
EL: A Shell for the Ethos Operating System

BY

GIOVANNI GONZAGA NEBBIANTE
B.S., Politecnico di Milano, Milan, Italy, September 2011

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2014

Chicago, Illinois

Defense Committee:
Jon A. Solworth, Chair and Advisor
Chris Kanich
Stefano Zanero, Politecnico di Milano

To my family

To everyone that supported me in my studies

ii

ACKNOWLEDGEMENTS

I’d like to express my gratitude to my advisor, Prof. Jon Solworth, who always

supported me with his vast expertise and guided me along the way.

I’d like to thank the rest of my dissertation committee, especially Prof. Stefano

Zanero, for taking time out of his busy schedule and providing valuable feedback.

I am thankful to have been given the opportunity to work with many skilled re-

searchers in the Ethos laboratory, including Mike Petullo, Xu Zhang, Wenyuan Fei,

Yaohua Li, Siming Chen. Their patience and always on point answers helped me a lot

especially during the first months in the lab.

Special thanks go to fellow students and other friends I’ve been sharing this jour-

ney with. We made a great group for the last year and a half.

Another special thank you goes to our International Program Coordinator, Lynn

Thomas. She’s always been available with careful advice during the exchange program

and followed me in the graduation process.

Finally, I would like to thank my whole family, for their patience and for always

being supportive.

GGN

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Related Work . 4
1.2 Thesis Organization . 7

2 ETHOS AND ETHOS TYPES . 8
2.1 Introduction . 8
2.2 Universal Properties . 9
2.3 Types . 11
2.3.1 Rationale . 11
2.3.2 Ethos Types . 12
2.3.3 Ethos Types Properties . 13
2.3.4 Serialization . 14
2.3.5 ETN . 15
2.3.6 Type Checking Objects . 16
2.3.7 Files and Directories . 17
2.3.8 IPC . 19

3 DESIGN . 21
3.1 Preliminary Definitions . 22
3.2 Scripts vs. Command Line 22
3.3 Design Rationale . 23
3.4 Syntax . 23
3.5 Types . 26
3.6 Typed I/O . 28
3.7 Functions and Scope . 31
3.8 Error Handling . 32
3.9 Packages . 33
3.10 Unifications . 35
3.11 Directories and Maps . 35
3.12 Functions and Executables 35

4 IMPLEMENTATION . 37
4.1 The Language . 37
4.1.1 Types . 39
4.1.2 Assignments . 40
4.1.3 Accessors . 42

iv

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.1.4 Control Flow . 43
4.1.5 Functions . 45
4.1.6 Builtins . 47
4.1.7 Command Line . 49
4.2 Implementation . 50
4.2.1 Parsing . 50
4.2.2 Evaluation . 52
4.2.3 Environments . 55
4.2.4 Execution Modes . 56
4.2.5 Typed Objects Manipulation 57
4.2.6 Typed Pipelines . 59
4.2.6.1 Typing stdio . 61
4.2.6.2 Named Pipes . 61
4.2.6.3 Redirections . 62

5 EVALUATION . 63
5.1 El and Ethos . 63
5.1.1 Code Readability . 68
5.1.2 Packages . 69
5.1.2.1 Environment Attacks . 69
5.1.2.2 Code Insertion . 71
5.1.2.3 Require . 73
5.2 Language generality . 74
5.2.1 Functions . 74
5.2.2 Exceptions . 76
5.2.3 Packages . 77
5.2.4 Typing . 78
5.2.5 Composite Types . 79

6 CONCLUSIONS AND FUTURE WORK 80
6.1 Grammar Refactoring . 80
6.2 Typed Command-line Arguments 81
6.3 ‘any’ operators . 81

APPENDIX . 82

CITED LITERATURE . 90

VITA . 93

v

LIST OF TABLES

TABLE PAGE

I ETN BASE TYPES . 16

II ETHOS READ/WRITE SYSCALLS 18

III ETHOS NETWORKING SYSCALLS 20

IV EL LITERALS . 39

V EL OPERATORS FOR PRIMITIVE TYPES 44

VI EL CODEBASE ORGANIZATION 51

VII SHELL+OS FEATURES COMPARISON 66

VIII EL AND SH CODE EXECUTION FEATURES 70

IX PL FEATURES COMPARISON . 75

vi

LIST OF FIGURES

FIGURE PAGE

1 Example ETN description file . 17

2 sh syntax examples . 25

3 El syntax examples . 38

4 El primitive types lattice . 41

5 El loop constructs examples . 45

6 El if and switch constructs examples 45

7 Example evaluator ‘add’ and relative AST portion 53

8 Example evaluator ‘ifThenElse’ and relative AST portion 54

9 El pipe setup . 59

10 El non-blocking pipe setup . 62

11 sh environment attack . 69

12 Typical sh usage warnings . 72

vii

SUMMARY

In this thesis we present the design and implementation of El, a new shell and

scripting language for the Ethos operating system.

The main goal of a shell is to bring operating system functionality and user space

tools composition to the command line, and to provide a Programming Language (PL)

for user space scripting. El aims to export an interface to the underlying Operating

System (OS) that is as minimal as possible, making use of—and preserving—Ethos

universal properties and abstractions. El is also intended to play a major role in Ethos

user space programming, and thus is designed to overcome the issues of the major

shells in use today in terms of PL abstractions.

The result is an inherently safer shell and scripting environment, where attack

surfaces that are common for other shells are removed by design.

viii

CHAPTER 1

INTRODUCTION

Shells are widely used by system administrators for managing their systems and

application developers to compose functionality; in addition they are used for one-

off tasks. A shell effectiveness depends on the smoothness of its integration with

its underlying operating system and the simplicity of the interface exported by the

operating system.

In this thesis we try to identify the weakest features of the shells in use today, and

we propose a newly designed shell, El.

El is designed from scratch to be the Ethos shell and the preferred user-space lan-

guage for scripting and small-to-medium size applications. In addition, given Ethos’

security-first design, we focus in particular on security weaknesses in shells’ design

and implementation.

‘’Although most users think of the shell as an interactive command interpreter, it

is really a programming language in which each statement runs a command. Because

it must satisfy both the interactive and programming aspects of command execution,

it is a strange language, shaped as much by history as by design‘’.

1

2

The above quote from Brian Kernighan and Rob Pike [1] summarizes a fundamen-

tal aspect of shells’ design and evolution: shells were originally intended both for

interactive usage at the command line and for scripting purposes; the reason why, his-

torically, they have been particularly bad at the second class of tasks is due to the way

the languages evolved, shaped by user requests and new implementations more than

by design and evolving specification1.

The question that comes to mind is thus: Can a shell language be extensively used

as a user-space/scripting programming language, without requiring the switch to more

capable and structured PLs, and/or incurring in unavoidable limitations? Various fla-

vors of sh are successfully used for all sort of configuration and automation purposes,

but as soon as the code base exceeds the few lines mark, programmers prefer (cor-

rectly) to use general purpose scripting languages. There is an undeniable tension

among the two scopes (scripting and shell), and it’s reasonable to say that shells have

never been able to bridge this gap. With the newly designed El we (at least partially)

accomplish this.

Hence, our discussion develops along three different main tracks:

G1: Ethos requires a different type of shell

Ethos requires a different type of shell in that the shell has to adhere to the OS

1 The first POSIX standard for shells (IEEE Std 1003.2-1992) came in 1992, 20 years after
shells first originated.

3

exported interfaces and must be integrated with them, especially with respect

to composition of programs and access to file system objects. In the rest of this

thesis, we describe how El preserves Ethos’ properties by design.

We summarize goal G1 as: preserving Ethos universal security properties by

language and interfaces design.

G2: Ethos enables a different type of shell

Ethos enables a structured approach to Inter-Process Communication (IPC) and

filesystem interaction with Ethos types. The well-defined object type semantics,

applied system-wide and enforced by the OS itself, results in an inherently more

secure (and smaller in code base) user space applications. This applies also to El

code. In Chapter 2 we describe the Ethos security properties, with emphasis on

the features El makes large use of.

Thus we summarize goal G2 as: exploiting Ethos security properties in order to

obtain an inherently more secure shell.

G3: General user-space programming

El has to enable the Ethos’ user and user-space programmer to perform different

tasks:

(a) interact with the system at the command line interface

(b) ordinary shell scripting

4

(c) small-to-medium size programming tasks that are too large or complex to be

comfortably handled with ordinary scripts in other shells, due to the limited

capabilities of code organization and lack of traditional PL features.

Item (c) goes beyond the features provided by the majority of shell languages in

use today. Hence, our third goal G3 is to provide a language (and environment)

better suited for general user space programming, with respect to other shells.

As we’ll discuss in detail in the rest of this thesis, goal G1 and G2 reflect in fundamen-

tal semantic differences with respect to usual shell interfaces and composition means.

Goal G3 affects El’s design at different levels, including El’s syntax, type system, com-

posite types, error handling mechanisms and code insertion.

1.1 Related Work

We cite here previous related works in the category of shells and minimal script-

ing language implementations. The list is not comprehensive, given the breadth and

history of the two research fields we are considering; nevertheless, we try to highlight

the particular aspects that are more strictly related to El design.

UNIX was the first system to make the command interpreter an ordinary user pro-

cess without special permissions. This led to various successive shell implementa-

tions, trying to improve the user-shell interaction. The first UNIX shell was Thompson

shell [2], a primitive shell with only basic control structures and no variables. Thomp-

son shell introduced the syntax for pipes and redirections, ‘|’ ‘>’ ‘<’, adopted in syntax

5

and semantics by other shells until today. The Mashey shell [3] introduced simple text

variables and the $ symbol to dereference them, and internalized some control flow

constructs like if and goto that were previously implemented as external commands.

Two new shells emerged in the late 70s. The Bourne shell [4] introduced the Algol-

inspired syntax that we still are confronted with today, and it became the default UNIX

shell. The C shell [5] was far better as a scripting language than anything before,

providing a more PL-oriented syntax resembling C’s syntax, and can be considered the

main ancestor of many following scripting languages. csh also introduced the concept

of builtins, i.e. the idea of embedding the most commonly used utilities directly in the

shell.

The Bourne shell and the C shell later developed into ksh [6] and tcsh [7] respectively.

tcsh was a direct evolution of csh, introducing file name completion, command line

editing, and other features that made better for the interactive, Command Language

Interface (CLI) usage. The Korn shell (ksh) integrated many new concepts introduced

by csh into the Bourne shell syntax.

rc [8] and its evolution, Inferno sh [9], two shells for the plan9 operating system,

came with many innovative concepts. rc first introduced array variables, a cleaner

separation between lexical and syntactical analysis, simplifying quoting and avoiding

multiple scanning of the same input. Inferno sh is a more modular shell, where much

of the functionality is loaded at runtime, including basic programming constructs. It

also makes use of scoped exceptions for error handling.

6

The es [10] shell is an example of attempt at introducing cleaner PL semantics in the

shell realm. es introduces functional language primitives into the shell. It allows code

to be passed around as data. Traditional shells approximated this feature by passing

commands as strings, but this resulted in unsafe and weird quoting rules. es has

lexically scoped variables, first-class functions, and an exception mechanism. scsh [11]

goes even further, trying to embed the shell into a functional language, Scheme.

The most innovative work on shells in recent years is Microsoft’s PowerShell (PS) [12],

currently in version 3.0. PS features a full-fledged scripting language, based on the

.NET framework, and object manipulation capabilities, going beyond the UNIX model of

text-based communication among entities involved in a computation. cmdlets (PS com-

mands) are designed with a consistent interface, accepting objects in input (or as pa-

rameters) and producing objects in output. For instance, the pipeline is a programmatically-

accessible entity, where well-formed, complex objects can be written to and read from.

In Section 3.6 we contrast El design for typed object interaction with PS.

Despite some of the revolutionary concepts introduced for shells, the most widely

used shells today (bash, zsh) are almost direct evolutions of ksh, with many improve-

ments in terms of user-friendliness for interactive usage (powerful completions, his-

tory, customization), but still suffering from being unsuited as languages for scripting

tasks in general.

7

1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces Ethos (and the

kind of attacks it is designed to withstand to), with particular emphasis on the aspects

more related to El. Chapter 3 examines some pitfalls in the design of shells and OS-

/shell integration from the past, and provides rationale for the design choices we made

for El. Chapter 4 is concerned with a more in-depth analysis of El implementation. In

Chapter 5 we evaluate the results of our work. In Chapter 6 we conclude with possible

future directions of development for El.

CHAPTER 2

ETHOS AND ETHOS TYPES

In this chapter we will introduce the Ethos OS, with an overview of the design ratio-

nale and enhanced security properties. Then, we will focus on a few particular aspects

of Ethos’ design and Application Programming Interface (API) that are most related to

El’s design and implementation: the type system abstraction and the Input/Output

(I/O) and networking system calls.

2.1 Introduction

Ethos is a clean-slate OS, designed from the ground up to provide robustness and

enhanced security guarantees. Ethos’ abstractions and system calls interface are de-

signed to ease secure application development and configuration. The API is designed

from scratch, providing higher level abstractions compared to other OSs. This comes

at the obvious cost of forgoing backward compatibility, in order to minimize complex-

ity. Compatibility with existing standards otherwise consumes about 90-95% of code

in a new OS [13].

Ethos targets a Virtual Machine (VM) instead of bare metal, and this has multiple

advantages in terms of development and distribution. First, compatibility require-

ments, together with support for the majority of the device drivers, are delegated to

8

9

Dom0. Device drivers codebases are characterized by the highest bug density overall,

up to three to seven times higher [14].

Second, running alongside another OS also means that Ethos does not need to

support a full range of applications, as missing applications can be run on other OS.

This eases adoption, as running Ethos does not preclude running other OSs—much

like introducing a new PL.

Ethos aims to make applications more robust by providing high-strength security

services (for authentication, authorization, isolation, and cryptography) and by min-

imizing complexity. Complexity arises in current systems both from the quantity of

code needed to implement functionality (i.e., the attack surface) and from reasoning

about the security properties of programs. Ethos reduces complexity by providing

more abstract operations, with easier-to-reason-about failure modes and by providing

“inescapable” protections—protections that applications cannot bypass. For example,

Ethos provides encryption, authentication and authorization of all network connections

without requiring specific per-application code.

The abstractions we consider in the following are the one most related to El design

and implementation: the concept of types and the Ethos types infrastructure, including

typed IPC.

2.2 Universal Properties

Here is an overview of the security properties guaranteed by Ethos, along with the

security requirements they address.

10

Network Authentication

Every user is identified by an immutable Universally Unique Identifier (UUID). An

UUID is assigned also in the case of a previously unknown or anonymous network

user. This also addresses authentication needs normally left to application code.

Network Encryption

All application level network communications are encrypted on Ethos, in order

to address data confidentiality and integrity requirements.

Type Checking

As discussed in more detail later, I/O for every application is subject to type

checking performed by the Ethos kernel itself, in order to guarantee data in-

tegrity.

Key Isolation

User keys are never shared with applications, since encryption is handled di-

rectly by the OS.

Denial of Service (DOS)-resistance

DOS protection is built into Ethos network stack, increasing the chances that

the system will continue to provide service to legitimate users even in case of

abnormal consumption of resources by an attacker.

11

2.3 Types

Types and type checking have a central role in Ethos security-targeted design.

Benefits of handling well defined types and formats are well known and can be applied

to each system layer.

2.3.1 Rationale

Type systems are usually a matter of discussion in the context of PLs. Strongly

typed PLs are intrinsically more secure, avoiding by design the possibility of type

errors that can arise from unchecked usage of unsafe languages. Type safety pre-

vents untrapped errors—errors that goes unnoticed and don’t stop execution—and

can reduce trapped errors—errors that are detected and causes execution to stop.

Untrapped errors are especially a risk factor, since can result in unpredictable execu-

tion behavior, and can be exploited by attackers to produce arbitrary behavior in an

application [15].

In order to exploit the same typing benefits in OS development, the OS itself can be

built using safe/typed PLs for what possible. Examples are various OS/kernels written

in Java [16] or Haskell [17]. Other ways of providing type safety in OS kernels use static

type checking and formal verification of existing code bases [18].

The Ethos way is different: the OS is built in c, a statically typed but non-safe

language; applications are written in Go, a strongly typed language. Typed entities

are instead defined by system-wide, cross-language type definitions. Every filesystem

12

or network object on Ethos is of a specific, well defined type. A type hash is applied to

directories, IPC streams and network streams. Type checking is centralized, applied

at kernel level. Ethos is thus focused on extending this type of consistency (benefits

of PL type systems that are usually in terms of internal consistency) to interaction

across multiple applications, that are (by OS design) written themselves in type-safe

languages [19].

2.3.2 Ethos Types

There are two kinds of representation for a typed object: one as a runtime instance—

in a running program’s memory—and the other as a serialized object, whether it per-

sists somewhere in the filesystem or “in transit” in the case of network communication

and IPC.

Ethos subjects all the network communications and filesystem I/O to the type checker.

The allowed types for an IPC or filesystem object is specified at the directory level:

each directory has a type hash associated with it, the type hash uniquely identifies the

object type system-wide. Thus, a directory with type associated T can only contain files

of type T. IPC types are specified again making use of a typed directory as the service

directory. Only objects of the specific type are allowed to be read/written from/to such

stream.

The Ethos Types infrastructure is made of different components:

13

1. the type checker is part of the kernel, and responsible for allowing or not each

I/O operation;

2. the type checker makes use of the type graph, a special object that contains the

hash and type description for every type known to the system;

3. system programmers can define new types at compile type using Ethos Type

Notation (ETN) description files, or use primitive types handled out of the box.

New types are first installed on the system’s type graph.

In the following, before to delve into the Ethos Types infrastructure details and

ETN, we first give an overview of the Ethos Types checker properties and of the scope

of serialization.

2.3.3 Ethos Types Properties

A system call that writes an object will succeed if the object is of the correct type

(w.r.t. the destination) and well-formed, or fail and return an error. Similarly, if a read

system call succeeds, the returned object is guaranteed to be of the right type and

well-formed.

The property assured by the Ethos’ type checker, object integrity, is defined as:

1. objects are read or written as a whole;

2. an object—either in its external or memory representation—must always be con-

sistent with its type;

14

3. an object exchanged between two programs must produce an equivalent object

when is read by the receiving program.

2.3.4 Serialization

Serialization is the process of translating a given object or runtime state o in a

format suited to be stored and/or transmitted, and transformed back into its original

runtime representation—or an equivalent one—later on, yielding o′.

A (de)serialization process must guarantee the property of semantic equivalence

between the original object o and the de-serialized one o′.

The resulting representation of o′ will in general be identical in case of source and

destination runtimes of the same nature, while it might differ substantially when the

interacting systems are run in different environments. In any case, what has to be

preserved is the semantic equivalence of o and o′, a property defined by the both the

serialization specification and the actual implementation(s).

Examples of serializers tied to specific languages are the Java Serializable [20] in-

terface implementation or Python’s pickle module [21].

The need for language independent serialization formats became more and more

relevant during the years as the nature of systems evolved from centralized, same-

environment, same-language systems to distributed systems involving possibly many

different PLs and environments.

15

Examples of language-agnostic serialization libraries are Google’s Protocol Buffers [22]

and Apache Thrift [23]. Both provide type (and service) definition means, and generate

code targeting multiple languages, that the programmer can use in order to create,

encode, and exchange objects in distributed systems.

2.3.5 ETN

Ethos defines its own serialization format, and the Ethos type infrastructure makes

large use of it for all sorts of I/O operation. ETN defines a syntax for description of

types and Remote Procedure Call (RPC) services. A description file is typically applica-

tion specific, and contains definitions for types and RPC services that the application

or various interacting parts of it make use of. From the description file, Ethos:

1. builds a type node for every type, including types that are referenced by other

types,

2. creates an unique hash for every type,

3. installs the newly defined types in the system,

4. generates code targeting Go or C to access objects of the created types,

5. generates code stubs for the defined RPC interfaces.

Installing the new types in the system’s global type graph allows Ethos to always

have available the type information (and hash) for every user defined type, thus being

able to perform type checking on I/O operations involving every single type.

16

TABLE I: ETN BASE TYPES

int8 uint8 bool int16
uint16 int32 uint32 int64
uint64 float32 float64 string

any union tuple array
dictionary struct interface method

ETN is language agnostic, as the Ethos types infrastructure is able to generate

code in both C and Go (the two system programming languages supported on Ethos),

that under the hood share the same binary encoding for transmitted objects.

User-defined types are built aliasing or mixing in composites of the predefined

ETN types. A list of ETN base types is presented in Table I. In Figure 1 we provide an

example ETN description file. The file defines two types, ‘Message’ and ‘User’, both

are ETN structs. ‘Message’ describes a generic message, referencing the ‘User’ type

for the ‘To’ and ‘From’ fields. ‘string’ is an ETN base type. From this ETN description

file, two type nodes are thus created and added to the system’s type graph, ‘Message’

and ‘User’, the former referencing the latter.

2.3.6 Type Checking Objects

Ethos ensures that every file write must go through the kernel for type checking.

Ill-formed objects are stopped during a write operation, which fails. Every object

contained in a filesystem directory is of the same type, and every filesystem directory

17

1 Message struct {
2 From User
3 To [] User
4 Subject string
5 Message string
6 }

8 User struct {
9 Username string

10 Host string
11 }

Figure 1: Example ETN description file

has an associated type hash, determining this type. The same mechanism also applies

to IPC, since Ethos IPC services are named by filesystem paths.

The type for a directory is specified upon creation; the Ethos CreateDirectory sys-

tem call accepts a type hash to be applied to the directory path. For situations where

different types need to be mixed inside the same directory, ETN Union and Any types

provide a solution, at the obvious cost of handling union tags or castings for the pro-

grammer.

2.3.7 Files and Directories

Ethos file objects are designed to be read or written entirely—Ethos doesn’t support

seeking for files. This follows naturally from the fact that file objects have well-defined

types associated: supporting streaming for some specific types (e.g.: array-types could

18

TABLE II: ETHOS READ/WRITE SYSCALLS

read write

var readVar(descriptor, name) writeVar(descriptor, name, content)
streaming read(descriptor) write(descriptor, content)

naturally support streaming access) would compromise the general design, and com-

plicate error recovery.

On UNIX, it is common to stream to a file, optionally appending, or redirecting

output from a command execution. Files are streaming entities on UNIX. The equiva-

lent notion of streaming entity on Ethos is instead the directory. Directories support

both the var read/write—where the object read/written has an arbitrary name—and

the streaming read/write—where the object read/written has no specified name, and

Ethos itself takes care of naming as to preserve the write-order for subsequent reads.

These two modes reflect in the system calls reported in Table II.

Directories also solve naturally the problem of representing large files, the kind

of file types for which one would expect to be able to seek and access the content

in chunks. These can be persisted as multiple objects inside the same directory and

streamed in order (or accessed randomly by name).

19

2.3.8 IPC

IPC on Ethos is established making use of Ethos I/O (Table II) and Networking (Ta-

ble III) syscalls:

1. a service is advertised by the “server” component, identified by a fd (the stream-

ing directory used to establish the IPC) and a name

2. the “client” component can ipc through the advertised service, and is automat-

ically authenticated, authorized, and the connection encrypted if IPC happens

over a network; the host is left out in case of local IPC;

3. the server component can then import an incoming IPC, using the listeningFd

returned by the advertise call.

The ipc and import calls return a file descriptor each, representing respectively

the write and read ends of the service. The client component can then write to

this fd, and the server component read the stream of written objects in order at

the other end.

20

TABLE III: ETHOS NETWORKING SYSCALLS

Call UNIX Equiv. Semantics

advertise(fd, name) listen Services have an associated fd
and are named by strings instead of ports

import(fd) accept Ethos adds authentication, authorization,
connection encryption and DOS protection.

ipc(fd, name, host) connect Ethos adds authentication, authorization,
connection encryption and DOS protection.

CHAPTER 3

DESIGN

In the following we present the main design challenges and discuss how we tackled

them with the design of El. This chapter is thus focused on multiple issues, listed here

alongside the main goal to which they refer (as per the goals definition in Chapter 1).

1. the design of a shell and programming language, which in turn means the design

of the integration with the underlying OS (G2, G1) as well as the supporting PL

itself (G3);

2. combine the two intended usages for El (scripting applications and the CLI in-

teraction) in a successful manner—something other shells/shell languages lack

(G3);

3. integration with the security mechanisms provided by Ethos—especially the ones

we described in detail in Chapter 2—in a way that doesn’t compromise the as-

surances they offer (G1);

4. reduce complexity to the minimum possible, so as to equip the end user with

easy-to-reason-about semantics, that in turn affect positively the exposure to

security-related pitfalls of programs and systems built with El (G2).

First, we define a few terms we’ll make use throughout the rest of this document.

21

22

3.1 Preliminary Definitions

In the following, we use the term sh to refer indifferently to the original Bourne

shell or any of the modern descendants of the same family, as described in Section 1.1.

We’ll explicitly refer to some implementation when needed.

The term scripting language is used to refer to a general purpose, interpreted

language. Mainstream examples of the family are Python and Ruby. We’ll use the

term scripting language in contrast to command language or language for CLI, the

category of special purpose, shell languages. In this category fall for instance the

original Bourne shell and bash.

3.2 Scripts vs. Command Line

There is a tension between a shell language and a scripting language. More gen-

erally, there are substantial differences between the scope and ways of interaction

in a CLI vs. full-fledged applications made of (possibly multiple) script file(s). These

include:

1. Shell languages have minimal syntax and are able to scale down to terse one-

liners; scripting languages are instead able to scale up to bigger programming

tasks, leaving aside compactness.

2. Scripting languages are typically dynamically typed, shell languages instead pro-

vide an (almost completely) untyped definition. The lack of type checking in shell

languages can be source of security vulnerabilities. This difference also reflects

23

up to the syntax: scripting language types are not static and thus, for instance,

a specific per-type literal is needed in order to differentiate primitive types.

3. Shells are good at so called dataflow programming, where a program is modeled

as a sequence of connections among operations, applied as soon as the input be-

comes available. The dataflow model of UNIX shells is simply a linear sequence of

piped operations. Scripting languages don’t usually address the dataflow needs;

they instead provide different forms of abstract concurrency models, in the clas-

sic Von Neumann architecture [24].

3.3 Design Rationale

El aims to be the shell language (and shell) for Ethos primarily, but also to be able

to scale up to bigger programs as a scripting language would. In the following we

discuss how these requirements reflect in different aspects of the design.

3.4 Syntax

As discussed in Section 3.2, El has to be able to scale down to terse one-liners, and

at the same time scale up to small to medium complexity tasks. The ability to scale in

the context of small code bases is mainly driven by two factors:

1. the power to split the code base and organize the code, export and require single

pieces of encapsulated functionality (for the scale-up part), and

2. the terseness and brevity of the syntax (for what concerns the scale-down part).

24

Terseness and brevity have thus to be supported directly by El’s syntax. Since Go

is Ethos’ primary user-space system programming language, El syntax borrows from

Go syntax [25].

El syntax is, I believe, far less ugly than sh. The reasons why sh syntax is universally

considered dirty are historical ones. Bourne shell syntax was modeled after Algol, and

that’s where many weirdnesses come from, like the use of reversed keywords to mark

the end of a construct (e.g.: if . . . fi). This rule in particular has exceptions (as in do

. . . done, since od was already taken as a keyword being the name of an executable)

that make it more difficult for a beginner to grasp the syntax.

As an additional example of what is generally considered ugly syntax, consider the

way if conditions are expressed in sh. As shown in Figure 2, the syntax for the AND op-

erator (Figure 2-a)—other than ugly by itself—is completely different from the syntax

for the OR operator (Figure 2-b). This breaks the fundamental rule of predictability

that every API or syntax design should guarantee. Note that there are valid reasons

why the example works this way1,what we want to point out is the fact that sh isn’t a

general purpose scripting language, and constructions like this are a messy attempt

at making it look like one.

1 An additional remark of the fact that sh is in fact a special purpose language, meant for
assembling commands in different ways: [and /bin/[are both synonyms for test, implemented
as builtins. Thus what the if construct does in the end is just checking the return status of
the “condition”. The additional closing square bracket is an extension to the bash grammar in
order to make it look more familiar to programmers from other languages.

25

1 i f ["$foo" = "bar"
2 −a "$n" != "john"]
3 then
4 # . . .
5 else
6 # . . .
7 f i

1 i f ["$foo" = "bar"]
2 | | ["$n" != "john"]
3 then
4 # . . .
5 else
6 # . . .
7 f i

(a) And “operator” in if condition (b) Or “operator” in if condition

Figure 2: sh syntax examples

Although the initial syntax design can be considered flawed, the Bourne shell was

so innovative and good at performing its tasks that the syntax stayed almost un-

changed in sh more recent incarnations. New shells of the family still support the

majority of the original Bourne syntax, if for no other reason than for backward com-

patibility.

The fact that sh syntax is inappropriate for common scripting needs can thus be

ascribed to the design choice of making it (very) good at CLI interaction mode—and

CLI only.

El is instead designed with both objectives in mind, and thus provides both a brief

syntax for CLI interaction and a more sane set of constructs for the scripting usage.

In Section 4.2.1 we describe how we handled this requirement at the parser and

evaluation levels. The complete grammar for El is reported for reference in Ap-

pendix A.

26

3.5 Types

The most compelling advantage of typed variables is that they permit a system to

trap errors. Type safety removes untrapped errors—errors which are not detected/re-

ported and for which the execution continues as if no error occurred.

As Milner once stated, “well typed programs can’t go wrong” [26]. Even if certainly

an exaggeration, benefits of typed languages in security-sensitive contexts are plain

for all to see. A strongly typed language at least reduces the effort required to build a

safe system, where safe is intended with respect to untrapped errors.

sh variables are character strings, both in representation and semantics. In order

to slightly lighten the burden of keeping track of the semantic type of a variable, bash

offers the declare (aliased typeset) builtin.

declare applies special properties to bash variables, like “readonly”, “integer”,

“array”. For instance, declaring a variable as integer, bash will treat subsequent uses

of the variable as a numeric integer value, allowing or not certain arithmetic oper-

ations on it. The extent of typing obtained is still far from what one would expect

in other PLs: more than limited in number of available properties, the mechanism

doesn’t really provide any guard against untrapped errors. For example, assigning a

string value to a previously integer-declared variable will result in no error reported

(execution continues, making the (possible) error untrapped), moreover re-setting the

variable integer value to 0 (arbitrary side effect).

27

El variables are instead typed. El type system is purely dynamic, in that the type

of an El variable or expression is something well-defined and known at runtime only.

Each operator is defined for a specific subset of types, and applying an operation on

objects of non-matching type will result in trapped errors.

El’s type system is small by design, resembling other “small” scripting languages

like Lua ([27]) or JavaScript. El’s available types are actually more than JavaScript ones,

for example JS provides a single, floating point numeric representation (Number), and

no integers. In addition, unlike JS, El’s is lexically scoped (there’s no way, accidentally

or not, to pollute an outer scope).

References are defined at the first assignment, and have the type of the expression

on the right hand side of the assignment. Thus we can say that a variable belongs to

the scope where it is first assigned. Types are not declared statically, they’re inferred

from literals, and propagated throughout expression evaluation. Although practically

there’s no such thing as “variable declaration”, given that every symbol is declared at

first assignment, El has a form of variable declaration statement, in order to be able

to bind a symbol to a specific scope.

References to undeclared variables (symbols never assigned), as well as references

to variables declared without specifying any value, are nil values. Any operator applied

to a nil value will result in an exception (trapped error).

28

3.6 Typed I/O

Pipes, redirections, and, in general, the idea of communicating through streams of

text, are certainly one of the major UNIX contribution to the history of OS interfaces.

Many UNIX commands take text-like input and/or produce text-like output, allowing

the user to compose pipelines of made up of separated computing pieces, streaming

between each other (and executing a parallel fashion).

These tools are incredibly powerful in the hands of users/sysadmins. Although, this

power comes at a cost: the text interface has revealed extremely general but at the

same time doesn’t define any structure for the exchanged data, causing many different

standards to arise. This in turn means the handling of the text input is delegated to

each single application, for which programmers have rewritten countless different

parsers. Many of these targets the same “data type”, possibly causing the coexistence

of different implementations at the same time in the same environment, often with

subtle mismatches in the respective behavior.

The free form nature of the streamed data also aggravates the problem of trust of

the source of the input1. Having no guarantees on the form of the input—no other

entity enforces a structure or checks for ill-formed data prior than the destination pro-

gram itself—makes heavy sanitization necessary inside every application, especially

1 More specifically, the source and all the other entities (communication channels, transfor-
mations) involved between the source and the final destination.

29

when the final destination of this input is—or influences in some way—executed code.

Consider the following example (this has been the only way to install the official pack-

age manager for one of the most widespread web server development environments

nowadays1)

curl http://npmjs.org/install.sh | sudo sh

The short one-liner contains many of the bad practices described before, like trust-

ing executable code piped straight into a subshell (run with superuser privileges),

moreover on a insecure connection. Piping to the shell also has another fundamental

flaw, related to unexpected premature ending of the pipe stream2.

El is designed to retain the flexibility of UNIX pipes, without give up on the ad-

vantages Ethos offers in terms of typed communication—instead making great use of

Ethos’ typed IPC in order to provide a simpler interface and additional security guar-

antees. Ethos’ (and consequently El’s) design impact on the fundamental flaws we just

described in the following ways (which we detail more accurately in Section 5.1).

1 Reference: https://npmjs.org/. Recently, the install process has been fixed, first switch-
ing to https and finally shipping the package manager along with the core package binaries,
avoiding the problem altogether.

2 If the connection closes mid stream, sh will execute the partial script in its buffer. In this
(very unlikely, but still possible) case, what if the script is interrupted in between a critical
operation composed of multiple commands, or if a truncated command results in a dangerous
one?

https://npmjs.org/

30

Avoid in-application parsing

Applications (and scripts) don’t need to rewrite their own parsers, as they make

use of Ethos’ parsers.

Single decoder definition system-wide

The parser definition is unique system-wide, and thus cuts on possible mis-

matches deriving from subtle semantics differences between one implementation

and another.

Object integrity

Ethos takes care of checking object integrity. With a stream of well-formed ob-

jects, El is not subject to possible errors deriving from an unnoticed early con-

nection end.

Support for typing and typed objects I/O in El shares some similarities with Power-

Shell’s one. PS avoids custom application parsing of text based on consistency in

naming rules among different cmdlets, so that the output from one cmdlet can be used

as the input to another cmdlet without reformatting or text manipulation. PS objects

are runtime .NET entities.

The two designs differ significantly in that El manipulates objects that are defined

at the OS level. Their runtime representation is unique and defined by the Ethos type

definition. On Ethos, the whole concept of types for filesystem and IPC objects is

OS-defined, as opposed to defined by a particular runtime framework.

31

3.7 Functions and Scope

Here we list the main flaws in sh (particularly bash) function design and scoping

rules. We already discussed improvements introduced in various implementations for

what concerns both these aspects in Section 1.1.

Return values

Bash functions don’t have return values; they only produce output streams. Ev-

ery reasonable method of capturing that stream and either assigning it to a vari-

able or passing it as an argument requires a subshell, which breaks all assign-

ments to outer scopes. Strategies for returning values other than the status (suc-

cess or failure) include: setting a global variable with the result; use command

substitution; pass in the name of a variable to use as the result variable.

Function arguments

You can’t pass arguments “by reference” either. Working with arrays is even

worse— the best you can do, typically, is to pass each array element as a separate

argument. This means libraries of nontrivial reusable functions are not feasible,

except by performing eval back-flips.

Scope

Bash has a simple system of local scope which roughly resembles “dynamic

scope”. Functions see the locals of their callers, but can’t access a caller’s po-

sitional parameters. Reusable functions can’t be guaranteed free of namespace

32

collisions unless you resort to weird naming rules to make conflicts sufficiently

unlikely.

Closures

In bash, functions themselves are always global (they have “file scope”), so no

closures. Functions are not “first-class”—you can’t assign functions to values, or

pass them as parameter (except by resorting to ugly string-and-eval hacks)—and

there are no anonymous functions—which would be useless anyway given the

missing local scope. bash uses strictly call-by-value semantics.

El aims to simplify and enhance at the same time scoping and functions rules, as to re-

semble common scripting languages in behavior. El’s functions are first-class citizens

in the language—that is, they can be assigned to identifiers or passed as parameters

as any other value could—and can be anonymous too. This should at least encourage

a more functional approach to programming, and simplify code reuse and separation

“in-the-small”.

3.8 Error Handling

sh/bash error handling mechanisms integrate with UNIX status codes. An exe-

cutable exiting with a non-0 status can for instance stop a list of commands from

executing (using the ‘&&’ operator). By default, simple commands failing don’t cause

the execution of the script to stop, although this can be obtained with ‘set -e’. In ad-

dition, bash offers traps, signal handlers defined on the “global” scope. traps can be

33

used to handle both error conditions in a bash scripts and OS signals. The mechanisms

is not general in that a trap is defined at the top level, and there is no way to define a

trap with limited scope. For example, defining a trap for a certain signal that is also

handled in a “sourced” script, results in re-definition (overriding) of the same trap.

Ethos too provides a large set of status codes, including insufficient permission,

resource limitations, or invalid operation. An ok status code indicates success.

Non-ok simple commands cause an error exception to be thrown. El’s equivalent of

traps are exception handlers. An El exception handler creates a new scope and defines

the handler for that scope only. An error exception can be caused either by non-ok

return status of executables or by explicit calls to panic. Any not-ok status resulting

from a command invocation can be explicitly handled, based on the exception value.

An exception is handled by a catch block, defined at any arbitrary scope depth.

If, unwinding the stack, no user-defined exception handler is found, the exception is

unhandled (catched by El’s global handler) and causes execution to stop. This is in

contrast with bash where a non-ok result for an external command invocation won’t

stop execution by default (without the ‘set -e’).

3.9 Packages

One of the main limitations that prevent sh to be used as a general purpose script-

ing language is the lack of a structured way to separate code modules, or export

functionality as a library would usually do.

34

sh/bash has to main ways of including/executing external code, here we describe

why they’re unsuitable for any sufficiently advanced code separation need. For a thor-

ough description refer to Section 5.1.2.

source (or ‘.’)

source <filename> (or the equivalent ‘. <filename>’ notation) evaluates filename

line by line, in the current shell environment. In other words, it is equivalent to

adding filename’s content to the current script (or typing its lines one by one

at the shell). Thus, the included code has full control on the including environ-

ment and, vice versa, the calling environment can modify in unexpected ways the

execution environment of the included script.

sh/exec

‘sh filename’ (or simply ‘filename.sh’) executes filename in a subshell (new pro-

cess). Thus filename executes in a different environment, and information flow

back to the caller is awkward, except for return status or evaluating the stdout

with command substitution.

For El code separation we designed a simple package system. Library users are able

to ‘require’ packages (El script files), that are evaluated in their own separate environ-

ment and explicitly accessed for functions calls and variable references. A package

can in turn decide what to export to the “outside world” making use of the ‘export’

keyword. We discuss how this reflects in terms of goals G1-3 in Section 5.1.2.

35

3.10 Unifications

El abstraction power and integration with Ethos are tightened by the concept of

unifications. In our design, unifications are interfaces that have more than one imple-

mentation, but exposing the same kind of interaction for the end user.

3.11 Directories and Maps

The first dual we describe here is the one involving the file contents of a directory

and El maps. A map variable may in general refer to a directory file contents or be

independent of the filesystem.

Let ‘T’ be the type of a directory’s elements. A directory is accessed in El as a

map, with a range of ‘T’. Operations on maps are shown in Table 2. Directory-backed

maps can be accessed and iterated like standard maps, although their implementa-

tion differs. For instance, each access on a directory-backed map is a file read, each

assignment is a file write.

Treating file directories as maps facilitate common OS tasks. For example, Ethos

does not have any built-in support for environment variables; instead the Ethos en-

vironment variable passing equivalent is a directory which contains key-value pairs,

represented as string files.

3.12 Functions and Executables

We designed El functions, builtins and executable invocation as to provide a con-

sistent interface shared across the three. Syntax for function invocation allows for

36

executable-like free form parameters; a function can locally override an external ex-

ecutable using the same name. As discussed , current support for this unification is

limited by a few main factors: argument passing for executables is not typed yet (i.e.

executable still receive string valued parameters), and functions in pipeline statements

don’t have the ability to interact with the pipeline objects stream.

CHAPTER 4

IMPLEMENTATION

In this chapter we present the main implementation challenges and discuss the

choices made in each case.

First, we provide an overview of the language in Section 4.1. In Section 4.2 we first

give an high-level description of the codebase, and then discuss specific implementa-

tion challenges and relative solutions.

4.1 The Language

The complete El grammar can be found in Appendix A. Here we present an high

level overview of literals, identifiers, assignments, value accessors, control flow con-

structs, functions and builtin functions.

We start off with a list of valid commands (presented in Figure 3) that should give

an idea of the syntax.

Some of the lines shouldn’t be surprising, others deserve more explanation. At

line 2 we are redirecting a single string (‘foo’) to a directory (‘/user/jon/strings’) and

executing in background. At line 4, the output of ‘ls’ for the current directory is

piped to count. The resulting pipeline stream (composed of a single int object in this

case) is then collected into a tuple, and its first element is accessed and assigned

to the variable ‘$n’. In lines 6-8 we are iterating over a ‘tuple’ literal defining a tu-

37

38

1 echo Hello world
2 echo foo > / user / jon / strings &

4 $n = (ls . | count) [0]

6 for $k in [a , b, c] {
7 echo $k
8 }

10 $bob = / user / jon / contacts /bob
11 $msg = new Message{To: $bob, Message: Hello}
12 / user / jon /messages/msg = $msg

Figure 3: El syntax examples

ple containing three strings. In lines 10-12 we are accessing a file system object

(‘/user/jon/contacts/bob’), creating a new runtime object of type ‘Message’ and storing

the created message at a specific location in the filesystem. For this lines to work as

expected, the objects involved need to be of the correct types, i.e.: ‘$bob”s type must

match the type of the ‘Message.To’ field, and the type of the ‘/user/jon/messages/’ di-

rectory has to be ‘Message’.

In the rest of this section we describe El’s syntax in more detail. Syntax for primi-

tive and composite types is presented in Table IV. The path literal is a special case: as

we’ll discuss shortly, based on the context it can be evaluated either as a path node or

as a plain string literal.

An identifier is a name matching the regular expression

39

TABLE IV: EL LITERALS

Type Literal Example Usage

all Integers n 42
all Floats n.d 3.14
String s or "s" foo or "el"
Bool true or false true
Tuple [e1, . . . , en] [1, 2, 3]
Map 〈 k1:e1, . . . , kn:en〉 〈 age: 30, height: 80〉
Set {e1, . . . , en} {1, 2, 3, 5, 7}
path path ./a/valid/path

\$[a-zA-Z0-9_]+

i.e. starting with a $ and composed by one or more alphanumeric characters. Words

starting with $ are always substituted as identifiers, except for when they appear

quoted, as in ”$id”.

4.1.1 Types

El is dynamically typed. El’s readily available types are of two kinds: primitive

types (such as int, float, . . .) and composite types (such as tuple or map). Composite

types may hold values of any other type In addition, El can handle any user defined

type known to Ethos. The way objects of different Ethos types are mapped to lan-

guage objects vary with respect to the type considered. El’s primitive types are in a

one to one mapping with primitive types. Composite user defined types are instead

40

mapped to a single El type—object—and type specific checking is handled by means of

introspection.

El thus defines a number of primitive types, plus three composite types (tuple, set,

map). These constitute the core type system, for which El’s operators are defined.

Some operators are then extended to work on arbitrary user-defined object types (this

is the case of the ‘[]’ access operator, extended to work on generic slice objects, and

the ‘.’ value access operator, extended to work on generic struct objects).

The list of operators on primitive types, along with the types they can handle,

is shown in Table V. A simple set of upcasting (generalization) rules is defined for

numeric types. Operators can thus work on same-type objects or on objects for which

a valid generalization can be built, such that the obtained upcasted values are of the

same type. Such type coercion mechanism is built walking a lattice on which the valid

generalizations are encoded. The reference lattice is shown in Section 4.1.1.

The target type for the upcasting algorithm is the lowest possible (in terms of

lattice representation) common ancestor. At the lattice top we can find the any type.

Restrictive types cut down on errors, in exchange of reduced generality. An any-typed

object instead can contain any value, and provides the right type interface for generic

tools, as we describe in Chapter 6.

4.1.2 Assignments

An assignment has the form

41

any

uint64

uint32

uint16

uint8

int64

int32

int16

int8

float64

float32

string bool

Figure 4: El primitive types lattice

a = expression

where expression is a generic expression, and a can be an identifier, an accessor (see

below) or a path literal. In case of a path literal the assignment goes beyond the

runtime boundaries, trying to write the expression value to the specified filesystem

location. The conditional is particularly necessary as the actual write are successful

only when the destination object type and the runtime object type match—being the

destination object type the type applied to the containing folder. As detailed in section

42

Section 4.1.1 and Section 4.2.5, El can handle objects of primitive types (mapped to

ETN primitive types) and objects of arbitrary, user-defined types.

A path literal is also a valid expression: evaluation of a path literal consists again

in transcending El’s runtime and reading the specified object from the filesystem.

Wrapping up this brief discussion of assignments and path literals, here is an ex-

ample of how it is possible to copy a filesystem object to an alternative location

/path/b = /path/to/object

It is not recommended in general to use the assignment construct for a simple

copy operation, as it involves superfluous (un)marshalling of the same object from and

to the filesystem. The use case is for instance creating copies of modified objects,

consisting in reading the object, partially modifying the value, and writing back to the

desired location.

4.1.3 Accessors

We describe two different kinds of accessor: composite type accessor, using the

square brackets syntax, and value accessor, used to access values exported by modules

and fields of struct objects.

A square bracket accessor looks like

c[index]

where c is an El composite type (tuple, map), a string or a slice object (refer to Sec-

tion 4.2.5 for details), and index is a generic expression evaluating to an int value—in

43

order to access tuples, strings or slice objects—or to a string value—accessing a map

element.

A value accessor is in the form

v.val

or

v.fun()

where v can be the reference to a required module, and thus both the forms ‘v.val’

and ‘v.fun()’ make sense in general, since modules can export values and methods.

Alternatively, ‘v’ can be a struct object, and in this case only the ‘v.val’ form is valid,

and serves the purpose of accessing a specific struct field. As already discussed in

Section 3.9, the validity of an access to a package values or methods is controlled by

the package itself, using the ‘export’ keyword. Evaluation of an package’s value or

function call occurs in the package environment, isolated from the current executing

environment. A new evaluation environment is created for every ‘require’. We con-

clude with an example usage of a value accessor, where we make use of an exported

method of the math package.

$max = require(math).max($a, $b)

4.1.4 Control Flow

El’s control flow statements are similar in syntax and semantics to the Go ones,

since that Go is the primary application programming language on Ethos. El has two

44

TABLE V: EL OPERATORS FOR PRIMITIVE TYPES

Operator Meaning Int Float String Bool

+ add/concatenation X X X
- subtraction X X
- (unary) unary minus X X

* multiplication X X
/ division X X
= equality X X X X
!= inequality X X X X
< lower than X X X
> greater than X X X
<= lower equal X X X
>= greater equal X X X
|| logic disjunction X
&& logic conjunction X
! logic negation X

kinds of for loops: the usual C-like iteration (Figure 5-a), defined by an initialization,

an iteration step and an halting condition; the iteration on items of a sequence (tuple,

string) or contents of a map. In the example in Figure 5-b, we iterate over the contents

of a map accessing the string keys (‘$k’) and the value each key is pointing to ‘$v’.

The ‘if’ statement (Figure 6-a) is composed by the a condition, the ‘then’ block, and

the optional ‘else’ block.

The ‘switch’ keyword defines a switch/case statement, as shown in Figure 6-b.

45

for $i = 0; $i < $n; $i++ {
print $k

}

for $k , $v in $some_map {
print $k

}

(a) C-like loop (b) Range loop

Figure 5: El loop constructs examples

i f $a && $b {
. . .

} else {
. . .

}

switch $name {
case " al ice " : {}
. . .
else : {}
}

(a) if statement (b) switch statement

Figure 6: El if and switch constructs examples

Additional control flow keywords are ‘break’, ‘continue’, ‘return’, all carrying their

common meaning, and ‘panic’, used to raise error conditions as discussed in Sec-

tion 3.8.

4.1.5 Functions

El’s function definitions create new scopes, that along with the function signature

and body themselves, constitute the function closure: a function with associated ref-

erencing environment. Thus, a value of type function (as discussed in Section 3.7,

functions are first class objects in El), is represented by the definition—in form of a

46

reference to the definition Abstract Syntax Tree (AST) node—and by the referencing

environment—a reference to a copy of the environment at definition time.

Functions are defined using the keyword func, in one of the following equivalent

forms

func name($a, . . .)

$name = func($a, . . .)

The first form can be considered syntactic sugar for the second, since functions are

values and thus a function definition is a valid expression. In both cases, the $name

identifier will reference a closure, that can be invoked equivalently as

$name($v, . . .)

or

name($v, . . .)

or

name $v . . .

The third form is equivalent to the command execution syntax, and thus may come

in handy to locally override an executable, or wrap a long command execution expos-

ing variable arguments only.

47

4.1.6 Builtins

El builtin functions are a small but easily extensible set of predefined functions.

Builtins can be overridden by user function definitions, that is: the function lookup

searches for function definitions in scope first, and for builtin functions only if there

are no functions defined with the given name. In case of command-like style of invo-

cation, El performs an additional lookup step for commands with the given name. For

example, for the following call

echo something

the lookup process looks like:

1. search for functions in scope named ‘echo’;

2. if not found, search for builtin functions named ‘echo’;

3. if not found, search for programs named ‘echo’;

4. if not found, raise an exception.

Here follows a (non comprehensive) list of El builtin functions.

print(format, params...)

Prints to (untyped) stdout given the format string and a variable number of pa-

rameters.

48

scan(format, params...)

Reads from (untyped) stdin a series of parameters, based on the provided format

strings, and yields a typed value for each parameters.

sprint(format, params...)

Formatted print to a string. Returns the printed string.

require(pkgname)

Requires a package and returns the package reference, if found. If a relative

path is given, require looks up for packages in the current working directory or

in /user/scripts.

type(value)

Type introspection feature. Returns the string representation of the type of

value.

len(value)

Return the length of value. value must be of type string, tuple or a slice object of

user defined type.

append(t,v)

Appends value v to the tuple (or slice object) t, provided that v’s type matches to

t’s content type. Returns a new tuple (or slice) of len equal to len(t) + 1.

concat(t1,t2)

Concats the two tuples or slices t1 and t2, provided that t1’s content type t2’s

49

content type match. Returns a tuple (or slice object) of len() equal to len(t1) +

len(t2).

panic(err)

Throws an exception. The err parameter is an optional value that can be used to

identify the exception nature in a catch block.

assert(val, message)

Tests the given bool value val. If not true, throws an exception with the given

message.

4.1.7 Command Line

Although the radically different in semantics, command line execution of programs

and redirections in El look the same as other UNIX shells. Pipes use the usual ‘|’

operator, redirections ‘>’ and ‘<’, and ‘&’ causes background execution of a pipeline.

Thus the following pipeline execution

ls . | count > ./ints

behaves as expected, provided the translation to Ethos semantics: the pipe be-

tween ls and count accepts objects of type ‘any’ (the type accepted by count’s stdin);

the redirection to ./ints has a directory as its target, and it must be typed as int (type

produced by count on stdout); the whole execution is carried out in background, i.e.

El continues execution (and presents a new prompt if in interactive mode) without

waiting for count to exit.

50

Multiple pipeline operations may be queued on the same line using on of the ‘;’,

‘&&’ and ‘||’ connectors. ‘’ continues execution of the line only in case of no excep-

tion thrown (i.e.: if the previous operation completed without failing); ‘||’ continues

execution only if the previous operation failed. For example, the following redirection

operation is executed only if the ‘./strings’ directory exists, since otherwise ls raises

an error condition. ‘print done’ is instead executed in any event.

ls ./strings && echo foo > ./strings; print done

4.2 Implementation

In Table VI are listed the main sub-packages composing the El codebase, along with

an approximative size in Lines of Code (LOC) and an overview of the accomplished

tasks. The LOC measure refers to Go lines of code except for package el/parser which

is mainly composed of goyacc code.

4.2.1 Parsing

The initial design of the parser didn’t made it to the current version. The parser

was written from scratch as a parser combinator, using a small library written in Go

and heavily inspired by (while much simpler than) Parsec [28]. Although fully func-

tional, the obtained parser was too slow to be used in real world without an heavy

performance tuning.

Luckily, among the great variety of tools available for Go there is goyacc [29], with

which the current parser implementation is generated. goyacc is a version of yacc [30]

51

TABLE VI: EL CODEBASE ORGANIZATION

Package LOC Description

el 250 main access point, handles command
line arguments and execution
modes for El (Read-Eval-Print Loop (REPL)/interactive vs. script)

el/types 300 primitive types definitions, composite types
representation, internal type checking facilities

el/environment 300 execution state, symbol table, control flow flags
el/eval 1800 per-nodetype evaluation methods, builtin functions
el/io 1000 typed access to filesystem objects, access to Ethos’ typeGraph
el/operators 900 operators for primitive types
el/parser 1200 goyacc-generated parser, AST

structure and walk interface definition

written in Go, generating parsers written in Go. The output of the parsing phase is an

AST that is directly used in the evaluation phase.

As described in Section 3.4, the major requirements for what concerns the syntax

of El is to be able to support both CLI and scripting interaction modes naturally. Most

of the perceived terseness of a sh one-liner boils down to two main factors:

1. the ability to pipe commands, perform redirection, conditionally execute the next

operation based on the status of the previously executed one, and to execute

pipelines in background, are all accessible with minimal syntax; and

2. the fact that every token is by default interpreted as a string, except for keywords

and special tokens; this dramatically reduces the amount of non-alphabetic char-

52

acters that one has to type, since the only way to perform I/O between com-

mands and/or filesystem is exactly through (untyped) streams of characters, that

is: there is no need (nor there are means) to provide command line arguments

or values that are not strings.

As of (1), El simply borrows the same syntax. For what concerns (2), El adopts

different expedients. Bare words are parsed as strings. Another form of string literal

is specified instead between double quotes, and can thus accommodate strings other-

wise not expressible, e.g: starting with ‘$’ or containing spaces. El also differentiates

between two parsing contexts: command line arguments and “everything else”. In the

first case, tokens are always parsed as strings, except in the case of variable substitu-

tion, since this is what command arguments are going to be in the end—strings. We

discuss how we plan to augment command line arguments semantics in Chapter 6.

The complete grammar for El (a stripped out and formatted version of the input file

for goyacc) is reported in Appendix A.

4.2.2 Evaluation

Evaluation is performed directly on the AST, result of the parsing phase, and is

structured as an attribute grammar where attributes are passed decorating the tree

nodes.

We need both synthesized and inherited attributes. Two disjoint sets of evaluators

are defined: downEvaluators are executed on the nodes during the descending phase

53

ADD

EXPRESSION EXPRESSION

1 Add(node, env)
2 l e f t ← node. Children [0]
3 r ight ← node. Children [1]
4 node. Value , node.Type ← operators .Sum(lef t , r ight)
5 return false

Figure 7: Example evaluator ‘add’ and relative AST portion

(i.e.: they mostly produce inherited attributes), upEvaluators during the ascending

phase (i.e.: synthesized).

Evaluators have the ability to control the traversing of the tree, i.e: varying with

their behavior, downEvaluators can either stop or not the recursive evaluation of a

subtree; upEvaluators instead are executed on the ascending phase, and thus the

relative sub-tree rooted at the current AST node will always be already evaluated.

Each evaluator has access to the AST node it is operating on (and thus its subtrees,

if any) and to the current environment (including scope).

An example of upEvaluator is Add, which we reproduce in simplified form, along

with the relative subtree it operates on, in Section 4.2.2. Add simply applies the Sum

operator to its two children, and propagates the resulting value and type to the parent

54

IF_THEN_ELSE

CONDITION THEN_BLOCK ELSE_BLOCK

1 IfThenElse (node, env)
2 condition ← node. Children [0]
3 thenBlock ← node. Children [1]

5 Eval (condition , env)

7 i f isTruthy (condition . Value)
8 Eval (thenBlock , env)
9 else i f length (node. Children) = 3

10 Eval (node. Children [2] , env)

12 return true

Figure 8: Example evaluator ‘ifThenElse’ and relative AST portion

node. An example of downEvaluator is reported in Figure 4.2.2. IfThenElse stops the

recursive evaluation of its children trees (by returning true) and takes care of explicitly

evaluating only one of the two branches invoking Eval on such one (lines 7-10), after

having established the truth value of the condition (line 5).

The first way different evaluators exchange information and state is thus directly

through AST nodes’ values. The second way is interacting with the current environment—

mostly assimilable with the current execution scope. Evaluators have the ability to set

control flow flags for the scope, and query and/or clear them later. Examples of such

55

flags are: break, continue (used for control flow in loops) or panic (used for exception

handling).

Summing up, evaluators define the core behavior of the interpreter, implementing

control flow and expression propagation. Expression values and, in general, state of

the execution, are propagated as attributes in form of values decorating the original

AST or as special flags applied to the current scope.

As a final remark, we highlight the fact that, given the separation in code and tasks

between the parsing and evaluation components of the codebase, additional steps

before evaluation (think of some form of static checking or optimizations) can be added

using the same AST-walking interface, before the actual evaluation step.

4.2.3 Environments

The Environment represents the state during evaluation, that is: the SymbolTable,

the current working directory, and a few additional flags that the evaluators use for

control flow (return, break, continue, panic, error handler). In addition, each envi-

ronment has a meaningful name (typically the name of the function causing the new

scope creation), that is used to present stack traces in case of unhandled errors.

An Environment can be copied, creating a new scope, that has access to the original

scope but cannot pollute it with symbols defined in the inner scope.

The SymbolTable is organized as a simple stack, and correctly implements lexical

scoping for El.

56

The generating scope chain is not copied when creating a new scope, instead it is

just linked. This means an inner scope has a view of the modifications in the outer

scope.

New environments are created in one of the following situations:

‘require’ of a package

A new top level environment is created for the package in order to evaluate it.

function definition

The generating environment is copied and attached to the function signature (in

this way defining a closure). Every following function call will use this environ-

ment as its execution scope.

loop

Loops create new block scopes, mainly needed for the index / iterators defini-

tions.

try

A try/catch construct creates a new environment and defines an error handler

for the scope.

4.2.4 Execution Modes

El supports both interactive (REPL) and non-interactive execution modes. The

Ethos shell is an El shell executed in interactive mode. A non-interactive execution

57

can be obtained by providing an El script as argument to the El executable—executing

in a subshell—or sourcing an El file with ‘load file’.

In the next section we describe how generic system types are handled by El.

4.2.5 Typed Objects Manipulation

As previously described, El internal types system is composed of primitive types

and the three composite types, set, tuple, map. Other than this default types, we want

to be able to interact with objects of all system-known types, regardless of whether

they are ETN primitive types, ETN composite types or user-defined types.

The typical usage we want to enable comprises: instantiation of new runtime ob-

jects (i.e.: not backed by physical filesystem entities); read of an object from a specific

filesystem location, and write back to arbitrary location; read multiple objects of type

‘T’ from a directory into an El map (of type ‘[string]T’); access, modify, apply operators

on these objects regardless of their origin.

There are two main possible strategies to achieve this result, that depends on the

language with which the interpreter itself is implemented.

(a) If the implementation language has a runtime and with the ability to load code

modules in an online fashion, one could follow a generate-and-use on demand

approach, taking advantage of the tools already available on Ethos to generate

encoders/decoders from an ETN type description. Every time a new—“new” to

El—type hash is encountered reading a filesystem object, an encoder/decoder for

58

that type would be generated and dynamically loaded (or simply loaded if already

created in the past), ready to be used to create/access objects of the given type

(probably with the aid of some reflection features, that the same runtime has to

support).

(b) Alternatively, it would be possible to implement a generic encoder/decoder for

El, and provide access to objects of arbitrary types making use of Go’s reflection

features. This new encoder/decoder could be built partially on top of the existing

Go packages, but would require dynamic type checking instead of pre-compiled

interfaces to access objects of a specific type.

Solution (a) would be limited performance-wise. Moreover, it wouldn’t be feasible with

pure Go, that by design produces a single statically linked executable and doesn’t

provide runtime library loading facilities. Solution (b) would lead to at least partial

code duplication (given that we want to access a generic type dynamically we can’t

just make use of Go-generated decoders). Except for this issue, this is the best way to

go.

The current implementation lies somewhere in between, in that it makes use of

generated encoders/decoders, but the libraries are linked at compile time. This is

obviously a temporary solution, presenting a few issues: it is not really dynamic—

to make use of a newly introduced type, El has to be re-compiled—and also requires

linking many (possibly unused) Go packages, one for each type definition.

59

1 serviceFd ← OpenDirectory (serviceDir)
2 l istenFd ← Advertise (serviceFd , name)
3 readFd ← Import (l istenFd)
4 writeFd ← Ipc (serviceFd , name)

Figure 9: El pipe setup

4.2.6 Typed Pipelines

Here we detail the implementation of El’s typed pipeline and redirections. Pipeline

redirections in El are towards directories (as opposed to files in UNIX). Directories are

Ethos’ streaming entities, as detailed in Section 2.3.7.

The semantic should be straightforward: the pipe (or redirection) can be set up

only if the stdout type of the producer and the stdin type of the consumer match. In

the case of redirection to a directory, the “consumer” type is directory’s type itself; in

case of a pipe to another program, the consumer type is the type accepted on stdin

by the consumer program. Similarly for the producer type (either the type of the

directory streamed to stdin or the type of the producer).

In brief, El created pipes are Ethos services, and as such inherit all their properties

of streaming typed channels. In addition, El can type check the pipe operation in

advance, in order to provide meaningful error messages and avoid the waste of time

and resources that building the pipe would be.

60

Producer and consumer programs exchange objects through Ethos’ IPC. The main

difference with an usual IPC is that the channel is set up by the shell instead of being

set up by the two processes exchanging objects. El acts in this phase both as server

and client component for the IPC, thus performing, in the order, the syscalls reported

in Section 4.2.6. Lines 2-3 would be part of the server code; line 4 would be part of

the client code; line 1 is normally part of both.

Note that the code in Section 4.2.6 is a simplification: particular care must be taken

since the Import and Ipc are blocking, and thus there is no relative ordering of the two

calls that would lead to a a non-stuck execution. In order to overcome the blocking

behavior, we make use of the Ethos Events system. Briefly, each syscall has a non-

blocking version1 , returning an eventId. Thus it is possible to issue multiple syscalls,

allowing the process to have multiple outstanding operations, and then obtain/handle

the actual results in an asynchronous way.

In Section 4.2.6.1 we present a more complete version of the pseudocode. When

we BlockAndRetire on evtImport and evtIpc (lines 10-11), the events can actually be

satisfied, since we already issued both the Import and Ipc syscalls in their non-blocking

fashion (lines 7-8).

1 The blocking version of each syscall is actually a combination of a non-blocking call and a
BlockAndRetire wait on the returned event identifier.

61

Once the IPC channel is established, each command in a pipeline is executed taking

care of providing the correct file descriptors for stdin and stdout, as per the usual UNIX

pipeline semantics.

4.2.6.1 Typing stdio

In order to set up the pipe service, we need to determine its the type. The service

type hash is determined by the type of the producer’s stdout and the consumer’s stdin,

when they match. If they don’t, the pipe operation fails. Programs declare their stdio

types by applying the desired types to predictably named directories during instal-

lation. These directories are /program/name-in and /program/name-out respectively,

where name is the executable name.

Programs can always be generic in declaring stdio types of any (or union), and

handling explicitly the actual type at runtime. Programs can also declare no type for

stdin (or stdout), in which case they will not accept typed input (or produce typed

output). Making stdio typing optional also makes the shell backward compatible with

programs written prior to stdio typing introduction.

4.2.6.2 Named Pipes

Similarly to UNIX named pipes, Ethos’ services are backed by a filesystem entity

(serviceDir in the examples). El is responsible for management of such directories

when executing commands in pipelines.

More specifically, El takes care of creating each pipe directory and clean it up

once the reading process exits. Thus, unlike UNIX named pipes, Ethos pipes are not

62

1 serviceDir ← randomName()
2 CreateDirectory (serviceDir , hash)

4 serviceFd ← OpenDirectory (serviceDir)
5 l istenFd ← Advertise (serviceFd , name)

7 evtImport ← async_Import (l istenFd)
8 evtIpc ← async_Ipc (serviceFd , name)

10 readFd ← BlockAndRetire (evtImport)
11 writeFd ← BlockAndRetire (evtIpc)

Figure 10: El non-blocking pipe setup

persistent; at the same time, unlike UNIX traditional pipes, Ethos pipes are backed by

a filesystem object.

Directories names are generated randomly, as to prevent a third party from being

able to guess them. The CreateDirectory Ethos syscall requires a type hash to be

applied to the newly created directory. This will determine the type of the service, and

thus the type of objects allowed to flow through the pipe.

4.2.6.3 Redirections

For the case of redirections, the process is simpler, since there are no services to

set up. The streamed objects are persisted in the destination directory (or streamed

from the source directory in case of input redirection). Again, redirection is possible

only if the types involved match.

CHAPTER 5

EVALUATION

In the this chapter we present the results obtained with El’s development, showing

how the design choices reflect in terms of goals G1-3 as described in Chapter 1.

The evaluation is organized in two parts: in Section 5.1 we discuss El integration

with Ethos and highlight obtained results with respect to goals G1 and G2; in Sec-

tion 5.2 we present the improvements introduced by El in terms of PL features for

general user space programming, and we compare with several different shells.

5.1 El and Ethos

As per G1 and G2 definitions in Chapter 1, El both provides a secure shell interac-

tion and composition (G2), enabled by Ethos interfaces, and preserves Ethos universal

properties (G1), building on the OS semantics.

Table 5.1 highlights the major El’s features that reduce exposure to attackers. The

classes of vulnerabilities we are considering are:

parser vulnerabilities

Parsing code is complex. Applications shouldn’t re-implement parsers for every

data type, even if simple, to avoid increasing the code base size—and increasing

it introducing some of the most error-prone code. This holds particularly for shell

scripting, that in usual OS/shell setups (e.g.: UNIX/bash) often relies on regular

63

64

expressions for parsing rows, columns in a file, or similarly from a command

output. Parsing vulnerabilities are common at various layers [31,32].

Applications on Ethos don’t have to write their own parsers, they make use of

parsers generated by Ethos type infrastructure. Same goes for the shell: El’s

typed object creation and filesystem access enables type-checked access to struc-

tured object types, and removes the need for custom parsing of text streams.

parser mismatches

Different implementations, even if in principle following a single specification,

can lead to possible mismatches in accepted input one to each other, and thus

possible issues for systems involving different components exchanging data parsed

by different implementations. Similarly, an antivirus could not scan a certain file

because it doesn’t match any known type to the software, while another applica-

tion actually making use of the file could accept it as valid, even if not scanned

and thus possibly infected.

On Ethos, the parser implementation is one for each data type, hence there’s no

possibility of mismatches. El itself makes use of the same unique encoder/de-

coder for each data type when accessing a file system object or creating a new

one. Different scripts, as well as a script and an application, will thus always

have the same “view” for a given object.

65

injection attacks

Various type of injection vulnerabilities are still the preferred attack surface [33].

In an injection attack, a malicious user manipulates a free-form input in order to

arbitrarily modify the behavior of the software that later manipulates that input.

Ethos applications are less prone by design to injections, given the use of struc-

tured types through encoders/decoders. What in usual architectures is typically

represented as a single string, on Ethos is split in non-reducible input compo-

nents and encoded as a specific composite type.

Moreover, El avoids by design command substitution and eval, that are often

used to parse free form, possibly dangerous, input in other setups [34].

Having described the main vulnerabilities we are concerned with, we now list how

these issues are tackled by El design. The list is split in terms of goals G1 and G2, i.e.

how El preserves Ethos properties and abstractions and how it enhances structured

interaction with the OS environment compared to other shells and environments. El

complies with Ethos semantics (G1) in:

providing coherent pipeline operations

Pipes and redirections, as described in Section 4.2.6, are streams composed of

typed objects. This adheres to Ethos typing semantics. There is no way for

programs to exchange data that doesn’t conform to a specific type definition (as

66

TABLE VII: SHELL+OS FEATURES COMPARISON

Pipes
Command

Substitution
fs Objects

Access

tcsh bytes yes bytes/text

ksh bytes yes bytes/text

scsh text no bytes/text

bash bytes yes bytes/text

rc/Inferno text yes bytes/text

PS objects yes Get-Item

El objects avoided? path literal
path constructor

? Command substitution is avoided by design: programs should exchange information
in form of typed objects, not parsing textual output(G1).

per Ethos’ type checker properties), and El doesn’t provide any way of piping

streams of characters—for instance El doesn’t redirect output for programs that

write text to stdout other than to the shell terminal.

imposing structured/typed access to data

As per Ethos’ design, El imposes structured representation for tools and in gen-

eral for all interactions. For instance, El has no “command substitution” feature;

output from a command execution should instead be collected in a well-formed

object(s) representation.

67

no untrapped errors

Ethos primary user space language is Go, a strongly typed language. El is in-

tended to be used for many user space tasks and simple applications, and is

designed as a dynamically typed language—in contrast to the untyped experi-

ence offered by commons shells. Hence, El doesn’t introduce untrapped errors

in Ethos user space development.

This is reinforced by the fact that failing operations by default causes El to raise

exceptions (this applies both to El’s runtime and to external commands failing

with a non-ok status), and execution to stop in case the exception is not explicitly

handled. sh will instead continue execution allowing “external” untrapped errors

(failures in external programs invocations).

exporting simple and high level interfaces

El complies with Ethos design for simplicity in providing the user space pro-

grammer with high level data structures, error handling with exceptions and

simplified filesystem access.

El exploits Ethos properties and abstractions (G2) by:

enabling typed composition of programs in shell scripts

UNIX/sh compose programs with pipes and redirections of text streams. Ethos/El

equivalent are streams of typed objects. Accessing an object is transparent to

application developers, in that parsers are provided by the development tool set,

68

and type checking is incorporated in the kernel. El provides typed pipes and

redirections relying completely on Ethos abstractions of types and IPC.

enabling typed access to filesystem in shell scripts

El gives clean interfaces to files system access. Thanks to Ethos types and El

filesystem integration, a whole class of error-prone parsing constructs often

found in UNIX scripts are not needed altogether. sed, awk constructions to ac-

cess specific values in files are replaced by path literals and type checked field

access. Filesystem object can be accessed, created, modified using typed object

constructors and path assignments.

reporting pipeline type checking errors in advance

Programs declare their composition interface (types accepted and produced on

stdio), thus El can typecheck pipe operations and redirections in advance—prior

than instantiating the pipe and involving the kernel type checker.

5.1.1 Code Readability

Code readability is a often omitted aspect in code quality analysis, and has partic-

ular implications during the code maintenance phase and bug fixing, which constitute

the largest part of the software development life-cycle [35]. Even considering the usual

small size of shell scripting projects, code readability is one of the key goals of El’s syn-

tax design; at the same time, given the need to support interactive usage, readability

is in sharp contrast with brevity.

69

1 l s /some/ dir

1 export
PATH=/path / to /my/ ls :$PATH

2 / path / to / foo

(a) Executed script foo.sh (b) Executing script

Figure 11: sh environment attack

With El, we diminish the readability issues that various flavors of sh present by

simplifying quoting rules (e.g.: no need to represent complex structures as strings,

when more handy composite types are available) and being minimal and consistent

with syntax (clear distinction between control flow and external programs, control

flow constructs are consistent in syntax one to each other).

5.1.2 Packages

Here we compare El’s and sh code insertion features. In particular, we evaluate

the require feature highlighting the class of attack vectors it mitigates.

5.1.2.1 Environment Attacks

In general, by manipulating the environment of a script—i.e.: the environment in

which it is executed—it is possible to change the script behavior. Consider an sh script

that doesn’t specify an absolute or relative path to execute a command (as in ls instead

of /bin/ls). The behavior of this script can be arbitrarily modified when it is executed

with a crafted environment $PATH variable, as shown in Figure 11-b. The executed

script (Figure 11-a) might then be executing an arbitrary command instead of /bin/ls.

70

TABLE VIII: EL AND SH CODE EXECUTION FEATURES

sh el

subshell “sh filename” (or “./filename.sh”)
executes the script in a
subshell (different
environment). Information flow is
easy from caller to called
script (command line arguments,
exported variables).
Information flow from called
to caller is harder (except
for return status).

“el filename” has the
same semantics. Forks a
new El process. Information
flow is hard in both
directions, except for
return status value.

source “source filename” or “. filename”
execute filename in current shell
context (as if the file’s lines were typed
one by one at the terminal).

El’s “load filename” has the
same semantics. Information
can be exchanged in current
environment/scope.

require not available

included script explicitly
exports functions
and/or values, with
fine-grained control.

The environment modification can also occur in the opposite direction, that is: an

included script could modify variables used by the including one, based on the way the

code insertion is done.

Environment attacks are a wide attack surface and affect many different layers.

Consider for example the classic exploits involving $LD_LIBRARY_PATH modification

(and a subsequent use of it) [36], or the PHP register_globals setting [37].

71

5.1.2.2 Code Insertion

In sh there are mainly two ways of executing code from another script file, source

and subshell execution. In Table VIII we summarize the characteristics of the two, and

we compare them to the El’s counterparts.

“sh filename” and “./filename.sh”execute in a subshell. The two are slightly differ-

ent (“./” can run non-sh scripts by looking at the first line, optionally specifying the

interpreter program). Thus, they execute in a different environment, and information

flow from executed script to executing is awkward, except for return status; for in-

stance, it can be through the file system. Information flow from caller to called is easy,

using “export VAR” and/or command line arguments. El’s counterpart (“el filename”)

has the same semantics.

“source filename” and its alias “. filename” are sh builtins that read filename and

execute the content in the current shell context—exactly as if the file’s lines were

typed one by one at the terminal. The included script has full control on the caller’s

environment—it’s for instance possible to override variables and functions. Informa-

tion flow is thus easy in both directions. The El equivalent is “load”.

72

Figure 12: Typical sh usage warnings

For lack of better code inclusion mechanisms, sh’s user libraries are usually im-

ported with a source command. We analyzed the most popular bash libraries1 , and

found that all of them offer this single inclusion mean: source the entire library in

your own script/shell. Developers releasing sh libraries are well aware of the limita-

tions and possible security implications (see Figure 12).

User-library interaction can’t be guaranteed free of namespace collisions, unless

the library resorts to weird naming rules to make conflicts sufficiently unlikely.

1We obtained the most popular libraries from two sources: (a) advanced repository search
on Github, specifying “bash” as the language, and ordering based on #stars,#forks. We ex-
plicitly excluded all results that are not strictly a set of library functions (e.g.: git extensions,
build tools, . . .); and (b) manual Google search, again excluding non strictly-library results.
The obtained sample counts 10 bash libraries.

73

Note that the global namespace and the possibility to override the including en-

vironment, other than constitute a possible attack surface, can be dangerous (and

require time-consuming bug fixes) even if not exploited on purpose.

A single library among the analyzed ones 1 offers a possible mitigation, providing

an ad-hoc command arguments interface. It is possible to invoke a single function with

sysfunc <command> [args]

forking and executing the specified function (“<command>”) in a new environment.

This method of inclusion is better in terms of controlled information flow and avoided

global variables clash, but requires a full subshell execution for every function invoca-

tion.

5.1.2.3 Require

require is El’s alternative for libraries and code reuse. It offers a simple way to

provide library functionalities in El. A value is accessible only if explicitly exported.

Information flow is thus controlled using language constructs by both the library

programmer—by choosing what to export—and the library user—accessing function-

alities and values as they’re needed.

A required script is evaluated only once, at first access. Thus, a reference to re-

quired package is used to access an instance of the package, that is: the package

1 https://github.com/flaupretre/sysfunc

74

maintains its state in a closed environment, and requiring the package multiple times

results in multiple instances, each one associated with its state/environment.

The require feature hence solves two main issues: the need for a clean way of

structuring code in El applications, and the security-related issues discussed in Sec-

tion 5.1.2.1.

5.2 Language generality

In Table 5.2 we summarize El features additions as a shell PL, comparing with sev-

eral other shells. Other aspects not considered are mainly related to user interaction,

including: history, command line editing, filename expansion, globbing. These are the

main features not taken into account in the development of El and El’s REPL due to

the poor research challenges they pose.

5.2.1 Functions

El’s functions are more versatile than bash ones in many ways: they are values and

thus can be passed as arguments or stored in composite data types members; they are

closures and thus able to encapsulate state; they can be defined inline as anonymous.

In addition, both bash and Inferno sh functions are defined globally (this being a result

of missing scoping rules), implying possibly many issues with name overriding.

PowerShell functions are instead more powerful artifacts, although they are miss-

ing the closure behavior by default (it is indeed possible to obtain a closure explicitly,

invoking the ‘GetNewClosure’ method on a block). In PowerShell, a function can be

75

TABLE IX: PL FEATURES COMPARISON

Functions Exceptions Packages Typing
Composite

Types

tcsh no no no no string array

ksh yes ‘trap’ no no string array

scsh
closure,

first-class
yes

from
scheme

dynamic
from

scheme

bash yes ‘trap’ no ‘declare’
(associative)

array

rc/Inferno
yes +

scoped blocks
yes

loadable
modules

no string array

PS
first-class,
variadic

yes yes dynamic .NET

El
closure?,

first-class?
yes? yes†? dynamic?

tuple,
map, set?

? General PL features that contribute to G3 achievement: first-class, scope-creating
functions, exception handling (compared to the problematic ‘trap’ discussed in Sec-
tion 3.8), typed variables and composite types
† As discussed in Section 5.1.2, El’s ‘require’ also mitigates possibility of environment
attacks (G2).

76

part of a pipeline statement and moreover is able control how the pipeline should han-

dle the function call itself, whether as a single invocation on the whole list of pipeline

objects or as a multiple ‘filtering’ invocation on each object flowing. Integration of El

functions in pipeline statements is currently being designed, as discussed in Chapter 6.

5.2.2 Exceptions

We discussed bash error handling mechanism in Section 3.8, and highlighted its

limitations.PowerShell distinguish between two main classes of errors: terminating

and non-terminating ones. It is possible to configure PS to stop on non-terminating

errors too, but normally only terminating errors cause PS to raise the exception (and

terminate if it is left unhandled). Errors are handled with ‘try/catch’ statements, as

usual in many PLs.

El errors are always terminating, i.e unhandled exceptions cause execution to stop.

The error handling mechanism is a simplified ‘try/catch’ construct where arbitrary

values can passed to a panic invocation in order to represent the error. Even if limited

in features with respect to other languages’ exception mechanisms (e.g. Java and other

Object Oriented (OO) PLs benefit from exception classes and subclassing), El’s error

handling significantly improves bash alternatives and can enhance overall correctness

and resiliency to corner-case conditions for a script.

77

5.2.3 Packages

We already discussed in Section 5.1.2 El’s export/require functionality in terms of

error avoidance. The same functionality is also relevant to improve El’s usability as a

general purpose scripting language, and thus it contributes to goal G3 as well.

bash comes with no support for export/require. bash programmers are forced to

source entire script libraries, accepting the security implications, or to make use of ex-

ternal executables. Inferno sh provides the loadable modules abstractions, and makes

large use of it also for basic functionality like control flow. The main drawback of In-

ferno sh’s loadable modules is that a module unique “export” ability is to define new

builtins. Builtins are again globally defined and identified by their name only, thus

not solving name collisions and separation. El’s packages instead are encapsulated

by a value returned by the require builtin, enabling, other than name collisions avoid-

ance, multiple “instances” of the same package to be referenced, each one with its

one specific environment.

PowerShell provides full-fledged package semantics. PS script modules are simi-

lar to El’s packages in functionalities, except for the fact that a single import for every

session has effect on the same package (there is no way to obtain references to two “in-

stances” of the same module). In addition, PS provides binary modules, i.e. compiled

modules with limited capabilities (e.g.: they can provide commands but not functions)

but considerably improved performances.

78

The ability to organize code in isolated packages and reusable libraries is crucial in

supporting structured scripting and utilities development. As an example of libraries

available for El, we have been developing and using the “tuples” and “math” packages.

The tuples packages provides useful (higher-order and not) functions for manipulation

of tuples, like ‘sort’, ‘map’, ‘filter’, ‘fold’, ‘contains’.

5.2.4 Typing

Types play a fundamental role in the whole Ethos environment. El’s integration

with Ethos types is thus fundamental in order to preserve Ethos semantics in user

space scripting. Other than access to typed operation for IPC and filesystem, El inter-

nal types system guarantees an entire new level of abstraction and reliability for shell

programming. Compared to bash, where all operations are on practically untyped

operands (strings), types enable the shell to detect typing errors and ‘trap’ them,

instead of carry on execution and allowing the untrapped error to possibly cause un-

expected behavior for the program subsequent computations [15].

PowerShell type system is built upon .NET, thus enabling dynamic typing for primi-

tive and composite .NET object types. Support for OO is somewhat limited, although it

is possible for instance to declare a new type or to instantiate an object of an arbitrary

.NET type from a PS script. In contrast, El has no support for new types definition, in

line with Ethos semantics of compile-time definition of types a program makes use of.

79

5.2.5 Composite Types

Shell programming has suffered for long time of lack of structured ways to repre-

sent and handle structured data types. bash scripts make commonly use of all sort of

quotation tricks to threat specific space-separated input either as a unique string or as

an array of strings. This is prone to error, especially due to the many quotation rules

and corner-cases.

El’s composite types offer instead a clean interface to represent structured state

and data. El maps are natural containers for references to an Ethos directory (string

valued file names mapped to files of the same type ‘T’); El tuples can be used to collect

the output of a program execution (a stream of same-type objects), and possibly later

iterate on the results. For instance, a common source of bugs in bash scripts is trying

to iterate on the output of an ‘ls’ execution to obtain filenames and related informa-

tion1. The primary issue is that a bash for loop iterates on the ‘ls’ output using Internal

Field Separator (IFS) characters as delimiters; filenames are instead allowed to con-

tain pretty much any characters, including spaces and newlines, easily breaking this

kind of loops. Using El, the output of ‘ls’—a stream of objects—can easily be collected

in a tuple and/or filtered.

1 As suggested by http://mywiki.wooledge.org/BashPitfalls, the correct way to iterate on
directories content is instead making use of globbing.

http://mywiki.wooledge.org/BashPitfalls##for_i_in_.24.28ls_.2A.mp3.29

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis we presented El, and shown how it fits in the context of the Ethos

OS, preserving its security-first design as well as enhancing scripting for the platform.

We also pointed out the areas where current shells come short, and how it is possible

to improve the overall usability of a shell language as a generic user-space scripting

language.

We highlighted some of the classes of attack El can remove or help to mitigate.

In the long term, we will need to evaluate the susceptibility to errors of El programs,

especially those related to security. The exception mechanism, type use, and enhanced

readability are aimed at reducing these errors. Despite the early development stage,

and considering the successful tools we’ve written using the language, El can already

be considered a good foundation for Ethos shell and scripting. However, only time and

widespread usage in Ethos user space will tell.

In the following we list the major limitations of the current implementation, to-

gether with directions of future improvement for the project.

6.1 Grammar Refactoring

The current grammar for El is the result of endless iterations, meant to rapidly

testing new features or introducing new constructs for which the grammar was not

80

81

designed from the beginning. As such, it lost many of its nice properties and modular-

ity along the way. A grammar redesign is in order, and also feasible now that the core

syntax is well defined.

6.2 Typed Command-line Arguments

The process of transition to fully typed interfaces for Ethos is just missing a small

piece: program arguments. Switching to Ethos’ types for arguments means changes

to the kernel, system calls, and Go’ runtime at least. In the typed arguments design,

programs declare their argument types (as well as whether they’re optional, their

default values), similarly as it happens already with stdio types. Once this is done, El

will be able to exploit the type information on arguments to provide arguments type

checking, completion and, eventually, access to man-pages generated from argument

descriptions providing comments.

6.3 ‘any’ operators

The way El scripts and Ethos programs have to accept or produce generic types

is using the ‘any’ or ‘union’ types. An example of a type independent program is for

instance ‘count’, producing an ‘int’ an accepting a stream of objects of ‘any’ type in

input. A set of standard tools operating on ‘any’ type objects is in the works, including

a generic ‘obj-to-string’ tool that comes in handy to print object gerarchies to the

terminal.

APPENDIX

GOYACC EL GRAMMAR

〈identifier〉 ::= IDENTIFIER

〈int_literal〉 ::= NUMBER_LITERAL

〈float_literal〉 ::= NUMBER_LITERAL DOT NUMBER_LITERAL

〈string_literal〉 ::= STRING_LITERAL

| QUOTED_STRING_LITERAL

〈bool_literal〉 ::= BOOL_LITERAL

〈tuple_literal〉 ::= L_SQ 〈params_list〉 R_SQ

〈map_literal〉 ::= L_PAR 〈colon_params_list〉 R_PAR

〈path_literal〉 ::= PATH

〈set_literal〉 ::= L_CUR 〈params_list〉 R_CUR

〈literal〉 ::= 〈int_literal〉

| 〈float_literal〉

| 〈string_literal〉

| 〈bool_literal〉

| 〈tuple_literal〉

| 〈map_literal〉

| 〈path_literal〉

| 〈set_literal〉

82

83

APPENDIX (Continued)

〈assignment〉 ::= 〈identifier〉 EQ 〈expression〉

| 〈path_literal〉 EQ 〈expression〉

| 〈square_access〉 EQ 〈expression〉

| 〈path_constructor〉 EQ 〈expression〉

〈expression〉 ::= 〈bool_expression〉

〈bool_expression〉 ::= 〈or_expression〉

〈or_expression〉 ::= 〈and_expression〉 OR 〈or_expression〉

| 〈and_expression〉

〈and_expression〉 ::= 〈comparison〉 AND 〈and_expression〉

| 〈comparison〉

〈comparison〉 ::= 〈e_comparison〉

| 〈n_e_comparison〉

| 〈l_comparison〉

| 〈l_e_comparison〉

| 〈g_comparison〉

| 〈g_e_comparison〉

| 〈not〉

| 〈sum〉

〈l_comparison〉 ::= 〈sum〉 L_COMP 〈sum〉

〈l_e_comparison〉 ::= 〈sum〉 L_COMP EQ 〈sum〉

〈g_comparison〉 ::= 〈sum〉 G_COMP 〈sum〉

84

APPENDIX (Continued)

〈g_e_comparison〉 ::= 〈sum〉 G_COMP EQ 〈sum〉

〈e_comparison〉 ::= 〈sum〉 EQ EQ 〈sum〉

〈n_e_comparison〉 ::= 〈sum〉 NOT EQ 〈sum〉

〈not〉 ::= NOT 〈value〉

〈sum〉 ::= 〈add〉

| 〈sub〉

| 〈product〉

〈add〉 ::= 〈product〉 PLUS 〈sum〉

〈sub〉 ::= 〈product〉 MINUS 〈sum〉

〈product〉 ::= 〈mul〉

| 〈div〉

| 〈value〉

〈mul〉 ::= 〈product〉 MUL 〈value〉

〈div〉 ::= 〈product〉 SLASH 〈value〉

〈value_access〉 ::= 〈value〉 DOT 〈function_call〉

| 〈value〉 DOT STRING_LITERAL

〈square_access〉 ::= 〈value〉 L_SQ 〈sum〉 R_SQ

〈export〉 ::= EXPORT 〈function_definition〉

| EXPORT 〈var〉

〈value〉 ::= 〈value_access〉

| 〈square_access〉

| 〈function_call〉

85

APPENDIX (Continued)

| 〈literal〉

| 〈function_definition〉

| 〈identifier〉

| L_PAR 〈expression〉 R_PAR

| MINUS 〈value〉

| 〈constructor〉

| 〈path_constructor〉

〈statement〉 ::= 〈var〉

| 〈function_definition〉

| 〈value_access〉

| 〈control_statement〉

| 〈function_call〉

| 〈assignment〉

| 〈export〉

| 〈pipelines〉

〈var〉 ::= VAR 〈identifier〉 EQ 〈expression〉

| VAR 〈identifier〉

〈control_statement〉 ::= BREAK

| CONTINUE

| 〈return〉

| 〈loop〉

86

APPENDIX (Continued)

| 〈if〉

| 〈switch〉

〈loop〉 ::= 〈foreach〉

| 〈for〉

〈foreach〉 ::= FOR 〈identifiers_couple〉 IN 〈value〉 〈block〉

〈identifiers_couple〉 ::= 〈identifier〉

| 〈identifier〉 COMMA 〈identifier〉

〈for〉 ::= FOR 〈for_init〉 SEMI 〈for_condition〉 SEMI 〈for_step〉 〈block〉

〈for_init〉 ::= 〈assignment_list〉

〈for_condition〉 ::= 〈expression〉

〈for_step〉 ::= 〈assignment_list〉

〈assignment_list〉 ::= ε

| 〈assignment_list_1〉

〈assignment_list_1〉 ::= 〈assignment〉 COMMA 〈assignment_list_1〉

| 〈assignment〉

〈if〉 ::= 〈if_then_else〉

| 〈if_then〉

〈if_then〉 ::= IF 〈expression〉 〈block〉

〈if_then_else〉 ::= IF 〈expression〉 〈block〉 ELSE 〈block〉

〈return〉 ::= RETURN 〈expression〉

| RETURN SEMI

〈switch〉 ::= SWITCH 〈expression〉 〈switch_block〉

87

APPENDIX (Continued)

〈block〉 ::= L_CUR 〈statement_list〉 R_CUR

〈statement_list〉 ::= ε

| 〈statement_list_1〉

〈statement_list_1〉 ::= 〈statement〉 〈statement_list_1〉

| 〈statement〉

〈pipelines〉 ::= 〈pipeline〉 SEMI 〈pipelines〉

| 〈pipeline〉 AND 〈pipelines〉

| 〈pipeline〉 OR 〈pipelines〉

| 〈pipeline〉

〈pipeline〉 ::= 〈pipeline_1〉 AMPERSAND

| 〈pipeline_1〉

〈pipeline_1〉 ::= 〈pipeline_statement〉 PIPE 〈pipeline_1〉

| 〈pipeline_statement〉

〈pipeline_statement〉 ::= 〈command〉 〈arguments_list_1〉 〈redirections〉

| 〈command〉 〈redirections〉

〈command〉 ::= STRING_LITERAL

| PATH

〈redirections〉 ::= 〈redirection〉 〈redirection〉

| 〈redirection〉

| ε

〈redirection〉 ::= L_COMP PATH

| G_COMP PATH

88

APPENDIX (Continued)

〈arguments_list_1〉 ::= 〈argument〉 〈arguments_list_1〉

| 〈argument〉

〈argument〉 ::= 〈identifier〉

| 〈literal〉

| DOT

| SLASH

| TOKEN

| MINUS 〈argument〉

〈switch_block〉 ::= L_CUR 〈case_list〉 R_CUR

| L_CUR 〈case_list〉 〈case_else〉 R_CUR

〈case_list〉 ::= ε

| 〈case_list_1〉

〈case_list_1〉 ::= 〈case〉 〈case_list_1〉

| 〈case〉

〈case〉 ::= CASE 〈expression〉 COLON 〈block〉

〈case_else〉 ::= ELSE COLON 〈block〉

〈function_call〉 ::= 〈expression〉 L_PAR 〈params_list〉 R_PAR

| STRING_LITERAL L_PAR 〈params_list〉 R_PAR

〈params_list〉 ::= ε

| 〈params_list_1〉

〈params_list_1〉 ::= 〈expression〉 COMMA 〈params_list_1〉

| 〈expression〉

89

APPENDIX (Continued)

〈colon_params_list〉 ::= ε

| 〈colon_params_list_1〉

〈colon_params_list_1〉 ::= 〈colon_param〉 COMMA 〈colon_params_list_1〉

| 〈colon_param〉

〈colon_param〉 ::= STRING_LITERAL COLON 〈expression〉

〈function_definition〉 ::= FUNC STRING_LITERAL L_PAR 〈named_params_list〉 R_PAR

〈block〉

| FUNC L_PAR 〈named_params_list〉 R_PAR 〈block〉

〈named_params_list〉 ::= ε

| 〈named_params_list_1〉

〈named_params_list_1〉 ::= 〈identifier〉 COMMA 〈named_params_list_1〉

| 〈identifier〉

〈constructor〉 ::= NEW STRING_LITERAL L_CUR 〈colon_params_list〉 R_CUR

| NEW STRING_LITERAL L_CUR 〈params_list〉 R_CUR

〈path_constructor〉 ::= PATH_CONSTRUCTOR COLON 〈expression〉 COLON

〈program〉 ::= 〈statement_list〉

CITED LITERATURE

1. Kernighan, B. W. and Pike, R.: The Unix programming environment. Prentice Hall
Professional Technical Reference, 1983.

2. Unix 1st edition man - sh. http://man.cat-v.org/unix-1st/1/sh (date accessed
2/15/2014).

3. Mashey, J. R.: Using a command language as a high-level programming language.
In ICSE, pages 169–176. Citeseer, 1976.

4. Bourne, S.: The unix shell. The Bell System Technical Journal, 57(6 Part 2):1971–
1990, 1978.

5. Joy, W.: An Introduction to the C shell. University of California, Berkeley, 1980.

6. The new korn shell. http://www.linuxjournal.com/article/1273 (date ac-
cessed 2/15/2014).

7. Ellis, M., Greer, K., Placeway, P., and Zochariassen, R.: Tcsh-cshell with file-
name completions and command line editing. Department of Computer Science,
Toronto, Canada, 1987.

8. Rc — the plan 9 shell. http://doc.cat-v.org/plan_9/4th_edition/papers/rc
(date accessed 2/15/2014).

9. The inferno shell. http://www.vitanuova.com/inferno/papers/sh.html (date
accessed 2/15/2014).

10. Es: A shell with higher-order functions. http://wryun.github.io/es-shell/
paper.html (date accessed 2/15/2014).

11. scsh – a scheme shell. http://www.scsh.net/docu/scsh-paper/scsh-paper.
html (date accessed 2/15/2014).

12. Microsoft windows powershell. http://technet.microsoft.com/en-us/
library/ms714418.aspx (date accessed 2/15/2014).

13. Pike, R.: System software research is irrelevant, August 2000.

14. Chou, A., Yang, J., Chelf, B., Hallem, S., and Engler, D. R.: An empirical study of
operating system errors. pages 73–88, 2001.

15. Cardelli, L.: Type systems. ACM Computing Surveys, 28(1):263–264, 1996.

16. Golm, M., Felser, M., Wawersich, C., and Kleinöder, J.: The jx operating system.
In USENIX Annual Technical Conference, General Track, pages 45–58, 2002.

90

http://man.cat-v.org/unix-1st/1/sh
http://www.linuxjournal.com/article/1273
http://doc.cat-v.org/plan_9/4th_edition/papers/rc
http://www.vitanuova.com/inferno/papers/sh.html
http://wryun.github.io/es-shell/paper.html
http://wryun.github.io/es-shell/paper.html
http://www.scsh.net/docu/scsh-paper/scsh-paper.html
http://www.scsh.net/docu/scsh-paper/scsh-paper.html
http://technet.microsoft.com/en-us/library/ms714418.aspx
http://technet.microsoft.com/en-us/library/ms714418.aspx

CITED LITERATURE (Continued) 91

17. Hallgren, T., Jones, M. P., Leslie, R., and Tolmach, A.: A principled approach to
operating system construction in haskell. In ACM SIGPLAN Notices, volume 40,
pages 116–128. ACM, 2005.

18. Klein, G., Derrin, P., and Elphinstone, K.: Experience report: sel4: formally verify-
ing a high-performance microkernel. In ACM Sigplan Notices, volume 44, pages
91–96. ACM, 2009.

19. Petullo, W. M., Fei, W., Gavlin, P., and Solworth, J. A.: Ethos’ distributed types.

20. Java serializable interface. http://docs.oracle.com/javase/7/docs/api/java/
io/Serializable.html (date accessed 2/15/2014).

21. Python pickle module. http://docs.python.org/2/library/pickle.html (date
accessed 2/15/2014).

22. Protocol buffers. https://code.google.com/p/protobuf/ (date accessed
2/15/2014).

23. Agarwal, A., Slee, M., and Kwiatkowski, M.: Thrift: Scalable cross-language ser-
vices implementation. Technical report, Facebook, 4 2007.

24. Johnston, W. M., Hanna, J. R. P., and Millar, R. J.: Advances in dataflow program-
ming languages. ACM Comput. Surv., 36(1):1–34, 2004.

25. The Go programming language. http://www.golang.org (date accessed
2/15/2014).

26. Milner, R.: A theory of type polymorphism in programming. Journal of computer
and system sciences, 17(3):348–375, 1978.

27. Ierusalimschy, R., De Figueiredo, L. H., and Celes Filho, W.: Lua-an extensible
extension language. Softw., Pract. Exper., 26(6):635–652, 1996.

28. Parsec. http://www.haskell.org/haskellwiki/Parsec (date accessed
2/15/2014).

29. goyacc. http://golang.org/cmd/yacc/ (date accessed 2/15/2014).

30. yacc. http://plan9.bell-labs.com/magic/man2html/1/yacc (date accessed
2/15/2014).

31. National vulnerability database: Cve-2013-4623. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2013-4623 (date accessed 2/15/2014).

32. National vulnerability database: Cve-2013-0156. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2013-0156 (date accessed 2/15/2014).

33. Owasp 2013 top 10. https://www.owasp.org/index.php/Top_10_2013-Top_10
(date accessed 2/15/2014).

34. Richards, G., Hammer, C., Burg, B., and Vitek, J.: The eval that men do. In ECOOP
2011–Object-Oriented Programming, pages 52–78. Springer, 2011.

http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
http://docs.python.org/2/library/pickle.html
https://code.google.com/p/protobuf/
http://www.golang.org
http://www.haskell.org/haskellwiki/Parsec
http://golang.org/cmd/yacc/
http://plan9.bell-labs.com/magic/man2html/1/yacc
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4623
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4623
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0156
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-0156
https://www.owasp.org/index.php/Top_10_2013-Top_10

CITED LITERATURE (Continued) 92

35. Buse, R. P. and Weimer, W. R.: A metric for software readability. In Proceedings of
the 2008 international symposium on Software testing and analysis, pages 121–
130. ACM, 2008.

36. Capec-13: Subverting environment variable values. http://capec.mitre.org/
data/definitions/13.html (date accessed 2/15/2014).

37. Capec-77: Manipulating user-controlled variables. http://capec.mitre.org/
data/definitions/77.html (date accessed 2/15/2014).

38. Bash—typing variables: declare or typeset. http://www.tldp.org/LDP/abs/
html/declareref.html (date accessed 2/15/2014).

39. Petullo, W. M., Zhang, X., Bernstein, J. A. S. D. J., and Lange, T.: Minimalt: Minimal-
latency networking through better security.

40. Petullo, W. M. and Solworth, J. A.: Simple-to-use, secure-by-design networking in
ethos. In Proceedings of the Sixth European Workshop on System Security, New
York, NY, USA, 2013.

http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/77.html
http://capec.mitre.org/data/definitions/77.html
http://www.tldp.org/LDP/abs/html/declareref.html
http://www.tldp.org/LDP/abs/html/declareref.html

VITA

Giovanni Gonzaga Nebbiante

Education B.S., Engineering of Computing Systems
Politecnico di Milano
2011

M.S., Computer Science (current)
University of Illinois at Chicago, Chicago, IL
2014

Working experience Mobile Developer Industree S.p.A. 2008-2011

Reggio Emilia (RE) - Italy
Developed several Nokia mobile applications for two nationwide
italian newspapers and other communication agencies.

Research Assistant University of Illinois at Chicago Jan 2013-
Dec 2013

Chicago, IL

93

	1Introduction
	 Related Work
	 Thesis Organization

	2Ethos and Ethos Types
	 Introduction
	 Universal Properties
	 Types
	 Rationale
	 Ethos Types
	 Ethos Types Properties
	 Serialization
	 ETN
	 Type Checking Objects
	 Files and Directories
	 IPC

	3Design
	 Preliminary Definitions
	 Scripts vs. Command Line
	 Design Rationale
	 Syntax
	 Types
	 Typed I/O
	 Functions and Scope
	 Error Handling
	 Packages
	 Unifications
	 Directories and Maps
	 Functions and Executables

	4Implementation
	 The Language
	 Types
	 Assignments
	 Accessors
	 Control Flow
	 Functions
	 Builtins
	 Command Line

	 Implementation
	 Parsing
	 Evaluation
	 Environments
	 Execution Modes
	 Typed Objects Manipulation
	 Typed Pipelines
	 Typing stdio
	 Named Pipes
	 Redirections

	5Evaluation
	 El and Ethos
	 Code Readability
	 Packages
	 Environment Attacks
	 Code Insertion
	 Require

	 Language generality
	 Functions
	 Exceptions
	 Packages
	 Typing
	 Composite Types

	6Conclusions and Future Work
	 Grammar Refactoring
	 Typed Command-line Arguments
	 `any' operators

	 APPENDIX
	 CITED LITERATURE
	 VITA

