BY
ROOHOLLAH KAZEM SHIROODI
B.S., Malek Ashtar University of Technology, Isfahan, Iran 2004
M.Sc., Tarbiat Modares University, Tehran, Iran 2007

THESIS
Submitted as partial fulfillment of the requirements for the degree of Doctor of Philosophy of Chemistry in the Graduate College of the
University of Illinois at Chicago, 2015

Chicago, Illinois

Defense Committee:
Vladimir Gevorgyan, Chair and Advisor
Daesung Lee
Duncan Wardrop
Justin Mohr
Igor Alabugin, Florida State University

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Vladimir Gevorgyan, for his guidance and support during the years of my study. I thank him for teaching me professional disciplines and skills including presentation, writing, leadership, and approaching and solving research problems.

I would also like to thank the members of my thesis committee: Professor Daesung Lee and Professor Duncan Wardrop for not only reading and helpful criticizing of my thesis, but also teaching me chemistry and supporting me during my Ph.D. program. I am also thankful to other committee members Professor Justin Mohr and Professor Igor Alabugin for their criticism and constructive suggestions.

I would like to thank all current and former members of Professor Gevorgyan's research group for their friendship and support. It was my pleasure to work with and learn from these collaborative and talented scientists in a multicultural environment. I am deeply appreciative of my colleagues whom I worked closely with: Dr. Alexander Dudnik, Ms. Olesja Koleda, Dr. Mohammad Soltani, Ms. Claudia Rivera Vera, Mr. Masumi Sugawara, Mr. Maxim Ratushnyy, and Douglus Yarbrough.

I would like to express my greatest gratitude to my family. My special thank goes to my lovely wife Kimberly Shiroodi for her unconditional love, understanding, encouragement and support throughout my Ph.D. program. I would like to thank my parents Nosratollah and Shahrbanoo Shiroodi, as well as my brothers and their families for their endless love and selfless support in all aspects of my life.

ACKNOWLEDGMENTS (continued)

I would also like to thank some people whose excitement and encouragement fueled my enthusiasm for science: I thank Mr. Jamshid Zafari, the principal of my primary school at our village. I also thank Professor Roozbeh Kalbasi who introduced me to the field of organic chemistry. I thank Dr. Jalal Hassan for helping me to gain some experience with performing research.

I would like to thank the entire staff of the Chemistry Department for their help during these years, especially Ms. Rhonda Staudohar, Ms. Silvia Solis, Ms. Pat Ratajczyk, Dr. Randall Puchalski, Dr. Dan McElheny and Mr. Yonilo Lim.

TABLE OF CONTENTS
CHAPTER PAGE
PART ONE
GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES and diynones

1. INTRODUCTION 1
1.1. 1,3-Transposition of Allylic Alcohols 1
1.2. 1,3-Transposition of Alkynyl Metal Carbenes 3
1.3. 1,3-Transposition of Ynones 6
1.4. Summary 7
2. REGIODIVERGENT 1,3-TRANSPOSITION OF YNONES AND DIYNON 9
2.1. Computation-Assisted Discovery of Regiocontrolling Factors 9
2.1.1. Consideration of Steric Effect 10
2.1.2. Consideration of Electronic Factor 11
2.1.3. Consideration of Interrupted Conjugation Factor. 11
2.1.3.1. Scope of 1,3-Transposition Reaction of Ynones by Interrupted Conjugation Factor 13
2.1.3.2. Carbon-Labelig Studies 19
2.1.4. Consideration of Extended Conjugation Factor 19
2.1.4.1. Scope of 1,3-Transposition Reaction of Ynones by Interrupted Conjugation Factor 20
2.1.4.2. Synthesis of Regioisomeric Alkynylated Heterocycls 23
2.2. Summary 25
3. EXPERIMENTAL SECTION 26
3.1. General Information 26
3.2. 1,3-Transposition Reaction of Ynones 27
3.2.1. Synthesis of Ynone Substrate 27
3.2.2. Gold-Ctalyzed 1,3-Transposition of Ynones 34
3.2.3. Carbon-Labeling Studies 40
3.3. 1,3-Transposition Reaction of Diynones 42
3.3.1. Synthesis of Skipped Diynone Substrates 42

TABLE OF CONTENTS (continued)

CHAPTER PAGE
3.3.2. Gold-Ctalyzed 1,3-Transposition of Skipped to Conjugated Diynones 45
3.3.3. Synthesis of Regioisomeric Alkynylated Heterocycles 48
3.3.3.1. Synthesis of Heterocyclesfrom Skipped Diynones 48
3.3.3.3. Synthesis of Heterocycles from Conjugated Diynones 52
4. CITED LITERATURE 56
PART TWO
REGIOSELECTIVE SYNTHESIS OF C2- AND C3-BORYLATED FURANS
5. INTRODUCTION 62
5.1. Transition Metal-Catalyzed Cycloisomerization Approach in Synthesis of Furans 62
5.2. Transition Metal-Catalyzed Migratory Cycloisomerization toward Substituted Furans. 63
5.2.1. Migration of Sulfur- and Selenium-Containing Groups 63
5.2.2. Migration of Carbon-Containing Groups 64
5.2.3. Migration of Halogen Atoms 67
5.2.4. Migration of Oxygen-Containing Groups 68
5.2.5. Migration of Silicon-Containing Groups 69
5.3. Cycloisomerization and Migratory Cycloisomerization of Alkynyl Epoxides and Aziridines in Synthesis of Heterocycles 69
5.4. Lewis Acid-Mediated Boryl Migration in Synthesis of Acyclic Products Acid- Mediated 71
5.5. Summary 72
6. REGIOSELCTIVE SYNTHESIS OF C2- AND C3-BORYLATED FURANS 74
6.1. Attempts to Synthesize C3-Borylated Furans via a Lewis Acid-Mediated Reaction 74
6.2. Copper-Catalyzed Synthesis of C3-Borylated Furans 75
6.3. Gold-Catalyzed Regiodivergent Synthesis of C2- and C3-Borylated Furans 79

TABLE OF CONTENTS (continued)

CHAPTER PAGE
6.3.1. Scope of Reaction 81
6.3.2. Mechanism of the Gold-Catalyzed Reactions 87
6.4. Summary 89
7. EXPERIMENTAL SECTION 91
7.1. General Information 91
7.2. Synthesis of Starting Materials 91
7.2.1. Synthesis of Enynyl Boronates 91
7.2.2. Synthesis of Alkynyl Epoxides 98
7.3. Copper-Catalyzed Synthesis of C3-Borylated Furans 103
7.4. Gold-Catalyzed Reactions 104
7.4.1. Gold-Catalyzed Synthesis of C3-Borylated Furans 104
7.4.2. Gold-Catalyzed Synthesis of C2-Borylated Furans 108
7.4.3. Mechanistic Investigations 112
8. CITED LITERATURE 117
PART THREE
STERREOCONTROLLED METAL-CATALYZED 1,3-PHOSPHATYLOXY/1,3- HALOGEN MIGRATION RELAY TOWARD 1,3-DIENES
9. INTRODUCTION 122
9.1. Transition Metal-Catalyzed Double Migratory Cascade Reactions of Propargylic Esters and Phosphates 122
9.2. Double Migratory Transformations with an Initial 1,3-OXO Migration 124
9.2.1. Cascade 1,3-OXO/Hydrogen migration 124
9.2.1.1. Double 1,3-OXO/1,2-H Migration 124
9.2.1.2. Double 1,3-OXO/1,5-H Migration 128
9.2.2. Cascade 1,3-OXO/Alkyl migration 129
9.2.2.1. Double 1,3-OXO/1,2-Alkyl Migration 129
9.2.2.2. Double 1,3-OXO/1,3-Alkyl Migration 130
9.2.3. Cascade $1,3-\mathrm{OXO} / 1,3$-Acyl migration 131

TABLE OF CONTENTS (continued)

CHAPTER PAGE
9.3. Double Migratory Transformations with an Initial 1,2-OXO Migration 133
9.3.1. Double 1,2-OXO/1,2-H Migration 133
9.3.2. Double 1,2-OXO/1,4-Carbon Migration 134
9.3.3. Double 1,2-OXO/1,2-OAc migration 135
9.4. Summary 137
10. METAL-CATALYZED DOUBLE 1,3-PHOSPHATYLOXY/1,3-HALOGEN MIGRATION CASCADE TOWARD FUNCTIONALIZED DIENES 139
10.1. Optimization of the Double Migratory Process 140
10.2. Scope of the Copper-Catalyzed Synthesis of (Z)-1,3-Dienes 142
10.3. Scope of the Gold-Catalyzed Synthesis of $(E)-1,3$-Dienes 144
10.4. Propoesd Mechanism for the Reaction 146
10.5. Functionalization of obtained (Z)-1,3-Dienes 147
10.6. Summary 149
11. EXPERIMENTAL SECTION 150
11.1. General Information 150
11.2. Synthesis of α-Halo Propargylic Phosphates 151
11.3. Copper-Catalyzed Synthesis of (Z)-1,3-Dienes 157
11.4. Gold-Catalyzed Synthesis of $(E)-1,3$-Dienes 161
11.5. Copper- and Gold-catalyzed Formation of α-fluoroallenes 165
11.6. Crossover Experiments 166
11.7. Functionalization of Obtained (Z)-1,3-Dienes 168
12. CITED LITERATURE 173
APPENDICES 178

TABLE OF CONTENTS (continued)

CHAPTER PAGE
APPENDIX I Selected NMR Spectra for Part One 178
APPENDIX II Selected NMR Spectra for Part Two 212
APPENDIX III Selected NMR Spectra for Part Three 234
APPENDIX IV Copyright Permissions 271
VITA 280

LIST OF SCHEMES

SCHEME PAGE
Scheme 1 1
Scheme 2 2
Scheme 3 3
Scheme 4 3
Scheme 5 5
Scheme 6 6
Scheme 7 6
Scheme 8 7
Scheme 9 7
Scheme 10 8
Scheme 11 9
Scheme 12 10
Scheme 13 11
Scheme 14 12
Scheme 15 13
Scheme 16 19
Scheme 17 20
Scheme 18 20
Scheme 19 21
Scheme 20 21
Scheme 21 24

LIST OF FIGURES (continued)

FIGURE PAGE
Scheme 22 62
Scheme 23 64
Scheme 24 65
Scheme 25 65
Scheme 26 66
Scheme 27 67
Scheme 28 68
Scheme 29 68
Scheme 30 69
Scheme 31 70
Scheme 32 71
Scheme 33 71
Scheme 34 72
Scheme 35 73
Scheme 36 75
Scheme 37 75
Scheme 38 79
Scheme 39 87
Scheme 40 88
Scheme 41 89
Scheme 42 123

LIST OF FIGURES (continued)

FIGURE PAGE
Scheme 43 124
Scheme 44 125
Scheme 45 126
Scheme 46 127
Scheme 47 128
Scheme 48 128
Scheme 49 129
Scheme 50 130
Scheme 51 131
Scheme 52 132
Scheme 53 133
Scheme 54 134
Scheme 55 135
Scheme 56 136
Scheme 57 137
Scheme 58 138
Scheme 59 140
Scheme 60 147
Scheme 61 148

LIST OF TABLES

TABLE
PAGE

Table I. OPTIMIZATION OF 1,3-TRANSPOSITION REACTION OF 15.1 to 15.1 14
Table II. GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES 16

Table III. GOLD-CATALYZED 1,3-TRANSPOSITION REACTION OF DIYNONES22
Table IV. OPTIMIZATION OF CU-CATALYZED REACTION OF $\mathbf{3 6 . 1}$..................... 76
Table V. COPPER-CATALYZED SYNTHESIS OF C3-BORYLATED FURANS 77
Table VI. OPTIMIZATION OF AU-CATALYZED REACTION OF 36.1 80

Table VII. GOLD-CATALYZED SYNTHESIS OF C3-BORYLATED FURANS........ 82
Table VIII. GOLD-CATALYZED SYNTHESIS OF C2-BORYLATED FURANS85

Table IX. OPTIMIZATION OF DOUBLE MIGRATORY CASCADE REACTION .. 141
Table X. COPPER-CATALYZED SYNTHESIS OF (Z)-1,3-DIENES......................... 143
Table XI. GOLD-CATALYZED SYNTHESIS OF (E)-1,3-DIENES 145

LIST OF ABBREVIATIONS

Ac	acetyl
Alk	alkyl
aq	aqueous
Ar	aryl
atm	atmosphere
Bn	benzyl
Boc	tert-butoxycarbonyl
Bz	benzoyl
$n-\mathrm{Bu}$	butyl
t-Bu	tert-butyl
Calcd	calculated
cat.	catalytic amount
COD	1,5-cyclooctadiene
δ	chemical shifts in parts per million downfield from tetramethylsilane (NMR)
2D	two-dimensional (NMR)
d	doublet
dba	dibenzylidene acetone
DCM	dichloromethane
DCE	1,2-dichloroethane
DCE	1,2-dichloroethane
DEPT	distortionless enhancement by polarization transfer

LIST OF ABBREVIATIONS (continued)

DFT	Density Functional Theory
DMA	dimethylacetamide
DMB	2,4-dimethoxybenzyl
DMF	dimethylformamide
DMSO	dimethylsulfoxide
EDG	electron-donating group
EE	ethoxyethyl
EI	electron impact ionization (in mass spectrometry)
Et	ethyl
eq, equiv.	molar equivalent
EWG	electron-withdrawing group
G	group, Gibbs free energy
g	gram
GC	gas chromatography
h, hrs	hour(s)
HMBC	heteronuclear multiple-bond correlation spectroscopy (NMR)
HMQC	heteronuclear multiple-quantum coherence spectroscopy (NMR)
HR	high resolution (mass spectrometry)
Hz	Hertz
IPr	1,3-bis(2,6-diisopropylphenyl) imidazole-2-ylidene
J	spin-spin coupling constant (NMR)
L	ligand

LIST OF ABBREVIATIONS (continued)

LDA	lithiumdiisopropyl amide
m	multiplet (NMR)
mp	melting point
μ	micro
[M]	metal
M	molar
MS	mass spectrometry
MS	molecular sieves
Me	methyl
Mes	mesityl
MIDA	N-methyliminodiacetic acid
mg	milligram
min	minute
mL, ml	milliliter
mm	millimeter
mmol	millimole
mol	mole
MHz	megahertz
m / z	mass to charge ratio
NHC	N -heterocyclic carbene
NMR	nuclear magnetic resonance
Ph	phenyl

LIST OF ABBREVIATIONS (continued)

PIDA	Pinen-derived iminodiacetic acid
Piv	pivaloyl, trimethylacetyl
PMB	p-methoxybenzyl
ppm	parts per million
Pr	propyl
$i-\operatorname{Pr}$	isopropyl
$n-\mathrm{Pr}$	propyl
q	quartet (NMR)
quint	quintet (NMR)
rt	room temperature
S	singlet (NMR)
sept	septet (NMR)
t	triplet (NMR)
TBS	tert-butyldimethylsilyl
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
TLC	thin layer chromatography
TMS	trimethylsilyl
Tol, tol	tolyl
Ts	p-toluenesulfonyl
TDMPP	tris (2,5-dimethoxyphenyl) phosphine

SUMMARY

This thesis describes the development of transition metal-catalyzed regio- and stereodivergent isomerization and cycloisomerization reactions of acyclic substrates into acyclic products including 1,3-ynones and 1,3-dienes, as well as heterocyclic compounds such as borylated furans.

Chapter 1 describes the development of a regioselective gold-catalyzed transposition reaction of 1,3-ynones and diynones. Supported by computations, experimental studies of this reaction show that the equilibrium between regioisomeric 1,3-ynones can be shifted toward a more stable isomer, thus, allowing to obtain a single reaction product. Two regioselectivity-controlling factors for the transposition of 1,3ynones were identified. First, by employing an α-substituted aryl group at ketone moiety, the gold-catalyzed reaction provides its arylalkyne regioisomer as a sole product, where an interrupted conjugation between the ketone group of ynone moiety and the aryl group substituent drives this transformation toward more conjugated regioisomer. Second, it is shown that extension of conjugation can render the regioselective transposition of ynone moiety. Thus, the reaction of skipped diynones in the presence of a gold catalyst produced the conjugated diynones via a 1,3-ynone transpositon reaction. The significance of this method is highlighted in the synthesis of various regioisomeric five- and sixmembered alkynylated heterocycles.

The development of novel regiodivergent Cu - and Au-catalyzed cycloisomerization reactions of boryl-substituted alkynyl epoxides into C2- or C3borylated furans is presented in Chapter 2. In the presence of a copper catalyst, the 1,2-MIDA-boronate group migration followed by cycloisomerization reaction occurs to form

SUMMARY (continued)

C3-borylated furans. In addition, it was found that a more efficient gold-catalyzed version of this reaction is regiodivergent, where depending on the choice of ligand and counterion, the regioisomeric boryl furans can be selectively obtained. Thus, phosphite gold complex with triflate counterion strongly favors a 1,2-boryl migration during the cycloisomerization process to produce C3-borylated furans. In contrast, employment of NHC gold hexafluoroantimonate affords C2-borylated furans, exclusively.

Chapter 3 discloses a transition metal-catalyzed stereodivergent synthesis of functionalized 1,3-dienes from easily accessible propargylic phosphates. It was shown that the 1,3-phosphatyloxy migration in α-halo propargylic phosphates can be followed by a regioselective 1,3-chlorine, 1,3-bromine, and prior unknown 1,3-iodine migration to form the functionalized 1-phosphate, 2-halo substituted 1,3-dienes. This cascade reaction is stereodivergent. Thus, in the presence of a copper catalyst, the (Z)-1,3-diene is formed, where the coordination of the phosphate group in allenyl phosphate intermediate to the copper species is believed to dictate the observed Z-stereoselectivity. Whereas, the steric interaction between the phosphate group in allenyl phosphate intermediate and the gold catalyst renders the E-selectivity in this transformation. It was also shown that the obtained (Z)-1,3-dienes are valuable substrates for a various functionalization reactions, including Diels-Alder reactions (at diene moiety) and cross-coupling reactions (at vinyl bromide and vinyl phosphates) to produce a variety of acyclic and cyclic products.

CONTRIBUTION OF AUTHORS

Several parts of this thesis are reproduced from previously published research and review articles co-authored with collaborators, who contributed significantly to the presented work.

The first part of this thesis is written based on the previously published article ("Gold-Catalyzed 1,3-Transposition of Yones" Kazem Shiroodi, R.; Soltani, M.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 9882). Thus, as a major contributor of this work, I designed and performed experiments (chapters two and three), and wrote the manuscript. Dr. Mohammad Soltani, a visiting researcher of our group at the time, partially contributed to the synthetic part of the project (chapters 3.2.1 and 3.3.1). Prof. Vladimir Gevorgyan guided the research and contributed to the discussion of the results and manuscript writing.

The second part of the thesis is also reproduced from a previously published research article ("1,2-Boryl Migration Empowers Regiodivergent Synthesis of Borylated Furans " Kazem Shiroodi, R.; Koleda, O.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 13146), in which I conceive the project and discovered the initial results (chapters seven and eight). Olesja Koleda, a graduate student of our group at the time, discovered part of this project (chapters 6.1 and 6.3) and had significant contribution in execution of the project (chapter seven). Prof. Vladimir Gevorgyan guided the research and contributed to the discussion of the results and manuscript writing.

The third part of the thesis includes material from two previous publications. Chapter nine reproduced from previously published review article ("Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates." Kazem

Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991), in which I was the only author besides my advisor, Prof. Vladimir Gevorgyan. Chapters ten and eleven describe results of a published work ("Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. J. Am. Chem. Soc. 2012, 134, 6928). I was the major contributor of this project. Thus, I executed the project (chapters ten and eleven), and wrote the manuscript. Dr. Alexander Dudnik, a senior graduate student of our group at the time, performed the experiments at the early stage of the project including optimization of reaction conditions (Chapter 10.1). All authors participated in the discussion of the results. My advisor, Prof. Vladimir Gevorgyan, guided the research and contributed to the discussion of the results and manuscript writing.

PART ONE

GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES AND DIYNONES

1. INTRODUCTION

1.1. 1,3-Transposition of Allylic Alcohols

Transition metal-catalyzed transposition reactions are interesting transformations. Among them, the 1,3 -transposition of allylic alcohols, ${ }^{1}$ which was first reported by Chabardes in 1970, ${ }^{2}$ is the synthetically most useful and well-studied transformation. This reaction is a reversible process producing a thermodynamic mixture of regioisomers $\mathbf{1 . 1}$ and $\mathbf{1 . 2}$ in the presence of a transition metal catalyst (Scheme 1). The initially discovered vanadium-catalyzed version of this isomerization reaction ${ }^{2}$ was further developed ${ }^{3}$ by employing other metal complexes such as $\mathrm{W},{ }^{4} \mathrm{Mo},{ }^{5}$ and Re. ${ }^{6}$ The high oxidation state rhenium complex $\mathrm{Ph}_{3} \mathrm{SiOReO}_{3}$, however, has been shown to be the catalyst of the choice for this transformation. ${ }^{6 e, f}$ In addition, this oxometal complex does not participate in the competing oxidation reaction of substrates, which is a common problem with other transition metal catalysts.

1.1

1.2

Scheme 1.

Followed by Osborn's initial mechanistic proposal, ${ }^{3 a}$ Grubbs and co-workers recently suggested a mechanism for the Re-catalyzed transposition reaction of allylic alcohol $\mathbf{2 . 1}$ into the isomer 2.5 (Scheme 2). ${ }^{7}$ By ligand exchange substrate $\mathbf{2 . 1}$ forms rhennate ester 2.2, which upon a [3,3]-sigmatropic rearrangement via the chair like transition structure
2.3 affords compound 2.4. Displacement of allylic alcohol from the latter with either $\mathrm{Ph}_{3} \mathrm{SiOH}$ or 2.1 furnishes the transposed isomer 2.5. Recombination of triphenyl phosphinesilanol with the trioxo-rhenium catalyst regenerates the active catalyst for the catalytic cycle.

Scheme 2.

Remarkably, creative strategies have recently been developed to control the regioselectivity of this transition metal-catalyzed reversible process to selectively obtain one of the allylic alcohols. ${ }^{8}$ For instance, Lee and co-workers showed that allylic silyl ether 3.1, possessing tethered vinyl boronate in the presence of a rhenium catalyst undergoes a regioselective 1,3-transposition of allylic alcohol moiety to form cyclic boronate 3.2 where formation of thermodynamically favored boron-oxygen bond is believed to be the driving force for this reaction (Scheme 3). ${ }^{8 \mathrm{f}}$ The synthetic utility of this

Scheme 3.

method was demonstrated in the total synthesis of (-)-dactylolide (Scheme 4). ${ }^{9}$ Thus, substrate 4.1, possessing a silyl-protected allylic alcohol moiety undergoes a regioselective isomerization reaction to produce the bicyclic system 4.2, which upon a sequence of steps efficiently produce the natural product 4.3.

Scheme 4.

1.2. 1,3-Transposition of Alkynyl Metal Carbenes

The catalytically-generated alkynyl metal carbenes, possessing metals such as $\mathrm{Rh},{ }^{10} \mathrm{Ru},{ }^{11} \mathrm{Au},{ }^{12} \mathrm{Pt},{ }^{13}$ and $\mathrm{Cu},{ }^{14}$ as well as stoichiometric analogues involving $\mathrm{Ti},{ }^{15} \mathrm{Cr},{ }^{16}$ and W^{17} metals, have been shown to undergo a 1,3 -transposition reaction. ${ }^{18}$ Seminal studies of transposition in alkynyl rhodium alkylidenes, as well as its well-studied ruthenium version, are discussed below.

In 1993, Padwa and co-workers reported the first example of a 1,3-transposition reaction of alkynyl metal carbene functionality. ${ }^{10}$ Using the diyne-tethered α-diazoketone 5.1 in the presentence of a rhodium catalyst, the generated metal carbene 5.2 underwent a cyclopropanation reaction exclusively at the distal rather than proximal alkynyl moiety to produce 5.4 selectively over 5.3 (Scheme 5). Accordingly, it was proposed that upon alkyne-carbene metathesis of $\mathbf{5 . 2}$, carbene $\mathbf{5 . 5}$ (precursor of 5.3) is generated, which then undergoes a 1,3-transposition reaction to form regioisomeric carbene $\mathbf{5 . 7}$ (precursor of 5.4) via the intermediacy of a four-membered metallacycle 5.6. It is believed that a combination of the disfavored steric hindrance between the rhodium carbene and indenone moieties in $\mathbf{5 . 5}$ and the favored conjugation in $\mathbf{5 . 7}$ is the driving force for this transposition reaction.

Scheme 5.

Lee group disclosed a cascade reaction of diyne $\mathbf{6 . 1}$ catalyzed by the Grubbs catalyst to from product 6.5 (Scheme 6). ${ }^{11 a}$ It was found that the allylsilyl-protected diynol 6.1 in the presence of the Grubbs-II (ruthenium) catalyst undergoes the ring closing metathesis (RCM) reaction to generate the cross-conjugated alkynyl ruthenium carbene 6.2. The latter does not produce the corresponding enyne 6.3, instead it undergoes a 1,3-transposition reaction to the regioisomeric alkynyl carbene 6.4, which then produces the product 6.5 in 89% yield.

Scheme 6.

1.3. 1,3-Transposition of Ynones

Blum and co-workers reported that ynone 7.1 in the presence of the platinum (IV) chloride catalyst produces a mixture of regioisomeric ynones $\mathbf{7 . 1}$ and 7.2 along with chloroenones 7.3 and 7.4 (Scheme 8). ${ }^{19}$ Enones 7.3 and 7.4 are believed to form via a non-catalytic hydrochlorination of alkyne functionality of both regioisomers 7.1 and 7.2, where the origins of chlorine and hydrogen are the catalyst and the solvent, respectively. The low regioselectivity and efficiency of this reaction was mostly attributed to the

7.1:7.2:7.3:7.4=64:18:15:3

Scheme 7.

reversibility of the 1,3 -transposition process. Thus, it was suggested ${ }^{19,20}$ that intramolecular nuclophilic attack of the oxygen at the activated alkyne moiety of $\mathbf{8 . 1}$ generates the four-membered intermediate 8.2, which further rearranges to the regioisomer 8.3 (Scheme 8).

Scheme 8.

Recently, our group has shown that ynone $\mathbf{9 . 1}$ in the presence of a copper catalyst undergoes a cycloisomerization reaction to efficiently produce furan 9.2 (Scheme 7). ${ }^{21}$ Interestingly, during the optimization process of cyclization of 9.1 to furan $\mathbf{9 . 2}$, it was found that the palladium-catalyzed version of this reaction produced a detectable amount of transposed ynone regioisomer 9.3 although with a low efficiency. This 1,3transposition reaction was further explored and described in the next section.

9.1: $9.2: 9.3=76: 16: 8$

Scheme 9.

1.4. Summary

In summary, transition metal-catalyzed 1,3-transposition reactions are emerging areas of research in synthetic organic chemistry. Earlier, it was shown that allylic alcohols in the presence of transition metals exist in a thermodynamic equilibrium with the 1,3-transposed isomer. Subsequently, creative strategies have been developed to
control the efficiency of this transformation. Thus, a various allylic alcohols $\mathbf{1 0 . 1}$ were converted into the corresponding isomers $\mathbf{1 0 . 2}$ via a regioselective 1,3 -transposition reaction (Scheme 10). Likewise, the regioselective transformations involving the 1,3transposition of alkynyl metal carbenes $\mathbf{1 0 . 3}$ to $\mathbf{1 0 . 4}$ have been well studied. ${ }^{22}$ The unselective and low-yielding 1,3-transposition reaction of alkynyl ketones (ynones) $\mathbf{1 0 . 5}$ to the regioisomeric ynones $\mathbf{1 0 . 6}$ has also been reported.

10.5

Scheme 10.

Based on observations, it was suggested that regioisomeric ynones $\mathbf{1 0 . 5}$ and $\mathbf{1 0 . 6}$ exist in equilibrium. However, no regioselectivity-controlling strategy for this transformation has been developed so far.

2. REGIODIVERGENT 1,3-TRANSPOSITION OF YNONES AND DIYNON

Ynones are widely used in total synthesis of natural products. ${ }^{23}$ In addition, they are valuable reaction partners in the synthesis of a wide array of heterocycles. ${ }^{24}$ Although reported, the corresponding regioselective 1,3-transposition reaction of ynones is yet to be developed. Intrigued by our group's early observation (vide supra), we decided to further explore a regioselective and efficient 1,3-transposition reaction of ynones.

2.1. Computation-Assisted Discovery of Regiocontrolling Factors

It was suggested that in the presence of transition metals, regioisomeric ynones 11.1 and $\mathbf{1 1 . 2}$ exist as a thermodynamic mixture (Scheme 11). ${ }^{19}$

Scheme 11.

According to the simplified Boltzman's equation (eq 1), the ratio of 11.2:11.1 in equilibrium depends on the ground state energy difference between these these two isomers.

$$
\begin{equation*}
\text { 11.2/11.1 }=\exp \left(-\Delta \mathrm{E}_{11.2-11.1} / \mathrm{RT}\right) \tag{eq1}
\end{equation*}
$$

Accordingly, if the ground state energy difference between two isomers $\left(\Delta \mathrm{E}_{11.2-11.1}\right)$ is more than $2.9 \mathrm{kcal} / \mathrm{mol}$, a $\gg 99: 1$ ratio of $\mathbf{1 1 . 2}: \mathbf{1 1 . 1}$ is predicted, meaning that the existing equilibrium would virtually completely be pushed toward the more stable isomer 11.2 (Scheme 11). Thus, in order to get some insight into the effect of different substitutions (i.e. R^{1} and R^{2}) of ynones on the position of the equilibrium between $\mathbf{1 1 . 1}$ and 11.2, we performed DFT calculations of the ground state energies of $\mathbf{1 1 . 1}$ and $\mathbf{1 1 . 2}$ at
the B3LYP/6-31G* level. The theoretical ratios of $\mathbf{1 1 . 2}: 11.1$ were predicted based on calculated $\Delta \mathrm{E}$ (eq 1), which were then compared to the experimentally-obtained ratios.

2.1.1. Consideration of Steric Effect

First, we considered the equilibrium between two regioisomers $\mathbf{1 2 . 1}$ (the more bulky t - Bu substituent next to the carbonyl group) and $\mathbf{1 2 . 2}$ (the less bulky phenyl substituent next to the carbonyl group) in the 1,3-transposition reaction (Scheme 12). The DFT calculation shows $0.08 \mathrm{kcal} / \mathrm{mol}$ difference between the ground energies of these two isomers, thus, suggesting a $47: 53$ ratio of $\mathbf{1 2 . 2}$:12.1. Expectedly, the reaction of ynone $\mathbf{1 2 . 1}$ in the presence of a π-philic metal catalyst such as [tris(2,4-ditertbutylphenylphosphite]gold tetrafluoroborate (for optimization of the catalyst see Table 1) reached the equilibrium with isomer $\mathbf{1 2 . 2}$ after 30 min to produce a $\sim 50: 50$ mixture of regioisomers.

12.1

Scheme 12.

This observation confirms that the transposition reaction of ynones indeed is a reversible process. In addition, it suggests that the steric effect of t - Bu over phenyl group does not have any noticeable effect on the regioselectivity of the 1,3-ynone transposition.

2.1.2. Consideration of Electronic Factor

Next, the equilibrium between the electronically push-pull system $\mathbf{1 3 . 1}$ and $\mathbf{1 3 . 2}$ was considered (Scheme 13). Computations suggested that ynone 13.1 is $0.8 \mathrm{kcal} / \mathrm{mol}$ more stable than its regioisomer 13.2. Therefore, a 79:21 ratio of isomers was predicted, where the equilibrium between the two isomers was slightly shifted toward 13.2. Indeed, the reaction of alkynyl ketone $\mathbf{1 3 . 1}$ in the presence of the gold-catalyzed (for optimization of the catalyst see Table 1) produced a 74:26 mixture of 13.2:13.1.

Scheme 13.

The experimental observation, which is in accordance with the theoretical prediction shows that the electronic nature of the p-substituent on the phenyl group of ynone moiety does not have a significant affect on the position of equilibrium between two regioisomers.

2.1.3. Consideration of Interrupted Conjugation Factor

After finding that neither steric nor electronic factors have significant influence on the equilibrium between regioisomeric ynones, we considered the conjugation factor. First, we looked at the equilibrium between ynones $\mathbf{1 4 . 1}$ and $\mathbf{1 4 . 2}$ possessing alkyl and aryl substitutions (Scheme 14). Expectedly, the ground energy difference between the
two isomers was negligible $(0.1 \mathrm{kcal} / \mathrm{mol})$. Thus, both theoretical prediction and the following experimental observation of the gold-catalyzed reaction of $\mathbf{1 4 . 1}$ showed almost the same thermodynamic ratios of $\mathbf{1 4 . 2}$:14.1. Expectedly, the optimized structure of $\mathbf{1 4 . 1}$ showed co-planar orientation of the ketone and phenyl moieties, which is a requisite for a maximal orbital overlapping and hence for a conjugation between theses two groups. Obviously, the ynone 14.1 is almost as stable as the transposed isomer 14.2, in which conjugation of phenyl and acetylene groups is apparent.

14.1

14.2

$-\Delta \mathrm{E}$	Predicted $14.2: 14.1$	Experimental $14.2: 14.1$	
-0.1	$46: 54$	$44: 56$	

Scheme 14.

Next, we thought that by employing ynone 15.1 (analogue of $\mathbf{1 4 . 1}$), possessing a methyl substituent at the ortho position of phenyl group, the dihedral angle between aryl and ketone moieties would be changed (Scheme 14). Thus, the orbital overlapping between these two groups would decrease consequently leading to the destabilization of 15.1. Hence, the existing equilibrium would shift toward the more stable regioisomeric ynone 15.2. Indeed, the optimized structure showed the dihedral angle between aryl and
ketone groups of $\mathbf{1 5 . 1}$ to be 25 degrees. Accordingly, computations show that the isomer 15.2 is $5.2 \mathrm{kcal} / \mathrm{mol}$ more stable than isomer 15.1 , thus, predicting a $\gg 99: 1$ ratio of 15.2:15.1. To our delight, when the ynone 15.1 was subjected to the gold-catalyzed reaction, an exclusive formation of $\mathbf{1 5 . 2}$ was observed with no traces of $\mathbf{1 5 . 1}$ detected.

15.1

- $\Delta \mathrm{E}$	Predicted 15.2:15.1	Experimental 15.2:15.1	Experimental conditions:
			(ArO) PAuBF_{4} (5 mol\%), DCE, rt
5.2	>>99:1	100:0	, Ar= (2,4-di-tert-butylphenyl)

Scheme 15.

2.1.3.1 Scope of 1,3-Transposition Reaction of Ynones by Interrupted Conjugation Factor

Inspired by our initial finding on the o-tolyl-type handle (interrupted conjugation) to control the regioselectivity of 1,3-transposition of ynones (Scheme 15), we examined the transformation of $\mathbf{1 5 . 1}$ into the regioisomer $\mathbf{1 5 . 2}$ in the presence of different transition metals (Table I). First, the reaction was tested under the Pd-catalyzed conditions (Scheme 9). Thus, a 94:6 ratio of $\mathbf{1 5 . 2} \mathbf{1 5}$. 1 was observed albeit with a modest yield (entry 1). The platinum (IV)-catalyed version of this reaction ${ }^{19}$ was neither efficient nor regioselective (entry 2). ${ }^{19}$ It was found that $\mathbf{1 5 . 1}$ was unreactive in the presence of gold (I)
chloride bearing phosphine and NHC ligands (entries 3, 4). Likewise, poor conversion was achieved in the presence of a gold (III) chloride (entry 5). However, employment of Table I. OPTIMIZATION OF 1,3-TRANSPOSITION REACTION OF $\mathbf{1 5 . 1}$ to $\mathbf{1 5 . 1}$

	 15.1	$\frac{\mathrm{M}(5 \mathrm{~mol} \%)}{\mathrm{DCE}[0.1 \mathrm{M}]}$		
Entry	Catalyst	$T,{ }^{\circ} \mathrm{C}$	15.2:15.1 ${ }^{\text {a }}$	Isolated Yield (\%)
1	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}{ }^{\text {b }}$	80	94:6	60
2	PtCl_{4}	100	12:88 ${ }^{\text {c }}$	-
3	$\mathrm{Ph}_{3} \mathrm{PAuCl}$	100	0:100 ${ }^{\text {d }}$	-
4	IPrAuCl	100	0:100 ${ }^{\text {d }}$	-
5	LAuCl^{e}	100	25:75 ${ }^{\text {c }}$	-
6	$\mathrm{Ph}_{3} \mathrm{PAuCl}+\mathrm{AgSbF}_{6}$	25	100:0	85
7	$\mathrm{Ar}_{3} \mathrm{PAuCl}^{f}+\mathrm{AgSbF}_{6}$	25	100:0	56
8	$\mathrm{PrAuCl}+\mathrm{AgSbf}_{6}$	25	100:0	92
9	$(\mathrm{ArO})_{3} \mathrm{PAuCl}^{g}+\mathrm{AgSbF}_{6}$	$6 \quad 25$	100:0	92
10	$(\mathbf{A r O})_{3} \mathbf{P A u C l}^{\text {g }}+\mathbf{A g B F}_{4}$	425	100:0	95
11	AgBF_{4}	100	0:100 ${ }^{\text {d }}$	-

${ }^{a}$ Ratios were reported based on ${ }^{1} \mathrm{H}$ NMR.
${ }^{b}$ TDMPP (20 mol\%), PTSA (50 mol\%) in DMF, 17 h.
${ }^{c}$ Ratios were reported based on GC/MS.
${ }^{d}$ Substrate $\mathbf{1 5 . 1}$ stayed intact.
${ }^{e} \mathrm{~L}=2$-pyridinecarboxylato.
${ }^{f}$ 2-dicyclohexylphosphino-2', 4', 6', triisopropylbiphenyl.
${ }^{g} \mathrm{Ar}=\left(2,4-\mathrm{di}-t-\mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{3}\right)$.
gold hexafluoroantimonate complexes at room temperature led to exclusive formation of the rearranged product 15.2 (entries 6-9). Finally, employment of a cationic gold catalyst possessing phosphite ligand and tetrafluoroborate counter ion led to the 1,3-transposed ynone 15.2 in 95% yield (entry 10). Control experiment indicated that silver tetrafluoroborate did not catalyze this reaction even at high temperature (entry 11).

With the optimized conditions in hands, we examined the scope of this transformation in the transposition of differently-substituted 1,3-ynones (Table II). Thus, ynones 15.1a-c bearing acyclic substituents reacted smoothly to produce the rearranged products 15.2a-c (entries 1-3). In addition, substrates 15.2d-f having 3-, 5-, and 6membered carbocycles afforded the transposed products in good to excellent yields (entries 4-6). Phenyl- and thiophenyl-substituted ynones $\mathbf{1 5 . 1 g}$ and $\mathbf{1 5 . 1 h}$ were also competent reactants in this transformation (entries 7 and 8). Expectedly, methyl substituent at ortho position of phenyl ring of $\mathbf{1 5 . 1 i}$ governed the regioselectivity of transposition reaction over the meta-substituted phenyl to produce product $\mathbf{1 5 . 2 \mathbf { i }}$ in an excellent yield (entry 9). Transposition of F- and OMe-containing ynones $\mathbf{1 5 . 1} \mathbf{j}$ and 15.1k proceeded uneventfully as well (entries 10,11). Expectedly, not only the methyl substituent at the ortho position of the phenyl group of ynones but also a variety of other groups were effective to impose the controlling stereoelectronic effect. Thus, aryl ynones 15.11-q bearing phenyl (entry 12), trimethylsilyl (entry 13), halogens (entries 15-17), and naphthyl groups showed excellent regioselectivity, affording the rearranged products 15.2l-q exclusively and in high to excellent yields. Notably, 3-metylated indole 15.1r can also be efficiently employed in this reaction to produce $\mathbf{1 5 . 2 r}$ (entry 18).

Table II. GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES

Entry

Table III. GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES (continued)
Entres)
Table IV. GOLD-CATALYZED 1,3-TRANSPOSITION OF YNONES (continued)

[^0]${ }^{b}$ Reactions were performed on $0.2-0.5 \mathrm{mmol}$ scale.
${ }^{c} \operatorname{IPrAuCl}(5 \mathrm{~mol} \%)+\mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%)$ were used as catalytic system.

2.1.3.2 Carbon-Labeling Studies

To verify if this transformation proceeds with or without skeletal rearrangement, which are often observed in the gold-catalyzed transformations, ${ }^{25}$ C1-labebeled ynone 16.1 was prepared and subjected to the standard reaction conditions (Scheme 16). Thus, upon he 1,3-transposition reaction, the regioisomer $\mathbf{1 6 . 3}$ was formed possessing the labeled carbon at the alkyne moiety. This observation indicates that the ynone transposition reaction does not involve $\mathrm{C}-\mathrm{C}$ bond disconnection and most likely proceeds through intermediacy of a four-membered heterocycles 16.2. ${ }^{19,20}$

Scheme 16.

2.1.4. Consideration of Extended Conjugation Factor

We considered the possibility of the extended conjugation serving as a regioselectivity-controlling factor in this transformation (Scheme 17). Computations predicted that conversion of the cross-conjugated diynone $\mathbf{1 7 . 1}$ to the conjugated isomer 17.2 would be thermodynamically favored by releasing $8.0 \mathrm{kcal} / \mathrm{mol}$ energy. Thus, this effect would completely push the equilibrium toward the more thermodynamically stable ynone 17.2. Inspired by this prediction, we subjected the diynone $\mathbf{1 7 . 1}$ to the goldcatalyzed reaction. We were pleased to find that $\mathbf{1 6 . 1}$ was completely converted to the regioisomeric diynone 17.2.

$-\Delta \mathrm{E}$	Predicted $\mathbf{1 7 . 2 : 1 7 . 1}$	Experimental $17.2: 17.1$	Experimental conditions: 8.0
$\gg 99: 1$	$100: 0$		ArO) $\mathrm{PAuBF}_{4}(5 \mathrm{~mol}=(2,4-\mathrm{di}$-tert-butylphenyl) $\mathrm{DCE}, \mathrm{rt}$

Scheme 17.

2.1.4.1. Scope of 1,3-Transposition Reaction of Ynones by Extended Conjugation Factor

Intrigued by finding the second regioselective-controlling factor in the 1,3transposition of ynones i.e. extended conjugation (Scheme 16), we examined the reaction of symmetrically substituted diynones 18.1a, \mathbf{b} under the optimized reaction conditions. Thus, the 1,3-transposition reaction occurred smoothly to afford conjugated diynones 18.2a, \mathbf{b} in excellent yields.

Scheme 18.

We were interested in the development of 1,3-transposition reaction toward synthetically more attractive unsymmetrical conjugated diynones. However, by employing an unsymmetrical substrate such as 19.1, a gold catalyst can activate either of
alkynyl groups. Thus, the reaction would lead to a mixture of products 19.2 (result of 1,3transposition toward R^{1}) and $\mathbf{1 9 . 3}$ (result of 1,3-transposition toward R^{2}).

Scheme 19.

To solve this problem, we first speculated that by employing the unsymmertical diynone 19.1a, bearing an o-tolyl moiety, the interrupted conjugation effect (vide supra) would render a selective transposition toward phenyl group, thus formation of 19.2a would be expected over 19.3a (Scheme 20). However, by performing this reaction at room temperature, both alkyne moieties of 19.1a were involved in the transposition reaction to produce a 58:42 mixture of rearranged products 19.2a and 19.3a. Gratifyingly, at elevated temperature, the thermodynamically more stable isomer 19.2a was obtained exclusively in 79%.

Scheme 20.

Next, we speculated that employing a skipped diynone 20.1, possessing a bulky triisopropylsilyl (TIPS) terminus would impose steric hindrance at the proximal triple bond, thus the distal alkyne would selectively be activated by the gold catalyst toward the

Table V. GOLD-CATALYZED 1,3-TRANSPOSITION REACTION OF DIYNONES

1		20.1a		20.2a	86
2		20.1b		20.2b	83
3		20.1c		20.2c	93
4		20.1d		$20.2 \mathrm{~d}$	91
5		20.1e		$20.2 \mathrm{e}$	$90^{\text {c }}$

[^1]${ }^{b}$ Reactions were performed on $0.2-0.5 \mathrm{mmol}$ scale.
${ }^{c}$ Reaction was performed at $100^{\circ} \mathrm{C}$.

1,3-transposition reaction hence producing the conjugated diynone 20.2 (Table III). Indeed, the transposition of skipped diynones 20.1a-e efficiently afforded the unsymmetrical conjugated diynones 20.2a-e bearing a variety of alkyl, aryl, and heteroaryl substituents (entries 1-5).

2.1.4.2. Synthesis of Regioisomeric Alkynylated Heterocycls

Having established the regioselective synthesis of conjugated diynones from easily available skipped diynones, we speculated that heterocyclization reactions of both of those unsymmetrically-substituted 20.1 and 20.2 should allow for obtaining regioisomeric heterocycles. It was expected that the bulky TIPS group in 20.1 would impose steric hindrance hence controlling the heterocyclization at another ynone miety. Indeed, the reaction of skipped 20.1c with methylhyrazine produced pyrazole 21c1 in 93% yield, where TIPS-acetylene moiety did not involve in this regioselective reaction (Scheme 21). ${ }^{26}$ Likewise, a [3+2] cyclization of $\mathbf{2 0 . 1}$ c with sodium azide afforded the novel TIPS-acetylene-containing triazole 21c2 in a good yield. A condensation reaction of 20.1c with ethylacetoacetate and ammonium acetate furnished the tetrasubstituted pyridine 21c4 in 83% yield. ${ }^{26 b}$ In addition, alkynylated pyrimidine was efficiently synthesized by reaction of 20.1c with benzimidine hydrochloride. ${ }^{26}$ Next, we were eager to verify whether the conjugated diynones $\mathbf{2 0 . 2}$ would be competent substrates for these heterocyclization, as to the best of us knowledge no such selective reactions were reported. ${ }^{27}$ Remarkably, after the gold-catalyzed transposition of $\mathbf{2 0 . 1}$ to 20.2, the heterocyclization reaction under the same conditions produced regioisomeric alkynylated heterocycles. Therefore, pyrazole 22c1 (regioisomer of 21c1), triazole 22c2 (regioisomer of 21c2), and pyridine $22 \mathbf{c} 3$ (regioisomer of $21 \mathbf{c 3}$) were obtained in good to excellent

Scheme 21.

i. MeNHNH_{2} (3.0 equiv), MeCN , rt.
ii. NaN_{3} (1.1 equiv, DMF, rt.
iii. Benzamidine hydrochloide (1.2 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.4 equiv), $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=7: 1,80^{\circ} \mathrm{C}$. $i v$. Ethylacetoacetate (1.7 equiv), $\mathrm{NH}_{4} \mathrm{OAc}$ (5.0 equiv), EtOH , reflux.
yields. The reaction of symmetrical benzimidine hydrochlodie with 20.2c produced pyrimidine 21c4 (same product of reacting with 20.1c) albeit in a slightly lower yield.

2.2. Summary

In summary, we developed the first efficient and regioselective 1,3-transposition reaction of ynones and diynones. It was found that steric and electronic nature of substituents at ynone miety did not have significant influence on the position of equilibrium between regioisomeric ynones in this thermodynamically-controlled transformation. However, we found that interrupted- and extended conjugation effects can efficiently control the regioselectivity of this reaction. The synthetic usefulness of this method was demonstrated by synthesis of various regioisomeric five- and sixmembered heterocyclic scaffolds possessing an alkyne moiety.

3. EXPERIMENTAL SECTION

3.1. General Information

NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DRX$400(400 \mathrm{MHz})$ instruments. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 $\mathrm{m} \times 0.25 \mathrm{~mm}$ capillary column, HP-5MS). Column chromatography was carried out employing Silicycle silica gel (Kieselgel 60, 63-200 $\mu \mathrm{m}$). Precoated silica gel plates F254 were used for thin-layer analytical chromatography. All manipulations with transition metal catalysts were conducted under inert atmosphere using a combination of glovebox and standard Schlenk techniques. Anhydrous toluene, tetrahydrofuran, ether, and dichloromethane purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system. Anhydrous solvents other than listed above were purchased from Aldrich and stored over calcium hydride. All other reagents were purchased from Aldrich, Strem Chemicals Inc., Alfa Aesar or Acros Organics, or synthesized via known literature procedures. Reactions were typically run in oven-dried glassware under inert atmosphere.

3.2. 1,3-Transposition Reaction of Ynones

3.2.1. Synthesis of Ynone Substrate

Method $\boldsymbol{A} \mathbf{: ~}^{28}$

In a 5.0 mL round bottom flask containing stirring bar, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2.0 \mathrm{~mol} \%$, $0.04 \mathrm{mmol}, 28 \mathrm{mg})$ and copper(I) iodide $(5.0 \mathrm{~mol} \%, 0.1 \mathrm{mmol}, 20 \mathrm{mg})$ were added under argon atmosphere. $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL})$ and alkyne (1.02 equiv) were added and reaction mixture allowed to stir for 5 minutes. The aryloyl chloride (1.0 equiv) was added and the reaction mixture stirred at room temperature until judged completed by GC/MS. The reaction mixture was then poured into saturated ammonium chloride solution and extracted three times with ethyl acetate. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvents were removed under reduced pressure, and the residue was purified by flash chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=40 / 1)$ to give the corresponding ynone 15.1.

Method B:

15.1
$n \mathrm{BuLi}$ solution (1.0 equiv, 2.0 mmol) was added to the solution of terminal alkyne (1.1 equiv, 2.2 mmol) in THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction stirred 15 min at $-78{ }^{\circ} \mathrm{C}$ followed by adding the aldehyde (1.0 equiv, 2.0 mmol). The reaction mixture was
allowed to warm to room temperature and stirred for an additional 1 h . After completion, reaction mixture was poured into saturated ammonium chloride solution and extracted three times with dichloromethane. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue without purification transferred to a 25 mL round bottom flask. Dichloromethane (10 mL), Celite ${ }^{\circledR}(\sim 200 \mathrm{mg})$, and pyridinium dichromate (1.0 equiv) were added. After completion judged by $\mathrm{GC} / \mathrm{MS}$, the reaction was extracted three times with dichloromethane. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue was purified by flash chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=40 / 1)$ to give the corresponding ynone 15.1.

1-o-tolylhept-2-yn-1-one (15.1a) Method $\mathrm{A},(80 \%),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.18 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.40-7.38 (m, 1 H), 7.29-7.27 (m, 1 H), 7.20-7.19 (m, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{sex}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.9,140.2,135.7$, $133.2,132.6,132.0,125.7,95.4,81.2,29.8,22.0,21.9,18.8,13.5$.

6-chloro-1-o-tolylhex-2-yn-1-one (15.1b) Method B, (55\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.16$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41-7.39 (m, 1 H), 7.31$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.59$ (s, 3 H), 2.07 (quin, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.6,140.3$, 135.5, 133.2, 132.8, 132.1, 125.8, 92.8, 81.7, 43.4, 30.5, 21.9, 16.6. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClO}[\mathrm{M}]+: 220.0655$, found: 220.0657 .

4,4-dimethyl-1-o-tolylpent-2-yn-1-one (15.1c) ${ }^{29}$ Method A (95\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.18-8.16 (m, 1 H$), ~ 7.42-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 180.2,140.2$, 136.0, 133.0, 132.6, 132.0, 125.7, 102.4, 79.7, 30.1, 27.9, 21.9.

3-cyclopropyl-1-o-tolylprop-2-yn-1-one (15.1d) Method A (95\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.12$ (apparent d, $\left.J=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.41-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.20 (m, 1 H$), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 4 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 179.7,140.0,135.9,132.9,132.5,132.0,125.7,99.6,21.8,9.7$, 8.7, -0.1. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}$ [M]+: 184.0888, found: 184.0883.

3-cyclopentyl-1-o-tolylprop-2-yn-1-one (15.1e) Method A (93\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.16$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.20(m, 1 H$), 2.88-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.74$ (m, 4 H$), 1.65-1.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 180.1, 140.2, 135.9, $133.1,132.6,132.0,125.7,99.5,80.8,80.8,77.4,77.1,76.9,33.3,30.2,25.2,21.9$. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]+: 212.1201$, found: 212.1206 .

3-cyclohexyl-1-o-tolylprop-2-yn-1-one (15.1f) Method A (67\%) ${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.20-8.18 (m, 1 H$), ~ 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.63-$ $1.35(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 180.1,140.2,135.9,133.1,132.6$,
$132.0,125.7,98.9,81.1,31.7,29.3,25.7,24.7,21.9$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ [M]+: 226.1358, found: 226.1357.

3-phenyl-1-o-tolylprop-2-yn-1-one (15.1g) ${ }^{30}$ Method A (75\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.32$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.67-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.40(m, 2 H), 7.38-7.36(m, 1 H$), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.7,140.5,135.7,133.2,132.9,132.2,130.6,128.7,125.9,120.3$, 91.8, 88.4, 22.0.

3-(thiophen-3-yl)-1-o-tolylprop-2-yn-1-one (15.1h) Method B (45\%) ${ }^{1}$ H NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.27$ (apparent d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.79-7.77 (m, 1 H), $7.45-7.43$ (m, 1 H$), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.7,140.4,135.7,133.5,133.1,132.9,132.2,130.2,126.2,125.9$, 119.6, 88.6, 87.3, 21.9. HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{OS}$ [M]+: 226.0452, found: 226.0452.

3-m-tolyl-1-o-tolylprop-2-yn-1-one (15.1i) Method A (85\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 8.32$ (apparent d, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1$ H), $7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $179.8,140.4,138.5,135.8,133.4,133.2,132.9,132.2,131.6,130.1,128.6,125.9,120.1$, 92.2, 88.2, 22.0, 21.2. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]+: 233.0966$, found: 233.0965.

3-(3-fluorophenyl)-1-o-tolylprop-2-yn-1-one (15.1j) Method A, (70\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 8.28$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.35$ (m, 2 H$), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.3,162.2\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=248.2 \mathrm{~Hz}\right), 140.6,135.4,133.2$ $\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=17.6 \mathrm{~Hz}\right), 132.2,130.3\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=8.8 \mathrm{~Hz}\right), 128.8,126.0,122.1\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=8.8 \mathrm{~Hz}\right), 119.4$ $\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=23.9 \mathrm{~Hz}\right), 118.0\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 89.8\left({ }^{5} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 88.6,22.0$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}]+: 237.0716$, found: 237.0717.

3-(4-methoxyphenyl)-1-o-tolylprop-2-yn-1-one (15.1k) ${ }^{1}$ Method A, (98\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 8.29-8.28(m, 1 H$), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 1 \mathrm{H})$, 7.37-7.36(m, 1 H), 7.27 (apparent d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 179.9,161.6,140.2,136.0,135.0$, $132.9,132.7,132.1,125.8,114.4,112.1,93.0,88.4,55.4,21.9$.

1-([1,1'-biphenyl]-2-yl)-3-phenylprop-2-yn-1-one (15.11) Method A, (69\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.99$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.61-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.48-$ 7.47 (m, 1 H), $7.46-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 180.6,142.7,140.4,138.0,133.0,132.2,131.1,130.5,130.1$, 129.6, 128.4, 128.3, 127.8, 127.4, 120.1, 93.8, 88.9. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}$ [M]+: 281.0966, found: 281.0967 .

1-(2-(trimethylsilyl)phenyl)hept-2-yn-1-one (15.1m) Method B, (52\% over two steps) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.35$ (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.75-7.73$ (m, 1
H), 7.57-7.55 (m, 1 H$), 7.53-7.52(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 179.8,142.4,141.6,135.8,133.1,132.5,128.9,96.4,80.2,29.9,22.1$, 18.9, 13.5, 0.1.

1-(2-bromophenyl)-3-phenylprop-2-yn-1-one (15.1n) ${ }^{31}$ Method A, (60\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.08-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.69$ (apparent d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65$7.63(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 177.5,137.5,134.9,133.4,133.1,132.8,131.0,128.7,127.4,121.2,120.0,94.2$, 88.0.

1-(2-chlorophenyl)-3-phenylprop-2-yn-1-one (15.10) ${ }^{32}$ Method A, (70\%) ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.31$ (apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.73-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.68$ $7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C N M R}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 176.7,133.45,133.1,132.6,131.5,131.0,128.7,126.9,120.0$, 93.9, 88.3.

1-(2-fluorophenyl)-3-phenylprop-2-yn-1-one (15.1p) ${ }^{33}$ Method A, (85\%) ${ }^{1}$ H NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.08-8.05 (m, 2 H), 7.64-7.60 (m, 2 H), $7.56-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.41(m, 1H), 7.38-7.34(m, 2 H), 7.25-7.24(m, 1 H$), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 174.1,162.0\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=262.0 \mathrm{~Hz}\right), 135.6\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.8 \mathrm{~Hz}\right)$, $133.2,131.8,131.0,128.7,125.5\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 124.2\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 120.0,117.1$ $\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.7 \mathrm{~Hz}\right), 93.0,88.5$.

1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-one (15.1q) ${ }^{34}$ Method A, (70\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 9.27$ (apparent d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.66 (apparent d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 8.09 (apparent d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.91 (apparent d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 $7.67(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 179.7,135.1,134.6,133.9,133.0,130.8,130.6,129.0,128.7$, 128.6, 126.8, 126.0, 124.5, 120.4, 91.7, 88.5.

1-(1,3-dimethyl-1H-indol-2-yl)hept-2-yn-1-one (15.1r) Method B, (55\% over two steps) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.70$ (apparent d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41-7.38$ (m, 1 H), 7.32 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.15$ (m, 1 H$), 4.01$ (s, 3 H), 2.78 (s, 3 H), $2.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.51(\mathrm{sxt}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 169.9,139.3,127.3,126.9$, 125.7, 121.3, 120.8, 120.0, 110.1, $96.3,82.8,32.5,29.7,22.1,19.1,13.5,11.2$. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}[M]+253.1453$, found: 253.1465 .

3.2.2. Gold-Catalyzed 1,3-Transposition of Ynones

An oven dried 5 mL V-shape vial equipped with magnetic stir bar was loaded with commercially available chloro[tris(2,4-di-tert-butylphenyl)phosphite] gold (5.0 $\mathrm{mol} \%, 22 \mathrm{mg}$) and silver tetraflouroborate ($5.0 \mathrm{~mol} \%, 4.8 \mathrm{mg}$) in the glove box. The vial was capped and taken out of glove box. 1,2-dichloroethane (4 mL) was added and reaction mixture was stirred for 5 min at room temperature. Ynone $15.1(0.5 \mathrm{mmol})$ as a solution in 1,2-dichloroethane (1 mL) was then added through cannula and the reaction mixture stirred at room temperature until judged completed by GC/MS. The reaction mixture was then passed through a small pad of Celite ${ }^{\circledR}$, solvents were removed under reduced pressure, and the residue was purified by flash chromatography using silica gel $(\mathrm{Hex} / \mathrm{EtOAc}=40 / 1)$ to give the rearranged ynone $\mathbf{1 5 . 2}$ product.

1-o-tolylhept-1-yn-3-one (15.2a) (95\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.53$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 1 \mathrm{H})$, $2.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 188.3,142.1,133.5,130.7,129.8$, 125.8, 119.9, 91.7, 89.7, 45.4, 26.4, 22.2, 20.6, 13.8. HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}$ [M]+: 200.1201, found: 200.1203.

6-chloro-1-o-tolylhex-1-yn-3-one (15.2b) 90%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ 7.53 (apparent d, $J=7.7 \mathrm{~Hz}, 8 \mathrm{H}), 7.36-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.121-7.19(\mathrm{~m}$, $1 \mathrm{H}), 3.63(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.20$ (quin, $J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 186.3,142.2,133.6,130.9,129.8,125.9$, 119.6, 91.5, 90.4, 44.0, 42.4, 26.7, 20.6. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClO}$ [M]+: 220.0655 , found: 220.0658 .

4,4-dimethyl-1-o-tolylpent-1-yn-3-one (15.2c) (98\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 8.18-8.15 (m, 1 H$), 7.44-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22$ (apparent d, $J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 180.2, 140.2, 136.0, 133.0, 132.6, 132.0, 125.7, 102.4, 79.7, 30.1, 27.9, 21.9. HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]+: 200.1201$, found: 200.1200 .

1-cyclopentyl-3-o-tolylprop-2-yn-1-one (15.2d) 91%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 7.55-7.52 (m, 1 H), 7.35-7.33 (m, 1 H), 7.26-7.24 (m, 1 H), 7.21-7.18 (m, 1 H), 3.07 - $3.02(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 191.0,142.0,133.5,130.6,129.8,125.8,120.0,91.1,90.2,53.9$, 29.2, 26.0, 20.7. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]+212.1201$, found: 212.1202.

1-cyclopropyl-3-o-tolylprop-2-yn-1-one (15.2e) (90\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 7.52 (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.121-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 2$ H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 188.4,141.9,133.5,130.6,129.8,125.9,119.8$,
89.8, 89.4, 77.3, 77.0, 76.8, 24.7, 20.7, 11.0. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}$ [M]+: 184.088, found: 184.0887.

1-cyclohexyl-3-o-tolylprop-2-yn-1-one (15.2f) (79\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 7.54 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.33 (m, 1 H), 7.26-7.24 (m, 1 H), 7.20-7.19 (m, 1 H$), 5.29(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{td}, J=13.0,3.5 \mathrm{~Hz}, 2$ H), $1.70-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ 191.5, 142.0, 133.5,130.6, 130.5, 129.8, $125.8,120.0,91.0,90.4,52.4,28.4,25.8,25.4,20.7$. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ [M]+: 226.1358, found: 226.1362.

1-phenyl-3-o-tolylprop-2-yn-1-one (15.2g) ${ }^{35}(88 \%){ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.25 (apparent d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}$, 1 H), 7.29 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 178.0,142.2,137.0,134.1,133.7,130.8,129.9,129.5,128.6,126.0$, 120.0, 92.2, 90.8, 20.9.

1-(thiophen-3-yl)-3-o-tolylprop-2-yn-1-one (15.2h) (88\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \operatorname{ppm} 8.37-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.63$ (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 7.36 (m, 2 H), 7.31-7.29 (m, 1 H), 7.25-7.21 (m, 1 H), 2.58 (s, 3 H$).{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 171.4,143.1,142.0,135.1,133.6,130.8,129.9,126.9,126.8,126.0$, 119.9, 91.2, 90.3, 20.9. HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{OS}[\mathrm{M}]+: 226.0452$, found: 226.0453.

1-m-tolyl-3-o-tolylprop-2-yn-1-one (15.2i) (92\%) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.66$ (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37$ (m, 1 H), 7.29 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27-7.24 (m, 1 H), 2.60 (s, 3 H), 2.45 (s, 3 H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 178.2,142.1,138.5,137.1,134.9,133.6,130.8$, 129.9, 128.5, 127.0, 125.9, 120.1, 91.9, 90.9, 21.3, 20.9. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}$ [M]+: 233.0966, found: 233.0971.

1-(3-fluorophenyl)-3-o-tolylprop-2-yn-1-one (15.2j) (97\%) ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) δ ppm 8.04 (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.89 (apparent d, $J=7.5,1 \mathrm{H}$), 7.65 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 1$ H), 7.31-7.29 (m, 1 H$), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 176.6,162.8\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=249.5 \mathrm{~Hz}\right), 142.3,133.8,131.0,130.3\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 129.9$, $126.0,125.3,121.0\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 119.7,115.9,\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=22.7 \mathrm{~Hz}\right), 92.8,90.4$, 20.9. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}]+: 238.0783$, found: 238.0793.

1-(4-methoxyphenyl)-3-o-tolylprop-2-yn-1-one (15.2k) (81\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl_{3}) $\delta \mathrm{ppm} 8.21$ (apparent d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37-7.35 (m, 1 H), 7.28-7.29 (m, 1 H), 7.25-7.22 (m, 1 H), 6.99 (apparent d, $J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 176.7, 164.4, $142.0,133.5,131.9,130.6,130.4,129.8,125.9,120.2,113.9,91.3,90.8,55.6,20.9$.

3-(biphenyl-2-yl)-1-phenylprop-2-yn-1-one (15.2l) (91\%) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm} 7.84$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (apparent d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.63-7.58$
$(\mathrm{m}, 1 \mathrm{H}), 7.57-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1$ H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 177.9,146.2,140.1,136.8,135.0,133.8,131.0$, 129.7, 129.6, 129.4, 128.4, 128.4, 127.9, 127.5, 118.9, 92.8, 89.7. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]+: 281.0966$, found: 281.0966 .

1-(2-(trimethylsilyl)phenyl)hept-1-yn-3-one (15.2m) (91\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) δ ppm 7.61 (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}$, $1 \mathrm{H}), 7.38-7.35(, 1 \mathrm{H}), 2.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{sxt}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.95-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 187.8,144.7,134.4,134.2,129.6,128.9,125.0,91.6,90.6$, 45.1, 26.1, 22.2, 13.8, -1.0. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OSi}[\mathrm{M}]+: 258.1440$, found: 258.1444 .

3-(2-bromophenyl)-1-phenylprop-2-yn-1-one (15.2n) (89\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl_{3}) $\delta \mathrm{ppm} 8.33$ (apparent d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 - 7.63 (m, 3 H), $7.55-7.52$ (m, 2 H), 7.39-7.32(m, 2 H$).{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 177.8,136.8,135.3,134.2$, 132.8, 131.8, 129.9, 128.7, 127.4, 126.8, 122.7, 90.5, 90.4. HRMS (EI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrO}[\mathrm{M}]+: 283.9837$, found: 283.9837.

3-(2-chlorophenyl)-1-phenylprop-2-yn-1-one (15.20) ${ }^{36}$ (89\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl_{3}) $\delta \operatorname{ppm} 8.31$ (apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68 $-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}$
(126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 177.8,137.5,136.8,135.1,134.2,131.8,129.8,129.7,128.7$, 126.9, 120.5, 91.0, 89.0.

3-(2-fluorophenyl)-1-phenylprop-2-yn-1-one (15.2p) ${ }^{37}$ (83\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 8.26($ apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 3$ H), 7.22-7.16(m, 2 H$).{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 177.7,163.8\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=255.8\right.$ $\mathrm{Hz}), 136.7,134.8,134.3,132.8\left({ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 129.7,128.7,124.4\left({ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right)$, $115.9\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.1 \mathrm{~Hz}\right), 109.0\left({ }^{2} J_{\mathrm{C}-\mathrm{F}}=14.9 \mathrm{~Hz}\right), 91.4(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 86.2$.

3-(naphthalen-1-yl)-1-phenylprop-2-yn-1-one (15.2q) ${ }^{38}$ (85\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.44$ (apparent d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $8.35-8.32(\mathrm{~m}, 2 \mathrm{H}), 7.99-7.96(\mathrm{~m}, 2 \mathrm{H})$, 7.95-7.91 (m, 2 H$), 7.68-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 178.0, 137.1, 134.2, 133.7, 133.2, 133.1, 131.5, 129.6, 128.7, 128.6, 127.8, 127.0, 125.8, 125.2, 117.7, 91.7, 91.5.

1-(1,3-dimethyl-1H-indol-2-yl)hept-1-yn-3-one (15.2r) (90\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , CDCl_{3}) $\delta \mathrm{ppm} 7.59$ (apparent d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.38-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27$ (apparent d, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$, 1.80 (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.45 (sxt, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 187.4, 138.3, 127.0, 125.2, 123.6, 120.1, 119.9, 117.2, 109.6, 98.3, 83.6, 45.0, 30.8, 26.6, 22.2, 13.9, 10.0. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ [M]+: 253.1467, found: 253.1468 .

3.2.3. Carbon-Labeling Studies

Synthesis of ${ }^{13} \mathbf{C}$-Labeled \boldsymbol{o}-Tolylaldehyde $\mathbf{B}:{ }^{39}$

A flame-dried round bottom flask equipped with a stirring bar was charged with trimethylethylenediamine (1.1 equiv, $1.1 \mathrm{mmol}, 143 \mu \mathrm{~L}$) under argon. THF (5 mL) was added and the solution was cooled to $-20^{\circ} \mathrm{C}$. n-butyl lithium (1.03 equiv, 1.03 mmol, $2.63 \mathrm{M}, 390 \mu \mathrm{~L}$) was added dropwise to the cold reaction mixture and the resulting solution was stirred for 15 min . The labeled benzaldehyde \mathbf{A}^{40} (1.0 equiv, 1 mmol, $102 \mu \mathrm{~L}, \sim 10 \%$ enrichment) was then added and the reaction was stirred for 15 min at $-20^{\circ} \mathrm{C}$. Second portion of n-butyl lithium (3.1 equiv, $3.1 \mathrm{mmol}, 2.63 \mathrm{M}, 1.2 \mathrm{~mL}$) was added to the solution and the reaction was stored in a freezer at $-20^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was then cooled down to $-40^{\circ} \mathrm{C}$ and $\mathrm{MeI}(3.0$ equiv, $3 \mathrm{mmol}, 187 \mu \mathrm{~L}$) was added dropwise. The reaction stirred for 30 min at $-40^{\circ} \mathrm{C}$ and then 30 min at rt . The reaction was diluted with diethyl ether $(10 \mathrm{~mL})$ and saturated ammonium chloride was added. The reaction mixture was extracted with diethyl ether and washed with brine, dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude material was subjected to column chromatography (pure hexane to Hex: $\mathrm{EtOAc}=20: 1$) to afford \mathbf{B} as a yellow oil (68\%).

Synthesis of the ${ }^{13}$ C-labeled 1-o-tolylhept-2-yn-1-one (16.1)

The obtained labeled o-tolyladehyde B was subjected to the Method B to afford the labeled 16.1.
${ }^{13}$ C-labeled 1-o-tolylhept-2-yn-1-one (16.1) (51\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.19$ (apparent d, $J=7.7 \mathrm{~Hz}, 5 \mathrm{H}$), 7.43-7.41 (tm, 1 H), 7.33-7.29 (m, 1 H), 7.25-7.22 (m, 1 H), $2.62(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.64 (quin, $J=7.3 \mathrm{~Hz}, 2$ H), $1.49(\mathrm{sex}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.99-0.92(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 180.0 (labeled), 140.3, 135.8, 133.2, 132.6, 132.0, 125.7, 95.4, 81.2, 29.8, 22.1, 21.9, 18.8, 13.5.

1,3-Transposition Reaction of ${ }^{13}$ C-Labeled Ynone:

The gold-catalyzed reaction of ketone-labeled ynone $\mathbf{1 6 . 1}$ (vide supra) afforded the alkyne-labeled regioisomer 16.3.
${ }^{13}$ C-labeled 1-o-tolylhept-1-yn-3-one (16.3) (85\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 7.53 (apparebt d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.38-7.35 (m, 1 H$), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}$, $1 \mathrm{H}), 2.68(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{quin}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}$, $3 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 188.3, 142.1, 133.5, 130.7, 129.8, 125.9, 119.9, 89.7 (labeled), 45.4, 26.4, 22.2, 20.6, 13.8. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}+]$: 201.1235, found: 201.1239.

3.3. 1,3-Transposition Reaction of Diynones

3.3.1. Synthesis of Skipped Diynone Substrates

Method B:

20.1
$n \mathrm{BuLi}$ solution (1.0 equiv, 2.0 mmol) was added to the solution of terminal alkyne (1.1 equiv, 2.2 mmol) in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The reaction stirred 15 min at $-78{ }^{\circ} \mathrm{C}$ followed by adding the alkynyl aldehyde (1.0 equiv, 2.0 mmol). The reaction mixture was allowed to warm to room temperature and stirred for an additional 1 h . After completion, reaction mixture was poured into saturated ammonium chloride solution and extracted three times with dichloromethane. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue without purification transferred to a 25 mL round bottom flask. Dichloromethane (10 $\mathrm{mL})$, Celite ${ }^{\circledR}(\sim 200 \mathrm{mg})$, and pyridinium dichromate (1.0 equiv) were added. After completion judged by GC/MS, the reaction was extracted three times with dichloromethane. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue was purified by flash chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=40 / 1)$ to give the corresponding ynone $\mathbf{1 9 . 1}$.

Method C:

18.1
$n \mathrm{BuLi}$ solution (2.2 equiv, 4.4 mmol) was added to a solution of the acetylene (2.2 equiv, 4.4 mmol) in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min at this temperature, ethyl formate (1.0 equiv, 2 mmol) was added via syringe. The reaction was stirred for 1 h and allowed to warm up to room temperature. Saturated ammonium chloride solution was then added and the reaction mixture was extracted three times with ethyl acetate. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue was purified by flash chromatography ($\mathrm{Hex} / \mathrm{EtOAc}=40 / 1$) to give the symmetrical ynone.

Trideca-5,8-diyn-7-one (18.1a) ${ }^{41}$ Method C, (73\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ $2.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.56$ (quin, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{sxt}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 0.90(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 161.4,94.6,82.3,29.5,21.9,18.7$, 13.4.

1,5-diphenylpenta-1,4-diyn-3-one (18.1b) ${ }^{42}$ Method C, (69\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.66-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 160.8,133.4,131.3,128.7,119.5,91.7,89.5$.

1-(o-tolyl)nona-1,4-diyn-3-one (19.1a) Method B, (68\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \operatorname{ppm} 7.64$ (apparent d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.47$ $(\mathrm{m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1$ H), $2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 160.8,142.9,133.8,133.3,131.3$,
131.2, 129.9, 128.7, 126.0, 119.6, 119.2, 93.3, 91.5, 91.2, 89.5, 20.6. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]+: 244.0888$, found: 244.0889 .

1-(triisopropylsilyl)nona-1,4-diyn-3-one (20.1a) Method B, (70\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.41(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~m}, 21 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ ppm 160.6, 105.1, 96.0, 95.7, 82.4, 29.5, 21.8, 18.8, 18.4, 13.4, 11.0. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}]+: 290.2066$, found: 290.2072 .

6,6-dimethyl-1-(triisopropylsilyl)hepta-1,4-diyn-3-one (20.1b) Method B, (42\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, 21 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 161.0,105.3,103.0,96.5,86.1,29.8,27.9,18.4,11.0$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}]+: ~ 290.2066$, found: 290.2065.

1-phenyl-5-(triisopropylsilyl)penta-1,4-diyn-3-one (20.1c) Method B, (56\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.60$ (apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.46 (m, 1 H), 7.45-7.38(m, 2 H), $1.15(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 160.4, 133.4, 131.2, 128.7, 119.5, 105.1, 97.7, 91.5, 89.5, 18.5, 11.0. HRMS (EI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]+: 310.1753$, found: 310.1755 .

1-(0-tolyl)-5-(triisopropylsilyl)penta-1,4-diyn-3-one (20.1d) Method B, (67\% over two steps) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.55$ (apparent $\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.39-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.1(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
(126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 160.3,143.0,133.9,131.3,129.9,125.9,119.3,105.2,97.2$, $93.5,91.0,53.4,97.2,20.5,18.5,11.0$. HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{OSi}[\mathrm{M}]+$: 324.1909, found: 324.1914 .

1-(thiophen-3-yl)-5-(triisopropylsilyl)penta-1,4-diyn-3-one (20.1e) Method B, (41\% over two steps) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.79$ (apparent d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35-7.33 (m, 1 H$), ~ 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.11(\mathrm{~m}, 40 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 134.9,130.3,126.4,105.1,18.5,11.0$.

3.3.2. Gold-Ctalyzed 1,3-Transposition of Skipped to Conjugated Diynones

An oven dried 5 mL V-shape vial equipped with magnetic stir bar was loaded with commercially available chloro[tris(2,4-di-tert-butylphenyl)phosphite] gold $\mathrm{mol} \%, 22 \mathrm{mg}$) and silver tetraflouroborate ($5.0 \mathrm{~mol} \%, 4.8 \mathrm{mg}$). 1,2-dichloroethane (4 mL) was added and reaction mixture was stirred for 5 min at room temperature. Ynone $18.1(0.5 \mathrm{mmol})$ as a solution in 1,2-dichloroethane (1 mL) was then added through cannula and the reaction mixture stirred at room temperature until judged completed by GC/MS. The reaction mixture was then passed through a small pad of Celite ${ }^{\circledR}$, solvents were removed under reduced pressure, and the residue was purified by flash
chromatography using silica gel $(\mathrm{Hex} / \mathrm{EtOAc}=40 / 1)$ to give the rearranged ynone $\mathbf{1 8 . 2}$ product.

Trideca-6,8-diyn-5-one(18.2a) (88\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.55(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.64$ (quin, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.47$ $-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{dt}, J=7.3,4.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 187.3,90.6,76.1,72.2,63.8,45.2,29.8,26.0,22.1,21.9,19.3,13.7$, 13.4. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18}[\mathrm{M}]+: 190.1358$, found: 190.1357 .

1,5-diphenylpenta-2,4-diyn-1-one (18.2b) ${ }^{43}(91 \%){ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 8.17 (dd, $J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ ppm 176.9, 136.6, 134.5, 133.1, 130.5, 129.6, 128.7, 128.7, 120.2, 86.4, 77.8, 77.5, 72.5.

1-o-tolylnona-1,3-diyn-5-one (19.2a) (79\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 8.18$ (apparent d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2$ H), $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 177.0,142.7,136.6,134.5,133.5,130.5,129.8,129.7,128.7,125.9$, 120.1, 85.6, 78.5, 77.7, 75.9, 20.7. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$ [M]+: 244.0888, found: 244.0890 .

1-(triisopropylsilyl)nona-1,3-diyn-5-one (20.2a) (86\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) δ ppm 2.78-2.39(m, 2 H), 1.69-1.61 (m, 2 H), 1.39-1.32(m, 3H), 1.14-1.07(m, 21
H), 0.93-0.90(m, 3 H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 187.0,94.9,87.5,75.2$, $72.4,45.1,25.9,22.0,18.4,13.7,11.1$. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}[\mathrm{M}]+: 290.2066$, found: 290.2066.

2,2-dimethyl-7-(triisopropylsilyl)hepta-4,6-diyn-3-one (20.2b) (83\%) ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 193.1, 94.5, 87.5, 76.9, 71.0, 45.0, 25.8, 18.4, 11.1. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{OSi}$ [M]+: 290.2066, found: 290.2058.

1-phenyl-5-(triisopropylsilyl)penta-2,4-diyn-1-one (20.2c) (93\%) ${ }^{1}$ H NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.13$ (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H})$, $1.14-1.11(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 176.91,136.4,134.5,129.6$, 128.7, 95.3, 87.7, 77.6, 71.7, 18.5, 11.2. HRMS (EI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]+$: 310.1722, found: 310.1750 .

1-o-tolyl-5-(triisopropylsilyl)penta-2,4-diyn-1-one (20.2d) (91\%) ${ }^{1}$ H NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.19$ (apparent d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 1 \mathrm{H})$, 7.25 (apparent d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.62(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 178.4,140.7,133.7,133.3,132.2,126.0,94.9,87.8,76.6,72.9$, 21.9, 18.5, 11.2.

1-(thiophen-3-yl)-5-(triisopropylsilyl)penta-2,4-diyn-1-one (20.2e) (90\%) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ ppm 8.31 (apparent d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.64-7.59 (m, 1 H), 7.35-
$7.31(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 170.1,136.2,127.0$, $126.5,95.0,87.6,75.8,72.0,18.5,11.2$.

3.3.3. Synthesis of Regioisomeric Alkynylated Heterocycles

3.3.3.1 Synthesis of Heterocycles from Skipped Diynones

i) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (3.0 equiv), MeCN , rt.
ii) NaN_{3} (1.1 equiv), DMF, rt.
iii) benzamidine hydrochloide (1.2 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.4 equiv), $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=7: 1,80^{\circ} \mathrm{C}$.
iv) Ethylacetoacetate (1.7 equiv), $\mathrm{NH}_{4} \mathrm{OAc}$ (5.0 equiv), EtOH , reflux.

Synthesis of 1-methyl-5-phenyl-3-((triisopropylsilyl)ethynyl)-1H-pyrazole (21c1) ${ }^{44}$

To a 3 mL V-shaped vial containing 2,2-dimethyl-7-(triisopropylsilyl)hepta-4,6-diyn-3-one (20.1c) ($0.15 \mathrm{mmol}, 43.5 \mathrm{mg}$) was added $\mathrm{MeCN}(2.0 \mathrm{~mL})$ and
methylhydrazine (3.0 equiv, $0.45 \mathrm{mmol}, 14 \mu \mathrm{~L}$). The solution was stirred overnight at room temperature. Ammonium chloride (sat.) was added and solution was then extracted with dichloromethane. After removal of solvents, the residue was subjected to column chromatography (Hexane:EtOAc=20:1 to 2:1) to produce 21c1 as a yellow oil $(93 \%, 47$ mg). The position of NH moiety in product was proposed according to that in reported procedures. ${ }^{44,45,46}$

Synthesis of 1-(5-phenyl-1H-1,2,3-triazol-4-yl)-3-(triisopropylsilyl)prop-2-yn-1-one

 $(21 c 2)^{2}$

To a 3 mL V-shaped vial containing diynone 20.1c ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$) was added DMF (2.0 mL) and sodium azide (1.1 equiv, $0.22 \mathrm{mmol}, 14.5 \mathrm{mg}$). After stirring for 3 h at at room temperature, water (5 mL) was added and solution was extracted with dichloromethane. The solvents were then removed under reduced pressure and the residue was subjected to column chromatography (Hexane:EtOAc= $20: 1$ to $2: 1$) to produce 21 c 2 as a yellow oil $(71 \%, 49 \mathrm{mg})$. The position of NH moiety in product was proposed according to that in reported procedures.

Synthesis of ethyl 2-methyl-4-phenyl-6-((triisopropylsilyl)ethynyl)nicotinate (21c3)

20.1c

EtOH , reflux

21c3, 83\%

To a 10 mL round bottom flask equipped with stirring bar and a reflux condenser was sequentially added 20.1c ($0.2 \mathrm{mmol}, 62 \mathrm{mg}$), ethyl acetoacetate (1.7 equiv, 0.34 $\mathrm{mmol}, 44 \mu \mathrm{l}$), ammonium acetate (5.0 equiv, $1 \mathrm{mmol}, 77 \mathrm{mg}$), and ethanol (4 mL). The reaction was refluxed overnight. After cooling to room temperature, the solvents were removed under reduced pressure. Saturated sodium bicarbonate (10 mL) was added and the reaction was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, filtered through a pad of cotton, and then concentrated under reduced pressure. The crude oil was purified via silica gel chromatography (pure hexanes to $\mathrm{Hex}: \mathrm{EtOAc}=10: 1)$ to afford $\mathbf{2 1 c 3}$ as yellow oil $(83 \%, 70 \mathrm{mg})$.

Synthesis of 2,4-diphenyl-6-((triisopropylsilyl)ethynyl)pyrimidine (21c4) ${ }^{47}$

To a 3 mL V-shaped vial containing 20.1c ($0.15 \mathrm{mmol}, 46.5 \mathrm{mg}$), bezimidamide hydrochloride (1.2 equiv, $0.18 \mathrm{mmol}, 28 \mathrm{mg}$) and sodium carbonate (2.4 equiv, 0.36 $\mathrm{mmol}, 51 \mathrm{mg})$ was added $\mathrm{MeCN}(2 \mathrm{~mL})$ and water $(300 \mu \mathrm{~L})$. The reaction stirred at 80 ${ }^{\circ} \mathrm{C}$ until judged completed by GC/MS. After cooling down, water (5 mL) was added and the mixture was extracted with dichloromethane. The combined extracts were then dried
over sodium sulfate, concentrated under reduced pressure, and the residue was subjected to column chromatography (pure hexanes to $\mathrm{Hex}: \mathrm{EtOAc}=10: 1$) to give 21c4 as a yellow oil ($91 \%, 57 \mathrm{mg}$)

1-methyl-5-phenyl-3-((triisopropylsilyl)ethynyl)-1H-pyrazole (21c1) (93\%) ${ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.59-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 21 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 144.0,134.2,129.9,128.8,128.6,125.5,110.4$, 99.3, 91.6, 37.7, 18.7, 11.3. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}]+: 339.2257$, found: 339.2253.

1-(5-phenyl-1H-1,2,3-triazol-4-yl)-3-(triisopropylsilyl)prop-2-yn-1-one (21c2) (70\%)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1$ H), 1.23-0.95(m, 21 H$).{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 170.5,141.7,130.1$, $129.2,128.5,103.8,99.8,18.5,11.1$.

2,4-diphenyl-6-((triisopropylsilyl)ethynyl)pyrimidine (21c4) (91\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.63-8.61(\mathrm{~m}, 2 \mathrm{H}), 8.25-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 6$ H), $1.22(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 164.8,164.0,151.4,137.5$, 136.6, 131.1, 130.8, 128.9, 128.5, 128.4, 127.2, 117.3, 104.9, 96.2, 18.7, 11.3. HRMS (EI) calcd. for C27H32N2Si [M]+: 412.2335, found: 412.2335.

3.3.3.2 Synthesis of Heterocycles from Conjugated Diynones

i) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ (3.0 equiv), MeCN , rt.
ii) NaN_{3} (1.1 equiv), DMF, rt.
iii) benzamidine hydrochloide (1.2 equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (2.4 equiv), $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=7: 1,80^{\circ} \mathrm{C}$.
iv) Ethylacetoacetate (1.7 equiv), $\mathrm{NH}_{4} \mathrm{OAc}$ (5.0 equiv), EtOH , reflux.

Synthesis of 1-methyl-3-phenyl-5-((triisopropylsilyl)ethynyl)-1H-pyrazole (22c1) ${ }^{48}$

To a 3 mL V-shaped vial containing 2,2-dimethyl-7-(triisopropylsilyl)hepta-4,6-diyn-3-one (20.2c) ($0.15 \mathrm{mmol}, 43.5 \mathrm{mg}$) was added $\mathrm{MeCN}(2.0 \mathrm{~mL})$ and methylhydrazine (3.0 equiv, $0.45 \mathrm{mmol}, 14 \mu \mathrm{~L}$). The solution was stirred overnight at room temperature. Ammonium chloride (sat.) was added and solution was then extracted with dichloromethane. After removal of solvents, the residue was subjected to column chromatography (Hexane $: \operatorname{EtOAc}=20: 1$ to $2: 1$) to produce 22 c 1 as a yellow oil $(91 \%, 46$
mg). The position of NH moiety in product was proposed according to that in reported procedures. ${ }^{44,49,50}$

Synthesis of phenyl(5-((triisopropylsilyl)ethynyl)-1H-1,2,3-triazol-4-yl)methanone

 $(22 \mathrm{c} 2)^{2}$

To a 3 mL V-shaped vial containing diynone $20.2 \mathrm{c}(0.2 \mathrm{mmol}, 62 \mathrm{mg})$ was added DMF (2.0 mL) and sodium azide (1.1 equiv, $0.22 \mathrm{mmol}, 14.5 \mathrm{mg}$). After stirring for 3 h at at room temperature, water (5 mL) was added and solution was extracted with dichloromethane. The solvents were then removed under reduced pressure and the residue was subjected to column chromatography (Hexane:EtOAc $=20: 1$ to $2: 1$) to produce 21 c 2 as a yellow oil $(71 \%, 49 \mathrm{mg})$. The position of NH moiety in product was proposed according to that in reported procedures.

Synthesis of ethyl 2-methyl-6-phenyl-4-((triisopropylsilyl)ethynyl)nicotinate (22c3) ${ }^{45}$

20.2c

EtOH, reflux

To a 10 mL round bottom flask equipped with stirring bar and a reflux condenser was sequentially added $\mathbf{2 0 . 2} \mathbf{c}(0.2 \mathrm{mmol}, 62 \mathrm{mg})$, ethyl acetoacetate (1.7 equiv, 0.34
$\mathrm{mmol}, 44 \mu \mathrm{l}$), ammonium acetate (5.0 equiv, $1 \mathrm{mmol}, 77 \mathrm{mg}$), and ethanol (4 mL). The reaction was refluxed overnight. After cooling to room temperature, the solvents were removed under reduced pressure. Saturated sodium bicarbonate (10 mL) was added and the reaction was extracted with EtOAc. The combined organic extracts were dried over anhydrous sodium sulfate, filtered through a pad of cotton, and then concentrated under reduced pressure. The crude oil was purified via silica gel chromatography (pure hexanes to Hex:EtOAc=10:1) to afford 22c3 as yellow oil $(78 \%, 66 \mathrm{mg})$.

Synthesis of 2,4-diphenyl-6-((triisopropylsilyl)ethynyl)pyrimidine (21c4) ${ }^{51}$

To a 3 mL V-shaped vial containing $\mathbf{2 0 . 2 c}(0.15 \mathrm{mmol}, 46.5 \mathrm{mg}$), bezimidamide hydrochloride (1.2 equiv, $0.18 \mathrm{mmol}, 28 \mathrm{mg}$) and sodium carbonate (2.4 equiv, 0.36 $\mathrm{mmol}, 51 \mathrm{mg})$ was added $\mathrm{MeCN}(2 \mathrm{~mL})$ and water $(300 \mu \mathrm{~L})$. The reaction stirred at 80 ${ }^{\circ} \mathrm{C}$ until judged completed by GC/MS. After cooling down, water (5 mL) was added and the mixture was extracted with dichloromethane. The combined extracts were then dried over sodium sulfate, concentrated under reduced pressure, and the residue was subjected to column chromatography (pure hexanes to $\mathrm{Hex}: \mathrm{EtOAc}=10: 1$) to give 21c4 as a yellow oil (88% from 21.1c, 54 mg).

1-methyl-3-phenyl-5-((triisopropylsilyl)ethynyl)-1H-pyrazole 22c1 (93\%) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.84-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1$
H), 4.00 (s, 3 H), 1.15 (br. s., 21 H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 150.3, 133.0, 128.6, 127.8, 127.1, 125.5, 107.1, 99.8, 94.5, 37.4, 18.6, 11.2. HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}]+: 339.2257$, found: 339.2255 .
phenyl(5-((triisopropylsilyl)ethynyl)-1H-1,2,3-triazol-4-yl)methanone (22c2) (70\%) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.12$ (apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.61-7.58(\mathrm{~m}, 1$ H), 7.49-7.45 (m, 2 H), $1.05(\mathrm{~s}, 21 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 185.9,136.4$, 133.6, 130.4, 128.4, 102.4, 92.8, 18.5, 11.1. HRMS (EI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{OSi}[M]+$: 354.2002, found: 354.2002.

Ethyl 2-methyl-6-phenyl-4-((triisopropylsilyl)ethynyl)nicotinate (78\%) ${ }^{1} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3$) d ppm 7.99 (apparent d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.63 (s, 1 H), 7.49-7.46 (m, 2 H), 7.44-7.41(m, 1 H$), 4.42(\mathrm{q}, ~ J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.15 (s, 21 H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) d ppm 167.7, 157.4, 155.4, 138.3, 130.0, 129.5, 128.9, 128.8, 127.1, 120.7, 102.1, 99.7, 61.7, 23.1, 18.6, 14.1, 11.2. HRMS (EI) calcd. for $\mathrm{C} 26 \mathrm{H} 35 \mathrm{NO} 2 \mathrm{Si}[\mathrm{M}]+: 421.2437$, found: 421.2438 .

2,4-diphenyl-6-((triisopropylsilyl)ethynyl)pyrimidine (21c4) (88\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl3) d ppm $8.63-8.61(\mathrm{~m}, 2 \mathrm{H}), 8.25-8.23(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~m}, 6$ H), 1.22(s, 21 H$).{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl3) d ppm 164.8, 164.0, 151.4, 137.5, 136.6, 131.1, 130.8, 128.9, 128.5, 128.4, 127.2, 117.3, 104.9, 96.2, 18.7, 11.3. HRMS (EI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}]+: 412.2335$, found: 412.2335 .

4. CITED LITERATURE

1. Volchkov, I.; Lee, D. Chem. Soc. Rev. 2014, 43, 4381.
2. Chabardes, P.; Grard, C.; Schneider, C. DE1965377A, 1970.
3. (a) Chabardes, P.; Kuntz, E.; Varagnat, J. Tetrahedron 1977, 33, 1775. (b) Matsubara, S.; Takai, K.; and Nozaki, H. Tetrahedron Lett. 1983, 24, 3741. (c) Matsubara, S.; Okazoe, T.; Oshima, K.; Takai, K.; and Nozaki, H. Bull. Chem. Soc. Jpn. 1985, 58, 844.
4. Hosogai, T.; Fujita, Y.; Ninagawa, Y.; Nishida, T. Chem. Lett. 1982, 357.
5. (a) Belgacem, J.; Kress, J.; Osborn, J. A. J. Am. Chem. Soc. 1992, 114, 1501. (b) Belgacem, J.; Kress, J.; Osborn, J. A. J. Mol. Catal. 1994, 86, 267. (c) Fronczek, F. R.; Luck, R. L.; Wang, G. Inorg. Chem. Commun. 2002, 5, 384.
6. (a) Narasaka, H, K.; Kusama, H.; Hayashi, H. Chem. Lett. 1991, 1413. (b) Narasaka, K.; Kusama, H.; Hayashi, Y. Tetrahedron 1992, 48, 2059. (c) Jacob, J, Espenson, J. H.; J. H. Jensen and M. S. Gordon, Organometallics, 1998, 17, 1835. (d) Wang, G.; Jimtaisong, A.; Luck, R, L.; Organometallics, 2004, 23, 4522. (e) Bellemin-Laponnaz, S.; Gisie, H.; Le Ny, J. P.; Osborn, J. A. Angew. Chem., Int. Ed. Engl. 1997, 36, 976. (f) Bellemin-Laponnaz, S.; Le Ny, J. P.; Osborn, J. A. Tetrahedron Lett. 2000, 41, 1549.
7. Morrill, C.; Beutner, G.; L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.
8. (a) Volchkov, I.; Lee, D. J. Am. Chem. Soc. 2013, 135, 5324. (b) Volchkov. I.; Park, S.; Lee, D. Org. Lett. 2011, 13, 3530. (c) Xie, Y.; Floreancig, P. E. Chem. Sci. 2011, 2, 2423. (d) Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.;

Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962. (e) Jung, H. H.; Seiders, J. R.; Floreancig, P.E. Angew. Chem., Int. Ed. 2007, 46, 8464. (f) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2006, 128, 8142. (g) Mandal, A. K.; Schneekloth, J. S.; Kuramochi, K.; Crews, C. M. Org. Lett. 2006, 8, 427. (h) Hutchison, J. M.; Lindsay, H. A.; Dormi, S. S.; Jones, G. D.; Vicic, D. A.; McIntosh, M. C. Org. Lett. 2006, 8, 3663.
9. Yun, S. Y.; Hansen, E. C.; Volchkov, I.; Cho, E. J.; Lo, W, Y.; Lee, D. Angew. Chem., Int. Ed. 2010, 49, 4261.
10. Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637.
11. (a) Kim, M.; Miller, R. D.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818. (b) van Otterlo, W. A. L.; Ngidi, E. L.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45, 659. (c) Ohe, K.; Fujita, M.; Matsumoto, H.; Tai, Y.; Miki, K. J. Am. Chem. Soc. 2006, 128, 9270.
12. (a) E. J. Cho, E. J.; Kim, M.; Lee, D. Org. Lett. 2006, 8, 5413. (b) Lopez, S.; Herrero-Gomez, E.; Perez-Galan, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029. (c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480.
13. E. J. Cho, E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3074.
14. (a) Kimball, D. B.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 1572.
(b) Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M.; Kohler, F.; Herges, R. J. Org. Chem. 2004, 69, 6979.
15. Takeda, T.; Kuroi, S.; Ozaki, M.; Tsubouchi, A. Org. Lett. 2004, 6, 3207.
16. (a) Barluenga, J.; Garcia-Garcia, P.; De Saa, D.; Fernandez-Rodriguez, M. A.; de la Rua, R. B.; Ballesteros, A.; Aguilar, E.; Tomas, M. Angew. Chem., Int. Ed. 2007, 46, 2610.
17. Barluenga, J.; de la Rua, R. B.; de Saa, D.; Ballesteros, A.; Tomas, M. Angew. Chem., Int. Ed. 2005, 44, 4981.
18. For reviews, see: (a) Kim, M.; Lee, D. Org. Biomol. Chem. 2007, 5, 3418. (b) Li, J.; Lee, D. Eur. J. Org. Chem. 2011, 4269.
19. Badrieh, Y.; Kayyal, A.; Blum, J. J. Mol. Catal. 1992, 75, 161.
20. Muller, E.; Segnitz, A. Synthesis, 1970, 147.
21. Kel'in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
22. For a photo-induced rearrangement of enynes, see: Zheng, M.; DiRico, K. J.; Kirchhoff, M. M.; Phillips, K. M.; Cuff. L. M.; Johnson, R. P. J. Am. Chem. Soc. 1993. $115,12167$.
23. (a) K. C. Nicolaou, D. Sarlah, D. M. Shaw, Angew. Chem., Int. Ed. 2007, 46, 4708. (b) Forsyth, C. J.; Xu, J.; Nguyen, S. T.; Samdai, I. A.; Briggs, L. R.; Rundberget, T.; Sandvik, M.; Miles, C. O. J. Am. Chem. Soc. 2006, 128, 15114. (c) Marco-Contelles, J.; Opazo, E. J. Org. Chem. 2002, 67, 3705.
24. For pyrazoles, see (a) Liu, H.; Jiang, H.; Zhang, M.; Yao, W.; Zhu, Q.; ang, Z. Tetrahedron Lett. 2008, 49, 3805. For triazoles, see: (b) McLaughlin, E. C.; Doyle, M. P. J. Org. Chem. 2008, 73, 4317. For pyridines, see: (c) Bagley, M. C.; Dale, J. W.; Bower, J. Synlett. 2001, 1149. For quinolines, see: (d) Cabarrocas, G.; Rafel, S.; Ventura, M.; Villalfordo, J. M. Synlett. 2000, 595. For pyrimidines,
see: (e) Karpov, A. S.; Muller, T. J. J. Synthesis 2003, 2815. For benzodiazepines, see: (f) Willy, B.; Dallos, T.; Rominger, F.; Schonhaber, J.; Muller, T. J. J. Eur. J. Org. Chem. 2008, 4796.
25. Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902.
26. For unselective reactions of skipped diynones with methyl- or phenylhydrazines to form pyrazoles, see: (a) Baldwin, J. E.; Pritchard, G, J.; Rathmel, R. E. J. Chem. Soc. Perkin Trans 1, 2001, 2906. (b) Adamo, M. F. A.; Adlington, R. M.; Baldwin, J. E.; Pritchard, G. J.; Rathmell, R. E. Tetrahedron 2003, 59, 2197.
27. For unselective reactions of conjugated diynones with methyl- or phenylhydrazines to form pyrazoles, see: (a) Smith, C. D.; Tchabanenko, K.; Adlington, R. M.; Baldwin, J. E. Tetrahedron Lett. 2006, 47, 3209. (b) Ford, M. F.; Walton, D. R. M. Synthesis 1973, 47.
28. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
29. Kawai, H.; Tachi, k.; Tokunaga, E.; Shiro, M.; Shibata, N. Org. Lett. 2010, 12, 5104.
30. Tang, T.; Fei, X. D.; Ge, Z. Y.; Chen, Z.; Zhu, Y. M.; Ji, S. G. J. Org. Chem. 2013, 78, 3170.
31. Zhao, T.; Xu, B. Org. Lett. 2010, 12, 212.
32. Taylor, C.; Bolshan, Y. Org. Lett. 2014, 16, 488.
33. Gandeepan, P.; Parthasarathy, K.; Su, T. H.; Cheng, C. H. Adv. Synth. Catal. 2012, 354, 457.
34. Park, A.; Park, K.; Kim, Y.; Lee, S. Org. Lett. 2011, 13, 944.
35. Wu, X. F.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11142.
36. Bickel, C. L. J. Am. Chem. Soc. 1947, 69, 73.
37. Ding, H.; Lu, C.; Hu, X.; Zhao, B.; Wu, B.; Yao, Y. Synlett 2013, 24, 1269.
38. Wu, X. F.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 11142.
39. Comins, D. L.; Brown, J. D. J. Org. Chem. 1984, 49, 107.
40. The labeled benzaldehyde was prepared from a regular LiAlH_{4}-reduction of commercially available ${ }^{13} \mathrm{C}$-labeled benzoic acid ($\sim 10 \%$ enrichment), followed by a Swern oxidation of the alcohol (45% over two steps).
41. Wardrop, D, G.; John P. Komenda, J. P.; Org. Lett. 2012, 14, 1548.
42. Qiu, Y, -F.; Yang, F.; Qiu, Z. -H.; Zhong, M. -M.; Wang, L. -J.; Ye, Y. Y.; Song, B.; Liang, Y. -M. J. Org. Chem. 2013, 78, 12018.
43. Bowling, N. P.; Burrmann, N. J.; Halter, R. J.; Hodges, J. A.; McMahon, R. J. J. Org. Chem. 2010, 75, 6382.
44. Liu, H. -L.; Jiang, H. -F.; Zhang, M.; Y. W. -J.; Z. Q. -H.; Tang, Z. Tetrahedron Lett. 2008, 49, 3805.
45. McLaughlin, E. C.; Doyle, P. M.; J. Org. Chem., 2008, 73, 4317.
46. Ford, M. F.; Walton, D. R. M. Synthesis 1973, 47.
47. (a) Karpov, A. S.; Muller, T. J. J. Synthesis 2003, 2815. (b) Neumann, K. T.; Laursen, S. R.; Lindhardt, A. T.; Bang-Andersen, B.; Skrydstrup, T. Org. Lett. 2014, 16, 2216.
48. Liu, H. -L.; Jiang, H. -F.; Zhang, M.; Y. W. -J.; Z. Q. -H.; Tang, Z. Tetrahedron Lett. 2008, 49, 3805.
49. McLaughlin, E. C.; Doyle, P. M.; J. Org. Chem., 2008, 73, 4317.
50. Ford, M. F.; Walton, D. R. M. Synthesis 1973, 47.
51. (a) Karpov, A. S.; Muller, T. J. J. Synthesis 2003, 2815. (b) Neumann, K. T.; Laursen, S. R.; Lindhardt, A. T.; Bang-Andersen, B.; Skrydstrup, T. Org. Lett. 2014, 16, 2216.

PART TWO

REGIOSELECTIVE SYNTHESIS OF C2- AND C3-BORYLATED FURANS

5. INTRODUCTION

5.1. Transition Metal-Catalyzed Cycloisomerization Approach in Synthesis of

Furans

Furan is a highly important motif existing in a broad range of biologically active natural products and drugs. ${ }^{1}$ It has broad applications as synthetic intermediates ${ }^{2}$ and are used in materials science. ${ }^{3}$ Accordingly, a vast number of efficient methodologies toward this important scaffold have been developed. ${ }^{4}$ Among these methods, the transition metal-catalyzed cycloisomerization reaction of easily accessible acyclic substrates is one of the powerful approaches. ${ }^{1,5}$ Thus, a range of acyclic substrates in the presence of various transition metals undergo this cascade transformation to efficiently produce furans with diverse substitution pattern. For instance, in 1990, Marshall and Robinson showed that acyclic allenyl ketone $\mathbf{2 2 . 1}$ in the presence of catalytic amounts of silver salt cycloisomerizes into the furan 22.2 (Scheme 22). ${ }^{6}$

Scheme 22.

5.2. Transition Metal-Catalyzed Migratory Cycloisomerization toward Substituted Furans

Transition metal-catalyzed cycloisomerization reactions toward furans typically involve cyclization of acyclic substrates possessing sp-hybridized carbon moieties such as alkynyl or allenyl systems. ${ }^{4}$ Thus, expectedly, this method gives access to furan products with at least one unsubstituted carbon. In order to solve this problem en route to fully substituted furans, migratory cycloisomerization reaction has been introduced, where the cyclization process is accompanied with migration of functional groups to the neighboring atoms. ${ }^{5}$ This method offers mild and selective assembly of functionalized furans with diverse substitution patterns.

5.2.1. Migration of Sulfur- and Selenium-Containing Groups

Gevorgyan and co-workers reported an efficient copper-catalyzed synthesis of C3functionalized furan $\mathbf{2 3 . 3}$ from the hompropargylic ketone 23.1 (Scheme 23). ${ }^{7}$ The transformation is believed to occur via a 1,3-protrotropic isomerization to produce the allenyl ketone 23.2, which upon sulfur or selenium group migration during the cycloisomerization process produces furan 23.3.

23.3a, 91\%

23.3d, 74%

23.3b, 89\%

23.3e, 71%

23.3c, 95\%

23.3f, 71\%

Scheme 23.

5.2.2. Migration of Carbon-Containing Groups

In 2007, Gevorgyan group described that allenyl ketones $\mathbf{2 4 . 1}$ in the presence of catalytic amounts of transition metals, such as gold and silver, can be converted into furan $\mathbf{2 4 . 5}$ via a migratory cycloisomerization reaction (Scheme 24). ${ }^{7 \mathrm{~b}, 8}$ It was suggested that the gold catalyst activates the allene moiety of substrate 24.1 to form 24.2 , which upon a 5-endo-trig cyclization produces oxocycle 24.3. Flow of electron from gold to oxygen in the latter generates $\mathbf{2 4 . 4}$, where a $1,2-R^{2}$ migration to the carbene center affords the trisubstituted furan 24.5.

Scheme 24.

It was shown by Kirsh and co-workers that skipped propargylic ketone $\mathbf{2 5 . 1}$ can be a competent substrate for the Pt-catalyzed cycloisomerization reaction to produce furan 25.5 (Scheme 25). ${ }^{9}$ Thus, a 5-endo-dig cyclization reaction of activated $\mathbf{2 5 . 2}$ furnishes the bicyclic oxonium ion 25.3. A ring contraction in the latter via a 1,2 -akyl migration to the neighboring cationic carbon center of $\mathbf{2 5 . 3}$ leads to the allylic cationcontainig spiro system $\mathbf{2 5 . 4}$, which upon a pinacol-type ring opening produces furan $\mathbf{2 5 . 5}$ possessing a tethered carbonyl functionality.

25.1

25.5

25.4

Scheme 25.

In 2011, Gagosz et al. reported the gold-catalyzed cycloisomerization reaction of ynenyl allyl ether 26.1 into tetrasubstituted furan 26.5 via an oxygen-to-carbon allyl group migration (Scheme 26). ${ }^{10}$ It was suggested that activation of substrate $\mathbf{2 5 . 1}$ with the gold catalyst gives 26.2, which upon the following nucleophilic attack of etheric oxygen at the alkyne moiety produces the cyclic oxonium compound 26.3 , possessing an exocyclic vinyl gold species. The latter undergoes a Claisen-type rearrangement to give heterocycle 26.4, where a new C-C bond is formed. A sequence of protonation/protodemetallation in 26.4 then delivers the furan 26.5, possessing a homoallylic miety at the C 2 position.

Scheme 26.

Recently, Zhang's group reported a gold-catalyzed transformation of skipped propargylic ketones 27.1 into the 3,4-fused furans 27.4 (Scheme 27). ${ }^{11}$ It is believed that activation of the π-system of substrate and the following 5-endo-dig cyclization process generates the spiro-oxacycle 27.2. Ring opening of the latter generates the stabilized cation 27.3, which upon the nucleophilic attack of furyl gold moiety produces fused furan 27.4.

Scheme 27.

5.2.3. Migration of Halogen Atoms

A regiodivergent gold-catalyzed cycloisomerizaion of halogenated allenyl ketones 28.1 to C2- or C3-halofurans 28.2 and $\mathbf{2 8 . 3}$ was reported by Gevorgyan and co-workers (Scheme 28). ${ }^{12}$ Iodine, bromine, and chlorine migrated during this cycloismerization reaction. The computation-assisted mechanistic studies of this transformation revealed the crucial role of the counterion in determining the regioselectivity of this reaction. Thus, after formation of the gold carbene 28.2, the gold catalyst with the noncoordinating hexafluoroanimonate renders the kinetically-favored 1,2-halogen migration over the hydride shift to produce the C 3 -holeganted furan 28.3. Alternatively, the more basic triflate counterion assists the proton transfer to the C3-furyl gold species 28.4i to form the C2-halogenated furan 28.4.

Scheme 28.

5.2.4. Migration of Oxygen-Containing Groups

In 2004, Gevorgyan and co-workers disclosed synthesis of acyloxylated furans 29.2 via a copper-catalyzed migratory cycloisomerization of easily accessible propargylic esters 29.1 (Scheme 29). ${ }^{13}$ Detailed mechanistic investigations were further revealed ${ }^{13 b}$ by employing the propargylic ester 29.3, possessing the ${ }^{17} \mathrm{O}$-label at the carbonyl of acetoxy group. Thus, the copper-catalyzed reaction of the latter produced furan 29.6, where the bridged oxygen of acetoxy miety is labeled. Accordingly, it was proposed that the copper catalyst renders the 1,2-acyloxy migration in 29.3 via a Rautenstrauch rearrangement to form carbene 29.4. It then undergoes a nucleophilic attack of carbonyl group at the alkene moiety via a 5-endo-trig cyclization to generate oxonium ion 29.5, which upon a sequence of deprotonation/protometallation steps produces furan 29.6.

Scheme 29.

5.2.5. Migration of Silicon-Containing Groups

Having established the effect of counterion in the regioselective synthesis of halofurans, ${ }^{12}$ Gevorgyan et al. reported a regiodivergent synthesis of silylated furans $\mathbf{3 0 . 3}$ and 30.5 from 30.1 (Scheme 30). ${ }^{14}$ Both, their computation and experimental results suggest that after the gold-catalyzed cycloisomerization of skipped alkynyl ketone $\mathbf{3 0 . 1}$ into the key furyl gold species 30.2, the counterion is the regioselectivity-controlling element. Therefore, a basic trifilate counterion in a nonprotic solvent such as toluene favors protodemetalation of $\mathbf{3 0 . 2}$ to form the C 2 -silylated furan $\mathbf{3 0 . 3}$. On the other hand, SbF_{6} counterion renders the β-protonation of the vinyl gold species in $\mathbf{3 0 . 2}$ to gold carbene 30.4, which upon a kinetically-favored 1,2 -silicon group migration affords the regioisomeric C 3 -silylated furan $\mathbf{3 0 . 5}$.

Scheme 30.

5.3. Cycloisomerization and Migratory Cycloisomerization of Alkynyl Epoxides

 and Aziridines in Synthesis of HeterocyclesPropargylic oxiranes have been shown to be excellent substrates to undergo cycloisomerization reaction into furans in the presence of various transition metal
catalysts such as $\mathrm{Hg},{ }^{15} \mathrm{Mo},{ }^{16} \mathrm{Ru},{ }^{17} \mathrm{Pt},{ }^{18} \mathrm{Ag},{ }^{19}$ and $\mathrm{Au}{ }^{20}$ For example, the cycloisomerization of alkynyl epoxides $\mathbf{3 1 . 1}$ into furans $\mathbf{3 1 . 4}$ under the gold-catalyzed conditions was first reported by Hashmi and Sinha (Scheme 31). ${ }^{21}$ It is believed that goldactivation of the π-system of substrate 31.1 gives 31.2, in which a nucleophilic attack of oxygen of epoxide at the activated alkyne moiety generates the cation 31.3. A sequence of deprotonation/protodematalation in the latter furnishes the disubstituted furan 33.4.

Scheme 31.

Taking into account a great reactivity of alkynyl epoxides in the metal-catalyzed cycloisomerization reactions toward furans, ${ }^{15-21}$ it is surprising that no migratory cycloisomerization reaction of these easily accessible substrates into furans has been reported so far. However, the migratory cycloisomerization reactions of their analogues alkynyl aziridines into pyrroles have been shown. ${ }^{22}$ For instance, Davies and Martin reported a regiodivergent migratory cycloisomerization reaction of alkynyl aziridine $\mathbf{3 2 . 1}$ in the presence of a gold catalyst to produce C2- and C4-arylated pyrroles $\mathbf{3 2 . 3}$ and $\mathbf{3 2 . 4}$ (Scheme 32). ${ }^{22 b}$ The regiochemical outcome of this reaction is dependent on the choice of counterion used. Thus, the generated intermediate $\mathbf{3 2 . 2}$ (analogue of 32.3) in the presence of a sufficiently basic tosylate counterion undergoes a proton elimination to favor formation of C2-arylated pyrroles 32.3. Whereas, using a less basic triflate led to pyrrole 32.3 via an aryl migration.

Scheme 32.

5.4. Lewis Acid-Mediated Boryl Migration in Synthesis of Acyclic Products Acid-

Mediated

In 2011, Yudin demonstrated that N-methyliminodiacetyl (MIDA) boronated epoxides 33.1 in the presence of stoichiometric amounts of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ undergo a 1,2-boryl migration to form α-boryl aldehydes 33.2 (Scheme 33). ${ }^{23}$ For mechanistic clarification, the deuterium-labeled epoxide $\mathbf{3 3 . 3}$ was subjected to the reaction conditions to form $\mathbf{3 3 . 5}$ with exclusive D-incorporation at the carbonyl moiety, which suggests a 1,2-boryl shift in intermediate 33.4.

33.1
33.2

33.4
33.5, 98\%

Scheme 33.

In an independent study, Burke group also showed that stereodefined epoxide 34.1, possessing a pinene-derived iminodiacetic acid (PIDA) boronate group, in the presence of magnesium perchlorate undergoes a 1,2-boryl migration to form α-boryl aldehydes $\mathbf{3 4 . 2}$ with preservation of stereochemical purity (Scheme 34). ${ }^{24}$

Scheme 34.

5.5. Summary

In summary, the transition metal-catalyzed migratory cycloisomerization approach is a powerful method for efficien synthesis of various substituted furans with diverse substation patterns. It has been shown that during cycloisomerization reaction, a variety of groups including sulfur, selenium, carbon, halogen, acyloxy, and silicon can migrate to the neighboring carbon atom to produce functionalized furan $\mathbf{3 5}$ (Scheme 35). The metal-activated acyclic substrates 23.1-30.1 have been employed in migratory cycloisomerization reactions toward furans 35 with diverse substitution patterns. However, the potential rearrangement of easily accessible alkynyl epoxides into functionalized furans proceeding via this cascade migratory reaction in the presence of transition metals has not been examined.

The Lewis acid-mediated 1,2-boryl migration in acyclic epoxides $\mathbf{3 3 . 1}$ and $\mathbf{3 4 . 1}$ to form α-borylated aldehydes 33.2 and $\mathbf{3 4 . 2}$ have been shown (Scheme 35). It has been demonstrated that both MIDA and PIDA boronate are capable of migrating in these
systems. However, the transition metal-catalyzed migratory cycloisomerization reactions of boryl-containing acyclic substrates into borylated heterocycles are unknown transformations at this point.

Scheme 35.

6. REGIOSELCTIVE SYNTHESIS OF C2- AND C3-BORYLATED FURANS

Borylated heterocycles are important motifs, which have wide applications in medicine and materials science. ${ }^{25}$ Due to their high potential for further functionalizations, they are also useful intermediates in synthetic organic chemistry. ${ }^{25}$ Inspired by works of Yudin ${ }^{23}$ and Burke, ${ }^{24}$ who showed migration of a boryl group in borylared epoxides, as well as by works of Hashmi ${ }^{21}$ and Davies ${ }^{22 b}$ on cycloisomerization in alkynyl epoxides and aziridines to form heterocycles, we thought that development of an efficient and regioselective method for the synthesis of borylated furans is feasible.

6.1. Attempts to Synthesize C3-Borylated Furans via a Lewis Acid-Mediated

Reaction

First, we were curious if the MIDA boronate-containing alkynyl epoxide $\mathbf{3 6 . 1}$ under Yudin's conditions ${ }^{23}$ would produce skipped propargylic ketone 36.3, which have been shown to be an excellent precursor for synthesis of furan rings (vide infra) (Scheme 36). However, the BF_{3}. OEt_{2}-promoted reaction of $\mathbf{3 6 . 1}$ did not provide 36.3; allenyl aldehyde $\mathbf{3 6 . 2}$ was efficiently formed instead, which may or may not be obtained via 36.3. All attempts to cyclize allenyl ketone 36.2, which has been shown to be a competent substrate for cycloisomerization reaction (vide infra), into furan 36.4 under forcing reaction conditions failed.

Scheme 36.

6.2. Copper-Catalyzed Synthesis of C3-Borylated Furans

Intrigued by our group's experience in the copper-catalyzed cycloisomerization reaction of allenyl ketones into furans (vide infra), ${ }^{26}$ we subjected formed intermediate 36.2 to cyclize in the presence of $[\mathrm{CuOTf}]_{2} \cdot \mathrm{PhH}$ catalyst (Scheme 37). Indeed, the $\mathrm{C} 3-$ borylated furan $\mathbf{3 6 . 4}$ was formed in 61% yield!

Scheme 37.

Next, we explored the possibility of the direct transformation of alkynyl epoxide 36.1 into furan 36.4 in the presence of copper catalysts (Table IV). The reaction of substrate $\mathbf{3 6 . 1}$ in the presence of CuI catalyst produced the furan 36.4. However, some detectable amount of C2-borylated $\mathbf{3 6 . 5}$ was also observed (entry 1). It was found that the copper acetate-catalyzed reaction was not efficient (entry 2). did not provide any product (entry 3). Gratifyingly, the cycloisomerization reaction of $\mathbf{3 6 . 1}$ in the presence of
$[\mathrm{CuOTf}]_{2} . \mathrm{PhH}$ catalyst afforded the C3-borylated furan 36.4 with an excellent regioselectivity (entry 3).

Table VI. OPTIMIZATION OF CU-CATALYZED REACTION OF 36.1^{a}

${ }^{a}$ Reactions were performed in 0.1 mmol scale.
${ }^{b}$ NMR ratios.
${ }^{c}$ Isolated yield.
${ }^{d}$ The reaction was performed at $30^{\circ} \mathrm{C}$.
With these conditions in hand, we examined the copper-catalyzed synthesis of C3borylated furans (Table V). Thus, excellent yield and regioselectivity were obtained in the reaction of 36.1a (entry 1). Likewise, phenyl substituted alkynyl epoxide 36.1b produced furan $\mathbf{3 6 . 4 b}$ in good regioselectivity albeit in a low yield (entry 2). Cyclization of alkynyl epoxide 36.1c possessing an electron-rich aryl group proceeded smoothly to produce furan 36.4 c in an excellent regioselectivity (entry 3). However, attempts to cycloisomerize 36.1d possessing an electron-deficient aryl group failed (entry 4).

Table VII. COPPER-CATALYZED SYNTHESIS OF C3-BORYLATED FURANS

1

36.1a

36.4a (97:3:0)

80

2

36.1b
 36.4b (89:11:0)

36

3

36.1c
 36.4c
(99:1:0)
51

4

36.1d

5

36.1e - 36.4e
$0^{\text {d }}$
0

[^2]${ }^{b}$ Isolated yields.
${ }^{\mathrm{c}}$ heating of the reaction did not lead to furan.
${ }^{\mathrm{d}}$ Decomposition of 36.1.
Employing trisubstituted alkynyl epoxide 36.1e in this transformation resulted in complete decomposition of starting material (entry 5).

We propose the following mechanism for the copper-catalyzed cycloisomerization of alkynyl epoxide $\mathbf{3 5 . 1}$ into C3- and C2-borylated furans $\mathbf{3 6 . 4}$ and 36.5 (Scheme 38). First, the oxophilic copper catalyst opens the epoxide ring of $\mathbf{3 6 . 1}$ to form propargylic cation 38.A. According to the path a, a favored 1,2-boryl migration to the neighboring carbon atom occurs, which upon a proton loss generates the Cu enynolate 38.B. Protonation at the distal carbon of the alkyne group in the latter gives the allenyl ketone intermediate $\mathbf{3 6 . 2}$, which then cyclizes to $\mathbf{3 8 . C}$ via a 5 -endo-trig process. ${ }^{26}$ The oxonium ion 38.C undergoes a sequence of protonation/protodemetalation steps to produce the C3-borylated furan 36.4. Formation of the minor C2-borylated furan can potentially be explained by an alternative path \mathbf{b}. Thus, a proton loss in 38.A generates the copper-enynolate 38.D, which upon attack of the nucleophilic oxygen at the activated akyne moiety gives the furyl copper species 35E. Protometalation of the latter produces the C2-borylated product $\mathbf{3 6 . 5}$.

Scheme 38.

6.3. Gold-Catalyzed Regiodivergent Synthesis of C2- and C3-Borylated Furans

Seeking for more general and efficient conditions for regioselective synthesis of borylated furans, we next turned our attention to the π-philic gold catalysts (Table VI). ${ }^{27}$ It was found that in the presence of $\mathrm{Ph}_{3} \mathrm{PAuCl}$, the reaction was more regioselective for 36.1a with triflate counterion (entry 2) compared for that hexafluoroantimonate (entry 1).

Gratifyingly, employment of a gold catalyst possessing electron rich phosphite ligand with triflate led to furan 36.4a with an excellent regioselectivity and yield (entry 3). Conversely, switching counterion to hexafluoroantimonate favored formation of $\mathbf{3 6 . 4 a}$ (entry 4). Analogous results were obtained in the presence of IPrAuCl with triflate counterion (entry 5). Remarkably, employment of the same gold catalyst with hexafluoroantimonate led to furan 36.5a, exclusively (entry 6). Control gold-free experiments indicated the reactions in the presence of silver triflate (entry 7) and silver hexafluroantimonate (entry 8) were both less efficient and regioselective.

Table VIII. OPTIMIZATION OF AU-CATALYZED REACTION OF 36.1a

${ }^{a}$ NMR ratios.
${ }^{b}$ NMR yields.
${ }^{c} \mathrm{Ar}=2,4-\mathrm{di}-t \mathrm{BuPh}$.
${ }^{d}$ Solution $[0.04 \mathrm{M}]$.
${ }^{e}$ performed at $\mathrm{T}=-30^{\circ} \mathrm{C}$.
${ }^{f}$ Ratio of 91:9 at rt.
${ }^{g} 76 \%$ NMR yield at rt.

6.3.1. Scope of Reaction

After finding conditions for regiodivergent synthesis of boryl furans $\mathbf{3 6 . 4}$ and 36.5, we first examined the scope of the migratory cycloisomerization reaction toward C3-borylated furan $\mathbf{3 6 . 4}$ (Table VII). Thus, C2-alkyl-substituted furans 36.4a, 36.4f, and 36.4g were produced in good yields and excellent regioselectivity. Phenyl-substituted alkynyl epoxide 36.1b reacted smoothly to afford 36.4b in 87% yield and good regioselectivity. Likewise, ortho-substituted aryl-containing furans $\mathbf{3 6 . 4 c}$ and $\mathbf{3 6 . 4 d}$ were obtained as sole products in good yields. Analogously, cyclization of alkynyl epoxides 36.1h and 36.1i provided furans $\mathbf{3 6 . 4 h}$ and 36.4 possesing para-substituted aryls. Diynyl epoxide $\mathbf{3 6 . 1 j}$ afforded alkynylated furan $\mathbf{3 6 . 4 j}$ exclusively in 67% yield. Remarkably, employment of trisubstituted oxirane $\mathbf{3 6 . 1 k}$ in this transformation led to exclusive formation of furan 36.4 k in 83% yield, thus, indicating overwhelming preference of boryl- versus aryl group migration. Analogously, dialkyl-containing furan 36.1e was selectively obtained under these conditions.

Table IX. GOLD-CATALYZED SYNTHESIS OF C3-BORYLATED FURANS
Entry
Table $\mathbf{X .}$ GOLD-CATALYZED
(continued) SYNTHESIS OF C3-BORYLATED FURANS

6

36.1d
 36.4d 100:0 61

7

36.1h

36.4h $891: 9 \quad 65^{\text {c }}$

8

36.1i

36.4i 95:5 79
36.1j

36.4j 100:0
36.4k $\quad 100: 0 \quad 83$
36.1e

36.4e 100:075

11

36.1k

$36.4 \mathrm{e}-10.0$
75
${ }^{a}$ NMR ratios.
${ }^{b}$ Isolated yields.
${ }^{c}$ Reaction was performed at rt .

Next, we investigated the gold-catalyzed cycloisomerization reaction of alkynyl epoxide 36.1 leading to C2-borylated furan 36.5 (Table VIII). Thus, alkyl-containing furans $\mathbf{3 6 . 5 a}, \mathbf{3 6 . 5 f}$, and $\mathbf{3 6 . 5}$ g were exclusively obtained in reasonable to good yields. Analogously, alkynyl epoxide 36.1b possessing phenyl substituent worked well under these reaction conditions. Likewise, electronically different ortho- and para-substituted aryl-containing furans $\mathbf{3 6 . 5} \mathbf{c}, \mathbf{3 6 . 5 d}, \mathbf{3 6 . 5} \mathbf{h}$, and $\mathbf{3 6 . 5 i}$ were obtained in modest to good yields and excellent regioselectivity. In addition, diynyl epoxide $\mathbf{3 6 . 1} \mathbf{j}$ was smoothly converted into alkynylated furan $\mathbf{3 6 . 5 j}$ in good yield. Finally, cyclization of $\mathbf{3 6 . 1 1}$ afforded mono-substituted boryl furan $\mathbf{3 6 . 1 1}$ in 60% yield. ${ }^{28}$

Table XI. GOLD-CATALYZED SYNTHESIS OF C2-BORYLATED FURANS

Entry	Pubstrate	Yroduct	Yield $(\%)^{a, b}$

1

36.1a

36.5a 75

36.1f

36.5f 57

3

36.1g

36.5g

64

4

36.1b

36.5b 50

5

36.1c

36.5c 49^{c}

Table XII. GOLD-CATALYZED SYNTHESIS OF C2-BORYLATED FURANS (continued)

Entry	Substrate	Product
		Yield (\%)

(M12)
${ }^{a}$ Isolated yields.
${ }^{b}$ Exclusive formation of C2-borylated furans was observed in all examples.
${ }^{c}$ Substantial decomposition of substrate was observed.
${ }^{d}$ THF as the solvent.
${ }^{e}$ NMR yield.

6.3.2. Mechanism of the Gold-Catalyzed Reactions

We performed some initial mechanistic experiments for the gold-catalyzed reactions. First, we verified whether the Au-catalyzed reaction proceeds via intermediacy of allene intermediate 36.2b (Scheme 39). However, subjecting the latter to the reaction conditions produced furan $\mathbf{3 6 . 4 b}$ in a very low yield. This indicates that in contrast to the Cu catalyzed version (vide supra), generation of allene intermediate $\mathbf{3 6 . 2 b}$ in the goldcatalyzed transformation is less likely.

Scheme 39.

Next, cycloisomerization of a deuterium-labeled alkynyl epoxide 36.1f-D was examined (Scheme 40). It was found that under the gold-catalyzed migratory conditions, furan 36.4f-D was formed in which the deuterium label stayed intact at the C 1 position. However, subjecting 4f-D to the non-migratory cycloisomerization conditions produced furan 6f-D with deuterium label at the C 3 position substantially scrambled. ${ }^{29}$

Scheme 40.

Obviously, more detailed studies toward understanding the role of both ligand and counterion on the regioselectivity of this cycloisomerization reaction are required. At this point, based on the above observations, we propose the following working rationale for this regiodivergent transformation (Scheme 41). First, activation of the π system of $\mathbf{3 6 . 1}$ by the gold catalyst triggers a nucleophilic attack of the oxygen at the distal position of alkyne moiety producing the heterocyclic cation 41B. ${ }^{27}$ In the case of triflate counterion (Path a), a 1,2-boryl migration to the cationic center of 41B takes place to generate cation 41C, which, upon proton loss affords the furyl gold species 41D. Protiodemetalation of the latter produces the C3-borylated furan 36.4. Alternatively, in the presence of hexafluoroantimonate counterion (Path b), a proton loss ${ }^{29}$ in intermediate 41B takes place to afford the furyl gold species 41E, which upon protiodeauration produces C2-borylated furan 36.5 . It should be mentioned that the observed counterion effect on the regioselectivity of boryl group versus hydrogen migration is in a sharp contrast with the migration trend for carbon- and silyl group versus hydrogen migration
previously reported by our ${ }^{12,14}$ and other ${ }^{30}$ groups. Further studies to elucidate the origins of the observed migratory trend are underway in our group.

Scheme 41.

6.4. Summary

In summary, complementary regioselective copper- and gold-catalyzed cycloisomerization reactions of boron-containing alkynyl epoxides toward C2- and C3borylated furans have been developed. It was found that the copper-catalyzed transformation triggers the initial 1,2-boryl group migration forming an allenyl
derivative, which upon cycloisomerization produces C3-borylated furan. However, the Cu-catalyzed cycloisomerization appeared to be not general. Accordingly, we developed two efficient and general Au-catalyzed protocols, where depending on the choice of ligand and counterion, regioisomeric boryl furans can be selectively obtained. Thus, phosphite gold complex with triflate counterion strongly favors a 1,2-boryl migration during the cycloisomerization process to produce C3-borylated furans. In contrast, employment of NHC gold hexafluoroantimonate affords C2-borylated furans, exclusively. MIDA boronate moiety proven to be a highly valuable group for a variety of useful transformations. ${ }^{31}$ Thus, it is believed that the obtained regioisomeric MIDA boronate-containing furans may become useful building blocks for organic synthesis.

7. EXPERIMENTAL SECTION

7.1. General Information

NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DRX$400(400 \mathrm{MHz})$ instruments. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 $\mathrm{m} \times 0.25 \mathrm{~mm}$ capillary column, HP-5MS). Column chromatography was carried out employing Silicycle silica gel (Kieselgel 60, 63-200 $\mu \mathrm{m}$). Precoated silica gel plates F254 were used for thin-layer analytical chromatography. All manipulations with transition metal catalysts were conducted under inert atmosphere using a combination of glovebox and standard Schlenk techniques. Anhydrous toluene, tetrahydrofuran, ether, and dichloromethane purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system. Anhydrous solvents other than listed above were purchased from Aldrich and stored over calcium hydride. All other reagents were purchased from Aldrich, Strem Chemicals Inc., Alfa Aesar or Acros Organics, or synthesized via known literature procedures. Reactions were typically run in oven-dried glassware under inert atmosphere. Iodoalkene \boldsymbol{i} was synthesized via the procedure developed by Burke et al. ${ }^{32}$

7.2. Synthesis of Starting Materials

7.2.1. Synthesis of Enynyl Boronates]

Method A: Synthesis of Disubstituted Enynyl Boronates ${ }^{33}$

To a $10-\mathrm{mL}$ round bottom flask in glove box was added $\mathrm{Pd}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%)$, $\mathrm{CuI}(10 \mathrm{~mol} \%)$, and vinyl iodide \boldsymbol{i}^{32} (1.0 equiv). Ahydrous THF (0.2 M) was added and the reaction stirred at room temperature for 2 min . Piperidine (2.0 equiv) and terminal alkyne (1.2 equiv) were added to the solution sequentially and let the reaction stir overnight at room temperature. The reaction mixture was filtered through a short pad of silica gel and the filter was washed with EtOAc. The filtrate was concentrated under reduced pressured and purified by column chromatography on silica gel $(\mathrm{Hex}: E t O A c=$ 10:1 to $1: 6$) to afford enynyl MIDA-boronate 36.1'.

Method B: Synthesis of Disubstituted Enynyl Boronates

Synthesis of Enynyl Pinacol Boronate ii: ${ }^{34}$ To an oven dried round bottom flask in glovebox was added $\mathrm{CuCl}(2 \mathrm{~mol} \%)$, $\operatorname{IPr}(2 \mathrm{~mol} \%)$, and $t-\mathrm{BuONa}(12 \mathrm{~mol} \%)$. Toluene $(0.5 \mathrm{M})$ was added and the mixture was stirred at room temperature for 15 min under argon atmosphere. $\mathrm{B}_{2} \mathrm{pin}_{2}$ (1.2 equiv) was then added to the solution in glovebox and stirred at room temperature for 5 min . The symmetrical diyne (1.0 equiv) and MeOH (2.0 equiv) were then added sequentially and the reaction was stirred at room temperature until completion (monitored by GC/MS). The reaction mixture was filtered through Celite ${ }^{\circledR}$. The solvent was removed under reduced pressure and the crude $\boldsymbol{i} \boldsymbol{i}$ was used in the next step without any purification.

Synthesis of Enynyl Boronic Acid iii: ${ }^{35}$ To the crude enynyl pinacol boronate iia (1.0 equiv) acetone/water ($2 / 1$) solution $(0.1 \mathrm{M})$ was added. NaIO_{4} (3.1 equiv) and $\mathrm{NH}_{4} \mathrm{OAc}$ (3.1 equiv) were sequentially added to the solution and the mixture was stirred at room temperature. Once completed (monitored by GC-MS), the reaction was treated with water and extracted with EtOAc. Organic layers were combined, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the crude $\boldsymbol{i} \boldsymbol{i} \boldsymbol{i}$ was used in the next step without any purification.

Synthesis of Enynyl MIDA Boronate 36.1e' and 36.1b': ${ }^{\mathbf{3 6}}$ To the crude boronic acid iii (1.0 equiv) methyliminodiacetic acid (1.1 equiv), toluene (0.3 mL), and DMSO (0.12 mL) were added. The Dean-Stark trap filled with toluene fit condenser vented to ambient atmosphere. The reaction mixture was refluxed with azeotropic removal of water for 6 hours. The mixture was then cooled down to room temperature, treated with
$\mathrm{EtOAc} /$ acetone mixture, and extracted with water. Aqueous layer was further washed with EtOAc/acetone mixture for two times. The organic layers were combined, washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue was subjected to column chromatography on silica gel ($\mathrm{Hex}: \mathrm{EtOAc}=10: 1$ to 1:6) to obtain enynyl boronates $\mathbf{3 6 . 1 e}{ }^{\prime}$ and $\mathbf{3 6 . 1 b}{ }^{\prime}$.
(E)-6-methyl-2-(oct-1-en-3-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.30$ (td, $J=7.1 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.5 (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.4 (sextet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.4,124.6,92.8,80.4$, 61.6, 47.1, 30.7, 22.0, 19.1, 13.6.
(E)-6-methyl-2-(4-phenylbut-1-en-3-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione
(36.1b') Method A, (61\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.44$ (apparent d, $J=6.4$, $2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.36(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (d, $J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ ppm 167.2, 131.7, 128.4, 124.3, 122.9, 889.0, 84.4, 61.6, 47.0.
(E)-2-(4-(2-methoxyphenyl)but-1-en-3-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.1c') Method A, (62\%), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.38$ (apparent $\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.19 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.1$ (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.83$ (s, 3 H$), 3.77$ (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.6,159.9,133.7,130.1,123.8$, $120.6,12.1,110.8,93.4,87.6,61.7,55.8,47.2$.

(E)-6-methyl-2-(4-(2-(trifluoromethyl)phenyl)but-1-en-3-yn-1-yl)-1,3,6,2-

 dioxazaborocane-4,8-dione (36.1d') Method A, (35\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ $\delta \mathrm{ppm} 7.74$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 6.41$ $(\mathrm{d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 167.9,134.0,132.2$, 128.6, $126.0(\mathrm{q}, J=5.5 \mathrm{~Hz}), 121.1,94.9,85.3,61.7,46.7$.(Z)-2-(dodec-5-en-7-yn-5-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione
(36.1e')

Method B, (63% over 3 steps), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta \mathrm{ppm} 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}$, $\mathrm{J}=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, \mathrm{~J}=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dt}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2$ H), 2.18 (t, J=7.6 Hz, 2 H), 1.51 (quintet, J=7.2 Hz, 2 H), $1.46-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.32$ (quintet, J=7.1 Hz, 2 H), $0.92-0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta \mathrm{ppm}$ $168.5,118.6,97.3,78.3,61.94,47.1,32.4,31.8,30.9,23.2,21.9,19.3,13.9,13.6$.

(E)-2-(dec-1-en-3-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

 Method A, (54\%), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 6.06(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~d}$, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.3(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.52 (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 1.37 (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.33-1.23$ $(\mathrm{m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}: 168.4,124.6$, $92.9,80.4,61.6,47.1,31.3,28.6,22.5,19.5,14.1$.(E)-6-methyl-2-(6-phenylhex-1-en-3-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione
(36.1g') Method A, (68\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.35-7.27$ (m, 2 H), 7.277.21 (m, 3 H), 6.07 (d, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2$ H), 3.69 (d, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.3,140.6,128.4,126.4,124.4,91.9,81.1$, 61.6, 47.1, 35.0, 21.6.
(E)-6-methyl-2-(4-(4-(trifluoromethyl)phenyl)but-1-en-3-yn-1-yl)-1,3,6,2-
dioxazaborocane-4,8-dione (36.1h') Method A, (45\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) δ ppm 7.58 (apparent d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.54 (apparent d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.38 (d, $J=18.2$ Hz, 1 H), 6.25 (d, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (d, $J=16.3 \mathrm{~Hz}, 2 \mathrm{H})$, $2.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 166.5,131.9,125.3,124.0,97.1,90.0$, 61.6, 46.8.
(E)-2-(4-(4-bromophenyl)but-1-en-3-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (36.1i') Method A, (38\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.57$ (apparent d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (apparent d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22$ (d, $J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, ($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 167.9,133.1,131.8,122.5,122.1,121.3,90.6,88.5$, 61.6, 46.7.
(E)-2-(dodeca-1-en-3,5-diyn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione
(36.1j') Method A, (51\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 6.39(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1$
H), $6.03(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.53$ (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.28(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 167.9$, $120.5,85.1,74.8,64.9,61.7,46.7,31.1,28.3,28.0,22.3,18.9,13.4$.
(Z)-2-(1,4-diphenylbut-1-en-3-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.1k') Method B, (10% over 3 steps), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.51-$ $7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1$ H), $4.25(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 141.1,131.2,128.9,128.4,128.3,127.9,126.9,123.4,117.9$, 93.5, 88.5, 62.0, 46.8.
(E)-6-methyl-2-(5-(trimethylsilyl)pent-1-en-3-yn-1-yl)-1,3,6,2-dioxazaborocane-4,8dione (36.11’') Method A, (71\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 6.16$ (d, $J=18.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.85(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 168.2, 124.0, 104.6, 96.6, 61.6, 47.2, -0.1.

(E)-2-(but-1-en-3-yn-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

Enyne 36.11' (1.0 equiv), possessing the TMS group, was dissolved in anhydrous THF $(0.25 \mathrm{M})$ under argon atmosphere. The solution was cooled down to $-78{ }^{\circ} \mathrm{C}$ and TBAF (1.05 equiv; 1 M sol. in THF) was added dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour and then warmed up to room temperature. The mixture was quenched with saturated NaHCO_{3} solution and extracted with EtOAc (2 times). Organic layers were
combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvent were removed under reduced pressure and the product was purified by column chromatography on silica gel (Hexanes: $\mathrm{EtOAc}=10: 1$ to $1: 6$) to give 36.11'.
(72\%), ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 6.31(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=18.3$ $\mathrm{Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (d, $J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46$ (d, $J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 168.0,121.0,78.9,61.6,46.6$.

7.2.2. Synthesis of Alkynyl Epoxides

Enynyl boronate 36.1' (1.0 equiv) was dissolved in dichloromethane (0.05 M) and m-CPBA (1.9 equiv) was added. The reaction was stirred at room temperature for 18 hours. The reaction mixture was then treated with saturated aqueous NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvents were removed under reduced pressure and the crude was subjected to column chromatography on silica gel $(\mathrm{Hex}: \mathrm{EtOAc}=10: 1$ to $1: 8)$ to obtain the desired boronated alkynyl epoxide 36.1.

2-(3-(hex-1-yn-1-yl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.1a) $(60 \%),{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 3.98(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}$,

3 H), 2.45 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.48 (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.39 (sextet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 168.9, 167.5, 84.7, 77.2, 62.09, 62.02, 46.3, 44.2, 30.4, 21.9, 18.4, 13.5. HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 280.1356$, found: 280.1358.

6-methyl-2-(3-(phenylethynyl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.1b) (44\%), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.42(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 4.04(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1$ H), 3.78 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (s, 3 H), 2.61 (d, $J=2.9 \mathrm{~Hz}, 1$ H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.7,167.4,131.9,128.8,128.4,121.9,86.4$, 83.5, 62.2, 62.1, 46.4, 44.4. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}:$300.1043, found: 300.1042.

2-(3-((2-methoxyphenyl)ethynyl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-

 dione (36.1c) (52\%) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39(\mathrm{dd}, J=7.5 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}$, $3 \mathrm{H}), 2.64(\mathrm{~d}, J 2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 168.2, 166.9, 160.4, 133.9, 130.3, 120.5, 111.1, 110.7, 90.3, 79.9, 62.1, 62.0, 55.8, 46.2, 44.8. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 330.1149$, found: 330.1140 .6-methyl-2-(3-((2-(trifluoromethyl)phenyl)ethynyl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.1d) $(48 \%),{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.77$
(d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1$ H), $4.30(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.67(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ $\delta \operatorname{ppm} 168.3,167.3,134.5,132.2,130.8(\mathrm{q}, J=31.4 \mathrm{~Hz}), 129.1,126.0(\mathrm{q}, J=5.5 \mathrm{~Hz}), 123.7$ (q, $J=271.9 \mathrm{~Hz}), 120.2(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 9301,78.1,62.2,62.1,46.3,42.9$. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0913 .

2-(2-butyl-3-(hex-1-yn-1-yl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

 (36.1e) $(63 \%){ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 3.92(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 1 \mathrm{H}), 3.07$ (s, 3 H), $2.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.20$ $(\mathrm{m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.9,167.2,86.6$, 75.7, 62.3, 49.9, 46.1, 32.8, 30.4, 27.3, 23.4, 21.9, 18.5, 13.9, 13.5. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 336.1982$, found 336.1977.6-methyl-2-(3-(oct-1-yn-1-yl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.1f) (60\%), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 4.01(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.45$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.19$ (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.48 (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $1.37-1.23$ (m, $6 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.8,167.4,132.0$, 128.5, 84.9, 50.9, 46.3, 44.5, 31.3, 28.6, 28.4, 22.6, 18.8, 14.2. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 308.1669$, found: 308.1674.

6-methyl-2-(3-(4-phenylbut-1-yn-1-yl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8-
dione (36.1g) (56\%), ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 3.97(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1$ H), $3.72(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $2.48(\mathrm{t}, J-7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $168.6,167.3,140.4,128.5,126.4,83.96,77.98,62.08,62.02,46.2,44.3,34.71,20.88$. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 328.1356$, found: 328.1350.

6-methyl-2-(3-((4-(trifluoromethyl)phenyl)ethynyl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.1h) (44\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.54$ 7.50 (m, 4 H$), 4.06$ (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (d, $J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (d, $J=17.2 \mathrm{~Hz}, 1$ H), 3.81 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 ($\mathrm{s}, 3 \mathrm{H}$), 2.65 (d, $J=2.9 \mathrm{~Hz}, 1$ H). ${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.4,167.1,132.1,130.4(\mathrm{q}, J=33.3 \mathrm{~Hz}), 125.7$, 125.3 (q, $J=3.7 \mathrm{~Hz}$), 123.7 ($\mathrm{q}, J=271.9 \mathrm{~Hz}$), 88.6, 82.1, 62.2, 62.1, 46.4, 44.3. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0921 .

2-(3-((4-bromophenyl)ethynyl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-

 dione (36.1i) (34\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.3,167.3,133.4,131.8$, 122.6, 121.4, 88.6, 81.2, 62.2, 62.1, 46.3, 42.9. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BBrNO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 378.0148$, found: 378.0152 .
2-(3-(deca-1,3-diyn-1-yl)oxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione

(36.1j) (42\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 4.01$ (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.00 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}),(\mathrm{d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.52$ (quintet, $J=7.1 \mathrm{~Hz}, 2$ H), $1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.7,167.3,81.8,72.9,68.7,64.4,62.1,51.1$ (C-B, rough, broad), 46.5, 44.0, 31.2, 28.6, 28.1, 22.5, 19.3, 14.1. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 332.1669$, found: 332.1669.

6-methyl-2-(2-phenyl-3-(phenylethynyl)oxiran-2-yl)-1,3,6,2-dioxazaborocane-4,8dione (36.1k) (28\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}$, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.0,167.1$, 138.7, 131.6, 128.6, 128.3, 127.7, 127.1, 126.8, 122.1, 85.4, 84.6, 62.6, 62.2, 51.1, 46.8. HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 376.1356$, found: 376.1353 .

2-(3-ethynyloxiran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.11) (45\%), ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 4.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1$ H), 4.18 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{dd}, J=2.9 \mathrm{~Hz}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.2,167.2,81.7,72.0,62.0,46.2,42.3$. HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 224.0730$, found: 224.0730 .

7.3. Copper-Catalyzed Synthesis of C3-Borylated Furans

To a V-shaped vial in the glovebox was added $[\mathrm{CuOTf}]_{2} \cdot \mathrm{PhH}(5 \mathrm{~mol} \%, 2.5 \mathrm{mg})$. The vial was capped and taken out of glovebox. Dry dichloroethane $(2.0 \mathrm{~mL})$ was added and the mixture stirred for 2 min at room temperature. Alkynyl epoxide $\mathbf{3 6 . 1}$ (1.0 equiv, $0.1 \mathrm{mmol})$ as a solution in dichloroethane $(0.5 \mathrm{~mL})$ was added dropwise and the mixture was stirred at $30^{\circ} \mathrm{C}$ overnight. The reaction mixture was then filtered through Celite ${ }^{\circledR}$ and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography on silica gel (Hexanes: $\mathrm{EtOAc}=10: 1$ to $1: 6$) to obtain furan 36.4.

7.4. Gold-Catalyzed Reactions

7.4.1. Gold-Catalyzed Synthesis of C3-Borylated Furans

To a round bottom flask in the glovebox was added commercially available (2,4-di- $t-\mathrm{BuPhO})_{3} \mathrm{PAuCl}(5 \mathrm{~mol} \%, 4.4 \mathrm{mg}), \operatorname{AgOTf}(5 \mathrm{~mol} \%, 1.3 \mathrm{mg})$ in the glove box. The flask was capped abd taken out of glove box. Dry dichloroethane $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 5 min at room temperature, which was then cooled down to $30{ }^{\circ} \mathrm{C}$. Alkynyl epoxide $\mathbf{3 6 . 1}$ (1.0 equiv, 0.1 mmol) as a solution in dichloroethane (0.5 mL) was added dropwise and the mixture was stirred at $-30^{\circ} \mathrm{C}$. After 2 hours, the reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography on silica gel (Hexanes: $\mathrm{EtOAc}=10: 1$ to $1: 6$) to obtain furan 36.4.

2-(5-butylfuran-3-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.4a) (83\%), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.35(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.57$ (quintet, $J=7.6 \mathrm{~Hz}, 2$ H), 1.32 (sxt, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.9(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$
168.9, 158.1, 145.7, 107.2, 61.4, 47.5, 30.1, 27.5, 22.3, 13.8. HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 280.1356$, found: 280.1359.

6-methyl-2-(5-phenylfuran-3-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.4b) (87\%) ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.72$ (apparent d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.42-$ $7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ 168.6, 155.4, 147.0, 130.5, 128.8, 127.6, 123.9, 107.7, 61.5, 47.6. ${ }^{11} \mathbf{B}$ NMR $\left(128 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm}$ 10.1. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 300.1043,300.1042$.

2-(5-(2-methoxyphenyl)furan-3-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.4c) $(81 \%){ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.80$ (apparent d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.09$ (apparent d, $J=8.4 \mathrm{~Hz}, 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.98$ (m, 1 H), $4.31(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ 168.1, 155.3, 151.8, 146.1, 128.3, 126.0, 120.7, 119.41, 112.3, 111.0, 61.5, 55.4, 47.5. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 330.1149, found: 330.1139 .

6-methyl-2-(5-(2-(trifluoromethyl)phenyl)furan-3-yl)-1,3,6,2-dioxazaborocane-4,8dione (36.4d) The reaction was performed at room temperature. (61\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.65-7.45(\mathrm{~m}, 1 \mathrm{H})$, $6.84(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2,98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.1,151.4,148.0,132.3,130.3,128.2,126.5$ (q, $J=5.6$
$\mathrm{Hz}), 126.1(\mathrm{q}, J=31.4 \mathrm{~Hz}), 124.3(\mathrm{q}, J=271.9 \mathrm{~Hz}), 113.4,61.5,47.2$. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0917 .

2-(2,5-dibutylfuran-3-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.4e) (81\%) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 5.77(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}\right.$, $J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-$ $1.54(\mathrm{~m} .4 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.86(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm} 167.9,155.3,107.8,61.5,47.1,31.5,30.1,27.9,27.5,22.4,22.3,13.9,13.8$. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 336.1982$, found: 336.1976.

2-(5-hexylfuran-3-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.4f) (67\%), ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.36(\mathrm{~s} .1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.77 (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s} .3 \mathrm{H}), 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60$ (quintet, $J=7.4 \mathrm{~Hz}, 2$ H), $1.36-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.97 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ 168.4, 158.3, 145.8, 107.1, 61.4, 47.4, 31.5, 31.5, 28.9, 28.0, 27.9, 22.6, 14.1. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0921 .

6-methyl-2-(5-phenethylfuran-3-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.4g) (74\%), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.11(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~d}, J 16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-$ $2.88(\mathrm{~m}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.2,159.4,141.0$, 128.43, 128.4, 126.1, 119.9, 106.1, 61.5, 47.0, 34.5, 29.5. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 328.1356$, found: 328.1350 .

6-methyl-2-(5-(4-(trifluoromethyl)phenyl)furan-3-yl)-1,3,6,2-dioxazaborocane-4,8dione (36.4h) (65\%), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.92$ (apparent d, $J=8.1 \mathrm{~Hz}$, 2 H), 7.74 (apparent d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.70 (s, 1 H), 7.15 (s, 1 H), 4.35 (d, $J=17.2 \mathrm{~Hz}, 2$ H), 4.17 (d, $J=16.9 \mathrm{~Hz}, 2.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm}$ 168.1, 153.0, 148.1, 134.5, 125.7 (q, $J=3.7 \mathrm{~Hz}), 124.5$ (q, $J=270.0 \mathrm{~Hz}), 123.9,111.2$, 61.5. 47.2. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0918.

2-(5-(4-bromophenyl)furan-3-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.4i) (79\%), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.67$ (apparent d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (s, 1 H), 7.58 (apparent d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (s, 1 H), 4.33 (d, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}$), 4.14 (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.0,153.4$, 147.3, 131.8, 130.2, 125.4, 120.4, 109.5, 61.5, 47.2. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BBrNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 378.0148$, found: 378.0154.

6-methyl-2-(5-(oct-1-yn-1-yl)furan-3-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.4j) (67\%), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.9$ Hz, 2 H), 3.77 (d, $J=16.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.88$ (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, 6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 168.3,147.0,139.0,116.3,95.6,70.6,61.5,47.6,31.3$, 28.6, 28.3, 22.5, 19.5, 14.1. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 332.1669$, found: 332.1666 .
$(67 \%){ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.88-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 4 \mathrm{H})$, 7.39-7.27 (m, 1 H$), 7.33-7.28(\mathrm{~m}, \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 167.9,152.9$, 132.6, 130.7, 128.8, 128.4, 128.0, 127.9, 127.3, 123.7, 112.3, 61.9, 46.9. HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 376.1356$, found: 376.1355 .

7.4.2. Gold-Catalyzed Synthesis of C2-Borylated Furans

To a V-shaped vial in the glovebox was added $\operatorname{IPrAuCl}(5 \mathrm{~mol} \%, 3.1 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(5 \mathrm{~mol} \%, 1.7 \mathrm{mg})$. The flask was capped and taken out of glove box. Dry dichloroethane $(2.0 \mathrm{~mL})$ was added and the mixture was stirred for 5 min at room temperature. Alkynyl epoxide 36.1 (1.0 equiv, 0.1 mmol) as a solution in dichloroethane $(0.5 \mathrm{~mL})$ was added dropwise and the mixture was stirred at room temperature. After 1-2 hours the reaction mixture was filtered through Celite ${ }^{\circledR}$ and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography on silica gel (Hexanes:EtOAc $=10: 1$ to $1: 6$) to obtain furan 36.5.

2-(5-butylfuran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.5a)(75\%), ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \operatorname{ppm} 6.63(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.6(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57$ (quintet, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.33 (sxt, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $0.9(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.3,160.7,119.9,105.4,61.6,47.2,30.2,27.8,22.3,13.8$. HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 280.1356$, found: 280.1354 .

6-methyl-2-(5-phenylfuran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.5b) (50\%), ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.75$ (apparent d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.45-7.34 (m, 2 H), $7.35-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm}$ 168.1, 156.8, 131.1, 128.7, 127.4, 123.9, 120.0, 105.6, 61.6, 47.0. ${ }^{11} \mathbf{B}$ NMR (128 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm}$ 9.3. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 330.1043$, found: 300.1037.

2-(5-(2-methoxyphenyl)furan-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione
(36.5c) $(49 \%),{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 7.80$ (apparent dd, $J=7.7 \mathrm{~Hz}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.93$ (apparent d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.91 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.0,155.35$, 153.7, 128.5, 126.2, 121.2, 120.8, 119.7, 111.0, 110.4, 61.6, 55.4, 47.2. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BNO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 330.1149$, found: 330.1145 .

6-methyl-2-(5-(2-(trifluoromethyl)phenyl)furan-2-yl)-1,3,6,2-dioxazaborocane-4,8dione (36.5d) The reaction was performed at $60{ }^{\circ} \mathrm{C}$. (42%), ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.84-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.49(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.4(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 4.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 167.9,153.9,132.4,131.8(\mathrm{~d}, J=3.7$ $\mathrm{Hz}), 130.5,128.3,126.6(\mathrm{q}, J=5.55 \mathrm{~Hz}), 124.4(\mathrm{q}, J=271.88 \mathrm{~Hz}), 119.7,110.37,64.53$, 46.9. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0917 .

2-(5-hexylfuran-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.5f)(57\%), ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 6.64(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.58$ (quintet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.34-1.26 \mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\mathrm{MHz},\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.4,160.8,120.0,105.4,61.6,47.1,31.5,28.9,28.2,28.0,22.6$, 14.1. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 308.1669$, found: 308.1670 .

6-methyl-2-(5-phenethylfuran-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione (36.5g) (64\%), ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.23-7.26(\mathrm{~m}, 2, \mathrm{H}), 7.15-7.17(\mathrm{~m}, 3 \mathrm{H})$, 6.62 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.96$ (d, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.2,159.4$, 141.0, 128.4, 128.4, 126.1, 119.9, 106.0, 61.5, 47.0, 34.5, 29.5. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 328.1356$, found: 328.1352.

6-methyl-2-(5-(4-(trifluoromethyl)phenyl)furan-2-yl)-1,3,6,2-dioxazaborocane-4,8-
dione (36.5h) (65\%), ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.96$ (apparent d, $J=8.1 \mathrm{~Hz}$, 2 H), 7.73 (apparent d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.0,155.2,134.6,128.2(\mathrm{q}, J=32.4 \mathrm{~Hz}), 125.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.5$ (q, $J=271.0 \mathrm{~Hz}$), 124.2, 120.3, 108.1, 61.6, 47.1. HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BF}_{3} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+}: 368.0917$, found: 368.0923 .

2-(5-(4-bromophenyl)furan-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.5i) (84%), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.70$ (apparent d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (apparent d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}$, $J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 168.0,155.6,131.7,130.3,125.7,120.7,120.2,106.5,61.6,47.0$. HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{BBrNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 378.0148$, found: 378.0144.

6-methyl-2-(5-(oct-1-yn-1-yl)furan-2-yl)-1,3,6,2-dioxazaborocane-4,8-dione $(66 \%),{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 6.71(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1\right.$ H), 4.07 (d, $J=16.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2$ H), 1.58 (quintet, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 1.41 (dt, $J=14.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.34-1.22$ (m, 4 H), $0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz},\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 168.2,141.0,120.0$, 114.3, 95.9, 71.8, 47.3, 31.3, 28.7, 28.3, 22.5, 19.5, 14.1. HRMS (ESI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 332.1669$, found: 332.1671.

2-(furan-2-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (36.51) Reaction was run in anh. THF. (60% NMR yield), ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm} 7.59(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.5(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 2$ H), $2.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta \mathrm{ppm}$ 168.1, 147.2, 143.3, 112.7, 61.4, 47.0. HRMS (ESI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 224.0730$, found: 224.0728.

7.4.3. Mechanistic Investigations

Synthesis of 1-bromooct-1-yne iv: 1-Octyne (1.0 equiv, $10 \mathrm{mmol}, 1.48 \mathrm{~mL}$) was dissolved in acetone (263 mL) and the reaction flask was covered with alumina foil. AgNO_{3} (0.3 equiv, $3 \mathrm{mmol}, 0.51 \mathrm{~g}$) and N -bromosuciinimide (1.4 equiv, $14 \mathrm{mmol}, 2.5 \mathrm{~g}$) were added to the reaction mixture. The reaction was stirred at room temperature for 18 h. The reaction was then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with hexanes (3 times). Organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvents were removed under reduced pressure and crude material was purified by column chromatography on silica gel (pure hexanes) to obtain compound $\boldsymbol{i v}$.

1-bromooct-1-yne $(85 \%, 8.5 \mathrm{mmol}, 1.6 \mathrm{~g}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 2.20(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.82(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 80.4,37.4,31.3,28.5,28.3,22.6$, 19.7, 14.1 .

Synthesis of 2-methyldodeca-3,5-diyn-2-ol \boldsymbol{v} : The mixture of $\mathrm{MeOH}(1.80 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}$ (0.88 mL), 2-methyl-3-butyne-2-ol (2.0 equiv, $14.4 \mathrm{mmol}, 1.4 \mathrm{~mL}$), $\mathrm{CuCl}(15 \mathrm{~mol} \%, 1.1$ $\mathrm{mmol}, 107 \mathrm{mg}$) and $\mathrm{NH}_{2} \mathrm{OH} . \mathrm{HCl}\left(0.3\right.$ equiv, $2.2 \mathrm{mmol}, 153 \mathrm{mg}$) was cooled down to $0^{\circ} \mathrm{C}$ and $\boldsymbol{i} \boldsymbol{v}$ (1.0 equiv, $7.2 \mathrm{mmol}, 1.36 \mathrm{~g}$) as a solution in $\mathrm{MeOH}(0.9 \mathrm{~mL})$ was added dropwise. The reaction was stirred at room temperature for 20 hours. The reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 times). Organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered. Solvents were removed under reduced pressure and the crude material was subjected to column chromatography on silica gel (hexane: $\mathrm{EtOAc}=50: 1$ to $20: 1$) to obtain compound \boldsymbol{v}.

2-methyldodeca-3,5-diyn-2-ol (73\%, $5.3 \mathrm{mmol}, 1.0 \mathrm{~g}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.36\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}\right), 2.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31-$ $1.23(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 81.8,79.8$, $67.4,65.5,64.3,31.3,31.1,28.5,28.1,22.5,19.2,14.0$.

Synthesis of deca-1,3-diyne vi: Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 equiv, $7.2 \mathrm{mmol}, 1.0 \mathrm{~g}$) and 18-crown-6 (0.3 equiv, $1.6 \mathrm{mmol}, 422 \mathrm{mg}$) were added to the Shlenk flask. Condenser was attached and the system was flushed with argon. Diyne \boldsymbol{v} (1.0 equiv, $7.2 \mathrm{mmol}, 1.0 \mathrm{~g}$) as a solution in anhydrous toluene (38 mL) was added to the mixture under argon. The
mixtures was stirred under reflux for 18 hours and then cooled down to room temperature. The reaction mixture was then quenched with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (2 times). Organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. Solvents were removed under reduced pressure and the crude material was purified by column chromatography on silica gel (pure hexanes) to obtain compound $\boldsymbol{v i}$.

Deca-1,3-diyne (54\%, $3.9 \mathrm{mmol}, 522 \mathrm{mg}$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 2.24$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 1 \mathrm{H}), 1.491 .56(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 4$ H), $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 78.3,68.5,64.6,64.3$, 31.3, 28.5, 28.0, 22.5, 19.0, 14.0.

Synthesis of deuterated deca-1,3-diyne wii. Terminal diyne $\boldsymbol{v i}$ (1.0 equiv, $3.9 \mathrm{mmol}, 522$ mg) was dissolved in anhydrous THF (5.7 mL) and the solution was cooled down to -78 ${ }^{\circ} \mathrm{C}$. Then $n \mathrm{BuLi}(1.2$ equiv, 4.9 mmol$)$ was added dropwise. The reaction was stirred at $78^{\circ} \mathrm{C}$ for 30 min then at $-30^{\circ} \mathrm{C}$ for 30 more min. The reaction was quenched with $\mathrm{D}_{2} \mathrm{O}$ (10.0 equiv, $39 \mathrm{mmol}, 706 \mu \mathrm{~L}$), filtered through the short pad Celite ${ }^{\circledR}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (pure hexanes) to obtained the desired deuterated product vii.

Deuterated deca-1,3-diyne (84%, 99% D-incorporation). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $2.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 4$ H), $0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Compound 36.1f-D was synthesized by subjecting deuterated diyne vii to method B followed by epoxidation (vide infra).
36.1f-D: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 4.01(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 0.85 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 0.24$ H), $2.18(\mathrm{td}, J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).

A. Reaction of the Deuterated Alkynyl epoxide to form C3-Borylated Furan

A. Reaction of the Deuterated Alkynyl epoxide to form C2-Borylated Furan

36.1f-D

36.5f-D

8. EXPERIMENTAL SECTION

1. (a) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K., 2008; vol. Vols. 3 and 11. (b) Dean, F. M. Naturally Occurring Oxygen Ring Compounds; Butterworths: London, 1963. Chapter 1, p 1. (c) Hu, L. L.; Luo, J. S.; Hong, R. Org. Lett. 2014, 16, 2162.
2. For reviews, see: (a) Gribble, G. W.; Saulnier, M. G.; Pelkey, E. T.; Kishbaugh, T. L. S.; Yanbing, L.; Jiang, J.; Trujillo, H. A.; Keavy, D. J.; Davis, D. A.; Conway, S. C.; Switzer, F. L.; Roy, S.; Silva, R. A.; Obaza-Nutaitis, J. A.; Sibi, M. P.; Moskalev, N. V.; Barden, T. C.; Chang, L.; Habeski, W. M.; Pelcman, B.; Sponholtz, W. R., III; Chau, R. W.; Allison, B. D.; Garaas, S. D.; Sinha, M. S.; McGowan, M. A.; Reese, M. R.; Harpp, K. S. Curr. Org. Chem. 2005, 9, 1493. (b) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054. (c)

Isambert, N.; Lavilla, R. Chem.-Eur. J. 2008, 14, 8444. (d) Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev. 2004, 104, 2667.
3. (a) Novak, P.; Muller, K.; Santhanum, K. S. V.; Haas, O. Chem. Rev. 1997, 97, 207; (b) Descalzo, A. B.; Xu, H. J.; Xue, Z. L.; Hoffmann, K.; Shen, Z.; Weller, M. G.; You, X. Z.; Rurack, K. Org. Lett. 2008, 10, 1581; (c) Lin, J. T.; Chen, P. C.; Yen, Y. S.; Hsu, Y. C.; Chou, H. H.; Yeh, M. C. P. Org. Lett. 2009, 11, 97.
4. (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084; (b) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2014, 43, 4633.
5. (a) Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Aldrichim. Acta. 2010, 43, 37; (b) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902; (c) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953.
6. Marshall, J. A.; Robinson, E. D. J. Org. Chem, 1990, 55, 3450.
7. (a) Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98.
(b) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (c) Sromek, A. W.; Gevorgyan, V. Top. Curr. Chem. 2007, 274, 77.
8. Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195.
9. Umland, K. D.; Palisse, A.; Haug, T. T.; Kirsch, S. F. Angew. Chem., Int. Ed. 2011, 50, 9965.
10. Istrate, F. M.; Gagosz, F. Beilstein J. Org. Chem. 2011, 7, 878.
11. Li, W. B.; Li, Y. Y.; Zhou, G. H.; Wu, X. S.; Zhang, J. L. Chem. -Eur. J. 2012, 18, 15113.
12. (a) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500. (b) Xia, Y. Z.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. H. J. Am. Chem. Soc. 2008, 130, 6940.
13. (a) Sromek, A. W.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2004, 43, 2280. (b) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
14. Dudnik, A. S.; Xia, Y. Z.; Li, Y. H.; Gevorgyan, V. J Am Chem Soc 2010, 132, 7645.
15. Miller, D. J. Chem. Soc. C 1969, 12.
10. (a) McDonald, F. E.; Schultz, C. C. J. Am. Chem. Soc. 1994, 116, 9363. (b) McDonald, F. E. Chem. -Eur. J. 1999, 5, 3103.
11. Lo, C.-Y.; Guo, H.; Lian, J.-J.; Shen, F.-M.; Liu, R.-S. J. Org. Chem. 2002, 67, 3930.
18. (a) Yoshida, M.; Al-Amin, M.; Matsuda, K.; Shishido, K. Tetrahedron Lett. 2008, 49, 5021. (b) Yoshida, M.; Al-Amin, M.; Shishido, K. Synthesis 2009, 2454.
19. Blanc, A.; Tenbrink, K.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2009, 74, 4360.
20. Blanc, A.; Alix, A.; Weibel, J.-M.; Pale, P. Eur. J. Org. Chem. 2010, 1644.
21. Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal. 2004, 346, 432.
22. (a) Yoshida, M.; Maeyama, Y.; Al-Amin, M.; Shishido, K. J. Org. Chem. 2011, 76, 5813. (b) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293.
23. He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
24. Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133, 13774.
25. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed.; Hall, D. G., Ed.; Wiley-VCH: Weinheim, 2011.
26. Also, see: Kel'in, A. V.; Gevorgyan, V. J. Org. Chem. 2002, 67, 95.
27. For leading references on the gold-catalyzed cycloisomerizations, see: (a) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276. (b) Lu, B.; Li, Y. X.; Wang, Y. L.; Aue, D. H.; Luo, Y. D.; Zhang, L. J. Am. Chem. Soc. 2013, 135, 8512. (c) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. (d) Simonneau, A.; Harrak, Y.; Jeanne-Julien, L.; Lemiere, G.; Mouries-Mansuy, V.; Goddard, J. P.; Malacria, M.; Fensterbank, L. Chemcatchem. 2013, 5, 1096. (e) Obradors, C.; Leboeuf, D.; Aydin, J.; Echavarren, A. M. Org. Lett. 2013, 15, 1576. (f) Teller, H.; Flugge, S.; Goddard, R.; Fürstner, A. Angew. Chem., Int. Ed. 2010, 49, 1949. (g) Prechter, A.; Henrion, G.; Bel, P. F. D.; Gagosz, F. Angew. Chem., Int. Ed. 2014, 53, 4959. (h) Liu, L. P.; Malhotra, D.; Paton, R. S.; Houk, K. N.; Hammond, G. B. Angew. Chem., Int. Ed. 2010, 49, 9132.
28. Trisubstituted $\mathbf{3 6 . 1 k}$ and $\mathbf{3 5 . 1}$ e afforded products $\mathbf{3 5 . 4 k}$ and $\mathbf{3 5 . 1} \mathbf{e}$ in 81% and 67%, respectively. No competitive alkyl or aryl migration was observed.
29. For substantial D-label scrambling observed in processes involving protropic isomerization, see, for example: (a) Xia, Y. Z.; Dudnik, A. S.; Li, Y. H.; Gevorgyan, V. Org. Lett. 2010, 12, 5538. (b) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am .Chem. Soc. 2006, 128, 14480. Also, see ref. 3b.
18. (a) Basak, A.; Chakrabarty, K.; Ghosh, A.; Das, G. K. J. Org. Chem. 2013, 78 , 9715. (b) Li, W. B.; Li, Y. Y.; Zhou, G. H.; Wu, X. S.; Zhang, J. L. Chem.-Eur. J. 2012, 18, 15113. (c) Fang, R.; Yang, L. Z. Organometallics 2012, 31, 3043. (d) Huang, G. P.; Cheng, B.; Xu, L.; Li, Y. H.; Xia, Y. Z. Chem.-Eur. J. 2012, 18, 5401.
31. Gillis, E. P; Burke, M. D. Aldrichimica Acta, 2009, 42, 17.
32. Lee, S. J.; Anderson, T. M.; Burke, M. D. Angew. Chem., Int. Ed. 2010, 49, 8860.
33. Mohamed, Y. M.; Hansen, T. V. Tetrahedron Lett. 2011, 52, 1057.
34. Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2012, 18, 4179.
35. Movassaghi, M.; Hunt, D. K.; Tjandra, M. J. Am. Chem. Soc. 2006, 128, 8126.
36. Gillis, E. P.; Burke, M.D. J. Am. Chem. Soc. 2008, 130, 14084.

PART THREE

STERREOCONTROLLED METAL-CATALYZED 1,3-PHOSPHATYLOXY/1,3HALOGEN MIGRATION RELAY TOWARD 1,3-DIENES

9. INTRODUCTION

9.1. Transition Metal-Catalyzed Double Migratory Cascade Reactions of

 Propargylic Esters and PhosphatesCascade transformations offer enhancement of molecular complexity and diversity from simpler molecules, which are often accompanied by high degrees of chemo-, regio-, diastereo-, and enantioselectivity. ${ }^{1}$ Compared to the stepwise reactions, these stepeconomical processes represent environmentally and economically more favored approaches. One of the remarkable examples of such transformations is a transition metal-catalyzed molecular rearrangement of readily available propargylic esters and phosphates. ${ }^{2}$ Earlier cases include copper-, ${ }^{3}$ silver-, ${ }^{3}$ zinc-, ${ }^{4}$ and palladium- ${ }^{5}$ catalyzed reactions. However, extensive studies were triggered by discovery of ruthenium-, ${ }^{6}$ platinum-, ${ }^{7}$ and gold- ${ }^{8}$ catalyzed processes. It is generally accepted that transition metal catalysts can activate the triple bond of $\mathbf{4 2 . 1}$ for further transformations (Scheme 42). Thus, it can undergo a 6 -endo-dig cyclization to produce intermediate 42.2, which further rearranges into allene 42.3 (path a). Overall, this formal [3,3]-rearrangement represents a 1,3-OXO $\left(\mathrm{X}=\mathrm{CR}, \mathrm{P}(\mathrm{OR})_{2}\right)$ migration process. Alternatively, the activated substrate $\mathbf{4 2 . 1}$ can undergo a 5-exo-dig cyclization to form intermediate 42.4 , which upon ring opening forms the metal-stabilized carbene 42.5 (path \mathbf{b}). This process, which involves a 1,2OXO migration, is often referred to as a Rautenstrauch rearrangement. ${ }^{5}$

Scheme 42.

Generally, the regiochemistry of 1,3-OXO migration to form 42.3 (path a) or 1,2OXO migration to generate 42.5 (path \mathbf{b}) can be predicted. As a rule of thumb, if substrate $\mathbf{4 2 . 1}$ possesses electronically unbiased internal alkynes $\left(R^{3} \neq H\right)$, the 1,3-OXO migration takes place. ${ }^{9}$ Alternatively, for tertiary or benzyl alcohol derived substrate 42.1, possessing terminal alkynes $\left(\mathrm{R}^{3}=H\right) 10$ and electronically biased internal alkynes $\left(\mathrm{R}^{3}=\right.$ EWG), ${ }^{11}$ the $1,2-\mathrm{OXO}$ migration is preferred. However, other factors, such as the choice of metal catalyst, ${ }^{12}$ the substitution pattern at the propargyl moiety, ${ }^{13}$ and temperature, ${ }^{14}$ in some cases have been reported to govern the regiochemical outcome of these reactions.

Interestingly, reactive compounds 42.3 and $\mathbf{4 2 . 5}$, which possess additional functional groups, can undergo further cascade transformations, including intra- ${ }^{15}$ or intermolecular ${ }^{16}$ trapping, cycloaddition, ${ }^{2 b}$ cross-coupling, ${ }^{17}$ and oxidation reactions. ${ }^{18}$ Alternatively, if these intermediates possess appropriately situated migrating groups, then a second migration can occur, thus offering an easy route to diversely functionalized products.

9.2. Double Migratory Transformations with an Initial 1,3-OXO Migration

9.2.1. Cascade 1,3-OXO/Hydrogen migration

9.2.1.1 Double 1,3-OXO/1,2-H Migration

In 2006, Zhang and co-workers reported the $\mathrm{Au}(\mathrm{I})$-catalyzed cascade reaction of propargylic esters 43.1 into cyclopentenone 43.6 (Scheme 43). ${ }^{19}$ This reaction proceeds well with various cyclic and acyclic substrates providing cyclopentanone products in good to excellent yields. The proposed mechanism involves an initial 1,3-acyloxy migration to form allenylacetate 43.2 (vide supra), which in the presence of a gold catalyst transforms into the vinyl gold species 43.3. The Nazarov cyclization of the latter produces cyclic gold-stabilized carbene 43.4, which upon a subsequent 1,2 -hydride shift ${ }^{20}$ affords dienyl acetate 43.5. Hydrolysis of the latter by wet dichloromethane furnishes the cyclopentenone 43.6.

Scheme 43.

Fensterbank and Malacria disclosed an analogous $\mathrm{Au}(\mathrm{I})$ - catalyzed reaction of analogous enynyl acetates 44.1 bearing a tethered olefin at the propargylic position (Scheme 44). ${ }^{21}$ It is believed that after the 1,3-OAc migration-Nazarov cyclization sequence, the compound 44.2 (an analogue of 43.4) is formed. Depending on the length of the tether, different reactivity of the gold-carbene 44.2 was observed. When $n=3$ (44.2a), the above discussed 1,2-hydride $\operatorname{shift}^{19}$ takes place to produce the cyclopentadienyl acetate 44.3 . However, in the reaction of the substrate with a shorter tether (44.2b, $\mathrm{n}=2$), exclusive formation of tricyclic compound 44.4 via an electrophilic cyclopropanation reaction was observed. DFT calculations supported the cyclopropanation reaction of compound $\mathbf{4 4 . 2}$ b into 44.4 , which is both kinetically and thermodynamically favored over the 1,2-hydride shift that leads to $\mathbf{4 4 . 3}$.

Scheme 44.

In 2007, Zhang's group developed the $\operatorname{Pt}(\mathrm{II})$-catalyzed synthesis of tetracyclic 2,3-indoline-fused cyclopentenes $\mathbf{4 5 . 6}$ from the propargylic 3-indoleacetates $\mathbf{4 5 . 1}$ (Scheme 45). ${ }^{22}$ This reaction exhibites a wide substrate scope, as various groups at the
propargylic position, nitrogen atoms, and terminus alkyne of $\mathbf{4 5 . 1}$ were well-tolerated under the reaction conditions. According to the mechanistic hypothesis, the 1,3-migration of the indoleacetate group produces allene 45.2, which then in the presence of the platinum catalyst gives the oxocarbenium species 45.3. Following the C 3 attack of the indole moiety at the electrophilic center of the latter, the vinyl platinum $\mathbf{4 5 . 4}$ is formed. A subsequent 5-exo-trig cyclization of $\mathbf{4 5 . 4}$ produces the platinum carbene-containing tetracyclic compound 45.5, which undergoes a 1,2-hydride shift to furnish the final tetracyclic product 45.6.

Scheme 45.

Notably, a synthetic utility of this transformation was demonstrated by a short synthesis of compound 46.3, a tetracyclic core of vindolinine (Scheme 46). Thus, propargylic ester 46.1 under these reaction conditions produced compound 46.2, which upon sequential functional group interconversion was efficiently transformed into the indoline-containing alkaloid 46.3 in a reasonable overall yield.

Scheme 46.

Gevorgyan's group demonstrated the copper-catalyzed synthesis of various heterocycles 47.5 from propargylic phosphates 47.1 (Scheme 47). ${ }^{23}$ A variety of substituted furanes and indolizines could be efficiently accessed via this cascade transformation. The proposed mechanism involves the Cu-catalyzed 1,3-phosphatyloxy migration to produce allene 47.2, which upon a nucleophilic attack of the heteroatom at the metal-activated allene via a 5-endo-trig process generates oxonium ion 47.3. The latter then converts into the heterocyclic copper carbene 47.4, which further undergoes a subsequent 1,2-hydride shift to furnish heterocycle 47.5. Employment of an analogous acyloxy-containing substrate in this reaction was less efficient.

Scheme 47.

To better understand the mechanism of the reaction, the ${ }^{17} \mathrm{O}$-enriched alkynyl pyridine 48.1 was treated under the reaction conditions (Scheme 48). Subsequently, the corresponding indolizine $\mathbf{4 8 . 2}$ with the labeled bridging phosphate oxygen was isolated as a major isotopomer with traces of $\mathbf{4 8 . 6}$ observed. Thus, this observation strongly supports that migratory cycloisomerization of substrate $\mathbf{4 8 . 1}$ involves the formation of allene $\mathbf{4 8 . 2}$ (the result of 1,3-phosphatyloxy migration) rather than isotopomeric allene 48.5 (the product of two sequential 1,2-phosphathyloxy migrations).

48.1

48.4

Cu (cat)
1,2-OP(O)(OEt) $)_{2}$ mig.

48.2

48.3, 74\%

Scheme 48.

9.2.1.2 Double 1,3-OXO/1,5-H Migration

It was shown by Liu's group that propargylic acetate $\mathbf{4 9 . 1}$ could be converted into the tricyclic structure 49.5 in the presence of either gold(I) or platinum(II) catalysts
(Scheme 49). ${ }^{24}$ The mechanism of this reaction involves the metal-triggered 1,3-OAc migration to produce allene 49.2, which upon a 5-endo-trig cyclization generates the bicyclic metal carbene 49.3. A following 1,5-hydride shift from the acetal moiety of the latter to the electrophilic metal carbene center produces cation 49.4, which then undergoes a nucleophilic attack of the allyl metal moiety at the electrophilic oxocarbenium center to furnish the final tricyclic product 49.5.

Scheme 49.

9.2.2. Cascade 1,3-OXO/Alkyl migration

9.2.2.1 Double 1,3-OXO/1,2-Alkyl Migration

Gevorgyan and co-workers reported the gold-catalyzed cascade reaction of the propargylic esters and phosphates $\mathbf{5 0 . 1}$ to unsymmetrically substituted naphthalenes $\mathbf{5 0 . 5}$ (Scheme 50). ${ }^{25,26}$ It was proposed that substrate $\mathbf{5 0 . 1}$ initially undergoes the goldcatalyzed 6 -endo-dig cyclization to produce the cyclic intermediate $\mathbf{5 0 . 2}$, in which a 1,2 R^{2} migration forms the benzylic carbocation 50.3. A sequence of proton loss-
protodeauration steps in the latter takes place to give diene $\mathbf{5 0 . 4}$, which upon cyclization via either 6π-electrocyclization or Friedel-Crafts reactions furnishes the naphthalene product 50.5. Interestingly, employing the substrate $\mathbf{5 0 . 6}$ (analogue of $\mathbf{5 0 . 1}$), having a strained cyclobutyl ring at the α-position of the propargylic ester group leads to formation of 1,3-diene $\mathbf{5 0 . 7}$ (analogue of $\mathbf{5 0 . 4}$) possessing the acetate functionality.

Scheme 50.

9.2.2.2 Double 1,3-OXO/1,3-Alkyl Migration

Toste and co-workers disclosed the gold-catalyzed enantioselective synthesis of chromenyl derivatives $\mathbf{5 1 . 5}$ from the propargylic pivalates 51.1 (Scheme 51). ${ }^{27}$ Among all chiral ligands tested, the acyclic 3,3 '-functionalized BINAM ligand A showed the best
enantioselectivity. The mechanism of the reaction involves an initial 1,3-pivaloxy migration to yield the metal-activated axially chiral allene 51.2, which in the presence of the gold catalyst transforms into the achiral carbocation 51.3. The latter, which is stabilized by the oxygen atom of the migrated group, possesses a chiral ligand at the gold moiety. Therefore, the dynamic kinetic asymmetric 6 -endo-trig cyclization leads to the

Scheme 51.

oxonium compound 51.2. Further carbodemetallation of the vinyl gold moiety in the latter via the 1,3 -alkyl migration affords the enatioriched C3-substituted chromenyl pivalate 51.5.

9.2.3. Cascade 1,3-OXO/1,3-Acyl migration

Zhang's group reported the gold(III)-catalyzed cascade reaction of propargylic esters 52.1 into α-ylidene- β-diketones 52.5 and 52.6 (Scheme 52). ${ }^{28,29}$ Substrate 52.1,
possessing different substituents at the terminal alkyne and the propargylic positions, reacted in a highly efficient manner. Notably, not only propargylic pivalates, but also acrylates, benzoates, and carbonates were employed in this double migratory process. According to the mechanistic hypothesis, the propargylic ester 52.1 undergoes a 1,3acyloxy migration to form the allenyl ester 52.2, which in the presence of the gold catalyst transforms into a vinyl gold species 52.3. Intramolecular nucleophilic attack of the vinyl gold moiety at the acylium ion in the latter produces a four membered oxacycle 52.4, which upon rearrangement affords the (E)- α-ylidene- β-diketone 52.5. The Z diastereomer $\mathbf{5 2 . 6}$ is believed to form via isomerization of the E analogue in the presence of the $\mathrm{Au}(\mathrm{III})$ catalyst.

Scheme 52.

9.3. Double Migratory Transformations with an Initial 1,2-OXO Migration

9.3.1. Double 1,2-OXO/1,2-H Migration

In 2008, Zhang's group reported the gold-catalyzed stereoselective reaction of propargylic ester 53.1 toward $(1 Z, 3 E)$-diene 53.4 (Scheme 53). ${ }^{30}$ Control over the regioselectivity in this reaction was achieved by taking advantage of the reversible nature of these transformations. Thus, the electronically unbiased propargyl ester $\mathbf{5 3 . 1}$ initially undergoes $1,3-\mathrm{OPiv}$ migration, which is usually preferred for internal alkynes, to produce allene 53.2 (vide supra). If the latter does not undergo further reactions, ${ }^{28}$ then the

Scheme 53.

equilibrium shifts back to propargylic pivalate 53.1. The latter then undergoes a 1,2pivaloxy migration, which is less facile for internal alkynes, to generate the gold carbene 53.3, which upon an irreversible 1,2-hydride shift produces the 1,3-diene 53.4. ${ }^{31}$

Notably, the obtained dienes in this chemistry were shown to be good partners in the Diels-Alder reaction (Scheme 54). Under the reaction conditions, the propargylic pivalates 54.1 and $\mathbf{5 4 . 4}$ initially underwent the double migratory cascade reactions to produce expected 1,3-dienes 54.2 and $\mathbf{5 4 . 5}$, which upon the following inter- and
intramolecular Diels-Alder reactions furnished the cycloadducts $\mathbf{5 4 . 3}$ and 54.6, respectively, in good yields and selectivity.

Scheme 54.

9.3.2. Double 1,2-OXO/1,4-Carbon Migration

It was shown by Toste's group that benzopyran 55.5 can be synthesized via a gold-catalyzed enantioselective cascade 1,2-OPiv-1,4-allyl migration of $\mathbf{5 5 . 1}$ (Scheme 55). ${ }^{32}$ Thus, propargyl pivalates 55.1, possessing a number of different groups at the aromatic ring, the propargylic, and the allylic positions, underwent an efficient and highly enantioselective transformation in the presence of the (R)-MeO-DTBM-BIPHEP-$(\mathrm{AuCl})_{2}-\mathrm{AgSbF}_{6}$ catalyst system. According to the mechanistic hypothesis, substrate $\mathbf{5 5 . 1}$ possessing a terminal alkyne moiety undergoes a gold-promoted 1,2-pivaloxy migration to produce carbene 55.2, which upon a nucleophilic attack of the ether oxygen atom at the electrophilic center generates the oxonium intermediate 55.3. Ionization of the allylic group of the latter produces compound 55.4. The following nucleophilic attack of the allyl gold moiety at the allylic cation furnishes benzopyran 55.5. ${ }^{33}$

55.1

55.2

L= (R)-MeO-DTBM-BIPHEB

55.5

1,4-allyl mig. \uparrow

55.4

$51 \%, 94 \%$ ee

Scheme 55.

Interestingly, when substrate 55.6, bearing an electron rich para-methoxybenzyl ether moiety, was subjected to the reaction conditions, the benzopyrane $\mathbf{5 5 . 8}$ was formed. This observation provides strong support for the formation of intermediate 55.7 (an analogue of 55.4), thus suggesting the cationic nature of the second migrating group in this cascade transformation.

9.3.3. Double 1,2-OXO/1,2-OAc migration

Nevado and co-workers disclosed a stereodivergent formation of 1,3-dienes $\mathbf{5 6 . 6}$ and 56.7 via the gold-catalyzed double 1,2-acyloxy migration cascade from the 1,3-bis-
propargyl acetate 56.1 (Scheme 56). ${ }^{34}$ Thus, use of the $\operatorname{IPrAu}(\mathrm{NTf})_{2}$ catalyst produces the (Z, Z)-1,3-dienes 56.6, while employment of the $\mathrm{Ph}_{3} \mathrm{PAuNTf}_{2}$ catalyst gives the (Z, E)-1,3diene 56.7. The proposed mechanism of this reaction involves the gold-promoted 1,2acyloxy migration to produce cation $\mathbf{5 6 . 2}$, in which the Z-selectivity of the first migration is dictated by avoiding the 1,3 -allylic strain between [Au] and R^{1} groups. The produced gold carbene 56.3, upon rotation around the $\mathrm{C}-\mathrm{C}$ bond and subsequent nucleophilic attack of the adjacent oxygen at the carbene center, gives cyclic intermediate 56.4. Ring opening of the latter produces cation $\mathbf{5 6 . 5}$, which in the case of the $\mathrm{Ph}_{3} \mathrm{PAuNTf}_{2}$ catalyst directly produces the (Z, E)-1,3-diene $\mathbf{5 6 . 6}$. On the other hand, $\mathbf{5 6 . 5}$, possessing the bulky IPr ligand of $\left[(\mathrm{IPr}) \mathrm{Au}(\mathrm{NTf})_{2}\right]$ isomerizes to the more stable cation 56.7, which upon elimination of gold species produces the (Z, Z)-1,3-diene 56.8. In the following report, the

Scheme 56.

same group clarified more mechanistic details, such as substitution effects at the propargylic position of $\mathbf{5 6 . 1}$ on the stereochemical outcome of this cascade reaction. ${ }^{34 \mathrm{~b}}$

Importantly, the synthetic utility of obtained products via this chemistry was demonstrated (Scheme 57). ${ }^{34 \mathrm{~b}}$ Thus, after the double migratory cascade reaction of the 1,4-bis-propargylic acetates $\mathbf{5 7 . 1}$, the obtained diene $\mathbf{5 7 . 2}$ could be hydrolyzed to produce the unsymmetrical 1,2-diketone 57.3. A one-pot cascade double migration-hydrolysis followed by condensation with aromatic 1,2-diamines produced quinoxaline 57.4. The obtained diene was also shown to be a good partner in Diels-Alder reaction with N phenylmaleimide to produce the cycloadduct 57.4 with moderate endo selectivity.

Scheme 57.

9.4. Summary

It was demonstrated that the transition metal-catalyzed 1,3- and 1,2-OXO migrations of propargylic esters and phosphates 42.1, which produce activated allene
42.3 and metal carbene 42.5 , can efficiently be followed by a second migration of different groups (Scheme 58). It was shown that the $1,2-\mathrm{H}$ migration in the second process leads to mono-, ${ }^{19,21}$ bi-, ${ }^{20}$ tri-, ${ }^{24}$ tetra, ${ }^{22}$ and heterocyclic ${ }^{22,23}$ scaffolds, as well as to acyclic 1,3-dienes. ${ }^{30,31}$ Moreover, employment of an alkyl as the second migrating group in these cascade reactions, gave access to a variety of products including naphthalenes, ${ }^{25}$ dienes, ${ }^{25,266,266,33}$ quinolines, ${ }^{22 \mathrm{~d}}$ and substituted chromens. ${ }^{27,32}$ In addition, double migratory processes involving acyl and acyloxy migrating groups afford $\beta-{ }^{28}$ and δ-diketones, ${ }^{29}$ as well as substituted 1,3 -dienes. ${ }^{34}$ These cascade reactions are triggered by simple and available catalysts, are highly efficient, and usually take place under mild conditions.

Scheme 58.

A wide range of functional groups such as halogen, allyl, phenoxide, cyclopropane, vinyl silane, olefine, alkyne, acetal, ester, protected alcohol, and protected amine are tolerated in these transformations. Importantly, the products of the double migratory reactions could be further functionalized, thus offering a set of novel powerful tools for organic synthesis.

10. METAL-CATALYZED DOUBLE 1,3-PHOSPHATYLOXY/1,3-HALOGEN MIGRATION CASCADE TOWARD FUNCTIONALIZED DIENES

Processes involving $1, n$-halogen migrations are powerful tools for obtaining valuable functionalized synthons for organic chemistry. Among known methods are the base-mediated 1,2-migration of halogen atoms to the anionic center (the halogen dance reaction); ${ }^{35}$ migrations via halonium, ${ }^{36}$ allyl cation, ${ }^{37}$ and α-halo metal carbene ${ }^{38}$ intermediates; halogen shifts during radical processes; ${ }^{39}$ and metal-mediated alkyne-vinylidene isomerizations. ${ }^{40}$ Furthermore, various migrations of a range of other functionalizable groups are well-precedented. ${ }^{41}$ However, double migration reactions employing two functionalizable groups are exceedingly rare. ${ }^{42}$ Inspired by our group's single example on the double 1,3-acetoxy/1,2-alkyl migration reaction in propargylic ester $\mathbf{5 0 . 6}$ to synthesize 1,3 -diene $\mathbf{5 0 . 7}$ via intermediacy of $\mathbf{5 0 . 2},{ }^{25}$ we hypothesized that it should be possible to expand the scope of the second migrating group to halogen atoms. Thus, employment of α-halo propargylic ester or phosphate $\mathbf{5 9 . 1}$ (analogue of 50.6) in the metal-catalyzed reaction should produce 59.2 (analogue of $\mathbf{5 0 . 2}$). If so, the difunctionalized 1,3-dienes, possessing two valuable vinyl halide and vinyl acetate/phosphate functionalities should be obtained (Scheme 59).

Early Observation:

Idea:

Scheme 59.

10.1. Optimization of the Double Migratory Process

The isomerization reaction of α-bromo propargylic phosphate 59.1a to 1,3-diene 59.1b was examined under a variety of conditions (Table IX). It was found that 59.1a to be unaffected by the original catalytic system used for diene synthesis (entry 1). ${ }^{25}$ Likewise, employing gold (I) complexes with alternative counterions such as SbF_{6} or BF_{4} did not provide product formation at all (entries 2, 3). Similarly, silver and platinum catalysts provided no reaction as well (entries 4, 5). However, employment of gold(I) and gold(III) halides unexpectedly produced a mixture of stereoisomeric 1,3-dienes 59.3a and 59.4a, the products of double 1,3/1,3-migration sequence (entries 6-8), with no 1,3-diene 59.2a observed. Employment of $\mathrm{Ph}_{3} \mathrm{PAuCl}$ catalyst resulted in good E-stereoselectivity of the reaction and moderate yield (entry 9). Use of a more electron deficient phosphine ligand led to E-diene 59.3a in an excellent yield and good stereoselectivity (entry 10). Further catalyst screening led to another surprising observation: the $[\mathrm{CuOTf}]_{2} \bullet \mathrm{PhH}$ catalyst

Table XIII. OPTIMIZATION OF DOUBLE MIGRATORY CASCADE REACTION

 59.1a		 59.3a		$\mathrm{P}(\mathrm{O})(\mathrm{OEt})_{2}$
Entry	Catalyst (mol\%)	Solvent $/ T,{ }^{\circ} \mathrm{C}$	59:2a:59.3a:59.4a	Yield $(\%)^{a}$
1	$\mathrm{Ph}_{3} \mathrm{PAuOTf}$ (5)	DCE/rt	-	0
2	$\mathrm{Ph}_{3} \mathrm{PAuSbF}_{6}(5)$	DCE/rt	-	0
3	$\mathrm{Ph}_{3} \mathrm{PAuBF}_{4}$ (5)	DCE/rt	-	0
4	AgOTf (10)	DCE/50	-	0
5	$\mathrm{PtCl}_{2}(5)$	DCM/40	-	0
6	AuI (5)	$\mathrm{PhH} / 50$	0:86:14	ND ${ }^{c}$
7	AuCl_{3} (5)	PhH/40	0:60:40	$\mathrm{ND}{ }^{c}$
8	$\mathrm{LAuCl}_{2}{ }^{\text {(}}$ (5)	DCE/80	0:66:33	ND ${ }^{c}$
9	$\mathrm{Ph}_{3} \mathrm{PAuCl}$ (5)	DCE/80	0:90:10	65
10	$\left(\boldsymbol{p}-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{PAuCl}(5)$	PhMe/100	0:90:10	96
11	$[\mathrm{CuOTf}]_{2} \cdot \mathrm{PhH}(10)$	DCE/50	0:4:96	50
12	$[\mathrm{CuOTf}]_{2} \cdot \mathrm{PhH} \mathrm{(10)}$	DCE/80	0:0:100	85
13	None	PhMe/100	-	0

${ }^{a}$ Isolated yields.
${ }^{b} \mathrm{~L}=$ 2-pyridinecarboxylato.
${ }^{c}$ Yield was not determined.
provided the 1,3/1,3-migration product 59.4a with excellent Z-selectivity (entry 11)! Gratifyingly, performing the reaction at a higher temperature resulted in the efficient and exclusive formation of Z-1,3-diene 59.4a (entry 12). In addition, a control experiment indicated that no product formation occurred in the absence of the catalyst (entry 13).

10.2. Scope of the Copper-Catalyzed Synthesis of (Z)-1,3-Dienes

Inspired by these observations, we first investigated the scope of the Cu-catalyzed Z-selective reaction under the optimized conditions (Table X). Thus, acyclic compounds 59.1a-c underwent this tandem transformation to efficiently produce dienes 59.4a-c (entries 1-3). Chlorine-containing compound 59.1b gave a better yield of the isomerization product compared to its bromine-bearing analog 59.1a. Propargylic phosphate possessing cyclic substituent 59.1d was also effectively converted into the exocyclic diene 59.4d in both good yield and stereoselectivity. Likewise, heterocyclic compound 59.1e also provided 1,3-diene 59.4e as a sole Z-isomer in a good yield. To our delight, cyclic ketone-derived substrates 59.1f-j provided the corresponding products in moderate to excellent yields. Notably, these substrates possessing hydrogen atom adjacent to a halogen provided 1,3-diene 59.4f-j, the products of the exclusive halogen over hydrogen atom migration. Isomerization of five-membered ring-containing substrates 59.1f-g gave diene products 59.4f-g as sole stereoisomers in excellent yields (entries 6-7). Similarly, substrates $\mathbf{5 9 . 1} \mathbf{h} \mathbf{- j}$ bearing six-membered ring furnished the desired products in good yields. ${ }^{43}$ Remarkably, compound $\mathbf{5 9 . 1} \mathbf{j}$ underwent a 1,3-iodine migration in this tandem transformation to produce the Z-diene $\mathbf{5 9 . 2} \mathbf{j}$ as a single stereoisomer in moderate yield (entry 10). To the best of our knowledge, this is the first example of 1,3-migration of iodine. ${ }^{36,37,39}$

Table XIV. COPPER-CATALYZED SYNTHESIS OF (Z)-1,3-DIENES

Entry

Table XV. COPPER-CATALYZED SYNTHESIS OF (Z)-1,3-DIENES (continued)
Entry

[^3]
10.3. Scope of the Gold-Catalyzed Synthesis of (\boldsymbol{E})-1,3-Dienes

Next, we investigated the Au-catalyzed cascade 1,3-phosphatyloxy/1,3-halogen double migration reaction leading to E-1,3-diene products (Table XI). Several halogenated propargylic phosphates bearing acyclic substituents were converted into the corresponding E-dienes 59.3a-c,m in excellent yields and with good to excellent selectivities (entries 1-4). Likewise, exocyclic E-dienes 59.3d,n could also be efficiently obtained via this transformation. Finally, cyclohexyl-containing substrate $\mathbf{5 9 . 1 j}$ underwent this cascade transformation with exclusive 1,3-migration of iodine atom to produce the corresponding 1,3-diene 59.3j in high yield, albeit with a lower level of stereocontrol.

Table XVI. GOLD-CATALYZED SYNTHESIS OF (E)-1,3-DIENES

[^4]${ }^{b}$ Isolated yield.
${ }^{c}$ NMR ratios.

10.4. Proposed Mechanism for the Reaction

We propose the following plausible mechanism for these cascade transformations (Scheme 60). First, coordination of the metal to the π-system of the alkyne $\mathbf{5 9 . 1}$ renders a 1,3-migration of phosphatyloxy group to produce the cyclic intermediate $\mathbf{5 9 . 1 B}$, which upon elimination of the metal produces allenyl phosphate 59C or 59E. ${ }^{2}$ In the case of Au catalyst, π-allyl cation 59D ${ }^{44}$ is produced upon a halogen abstraction from 59B. A subsequent delivery of a halide from gold halide species to 59D occurs anti to the phosphate group giving the E-diene 59.3. Alternatively, in the case of copper catalysis, additional coordination of the metal to the phosphate group of allene takes place (59E). The halogen abstraction by copper produces phosphate-coordinated π-allyl complex $\mathbf{5 9 F}{ }^{45}$ In this way, a subsequent delivery of the halogen is directed by the phosphate group and occurs syn to it, thus producing the corresponding isomeric Z-product 59.4. ${ }^{46}$

Scheme 60.

10.5. Functionalization of obtained (Z)-1,3-Dienes

Next, synthetic utility of 1,3-dienes 59.4a,f obtained in the Cu -catalyzed isomerization reactions of $\mathbf{5 9 . 1} \mathbf{1 a , f}$ was examined (Scheme 61). Hence, the Diels-Alder reactions ${ }^{47}$ of 59.4a with N-phenylmaleimide and $\mathbf{5 9 . 4 f}$ with bromomaleic anhydride efficiently produced cycloadduct 60.1a and pentasubstituted benzene derivative $\mathbf{6 0 . 2 f}$, respectively. Furthermore, the Miyaura-Suzuki cross-coupling reactions ${ }^{48}$ of dienes 59.4a and 59.4f with phenylboronic acid proceeded well, giving phenylated 1,3-dienes
60.3a and $\mathbf{6 0 . 4 f}$ in 78 and 91% yields, respectively. Notably, the phosphatyloxy terminus of (Z)-diene $\mathbf{6 0 . 4}$ could also be functionalized after the Miyaura-Suzuki cross-coupling reaction of the vinyl bromide moiety. Thus, the latter underwent the Kumada crosscoupling reaction of the phosphatyloxy moiety in the presence of an iron catalyst ${ }^{49}$ to give diene 60.5f. Finally, a sequential Miyaura-Suzuki reaction on the vinyl bromide and phosphate ${ }^{50}$ groups of diene $\mathbf{5 9 . 4 f}$ furnished highly functionalized diene $\mathbf{6 0 . 6}$ in a good overall yield.

Scheme 61.

i. N-Phenylmaleimide (1.5 equiv), anisole, $150{ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
ii. Bromomaleic anhydride (1.5 equiv), anisole, $150^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
iii. $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4 \mathrm{~mol} \%)$, XPhos $(8 \mathrm{~mol} \%), \mathrm{ArB}(\mathrm{OH})_{2}$ (2.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 eqiv), toluene, $80^{\circ} \mathrm{C}, 15 \mathrm{~h}$.
$i v . \mathrm{Fe}(\mathrm{acac})_{3}(6 \mathrm{~mol} \%)$, TMEDA (2.0 equiv), $n-\mathrm{BuMgCl}$ (1.5 equiv), $\mathrm{THF}, 0^{\circ} \mathrm{C}$.
v. $\mathrm{Ni}(\operatorname{cod})_{2}(5 \mathrm{~mol} \%), \mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}(10 \mathrm{~mol} \%), \mathrm{PhB}(\mathrm{OH})_{2}$ (2.0 equiv), $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv), THF, $75^{\circ} \mathrm{C}$.

10.6. Summary

In summary, a stereocontrolled isomerization of α-halosubstituted propargylic phosphates into valuable highly functionalized 1,3-dienes has been developed. This methodology features a double 1,3-phosphatyloxy and 1,3-halogen migration relay. Depending on the choice of catalyst, synthesis of either (Z)- or (E)-1,3-dienes could be achieved selectively in typically high yields. Thus, (Z)-dienes could be obtained exclusively in the presence of a copper catalyst, whereas the use of a gold catalyst afforded predominantly (E)-dienes. Notably, these transformations feature an unprecedented 1,3-migration of iodine atoms. Finally, the synthetic utility of the obtained 1,3-dienes was demonstrated in efficient Diels-Alder and cross-coupling reactions.

11. EXPERIMENTAL SECTION

11.1. General Information

NMR spectra were recorded on Bruker Avance DRX-500 (500 MHz) or DRX$400(400 \mathrm{MHz})$ instruments. GC/MS analysis was performed on a Hewlett Packard Model 6890 GC interfaced to a Hewlett Packard Model 5973 mass selective detector (15 $\mathrm{m} x 0.25 \mathrm{~mm}$ capillary column, HP-5MS). Column chromatography was carried out employing Silicycle silica gel (Kieselgel 60, 63-200 $\mu \mathrm{m}$). Precoated silica gel plates F254 were used for thin-layer analytical chromatography. All manipulations with transition metal catalysts were conducted under inert atmosphere using a combination of glovebox and standard Schlenk techniques. Anhydrous toluene, tetrahydrofuran, ether, and dichloromethane purchased from Aldrich were additionally purified on PureSolv PS-400-4 by Innovative Technology, Inc. purification system. Anhydrous solvents other than listed above were purchased from Aldrich and stored over calcium hydride. All other reagents were purchased from Aldrich, Strem Chemicals Inc., Alfa Aesar or Acros Organics, or synthesized via known literature procedures. Reactions were typically run in oven-dried glassware under inert atmosphere. α-bromo, ${ }^{51}$ chloro, ${ }^{52}$ Fluoro, ${ }^{53}$ and iodoaldehydes ${ }^{54}$ were synthesized according to literature reports.

11.2. Synthesis of $\boldsymbol{\alpha}$-Halo Propargylic Phosphates

59.1

Neat α-halo carbonyl compound (or its solution in anhydrous THF) (1.0 equiv) was added dropwise to an ice-cooled flask containing a $[1.0 \mathrm{M}]$ solution of ethynylmagnesium bromide in THF (1.0 equiv) while stirring. After addition the reaction mixture was allowed to warm to room temperature and stirred for an additional 1 h . Reaction mixture was then placed in an ice-water bath and neat diethylchlorophosphate (1.2 equiv) was added dropwise. Reaction mixture was allowed to warm to room temperature and stirred until judged complete by TLC and GC/MS analyses. After completion, reaction mixture was poured into ammonium chloride solution and extracted three times with ethyl acetate. Combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were removed under reduced pressure and the residue was purified by column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=1 / 2)$ to give the corresponding α-halo propargyl phosphate.

Synthesis of 4-bromo-4-methylpent-1-yn-3-yl diethyl phosphate (59.1a) 2-bromo-2methylpropanal ($30 \mathrm{mmol}, 4.53 \mathrm{~g}$), ethynylmagnesium bromide ($30 \mathrm{mmol}, 0.54 \mathrm{M}, 55.5$ mL) and neat diethylchlorophosphate ($36 \mathrm{mmol}, 6.2 \mathrm{~g}$) were used. (55\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.27-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.77(\mathrm{~s}, 6 \mathrm{H}), 2.62-2.65(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.17$ $(\mathrm{m}, 4 \mathrm{H}), 4.93-4.98(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0\left(\mathrm{t}, J_{\mathrm{CP}}=7.40\right.$
$\mathrm{Hz}), 29.3,29.6,62.8\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 64.3\left(\mathrm{dd}, J_{\mathrm{CP}}=11.10,5.55 \mathrm{~Hz}\right), 74.9\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55\right.$ Hz), 76.4, 78.2. HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{P}: 313.0207$, Found: 313.0212.

Synthesis of 4-chloro-4-methylpent-1-yn-3-yl diethyl phosphate (59.1b) 2-chloro-2methylpropanal ($5 \mathrm{mmol}, 533 \mathrm{mg}$), ethynylmagnesium bromide $(5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3$ mL) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. (59\%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 2.61(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H})$, 4.06-4.18 (m, 4 H), 4.93 (dd, $J=7.70,2.20 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm} 16.0\left(\mathrm{t}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 27.6,28.1,64.2\left(\mathrm{dd}, J_{\mathrm{CP}}=9.25,5.55 \mathrm{~Hz}\right), 68.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.4\right)$, $74.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 76.3,78.1$. HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{P}: 269.0710$, Found: 269.0705 .

Synthesis of 4-bromo-4-ethylhex-1-yn-3-yl diethyl phosphate (59.1c) 2-bromo-2ethylbutanal ($5 \mathrm{mmol}, 895 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. (63%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.02(\mathrm{ddd}, J=7.34,3.67 \mathrm{~Hz}, 6 \mathrm{H}), 1.29-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 2$ H), 1.98-2.07(m, 2H), 2.63(d, $J=2.20 \mathrm{~Hz}, 3 \mathrm{H}), 4.11-4.19(\mathrm{~m}, 4 \mathrm{H}), 5.14$ (dd, $J=7.34$, $2.20 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 9.50,16.1\left(\mathrm{t}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 30.5$, 31.1, $64.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 72.5\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 75.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.41 \mathrm{~Hz}\right), 76.7$, 78.3. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{P}: 341.0517$, Found: 341.0514 .

Synthesis of 4-chloro-4-ethylhex-1-yn-3-yl diethyl phosphate (1m) 2-chloro-2ethylpentanal ($5 \mathrm{mmol}, 673 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. (65%) ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} \mathrm{ppm} 1.04(\mathrm{dt}, J=7.43,1.65 \mathrm{~Hz}, 6 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.02(\mathrm{~m}$,
$4 \mathrm{H}) 2.63(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}) 4.12-4.22(\mathrm{~m}, 4 \mathrm{H}) 5.15(\mathrm{dd}, J=7.70,2.20 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.3,16.1\left(\mathrm{t}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 29.4,30.0,64.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40\right.$ $\mathrm{Hz}), 72.3\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right)$, 76.6, 78.2. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClO}_{4} \mathrm{P}: 297.1023$, Found: 297.1016.

Synthesis of 1-(1-bromocyclohexyl)prop-2-yn-1-yl diethyl phosphate (59.1n) 1bromocyclohexanecarbaldehyde ($5 \mathrm{mmol}, 955 \mathrm{mg}$), ethynylmagnesium bromide (5 $\mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(67 \%){ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.31-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.83(\mathrm{~m}, 8 \mathrm{H})$, $2.03-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{~d}, J=2.20 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.21(\mathrm{~m}, 4 \mathrm{H}), 5.02(\mathrm{dd}, J=7.70$, $2.20 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.1\left(\mathrm{t}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 22.3(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right) 25.1,35.8,64.3\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 75.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 76.4,78.5$. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{P}: 353.0517$, Found: 353.0516 .

Synthesis of 1-(1-chlorocyclohexyl)prop-2-yn-1-yl diethyl phosphate (59.1d) (63\%) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.26(\mathrm{t}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}), 1.50-1.73(\mathrm{~m}, 8 \mathrm{H}), 1.84$ $1.96(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 1 \mathrm{H}), 3.98-4.16(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{~d}, J=8.18 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.90 \mathrm{~Hz}\right), 21.3\left(\mathrm{~d}, J_{\mathrm{CP}}=5.90 \mathrm{~Hz}\right), 25.0,34.4,34.6$, $64.2\left(\mathrm{t}, J_{\mathrm{CP}}=5.90 \mathrm{~Hz}\right), 74.0\left(\mathrm{~d}, J_{\mathrm{CP}}=8.85 \mathrm{~Hz}\right), 74.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.90 \mathrm{~Hz}\right), 76.8,78.0$. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClO}_{4} \mathrm{P}: 309.1023$, Found: 309.1011.

1-(4-chlorotetrahydro-2H-pyran-4-yl)prop-2-yn-1-yl diethyl phosphate (59.1e) 4-chlorotetrahydro-2H-pyran-4-carbaldehyde (5 mmol, 743 mg), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(69 \%){ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.29-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.82(\mathrm{t}$,
$J=15.13 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=2.02 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=11.65 \mathrm{~Hz}, 2$ H), 3.84-3.91(m, 2 H), 4.08-4.19(m, 4 H), $4.98(\mathrm{dd}, J=8.07,1.47 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0\left(\mathrm{t}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 34.4,34.7,63.1,63.2,64.3\left(\mathrm{t}, J_{\mathrm{CP}}=6.47\right.$ $\mathrm{Hz}), 67.3\left(\mathrm{~d}, J_{\mathrm{CP}}=8.32 \mathrm{~Hz}\right), 70.9\left(\mathrm{~d}, J_{\mathrm{CP}}=8.32 \mathrm{~Hz}\right) 74.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.62 \mathrm{~Hz}\right)$. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClO}_{5} \mathrm{P}: 311.08371$, Found: 311.07961.

Synthesis of 2-bromo-1-ethynylcyclopentyl diethyl phosphate (59.1f) 2-

 bromocyclopentanone ($5 \mathrm{mmol}, 815 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}$, 9.3 mL) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(53 \%){ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.31(\mathrm{dq}, J=6.97,1.10 \mathrm{~Hz}, 6 \mathrm{H}), 1.70-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.89-$ $1.98(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.75(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.22$ (m, 4 H$), 4.25(\mathrm{dt}, J=7.52,3.30 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0(\mathrm{t}$, $\left.J_{\mathrm{CP}}=11.02 \mathrm{~Hz}\right), 19.8,32.9,36.8,64.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 75.7,80.5,81.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right)$. HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{P}: 325.0204$, Found: 325.0204.Synthesis of 2-chloro-1-ethynylcyclopentyl diethyl phosphate (59.1g) 2chlorocyclopentanone ($5 \mathrm{mmol}, 593 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}$, $9.3 \mathrm{~mL})$ and neat diethylchlorophosphate $(6 \mathrm{mmol}, 1.03 \mathrm{~g})$ were used to afford the product as a brown solid. (m.p=41 $\left.{ }^{\circ} \mathrm{C}\right) .(51 \%),{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.32-1.37$ $(\mathrm{m}, 6 \mathrm{H}), 1.75-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.64-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 1 \mathrm{H}), 4.08-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.30(\mathrm{dt}, J=6.60,2.57 \mathrm{~Hz}, 5$ H). ${ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right), 19.1,32.1,36.764 .2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=7.36 \mathrm{~Hz}\right), 66.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 75.9,81.1\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right)$. HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{P}: 281.0710$, Found: 281.0707.

Synthesis of 2-bromo-1-ethynylcyclohexyl diethyl phosphate (59.1h) 2bromocyclohexanone ($5 \mathrm{mmol}, 885 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}$, 9.3 mL) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(62 \%){ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.30(\mathrm{dt}, J=7.15,1.10 \mathrm{~Hz}, 6 \mathrm{H}), 1.37-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.56-$ $1.76(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 1$ H), 4.05-4.24(m, 4 H$), 4.50(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.10 \mathrm{~Hz}\right), 21.5,32.3,35.5,58.3\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.35 \mathrm{~Hz}\right), 64.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 76.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.36 \mathrm{~Hz}\right)$, 81.1. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BrO}_{4} \mathrm{P}$: 339.0361, Found: 339.0360 .

Synthesis of 2-chloro-1-ethynylcyclohexyl diethyl phosphate (59.1i) 2chlorocyclohexanone ($5 \mathrm{mmol}, 663 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}$, 9.3 mL) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(67 \%){ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, CDCl_{3}) $\delta \mathrm{ppm} 1.31-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.54-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.70(\mathrm{~m}, 2 \mathrm{H})$, 2.10-2.19(m, 4 H), 4.09-4.25(m, 4 H), $6.24(\mathrm{~s}, 1 \mathrm{H}) 6.90(\mathrm{~d}, J=5.14 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 15.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right) 21.5,31.4,34.7$, $63.8(\mathrm{dd}$, $\left.J_{\mathrm{CP}}=18.50,5.55 \mathrm{~Hz}\right), 64.4\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 76.9\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right), 77.3,81.2$. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClO}_{4} \mathrm{P}: 295.0866$, Found: 295.0868 .

Synthesis of diethyl (1-ethynyl-2-iodocyclohexyl) phosphate (59.1j) 2iodocyclohexanone ($5 \mathrm{mmol}, 1.12 \mathrm{~g}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3$ mL) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. $(69 \%)^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.25(\mathrm{t}, J=6.97 \mathrm{~Hz}, 6 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.99-2.16(\mathrm{~m}, 2 \mathrm{H}) 2.74(\mathrm{~s}, 1 \mathrm{H}), 3.93-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.02-4.19$
(m, 4 H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.1\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 21.6,30.9,34.4$ 36.1, $39.9\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 63.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 64.2\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 76.6(\mathrm{~d}$, $J_{\mathrm{CP}}=8.32 \mathrm{~Hz}$), 81.1. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{IO}{ }_{4} \mathrm{P}: 387.0211$, Found: 387.0215.

Synthesis of diethyl (1-ethynyl-2-fluorocyclohexyl) phosphate 2-fluoroclohexanone (5 $\mathrm{mmol}, 580 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. (69\%) (1:1.2 mixture) ${ }^{1} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.17-1.26(\mathrm{~m}, 12 \mathrm{H}), 1.30-1.66(\mathrm{~m}, 8 \mathrm{H}), 1.67-1.99(\mathrm{~m}, 8 \mathrm{H})$, $2.71(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 2 \mathrm{H}), 3.95-4.10(\mathrm{~m}, 8 \mathrm{H}) 4.40-4.58(\mathrm{~m}, 1 \mathrm{H}) 4.80(\mathrm{~d}, J=49.15 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 15.9(\mathrm{t}, J=6.01 \mathrm{~Hz}), 19.4,21.4-22.2(\mathrm{~m}), 27.9$ (d, $J=20.35 \mathrm{~Hz}), 28.7(\mathrm{~d}, J=17.57 \mathrm{~Hz}), 33.9,36.4,63.7(\mathrm{~d}, J=5.55 \mathrm{~Hz}), 63.9(\mathrm{~d}, J=6.47$ $\mathrm{Hz}), 77.8(\mathrm{~d}, J=24.97 \mathrm{~Hz}), 78.7(\mathrm{~d}, J=8.32 \mathrm{~Hz}), 78.9(\mathrm{~d}, J=9.25 \mathrm{~Hz}), 79.1,80.4(\mathrm{~d}, J=9.25$ $\mathrm{Hz})$, 90.6, 92.2 (d, $J=35.14 \mathrm{~Hz}$), 93.8. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{FO}_{4} \mathrm{P}: 279.1150$, Found: 279.1154.

Synthesis of diethyl (1-ethynyl-2-fluorocyclohexyl) phosphate 2-fluorocloheptanone (5 $\mathrm{mmol}, 651 \mathrm{mg}$), ethynylmagnesium bromide ($5 \mathrm{mmol}, 0.54 \mathrm{M}, 9.3 \mathrm{~mL}$) and neat diethylchlorophosphate ($6 \mathrm{mmol}, 1.03 \mathrm{~g}$) were used. (69%) ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta \mathrm{ppm} 1.31(\mathrm{t}, J=7.15 \mathrm{~Hz}, 12 \mathrm{H}), 1.41-1.81(\mathrm{~m}, 12 \mathrm{H}), 1.83-2.35(\mathrm{~m}, 10 \mathrm{H}), 2.73,2.78$, $4.04-4.19(\mathrm{~m}, 8 \mathrm{H}), 4.61$ (ddd, $J=47.04,9.81,3.30 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=47.13,6.42 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0(\mathrm{t}, J=6.47 \mathrm{~Hz}), 20.3,21.0(\mathrm{~d}, J=12.02$ $\mathrm{Hz}), 21.3,25.6(\mathrm{~d}, J=36.07 \mathrm{~Hz}) 28.2(\mathrm{~d}, J=21.27 \mathrm{~Hz}), 28.8(\mathrm{~d}, J=20.35 \mathrm{~Hz}), 34.7,36.1$, 63.2-65.1 (m), 77.5 (d, $J=101.73 \mathrm{~Hz}$), 79.3, 80.2, 80.6 (d, $J=8.32 \mathrm{~Hz}$), 80.8 (d, $J=9.25$
$\mathrm{Hz}), 82.1$ (dd, $J=19.42,7.40 \mathrm{~Hz}), 95.1$ (dd, $J=185.42,5.09 \mathrm{~Hz}), 96.9(\mathrm{dd}, J=185.42,6.01$
Hz). HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{FO}_{4} \mathrm{P}: 293.1318$, Found: 293.1314.

11.3. Copper-Catalyzed Synthesis of (Z)-1,3-Dienes

To an oven dried 10 mL Schlenk flask loaded with commercially available copper (I) trifluoromethanesulfonate benzene complex ($10 \mathrm{~mol} \%, 0.05 \mathrm{mmol}, 25 \mathrm{mg}$) equipped with magnetic stir bar was added a solution of halo-propargylicdiethylphosphate (0.5 $\mathrm{mmol})$ in 1,2-dichloroethane $(0.05 \mathrm{M}, 10 \mathrm{~mL})$ via cannula under argon atmosphere. The reaction was then heated to $80{ }^{\circ} \mathrm{C}$ in an oil bath until deemed complete by $\mathrm{GC} / \mathrm{MS}$ analysis. Once completed, the reaction mixture was allowed to cool to rt, then filtered through a small plug of Celite. The crude mixture was then concentrated by column chromatography (Hex/EtOAc=2/1) to give the (Z)-1,3-diene 59.4 .
(Z)-2-bromo-4-methylpenta-1,3-dien-1-yl diethyl phosphate (59.4a) (86\%) (Z only)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.38(\mathrm{dt}, J=7.15,1.10 \mathrm{~Hz}, 6 \mathrm{H}), 1.80(\mathrm{~d}, J=1.28 \mathrm{~Hz}$, $3 \mathrm{H}), 1.81(\mathrm{~d}, \mathrm{~J}=1.47 \mathrm{~Hz}, 3 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 4 \mathrm{H}), 5.63-5.68(\mathrm{~m}, 1 \mathrm{H}), 6.75$ (dd, $J=4.95,1.65 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.1\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 19.4$, 25.6, $64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 107.4,120.1,135.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right), 140.8$. HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{P}: 312.01260$, Found: 312.01098.
(Z)-2-chloro-4-methylpenta-1,3-dien-1-yl diethyl phosphate (59.4b) (95\%) (Z only)
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.37(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}), 1.80(\mathrm{~d}, J=1.10 \mathrm{~Hz}$, $3 \mathrm{H}), 1.82(\mathrm{~d}, J=1.47 \mathrm{~Hz}, 3 \mathrm{H}), 4.16-4.24(\mathrm{~m}, 4 \mathrm{H}), 5.55-5.59(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{dd}$, $J=5.14,1.47 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.1\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 19.6$, 26.0, $64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 117.6,118.6,133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 140.5$. HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{P}: 268.06312$, Found: 268.06389 .
(Z)-2-bromo-4-ethylhexa-1,3-dien-1-yl diethyl phosphate (59.4c) (69\%) ($Z: E=95: 5$, mixture) ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.99-1.06(\mathrm{~m}, 6 \mathrm{H}), 1.38(\mathrm{dt}, J=7.06,0.92$ $\mathrm{Hz}, 6 \mathrm{H}), 2.12(\mathrm{dq}, J=7.40,1.28 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=7.70 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 4 \mathrm{H})$, $5.62(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=4.95,1.65 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 12.3$, 13.2, 16.0, 24.3, 28.6, $64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 107.3\left(\mathrm{~d}, J_{\mathrm{CP}}=11.10 \mathrm{~Hz}\right), 117.9$, $134.2(\mathrm{~d}$, $J_{\mathrm{CP}}=10.45 \mathrm{~Hz}$) 151.99. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{P}: 340.04390$, Found: 340.04262 .
(Z)-2-chloro-3-cyclohexylideneprop-1-en-1-yl diethyl phosphate (59.4d) (75\%) (Z:E= 91:9, mixture) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.37(\mathrm{dt}, J=6.97,1.10 \mathrm{~Hz}, 6 \mathrm{H}), 1.52$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.05(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.26$ $(\mathrm{m}, 4 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H}) 6.68(\mathrm{td}, J=4.77,1.10 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 22.2,22.7,25.3,27.3,42.6,64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 120.3(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.10 \mathrm{~Hz}\right), 125.5,131.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right)$, 132.4. HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClO}_{4} \mathrm{P}: 309.1023$, Found: 309.1024.
(Z)-2-chloro-3-(dihydro-2H-pyran-4(3H)-ylidene)prop-1-en-1-yl diethyl phosphate (59.4e) (77\%) (Z only) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.31$ (dt, $J=7.06,0.92 \mathrm{~Hz}, 6$ H), $2.23(\mathrm{t}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}$, $J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.18(\mathrm{~m}, 4 \mathrm{H}), 5.55-5.61(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=5.14,1.47 \mathrm{~Hz}, 1$ H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 31.0,36.8,64.8(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 68.3,68.9,116.2\left(\mathrm{~d}, J_{\mathrm{CP}}=11.10 \mathrm{~Hz},\right), 116.9,133.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right), 142.4$. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClO}_{5} \mathrm{P}: 310.07368$, Found: 310.07386 .
(Z)-2-bromo-2-(cyclopent-1-en-1-yl)vinyl diethyl phosphate (59.4f) (91\%) (Z only) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.32(\mathrm{t}, J=7.15 \mathrm{~Hz}, 6 \mathrm{H}), 1.90-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.35-$ $2.46(\mathrm{~m}, 4 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 4 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=5.50 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 24.1,32.3,32.5,64.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right)$, $109.1\left(\mathrm{~d}, J_{\mathrm{CP}}=12.02 \mathrm{~Hz}\right), 133.9,134.6$, 137.3. HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{P}$: 325.0207, Found: 325.0209.
(Z)-2-chloro-2-(cyclopent-1-en-1-yl)vinyl diethyl phosphate (59.4g) (95\%) (Z only) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.37(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 2 \mathrm{H})$, $2.44(\mathrm{t}, J=7.52 \mathrm{~Hz}, 4 \mathrm{H}), 4.16-4.25(\mathrm{~m}, 4 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=5.14 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0(\mathrm{~d}, J=7.40 \mathrm{~Hz}), 23.9,32.232 .5,64.9\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55\right.$ $\mathrm{Hz}), 118.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.10 \mathrm{~Hz}\right), 132.0,132.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right), 136.7$. HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{P}: 280.06312$, Found: 280.06440 .
(Z)-2-bromo-2-(cyclohex-1-en-1-yl)vinyl diethyl phosphate (59.4h) (86\%) (Z only) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.38(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}), 1.55-1.63(\mathrm{~m}, 2 \mathrm{H})$, 1.63-1.71(m, 2H), 2.13-2.22(m, 4H), 4.16-4.26(m, 4H), $6.21(t, J=3.85 \mathrm{~Hz}, 1 \mathrm{H})$, $7.02(\mathrm{~d}, J=5.14 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 6.1\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 22.0$, $22.525 .8,26.6,29.7,64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 115.3,130.5,130.9,132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right)$. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{BrO}_{4} \mathrm{P}: 338.02825$, Found: 338.02681.
(Z)-2-chloro-2-(cyclohex-1-en-1-yl)vinyl diethyl phosphate (59.4i) (75\%) (Z only) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.35(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz} 6 \mathrm{H}), 1.54-1.62(\mathrm{~m}, 2 \mathrm{H})$, $1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.21(\mathrm{~m}, 4 \mathrm{H}) 4.12-4.23(\mathrm{~m}, 4 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}$, $J=5.14 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 21.9,22.3$ $25.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, J_{\mathrm{CP}}=11.10 \mathrm{~Hz}\right), 128.4$, 129.8, 130.9 (d, $J_{\mathrm{CP}}=2.78 \mathrm{~Hz}$). HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{ClO}_{4} \mathrm{P}: 338.02825$, Found: 338.02861 .
(Z)-2-(cyclohex-1-en-1-yl)-2-iodovinyl diethyl phosphate (59.4j) (64\%) (Z only) ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.33(\mathrm{t}, J=7.15 \mathrm{~Hz}, 6 \mathrm{H}), 1.49-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.57-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.22(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.20(\mathrm{~m}, 4 \mathrm{H}), 6.03(\mathrm{t}$, $J=4.03 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=5.14 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.1(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 22.1,22.726 .1,27.7,64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 94.6\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}\right), 132.4$, 132.9, 136.8. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{IO}_{4} \mathrm{P}: 387.0211$, Found: 387.0216.

11.4. Gold-Catalyzed Synthesis of (E)-1,3-Dienes

To an oven dried 10 mL Schlenk flask loaded with commercially available [tris(para-trifluoromethylphenyl)phosphine]gold(I) chloride ($5 \mathrm{~mol} \%, 0.025 \mathrm{mmol}, 175$ mg) equipped with magnetic stir bar was added 10 mL toluene (0.05 M) via cannula and desired 4-halo-propargylicdiethylphosphate (0.5 mmol) under argon atmosphere. The reaction was then heated to $100{ }^{\circ} \mathrm{C}$ in an oil bath until judged complete by GC/MS analysis. Once completed, the reaction mixture was allowed to cool to rt and then filtered through a small plug of Celite. The crude mixture was then concentrated by column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=2 / 1)$.
(E)-2-bromo-4-methylpenta-1,3-dien-1-yl diethyl phosphate (59.3a) (96\%) ($E: Z=$ 90:10, mixture) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.33(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}), 1.72$ (d, $J=1.10 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.81(\mathrm{~d}, J=1.10 \mathrm{~Hz}, 3 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 4 \mathrm{H}, 59.3 \mathrm{a}+59.4 \mathrm{a})$, 5.55-5.68(m, $1 \mathrm{H}, \mathbf{5 9 . 3 a + 5 9 . 4 a}), 6.73(\mathrm{dd}, J=5.14,1.10 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}\right.$, 59.3a), 19.4 (59.4a), 20.2 (59.3a), 25.6 (59.3a), 64.6 (d, $\left.J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 a}\right) 64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 4 a}\right), 107.4\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, \mathbf{5 9 . 4 a}\right)$, $109.5\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, \mathbf{5 9 . 3 a}\right), 118.1$ (59.3a), 120.1 (59.4a), 132.5 (d, $J_{\mathrm{CP}}=11.10 \mathrm{~Hz}$, 59.3a), 133.7 ($\mathrm{d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 a}$), 141.9 (59.3a), 140.7 (59.4a). HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{BrO}_{4} \mathrm{P}: 312.01260$, Found: 312.01178 .
(E)-2-chloro-4-methylpenta-1,3-dien-1-yl diethyl phosphate (59.3b) (95\%) ($E: Z=$ 86:14, mixture) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.31-1.39(\mathrm{~m}, 6 \mathrm{H}, \mathbf{5 9 . 3 b}+\mathbf{5 9 . 4 b})$, 1.78 (d, $J=1.10 \mathrm{~Hz}, 3 \mathrm{H}, \mathbf{5 9 . 3 b}), 1.79(\mathrm{~d}, J=1.47 \mathrm{~Hz}, \mathbf{5 9 . 4 b}), 1.81-1.83(\mathrm{~m}, 3 \mathrm{H}$, 59.3b+59.4b), $4.10-4.24(\mathrm{~m}, 4 \mathrm{H}, \mathbf{5 9 . 3 b}+\mathbf{5 9 . 4 b}), 5.53-5.58(\mathrm{~m}, \mathbf{5 9 . 4 b}), 5.62-5.68(\mathrm{~m}$, $1 \mathrm{H}, \mathbf{5 9 . 3 b}), 6.66(\mathrm{dd}, J=5.14,1.10 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{5 9 . 3 b}+\mathbf{5 9 . 4 b}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=7.40 \mathrm{~Hz}, \mathbf{5 9 . 3 b}+\mathbf{5 9 . 4 b}\right), 19.6$ (59.4b), 20.3 (59.3b), 26.0 (2b), 26.1 ($\mathbf{5 9 . 3 b}$), $64.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 b}\right), 64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 4 b}\right), 116.4$ ($\left.\mathbf{5 9 . 3} \mathbf{b}+\mathbf{5 9 . 4 b}\right)$, 118.6 (59.4b), 120.5 (d, $\left.J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, \mathbf{5 9 . 3 b}\right), 132.5$ (59.3b), $133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}\right.$, 59.4b), 141.8 (3c). HRMS (EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{P}: 269.0731$, Found: 269.0721.
(\boldsymbol{E})-2-bromo-4-ethylhexa-1,3-dien-1-yl diethyl phosphate (59.3c) (97\%) ($E: Z=89: 11$, mixture) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 0.94-1.07(\mathrm{~m}, 6 \mathrm{H}), 1.27-1.40(\mathrm{dt}$, $J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}), 2.09-2.25(\mathrm{~m}, 4 \mathrm{H}), 4.10-4.19(\mathrm{~m}, 4 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}$, $J=4.77,1.47 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 12.1$ ($\mathbf{5 9 . 3} \mathbf{c}$), 12.2 ($\mathbf{5 9 . 4} \mathbf{~} \mathbf{c}$), 12.3 (59.3c), 13.1 (59.4c), $16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, \mathbf{5 9 . 3 c}\right), 24.2$ (59.4c), 24.9 (59.3c), 28.5 (59.3c), $64.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.5 \mathrm{~Hz}, \mathbf{5 9 . 4 c}\right), 64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 4 c}\right), 107.3\left(\mathrm{~d}, J_{\mathrm{CP}}=12.02\right.$ $\mathrm{Hz}, \mathbf{5 9 . 4 c}), 109.4\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, \mathbf{5 9 . 3 c}\right), 115.8$ (59.3c), 117.9 (59.4c), $133.7(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=4.63 \mathrm{~Hz}, \mathbf{5 9 . 3 c}\right), 134.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.70 \mathrm{~Hz}, \mathbf{5 9 . 4 c}\right), 151.9$ (59.4c), 152.6 (59.3c). HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{P}: 340.04390$, Found: 340.04281 .
(\boldsymbol{E})-2-chloro-4-ethylhexa-1,3-dien-1-yl diethyl phosphate (59.3m) (98\%) ($E: Z=13: 1$, mixture) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.00-1.07(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{dt}, J=7.06,1.10$ $\mathrm{Hz}, 6 \mathrm{H}), 1.37-1.42(\mathrm{~m}, \boldsymbol{Z}), 2.10-2.18(\mathrm{~m}, 2 \mathrm{H}, \mathbf{5 9 . 3 m + Z}), 2.19-2.29(\mathrm{~m}, 2 \mathrm{H}$, $\mathbf{5 9 . 3 m}+\boldsymbol{Z}), 4.10-4.25(\mathrm{~m}, 4 \mathrm{H}, \mathbf{5 9 . 3}+\boldsymbol{Z}), 5.54(\mathrm{~s}, \boldsymbol{Z}), 5.65(\mathrm{~s}, 1 \mathrm{H}, \mathbf{5 9 . 3}), 6.63-6.72(\mathrm{~m}, 1$
$\mathrm{H}, \mathbf{5 9 . 3}+\boldsymbol{Z}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 12.3(\boldsymbol{Z}), 12.5\left(\mathrm{~d}, J_{\mathrm{CP}}=14.80 \mathrm{~Hz}\right), 16.0$, 16.1, $24.4(\boldsymbol{Z}), 25.0,28.92(\boldsymbol{Z}), 29.1,64.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 114.1,116.4,120.6(\boldsymbol{Z}), 132.6$ (d, $J_{\mathrm{CP}}=5.55 \mathrm{~Hz}$), 152.6. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{ClO}_{4} \mathrm{P}: 296.09442$, Found: 292.09556.
(E)-2-bromo-3-cyclohexylideneprop-1-en-1-yl diethyl phosphate (59.3n) (91\%) (E:Z $=90: 10$, mixture $)^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.34(\mathrm{dt}, J=7.11,0.83 \mathrm{~Hz}, 6 \mathrm{H})$, 1.51-1.61 (m, 6 H), 2.12-2.21 (m, 4 H$), 2.28(\mathrm{t}, J=5.50 \mathrm{~Hz}, \boldsymbol{Z}), 4.05-4.24(\mathrm{~m}, 4 \mathrm{H})$, $5.55(\mathrm{~s}, 0.78 \mathrm{H}, \mathbf{5 9 . 3 n}), 5.60(\mathrm{~s}, 0.08 \mathrm{H}, \boldsymbol{Z}), 6.74(\mathrm{dd}, J=5.04,1.19 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, 59.3 \mathrm{n}\right), 26.3$ (59.3n), 26.4 (Z), 27.2 $(\mathbf{5 9 . 3 n}), 27.8(\boldsymbol{Z}), 28.3(\mathbf{5 9 . 3 n}), 29.8(\boldsymbol{Z}), 30.8(\mathbf{5 9 . 3 n}), 36.6(\mathbf{5 9 . 3 n}), 36.7(\boldsymbol{Z}), 64.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 n}\right), 64.8(\mathrm{~d}, J=6.47 \mathrm{~Hz}, \boldsymbol{Z}), 109.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, 59.3 \mathrm{n}\right), 114.7$ (59.3n), $116.6(\boldsymbol{Z}), 133.7\left(\mathrm{~d}, J_{\mathrm{CP}}=4.62 \mathrm{~Hz}, \mathbf{5 9 . 3 n}\right), 134.5(\boldsymbol{Z}), 148.6(\boldsymbol{Z}), 149.4$ (59.3n). HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{BrO}_{4} \mathrm{P}: 352.04390$, Found: 352.04201 .
(E)-2-chloro-3-cyclohexylideneprop-1-en-1-yl diethyl phosphate (59.3d) (90\%) (E:Z= 95:5, mixture) ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.31(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6 \mathrm{H}$), 1.48 $1.61(\mathrm{~m}, 6 \mathrm{H}), 1.99(\mathbf{5 9 . 3 d}), 2.09-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=5.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=5.50$ $\mathrm{Hz}, 59.4 \mathrm{~d}), 4.04-4.20(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{~s}, 59.2 \mathrm{~d}), 5.51(\mathrm{~s}, 1 \mathrm{H}) 6.50-6.70(\mathrm{~m}, 1 \mathrm{H}$, $\mathbf{5 9 . 3 d}+\mathbf{5 9 . 4 d}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, \mathbf{5 9 . 3 d}\right), 26.3$ (59.3d), 26.4 (59.4d), 27.4 (59.3d), 27.8 (59.4d), 28.3 (59.4d), 28.4 (59.3d), 29.9 (59.4d), 30.9 ($\mathbf{5 9 . 3 d}$), 37.0 ($\mathbf{5 9 . 3 d}$), $64.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 d}\right), 64.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right.$, 59.4d), 113.2 ($\mathbf{5 9 . 3 d}$), 115.2 ($\mathbf{5 9 . 2 d}$), $120.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.95 \mathrm{~Hz}, \mathbf{5 9 . 3 d}\right), 132.6\left(\mathrm{~d}, J_{\mathrm{CP}}=4.62\right.$

Hz , 59.3d), 133.1 (d, $J_{\mathrm{CP}}=3.70 \mathrm{~Hz}$, 59.4d), 148.4 (59.4d) 149.4 (59.3d). HRMS (EI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ClO}_{4} \mathrm{P}: 309.1023$, Found: 309.1015.
(E)-2-(cyclohex-1-en-1-yl)-2-iodovinyl diethyl phosphate (3j), (Z)-2-(cyclohex-1-en-1-yl)-2-iodovinyl diethyl phosphate (59.3j) (89\%) $(E: Z=60: 40$, mixture $){ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.29-1.36(\mathrm{~m}, 10 \mathrm{H}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}), 1.50-1.57(\mathrm{~m}, 3 \mathrm{H}$, $\mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}), 1.58-1.65(\mathrm{~m}, 3 \mathrm{H}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}), 2.00-2.11(\mathrm{~m}, 3 \mathrm{H}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}), 2.17-$ $2.23(\mathrm{~m}, 3 \mathrm{H}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}), 4.02-4.26(\mathrm{~m}, 6 \mathrm{H}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 3 j}), 5.95-6.00(\mathrm{~m}, 0.9 \mathrm{H}$, 59.3j), 6.02 - $6.07(\mathrm{~m}, 0.58 \mathrm{H}, \mathbf{5 9 . 4 j}), 6.75(\mathrm{~d}, J=4.77 \mathrm{~Hz}, 0.76 \mathrm{H}, \mathbf{5 9 . 3 j}), 6.78(\mathrm{~d}, J=4.95$ $\mathrm{Hz}, 1 \mathrm{H}, \mathbf{5 9 . 4 j}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, \mathbf{5 9 . 3 j}+\mathbf{5 9 . 4 j}\right)$, 21.7 ($\mathbf{5 9 . 3 j}$), 22.1 ($\mathbf{5 9 . 4 j}$), 22.6 ($\mathbf{5 9 . 4 j}$), 22.7 ($\mathbf{5 9 . 3 j}$), 25.7 ($\mathbf{5 9 . 3 j}$), 26.0 ($\mathbf{5 9 . 3 j}), 27.7$ (59.3j), 28.3 (59.3j), $64.6\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}, \mathbf{5 9 . 3 j}\right), 64.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}, \mathbf{5 9 . 4 j}\right), 90.9(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.1 \mathrm{~Hz}, \mathbf{5 9 . 3 j}\right), 94.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.02 \mathrm{~Hz}, \mathbf{5 9 . 4 j}\right), 131.6$ (59.3j), 132.4 (59.4j), 132.9 (59.4j), 133.8 ($\mathbf{5 9 . 3 j}), 136.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.63 \mathrm{~Hz}, \mathbf{5 9 . 3 j}\right), 136.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.78 \mathrm{~Hz}, \mathbf{5 9 . 4 j}\right)$. HRMS (EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{IO}_{4} \mathrm{P}: 387.0211$, Found: 387.0216.

11.5. Copper- and Gold-catalyzed Formation of $\boldsymbol{\alpha}$-fluoroallenes

Attempt to isomerize α-fluoro propargylic phosphates only led to the formation of the corresponding α-fluoroallenes via 1,3-phosphatyloxy group migration.

Diethyl (2-(2-fluorocyclohexylidene)vinyl) phosphate (89\%) (1.1:1, mixture) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.25-1.31(\mathrm{~m}, 21 \mathrm{H}), 1.40-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.69$ - $1.93(\mathrm{~m}, 6 \mathrm{H}), 2.06-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.44(\mathrm{~m}, 2 \mathrm{H}), 4.03-4.14(\mathrm{~m}, 17 \mathrm{H}), 6.60-$ $6.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d ppm 15.2-17.1(m), 21.4 (dd, $J=24.97$, $5.55 \mathrm{~Hz}), 26.0(\mathrm{~d}, J=5.55 \mathrm{~Hz}), 29.7(\mathrm{~d}, J=16.65 \mathrm{~Hz}), 33.0(\mathrm{dd}, J=20.35,8.32 \mathrm{~Hz}), 64.2(\mathrm{~d}$, $J=5.55 \mathrm{~Hz}), 87.3-90.7(\mathrm{~m}), 112.4(\mathrm{~d}, J=6.47 \mathrm{~Hz}), 117.3,189.2$. LRMS for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{FO}_{4} \mathrm{P}$: 279.1.

Diethyl (2-(2-fluorocycloheptylidene)vinyl) phosphate (89\%) (1:1, mixture) ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d ppm $1.31(\mathrm{t}, J=7.06 \mathrm{~Hz}, 12 \mathrm{H}), 1.49-1.79(\mathrm{~m}, 12 \mathrm{H}), 1.86-2.03$ (m, 4 H$), 2.20-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.44(\mathrm{~m}, 2 \mathrm{H}), 4.07-4.20(\mathrm{~m}, 8 \mathrm{H}), 5.06(\mathrm{dt}$, $J=22.28,5.73 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dt}, J=22.47,5.55 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d ppm $16.0(\mathrm{~d}, J=6.47 \mathrm{~Hz}), 22.8(\mathrm{~d}, J=6.47 \mathrm{~Hz}), 23.0(\mathrm{~d}, J=6.47 \mathrm{~Hz}$), 28.1 (d, $J=24.04 \mathrm{~Hz}), 28.6(\mathrm{~d}, J=25.89 \mathrm{~Hz}), 29.6(\mathrm{~d}, J=23.12 \mathrm{~Hz}), 34.1(\mathrm{~d}, J=14.80 \mathrm{~Hz})$, $34.2(\mathrm{~d}, J=14.80 \mathrm{~Hz}), 64.2(\mathrm{~d}, J=4.62 \mathrm{~Hz}), 91.5(\mathrm{~d}, J=8.32 \mathrm{~Hz}), 92.9(\mathrm{~d}, J=9.25 \mathrm{~Hz})$, 112.3 (t, $J=7.40 \mathrm{~Hz}), 119.8(\mathrm{~d}, J=7.40 \mathrm{~Hz}), 119.9$ (d, $J=7.40 \mathrm{~Hz}), 192.4$ - 194.1 (m). LRMS for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{FO}_{4} \mathrm{P}$: 293.1.

11.6. Crossover Experiments

a) Copper-Catalyzed Reaction

To a 3 mL Wheaton V-vial equipped with spin bar was added copper (I) trifluoromethanesulfonate benzene complex ($10 \mathrm{~mol} \%, 0.01 \mathrm{mmol}, 5 \mathrm{mg}$) and pentadecane (10μ l, as an internal standard) under nitrogen atmosphere. A solution of 59.1b ($0.05 \mathrm{mmol}, 13 \mathrm{mg}$) and 59.1c ($0.05 \mathrm{mmol}, 17 \mathrm{mg}$) in dry DCE $(2 \mathrm{~mL})$ was transferred through cannula. The reaction was heated to $100^{\circ} \mathrm{C}$ and frequently checked with GC/MS until judged completed. Expected products 59.4b and 59.4c, 59.3c were observed with no crossover products detected by GC/MS analysis.

b) Gold-Catalyzed Reaction

59.1a

59.1c

59.3a

59.3c

59.3b (4\%)
(crossover)

59.3d (7\%)
(crossover)

To a 3 mL Wheaton V-vial equipped with spin bar was added [tris(paratrifluoromethylphenyl)phosphine]gold(I) chloride ($5 \mathrm{~mol} \%, 0.005 \mathrm{mmol}, 3.5 \mathrm{mg}$) and pentadecane ($10 \mu \mathrm{l}$, as an internal standard) under nitrogen atmosphere. A solution of 59.1b ($0.05 \mathrm{mmol}, 13 \mathrm{mg}$) and 59.1c $(0.05 \mathrm{mmol}, 17 \mathrm{mg})$ in dry toluene $(2 \mathrm{~mL})$ was transferred through cannula. The reaction was heated to $100{ }^{\circ} \mathrm{C}$ and was checked with GC/MS until judged completed. In addition to the expected products (59.3b, 59.4b, $\mathbf{5 9 . 3} \mathbf{c}, \mathbf{5 9 . 4}$), the crossover products $\mathbf{5 9 . 3 b}(4 \%)$ and $\mathbf{5 9 . 3 d}$ (7\%) were also detected by GC/MS analysis.

11.7. Functionalization of Obtained (Z)-1,3-Dienes

A) Diels-Alder reaction: Synthesis of 6-bromo-4,4-dimethyl-2-phenyl-4,7-dihydro-1H-isoindole-1,3(2H)-dione (60.1a)

anisole, $150{ }^{\circ} \mathrm{C}$

60.1a

An oven-dried Wheaton V-vial was charged with diene $\mathbf{2 a}(0.2 \mathrm{mmol}, 63 \mathrm{mg})$, N phenylmaleimide (1.5 equiv, $0.3 \mathrm{mmol}, 52 \mathrm{mg}$) and anisole $(0.5 \mathrm{~mL})$. The reaction mixture was stirred overnight at $150{ }^{\circ} \mathrm{C}$ and then cooled to rt . After removing solvent under vacuum, the residue was subjected to column chromatography on silica gel to give product $\mathbf{1 0}$ in 82% yield as a white solid $\left(\mathrm{mp}=120{ }^{\circ} \mathrm{C}\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 1.46 (s, 6 H), 3.44 (d, $J=0.92 \mathrm{~Hz}, 2 \mathrm{H}$), $5.91-6.19(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 3 \mathrm{H})$, 7.41-7.68(m, 2 H). ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 27.6,31.6,37.5,115.0,126.0$, 127.7, 129.1, 131.4, 136.3, 137.3, 144.2, 168.1. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrNO}_{2}$: 332.0286, Found: 332.0282.

B) Diels-Alder reaction: Synthesis of 5-bromo-7,8-dihydro-1H-indeno[4,5-c]furan-1,3(6H)-dione (60.2f)

An oven-dried Wheaton V-vial was charged with diene $2 f(0.2 \mathrm{mmol}, 62 \mathrm{mg}$), bromomaleic anhydride (1.5 equiv, $0.3 \mathrm{mmol}, 53 \mathrm{mg}$) and anisole (1 mL). The reaction mixture was stirred overnight at $150{ }^{\circ} \mathrm{C}$ and then cooled to rt . After removing solvent under vacuum, the residue was subjected to column chromatography on silica gel to give product $\mathbf{1 1}$ in 56% yield as a white solid ($\mathrm{mp}=98{ }^{\circ} \mathrm{C}$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm 2.12-2.49 (m, 2 H$), 3.10(\mathrm{t}, J=7.52 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=7.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 24.3,32.2,35.2,125.6,127.5,128.3,131.4,146.4$, 155.6, 162.2, 162.63. HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{BrO}_{3}: 265.95786$, Found: 265.95874.

C) Suzuki Cross-Coupling Reaction on Vinyl Bromide Moiety

An oven-dried 5 mL Wheaton V-vial was charged with XPhos (8 mol \%), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4 \mathrm{~mol} \%)$, arylboronic acid (2 equiv), $0.8 \mathrm{mmol}, 97.4 \mathrm{mg}$) and anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3equiv, $1.2 \mathrm{mmol}, 260 \mathrm{mg}$) in the glove box. A solution of diene 59.4a (1.0
equiv) in toluene (4 mL) was added through cannula. The reaction stirred at $80{ }^{\circ} \mathrm{C}$ overnight and then cooled to room temperature. After filtration through a small pad of Celite, solvents were removed under vacuum and the residue was subjected to column chromatography $(\mathrm{Hex} / \mathrm{EtOAc}=2 / 1)$ to give the phenylated products $\mathbf{6 0 . 1}$ a in 82% yield.

Synthesis of (Z)-diethyl (4-methyl-2-phenylpenta-1,3-dien-1-yl) phosphate (60.3a)

 (78%) as a yellowish oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.29(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6$ H), $1.67(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.16(\mathrm{~m}, 4 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=4.59 \mathrm{~Hz}, 1$ H), $7.21-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.24 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.34 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$) $\delta \mathrm{ppm} 16.0\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 19.4,26.2,64.4\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right)$, 121.3, $124.3\left(\mathrm{~d}, J_{\mathrm{CP}}=10.17 \mathrm{~Hz}\right), 127.2,128.0,128.8,134.0\left(\mathrm{~d}, J_{\mathrm{CP}}=5.55 \mathrm{~Hz}\right), 136.1$, 137.40. HRMS (EI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}: 311.1412$, Found: 311.1400.
Synthesis of (Z)-2-(cyclopent-1-en-1-yl)-2-phenylvinyl diethyl phosphate (60.4f)

 (91\%) as a brownish oil. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.52(\mathrm{dt}, J=7.15,0.73 \mathrm{~Hz}, 6$ H), 2.18-2.31 (m, 2 H), 2.53-2.68(m, 2 H), 2.71-2.83(m, 2H), 4.10-4.43(m, 4 H), 5.68 (br. s., 1 H), $6.98(\mathrm{~d}, J=4.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.59-7.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)) $\delta \mathrm{ppm} 15.9\left(\mathrm{~d}, J_{\mathrm{CP}}=6.47 \mathrm{~Hz}\right), 23.3,32.1$, 32.7, $64.3(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=6.48 \mathrm{~Hz}\right), 127.1,127.8,129.49,131,132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.63 \mathrm{~Hz}\right), 134.1,135.7,140.5$. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}: 322.13340$, Found: 322.13264 .
Synthesis of (Z)-2-(cyclopent-1-en-1-yl)-2-(4-methoxyphenyl)vinyl diethyl phosphate

 (85%) as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 1.25(\mathrm{dt}, J=7.06,0.92 \mathrm{~Hz}, 6$ H), 1.90-2.01 (m, 2 H), 2.31-2.38(m, 2H), 2.45-2.52(m, 2H), $3.81(\mathrm{~s}, 3 \mathrm{H}) 3.98-$ $4.06(\mathrm{~m}, 4 \mathrm{H}), 5.44(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 6.68(\mathrm{~d}, J=4.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.08-$$7.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta \mathrm{ppm}$ 16.4, 23.8, 32.6, 33.1, 55.57, $64.7(\mathrm{~d}$, $J=5.55 \mathrm{~Hz}), 113.6,127.14(\mathrm{~d}, J=11.10 \mathrm{~Hz}), 128.3,131.0,131.2$, 133.2, 141.2, 159.1. HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P}: 352.14396$, Found: 352.14321.

D) Kumada Cross-Coupling on Vinyl Phosphate Moiety

An oven-dried 3 mL Wheaton V-vial was charged with $\mathrm{Fe}(\mathrm{acac})_{3}(6 \mathrm{~mol} \%$, 4.2 mg) and THF (2 mL). TMEDA (2 equiv, $0.4 \mathrm{mmol}, 51 \mathrm{mg}$) and $\mathbf{6 0 . 4 f}(0.2 \mathrm{mmol}, 64$ mg) were added to the solution and the vial was then placed in an ice-water bath. A solution of Butylmagnesium chloride in tetrahydrofuran (1.5 equiv, 0.3 mmol) was added to the reaction mixture dropwise. The reaction stirred at $0{ }^{\circ} \mathrm{C}$ for half an hour and then warmed to room temperature. The mixture was then passed through a pad of Celite and the residue was subjected to column chromatography (pure Hexanes) to give product $\mathbf{6 0 . 5 f}$ in 70% yield (31 mg) as a yellowish oil.
(Z)-(1-(cyclopent-1-en-1-yl)hex-1-en-1-yl)benzene 60.5f: ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \operatorname{ppm} 0.84(\mathrm{t}, J=7.34 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.89-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.43(\mathrm{~m}$, 2H), $2.55-2.64$ (m, 2 H) 5.14 (br. s., 1 H), 5.63 (t, $J=7.70 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (d, $J=7.34 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.34 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $14.3,22.7,23.6,29.3,32.6,32.9,33.5,126.7,127.2,127.5,128.2,129.2,129.4,129.8$, 145.9. HRMS (EI) calcd. for $\mathrm{C}_{17} \mathrm{H}_{22}$: 226.17147, Found: 226.17132 .

E) Suzuki Cross-Coupling Reaction on Vinyl Phosphate Moiety

An oven-dried 3 mL Wheaton V-vial was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(5 \mathrm{~mol} \%$, $1.4 \mathrm{mg}), \mathrm{HBF}_{4} \mathrm{PCy}_{3}(10 \mathrm{~mol} \%, 3.7 \mathrm{mg})$, phenylboronic acid (2 equiv, $0.2 \mathrm{mmol}, 24.5$ mg) and anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}$ (3equiv, $0.3 \mathrm{mmol}, 75 \mathrm{mg}$) in the glove box. A solution of (Z)-2-(cyclopent-1-en-1-yl)-2-(4-methoxyphenyl)vinyl diethyl phosphate ($0.1 \mathrm{mmol}, 35$ mg) in THF (1 mL) was added through cannula. The reaction stirred at $75^{\circ} \mathrm{C}$ overnight and then cooled to room temperature. After filtration through a small pad of Celite, solvents were removed under vacuum and the residue was subjected to column chromatography (pure Hexane) to give the product $\mathbf{6 0 . 5 f}$ in 74% yield (20 mg) as a yellowish oil.
(Z)-1-(1-(cyclopent-1-en-1-yl)-2-phenylvinyl)-4-methoxybenzene ($\mathbf{6 0 . 5 f}$) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 1.96-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.81(\mathrm{~m}, 2 \mathrm{H})$, 3.87 (s, 3 H), 5.42 (br. s., 1 H$), 6.52$ (s, 1 H$), 6.87-6.97$ (m, 3 H) $7.05-7.15$ (m, 4 H$)$ 7.25-7.32(m, 1 H) 7.36-7.44(m, 1H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 23.8,33.1$, $33.7,55.6,114.3,126.6,127.1,128.2,129.7,131.1,132.4,132.9,137.92,139.7,147.16$, 158.9. HRMS (EI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}: 276.15142$, Found: 276.15067 .

12. CITED LITERATURE

1. Nicolaou, K. C.; Chen, J. S. Chem. Soc. Rev. 2009, 38, 2993. (b) Malacria, M.; Chem. Rev. 1996, 96, 289. (c) Tietze, L, F. Chem. Rev. 1996, 96, 115.
2. (a) Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953. (b) Kazem Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991. (c) Shu, X. Z.; Shu, D. X.; Schienebeck, C. M.; Tang, W. P. Chem. Soc. Rev. 2012, 41, 7698. (c) Wang, S. Z.; Zhang, G. Z.; Zhang, L. M. Synlett 2010, 692. (d) Marco-Contelles, J.; Soriano, E. Chem. -Eur. J. 2007, 13, 1350.
3. For a leading reference see: Saucy, G,; Marbet, R.; Lindlar, H.; Isler, O. Helv. Chim. Acta. 1959, 42, 1945.
4. Strickler, H.; Davis, J. B.; Ohloff, G. Helv. Chim. Acta., 1976, 59, 1328.
5. Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
6. Miki, K.; Ohe, K. Uemura, S. J. Org. Chem. 2003, 68, 8505.
7. For a leading reference see: Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed. 2002, 41, 2132.
8. For early examples see: (a) Sromek, A, W.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2004, 43, 2280. (b) Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 8654. (c) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (d) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
9. Soriano E.; Marco-Contelles, J. Chem.-Eur. J. 2008, 14, 6771.
10. Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.
11. B. A. B. Parsad, F. K. Yoshimoto and R. Sarpong, J. Am. Chem. Soc., 2005, 127, 12468.
12. Moreau, X.; Goddard, J.; Bernard, M.; Lemiere, G.; Lopez-Romero, J.; Mainetti, E.; Nolan, M.; Mouries, V.; Thorimbert, S.; Fensterbank, L.; Malacria, M. $A d v$. Synth. Catal. 2008, 350, 43.
13. Garayalde, D.; Gomez-Bengoa, E.; Huang, X.; Goeke, A.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 4720.
14. Cho, E. Chem.-Eur. J. 2012, 18, 4495.
15. Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; V. Mourie`s, V.; Dhimane, A.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656.
16. Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.
17. Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem., Int. Ed. 2009, 48, 3112.
18. Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838.
19. Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442.
20. Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614.
21. Lemiere, G.; Gandon, V.; Cariou, K.; Fukuyama, T.; Dhimane, A.; Fensterbank, L.; Malacria, L. Org. Lett. 2007, 9, 2207.
22. Zhang, G.; Catalano, V.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358.
23. Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868.
24. Bhunia, S.; Liu, R, -S. J. Am. Chem. Soc. 2008, 130, 16488.
25. (a) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. Org. Lett. 2008, 10, 1465. (b) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. Tetrahedron 2009, 65, 1859.
26. For related reports, see: (a) Zou, Y.; Garayalde, D.; Wang, Q.; Nevado, C.; Goeke, A. Angew. Chem., Int. Ed. 2008, 47, 10110. (b): Garayalde, D.; Kruger, K.; Nevado, C. Angew. Chem. Int. Ed. 2011, 50, 911. (c) Mauleon, P.; Krinsky, J. L.; Toste, D. F. J. Am. Chem. Soc. 2009, 131, 4513. (d) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett. 2013, 15, 4234.
27. Wang, Y.; Kuzniewski, C, N.; Rauniyar. V.; Hoong, C.; Toste, F.D. J. Am. Chem. Soc. 2011, 133, 12972.
28. Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414.
29. For a gold-catalyzed double 1,3-acyloxy/1,5-acyl migration in 1,6-diynes, see: Lebauf, D.; Simonneau, A.; Aubert, A.; Malacria, M.; Gandon. V.; Fensterbank, L. Angew. Chem., Int. Ed. 2011, 50, 6868.
30. Li, G.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 3740.
31. For a $1,2-\mathrm{H}$ migration in an analogous platinum carbene, see: Cho, E.; Lee, L. Adv. Synth. Catal. 2008, 350, 2719.
32. Uemura, M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 3464.
33. For a double 1,2-OAc/1,4-allyl migration in propargylic esters, see: (a) Davies, P. W.; Albrecht, S. J. -C. Chem. Commun. 2008, 238. (b) Davies, P. W.; Albrecht, S. J. -C. Synlett, 2012, 70.
34. (a) Huang, X.; Haro, T.; Nevado, C. Chem.-Eur. J. 2009, 15, 5904. (b) Haro, T.; Gomez-Bengoa, E.; Cribiu, R.; Huang, X.; Nevado, C. Chem.-Eur. J. 2012, 18, 6811.
35. For a review, see: Schnurch, M.; Spina, M.; Khan, A. F.; Mihovilovic, M. D.; Stanetty, P. Chem. Soc. Rev. 2007, 36, 1046.
36. (a) Reineke, C,E.; McCarthy, J. M.; J. Am. Chem. Soc. 1970, 92, 6376. (b) Peterson, P. E.; Boron, W. F.; J. Am. Chem. Soc. 1971, 93, 4076. (c) Ochiai, M.; Hirobe, M.; Yoshimura, A.; Nishi, Y.; Miyamoto, K.; Shiro, M. Org. Lett. 2007, 9, 3335. (d) Peterson, P. E.; Bopp, R. J.; Ajo, M. M. J. Am. Chem. Soc. 1970, 92, 2834. (e) Peterson, P. E.; Coffey, J. F. Tetrahedron Lett. 1968, 9, 3131.
37. (a) Piers. E.; Brown, R. K. Can. J. Chem. 1963, 41, 2917. (b) Reeve, E. W.; Steckel, T. F. Can. J. Chem. 1973, 51, 2017. (c) Gharibian, H.; Palikyan, G.; Badanyan, S. H.; Paulsen, K.; Melikyan, G. G. Helv. Chim. Acta. 2000, 83, 3291.
38. (a) Sromek, A. W.; Rubina, M.; Gevorgyan. V. J. Am. Chem. Soc. 2003, 127, 10500. (b) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (c) Xia, Y.; Dudnik, A. S.; Gevorgyan, V.; Li, Y. J. Am. Chem. Soc. 2008, 130, 6940.
39. (a) Adock, J.; Luo, H. J. Org. Chem. 1993, 58, 1704. (b) Kundiger, D. G.; Froman, K. H. J. Am. Chem. Soc. 1953, 75, 1744. (c) Kundiger, D. G.; Haney, H.
N. J. Am. Chem. Soc. 1954, 76, 615. (d) Toke, L.; Bende, Z.; Bitter, I.; Toth, G.; Simon, P.; Soos, R. Tetrahedron 1984, 40, 4507.
40. Miura, T.; Iwasawa, N. J. Am. Chem. Soc. 2002, 124, 518. (b) Mamane, V.; Hannen, P.; Fürstner, A. Chem.-Eur. J. 2004, 10, 4556. (c) Shen, H.-C.; Pal, S.; Lian, J.-J.; Liu, R.-S. J. Am. Chem. Soc. 2003, 125, 15762. (d) Tobisu, M.; Nakai, H.; Chatani, N. J. Org. Chem. 2009, 74, 5471.
41. For a leading example on phosphatyloxy group migrations, see: (a) Oelberg, D. G.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 1804. (b) Shigemasa, Y.; Yasui, M.; Ohrai, O.; Sasaki, M.; Sashiwa, H.; Saimoto, H. J. Org. Chem. 1991, 56, 910. For reviews on migrations of acyloxy groups, see: (c) Wang, S.; Zhang, G.; Zhang, L. Synlett. 2010, 692. For selected examples of silicon migrations, see: (d) Katayama, H.; Wada, C.; Taniguchi, K.; Ozawa, F. Organometallics 2002, 21, 3285. For tin migrations, see: (e) Shirakawa, E.; Morita, R.; Tsuchimoto, T.; Kawakami, Y. J. Am. Chem. Soc. 2004, 126, 13614. For boron migration, see: (f) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770.
42. (a) Purohit, V. C.; Matla, A. S.; Romo, D. J. Am. Chem. Soc. 2008, 130, 10478. (b) Li, W.; LaCour, T. G.; Fuchs, P. L. J. Am. Chem. Soc. 2002, 124, 4548. (c) Reetz, M. T.; Kliment, M.; Plachky, M. Angew. Chem., Int. Ed. 1974, 13, 813. (d) Fernandez, I.; Sierra, M. A.; Cossio, F. P. Chem. -Eur. J 2006, 12, 6323.
43. Attempts to isomerize α-fluoro-substituted six- and seven-membered propargylic phosphates only led to the formation of the corresponding α-fluoroallenes via 1,3phosphatyloxy group migration.
44. For selected examples of gold-catalyzed reactions producing allyl cations from allylic systems, see: (a) Biannic, B.; Aponick, A. Eur. J. Org. Chem. 2011, 6605. (b) Chen, Y. F.; Lu, Y. H.; Li, G. J.; Liu, Y. H. Org. Lett. 2009, 11, 3838. (c) Kothandaraman, P.; Foo, S. J.; Chan, P. W. H. J. Org. Chem. 2009, 74, 5947. (d) Liu, H.; Wang, Y. H.; Zhu, L. L.; Li, X. X.; Zhou, W.; Chen, Z. L.; Hu, W. X. Tetrahedron. Lett. 2011, 52, 2990. (e) Porcel, S.; Lopez-Carrillo, V.; GarciaYebra, C.; Echavarren, A. M. Angew. Chem., Int, Ed. 2008, 47, 1883. (f) Bandini, M.; Monari, M.; Romaniello, A.; Tragni, M. Chem. -Eur. J. 2010, 16, 14272. (g) Lin, C. C.; Teng, T. M.; Odedra, A.; Liu, R. S. J. Am. Chem. Soc. 2007, 129, 3798.
45. For a recent example of copper-mediated formation of π-allyl complexes, see: (a) Selim, K. B; Nakanishi, H; Matsumuto, Y; Yamamoto, Y.; Ymada, K.; Tomioka, K. J. Org. Chem. 2011, 76, 1398. For leading references, see: (b) Goering, H. L.; Singleton, V. D., Jr. J. Am. Chem. Soc. 1976, 98, 7854. (c) Goering, H. L.; Singleton, V. D., Jr. J. Org. Chem. 1983, 48, 1531. (d) Goering, H. L.; Kantner, S. S. J. Org. Chem. 1984, 49, 422-426. (e) Backvall, J. E.; Sellen, M.; Grant, B. J. Am. Chem. Soc. 1990, 112, 6615. (f) Goering, H. L.; Underiner, T. L. J. Org. Chem. 1991, 56, 2563. (g) Backvall, J. E.; Persson, E. S. M.; Bombrun, A. J. Org. Chem. 1994, 59, 4126.
46. The performed crossover experiments did not contradict with the proposed mechanisms. In the case of copper catalysis (coordinated to phosphate) no crossover occurred, whereas in the presence of gold catalyst (non-coordinated), detectable crossover products (4-7\%) were observed.
47. Wang, Y. Z.; Lu, B. A.; Zhang, L. Chem. Commun. 2010, 46, 9179.
48. (a) Billingsley, S.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 129, 3358. (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
49. (a) Dohle, W.; Kopp, F.; Cahiez, G.; Knochel, P. Synlett. 2001, 1901. (b) Furstner, A.; Leitner, A. Angew. Chem., Int. Ed. 2002, 41, 609. (c) Larsen, U. S.; Martiny, L.; Begtrup, M. Tetrahedron Lett. 2005, 46, 4261.
50. (a) Hansen, A. L.; Ebran, J. P.; Gogsig, T. M.; Skrydstrup, T. J. Org. Chem. 2007, 72, 6464. (b) Hansen, A. L.; Ebran, J. P.; Gogsig, T. M.; Skrydstrup, T. Chem. Соттии. 2006, 4137.
51. Napper, A. D.; Hixon, J.; McDonagh, T.; Keavey, K.; Pons, J. F.; Barker, J.; Yau, W. T.; Amouzegh, P.; Flegg, A.; Hamelin, E.; Thomas, R. J.; Kates, M.; Jones, S.; Navia, M. A.; Saunders, J. O.; DiStefano, P. S.; Curtis, R. J. Med. Chem. 2007, 50, 1086. (b) Tanemura, K.; Suzuki, T.; Nishida, Y.; Satsumabayashi, K.; Horaguchi, T. Chem. Commun. 2004, 470.
52. Sparling, B. A.; Moslin, R. M Jamison, T. F. Org. Lett., 2008, 10, 1291.
53. Stavber, S.; Zupan, M. Tetrahedron Lett. 1996, 37, 3591.
54. A. Y.; Krout, M. R.; Jensen, T.; Bennett, N. B.; Harned, A. H.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 2756.

APPENDIX I

Selected NMR Spectra for Part One

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 i}$

84

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 k}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 m}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 n}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 0}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 p}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 q}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 5 . 2 r}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 8 . 2} \mathbf{a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 8 . 2 b}$

がへ
$\underbrace{\infty}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 9 . 2 a}$

N

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of 20.2a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of 20.2c

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of 20.2d

$$
\underbrace{\circ}
$$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of 20.2e

${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 6 . 1}$

${ }^{13} \mathrm{C}$ Spectra of $\mathbf{1 6 . 3 0}$

${ }^{*}=13 C$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 21c1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 21c2

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of 21c4

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 2 c} \mathbf{c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{2 2 c} \mathbf{c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of $\mathbf{2 2 c 3}$

APPENDIX II

Selected NMR Spectra for Part Two
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 b}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4} \mathbf{c}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 d}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 e}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 f}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 h}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 i}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 4 k}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5}$ a in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 b}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5} \mathbf{c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 d}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 f}$ in CDCl_{3}

$$
\begin{aligned}
& \begin{array}{l}
\text { SL.091- } \\
\text { Ct'891- }
\end{array}
\end{aligned}
$$

$\begin{aligned} & 6 G^{\circ} 19- \\ & \angle L 9 L \\ & Z 0^{\circ} \angle L \\ & 8 Z^{\circ} \angle L-\end{aligned}$
둔

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 h}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 i}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 j}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of Spectrum of $\mathbf{3 6 . 5 I}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

APPENDIX III

Selected NMR Spectra for Part Three

${ }^{13}$ C-DEPT Spectrum of $\mathbf{5 9 . 4 a}$

NOESY Spectrum of $\mathbf{5 9 . 4 a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4} \mathbf{c}+\mathbf{5 9 . 3} \mathbf{c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 d}+\mathbf{5 9 . 3 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 g}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 h}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 i}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4} \mathbf{j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 a}+\mathbf{5 9 . 3 a}$

${ }^{13}$ C-DEPT Spectrum of $\mathbf{5 9 . 4 a}+\mathbf{5 9 . 3 a}$

NOESY Spectrum of $\mathbf{5 9 . 4 a} \mathbf{+ 5 9 . 3} \mathbf{a}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4 b}+\mathbf{5 9 . 3 b}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 4} \mathbf{c}+\mathbf{5 9 . 3} \mathbf{c}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 3 d}+\boldsymbol{Z}$ isomer

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 3 n}+\boldsymbol{Z}$ isomer

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 3 d}+\mathbf{5 9 . 4 d}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{5 9 . 3} \mathbf{j} \mathbf{+ 5 9 . 4} \mathbf{j}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of Diethyl (2-(2-fluorocyclohexylidene)vinyl) phosphate

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of Diethyl (2-(2-fluorocycloheptylidene)vinyl) phosphate

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 1}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 2 f}$

${ }^{13} \mathrm{C}$-DEPT Spectra of $\mathbf{6 0 . 2 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 3 a}$

${ }^{13}$ C-DEPT Spectra of $\mathbf{6 0 . 3 a}$

NOESY Spectra of $\mathbf{6 0 . 3 a}$

HMQC Spectra of $\mathbf{6 0 . 3 a}$

HMBC Spectra of 60.3a

Selective NOESY Spectra of $\mathbf{6 0 . 3 a}$

Selective NOESY Spectra of 60.3a

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 4 f}$

${ }^{13}$ C-DEPT Spectra of $\mathbf{6 0 . 4 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of (Z)-2-(cyclopent-1-en-1-yl)-2-(4-methoxyphenyl)vinyl diethyl phosphate

${ }^{13}$ C-DEPT Spectra of (Z)-2-(cyclopent-1-en-1-yl)-2-(4-methoxyphenyl)vinyl diethyl phosphate

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 5 f}$

${ }^{13}$ C-DEPT spectra of $\mathbf{6 0 . 5 f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectrum of $\mathbf{6 0 . 6 f}$

${ }^{13}$ C-Dept Spectra of $\mathbf{6 0 . 6 f}$

APPENDIX IV

Copyright Permissions

Chapter One reproduced in part with permission from:

"Gold-Catalyzed 1,3-Transposition of Yones" Kazem Shiroodi, R.; Soltani, M.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 9882. Copyright 2014 American Chemical Society.

Chapter Two reproduced in part with permission from:

"1,2-Boryl Migration Empowers Regiodivergent Synthesis of Borylated Furans " Kazem
Shiroodi, R.; Koleda, O.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 13146. Copyright 2014 American Chemical Society.

Chapter Three reproduced in part with permission from:

(1) "Metal-Catalyzed Double Migratory Cascade Reactions of Propargylic Esters and Phosphates" Kazem Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991. Copyright 2013 Royal Chemical Society.
(2) "Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. J. Am. Chem. Soc. 2012, 134, 6928. Copyright 2012 American Chemical Society.

American Chemical Society's Policy on Theses and Dissertations

If your university requires you to obtain permission, you must use the RightsLink permission system. See RightsLink instructions at http://pubs.acs.org/page/copyright/permissions.html.

This is regarding request for permission to include your paper(s) or portions of text from your paper(s) in your thesis. Permission is now automatically granted; please pay special attention to the implications paragraph below. The Copyright Subcommittee of the Joint Board/Council Committees on Publications approved the following:

Copyright permission for published and submitted material from theses and dissertations
ACS extends blanket permission to students to include in their theses and dissertations their own articles, or portions thereof, that have been published in ACS journals or submitted to ACS journals for publication, provided that the ACS copyright credit line is noted on the appropriate page(s).

Publishing implications of electronic publication of theses and dissertation material
Students and their mentors should be aware that posting of theses and dissertation material on the Web prior to submission of material from that thesis or dissertation to an ACS journal may affect publication in that journal. Whether Web posting is considered prior publication may be evaluated on a case-by-case basis by the journal's editor. If an ACS journal editor considers Web posting to be "prior publication", the paper will not be accepted for publication in that journal. If you intend to submit your unpublished paper to ACS for publication, check with the appropriate editor prior to posting your manuscript electronically.

Reuse/Republication of the Entire Work in Theses or Collections: Authors may reuse all or part of the Submitted, Accepted or Published Work in a thesis or dissertation that the author writes and is required to submit to satisfy the criteria of degree-granting institutions. Such reuse is permitted subject to the ACS" "Ethical Guidelines to Publication of Chemical Research" (http://pubs.acs.org/page/policy/ethics/index.html); the author should secure written confirmation (via letter or email) from the respective ACS journal editor(s) to avoid potential conflicts with journal prior publication*/embargo policies. Appropriate citation of the Published Work must be made. If the thesis or dissertation to be published is in electronic format, a direct link to the Published Work must also be included using the ACS Articles on Request author-directed link - see http://pubs.acs.org/page/policy/articlesonrequest/index.html

* Prior publication policies of ACS journals are posted on the ACS website at http://pubs.acs.org/page/policy/prior/index.html

If your paper has not yet been published by ACS, please print the following credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [JOURNAL NAME], in press (or 'submitted for publication'). Unpublished work copyright [CURRENT YEAR] American Chemical Society." Include appropriate information.

If your paper has already been published by ACS and you want to include the text or portions of the text in your thesis/dissertation, please print the ACS copyright credit line on the first page of your article: "Reproduced (or 'Reproduced in part') with permission from [FULL REFERENCE CITATION.] Copyright [YEAR] American Chemical Society." Include appropriate information.

Submission to a Dissertation Distributor: If you plan to submit your thesis to UMI or to another dissertation distributor, you should not include the unpublished ACS paper in your thesis if the thesis will be disseminated electronically, until ACS has published your paper. After publication of the paper by ACS, you may release the entire thesis (not the individual ACS article by itself) for electronic dissemination through the distributor, ACS's copyright credit line should be printed on the first page of the ACS paper.

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms \& Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

BACK

CLOSE WINDOW

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms \& Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

BACK
 CLOSE WINDOW

Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions. Comments? We would like to hear from you. E-mail us at customercare@copyright.com

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms \& Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

Royal Society of Chemistry Thomas Graham House Science Park Milton Road Cambridge CB4 OWF

Tel: +44 (0)1223 420066
Fax: +44 (0)1223 423623
Email: contracts-copyright@rsc.org
www.rsc.org

Acknowledgements to be used by RSC authors

Authors of RSC books and journal articles can reproduce material (for example a figure) from the RSC publication in a non-RSC publication, including theses, without formally requesting permission providing that the correct acknowledgement is given to the RSC publication. This permission extends to reproduction of large portions of text or the whole article or book chapter when being reproduced in a thesis.

The acknowledgement to be used depends on the RSC publication in which the material was published and the form of the acknowledgements is as follows:

- For material being reproduced from an article in New Journal of Chemistry the acknowledgement should be in the form:
- [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
- For material being reproduced from an article Photochemical \& Photobiological Sciences the acknowledgement should be in the form:
- [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
- For material being reproduced from an article in Physical Chemistry Chemical Physics the acknowledgement should be in the form:
- [Original citation] - Reproduced by permission of the PCCP Owner Societies
- For material reproduced from books and any other journal the acknowledgement should be in the form:
- [Original citation] - Reproduced by permission of The Royal Society of Chemistry

The acknowledgement should also include a hyperlink to the article on the RSC website.
The form of the acknowledgement is also specified in the RSC agreement/licence signed by the corresponding author.

Except in cases of republication in a thesis, this express permission does not cover the reproduction of large portions of text from the RSC publication or reproduction of the whole article or book chapter.

A publisher of a non-RSC publication can use this document as proof that permission is granted to use the material in the non-RSC publication.

Metal-catalyzed double migratory cascade reactions of propargylic esters and phosphates

R. Kazem Shiroodi and V. Gevorgyan, Chem. Soc. Rev., 2013, 42, 4991
DOI: 10.1039/C3CS35514D

If you are not the author of this article and you wish to reproduce material from it in a third party nonRSC publication you must formally request permission using RightsLink. Go to our Instructions for using RightsLink page for details.

Authors contributing to RSC publications (journal articles, books or book chapters) do not need to formally request permission to reproduce material contained in this article provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

- For reproduction of material from NJC:

Reproduced from Ref. XX with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.

- For reproduction of material from PCCP:

Reproduced from Ref. XX with permission from the PCCP Owner Societies.

- For reproduction of material from PPS:

Reproduced from Ref. XX with permission from the European Society for Photobiology, the European Photochemistry Association, and The Royal Society of Chemistry.

- For reproduction of material from all other RSC journals and books: Reproduced from Ref. XX with permission from The Royal Society of Chemistry.

If the material has been adapted instead of reproduced from the original RSC publication "Reproduced from" can be substituted with "Adapted from".

In all cases the Ref. XX is the XX th reference in the list of references.
If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

- For reproduction of material from NJC:
[Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
- For reproduction of material from PCCP:
[Original citation] - Reproduced by permission of the PCCP Owner Societies
- For reproduction of material from PPS:
[Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
- For reproduction of material from all other RSC journals:
[Original citation] - Reproduced by permission of The Royal Society of Chemistry
If you are the author of this article you still need to obtain permission to reproduce the whole article in a third party publication with the exception of reproduction of the whole article in a thesis or dissertation.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

VITA

NAME: Roohollah Kazem Shiroodi
EDUCATION: B.S., Applied Chemistry, Malek Ashtar University of Technology, Isfahan, Iran, 2004
M.Sc., Organic Chemistry, Tarbiat Modares University, Tehran, Iran, 2007

Ph.D., Chemistry, University of Illinois at Chicago, Chicago, IL, 2015

TEACHING

EXPERIENCE: Teaching Assistant, Department of Chemistry, University of Illinois, 2009-2010

HONORS AND
AWARDS: $\quad 7^{\text {th }}$ Negishi-Brown Lectures Poster Award, Purdue University, West Lafayette, IN, 2014

University of Illinois Firdawsi Fellowship Award, University of Illinois, 2012-2013

29th H. C. Brown Lectures Poster Award, Purdue University, West Lafayette, IN, 2012

AFFILIATIONS: American Chemical Society
PUBLICATIONS: "Au-Catalyzed Pentannulation Reaction of Propargylic Esters Occuring at C(sp $\left.{ }^{3}\right)$-H Site" Kazem Shiroodi, R.; Sugawara, M.; Ratushnyy, M.; Yarbrough, D.; Wink, D. J.; Gevorgyan, V. Submitted.
"Synthesis of Furans and Pyrroles via Migratory and Double Migratory Cycloisomerization Reactions of Homopropargylic Aldehydes and Imines" Kazem Shiroodi, R.; Rivera Vera, C.; Dudnik, A. S.; Gevorgyan, V. Tetrahedron, ASAP (Special Issue on the Memory of Harry Wasserman).
"1,2-Boryl Migration Empowers Regiodivergent Synthesis of Borylated Furans " Kazem Shiroodi, R.; Koleda, O.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 13146.
"Gold-Catalyzed 1,3-Transposition of Yones" Kazem Shiroodi, R.;

Soltani, M.; Gevorgyan, V. J. Am. Chem. Soc. 2014, 136, 9882.
"Metal-Catalyzed Double Migratory Cascade Reactions of Propargylic Esters and Phosphates" Kazem Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991.
"Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. J. Am. Chem. Soc. 2012, 134, 6928.
"Nanohydroxyapatite Microspheres as a Biocompatible and Recoverable Catalyst for Synthesis of Carbon-Phosphorous Bond'" Ma'mani, L.; Heydari, A.; Kazem Shiroodi, R. Curr. Org. Chem. 2009, 13, 758.
"Guanidin Hydrochloride: an active and simple catalyst for Strecker reaction" Heydari, A.; Arefi, A.; Khaksar, S.; Kazem Shiroodi, R. J. Mol. Catal. A. 2007, 271, 142.
" N-tert-Butoxycarbonylation of amines using $\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}$ as an efficient heterogeneous and recyclable catalyst" Heydari, A.; Kazem Shiroodi, R.; Hamadi, H.; Esfandyari, M.; Pourayoubi, M. Tetrahedron Lett. 2007, 48, 5865.

PRESENTATIONS: "Gold-catalyzed 1,3-Transposition of Ynones", Kazem Shiroodi, R.; Soltani, M.; Gevorgyan, V. $246^{\text {th }}$ ACS National Meeting, 2015 Denver, CO (oral).
"1,2-Boryl Migration Empowers Regiodivergent Synthesis of Borylated Furans " Kazem Shiroodi, R.; Koleda, O.; Gevorgyan. $246^{\text {th }}$ ACS National Meeting, 2015 Denver, CO (poster).
"Gold-Catalyzed 1,3-Transposition of Ynones", Kazem Shiroodi, R.; Soltani, M.; Gevorgyan, V. $7^{\text {th }}$ Negishi-Brown Lectures, Purdue University, West Lafayette, IN, 2014 (poster).
"Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. Gordon Research Conference, Organic Reactions and Processes, Bryant University, Smithfield, RI, 2013 (poster).
"Stereodivergent Double Migration Relay in α-Bromo Propargylic Phosphates" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V.

Gordon Research Seminar, Organometallics, Salve Regina University, Newport, RI, 2012 (poster).
"Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. $29^{\text {th }}$ Herbert C. Brown Lectures, Purdue University, West Lafayette, IN, 2012 (poster)
"Stereocontrolled 1,3-Phosphatyloxy and 1,3-Halogen Migration Relay toward Highly Functionalized 1,3-Dienes" Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. $4^{\text {th }}$ Chicago Organic Symposium, University of Illinois at Chicago, Chicago, IL, 2012 (poster).
"Hydrophosphonylation of Aldehydes catalyzed by Guanidine Hydrochloride in Water" Heydari, A.; Arefi, A.; Khaksar, S.; $13^{\text {th }}$ Iranian Seminar of Organic Chemistry, Bu-Ali Sina Univerity. Hamadan, Iran, 2006, (poster).

[^0]: ${ }^{a}$ Isolated yield.

[^1]: ${ }^{a}$ Isolated yield.

[^2]: ${ }^{a}$ NMR ratios.

[^3]: ${ }^{a}$ Major stereoisomer shown.
 ${ }^{b}$ Isolated yield.
 ${ }^{c} Z: E=95: 5$.
 ${ }^{d} Z: E=90: 10$.

[^4]: ${ }^{a}$ Major stereoisomer shown.

