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SUMMARY 

 

This dissertation presents an information platform for Intelligent Transportation System (ITS) 

applications with a focus on trust management issues, and three example ITS applications, namely 

ridesharing, Volunteer Transportation Information System (VTIS) and parking/unparking activities 

detection using smart phones.  

The information platform, referred to as the ITS Information Platform (IIP) [75] hereafter, is 

motivated by relieving ITS application developers from implementing communication and data 

management components which are necessities but not central to the application functionality. In 

other words, IIP, residing as a middleware between operating systems and ITS applications, 

provides primitives to application developers for communication and data management needs. IIP 

consists of two parts, namely the Cloud Component and the Client Component. The IIP Cloud 

Component provides canonical publish/subscribe (pub/sub) functions to both traffic management 

facilities and mobile nodes, e.g. vehicles, smart phones. The IIP Client Component provides mobile 

nodes with pub/sub functions which allow them to communicate with the IIP Cloud Component as 

well as with each other. Via leveraging heterogeneous data sources and various communication 

mechanisms in the ITS environment, IIP supports a wide variety of ITS applications. 

A pressing concern with IIP is trust management: should a subscriber trust the publications she 

has received? What IIP can do to help subscribers manage risks of being exposed to false 

information or tricked by malicious publishers? Towards this end, existing works on trust 

management for ITS is surveyed [76]. 

IIP is motivated to help ITS application developers. Therefore, it is in our interest to investigate 

some emerging yet promising ITS applications in order to better understand the needs of ITS  



 
 

xvi 
 

SUMMARY (Continued) 

application developers. As case studies, we investigate three ITS applications, namely ridesharing, 

the VTIS and the parking/unparking activities detection using smart phones.  

Ridesharing helps alleviate many existing major transportation problems, such as traffic jams, 

find parking spaces, hard to hail a taxi during rush hours. These problems are perennial headaches 

for cities, especially those with a large population, and affect the environment, the economy, and 

more directly average people’s daily lives. We treat ridesharing as a constrained optimization 

problem. A variety of constraints can be considered when modeling a specific ridesharing 

application. For example, capacity constraints limit the maximum number of riders on a vehicle at 

the same time; spatial constraints define the Origin-Destination (OD) pair of a trip; temporal 

constraints define the desirable time windows in which the trip should take place; and monetary 

constraints provide incentives for riders and drivers to participate in ridesharing.  

The two major objectives of ridesharing are efficiency and effectiveness. Efficiency concerns 

about how fast on average each trip request, i.e. query, is processed, either assigned to a vehicle or 

denied for ridesharing. Efficiency becomes a more acute and bigger concern than effectiveness for 

dynamic ridesharing problems in which queries arrive in real-time instead of being known in 

advance. We propose and develop a taxi-sharing system called T-Share that accepts taxi passengers’ 

real-time ride requests sent from smart phones and schedules proper taxis to pick up them via 

ridesharing, subject to time, capacity, and monetary constraints. The T-Share system is built based 

on a mobile-cloud architecture. Taxi riders and taxi drivers use the taxi-sharing service provided 

by the system via a smart phone APP. The Cloud first finds candidate taxis quickly for a taxi ride 

request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling 

process is then performed in the Cloud to select a taxi that satisfies the request with minimum  
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SUMMARY (Continued) 

increase in travel distance. We evaluate the T-Share system with extensive experiments to validate 

its effectiveness, efficiency and scalability. 

Effectiveness of ridesharing concerns about how much benefits, such as decrease in travel 

distance, ridesharing can bring. And we are interested in quantifying such benefit and find the 

theoretical bound of the defined benefit function with the presence of various constraints. As an 

example of such efforts, we analyze the slugging form of ridesharing [74], where passengers instead 

of drivers change their route (i.e. a passenger needs to walk to the origin of the driver, share the 

ride with the driver, get off at the driver’s destination and then walk back to his/her destination). 

We formally define the slugging problem and its generalization. We provide proofs of their 

computational time complexity. For the variants of the slugging problem that are constrained by 

the vehicle capacity and travel time delay, we prove NP-completeness and also propose some 

effective heuristics. In addition, we discuss the dynamic slugging problem. 

Volunteer Traveler Information System [112] is another application proposed for the IIP. It 

aims to provide travelers real time transport related information, such as traffic conditions, 

accidents, bus/train delays, parking spaces availability, etc. Such information has paramount values 

for travelers on the road. Nowadays, travelers often get limited types of real-time transport 

information (mostly traffic condition info. on major roads like highways and arterials) from large 

Internet companies like Google or traffic-oriented websites like traffic.com. A potentially ideal way 

to get more comprehensive and accurate real-time transport information is crowd sourcing, i.e. 

gleaning data from a large number of travelers. This approach becomes practically feasible as 

currently most travelers carry mobile devices which are capable of reporting such information via 

wireless communication. Thus, a real-time travel information notification system such as the VTIS 

is of great value and in an urgent need. The VTIS provides two essential functions for travelers, i.e.  
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SUMMARY (Continued) 

publish/subscribe. Specifically, the publish function of the VTIS allows a traveler to easily report 

a transport related event via the cell phone immediately whenever she witnesses an interesting event 

no matter while driving, riding a bike/bus/train, or walking. Symmetrically, the subscribe function 

of the VTIS allows a traveler to subscribe to the specified information of interest via the phone, 

and the VTIS will automatically notify the traveler whenever one of her subscriptions gets satisfied, 

i.e. some other people have reported information of her interest. We envision that the VTIS brings 

pragmatic merits to both the general public and transportation authorities. On one hand, it greatly 

conveniences average travelers by feeding them more timely and accurate customized travel 

information. On the other hand, it also provides a complementary mass-powered transport 

information source for authorities. As a result, authorities can improve their existing services by 

exploiting the data gleaned by the VTIS.  

The third ITS application we consider here is the detection of parking/unparking activities using 

smartphones. Real-time information about vacant parking spaces is of paramount value in urban 

environments. One promising approach to obtaining such information is participatory sensing, i.e. 

detecting parking/unparking activities using smartphones. We introduces and describes multiple 

indicators, each of which provides some inconclusively clue for a parking or an unparking activity. 

As a result, we proposes a probabilistic fusion method which combines the output from different 

indicators to make more reliable detections. The proposed fusion method can be applied to inferring 

other similar high-level human activities that involve multiple indicators which output features 

asynchronously. The proposed indicators and the fusion method are implemented as an Android 

App called UPDetector. Via experiments, we show that the UPDetector is both effective and 

energy-efficient. 
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Chapter 1   

IIP: An Event-Based Platform for ITS Applications 

1.1 Introduction 

Envisioning that there are many common data management and communication elements 

shared by various prospective IntelliDriveSM [2] applications, we propose the ITS Information 

Platform (IIP) as a common data management and communication services platform facilitating 

and easing applications development.  The motivation of IIP comes from the fact that there is a lack 

of a generic platform, which provides data management and communication support capability in 

a distributed, heterogeneous data environment like IntelliDriveSM. As an example, consider how an 

application helps a driver who is interested in the current and expected traffic speed on the Kennedy 

Expressway receive the information. The application first identifies the relevant information that 

contains or may be used to infer traffic speed on the Kennedy Expressway. Traffic reports providing 

exact speeds are the ideal source. A picture or a video clip of the expressway may be useful as well. 

Special events announcements about sports events, roadwork, accidents, and extreme weather 

warnings are also relevant. The issue is that such information may exist in different forms, in a web 

post or personal text communication, on the Internet or a hand-held devices, etc. And the solution 

to locating the data dictates the approach to accessing the data.  

Thus a common data management and communication services platform like IIP is of great 

need to ease the burden on the application developers and users from having to deal with issues 

such as finding the data discussed above. We argue that the publish/subscribe (pub/sub) paradigm 

[41] is an appropriate fundamental building block for IIP. Publish/Subscribe is an asynchronous 

communication paradigm that provides spatiotemporally loosely-coupled connection between 

communicating parties. Moreover, it is multicasting in nature since data producers can send the 
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same data to multiple consumers with a single operation. As a result, the asynchrony and one-to-

many characteristics make the publish/subscribe system more suitable than other communication 

paradigms, e.g. query-response and remote procedure call, for distributed information 

dissemination applications which are prevalent in the ITS environment. We describe the 

components, their functionality, and the architecture necessary for the pub/sub based IIP platform. 

1.2 Architecture and Components 

At the highest level, IIP is composed of two components, one residing on the cloud, i.e. the 

infrastructure network, which is referred as the IIP Cloud Component; and the other residing on the 

clients, which is referred as the IIP Client Component. The IIP Cloud Component provides 

canonical publish/subscribe functions to both traffic management facilities and mobile nodes. The 

IIP Client Component provides mobile nodes with pub/sub functions which allow them to 

communicate with the IIP Cloud Component as well as with each other.  

Following the conventions in the pub/sub literature, we use the term event for any useful 

information and publisher and subscriber respectively for producer and consumer of the event in 

the rest of this document.  Figure 1 shows the overall architecture of IIP whose components are 

represented by dashed incarnadine boxes.  



3 
 

 

 

Figure 1 ITS Information Platform architecture 

The IIP Cloud Component essentially consists of two building blocks, namely the Event Broker 

and the Event Schema Registry (ESR). The Event Broker is the kernel function of large scale 

infrastructure-based publish/subscribe systems. It basically performs “store and forward” function 

to route events from publishers to subscribers. Upon the arrival of new events, the Event Broker 

sends the events to all the subscribers whose subscription matches the new event.  

The Event Schema Registry provides a repository where publishers can find event schemas of 

interest. The System Primitives provide the open interface for applications running on either mobile 

nodes or management facilities to access the IIP Cloud Component. More detailed descriptions of 

the Event Schema Registry and the Event Broker will be introduced soon. 

The Cloud IIP Cloud  

Clients

Event

Broker

Event  Schema 

Registry

System Primitives
publish(EVENT, [DURATION],[RATE],          register(NAME(ATTRIBUTES),    

PUBMODE, AREA, [LIFETIME]                         [PUBMODE])

subscribe(SUBSCRIPTION, AREA,                  lookup(NAME(ATTRIBUTES), 

LIFETIME)                                                        RATE)

unsubscribe(SUBSCRIPTION,AREA)

announce(EVENT, PUBMODE, 

AREA, [LIFETIME])

Traffic Management 

Center

Transit  Management 

Center

Emergency  

Management Center

Applications

IIP Client



4 
 

 

 

Figure 2 IIP Client architecture 

Figure 2 shows the architecture of the IIP Client Component. It employs a two-layer structure. 

The upper level is the Data Management Layer. It provides applications with a uniform data 

abstraction and manipulation tool compatible with the IIP Cloud Component. Specifically, the 

Event Schemas Generator allows mobile nodes to produce event schemas to be registered to the 

ESR. The Events Generator and the Subscriptions Generator control the generation of events and 

subscriptions respectively. The Event Broker module provides the function of brokering events and 

is implemented separately by interfaces defined in the underlying communication layer. The Match 

Engine implements a generic matching mechanism between events and subscriptions. Note that the 

IIP Client Component does not provide a schema discovery function, thus mobile nodes cannot 

learn event schemas of interest from anywhere else but the Event Schema Registry in the Cloud.  

The lower level is the Communication Layer, which supports different communication 

paradigms. Currently two paradigms are considered. The Cloud Interface allows mobile nodes to 
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access the IIP Cloud Component through Internet access points, e.g. Wi-Fi hotspots, cellular base 

stations or other road side units. Existing standard cellular system, e.g. GSM and GPRS, and works 

on Internet access protocols, e.g. fast Wi-Fi access protocols described in [40] are sufficient for 

realizing the Cloud Interface. Notice that the Cloud Interface cannot support pub/sub function for 

purely mobile peer to peer applications in which the communication infrastructure does not exist, 

or is not fast enough. As an example, consider the application where the right-of-way is 

distributively maintained among vehicles, pedestrians and cyclists at a road intersection without 

traffic lights or human coordinators. In such an application, mobile nodes approaching the 

intersection should coordinate with each other directly via short range high-bandwidth channels, 

since a cloud solution probably cannot guarantee the necessary response time.  

Therefore we propose the Mobile Peer to Peer (P2P) Interface as a complementary 

communication method. It implements the pub/sub system purely via inter-node communication in 

a mobile P2P network (vehicles, smart-phones and other pedestrian/bicyclist devices), regardless 

of whether or not the mobile P2P network is connected.  In other words, we assume that the Data 

Management Layer on IIP Client is not concerned with connectivity issues in the Mobile P2P 

network, and the communication layer will employ the appropriate Delay Tolerant protocols to 

overcome connectivity problems in the this network.  

1.3 Primitives for Information System for ITS 

1.3.1 The Event Schema Registry 

In this section, we present the primitives with their associated parameters provided by the Event 

Schema Registry. And we classify those parameters into two categories, i.e. mandatory parameters 

and optional parameters. Mandatory parameters are semantically required, i.e. they are 

indispensable for the purpose of providing the necessary semantics of the primitives. Optional 

parameters are not compulsory and used as “hint information” by IIP to enhance the performance 

of the system.  Notice the same parameter may be mandatory to one primitive while optional to 
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another. The decision is dependent on the specific semantics of the primitive. We will indicate 

whether or not a parameter is optional for a primitive in proper timings in the rest of the section.  

The Event Schema Registry is implemented as a central directory which enables publishers to 

register their event schemas and provides schema search functionality to subscribers. From an 

application’s point of view, it provides the following two essential primitives (optional parameters 

are enclosed by brackets):  

 register(EVENT_SCHEMA) 

 lookup(EVENT_SCHEMA, RATE) 

1.3.1.1 The register Primitive    

Each publisher registers an event schema with the Event Schema Registry by invoking the 

register primitive. The EVENT_SCHEMA parameter is formally represented in the format of 

SCHEMA_NAME(ATTRIBUTES), where SCHEMA_NAME and ATTRIBUTES represents the 

name and the attributes of the event to be registered by the publisher respectively. An attribute can 

be a primitive data type, such as a string, a numeric field, a spatiotemporal data structure such as a 

point, region, hour, day, or a complex data structure, such as an XML document.  For a complete 

example of a schema, consider: “BUS LOCATION” with attributes <ROUTE_NO, RUN_NO, 

TIMESTAMP, LOCATION-COORDINATES>.  

1.3.1.2 The lookup Primitive    

Each subscriber discovers the event schemas of interest from the Event Schema Registry by 

invoking the lookup primitive. The EVENT_SCHEMA parameter has the same format and 

semantics of that in the register primitive. We treat each call to the lookup primitive as an 

instantaneous rather than a continuing query. Consequently, the Event Schema Registry saves 

considerable memory space by not keeping track of the history of received lookup calls.  

Each call to the lookup primitive from an application is passed to the IIP Client Component, 

which in turn sends the call to the IIP Cloud via the Cloud Interface. The Event Schema Registry 
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returns the IIP Client Component a list of all event schemas that match the EVENT_SCEHMA 

parameter of the call. Here the matching is performed using both schema matching techniques  [52] 

and ontology matching techniques [42].  

Prior to displaying the returned list of event schemas from the ESR to the application, the IIP 

Client Component ranks the schemas based on some measures, such as reputation of the publisher 

of the event schema if a reputation system is implemented. Then the subscribers may choose 

schemas on which they would like to write subscriptions.  

The RATE parameter is introduced such that subscribers are constantly kept posted about new 

schemas of interest registered with ESR.  To understand why, consider the following scenario. 

Suppose a driver is interested to traffic speed information on his way to home. So s/he invokes a 

call to the lookup primitive, where the EVENT_SCHEMA parameter equals “traffic 

speed”(TRAFFIC_SPEED, FLOW, ROAD_NAME, TIME), where “traffic speed” is the name of 

the schema.  Further suppose s/he receives the returned event schema with attributes <SPEED, 

TRAFFIC_FLOW, LOCATION, TIMESTAMP> from the ESR. Assume later a new schema with 

attributes <VELOCITY, FLOW, ROADLINK_ID, TIME> is registered, which also matches the 

driver’s interest. However, the driver has no way of knowing about it unless s/he invokes the lookup 

primitive with the same parameter again later. Clearly, some kind of “update” service is desirable 

from users’ perspectives and that is why parameter RATE is introduced. Here is how it works. For 

each call 𝐶  to the lookup primitive, the IIP Client retransmits 𝐶  to the ESR at the frequency 

indicated by the RATE parameter given in 𝐶. As such, the user receives updated information on 

relevant schemas periodically. In addition, we assume a default valid time for each call to prevent 

the IIP Client Component from retransmitting the call forever.  

1.3.2 The Event Broker 

The Event Broker serves as the message “bridge” connecting publishers and subscribers. It 

provides the following primitives: 
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 publish(EVENT, EVENT_SCHEMA, [PUBMODE], [AREA],[LIFETIME]) 

 subscribe(PREDICATE, EVENT_SCHEMA, [PUBMODE] AREA, LIFETIME) 

 unsubscribe(PREDICATE, EVENT_SCHEMA)  

 announce(EVENT, EVENT_SCHEMA, [AREA], [PUBMODE],[LIFETIME])  

Next we first give precise definitions for all primitive parameters and explain the semantics of 

each primitive, and then we discuss how the Event Broker is implemented. 

1.3.2.1 The publish Primitive 

Each node invokes the publish primitive when it needs to publish any events. The EVENT 

parameter represents an instance record of the event schema given by the EVENT_SCHEMA 

parameter. 

The PUBMODE parameter: Given an subscribe call from an application, the IIP Client 

Component may need a mechanism to intelligently decide which action to take, i.e., to deliver the 

subscription to the IIP Cloud Component via the Cloud Interface or to disseminate the subscription 

using the Mobile Peer to Peer Interface, or both. Thus the PUBMODE parameter is introduced as 

the basis on which the IIP Client Component makes such a decision.  

Note that in the case of the PUBMODE parameter is absent, the IIP Client Component simply 

tries both actions. In other words, PUBMODE does not affect the semantics of the register primitive 

but only helps the IIP Client Component improve the performance by saving unnecessary 

communication cost. Therefore we treat PUBMODE as an optional parameter to the register 

primitive. 

Specifically, the PUBMODE parameter indicates the mode in which a publisher publishes its 

events of the given SCHEMA. More specifically, the value of PUBMODE can be (i) mobile, 

meaning publishing events through the embedded Mobile Peer to Peer Interface, i.e. disseminating 

events among peers; (ii) cloud, meaning publishing events to the IIP Cloud Component via the 

embedded Cloud Interface, i.e. transmitting events to the Event Broker; or (iii) mixed, meaning 

publishing events in both mobile and cloud modes. For an example of publishers using different 
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values for PUBMODE, consider the application described in [66] where private cars disseminate 

events reporting the witness of a fleeing car driven by some criminals and the patrolling police cars 

reap such events. In this case, the private cars are using mobile mode to publish events. And the 

police cars may use cloud mode to report the collected events to the headquarter of local police 

department where a chasing and hunting plan is made.  

Notice the value of the PUBMODE parameter makes no indication about the mobility status of 

the publisher. For example, a publisher who uses mobile publishing mode may be a moving probe 

car or a fixed roadside sensor. On the other side, some publishing modes may do not make sense 

provided the mobility status of the publisher. For instance, it is not likely that a desktop user sitting 

in the office will publish traffic speed events (assumedly obtained by the user from another source 

other than IIP) using the mobile mode. However, even though s/he does, the publishing action will 

not take any effects.  

The AREA and LIFETIME Parameters: The AREA parameter specifies the region where the 

intended recipients of the published events should locate. By intended recipients, we refer to the 

anticipated receivers of the events from the publisher’s point of view. Thus though nodes outside 

of the region defined by the AREA parameter may also receive the events, they are considered only 

as brokers who relay the events. Notice we expect that most of the time the AREA parameter is used 

by the Mobile Peer to Peer Interface, i.e. when the PUBMODE parameter has a value of mobile or 

mixed. In other words, any specific implementation of Mobile Peer to Peer Interface is supposed to 

support for geocasting, i.e. delivering events to a group of nodes within certain geographical area. 

However, the AREA parameter may be used when PUBMODE equals cloud as well.   

Since it is hard for users to clearly state the value of the AREA parameter using expressions, 

the IIP Client Component will provide a Graphic User Interface (GUI) for the purpose of specifying 

AREA. More specifically, the GUI will display the real time road network around the node, which 

typically consists of nearby parallel lanes in both directions. And it provides shapes, such as circle, 
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rectangle etc., that are used to select areas on the displayed road network. For an example of 

specifying AREA using the GUI, consider Emergency Electronic Brake Light (EEBL) application 

where a car disseminates an event to downstream vehicles when it detects the driver suddenly 

brakes heavily. In this case, when a car publishes a hard brake event, the value of the AREA 

parameter can be specified by selecting the rectangle area between the current location of the car 

and certain point on the same lane behind the car.  

The LIFETIME parameter indicates how long the event is to be valid in the network. An invalid 

event will be discarded by all its carriers. 

PUBMODE, AREA and LIFETIME are all optional parameters to the publish primitive because 

they are simply “performance hints”. In other words, they affect performance, but not the semantics 

of the application.  

1.3.2.2 The subscribe/unsubscribe Primitive 

Each node invokes the subscribe primitive when they need to subscribe to events of interest. 

The AREA parameter and the LIFETIME parameter have the similar semantics of their counterparts 

in the publish primitive. However, here they are mandatory to the subscribe primitive because they 

are necessary for subscribers to precisely express what the events of interest are. Without them, the 

semantics of a subscribe primitive become paralyzed. For example, in the aforementioned EEBL 

scenario, a subscriber cannot express that s/he is only interested in hard brake events published in 

last 30 seconds by cars ahead of it within 1 mile without the AREA and the LIFETIME parameter. 

At any time, a subscriber can call the unsubscribe primitive to revoke any previous subscription. 

The PREDICATE Parameter:  The PREDICATE parameter represents a concrete 

subscription of certain subscriber. A subscription is either (i) an Event Filter Predicate or (ii) an 

Event Pattern Predicate.   

An Event Filter Predicate is a conjunction of multiple predicates over a single event. Each 

predicate is a binary predicate over an attribute of the event, returning either TRUE or FALSE. An 
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Event Filter Predicate is matched against individual events and a match is found if an event makes 

the evaluation of the predicate return TRUE. For example, consider a driver subscribes to weather 

forecast events which are published every 15 minutes. The attributes of the weather events are 

<TIME_INTERVAL, TEMPERATURE, WIND_STRENGTH, PRECIPITATION, 

ULTRAVIOLET_INDEX>. An example of an Event Filter Predicate is “notify me if there is a 

predicted rain with the precipitation over 100 millimeters coming in an hour”. Formally, the 

predicate can be written as “overlap (TIME_INTERVAL, next_hour) and PRECIPITATION>100 

mm”. And the predicate will be evaluated on each individual weather event to filter out all events 

whose TIME_INTERVAL and PRECIPITATION value satisfy the above conditions.  

In contrast to an Event Filter Predicate, an Event Pattern Predicate is often defined and 

evaluated across multiple events of the same event schema. For instance, again consider a driver 

subscribes to the aforementioned weather forecast events. “Notify me if the temperature drops 10 

degrees within 30 minutes” is an example of an Event Pattern Predicate since it can only be 

evaluated on at least two events. Another example of an Event Pattern Predicate in the above 

context could be “notify me if when the temperature reported by the weather forecast events has 

monotonically increased for two hours”. In this case, the predicate has to be evaluated based on all-

weather events in a temporal window of two hours.  

We utilize the language models described in [35] to formally define the Event Pattern 

Predicates. The language model essentially consists of a set of formally defined language operators, 

such as projection, union, conditional sequence, iteration, etc. Given the defined operators and 

expressions, matching an Event Pattern Predicate against an event stream can be done using 

extended finite state automata model.    

1.3.2.3 The announce Primitive 

The publish and (un)subscribe primitives provide the basic semantic of a pub/sub system, more 

primitives are required by developers to construct various applications. An additional primitive we 
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considered is the announce primitive. All parameters in the announce primitive have the same 

meaning as the counterparts defined in the publish primitive. The difference between the announce 

primitive and the publish primitive lies in that announced events will be delivered  to all subscribers 

located in the region defined by the AREA parameter regardless of whether or not their subscriptions 

match the events. Thus clearly the AREA parameter is mandatory, i.e. semantically required by the 

announce primitive. The PUBMODE and the LIFETIME parameters remain optional due to the 

same reason discussed in the publish primitive. The best proper scenarios for the announce 

primitive are emergency notification applications, such as delivering warning, evacuation or rescue 

events to drivers in some affected urban area after a devastating earthquake.  

1.3.2.4 Implementation of the Event Broker   

Recall that we define three different modes, namely mobile, cloud and mixed, for the 

PUBMODE parameter. This means that for each event schema, there are 3 modes to transmit the 

events and subscriptions of the schema in a network. Therefore given an event schema, there are 9 

different scenarios in terms of how the events and subscriptions are transmitted respectively. For 

each of those 9 scenarios, the matching between events and subscriptions can be implemented using 

the Event Broker modules in the Cloud Interface and the Mobile Peer to Peer Interface. Next we 

describe how the Event Broker module is implemented in each of the two interfaces. 

The most straightforward way to implement the Event Broker in the Cloud Interface is to 

implement it in a centralized approach, like the Event Schema Registry does. However, event and 

subscription submission (including subscription updates and cancelations) rate is much higher than 

event schema registering rate for a large scale heterogeneous network. Thus the single server 

implementation is not reliable or feasible. A more promising approach is to implement the Event 

Broker as a set of autonomous, interconnected distributed servers. The servers form a flat overlay 

network and forward events or/and subscriptions among themselves to make sure each event is 

matched against each active subscription in the overlay network. We employ the forwarding 
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algorithm described in [9] to implement the Event Broker in the Cloud Interface. More details about 

the applied forwarding algorithm can be found in [9].  

There are many alternatives to implement the Event Broker module in the Mobile Peer to Peer 

Interface. For example, we can define that each node stores its subscriptions locally and only 

publishes events among peers. Even for this simple strategy, many rules, such as which peers can 

be brokers of which events and when the brokers retransmit received events, needs to be specified 

in order to optimize the system performance in terms of message overhead, delivery ratio, etc. 

Proposing a comprehensive and optimized implementation of the Event Broker in the Mobile Peer 

to Peer Interface is beyond the scope of this document and thus we do not discuss it further. 

1.4 Related Work 

The Event Schema Registry in IIP is related to work on service discovery. Currently existing 

service discovery protocols generally fall into two categories in terms of the way in which service 

information is managed. One approach is to broadcast service information through the entire 

network either using a gossip algorithm or maintaining a multicast tree. Salutation [9] by IBM and 

Universal Plug and Play (UPnP) [12] by Microsoft are representative members of this category. 

We believe such an approach suffers from a high cost for broadcasting or tree construction and 

maintenance in highly mobile networks, and thus is not suitable for IIP. An alternative approach 

taken by other protocols such as Universal Description and Discovery and Integration (UDDI) [10] 

for web services and Jini [11] is to maintain a central directory to store service information. The 

Event Schema Registry component of IIP also takes a central-directory approach, and can indeed 

use a web service system for implementation.   

The pub/sub literature is also relevant to IIP. There are basically two types of publish/subscribe 

systems, namely topic based and content based [56]. In topic based systems, users express interests 

by simply joining a group defined by a central subject. Whereas content based systems provide 
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much more flexibility in expressing users’ interests by allowing users to specify predicates over a 

set of attributes. As a result, arbitrary queries over the events content can be easily posed by users.  

The pub/sub system in IIP employs a content-based approach. In contrast to traditional pub/sub 

systems [43, 103, 128] which are cloud-based, IIP supports an arbitrary combination of mobile 

peer-to-peer and cloud publications and subscriptions. In terms of purely mobile P2P 

implementations, a few pub/sub systems have been proposed. For example, [81] proposes a 

publish/subscribe implementation for MANETs. In the implementation, subscriptions are only 

deployed locally due to the fact that the paths utilized by the subscription forwarding strategy in 

server overlay networks quickly become stale in a mobile environment. When receiving an event 

from a neighbor, a mobile node matches the event to its own subscriptions and broadcasts the event, 

as long as it is still valid given the current location and time. Triantafillou and Aekaterinidis [108] 

present a different approach to support P2P applications via building a pub/sub middleware over a 

structured P2P network such as Chord [106]. But that solution is again restricted to a static P2P 

network. 

1.5 Discussion 

The development of ITS applications imposes the need for a platform which provides generic 

data management and communication functionalities. To meet the need, we proposed IIP as a way 

to facilitate the development of a variety of prospective ITS applications. We outlined the 

architecture of IIP and discussed the implementation of its two major components, namely, service 

discovery and publish/subscribe.   

Several open issues require further exploration. Here we do not propose any specific mobile 

peer to peer protocol for the Communication Layer of the IIP Client Component. Although some 

existing research is concerned with this issue [56, 98], there still remain many interesting problems 

when attempting to apply those approaches to the ITS environment. For instance, in order to 
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expedite the information dissemination in the mobile P2P network, in additional to short range 

communication methods, wide area wireless networks, e.g. the cellular network, can be utilized. 

More specifically, to improve performance both publications and subscriptions can be disseminated. 

When a subscription and publication are matched at a node, since the net id of the subscriber is 

available, the event can be directly delivered to the subscriber via the cellular network. Thus, a 

subscriber may receive the event either via the mobile P2P network, or via the cellular network, 

whichever comes first.  A similar approach was taken in [116] for matching meta-data and queries 

in a vehicular network. Also, how to make the pub/sub protocol adapt to various combinations of 

applications and network conditions remains an open question. 
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Chapter 2   

Trust Management for Intelligent Transportation System 

2.1 Introduction 

In recent years, ITS (Intelligent Transportation System) has drawn increasing professional 

attention from researchers in academia and industry companies as well as official authorities, and 

has been considered the next life-changing technological revolution. The prospect of ITS promises 

a variety of applications, including safety applications, crowd-sourcing applications, entertainment 

applications, etc. Many prototypical applications [65, 66, 107] have been proposed. All of these 

proposals focus mainly on the implementation of application-specific functionalities, yet they all 

overlook a fundamental issue: namely, trust management.  

Trust is a pervasive concept used in many disciplines like sociology, economy, psychology, 

computing, etc. [61]. We consider the semantics of “trust” only in the field of distributed systems 

and networking. Specifically, in traditional online e-commerce environments such as EBay, 

Amazon, the beta reputation system [60], etc., trust management, roughly speaking, refers to the 

management of the trustworthiness of relationships among entities. For the sake of simplicity, in a 

trusted relationship in which entity A trusts entity B, we refer to A as the trustor and B as the trustee. 

In a trust management scheme for online communities, the direct consequence of a distrusted 

relationship typically is to prevent any interaction between the two involved entities from 

happening.  

In wireless networks like VANETs, ITS, etc., the concept of trust inherits its old interpretation 

from online e-commerce environments and also extends to the trust of an entity to data. For instance, 

in a crowd sourcing application, entities need to make trust decisions on received messages. We 

refer to the former interpretation of trust as entity trust and the latter interpretation as data trust. 
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One way to implement data trust management is to employ entity data trust management. As 

shown in Figure 3, data trust management can be layered above entity trust management. It utilizes 

entity trust values generated by the entity trust management layer to output data trust values. Data 

trust values are converted to binary decisions via comparing to a trust threshold value. Those 

decisions are in turn fed back to the entity trust management layer for updating entity trust values. 

To illustrate the above relations, consider a crowd sourcing application as an example. When an 

entity needs to evaluate the authenticity of a received message, it can use its trust value for the 

message’s generator as the ground for the calculation of the trust value for the message. The 

resulted trust value is then converted to a trust decision. Such a decision will later be used to update 

the entity’s trust value for the message’s generator. Note that the dependence on entity trust 

management is not indispensable for data trust management implementations. Some proposed data 

management schemes [53, 95] only exploits the fact that information is often redundant in ITS to 

deal with data trust issues.  

 

Figure 3  Potential dependence between entity and data trust management  

2.2 Concepts of Trust Management 

In this section, we examine the unique properties of trust in the context of Intelligent 

Transportation System.  

Entity Trust Management

Data Trust Management

Threshold

trust values  for the data

reputation  of   an entity

binary trust decision
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Trust is partially transitive. On one hand, transitiveness implies that trust can be acquired either 

directly or indirectly. Direct trust is always earned via individual experiences. Indirect trust is 

earned via referrals, opinions, etc. On another hand, partial transitiveness implies that indirect trust 

often comes with special constraints, e.g. a maximum referral hop limit. It is desirable for a trust 

management scheme to take both direct and indirect trust into consideration, though it may assign 

different weights to them. 

Trust is both static and dynamic. Static trust means that the value of trust does not change over 

time. Identity-based trust is typical static trust. Here the identity refers to information regarding an 

entity’s social role and status as well as its relationship with other entities. For instances of identity-

based trust, one can consider following two examples: Without any previous interactions, a private 

passenger car is reasonable to trust a police patrol car. Likewise, a truck trusts the leader of its fleet, 

which consists of the same type of trucks from the same company. Dynamic trust means that the 

value of trust changes over time. For example, interaction-based trust is dynamic.  

Trust is situation-dependent. For example, an entity may adapt its threshold for a trusted 

decision, according to situation. In general, the threshold is supposed to be set higher in situations 

where a trust decision matters more, e.g. in safety applications. The threshold may also be adapted 

to the security level of the system [48]. For instance, an entity would have a lower threshold in a 

system with sophisticated cryptography than in one without cryptography. 

2.2.1 Trust Metrics 

While properties of trust often tell how trust can be measured, trust metrics tell what to be 

measured for evaluating trust. In ITS applications, a trust metric is often some character of an entity, 

e.g. honesty in message generation. Or it is some capability of an entity, e.g. the discernment 

capability for distinguishing between truthful and false messages, the capability for providing 

reliable timely and integral message delivery [71], etc. Here trust metrics are actually all entity trust 
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metrics. That is because for data we only consider the authenticity of it. Thus, there is no need for 

various metrics for data trust. 

Trust metrics inherit the properties of trust. To understand this, we use an example trust metric 

to show how it can be utilized in trust management. Consider honesty in message generation as a 

specific trust metric. The value of this metric can be determined statically, i.e. initialized based on 

the role of an entity. E.g. a policeman possesses a higher static trust value in honesty than a regular 

driver. The value can also be dynamically changed over interactions. Besides, the value can be 

gained indirectly. Say entity A may get the value of trust in honesty of entity B from entity C. 

Finally, the trust threshold related to this metric may be adapted to situation as well. For example, 

suppose an entity decides to distrust any messages originated from entities with a trust value in 

honesty lower than a threshold. Such a threshold can be set higher in a dense network where 

information is abundant and thus the entity can be more selective in messages. In contrast the 

threshold should be lower in a sparse network where information is rare and the entity has to be 

more open to messages. 

2.2.2 Potential Attacks 

There are some common attacks [30] deliberately designed to sabotage trust management 

schemes. Those attacks include simple false information injection attacks, on-and-off attacks, Sybil 

attacks and collusion attacks. A simple false information injection attack happens when a malicious 

entity generates false information on purpose. An on-and-off attack happens when a malign entity 

behaves well or badly alternatively to dodge the detection. A Sybil attack [39] happens when a 

malign entity uses a large number of fake identities to beat the redundancy check of the network. 

For instance, an entity may ask opinions for a message from multiple different entities. A Sybil 

entity with many pseudonyms, i.e. bogus entities, can fake all those opinions using different 

pseudonyms and consequently fool the entity that asks for help.  A collusion attack happens when 



20 
 

 

a group of well-coordinated malign entities contrive a conspiracy. We shall show how those attacks 

are handled when review related works of trust management in the next section.    

Note that we consider traditional security problems like access controls, cryptography, etc. as 

a separate type of issues from the entity and data trust management problems investigated here. 

The difference between those two types of problems is first described in [92], which refers 

traditional security issues as hard security and trust management as soft security. Thus, traditional 

information security hazards such as modification of messages, denial of the generation of 

messages, etc. are not considered as attacks specially targeting trust management schemes. Those 

traditional hazards are typically prevented by employing asymmetric key cryptography. For 

example, [29, 53, 88, 111] use digital signatures to prevent malicious entities from modifying 

messages without detection. However it remains a separate important research direction to consider 

the traditional security issues in an ITS environment. For instance how to efficiently manage the 

public/private key pairs without revealing the privacy of entities in ITS environment needs to be 

studied. As an example, [94] suggests using anonymous key pairs to preserve sensitive information 

regarding the entity, such as owner, identity, routine, etc. [64] proposes an approach to deploy 

anonymous key pairs in VANETs. 

2.3Survey on Trust Management for ITS 

In this section, we provide our critical reviews of the existing works on trust management for 

ITS. Those works are organized based on the way in which the trust management is implemented.  

For the purpose of validating a received message, both [38] and [29] consider a technique 

named opinion piggybacking. Opinion piggybacking means that each forwarding entity of a 

message appends their own opinion to the message and decides whether or not trust the message 

based on the attached opinions.  
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Specifically, in [38] each such opinion of a forwarding entity is a triple tuple including a 

continuous trust value  𝑜𝑣𝑎𝑙 representing its trust value for the message, a discrete trust level s

{1,2,3} representing its trust value for the message’s generator and its ID. The paper provides 

forwarding entities an algorithm calculating the values of their own 𝑜𝑣𝑎𝑙 and 𝑠 for a message by 

considering all the previous opinions attached with the message combined with locally stored trust 

values for the corresponding opinion providers. Dynamism is brought into the trust decision 

threshold by taking the spatial distance between locations of the message source entity and the 

deciding entity, as well as, the deciding entity’s familiarity of the area into account. However, [38] 

provides little information regarding how trust values for entities get initialized and updated. 

In contrast to [38], in [29] each opinion consists of a binary decision for the message, i.e. either 

trusted or not, a confidence value for the decision and the signature of opinion generator. 

Specifically, the paper adapts a clustering based routing protocol to propagate messages. The 

cluster-head entity calculates the trust value for the message by considering both the confidence of 

each attached opinion and its personal trust value for the opinion’s corresponding generator. The 

cluster-head then makes a decision based on the calculation result to determine whether or not to 

relay the message. Consequently, only trusted messages get disseminated among different clusters.  

An entity updates its trust values for other entities according to the following rules. Entity 𝑋’s 

trust for entity 𝑌 is positively enforced if 𝑌’s opinion on a message leads to a correct decision; 

otherwise 𝑋’s trust value for 𝑌 is reduced.  The paper does not elaborate on how an entity gets to 

verify the correctness of a trust decision. An entity can absolutely discover the authenticity of the 

event reported in the message by direct observations. For example, an entity which has trusted a 

message reporting the clear of a road maintenance on its way to the destination would verify the 

decision is correct when it passes by the site. However, it is obvious that sometimes an entity has 

no way to witness an event reported by a once trusted message. For instance, an entity which has 

trusted a message reporting a jam on its future trajectory and thus decided to reroute, is unable to 
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verify the truth via direct observations. Thus, it is reasonable for an entity to confirm the 

authenticity of a reported event, if it receives a similar message from a highly trusted entity too. 

The threshold for the “high trustworthiness” can be customized by individual entities.  

[29] proposes some methods for preventing on-and-off attacks. It suggests to defend such 

attacks by utilizing the “hard to win but easy to lose” principle. This principle imitates a practical 

norm in the real social life, namely, that trust value for an entity is difficult to build up but easy to 

tear down. Consequently, entities have to behave very discreetly all the time in order to keep their 

earned credits. A similar kind of attack, i.e. betrayal attacks where malicious entities first act 

normally to build up their trustworthiness but then abruptly start malign behaviors, can also be 

thwarted by following the same principle. Specifically, the scheme proposed in [5] employs a 

forgetting factor which allows trust values earned via interactions to decay over time. It also uses a 

larger value for the decrease factor than that for the increase factor. As a result, trust values for 

entities always gains slowly and loses fast over interactions.  

One unique problem with the approach in [29] is regarding the confidence value of the opinion. 

Although the confidence value helps model the uncertainty of the opinion, there is no good 

guidance for entities to accurately estimate such a value. If unfortunately the estimation goes wild, 

the poorly calculated confidence value is going to damage the entity’s trustworthiness badly in the 

feedback stage. In addition, the scheme is bonded with a cluster-based routing scheme. Therefore 

its applicability narrows dramatically. 

Both schemes described in [29, 38] suffer from several other problems in the ITS environment. 

First is that a forwarding entity of a message is likely to have no previous interaction with the 

message’s generator and have no ground to provide an opinion to the message. One solution is to 

ask the message generator embed its encrypted role into the message. Then forwarding entities can 

use static role-based trust value as the initial ground for opinion giving.  
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Second is that they only use a single trust value to measure entity trust. However, it is important 

for them to make a distinction between trust in honesty and trust in discernment. Trust in honesty 

measures the trustor’s faith in the belief that the trustee will not produce falsified information 

whereas trust in discernment measures the trustor’s faith in the trustee’s ability of making correct 

trust decisions on messages. The difference between these two metrics reflects a similar situation 

in our social network: someone may be so honest that s/he never tells a lie however s/he may be 

also so inexperienced that s/he will be easily fooled by a lie. Likewise, entity X, with a high trust 

value in honesty but a low trust value in discernment implies that it barely generates false 

information but keeps making wrong decisions on messages due to reasons such as lack of 

interactions or surrounded by colluding entities. In such a case, another entity Y is expected to 

believe data originated from X but ignore X’s trust opinions for other messages. In this case, if two 

trust metrics are mixed and represented by a single value, Y is likely either over-estimate the 

credibility of X’s opinions or underestimate the reliability of data generated by X. 

The last problem is most crucial. To show what the problem is, consider a scenario where a 

malicious entity 𝑂 broadcasts false messages in one neighborhood for a while, flees to another far 

away area, say 5 miles from the old neighborhood, and starts to broadcast false messages again. It 

is likely that in the new area, there are few entities which have previous interactions with O and 

thus have no idea of O’s past bad behaviors. Consequently, the forwarding entities of falsified 

messages generated by O in the new area may make incorrect trust decisions in the beginning phase. 

Those entities may discover the evil of O after a period of time but by then O may have far gone 

again.  

2.3.1 A Novel Trust Management Scheme  

The last problem described above has its root in the fact that the proposed trust management 

schemes are fully decentralized and there is a lack of a central server which records the 
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trustworthiness of entities. This inspires us a novel idea of implementing trust management in a 

semi-centralized scheme.  

Next we briefly describe how the scheme will work. The scheme assumes the existence of a 

central server, whose public key is globally known. Each entity registers with the server. The server 

stores reputation values of entities. Each entity can log in the server to file compliant or praise about 

another entity, of which the corresponding reputation value is updated by the server according to 

certain rules. Each entity is required to log in the server every Tru time in order to download a 

certificate encrypted by the private key of the server. The certificate contains a statement 

associating the identity and the latest reputation value stored in the server of the entity. When an 

entity broadcasts a message, it is required to embed the certificate into the message. Consequently, 

any entity receives the message can decrypt the certificate using the server’s public key and get a 

rough idea about the trustworthiness of the message’s generator via the embed reputation. In 

addition, an entity is allowed to inquire the server about the reputation value of another entity any 

time if it suspects the reputation value in the received certificate is out of date. This means will 

efficiently prevent the aforementioned perpetrate-run-perpetrate type of attacks.  

There are clearly some details need to be determined for the above scheme. For example, what 

is the best value for Tru such that a good balance is stroke between the freshness of the reputation 

value and the efficiency of communication cost? Likewise, what are   the rules of the server to 

update reputation value given the reported complain and praise? We leave those questions as future 

work and are going to implement this scheme in a forthcoming paper. 

2.3.2 Opinion Inquiring 

Akin to the opinion piggybacking approach, Minhas et al. [111] proposes to validate messages 

via considering other entities’ opinions too. However, unlike in [29, 38] where opinions are bonded 

with the message forwarding protocol and consequently causes an entity to lose the option to choose 

opinion providers, the paper allows an entity actively to ask for opinions from entities picked by 
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itself. When an entity receives a message announcing an event, it asks opinions from N other most 

trusted entities based on the trust values output by the lower layer entity trust management, of which 

the details are briefly summarized below. 

Similar to the approach in [29], the entity trust consists of role-based trust and interactions-

based trust. A globally trusted certificate authority (CA) issues an encrypted certificate to each 

entity which binds the role and the public key of the entity. By requiring communicating parties to 

exchange certificates before interactions, role masquerading is efficiently prevented. Interaction-

based trust is learned by an entity via past interactions. The principle of the learning process is the 

same as that in [29], namely “good” interactions get rewarded and “bad” interactions get punished. 

Each entity ranks the trustworthiness of other entities in a major order of role-based trust and a 

minor order of interaction-based trust.  

Once having all the opinions for a received message, the entity uses an equation to calculate 

the trust value for the message. Within that calculation, each opinion is assigned with different 

weight in relation to factors including: (i), local role-based trust for the opinion provider; (ii), local 

interaction-based trust for the opinion provider; (iii), temporal closeness between the time when 

the event takes place and the time when the opinion is generated; (iv), spatial closeness between 

the location where the event takes place and the location where the opinion is generated. The output 

trust value is finally converted to a decision. 

There is one unique problem with this opinion inquiring based scheme. Since the selection of 

entities for which opinions are asked is based on trust value rather than spatial closeness, the scheme 

may suffers a high communication cost and time delay, if unfortunately, the selected entities are 

far away. 

2.3.3 Passive Majority Consensus 

Patwardhan et al. [88] utilizes the fact that information is often redundant in ITS applications 

to validate a message.  The paper assumes a network where anchored resources, such as parking 
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meters and roadside sensors, perpetually provide trustworthy data to surrounding entities. A 

message can be accepted, i.e. validated, by an entity via either using a majority consensus or directly 

communicating with the anchored resource which produces the message. A majority consensus at 

an entity O will validate a message M if (i) at the time of consensus, O has received at least P other 

messages which report the same event as message M does, all from different entities (ii) message 

M along with the other P messages consist of the majority opinion regarding the event, where P is 

a system parameter.  

The proposed scheme takes a passive approach to wait for messages from other entities in 

contrast to the scheme in [111] which proactively asks for opinions from other entities. The 

drawback of the passive approach is that an entity may wait for a long time or even forever to 

receive enough messages of the same event required by the majority consensus in a sparse network. 

Thus, it is natural to consider a neutral approach combining the merits of the active and passive 

approaches. For example, adapt the state of activity of the entity to the network density and consider 

both trust value and geographical closeness as metrics when choosing entities for opinions. In 

addition, these two schemes also suffer from the same three problems of schemes in [29, 38] 

described before.  

2.3.4Data Fusion Dependent 

By far all discussed trust management schemes employ some variant of the majority scheme to 

integrate complementary evidences, i.e. opinions or messages of the same event for making a trust 

decision. In contrast, Raya et al. [95] introduces a trust management scheme emphasizing on 

exploiting different kinds of data fusion techniques for the purpose of complementary evidence 

integration. Specifically, a trust metric is used to measure an entity’s vulnerability to attacks. The 

value of this metric is assigned statically. For instance, better equipped and closely monitored 

entities have higher static trust values than regular entities. Given all the available evidences of a 

particular event, the entity takes all the messages of the event and their corresponding weights to 
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output the trust value for the event by using certain data fusion technique. Similar to the approach 

in [111], the weight of each message is related to both the static trust value for the message’s 

generator as well as time and distance closeness between the reported event and the message’s 

generator. The data fusion techniques include voting, Bayesian inference and Dempster-Shafer 

Theory of evidence. Similar to the approach in [88], this scheme suffers in sparse network where 

sufficient evidence is not likely available for an event. 

2.3.5 Position Verification  

Golle et al. [53] also presents a data trust management scheme for VANETs without the use of 

any entity trust metric. The authors assume that each entity maintains a model of the VANET against 

which any incoming message will be validated. In its core, a model of the VANET is a set of 

observations about the VANET already known to an entity. All messages consistent with the 

entity’s model of the VANET are validated; otherwise, the entity attempts to eliminate the 

inconsistency by ranking all the possible explanations and picking the simplest explanation.  

The paper does not provide a general algorithm for validating data against the model of the 

VANET but uses examples to demonstrate the idea. For instance, the paper shows how the approach 

is used for prevent Sybil attacks. Specifically, drivers are supposed to be capable of broadcasting 

position statements pertaining to themselves and others. For example, driver A may broadcast a 

message stating “I am at location L1 and I spot a police car at location L2”. The paper assumes that 

broadcasted position statements are immediately available to entities network wide. Now suppose 

in its model of the VANET, entity A has identified that neighbor B and C are indeed distinct entities. 

Further suppose that both B and C state that identity X and identity Y, which are far away from A, 

locate at the same position. However, at the same time X and Y themselves state they are at different 

positions. Clearly there is a conflict among statements received by A. There are two possible 

explanations which can resolve the conflict, namely (i) B and C collude to lie about X and Y (ii) X 

or Y is faked by a Sybil entity. A makes the choice by utilizing the so called adversarial parsimony 
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principle, which essentially picks the explanation involving fewest malicious entities. Thus, in this 

case, the second explanation, i.e. the potential Sybil attack is detected by entity A.                   

The problem of this approach is that it is not practical for each vehicle building and maintaining 

a model of the VANET in real time, since the paper assumes that any broadcasted statement made 

by an entity is instantly universally available to all other entities, i.e. ignoring the propagation time 

of messages. Besides, since Sybil attacks requires the lack of a central trusted authority such as a 

CA which provides identity authentication service, thus, the above approach is not necessary for 

ITS as entities may get certificates from trusted infrastructures, e.g. gas stations, parking lots or 

dedicated roadside facilities [114] to authenticate themselves. However, implementation level 

details for the approach such as which infrastructure are considered to be trusted, how certifications 

are managed, etc. are needed to be thought thoroughly. 

2.3.6 Collusion Attacks Prevention 

Few attempts have been done in preventing collusion attacks. Some existing trust management 

schemes for ITS are considered to have certain defense ability against collusion attacks of a 

particular form. For instance, the scheme proposed in [53] can prevent a special kind of collusion 

attack, i.e. position spoofing by a group of malicious entities. However, because of the nature of 

the adversarial parsimony principle, the scheme only works when even the simplest explanation 

includes a collusion attack. Trust management systems described in [29, 38] are also considered to 

be capable of absorbing colluded false message injection attacks to certain degree. Nevertheless 

the strength of such a capability is contingent upon factors like network density, complexity of the 

collusion, etc. In short, the principles of defending collusion attacks in general as well as concrete 

methods for preventing application-specific collusion attacks still wait to be further studied.  
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2.4 Discussion 

Trust management is a crucial aspect for ITS applications, and yet remains an open problem. 

Existing works on trust management for ITS aim at different kinds of sub-problems. Unfortunately, 

there is a lack of classification and comparison of these works against a uniform backdrop. For this 

purpose, we present a survey on trust management for ITS. Specifically, our survey describes the 

properties of trust, trust metrics and potential attacks against trust management schemes. Existing 

related works are carefully reviewed and compared. We also contribute a novel idea of 

implementing trust management in a semi-centralized fashion. Our work is an important step 

toward building an efficient, comprehensive and reliable trust management scheme for ITS.
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Chapter 3   

Real-time Taxi-sharing with Smart Phones 

3.1 Introduction 

3.1.1 Background 

Many transportation related problems, such as traffic congestions, difficult to find available 

parking spaces, hard to hail a taxi during rush hours, have been bringing inconvenience to 

average people’s daily life for a long time. In the past, different methods have been mainly 

proposed to tackle these problems separately. In contrast, we aim to find a cure-all which 

solves or at least alleviates all these problems. One major reason accounts for the occurrence of 

these problems is that the ridership of vehicles is under-exploited as a resource. Thus, we 

study ridesharing as a promising means to improve the utilization of vehicle ridership and 

thus serve the purpose of fixing relevant transportation problems. 

Ridesharing , at a high level, is defined as the practice that travelers share their partial or entire 

trips in a vehicle. Given this definition, we can immediately see three aspects that feature the 

characteristics of ridesharing, i.e. the type of vehicles used, the relationship among riders who share 

a trip, and the monetary relationship between riders and the driver of the vehicle. A driver is the 

person who drives the vehicle that provides the ride opportunities and a rider is a person who 

consumes a passenger seat of the vehicle.  

Figure 4 further illustrates these aspects of ridesharing. Vehicles used for ridesharing can be 

cars and vans, and the corresponding ridesharing is conventionally referred to as carpool and 

vanpool, respectively. The relationship among riders who share a trip can be family members, 

acquaintances (e.g. colleagues), and strangers, and the corresponding ridesharing can be referred 

to as Fampool, Co-worker Carpool, Casual Carpool [28],  respectively. Ridesharing can be 
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conducted for non-profit purposes (e.g. commute ridesharing) and for-profit purposes. For non-

profit ridesharing, passengers may or may not pay the driver for the shared trips. Drivers may still 

have incentives to provide free rides even the passengers do not compensate them. These incentives 

often are provided by ridesharing-encouraging policies made by government authorities, such as 

the use of High-Occupancy Vehicle (HOV) lanes, toll reduction.  

 

Figure 4 Elements of ridesharing 

In other literature, ridesharing is also referred as to carpool, or car sharing. In this study, we 

distinguish these terms. Carpool is considered to be equivalent to non-profit ridesharing. Car 

sharing refers to the practice of mid-term or long-term renting or leasing cars. This word is 

popularized due to the emerging and fast growing of new car rental companies, notably Zipcar.  

3.1.2 Motivation 

Transportation problems, such as traffic jams, find parking slots, hard to hail a taxi during rush 

hours, are long-existing headaches for cities, especially those with a large population. These 

problems affect the environment, the economy, and more directly average people’s daily lives by 

cost them a large chuck of time each day. For example, on average drivers spend 8.1 minutes in 

finding a curbside parking slot [102]. 

 During the past, different methods have been mainly proposed to tackle these problems 

separately. For examples, extending the road network is one common approach to tackle traffic 

jams; sensors which detect the availability of parking spaces [4] are installed to help drivers find 

parking slots more quickly. However, those solutions often require additional construction or new 

equipment added to the existing infrastructures and thus are often costly. Also, their benefits are 

Driver
Vehicle Rider

For-Profit/Non-Profit
Car/Van

Family members/
Colleagues/Strangers
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usually limited to the specific corresponding problem. Though for some case, solution to one 

problem has positive effects on another, e.g. reducing searching time for parking slots help ease 

traffic jams [17].  

In contrast, we aim to find a cure-all which is instrumental for solving all the problems at once. 

One major reason which accounts for the occurrence of the above transportation problems is that 

the passenger seats of vehicles is under-exploited as a resource. Thus, we study ridesharing as a 

promising means to improve the utilization of vehicle ridership and reduce the number of cars on 

the road. On one hand, ridesharing is a more cost-effective transport mode than private transport. 

On the other hand, it is also more flexible compared to public transport. First, ridesharing, e.g. taxi 

ridesharing, still has the potential to satisfy door-to-door travel needs of individuals; whereas public 

transport such as buses, trains typical only connect a few designated locations. Second, ridesharing 

is also more temporally flexible than public transport as the schedule of a shared trip can be the 

result of negotiation of participants instead of being fixed. For these reasons, ridesharing is an 

important transport mode complementary to the existing private and public transport, which is 

capable of satisfying travel needs while being cost-effective. We are going to model a generic 

ridesharing problem and study the benefit of ridesharing via both theoretical analysis and 

experiments. 

3.1.3 Technical Challenge 

Taxi is an important transportation mode between public and private transportations, delivering 

millions of passengers to different locations in urban areas. However, taxi demands are usually 

much higher than the number of taxis in peak hours of major cities, resulting in that many people 

spend a long time on roadsides before getting a taxi. Increasing the number of taxis seems an 

obvious solution. But it brings some negative effects, e.g., causing additional traffic on the road 

surface and more energy consumption, and decreasing taxi driver’s income (considering that 

demands of taxis would be lower than number of taxis during off–peak hours). 
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Unfortunately, real-time taxi-sharing has not been well explored, though ridesharing based on 

private cars, often known as carpooling or recurring ridesharing, was studied for years to deal with 

people’s routine commutes, e.g., from home to work [19, 25]. In contrast to existing ridesharing, 

real-time taxi-sharing is more challenging because both ride requests and positions of taxis are 

highly dynamic and difficult to predict. First, passengers are often lazy to plan a taxi trip in advance, 

and usually submit a ride request shortly before the departure. Second, a taxi constantly travels on 

roads, picking up and dropping off passengers. Its destination depends on that of passengers, while 

passengers could go anywhere in a city.  

3.1.4 Contribution 

We consider real-time taxi-sharing for a large number of taxis. We placed our problem in a 

practical setting by exploiting a real city road network and the enormous historical taxi trajectory 

data. The contribution of this section is summarized as follows. 

We proposed and developed a taxi-sharing system using the mobile-cloud architecture. The 

Cloud integrates multiple important components including taxi indexing, searching, scheduling, 

and travel time estimation. Specifically, we propose a spatio-temporal indexing structure, a taxi 

searching algorithm, and a scheduling algorithm. Supported by the index, the two algorithms 

quickly serve a large number of real-time ride requests while reducing the travel distance of taxis 

compared with the case without taxi-sharing. 

We built mobile clients running on smart phones, enabling taxi riders and taxi drivers to interact 

with the Cloud and with each other. Taxis are also mobile sensors constantly probing the traffic on 

road surfaces, and therefore providing a more accurate estimation of travel time for our system.  

We performed extensive experiments to validate the effectiveness of taxi-sharing as well as the 

efficiency and scalability. According to the experimental results, the fraction of ride requests that 

get satisfied is significantly increased by 22% meanwhile riders save 5% in taxi fare via taxi-sharing 
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when the taxis are in high demand. Furthermore 2 million liter of gasoline can be saved each year 

in Beijing by taxis alone if taxi-sharing is allowed.  

3.2 Related Works 

3.2.1 Taxi Recommender and Dispatching Systems 

Quite a few recommender systems have been proposed for improving an individual taxi 

driver’s income and reducing unnecessary cruising. Based on historical taxi trajectories, Yuan and 

Zheng et al. [122, 124] proposed a system that suggests some parking places for an individual taxi 

driver towards which they can find passengers quickly and maximize the profit of the next trip. 

Similarly, Ge et. al [47] suggests a sequence of pickup points for a taxi driver. While these systems 

are only designed from the perspective of taxi drivers, our system considers the needs of both taxi 

drivers and riders. 

Taxi dispatching services [73, 100, 120] usually send a taxi close to a passenger as per the 

passenger’s call without considering taxi-sharing. Consequently, only vacant taxis need to be 

examined for each dispatch, which can be easily retrieved by answering a range query. In our case, 

each taxi that is occupied under full capacity needs to be considered. This complication introduces 

new challenges.  

3.2.2 Dial A Ride Problem (DARP) and Its Applying Heuristics  

The taxi ridesharing problem is relevant to the Dial-a-Ride Problem (DARP) [16], a.k.a. 

Vehicle Routing Problem with Time Windows [37] studied in the operation research community. 

DARP is essentially also a constraint satisfaction problem, i.e., planning schedules for vehicles, 

subject to the time constraints on pickup and delivery events. Static DARP can be viewed as the 

static single-hop non-profit ridesharing problem with additional presumptions (e.g. all vehicles are 

required to start trips and return after all trips from and to a depot location in DARP). Please see 

[33] for a more comprehensive survey on DARP.  
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DARP is NP-hard [101]. Therefore, majority efforts have been put into developing heuristics 

for the problem. Some heuristics such as genetic algorithms are also called meta-heuristics as these 

heuristics provide a general computation paradigm which is applied to solve a broad range of 

problems. For the sake of simplicity, we use heuristics to refer meta-heuristics as well. Figure 5 

shows a hierarchy of common heuristics. 

 

Figure 5 Hierarchy of meta-heuristics 

Table 1 lists some heuristics that have been applied to static Dial-A-Ride Problem (DARP) in 

the existing literature.  

Table 1 A list of heuristics applied to ridesharing problems 

Reference Meta-

heuristics/heuristics 

Formulation of Ridesharing Problem  

Constraints Optimization Objective Max # of 

Queries 

[26, 59] Tabu Search time window, 

vehicle capacity 

travel distance 295 

[21] genetic algorithms time window, 

vehicle capacity 

linear combination of 

factors such as ride time, 

waiting time, time 

window violations. 

144 

[20] simulated 

annealing 

time window objection function of 

weighted factors 

N/A 

[87] variable 

neighborhood 

search 

time window, 

vehicle capacity 

a linear combination of 

violations 

295 

[27] heuristics for graph 

assignment 

problem 

time window, 

vehicle capacity 

linear combination of # 

of served users and level 

of service (considering 

factors such as waiting 

time, riding time, etc.) of 

these users 

180 

Heuristics

Local Search
Evolutionary 
Algorithms

Tabu Search
Simulated 
Annealing

Genetic 
Algorithm

Heuristics specific to 
ridesharing problems

Greedy
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[118] inter-route 

exchanges, 

diversification 

time window, 

heterogeneous 

vehicle capacity  

linear combination of 

travel distance, travel 

time, waiting time. 

2000 

[62] set cover heuristic time window, 

vehicle capacity 

a linear combination of 

travel 

time of riders and driver 

and travel distance 

215 

 

Among all heuristics, local search is the most frequent strategy used to solve ridesharing 

problems. In this section, we briefly describe some common local search heuristics. Figure 6 shows 

the logical flow and major components of a typical local search heuristic. We will walk through 

the flow chart by using the ridesharing problem as the context. 

A solution 𝑃 of a ridesharing problem is a set cover for the given set of queries 𝑆𝑄. A neighbor 

of a set cover 𝑃, denoted  by 𝑃′, is obtained from 𝑃 by an operation called intergroup query move. 

Each intergroup query move removes a query Q from a query group 𝐺𝑖 and add it to another query 

group 𝐺𝑗 (the cost of query group 𝐺𝑖 and 𝐺𝑗 should update accordingly).  

 

Figure 6 Flow chart and major components of a meta-heuristics 

Existing works provide other definitions of the neighborhood of ridesharing solutions. For 

example, except the intergroup query move operation, [118] defines additional two operations that 

produce a neighbor: (i) remove two queries from one query group and add them to another group; 

(ii) two query groups exchange one of their queries. These two operations obviously can be 
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considered as a sequence of intergroup query move operation. However, it is not clear from the 

paper how these operations affect the performance of heuristics. 

As shown in Figure 6, a local search heuristic works by starting with an initial solution and 

iteratively transiting to one of the neighboring solutions until the termination criterion is met. One 

way to get an initial solution [118] is to apply a greedy grouping algorithm. The algorithm iterates 

the query set and deals with each query 𝑄 in the following way: 𝑄 is added to the first query 

group such that the new group of queries obtained after addition can build a ridesharing 

schedule by themselves; if 𝑄 cannot join any group, then makes a new group by 𝑄 itself. 

Transit test is the paramount component of a heuristic. The solution transits to one of its 

neighbor at each iteration. Denote by 𝑃𝑘 and 𝑃𝑘+1  the solution at iteration 𝑘  and 𝑘 + 1  

respectively. The transit test decides how 𝑃𝑘+1  is chosen given 𝑃𝑘 . If the transit test 

performs an exhaustive search, then all neighbors of 𝑃𝑘  should be considered as the 

candidate of Pk+1; otherwise, only a part of neighbors of 𝑃𝑘  need to be considered. In the 

latter case, the transit test typically chooses the first neighbor that meets certain requirement. 

As the specifics of transit test vary from heuristic to heuristic, we discuss some 

representative heuristics separately below. For the sake of description, denote by 𝑃𝑘
′  a 

neighbor of 𝑃𝑘  and ∆= 𝐶(𝑃𝑘
′  ) −  𝐶(𝑃𝑘). 

Greedy: If transit test is exhaustive, then  𝑃𝑘+1 is the first neighboring solution 𝑃𝑘
′  leading 

to a lower value of the cost function, i.e. ∆< 0. If no such solution exists, otherwise, 𝑃𝑘+1 

is the 𝑃𝑘
′  resulting the largest cost reduction among all neighbors of 𝑃𝑘 . 

Simulated Annealing: Comparing to the greedy heuristics, simulated annealing relaxes the 

acceptance condition by accepting the transition with certain probability even when the 

value of cost function increases. Specifically, if ∆< 0, then the transition to 𝑃𝑘
′  is always 

accepted. If ∆≥ 0, then the move to 𝑃𝑘
′  is accepted with probability 𝑒−

∆

𝑇 , where 𝑇  is a 

parameter called the temperature, which changes during the course of the algorithm. Usually 
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𝑇 is large in the beginning and then it decreases after each iteration until it is close to 0. 

Different cooling schemes, i.e. ways in which the value of T is decreased as iteration goes, 

can be applied. Often 𝑇  drops by multiplying a constant factor  𝑎 ∈ (0,1) . The major 

disadvantage of simulated annealing is that the algorithm may get back to the solution 

already visited recently and get trapped there. 

Tabu Search: Tabu search algorithm avoids frequently revisiting explored solutions by 

introducing a tabu list. A tabu list stores attributes of the previous few transitions. It has a 

fixed number of entries (usually between five and nine) and it is updated each time  a new 

transition is accepted in a First-In-First-Out (FIFO) way: (i) the newly transition is added 

at the top of the tabu list to avoid returning to the same solution (to avoid returning to a local 

optimum); then (ii) all other entries in the list are pushed down one position; then (iii) the 

bottom entry is deleted. The rules of transit test in tabu search heuristics is described by 

Table 2. 

Table 2 Rules for transit test in tabu search heuristics 

 Δ < 0    Δ ≥ 0 

𝑃𝑘
′  is not in the 

tabu list 

the transition to 𝑃𝑘
′  is 

always accepted 

The transition to 𝑃𝑘
′  is always rejected 

𝑃𝑘
′  is in the tabu 

list 

the transition to 𝑃𝑘
′ is 

accepted only if 𝐶(𝑃𝑘
′ ) is 

smallest so far, i.e. smaller 

than that of any solution 

has been explored 

a wait and see approach is applied: 𝑃𝑘 

remains as a candidate while the search 

continues for a neighbor which can be 

accepted immediately. If no such 

neighbor is found, transits to the best 

neighbor 𝑃𝑘
′ . 

Terminate Test: local search based heuristics often terminate when the iteration number reach 

a pre-defined threshold. 

3.2.3 Real-time Taxi-sharing 

Though real-time taxi-sharing has been studied in several previous works [51, 86, 90, 107], 
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our work demonstrates three major advantages. First, our problem definition is more realistic by 

considering three different types of constraints. Some existing works (see [51, 107]) did not 

consider time window constraints and none of these previous works modelled monetary 

constraints. Second, we analyzed the computational cost of each component of the system, 

proposing a spatio-temporal index and a taxi searching algorithm, which significantly improve the 

system efficiency. Third, simulation results presented here is more convincing as we evaluated 

our system based on the real data and at a much larger scale than previous works did. Chen et al. 

[90] reported simulation results based on 1.5K synthesized ride requests, which is already the 

largest set among these works. In contrast, the size of the ride request stream in our experiment is 

as large as 20K and these ride requests are learned from the historical trajectory data set.  

3.3 Problem Definition 

The real-time taxi-sharing problem consists of a data model, constraints, and an objective 

function. We describe each part separately below before giving the formal definition of the 

problem. 

3.3.1 Data Model 

Ride Request:  A ride request 𝑄 is associated with a timestamp 𝑄. 𝑡 indicating when 𝑄 was 

submitted, a origin point 𝑄. 𝑜, a destination point 𝑄. 𝑑, a time window 𝑄. 𝑝𝑤 defining the time 

interval when the rider wants to be picked up at the origin point, and a time window 𝑄. 𝑑𝑤 defining 

the time interval when the rider wants to be dropped off at the destination point. The early and late 

bounds of the pickup window are denoted by 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑝𝑤. 𝑙 respectively. Likewise, 𝑄. 𝑑𝑤. 𝑒 

and 𝑄. 𝑑𝑤. 𝑙 stand for that of the delivery window.  

In practice, a rider only needs to explicitly indicate 𝑄. 𝑑 and 𝑄. 𝑑𝑤. 𝑙, as most information of a 

ride request can be automatically obtained from a rider’s mobile phone, e.g., 𝑄. 𝑜 and 𝑄. 𝑡. In 
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addition, we can assume that both 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑑𝑤. 𝑒 equals to𝑄. 𝑡, and 𝑄. 𝑝𝑤. 𝑙 can be easily 

obtained by adding a fixed value, e.g. 5 minutes, to 𝑄. 𝑝𝑤. 𝑒.  

Taxi Status: A taxi status 𝑉 represents an instantaneous state of a taxicab and is characterized 

by the following fields. 

 𝑉. 𝐼𝐷 : the unique identifier of the taxicab 

 𝑉. 𝑡 : the time stamp associated with the status 

 𝑉. 𝑙 : the geographical location of the cab at 𝑉. 𝑡 

 𝑉 .s : the current schedule of 𝑉 , which is a temporally-ordered sequence of origin and 

destination points of 𝑛  ride requests 𝑄1 , 𝑄2 ,…… 𝑄𝑛  such that for every ride request 𝑄𝑖 , 

𝑖=1,…n, either 1) 𝑄𝑖. 𝑜  precedes 𝑄𝑖. 𝑑  in the sequence (referred to as the precedence rule 

thereafter), or 2) only 𝑄𝑖. 𝑑 exists in the sequence.  

 𝑉.r: the current projected route of 𝑉, which is a sequence of road network nodes calculated 

based on 𝑉. 𝑠. 

From the definition, it is clear that the schedule of a vehicle status is dynamic, i.e. changes over 

time. For example, a schedule involving 2 ride requests 𝑄1  and 𝑄2  could be 𝑄1. 𝑜 → 𝑄2. 𝑜 →

𝑄1. 𝑑 → 𝑄2. 𝑑 at a certain time. The schedule is updated to 𝑄2. 𝑜 → 𝑄1. 𝑑 → 𝑄2. 𝑑 once the taxi has 

passed point 𝑄1. 𝑜. 

3.3.2 Constraints 

The crux of the taxi-sharing problem is to dispatch taxis to ride requests, subject to certain 

constraints. We say that a taxi status 𝑉  satisfies a ride request 𝑄  or 𝑄  is satisfied by 𝑉  if the 

following constraints are met. 

 Vehicle Capacity Constraint: the number of riders that sit in the taxicab does not exceed the 

number of seats of a taxi at any time.  
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 Time Window Constraints: all riders that are assigned to 𝑉 should be able to depart from the 

origin point and arrive at the destination point during the corresponding pickup and delivery 

window, respectively.  

 Monetary Constraints: these constraints provide certain monetary incentives for both taxi 

drivers and riders. That is, a rider does not pay more than without taxi-sharing; a taxi driver 

does not earn less than without taxi-sharing; when travelling the same distance; the fare of 

existing riders decreases when a new rider joins the trip.   

3.3.3 Objective function and Problem Definition 

Since multiple taxi statues may satisfy a ride request, an objective function is usually applied to 

find the optimal taxi. A variety of objective functions have been used in the existing literature, 

where a weighted cost function combining multiple factors such as travel distance increment, travel 

time increment and passenger waiting time, is the most common [21, 26, 117, 118]. In this study, 

given a ride request, we aim to find the taxi status which satisfies the ride request with minimum 

increase in travel distance, formally defined as follows: given a fixed number of taxis traveling on 

a road network and a sequence of ride requests in ascending order of their birth time, we aim to 

serve each ride request 𝑄 in the stream by dispatching the taxi which satisfies 𝑄 with minimum 

increase in travel distance on the road network.  

This is obviously a greedy strategy and it does not guarantee that the total travel distance of all 

taxis for all ride requests is minimized. However, we still opt for this definition due to two major 

reasons. First, the real-time taxi-sharing problem inherently resembles a greedy problem. In 

practice, taxi riders usually expect that their requests can be served shortly after the submission. 

Given the rigid real-time context, the taxi-sharing system only has information of currently 

available ride requests and thus can hardly make optimized schedules based on a global scope, i.e. 

over a long time span. Second, the problem of minimizing the total travel distance of all taxis for 

the complete ride request stream is NP-complete. We prove this statement as follows. The problem 
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of optimizing travel distance for all taxis for the whole query stream, denoted by Total Distance 

Optimization Taxi Ridesharing Problem (TDOTRP), can be formalized as the following decision 

problem: given a stream of queries 𝑆𝑄 , a start time 𝑡𝑠 (𝑡𝑠 is the smallest value among the birth time 

of any query in 𝑆𝑄) and a set of taxi statuses 𝑆𝑉  at 𝑡𝑠 , a road network 𝑅𝑁 in which each road 

segment is associated with a speed limit, a number 𝑃 ∈ [0,100] and a number 𝐷 ≥  0, plan a 

schedule for each taxi such that the total travel distance of all taxis is no larger than 𝐷 and the 

fraction of satisfied queries is at least 𝑃 precent. The TDOTRP is NP-complete because we can 

prove that it is a generalization of the Travelling Salesman Problem with Time Window (TSPTW), 

which has already been proved to be NP-complete. The input of a TSPTW instance includes a start 

time 𝑡0 , 𝑁 vertices {1, 2,..., n} in which vertex 1 is the depot vertex, the pair-wise distances 

between vertices and a number 𝐷′ ≥ 0. Each vertex 𝑖 is also associated with a time window 𝑖. 𝑤 =

< 𝑒𝑖, 𝑙𝑖 >, where 𝑙𝑖  ≥  𝑒𝑖  ≥  𝑡0 for all 𝑖 = 1, . . . , 𝑛. The question is to find out whether or not there 

is a cycle route of distance no larger than 𝐷′ such that a salesman can leave the depot, i.e. vertex 1 

at 𝑡0, visit each vertex 𝑖 (𝑖 = 1, 2, . . . , 𝑛) once within their corresponding time window and return 

to the depot.  

An instance of the TDOTRP ITDOTRP can be constructed from  an instance of the TSPTW problem 

ITSPTW by: (i) create the road network of ITDOTRP using the vertex pair-wise distance of ITSPTW; (ii) 

place one vacant taxi at vertex 1 and let the start time 𝑡𝑠 = 𝑡0 ; (iii) create a query 𝑄𝑖 for each vertex 

𝑖  such that 𝑄𝑖 . 𝑜 = 𝑄𝑖 . 𝑑 = 𝑖 , and 𝑄𝑖 . 𝑤𝑝 = 𝑄𝑖 . 𝑤𝑑 = 𝑖. 𝑤 ,  𝑄𝑖 . 𝑡 = 𝑡0  for 𝑖 = 1, … , 𝑛 ; In other 

words, every vertex 𝑖 (𝑖 = 1, . . . , 𝑛) of ITSPTW is considered as a dummy query of which the pickup 

point (time window) coincides the delivery point (time window) and the query is known a priori; 

(iv) let 𝑃=100, which means ITDOTRP needs to satisfy all the queries, and 𝐷 = 𝐷’.  

The above construction completes the proof that TDOTRP is a generalization of TSPTW. Since 

TDOTRP is clearly in NP, therefore, we have proved that TDOTRP is NP-complete.□ 
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3.4 System Architecture 

 

Figure 7 The architecture of the real-time taxi-sharing system 

The architecture of our taxi-sharing system is presented in Figure 7. The Cloud consists of 

multiple servers for different purposes and a monitor for administers to oversee the running of the 

system (denoted as the red broken arrow (d)). Taxi drivers and riders use the same smart phone 

App to interact with the system, but provided with different user interfaces by choosing different 

roles, as shown in Figure 8 (a).  

As shown by the red broken arrow (a), a taxi automatically reports its location to the Cloud via 

the mobile App when (i) the taxi establishes the connection with the system, or (ii) a rider gets on 

and off a taxi, or (iii) at a frequency (e.g., every 20 seconds) while a taxi is connected to the system. 

We partition a city into disjoint cells and maintain a dynamic spatio-temporal index between taxis 

and cells in the indexing server, depicted as the broken arrow (b). Additionally, we employ the T-

Drive technique (see [121, 122]) using the GPS data of taxis stored in the indexing server to 

estimate the travel time of a route, denoted as the broken arrow (c). 

Denoted by the solid blue arrow ①, a rider submits a new ride request 𝑄 to the Communication 

Server. Figure 8 (b) shows the corresponding interface on a rider’s smart phone where the blue pin 
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stands for the current location of the rider. All incoming ride requests of the system are streamed 

into a queue and then processed according to the first-come-first-serve principle. For each ride 

request 𝑄, the communication server sends it to the Indexing Server to search for candidate taxis 

𝑆𝑉 that are likely to satisfy 𝑄, depicted as the blue arrow ②. Using the maintained spatio-temporal 

index and the travel time of routes from the Travel Time Estimation  

Server (as shown by the blue arrow ③), the indexing server returns 𝑆𝑉 to the communication 

server, denoted by the blue arrow ④.  

Represented by the blue arrow ⑤, the communication server sends ride request 𝑄  and the 

received candidate taxi set 𝑆𝑉  to the Scheduling Server Cluster. The scheduling cluster checks 

whether each taxi in 𝑆𝑉 can satisfy 𝑄 in parallel, and returns the qualified taxi status that results in 

minimum increase in travel distance and a detailed schedule, shown as arrow ⑦. The travel time 

estimation server also needs to be accessed in this process (arrow ⑥).  

Figure 8 Screenshots of the mobile client for riders 

 Each rider 𝑅 who has been already assigned to the taxi will be enquired whether they would like 

to accept the join of the new rider, as depicted by blue arrow ⑧. The information, such as the 

estimated fare saving and travel time delay due to 𝑄’s join, will be displayed on their smart phones 

shown in Figure 8 (c). Rider 𝑅 accepts the route change if she thinks the fare saving is worth the 

travel time delay. Otherwise, she can veto the route change by clicking the “Reject” button. The 

system remembers the rider’s choice, automatically rejecting a route change in future if the ratio of 
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the fare saving to the travel time delay is smaller than the largest value the rider has ever rejected. 

Thus, a taxi passenger will not be bothered often. 

After all the rider 𝑅 accepted the route change, the new rider of 𝑄 gets a confirmation on her 

smart phone, as illustrated in Figure 8 (d). The confirmation informs the new rider the taxi ID, 

estimated pickup time and fare, the scheduled route, and a unique reservation code. The new 

schedule and the same reservation code are sent to the driver’s phone at the same time. The 

reservation code will be used to build a connection between the phones of the new rider and the 

taxi driver when the new rider gets on the taxi. On the driver side, the smart phone displays a taxi’s 

schedule, e.g., the next pickup and delivery points as well as the route, as illustrated in Figure 9. 

 

Figure 9 Screenshot of the mobile client for the driver 

When a rider’s trip is completed, the rider’s APP will show the exact information, such as the 

actual fare and travel time, as illustrated in Figure 8 (e). The reservation code will be used again to 

confirm the payment to the Cloud. Interactions among riders, drivers, and the Cloud during pickup 

and drop-off events are detailed later.  

The system administrator oversees the taxi-sharing system via the monitor. The monitor provides 

two views: one for ride requests, the other for taxis.  Figure 10 (a) shows a screenshot of the ride 

request view, where all requests are displayed on the map at their corresponding pickup point, with 

scheduled requests in red and unscheduled requests in blue. On the right, two boxes list the detail 

information of scheduled and unscheduled ride requests respectively. The search box allows the 

administrator to quickly locate a request on the map via a request ID. Figure 10 (b) shows a 

screenshot of the taxi view of the monitor. Each taxi is represented by a yellow taxi symbol on the 

map. The locations of these symbols on the map are updated while the corresponding taxis upload 

Next Pickup Point     :  in 1.2km Next Delivery Point      : in 6.3km, $13.2

Check Out



46 
 

 

new statuses. Similarly, the search box is used to quickly locate and track a taxi via querying a 

specific taxi ID. 

Figure 10 Screenshots of the monitor 

3.5 Taxi Searching 

The taxi searching module quickly selects a small set of candidate taxis with the help of the 

spatio-temporal index. In this section, we will first describe the index structure and then detail the 

searching algorithm. 

3.5.1 Index of Taxis 

The spatio-temporal index of taxis is built for speeding up the taxi searching process. Specifically, 

we partition the road network using a grid. (Other spatial indices such as R tree can be applied as 

well, but we envision that the high dynamics of taxis will cause prohibitive cost for maintaining 

such an index.) As shown in Figure 11 (a), within each grid cell, we choose the road network node 

which is closest to the geographical centre of the grid cell as the anchor node of the cell (represented 

by a blue dot in Figure 11 (a). The anchor node of a grid cell 𝑔𝑖 is thereafter denoted by 𝑐𝑖. We 

compute the distance, denoted by 𝑑𝑖𝑗  , and travel time, denoted by 𝑡𝑖𝑗, of the quickest path on the 

road network for each anchor node pair 𝑐𝑖 and 𝑐𝑗. The distance is only computed once while the 

travel time is calculated by the travel time estimation server once in a while (e.g. every 10 minutes). 

 

(a) Screenshot of the ride request view of the 

monitor 

 

(b) Screenshot of the taxi view of the monitor 
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Intuitively, we can use the computed travel time to quickly filter out a large number of taxis whose 

schedule is “far away” from a given ride request. The distance and travel time results are saved in 

a matrix as shown in Figure 11 (b). The matrix is thereafter referred to as the grid distance matrix.  

Supposing all the nodes of the road network in a cell fall to its anchor node, the distance between 

any two arbitrary nodes equals to the distance between two corresponding anchor nodes. In other 

words, the grid distance matrix provides an approximation of the distance between any two nodes 

of the road network. These approximated distances avoid the expensive computation cost of 

frequent quickest path calculations at the stage of taxi searching. 

 

 

Figure 11 Grid partitioned map and grid distance matrix 

As illustrated in Figure 12, each grid cell 𝑔𝑖 maintains three lists: a temporally-ordered grid cell 

list (𝑔𝑖. 𝑙𝑔
𝑡 ), a spatially-order grid cell list (𝑔𝑖 . 𝑙𝑔

𝑠), and a taxi list (𝑔𝑖. 𝑙𝑣). 𝑔𝑖 . 𝑙𝑔
𝑡  is a list of other grid 

cells sorted in ascending order of the travel time from these grid cells to 𝑔𝑖 (temporal closeness). 

Likewise, 𝑔𝑖. 𝑙𝑔
𝑑 is a list of other grid cells sorted in ascending order of the travel distance to 𝑔𝑖 

(spatial closeness). The spatial and temporal closeness between each pair of grid cells are measured 

by the values saved in the grid distance matrix shown in Figure 11 (b). For example, 𝑡2𝑖 measures 

the temporal closeness from 𝑔2 to 𝑔𝑖, and 𝑑2𝑖 measures the spatial closeness from 𝑔2 to 𝑔𝑖. The 

spatial grid cell list is only computed once. The temporal grid cell list is computed each time when 

travel times 𝑡𝑖𝑗’s are updated. It is worth mentioning that cells that are neighbours in the grid may 
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not be the neighbours in a grid cell list because the distance is measured in the road network instead 

of a free space. 

The taxi list 𝑔𝑖. 𝑙𝑣 of grid cell 𝑔𝑖 records the IDs of all taxis which are scheduled to enter 𝑔𝑖 in 

near future (typically within a temporal scope of one or two hours). Each taxi ID is also tagged with 

a timestamp 𝑡𝑎 indicating when the taxi will enter the grid cell. All taxis in the taxi list are sorted 

in ascending order of the associated timestamp 𝑡𝑎 . 𝑔𝑖. 𝑙𝑣  is updated dynamically. Specifically, taxi 

𝑉𝑗 is removed from the list when 𝑉𝑗 leaves 𝑔𝑖; taxi 𝑉𝑘 is inserted into the list when 𝑉𝑘 is newly 

scheduled to enter 𝑔𝑖. If taxis are tracked (see [115]), when new GPS records are received from 

taxis, taxi lists need to be updated. Specifically, when a new GPS record from 𝑉𝑝 is received, denote 

by 𝑔𝑞 the current cell in which 𝑉𝑝 is located, the timestamp associated with 𝑉𝑝 in the taxi list of cell 

𝑔𝑞 and cells to be passed by 𝑉𝑝 after 𝑔𝑞 need to be updated. 

 

Figure 12 Spatio-temporal index of taxis 

3.5.2 Taxi Searching Algorithms 

The proposed algorithm is a bi-directional searching process which selects grid cells and taxis 

from the origin side and the destination side of a ride request simultaneously. 

gi

g2

g7

gn

t2i

t7i

tni

Taxi2 :ta

Taxi7 :ta

Taxim :ta

earliest

g7

g2

gn'

d7i

d2i

dn'i

nearest

furthest
spatial temporal



49 
 

 

 

Figure 13 Overview of the dual-side taxi searching algorithm 

To dive into the details of the algorithm, consider the ride request illustrated in Figure 13 where 

𝑔7 and 𝑔2 are the grid cells in which 𝑄. 𝑜 and 𝑄. 𝑑 are located respectively. Squares filled with 

stripes stand for all possible cells searched by the algorithm at 𝑄. 𝑜 side. These cells are determined 

by scanning 𝑔7. 𝑙𝑔
𝑡 , the temporally-order grid cell list of 𝑔7. That is, each grid cell in 𝑔7. 𝑙𝑔

𝑡  which 

holds Eq. (3.1) is a candidate cell to be searched at the origin side. Eq. (3.1) indicates that any taxi 

currently within grid cell 𝑔𝑖 can enter 𝑔7 before the late bound of the pickup window using the 

latest travel time between the two grid cells (assuming each grid cell collapses to its anchor node). 

The red number in each such grid cell indicates its relative position in 𝑔7. 𝑙𝑔
𝑠 , the spatially-ordered 

grid list of 𝑔7.  

𝑡𝑐𝑢𝑟 + 𝑡𝑖7 ≤   𝑄. 𝑝𝑤. 𝑙 (3.1) 

Squares filled with dots indicate the candidate grid cells to be accessed by the searching 

algorithm at 𝑄. 𝑑 side. Likewise, each such grid cell 𝑔𝑗 is found by scanning 𝑔2. 𝑙𝑔
𝑡  to select all grid 

cells which holds Eq. (3.2), which indicates that any taxi currently in 𝑔𝑗 can enter the 𝑔2 before the 

late bound of the delivery window (assuming that each grid cell collapses to its anchor node). In 

this example, 𝑔6 is the only satisfying grid cell as shown by Figure 13. 
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 𝑡𝑐𝑢𝑟 + 𝑡𝑗2 ≤ 𝑄. 𝑑𝑤. 𝑙 (3.2) 

 

Figure 14 Calculation of the taxi set in the taxi searching process 

Figure 14 then illustrates the searching process step by step. The algorithm maintains a set 𝑆𝑜 

and a set 𝑆𝑑 to store the taxis selected from 𝑄. 𝑜 side and 𝑄. 𝑑 side respectively. Initially, both 𝑆𝑜 

and 𝑆𝑑 are empty. The first step in the searching is to add the taxis selected from taxi list 𝑔7. 𝑙𝑣 to 

taxi set 𝑆𝑜 as depicted in Figure 14 (a), and add the taxis selected from taxi list 𝑔2. 𝑙𝑣  to taxi set 𝑆𝑑 

as depicted by Figure 14 (b). Then the algorithm calculates the intersection of 𝑆𝑜 and 𝑆𝑑. If the 

intersection is not empty, the algorithm stops immediately and returns the intersection set. 

Otherwise, it expands the searching area by including one other grid cell at each side at a time.  

To select next cells, we use the following heuristic: for a taxi 𝑉, the closer one cell to be passed 

by 𝑉 is to 𝑔7 and the closer one cell to be passed by 𝑉 is to 𝑔2 (measured in the distance between 

the anchor nodes of the cells), the smaller 𝑉’s scheduled travel distance increases after the insertion 

of the ride request. For the purpose of minimizing increased travel distance, the next grid cell 
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included at 𝑄. 𝑜 side is always chosen as the next element in the spatially-ordered grid list 𝑔7. 𝑙𝑔
𝑠 

which holds Eq. (3.1). Similarly, the next grid cell included at 𝑄. 𝑑 side is always chosen as the 

next element in the spatially-ordered grid list 𝑔2. 𝑙𝑔
𝑠 which holds Eq. (3.2).  

In this example, since 𝑆𝑜 and 𝑆𝑑 produces an empty intersection, the algorithm expands at 𝑄. 𝑜 

side to include 𝑔3 (indicated by the broken red rectangle) and add taxis selected from 𝑔3. 𝑙𝑣  as 

depicted in Figure 14 (c). At 𝑄. 𝑑 side, the algorithm covers 𝑔6 and adds taxis as indicated in 

Figure 14 (d). Unfortunately, the intersection set of 𝑆𝑜 and 𝑆𝑑 remains empty. Consequently, the 

algorithm needs to continue expanding the searching area at both sides. 𝑔9 is then selected at 𝑄. 𝑜 

side; but no grid cell can be further included at the 𝑄. 𝑑 side. After adding the taxis selected from 

𝑔9. 𝑙𝑣 into set 𝑆𝑜 as shown in Figure 14 (e), we find 𝑇𝑎𝑥𝑖10 and 𝑇𝑎𝑥𝑖17 as the intersection 

between 𝑆𝑜 and 𝑆𝑑. Hence, the searching algorithm terminates. 

It is worth mentioning that an alternative approach is to search taxis solely from the origin side, 

that is, only consider taxis currently “near” the origin point of a ride request. The disadvantage of 

this alternative approach is that the number of selected grid cells could be large and thus it results 

in many taxis retrieved for the later scheduling process. In other words, it increases the overall 

computation cost, which is certainly not desirable for a rigid real-time system like taxi-sharing. 

Though the bi-directional searching algorithm may result   larger increase in travel distance for the 

given ride request, as a compensation for the small loss in distance optimality, the algorithm selects 

far fewer taxis for the schedule allocation step, reducing the computation cost and ride request 

processing time. We found in the experiments that the number of selected taxis is reduced by 50% 

while the increase in travel distance is just 1% over the single-side search algorithm. 

3.6 Taxi Scheduling 

Given the set of taxi statuses 𝑆𝑉 retrieved for a ride request 𝑄 by the taxi searching algorithm, 

the purpose of the taxi scheduling process is to find the taxi status in 𝑆𝑣 which satisfies 𝑄 with 

minimum travel distance increase. 
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To this end, given a taxi status, theoretically we need to try all possible ways of inserting 𝑄 into 

the schedule of the taxi status in order to choose the insertion which results in minimum increase 

in travel distance. All possible ways of insertion can be created via three steps: (i) reorder the points 

in the current schedule, subject to the precedence rule, i.e. any origin point precedes the 

corresponding destination point (we refer to this step as the schedule reordering thereafter); (ii) 

insert 𝑄. 𝑜 into the schedule (iii) insert the 𝑄. 𝑑 into the schedule. The capacity and time window 

constraints are checked in all three steps, during which the insertion fails immediately if any 

constraint is violated. The monetary constraints are then checked after all three steps have been 

done successfully. 

Consider a schedule with 𝑛  points, among which 𝑚  points are origins. After the schedule 

reordering step, there will be as many as 
𝑛!

2𝑚 sequences which comply with the precedence rule. 

Though reordering the schedule is theoretically necessary for finding the optimal insertion way, we 

find that it is not the case in practice via experiments. For the sake of simplicity, in the rest of this 

section, the schedule reordering step is not considered unless otherwise stated. 

Next we describe how to check the feasibility of each insertion possibility, subject to the capacity 

and time window constraints first and then the monetary constraints, given a pair of 𝑄 and 𝑉.  

3.6.1 Time Window Constraints 

Given a schedule of 𝑛 points, there is clearly 𝑂(𝑛2) ways to insert a new ride request into the 

schedule. For example, Figure 15 shows one way of inserting a request into a schedule with four 

points. To insert 𝑄3. 𝑜 after point 𝑄1. 𝑜 optimally, the algorithm needs to find the first path (starting 

from the shortest path) from 𝑄1. 𝑜 to 𝑄3. 𝑜 which allows the taxi to arrive at 𝑄3. 𝑜 during 𝑄3. 𝑝𝑤 

given the scheduled arrival time at 𝑄1. 𝑜. Since the shortest path is often not the quickest one when 

considering real road traffic, it is likely that multiple paths needs to be calculated before finding 

the first satisfactory path from 𝑄1. 𝑜 to 𝑄3. 𝑜. Similar process is required for other connecting paths, 

as illustrated by the dash lines in Figure 15. As a result, the overall computation load can be 
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extremely high for checking just one insertion way. To ease the computation load, here we only 

consider using the quickest path from one point to another during the insertion, though the new 

route may not be the shortest one in theory.  

Denote by → the travel time of the latest quickest path from one location to another location 

calculated by the travel time estimation server in the Cloud, and 𝑡𝑤  represents the time spent 

waiting for the passenger if the taxi arrives 𝑄3. 𝑜 ahead of 𝑄3. 𝑝𝑤. 𝑒. Eq. (3.3) gives the travel time 

delay, denoted by 𝑡𝑑 after inserting 𝑄3. 𝑜 between 𝑄1. 𝑜 and 𝑄2. 𝑜.  

𝑡𝑑 = (𝑄1. 𝑜 → 𝑄3. 𝑜) + (𝑄3. 𝑜 → 𝑄2. 𝑜) + 𝑡𝑤 − (𝑄2. 𝑜 → 𝑄1. 𝑜) 
(3.3) 

  

 

Figure 15 One possible insertion of a ride request into a schedule 

If 𝑡𝑑 results the late arrival at any point after 𝑄2. 𝑜 in the original schedule, then the insertion 

fails. For this purpose, we introduce the notion of slack time. Denote by 𝑎𝑝 and 𝑎𝑑 the projected 

arrival time at a pickup point 𝑄. 𝑜 and a delivery point 𝑄. 𝑑, respectively. Then the slack time at 

𝑄. 𝑜 and 𝑄. 𝑑, denoted by (𝑄. 𝑜).𝑠𝑡  and (𝑄. 𝑑)𝑠𝑡  respectively, is calculated by Eq. (3.4) and Eq. 

(3.5), respectively. 

  (𝑄. 𝑜)𝑠𝑡  = 𝑄. 𝑝𝑤. 𝑙 − 𝑎𝑝  (3.4) 

 (𝑄. 𝑑)𝑠𝑡 = 𝑄. 𝑑𝑤. 𝑙 − 𝑎𝑑 (3.5) 

Thus, we can use slack times as a shortcut to check whether the delay incurred due to an 

insertion destroys the timely arrivals at any subsequent point in the schedule. In the example shown 

by Figure 15, if 𝑡𝑑 ≥ 𝑀𝑖𝑛{(𝑄1. 𝑑)𝑠𝑡 ,(𝑄2. 𝑑)𝑠𝑡} , then the insertion fails. If 𝑄3. 𝑜  is inserted 
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successfully, the system proceeds to insert 𝑄3. 𝑑 in a similar way. Algorithm 1 summaries the 

process of computing a new route after the insertion of a new ride request. 

 

3.6.2 Monetary Constraints 

The new schedule after the insertion, by far, has only been checked against the capacity and time 

window constraints. It should also meet the monetary constraints. In this section we formulate the 

monetary constraints of taxi-sharing.  

On one hand, we impose two constraints which encourage riders to participate in taxi-sharing by 

rewarding them with certain monetary gains. The first rider monetary constraint says that any rider 

who participates in taxi-sharing should pay no more than what she would pay if she takes a taxi by 

herself. The second rider monetary constraint says that if a occupied taxi 𝑉 is to pick up a new 

rider 𝑄, then each rider 𝑃 whose travel time is lengthen due to the pickup of 𝑄, should get a taxi 

fare cut; and the fare cut should be proportional to 𝑃’s travel time delay.  

On the other hand, we enforce one constraint which gives the driver stimulation to participate in 

taxi-sharing. This constraint says that a driver should earn for all distances she has travelled. 
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Intuitively the driver should make profit even for the distance of the reroute incurred by the join of 

a new passenger.  

Now let us consider these three monetary constraints together in the scheduling context: given a 

taxi status 𝑉 and a new ride request 𝑄𝑛, under what conditions 𝑉 will not violate the above three 

monetary constraints regarding to 𝑄𝑛.  

Denote by 𝑄1,…𝑄𝑛−1 the riders involved in the current schedule of 𝑉 before the join of 𝑄𝑛. Also 

denote by 𝑑𝑖 the distance between 𝑄𝑖. 𝑜 and 𝑄𝑖 . 𝑑 on the road network , 𝑖 = 1, … , 𝑛. Denote by 𝑓𝑖 

the taxi fare of rider 𝑄𝑖  if 𝑉 picks up 𝑄𝑛. Denote by 𝐹: 𝑅+ → 𝑅+ the fare calculation function, 

which maps the travelled distance to the taxi fare and is defined by some transportation authority 

or taxi company. Then the first rider monetary constraint can be expressed by Eq. (3.6).  

 𝑓𝑖 ≤  𝐹(𝑑𝑖), 𝑖 = 1, … , 𝑛 (3.6) 

Denote by 𝑀 the revenue of the driver if she picks up 𝑄𝑛 and by 𝐷 the distance of the new route 

after the pickup. Then the driver monetary constraint is expressed by Eq. (3.7). 

 𝑀 ≥ 𝐹(𝐷) (3.7) 

Since 𝑀 = 𝛴𝑓𝑖, we then have Eq. (3.8) by bridging two equations above.  

 𝐹(𝐷) ≤ 𝑀 = 𝛴𝑓𝑖 ≤ 𝛴𝐹(𝑑𝑖), 𝑖 = 1, … , 𝑛 (3.8) 

𝑀 can take any value between 𝐹(𝐷) and Σ𝐹(𝑑𝑖) to make Eq. (3.8) stand. Here we take the lower 

bound 𝐹(𝐷) in order to reduce the total taxi fare of riders. Therefore, we have 𝑀 = 𝐹(𝐷).  

Then we need to distribute the total fare 𝑀 to each individual rider. Denote by 𝛥𝑓𝑖 the decrease 

in taxi fare for rider 𝑄𝑖 after the join of 𝑄𝑛, 𝑖 = 1, … , 𝑛 − 1 and 𝛥𝑇𝑖 the travel time delay of rider 

𝑄𝑖’s trip due to the pickup. The fare is determined in the way expressed by Eq. (3.9) and Eq. (3.10), 

where 𝛥𝐷 is the travel distance increase of the taxi route due to the join of 𝑄𝑛  and 𝑓 ≥ 0 is a 

constant. 
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 𝑓𝑛 = 𝐹(𝑑𝑛) − 𝑓 (3.9) 

 Δ𝑓𝑖 =
𝛥𝑇𝑖

∑ 𝑇𝑖
𝑛−1
𝑖=1

[(𝐹(𝑑𝑛) − 𝑓) − 𝐹(Δ𝐷)], 𝑖 = 1, … , 𝑛-1 (3.10) 

Eq. (3.9) says that the new rider can pays less by 𝑓 than whatever she would pay if she rides 

alone. Eq. (3.10) says that (i) existing riders collectively save an amount which equals to the 

difference between the charge of the new rider and the driver’s expected fare increase due to the 

increase in travel distance; and (ii) existing riders split the total saving proportional to their 

individual travel time delay (the second rider monetary constraint). Since it requires Δ𝑓𝑖 ≥ 0, 

therefore, we have Eq. (3.11).  

 𝐹(𝑑𝑛) ≥ 𝐹(Δ𝐷) + 𝑓 (3.11) 

Eq. (3.11) by itself is the sufficient and necessary condition for that taxi 𝑉 does not violate any 

monetary constraint with respect to 𝑄𝑛. 

 

Figure 16 An example of the pricing constraint 

Figure 16 illustrates how to apply the monetary constraints with a concrete example. Figure 16 

(a) shows the schedule of a taxi before the second rider boards.  The fare of the first rider is 𝑓1 =

𝐹(𝑑1). The monetary constraint for picking up the second rider is 𝐹(𝑑2) ≥ 𝐹(Δ𝐷) + 𝑓, where Δ𝐷 
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is the increase in travel distance due to the join of the second rider. If the above constraint stands, 

then we have Δ𝑓1 = [𝐹(𝑑2) − 𝑓] − 𝐹(Δ𝐷) and 𝑓2 = 𝐹(𝑑2) − 𝑓. Likewise, Figure 16 (c) shows the 

schedule of the taxi after the second rider joins and before the third rider joins. Similarly, the pricing 

constraint for picking up the third rider is 𝐹(𝑑3) ≥ 𝐹(Δ𝐷′) + 𝑓, where Δ𝐷′ is the increase in travel 

distance due to the join of the third rider. If this constraint stands, then we have Δ𝑓𝑖 =

Δ𝑇𝑖

Δ𝑇1+Δ𝑇2
[𝐹(𝑑3) − 𝑓] − 𝐹(Δ𝐷′)), 𝑖 = 1, 2 and 𝑓3 = 𝐹(𝑑3) − 𝑓.  

In practice, some rider may think the taxi fare decrease is not worth the travel time delay and 

thus rejects the pickup decision. We thus introduce a parameter 𝑄𝑖 . 𝑟 for each rider 𝑄𝑖 , which 

presents 𝑄𝑖’s acceptable money-to-time rate. That is to say, 𝑄𝑖 supports the pickup of a new rider 

only when the ratio of the fare decrease to the travel time delay is larger than 𝑄𝑖 . 𝑟. The above 

constraint is expressed by Eq. (3.12). 

 
𝛥𝑓𝑖

𝛥𝑇𝑖
≥ 𝑄𝑖. 𝑟 (3.12) 

3.7 Pickup and Drop-off Interactions 

In this section, we detail interactions among taxi riders, drivers, and the Cloud during 

pickup and drop-off events.  

Pickup: Consider a rider whose request has been satisfied. She may wait the taxi on a street 

side or at a comfortable place, such as a coffee shop. As shown in the upper-left corner of 

Figure 17, the Cloud will send a reminder message to the rider’s mobile phone when the 

assigned taxi is approaching her pickup point (e.g. within 30 meters based on the taxi’s GPS 

readings). On receiving the reminder message, the rider will start paying attention to the taxi 

approaching and go standing by at the pickup point. Meanwhile, the rider’s App will 

automatically turn on the Bluetooth in her phone, preparing a Bluetooth connection to the 

driver’s phone. The purpose of such a connection lies in three aspects: 1) ensure a rider getting 

on the right taxi; 2) a rider can receive location updates from a driver’s phone so as to save her 
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phone’s battery from not using its own GPS; 3) receive the bill information from the driver 

when getting off. The connection is automatically established via a two-step hand-shake 

protocol. Each step involves one phone sending the reservation code to the other (the code was 

sent to both phones by the Cloud when the request was served). Since there may be multiple 

riders in one taxi, the driver’s phone is set as a Bluetooth master maintaining a connection with 

each of the multiple slaves, as shown by the grey lines in Figure 17). The new rider confirms 

the boarding after actually getting on the taxi. The boarding confirmation will then be notified 

to the Cloud (via the driver’s phone). 

 

Figure 17 Interactions during a pickup event 

Drop-off:  Figure 18 shows interactions between the phones and the Cloud during a drop-off 

event. When the taxi reaches a destination point, the driver will press the “Check Out” button 

to trigger the following interaction. The driver’s phone will send the bill information (shown 

by the left upper grey rectangle) to the corresponding rider’s phone, as shown by the broken 

green arrow. The rider uses the phone to send a payment confirmation to the Cloud after paying 

the bill as shown by the blue arrow. The driver will confirm the payment (shown by the left 

lower grey rectangle) by clicking the “OK” button, which makes the driver’s phone send a 

payment-received message to the Cloud as shown by the red broken arrow. The separate of two 

payment confirmations, i.e. one from the driver (i.e. the red arrow) and one from the rider (i.e. 
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the blue arrow), prevents the Cloud from being fooled by either party. For instance, without a 

payment-received message from the driver, the rider may send the payment confirmation to the 

server without actually paying the fare. 

 

Figure 18 Interactions during a drop-off event 

Once the transaction has been completed, the taxi driver and the taxi rider can rate each other. 

The right-most graph in Figure 18 shows the interface for a rider to rate the driver. The ratings of a 

driver or a rider is accumulated and maintained in the Cloud. When a driver or rider’s rating is 

lower than a threshold, she is then no longer allowed to participate in our taxi-sharing system. We 

consider incorporating the credibility into the taxi searching and scheduling algorithms in the 

future, offering credible taxi drivers/riders a higher serving chance. 

3.8 Experiments 

3.8.1 Setting 

3.8.1.1 Data Set 

Road networks: We perform the experiments using the real road network of Beijing, which contains 

106,579 road nodes and 141,380 road segments.  

Taxi Trajectories: The taxi trajectory dataset contains the GPS trajectory recorded by over 33,000 

taxis during a period of 87 days spanning from March to May in the year of 2011. The total distance 

of the dataset is more than 400 million kilometres and the number of points reaches 790 million. 

After trip segmentation, there are in total 20 million trips, among which 46% are occupied trips and 

54% are non-occupied trips. We map each occupied trip to the road network of Beijing using the 

map-matching algorithm proposed in [123]. Each trip then can be viewed as a query with windows 
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size equals to 0. Figure 19 shows the distribution of pickup and delivery points of the ride requests 

in the dataset over road segments in a day (long details, i.e. hot segments that are being the origin 

or destination of a large number of requets are not shown). It is clear that ride requests are 

distributed sparsely over the road network. 

 

(c) Origins 

 

(d) Destinations 

Figure 19 Distribution of ride requests over road segments 

3.8.1.2 Experimental Platform 

The historical trajectory dataset conceals rich information regarding 1) the distribution of the 

ride requests on the road network over time of day, and 2) the mobility patterns of the taxis. In 

order to validate our proposed system under practical settings, we mine the trajectory dataset to 

build an experimental platform, which generates a realistic ride request stream and initial taxi 

statuses for our experiments. We envision that this platform can be applied to many other relevant 

urban and transportation computation problems. 

Ride request Stream: The goal is to generate real-time ride requests that are as realistic as possible. 

For this purpose, we first discretise one day into small time bins, denoted by 𝑏𝑖 and denote all road 

segments by 𝑟𝑖. We assign all historical ride requests into time bins. Assume that the arrivals of 

ride requests on each road segment approximately follow a Poisson distribution during time frame 

𝑓𝑗 , where each frame has a fixed length spanning 𝑁 time bins. Thus, we can learn 𝜆𝑖𝑗 , i.e. the 
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each road segment 𝑟𝑖, we count the number of ride requests that originated from 𝑟𝑖 within time 

frame 𝑓𝑗, denoted by 𝑐𝑖𝑗, and learn the distribution of the destination road segment of these ride 

requests, denoted by 𝑝𝑖𝑗. Then we calculate 𝜆𝑖𝑗 based on 𝑐𝑖𝑗 using Eq. (3.13) and generate a ride 

request stream that follows a Poisson process with parameter𝜆𝑖𝑗.  

 𝜆𝑖𝑗 = 𝑐𝑖𝑗/ 𝑁 (3.13) 

For each ride request 𝑄 generated in frame 𝑓𝑗  with the origin road segment being 𝑟𝑖, the destination 

road segment is generated according to the distribution 𝑝𝑖𝑗. 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑑𝑤. 𝑒 equals to 𝑄. 𝑡, i.e. 

the birth time of the ride request. 𝑄. 𝑝𝑤. 𝑙 is calculated by applying a fixed window size.  𝑄. 𝑑𝑤. 𝑙 

equals to the sum of 𝑄. 𝑝𝑤. 𝑙 and the average travel time between the origin and destination pair 

learned from the GPS trajectory dataset.   

Note that the taxi GPS trajectory dataset only reveals the number of ride requests that got served. 

In reality there are also many ride requests unsatisfied and disappeared due to the shortage of taxis. 

To take such ride requests into consideration, we introduce a system parameter ∆, supposing the 

number of real ride requests is ∆ times the number of request extracted from the trajectory dataset. 

Figure 20 shows the supposed number and the extracted number of ride requests fluctuating over 

time of a day, where the time frame is 1 hour and ∆=2. 

 

Figure 20 Inflated and extracted number of ride requests during a day 
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Initial Taxi Statuses: To keep the characteristics of the realistic scenario, we use the real taxi 

statuses by slicing the historical trajectories at a certain timestamp. Specifically, we select a date 

and choose a particular second of day as the timestamp when the experiment starts, denote it by 𝑡𝑠. 

We scan all the GPS records of the selected date to determine the initial states of taxis. A taxi status 

𝑉 is set to be occupied if it is recorded occupied crossing timestamp𝑡𝑠. The initial schedule of 𝑉 

can be initialized according to the record. A taxi 𝑉 is set to be vacant if it is recorded vacant both 

just before and right after 𝑡𝑠. The concept of “just before” and “right after” is controlled by a 

temporal parameter, which is set to be 2 minute. All remaining taxis are then considered as not 

recorded and thus not used in the simulation.  

The set of ride requests and initial states used in all validation experiments are generated with 

parameters listed in Table 3.  

Table 3 Parameter Setting for Ride request Generation 

Notation Definition Value 

𝑡𝑠  The start time of simulation 09:00 

𝑡𝑒  The end time of simulation 09:30 

#𝑡𝑎𝑥𝑖 The number of taxis 2,980 

#𝑡𝑎𝑥𝑖𝑜 The number of taxis occupied initially 2,072 

𝑤𝑠 The window size 5 min 

𝑙(𝑏𝑖) The length of a time bin 5 min 

𝑁 The # of time bins in a frame 12 
 

3.8.1.3 Framework 

Based on the platform introduced above, we study two strategies in the searching algorithm 

(single-side and dual-side) and two strategies in the scheduling algorithm (first-fit and best-fit), 

resulting in four taxi-sharing methods. We compare the performance of these four methods with 

that of a non-taxi-sharing method as the number of requests (i.e., ∆) changes. We also test the 

performance of these four methods by changing the money-to-time rate parameter of the monetary 

constraints, and study the necessity of the schedule reordering step (i.e. considering different pickup 
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and drop-off orders) in the scheduling algorithm. As the travel time estimation technique had been 

extensively evaluated in [121, 122], we do not perform experiments on that again.  

3.8.1.4 Baseline Methods 

The Non-Taxi-sharing method (NR) forbids taxi-sharing and assumes that a vacant taxi moves 

to pick up the rider that it can pick up at the earliest time.  

Taxi searching step: A taxi-sharing method is called single-side if the taxi searching algorithm 

retrieves taxis only from the origin side of a request; otherwise, it is dual-side.  

Taxi scheduling step: A taxi-sharing method is called best-fit where the taxi scheduling process 

tries all candidate taxis returned by the taxi searching algorithm. Otherwise, is called first-fit if the 

scheduling process terminates immediately once it finds a taxi that satisfies the ride request.  

Because the two choices can be made independently, we get the following four taxi-sharing 

methods: Single-side and First Fit Taxi-sharing (SF), Single-side and Best-fit Taxi-sharing (SB), 

Dual-side and First Fit Taxi-sharing (DF), Dual-side and Best-fit Taxi-sharing (DB). 

The money-to-time rates of ride requests are assumed to follow an exponential distribution with 

a mean value. 

3.8.1.5 Measurements 

The performance of the taxi-sharing system is evaluated in two perspectives, namely 

effectiveness and efficiency. We first describe four effectiveness measurements as follows.  

Relative Distance Rate (RDR): Define the distance of a ride request 𝑄 as the distance between its 

origin point 𝑄. 𝑜 and its destination point 𝑄. 𝑑. Denote by 𝐷𝑆𝑅 the sum of distances of ride requests 

that get satisfied and by 𝐷𝑉 the total distance travelled by all taxis while being occupied in a taxi-

sharing method. RDR is calculated by Eq. (3.14). 

 𝑅𝐷𝑅 = 𝐷𝑉/𝐷𝑆𝑅 (3.14) 

RDR evaluates the effectiveness of taxi-sharing by measuring how much distance is saved 

compared to the case where no taxi-sharing is practiced. 
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Satisfaction Rate (SR): is the ratio of the number of ride requests that get satisfied to the total 

number of ride request (exclude ride requests that are already served by taxis at the initial state in 

the ride request counting). SR is another crucial criterion measuring the effectiveness of the taxi-

sharing system. 

Taxi-sharing Rate (TR): is the percentage of ride requests participating in taxi-sharing among all 

satisfied ride requests.  

Fare Saving Rate (FSR): is the average saving percentage in taxi fare of riders whose participate 

in taxi-sharing.  

Now we introduce following efficiency measurements.  

Number of Road Nodes Accessed Per Ride request (#GNAPR): is the number of accessed road 

network nodes per ride request. 

Number of Road Nodes Accessed Per Ride request (#GCAPR): is the number of accessed grid cells 

per ride request.  

Number of Taxis Accessed Per Ride request (#TAPR): This measurement records how many taxis 

per ride request are accessed by the scheduling module.  

RNAPR, GCAPR, TAPR are machine-independent indicators for computation cost of the system 

since the majority of on-line computation is done in the scheduling process. 

Execution Time Per Ride request: is the CPU time spent for serving each ride request. It consists 

of taxi searching time, (i.e. time elapsed between step ② and ④ in Figure 7) and taxi scheduling 

time (time elapsed between ⑤ and ⑦ in Figure 7). 

3.8.2 Results 

Table 4 lists default values for parameters used in experiments.  

Table 4 Default values of parameters used in experiments 
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Definition Value 

Beijing Map Size 32 *40 km2 

The size of grid (i.e. number of grid cells) 30*30 

Schedule reordering before insertion no 

Taxi fare per kilometre ¥2 

Mean of the money-to-time rate distribution ¥0/min 

 

Effectiveness: Figure 21 (a) shows 𝑆𝑅, i.e. the satisfaction rate, of all methods as Δ changes. All 

methods show a decline in SR as the number of ride requests increases. All flavours of taxi-sharing 

methods have a considerably higher satisfaction rate (about 23% higher on average) than the 𝑁𝑅 

method for all delta values. The difference in the satisfaction rate among taxi-sharing methods is 

insignificant as no particular technique is proposed for minimizing the satisfaction rate.  

Figure 21 (b) shows 𝑇𝑅, the percentage of ride requests participating in taxi-sharing among all 

satisfied ride requests, for all taxi-sharing methods. Not surprisingly, 𝑇𝑅 surges as Δ increases. 

This is because taxi-sharing opportunities are likely to rise as the number of taxi ride request 

increases. Consequently, more ride requests can be satisfied via taxi-sharing. But since the total 

number of ride requests increases even faster, the satisfaction rate still drops, as illustrated by Figure 

21 (a).  

 

(e) Satisfaction rate vs. delta                   

 

(f) Taxi-sharing rate vs. delta            
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(g) Fare saving rate vs. delta              
 

(h) Relative distance rate vs. delta 

Figure 21 Performance in effectiveness measurements of different methods 

To calculate the fare of riders in the experiments, we instantiate the fare calculation function as 

follows: the fare charged by a taxi driver is linear to the distance travelled by the taxi, i.e. the 

product of the distance travelled and fare per unit distance. Figure 21 (c) shows that FSR, the 

average fare saving of riders who participate in taxi-sharing, drops as Δ increases. The average cost 

of this amount saving is about 5.08 minute delay in travel time. We believe that most riders are 

willing to tolerate this amount of delay, especially under the high request demand scenarios in 

which this taxi-sharing system is most likely to be useful. 

Figure 21 (d) shows RDR steadily drops as parameter Δ increases. Again, this is likely because 

as the number of ride requests increases, more ride requests can share partial trips with each other 

and thus more distance the taxi-sharing methods save. The SB taxi-sharing method outperforms 

other methods, since SB reduces the increase in travel distance most. The DB taxi-sharing method 

slightly trails SB method as the taxi searching step of it explores fewer grid cells. Two first-fit based 

taxi-sharing methods show clearly higher relative distance rate. From the picture, we can see that 

taxi-sharing methods save up to 12% in travel distance, depending on delta. Given the fact that 

there are 67,000 taxis in Beijing and each taxi runs 480 km per day (learned from the dataset), the 

saving achieved by taxi-sharing here means over 1.5 billion kilometres in distance per year, which 

equals to 120 million litre of gas per year (Supposing a taxi consumes 8 liter of gasoline per 100km) 

and 2.2 million of carbon dioxide emission per year (supposing each litre of gas consumption 

generates 2.3 kg of carbon dioxide). 
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Figure 22 (a), (b), (c), (d) shows SR, TR, FSR and RDR of taxi-sharing methods for different 

mean values of the money-to-time rate of ride requests, respectively, when 𝛥 = 1 . All 

measurements except FSR show a clear decrease tendency as the mean money-to-time rate 

increases. When the mean money-to-time rate increases from ¥0.25/min to ¥0.5/min, the decrease 

is most significant. 

 
(i) Satisfaction rate                                                              

 
(j) Taxi-sharing rate        

 
(k) Fare saving rate  

 
(l) Relative distance rate 

Figure 22 Performance in effective measurements vs. money-to-time rate 
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response time of a ride request is about 40~50 seconds. This time can be reduced largely if we 

implement the travel time estimation method using parallel techniques.  

We also test the efficiency of the system using machine-independent measurements. The three 

sub-graphs of Figure 23 show the number of taxis accessed per ride request, the number of road 

nodes accessed per ride request, and the number of grid cells accessed per ride request, respectively, 
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for different taxi-sharing methods under different Δ. It is clear from the pictures that all taxi-sharing 

methods do not show sharp increase in computation cost as Δ  increases. It is also obvious that the 

computation cost of the DB taxi-sharing method is significantly smaller than that of SB taxi-sharing 

method. Especially when ∆≥ 4, the computation cost of the DB method is even smaller than that 

of the SF method. The result of Figure 21 and Figure 23 together validate our motivation for the 

dual-side taxi searching algorithm. That is, the dual-side searching indeed incurs small increase in 

travel distance in exchange for the significant decrease in computation cost. 

 

(m) #TAPR vs. delta 

 

(n) #RNAPR vs. delta 

 

(o)  #GCAPR vs. delta 

Figure 23 Computation cost in terms of node access per ride request 

Necessity of the Schedule Reordering: Figure 24 shows the average execution time (excluding 

the time spent for the travel time estimation) per ride request under different values of Δ when using 

the DB taxi-sharing method with and without the schedule reordering before insertion. The 

execution time per ride request is about 20% longer on average when the schedule reordering is 

performed. 

 

Figure 24 Time cost of schedule reordering 
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Meanwhile there is almost no change in all effectiveness measurements including satisfaction 

rate, relative distance rate, etc. From the results, we also learned that in practice it is extremely rare 

that the optimal insertion requires the schedule reordering. Although the execution time per ride 

request remains a reasonable small value with the schedule reordering step, there is still no incentive 

to do so in practice. 

3.9 Discussion 

We have proposed and developed a mobile-cloud based real-time taxi-sharing system. We 

presented detail interactions between end users (i.e. taxi riders and drivers) and the Cloud. We 

validated our system based on a GPS trajectory dataset generated by 33,000 taxis over 3 months, 

in which over 10 million ride requests were extracted. The experimental results demonstrated the 

effectiveness and efficiency of our system in serving real-time ride requests. Firstly, our system 

can enhance the delivery capability of taxis in a city so as to satisfy the commute of more people. 

For instance, when the ratio between the number of taxi ride requests and the number of taxis is 5, 

our proposed system served additional 22% ride requests compared with no taxi-sharing. Secondly, 

the system saves the total travel distance of taxis when delivering passengers, e.g. it saved 12% 

travel distance with the same ratio mentioned above. Supposing a taxi consumes 8 liters of gasoline 

per 100 km and given the fact learned from the real trajectory dataset that the average travel distance 

of a taxi in a day in Beijing is about 480 km, the system can save over one third million liter of 

gasoline per day, which is over 120 million liter of gasoline per year (worth about 150 million 

dollar). Thirdly, the system can also save the taxi fare for each individual rider while the profit of 

taxi drivers does not decrease compared with the case where no taxi-sharing is conducted. Using 

the proposed monetary constraints, the system guarantees that any rider that participates in taxi-

sharing saves 6% on average. In addition, the experimental results justified the importance of the 

dual-side searching algorithm. Compared to the single-side taxi searching algorithm, the dual-side 

taxi searching algorithm reduced the computation cost by over 50%, while the travel distance was 
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only about 1% higher on average. The experimental results also suggests that reordering the points 

of a schedule before the insertion of the new ride request is not necessary in practice for the purpose 

of travel distance minimization.  

In the future, we consider incorporating the creditability of taxi drivers and riders into the taxi 

searching and scheduling algorithms. Additionally, we will further reduce the travel distance of 

taxis via ridesharing.
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Chapter 4   

Analysis and Evaluation of the Slugging Form of Ridesharing 

4.1Introduction 

Transportation problems, such as traffic jams, finding parking slots, hailing a taxi during rush 

hours, are long-existing headaches in cities, especially those with a large population. These 

problems negatively affect the environment, the economy, and more importantly average peoples’ 

daily lives. 

Different methods have been mainly proposed to tackle these problems separately. For example, 

extending the road network is one common approach to tackle traffic jams; sensors which can detect 

the availability of parking spaces [4] are installed to help drivers find open parking slots more 

quickly. However, those solutions often require additional construction or new equipment added to 

the existing infrastructures and thus are often expensive to implement. In addition, their benefits 

are usually limited to the specific corresponding problem.  

One reason for the above transportation problems is that the passenger seats of vehicles are 

under-utilized. Thus, we study ridesharing as a promising means to improve the utilization of 

vehicle ridership and thus reduce the number of cars on the road.  

Ridesharing practices have a variety of characteristics. For example, ridesharing can be either 

dynamic or static. Dynamic ridesharing arranges trips on a very short notice. By contrast, static 

ridesharing arranges trips that are known in advance, usually hours or a day or two before the 

departure time. Ridesharing can arrange either recurring or ad-hoc trips. Also, ridesharing can 

either change or keep the route of the original trips of drivers. (In case routes are kept, riders need 

to get on and off the driver’s car at the origin and destination locations of the driver instead of their 
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own.) Riders may share the cost with the driver or not. Table 5 summarizes the characteristics of 

some of the most common ridesharing applications. 

Table 5 Characteristics of some of the most common ridesharing applications 

Ridesharing 

Applications 

Characteristics 

Dynamic Recurring Trip 
Route 

Change 
Cost Sharing 

taxi ridesharing  yes no yes yes 

hitchhiking yes no no no 

carpooling no yes/no yes yes 

slugging [18] yes/no yes/no no no/very-low 

 

Here we are interested in one particular ridesharing form, i.e. slugging. In slugging a passenger 

walks to the driver’s origin, boards at the driver’s departure time, alights at the driver’s destination, 

then walks from there to the passenger’s own destination. Thus slugging involves two modes of 

transportation, car and walking. Since slugging does not change any spatio-temporal aspect of the 

drivers’ original trips, slugging is the simplest form of ridesharing in the sense of bringing 

minimum disruptions to the drivers. Thus it can be offered at minimum or no-cost to the riders. 

Compared to other forms of ridesharing where route change is allowed, e.g. taxi ridesharing [77], 

slugging avoids unnecessary complications such as complex fare mechanism or ridesharing-

incurred travel time delay for drivers (e.g. due to unexpected congestion encountered on the way 

to some pickup). Thanks to its simplicity, slugging has already become a common transport mode 

in some of the busiest traffic areas in the North America, e.g. auxiliary interstate highways around 

urban areas such as Washington D.C., Bay area, Houston, and other cities [6, 13]. 

Though currently slugging is mainly used for regular commute trips, we envision that it can also 

be applied to ridesharing scenarios that involve mostly one-time casual trips. For example, consider 

a ridesharing website where travelers post their trips scheduled in the near future. When posting 

their trip, travelers may announce their roles in ridesharing: drivers, passengers, or both (i.e. 

travelers who have a car can leave the role to be determined by the website). The website will 

compute a slugging plan to group these travelers and decide the driver and passengers for each 
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group. The only attached string for a passenger is that she needs to walk to the origin location of 

the driver’s trip before the driver departs, and she needs to walk from her driver’s destination to 

her own destination. Drivers are willing to accept such a ride for a various reasons, such as 

environmental-friendliness, companionship, the privilege of driving on HOV lanes, reduced or 

waived toll on highways, small payment, etc. 

The increasing popularity of bike sharing programs indicates that people are open to alternative 

modes of transportation, particularly the ones like slugging that involve physical activity (i.e. 

walking). The motor industry is also actively promoting shared services like slugging, as stated in 

the “Blueprint for Mobility” vision recently released by Ford company. 

To the best of our knowledge, our work is the first one to study slugging from a computational 

perspective. We define and study the basic slugging problem and its variants that are constrained 

by the vehicle capacity and travel time delay. We also discuss the dynamic version of the slugging 

problem. The experimental results show that our proposed heuristics achieve 59% saving in vehicle 

travel distance. Given the size of our real data set is 39 thousand trips and the average distance of 

a trip in the data set is 6.3 kilometres, the saving equals to 144,963 kilometres, which means the 

reduction of over 4.5 thousand gallons of gasoline and 71 tons of carbon dioxide emission. 

In summary, the contributions of this section include: 

 We formalize the slugging problem using a graph abstraction. We propose a quadratic algorithm 

to solve the slugging problem. 

 We define a generalization of the slugging problem and prove its NP-completeness.  

 For the variants of the slugging problem that are constrained by the vehicle capacity and travel 

time delay, we prove their NP-completeness and propose effective heuristics. Via extensive 

experiments, we demonstrate that the proposed heuristics have near-optimal performance in 

terms of the saving in vehicle travel distance.  
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 We also consider the dynamic slugging problem and evaluate it via experiments; in the dynamic 

problem the trips are announced incrementally. 

The remainder of the section is organized as follows. In Section 4.2, we review existing literature 

related to our work. Section 4.3 formally defines and studies the slugging problem, its 

generalization, its constrained variants, its dynamic version, and heuristics for the intractable 

variants. We evaluate the proposed heuristics in Section 4.4. 

4.2Related Works 

In this section we review existing works on three problems that are relevant to slugging, i.e. taxi-

ridesharing, carpooling and the dial-a-ride. Similar to slugging, all these problems are 

transportation problems that involve pickups and drop-offs. Unlike slugging where passengers 

change their origin and destinations in order to join the trip of drivers, in all three problems, drivers 

change their route in order to pick up and deliver the passengers. Both taxi ridesharing and 

carpooling are specific forms of ridesharing. The difference is that each driver in carpooling usually 

is associated with her own trip, while in taxi ridesharing this is not the case. Also taxi ridesharing 

usually needs appropriate pricing mechanisms to incite taxi drivers. The dial-a-ride problem 

slightly differs from carpooling as all vehicles start a trip and return to the same location called the 

depot.  

4.2.1Taxi Ridesharing 

There have been a number of works on the taxi ridesharing application [77, 78, 86, 107]. These 

works modelled the taxi ridesharing problem by considering different constraints. In contrast to 

slugging, the routes of driver trips, i.e. taxis in this case, change to accommodate passengers. 

Among these works, some (see [107]) only considered vehicle capacity constraints, while the rest 

also considered time window constraints, i.e. travelers need to depart and arrive in given time 

intervals. [78] is the only paper that models monetary constraints, which are used to guarantee 

monetary incentives for both taxi drivers and taxi riders. These works on taxi ridesharing mainly 
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concern the efficiency and scalability of ridesharing, i.e. how fast a query can be answered and how 

many queries the system can handle. In contrast, we focus on the effectiveness of slugging as a 

whole, e.g. the saving in vehicle travel distance, while the existing works on taxi ridesharing often 

consider the effectiveness of ridesharing from the perspective of a single request, e.g. reducing the 

increase in vehicle travel distance for every new request [77].  

4.2.2Carpooling  

There have been many works on modelling and analysing the traditional carpooling problem 

where drivers need to change their routes due to ridesharing. In [19], the authors modelled a 

carpooling problem and proposed an exact method based on Lagrangean column generation to 

solve it optimally. Since the carpooling problem is NP-hard, the exact approach practically  only 

works for small instances of the carpooling problem,  where there are at most a few hundred trips. 

For large instances with hundreds of thousands trips, many heuristics have been proposed [14, 109]. 

These heuristics are applied to compute the best route of a vehicle for a given set of requests, since 

the route of drivers is allowed to change. As such route changes do not occur in slugging, these 

heuristics are not applicable.  

Despite being a sibling of the carpooling problem, the slugging problem has so far drawn little 

attention from researchers. There have been some reports on the current state of slugging operations 

(see [28]). But our work is the first formal study of slugging from a computational viewpoint. 

4.2.3Dial-A-Ride Problem (DARP) 

The Dial-A-Ride Problem (DARP) [16], a.k.a. the Vehicle Routing Problem with Time Windows 

in the operation research literature, is closely relevant to the carpooling problem. The DARP can 

be considered the carpooling problem with additional restrictions (e.g. all vehicles are required to 

start any trip from a depot location and return to the depot after the trip). In contrast to slugging, 

vehicle routes are manipulated to accommodate passengers’ origin and destination locations. DARP 

is proved to be NP-hard. Cordeau et al. summarizes the state-of-the-art heuristics for DARP [33]. 



76 
 

 

4.3  Slugging 

We introduce the concept of slugging in Sec. 4.3.1. We formally define the basic slugging 

problem in Sec. 4.3.2. Next we introduce and discuss the vehicle-capacity constrained slugging 

problem in Sec. 4.3.3, and the delay bounded slugging problem in Sec. 4.3.4. Then we describe the 

slugging problem with both constraints and propose heuristics for it in Sec. 4.3.5. Finally, we 

discuss the dynamic slugging problem and its parameters in Sec. 4.3.6.  

4.3.1 Preliminaries  

In slugging, some travelers abandon their original trips and join the trip of other travellers, the 

drivers, without asking the drivers to change their route or their departure time. To be more specific, 

consider two travellers 𝐴 and 𝐵, and their respective trips 𝑇𝐴 and 𝑇𝐵, each of which is described by 

an origin destination pair and a start time at which the traveller intends to depart. Assume that 

traveller 𝐴 abandons her trip and joins 𝐵’s trip. In this case we say that 𝑇𝐴 is merged into 𝑇𝐵. More 

specifically, traveller 𝐴 executes her new trip as follows: at the start time of 𝑇𝐴 she walks to the 

origin location of trip 𝑇𝐵, then she waits until the start time of 𝑇𝐵 (if 𝐴 arrives later than the start 

time of 𝑇𝐵 then she cannot join 𝑇𝐵), she shares the ride with 𝐵, she alights at the destination of 𝑇𝐵 

and finally she walks from there to her own destination. Clearly, the only impact that traveller 𝐴 

has on trip 𝑇𝐵 is the occupation of one seat in B’s vehicle. In other words, there is no disruption to 

any spatio-temporal aspect of 𝑇𝐵.  

In the above example, there is only one traveler associated with each trip. In general, each trip 

can be associated with a party of multiple travelers who cannot be separated during the trip 

(assuming that the size of the party is always smaller than the number of seats in a vehicle).  

As shown in the above example, one necessary condition for trip 𝑇𝑖 to be able to be merged into 

trip 𝑇𝑗 is that the travellers of trip 𝑇𝑖 can walk from the origin of 𝑇𝑖 at the start time of 𝑇𝑖 and arrive 

at the origin of trip 𝑇𝑗 before the start time of 𝑇𝑗 (assuming a constant walking speed and taking the 
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shortest path). Consider a set of trips 𝑆𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑚}  where the travelers of each trip 𝑇𝑖 

announce their willingness to serve as: driver, or passenger, or both. Then for each trip pair 𝑇𝑖 and 

𝑇𝑗, where the travelers of 𝑇𝑖 have announced their willingness to be passengers, and the travelers 

of 𝑇𝑗 have announced their willingness to be drivers, we can compute whether or not 𝑇𝑖 can be 

merged into 𝑇𝑗. To do that, a preprocessing stage is performed. At this stage, a map is used to 

compute the shortest path between the respective origins. Specifically, for such a trip pair (𝑇𝑖, 𝑇𝑗), 

the shortest path between the origins of the two trips is computed. Based on the calculated shortest 

path, a presumed walking speed, and the start times of 𝑇𝑖 and 𝑇𝑗, we can readily determine whether 

or not trip 𝑇𝑖 can be merged into 𝑇𝑗. If so, we say that pair (𝑇𝑖, 𝑇𝑗) is a mergable pair where 𝑇𝑖 is a 

passenger trip and 𝑇𝑗 is a driver trip. For a mergeable pair (𝑇𝑖, 𝑇𝑗), the shortest path between the 

destinations of 𝑇𝑖 and 𝑇𝑗  is also calculated in order to determine the travel time delay for the 

passenger trip 𝑇𝑖. The travel time delay for passenger trips imposes a natural constraint on the 

slugging problem, which will be discussed further in Sec. 4.3.4 and 4.3.5.  

Now that we have defined a mergeable pair, for a given set of trips, consider the set of all 

mergeable pairs represented as a graph S. Assuming that the trip start-times are distinct, we observe 

that S possesses the following two properties. 

First, S is acyclic. Suppose there exists a cycle of mergeable pairs (𝑇𝑖1
, 𝑇𝑖2

), (𝑇𝑖2
, 𝑇𝑖3

), …, 

(𝑇𝑖𝑛
, 𝑇𝑖1

) in 𝑆. Mergeable pair (𝑇𝑖𝑛
, 𝑇𝑖1

) means that the start time of 𝑇𝑖𝑛
 is smaller than that of 𝑇𝑖1

. 

However, the first n-1 pairs of the cycle collectively tell us that the start time of 𝑇𝑖1
 should be 

smaller than that of 𝑇𝑖𝑛
. Contradiction. In other words, S is acyclic because the start-times of the 

trips on a path in S are increasing.  

Second, S is transitive (i.e. if (𝑇𝑖, 𝑇𝑗) ∈ 𝑆 and (𝑇𝑗, 𝑇𝑘) ∈ 𝑆), then (𝑇𝑖, 𝑇𝑘) ∈ 𝑆. If the travelers 

of 𝑇𝑖 can arrive at the origin of 𝑇𝑗 before the start time of 𝑇𝑗, and the travelers of 𝑇𝑗 can arrive at the 

origin of 𝑇𝑘 before the start time of 𝑇𝑘, then the travelers of 𝑇𝑖 definitely can arrive at the origin of 
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𝑇𝑘 before the start time of 𝑇𝑘 as well by: first arriving at the origin of 𝑇𝑗 and then taking the same 

path used by the travelers of 𝑇𝑗 to the origin of 𝑇𝑘; this assumes that all travelers have the same 

walking speed.  

4.3.2  Basic Slugging Problem 

Slugging is a graph problem. We formulate it as follows. 

Definition 1 A slugging graph 𝐺 = (𝑉, 𝐸), is a directed acyclic graph where 𝑉 = {𝑇1, 𝑇2, … , 𝑇𝑚} 

is a set of trips and 𝐸 is set of directed edges between nodes that is transitive, i.e. if (𝑇𝑖 , 𝑇𝑗) ∈ 𝐸 

and (𝑇𝑗, 𝑇𝑘) ∈ 𝐸, then (𝑇𝑖, 𝑇𝑘) ∈ 𝐸 . 

Note that a node in a slugging graph may not have any incident edges. A node with no incident 

edge can exist as it represents a trip that cannot be merged into any other trip, or into which no 

other trip can be merged. For example, a trip geographically bounded in the North Eastern corner 

of a city may become such a disconnected node if all other trips are bounded in the South Western 

corner of the city, and they all start at approximately the same time. 

A slugging graph indicates which trips can be merged into others. However, although a trip can 

be merged into multiple other trips, in a concrete slugging plan it is merged into only one other trip. 

In other words, a slugging graph gives the possible pairs of trips that can be combined, whereas a 

slugging plan gives an actual combination that will be executed in practice. So, based on a slugging 

graph, a slugging plan can be constructed. Intuitively, a slugging plan is a subgraph of the slugging 

graph that gives the driver and the passengers of each car.  

Definition 2 Given a slugging graph 𝐺 = (𝑉, 𝐸) , a slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 , is a 

subgraph of 𝐺 that satisfies the following conditions: (i) ∀(𝑇𝑖, 𝑇𝑗) ∈  𝐸𝑆, there is no 𝑘 ≠ 𝑗 such that 

(𝑇𝑖, 𝑇𝑘) ∈  𝐸𝑆; and (ii) ∀(𝑇𝑖, 𝑇𝑗) ∈  𝐸𝑆 , there does not exist  𝑘 such that (𝑇𝑘 , 𝑇𝑖) ∈  𝐸𝑆.  
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Intuitively, condition (i) states that any trip 𝑇𝑖 can be merged into at most one other trip. 

Condition (ii) states that a trip 𝑇𝑖 can be merged into another trip 𝑇𝑗 only if there is no other trip 𝑇𝑘 

that has been merged into 𝑇𝑖. These constraints precisely reflect the nature of the slugging problem: 

each trip is either a ridesharing provider, i.e. providing a car to be shared with other riders, or a 

ridesharing consumer, i.e. taking exactly one ride provided by a provider.  

Figure 25 gives an illustrative example of slugging plans. Subfigure (a) shows a slugging graph 

of four trips. Subfigures (b) (c) (d) (e) show all slugging plans that are maximal, i.e. cannot include 

more edges. For instance, consider the slugging plan shown in subfigure (b). Given that (𝑇4, 𝑇3) 

already exists, neither edge (𝑇4, 𝑇1) nor edge (𝑇4, 𝑇2) can be added because the addition violates 

Condition (i), and neither edge (𝑇3, 𝑇2) nor edge (𝑇3, 𝑇1) can be added because either addition 

violates Condition (ii). 

 

Figure 25 An illustrative example of slugging plans 

A mergable pair (𝑇𝑖, 𝑇𝑗) in a slugging plan means that 𝑇𝑖 is merged into 𝑇𝑗. That is to say, 𝑇𝑖 is 

simply eliminated while there is no change to 𝑇𝑗 other than the fact that the number of passengers 

in 𝑇𝑗  ‘s vehicle is increased. Therefore the benefit of merging 𝑇𝑖  into 𝑇𝑗  only depends on the 

passenger trip 𝑇𝑖 and thus can be measured by some attribute of 𝑇𝑖, e.g. the vehicle travel distance 

that is saved. In other words, the benefit of merging 𝑇𝑖 into another trip is independent of the other 

trip. The implication is that if an edge is labeled by the benefit of merging the two trips at its 

endpoints, then all the edges exiting a node have the same benefit. Formally, we define the benefit 

of a slugging graph as follows. 
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Definition 3 A slugging graph 𝐺 = (𝑉, 𝐸) is called benefit-labeled if each edge (𝑇𝑖, 𝑇𝑗) ∈ 𝐸 is 

associated with a label 𝐵(𝑇𝑖 , 𝑇𝑗) ∈ ℝ+, referred to as the benefit of edge (𝑇𝑖, 𝑇𝑗), and the benefits 

of all edges outgoing of the same node are identical, i.e. ∀𝑇𝑖, 𝑇𝑗, 𝑇𝑘  such that (𝑇𝑖, 𝑇𝑗) ∈ 𝐸  and 

(𝑇𝑖, 𝑇𝑘) ∈ 𝐸, 𝐵(𝑇𝑖, 𝑇𝑗) = 𝐵(𝑇𝑖, 𝑇𝑘). 

A straightforward example of a benefit function is the constant function 𝐵(𝑇𝑖, 𝑇𝑗) = 1 for any 

mergeable pair (𝑇𝑖, 𝑇𝑗). Intuitively, this benefit function measures the number of trips saved by 

ridesharing. Another example of a benefit function is: 𝐵(𝑇𝑖, 𝑇𝑗) equals to the vehicle travel distance 

of trip 𝑇𝑖. Intuitively, this benefit function measures the saving in vehicle travel distance. 

 

Figure 26 An example of a benefit function for a ridesharing form in which driver trips are 

changed 

Definition 3 essentially says that the benefit of a mergeable pair is independent of the driver trip. 

Note this characteristic is unique to slugging and is not applicable to other ridesharing forms. For 

example, if we consider a ridesharing form where the route of driver trips can be changed, such as 

taxi ridesharing, then a benefit function 𝐵 that measures the saving in the total travel distance is 

dependent on the driver trip. Figure 26 shows an illustrative example of this case. Figure 26 (a) shows 

three trips with their travel distances, and the distances between the origins and destinations of 
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these trips. Figure 26 (b) and (c) show a trip after merging 𝑇3 into trip 𝑇1 and 𝑇2, respectively, 

resulting 𝐵(𝑇3, 𝑇1) = 2 and 𝐵(𝑇3, 𝑇2) = 0. In other words, since the passenger is picked up at her 

origin and dropped off at her destination, the total saving in travel distance depends on the driver’s 

origin and destination. 

The next definition gives the benefit of a ride-sharing plan as the total benefit of its edges. 

Definition 4 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is benefit-labeled, the benefit of a slugging 

plan 𝐺𝑆 = (𝑉, 𝐸𝑆), denoted by 𝐵(𝐺𝑆), is the sum of the benefits of the edges in 𝐸𝑆. That is to say, 

𝐵(𝐺𝑆) = ∑ 𝐵(𝑇𝑖, 𝑇𝑗)(𝑇𝑖,𝑇𝑗)∈𝐸𝑆
. 

Definition 4 is also applicable to slugging only, but not to other ridesharing forms. To illustrate 

this point, consider again the example shown by Figure 26. The benefit of merging 𝑇2 into 𝑇1 is 3, 

as shown by Figure 26 (d); and the benefit of merging 𝑇3 into 𝑇1 is 2, as shown by Figure 26 (b). 

However, as shown by Figure 26 (e), the benefit of slugging plan {(𝑇2, 𝑇1), (𝑇3, 𝑇1)} is 3 rather than 

5, which is the sum of the benefit of the two pairs in the plan.  

Problem 4.1 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is benefit-labeled, find a subgraph 𝐺𝑆 =

(𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸  that is a slugging plan and has the maximum benefit. We refer to this as the 

Slugging Problem (SP). 

Theorem 4.1 SP can be solved in 𝑂(|𝑉|2) time.  

Proof A trip 𝑇𝑖 ∈ 𝑉  is called a sink trip if its node has no outgoing edges. Due to the fact that G 

is acyclic and transitive, for each non-sink trip 𝑇𝑖, there exists at least one sink trip 𝑇𝑠 such that 

(𝑇𝑖, 𝑇𝑠) ∈ 𝐸.  

Now we can construct the optimal slugging plan for SP using the algorithm as shown by Figure 

27. The 𝐺𝑆 in Figure 27 merges each trip 𝑇𝑖 that is not a sink trip into any sink trip 𝑇𝑘  such that 

(𝑇𝑖, 𝑇𝑘) ∈ 𝐸.  
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Figure 27 Quadratic algorithm for SP 

It is not hard to see that the constructed 𝐺𝑆 = (𝑉, 𝐸𝑆) is indeed optimal. First 𝐺𝑆 is constructed 

such that each passenger trip has been merged into some driver trip. And since that the benefit of 

merging a passenger trip is the same regardless which driver trip the passenger trip is merged into, 

therefore, the benefit of 𝐺𝑆 is maximum 

Let us consider the time complexity of Algorithm 1. As shown by Line 1~6, trips that are sinks can 

be identified in 𝑂(|𝐸|) time. From Line 8~10, the slugging plan is calculated. Since there are at 

most 𝑂(|𝑉|) non-sink trips, and for each non-sink trip it takes at most 𝑂(|𝑉|) time to find a sink 

trip into which the non-sink trip can be merged, then the time complexity of Line 8~11 is 𝑂(|𝑉|2) 

as well. Since |𝐸| is 𝑂(|𝑉|2), the time complexity of Algorithm 1 is 𝑂(|𝑉|2). □ 

The transitivity of the slugging graph relies on the assumption that travelers walk at the same 

speed. If we relax this assumption, then the slugging graph is no longer transitive. This relaxation 

leads to a generalization of SP in which the graph is only acyclic. We prove next that this 

generalization of SP is NP-complete.  

Problem 4.2: Given a directed acyclic graph 𝐺 = (𝑉, 𝐸) where V is a set of trips and E is the set 

of edges that is benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸  that 
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is a slugging plan with the benefit at least 𝑅. We refer to this problem as the Generalized Slugging 

Problem (GSP). 

Theorem 4.2:  GSP is NP-complete. 

Proof: First, it is easy to see GSP is in NP. Now, we prove GSP is NP-hard by reducing the set 

cover problem to GSP.  

The set cover problem is well-known NP-hard. It is defined as follows: given a set 𝑈 of 𝑛 

elements, a family of subsets of 𝑈, {𝑆1, 𝑆2, … , 𝑆𝑚} and a integer 𝑘, the question is whether there 

exists a set of at most 𝑘 of these subsets whose union equals to 𝑈. If the answer is yes, the problem 

has a set covering of size 𝑘.  

Given an instance of set covering problem, i.e. a universe 𝑈 = {1,2, … 𝑛} and a family of 𝑚 

subsets 𝑆1, 𝑆2, … , 𝑆𝑚 of 𝑈, we can build an instance of GSP as follows. First we construct the graph 

𝐺 = (𝑉, 𝐸)  as follows: We define V = {𝑇1, 𝑇2, … , 𝑇𝑛 , 𝑇𝑆1
, 𝑇𝑆2

, … , 𝑇𝑆𝑚
, 𝑇𝑠𝑖𝑛𝑘}  and construct E as 

follows. If 𝑖 ∈ 𝑆𝑗, add an edge (𝑇𝑖, 𝑇𝑆𝑗
) to E for all 𝑖 = 1,2, … , 𝑛  and 𝑗 = 1,2, … , 𝑚, and add an 

edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) to E for all 𝑗 = 1,2, … 𝑚. Note that 𝐸 is indeed acyclic. We define benefit function 

𝐵 as a constant function 𝐵(𝑇𝑖, 𝑇𝑗) = 1 for all  (𝑇𝑖 , 𝑇𝑗) ∈ 𝐸. We also define benefit threshold 𝑅 =

𝑛 + 𝑚 − 𝑘. Now we show that the set cover problem has a set covering of size 𝑘 iff there is a 

subgraph of 𝐺 that is a slugging plan and has a benefit as least of 𝑅. 

First, assume that the set cover instance admits a set covering of size 𝑘, denoted by ℂ, we will 

now construct a subgraph of 𝐺, denoted by 𝐺𝑆, that is a slugging plan and has a benefit as least of 

𝑅, i.e. 𝑛 + 𝑚 − 𝑘, as follows: start with an empty subgraph 𝐺𝑆; for each node 𝑇𝑖 , 𝑖 ∈ 𝑈, choose 

another node 𝑇𝑆𝑗
 such that 𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℂ, then add edge (𝑇𝑖, 𝑇𝑆𝑗

) to the edge set of 𝐺𝑆. Since 

|𝑈| = 𝑛, the benefit of 𝑅𝑃 increases by 1 for 𝑛 times. For each set 𝑆𝑗 ∉ ℂ, add edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) to 

the edge set of 𝐺𝑆, so 𝐵(𝐺𝑆) increases by 1 for at least 𝑚 − 𝑘 times. 𝐺𝑆 is a legitimate slugging 

plan since each 𝑇𝑖 , 𝑖 ∈ 𝑈  and each 𝑇𝑆𝑗
, 𝑆𝑗 ∉ ℂ is chosen to be passenger trips only while each 
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𝑇𝑆𝑗
, 𝑆𝑗 ∈ ℂ and 𝑇𝑠𝑖𝑛𝑘 is chosen to be driver trips only, and no trip is merged into more than one 

other trips. The benefit of 𝐺𝑆 is at least 𝑛 + 𝑚 − 𝑘.  

Conversely, assume that there is a slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 of benefit at least 𝑛 +

𝑚 − 𝑘, we now prove that there is a set covering of size 𝑘 by proof of contradiction. Suppose there 

is no set covering of size 𝑘. Since for each node 𝑇𝑖 , 𝑖 ∈ 𝑈, it can contribute at most 1 to the benefit 

of 𝐺𝑆, and all 𝑛 𝑇𝑖’s collectively contribute at most 𝑛 to the benefit of 𝐺𝑆. Let us first assume that 

all 𝑇𝑖’s are contributing. Denote by ℂ the set of 𝑆𝑗’s such that edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) ∉ 𝐺𝑆. Clearly ℂ is a 

set cover. Since any cover size is larger than 𝑘 thus |ℂ| > 𝑘, then there are less than 𝑚 − 𝑘 nodes 

𝑇𝑆𝑗
 are free to merged into node 𝑇𝑠𝑖𝑛𝑘, i.e. contribute 1 to the benefit of 𝐺𝑆. Thus 𝐵(𝐺𝑆) < 𝑛 +

𝑚 − 𝑘. Contradiction. Now assume that not all 𝑛 𝑇𝑖’s contribute to 𝐺𝑆, say edge (𝑇𝑖 , 𝑇𝑆𝑗
) is removed 

from 𝐺𝑆, the removal may or may not set 𝑇𝑆𝑗
 free, i.e. allow (𝑇𝑆𝑗

, 𝑇𝑠𝑖𝑛𝑘) add to 𝐺𝑆. Even (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) 

is added to 𝐺𝑆, since (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) is previously removed from 𝐺𝑆, and thus the benefit of 𝐺𝑆 will not 

increase. Contradiction remains. Therefore, there must be a set cover of size of 𝑘.□ 

4.3.3 Capacitated Slugging  

The basic slugging problem may work well for the case where vehicles have a large number of 

seats, such as (mini)buses. The reason is that the problem does not constrain the number of 

passengers that a driver can take. The problem becomes more general if we consider a vehicle 

capacity constraint, given the fact that private vehicles usually have a few seats. Thus we introduce 

the slugging problem with the capacity constraint.  

As mentioned in Sec. 4.3.1, a trip can be associated with multiple travelers who ride together. In 

other words, these travelers have the same origin, destination, and start time. Therefore, each 

passenger trip in the graph should be tagged with a label which represents the number of travelers 

associated with the trip. We do so as follows. 
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Definition 5 A slugging graph 𝐺 = (𝑉, 𝐸) is called no-of-travelers-labelled if each node 𝑇𝑖 ∈ 𝑉 

that represents a passenger trip (i.e. has outgoing edges) is associated with a number 𝑇𝑖. 𝑠, referred 

to as the size of node 𝑇𝑖. 

Each driver trip also has a number of seats available for passengers. In other words, each driver 

trip is associated with a number of travelers. However, it may still have available seats in the car to 

take slugging passengers. This availability is represented in the slugging graph as follows.  

Definition 6 A slugging graph G=(V, E) is called no-of-available-seats labelled if each node 𝑇𝑖 ∈

𝑉 that represents a driver trip (i.e. has incoming edges) is associated with a label 𝑇𝑖. 𝑐, referred to 

as the capacity of node 𝑇𝑖. 

Definition 7 A slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆) is capacitated if each driver trip in 𝐺𝑆 takes at most 

𝑇𝑗. 𝑐 additional passengers, i.e. ∀𝑇𝑗 ∈ 𝑉, Σ(𝑇𝑖,𝑇𝑗)∈𝐸𝑆
𝑇𝑖. 𝑠 ≤ 𝑇𝑗. 𝑐. 

Now we define the Capacitated Slugging Problem as follows. 

Problem 4.3 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is no-of-travelers-labeled, no-of-available-

seats-labeled and benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that 

is a capacitated slugging plan with the benefit at least 𝑅 . We refer to this as the Capacitated 

Slugging Problem (CSP).  

Theorem 4.3 CSP is NP-Complete. 

Proof: First, it is easy to see CSP is in NP. That is, given a subgraph of 𝐺, denoted by 𝐺𝑆, we can 

verify whether 𝐺𝑆 is a -capacitated slugging plan and if so, whether its benefit is at least 𝑅. Now, 

we prove CSP is NP-hard by reducing the 0/1 Knapsack Problem to CSP.  

The 0/1 Knapsack Problem is known to be NP-hard [46]. The decision version of the problem is 

defined as follows: given a set of 𝑛 items, {𝑝1, 𝑝2, … , 𝑝𝑛} and a knapsack of capacity 𝑊. Each item 
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𝑝𝑖 has a size 𝑤𝑖 and a value 𝑣𝑖. The question is whether or not we can pack items worth at least 𝑅 

into the knapsack without exceeding its capacity and without splitting items.  

Given an instance of 0/1 Knapsack Problem, we can build an instance of CSP as follows. First 

we construct a slugging graph 𝐺 = (𝑉, 𝐸) as follows. Let the node set 𝑉 = {𝑇𝑝1
, 𝑇𝑝2

, … 𝑇𝑝𝑛
, 𝑇𝑑}. 

Construct the edge set E  as follows. For each node 𝑇𝑝𝑖
 ,  𝑖 = 1,2, … 𝑛, we add an edge (𝑇𝑝𝑖

, 𝑇𝑑) to 

E. Note that the edge set 𝐸 = {(𝑇𝑝𝑖
, 𝑇𝑑)} is indeed transitive and acyclic. Therefore, 𝐺 is a slugging 

graph. Next we label the nodes of G. Each node 𝑇𝑝𝑖
 is labeled with a size equals to 𝑤𝑖. The capacity 

of node 𝑇𝑝𝑖
 does not matter since they can only be passenger trips. Node 𝑇𝑑 is labeled with a size 

equals to 1 and a capacity equals to 𝑊 + 1. Next we label the edges of G with a benefit. Each edge 

(𝑇𝑝𝑖
, 𝑇𝑑) is label with a benefit 𝐵(𝑇𝑝𝑖

, 𝑇𝑑) equals to 𝑣𝑖, for 𝑖 = 1,2, … 𝑛. Now 𝐺 is slugging graph 

that is no-of-travelers-labeled, no-of-available-seats-labeled and benefit-labeled.  

It can readily be shown that the constructed instance of CSP has a capacitated slugging plan with a 

benefit of 𝑅 if and only if the instance of 0/1 Knapsack Problem can pack items worth at least 𝑅 

into the knapsack.□ 

4.3.3.1   A special case of CSP 

A special case of CSP where the capacity of each car is 2, and all trips are associated with only 

one traveler, is polynomial-time solvable. We prove it formally as follows. 

Problem 4.4 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is no-of-travelers-labeled where the size of 

each passenger node is 1, and no-of-available-seats-labeled where the capacity of each driver node 

is 1, and benefit-labeled, find a subgraph  𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that is a capacitated slugging plan 

with the maximum benefit. We refer to this as the 1-traveler-1-availability Capacitated Slugging 

Problem (1t1CSP). 

Theorem 4.4 The 1t1CSP is solvable in 𝑂(|𝑉||𝐸|log |𝑉|) time. 
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Proof We will show that the 1t1CSP is equivalent to the maximum weighted matching problem. 

A matching of a graph is a set of pairwise vertex-disjoint edges. The maximum weighted matching 

problem is defined as: given an edge-weighted undirected graph 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀), find the matching 

where the sum of the weight of the edges in it is maximum.  

Given an slugging graph 𝐺 = (V, 𝐸) of the 1t1CSP, we construct a weighted undirected graph 

𝐺𝑀 as follows: 𝑉𝑀 = V, 𝐸𝑀 = 𝐸 , the weight of an edge 𝑒 ∈ 𝐸𝑀 equals to the benefit of e. Since E 

is acyclic, 𝐺𝑀  contains no self-loops. Thus, each matching 𝑀 of 𝐺𝑀  is a legitimate capacitated 

slugging plan and the sum of the weight of edges in 𝑀 equals to the benefit of the slugging plan.  

Since the maximum weighted matching problem is solvable in polynomial time [45], we can also 

solve the 1t1CSP in polynomial time using the same algorithm. The running time of this algorithm 

is 𝑂(|𝑉||𝐸|log |𝑉|). □ 

4.3.4Delay-Bounded Slugging  

In addition to the vehicle capacity constraint, it is also natural to constrain SP by a bounded travel 

time delay. As mentioned in Sec 4.3.1, in the pre-processing stage (that uses a map), for each 

mergeable pair (𝑇𝑖, 𝑇𝑗), we compute the travel time delay for the passenger trip 𝑇𝑖, denoted by Δ𝑖→𝑗. 

Intuitively, Δ𝑖→𝑗  is the delay incurred by 𝑇𝑖  due to the fact that 𝑇𝑖  needs to walk to/from 𝑇𝑗 ’s 

origin/destination, and possibly wait for 𝑇𝑗  to start. More specifically, the delay equals to the 

difference: ( the arrival time of 𝑇𝑖  when the passengers ride with 𝑇𝑗  (i.e. walk to/from 

origin/destination of 𝑇𝑗) ) – ( the arrival time of 𝑇𝑖 when the passengers ride in their own vehicle 

from their origin directly to their destination). Now we define the travel time delay representation 

in the graph. 

Definition 8 A slugging graph 𝐺 = (𝑉, 𝐸) is called delay-labelled if each edge (𝑇𝑖, 𝑇𝑗) ∈ 𝐸  is 

associated with a label Δ𝑖→𝑗, which represents the travel time delay of 𝑇𝑖 with respect to (𝑇𝑖, 𝑇𝑗).  
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The travelers of each trip 𝑇𝑖 can specify a threshold which represents their maximum tolerable 

travel time delay. We define the delay threshold representation in the graph. 

Definition 9 A slugging graph 𝐺 = (𝑉, 𝐸) is called delay-threshold-labelled if each node 𝑇𝑖 ∈ 𝑉 is 

associated with a label 𝑇𝑖. 𝛿, referred to as the delay threshold of node 𝑇𝑖. 

The travel time delay constraint means that all edges outgoing of a node with a travel time delay 

exceeding the delay threshold of the node need to be filtered out.  Thus we define a delay-bounded-

slugging-graph that satisfies this property. 

Definition 10 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is delay-labeled and delay-threshold labeled, 

the delay-bounded slugging graph 𝐺𝛿 = (𝑉, 𝐸𝛿), 𝐸𝛿 ⊆ 𝐸, is a subgraph of G where ∀(𝑇𝑖, 𝑇𝑗) ∈ 𝐸𝛿, 

Δ𝑖→𝑗 ≤ 𝑇𝑖. 𝛿.  

Now we introduce the delay-bounded slugging problem. 

Problem 4.5 Given the delay-bounded slugging graph 𝐺𝛿 that is benefit-labeled, and a number 

𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 of 𝐺𝛿 that is a slugging plan with a benefit of at least 𝑅.  

4.3.5Delay Bounded and Capacitated Slugging and Its Heuristics 

In practice, both the capacity constraint and the travel time delay threshold constraint are important. 

Thus, we combine them to form the following problem. 

Problem 4.6 Given the delay-bounded slugging graph 𝐺𝛿 = (𝑉, 𝐸𝛿) that is no-of-travelers-labeled, 

no-of-available-seats-labeled, and benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 =

(𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸𝛿  that is a capacitated slugging plan with a benefit of at least 𝑅. We refer to this as 

the Delay Bounded and Capacitated Slugging Problem (DBCSP). 

Theorem 4.5 The DBCSP is NP-Complete. 

Proof Obvious, since DBCSP is a generalization of CSP. □ 



89 
 

 

Since the DBCSP is NP-Complete, we propose two greedy heuristics for the DBCSP, namely 

Greedy-Benefit and Greedy-AVG-Benefit. Both heuristics work in an iterative way. That is, each 

heuristic greedily chooses one driver trip 𝑇𝑑 based on certain criteria. Intuitively, Greedy-Benefit 

chooses the driver trip that collects the maximum benefit of its incoming edges, and Greedy-AVG-

Benefit chooses the driver trip that collects the maximum average benefit of its incoming edges.  

To compute the maximum benefit and the maximum average benefit, we need to solve an 

instance of the 0/1 knapsack problem for each driver trip. Each driver trip 𝑇𝑑 and all its passenger 

trips 𝑇𝑝 where (𝑇𝑝, 𝑇𝑑) ∈  𝐸𝛿, form an instance of the 0/1 knapsack problem (see proof of Theorem 

2). That is, trip 𝑇𝑑  is considered the knapsack with a capacity equals to 𝑇𝑑 . 𝑐 and each 𝑇𝑝  is 

considered an item with a value equal to 𝐵(𝑇𝑝, 𝑇𝑑) and a size equal to 𝑇𝑝. 𝑠.  

Since the 0/1 knapsack program is NP-complete, we employ an approximation algorithm called 

Efficiency Greedy (EG) approximation algorithm [46]. The EG algorithm outputs the larger 

between the following two numbers: (i) the total value when packing items into the knapsack in 

non-increasing order of their efficiencies (i.e. the ratio of value to size); (ii) the value of the single 

item which is most valuable among all items. It is known that the EG algorithm has a worst-case 

performance bound of 2 [46].  

Intuitively, at each iteration the Greedy-Benefit heuristic applies the EG algorithm to each driver 

trip, and selects the driver trip with the maximum benefit computed by EG. This trip and its 

passengers are eliminated from the slugging graph, and then the next iteration is started. The 

Greedy-AVG-Benefit is identical, except that the driver trip selected is the one with the (maximum 

benefit / number of passenger trips selected by EG). 
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Figure 28 Heuristics for the DBCSP 

More precisely, denote by 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) the result of the instance of the 0/1 knapsack program 

formed for trip 𝑇𝑑 output by the EG algorithm. Denote by 𝑛 the number of passenger trips that are 

selected for driver trip 𝑇𝑑 by the EG algorithm. Then, in each iteration, the Greedy-Benefit and 

Greedy-AVG-Benefit heuristic select the driver trip with the maximum 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) and 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑)/

𝑛, respectively. Once a driver trip 𝑇𝑑 is picked, the set of passenger trips that are merged into 𝑇𝑑 

are also determined by the EG algorithm. Next the delay-bounded slugging graph is updated by 

removing the nodes of the driver and its passengers, and the edges that touch upon them. This 

update completes an iteration, and a new iteration then starts. The algorithm terminates when the 

slugging graph becomes empty.  

Figure 28 summarizes the algorithm for the proposed heuristics. Lines 6~7 calculates 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) 

for every driver trip 𝑇𝑑 in an iteration. Since there are 𝑂(|𝑉|) driver trips in an iteration, and the 

computation of 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) for each 𝑇𝑑 by the EG algorithm runs in 𝑂(|𝑉|𝑙𝑜𝑔|𝑉|), therefore, the 
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selection of the driver trip in an iteration runs in 𝑂(|𝑉|2log |𝑉|). The updating process takes 𝑂(|𝑉|) 

for each selected trip and takes 𝑂(|𝑉|2) in total, as there are at most |𝑉| trips selected in an iteration. 

Since there are 𝑂(|𝑉|) iterations, the time complexity of the greedy heuristics is 𝑂(|𝑉|3log |𝑉|). 

To illustrate the Greedy-Benefit and Greedy-AVG-Benefit heuristics, please consider the delay-

bounded slugging graph shown in Figure 29 (a). The number on each edge represents its benefit. 

Assume that the capacity and the size of each node is 4 and 1, respectively. The optimal slugging 

plan for this simple example is shown in Figure 29 (b), with a benefit of 38.  

                                                

 

Figure 29 An example of delay-bounded slugging graph 

Now we generate a slugging plan using the greedy-based heuristics. Let us first consider the 

Greedy-Benefit heuristic. In the first iteration, 𝑇3 is chosen as the driver trip because the maximum 

benefit that it can collect from its incoming edges is the largest among all driver trips. Then the 

graph is updated by deleting all edges associating with any of 𝑇1, 𝑇2, 𝑇3. In the next iteration  𝑇6 is 

chosen as the driver trip. The graph then updates again and becomes empty of edges. The edges 

selected in each step are shown in Figure 30 and the benefit of the resulting slugging plan is 33.  

                          

 

Figure 30 Running example of the Greedy-Benefit heuristic 
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In contrast, Greedy-AVG-Benefit chooses 𝑇5  in the first iteration because 𝑇5  has the largest 

average benefit of passenger trips. Then 𝑇3 is selected in the second iteration and 𝑇6 is selected in 

the third iteration. Figure 32 shows edges selected in each iteration and the final slugging plan has 

a total benefit of 38. 

                   

 

Figure 31 Running example of Greedy-AVG-Benefit heuristic 

For the example shown in Figure 31, Greedy-AVG-Benefit is coincidentally optimal. But the 

greedy heuristics cannot always guarantee the optimal solution. For example, neither heuristics is 

optimal for the example shown in Figure 32, assuming that the size of each node is 1. 

 

Figure 32 An example for which heuristics are sub-optimal 

4.3.6Dynamic Slugging  

The basic and constrained slugging problems that we have discussed are presented in a static 

context where all trips are known before the calculation of the slugging plan and the slugging plan 

is only calculated once. In this section, we discuss how to deal with the slugging problem in a 

dynamic context where the computation of a slugging plan is performed many times on the fly as 

the announcements of trips are continuously arriving. 

Figure 33 illustrates an instance of the dynamic slugging problem that involves five trips. The 

announcement of each trip is depicted by a circle and the start time of each trip is depicted by a 

diamond. On the one hand, it is necessary that there exists a temporal gap between the 
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announcement and the start time for each trip; otherwise (i.e. if trips start at the same time when 

they are announced) there will be no room for ridesharing. On the other hand, such a temporal gap 

may be small (a few minutes) since these trips are dynamically generated. In the extreme case 

where these temporal gaps are huge (e.g. hours or even a day), the dynamic problem then 

degenerates to the static problem. Here we assume that the temporal gap between the announcement 

and trip start time is the same for all trips and denote this number by 𝐺. In other words, each trip is 

announced 𝐺 time units before its start-time. 

 

Figure 33 The dynamic slugging problem 

As in the static case, the objective of the dynamic problem is maximizing the total benefit. In the 

dynamic slugging problem, the slugging plan is computed and executed every 𝑓  seconds as 

depicted by the vertical lines in Figure 33, where 𝑓 is referred to as the decision interval. Now we 

describe how the overall benefit of ridesharing is calculated for the dynamic problem. Once a trip 

is announced, it remains in the input set of the slugging plan computation until either of the 

following events happens: (i) the trip is included in the slugging plan as a result of a computation; 

(ii) the start time of the trip is reached (i.e. the trip starts without any ridesharing). The aggregate 

slugging plan (of all trips) is simply the union of all slugging plans calculated in each decision time 

point, and thus the overall benefit is computed based on the aggregate plan.  

Table 6 An example of the dynamic slugging problem 

 The Set of Trips As the 

Input  

Calculated Slugging plan Benefit 

First computation {𝑇1, 𝑇2, 𝑇3} {(𝑇1, 𝑇2)} 1 

Trip announcement Trip start time
time

T1

T2

T3

T4

T5

computation computation
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Second 

computation 
{𝑇3, 𝑇4, 𝑇5} {(𝑇3, 𝑇5), (𝑇4, 𝑇5) } 2 

Aggregate {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5} {(𝑇1, 𝑇2), (𝑇3, 𝑇5) 

, (𝑇4, 𝑇5) } 

3 

 

Table 6 gives a running example of how the benefit is computed in the dynamic context for the 

example given in Figure 33. Suppose that the first computation outputs a slugging plan {(𝑇1, 𝑇2)}. 

Since 𝑇3 is not included in the plan and it has not reach its start time, 𝑇3 remains in the input set. 

Suppose that the second slugging plan computation yields {(𝑇3, 𝑇5), (𝑇4, 𝑇5) } . Therefore, the 

aggregate slugging plan is {(𝑇1, 𝑇2), (𝑇3, 𝑇5), (𝑇4, 𝑇5) } and the aggregate benefit is 3, assuming that 

the benefit of each merging is 1.  

The value of 𝑓 should be tuned carefully in order to maximize the benefit of ridesharing. We 

evaluate the optimal value of 𝑓 experimentally and present the results in the next section. 

4.4Evaluation 

4.4.1Setting 

We conducted experiments using a taxi GPS trajectory data set [70]. The dataset contains real 

traces from more than five thousand taxis in Shanghai during a single day. These taxis have been 

equipped with GPS receivers (one for each). The GPS receivers periodically report their current 

states to a data centre via GPRS links. Each record has a format <TAXI_ID, TIMESTAMP, 

LONGITUDE, LATITUDE, OCCUPIED>. Intuitively, each sequence of consecutive records where 

the OCCUPIED field constantly equals to 1 is an occupied trip. Figure 34 shows a TAXI_ID and 

TIMESTAMP ordered snippet of a GPS trajectory data file and the blue rectangle represents an 

occupied trip.  
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Figure 34 A snippet of taxi trajectory data that defines a trip 

For our experiments, each such occupied trip defines a trip 𝑇 as follows: the time stamp and the 

GPS point of the first record in the sequence defines the start time and origin of 𝑇, respectively; the 

time stamp and the GPS point of the last record in the sequence defines the end time and destination 

of 𝑇, respectively; the travel time of 𝑇 then equals to the start time minus the end time; the travel 

distance is the road network distance between the origin and destination as obtained via the Google 

Map API. Out of 60 thousand occupied trips extracted from the data set, we selected 39 thousand 

trips which last over 5 minutes. This constituted our experimental pool of trips. The average travel 

time and travel distance of these trips is 12.3 minutes and 6.3 kilometres, respectively.  

We evaluate the DBCSP in all experiments. The benefit of ridesharing is measured by the saving 

in vehicle travel distance. To compute the edge set of the slugging graph, we assume that all 

travelers walk at the same speed, denoted by 𝑊, and always walk along the shortest road path 

between two locations.  

Table 7 Parameter setting in the experiments 

Notation Definition Default Value 

𝑊 travelers’ walking speed 5 km/h 

𝛿 travel time delay threshold 20 minute 

𝐶 vehicle capacity 3 

𝐺 temporal gap between the announcement and trip 

start time  

15 minute 

 

In all the experiments, we assume that each trip is associated with only one traveler and she is 

willing to be either a passenger or driver in the slugging plan. For simplicity, we assume that all 
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trips have the same travel time delay threshold, denoted by 𝛿; and all cars have the same number 

of seats, denoted by 𝐶. Table 7 lists default values for the parameters used in our experiments. 

4.4.2Upper Bound on the DBCSP  

 

Figure 35 An upper bound of the DBCSP 

What is the maximum benefit that can be obtained by slugging? To answer this question, we 

obtain an upper bound on the benefit of a slugging plan for the DBCSP by relaxing either one of 

the two constraints imposed by the definition of slugging plan (see Def. 2). Relaxing Condition (ii) 

and the capacity constraint, we get an upper bound, denoted by 𝐵𝑢𝑝𝑝
1 , by merging each passenger 

trip 𝑇𝑖 into some driver trip 𝑇𝑗 regardless whether or not 𝑇𝑗 has been merged into some other trip 

and regardless whether or not 𝑇𝑗 has any available seat left. Relaxing Condition (i), we get another 

upper bound, denoted by 𝐵𝑢𝑝𝑝
2 , by making each driver trip 𝑇𝑑  collect the maximum benefit 

regardless whether or not any its passenger trip 𝑇𝑝 has been merged into any driver trip other than 

𝑇𝑑 . The smaller value of 𝐵𝑢𝑝𝑝
1  and 𝐵𝑢𝑝𝑝

2  is used as the final upper bound. Figure 35 shows the 
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algorithm that outputs this bound. It is easy to see that the time complexity of the algorithm is 

𝑂(|𝑉|2).  

4.4.3DBCSP With Varying Travel Delay  

First we evaluate the proposed greedy-based heuristics by fixing the vehicle capacity and varying 

the travel time delay threshold. Experiments are performed for various thresholds of travel time 

delay 𝛿 ∈ [5, 20] minutes with an increment of 5 minutes.  

 

Figure 36 DBCSP with varying delay thresholds 

As Figure 36 shows, when the travel time delay threshold is large, both the Greedy-Benefit and 

the Greedy-AVG-Benefit perform consistently close to the upper bound. When  𝛿 = 20, these 

heuristics have a 59% saving while the upper bound is 70%. Given the average distance of these 

trips is 6.3 kilometers and the size of our data set is 39 thousand, the 59% saving in vehicle travel 

distance is 144, 963 kilometers which means the reduction of over 4.5 thousand gallons of gasoline 

and 71 tons of carbon dioxide emission. 

When the travel time delay threshold 𝛿 is small, there is no significant difference between the 

greedy-based heuristics and the upper bound. This is because, with a small 𝛿 , slugging 

opportunities are so rare that the slugging graph is extremely sparse. As a result, the graph admits 

very few possible slugging plans.  
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Figure 37 Visualization of a delay-bounded slugging graph 

For example, Figure 37 (a) and (b) visualize the delay-bounded slugging graph of a subset of trips 

when 𝛿 is 20 and 5 minutes, respectively. The darker the node’s color is, the larger the node’s in-

degree (i.e. the number of incoming edges) is. When 𝛿 is 20 minutes, the graph is weakly connected. 

When 𝛿 is 5 minutes, most edges disappear and the graph is scattered into many disconnected 

components, each of which comprises of at most four nodes. In this case, it is clear that different 

algorithms will make little difference in the resulting slugging plan. 

4.4.4DBCSP with Varying Vehicle Capacity 

 

Figure 38 DBCSP with varying vehicle capacities 

In this experiment, the vehicle capacity varies, i.e. 𝐶 ∈ [2, 5]  while the travel time delay 

threshold is fixed. Figure 38 shows the performance of different heuristics. The result is consistent 
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to that of Figure 36 , i.e., the greedy heuristics perform relatively close to the upper bound 

consistently. In addition, it is shown that the saving percentage saturates as the capacity increases, 

given the travel time delay is bounded. This is because the average number of incoming edges for 

each driver trip in the input graph is small, which can also be observed from Figure 37. Even when 

𝛿 = 20 minutes, as shown in Figure 37 (a), most driver trips have only one or two passenger trips 

that can be merged into them, and the average number of passenger trips for a driver trip is 1.38. 

4.4.5Dynamic DBCSP 

In this experiment, we evaluate the Greedy-Benefit heuristic in a dynamic context. 𝐶 is set to be 

3 and 𝛿 is set to be 15 minutes. We set 𝑓 to be smaller than 𝐺, otherwise many trips will start 

without encountering any computation of a slugging plan.  

Since 𝐺 is 15 minutes, we set the range of 𝑓 to [10, 880] second with an increment of 30 seconds. 

Figure 39 (a) shows a clear trend of decrease in benefit as the value of 𝑓 increases. But the figure 

also clearly shows that the benefit fluctuates locally. To see the fluctuation more clearly, we further 

fine tune the value of 𝑓 within a relative small range. Figure 39 (b) shows the benefit fluctuating as 

decision interval 𝑓 increase from 10 seconds to 100 seconds with an increment of 10 seconds. The 

saving rate reaches the maximum when 𝑓 equals to 40 seconds. 

             

 

Figure 39 Impact of the decision interval 
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Figure 39 can be explained by two conflicting factors. On the one hand, as 𝑓  increases, the 

computation of slugging plans becomes less frequent, so travelers of passenger trips cannot start 

walking until the time of the next computation. Therefore, the wasted time costs many ridesharing 

opportunities and thus decreases the benefit. On the other hand, as 𝑓 increases, the input pool of 

trips for each computation of the slugging plan becomes larger and thus the benefit may increase. 

Figure 39 (a) suggests that the first factor wins the tug-of-war, so we have an overall decreasing 

trend with local fluctuations. It is also revealed from Figure 39 that the saving rate at its peak (i.e. 

𝑓=40 seconds) is about 26.6%. In contrast, the saving rate of the corresponding static problem with 

the same capacity and delay parameters (i.e. 𝐶=3 and 𝛿 = 15 minutes) is 33%.  

4.5Discussion 

We have analysed slugging, an increasingly popular form of ridesharing, probably due to its 

simplicity. Specifically, we have formalized and studied the slugging problem. For the 

unconstrained slugging problem, we have proposed a quadratic algorithm to solve it optimally. We 

prove the NP-completeness of its constrained variants. For the constrained variant, we proposed 

heuristics and evaluated them on a data set consisting of tens of thousands of real trajectories of 

taxi cabs in Shanghai. The heuristics achieved near-optimal travel distance savings. The 

experimental results suggest that the saving in travel distance can reach as much as 59% whereas 

the optimal slugging plan achieves at most 70% savings. Given the size of our data set is 39K and 

the average distance of trips in the data set is 6.3 kilometres, the saving equals to 144,963 kilometres, 

which means the reduction of over 4.5 thousand gallons of gasoline and 71 tons of carbon dioxide 

emission. In addition, for the dynamic slugging problem, we evaluated the impact of the decision 

interval, i.e. how frequently to run the slugging algorithm, on the overall benefit. 

In the future, we are going to refine this work towards a working system by considering and 

modelling other practical individual preferences such as riders’ social preferences [50]. For the 

dynamic slugging problem, we are going to improve the plan calculation algorithm by considering 



101 
 

 

a probabilistic model which looks ahead, i.e. predicts the future announcement of trips. The 

objective function here optimized the overall benefit. It is possible to consider individual trips and 

minimize the walking distance and/or travel time delay of an average passenger trip. These 

extensions will be considered in future work.
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Chapter 5   

Volunteer Transportation Information System 

5.1 Introduction 

User Generated Content (UGC), i.e., users voluntarily providing information, has the promise 

to revolutionize information in transportation. Traditionally, information on traffic conditions 

(congestion, incidents and so on) has been available from road sensors such as inductive loop 

detectors that are embedded in the pavement of highways or CCTV’s above roads or in sensor 

systems that are increasingly being deployed on transit vehicles such as trains and buses. The 

number of sensors in a car has also rapidly increased, beyond traditional in-vehicle sensors, to those 

that give automobiles situational awareness.  

With the proliferation of smartphones, cell phones and other mobile devices, transportation users 

have a unique opportunity to become a part of the transportation sensor network. Such UGC may 

arise from two types of sensing activities: 1) opportunistic sensing where, for example, individual 

drivers, pedestrians, transit users or bicyclists passively volunteer their location and time at a 

location by means of sensors in mobile devices that they are carrying; or 2) participatory sensing, 

where information is actively volunteered, for example, by entering information by text or voice, 

about events such as incidents or delays that they have encountered while traveling.  

Either way, such sensing systems provide the opportunity to generate unique content about the 

state of the transportation system. This is important because relevant information is often generated 

by regular travelers in a mobile environment. Mobile social networks, where individuals with 

similar interests share information with one another using the mobile phone, have been studied in 

the literature (see e.g., [58, 82]), mobile social networks targeted to transportation (which we will 
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call mobile communities for transportation) have been the subject of little to no attention to date. 

Examples of mobile communities for transportation include the following: 

1) Mobile communities for travel information: In such communities, participants publish and 

subscribe to information on travel congestion, delays, weather effects, and incidents such 

as accidents, public transportation delays, detours, service disruptions due to repair and 

maintenance work in train and bus stations and stops, and other factors. 

2) Mobile communities integrating health and fitness concerns with transportation: In such 

communities, participants may share with subscribers information on opportunities to bike 

instead of drive, or to alight from a bus a few stops away in a particular area so that they 

can walk to their final destination, and also connect a user to biking or walking partners in 

such situations so that daily fitness goals can be met within a community environment. 

3) Mobile communities for safe mobility: A major deterrent to non-motorized or public 

transportation use in urban areas is personal safety concerns. This type of mobile 

community for transportation may be targeted to publishing information on safe use of 

multimodal transportation systems, ranging from sharing safe routes between two points 

to bike or walk or to find a walking buddy in real-time from a transit station or stop. Parents 

in a neighborhood may be a part of a mobile social network to share information on the 

availability of an adult to walk with a group of school-children from home to a public 

transportation station in a high-crime neighborhood or to a neighborhood park, when 

crossing unsafe streets is required along the way. 

4) Mobile communities for shared resource transportation: Mobile communities for 

transportation may also form around demand-responsive transportation systems such as 

dynamic ride-sharing or even station car sharing (where cars for hire may be used from a 

transit station to an employment location that is otherwise not accessible). Opportunities 

may be available to share information on bike-sharing and car-sharing as well. 
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We propose to study several social and technical issues associated with mobile transportation 

communities, with the ultimate goal of improved system design. As such systems grow in 

complexity, interconnectedness, heterogeneous users with myriad socio-demographic and 

geographic distribution, we may increasingly face unexpected emergent behaviors that are not 

easily predictable from the behavior of individual publishers/subscribers. As proof of concept, we 

will develop a technology, called the Volunteered Transportation Information System (VTIS), 

which will serve as a basis to understand the social and technical issues to be investigated. The 

proposal lays out the major social and technical issues to be investigated and the elements of the 

VTIS to be used as part of the study. 

The social aspects of building and sustaining such communities pose several research questions. 

How can users be recruited? How would they learn about the system, how to use it, and what its 

benefits would be? How would interactions among agents evolve over time? Would a certain level 

of users be necessary before the benefits of the systems become evident? Are there unanticipated 

consequences such as the breakdown of such systems during large-scale emergencies or evacuation 

situations? What are the fundamental limits, barriers, and saturation levels that may set in with 

“information overload” with these systems? These questions point to the fact that studying mobile 

communities for transportation may lead to insights about emergent intelligence as a property of a 

group of agents rather than of individual constituent agents, whereby intelligent behavior emerges 

from the interaction between agents. 

A major distinguishing feature of mobile communities for transportation are the speeds at which 

publications and subscriptions need to work, given the speeds at which transportation systems work. 

Observe that much of the information may decay to the extent that it is no longer valid, useful or 

reliable. Speeds also have implications on Human-Computer Interaction aspects of the technologies 

supporting such mobility communities since the driving or travel environment may pose difficulties 

to publish information, compared to if the person is inside a building or in a stationary situation. 
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Observe however, that publications may be entered by speaking into smartphones equipped with 

speech-to-text software such as Siri. 

Concerns of trust management take on a heightened tone, as the prospects of personal harm and 

safety risks can be substantial, if the information is wrong or malicious. Questions of incentives 

can also be unique in such situations because the benefit to the subscriber is not always obvious 

(for example, what would motivate a person to report a delay, which would benefit others and not 

oneself, since the person is already stuck in traffic)?    

The approach taken in this proposal, to use mobile communities for transportation as a case study 

to study socially intelligent computing has three benefits. First, research into the social and 

technical aspects of such communities advances the state of research in online and mobile 

communities and identifies how emergent behaviors, interactions among agents, reaching critical 

mass, and related properties, may be able to inform the design of future systems. Second, research 

into interactions among users and with the technologies supporting mobile transportation 

communities will advance mobile technologies, especially where higher speeds, distractions, and 

issues of user cognition in complex real-world environments are concerned. Third, fundamental 

research into user generated content by mobile transportation communities will lead to 

computationally efficient methods to retrieve useful intelligence from unprecedented amounts of 

greatly heterogeneous information streams.  

 Social media is among one of today’s most powerful methods of rapidly spreading news and 

key information to a large population ([54]). In fact, half of all U.S. adults are now on social 

networks such as Facebook and Twitter. This implies a tremendous potential reachability when 

using social media to share information. In this project we will build our proof concept prototype 

(i.e., VTIS) upon existing social media. VTIS is dedicated for the sharing of real-time traveler 

information such as traffic conditions, accidents, road maintenance, parking spaces availability, 

special events, weather, etc. VTIS will exploit the capability of social media to scale to millions of 

users and constant streams of publications/subscriptions. This scalability would be expensive to 
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reach if the system was to be built from scratch. Yet there are several research issues that need to 

be solved when using social media to share traveler information, which we will study in this project. 

These research issues include: 

1) Semantic structuring of social networks. Find proper mapping between the organization 

of social networks and the spatio-temporal domains that are of interest to travelers.  

2) Trust management. How to distinguish between truthful and false publications? The trust 

management problem remains an open issue for Intelligent Transportation System (ITS) 

applications as well as traditional on-line e-business applications such as eBay and Amazon. 

We will investigate and review existing work on dealing with data trust issues and adapt 

and apply available techniques to VTIS. 

3) Publication Ranking. Travelers are presumably on the move all the time. For the sake of 

safety, it is desirable to minimize the interactions required between the traveler and VTIS. 

One way to minimize interactions is to rank publications such that the most relevant ones 

are presented to a user for viewing, commenting, or editing. 

4) Incentive Mechanisms. We will study incentive mechanisms to stimulate users to 

participate in the social networks. 

In general, we believe that social media has potential to serve as a platform for building mobile 

collaborative communities. In addition to transportation, mobile collaborative communities can be 

formed in other application domains. For example, the customers in a shopping center may form a 

community to share coupon information, or the attendees in a conference may form a community 

to find the match making of expertise and interests, and so on. The technologies that we will 

develop in this project, including building, sustaining, and studying the evolving growth dynamics 

and understanding emergent intelligence in mobile communities for transportation will lend 

approaches to general mobile collaborative communities. 
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5.2 Related Work 

5.2.1 Publish/Subscribe 

As a communication paradigm, publish/subscribe mode has been studied well in both mobile 

P2P environment and Internet-based environment. [81] proposes a publish/subscribe 

implementation for MANETs. In the implementation, subscriptions are only deployed locally due 

to the fact that the paths utilized by the subscription forwarding strategy in server overlay networks 

quickly become stale in a mobile environment. When receiving an event from a neighbor, a mobile 

node matches the event to its own subscriptions and broadcasts the event, as long as it is still valid 

given the current location and time. [56, 98] propose using a tree structure to implement 

publish/subscribe in MANETs. But their approaches assume that there is only one publisher in the 

network. Triantafillou and Aekaterinidis [108] present a different approach to support P2P 

applications via building a pub/sub middleware over a structured P2P network such as Chord [106]. 

But that solution is restricted to an environment of static peers.  

The above references all implement publish/subscribe in a fully distributed manner. 

Publish/Subscribe in VTI exploits Twitter as the intermediate broker between publishers and 

subscribers and thus more resembles existing Internet-based publish/subscribe applications, such 

as RSS, Atom and systems introduced in [43, 103, 128], where all of them put a server between 

publishers and subscribers. Existing Internet-based publish/subscribe applications generally fall 

into two categories, namely topic based and content based [57]. In topic based systems, subscribers 

express interests by simply joining a group defined by a central subject. Whereas content based 

systems provide much more flexibility in expressing subscribers’ interests by allowing them to 

specify predicates over a set of attributes. As a result, arbitrary queries over the events content can 

be easily posed by subscribers. However, VTI’s publish/subscribe implementation is tightly 

integrated with Twitter and different from either approach in Internet-based publish/subscribe 

applications.   
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5.2.2  Toponym Recognition and Information Extraction 

The VTI project is relevant to the field of information extraction, especially to literature on 

toponym recognition. Toponym recognition is necessary for location based services such as VTI 

where input data, e.g. publications, may be in an unstructed format. There have been a couple of 

works [67, 68, 69] on recognizing and resolving toponyms in text. 

5.2.3 Route Planer 

Route planners are relevant to the project because they provide services which allow subscribers 

to define routes. Route planners available today generally falls into two categories: form-based and 

map-based.  Many transportation agencies [1, 3, 7] provide web sites that allow users to plan a trip 

using the public transportation system.  They tend to allow the specification of time constraints, 

mode constraints (some include information for the auto network as well), preferences for walking 

distance, and how the trip should be optimized (e.g., duration vs. number of transfers).  If a valid 

trip can be constructed the user is presented with an itinerary for its execution. A wide range of 

algorithms [15, 23, 72] supporting these route queries have been developed to account for the 

problems with modal transfers, schedules, and cost computation.   

The second common class of planning tools has map-based graphical user interfaces [22, 85].  

Users may enter their origin and destination via either a form or by clicking points on a map. Unlike 

most form-based planners, some map-based sites allow for the insertion of multiple stops along the 

trip and may include some real-time traffic information.   

5.2.4 Data Trust in Intelligent Transportation System and Internet 

There have been a few works on data trust management in ITS. [29, 38] describe the opinion 

piggybacking approach, i.e. forwarding peers attaching their trust opinions on the forwarded 

message, to allow peers to evaluate the trustworthiness of messages via aggregating trustworthiness 

values provided by previous forwarding peers. Similar to the piggybacking approach, [111] 

validates the message by considering other peers’ opinions on the message. However, here a peer 
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itself chooses the opinion providers rather than accepting opinions from the forwarding peers. 

Despite the subtle differences in technique details, these three papers share the high level approach, 

i.e. validating data based on reputation systems. In contrast, [95] exploit data aggregation to 

validate received messages. All these existing works consider the data trust issue in a peer-to-peer 

based environment. In other words, they assume a pure distributed environment with no central 

server exists and peers have direct interactions between themselves.  

In contrast, the VTI application has a client-server architecture where the VTI application serves 

as the brokers between all travelers. From this perspective, data trust problem in the VTI application 

has a closer nature to that of applications built around Internet. Existing techniques proposed in 

centralized applications such as the beta reputation system [60], eBay [97] and Amazon [49] are 

supposed to be adapted and applied to the VTI application.  

5.2.5 Reports Prioritizing 

Publication ranking is relevant to the existing work on prioritizing reports for mobile P2P query 

processing. In [99] the rank of a report is a weighted sum of its popularity, reliability, and size. The 

paper does not discuss how the weights are determined. In [127] reports are ranked such that the 

number of replicas of each report is proportional to the square root of its access frequency. 

According to [32], such a distribution of replicas has the optimal replication performance in 

minimizing the query cost. In [85] the rank of a report is computed based on its popularity, age, 

and distance to its producer. In [34, 89, 126] reports are ranked based on an abstract utility function 

which is to be defined by specific applications. 

5.2.6 Incentive Mechanism 

Motivation behind volunteer participations in collaborative Web-based efforts such as Open 

Street Map, Wikipedia, etc., has been studied in the field of Geographic Information System (GIS), 

and citizen science. Specifically, Coleman introduces the concept of Volunteered Geographic 

Information (VGI), GIS systems built by volunteer contributors, and analyzes the motivations of 
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these contributors. [44] study what drives people to volunteer contribute and edit contents on 

Wikipedia. 

Incentive mechanisms have also been studied in the context of mobile ad-hoc networks [24, 131]. 

These works propose stimulation mechanism for mobile nodes to cooperate in forwarding 

information to other nodes. Incentive mechanisms have also been studied for static peer-to-peer 

networks. In this case the static nature of the problem is often relied upon heavily, for example, by 

“punishing” a user that is found non-cooperative over time. 

There have been many efforts in providing incentives done by social networks and location-

based services. For example, many applications such as Facebook, Google Latitude, Yelp , etc. 

provides the so-called “check-in” feature which rewards virtual points to users if they have visited 

some place of interest recently. These virtual points are often used to exchange or earn “honors” or 

“titles” defined by the application, e.g. badges and mayorship in Foursquare, moods in Waze [8], 

etc. 

5.3 Architecture 

The publish/subscribe (pub/sub) system consists of a set U of users and a set C of accounts. 

Each account c is associated with a pair (e, t) where t is a period of time and e is an entity such as 

a bus route, a train station, a road link, an intersection, etc. t is referred to as the temporal 

coverage of c and e is referred to as the spatial coverage of c. From time to time, each user may 

send publications to accounts where each publication describes an event that the user observes. 

An account only accepts publications during its temporal coverage. Each publication pertains to 

one or more entities and is always sent to the accounts that cover these entities. For example, a 

publication may report a car accident and thus it is sent to the account that covers the road link 

where the car accident is observed. For another example, a publication may report the delay of a 

subway line and thus it is sent to the account that covers the subway line. Each user may 
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subscribe to and unsubscribe to accounts. A publication that is sent to an account c is 

disseminated to all the users that are currently subscribed to c.  

The temporal coverage is useful when the account is supposed to be active for a certain period 

of time. For example, we may create a “Halsted, rush-hour” account that is dedicated for publishing 

the traffic condition of Halsted during rush hours. In general, each account corresponds to a “cube” 

in the spatio-temporal space, as illustrated in Figure 40. 

  

 

Figure 40 An example of spatio-temporal account 

Building the pub/sub system from scratch is difficult and tremendously resource consuming, 

particularly because the system has to scale to millions of users and accounts. On the other hand, 

existing social media such as Twitter is already well handling this size of publish/subscribe 

problem. In this project we will take the advantage of the capability of existing social media and 

build mobile collaborative communities upon it.  

5.4 Implementation 

In this section we discuss how we plan to build the VTIS prototype. VTIS is a specialized 

pub/sub system dedicated for sharing of real-time traveler information among travelers.  

9:00am

9:30am
account cube

spatio-coverage

temporal-coverage
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5.4.1 Integration with Twitter 

As indicated earlier, we intend to exploit the existing social media as the hosting environment 

for VTIS. Among all the existing popular social media, we have determined that Twitter is the most 

promising candidate for our purpose. Twitter is an online social networking and micro-

blogging service that enables its users to send and read short text-based short posts. An account, 

i.e. a user, of Twitter can be a person, a group, a system, an application or any meaningful 

abstraction. Each account is identified by a unique name. Each account A can follow other accounts 

which are called the followings of A. A can also be followed by other accounts, which are called 

the followers of A. Accounts communicate with each other via tweets, each of which is a short 

unstructured text no longer than 140 characters. Each account creates a new tweet by updating its 

status. Twitter is designed as a broadcast medium. Thus each tweet is visible to and can be 

retweeted, i.e. reposted as a status update, by any other account. Account-To-Account 

communication is also supported by Twitter via Direct Message (DM) and @-tweets. DM allows 

one account to send messages to another account via a private channel. In other words, a DM is 

only visible to its sender and receiver accounts. @-tweets are tweets which include a leading “@” 

symbol to the intended account (e.g. @VTIS). @-tweets allow an account to inform a tweet to 

specified accounts directly. Unlike DM, @-tweets are public, i.e. remain visible to all other 

accounts.  

We consider setting up an array of accounts for VTIS on Twitter, which are referred as VTIS-

accounts. The name for each VTIS-account is textually related to VTIS, e.g. having VTIS as the 

common prefix. Regular Twitter accounts are able to follow any particular VTIS-account. By 

following one or multiple VTIS-accounts, regular Twitter accounts essentially make a subscription. 

For instance, suppose that we have a VTIS-account named VTIS_Bus12_East, any account 

following VTIS_Bus12_East will receive information related to CTA Bus Route 12, east bound, 

which is equivalent to the effect possibly achieved by explicitly subscribing to Bus 12 information. 



113 
 

 

In addition, the subscription by following VTIS-accounts provides the desirable broadcast delivery 

in nature. That is to say, if a VTIS-account once posts a tweet, then each of its followers gets the 

message. Symmetric to subscription, each regular account is able to publish to a most relevant 

VTIS-account by mentioning it in the tweets. As it can be seen, a publish/subscribe mechanism is 

outlined within the context of Twitter.  

     Specifically, we plan to create the VTIS-accounts using the following scheme. For private 

transport information, there is a one VTIS-account for each road link. A publication that reports a 

private transport event E is automatically assigned to VTIS-account X, where E is located on the 

road link represented by X. For example, publication “there is severe congestion on Halsted St. 

from Roosevelt St. to 18th St.” will be assigned to VTIS accounts that correspond to Halsted St. 

from Roosevelt Street to 18th Street. Unlike private traveler information, public traveler information 

is usually queried or indexed by station rather than location. Thus, each station in any public 

transport mode is mapped to a VTIS-account, e.g. VTIS_BlueLine_Jackson, 

VTIS_Bus12_Rooselvet, etc. A publication that reports public transport information regarding a 

station S is assigned to the VTIS-account that corresponds to S. For example, publication “north 

exit of Jackson Station of Blue Line is closed” will be assigned to VTIS_BlueLine_Jackson. A 

publication that reports public transport information regarding a vehicle V is assigned to VTIS-

accounts that correspond to stations through which V is going to pass in near future. For example, 

publication “Blue line train is late at Jackson Station for 5 minutes” will be assigned to all VTIS-

accounts that correspond to the stations of Blue Line that are downstream relative to Jackson 

Station. Figure 2 shows an example scenario in which traveler information is shared among 

travelers via Twitter. 

Each private or public route can be considered as a connected sequence of road links or transfer 

stations respectively. Since each subscription is a route, we can match a subscription with 

publications by associating the subscription to relevant VTIS-accounts. In other words, when a 

subscriber submits a route R, VTIS will automatically make the subscriber follow the VTIS-
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accounts that correspond to the road links or/and stations covered by the route R. By this means, 

the subscriber can easily receive real-time traveler information pertaining to his/her defined route. 

 

Figure 41 An example scenario for sharing traveler information in VTIS via Twitter 

5.4.2 Publication and Subscription Format 

In this subsection, we specify publication and subscription formats in the VTIS system. For the 

purpose of publishing, natural language would be the ideal approach for most travelers due to 

simplicity. We will exploit current available speech recognition software to convert spoken words 

into text. Each publication describes certain specific type of traveler information. Each type of 

traveler information usually has a frequently used bag of keywords which together describe the 

essential detail constraints placed on the information. All types and their corresponding bag of 

keywords (separated by comma) are listed in Table 8. 

 

A traveler submits a  
publication at Clinton 
Station.

VTI vti

VTIS-account BlueLine_Clinton receives the 
publication.

VTIS assigns this publication to the 
corresponding  VTIS-accounts.  In this 
case, all  downstream stations will receive 
the publication.

Each 
green 
area is 
mapped 
to a  
VTIS-
account 
on 
Twitter.

A traveler who has 
subscribed to 
BlueLine_Clinton will 
receive the publication.
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Table 8 Event Types, their associated key words and examples 

CATEGORY TYPE KEYWORDS 

([] indicates 

optional) 

EXAMPLE INSTANCE EXAMPLE INSTANCE 

INTERPRETED IN NATURAL 

LANGUAGE 

Public 

Traveler 

Information 

DELAY [Mode],  

Route, 

Bound,  

Stop, 

[+]Delay 

Bus, 12, East, 

Morgan&Roosevelet, 10; 

Train, Blue Line, 

O’Hare, UIC&Halsted, 

+5; 

CTA bus Route 12 east bound is  10 

mintues late at 

Morgan&Roosevelet; 

Blue Line, O’Hare bound is already 

5 minutes late at UIC stop and still 

does not appear 

CLOSIN

G 

Stop,  

[End_Time] 

Blue Line UIC-Halsted, 

Today 3 pm; 

Blue Line UIC stop is closed until 

today 3pm. 

EMERG

ENCY 

[Mode],  

Route,  

[Bound],  

Location,  

Description 

Bus, 12, East, Morgan, a 

passenger blacked out; 

Train, Blue Line, 

O’Hare, Jackson, robbery 

crime 

A passenger blacked out on Bus 

Route 12 east bound at Morgan 

street; 

A robbery crime happens on Blue 

Line to O’Hare at Jackson 

Private 

Traveler 

Information 

ACCIDE

NT 

Location, 

Description 

I94 Exit 23, a rear-end 

car accident 

a rear-end car accident happens at 

I94 Exit 23 

CONST

RUCTIO

N 

Road_Segment, 

[End_Time] 

Lakeshore Drive 

(Washington to 

Chicago), 11/11/11; 

Road maintenance on Lakeshore 

Drive from Washington to Chicago 

until 11/11/11 

CONGE

STION 

Road_Segment, 

Severe/Heavy/M

oderate 

Lakeshore Drive 

(Washington to 

Chicago), 

Moderate 

Traffic on Lakeshore Drive from 

Washington to Chicago experiences 

a moderate congestion 

POTHO

LE 

Road_Segment, 

Severe/Heavy/M

oderate 

Taylor between Halsted 

and Ashland, Severe 

Taylor St. between Halsted and 

Ashland has a severe pothole 

problem. 

LIGHT Intersection Taylor&Morgan Traffic lights at intersection 

Taylor&Morgan is down 

EVENT Event_Name, 

[Description], 

Location,  

[Duration] 

Cubs game, Baseball 

game, Cellular Field, 7-

11 pm tonight 

There is a Cubs baseball game at 

Cellular Field tonight 7-11 pm. 

WEATH

ER 

Weather, Area, 

[Duration] 

Blizzard, North Chicago, 

tonight 8-midnight 

There will be a blizzard covering 

Northern Chicago tonight from 8-

12pm 

PARKIN

G 

Parking_Lot_Na

me, 

0/1/2/3 

UIC Parking Lot 5, 3 UIC Parking Lot 5 is at the fullest 

level. 

POLICE Location Halsted  Street Police cars appear on Halsted Street 

CAMER

AS 

Intersection Halsted&Roosevelt Camera installed at 

Halsted&Roosevelt 

 

We postulate that the most common subscription from travelers is a route. Travelers can define 

a route in VTIS by 2 steps. Firstly a traveler inputs the origin and destination (OD) pair of a route 

via the interface provided by VTIS. The VTIS system then will invoke a navigator or trip planner 
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service to calculate possible route choices for the given OD pair. The traveler completes defining 

a route by selecting one of them. Figure 42 shows a gallery of the screenshots of the current mobile 

clients for VTIS. 

   

   

Figure 42 A gallery of the screenshots of the current mobile clients for VTIS 

5.4.3 Evaluation of the Prototype 

We expect that some students will provide us first-hand user experiences as well as comments 

and feedback on both the functionally and the user interface of the application. The source code 

will be released to the students as well. And they are strongly encouraged to improve the prototype 

implementation by discovering and eliminating bugs.   

At second stage, we plan to release our application to the public via App stores, such as Android 

Market or IPhone App store. Average travelers are then accessible to our application and help us 
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improve it. We will explore piggybacking VTIS on an existing system developed at UIC, namely 

TransitGenie (see [22]). TransitGenie provides routing on public transportation, and has thousands 

of existing users. 
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Chapter 6   

UPDetector: Sensing Parking/Unparking Activities Using Smartphones 

6.1 Introduction 

Vacant parking spaces are scarce resources in many urban areas. Finding vacant parking spaces 

in the crowded urban environment can be very frustrating. In addition, cruising for a vacant parking 

space slows down traffic, causes traffic jams, and pollutes the environment. It is reported that 

vehicles searching for parking in downtown Los Angeles created 38 trips around the world, 

producing 730 tons of carbon dioxide and burning 47,000 gallons of gas in one year [102].  

Real-time parking space availability information is of great value in alleviating this problem. By 

feeding such information to navigation systems, drivers can be directly led to an available parking 

space. Existing approaches of generating/collecting real-time parking spaces availability 

information can be classified into four categories: (i) infrastructure based; (ii) probe vehicle based; 

(iii) prediction based; and (iv) participatory sensing based.  

An infrastructure based approach requires installing sensors under the pavement (e.g. SFPark 

[4] project in San Francisco and StreetLine sensors). This is expensive to implement and maintain. 

For example, the SFPark project costs $23M. Furthermore, the sensors tend to malfunction in 

adverse weather conditions, e.g. when covered by mud or snow.  

A probe vehicle based approach [80] uses vehicles equipped with inexpensive sensors such as 

ultrasonic sensors to scan the street. To provide real-time availability information, a probe vehicle 

needs to scan the same street repeatedly; and to cover large areas, multiple vehicles need to scan 

different streets concurrently. Thus, this approach incurs a high cost and, if dedicated vehicles are 

used, introduces additional traffic.  
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A prediction based approach focuses on inferring the availability information by combing 

historical parking information with parking activities detected in real-time. In [5], authors use 

Kalman filter to integrate the historical parking availability information with real-time 

parking/unparking activities detected by smartphones to infer the current parking availability. This 

approach relies on other approaches to collect real-time parking slot availability information. Some 

indicators of parking are mentioned in [104], but a comprehensive list and fusion methods are not 

provided. 

Participatory sensing based approach exploits the sensors in smartphones to detect 

parking/unparking activities. We design and implement an energy-efficient mobile App called 

Unparking/Parking detector (UPDetector) that effectively detects parking and unparking activities 

by analyzing and fusing the data of multiple sensors embedded in smartphones. Specifically, the 

contributions of this section include: 

 We propose several indicators, each associated with one or more smartphone sensors, for 

detecting parking/unparking activities. These indicators cover both paid and free parking 

scenarios. For the purpose of energy conservation, we distinguish between periodical and 

triggered indicators. 

 We propose a probabilistic method to fuse features output by different indicators. These 

indicators are asynchronous, i.e. they output feature-vectors at different times. The proposed 

fusion method is proved to have a desirable reinforcement property. The fusion method can be 

applied to inferring other high-level human activities that are characterized by multiple 

asynchronous indicators. For example, detecting if a driver is fueling at a gas station is such an 

activity.  

 The proposed detection method works regardless how the phone is placed, e.g. in the shirt 

pocket or in a handbag. 
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 Our design of UPDetector reduces the usage of GPS to save power. We evaluate its energy-

consumption via experiments.  

The rest of this section is organized as follows. In Sec. 6.2, we introduce indicators and describe 

how to fuse features output by different indicators. Next we detail the features and implementation 

of individual indicators in Sec. 6.3. In Sec. 6.4 we conduct experiments to show performances of 

the implemented UPDetector App. Related work is presented in Sec. 6.5, and in sec.VI we conclude 

and discuss the future work. 

6.2 Indicators and Indicator Fusion 

In this section, we first propose a list of indicators in subsection 6.2.1. Then, in subsection 6.2.2, 

we divide the indicators into two types, the periodical and the triggered indicators. Finally, we 

propose a fusion method in subsection 6.2.3. 

6.2.1 Preliminaries on Indicators 

An indicator is an event that reveals some hint or clue of a parking or an unparking activity. For 

example, one indicator for unparking is that a person first walks then drives. But this indicator 

cannot distinguish a passenger from a driver. From this perspective, a stronger indicator for 

unparking is that the phone is connected with the car via Bluetooth since in general a passenger is 

less likely than a driver to connect to the car via Bluetooth. Similarly, Bluetooth disconnection from 

the car is an indicator for parking. Another exemplary indicator for parking is that a person walks 

towards a roadside pay box and then walks back to a car. Note that this pay-at-street-parking 

indicator is complex enough to be considered an activity by itself and thus can be decomposed into 

sub-indictors in order to be implemented.  

Table 9 gives a list of indicators, where the second column states whether the indicator is for 

parking, unparking or both activities; and the last column lists the sensors that are required to 

implement the indicator.  
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Indicators output vectors. Each vector consists of multiple scalar values, each of which is called 

a feature. Vectors of the same indicator have the same set of features. For example, the features of 

the acoustic sound indicator include Zero Crossing, Spectral Flux [6]. Sec. 6.3 details the features 

of a subset of the indicators listed here. 

Table 9 Example indicators of parking/unparking activities 

Indicator Activity Explanation Sensors 

change in the 

variance of 

the 

acceleration 

(CIV) 

both In parking activities, a person first drives and then walks. 

Since walking often has a large variance in acceleration 

while driving has a small variance, this transition leads to 

a sudden increase in the variance of acceleration. 

Likewise, in unparking activities, the variance of 

acceleration usually suddenly decreases. 

accelerometer 

phone 

connected or 

disconnected 

to the car via 

Bluetooth 

both The phone is connected/disconnected to a car via 

Bluetooth. The App asks the user to identify the car 

Bluetooth device from a list of available Bluetooth 

devices. This request is only done once. 

Bluetooth 

motion-state 

transition 

(MST) 

both A parking activity corresponds to a transition from the 

driving state to the walking state; and an unparking activity 

corresponds to a transition from the walking state to the 

driving state. 

accelerometer 

acoustic 

signals 

both The sounds of human-vehicle interactions that are 

typically made only during parking or unparking activities. 

Example interactions include turn on/off the vehicle 

engine, open and close the vehicle doors.  

microphone 

car backing both Backing the car is common in parking/unparking 

activities. It is detected by sensing a sudden reverse in the 

direction of acceleration. 

accelerometer 

and gyro 

pay at street-

parking box 

parking In the paid street parking scenarios, a driver often needs to 

walk to a pay box to buy a parking ticket and walk back to 

the car to place the ticket in the car. 

accelerometer

, gyro and 

GPS 

parking 

payment 

mobile 

App’s  

parking Parking payment mobile App’s such as ParkMobile[7] and 

PayByPhone[8] give a hint of a possible parking activity 

when such an App is brought to the foreground of the 

smartphone by a user.  

 

Wi-Fi 

signature [9] 

unparki

ng 

If the parking location is known, a Wi-Fi signature can be 

created for it and then used to detect an unparking activity 

by periodically comparing the signature of the current 

location to that of the known parking location. 

wireless 

interface 
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6.2.2 Periodical and Triggered Indicators 

Indicators that rely only on energy-efficient sensors (e.g. the accelerometer) output a vector 

periodically. Such indicators are referred to as periodical indicators. For example, both the Change-

In-Variance indicator and the motion state transition indicator are periodical indicators.  

Indicators that involve energy-hungry sensors such as the microphone, are not periodically 

monitored for the purpose of conserving energy. They are triggered to output only when the parking 

or unparking becomes the hypothesis, i.e. indicated by the periodical vectors as the most likely 

outcome among the three, namely parking, unparking, none. We refer to such indicators as 

triggered indicators. For example, the engine- start sound is a triggered indicator. That is, only 

when the periodical vectors indicate unparking as the most likely outcome, the microphone starts 

to record a few seconds and output a vector of features of the recorded sound sample. Triggered 

indicators can be considered auxiliary evidences to verify or refute the hypothesis proposed by the 

periodical indicators. 

Table 10 lists the indicators described in Table 9 with their corresponding category, i.e. 

periodical or triggered. The table shows the output frequency for the periodical indicators; and for 

the triggered indicators, it shows which hypotheses, i.e. parking, unparking or both, trigger the 

indicator. 

Table 10 List of categorized indicators     

Indicator Type 

sudden change in the 

variance of acceleration 

periodical: once every few seconds  

phone connected or 

disconnected via Bluetooth 

periodical: frequency at which the smartphone 

monitors the Bluetooth connection 

motion state transition periodical: once every  few seconds 

acoustic signals triggered: by parking and unparking hypotheses 

car backing  periodical (only when the user at in_vehicle state): 

once every a few seconds 

pay at street-parking  triggered: by parking hypothesis 

parking payment mobile 

App’s  

periodical: frequency at which the smartphone 

monitors the foreground App  
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Wi-Fi signature[9] periodical: compute the Wi-Fi signature at certain 

frequency and compare it to the signature of the 

parking location 

6.2.3 Indicator Fusion 

In this section, we first describe the proposed fusion method. Then we prove that our fusion 

method boosts the confidence in the detected result when compared to a single indicator. 

6.2.3.1 Proposed Fusion Method 

Whenever some indicator outputs a vector, we need to calculate the probability for each of the 

three possible outcomes, i.e. parking, unparking, and none, denoted by 𝑂1, 𝑂2, 𝑂3, respectively. Let 

𝑑 be the average duration of a parking/unparking activity (e.g. one minute). Assume that at time 

point 𝑡 a vector 𝑃 of periodical indicator I is generated. We first collect 𝑃 and the latest vector 𝑃′ 

of every periodical indicator other than I, (assuming that vector 𝑃′ is generated no earlier than time 

point 𝑡-𝑑) into a vector set 𝑆. Each indicator is considered independent and thus the vectors in 𝑆 

are independent. Define fusion set as the set of independent vectors to be fused. 𝑆 is an example 

fusion set. Therefore, we can compute the probability 𝑃(𝑂𝑖|𝑆), i=1,2,3 using Eq. (6.1) below. The 

calculation of the term 𝑃(𝑋|𝑂𝑖) and 𝑃(𝑂𝑖) are detailed in subsections b) and c) respectively.   

              𝑃(𝑂𝑖|𝑆) =  ∏ 𝑃(𝑋|𝑂𝑖  )𝑋∈𝑆 ∗ 𝑃(𝑂𝑖)/𝑃(𝑆)      (6.1) 

If none is the most likely outcome, then no indicator is triggered and thus no parking or 

unparking activity is detected. Otherwise, the most likely outcome (i.e. either parking or 

unparking), denoted by 𝑂ℎ , becomes the hypothesis, and invokes triggered indicators. Each 

triggered indicator outputs one vector. Denote such triggered vectors by 𝑅1, 𝑅2,…, 𝑅𝑚, where 𝑅𝑖 

is generated earlier than 𝑅𝑗 for 𝑖 < 𝑗. Then the hypothesis 𝑂ℎ is tested in the following way. Let ℛ𝑗 

the set of vectors including the triggered vector 𝑅𝑗  and all triggered vectors that are generated 

before 𝑅𝑗 and the periodical vector set 𝑆 that proposes the hypothesis, i.e. ℛ𝑗 = 𝑆 ∪ {𝑅𝑖|𝑖 ≤ 𝑗, 𝑖 ∈

[1, 𝑚]}. Whenever vector 𝑅𝑗 is generated, we use Eq. (1) to calculate the probability for all three 
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outcomes, where set 𝑆 is replaced by set ℛ𝑗. That is, ℛ𝑗is a fusion set. Then we normalize the 

calculated probabilities, denoted by 𝑃𝑁(𝑂𝑖|ℛ𝑗), using Eq. (6.2).  

 𝑃𝑁(𝑂𝑖|ℛ𝑗) =   
∏ 𝑃(𝑋|𝑂𝑖)𝑋∈ℛ𝑗

∗𝑃(𝑂𝑖)

∑ (∏ 𝑃(𝑋|𝑂𝑖)𝑋∈ℛ𝑗
∗𝑃(𝑂𝑖))3

𝑖=1

, 𝑖 = 1,2,3       (6.2) 

We set a threshold 𝑇 ∈ (0, 1), referred to as the detection threshold, such that an activity of the 

hypothesis outcome, i.e. parking or unparking, is considered detected only when the normalized 

probability of the hypothesis is above 𝑇 , i.e. 𝑃𝑁(𝑂ℎ|ℛ𝑗) ≥ 𝑇 . Note that once a parking or an 

unparking activity is detected, we say that hypothesis 𝑂ℎ is verified by vector set ℛ𝑗. Therefore, 

there is no need to consider all triggered vectors that are generated after 𝑅𝑗, i.e. 𝑅𝑘, 𝑘 = 𝑗 + 1, 𝑗 +

2, … 𝑚.  

Multiple detections of the same activity: It is possible that one parking/unparking activity is 

detected multiple times by some indicator (e.g. the CIV indicator) because the activity lasts a period 

in which the indicator outputs multiple times. If so, we consider all detected activities of the same 

type (i.e. parking or unparking) within a short period (e.g. half a minute) as a single activity. 

a) Localization Process 

A parking or unparking activity needs to be associated with the time and location of the activity. 

To save energy, the App only invokes the localization process when it is necessary. The timing for 

localization could be either when a hypothesis is proposed (by the periodical vectors) or when a 

hypothesis is confirmed. If the location is retrieved at the time when a hypothesis is proposed, then 

the location is cached upon retrieval, and consumed if later the hypothesis is confirmed.  

Define the temporal interval from the time when a parking/unparking activity happens to the 

time when a location is retrieved for the activity as the delay of localozation, or simply, the delay. 

Obviously the smaller the delay is, the closer the retrieved location is to the true location where the 

activity happens. Thus, it is better to invoke the localization process at the time when a hypothesis 

is proposed instead of confirmed since it leads to a smaller delay. 
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The App uses the following localization process. A location fix 𝐿1  is retrieved via the 

smartphone localization API (e.g. in Android, the localization API intelligently chooses the best 

location source among GPS, WiFi, and cellular networks). Meanwhile another location 𝐿2  is 

requested via Skyhook [5], a third-party location provider which uses known Wi-Fi hotspots to 

localize. We then choose the location with the higher accuracy as the detected location of the 

hypothesis. In our experiments, we observe that the localization process takes only about two 

seconds on average.  

If one parking/unparking activity is detected multiple times we use the time and location of the 

first detection.  

b) Calculation of 𝑷(𝑿|𝑶𝒊) 

In this subsection, we detail how to calculate 𝑃(𝑋|𝑂𝑖), i.e. the probability that vector 𝑋 occurs 

given outcome 𝑂𝑖. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) where 𝑥𝑖 is a feature. We regulate that all features in 𝑋 

are mutually independent. In the case that some features are dependent of each other (two features 

are dependent if their Pearson’s Correlation is over a threshold), only one of them is included in 𝑋. 

Since all the features in 𝑋 are mutually independent, the term 𝑃(𝑋|𝑂𝑖) can be computed by Eq. 

(6.3), where 𝑃(𝑥𝑘|𝑂𝑖) is the probability that feature 𝑥𝑘 has the current value given the outcome is 

𝑂𝑖.  

 𝑃(𝑋|𝑂𝑖) = 𝛱𝑘=1
𝑛 𝑃(𝑥𝑘|𝑂𝑖)      (6.3) 

The term 𝑃(𝑥𝑘|𝑂𝑖)  is estimated using the following approach. Conduct experiments that 

generate the 𝑂𝑖  outcome. From these experiments collect a sample set of 𝑥𝑘 ’s under the 𝑂𝑖 

outcome. Normalize all collected 𝑥𝑘’s into the [0,1] interval. Discretize the range [0, 1] into several 

bins, allocate the collected samples into the corresponding bins based on the value of 𝑥𝑘 , and 

calculate the frequency of each bin. If the frequencies of the bins approximate a normal distribution, 

we estimate the 𝑃(𝑥𝑘|𝑂𝑖) using the normal distribution of which the mean and standard deviation 
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are estimated using the collected 𝑥𝑘 samples. Otherwise, 𝑃(𝑥𝑘|𝑂𝑖) is estimated to be the frequency 

of the bin in which 𝑥𝑘 falls; if a new 𝑥𝑘 falls outside [0, 1] after normalization, then 𝑃(𝑥𝑘|𝑂𝑖) = 0. 

Note that some 𝑃(𝑥𝑘|𝑂𝑖)’s are estimated rather than obtained by experiments. For example, for 

the Bluetooth indicator, we estimate how many drivers have smartphones connected to the car via 

Bluetooth, instead of conducting experiments to determine it. 

c) Estimating 𝑷(𝑶𝒊)’s 

Prior probabilities 𝑃(𝑂𝑖)’s are estimated using the following approach. 𝑃(𝑂1) of a specific user 

𝑈 is equal to (the amount of time spent on parking activities per statistical window / the amount of 

time per statistical window). The size, i.e. amount of time, of a statistical window is dependent on 

the location and time of the day. For example, if user 𝑈 enters a parking structure (detected by 

using the energy-efficient Wi-Fi signature method [9]), it means that user 𝑈 is likely to park soon 

and thus the statistical window may be just a few minutes. For another example, the size of the 

statistical window is larger during the night than during daytime since generally parking activities 

are less likely to occur at night than in daytime. In the case that there is more than one rules that 

determine the current window size, the smallest window will apply. For example, assuming that 

the size of the window is eight hours at night and is ten minutes if the car just enters the garage, 

then the window is ten minutes if a car enters a garage at night. To estimate the amount of time 

spent on the parking activities during a statistical window for user 𝑈, the App needs to count the 

average number of parking activities and estimate the average time duration that each parking 

activity takes. At the beginning, when the user just starts to use our App and there are not enough 

samples to calculate these, default values will be applied.  

Similarly, 𝑃(𝑂2) is equal to (the amount of time spent on unparking activities per statistical 

window / the amount of time per statistical window). Finally, 𝑃(𝑂3) = 1 − 𝑃(𝑂1) − 𝑃(𝑂2). 
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6.2.3.2 Reinforcement Property 

Our proposed fusion method has a nice reinforcement property. That is, via combining vectors 

from different indicators of which each most likely occurs under the hypothesis (i.e. either a 

parking/unparking outcome), the fusion provides us a higher confidence in the hypothesis outcome. 

First let us prove that the reinforcement property holds when applied to two indicators. We 

formulize the property as follows. The formulation uses the parking outcome as the hypothesis, but 

the same argument stands for the unparking hypothesis.  

Theorem: Given two vectors 𝑋1, 𝑋2 in a fusion set such that 𝑃(𝑋𝑖|𝑂1) > 𝑀𝑎𝑥(𝑃(𝑋𝑖|𝑂2), 𝑃(𝑋𝑖|𝑂3)), 𝑖 =

1,2 ,i.e. both most likely occur under the parking outcome 𝑂1 , 𝑃𝑁(𝑂1|𝑋1, 𝑋2) >

𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), 𝑃𝑁(𝑂1|𝑋2)). 

Proof:  Since 𝑋1 , 𝑋2  are interchangeable, next we only prove 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1). 

While 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1) can be proved using the same rationale. Using the definition of 

normalized probability as define by Eq. (6.2), we have Eq. (6.4). 

 {
𝑃𝑁(𝑂1|𝑋1, 𝑋2) =

𝑃(𝑂1|𝑋1, 𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)+𝑃(𝑂2|𝑋1, 𝑋2)+𝑃(𝑂3|𝑋1, 𝑋2)

𝑃𝑁(𝑂1|𝑋1) =
𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)+𝑃(𝑂2|𝑋1)+𝑃(𝑂3|𝑋1)

        (6.4) 

Thus, substituting Eq. (6.4) into 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1), we obtain Eq. (6.5). 

 
𝑃(𝑂1|𝑋1, 𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)+𝑃(𝑂2|𝑋1, 𝑋2)+𝑃(𝑂3|𝑋1, 𝑋2)
>

𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)+𝑃(𝑂2|𝑋1)+𝑃(𝑂3|𝑋1)
   (6.5) 

Taking the reciprocals on the both sides of Eq. (6.5), we get Eq. (6.6) 

 
𝑃(𝑂1|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
   (6.6) 

Subtracting one from both sides of Eq. (6.6), we get Eq. (6.7). 

 
𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
     (6.7) 

A sufficient condition for Eq. (6.7) is Eq. (6.8). That is, if Eq. (6.8) holds then Eq. (6.7) stands, 

and thus the theorem is proved.  
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 {

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)

      (6.8) 

Next we prove the first equation in Eq. (6.8), i.e. 
𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
. The other part 

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
 can be proved using the same rationale. Denote 

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
 

by Eq. (6.9). 

 
𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
      (6.9) 

Using the Bayes rule on the right side of Eq. (6.9), we have Eq. (6.10). 

 
𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
       (6.10) 

Using the Bayes rule on the left side of Eq. (6.10), we have Eq. (6.11). 

 
𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑂2|𝑋2)

𝑃(𝑂1|𝑋2)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
      (6.11) 

Using the Bayes rule on the second term of the left side of Eq. (6.11), we have Eq. (6.12). 

 
𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑋2|𝑂2)𝑃(𝑂2)

𝑃(𝑋2|𝑂1)𝑃(𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
     (6.12) 

Dividing the common factor 
𝑃(𝑂2)

𝑃(𝑂1)
 from the both sides of Eq. (6.12), we have Eq. (6.13). 

 
𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
     (6.13) 

Since indicators are independent, 𝑋1 and 𝑋2 are independent, Eq. (6.13) is simplified to Eq. 

(6.14). 

 
𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
     (6.14) 

Since 𝑋2 most likely occurs under 𝑂1, i.e. 
𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
< 1. Then it is clear that Eq. (6.14) stands 

and thus Eq. (6.8) stands. Therefore, we have 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), 𝑃𝑁(𝑂1|𝑋2))  

Similarly, it is easy to prove the general case, i.e.  that when 𝑖 = 1 𝑜𝑟 2,  𝑃𝑁(𝑂𝑖|𝑋1, 𝑋2, … 𝑋𝑚) >

𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), … 𝑃𝑁(𝑂1|𝑋𝑚))  given 𝑋𝑗 ’s are independent to each other and 𝑃𝑁(𝑋𝑗|𝑂𝑖), 𝑗 =

1,2, … 𝑚 is the largest among 𝑃𝑁(𝑋𝑗|𝑂𝑘), 𝑘=1,2,3. 
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6.3Implementation of Individual Indicators 

In this section, we detail the features and implementation of only a subset of the proposed 

indicators. Other indicators, once implemented, can be plugged-and-played into our system through 

the fusion method described earlier.  

6.3.1 Change-In-Variance (CIV) Indicator 

6.3.1.1 Preliminaries on Accelerometer 

The accelerometer of an android phone has a coordinate-system consisting of three axes, as 

shown in Figure 43. The X axis is horizontal and points to the right, the Y axis is vertical and points 

up and the Z axis points towards the outside of the front face of the screen. Each reading of the 

accelerometer contains three values, that is, one value for each axis. The three axes are defined 

relative to the screen of the phone in its default orientation. The X axis is horizontal and points to 

the right, the Y axis is vertical and points up and the Z axis points towards the outside of the front 

face of the screen. The resultant acceleration (or simply the acceleration) refers to a single value 

Accel that normalizes the accelerometer readings along the three axes using Eq. (6.15).   

 𝐴𝑐𝑐𝑒𝑙 = √𝐴𝑋
2 + 𝐴𝑌

2 + 𝐴𝑍
22

      (6.15) 

 

Figure 43 Axes of mobile phone 

6.3.1.2 Features of the CIV Indicator 

A sliding window with a fix size equals to 𝑊  seconds is used. The sliding window moves 

forward 𝑁 seconds every time it slides. That is, two consecutive windows overlap 𝑊-𝑁 seconds. 

We refer to 𝑁 as the sliding step thereafter. During each window, we calculate the difference 

between the variance of the acceleration within the second half and the variance of the first half of 
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the window. Hereafter we refer to this feature as the VariDiff of a window. Intuitively, as shown in 

Figure 44, an unparking activity results in a window where the first half (corresponding to the 

walking state) has a large variance while the second half (corresponding to the driving state) has a 

small variance. Likewise, the parking activity has a similar sharp contrast in the variance between 

the two halves of the window. We have observed via experiments that this variance discrepancy 

between two halves of the window exists no matter where the phone is placed, e.g. in pant leg 

pocket, in handbag, etc.  

 

Figure 44 The sliding window for the CIV indicator 

However, the VariDiff feature of the current window itself is not sufficient due to noise. One 

example of noise is that the VariDiff feature of a window during which the user walks, may be 

either positive or negative since the acceleration during walking is oscillating. As a result, such a 

window may be misidentified as a parking or unparking activity. To deal with the noise, we 

consider using the VariDiff feature of all windows within a scope. Denote the scope by 𝑆. Then 

each CIV vector consists of three features: (i) the VariDiff feature of the current window; (ii) the 

average value of the VariDiff feature during the preceding 𝑆/2 windows; (iii) the average value of 

the VariDiff feature during the succeeding 𝑆/2 windows. Formally, the scope 𝑆 is the total number 

of preceding and succeeding windows that are considered in a CIV vector. Observe that 𝑆 does not 

include the current window. In order to calculate feature (iii), production of the vector of a window 

is delayed for 𝑆/2 windows. Intuitively, a vector that corresponds to a parking activity has feature 

Sliding 
Window

1st half 2nd half

walking driving
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(i) being positive and feature (ii) being close to zero. Similarly, a vector that corresponds to a 

unparking activity has feature (i) being negative and feature (iii) being close to zero.  

Figure 45 illustrates the calculation of the CIV vectors. Assume that the VariDiff feature of 1st, 

2nd, 3rd, 4th, 5th window has a value of 0.03, 0.01,  2.6, 1.6, 1.8, respectively, and the scope 𝑆 equals 

to 4. Then when the 5th window ends, the CIV vector of the 3rd window is computed and equals to 

(0.02, 2.6, 1.7), where 0.02 is the mean of the VariDiff of the 1st and 2nd windows and 1.7 is the 

mean of the VariDiff of the 4th and 5th windows. 

 

Figure 45 An example of calculating CIV vectors 

6.3.2 Bluetooth Indicator 

The Bluetooth embedded in the phone is a strong indicator when it is enabled. When a phone is 

connected to a car (requiring one time human input to indicate the name of the Bluetooth device of 

the car), there is a good chance that the person is the driver and intends to depart, which corresponds 

to an unparking activity. Similarly when a phone is disconnected, it is likely due to a person leaving 

the car, which indicates a parking activity.  

There is only one feature for the Bluetooth indicator, which takes one of the following three 

values: i.e. connected, disconnected, not enabled.  

6.3.3 Motion State Transition Indicator 

Motion states, such as waling, driving, etc., can be classified from raw accelerometer readings. 

After motion states are classified, the transitions between motion states are identified to signify the 

parking/unparking activities. Figure 46 (a) and (b) shows the motion state transition for parking 

and unparking, respectively.  

                                                                 

1st Win.

2nd   Win.

3rd Win.

Time4th  Win.

5th  Win.

walkingwalking drivingdriving drivingdriving walkingwalking
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Figure 46 Transitions for parking and unparking, respectively 

We implement the classification algorithm described in [12] to classify motion states. 

Specifically, the classifier outputs a probability distribution over all possible motion states (namely 

driving, walking, still, sitting and standing) every five seconds using the accelerometer data in the 

past five seconds.  

The vectors of the motion state transition indicator thus include four features. The first two 

features are the probability of the latest motion state being walking and driving, respectively. 

Similarly the last two features are the probability of the second latest motion state being walking 

and driving, respectively. 

6.3.4 Acoustic Indicators 

Acoustic indicators refer to the sounds of human-vehicle interactions that are typically made 

only during parking or unparking activities. Example interactions include turn on/off the vehicle 

engine, open and close the vehicle doors. Such sounds often have distinct frequency and amplitude 

from each other, as shown in Figure 47. 

     

 

Figure 47 Normalized amplitude and the corresponding FFT result of different sound samples 

It has been shown that the sounds of these particular human-vehicle interactions can be classified 

with relative high precision and recall [91]. However, in [91] the authors do not consider the power 

concern and thus the sounds are recorded constantly. In our case, in order to save energy, acoustic 

sounds are modeled as triggered indicators as described in Sec. 6.2.2. That is, they are only 

(a) parking                                                       (b) unparking 

 (a) Engine start                                         (b)  Open door                                      (c) Close door 
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activated and output vectors after the parking or unparking outcome becomes the hypothesis. In 

addition to the work of [91], we included the “bus noise” (i.e. the bus engine sound with the 

background noise) as one of the acoustic sounds, and found out that the “bus noise” sound is highly 

distinguishable from other sounds such as engine start, or door open/close. This will help 

distinguish a private car trip from a bus trip 

6.4Evaluation 

We implement a prototype system on the Android platform. This section details the experimental 

methodology and the results. Specifically, we introduce our experimental setting in subsection 

6.4.1. Then we show the performance of the App in subsection 6.5.2. 

6.4.1 Experimental Methodology 

6.4.1.1 Mobile App Implementation  

UPDetector is independent of mobile platforms and thus can be implemented on all mobile 

platforms, such as Android, Apple iOS and Windows mobile systems. We implement a prototype 

on the Android platform using the Samsung Galaxy S3, which has a 1 GB RAM and quad-core 1.4 

GHz Cortex-A9 processor. Figure 48 shows some screenshots of the implemented prototype.  

                                          

Figure 48 UPDetector implementation screenshots 

6.4.1.2 Data Collection 

We have implemented the following indicators in the UPDetector App: the Bluetooth indicator, 

the CIV indicator and the MST indicator. We have also implemented the acoustic indicator (i.e. the 

audio analysis part) on the laptop; unfortunately, we cannot port the function to the App since 
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Android system currently does not support the audio feature extraction library. The Bluetooth 

indicator is highly reliable by itself and may work independently of other indicators. Therefore, 

here we restrict attention to vehicles that do not have Bluetooth devices and present the detection 

results using the CIV and the MST indicators. 

The time (in seconds) of each parking/unparking activity is manually recorded as the ground 

truth. The time of an unparking activity is the second when the vehicle starts to move from a parked 

state; and the time of a parking activity is the second when the vehicle reaches the still state. 

The collected data is split into one training set and one test set. The training data set contains 40 

parking activities and 40 unparking activities. The test data set contains 60 parking activities and 

60 unparking activities. The training set is used to learn the conditional probability of features under 

different outcomes, i.e. 𝑃(𝑥𝑘|𝑂𝑖)’s. Via experiments, we observe that 𝑃(𝑥𝑘|𝑂𝑖)’s in the training 

set approximate normal distributions. So we estimate the parameters of the normal distributions 

using the training data set and then use them for the test data set. The test data is used to evaluate 

the performance of the detection of parking/unparking activities.  

6.4.1.3 Detection Methods 

We evaluate five detection methods. These methods are categorized into two groups. The first 

group consists of three methods that use a single indicator: (i) the method that only uses the Change-

in-Variance (CIV) indicator, referred to as the CIV method hereafter; (ii) the method that only uses 

the Motion State Transition (MST), where the motion state classifier is implemented using the 

features described in [63] (multiple classification methods, including meta-classification methods 

such as AdaBoost and RandomForest, are tried to train the model and the best classification method, 

i.e. RandomForest, is chosen), referred to as the MST-CL1 method hereafter; (iii) the method that 

only uses the Motion State Transition (MST), where the motion state classifier is provided by 

Google Activity Recognition (GAR) API, referred to as the  MST-CL2 method hereafter. The GAR 

API returns a distribution over five possible states including driving, walking, still, tilting, and 

unknown. We have observed that the GAR API outputs the unknown state as the most likely state 
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frequently. To better utilize the API’s results, we modify the most likely state for the following 

case. If the GAR API outputs unknown as the most likely state, and if the second most likely state 

𝑆 has a likelihood that is larger than the sum of the likelihoods of other three states except unknown 

and S, we treat 𝑆 as the most likely state.  

The second group consists of two methods that fuse multiple indicators. The first method, 

referred to as the CIV-MST_CL1 method, combines the CIV indicator and MST-CL1 using the 

probabilistic based fusion algorithm described in Sec. 6.2.3.  

The second method, referred to as the CIV-MST_CL1_CL2 method, combines the CIV-

MST_CL1 method with the MST_CL2 method. Specifically, each activity 𝐴𝑑 detected by the CIV-

MST_CL1 method is considered a hypothesis (thus a location is retrieved and cached when 𝐴𝑑 is 

detected). We have learned from experiments that the MST_CL2 method is reliable but suffers from 

a large delay (see Sec. 6.4.2.1). Therefore, we consider that 𝐴𝑑 is confirmed if later MST_CL2 also 

detects the same type (i.e. parking/unparking) of activity as 𝐴𝑑. If multiple 𝐴𝑑’s of the same activity 

type have been output by CIV-MST_CL1 when MST_CL2 outputs a detection, we use the location 

retrieved for the first 𝐴𝑑. Note that here we use a simple “and” logic to combine the detection 

results of CIV-MST_CL1 and MST_CL2 because MST_CL2 is highly reliable (but unfortunately 

has a long delay) and thus a simple “and” logic is sufficient. Otherwise, we would have used the 

proposed probabilistic fusion algorithm to combine CIV-MST_CL1 and MST_CL2. 

6.4.1.4 Matching Detected Activities with the Ground Truth 

A detected parking (unparking) activity 𝐴𝑑 is matched to a ground truth parking (unparking) 

activity 𝐴𝑔 if the time difference between 𝐴𝑑 and 𝐴𝑔 is smaller than five seconds1. For a detected 

activity 𝐴𝑑, the matching ground truth activity 𝐴𝑔 can always be uniquely identified because any 

two consecutive ground truth activities are at least minutes away from each other, and thus there is 

no confusion in the matching.  

                                                           
1 except for the MST_CL2 method; since it suffers a long delay, its value is one minute 
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Note that a ground truth activity may be detected multiple times (i.e. matched to several detected 

activities that are temporally consecutive and close to each other). This only happens when a sliding 

window is used in the indicator (e.g. in the CIV indicator) and the window slides in a way such that 

the two consecutives windows overlap. For example, consider the example shown in Figure 44. 

The red window in the figure represents a detected unparking activity. If we slide the red window 

slightly to the right, apparently, the new window may still represent a detected unparking activity 

that is matched to the same ground truth activity. When multiple detected activities are matched to 

the same ground truth activity 𝐴𝑔, we use the first matched detected activity and ignore the rest of 

the detected activities that are matched to 𝐴𝑔. 

6.4.1.5Performance Measures 

The performance is measured by precision and recall. Eq. (6.16) gives the definition, where tp, 

fp, fn is the number of true positives, false positives and false negatives, respectively. A detected 

parking (unparking) activity 𝐴𝑑 is a true positive if it matches to a ground truth parking (unparking) 

activity 𝐴𝑔 . That is, the time difference between 𝐴𝑑  and 𝐴𝑔  is small than five seconds. 𝐴𝑔  can 

always be uniquely identified because any two consecutive ground truth activities are usually at 

least minutes away from each other and thus there is no confusion in the matching. 

 {
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑡𝑝 / (𝑡𝑝 + 𝑓𝑝)

𝑟𝑒𝑐𝑎𝑙𝑙      = 𝑡𝑝/ (𝑡𝑝 + 𝑓𝑛)
       (6.16) 

Another measure is the delay of localization. Denote by 𝑡𝑔 the timestamp of the ground truth 

activity 𝐴𝑔 and by by 𝑡𝑙 the time when the location is received. The delay, denoted by 𝐷, can be 

calculated using Eq. (17).  

                                                                         𝑫 = 𝒕𝒍 − 𝒕𝒈  (6.17)  

6.4.2 Evaluation Results  

6.4.2.1 Detection Accuracy and the Delay 

The MST_CL1 classifier is implemented according to [63]. The MST_CL2 uses the activity 

recognition API provided by Google. The API provides one parameter that adjusts the update 
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frequency. This parameter is set to zero so that the updates are obtained at the highest possible 

frequency. 

Table 11 lists the values for parameters for the CIV method and the detection threshold. In this 

paragraph we discuss these parameters. Many previous works (e.g. [63, 93]) suggest that the 

window size should be large enough to include a few hundred samples but not too large to increase 

the delay. Based on the accelerometer sampling frequency in Android (i.e. about 10~30 Hz), 10 

seconds is a reasonable window size (other window sizes are also tried and 10 seconds show the 

best results).  

A small sliding step helps capture the sudden change in the acceleration. Intuitively, a small 

scope helps decrease the delay. We conducted experiments to learn the impact of the scope 

parameter on the precision and recall. The experiments suggest that as the scope 𝑆 increases, the 

precision and recall first increases then decreases. This is because the scope only helps when it 

includes recent past samples; and it starts to hurt the performance as it continues to increase and 

includes samples from a more remote past. The results suggest that a scope of six windows achieves 

the best precision and recall.  

Table 11 Default values of parameters 

Notation Meaning Value 

𝑊 window size of the CIV indicator 10 seconds 

N sliding step of the CIV indicator 3 seconds 

S scope of the CIV indicator 6 windows 

T detection threshold 0.9 

 

Table 12 shows the performance of the detection methods described in 6.4.1.3. Note that the 

average delay in the table refers to the average delay of the true positives, i.e. the detected activities 

that are matched to the ground truth activities. 

In the first group (i.e. methods that use only one indicator), MST_CL2 gives the best precision 

and recall but it suffers from a large delay, especially for unparking activities. For this reason the 
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MST_CL2 method cannot be used alone (i.e. if used a alone the location of the parking/unparking 

activity cannot be accurately identified).  

Note that the delay for unparking activities is much larger than that for parking activities for 

MST_CL2. This is due to the fact that the GAR API outputs driving state with a much larger delay 

than the walking state. In comparison, the CIV method have a much smaller delay but with a slightly 

lower recall and a much lower precision. The MST_CL1 method has the poorest precision and recall 

among the three methods. Note that the MST_CL1 uses the features described in [63], where the 

authors report a much higher precision and recall for human activities classification. But in [63], 

the phone has a fixed position (i.e. the front leg pocket) while here the phone is placed in various 

positions. In addition, [63] does not include driving as an activity. In general, driving is much harder 

to be correctly classified than on foot activities such as walking or jogging since driving is easily 

confused with still or standing. (This may also explain why the GAR API outputs driving activity 

with a much larger delay than walking activity.) The results of the first group demonstrate that no 

individual indicator is good enough. 

Table 12 Detection accuracy  

Detection Methods Parking Activities Unparking Activities 

Rec

all 

Precis

ion 

Avg. Delay 

(secs) 

Rec

all 

Precisi

on 

Avg. Delay 

(secs) 

Methods that 

use only one 

indicator 

CIV  86.

2% 

29.7% 10.68 87.

9% 

45.1% 14.43 

MST_CL1 60.

3% 

18.6% 20 70.

6% 

22.2% 14.17 

MST_CL2 94.

8% 

88.7% 17.75 89.

6% 

89.6% 46.18 

Methods that 

fuse multiple 

indicators 

CIV-MST_CL1 91.

3% 

23.8% 10.3 96.

5% 

24.3% 15.72 

CIV-

MST_CL1_CL2 
93.

1% 

90.4% 9.98 81.

8% 

93.1% 14.36 

 

In the fusion method group, the CIV-MST_CL1 has a higher recall than that of both the CIV and 

MST_CL1 method. However, the method’s precision remains unsatisfying. This is because the 

fusion process enhances the detection confidence when both the CIV and the MST_CL1 method 
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correctly detects the same type activity (i.e. parking/unparking) with a low confidence and thus 

helps improve the recall. However, when both the CIV and the MST_CL1 method mistakenly detect 

the same type activity with a low confidence, the fusion also boosts the confidence, and as a result 

the precision of the CIV-MST_CL1 method may be lower than the largest precision of the 

constituting methods.  

As the integration of the CIV-MST_CL1 method and the MST_CL2 method, the CIV-

MST_CL1_CL2 method inherits all the merits: it has a higher precision than both its constituting 

methods; it has a fairly high recall while keeps a small delay.  

6.4.2.2 Energy consumption 

We employ PowerTutor [125] to measure the power consumption. For the purpose of 

localization, GPS is enabled when UPDetector is running. But it is in the stand-by mode and 

consumes little energy (about 0.8 mw) during most of time. GPS only enters the energy-hungry 

searching mode (about 220 mw) once for each parking/unparking activity. Since there are at most 

a few parking/unparking activities during a day, the power consumption for localization is 

negligible.  

Most power consumption of the App attributes to CPU usage caused by the computation during 

the fusion of periodical vectors. When UPDetector (running the CIV-MST_CL1_CL2 method) is 

the only App running and phone activities (such as call, sms) are avoided, the corresponding battery 

life is about 20.3 hours. The battery life with no app running and no phone activities is around 25 

hours. That is, UPDetector costs 4.7 hours of the battery life. It is possible to further reduce this 

cost by decreasing the output frequency of the periodical indicators such as the CIV, by special 

hardware [55], by using Android Geofencing API2 and by monitoring only outdoors. 

                                                           
2 Android Geofencing. https://developer.android.com/training/location/geofencing.html 
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6.5 Related Work 

6.5.1 Parking Spaces Detection 

In the past, on street parking slot detection is usually performed by sensors embedded in the 

pavement [4] or in vehicles [80]. However, these efforts require significant investment and are 

expensive to implement to cover a large city.  

Given the proliferation of the mobile devices, recently smartphone applications such as 

ParkMobile and PaybyPhone3 that allow drivers to pay for parking by mobile phones are emerging. 

Such App’s can be used by our method as an indicator for parking. [84] proposes a novel method 

which leverages Wi-Fi beacons in urban environment to detect unparking. This method can be 

integrated into our work as an indicator for unparking activities. This method by itself is not always 

applicable since Wi-Fi signature works only when the parking location is covered by multiple Wi-

Fi signals.  

6.5.2 Activity Recognition 

There have been works on detecting motion activities based on readings from sensors in 

smartphones. Generally, a motion activity detection algorithm is a classifier which reads raw sensor 

data (e.g. from GPS [31, 105, 129, 130], from accelerometer [36, 82, 113], from both GPS and 

accelerometer [96] and from Wi-Fi/GSM [83]), processes it to extract features, and then classifies 

and outputs the motion activity such as still, walking, running, driving, etc. The motion state 

transition based method by itself is not a reliable indicator for parking/unparking detection. We 

incorporate the MST method into our framework which fuses outputs from multiple indicators. Our 

proposed fusion method is applicable to detect a variety of high level human activities that are more 

complex than simple motion activities. 

                                                           
3 Pay By phone http://www.paybyphone.com/how-it-works/ 
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6.5.3 Classifier Fusion  

In [110], the authors survey existing methods of combing multiple classifiers. These methods 

include i) ensemble methods that combine multiple homogenous classifiers (i.e. classifiers that are 

learned using the same set of features and the same classification algorithm), such as Bagging and 

Boosting; and ii) non-ensemble methods that combine heterogeneous classifiers, such as the 

majority voting (e.g. voting based on either the number of each class or the aggregated confidence 

in each class). We apply the ensemble methods, i.e. the Boosting method via Weka, to implement 

individual indicators such as MST. But the ensemble methods do not handle the asynchronous data 

problem. That is, in our application scenario, different indicators output vectors of different feature 

sets at different frequencies. Additionally, we aim to save energy, a consideration that is missing 

in prior work on classifier fusion. Cost-sensitive boosting [79] methods may be applicable, but it is 

not clear how to incorporate energy consumption into cost functions. As pointed out by the authors 

of [110], none of the non-ensemble methods are shown to be superior to others, neither theoretically 

nor empirically. Our proposed fusion method can be considered a non-ensemble method that is 

motivated by and designed for the unparking/parking detection application, and potentially applied 

to other applications with the asynchronous data problem. 

In [110], the authors survey existing methods of combing multiple classifiers. However these 

methods do not apply to our application for two reasons. First those methods assume that the to-

be-combined values are categorical while in our case, the output of each indicator has a vector of 

continuous values. Second, those methods do not handle the asynchronous problem by assuming 

all classifiers output synchronously. Here the periodical indicators output vectors at different 

frequencies. In addition, the triggered indicators further complicate the asynchronous problem.  

And remember that the triggered indicators are introduced to save energy, a consideration that is 

missing in prior work on classifier fusion. 
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6.6 Discussion 

We presented the design and implementation of a parking/unparking activities detection system 

called UPDetector. We described several indicators and their corresponding features; we proposed 

a probabilistic fusion method which combines features output by multiple indicators to derive 

parking/unparking activity detection results. We evaluated the UPDetector prototype via 

experiments, and demonstrated its effectiveness and energy consumption. 

Using the implemented Bluetooth indicator, the current App we implemented has a certain 

capability of distinguishing a driver from a passenger. This capability can be further enhanced via 

incorporating other indicators, e.g. the pay-at-street-parking box indicator and the parking-

payment-mobile-App indicator listed in Table 9. In addition, acoustic indicators can be used to 

distinguish buses from private cars.  

In the future, we are going to improve the prediction algorithm presented in [119]. The algorithm 

is capable of integrating real-time detection information, i.e. activities detected from different 

devices, with the historical pattern. It outputs parking space availability information that is more 

reliable than either real-time or historical information alone.
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