1320, found 332.1321.



4.17–4.10 (m, 2H), 4.06–3.90 (m, 7H), 2.84 (m, 2H), 2.47 (m, 2H), 2.43 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H), 2.11 (s, 3H), 1.82 (s, 3H), 1.57 (s, 3H), 1.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 316.3, 205.3, 157.9, 156.8, 143.3, 138.2, 137.9, 137.7, 136.0, 131.0, 129.7, 129.3, 128.5, 128.4, 127.1, 126.9, 115.4, 108.5, 97.6, 85.1, 72.2, 52.5, 52.2, 45.7, 30.1, 29.8, 21.6, 21.2, 21.2, 18.9, ; HRMS (ESI) calcd for C₄₆H₅₃N₃O₃SCIRu [M–Cl]⁺ 864.2540, found 864.2545.

 $= \frac{T_{s}}{N}$ 7-12m: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.82 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.54-3.50 (m, 2H), 2.74 (s, 1H), 2.46 (s, 3H), 2.12 (s, 1H), 1.77-1.74 (m, 2H), 1.22 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.8, 134.7, 129.9, 127.7, 89.7, 76.1, 69.1, 59.2, 48.6, 40.2, 29.6, 29.1, 21.7, 15.6; HRMS (ESI) calcd for C₁₆H₂₀NO₂S [M+H]⁺ 290.1215, found 290.1217.



(s, 3H), 2.37 (s, 3H), 2.33 (s, 6H), 2.28 (s, 3H), 2.25 (s, 3H), 2.21 (s, 3H), 1.10 (s, 3H), 1.04–1.01 (m, 1H), 0.78–0.72 (m, 1H), 0.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 311.0, 205.6, 159.8, 152.2, 143.5, 138.7, 138.2, 137.7, 137.2, 137.1, 136.3, 136.1, 135.5, 134.7, 134.2, 131.0, 129.5, 129.4, 129.3, 128.6, 128.5, 127.3, 126.9, 115.2, 112.9, 52.4, 51.8, 44.1, 37.3, 33.8, 27.7, 27.2, 21.6, 21.2, 19.8, 19.8, 19.1, 18.7; HRMS (ESI) calcd for C₄₄H₅₁N₃O₂SCIRu [M–Cl]⁺ 822.2434, found 822.2429.

Mes-N7-24a (45 mg, 94%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.64 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 7.13–7.12 (m, 2H), 7.05–6.96 (m, 7H), 6.11–6.08 (m, 1H), 4.38–4.27ClImage: ClImage: Cl</t

2.35 (s, 3H), 2.32 (s, 3H), 2.30 (s, 3H), 1.98 (s, 3H), 1.28–1.26 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 280.8, 215.2, 160.4, 154.5, 145.1, 140.7, 140.2, 139.1, 138.4, 137.8, 136.8, 136.6, 133.8, 130.4, 130.4, 130.2, 130.1, 129.5, 128.9, 128.6, 128.4, 126.3, 125.6, 122.3, 52.1, 51.4, 45.8, 23.5, 21.7, 21.4, 21.2, 20.7, 19.4, 19.2, 18.8, 17.2; HRMS (ESI) calcd for C₄₀H₄₅N₃O₂SCIRu [M–Cl]⁺ 768.1964, found 768.1977.



239

¹³C NMR (125 MHz, CDCl₃) δ 209.8, 144.3, 143.6, 140.5, 139.8, 138.4, 137.0, 135.6, 134.0, 133.8, 133.5, 131.6, 131.0, 130.1, 129.8, 129.4, 129.2, 129.0, 128.9, 128.6, 128.3, 127.9, 114.9, 104.9, 52.9, 52.2, 51.8, 51.6, 27.9, 27.0, 26.9, 26.3, 26.1, 21.6, 21.2, 20.9, 20.6, 19.0, 18.8, 17.7; HRMS (ESI) calcd for C₃₉H₄₂N₃O₂RuS [M–Cl₂–H]⁺ 718.2041, found 718.2075

OAc **7-23c:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.77 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 5.70–5.62 (m, 1H), 5.05–4.96 (m, 2H), 3.31 (t, J = 7.3 Hz, 2H), 2.40 (s, 3H), 2.33 (q, J = 7.1 Hz, 2H), 1.93 (s, 3H), 1.60 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.2, 144.5, 134.5, 133.8, 129.6, 127.8, 117.5, 72.8, 72.2, 50.6, 31.9, 29.0, 21.9, 21.6; HRMS (ESI) calcd for C₁₆H₂₂NO₃S [M+H–OCCH₃]⁺ 308.1315, found 308.1320.

**7-25c** (18 mg, 92%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  1H-NMR (501 MHz) ppm 7.71 (d, J = **8.2** Hz, 2H), 7.28 (d, J =8.2 Hz, 2H), 5.43 (t, J =2.8Hz, 1H), 3.84 (t, J =8.4 Hz, 2H), 2.42 **7-25c** (s, 3H), 2.18 (s, 3H), 2.10 (dt, 1H, J =2.8 Hz, 8.4 Hz, 2H), 1.82 (s, 3H), 1.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.4, 143.7, 137.1, 134.9, 129.4, 129.1, 128.0, 127.6, 126.4, 121.1, 50.4, 28.1, 21.6, 20.9, 20.1, 18.3

TsNPh7-23d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.55 (d, J = 8.0 Hz, 2H), 7.32–7.23 (m, 7H),5.87–5.79 (m, 1H), 5.06–5.03 (m, 2H), 4.21 (s, 1H), 2.41 (s, 3H), 2.19–2.06 (m, 2H), 0.97OH(s, 3H), 9,95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145.1, 138.8, 134.9, 133.0, 129.6, 129.1,128.3, 128.2, 126.2, 117.7, 79.8, 70.4, 70.2, 42.9, 39.2, 22.9, 22.8, 21.7; HRMS (ESI) calcd

for  $C_{22}H_{26}NO_3S$  [M+H]⁺ 384.1633, found 384.1626.

**7-26d** (44 mg, 86%): ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.76 (d, J = 8.2 Hz, 2H), 7.22- **7.14** (m, 3H), 7.10-7.02 (m, 4H), 6.86-6.82 (m, 2H), 6.86-6.57 (m, 2H), 5.53 (d, J = 2.0 Hz, 1H), 4.31-4.04 (m, 4H), 3.90 (s, 1H), 3.62 (d, J = 4.2 Hz, 1H), 2.59 (s, 3H), 2.56 (s, 3H), 2.42 (s, 3H), 2.36 (s, 3H), 2.34 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H), 1.79 (d, J = 16.6 Hz, 1H), 1.38 (d, J = 16.4 Hz, 1H), 0.96 (s, 3H), 0.46 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  262.6, 214.7, 153.9, 146.2, 140.5, 139.0, 138.4, 138.3, 137.2, 137.0, 136.3, 132.9, 130.6, 130.5, 130.0, 129.9, 129.7, 129.3, 129.1, 128.5, 127.8, 122.1, 88.1, 52.7, 51.1, 47.2, 41.7, 27.7, 23.5, 21.8, 21.4, 21.1, 20.5, 19.2, 19.0, 18.7; HRMS (ESI) calcd for C₄₃H₅₀N₃O₄RuS [M–2Cl+H+CO]⁺ 806.2560 found, 806.2483.

## 7.6. References

- (a) Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymerization; Academic Press: San Diego, CA, 1997. (b) Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003.
- (2) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 118, 100. (b) Nguyen, S. T.;
  Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993, 115, 9858.
- (3) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
- (4) Reviews: (a) Grubbs, R. H.; Chang, S. *Tetrahedron* 1998, *54*, 4413. (b) Fürstner, A. *Angew. Chem.*, *Int. Ed.* 2000, *39*, 3012. (c) Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* 2003, *42*, 4592. (d) Poulsen, C. S.; Madsen, R. *Synthesis* 2003, 1. (e) Deiters, A.; Martin, S. F. *Chem. Rev.* 2004, *104*, 2199. (f) Giessert, A. J.; Diver, S. T. *Chem. Rev.* 2004, *104*, 1317.
- (5) Hérisson, J.-L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
- (6) Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887.
- (7) (a) Sanford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 6543. (b) Sanford, M. S.;
  Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 749.
- (8) Choi, T.-L.; Grubbs, R. H. Angew. Chem., Int. Ed. 2003, 42, 1743.
- (9) (a) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225. (b) Funk, T. W.; Berlin, J. M.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 1840.
- (10) For theoretical studies considering both side-bound and bottom-bound models, see: Adlhart, C.; Chen,P. J. Am. Chem. Soc. 2004, 126, 3496.

- (11) (a) Romero, P. E.; Piers, W. E. J. Am. Chem. Soc. 2005, 127, 5032. (b) van der Eide, E. F.; Piers, W. E. Nature Chemistry 2010, 2, 571.
- (12) Tallarico, J. A.; Bonitatebus, P. J., Jr.; Snapper, M. L. J. Am. Chem. Soc. 1997, 119, 7157.
- (13)Trnka, T. M.; Day, M. W. Grubbs, R. H. Organometallics 2001, 20, 3845.
- (14) Anderson, D. R.; Hickstein, D. D.; O'Leary, D. J.; Grubbs, R. H. J. Am. Chem. Soc. 2006, 128, 8386.
- (15) (a) Anderson, D. R.; O'Leary, D. J.; Grubbs, R. H. *Chem. –Eur. J.* 2008, *14*, 7536. (b) Stewart, I. C.; Benitez, D.; O'Leary, D. J.; Tkatchouk, E.; Day, M. W.; Goddard, W. A., III.; Grubbs, R. H. J. Am. *Chem. Soc.* 2009, *131*, 1931.
- (16) van der Eide, E. F.; Romero, P. E.; Piers, W. E. J. Am. Chem. Soc. 2008, 130, 4486.
- (17) Benitez, D.; Tkatchouk, E.; Goddard III, W. A. Organometallics 2009, 28, 2643.
- (18) Wang, K.-P.; Yun, S. Y.; Lee, D.; Wink, D. J. J. Am. Chem. Soc. 2009, 131, 15114.

**CHAPTER 8** 

# THERMAL BICYCLIZATION OF YNAMIDE-TETHERED 1,3,8-TRIYNES

#### **8.1. Introduction**

Ynamines are a class of alkynes that have a nitrogen atom directly attached to a triple-bond.¹ Due to the strong electron donating nature of a nitrogen moiety, ynamines are highly reactive species compared to typical alkynes. In 1958, the formation of ynamines was observed by Zaugg and coworkers in the reaction of propargyl bromide with phenothiazine.² Thereafter, the synthesis and application of ynamines became popular,³ yet the development of efficient and general synthetic methods was limited due to instability. To enhance their stability, an electron-withdrawing group was installed on the alkynyl nitrogen, which is now known as ynamides^{4,5} The electron-withdrawing group not only stabilize the system but also it acts as an efficient directing group. In the last two decades, the chemistry of ynamides has been extensively developed. Ynamides can undergo various addition reactions, including hydroarylation, M–H/M–X additions, and radical addition reactions. Ynamides are also extensively employed in ring-forming reactions, which is not only due to the favorable reactivity of the electron-rich ynamide functionality, but also the usefulness of the resultant heterocyclic products.

### 8.2. Intramolecular [4+2] Cycloaddition Reactions of Ynamide Derivatives

Ynamides have been extensively studied in a variety of cycloaddition reactions, such as [2+1], [2+2], [3+2], [4+2], [2+2+1] and [2+2+2] cycloadditions. Among these, [4+2] cycloaddition reaction has been engaged most often for the synthesis of a novel class of indole derivatives.

In 2003, Witulski and coworkers reported the intramolecular [4+2] cycloaddition reaction of ynamide-tethered 1,3-dienes (**Scheme 8.1**).⁶ In their study, the cycloaddition of diene-ynamides **8-1** provide a novel class of functionalized dihydroindolines **8-2**. For this transformation, an in situ generated cationic rhodium (I) catalyst form RhCl(PPh₃)₃ and AgSbF₆, was employed. The intermolecular version of this Diels-Alder reaction was further studied by Hsung and coworkers with chiral ynamides and symmetrical 1,3-dienes.⁷



Scheme 8.1 Intramolecular [4+2] Cycloaddition of Ynamide-Tethered 1,3-Dienes

## 8.2.1. Cycloaddition of Ynamide-Tethered 1,3-Enynes

Danheiser and coworkers reported an intramolecular Diels-Alder reaction of ynamide tethered 1,3enynes to generate highly substituted indoline derivatives (**Table 8.1**). ⁸ Upon treating with a stoichiometric amount of BHT (butylated hydroxytoluene) under thermal reaction conditions, ynamide tethered 1,3-enynes **8-3** provided indoline derivatives **8-4** in good to moderate yields.



Table 8.1 Thermal [4+2] Cycloaddition of Ynamide Tethered 1,3-Enynes

This transformation was further extended to 1,3-enynamide tethered alkynes **8-5**, which generate differently substituted indoline derivatives **8-6** (**Scheme 8.2**).



Scheme 8.2 Thermal [4+2] Cycloaddition of 1,3-Eneynamide-Tethered Alkynes

Saá and coworkers reported a similar Diels-Alder reaction for the synthesis of carbazole derivatives (Scheme 8.3).⁹ Ynamide-tethered 1,3-enynes 8-7 having a different substituent on the ynamide moity provided cyclized products 8-8 in moderate yields in the presence of certain additives, such as Et₃N, MeOH, and i-PrOH. These additives were found to be crucial for optimum yields. Phenanthrene substituted diyne 8-9 was also engaged in the study, which generate carbocycle 8-10 in 58% yield.



Scheme 8.3 [4+2] Cycloaddition of Aryl-Substituted 1,3-Eneynamide-Tethered Alkynes

Saá and coworkers also studied dehydro Diels-Alder reaction of aryl-substituted *N*-terminal diynes (Scheme 8.4). ¹⁰ Aryl-substituted diynes 8-11, in the presence of triethyl amine, provided the corresponding cyclized products 8-12 in low yield.



Scheme 8.4 [4+2] Cycloaddition of Ynamide-Tethered 1,3-Enynes

### 8.2.2. Cycloaddition of Ynamide-Tethered Triynes and Tetraynes

Hoye and coworkers reported the [4+2] cycloaddition of ynamide having triynes (**Scheme 8.5**).¹¹ Triyne **8-13** smoothly underwent hexadehydro Diels-Alder (HDDA) reaction to provide indoline **8-14** in 80% yield in toluene at 120 °C. The mechanism for the formation product **8-14** is rationalized by cycloaddition of **8-13** to generate aryne intermediate **8-16**, which then trapped with silyl ether.



**Scheme 8.5 HDDA Reaction of Triynes** 

Lee and coworkers also reported HDDA reaction of tetraynes in the presence of a silver cation (**Scheme 8.6**).¹² Ynamide-containing tetraynes with catalytic amount of AgOTf in toluene at 90 °C provided indoline derivatives **8-19** in good yield. Mechanistically, the initially generated aryne intermediate is further activated by a silver ion to generate **8-20** or its alternative from **8-22**, which then

effectively reacts with primary, secondary, and tertiary alkane C-H bonds to afford carbocycles 8-19.



Scheme 8.6 Alkane C-H Activation by Aryne Intermediates Catalyzed by a Silver Ion

The C–H bond activation by arynes was further extended to the system containing a silyl substituent (**Scheme 8.7**).¹³ A putative aryne generated from tetrayne **8-24** favors a direct C–H insertion if the reacting C–H bond is primary to generate **8-26a–8-26c**, whereas a hydride transfer process becomes more favorable if the reacting C–H is secondary or tertiary, affording **8-26d** and **8-26e**.



Scheme 8.7 Formal Hydrogenation of Arynes with Silyl C_β-H Bonds

Lee and coworkers also reported a silver-catalyzed nucleophilic aromatic substitution reaction of

arynes (**Scheme 8.8**),¹⁴ where yanamides **8-27** were effectively converted biaryl products **8-28** via an aryne intermediate followed by its trapping with variety of nucleophiles arenes. Complete regioselectivity was observed in these reactions involving yanamide-derived tetaraynes **8-27**.



Scheme 8.8 Hydroarylation of Arynes Catalyzed by a Silver Ion

Silver-catalyzed ene reactions of arynes were also explored by Lee and coworkers (**Scheme 8.9**).¹⁵ Ynamide **8-29** tethered with an alkenyl group, upon formation of aryne **8-31**, provide Alder-ene products **8-30** in good yields. This reaction showed identical reaction profiles and efficiency with and without the silver catalyst and it was concluded that the formation of the aryne intermediate and their ene reaction is not affected by the silver ion.



Scheme 8.9 Aryne Ene Reaction with Ynamide having Tetraynes

The highly regioselective nucleophile trapping of arynes generated from ynamides were widely exploited by Lee and coworkers (**Scheme 8.10**).¹⁶ A variety of nucleophiles provided the corresponding adducts with high regioselectivity, and most cases single regioisomers were observed.



Scheme 8.10 Regioselectivity in the Nucleophile Trapping of Arynes

# 8.3. Intramolecular [2+2+2] Cycloaddition Reactions Ynamide-Tethered Triynes

Rhodium catalyzed [2+2+2] cycloaddition reactions of ynamide were first reported by Witulski and coworkers (**Scheme 8.11**).¹⁷ In this transformation regioselective intermolecular cycloaddition of triyne was observed to generate indolines **8-35a**. This cycloaddition was then extended the intramolecular cycloaddition of ynamide **8-34** to generate polycyclic structures **8-35** in good yields.



Scheme 8.11 [2+2+2] Cycloaddition Reactions Ynamide-Tethered Triynes

Witulski and coworkers applied this intermolecular [2+2+2] cycloaddition to the total synthesis of antiostatin A₁ (**Scheme 8.12**).¹⁸ Intermolecular cycloaddition of diyne **8-34e** and 1-methoxy-1-propyne in the presence of Wilkinson's catalyst provided cycloaddition product **8-35e** in 82% yield, which was further converted to antiostatin A₁ and its derivatives.



Scheme 8.12 [2+2+2] Cycloaddition Reaction for the Synthesis of Antiostatin A1

Sato and coworker cleverly employed an intramolecular [2+2+2] cycloaddition of triynes containing a ynamide tether for total synthesis of (–)-herbindole A, B and C (**Scheme 8.13**).¹⁹ The cycloaddition of ynamide **8-36** in the presence of Wilkinson's catalyst afforded the core structure of natural products in 97% yield, which was converted to (–)-herbindole A, B and C.



Scheme 8.13 [2+2+2] Cycloaddition Reaction for Synthesis of (-)-Herbindole

# 8.4. Gold-Catalyzed Cyclization of Ynamide-Tethered Alkynes

The metal-catalyzed cyclization reactions of 1,5-diynes were extensively studied (**Scheme 8.14**).²⁰ For example, diyne **8-38** in the presence of gold cation can undergo two types of *endo*-dig-cyclization to afford 5-*endo*-dig and 6-*endo*-dig cyclization products **8-40** and **8-41** (pathways a and b).



Scheme 8.14 Possible Cyclization Pathways of 1,5-Diynes

Similarly, *N*-propargyl ynamides would undergo three types of cyclizations leading to three different products **8-44**, **8-45**, and **8-46** (Scheme 8.15).²¹ The pathway **a** and the pathway **b** are 5- and 6-*endo*-dig cyclization, and the third pathway **c** is 5-*exo*-dig cyclization (pathway c).^{22,23}



Scheme 8.15 Possible Cyclization Pathways of Ynamide-Tethered Alkynes

# 8.5. Results and Discussion

After extensive study of structure and reactivity of ruthenium alkylidenes for enyne RCM, we became interest in utilizing RCM strategy in the total synthesis of (–)-herbindole A, B and C (**Figure 8.1**).^{24,25} Herbindoles are polylalkylated cyclopent[g]indole alkaloids isolated from Western Australian sponge,

Axinella sp. These natural products show important biological activity such as cytotoxicity against KB cells and anti-feedant activity against fishes.²⁶



Figure 8.1 Structure of Herbindole A, B and C

To effect RCM strategy for the synthesis of herbindoles, we have designed enynamide-based substrate **8-47** (Scheme 8.16). It was expected that enyne-tethered diyne 8-47 should undergo tandem RCM to provide 1,3,5-triene 8-49 by initiating the metathesis reaction at terminal alkene. The resultant triene 8-49 would undergo electrocyclization under the reaction conditions to provide the core structure of natural product herbindole 8-50.



Scheme 8.16 RCM Strategy for Synthesis of Herbindole Core

The regioselective termination not involving metallotropic [1,3]-shift of ruthenium alkylidene

intermediate can be realized by installing a proper R group in **8-47**. On the other hand, in triyne **8-47-2**, the initiation of RCM is expected to occur at an internal alkyne of the diyne to generate same metathesis product **8-49** via intermediate **8-48-2**.

To test the feasibility of the proposed tandem enyne RCM strategy, we planned to use a simplified model substrate **8-47a** for initial study to examine whether indole core structure **8-49a** can be generated (**Scheme 8.17**).



Scheme 8.17 Model Substrate for RCM

To prepare ene-ynamide tethered diyne **8-47a**, coupling of building blocks **8-51** and **8-52** were envisioned (**Scheme 8.18**). Upon subjecting diyne-tethered sulfonamide **8-51** and bromoalkyne **8-52** to typical coupling conditions involving copper sulfate pentahydrate (CuSO₄·5H₂O, 15 mol %), 1,10-phenanthroline (30 mol %) and excess of potassium carbonate ( $K_2CO_3$ ) in toluene at 85 °C, a clean conversion occurred to provide a product in 66% yield.⁵ The characteristic NMR signals of the isolated product did not corroborate the structure of the expected product **8-47a**. Extensive spectroscopic studies ultimately proved that the compound isolated from the reaction was bicyclic structure **8-53a**, which we believe, was derived from the initially formed coupling product **8-47a**.



Scheme 8.18 Unexpected Bicyclization During Ynamide Synthesis

To get further confirmation for the initial formation of **8-47a** and its conversion to **8-53a**, we have modified the synthetic sequence such that the final step for the generation of **8-47a** is achieved at lower temperature (**Scheme 8.19**). In this modified synthesis, coupling between **8-54** and bromoalkyne **8-52** provided **8-56**, which then converted to ene-ynamide-tethered diyne **8-47a** via deprotecting the silyl group followed by coupling with phenylacetylene bromide at 0 °C catalyzed by CuCl in aqueous BuNH₂ and CH₂Cl₂.



Scheme 8.19 Modified Synthetic Sequence for Ene-ynamide-Tethered Diyne 8-47a

The freshly prepared compound **8-47a** was then heated in toluene-d₈ at 85 °C for 36 h, which provided 6-*exo-dig*-cyclized product **8-53a** in 95% yield (**Scheme 8.20**). This result not only confirms that **8-47a** is a direct precursor of **8-53a** but also the conversion of **8-47a** to **8-53a** is a purely thermal process not affected by the copper catalyst. Compound **8-47a** was tested for its RCM behavior with **G-II** catalyst in toluene at 90 °C to see whether it can generate ring-closed metathesis product **8-49a**. Under the conditions, no metathesis product was generated, and only a small amount (ca 10%) of **8-53a** together with other decomposed products were observed. On the basis of this initial discovery, we further explored the general scope of the unprecedented cyclization reaction of ynamide-tethered triyne functionality.



Scheme 8.20 Unexpected Cyclization of Ynamide-Tethered Triyne Functionality

Based on these results, we have formulated a plausible mechanism of the cyclization reaction

(Scheme 8.21). We believe that the most crucial aspect of the cyclization of 8-47a to 8-53a is the intramolecular interaction of the electron-donating ynamide functionality with the electron-withdrawing diyne moiety to provide 6-*exo-dig*-cyclized allenyliminium intermediate IN-1. The highly strained intermediate IN-1 can abstract an hydride to induce [1,5]-hydride transfer to form a zewitterionic intermediate IN-2, which then undergo C–C bond formation to afford bicyclic product 8-53a.



Scheme 8.21 Plausible Mechanism for Cyclization of a Ynamide-Tethered Triyne

With this proposed mechanism, we also hypothesized that the overall efficiency of the reaction would critically depend on the easiness of forming 6-*exo-dig*-cyclized intermediate **IN-1** and zewitterionic intermediate **IN-2**, which in turn should be dependent on the existence of the anion- and cation-stabilizing groups. To prove this hypothesis, we have prepared a range of substrates containing structural variations and tested their reaction profiles (**Table 8.2**).

First, we compared the subtle electronic effect of the substituent on the diyne (entries 1–3). Eneynamide-tethered diynes 8-47b, 8-47c, and 8-47d having a different substituent on the diyne, where 8-47b and 8-47c have an aryl group (phenyl and 4-chlorophenyl) and 8-47d has a triethyl silyl group, upon heating in toluene-d₈ at 85 °C, afforded cyclized products 8-53b 8-53c, and 8-53d in 81%, 88%, and 84% yield, respectively (entries 1–3). The cyclization of **8-47b** and **8-47d** has significant reaction time difference; triethyl silyl substituent-containing triyne **8-47d** took 28 h for complete cycliation, whereas a phenyl substituted-triyne **8-47b** took 34 h.

Next, we explored the subtle electronic effect on the carbon involved in the [1,5]-hydride transfer (entries 4–10). Ynamide **8-47e** with benzylic C–Hs, ynamide **8-47f** with a 4-methoxy benzylic C–Hs, ynamide **8-47g** with a 4-nitro-benzylic C–Hs, and ynamide **8-47h** with 4-trifluromethyl benzylic C–Hs, afford cyclized products **8-53e–8-53h** in good yields (entries 4–7). Also, ynamide **8-47i** with a tertiary benzylic C–H bond cyclized smoothly to generate **8-53i** in 83% yield (entry 8). On the other hand, the reaction ynamide **8-47j** derived from cyclohexanemethanol took 48 h for complete conversion to provide product **8-53j** (76%, entry 9), and that of ynamide **8-47k** containing a myrtenol moity took 34 h to afford **8-53k** in 81% yield (entry 10). The reactivity difference in **8-47e–8-47k** clearly indicates the subtle electronic effect in [1,5]-hydride transfer step to form a zewitterionic intermediate **IN-2**. The hydride transfer from a benzylic carbon is much faster than that from an allylic carbon, which is still faster than that from a saturated alkyl group.

Subsequently, we compared examined the steric effect of the substituents at the propargyl ether carbon center (entries 11 and 12). While methyl-substituted propargyl ether **8-471** took 48 h to provide cyclized product **8-531** in 81% yield (entry 11), more sterically hindered *gem*-dimethyl substituted propargyl ether **8-47m** required high temperature (100 °C) to provide cyclized product **8-53m** in 78% yield (entry 12). These results suggest that the increased steric effect induced by the substituents on the propargyl ether may increase the activation barrier to form intermediate **IN-1**.

We next studied the effect of ring size and requirement of propargyl oxygen (entries 13 and 14). As expected, homopropargyl-tethered substrate **8-47n** took 120 h to provide **8-53n** in 68% yield (entry 13). Interestingly, substrate ynamide **8-47o** derived from diethyl allylmalonate behaved differently to provide a mixture of 6-*exo-dig* cyclized product **8-53o** and **8-53o'** in 1.2:1 ratio with 78% combined yield (entry



Table 8.2 Cyclization Reaction of Ynamide-Tethered Triynes

10). The formation of **8-530'** is the consequence of an initial Alder-ene reaction followed by Diels-Alder reaction as shown in **Scheme 8.22**.



Scheme 8.22 Ene-Reaction Followed Diels-Alder Cyclization of Ynamide

We further examined the behavior of **8-47p** with 1,3-enyne tether, ynamide **8-47q** containing only two triple bonds, and **8-47r** containing a sulfonamide tether (**Scheme 8.23**). The reaction of **8-47p** provided only the [4+2] cycloaddition product^{8,9,10} **8-58p** in 88% yield without forming the expected **8-53p**. The reaction of **8-47q** provided **8-53q'** in 81% yield via an initial ene-reaction followed by Diels-Alder reaction. Substrate **8-47r** having propagyl sulfonamide instead of ynamide also underwent only ene-reaction followed by Diels-Alder reaction to generate **8-53r'** in 78% yield.



#### Scheme 8.23 Different Cyclization Behaviors

To gain further mechanistic insights into the cyclization, we deuterium labeling studies were carried out (**Scheme 8.24**). Upon thermal cyclization of 3° deuterated ynamide **8-47i-D**, complete deuterium incorporated on **8-53i-D** was observed with 82% isolated yield. On the other hand, 2° deuterated ynamide **8-47e-D** cyclized to provide **8-53e-D** in 82% yield with  $k_{\rm H}/k_{\rm D} = 4.3$ .



**Scheme 8.24 Deuterium Labelling Experiments** 

We next studied the possibility to trap the oxonium ion intermediate using an internal alcohol (Scheme 8.25). The ynamide 8-47s having a free hydroxyl group may form oxonium ion intermediate 8-47s-IN-2 after hydride transfer from 8-47s-IN-1. At this juncture, we expected that the generated oxonium ion should react with the tethered alcohol to provide 8-59s, however, only 8-53s was isolated in 81% yield.



### Scheme 8.25 Possibility of Intramolecular Cation Trapping

The negative result of cation trapping with a tethered alcohol moiety, may suggest the possibility of

involving radical intermediates. To test this hypothesis, cyclopropyl-containing ynamide **8-47t** was synthesized and subjected to the typical reaction conditions, but product **8-53t** was obtained as only isolated product in 79% yield, where the cyclopropane ring was intact (**Scheme 8.26**). Additional probe ynamide **8-47u** for radical mechanism having a *cis*-alkene was examined, expecting that isomerization of the cis-alkene would happen to form a *trans*-alkene, if a radical intermediate is involved. Again the reaction of **8-47u** provided only the *cis*-alkenyl product **8-53u** in 82% yield. Even the reaction in presence of BHT or the radical trapping agents like TEMPO afforded **8-53u** with similar efficiency.



Scheme 8.26 Probes for a Radical Intermediate

### 8.6. Summary

In summary, a novel and facile thermal 6-*exo-dig*-cyclization of ynamide-tethered triynes has been discovered. The overall reaction scope has been defined by examining substrates with variation of anionand cation-stabilizing groups, the substituent on the diyne moiety, allyl propargylic-, benzyl propargylic-, alkyl propargylic-ethers and propargylic carbon substituents. Based on the observed reaction profiles, and preliminary mechanistic studies, the reaction is proposed to proceed through the interaction between an electron withdrawing 1,3-diyne moiety with an electron donating ynamide moiety to form a highly strained 6-*endo-dig*-cyclized zwitterionic intermediate with an allenyliminium ion followed by [1,5]- hydride shift, and final ring closure. Providing appropriate electronic activation by the substituents, this new cyclization reaction can be further developed to generate a broad range of novel bicyclic compounds not readily accessible by other.

### 8.7. Experimental Details

#### 8.7.1. General Procedure for Substrate Preparation:



Synthesis of 8-56 from 8-54: In a 100 mL flask 8-54 (600 mg, 1.8 mmol) was dissolved in 15 mL toluene under nitrogen. CuSO₄•5H₂O (0.27 mmol), 1,10-phenanthroline (0.54 mmol), and K₂CO₃ (3.6 mmol) followed by 8-52 (2.7 mmol) was added to the reaction flask. The resulting mixture was heated in oil bath at 85 °C for 20 h. The flask cooled to room temperature and purified through column using hexane/EtOAc (7:3) as eluent to provid 8-56 (400 mg, 52%).

**Synthesis of 8-56' from 8-53:** In a 250 mL flask **8-56** (400 mg, 0.9 mmol) was dissolved in 10 mL tetrahydrofuran and cooled to 0 °C. TBAF (1M in THF, 1.2 mL) was added drop wise. The reaction warmed to room temperature and stirred for 2 h. The reaction quenched with saturated aqueous NH₄Cl, extract with EtOAc, and dried over MgSO₄. The filtrate was concentrated under reduced pressure and purified through column chromatography using hexane/EtOAc (7:3) an eluent to afford the **8-56'** (210 mg, 74%).

Synthesis of 8-47a from 8-56': In a 100 mL round-bottom flask with septum-inlet 8-56' (200 mg, 0.6 mmol) was dissolved in 10 mL  $CH_2Cl_2$  and cooled to 0 °C. The flask was connected to continuous nitrogen purging adapter and added the 30% aq  $BuNH_2$  (5 mL) and CuCl (0.06 mmol). The reaction turns into blue color which was discharged by adding few crystals of hydroxylamine hydrochloride.

Phenylacetylene bromide (0.9 mmol) in 15 mL  $CH_2Cl_2$  was added dropwise to the reaction mixture at 0 °C for 10 min. stirring was continued for 15 min, quenched with  $H_2O$ , extract with  $CH_2Cl_2$ , and dried over MgSO₄. The filtrate was concentrated under reduced pressure and purified through column using hexane/EtOAc (7:3) an eluent to afford the **8-47a** (210 mg, 74%).

**8.7.2. General Procedure for Thermal Bicyclization:** Ynamide tethered triyne **8-47a** (42 mg, 0.1 mmol) dissolved in 0.6 mL of toluene- $d_8$  in NMR tube was heated at 85 °C for 34 h (monitored by ¹H NMR). The reaction tube was cooled to room temperature and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (hexane/EtOAc 7:3) to provide bicyclic product **8-53a** (38 mg, 95%).

### 8.7.3. Selected Characterization Data

**8-47a:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 6.9 Hz, TsN **8-47a** 2H), 7.35–7.31 (m, 5H), 5.88 (ddd, J = 5.7 Hz, J = 10.9 Hz, J = 16.2 Hz, 1H), 5.29 (dd, J = 1.4 Hz, J = 17.2 Hz, 1H), 5.20 (d, J = 10.4 Hz, 1H), 4.29 (s, 2H), 3.99 (d, J = 5.7 Hz, 2H), 3.56 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145, 134.5, 134.1, 132.5, 129.9, 129.8, 129.1, 128.4, 127.6, 121.6, 117.7, 79.3, 78.8, 75.8, 73.9, 70.2, 68.3, 67.3, 57.5, 49.6, 26, 21.6, 19.6; HRMS (EI) calcd for C₂₅H₂₃NO₃S [M]⁺ 417.1399, found 417.1402.



δ 144.9, 132.5, 129.9, 129.1, 128.4, 127.6, 121.6, 120.4, 79.4, 78.4, 75.8, 73.9, 68.6, 67.3, 65.6, 57.2, 49.6, 25.8, 21.6, 19.6, 18; HRMS (ESI) calcd for C₂₇H₂₈NO₃S [M+H]⁺ 446.1790, found 446.1787.

**8-47c:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.80 (d, J = 8.2 Hz, 2H), 7.37 (dd, J = 8.3 Hz, J = 19.6 Hz, 2H), 7.28 (m, 2H), 5.88 (ddd, J = 5.8 Hz, J = 11.1 Hz, J = 16.2 Hz, 2H), 5.29 (dd, J = 1.4 Hz, J = 17.2 Hz, 1H), 5.20 (d, J = 10.3 Hz,

1H), 4.29 (s, 2H), 3.99 (d, J = 5.7 Hz, 2H), 3.56 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.43 (s, 3H);
¹³C NMR (125 MHz, CDCl₃) δ 145, 135.3, 134.4, 134, 133.7, 129.9, 128.8, 127.6, 120.1, 117.8, 79.9,
78.8, 74.5, 70.2, 68.3, 67.1, 57.5, 49.5, 21.7, 19.6.

SiEt₃ 8-47d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.77 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.1 Hz, TsN 8-47d 2H), 5.30–5.28 (m, 1H), 4.22 (s, 2H), 3.95 (d, J = 7.0 Hz, 2H), 3.49 (t, J = 7.6 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 2.42 (s, 3H), 2.02 (s, 3H), 1.73 (s, 3H), 1.65 (s, 3H), 0.97 (t, J = 7.9 Hz, 9H), 0.60 (q, J = 7.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 138.1, 134.4, 129.9, 127.6, 120.3, 88.8, 82.5, 78.4, 73.9, 68.5, 67.7, 65.5, 57.2, 49.5, 25.7, 21.6, 19.2, 18.7,7.3, 4.2; HRMS (EI) calcd for C₂₅H₃₉SiNO₃SNa [M+Na]⁺484.2318, found 484.2323.

**8-47e:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.85 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.2 Hz, **8-47e** Ph- **8-47e** 2H), 7.35–7.32 (m, 10H), 4.56 (s, 2H), 4.35 (s, 2H), 3.60 (t, J = 7.3 Hz, 2H), 2.74 (t, J = 7.3 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145.1, 137.6, 134.4, 132.6, 130, 129.2, 128.5, 128.1, 127.8, 127.7, 121.6, 79.5, 79.1, 77.5, 77.2, 77, 75.9, 74, 71.2, 68.4, 67.4, 57.6, 49.6, 21.7, 19.6; HRMS (ESI) calcd for C₂₉H₂₆NO₃S [M+H]⁺ 468.1633, found 468.1634.

**8-47f:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.83 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 7.0 **8-47f** Hz, 2H), 7.33–7.31 (m, 5H), 7.26 (d, J = 8.5 Hz, 4H), 6.87 (d, J = 8.5 Hz, 2H), **4.48** (s, 2H), 4.29 (s, 2H), 3.79 (s, 3H), 3.58 (t, J = 7.3 Hz, 2H), 2.73 (t, J = 7.3Hz, 2H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  159.4, 145, 134.4, 132.5, 129.9, 129.8, 129.5, 129.2, 128.5, 128.4, 127.7, 127.1, 121.6, 113.8, 79.4, 78.9, 75.8, 73.9, 70.8, 68.4, 67.3, 57.1, 55.3, 49.6, 21.7, 19.6.
**8-47h:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.82 (d, J = 8.2 Hz, 2H), 7.58 (d, J = 8.1 **8-47h 8-47h 8-47h 8-47h 8-47h 8-47h 1**Z, 2H), 7.45 (m, 4H), 7.35–7.32 (m, 5H), 4.60 (s, 2H), 4.37 (s, 2H), 3.58 (t, J = 7.3 Hz, 2H), 2.72 (t, J = 7.3 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$ **145.1, 141.8, 134.4, 132.5, 129.9, 129.7, 129.2, 128.4, 127.9, 127.6, 125.3, 121.5, 79.5, 79.3, 75.9, 73.8, 70.2, 68, 67.4, 58, 49.5, 21.6, 19.7.** 

7.4 Hz, 2H), 2.43 (s, 3H), 1.46 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 142.6, 134.5, 132.5, 129.9, 129.1, 128.5, 128.4, 127.7, 127.7, 126.5, 121.6, 79.4, 78.4, 77.3, 77.1, 76.8, 76.1, 75.8, 73.9, 68.6, 67.3, 55.9, 49.5, 23.7, 21.7, 19.6; HRMS (ESI) calcd for C₃₀H₂₈NO₃S [M+H]⁺ 482.1790, found 482.1793.

 $\begin{array}{c} \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & &$ 

78.3, 75.7, 75.5, 73.9, 68.7, 67.2, 58.5, 49.6, 37.9, 30.1, 26.6, 25.8, 21.6; HRMS (ESI) calcd for  $C_{29}H_{32}NO_3S [M+H]^+474.2103$ , found 474.2098.

**8-47k:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.3 Hz, 2H), 7.46–7.44 (m, 2H), **8-47k** 7.33–7.29 (m, 5H), 5.52–5.50 (m, 1H) 4.24 (d, J = 2.3 Hz, 2H), 3.86 (dq, J = 1.3 Hz, J = 12.1 Hz, 2H), 3.56 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H), 2.40 (dd, J = 3.0 Hz, J = 5.6 Hz, 1H), 2.28 (q, J = 17.9 Hz, 2H), 2.15 (dt, J = 1.1 Hz, J = 5.7 Hz, 2H), 2.12–2.10 (m, 1H), 1.29 (s, 3H), 1.17 (t, J = 8.5 Hz, 1H), 0.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 144.6, 134.5, 132.5, 129.9, 129.1, 128.4, 127.6, 121.6, 120.9, 79.3, 78.5, 77.3, 77.1, 76.8, 75.8, 73.9, 72.1, 68.5, 67.3; HRMS (ESI) calcd for C₃₂H₃₄NO₃S [M+H]⁺ 512.2259, found 512.2258.

**8-471:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.80 (d, J = 8.3 Hz, 2H), 7.47–7.45 (m, 2H), **8-471** 7.35–7.32 (m, 2H), 7.30 (dd, J = 4.5 Hz, J = 11.5 Hz, 3H), 5.89 (ddd, J = 5.7 Hz, J = 10.9 Hz, J = 22.3 Hz, 1H), 5.28 (dd, J = 1.5 Hz, J = 17.2 Hz, 1H), 5.18 (d, J = 10.4 Hz, 1H), 4.34 (q, J = 6.6 Hz, 1H), 4.13 (dd, J = 5.2 Hz, J = 12.5 Hz, 1H), 3.90 (dd, J = 6.2 Hz, J = 12.5 Hz, 1H), 3.57–3.55 (m, 2H), 2.70 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H), 1.45 (d, J = 6.6 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145.0, 134.4, 132.5, 129.8, 129.1, 128.4, 127.7, 121.6, 117.3, 79.3, 77.6, 77.3, 77.1, 76.8, 75.8, 73.9, 71.5, 69.4, 67.3, 64.8, 49.6, 22.1, 21.6, 19.7.

**8-47m:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.80 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 6.9Hz, 2H), 7.35–7.32 (m, 5H), 5.89 (ddd, J = 5.5 Hz, J = 10.7 Hz, J = 22.6 Hz, 1H), 5.24 (dd, J = 1.6 Hz, J = 17.2 Hz, 1H), 5.12 (d, J = 10.4 Hz, 1H,), 3.99 (d, J = 5.5Hz, 2H), 3.56 (t, J = 7.3 Hz, 2H), 2.69 (t, J = 7.3 Hz, 2H), 2.42 (s, 3H), 1.48 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 135.5, 132.5, 129.8, 129.1, 128.4, 127.7, 121.6, 116.2, 79.4, 77.1, 75.8, 73.5, 67.3, 65.4, 49.5, 28.9, 21.6, 19.7.

**8-470:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.80 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.1 Hz, TsN CO₂Et 2H), 5.56 (qd, J = 7.5 Hz, J = 9.9 Hz, 1H), 5.08–5.06 (m, 2H), 4.13 (q, J = 7.1 Hz, 4H), 3.37 (t, J = 7.6 Hz, 2H), 2.83 (s, 2H), 2.67 (d, J = 7.4 Hz, 2H), 2.42–2.40 (m, 4H), 1.92 (t, J = 2.5 Hz, 1H), 1.18 (t, J = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$ 169.7, 144.6, 134.6, 131.8, 129.8, 127.5, 119.6, 79.6, 75.2, 70.5, 65.6, 61.5, 56.9, 49.9, 36.5, 22.7, 21.5, 18.1, 14.0.

**8-47p:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.2 Hz, TsN **8-47p 8-47p** 2H), 7.36–7.34 (m, 2H),7.31 (t, J = 7.2 Hz 3H), 5.92 (ddd, J = 5.7 Hz, J = 10.9 Hz, J = 22.6 Hz, 1H), 5.73 (t, J = 6.7 Hz, 1H), 5.27 (d, J = 17.2 Hz, 1H), 5.17 (d, J = 17.2 Hz, 1H

10.4 Hz, 1H), 4.12 (d, J = 6.8 Hz, 2H), 3.97 (d, J = 5.6 Hz, 2H), 3.60 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 3.60 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 3.60 (t, J = 7.4 Hz, 2H), 3.60

Hz, 2H), 2.43 (s, 3H), 1.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.0, 134.8, 134.4, 132.5, 131.3,129.9, 129.1, 128.4, 127.7, 121.6, 121.0, 117.0, 86.3, 79.2, 75.8, 73.8, 71.2, 70.5, 68.5, 67.4, 49.7, 23.1, 21.7, 19.7; HRMS (ESI) calcd for C₂₈H₂₈NO₃S [M+H]⁺458.1790, found 458.1776.

**8-47q:** ¹H NMR (400 MHz, CDCl₃)  $\delta$  7.77 (dd, J = 1.6 Hz, J = 8.2 Hz, 1H), 7.33 (d, TsN **8-47q** J = 8.1 Hz, 1H), 5.84 (ddd, J = 5.5 Hz, J = 10.8 Hz, J = 22.7 Hz, 1H), 5.28 (dd, J = 1.5 Hz, J = 17.2 Hz, 1H), 5.15 (dd, J = 1.2 Hz, J = 10.4 Hz, 1H), 4.21 (p, J = 7.1 Hz, 1H), 3.88 (dd, J = 1.1 Hz, J = 5.4 Hz, 1H), 3.74 (d, J = 3.5 Hz, 1H), 3.55 (dt, J = 3.7 Hz, J = 7.1 Hz, 1H), 2.68 (t, J = 7.1 Hz, 1H), 2.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃)  $\delta$  153.6, 145.1, 134.3, 134, 130.1, 129.9, 127.6, 117.7, 84.2, 78.6, 77.3, 74.5, 70.2, 68.3, 57.4, 52.7, 48.9, 21.6, 18.7; HRMS (ESI) calcd for C₁₉H₂₁NO₅S [M+H]⁺ 376.1219, found 376.1208.

TsN B-47r: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.69 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, B-47r 2H), 5.83 (ddd, J = 5.7 Hz, J = 10.9 Hz, J = 16.2 Hz, 1H), 5.25 (dd, J = 1.4 Hz, J = 17.2 Hz, 1H), 5.18 (d, J = 10.4 Hz, 1H), 4.21 (s, 2H), 4.14 (s, 2H), 3.99 (s, 2H),

3.91 (d, J = 5.7 Hz, 2H), 2.39 (s, 3H), 0.91 (s, 9H), 0.10 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144, 134.9, 133.8, 129.6, 127.9, 117.8, 87.6, 85.4, 82.2, 78.5, 70.8, 70.5, 70, 57.1, 37.1, 37, 25.9, 21.5, -4.8; HRMS (ESI) calcd for C₂₃H₃₄SiNO₃S [M+H]⁺456.2029, found 456.2022.

**8-47s:** ¹H NMR (500 MHz, CDCl₃) 
$$\delta$$
 7.80 (d,  $J = 8.2$  Hz, 2H), 7.46 (d,  $J = 7.1$  Hz,  
TsN **8-47s**  
**8-47s**  
**8-47s**  
**9**  
**10**  
**11**  
**11**  
**11**  
**11**  
**11**  
**11**  
**11**  
**12**  
**11**  
**13**  
**13**  
**13**  
**14**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**15**  
**1**

130, 129.2, 128.4, 127.6, 127.4, 121.6, 79.3, 79, 75.8, 68.1, 67.3, 64.5, 58.6, 57.5, 49.5, 21.7, 19.6; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺ 448.1583, found 448.1580.

2H), 2.70 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 134.5, 132.5, 129.9, 129.1, 128.4, 127.6, 121.6, 79.3, 78.5, 75.8, 68.5, 67.3, 57.8, 49.5, 26, 21.6, 19.6; HRMS (ESI) calcd for C₂₆H₂₆NO₃S [M+H]⁺432.1633, found 432.1636.

**8-47u:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.80 (d, J = 8.2 Hz, 2H), 7.48–7.44 (m, 2H), **8-47u 7.35–7.30** (m, 10H), 7.22 (d, J = 7.5 Hz, 1H), 6.62 (d, J = 11.8 Hz, 1H), 5.83–5.81 (m, 1H), 4.33 (s, 2H), 4.29 (d, J = 6.4 Hz, 2H), 3.51 (t, J = 7.5 Hz, 2H), 2.64 (t, J = 7.5 Hz, 2H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 136.5, 134.4, 132.5, 132.2, 129.9, 129.1, 128.8, 128.6, 128.4, 128.3, 128.1, 127.8, 127.6, 127.6, 127.3, 126.5, 121.6, 79.3, 78.9, 75.8, 73.9, 69.8, 68.2, 67.3, 66.1, 57.9, 49.5, 21.6, 19.6; HRMS (ESI) calcd for C₃₁H₂₈NO₃S [M+H]⁺ 494.1790, found 494.1791.

Ph 8-53a: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.68 (d, J = 8.2 Hz, 2H), 7.37 (dd, J = 2.9 Hz, J = 6.5 Hz, 2H), 7.32–7.29 (m, 5H), 6.62 (s, 1H), 5.99–5.97 (m, 1H), 5.36 (dd, J = 13.8 Hz, J = 35.5 Hz, 1H), 4.75 (d, J = 5.6 Hz, 1H), 4.38 (d, J = 13.1 Hz, 1H), 4.20 (d, J = 13.1 Hz, 1H), 3.56 (ddd, J = 5.2 Hz, J = 7.0 Hz, J = 12.0 Hz, 1H), 3.45 (qd, J = 4.6 Hz, J = 8.4 Hz, 1H), 2.72–2.70 (m, 2H), 2.43 (s, 3H) ; ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.2, 135.3, 132.2, 131.2, 130, 128.3, 127, 123, 120.4, 118.2, 114.5, 113.7, 98.6, 85.3, 63.4, 43.4, 26.1, 21.6; HRMS (EI) calcd for C₂₅H₂₃NO₃S [M]⁺417.1399, found 417.1402.

Ph **8-53b:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.67 (d, J = 8.2 Hz, 2H), 7.32–7.28 (m, 7H), 6.60 (s, 1H), 5.31 (d, J = 8.8 Hz, 1H), 4.97 (d, J = 8.8 Hz, 1H), 4.36 (d, J = 13.1 Hz, 1H), 4.24–4.22 (m, 1H), 3.58 (m, 1H), 3.38 (ddd, J = 4.3 Hz, J = 8.7 Hz, J = 15.9Hz, 1H), 2.69–2.67 (m, 2H), 2.43 (s, 3H), 1.80 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.2, 139, 138.3, 137.5, 137, 135.5, 131.2, 130, 128.3, 128.2, 127, 122.6, 120.1, 117.4, 114, 86.1, 73.5, 64.4, 43.5, 26.1, 25.9, 21.6, 18.7; HRMS (ESI) calcd for C₂₇H₂₈NO₃S [M+H]⁺ 446.1790, found 446.1780.



**8-53c:** ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.29 (t, *J* = 5.7 Hz, 3H), 6.63 (s, 1H), 5.97 (ddd, J = 5.9 Hz, J = 10.4 Hz, J = 16.7 Hz, 1H), 5.36 (dd, *J* = 13.8 Hz, *J* = 28.8 Hz, 2H), 4.73 (d, *J* 

= 5.3 Hz, 1H), 4.37 (d, *J* = 13.1 Hz, 1H), 4.20 (d, *J* = 13.2 Hz, 1H), 3.55–3.53 (m, 1H), 3.45–3.43 (m, 1H), 2.70–2.68 (m, 1H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.1, 135.2, 134.5, 133, 132.4, 130, 128.7, 127.3, 127, 120.7, 118.4, 113.4, 97.7, 88.1, 63.4, 43.4, 26.1, 21.6.

SiEt₃ 8-53d: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.65 (d, J = 8.2 Hz, 2H), 7.32 (dd, J = 8.3 Hz, J = 13.3 Hz, 2H), 6.57 (s, 1H), 5.23 (d, J = 8.9 Hz, 1H), 4.88 (d, J = 8.9 Hz, 1H), 4.31 (d, J = 13.1 Hz, 1H), 4.19 (d, J = 13.1 Hz, 1H), 3.91 (dd, J = 4.6 Hz, J = 10.5 Hz, 1H), 3.57–3.55 (m, 1H), 3.33 (ddd, J = 4.5 Hz, J = 9.3 Hz, J = 11.9 Hz, 1H), 2.63–2.61 (m, 2H), 2.43 (s, 3H), 1.73 (s, 6H), 0.95 (t, J = 7.9 Hz, 9H), 0.59 (qd, J = 7.9 Hz, J = 23.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.1, 138.1, 132.7, 129.9, 127.5, 127, 122.7, 120.1, 116.4, 113.8, 102.4, 73.5, 65.1, 64.5, 43.4, 26.2, 21.6, 31.6, 31.3, 31.2, 31.1, 26.2, 26.1, 21.7, 21.1, 21, 19.6, 19.5.

^{TSN} Ph 8-53e: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.70 (d, J = 8.2 Hz, 2H), 7.37–7.33 (m, 7H), 7.22 (dd, J = 2.4 Hz, J = 8.3 Hz, 3H), 7.14 (dd, J = 1.9 Hz, J = 7.4 Hz, 2H), 6.65 (s, 1H), 5.30 (s, 1H), 4.28–4.26 (m, 1H), 3.61 (ddt, J = 4.1 Hz, J = 7.2 Hz, J = 10.8 Hz, 1H), 3.48–3.46 (m, 1H), 2.85–2.83 (m, 1H), 2.74 (ddd, J = 5.2 Hz, J = 10.1 Hz, J = 20.6 Hz, 1H), 2.45 (s, 1H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.3, 139.3, 134.7, 132.7, 132.5, 131.1, 130, 128.5, 128.2, 127.1, 123, 120.5, 115.2,113.9, 99.3, 86.2, 79, 63.7, 43.6, 26.2, 21.6; HRMS (EI) calcd for C₂₉H₂₅NO₃S [M]⁺ 467.1555, found 467.1565.



Hz, 1H), 2.85–2.83 (m, 1H), 2.74–2.72 (m, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.5, 144.2, 134.7, 132.6, 131.4, 131.2, 130, 129.8, 128.2, 127.1, 122.3, 120.4, 115.3, 114, 113.6, 99.1, 86.3, 78.4, 63.2, 55.3, 43.6, 26.2, 21.6, 31.6, 31.3, 31, 31.2, 31.1, 26.2, 26.1, 21.7, 21.1, 21, 19.6, 19.5.

T_{SN} Ph **8-53g:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  8.23–8.21 (m, 3H), 7.70 (d, J = 8.2 Hz, 2H),7.60 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 8.1 Hz, 2H), **7.26–7.24** (m, 4H), 7.13 (d, J = 6.3 Hz, 2H), 6.70 (s, 1H), 5.37 (s, 1H), 4.70 (s, 1H), 4.34 (s, 2H), 4.31 (s, 3H), 3.66–3.64 (m, 1H), 3.45–3.43 (m, 1H), 2.83 (ddd, J = 3.4 Hz, J = 9.0 Hz, J = 14.9 Hz, 1H), 2.74–2.72 (m, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  147, 144.4, 134.8, 132.9, 131, 130.1, 129.2, 128.6, 128.4, 128, 127.1, 123.7, 123.3, 121.2, 113.7, 113, 99.3, 85.6, 70.6, 64.4, 58.4, 43.4, 26.2, 21.6.



8-53h: ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 7.24–7.22 (m, 3H), 7.12 (dd, J = 1.5 Hz, J = 7.7 Hz, 2H), 6.68 (s, 1H), 5.34 (s, 1H), 4.28 (s, 2H), 3.64 (ddd, J = 4.8 Hz, J = 6.8 Hz, J = 11.7 Hz, 1H), 3.47–3.45 (m, 1H),

2.85–2.83 (m, 1H), 2.75–2.73 (m, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.3, 143.4, 134.6, 133.1, 131.1, 130, 128.8, 128.4, 128.3, 127.1, 125.1, 121, 114.3, 113.4, 99.7, 85.8, 78.4, 64, 43.5, 26.2, 21.6.

**8-53i:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.67 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.3 Hz, 2H), 7.34–7.30 (m, 10H), 6.56 (s, 1H), 4.09 (d, J = 13.6 Hz, 1H), 3.98 (dd, J = 1.2 Hz, J = 13.5 Hz, 1H), 3.52 (t, J = 6.3 Hz, 2H), 2.84 (tq, J = 6.3 Hz, J = 16.3 Hz, 2H), 2.43 (s, 3H), 1.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  134.7, 132.6, 131.1, 130, 128.3, 128.3, 128.2, 127.5, 127, 120.4, 114, 99.6, 98.8, 87.4, 78.9, 61.4, 43.6, 29.4, 26.7, 21.6; HRMS (ESI) calcd for C₃₀H₂₈NO₃S [M+H]⁺ 482.1790, found 482.1780.

T_{SN} Ph **8-53j:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.66 (d, J = 8.2 Hz, 2H), 7.38 (dd, J = 3.0 Hz, J = 6.7 Hz, 2H), 7.32–7.29 (m, 5H), 7.26 (s, 1H), 6.56 (s, 1H), 4.32 (d, J = 13.1 Hz, 1H), 4.18 (d, J = 13.1 Hz, 1H), 4.09 (s, 1H), 3.63 (td, J = 5.6 Hz, J = 11.4 Hz, 1H), 3.34 (ddd, J = 4.2 Hz, J = 9.9 Hz, J = 11.8 Hz, 1H), 2.76–2.74 (m, 1H), 2.62–2.60 (m, 1H), 2.43 (s, 3H), 1.99 (ddd, J = 2.6 Hz, J = 8.5 Hz, J = 11.3 Hz, 1H), 1.79 (d, J = 12.6 Hz, 3H), 1.65 (s, 1H), 1.56 (s, 1H), 1.46 (ddd, J = 3.4 Hz, J = 12.7 Hz, J = 25.3 Hz, 1H),1.29–1.27 (m, 1H), 1.15 (ddd, J = 7.8 Hz, J = 13.0Hz, J = 15.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.1, 133.2, 131.2, 129.9, 128.4, 128.2, 127, 119.6, 116.4, 114.6, 86.1, 80.6, 65.4, 43.5, 41.4, 31.6, 31.3, 31.1, 26.2, 21.7, 21.1, 19.5; HRMS (ESI) calcd for C₂₉H₃₂NO₃S [M+H]⁺474.2103, found 474.2103.

T_{SN} Ph8-53k: ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.3 Hz, 2H), 7.46–7.44 (m, 2H), 7.32–7.28 (m, 5H), 5.51 (m, 1H), 4.24 (d, J = 2.3 Hz, 2H), 3.86 (dq, J = 1.3Hz, J = 12.1 Hz, 2H), 3.56 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.42 (s, 3H), 2.31 (dd, J = 21.4 Hz, J = 39.3 Hz, 2H), 2.15 (dt, J = 1.1 Hz, J = 5.7 Hz, 1H), 2.10 (d, J = 1.0 Hz,

SH), 2.31 (dd, J = 21.4 Hz, J = 39.3 Hz, 2H), 2.13 (dt, J = 1.1 Hz, J = 5.7 Hz, 1H), 2.10 (d, J = 1.0 Hz, 1H), 1.29 (s, 3H), 1.16 (d, J = 8.6 Hz, 1H), 0.83 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.9, 144.6, 134.5, 132.5, 129.9, 129.1, 128.4, 127.6, 121.6, 120.9, 79.3, 78.5, 75.8, 73.9, 72.1, 68.5, 67.3, 57.1, 49.6, 43.5, 40.9, 40.8, 38, 31.6, 31.3, 31.3, 31.2, 31.1, 26.2, 26.1, 21.7, 21, 19.6, 19.5; HRMS (ESI) calcd for C₃₂H₃₄NO₃S [M+H]⁺ 512.2259, found 512.2256.

T_{SN} Ph **8-531:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.81 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 7.3 Hz, 3H), 5.92 (ddt, J = 1.2 Hz, J = 3.8Hz, J = 6.1 Hz, 1H), 5.73 (t, J = 6.7 Hz, 1H), 5.26 (t, J = 16.6 Hz, 1H), 5.17 (d, J = 10.4 Hz, 1H), 4.12 (d, J = 6.8 Hz, 2H), 3.97 (d, J = 5.6 Hz, 2H), 3.60 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4Hz, 2H), 2.43 (s, 3H), 1.89 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  145, 134.8, 134.4, 132.5, 131.3, 129.9, 129.1, 128.4, 127.7, 121.6, 121, 117, 86.3, 79.2, 75.8, 73.8, 71.2, 70.5, 68.5, 67.4, 49.7, 23.1, 21.7, 19.7, 21.7, 19.6. TsN Ph **8-53m:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.66 (d, J = 8.2 Hz, 2H), 7.37–7.35 (m, 2H), 7.32–7.28 (m, 5H), 6.70 (s, 1H), 5.98 (ddd, J = 6.8 Hz, J = 10.2 Hz, J = 17.1 Hz, 1H), 5.44 (d, J = 17.1 Hz, 1H), 5.29 (d, J = 10.3 Hz, 1H), 4.70 (d, J = 6.4 Hz, 1H), 3.78–3.76 (m, 1H), 3.13 (dt, J = 3.8 Hz, J = 11.6 Hz, 1H), 2.83 (td, J = 4.0 Hz, J = 15.6 Hz, 1H), 2.43 (s,

3H), 1.46 (s, 3H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.2, 136.6, 134.4, 131.2, 129.9, 128.3, 128.3, 127, 121.9, 119.9, 117.7, 114.1, 99.2, 85.9, 72.7, 43.1, 27.2, 26.3, 26.2, 21.0.

TsN Ph **8-53n:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.67 (d, J = 8.2 Hz, 2H), 7.33–7.28 (m, 10H), 6.65 (s, 1H), 6.17–6.15 (m, 1H), 5.32–5.30 (m, 2H), 4.93 (d, J = 5.8 Hz, 1H), 3.91 (dd, J = 3.7 Hz, J = 9.3 Hz, 2H), 3.60 (ddd, J = 4.3 Hz, J = 6.9 Hz, J = 11.5 Hz, 1H), 3.38 (ddd, J = 5.0 Hz, J = 11.2 Hz, J = 13.5 Hz, 1H), 2.84–2.82 (m, 2H), 2.71–2.69 (m, 2H), 2.43 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.1, 139, 136.7, 132.5, 131, 129.9, 129.7, 129.1, 129, 128.3, 128.1, 127.7, 127.6, 127, 124.2, 117.3, 98.4, 88.5, 68.1, 43, 34.3, 28, 26, 21.5; HRMS (ESI) calcd for C₂₆H₂₆NO₃S [M+H]⁺432.1633, found 432.1622.

TsN J = 6.5 Hz, 2H), 7.30–7.26 (m, 5H), 6.63 (s, 1H), 5.59 (td, J = 9.4 Hz, J = 17.0 Hz, J = 6.5 Hz, 2H), 7.30–7.26 (m, 5H), 6.63 (s, 1H), 5.59 (td, J = 9.4 Hz, J = 17.0 Hz, 1H), 5.20–5.18 (m, 2H), 4.18–4.14 (m, 7H), 4.05 (dddd, J = 3.7 Hz, J = 7.1 Hz, J = 10.7 Hz, J = 17.9 Hz, 2H), 3.77 (d, J = 8.8 Hz, 1H), 3.52–3.50 (m, 1H), 3.32–3.30 (m, 1H), 2.79–2.77 (m, 1H), 2.42 (s, 3H), 1.25–1.22 (m, 4H), 1.11 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  169.2, 144.1, 134, 132.5, 131.4, 129.9, 128.2, 128.1, 127, 123.5, 119.5, 114.8, 113.2, 96.5, 88.4, 61.6, 61.5, 57, 48.2, 43.7, 28.7, 26.7, 21.6; HRMS (ESI) calcd for C₃₂H₃₄NO₆S [M+H]⁺ 560.2107, found 560.2099.

TsN TsN  $T_{SO}$   $T_{SO}$  $T_{S$  (ddd, J = 5.7 Hz, J = 11.2 Hz, J = 18.0 Hz, 2H), 1.55 (dt, J = 5.7 Hz, J = 12.8 Hz, 1H), 1.28 (dt, J = 4.7 Hz, J = 7.1 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  171.2, 170.5, 143.6, 137.2, 134, 133.9, 133.3, 131.5, 129.5, 128.4, 128.2, 128, 127.6, 125, 123.1, 87.9, 81.8, 66.5, 61.7, 61.5, 51.2, 40.7, 38.2, 35.5, 31, 29.2, 21.1; HRMS (ESI) calcd for C₃₂H₃₄NO₆S [M+H]⁺ 560.2107, found 560.2095.



127.2, 122.6, 121.1, 117.1, 116.6, 96.5, 85.4, 71.4, 67.6, 49.9, 27.9, 21.5, 19.9.





8-53r': ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 6.24 (s, 1H), 4.63 (t, J = 9.1 Hz, 1H), 4.23–4.21 (m, 2H), 4.08 (td, J = 11.6 Hz, J = 14.7 Hz, 2H), 3.73 (dd, J = 8.9 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 14.7 Hz, 2H), 3.73 (dd, J = 8.9 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 2H), 3.36 (dq, J = 3.3 Hz, J = 12.5 Hz, 3.5 Hz, 3.5

11.1 Hz, 2H), 3.21 (d, J = 4.8 Hz, 1H), 2.42 (s, 3H), 2.13 (dd, J = 3.6 Hz, J = 12.1 Hz, 1H), 1.54 (dt, J = 5.7 Hz, J = 12.4 Hz, 1H), 0.85 (s, 9H), 0.03 (s, 6H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  143.4, 139.2, 134.1, 129.9, 129.9, 129.8, 128.4, 127.4, 124.5, 111.3, 105.6, 84.6, 75.5, 55.6, 53.5, 37.8, 33.3, 27.1, 26, 21.5, 16.4, -4.5; HRMS (ESI) calcd for C₂₅H₃₄SiNO₃S [M+H]⁺ 456.2029, found 456.2015.



**8-53s: 2s**: ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.35–7.31 (m, 7H), 6.63 (s, 1H), 5.95–5.93 (m, 1H), 5.70–5.68 (m, 1H), 5.09 (d, *J* = 8.0 Hz, 1H), 4.33–4.30 (m, 4H), 3.60–3.58 (m, 1H), 3.41–3.39 (m, 1H), 2.70–2.68 (m, 2H), 2.43 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 144.3, 134.6, 133.3, 132.6, 131.2, 130, 129.5, 128.5, 128.4, 127, 122.8, 120.7, 114.6, 113.3, 98.7, 85.7, 72.7, 64.3, 59.2, 43.4, 26.1, 21.6; HRMS (ESI) calcd for C₂₆H₂₆NO₄S [M+H]⁺448.1583, found 448.1587.

T_{SN} Ph **8-53t:** ¹H NMR (500 MHz, CDCl₃)  $\delta$  7.68 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 3.0 Hz, J = 6.5 Hz, 2H), 7.33–7.31 (m, 5H), 6.60 (s, 1H), 4.40 (d, J = 13.2 Hz, 1H), 4.18 (d, J = 13.2 Hz, 1H), 3.59 (ddd, J = 5.1 Hz, J = 6.9 Hz, J = 12.1 Hz, 1H), 3.50 (d, J = 8.9 Hz, 1H), 3.41–3.39 (m, 1H), 2.72–2.68 (m, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.2, 134.7, 132, 131.1, 130, 128.4, 128.2, 127, 123.4, 120.1, 116.5, 114.1, 98.6, 86.2, 81, 64.7, 43.5, 26, 21.6, 15.1, 4.3, 2.4; HRMS (ESI) calcd for C₂₆H₂₆NO₃S [M+H]⁺ 432.1633, found 432.1627.



Hz, 1H),4.25 (d, J = 13.1 Hz, 1H), 3.60–3.58 (m, 1H), 3.46–3.44 (m, 1H), 2.73–2.71 (m, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃)  $\delta$  144.1, 136.8, 134, 131.2, 130, 129.3, 129, 128.3, 128.3, 128.2, 127.4, 127, 120.4, 115.4, 113.1, 99.2, 87, 72.6, 64.8, 43.5, 26.2, 21.6; HRMS (ESI) calcd for C₃₁H₂₈NO₃S [M+H]⁺494.1790, found 494.1776.

## 8.8. References

- For reviews on the chemistry of ynamines, see (a) Ficini, J. *Tetrahedron* 1976, *32*, 1449. (b) Himbert G. *in Methoden Der Organischen Chemie* (Houben-Weyl) (Eds.: Kropf, H.; Schaumann, E.), Georg Thieme, Stuttgart, 1993, pp. 3267. (c) Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L.-L. *Tetrahedron* 2001, *57*, 7575.
- (2) Zaugg, H. E.; Swett, L. R.; Stone, G. R. J. Org. Chem. 1958, 23, 1389.
- (3) Viehe, H. G. Angew. Chem., Int. Ed. Engl. 1963, 2, 477.

- (4) Book Chapters on Ynamides, see (a) Tracey, M. R.; Hsung, R. P.; Antoline, J.; Kurtz, K. C. M.; Shen, L.; Slafer, B. W.; Zhang Y. *Science of Synthesis*: Houben-Weyl Methods of Molecular Transformations, Vol. 21 (Ed: Weinreb S. M.), Georg Thieme, Stuttgart, 2005, pp. 387–476. (b) Witulski, B.; Alayrac C. *Science of Synthesis*: Houben-Weyl Methods of Molecular Transformations, Vol. 24 (Ed.: de Meijere, A.), Georg Thieme, Stuttgart, 2005, pp. 1031.
- (5) Reviews, see (a) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P. Synlett 2003, 1379. (b) Dekorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
  (c) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840. (d) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2013, 47, 560.
- (6) (a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1998, 37, 489. (b) Witulski, B.; Gossmann, M. Synlett 2000, 1793.
- (7) (a) Zhang, Y.; Hsung, R. P.; Tracey, M. R.; Kurtz, K. C. M.; Vera, E. L. Org. Lett. 2004, 6, 1151.
  (b) Zhang, X.; Zhang, Y.; Huang, J.; Hsung, R. P.; Kurtz, K. C. M.; Oppenheimer, J.; Petersen, M. E.; Sagamanova, I. K.; Shen, L.; Tracey, M. R. J. Org. Chem. 2006, 71, 4170. (c) Sagamanova, I. K.; Kurtz, K. C. M.; Hsung, R. P. Org. Synth. 2007, 84, 359. (d) Zhang, X.; Li, H.; You, L.; Tang, Y.; Hsung, R. P. AdV. Synth. Catal. 2006, 348, 2437. (e) Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Douglas, C. J.; Xiong, H.; Mulder, J. A. Org. Lett. 1999, 1, 1237.
- (8) (a) Dunetz, J. R.; Danheiser, R. L. Org. Lett. 2003, 5, 4011. (b) Kohnen, A. L.; Dunetz, J. R.; Danheiser, R. L. Org. Synth. 2007, 84, 88. (c) Dunetz, J. R.; Danheiser, R. L. Tetrahedron 2006, 62, 3815. (d) Dunetz, J. R.; Danheiser, R. L. J. Am. Chem. Soc. 2005, 127, 5776.
- (9) Marti nez-Espero n, M. F.; Rodri guez, D.; Castedo, L.; Saa', C. Org. Lett. 2005, 7, 2213.
- (10) Marti nez-Espero n, M. F.; Rodri guez, D.; Castedo, L.; Saa', C. Tetrahedron 2008, 64, 3674.

- (11) (a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby P. H.; Woods, B. P. *Nature* 2012, 490, 208. (b)
  Baire, B.; Niu, D.; Willoughby, P. H.; Woods B. P. Hoye, T. R. *Nat. Protoc.* 2013, 8, 501.
- (12) Yun, S. Y.; Wang, K.-P.; Lee, N.-K.; Mamidipalli, P.; Lee, D. J. Am. Chem. Soc. 2013, 135, 4668.
- (13) Mamidipalli, P.; Yun, S. Y.; Wang, K.-P.; Zhou, T.; Xia, Y.; Lee, D. Chem. Sci. 2014, 5, 2362.
- (14) Lee, N.-K.; Yun, S. Y.; Mamidipalli, P.; Salzman, R. M.; Lee, D.; Zhou, T.; Xia, Y. J. Am. Chem.
   Soc. 2014, 136, 4363.
- (15) Karmakar, R.; Mamidipalli, P.; Yun, S. Y.; Lee, D. Org. Lett. 2013, 15, 1938.
- (16) (a) Wang, K. P.; Yun, S. Y.; Mamidipalli, P.; Lee, D. *Chem. Sci.* 2013, *4*, 3205. (b) Karmakar, R.;
  Yun, S. Y.; Wang, K. P.; Lee, D. *Org. Lett.* 2014, *16*, 6.
- (17) (a) Witulski, B.; Stengel, T. Angew. Chem., Int. Ed. 1999, 38, 2426. (b) Witulski, B.; Alayrac, C. Angew. Chem., Int. Ed. 2002, 41, 3281. (c) Witulski, B.; Stengel, T.; Ferna´ndez-Herna´ndez, J. Chem. Commun. 2000, 1965.
- (18) Alayrac, C.; Schollmeyer, D.; Witulski, B. Chem. Commun. 2009, 1464.
- (19) Saito, N.; Ichimaru, T.; Sato, Y. Org. Lett. 2012, 14, 1914.
- (20) (a) Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 31. (b) Hashmi, A. S. K.; Braun, I.; Rudolph, M.; Rominger, F. Organometallics 2012, 31, 644. (c) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Nösel, P.; Jongboed, L.; Rudolph, M.; Rominger, F. Adv. Synth. Catal. 2012, 354, 555. (d) Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schadlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456. (e) Hashmi, A. S. K.; Wieteck, M.; Braun, I.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 10633. (f) Hansmann, M. M.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2013, 52, 2593. (g) Vachhani, D. D.; Galli, M.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2013, 49, 7171. (h) Wang, Y.; Yepremyan, A.; Ghorai, S.; Todd, R.; Aue, D. H.; Zhang, L. Angew. Chem.,

Int. Ed. 2013, 52, 7795. (i) Graf, K.; Hindenberg, P. D.; Tokimizu, Y.; Naoe, S.; Rudolph, M.;
Rominger, F.; Ohno, H.; Hashmi, A. S. K. ChemCatChem. 2014, 6, 199. (j) Vihelmsen, M. H.;
Hashmi, A. S. K. Chem. –Eur. J. 2014, 20, 1901. (k) Hansmann, M. M.; Tsupova, S.; Rudolph, M.;
Rominger, F.; Hashmi, A. S. K. Chem. –Eur. J. 2014, 20, 2215. (l) Wieteck, M.; Tokimizu, Y.;
Rudolph, M.; Rominger, F.; Ohno, H.; Fujii, N.; Hashmi, A. S. K. Chem. –Eur. J. 2014, 20, 16331.
(m) Bucher, J.; Stößer, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed.
2014, 54, 1666.

- (21) Alabugin, I. V.; Gilmore, K. Chem. Commun. 2013, 49, 11246.
- (22) (a) Ghosh, N.; Nayak, S.; Sahoo, A. K. Chem. –Eur. J. 2013, 19, 9428. (b) Nayak, S.; Ghosh, N.;
  Prabagar, G. B.; Sahoo, A. K. Org. Lett. 2015, 17, 5662.
- (23) Tokimizu, Y.; Wieteck, M.; Rudolph, M.; Oishi, S.; Fujii, N.; Hashmi, A. S. K.; Ohno, H. Org. Lett.
  2015, 17, 604.
- (24) For recent reviews on synthetic studies of herbindoles and their structurally related indole alkaloids, trikentrins, see: Silva, L. F., Jr.; Craveiro, M. V.; T_eb_eka, I. R. M. *Tetrahedron* **2010**, *66*, 3875.
- (25) For total synthesis of racemic herbindoles, see: (a) Jackson, S. K.; Banfield, S. C.; Kerr, M. A. Org. Lett. 2005, 7, 1215. (b) Jackson, S. K.; Kerr, M. A. J. Org. Chem. 2007, 72, 1405. (c) Buszek, K. R.; Brown, N.; Luo, D. Org. Lett. 2009, 11, 201.
- (26) Herb, R.; Carroll, A. R.; Yoshida, W. Y.; Scheuer, P. J.; Paul, V. J. Tetrahedron 1990, 46, 3089.

Appendix I

Selected NMR Spectra for Chapter 1







0.5

0

<del>, . . . .</del>

26.28

1.0

2.00

2.98

2.01

1.5





























**1-53o** (*E*/*Z* =2.2:1)






































Appendix II

Selected NMR Spectra for Chapter 2



















2-41h 1:2 2-41h'





















## Appendix III

## Selected NMR Spectra for Chapter 3




































































210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Chemical Shift (ppm)









Acq. Method : C:\CHEM32\1\METHODS\2_iso_MEOH_3ML_10MIN_150BAR.M isocratic 2% MeOH:CO2 10min @ 3ml/min 150bar Column Position 6: ChiralPak IC



Signal Dea	scription :	DAD1 A, Sig	=220,16 Ref	=360,100		
#	RT [min]	Width	Height	Area	Area %	
1	0.516	0.045	6.404	20.776	0.526	
2	0.879	0.092	9.456	59.468	1.504	
3	0.993	0.073	6.290	32.033	0.810	
4	1.074	0.057	6.401	25.960	0.657	
5	1.261	0.054	539.071	1.909e3	48.279	
6	1.584	0.134	2.771	28.674	0.725	
7	1.783	0.122	2.122	19.659	0.497	
8	2.134	0.107	272.506	1.858e3	47.002	
				_		
#	RT [min]	Width	Height	Area	Area 🖇	
1	0.871	0.122	2.726	23.694	1.089	
2	1.261	0.054	310.066	1.072e3	49.288	
3	2.134	0.106	159.510	1.079e3	49.622	

*i*PrO₂C^N-N CO₂*i*Pr **3-65u** (chiral)

Acq. Method : C:\CHEM32\1\METHODS\2_iso_MEOH_3ML_10MIN_150BAR.M isocratic 2% MeOH:CO2 10min @ 3ml/min 150bar Column Position 6: ChiralPak IC



Signal Des	scription :	DAD1 A, Sig	=220,16 Ref	=360,100		
#	RT [min]	Width	Height	Area	Area %	
1	0.524	0.048	4.677	16.640	0.633	
2	0.887	0.100	6.159	42.211	1.606	
3	1.079	0.065	24.045	114.140	4.342	
4	1.266	0.059	54.713	208.777	7.943	
5	1.399	0.090	2.222	14.408	0.548	
6	2.136	0.104	326.995	2.174e3	82.703	
7	2.664	0.129	7.195	58.486	2.225	
						-
#	RT [min]	Width	Height	Area	Area %	
1	0.906	0.123	1.553	14.646	1.006	
2	1.079	0.055	6.758	26.109	1.793	
3	1.267	0.056	32.292	119.321	8.195	
4	2.136	0.104	191.291	1.278e3	87.773	
5	2.663	0.130	2.192	17.946	1.233	
						_









## $\begin{array}{c} \begin{array}{c} 5.93 \\ 5.91 \\ 5.91 \\ 5.25 \\ - 4.28 \\ - 4.21 \\ 4.21 \\ 4.21 \\ 4.22 \\ - 2.19 \\ 2.10 \\ - 2.19 \\ - 2.19 \\ - 2.19 \\ - 1.51 \\ - 1.51 \\ - 1.51 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26 \\ - 1.26$









-- 2.36 -- 2.05 -- 1.87 -- 1.62 -- 1.26



## **Computational Details**

All DFT calculations were carried out with the Gaussian 09 suite of computational programs.^[1] The geometries of all stationary points were optimized using the M06-2X hybrid functional^[2] at the basis set level of 6-311++G(2d,p). Frequencies were analytically computed at the same level of theory to obtain the free energies and to confirm whether the structures are minima (no imaginary frequency) or transition states (only one imaginary frequency). The solvent effect (dichloromethane,  $\varepsilon = 8.93$ ) was included in all optimization and frequency calculations by using the SMD polarizable continuum model.^[3] All transition state structures were confirmed to connect the proposed reactants and products by intrinsic reaction coordinate (IRC)^[4] calculations.

The bond dissociation energy is the standard enthalpy change for the hemolytic cleavage of the bond at 0 K and was calculated with the above method. Calculations with other methods resulted in similar results (Table S1). The distortion energies in Table S2 are the energies required for the distortion of two reacting moieties to reach the geometries in the TS, which show that the allene is much more distorted in case of **TS-H**_b than in **TS-H**_a.

Gaussian 09, Revision A.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, **2009**.

^[2] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.

^[3] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B2009, 113, 6378.

^[4] a) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90, 2154; b) C. Gonzalez, H. B. Schlegel, J. Phys. Chem. 1990, 94, 5523.



Figure SI. Geometric Structures for h-TS- $H_a$  and h-TS- $H_b$ , distances and angle are in Angstrom and degree, respectively.

Table S1.	Bond	Dissociation	Energies	Calculated	with	Other	Methods
-----------	------	--------------	----------	------------	------	-------	---------



 Table S2. Distortion Energies for Key TS (in kcal/mol)

Allene	TS	$\Delta E_{dist}(EN=NE)^{a}$	$\Delta E_{dist}$ (Allene) ^b	$\Delta E_{dist}(Total)^{c}$
1a	a-TS-H _a	8.3	12.3	20.6
$(R = SiMe_3)$	a-TS-H _b	7.0	25.5	32.5
1h	h-TS-H _a	6.9	12.9	19.8
$(\mathbf{R} = t\mathbf{B}\mathbf{u})$	h-TS-H _b	7.8	29.3	37.1

^a Energy required for distortion of the azadicarboxylate to reach the geometry in the TS

^b Energy required for distortion of the allene to reach the geometry in the TS

 $^{c}\Delta E_{dist}(Total) = \Delta E_{dist}(EN=NE) + \Delta E_{dist}$  (Allene)

The computational results in Figure S2 are in good agreement with the experimental observations in reaction of **1h**. The energy for **h-TS-Ha-I**, which will lead to product **3h-b'**, is about 0.3 kcal/mol higher than **h-TS-Ha**. This is consistent with the experimental ratio between **3h-l** and **3h-b** (2:1).

In experiments both **3h-l** and **3h-b** were obtained as *E*-isomers, calculation results showed that much higher energies are required for TS (**h-TS-Ha-III** and **h-TS-Ha-III**) leading to other isomers.



**Figure S2.** Computational Results Accounting for the Observed Regio- and Stereoselectivities in the Reactions Allene **1h** (distances are in Angstrom; energies are in kcal/mol).

<b>Table 55.</b> Calculated energies (in Hartree	ulated energies (in Hartree)	1 Hartree	(1n	energies	Calculated	Table S3.
--------------------------------------------------	------------------------------	-----------	-----	----------	------------	-----------

Species	$E_0^a$	H ₂₉₈ ^b	G ₂₉₈ ^c
EN=NE	-566.238564	-566.226927	-566.276811
1a	-873.911437	-873.891038	-873.960318
1h	-622.481755	-622.463535	-622.52772
1k	-681.059524	-681.04405	-681.10135
11	-720.344056	-720.327622	-720.387253
1r	-798.882994	-798.864326	-798.927732
1s	-547.454026	-547.437594	-547.495998
a-TS-Ha	-1440.133146	-1440.10233	-1440.194862
a-TS-Hb	-1440.131803	-1440.099998	-1440.198552
h-TS-Ha	-1188.703889	-1188.67516	-1188.764204
h-TS-Hb	-1188.693721	-1188.664654	-1188.754518
k-TS-Ha	-1247.283624	-1247.257863	-1247.337956
k-TS-Hb	-1247.279784	-1247.253437	-1247.335457
l-TS-Ha	-1286.561444	-1286.534355	-1286.617687
l-TS-Hb	-1286.560531	-1286.532945	-1286.618586
r-TS-Ha	-1365.103452	-1365.074293	-1365.161686
r-TS-Hb	-1365.104048	-1365.074388	-1365.163657
s-TS-Ha	-1113.674877	-1113.647733	-1113.731333
s-TS-Hb	-1113.665272	-1113.637875	-1113.721981
2a	-1440.228605	-1440.198098	-1440.288838
<b>3</b> a	-1440.212365	-1440.181189	-1440.275738
3h	-1188.797878	-1188.768939	-1188.858854
3h	-1188.777	-1188.747902	-1188.838262

^a Sum of electronic and zero-point energies ^b Sum of electronic and thermal enthalpies

^c Sum of electronic and thermal free energies

## **Cartesian Coordinates**

EN=NE				Н	-1.20565400	1.37990100	8.00923900
Ν	-3.22086000	2.23374500	0.93310400	Н	2.29700800	3.42241500	6.62490600
Ν	-2.34864100	2.03796900	1.77173700	Н	0.56569000	3.07540700	8.36412400
С	-1.08295700	2.63276200	1.38860200				
0	-0.25302300	2.00495900	0.80383000	1h			
0	-1.01030500	3.85901300	1.84286200	С	-1.66610800	-0.23563600	0.94761500
C	0.24493000	4.53015800	1.60215900	C	-2.78641200	-0.75731900	0.52733800
Н	0.42202100	4.60420900	0.53090100	Н	-3.45643800	-0.14402400	-0.07604400
Н	0.13263200	5,51583300	2.04238200	C	-4.60370600	-2.09435900	1.54495100
Н	1.05169700	3,98163900	2.08487400	Н	-5.01103500	-3.09664300	1.70299800
C	-4.46213300	1.56282800	1.26891400	Н	-4.47561500	-1.61766500	2.51992200
0	-4 78022400	0.55056500	0 72194400	Н	-5 33724900	-1 51636700	0.97685000
Õ	-5 13555900	2.26082900	2 14881100	C	-2.25882900	-2 96260400	1 62452400
C	-6 43346700	1 72867200	2.14001100	н	-1 29607500	-3 03138700	1 11194200
н	-6.85296600	2 42922800	3 20396600	н	-2.09368400	-2 49241500	2 59702000
н	7.05157900	1 67194800	1 59467300	и И	2.62796500	3 97701900	1 79/188500
и П	6 31868300	0.74212200	2.02600200		-2.02790500	-3.97701900	0.55401700
11	-0.51808500	0.74312300	2.93000300	U U	-3.46575400	-2.80732300	-0.33401700
10				п	-5.00900200	-3.87233300	-0.40343300
	1 59/01700	0 27452500	1.00720000	н	-4.19150900	-2.30622400	-1.1/188/00
C	-1.58691/00	-0.3/452500	1.00729900	Н	-2.54519300	-2.95310300	-1.10359100
C	-2.66136000	-0.99565800	0.60216100	C	-0.54381400	0.28/38/00	1.36/21200
H	-3.38/83600	-0.44290900	0.004/2400	C	0.72699200	0.19391400	0.55858200
S1	-2.96554100	-2.80602100	0.99904700	Н	1.16332900	1.1884/600	0.42/31000
C	-4.46731500	-2.9536/300	2.10837900	Н	1.47003800	-0.42200300	1.0/136500
H	-4.68628100	-4.00355200	2.32277300	Н	0.54358100	-0.240/0300	-0.42330100
Н	-4.30474900	-2.44055100	3.05944200	С	-0.46497200	1.01640100	2.69121900
Н	-5.35062500	-2.51677200	1.63547000	Н	-1.46508100	1.12814900	3.11443300
С	-1.45650900	-3.49732800	1.85817600	Н	-0.06862300	2.02311800	2.51561100
Н	-0.55865900	-3.37758900	1.24640600	C	0.43854700	0.30841600	3.71562600
Н	-1.28282900	-3.00354600	2.81729600	Н	0.04611500	-0.69527800	3.90016200
Н	-1.59229800	-4.56497300	2.05220100	Н	1.44477500	0.19922400	3.30568300
С	-3.28885800	-3.71817700	-0.60447500	C	0.50407700	1.08047200	5.00775200
Н	-3.50974900	-4.77122800	-0.40939200	C	-0.45709300	0.89118800	6.00074900
Н	-4.14482200	-3.28780700	-1.13133200	C	1.49525100	2.03931300	5.21531900
Н	-2.42373200	-3.67103900	-1.27029500	C	-0.42849200	1.63813200	7.17222600
С	-0.48981100	0.19269600	1.43589200	Н	-1.23325600	0.14674200	5.85380600
С	0.78163500	0.16343400	0.62208900	C	1.52776700	2.78949900	6.38504200
Н	1.16041800	1.17898000	0.47469500	Н	2.25086700	2.19590000	4.45203100
Н	1.56092600	-0.40246500	1.13915300	С	0.56468900	2.59148100	7.36764700
Н	0.62069400	-0.29350000	-0.35375900	Н	-1.18128300	1.47528200	7.93462200
С	-0.44673700	0.90847900	2.76886500	Н	2.30684300	3.52876000	6.52993900
Н	-1.45558300	1.00645600	3.17440900	Н	0.58909400	3.17368700	8.28087200
Н	-0.05867300	1.92127200	2.61099200	С	-3.26796800	-2.17353500	0.79623400
С	0.44328200	0.19946500	3.80467700				
Н	0.04366200	-0.80134700	3.98771600	1k			
Н	1.45276800	0.08415400	3.40433100	С	-1.51557900	-0.13054500	-1.04651300
С	0.50007000	0.97420700	5.09557000	С	-0.79037900	-1.04951700	-1.62695000
С	-0.46862800	0.78925300	6.08208600	Si	0.90085800	-1.53822000	-0.97294600
С	1.49161300	1.93162100	5.30808900	C	0.84126600	-3.31881100	-0.39348700
С	-0.44704600	1.53926200	7.25187500	H	1.82350500	-3.64486900	-0.04028100
Н	-1.24520400	0.04593700	5.93168100	Н	0.12834700	-3.44233700	0.42530700
С	1.51730700	2.68460400	6.47609800	Н	0.53996200	-3.98444600	-1.20654500
H	2.25303800	2.08465800	4.54988100	C	1.34361600	-0.40469300	0.44617000
С	0.54664800	2.49098900	7.45217700	H	1.35865900	0.64080400	0.12782500
Н	0.62477600	-0.50124700	1.26389400				
--------	-------------	-------------	-------------				
Н	2.33392500	-0.65461000	0.83644400				
С	2.14507600	-1.38064400	-2.36435500				
Н	3.13772100	-1.69915900	-2.03461500				
Н	1.85972400	-2.00317800	-3.21647700				
Н	2.21780700	-0.34726400	-2.71216500				
С	-2.18969800	0.79063200	-0.41798700				
С	-3.16613500	0.54138900	0.72818200				
С	-2.12919300	2.28783900	-0.70549200				
С	-3.89891100	1.88162200	0.87246200				
Н	-2.60673000	0.32241700	1.64295900				
н	-3.83065600	-0.30050100	0.53507000				
C	-2.82749400	2.91273200	0.51030600				
н	-2.69471100	2.51172900	-1.61486600				
н	-1.10867500	2.64191400	-0.85291200				
н	-4 71679400	1 93615500	0.14835100				
н	-4 31880000	2 02595800	1 86834400				
н	-3 23467500	3 90177700	0 29866300				
н	-2 11673700	3.00770400	1 33614700				
ц	1 18620000	1 53917700	2 51836000				
	1.10020000	1.55717700	2.51050700				
11							
C	-1.09619500	0.01446600	-0 49272700				
C	-0 64744100	-0.88378600	-1 32869500				
Si	1 00/25/00	-1 73580000	-1.06327900				
C SI	0.70422200	3 58140400	-1.00327900				
U U	1.64604200	-3.38140400	0.94038000				
п	0.05726700	-4.12030000	-0.81932800				
п	0.03720700	-3.82333100	1 25522200				
п	0.22407900	-3.93419300	-1.85528500				
U U	1.70321400	-1.08/10900	0.51729700				
п	1.91702000	-0.00016200	0.40845000				
н	1.12520900	-1.30021300	1.3/896300				
н	2.73505000	-1.55709300	0.69222100				
U U	2.1280/200	-1.38621100	-2.51961000				
H	3.08/05/00	-1.89/68400	-2.39806800				
Н	1.67932800	-1.73288300	-3.45421400				
H	2.32527100	-0.3157/900	-2.61655400				
H	-1.26860000	-1.15919700	-2.18238700				
C	-1.47937200	0.89222000	0.39490800				
C	-2.26883400	0.50299400	1.62630600				
C	-1.21520300	2.37538600	0.25096500				
C	-3.56822500	1.3112/800	1.71149900				
Н	-1.65756700	0.72775000	2.50947400				
Н	-2.47175000	-0.56852100	1.62847100				
С	-2.52766200	3.16313000	0.34712600				
Н	-0.55663400	2.68980000	1.07018500				
Н	-0.69970600	2.58390400	-0.68731700				
С	-3.29033800	2.81152900	1.62374500				
Н	-4.08855500	1.07459100	2.64284600				
Н	-4.22676600	1.01572900	0.88786000				
Н	-2.31582200	4.23455500	0.31337800				
Н	-3.14856800	2.92677500	-0.52357100				
Н	-4.22831800	3.37048300	1.66662400				
Н	-2.69537300	3.11734100	2.49224000				
1r							
С	-0.02988100	-0.03506200	1.38215900				

С	0.09711900	-1.19993100	0.80423200
Si	-0.98090000	-1 70479600	-0.65126100
C	-1.03571000	-3.57416100	-0.71830300
Н	-1.62970600	-3.91402600	-1.57090600
н	-0.03022300	-3 99042600	-0.82318700
н	-1 47946200	-3 98896600	0.19016500
n C	-0.22441500	-1 02777800	-2 22682600
ч	0.17574000	0.06408700	2 18691200
и П	-0.17374000	1 40582200	2 27104500
и П	0.79091800	1 20040700	2.37104300
II C	-0.81885700	-1.30949700	-3.10037900
U U	-2.09944500	-0.99900400	1 27641800
п	-3.33430000	-1.27093100	-1.27041800
п	-3.10/30900	-1.38049300	0.48257900
H	-2.6/136500	0.09219300	-0.36853800
C	-0.18/49/00	1.14969400	1.91340700
C	0.59845900	2.330/3/00	1.3//0/400
C	-1.15059600	1.35210200	3.06970700
С	-0.27863700	3.54793500	1.05589600
Н	1.13548600	2.01589500	0.47902800
Н	1.35203700	2.61884200	2.11859900
Н	-0.78274500	2.16967700	3.69930700
Н	-1.13118400	0.44949800	3.68343400
С	-2.62393800	1.62787900	2.69684400
С	-1.51614400	3.18716800	0.21548800
Н	-0.58442400	4.02071300	1.99197800
Н	0.34021300	4.28381600	0.53841000
С	-2.99305100	3.07872500	2.35762000
Н	-2.92009200	0.95811800	1.88267500
Н	-3.21832300	1.33397600	3.56593000
С	-2.85275000	3.50786300	0.89291500
Н	-1.48561100	3.70379100	-0.74684100
Н	-1.48765600	2.11843400	-0.01770800
Н	-2.41217100	3.74400500	3.00358500
Н	-4.03785300	3.24159900	2.63675100
Н	-3.03111500	4.58717500	0.84382900
Н	-3.65362500	3.03897100	0.31166200
Н	0.87850700	-1.87392800	1.15838600
1s			
C	-0.61679400	-0.15451700	1.41523800
C	0.15983700	-1.19005000	1.24229300
Н	0.74121200	-1.55803500	2.08860000
C	1 83589300	-2.04982800	-0.36215200
н	2.00444500	-2 63391700	-1 27085200
н	2 26033400	-1.05388100	-0.51083600
н	2 37638900	-2 53206600	0.45655300
n C	-0.38985400	-1 29336000	-1 21295500
ч	1 46097100	1 20727100	1.01356300
и П	-1.40097100	-1.20727100	1 38010200
и П	0.00430300	1 87715700	2 12750500
n C	-0.23819000	-1.0//13/00	-2.12/30300
с u	-0.21234900	-3.36402300	0.13330400
л Ц	-0.04081400	-3.99000000	-0.74033900
п u	1.28021200	-3.8/002300	0.99034000
п	-1.28035600	-3.33949/00	0.55528800
C	-1.39434600	0.88223200	1.38834400
C	-0.86952700	2.28976700	1.38102900
C	-2.84388600	0.68770400	2.00061100

С	-1.78666900	3.14356300	0.49717800
Н	0.12760000	2.23102200	0.93845600
Н	-3.16273500	1.54793500	2.59915000
Н	-2.88475800	-0.18462300	2.65538900
С	-3.86442500	0.45855400	0.86128100
С	-2.18219500	2.43211700	-0.80864100
Н	-2.68198100	3.40255700	1.06679600
Н	-1.28074600	4.08833500	0.28835500
С	-4.45895600	1.70830500	0.19597200
Н	-3.41912200	-0.20121100	0.10855900
Н	-4.69298900	-0.09993400	1.30430200
C	-3.69283600	2.28333800	-1.00264900
Н	-1.76736000	2.95843700	-1.67157600
Н	-1 73281900	1 43487200	-0.82145700
н	-4 59441500	2 47709000	0.96265800
н	-5.46668800	1.46574000	-0.15253700
ц	4 12848200	3 25777700	1 24778300
и П	-4.12848200	1 64134700	1 87232500
II C	-3.80030300	1.04134700	-1.87232300
U U	0.33003400	-1.90099100	-0.03202400
п	-0.76190800	2.77239000	2.55870500
- 70 11			
а-15-п _а	0 52477600	0.26280600	1 09774100
C	-0.53477600	-0.26389600	1.98774100
C II	0.1/054/00	-1.31531200	1.6/268600
H	0.86157400	-1./119//00	2.41244100
C	1.66443400	-1.66/81500	-0.93497800
H	1.65917500	-2.06699800	-1.95276500
H	1.82618600	-0.58810800	-0.99298000
Н	2.51116100	-2.10774300	-0.40214000
С	-1.37785800	-1.24311000	-0.96818200
Н	-2.33198900	-1.45272700	-0.47745400
Н	-1.25286000	-0.15832900	-1.03068500
Н	-1.43432800	-1.63145400	-1.98940300
С	-0.19947900	-3.88917400	0.08390000
Н	-0.26390100	-4.34680500	-0.90700700
Н	0.63052900	-4.35848400	0.61812600
Н	-1.12200200	-4.11950000	0.62228800
С	-1.46710500	0.68578300	1.65152400
С	-0.94797500	2.01768800	1.31128800
Н	0.00663200	1.92784500	0.78434000
Н	-0.64445800	2.45014300	2.31473300
Ν	0.36858100	1.65084500	3.73646500
Ν	-0.12883400	0.45888400	3.67858000
С	-1.36129100	0.37159200	4.43128300
0	-1.86781000	1.26694500	5.04459100
0	-1.79428700	-0.88023600	4.40101200
С	-3.00640700	-1.12105900	5.12835100
Н	-3.80190000	-0.47071400	4.76635300
Н	-3.25329600	-2.16321700	4.94634500
Н	-2.84317200	-0.94827200	6.19139200
С	1.67140800	1.67967200	3.20745500
0	2.33000100	0.74517800	2.82012900
0	2.09254100	2.94749500	3.19081200
Ċ	3.41517000	3.13880800	2.68447300
н	3.59723600	4.20929900	2.72842000
н	4,13977500	2.60671000	3.30062600
H	3,48327600	2.78637900	1.65529600
	5.10527000	2.,000,000	1.0000270000

Si	0.05168200	-2.04228600	-0.06334600
С	-1.88459500	2.97087600	0.56253900
Н	-1.44025000	3.96809000	0.59203300
Н	-2.85145600	3.03455800	1.06444800
С	-2.07135100	2.54009000	-0.87446800
С	-3.30195600	2.08952300	-1.34665200
С	-0.98317600	2.53867200	-1.75009300
С	-3.43890200	1.62142800	-2.65017000
н	-4.16392800	2.10218300	-0.68826500
C	-1 11581800	2.07772100	-3.05233800
с н	0.01935000	2.89825000	1 40397900
II C	-0.01933000	2.89823000	2 50472000
	-2.34494400	1.00717000	-3.30472900
п	-4.40303700	1.20701100	-2.99002100
H	-0.258/8600	2.08247800	-3./1552600
Н	-2.44856300	1.23929900	-4.51835300
С	-2.93172800	0.43405700	1.82634300
Н	-3.37394300	1.15728100	2.52147700
Н	-3.43783500	0.56688300	0.86585000
Н	-3.12286600	-0.57719700	2.18039100
a-TS-H _b			
С	-2.17362300	-1.17610300	-0.01350100
С	-2.89675300	-2.17450200	-0.27032400
Н	-2.22772400	-3.11318400	0.31582500
Si	-4.38676300	-2.81128500	-1.21672700
С	-3.91201300	-2.92195100	-3.01695600
Н	-4.75704300	-3.27576800	-3.61398600
Н	-3.60843900	-1.94529600	-3.40158800
Н	-3.08105300	-3.61811500	-3.14712700
C	-5.77687700	-1.59142800	-0.95536100
н	-6.03607500	-1 51815000	0.10328000
н	-5 49327900	-0 59696800	-1 30782900
н	-6 66854700	-1 90631200	-1 50/39500
n C	4 80270500	4 48568900	0.51586900
U U	-4.80270300	4.46308900	-0.31380900
п	-3.07304700	-4.91106900	-1.02104700
п	-3.96273900	-3.1/180800	-0.04040300
н	-5.02/85300	-4.41919000	0.55145800
C	-1.08//8300	-0.48059200	0.38105300
С	-1.14/11900	0.43836600	1.56941100
Н	-0.16117800	0.53884100	2.02516900
Н	-1.46319100	1.43260800	1.23987000
Н	-1.86687000	0.09240900	2.31269000
С	0.04312200	-0.28600400	-0.59990200
Н	0.06938900	-1.12734000	-1.29607600
Н	0.98338400	-0.28697200	-0.04133100
С	-0.07991000	1.02906400	-1.39067400
Н	-1.03791100	1.03570400	-1.91737300
Н	-0.07403700	1.87499300	-0.69996200
С	1.04695600	1.17298400	-2.38032000
С	0.98210600	0.53593300	-3.61961400
С	2.19166900	1.90235900	-2.06429700
С	2.03340400	0.62796700	-4.52261900
H	0.09515600	-0.03406800	-3.87819900
C	3.24635200	1.99791900	-2.96527200
~ Н	2.25462000	2,40403600	-1.10414000
C	3 1703/1500	1 36036400	-4 19752900
Н	1.96412500	0.13121600	-5.48328500
**	1.70114000	5.15121000	2.10220200

Н	4.12683600	2.57364700	-2.70509000
Н	3.98924900	1.43628400	-4.90264700
Ν	-0.99401300	-3.57796300	0.65061300
Ν	-0.29395800	-2.62426400	1.16383400
С	-0.73222200	-2.37292400	2.49966100
0	-1.78286300	-2.70543100	2.98011600
0	0.21947300	-1.69777600	3.13050100
С	-0.09249100	-1.32255500	4.47721100
Н	-0.25798700	-2.21098100	5.08580800
Н	0.77223000	-0.77193400	4.83684000
Н	-0.98177200	-0.69291600	4.49849200
С	-0.50954400	-4.05171300	-0.61039400
0	-1.24899900	-4.57870800	-1.39986600
0	0.79746700	-3.92626800	-0.74950100
С	1.33069600	-4.45844900	-1.97120700
Н	2.39929400	-4.26866600	-1.92901500
Н	1.13407200	-5.52800200	-2.03145100
Н	0.88682500	-3.94952000	-2.82608300
h-TS-H _a			
С	-0.45499300	-0.34697200	1.76471700
С	0.30006100	-1.39442700	1.55913700
н	0.91834200	-1 75154400	2 37814600

C	0.30006100	-1.39442700	1.55915700
Н	0.91834200	-1.75154400	2.37814600
С	1.88165900	-2.14363600	-0.17306700
Н	2.01092400	-2.72543400	-1.08943000
Н	2.23015400	-1.12479300	-0.35896200
Н	2.51272300	-2.58278100	0.60358200
С	-0.44564800	-1.52420400	-0.85220900
Н	-1.50694000	-1.53372000	-0.59006100
Н	-0.15148000	-0.48894500	-1.04362400
Н	-0.32175100	-2.08897600	-1.77941000
С	-0.04684500	-3.59219800	0.49860100
Н	0.07025000	-4.18257100	-0.41388800
Н	0.54658200	-4.06074000	1.28756700
Н	-1.09759700	-3.62225700	0.79676800
С	-1.38360100	0.57890800	1.38164600
С	-0.89471000	1.93529600	1.09986400
Н	0.01958600	1.89809600	0.50093100
Н	-0.50676100	2.28848900	2.11078400
Ν	0.37451500	1.55602000	3.56394600
Ν	-0.11711800	0.36811800	3.51885900
С	-1.42141600	0.32968400	4.15585500
0	-1.99078300	1.26648500	4.63756700
0	-1.84358500	-0.92405500	4.18165200
С	-3.12321400	-1.12282600	4.79728900
Н	-3.88565100	-0.53807900	4.28389500
Н	-3.33073800	-2.18492600	4.70230700
Н	-3.08211800	-0.83599800	5.84734500
С	1.72082400	1.56354700	3.13093000
0	2.41461700	0.61103700	2.87935700
0	2.12495100	2.83111100	3.04380500
С	3.48477200	3.00687100	2.63746600
Н	3.64988200	4.08057500	2.61442200
Н	4.15854300	2.53666100	3.35326200
Н	3.64398000	2.57798900	1.64833200
С	-1.89336700	2.95525100	0.55654500
Н	-1.41752600	3.93863600	0.59972000

Н	-2.76811400	3.00516200	1.20758400
С	-2.33810900	2.68721200	-0.86408000
С	-3.69181000	2.64190800	-1.19192600
С	-1.40230800	2.50333600	-1.88341200
С	-4.10405000	2.41825000	-2.50131400
Н	-4.43195800	2.78227200	-0.41075600
С	-1.80891100	2.27811300	-3.19199000
Н	-0.34267400	2.54222300	-1.65416900
С	-3.16302700	2.23415200	-3.50628700
Н	-5.16196900	2.38665300	-2.73437800
Н	-1.06649000	2.13995800	-3.96932100
Н	-3.48078000	2.05845000	-4.52697300
С	-2.84988500	0.27968800	1.46980700
Н	-3.34424500	0.94058700	2.19150100
Н	-3.31769700	0.46914300	0.49882600
Н	-3.02775600	-0.75751500	1.74823000
С	0.40693600	-2.14825500	0.24921000

## h-TS-H_b

С	-2.26445200	-1.21110500	-0.11066700
С	-2.96340700	-2.21850700	-0.39438900
Н	-2.24853900	-3.15267900	0.16413500
С	-3.87725000	-2.87089700	-2.59591500
Н	-4.77304800	-3.20885600	-3.12360700
Н	-3.55066700	-1.92640600	-3.03711000
Н	-3.08946400	-3.61231200	-2.73543500
С	-5.29536300	-1.63322600	-0.93445700
Н	-5.52902700	-1.48227900	0.12123000
Н	-4.98112200	-0.67745200	-1.35915700
Н	-6.20290300	-1.96042100	-1.44815100
С	-4.65784700	-4.02367000	-0.51001400
Н	-5.56210600	-4.36409000	-1.01932900
Н	-3.88457500	-4.78591800	-0.62928400
Н	-4.87819700	-3.91972900	0.55492500
С	-1.15411700	-0.56632100	0.31761200
С	-1.20194600	0.33755700	1.51886900
Н	-0.21487700	0.42849000	1.97296300
Н	-1.51387700	1.33558800	1.19742800
Н	-1.92322000	-0.00897500	2.26055400
С	-0.02360700	-0.35254300	-0.66059100
Н	0.00923400	-1.18776700	-1.36395200
Н	0.91708700	-0.34763800	-0.10337800
С	-0.16134900	0.96536200	-1.44386500
Н	-1.12092300	0.96569100	-1.96792500
Н	-0.16123400	1.80770200	-0.74877200
С	0.96080500	1.12520000	-2.43647600
С	0.89510200	0.49836700	-3.68090500
С	2.10185500	1.85962700	-2.11884000
С	1.94164100	0.60586700	-4.58775400
Н	0.01081000	-0.07524100	-3.94062700
С	3.15177300	1.97060200	-3.02361800
Н	2.16562900	2.35324600	-1.15455900
С	3.07481200	1.34340800	-4.26114600
Н	1.87142100	0.11721000	-5.55249600
Н	4.02941800	2.55010900	-2.76219700
Н	3.88982300	1.43158700	-4.96931800
Ν	-1.03370900	-3.60223700	0.55170900

Ν	-0.39396300	-2.62693800	1.10913000
С	-0.88497800	-2.44253900	2.44032900
0	-1.94752300	-2.81015600	2.86433300
0	0.03459900	-1.79069300	3.13775400
С	-0.33249300	-1.48130700	4.48740300
Н	-0.50087500	-2.39897200	5.04999000
Н	0.50738700	-0.93144900	4.90264600
Н	-1.23439000	-0.86976500	4.50362900
С	-0.46077400	-4.05696700	-0.67686400
0	-1.12839400	-4.61609800	-1.50641500
0	0.84747600	-3.88345000	-0.73706700
С	1.47162400	-4.39043400	-1.92537300
Н	2.53093400	-4.18038200	-1.80934900
Н	1.30165700	-5.46279000	-2.01139500
Н	1.07593700	-3.87958700	-2.80265700
С	-4.19901700	-2.69106600	-1.10671600

## k-TS-H_a

к-15-па			
С	-0.37710200	-0.22978300	1.86733700
С	0.36318900	-1.29125000	1.69511700
Н	0.98977100	-1.60934300	2.52524900
С	2.13488700	-1.98323800	-0.66113400
Н	2.23690400	-2.52922200	-1.60302900
Н	2.34384200	-0.92808900	-0.85383700
Н	2.89344200	-2.35731800	0.03113800
С	-0.87337900	-1.48921500	-1.09587900
Н	-1.87983400	-1.62779700	-0.69397800
Н	-0.71152200	-0.42163900	-1.26655400
Н	-0.82715300	-1.99375200	-2.06519800
С	0.08417600	-4.01565700	0.37661700
Н	0.14866300	-4.59019100	-0.55139900
Н	0.81265300	-4.42805600	1.07933800
Н	-0.91330800	-4.16191500	0.79817300
С	-1.30141500	0.68530500	1.45243000
С	-0.94157600	2.06430400	1.10089200
С	-2.80088600	0.52924000	1.48406400
С	-2.26017200	2.74852500	0.71934300
Н	-0.12425600	2.14804300	0.38146500
Н	-0.51132200	2.49118500	2.06161900
Н	-3.15289600	-0.11649100	2.28921600
Н	-3.10154600	0.05972600	0.53811600
С	-3.30352400	1.97925400	1.53751700
Н	-2.25377000	3.81695100	0.93089700
Н	-2.44722000	2.61336300	-0.34937800
Н	-4.31615900	2.08521700	1.14994300
Н	-3.29075200	2.33121400	2.57206700
Ν	0.45328800	1.80977500	3.51595400
Ν	-0.03613300	0.61723800	3.54240900
С	-1.29706000	0.58427800	4.25096900
0	-1.81841700	1.51875300	4.78933200
0	-1.73447200	-0.66636400	4.29038800
С	-2.95404400	-0.85847600	5.02060200
Н	-3.74149600	-0.21880200	4.62296800
Н	-3.21060200	-1.90587600	4.88961500
Н	-2.79423400	-0.63412100	6.07462500
С	1.78191900	1.79957700	3.04343800
0	2.46360700	0.83758300	2.78844700

0	2.19361900	3.06318000	2.92026200
С	3.54564000	3.22098100	2.48421100
Н	3.71862700	4.29293800	2.44067100
Н	4.23054000	2.75765600	3.19407000
Н	3.68352500	2.77585100	1.49902100
Si	0.41869300	-2.20477100	0.05007500
bi	0.1100/200	2.20177100	0.02007200
k-TS-H			
С	-1 44848500	-0.08366500	-0 59369200
C C	0.77078600	1.06613000	0.00448300
U U	1 68818100	1 7/208000	1 64042200
11 S:	-1.08818100	1.02470200	1.00755000
	0.89743700	-1.92479300	-1.00/33000
C U	0.57071800	-3./1830100	-1.39181000
H	1.50040400	-4.2930/900	-1.3/643400
H	-0.11195/00	-4.15446500	-0.65813000
H	0.11852100	-3.82500500	-2.38090900
С	1.64038200	-1.70581300	0.69179300
Н	1.80058800	-0.64773800	0.91185100
Н	0.98347100	-2.12057100	1.45965200
Н	2.60487700	-2.21726300	0.75491700
С	1.97161900	-1.13048800	-2.31034300
Н	2.94808600	-1.62233500	-2.33910900
Н	1.52175300	-1.21597800	-3.30146000
Н	2.13144300	-0.07152800	-2.09502600
Ν	-3.62767100	-0.85935500	-1.89261500
Ν	-2.77088200	-1.67627800	-2.41268700
С	-2.24055800	-1.18005500	-3.65139000
0	-2.70159900	-0.29577600	-4.31415100
0	-1.19004700	-1.92241900	-3.98084300
С	-0.58469700	-1.59111100	-5.23730500
Н	-0.23537800	-0.55929600	-5.22699900
Н	0.24971800	-2.27724600	-5.35257900
Н	-1.30224600	-1.73038000	-6.04506300
С	-4.28046000	-1.49240600	-0.79847900
0	-3.88885600	-2.45074700	-0.18499300
0	-5.40728800	-0.83677000	-0.54575800
C	-6.18055100	-1.34167200	0.54811400
н	-7 02265900	-0.66283800	0.65135900
н	-6 53054900	-2 34922500	0.32482600
н	-5 59034300	-1 35543000	1 46420900
C II	-2 46835400	0.77926600	-0.44922300
C	-3 29195300	0.92724000	0.81566000
C	2 66305700	2 01708200	1 31045000
C	4 28441800	2.01708200	-1.51045000
U U	-4.28441800	2.04283000	1 60616700
П Ц	-2.01413400	0.00687800	1.16220700
II C	-3.73420400	-0.00087800	0.41254200
U U	-3.43791300	2.97709000	-0.41234300
п	-3.23219000	1.73080300	-2.18440800
п	-1./1434800	2.4210/000	-1.00404400
H	-5.12183100	1.03359800	-0.09194900
н	-4.0//06000	2.53568500	1.30/19100
H	-4.06975400	3.6695/400	-0.990/5900
Н	-2.77319800	3.56382900	0.20590000
I-TS-Ha			
C	-1.63008400	-1.03282600	1.16395900
С	-0.85465900	-2.07670200	1.05251300

Н	-1.18559500	-2.88643300	0.40657100
Si	0.75943800	-2.21121200	2.01187700
С	0.54164900	-3.50944200	3.34147800
Н	1.47842400	-3.67091200	3.88172000
Н	-0.22022500	-3.20288200	4.06260200
Н	0.23116600	-4.46338600	2.90786200
С	1.15764500	-0.54559400	2.75925600
Н	1.29510000	0.20724600	1.97876400
Н	0.36379000	-0.20725200	3.43058500
Н	2.08485900	-0.60256100	3.33643300
С	2.09367900	-2.73668200	0.81117900
Н	3.05014400	-2.85871900	1.32659700
Н	1.84085100	-3.69101700	0.34224000
Н	2.22760500	-1.99586700	0.01915600
C	-1 93143500	0.21155500	1 64724700
C	-2 93155600	0.34056300	2 71326700
C	-1 43335700	1 47853200	1.01671500
C	-3 11116300	1.77963100	3 18/17000
ч	3 88577900	0.08123100	2 26206600
и 11	2 71814200	-0.08123100	2.20200000
II C	-2.71814300	-0.34070800	2.02004000
U U	-0.95201400	2.47817400	2.08904000
п	-2.2/81/400	1.94521100	0.49102300
п	-0.00139700	1.2/132900	0.27011800
C II	-1.73324600	2.40/8/900	3.40238700
H	-3.69825500	1./960/300	4.10280300
H	-3.66700200	2.35202600	2.43572500
H	-1.00181800	3.47903400	1.65943400
H	0.12319900	2.28804400	2.28884200
Н	-1.82874700	3.40497000	3.83474700
Н	-1.19476200	1.79558500	4.13224900
Ν	-4.35654800	-1.32425400	0.96938600
Ν	-3.29037400	-1.27825100	0.24422900
С	-3.34982900	-0.18765700	-0.70230000
0	-4.27178700	0.56411300	-0.84484700
0	-2.25029900	-0.20140000	-1.44178800
С	-2.18365100	0.81180800	-2.45329200
Н	-2.28879500	1.80065600	-2.00886700
Н	-1.20458600	0.70271100	-2.91157000
Н	-2.96806200	0.65368300	-3.19270800
С	-4.40751100	-2.51676700	1.72005900
0	-3.65432700	-3.45694500	1.66206200
0	-5.46286800	-2.45285200	2.53509400
С	-5.67642900	-3.61198000	3.34332300
Н	-6.54555300	-3.38807800	3.95615400
Н	-5.87141000	-4.48136500	2.71547900
Н	-4.80829700	-3.80288200	3.97369000
l-TS-H _b			
С	-0.35344800	0.66379700	0.18867500
С	-0.08283100	-0.49373300	-0.22823400
Н	0.76190100	-0.89448100	0.66660100
С	0.81622200	-3.13827600	-1.32887400
Н	0.62665200	-3.96287800	-2.02062900
Н	1.79653400	-2.71517700	-1.56223600
н	0.85173900	-3.54266600	-0.31459000
C	-0.54883400	-1.06404000	-3.15721100
H	-1.28871100	-0.26155500	-3.20394100
	1.20071100	5.201555500	5.20574100

Н	0.42617600	-0.64514200	-3.41603800
Н	-0.80959700	-1.81169200	-3.91147300
С	-2.18799900	-2.52488300	-0.99957900
Н	-2.47467800	-3.32778300	-1.68428800
Н	-2.16988500	-2.92731200	0.01541000
Н	-2.95289100	-1.74598000	-1.04815500
Ν	1.13934400	-0.83727100	1.96283500
Ν	1.17489700	0.39084200	2.35534100
С	2.29909800	1.03455300	1.75103200
0	2.89337500	0.65778700	0.77597500
0	2.58868700	2.12646100	2.44404700
С	3.65680600	2.92109200	1.91636100
Н	3.41952200	3.24827100	0.90404500
Н	3.74582100	3.77541900	2.58185700
Н	4.58380700	2.34894400	1.90980100
С	0.16647400	-1.64712700	2.62447200
0	-0.34306600	-2.58700700	2.07262600
0	-0.01418100	-1.30878000	3.88869500
С	-0.92014800	-2.15120900	4.61637400
Н	-0.91987800	-1.76900100	5.63298100
Н	-1.91840400	-2.08525700	4.18508800
Н	-0.57267600	-3.18297300	4.59571300
С	-0.49115400	1.70290200	1.03399300
С	0.09800200	3.06320400	0.72935300
С	-1.64199500	1.63986500	2.01831500
С	0.13624400	4.02126000	1.92456600
Н	-0.55104800	3.50335300	-0.03863800
Н	1.08265600	2.95307500	0.26669900
С	-1.46113800	2.58620500	3.20185900
Н	-2.55062400	1.93191700	1.47585700
Н	-1.78247400	0.60641200	2.34250800
С	-1.16948000	4.00206200	2.71381800
Н	0.34942100	5.02652800	1.55381300
Н	0.94779400	3.74323800	2.59671100
Н	-2.36476600	2.56429200	3.81474100
Н	-0.63164300	2.23716800	3.82475600
H	-1.10041800	4.69007700	3.55923000
Н	-1.99625700	4.34731300	2.08204300
Si	-0.51404300	-1.84060200	-1.45953200
r-TS-H _a			
С	-0.47141300	-0.26166500	1.62483700
С	0.26693000	-1.30709800	1.36747300
Н	0.99120000	-1.60366800	2.12277000
Si	0.20473100	-2.22472100	-0.27486900
С	1.74323200	-1.75010100	-1.22957900
Н	1.79885600	-2.29476000	-2.17605200
Н	1.74703300	-0.67934800	-1.44929200
H	2.64334700	-1.97913900	-0.65343500
С	-1.33705800	-1.73636900	-1.20895400
H	-2.23504700	-2.01714400	-0.65309300
Н	-1.366/1800	-0.66008700	-1.39/87200
Н	-1.36/33400	-2.24919300	-2.1/449600
U H	0.20636400	-4.06043900	0.08153100
н u	0.22190600	-4.03190200	-0.83043300
п u	1.08029200	-4.34428300	0.00431800
11	-0.0628/000	-4.55445500	0.04439200

С	-1.44128700	0.66115400	1.30088800
С	-0.94778600	1.97146400	0.89743000
С	-2.88183900	0.38621300	1.66967100
С	-1.94334800	3.01163900	0.41503000
Н	-0.09167200	1.87844000	0.22025700
Н	-0.43247700	2.33527200	1.87371100
Н	-3.20315000	1.13044800	2.41052000
н	-2.90558000	-0.58616500	2,16194400
C	-3 93061300	0 36314900	0 52392100
C	-2 57263400	2 62571000	-0.93853400
н	-2 71748700	3 14997600	1 17303600
н	-1 42361000	3 967/2/00	0.33545600
п С	4 66222100	1 68/03600	0.33343000
ч	3 48126000	0.02976700	0.24027700
п ц	4 67502200	0.37226200	0.83325400
II C	-4.07392200	-0.37220200	0.83323400
с u	-4.09755100	2.32894700	1 70010000
п	-2.27793000	3.34144300	-1.70919900
п	-2.10030900	1.00091300	-1.23740700
H	-4.692/1500	2.2/450400	1.16077000
H	-5./0516000	1.460/5400	0.00258500
H	-4.52985300	3.53252400	-0.84652500
Н	-4.43256400	2.10/32900	-1.86197900
N	0.52374500	1.77030800	3.17945100
N	0.07560200	0.56048300	3.27460300
С	-1.09196900	0.50988000	4.12002800
0	-1.60548100	1.44413100	4.66783800
0	-1.46752500	-0.75455700	4.25175100
С	-2.62547600	-0.96220200	5.06968700
Н	-3.47024700	-0.39102900	4.68586200
Н	-2.83243200	-2.02753900	5.01867900
Н	-2.41546800	-0.66637800	6.09700300
С	1.80337200	1.78908600	2.57768400
0	2.48904100	0.84239300	2.28492900
0	2.15678700	3.06051000	2.38506000
С	3.45411000	3.24989000	1.81414800
Н	3.57702800	4.32452500	1.70957200
Н	4.22035800	2.84544700	2.47534600
Н	3.51691200	2.76483100	0.84042700
r-TS-H _b			
С	-0.54205800	0.19114600	1.06164000
С	-0.44738400	-0.91596900	0.47251900
Н	0.53710500	-1.47012400	1.16721200
Si	-1.10048700	-1.99047900	-0.91908100
С	-0.58594800	-3.74401200	-0.55961700
Н	-0.98672400	-4.42566700	-1.31443700
н	0.50232600	-3.83644900	-0.55646700
Н	-0.95689800	-4.06546100	0.41676800
Ċ	-0.37592800	-1.37063500	-2.52338900
н	-0.68265600	-0 33904300	-2.71234800
Н	0.71537400	-1.40384000	-2.50522900
н	-0 72114900	-1 98642500	-3 35856700
C	-2.95826400	-1 80514000	-0.91230400
н	-3 40622100	-2 41582300	-1 70107300
н	-3 37675000	_2 12365600	0.04515700
ц	3 24/70600	-2.12303000	1 08202700
C	-3.24479000	1 22/82200	-1.06293700
	-11 111941111		1.0741710

С	0.60021000	2.35551200	1.46216900
С	-1.21969200	1.39987400	3.08178800
С	-0.13360100	3.69157200	1.27054300
Н	1.10624400	2.06432500	0.53953500
Н	1.36900400	2.47355500	2.23042900
Н	-0.75849600	2.08251300	3.80063800
Н	-1.32934300	0.42642400	3.56627000
С	-2.65442800	1.88408500	2.74894400
С	-1.42111400	3.57500400	0.43679200
Н	-0.35927800	4.11514600	2.25162100
Н	0.56946200	4.38364800	0.80334800
С	-2.85459400	3.39732300	2.59975600
Н	-3.01634200	1.35478000	1.86140100
Н	-3.27712900	1.54821500	3.58113800
С	-2.68892000	3.98422500	1.19331500
Н	-1.34668900	4.18640900	-0.46519200
Н	-1.53573400	2.54520900	0.08547300
Н	-2.18955500	3.90572200	3.30380400
Н	-3.86804000	3.64124200	2.92953100
Н	-2.71788200	5.07525700	1.28151900
Н	-3.55670800	3.70199500	0.58883500
Ν	1.68502000	-1.26842500	1.77761300
N	1.60082300	-0.24347200	2.56288200
С	0.92406800	-0.59932500	3.75820200
0	0.27530300	-1.59522500	3.95205500
0	1.11795500	0.36574100	4.65215600
С	0.47865700	0.16376800	5.91662300
Н	0.86282100	-0.73787700	6.39289200
Н	0.72204900	1.03918000	6.51254300
Н	-0.60059400	0.07881900	5.79084900
С	2.58633600	-1.03536400	0.68720300
0	3.43755700	-0.19402200	0.64618200
0	2.37942600	-1.96642300	-0.23795800
С	3.27027200	-1.91772700	-1.35948900
Н	2.96484600	-2.72982500	-2.01373100
Н	3.18386800	-0.95921500	-1.86982100
Н	4.29695700	-2.06796700	-1.02734100
<b>5-15-н</b> а	0.44220000	0 2270 4200	1 722 47200
C C	-0.44320900	1 28820000	1./334/300
с и	0.29079300	-1.28820000	2 24252800
n C	1 71200400	1 8/886300	0.46356600
U U	1.71200400	-1.84880300	1 28687700
н	1.89227800	-2.42843000	-0.69700800
н	2 / 9383/00	-2 18370900	0.22261300
n C	0.75174900	1 55658800	0.81689500
н	-0.75174900	-1.69698800	-0.39585200
н	-0.62537900	-0.49709400	-1 05429100
н	-0.69272000	-2.12277700	-1.74970300
C	0.10408600	-3.52863600	0.45950200
Н	0.17001000	-4.11351600	-0.46148400
Н	0.86152900	-3.89974400	1.15423900
Н	-0.87970100	-3.69717200	0.90438000
C	-1.36569200	0.72620700	1.41956100
С	-0.82178100	2.05864900	1.15053500
С	-2.83563700	0.46886200	1.65175000

S C

С	-1.76253500	3.12801800	0.61953500
Н	0.08730200	1.98940400	0.54345000
Н	-0.40355900	2.36032600	2.17783600
Н	-3.21680000	1.20643500	2.36918700
Н	-2.92079800	-0.51162900	2.12067600
С	-3.76313500	0.48278400	0.40348900
С	-2.24914800	2.79808900	-0.80583800
Н	-2.60891800	3.24262700	1.30021700
Н	-1.23401400	4.08227800	0.63216700
С	-4.45868000	1.81792900	0.09345200
Н	-3.22013700	0.12045400	-0.47341000
Н	-4.53680100	-0.26000600	0.60659000
С	-3.76804400	2.70965100	-0.94608700
Н	-1.87167200	3.53881800	-1.51438700
Н	-1.81341500	1.84276300	-1.11405000
Н	-4.59417300	2.36665800	1.02954700
Н	-5.46737300	1.60825100	-0.27150500
Н	-4.20347400	3.71199600	-0.88570000
Н	-3.99602400	2.33342100	-1.94809500
Ν	0.51693800	1.62119300	3.51854700
Ν	0.03945000	0.42511900	3.47726200
С	-1.19465100	0.34545000	4.23351200
0	-1.73605200	1.25894700	4.78774600
0	-1.58702400	-0.91841000	4.27404100
С	-2.79693900	-1.15467100	5.00629200
Н	-3.61109600	-0.55794300	4.59599700
Н	-3.00594900	-2.21447100	4.89069300
Н	-2.65042900	-0.90819300	6.05729500
С	1.82701600	1.66116200	2.98505300
0	2.51280000	0.72589700	2.65916400
0	2.20631000	2.93664700	2.90292600
С	3.52939000	3.14547800	2.40227900
Н	3.67341300	4.22238300	2.38807000
Н	4.26168400	2.67603800	3.05883700
Н	3.62502900	2.73755100	1.39626800
С	0.32045600	-2.04129900	0.15414000
s-TS-H _b			
С	-0.55408600	0.49882700	0.40991500
С	-0.31510200	-0.61966800	-0.10914100
Н	0.62283700	-1.05478400	0.73310800
С	0.52415600	-2.48503000	-1.51466000
Н	0.27693200	-3.15247100	-2.34316100
Н	1.41279600	-1.91084400	-1.78645400
Н	0.76162700	-3.09220900	-0.63846300
С	-0.98187500	-0.72150600	-2.47436200
Н	-1.82664300	-0.05590100	-2.28398300
Н	-0.12238700	-0.11674900	-2.76999400
Н	-1.24178400	-1.38485700	-3.30322700
С	-1.88843400	-2.38460900	-0.83164000
Н	-2.14524900	-3.06945000	-1.64382700
Н	-1.68935600	-2.97259600	0.06553900
Н	-2.74591000	-1.73593400	-0.63998600
С	-0.53903700	1.48009400	1.34163000
С	0.15375300	2.78721500	1.05550400
С	-1.58493300	1.42225600	2.43286500
С	-0.83020400	3.92881100	0.72047100

Н	0.85500600	2.64583200	0.22943000
Н	0.72142100	3.08517300	1.93937800
Н	-1.35104400	2.17627600	3.19009800
Н	-1.49293500	0.44548000	2.90988200
С	-3.04971800	1.58837200	1.96838900
С	-1.95624500	3.54229100	-0.25165200
Н	-1.25768200	4.30200400	1.65294900
Н	-0.23531800	4.74938100	0.31559300
С	-3.54731000	3.02352900	1.75447800
Н	-3.21551800	0.98595400	1.06834400
Н	-3.66362300	1.13902500	2.75262600
С	-3.36087700	3.63112100	0.35827400
Н	-1.92850700	4.18409200	-1.13479900
Н	-1.79145300	2.52711700	-0.62137100
Н	-3.08717900	3.66578500	2.51131400
Н	-4.61957300	3.04699300	1.96741100
Н	-3.65742900	4.68380400	0.41562500
Н	-4.06459000	3.15303700	-0.33049700
Ν	1.12395100	-1.07387300	1.94363200
Ν	1.14924200	0.13416100	2.41372000
С	2.24953900	0.83135900	1.83343900
0	2.80801400	0.55467300	0.80452600
0	2.56939100	1.85090400	2.62196000
С	3.61792700	2.69236700	2.12729200
Н	3.34103500	3.10960700	1.15908600
Н	3.73361700	3.48345800	2.86284300
Н	4.54313400	2.12527000	2.03212200
С	0.23630100	-1.92824500	2.67538200
0	-0.20609300	-1.71827300	3.76899700
0	0.05761900	-3.04061800	1.97385500
С	-0.79276200	-4.01900200	2.58519600
Н	-0.84664800	-4.84332900	1.87956800
Н	-0.36208700	-4.35482700	3.52758500
Н	-1.78339600	-3.59964500	2.75906300
С	-0.65972400	-1.55747000	-1.22980900
2a			
С	-0.79579900	0.24192800	2.15066800
С	-0.36149100	-0.90093800	1.61665000
Н	0.26649900	-1.51814800	2.25718700
С	0.05095600	-1.05679500	-1.49868100
Н	-0.17296500	-1.68885400	-2.36369800
Н	-0.20279700	-0.02805800	-1.75933800
Н	1.12829000	-1.10693600	-1.31737700
С	-2.74844000	-1.46912200	-0.25711200
Н	-3.29301200	-1.97788400	0.54352000
Η	-3.05369600	-0.42161400	-0.26482300
Н	-3.05209400	-1.91767000	-1.20800800
С	-0.53250200	-3.50717500	0.18816400
Η	-0.85172800	-4.06661900	-0.69534700
Н	0.53859200	-3.67980500	0.32446400
Н	-1.05263000	-3.92207900	1.05584100
С	-1.60270200	1.26127900	1.43047700
С	-1.09550300	1.80547200	0.32305300
Н	-0.09025100	1.50526300	0.03536000
Н	-0.68550400	2.42422000	4.36892200
Ν	-0.09433400	1.86642400	3.76285600

Ν	-0.54367500	0.58472200	3.52050900
С	-0.59697500	-0.24621700	4.62332600
0	-0.23985600	0.10761200	5.72294600
0	-1.12647500	-1.43419300	4.34625500
С	-1.23497200	-2.32025200	5.46738700
Н	-1.91671200	-1.90950400	6.21099400
Н	-1.63150000	-3.24819700	5.06430000
Н	-0.25635300	-2.48846400	5.91403800
C	1.26822600	2.02329000	3,92835700
0	2.09735100	1.21623000	3,59642000
0	1.51965800	3.22182600	4.45593500
Č	2.90916300	3.53327200	4.61992000
н	2,93736000	4 54704600	5 00927100
н	3 36688000	2.84320200	5 32756000
н	3.42452700	3 47983300	3 66214800
Si Si	0.00102100	1 67805600	0.01012400
C SI	1 74956400	2 78741300	0.61180200
U U	1 24680000	2.78741300	0.52524200
и П	-1.24080000	2.03622000	-0.32324200
II C	-2.80000300	2.93022900	-0.30370200
C	-1.01/28300	2.28204000	-2.03114300
C	-2.37703000	1.42707700	-2.37008100
C	-0.48109500	2.5/555/00	-2.78518000
U U	-2.39793200	0.86116100	-3.82675000
н	-3.46692700	1.19424000	-1.994/9900
C	-0.29855200	2.01107600	-4.04122600
Н	0.27251900	3.23805300	-2.37300300
C	-1.25424500	1.14745400	-4.563/5100
H	-3.15007300	0.19280100	-4.22955600
H	0.59243900	2.24488100	-4.61212200
Н	-1.11123200	0.70296000	-5.54148800
С	-2.93679400	1.58165400	2.04536700
Н	-2.80441200	2.07457300	3.01348000
Н	-3.53776600	2.23699400	1.41791000
Н	-3.49999900	0.66229300	2.22941900
3a			
С	-2.40910400	-1.53232100	-0.17338500
С	-3.39483800	-1.78965200	-0.82074800
Н	-1.74696200	-4.09682900	1.16056700
Si	-4.87400600	-2.21444400	-1.85335400
С	-4.52839900	-1.61900600	-3.58763000
Н	-5.37375100	-1.84622100	-4.24298600
Н	-4.36520000	-0.53886600	-3.60520400
Н	-3.63997300	-2.10505600	-3.99733300
С	-6.36009800	-1.34920400	-1.12924600
Н	-6.53843700	-1.67322700	-0.10132400
Н	-6.22099100	-0.26577000	-1.12681900
Н	-7.25350800	-1.57629100	-1.71738500
С	-5.08391700	-4.06811500	-1.80311500
Н	-5.94370400	-4.37076100	-2.40697000
Н	-4.19731700	-4.57164900	-2.19535300
Н	-5.24858000	-4.41658100	-0.78088200
С	-1.20637300	-1.12637300	0.57917900
С	-1.62639900	0.03675100	1.49508100
Н	-0.76510100	0.59269300	1.85451400
Н	-2.26578300	0.71097600	0.92661600
н	-2.19487300	-0.34192600	2.34527100

С	-0.09621800	-0.71382000	-0.40789200
Н	0.10228600	-1.55858700	-1.07153200
Н	0.81116900	-0.53169600	0.17496700
С	-0.43303600	0.52521900	-1.24311500
Н	-1.39995200	0.38179900	-1.73311500
Н	-0.51650000	1.39958900	-0.59404300
С	0.62876200	0.77036400	-2.28470900
С	0.54470800	0.16473700	-3.53810100
С	1.73967100	1.56292000	-2.00029100
С	1.54420200	0.34773900	-4.48594400
Н	-0.31659800	-0.45314600	-3.77256800
С	2.74280400	1.74815000	-2.94494000
Н	1.81727600	2.04194100	-1.02951100
С	2.64833600	1.13981500	-4.19103100
Н	1.45962000	-0.12647100	-5.45673300
Н	3.59850200	2.36928600	-2.70732500
Н	3.42740600	1.28480600	-4.92971400
Ν	-0.98127200	-3.55726600	0.77553900
Ν	-0.76608200	-2.32514000	1.35790700
С	0.09524400	-2.33847900	2.43546500
0	0.41898000	-3.35134100	3.01065900
0	0.52623600	-1.12183700	2.76145000
С	1.36105500	-1.06706300	3.92558000
Н	2.28444200	-1.61784500	3.75329600
Н	1.57245500	-0.01252400	4.08114700
Н	0.83833900	-1.47954600	4.78721800
С	0.06022300	-4.32477200	0.30627000
0	-0.06331900	-5.50348700	0.07103800
0	1.16580800	-3.61423600	0.10393100
С	2.27539300	-4.35650500	-0.41579300
Н	3.07986500	-3.63511600	-0.52949800
Н	2.56381300	-5.14072400	0.28287900
Н	2.01948600	-4.79314100	-1.38011200
2h			
С	-0.61719200	0.28968300	1.88534200
С	-0.07081300	-0.80971500	1.36933100
Η	0.61419800	-1.33168600	2.03583100
С	1.03936300	-1.47827500	-0.72898200
Η	0.95197700	-2.06398900	-1.64820500
Η	1.28053800	-0.44770700	-1.00099600
Н	1.86982300	-1.88154500	-0.14396400
С	-1.41925300	-1.03026300	-0.81814000
Η	-2.34704600	-0.91996100	-0.25087400
Н	-1.18803100	-0.07326800	-1.28270500
Н	-1.59634600	-1.75518800	-1.61731200
С	-0.56424100	-3.00339900	0.43314700
Н	-0.64519300	-3.61034700	-0.47198500
Н	0.23491200	-3.41744000	1.05263700
Н	-1.50317200	-3.08658600	0.98710500
С	-1.51902400	1.28764000	1.25353300
С	-1.05405700	2.04273700	0.25818500
Н	-0.03025500	1.86892500	-0.06623800
Н	-0.15362900	2.47209300	4.02698000
Ν	0.36147400	1.75771000	3.52464000
N	-0.32407100	0.59129500	3.26619600
С	-0.66825900	-0.16760500	4.35867700

0	-0.36967200	0.13076000	5.49337100
0	-1.38730700	-1.23893200	4.02192900
С	-1.79456300	-2.05780600	5.12403900
Н	-2.44371700	-1.49663600	5.79519500
Н	-2.33681300	-2.88927300	4.68171800
Н	-0.92492500	-2.42165700	5.66943300
С	1.70037400	1.63905700	3.83218700
0	2.37438100	0.66426000	3.61842700
0	2.14203900	2.78610800	4.35216100
С	3.54422700	2.82173800	4.64369400
Н	3.72711300	3.80168500	5.07597100
Н	3.80270000	2.03959500	5.35594400
Н	4.12187300	2.69744000	3.72857200
С	-1.82127600	3.05354800	-0.55316400
Н	-1.18468100	3.91977700	-0.74727400
Н	-2.70612700	3.40080000	-0.02073500
С	-2.22922500	2.42220800	-1.86683100
С	-3.44127300	1.74167000	-1.97242900
С	-1.36333600	2.42288400	-2.95816600
С	-3.77863800	1.07028800	-3.14087800
Н	-4.12038600	1.72962000	-1.12578000
С	-1.69565500	1.74922100	-4.12828000
Н	-0.41705600	2.94944300	-2.88698400
С	-2.90385300	1.06859900	-4.22194400
Н	-4.72471000	0.54587600	-3.20767200
Н	-1.01025400	1.75600700	-4.96762200
Н	-3.16341200	0.54134900	-5.13193900
С	-2.89961000	1.36386600	1.84718300
Н	-2.84485600	1.40068200	2.93884600
Н	-3.45964800	2.23320800	1.50730900
Н	-3.46801000	0.46463600	1.58934000
С	-0.27572600	-1.53810100	0.06137600
3h			
С	-2.49517500	-1.54133500	-0.24875100
С	-3.47489800	-1.75807400	-0.90859500
Н	-1.89210000	-4.18517200	0.95161400
С	-4.42433500	-1.49516300	-3.15053800
Н	-5.30375900	-1.69225500	-3.76834000
Н	-4.24223100	-0.41867200	-3.13908700
Н	-3.56370700	-1.98792300	-3.60709200
С	-5.88324700	-1.31913900	-1.11355500
Н	-6.06861300	-1.67958200	-0.09990400
Н	-5.72759100	-0.23926900	-1.07460900

Н	-6.76980600	-1.52025100	-1.71981700
С	-4.91238600	-3.53953100	-1.77758600
Н	-5.79428500	-3.75064400	-2.38724300
Н	-4.05646700	-4.05645500	-2.21592000
Н	-5.08084400	-3.93886600	-0.77546300
С	-1.28695200	-1.19971000	0.52744200
С	-1.68237700	-0.08576400	1.51271700
Н	-0.81148000	0.42453900	1.91455000
Н	-2.30015400	0.63943900	0.98466300
Н	-2.26807900	-0.50269500	2.33307300
С	-0.16267800	-0.75442900	-0.42795400
Н	0.01764600	-1.56262000	-1.14050000
Н	0.74783600	-0.62732900	0.16468600
С	-0.46746600	0.53742800	-1.19272900
Н	-1.43908300	0.44518500	-1.68580600
Н	-0.52630400	1.37797200	-0.49814000
С	0.59692900	0.80873200	-2.22516700
С	0.51407800	0.23130400	-3.49225100
С	1.70832100	1.59338200	-1.92190800
С	1.51485700	0.43326000	-4.43433000
Н	-0.34758800	-0.38077000	-3.74053300
С	2.71315700	1.79777600	-2.86117800
Н	1.78584800	2.05011100	-0.94049000
С	2.61992300	1.21722500	-4.12033500
Н	1.43121300	-0.01973500	-5.41528600
Н	3.56962600	2.41204400	-2.60885400
Н	3.40068500	1.37650900	-4.85424800
Ν	-1.11217000	-3.64575300	0.59653300
Ν	-0.86804400	-2.45035300	1.23995000
С	-0.00831800	-2.54131600	2.31395500
0	0.29325300	-3.59040700	2.83456300
0	0.45060700	-1.35404600	2.70523000
С	1.28926400	-1.38191400	3.86731400
Н	2.19618700	-1.94924000	3.66400100
Н	1.53059900	-0.34302100	4.07588400
Н	0.75744900	-1.82313300	4.70895400
С	-0.09157600	-4.41134300	0.08336000
0	-0.24428800	-5.57215400	-0.21693300
0	1.03210800	-3.71918600	-0.08068900
С	2.12337800	-4.45894200	-0.64052300
Н	2.94384000	-3.75095400	-0.71945400
Н	2.39550700	-5.28420900	0.01614800
Н	1.85622200	-4.83987600	-1.62511900
С	-4.66873700	-2.02492600	-1.73084400

Appendix IV

Selected NMR Spectra for Chapter 4







































































**4-37c** (1:1.5)





**4-37d** (1:1.5)




























































## **Computational Details**

All calculations were carried out with the Gaussian 09 suite of computational programs.^[1] The geometry optimizations and frequency calculations were done at the M06/6-31+G(d) level of theory.^[2] The effect of CH₃CN solvent was evaluated by single point calculations using the SMD model with the default UFF atomic radii. Unless stated otherwise, all the energy values discussed in the main text are relative free energies ( $\Delta G_{sol}$ , kcal/mol). Only the intermediate or transition state that has the lowest energy value among all possible conformers is used for discussion.

[2] a) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215; b) Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.

^[1] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian, Inc.*, Wallingford CT, 2009.



1) Mechanisms for the transformations of alkyl- and silyl-substituted allenes with DDQ (relative free emergies (in kcal/mol) were calculated at the M06-2X/6-31+G* level)

2) Mechanisms for the possible pathway for the formation of 1,3-dienes



3) Mechanisms for the possible C-alkylation and C-alkoxylation of allenes



<b>Table of Energy</b>	Values	(in a.u.)
------------------------	--------	-----------

Species	Free energy	Electronic	Single point energy in
-		energy	solution
DDQ	-1484.822101	-1484.845405	-1484.865823
t-Bu-Allene	-543.805622	-544.045846	-544.0605809
t-Bu-TS1	-2028.598753	-2028.889793	-2028.922368
t-Bu-IN1	-2028.596258	-2028.887347	-2028.944577
t-Bu-TS2	-2028.583742	-2028.875021	-2028.933509
t-Bu-TS1'	-2028.595268	-2028.878745	-2028.909822
t-Bu-IN1'	-2028.620637	-2028.913265	-2028.940658
t-Bu-IN2'-Cation	-542.942028	-543.1693679	-543.2501869
t-Bu-IN2'-Anion	-1485.556704	-1485.591941	-1485.664039
SiMe ₃ -Allene	-795.21969	-795.4424618	-795.4553859
SiMe ₃ -TS1	-2280.01107	-2280.285738	-2280.317362
SiMe ₃ -IN1	-2280.004503	-2280.280946	-2280.341644
SiMe ₃ -TS2	-2279.997443	-2280.273837	-2280.331753
SiMe ₃ -TS1'	-2280.016505	-2280.284756	-2280.313484
SiMe ₃ -IN1'	-2280.04261	-2280.317708	-2280.342025
SiMe ₃ -IN2'-Cation	-794.357527	-794.5694272	-794.646712

## **Cartesian Coordinates**

DDQ			
С	-3.49778000	0.55625700	0.00026600
C	-1.99463700	0.58995200	0.00073300
C	-2.04205900	3.07612600	-0.00093900
Ĉ	-3.53896400	3.03914100	-0.00157500
С	-4.21316800	1.87192300	-0.00086400
Cl	-4.30833800	4.56042100	-0.00334000
Cl	-5.91550400	1.77990600	-0.00139300
C	0.11126000	1.81822200	0.000/8500
N	1.26650400	1.86493900	0.00126800
N	-0.79031100	-1.70200500	0.00267800
0	-1.42316400	4.10914800	-0.00132800
0	-4.08424100	-0.49584100	0.00074200
t-Bu-All	ene		
С	-1.66013000	-0.16443200	0.79746000
C U	-2.75018600	-0.75351900	0.37965200
C	-4.00895500	-0.85328500	-1.75085100
Ĥ	-4.82689600	-0.42924600	-2.34547100
Н	-3.08886200	-0.79749600	-2.34303300
Н	-4.23409900	-1.91089200	-1.57041000
C	-3.52459700	1.37708100	-0.71235900
H U	-3.40/41500	1.94155000	0.21948500
н	-4 32863800	1 83930200	-1 29620900
C	-5.16335900	-0.18292600	0.37061000
Н	-5.99339900	0.24852700	-0.20161300
Н	-5.41334900	-1.22628000	0.59596300
Н	-5.08008400	0.35902100	1.31892500
C	-0.56812800	0.45238400	1.19946900
Н	0.22228800	0.68296300	3.20051200
Н	-0.30334500	2.19700500	2.44695000
Н	-1.50794300	1.03710000	3.04442300
С	-3.85539900	-0.08830100	-0.42820100
С	0.64760900	0.50166600	0.34059300
C	1.83208600	1.08495400	0.80616700
C	2.97128200	1.13245700	0.00139100
Ĥ	1.87766500	1.50655500	1.80554000
С	1.77037300	0.01904900	-1.76040600
Н	-0.27566600	-0.48213400	-1.33701200
С	2.94733600	0.60062200	-1.28362400
н	3.87952100	1.58/49900	0.38662500
Н	3.83388300	0.63716100	-1.90980400
t-Bu-TS	1		
C	-1.62888800	-0.46274200	1.28346600
C	-2.75304000	-0.85543400	0.71999900
н	-3.13698300	-1.83531500	1.00354000
Н	-4.17533800	-0.52389200	-2.37473700
Н	-2.55739800	-1.14844800	-1.98885900
Н	-3.99970300	-1.97787200	-1.37319800
C	-2.92232300	1.25006800	-0.68623500
H	-2.90587900	1.91919600	0.18116100
н	-1.89612800	1.14368900	-1.05575900
C	-4.96770700	0.08868000	0.18710700
Н	-5.58472500	0.57619100	-0.57617500
Н	-5.43248900	-0.87185500	0.43596200
Н	-4.97438400	0.71393100	1.08635800
C	-0.72760500	0.56847700	1.52/44800
Н	-0.72546400	1.49428100	2.40098100
Н	-0.72242200	2.63816300	2.11710700
Н	-2.20508600	1.75018100	2.54029500
С	-3.53674600	-0.10667200	-0.33852600
C	0.62222400	0.37424500	1.10656700
C	1.70563300	1.02812000	1./0124400
č	3.00435100	0.63477600	1.52340100
Н	1.49982700	1.77890200	2.51823700

С	2.24346100	-0.96370600	-0.14059300
Н	0.11366200	-1.06407500	-0.42885000
С	3.27703000	-0.38846400	0.59340100
Н	3.81929600	1.08391800	2.08260100
Н	2.45817900	-1.72677700	-0.88396100
Н	4.30162600	-0.71612700	0.43869700
С	2.68514800	-3.57110900	1.74689900
С	2.43804600	-2.52951900	2.76914800
С	1.19310000	-1.98084000	2.94668900
С	0.07366300	-2.34374600	2.11533700
С	0.28693900	-3.38767400	1.12268800
С	1.49648100	-3.98624100	0.96359700
Cl	-1.07146900	-3.81320000	0.15327500
Cl	1.77067500	-5.21383200	-0.20213700
С	0.95153300	-0.99978200	3.97133400
С	3.55490100	-2.11079000	3.56033500
Ν	0.75086300	-0.20616400	4.78881100
Ν	4.45508400	-1.74065000	4.18759100
0	-1.07202600	-1.80296300	2.31192600
0	3.79009000	-4.05089500	1.56651500
t-Bu-IN	1		
С	-1.32636000	-0.74332900	0.88189100
С	-2.28018600	0.05373500	0.30621500
Н	-3.27092400	-0.40320600	0.33668300
С	0.03448800	-0.47984800	1.15730800
С	0.95296000	-1.64064800	1.27139500
н	0.79341300	-2.37925800	0.48273500
н	1 99876200	-1 33932600	1 33209700
н	0.69053300	-2 13244900	2 22373500
C	0.48046800	0.84744600	1 50386300
C	1 77248200	1 20223500	1.15277400
C	0.36155600	1.29223300	2 24821000
C	-0.30133000	2 57718200	2.24621000
U U	2.17837500	2.57718500	1.4/51/500
н	2.42706500	0.04880900	0.57240400
C	0.06835700	2.9/350500	2.60089400
С	1.32894200	3.41820700	2.20244600
Н	3.15824600	2.92804300	1.16/58100
Н	-0.57271900	3.61241000	3.20011800
Н	1.66075800	4.41609000	2.47331900
С	-5.40156800	-2.56638000	3.24794700
С	-4.18985600	-2.08263000	3.90360900
С	-2.99375000	-1.92565300	3.20466400
С	-2.89949400	-2.21013000	1.83790800
С	-4.04187900	-2.67678500	1.15041200
С	-5.23543300	-2.85583300	1.81042100
Cl	-3.87252200	-2.98650900	-0.55041200
Cl	-6.63632200	-3.41786000	0.99090700
С	-1.79159500	-1.43683100	3.82172100
С	-4.25607300	-1.75411100	5.29088500
Ν	-0.77705100	-1.02912900	4.20569600
Ν	-4.27362700	-1.46699400	6.41393700
0	-1.69500700	-2.06686400	1.19641600
0	-6.47270800	-2.71315600	3.83028600
С	-2.28806100	1.28132200	-0.56634500
С	-0.94319700	1.86930700	-0.99946800
Н	-0.25147900	1.08994200	-1.33942900
Н	-1.11993500	2.54622000	-1.84163500
Н	-0.45897500	2.44941800	-0.21247800
С	-3.03044000	0.80377600	-1.84432300
Ĥ	-2 46713300	0.01773900	-2.35811300
н	-4.02622100	0.41401300	-1 61075200
н	3 14427700	1 65132500	-2 52787200
		1.05152500	2.52101200
C	-3 15324600	2 36095700	0 11483600
С Н	-3.15324600	2.36095700	0.11483600
С Н Н	-3.15324600 -2.65391500 -3.31941400	2.36095700 2.76484800 3.18164500	0.11483600 1.00068600
C H H	-3.15324600 -2.65391500 -3.31941400	2.36095700 2.76484800 3.18164500	0.11483600 1.00068600 -0.59108300 0.41422100
C H H H	-3.15324600 -2.65391500 -3.31941400 -4.12967300	2.36095700 2.76484800 3.18164500 1.96594100	0.11483600 1.00068600 -0.59108300 0.41423100
С Н Н Н	-3.15324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800
С Н Н Н Н	-3.15324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800
с н н н <b>t-Bu-TS</b>	-3.13224600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b>	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800
с н н н <b>t-Bu-TS</b> с	-3.13224600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b> -1.21346500 2.14010000	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800
С Н Н Н Н <b>t-Bu-TS</b> С С	-3.15324600 -3.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b> -1.21346500 -2.14919900 -2.006027202	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600 -0.67093500 0.39897800	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800 1.49091000 1.24064200
С Н Н Н Н <b>t-Bu-TS</b> С С Н	-3.15324600 -3.15324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b> -1.21346500 -2.14919900 -2.90608700 -0.10572602	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600 -0.67093500 0.39897800 0.52147500	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800 1.49091000 1.24064200 2.01713200
С Н Н Н Н С С С Н С С	2. -3.15324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 2 -1.21346500 -2.14919900 -2.90608700 0.12577600 1.0902022	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600 -0.67093500 0.39897800 0.52147500 -0.52571400	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800 1.49091000 1.24064200 2.01713200 1.17946500
С Н Н Н С С Н С С Н С С	-3.15324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b> -1.21346500 -2.14919900 -2.90608700 0.12577600 1.08000000	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600 -0.67093500 0.39897800 0.52147500 -0.52571400 -1.67177600	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800 1.24064200 2.01713200 1.2496500 1.24892400
С Н Н Н С С С Н С С Н С С Н С С Н	-1.2134600 -2.65391500 -3.319324600 -2.65391500 -3.31941400 -4.12967300 -1.31820200 <b>2</b> -1.21346500 -2.14919900 -2.90608700 0.012577600 1.08000000 0.63355400	2.36095700 2.76484800 3.18164500 1.96594100 1.32893600 -0.67093500 0.39897800 0.52251400 -1.67177600 -2.57438400	0.11483600 1.00068600 -0.59108300 0.41423100 2.60064800 1.24064200 2.01713200 1.17946500 1.24892400 0.82436000 0.82436000

Н	1.31394300	-1.8868/000	2.29928500
С	0.48100800	0.84385400	0.97367700
С	1.52388500	1.27428400	0.11644700
С	-0.33306400	1.81875400	1.62722400
С	1.65775300	2.61293700	-0.17359700
Н	2.16424000	0.53971900	-0.36241400
С	-0.19558600	3.18401200	1.28593700
C	0 78049200	3 56974800	0 39257400
U U	2 43165200	2 94227600	0.86035300
п	2.43103200	2.94227000	-0.80033300
н	-0.80658700	5.92657800	1.79052400
н	0.91566500	4.62089900	0.15625400
С	-5.70410700	-2.89581100	2.26354100
С	-5.11959400	-1.96965000	3.22498200
С	-3.76486600	-1.61705000	3.18347100
С	-2.92449400	-2.11416900	2.19295900
С	-3.42024000	-3.03374300	1.25117000
Ĉ	-4 74481400	-3 40608000	1 26685600
Cl	2 21042400	2 61054100	0.04601200
CI	-2.31043400	-3.01934100	0.04001300
CI	-5.58224200	-4.49557600	0.09996100
C	-3.188///00	-0.65862900	4.08831300
С	-5.97119300	-1.40200700	4.21975800
Ν	-2.64580100	0.16437000	4.69708900
Ν	-6.63713800	-0.91249400	5.03295200
0	-1.57228600	-1.76671800	2.18191800
õ	-6 89034000	-3 21919000	2 26355300
й	-0.79355200	1 58225400	2 58/89200
 C	2 64041700	0.02100200	0.08422100
C	-2.64061700	0.92108600	-0.08425100
C	-1.63263300	0.95720200	-1.22/18300
н	-0.89438700	1.75213200	-1.08587200
Н	-1.10850900	0.00210000	-1.34032300
Н	-2.16694200	1.15951800	-2.16075500
С	-3.32171500	2.28263300	0.09663200
Н	-3.83657200	2.55693200	-0.82903100
н	-4.06591300	2 25435400	0.90002700
и и	2 50254000	2.25455400	0.22105000
п	-2.39234000	3.00391000	0.32103000
C .	-3.74918700	-0.12591000	-0.45261500
н	-3.31201300	-1.09801900	-0.6/526500
н	-4.47698100	-0.25806100	0.37520200
Н	-4.28137800	0.24801400	-1.31397000
t-Bu-TS	1'		
t-Bu-TS	<b>1'</b> -1.92851700	0.20711400	0.72115600
<b>t-Bu-TS</b>	<b>1'</b> -1.92851700 -2.99615200	0.20711400	0.72115600
t-Bu-TS C C	<b>1'</b> -1.92851700 -2.99615200 2.89629400	0.20711400	0.72115600 0.22539500 0.72824700
<b>t-Bu-TS</b> с с н	<b>1'</b> -1.92851700 -2.99615200 -2.89629400 4.18562800	0.20711400 -0.22045900 -1.53145300	0.72115600 0.22539500 0.72824700
<b>t-Bu-TS</b> С С Н С	<b>1'</b> -1.92851700 -2.99615200 -2.89629400 -4.18562800	0.20711400 -0.22045900 -1.53145300 -1.04079400	0.72115600 0.22539500 0.72824700 -1.76812500 2.28546500
<b>t-Bu-TS</b> С С Н С Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500
<b>t-Bu-TS</b> С Н С Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500
<b>t-Bu-TS</b> С С Н С Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000
<b>t-Bu-TS</b> С С Н С Н Н Н Н С	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -1.12435400
<b>t-Bu-TS</b> СС НС Н Н Н Н С Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000 -4.29309800	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -1.12435400 -0.29750300
<b>t-Bu-TS</b> СС НС Н Н Н Н Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000 -4.29309800 -3.39797300	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.60850100	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.12435400 -0.29750300 -1.74777200
<b>t-Bu-TS</b> С Н С Н Н Н Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -3.30510300 -4.14835100 -4.27218000 -4.27218000 -3.39797300 -5.17401200	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.82641200 -0.86461200 -2.07381100 1.39514100 2.1175900 1.60850100 1.53736300	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -1.12435400 -0.29750300 -1.7309700
<b>t-Bu-TS</b> C C H C H H H C H H C C	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.12818000 -4.27218000 -4.27218000 -3.39797300 -5.17401200 -5.14531300	0.20711400 -0.22045900 -1.53145300 -0.94079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.60850100 1.53736300 0.32849000	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.74777200 -0.74584400
<b>t-Bu-TS</b> C H C H H H C H H C H	1' -1.92851700 -2.99615200 -2.89629400 -3.89629400 -3.30510300 -4.18562800 -3.30510300 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.60850100 1.53736300 -0.32849000 0.21141000	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -1.36812500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.3912100
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н С Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000 -4.272309800 -3.39797300 -5.17401200 -5.45631300 -6.36933900	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 2.1175900 1.60850100 1.53736300 -0.32849000 -0.21141000	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100
<b>t-Bu-TS</b> C H C H H C H H C H H H C H H H H	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -3.30510300 -4.14835100 -4.27218000 -4.27218000 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.45631300	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.63850100 -0.32849000 -0.32849000 -0.21141000 -1.34922700	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300
<b>t-Bu-TS</b> C H C H C H H C H H H C H H H C H	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.49987700 -5.49987700	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32849000 -0.21141000 -1.34922700 0.36592300	0.72115600 0.22539500 0.72824700 -2.38546500 -2.39508500 -1.46675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.2846400 0.30912100 0.68041300 1.12960900
<b>t-Bu-TS</b> C C H C H H C H H C H H C H H C	1' -1.92851700 -2.99615200 -2.89629400 -3.89629400 -3.30510300 -4.14835100 -4.27218000 -4.29309800 -3.39797300 -5.17401200 -5.43631300 -5.43631300 -5.43144700 -5.43987700 -0.77544600	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.60850100 1.60850100 1.63850100 -0.32849000 -0.21141000 -1.34922700 0.36592300 0.40817300	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.14075000 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100
<b>t-Bu-TS</b> C C H C H H C H H C H H C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.27218000 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.43944700 -5.49987700 -0.77544600 -0.78816200	0.20711400 -0.22045900 -1.53145300 -0.9218300 -0.86461200 -2.07381100 1.39514100 2.1175900 1.60850100 1.53736300 -0.32849000 -0.21141000 0.36592300 0.40817300 0.98929600	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.74777200 -1.74777200 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.82393700
<b>t-Bu-TS</b> С Н Н Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С С Н Н Н С С Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н Н С С Н Н Н Н Н Н Н Н С С Н Н Н Н Н Н Н С С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н С С Н Н Н Н Н С Н Н Н Н Н Н Н Н Н Н С С С Н Н Н Н С С Н Н Н Н Н Н Н С Н Н Н Н Н Н Н Н Н Н Н С Н Н Н Н Н Н С С С С С Н Н Н Н Н Н С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.214835100 -4.22309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.43144700 -5.4987700 -0.78546200 -0.88816200 -0.34072200	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32849000 -0.21141000 -1.34922700 0.36592300 0.40817300 0.98929600 0.98929600	0.72115600 0.22539500 0.72824700 -2.38546500 -2.39508500 -1.46675000 -1.12435400 -0.29750300 -1.74777200 -1.73059700 0.28486400 0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С С Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -3.8977200 -3.30510300 -4.14835100 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.43144700 -5.43987700 -0.77544600 -0.34072200 -0.34072200 -0.44997400	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.39514100 1.60850100 1.53736300 -0.21141000 -0.21141000 -1.34922700 0.36592300 0.40817300 0.39173200 1.99470900	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.1435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.68041300 1.12960900 1.43695100 2.82393700 2.82371600
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н С Н Н Н С С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -3.8877200 -3.30510300 -4.14835100 -4.27218000 -4.27218000 -4.27309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.43144700 -5.4987700 -0.7544600 -0.38816200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34997400 -1.92959600	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.1175900 1.60850100 1.53736300 -0.32849000 -0.32849000 -0.32849000 -0.3282200 0.36592300 0.36592300 0.39829600 0.39173200 1.99470900 1.04897100	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.12435400 -0.29750300 -1.7477200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500
<b>t-Bu-TS</b> C H C H H C H H C H H C C H H H C C H H H C C H C H C H C C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C C H H C C H H C C H H C C H H C C H H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C H C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C C C C C C C C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.12818000 -4.27218000 -4.27218000 -4.27218000 -5.45631300 -5.45631300 -5.45631300 -5.45631300 -5.45987700 -0.7544600 -0.88816200 -0.88816200 -0.34072200 -0.34072200 -0.44997400 -4.23047100	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.39514100 -0.32849000 -0.31241000 -0.31249000 -0.21141000 -1.34922700 0.36592300 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.98929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600 0.99929600000000000000000000000000000000	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 0.3971600 0.59763100
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С Н Н Н С С С Н Н Н С С С С С Н С С С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н Н С Н С Н С Н С Н С Н Н С С Н С Н Н С С Н С С Н С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С С Н С С Н С С С С С Н С С Н С С С С Н С С С С С С С С С С С С С С С С С С С С	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -3.30510300 -4.14835100 -4.27218000 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.49987700 -0.77544600 -0.34072200 -0.34072200 -0.44997400 -1.92959600 -0.52808100	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32849000 0.36592300 0.40817300 0.36592300 0.40817300 0.39173200 1.99470900 1.04897100 -0.2192500	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.39508500 -1.40675000 0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.30912100 0.30912100 0.36945100 1.43695100 1.43695100 2.82393700 3.36257800 2.83771600 3.14128500 -0.59763100 0.83529900
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С С Н Н Н С С С Н Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С С Н Н С Н Н С С Н Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С С Н Н С С Н С С С Н Н С С Н Н С С Н Н С С С Н Н С С С С Н Н С С С С С С Н С С С С С С С С С С С С С С С С С С С С	1' -1.92851700 -2.99615200 -2.98629400 -3.30510300 -4.148562800 -5.08277200 -3.30510300 -4.27218000 -4.27218000 -3.39797300 -5.17401200 -5.454531300 -5.454531300 -5.45431300 -5.4544700 -5.43144700 -0.34977400 -0.3497400 -0.44997400 -1.92959600 -4.23047100 0.52808100	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.60850100 1.60850100 -0.32849000 -0.32849000 -0.32849000 0.36592300 0.36592300 0.39173200 0.39173200 1.99470900 1.04897100 -0.04728200 0.2925500 0.2925500	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.14075000 -1.7477200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.8273700 3.56257800 3.54257800 3.14128500 -0.59763100 0.83529900
<b>t-Bu-TS</b> C C H C H H C H H C C H H H C C H H H C C H C C C C H C C H C C H C C H C C H C C H C C H C C H C C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C H C H C H C H C H C H C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C C H C C C C C C C C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.18562800 -3.30510300 -4.27218000 -4.27218000 -4.27218000 -5.45631300 -5.45631300 -5.45631300 -5.45631300 -5.45631300 -5.45987100 -0.88816200 -0.280974000 -4.23047100 0.52808100 1.65974600 -0.6755800	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.1175900 1.60850100 1.53736300 -0.32849000 -0.21141000 0.36592300 0.36592300 0.39173200 1.94927000 0.3987100 -0.04728200 0.20925500 0.22260600 0.20922500	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -2.38546500 -1.40675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.42960900 1.43695100 2.82393700 3.56257800 2.83771600 2.83771600 0.83529900 1.63258700 0.83529900
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С Н Н Н С С С С С С С С С С С С С С С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С Н С С Н С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С С Н С С Н С С Н С С Н С С Н С С Н С С Н С С С Н С С С С С Н С С С С С С С С С С С С С С С С С С С С	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.18562800 -3.30510300 -4.214835100 -4.22909800 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.49987700 -0.7544600 -0.34072200 -0.34072200 -0.52808100 1.68974600 0.6635800 0.66435800	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32141000 -1.34922700 0.36592300 0.4817300 0.39173200 1.99470900 1.04897100 -0.2192500 0.20925500 0.22260600 -0.4609300	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -1.46875000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500 -0.83529900 1.63258700 -0.54972600
<b>t-Bu-TS</b> C C H C H H C H H C C H H H C C C H H H C C C H C C C C H C C H C C H C H C C H C C H C C H C C H C H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C C H C C H C C H C C H C C H C C H C C C C H C C C H C C C C C C C C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -3.30510300 -4.14835100 -4.27218000 -3.39797300 -5.17401200 -5.45631300 -5.4514700 -5.459487700 -0.77544600 -0.34072200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3497400 1.58974600 0.66435800 2.94092400	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.39514100 1.60850100 1.53736300 -0.32849000 0.3849000 0.3849000 0.3849000 0.39173200 0.36592300 0.39173200 1.99470900 1.04897100 -0.04728200 0.22260600 -0.04609300 -0.02211200 -0.04609300 -0.0420211200 -0.04609300 -0.0420211200 -0.0420211200 -0.04609300 -0.0420211200 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609300 -0.04609000 -0.04600000000	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.140750300 -1.74777200 -1.73069700 0.28486400 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.06395900
<b>t-Bu-TS</b> C C H C H H C H H C C H H C C H H C C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C H C H H C H H C H H C H H H H C H H H C H H H H H C H H H H C H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H H H H H C H H H H H H H H H H C H H H H H H H H H H H H H H H H H H H H	1' -1.92851700 -2.99615200 -2.98629400 -3.30510300 -4.18562800 -5.08277200 -3.30510300 -4.27218000 -4.27218000 -4.27309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.45631300 -5.45983700 -0.549987700 -0.7544600 -0.34997400 -0.34997400 -0.44997400 -0.48974600 -0.52808100 1.62959600 -0.66435800 2.94092400 1.62236400	0.20711400 -0.22045900 -1.53145300 -0.9218300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.60850100 1.60850100 -0.32849000 -0.32849000 0.35292300 0.36592300 0.39872900 0.39872900 1.04897100 -0.04728200 0.2925500 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.22260600 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.2221200 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.22260600 0.2260600 0.22260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.2260600 0.22600 0.2260600 0.22600 0.22600 0.22600 0.226000 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.22600 0.226000 0.22600 0.226	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.14245400 -0.29750300 -1.7477200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 0.59763100 0.83529900 1.63258700 0.54972600 1.06905900 2.69816700
<b>t-Bu-TS</b> C C H C H H C H H C C H H C C H H H C C H H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H H C C H H H H C C C H H H H C C H H H H H C C H H H H C H H H H H H H H H H H H H H H H H H H H	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.45631300 -5.43144700 -5.4987700 -0.784600 0.88816200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -0.52808100 1.62954600 0.66435800 2.94092400 1.62236400 1.62236400 1.62236400	0.20711400 -0.22045900 -1.53145300 -1.64079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.21414000 -0.32849000 -0.21414000 -1.34922700 0.36592300 0.40817300 0.98929600 0.39173200 1.99470900 1.04897100 0.20925500 0.22260600 -0.04203200 -0.42004400 -0.420539200	0.72115600 0.22539500 0.72824700 -2.38546500 -2.39508500 -1.46675000 -1.12435400 -0.29750300 -1.74777200 -1.73059700 0.28486400 0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.56257800 2.83771600 3.56257800 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529700 -0.59763100 0.83529700 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.59763100 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976300 -0.5976500 -0.5976500 -0.5976500 -0.5976500 -0.59765000 -0.59765000 -0.597650000000000000000000000000000000000
<b>t-Bu-TS</b> C C H C H H C H H C C H H C C C H H C C C H H C C H C H H C H C H H C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C H C H H C H C H H C H C H H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H C H C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H H C C C H H H H C C C H H H H C C C H H H H C C C H H H H C C C H H H H C C C C H H H H H H C C C C H H H H H H H C C C C H H H H H C C C C C H H H H H H C C C C H H H H H H H H C C C C C H H H H H H H H H C C C C C H H H H H H H C C C C C H H H H H C C C C C C H H H H H H C C C C C C C C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -3.30510300 -4.14835100 -4.2718000 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.43987700 -0.77544600 -0.34072200 -0.34072200 -0.34997400 1.62974600 0.52208100 1.68974600 0.66435800 2.94092400 1.62926400 1.90965500 -0.22505900	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.39514100 1.60850100 1.53736300 -0.32849000 0.3817300 0.38173200 0.38592300 0.39173200 1.99470900 1.04897100 -0.04728200 0.2025500 0.2025500 0.2025500 0.2026060 -0.04609300 -0.02211200 0.40204400 -0.06539200 -0.06026300	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -0.29750300 -1.74277200 -1.74309700 0.28486400 0.630912100 0.63041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.34128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.54972600 -0.5497260 -0.54972600 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -0.5497260 -
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С Н Н Н С С С С С С С С Н С Н Н С Н Н Н С Н Н С Н Н С Н Н С Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н С Н Н Н Н С С Н Н Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н С С Н Н С С Н Н Н С С Н Н Н С С Н Н Н Н С С С Н Н Н Н С С С Н Н Н С С Н Н Н Н Н С С С Н Н Н Н Н Н С С Н Н Н Н Н Н Н С С С С С Н Н Н С С С С С С С С С С С С С С С С С С С С	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.148562800 -5.08277200 -3.30510300 -4.27218000 -4.27218000 -3.39797300 -5.17401200 -5.454531300 -5.45431300 -5.45431300 -5.45144700 -5.43144700 -5.43144700 -0.34072200 -0.34072200 -0.44997400 -1.92959600 -4.23047100 0.56435800 2.94092400 1.62236400 1.62236400 1.62236400 0.22505900 3.05471200	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.39514100 -0.32849000 -0.32849000 -0.32849000 -0.32822700 0.36592300 0.36592300 0.39173200 0.39173200 0.39173200 0.39173200 0.39173200 0.39173200 0.39173200 0.39173200 0.3925500 0.22260600 -0.22260600 -0.26359200 0.42004400 -0.066239200 -0.060263100 -0.26332100	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.14245400 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.4260900 1.43695100 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.59763100 0.63927600 1.06905900 2.69816700 -1.10622800
<b>t-Bu-TS</b> C C H C H H C H H C C H H C C H H C C C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H C H H C H H C H H C H H C H H C H H C H H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H C H H H C H H H C H H H C H H H H C H H H C H H H C H H H C H H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H C C H H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C H H H H C C C H H H H C C H H H H C C C H H H H C C H H H H H C C H H H H C C H H H H H H H H H H H H H H H H H H H H	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.18562800 -5.08277200 -3.30510300 -4.128218000 -4.27218000 -4.27218000 -4.273080 -5.17401200 -5.43144700 -5.43144700 -5.43987700 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.52808100 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 3.82042300	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.39514100 -0.32849000 -0.32849000 -0.3141000 -1.34922700 0.36592300 0.40817300 0.98929600 0.39173200 1.99470900 1.04897100 0.20225500 0.22260600 -0.04728200 0.22260600 -0.04204400 -0.04204400 -0.26539200 -0.06263100 -0.03949800	0.72115600 0.22539500 0.72824700 -2.38546500 -2.39508500 -1.76812500 -1.76812500 -1.76812500 -1.7300 -1.7300700 0.29750300 -1.73059700 0.28486400 0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.54128500 0.63976100 0.63976100 0.63976100 0.63976100 0.63972600 1.06905900 2.69816700 -1.10622800 -1.17498400 0.29540800 1.70425600
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С С С С С С С	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.18562800 -3.30510300 -4.14835100 -4.223089800 -3.39797300 -5.47401200 -5.45631300 -5.43144700 -5.43987700 -0.7584600 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.52808100 1.68974600 0.52808100 1.68974600 0.66435800 2.94092400 1.692505900 -0.22505900 3.026471200 3.82042300 1.99888700	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32849000 0.211141000 -1.34922700 0.36592300 0.4817300 0.39173200 1.99470900 1.04897100 -0.24924000 0.42024000 0.4202400 0.4202400 0.420321120 0.420321120 0.420321120 0.420321120 0.420321120 0.420321120 0.4203400 -0.2653200 -0.26532100 -0.26532100 -0.26532100 -0.26532100 -0.26532100 -0.26532100 -0.26532100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.26542100 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.25550 -0.255550 -0.255550 -0.255555 -0.25555555 -0.255555555 -0.25555555	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -1.46875000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.43695100 0.68041300 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500 -0.549763100 0.83529900 1.63258700 -0.54976300 1.63258700 -0.54972600 1.63258700 -1.10622800 -1.11498400 -0.29540800 1.70425600 -2.217090400
<b>t-Bu-TS</b> C C H H H C H H H C H H H C C H H H C C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H C H H H H C H H H H C H H H H H C H H H H H C H H H H H C H H H H H C H H H H C H H H H C H H H H H C C H H H H C C H H H H H C C H H H H C C C H H H H C C C H H H H H C C C H H H H H H C C C H H H H H H H H H H H H H	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -3.30510300 -4.1485500 -3.30510300 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.45144700 -5.43144700 -5.43144700 -5.43144700 -5.43144700 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.3497400 0.52808100 1.68974600 0.66435800 2.94092400 1.62954600 0.66435800 2.94092400 1.90965500 -0.22505900 3.05471200 3.82042300 1.90988700 1.90988700 1.90988700	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.92188300 -0.92188300 -0.38461200 -2.07381100 1.39514100 1.39514100 -0.32849000 -0.32849000 -0.3482700 0.36592300 0.40817300 0.3849000 0.39173200 1.3942700 0.22260600 -0.04609300 -0.2211200 0.22260600 -0.04609300 -0.225500 0.22260600 -0.04609300 -0.26539200 -0.06026300 -0.06026300 -0.06026300 -0.05924000 -0.45921100	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -0.29750300 -1.74777200 -1.74369700 0.28486400 0.68041300 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.06905900 2.69816700 -1.17498400 -0.29540800 1.7425600 -2.17090400 -0.73354600
<b>t-Bu-TS</b> C C H H H C H H H C C H H H C C H H H C C H H H C H H H C H H H C C H C H H H H C H H H C H H H H C H H H H C H H H H C H H H H C C H H H H C C H H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H C C C H H H C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.18562800 -3.30510300 -4.18562800 -3.30510300 -4.27218000 -4.27218000 -4.27218000 -5.45631300 -5.45631300 -5.45631300 -5.45631300 -5.45631300 -6.36933900 -5.43144700 -0.77544600 -0.88816200 -0.34072200 -0.44997400 -0.88816200 -0.88816200 -0.52808100 1.62236400 1.62236400 1.62236400 1.622365900 -0.22505900 3.05471200 3.82042300 1.99888700 4.2304471200	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.86461200 -2.07381100 1.39514100 2.11175900 1.60850100 1.53736300 -0.32849000 -0.32849000 0.36592300 0.36592300 0.39173200 0.39173200 0.39173200 0.40897100 -0.04728200 0.22260600 0.22260600 0.0469300 -0.0460300 -0.046239200 0.26352100 -0.2632100 -0.2632100 -0.2632100 -0.2632100 -0.2632100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.26322100 -0.2632200 -0.2632200 -0.263200 -0.263200 -0.263200 -0.26320	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -1.40675000 -1.14245400 -0.29750300 -1.74777200 -1.73069700 0.28486400 -0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 -0.59763100 0.83529900 1.63258700 -0.59763100 0.63972600 1.63258700 -0.59763100 0.63972600 1.63258700 -0.54972600 1.106905900 2.69816700 -1.117498400 -0.29540800 1.70425600 -2.17090400 -0.2354100
<b>t-Bu-TS</b> С С Н С Н Н Н С Н Н Н С С Н Н Н Н С С С Н С Н Н Н С С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н Н Н С С Н Н С Н Н С С Н Н Н С С Н Н С С Н Н С С Н Н Н С С Н Н Н С С Н Н Н Н С С Н Н С С Н Н С С Н Н Н Н Н С С С Н Н Н Н С С С Н Н Н Н С С С Н Н Н С С С С С С С С С С С С С С С С С С С С	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.18562800 -3.30510300 -4.18562800 -3.39797300 -3.39797300 -5.47401200 -5.45631300 -5.45631300 -5.43144700 -5.4987700 -0.7544600 0.38816200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -0.52808100 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.9969500 -0.22505900 3.82042300 1.99888700 4.02904400 1.47387400 0.4708500	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.60850100 1.339514100 -0.32849000 -0.32849000 -0.21141000 -1.34922700 0.36592300 0.4897100 0.4897100 0.24924000 -0.44997100 0.229260600 -0.4609300 -0.42024400 -0.26539200 -0.26539200 -0.26362100 -0.26521100 -0.26521100 -0.26521100 -0.24304400 -0.26521100 -0.24304400 -0.245944000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45924000 -0.45921100 -2.321929200	0.72115600 0.22539500 0.72824700 -2.38546500 -2.39508500 -1.46675000 -1.12435400 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.12960900 1.43695100 0.3695100 0.35257800 2.82393700 3.56257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529900 1.63258700 -0.59763100 0.83529900 1.63258700 -0.59763100 0.54972600 1.163258700 -1.10622800 -1.11498400 -0.29540800 -1.74954080 -2.17090400 -0.73354600 2.14361100 3.1226500
<b>t-Bu-TS</b> C C H H H C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C C H H H H C C H H H H C C H H H C C H H H C C H H H C C H H H H C C H H H C C C H H H C C C H H H C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.14856280 -5.08277200 -3.30510300 -4.214835100 -4.2218000 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -5.43144700 -5.4394700 -0.34072200 -0.34072200 -0.34072200 -0.34997400 0.52808100 1.62974600 0.66435800 2.94092400 1.62926400 1.62926400 1.62926500 -0.22505900 3.05471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.85471200 3.854712000	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.92188300 -0.92188300 -0.38440100 1.39514100 2.11175900 1.60850100 1.53736300 -0.32849000 0.211141000 -0.31141000 -0.3173200 0.38173200 0.38173200 1.34922700 0.38929600 0.39173200 1.34927100 -0.04728200 0.22260600 -0.04609300 -0.225300 0.2221200 0.22260600 -0.04609300 -0.2653200 -0.26532100 -0.26532100 -0.3949800 -0.45821100 -2.36198200 -2.36198200 -2.36198200	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.43695100 0.836293700 2.83771600 3.34128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 2.54942800 -1.10222800 -1.1022800 -1.1022800 -1.1022800 -2.17090400 -0.73354600 2.14361100 3.12269500 2.7004100 2.7004100
<b>t-Bu-TS</b> C C H H H C H H H C C H H H C C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C H H H H C C H H H H C C C H H H H C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.39510300 -4.18562800 -5.08277200 -3.30510300 -4.14835100 -4.2218000 -3.39797300 -5.17401200 -5.4314700 -5.4314700 -5.43144700 -5.43144700 -5.43144700 -5.43144700 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -0.44997400 -1.92959600 -4.23047100 0.52808100 1.68974600 0.66435800 2.94092400 1.62236400 1.62236400 0.22505900 3.05471200 3.82042300 1.47387400 0.47068500 -0.483837700 0.47068500 -0.88337400	0.20711400 -0.22045900 -1.53145300 -1.04079400 -0.92188300 -0.86461200 -2.07381100 1.39514100 1.39514100 -0.32849000 -0.32849000 0.32849000 0.36592300 0.36592300 0.36592300 0.39173200 1.39470900 1.99470900 1.04897100 -0.04728200 0.22260600 -0.04609300 -0.26539200 -0.26362100 -0.06026300 -0.3652100 -0.3652100 -0.3652100 -0.45821100 -2.82925000 -2.35198200 -2.25916700	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -0.29750300 -1.14077200 -1.74777200 -1.74777200 -1.74777200 -1.74777200 -0.28486400 0.68041300 1.43695100 2.823771600 3.56257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.63258700 -0.54972600 1.06905900 2.69816700 -1.17498400 -0.29540800 1.7425600 -2.17090400 0.73354600 2.14361100 3.12269500 2.9001100
<b>t-Bu-TS</b> C C H C H H C H H H C C H H H C C H H H C H H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H C H H H C H H H C H H H C H H H C C H H H C C H H H C C H H H C C H H H C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -4.18562800 -5.08277200 -3.30510300 -4.18562800 -3.39797300 -4.29309800 -3.39797300 -5.17401200 -5.45631300 -6.36933900 -5.43144700 -5.49987700 -0.784600 0.638816200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -1.52255900 3.62436400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.6236400 0.645880 -0.256590 -0.35837700 -0.35837700 -0.353303200	0.20711400 -0.22045900 -1.53145300 -1.5479400 -0.92188300 -0.86461200 -2.07381100 2.11175900 1.39514100 2.11175900 1.60850100 1.33736300 -0.32849000 -0.3141000 -1.34922700 0.36592300 0.40817300 0.40817300 0.40817300 0.40847100 0.4897100 0.24924000 -0.2420400 -0.242020 0.22260600 -0.04203200 -0.04203200 -0.0420300 -0.26539200 -0.26539200 -0.2652100 -2.36198200 -2.25916700 -2.55191000 -2.55191000	0.72115600 0.22539500 -1.76812500 -2.38546500 -2.39508500 -1.40675000 0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.12960900 1.43695100 2.82393700 3.56257800 2.83771600 3.54128500 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.63258700 -0.59763100 0.7535600 -2.17090400 -0.73354600 2.14361100 3.12269500 2.79001100 1.4496500
<b>t-Bu-TS</b> C C H H H H C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C H H H C C C H H H C C C H H H C C C C H H H C C C C C C C C C C C C C	1' -1.92851700 -2.99615200 -2.89629400 -3.30510300 -4.14852800 -5.08277200 -3.30510300 -4.24309800 -3.39797300 -5.47401200 -5.45631300 -5.4314700 -5.4314700 -5.43987700 -0.7584600 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -0.3407200 -0.34092400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 1.62236400 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.25000 -0.2500	0.20711400 -0.22045900 -1.53145300 -0.92183300 -0.92183300 -0.36461200 -2.07381100 2.11175900 1.60850100 1.53736300 -0.32849000 0.21114000 -0.31414000 -0.31414000 -0.3143922700 0.36592300 0.4897100 -0.4897100 -0.497100 0.20925500 0.22260600 -0.4609300 -0.2211200 0.42024000 0.42024000 -0.26539200 -0.26362100 -0.36198200 -0.45944000 -0.45821100 -2.25916700 -2.251191000 -2.551191000 -2.55138900	0.72115600 0.22539500 0.72824700 -1.76812500 -2.38546500 -1.40675000 -1.16435400 -0.29750300 -1.74777200 -1.73069700 0.2848400 0.30912100 0.68041300 1.43695100 0.68041300 1.43695100 2.82393700 3.36257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.63258700 -0.54972600 1.63258700 -0.54972600 1.10622800 -1.10622800 -1.17498400 -0.29540800 1.70425600 2.17090400 -0.73354600 2.14361100 3.12269500 2.79001100 1.46496500 0.4574200
<b>t-Bu-TS</b> С С Н Н Н Н С Н Н Н Н С С С Н Н Н Н С Н Н Н Н С Н Н Н Н Н С Н Н Н Н Н С Н Н Н Н Н Н Н Н Н Н Н Н Н	1' -1.92851700 -2.99615200 -2.89629400 -3.39510300 -3.30510300 -4.1485500 -3.30510300 -4.2930800 -3.39797300 -5.471401200 -5.45631300 -5.45144700 -5.45144700 -5.43144700 -5.43144700 -5.43144700 -5.43144700 -0.34072200 -0.34072200 -0.34072200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.3407200 -0.2505900 3.05471200 3.82042300 1.90965500 -0.22505900 3.05471200 3.82042300 1.90965500 -0.22505900 3.05471200 -0.2505900 3.05471200 -0.2505900 3.05471200 -0.2505900 3.05471200 -0.2505900 3.05471200 -0.2505900 3.05471200 -0.2505900 3.05471200 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2505900 -0.2502900 -0.36601200 -0.36601200	0.20711400 -0.22045900 -1.53145300 -0.92188300 -0.92188300 -0.92188300 -0.38461200 -2.07381100 1.39514100 1.39514100 -0.3849000 -0.21141000 -0.3422700 0.36592300 0.40817300 0.39173200 1.34922700 0.36592300 0.39173200 1.3492700 0.3947900 1.2492700 0.2250600 -0.04609300 -0.26539200 -0.06026300 -0.06026300 -0.36521100 -2.82925000 -2.36198200 -2.25916700 -2.25191000 -2.25191000 -2.95138900 -3.08984000	0.72115600 0.22539500 0.72824700 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -2.38546500 -0.29750300 -1.74777200 -1.73069700 0.28486400 0.30912100 0.68041300 1.43695100 2.82393700 3.56257800 2.83771600 3.14128500 -0.59763100 0.83529900 1.63258700 -0.54972600 1.06905900 2.69816700 -1.17498400 -0.73354600 2.174925600 0.73354600 2.14361100 3.12269500 2.4456100 0.46574200 0.46574200

C1	2.11203400	-3.61410000	-0.36723500
C	-1.84714200	-1.85020600	3.74973400
2	0.94479300	-2.02092600	4.42847700
N N	-2.641/2800	-1.49442000	4.5113780
Э	-2.59609600	-2.55840500	1.2031710
С	2.64361600	-2.99423800	2.43345000
B ₁₁ IN1	17		
- <b>Би-</b> ПЛ С	-2.02137600	-0.37881600	0.7164600
c .	-2.96148300	-0.17141300	-0.0185750
Н	-2.88769900	-2.18688400	1.86451900
2	-4.43023000	-1.12022200	-1.7559710
H ur	-5.24551500	-0.8/833800	-2.44/0950
H	-4.75722500	-1.93516500	-1.1033300
2	-3.60254700	1.25132000	-1.89801500
н	-3.33504500	2.15492500	-1.3416480
H	-2.73190800	0.93200300	-2.4793380
~	-4.41241600	1.4966/400	-2.5939830
H	-6.10503000	0.85453400	-0.8253020
н	-5.63226000	-0.17169300	0.54356800
н	-5.04496500	1.50209700	0.44627600
2	-0.93616800	-0.60116000	1.68820400
U U	-1.31//1600	0.17934300	2.96317700
H	-1.43606500	1.23229700	2.69521000
н	-2.26135900	-0.19271000	3.3676570
2	-4.06692500	0.13452400	-0.94724100
2	0.41675400	-0.16570300	1.12373400
2	1.4/145/00	0.20220900	1.96903500
2	2.72714600	0.51348100	1.45219200
н	1.33470000	0.22966700	3.04556600
2	1.90799700	0.11768500	-0.77588100
H ~	-0.15409000	-0.46160700	-0.9330020
- H	3.53280900	0.40382300	2.13006300
Н	2.06974000	0.07395800	-1.84867900
н	3.93614600	0.68811100	-0.32218900
2	1.79885200	-2.90804200	1.39764300
2	0.70228700	-3.20021100	0.41697400
2	-0.95555200	-2.20807500	2.01262200
2	0.05337500	-2.51429200	3.10246900
2	1.34604400	-2.73717000	2.80905800
C1 71	-0.50041300	-2.44249100	4.72503900
2	-1 64530700	-3 31662600	-0 1502040
2	1.09481300	-3.73955500	-0.85230400
N	-2.51326600	-3.65130000	-0.8389640
N	1.40954900	-4.15817200	-1.8835340
) )	-2.22239800	-2.58801400	2.4542760
	2.00000100	2.70500500	1.00100000
Bu-IN2	'-Cation		
C 7	-2.25602700	0.06854700	0.8360730
2	-1.26783200	-0.06891800	1.80410500
2	-1.71146300	-0.48199800	3.17389400
н	-1.21602300	-1.41642800	3.4621110
H	-1.42286700	0.28185200	3.90564900
	-2.79017200	-0.62341300	3.2126960
2	1.10537300	0.02191700	2.48694100
2	0.48132600	0.57328600	0.18495600
2	2.43112800	0.25754400	2.17723200
H	0.83774400	-0.28092100	3.49391200
J U	1.80936100	0.80806700	-0.11556500
2	2.78224300	0.65029400	0.87902800
н	3.19733800	0.13910900	2.93569300
Н	2.09800300	1.11277500	-1.11571300
H	3.82577600	0.83584100	0.64121500
- H	-3./1804800	0.79054500	-2.282/9400
H	-4.54700300	0.86769100	-2.9928630
н	-3.26180900	1.77958500	-2.1806090
~	-5 30320700	1 27250000	-0.36396800

ц	5 70222600	0.01020600	0.50012200
11	-3.70333000	0.91929000	0.39012200
н	-4.8/392100	2.26842000	-0.22444000
Н	-6.12723700	1.34928900	-1.08015700
С	-4.89523200	-1.11417200	-1.09596900
Н	-4.17285000	-1.83621100	-1.48623400
н	-5.29207800	-1.48291800	-0.14650500
н	-5 72044100	-1.03113000	-1 81004700
C	-4 26004700	0.28645500	-0.93/90800
C	-4.20004700	0.20045500	-0.75470000
IND! Am	i		
IINZ -AII	1011		
Н	-2.70512900	-2.94220800	0.91096100
С	2.00412900	-2.78371300	0.62032700
С	0.94679600	-2.62700800	-0.34641100
С	-0.42172400	-2.72454700	0.00877500
С	-0.83078600	-2.97614900	1.31124400
Ĉ	0 16673600	-3 13828600	2 29610400
Ĉ	1 50538200	-3.04812000	1 97631300
C	0.26612800	-3.04812000	2.02202200
CI	-0.30012800	-3.45557000	3.92203200
CI Ã	2./1819100	-3.24/60300	3.19041600
С	-1.47033100	-2.56958700	-0.95624300
С	1.30491000	-2.36460600	-1.70022400
N	-2.40295600	-2.46594100	-1.63956200
Ν	1.56753600	-2.14777300	-2.81087900
0	-2.14084500	-3.07503800	1.68966300
0	3 21568000	-2 70766000	0 35850200
0	5.21000000	2.707000000	0.0000200
SiMo. A	llono		
Silvies-A	1 47071500	0 42151200	1.05407000
C	-1.4/9/1500	-0.43151200	1.05407900
С	-2.56393400	-1.03905300	0.64852700
Н	-2.70730800	-2.09417300	0.89613000
Si	-3.83098100	-0.10429100	-0.39186300
С	-3.96938400	-0.94913700	-2.06992600
Н	-4.71633000	-0.45073500	-2.69865000
Н	-3.01169200	-0.92559700	-2.60161000
н	-4 26867400	-1 99777500	-1 96355500
C	-3 21927200	1 66033800	-0.58821300
u u	2 12/12/200	2 15742000	0.28467600
11	-3.13418000	2.13743000	1.05657400
н	-2.22847200	1.68120400	-1.0303/400
н	-3.90316500	2.24/3/300	-1.21126/00
С	-5.50219/00	-0.14778900	0.47413100
Н	-6.26190000	0.37986600	-0.11395600
Н	-5.84768000	-1.17778800	0.61746800
Н	-5.44704600	0.32735800	1.45937400
С	-0.41102300	0.25587400	1.40552700
С	-0.38990500	0.99095700	2.72776100
Н	0.40377900	0.60811700	3.37983800
н	-0.21038100	2.06160000	2 57465800
н	-1 3/375900	0.87138700	3 24539200
C II	-1.34373900	0.37138700	0.5124539200
c	0.77393400	0.32002000	0.31243700
Ĉ	1.93680800	0.99/95/00	0.91590900
C	0.76297300	-0.26439100	-0.76129200
С	3.04848900	1.07446300	0.07595900
Н	1.98376400	1.46771400	1.89357200
С	1.86954800	-0.18836300	-1.59685100
Н	-0.12888300	-0.79108100	-1.09232300
С	3.02218200	0.48301200	-1.18268900
Н	3.93738400	1.60083200	0.41263400
н	1.83357900	-0.65439400	-2.57772500
н	3 88760100	0 5/108700	-1.83607000
	5.88700100	0.54190/00	-1.05007000
SiMo. T	S1		
Silvies-1	<b>J</b> (1077/00)	0.640.66000	1 41 460 600
C	-1.0125/600	-0.04266800	1.41460600
C	-2.74043700	-1.03664600	0.86/28100
н	-3 1000/1300	-2.03052400	1 13708000

С	-2.74043700	-1.03664600	0.86728100
Н	-3.10004300	-2.03052400	1.13708900
С	-3.69060100	-1.04892400	-2.00191800
Н	-4.23088000	-0.53250900	-2.80327400
Н	-2.67484300	-1.25444400	-2.35758400
Н	-4.18588500	-2.01082900	-1.82953400
С	-2.73461100	1.59973600	-0.72622500
Н	-2.72286400	2.23311300	0.16757000
Н	-1.69618000	1.42158800	-1.02813700
Н	-3.22262900	2.16654700	-1.52758100
С	-5.39893500	0.30890400	0.19029200
Н	-5.98099100	0.86203500	-0.55548700
Н	-5.92543400	-0.62923800	0.39627300
Н	-5.38793900	0.89772700	1.11374100
С	-0.73862200	0.42642200	1.63570400
С	-1.15707400	1.50894400	2.59442900
Н	-0.78563500	1.30160600	3.60673300
Н	-0.76159000	2.47947500	2.27781300

н	-2 24663300	1 57058000	2 64371900
C	0.50038200	0.20250000	1 17203000
C	0.39938200	0.29230900	1.17293900
C	1.6/566300	0.99089100	1.79527100
С	0.91516900	-0.67703200	0.18551100
С	2.98034900	0.64955600	1.51816900
Н	1.46257400	1.73116600	2.56056400
С	2.23514800	-0.97761100	-0.12680200
н	0 10365400	-1 16619100	-0 34930400
C	2 26571000	0.26210800	0.57912200
C II	3.20371900	-0.30219800	0.37813200
н	3.79331000	1.12903400	2.05438100
Н	2.45860700	-1.73081300	-0.87761600
Н	4.29765600	-0.64798200	0.39240900
С	2.83978700	-3.56785200	1.72156700
С	2.59012800	-2.54077800	2.75663800
Ĉ	1 33134100	2 04023100	2 08250700
c	0.20021500	-2.04023100	2.98239700
C	0.20031500	-2.43503900	2.18523100
С	0.41580800	-3.46/12/00	1.18248200
С	1.64009900	-4.02202000	0.97898400
Cl	-0.95937500	-3.93840700	0.25835800
Cl	1.91532100	-5.23591000	-0.20097200
C.	1 08945500	-1.07214700	4 01938800
c	2 71700200	2.09152200	2.50097000
C .	5./1/09500	-2.08152200	3.3098/900
N	0.88565900	-0.28750600	4.84478500
N	4.62268400	-1.67483800	4.10616000
0	-0.95944400	-1.93488300	2.42506900
0	3.95490700	-4.00618400	1.49942300
Si	-3.65597200	-0.01137000	-0.43373700
5.	5105577200	0.01107000	0.10070700
SiMo II	N1		
Silvies-II	1 10107000	0.65050000	0.00065100
C	-1.1212/300	-0.652/2000	2.02865100
С	-2.28200300	0.05337000	1.77294000
Н	-3.07842800	-0.18435200	2.48500000
С	0.15391400	-0.39964000	1.46583600
С	1.21065600	-1.42923400	1.65301900
н	0 82416600	-2 42466500	1 40956400
и и	2 11784600	1 20310500	1.00351300
11	2.11784000	-1.20319300	2 72122700
н	1.47003900	-1.40441500	2.72132700
С	0.44891200	0.86831500	0.84381200
С	1.34227600	0.93377400	-0.25109100
С	-0.11037600	2.06960800	1.33664200
С	1.60689600	2.14296600	-0.86902500
н	1 77309600	0.01999600	-0 64902200
C	0.18036900	3 28365700	0.72268000
c	1.02654500	3.20303700	0.72200000
C	1.02654500	3.321/2300	-0.38290100
н	2.26420800	2.17623400	-1.73196900
Н	-0.23499500	4.20291100	1.12410300
Н	1.25396800	4.27121800	-0.85838600
С	-4.91336200	-3.76852700	3.01378200
C	-4 42485700	-2 91186900	4 09065300
Ĉ	3 10150200	2 25600400	4.01580200
c	-3.19139200	-2.23030400	4.01380200
č	-2.57508000	-2.59570800	2.89725400
C	-2.78517800	-3.21939500	1.82921600
С	-3.99851600	-3.86555600	1.86419300
Cl	-1.72869400	-3.35075700	0.44989700
Cl	-4.53984100	-4.82898000	0.54654000
С	-2.74855600	-1.34438400	5.03612800
C	-5 26471500	-2 73014600	5 23019600
Ň	-2 36295600	-0 56046700	5 79572100
N	5.02245800	2.55005200	6 1 6 2 2 0 2 0 0
N O	-5.95245800	-2.55995200	0.10239200
0	-1.14699700	-1./36/3800	2.85/8/200
0	-5.99752000	-4.34641300	3.04688300
Si	-3.04382900	0.85610900	0.22023300
С	-4.46648700	-0.35127600	-0.02539000
Н	-4.09827500	-1.36236200	-0.23703300
н	-5.11663100	-0.41056700	0.85432000
н	-5 08087500	-0.03515100	-0.87676500
C	1 04294600	-0.05515100	1 20712000
C	-1.94584600	0.84126100	-1.29/13800
Н	-1.21961900	1.66066700	-1.32190300
Н	-1.40568200	-0.10917500	-1.38844900
Н	-2.58689400	0.93583000	-2.18055900
С	-3.66230200	2.57104800	0.65919800
Ĥ	-2.83886300	3.27717200	0.80672300
н	-4 29207100	2 95544100	-0 15098800
 ц	1 268 12000	2.55370100	1 57002600
11 11	-4.20043900	2.33379100	1.37092000
н	-0./0365/00	2.049/8/00	2.24502600
CIM T			
511VI e3-1	52		

Shirto-	102		
С	-0.99616900	-0.65913500	1.87046100
С	-2.03722300	0.28699000	1.70436100
Н	-2.74109900	0.30615100	2.54432800

C	0.27779700	-0.44325000	1.33217000
С	1.29451200	-1.53333300	1.30718100
н	0 86836800	-2 //935900	0 88753200
11	0.80830800	-2.44933900	0.88755200
н	2.1904/000	-1.243/8200	0.75575500
Н	1.59186600	-1.76763200	2.33745000
С	0.49736100	0.90694700	0.94885700
Ċ	1 38684800	1 28000000	-0.09203200
c	0.00717700	1.01202600	1.50249500
C	-0.28/17/00	1.91392000	1.59548500
С	1.38564400	2.58400600	-0.55083700
Н	2.00479300	0.53652800	-0.57222700
C	-0.29542500	3 22916100	1.081/15300
c	-0.29342300	3.22910100	1.08145500
С	0.52464900	3.55335700	0.02217400
Н	2.03299500	2.86726500	-1.37496900
н	-0.88599000	3.99315700	1.57730300
ц	0.55207000	4 57202500	0.24805600
п	0.33307900	4.37393300	-0.34803000
С	-5.16556100	-3.22755000	3.02495700
С	-4.54270400	-2.34200900	4.00268800
C	-3 23466000	-1 87072500	3 84753600
c	2.47020400	2 21 400 600	2 72057700
C	-2.47920400	-2.21400600	2.75057700
С	-3.02050200	-3.06888700	1.75256900
С	-4.30470800	-3.54657500	1.87248200
Cl	-2 02901800	-3 42492000	0.36621500
CI	5.01201500	4.52524000	0.50021500
CI	-5.01381500	-4.52524900	0.64886900
С	-2.63861400	-0.93263800	4.76096500
С	-5.31715300	-1.93887800	5.13210000
N	-2 10937200	-0.11783800	5 39163500
N	-2.10757200	-0.11705000	5.57105500
N	-5.925/5900	-1.58843200	6.05449400
0	-1.15981300	-1.76820000	2.61047900
0	-6.31361300	-3.65462500	3.12912900
S;	2 01715600	0.85526300	0.00715100
31	-2.91/13000	0.85520500	0.09715100
C	-4.30183200	-0.41021000	-0.00384800
Н	-3.93552700	-1.38671900	-0.33712900
Н	-4.81417900	-0.55410600	0.95486100
н	-5.04807300	-0.06445000	-0.72992700
	-3.04807300	-0.00445000	-0.72992700
C	-1.79519200	0.75945200	-1.396/1000
Н	-1.08286400	1.58854000	-1.44235100
н	-1.23947300	-0.18497000	-1.42031500
ц	2 41242500	0.70704600	2 20102000
11	-2.41243300	0.79794000	-2.30193900
( '	-3.63331300	2.56770300	0.36930800
C			
Н	-2.88807600	3.35912300	0.25154800
Н	-2.88807600 -4.42495500	3.35912300 2.74486200	0.25154800
H H	-2.88807600 -4.42495500	3.35912300 2.74486200 2.66071400	0.25154800
H H H	-2.88807600 -4.42495500 -4.08682600	3.35912300 2.74486200 2.66071400	0.25154800 -0.36752200 1.36226200
H H H H	-2.88807600 -4.42495500 -4.08682600 -0.61647400	3.35912300 2.74486200 2.66071400 1.76316900	0.25154800 -0.36752200 1.36226200 2.61862300
H H H H	-2.88807600 -4.42495500 -4.08682600 -0.61647400	3.35912300 2.74486200 2.66071400 1.76316900	0.25154800 -0.36752200 1.36226200 2.61862300
н н н SiMe3-T	-2.88807600 -4.42495500 -4.08682600 -0.61647400	3.35912300 2.74486200 2.66071400 1.76316900	0.25154800 -0.36752200 1.36226200 2.61862300
н н н SiMe3-T	-2.88807600 -4.42495500 -4.08682600 -0.61647400	3.35912300 2.74486200 2.66071400 1.76316900	0.25154800 -0.36752200 1.36226200 2.61862300
н н н SiMe3-T С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>251'</b> -2.00084300	3.35912300 2.74486200 2.66071400 1.76316900	0.25154800 -0.36752200 1.36226200 2.61862300
н н н SiMe3-T С С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>'S1'</b> -2.00084300 -3.02705500	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 -0.27810800	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100
н н н SiMe3-T С С н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>'S1'</b> -2.00084300 -3.02705500 -2.98126500	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 -0.27810800 -1.62178700	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500
н н н SiMe3-T С С н С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 -0.27810800 -1.62178700 0.37973000	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900
н н н SiMe3-T С С н С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900 2.06180200
н н н SiMe3-T С С н С С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1?</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900 3.06189200
н н н SiMe3-T С С н С С н С С н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -0.94937200 -0.94937200 -0.80781400	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.79418400	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000
н н н н SiMe3-T С С н с с н н н	-2.8807600 -4.42495500 -4.08682600 -0.61647400 -3.02705500 -2.98126500 -0.94937200 -0.80781400 -0.95152500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.14645300 1.81913300	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900 3.80011000 3.80011000
н н н SiMe3-T С с н с с н с н н н н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1?</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.3705000	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.14645300 1.81913300 0.74146900	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.24709100 3.24709100
н н н SiMe3-T С С н С С н н н н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -0.80781400 -0.95152500 -2.37050500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.79418400 0.74445300 1.81913300 0.74146900	0.25154800 -0.36752200 1.36226200 2.61862300 0.80365800 0.20499100 0.57391500 1.65043900 3.80011000 3.80011000 3.24709100 1.22970200
н н н SiMe3-T С С н С с н с н с н н н н н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1?</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -0.95152500 -2.37050500 0.42690400	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.14645300 1.81913300 0.74146900 0.33035500	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.27391500 1.65043900 3.80011000 3.24709100 3.24709100 3.245600 1.22879300
н н н SiMe3-T С С С н с с н н н н н с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 0.42690400 1.46446600	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.14645300 1.81913300 0.74146900 0.33035500 0.45488300	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 2.18391200
н н н SiMe3-T С С с н с с н н н н н с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 -3.02705500 -2.98126500 -0.94937200 -1.2943100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.4646600 0.78648000	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.14645300 0.14645300 0.33035500 0.45488300 0.11740400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200
н н н SiMe3-T С С с н с с н н с с с н н с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S11</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -0.95152500 0.42690400 1.46446600 0.78648000 0.78648000	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.74146900 0.33035500 0.45488300 0.131740400 0.35500400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.27391500 1.65043900 3.06189200 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200 1.80617200
н н н SiMe3-T С С с н с с н н н н с с с с с и н с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1?</b> -2.00084300 -3.02705500 -0.94937200 -1.29453100 -0.96781400 -0.95152500 -0.42690400 1.46446600 0.78648000 2.79336700	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.74146900 0.33035500 0.45488300 0.11740400 0.35500400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200 1.80617200 2.32017100
н н н SiMe3-T С С с н с с н н с с с н н с с с н с н с	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -0.94937200 -0.94937200 -0.95152500 -0.95152500 -2.37050500 0.42690400 1.46446600 0.78648000 2.79336700 1.22595800	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 1.81913300 0.74146900 0.33035500 0.41740400 0.35500400 0.611740400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 2.18391200 -0.12454200 1.80617200 3.23017100
н н н SiMe3-T С С С н с с н н н с с с н н с с с н с с н с с н с с с н н с с с с н н с с с н н с с с н н н с с н н н с с с н н н с с с н н н с с с с н н с с с с с с с с с с с с с с с с с с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S11</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446600 0.78648000 2.79336700 1.22595800 2.211852600	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -0.27810800 0.37973000 0.37973000 0.37973000 0.37973000 0.379418400 0.33035500 0.74146900 0.33035500 0.45488300 0.11740400 0.61406300 0.61406300	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.2047600 1.22879300 2.18391200 -0.1245200 1.80617200 3.23017100 -0.50016000
н н н SiMe3-T С С с н с с с н н н н с с с н н н н н н	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -2.98126500 -0.94937200 -1.29437200 -1.29437200 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.4646600 0.78648000 2.79336700 1.452459800 0.211852600 0.00132300	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 1.81913300 0.74146900 0.3305500 0.45488300 0.11740400 0.35500400 0.61176800	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.80617200 3.23017100 0.50016000 -0.87201500
н н Н Н С С С С С Н С С С Н Н С С С С Н Н С С С Н С С С Н С С С Н С С С Н Н С С С С С Н Н Н С С С С Н Н С С С С Н Н С С С С Н Н С С С С Н Н С С С С С С С С С С С С С С С С С С С С	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -0.94937200 -1.29453100 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446000 2.79336700 1.22595800 2.11852600 0.0132300	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.27810800 0.162178700 0.37973000 0.79418400 0.37973000 0.181913300 0.74146900 0.33035500 0.45488300 0.1330250400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.35504400 0.3550400 0.3550400 0.3550400 0.3550400 0.3550400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.35520400 0.05388000 0.01745000 0.0177600 0.0177600 0.01777600 0.01777760 0.017777777777777777777777777777777777	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.27391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 0.12454200 1.880617200 3.23017100 -0.50016000 0.87201500 0.46615100
н н н SiMe3-T С С С н с С с н н н с С С с н н с с с н н с с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ? -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 0.42690400 1.46446600 0.78648000 2.73050500 0.2595800 2.11852600 0.00132300 3.12569500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -0.27810800 0.37973000 0.37973000 0.37973000 0.37973000 0.374146900 0.33035500 0.74146900 0.33035500400 0.1740400 0.3538000 0.61406300 0.61406300 0.01976800 0.14322200	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.2047600 1.22879300 2.18391200 -0.12454200 1.80617200 3.23017100 -0.50016000 -0.87201500 0.46615100
н н н К С С С С С С Н С С С С Н С С С Н С С С Н С С С Н С С С Н С С С С Н С С С С С С Н Н С С С С С С С Н Н С С С С С С С С С С С С С С С С С С С С	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ? -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 1.42690400 0.78648000 2.79336700 1.22595800 2.11852600 0.00132300 3.12569500 3.57235800	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 0.14645300 0.4548300 0.4548300 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.11472000	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.80617200 3.23017100 -0.5016000 0.87201500 0.46615100 2.55959700
н н н К С С С С С С Н С С С С Н Н С С С С Н С С С С Н С С С С Н С С С С Н С С С С Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S11</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -0.95152500 0.42690400 1.46446600 0.78648000 0.79336700 1.22595800 2.11852600 0.0132300 3.12569500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.79418400 0.33035500 0.74146900 0.33035500 0.45488300 0.1740400 0.35500400 0.61406300 0.61406300 0.61406300 0.61406300 0.61472000 -0.10690200	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.27391500 1.65043900 3.06189200 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200 1.880617200 3.23017100 -0.50016000 -0.87201500 0.46615100 2.55959700 -1.54204300
н н н SiMe3-T С С с н с с с н н н с с с н н н н н н н	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -2.98126500 -0.94937200 -1.29437200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.45446600 0.78648000 2.11852600 0.00132300 3.12569500 3.57235800 2.37692500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 1.81913300 0.74146900 0.3305500 0.45488300 0.45488300 0.45488300 0.611740400 0.6358000 0.01976800 0.01976800 0.41472200 0.4147200	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.80617200 3.23017100 0.50016000 -0.37201500 0.46615100 2.55959700 -1.54204300 0.17419300
н н Н Н Н С С С С Н С С С Н Н С С С С Н Н С С С С Н С С С Н С С С С Н С С С С Н С С С С Н Н С С С С Н Н С С С С Н Н С С С С Н Н С С С С С С С С С С С С С С С С С С С С	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446000 2.79336700 1.22595800 2.11852600 0.0132300 3.12569500 3.12569500 3.57235800 2.37692500 4.16656500	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.72810800 0.79418400 0.37973000 0.79418400 0.37973000 0.79418400 0.33035500 0.4548300 0.11740400 0.35500400 0.61406300 0.014322200 0.41172000 -0.10690200 0.044170700	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 0.323017100 -0.50016000 0.46615100 2.55959700 -1.54204300 0.17419300
н н н SiMe3-T С С С н с с н н с с с н н с с с н н с с с н н с с с н н с с с с н н н с с с с н н н с с с с н н н с с с с н н н н с с с с с с с с с с с с с с с с с с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S11</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446600 0.78648000 0.79336700 1.22595800 2.11852600 0.00132300 3.57235800 2.37625500 4.16656500 1.52536100	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -0.27810800 0.162178700 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.37973000 0.34146900 0.33035500 0.335500400 0.35500400 0.61406300 0.61406300 0.61406300 0.01976800 0.04172000 -0.10690200 0.04470700 -2.69224300	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.2047600 1.22879300 2.18391200 -0.12454200 1.80617200 3.23017100 -0.50016000 -0.37201500 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800
н н н SiMe3-T С С с н с с с н н н н с с с н н н н н н	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.22595800 0.00132300 3.57235800 2.37692500 4.16656500 1.5253100 0.64143700	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 0.74146900 0.33035500 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.014322200 0.41172000 -0.10690200 0.04470700 -2.69224300 -2.53260100	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200 1.80617200 3.23017100 -0.50016000 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100
н н н SiMe3-T С С с н с с н с с н н с с с н с с н с с н с с н с с с н с с с н с с с с с н н н с с с с с с с с с с с с с с с с с с с с	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -0.94937200 -1.29453100 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.42446000 0.78648000 2.79336700 1.22595800 2.11852600 0.0132300 3.12569500 3.57235800 2.37692500 4.16656500 1.52256100 0.64143700 -0.72876500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.74146900 0.33035500 0.414645300 0.1474000 0.35500400 0.35500400 0.05388000 0.014322200 0.41172000 -0.10690200 0.41172000 -2.69224300 -2.52360100 -2.52448100	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.27391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 0.12454200 1.80617200 3.23017100 -0.50016000 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.54628100 2.44165000
н н Н Н Н С С С С Н Н С С С С Н Н Н Н С С С С Н Н С С С С Н Н Н Н Н Н Н Н 	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -0.94937200 -0.95152500 -2.37050500 0.42690400 0.4644600 0.78648000 2.79336700 1.45446600 0.00132300 3.12569500 3.57235800 4.16656500 1.52536100 0.64143700 -0.72876500	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.14645300 1.81913300 0.74146900 0.3305500 0.45488300 0.45488300 0.45488300 0.45488300 0.45488300 0.45488300 0.41740400 0.53500400 0.61976800 0.01976800 0.014322200 0.4147200 -2.69224300 -2.52448100 -2.68560200	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.80617200 3.23017100 0.50016000 -0.50016000 -0.50016000 -1.54204300 0.17419300 1.37956800 2.54628100 2.41165000 1.112826700
н н н В <b>SiMe3-T</b> С С С С С С С Н С С С Н Н Н Н С С С С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ? -2.00084300 -2.0084300 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.22595800 2.11852600 3.57235800 2.37692500 4.16656500 4.16656500 1.52536100 0.64143700 -0.72876500 -1.36314200	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 0.14645300 0.4548300 0.4548300 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.01976800 0.014322200 0.41172000 -2.69224300 -2.69224300 -2.52360100 -2.5248100 -2.88560200	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.80617200 3.23017100 -0.50016000 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.41165000 1.132826700
н н н Н Н С С С С н С С С н С С С н С С С н С С С н С С С с н С С С С	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446600 0.78648000 0.78648000 2.79336700 1.22595800 2.11852600 0.0132300 3.12569500 3.57235800 2.37692500 4.16656500 1.52536100 0.64143700 -0.72876500 -1.36314200 -0.232051800	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.79418400 0.37973000 0.74146900 0.33035500 0.45488300 0.1740400 0.35500400 0.35500400 0.35500400 0.35500400 0.45488300 0.1172000 -0.10690200 0.41172000 -2.69224300 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.5248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52248100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.52249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.5249100 -2.52491000 -2.52491000 -2.52491000 -2.525491000000000000000000000000000000000000	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.23045600 1.22879300 2.18391200 -0.12454200 1.80617200 3.23017100 -0.50016000 -0.85016000 -1.54204300 0.17419300 1.37956800 2.54628100 2.54165000 1.12826700 -0.0291600
н н н SiMe3-T С С С н с с с н н н с с с н н н с с с н н н с с с н н н н с с с с с с с с с с с с с с с с с с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.46446600 0.078648000 2.79336700 1.452595800 3.57235800 2.37692500 3.57235800 4.16656500 1.52536100 0.64143700 -0.52051800 0.52051800 0.83593900	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 0.14645300 0.4548300 0.4548300 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.014322200 0.41172000 -0.10690200 0.04470700 -2.69224300 -2.52360100 -2.52360100 -2.52860200 -2.88603400 -2.8863400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 2.18391200 -0.12454200 1.80617200 3.23017100 -0.50016000 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.54628100 2.5416500 -0.028016600 0.08074200
н н н SiMe3-T С С с н с с н с с н с с н с с н с с н с с н с с н с с с н с с с с н с с с с с с с с с с с с с с с с с с с с	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -0.298126500 -0.94937200 -1.29453100 -0.95152500 -0.95152500 -2.37050500 0.42690400 1.46446000 0.78648000 2.79336700 1.22595800 2.11852600 0.0132300 3.12569500 3.12569500 3.572358100 0.64143700 -0.54143700 -0.52051800 0.83539300 -1.31850200	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.27810800 0.79418400 0.37973000 0.79418400 0.37973000 0.79418400 0.33035500 0.4146900 0.33035500 0.4146900 0.33035500 0.4146900 0.35500400 0.35500400 0.05388000 0.014322200 0.41172000 -0.10690200 0.44170200 -2.69224300 -2.52360100 -2.52448100 -2.52448100 -2.52448100 -2.88603400 -2.91379000 -3.04578300	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.2509500 -0.12454200 1.380617200 -0.87201500 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.41165000 1.12826700 -0.0801600 0.08074200 -1.54481100
н н н К С С С С С С С С С С С С С С С С	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -0.94937200 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.46446600 0.00132300 3.12569500 3.12569500 3.57235800 0.64143700 -0.72876500 1.3614200 -0.52051800 0.8553900 -1.31850200 -1.3653900	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.14645300 1.81913300 0.74146900 0.3305500 0.45488300 0.45488300 0.45488300 0.45488300 0.45488300 0.45488300 0.457800 0.05388000 0.01976800 0.4147200 -2.69224300 -2.52448100 -2.68560200 -2.68560200 -2.68560200 -3.04578300 -3.21822400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.83017200 0.45016000 -0.50016000 -0.5016000 0.17419300 1.37956800 2.54628100 2.41165000 1.12826700 -0.02801600 0.0874200 -1.2549600
н н Н Н Н Н С С С С С С С С С С С С С С	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ² -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 1.46446600 0.78648000 2.79336700 1.22595800 2.11852600 3.57235800 2.37692500 4.16656500 1.52536100 0.64143700 -0.72876500 -1.3614200 0.83593900 -1.3850200 1.85653900	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.14645300 0.14645300 0.4548300 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.014322200 0.41172000 -0.10690200 0.04470700 -2.6224300 -2.52360100 -2.52448100 -2.52448100 -2.88603400 -2.88603400 -2.8803400 -2.8803400 -2.3803400 -2.381222400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.80617200 3.23017100 -0.50016000 0.37201500 0.17419300 1.37956800 2.54628100 2.41165000 1.137956800 2.54628100 2.41165000 1.12826700 -0.02801600 0.0874200 -1.54481100 -1.559596100
н н н Н н С С С с н с с с н с с с н с с с н с с с н с с с н с с с н с с с с н с с с с с с с с с с с с с с с с с с с с	-2.88807600 -4.42495500 -0.61647400 <b>S1</b> ? -2.00084300 -0.298126500 -0.94937200 -1.29453100 -0.95152500 -0.95152500 -2.37050500 0.42690400 1.42446000 0.78648000 2.79336700 1.22595800 2.118526500 3.12569500 3.12569500 3.57233800 2.37692500 4.16656500 1.52536100 0.64143700 -0.72876500 -1.36314200 0.83593900 -1.31850200 1.52651900 -1.31850200	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.79418400 0.37973000 0.41469300 0.4548300 0.14146900 0.35500400 0.35500400 0.35500400 0.35500400 0.35500400 0.35500400 0.45488300 0.0176800 0.41172000 -2.62360100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348200 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348100 -2.52348200 -2.52348200 -2.52348200 -2.52348200 -2.52348200 -2.52348200 -2.5234810 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.5248200 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.524800 -2.5248000 -2.5248000 -2.5248000 -2.5248000 -2.52480000000000000	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24709100 3.24620100 -1.5428100 2.55959700 -1.54281100 -1.54281100 -1.54281100 -1.54428100 2.55959600 3.34628300
н н н Н н с с с н с с н н с с с н н с с с н н с с с н н с с с с н н с с с с с с с с с с с с с с с с с с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.9781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.46446600 0.78648000 2.79336700 1.45446600 0.03123200 3.57235800 2.3762500 0.41656500 1.52536100 0.64143700 -0.52051800 0.6314200 -0.52051800 0.83593900 -1.38502900 1.55616500 1.52678700	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 1.81913300 0.74146900 0.33035500 0.45488300 0.45488300 0.45488300 0.45488300 0.4578400 0.61976800 0.01976800 0.014322200 0.41172000 -0.16902200 0.41470700 -2.69224300 -2.52360100 -2.52360100 -2.68560240 -2.5248100 -2.68560240 -2.538603400 -2.37061300 -2.33836400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.80617200 3.23017100 0.50016000 -0.50016000 -0.50016000 0.46615100 2.55959700 0.17419300 1.37956800 2.54628100 2.41165000 1.12826700 -0.02801600 0.08074200 -1.545201600 0.08074200 -1.545201600 0.08074200 -1.5452300 3.54628300 3.54628300 3.54628300
н н н Н н с с с н с с н с с н с с н с с н с с н с с н с с с н с с с н с с с н с с с с н с с с с п с с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ? -2.00084300 -3.02705500 -2.98126500 -0.94937200 -0.94937200 -0.95152500 -2.37050500 0.42690400 1.46446000 0.78648000 2.79336700 1.22595800 2.11852600 0.00132300 3.57235800 2.37692500 4.16656500 0.64143700 -0.52051800 0.63539300 -1.31850200 1.38563900 -1.31850200 1.26778700 -2.28910500	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.27810800 0.79418400 0.37973000 0.79418400 0.33035500 0.4146900 0.33035500 0.4146900 0.33035500 0.4146900 0.33035500 0.411740400 0.35308000 0.11740400 0.3538800 0.01976800 0.14322200 0.44172000 -2.69224300 -2.69224300 -2.52360100 -2.5248100 -2.52480100 -2.91379000 -2.91379000 -2.33836400 -2.238836400 -2.238836400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.80617200 3.23017100 -0.5016000 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.54628100 2.54628100 0.08074200 -1.54481100 -1.54481100 -1.54481100 -1.54481100 -1.5448100 3.81973800
н н н Н н с с с н с с н с с с н н с с с н с с н с с н с с с н с с с н с с с н с с с с н н н и и с с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1'</b> -2.00084300 -3.02705500 -2.98126500 -0.94937200 -0.94937200 -0.95152500 -2.37050500 0.42690400 0.4644600 0.78648000 2.79336700 1.46446600 0.0132300 3.12569500 3.12569500 3.12569500 3.12569500 2.37692500 4.16656500 1.52536100 0.64143700 -0.72876500 -1.3614200 -0.52051800 0.83593900 -1.35916500 1.85653900 -1.59616500 1.856778700 -2.28910500	3.35912300 2.74486200 2.66071400 1.76316900 0.12861500 0.27810800 0.12810800 0.37973000 0.79418400 0.37973000 0.79418400 0.33035500 0.74146900 0.33035500 0.45488300 0.14146900 0.35500400 0.35500400 0.35500400 0.35500400 0.35500400 0.45488300 0.01976800 0.41172000 -0.10690200 0.41172000 -0.10690200 0.41172000 -2.5248100 -2.52360100 -2.5248100 -2.5248100 -2.53260100 -2.5348100 -2.53248100 -2.53246100 -2.53248100 -2.53246100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.53248100 -2.5328500 -3.04578300 -3.04578300 -3.04578300 -3.21822400 -2.22288700 -2.22288700 -2.511700	0.25154800 -0.36752200 2.61862300 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.24709100 3.24709100 3.24709100 1.22879300 -0.12454200 1.83017200 -0.50016000 -0.50016000 0.46615100 2.5595700 0.46615100 2.5595700 0.17419300 1.37956800 2.54628100 2.41165000 1.12826700 -0.02801600 0.0874200 -1.5549610 3.54628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.8472800 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84628300 3.84729800 3.84628300 3.84628300 3.84729800 3.84628300 3.84729800 3.84628300 3.84729800 3.84628300 3.84729800 3.84628300 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.8472980 3.84729
н н н н н С С С с с с с с с с с с с с с	-2.88807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ? -2.00084300 -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.80781400 -0.95152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.46446600 0.78648000 2.79336700 1.45245800 2.37025800 0.00132300 3.57235800 2.37692500 4.16656500 1.52536100 0.64143700 -0.52051800 0.83593900 -1.3614200 0.83593900 -1.59616500 1.5665700 1.26778700 -2.28910500 1.76687200	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.34645300 1.81913300 0.74146900 0.33035500 0.11740400 0.35500400 0.11740400 0.01976800 0.01976800 0.014322200 0.41172000 -0.10690200 0.04470700 -2.52360100 -2.52448100 2.52448100 2.88650200 -2.8863400 -2.37061300 -2.37061300 -2.33836400 -2.22288700 -2.16131700	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.8391200 -0.12454200 1.80617200 3.23017100 -0.50016000 0.46615100 2.55959700 -1.544204300 0.17419300 1.137956800 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.5462
н н н н н С С С с н с с с н с с с н с с с н с с с н с с с н с с с н с с с н с с с п с с с п н н и с с с с п н н с с с с с п н н н с с с с	-2.88807600 -4.42495500 -0.61647400 -0.61647400 -0.61647400 -0.81647400 -2.20084300 -2.98126500 -0.94937200 -1.29453100 -0.95152500 -2.37050500 0.42690400 1.46446000 0.78648000 2.79336700 1.22595800 2.11852600 0.0132300 3.12569500 3.12569500 3.12569500 3.12569500 3.12569500 1.52536100 0.64143700 -0.52151800 0.63142700 -1.36314200 -1.36553900 -1.3850200 1.36563900 -1.3850200 1.26778700 2.28810500 1.76687200 -2.64130400	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.79418400 0.37973000 0.34465300 0.181913300 0.414645300 0.181913300 0.414645300 0.11740400 0.35500400 0.41172000 -0.35500400 0.41172000 -0.10690200 0.04470700 0.04470700 0.04470700 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.52360100 -2.523600 -2.5236000 -2.523600 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.5236000 -2.52360000 -2.52360000 -2.5236000000000000000000000000000000000000	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.23045600 1.22879300 2.18391200 -0.12454200 1.2879300 2.18391200 -0.12454200 1.28791500 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 2.54628100 2.54628300 3.81973800 4.46090200 4.84970800 1.0108200
н н н Н н с с с н с с с н н с с с с н с с н с с с н н с с с н н с с с с н н с с с с п с с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 -3.02705500 -2.98126500 -0.94937200 -1.29437200 -1.29437100 -0.975152500 -2.37050500 0.42690400 0.78648000 2.79336700 1.45446600 0.78648000 2.79336700 1.45446600 0.0312300 3.12569500 3.57235800 2.3762500 0.4143700 -0.72876500 1.36314200 -0.52051800 0.83593900 -1.3614200 -1.35916500 1.85653900 -1.59616500 1.85653900 -1.59616500 1.8567200 -2.28110300 2.64130400 2.74217400	3.35912300 2.74486200 2.66071400 1.76316900 -0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.14645300 1.81913300 0.74146900 0.45488300 0.45488300 0.45488300 0.45488300 0.45488300 0.454848300 0.457800 0.01976800 0.01976800 0.014322200 0.41470700 -2.69224300 -2.52360100 -2.68560200 -2.68602400 -2.68560200 -2.68560200 -2.68560200 -2.638603400 -2.22288700 -2.181700 -2.67990900 -2.65194400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.061189200 3.80011000 3.24709100 3.23045600 1.22879300 -0.12454200 1.83017200 3.23017100 0.50016000 -0.50016000 -0.50016000 0.46615100 2.55959700 0.17419300 1.37956800 2.54628100 2.44628100 2.44628100 0.17419300 1.12826700 -0.02801600 0.08074200 -1.5452000 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300 3.54628300
н н н н н С С С с с с с с с с с с с с с	-2.8807600 -4.42495500 -4.08682600 -0.61647400 <b>S1</b> ² -2.00084300 -2.98126500 -0.94937200 -1.29453100 -0.93182500 -2.37050500 0.42690400 0.78648000 2.79336700 1.22595800 2.11852600 0.00132300 3.12569500 3.57235800 2.37692500 4.16656500 4.16656500 4.16656500 4.16656500 4.152536100 0.64143700 -0.52051800 0.83593900 -1.3614200 0.83593900 -1.3614200 0.8553900 -1.59616500 1.26778700 -2.28910500 1.76687200 2.74217400 -2.74217400	3.35912300 2.74486200 2.66071400 1.76316900 0.27810800 -1.62178700 0.37973000 0.79418400 0.37973000 0.4645300 1.81913300 0.74146900 0.33035500 0.4548300 0.11740400 0.35500400 0.61406300 0.01976800 0.01976800 0.01976800 0.01976800 0.01976800 0.014322200 0.41172000 -2.69224300 -2.65224300 -2.52360100 -2.52360100 -2.5248100 -2.88603400 -2.3836400 -2.3836400 -2.3836400 -2.6131700 -2.65990900 0.040922400	0.25154800 -0.36752200 1.36226200 2.61862300 0.20499100 0.57391500 1.65043900 3.06189200 3.80011000 3.24709100 3.23045600 1.22879300 0.12454200 1.80617200 3.23017100 -0.50016000 0.37201500 0.46615100 2.55959700 -1.54204300 0.17419300 1.37956800 2.54628100 2.41165000 1.137956800 2.54628100 2.41165000 1.137956800 2.54628100 2.44181100 -1.25599600 0.08074200 -1.54481100 -1.54481100 -1.5448100 3.54628300 3.54628300 3.54628300 3.5473800 4.46090200 4.84970800 1.0108200 1.45773400 -0.87538600

н	-3.49296800	1.94602100	-2.11214800
Н	-5.26203600	2.05229200	-2.14708100
Н	-4.37454800	2.52710000	-0.68784400
C	-6.03069400	-0.19252900	0.21832100
п	-6.03722400	-1.20704400	1.05765700
н	-6.95329400	-0.03521400	-0.35168200
С	-4.48793600	-1.20152500	-2.26846100
Н	-3.58627000	-1.08267000	-2.87876600
Н	-4.49697900	-2.22428100	-1.87588300
Н	-5.35925900	-1.08103800	-2.92207000
SiMe ₃ -II	N1'		
С	-2.11508900	-0.44079100	0.9548500
С	-3.05837300	-0.14929000	0.24342300
Н	-2.78276100	-2.63442500	1.22672800
C	-1.01/48200	-0.90978900	1.81352200
н	-0.73213400	-1 08644500	3 99039100
Н	-1.72889300	0.27914800	3.45811100
Н	-2.38774900	-1.37226000	3.44309100
С	0.27683100	-0.14579400	1.53906800
C	1.28863600	-0.06447100	2.50466200
C	0.51186000	0.43090200	0.28376100
ч	2.30407600	0.55159400	2.21574500
C	1.72707600	1.04393700	-0.00830400
Н	-0.26362300	0.39047100	-0.47814500
С	2.73158100	1.09929300	0.95575300
Н	3.27869000	0.58726300	2.97585200
Н	1.88931100	1.46827700	-0.99447400
С	3.68572100	-2 60265500	0.72625200
C	0.87626600	-2.56005900	-0.37187900
Č	-0.42190900	-2.60321400	-0.02100300
С	-0.85950300	-2.50279500	1.43539100
C	0.18947500	-3.12939000	2.33232300
C	1.49484900	-3.08132100	2.01538/00
Cl	2 74792200	-3 56719800	3.08025000
C	-1.44977600	-2.66520800	-1.02024000
С	1.30736000	-2.47706600	-1.73695300
Ν	-2.28411700	-2.75308400	-1.81773100
N	1.64910900	-2.39412000	-2.83876900
0	-2.07096000	-3.16219300	1.63499400
Si	-4.38684700	0.26187700	-0.99576100
С	-3.51868700	0.64046300	-2.61358600
Н	-2.95896000	-0.23326200	-2.96324900
Н	-4.24598500	0.90989400	-3.38798500
Н	-2.81979700	1.47619300	-2.50125000
н	-5.55058800	1.73220700	-0.55514800
Н	-4.66821600	2.61420400	-0.22454300
Н	-6.11915000	2.03613700	-1.06131300
С	-5.50020200	-1.23937100	-1.14438500
Н	-4.92944800	-2.11187800	-1.47896200
н	-5.97623800	-1.4/905/00	-0.18/4/100
	0.27572000	1.00 100 100	110771020
SiMe3-II	N2'-Cation	1	
C	-2.10786800	0.04137700	0.94733000
C	-1 11162600	-0.09571500	1 91168800
č	-1.54947900	-0.52545900	3.27795700
Н	-1.04379800	-1.45711900	3.55726100
Н	-1.26840900	0.23541300	4.01581200
Н	-2.62663300	-0.67833800	3.31601700
C	0.25353100	0.16439100	1.59/15900
C	0.62036000	0.57508800	0.28822500
č	2.58313700	0.26714500	2.27086000
н	1.00187100	-0.29682900	3.59151100
С	1.94433500	0.82565500	-0.01667800
Н	-0.14970800	0.69082400	-0.46853600
C	2.92318000	0.67191500	0.97280400
н	2.22551300	1.13946300	-1.01612200
Н	3.96357800	0.87009700	0.73130100
Si	-4.47275600	0.29415000	-1.08445900

С	-3.73467700	0.86800400	-2.70189800	Н	-5.14001300	2.52021500	-0.17896000
Н	-3.00328800	0.15158000	-3.08886400	Н	-6.48939400	1.69704300	-0.97145000
Н	-4.52472100	0.97307300	-3.45384500	С	-5.20457800	-1.42447800	-1.17583900
Н	-3.24614200	1.84205200	-2.59802200	Н	-4.48236400	-2.15364800	-1.55520400
С	-5.62538500	1.54893800	-0.31348900	Н	-5.56133700	-1.76435700	-0.19900100
Н	-5.99852300	1.20928300	0.65730100	Н	-6.06031800	-1.41641200	-1.86051700

Appendix V

Selected NMR Spectra for Chapter 5




 $\begin{array}{c} & \swarrow 8.00 \\ & \swarrow 7.12 \\ & 7.10 \\ & 2.00 \\ & \frown 7.12 \\ & 1.12 \\ & \frown 7.12 \\ & \bullet 1.12 \\ & \bullet 1.12$ 





## $\begin{array}{c} & $$7.57$ \\ & $7.57$ \\ & $7.19$ \\ & $7.19$ \\ & $7.19$ \\ & $7.19$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $5.10$ \\ & $$





























































Appendix VI

Selected NMR Spectra for Chapter 6







 $\begin{array}{c} & -2.26 \\ & -7.16 \\ & -7.16 \\ & -7.16 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81 \\ & -6.81$ 

























Appendix VII

Selected NMR Spectra for Chapter 7




























































 $\begin{array}{c} -7.26\\ -6.67\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.65\\ -6.23\\ -4.09\\ -4.09\\ -4.09\\ -4.09\\ -4.09\\ -4.03\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1.54\\ -1$ 





- 2.49 - 2.31 - 2.30  $\frac{1.63}{5} = \frac{1.63}{1.26} = \frac{1.26}{1.23} = -0.73$ 7.26 7.15 7.15 7.03 6.98 6.69 6.67 6.65 6.53 6.53 4 40 4 39 4 39 4 39 4 00 5 3 98 5 3 95 - 5.22 - 5.21







































## $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$


















 $\begin{array}{c} 7.49\\ 7.47\\ 7.49\\ - 7.09\\ - 6.55\\ 6.52\\ 6.52\\ 6.52\\ 6.52\\ 7.524\\ 7.523\\ 7.523\\ 7.523\\ 7.523\\ 7.523\\ 7.523\\ 7.523\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\ 7.522\\$ 





















Appendix VIII

Selected NMR Spectra for Chapter 8




















































































-10





















Appendix IX

**Copyright Permissions** 







Title:Nitration of Silyl Allenes To Form<br/>Functionalized NitroalkenesAuthor:Venkata R. Sabbasani, Daesung<br/>LeePublication:Organic LettersPublisher:American Chemical SocietyDate:Aug 1, 2013Copyright © 2013, American Chemical Society

LOGIN If you're a copyright.com user, you can login to RightsLink using your copyright.com credentials. Already a RightsLink user or want to learn more?

### PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

BACK

CLOSE WINDOW

Copyright © 2015 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

Rightslink® by Copyright Clearance Center



### PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.



Copyright © 2015 <u>Copyright Clearance Center, Inc.</u> All Rights Reserved. <u>Privacy statement</u>. <u>Terms and Conditions</u>. Comments? We would like to hear from you. E-mail us at <u>customercare@copyright.com</u>

### JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

This Agreement between Venkata Sabbasani ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	3786011203843
License date	Jan 11, 2016
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Chemistry - A European Journal
Licensed Content Title	Facile Alder-Ene Reactions of Silylallenes Involving an Allenic $C(sp2)\Box H$ Bond
Licensed Content Author	Venkata R. Sabbasani,Genping Huang,Yuanzhi Xia,Daesung Lee
Licensed Content Date	Oct 20, 2015
Pages	5
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of your thesis / dissertation	Oxidative Transformations of Allenes (Part I) and Enyne Ring-Closing Metathesis (Part II)
Expected completion date	Feb 2016
Expected size (number of pages)	500
Requestor Location	Venkata Sabbasani 1033 Apt 1F
	CHICAGO, IL 60612 United States Attn: Venkata R Sabbasani
Billing Type	Invoice
Billing Address	Venkata R Sabbasani 1033 Apt 1F
	CHICAGO, IL 60612 United States Attn: Venkata R Sabbasani
Total	0.00 USD

# **TERMS AND CONDITIONS**

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at <a href="http://myaccount.copyright.com">http://myaccount.copyright.com</a>).

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley <u>Materials for the purpose specified in the licensing process</u>. This license, **and any CONTENT (PDF or image file) purchased as part of your order**, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the <u>STM Permissions Guidelines</u> only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the

continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or

#### RightsLink Printable License

excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

# WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article. **The Creative Commons Attribution License** 

The <u>Creative Commons Attribution License (CC-BY</u>) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY

license permits commercial and non-

### **Creative Commons Attribution Non-Commercial License**

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

### **Creative Commons Attribution-Non-Commercial-NoDerivs License**

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

# Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library <u>http://olabout.wiley.com/WileyCDA/Section/id-410895.html</u>

**Other Terms and Conditions:** 

v1.10 Last updated September 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

### JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

This Agreement between Venkata Sabbasani ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	3786011062708
License date	Jan 11, 2016
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Angewandte Chemie International Edition
Licensed Content Title	Complementary Iron(II)-Catalyzed Oxidative Transformations of Allenes with Different Oxidants
Licensed Content Author	Venkata R. Sabbasani,Hyunjin Lee,Yuanzhi Xia,Daesung Lee
Licensed Content Date	Dec 4, 2015
Pages	1
Type of use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of your thesis / dissertation	Oxidative Transformations of Allenes (Part I) and Enyne Ring-Closing Metathesis (Part II)
Expected completion date	Feb 2016
Expected size (number of pages)	500
Requestor Location	Venkata Sabbasani 1033 Apt 1F
	CHICAGO, IL 60612 United States Attn: Venkata R Sabbasani
Billing Type	Invoice
Billing Address	Venkata R Sabbasani 1033 Apt 1F
	CHICAGO, IL 60612 United States Attn: Venkata R Sabbasani
Total	0.00 USD

# **TERMS AND CONDITIONS**

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at <a href="http://myaccount.copyright.com">http://myaccount.copyright.com</a>).

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley <u>Materials for the purpose specified in the licensing process</u>. This license, **and any CONTENT (PDF or image file) purchased as part of your order**, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the <u>STM Permissions Guidelines</u> only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the

continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or

#### RightsLink Printable License

excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

# WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article. **The Creative Commons Attribution License** 

The <u>Creative Commons Attribution License (CC-BY</u>) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY

license permits commercial and non-

### **Creative Commons Attribution Non-Commercial License**

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

### **Creative Commons Attribution-Non-Commercial-NoDerivs License**

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

# Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library <u>http://olabout.wiley.com/WileyCDA/Section/id-410895.html</u>

**Other Terms and Conditions:** 

v1.10 Last updated September 2015

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

# VITA

NAME:	Venkata R Sabbasani
EDUACTION:	B.Sc., Chemistry, Physics, Mathematics, Acharya Nagarjuna University, Guntur, India, 2005
	M.Sc., Organic Chemistry, Osmania University, Hyderabad, India, 2008
	Ph.D., Organic Chemistry, University of Illinois at Chicago, Chicago, Illinois, 2016
TEACHING:	Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois: General Chemistry, Organic Chemistry I, Organic Chemistry II, and Organic Chemistry Laboratory for Undergratuates, 2010–2015
HONORS:	Junior Research Fellowship (JRF-CSIR), India 92.14 percentile in Graduate Aptitude Test for Engineering (GATE), India
PUBLICATIONS:	Sabbasani, V. R.; Lee, D. "Ring-Closing Metathesis and Applications" Chapter 18 in "Metal-Catalyzed Cyclization Reactions." Editors Ma, S.; Gao, S. <i>Science of Synthesis</i> <b>2015</b> , in press.
	Sabbasani, V. R.; Yun, S. Y.; Lee, D. "Structure and Reactivity of Sulfonamide- and Acetate-Chelated Ruthenium Alkylidene Complexes" <i>Organometallics</i> <b>2015</b> , in revision.
	O'Connor, M. J.; Sun, C.; Guan, X.; Sabbasani, V. R.; Lee, D. "Sequential 1,4-/1,2-Addition of Lithium(trimethylsilyl)diazomethane with Cyclic Enones to Induce C–C Fragmentation and N–Li Insertion" <i>Angew. Chem., Int. Ed.</i> <b>2016</b> , <i>55</i> , 2222–2225.
	Sabbasani, V. R.; Zhou, T.; Xia, Y.; Lee, D. "Iron-Catalyzed Complementary Oxidative Transformations of Allenes with Different Oxidants" <i>Angew. Chem., Int. Ed.</i> <b>2016</b> , <i>55</i> , 1151–1155.
	Sabbasani, V. R.; Huang, G.; Xia, Y.; Lee, D. "Facile Alder Ene Reactions of Silylallenes Involving an Allenic C(sp2)–H Bond" <i>Chem. –Eur. J.</i> <b>2015</b> , <i>21</i> , 17210–17214.
	Sabbasani, V. R.; Lee, D. " Oxidative Dimerization of Silylallenes via Activation of the Allenic C(sp2)–H Bond Catalyzed by Copper(I) Chloride and N-Hydroxyphthalimide" <i>Org. Lett.</i> <b>2015</b> , <i>17</i> , 4878–4881.
	Sabbasani, V. R.; Lee, D. "Nitration of Silyl Allenes to Form Functionalized Nitroalkenes" Org. Lett. 2013, 15, 3954–3957.

Sabbasani, V. R.; Mamidipalli, P.; Lu, H.; Xia, Y.; Lee, D. "Subtle Electronic Effects in Metal-Free Rearrangement of Allenic Alcohols" *Org. Lett.* **2013**, *15*, 1552–1555.

PRESENTATIONS: Sabbasani, V. R.; Lee, D. "Structure and Reactivity of Alkene-Chelated Ruthenium Alkylidenes Derived from Diynes and Ene-Ynamides" Abstracts of Papers, Poster Presentation, 6th Chicago Organic Symposium, Chicago, IL, 2015.

Sabbasani, V. R.; Lee, N.-K.; Lee, D. "Oxidation of Allenes via the Activation of Vinylic  $C(sp^2)$ —H bond" Abstracts of Papers, Poster Presentation, 4th Chicago Organic Symposium, Chicago, IL, 2012.