

IIP: An Information Platform for Intelligent Transportation System and Its

Applications

BY

SHUO MA

B.S., Beijing University of Posts and Telecommunications, 2008

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2014

Chicago, Illinois

Defense Committee:

Professor Ouri Wolfson, Computer Science, Chair and Advisor

Professor Philip Yu, Computer Science, Co-advisor

Professor Prasad Sistla, Computer Science

Professor Jane Lin, Civil and Materials Engineering

Dr. Dr. Bo Xu, Nokia

ii

This dissertation is dedicated to my wife, Zhongtao Xie, without whom I would have finished my

Ph.D. a little earlier and missed tons of happiness.

iii

ACKNOWLEDGMENTS

First I owe a great debt of gratitude to my advisors, Professor Ouri Wolfson and Professor

Jane Lin. They have provided support and guidance since my admission to the program. I could

never accomplish this dissertation without their help.

I would also like to express my sincere thanks to other members of my committee: Professor

Philip Yu, Professor Prasad Sistla, and Dr. Bo Xu for their valuable comments and suggestions to

my dissertation.

I am also grateful to my family, colleagues, and friends for their support and encouragement.

Finally, I would like to thank the National Science Foundation and the Computer Science

Department for their generous funding.

SM

iv

Contribution of Authors

Chapter 1 represents a published manuscript [75] and Chapter 2 represents a published

manuscript [76]. For both manuscripts, I was the first author, and my advisors, Dr. Wolfson and

Dr. Lin, contributed to the writing of the manuscript. Chapter 3 represents a published manuscript

[77] for which I was the primary author and major driver of the research. Dr. Yu assisted me in the

experiments and the figures. Dr. Yu and Dr. Wolfson contributed to the writing of the manuscript.

Chapter 4 represents a published manuscript [74] for which I was the first author and Dr. Wolfson

helped me with writing. Chapter 5 represents an unpublished report for which I was the primary

author, and Dr. Wolfson, Dr. Xu and Roland Varriale contributed to the writing. Chapter 6

represents a submission for which I was the first author, and Dr. Wolfson and Dr. Xu helped me

with the writing and experiments. I anticipate that this work will ultimately be published as part of

a co-authored manuscript.

v

TABLE OF CONTENTS

CHAPTER PAGE

1 IIP: An Event-Based Platform for ITS Applications .. 1

1.1 Introduction ... 1

1.2 Architecture and Components... 2

1.3 Primitives for Information System for ITS ... 5

1.3.1 The Event Schema Registry ... 5

1.3.2 The Event Broker ... 7

1.4 Related Work .. 13

1.5 Discussion ... 14

2 Trust Management for Intelligent Transportation System .. 16

2.1 Introduction ... 16

2.2 Concepts of Trust Management .. 17

2.2.1 Trust Metrics .. 18

2.2.2 Potential Attacks ... 19

2.3 Survey on Trust Management for ITS .. 20

2.3.1 A Novel Trust Management Scheme .. 23

2.3.2 Opinion Inquiring ... 24

2.3.3 Passive Majority Consensus ... 25

2.3.4 Data Fusion Dependent .. 26

2.3.5 Position Verification ... 27

2.3.6 Collusion Attacks Prevention ... 28

2.4 Discussion ... 29

3 Real-time Taxi-sharing with Smart Phones .. 30

3.1 Introduction ... 30

3.1.1 Background... 30

3.1.2 Motivation .. 31

3.1.3 Technical Challenge ... 32

3.1.4 Contribution .. 33

3.2 Related Works... 34

3.2.1 Taxi Recommender and Dispatching Systems ... 34

vi

TABLE OF CONTENTS (continued)

3.2.2 Dial A Ride Problem (DARP) and Its Applying Heuristics ... 34

3.2.3 Real-time Taxi-sharing ... 38

3.3 Problem Definition ... 39

3.3.1 Data Model ... 39

3.3.2 Constraints .. 40

3.3.3 Objective function and Problem Definition .. 41

3.4 System Architecture .. 43

3.5 Taxi Searching .. 46

3.5.1 Index of Taxis ... 46

3.5.2 Taxi Searching Algorithms ... 48

3.6 Taxi Scheduling .. 51

3.6.1 Time Window Constraints .. 52

3.6.2 Monetary Constraints ... 54

3.7 Pickup and Drop-off Interactions.. 57

3.8 Experiments .. 59

3.8.1 Setting ... 59

3.8.2 Results .. 64

3.9 Discussion ... 69

4 Analysis and Evaluation of the Slugging Form of Ridesharing .. 71

4.1 Introduction ... 71

4.2 Related Works... 74

4.2.1 Taxi Ridesharing .. 74

4.2.2 Carpooling .. 75

4.2.3 Dial-A-Ride Problem (DARP) ... 75

4.3 Slugging .. 76

4.3.1 Preliminaries ... 76

4.3.2 Basic Slugging Problem ... 78

4.3.3 Capacitated Slugging .. 84

4.3.4 Delay-Bounded Slugging ... 87

4.3.5 Delay Bounded and Capacitated Slugging and Its Heuristics 88

4.3.6 Dynamic Slugging .. 92

4.4 Evaluation ... 94

vii

TABLE OF CONTENTS (continued)

4.4.1 Setting ... 94

4.4.2 Upper Bound on the DBCSP .. 96

4.4.3 DBCSP With Varying Travel Delay .. 97

4.4.4 DBCSP with Varying Vehicle Capacity ... 98

4.4.5 Dynamic DBCSP .. 99

4.5 Discussion ... 100

5 Volunteer Transportation Information System ... 102

5.1 Introduction ... 102

5.2 Related Work .. 107

5.2.1 Publish/Subscribe ... 107

5.2.2 Toponym Recognition and Information Extraction .. 108

5.2.3 Route Planer ... 108

5.2.4 Data Trust in Intelligent Transportation System and Internet 108

5.2.5 Reports Prioritizing .. 109

5.2.6 Incentive Mechanism .. 109

5.3 Architecture .. 110

5.4 Implementation ... 111

5.4.1 Integration with Twitter .. 112

5.4.2 Publication and Subscription Format ... 114

5.4.3 Evaluation of the Prototype .. 116

6 UPDetector: Sensing Parking/Unparking Activities Using Smartphones 118

6.1 Introduction ... 118

6.2 Indicators and Indicator Fusion .. 120

6.2.1 Preliminaries on Indicators ... 120

6.2.2 Periodical and Triggered Indicators ... 122

6.2.3 Indicator Fusion .. 123

6.3 Implementation of Individual Indicators .. 129

6.3.1 Change-In-Variance (CIV) Indicator .. 129

6.3.2 Bluetooth Indicator ... 131

6.3.3 Motion State Transition Indicator... 131

6.3.4 Acoustic Indicators ... 132

6.4 Evaluation ... 133

viii

TABLE OF CONTENTS (continued)

6.4.1 Experimental Methodology .. 133

6.4.2 Evaluation Results .. 136

6.5 Related Work .. 140

6.5.1 Parking Spaces Detection ... 140

6.5.2 Activity Recognition .. 140

6.5.3 Classifier Fusion ... 141

6.6 Discussion ... 142

7 CITED LITERATURE ... 143

8 VITA ... 153

ix

LIST OF TABLES

TABLE PAGE

Table 1 A list of heuristics applied to ridesharing problems ... 35

Table 2 Rules for transit test in tabu search heuristics .. 38

Table 3 Parameter Setting for Ride request Generation .. 62

Table 4 Default values of parameters used in experiments ... 64

Table 5 Characteristics of some of the most common ridesharing applications 72

Table 6 An example of the dynamic slugging problem ... 93

Table 7 Parameter setting in the experiments .. 95

Table 8 Event Types, their associated key words and examples ... 115

Table 9 Example indicators of parking/unparking activities ... 121

Table 10 List of categorized indicators ... 122

Table 11 Default values of parameters .. 137

Table 12 Detection accuracy ... 138

x

LIST OF FIGURES

FIGURE PAGE

Figure 1 ITS Information Platform architecture .. 3

Figure 2 IIP Client architecture ... 4

Figure 3 Potential dependence between entity and data trust management 17

Figure 4 Elements of ridesharing .. 31

Figure 5 Hierarchy of meta-heuristics ... 35

Figure 6 Flow chart and major components of a meta-heuristics .. 36

Figure 7 The architecture of the real-time taxi-sharing system ... 43

Figure 8 Screenshots of the mobile client for riders .. 44

Figure 9 Screenshot of the mobile client for the driver ... 45

Figure 10 Screenshots of the monitor .. 46

Figure 11 Grid partitioned map and grid distance matrix ... 47

Figure 12 Spatio-temporal index of taxis .. 48

Figure 13 Overview of the dual-side taxi searching algorithm ... 49

Figure 14 Calculation of the taxi set in the taxi searching process ... 50

Figure 15 One possible insertion of a ride request into a schedule ... 53

Figure 16 An example of the pricing constraint .. 56

Figure 17 Interactions during a pickup event .. 58

Figure 18 Interactions during a drop-off event .. 59

Figure 19 Distribution of ride requests over road segments .. 60

Figure 20 Inflated and extracted number of ride requests during a day .. 61

Figure 21 Performance in effectiveness measurements of different methods 66

Figure 22 Performance in effective measurements vs. money-to-time rate 67

Figure 23 Computation cost in terms of node access per ride request .. 68

xi

LIST OF FIGURES (continued)

Figure 24 Time cost of schedule reordering .. 68

Figure 25 An illustrative example of slugging plans ... 79

Figure 26 An example of a benefit function for a ridesharing form in which driver trips are

changed .. 80

Figure 27 Quadratic algorithm for SP ... 82

Figure 28 Heuristics for the DBCSP ... 90

Figure 29 An example of delay-bounded slugging graph ... 91

Figure 30 Running example of the Greedy-Benefit heuristic .. 91

Figure 31 Running example of Greedy-AVG-Benefit heuristic.. 92

Figure 32 An example for which heuristics are sub-optimal ... 92

Figure 33 The dynamic slugging problem ... 93

Figure 34 A snippet of taxi trajectory data that defines a trip ... 95

Figure 35 An upper bound of the DBCSP ... 96

Figure 36 DBCSP with varying delay thresholds .. 97

Figure 37 Visualization of a delay-bounded slugging graph ... 98

Figure 38 DBCSP with varying vehicle capacities ... 98

Figure 39 Impact of the decision interval .. 99

Figure 40 An example of spatio-temporal account ... 111

Figure 41 An example scenario for sharing traveler information in VTIS via Twitter 114

Figure 42 A gallery of the screenshots of the current mobile clients for VTIS 116

Figure 43 Axes of mobile phone ... 129

Figure 44 The sliding window for the CIV indicator .. 130

Figure 45 An example of calculating CIV vectors .. 131

Figure 46 Transitions for parking and unparking, respectively ... 132

Figure 47 Normalized amplitude and the corresponding FFT result of different sound samples 132

xii

LIST OF FIGURES (continued)

Figure 48 UPDetector implementation screenshots .. 133

xiii

LIST OF ABBREVIATIONS

ITS Intelligent Transportation System

IIP Intelligent transportation system Information Platform

GSM Global System for Mobile communications

GPRS General Packet Radio Service

ESR Event Schemas Generator

P2P Peer-to-Peer

UPnP Universal Plug and Play

UDDI Universal Description and Discovery and Integration

APP APPlication

OD Origin and Destination

T-Share Taxi-Share

TDOTRP Total Distance Optimization Taxi Ridesharing Problem

TSPTW Travelling Salesman Problem with Time Window

KNN K Nearest Neighbor

DARP Dial A Ride Problem

SP Slugging Problem

GSP Generalized Slugging Problem

CSP Capacitated Slugging Problem

DBSP Delay-Bounded Slugging Problem

DBCSP Delay-Bounded and Capacitated Slugging Problem

VANET Vehicular Ad-hoc NETwork

UGC User Generated Content

MANET Mobile Ad-hoc NETwork

GIS Geographical Information System

xiv

 LIST OF ABBREVIATIONS (continued)

VGI Volunteer Geographical Information

VTIS Volunteer Traveler Information System

UPDetector Unparking/Parking activities Detector

SMS Short Message Service

xv

SUMMARY

This dissertation presents an information platform for Intelligent Transportation System (ITS)

applications with a focus on trust management issues, and three example ITS applications, namely

ridesharing, Volunteer Transportation Information System (VTIS) and parking/unparking activities

detection using smart phones.

The information platform, referred to as the ITS Information Platform (IIP) [75] hereafter, is

motivated by relieving ITS application developers from implementing communication and data

management components which are necessities but not central to the application functionality. In

other words, IIP, residing as a middleware between operating systems and ITS applications,

provides primitives to application developers for communication and data management needs. IIP

consists of two parts, namely the Cloud Component and the Client Component. The IIP Cloud

Component provides canonical publish/subscribe (pub/sub) functions to both traffic management

facilities and mobile nodes, e.g. vehicles, smart phones. The IIP Client Component provides mobile

nodes with pub/sub functions which allow them to communicate with the IIP Cloud Component as

well as with each other. Via leveraging heterogeneous data sources and various communication

mechanisms in the ITS environment, IIP supports a wide variety of ITS applications.

A pressing concern with IIP is trust management: should a subscriber trust the publications she

has received? What IIP can do to help subscribers manage risks of being exposed to false

information or tricked by malicious publishers? Towards this end, existing works on trust

management for ITS is surveyed [76].

IIP is motivated to help ITS application developers. Therefore, it is in our interest to investigate

some emerging yet promising ITS applications in order to better understand the needs of ITS

xvi

SUMMARY (Continued)

application developers. As case studies, we investigate three ITS applications, namely ridesharing,

the VTIS and the parking/unparking activities detection using smart phones.

Ridesharing helps alleviate many existing major transportation problems, such as traffic jams,

find parking spaces, hard to hail a taxi during rush hours. These problems are perennial headaches

for cities, especially those with a large population, and affect the environment, the economy, and

more directly average people’s daily lives. We treat ridesharing as a constrained optimization

problem. A variety of constraints can be considered when modeling a specific ridesharing

application. For example, capacity constraints limit the maximum number of riders on a vehicle at

the same time; spatial constraints define the Origin-Destination (OD) pair of a trip; temporal

constraints define the desirable time windows in which the trip should take place; and monetary

constraints provide incentives for riders and drivers to participate in ridesharing.

The two major objectives of ridesharing are efficiency and effectiveness. Efficiency concerns

about how fast on average each trip request, i.e. query, is processed, either assigned to a vehicle or

denied for ridesharing. Efficiency becomes a more acute and bigger concern than effectiveness for

dynamic ridesharing problems in which queries arrive in real-time instead of being known in

advance. We propose and develop a taxi-sharing system called T-Share that accepts taxi passengers’

real-time ride requests sent from smart phones and schedules proper taxis to pick up them via

ridesharing, subject to time, capacity, and monetary constraints. The T-Share system is built based

on a mobile-cloud architecture. Taxi riders and taxi drivers use the taxi-sharing service provided

by the system via a smart phone APP. The Cloud first finds candidate taxis quickly for a taxi ride

request using a taxi searching algorithm supported by a spatio-temporal index. A scheduling

process is then performed in the Cloud to select a taxi that satisfies the request with minimum

xvii

SUMMARY (Continued)

increase in travel distance. We evaluate the T-Share system with extensive experiments to validate

its effectiveness, efficiency and scalability.

Effectiveness of ridesharing concerns about how much benefits, such as decrease in travel

distance, ridesharing can bring. And we are interested in quantifying such benefit and find the

theoretical bound of the defined benefit function with the presence of various constraints. As an

example of such efforts, we analyze the slugging form of ridesharing [74], where passengers instead

of drivers change their route (i.e. a passenger needs to walk to the origin of the driver, share the

ride with the driver, get off at the driver’s destination and then walk back to his/her destination).

We formally define the slugging problem and its generalization. We provide proofs of their

computational time complexity. For the variants of the slugging problem that are constrained by

the vehicle capacity and travel time delay, we prove NP-completeness and also propose some

effective heuristics. In addition, we discuss the dynamic slugging problem.

Volunteer Traveler Information System [112] is another application proposed for the IIP. It

aims to provide travelers real time transport related information, such as traffic conditions,

accidents, bus/train delays, parking spaces availability, etc. Such information has paramount values

for travelers on the road. Nowadays, travelers often get limited types of real-time transport

information (mostly traffic condition info. on major roads like highways and arterials) from large

Internet companies like Google or traffic-oriented websites like traffic.com. A potentially ideal way

to get more comprehensive and accurate real-time transport information is crowd sourcing, i.e.

gleaning data from a large number of travelers. This approach becomes practically feasible as

currently most travelers carry mobile devices which are capable of reporting such information via

wireless communication. Thus, a real-time travel information notification system such as the VTIS

is of great value and in an urgent need. The VTIS provides two essential functions for travelers, i.e.

xviii

SUMMARY (Continued)

publish/subscribe. Specifically, the publish function of the VTIS allows a traveler to easily report

a transport related event via the cell phone immediately whenever she witnesses an interesting event

no matter while driving, riding a bike/bus/train, or walking. Symmetrically, the subscribe function

of the VTIS allows a traveler to subscribe to the specified information of interest via the phone,

and the VTIS will automatically notify the traveler whenever one of her subscriptions gets satisfied,

i.e. some other people have reported information of her interest. We envision that the VTIS brings

pragmatic merits to both the general public and transportation authorities. On one hand, it greatly

conveniences average travelers by feeding them more timely and accurate customized travel

information. On the other hand, it also provides a complementary mass-powered transport

information source for authorities. As a result, authorities can improve their existing services by

exploiting the data gleaned by the VTIS.

The third ITS application we consider here is the detection of parking/unparking activities using

smartphones. Real-time information about vacant parking spaces is of paramount value in urban

environments. One promising approach to obtaining such information is participatory sensing, i.e.

detecting parking/unparking activities using smartphones. We introduces and describes multiple

indicators, each of which provides some inconclusively clue for a parking or an unparking activity.

As a result, we proposes a probabilistic fusion method which combines the output from different

indicators to make more reliable detections. The proposed fusion method can be applied to inferring

other similar high-level human activities that involve multiple indicators which output features

asynchronously. The proposed indicators and the fusion method are implemented as an Android

App called UPDetector. Via experiments, we show that the UPDetector is both effective and

energy-efficient.

1

Chapter 1

IIP: An Event-Based Platform for ITS Applications

1.1 Introduction

Envisioning that there are many common data management and communication elements

shared by various prospective IntelliDriveSM [2] applications, we propose the ITS Information

Platform (IIP) as a common data management and communication services platform facilitating

and easing applications development. The motivation of IIP comes from the fact that there is a lack

of a generic platform, which provides data management and communication support capability in

a distributed, heterogeneous data environment like IntelliDriveSM. As an example, consider how an

application helps a driver who is interested in the current and expected traffic speed on the Kennedy

Expressway receive the information. The application first identifies the relevant information that

contains or may be used to infer traffic speed on the Kennedy Expressway. Traffic reports providing

exact speeds are the ideal source. A picture or a video clip of the expressway may be useful as well.

Special events announcements about sports events, roadwork, accidents, and extreme weather

warnings are also relevant. The issue is that such information may exist in different forms, in a web

post or personal text communication, on the Internet or a hand-held devices, etc. And the solution

to locating the data dictates the approach to accessing the data.

Thus a common data management and communication services platform like IIP is of great

need to ease the burden on the application developers and users from having to deal with issues

such as finding the data discussed above. We argue that the publish/subscribe (pub/sub) paradigm

[41] is an appropriate fundamental building block for IIP. Publish/Subscribe is an asynchronous

communication paradigm that provides spatiotemporally loosely-coupled connection between

communicating parties. Moreover, it is multicasting in nature since data producers can send the

2

same data to multiple consumers with a single operation. As a result, the asynchrony and one-to-

many characteristics make the publish/subscribe system more suitable than other communication

paradigms, e.g. query-response and remote procedure call, for distributed information

dissemination applications which are prevalent in the ITS environment. We describe the

components, their functionality, and the architecture necessary for the pub/sub based IIP platform.

1.2 Architecture and Components

At the highest level, IIP is composed of two components, one residing on the cloud, i.e. the

infrastructure network, which is referred as the IIP Cloud Component; and the other residing on the

clients, which is referred as the IIP Client Component. The IIP Cloud Component provides

canonical publish/subscribe functions to both traffic management facilities and mobile nodes. The

IIP Client Component provides mobile nodes with pub/sub functions which allow them to

communicate with the IIP Cloud Component as well as with each other.

Following the conventions in the pub/sub literature, we use the term event for any useful

information and publisher and subscriber respectively for producer and consumer of the event in

the rest of this document. Figure 1 shows the overall architecture of IIP whose components are

represented by dashed incarnadine boxes.

3

Figure 1 ITS Information Platform architecture

The IIP Cloud Component essentially consists of two building blocks, namely the Event Broker

and the Event Schema Registry (ESR). The Event Broker is the kernel function of large scale

infrastructure-based publish/subscribe systems. It basically performs “store and forward” function

to route events from publishers to subscribers. Upon the arrival of new events, the Event Broker

sends the events to all the subscribers whose subscription matches the new event.

The Event Schema Registry provides a repository where publishers can find event schemas of

interest. The System Primitives provide the open interface for applications running on either mobile

nodes or management facilities to access the IIP Cloud Component. More detailed descriptions of

the Event Schema Registry and the Event Broker will be introduced soon.

The Cloud IIP Cloud

Clients

Event

Broker

Event Schema

Registry

System Primitives
publish(EVENT, [DURATION],[RATE], register(NAME(ATTRIBUTES),

PUBMODE, AREA, [LIFETIME] [PUBMODE])

subscribe(SUBSCRIPTION, AREA, lookup(NAME(ATTRIBUTES),

LIFETIME) RATE)

unsubscribe(SUBSCRIPTION,AREA)

announce(EVENT, PUBMODE,

AREA, [LIFETIME])

Traffic Management

Center

Transit Management

Center

Emergency

Management Center

Applications

IIP Client

4

Figure 2 IIP Client architecture

Figure 2 shows the architecture of the IIP Client Component. It employs a two-layer structure.

The upper level is the Data Management Layer. It provides applications with a uniform data

abstraction and manipulation tool compatible with the IIP Cloud Component. Specifically, the

Event Schemas Generator allows mobile nodes to produce event schemas to be registered to the

ESR. The Events Generator and the Subscriptions Generator control the generation of events and

subscriptions respectively. The Event Broker module provides the function of brokering events and

is implemented separately by interfaces defined in the underlying communication layer. The Match

Engine implements a generic matching mechanism between events and subscriptions. Note that the

IIP Client Component does not provide a schema discovery function, thus mobile nodes cannot

learn event schemas of interest from anywhere else but the Event Schema Registry in the Cloud.

The lower level is the Communication Layer, which supports different communication

paradigms. Currently two paradigms are considered. The Cloud Interface allows mobile nodes to

IIP Client

Applications

Data Management Layer

Communication Layer

Mobile Peer To Peer

Interface
Cloud Interface

Message

Buffer

Events

Generator

Match Engine

Event Schemas

Generator

Subscriptions

Generator

5

access the IIP Cloud Component through Internet access points, e.g. Wi-Fi hotspots, cellular base

stations or other road side units. Existing standard cellular system, e.g. GSM and GPRS, and works

on Internet access protocols, e.g. fast Wi-Fi access protocols described in [40] are sufficient for

realizing the Cloud Interface. Notice that the Cloud Interface cannot support pub/sub function for

purely mobile peer to peer applications in which the communication infrastructure does not exist,

or is not fast enough. As an example, consider the application where the right-of-way is

distributively maintained among vehicles, pedestrians and cyclists at a road intersection without

traffic lights or human coordinators. In such an application, mobile nodes approaching the

intersection should coordinate with each other directly via short range high-bandwidth channels,

since a cloud solution probably cannot guarantee the necessary response time.

Therefore we propose the Mobile Peer to Peer (P2P) Interface as a complementary

communication method. It implements the pub/sub system purely via inter-node communication in

a mobile P2P network (vehicles, smart-phones and other pedestrian/bicyclist devices), regardless

of whether or not the mobile P2P network is connected. In other words, we assume that the Data

Management Layer on IIP Client is not concerned with connectivity issues in the Mobile P2P

network, and the communication layer will employ the appropriate Delay Tolerant protocols to

overcome connectivity problems in the this network.

1.3 Primitives for Information System for ITS

1.3.1 The Event Schema Registry

In this section, we present the primitives with their associated parameters provided by the Event

Schema Registry. And we classify those parameters into two categories, i.e. mandatory parameters

and optional parameters. Mandatory parameters are semantically required, i.e. they are

indispensable for the purpose of providing the necessary semantics of the primitives. Optional

parameters are not compulsory and used as “hint information” by IIP to enhance the performance

of the system. Notice the same parameter may be mandatory to one primitive while optional to

6

another. The decision is dependent on the specific semantics of the primitive. We will indicate

whether or not a parameter is optional for a primitive in proper timings in the rest of the section.

The Event Schema Registry is implemented as a central directory which enables publishers to

register their event schemas and provides schema search functionality to subscribers. From an

application’s point of view, it provides the following two essential primitives (optional parameters

are enclosed by brackets):

 register(EVENT_SCHEMA)

 lookup(EVENT_SCHEMA, RATE)

1.3.1.1 The register Primitive

Each publisher registers an event schema with the Event Schema Registry by invoking the

register primitive. The EVENT_SCHEMA parameter is formally represented in the format of

SCHEMA_NAME(ATTRIBUTES), where SCHEMA_NAME and ATTRIBUTES represents the

name and the attributes of the event to be registered by the publisher respectively. An attribute can

be a primitive data type, such as a string, a numeric field, a spatiotemporal data structure such as a

point, region, hour, day, or a complex data structure, such as an XML document. For a complete

example of a schema, consider: “BUS LOCATION” with attributes <ROUTE_NO, RUN_NO,

TIMESTAMP, LOCATION-COORDINATES>.

1.3.1.2 The lookup Primitive

Each subscriber discovers the event schemas of interest from the Event Schema Registry by

invoking the lookup primitive. The EVENT_SCHEMA parameter has the same format and

semantics of that in the register primitive. We treat each call to the lookup primitive as an

instantaneous rather than a continuing query. Consequently, the Event Schema Registry saves

considerable memory space by not keeping track of the history of received lookup calls.

Each call to the lookup primitive from an application is passed to the IIP Client Component,

which in turn sends the call to the IIP Cloud via the Cloud Interface. The Event Schema Registry

7

returns the IIP Client Component a list of all event schemas that match the EVENT_SCEHMA

parameter of the call. Here the matching is performed using both schema matching techniques [52]

and ontology matching techniques [42].

Prior to displaying the returned list of event schemas from the ESR to the application, the IIP

Client Component ranks the schemas based on some measures, such as reputation of the publisher

of the event schema if a reputation system is implemented. Then the subscribers may choose

schemas on which they would like to write subscriptions.

The RATE parameter is introduced such that subscribers are constantly kept posted about new

schemas of interest registered with ESR. To understand why, consider the following scenario.

Suppose a driver is interested to traffic speed information on his way to home. So s/he invokes a

call to the lookup primitive, where the EVENT_SCHEMA parameter equals “traffic

speed”(TRAFFIC_SPEED, FLOW, ROAD_NAME, TIME), where “traffic speed” is the name of

the schema. Further suppose s/he receives the returned event schema with attributes <SPEED,

TRAFFIC_FLOW, LOCATION, TIMESTAMP> from the ESR. Assume later a new schema with

attributes <VELOCITY, FLOW, ROADLINK_ID, TIME> is registered, which also matches the

driver’s interest. However, the driver has no way of knowing about it unless s/he invokes the lookup

primitive with the same parameter again later. Clearly, some kind of “update” service is desirable

from users’ perspectives and that is why parameter RATE is introduced. Here is how it works. For

each call 𝐶 to the lookup primitive, the IIP Client retransmits 𝐶 to the ESR at the frequency

indicated by the RATE parameter given in 𝐶. As such, the user receives updated information on

relevant schemas periodically. In addition, we assume a default valid time for each call to prevent

the IIP Client Component from retransmitting the call forever.

1.3.2 The Event Broker

The Event Broker serves as the message “bridge” connecting publishers and subscribers. It

provides the following primitives:

8

 publish(EVENT, EVENT_SCHEMA, [PUBMODE], [AREA],[LIFETIME])

 subscribe(PREDICATE, EVENT_SCHEMA, [PUBMODE] AREA, LIFETIME)

 unsubscribe(PREDICATE, EVENT_SCHEMA)

 announce(EVENT, EVENT_SCHEMA, [AREA], [PUBMODE],[LIFETIME])

Next we first give precise definitions for all primitive parameters and explain the semantics of

each primitive, and then we discuss how the Event Broker is implemented.

1.3.2.1 The publish Primitive

Each node invokes the publish primitive when it needs to publish any events. The EVENT

parameter represents an instance record of the event schema given by the EVENT_SCHEMA

parameter.

The PUBMODE parameter: Given an subscribe call from an application, the IIP Client

Component may need a mechanism to intelligently decide which action to take, i.e., to deliver the

subscription to the IIP Cloud Component via the Cloud Interface or to disseminate the subscription

using the Mobile Peer to Peer Interface, or both. Thus the PUBMODE parameter is introduced as

the basis on which the IIP Client Component makes such a decision.

Note that in the case of the PUBMODE parameter is absent, the IIP Client Component simply

tries both actions. In other words, PUBMODE does not affect the semantics of the register primitive

but only helps the IIP Client Component improve the performance by saving unnecessary

communication cost. Therefore we treat PUBMODE as an optional parameter to the register

primitive.

Specifically, the PUBMODE parameter indicates the mode in which a publisher publishes its

events of the given SCHEMA. More specifically, the value of PUBMODE can be (i) mobile,

meaning publishing events through the embedded Mobile Peer to Peer Interface, i.e. disseminating

events among peers; (ii) cloud, meaning publishing events to the IIP Cloud Component via the

embedded Cloud Interface, i.e. transmitting events to the Event Broker; or (iii) mixed, meaning

publishing events in both mobile and cloud modes. For an example of publishers using different

9

values for PUBMODE, consider the application described in [66] where private cars disseminate

events reporting the witness of a fleeing car driven by some criminals and the patrolling police cars

reap such events. In this case, the private cars are using mobile mode to publish events. And the

police cars may use cloud mode to report the collected events to the headquarter of local police

department where a chasing and hunting plan is made.

Notice the value of the PUBMODE parameter makes no indication about the mobility status of

the publisher. For example, a publisher who uses mobile publishing mode may be a moving probe

car or a fixed roadside sensor. On the other side, some publishing modes may do not make sense

provided the mobility status of the publisher. For instance, it is not likely that a desktop user sitting

in the office will publish traffic speed events (assumedly obtained by the user from another source

other than IIP) using the mobile mode. However, even though s/he does, the publishing action will

not take any effects.

The AREA and LIFETIME Parameters: The AREA parameter specifies the region where the

intended recipients of the published events should locate. By intended recipients, we refer to the

anticipated receivers of the events from the publisher’s point of view. Thus though nodes outside

of the region defined by the AREA parameter may also receive the events, they are considered only

as brokers who relay the events. Notice we expect that most of the time the AREA parameter is used

by the Mobile Peer to Peer Interface, i.e. when the PUBMODE parameter has a value of mobile or

mixed. In other words, any specific implementation of Mobile Peer to Peer Interface is supposed to

support for geocasting, i.e. delivering events to a group of nodes within certain geographical area.

However, the AREA parameter may be used when PUBMODE equals cloud as well.

Since it is hard for users to clearly state the value of the AREA parameter using expressions,

the IIP Client Component will provide a Graphic User Interface (GUI) for the purpose of specifying

AREA. More specifically, the GUI will display the real time road network around the node, which

typically consists of nearby parallel lanes in both directions. And it provides shapes, such as circle,

10

rectangle etc., that are used to select areas on the displayed road network. For an example of

specifying AREA using the GUI, consider Emergency Electronic Brake Light (EEBL) application

where a car disseminates an event to downstream vehicles when it detects the driver suddenly

brakes heavily. In this case, when a car publishes a hard brake event, the value of the AREA

parameter can be specified by selecting the rectangle area between the current location of the car

and certain point on the same lane behind the car.

The LIFETIME parameter indicates how long the event is to be valid in the network. An invalid

event will be discarded by all its carriers.

PUBMODE, AREA and LIFETIME are all optional parameters to the publish primitive because

they are simply “performance hints”. In other words, they affect performance, but not the semantics

of the application.

1.3.2.2 The subscribe/unsubscribe Primitive

Each node invokes the subscribe primitive when they need to subscribe to events of interest.

The AREA parameter and the LIFETIME parameter have the similar semantics of their counterparts

in the publish primitive. However, here they are mandatory to the subscribe primitive because they

are necessary for subscribers to precisely express what the events of interest are. Without them, the

semantics of a subscribe primitive become paralyzed. For example, in the aforementioned EEBL

scenario, a subscriber cannot express that s/he is only interested in hard brake events published in

last 30 seconds by cars ahead of it within 1 mile without the AREA and the LIFETIME parameter.

At any time, a subscriber can call the unsubscribe primitive to revoke any previous subscription.

The PREDICATE Parameter: The PREDICATE parameter represents a concrete

subscription of certain subscriber. A subscription is either (i) an Event Filter Predicate or (ii) an

Event Pattern Predicate.

An Event Filter Predicate is a conjunction of multiple predicates over a single event. Each

predicate is a binary predicate over an attribute of the event, returning either TRUE or FALSE. An

11

Event Filter Predicate is matched against individual events and a match is found if an event makes

the evaluation of the predicate return TRUE. For example, consider a driver subscribes to weather

forecast events which are published every 15 minutes. The attributes of the weather events are

<TIME_INTERVAL, TEMPERATURE, WIND_STRENGTH, PRECIPITATION,

ULTRAVIOLET_INDEX>. An example of an Event Filter Predicate is “notify me if there is a

predicted rain with the precipitation over 100 millimeters coming in an hour”. Formally, the

predicate can be written as “overlap (TIME_INTERVAL, next_hour) and PRECIPITATION>100

mm”. And the predicate will be evaluated on each individual weather event to filter out all events

whose TIME_INTERVAL and PRECIPITATION value satisfy the above conditions.

In contrast to an Event Filter Predicate, an Event Pattern Predicate is often defined and

evaluated across multiple events of the same event schema. For instance, again consider a driver

subscribes to the aforementioned weather forecast events. “Notify me if the temperature drops 10

degrees within 30 minutes” is an example of an Event Pattern Predicate since it can only be

evaluated on at least two events. Another example of an Event Pattern Predicate in the above

context could be “notify me if when the temperature reported by the weather forecast events has

monotonically increased for two hours”. In this case, the predicate has to be evaluated based on all-

weather events in a temporal window of two hours.

We utilize the language models described in [35] to formally define the Event Pattern

Predicates. The language model essentially consists of a set of formally defined language operators,

such as projection, union, conditional sequence, iteration, etc. Given the defined operators and

expressions, matching an Event Pattern Predicate against an event stream can be done using

extended finite state automata model.

1.3.2.3 The announce Primitive

The publish and (un)subscribe primitives provide the basic semantic of a pub/sub system, more

primitives are required by developers to construct various applications. An additional primitive we

12

considered is the announce primitive. All parameters in the announce primitive have the same

meaning as the counterparts defined in the publish primitive. The difference between the announce

primitive and the publish primitive lies in that announced events will be delivered to all subscribers

located in the region defined by the AREA parameter regardless of whether or not their subscriptions

match the events. Thus clearly the AREA parameter is mandatory, i.e. semantically required by the

announce primitive. The PUBMODE and the LIFETIME parameters remain optional due to the

same reason discussed in the publish primitive. The best proper scenarios for the announce

primitive are emergency notification applications, such as delivering warning, evacuation or rescue

events to drivers in some affected urban area after a devastating earthquake.

1.3.2.4 Implementation of the Event Broker

Recall that we define three different modes, namely mobile, cloud and mixed, for the

PUBMODE parameter. This means that for each event schema, there are 3 modes to transmit the

events and subscriptions of the schema in a network. Therefore given an event schema, there are 9

different scenarios in terms of how the events and subscriptions are transmitted respectively. For

each of those 9 scenarios, the matching between events and subscriptions can be implemented using

the Event Broker modules in the Cloud Interface and the Mobile Peer to Peer Interface. Next we

describe how the Event Broker module is implemented in each of the two interfaces.

The most straightforward way to implement the Event Broker in the Cloud Interface is to

implement it in a centralized approach, like the Event Schema Registry does. However, event and

subscription submission (including subscription updates and cancelations) rate is much higher than

event schema registering rate for a large scale heterogeneous network. Thus the single server

implementation is not reliable or feasible. A more promising approach is to implement the Event

Broker as a set of autonomous, interconnected distributed servers. The servers form a flat overlay

network and forward events or/and subscriptions among themselves to make sure each event is

matched against each active subscription in the overlay network. We employ the forwarding

13

algorithm described in [9] to implement the Event Broker in the Cloud Interface. More details about

the applied forwarding algorithm can be found in [9].

There are many alternatives to implement the Event Broker module in the Mobile Peer to Peer

Interface. For example, we can define that each node stores its subscriptions locally and only

publishes events among peers. Even for this simple strategy, many rules, such as which peers can

be brokers of which events and when the brokers retransmit received events, needs to be specified

in order to optimize the system performance in terms of message overhead, delivery ratio, etc.

Proposing a comprehensive and optimized implementation of the Event Broker in the Mobile Peer

to Peer Interface is beyond the scope of this document and thus we do not discuss it further.

1.4 Related Work

The Event Schema Registry in IIP is related to work on service discovery. Currently existing

service discovery protocols generally fall into two categories in terms of the way in which service

information is managed. One approach is to broadcast service information through the entire

network either using a gossip algorithm or maintaining a multicast tree. Salutation [9] by IBM and

Universal Plug and Play (UPnP) [12] by Microsoft are representative members of this category.

We believe such an approach suffers from a high cost for broadcasting or tree construction and

maintenance in highly mobile networks, and thus is not suitable for IIP. An alternative approach

taken by other protocols such as Universal Description and Discovery and Integration (UDDI) [10]

for web services and Jini [11] is to maintain a central directory to store service information. The

Event Schema Registry component of IIP also takes a central-directory approach, and can indeed

use a web service system for implementation.

The pub/sub literature is also relevant to IIP. There are basically two types of publish/subscribe

systems, namely topic based and content based [56]. In topic based systems, users express interests

by simply joining a group defined by a central subject. Whereas content based systems provide

14

much more flexibility in expressing users’ interests by allowing users to specify predicates over a

set of attributes. As a result, arbitrary queries over the events content can be easily posed by users.

The pub/sub system in IIP employs a content-based approach. In contrast to traditional pub/sub

systems [43, 103, 128] which are cloud-based, IIP supports an arbitrary combination of mobile

peer-to-peer and cloud publications and subscriptions. In terms of purely mobile P2P

implementations, a few pub/sub systems have been proposed. For example, [81] proposes a

publish/subscribe implementation for MANETs. In the implementation, subscriptions are only

deployed locally due to the fact that the paths utilized by the subscription forwarding strategy in

server overlay networks quickly become stale in a mobile environment. When receiving an event

from a neighbor, a mobile node matches the event to its own subscriptions and broadcasts the event,

as long as it is still valid given the current location and time. Triantafillou and Aekaterinidis [108]

present a different approach to support P2P applications via building a pub/sub middleware over a

structured P2P network such as Chord [106]. But that solution is again restricted to a static P2P

network.

1.5 Discussion

The development of ITS applications imposes the need for a platform which provides generic

data management and communication functionalities. To meet the need, we proposed IIP as a way

to facilitate the development of a variety of prospective ITS applications. We outlined the

architecture of IIP and discussed the implementation of its two major components, namely, service

discovery and publish/subscribe.

Several open issues require further exploration. Here we do not propose any specific mobile

peer to peer protocol for the Communication Layer of the IIP Client Component. Although some

existing research is concerned with this issue [56, 98], there still remain many interesting problems

when attempting to apply those approaches to the ITS environment. For instance, in order to

15

expedite the information dissemination in the mobile P2P network, in additional to short range

communication methods, wide area wireless networks, e.g. the cellular network, can be utilized.

More specifically, to improve performance both publications and subscriptions can be disseminated.

When a subscription and publication are matched at a node, since the net id of the subscriber is

available, the event can be directly delivered to the subscriber via the cellular network. Thus, a

subscriber may receive the event either via the mobile P2P network, or via the cellular network,

whichever comes first. A similar approach was taken in [116] for matching meta-data and queries

in a vehicular network. Also, how to make the pub/sub protocol adapt to various combinations of

applications and network conditions remains an open question.

16

Chapter 2

Trust Management for Intelligent Transportation System

2.1 Introduction

In recent years, ITS (Intelligent Transportation System) has drawn increasing professional

attention from researchers in academia and industry companies as well as official authorities, and

has been considered the next life-changing technological revolution. The prospect of ITS promises

a variety of applications, including safety applications, crowd-sourcing applications, entertainment

applications, etc. Many prototypical applications [65, 66, 107] have been proposed. All of these

proposals focus mainly on the implementation of application-specific functionalities, yet they all

overlook a fundamental issue: namely, trust management.

Trust is a pervasive concept used in many disciplines like sociology, economy, psychology,

computing, etc. [61]. We consider the semantics of “trust” only in the field of distributed systems

and networking. Specifically, in traditional online e-commerce environments such as EBay,

Amazon, the beta reputation system [60], etc., trust management, roughly speaking, refers to the

management of the trustworthiness of relationships among entities. For the sake of simplicity, in a

trusted relationship in which entity A trusts entity B, we refer to A as the trustor and B as the trustee.

In a trust management scheme for online communities, the direct consequence of a distrusted

relationship typically is to prevent any interaction between the two involved entities from

happening.

In wireless networks like VANETs, ITS, etc., the concept of trust inherits its old interpretation

from online e-commerce environments and also extends to the trust of an entity to data. For instance,

in a crowd sourcing application, entities need to make trust decisions on received messages. We

refer to the former interpretation of trust as entity trust and the latter interpretation as data trust.

17

One way to implement data trust management is to employ entity data trust management. As

shown in Figure 3, data trust management can be layered above entity trust management. It utilizes

entity trust values generated by the entity trust management layer to output data trust values. Data

trust values are converted to binary decisions via comparing to a trust threshold value. Those

decisions are in turn fed back to the entity trust management layer for updating entity trust values.

To illustrate the above relations, consider a crowd sourcing application as an example. When an

entity needs to evaluate the authenticity of a received message, it can use its trust value for the

message’s generator as the ground for the calculation of the trust value for the message. The

resulted trust value is then converted to a trust decision. Such a decision will later be used to update

the entity’s trust value for the message’s generator. Note that the dependence on entity trust

management is not indispensable for data trust management implementations. Some proposed data

management schemes [53, 95] only exploits the fact that information is often redundant in ITS to

deal with data trust issues.

Figure 3 Potential dependence between entity and data trust management

2.2 Concepts of Trust Management

In this section, we examine the unique properties of trust in the context of Intelligent

Transportation System.

Entity Trust Management

Data Trust Management

Threshold

trust values for the data

reputation of an entity

binary trust decision

18

Trust is partially transitive. On one hand, transitiveness implies that trust can be acquired either

directly or indirectly. Direct trust is always earned via individual experiences. Indirect trust is

earned via referrals, opinions, etc. On another hand, partial transitiveness implies that indirect trust

often comes with special constraints, e.g. a maximum referral hop limit. It is desirable for a trust

management scheme to take both direct and indirect trust into consideration, though it may assign

different weights to them.

Trust is both static and dynamic. Static trust means that the value of trust does not change over

time. Identity-based trust is typical static trust. Here the identity refers to information regarding an

entity’s social role and status as well as its relationship with other entities. For instances of identity-

based trust, one can consider following two examples: Without any previous interactions, a private

passenger car is reasonable to trust a police patrol car. Likewise, a truck trusts the leader of its fleet,

which consists of the same type of trucks from the same company. Dynamic trust means that the

value of trust changes over time. For example, interaction-based trust is dynamic.

Trust is situation-dependent. For example, an entity may adapt its threshold for a trusted

decision, according to situation. In general, the threshold is supposed to be set higher in situations

where a trust decision matters more, e.g. in safety applications. The threshold may also be adapted

to the security level of the system [48]. For instance, an entity would have a lower threshold in a

system with sophisticated cryptography than in one without cryptography.

2.2.1 Trust Metrics

While properties of trust often tell how trust can be measured, trust metrics tell what to be

measured for evaluating trust. In ITS applications, a trust metric is often some character of an entity,

e.g. honesty in message generation. Or it is some capability of an entity, e.g. the discernment

capability for distinguishing between truthful and false messages, the capability for providing

reliable timely and integral message delivery [71], etc. Here trust metrics are actually all entity trust

19

metrics. That is because for data we only consider the authenticity of it. Thus, there is no need for

various metrics for data trust.

Trust metrics inherit the properties of trust. To understand this, we use an example trust metric

to show how it can be utilized in trust management. Consider honesty in message generation as a

specific trust metric. The value of this metric can be determined statically, i.e. initialized based on

the role of an entity. E.g. a policeman possesses a higher static trust value in honesty than a regular

driver. The value can also be dynamically changed over interactions. Besides, the value can be

gained indirectly. Say entity A may get the value of trust in honesty of entity B from entity C.

Finally, the trust threshold related to this metric may be adapted to situation as well. For example,

suppose an entity decides to distrust any messages originated from entities with a trust value in

honesty lower than a threshold. Such a threshold can be set higher in a dense network where

information is abundant and thus the entity can be more selective in messages. In contrast the

threshold should be lower in a sparse network where information is rare and the entity has to be

more open to messages.

2.2.2 Potential Attacks

There are some common attacks [30] deliberately designed to sabotage trust management

schemes. Those attacks include simple false information injection attacks, on-and-off attacks, Sybil

attacks and collusion attacks. A simple false information injection attack happens when a malicious

entity generates false information on purpose. An on-and-off attack happens when a malign entity

behaves well or badly alternatively to dodge the detection. A Sybil attack [39] happens when a

malign entity uses a large number of fake identities to beat the redundancy check of the network.

For instance, an entity may ask opinions for a message from multiple different entities. A Sybil

entity with many pseudonyms, i.e. bogus entities, can fake all those opinions using different

pseudonyms and consequently fool the entity that asks for help. A collusion attack happens when

20

a group of well-coordinated malign entities contrive a conspiracy. We shall show how those attacks

are handled when review related works of trust management in the next section.

Note that we consider traditional security problems like access controls, cryptography, etc. as

a separate type of issues from the entity and data trust management problems investigated here.

The difference between those two types of problems is first described in [92], which refers

traditional security issues as hard security and trust management as soft security. Thus, traditional

information security hazards such as modification of messages, denial of the generation of

messages, etc. are not considered as attacks specially targeting trust management schemes. Those

traditional hazards are typically prevented by employing asymmetric key cryptography. For

example, [29, 53, 88, 111] use digital signatures to prevent malicious entities from modifying

messages without detection. However it remains a separate important research direction to consider

the traditional security issues in an ITS environment. For instance how to efficiently manage the

public/private key pairs without revealing the privacy of entities in ITS environment needs to be

studied. As an example, [94] suggests using anonymous key pairs to preserve sensitive information

regarding the entity, such as owner, identity, routine, etc. [64] proposes an approach to deploy

anonymous key pairs in VANETs.

2.3Survey on Trust Management for ITS

In this section, we provide our critical reviews of the existing works on trust management for

ITS. Those works are organized based on the way in which the trust management is implemented.

For the purpose of validating a received message, both [38] and [29] consider a technique

named opinion piggybacking. Opinion piggybacking means that each forwarding entity of a

message appends their own opinion to the message and decides whether or not trust the message

based on the attached opinions.

21

Specifically, in [38] each such opinion of a forwarding entity is a triple tuple including a

continuous trust value 𝑜𝑣𝑎𝑙 representing its trust value for the message, a discrete trust level s

{1,2,3} representing its trust value for the message’s generator and its ID. The paper provides

forwarding entities an algorithm calculating the values of their own 𝑜𝑣𝑎𝑙 and 𝑠 for a message by

considering all the previous opinions attached with the message combined with locally stored trust

values for the corresponding opinion providers. Dynamism is brought into the trust decision

threshold by taking the spatial distance between locations of the message source entity and the

deciding entity, as well as, the deciding entity’s familiarity of the area into account. However, [38]

provides little information regarding how trust values for entities get initialized and updated.

In contrast to [38], in [29] each opinion consists of a binary decision for the message, i.e. either

trusted or not, a confidence value for the decision and the signature of opinion generator.

Specifically, the paper adapts a clustering based routing protocol to propagate messages. The

cluster-head entity calculates the trust value for the message by considering both the confidence of

each attached opinion and its personal trust value for the opinion’s corresponding generator. The

cluster-head then makes a decision based on the calculation result to determine whether or not to

relay the message. Consequently, only trusted messages get disseminated among different clusters.

An entity updates its trust values for other entities according to the following rules. Entity 𝑋’s

trust for entity 𝑌 is positively enforced if 𝑌’s opinion on a message leads to a correct decision;

otherwise 𝑋’s trust value for 𝑌 is reduced. The paper does not elaborate on how an entity gets to

verify the correctness of a trust decision. An entity can absolutely discover the authenticity of the

event reported in the message by direct observations. For example, an entity which has trusted a

message reporting the clear of a road maintenance on its way to the destination would verify the

decision is correct when it passes by the site. However, it is obvious that sometimes an entity has

no way to witness an event reported by a once trusted message. For instance, an entity which has

trusted a message reporting a jam on its future trajectory and thus decided to reroute, is unable to

22

verify the truth via direct observations. Thus, it is reasonable for an entity to confirm the

authenticity of a reported event, if it receives a similar message from a highly trusted entity too.

The threshold for the “high trustworthiness” can be customized by individual entities.

[29] proposes some methods for preventing on-and-off attacks. It suggests to defend such

attacks by utilizing the “hard to win but easy to lose” principle. This principle imitates a practical

norm in the real social life, namely, that trust value for an entity is difficult to build up but easy to

tear down. Consequently, entities have to behave very discreetly all the time in order to keep their

earned credits. A similar kind of attack, i.e. betrayal attacks where malicious entities first act

normally to build up their trustworthiness but then abruptly start malign behaviors, can also be

thwarted by following the same principle. Specifically, the scheme proposed in [5] employs a

forgetting factor which allows trust values earned via interactions to decay over time. It also uses a

larger value for the decrease factor than that for the increase factor. As a result, trust values for

entities always gains slowly and loses fast over interactions.

One unique problem with the approach in [29] is regarding the confidence value of the opinion.

Although the confidence value helps model the uncertainty of the opinion, there is no good

guidance for entities to accurately estimate such a value. If unfortunately the estimation goes wild,

the poorly calculated confidence value is going to damage the entity’s trustworthiness badly in the

feedback stage. In addition, the scheme is bonded with a cluster-based routing scheme. Therefore

its applicability narrows dramatically.

Both schemes described in [29, 38] suffer from several other problems in the ITS environment.

First is that a forwarding entity of a message is likely to have no previous interaction with the

message’s generator and have no ground to provide an opinion to the message. One solution is to

ask the message generator embed its encrypted role into the message. Then forwarding entities can

use static role-based trust value as the initial ground for opinion giving.

23

Second is that they only use a single trust value to measure entity trust. However, it is important

for them to make a distinction between trust in honesty and trust in discernment. Trust in honesty

measures the trustor’s faith in the belief that the trustee will not produce falsified information

whereas trust in discernment measures the trustor’s faith in the trustee’s ability of making correct

trust decisions on messages. The difference between these two metrics reflects a similar situation

in our social network: someone may be so honest that s/he never tells a lie however s/he may be

also so inexperienced that s/he will be easily fooled by a lie. Likewise, entity X, with a high trust

value in honesty but a low trust value in discernment implies that it barely generates false

information but keeps making wrong decisions on messages due to reasons such as lack of

interactions or surrounded by colluding entities. In such a case, another entity Y is expected to

believe data originated from X but ignore X’s trust opinions for other messages. In this case, if two

trust metrics are mixed and represented by a single value, Y is likely either over-estimate the

credibility of X’s opinions or underestimate the reliability of data generated by X.

The last problem is most crucial. To show what the problem is, consider a scenario where a

malicious entity 𝑂 broadcasts false messages in one neighborhood for a while, flees to another far

away area, say 5 miles from the old neighborhood, and starts to broadcast false messages again. It

is likely that in the new area, there are few entities which have previous interactions with O and

thus have no idea of O’s past bad behaviors. Consequently, the forwarding entities of falsified

messages generated by O in the new area may make incorrect trust decisions in the beginning phase.

Those entities may discover the evil of O after a period of time but by then O may have far gone

again.

2.3.1 A Novel Trust Management Scheme

The last problem described above has its root in the fact that the proposed trust management

schemes are fully decentralized and there is a lack of a central server which records the

24

trustworthiness of entities. This inspires us a novel idea of implementing trust management in a

semi-centralized scheme.

Next we briefly describe how the scheme will work. The scheme assumes the existence of a

central server, whose public key is globally known. Each entity registers with the server. The server

stores reputation values of entities. Each entity can log in the server to file compliant or praise about

another entity, of which the corresponding reputation value is updated by the server according to

certain rules. Each entity is required to log in the server every Tru time in order to download a

certificate encrypted by the private key of the server. The certificate contains a statement

associating the identity and the latest reputation value stored in the server of the entity. When an

entity broadcasts a message, it is required to embed the certificate into the message. Consequently,

any entity receives the message can decrypt the certificate using the server’s public key and get a

rough idea about the trustworthiness of the message’s generator via the embed reputation. In

addition, an entity is allowed to inquire the server about the reputation value of another entity any

time if it suspects the reputation value in the received certificate is out of date. This means will

efficiently prevent the aforementioned perpetrate-run-perpetrate type of attacks.

There are clearly some details need to be determined for the above scheme. For example, what

is the best value for Tru such that a good balance is stroke between the freshness of the reputation

value and the efficiency of communication cost? Likewise, what are the rules of the server to

update reputation value given the reported complain and praise? We leave those questions as future

work and are going to implement this scheme in a forthcoming paper.

2.3.2 Opinion Inquiring

Akin to the opinion piggybacking approach, Minhas et al. [111] proposes to validate messages

via considering other entities’ opinions too. However, unlike in [29, 38] where opinions are bonded

with the message forwarding protocol and consequently causes an entity to lose the option to choose

opinion providers, the paper allows an entity actively to ask for opinions from entities picked by

25

itself. When an entity receives a message announcing an event, it asks opinions from N other most

trusted entities based on the trust values output by the lower layer entity trust management, of which

the details are briefly summarized below.

Similar to the approach in [29], the entity trust consists of role-based trust and interactions-

based trust. A globally trusted certificate authority (CA) issues an encrypted certificate to each

entity which binds the role and the public key of the entity. By requiring communicating parties to

exchange certificates before interactions, role masquerading is efficiently prevented. Interaction-

based trust is learned by an entity via past interactions. The principle of the learning process is the

same as that in [29], namely “good” interactions get rewarded and “bad” interactions get punished.

Each entity ranks the trustworthiness of other entities in a major order of role-based trust and a

minor order of interaction-based trust.

Once having all the opinions for a received message, the entity uses an equation to calculate

the trust value for the message. Within that calculation, each opinion is assigned with different

weight in relation to factors including: (i), local role-based trust for the opinion provider; (ii), local

interaction-based trust for the opinion provider; (iii), temporal closeness between the time when

the event takes place and the time when the opinion is generated; (iv), spatial closeness between

the location where the event takes place and the location where the opinion is generated. The output

trust value is finally converted to a decision.

There is one unique problem with this opinion inquiring based scheme. Since the selection of

entities for which opinions are asked is based on trust value rather than spatial closeness, the scheme

may suffers a high communication cost and time delay, if unfortunately, the selected entities are

far away.

2.3.3 Passive Majority Consensus

Patwardhan et al. [88] utilizes the fact that information is often redundant in ITS applications

to validate a message. The paper assumes a network where anchored resources, such as parking

26

meters and roadside sensors, perpetually provide trustworthy data to surrounding entities. A

message can be accepted, i.e. validated, by an entity via either using a majority consensus or directly

communicating with the anchored resource which produces the message. A majority consensus at

an entity O will validate a message M if (i) at the time of consensus, O has received at least P other

messages which report the same event as message M does, all from different entities (ii) message

M along with the other P messages consist of the majority opinion regarding the event, where P is

a system parameter.

The proposed scheme takes a passive approach to wait for messages from other entities in

contrast to the scheme in [111] which proactively asks for opinions from other entities. The

drawback of the passive approach is that an entity may wait for a long time or even forever to

receive enough messages of the same event required by the majority consensus in a sparse network.

Thus, it is natural to consider a neutral approach combining the merits of the active and passive

approaches. For example, adapt the state of activity of the entity to the network density and consider

both trust value and geographical closeness as metrics when choosing entities for opinions. In

addition, these two schemes also suffer from the same three problems of schemes in [29, 38]

described before.

2.3.4Data Fusion Dependent

By far all discussed trust management schemes employ some variant of the majority scheme to

integrate complementary evidences, i.e. opinions or messages of the same event for making a trust

decision. In contrast, Raya et al. [95] introduces a trust management scheme emphasizing on

exploiting different kinds of data fusion techniques for the purpose of complementary evidence

integration. Specifically, a trust metric is used to measure an entity’s vulnerability to attacks. The

value of this metric is assigned statically. For instance, better equipped and closely monitored

entities have higher static trust values than regular entities. Given all the available evidences of a

particular event, the entity takes all the messages of the event and their corresponding weights to

27

output the trust value for the event by using certain data fusion technique. Similar to the approach

in [111], the weight of each message is related to both the static trust value for the message’s

generator as well as time and distance closeness between the reported event and the message’s

generator. The data fusion techniques include voting, Bayesian inference and Dempster-Shafer

Theory of evidence. Similar to the approach in [88], this scheme suffers in sparse network where

sufficient evidence is not likely available for an event.

2.3.5 Position Verification

Golle et al. [53] also presents a data trust management scheme for VANETs without the use of

any entity trust metric. The authors assume that each entity maintains a model of the VANET against

which any incoming message will be validated. In its core, a model of the VANET is a set of

observations about the VANET already known to an entity. All messages consistent with the

entity’s model of the VANET are validated; otherwise, the entity attempts to eliminate the

inconsistency by ranking all the possible explanations and picking the simplest explanation.

The paper does not provide a general algorithm for validating data against the model of the

VANET but uses examples to demonstrate the idea. For instance, the paper shows how the approach

is used for prevent Sybil attacks. Specifically, drivers are supposed to be capable of broadcasting

position statements pertaining to themselves and others. For example, driver A may broadcast a

message stating “I am at location L1 and I spot a police car at location L2”. The paper assumes that

broadcasted position statements are immediately available to entities network wide. Now suppose

in its model of the VANET, entity A has identified that neighbor B and C are indeed distinct entities.

Further suppose that both B and C state that identity X and identity Y, which are far away from A,

locate at the same position. However, at the same time X and Y themselves state they are at different

positions. Clearly there is a conflict among statements received by A. There are two possible

explanations which can resolve the conflict, namely (i) B and C collude to lie about X and Y (ii) X

or Y is faked by a Sybil entity. A makes the choice by utilizing the so called adversarial parsimony

28

principle, which essentially picks the explanation involving fewest malicious entities. Thus, in this

case, the second explanation, i.e. the potential Sybil attack is detected by entity A.

The problem of this approach is that it is not practical for each vehicle building and maintaining

a model of the VANET in real time, since the paper assumes that any broadcasted statement made

by an entity is instantly universally available to all other entities, i.e. ignoring the propagation time

of messages. Besides, since Sybil attacks requires the lack of a central trusted authority such as a

CA which provides identity authentication service, thus, the above approach is not necessary for

ITS as entities may get certificates from trusted infrastructures, e.g. gas stations, parking lots or

dedicated roadside facilities [114] to authenticate themselves. However, implementation level

details for the approach such as which infrastructure are considered to be trusted, how certifications

are managed, etc. are needed to be thought thoroughly.

2.3.6 Collusion Attacks Prevention

Few attempts have been done in preventing collusion attacks. Some existing trust management

schemes for ITS are considered to have certain defense ability against collusion attacks of a

particular form. For instance, the scheme proposed in [53] can prevent a special kind of collusion

attack, i.e. position spoofing by a group of malicious entities. However, because of the nature of

the adversarial parsimony principle, the scheme only works when even the simplest explanation

includes a collusion attack. Trust management systems described in [29, 38] are also considered to

be capable of absorbing colluded false message injection attacks to certain degree. Nevertheless

the strength of such a capability is contingent upon factors like network density, complexity of the

collusion, etc. In short, the principles of defending collusion attacks in general as well as concrete

methods for preventing application-specific collusion attacks still wait to be further studied.

29

2.4 Discussion

Trust management is a crucial aspect for ITS applications, and yet remains an open problem.

Existing works on trust management for ITS aim at different kinds of sub-problems. Unfortunately,

there is a lack of classification and comparison of these works against a uniform backdrop. For this

purpose, we present a survey on trust management for ITS. Specifically, our survey describes the

properties of trust, trust metrics and potential attacks against trust management schemes. Existing

related works are carefully reviewed and compared. We also contribute a novel idea of

implementing trust management in a semi-centralized fashion. Our work is an important step

toward building an efficient, comprehensive and reliable trust management scheme for ITS.

30

Chapter 3

Real-time Taxi-sharing with Smart Phones

3.1 Introduction

3.1.1 Background

Many transportation related problems, such as traffic congestions, difficult to find available

parking spaces, hard to hail a taxi during rush hours, have been bringing inconvenience to

average people’s daily life for a long time. In the past, different methods have been mainly

proposed to tackle these problems separately. In contrast, we aim to find a cure-all which

solves or at least alleviates all these problems. One major reason accounts for the occurrence of

these problems is that the ridership of vehicles is under-exploited as a resource. Thus, we

study ridesharing as a promising means to improve the utilization of vehicle ridership and

thus serve the purpose of fixing relevant transportation problems.

Ridesharing , at a high level, is defined as the practice that travelers share their partial or entire

trips in a vehicle. Given this definition, we can immediately see three aspects that feature the

characteristics of ridesharing, i.e. the type of vehicles used, the relationship among riders who share

a trip, and the monetary relationship between riders and the driver of the vehicle. A driver is the

person who drives the vehicle that provides the ride opportunities and a rider is a person who

consumes a passenger seat of the vehicle.

Figure 4 further illustrates these aspects of ridesharing. Vehicles used for ridesharing can be

cars and vans, and the corresponding ridesharing is conventionally referred to as carpool and

vanpool, respectively. The relationship among riders who share a trip can be family members,

acquaintances (e.g. colleagues), and strangers, and the corresponding ridesharing can be referred

to as Fampool, Co-worker Carpool, Casual Carpool [28], respectively. Ridesharing can be

31

conducted for non-profit purposes (e.g. commute ridesharing) and for-profit purposes. For non-

profit ridesharing, passengers may or may not pay the driver for the shared trips. Drivers may still

have incentives to provide free rides even the passengers do not compensate them. These incentives

often are provided by ridesharing-encouraging policies made by government authorities, such as

the use of High-Occupancy Vehicle (HOV) lanes, toll reduction.

Figure 4 Elements of ridesharing

In other literature, ridesharing is also referred as to carpool, or car sharing. In this study, we

distinguish these terms. Carpool is considered to be equivalent to non-profit ridesharing. Car

sharing refers to the practice of mid-term or long-term renting or leasing cars. This word is

popularized due to the emerging and fast growing of new car rental companies, notably Zipcar.

3.1.2 Motivation

Transportation problems, such as traffic jams, find parking slots, hard to hail a taxi during rush

hours, are long-existing headaches for cities, especially those with a large population. These

problems affect the environment, the economy, and more directly average people’s daily lives by

cost them a large chuck of time each day. For example, on average drivers spend 8.1 minutes in

finding a curbside parking slot [102].

 During the past, different methods have been mainly proposed to tackle these problems

separately. For examples, extending the road network is one common approach to tackle traffic

jams; sensors which detect the availability of parking spaces [4] are installed to help drivers find

parking slots more quickly. However, those solutions often require additional construction or new

equipment added to the existing infrastructures and thus are often costly. Also, their benefits are

Driver
Vehicle Rider

For-Profit/Non-Profit
Car/Van

Family members/
Colleagues/Strangers

32

usually limited to the specific corresponding problem. Though for some case, solution to one

problem has positive effects on another, e.g. reducing searching time for parking slots help ease

traffic jams [17].

In contrast, we aim to find a cure-all which is instrumental for solving all the problems at once.

One major reason which accounts for the occurrence of the above transportation problems is that

the passenger seats of vehicles is under-exploited as a resource. Thus, we study ridesharing as a

promising means to improve the utilization of vehicle ridership and reduce the number of cars on

the road. On one hand, ridesharing is a more cost-effective transport mode than private transport.

On the other hand, it is also more flexible compared to public transport. First, ridesharing, e.g. taxi

ridesharing, still has the potential to satisfy door-to-door travel needs of individuals; whereas public

transport such as buses, trains typical only connect a few designated locations. Second, ridesharing

is also more temporally flexible than public transport as the schedule of a shared trip can be the

result of negotiation of participants instead of being fixed. For these reasons, ridesharing is an

important transport mode complementary to the existing private and public transport, which is

capable of satisfying travel needs while being cost-effective. We are going to model a generic

ridesharing problem and study the benefit of ridesharing via both theoretical analysis and

experiments.

3.1.3 Technical Challenge

Taxi is an important transportation mode between public and private transportations, delivering

millions of passengers to different locations in urban areas. However, taxi demands are usually

much higher than the number of taxis in peak hours of major cities, resulting in that many people

spend a long time on roadsides before getting a taxi. Increasing the number of taxis seems an

obvious solution. But it brings some negative effects, e.g., causing additional traffic on the road

surface and more energy consumption, and decreasing taxi driver’s income (considering that

demands of taxis would be lower than number of taxis during off–peak hours).

33

Unfortunately, real-time taxi-sharing has not been well explored, though ridesharing based on

private cars, often known as carpooling or recurring ridesharing, was studied for years to deal with

people’s routine commutes, e.g., from home to work [19, 25]. In contrast to existing ridesharing,

real-time taxi-sharing is more challenging because both ride requests and positions of taxis are

highly dynamic and difficult to predict. First, passengers are often lazy to plan a taxi trip in advance,

and usually submit a ride request shortly before the departure. Second, a taxi constantly travels on

roads, picking up and dropping off passengers. Its destination depends on that of passengers, while

passengers could go anywhere in a city.

3.1.4 Contribution

We consider real-time taxi-sharing for a large number of taxis. We placed our problem in a

practical setting by exploiting a real city road network and the enormous historical taxi trajectory

data. The contribution of this section is summarized as follows.

We proposed and developed a taxi-sharing system using the mobile-cloud architecture. The

Cloud integrates multiple important components including taxi indexing, searching, scheduling,

and travel time estimation. Specifically, we propose a spatio-temporal indexing structure, a taxi

searching algorithm, and a scheduling algorithm. Supported by the index, the two algorithms

quickly serve a large number of real-time ride requests while reducing the travel distance of taxis

compared with the case without taxi-sharing.

We built mobile clients running on smart phones, enabling taxi riders and taxi drivers to interact

with the Cloud and with each other. Taxis are also mobile sensors constantly probing the traffic on

road surfaces, and therefore providing a more accurate estimation of travel time for our system.

We performed extensive experiments to validate the effectiveness of taxi-sharing as well as the

efficiency and scalability. According to the experimental results, the fraction of ride requests that

get satisfied is significantly increased by 22% meanwhile riders save 5% in taxi fare via taxi-sharing

34

when the taxis are in high demand. Furthermore 2 million liter of gasoline can be saved each year

in Beijing by taxis alone if taxi-sharing is allowed.

3.2 Related Works

3.2.1 Taxi Recommender and Dispatching Systems

Quite a few recommender systems have been proposed for improving an individual taxi

driver’s income and reducing unnecessary cruising. Based on historical taxi trajectories, Yuan and

Zheng et al. [122, 124] proposed a system that suggests some parking places for an individual taxi

driver towards which they can find passengers quickly and maximize the profit of the next trip.

Similarly, Ge et. al [47] suggests a sequence of pickup points for a taxi driver. While these systems

are only designed from the perspective of taxi drivers, our system considers the needs of both taxi

drivers and riders.

Taxi dispatching services [73, 100, 120] usually send a taxi close to a passenger as per the

passenger’s call without considering taxi-sharing. Consequently, only vacant taxis need to be

examined for each dispatch, which can be easily retrieved by answering a range query. In our case,

each taxi that is occupied under full capacity needs to be considered. This complication introduces

new challenges.

3.2.2 Dial A Ride Problem (DARP) and Its Applying Heuristics

The taxi ridesharing problem is relevant to the Dial-a-Ride Problem (DARP) [16], a.k.a.

Vehicle Routing Problem with Time Windows [37] studied in the operation research community.

DARP is essentially also a constraint satisfaction problem, i.e., planning schedules for vehicles,

subject to the time constraints on pickup and delivery events. Static DARP can be viewed as the

static single-hop non-profit ridesharing problem with additional presumptions (e.g. all vehicles are

required to start trips and return after all trips from and to a depot location in DARP). Please see

[33] for a more comprehensive survey on DARP.

35

DARP is NP-hard [101]. Therefore, majority efforts have been put into developing heuristics

for the problem. Some heuristics such as genetic algorithms are also called meta-heuristics as these

heuristics provide a general computation paradigm which is applied to solve a broad range of

problems. For the sake of simplicity, we use heuristics to refer meta-heuristics as well. Figure 5

shows a hierarchy of common heuristics.

Figure 5 Hierarchy of meta-heuristics

Table 1 lists some heuristics that have been applied to static Dial-A-Ride Problem (DARP) in

the existing literature.

Table 1 A list of heuristics applied to ridesharing problems

Reference Meta-

heuristics/heuristics

Formulation of Ridesharing Problem

Constraints Optimization Objective Max # of

Queries

[26, 59] Tabu Search time window,

vehicle capacity

travel distance 295

[21] genetic algorithms time window,

vehicle capacity

linear combination of

factors such as ride time,

waiting time, time

window violations.

144

[20] simulated

annealing

time window objection function of

weighted factors

N/A

[87] variable

neighborhood

search

time window,

vehicle capacity

a linear combination of

violations

295

[27] heuristics for graph

assignment

problem

time window,

vehicle capacity

linear combination of #

of served users and level

of service (considering

factors such as waiting

time, riding time, etc.) of

these users

180

Heuristics

Local Search
Evolutionary
Algorithms

Tabu Search
Simulated
Annealing

Genetic
Algorithm

Heuristics specific to
ridesharing problems

Greedy

36

[118] inter-route

exchanges,

diversification

time window,

heterogeneous

vehicle capacity

linear combination of

travel distance, travel

time, waiting time.

2000

[62] set cover heuristic time window,

vehicle capacity

a linear combination of

travel

time of riders and driver

and travel distance

215

Among all heuristics, local search is the most frequent strategy used to solve ridesharing

problems. In this section, we briefly describe some common local search heuristics. Figure 6 shows

the logical flow and major components of a typical local search heuristic. We will walk through

the flow chart by using the ridesharing problem as the context.

A solution 𝑃 of a ridesharing problem is a set cover for the given set of queries 𝑆𝑄. A neighbor

of a set cover 𝑃, denoted by 𝑃′, is obtained from 𝑃 by an operation called intergroup query move.

Each intergroup query move removes a query Q from a query group 𝐺𝑖 and add it to another query

group 𝐺𝑗 (the cost of query group 𝐺𝑖 and 𝐺𝑗 should update accordingly).

Figure 6 Flow chart and major components of a meta-heuristics

Existing works provide other definitions of the neighborhood of ridesharing solutions. For

example, except the intergroup query move operation, [118] defines additional two operations that

produce a neighbor: (i) remove two queries from one query group and add them to another group;

(ii) two query groups exchange one of their queries. These two operations obviously can be

37

k k

k

k

considered as a sequence of intergroup query move operation. However, it is not clear from the

paper how these operations affect the performance of heuristics.

As shown in Figure 6, a local search heuristic works by starting with an initial solution and

iteratively transiting to one of the neighboring solutions until the termination criterion is met. One

way to get an initial solution [118] is to apply a greedy grouping algorithm. The algorithm iterates

the query set and deals with each query 𝑄 in the following way: 𝑄 is added to the first query

group such that the new group of queries obtained after addition can build a ridesharing

schedule by themselves; if 𝑄 cannot join any group, then makes a new group by 𝑄 itself.

Transit test is the paramount component of a heuristic. The solution transits to one of its

neighbor at each iteration. Denote by 𝑃𝑘 and 𝑃𝑘+1 the solution at iteration 𝑘 and 𝑘 + 1

respectively. The transit test decides how 𝑃𝑘+1 is chosen given 𝑃𝑘 . If the transit test

performs an exhaustive search, then all neighbors of 𝑃𝑘 should be considered as the

candidate of Pk+1; otherwise, only a part of neighbors of 𝑃𝑘 need to be considered. In the

latter case, the transit test typically chooses the first neighbor that meets certain requirement.

As the specifics of transit test vary from heuristic to heuristic, we discuss some

representative heuristics separately below. For the sake of description, denote by 𝑃𝑘
′ a

neighbor of 𝑃𝑘 and ∆= 𝐶(𝑃𝑘
′) − 𝐶(𝑃𝑘).

Greedy: If transit test is exhaustive, then 𝑃𝑘+1 is the first neighboring solution 𝑃𝑘
′ leading

to a lower value of the cost function, i.e. ∆< 0. If no such solution exists, otherwise, 𝑃𝑘+1

is the 𝑃𝑘
′ resulting the largest cost reduction among all neighbors of 𝑃𝑘 .

Simulated Annealing: Comparing to the greedy heuristics, simulated annealing relaxes the

acceptance condition by accepting the transition with certain probability even when the

value of cost function increases. Specifically, if ∆< 0, then the transition to 𝑃𝑘
′ is always

accepted. If ∆≥ 0, then the move to 𝑃𝑘
′ is accepted with probability 𝑒−

∆

𝑇 , where 𝑇 is a

parameter called the temperature, which changes during the course of the algorithm. Usually

38

𝑇 is large in the beginning and then it decreases after each iteration until it is close to 0.

Different cooling schemes, i.e. ways in which the value of T is decreased as iteration goes,

can be applied. Often 𝑇 drops by multiplying a constant factor 𝑎 ∈ (0,1) . The major

disadvantage of simulated annealing is that the algorithm may get back to the solution

already visited recently and get trapped there.

Tabu Search: Tabu search algorithm avoids frequently revisiting explored solutions by

introducing a tabu list. A tabu list stores attributes of the previous few transitions. It has a

fixed number of entries (usually between five and nine) and it is updated each time a new

transition is accepted in a First-In-First-Out (FIFO) way: (i) the newly transition is added

at the top of the tabu list to avoid returning to the same solution (to avoid returning to a local

optimum); then (ii) all other entries in the list are pushed down one position; then (iii) the

bottom entry is deleted. The rules of transit test in tabu search heuristics is described by

Table 2.

Table 2 Rules for transit test in tabu search heuristics

 Δ < 0 Δ ≥ 0

𝑃𝑘
′ is not in the

tabu list

the transition to 𝑃𝑘
′ is

always accepted

The transition to 𝑃𝑘
′ is always rejected

𝑃𝑘
′ is in the tabu

list

the transition to 𝑃𝑘
′ is

accepted only if 𝐶(𝑃𝑘
′) is

smallest so far, i.e. smaller

than that of any solution

has been explored

a wait and see approach is applied: 𝑃𝑘

remains as a candidate while the search

continues for a neighbor which can be

accepted immediately. If no such

neighbor is found, transits to the best

neighbor 𝑃𝑘
′ .

Terminate Test: local search based heuristics often terminate when the iteration number reach

a pre-defined threshold.

3.2.3 Real-time Taxi-sharing

Though real-time taxi-sharing has been studied in several previous works [51, 86, 90, 107],

39

our work demonstrates three major advantages. First, our problem definition is more realistic by

considering three different types of constraints. Some existing works (see [51, 107]) did not

consider time window constraints and none of these previous works modelled monetary

constraints. Second, we analyzed the computational cost of each component of the system,

proposing a spatio-temporal index and a taxi searching algorithm, which significantly improve the

system efficiency. Third, simulation results presented here is more convincing as we evaluated

our system based on the real data and at a much larger scale than previous works did. Chen et al.

[90] reported simulation results based on 1.5K synthesized ride requests, which is already the

largest set among these works. In contrast, the size of the ride request stream in our experiment is

as large as 20K and these ride requests are learned from the historical trajectory data set.

3.3 Problem Definition

The real-time taxi-sharing problem consists of a data model, constraints, and an objective

function. We describe each part separately below before giving the formal definition of the

problem.

3.3.1 Data Model

Ride Request: A ride request 𝑄 is associated with a timestamp 𝑄. 𝑡 indicating when 𝑄 was

submitted, a origin point 𝑄. 𝑜, a destination point 𝑄. 𝑑, a time window 𝑄. 𝑝𝑤 defining the time

interval when the rider wants to be picked up at the origin point, and a time window 𝑄. 𝑑𝑤 defining

the time interval when the rider wants to be dropped off at the destination point. The early and late

bounds of the pickup window are denoted by 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑝𝑤. 𝑙 respectively. Likewise, 𝑄. 𝑑𝑤. 𝑒

and 𝑄. 𝑑𝑤. 𝑙 stand for that of the delivery window.

In practice, a rider only needs to explicitly indicate 𝑄. 𝑑 and 𝑄. 𝑑𝑤. 𝑙, as most information of a

ride request can be automatically obtained from a rider’s mobile phone, e.g., 𝑄. 𝑜 and 𝑄. 𝑡. In

40

addition, we can assume that both 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑑𝑤. 𝑒 equals to𝑄. 𝑡, and 𝑄. 𝑝𝑤. 𝑙 can be easily

obtained by adding a fixed value, e.g. 5 minutes, to 𝑄. 𝑝𝑤. 𝑒.

Taxi Status: A taxi status 𝑉 represents an instantaneous state of a taxicab and is characterized

by the following fields.

 𝑉. 𝐼𝐷 : the unique identifier of the taxicab

 𝑉. 𝑡 : the time stamp associated with the status

 𝑉. 𝑙 : the geographical location of the cab at 𝑉. 𝑡

 𝑉 .s : the current schedule of 𝑉 , which is a temporally-ordered sequence of origin and

destination points of 𝑛 ride requests 𝑄1 , 𝑄2 ,…… 𝑄𝑛 such that for every ride request 𝑄𝑖 ,

𝑖=1,…n, either 1) 𝑄𝑖. 𝑜 precedes 𝑄𝑖. 𝑑 in the sequence (referred to as the precedence rule

thereafter), or 2) only 𝑄𝑖. 𝑑 exists in the sequence.

 𝑉.r: the current projected route of 𝑉, which is a sequence of road network nodes calculated

based on 𝑉. 𝑠.

From the definition, it is clear that the schedule of a vehicle status is dynamic, i.e. changes over

time. For example, a schedule involving 2 ride requests 𝑄1 and 𝑄2 could be 𝑄1. 𝑜 → 𝑄2. 𝑜 →

𝑄1. 𝑑 → 𝑄2. 𝑑 at a certain time. The schedule is updated to 𝑄2. 𝑜 → 𝑄1. 𝑑 → 𝑄2. 𝑑 once the taxi has

passed point 𝑄1. 𝑜.

3.3.2 Constraints

The crux of the taxi-sharing problem is to dispatch taxis to ride requests, subject to certain

constraints. We say that a taxi status 𝑉 satisfies a ride request 𝑄 or 𝑄 is satisfied by 𝑉 if the

following constraints are met.

 Vehicle Capacity Constraint: the number of riders that sit in the taxicab does not exceed the

number of seats of a taxi at any time.

41

 Time Window Constraints: all riders that are assigned to 𝑉 should be able to depart from the

origin point and arrive at the destination point during the corresponding pickup and delivery

window, respectively.

 Monetary Constraints: these constraints provide certain monetary incentives for both taxi

drivers and riders. That is, a rider does not pay more than without taxi-sharing; a taxi driver

does not earn less than without taxi-sharing; when travelling the same distance; the fare of

existing riders decreases when a new rider joins the trip.

3.3.3 Objective function and Problem Definition

Since multiple taxi statues may satisfy a ride request, an objective function is usually applied to

find the optimal taxi. A variety of objective functions have been used in the existing literature,

where a weighted cost function combining multiple factors such as travel distance increment, travel

time increment and passenger waiting time, is the most common [21, 26, 117, 118]. In this study,

given a ride request, we aim to find the taxi status which satisfies the ride request with minimum

increase in travel distance, formally defined as follows: given a fixed number of taxis traveling on

a road network and a sequence of ride requests in ascending order of their birth time, we aim to

serve each ride request 𝑄 in the stream by dispatching the taxi which satisfies 𝑄 with minimum

increase in travel distance on the road network.

This is obviously a greedy strategy and it does not guarantee that the total travel distance of all

taxis for all ride requests is minimized. However, we still opt for this definition due to two major

reasons. First, the real-time taxi-sharing problem inherently resembles a greedy problem. In

practice, taxi riders usually expect that their requests can be served shortly after the submission.

Given the rigid real-time context, the taxi-sharing system only has information of currently

available ride requests and thus can hardly make optimized schedules based on a global scope, i.e.

over a long time span. Second, the problem of minimizing the total travel distance of all taxis for

the complete ride request stream is NP-complete. We prove this statement as follows. The problem

42

of optimizing travel distance for all taxis for the whole query stream, denoted by Total Distance

Optimization Taxi Ridesharing Problem (TDOTRP), can be formalized as the following decision

problem: given a stream of queries 𝑆𝑄 , a start time 𝑡𝑠 (𝑡𝑠 is the smallest value among the birth time

of any query in 𝑆𝑄) and a set of taxi statuses 𝑆𝑉 at 𝑡𝑠 , a road network 𝑅𝑁 in which each road

segment is associated with a speed limit, a number 𝑃 ∈ [0,100] and a number 𝐷 ≥ 0, plan a

schedule for each taxi such that the total travel distance of all taxis is no larger than 𝐷 and the

fraction of satisfied queries is at least 𝑃 precent. The TDOTRP is NP-complete because we can

prove that it is a generalization of the Travelling Salesman Problem with Time Window (TSPTW),

which has already been proved to be NP-complete. The input of a TSPTW instance includes a start

time 𝑡0 , 𝑁 vertices {1, 2,..., n} in which vertex 1 is the depot vertex, the pair-wise distances

between vertices and a number 𝐷′ ≥ 0. Each vertex 𝑖 is also associated with a time window 𝑖. 𝑤 =

< 𝑒𝑖, 𝑙𝑖 >, where 𝑙𝑖 ≥ 𝑒𝑖 ≥ 𝑡0 for all 𝑖 = 1, . . . , 𝑛. The question is to find out whether or not there

is a cycle route of distance no larger than 𝐷′ such that a salesman can leave the depot, i.e. vertex 1

at 𝑡0, visit each vertex 𝑖 (𝑖 = 1, 2, . . . , 𝑛) once within their corresponding time window and return

to the depot.

An instance of the TDOTRP ITDOTRP can be constructed from an instance of the TSPTW problem

ITSPTW by: (i) create the road network of ITDOTRP using the vertex pair-wise distance of ITSPTW; (ii)

place one vacant taxi at vertex 1 and let the start time 𝑡𝑠 = 𝑡0 ; (iii) create a query 𝑄𝑖 for each vertex

𝑖 such that 𝑄𝑖 . 𝑜 = 𝑄𝑖 . 𝑑 = 𝑖 , and 𝑄𝑖 . 𝑤𝑝 = 𝑄𝑖 . 𝑤𝑑 = 𝑖. 𝑤 , 𝑄𝑖 . 𝑡 = 𝑡0 for 𝑖 = 1, … , 𝑛 ; In other

words, every vertex 𝑖 (𝑖 = 1, . . . , 𝑛) of ITSPTW is considered as a dummy query of which the pickup

point (time window) coincides the delivery point (time window) and the query is known a priori;

(iv) let 𝑃=100, which means ITDOTRP needs to satisfy all the queries, and 𝐷 = 𝐷’.

The above construction completes the proof that TDOTRP is a generalization of TSPTW. Since

TDOTRP is clearly in NP, therefore, we have proved that TDOTRP is NP-complete.□

43

3.4 System Architecture

Figure 7 The architecture of the real-time taxi-sharing system

The architecture of our taxi-sharing system is presented in Figure 7. The Cloud consists of

multiple servers for different purposes and a monitor for administers to oversee the running of the

system (denoted as the red broken arrow (d)). Taxi drivers and riders use the same smart phone

App to interact with the system, but provided with different user interfaces by choosing different

roles, as shown in Figure 8 (a).

As shown by the red broken arrow (a), a taxi automatically reports its location to the Cloud via

the mobile App when (i) the taxi establishes the connection with the system, or (ii) a rider gets on

and off a taxi, or (iii) at a frequency (e.g., every 20 seconds) while a taxi is connected to the system.

We partition a city into disjoint cells and maintain a dynamic spatio-temporal index between taxis

and cells in the indexing server, depicted as the broken arrow (b). Additionally, we employ the T-

Drive technique (see [121, 122]) using the GPS data of taxis stored in the indexing server to

estimate the travel time of a route, denoted as the broken arrow (c).

Denoted by the solid blue arrow ①, a rider submits a new ride request 𝑄 to the Communication

Server. Figure 8 (b) shows the corresponding interface on a rider’s smart phone where the blue pin

Communication

Server

Scheduling

Server

Cluster

Monitor

a

b

1

2

3

4

5 7

6

8

New Riders Taxi Drivers Existing Riders

b

Service providing flow Taxi updating flow

i

ii

Mobile comm. flow

Travel Time

Estimation

Server

Indexing

Server

9 9

Cloud

44

stands for the current location of the rider. All incoming ride requests of the system are streamed

into a queue and then processed according to the first-come-first-serve principle. For each ride

request 𝑄, the communication server sends it to the Indexing Server to search for candidate taxis

𝑆𝑉 that are likely to satisfy 𝑄, depicted as the blue arrow ②. Using the maintained spatio-temporal

index and the travel time of routes from the Travel Time Estimation

Server (as shown by the blue arrow ③), the indexing server returns 𝑆𝑉 to the communication

server, denoted by the blue arrow ④.

Represented by the blue arrow ⑤, the communication server sends ride request 𝑄 and the

received candidate taxi set 𝑆𝑉 to the Scheduling Server Cluster. The scheduling cluster checks

whether each taxi in 𝑆𝑉 can satisfy 𝑄 in parallel, and returns the qualified taxi status that results in

minimum increase in travel distance and a detailed schedule, shown as arrow ⑦. The travel time

estimation server also needs to be accessed in this process (arrow ⑥).

Figure 8 Screenshots of the mobile client for riders

 Each rider 𝑅 who has been already assigned to the taxi will be enquired whether they would like

to accept the join of the new rider, as depicted by blue arrow ⑧. The information, such as the

estimated fare saving and travel time delay due to 𝑄’s join, will be displayed on their smart phones

shown in Figure 8 (c). Rider 𝑅 accepts the route change if she thinks the fare saving is worth the

travel time delay. Otherwise, she can veto the route change by clicking the “Reject” button. The

system remembers the rider’s choice, automatically rejecting a route change in future if the ratio of

(a) Pick a role

(b) A new request

(c) Ride request

notification

(d) Ride request

confirmation

(e) Ride

Completed

T -Share

Driver

Rider

Pick your role

From

To

Current Position

Huaxing Cinema

Number of riders 2

Latest arrival

Earliest departure Now

09:30

Ride Request

Send Cancel

Original route Pickup Point

Newly scheduled route

Travel time delay: 2 min

Fare saving: $1.5

Accept

Number of riders added: 2

Ride Joining Request

Reject

Taxi ID: 京B 1203785

Estimated taxi fare: $ 5.3

Estimated pickup time: 08:32

OK

Scheduled route Delivery Point

Confirmation ZX3G18126781

Completed route

Taxi ID: 京B 1203785

Total taxi fare: $ 4.8

Total travel time: 15 min 20 sec

Pay Now

Ride Completed

Travel time delay: 53 sec

Taxi fare saving: $ 0.5

Decline

45

the fare saving to the travel time delay is smaller than the largest value the rider has ever rejected.

Thus, a taxi passenger will not be bothered often.

After all the rider 𝑅 accepted the route change, the new rider of 𝑄 gets a confirmation on her

smart phone, as illustrated in Figure 8 (d). The confirmation informs the new rider the taxi ID,

estimated pickup time and fare, the scheduled route, and a unique reservation code. The new

schedule and the same reservation code are sent to the driver’s phone at the same time. The

reservation code will be used to build a connection between the phones of the new rider and the

taxi driver when the new rider gets on the taxi. On the driver side, the smart phone displays a taxi’s

schedule, e.g., the next pickup and delivery points as well as the route, as illustrated in Figure 9.

Figure 9 Screenshot of the mobile client for the driver

When a rider’s trip is completed, the rider’s APP will show the exact information, such as the

actual fare and travel time, as illustrated in Figure 8 (e). The reservation code will be used again to

confirm the payment to the Cloud. Interactions among riders, drivers, and the Cloud during pickup

and drop-off events are detailed later.

The system administrator oversees the taxi-sharing system via the monitor. The monitor provides

two views: one for ride requests, the other for taxis. Figure 10 (a) shows a screenshot of the ride

request view, where all requests are displayed on the map at their corresponding pickup point, with

scheduled requests in red and unscheduled requests in blue. On the right, two boxes list the detail

information of scheduled and unscheduled ride requests respectively. The search box allows the

administrator to quickly locate a request on the map via a request ID. Figure 10 (b) shows a

screenshot of the taxi view of the monitor. Each taxi is represented by a yellow taxi symbol on the

map. The locations of these symbols on the map are updated while the corresponding taxis upload

Next Pickup Point : in 1.2km Next Delivery Point : in 6.3km, $13.2

Check Out

46

new statuses. Similarly, the search box is used to quickly locate and track a taxi via querying a

specific taxi ID.

Figure 10 Screenshots of the monitor

3.5 Taxi Searching

The taxi searching module quickly selects a small set of candidate taxis with the help of the

spatio-temporal index. In this section, we will first describe the index structure and then detail the

searching algorithm.

3.5.1 Index of Taxis

The spatio-temporal index of taxis is built for speeding up the taxi searching process. Specifically,

we partition the road network using a grid. (Other spatial indices such as R tree can be applied as

well, but we envision that the high dynamics of taxis will cause prohibitive cost for maintaining

such an index.) As shown in Figure 11 (a), within each grid cell, we choose the road network node

which is closest to the geographical centre of the grid cell as the anchor node of the cell (represented

by a blue dot in Figure 11 (a). The anchor node of a grid cell 𝑔𝑖 is thereafter denoted by 𝑐𝑖. We

compute the distance, denoted by 𝑑𝑖𝑗 , and travel time, denoted by 𝑡𝑖𝑗, of the quickest path on the

road network for each anchor node pair 𝑐𝑖 and 𝑐𝑗. The distance is only computed once while the

travel time is calculated by the travel time estimation server once in a while (e.g. every 10 minutes).

(a) Screenshot of the ride request view of the

monitor

(b) Screenshot of the taxi view of the monitor

47

Intuitively, we can use the computed travel time to quickly filter out a large number of taxis whose

schedule is “far away” from a given ride request. The distance and travel time results are saved in

a matrix as shown in Figure 11 (b). The matrix is thereafter referred to as the grid distance matrix.

Supposing all the nodes of the road network in a cell fall to its anchor node, the distance between

any two arbitrary nodes equals to the distance between two corresponding anchor nodes. In other

words, the grid distance matrix provides an approximation of the distance between any two nodes

of the road network. These approximated distances avoid the expensive computation cost of

frequent quickest path calculations at the stage of taxi searching.

Figure 11 Grid partitioned map and grid distance matrix

As illustrated in Figure 12, each grid cell 𝑔𝑖 maintains three lists: a temporally-ordered grid cell

list (𝑔𝑖. 𝑙𝑔
𝑡), a spatially-order grid cell list (𝑔𝑖 . 𝑙𝑔

𝑠), and a taxi list (𝑔𝑖. 𝑙𝑣). 𝑔𝑖 . 𝑙𝑔
𝑡 is a list of other grid

cells sorted in ascending order of the travel time from these grid cells to 𝑔𝑖 (temporal closeness).

Likewise, 𝑔𝑖. 𝑙𝑔
𝑑 is a list of other grid cells sorted in ascending order of the travel distance to 𝑔𝑖

(spatial closeness). The spatial and temporal closeness between each pair of grid cells are measured

by the values saved in the grid distance matrix shown in Figure 11 (b). For example, 𝑡2𝑖 measures

the temporal closeness from 𝑔2 to 𝑔𝑖, and 𝑑2𝑖 measures the spatial closeness from 𝑔2 to 𝑔𝑖. The

spatial grid cell list is only computed once. The temporal grid cell list is computed each time when

travel times 𝑡𝑖𝑗’s are updated. It is worth mentioning that cells that are neighbours in the grid may

Dij

 D01

D10

M =

D0n

D1n

Di1Di0

Dnj
Dn1Dn0

ci

g0 g1 gn

g0

g1

gn

cj

gi Din

gj

D0j

D1j

gi

gj

(a) Grid-partitioned map (b) Grid distance matrix

Dij = (tij , dij)

48

not be the neighbours in a grid cell list because the distance is measured in the road network instead

of a free space.

The taxi list 𝑔𝑖. 𝑙𝑣 of grid cell 𝑔𝑖 records the IDs of all taxis which are scheduled to enter 𝑔𝑖 in

near future (typically within a temporal scope of one or two hours). Each taxi ID is also tagged with

a timestamp 𝑡𝑎 indicating when the taxi will enter the grid cell. All taxis in the taxi list are sorted

in ascending order of the associated timestamp 𝑡𝑎 . 𝑔𝑖. 𝑙𝑣 is updated dynamically. Specifically, taxi

𝑉𝑗 is removed from the list when 𝑉𝑗 leaves 𝑔𝑖; taxi 𝑉𝑘 is inserted into the list when 𝑉𝑘 is newly

scheduled to enter 𝑔𝑖. If taxis are tracked (see [115]), when new GPS records are received from

taxis, taxi lists need to be updated. Specifically, when a new GPS record from 𝑉𝑝 is received, denote

by 𝑔𝑞 the current cell in which 𝑉𝑝 is located, the timestamp associated with 𝑉𝑝 in the taxi list of cell

𝑔𝑞 and cells to be passed by 𝑉𝑝 after 𝑔𝑞 need to be updated.

Figure 12 Spatio-temporal index of taxis

3.5.2 Taxi Searching Algorithms

The proposed algorithm is a bi-directional searching process which selects grid cells and taxis

from the origin side and the destination side of a ride request simultaneously.

gi

g2

g7

gn

t2i

t7i

tni

Taxi2 :ta

Taxi7 :ta

Taxim :ta

earliest

g7

g2

gn'

d7i

d2i

dn'i

nearest

furthest
spatial temporal

49

Figure 13 Overview of the dual-side taxi searching algorithm

To dive into the details of the algorithm, consider the ride request illustrated in Figure 13 where

𝑔7 and 𝑔2 are the grid cells in which 𝑄. 𝑜 and 𝑄. 𝑑 are located respectively. Squares filled with

stripes stand for all possible cells searched by the algorithm at 𝑄. 𝑜 side. These cells are determined

by scanning 𝑔7. 𝑙𝑔
𝑡 , the temporally-order grid cell list of 𝑔7. That is, each grid cell in 𝑔7. 𝑙𝑔

𝑡 which

holds Eq. (3.1) is a candidate cell to be searched at the origin side. Eq. (3.1) indicates that any taxi

currently within grid cell 𝑔𝑖 can enter 𝑔7 before the late bound of the pickup window using the

latest travel time between the two grid cells (assuming each grid cell collapses to its anchor node).

The red number in each such grid cell indicates its relative position in 𝑔7. 𝑙𝑔
𝑠 , the spatially-ordered

grid list of 𝑔7.

𝑡𝑐𝑢𝑟 + 𝑡𝑖7 ≤ 𝑄. 𝑝𝑤. 𝑙 (3.1)

Squares filled with dots indicate the candidate grid cells to be accessed by the searching

algorithm at 𝑄. 𝑑 side. Likewise, each such grid cell 𝑔𝑗 is found by scanning 𝑔2. 𝑙𝑔
𝑡 to select all grid

cells which holds Eq. (3.2), which indicates that any taxi currently in 𝑔𝑗 can enter the 𝑔2 before the

late bound of the delivery window (assuming that each grid cell collapses to its anchor node). In

this example, 𝑔6 is the only satisfying grid cell as shown by Figure 13.

2

All grid cells within the

searching boundary of Q.o

4

g3

g9

g6

All grid cells within the

searching boundary of Q.d

g5 2

1 2
3

Grid cell’s index in the corresponding spatially-ordered grid list

1

g7

g3

g9

nearest

furthest

S
p

at
ia

l
C

lo
se

n
es

s

g8

g8

g5

gn

O

g7

D

g2

g2

g1

g6

gm

furthest

S
p

at
ia

l
C

lo
se

n
es

s

4

g1

50

 𝑡𝑐𝑢𝑟 + 𝑡𝑗2 ≤ 𝑄. 𝑑𝑤. 𝑙 (3.2)

Figure 14 Calculation of the taxi set in the taxi searching process

Figure 14 then illustrates the searching process step by step. The algorithm maintains a set 𝑆𝑜

and a set 𝑆𝑑 to store the taxis selected from 𝑄. 𝑜 side and 𝑄. 𝑑 side respectively. Initially, both 𝑆𝑜

and 𝑆𝑑 are empty. The first step in the searching is to add the taxis selected from taxi list 𝑔7. 𝑙𝑣 to

taxi set 𝑆𝑜 as depicted in Figure 14 (a), and add the taxis selected from taxi list 𝑔2. 𝑙𝑣 to taxi set 𝑆𝑑

as depicted by Figure 14 (b). Then the algorithm calculates the intersection of 𝑆𝑜 and 𝑆𝑑. If the

intersection is not empty, the algorithm stops immediately and returns the intersection set.

Otherwise, it expands the searching area by including one other grid cell at each side at a time.

To select next cells, we use the following heuristic: for a taxi 𝑉, the closer one cell to be passed

by 𝑉 is to 𝑔7 and the closer one cell to be passed by 𝑉 is to 𝑔2 (measured in the distance between

the anchor nodes of the cells), the smaller 𝑉’s scheduled travel distance increases after the insertion

of the ride request. For the purpose of minimizing increased travel distance, the next grid cell

g7

Taxi2

Taxix latest

tcur

earliest

Taxi7

Q.wp.l

g3 g9 g5

Taxi2

Taxi7

So

g6 g2

Taxi3

Taxim
latest

tcur
earliest

Taxi11

Taxi3

Taxi11

Sd

Step 1: So ∩ Sd = {}

g7 g2

Taxi10
Q.wd.l

g3

Taxi5

Taxiy latest

tcur

earliest

Taxi8

Q.wp.l-t37

g3 g9 g5

Taxi2

Taxi7 So

g6 g6

Taxi10

Taxin latest

tcur
earliest

Taxi21

Taxi3

Taxi11 Sd

Step 2: So ∩ Sd = {}

g7 g2

Taxi10

Q.wd.l-t62

Taxi5

Taxi8 Taxi17
Taxi21

Taxi17

g9

Taxi7

Taxiz
latest

tcur

earliest

Taxi10

Q.wp.l-t97

g9 g5

Taxi2

Taxi7

So

Taxi3

Taxi11 Sd

Step 3: So ∩ Sd = {Taxi10 , Taxi17}

g7 g2

Taxi10
Taxi5

Taxi8 Taxi21

Taxi17

g6g3

Taxi17 Taxi10

Taxi17

A) B)

D)C)

E) F)

51

included at 𝑄. 𝑜 side is always chosen as the next element in the spatially-ordered grid list 𝑔7. 𝑙𝑔
𝑠

which holds Eq. (3.1). Similarly, the next grid cell included at 𝑄. 𝑑 side is always chosen as the

next element in the spatially-ordered grid list 𝑔2. 𝑙𝑔
𝑠 which holds Eq. (3.2).

In this example, since 𝑆𝑜 and 𝑆𝑑 produces an empty intersection, the algorithm expands at 𝑄. 𝑜

side to include 𝑔3 (indicated by the broken red rectangle) and add taxis selected from 𝑔3. 𝑙𝑣 as

depicted in Figure 14 (c). At 𝑄. 𝑑 side, the algorithm covers 𝑔6 and adds taxis as indicated in

Figure 14 (d). Unfortunately, the intersection set of 𝑆𝑜 and 𝑆𝑑 remains empty. Consequently, the

algorithm needs to continue expanding the searching area at both sides. 𝑔9 is then selected at 𝑄. 𝑜

side; but no grid cell can be further included at the 𝑄. 𝑑 side. After adding the taxis selected from

𝑔9. 𝑙𝑣 into set 𝑆𝑜 as shown in Figure 14 (e), we find 𝑇𝑎𝑥𝑖10 and 𝑇𝑎𝑥𝑖17 as the intersection

between 𝑆𝑜 and 𝑆𝑑. Hence, the searching algorithm terminates.

It is worth mentioning that an alternative approach is to search taxis solely from the origin side,

that is, only consider taxis currently “near” the origin point of a ride request. The disadvantage of

this alternative approach is that the number of selected grid cells could be large and thus it results

in many taxis retrieved for the later scheduling process. In other words, it increases the overall

computation cost, which is certainly not desirable for a rigid real-time system like taxi-sharing.

Though the bi-directional searching algorithm may result larger increase in travel distance for the

given ride request, as a compensation for the small loss in distance optimality, the algorithm selects

far fewer taxis for the schedule allocation step, reducing the computation cost and ride request

processing time. We found in the experiments that the number of selected taxis is reduced by 50%

while the increase in travel distance is just 1% over the single-side search algorithm.

3.6 Taxi Scheduling

Given the set of taxi statuses 𝑆𝑉 retrieved for a ride request 𝑄 by the taxi searching algorithm,

the purpose of the taxi scheduling process is to find the taxi status in 𝑆𝑣 which satisfies 𝑄 with

minimum travel distance increase.

52

To this end, given a taxi status, theoretically we need to try all possible ways of inserting 𝑄 into

the schedule of the taxi status in order to choose the insertion which results in minimum increase

in travel distance. All possible ways of insertion can be created via three steps: (i) reorder the points

in the current schedule, subject to the precedence rule, i.e. any origin point precedes the

corresponding destination point (we refer to this step as the schedule reordering thereafter); (ii)

insert 𝑄. 𝑜 into the schedule (iii) insert the 𝑄. 𝑑 into the schedule. The capacity and time window

constraints are checked in all three steps, during which the insertion fails immediately if any

constraint is violated. The monetary constraints are then checked after all three steps have been

done successfully.

Consider a schedule with 𝑛 points, among which 𝑚 points are origins. After the schedule

reordering step, there will be as many as
𝑛!

2𝑚 sequences which comply with the precedence rule.

Though reordering the schedule is theoretically necessary for finding the optimal insertion way, we

find that it is not the case in practice via experiments. For the sake of simplicity, in the rest of this

section, the schedule reordering step is not considered unless otherwise stated.

Next we describe how to check the feasibility of each insertion possibility, subject to the capacity

and time window constraints first and then the monetary constraints, given a pair of 𝑄 and 𝑉.

3.6.1 Time Window Constraints

Given a schedule of 𝑛 points, there is clearly 𝑂(𝑛2) ways to insert a new ride request into the

schedule. For example, Figure 15 shows one way of inserting a request into a schedule with four

points. To insert 𝑄3. 𝑜 after point 𝑄1. 𝑜 optimally, the algorithm needs to find the first path (starting

from the shortest path) from 𝑄1. 𝑜 to 𝑄3. 𝑜 which allows the taxi to arrive at 𝑄3. 𝑜 during 𝑄3. 𝑝𝑤

given the scheduled arrival time at 𝑄1. 𝑜. Since the shortest path is often not the quickest one when

considering real road traffic, it is likely that multiple paths needs to be calculated before finding

the first satisfactory path from 𝑄1. 𝑜 to 𝑄3. 𝑜. Similar process is required for other connecting paths,

as illustrated by the dash lines in Figure 15. As a result, the overall computation load can be

53

extremely high for checking just one insertion way. To ease the computation load, here we only

consider using the quickest path from one point to another during the insertion, though the new

route may not be the shortest one in theory.

Denote by → the travel time of the latest quickest path from one location to another location

calculated by the travel time estimation server in the Cloud, and 𝑡𝑤 represents the time spent

waiting for the passenger if the taxi arrives 𝑄3. 𝑜 ahead of 𝑄3. 𝑝𝑤. 𝑒. Eq. (3.3) gives the travel time

delay, denoted by 𝑡𝑑 after inserting 𝑄3. 𝑜 between 𝑄1. 𝑜 and 𝑄2. 𝑜.

𝑡𝑑 = (𝑄1. 𝑜 → 𝑄3. 𝑜) + (𝑄3. 𝑜 → 𝑄2. 𝑜) + 𝑡𝑤 − (𝑄2. 𝑜 → 𝑄1. 𝑜)
(3.3)

Figure 15 One possible insertion of a ride request into a schedule

If 𝑡𝑑 results the late arrival at any point after 𝑄2. 𝑜 in the original schedule, then the insertion

fails. For this purpose, we introduce the notion of slack time. Denote by 𝑎𝑝 and 𝑎𝑑 the projected

arrival time at a pickup point 𝑄. 𝑜 and a delivery point 𝑄. 𝑑, respectively. Then the slack time at

𝑄. 𝑜 and 𝑄. 𝑑, denoted by (𝑄. 𝑜).𝑠𝑡 and (𝑄. 𝑑)𝑠𝑡 respectively, is calculated by Eq. (3.4) and Eq.

(3.5), respectively.

 (𝑄. 𝑜)𝑠𝑡 = 𝑄. 𝑝𝑤. 𝑙 − 𝑎𝑝 (3.4)

 (𝑄. 𝑑)𝑠𝑡 = 𝑄. 𝑑𝑤. 𝑙 − 𝑎𝑑 (3.5)

Thus, we can use slack times as a shortcut to check whether the delay incurred due to an

insertion destroys the timely arrivals at any subsequent point in the schedule. In the example shown

by Figure 15, if 𝑡𝑑 ≥ 𝑀𝑖𝑛{(𝑄1. 𝑑)𝑠𝑡 ,(𝑄2. 𝑑)𝑠𝑡} , then the insertion fails. If 𝑄3. 𝑜 is inserted

a path in the original schedule a new path due to the insertion

origin point i.o destination point i.d

origin point n.o destination point n.dn

ii

21 2 1

3

3

n

54

successfully, the system proceeds to insert 𝑄3. 𝑑 in a similar way. Algorithm 1 summaries the

process of computing a new route after the insertion of a new ride request.

3.6.2 Monetary Constraints

The new schedule after the insertion, by far, has only been checked against the capacity and time

window constraints. It should also meet the monetary constraints. In this section we formulate the

monetary constraints of taxi-sharing.

On one hand, we impose two constraints which encourage riders to participate in taxi-sharing by

rewarding them with certain monetary gains. The first rider monetary constraint says that any rider

who participates in taxi-sharing should pay no more than what she would pay if she takes a taxi by

herself. The second rider monetary constraint says that if a occupied taxi 𝑉 is to pick up a new

rider 𝑄, then each rider 𝑃 whose travel time is lengthen due to the pickup of 𝑄, should get a taxi

fare cut; and the fare cut should be proportional to 𝑃’s travel time delay.

On the other hand, we enforce one constraint which gives the driver stimulation to participate in

taxi-sharing. This constraint says that a driver should earn for all distances she has travelled.

55

Intuitively the driver should make profit even for the distance of the reroute incurred by the join of

a new passenger.

Now let us consider these three monetary constraints together in the scheduling context: given a

taxi status 𝑉 and a new ride request 𝑄𝑛, under what conditions 𝑉 will not violate the above three

monetary constraints regarding to 𝑄𝑛.

Denote by 𝑄1,…𝑄𝑛−1 the riders involved in the current schedule of 𝑉 before the join of 𝑄𝑛. Also

denote by 𝑑𝑖 the distance between 𝑄𝑖. 𝑜 and 𝑄𝑖 . 𝑑 on the road network , 𝑖 = 1, … , 𝑛. Denote by 𝑓𝑖

the taxi fare of rider 𝑄𝑖 if 𝑉 picks up 𝑄𝑛. Denote by 𝐹: 𝑅+ → 𝑅+ the fare calculation function,

which maps the travelled distance to the taxi fare and is defined by some transportation authority

or taxi company. Then the first rider monetary constraint can be expressed by Eq. (3.6).

 𝑓𝑖 ≤ 𝐹(𝑑𝑖), 𝑖 = 1, … , 𝑛 (3.6)

Denote by 𝑀 the revenue of the driver if she picks up 𝑄𝑛 and by 𝐷 the distance of the new route

after the pickup. Then the driver monetary constraint is expressed by Eq. (3.7).

 𝑀 ≥ 𝐹(𝐷) (3.7)

Since 𝑀 = 𝛴𝑓𝑖, we then have Eq. (3.8) by bridging two equations above.

 𝐹(𝐷) ≤ 𝑀 = 𝛴𝑓𝑖 ≤ 𝛴𝐹(𝑑𝑖), 𝑖 = 1, … , 𝑛 (3.8)

𝑀 can take any value between 𝐹(𝐷) and Σ𝐹(𝑑𝑖) to make Eq. (3.8) stand. Here we take the lower

bound 𝐹(𝐷) in order to reduce the total taxi fare of riders. Therefore, we have 𝑀 = 𝐹(𝐷).

Then we need to distribute the total fare 𝑀 to each individual rider. Denote by 𝛥𝑓𝑖 the decrease

in taxi fare for rider 𝑄𝑖 after the join of 𝑄𝑛, 𝑖 = 1, … , 𝑛 − 1 and 𝛥𝑇𝑖 the travel time delay of rider

𝑄𝑖’s trip due to the pickup. The fare is determined in the way expressed by Eq. (3.9) and Eq. (3.10),

where 𝛥𝐷 is the travel distance increase of the taxi route due to the join of 𝑄𝑛 and 𝑓 ≥ 0 is a

constant.

56

 𝑓𝑛 = 𝐹(𝑑𝑛) − 𝑓 (3.9)

 Δ𝑓𝑖 =
𝛥𝑇𝑖

∑ 𝑇𝑖
𝑛−1
𝑖=1

[(𝐹(𝑑𝑛) − 𝑓) − 𝐹(Δ𝐷)], 𝑖 = 1, … , 𝑛-1 (3.10)

Eq. (3.9) says that the new rider can pays less by 𝑓 than whatever she would pay if she rides

alone. Eq. (3.10) says that (i) existing riders collectively save an amount which equals to the

difference between the charge of the new rider and the driver’s expected fare increase due to the

increase in travel distance; and (ii) existing riders split the total saving proportional to their

individual travel time delay (the second rider monetary constraint). Since it requires Δ𝑓𝑖 ≥ 0,

therefore, we have Eq. (3.11).

 𝐹(𝑑𝑛) ≥ 𝐹(Δ𝐷) + 𝑓 (3.11)

Eq. (3.11) by itself is the sufficient and necessary condition for that taxi 𝑉 does not violate any

monetary constraint with respect to 𝑄𝑛.

Figure 16 An example of the pricing constraint

Figure 16 illustrates how to apply the monetary constraints with a concrete example. Figure 16

(a) shows the schedule of a taxi before the second rider boards. The fare of the first rider is 𝑓1 =

𝐹(𝑑1). The monetary constraint for picking up the second rider is 𝐹(𝑑2) ≥ 𝐹(Δ𝐷) + 𝑓, where Δ𝐷

origin point i.o destination point i.d

a path in the shared route an individual route
origin point n.o destination point n.d

1 1

(a) before 2nd rider scheduled (b) after 2nd rider scheduled

(c) before 3rd rider scheduled (d) after 3rd rider scheduled

d2

d3

d1

2

n

ii

1 1
d1

1 1
d1

2 2

3

1
1d1

2 2

3

d2

d3

n

3

2 22

3

57

is the increase in travel distance due to the join of the second rider. If the above constraint stands,

then we have Δ𝑓1 = [𝐹(𝑑2) − 𝑓] − 𝐹(Δ𝐷) and 𝑓2 = 𝐹(𝑑2) − 𝑓. Likewise, Figure 16 (c) shows the

schedule of the taxi after the second rider joins and before the third rider joins. Similarly, the pricing

constraint for picking up the third rider is 𝐹(𝑑3) ≥ 𝐹(Δ𝐷′) + 𝑓, where Δ𝐷′ is the increase in travel

distance due to the join of the third rider. If this constraint stands, then we have Δ𝑓𝑖 =

Δ𝑇𝑖

Δ𝑇1+Δ𝑇2
[𝐹(𝑑3) − 𝑓] − 𝐹(Δ𝐷′)), 𝑖 = 1, 2 and 𝑓3 = 𝐹(𝑑3) − 𝑓.

In practice, some rider may think the taxi fare decrease is not worth the travel time delay and

thus rejects the pickup decision. We thus introduce a parameter 𝑄𝑖 . 𝑟 for each rider 𝑄𝑖 , which

presents 𝑄𝑖’s acceptable money-to-time rate. That is to say, 𝑄𝑖 supports the pickup of a new rider

only when the ratio of the fare decrease to the travel time delay is larger than 𝑄𝑖 . 𝑟. The above

constraint is expressed by Eq. (3.12).

𝛥𝑓𝑖

𝛥𝑇𝑖
≥ 𝑄𝑖. 𝑟 (3.12)

3.7 Pickup and Drop-off Interactions

In this section, we detail interactions among taxi riders, drivers, and the Cloud during

pickup and drop-off events.

Pickup: Consider a rider whose request has been satisfied. She may wait the taxi on a street

side or at a comfortable place, such as a coffee shop. As shown in the upper-left corner of

Figure 17, the Cloud will send a reminder message to the rider’s mobile phone when the

assigned taxi is approaching her pickup point (e.g. within 30 meters based on the taxi’s GPS

readings). On receiving the reminder message, the rider will start paying attention to the taxi

approaching and go standing by at the pickup point. Meanwhile, the rider’s App will

automatically turn on the Bluetooth in her phone, preparing a Bluetooth connection to the

driver’s phone. The purpose of such a connection lies in three aspects: 1) ensure a rider getting

on the right taxi; 2) a rider can receive location updates from a driver’s phone so as to save her

58

phone’s battery from not using its own GPS; 3) receive the bill information from the driver

when getting off. The connection is automatically established via a two-step hand-shake

protocol. Each step involves one phone sending the reservation code to the other (the code was

sent to both phones by the Cloud when the request was served). Since there may be multiple

riders in one taxi, the driver’s phone is set as a Bluetooth master maintaining a connection with

each of the multiple slaves, as shown by the grey lines in Figure 17). The new rider confirms

the boarding after actually getting on the taxi. The boarding confirmation will then be notified

to the Cloud (via the driver’s phone).

Figure 17 Interactions during a pickup event

Drop-off: Figure 18 shows interactions between the phones and the Cloud during a drop-off

event. When the taxi reaches a destination point, the driver will press the “Check Out” button

to trigger the following interaction. The driver’s phone will send the bill information (shown

by the left upper grey rectangle) to the corresponding rider’s phone, as shown by the broken

green arrow. The rider uses the phone to send a payment confirmation to the Cloud after paying

the bill as shown by the blue arrow. The driver will confirm the payment (shown by the left

lower grey rectangle) by clicking the “OK” button, which makes the driver’s phone send a

payment-received message to the Cloud as shown by the red broken arrow. The separate of two

payment confirmations, i.e. one from the driver (i.e. the red arrow) and one from the rider (i.e.

Original route Pickup Point

Newly scheduled route

Travel time delay: 2 min

Fare saving: $1.5

OK

Number of riders added: 2

Ride Joining Request

Master

Existing

Riders

New

Rider

Slaves

Original route Pickup Point

Newly scheduled route

Travel time delay: 2 min

Fare saving: $1.5

OK

Number of riders added: 2

Ride Joining Request

Reminder The Cloud

Taxi Driver

Next Pickup Point : in 1.2km Next Delivery Point : in 6.3km, $13.2

Check

Scheduled route Delivery Point

Taxi ID: 京B 1203785

OK

Please confirm the boarding

Cancel

Original route Pickup Point

Newly scheduled route

Travel time delay: 2 min

Fare saving: $1.5

OK

Number of riders added: 2

Ride Joining Request

59

the blue arrow), prevents the Cloud from being fooled by either party. For instance, without a

payment-received message from the driver, the rider may send the payment confirmation to the

server without actually paying the fare.

Figure 18 Interactions during a drop-off event

Once the transaction has been completed, the taxi driver and the taxi rider can rate each other.

The right-most graph in Figure 18 shows the interface for a rider to rate the driver. The ratings of a

driver or a rider is accumulated and maintained in the Cloud. When a driver or rider’s rating is

lower than a threshold, she is then no longer allowed to participate in our taxi-sharing system. We

consider incorporating the credibility into the taxi searching and scheduling algorithms in the

future, offering credible taxi drivers/riders a higher serving chance.

3.8 Experiments

3.8.1 Setting

3.8.1.1 Data Set

Road networks: We perform the experiments using the real road network of Beijing, which contains

106,579 road nodes and 141,380 road segments.

Taxi Trajectories: The taxi trajectory dataset contains the GPS trajectory recorded by over 33,000

taxis during a period of 87 days spanning from March to May in the year of 2011. The total distance

of the dataset is more than 400 million kilometres and the number of points reaches 790 million.

After trip segmentation, there are in total 20 million trips, among which 46% are occupied trips and

54% are non-occupied trips. We map each occupied trip to the road network of Beijing using the

map-matching algorithm proposed in [123]. Each trip then can be viewed as a query with windows

The Cloud

Taxi Driver Rider

Bill

Pay.

Conf.Pay. Recv.

Completed route

Taxi ID: 京B 1203785

Total taxi fare: $ 4.8

Total travel time: 15 min 20 sec

Pay Now

Ride Completed

Travel time delay: 53 sec

Taxi fare saving: $ 0.5

Decline

Next Pickup Point : in 1.2km Next Delivery Point : in 6.3km, $13.2

Check Out

Taxi ID: 京B 1203785

Total fare: $ 4.8
Travel time: 15 min 20 sec

OK

Bill Information

Time delay: 53 sec

Taxi fare saving: $ 0.5

Yes

Payment Received ?

No

Bluetooth paring request

Completed route

Rate

Rate Your Driver

Cancel

60

size equals to 0. Figure 19 shows the distribution of pickup and delivery points of the ride requests

in the dataset over road segments in a day (long details, i.e. hot segments that are being the origin

or destination of a large number of requets are not shown). It is clear that ride requests are

distributed sparsely over the road network.

(c) Origins

(d) Destinations

Figure 19 Distribution of ride requests over road segments

3.8.1.2 Experimental Platform

The historical trajectory dataset conceals rich information regarding 1) the distribution of the

ride requests on the road network over time of day, and 2) the mobility patterns of the taxis. In

order to validate our proposed system under practical settings, we mine the trajectory dataset to

build an experimental platform, which generates a realistic ride request stream and initial taxi

statuses for our experiments. We envision that this platform can be applied to many other relevant

urban and transportation computation problems.

Ride request Stream: The goal is to generate real-time ride requests that are as realistic as possible.

For this purpose, we first discretise one day into small time bins, denoted by 𝑏𝑖 and denote all road

segments by 𝑟𝑖. We assign all historical ride requests into time bins. Assume that the arrivals of

ride requests on each road segment approximately follow a Poisson distribution during time frame

𝑓𝑗 , where each frame has a fixed length spanning 𝑁 time bins. Thus, we can learn 𝜆𝑖𝑗 , i.e. the

parameter of the Poisson distribution for road segment 𝑟𝑖 during time frame 𝑓𝑗. Specifically, for

5 10 15 20 25 30
0

1500

3000

4500

6000

7500

#
 o

f
ro

ad
 s

eg
m

en
ts

of requests originated on the road segment in a day
5 10 15

0

3000

6000

9000

12000

15000

18000

#
 o

f
ro

a
d

 s
e

g
m

e
n

ts

of requests destined on the road segment in a day

61

each road segment 𝑟𝑖, we count the number of ride requests that originated from 𝑟𝑖 within time

frame 𝑓𝑗, denoted by 𝑐𝑖𝑗, and learn the distribution of the destination road segment of these ride

requests, denoted by 𝑝𝑖𝑗. Then we calculate 𝜆𝑖𝑗 based on 𝑐𝑖𝑗 using Eq. (3.13) and generate a ride

request stream that follows a Poisson process with parameter𝜆𝑖𝑗.

 𝜆𝑖𝑗 = 𝑐𝑖𝑗/ 𝑁 (3.13)

For each ride request 𝑄 generated in frame 𝑓𝑗 with the origin road segment being 𝑟𝑖, the destination

road segment is generated according to the distribution 𝑝𝑖𝑗. 𝑄. 𝑝𝑤. 𝑒 and 𝑄. 𝑑𝑤. 𝑒 equals to 𝑄. 𝑡, i.e.

the birth time of the ride request. 𝑄. 𝑝𝑤. 𝑙 is calculated by applying a fixed window size. 𝑄. 𝑑𝑤. 𝑙

equals to the sum of 𝑄. 𝑝𝑤. 𝑙 and the average travel time between the origin and destination pair

learned from the GPS trajectory dataset.

Note that the taxi GPS trajectory dataset only reveals the number of ride requests that got served.

In reality there are also many ride requests unsatisfied and disappeared due to the shortage of taxis.

To take such ride requests into consideration, we introduce a system parameter ∆, supposing the

number of real ride requests is ∆ times the number of request extracted from the trajectory dataset.

Figure 20 shows the supposed number and the extracted number of ride requests fluctuating over

time of a day, where the time frame is 1 hour and ∆=2.

Figure 20 Inflated and extracted number of ride requests during a day

0 5 10 15 20
0K

10K

20K

30K

40K

50K

60K

#
 o

f
R

id
e

R
eq

u
es

ts

hour of day

 extracted

 2-inflated

62

Initial Taxi Statuses: To keep the characteristics of the realistic scenario, we use the real taxi

statuses by slicing the historical trajectories at a certain timestamp. Specifically, we select a date

and choose a particular second of day as the timestamp when the experiment starts, denote it by 𝑡𝑠.

We scan all the GPS records of the selected date to determine the initial states of taxis. A taxi status

𝑉 is set to be occupied if it is recorded occupied crossing timestamp𝑡𝑠. The initial schedule of 𝑉

can be initialized according to the record. A taxi 𝑉 is set to be vacant if it is recorded vacant both

just before and right after 𝑡𝑠. The concept of “just before” and “right after” is controlled by a

temporal parameter, which is set to be 2 minute. All remaining taxis are then considered as not

recorded and thus not used in the simulation.

The set of ride requests and initial states used in all validation experiments are generated with

parameters listed in Table 3.

Table 3 Parameter Setting for Ride request Generation

Notation Definition Value

𝑡𝑠 The start time of simulation 09:00

𝑡𝑒 The end time of simulation 09:30

#𝑡𝑎𝑥𝑖 The number of taxis 2,980

#𝑡𝑎𝑥𝑖𝑜 The number of taxis occupied initially 2,072

𝑤𝑠 The window size 5 min

𝑙(𝑏𝑖) The length of a time bin 5 min

𝑁 The # of time bins in a frame 12

3.8.1.3 Framework

Based on the platform introduced above, we study two strategies in the searching algorithm

(single-side and dual-side) and two strategies in the scheduling algorithm (first-fit and best-fit),

resulting in four taxi-sharing methods. We compare the performance of these four methods with

that of a non-taxi-sharing method as the number of requests (i.e., ∆) changes. We also test the

performance of these four methods by changing the money-to-time rate parameter of the monetary

constraints, and study the necessity of the schedule reordering step (i.e. considering different pickup

63

and drop-off orders) in the scheduling algorithm. As the travel time estimation technique had been

extensively evaluated in [121, 122], we do not perform experiments on that again.

3.8.1.4 Baseline Methods

The Non-Taxi-sharing method (NR) forbids taxi-sharing and assumes that a vacant taxi moves

to pick up the rider that it can pick up at the earliest time.

Taxi searching step: A taxi-sharing method is called single-side if the taxi searching algorithm

retrieves taxis only from the origin side of a request; otherwise, it is dual-side.

Taxi scheduling step: A taxi-sharing method is called best-fit where the taxi scheduling process

tries all candidate taxis returned by the taxi searching algorithm. Otherwise, is called first-fit if the

scheduling process terminates immediately once it finds a taxi that satisfies the ride request.

Because the two choices can be made independently, we get the following four taxi-sharing

methods: Single-side and First Fit Taxi-sharing (SF), Single-side and Best-fit Taxi-sharing (SB),

Dual-side and First Fit Taxi-sharing (DF), Dual-side and Best-fit Taxi-sharing (DB).

The money-to-time rates of ride requests are assumed to follow an exponential distribution with

a mean value.

3.8.1.5 Measurements

The performance of the taxi-sharing system is evaluated in two perspectives, namely

effectiveness and efficiency. We first describe four effectiveness measurements as follows.

Relative Distance Rate (RDR): Define the distance of a ride request 𝑄 as the distance between its

origin point 𝑄. 𝑜 and its destination point 𝑄. 𝑑. Denote by 𝐷𝑆𝑅 the sum of distances of ride requests

that get satisfied and by 𝐷𝑉 the total distance travelled by all taxis while being occupied in a taxi-

sharing method. RDR is calculated by Eq. (3.14).

 𝑅𝐷𝑅 = 𝐷𝑉/𝐷𝑆𝑅 (3.14)

RDR evaluates the effectiveness of taxi-sharing by measuring how much distance is saved

compared to the case where no taxi-sharing is practiced.

64

Satisfaction Rate (SR): is the ratio of the number of ride requests that get satisfied to the total

number of ride request (exclude ride requests that are already served by taxis at the initial state in

the ride request counting). SR is another crucial criterion measuring the effectiveness of the taxi-

sharing system.

Taxi-sharing Rate (TR): is the percentage of ride requests participating in taxi-sharing among all

satisfied ride requests.

Fare Saving Rate (FSR): is the average saving percentage in taxi fare of riders whose participate

in taxi-sharing.

Now we introduce following efficiency measurements.

Number of Road Nodes Accessed Per Ride request (#GNAPR): is the number of accessed road

network nodes per ride request.

Number of Road Nodes Accessed Per Ride request (#GCAPR): is the number of accessed grid cells

per ride request.

Number of Taxis Accessed Per Ride request (#TAPR): This measurement records how many taxis

per ride request are accessed by the scheduling module.

RNAPR, GCAPR, TAPR are machine-independent indicators for computation cost of the system

since the majority of on-line computation is done in the scheduling process.

Execution Time Per Ride request: is the CPU time spent for serving each ride request. It consists

of taxi searching time, (i.e. time elapsed between step ② and ④ in Figure 7) and taxi scheduling

time (time elapsed between ⑤ and ⑦ in Figure 7).

3.8.2 Results

Table 4 lists default values for parameters used in experiments.

Table 4 Default values of parameters used in experiments

65

Definition Value

Beijing Map Size 32 *40 km2

The size of grid (i.e. number of grid cells) 30*30

Schedule reordering before insertion no

Taxi fare per kilometre ¥2

Mean of the money-to-time rate distribution ¥0/min

Effectiveness: Figure 21 (a) shows 𝑆𝑅, i.e. the satisfaction rate, of all methods as Δ changes. All

methods show a decline in SR as the number of ride requests increases. All flavours of taxi-sharing

methods have a considerably higher satisfaction rate (about 23% higher on average) than the 𝑁𝑅

method for all delta values. The difference in the satisfaction rate among taxi-sharing methods is

insignificant as no particular technique is proposed for minimizing the satisfaction rate.

Figure 21 (b) shows 𝑇𝑅, the percentage of ride requests participating in taxi-sharing among all

satisfied ride requests, for all taxi-sharing methods. Not surprisingly, 𝑇𝑅 surges as Δ increases.

This is because taxi-sharing opportunities are likely to rise as the number of taxi ride request

increases. Consequently, more ride requests can be satisfied via taxi-sharing. But since the total

number of ride requests increases even faster, the satisfaction rate still drops, as illustrated by Figure

21 (a).

(e) Satisfaction rate vs. delta

(f) Taxi-sharing rate vs. delta

1 2 3 4 5 6

10%

20%

30%

40%

50%

60%

S
a

ti
s
fa

c
ti
o

n
 r

a
te

delta

 SF

 SB

 DF

 DB

 NR

1 2 3 4 5 6
30%

40%

50%

60%

70%

80%

90%

100%

T
a

x
i-

s
h

a
ri

n
g

 p
e

rc
e

n
ta

g
e

 a
m

o
n

g

s
a

ti
s
fi
e

d
 r

id
e

 r
e

q
u

e
s
ts

delta

 SF

 SB

 DF

 DB

66

(g) Fare saving rate vs. delta

(h) Relative distance rate vs. delta

Figure 21 Performance in effectiveness measurements of different methods

To calculate the fare of riders in the experiments, we instantiate the fare calculation function as

follows: the fare charged by a taxi driver is linear to the distance travelled by the taxi, i.e. the

product of the distance travelled and fare per unit distance. Figure 21 (c) shows that FSR, the

average fare saving of riders who participate in taxi-sharing, drops as Δ increases. The average cost

of this amount saving is about 5.08 minute delay in travel time. We believe that most riders are

willing to tolerate this amount of delay, especially under the high request demand scenarios in

which this taxi-sharing system is most likely to be useful.

Figure 21 (d) shows RDR steadily drops as parameter Δ increases. Again, this is likely because

as the number of ride requests increases, more ride requests can share partial trips with each other

and thus more distance the taxi-sharing methods save. The SB taxi-sharing method outperforms

other methods, since SB reduces the increase in travel distance most. The DB taxi-sharing method

slightly trails SB method as the taxi searching step of it explores fewer grid cells. Two first-fit based

taxi-sharing methods show clearly higher relative distance rate. From the picture, we can see that

taxi-sharing methods save up to 12% in travel distance, depending on delta. Given the fact that

there are 67,000 taxis in Beijing and each taxi runs 480 km per day (learned from the dataset), the

saving achieved by taxi-sharing here means over 1.5 billion kilometres in distance per year, which

equals to 120 million litre of gas per year (Supposing a taxi consumes 8 liter of gasoline per 100km)

and 2.2 million of carbon dioxide emission per year (supposing each litre of gas consumption

generates 2.3 kg of carbon dioxide).

1 2 3 4 5 6

0%

2%

4%

6%

8%

A
v
e

ra
g

e
 s

a
v
in

g
 r

a
te

 o
f

ri
d

e
rs

delta

 SF

 SB

 DF

 DB

 NR

1 2 3 4 5 6
86%

88%

90%

92%

94%

96%

98%

100%

102%

R
e

la
ti
v
e

 D
is

ta
n

c
e

 R
a

te

delta

 SF

 SB

 DF

 DB

 NR

67

Figure 22 (a), (b), (c), (d) shows SR, TR, FSR and RDR of taxi-sharing methods for different

mean values of the money-to-time rate of ride requests, respectively, when 𝛥 = 1 . All

measurements except FSR show a clear decrease tendency as the mean money-to-time rate

increases. When the mean money-to-time rate increases from ¥0.25/min to ¥0.5/min, the decrease

is most significant.

(i) Satisfaction rate

(j) Taxi-sharing rate

(k) Fare saving rate

(l) Relative distance rate

Figure 22 Performance in effective measurements vs. money-to-time rate

Efficiency: Tested on a single server with 2.67GHz CPU and 16GB RAM (using a single thread),

the average taxi searching time and scheduling time is 0.15 ms and 10.33 ms, respectively. If we

take the CPU time on travel time estimation (about 350 ms per OD pair using the same machine

[121]) and communication time between smart phones and the Cloud into consideration, the total

response time of a ride request is about 40~50 seconds. This time can be reduced largely if we

implement the travel time estimation method using parallel techniques.

We also test the efficiency of the system using machine-independent measurements. The three

sub-graphs of Figure 23 show the number of taxis accessed per ride request, the number of road

nodes accessed per ride request, and the number of grid cells accessed per ride request, respectively,

0.00 0.25 0.50 0.75 1.00
51%

52%

53%

54%

55%

56%

57%

58%

S
a

tis
fa

ct
o

n
 r

a
te

mean money-to-time rate (Yuan/Min)

 SF

 SB

 DF

 DB

0.00 0.25 0.50 0.75 1.00
34%

36%

38%

40%

42%

44%

46%

P
e

rc
e

n
ta

g
e

 o
f

p
a

rt
ic

ip
a

tin
g

 in
 r

id
e

sh
a

ri
n

g

a
m

o
n

g
 s

a
tis

fie
d

 r
id

e
 r

e
q

u
e

st
s

mean money-to-time rate (Yuan/Min)

 SF

 SB

 DF

 DB

0.00 0.25 0.50 0.75 1.00

7.2%

7.4%

7.6%

7.8%

8.0%

8.2%

8.4%

A
v
e

ra
g

e
 s

a
v
in

g
 r

a
te

 o
f

ri
d

e
rs

mean money-to-time rate (Yuan/Min)

 SF

 SB

 DF

 DB

0.00 0.25 0.50 0.75 1.00
99.6%

99.8%

100.0%

100.2%

100.4%

100.6%

100.8%

101.0%

101.2%

R
e

la
tiv

e
 d

is
ta

n
ce

 r
a

te

mean money-to-time rate (Yuan/Min)

 SF

 SB

 DF

 DB

68

for different taxi-sharing methods under different Δ. It is clear from the pictures that all taxi-sharing

methods do not show sharp increase in computation cost as Δ increases. It is also obvious that the

computation cost of the DB taxi-sharing method is significantly smaller than that of SB taxi-sharing

method. Especially when ∆≥ 4, the computation cost of the DB method is even smaller than that

of the SF method. The result of Figure 21 and Figure 23 together validate our motivation for the

dual-side taxi searching algorithm. That is, the dual-side searching indeed incurs small increase in

travel distance in exchange for the significant decrease in computation cost.

(m) #TAPR vs. delta

(n) #RNAPR vs. delta

(o) #GCAPR vs. delta

Figure 23 Computation cost in terms of node access per ride request

Necessity of the Schedule Reordering: Figure 24 shows the average execution time (excluding

the time spent for the travel time estimation) per ride request under different values of Δ when using

the DB taxi-sharing method with and without the schedule reordering before insertion. The

execution time per ride request is about 20% longer on average when the schedule reordering is

performed.

Figure 24 Time cost of schedule reordering

1 2 3 4 5 6
0

3

6

9

12

15

18

21

24

#
 o

f
T

a
x
is

 A
c
c
e

s
s
e

d

 P
e

r
R

id
e

 R
e

q
u

e
s
t

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6

10K

20K

30K

40K

50K

60K

#
 o

f
R

o
ad

 N
o
d
es

 A
cc

es
se

d

P
er

 R
id

e
R

eq
u
es

t

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6

30

45

60

75

90

#
 o

f
G

ri
d

 C
el

ls
 A

cc
es

se
d

P
er

 R
id

e
R

eq
u

es
t

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6
5

6

7

8

9

10

11

A
ve

rg
e

 e
xe

cu
tio

n
 t

im
e

p
e

r
ri

d
e

 r
e

q
u

e
st

 (
m

s)

delta

 with reordering

 w/o reordering

69

Meanwhile there is almost no change in all effectiveness measurements including satisfaction

rate, relative distance rate, etc. From the results, we also learned that in practice it is extremely rare

that the optimal insertion requires the schedule reordering. Although the execution time per ride

request remains a reasonable small value with the schedule reordering step, there is still no incentive

to do so in practice.

3.9 Discussion

We have proposed and developed a mobile-cloud based real-time taxi-sharing system. We

presented detail interactions between end users (i.e. taxi riders and drivers) and the Cloud. We

validated our system based on a GPS trajectory dataset generated by 33,000 taxis over 3 months,

in which over 10 million ride requests were extracted. The experimental results demonstrated the

effectiveness and efficiency of our system in serving real-time ride requests. Firstly, our system

can enhance the delivery capability of taxis in a city so as to satisfy the commute of more people.

For instance, when the ratio between the number of taxi ride requests and the number of taxis is 5,

our proposed system served additional 22% ride requests compared with no taxi-sharing. Secondly,

the system saves the total travel distance of taxis when delivering passengers, e.g. it saved 12%

travel distance with the same ratio mentioned above. Supposing a taxi consumes 8 liters of gasoline

per 100 km and given the fact learned from the real trajectory dataset that the average travel distance

of a taxi in a day in Beijing is about 480 km, the system can save over one third million liter of

gasoline per day, which is over 120 million liter of gasoline per year (worth about 150 million

dollar). Thirdly, the system can also save the taxi fare for each individual rider while the profit of

taxi drivers does not decrease compared with the case where no taxi-sharing is conducted. Using

the proposed monetary constraints, the system guarantees that any rider that participates in taxi-

sharing saves 6% on average. In addition, the experimental results justified the importance of the

dual-side searching algorithm. Compared to the single-side taxi searching algorithm, the dual-side

taxi searching algorithm reduced the computation cost by over 50%, while the travel distance was

70

only about 1% higher on average. The experimental results also suggests that reordering the points

of a schedule before the insertion of the new ride request is not necessary in practice for the purpose

of travel distance minimization.

In the future, we consider incorporating the creditability of taxi drivers and riders into the taxi

searching and scheduling algorithms. Additionally, we will further reduce the travel distance of

taxis via ridesharing.

71

Chapter 4

Analysis and Evaluation of the Slugging Form of Ridesharing

4.1Introduction

Transportation problems, such as traffic jams, finding parking slots, hailing a taxi during rush

hours, are long-existing headaches in cities, especially those with a large population. These

problems negatively affect the environment, the economy, and more importantly average peoples’

daily lives.

Different methods have been mainly proposed to tackle these problems separately. For example,

extending the road network is one common approach to tackle traffic jams; sensors which can detect

the availability of parking spaces [4] are installed to help drivers find open parking slots more

quickly. However, those solutions often require additional construction or new equipment added to

the existing infrastructures and thus are often expensive to implement. In addition, their benefits

are usually limited to the specific corresponding problem.

One reason for the above transportation problems is that the passenger seats of vehicles are

under-utilized. Thus, we study ridesharing as a promising means to improve the utilization of

vehicle ridership and thus reduce the number of cars on the road.

Ridesharing practices have a variety of characteristics. For example, ridesharing can be either

dynamic or static. Dynamic ridesharing arranges trips on a very short notice. By contrast, static

ridesharing arranges trips that are known in advance, usually hours or a day or two before the

departure time. Ridesharing can arrange either recurring or ad-hoc trips. Also, ridesharing can

either change or keep the route of the original trips of drivers. (In case routes are kept, riders need

to get on and off the driver’s car at the origin and destination locations of the driver instead of their

72

own.) Riders may share the cost with the driver or not. Table 5 summarizes the characteristics of

some of the most common ridesharing applications.

Table 5 Characteristics of some of the most common ridesharing applications

Ridesharing

Applications

Characteristics

Dynamic Recurring Trip
Route

Change
Cost Sharing

taxi ridesharing yes no yes yes

hitchhiking yes no no no

carpooling no yes/no yes yes

slugging [18] yes/no yes/no no no/very-low

Here we are interested in one particular ridesharing form, i.e. slugging. In slugging a passenger

walks to the driver’s origin, boards at the driver’s departure time, alights at the driver’s destination,

then walks from there to the passenger’s own destination. Thus slugging involves two modes of

transportation, car and walking. Since slugging does not change any spatio-temporal aspect of the

drivers’ original trips, slugging is the simplest form of ridesharing in the sense of bringing

minimum disruptions to the drivers. Thus it can be offered at minimum or no-cost to the riders.

Compared to other forms of ridesharing where route change is allowed, e.g. taxi ridesharing [77],

slugging avoids unnecessary complications such as complex fare mechanism or ridesharing-

incurred travel time delay for drivers (e.g. due to unexpected congestion encountered on the way

to some pickup). Thanks to its simplicity, slugging has already become a common transport mode

in some of the busiest traffic areas in the North America, e.g. auxiliary interstate highways around

urban areas such as Washington D.C., Bay area, Houston, and other cities [6, 13].

Though currently slugging is mainly used for regular commute trips, we envision that it can also

be applied to ridesharing scenarios that involve mostly one-time casual trips. For example, consider

a ridesharing website where travelers post their trips scheduled in the near future. When posting

their trip, travelers may announce their roles in ridesharing: drivers, passengers, or both (i.e.

travelers who have a car can leave the role to be determined by the website). The website will

compute a slugging plan to group these travelers and decide the driver and passengers for each

73

group. The only attached string for a passenger is that she needs to walk to the origin location of

the driver’s trip before the driver departs, and she needs to walk from her driver’s destination to

her own destination. Drivers are willing to accept such a ride for a various reasons, such as

environmental-friendliness, companionship, the privilege of driving on HOV lanes, reduced or

waived toll on highways, small payment, etc.

The increasing popularity of bike sharing programs indicates that people are open to alternative

modes of transportation, particularly the ones like slugging that involve physical activity (i.e.

walking). The motor industry is also actively promoting shared services like slugging, as stated in

the “Blueprint for Mobility” vision recently released by Ford company.

To the best of our knowledge, our work is the first one to study slugging from a computational

perspective. We define and study the basic slugging problem and its variants that are constrained

by the vehicle capacity and travel time delay. We also discuss the dynamic version of the slugging

problem. The experimental results show that our proposed heuristics achieve 59% saving in vehicle

travel distance. Given the size of our real data set is 39 thousand trips and the average distance of

a trip in the data set is 6.3 kilometres, the saving equals to 144,963 kilometres, which means the

reduction of over 4.5 thousand gallons of gasoline and 71 tons of carbon dioxide emission.

In summary, the contributions of this section include:

 We formalize the slugging problem using a graph abstraction. We propose a quadratic algorithm

to solve the slugging problem.

 We define a generalization of the slugging problem and prove its NP-completeness.

 For the variants of the slugging problem that are constrained by the vehicle capacity and travel

time delay, we prove their NP-completeness and propose effective heuristics. Via extensive

experiments, we demonstrate that the proposed heuristics have near-optimal performance in

terms of the saving in vehicle travel distance.

74

 We also consider the dynamic slugging problem and evaluate it via experiments; in the dynamic

problem the trips are announced incrementally.

The remainder of the section is organized as follows. In Section 4.2, we review existing literature

related to our work. Section 4.3 formally defines and studies the slugging problem, its

generalization, its constrained variants, its dynamic version, and heuristics for the intractable

variants. We evaluate the proposed heuristics in Section 4.4.

4.2Related Works

In this section we review existing works on three problems that are relevant to slugging, i.e. taxi-

ridesharing, carpooling and the dial-a-ride. Similar to slugging, all these problems are

transportation problems that involve pickups and drop-offs. Unlike slugging where passengers

change their origin and destinations in order to join the trip of drivers, in all three problems, drivers

change their route in order to pick up and deliver the passengers. Both taxi ridesharing and

carpooling are specific forms of ridesharing. The difference is that each driver in carpooling usually

is associated with her own trip, while in taxi ridesharing this is not the case. Also taxi ridesharing

usually needs appropriate pricing mechanisms to incite taxi drivers. The dial-a-ride problem

slightly differs from carpooling as all vehicles start a trip and return to the same location called the

depot.

4.2.1Taxi Ridesharing

There have been a number of works on the taxi ridesharing application [77, 78, 86, 107]. These

works modelled the taxi ridesharing problem by considering different constraints. In contrast to

slugging, the routes of driver trips, i.e. taxis in this case, change to accommodate passengers.

Among these works, some (see [107]) only considered vehicle capacity constraints, while the rest

also considered time window constraints, i.e. travelers need to depart and arrive in given time

intervals. [78] is the only paper that models monetary constraints, which are used to guarantee

monetary incentives for both taxi drivers and taxi riders. These works on taxi ridesharing mainly

75

concern the efficiency and scalability of ridesharing, i.e. how fast a query can be answered and how

many queries the system can handle. In contrast, we focus on the effectiveness of slugging as a

whole, e.g. the saving in vehicle travel distance, while the existing works on taxi ridesharing often

consider the effectiveness of ridesharing from the perspective of a single request, e.g. reducing the

increase in vehicle travel distance for every new request [77].

4.2.2Carpooling

There have been many works on modelling and analysing the traditional carpooling problem

where drivers need to change their routes due to ridesharing. In [19], the authors modelled a

carpooling problem and proposed an exact method based on Lagrangean column generation to

solve it optimally. Since the carpooling problem is NP-hard, the exact approach practically only

works for small instances of the carpooling problem, where there are at most a few hundred trips.

For large instances with hundreds of thousands trips, many heuristics have been proposed [14, 109].

These heuristics are applied to compute the best route of a vehicle for a given set of requests, since

the route of drivers is allowed to change. As such route changes do not occur in slugging, these

heuristics are not applicable.

Despite being a sibling of the carpooling problem, the slugging problem has so far drawn little

attention from researchers. There have been some reports on the current state of slugging operations

(see [28]). But our work is the first formal study of slugging from a computational viewpoint.

4.2.3Dial-A-Ride Problem (DARP)

The Dial-A-Ride Problem (DARP) [16], a.k.a. the Vehicle Routing Problem with Time Windows

in the operation research literature, is closely relevant to the carpooling problem. The DARP can

be considered the carpooling problem with additional restrictions (e.g. all vehicles are required to

start any trip from a depot location and return to the depot after the trip). In contrast to slugging,

vehicle routes are manipulated to accommodate passengers’ origin and destination locations. DARP

is proved to be NP-hard. Cordeau et al. summarizes the state-of-the-art heuristics for DARP [33].

76

4.3 Slugging

We introduce the concept of slugging in Sec. 4.3.1. We formally define the basic slugging

problem in Sec. 4.3.2. Next we introduce and discuss the vehicle-capacity constrained slugging

problem in Sec. 4.3.3, and the delay bounded slugging problem in Sec. 4.3.4. Then we describe the

slugging problem with both constraints and propose heuristics for it in Sec. 4.3.5. Finally, we

discuss the dynamic slugging problem and its parameters in Sec. 4.3.6.

4.3.1 Preliminaries

In slugging, some travelers abandon their original trips and join the trip of other travellers, the

drivers, without asking the drivers to change their route or their departure time. To be more specific,

consider two travellers 𝐴 and 𝐵, and their respective trips 𝑇𝐴 and 𝑇𝐵, each of which is described by

an origin destination pair and a start time at which the traveller intends to depart. Assume that

traveller 𝐴 abandons her trip and joins 𝐵’s trip. In this case we say that 𝑇𝐴 is merged into 𝑇𝐵. More

specifically, traveller 𝐴 executes her new trip as follows: at the start time of 𝑇𝐴 she walks to the

origin location of trip 𝑇𝐵, then she waits until the start time of 𝑇𝐵 (if 𝐴 arrives later than the start

time of 𝑇𝐵 then she cannot join 𝑇𝐵), she shares the ride with 𝐵, she alights at the destination of 𝑇𝐵

and finally she walks from there to her own destination. Clearly, the only impact that traveller 𝐴

has on trip 𝑇𝐵 is the occupation of one seat in B’s vehicle. In other words, there is no disruption to

any spatio-temporal aspect of 𝑇𝐵.

In the above example, there is only one traveler associated with each trip. In general, each trip

can be associated with a party of multiple travelers who cannot be separated during the trip

(assuming that the size of the party is always smaller than the number of seats in a vehicle).

As shown in the above example, one necessary condition for trip 𝑇𝑖 to be able to be merged into

trip 𝑇𝑗 is that the travellers of trip 𝑇𝑖 can walk from the origin of 𝑇𝑖 at the start time of 𝑇𝑖 and arrive

at the origin of trip 𝑇𝑗 before the start time of 𝑇𝑗 (assuming a constant walking speed and taking the

77

shortest path). Consider a set of trips 𝑆𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑚} where the travelers of each trip 𝑇𝑖

announce their willingness to serve as: driver, or passenger, or both. Then for each trip pair 𝑇𝑖 and

𝑇𝑗, where the travelers of 𝑇𝑖 have announced their willingness to be passengers, and the travelers

of 𝑇𝑗 have announced their willingness to be drivers, we can compute whether or not 𝑇𝑖 can be

merged into 𝑇𝑗. To do that, a preprocessing stage is performed. At this stage, a map is used to

compute the shortest path between the respective origins. Specifically, for such a trip pair (𝑇𝑖, 𝑇𝑗),

the shortest path between the origins of the two trips is computed. Based on the calculated shortest

path, a presumed walking speed, and the start times of 𝑇𝑖 and 𝑇𝑗, we can readily determine whether

or not trip 𝑇𝑖 can be merged into 𝑇𝑗. If so, we say that pair (𝑇𝑖, 𝑇𝑗) is a mergable pair where 𝑇𝑖 is a

passenger trip and 𝑇𝑗 is a driver trip. For a mergeable pair (𝑇𝑖, 𝑇𝑗), the shortest path between the

destinations of 𝑇𝑖 and 𝑇𝑗 is also calculated in order to determine the travel time delay for the

passenger trip 𝑇𝑖. The travel time delay for passenger trips imposes a natural constraint on the

slugging problem, which will be discussed further in Sec. 4.3.4 and 4.3.5.

Now that we have defined a mergeable pair, for a given set of trips, consider the set of all

mergeable pairs represented as a graph S. Assuming that the trip start-times are distinct, we observe

that S possesses the following two properties.

First, S is acyclic. Suppose there exists a cycle of mergeable pairs (𝑇𝑖1
, 𝑇𝑖2

), (𝑇𝑖2
, 𝑇𝑖3

), …,

(𝑇𝑖𝑛
, 𝑇𝑖1

) in 𝑆. Mergeable pair (𝑇𝑖𝑛
, 𝑇𝑖1

) means that the start time of 𝑇𝑖𝑛
 is smaller than that of 𝑇𝑖1

.

However, the first n-1 pairs of the cycle collectively tell us that the start time of 𝑇𝑖1
 should be

smaller than that of 𝑇𝑖𝑛
. Contradiction. In other words, S is acyclic because the start-times of the

trips on a path in S are increasing.

Second, S is transitive (i.e. if (𝑇𝑖, 𝑇𝑗) ∈ 𝑆 and (𝑇𝑗, 𝑇𝑘) ∈ 𝑆), then (𝑇𝑖, 𝑇𝑘) ∈ 𝑆. If the travelers

of 𝑇𝑖 can arrive at the origin of 𝑇𝑗 before the start time of 𝑇𝑗, and the travelers of 𝑇𝑗 can arrive at the

origin of 𝑇𝑘 before the start time of 𝑇𝑘, then the travelers of 𝑇𝑖 definitely can arrive at the origin of

78

𝑇𝑘 before the start time of 𝑇𝑘 as well by: first arriving at the origin of 𝑇𝑗 and then taking the same

path used by the travelers of 𝑇𝑗 to the origin of 𝑇𝑘; this assumes that all travelers have the same

walking speed.

4.3.2 Basic Slugging Problem

Slugging is a graph problem. We formulate it as follows.

Definition 1 A slugging graph 𝐺 = (𝑉, 𝐸), is a directed acyclic graph where 𝑉 = {𝑇1, 𝑇2, … , 𝑇𝑚}

is a set of trips and 𝐸 is set of directed edges between nodes that is transitive, i.e. if (𝑇𝑖 , 𝑇𝑗) ∈ 𝐸

and (𝑇𝑗, 𝑇𝑘) ∈ 𝐸, then (𝑇𝑖, 𝑇𝑘) ∈ 𝐸 .

Note that a node in a slugging graph may not have any incident edges. A node with no incident

edge can exist as it represents a trip that cannot be merged into any other trip, or into which no

other trip can be merged. For example, a trip geographically bounded in the North Eastern corner

of a city may become such a disconnected node if all other trips are bounded in the South Western

corner of the city, and they all start at approximately the same time.

A slugging graph indicates which trips can be merged into others. However, although a trip can

be merged into multiple other trips, in a concrete slugging plan it is merged into only one other trip.

In other words, a slugging graph gives the possible pairs of trips that can be combined, whereas a

slugging plan gives an actual combination that will be executed in practice. So, based on a slugging

graph, a slugging plan can be constructed. Intuitively, a slugging plan is a subgraph of the slugging

graph that gives the driver and the passengers of each car.

Definition 2 Given a slugging graph 𝐺 = (𝑉, 𝐸) , a slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 , is a

subgraph of 𝐺 that satisfies the following conditions: (i) ∀(𝑇𝑖, 𝑇𝑗) ∈ 𝐸𝑆, there is no 𝑘 ≠ 𝑗 such that

(𝑇𝑖, 𝑇𝑘) ∈ 𝐸𝑆; and (ii) ∀(𝑇𝑖, 𝑇𝑗) ∈ 𝐸𝑆 , there does not exist 𝑘 such that (𝑇𝑘 , 𝑇𝑖) ∈ 𝐸𝑆.

79

Intuitively, condition (i) states that any trip 𝑇𝑖 can be merged into at most one other trip.

Condition (ii) states that a trip 𝑇𝑖 can be merged into another trip 𝑇𝑗 only if there is no other trip 𝑇𝑘

that has been merged into 𝑇𝑖. These constraints precisely reflect the nature of the slugging problem:

each trip is either a ridesharing provider, i.e. providing a car to be shared with other riders, or a

ridesharing consumer, i.e. taking exactly one ride provided by a provider.

Figure 25 gives an illustrative example of slugging plans. Subfigure (a) shows a slugging graph

of four trips. Subfigures (b) (c) (d) (e) show all slugging plans that are maximal, i.e. cannot include

more edges. For instance, consider the slugging plan shown in subfigure (b). Given that (𝑇4, 𝑇3)

already exists, neither edge (𝑇4, 𝑇1) nor edge (𝑇4, 𝑇2) can be added because the addition violates

Condition (i), and neither edge (𝑇3, 𝑇2) nor edge (𝑇3, 𝑇1) can be added because either addition

violates Condition (ii).

Figure 25 An illustrative example of slugging plans

A mergable pair (𝑇𝑖, 𝑇𝑗) in a slugging plan means that 𝑇𝑖 is merged into 𝑇𝑗. That is to say, 𝑇𝑖 is

simply eliminated while there is no change to 𝑇𝑗 other than the fact that the number of passengers

in 𝑇𝑗 ‘s vehicle is increased. Therefore the benefit of merging 𝑇𝑖 into 𝑇𝑗 only depends on the

passenger trip 𝑇𝑖 and thus can be measured by some attribute of 𝑇𝑖, e.g. the vehicle travel distance

that is saved. In other words, the benefit of merging 𝑇𝑖 into another trip is independent of the other

trip. The implication is that if an edge is labeled by the benefit of merging the two trips at its

endpoints, then all the edges exiting a node have the same benefit. Formally, we define the benefit

of a slugging graph as follows.

T3

T2 T1

T3

T2 T1

T3

T2 T1

(a) a slugging graph

T3

T2 T1

(b) (c) (d)

T4 T4 T4
T4

(e)

T3

T2 T1

T4

80

Definition 3 A slugging graph 𝐺 = (𝑉, 𝐸) is called benefit-labeled if each edge (𝑇𝑖, 𝑇𝑗) ∈ 𝐸 is

associated with a label 𝐵(𝑇𝑖 , 𝑇𝑗) ∈ ℝ+, referred to as the benefit of edge (𝑇𝑖, 𝑇𝑗), and the benefits

of all edges outgoing of the same node are identical, i.e. ∀𝑇𝑖, 𝑇𝑗, 𝑇𝑘 such that (𝑇𝑖, 𝑇𝑗) ∈ 𝐸 and

(𝑇𝑖, 𝑇𝑘) ∈ 𝐸, 𝐵(𝑇𝑖, 𝑇𝑗) = 𝐵(𝑇𝑖, 𝑇𝑘).

A straightforward example of a benefit function is the constant function 𝐵(𝑇𝑖, 𝑇𝑗) = 1 for any

mergeable pair (𝑇𝑖, 𝑇𝑗). Intuitively, this benefit function measures the number of trips saved by

ridesharing. Another example of a benefit function is: 𝐵(𝑇𝑖, 𝑇𝑗) equals to the vehicle travel distance

of trip 𝑇𝑖. Intuitively, this benefit function measures the saving in vehicle travel distance.

Figure 26 An example of a benefit function for a ridesharing form in which driver trips are

changed

Definition 3 essentially says that the benefit of a mergeable pair is independent of the driver trip.

Note this characteristic is unique to slugging and is not applicable to other ridesharing forms. For

example, if we consider a ridesharing form where the route of driver trips can be changed, such as

taxi ridesharing, then a benefit function 𝐵 that measures the saving in the total travel distance is

dependent on the driver trip. Figure 26 shows an illustrative example of this case. Figure 26 (a) shows

three trips with their travel distances, and the distances between the origins and destinations of

1 112
(a) Three trips T1, T2, T3 with distances

being 12, 5, 2, respectively

2

1
1

2 2

3

2 5

3 2

2 33

(e) Benefit of ridesharing plan B{(T2,T1), (T3,T1)}=(12+5+2)-16=3

(c) B(T3, T2)=(5+2)-7=0

1 1

2
5

(b) B(T3, T1)=(12+2)-12=2

33

origin of trip i

destination of trip i

shortest path between locations

 path of a merged trip i

i

54

545

5
4

4

5

1

2 2

33 2
4

(d) B(T2, T1)=(12+5)-14=3

1
1

2 2

4

55 1

1

81

these trips. Figure 26 (b) and (c) show a trip after merging 𝑇3 into trip 𝑇1 and 𝑇2, respectively,

resulting 𝐵(𝑇3, 𝑇1) = 2 and 𝐵(𝑇3, 𝑇2) = 0. In other words, since the passenger is picked up at her

origin and dropped off at her destination, the total saving in travel distance depends on the driver’s

origin and destination.

The next definition gives the benefit of a ride-sharing plan as the total benefit of its edges.

Definition 4 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is benefit-labeled, the benefit of a slugging

plan 𝐺𝑆 = (𝑉, 𝐸𝑆), denoted by 𝐵(𝐺𝑆), is the sum of the benefits of the edges in 𝐸𝑆. That is to say,

𝐵(𝐺𝑆) = ∑ 𝐵(𝑇𝑖, 𝑇𝑗)(𝑇𝑖,𝑇𝑗)∈𝐸𝑆
.

Definition 4 is also applicable to slugging only, but not to other ridesharing forms. To illustrate

this point, consider again the example shown by Figure 26. The benefit of merging 𝑇2 into 𝑇1 is 3,

as shown by Figure 26 (d); and the benefit of merging 𝑇3 into 𝑇1 is 2, as shown by Figure 26 (b).

However, as shown by Figure 26 (e), the benefit of slugging plan {(𝑇2, 𝑇1), (𝑇3, 𝑇1)} is 3 rather than

5, which is the sum of the benefit of the two pairs in the plan.

Problem 4.1 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is benefit-labeled, find a subgraph 𝐺𝑆 =

(𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that is a slugging plan and has the maximum benefit. We refer to this as the

Slugging Problem (SP).

Theorem 4.1 SP can be solved in 𝑂(|𝑉|2) time.

Proof A trip 𝑇𝑖 ∈ 𝑉 is called a sink trip if its node has no outgoing edges. Due to the fact that G

is acyclic and transitive, for each non-sink trip 𝑇𝑖, there exists at least one sink trip 𝑇𝑠 such that

(𝑇𝑖, 𝑇𝑠) ∈ 𝐸.

Now we can construct the optimal slugging plan for SP using the algorithm as shown by Figure

27. The 𝐺𝑆 in Figure 27 merges each trip 𝑇𝑖 that is not a sink trip into any sink trip 𝑇𝑘 such that

(𝑇𝑖, 𝑇𝑘) ∈ 𝐸.

82

Figure 27 Quadratic algorithm for SP

It is not hard to see that the constructed 𝐺𝑆 = (𝑉, 𝐸𝑆) is indeed optimal. First 𝐺𝑆 is constructed

such that each passenger trip has been merged into some driver trip. And since that the benefit of

merging a passenger trip is the same regardless which driver trip the passenger trip is merged into,

therefore, the benefit of 𝐺𝑆 is maximum

Let us consider the time complexity of Algorithm 1. As shown by Line 1~6, trips that are sinks can

be identified in 𝑂(|𝐸|) time. From Line 8~10, the slugging plan is calculated. Since there are at

most 𝑂(|𝑉|) non-sink trips, and for each non-sink trip it takes at most 𝑂(|𝑉|) time to find a sink

trip into which the non-sink trip can be merged, then the time complexity of Line 8~11 is 𝑂(|𝑉|2)

as well. Since |𝐸| is 𝑂(|𝑉|2), the time complexity of Algorithm 1 is 𝑂(|𝑉|2). □

The transitivity of the slugging graph relies on the assumption that travelers walk at the same

speed. If we relax this assumption, then the slugging graph is no longer transitive. This relaxation

leads to a generalization of SP in which the graph is only acyclic. We prove next that this

generalization of SP is NP-complete.

Problem 4.2: Given a directed acyclic graph 𝐺 = (𝑉, 𝐸) where V is a set of trips and E is the set

of edges that is benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that

83

is a slugging plan with the benefit at least 𝑅. We refer to this problem as the Generalized Slugging

Problem (GSP).

Theorem 4.2: GSP is NP-complete.

Proof: First, it is easy to see GSP is in NP. Now, we prove GSP is NP-hard by reducing the set

cover problem to GSP.

The set cover problem is well-known NP-hard. It is defined as follows: given a set 𝑈 of 𝑛

elements, a family of subsets of 𝑈, {𝑆1, 𝑆2, … , 𝑆𝑚} and a integer 𝑘, the question is whether there

exists a set of at most 𝑘 of these subsets whose union equals to 𝑈. If the answer is yes, the problem

has a set covering of size 𝑘.

Given an instance of set covering problem, i.e. a universe 𝑈 = {1,2, … 𝑛} and a family of 𝑚

subsets 𝑆1, 𝑆2, … , 𝑆𝑚 of 𝑈, we can build an instance of GSP as follows. First we construct the graph

𝐺 = (𝑉, 𝐸) as follows: We define V = {𝑇1, 𝑇2, … , 𝑇𝑛 , 𝑇𝑆1
, 𝑇𝑆2

, … , 𝑇𝑆𝑚
, 𝑇𝑠𝑖𝑛𝑘} and construct E as

follows. If 𝑖 ∈ 𝑆𝑗, add an edge (𝑇𝑖, 𝑇𝑆𝑗
) to E for all 𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑚, and add an

edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) to E for all 𝑗 = 1,2, … 𝑚. Note that 𝐸 is indeed acyclic. We define benefit function

𝐵 as a constant function 𝐵(𝑇𝑖, 𝑇𝑗) = 1 for all (𝑇𝑖 , 𝑇𝑗) ∈ 𝐸. We also define benefit threshold 𝑅 =

𝑛 + 𝑚 − 𝑘. Now we show that the set cover problem has a set covering of size 𝑘 iff there is a

subgraph of 𝐺 that is a slugging plan and has a benefit as least of 𝑅.

First, assume that the set cover instance admits a set covering of size 𝑘, denoted by ℂ, we will

now construct a subgraph of 𝐺, denoted by 𝐺𝑆, that is a slugging plan and has a benefit as least of

𝑅, i.e. 𝑛 + 𝑚 − 𝑘, as follows: start with an empty subgraph 𝐺𝑆; for each node 𝑇𝑖 , 𝑖 ∈ 𝑈, choose

another node 𝑇𝑆𝑗
 such that 𝑖 ∈ 𝑆𝑗 and 𝑆𝑗 ∈ ℂ, then add edge (𝑇𝑖, 𝑇𝑆𝑗

) to the edge set of 𝐺𝑆. Since

|𝑈| = 𝑛, the benefit of 𝑅𝑃 increases by 1 for 𝑛 times. For each set 𝑆𝑗 ∉ ℂ, add edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) to

the edge set of 𝐺𝑆, so 𝐵(𝐺𝑆) increases by 1 for at least 𝑚 − 𝑘 times. 𝐺𝑆 is a legitimate slugging

plan since each 𝑇𝑖 , 𝑖 ∈ 𝑈 and each 𝑇𝑆𝑗
, 𝑆𝑗 ∉ ℂ is chosen to be passenger trips only while each

84

𝑇𝑆𝑗
, 𝑆𝑗 ∈ ℂ and 𝑇𝑠𝑖𝑛𝑘 is chosen to be driver trips only, and no trip is merged into more than one

other trips. The benefit of 𝐺𝑆 is at least 𝑛 + 𝑚 − 𝑘.

Conversely, assume that there is a slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 of benefit at least 𝑛 +

𝑚 − 𝑘, we now prove that there is a set covering of size 𝑘 by proof of contradiction. Suppose there

is no set covering of size 𝑘. Since for each node 𝑇𝑖 , 𝑖 ∈ 𝑈, it can contribute at most 1 to the benefit

of 𝐺𝑆, and all 𝑛 𝑇𝑖’s collectively contribute at most 𝑛 to the benefit of 𝐺𝑆. Let us first assume that

all 𝑇𝑖’s are contributing. Denote by ℂ the set of 𝑆𝑗’s such that edge (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) ∉ 𝐺𝑆. Clearly ℂ is a

set cover. Since any cover size is larger than 𝑘 thus |ℂ| > 𝑘, then there are less than 𝑚 − 𝑘 nodes

𝑇𝑆𝑗
 are free to merged into node 𝑇𝑠𝑖𝑛𝑘, i.e. contribute 1 to the benefit of 𝐺𝑆. Thus 𝐵(𝐺𝑆) < 𝑛 +

𝑚 − 𝑘. Contradiction. Now assume that not all 𝑛 𝑇𝑖’s contribute to 𝐺𝑆, say edge (𝑇𝑖 , 𝑇𝑆𝑗
) is removed

from 𝐺𝑆, the removal may or may not set 𝑇𝑆𝑗
 free, i.e. allow (𝑇𝑆𝑗

, 𝑇𝑠𝑖𝑛𝑘) add to 𝐺𝑆. Even (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘)

is added to 𝐺𝑆, since (𝑇𝑆𝑗
, 𝑇𝑠𝑖𝑛𝑘) is previously removed from 𝐺𝑆, and thus the benefit of 𝐺𝑆 will not

increase. Contradiction remains. Therefore, there must be a set cover of size of 𝑘.□

4.3.3 Capacitated Slugging

The basic slugging problem may work well for the case where vehicles have a large number of

seats, such as (mini)buses. The reason is that the problem does not constrain the number of

passengers that a driver can take. The problem becomes more general if we consider a vehicle

capacity constraint, given the fact that private vehicles usually have a few seats. Thus we introduce

the slugging problem with the capacity constraint.

As mentioned in Sec. 4.3.1, a trip can be associated with multiple travelers who ride together. In

other words, these travelers have the same origin, destination, and start time. Therefore, each

passenger trip in the graph should be tagged with a label which represents the number of travelers

associated with the trip. We do so as follows.

85

Definition 5 A slugging graph 𝐺 = (𝑉, 𝐸) is called no-of-travelers-labelled if each node 𝑇𝑖 ∈ 𝑉

that represents a passenger trip (i.e. has outgoing edges) is associated with a number 𝑇𝑖. 𝑠, referred

to as the size of node 𝑇𝑖.

Each driver trip also has a number of seats available for passengers. In other words, each driver

trip is associated with a number of travelers. However, it may still have available seats in the car to

take slugging passengers. This availability is represented in the slugging graph as follows.

Definition 6 A slugging graph G=(V, E) is called no-of-available-seats labelled if each node 𝑇𝑖 ∈

𝑉 that represents a driver trip (i.e. has incoming edges) is associated with a label 𝑇𝑖. 𝑐, referred to

as the capacity of node 𝑇𝑖.

Definition 7 A slugging plan 𝐺𝑆 = (𝑉, 𝐸𝑆) is capacitated if each driver trip in 𝐺𝑆 takes at most

𝑇𝑗. 𝑐 additional passengers, i.e. ∀𝑇𝑗 ∈ 𝑉, Σ(𝑇𝑖,𝑇𝑗)∈𝐸𝑆
𝑇𝑖. 𝑠 ≤ 𝑇𝑗. 𝑐.

Now we define the Capacitated Slugging Problem as follows.

Problem 4.3 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is no-of-travelers-labeled, no-of-available-

seats-labeled and benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that

is a capacitated slugging plan with the benefit at least 𝑅 . We refer to this as the Capacitated

Slugging Problem (CSP).

Theorem 4.3 CSP is NP-Complete.

Proof: First, it is easy to see CSP is in NP. That is, given a subgraph of 𝐺, denoted by 𝐺𝑆, we can

verify whether 𝐺𝑆 is a -capacitated slugging plan and if so, whether its benefit is at least 𝑅. Now,

we prove CSP is NP-hard by reducing the 0/1 Knapsack Problem to CSP.

The 0/1 Knapsack Problem is known to be NP-hard [46]. The decision version of the problem is

defined as follows: given a set of 𝑛 items, {𝑝1, 𝑝2, … , 𝑝𝑛} and a knapsack of capacity 𝑊. Each item

86

𝑝𝑖 has a size 𝑤𝑖 and a value 𝑣𝑖. The question is whether or not we can pack items worth at least 𝑅

into the knapsack without exceeding its capacity and without splitting items.

Given an instance of 0/1 Knapsack Problem, we can build an instance of CSP as follows. First

we construct a slugging graph 𝐺 = (𝑉, 𝐸) as follows. Let the node set 𝑉 = {𝑇𝑝1
, 𝑇𝑝2

, … 𝑇𝑝𝑛
, 𝑇𝑑}.

Construct the edge set E as follows. For each node 𝑇𝑝𝑖
 , 𝑖 = 1,2, … 𝑛, we add an edge (𝑇𝑝𝑖

, 𝑇𝑑) to

E. Note that the edge set 𝐸 = {(𝑇𝑝𝑖
, 𝑇𝑑)} is indeed transitive and acyclic. Therefore, 𝐺 is a slugging

graph. Next we label the nodes of G. Each node 𝑇𝑝𝑖
 is labeled with a size equals to 𝑤𝑖. The capacity

of node 𝑇𝑝𝑖
 does not matter since they can only be passenger trips. Node 𝑇𝑑 is labeled with a size

equals to 1 and a capacity equals to 𝑊 + 1. Next we label the edges of G with a benefit. Each edge

(𝑇𝑝𝑖
, 𝑇𝑑) is label with a benefit 𝐵(𝑇𝑝𝑖

, 𝑇𝑑) equals to 𝑣𝑖, for 𝑖 = 1,2, … 𝑛. Now 𝐺 is slugging graph

that is no-of-travelers-labeled, no-of-available-seats-labeled and benefit-labeled.

It can readily be shown that the constructed instance of CSP has a capacitated slugging plan with a

benefit of 𝑅 if and only if the instance of 0/1 Knapsack Problem can pack items worth at least 𝑅

into the knapsack.□

4.3.3.1 A special case of CSP

A special case of CSP where the capacity of each car is 2, and all trips are associated with only

one traveler, is polynomial-time solvable. We prove it formally as follows.

Problem 4.4 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is no-of-travelers-labeled where the size of

each passenger node is 1, and no-of-available-seats-labeled where the capacity of each driver node

is 1, and benefit-labeled, find a subgraph 𝐺𝑆 = (𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸 that is a capacitated slugging plan

with the maximum benefit. We refer to this as the 1-traveler-1-availability Capacitated Slugging

Problem (1t1CSP).

Theorem 4.4 The 1t1CSP is solvable in 𝑂(|𝑉||𝐸|log |𝑉|) time.

87

Proof We will show that the 1t1CSP is equivalent to the maximum weighted matching problem.

A matching of a graph is a set of pairwise vertex-disjoint edges. The maximum weighted matching

problem is defined as: given an edge-weighted undirected graph 𝐺𝑀 = (𝑉𝑀 , 𝐸𝑀), find the matching

where the sum of the weight of the edges in it is maximum.

Given an slugging graph 𝐺 = (V, 𝐸) of the 1t1CSP, we construct a weighted undirected graph

𝐺𝑀 as follows: 𝑉𝑀 = V, 𝐸𝑀 = 𝐸 , the weight of an edge 𝑒 ∈ 𝐸𝑀 equals to the benefit of e. Since E

is acyclic, 𝐺𝑀 contains no self-loops. Thus, each matching 𝑀 of 𝐺𝑀 is a legitimate capacitated

slugging plan and the sum of the weight of edges in 𝑀 equals to the benefit of the slugging plan.

Since the maximum weighted matching problem is solvable in polynomial time [45], we can also

solve the 1t1CSP in polynomial time using the same algorithm. The running time of this algorithm

is 𝑂(|𝑉||𝐸|log |𝑉|). □

4.3.4Delay-Bounded Slugging

In addition to the vehicle capacity constraint, it is also natural to constrain SP by a bounded travel

time delay. As mentioned in Sec 4.3.1, in the pre-processing stage (that uses a map), for each

mergeable pair (𝑇𝑖, 𝑇𝑗), we compute the travel time delay for the passenger trip 𝑇𝑖, denoted by Δ𝑖→𝑗.

Intuitively, Δ𝑖→𝑗 is the delay incurred by 𝑇𝑖 due to the fact that 𝑇𝑖 needs to walk to/from 𝑇𝑗 ’s

origin/destination, and possibly wait for 𝑇𝑗 to start. More specifically, the delay equals to the

difference: (the arrival time of 𝑇𝑖 when the passengers ride with 𝑇𝑗 (i.e. walk to/from

origin/destination of 𝑇𝑗)) – (the arrival time of 𝑇𝑖 when the passengers ride in their own vehicle

from their origin directly to their destination). Now we define the travel time delay representation

in the graph.

Definition 8 A slugging graph 𝐺 = (𝑉, 𝐸) is called delay-labelled if each edge (𝑇𝑖, 𝑇𝑗) ∈ 𝐸 is

associated with a label Δ𝑖→𝑗, which represents the travel time delay of 𝑇𝑖 with respect to (𝑇𝑖, 𝑇𝑗).

88

The travelers of each trip 𝑇𝑖 can specify a threshold which represents their maximum tolerable

travel time delay. We define the delay threshold representation in the graph.

Definition 9 A slugging graph 𝐺 = (𝑉, 𝐸) is called delay-threshold-labelled if each node 𝑇𝑖 ∈ 𝑉 is

associated with a label 𝑇𝑖. 𝛿, referred to as the delay threshold of node 𝑇𝑖.

The travel time delay constraint means that all edges outgoing of a node with a travel time delay

exceeding the delay threshold of the node need to be filtered out. Thus we define a delay-bounded-

slugging-graph that satisfies this property.

Definition 10 Given a slugging graph 𝐺 = (𝑉, 𝐸) that is delay-labeled and delay-threshold labeled,

the delay-bounded slugging graph 𝐺𝛿 = (𝑉, 𝐸𝛿), 𝐸𝛿 ⊆ 𝐸, is a subgraph of G where ∀(𝑇𝑖, 𝑇𝑗) ∈ 𝐸𝛿,

Δ𝑖→𝑗 ≤ 𝑇𝑖. 𝛿.

Now we introduce the delay-bounded slugging problem.

Problem 4.5 Given the delay-bounded slugging graph 𝐺𝛿 that is benefit-labeled, and a number

𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 of 𝐺𝛿 that is a slugging plan with a benefit of at least 𝑅.

4.3.5Delay Bounded and Capacitated Slugging and Its Heuristics

In practice, both the capacity constraint and the travel time delay threshold constraint are important.

Thus, we combine them to form the following problem.

Problem 4.6 Given the delay-bounded slugging graph 𝐺𝛿 = (𝑉, 𝐸𝛿) that is no-of-travelers-labeled,

no-of-available-seats-labeled, and benefit-labeled, and a number 𝑅 ∈ ℝ+, find a subgraph 𝐺𝑆 =

(𝑉, 𝐸𝑆), 𝐸𝑆 ⊆ 𝐸𝛿 that is a capacitated slugging plan with a benefit of at least 𝑅. We refer to this as

the Delay Bounded and Capacitated Slugging Problem (DBCSP).

Theorem 4.5 The DBCSP is NP-Complete.

Proof Obvious, since DBCSP is a generalization of CSP. □

89

Since the DBCSP is NP-Complete, we propose two greedy heuristics for the DBCSP, namely

Greedy-Benefit and Greedy-AVG-Benefit. Both heuristics work in an iterative way. That is, each

heuristic greedily chooses one driver trip 𝑇𝑑 based on certain criteria. Intuitively, Greedy-Benefit

chooses the driver trip that collects the maximum benefit of its incoming edges, and Greedy-AVG-

Benefit chooses the driver trip that collects the maximum average benefit of its incoming edges.

To compute the maximum benefit and the maximum average benefit, we need to solve an

instance of the 0/1 knapsack problem for each driver trip. Each driver trip 𝑇𝑑 and all its passenger

trips 𝑇𝑝 where (𝑇𝑝, 𝑇𝑑) ∈ 𝐸𝛿, form an instance of the 0/1 knapsack problem (see proof of Theorem

2). That is, trip 𝑇𝑑 is considered the knapsack with a capacity equals to 𝑇𝑑 . 𝑐 and each 𝑇𝑝 is

considered an item with a value equal to 𝐵(𝑇𝑝, 𝑇𝑑) and a size equal to 𝑇𝑝. 𝑠.

Since the 0/1 knapsack program is NP-complete, we employ an approximation algorithm called

Efficiency Greedy (EG) approximation algorithm [46]. The EG algorithm outputs the larger

between the following two numbers: (i) the total value when packing items into the knapsack in

non-increasing order of their efficiencies (i.e. the ratio of value to size); (ii) the value of the single

item which is most valuable among all items. It is known that the EG algorithm has a worst-case

performance bound of 2 [46].

Intuitively, at each iteration the Greedy-Benefit heuristic applies the EG algorithm to each driver

trip, and selects the driver trip with the maximum benefit computed by EG. This trip and its

passengers are eliminated from the slugging graph, and then the next iteration is started. The

Greedy-AVG-Benefit is identical, except that the driver trip selected is the one with the (maximum

benefit / number of passenger trips selected by EG).

90

Figure 28 Heuristics for the DBCSP

More precisely, denote by 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) the result of the instance of the 0/1 knapsack program

formed for trip 𝑇𝑑 output by the EG algorithm. Denote by 𝑛 the number of passenger trips that are

selected for driver trip 𝑇𝑑 by the EG algorithm. Then, in each iteration, the Greedy-Benefit and

Greedy-AVG-Benefit heuristic select the driver trip with the maximum 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) and 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑)/

𝑛, respectively. Once a driver trip 𝑇𝑑 is picked, the set of passenger trips that are merged into 𝑇𝑑

are also determined by the EG algorithm. Next the delay-bounded slugging graph is updated by

removing the nodes of the driver and its passengers, and the edges that touch upon them. This

update completes an iteration, and a new iteration then starts. The algorithm terminates when the

slugging graph becomes empty.

Figure 28 summarizes the algorithm for the proposed heuristics. Lines 6~7 calculates 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑)

for every driver trip 𝑇𝑑 in an iteration. Since there are 𝑂(|𝑉|) driver trips in an iteration, and the

computation of 𝐵𝑎𝑝𝑝𝑟(𝑇𝑑) for each 𝑇𝑑 by the EG algorithm runs in 𝑂(|𝑉|𝑙𝑜𝑔|𝑉|), therefore, the

91

selection of the driver trip in an iteration runs in 𝑂(|𝑉|2log |𝑉|). The updating process takes 𝑂(|𝑉|)

for each selected trip and takes 𝑂(|𝑉|2) in total, as there are at most |𝑉| trips selected in an iteration.

Since there are 𝑂(|𝑉|) iterations, the time complexity of the greedy heuristics is 𝑂(|𝑉|3log |𝑉|).

To illustrate the Greedy-Benefit and Greedy-AVG-Benefit heuristics, please consider the delay-

bounded slugging graph shown in Figure 29 (a). The number on each edge represents its benefit.

Assume that the capacity and the size of each node is 4 and 1, respectively. The optimal slugging

plan for this simple example is shown in Figure 29 (b), with a benefit of 38.

Figure 29 An example of delay-bounded slugging graph

Now we generate a slugging plan using the greedy-based heuristics. Let us first consider the

Greedy-Benefit heuristic. In the first iteration, 𝑇3 is chosen as the driver trip because the maximum

benefit that it can collect from its incoming edges is the largest among all driver trips. Then the

graph is updated by deleting all edges associating with any of 𝑇1, 𝑇2, 𝑇3. In the next iteration 𝑇6 is

chosen as the driver trip. The graph then updates again and becomes empty of edges. The edges

selected in each step are shown in Figure 30 and the benefit of the resulting slugging plan is 33.

Figure 30 Running example of the Greedy-Benefit heuristic

T1

T2
T3

T4

T5

T6

10
6

10

7

6

T7 11

T1

T2
T3

T4

T5

T6

10

10

7

T7 11

T1

T2
T3

10

10 T4

T5

T67

6

 (a) a delay-bounded slugging graph (b) the corresponding optimal slugging plan

(a) edges selected in 1st step (b) edges selected in 2nd step

92

In contrast, Greedy-AVG-Benefit chooses 𝑇5 in the first iteration because 𝑇5 has the largest

average benefit of passenger trips. Then 𝑇3 is selected in the second iteration and 𝑇6 is selected in

the third iteration. Figure 32 shows edges selected in each iteration and the final slugging plan has

a total benefit of 38.

Figure 31 Running example of Greedy-AVG-Benefit heuristic

For the example shown in Figure 31, Greedy-AVG-Benefit is coincidentally optimal. But the

greedy heuristics cannot always guarantee the optimal solution. For example, neither heuristics is

optimal for the example shown in Figure 32, assuming that the size of each node is 1.

Figure 32 An example for which heuristics are sub-optimal

4.3.6Dynamic Slugging

The basic and constrained slugging problems that we have discussed are presented in a static

context where all trips are known before the calculation of the slugging plan and the slugging plan

is only calculated once. In this section, we discuss how to deal with the slugging problem in a

dynamic context where the computation of a slugging plan is performed many times on the fly as

the announcements of trips are continuously arriving.

Figure 33 illustrates an instance of the dynamic slugging problem that involves five trips. The

announcement of each trip is depicted by a circle and the start time of each trip is depicted by a

diamond. On the one hand, it is necessary that there exists a temporal gap between the

T5T7 11 T1

T2
T3

10

10

T4 T67

T2 10T1 6 T4T3 6

(a) 1st step (b) 2nd step (c) 3rd step

93

announcement and the start time for each trip; otherwise (i.e. if trips start at the same time when

they are announced) there will be no room for ridesharing. On the other hand, such a temporal gap

may be small (a few minutes) since these trips are dynamically generated. In the extreme case

where these temporal gaps are huge (e.g. hours or even a day), the dynamic problem then

degenerates to the static problem. Here we assume that the temporal gap between the announcement

and trip start time is the same for all trips and denote this number by 𝐺. In other words, each trip is

announced 𝐺 time units before its start-time.

Figure 33 The dynamic slugging problem

As in the static case, the objective of the dynamic problem is maximizing the total benefit. In the

dynamic slugging problem, the slugging plan is computed and executed every 𝑓 seconds as

depicted by the vertical lines in Figure 33, where 𝑓 is referred to as the decision interval. Now we

describe how the overall benefit of ridesharing is calculated for the dynamic problem. Once a trip

is announced, it remains in the input set of the slugging plan computation until either of the

following events happens: (i) the trip is included in the slugging plan as a result of a computation;

(ii) the start time of the trip is reached (i.e. the trip starts without any ridesharing). The aggregate

slugging plan (of all trips) is simply the union of all slugging plans calculated in each decision time

point, and thus the overall benefit is computed based on the aggregate plan.

Table 6 An example of the dynamic slugging problem

 The Set of Trips As the

Input

Calculated Slugging plan Benefit

First computation {𝑇1, 𝑇2, 𝑇3} {(𝑇1, 𝑇2)} 1

Trip announcement Trip start time
time

T1

T2

T3

T4

T5

computation computation

94

Second

computation
{𝑇3, 𝑇4, 𝑇5} {(𝑇3, 𝑇5), (𝑇4, 𝑇5) } 2

Aggregate {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5} {(𝑇1, 𝑇2), (𝑇3, 𝑇5)

, (𝑇4, 𝑇5) }

3

Table 6 gives a running example of how the benefit is computed in the dynamic context for the

example given in Figure 33. Suppose that the first computation outputs a slugging plan {(𝑇1, 𝑇2)}.

Since 𝑇3 is not included in the plan and it has not reach its start time, 𝑇3 remains in the input set.

Suppose that the second slugging plan computation yields {(𝑇3, 𝑇5), (𝑇4, 𝑇5) } . Therefore, the

aggregate slugging plan is {(𝑇1, 𝑇2), (𝑇3, 𝑇5), (𝑇4, 𝑇5) } and the aggregate benefit is 3, assuming that

the benefit of each merging is 1.

The value of 𝑓 should be tuned carefully in order to maximize the benefit of ridesharing. We

evaluate the optimal value of 𝑓 experimentally and present the results in the next section.

4.4Evaluation

4.4.1Setting

We conducted experiments using a taxi GPS trajectory data set [70]. The dataset contains real

traces from more than five thousand taxis in Shanghai during a single day. These taxis have been

equipped with GPS receivers (one for each). The GPS receivers periodically report their current

states to a data centre via GPRS links. Each record has a format <TAXI_ID, TIMESTAMP,

LONGITUDE, LATITUDE, OCCUPIED>. Intuitively, each sequence of consecutive records where

the OCCUPIED field constantly equals to 1 is an occupied trip. Figure 34 shows a TAXI_ID and

TIMESTAMP ordered snippet of a GPS trajectory data file and the blue rectangle represents an

occupied trip.

95

Figure 34 A snippet of taxi trajectory data that defines a trip

For our experiments, each such occupied trip defines a trip 𝑇 as follows: the time stamp and the

GPS point of the first record in the sequence defines the start time and origin of 𝑇, respectively; the

time stamp and the GPS point of the last record in the sequence defines the end time and destination

of 𝑇, respectively; the travel time of 𝑇 then equals to the start time minus the end time; the travel

distance is the road network distance between the origin and destination as obtained via the Google

Map API. Out of 60 thousand occupied trips extracted from the data set, we selected 39 thousand

trips which last over 5 minutes. This constituted our experimental pool of trips. The average travel

time and travel distance of these trips is 12.3 minutes and 6.3 kilometres, respectively.

We evaluate the DBCSP in all experiments. The benefit of ridesharing is measured by the saving

in vehicle travel distance. To compute the edge set of the slugging graph, we assume that all

travelers walk at the same speed, denoted by 𝑊, and always walk along the shortest road path

between two locations.

Table 7 Parameter setting in the experiments

Notation Definition Default Value

𝑊 travelers’ walking speed 5 km/h

𝛿 travel time delay threshold 20 minute

𝐶 vehicle capacity 3

𝐺 temporal gap between the announcement and trip

start time

15 minute

In all the experiments, we assume that each trip is associated with only one traveler and she is

willing to be either a passenger or driver in the slugging plan. For simplicity, we assume that all

96

trips have the same travel time delay threshold, denoted by 𝛿; and all cars have the same number

of seats, denoted by 𝐶. Table 7 lists default values for the parameters used in our experiments.

4.4.2Upper Bound on the DBCSP

Figure 35 An upper bound of the DBCSP

What is the maximum benefit that can be obtained by slugging? To answer this question, we

obtain an upper bound on the benefit of a slugging plan for the DBCSP by relaxing either one of

the two constraints imposed by the definition of slugging plan (see Def. 2). Relaxing Condition (ii)

and the capacity constraint, we get an upper bound, denoted by 𝐵𝑢𝑝𝑝
1 , by merging each passenger

trip 𝑇𝑖 into some driver trip 𝑇𝑗 regardless whether or not 𝑇𝑗 has been merged into some other trip

and regardless whether or not 𝑇𝑗 has any available seat left. Relaxing Condition (i), we get another

upper bound, denoted by 𝐵𝑢𝑝𝑝
2 , by making each driver trip 𝑇𝑑 collect the maximum benefit

regardless whether or not any its passenger trip 𝑇𝑝 has been merged into any driver trip other than

𝑇𝑑 . The smaller value of 𝐵𝑢𝑝𝑝
1 and 𝐵𝑢𝑝𝑝

2 is used as the final upper bound. Figure 35 shows the

97

algorithm that outputs this bound. It is easy to see that the time complexity of the algorithm is

𝑂(|𝑉|2).

4.4.3DBCSP With Varying Travel Delay

First we evaluate the proposed greedy-based heuristics by fixing the vehicle capacity and varying

the travel time delay threshold. Experiments are performed for various thresholds of travel time

delay 𝛿 ∈ [5, 20] minutes with an increment of 5 minutes.

Figure 36 DBCSP with varying delay thresholds

As Figure 36 shows, when the travel time delay threshold is large, both the Greedy-Benefit and

the Greedy-AVG-Benefit perform consistently close to the upper bound. When 𝛿 = 20, these

heuristics have a 59% saving while the upper bound is 70%. Given the average distance of these

trips is 6.3 kilometers and the size of our data set is 39 thousand, the 59% saving in vehicle travel

distance is 144, 963 kilometers which means the reduction of over 4.5 thousand gallons of gasoline

and 71 tons of carbon dioxide emission.

When the travel time delay threshold 𝛿 is small, there is no significant difference between the

greedy-based heuristics and the upper bound. This is because, with a small 𝛿 , slugging

opportunities are so rare that the slugging graph is extremely sparse. As a result, the graph admits

very few possible slugging plans.

5 10 15 20
0%

10%

20%

30%

40%

50%

60%

70%

S
av

in
g

in
 V

eh
ic

le
 T

ra
ve

l D
is

ta
nc

e

Travel Time Delay Threshold (minutes)

 Upper-Bound

 Greedy-Benefit

 Greedy-AVG-Benefit

98

Figure 37 Visualization of a delay-bounded slugging graph

For example, Figure 37 (a) and (b) visualize the delay-bounded slugging graph of a subset of trips

when 𝛿 is 20 and 5 minutes, respectively. The darker the node’s color is, the larger the node’s in-

degree (i.e. the number of incoming edges) is. When 𝛿 is 20 minutes, the graph is weakly connected.

When 𝛿 is 5 minutes, most edges disappear and the graph is scattered into many disconnected

components, each of which comprises of at most four nodes. In this case, it is clear that different

algorithms will make little difference in the resulting slugging plan.

4.4.4DBCSP with Varying Vehicle Capacity

Figure 38 DBCSP with varying vehicle capacities

In this experiment, the vehicle capacity varies, i.e. 𝐶 ∈ [2, 5] while the travel time delay

threshold is fixed. Figure 38 shows the performance of different heuristics. The result is consistent

2 3 4 5

55%

60%

65%

70%

S
av

in
g

in
 V

eh
ic

le
 T

ra
ve

l D
is

ta
nc

e

Vehicle Capacity C

 Upper-Bound

 Greedy-Benefit

 Greedy-AVG-Benefit

(a) 𝛿= 20 minutes (b) 𝛿 = 5 minutes

99

to that of Figure 36 , i.e., the greedy heuristics perform relatively close to the upper bound

consistently. In addition, it is shown that the saving percentage saturates as the capacity increases,

given the travel time delay is bounded. This is because the average number of incoming edges for

each driver trip in the input graph is small, which can also be observed from Figure 37. Even when

𝛿 = 20 minutes, as shown in Figure 37 (a), most driver trips have only one or two passenger trips

that can be merged into them, and the average number of passenger trips for a driver trip is 1.38.

4.4.5Dynamic DBCSP

In this experiment, we evaluate the Greedy-Benefit heuristic in a dynamic context. 𝐶 is set to be

3 and 𝛿 is set to be 15 minutes. We set 𝑓 to be smaller than 𝐺, otherwise many trips will start

without encountering any computation of a slugging plan.

Since 𝐺 is 15 minutes, we set the range of 𝑓 to [10, 880] second with an increment of 30 seconds.

Figure 39 (a) shows a clear trend of decrease in benefit as the value of 𝑓 increases. But the figure

also clearly shows that the benefit fluctuates locally. To see the fluctuation more clearly, we further

fine tune the value of 𝑓 within a relative small range. Figure 39 (b) shows the benefit fluctuating as

decision interval 𝑓 increase from 10 seconds to 100 seconds with an increment of 10 seconds. The

saving rate reaches the maximum when 𝑓 equals to 40 seconds.

Figure 39 Impact of the decision interval

0 150 300 450 600 750 900
14%

16%

18%

20%

22%

24%

26%

28%

S
a

v
in

g
 i
n

 V
e

h
ic

le
 T

ra
v
e

l
D

is
ta

n
c
e

Decision Interval f (seconds)

 Greedy-Benefit

0 20 40 60 80 100
25.8%

26.0%

26.2%

26.4%

26.6%

S
a

v
in

g
 i
n

 V
e

h
ic

le
 T

ra
v
e

l
D

is
ta

n
c
e

Decision Interval f (seconds)

 Greedy-Benefit

(a) the decrease trending (b) fine tune of 𝑓

100

Figure 39 can be explained by two conflicting factors. On the one hand, as 𝑓 increases, the

computation of slugging plans becomes less frequent, so travelers of passenger trips cannot start

walking until the time of the next computation. Therefore, the wasted time costs many ridesharing

opportunities and thus decreases the benefit. On the other hand, as 𝑓 increases, the input pool of

trips for each computation of the slugging plan becomes larger and thus the benefit may increase.

Figure 39 (a) suggests that the first factor wins the tug-of-war, so we have an overall decreasing

trend with local fluctuations. It is also revealed from Figure 39 that the saving rate at its peak (i.e.

𝑓=40 seconds) is about 26.6%. In contrast, the saving rate of the corresponding static problem with

the same capacity and delay parameters (i.e. 𝐶=3 and 𝛿 = 15 minutes) is 33%.

4.5Discussion

We have analysed slugging, an increasingly popular form of ridesharing, probably due to its

simplicity. Specifically, we have formalized and studied the slugging problem. For the

unconstrained slugging problem, we have proposed a quadratic algorithm to solve it optimally. We

prove the NP-completeness of its constrained variants. For the constrained variant, we proposed

heuristics and evaluated them on a data set consisting of tens of thousands of real trajectories of

taxi cabs in Shanghai. The heuristics achieved near-optimal travel distance savings. The

experimental results suggest that the saving in travel distance can reach as much as 59% whereas

the optimal slugging plan achieves at most 70% savings. Given the size of our data set is 39K and

the average distance of trips in the data set is 6.3 kilometres, the saving equals to 144,963 kilometres,

which means the reduction of over 4.5 thousand gallons of gasoline and 71 tons of carbon dioxide

emission. In addition, for the dynamic slugging problem, we evaluated the impact of the decision

interval, i.e. how frequently to run the slugging algorithm, on the overall benefit.

In the future, we are going to refine this work towards a working system by considering and

modelling other practical individual preferences such as riders’ social preferences [50]. For the

dynamic slugging problem, we are going to improve the plan calculation algorithm by considering

101

a probabilistic model which looks ahead, i.e. predicts the future announcement of trips. The

objective function here optimized the overall benefit. It is possible to consider individual trips and

minimize the walking distance and/or travel time delay of an average passenger trip. These

extensions will be considered in future work.

102

Chapter 5

Volunteer Transportation Information System

5.1 Introduction

User Generated Content (UGC), i.e., users voluntarily providing information, has the promise

to revolutionize information in transportation. Traditionally, information on traffic conditions

(congestion, incidents and so on) has been available from road sensors such as inductive loop

detectors that are embedded in the pavement of highways or CCTV’s above roads or in sensor

systems that are increasingly being deployed on transit vehicles such as trains and buses. The

number of sensors in a car has also rapidly increased, beyond traditional in-vehicle sensors, to those

that give automobiles situational awareness.

With the proliferation of smartphones, cell phones and other mobile devices, transportation users

have a unique opportunity to become a part of the transportation sensor network. Such UGC may

arise from two types of sensing activities: 1) opportunistic sensing where, for example, individual

drivers, pedestrians, transit users or bicyclists passively volunteer their location and time at a

location by means of sensors in mobile devices that they are carrying; or 2) participatory sensing,

where information is actively volunteered, for example, by entering information by text or voice,

about events such as incidents or delays that they have encountered while traveling.

Either way, such sensing systems provide the opportunity to generate unique content about the

state of the transportation system. This is important because relevant information is often generated

by regular travelers in a mobile environment. Mobile social networks, where individuals with

similar interests share information with one another using the mobile phone, have been studied in

the literature (see e.g., [58, 82]), mobile social networks targeted to transportation (which we will

103

call mobile communities for transportation) have been the subject of little to no attention to date.

Examples of mobile communities for transportation include the following:

1) Mobile communities for travel information: In such communities, participants publish and

subscribe to information on travel congestion, delays, weather effects, and incidents such

as accidents, public transportation delays, detours, service disruptions due to repair and

maintenance work in train and bus stations and stops, and other factors.

2) Mobile communities integrating health and fitness concerns with transportation: In such

communities, participants may share with subscribers information on opportunities to bike

instead of drive, or to alight from a bus a few stops away in a particular area so that they

can walk to their final destination, and also connect a user to biking or walking partners in

such situations so that daily fitness goals can be met within a community environment.

3) Mobile communities for safe mobility: A major deterrent to non-motorized or public

transportation use in urban areas is personal safety concerns. This type of mobile

community for transportation may be targeted to publishing information on safe use of

multimodal transportation systems, ranging from sharing safe routes between two points

to bike or walk or to find a walking buddy in real-time from a transit station or stop. Parents

in a neighborhood may be a part of a mobile social network to share information on the

availability of an adult to walk with a group of school-children from home to a public

transportation station in a high-crime neighborhood or to a neighborhood park, when

crossing unsafe streets is required along the way.

4) Mobile communities for shared resource transportation: Mobile communities for

transportation may also form around demand-responsive transportation systems such as

dynamic ride-sharing or even station car sharing (where cars for hire may be used from a

transit station to an employment location that is otherwise not accessible). Opportunities

may be available to share information on bike-sharing and car-sharing as well.

104

We propose to study several social and technical issues associated with mobile transportation

communities, with the ultimate goal of improved system design. As such systems grow in

complexity, interconnectedness, heterogeneous users with myriad socio-demographic and

geographic distribution, we may increasingly face unexpected emergent behaviors that are not

easily predictable from the behavior of individual publishers/subscribers. As proof of concept, we

will develop a technology, called the Volunteered Transportation Information System (VTIS),

which will serve as a basis to understand the social and technical issues to be investigated. The

proposal lays out the major social and technical issues to be investigated and the elements of the

VTIS to be used as part of the study.

The social aspects of building and sustaining such communities pose several research questions.

How can users be recruited? How would they learn about the system, how to use it, and what its

benefits would be? How would interactions among agents evolve over time? Would a certain level

of users be necessary before the benefits of the systems become evident? Are there unanticipated

consequences such as the breakdown of such systems during large-scale emergencies or evacuation

situations? What are the fundamental limits, barriers, and saturation levels that may set in with

“information overload” with these systems? These questions point to the fact that studying mobile

communities for transportation may lead to insights about emergent intelligence as a property of a

group of agents rather than of individual constituent agents, whereby intelligent behavior emerges

from the interaction between agents.

A major distinguishing feature of mobile communities for transportation are the speeds at which

publications and subscriptions need to work, given the speeds at which transportation systems work.

Observe that much of the information may decay to the extent that it is no longer valid, useful or

reliable. Speeds also have implications on Human-Computer Interaction aspects of the technologies

supporting such mobility communities since the driving or travel environment may pose difficulties

to publish information, compared to if the person is inside a building or in a stationary situation.

105

Observe however, that publications may be entered by speaking into smartphones equipped with

speech-to-text software such as Siri.

Concerns of trust management take on a heightened tone, as the prospects of personal harm and

safety risks can be substantial, if the information is wrong or malicious. Questions of incentives

can also be unique in such situations because the benefit to the subscriber is not always obvious

(for example, what would motivate a person to report a delay, which would benefit others and not

oneself, since the person is already stuck in traffic)?

The approach taken in this proposal, to use mobile communities for transportation as a case study

to study socially intelligent computing has three benefits. First, research into the social and

technical aspects of such communities advances the state of research in online and mobile

communities and identifies how emergent behaviors, interactions among agents, reaching critical

mass, and related properties, may be able to inform the design of future systems. Second, research

into interactions among users and with the technologies supporting mobile transportation

communities will advance mobile technologies, especially where higher speeds, distractions, and

issues of user cognition in complex real-world environments are concerned. Third, fundamental

research into user generated content by mobile transportation communities will lead to

computationally efficient methods to retrieve useful intelligence from unprecedented amounts of

greatly heterogeneous information streams.

 Social media is among one of today’s most powerful methods of rapidly spreading news and

key information to a large population ([54]). In fact, half of all U.S. adults are now on social

networks such as Facebook and Twitter. This implies a tremendous potential reachability when

using social media to share information. In this project we will build our proof concept prototype

(i.e., VTIS) upon existing social media. VTIS is dedicated for the sharing of real-time traveler

information such as traffic conditions, accidents, road maintenance, parking spaces availability,

special events, weather, etc. VTIS will exploit the capability of social media to scale to millions of

users and constant streams of publications/subscriptions. This scalability would be expensive to

106

reach if the system was to be built from scratch. Yet there are several research issues that need to

be solved when using social media to share traveler information, which we will study in this project.

These research issues include:

1) Semantic structuring of social networks. Find proper mapping between the organization

of social networks and the spatio-temporal domains that are of interest to travelers.

2) Trust management. How to distinguish between truthful and false publications? The trust

management problem remains an open issue for Intelligent Transportation System (ITS)

applications as well as traditional on-line e-business applications such as eBay and Amazon.

We will investigate and review existing work on dealing with data trust issues and adapt

and apply available techniques to VTIS.

3) Publication Ranking. Travelers are presumably on the move all the time. For the sake of

safety, it is desirable to minimize the interactions required between the traveler and VTIS.

One way to minimize interactions is to rank publications such that the most relevant ones

are presented to a user for viewing, commenting, or editing.

4) Incentive Mechanisms. We will study incentive mechanisms to stimulate users to

participate in the social networks.

In general, we believe that social media has potential to serve as a platform for building mobile

collaborative communities. In addition to transportation, mobile collaborative communities can be

formed in other application domains. For example, the customers in a shopping center may form a

community to share coupon information, or the attendees in a conference may form a community

to find the match making of expertise and interests, and so on. The technologies that we will

develop in this project, including building, sustaining, and studying the evolving growth dynamics

and understanding emergent intelligence in mobile communities for transportation will lend

approaches to general mobile collaborative communities.

107

5.2 Related Work

5.2.1 Publish/Subscribe

As a communication paradigm, publish/subscribe mode has been studied well in both mobile

P2P environment and Internet-based environment. [81] proposes a publish/subscribe

implementation for MANETs. In the implementation, subscriptions are only deployed locally due

to the fact that the paths utilized by the subscription forwarding strategy in server overlay networks

quickly become stale in a mobile environment. When receiving an event from a neighbor, a mobile

node matches the event to its own subscriptions and broadcasts the event, as long as it is still valid

given the current location and time. [56, 98] propose using a tree structure to implement

publish/subscribe in MANETs. But their approaches assume that there is only one publisher in the

network. Triantafillou and Aekaterinidis [108] present a different approach to support P2P

applications via building a pub/sub middleware over a structured P2P network such as Chord [106].

But that solution is restricted to an environment of static peers.

The above references all implement publish/subscribe in a fully distributed manner.

Publish/Subscribe in VTI exploits Twitter as the intermediate broker between publishers and

subscribers and thus more resembles existing Internet-based publish/subscribe applications, such

as RSS, Atom and systems introduced in [43, 103, 128], where all of them put a server between

publishers and subscribers. Existing Internet-based publish/subscribe applications generally fall

into two categories, namely topic based and content based [57]. In topic based systems, subscribers

express interests by simply joining a group defined by a central subject. Whereas content based

systems provide much more flexibility in expressing subscribers’ interests by allowing them to

specify predicates over a set of attributes. As a result, arbitrary queries over the events content can

be easily posed by subscribers. However, VTI’s publish/subscribe implementation is tightly

integrated with Twitter and different from either approach in Internet-based publish/subscribe

applications.

108

5.2.2 Toponym Recognition and Information Extraction

The VTI project is relevant to the field of information extraction, especially to literature on

toponym recognition. Toponym recognition is necessary for location based services such as VTI

where input data, e.g. publications, may be in an unstructed format. There have been a couple of

works [67, 68, 69] on recognizing and resolving toponyms in text.

5.2.3 Route Planer

Route planners are relevant to the project because they provide services which allow subscribers

to define routes. Route planners available today generally falls into two categories: form-based and

map-based. Many transportation agencies [1, 3, 7] provide web sites that allow users to plan a trip

using the public transportation system. They tend to allow the specification of time constraints,

mode constraints (some include information for the auto network as well), preferences for walking

distance, and how the trip should be optimized (e.g., duration vs. number of transfers). If a valid

trip can be constructed the user is presented with an itinerary for its execution. A wide range of

algorithms [15, 23, 72] supporting these route queries have been developed to account for the

problems with modal transfers, schedules, and cost computation.

The second common class of planning tools has map-based graphical user interfaces [22, 85].

Users may enter their origin and destination via either a form or by clicking points on a map. Unlike

most form-based planners, some map-based sites allow for the insertion of multiple stops along the

trip and may include some real-time traffic information.

5.2.4 Data Trust in Intelligent Transportation System and Internet

There have been a few works on data trust management in ITS. [29, 38] describe the opinion

piggybacking approach, i.e. forwarding peers attaching their trust opinions on the forwarded

message, to allow peers to evaluate the trustworthiness of messages via aggregating trustworthiness

values provided by previous forwarding peers. Similar to the piggybacking approach, [111]

validates the message by considering other peers’ opinions on the message. However, here a peer

109

itself chooses the opinion providers rather than accepting opinions from the forwarding peers.

Despite the subtle differences in technique details, these three papers share the high level approach,

i.e. validating data based on reputation systems. In contrast, [95] exploit data aggregation to

validate received messages. All these existing works consider the data trust issue in a peer-to-peer

based environment. In other words, they assume a pure distributed environment with no central

server exists and peers have direct interactions between themselves.

In contrast, the VTI application has a client-server architecture where the VTI application serves

as the brokers between all travelers. From this perspective, data trust problem in the VTI application

has a closer nature to that of applications built around Internet. Existing techniques proposed in

centralized applications such as the beta reputation system [60], eBay [97] and Amazon [49] are

supposed to be adapted and applied to the VTI application.

5.2.5 Reports Prioritizing

Publication ranking is relevant to the existing work on prioritizing reports for mobile P2P query

processing. In [99] the rank of a report is a weighted sum of its popularity, reliability, and size. The

paper does not discuss how the weights are determined. In [127] reports are ranked such that the

number of replicas of each report is proportional to the square root of its access frequency.

According to [32], such a distribution of replicas has the optimal replication performance in

minimizing the query cost. In [85] the rank of a report is computed based on its popularity, age,

and distance to its producer. In [34, 89, 126] reports are ranked based on an abstract utility function

which is to be defined by specific applications.

5.2.6 Incentive Mechanism

Motivation behind volunteer participations in collaborative Web-based efforts such as Open

Street Map, Wikipedia, etc., has been studied in the field of Geographic Information System (GIS),

and citizen science. Specifically, Coleman introduces the concept of Volunteered Geographic

Information (VGI), GIS systems built by volunteer contributors, and analyzes the motivations of

110

these contributors. [44] study what drives people to volunteer contribute and edit contents on

Wikipedia.

Incentive mechanisms have also been studied in the context of mobile ad-hoc networks [24, 131].

These works propose stimulation mechanism for mobile nodes to cooperate in forwarding

information to other nodes. Incentive mechanisms have also been studied for static peer-to-peer

networks. In this case the static nature of the problem is often relied upon heavily, for example, by

“punishing” a user that is found non-cooperative over time.

There have been many efforts in providing incentives done by social networks and location-

based services. For example, many applications such as Facebook, Google Latitude, Yelp , etc.

provides the so-called “check-in” feature which rewards virtual points to users if they have visited

some place of interest recently. These virtual points are often used to exchange or earn “honors” or

“titles” defined by the application, e.g. badges and mayorship in Foursquare, moods in Waze [8],

etc.

5.3 Architecture

The publish/subscribe (pub/sub) system consists of a set U of users and a set C of accounts.

Each account c is associated with a pair (e, t) where t is a period of time and e is an entity such as

a bus route, a train station, a road link, an intersection, etc. t is referred to as the temporal

coverage of c and e is referred to as the spatial coverage of c. From time to time, each user may

send publications to accounts where each publication describes an event that the user observes.

An account only accepts publications during its temporal coverage. Each publication pertains to

one or more entities and is always sent to the accounts that cover these entities. For example, a

publication may report a car accident and thus it is sent to the account that covers the road link

where the car accident is observed. For another example, a publication may report the delay of a

subway line and thus it is sent to the account that covers the subway line. Each user may

111

subscribe to and unsubscribe to accounts. A publication that is sent to an account c is

disseminated to all the users that are currently subscribed to c.

The temporal coverage is useful when the account is supposed to be active for a certain period

of time. For example, we may create a “Halsted, rush-hour” account that is dedicated for publishing

the traffic condition of Halsted during rush hours. In general, each account corresponds to a “cube”

in the spatio-temporal space, as illustrated in Figure 40.

Figure 40 An example of spatio-temporal account

Building the pub/sub system from scratch is difficult and tremendously resource consuming,

particularly because the system has to scale to millions of users and accounts. On the other hand,

existing social media such as Twitter is already well handling this size of publish/subscribe

problem. In this project we will take the advantage of the capability of existing social media and

build mobile collaborative communities upon it.

5.4 Implementation

In this section we discuss how we plan to build the VTIS prototype. VTIS is a specialized

pub/sub system dedicated for sharing of real-time traveler information among travelers.

9:00am

9:30am
account cube

spatio-coverage

temporal-coverage

112

5.4.1 Integration with Twitter

As indicated earlier, we intend to exploit the existing social media as the hosting environment

for VTIS. Among all the existing popular social media, we have determined that Twitter is the most

promising candidate for our purpose. Twitter is an online social networking and micro-

blogging service that enables its users to send and read short text-based short posts. An account,

i.e. a user, of Twitter can be a person, a group, a system, an application or any meaningful

abstraction. Each account is identified by a unique name. Each account A can follow other accounts

which are called the followings of A. A can also be followed by other accounts, which are called

the followers of A. Accounts communicate with each other via tweets, each of which is a short

unstructured text no longer than 140 characters. Each account creates a new tweet by updating its

status. Twitter is designed as a broadcast medium. Thus each tweet is visible to and can be

retweeted, i.e. reposted as a status update, by any other account. Account-To-Account

communication is also supported by Twitter via Direct Message (DM) and @-tweets. DM allows

one account to send messages to another account via a private channel. In other words, a DM is

only visible to its sender and receiver accounts. @-tweets are tweets which include a leading “@”

symbol to the intended account (e.g. @VTIS). @-tweets allow an account to inform a tweet to

specified accounts directly. Unlike DM, @-tweets are public, i.e. remain visible to all other

accounts.

We consider setting up an array of accounts for VTIS on Twitter, which are referred as VTIS-

accounts. The name for each VTIS-account is textually related to VTIS, e.g. having VTIS as the

common prefix. Regular Twitter accounts are able to follow any particular VTIS-account. By

following one or multiple VTIS-accounts, regular Twitter accounts essentially make a subscription.

For instance, suppose that we have a VTIS-account named VTIS_Bus12_East, any account

following VTIS_Bus12_East will receive information related to CTA Bus Route 12, east bound,

which is equivalent to the effect possibly achieved by explicitly subscribing to Bus 12 information.

113

In addition, the subscription by following VTIS-accounts provides the desirable broadcast delivery

in nature. That is to say, if a VTIS-account once posts a tweet, then each of its followers gets the

message. Symmetric to subscription, each regular account is able to publish to a most relevant

VTIS-account by mentioning it in the tweets. As it can be seen, a publish/subscribe mechanism is

outlined within the context of Twitter.

 Specifically, we plan to create the VTIS-accounts using the following scheme. For private

transport information, there is a one VTIS-account for each road link. A publication that reports a

private transport event E is automatically assigned to VTIS-account X, where E is located on the

road link represented by X. For example, publication “there is severe congestion on Halsted St.

from Roosevelt St. to 18th St.” will be assigned to VTIS accounts that correspond to Halsted St.

from Roosevelt Street to 18th Street. Unlike private traveler information, public traveler information

is usually queried or indexed by station rather than location. Thus, each station in any public

transport mode is mapped to a VTIS-account, e.g. VTIS_BlueLine_Jackson,

VTIS_Bus12_Rooselvet, etc. A publication that reports public transport information regarding a

station S is assigned to the VTIS-account that corresponds to S. For example, publication “north

exit of Jackson Station of Blue Line is closed” will be assigned to VTIS_BlueLine_Jackson. A

publication that reports public transport information regarding a vehicle V is assigned to VTIS-

accounts that correspond to stations through which V is going to pass in near future. For example,

publication “Blue line train is late at Jackson Station for 5 minutes” will be assigned to all VTIS-

accounts that correspond to the stations of Blue Line that are downstream relative to Jackson

Station. Figure 2 shows an example scenario in which traveler information is shared among

travelers via Twitter.

Each private or public route can be considered as a connected sequence of road links or transfer

stations respectively. Since each subscription is a route, we can match a subscription with

publications by associating the subscription to relevant VTIS-accounts. In other words, when a

subscriber submits a route R, VTIS will automatically make the subscriber follow the VTIS-

114

accounts that correspond to the road links or/and stations covered by the route R. By this means,

the subscriber can easily receive real-time traveler information pertaining to his/her defined route.

Figure 41 An example scenario for sharing traveler information in VTIS via Twitter

5.4.2 Publication and Subscription Format

In this subsection, we specify publication and subscription formats in the VTIS system. For the

purpose of publishing, natural language would be the ideal approach for most travelers due to

simplicity. We will exploit current available speech recognition software to convert spoken words

into text. Each publication describes certain specific type of traveler information. Each type of

traveler information usually has a frequently used bag of keywords which together describe the

essential detail constraints placed on the information. All types and their corresponding bag of

keywords (separated by comma) are listed in Table 8.

A traveler submits a
publication at Clinton
Station.

VTI vti

VTIS-account BlueLine_Clinton receives the
publication.

VTIS assigns this publication to the
corresponding VTIS-accounts. In this
case, all downstream stations will receive
the publication.

Each
green
area is
mapped
to a
VTIS-
account
on
Twitter.

A traveler who has
subscribed to
BlueLine_Clinton will
receive the publication.

115

Table 8 Event Types, their associated key words and examples

CATEGORY TYPE KEYWORDS

([] indicates

optional)

EXAMPLE INSTANCE EXAMPLE INSTANCE

INTERPRETED IN NATURAL

LANGUAGE

Public

Traveler

Information

DELAY [Mode],

Route,

Bound,

Stop,

[+]Delay

Bus, 12, East,

Morgan&Roosevelet, 10;

Train, Blue Line,

O’Hare, UIC&Halsted,

+5;

CTA bus Route 12 east bound is 10

mintues late at

Morgan&Roosevelet;

Blue Line, O’Hare bound is already

5 minutes late at UIC stop and still

does not appear

CLOSIN

G

Stop,

[End_Time]

Blue Line UIC-Halsted,

Today 3 pm;

Blue Line UIC stop is closed until

today 3pm.

EMERG

ENCY

[Mode],

Route,

[Bound],

Location,

Description

Bus, 12, East, Morgan, a

passenger blacked out;

Train, Blue Line,

O’Hare, Jackson, robbery

crime

A passenger blacked out on Bus

Route 12 east bound at Morgan

street;

A robbery crime happens on Blue

Line to O’Hare at Jackson

Private

Traveler

Information

ACCIDE

NT

Location,

Description

I94 Exit 23, a rear-end

car accident

a rear-end car accident happens at

I94 Exit 23

CONST

RUCTIO

N

Road_Segment,

[End_Time]

Lakeshore Drive

(Washington to

Chicago), 11/11/11;

Road maintenance on Lakeshore

Drive from Washington to Chicago

until 11/11/11

CONGE

STION

Road_Segment,

Severe/Heavy/M

oderate

Lakeshore Drive

(Washington to

Chicago),

Moderate

Traffic on Lakeshore Drive from

Washington to Chicago experiences

a moderate congestion

POTHO

LE

Road_Segment,

Severe/Heavy/M

oderate

Taylor between Halsted

and Ashland, Severe

Taylor St. between Halsted and

Ashland has a severe pothole

problem.

LIGHT Intersection Taylor&Morgan Traffic lights at intersection

Taylor&Morgan is down

EVENT Event_Name,

[Description],

Location,

[Duration]

Cubs game, Baseball

game, Cellular Field, 7-

11 pm tonight

There is a Cubs baseball game at

Cellular Field tonight 7-11 pm.

WEATH

ER

Weather, Area,

[Duration]

Blizzard, North Chicago,

tonight 8-midnight

There will be a blizzard covering

Northern Chicago tonight from 8-

12pm

PARKIN

G

Parking_Lot_Na

me,

0/1/2/3

UIC Parking Lot 5, 3 UIC Parking Lot 5 is at the fullest

level.

POLICE Location Halsted Street Police cars appear on Halsted Street

CAMER

AS

Intersection Halsted&Roosevelt Camera installed at

Halsted&Roosevelt

We postulate that the most common subscription from travelers is a route. Travelers can define

a route in VTIS by 2 steps. Firstly a traveler inputs the origin and destination (OD) pair of a route

via the interface provided by VTIS. The VTIS system then will invoke a navigator or trip planner

116

service to calculate possible route choices for the given OD pair. The traveler completes defining

a route by selecting one of them. Figure 42 shows a gallery of the screenshots of the current mobile

clients for VTIS.

Figure 42 A gallery of the screenshots of the current mobile clients for VTIS

5.4.3 Evaluation of the Prototype

We expect that some students will provide us first-hand user experiences as well as comments

and feedback on both the functionally and the user interface of the application. The source code

will be released to the students as well. And they are strongly encouraged to improve the prototype

implementation by discovering and eliminating bugs.

At second stage, we plan to release our application to the public via App stores, such as Android

Market or IPhone App store. Average travelers are then accessible to our application and help us

117

improve it. We will explore piggybacking VTIS on an existing system developed at UIC, namely

TransitGenie (see [22]). TransitGenie provides routing on public transportation, and has thousands

of existing users.

118

Chapter 6

UPDetector: Sensing Parking/Unparking Activities Using Smartphones

6.1 Introduction

Vacant parking spaces are scarce resources in many urban areas. Finding vacant parking spaces

in the crowded urban environment can be very frustrating. In addition, cruising for a vacant parking

space slows down traffic, causes traffic jams, and pollutes the environment. It is reported that

vehicles searching for parking in downtown Los Angeles created 38 trips around the world,

producing 730 tons of carbon dioxide and burning 47,000 gallons of gas in one year [102].

Real-time parking space availability information is of great value in alleviating this problem. By

feeding such information to navigation systems, drivers can be directly led to an available parking

space. Existing approaches of generating/collecting real-time parking spaces availability

information can be classified into four categories: (i) infrastructure based; (ii) probe vehicle based;

(iii) prediction based; and (iv) participatory sensing based.

An infrastructure based approach requires installing sensors under the pavement (e.g. SFPark

[4] project in San Francisco and StreetLine sensors). This is expensive to implement and maintain.

For example, the SFPark project costs $23M. Furthermore, the sensors tend to malfunction in

adverse weather conditions, e.g. when covered by mud or snow.

A probe vehicle based approach [80] uses vehicles equipped with inexpensive sensors such as

ultrasonic sensors to scan the street. To provide real-time availability information, a probe vehicle

needs to scan the same street repeatedly; and to cover large areas, multiple vehicles need to scan

different streets concurrently. Thus, this approach incurs a high cost and, if dedicated vehicles are

used, introduces additional traffic.

119

A prediction based approach focuses on inferring the availability information by combing

historical parking information with parking activities detected in real-time. In [5], authors use

Kalman filter to integrate the historical parking availability information with real-time

parking/unparking activities detected by smartphones to infer the current parking availability. This

approach relies on other approaches to collect real-time parking slot availability information. Some

indicators of parking are mentioned in [104], but a comprehensive list and fusion methods are not

provided.

Participatory sensing based approach exploits the sensors in smartphones to detect

parking/unparking activities. We design and implement an energy-efficient mobile App called

Unparking/Parking detector (UPDetector) that effectively detects parking and unparking activities

by analyzing and fusing the data of multiple sensors embedded in smartphones. Specifically, the

contributions of this section include:

 We propose several indicators, each associated with one or more smartphone sensors, for

detecting parking/unparking activities. These indicators cover both paid and free parking

scenarios. For the purpose of energy conservation, we distinguish between periodical and

triggered indicators.

 We propose a probabilistic method to fuse features output by different indicators. These

indicators are asynchronous, i.e. they output feature-vectors at different times. The proposed

fusion method is proved to have a desirable reinforcement property. The fusion method can be

applied to inferring other high-level human activities that are characterized by multiple

asynchronous indicators. For example, detecting if a driver is fueling at a gas station is such an

activity.

 The proposed detection method works regardless how the phone is placed, e.g. in the shirt

pocket or in a handbag.

120

 Our design of UPDetector reduces the usage of GPS to save power. We evaluate its energy-

consumption via experiments.

The rest of this section is organized as follows. In Sec. 6.2, we introduce indicators and describe

how to fuse features output by different indicators. Next we detail the features and implementation

of individual indicators in Sec. 6.3. In Sec. 6.4 we conduct experiments to show performances of

the implemented UPDetector App. Related work is presented in Sec. 6.5, and in sec.VI we conclude

and discuss the future work.

6.2 Indicators and Indicator Fusion

In this section, we first propose a list of indicators in subsection 6.2.1. Then, in subsection 6.2.2,

we divide the indicators into two types, the periodical and the triggered indicators. Finally, we

propose a fusion method in subsection 6.2.3.

6.2.1 Preliminaries on Indicators

An indicator is an event that reveals some hint or clue of a parking or an unparking activity. For

example, one indicator for unparking is that a person first walks then drives. But this indicator

cannot distinguish a passenger from a driver. From this perspective, a stronger indicator for

unparking is that the phone is connected with the car via Bluetooth since in general a passenger is

less likely than a driver to connect to the car via Bluetooth. Similarly, Bluetooth disconnection from

the car is an indicator for parking. Another exemplary indicator for parking is that a person walks

towards a roadside pay box and then walks back to a car. Note that this pay-at-street-parking

indicator is complex enough to be considered an activity by itself and thus can be decomposed into

sub-indictors in order to be implemented.

Table 9 gives a list of indicators, where the second column states whether the indicator is for

parking, unparking or both activities; and the last column lists the sensors that are required to

implement the indicator.

121

Indicators output vectors. Each vector consists of multiple scalar values, each of which is called

a feature. Vectors of the same indicator have the same set of features. For example, the features of

the acoustic sound indicator include Zero Crossing, Spectral Flux [6]. Sec. 6.3 details the features

of a subset of the indicators listed here.

Table 9 Example indicators of parking/unparking activities

Indicator Activity Explanation Sensors

change in the

variance of

the

acceleration

(CIV)

both In parking activities, a person first drives and then walks.

Since walking often has a large variance in acceleration

while driving has a small variance, this transition leads to

a sudden increase in the variance of acceleration.

Likewise, in unparking activities, the variance of

acceleration usually suddenly decreases.

accelerometer

phone

connected or

disconnected

to the car via

Bluetooth

both The phone is connected/disconnected to a car via

Bluetooth. The App asks the user to identify the car

Bluetooth device from a list of available Bluetooth

devices. This request is only done once.

Bluetooth

motion-state

transition

(MST)

both A parking activity corresponds to a transition from the

driving state to the walking state; and an unparking activity

corresponds to a transition from the walking state to the

driving state.

accelerometer

acoustic

signals

both The sounds of human-vehicle interactions that are

typically made only during parking or unparking activities.

Example interactions include turn on/off the vehicle

engine, open and close the vehicle doors.

microphone

car backing both Backing the car is common in parking/unparking

activities. It is detected by sensing a sudden reverse in the

direction of acceleration.

accelerometer

and gyro

pay at street-

parking box

parking In the paid street parking scenarios, a driver often needs to

walk to a pay box to buy a parking ticket and walk back to

the car to place the ticket in the car.

accelerometer

, gyro and

GPS

parking

payment

mobile

App’s

parking Parking payment mobile App’s such as ParkMobile[7] and

PayByPhone[8] give a hint of a possible parking activity

when such an App is brought to the foreground of the

smartphone by a user.

Wi-Fi

signature [9]

unparki

ng

If the parking location is known, a Wi-Fi signature can be

created for it and then used to detect an unparking activity

by periodically comparing the signature of the current

location to that of the known parking location.

wireless

interface

122

6.2.2 Periodical and Triggered Indicators

Indicators that rely only on energy-efficient sensors (e.g. the accelerometer) output a vector

periodically. Such indicators are referred to as periodical indicators. For example, both the Change-

In-Variance indicator and the motion state transition indicator are periodical indicators.

Indicators that involve energy-hungry sensors such as the microphone, are not periodically

monitored for the purpose of conserving energy. They are triggered to output only when the parking

or unparking becomes the hypothesis, i.e. indicated by the periodical vectors as the most likely

outcome among the three, namely parking, unparking, none. We refer to such indicators as

triggered indicators. For example, the engine- start sound is a triggered indicator. That is, only

when the periodical vectors indicate unparking as the most likely outcome, the microphone starts

to record a few seconds and output a vector of features of the recorded sound sample. Triggered

indicators can be considered auxiliary evidences to verify or refute the hypothesis proposed by the

periodical indicators.

Table 10 lists the indicators described in Table 9 with their corresponding category, i.e.

periodical or triggered. The table shows the output frequency for the periodical indicators; and for

the triggered indicators, it shows which hypotheses, i.e. parking, unparking or both, trigger the

indicator.

Table 10 List of categorized indicators

Indicator Type

sudden change in the

variance of acceleration

periodical: once every few seconds

phone connected or

disconnected via Bluetooth

periodical: frequency at which the smartphone

monitors the Bluetooth connection

motion state transition periodical: once every few seconds

acoustic signals triggered: by parking and unparking hypotheses

car backing periodical (only when the user at in_vehicle state):

once every a few seconds

pay at street-parking triggered: by parking hypothesis

parking payment mobile

App’s

periodical: frequency at which the smartphone

monitors the foreground App

123

Wi-Fi signature[9] periodical: compute the Wi-Fi signature at certain

frequency and compare it to the signature of the

parking location

6.2.3 Indicator Fusion

In this section, we first describe the proposed fusion method. Then we prove that our fusion

method boosts the confidence in the detected result when compared to a single indicator.

6.2.3.1 Proposed Fusion Method

Whenever some indicator outputs a vector, we need to calculate the probability for each of the

three possible outcomes, i.e. parking, unparking, and none, denoted by 𝑂1, 𝑂2, 𝑂3, respectively. Let

𝑑 be the average duration of a parking/unparking activity (e.g. one minute). Assume that at time

point 𝑡 a vector 𝑃 of periodical indicator I is generated. We first collect 𝑃 and the latest vector 𝑃′

of every periodical indicator other than I, (assuming that vector 𝑃′ is generated no earlier than time

point 𝑡-𝑑) into a vector set 𝑆. Each indicator is considered independent and thus the vectors in 𝑆

are independent. Define fusion set as the set of independent vectors to be fused. 𝑆 is an example

fusion set. Therefore, we can compute the probability 𝑃(𝑂𝑖|𝑆), i=1,2,3 using Eq. (6.1) below. The

calculation of the term 𝑃(𝑋|𝑂𝑖) and 𝑃(𝑂𝑖) are detailed in subsections b) and c) respectively.

 𝑃(𝑂𝑖|𝑆) = ∏ 𝑃(𝑋|𝑂𝑖)𝑋∈𝑆 ∗ 𝑃(𝑂𝑖)/𝑃(𝑆) (6.1)

If none is the most likely outcome, then no indicator is triggered and thus no parking or

unparking activity is detected. Otherwise, the most likely outcome (i.e. either parking or

unparking), denoted by 𝑂ℎ , becomes the hypothesis, and invokes triggered indicators. Each

triggered indicator outputs one vector. Denote such triggered vectors by 𝑅1, 𝑅2,…, 𝑅𝑚, where 𝑅𝑖

is generated earlier than 𝑅𝑗 for 𝑖 < 𝑗. Then the hypothesis 𝑂ℎ is tested in the following way. Let ℛ𝑗

the set of vectors including the triggered vector 𝑅𝑗 and all triggered vectors that are generated

before 𝑅𝑗 and the periodical vector set 𝑆 that proposes the hypothesis, i.e. ℛ𝑗 = 𝑆 ∪ {𝑅𝑖|𝑖 ≤ 𝑗, 𝑖 ∈

[1, 𝑚]}. Whenever vector 𝑅𝑗 is generated, we use Eq. (1) to calculate the probability for all three

124

outcomes, where set 𝑆 is replaced by set ℛ𝑗. That is, ℛ𝑗is a fusion set. Then we normalize the

calculated probabilities, denoted by 𝑃𝑁(𝑂𝑖|ℛ𝑗), using Eq. (6.2).

 𝑃𝑁(𝑂𝑖|ℛ𝑗) =
∏ 𝑃(𝑋|𝑂𝑖)𝑋∈ℛ𝑗

∗𝑃(𝑂𝑖)

∑ (∏ 𝑃(𝑋|𝑂𝑖)𝑋∈ℛ𝑗
∗𝑃(𝑂𝑖))3

𝑖=1

, 𝑖 = 1,2,3 (6.2)

We set a threshold 𝑇 ∈ (0, 1), referred to as the detection threshold, such that an activity of the

hypothesis outcome, i.e. parking or unparking, is considered detected only when the normalized

probability of the hypothesis is above 𝑇 , i.e. 𝑃𝑁(𝑂ℎ|ℛ𝑗) ≥ 𝑇 . Note that once a parking or an

unparking activity is detected, we say that hypothesis 𝑂ℎ is verified by vector set ℛ𝑗. Therefore,

there is no need to consider all triggered vectors that are generated after 𝑅𝑗, i.e. 𝑅𝑘, 𝑘 = 𝑗 + 1, 𝑗 +

2, … 𝑚.

Multiple detections of the same activity: It is possible that one parking/unparking activity is

detected multiple times by some indicator (e.g. the CIV indicator) because the activity lasts a period

in which the indicator outputs multiple times. If so, we consider all detected activities of the same

type (i.e. parking or unparking) within a short period (e.g. half a minute) as a single activity.

a) Localization Process

A parking or unparking activity needs to be associated with the time and location of the activity.

To save energy, the App only invokes the localization process when it is necessary. The timing for

localization could be either when a hypothesis is proposed (by the periodical vectors) or when a

hypothesis is confirmed. If the location is retrieved at the time when a hypothesis is proposed, then

the location is cached upon retrieval, and consumed if later the hypothesis is confirmed.

Define the temporal interval from the time when a parking/unparking activity happens to the

time when a location is retrieved for the activity as the delay of localozation, or simply, the delay.

Obviously the smaller the delay is, the closer the retrieved location is to the true location where the

activity happens. Thus, it is better to invoke the localization process at the time when a hypothesis

is proposed instead of confirmed since it leads to a smaller delay.

125

The App uses the following localization process. A location fix 𝐿1 is retrieved via the

smartphone localization API (e.g. in Android, the localization API intelligently chooses the best

location source among GPS, WiFi, and cellular networks). Meanwhile another location 𝐿2 is

requested via Skyhook [5], a third-party location provider which uses known Wi-Fi hotspots to

localize. We then choose the location with the higher accuracy as the detected location of the

hypothesis. In our experiments, we observe that the localization process takes only about two

seconds on average.

If one parking/unparking activity is detected multiple times we use the time and location of the

first detection.

b) Calculation of 𝑷(𝑿|𝑶𝒊)

In this subsection, we detail how to calculate 𝑃(𝑋|𝑂𝑖), i.e. the probability that vector 𝑋 occurs

given outcome 𝑂𝑖. Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) where 𝑥𝑖 is a feature. We regulate that all features in 𝑋

are mutually independent. In the case that some features are dependent of each other (two features

are dependent if their Pearson’s Correlation is over a threshold), only one of them is included in 𝑋.

Since all the features in 𝑋 are mutually independent, the term 𝑃(𝑋|𝑂𝑖) can be computed by Eq.

(6.3), where 𝑃(𝑥𝑘|𝑂𝑖) is the probability that feature 𝑥𝑘 has the current value given the outcome is

𝑂𝑖.

 𝑃(𝑋|𝑂𝑖) = 𝛱𝑘=1
𝑛 𝑃(𝑥𝑘|𝑂𝑖) (6.3)

The term 𝑃(𝑥𝑘|𝑂𝑖) is estimated using the following approach. Conduct experiments that

generate the 𝑂𝑖 outcome. From these experiments collect a sample set of 𝑥𝑘 ’s under the 𝑂𝑖

outcome. Normalize all collected 𝑥𝑘’s into the [0,1] interval. Discretize the range [0, 1] into several

bins, allocate the collected samples into the corresponding bins based on the value of 𝑥𝑘 , and

calculate the frequency of each bin. If the frequencies of the bins approximate a normal distribution,

we estimate the 𝑃(𝑥𝑘|𝑂𝑖) using the normal distribution of which the mean and standard deviation

126

are estimated using the collected 𝑥𝑘 samples. Otherwise, 𝑃(𝑥𝑘|𝑂𝑖) is estimated to be the frequency

of the bin in which 𝑥𝑘 falls; if a new 𝑥𝑘 falls outside [0, 1] after normalization, then 𝑃(𝑥𝑘|𝑂𝑖) = 0.

Note that some 𝑃(𝑥𝑘|𝑂𝑖)’s are estimated rather than obtained by experiments. For example, for

the Bluetooth indicator, we estimate how many drivers have smartphones connected to the car via

Bluetooth, instead of conducting experiments to determine it.

c) Estimating 𝑷(𝑶𝒊)’s

Prior probabilities 𝑃(𝑂𝑖)’s are estimated using the following approach. 𝑃(𝑂1) of a specific user

𝑈 is equal to (the amount of time spent on parking activities per statistical window / the amount of

time per statistical window). The size, i.e. amount of time, of a statistical window is dependent on

the location and time of the day. For example, if user 𝑈 enters a parking structure (detected by

using the energy-efficient Wi-Fi signature method [9]), it means that user 𝑈 is likely to park soon

and thus the statistical window may be just a few minutes. For another example, the size of the

statistical window is larger during the night than during daytime since generally parking activities

are less likely to occur at night than in daytime. In the case that there is more than one rules that

determine the current window size, the smallest window will apply. For example, assuming that

the size of the window is eight hours at night and is ten minutes if the car just enters the garage,

then the window is ten minutes if a car enters a garage at night. To estimate the amount of time

spent on the parking activities during a statistical window for user 𝑈, the App needs to count the

average number of parking activities and estimate the average time duration that each parking

activity takes. At the beginning, when the user just starts to use our App and there are not enough

samples to calculate these, default values will be applied.

Similarly, 𝑃(𝑂2) is equal to (the amount of time spent on unparking activities per statistical

window / the amount of time per statistical window). Finally, 𝑃(𝑂3) = 1 − 𝑃(𝑂1) − 𝑃(𝑂2).

127

6.2.3.2 Reinforcement Property

Our proposed fusion method has a nice reinforcement property. That is, via combining vectors

from different indicators of which each most likely occurs under the hypothesis (i.e. either a

parking/unparking outcome), the fusion provides us a higher confidence in the hypothesis outcome.

First let us prove that the reinforcement property holds when applied to two indicators. We

formulize the property as follows. The formulation uses the parking outcome as the hypothesis, but

the same argument stands for the unparking hypothesis.

Theorem: Given two vectors 𝑋1, 𝑋2 in a fusion set such that 𝑃(𝑋𝑖|𝑂1) > 𝑀𝑎𝑥(𝑃(𝑋𝑖|𝑂2), 𝑃(𝑋𝑖|𝑂3)), 𝑖 =

1,2 ,i.e. both most likely occur under the parking outcome 𝑂1 , 𝑃𝑁(𝑂1|𝑋1, 𝑋2) >

𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), 𝑃𝑁(𝑂1|𝑋2)).

Proof: Since 𝑋1 , 𝑋2 are interchangeable, next we only prove 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1).

While 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1) can be proved using the same rationale. Using the definition of

normalized probability as define by Eq. (6.2), we have Eq. (6.4).

 {
𝑃𝑁(𝑂1|𝑋1, 𝑋2) =

𝑃(𝑂1|𝑋1, 𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)+𝑃(𝑂2|𝑋1, 𝑋2)+𝑃(𝑂3|𝑋1, 𝑋2)

𝑃𝑁(𝑂1|𝑋1) =
𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)+𝑃(𝑂2|𝑋1)+𝑃(𝑂3|𝑋1)

 (6.4)

Thus, substituting Eq. (6.4) into 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑃𝑁(𝑂1|𝑋1), we obtain Eq. (6.5).

𝑃(𝑂1|𝑋1, 𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)+𝑃(𝑂2|𝑋1, 𝑋2)+𝑃(𝑂3|𝑋1, 𝑋2)
>

𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)+𝑃(𝑂2|𝑋1)+𝑃(𝑂3|𝑋1)
 (6.5)

Taking the reciprocals on the both sides of Eq. (6.5), we get Eq. (6.6)

𝑃(𝑂1|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂1|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
 (6.6)

Subtracting one from both sides of Eq. (6.6), we get Eq. (6.7).

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
+

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
+

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
 (6.7)

A sufficient condition for Eq. (6.7) is Eq. (6.8). That is, if Eq. (6.8) holds then Eq. (6.7) stands,

and thus the theorem is proved.

128

 {

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)

 (6.8)

Next we prove the first equation in Eq. (6.8), i.e.
𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
. The other part

𝑃(𝑂3|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂3|𝑋1)

𝑃(𝑂1|𝑋1)
 can be proved using the same rationale. Denote

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)

by Eq. (6.9).

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑂2|𝑋1)

𝑃(𝑂1|𝑋1)
 (6.9)

Using the Bayes rule on the right side of Eq. (6.9), we have Eq. (6.10).

𝑃(𝑂2|𝑋1,𝑋2)

𝑃(𝑂1|𝑋1, 𝑋2)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
 (6.10)

Using the Bayes rule on the left side of Eq. (6.10), we have Eq. (6.11).

𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑂2|𝑋2)

𝑃(𝑂1|𝑋2)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
 (6.11)

Using the Bayes rule on the second term of the left side of Eq. (6.11), we have Eq. (6.12).

𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑋2|𝑂2)𝑃(𝑂2)

𝑃(𝑋2|𝑂1)𝑃(𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑂2)

𝑃(𝑂1)
 (6.12)

Dividing the common factor
𝑃(𝑂2)

𝑃(𝑂1)
 from the both sides of Eq. (6.12), we have Eq. (6.13).

𝑃(𝑋1|𝑂2,𝑋2)

𝑃(𝑋1|𝑂1, 𝑋2)
×

𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
 (6.13)

Since indicators are independent, 𝑋1 and 𝑋2 are independent, Eq. (6.13) is simplified to Eq.

(6.14).

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
×

𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
<

𝑃(𝑋1|𝑂2)

𝑃(𝑋1|𝑂1)
 (6.14)

Since 𝑋2 most likely occurs under 𝑂1, i.e.
𝑃(𝑋2|𝑂2)

𝑃(𝑋2|𝑂1)
< 1. Then it is clear that Eq. (6.14) stands

and thus Eq. (6.8) stands. Therefore, we have 𝑃𝑁(𝑂1|𝑋1, 𝑋2) > 𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), 𝑃𝑁(𝑂1|𝑋2))

Similarly, it is easy to prove the general case, i.e. that when 𝑖 = 1 𝑜𝑟 2, 𝑃𝑁(𝑂𝑖|𝑋1, 𝑋2, … 𝑋𝑚) >

𝑀𝑎𝑥(𝑃𝑁(𝑂1|𝑋1), … 𝑃𝑁(𝑂1|𝑋𝑚)) given 𝑋𝑗 ’s are independent to each other and 𝑃𝑁(𝑋𝑗|𝑂𝑖), 𝑗 =

1,2, … 𝑚 is the largest among 𝑃𝑁(𝑋𝑗|𝑂𝑘), 𝑘=1,2,3.

129

6.3Implementation of Individual Indicators

In this section, we detail the features and implementation of only a subset of the proposed

indicators. Other indicators, once implemented, can be plugged-and-played into our system through

the fusion method described earlier.

6.3.1 Change-In-Variance (CIV) Indicator

6.3.1.1 Preliminaries on Accelerometer

The accelerometer of an android phone has a coordinate-system consisting of three axes, as

shown in Figure 43. The X axis is horizontal and points to the right, the Y axis is vertical and points

up and the Z axis points towards the outside of the front face of the screen. Each reading of the

accelerometer contains three values, that is, one value for each axis. The three axes are defined

relative to the screen of the phone in its default orientation. The X axis is horizontal and points to

the right, the Y axis is vertical and points up and the Z axis points towards the outside of the front

face of the screen. The resultant acceleration (or simply the acceleration) refers to a single value

Accel that normalizes the accelerometer readings along the three axes using Eq. (6.15).

 𝐴𝑐𝑐𝑒𝑙 = √𝐴𝑋
2 + 𝐴𝑌

2 + 𝐴𝑍
22

 (6.15)

Figure 43 Axes of mobile phone

6.3.1.2 Features of the CIV Indicator

A sliding window with a fix size equals to 𝑊 seconds is used. The sliding window moves

forward 𝑁 seconds every time it slides. That is, two consecutive windows overlap 𝑊-𝑁 seconds.

We refer to 𝑁 as the sliding step thereafter. During each window, we calculate the difference

between the variance of the acceleration within the second half and the variance of the first half of

130

the window. Hereafter we refer to this feature as the VariDiff of a window. Intuitively, as shown in

Figure 44, an unparking activity results in a window where the first half (corresponding to the

walking state) has a large variance while the second half (corresponding to the driving state) has a

small variance. Likewise, the parking activity has a similar sharp contrast in the variance between

the two halves of the window. We have observed via experiments that this variance discrepancy

between two halves of the window exists no matter where the phone is placed, e.g. in pant leg

pocket, in handbag, etc.

Figure 44 The sliding window for the CIV indicator

However, the VariDiff feature of the current window itself is not sufficient due to noise. One

example of noise is that the VariDiff feature of a window during which the user walks, may be

either positive or negative since the acceleration during walking is oscillating. As a result, such a

window may be misidentified as a parking or unparking activity. To deal with the noise, we

consider using the VariDiff feature of all windows within a scope. Denote the scope by 𝑆. Then

each CIV vector consists of three features: (i) the VariDiff feature of the current window; (ii) the

average value of the VariDiff feature during the preceding 𝑆/2 windows; (iii) the average value of

the VariDiff feature during the succeeding 𝑆/2 windows. Formally, the scope 𝑆 is the total number

of preceding and succeeding windows that are considered in a CIV vector. Observe that 𝑆 does not

include the current window. In order to calculate feature (iii), production of the vector of a window

is delayed for 𝑆/2 windows. Intuitively, a vector that corresponds to a parking activity has feature

Sliding
Window

1st half 2nd half

walking driving

131

(i) being positive and feature (ii) being close to zero. Similarly, a vector that corresponds to a

unparking activity has feature (i) being negative and feature (iii) being close to zero.

Figure 45 illustrates the calculation of the CIV vectors. Assume that the VariDiff feature of 1st,

2nd, 3rd, 4th, 5th window has a value of 0.03, 0.01, 2.6, 1.6, 1.8, respectively, and the scope 𝑆 equals

to 4. Then when the 5th window ends, the CIV vector of the 3rd window is computed and equals to

(0.02, 2.6, 1.7), where 0.02 is the mean of the VariDiff of the 1st and 2nd windows and 1.7 is the

mean of the VariDiff of the 4th and 5th windows.

Figure 45 An example of calculating CIV vectors

6.3.2 Bluetooth Indicator

The Bluetooth embedded in the phone is a strong indicator when it is enabled. When a phone is

connected to a car (requiring one time human input to indicate the name of the Bluetooth device of

the car), there is a good chance that the person is the driver and intends to depart, which corresponds

to an unparking activity. Similarly when a phone is disconnected, it is likely due to a person leaving

the car, which indicates a parking activity.

There is only one feature for the Bluetooth indicator, which takes one of the following three

values: i.e. connected, disconnected, not enabled.

6.3.3 Motion State Transition Indicator

Motion states, such as waling, driving, etc., can be classified from raw accelerometer readings.

After motion states are classified, the transitions between motion states are identified to signify the

parking/unparking activities. Figure 46 (a) and (b) shows the motion state transition for parking

and unparking, respectively.

1st Win.

2nd Win.

3rd Win.

Time4th Win.

5th Win.

walkingwalking drivingdriving drivingdriving walkingwalking

132

Figure 46 Transitions for parking and unparking, respectively

We implement the classification algorithm described in [12] to classify motion states.

Specifically, the classifier outputs a probability distribution over all possible motion states (namely

driving, walking, still, sitting and standing) every five seconds using the accelerometer data in the

past five seconds.

The vectors of the motion state transition indicator thus include four features. The first two

features are the probability of the latest motion state being walking and driving, respectively.

Similarly the last two features are the probability of the second latest motion state being walking

and driving, respectively.

6.3.4 Acoustic Indicators

Acoustic indicators refer to the sounds of human-vehicle interactions that are typically made

only during parking or unparking activities. Example interactions include turn on/off the vehicle

engine, open and close the vehicle doors. Such sounds often have distinct frequency and amplitude

from each other, as shown in Figure 47.

Figure 47 Normalized amplitude and the corresponding FFT result of different sound samples

It has been shown that the sounds of these particular human-vehicle interactions can be classified

with relative high precision and recall [91]. However, in [91] the authors do not consider the power

concern and thus the sounds are recorded constantly. In our case, in order to save energy, acoustic

sounds are modeled as triggered indicators as described in Sec. 6.2.2. That is, they are only

(a) parking (b) unparking

 (a) Engine start (b) Open door (c) Close door

133

activated and output vectors after the parking or unparking outcome becomes the hypothesis. In

addition to the work of [91], we included the “bus noise” (i.e. the bus engine sound with the

background noise) as one of the acoustic sounds, and found out that the “bus noise” sound is highly

distinguishable from other sounds such as engine start, or door open/close. This will help

distinguish a private car trip from a bus trip

6.4Evaluation

We implement a prototype system on the Android platform. This section details the experimental

methodology and the results. Specifically, we introduce our experimental setting in subsection

6.4.1. Then we show the performance of the App in subsection 6.5.2.

6.4.1 Experimental Methodology

6.4.1.1 Mobile App Implementation

UPDetector is independent of mobile platforms and thus can be implemented on all mobile

platforms, such as Android, Apple iOS and Windows mobile systems. We implement a prototype

on the Android platform using the Samsung Galaxy S3, which has a 1 GB RAM and quad-core 1.4

GHz Cortex-A9 processor. Figure 48 shows some screenshots of the implemented prototype.

Figure 48 UPDetector implementation screenshots

6.4.1.2 Data Collection

We have implemented the following indicators in the UPDetector App: the Bluetooth indicator,

the CIV indicator and the MST indicator. We have also implemented the acoustic indicator (i.e. the

audio analysis part) on the laptop; unfortunately, we cannot port the function to the App since

134

Android system currently does not support the audio feature extraction library. The Bluetooth

indicator is highly reliable by itself and may work independently of other indicators. Therefore,

here we restrict attention to vehicles that do not have Bluetooth devices and present the detection

results using the CIV and the MST indicators.

The time (in seconds) of each parking/unparking activity is manually recorded as the ground

truth. The time of an unparking activity is the second when the vehicle starts to move from a parked

state; and the time of a parking activity is the second when the vehicle reaches the still state.

The collected data is split into one training set and one test set. The training data set contains 40

parking activities and 40 unparking activities. The test data set contains 60 parking activities and

60 unparking activities. The training set is used to learn the conditional probability of features under

different outcomes, i.e. 𝑃(𝑥𝑘|𝑂𝑖)’s. Via experiments, we observe that 𝑃(𝑥𝑘|𝑂𝑖)’s in the training

set approximate normal distributions. So we estimate the parameters of the normal distributions

using the training data set and then use them for the test data set. The test data is used to evaluate

the performance of the detection of parking/unparking activities.

6.4.1.3 Detection Methods

We evaluate five detection methods. These methods are categorized into two groups. The first

group consists of three methods that use a single indicator: (i) the method that only uses the Change-

in-Variance (CIV) indicator, referred to as the CIV method hereafter; (ii) the method that only uses

the Motion State Transition (MST), where the motion state classifier is implemented using the

features described in [63] (multiple classification methods, including meta-classification methods

such as AdaBoost and RandomForest, are tried to train the model and the best classification method,

i.e. RandomForest, is chosen), referred to as the MST-CL1 method hereafter; (iii) the method that

only uses the Motion State Transition (MST), where the motion state classifier is provided by

Google Activity Recognition (GAR) API, referred to as the MST-CL2 method hereafter. The GAR

API returns a distribution over five possible states including driving, walking, still, tilting, and

unknown. We have observed that the GAR API outputs the unknown state as the most likely state

135

frequently. To better utilize the API’s results, we modify the most likely state for the following

case. If the GAR API outputs unknown as the most likely state, and if the second most likely state

𝑆 has a likelihood that is larger than the sum of the likelihoods of other three states except unknown

and S, we treat 𝑆 as the most likely state.

The second group consists of two methods that fuse multiple indicators. The first method,

referred to as the CIV-MST_CL1 method, combines the CIV indicator and MST-CL1 using the

probabilistic based fusion algorithm described in Sec. 6.2.3.

The second method, referred to as the CIV-MST_CL1_CL2 method, combines the CIV-

MST_CL1 method with the MST_CL2 method. Specifically, each activity 𝐴𝑑 detected by the CIV-

MST_CL1 method is considered a hypothesis (thus a location is retrieved and cached when 𝐴𝑑 is

detected). We have learned from experiments that the MST_CL2 method is reliable but suffers from

a large delay (see Sec. 6.4.2.1). Therefore, we consider that 𝐴𝑑 is confirmed if later MST_CL2 also

detects the same type (i.e. parking/unparking) of activity as 𝐴𝑑. If multiple 𝐴𝑑’s of the same activity

type have been output by CIV-MST_CL1 when MST_CL2 outputs a detection, we use the location

retrieved for the first 𝐴𝑑. Note that here we use a simple “and” logic to combine the detection

results of CIV-MST_CL1 and MST_CL2 because MST_CL2 is highly reliable (but unfortunately

has a long delay) and thus a simple “and” logic is sufficient. Otherwise, we would have used the

proposed probabilistic fusion algorithm to combine CIV-MST_CL1 and MST_CL2.

6.4.1.4 Matching Detected Activities with the Ground Truth

A detected parking (unparking) activity 𝐴𝑑 is matched to a ground truth parking (unparking)

activity 𝐴𝑔 if the time difference between 𝐴𝑑 and 𝐴𝑔 is smaller than five seconds1. For a detected

activity 𝐴𝑑, the matching ground truth activity 𝐴𝑔 can always be uniquely identified because any

two consecutive ground truth activities are at least minutes away from each other, and thus there is

no confusion in the matching.

1 except for the MST_CL2 method; since it suffers a long delay, its value is one minute

136

Note that a ground truth activity may be detected multiple times (i.e. matched to several detected

activities that are temporally consecutive and close to each other). This only happens when a sliding

window is used in the indicator (e.g. in the CIV indicator) and the window slides in a way such that

the two consecutives windows overlap. For example, consider the example shown in Figure 44.

The red window in the figure represents a detected unparking activity. If we slide the red window

slightly to the right, apparently, the new window may still represent a detected unparking activity

that is matched to the same ground truth activity. When multiple detected activities are matched to

the same ground truth activity 𝐴𝑔, we use the first matched detected activity and ignore the rest of

the detected activities that are matched to 𝐴𝑔.

6.4.1.5Performance Measures

The performance is measured by precision and recall. Eq. (6.16) gives the definition, where tp,

fp, fn is the number of true positives, false positives and false negatives, respectively. A detected

parking (unparking) activity 𝐴𝑑 is a true positive if it matches to a ground truth parking (unparking)

activity 𝐴𝑔 . That is, the time difference between 𝐴𝑑 and 𝐴𝑔 is small than five seconds. 𝐴𝑔 can

always be uniquely identified because any two consecutive ground truth activities are usually at

least minutes away from each other and thus there is no confusion in the matching.

 {
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝 / (𝑡𝑝 + 𝑓𝑝)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝/ (𝑡𝑝 + 𝑓𝑛)
 (6.16)

Another measure is the delay of localization. Denote by 𝑡𝑔 the timestamp of the ground truth

activity 𝐴𝑔 and by by 𝑡𝑙 the time when the location is received. The delay, denoted by 𝐷, can be

calculated using Eq. (17).

 𝑫 = 𝒕𝒍 − 𝒕𝒈 (6.17)

6.4.2 Evaluation Results

6.4.2.1 Detection Accuracy and the Delay

The MST_CL1 classifier is implemented according to [63]. The MST_CL2 uses the activity

recognition API provided by Google. The API provides one parameter that adjusts the update

137

frequency. This parameter is set to zero so that the updates are obtained at the highest possible

frequency.

Table 11 lists the values for parameters for the CIV method and the detection threshold. In this

paragraph we discuss these parameters. Many previous works (e.g. [63, 93]) suggest that the

window size should be large enough to include a few hundred samples but not too large to increase

the delay. Based on the accelerometer sampling frequency in Android (i.e. about 10~30 Hz), 10

seconds is a reasonable window size (other window sizes are also tried and 10 seconds show the

best results).

A small sliding step helps capture the sudden change in the acceleration. Intuitively, a small

scope helps decrease the delay. We conducted experiments to learn the impact of the scope

parameter on the precision and recall. The experiments suggest that as the scope 𝑆 increases, the

precision and recall first increases then decreases. This is because the scope only helps when it

includes recent past samples; and it starts to hurt the performance as it continues to increase and

includes samples from a more remote past. The results suggest that a scope of six windows achieves

the best precision and recall.

Table 11 Default values of parameters

Notation Meaning Value

𝑊 window size of the CIV indicator 10 seconds

N sliding step of the CIV indicator 3 seconds

S scope of the CIV indicator 6 windows

T detection threshold 0.9

Table 12 shows the performance of the detection methods described in 6.4.1.3. Note that the

average delay in the table refers to the average delay of the true positives, i.e. the detected activities

that are matched to the ground truth activities.

In the first group (i.e. methods that use only one indicator), MST_CL2 gives the best precision

and recall but it suffers from a large delay, especially for unparking activities. For this reason the

138

MST_CL2 method cannot be used alone (i.e. if used a alone the location of the parking/unparking

activity cannot be accurately identified).

Note that the delay for unparking activities is much larger than that for parking activities for

MST_CL2. This is due to the fact that the GAR API outputs driving state with a much larger delay

than the walking state. In comparison, the CIV method have a much smaller delay but with a slightly

lower recall and a much lower precision. The MST_CL1 method has the poorest precision and recall

among the three methods. Note that the MST_CL1 uses the features described in [63], where the

authors report a much higher precision and recall for human activities classification. But in [63],

the phone has a fixed position (i.e. the front leg pocket) while here the phone is placed in various

positions. In addition, [63] does not include driving as an activity. In general, driving is much harder

to be correctly classified than on foot activities such as walking or jogging since driving is easily

confused with still or standing. (This may also explain why the GAR API outputs driving activity

with a much larger delay than walking activity.) The results of the first group demonstrate that no

individual indicator is good enough.

Table 12 Detection accuracy

Detection Methods Parking Activities Unparking Activities

Rec

all

Precis

ion

Avg. Delay

(secs)

Rec

all

Precisi

on

Avg. Delay

(secs)

Methods that

use only one

indicator

CIV 86.

2%

29.7% 10.68 87.

9%

45.1% 14.43

MST_CL1 60.

3%

18.6% 20 70.

6%

22.2% 14.17

MST_CL2 94.

8%

88.7% 17.75 89.

6%

89.6% 46.18

Methods that

fuse multiple

indicators

CIV-MST_CL1 91.

3%

23.8% 10.3 96.

5%

24.3% 15.72

CIV-

MST_CL1_CL2
93.

1%

90.4% 9.98 81.

8%

93.1% 14.36

In the fusion method group, the CIV-MST_CL1 has a higher recall than that of both the CIV and

MST_CL1 method. However, the method’s precision remains unsatisfying. This is because the

fusion process enhances the detection confidence when both the CIV and the MST_CL1 method

139

correctly detects the same type activity (i.e. parking/unparking) with a low confidence and thus

helps improve the recall. However, when both the CIV and the MST_CL1 method mistakenly detect

the same type activity with a low confidence, the fusion also boosts the confidence, and as a result

the precision of the CIV-MST_CL1 method may be lower than the largest precision of the

constituting methods.

As the integration of the CIV-MST_CL1 method and the MST_CL2 method, the CIV-

MST_CL1_CL2 method inherits all the merits: it has a higher precision than both its constituting

methods; it has a fairly high recall while keeps a small delay.

6.4.2.2 Energy consumption

We employ PowerTutor [125] to measure the power consumption. For the purpose of

localization, GPS is enabled when UPDetector is running. But it is in the stand-by mode and

consumes little energy (about 0.8 mw) during most of time. GPS only enters the energy-hungry

searching mode (about 220 mw) once for each parking/unparking activity. Since there are at most

a few parking/unparking activities during a day, the power consumption for localization is

negligible.

Most power consumption of the App attributes to CPU usage caused by the computation during

the fusion of periodical vectors. When UPDetector (running the CIV-MST_CL1_CL2 method) is

the only App running and phone activities (such as call, sms) are avoided, the corresponding battery

life is about 20.3 hours. The battery life with no app running and no phone activities is around 25

hours. That is, UPDetector costs 4.7 hours of the battery life. It is possible to further reduce this

cost by decreasing the output frequency of the periodical indicators such as the CIV, by special

hardware [55], by using Android Geofencing API2 and by monitoring only outdoors.

2 Android Geofencing. https://developer.android.com/training/location/geofencing.html

140

6.5 Related Work

6.5.1 Parking Spaces Detection

In the past, on street parking slot detection is usually performed by sensors embedded in the

pavement [4] or in vehicles [80]. However, these efforts require significant investment and are

expensive to implement to cover a large city.

Given the proliferation of the mobile devices, recently smartphone applications such as

ParkMobile and PaybyPhone3 that allow drivers to pay for parking by mobile phones are emerging.

Such App’s can be used by our method as an indicator for parking. [84] proposes a novel method

which leverages Wi-Fi beacons in urban environment to detect unparking. This method can be

integrated into our work as an indicator for unparking activities. This method by itself is not always

applicable since Wi-Fi signature works only when the parking location is covered by multiple Wi-

Fi signals.

6.5.2 Activity Recognition

There have been works on detecting motion activities based on readings from sensors in

smartphones. Generally, a motion activity detection algorithm is a classifier which reads raw sensor

data (e.g. from GPS [31, 105, 129, 130], from accelerometer [36, 82, 113], from both GPS and

accelerometer [96] and from Wi-Fi/GSM [83]), processes it to extract features, and then classifies

and outputs the motion activity such as still, walking, running, driving, etc. The motion state

transition based method by itself is not a reliable indicator for parking/unparking detection. We

incorporate the MST method into our framework which fuses outputs from multiple indicators. Our

proposed fusion method is applicable to detect a variety of high level human activities that are more

complex than simple motion activities.

3 Pay By phone http://www.paybyphone.com/how-it-works/

141

6.5.3 Classifier Fusion

In [110], the authors survey existing methods of combing multiple classifiers. These methods

include i) ensemble methods that combine multiple homogenous classifiers (i.e. classifiers that are

learned using the same set of features and the same classification algorithm), such as Bagging and

Boosting; and ii) non-ensemble methods that combine heterogeneous classifiers, such as the

majority voting (e.g. voting based on either the number of each class or the aggregated confidence

in each class). We apply the ensemble methods, i.e. the Boosting method via Weka, to implement

individual indicators such as MST. But the ensemble methods do not handle the asynchronous data

problem. That is, in our application scenario, different indicators output vectors of different feature

sets at different frequencies. Additionally, we aim to save energy, a consideration that is missing

in prior work on classifier fusion. Cost-sensitive boosting [79] methods may be applicable, but it is

not clear how to incorporate energy consumption into cost functions. As pointed out by the authors

of [110], none of the non-ensemble methods are shown to be superior to others, neither theoretically

nor empirically. Our proposed fusion method can be considered a non-ensemble method that is

motivated by and designed for the unparking/parking detection application, and potentially applied

to other applications with the asynchronous data problem.

In [110], the authors survey existing methods of combing multiple classifiers. However these

methods do not apply to our application for two reasons. First those methods assume that the to-

be-combined values are categorical while in our case, the output of each indicator has a vector of

continuous values. Second, those methods do not handle the asynchronous problem by assuming

all classifiers output synchronously. Here the periodical indicators output vectors at different

frequencies. In addition, the triggered indicators further complicate the asynchronous problem.

And remember that the triggered indicators are introduced to save energy, a consideration that is

missing in prior work on classifier fusion.

142

6.6 Discussion

We presented the design and implementation of a parking/unparking activities detection system

called UPDetector. We described several indicators and their corresponding features; we proposed

a probabilistic fusion method which combines features output by multiple indicators to derive

parking/unparking activity detection results. We evaluated the UPDetector prototype via

experiments, and demonstrated its effectiveness and energy consumption.

Using the implemented Bluetooth indicator, the current App we implemented has a certain

capability of distinguishing a driver from a passenger. This capability can be further enhanced via

incorporating other indicators, e.g. the pay-at-street-parking box indicator and the parking-

payment-mobile-App indicator listed in Table 9. In addition, acoustic indicators can be used to

distinguish buses from private cars.

In the future, we are going to improve the prediction algorithm presented in [119]. The algorithm

is capable of integrating real-time detection information, i.e. activities detected from different

devices, with the historical pattern. It outputs parking space availability information that is more

reliable than either real-time or historical information alone.

143

CITED LITERATURE

[1] Bay area rapid transit planner. http://www.bart.gov/.

[2] Intellidrive ╟ safer, smarter, greener. http://www.intellidriveusa.org/.

[3] Regional transit authority trip planner. http://tripsweb.rtachicago.com.

[4] San francisco parking. http://sfpark.org/.

[5] Skyhook Inc. http://www.skyhookwireless.com/.

[6] Slugging. http://en.wikipedia.org/wiki/slugging.

[7] Washington metropolitan area transit authority trip

planner.http://www.wmata.com/tripplanner_d/tripplanner.cfm.

[8] Waze, a free, community-based traffic & navigation app. http://www.waze.com/.

[9] Salutation architecture specification 2.0. Tech. rep., Salutation Consortium, June 1999.

[10] Uddi version 2.04 api specification. Tech. rep., OASIS standard, July 2002.

[11] Jini technology core platform specification, v. 2.0. Tech. rep., Sun Microsystems, June

2003.

[12] Upnp device architecture 1.0. Tech. rep., UpnP Forum, Dec. 2003.

[13] Map of slugging sites in washington d.c. slug-lines.com, Forel Publishing Company, LLC

(June 2010).

[14] AGATZ, N., E.-A.-S. M. W.-X. Sustainable passenger transportation: Dynamic ride-sharing.

Tech. rep., Erasmus Research Inst. of Management (ERIM), Erasmus Uni., Rotterdam, 2010.

[15] ANGELACCIO, M., CATARCI, T., AND SANTUCCI, G. Qbd*: a graphical query language with

recursion. Software Engineering, IEEE Transactions on 16, 10 (oct 1990), 1150 –1163.

[16] ATTANASIO, A., CORDEAU, J.-F., GHIANI, G., AND LAPORTE, G. Parallel tabu search

heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 3 (Mar. 2004),

377–387.

[17] AYALA, D., WOLFSON, O., XU, B., DASGUPTA, B., AND LIN, J. Parking slot assignment

games. In Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems (New York, NY, USA, 2011), GIS ’11, ACM, pp. 299–308.

[18] BADGER, E. Slugging the people transit. Miller-McCune (2011).

144

[19] BALDACCI, R., MANIEZZO, V., AND MINGOZZI, A. An exact method for the car pooling

problem based on lagrangean column generation. vol. 52, INFORMS, pp. 422–439.

[20] BAUGH, J. W., KAKIVAYA, G. K. R., AND STONE, J. R. Intractability of the dial-a-ride

problem and a multiobjective solution using simulated annealing. Engineering Optimization 30, 2

(1998), 91–123.

[21] BERGVINSDOTTIR, K., LARSEN, J., AND JORGENSEN, R. Solving the Dial-a-Ride Problem

using Genetic algorithms. Informatics and Mathematical Modelling, Technical University of

Denmark, DTU, 2004.

[22] BIAGIONI, J., AGRESTA, A., GERLICH, T., AND ERIKSSON, J. Transitgenie: a context-aware,

real-time transit navigator. In Proceedings of the 7th ACM Conference on Embedded Networked

Sensor Systems (New York, NY, USA, 2009), SenSys ’09, ACM, pp. 329–330.

[23] BIELLI, M., BOULMAKOUL, A., AND MOUNCIF, H. Object modeling and path computation

for multimodal travel systems. European Journal of Operational Research 175, 3 (Dec. 2006),

1705–1730.

[24] BUTTYÁN, L., AND HUBAUX, J.-P. Nuglets: a virtual currency to stimulate cooperation in

self-organized mobile ad hoc networks. Tech. rep., 2001.

[25] CALVO, R. W., DE LUIGI, F., HAASTRUP, P., AND MANIEZZO, V. A distributed geographic

information system for the daily carpooling problem. vol. 31, Elsevier Science Ltd., pp. 2263–2278.

[26] CALVO, R. W., AND TOUATI-MOUNGLA, N. A matheuristic for the dial-a-ride problem. In

Proceedings of the 5th international conference on Network optimization (Berlin, Heidelberg,

2011), INOC’11, Springer-Verlag, pp. 450–463.

[27] CALVO ROBERTO, C. A. An effective and fast heuristic for the dial-a-ride problem. 4OR:

A Quarterly Journal of Operations Research 5 (2007), 61–73. 10.1007/s10288-006-0018-0.

[28] CHAN, N. D., AND SHAHEEN, S. A. Ridesharing in north america: Past, present, and future.

Transport Reviews 32, 1 (2012), 93–112.

[29] CHEN, C., ZHANG, J., COHEN, R., AND HO, P.-H. A trust modeling framework for message

propagation and evaluation in vanets. In Information Technology Convergence and Services (ITCS),

2010 2nd International Conference on (2010), pp. 1 –8.

[30] CHO, J., SWAMI, A., AND CHEN, I. A survey on trust management for mobile ad hoc

networks. vol. PP, pp. 1 –22.

[31] CHU, D., LANE, N. D., LAI, T. T.-T., PANG, C., MENG, X., GUO, Q., LI, F., AND ZHAO, F.

Balancing energy, latency and accuracy for mobile sensor data classification. Proceedings of the

9th ACM Conference on Embedded Networked Sensor Systems - SenSys ’11 (2011), 54.

[32] COHEN, E., AND SHENKER, S. Replication strategies in unstructured peer-to-peer networks.

In Proceedings of the 2002 conference on Applications, technologies, architectures, and protocols

for computer communications (New York, NY, USA, 2002), SIGCOMM ’02, ACM, pp. 177–190.

145

[33] CORDEAU, J.-F., AND LAPORTE, G. The dial-a-ride problem: models and algorithms.

Annals of Operations Research 153 (2007), 29–46.

[34] DATTA, A., QUARTERONI, S., AND ABERER, K. Autonomous gossiping: A self-organizing

epidemic algorithm for selective. In In International Conference on Semantics of a Networked

(2004), World, pp. 126–143.

[35] DEMERS, A., GEHRKE, J., HONG, M., RIEDEWALD, M., AND WHITE, W. Towards expressive

publish/subscribe systems. In In Proc. EDBT (2006), pp. 627–644.

[36] DERNBACH, S., DAS, B., KRISHNAN, N. C., THOMAS, B. L., AND COOK, D. J. Simple and

Complex Activity Recognition through Smart Phones. 2012 Eighth International Conference on

Intelligent Environments (June 2012), 214–221.

[37] DESROCHERS, M., LENSTRA, J. K., SAVELSBERGH, M., AND SOURRIS, F. Vehicle routing

with time windows: Optimization and approximation. In VEHICLE ROUTING: METHOD AND

STUDIES. STUDIES IN MANAGEMENT SCIENCE AND SYSTEMS (1988), Elsevier Science,

pp. 65–84.

[38] DOTZER, F., FISCHER, L., AND MAGIERA, P. Vars: a vehicle ad-hoc network reputation

system. In World of Wireless Mobile and Multimedia Networks, 2005. WoWMoM 2005. Sixth IEEE

International Symposium on a (2005), pp. 454 – 456.

[39] DOUCEUR, J. R. The sybil attack. In Revised Papers from the First International Workshop

on Peer-to-Peer Systems (London, UK, 2002), IPTPS ’01, Springer-Verlag, pp. 251–260.

[40] ERIKSSON, J., BALAKRISHNAN, H., AND MADDEN, S. Cabernet: vehicular content delivery

using wifi. In Proceedings of the 14th ACM international conference on Mobile computing and

networking (New York, NY, USA, 2008), MobiCom ’08, ACM, pp. 199–210.

[41] EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KERMARREC, A.-M. The many faces

of publish/subscribe. vol. 35, ACM, pp. 114–131.

[42] EUZENAT, J., LOUP, D., TOUZANI, M., AND VALTCHEV, P. Ontology alignment with ola. In

In Proceedings of the 3rd EON Workshop, 3rd International Semantic Web Conference (2004),

CEUR-WS, pp. 59–68.

[43] FIEGE, L., MUHL, G., AND GARTNER, F. C. A modular approach to build structured event-

based systems. In Proceedings of the 2002 ACM symposium on Applied computing (New York,

NY, USA, 2002), SAC ’02, ACM, pp. 385–392.

[44] FORTE, A., AND BRUCKMAN, A. Why do people write for wikipedia? incentives to

contribute to open-content publishing. In Group 2005 workshop: Sustaining community: The role

and design of incentive mechanisms in online systems. Sanibel Island, FL (November 2005).

[45] GALIL, Z. Efficient algorithms for finding maximal matching in graphs. In CAAP’83,

G. Ausiello and M. Protasi, Eds., vol. 159 of Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 1983, pp. 90–113.

146

[46] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman Co., New York, NY, USA, 1979.

[47] GE, Y., XIONG, H., TUZHILIN, A., XIAO, K., GRUTESER, M., AND PAZZANI, M. An energy-

efficient mobile recommender system. In Proceedings of the 16th ACM SIGKDD international

conference on Knowledge discovery and data mining (New York, NY, USA, 2010), KDD ’10,

ACM, pp. 899–908.

[48] GERLACH, M. Trust for vehicular applications. In Proceedings of the Eighth International

Symposium on Autonomous Decentralized Systems (Washington, DC, USA, 2007), IEEE Computer

Society, pp. 295–304.

[49] GHOSE, A., IPEIROTIS, P. G., AND SUNDARARAJAN, A. Opinion mining using econometrics:

A case study on reputation systems. In In Proceedings of the 44th Annual Meeting of the

Association for Computational Linguistics (ACL (2007).

[50] GIDÓFALVI, G. Instant Social Ride-Sharing. ITS World, 8p, Transportation Society of

America (2008), 1–8.

[51] GIDOFALVI, G., PEDERSEN, T. B., RISCH, T., AND ZEITLER, E. Highly scalable trip

grouping for large-scale collective transportation systems. In Proceedings of the 11th international

conference on Extending database technology: Advances in database technology (New York, NY,

USA, 2008), EDBT ’08, ACM, pp. 678–689.

[52] GIUNCHIGLIA, F., YATSKEVICH, M., AND SHVAIKO, P. Journal on data semantics ix.

Springer-Verlag, Berlin, Heidelberg, 2007, ch. Semantic matching: algorithms and implementation,

pp. 1–38.

[53] GOLLE, P., GREENE, D., AND STADDON, J. Detecting and correcting malicious data in

vanets. In Proceedings of the 1st ACM international workshop on Vehicular ad hoc networks (New

York, NY, USA, 2004), VANET ’04, ACM, pp. 29–37.

[54] GRAHAM, K. Complexity science and social media: Network modeling in following

#x201c;tweets #x201d;. In Systems and Information Engineering Design Symposium (SIEDS),

2010 IEEE (april 2010), pp. 141 –146.

[55] HAICHEN SHEN, ARUNA BALASUBRAMANIAN, ERIC YUAN, ANTHONY LAMARCA, D. W.

Improving Power Efficiency Using Sensor Hubs Without Re-Coding Mobile Apps. Tech. rep.

[56] HUANG, Y., AND GARCIA-MOLINA, H. Publish/subscribe tree construction in wireless ad-

hoc networks. In MDM ’03: Proceedings of the 4th International Conference on Mobile Data

Management (London, UK, 2003), Springer-Verlag, pp. 122–140.

[57] HUANG, Y., AND GARCIA-MOLINA, H. Publish/subscribe in a mobile environment. vol. 10,

Kluwer Academic Publishers, pp. 643–652.

[58] HUMPHREYS, L. Mobile social networks and social practice: A case study of dodgeball. J.

Computer-Mediated Communication 13, 1 (2007), 341–360.

147

[59] J.-F., C., AND G., L. A tabu search heuristic for the static multi-vehicle dial-a-ride problem.

Transportation Research Part B: Methodological 37, 6 (2003), 579–594.

[60] JOSANG, A., AND ISMAIL, R. The beta reputation system. In Proceedings of the 15th Bled

Electronic Commerce Conference (2002), vol. 160, Citeseer, p. 324?37.

[61] JOSANG, A., KESER, C., AND DIMITRAKOS, T. Can we manage trust? In Proceedings of the

Third International Conference on Trust Management (iTrust), Versailes (2005), Springer-Verlag,

pp. 93–107.

[62] KAMAR, E., AND HORVITZ, E. Collaboration and shared plans in the open world: studies of

ridesharing. In Proceedings of the 21st international jont conference on Artifical intelligence (San

Francisco, CA, USA, 2009), IJCAI’09, Morgan Kaufmann Publishers Inc., pp. 187–194.

[63] KWAPISZ, J., WEISS, G., AND MOORE, S. Activity recognition using cell phone

accelerometers. ACM SIGKDD Explorations Newsletter 12, 2 (2011), 74–82.

[64] LAI, C., CHANG, H., AND LU, C. C. A secure anonymous key mechanism for privacy

protection in vanet. In Intelligent Transport Systems Telecommunications,(ITST),2009 9th

International Conference on (oct. 2009), pp. 635 –640.

[65] LALOS, P., KORRES, A., DATSIKAS, C. K., TOMBRAS, G. S., AND PEPPAS, K. A framework

for dynamic car and taxi pools with the use of positioning systems. In Proceedings of the 2009

Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content,

Patterns (Washington, DC, USA, 2009), COMPUTATIONWORLD ’09, IEEE Computer Society,

pp. 385–391.

[66] LEE, U., ZHOU, B., GERLA, M., MAGISTRETTI, E., BELLAVISTA, P., AND CORRADI, A.

Mobeyes: smart mobs for urban monitoring with a vehicular sensor network. Wireless

Communications, IEEE 13, 5 (october 2006), 52 –57.

[67] LEIDNER, J. L. Toponym resolution in text (abstract only): "which sheffield is it?". In

Proceedings of the 27th annual international ACM SIGIR conference on Research and

development in information retrieval (New York, NY, USA, 2004), SIGIR ’04, ACM, pp. 602–

602.

[68] LIEBERMAN, M. D., AND SAMET, H. Multifaceted toponym recognition for streaming news.

In Proceedings of the 34th international ACM SIGIR conference on Research and development in

Information Retrieval (New York, NY, USA, 2011), SIGIR ’11, ACM, pp. 843–852.

[69] LIEBERMAN, M. D., SAMET, H., SANKARANARAYANAN, J., AND SPERLING, J. Steward:

architecture of a spatio-textual search engine. In Proceedings of the 15th annual ACM international

symposium on Advances in geographic information systems (New York, NY, USA, 2007), GIS ’07,

ACM, pp. 25:1–25:8.

[70] LIU, S., LIU, Y., NI, L. M., FAN, J., AND LI, M. Towards mobility-based clustering. In

Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining (New York, NY, USA, 2010), KDD ’10, ACM, pp. 919–928.

148

[71] LIU, Z., JOY, A., AND THOMPSON, R. A dynamic trust model for mobile ad hoc networks.

In Distributed Computing Systems, 2004. FTDCS 2004. Proceedings. 10th IEEE International

Workshop on Future Trends of (may 2004), pp. 80 – 85.

[72] LOZANO, A., AND STORCHI, G. Shortest viable path algorithm in multimodal networks.

Transportation Research Part A: Policy and Practice 35, 3 (2001), 225 – 241.

[73] LU, J.-L., YEH, M.-Y., HSU, Y.-C., YANG, S.-N., GAN, C.-H., AND CHEN, M.-S. Operating

electric taxi fleets: A new dispatching strategy with charging plans. In Electric Vehicle Conference

(IEVC), 2012 IEEE International (march 2012), pp. 1 –8.

[74] MA, S., AND WOLFSON, O. Analysis and Evaluation of the Slugging Form of Ridesharing.

Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (2013).

[75] MA, S., WOLFSON, O., AND LIN, J. Iip: an event-based platform for its applications. In

Proceedings of the Second International Workshop on Computational Transportation Science

(New York, NY, USA, 2010), ACM, pp. 1–6.

[76] MA, S., WOLFSON, O., AND LIN, J. A survey on trust management for intelligent

transportation system. In Proceedings of the 4th ACM SIGSPATIAL International Workshop on

Computational Transportation Science (New York, NY, USA, 2011), ACM, pp. 18–23.

[77] MA, S., ZHENG, Y., AND WOLFSON, O. T-share: A large-scale dynamic ridesharing service.

In Proceedings of the 29th IEEE International Conference on Data Engineering (2013).

[78] MA, S., ZHENG, Y., AND WOLFSON, O. Real-time city-scale taxi ridesharing. IEEE

Transactions on Knowledge and Data Engineering 99, PrePrints (2014), 1.

[79] MASNADI-SHIRAZI, H., AND VASCONCELOS, N. Cost-sensitive boosting. IEEE

transactions on pattern analysis and machine intelligence 33, 2 (Feb. 2011), 294–309.

[80] MATHUR, S., AND JIN, T. Parknet: drive-by sensing of road-side parking statistics.

Proceedings of the 8th international conference on Mobile systems, applications, and services

(2010).

[81] MEIER, R., AND CAHILL, V. Steam: Event-based middleware for wireless ad hoc networks.

vol. 0, IEEE Computer Society, p. 639.

[82] MILUZZO, E., LANE, N. D., FODOR, K., PETERSON, R., LU, H., MUSOLESI, M., EISENMAN,

S. B., ZHENG, X., AND CAMPBELL, A. T. Sensing meets mobile social networks: the design,

implementation and evaluation of the cenceme application. In Proceedings of the 6th ACM

conference on Embedded network sensor systems (New York, NY, USA, 2008), SenSys ’08, ACM,

pp. 337–350.

[83] MUN, M., ESTRIN, D., BURKE, J., AND HANSEN, M. Parsimonious mobility classification

using GSM and WiFi traces. Proceedings of the 5th Workshop on Embedded Networked Sensors

(2008), 1–5.

149

[84] NAWAZ, S., EFSTRATIOU, C., AND MASCOLO, C. ParkSense: A Smartphone Based Sensing

System For On-Street Parking. In Proceedings of the 19th ACM International Conference on

Mobile Computing and Networking (MOBICOM 2013) (2013).

[85] OUKSEL, A., AND LUNDQUIST, D. Demand-driven publish/subscribe in mobile

environments. Wireless Networks 16 (2010), 2237–2261.

[86] P. D’OREY, R. FERNANDES, M. F. Empirical evaluation of a dynamic and distributed taxi-

sharing system. In IEEE Conf. on Intelligent Transportation Systems (sept. 2010), vol. 1, pp. 1–6.

[87] PARRAGH, S. N., DOERNER, K. F., AND HARTL, R. F. Variable neighborhood search for the

dial-a-ride problem. Comput. Oper. Res. 37, 6 (June 2010), 1129–1138.

[88] PATWARDHAN, A., JOSHI, A., FININ, T., AND YESHA, Y. A data intensive reputation

management scheme for vehicular ad hoc networks. In Mobile and Ubiquitous Systems:

Networking Services, 2006 Third Annual International Conference on (2006), pp. 1 –8.

[89] PERICH, F., JOSHI, A., FININ, T., AND YESHA, Y. On data management in pervasive

computing environments. IEEE Transactions on Knowledge and Data Engineering 16 (2004),

621–634.

[90] PO-YU CHEN, JE-WEI LIU, W.-T. C. A fuel-saving and pollution-reducing dynamic taxi-

sharing protocol in vanets. In Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE

72nd (sept. 2010), pp. 1–5.

[91] RABABAAH, A. Event Detection, Classification And Fusion For Non-Stationary Vehicular

Acoustic Signals. International Journal of Science of Informatics 1, 1 (2011), 9–20.

[92] RASMUSSON, L., AND JANSON, S. Simulated social control for secure internet commerce.

ACM Press, pp. 18–26.

[93] RAVI, N., DANDEKAR, N., MYSORE, P., AND LITTMAN, M. Activity recognition from

accelerometer data. AAAI (2005).

[94] RAYA, M., AND HUBAUX, J.-P. Securing vehicular ad hoc networks. vol. 15, IOS Press,

pp. 39–68.

[95] RAYA, M., PAPADIMITRATOS, P., GLIGOR, V., AND HUBAUX, J.-P. On data-centric trust

establishment in ephemeral ad hoc networks. In INFOCOM 2008. The 27th Conference on

Computer Communications. IEEE (2008), pp. 1238 –1246.

[96] REDDY, S., MUN, M., BURKE, J., AND ESTRIN, D. Using mobile phones to determine

transportation modes. ACM Transactions on Sensor Networks (TOSN) 6, 2 (Feb. 2010), 1–27.

[97] RESNICK, P., AND ZECKHAUSER, R. Trust Among Strangers in Internet Transactions:

Empirical Analysis of eBay’s Reputation System. Elsevier Science, Nov. 2002.

150

[98] REZENDE, C. G., ROCHA, B. P. S., AND LOUREIRO, A. A. F. Publish/subscribe architecture

for mobile ad hoc networks. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied

computing (New York, NY, USA, 2008), ACM, pp. 1913–1917.

[99] SAILHAN, F., AND ISSARNY, V. Energy-aware web caching for mobile terminals. In in

Proceedings of the CDCS Workshop on Web Caching Systems (2002), pp. http://www–rocq.inri.

[100] SANTANI, D., BALAN, R. K., AND WOODARD, C. J. Spatio-temporal efficiency in a taxi

dispatch system. Tech. rep., School of Information Systems, Singapore Management University,

October 2007.

[101] SAVELSBERGH, M. W. P. Local search in routing problems with time windows. Annals of

Operations Research 4 (1985), 285–305.

[102] SHOUP, D. The High Cost of Free Parking. American Planning Association, 2005.

[103] SIVAHARAN, T., BLAIR, G., AND COULSON, G. Green: A configurable and re-configurable

publish-subscribe middleware for pervasive computing. In On the Move to Meaningful Internet

Systems 2005: CoopIS, DOA, and ODBASE (2005), R. Meersman and Z. Tari, Eds., vol. 3760 of

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp. 732–749.

10.1007/11575771_46.

[104] STENNETH, L., WOLFSON, O., XU, B., AND YU, P. S. PhonePark: Street Parking Using

Mobile Phones. 2012 IEEE 13th International Conference on Mobile Data Management (July

2012), 278–279.

[105] STENNETH, L., WOLFSON, O., YU, P. S., XU, B., AND MORGAN, S. Transportation Mode

Detection using Mobile Phones and GIS Information. Proceedings of the 19th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems (2011).

[106] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. Chord:

A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications (New York, NY, USA, 2001), SIGCOMM ’01, ACM, pp. 149–160.

[107] TAO, C.-C. Dynamic taxi-sharing service using intelligent transportation system

technologies. In Wireless Communications, Networking and Mobile Computing, 2007. WiCom

2007. International Conference on (sept. 2007), pp. 3209 –3212.

[108] TRIANTAFILLOU, P., AND AEKATERINIDIS, I. Content-based publish/- subscribe over

structured p2p networks. In In DEBS (2004).

[109] TSUBOUCHI, K., HIEKATA, K., AND YAMATO, H. Scheduling algorithm for on-demand bus

system. In Information Technology: New Generations, 2009. ITNG ’09. Sixth International

Conference on (april 2009), pp. 189 –194.

[110] TULYAKOV, S., AND JAEGER, S. Review of classifier combination methods. Machine

Learning in Document Analysis and Recognition, Figure 1 (2008), 1–26.

151

[111] UMAR MINHAS, JIE ZHANG, T. T., AND COHEN, R. Towards expanded trust management

for agents in vehicular ad-hoc networks. vol. 5, International Journal of Computational Intelligence:

Theory and Practice (IJCITP).

[112] VARRIALE, R., MA, S., AND WOLFSON, O. Vtis: A volunteered travelers information system.

In Proceedings of the Sixth ACM SIGSPATIAL International Workshop on Computational

Transportation Science (New York, NY, USA, 2013), IWCTS ’13, ACM, pp. 13:13–13:18.

[113] WANG, Y., LIN, J., AND ANNAVARAM, M. A framework of energy efficient mobile sensing

for automatic user state recognition. Proceedings of the 7th international conference on Mobile

systems, applications, and services (2009).

[114] WEX, P., BREUER, J., HELD, A., LEINMULLER, T., AND DELGROSSI, L. Trust issues for

vehicular ad hoc networks. In Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE

(May 2008), pp. 2800 –2804.

[115] WOLFSON, O., SISTLA, A. P., XU, B., ZHOU, J., CHAMBERLAIN, S., YESHA, Y., AND RISHE,

N. Tracking moving objects using database technology in domino. In Proceedings of the 4th

International Workshop on Next Generation Information Technologies and Systems (London, UK,

UK, 1999), NGIT ’99, Springer-Verlag, pp. 112–119.

[116] WOLFSON, O., XU, B., AND CHO, H. J. Multimedia traffic information in vehicular

networks. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems (New York, NY, USA, 2009), GIS ’09, ACM, pp. 480–483.

[117] WONG, K. I., BELL, AND MICHAEL, G. H. Solution of the dial-a-ride problem with multi-

dimensional capacity constraints. International Transactions in Operational Research 13, 3 (May

2006), 195–208.

[118] XIANG, Z., CHU, C., AND CHEN, H. A fast heuristic for solving a large-scale static dial-a-

ride problem under complex constraints. European Journal of Operational Research 174, 2 (2006),

1117 – 1139.

[119] XU, B., WOLFSON, O., YANG, J., AND STENNETH, L. Real-time Street Parking Availability

Estimation. MDM 13: Proceedings of the 14th International Conference on Mobile Data

Management.

[120] YAMAMOTO, K., UESUGI, K., AND WATANABE, T. Adaptive routing of cruising taxis by

mutual exchange of pathways. In Proceedings of the 12th international conference on Knowledge-

Based Intelligent Information and Engineering Systems, Part II (Berlin, Heidelberg, 2008),

KES ’08, Springer-Verlag, pp. 559–566.

[121] YUAN, J., ZHENG, Y., XIE, X., AND SUN, G. Driving with knowledge from the physical

world. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining (New York, NY, USA, 2011), KDD ’11, ACM, pp. 316–324.

[122] YUAN, J., ZHENG, Y., ZHANG, C., XIE, W., XIE, X., SUN, G., AND HUANG, Y. T-drive:

driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL International

152

Conference on Advances in Geographic Information Systems (New York, NY, USA, 2010),

GIS ’10, ACM, pp. 99–108.

[123] YUAN, J., ZHENG, Y., ZHANG, C., XIE, X., AND SUN, G.-Z. An interactive-voting based map

matching algorithm. In Proceedings of the 2010 Eleventh International Conference on Mobile Data

Management (Washington, DC, USA, 2010), MDM ’10, IEEE Computer Society, pp. 43–52.

[124] YUAN, J., ZHENG, Y., ZHANG, L., XIE, X., AND SUN, G. Where to find my next passenger.

In Proceedings of the 13th international conference on Ubiquitous computing (New York, NY,

USA, 2011), UbiComp ’11, ACM, pp. 109–118.

[125] ZHANG, L., TIWANA, B., QIAN, Z., AND WANG, Z. Accurate online power estimation and

automatic battery behavior based power model generation for smartphones. Proceedings of the

eighth IEEE/ACM/IFIP international conference on Hardware/software codesign and system

synthesis (2010).

[126] ZHANG, Y., HULL, B., BALAKRISHNAN, H., AND MADDEN, S. ICEDB: Intermittently-

Connected Continuous Query Processing. In International Conference on Data Engineering (ICDE)

(Istanbul, Turkey, April 2007).

[127] ZHANG, Y., ZHAO, J., AND CAO, G. Roadcast: a popularity aware content sharing scheme

in vanets. In In IEEE ICDCS (2009), pp. 223–230.

[128] ZHAO, Y., STURMAN, D., AND BHOLA, S. Subscription propagation in highly-available

publish/subscribe middleware. In Proceedings of the 5th ACM/IFIP/USENIX international

conference on Middleware (New York, NY, USA, 2004), Middleware ’04, Springer-Verlag New

York, Inc., pp. 274–293.

[129] ZHENG, Y., LI, Q., CHEN, Y., XIE, X., AND MA, W.-Y. Understanding Mobility Based on

GPS Data. Proceedings of the 10th international conference on Ubiquitous computing, 49 (2008).

[130] ZHENG, Y., LIU, L., WANG, L., AND XIE, X. Learning transportation mode from raw gps

data for geographic applications on the web. Proceedings of the 17th international conference on

World Wide Web, 49 (2008).

[131] ZHONG, S., CHEN, J., AND YANG, Y. Sprite: a simple, cheat-proof, credit-based system for

mobile ad-hoc networks. In INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications. IEEE Societies (march-3 april 2003), vol. 3, pp. 1987 – 1997 vol.3.

153

VITA

SHUO MA

EDUCATION

University of Illinois at Chicago Summer 2014
Doctorate in Computer Science GPA: 4.0/4.0

Beijing University of Posts and Telecommunications 09/2004-06/2008

Bachelor in Computer Science GPA: 88/100

RESEARCH EXPERIENCE

Here.com, A Nokia Business 12/2013-05/2014

Research Intern

 Big data analysis: investigate the correlation between the quality of predicated traffic and the

amount of GPS probe data that are used to predict traffic

Microsoft Research Asia Beijing, China 05/2012-12/2012

Research Intern

 Developed a real-time city-scale taxi ridesharing system. The core of the system includes an

index structure which facilitates fast searching for taxi candidates and a route scheduling

algorithm. The output of this project includes a publication at ICDE’13 which won the Best

Paper Runner-up Award and a demo that is developed using Microsoft Silverlight and WCF.

Department of Computer Science, University of Illinois at Chicago 08/2008-Present

Research/Teaching Assistant

 Developed an Android App that automatically detects parking/unparking activities using

smartphone sensors

 Analyzed and evaluated the slugging form of ridesharing

 Developed a crowd-sourcing Twitter-based real-time travel information notification

application. As a result, an Android APP named Volunteer Travel Information (VTI) was

published to the Google Play platform. For more information about VTI, please visit

http://cs.uic.edu/~sma/VTI.

 Developed a general information platform for Intelligent Transportation System applications.

 TAed a broad range of courses such as programming, data structures, algorithms, automata,

software engineering, databases (please see here for a comprehensive list). Responsibilities

include leading lab sessions, lecturing discussion classes, designing homework, designing

exams and quizzes, grading, etc.

http://www.cs.uic.edu/~sma/Papers/slugging_sigspatial_camery_ready.pdf
http://cs.uic.edu/~sma/VTI
http://www.cs.uic.edu/~sma/#Teaching_Assitant

154

Department of Urban Planning and Policy, University of Illinois at Chicago 05/2013-12/2013

Research Assistant

 Developed a Javascript powered interactive map application which visualizes the

environmental impact of railways to the neighboring areas.

Beijing University of Posts and Telecommunications Beijing, China 09/2007-06/2008
 State Key Laboratory of Network and Technology

Research Assistant

 Performed unit testing for a software which automatically detects bugs in Java programs.

 Developed a service management platform for the broadcasting and television system using

LAMP architecture.

AWARDS

Best Paper Runner-up Award, 29th IEEE International Conference on Data Engineering 04/2013

NSF Travel Grant Award, ACM SIGSPATIAL’13 09/2013

Outstanding Teaching Assistant Award, Dept. of Computer Science, UIC 06/2010

First Class Scholarship, Beijing University of Post and Telecommunications 2004-2008

First Class Prize of National Collegiate Physics Competition 12/2005

SOFTWARE

 UPDector (Android App): Sensing Parking/Unparking activities using smartphones

 Volunteer Traveler Information System (Android App) http://www.cs.uic.edu/~sma/VTI/

 Taxi Ridesharing Simulator http://www.cs.uic.edu/~sma/ridesharing/

PUBLICATIONS

 Ma, S., Wolfson, O., Xu, B. “UPDetector: Sensing Unparking/Parking Activities Using

Smartphones”. Submitted to ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems, 2014.

 Ma, S., Zheng, Y., and Wolfson, O. “Real-time City-Scale Taxi Ridesharing”. Accepted,
IEEE Transactions on Knowledge and Data Engineering.

 Ma, S., Wolfson, O. “Analysis and Evaluation of the Slugging Form of Ridesharing”.
Proceedings of the 21th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, 2013. (acceptance rate: 39/228=17.0%)

 Varriale, R., Ma, S. Wolfson, O. “VTIS: A Volunteered Travelers Information System”.
Proceedings of the 6th ACM SIGSPATIAL International Workshop on Computational Transportation

Science , IWCTS ’13

 Ma, S., Zheng, Y., and Wolfson, O. “T-share: A large-scale dynamic ridesharing service”.
Proceedings of the 29th IEEE International Conference on Data Engineering (2013), ICDE’13. Best

Paper Runner-up Award (3 out of 460 submissions).

 Ma, S., Wolfson, O., and Lin, J. “A survey on trust management for intelligent transportation

system”. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Computational

Transportation Science (New York, NY, USA, 2011), IWCTS ’11, ACM, pp.18–23.

http://www.cs.uic.edu/~sma/VTI/
http://www.cs.uic.edu/~sma/ridesharing/
http://www.cs.uic.edu/~sma/Papers/VTI_camera_ready.pdf

155

 Ma, S., Wolfson, O., and Lin, J. “IIP: an event-based platform for its applications”.
Proceedings of the Second International Workshop on Computational Transportation Science (New

York, NY, USA, 2010), IWCTS ’10, ACM, pp.1–6.

156

APPENDIX A: Rightslink Terms and Conditions for ACM Material

1. The publisher of this copyrighted material is Association for Computing Machinery, Inc. (ACM).

By clicking "accept" in connection with completing this licensing transaction, you agree that the

following terms and conditions apply to this transaction (along with the Billing and Payment terms

and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you

opened your Rightslink account and that are available at any time at).

2. ACM reserves all rights not specifically granted in the combination of (i) the license details

provided by you and accepted in the course of this licensing transaction, (ii) these terms and

conditions and (iii) CCC's Billing and Payment terms and conditions.

3. ACM hereby grants to licensee a non-exclusive license to use or republish this ACM-copyrighted

material* in secondary works (especially for commercial distribution) with the stipulation that

consent of the lead author has been obtained independently. Unless otherwise stipulated in a

license, grants are for one-time use in a single edition of the work, only with a maximum

distribution equal to the number that you identified in the licensing process. Any additional form

of republication must be specified according to the terms included at the time of licensing.

*Please note that ACM cannot grant republication or distribution licenses for embedded third-

party material. You must confirm the ownership of figures, drawings and artwork prior to use.

4. Any form of republication or redistribution must be used within 180 days from the date stated

on the license and any electronic posting is limited to a period of six months unless an extended

term is selected during the licensing process. Separate subsidiary and subsequent republication

licenses must be purchased to redistribute copyrighted material on an extranet. These licenses may

be exercised anywhere in the world.

5. Licensee may not alter or modify the material in any manner (except that you may use, within

the scope of the license granted, one or more excerpts from the copyrighted material, provided that

157

the process of excerpting does not alter the meaning of the material or in any way reflect negatively

on the publisher or any writer of the material).

6. Licensee must include the following copyright and permission notice in connection with any

reproduction of the licensed material: "[Citation] © YEAR Association for Computing Machinery,

Inc. Reprinted by permission." Include the article DOI as a link to the definitive version in the ACM

Digital Library. Example: Charles, L. "How to Improve Digital Rights Management,"

Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.

http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual

number).

7. Translation of the material in any language requires an explicit license identified during the

licensing process. Due to the error-prone nature of language translations, Licensee must include

the following copyright and permission notice and disclaimer in connection with any reproduction

of the licensed material in translation: "This translation is a derivative of ACM-copyrighted

material. ACM did not prepare this translation and does not guarantee that it is an accurate copy of

the originally published work. The original intellectual property contained in this work remains the

property of ACM."

8. You may exercise the rights licensed immediately upon issuance of the license at the end of the

licensing transaction, provided that you have disclosed complete and accurate details of your

proposed use. No license is finally effective unless and until full payment is received from you

(either by CCC or ACM) as provided in CCC's Billing and Payment terms and conditions.

9. If full payment is not received within 90 days from the grant of license transaction, then any

license preliminarily granted shall be deemed automatically revoked and shall be void as if never

granted. Further, in the event that you breach any of these terms and conditions or any of CCC's

Billing and Payment terms and conditions, the license is automatically revoked and shall be void

as if never granted.

158

10. Use of materials as described in a revoked license, as well as any use of the materials beyond

the scope of an unrevoked license, may constitute copyright infringement and publisher reserves

the right to take any and all action to protect its copyright in the materials.

11. ACM makes no representations or warranties with respect to the licensed material and adopts

on its own behalf the limitations and disclaimers established by CCC on its behalf in its Billing and

Payment terms and conditions for this licensing transaction.

12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective officers,

directors, employees and agents, from and against any and all claims arising out of your use of the

licensed material other than as specifically authorized pursuant to this license.

13. This license is personal to the requestor and may not be sublicensed, assigned, or transferred

by you to any other person without publisher's written permission.

14. This license may not be amended except in a writing signed by both parties (or, in the case of

ACM, by CCC on its behalf).

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment, check

endorsement or other writing prepared by you, which terms are inconsistent with these terms and

conditions or CCC's Billing and Payment terms and conditions. These terms and conditions,

together with CCC's Billing and Payment terms and conditions (which are incorporated herein),

comprise the entire agreement between you and ACM (and CCC) concerning this licensing

transaction. In the event of any conflict between your obligations established by these terms and

conditions and those established by CCC's Billing and Payment terms and conditions, these terms

and conditions shall control.

16. This license transaction shall be governed by and construed in accordance with the laws of New

York State. You hereby agree to submit to the jurisdiction of the federal and state courts located in

New York for purposes of resolving any disputes that may arise in connection with this licensing

transaction.

159

17. There are additional terms and conditions, established by Copyright Clearance Center, Inc.

("CCC") as the administrator of this licensing service that relate to billing and payment for licenses

provided through this service. Those terms and conditions apply to each transaction as if they were

restated here. As a user of this service, you agreed to those terms and conditions at the time that

you established your account, and you may see them again at any time at

http://myaccount.copyright.com

18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is not a

fee for permission. Further reuse of ACM content, by ProQuest/UMI or other document delivery

providers, or in republication requires a separate permission license and fee. Commercial resellers

of your dissertation containing this article must acquire a separate license.

	Chapter 1
	1.1 Introduction
	1.2 Architecture and Components
	1.3 Primitives for Information System for ITS
	1.3.1 The Event Schema Registry
	1.3.1.1 The register Primitive
	1.3.1.2 The lookup Primitive

	1.3.2 The Event Broker
	1.3.2.1 The publish Primitive
	1.3.2.2 The subscribe/unsubscribe Primitive
	1.3.2.3 The announce Primitive
	1.3.2.4 Implementation of the Event Broker

	1.4 Related Work
	1.5 Discussion

	Chapter 2
	2.1 Introduction
	2.2 Concepts of Trust Management
	2.2.1 Trust Metrics
	2.2.2 Potential Attacks

	2.3 Survey on Trust Management for ITS
	2.3.1 A Novel Trust Management Scheme
	2.3.2 Opinion Inquiring
	2.3.3 Passive Majority Consensus
	2.3.4 Data Fusion Dependent
	2.3.5 Position Verification
	2.3.6 Collusion Attacks Prevention

	2.4 Discussion

	Chapter 3
	3.1 Introduction
	3.1.1 Background
	3.1.2 Motivation
	3.1.3 Technical Challenge
	3.1.4 Contribution

	3.2 Related Works
	3.2.1 Taxi Recommender and Dispatching Systems
	3.2.2 Dial A Ride Problem (DARP) and Its Applying Heuristics
	3.2.3 Real-time Taxi-sharing

	3.3 Problem Definition
	3.3.1 Data Model
	3.3.2 Constraints
	3.3.3 Objective function and Problem Definition

	3.4 System Architecture
	3.5 Taxi Searching
	3.5.1 Index of Taxis
	3.5.2 Taxi Searching Algorithms

	3.6 Taxi Scheduling
	3.6.1 Time Window Constraints
	3.6.2 Monetary Constraints

	3.7 Pickup and Drop-off Interactions
	3.8 Experiments
	3.8.1 Setting
	3.8.1.1 Data Set
	3.8.1.2 Experimental Platform
	3.8.1.3 Framework
	3.8.1.4 Baseline Methods
	3.8.1.5 Measurements

	3.8.2 Results

	3.9 Discussion

	Chapter 4
	4.1 Introduction
	4.2 Related Works
	4.2.1 Taxi Ridesharing
	4.2.2 Carpooling
	4.2.3 Dial-A-Ride Problem (DARP)

	4.3 Slugging
	4.3.1 Preliminaries
	4.3.2 Basic Slugging Problem
	4.3.3 Capacitated Slugging
	4.3.3.1 A special case of CSP

	4.3.4 Delay-Bounded Slugging
	4.3.5 Delay Bounded and Capacitated Slugging and Its Heuristics
	4.3.6 Dynamic Slugging

	4.4 Evaluation
	4.4.1 Setting
	4.4.2 Upper Bound on the DBCSP
	4.4.3 DBCSP With Varying Travel Delay
	4.4.4 DBCSP with Varying Vehicle Capacity
	4.4.5 Dynamic DBCSP

	4.5 Discussion

	Chapter 5
	5.1 Introduction
	5.2 Related Work
	5.2.1 Publish/Subscribe
	5.2.2 Toponym Recognition and Information Extraction
	5.2.3 Route Planer
	5.2.4 Data Trust in Intelligent Transportation System and Internet
	5.2.5 Reports Prioritizing
	5.2.6 Incentive Mechanism

	5.3 Architecture
	5.4 Implementation
	5.4.1 Integration with Twitter
	5.4.2 Publication and Subscription Format
	5.4.3 Evaluation of the Prototype

	Chapter 6
	6.1 Introduction
	6.2 Indicators and Indicator Fusion
	6.2.1 Preliminaries on Indicators
	6.2.2 Periodical and Triggered Indicators
	6.2.3 Indicator Fusion
	6.2.3.1 Proposed Fusion Method
	a) Localization Process
	b) Calculation of 𝑷(𝑿|,𝑶-𝒊.)
	c) Estimating 𝑷(,𝑶-𝒊.)’s
	6.2.3.2 Reinforcement Property

	6.3 Implementation of Individual Indicators
	6.3.1 Change-In-Variance (CIV) Indicator
	6.3.1.1 Preliminaries on Accelerometer
	6.3.1.2 Features of the CIV Indicator

	6.3.2 Bluetooth Indicator
	6.3.3 Motion State Transition Indicator
	6.3.4 Acoustic Indicators

	6.4 Evaluation
	6.4.1 Experimental Methodology
	6.4.1.1 Mobile App Implementation
	6.4.1.2 Data Collection
	6.4.1.3 Detection Methods
	6.4.1.4 Matching Detected Activities with the Ground Truth
	6.4.1.5 Performance Measures

	6.4.2 Evaluation Results
	6.4.2.1 Detection Accuracy and the Delay
	6.4.2.2 Energy consumption

	6.5 Related Work
	6.5.1 Parking Spaces Detection
	6.5.2 Activity Recognition
	6.5.3 Classifier Fusion

	6.6 Discussion

