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SUMMARY

The linked data paradigm has become a reality as more and more people and organizations

publish their data following its principles. It envisions a web made by interlinked datasets

that are easy to retrieve, query, and integrate. The main peculiarity of this technology is the

presence of links between the data sources as well as the machine-processability of the data,

achieved with the use of Semantic Web standards. However, since generating links between those

datasets is costly and time-consuming, the need for automatic methods keeps increasing. For

this reason ontology matching and instance matching, the fields studying how to automatically

match semantic data sources, are being heavily investigated.

In this work we present an extension of AgreementMaker, a successful state-of-the-art ontol-

ogy matching system, to effectively align ontologies and datasets available in the Linked Open

Data cloud both at the schema and instance level. To achieve both of the goals, two research

directions have been followed: the former is how to improve a general ontology matching sys-

tem when matching LOD ontologies, while the latter is how to extend it to match instances

maximizing the reuse of the components developed for ontology matching.

ix



CHAPTER 1

INTRODUCTION

The role of data in our lives is growing rapidly in importance. Many applications make

intensive use of data such as the temperature outside, the fuel consumption of our cars, the

prices of different products, the feedback of customers and many others. A better use of all this

information would help in making better decisions, starting from the single person experience

to the global economy.

Imagine a place in the Web where all of these data can be queried as if they were in a giant

database, and all kinds of information would be integrated to answer those queries. This is what

Linked Open Data (LOD) is about. To achieve such a goal, a paradigm that takes ideas from

today’s Web and applies them to structured data has been proposed. Machine-processability

of the data (e.g., use of structured formats) and the presence of links between datasets (e.g.,

specifying that an entity described in a data source is the same real-world object as an entity

in another data source) are two of the main requirements.

There are many challenges to succeed in developing such an infrastructure, such as scalabil-

ity, correctness of the information, automatic generation of datasets from unstructured sources,

and the discovery of links between the data sources. All of these problems are being currently

investigated in the literature. In this work, we will be focusing on the discovery of links between

data sources.

1
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The creation of links between heterogeneous data sources is a tedious work, which is costly

and time-consuming. This is because it requires a detailed analysis to be performed by a domain

expert. The quantity of links required for Linked Open Data to be an effective resource to be

used in advanced tasks (e.g., question answering and improving Web search) is huge, and it

keeps increasing at a fast pace as new datasets are added. For these reasons, the availability

of efficient and reliable automatic or semi-automatic interlinking tools becomes a crucial factor

for the success of the whole LOD paradigm.

The problem of establishing links between datasets in an automatic (or semi-automatic)

fashion has been investigated in the Databases and Semantic Web communities. Links can be

created at the schema level (e.g., concepts and classes) or at the instance level (e.g., individuals

of classes and concepts). Depending on whether the considered links are at the schema or

instance level, the two problems are considered separately in the literature and are referred to

using different names. In the former case, the problem is known as schema matching in the

databases community or ontology matching in the Semantic Web community, while in the latter

respectively as record linkage or instance matching.

There are some differences between the problems tackled by the Databases and Semantic

Web communities, due to the different underlying data models. Both ontologies and database

schemata provide a vocabulary of terms used for describing knowledge in a domain of interest.

However, relational databases do not provide the explicit and formal semantics, as they are

specified at design-time in Entity-Relationship models but not encoded in the final schema.

Ontologies instead are sets of formal axioms with explicit semantics (e.g., subclass axioms),
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which are exploited during the matching process. Moreover, the graph-oriented structure of

the RDF model and ontologies is more flexible than the tabular structure present in relational

databases. While all the rows in a database table share the same attributes, in ontologies it

may happen that different combinations of attributes (properties) are used to specify instances

of the same type. This leads to another type of heterogeneity that has to be solved in the

matching process.

In this work we present an extension of AgreementMaker (1), a state-of-the-art ontology

matching system, to effectively align ontologies and datasets available in the Linked Open Data

cloud, both at the schema and instance level. These two types of links are equally important,

as they are the basis for data integration at different levels. The former allows for querying

different data sources unified under a common model. For instance, the mappings at the schema

level can be used to query for all the entities of type ’Person’ in different datasets. It may happen

in some datasets that the concept of ’Scientist’ is defined, and all of its instances should be

returned as well. The latter allows for integrating the information about the same real world

object from heterogeneous sources. These datasets may cover different aspects of the same

entity, which would be all accessed through a single query.

The two problems are inter-connected and there is an overlapping in the techniques used,

though there are some differences as well. Ontology matching is a consolidated research area,

while instance matching is still at its own beginning. For the former there are a number of

benchmarks and evaluation sets available, while for the latter only a few. There are techniques

such as the use of vocabularies and the discovery of subclass relations that are effective and
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useful when matching concepts, but less when dealing with instances. Moreover, scalability is

a crucial factor in instance matching, where the number of comparisons required to match data

sources is significantly higher. For these reasons, and also for the strong separation present in

the literature, we decided to divide the thesis in two parts, one for ontology matching and one

for instance matching, which will be presented and evaluated independently.

Our contributions to ontology matching address the following research questions, reflecting

the improvements needed to align LOD ontologies: How can a system like AgreementMaker be

extended to handle mappings other than equivalence mappings (e.g., subclass mappings)? Can

AgreementMaker achieve a good trade-off between accuracy and efficiency in the LOD domain?

The proposed extension to the system has been evaluated against gold standards available in

the literature, and proved to be better than other state-of-the-art tools. A preliminary version

of this research has been published in (2).

In instance matching we address the following questions: how can we extend our system

to match instances maximizing the reuse of the components already implemented for ontology

matching? Can we provide an infrastructure that reduces the number of comparisons needed?

Can AgreementMaker achieve good accuracy and efficiency in the LOD domain? The proposed

extension to the system has been evaluated competing with other systems in the challenge or-

ganized by the Ontology Aligment Evaluation Initiative (OAEI), achieving competitive results.

Part of this work has been published in (3), where our novel instance matching infrastructure

is described.
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In this document, we focus on the recent contributions to the system, explaining all the

new matching features introduced in AgreementMaker. Before doing that, we provide a brief

introduction to Linked Open Data and its principles in Chapter 2. In Chapter 3 we introduce

ontologies, OWL, and SPARQL, then we define the ontology matching problem and give an

overview of the techniques and tools available in the literature. As AgreementMaker is part of

these systems, we include also an overview of its infrastructure and matching techniques. In

Chapter 4, we cover our contributions to ontology matching, describing our novel matching

methods which include the concept of Global Matching (GM), and a novel probabilistic algo-

rithm called Distance-based Polysemic Lexical Comparison (DPLC) for discovering mappings

using a mediator ontology such as WordNet. In Chapter 5 we move to the instance matching

problem, providing a problem definition and an overview of the techniques and tools available,

starting from the record linkage state-of-the-art. While the information provided in Chapter 2

can be easily found in the literature, in Chapter 3 and Chapter 5 detailed analyses and syntheses

have been made to give an overview of the matching tools, also modifying the tables available in

many surveys. The sixth chapter covers our contributions to instance matching, which include

the design of an extensible infrastructure based on candidates retrieval and disambiguation, and

the matching methods including Label Instance Matcher (LIM), Token-based Instance Matcher

(TIM), and Statements Instance Matcher (STIM). Finally, we will end providing conclusions

and future developments in Chapter 7.



CHAPTER 2

LINKED OPEN DATA

2.1 Motivation

An increasing number of organizations are sharing their data on the Web: examples are

companies such as Google and Amazon, governmental entities in Europe and in the USA,

scientific organizations, newspapers such as The New York Times. This data is then used by

other users or organizations to offer new services and share aggregate information.

It is extremely important for the re-usability of data that it has a well defined structure.

The more it is structured, the more it becomes reliably usable by third parties. However, the

web nowadays is prevalently unstructured: the format for publishing web documents, HTML,

is presentation-oriented instead of data-oriented. This is because the initial idea of the web

was a collection of interlinked textual documents. The structured information is hidden into

tags telling the browser how to visualize them. Therefore, to extract data of interest from raw

HTML pages, some further processing is needed. This is usually non-trivial, because there is a

lot of ambiguity in documents without a clear structure.

To address the problem of sharing data on the web that is re-usable by machine without

efforts, mainly two approaches have been introduced. One is using microformats, which means

attaching semantics to alternatively uncategorized text in web pages. With microformats,

one can specify that a fragment of text is an entity of a particular type such as person or

6
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organization, and then specify some known and agreed-upon relations about them. This makes

the automated extraction process easier and allows for more complicated use of the data. The

main problem is that using microformats requires a big effort from the publishers and also it

is still limited to a small set of types and relationships. The second is the use of Application

Programming Interfaces (APIs), which allow the access to some websites’ structured data over

the HTTP protocol. This is becoming more and more common and led to the possibility for end

users to develop mashups, small applications aggregating data from several different APIs to

create new services, or even new businesses. Even though this is an important step forward for

the use of data on the web, every API is something that requires a big effort to be integrated for

several reasons: every API has its own rules, methods and formats to access the data it provides.

Moreover, the data obtained accessing an API is strongly local, in the sense that it shows no

links to other datasets and the identifiers will work only on those data. This opposed to the

basic principle of the web, where the strength is the possibility to navigate related information

through links. In the following sections Linked Open Data (LOD) will be introduced, which is

an attempt to overcome the limitations of the web today as a data source.

2.2 What is Linked Open Data?

The term Linked Data1 has been first introduced by Tim Berners-Lee, and it refers to a

set of best practices for publishing and connecting structured data on the Web. Starting from

2006, an increasing number of data providers adopted these practices, leading to the creation

1http://www.w3.org/DesignIssues/LinkedData.html
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of a global data space containing billions of facts, also known as the Web of Data. The Web

has then been extended with structured data from diverse domains such as people, companies,

publications, books, films, music, television and radio programmes, genes, drugs, scientific data,

reviews and many others. The Web of Data enables new types of applications: browsers which

allow users to navigate along links into related data sources, Linked Data search engines that

crawl the Web of Data by following links between data sources and provide expressive query

capabilities over aggregated data, similar to how a local database is queried today. Unlike

mashups, which work exploiting a fixed set of APIs, Linked Data applications operate over a

global, unlimited data space.

2.3 Principles

Tim Berners-Lee described four basic principles of Linked Data in (4). In one of his pre-

sentations at the TED 2009 conference, he stressed out that it’s all about ”extremely simple”

rules. They are enumerated exactly how they appear in (4):

1. Use URIs as names for things

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF,

SPARQL)

4. Include links to other URIs. so that they can discover more things.

The first principle consists in using Uniform Resource Identifiers (URIs) to identify things.

URIs are the standard identifiers for resources on the Internet. These resources are usually web

sites and documents available on the web. The principle is asking for a step forward: using the
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same name system also for real world objects, classes of concepts, and relationships. The idea

is that everything can be described and identified with a string similar to the address of a web

page. In the context of the Semantic Web, using URIs is something well understood and used

already in many domains.

Using the HTTP protocol it is possible to retrieve the document associated with a cer-

tain URI available on the Internet. This is a universal lookup mechanism well-understood and

agreed-upon by everyone. The second principle advocates the same should be with URIs asso-

ciated with structured documents. Also URIs referring to real-world objects and concepts have

to be dereferenced using the HTTP protocol.

As HTML has become the standard for publishing documents on the web, the Web of Data

needs an accepted standard for structured documents. This is stated in the third principle, and

the data model proposed is Resource Description Framework (RDF). RDF will be discussed

with more details in the next section.

The fourth and last principle is about interlinking between structured documents. In hy-

pertext web sites the value of the information provided is related to the value of what it links

to. It is difficult to find on a single website all that we might want to know about a certain

thing, but navigating the links to other pages the likelihood of finding satisfactory descriptions

increases. Interlinking has to be extended to structured documents, with the added value of

having typed links: while in hypertext there is just one type of link, RDF allows to interlink

things specifying the relation between the linked objects.
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All the above principles can be summarized in applying the fundamental concepts of the

Web to the problems of publishing, sharing and using structured data. URIs, HTTP lookup

and links are features that made possible the development of the web as it is now, a global space

where everybody can publish and access information about everything. Linked Open Data is

an attempt to reuse all the successful characteristics of the web in an even more ambitious

project: the evolution of the web to a global data space (5).

Tim Berners-Lee proposed also a ranking for datasets:

1. Available on the web in any format, but with an open license

2. Available as machine-readable structured data (e.g. Microsoft Excel instead of image scan

of a table)

3. All the above plus non-proprietary format (e.g. CSV instead of Microsoft Excel)

4. All the above plus using open standards from W3C (RDF and SPARQL) to identify

things, so that people can link them

5. All the above plus the presence of linking other data sources, as to provide context

2.4 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a standard data model proposed by the

World Wide Web Consortium (W3C). Its characteristics make it particularly suitable for data

interchange on the Web, where there is a strong need for merging and evolving different schemas.

RDF can be summarized in three fundamental concepts: resources, properties and state-

ments (6). Resources are objects and concepts in the real world that one may want to describe.

The concept of resource is very generic and it embraces everything that can be thought of.
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Every resource is identified with a Uniform Resource Identifiers (URI), using the same name

system used on the Internet. Properties are special resources which are used to describe the re-

lationships between other resources. Statements are triples consisting of a resource, a property

and another resource or literal (e.g., standard datatype such as string or integer). They are in-

stantiations of properties relating a subject (resource) to an object (resource or literal). Usually

statements (or triples) are represented using the following notation: 〈subject, property, object〉.

The model expressed by RDF generalizes the linking structure of the Web. Statements can

be seen as the links in web pages with the addition of a type (relation). This model forms a

directed labeled graph, where the nodes are resources and the edges represent the typed link

between them. An example of a triple is 〈http://www.example.com/Federico Caimi, studiesAt,

http://www.example.com/UIC 〉, which intuitively expresses the fact that a resource named

Federico Caimi studies at the http://www.example.com/UIC and is represented in the graph

in Figure 1.

http://www.example.com/Federico_Caimi http://www.example.com/UICstudiesAt

Figure 1. Graph representation of a triple.
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Listing 2.1. List of Statements
1 <http ://www. example . com/Federico Caimi , studiesAt , http ://www. example . com/UIC>
2 <http ://www. example . com/Federico Caimi , plays , ”Guitar”>
3 <http ://www. example . com/Federico Caimi , type , http ://www. example . com/Person>
4 <http ://www. example . com/UIC , type , http ://www. example . com/Organizat ion>
5 <http ://www. example . com/UIC , l abe l , ” Un ive r s i ty o f I l l i n o i s at Chicago”>

When multiple statements (triples) about the same resources are available, the graph be-

comes more expressive. Consider the following triples:

Figure 2 shows the graph representing the above RDF statements. In this example, more

information is expressed about http://www.example.com/Federico Caimi and

http://www.example.com/UIC. The oval nodes are resources, while the rectangular ones are

literals.

http://www.example.com/Federico_Caimi

http://www.example.com/UIC
studiesAt

Guitarplays

http://www.example.com/Person

type

http://www.example.com/Organizationtype

University of Illinois at Chicago

label

Figure 2. Graph representation of a set of triples.
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Listing 2.2. Example of a SPARQL query
1 PREFIX ex:<http ://www. example . com>
2 SELECT ? student WHERE {
3 ? student ex : s tud ie sAt ex :UIC
4 } LIMIT 1000

RDF documentation is provided and mantained by the W3C. In particular, a description

of the current status1 of RDF and a detailed tutorial2 can be found on-line.

2.5 SPARQL

RDF is also provided with a query language, the SPARQL Protocol and RDF Query Lan-

guage (SPARQL), which has become the standard query language for RDF. Since the RDF is a

directed graph-based model, SPARQL had to be defined as a graph-matching query language.

Its syntax is similar to SQL because of the use of keywords such as SELECT, FROM, and

WHERE, which are the same as in SQL.

A simple example of a SPARQL query is reported in Listing 2.2. The keyword PREFIX

is used to allow the use of a short name (prefix) instead of a complete URI in the rest of

the query. In this case, the prefix ex will stand for the entire corresponding URI (http:

//www.example.com). The keyword SELECT is used to list the variables that have to be

returned in the query solution, in this case only ?student. The keyword WHERE allows to

1http://www.w3.org/standards/techs/rdf#w3c all

2http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
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specify the pattern matching part of the query, in the form of triples, but also optional matching

(OPTIONAL keyword), unions of patterns (UNION keyword), nesting and filtering of values

(FILTER keyword) are allowed. The pattern in the example query asks for all the resources

?student, for which exists a statement whose property and object are respectively ex:studiesAt

and ex:UIC. A natural language interpretation of this query would be: list all the resources

which study at the University of Illinois at Chicago (all the UIC students). If the query is

run against the simple model presented in Section 2.4, the resource http://www.example.com/

Federico_Caimi will be returned. The language also supports solution modifiers, which modify

the results returned by the pattern matching part in terms of ordering, number of results and

other features. In the example query, LIMIT 1000 is used, and means that no more than one

thousand results will be returned.

Many LOD datasets offer a SPARQL endpoint, which is an on-line service capable of an-

swering to SPARQL queries. Those are extremely important because as the size of the cloud

grows, the integration of different datasets has to be performed using multiple machines, which

may communicate using endpoints. The SPARQL endpoints offered by datasets in the LOD

cloud can be found on-line1.

1http://www.w3.org/wiki/SparqlEndpoints
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2.6 Evolution of the Cloud

In this section some statistics about LOD and its evolution will be reported. Detailed

information can be found on the State of the LOD cloud 1 document. All this information is

based on the LOD data set catalog2 that is maintained on CKAN3, a registry for open-licence

datasets available on the Web in any format.

TABLE I

LINKED OPEN DATA STATISTICS

Domain Number of datasets Triples % (Out-)Links %

Media 25 1,841,852,061 5.82 % 50,440,705 10.01 %
Geographic 31 6,145,532,484 19.43 % 35,812,328 7.11 %
Government 49 13,315,009,400 42.09 % 19,343,519 3.84 %
Publications 87 2,950,720,693 9.33 % 139,925,218 27.76 %
Cross-domain 41 4,184,635,715 13.23 % 63,183,065 12.54 %
Life sciences 41 3,036,336,004 9.60 % 191,844,090 38.06 %
User-generated content 20 134,127,413 0.42 % 3,449,143 0.68 %

All 295 31,634,213,770 100 % 503,998,829 100 %

Table I shows some statistics about LOD datasets categorized by domain. Most of the

datasets cover a single specific domain (e.g., publications, life sciences, and media), while a

1http://www.lod-cloud.net/state/

2http://thedatahub.org/group/lodcloud

3http://www.ckan.net
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13.3% of them are cross-domain. An example of a cross-domain dataset is DBPedia (7), which

is a structured version of Wikipedia generated by crawling the infoboxes (i.e., tables included in

some of the Wikipedia pages). The presence of cross-domain dataset is crucial for the successful

interlinking of the cloud, which would be otherwise formed by disconnected subgraphs (also

called data-islands). Other datasets range from media and entertainment (e.g., BBC program),

geography and spatial information (e.g., GeoNames), government (e.g., Data.gov1), science

(e.g., DBLP), and many others. In total, the LOD cloud is composed by 295 datasets containing

more than 31 billions of triples.

Figure 3, Figure 4 and Figure 5 provide an effective graph visualization of the LOD cloud.

The nodes are the dataset in the cloud, while the arcs represent the presence of links between

them. These pictures were made available online2 by Richard Cyganiak and Anja Jentzsch.

The three figures show how rapidly the cloud is growing in the number of datasets, and it can

be noted that it roughly doubles its size every two years.

1http://www.data.gov/semantic

2http://lod-cloud.net/
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CHAPTER 3

ONTOLOGY MATCHING

3.1 Ontologies and OWL

The concept of ontology is defined as an explicit specification of a conceptualization (9). The

term comes from philosophy, where it means the philosophical study of the nature of existence,

entities, and the relations between entities. In computer science, ontologies are representations

of a domain of interest based on the definition of concepts and the relationships between them.

They are used to model some area of interest, enabling the sharing of knowledge and the

development of applications which make use of it.

The main components of an ontology are:

• Classes are sets of real-world entities (e.g., Person, Place, and Organization).

• Instances are members of a particular class (e.g., John is an instance of Person).

• Attributes are characteristics or features describing entities or individuals (e.g. age for

the type Person, for which a possible instantiation is John hasAge 22).

• Properties are relationships (binary predicates) between classes, individuals, or other

properties (e.g. Person worksFor Organization).

Ontologies are characterized by their formalization, achieved with the use of semantics

expressed using logic. An example is the subclass relationship. When a class A is declared as

subclass of another class B, all the instances of A are also instances of B. Other semantics can

19
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be attached to user-defined properties, such as declaring a property as the inverse of another

property.

Ontologies can either represent a single domain or multiple domains. Examples of the first

category are domain-specific ontologies such as the Music Ontology or the Open Biomedical

Ontologies. Multi-domain ontologies are also very popular as they try to cover any type of

knowledge. Examples are Freebase and DBpedia, which is a Semantic Web version of Wikipedia.

Since the concept of ontology is very general, also taxonomies such as Yahoo Categories and

vocabularies such as Wordnet can be considered ontologies.

After many languages have been developed by separate groups for representing ontologies

in a machine-readable format, these works have been unified under a common standard which

is known as the Web Ontology Language (OWL), which allows to express all the previously

described ontology features. It is compatible with the architecture of the World Wide Web,

since resources are identified using URIs, and the preferred serialization is based on RDF/XML.

The expressive power of the language is enforced by a logic inference that can be performed

to infer new statements from the ones explicitly included in the ontology. There are a number

of available reasoners, which actually perform the previously discussed logic inference.

3.2 Problem statement

Ontology Matching (or Ontology Alignment) is defined as the process of finding correspon-

dences between semantically related entities of different ontologies (10). It can be performed

either automatically or semi-automatically, where in the latter case users take part in the pro-

cess. The correspondences are called mappings, and the algorithms used to discover them are



21

called matchers. Matchers can be either simple and take into account a single aspect of the

concepts to be matched, or more complex combinations of simple matchers.

The problem can be formally defined as follows: Given a source ontology S and a target

ontology T , a mapping is a triple 〈cS , cT , r〉 where cS ∈ S and cT ∈ T are concepts of the

ontologies, and r is a semantic relation that holds between cS and cT . The relation that has

been mostly investigated in the literature is the equivalence relation, but there exist also others

such as the subclass relation.

A set of mappings is called an alignment. A reference alignment is an alignment found by

experts, and it is used as a gold standard against which the accuracy of other alignments is

measured in terms of precision and recall.

3.3 Evaluation

The growing interest in ontology matching by the scientific communities led to the devel-

opment of many matching tools. As in every scientific field, evaluation methods are needed to

help developers assess the quality of their systems and end-users understand which tool fulfills

best their needs. The Ontology Alignment Evaluation Initiative 1 is an international initiative

recognized by the ontology matching community as the standard for evaluation in this field.

OAEI prepares a yearly evaluation event in which the systems are compared against several

ontology matching tasks. Detailed results analysis is then performed by the organizers.

1http://oaei.ontologymatching.org/
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In order to evaluate a system in an ontology matching task, a gold standard has to be

provided. This consists of the set of actual mappings that are usually discovered by a domain

expert, and it is also known as reference alignment. The evaluation is then performed comparing

the alignments generated by the system against the reference alignment. The comparison

metrics selected for the evaluation are precision and recall, which originated in the field of

information retrieval. Precision and recall are the ratio of the number of true positives to

the retrieved correspondences and those expected (belonging to the reference alignment |R|)

respectively. Since there is usally a trade-off between precision and recall, the two metrics are

then combined in a final score (F-measure) which takes into account both precision and recall.

Precision. Given a reference alignment R, the precision of the aligment A generated by an

ontology matching system is computed as:

P (A,R) =
|R ∩A|
|A|

Recall. Given a reference alignment R, the recall of the aligment A generated by an ontology

matching system is computed as:

R(A,R) =
|R ∩A|
|R|

F-measure. Given a reference alignment A, the F-measure of the aligment R generated by

an ontology matching system is computed as:

F (A,R) =
2× P (A,R)×R(A,R)

P (A,R) +R(A,R)
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3.4 Ontology Matching techniques and systems

The field of ontology matching is a consolidated research area and a number of surveys

are available (11; 12; 13). Figure 6 shows a taxonomy of the ontology matching techniques,

obtained by slightly modifying the classification proposed in (14). The techniques used in

ontology matching can be split into mainly three categories: similarity-based, reasoning-based,

and instance-based.

Ontology matching techniques

Similarity-based Reasoning-based Instance-based

Linguistic Contextual Probabilistic Learning-based

Syntactic Semantic

Figure 6. Classification of the Ontology Matching approaches (14).

Similarity-based. Similarity-based techniques compute the degree of similarity between con-

cepts based on syntactic, linguistic or structural (contextual) features. The syntactic similarity
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involves the comparison of strings such as the name of concepts and the name and values

of their properties. This is usually performed using string similarity metrics, automata or bit-

parallelism. The semantic similarity considers also the meaning of the concepts being matched.

It is computed using vocabularies such as WordNet, which contain relationships such as syn-

onymy, hypernymy, and hyponymy. Semantic similarity metrics range from simple synonymy

look-up, to the computation of distances between concepts in the graph built on hypernymy/hy-

ponymy relationships. The contextual similarity encompasses all the metrics which make use

of the concepts directly related to the concepts being evaluated. The most used techniques are

graph algorithms that propagate the similarity of concepts to their neighbors in the ontology.

Reasoning-based. Reasoning based-techniques consist in modeling ontology matching as a

logic inference problem. Starting from a set of high-quality mappings discovered by a similarity

based matcher or defined by a user, new mappings are inferred using reasoning. Reasoning-based

matchers are usually based on satisfiability or description logics. The alignments generated by

this category of tools are consistent, meaning that they do not generate contradictions, an

important property for the usability of these mappings in tasks such as data integration.

Instance-based. In some cases the information provided in schemata is not sufficient for

determining matches between equivalent concepts. Some of these mappings can instead be

inferred from the instance level, following the assumption that equivalent classes have similar

instances. Instance-based matchers compare instances to derive a similarity between concepts.

These approaches are based on set similarity measures, probability such as Bayesian theory, or

machine learning techniques.
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A number of ontology matching tools have been developed using the previously described

techniques. An overview of these tools is reported in Table II, which shows the categories

of the techniques used. Some of these tools implement a specific algorithm (e.g., BLOOMS

and S-match, GLUE), while others provide configurable frameworks covering a wide range of

methods (e.g., AgreementMaker, COMA++). Only a few of them provide a graphical user inter-

face (GUI) to help users analyze the alignments produced (e.g., AgreementMaker, COMA++,

SAMBO).

TABLE II

ONTOLOGY MATCHING TOOLS

Techniques Used

Tool Syntactic Semantic Contextual Reasoning-based Instance-based

AFlood (15) 4 4 4 4

AgreementMaker (1) 4 4 4 4

AROMA (16) 4 4

ASMOV (17) 4 4 4

BLOOMS (18) 4

CODI (19)

COMA++ (20) 4 4 4 4

DSSim (21) 4 4

GLUE (22) 4

LogMap (23) 4

RiMOM (24) 4 4

SAMBO (25) 4 4 4

S-Match (26) 4
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As can be noted in Table II, the great majority of the existing systems make use of similarity-

based algorithms. The reason is that techniques such as string similarity metrics, token-based

metrics, and graph propagating algorithms (e.g., similarity flooding) have proven to be effective

in this context. Reasoning and logics have also been explored by tools such as DSSim and

more recently LogMap. These tools perform particularly well in case of rich and axiomatized

ontologies. Some tools make use of information encoded at the instance to improve their

schema matching (e.g., AFlood, AgreementMaker, COMA++), while GLUE is entirely based

on instances and uses a probabilistic approach to classify pair of concepts as match or non-

match.

3.5 AgreementMaker

AgreementMaker is an extensible framework to perform, evaluate, and compare ontology

matching algorithms (1). It has been designed for matching real-world schemas and ontologies,

with particular attention on providing high configurability and an intuitive user interface, which

is shown in Figure 7.

The system comprises several matching methods ranging from syntactic and semantic com-

parison of concepts, structural matching, and reasoning-based discovery of contradictions. All

of these matching methods can be combined using a specific evaluation module. The quality of

the generated alignment can be evaluated when the reference alignment is provided. The Agree-

mentMaker has been used and tested in practical applications and in the Ontology Alignment

Evaluation Initiative (OAEI) competition.
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Figure 7. Graphical User Interface as implemented in AgreementMaker (1).

The matching process in AgreementMaker is organized into three layers. The matchers of

the first layer compare the concepts to be matched based on lexical features, such as string

similarity metrics and TF-IDF vectors. The second layer uses the structure of the ontologies

to refine the mappings discovered by the matchers in the first layer. In the third layer, a

combination matcher aggregates the results generated by the previous matchers to provide a

single final alignment.

3.5.1 AgreementMaker matchers

Lexical matchers. The Base Similarity Matcher (BSM) is a basic string matcher that com-

putes the similarity between concepts by comparing all the strings associated with them. The

Parametric String-based Matcher (PSM) is a more in-depth string matcher, which by default
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Figure 8. AgreementMaker three layer architecture (1).

is set to use a substring measure and an edit distance measure. The Vector-based Multi-Word

Matcher (VMM) compiles a virtual document for every concept of an ontology, transforms

the resulting strings into TF-IDF vectors and then computes their similarity using the cosine

similarity measure. The Advanced Similarity Matcher (ASM) compares local names, providing

better similarity evaluation in particular when compound terms are used. ASM outperforms

generic string-based similarity matchers because it is based on a deeper linguistic analysis. All

of these matchers can also use a lexicon, a data structure which keeps track of all the synonyms

and definitions that may be provided in the ontologies, or in a third one called the mediator

ontology.

Structural matchers. Structural matchers include the Descendants Similarity Inheritance

(DSI) matcher. This matcher propagates the similarity of two nodes to their descendants. The
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Group Finder Matcher (GFM) identifies groups of concepts and properties in the ontologies and

assumes that two concepts (or properties) that belong to two groups that were not mapped by

the input matcher will likely have different meanings and should not be mapped. The Iterative

Instance Structural Matcher (IISM) is an iterative algorithm that compares concepts based on

the properties defined on them and then properties based on the classes which make use of

them till convergence. Also instances are taken into account to compare properties.

Combination matchers. The Linear Weighted Combination (LWC) receives as inputs the

aligments generated by multiple matchers (e.g., the ones previously described) and, using a local

confidence quality measure provided by the evaluation module, automatically assigns weights

to each result computed by the input matchers. After this step, we have a single combined set

of alignments that includes the best alignments from each of the input matchers.



CHAPTER 4

ONTOLOGY MATCHING FOR LOD

4.1 Introduction

The linked data paradigm identifies a set of best practices to publish and share data on the

web (28). In order to integrate information from different datasets, the capability of establishing

“correct” links among data is crucial. Linked data together with their schemas are usually

represented by web ontologies that are defined using semantic web languages such as RDFS

and OWL (29).

A first problem to solve in order to match a set of input data and several LOD ontologies

is to develop ontology matching systems that achieve a good trade-off between quality of the

mappings and efficiency. As an example, good and efficient ontology matching techniques for

LOD ontologies could improve the capability of tools such as DBpedia Spotlight (30), which

extracts LOD entities from unstructured documents at runtime, to link the extracted data

across several datasets.

Ontology matching in the linked data context faces new challenges for it has been shown

that several ontology matching systems perform poorly when it comes to matching LOD ontolo-

gies (18). One of the reasons is that LOD ontologies have some peculiarities like poor textual

descriptions, flat structure (e.g., GeoNames), cross-domain coverage, and use of concepts im-

Acknowledgement: The work in this chapter has been presented elsewhere (27).
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ported from external ontologies. Another reason is that many ontology matching systems are

better tailored to discovering equivalence relations. This is clearly a drawback in matching

LOD ontologies because only few equivalence relations can be found among concepts in dif-

ferent ontologies. Since LOD ontologies are designed with the goal of maximizing their reuse,

their overlap in terms of equivalent concepts is limited. For this reason relationships other than

the equivalence relationship gain importance in the LOD domain. Therefore, the capability

to discover subclass relations becomes crucial when the number of links among LOD sources

increases.

Prior work in matching LOD ontologies has been performed by the BLOOMS system (18).

This work has introduced a new matching approach based on searching Wikipedia pages related

to ontology terms: the categories extracted from these pages are then organized into graphs

and used to match the terms in the ontology. BLOOMS performs better than other systems

that were not designed with the goal of matching LOD ontologies, but were instead designed

to work in “classic” ontology matching settings based on equivalence mappings, such as those

in the Ontology Alignment Evaluation Initiative (OAEI) competition (31; 32; 33).

However, both the accuracy and the efficiency obtained by BLOOMS in LOD settings are

far lower than those obtained by “classic” systems when performing tasks for which they were

designed. BLOOMS is also not a top performer in “classic” ontology matching.

We extend AgreementMaker (1), an ontology matching system for ontologies expressed in a

wide variety of languages (including XML, RDF, and OWL) that has obtained some of the best

results in the OAEI competition (34) (35) (3), with the objective of testing its viability in the
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LOD domain. Therefore, in this research we address the following two questions: How can a

system like AgreementMaker be extended to handle mappings other than equivalence mappings?

Can AgreementMaker achieve good accuracy and efficiency in the LOD domain?

To address the first question, we present four ontology matching methods. A first category

of matchers adopts a direct ontology matching approach, where concepts of a source and a

target ontologies are compared: this category includes (i) an Equivalence Mappings Expansion

method, which uses a set of equivalence mappings discovered with high confidence so as to infer

subclass and superclass mappings, and (ii) a Compound Noun Analysis method, which discovers

subclass and superclass mappings by analysing the compound local names that are often used

to identify ontology concepts. A second category of matchers exploit third party ontologies used

as mediators for the matching approach: this category includes (i) a Distance-based Polysemic

Lexical Comparison method, which automatically annotates ontology concepts with possibly

more than one lexical concepts taken from a background terminology, and compares these

lexical annotations in order to discover subclass and superclass mappings, and (ii) a Global

Matching method that infers subclass and superclass mappings by looking at how the concepts

have been used in popular ontologies available on the Web. All these methods are new to our

AgreementMaker system and are novel with respect to matching approaches proposed so far.

As for the second question, we show that our approach achieves better results in matching

LOD ontologies than any other ontology matching system in terms of average precision and av-

erage F-measure (over a set of tasks). In terms of average recall our approach is the second best,

after the BLOOMS system. In addition, our approach is more efficient in terms of execution



33

time than BLOOMS and has the advantage that it consists of methods that can be integrated

with an existing ontology matching system. To the best of our knowledge, AgreementMaker

is currently the only system that achieves top performance both in the “classic” and LOD

domains.

The chapter is organized as follows. Related work is discussed in Section 4.2. The proposed

methods to improve ontology matching in the LOD domain are described in Sections 4.3 and

4.4. The experimental evaluation of the proposed approach, based on previously proposed

reference alignments (18) is discussed in Section 4.5.

4.2 Related Work

In what follows we discuss related work whose main focus is on schema-level mappings

(as opposed to instance-level matchings (36)). We also mention an approach that makes use

of background information and finally we describe three approaches that use the “on the go”

paradigm.

The data fusion tool KnowFuss uses schema-level mappings to improve instance co-reference (37).

It does not, however, address the discovery of schema-level mappings. An approach for ontol-

ogy matching that uses schema-level (as well as instance-level) mappings has been proposed in

the context of geospatial linked datasets (38). This approach infers mappings between ontol-

ogy classes by analyzing qualitative spatial relations between instances in two datasets. It is

therefore specific to the geospatial domain.

The BLOOMS system features a new approach that performs schema-level matching for

LOD. It consists of searching Wikipedia pages related to ontology concepts: the categories
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extracted from these pages (using a Web service) are organized into trees and are compared

to support matching between ontology concepts (18). To evaluate ontology matching for LOD,

BLOOMS uses seven matching tasks and defines the gold standard or reference alignment for

those tasks. Their tasks consider pairs of popular datasets (e.g., DBpedia, FOAF, GeoNames).

They compare BLOOMS with well-known ontology matching systems such as RiMoM (39),

S-Match (40), and AROMA (16) that have participated in the Ontology Alignment Evaluation

Initiative (OAEI) (32). They show that BLOOMS easily outperforms those systems in the LOD

domain. However, in the OAEI tasks, when compared with those systems, BLOOMS produces

worse results when discovering equivalence mappings but much better results when discovering

subclass mappings (32).

The ontology matching system BLOOMS+, which is an enhanced version of BLOOMS,

has been used to align a set of LOD ontologies to the upper level ontology PROTON (41);

however, the evaluation context is different since PROTON is a well-designed and well-described

large ontology, more similar to the ontologies considered in more traditional ontology matching

scenarios. In addition, there is no evidence that the efficiency of the system has been improved.

The SCARLET system introduces the idea of looking for clues in background ontologies

available on the Web to discover mappings between two ontologies (42); our mediator-based

matching algorithms present some similarities to the SCARLET approach, although there are

significant differences. SCARLET searches the local names of the concepts on external Web

ontologies and uses the subclass relations defined in the external ontologies to derive new

mappings. Our DPLC algorithm uses polysemic lexical annotations and a probabilistic scoring
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function to determine whether a mapping has to be established between two concepts while

SCARLET uses only logic-based rules. Our GM technique looks for useful information about

the concepts on the Web, which is at the core of the SCARLET approach; our approach is very

different though: by looking for the concepts’ URIs, we consider only the external use of the

concepts that have to be matched (instead of other concepts with similar names), and we look

into a pool of trusted Web ontologies in order to achieve high precision. Finally, SCARLET

has not been evaluated in the LOD domain, which presents several new challenges to ontology

matching systems.

Significant efforts have been recently carried out to support ontology matching systems

with more accurate lexical annotation methods; these efforts considered both the interpretation

of compound names (43) and the disambiguation problem (44). A method for interpreting

endocentric compound names has been proposed to include a terminology concept denoted by a

compound name in an existent terminology. The method used in our CNA algorithm is inspired

by this method; however, (43) establish semantic relations between the terminology concepts,

while we use the interpretation of compound names in order to directly infer subclass relations

between the ontology concepts. Word sense disambiguation techniques have been proposed to

handle polysemic lexical annotations, and in particular, to assign a probability score to each

annotation associated with an ontology concept (44). A set of probabilistic semantic relations

is inferred among the ontology concepts based on this score. In our DPLC algorithm, word

sense disambiguation is used to filter the set of lexical annotations of the ontology concepts.

Subclass mappings between concepts (interpreted according to the usual OWL semantics) are
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then inferred by comparing the whole sets of lexical annotations and obtaining a polysemic

subclass evidence score; to the best of our knowledge, the approach adopted in the DPLC

method, which takes explicitly into account that hyponym and subclass relations have different

semantics, defining the hyponym-to-subclass conversion factor and a distance-driven score, is

an original contribution.

4.3 Similarity-based Mapping Discovery

Equivalence mappings are discovered by evaluating a similarity value in the interval [0,1]

between every pair 〈cS , cT 〉 of source and target concepts, denoted sim(cS , cT ). The similarity

value signifies the confidence with which we believe that the two concepts are semantically equiv-

alent. We use the Advanced Similarity Matcher (ASM) to compute the similarity sim(cS , cT )

between two concepts cS and cT ; ASM is a very efficient matcher that evaluates the string-based

similarity between two concepts using their local names and their labels (35). Two concepts

are considered equivalent when their similarity is higher than a threshold th≡.

We slightly modified ASM with the addition of detecting different spellings of the same

word, e.g., (Organization,Organisation) and (Theater, Theatre). These apparently small

differences are not always captured by string similarity algorithms, and very simple linguistic

rules lead to a significant improvement in the capability to discover equivalence mappings.

4.3.1 Equality Mappings Expansion (EME)

The Equivalence Mappings Extension matcher computes the similarity values between all

the possible pairs of concepts and stores the results in a similarity matrix.



37

For each pair of concepts and a threshold th≡, such that sim(cS , cT ) ≥ th≡, the mapping

〈cS , cT ,≡〉 is included in the set of equivalence mappings EME≡

Starting from EME≡, we build EMEv and EMEw by considering subclasses and super-

classes of the concepts cS and cT that appear in the mappings 〈cS , cT ,≡〉 ∈ EME≡. We add to

the set EMEv (respectively, EMEw) all the triples 〈xS , cT ,v〉 (respectively, 〈cS , xT ,w〉) such

that xS is a subclass of cS (respectively, cT is a subclass of xT ).

The selection of the equivalence mappings must be even more accurate in the LOD domain

than what is required in traditional ontology matching scenarios (33); this is a consequence of

the importance of subclass and superclass mappings. When equivalence mappings are used for

inferring subclass mappings, a wrong equivalence mapping can propagate an error to all the

derived mappings. For this reason, in the LOD domain we set a very high threshold, e.g., 0.95,

while in several other domains thresholds in the range [0.6, 0.8] are usually adopted (35).

4.3.2 Compound Names Subclass Matcher (CNS)

When the names of the concepts in the ontologies are compound (i.e., formed by multiple

words), matchers such as ASM, which is highly specialized on the equivalence relation, are not

able to capture other relations that are implicitly specified in the compound. For example,

SportsEvent denotes a narrower concept than Event, thus a subclass relation should be directly

inferred from their names (under the assumption that the two concepts are sharing the same

meaning of the term Event).

A classification of compounds in English has been proposed and is shown in Figure 9 (45).

The majority of the compounds shows a modifier-head structure, where the head, the most
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English compounds

Endocentric Exocentric Copulative

Possessive Appositional Coordinative

Figure 9. Classification of compounds (i.e., compound words) in English.

important unit, usually determines the gender, part-of-speech, and the general meaning. This

general meaning is then modified by the other terms, restricting the meaning of the compound

to a more specific concept. In the previous example, Event is the head and Sports is a modifier.

When the head appears inside the compound, these compounds are referred to as endocen-

tric. SportsEvent is clearly an example of this category. In case the head is outside (i.e., it

doesn’t occur in the terms forming the compound) they are called exocentric. Examples of this

category are the possessive compounds, which denote entities characterized by the properties

expressed in the compound (e.g., greybeard and loud-mouth are instances of person, instead of

respectively beard and mouth). Another category is called copulative, whose compounds do not

have a head as the terms equally contribute to the meaning. In case they specify entities that

are instances of multiple classes (e.g., poet-translator), they are called appositional compounds,

while if they specify relations between the terms involved (e.g., doctor-patient gap), they are

called coordinative.
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When the names of the concepts to be matched are compound, we use a best effort ap-

proach that produces good results in practice. We consider only endocentric compounds, since

they are the vast majority in English and cover up to 78% of the compounds used in schema

and ontology concept names according to a recent study (43). For these compounds, we are

interested in detecting the head, as it provides meaningful information for inferring subclass

relations. For this purpose, we use a very simple rule which works well in English: the head of

a compound always occurs on the right-hand side (46). We use this knowledge to extract the

heads and then attempt to find correspondences between these main nouns and the names of

the concepts using ASM; based on these correspondences we extrapolate subclass and super-

class mappings. In particular, let head(c) be the head of a compound denoting the concept c.

If sim(head(cS), cT )) ≥ th≡, then

〈cS , cT ,v〉 ∈ CNAv; if sim(cS , head(cT )) ≥ th≡, then 〈cS , cT ,w〉 ∈ CNAw.

4.4 Mediator-based Mapping Discovery

We consider two different types of mediators, namely background terminologies and Web

ontologies. Web ontologies are ontologies represented in a semantic Web language (e.g., RDFS

or OWL (29)) and available on the Web.

A background terminology is any knowledge structure organized in a concept hierarchy; a

background terminology can be represented by a triple OT = (C, T,�), where C is a set of

terminology concepts, T is a set of terms (also called labels) and � is a hyponymy relation

defined by a partial order over C; given two terminology concepts w1 and w2, the relation

w1 � w2 means that w1 is more specific than w2; in this case we can say that w1 is a hyponym
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of w2, and, conversely w2 is a hypernym of w1. Each concept is associated with a set of terms,

which are synonyms of the concept (synonyms). Conversely, a term can be associated with one

or more concepts (polysemy).

Background terminologies encompass knowledge structures such as lexicons and other tax-

onomies where multiple labels are associated with a concept. We use WordNet as background

terminology, whose concepts are called synsets, each one usually associated with more than one

term.

Although background terminologies and Web ontologies share a similar hierarchical struc-

ture, the semantics of the relations on which their respective hierarchies are based is different:

while in a Web ontology c1 v c2 means that c1 is subclass of c2, i.e., every instance of c1 is

also an instance of c2, in a terminology the hyponym relation can not be assumed to have such

formal semantics; in other words, it can be the case that w1 � w2 and w1 6v w2. Furthermore,

although concepts in Web ontologies are often associated with labels, Web ontologies do not

handle polysemy and synonymy. The consideration of these important differences leads to the

design of different matching methods depending on the type of mediator.

4.4.1 Distance-based Polysemic Lexical Comparison (DPLC)

We compare every concept of the source ontology with every concept in the target ontology:

the key idea of our algorithm is that given a source concept cS lexically annotated with a

terminology concept wS and a target concept cT lexically annotated with wT we can add

a subclass mapping 〈cS , cT ,v〉 when wS � wT holds in the terminology (or, conversely, a

superclass mapping when wT � wS holds in the terminology).
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However the simple idea sketched above encounters two problems:

1. It can be very difficult to annotate an ontology concept with exactly one terminology

concept for at least two reasons: the information needed to automatically disambiguate

among several candidate annotations can be inadequate, e.g., in Figure 10 there are three

sets of synonyms associated with the concept Person (highlighted in blue), and there

is no empirical evidence of one being more appropriate than the others, therefore they

are all considered in the following steps; the terminology can provide several concepts

having similar meaning, which can all be considered correct annotations for the ontology

concept (44). In Figure 10, the two sets of synonyms associated with the concept Actor

(highlighted in red) are very similar and can both be considered correct annotations for

the ontology concept. In other words, the matching algorithm has to handle the case in

which concepts are associated with multiple lexical annotations;

2. In general, the semantics of the relation � is different from the semantics of the subclass

relation v; therefore, the more distant two terminology concepts are in the terminology

hierarchy, the higher the probability that they can not be considered one subclass of the

other, and also the higher the probability that the inferred mapping among the ontology

concepts is wrong. The length of the path (distance) on the terminology hierarchy between

two lexical annotations can be used to give a confidence score to the inferred mapping.

We addressed the above mentioned problems with an algorithm consisting of three steps.

Step 1. Polysemic Lexical Annotation with Word Sense Disambiguation: Each con-

cept in the source (respectively, target) gets associated with a set of concepts in the background
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Figure 10. WordNet synsets for the ontology concepts Actor (source) and Person (target).
Each ellipse represents a WordNet synset with its set of terms. The arrows represent the

hyponym relation.

terminology. This association is made through the concept labels: every time a label matches

exactly a concept in the source (respectively, target) ontology, then that terminology concept

becomes associated with the source (respectively, target) concept. Given a concept c, the set of

the terminology concepts associated with it is denoted BST c (for Background Synonym Termi-

nology). In Figure 10 and Figure 11, two graphs involving the terminology concepts are shown,

where the elements of BST cS (respectively Actor and Agent) are highlighted in red and the

BST cT concepts (respectively Person and Group), are highlighted in blue.

However, to improve the accuracy of lexical annotation, we apply word sense disambiguation

techniques (44). Some concepts in the ontologies have a textual description (usually included

in rdfs:comment), while in WordNet all the sets of synonyms are described in a definition.

We create a virtual document associated with every concept/set of synonyms, which are then

compared using a vector space model approach based on the cosine similarity measure, after

we performed stop-words removal and stemming. These techniques were already implemented
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in one of our matchers called Vector-based Multi-word Matcher (VMM), extensively used in

the OAEI competition. In addition to comments and definitions, we also included in the

documents also the first level of the concepts’ superclasses, since they proved to be particularly

useful for disambiguation. After the similarity values are computed, the actual disambiguation

is performed. If the degree of similarity between a concept and a related sets of synonyms is

significantly high (higher than a threshold), only those will be kept for further processing, thus

narrowing the set BST c into a subset BST c. The threshold has been experimentally set to

0.3, a high value for cosine similarity. This leads to an improvement in precision, while not

penalizing the recall.

Figure 11. WordNet synsets for Agent and Group.
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Step 2. Background Hypernym Terminology Construction: Each concept in the source

(respectively, target) gets associated with a set of hypernyms from the background terminology.

This association is made through the previously built sets of synonyms. Given a concept c, we

consider each concept in BST c and extract its hypernyms in the background terminology.

Finally, we perform the union all such sets, thus obtaining a set for each concept c denoted

BHT c (for Background Hypernym Terminology).

Step 3. Mapping Inference: We use the sets obtained in the previous two steps to build

the sets of subclass and superclass mappings denoted respectively by DPLCv and DPLCw.

Our mediator-based approach relies on the possibility to convert hypernym relations into

subclass relations, the latter ones interpreted according to their well-known OWL semantics.

We start by defining a hyponym-to-subclass conversion factor (hsc) as the probability that a

source concept cS is a subclass of a target concept cT , given that there exist two terminology

concepts wS and wT that are correct annotations respectively for cS and cT , such that wS is a

direct hyponym of wT . This can be expressed by the following formula:

hsc = P (cS v cT |wS �1 wT ) (4.1)

where �1 denotes the direct hyponymy relation. We note that the hsc factor can change

depending on the terminology. We empirically estimated hsc = 0.9 in WordNet on the basis of

a number of samples.
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Now we can define a metric to assess the confidence degree under which two lexical anno-

tations provide evidence for the existence of a subclass mapping between a source and a target

concept; we call this confidence degree the single-annotation subclass evidence score. The met-

ric is based on the propagation of the hsc factor when there exists a hyponym relation between

two terminology concepts with a distance greater than one between them.

Let dist(wS , wT ) be the length of the path on the hyponym hierarchy connecting two termi-

nology concepts wS and wT . The single-annotation subclass evidence score saScore(cwS
S , cwT

T )

of two concepts cS and cT given two terminology concepts wS and wT , respectively associated

with cS and cT , is defined as the probability that cS v cT given wS � wT according to the

following formula:

saScore(cwS
S , cwT

T ) =


P (cS v cT |wS � wT ) if wS � wT

0 if wS 6� wT

(4.2)

where P (cS v cT |wS � wT ) can be resolved according to the following equation:

P (cS v cT |wS � wT ) =

dist(wS ,wT )−1∏
i=1

P (cS v cT |wi �1 wi+1), (4.3)

where w1 = wS , wdist(wS ,wT ) = wT

= hscdist(wS ,wT )

Finally we have to consider that according to the polysemic lexical annotation strategy

adopted, every ontology concept is annotated with possibly more than one terminology con-
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cept. We therefore define a polysemic subclass evidence score that assesses the confidence

degree at which a source concept can be considered subclass of a target concept by aggregating

the evidences provided by all the lexical annotations. The polysemic subclass evidence score

polyScore(cS , cT ) is defined as follows:

polyScore(cS , cT ) =

∑
wi∈BST cS

,wj∈BHTcT
saScore(cwi

S , c
wj

T )

log(|BHTcT |)
(4.4)

The aggregation function sums all the single-annotation subclass evidence scores and adopts

a normalization factor in the denominator based on the size of the Background Hypernym

Terminology BHTcT associated to the target concepts. In fact, the bigger this set is, the higher

the probability of finding matchings between sets of synonyms and hypernyms. The size of

these sets grows rapidly when the depths of the synonyms increase. We therefore smooth the

size using a logarithmic function.

In Figure 10, there are two paths connecting the source and target terminology concepts.

The first (length one) gets associated with an saScore of 0.9, while the second one (length

three) with a value of 0.729. These values are then summed and normalized applying the

natural logarithm to the size of BHTcS , which in this case is 10 (the hypernyms of the matched

person are not shown for simplicity). The overall score (0.707) is above the threshold we

experimentally set, and therefore will be included in DPLCv.
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In Figure 11, there is only one path connecting the source and target terminology concepts,

even though the graph is significantly bigger than in the previous example. This path (length

five) gets associated with an saScore of 0.59. After normalization the overall score obtained

(0.186) is below the threshold, and therefore it will not be included in DPLCv.

The polysemic subclass evidence score can be adopted to infer both subclass and super-

class relations. In fact, given a subclass score threshold thv the set of subclass mappings and

superclass mappings returned by this matcher can be defined as follows:

DPLCv = {〈cS , cT ,v〉|polyScore(cS , cT ) ≥ thv and (4.5)

polyScore(cS , cT ) ≥ polyScore(cT , cS)}

DPLCw = {〈cS , cT ,v〉|polyScore(cT , cS) ≥ thv and

polyScore(cT , cS) ≥ polyScore(cS , cT )}

4.4.2 Global Matcher (GM)

LOD ontologies often use several concepts (e.g., foaf:Person in the Semantic Web Conference

ontology) imported from other ontologies that need to be considered in the matching process.

This does not usually happen in more traditional ontology matching scenarios where ontologies

are not much interlinked. The Global Matching (GM) technique is introduced to improve

matching over external concepts, in order to consider this peculiarity of LOD ontologies.
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The GM technique is based on the consideration that several external concepts used in

LOD ontologies, such as wgs84 pos:SpatialThing in the GeoNames ontology, are used across

different ontologies, which could provide useful information in discovering additional mappings

such as between dbpedia:Person and wgs84 pos:SpatialThing. One could arrive to this mapping

by knowing that foaf:Person has been defined as subclass of wgs84 pos:SpatialThing elsewhere.

Our GM technique is defined as follows. For each concept cS in S that has been imported

from an external ontology E, we search across several LOD ontologies for all concepts that

are defined as subclasses of cS and we match these concepts with the concepts of the target

ontology using ASM. We perform the same for each concept cT in T . In particular, if there

is in some external ontology E a concept xE , such that xE has been defined as subclass of cS

(respectively, cT ) and for some concept cT (respectively, cS) we have that sim(xE , cT ) ≥ th≡

(respectively, sim(cS , xE) ≥ th≡) then 〈cS , cT ,w〉 ∈ GMw (respectively, 〈cS , cT ,v〉 ∈ GMv).

The external ontologies that we use to search for external concepts are listed in a registry.

We included in the registry ontologies available on the Web that either have been defined by

a recognized institution such as the W3C consortium (e.g., Event Ontology, 1 WGS84 Geo

Positioning, 2 and Media Ontology 3) or are well known and used by a wide community of users

1http://motools.sourceforge.net/event/event.html

2http://www.w3.org/2003/01/geo/wgs84 pos

3http://www.w3.org/TR/mediaont-10/
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(e.g., DBPedia,1 FOAF, 2 and Freebase3). These ontologies, which often import third party

ontologies to reuse their most important concepts, provide good background knowledge for the

GM technique.

4.5 Results

Table III lists the ontologies that we have used for our experiments, which are the same

that were considered by the BLOOMS system4 (18), as no benchmark has been otherwise set

for the LOD domain. Table III shows the number of concepts in the ontologies and the number

of external ontologies that they import. The evaluation settings consist of seven matching

tasks, involving different types of comparisons. For example, the Music Ontology and the BBC

Program ontology are both related to entertainment, whereas some other comparisons involve

general purpose ontologies, such as DBpedia.

We first compare the results obtained by our system to the results obtained by other systems;

then, we provide an in-depth analysis of each matcher used in our system; we finally discuss

some significant issues concerning the alignment of LOD ontologies that we believe of general

interest for future research in this domain.

1http://dbpedia.org/ontology/

2http://xmlns.com/foaf/spec/

3http://rdf.freebase.com/rdf/base.fbontology

4http://wiki.knoesis.org/index.php/BLOOMS.
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TABLE III

ONTOLOGIES IN THE EXPERIMENTAL DATASET.

Ontology Id # Classes # Imported ontologies

AKT Portal AKT 169 1
BBC Program BBC 100 2
DBpedia DBp 257 0
FOAF FOAF 16 0
GeoNames GN 10 0
Music Ontology MO 123 8
Semantic Web Conference SWC 172 0
SIOC SIOC 15 0

4.5.1 Comparison with other systems

Table IV shows the comparison between the results obtained by AgreementMaker and the

results previously obtained for the S-Match, AROMA, and BLOOMS ontology matching sys-

tems. We are omitting the baseline results (Alignment API) and the results of other systems

(OMViaUO, and RiMoM) because their results are not competitive (18).

As can be seen in Table IV, our system achieves the best average precision (with or without

the modification), while being the second best in average recall after BLOOMS. We comment

next on the results obtained for each task.

Task 1. For the FOAF–DBpedia matching task, our system is the best one, both in precision

and recall. In particular, non-trivial mappings are discovered by our global matching technique

described in Section 4.3, which allows us to find mappings using external ontologies and to

propagate them through the subclasses of the involved concepts.
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TABLE IV

COMPARISON BETWEEN AGREEMENTMAKER AND OTHER ONTOLOGY
MATCHING SYSTEMS.

S-Match AROMA BLOOMS AgreementMaker

Matching Task Prec Rec F-m Prec Rec F-m Prec Rec F-m Prec Rec F-m

FOAF-DBp 0.11 0.40 0.17 0.33 0.04 0.07 0.67 0.73 0.70 0.80 0.90 0.85
GN-DBp 0.23 1.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.73 0.44
MO-BBC 0.04 0.28 0.07 0.00 0.00 0.00 0.63 0.78 0.70 0.56 0.27 0.36
MO-DBp 0.08 0.30 0.13 0.45 0.01 0.02 0.39 0.62 0.48 0.87 0.46 0.60
SWC-AKT 0.06 0.40 0.10 0.38 0.03 0.06 0.42 0.59 0.49 0.52 0.41 0.46
SWC-DBp 0.15 0.50 0.23 0.27 0.01 0.02 0.70 0.40 0.51 0.71 0.39 0.50
SIOC-FOAF 0.52 0.11 0.18 0.30 0.20 0.24 0.55 0.64 0.59 0.71 0.45 0.55

Average 0.17 0.43 0.24 0.25 0.04 0.07 0.48 0.54 0.51 0.64 0.52 0.57

TABLE V

COMPARISON BETWEEN AGREEMENTMAKER AND ITS OLDER VERSION

AgreementMaker (2010) AgreementMaker

Matching Task Prec Rec F-m Prec Rec F-m

FOAF-DBp 0.72 0.80 0.76 0.80 0.90 0.85
GN-DBp 0.26 0.68 0.38 0.32 0.73 0.44
MO-BBC 0.48 0.16 0.24 0.56 0.27 0.36
MO-DBp 0.62 0.40 0.49 0.87 0.46 0.60
SWC-AKT 0.48 0.43 0.45 0.52 0.41 0.46
SWC-DBp 0.58 0.35 0.44 0.71 0.39 0.50
SIOC-FOAF 0.56 0.41 0.47 0.71 0.45 0.55

Average 0.53 0.46 0.49 0.64 0.52 0.57
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Task 2. For the GeoNames–DBpedia matching task, BLOOMS is not able to find mappings.

This is because the GeoNames ontology has very little information in the ontology proper, as

the actual categories are encoded in properties at the instance level. However, S-Match has a

perfect recall (100%), though precision is low (20%). The use of our global matching technique

is the main reason why AgreementMaker outperforms all the other systems.

Task 3. For the Music Ontology–BBC program task, BLOOMS obtains the best results, with

AgreementMaker second. BLOOMS uses Wikipedia while we use WordNet, a generic background

ontology. Wikipedia is very well suited for this kind of ontologies, because it covers the specific

vocabulary of the ontologies being matched.

Task 4. For the Music Ontology–DBpedia matching task, and in contrast with the previous

task, our results are better than those of BLOOMS in terms of F-measure. While BLOOMS

achieves slightly higher recall, the precision achieved by AgreementMaker is significantly higher.

Our system presents only mappings on which it is very confident, thus favoring precision, while

BLOOMS clearly favors recall. The next best system, S-Match, obtains a reasonable recall

(30%), albeit at the cost of very low precision (6%).

Task 5 For the Semantic Web Conference–AKT Portal matching task in the scientific pub-

lications domain, we notice again that BLOOMS favors recall while AgreementMaker favors

precision. S-Match again favors recall at the cost of very low precision, while Aroma favors

precision at the cost of very low recall.

Task 6. For the Semantic Web Conference–DBpedia matching task, BLOOMS and AgreementMaker

achieve very similar good results. The conference domain is the same used in the OAEI com-
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TABLE VI

EXECUTION TIMES (IN SECONDS) OF THE MATCHING PROCESS (LOADING,
SIMILARITY-BASED, MEDIATOR-BASED, AND TOTAL).

Matching Task Load SB MB Total

FOAF–DBpedia 6.9 3.1 1.7 11.7
GeoNames–DBpedia 6.6 1.5 1.6 9.8
Music Ontology–BBC Program 16.0 3.7 4.7 24.4
Music Ontology–DBpedia 26.3 18.2 7.5 52.1
Semantic Web Conference–AKT Portal 3.5 2.1 2.8 8.3
Semantic Web Conference–DBpedia 7.9 8.1 2.4 18.5
SIOC–FOAF 0.1 0.2 1.7 2.0

petition, on which both the systems perform well. S-Match has an interesting recall (50%) but

low precision (15%).

Task 7. For the SIOC–FOAF matching task, both general linguistic understanding and specific

domain vocabulary are needed, because SIOC is an ontology related to online communities.

AgreementMaker leads in precision followed by BLOOMS and S-Match (respectively, 71% ,

52%, and 56%), while BLOOMS significantly leads in recall because it is based on Wikipedia.

Table VI shows the total execution times of the AgreementMaker matching process in the

seven tasks as well as the times for the different subtasks, namely, loading, mapping discovery

using the similarity-based (SB) method and using the mediator-based (MB) method. We note

that the total time never exceeds one minute, even when large ontologies like the Music Ontology

and DBpedia are being matched.
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A complete comparison of all the systems in terms of execution time was not possible.

However, we compared the performance of the Semantic Web Conference–AKT Portal matching

task in BLOOMS and in AgreementMaker. While BLOOMS took 2 hours and 3 minutes,

AgreementMaker performed the same task in only 8.3 seconds. We ran our experiments using

an Intel Core2 Duo T7500 2.20GHz with 2GB RAM and Linux kernel 2.6.32-30 32 bits.

4.5.2 Analysis of Matchers Effectiveness

Figure 12 shows the results achieved by our system. The Global Matching (GM) technique

we introduced leads to the best single matcher results, because external concepts usually have

a high number of subclasses. In some of the evaluation tasks, most of the mappings involve

external concepts.

Figure 12. Analysis of the effectiveness of each matcher.
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The Equivalence Mappings Expansion (EME) is the second best in recall because even from a

small set of equality mappings a significant number of subclass relationships can be inferred. Our

Distance-based Polysemic Lexical Comparison (DPLC) is the third best performing matcher.

This is a matcher that helps in improving the overall recall, while it provides lower precision

than the other methods. Only 48% of the concepts in the ontologies can be found in WordNet,

and some of the mappings in the reference alignment are between concepts whose names are

compound and do not appear in the WordNet ontology. For these reasons, in order to provide

a significant recall, we have to sacrifice some precision. However, we note that most of the

mappings discovered by this matcher are not found by other matchers, which makes this matcher

an important contributor to the overall results. The Compound Noun Analysis (CNA) is a

precise method that allows us to slightly improve the recall, while not penalizing precision.

Most of the compounds are endocentric, but the heads extracted from the source compounds

can not be frequently matched with target concepts in order to infer the subclass mappings,

which keeps the recall of this matcher quite low.

The combination of all our approaches (shown as All) is the best overall. Our matchers are

“orthogonal” in the sense that they compare different features of the ontologies, and therefore

the union of the generated correspondences is better than the sets of mappings generated by

the individual matchers. This is apparent in Figure 12, where the precision achieved by the

overall system is close to the maximum precision of the single matchers, while the system recall

is significantly higher than the recall of the individual matchers.
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This phenomenon is aligned to what happens in traditional ontology matching, where the

results of several matchers, which compare different ontology features (e.g., syntactic, lexi-

cal, structural), are combined by a combination matcher that significantly improves the final

alignment (34).

4.5.3 Discussion of the results.

Matching LOD ontologies is different from matching ontologies in more traditional scenarios,

such as the ones addressed in the OAEI competition. The ontologies are more subject to

real-world characteristics such as heterogeneity and presence of noise. Therefore, part of the

information that is required by traditional ontology matching tools is often not available.

Mappings involving the subclass relation become extremely important in order to integrate

the datasets associated with these ontologies, since only few equivalence mappings can be

established. Subclass mappings are more subjective than equivalence mappings, and this makes

the creation of an agreed-upon gold standard more complicated. Moreover, the subclass relation

is intrinsically many-to-many, and therefore imposes fewer constraints on the characteristics of

the final alignment with respect to equivalence relation; such additional constraints are often

helpful to improve the results because the selection of mappings in a one-to-one setting can be

solved as an optimization problem (47).

The adoption of external lexical resources such as WordNet and Wikipedia is crucial. The

use of such ontologies, and of other mediator ontologies as in the case of our system, is the

reason why BLOOMS and AgreementMaker achieve better results than the other tools. It is

hard to find resources covering a substantial part of the concepts and also containing hierarchies
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whose semantics is compliant with the subclass relation. The results show that WordNet has

less coverage, but its hypernym relation is suitable for this task, while Wikipedia offers more

coverage, but the semantics of the subcategory relation is less appropriate for deriving the

semantics of the subclass relation, leading to lower precision.

One of the possible future developments for AgreementMaker would be the integration of the

Wikipedia categories, using an approach similar to BLOOMS. BLOOMS downloads Wikipedia

pages related to ontology concepts using an API and then follows the links in the page to

build the categories hierarchy. This process is time consuming, and would be the bottleneck

when integrated in AgreementMaker. However, an advantage of using the API is that the most

up-to-date version of Wikipedia is always used. We believe that the quality of the alignments

generated by AgreementMaker can be improved by using Wikipedia categories. These have not

been integrated yet, because the state-of-the-art approach used by BLOOMS does not fulfill

our performance requirements. Future investigation for AgreementMaker would be finding an

efficient way to integrate the Wikipedia categories, so as to improve the quality of the alignments

without sacrificing the time performance.



CHAPTER 5

INSTANCE MATCHING

5.1 Problem Statement

Instance Matching is the problem of deciding whether instances belonging to different data

sources are referring to the same entity. It is closely related to the record linkage problem in

the Databases community. However, instance matching brings new problems and requires a

specific treatment.

Instances, also called individuals, are members of classes in an ontology. Sometimes the

schema is not available, in which case instances can be thought in general as RDF resources.

Since the RDF model is based on statements (triples) as the atomic structure for expressing

knowledge, all the instances are described in a set of statements in which they appear as

subject. An instance i is characterized by a URI (its unique identifier), and a set of statements

Si = [〈p1, v1〉, 〈p2, v2〉 . . . 〈pn, vn〉].

The instance matching problem can be defined as: given two instances is and it, belonging

respectively to the ontologies S and T different ontologies, we want to learn a function f(is, it)→

[0, 1] where 1 means that the two instances are referred to the same real-world object and 0

means they are two different entities.

While ontology matching refers to the problem of finding correspondences between on-

tological concepts, the instance matching problem determines whether two descriptions re-

58
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fer to the same real-world entity in a given domain. In other words, it consists in finding

whether two URIs refer to the same real-world objects. An example may be finding in DBpedia

a description of the same entity as http://rdf.freebase.com/ns/en.barack_obama (Free-

base description of Barack Obama). DBpedia contains such entity and the associated URI is

http://dbpedia.org/resource/Barack_Obama. The automatic discovery of such links allows

for the integration of information from different data sources on the Web.

In ontology matching one of the most used approach is to compare every concept in the

source with every concept in the target, building the so called similarity matrix. This approach

requires n ∗m comparisons, where n and m are the sizes of the source and target concept lists.

Schemas are usually hundreds or thousands of concepts at most, and modern computers can

handle the matching process. Instances are usually much more, as they can be thousands for

every class. It is no longer possible to compare every source instance with every target instance,

but some way of reducing the comparisons has to be introduced.

For instance, Freebase contains 20 million entities and DBPedia more than 14 million. In the

case of DBpedia, the total number of triples (subject, predicate, object statements) exceeds 1

billion. Therefore, every instance in the source dataset cannot be compared with every instance

in the target dataset. This is unlike traditional ontology matching, where an n×m similarity

matrix is built, containing the results of comparing n concepts in the source ontology and m

concepts in the target ontologies. That is, while schemas may contain hundreds or thousands of

concepts at most, instances are usually much more numerous, therefore it is no longer feasible
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to compare every source instance with every target instance. Therefore it is crucial to devise a

way to reduce the number of comparisons.

5.2 Record Linkage

The term record linkage has been introduced in the healthcare domain, when records about

patients were merged together using names, addresses, birthdates, and other information. Since

the 1960s, many researchers have focused on this problem, and many techniques have been de-

veloped, incorporating ideas from fields such as statistics, operations research, data mining, and

machine learning. Record linkage has been surveyed in (48; 49; 50), and is also called duplicate

record detection or entity resolution in the data integration field (51; 52).

The first ideas for record linkage were introduced by Howard Newcombe in (53), who in-

troduced decision rules based on odds-ratios of frequencies. Newcombe understood that the

frequencies of some string values in the database fields could be estimated among matches and

non-matches, and this information should be used to compute a matching score. Also, the

scores computed over different fields should be aggregated to obtain an overall score.

Newcombe’s intuitions were then formalized in (54), where the first rigorous definition of

record linkage was introduced. When matching two files A and B, the idea is to classify

pairs in a product space A × B into M, the set of matches, and U, the set of non-matches.

Fellegi and Sunter, following Newcombe’s intuition considered ratios of probabilities of the form:

R = P (γ ∈ Γ|M)/P (γ ∈ Γ|U), where γ is an agreement pattern (e.g., sharing a particular string

value in the ’name’ field) in the comparison space Γ. The ratio R is known as the matching
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weight or score. The score is used to divide the space A × B into three disjoint sets using a

decision rule:

• If R > UPPER, then the pair is a match.

• If LOWER ≤ R ≤ UPPER, then the pair is a possible match and needs to be reviewed

by an expert.

• If R > UPPER, then the pair is a non-match.

where LOWER and UPPER are thresholds estimated using some known examples of matches

and non-matches.

5.2.1 Record Linkage Techniques

Record linkage has been thoroughly treated in the past and many techniques and method-

ologies have been devised to address this problem.

Data Preparation. The first step in Record Linkage is data preparation, which significantly

affects the quality of the overall matching process. An overview of data preparation techniques

can be found in (55; 56). A very important preprocessing technique in record linkage is the

standardization of strings such as names and addresses. It consists of replacing different spellings

of words using a unified convention (e.g., the occurrences of ’Co’, ’Co.’, and ’Company’ are

unified into ’Co’). The standardization is performed using lookup tables, against which the

words are compared and eventually substituted. This significantly improves the effectiveness of

string matching algorithms.

String similarity metrics. A character-by-character comparison of strings is often unsatisfac-

tory because of many reasons (i.e., typographical errors, slightly different naming conventions,
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different spellings). For these reasons, approximate string matching has been a major research

topic in computer science. The research in this field led to the development of many string

similarity metrics. These are functions that given two strings s1 and s2, return a score in the

interval [0, 1]. A detailed overview of string metrics is provided in (57). One of the most success-

ful string comparators is known as edit distance, which is the minimal cost of operations that

have to be performed to one of the two objects in order to obtain the other. The Levenshtein

edit distance (58) takes into account the number of insertions, deletions, and substitutions of

characters required to transform one string into the other. There are many variations of these

algorithms, and their effectiveness depends on the type of “errors” to be considered. Other

examples are (59) and (60). Other approaches and token-based similarity metrics, which use

cosine similarity and TF-IDF derived metrics (61). A survey on different techniques and mea-

sures that deal with this topic is (49).

Forcing 1-1 Matching. In a number of situations, the overall matching quality can be

improved by making the assumption that a record in the source file can be matched with at

most a record in the target file and viceversa. After the scores for every possible matching pair

are computed, the problem can be formulated as a well-known optimization problem called

the Assignment Problem, which consists of finding a maximum weight matching in a weighted

bipartite graph.

Blocking. To address the problem of reducing the number of comparisons performed, in

the record linkage literature a technique called blocking has been introduced. It consists of



63

partitioning the datasets into disjoint subsets, and the actual comparisons are performed only

between elements belonging to the same partition (62).

In record linkage there are many challenges, as deciding if records match is often computa-

tionally expensive and application specific (51). The former is because a combination of string

similarity algorithms have to be used, the latter because it is difficult to provide a general

solution which works well with heterogeneous datasets. For instance, the techniques used in

matching scientific datasets will be different from the ones used for matching customers.

5.3 Differences between Instance Matching and Record Linkage

An instance in an ontology, is the analogous of a record in a database. For this reason, the

problems of instance matching and record linkage (or duplicate detection) are closely related.

Many techniques implemented in state-of-the-art instance matching tools are actually taken

from the record linkage literature. However, there are some differences between records and

instances, which generate the need for specific algorithms for instance matching.

First of all, the structure of relational databases and ontologies are quite different. The first

are based on tables, while the second are based on graphs. Records belonging to the same table

share the same structure with few possible variations. Instances instead can be very different.

For example, it may happen that two instances of the same class in the same ontology have

different properties defined on them, and it is difficult to choose which properties have to be

used when matching with another ontology. In many record linkage applications, the fields to

be compared are chosen manually, and then the research focus is on the value comparators and
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performance. In instance matching one of the main challenges is how to automatically select

the properties whose values have to be compared.

A general characteristic of data modeling is that there are many ways of describing the

same concepts or entities. Therefore, there are a number of structurally-different but semanti-

cally equivalent representations. This happens already in relational databases, where a typical

example is the possibility of using a foreign key linking to another record or embedding the

additional fields directly. The additional expressiveness provided by ontology languages such

as OWL increases drastically the number of possible representations. For example, a concept

such as red can be a subclass of the concept color or an instance of the same class. This is

something that should be taken into account by instance matchers.

Another important difference between the ontologies and relational databases is that the

former may contain implicit knowledge. For example, the instances of a class C are also

instances of the classes that are superclasses of C. It has to be decided whether or not this fact

should be considered in the matching process. In general, it is possible to run a reasoner before

the matching process, so that all the implicit knowledge will be made explicit.

5.4 Evaluation

As in ontology matching, the growing interest in instance matching and the subsequent

development of many matching tools have raised the need for standard benchmarks and evalu-

ation methods. OAEI has been focusing on ontology matching for many years but starting from

2009 it started providing tracks for instance matching. The evaluation procedure and metrics
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are the same as the ones used for ontology matching, and they are incorporated in the ontology

matching yearly evaluation event.

Since ontology matching has become a consolidated research area, we believe that the ma-

jority of the efforts will shift towards the instance level, and many more tracks and benchmarks

will be addressed to the instance matching problem in the near future.

5.5 Instance Matching Techniques

In this section the instance matching techniques used by the state-of-the-art systems will be

introduced. Because of the similarity between instance matching and record linkage previously

explained, many techniques are taken from record linkage (e.g., string similarity metrics). The

core of the matching process is the comparison between values of similar properties (attributes)

using the so called value-oriented techniques. During this phase, a score is computed using string

similarity functions, token-based similarity functions, conversion functions (e.g., transform real

values into integers), statistical analysis (e.g., compute frequency of values and give more weight

to the rare ones). Once all the scores are computed, these have to be combined in one single

value representing the overall similarity between the two instances. This is done by a decision

system, which takes as input the scores at a single value of granularity, and returns the final

matching score. Decision systems range from simple linear combinations to complex machine

learning techniques. A taxonomy of the techniques used in instance matching is shown in

Figure 13.

Learning-based Techniques. Learning-based techniques consist in training a classifier to

decide whether two instances refer to the same real-world entity or not. The classifier is usually
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Instance matching techniques

Similarity-based Learning-based Rule-based Context-based

Figure 13. Classification of the instance matching approaches.

trained with some example instance pairs together with their actual classification. In this case,

we are talking about supervised-classification. The quality of the classifier is highly influenced

by the training set, which has to be carefully selected by a human. The training set has to be

representative and balanced, meaning that it has to possess the same distribution as the overall

data, and contain both positive and negative examples. These are strong requirements, and for

this reason alternative learning methods have been proposed. An interesting example is active

learning, in which the most ambiguous entities are presented to a domain expert who classifies

them, and the system then learns from this feedback. Alternatively, when no training set is

built, it is possible to use unsupervised-learning techniques. These methods exploit clustering

techniques to group similar instances, then it is assumed that instances within the same cluster

share the same class (matching or non-matching). The last approach used in the literature is



67

the semi-supervised learning approach, which encompasses the combination of different learning

techniques.

Similarity-based Techniques. When no training set is available, a similarity value is com-

puted for each instance pair. Then, the final decision (match or non-match) is performed using

a threshold: all the pairs whose similarity is over the threshold are designated as matches, and

the others as non-matches. The scores provided in the value comparisons can be aggregated in

different ways. The simplest method is to compute the average of the single scores, which means

giving the same weight to every property/value. In many cases, though, some of the properties

are more important than the others and this should be taken into account. Therefore, a more

effective solution is to weigh every value based on some heuristics or input knowledge given

manually by a domain expert.

An effective solution which does not require human intervention is the use of statistical

information. The weights can be set based on frequencies. For example, a match between

a very common last name such as ’Smith’ should weigh less than a less common one. This

would reduce the likelyhood of matching homonyms that refer to different real world entities.

Similarity-based techniques have been extensively used both in the ontology matching and

instance matching literature. The only drawback with such techniques is the identification of

the correct threshold, which requires some human intervention.

Rule-based Techniques. Rule-based techniques make use of specific matching rules, which

classify pairs as match or non-match based on the values scores previously computed. The idea

is that even if the analogous of a primary key is not available, a set of uniquely identifying
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properties can be found and encoded in rules. These rules are usually determined by domain

experts, therefore manual intervention is required. Rule-based approaches are usually very

precise, but at the cost of being domain dependent.

Context-based Techniques. Context-based techniques compare not only the values con-

tained in the pair of instances to be matched, but also the values included in related instances.

This is extremely important in the context of Semantic Web and ontologies, because very often

the value of a property points to another resource, which has other properties defined, in a

recursive fashion.

5.6 Instance Matching Tools

A number of instance matching tools have been developed using the previously described

techniques. An overview of these tools is reported in Table VII, which shows the techniques

used by each system. Some of these tools were first developed as ontology matching systems,

and then extended to match instances (e.g., AFlood, CODI, COMA++, DSSim, RiMOM),

while others are specific for instance matching (e.g., SERIMI, LIMES, FBEM). Only a few of

them provide a GUI to help users in setting up the parameters and analyzing the alignments

produced (e.g., LIMES, COMA++).

As can be noted in Table II and similarly to the ontology matching state-of-the-art, most of

the systems make use of similarity-based and context-based algorithms. String similarity met-

rics are used to compare the values of the properties, while context-based methods evaluate the

structural similarity between instances. The values comparison can be significantly improved

by using ad-hoc similarity functions (e.g., Zhishi.links), though they are domain-specific. To
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TABLE VII

INSTANCE MATCHING TOOLS

Techniques Used

Tool Similarity-based Context-based Rule-based Learning-based

AFlood (15) 4 4

ASMOV (17) 4 4

CODI (19) 4 4

COMA++ (20) 4 4

DSSim (21) 4

FBEM (63) 4 4

HMatch2.0 (64) 4 4

LIMES (65) 4

ObjectCoref (66) 4

RiMOM (24) 4 4

SERIMI (67) 4 4

Zhishi.links (68) 4 4

evaluate the structural similarity, the properties and values have to be considered together by a

similarity function. For this reason, tools such as FBEM and RiMOM aggregate the properties

and values into a flat structure, which makes the comparisons easier and faster.

One of the toughest challenges in instance matching is how to decide which properties of the

instances have to be compared. RiMOM uses schema matching and then manual refinement to

determine the property alignment. Rule-based systems (e.g., LIMES and Silk) allow domain

experts to specify linkage rules. This process requires a manual effort, but is the most precise

and reliable. Another approach is to define a generic similarity function between RDF resources,

when property mappings are not defined a priori. This was attempted by SERIMI, and is the
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current research direction in automatic instance matching. The only learning-based tool is

ObjectCoref, which uses a semi-supervised learning approach to coreference instances. The use

of both labeled and unlabeled data in the learning process allows the system to learn from a

small set of labeled data.



CHAPTER 6

INSTANCE MATCHING FOR LOD

In this chapter the extension of AgreementMaker to match instances will be discussed, while

the system was previously working only at the schema level. This extension has been developed

and tested focusing particularly on Linked Open Data, and participated in the OAEI 2011

competition. In that occasion, the system was compared with other state-of-the-art matching

tools with encouraging results, which will be shown at the end of the chapter.

6.1 Proposed Architecture

The proposed architecture for our instance matching system is shown in Figure 14. A three

tier architecture has been developed, separating the key parts of the matching process into

modules. The three phases are respectively Lookup, Disambiguation and Combination.

6.1.1 Lookup Phase

The Lookup phase consists in querying retrieval services to obtain some candidate in-

stances. As introduced in Chapter 5, reducing the number of comparisons needed to provide

an alignment is one of the main challenges in instance matching. The solution implemented in

AgreementMaker consists in performing a look-up using the label of the instance and its type

(when provided) to query against an index, which will return a reasonable number of candidate

target instances. Many of the central LOD data sets offer a SPARQL endpoint, which is an on-

line querying service that accepts queries in the SPARQL language and operates over the HTTP

71
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Figure 14. AgreementMaker OAEI2011 Instance Matching configuration.

protocol. In some other cases, the data can be accessed using an Application Programming

Interface (API) available online. This choice is appropriate for several reasons:

• many SPARQL endpoints and APIs implement indexes, allowing for fast answers to key-

word look-ups;

• the on-line version of these knowledge bases is always richer and more up to date than

the versions that can be downloaded;

• multiple Knowledge Bases can be queried at the same time in a parallel fashion.

Then in the Disambiguation phase a similarity value between the source instance and the

candidate instances is computed. This is achieved using different matchers that compare several
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features of the instances, and then their outputs are combined (Combination phase) in order

to give a unique similarity value. These values are used to rank the candidates and eventually

select the best one.

6.1.2 Disambiguation Phase

After the candidates have been retrieved in the lookup phase, in the disambiguation phase

the system computes the similarities between the source instance and the candidate instances.

In this step several different features may be taken into account and many different similarity

measures may be exploited. The actual techniques implemented and used are described in

detail in Section 6.2.

Following the AgreementMaker’s extensibility and configurability principles, the match-

ing techniques are separated into different classes, all extending the matcher module, imple-

mented as an abstract Java class. In the disambiguation step all the instance matchers in

AgreementMaker are run, producing similarity values for each pair of possible matching pair of

instances.

6.1.3 Combination Phase

In this phase, the values returned by the matchers are used to rank the candidates and

eventually select the best one. We use different matchers (forming the so called matchers

stack) that compare several features about the instances to be matched, and then combine

their outputs in order to give a final alignment. This process is needed because a unique

decision (match/non-match) has to be taken for every pair of instances.
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6.2 Matching Techniques

This section introduces the matching techniques that have been recently incorporated in

AgreementMaker for matching instances. Some of them are readaptations of already avail-

able algorithms (e.g., string similarity), while others are specific for instance matching (e.g.,

property-value comparison). The main features we use for the comparisons are:

• Labels using a substring similarity.

• Comments and other literals using a Vector Space Model approach.

• RDF Statements considering property-value pairs.

• The score values returned by the lookup services (e.g. Freebase API, Apache Lucene

score).

6.2.1 Label Instance Matcher

The first and most intuitive matcher implemented for AgreementMaker’s instance matching

module is the Label Instance Matcher (LIM). This matcher compares the labels of the instances,

returning a score based on a string similarity metric. The label of an instance is a short string

(e.g., from a few to several characters) representing the instance. The use of the term label has

become a standard because there is a label property in RDFS, rdfs:label, which is widely used

in ontologies and RDF data. The definition of this property is reported below.

The domain of this property (i.e., the class to which this property applies) is Resource,

the most general class, since everything is a resource. The range (i.e., the datatype or class

to which this property refers to) is Literal, the classes containing textual descriptions with no

constraints. Even in case rdfs:label is not available, there always is an analogous property with
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Listing 6.1. rdfs:label property definiton in RDFS
1 <rd f :P rope r ty rd f : abou t="http://www.w3.org/2000/01/rdf-schema#label">
2 <r d f s : i sDe f i n edBy r d f : r e s o u r c e="http://www.w3.org/2000/01/rdf-schema#"/>
3 < r d f s : l a b e l> l a b e l</ r d f s : l a b e l>
4 <rdfs:comment>A human−r eadab le name f o r the sub j e c t .</ rdfs:comment>
5 <rd f s :domain r d f : r e s o u r c e="http://www.w3.org/2000/01/rdf-schema#Resource"/>
6 <r d f s : r a n g e r d f : r e s o u r c e="http://www.w3.org/2000/01/rdf-schema#Literal"/>
7 </ rd f :P rope r ty>

the same functionality. Examples are foaf:name and skos:prefLabel, respectively the defined in

FOAF 1 and SKOS 2. In some of the datasets the label can be an ad-hoc defined property, but

the use of popular and agreed-upon properties is a preferred approach which is also encouraged

by the W3C.

The matching process performed by the LIM is divided into three phases: Label Detection,

Label Preprocessing, and Similarity Computation.

Label Detection

In this phase the matcher attempts to find the property used as label in the source and

target instances. This is done using a lookup table in which the most common label properties

are enumerated (e.g., rdfs:label, foaf:name, skos:prefLabel). If no such property is found, the

matcher searches for a property with a name similar to the strings label or name.

1http://xmlns.com/foaf/spec/

2http://www.w3.org/2009/08/skos-reference/skos.html
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Label Preprocessing

In case a label is found both for the source and target instance, the similarity between those

two is computed. Before the actual similarity computation a sort of pre-processing is needed.

In this phase we perform standardization and normalization of strings. The former, as in record

linkage, consists of unifying different spellings of words under a unified convention (e.g., the

occurrences of ’Jr’, ’Jr.’, and ’Junior’ are unified into ’Jr.’), while the latter encompasses removal

of punctuation and diacritics.

Similarity Computation

After the labels have been detected and preprocessed, the actual similarity value is computed

and returned. This is done by using the string similarity metrics previously discussed. In

AgreementMaker many string similarity metrics were already implemented and have been tested

extensively in the field of ontology matching (e.g., Edit-distance, Jaro-Winkler). All of these

metrics are exposed by LIM as parameters, and can be used in the matching process. A

comparison between the results obtained using different string similarity metrics will be reported

in the Results section.

6.2.2 Token-based Instance Matcher

The string similarity metrics work well on the labels and in general on short textual descrip-

tions such as names, but longer text requires a different processing such as using frequencies

of words. For this reason, we have implemented a matcher integrating Token-based techniques

for comparing textual descriptions, called Token-based Instance Matcher (TIM).
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The typical example of property that is successfully compared using token-based similarity

metrics is rdfs:comment. Similarly to rdfs:label, it is a property that applies to every resource

and its value is always a generic string. The comment usually contains a description of the

instance longer than the one provided by a label, and since the overlapping between comments

is in many cases a good similarity indicator between instances, it is used for matching. There

are many other properties that can be used exploiting a token-based approach, such as the

dbpedia:abstract, which is the abstract taken from Wikipedia, the types (sometimes there are

many types associated with an instance), and the comment taken from other ontologies such

as skos:description.

In the literature there are many Token-based similarity measures (69). There always is a

sort of preprocessing in which the strings are turned into sets of tokens (also known as vectors).

Stopword removal and stemming may also be performed. After this step, the sets are compared

using a set similarity. The most common and used set similarities are reported in Table VIII.

The similarity is maximized (i.e., equal to 1) only if the two sets share all the tokens, and is

minimized (i.e., equal to 0) only if the two sets have no elements in common. Which function

works better depends heavily on application and data characteristics (69).

The pseudo-code for the comparisons performed by the Token-based Instance Matcher is

shown in Algorithm 1. At the beginning of the process, some relevant properties such as

comments, abstracts, and types are detected in every instance and the values are aggregated

in a single string called virtual document. These are then processed using tokenization and

stopword removal. After that, the actual comparisons are performed. In this phase, every
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TABLE VIII

SET SIMILARITY METRICS.

Metric Function Equation

Normalized Weighted Intersection N(s, t) ‖s∩t‖
max(‖s‖,‖t‖)

Jaccard Similarity J(s, t) ‖s∩t‖
‖s∪t‖

Dice Similarity D(s, t) 2∗‖s∩t‖
‖s‖+‖t‖

Cosine Similarity C(s, t) ‖s∩t‖2
‖s‖∗‖t‖

token in the source virtual document is tested against every token in the target. We designed

three types of comparisons: string equality, synonymy check, and equality after stemming. The

weights of the three matching conditions are parameters to the matching process, respectively

called equalityReward, synonymsReward, and stemmingReward. Our experiments led us to set

the values 1, 0.5, 0.5. All the matching scores are summed and in the end normalized using

one of the set similarity measures in Table VIII. The one used by default by TIM is the Dice

Similarity.

An even more accurate similarity comparison could be performed by weighing the vectors

using frequencies of terms such as in the TF-IDF measure. This could slightly improve the

accuracy of the TIM, but requires full access to the data to compute the statistics. The

datasets we used are very large and using the endpoints makes them non-iterable. In fact,

there is no way of computing those statistics unless the datasets are stored in memory or on

disk. Alternatively, sampling could be performed, but this will be left as a future development.
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Algorithm 1 Pseudo-code for Token Instance Matcher

1: function instanceSimilarity(source, candidate)
2: S ← buildV irtualDocument(source) . Returns a list of the property values
3: T ← buildV irtualDocument(target)
4: S ← preProcess(source) . Tokenization, stopword removal, and normalization
5: T ← preProcess(target)
6: sim← 0
7: for s ∈ S do
8: for t ∈ T do
9: if s = t then
10: sim← sim+ equalityReward
11: else if areSynonyms(s, t) then
12: sim← sim+ synonymsReward
13: else if s.stem() = t.stem() then
14: sim← sim+ stemmingReward
15: end if
16: end for
17: end for
18: norm← (S.length+ T.length)/2
19: sim← sim/norm
20: return sim
21: end function
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6.2.3 Property-Value Comparison

The first two matchers describe a comparison based on relations whose semantics is at least

partially known a priori. As an example, the label is a property with the specific semantic of

“a short textual description representing the instance”. These matchers work because there

is a shared way of using some properties, which is exactly one of the main goals of Linked

Open Data and the Semantic Web. In a real-world situation, datasets can use any kind of

property without following these principles, and our instance matching tool should provide

relevant results also in this case. For this reason, there is a need for matching methods that

work with unknown properties. Such methods are included in our matcher called Statements

Instance Matcher (STIM), which provides techniques for comparing in general the statements

belonging to two instances, namely the source and the target. The comparison is between the

property-value pairs encoded in the statements.

Our implemented matcher first searches for comparable properties, which are the ones shar-

ing the same URI or that possess similar names. As an example, many datasets contain geo-

coordinates expressed using the standard geo:long and geo:lat properties, which can be easily

detected and compared. Alternatively, matching properties can be discovered by our ontology

matching algorithms or provided by a user. In the latter case, our approach would be similar

to the rule-based approaches which involve a domain expert.

Once the properties to be compared are selected, the values are compared using string

similarity metrics or mathemathical fuctions in case the values are real numbers. The property-
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value pairs to be compared are given a matching score which takes into account both the

property similarity and the value similarity, as follows:

sim(〈pi, vi〉, 〈pj , vj〉) = sim(pi, pj)× sim(vi, vj) (6.1)

The property-value scores are then normalized over the number of comparisons that have been

performed so as to provide a unique overall score representing the similarity between the state-

ments of the two instances.

6.2.4 Combination Methods

The scores computed by the previously described matchers have to be aggregated to provide

a single score for each possible matching pair. This process is called combination and may be

based on different heuristics. A first and simple method is to compute the average of the

matchers, which means considering all the matchers at the same level. However, some matchers

may be more effective than others, and should be given more importance when combining their

results. For this reason, our combination module supports a linear weighted combination, where

the weights are specified by a user. The user should understand which matchers may produce

better results than the others and set the weights consequently. An improvement that was

made to the linear weighted combination is the introduction of the possibility for a matcher

not be included in the combination only in particular cases. It may happen that two instances

have no comparable statements or one of them has no label to be compared with the other. In
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such cases, the matcher has to be excluded by the average or linear weighted combination. In

the latter case, the weights have to be redistributed between the other matchers.

6.3 OAEI 2011 Participation

6.3.1 Track Description

The Data Interlinking track of the OAEI 2011 competition consists in recreating the links

from the New York Times Data 1 to Freebase 2, DBPedia 3, and GeoNames 4. These datasets

involved are available on the Linked Open Data cloud, and are interlinked with other RDF

datasets.

This track is particularly interesting and challenging, since it is a real-worlds application of

instance matching and entails the following problems:

1. Datasets are very large and not easy to wholly retrieve and work with.

2. The source datasets (New York Times) have a very poor schema associated with them.

Therefore, we cannot rely on traditional ontology matching to create schema level map-

pings.

Data Interlinking is composed by seven tasks. The source dataset is always the New York

Times Data, while there are three different targets: Freebase, GeoNames, and DBPedia. Ta-

1http://data.nytimes.com/

2http://www.freebase.com/

3http://dbpedia.org/About

4http://www.geonames.org/
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ble IX reports the sizes of the reference alignments, divided by matching task and entity type.

Three types of entities are considered: People, Locations, and Organizations.

TABLE IX

STATISTICS ABOUT THE REFERENCE ALIGNMENT

Statistics People Organizations Locations

Nr of NYT resources 9958 6088 3840
Total nr of sameAs links 14884 8003 87861

Links to Freebase 4979 3044 1920
Links to DBPedia 4977 1949 1920

Links to NYT 4979 3044 1920
Links to Geonames 0 0 1789

New York Times Data

The New York Times Data reflects the effort made by the popular newspaper New York

Times 1 to semantically annotate a part of their huge collection of articles. The schema is very

simple as it contains only three types of instances (i.e., People, Organizations and Locations),

and there are no properties inter-relating them. Instances are provided with a label, a descrip-

tion page, possibly a comment, and a list of articles in which they are mentioned. In the article

pages some keywords that can be used in the matching process are included.

1http://www.nytimes.com/
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DBPedia

DBpedia is the Semantic Web version of Wikipedia. It has become the center of the Linked

Open Data cloud, the dataset to which most of the other datasets are linked to. Wikipedia is an

excellent resource for multi-domain knowledge, since it contains a large number of heterogeneous

entities.

Freebase

Freebase is a collaborative knowledge base whose data are introduced and mantained by

a community of users. The dataset is totally multi-domain as it covers any kind of topic. It

has a powerful search tool accessible to an API. In 2010, Freebase was acquired by Google,

confirming the interest that the company has in Semantic Web technologies.

GeoNames

GeoNames is a geographical database accessible through an API. It contains a wide variety

of places together with their geospatial coordinates. GeoNames has become a standard so that

many other datasets use its conventions for encoding geo-coordinates.

6.3.2 Dataset Processing

As explained in 6.1, our choice for the Data Interlinking track was to use retrieval service in

order to get candidate instances. The datasets involved can be queried online using SPARQL,

when they provide an endpoint, or using APIs. Alternatively, dumps (i.e., the whole datasets

in a downloadable format) may also be available. The two approaches may lead to different

results depending on the datasets and the services exposed by who provides the data.



85

When dealing with large multi-domain knowledge bases like DBPedia and Freebase, memory

is a bottleneck. These datasets occupy several gigabytes when they are compressed. In order

to be queried, they need to be decompressed and also an index on disk is required to execute

queries in reasonable times. For this reason, we decided to use the services available on the

internet and to implement a caching mechanism to avoid the repetition of the same queries.

SPARQL endpoints are able to return RDF descriptions as answers, while JSON has become

the standard for APIs. In the latter case, it is often possible to get the URIs from the JSON

returned by the service and then access the whole descriptions with a URI lookup. Usually,

APIs provide faster answers to queries, while SPARQL is slower but more flexible. What is

missing in plain SPARQL is a fast approximated search. This is because it has been thought

from the beginning as an exact query language, in a context where URIs are the unambiguous

identifiers. In the web as it is today, it frequently happens to search for the same concept

in different ways, for this a keyword lookup is needed. There are some projects integrating

indexing and fast keyword query answering in SPARQL engines, and they are also used in some

endpoints. An example is LARQ 1, an integration of Apache Lucene 2, an open source project

implementing many information retrieval techniques, in a SPARQL engine.

1http://jena.sourceforge.net/ARQ/lucene-arq.html

2http://lucene.apache.org/java/docs/index.html
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6.3.2.1 Typed and Untyped queries

We noticed that our queries can be divided in mainly two categories, namely typed and

untyped. The former, as suggested by its name, asks for candidates belonging to a specific

type, which is usually mapped to the type of the source instance. The latter, instead, relies

on the label without asking for a specific type. The former leads to more precise candidates

penalizing the recall, while the second improves the recall penalizing the precision.

Which one is better for a specific matching task depends on many factors. When the data

sources share a type which is perfectly equivalent, a typed query performs better, because it

would exclude the possibility of getting candidates that belong to a totally different type. In

many real-world cases, though, it happens that some subsets of the classes are considered as

different or even disjoint classes in one of the data sources. For example, a musical band may

be considered as an organization in a data source and a distinct class in another data source.

In such cases, recall can be highly penalized when using typed queries.

This situation represents the usual trade off between precision and recall. When there is

more interest in precision it is better to use a typed query, while when high recall is preferred,

an untyped query would be the best choice. For example, in the matching task New York

Times/Freebase Organizations, a typed query would lead to an upperbound in recall (e.g.,

obtained by perfect disambiguating candidates) of 77.8%, while an untyped query would make

an 88.3% recall result possible. In our experiments, we preferred to use untyped queries so as to

avoid the recall drop-off, while the precision can still be improved with better disambiguation
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Listing 6.2. Example of a Freebase query
1 http ://www. f r e eba s e . com/ api / s e r v i c e / search ?
2 query=barack+obama&
3 type=/people / person&
4 threshold=40

algorithms. Next, we will discuss how we accessed and processed the four data sources involved

in the Data Interlinking track.

6.3.2.2 Freebase

Freebase provides an API which allows a keyword search. The query is passed through the

HTTP protocol, using the parameters query (the actual keyword search terms), type (the type

to be queried, in case the query is typed), and threshold (a parameter to limit the number

of possible candidates). The results are returned in JSON, which can be easily parsed and

converted to a list of instances in AgreementMaker. In Listing 6.2 is reported a Freebase typed

query for the Person “Barack Obama”.

6.3.2.3 DBPedia

DBPedia offers a sparql endpoint located at http://dbpedia.org/sparql. SPARQL en-

dopoints are particularly interesting because many LOD datasets provide them. Listing 6.3

reported a typed query searching for the Italian town “Monza”.

The keyword construct instructs the server to return the results as an RDF model made

of statements as opposed to a classic tabular result. The subject is an instance of a particular

type (http://dbpedia.org/ontology/Place), for which the label must contain a particular
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Listing 6.3. Example of a DBpedia query
1 PREFIX f o a f :<http :// xmlns . com/ f o a f /0.1/>
2 PREFIX rd f :<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
3 construct { ?p ?prop ? obj }
4 WHERE {
5 ?p rd f : type <http :// dbpedia . org / onto logy /Place> .
6 ?p r d f s : l a b e l ?name .
7 ?p ?prop ? obj .
8 ?name b i f : conta in s ’"Monza"’ .
9 FILTER ( lang (? obj ) = "" | | lang (? obj ) = "en" )

10 } LIMIT 1000

search term (in this case Monza). The object has either a non specified language or is written

in English. We limit the number of statements to 1000 for performance and memory issues.

6.3.2.4 New York Times Data

The New York Times datasets are available on the website as RDF files separated by instance

types. The information found in the downloadable datasets can be augmented by querying the

API at the web address http://data.nytimes.com/elements/search_api_query. The RDF

datasets contain already some queries which lead to data about the articles in which the queried

entities are mentioned.

6.3.2.5 GeoNames

GeoNames provides an API which allows a keyword search. The query is passed through

the HTTP protocol, using the parameters q (the actual keyword search terms), type (the format

in which the results have to be returned), and maxRows (a parameter to limit the number of

possible candidates). In this case, the results are returned in RDF, which can be easily loaded
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Listing 6.4. Example of a GeoNames query
1 http :// api . geonames . org / search ?
2 q=Monza
3 type=rd f&
4 maxRows=10

into a list of instances in AgreementMaker. In Listing 6.4 is reported a GeoNames typed query

for the location “Monza”.

6.4 Results

In this section we will explain the experiments that have been performed to test the

AgreementMaker’s instance matching module against the datasets involved in the OAEI 2011.

All the tables and figures in this section will include the precision, recall, and F-measure in

several matching tasks.

6.4.1 Evaluation of String Similarity Metrics

We compared the effectiveness of the Label Instance Matcher using several string similarity

metrics, and we report the most significant results in Table X. The metrics compared are Jaro-

Winkler, Edit-Distance, and Q-Grams, and AM-Substring. While the first three are popular

algorithms in the literature, AM-Substring is a version of the substring similarity algorithm

that had been already introduced in AgreementMaker in the context of ontology matching.

The experiments show that all the four tested metrics perform similarly. The best one is

Jaro-Winkler that performs slightly better than the others, and for this reason will be used in the

remaining experiments. The average difference between the best metric (Jaro-Winkler) and the
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TABLE X

RESULTS ACHIEVED USING LABEL INSTANCE MATCHER USING DIFFERENT
STRING SIMILARITY ALGORITHMS

Jaro-Winkler Edit-Distance AM-Substring Q-Grams

Matching Task Prec Rec F-m Prec Rec F-m Prec Rec F-m Prec Rec F-m

NYT-DBpedia-Loc 0.882 0.642 0.743 0.745 0.667 0.704 0.742 0.658 0.697 0.748 0.668 0.706
NYT-DBpedia-Org 0.801 0.721 0.759 0.769 0.790 0.780 0.787 0.797 0.792 0.784 0.784 0.784
NYT-DBpedia-Peo 0.964 0.912 0.937 0.960 0.933 0.946 0.959 0.931 0.945 0.957 0.925 0.941
NYT-Freebase-Loc 0.871 0.842 0.856 0.863 0.840 0.851 0.865 0.841 0.853 0.865 0.841 0.853
NYT-Freebase-Org 0.885 0.854 0.869 0.854 0.827 0.840 0.867 0.839 0.853 0.869 0.843 0.856
NYT-Freebase-Peo 0.950 0.939 0.944 0.946 0.937 0.942 0.946 0.936 0.941 0.947 0.938 0.942
NYT-GeoNames 0.803 0.409 0.542 0.783 0.417 0.544 0.780 0.415 0.542 0.784 0.417 0.545

Average 0.879 0.760 0.807 0.846 0.773 0.801 0.849 0.774 0.803 0.851 0.774 0.804

worst (Edit-Distance) is less than one percent. This means that in this context all the popular

string similarity metrics are able to capture similar differences in spelling or typographical

errors, and the key to improve the results is not on the Label Instance Matcher but in other

methods such as the ones implemented in the other matchers.

6.4.2 Analysis of Matchers Effectiveness

Figure 15 reports the evaluation for each matcher separately. This allows us to see the

impact of our techniques on the overall results. Our tests have a baseline, which consists in

creating an alignment only when the list of candidates is composed by only one instance. It is

a very simple approach that in this case leads to a very high precision, with low recall. This is

because most of the instances that appear in the source datasets are present also in the target
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datasets. The recall instead is low, due to the problem of ambiguity. In fact, it is not so frequent

to find only one instance in the candidates list.

Figure 15. Analysis of the effectiveness of each matcher.

The Label Instance Matcher (LIM) improves significantly the recall, while the precision is

slightly worse. The F-measure it provides is 30% higher than the baseline, which is a remark-

able improvement. The Statements Instance Matcher (STIM) is very precise but finds fewer

mappings than LIM. The Token-based Instance Matcher is the worst performing matcher of

the three, but it still gives a 6% improvement with respect to the baseline.
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The combination of the three matchers (ALL) is the overall best. As it happens in ontology

matching, a combinational approach is able to get the best of different matchers, providing the

best results. The overall improvement with respect to the baseline is 36%, which we consider

an excellent achievement.

6.5 OAEI 2011 Results

This section reports the official results achieved by the systems competing in the Data

Interlinking track of the OAEI 2011 challenge. AgreementMaker has participated in the OAEI

challenge starting from 2006, where it has always been one of the best ontology matching tools.

In the 2011 edition of the challenge, we entered for the first time the instance matching track.

Although many instance matching tools have been presented in the past years (e.g., see

Section 5.6) and competed in the previous editions of the OAEI, in the 2011 edition only

three tools presented their alignments for the instance matching track. This is in our opinion

because despite the efforts in building generic tools, instance matching still requires some time-

consuming preprocessing of the input data.

In Table XI the results achieved by all the systems in each of the Data Interlinking tasks

are summarized. The results of AgreementMaker have been subject to further improvement

after the competition, since its first version was developed in a short time. The most recent

results are reported in Table XII, showing a comparison with the version participating in the

competition.

All of the three tools are able to provide very good alignments, as the average over 80%.

This is a very good result, showing that the interlinking problem in Linked Open Data can be
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TABLE XI

RESULTS ACHIEVED BY THE SYSTEMS PARTICIPATING IN THE DATA
INTERLINKING TRACK

AgreementMaker SERIMI Zhishi.links

Matching Task Prec Rec F-m Prec Rec F-m Prec Rec F-m

NYT-DBpedia-Loc 0.79 0.61 0.69 0.69 0.67 0.68 0.92 0.91 0.92
NYT-DBpedia-Org 0.84 0.67 0.74 0.89 0.87 0.88 0.9 0.93 0.91
NYT-DBpedia-Peo 0.98 0.8 0.88 0.94 0.94 0.94 0.97 0.97 0.97
NYT-Freebase-Loc 0.88 0.81 0.85 0.92 0.9 0.91 0.9 0.86 0.88
NYT-Freebase-Org 0.87 0.74 0.8 0.92 0.89 0.91 0.89 0.85 0.87
NYT-Freebase-Peo 0.97 0.95 0.96 0.93 0.91 0.92 0.93 0.92 0.93
NYT-GeoNames 0.9 0.8 0.85 0.79 0.81 0.8 0.94 0.88 0.91

Average 0.890 0.769 0.824 0.869 0.856 0.863 0.921 0.903 0.913

in many cases solved in an automatic fashion. We consider this very relevant to the research in

the field, given the high growth rate of LOD and the consequent need of matching tools.

Zhishi.links has the best results, obtained by encoding specific rules and dictionaries to

solve the matching task. It uses direct access to the datasets as opposed to AgreementMaker

and SERIMI, which queried the retrieval services. Zhishi.links focused on how to manage

the matching process involving large datasets, and implemented a distributed algorithm which

was run on a cluster of machines using MapReduce (70). AgreementMaker and SERIMI instead

preferred to implement more general techniques such as property comparison instead of encoding

specific linkage rules. Moreover, Zhishi.links was developed specifically for the competition,

while SERIMI was used to match other datasets, and AgreementMaker has been used for several

years in ontology matching.
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All the systems perform best in the tasks involving entities of type Person. This is because it

is the category of entities for which the ambiguity is minimal. Furthermore, the heterogeneity of

the naming conventions are limited. It is different in Organizations and even more in Locations,

where the ambiguity problem is substantial. For instance, there are many cities in different

states sharing the same name and also many other types of entities can have similar ones.

Both AgreementMaker and SERIMI perform better in Freebase tasks than in DBPedia,

because the lookup service of the former returns fewer and more precise candidates. Therefore,

the disambiguation task is easier when working with Freebase data. In fact, DBpedia keyword

search does not allow mistakes and spelling differences, leading to a loss in recall, while Freebase

search is more flexible. All the systems provide good results in the GeoNames test, because

there are some shared properties between the datasets which help in the matching process.

TABLE XII

RESULTS OBTAINED BY AgreementMaker IN THE DATA INTERLINKING TRACK OF
THE OAEI 2011 CHALLENGE.

AgreementMaker AgreementMaker (Last)

Matching Task Precision Recall F-Measure Precision Recall F-Measure

NYT-DBpedia-Loc 0.790 0.612 0.690 0.909 0.739 0.815
NYT-DBpedia-Org 0.840 0.667 0.744 0.846 0.845 0.846
NYT-DBpedia-Peo 0.977 0.801 0.881 0.962 0.934 0.948
NYT-Freebase-Loc 0.884 0.811 0.846 0.874 0.846 0.860
NYT-Freebase-Org 0.873 0.735 0.798 0.917 0.897 0.907
NYT-Freebase-Peo 0.966 0.950 0.958 0.948 0.940 0.944
NYT-GeoNames-Loc 0.902 0.797 0.846 0.839 0.792 0.815

Average 0.890 0.769 0.824 0.899 0.856 0.876
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Further improvement has been made after the competition, especially in the infrastructure

and in the access to the retrieval services. The system possesses now all the capabilities de-

scribed in the previous sections. Our developments led to an improvement in all of the tracks

except for two, where the results are slightly worse than before, because with more candidates it

increases also the possibility of finding mismatches. Our alignments are now better on average

than SERIMI, while still a bit lower than Zhishi.links.



CHAPTER 7

CONCLUSIONS

We have extended AgreementMaker, one of the state-of-the-art ontology matching systems

in the Semantic Web literature, following these directions:

1. Design and implementation of new ontology matching algorithms.

2. Design of a novel infrastructure for instance matching.

3. Design and implementation of instance matching algorithms.

We have designed and tested new ontology matching algorithms for discovering subclass

relations, which are particularly useful when matching LOD ontologies. In particular, we have

introduced the concept of Global Matching (GM), which uses subclass axioms present in several

LOD ontologies to infer mappings between the two ontologies to be matched. This technique

is particularly interesting because it is able to capture the patterns in the usage of shared con-

cepts between the LOD ontologies. These patterns reflect the idea of reusability, one of the key

concepts in knowledge engineering and ontologies. Then, we implemented and a novel prob-

abilistic algorithm (DPLC) for discovering links using a mediator ontology such as WordNet.

The strength of this algorithm is that it first applies word sense disambiguation techniques to

filter the irrelevant concepts and then it takes into account the distance between concepts in

the mediator ontology.
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We have evaluated our novel approaches using the standard metrics used in the field against a

set of reference alignments that have been used by the best state-of-the-art systems in matching

LOD ontologies. We showed that a combinational approach which aggregates heterogeneous

matchers works very well also when the mappings analyzed are mostly of type subclass. Our

results are the overall best, especially in precision, while the use of multi-domain background

knowledge such as Wikipedia still leads to a better recall.

The overall results show that mediator-based approaches are very promising, and therefore

should be explored more. In particular, the adoption of external lexical resources such as

WordNet and Wikipedia is crucial in the matching process. The use of such resources is the

reason why AgreementMaker and BLOOMS achieve better results than the other tools. Future

research will include experimenting other knowledge bases such as Wikipedia, DBpedia or

Freebase to be used in our system as mediator ontology.

We have extended AgreementMaker with a novel instance matching infrastructure, as well as

with several matching algorithms. In particular, we have defined a three-layer architecture for

instance matching composed by a lookup phase, a disambiguation phase where many matchers

compare the source instance with a set of candidates, and a combination phase in which the

scores provided by different matchers are unified into a single output score. This architecture

allows us to drastically reduce the number of comparisons made to match two datasets, which

would otherwise make the matching process too computationally expensive to be performed in

reasonable times by a modern computer.
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In the lookup phase, we have shown how to access the data provided by different services

and endpoints using the label of the instance to be matched, and how minor modifications on

the queries may change significantly the quality of the candidate instances returned (e.g., typed

and untyped queries). Future work would be investigate more query expansion techniques,

which would improve the overall quality of the candidates and make the disambiguation task

easier.

For the disambiguation part, we implemented three matchers: LIM, TIM, and STIM. The

first two are based on the semantics of some particular relations (e.g., labels and comments),

while the third one works with any type of properties without a priori knowledge. In the com-

bination phase, we put together these methods using a linear weighted combination, with the

addition of the possibility to redistribute the weights in case any of the matchers does not find

comparable properties. We have evaluated our infrastructure using some central LOD datasets

and proved the effectiveness of our algorithms. Our systems provides competitive results when

compared with other state-of-the-art systems. As future research, we will investigate the ex-

tension of our methods to take into account statistics of the datasets involved, using sampling

methods in case of non-iterable datasets. Since our infrastructure is highly extensible, other

matchers will be integrated in the process as well. We will also explore new combination tech-

niques which will adaptively set the weight in the combination based on some heuristics such

as instrinsic quality measures.
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