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SUMMARY 

 Gypsum is one of the most common and widely used building materials.  It has 

been used for centuries in a variety of construction applications.  Its unique ability to 

convert to a moldable rock-like structure with moderate temperature to a shapeless 

powder known as stucco, or Plaster of Paris, and then become moldable back to a rock-

like stature upon rehydration with water makes it ideal as a building material. It also has 

the ability to absorb large amounts of heat that enable it to possess high fire resistance 

properties.   

In the early 1900’s, processes were developed to sandwich a gypsum core between 

two sheets of specially finished paper to create plasterboard, commonly known as 

wallboard or Sheetrock, as branded by its inventors, US Gypsum Company.  Its low cost, 

ease of installation, fire resistance, good acoustical properties, aesthetics and design 

possibilities have made gypsum wallboard the standard of wall construction for decades. 

Modern gypsum wallboard is made in a continuous process on high-speed 

production lines.  Over the decades, means were developed to inject foam into the 

gypsum slurry which produced the core. This technique was used to reduce weight, 

improve acoustics and enable desirable handling properties. 

The key element of the process is the mixer where stucco, water, and additives are 

rapidly combined. Gypsum formulation and slurry is an extremely complex fluid 

exhibiting non-Newtonian shear-thinning behavior, as well as time and temperature 

dependence to set up.  A critical component is the injection or spraying of foam into the 

moving gypsum slurry as it emerges from the mixer.  Due to the inherent complexities of 

the fluids, the past design approaches have been empirical in nature and based on costly, 
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time-consuming trial and error methodologies which at best have produced “rules of 

thumb”.  Though workable, current manufacturing processes are both energy and water 

intensive. Overall, foam injection into a non-Newtonian slurry is in itself extremely 

complex and has not been extensively studied or modeled before. 

The aim of this work is to study the effect of foam mixing with gypsum slurry. This 

study was conducted in two steps. At first, numerically, injection of foam in stagnant 

gypsum slurry was studied. Gypsum slurry with two different water stucco ratios (WSR), 

68 and 75, was studied. In this study non-Newtonian multiphase behavior resulting from 

the interaction between foam and gypsum was incorporated. The effect of foam nozzle 

diameter, Schmidt number and foam injection velocity on mixing of foam and gypsum 

slurry was studied. 

As an extension to this, foam mixing in flowing gypsum slurry was also studied. 

The effect of foam injection velocity and foam injection angle for two different Schmidt 

numbers, 18 and 30, and for two different WSR, 68 and 75, were studied. 

It needs to be mentioned, the choice of the studying parameter in this work 

commensurate with practical values that are used in wallboard manufacturing plants. 

Recently, researchers developed rheological constitutive equations for both gypsum 

slurry and foam, and, their mixtures at several foam contents as well. This enabled us to 

pursue modeling of foam-slurry mixtures in conjunction with numerical analysis in the 

framework of the non-Newtonian hydrodynamics.  This approach is proposed and 

implemented in the present work as a promising path toward valuable insights into the 

complex behavior of such a system, which was never possible before. This in-depth 
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understanding can yield optimization of both the mixing process and its final product-

gypsum wallboards.       

 From an industry prospective, potential benefits can be both widespread and 

significant. Current energy and water intensive processes can be made more sustainable 

through reduction of the use of these valuable components.  Other potential product 

attribute benefits include: reduction of weight, increasing of strength, reduction of raw 

material usage, improved uniformity, higher line speed, improved acoustics and better 

product installation characteristics. These factors all can work together to potentially 

reduce both product cost and transportation due to reduced weight, while providing a 

more sustainable proposition having improved life cycle analysis metrics. 

 

 



 

1 

 

1. INTRODUCTION 

 

Gypsum or Calcium Sulphate dihydrate (CaSO4, 2H2O), commonly known as “Land 

Plaster”, is one of the Earth’s most abundant material.  One of the most interesting aspects of 

gypsum is the various crystalline formats in which it can exist in nature: white rock (regular 

gypsum), transparent (selenite), colored (alabaster) or fibrous (Satin Spar). Apart from mining, 

synthetic gypsum is also produced by “flue gas desulfurization” (FGD) of coal fired power plants 

(Biondo et al., 1977; Li et al., 1999; Galos et al., 2002, Tesárek et al., 2007).  Irrespective of the 

look, chemically all the gypsum variations are similar. Upon addition of heat to about 150 0C, 

every gypsum molecule loses 1.5 molecules of water and turns into stucco or Calcium Sulphate 

hemi hydrate, CaSO4, 0.5H2O, commonly known as “Plaster of Paris” or stucco Eq. (1.1), which 

upon addition of water converts back to gypsum Eq. (1.2)   

                           (1.1) 

                           (1.2) 

The ability of stucco to convert to gypsum by addition of water renders its capability to mold 

into any complex shape. In addition to that, owing to the crystalline water, gypsum has a high 

resistance to fire. Owing to both of these, gypsum is a natural choice of building materials. In 

fact, the use of gypsum as a building material dates back to the Roman Empire. Gypsum panels, 

as a part of modern day construction, were invented by Augustine Sackett and Fred Kane in 

1894. In 1898, the first patent on Sackett board involving multilayer paper and gypsum was 

granted. In the year of 1910, United States Gypsum (USG) bought Sackett Plaster Board 

Company and launched Admant Board where instead of inner layer of felt, gypsum was 

sandwiched between two paper facings without a wrapped edge. In 1916 gypsum board under  
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the brand name of “Sheetrock”, was launched by USG where the edges of the board were 

wrapped. However, the true uptake of gypsum wallboard in the American housing industry came 

after the Second World War. Rapid and economic production of housing was given the utmost 

importance in order to provide homes for the thousands of returning soldiers. Exacerbating this 

was the fact that housing construction was greatly subdued just prior to World War Two due to 

the Great Depression. These factors combined to create tremendous demand with short supply. 

Drywall construction techniques provided a much faster and less costly solution to home 

construction than prior wet methods. 

Figure 1.1 shows a schematic of the wallboard manufacturing process. As it can be seen 

from Figure 1.1, raw natural gypsum rock and/or synthetic gypsum is ground to a smaller 

particle sized powder called landplaster and mixed with water and different additives (e.g.- 

starch, glass fiber etc.). This mixture, called gypsum slurry, is then sandwiched between two 

sheets of paper which is then rough cut to length and dried in a kiln. Upon emerging from the 

kiln, the boards are cut to finished lengths and bundled.  Typical pictures of finished gypsum 

board is shown in Figure 1.2. 
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Figure 1.1. Schematic of gypsum wallboard manufacturing process. (Picture courtesy- United 

States Gypsum Corporation). 

 

 Figure 1.2a shows a typical construction site, where gypsum wallboard is being used and 

transported using a boom truck. In Figure 1.2b it is shown how on a construction site a gypsum 

wallboard panel is carried by workers. As is evident from the construction site, the installation of 

wallboard is still a manual process. Accordingly, over last two decades innovation around 

gypsum wallboard technology has been focused on reducing board weight to facilitate the 

manual handling of wallboard. This helps in two ways: (a) reduces chances of labor injury, (b) 

faster installation, which in turn reduces the downtime and increase the profitability. 

Additionally, reduced weight results in lower shipping cost. A common technique of reducing 

board weight is to inject foam in gypsum wallboard (cf. Figure 1.2c).  In Figure 1.2c, the cross-

sectional view of gypsum wallboard is exhibited where the foam structure in a board is visible. 
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Figure 1.2. (a) Gypsum wallboard at a construction site being carried on a boom truck. (b) 

Gypsum wallboard at a construction site is being carried by a construction site worker. (c) Stack 

of gypsum wallboard and the cross-section of gypsum wallboard. 

 

 It should be emphasized that in addition to lowering the board weight, gypsum wallboard 

as a building material needs to meet the requirements of structural integrity, fire protection 

capability, surface finish, acoustics, cut ability and sag resistance among other properties. This 

makes the foam mixing process extremely crucial, as without well-engineered bubble structure, 

the structural requirement at lower weight of gypsum wallboard will not be possible (Sucech, 

1997; Wittbold et al., 2011; Blackburn et al.; 2012). The control of foam structure is generally 

achieved by a combination of the mixing process and the surfactant used to create the foam. So, 

a detailed understanding of the phenomenon of foam mixing with gypsum slurry is extremely 

important to optimize the process of wallboard manufacturing at a lower price point. 
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 In this work, the effect of foam mixing with gypsum slurry is systematically studied in a 

theoretical and numerical framework. This thesis is organized as follows. Chapter 2 provides 

background and literature review with regard to the work.  Chapter 3 describes the research 

design and objective. In Chapter 4, the interaction of single foam jet with stagnant gypsum slurry 

is studied numerically.  Chapter 5 details the interaction of a foam jet with moving gypsum 

slurry.  Finally, Chapter 6 concludes the overall study. 

 This proposed approach implemented in the present work serves as a promising path 

toward valuable insights into the complex behavior of such system, which was never possible 

before. This in-depth understanding can yield optimization of both the mixing process and its 

final product, gypsum wallboards.       
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2. BACKGROUND AND LITERATURE REVIEW 

2.1. Practical Motivation 

 World War II was the most destructive war ever fought and lasted from 1939-1945. The 

war left behind a trail of destruction, wrecked infrastructure and desolation across the globe. Post 

World War II there was a huge unmet need for rapid construction and affordable housing. Fueled 

by this demand to provide housing for civilians and returning soldiers, gypsum wallboard and 

other lightweight panel based construction methods gained popularity. According to the Gypsum 

Association (https://www.gypsum.org/about/gypsum-101/history-gypsum/), by 1945 during 

World War II the United States military had alone used 2.5 billion square foot of gypsum board. 

By 1955, 50% of all housing was built with gypsum wallboard. During this “Postwar Economic 

Boom” the use of panel-based construction made its foray into commercial building due to its 

ability to act as an effective fire barrier and its sound insulation properties. In the early 1960’s, 

United States Gypsum developed shaft wall system, which led to faster adoption of gypsum 

wallboard into high rise commercial spaces. The John Hancock Tower and Sears Tower (now 

Willis Tower) are some of the tallest buildings built around that time. Presently, gypsum 

wallboard is considered to be the most preferred building product. In the year of 2015, the total 

amount of gypsum wall board sold in USA was 22.3 billion square foot. The overall demand for 

gypsum wallboard during last 10 years is shown in Figure 2.1.1. The global gypsum wallboard 

market was pegged to be at a staggering value of $21.74 billion. 

(http://www.grandviewresearch.com/industry-analysis/gypsum-board-market).  

 

 

https://www.gypsum.org/about/gypsum-101/history-gypsum/
http://www.grandviewresearch.com/industry-analysis/gypsum-board-market
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Figure 2.1.1. Total industry shipment during year 2005-2015. In the figure Res, Non Res and 

R&R stand for residential, non-residential and repair & remodel, respectively. 

 

 In addition to gypsum wallboard in construction, there has been significant growth in 

cement-based panels and precast concrete products in housing. According to recent report by 

Freedonia (http://www.freedoniagroup.com/Fiber-Cement.html), the US demand for fiber 

http://www.freedoniagroup.com/Fiber-Cement.html
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cement-based panels in construction is forecast to grow to 2.9 billion square foot and valued as 

$2.2 billion. For precast concrete products, the market size is forecast to grow to $12.2 billion by 

2018 (http://www.freedoniagroup.com/Precast-Concrete-Products.html).  

As it was mentioned, in modern-day construction, speed of construction is one of the 

most prime drivers along with functionality, safety and security. A gypsum wallboard-based 

construction costs approximately $5 per square foot, whereas a concrete constructions costs in 

the range of $25 per square foot. In addition to the speed of construction, another primary driver 

for cost in construction is fatal and non-fatal injury at a construction site. In Waehrer et al. 

(2007) a comprehensive cost model including direct medical cost, indirect loss in wages and 

productivity was built, using the 2002 data from national incidence data from the Bureau of 

Labor Statistics. The model estimates the loss due to worker’s injury to be at a staggering value 

of $11.5 billion in total. It was also shown that for construction-site-related injuries, the loss per 

incident is approximately $27,000 which is almost twice the value of other industries. The 

resulting cost was further divided among trades. It was found that the total cost due to injury 

related to handling of building products was over $3 billion. These two studies clearly indicate 

that there is a clear need for lightweight building products.  

In addition to the reduction of weight of building products, there has also been a push for 

reducing the carbon footprint in the production of building products to improve the 

sustainability. In the year of 1987, World Commission on Environment and Development 

(WCED) defined the concept of sustainable development as (UN Documents 1987), ‘the ability 

to meet our current needs without compromising the ability of future generation to meet theirs’. 

This definition directly has huge impact on the construction industry in terms of reducing the 

amount of raw materials used, energy consumed in making the product and possible recycling. 

http://www.freedoniagroup.com/Precast-Concrete-Products.html
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One of the first steps taken by gypsum industry in the early 1970s  was to use the byproduct of 

coal powered power plants through a process called flue gas desulfurization to create synthetic 

gypsum (Biondo et al., 1977; Li et al., 1999; Galos et al., 2002, Tesárek et al., 2007).  This 

reduced the dependence on natural gypsum. However, recently due to the shifting trend of 

utilizing natural-gas-fueled power plants and alternative power sources in lieu of coal, the output 

of synthetic gypsum from coal-fired power plants is reducing. This may result in shifting the 

focus on natural gypsum to cater to the market need. In 2013, the domestic production of natural 

gypsum was estimated to be 16.3 million tons. Texas, Oklahoma, Nevada, California and Indiana 

together accounted for 62% of the total gypsum production.  

Accordingly, as a part of sustainable development there has been an ongoing effort to 

reduce the weight of gypsum wallboard. It is also important to note that the gypsum wallboard 

manufacturing process requires significant amounts of water to create the gypsum slurry to 

enable the panels to be formed on the production line. Hence, the reduction in weight not only 

reduces the amount of raw materials but also results in lower water demand and thus lower 

energy requirement in creating the product. In a recent survey by Global Gypsum Magazine July 

2016 edition, the total amount of CO2 released by gypsum wallboard is ~ 24 MT/year. Although 

this amount may seem to be low, creating a relatively small overall footprint, it stems from the 

fact that the overall market size of gypsum wallboard is relatively smaller than other industries. 

However, when one does the calculation for amount of CO2 emitted/unit mass the footprint can 

be considered to be more significant. 

Similar to gypsum wallboard, cement production also results in significant energy 

consumption (Zhang et al., 2014). The total amount of CO2 production attributed to cement 

production is much larger estimated to be 8% of global CO2 emission (Olivier et al., 2012).   
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When the total emission of the cement and concrete industries are taken into account, the 

emission can be as large as 10% of global average (Flower et al., 2007). To reduce the emissions 

several steps were taken:  (a) application of new technology in the format of geopolymer, 

calcium aluminate/sulfoaluminate cements, supersulfated slag cement etc. (Schneider et al., 

2011; Gartner et al., 2011; Duxson et al., 2007); (b) utilization of energy-efficient furnace, 

biofuel (Damtoft et al., 2008; Sorrentino et al., 2011); and (c) reduction of clinker (Bleszynski et 

al., 2002). In spite of all of these actions, the race towards sustainable development still relies on 

a crucial point which is to reduce the amount of raw materials used by reducing the weight of the 

product. 

In gypsum wallboard, the reduction of weight has been a primary focus of the industry 

and researchers at large. One of the techniques, followed in Başpınara et al. (2011) was to add 

light-weight silicate-based macroporous filler in gypsum slurry to create gypsum wallboard. The 

authors have shown that such a product will be lightweight with improved physical properties 

and improved fire resistance. However, such a method may be valuable for lab-based application 

but owing to the sheer enormity of gypsum wallboard manufacturing process, such a route will 

not be economically viable. As a result of this, a common technique used in gypsum wallboard 

manufacturing is to add a foam producing agent (soap/surfactant) into the gypsum slurry.  Figure 

2.1.2 shows a typical foam mixing process in gypsum slurry. In a standard foamed gypsum slurry 

making process, foam is injected into gypsum slurry coming out of the mixer and before hitting 

the forming table. There is a plethora of literature discussing utilization of foam mixing in 

gypsum slurry and its use in reducing gypsum board weight slurry and its use in reducing 

gypsum board weight (Wittbold et al., 2002; Kawamura et al., 2015). One such bright example in 

the present-day US marketplace is USG Sheetrock Brand Ultralight Gypsum boards, where the 
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gypsum wallboard is 35% lighter than standard wallboard for similar strength performance. For 

such a product, significant amount of research was focused on bubble structure, which relied 

heavily on foam chemistry and foam mixing dynamics in flowing gypsum slurry.  

In the cement and concrete industry, significant emphasis was put towards  production of 

foamed concrete (Tonyan et al., 1992; Hilal at al., 2015;  Krämer et al., 2015; Narayanan et al., 

2000; Alengaram et al., 2013). Injecting foam in the concrete industry is also a very well-

practiced process, and both chemical and mechanical foaming processes were incorporated.  The 

basic focus of such a process has been to reduce the weight of concrete. 

 

Figure 2.1.2. A typical foam mixer in gypsum wallboard forming line. 

 

However, in all these processes the optimization of the foam mixing process is done by 

trial and error. The general practice in the construction industry is to optimize the foam mixing 
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process by improving chemistry of the foaming agent. There is a significant lack of knowledge in 

elucidating the dynamics of mixing of foam in slurry made from construction material, which are 

highly non-Newtonian in nature. In the following subsection, an in-depth literature review of the 

interaction of foam with non-Newtonian fluid is given. 

  

2.2. Interaction of Foam with Non-Newtonian Fluid 

 All the construction material slurries, gypsum, cement etc., are non-Newtonian in nature. 

A detailed description of the rheological characterization of complex fluids is given in Section 

2.3. It is of the utmost interest to understand the interaction of foam with a non-Newtonian fluid. 

Several works in the literature were found to be dealing with interaction of foam with non-

Newtonian fluid. 

 In Li et al. (1997), the authors studied the coalescence of bubbles in a non-Newtonian 

fluid from the viewpoint of chaos theory. As a choice of non-Newtonian fluid they used 1 wt% 

polyacrylamide (PAAm) water, 1.5 wt% PAAm in water and glycerol and 1.7 wt% 

carboxymethylcellulose (CMC) in water and glycerol. For their study, they used a single orifice 

ejecting air bubble into the above-mentioned solution at a constant gas flow rate and studied the 

trajectory and mutual interaction of the air bubbles produced through the orifice. In this work, it 

was found that although the bubbles are issued at a constant gas flow rate, as they move up in the 

non-Newtonian fluid bath, the separation interval between bubbles becomes irregular and the 

coalescence of bubbles occurs. As the bubbles passed through the fluid, it resulted in residual 

stress in the fluid. The relaxation of the residual stress is related to the decrease in drag. It was 

also found that although the ejection of the bubbles was done at periodicity, the periodicity was 
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lost as the distance from the orifice increased. However, it also needs to be mentioned that such a 

phenomenon was observed owing to the viscoelastic nature of the solution. 

 In Herrera-Velarde et al. (2003) the authors found that there is significant discontinuity in 

the bubble when they are moving in non-Newtonian fluid. The authors studied the flow field 

around air bubbles rising in PAAm solutions using particle image velocimetry (PIV). It was 

found that such discontinuity was affected by the viscoelastic properties of the fluid in which the 

bubbles move. It was also found that such a discontinuity can stem from the wall effect and for a 

given non-Newtonian fluid there is a critical size of the bubble, beyond which such a 

discontinuity can be observed. The authors have also studied the flow configuration around the 

bubble and reported the appearance of “negative-wake” in the trail of the moving bubble. They 

found that the appearance of a cusp on the bubble above the critical volume plays a significant 

role in defining the flow field around the bubble. A similar discontinuity in the rise velocity of an 

air bubble moving in a viscoelastic field was observed by Wild et al. (2003) and Chhabra et al. 

(2006). A list of such observations is shown in Table 2.2.1 taken from Amirnia et al. (2013). 

However, there is significant confusion around the discontinuity of velocity of air bubble in non-

Newtonian viscoelastic fluids, where the authors did not observe any such discontinuity in 

studying rise of air bubble in xantham gum solution. 

 From the viewpoint of numerical study, different approaches were taken. Zhang et al. 

(2010) have studied the motion of a single bubble in viscous inelastic non-Newtonian fluid using 

the level the set method. It was found that the power-law index of a non-Newtonian power-law 

fluid has a considerable effect on the bubble motion. Radl et al. (2007) studied the bubble flow in 

non-Newtonian fluids using direct numerical simulations in order to compute the  mass transfer 
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coefficient in fermenting media. However, due to the numerical scheme complexity, it was only 

possible to numerically simulate one bubble. 

 It can be seen from the literature survey that the current numerical and experimental 

studies are limited to a single bubble movement in a non-Newtonian fluid. However, for foam 

mixing with gypsum slurry or any other industrial-scale process such a scenario only provides an 

initial insight into the process. The novelty of the present work is in the attempt to bridge that 

gap, whereby a theoretical and numerical model will be described to elucidate the process of 

foam mixing with gypsum slurry. It is also aimed to differentiate between different non-

Newtonian fluids, which will be done in the following subsection. 
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Table 2.2.1. Summary of previous investigations on the rise and velocity discontinuity of 

bubbles in non-Newtonian fluids (Courtesy of Amirnia et al. 2013). 
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2.3. Rheological Characterization of Complex Fluids 

 

Fluid mechanics of incompressible liquids always allows one to split the stress tensor σ 

into an isotropic part associated with pressure p, and the generally anisotropic one, which is 

called the deviatoric stress tensor τ  

 

p +   I                                                                                                                      (2.3.1) 

where I is the tensor unit (Batchelor 2002, Lamb 1959, Landau and Lifshitz 1987). 

For Newtonian viscous fluids, such as water, the deviatoric stress tensor τ is related to the 

strain-rate tensor D with the rheological equation determined by a single rheological parameter, 

viscosity μ 

2  D ,   T1
+

2
 D = v v                                                                                         (2.3.2) 

where D is the symmetric part of tensor gradient of velocity v .  

The constitutive equation of Newtonian liquids (2.3.2) is motivated by the fact that in  

simple shear experiments, the shear stress is found being linearly proportional to the shear rate γ,  

τxy= µγ, while μ is a constant, i.e. the physical characteristic of a liquid. 

However, gypsum slurries do not belong to the Newtonian fluids family. In simple-shear 

experiments they reveal a non-linear dependence of the shear stress on the shear rate, namely, 

τxy= Kγn, where two physical parameters of a fluid are involved: the consistency index K and the 

flow behavior index n (Sinha Ray et al. 2011). In particular, gypsum slurries possess n<1, which 

makes them shear-thinning (or pseudoplastic). Introducing the effective shear viscosity of such 

fluids as μsh= τxy/γ, one finds that 
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                                                n 1

sh K                                                                                 (2.3.3) 

Since n<1, the shear viscosity of slurries decreases as the shear rate increases. 

The three-dimensional generalization of Eq. (2.3) is given by the so-called Ostwald-de 

Waele, or the power-law rheological equation (Astarita and Marrucci 1974, Bird et al. 1987, 

Larson 1988) 

 
 n 1 /2

22K 2tr


    D D                                                                                               (2.3.4) 

When n=1 and K=µ, Eq. (2.3.4) becomes the Newton-Stokes equation, the first Eq. (2.3.2). 

Viscoelastic polymeric fluids also exhibit non-Newtonian behavior. The behavior is 

unusual in that sense that these fluids thicken under elongation and thin down under shear stress 

owing to the long-chain molecular structure. Viscoelastic fluids have the unique property of 

stress relaxation, i.e. possess memory effects.  One of the common methods for the measurement 

of viscoelastic properties of polymeric fluids is to find the required time for stress relaxation. In 

this method, an experiment is performed whereby a constant shear deformation 0  is applied. It 

can be shown that the resulting stress decreases as a function of time. The shear modulus G(t), 

which is sometimes referred to as the relaxation modulus, is defined as the ratio of the stress 

 t to the applied deformation 0 . By further incorporating the Maxwell model, which is 

appropriate to describe the stress relaxation, the shear modulus can be defined by 

 
 

 
0

t
G t G exp t /


   


        (2.3.5) 

where  is the relaxation time of the Maxwell model. 

This variation of G(t) with time depends on a multitude of factors, such as the degree of cross-

linking, crystallinity of polymer and chain length. Figure 2.3.1 depicts the stress relaxation for a 

non-crosslinked viscoelastic material and a crosslinked rubbery material. The viscoelastic fluid 
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exhibits “fading memory” with the stress decreasing to zero, whereas the rubbery material 

relaxes to a stress of 0 eG  where 
eG is the rubber shear modulus. The effect of relaxation time 

on the variation of G(t) with time is shown in Figure 2.3.2. 

 

 

Figure 2.3.1.    Stress relaxation for viscoelastic and rubbery materials (te Nijenhuis 2008). 

 

From the Maxwell model, Eq. (2.3.5), it can be seen that   red 0t / exp( t / )        

decreases sharply from 1 to 0 in the vicinity of t   . Figure 2.3.2(a) shows the dependence of 

reduced relaxation modulus defined as      red 0G t G t / G t /     on log (time) for two 

Maxwell models with 1  and 10,000   s. In general, the stress decrease is not as sharp as is 

shown in Figure 2.3.2(a).  However, viscoelastic fluids typically have a mix of different chain 

lengths, which means that the relaxation time is not unique.  This phenomena is described by the 

Maxwell-Wiechert model, Figure 2.3.2(b). In this model, the fluid structure is modelled as N 
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Maxwell elements linked in parallel, each with its own spring constant iG and relaxation time 

i for which the shear modulus is expressed as 

   
N

i i

i 1

G t G exp t /


            (2.3.6)  

The greater the number of the Maxwell elements the greater is the accuracy in the description of 

the viscoelastic behavior, Figure 2.3.2(b). 

 

Fig. 2.3.2. (a) Semi-logarithmic plot of the reduced relaxation modulus 

     red 0G t G t / G t /     for two Maxwell elements, with relaxation times of 1 s and 10,000 

s, respectively. (b) Semi-logarithmic plot of the relaxation of the reduced stress 0/  for the 

Maxwell-Wiechert model, with relaxation times of 1 s and 10,000 s and spring constants 1G  and 

2 1G 0.5G ; the results of (a) are also shown (te Nijenhuis 2008). 

 

In addition to stress relaxation, another important feature of viscoelastic fluids is creep.  The 

creep behavior of viscoelastic fluids can be more accurately depicted by utilizing the Burgers 

model which links the Maxwell model with a Kelvin-Voigt model in series. Following the 
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Burgers model, a viscoelastic fluid subjected to a constant stress 0  exhibits strain (t)  

following the expression 

   0t J t              (2.3.7) 

where the time dependence is given by 

   1 1

1
J t J J 1 exp t /        

        (2.3.8) 

and the compliance of the two springs and retardation time are given, respectively, as  

1
J

G
             (2.3.9) 

1

1

1
J

G
                      (2.3.10) 

1
1

1G


                       (2.3.11) 

The discussion above elucidates different properties of non-Newtonian fluids that need to be 

measured under shear and elongation. For the shear flow measurement, to elucidate the 

viscoelastic properties of non-Newtonian fluids, several different geometric shapes are used in 

shear rheometers. Some of the common shapes and the corresponding geometric factors are 

listed in Table 2.3.1. 
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Table 2.3.1.    Basic geometric shape factors. 

Geometry Geometric Shape Factor 

sandwich construction A/d 

cone and plate  32 R / 3   

parallel plates 4R / d  

torsion of a bar with rectangular cross-section    3cd f c / d / 16L  for c / d 1  

torsion of a bar with circular cross-section  4R / 2L  

rotation between concentric cylinders  2 2 2 2

i o o i4 Lr r / r r   

 

where 

A = area of sample in contact with plane 

d = thickness of sample or torsion bar 

c = width of torsion bar 

f(c/d) = function of c/d with values ranging between 2.25 and 5.33 

L = height of cylinder or bar 

R = radius of bar or plate 

1r  = radius of inner cylinder 

or  = radius of outer cylinder 

  = small angle between cone and plate  

Practical processing of non-Newtonian materials usually involves a combination of shear 

and extensional flows. The normally large strain rates typified in extensional flow can result in 

highly non-Newtonian strain and strain rate responses. These dependencies are not sufficiently 
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described by shear measurements alone and require the extensional flow behavior to be 

elucidated.  Therefore, there is a significant research aim focusing on the extensional flows and 

extensional rheometers. Development of the extensional measurement instrumentation for 

polymeric fluids has been impeded by the difficulty of creating a homogeneous extensional flow 

due to two challenges. First, creating flow over a solid surface generates a shear stress which 

corrupts the flow field. This can be circumvented by involving deformation in air or a low 

viscosity outer fluid. Second, the high levels of strain required to stretch the polymer chains 

sufficiently necessitates a motion apparatus capable of a relatively large travel distance and 

dynamic velocity range, while providing sensitive position control. These challenges have 

necessitated distinct extensional rheometer designs tailored to particular polymeric fluid 

viscosity.  These are shown in Table 2.3.2 following McKinley (2008). 
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Table 2.3.2. Summary of extensional rheometer designs and application ranges. 
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One of the widely used methods is capillary breakup rheometer applied to study dilute and 

semi-dilute polymer solutions. Because of its wider applicability, in particular, to gypsum 

slurries, this approach is briefly discussed next. Stretching a non-Newtonian fluid in a capillary 

breakup rheometer causes the fluid thread diameter D(t) to thin as(Yarin et al., 2004; Zussman et 

al., 2007) 

  t /3

0D t D e                      (2.3.12) 

where 0D  is the thread diameter after the initial stretch at time t = 0, and   is the relaxation time. 

This is a typical viscoelastic behavior, which can be followed by the Newtonian one (or just 

correspond to a Newtonian fluid) 

  0

el,t

D t D t


 


                    (2.3.13) 

where  is the surface tension of the fluid and 
el,t  is the final extensional viscosity.  

Other common properties of non-Newtonian fluids include thixotropy, rheopexy and yield 

stress which can be described as follows. Thixotropy is a characteristic of certain fluids which 

are gel-like at rest and upon stirring or shaking become more liquefied, and then return to the 

gel-like state when allowed to remain at rest. This behavior is reversible and higher thixotropic 

materials become even thinner when sheared. Furthermore, the thixotropic fluids viscosity is 

higher when at rest and is lessened when stressed. Rheopexy is the exactly opposite effect to 

thixotropy and is referred to as anti-thixotropy. 

According to Barnes (2008), thixotropy is a reversible, time-dependent process where there 

is a reduction in the apparent viscosity when fluid is subjected to a constant shear rate or shear 

stress, which then slowly recovers when the shear rate or shear stress is removed. This occurs 

because of the finite time required for a shear change in the fluid microstructure to take place. A 
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schematic of the process is shown in the inset of Figure 2.3.3. This results in variation in 

viscosity during the flow process, as is shown in Fig. 2.3.3. The competition between the flow-

induced collisions and stress separation of particles brings the microstructure to a new 

equilibrium position in a relatively short time. When the flow stops, Brownian motion directs the 

microstructure particles to more accommodating positions, thus rebuilding the microstructure but 

in a more time- consuming fashion. Thixotropy reflects the finite time it takes to move from one 

state of the fluid microstructure to another, and then back again. 

It is interesting to note that thixotropic characteristics have been intentionally built into 

many common commercial products where shear-thinning during application of material is 

desired, such as paint and wallboard joint treatment.  

An understanding of these types of complex rheological behavior can be gained by 

considering the following explanation. Realizing that all fluids with microstructure can exhibit 

thixotropy, the driving force for the microstructure change results from the competition in flow stresses 

between the flow-induced collisions causing breakdown, build-up tension due to the flow congestion and 

the random thermal agitation of particles due to Brownian motion. This competition eventually moves the 

particles to a more favorable position.  This all works to establish the level of elasticity and viscosity. In 

polymer fluids when the entanglement density is very high and macromolecular alignment is most 

random, maximum microstructure order is observed which generally results in higher viscosity and 

elasticity.  
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Figure 2.3.3.    Shearing a thixotropic liquid after short and long rest times. The inset shows breakdown 

of an idealized two-dimensional (2D) thixotropic system: (a)  completely structured - giving elastic, solid- 

like behavior; (b)  partly structured - giving a viscoelastic response; and (c)  completely unstructured - 

giving a viscous, shear-thinning response (Barnes 2008). 

 

 

To describe the behavior of these fluids, the change in viscosity can be characterized by the 

“stretched-exponential” model shown as in Eq. (2.3.14). It makes the simplifying assumption of step 

change from steady state conditions (Maestro et al., 2002).  

 

r
1

e. e.0 e. 1 e

 
 

 
 

 
       

 
 

        (2.3.14) 

where 
e,0 is the initial viscosity when shearing begins, 

e,  is the is the final viscosity after a very long 

time,  is a time constant and r is a dimensionless constant.   
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This equation can describe both build up and break down in steps dependent on the direction and level of 

 and r. 

For fluids having a yield stress, the following equation can be used to describe the rebuilding of the 

shear stress. 

 
1

t
y y,0 y, y,0t 1 e





 
         

 
        (2.3.15) 

It can be shown that shear can not only break down or build up particles but also change the internal 

morphology.  Following an extended shearing, loosely packed particles become tightly packed and 

monodispersed indicating a loss of structure. 

From the practical standpoint, most time-dependent microstructure-based theoretical approaches are 

difficult to attain because the properties of the microstructure elements are widely varied and difficult to 

measure.  Because of this, semi-empirical phenomenological approaches have been developed to 

characterize such fluids. Some of the widely used semi-empirical models are discussed next. 

These so-called “ Indirect Microstructural Theories”  (Godfrey et al., 1983; Goodeve et al., 1938;  

Moore et al., 1959; Cheng et al., 1965;  Allesandrini et al., 1982;  Baravian et al., 1996) are built around a 

numerical scalar measure of structure usually referred to by where 1   is a completely built up 

structure and 0   represents a completely broken down structure. For a typical non-Newtonian fluid, 

1   relates to zero shear viscosity 0  and  0   relates to an infinite shear rate  .  Thixotropy 

evolves through the time derivative of the structure measure, d / dt , defined as g ,
 

 
 
 . It can be 

shown that 

 
b dg , a 1 c

 
      
 

                      (2.3.16) 
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where a, b, c are constants for a particular system.  If g ,
 

 
 
  is negative, the system is breaking down 

to equilibrium, whereas if it is positive the system is building up.  When equilibrium is reached, setting 

d / dt 0   enables finding the corresponding value of   at each shear rate. The parameter   is then 

related to the stress   or the viscosity  .  A convenient way to achieve this is through the Bingham 

equation which is the simplest possible expression 

y k                (2.3.17) 

Note that if there is no yield stress 
y  present, then  

k                        (2.3.18) 

which is a variant of a Newtonian fluid. 

Another approach to describe the relationship between viscosity and the fluid structure is 

given by de Kee et al., (1983) and Tiu et al. (1974). Here they depict the breakdown 

characteristics for several food material types through the relationship (Kee et al., 1983;  Tiu et 

al., 1974) 

 
d

n

equil

d
c

dt


                        (2.3.19) 

where c is a constant. 

The stress can then be established using a multiple exponential type flow law 

0 i i

i

exp t
    

             
    

                    (2.3.20) 

where i and it are the parameters for the system. This theory is used to describe the viscosity 

decay curves. 
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In addition, J. Mewis and J. Schryvers (1996) derived a model that does not require any 

parameter such as   but rather utilizes viscosity as the direct measure of the fluid structure.  The 

rate of change of viscosity instead of the rate of change of the structure is used as the viscosity 

difference between the current value and the steady-state viscosity. Hence, it was shown that 

n

s

d
K

dt

   
     

  
                    (2.3.21) 

where s  is the steady state viscosity and K and n are constants.  This equation is then integrated 

to obtain 

     
 1/ 1 n

n 1
n 1

e, e, e,0 e, e,0x 1 Kt 1 1






  

             
  

              (2.3.22) 

In the subscripts for , e refers to equilibrium state, while the second subscript refers to the shear 

rate at 0 and  .   

The present thesis work focuses on the interaction of gypsum slurry with foam. The 

knowledge of the rheological characteristics of gypsum slurry and foam is extremely important 

in explaining this interaction. In Yarin et al. (2004), Zussman et al. (2007), Tiwari et. al. (2009) 

and Sinha-Ray et al. (2011) rheological behavior of non-Newtonian materials, including gypsum 

slurries, has been studied under shear and elongation conditions. It needs to be mentioned that 

during processing of wallboard gypsum slurry is conveyed through various flow configurations 

which can be either shear or elongational in nature or a mix of both. So a unified model 

explaining all the flow configurations was in focus.  Sinha-Ray et al. (2011) have shown that 

gypsum slurry can be accurately described using the power-law model. The following approach 

was adopted by Sinha-Ray et al. (2011). For a uniaxial elongational flow within a liquid thread 

experiencing self-thinning due to surface tension, as shown in Figure 2.3.4, the axial strain rate is 
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described via the longitudinal velocity gradient, V / x 0   , where V = 0 at the stagnation point 

0, where x = 0.  This flow is accurately described using the quasi-one-dimensional model in the 

axial direction, x, where V = V(x, t). The self-thinning of the thread is expressed through the 

quasi-one-dimensional continuity  equation (2.3.23) and the momentum balance equation 

(2.3.24) according to Yarin (1993, p. 73; Yarin et. al., 2004) 

2 2a Va
0

t x

 
 

 
                    (2.3.23)   

1/2
2

2

xx

a
a 2 a 1 0

x x

            
      

                  (2.3.24) 

where a is the thread radius, xx  is the normal stress in thread, and   is the fluid surface tension 

coefficient. Note that since the flow is primarily influenced by the internal stress, the inertial 

forces can be neglected in the momentum balance equation.  
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Figure 2.3.4. (a.) Schematic of Elongation Rheometer. (b)  Self-thinning of a cylindrical liquid 

thread, driven by surface tension, namely, by the  pressure gradient / a / R  . (c) Example of 

the evolution of a self-thinning gypsum thread.  In the insets, the snapshots of the gypsum thread 

in the Elongation Rheometer are shown.  (Sinha-Ray 2011).                                               

 

The experimental procedure consists of suspending a droplet between two closely spaced 

plates and then at t = 0, and quickly separating them to approximately 1 cm, producing a liquid 

thread as shown in Figure 2.3.4. Since liquid wets the end plates, the radius of the thread in the 

end region R is much larger than in the middle of the thread. The capillary pressure in the middle 

area, / a , is much higher than near the ends, / R . Accordingly, the capillary pressure gradient 

squeezes the fluid toward the end plates.  Assuming the thread to be uniform, a / x 0   ,  
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enables one to derive the strain rate at the centerline in conjunction with the continuity equation 

(2.3.23)  as follows 

V 2 da

x a dt


   


                    (2.3.25) 

It can be shown that for a power-law fluid the diameter of the thread, d, thins down according to 

the following equation 

   

n
n

s s
0 n 1 /2

s 0 1

t t t 1 1
d d

t d k 6n 13


   
    

   
                 (2.3.26) 

From the elongation and shear experiments the rheological parameters of the power law, k and n, 

found for gypsum slurries become practically identical (Sinha-Ray et al. 2011). Therefore, the 

power -aw model is applicable for gypsum slurries irrespective of the flow situation. 

Accordingly, in the present dissertation the power law model is employed to describe the 

rheological characteristics of gypsum slurries. 

However, as previously mentioned foam is mixed with gypsum slurry to reduce the weight 

of gypsum wallboard.  In order to numerically simulate practically relevant gypsum slurry flow 

operations it is extremely important to characterize the rheological properties of foamed gypsum 

slurry. Jun (2013) studied in his thesis the rheological characteristics of foamed gypsum slurry at 

different water stucco ratios (WSR). His results can be summarized as follows. The power-law 

model is still applicable to describe the rheological behavior of foamed gypsum slurries. The 

resulting values of K and n for different foam content were fitted using the polynomial function.  

Such fitting is shown in Figure 2.3.5. In the present dissertation, these rheological parameters 

and functions) are employed in the numerical simulations (cf. Section  3.6). 
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Figure 2.3.5.    Experimental values of K and n for foamed gypsum at 68 and 75 WSR with different 

foam contents. The experimental values are fitted using a polynomial function. (Jun 2013).  

 

2.4. Non-Newtonian Fluid Jets   

Significant research efforts aimed the evolution of jet and/or spray in uniform cross-flow 

from the internal combustion engines point of view. A very detailed review has been published 

by No et al. (2015). A typical evolution of a jet profile is shown in Figure 2.4.1. In such flow, the 

mixing of an injected fluid into the fluid flowing in a cross-flow direction depends on the column 

and surface breakup, penetration height, droplet breakup, jet dispersion and ligament formation. 

However, the jet evolution profile prediction is mostly empirical in nature. Various functional 

forms are used to describe the jet profile, namely- the power law, exponential, logarithmic, etc. 

However, most of these studies suffer from discrepancies owing to the experimental 

inaccuracies, inaccuracies of the measurement techniques, or the assumptions made during the 
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modeling. The situation becomes even more complicated, when the injected fluid is non-

Newtonian in nature. 

 

 

Figure 2.4.1. Evolution of jet profile in cross-flow [Obtained with permission from No et al. 

(2015)   

 

 In Muñoz-Esparza et al. (2012) the authors numerically investigated the interaction of 

impinging jets with deformable liquid layers. In order to do so, they utilized the volume of fluid 

(VOF) method to deal with multiphase flows. The turbulence was modeled using the k- model. 

However, no non-Newtonian behavior of the interacting fluids was studied. The authors studied 

the deformation of water owing to the impingement by air. In addition to that, although the 

authors could closely reproduce the experimental results, the computations were prohibitively 
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time-consuming. It can be expected that the complexity will increase manifold if the interacting 

fluids were non-Newtonian in nature. 

 A few early analytical and experimental works on submerged non-Newtonian jets can be 

found in the following references (Mitwally et al., 1978; Kapur et al., 1962; Gutfinger et al., 

1962; Serth et al., 1972; Kumar et al., 1984). Mitwally et al. (1978) in their numerical analysis of 

laminar power-law fluid flows predicted that if the behavior index 0.5<n<1, the jet will remain 

laminar over its entire length. However, it is expected that for a submerged laminar jet, owing to 

the Reynolds number at the exit, the jet may remain laminar or turn into a laminar/turbulent jet. 

Various regions of such a laminar-turbulent submerged jet are shown in Figure 2.4.2 (Kumar et 

al., 1984). In the experimental work described in Kumar et al. (1984) the authors showed that the 

length of the laminar is not affected by the non-Newtonian nature of the fluid for 600<Re<1100. 

The authors also found that for this range of the Reynolds number there is not much difference in 

the laminar jet length between the Newtonian and non-Newtonian fluids. However, for 50< Re< 

200, the laminar length depends on the non-Newtonian nature of the fluid. 
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Figure 2.4.2 The evolution of laminar-turbulent jet profile (from Kumar et al.1984). 

 

 Filip et al. (1991 have studied the similarity solution for laminar wall jets of power-law 

fluids on axisymmetric bodies. Wei et al (2014) studied the boundary layer flow for the power- 

law fluids. They found that the power-law index has a significant effect on the similarity 

solution. They found that the solution has a positive curvature for , whereas for  

the solution has a negative curvature. Jordan et al. (1992) studied the evolution of an 

axisymmetric, laminar submerged polymer jet. The laminar jet was formed by forcing Separan 

AP30 (the polymer solution) in a large chamber filled with water. The velocity profile was 

measured using a laser-Doppler anemometer. They further studied the effect of polymer 

concentration on the jet profile. In their study, they found that the centerline velocity decay and 

jet spread was not affected greatly by the polymer concentration. For the numerical study, the 

authors used two different rheological models- (a) the power-law model and (b) the power series 
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viscosity model. It needs to be mentioned that none of these models capture the viscoelastic 

nature of the polymer solution. As a result of which, although they could predict the centerline 

jet velocity, the jet spread could not be predicted accurately. Pavlov (1979) studied the theory of 

a flat submerged jet of a power-law fluid. Bubnov (1968) also studied numerically the evolution 

of a submerged jet in a power-law fluid. Hammad (2013) studied the characteristics of velocity 

and momentum decay in a submerged viscoplastic jet numerically. The rheological model used 

in this work was the Bingham rheological model. In this work, two different jet profiles – (a) a 

fully developed pipe jet and (b) a top hat jet profile were studied for the Reynolds numbers of 50, 

100 and 200 and for three different yield stresses. It was found that the decrease in the centerline 

velocity was more rapid for the pipe jet in comparison to the top hat jet. It was also found that 

the yield stress has a significant effect on the velocity and momentum depths of the submerged 

jet. 

 As it was mentioned in the previous subsection, both gypsum slurry and the foam used in 

wallboard manufacturing are the power-law fluids. However, in the literature survey it was found 

that there is a lack of reported research work dealing with the dynamics of mixing a foam jet 

with gypsum slurry. It should to be mentioned that apart from the industrial importance this 

problem is scientifically intriguing owing to: (a) the massive length scale of operation, and  (b) 

the interaction of the power-law fluids coupled with mass transfer under laminar or turbulent 

conditions. This thesis aims to bridge this gap by providing a theoretical and numerical 

framework based on the correct rheological model. It also needs to be mentioned that one of the 

key aspects of this work is to reduce the computational power required to perform the theoretical 

analysis. This will help to extend the numerical simulation to an industrial-scale operation. In 

particular, Chapter 3 outlines the basic structure of the numerical analysis.  It also describes the 
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coordinate transformation scheme used in the numerical code. Chapter 4 describes the base case 

of a single jet of foam injected into an infinite pool of stagnant gypsum slurry. Chapter 5 tackles 

the more realistic case of a foam jet injected into a gypsum slurry moving in a direction 

perpendicular to the impinging foam jet. 
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3.  STRAIGHT FOAM JET INJECTED INTO SLURRY: PROBLEM 

FORMULATION 

3.1. Governing Equations for the Boundary Layer of the Power-Law Two-Phase Matter 

To describe the development of an axisymmetric straight submerged jet of foam released 

into space filled with gypsum slurry and evaluate the mixing rate and uniformity of the resulting 

mixture, we apply the boundary layer theory of jets (Schlichting 1968).   

 

Figure 3.1.1.        Sketch of axisymmetric submerged jet of foam issued into slurry. 
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A steady-state laminar flow with constant pressure and no-cross flow is assumed and the 

governing equations are formulated.  Consider the continuity equation, which reads: 

     r zrv rv 0
r z

 
   

 
     (3.1.1) 

where rv  and zv  are the radial and longitudinal velocity components, =     is the density of 

mixture which is a function of the air fraction   where in particular, 1    for pure air and 0   

for pure slurry.  

           The longitudinal (axial) momentum balance equation reads: 

z z
r z

v v 1 v
v v r

r z r r r

      
     

     
       (3.1.2) 

where the viscosity       is given by the following expression dictated by the rheological 

constitutive equation (see Section 3.6 below)        

 
 n 1

zv
K

r

 

  
    

 
                                   (3.1.3)            

The foam diffusion equation in the boundary layer approximation is expressed as:  

r z

1
v v Dr

r z r r r

      
      

      
       (3.1.4) 

where D  is the diffusion coefficient of air in the slurry. 
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3.2. The Boundary Conditions 

Consider the following sketch of the exit conditions at the nozzle  

 

Figure 3.2.1. Nozzle exit conditions. 

The boundary conditions are imposed in the cylindrical coordinates given the geometry 

of the problem. At the nozzle exit z = 0  the initial velocity and foam concentration are given  

r z z0 0v  = 0 ;  v  = v  ;   =    .        (3.2.1) 

At the jet axis r = 0 the standard profile smoothness/function finiteness conditions are imposed   

r z
r z

v v
 0 v ,  v ,  

r r r

  
    

  
.      (3.2.2) 

Furthermore, at the asymptotically far edge of the jet r =   slurry is at rest and no air is present, 

which means that   
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rv  = 0 ;     zv 0 ;     and       0  .       (3.2.3) 

This implies that at r = , since the longitudinal velocity is a constant (zero), also   

zv
0

r





                                                       (3.2.4) 

as well as because air concentration at infinity is constant (zero), also 

 0
r





.                                (3.2.5) 

The boundary conditions (3.2.2)-(3.2.5) can be visualized in the form of the sketch in Figure 

3.2.2. Note also, that these boundary conditions exclude the unphysical profiles sketched in 

Figure 3.2.3. 

 

Figure 3.2.2.  Velocity boundary conditions. 
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Figure 3.2.3.  The unphysical velocity profiles excluded by the boundary conditions (3.2.2). 

 

3.3. The Integral Invariants 

 The problem formulated in section 3.2 has two integral invariants. The first one is 

associated with the momentum balance equation, and reads     

2

z

0

2 r v dr Constant



                       (3.3.1) 
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Figure 3.3.1.  Sketch of the axial momentum flux in jet.  

                  

The invariant (3.3.1) means that the longitudinal momentum flux is constant along the jet, and is 

illustrated by the sketch in Figure 3.3.1. 

         The second integral invariant is associated with the foam diffusion equation. It reads 

z 0

0

2 v rdr Constant 2



                         (3.3.2) 

where 0  is defined as 

0 z

0

v rdr



   .         (3.3.3) 

The second invariant means that the mass flux of foam is constant along the jet. 
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These integral invariants are obtained from the governing equations and the boundary conditions 

along the following lines [as an example, the momentum balance equation (3.1.2) is used]. 

Multiplying Eq. (3.1.2) by r results in the following equation 

z z z
r z

v v v
rv rv r

r z r r

    
    

    
.       (3.3.4) 

We apply the chain rule of differential calculus to the first two terms of Eq. (3.3.2) which will 

enable us to develop terms that will eventually simplify the equation. 

The first term on the left-hand side in Eq. (3.3.4) is transformed using the chain rule in the 

following manner 

   r z rz
r z

rv v rvv
rv v

r r r

   
  

  
.                  (3.3.5) 

In a similar manner the second term on the left-hand side in Eq. (3.3.4) is transformed to the 

following form 

   
2

z zz
z z

rv rvv
rv v

z z z

   
  
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.       (3.3.6) 

Substituting Eqs. (3.3.5) and (3.3.6) into Eq. (3.3.4) results in the following equation 

       
2

zr z r z z
z z

rvrv v rv rv v
v v r

r r z z r r

         
     

      
   (3.3.7) 

which transforms to the following form  
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r zr z z z

z
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.    (3.3.8) 

However, according to the continuity Eq. (3.1.1), the third term on the left-hand side in Eq. 

(3.3.8) vanishes and the remaining terms yields the momentum equation in the following, so-

called divergent form 

   2 z
r z z

v
rv v rv r

r z r r

    
     

    
.                 (3.3.9) 

Integrating Eq. (3.3.9) over the jet cross-section by r from 0 to  , one arrives at the integral 

momentum balance  

   2 z
r z z

0 0 0

v
rv v dr rv dr r dr

r z r r

  
    

     
    
   .              (3.3.10) 

Evaluating the integrals in Eq. (3.3.10), we find 

2 z
r z z0

00

vd
rv v rv dr r

dz r


 

    
 .       (3.3.11) 

The first term on the left-hand side in Eq. (3.3.11) is obviously equal to zero at the limit r = 0.  

On the other hand, at the limit, r   one should account for the fact that solutions of the 

boundary layer equations for jets are known to exponentially decay as r  , i.e. denoting 

either vz or vr by f, one can expect their asymptotic behavior at least as 

rf e            (3.3.12) 

and therefore, 
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rf
e

r




.          (3.3.13) 

Accordingly, applying L’Hopital’s rule to evaluate the uncertainties we find that 

r

r r

r 1 1 1
rf re 0

e e e




    


                                                                            (3.3.14) 

and 

r

r r

f r 1 1 1
r re 0

r e e e






    

 
.                  (3.3.15) 

Hence, the first term on the left-hand side in Eq. (3.3.11) vanishes. Similarly, the term on the 

right-hand side in Eq. (3.3.11) vanishes as well. 

Then, the axial momentum balance equation (3.3.11) reduces to  

2

z

0

d
rv dr 0

dz



  .         (3.3.16) 

Since the derivative of a constant is zero, we conclude that 

2

z

0

r v dr



   Constant          (3.3.17) 

which results in Eq. (3.3.1). 

Now consider the derivation of the second integral invariant (3.3.2) from the foam balance 

equation (3.1.4). Re-write Eq. (3.1.4) by multiplying by r to obtain 
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r zrv rv Dr
r z r r

    
    

    
 .            (3.3.18) 

We now apply the chain rule to obtain from the first term on the left-hand side in Eq. (3.3.18) the 

following 

 
 r

r r

rv
rv rv

r r r

  
    

  
.       (3.3.19) 

Again, applying the chin rule, we can rearrange the second term on the left-hand side in Eq. 

(3.3.18) to the following form 

 
 z

z z

rv
rv rv

z z z

  
    

  
 .       (3.3.20) 

Substituting Eqs. (3.3.19) and (3.3.20) into Eq. (3.3.18), we obtain, 

     r
r z z

rv
rv rv rv Dr

r r z z r r

     
          

      
 .   (3.3.21) 

which can be transformed to the following form 

   r z
r z

rv rv
rv rv Dr

r r z z r r

       
          

       
 .   (3.3.22) 

The continuity Eq. (3.1.1) shows that the second terms on the left-hand side in the latter equation 

is equal to zero and it takes the following divergent form 

   r zrv rv Dr
r z r r

    
       

    
 .               (3.3.23) 
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Integrating Eq. (3.3.23) across the jet cross-section, one obtains the integral balance of foam in 

the following form 

   r z

0 0 0

rv dr rv dr Dr dr
r z r r

  
    

       
    
   .     (3.3.24) 

Evaluating the integrals in Eq. (3.3.24), we obtain 

r z0
00

d
rv rv dr Dr

dz r


 

      
   .       (3.3.25)  

Using the boundary conditions at the jet axis r=0 and at r  , one obtains 

z

0

d
rv dr 0

dz



     .         (3.3.26) 

which means that  

z

0

rv dr Constant



   .                     (3.3.27) 

The latter equation yields the second integral invariant (3.3.2). 

 

3.4. Dimensionless Form of the Governing Equations 

The following scales are used to render the governing equations dimensionless    

*

0  , *

0r r , *

0z r  , * *

r z z0v ,v v , *

0        (3.4.1)  
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where 
0  is the air density, 0r  is the nozzle radius, z0v  is the initial velocity, and 

0  is the pure 

foam viscosity. Note, that in this section the dimensional parameters are denoted by asterisks for 

convenience, while the dimensionless ones do not have asterisks, in distinction from the notation 

used in sections 1-3 above. Then, the dimensionless parameters are introduced as following 

*

0


 


 , 

*

0

r
r

r
 ,  

*

r
r

zo

v
v

v
 , 

*

z
z

z0

v
v

v
 , 

*

0


 


, 

*

0

z
z

r
       (3.4.2) 

 Using these scales, we obtain the continuity equation in the following dimensionless form 

   r zrv rv 0
r z

 
   

 
                                                                                   (3.4.3)  

Then, the dimensionless momentum balance equation takes the following form 

z z z
r z

v v v1 1
v v r

r z Re r r r

     
           

                                                            (3.4.4) 

where the Reynolds number, Re , is defined as 

0 0 zo

0

r v
Re





            (3.4.5)  

The dimensionless rheological constitutive equation defining the dependence of viscosity on the 

air content involved in Eq. (3.4.4) reads  

 
 n 1

zv
K

r

 

  
    

 
   .        (3.4.6) 

The air diffusion equation, after being rendered dimensionless acquires the following form  
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r z

1 1 1
v v r

r z Re Sc r r r

      
          

                                                                      (3.4.7) 

where the additional dimensionless group, the Schmidt number  

 0 0 0
/

Sc
D D

  
   .          (3.4.8) 

appears.  

It is convenient to absorb the Reynolds number using the following longitudinal coordinate 

and radial velocity 

z
x

Re
 ,  '

r rv v Re          (3.4.9)     

Then, the dimensionless continuity equation (3.4.3) becomes 

   '

r zrv rv 0
r x

 
   

 
                                                                                            (3.4.10) 

While the dimensionless longitudinal momentum balance equation acquires the following form 

' z z z
r z

v v v1
v v r

r x r r r

     
           

       (3.4.11) 

Similarly, the dimensionless air diffusion equation (3.4.7)  is transformed as following  

'

r z

1 1
v v r

r x Sc r r r

      
           

       (3.4.12) 
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3.5.  Density of Foam-slurry Mixtures 

The mass balance of the foam-slurry mixture reads 

 *

0 a s s a sV V V V                         (3.5.1) 

where 0  is the pure air density, s  is the pure slurry density which is known, and 
*  is the 

dimensional density of the foam-slurry mixture. Here Va and Vs denote the volumes of air and 

slurry, respectively. 

Dividing Eq. (3.5.1) by  0 a sV V  , we have: 

   

 

 

*

a s0 a s s

0 a s 0 a s 0 a s

V VV V

V V V V V V

  
 

     
                (3.5.2) 

Recall that the basic definition of the foam content   is  

a

a s

V

V V
 


                     (3.5.3)    

and hence 

  s

a s

V
1

V V
 


                     (3.5.4)  

The dimensionless density of the foam-slurry mixture is  

*

0


 


    .                    (3.5.5) 
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Using Eqs. (3.5.3)- (3.5.5), one can transform Eq. (3.5.2) to the following final form   

   s

0

1


    


          (3.5.6) 

Note that the ratio   
s 0/    is a known. Obviously, it is of the order of  310 . 

 

3.6. Viscosity of Stucco-Water-Foam Suspensions 

When a foam jet is issued in a slurry cross-flow which contains stucco and water at a 

certain WSR, a multiphase suspension is formed with the three main components: stucco, water 

and foam. The following expressions for the viscosity dependence in such three-phase 

suspension on the concentrations of the phases is used. These results were found experimentally 

by another PhD student, S. Jun in his thesis Jun (2013). They are presented in the form of the 

dependences of the two material parameters of the Ostwald-de Waele rheological constitutive 

equation (RCE) used for description of slurry, K and n (the consistency and flow behavior indexes, 

respectively), on the foam concentration  . The Ostwald-de Waele RCE reads 

   
 n 1 /2

22K 2tr
   

    D D                                                                                        (3.6.1) 

with τ being the deviatoric stress tensor and D being the rate-of-stress tensor. 

The following polynomial interpolation functions with foam volume content  proposed by 

Jun (2013) are used in the numerical simulations in this Chapter as a variable are listed below  
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6 5 4 3 2

0 1 2 3 4 5 6n( ) = a +a +a +a +a +a +a             (3.6.2) 

 
7 6 5 4 3 2

0 1 2 3 4 5 6 7K( ) = b + b + b + b + b + b + b + b             (3.6.3) 

 

where the coefficients involved in these formulas for two types of slurries (with WSR of 68 and 

WSR 75) are listed in Table 3.6.1.  

 

 

TABLE 3.6.1 

The coefficients involved in the empirical Eqs. (3.6.2) and (3.6.3).  

 75 WSR 68 WSR  75 WSR 68 WSR 

a0 -150.8 5.065 b0 -279879 0 

a1 464.0 4.355 b1 1119110 41912 

a2 -534.9 -33.25 b2 -1792230 -156380 

a3 283.8 37.44 b3 1457320 225770 

a4 -67.81 -15.32 b4 -626658 -157420 

a5 6.008 2.143 b5 134280 54116 

a6 0.04987 0.042 b6 -12805 -8844.2 

   b7 903.18 871.50 

 

Equation (3.1.3) follows from the rheological constitutive equation (3.6.1) in the boundary-

layer approaximation for the jet flow under consideration.  
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4.  STRAIGHT FOAM JET INJECTED INTO SLURRY: NUMERICAL 

METHOD 

4.1. Coordinate Transformation for Numerical Solution 

The presence of the physical domain in the jet which is infinite in the radial direction, 

makes it practically impossible to reproduce the main features of the problem, the invariants 

(3.3.1) and (3.3.2), numerically. This difficulty can be avoided using the coordinate 

transformation of the physical plane  0 z  ,  0 r   into a finite strip in the artificial plane 

0    ,   00    , as sketched in Figure 4.1.1. Such coordinate transformation can be 

achieved following the ideas described in Dzhaugashtin et al. (1977, 1978, 1979, 1981) and 

Yarin (1984). Namely, the following new longitudinal and transversal coordinates ξ and η are 

introduced 

x  ,   
r

z

0

r, x v rdr          (4.1.1) 

which results in the integration domain in the form of a semi-infinite (along the jet) strip 

sketched in Figure 4.1.1. Indeed, the upper limit of the transversal coordinate η of Eq. (4.1.1) is 

set up by the integral invariant of the problem (3.3.3).         
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Figure 4.1.1. Integration domain in new coordinates.      

   

The coordinate transformations are given by the following formulas 

x x

   
 

   
 .                           (4.1.2) 

r r

  


  
                                           (4.1.3) 

Taking account of the second Eq. (4.1.1), we find 

zv r
r

 
 

 
                                                                                                        (4.1.4) 

Substituting Eq. (4.1.4) into (4.1.3), we find that 
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zv r
r

 
 

 
                                                                                                                (4.1.5) 

In addition, from Eq. (3.4.12) with the help of the continuity equation (3.4.10), we obtain the 

former equation in the divergent form, namely 

   '

r z

1
rv rv r

r x Sc r r

    
       

    
                                                                         (4.1.6) 

Integrating this equation by r from 0 to r, we obtain 

r

' r r

r 0 z 0

0

r
rv rv dr

x Sc r

  
     

                                                                                       (4.1.7) 

Using the boundary conditions at the jet axis r=0, namely the last Eq. (3.2.2), and recalling the 

definition of η in the second Eq. (4.1.1), we arrive at the following expression 

'

r

r
rv

x Sc r

  
  

 
                                                                                                           (4.1.8) 

which means that  

'

r

r
rv

x Sc r

  
  

 
                                                                                                            (4.1.9) 

Therefore, combining together Eqs. (4.1.2), (4.1.4) and (4.1.9), one obtains the final version of 

the coordinate transformation 

'

r

r
rv

x Sc r

     
        

                                                                                            (4.1.10) 
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zv r
r

 
 

 
                                                                                                                (4.1.11) 

Transform Eq. (3.4.11) to the new coordinate ξ and η using the transformation formulas 

(4.1.10) and (4.1.11). Then, we have 

' 'z z z z
r z z r z z

v v v vr 1
v v r v rv v r r v r

Sc r r

         
             

         
             (4.1.12) 

Combining similar terms, we obtain from Eq. (4.1.12) the following form of the momentum 

balance equations which will be used in the numerical simulations 

2z z z
z

v v vr
r v

Sc r

       
       

       
           (4.1.13) 

Similarly, transform the foam convection-diffusion equation (3.4.12) to the new coordinate ξ and 

η using the transformation formulas (4.1.10) and (4.1.11). Accordingly, we obtain 

' '

r z z r z z

r 1 1
v v r v rv v r r v r

Sc r Sc r

          
             

         
               (4.1.14) 

Then, combining the similar terms, we obtain the foam convection-diffusion equation to the 

following form which will be used in the numerical simulations 

2 2

z

1 r
r v

Sc Sc r

       
             

.                                                                   (4.1.15) 

The system of the two conjugate equations (4.1.13) and (4.1.15) is to be solved numerically to 

determine the fields of the longitudinal velocity vz and the air content  . 
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Note, that according to Eqs. (3.1.3) and (4.1.11) the viscosity function takes the following form 

in the new coordinates 

 
 n 1

z
z

v
K v r

 

 
    

 
        (4.1.16) 

The return to the physical coordinates x and r is achieved using the first Eq. (3.1.3) and Eq. 

(4.1.11) as  

2

0
z

d
x , r 2

v

 
  

          (4.1.17) 

Note that the second Eq. (4.1.17) is obtained using Eq. (4.1.11) in the following way.   

z

r r
1 v r

r

 
  
 

                                                                                                        (4.1.18) 

The fact that  

z

r
v r 1


 


                                                                                                                 (4.1.19) 

allows one to rewrite Eq. (4.1.19) in the integral form of the second Eq. (4.1.17). Note, also that 

the numerical integration of Eqs. (4.1.13) and (4.1.15) fully determines the dependences of the 

functions ρ,   and vz on ξ and η. Therefore, the evaluation of the integral in the second Eq. 

(4.1.17) is possible, and thus is possible the return from the new coordinates used for numerical 

simulations ξ and η to the physical ones x and r. Accordingly, the functions vz(ξ,η) and  ,    

are transformed to the functions vz(x,r) and  x, r .    
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4.2.  Numerical Solution Algorithm  

Equations (4.1.2) and (4.1.3) are solved numerically by using the method of straight lines. 

Namely, the derivatives in η are discretized on the straight lines shown in Figure 4.2.1 located at 

intervals i .  

 

                                          (a) 

 

                                        (b) 

Figure 4.2.1    Semi-discretization of the partial differential equations. 
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Then, the first and second derivatives in η of all functions f involved in the partial differential 

equations of the problem take the following form 

i i 1 i i 1 i i

i

f
S f R f Z f 

 
   

 
                                                                                            (4.2.1)      

2

i i 1 i i 1 i i2

i

f
Vf Wf Ff 

 
   

 
                                                                                          (4.2.2) 

where the coefficients are related to the inter-line increments δi by the following relations 
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The non-equidistant locations of the straight lines is convenient, since this allows one to have 

denser coverage in the areas where function gradients are expected to be the largest, i.e. at the 

outer zones of the jets in the η-coordinate.  

As a result of such semi-discretization, the partial differential equations Eqs. (4.1.13) and 

(4.1.15) become the ordinary differential equations for the function values fi on the straight lines. 

Namely, they reduce to the following system of the conjugate ordinary differential equations in ξ 
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zzi z z i z

i i2

i i i ii
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where the following notation is introduced for brevity  

2 2

zP r v                                                                                                                         (4.2.11)  
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4.3. Treatment of the Boundary Conditions in Numerical Simulations 

In the new coordinates ξ and η care should be taken in reformulating the boundary 

conditions (3.2.2) and (3.2.3). The corresponding straight lines and their numbering are shown in 

Figure 4.3.1. 

 

Figure 4.3.1. Posing boundary conditions in the ξη-plane.  

The axial boundary conditions imply the following Taylor series to be valid near the jet axis 

2

zv A r B  ,  2C r D           (4.3.1) 

Given the second Eq. (4.1.17) that means that       

2

0 o zo 0 o zo0

1 1
r 2 d 2

v v



  
                      (4.3.2) 

The latter equation shows that  
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2r             (4.3.3)   

Accordingly, Eqs. (4.3.1) yield   

'

zv A B   ,   'C D                       (4.3.4)     

Applying Eqs. (4.3.3) and (4.3.4) at lines 1 and 2, we obtain  

'

z1 1v A B       on Line 1        (4.3.5) 

'

z2 2v A B     on Line 2        (4.3.6) 

Solving the system of two Eqs. (4.3.5) and (4.3.6), we find the relation of the longitudinal 

velocity and air content in the jet with the velocity values at the neighboring straight lines, where 

the numerical integration is applied  

2 z1 1 z2
zo

2 1

v v
v

 


 
         (4.3.7) 

Proceeding likewise for the second Eq. (4.3.4), we find 

'

1 1C D         on Line 1        (4.3.8) 

'

2 2C D         on Line 2        (4.3.9) 

and thus 

2 1 1 2
0

2 1

   
 

 
         (4.3.10) 

On the other hand, the boundary conditions at the outer edge of the integration domain 
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z,N 1v 0  ,    N 1 0                      (4.3.11) 

  

These latter boundary conditions are imposed at η = η0. The value of η0 is established using the 

integral invariant (3.3.27) and the initial conditions at the nozzle exit, which are sketched in 

Figure 4.3.2.   

 

Figure 4.3.2. The initial conditions at the nozzle exit. 

 

The initial conditions depicted in Figure 4.3.2 are imposed at  0 r 1  ; 0  ,  where they read 

z1; 1; v 1              (4.3.12) 



66 

 

 

 

with foam injection being effectively air injection. 

Also, we have (see Figure 4.3.2)  

zr 1, v 0                       (4.3.13) 

Substituting the initial conditions (4.3.12) and (4.3.13) into the integral invariant (3.3.27), we 

obtain  

0 z

0

1
v rdr

2



                                                                                                          (4.3.14) 

The initial and boundary conditions, as well as the flow domain in the new coordinates ξ and η 

used to integrate numerically the system of the ordinary differential equations (4.2.9) and 

(4.2.10) are summarized in Figure 4.3.3.  Since these are parabolic equations, they do not require 

any boundary conditions at    .  
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Figure 4.3.3. The integration domain and the initial and boundary conditions. 
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5.  NUMERICAL RESULTS FOR STRAIGHT FOAM JETS ISSUED INTO 

SLURRY 

5.1. The results for WSR 68 

A novel computer code was developed, which realized the algorithm described in the 

previous sections. Several numerical results obtained using this code will be discussed below. 

In order to generate a comprehensive set of results which could elucidate the peculiarities 

of flow development in foam jets issued into slurry, a systematic array of data had to be 

generated from the computer program. For this purpose a FORTRAN computer code (see 

Appendix 1) was developed. Then, realistic data ranges were determined. Certain variables were 

held constant while others changed incrementally, one at a time. This produced an extensive 

series of result files for each variable. These result files were then loaded into Tecplot 8.0 

graphics software to produce a series of four different line graphs and two different field plots. 

This methodology provides a wealth of data that enables us to gain an understanding of the flow 

of the foam jet issued into the slurry under many varying geometries, different types of 

rheological behavior and flow conditions. The logic for analysis follows. 

The input files for our computer program called described in detail in Appendix 1 are as 

shown in the following Table 5.1. Variables relating to the mesh of the numerical analysis 

program are held fixed, while flow and rheological factors are variable. 
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Table 5.1 Input files for the FORTRAN code described in detail in Appendix 1. 

Vzo       Ro       Sc       RSRO      WSR      N      TOP      PT      NXXG      NYYG      SINGLE 

vary      vary     vary    100            68         40      206      5           40             40              1 

 

The meaning of the input parameters listed is the following: 

Vzo, the initial velocity- two main cases were analyzed: 500 and 1000 cm/s. 

Ro, the initial radius of the jet was varied from 1/16 in. (.15875 cm) to 3 ¼ in. (8.225 cm). 

Sc, the Schmidt number was varied in the range of 2.8 to 46.4. The program was stable in the 

entire domain. 

WSR, the water stucco ratio, was either 68 or 75. These are the typical values for which the 

rheological constitutive equation was established, see section 3.6. 

N was the number of straight lines used in the numerical analysis. It was set at either 20 or 40, 

with no significant differences in the results, which proves the finite-difference approximation of 

the partial differential equations governing the problem. 

TOP regulated the length of the interval along the jet axis ξ which one can achieve. A typical 

value used is listed in Table 5.1. It should be emphasized that the value of TOP is not equal to 

the value of ξ.  

PT regulated the frequency at which the detailed velocity and foam content profiles in the jet 

were plotted. A typical value used is listed in Table 5.1.   
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The three additional input parameters NXXG , NYYG and SINGLE regulated the plotting 

features and are auxiliary. 

After a set of input variables are loaded, the computer program generates resultant data 

files containing the final computed variable sets as indicated below. 

 

Resultant Data File  Computed Variable   Computed Variable Set  

 km1   Effective Viscosity,      versus the radial                   

                                                                                                            coordinate r in a cross-section 

 km2   Half Jet Width    Half Jet Width versus the  

                                                                                                            axial coordinate z in the jet 

 km4   Fraction Foam to Slurry,      versus the radial                   

                                                                                                            coordinate r in a cross-section 

 km5   Axial Velocity, vz   vz versus the radial                   

                                                                                                            coordinate r in a cross-section 

 km471    Foam Content Field   on the plane Orx  

 km472   vz Velocity Field   on the plane Orx 
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Each run of the computer program generated the four above-mentioned line graph arrays and the 

two above-mentioned field arrays. 

A representative set of results is discussed below first. Then, some additional results are 

introduced. 

The first representative set of data is for: 

(i)   Variation of the resulting parameters with the pipe radius Ro and two 

values of the Schmidt number : Sc=18, (c) Sc=30 

   

   

 

Figure 5.1.1.   Dependence of the effective viscosity on R0 (the values shown in the panels are in 

centimeters). (a) Sc=18, (b) Sc=30. The value of x=0.04. WSR 68. 

 

(a) (b) 
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Figure 5.1.1 shows the variation of the effective viscosity as function of the nozzle radius. 

Panel (b) in Figure 5.1.1 shows that the effective viscosity changes from the foam viscosity to 

the mixture viscosity as r increases.  This effective viscosity change is fairly independent of 

nozzle radius. As the Schmidt number Sc number increases (lower diffusion transfer relative to 

the momentum transfer), it is observed that the viscosity change from foam viscosity to the 

mixture viscosity occurs over a wider range of r.  

 

 

 

Figure 5.1.2.   Dependence of half-jet width on the nozzle radius R0 (the values shown in the 

panels are in centimeters). (a) Sc=18, (b) Sc=30. WSR 68.  

 

Figure 5.1.2 shows the dependence of the half-jet width as a function of the axial distance z 

for several values of the nozzle radius R0 and the Schmidt number Sc. As panel (b) in Figure 
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5.1.2 shows, the half-jet width is an almost linear function of the axial distance x.  As the nozzle 

radius increases, the slope of the half-jet width decreases, indicating a wider mixing zone. Also, 

as the Schmidt number Sc increases (lower diffusion transfer relative to the momentum transfer), 

there is a significant increase in the half-jet width at any given R0. Similarly to Figure 5.1.1, this 

indicates that the mixing zone increases as diffusion rate decreases. 

 

Figure 5.1.3.   Dependence of the longitudinal velocity profile on the nozzle radius R0 (the 

values shown in the panels are in centimeters). (a) Sc=18, (b) Sc=30. The value of x=0.04. WSR 

68.  

 

Figure 5.1.3 shows the dependence of velocity as a function of the radial distance, r.  Panel 

(b) shows that the velocity is maximal at the jet axis r = 0 and decreases as the radial distance 

increases. As the Schmidt number Sc increases (lower diffusive transfer relative to the 

momentum transfer), the axial velocity at the center decreases.  The results show that the 

momentum transfer from the foam to the mixture occurs over a similar range of relative radii r 

and is practically independent of the pipe radius. Note, that the kinks visible on the velocity 

(a) (b) 



74 

 

 

 

profiles result from the abrupt increase in the effective viscosity in the outer region of the jet 

where the shear rates are low, and thus the power-law fluid possesses a high viscosity, in 

distinction from the central region of the jet.  

 

Figure 5.1.4.   Profiles of the foam content  at different values of the nozzle radius (the values 

shown in the panels are in centimeters). (a) Sc=18, (b) Sc=30. The value of x=0.04. WSR 68. 

  

Figure 5.1.4 shows the dependence of the air/foam content as a function of the radial 

distance r.  Panel (b) shows that the foam content is maximal at the jet axis and smoothly 

decreases in the radial direction in distinction from the longitudinal velocity profiles shown in 

Figure 5.1.3. The smoothness of the foam content profiles results from the fact that the air 

diffusion coefficient is constant, in distinction from the effective viscosity. An increase in the 

Schmidt number only slightly affects the foam content profiles.  These results show that the 

effective foam mixing zone is comparable under different conditions and practically independent 

of the nozzle radius R0. 

(a) (b) 
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The results of the numerical simulations allow parametric study of the effects of the 

Schmidt number, the initial velocity at the nozzle exit vz0, etc. They also allow full 

reconstruction of the foam content in the entire jet domain, as is shown in Figure 5.1.5.  

   

Figure 5.1.5.  Foam content in the submerged jet. The following values of the parameters were 

used: vz=1000, R0=1.9 cm, Sc= 30. The panel (a) shows the global view, whereas panel (b) 

shows the zoomed-in views of the central part of the jet. WSR 68. 

 

The second representative set of data is for: 

(ii).  Variation of the resulting parameters with the Schmidt number Sc and 

the two values of the initial velocity of the foam jet:  (a) vzo = 500, (b) vzo = 1000 
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Figure 5.1.6.   Dependence of the effective viscosity on the radial coordinate in the jet cross-section at 

different values of the Schmidt number. (a) vz0=500 cm/s, (b) vz0 =1000 cm/s. The value of x=0.04. 

WSR 68. 

 

 

Figure 5.6 shows that as the Schmidt number Sc number increases (which means a 

reduction in the diffusion transfer relative to the momentum transfer), the viscosity change from 

the foam viscosity to the mixture viscosity occurs over a wider range of r, which is consistent 

with the observations in item (i).  
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Figure 5.1.7.   Dependence of half jet width for different values of the Schmidt number Sc. Panel (a) vz0 

=500 cm/s, panel (b) vz0 =1000 cm/s. WSR 68.  

 

Figure 5.1.7 shows that as the Schmidt number Sc increases (the diffusion coefficient 

decreases), the half-jet width increases for both values of the initial velocity of the foam jet. The 

effect of the Schmidt number noticed here is similar to the one observed in item (i).  
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Figure 5.1.8.   The axial velocity profiles at different values of the Schmidt number and for the following 

two values of the initial velocity of the foam jet: (a) vz0=500 cm/s, (b) vz0 =1000 cm/s. The value of 

x=0.04. WSR 68.   

 

Figure 5.1.8 depicts the dependence of the longitudinal velocity in the jet as on the radial 

distance, r.  The velocity is maximal at the jet axis r = 0 and decreases as the radial distance 

increases. For the larger Schmidt numbers Sc (lower diffusion coefficients), the axial velocity at 

the center diminishes.  This behavior is associated with the complex dependence of the effective 

viscosity μ on the foam content   described in section 3.6. The kinks in the velocity profiles 

result from an abrupt increase in the effective viscosity in the outer region when the content 

approaches that of pure slurry.   
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Figure 5.1.9.   Dependence of the foam content on the radial coordinate in the jet cross-section predicted 

at   different values of the Schmidt number Sc at two values of the initial velocity of the foam jet: (a) vz0 

=500 cm/s, (b) vz0 =1000 cm/s. The value of x=0.04. WSR 68.  

 

Figure 5.1.9 depicts the dependence of the air/foam content as a function of the radial 

distance r in the same cross-section of the jet at different values of the Schmidt number.  At the 

higher values of the Schmidt number (weaker air diffusion), the foam content at the jet axis is 

higher, i.e. the foam mixing process is poorer. 

 

 The third representative set of data is for: 

(iii).  Variation with of the resulting parameters with the initial velocity of the 

foam jet vz0 
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Figure 5.1.10.   Profiles of the effective viscosity at different values of the initial foam jet velocity vzo 

(shown in the insets in cm/s).  (a) Sc=18, (b) Sc=30. The value of x=0.04. WSR 68.  

 

Figure 5.1.10 reveals that the effect of the initial velocity of the foam jet on the effective 

viscosity profile is relatively small for both values of the Schmidt number Sc.  
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Figure 5.1.11.   Variation of the half jet width at different values of the initial foam jet velocity vzo 

(shown in the insets in cm/s). (a) Sc=18, (b) Sc=30.    

 

Figure 5.1.11 shows that as the initial foam jet velocity vzo increases, the half-jet width 

slightly decreases for both values of the Schmidt number. The kinks are determined by a very 

strong nonlinear dependence of the effective viscosity of slurry with foam on the foam content 

according to the Ostwald – de Waele power law described in detail in section 3.6. 
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Figure 5.1.12.   Longitudinal velocity profiles at different values of the initial foam jet velocity vzo 

(shown in the insets in cm/s). (a) Sc=18, (b) Sc=30. The value of x=0.04. WSR 68.   

 

Figure 5.1.12 shows the dependence of the profiles of the longitudinal velocity in the jet in 

a fixed cross-section.  As expected, the velocity is maximal at the jet axis r = 0 and decreases as 

the radial distance increases for all values of vz0 for both values of the Schmidt number Sc. The 

kinks in the velocity profiles result from an abrupt increase in the effective viscosity in the outer 

region when the content approaches that of pure slurry, as well as from a strong nonlinear 

dependence of the effective viscosity of slurry with foam on the foam content according to the 

Ostwald – de Waele power law described in detail in section 3.6. 
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Figure 5.1.13.   Dependence of the foam content on the radial coordinate in the jet cross-section 

predicted at different values of the initial foam jet velocity vzo (shown in the insets in cm/s). (a) Sc=18, (b) 

Sc=30. The value of x=0.04. WSR 68. 

 

Figure 5.1.13 depicts the profiles of the air/foam content in the same cross-section of the jet 

at different values of the initial foam jet velocity vzo.  It should be emphasized that the results show 

that the initial velocity of the foam jet has practically no effect on these profiles, i.e. on the rate of foam 

mixing.   
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Figure 5.1.14. Foam content in the submerged jet. The panels (a1), (b1) and (c1) show the global 

views, whereas panels (a2), (b2) and (c2) show the zoomed-in views of the central part of the jet. 
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Specifically, for panels (a1)-(a2) vz=500 cm/s, R0=1.9 cm, Sc= 18; for panels (b1)-(b2) vz=1000 

cm/s, R0=1.9 cm, Sc= 18; for panels (c1)-(c2) vz=1000 cm/s, R0=1.9 cm, Sc= 30. WSR 68. 

 

Figure 5.1.14 compares three fields of foam content in straight submerge foam jets issued 

into stagnant slurry. Foam spreading and mixing with slurry is a strongly nonlinear process 

determined by the effective viscosity dependence of the shear rate and foam content. Therefore, a 

simplistic interpretation of the comparison of the predicted foam content fields is hardly possible, 

albeit the overall tendency is intuitively clear: the dominant factor is the value of the Schmidt 

number, which is determined by the value of the diffusion coefficient of foam in slurry. The 

smaller is the diffusion coefficient (the higher is the Schmidt number), the higher is the axial 

foam concentration in a given cross-section of the jet, and thus the poorer the mixing process. 

The effect of the shear stresses on the effective viscosity are much less pronounced, since there is 

no significant difference between the fields depicted in panels (a) and (b), even though the initial 

foam jet velocity doubled from (a) to (b). The corresponding longitudinal velocity fields are 

depicted in Figure 5.1.15.  
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Figure 5.1.15. The longitudinal velocity field in the submerged jet. The panels (a1), (b1) and 

(c1) show the global views, whereas panels (a2), (b2) and (c2) show the zoomed-in views of the 

central part of the jet. Specifically, for panels (a1)-(a2) vz=500 cm/s, R0=1.9 cm, Sc= 18; for 

panels (b1)-(b2) vz=1000 cm/s, R0=1.9 cm, Sc= 18; for panels (c1)-(c2) vz=1000 cm/s, R0=1.9 

cm, Sc= 30. WSR 68. 
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5.2. The effect of WSR: WSR 75 in comparison with the results for WSR 68 

The results in the present section compare the predictions for WSR 75 and WSR 68 with all 

the other parameters being the same, to elucidate the effect of the WSR value on the flow 

development and foam mixing with slurry. Figure 5.2.1 provides such a comparison for the 

profiles of the longitudinal velocity in the jet, Figure 5.2.2 – for the profiles of the foam content 

in the jet, Figure 5.2.3 - for the profiles of the effective viscosity in the jet, and Figure 5.2.4 

compares the half widths of the jets at WSR 75 and WSR 68. 

  

Figure 5.2.1. Longitudinal velocity profiles in the jet for the Schmidt number of Sc=10. The 

value of x=0.04. The initial velocity of the foam jet vz0=500 cm/s. The results for WSR 68 are 

shown in the left panel, and for WSR 75-in the right panel.  
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Figure 5.2.2. Foam content profiles in the jet for the Schmidt number of Sc=10. The value of 

x=0.04. The initial velocity of the foam jet vz0=500 cm/s. The results for WSR 68 are shown in 

the left panel, and for WSR 75-in the right panel.  

 

  

Figure 5.2.3. The effective viscosity profiles in the jet for the Schmidt number of Sc=10. The 

value of x=0.04. The initial velocity of the foam jet vz0=500 cm/s. The results for WSR 68 are 

shown in the left panel, and for WSR 75-in the right panel.  
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Figure 5.2.4. Half-widths of the jet for the Schmidt number of Sc=10. The initial velocity of the 

foam jet vz0=500 cm/s. The results for WSR 68 are shown in the left panel, and for WSR 75-in 

the right panel. 

 

The next set of comparisons of the results with WSR 75 and WSR 68 is presented in 

Figures 5.2.5-5.2.8. In distinction from Figures 5.1.2-5.1.4 where the initial foam jet velocity vz0 

was fixed but the nozzle radius R0 varied, in Figures 5.2.5-5.2.8 the nozzle radius R0 is fixed, 

while the initial foam jet velocity vz0 varies. It should be emphasized that Figures 5.2.2 and 5.2.6 

reveal that foam mixing at WSR 75 is more efficient than at WSR 68. Indeed, the axial (at r=0) 

values of   in the former case are lower than in the latter one.  
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Figure 5.2.5. Longitudinal velocity profiles in the jet for the Schmidt number of Sc=10. The 

value of x=0.04. The radius the nozzle issuing the jet was R0=1.9 cm. The results for WSR 68 

are shown in the left panel, and for WSR 75-in the right panel. 

  

Figure 5.2.6. Foam content in the jet for the Schmidt number of Sc=10. The value of x=0.04. 

The radius the nozzle issuing the jet was R0=1.9 cm. The results for WSR 68 are shown in the 

left panel, and for WSR 75-in the right panel. 

 

  

Figure 5.2.7. The effective viscosity profiles in the jet for the Schmidt number of Sc=10. The 

value of x=0.04. The radius the nozzle issuing the jet was R0=1.9 cm. The results for WSR 68 

are shown in the left panel, and for WSR 75-in the right panel. 
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Figure 5.2.8. Half-widths of the jets. The Schmidt number of Sc=10. The radius the nozzle 

issuing the jet was R0=1.9 cm. The results for WSR 68 are shown in the left panel, and for WSR 

75-in the right panel. 

 

The pairwise comparisons of the results for WSR 75 and WSR 68 in the same nels are 

shown in Figures 5.2.9-5.2.11. In particular, Figure 5.2.9 depicts the longitudinal velocity 

profiles and the foam content profiles in the two types of jets. As mentioned before, the foam 

mixing in the WSR 75 jet is more effective, because the axial value of   is reduced in this case, 

while the foam content in the outer region of the jet is higher, which means that more foam has 

proliferated outwards (see Figure 5.2.9, right panel). Figure 5.2.10 shows the corresponding 

profiles of the effective viscosity in the jets. It is interesting to note that the effective viscosity in 

the WSR 75 jet sharply drops in the outer area of the jet. This is explained by the foam 

proliferation into that area, which diminishes the effective viscosity. On the contrary, the WSR 

68 jet has a high-viscosity plateau in the outer region, which means that it still consists there 

from pure slurry. The half-widths of the jets at WSR 75 and WSR 68 are shown in Figure 5.2.11. 
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Figure 5.2.9. Longitudinal velocity profiles (left) and the foam content profiles (right) in the jet 

for the Schmidt number of Sc=10. The value of x=0.04. The radius the nozzle issuing the jet was 

R0=1.9 cm.  

 

 

Figure 5.2.10. The effective viscosity profiles in the jet for the Schmidt number of Sc=10. The 

value of x=0.04. The radius the nozzle issuing the jet was R0=1.9 cm.  
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Figure 5.2.11. Half-widths of the jets. The Schmidt number of Sc=10. The radius the nozzle 

issuing the jet was R0=1.9 cm.  
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6.  FOAM JET ISSUED IN CROSS-FLOW OF SLURRY 

6.0. Introduction 

 This Chapter is devoted to foam injection under different conditions into flowing gypsum 

slurry. In particular, the effects of foam injection angle, velocity of slurry flow, the Schmidt 

number and water stucco ratio (WSR) are elucidated. 

  

6.1. Governing Equations for the Foam Jet in Cross-Flow of Slurry 

 Consider a foam jet issued into a cross-flow of gypsum slurry. A steady-state laminar 

flow evolves into a thin jet which can be treated in the boundary layer approximation (Prandtl 

1952, Loitsyanskii 1966, Schlichting 1968, van Dyke 1964). This means, in particular, that 

pressure field in the jet can be considered to be uniform, and the jet is thin enough to admit 

transformation of the elliptic equations into the parabolic ones, of the boundary layer type.  The 

sketch of the flow is shown in Figure 6.1.1.   
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Figure 6.1.1. Sketch of foam jet issued in cross-flow of slurry. 

 

The velocity of the bulk flow of slurry unperturbed by the jet is assumed to be uniform and 

directed parallel to the Ox axis in Figure 6.1.1  

BUU i            (6.1.1) 

where U is the unperturbed slurry velocity vector, UB is its magnitude, and i is the unite vector of 

the OX direction. 

To derive the overall equation of foam jet in cross-flow, consider the momentum flux M 

carried by the jet 
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2

z

0

v 2 rdr



  M                       (6.1.2) 

where τ is the unit tangent vector of the curved jet axis, ρ is the local density of the foam-slurry 

mixture, vz is the flow velocity profile in the jet cross-section, and r is the radial coordinate in the 

jet cross-section.  

It is assumed that the curvature of the jet axis is not large, and the velocity profile can be 

locally approximated in the first approximation by the one in the corresponding axisymmetric jet 

considered in the previous Chapters. 

The second law of Newton for the jet in cross flow reads   

2

z D
0

d
2 v rdr

d

   
    F           (6.1.3) 

where ξ is the arc length reckoned along the jet axis, and FD is the drag force acting on a unit 

length of the jet. 

The axis of the jet in cross-flow depicted in Figure 6.1.1 is a planar curve. Therefore, 

according to the Frenet-Serret formula of the differential geometry (Korn & Korn 2000)  

d
k

d



n


                                                                                                                          (6.1.4) 

where k is the curvature axis and n is the unit normal to the jet axis. 

Differentiating the in the left-had-side of Eq. (6.1.3) and using Eq. (6.1.4), one arrives at 

the following equation 

2 2 D
z z

0 0

d
v rdr k v rdr

dX 2

  
    

  
 

F
n


                   (6.1.5) 
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where the jet stretching factor is  

2
dH

1
dX

 
    

 
                                                                                                             (6.1.6) 

and the curvature is expressed as 

 

 

2 2

3/2
2

d H / dX
k

1 dH / dX


 
 

                                                                                                  (6.1.7) 

In Eqs. (6.1.6) and (6.1.7) H=H(X) is the shape of the jet axis (see Figure 6.1.1). 

Projecting Eq. (6.1.5) onto the normal direction, one obtains 

2 D
z

0
k v rdr

2

 
 


F n

                                                                                                         (6.1.8) 

which yields after substituting Eq. (6.1.7), the following equation 

 

2 2
2 D
z3/2 02

d H / dX
v rdr

21 dH / dX

 
 

 
 


F n

                                                                             (6.1.9) 

The drag force acting on the jet can be approximated using the drag coefficient CD as 

 D
D s z,max z,max 1/2

C
v v 2r

2
   F U U                  (6.1.10) 

where 1/2r is the equivalent radius of the jet, ρs is the slurry density, and vz,max is the maximal 

velocity in the jet cross-section (the axial velocity). 

Figure 6.1.1 shows that 

cos sin  i n                                                                                                        

(6.1.11) 

where the angle α is defined by the following geometric relation 

 
2

1
cos

1 dH / dX
 



                                                                                              (6.1.12) 

Then, Eqs. (6.1.1) and (6.1.12) yield 
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 BU cos sin  U n                                                                                             (6.1.13) 

Using Eq. (6.1.13), one obtains for the relative velocity in the expression for the drag force Eq. 

(6.1.10) 

  z,max B z,max Bv U cos v U sin   U n                                                                (6.1.14) 

Accordingly,  

2 2

z B B z,max z,maxv U 2U v cos v   U                                                                    (6.1.15) 

Combining Eqs. (6.1.10), (6.1.14) and (6.1.15), one obtains that 

   2 2D
D s B z,max B B B z,max z,max 1/2

C
U cos v U sin U 2U v cos v 2r

2
       F n     (6.1.16) 

Therefore,  

2

z,max z,max2D
D s B 1/2

B B

v vC
U sin 1 2 cos 2r

2 U U

 
        

 
F n                                           (6.1.17) 

Using Eqs. (6.1.12) and (6.1.17), the dynamic equation (6.1.9) can be recast as a system of 

two ordinary differential equations 

dH
f

dX
                                                                                                                          (6.1.18) 

 
   

22

z,max B z,max B2 2D
s B 1/2

2

z

0

1 2 v / U / 1 f v / UCdf
U 1 f f 2r

dX 2
2 v rdr



  
   

 

                (6.1.19) 
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Solutions of the system (6.1.18) and (6.1.19) are subjected to the following boundary 

conditions 

X 0, H 0                                                                                                                (6.1.20) 

0X 0, f tan                                                                                                           (6.1.21) 

where α0 is the initial angle of inclination of the foam jet axis when it is injected into cross-flow. 

Render the problem (6.1.18)-(6.1.21) dimensionless using the following scales: the initial 

velocity of the foam jet at the injection cross-section vz0 – for vz, vz,max and UB, the initial radius 

of the foam jet at the injection cross-section r0 – for X, H, r and r1/2, density of the foam jet in the 

injection cross-section ρ0 – for ρs. Note that the tangent of the jet axis slope f=tanα=dH/dX (see 

Figure 6.1.2) is dimensionless by its definition, Eq. (6.1.18).   

 

Figure 6.1.2. The jet axis slope. 
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In the following dimensionless equations overbars over all the dimensionless parameters 

are omitted for brevity. Then, the dimensionless analog of the problem (6.1.18)-(6.1.21) takes the 

form 

dH
f

dX
                                                                                                                          (6.1.22) 

 
   

22

z,max B z,max B2 2sD
B 1/2

20

z

0

1 2 v / U / 1 f v / UCdf
U 1 f f 2r

dX 2
2 v rdr



  
  


 

              (6.1.23) 

X 0, H 0                                                                                                                (6.1.24) 

0 0X 0, f tan , for 0
2


                                                                                  (6.1.25) 

The case of α0=π/2 is a singular case. It requires a special asymptotic consideration. 

Namely, Eq. (6.1.23) takes the following asymptotic form in the case of small X and Z 

 
2

B2 2 2 2s s
D B D B B

0 0

1 1/ Udf
C U f 2f C U U 1

dZ 1/ 2

 
    

 
                                       (6.1.26) 

where use has been done of the fact that 

2X

0

dH
Z 1 dX

dX

 
   

 
                                                                                                     (6.1.27) 

and thus 

2

dX 1

dZ 1 f



                                                                                                               (6.1.28) 
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Equation (6.1.26) also uses the fact that in the initial cross-section of the foam jet the 

dimensionless integral 

2

z

0

1
v rdr

2



                                                                                                                   (6.1.29) 

and  

1/2r 1                                                                                                                            (6.1.30) 

Note that in the case of α0=π/2, according to Eq. (6.1.25) in the initial cross-section of the jet 

f  . Therefore, Eqs. (6.1.23), (6.1.28)-(6.1.30) reduced to the asymptotic form (6.1.26) valid 

at the very beginning of the foam jet in this case. 

Denote 

2s
D B B

0

1
A C U U 1


 
 

                                                                                              (6.1.31) 

Then, Eq. (6.1.26) takes the following form 

 
2dF

AF
dZ

                                 (6.1.32)  

The latter equation is integrated as                   

1
AZ const

f
                                             (6.1.33) 

Note that at Z=0,  

f                                                                                                                              (6.1.34) 
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and thus the intergration constant in Eq. (6.1.33) is zero. Then, Eq. (6.1.33) yields the asymptotic 

behavior of f as 

1
f

AZ
                                                                                                                          (6.1.35) 

This asymptotic expression allows one to shift the boundary conditions in the singular case of 

α0=π/2 to the following ones at a certain small Z=Z0<<1 

0 0Z Z , H Z                                                                                                             (6.1.36) 

0

0

1
Z Z , f

AZ
                                                                                                          (6.1.37) 

Note that Eq. (6.1.36) follows from the fact that as Eqs. (6.1.22) and (6.1.28) show, in the 

asymptotical case under consideration dH/dZ=f/f=1, and thus H=Z at the beginning of the jet 

issued with α0=π/2, i.e. normally to slurry cross-flow. Then, the boundary conditions (6.1.24) and 

(6.1.25) of the case 00 / 2     are replaced by the boundary conditions (6.1.36) and (6.1.37) 

in the case α0=π/2. 

The corresponding FORTRAN code was developed to describe foam jets issued into slurry 

cross-flow. It is listed in Appendix 2. 

  

6.2. Results and Discussion 

The present section discusses the results of the numerical solution of the problem (6.1.22) 

and (6.1.23) with the boundary conditions (6.1.24) and (6.1.25) in the case 00 / 2    , or with 

the boundary conditions (6.1.36) and (6.1.37) in the case of α0=π/2, supplemented with the 
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numerical solution of the problem (4.2.9) and (4.2.10) used to find the velocity and density 

distribution along the jet. Several basic parameters governing the flow in the foam jet or in the 

slurry cross-flow are varied and the corresponding parameters of the jet, especially the shape of 

its centerline, are predicted. 

 

6.3. Results and Discussion 

Normal Injection of Foam into Slurry Cross-flow: The Effect of the Cross-Flow Velocity at 

the Schmidt Number Sc=18 

 This subsection is devoted to the results of the numerical simulations of foam jets 

injected into slurry cross-flow in the case of the Schmidt number Sc=18 at different value of the 

cross-flow velocity UB. Two water-to-slurry ratio (WSR) values of 68 and 75 are considered and 

the cross-flow velocity is varied in a wide range. The case of the normal injection of the foam jet 

is considered in all the case, i.e. α0=π/2 and the boundary conditions given by Eqs. (5.1.36) and 

(6.1.37). Figure 6.3.1 compares the results for WSR 75 (the left-hand side columns) with those 

for WSR 68 (the right-hand side columns). Panels (a1) and (a2) in Figure 6.3.1 depict the results 

for the foam concentration at the jet axis 1 along its arc length for several dimensionless cross-

flow velocities of the slurry: from UB=0.1 to UB=10. The results show that at the beginning of all 

jets the foam concentration at the jet axis dramatically decreases, which manifests the fact that 

mixing of foam with slurry is very intensive when the angle of inclination of the foam jet to the 

slurry cross-flow is large, i.e. the foam mixing is mostly convective in that part of the jet. On the 

other hand, in the case of WSR 75 where water content is higher than in the case of WSR 68, the 

foam concentration at the jet axis 1  relatively rapidly plateaus and then even begins to increase. 
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This phenomenon is related to the fact that convective mixing of dilute slurry flux with foam 

ceases more rapidly in the intermediate part of the jets in the case of lower gradients of the 

effective viscosity, the jets mostly turn to the cross-flow direction faster (see panel c1 in Fig. 

6.3.1). Then, the situation arises where a still slower moving foam jets become surrounded by a 

faster moving slurry. As a result, the cross-sections of the foam jets contract, the foam axial 

concentration begins to increase, and the axial velocity of the foam jet vz1 also begins to increase, 

as is seen in panel (b1) in Fig. 6.3.1. 

Comparing the results for the case of WST 68 in the right-hand side column in Fig. 6.3.1, 

one can see that neither the axial foam concentration 1 , nor the axial foam velocity vz1 increase 

along the jet. This is because the viscosity gradients are so high in this case that the foam jet is 

continuously “teared” by the surrounding slurry, which facilitates convective mixing. As a result, 

under the conditions of the continuous convective mixing the axial foam concentration 1 and the 

axial foam velocity vz1 continue to decrease monotonously along the jet arc length 

 Figure 6.3.1 shows that for both WSR values, the higher the bulk slurry velocity, UB, the 

faster the foam jet turns direction. This effect results from a higher drag force acting on a foam 

jet from the slurry side at higher values of UB. 
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Figure 6.3.1. The foam jet characteristics for two values of the water-to-slurry ratio (WSR): 

WSR 75 (the left-hand side columns, i.e. panels with numerals “1”) and WSR 68 (the right-hand 

side columns, i.e. panels with numerals “2”) in the case of the normal injection of the foam jet, 

i.e. α0=π/2 at the Schmidt number Sc=18. Panels “a” show the variation of air volume fraction 

along the arc length of the jet. Panels “b” show the variation of the centerline velocity along the 

arc length of the jet.  Panels “c” show shapes of the jet centerline. Different values of the cross-

flow velocity UB shown in the panels correspond to curves of different colors.  
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Normal Injection of Foam into Slurry Cross-flow: The Effect of the Cross-Flow Velocity at 

the Schmidt Number Sc=30 

In this section the same range of the cross-flow velocities UB is considered, with the value 

of the Schmidt number being changed. An increase in the Schmidt number from Sc=18 to Sc=30 

is equivalent to a decrease in the diffusion coefficient of air in slurry. Because of that air/foam 

spreading in slurry is dramatically suppressed. That, in turn, sustains high viscosity gradients 

even in the case of WSR 75, As a result the foam jet issued into the WSR 75 slurry experiences a 

significant “tearing” action from the slurry side. This suppresses several effects observed in the 

case of Sc=18 in the previous section, namely, the increase in the axial foam concentration 1 and 

the axial foam velocity vz1 in the intermediary parts of the jets, as well as makes it more difficult 

for jets to align with the slurry flow. The results for WSR 75 and WSR 68 become more similar 

to each other, as Figure 6.3.2 shows. 
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Figure 6.3.2. The foam jet characteristics for two values of the water-to-slurry ratio (WSR): 

WSR 75 (the left-hand side columns, i.e. panels with numerals “1”) and WSR 68 (the right-hand 

side columns, i.e. panels with numerals “2”) in the case of the normal injection of the foam jet, 

i.e. α0=π/2 at the Schmidt number Sc=30. Panels “a” show the variation of air volume fraction 

along the arc length of the jet. Panels “b” show the variation of the centerline velocity along the 

arc length of the jet.  Panels “c” show shapes of the jet centerline. Different values of the cross-

flow velocity UB shown in the panels correspond to curves of different colors.  
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In all the cases shown in Figures 6.3.1 and 6.3.2 the faster decrease of the foam 

concentration at the jet axis 
1 along the jet means a better mixings. Note, however, that this is 

not achieved only due to a higher diffusion coefficient (a lower Schmidt number) but always due 

to the interplay with the convective effects.   

 

Effect of Variation of Angle of Foam Injection: The Case of the Schmidt Number Sc=18 

In Figure 6.3.3 panels (a) show the axial foam concentration 1 , panels (b) show the shapes 

of the jet axes, and panels (c) show the axial foam velocity vz1. The most noticeable observations 

are seen in panels (c) in this figure. Namely, the higher is the injection angle of the foam jet, the 

longer it takes it to alight with the cross-flow. Accordingly, the highest axial concentration of 

foam corresponds to the jets issued at higher angles of obliquity, i.e. foam mixing is delayed in 

such jets.  
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Figure 6.3.3. Effect of variation of the slurry injection angle α on the foam jet flow 

characteristics for two values of the water-to-slurry ratio (WSR): WSR 75 (the left-hand side 

columns, i.e. panels with numerals “1”) and WSR 68 (the right-hand side columns, i.e. panels 

with numerals “2”). The cross-flow velocity UB=0.333. The Schmidt number Sc= 18. The results 

for the injection angles α= 0º, 10º, 30º, 45º, 60º, 80º, and 90º are shown by different colors. The 

results for α=90º correspond to those in Figure 6.3.1 for UB=0.333.  
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Effect of Variation of Angle of Foam Injection: The Case of  the Schmidt Number 30 

 The effect of the foam jet obliquity (i.e. its initial angle of inclination relative to the slurry 

cross- flow) is illustrated in Figure 6.3.4. It resembles that depicted in Figure 6.3.3, i.e. the larger 

is the initial angle of obliquity, the longer it takes to mix uniformly the foam and the slurry. 

Note, that this information has direct consequences for design of wallboard production lines, 

namely, choosing their length scales.   

 

Figure 6.3.4. Effect of variation of the slurry injection angle α on the foam jet flow 

characteristics for two values of the water-to-slurry ratio (WSR): WSR 75 (the left-hand side 
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columns, i.e. panels with numerals “1”) and WSR 68 (the right-hand side columns, i.e. panels 

with numerals “2”). The cross-flow velocity UB=0.333. The Schmidt number Sc= 30. The results 

for the injection angles α= 0º, 10º, 30º, 45º, 60º, 80º, and 90º are shown by different colors. The 

results for α=90º correspond to those in Figure 6.3.1 for UB=0.333.   

 

 

Figure 6.3.5. The foam jet characteristics for WSR 75 (the left-hand side columns, i.e. panels 

with numerals “1”) and the Schmidt number Sc=18 at different values of the cross-flow velocity. 

The results resolve the situation at the high values of the initial foam jet obliquity. Namely,  (a) 

corresponds to α=70º, (b)- to α=80º, and (c) - to α=90º.  All the three panels depict variation of 

the axial velocity along the jet. Different values of the cross-flow velocity UB shown in the 

panels correspond to curves of different colors. 
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The results for the axial jet velocity along its arc length calculated at high angles of 

obliquity show insignificant difference between α=70º, α=80º, and α=90º. The results also show 

that the fastest cross-flows UB=5 and 10, turn the foam jet faster. However, this results in a 

situation when a slowly moving foam jet is surrounded by a parallel slurry flow which is faster. 

As a result, the foam jet contracts, and its axial velocity increases. 
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7. CONCLUSIONS 

1. The problem of foam mixing with slurry in the form of the foam jet issued into stagnant slurry 

or slurry cross-flow was solved in the framework of the boundary layer approach. 

2. The unique approach developed in the present work allows one to elucidate the flow field and 

mixing rate of non-Newtonian power-law straight submerged jets of foam issued into gypsum 

slurry. 

3. A novel coordinate transformation based on the invariant of the foam content along the jet was 

proposed with the goal to convert the full quadrant, and thus, infinite in the radial direction, 

integration domain into a finite strip of a constant width equal to the value of the invariant 

determined by the conditions at the nozzle exit. 

4. Based on the new coordinates, a novel numerical method of integration of the governing 

momentum balance and foam content partial differential equations was developed. The method 

is based on the semi-discretization of the problem in the lateral direction, and thus reducing it to 

a system of the interconnected ordinary differential equations. This method is, in fact, a 

particular case of the so-called method of straight lines. The resulting system of the ordinary 

differential equations for the values of the longitudinal velocity and foam content was solved 

using the Kutta-Merson method with an automatic variation of the time step in the marching 

direction (along the jet).  

5. A novel numerical code was written based on the above-mentioned algorithm and used for 

numerical simulations of the straight foam jets issued into stagnant slurry.  
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6. Parametric study of the effect of different governing parameters on the mixing rate has been 

undertaken, and the profiles of the longitudinal velocity, foam content, the effective viscosity, as 

well as such global parameters as the distribution of the half width along the jet were predicted.  

7. The results revealed that mixing of foam in a straight jet is significantly affected by the value 

of the Schmidt number (namely, the diffusion coefficient of foam in slurry). The smaller is the 

diffusion coefficient (the higher is the Schmidt number), the weaker is foam mixing. 

8. The results also revealed a significant effect of WSR on the foam mixing, with WSR 75 

guaranteeing a better way of foam spreading across the jet in comparison with the case of WSR 

68.  

9. A new method combining the approach based on the boundary layer theory with the approach 

of the bar bending theory was proposed to describe flow in foam jets issued into slurry cross 

flow. 

10. A novel numerical code was written and used for numerical simulations of the foam jets 

issued into slurry cross flow.  

 

11. In the case of the foam jet issued into slurry cross-flow the higher cross-flow velocity and the 

lower obliquity angles resulted in a faster aligning of the foam jet with the main flow of slurry. 

However, the faster turning and aligning of the foam jet comes with a price. Namely, it appears 

to be surrounded by a faster moving co-flow, which results in jet contraction, and increase of 

foam concentration, i.e. in worse mixing.  
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This is the first study of gypsum slurry and foam mixing starting in the framework of 

rheology and non-Newtonian fluid mechanics. Such modeling could trigger additional modeling 

of different stages of wallboard-forming process, where shear-thinning flow behavior is 

accompanied by solidification, heat release and the internal structure formation. Rigorous 

description of gypsum slurry flows can be used for the optimization of different stages used in 

construction industry, as well as it can diminish efforts required in the trial and error approach. 

The potential outcomes of such improvements would manifest themselves in lower water and 

energy consumption and a cleaner and “greener” environment.   

The present approach may be applied to similar situations in the building products industry 

such as pulp consistency in paper making, mineral wool and perlite in water-felted ceiling tile 

basemat. It also can impact the wide range of applications where a foaming agent is injected into 

a substance to reduce weight, create an internal void structure or change solid properties for end 

user applications.  
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APPENDIX 1: Computer code in FORTRAN developed to predict flow in straight foam 

jets issued into stagnant slurry 

      INTEGER N,N2,I,J,GA,TOP,CSS,SCC,PT,NXXG,NYYG,SINGLE 

      REAL*8 HC,EP,TI,DD,VZZZ,FIII,WSR,A,B,NRHEOL,KRHEOL, 

     &MU0CGS,MUK,RAVZ,VZMAX05,R05  

      REAL*8 SC,RSR0,VZ0,R0 

      REAL*8 ATD,DEL,X,Y01,R,R1,RR2, 

     &AT(40) 

      REAL*8 VZ(41),FI(41),RO(41),FUN(41),R2(41) 

      REAL*8 VZZ(41,41),FII(41,41),YY(41,41),XX(41,41) 

      REAL*8 YF(82)                                                                            

      LOGICAL FIR                                                        

      EXTERNAL FC 

      COMMON/SAS/HC,SC,RSR0,N                                                        

      COMMON/IDI/ATD(41),DEL(41) 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 

     &MUK(41),RAVZ(41) 

      open(8,file='km5.dat',status='unknown') 

      open(18,file='km4.dat',status='unknown') 

      open(28,file='km1.dat',status='unknown') 

      open(38,file='km2.dat',status='unknown') 

      open(71,file='km471.dat',status='unknown') 

      open(72,file='km472.dat',status='unknown') 

      READ(*,*)VZ0,R0,SC,RSR0,WSR,N,TOP,PT,NXXG,NYYG,SINGLE  

      WRITE(*,*)'VZ0=',VZ0,'R0=',R0,'SC=',SC,'RSR0=',RSR0,'WSR=',WSR, 

     &'N=',N,'TOP=',TOP,'PT=',PT,'NXXG=',NXXG,'NYYG=',NYYG, 
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     &'SINGLE=',SINGLE 

      CSS=0 

      SCC=0 

      N2=2*(N+1)                                                 

      EP=.0001 

      MU0CGS=.1 

      IF(WSR.EQ.68.)THEN 

      A(1)=5.065 

      A(2)=4.355 

      A(3)=-33.25 

      A(4)=37.44 

      A(5)=-15.32 

      A(6)=2.143 

      A(7)=.042 

      B(1)=41912. 

      B(2)=-156380. 

      B(3)=225770. 

      B(4)=-157420. 

      B(5)=54116. 

      B(6)=-8844.2 

      B(7)=871.5 

      END IF 

      IF(WSR.EQ.75.)THEN 

      A(1)=137.5 

      A(2)=-236.0 

      A(3)=134.3 

      A(4)=-27.53 



127 

 

 

 

      A(5)=1.247 

      A(6)=0.267 

      A(7)=.0 

      B(1)=-15734. 

      B(2)=26645. 

      B(3)=-14699. 

      B(4)=28320. 

      B(5)=-1310. 

      B(6)=440. 

      B(7)=0. 

      END IF 

      DD=1./N*(1./2.) 

      DO 3 I=1,N-1 

      TI=I*DD 

      AT(I)=3.*TI**2-2.*TI**3 

    3 CONTINUE 

      AT(N)=1./2. 

      ATD(1)=0.0 

      DO 33 I=2,N+1 

      ATD(I)=AT(I-1) 

   33 CONTINUE 

      DEL(1)=ATD(1) 

      DO 4 I=1,N 

      DEL(I+1)=ATD(I+1)-ATD(I) 

    4 CONTINUE 

      TI=(DEL(N-1)+DEL(N)+DEL(N+1))/3. 

      DO 8 I=N-1,N+1 
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      DEL(I)=TI 

    8 CONTINUE 

      ATD(N-1)=ATD(N-2)+DEL(N-1) 

      ATD(N)=ATD(N-1)+DEL(N) 

      ATD(N+1)=1./2. 

      WRITE(6,10)ATD 

      WRITE(6,10)DEL 

   10 FORMAT(5F16.4) 

      DO 5 I=1,N 

      YF(I)=1. 

      YF(N+1+I)=1. 

    5 CONTINUE 

      YF(N+1)=0.0 

      YF(2*N+2)=0.0 

      X=0.0                                                     

      DO 1 GA=1,TOP 

      WRITE(6,100)GA,HC,X 

  100 FORMAT(I8,F16.15,F16.8)     

      IF(GA.EQ.1)GO TO 99 

      CSS=CSS+1 

   99 CONTINUE                           

      IF(GA.EQ.1)Y01=1.E-7                 

      IF(GA.EQ.2)Y01=.01-1.E-7              

      IF(GA.GT.2)Y01=.01                    

      FIR=.FALSE.                          

      IF(GA.EQ.1)FIR=.TRUE. 

      CALL KUTTA(N2,X,YF,EP,Y01,FC,FIR)          
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      IF(CSS.EQ.PT)THEN 

      SCC=SCC+1 

      DO 6 I=1,N+1 

      VZ(I)=YF(I) 

      FI(I)=YF(N+1+I) 

      IF(VZ(I).LT.0.0)VZ(I)=0.0 

      IF(FI(I).LT.0.0)FI(I)=0.0 

    6 CONTINUE 

      DO 700 I=1,N 

      RO(I)=FI(I)+RSR0*(1.-FI(I)) 

  700 CONTINUE 

      DO 701 I=1,N 

      FUN(I)=1./(RO(I)*FI(I)*VZ(I)) 

  701 CONTINUE   

      R2(1)=0.0 

      DO 7 I=2,N 

      R2(I)=R2(I-1)+(ATD(I)-ATD(I-1))*(FUN(I-1)+FUN(I)) 

    7 CONTINUE 

      DO 20 I=1,N 

      R=R2(I)**.5 

      R1=VZ(I) 

      RR2=FI(I) 

      IF(SCC.EQ.SINGLE)THEN     

      WRITE(8,21)R,R1 

   21 FORMAT(2F16.8)    

      WRITE(18,219)R,RR2 

  219 FORMAT(2F16.8) 
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      END IF    

      XX(SCC,I)=X 

      YY(SCC,I)=R 

      VZZ(SCC,I)=R1 

      FII(SCC,I)=RR2 

   20 CONTINUE 

      VZMAX05=VZ(1)/2. 

      DO 1003 I=2,N 

      IF((VZ(I-1).GE.VZMAX05).AND.(VZ(I).LE.VZMAX05))THEN 

      R05=(R2(I-1)**.5+R2(I)**.5)/2. 

      GO TO 1004 

      END IF 

 1003 CONTINUE      

 1004 CONTINUE 

      WRITE(38,1005)X,R05 

 1005 FORMAT(2F16.8)           

      IF(SCC.EQ.SINGLE)THEN 

C      NRHEOL(1)=NRHEOL(2) 

C      KRHEOL(1)=KRHEOL(2) 

       MUK(1)=MUK(2) 

       RAVZ(1)=0.0 

      DO 1000 I=1,N 

C      R1=NRHEOL(I) 

C      RR2=KRHEOL(I) 

      RR2=MUK(I) 

      R1=RAVZ(I) 

      R=R2(I)**.5 



131 

 

 

 

      WRITE(28,1001)R,RR2,R1 

 1001 FORMAT(3F16.8) 

 1000 CONTINUE 

      END IF      

      CSS=0 

      END IF     

    1 CONTINUE                  

      WRITE(71,*) 'VARIABLES = "X", "Y", "VZZZ"' 

      WRITE(71,*)'ZONE F=POINT, I=', NXXG, ', J=', NYYG 

      DO 471 I=1,NXXG 

      DO 472 J=1,NYYG 

      R1=XX(I,J) 

      RR2=YY(I,J) 

      VZZZ=VZZ(I,J) 

      WRITE(71,473)R1,RR2,VZZZ 

  473 FORMAT(3F16.8) 

  472 CONTINUE   

  471 CONTINUE 

      WRITE(72,*) 'VARIABLES = "X", "Y", "FIII"' 

      WRITE(72,*)'ZONE F=POINT, I=', NXXG, ', J=', NYYG 

      DO 481 I=1,NXXG 

      DO 482 J=1,NYYG 

      R1=XX(I,J) 

      RR2=YY(I,J) 

      FIII=FII(I,J) 

      WRITE(72,483)R1,RR2,FIII  

  483 FORMAT(3F16.8) 
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  482 CONTINUE 

  481 CONTINUE                                  

      STOP                                        

      END                                         

      SUBROUTINE KUTTA(N,X,Y,EPS,H,FCT,FIRST) 

      REAL*8 SC,RSR0                     

      REAL*8 X,EPS,H,ERROR,HC,DOP 

      REAL*8 ATD,DEL 

      REAL*8 WSR,A,B,NRHEOL,KRHEOL,VZ0,R0,MU0CGS,MUK,RAVZ               

      INTEGER N,I,LOC,PLOC,NN                                                  

      LOGICAL FIRST,INCREA,SAD                             

      REAL*8 Y(82),Y1(82),Y2(82),F0(82),F1(82),F2(82) 

      COMMON/SAS/HC,SC,RSR0,NN         

      COMMON/IDI/ATD(41),DEL(41) 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 

     &MUK(41),RAVZ(41)                                     

      PLOC=1                                               

      IF(FIRST)HC=H                                             

      IF(FIRST)GO TO 1                                     

    2 IF(PLOC.LT.DABS(H/HC))PLOC=PLOC*2                     

      IF(PLOC.LT.DABS(H/HC))GO TO 2                         

      HC=H/PLOC                                                

    1 LOC=0                                                

    3 CALL FCT(X,Y,F0)                                     

      DO 4 I=1,N                                           

    4 Y1(I)=Y(I)+HC/3*F0(I)                                

      CALL FCT(X+HC/3,Y1,F1)                               
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      DO 5 I=1,N                                           

    5 Y1(I)=Y(I)+(F0(I)+F1(I))*HC/6                                      

      CALL FCT(X+HC/3,Y1,F1)     

      DO 6 I=1,N                 

    6 Y1(I)=Y(I)+(F0(I)+3*F1(I))*HC/8             

      CALL FCT(X+HC/2,Y1,F2)                      

      DO 7 I=1,N                                  

    7 Y1(I)=Y(I)+(F0(I)-3*F1(I)+4*F2(I))*HC/2     

      CALL FCT(X+HC,Y1,F1)                        

      DO 8 I=1,N                                  

    8 Y2(I)=Y(I)+(F0(I)+4*F2(I)+F1(I))*HC/6       

      INCREA=.TRUE.                               

      DO 10 I=1,N                                 

      DOP=1.0                                     

      IF(DABS(Y1(I)).GT.1)DOP=Y1(I)                

    9 ERROR=DABS(.2*(Y1(I)-Y2(I))/DOP)             

      IF(ERROR.LE.EPS)GO TO 10                    

      HC=HC/2.                                    

      PLOC=2*PLOC                                 

      LOC=2*LOC                                   

      GO TO 3                                     

   10 IF(ERROR*64.GT.EPS)INCREA=.FALSE.           

      X=X+HC                                      

      DO 11 I=1,N                                 

   11 Y(I)=Y2(I)                                  

      LOC=LOC+1                                   

      IF(LOC.GE.PLOC)GO TO 12                     
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      SAD=INCREA.AND.LOC.EQ.LOC/2*2               

      SAD=.NOT.SAD                                

      IF(SAD)GO TO 14                             

      HC=2.*HC                                    

      LOC=LOC/2                                   

      PLOC=PLOC/2                                 

   14 GO TO 3                                     

   12 RETURN                                      

      END                                         

      SUBROUTINE FC(XK,YK,FK) 

      INTEGER N,I 

      REAL*8 SC,RSR0                     

      REAL*8 XK,HC, 

     &ATD,DEL,RV,RV1,RAB, 

     &VZ(41),FI(41),S(41),R(41),Z(41),V(41),W(41), 

     &F(41), 

     &RAVZ,RAFI(41),EAVZ(41),EAFI(41),RAQ(41),RAM(41),INTE(41) 

      REAL*8 MU(41),RO(41),FUN(41),R2(41),P(41),Q(41),L(41),M(41) 

      REAL*8 YK(82),FK(82) 

      REAL*8 WSR,A,B,NRHEOL,KRHEOL,VZ0,R0,MU0CGS,MUK 

      COMMON/SAS/HC,SC,RSR0,N  

      COMMON/IDI/ATD(41),DEL(41) 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 

     &MUK(41),RAVZ(41)                                                                                           

      DO 1 I=1,N+1 

      VZ(I)=YK(I) 

      FI(I)=YK(N+1+I) 
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      IF(VZ(I).LT.0.0)VZ(I)=0.0 

      IF(FI(I).LT.0.0)FI(I)=0.0 

    1 CONTINUE 

      DO 2 I=2,N 

      RV=DEL(I)+DEL(I+1) 

      RV1=DEL(I)*DEL(I+1) 

      S(I)=DEL(I)/(DEL(I+1)*RV) 

      R(I)=DEL(I+1)/(DEL(I)*RV) 

      Z(I)=(DEL(I+1)-DEL(I))/RV1 

      V(I)=2./(DEL(I+1)*RV) 

      W(I)=2./(DEL(I)*RV) 

      F(I)=2./RV1 

    2 CONTINUE 

      DO 3 I=2,N 

      RAVZ(I)=S(I)*VZ(I+1)-R(I)*VZ(I-1)+Z(I)*VZ(I) 

      RAFI(I)=S(I)*FI(I+1)-R(I)*FI(I-1)+Z(I)*FI(I) 

      EAVZ(I)=V(I)*VZ(I+1)+W(I)*VZ(I-1)-F(I)*VZ(I) 

      EAFI(I)=V(I)*FI(I+1)+W(I)*FI(I-1)-F(I)*FI(I) 

    3 CONTINUE 

C     VISCOSITY CALCULATION 

      DO 702 I=2,N 

      KRHEOL(I)=B(1)*FI(I)**6+B(2)*FI(I)**5+B(3)*FI(I)**4+B(4)*FI(I)**3 

     &+B(5)*FI(I)**2+B(6)*FI(I)+B(7) 

      NRHEOL(I)=A(1)*FI(I)**6+A(2)*FI(I)**5+A(3)*FI(I)**4+A(4)*FI(I)**3 

     &+A(5)*FI(I)**2+A(6)*FI(I)+A(7) 

  702 CONTINUE 

      DO 705 I=2,N 



136 

 

 

 

      INTE(I)=KRHEOL(I)*(VZ0/R0)**(NRHEOL(I)-1.)/MU0CGS 

      MUK(I)=1. 

      IF(FI(I).LE..5)MUK(I)=INTE(I)*DABS(RAVZ(I))**(NRHEOL(I)-1.) 

      IF(MUK(I).GT.5.)MUK(I)=5. 

      MU(I)=MUK(I)    

  705 CONTINUE   

C     VISCOSITY CALCULATION   

      DO 700 I=1,N 

      RO(I)=FI(I)+RSR0*(1.-FI(I)) 

  700 CONTINUE 

      DO 701 I=1,N 

      FUN(I)=1./(RO(I)*FI(I)*VZ(I)) 

  701 CONTINUE   

      R2(1)=0.0 

      DO 7 I=2,N 

      R2(I)=R2(I-1)+(ATD(I)-ATD(I-1))*(FUN(I-1)+FUN(I)) 

    7 CONTINUE 

      DO 703 I=2,N 

      P(I)=MU(I)*RO(I)*R2(I)*FI(I)**2*VZ(I) 

      Q(I)=MU(I)*RO(I)*R2(I)*FI(I)*VZ(I) 

      L(I)=RO(I)**2*R2(I)*FI(I)**2*VZ(I)/SC 

      M(I)=RO(I)**2*R2(I)*FI(I)*VZ(I) 

  703 CONTINUE 

      P(1)=P(2) 

      Q(1)=Q(2) 

      L(1)=L(2) 

      M(1)=M(2) 
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      P(N+1)=0.0 

      Q(N+1)=0.0 

      L(N+1)=0.0 

      M(N+1)=0.0 

      DO 704 I=2,N 

      RAQ(I)=S(I)*Q(I+1)-R(I)*Q(I-1)+Z(I)*Q(I) 

      RAM(I)=S(I)*M(I+1)-R(I)*M(I-1)+Z(I)*M(I) 

  704 CONTINUE       

      DO 4 I=2,N 

      RAB=RO(I)**2*R2(I)*FI(I)*VZ(I)/SC 

      FK(I)=P(I)*EAVZ(I)+FI(I)*RAQ(I)*RAVZ(I)-RAB*RAFI(I)*RAVZ(I) 

      FK(N+1+I)=L(I)*EAFI(I)+FI(I)/SC*RAM(I)*RAFI(I)-RAB*RAFI(I)**2 

    4 CONTINUE 

      FK(1)=FK(2) 

      FK(N+2)=FK(N+3) 

      FK(N+1)=0.0 

      FK(2*N+2)=0.0 

      RETURN 

      END 
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APPENDIX 2: Computer code in FORTRAN developed to predict flow in foam jets issued 

into slurry cross-flow 

INTEGER N,N2,I,J,GA,TOP,CSS,SCC,PT,NXXG,NYYG,SINGLE 

      REAL*8 HC,EP,TI,DD,VZZZ,FIII,WSR,A,B,NRHEOL,KRHEOL, 

     &MU0CGS,MUK,RAVZ,VZMAX05,R05  

      REAL*8 SC,RSR0,VZ0,R0,RAB 

      REAL*8 CD,UB,PI,ALF0,Z0,AA 

      REAL*8 ATD,DEL,X,Y01,R,R1,RR2, 

     &AT(40) 

      REAL*8 VZ(41),FI(41),RO(41),FUN(41),R2(41) 

      REAL*8 VZZ(41,41),FII(41,41),YY(41,41),XX(41,41) 

      REAL*8 YF(85)                                                                            

      LOGICAL FIR                                                        

      EXTERNAL FC 

      COMMON/SAS/HC,SC,RSR0,N                                                        

      COMMON/IDI/ATD(41),DEL(41),CD,UB,PI,Z0 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 

     &MUK(41),RAVZ(41) 

      open(8,file='km5.dat',status='unknown') 

      open(18,file='km4.dat',status='unknown') 

      open(28,file='km1.dat',status='unknown') 

      open(38,file='km2.dat',status='unknown') 

      open(71,file='km471.dat',status='unknown') 

      open(72,file='km472.dat',status='unknown') 

      open(78,file='km11.dat',status='unknown') 

      open(88,file='km12.dat',status='unknown') 
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      open(98,file='km13.dat',status='unknown') 

      READ(*,*)VZ0,R0,SC,RSR0,WSR, 

     &CD,UB,ALF0,N,TOP,PT,NXXG,NYYG,SINGLE  

      WRITE(*,*)'VZ0=',VZ0,'R0=',R0,'SC=',SC,'RSR0=',RSR0,'WSR=',WSR, 

     &'CD=',CD,'UB=',UB,'ALF0=',ALF0, 

     &'N=',N,'TOP=',TOP,'PT=',PT,'NXXG=',NXXG,'NYYG=',NYYG, 

     &'SINGLE=',SINGLE 

      PI=3.141592653589793 

      ALF0=ALF0*PI/180. 

      Z0=.001 

      AA=RSR0*CD*UB*(UB**2+1.)**.5/PI 

      CSS=0 

      SCC=0 

      N2=2*(N+1)+3                                                 

      EP=.0001 

      MU0CGS=.1 

      IF(WSR.EQ.68.)THEN 

      A(1)=5.065 

      A(2)=4.355 

      A(3)=-33.25 

      A(4)=37.44 

      A(5)=-15.32 

      A(6)=2.143 

      A(7)=.042 

      B(1)=41912. 

      B(2)=-156380. 

      B(3)=225770. 
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      B(4)=-157420. 

      B(5)=54116. 

      B(6)=-8844.2 

      B(7)=871.5 

      END IF 

      IF(WSR.EQ.75.)THEN 

      A(1)=137.5 

      A(2)=-236.0 

      A(3)=134.3 

      A(4)=-27.53 

      A(5)=1.247 

      A(6)=0.267 

      A(7)=.0 

      B(1)=-15734. 

      B(2)=26645. 

      B(3)=-14699. 

      B(4)=28320. 

      B(5)=-1310. 

      B(6)=440. 

      B(7)=0. 

      END IF 

      DD=1./N*(1./2.) 

      DO 3 I=1,N-1 

      TI=I*DD 

      AT(I)=3.*TI**2-2.*TI**3 

    3 CONTINUE 

      AT(N)=1./2. 



141 

 

 

 

      ATD(1)=0.0 

      DO 33 I=2,N+1 

      ATD(I)=AT(I-1) 

   33 CONTINUE 

      DEL(1)=ATD(1) 

      DO 4 I=1,N 

      DEL(I+1)=ATD(I+1)-ATD(I) 

    4 CONTINUE 

      TI=(DEL(N-1)+DEL(N)+DEL(N+1))/3. 

      DO 8 I=N-1,N+1 

      DEL(I)=TI 

    8 CONTINUE 

      ATD(N-1)=ATD(N-2)+DEL(N-1) 

      ATD(N)=ATD(N-1)+DEL(N) 

      ATD(N+1)=1./2. 

      WRITE(6,10)ATD 

      WRITE(6,10)DEL 

   10 FORMAT(5F16.4) 

      DO 5 I=1,N 

      YF(I)=1. 

      YF(N+1+I)=1. 

    5 CONTINUE 

      YF(N+1)=0.0 

      YF(2*N+2)=0.0 

      IF(DABS(ALF0-PI/2.).LE..01)THEN 

      YF(2*N+2+1)=Z0 

      YF(2*N+2+2)=1./(AA*Z0) 
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      END IF 

      IF(DABS(ALF0-PI/2.).GT..01)THEN 

      YF(2*N+2+1)=0.0 

      YF(2*N+2+2)=DTAN(ALF0) 

      END IF 

      X=0.0                                                     

      DO 1 GA=1,TOP 

      WRITE(6,100)GA,HC,X 

  100 FORMAT(I8,F16.15,F16.8)     

      IF(GA.EQ.1)GO TO 99 

      CSS=CSS+1 

   99 CONTINUE                           

      IF(GA.EQ.1)Y01=1.E-7                 

      IF(GA.EQ.2)Y01=.01-1.E-7              

      IF(GA.GT.2)Y01=.01                  

      FIR=.FALSE.                          

      IF(GA.EQ.1)FIR=.TRUE. 

      CALL KUTTA(N2,X,YF,EP,Y01,FC,FIR)          

      IF(CSS.EQ.PT)THEN 

      SCC=SCC+1 

      DO 6 I=1,N+1 

      VZ(I)=YF(I) 

      FI(I)=YF(N+1+I) 

      IF(VZ(I).LT.0.0)VZ(I)=0.0 

      IF(FI(I).LT.0.0)FI(I)=0.0 

    6 CONTINUE 

      DO 700 I=1,N 
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      RO(I)=FI(I)+RSR0*(1.-FI(I)) 

  700 CONTINUE 

      DO 701 I=1,N 

      FUN(I)=1./(RO(I)*FI(I)*VZ(I)) 

  701 CONTINUE   

      R2(1)=0.0 

      DO 7 I=2,N 

      R2(I)=R2(I-1)+(ATD(I)-ATD(I-1))*(FUN(I-1)+FUN(I)) 

    7 CONTINUE 

      DO 20 I=1,N 

      R=R2(I)**.5 

      R1=VZ(I) 

      RR2=FI(I) 

      IF(SCC.EQ.SINGLE)THEN 

      WRITE(8,21)R,R1 

   21 FORMAT(2F16.8)    

      WRITE(18,219)R,RR2 

  219 FORMAT(2F16.8) 

      END IF    

      XX(SCC,I)=X 

      YY(SCC,I)=R 

      VZZ(SCC,I)=R1 

      FII(SCC,I)=RR2 

   20 CONTINUE 

      VZMAX05=VZ(1)/2. 

      DO 1003 I=2,N 

      IF((VZ(I-1).GE.VZMAX05).AND.(VZ(I).LE.VZMAX05))THEN 
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      R05=(R2(I-1)**.5+R2(I)**.5)/2. 

      GO TO 1004 

      END IF 

 1003 CONTINUE      

 1004 CONTINUE 

      WRITE(38,1005)X,R05 

 1005 FORMAT(2F16.8) 

      R=YF(2*N+2+1) 

      WRITE(78,1006)X,R 

 1006 FORMAT(2F16.8) 

      RAB=YF(2*N+2+2+1) 

      R=VZ(1) 

      WRITE(88,1007)RAB,R 

 1007 FORMAT(2F16.8) 

      R=FI(1) 

      WRITE(98,1008)RAB,R 

 1008 FORMAT(2F16.8)           

      IF(SCC.EQ.SINGLE)THEN 

C      NRHEOL(1)=NRHEOL(2) 

C      KRHEOL(1)=KRHEOL(2) 

       MUK(1)=MUK(2) 

       RAVZ(1)=0.0 

      DO 1000 I=1,N 

C      R1=NRHEOL(I) 

C      RR2=KRHEOL(I) 

      RR2=MUK(I) 

      R1=RAVZ(I) 
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      R=R2(I)**.5 

      WRITE(28,1001)R,RR2,R1 

 1001 FORMAT(3F16.8) 

 1000 CONTINUE 

      END IF      

      CSS=0 

      END IF     

    1 CONTINUE                  

      WRITE(71,*) 'VARIABLES = "X", "Y", "VZZZ"' 

      WRITE(71,*)'ZONE F=POINT, I=', NXXG, ', J=', NYYG 

      DO 471 I=1,NXXG 

      DO 472 J=1,NYYG 

      R1=XX(I,J) 

      RR2=YY(I,J) 

      VZZZ=VZZ(I,J) 

      WRITE(71,473)R1,RR2,VZZZ 

  473 FORMAT(3F16.8) 

  472 CONTINUE   

  471 CONTINUE 

      WRITE(72,*) 'VARIABLES = "X", "Y", "FIII"' 

      WRITE(72,*)'ZONE F=POINT, I=', NXXG, ', J=', NYYG 

      DO 481 I=1,NXXG 

      DO 482 J=1,NYYG 

      R1=XX(I,J) 

      RR2=YY(I,J) 

      FIII=FII(I,J) 

      WRITE(72,483)R1,RR2,FIII  
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  483 FORMAT(3F16.8) 

  482 CONTINUE 

  481 CONTINUE                                  

      STOP                                        

      END                                         

      SUBROUTINE KUTTA(N,X,Y,EPS,H,FCT,FIRST) 

      REAL*8 SC,RSR0                     

      REAL*8 X,EPS,H,ERROR,HC,DOP 

      REAL*8 ATD,DEL 

      REAL*8 CD,UB,PI,Z0 

      REAL*8 WSR,A,B,NRHEOL,KRHEOL,VZ0,R0,MU0CGS,MUK,RAVZ               

      INTEGER N,I,LOC,PLOC,NN                                                  

      LOGICAL FIRST,INCREA,SAD                             

      REAL*8 Y(85),Y1(85),Y2(85),F0(85),F1(85),F2(85) 

      COMMON/SAS/HC,SC,RSR0,NN         

      COMMON/IDI/ATD(41),DEL(41),CD,UB,PI,Z0 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 

     &MUK(41),RAVZ(41)                                     

      PLOC=1                                               

      IF(FIRST)HC=H                                             

      IF(FIRST)GO TO 1                                     

    2 IF(PLOC.LT.DABS(H/HC))PLOC=PLOC*2                     

      IF(PLOC.LT.DABS(H/HC))GO TO 2                         

      HC=H/PLOC                                                

    1 LOC=0                                                

    3 CALL FCT(X,Y,F0)                                     

      DO 4 I=1,N                                           
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    4 Y1(I)=Y(I)+HC/3*F0(I)                                

      CALL FCT(X+HC/3,Y1,F1)                               

      DO 5 I=1,N                                           

    5 Y1(I)=Y(I)+(F0(I)+F1(I))*HC/6                                      

      CALL FCT(X+HC/3,Y1,F1)     

      DO 6 I=1,N                 

    6 Y1(I)=Y(I)+(F0(I)+3*F1(I))*HC/8             

      CALL FCT(X+HC/2,Y1,F2)                      

      DO 7 I=1,N                                  

    7 Y1(I)=Y(I)+(F0(I)-3*F1(I)+4*F2(I))*HC/2     

      CALL FCT(X+HC,Y1,F1)                        

      DO 8 I=1,N                                  

    8 Y2(I)=Y(I)+(F0(I)+4*F2(I)+F1(I))*HC/6       

      INCREA=.TRUE.                               

      DO 10 I=1,N                                 

      DOP=1.0                                     

      IF(DABS(Y1(I)).GT.1)DOP=Y1(I)                

    9 ERROR=DABS(.2*(Y1(I)-Y2(I))/DOP)             

      IF(ERROR.LE.EPS)GO TO 10                    

      HC=HC/2.                                    

      PLOC=2*PLOC                                 

      LOC=2*LOC                                   

      GO TO 3                                     

   10 IF(ERROR*64.GT.EPS)INCREA=.FALSE.           

      X=X+HC                                      

      DO 11 I=1,N                                 

   11 Y(I)=Y2(I)                                  
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      LOC=LOC+1                                   

      IF(LOC.GE.PLOC)GO TO 12                     

      SAD=INCREA.AND.LOC.EQ.LOC/2*2               

      SAD=.NOT.SAD                                

      IF(SAD)GO TO 14                             

      HC=2.*HC                                    

      LOC=LOC/2                                   

      PLOC=PLOC/2                                 

   14 GO TO 3                                     

   12 RETURN                                      

      END                                         

      SUBROUTINE FC(XK,YK,FK) 

      INTEGER N,I 

      REAL*8 SC,RSR0 

      REAL*8 CD,UB,PI,Z0,FF,R12,R1,R22                     

      REAL*8 XK,HC, 

     &ATD,DEL,RV,RV1,RAB, 

     &VZ(41),FI(41),S(41),R(41),Z(41),V(41),W(41), 

     &F(41), 

     &RAVZ,RAFI(41),EAVZ(41),EAFI(41),RAQ(41),RAM(41),INTE(41) 

      REAL*8 MU(41),RO(41),FUN(41),R2(41),P(41),Q(41),L(41),M(41) 

      REAL*8 YK(85),FK(85) 

      REAL*8 RAD(41),VZNORM(41) 

      REAL*8 WSR,A,B,NRHEOL,KRHEOL,VZ0,R0,MU0CGS,MUK 

      COMMON/SAS/HC,SC,RSR0,N  

      COMMON/IDI/ATD(41),DEL(41),CD,UB,PI,Z0 

      COMMON/VISC/WSR,VZ0,R0,MU0CGS,A(7),B(7),NRHEOL(41),KRHEOL(41), 
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     &MUK(41),RAVZ(41)                                                                                           

      DO 1 I=1,N+1 

      VZ(I)=YK(I) 

      FI(I)=YK(N+1+I) 

      IF(VZ(I).LT.0.0)VZ(I)=0.0 

      IF(FI(I).LT.0.0)FI(I)=0.0 

    1 CONTINUE 

      FF=YK(2*N+2+2) 

      DO 2 I=2,N 

      RV=DEL(I)+DEL(I+1) 

      RV1=DEL(I)*DEL(I+1) 

      S(I)=DEL(I)/(DEL(I+1)*RV) 

      R(I)=DEL(I+1)/(DEL(I)*RV) 

      Z(I)=(DEL(I+1)-DEL(I))/RV1 

      V(I)=2./(DEL(I+1)*RV) 

      W(I)=2./(DEL(I)*RV) 

      F(I)=2./RV1 

    2 CONTINUE 

      DO 3 I=2,N 

      RAVZ(I)=S(I)*VZ(I+1)-R(I)*VZ(I-1)+Z(I)*VZ(I) 

      RAFI(I)=S(I)*FI(I+1)-R(I)*FI(I-1)+Z(I)*FI(I) 

      EAVZ(I)=V(I)*VZ(I+1)+W(I)*VZ(I-1)-F(I)*VZ(I) 

      EAFI(I)=V(I)*FI(I+1)+W(I)*FI(I-1)-F(I)*FI(I) 

    3 CONTINUE 

C     VISCOSITY CALCULATION 

      DO 702 I=2,N 

      KRHEOL(I)=B(1)*FI(I)**6+B(2)*FI(I)**5+B(3)*FI(I)**4+B(4)*FI(I)**3 
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     &+B(5)*FI(I)**2+B(6)*FI(I)+B(7) 

      NRHEOL(I)=A(1)*FI(I)**6+A(2)*FI(I)**5+A(3)*FI(I)**4+A(4)*FI(I)**3 

     &+A(5)*FI(I)**2+A(6)*FI(I)+A(7) 

  702 CONTINUE 

      DO 705 I=2,N 

      INTE(I)=KRHEOL(I)*(VZ0/R0)**(NRHEOL(I)-1.)/MU0CGS 

      MUK(I)=1. 

      IF(FI(I).LE..5)MUK(I)=INTE(I)*DABS(RAVZ(I))**(NRHEOL(I)-1.) 

      IF(MUK(I).GT.5.)MUK(I)=5. 

      MU(I)=MUK(I)    

  705 CONTINUE   

C     VISCOSITY CALCULATION   

      DO 700 I=1,N 

      RO(I)=FI(I)+RSR0*(1.-FI(I)) 

  700 CONTINUE 

      DO 701 I=1,N 

      FUN(I)=1./(RO(I)*FI(I)*VZ(I)) 

  701 CONTINUE   

      R2(1)=0.0 

      DO 7 I=2,N 

      R2(I)=R2(I-1)+(ATD(I)-ATD(I-1))*(FUN(I-1)+FUN(I)) 

    7 CONTINUE 

      RAD(1)=0.0 

      DO 715 I=2,N 

      RAD(I)=R2(I)**.5 

  715 CONTINUE 

      DO 707 I=1,N+1 
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      VZNORM(I)=VZ(I)/VZ(1) 

  707 CONTINUE     

      DO 706 I=2,N 

      R1=1./2.-VZNORM(I-1) 

      R22=1./2.-VZNORM(I) 

      IF((R1*R22).LT.0.0)R12=RAD(I) 

  706 CONTINUE         

      DO 703 I=2,N 

      P(I)=MU(I)*RO(I)*R2(I)*FI(I)**2*VZ(I) 

      Q(I)=MU(I)*RO(I)*R2(I)*FI(I)*VZ(I) 

      L(I)=RO(I)**2*R2(I)*FI(I)**2*VZ(I)/SC 

      M(I)=RO(I)**2*R2(I)*FI(I)*VZ(I) 

  703 CONTINUE 

      P(1)=P(2) 

      Q(1)=Q(2) 

      L(1)=L(2) 

      M(1)=M(2) 

      P(N+1)=0.0 

      Q(N+1)=0.0 

      L(N+1)=0.0 

      M(N+1)=0.0 

      DO 704 I=2,N 

      RAQ(I)=S(I)*Q(I+1)-R(I)*Q(I-1)+Z(I)*Q(I) 

      RAM(I)=S(I)*M(I+1)-R(I)*M(I-1)+Z(I)*M(I) 

  704 CONTINUE       

      DO 4 I=2,N 

      RAB=RO(I)**2*R2(I)*FI(I)*VZ(I)/SC 
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      FK(I)=P(I)*EAVZ(I)+FI(I)*RAQ(I)*RAVZ(I)-RAB*RAFI(I)*RAVZ(I) 

      FK(N+1+I)=L(I)*EAFI(I)+FI(I)/SC*RAM(I)*RAFI(I)-RAB*RAFI(I)**2 

    4 CONTINUE 

      FK(1)=FK(2) 

      FK(N+2)=FK(N+3) 

      FK(N+1)=0.0 

      FK(2*N+2)=0.0 

      FK(2*N+2+1)=FF/(1.+FF**2)**.5 

      FK(2*N+2+2)=-RSR0*CD*UB**2*FF**2*R12* 

     &(1.-2.*VZ(1)/UB/(1.+FF**2)**.5+(VZ(1)/UB)**2)**.5 

     &/(2.*PI*.5) 

      FK(2*N+2+2+1)=(1.+FK(2*N+2+1)**2)**.5 

      RETURN 

      END         
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I will really appreciate if you can provide me the copyright clearance to use this above menNoned figure as a part of my
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With Regards
Dominic Dannessa
(Doctoral Student, University of Illinois at Chicago)
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