
Design and Development of a Probabilistic Framework for Automatic

Software Fault Localization

BY

DAVIDE PAGANO
B.S., Politecnico di Milano, 2013

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2016

Chicago, Illinois

Defense Committee:

Mark Grechanik, Chair and Advisor

Angus Forbes

Carlo Ghezzi, Politecnico di Milano

To My Family, for supporting me during Life.

ii

ACKNOWLEDGMENTS

My sincere thanks goes to my advisor, Dr. Mark Grechanik, for offering me the opportunity

to work on this project and for his support, motivation, and immense knowledge. I could not

have imagined having a better advisor and mentor.

My sincere thanks also goes to Yiji Zhang, that collaborated with me through the design

and implementation of our solutions. Her energy and insights helped me in all the time of

research.

Last but not the least, I would like to thank my family for supporting me since I was a child

and for providing me the best possible life.

DP

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 OVERVIEW . 1

2 THE PROBLEM STATEMENT . 3

3 OVERVIEW OF AUTOMATIC SOFTWARE FAULT LOCALI-
SATION APPROACHES . 5

4 BACKGROUND AND RELATED WORK 8

5 AN ILLUSTRATIVE EXAMPLE OF LOCALIZING SOFTWARE
FAULTS . 12
5.0.1 Execution . 13
5.0.2 PGM Weights . 19
5.0.3 Markov Logic Network . 21
5.0.4 Use case 1 . 23
5.0.5 Use case 2 . 27

6 α5 MAIN IDEA . 30

7 HIGH-LEVEL OVERVIEW OF α5 . 33
7.1 The Architecture And Workflow of α5 34
7.2 Modeling Faults With Markov Logic Networks 37
7.3 Using Differential Diagnosis to Improve Fault Localisation . . 39

8 α5 TECHNICAL WORKFLOW . 41
8.1 Phase 1: Mutation . 41
8.1.1 Taming complexity . 42
8.1.2 Technical Issues . 43
8.2 Phase 2 & 3: Instrumentation & Execution 47
8.2.1 Taming complexity . 49
8.2.2 Technical Issues . 51
8.3 Phase 4 & 5: Differential Execution Analysis & Markov Logic

Network Generation . 52

9 VALIDATION . 57
9.1 Java Syntax Checking . 57
9.2 Subject applications selection 57

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

10 RESULTS . 61
10.1 Performance experiments . 61
10.1.1 Mutants number . 72
10.1.2 Degree of parallelism . 76
10.2 ’Real world’ experiments . 84

11 FUTURE WORKS . 87
11.1 Improving Effectiveness of the Sensitivity Analysis 88

APPENDICES . 92
Appendix A . 93

CITED LITERATURE . 95

VITA . 137

v

LIST OF TABLES

TABLE PAGE

I AUT EXECUTED WITH INPUTS (0,-1) 14

II AUT EXECUTED WITH INPUTS (0,0) 15

III AUT EXECUTED WITH INPUTS (0,1) 16

IV AUT EXECUTED WITH INPUTS (1,-1) 17

V AUT EXECUTED WITH INPUTS (1,0) 18

VI AUT EXECUTED WITH INPUTS (1,1) 18

VII OCCURRENCES OF PREDICATES DURING EXECUTION PHASE 20

VIII OCCURRENCES OF PREDICATES AT THE SAME TIME 20

IX CONDITIONAL LIKELIHOOD (LH) FOR EACH COUPLE OF
PREDICATES . 21

X RULES USED FOR MLN . 23

XI REPOSITORIES STATISTICS . 60

XII EXPERIMENTS RESULT FOR AGPS 63

XIII MUTANTS PRODUCED FOR AGPS 73

XIV CLASS MUTANTS PRODUCED FOR DIFFERENT AGPS 74

XV TRADITIONAL MUTANTS PRODUCED FOR DIFFERENT AGPS 75

XVI PERFORMANCES TRADE-OFF ON VARIATION OF THREAD
NUMBERS . 77

XVII BUGS DESCRIPTION FOR REPOSITORIES USED 85

XIX OPENJAVA ERRORS USING DIFFERENT VERSIONS 86

vi

LIST OF FIGURES

FIGURE PAGE

1 Grounded PGM . 22

2 User reports Diff(7) . 24

3 !timeout() is chosen as next node after updating LHs 25

4 loop() is chosen as next node after updating LHs 26

5 Mutant 1 is suggested as location to investigate to fix the bug. 27

6 User reports Diff(7) and Diff(8) . 28

7 !loop() is chosen as next node and LHs are updated 29

8 Mutant 2 is suggested as location to investigate to fix the bug. 29

9 A workflow for localizing production faults with α5. 31

10 The architecture and workflow of α5. 35

11 A simple control flow diagram. 44

12 α5 process visualized. 53

13 Simplified decision tree for features to select during the inference process. 56

14 A result screen from the script to extract repositories 59

15 Mutation phase results . 64

16 Instrumentation phase results . 65

17 Inference phase results discarding the 100K AGP 66

18 Execution phase results . 67

19 Differential Execution Analysis phase results 68

vii

LIST OF FIGURES (continued)

FIGURE PAGE

20 Inference phase results . 69

21 Time performances of the whole process (including the 100K AGP). . . 70

22 Time performances of the whole process (excluding the 100K AGP). . . 71

23 Total number of mutants produced . 73

24 Memory Utilization during execution with 100 thread 78

25 Memory Utilization during execution with 500 thread 79

26 Memory Utilization during execution with 1,000 thread 80

27 Memory Utilization during execution with 100 thread 81

28 Memory Utilization during execution with 500 thread 82

29 Memory Utilization during execution with 1,000 thread 83

viii

LIST OF ABBREVIATIONS

JDK Java Development Kit

AUT Application Under Test

MLN Markov Logic Network

OJ OpenJava

API Application Program Interface

JAR Java Archive

CIT Combinatorial Interaction Testing

XML EXtensible Markup Language

YAML YAML Ain’t Markup Language

AST Abstract Syntax Tree

JDT Eclipse Java development tools

SD Statistical Debugging

SBFL Spectrum-Based Fault Localization

MBD Model-Based Diagnosis

SDO Software Developer Organizations

UIC University of Illinois at Chicago

AGP Auto Generated Program

ix

LIST OF ABBREVIATIONS (continued)

PGM Probabilistic Graphical Model

LH Likelihood

x

SUMMARY

Despite large investments in different areas of software engineering, many deployed software

applications fail at some point. Even though most software applications are tested before they

are released to customers, these applications still contain production (or field) functional faults

that result in field failures, which have exorbitant cost and sometimes lead to the loss of human

lives. Existing automatic debugging approaches are rarely applied to localizing production

faults for field failures due to their limitations. The goal of this thesis is therefore to create

a novel theoretical foundation that allows stakeholders to predict and localize faults for field

failures automatically with a high degree of precision using symptoms only (e.g., the sign of the

output value is incorrect) and without instrumenting deployed applications to collect runtime

data, thus avoiding the overhead, and without having any tests with oracles to uncover the fault,

without performing contrasting successful and failed runs, and without collecting runtime data

from field failures. With this theoretical foundation, researchers can collaborate more closely in

planning the future of fault localization by expanding each other’s results based on probabilistic

graphical models as common abstractions.

We propose a novel framework for Automatically Localising Faults For Functional Field

Failures in Applications (ALFFFFFA or α5) that enables stakeholders to enter symptoms of a

failure that occurs during deployment of a given application and the values of the input and

configuration parameters, and α5 will return not only locations in the source code that are

likely to contain specific faults, but also it will show navigation paths from a suggested faults

xi

SUMMARY (continued)

to the failure and it will recommend modifications to the code that can fix these faults. We

created, evaluated and deployed:

• new theories, algorithms and techniques for automatically obtaining probabilistic graph-

ical models that approximate specific fault models for software applications,

• a novel way in which model-based differential diagnoses are used to perform abductive

reasoning to localize production faults given symptoms for field failures,

• a comprehensive experimentation framework for evaluating the algorithms for localizing

production faults in α5.

In addition to localizing production faults, α5 can be used as a broad experimental platform for

creating and testing hypotheses for various software debugging and testing ideas, e.g., for guid-

ing test selection and prioritisation. Broader impacts include advances that enhance the quality

of software applications by enabling stakeholders to quickly localise production functional faults

in deployed software applications and new educational course content. The educational innova-

tion of this project is in developing an integrated approach to teaching by applying probabilistic

graphical models to software engineering problems.

Intellectual Merit involves:

• a novel abstraction that not only enables speculative construction of the predictive fault

model that is specific for every software application, but also it allows stakeholders to

obtain specific information on how a suggested fault results in an error state that propa-

xii

SUMMARY (continued)

gates through the application to cause this field failure. To the best of our knowledge, this

abstraction has never been created and applied to automatic debugging of field failures.

• a novel combination of our abstraction, model-based diagnosis, fault injection and program

analysis and that will lead to practical tools for improving the quality and reducing the

cost of engineering software, and

• new framework α5 developed, evaluated, that will be applied to different open-source and

commercial applications, and made available to the broader community.

xiii

CHAPTER 1

OVERVIEW

Imagine the world where each human has a distinct anatomy and reacts to viruses and

bacteria in ways that are totally different from other humans. The medical science, as we know

it, will cease to exist. When we get sick, we will pray that the medical staff will be able to

understand the nature of our diseases that uniquely affect each individual and ways to cure them,

which will be specific for each human. Does it sound horrible? This is the state of the art, and

very few problems impact people more negatively than field failures, where deployed software

behaves incorrectly. Just like distinct human anatomies would prevent medical professionals

from quickly diagnosing diseases using symptoms, production fault localisation requires a huge

effort from software professionals, since each software application has its own unique structure

and programmers must spend a lot of time to understand it even for smaller applications. Not

only do field failures zap every shred of customer’s confidence in software applications, but also

they cost dearly, sometimes in human lives, since software applications support all aspects of

our lives.

Nevertheless, despite large investments in different areas of software engineering, many

deployed software applications still fail at some point. Even though a majority of software

applications are tested before they are released to customers, these applications contain pro-

duction functional faults that result in field failures [1–3]. Multiple reasons exist why software

1

2

testing is not fully effective at finding all faults [4–8]. It suffices to say that production faults

have exorbitant cost and sometimes lead to the loss of human lives [9].

The cost of finding and fixing a production fault is about 300 times higher than during

requirements and coding phases [10]. Whereas it takes minutes to localize and fix a bug during

unit testing, it often takes days, weeks, or months to localize faults for field failures. The

U.S. average for defect removal efficiency is around 85% with approximately five defects per

function points on average are delivered to customers in applications [6, pages 288-291]. Once a

field failure occurs, customers are highly likely to stop using their buggy software applications

until the fault is fixed and they apply large financial penalties to their Software Developer

Organizations (SDOs) that built these applications. The average downtime costs vary across

industries, from approximately $90,000 per hour in the media sector to about $6.5 million per

hour for large online brokerages, and therefore, field failures cost billions of dollars annually

just to the U.S. economy alone [11].

CHAPTER 2

THE PROBLEM STATEMENT

Ideally, we need an approach for production fault localisation which takes as inputs symp-

toms of a field failure entered by stakeholders, who are notified what statements and what

specific operations and commands in these statements are likely to contain production faults

that cause this failure. Moreover the navigation and control flow paths will be shown from sug-

gested faults to failures. The approach should not require stakeholders to build any additional

tests with oracles to localize faults, and it should not require customers to run the instrumented

application to collect execution traces (different studies show that average performance over-

head of instrumentation is between 30% and 150% [12–14] and call-level only instrumentation

in BugRedux has at least 17% overhead [4]), or to carve large runtime states from the ap-

plication to deliver them to the SDO to reproduce the failure. Instead, this ideal approach

should use a medical analogy of diagnosing human diseases – a patient enters symptoms and

the Model-Based Diagnosis (MBD) system uses its knowledge base and its reasoning engine

to issue specific diagnoses with suggested treatments and analyzes the results of the treatment

to localize problems further. Despite hundreds of different automated debugging approaches,

some of which deal with different aspects of fault localisation for field failures [4, 15–22], none

of them works even remotely similar to this ideal approach.

A problem of localising production faults quickly and without incurring significant cost

is pervasive. Yet, in addition to our findings, the recent investigation by Parnin and Orso

3

4

also reveals that programmers use their intuition instead of relying on automated debugging

tools [23, 24]. Thus, a fundamental problem of automated debugging is how to automatically

localise functional production faults in deployed software applications with a high degree of

precision:

• using only symptoms of the field failures and input values,

• without deploying instrumented applications for customer’s use,

• without collecting any runtime data from the customer,

• without having any tests with oracles,

• without performing successful and failed runs at the customer’s site,

• without collecting large amounts of state information from field failures.

To the best of our knowledge, there is no solution to this big and important problem.

CHAPTER 3

OVERVIEW OF AUTOMATIC SOFTWARE FAULT LOCALISATION

APPROACHES

In software engineering finding root causes of functional failures in software applications

automatically is the main goal [25]. Existing fault-localisation approaches can be roughly di-

vided into three categories: Spectrum-Based Fault Localization (SBFL), Statistical Debugging

(SD) and Model-Based Diagnosis (MBD) (see detailed analysis of related work in Section 4).

SBFL is a collection of statistical techniques and algorithms for correlating the behaviors of

software applications with their failures by ranking statements with likelihoods of them con-

taining faults [26]. Typically, with SBFL, a test suite is run to collect the Application Under

Test (AUT)’s execution traces for passing and failing tests (i.e., program spectra), and SBFLs

algorithms use this spectra to pinpoint locations of faults in the source code of the AUT with

some degree of accuracy.

SBFL approaches are poorly suited for localising faults for field failures for two main reasons.

First, since SBFL approaches require one or more tests that fail for a production fault, this

fault can be discovered at the SDO and fixed before the application is deployed – hence there

will not be any production faults by definition. Second, it takes a manual and laborious effort

to develop tests that reproduce the field failure, thus increasing the time of finding the fault

and subsequently the cost of fixing this fault for deployed software applications. Even though

this problem can be alleviated by using automatic test generation approaches [27–30], creating

5

6

tests is still expensive, since it is difficult 1© to generate tests that trigger faults that will

result in specific field failures and 2© to determine that the AUT fails, since these tests must

contain meaningful oracles (i.e., methods for checking whether the AUT has behaved correctly

for a particular execution [31]). Creating oracles automatically is one of the most challenging

problems of software testing [31–35]. One way or another, SBFL is not typically used for field

failures.

Statistical Debugging (SD) is one of the most promising automatic approaches for localising

production functional faults [36–43]. In SD, a software application is instrumented and the

values of program predicates are collected (e.g., results of evaluations of conditional expressions).

Then, a statistical model is built by contrasting the information about predicates for successful

and failed application runs. The precision of SD approaches depends on three main factors:

• the granularity of the instrumentation of the application and its libraries, which imposes

significant overhead and may be difficult to use for many performance-sensitive applica-

tions;

• deep insight that is required for selection of the meaningful predicates whose evaluations

should be representative of properties of specific faults;

• the need for many successful and failed runs that exercise these predicates, which is

partially alleviated using tools like MIMIC [44].

Using too many predicates for instrumentation in SD results in a significant performance penalty

for an application and using too few predicates results in a poor quality statistical model that

7

is less effective in localising faults. SD is used in Microsoft Visual Studio IDE for .NET [38] and

in the Cooperative Bug Isolation (CBI) project for some flavors of the Linux operating system

whose packages are pre-instrumented [45–47].

Finally, in model-based diagnosis (MBD), a diagnostic reasoning engine performs a variety

of diagnostic tasks to infer application’s behavior from its model [48]. In the traditional MBD,

models for applications should be created by stakeholders and supplied to a diagnostic reasoning

engine, and it is an intellectually intensive, error-prone and expensive process. These models

should include symptoms of failures that the application exhibits for different faults and input

values. At this point, MBD has a very limited use in localising faults in software applications –

notable exceptions are the database RETAIN at IBM [49] and the approach AFID [50] where

failure symptoms and corresponding faults for software applications are recorded, however, to

the best of our knowledge these approaches do not use automated fault localisation.

CHAPTER 4

BACKGROUND AND RELATED WORK

Localising production faults for field failures is a relatively new area of research in automated

debugging. F3 is the closest related approach to α5, since it uses BugRedux [4] to generates

multiple failing and passing executions that are similar to the observed field failure to localise

faults [15]. Other field failure debugging aids include CHRONICLER, a tool that captures non-

deterministic inputs to applications to reproduce of client executions [51]; a dynamic symbolic

execution tools called SymCon that selects functions that are difficult to execute and generates

input values to reach these functions and reproduce crashes [17]; ReCrash, an approach to

reproduce failures efficiently with low execution overhead [18]; ADDA, a technique for recording,

reproducing, and minimizing failing executions that enables and supports in-house debugging

of field failures [19], an approach for detecting hardware faults that propagate to software layers

in field [20] and a framework for in-field carving and replaying differential unit tests [21]. A tool

that records crashes with the input enables stakeholders to study these faults and keep their

history [22]. Many ideas that are proposed in these approaches can be used in the context of α5;

however, unlike these approaches α5 does not require programmer to capture failed executions

or to instrument the application and to carve its state or to collect execution traces at the

customer’s site, and α5 uses a fault model that requires only symptoms of failures to localise

faults.

8

9

Markov Logic Networks (MLNs) are used to detect malware in Android software [52], in

smart home systems that react to human voice [53], to detect topics [54], to localise vehicles on

the road [55], to reason about software goal models [56], to correct layouts of documents [57], to

extract biomolecular events [58], to detect malicious behavior against software [59], to generate

realistic grammatical errors for computer-assisted language learning [60], and for many other

tasks. Some related research uses probabilistic models that are extracted from applications or

supplied by stakeholders [61–64]. Zhang suggested to use MLN for software bug localisation by

manually creating an MLN where program features (e.g., test coverage and prior information

about bugs) are encoded in logic formula [65]. Unlike α5, the proposed approaches are based on

SBFL or manually extracted artifacts and require running tests with oracles, and it is unclear

how scalable and generalizable this use of MLN is for bug localisation. In contrast, α5 makes

a fully automated use of MLNs that it creates without human intervention using sensitivity

analysis of the AUT.

As we already stated in Section 3, SBFL approaches are poorly suited for production fault

localisation even though it is a large research area that includes ∆-debugging [66] and its

variations [26, 66–72]. Various extensions of SBFL include localising concurrency bugs [73–79]

and various improvements to increase the precision and speed of fault localisation given program

spectra for functional and performance failures [80–124]. Somewhat complementary to α5

approaches from which we borrow some ideas alleviate the problem of coincidentally correct

test cases [125–129] and use the similarity coefficients for different artifacts e.g., execution

traces [130–135]. We will utilize ideas from FAULTTRACER and its extension use change-

10

impact analysis with SBFL to rank program edits [136, 137] and BUGEX that generates test

cases to systematically isolate faults from a single failing test run [138]. In contrast to all these

approaches, α5 does not require test cases with oracles, which are not available anyway for

production faults. Bayesian networks and reasoning techniques are used to learn statistical

properties using AUT’s spectrum [139, 140]. Many other approaches improve various aspects

of SD and SBFL or combinations thereof and applying them to different domains [141–187].

However, some ideas can be used to extend α5; e.g., combining test prioritization and fault

localization techniques [188] can be used to prioritize tests based on the MLN fault model,

since some modules are more sensitive to injected faults.

A number of approaches use heuristic search methods to localise and repair faults, e.g.,

evolutionary tools for fault localisation and repair [189–196] including a method for repairing

Java bytecode and x86 assembly code [197] and a technique for searching what predicate to

switch [198]. These approaches are related to α5, since it attempts to temporarily inoculate

software against some field failures; however, these approaches do not provide explanations of

relations of suggested faults to failures and many of them require tests with oracles.

Many fault localisation approaches use models, some of which are created by stakeholders

and others are derived from software artifacts, some of them probabilistic to check if the AUT

behaves correctly or it regresses with respect to the model and then provide ranked diagnoses

that specify where faults are in the AUT [199–221]. Some approaches specifically use MBD

and SBFL to derive models [199,222–246]. Similar to α5, these approaches combine the idea of

MBD with other fault localisation techniques that use machine learning; however, in contrast

11

to α5, many of these approaches require tests with oracles, manually derived sophisticated

logic constraints or instrumenting the application to collect passing and failing runs during its

deployment.

Some related work, like α5 uses hybrid methods with probabilistic models that are created

using a spectrum of AUT’s executions with test cases [103, 217, 227, 232, 237, 247–279]. Also

related to α5 in this category are BARINEL that deduce multiple-fault candidates and their

probabilities [280] and Zoltar that localises multiple faults [234, 281]. Key differences between

these approaches and α5 is that these approaches either requires passing and failing runs for

training using test cases with oracles or via running instrumented applications and collecting

information about predicates thus incurring performance penalty or by building fault models

and symptoms databases manually.

CHAPTER 5

AN ILLUSTRATIVE EXAMPLE OF LOCALIZING SOFTWARE FAULTS

To understand the idea behind α5, we demonstrate now how it works through an illustrative

example using the following code:

// Inputs: dividend, divisor; // Outputs: quotient, remainder; public static void execute(int

dividend, int divisor) 1) int tmpQuotient=0; 2) int tmpRemainder = dividend; 3) do 4)

tmpQuotient = tmpQuotient +1; 5) tmpRemainder = tmpRemainder - divisor; 6) while(

tmpRemainder ¿= divisor); 7) int quotient = tmpQuotient; //System.out.println(”Quotient

= ” + quotient); 8) int remainder = tmpRemainder; //System.out.println(”Remainder = ” +

remainder);

The program takes two input variables, dividend and divisor and it computes the division

dividend
divisor by subtracting divisor from dividend and assigning the result of the subtraction to

divisor in a loop in lines 3– 6 until the value of divisor is greater or equal to zero and less than

dividend.

The program already has a latent bug – the loop should start with the while condition.

Consider the execution with the following inputs: dividend = 3, divisor = 5. The correct

output values are quotient = 0, remainder = 3, however, the program returns incorrect

results on both outputs quotient = 1, remainder = −2.

12

13

With the inputs: dividend = 1, divisor = 1, the output values are correct quotient =

1, remainder = 0, however, with the inputs: dividend = 1, divisor = 0 and dividend =

1, divisor = −1 the loop is never exited.

Suppose that the mutation phase includes two mutants:

• A first mutant (like the AOR operator), able to switch the sign of divisor at line 5 (solving

in this way the first bug):

do {

tmpQuotient = tmpQuotient +1;

tmpRemainder = tmpRemainder + d i v i s o r ; // l i n e 5

} whi le (tmpRemainder >= d i v i s o r) ;

• A second mutant (like the COR operator), able to switch loop conditions, solving the

second bug:

whi l e (tmpRemainder >= d i v i s o r) {

tmpQuotient = tmpQuotient +1;

tmpRemainder = tmpRemainder − d i v i s o r ;

}

5.0.1 Execution

After the mutation phase, the original and the mutants code (obtained by applying the two

mutants above described) will be executed. Table I, Table II, Table III, Table IV, Table V,

14

Table VI show the execution with 6 different inputs, where dividend ∈ [0, 1] and divisor ∈

[−1, 1].

TABLE I

AUT EXECUTED WITH INPUTS (0,-1)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0-(-1)=1
6. while(1>=-1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=1-(-1)=2
6. while(2>=-1) true
3. do
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0+(-1)=-1
6. while(-1>=-1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=-1+(-1)=-2
6. while(-2>=-1) false
7. quotient=1
8. remainder=-2

1. tmpQuotient=0
2. tmpRemainder=0
3. while(0>=0) true
4. tmpQuotient=0+1=1
5. tmpRemainder=0-0=0
3. while (0>=0) true
4. tmpQuotient=1+1=2
5. tmpRemainder=0-0=0
. . . timeout

Predicates produced

HasFault(5,mutant1,input1)
loop()
!timeout()
Diff(7)
Diff(8)

HasFault(3,mutant2,input1)
loop()
timeout()

15

TABLE II

AUT EXECUTED WITH INPUTS (0,0)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0-0=0
6. while (0>=0) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=0-0=0
6. while(0>=0) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0+0=0
6. while (0>=0) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=0+0=0
6. while(0>=0) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=0
3. while(0>=0) true
4. tmpQuotient=0+1=1
5. tmpRemainder=0+0=0
3. while(0>=0) true
4. tmpQuotient=1+1=2
5. tmpRemainder=0+0=0
. . . timeout

Predicates produced
HasFault(5,mutant1,input2)
loop()
timeout()

HasFault(3,mutant2,input2)
loop()
timeout()

16

TABLE III

AUT EXECUTED WITH INPUTS (0,1)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0-1=-1
6. while(-1>0) false
7. quotient=1
8. remainder=-1

1. tmpQuotient=0
2. tmpRemainder=0
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=0+1=1
6. while(1>=1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=1+1=2
6. while(2>=1) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=0
3. while(0>=1) false
7. quotient=0
8. remainder=0

Predicates produced
HasFault(5,mutant1,input3)
loop()
timeout()

HasFault(3,mutant2,input3)
!loop()
!timeout()
Diff(7)
Diff(8)

17

TABLE IV

AUT EXECUTED WITH INPUTS (1,-1)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1-(-1)=2
6. while(2>=-1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=2-(-1)=3
6. while(3>=-1) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1+(-1)=0
6. while(0>=-1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=0+(-1)=-1
6. while(-1>=-1) true
3. do
4. tmpQuotient=2+1=3
5. tmpRemainder=-1+(-1)=-2
6. while(-2>=-1) false
7. quotient=3
8. remainder=-2

1. tmpQuotient=0
2. tmpRemainder=1
3. while(1>=-1)
4. tmpQuotient=0+1=1
5. tmpRemainder=1-(-1)=2
3. while(2>=-1)
4. tmpQuotient=1+1=2
5. tmpRemainder=2-(-1)=3
. . . timeout

Predicates produced

HasFault(5,mutant1,input4)
loop()
!timeout()
Diff(7)
Diff(8)

HasFault(3,mutant2,input4)
loop()
timeout()

18

TABLE V

AUT EXECUTED WITH INPUTS (1,0)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1-0=1
6. while(1>=0) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=1-0=1
6. while(1>=0) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1+0=1
6. while(1>=0) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=1+0=1
6. while(1>=0) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=1
3. while(1>=0)
4. tmpQuotient=0+1=1
5. tmpRemainder=1-0=1
3. while(1>=0)
4. tmpQuotient=0+1=1
5. tmpRemainder=1-0=1
3. while(1>=0)
. . . timeout

Predicates produced
HasFault(5,mutant1,input5)
loop()
timeout()

HasFault(3,mutant2,input5)
loop()
timeout()

TABLE VI

AUT EXECUTED WITH INPUTS (1,1)
Original Mutant 1 Mutant 2

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1-1=0
6. while(0>=1) false
7. quotient=1
8. remainder=0

1. tmpQuotient=0
2. tmpRemainder=1
3. do
4. tmpQuotient=0+1=1
5. tmpRemainder=1+1=2
6. while(2>=1) true
3. do
4. tmpQuotient=1+1=2
5. tmpRemainder=2+1=3
6. while(3>=1) true
. . . timeout

1. tmpQuotient=0
2. tmpRemainder=1
3. while(1>=1)
4. tmpQuotient=0+1=1
5. tmpRemainder=1-1=0
3. while(0>=1)
7. quotient=1
8. remainder=0

Predicates produced
HasFault(5,mutant1,input6)
loop()
timeout()

HasFault(3,mutant2,input6)
loop()
!timeout()

19

5.0.2 PGM Weights

After the AUT and its mutants gets executed, traces gets produces and analyzed. For this

example, the traces will be utilized in order to instantiate the weights for nodes and edges

between them, but in the actual inference process a more complicated algorithm is executed

behind the scenes. Moreover, using a simple method as counting makes straightforward for the

reader to understand the process in its entireness.

From the execution traces we obtain the following tables:

• Table VII contains the counting of the occurrences of each predicates. For example

HasFault(5,mutant1) appears in 6 of the 12 executions showed in 5.0.1, therefore the

counting is 6.

• Table VIII contains the counting of the occurrences of each couples of predicates. For

example HasFault(3,mutant2) appears altogether with !loop() only in 1 executions, there-

fore the value in the table is 1.

• Table IX contains the same counting of Table VIII, but dividend by the counting of the

predicate appearing in the row. For example HasFault(3,mutant2) appears altogether

with !loop() only in 1 executions out of 6 executions in which HasFault(3,mutant2) was

produced, therefore the value corresponds to 1/6 = 0.16

20

TABLE VII

OCCURRENCES OF PREDICATES DURING EXECUTION PHASE
Predicate # Occourences

HasFault(5,mutant1) 6

HasFault(3,mutant2) 6

loop() 11

!loop() 1

timeout() 8

!timeout() 4

Diff(7) 3

Diff(8) 3

TABLE VIII

OCCURRENCES OF PREDICATES AT THE SAME TIME
(PredA, PredB) loop() !loop() timeout() !timeout() Diff(7) Diff(8)

HasFault(5,mutant1) 6 0 4 2 2 2

HasFault(3,mutant2) 5 1 5 1 1 1

loop() 9 2 2 2

!loop() 1 1 1

timeout()

!timeout() 3 3

Diff(7) 3

21

TABLE IX

CONDITIONAL LIKELIHOOD (LH) FOR EACH COUPLE OF PREDICATES
LH (PredA|PredB) loop() !loop() timeout() !timeout() Diff(7) Diff(8)

HasFault(5,mutant1) 1 0 0.67 0.33 0.33 0.33

HasFault(3,mutant2) 0.83 0.17 0.83 0.17 0.17 0.17

loop() 0.82 0.18 0.18 0.18

!loop() 0 1 1 1

timeout() 0 0

!timeout() 0.75 0.75

Diff(7) 1

5.0.3 Markov Logic Network

With the structured we just introduced, we are now able to build and ground our PGM.

Figure 1 shows the PGM, including weights on edges (Table IX) and weight on the nodes

(Table VII, where the values have been divided by the total number of executions).

A main features that distinguish MLNs from Bayesian Networks, is the possibility of intro-

ducing first order logic rules, that will be activated during the navigation of the graph.

This rules are part of the MLN, since if there is a possible grounding of two predicates in a

rule, then there is an edges between the two predicates in the graph. Therefore they need to

be consider in conjunction with the graph in Figure 1.

Four logic rules for reasoning about the execution of the program are shown in Table X.

Each rule has some confidence value expressed as a number or the infinity ∞. The latter

means that the rule always holds, whereas the former means that the rule may hold with some

likelihood.

22

Figure 1. Grounded PGM

The first rule says that if a statement has a fault (i.e., hF) for some type of mutant, then the

loop body will be entered in, say, 60% of executions with different combinations of input values.

The term variable mut is not grounded, so it can represent any mutant. Instantiation of a rule is

accomplished by executing this program with some input values and substituting actual values

for term variables. We say that a rule is grounded if its predicates are instantiated.

Conversely, the second rule says that the opposite is true in 40% of cases.

The third rule says that if the state differs from the state of the execution of the original

(unmutated) program with the same input values, then the state will differ at some other

statement in 80% of cases.

Finally, the last rule states that if the body of the loop is not entered and there is no timeout,

then the values of the output remainder and the output quotient are correct.

23

In general, these rules reflect the summary of the knowledge base of stakeholders about the

behavior of the program.

TABLE X

RULES USED FOR MLN
Rule Weight

HasFault(mut) =>loop() 60%

HasFault(mut) =>!loop() 40%

Diff(stmt) =>Diff(stmt) 80%

!loop() ˆ!timeout() =>!Diff(7)ˆ!Diff(8) ∞

We are now going to analyze two use cases in which the user reports different faults.

5.0.4 Use case 1

We consider now the case in which the user reports Diff(7), meaning that he experienced a

difference in the value at line 7. We want to suggest the most probable location to change in

the program in order to fix this bug.

As user reports Diff(7), the likelihood of the respective node is set to 1, since at this point

we know for sure that the difference happened. However, we can’t update the likelihood of

Diff(8), since the user didn’t report anything about the node (as will be in case 2), so he may

not know if there is or not a difference in the value at line 8.

24

Figure 2. User reports Diff(7)

From the node corresponding to Diff(7) we can navigate to three different node and the

likelihood of each one of them will be updated according to a variant of the Bayesian chain

rule [282]:

NewLH(next node) = LH(starting node)∗Weight(starting node, next node)∗OldLH(next node)∗

Weight(rules firing)

Of course, different PGM-based systems use different algorithms to recalculate the likeli-

hoods, and our goal is to illustrate one of the examples to show how faults can be localized.

For the node corresponding to the Diff(8) statement, considering that rule number 3 fires

with weight 0.8 (Table X) the computations are as follows:

NewLH(Diff(8)) = LH(Diff(7))∗Weight(Diff(7), Diff(8))∗OldLH(Diff(8)∗Weight(rule3) =

1 ∗ 1 ∗ 0.25 ∗ 0.8 = 0.2

25

Similarly, the new LH for !timeout() and !loop() yield 0.248 and 0.08 as result respectively.

At this point the node with the highest likelihood is chosen (!timeout) and the same algorithm

is applied again. Figure 3 shows the update situation after the choice, where timeout is now

excluded from the set of choices since !timeout() was included.

Figure 3. !timeout() is chosen as next node after updating LHs

At the next step, from !timeout() three different nodes can be chosen next: loop(), !loop()

and Diff(8). Diff(7) cannot be chosen anymore since it was already selected. Updating the

LHs yield to the choice of loop() and the exclusion of !loop() as shown in Figure 4.

Again, the same process is applied from the loop() node, resulting in the winning of the

HasFault(5,mutant1) node. Figure 5 shows the final situation. At this point, since mutant1

26

Figure 4. loop() is chosen as next node after updating LHs

was applied at line 5, the line of code 5 is suggested to the developer as most probable bugged

statement and ranked at the top in the list of statements.

27

Figure 5. Mutant 1 is suggested as location to investigate to fix the bug.

5.0.5 Use case 2

Let’s consider now the case in which the user experienced not only a difference in the value

at line 7, but also a different to the value at line 8, therefore reporting not only Diff(7), but

also Diff(8). We want to suggest the most probable location to change in the program in order

to fix this bug.

As user reports Diff(7) and Diff(8), the likelihood of both nodes is set to 1, since at this

point we know for sure that the difference happened. The initial situation is shown in Figure 6.

In the initial step we can navigate to both !loop() and !timeout(). After updating the

scores by adding the new LH calculated from Diff(7) and the new LH calculated from Diff(8),

!loop() results in the highest LH, and is chosen as next node, while loop() gets excluded.

28

Figure 6. User reports Diff(7) and Diff(8)

The same algorithm gets repeated for !loop() and new LHs are computed as shown in

Figure 7. HasFault(5,mutant1) and timeout() is now 0 since the weights on the edges

starting from !loop() are 0.

Again, the same process is applied from the !loop() node, resulting in the winning of the

HasFault(3,mutant2) node. Figure 8 shows the final situation. At this point, since mutant2

was applied at line 3, the line of code 3 is suggested to the developer as most probable bugged

statement and ranked at the top in the list of statements.

29

Figure 7. !loop() is chosen as next node and LHs are updated

Figure 8. Mutant 2 is suggested as location to investigate to fix the bug.

CHAPTER 6

α5 MAIN IDEA

Keeping the example in mind let’s now formalize the concepts behind it. A key idea for α5

is to enable Model-Based Diagnosis (MBD) for production fault localisation by automatically

creating a fault model for a software application. MBD works in many engineering disciplines

and medical sciences because effective models are used to obtain diagnoses from symptoms

[283–287]. A fault model includes constraints, abstractions, and actions that specify incorrect

or unacceptable behavior of an engineered system [288,289] and in medical sciences fault models

of humans include their anatomy and physiology and they show how human bodies react to

different viruses and bacteria that result in diseases. However, when it comes to software, a

generic fault/failure model is routinely used to specify that executing code that contains a fault

results in an error state that propagates to some output to cause a failure [7, page 12] [3].

In contrast, highly specific fault models are created for various devices and constructions in

electrical and mechanical engineering to enable MBD that applies reasoning to these specific

models [290–296]. We extend the medical analogy with differential diagnosis (DDX). Similar to

how a medical diagnostician asks a patient additional questions, we will explore as part of our

research program how to collect additional information to further fault localization using DDX.

In this thesis, creating and maintaining fault models automatically that are highly specific to

given software applications is the central idea.

30

31

Figure 9. A workflow for localizing production faults with α5.

We introduce a novel abstraction that is expressed as a template for a Probabilistic Graphical

Model (PGM) in which nodes represent random variables and edges specify dependencies among

nodes [297]. Random variables specify distributions of faults among statements in the software

application and the distributions of the effects of these faults on control flow, dataflow and the

output values. For example, one node may specify injections of arithmetic faults into certain

program statements and the other node may specify that some output will change the sign

of its values. The edge that connects these nodes determines the cause and effect with some

probability. After a concrete PGM is instantiated for some application using a template, the task

of production fault localisation is reduced to abductive reasoning on the PGM to navigate to

nodes that represent random variables for injected faults starting with the nodes that represent

distributions of changes in the output values. Not only does this abstraction enable speculative

construction of the predictive fault model that is specific for every software application, but also

32

this model enables stakeholders to obtain specific information on how a suggested fault results

in an error state that propagates through the application to cause the failure. To the best of

our knowledge, this abstraction has never been created and applied to automatic debugging of

field failures. Indeed from a deeper perspective injecting a fault in the vicinity of the location of

a latent bug leads to changes in the output values that are dual to the symptoms of the failure

that results from activating this latent bug. In some cases, injecting faults led to inadvertent

fixes of some latent bugs. The idea of using fault injection for automatically fixing faults is

not new. Debroy and Wong proposed strategies for automatically fixing software faults by

combining the processes of mutation and fault localization [298,299]. In their evaluation using

19 programs with eight mutation operators, over 20% of the faults were fixed automatically.

As part of investigating the positive effect that mutation has on fault localisation, Papadakis

et. al. showed that faults are accidentally fixed by applying mutants [300–303]. Recent work

of Moon, Kim and Yoo on MUSE also showed that not only fault localisation is more effective

using mutants but also some of the faults are fixed automatically by applying mutants [304].

We hypothesize that by injecting faults in the vicinity of latent bugs and observing the changes

in the output values, it is possible to create a predictive fault-localization framework.

CHAPTER 7

HIGH-LEVEL OVERVIEW OF α5

A high-level overview of our approach, α5 is shown in Figure 9. The programmer creates

a software application, and (1) she releases its uninstrumented and performance-optimized

deliverable to a customer. Of course, the programmer knows that statistically, there are many

latent bugs in the application that have not been caught during testing. Therefore, (2) the

programmer deploys this application at α5 in parallel to and independently from its customer

deployment. Once at α5, the program statements are mutated and the mutants are run on a

large number of sample inputs along with running the original unmutated program to introduce

the baseline. The executions are monitored to construct a PGM that describes the causality

between injected faults and output changes by instantiating a set of predefined logical formulae

that capture correlations between statements and components. These correlations are weighted

by observing their frequencies during the sample executions. The model is then reversed for

abductive reasoning, so that potential faults can be inferred from symptoms.

At some point,(3) the customer submits a bug report to the programmer that describes

symptoms of the failure, say, the value of the output Bonus is negative whereas it should be

positive, and (4) the programmer enters this symptom into α5 that performs the abductive

reasoning, localizes potenial faults and (5) returns their locations to the programmer along

with the navigation paths that show how these faults are activated into error states and how

they propagates to the failure.

33

34

7.1 The Architecture And Workflow of α5

The architecture and the workflow of α5 are shown in Figure 10. When the coding and

testing tasks are completed for a software application, it is moved to a cloud infrastructure where

it is plugged into α5. The input to α5 is the configuration file that specifies the main class and

the main method(s) of the application, the ranges of the values of their input parameters and

configuration options and the output variables. To obtain an application-specific fault model,

the Sensitivity Analyzer (1) injects different faults in the AUT and runs an instrumented

modified version of the AUT using sampled input and configuration values on a separate cloud-

based testbed independently of and in parallel to running the original version of the AUT with

the same input/configuration settings. That is, this step is done before or in parallel to

deployment of the application at customers’ sites to speculatively determine the effects

of possible faults.

Then, the Sensitivity Analyzer performs differential analysis between the original and faulty

runs using collected runtime information to determine how different faults affect the control

and data flows as well as the values of its outputs. A goal of the sensitivity analysis [305–307] is

not in trying to localize a fault, but in determining the sensitivity of the application’s behavior

to different faults and in summarizing this behavior in a fault model. In doing so, we utilize

similar ideas from DARWIN, an automatic debugging approach for programs that evolve from a

stable version to a new version [308]. The Sensitivity Analyzer (2) outputs Generalized Ground

Facts that state how injected faults affect the behavior of the AUT using template logic formula

from the Knowledge Base. An example of a Generalized Ground Fact is a formula that states

35

Figure 10. The architecture and workflow of α5.

I(x, 0, 10)∧M(s, t) → O(y,−), i.e., for the range of input values for the variable x ∈ [0..10] and

the injected fault (i.e., producing a mutant) of the type, t into the statement, s, the value of the

output variable, y changes to negative. While injecting faults, running the AUT and performing

the subsequent differential analysis (see Section 11.1), α5 creates and updates a PGM that is

a fault model of this AUT. This process continues for some time; the more faults are explored

the bigger and more sophisticated the PGM becomes. Essentially, the cloud infrastructure is

utilized to process and store a large PGM and to localize production faults.

Our key idea is to express the extracted fault model using a PGM, specifically using a

formal representation called Markov Logic Network (MLN), which combines first-order logic

and probabilistic graphical models. An MLN is a set of pairs, (Fi, wi), where Fi is a formula

in first-order logic and wi is a real number that designates a weight for the corresponding

formula [309, 310]. Depending on the frequency of instantiations of each clause for a given

application with a set of input values, these clauses will be assigned different weights. Applying

36

different faults, M to different statements, s will instantiate these clauses and create a ground

MLN, a very large graph, whose nodes are instances of clauses (i.e., ground predicates) and

the edge exists between a pair of nodes that contain predicates that appear together in some

grounding of one of the corresponding formula, Fi. With MLN, the probability can be inferred

that the value of some output will change (i.e., a possible failure) if some statements contain

faults (see Section 7.2).

These Generalized Ground Facts (3) and the Knowledge Base (4) are the inputs to the MLN

Generator that (5) outputs an MLN for the AUT. Once a production failure is observed (6), its

symptoms are inputted (7) to the Abductive Reasoner along with the precomputed MLN. The

Abductive Reasoner computes ranked hypotheses by navigating the MLN that describe how

faults in different statements in the AUT can result in the observed failure. These hypotheses

(9) are given to stakeholders who may use them (10) to update the Knowledge Base - user

feedback is collected to improve fault localisation [311].

More importantly, Ranked Hypotheses (11) serve as the input to the Differential Diagnoser

that guides the α5 process to collect more information from the AUT into the MLN to reduce

the number of hypotheses and pinpoint precise faults that cause the failure. That is, our other

idea is to automate the process of differential diagnosis where the probability of different faults

are weighted against each other by perturbing the system to collect additional evidence. As it

often happens, fault localisation approaches often given a list of multiple possible faults that

can account for a particular failure, and α5 drills down further by injecting targeted faults and

performing remedial actions close to the suggested fault locations to evaluate the effect of these

37

actions on the symptoms of the failure. The Differential Diagnoser (12) tells the Test Script

and Input Data Selector what inputs (13) to select for the AUT and what faults to inject to

test the hypotheses. The process repeats and the MLN grows more precise and more powerful.

7.2 Modeling Faults With Markov Logic Networks

In this section, we describe how MLN is constructed automatically for application-specific

fault modeling. First, we show a shortened list of the predicates and the logic formulae that

constitute a template for the MLN. We used these formulae to obtain our preliminary results,

and these formulae can be modified in order to improve the precision of fault localisation.

Simply put, it is a tradeoff between efficiency and precision of fault localisation – more logic

formulae lead to collecting more detailed information about the AUT, more complex and larger

MLN and longer inference executions; however, the precision of fault localisation improves.

Fewer logic formulae make the inference more efficient, but the precision of fault localisation

suffers. Here are example of rules that describe the generic fault/propagation/failure model.

hasFault(s,m)∧StateDiffers(s) ⇒Infected(s): it is the infection rule. If the fault, m is

injected into the statement, s and the state of the mutated application after executing s

differs from the state of the original application, then the state is infected at the statement,

s.

Infected(s)∧(cfDepends(s, t)∨dfDepends(s, t)) ⇒Infected(t): it is the propagation rule.

If the statement, s is infected and some other statement, t control and dataflow dependent

on s, then t is infected.

38

Once the template formulae are defined, instantiating them for a software application results

in a grounded MLN with specific likelihood weights assigned to each logic formula. Quantifiers

for these logic formulae are intentionally omitted, since weights will determine the probabilities

of these logic formulae to occur. If a formula is never instantiated for specific values of param-

eters, then its weight will be zero, meaning that the formula is not grounded in the MLN. A

key rule for assigning weights to logic formula is the frequency of its instantiations for a set

of sampled parameters for the AUT. This process of weight assignment is similar to assigning

probabilities in probabilistic program analyses [312, 313]. We already described the process of

assigning weights using the illustrative example in Chapter 5. Using MLN enables stakehold-

ers to create application-specific rules, e.g., Rule 4 in the illustrative example that links the

timeouts to the outputs.

We selected MLNs to model faults in software applications for the following two reasons.

First, expressing navigation and control dependencies requires first-order logic using which

observations can be deduced and abduction can be applied to determine root causes (i.e.,

faults) of the effects (i.e., symptoms of field failures). However, given uncertainty with which

background knowledge and evidence are obtained (e.g., an incomplete set of inputs which are

used to obtain navigation and control dependencies), it is impossible to use first-order logic

without assigning likelihoods to logic rules that allow the reasoning engine to use alternative

explanations. Thus, representation is needed to handle uncertainty in addition to logic rules

[314].

39

Second, Bayesian networks are a traditional approach; however, they are propositional and

they do not handle relations among multiple entities. In addition, MLNs allow loops while

Bayesian networks do not, which limits the utility of modeling software applications, although

recent attempt is made to apply Bayesian network to dataflow analyses of probabilistic programs

[315]. While many PGMs exist that handle different aspects of uncertainty and logic, only MLNs

have full facilities needed for a solution to the fundamental problem of automated debugging

that we address in this thesis.

7.3 Using Differential Diagnosis to Improve Fault Localisation

In medical sciences, differential diagnosis (DDX) is a set of procedures to distinguish a par-

ticular disease or condition from others that present similar symptoms [316]. More generally,

DDX involves a combination of information elimination and acquisition to reduce the proba-

bilities of candidate conditions to some infinitesimal values [49]. DDX uses the hypothetico-

deductive method that works by formulating a hypothesis that can be falsified under specific

conditions [317]. That is, if a failure can be explained by two or more different faults with

certain probabilities, a hypothesis is formulated that by injecting a specific fault in the prop-

agation path from one fault to the failure, the nature of the failure should change (e.g., the

sign of the output value will be reversed). Further injecting new faults along the causal path

from one of the original potential faults to the symptom, the change in the output values is

observed to determine if they are described by the observed symptoms. If it does not happen,

the hypothesis that suggests this fault is marked as potentially invalid. If this hypothesis is

40

falsified eventually, then the probability of this fault is reduced and the probabilities of the

other faults are increased. This is the essence of using DDX for fault localisation.

Suppose that some X faults have a common part of the failure propagation path and some

Y faults have a different common part of the failure propagation path. Running all tests for

all faults will result in X + Y runs. Instead we inject a fault in one common path and see if

this fault changes the output by running a test only for one of Xs or one of Ys. In α5, we use

DDX to increase the precision of fault localisation by injecting faults along specific propagation

paths to add more grounded rules to the MLN. We will study empirically the effect of selecting

different faults and how well they help to differentiate among failure hypotheses.

DDX is organically integrated into the workflow of α5, since re-running its components offline

does not require instrumenting the program or performing any experiments at the customer

deployment site. It is generally acknowledged that the computation time is much cheaper than

the human cost of manual debugging. Moreover, fault injection could be done by modifying

the program bytecode and avoiding recompilation of the source code, but regardless, DDX can

save many man-months of expensive debugging and fault localization effort for a single failure.

Most importantly, no customer involvement is required in the DDX process.

CHAPTER 8

α5 TECHNICAL WORKFLOW

In this chapter we will present in depth the architecture of α5 as illustrated in Figure 10.

In order to produce ground facts the AUT runs through different main phases:

• Mutation: this phase produces mutants that will stimulate different behaviors of the

program.

• Instrumentation: this phase instruments the code to produce statement to be analyzed

during the database generation.

• Execution: this phase executes the instrumented code to collect dynamic information

about the AUT.

• Differential Execution Analysis: this phase exploits differential analysis on the data pro-

duced from the above phases to instantiate ground predicates used in the MLN

• MLN generation: this phase uses the predicates above produced to create a new MLN,

used to apply inference and get the final result.

Each one of this phases will be further described in their specific section.

8.1 Phase 1: Mutation

In this section we are going to describe the first phase of the underlying process for α5: the

mutation phase.

41

42

This phase heavily relies on a component written by Prof. Jeff Offutt [318]: MuJava [319].

This is not a necessary dependency, but to the best of our knowledge this is the most complete

and efficient tool available at the time of writing.

MuJava operations consist in parsing the source code of the AUT and apply mutants while

evaluating the tree. There two different kind of mutants: class-level and method-level mutants.

For each one of this categories several operators exists.

Class level operators apply mutants on features typical of Object Oriented languages (e.g.:

changing a field from public to private). A brief description of them is given in [320].

Method level operators instead apply mutants on expressions, mostly arithmetic. A brief

description of them is given in [321].

8.1.1 Taming complexity

An issue α5 needs to face is how to achieve scalability. One first measure to lower the

complexity of the application is to control the number of mutants. This can be achieved in two

indisputable ways:

1. Reducing the number of operators to apply.

2. Reducing the number of locations where to apply the operators.

Each of these solutions was implemented with using a random strategy where the proba-

bilities can be controlled. It’s worth notice that the effectiveness of a mutants operator may

greatly depend on the nature of the AUT and therefore is extremely difficult to note beforehand

which operator will stimulate the behavior of application. However it’s not important that the

43

mutant operator exactly matches the kind of bug that the AUT is exhibiting. As long as the

mutant is able to trigger the right deviation that will lead to a successful sensitivity analysis,

it’s not so relevant what class the mutant belongs to.

Solution number one can be improved by assigning probabilities to which mutant to apply.

How to assign them can be a separated research question, but can be guided by the result in

Section 10, since some operators are prone to create more mutants than others.

On the other hand, solution number two can be improved by running the original non-

mutated version of the AUT and recording the location of code actually executed. At this

point the strategy for selecting in which locations apply operators is straightforward: if the

location was not executed in the original run, it is discarded. To understand why this claim is

true, consider the following motivating example in Figure 11 where the bold circles represent

the original path executed, while the dotted circle represent the point of insertion of the mutant.

If the mutant is applied in a location that is never reached during execution, it cannot possibly

alter the control flow and therefore it will never executed, thus not producing any changes.

8.1.2 Technical Issues

α5 relies on MuJava, and MuJava in turn relies on OpenJava (OJ) [322], an open source

parser for Java code.

Unfortunately the OJ project has not being updated for over a decade at the time of writing,

so it only supports Java Development Kit (JDK) up to version 6. The project is now being

extended by Professor Offutt in order to being able to analyze even more recent applications.

44

Figure 11. A simple control flow diagram.

45

This has lead some problem in the selection of AUTs since some of them exploits features

unavailable in the previous JDKs. To read more about this please refer to Chapter 9.

Moreover we were able to find some problems in the grammar used and after identifying

them we collaborated with the team of Professor Offutt (in particular with his PhD student

Lin Deng)to fix them.

A first problem arose with a specific syntax of for statements. The following is an example

of statements not correctly parsed:

for (m =0; m¡4; m++)

while instead OJ was able to correctly parse for loops where the induction variable is defined

internally.

for (int m =0; m¡4; m++)

The solution to this problem was to revise the grammar used by OpenJava.

A second problem derive from a specific array initialization of the following kind:

String[] sentences = new String[] ;

In this case the problem was resolved by changing the syntax to the following one, accepted

by OJ:

String sentences[] = ;

A third syntax problem was raised by shift operators. From the Oracle documentation [323]:

”The signed left shift operator ”¡¡” shifts a bit pattern to the left, and the signed

right shift operator ”¿¿” shifts a bit pattern to the right. The bit pattern is given

by the left-hand operand, and the number of positions to shift by the right-hand

46

operand. The unsigned right shift operator ”¿¿¿” shifts a zero into the leftmost

position, while the leftmost position after ”¿¿” depends on sign extension.”

The following are examples of code incorrectly parsed by OJ.

• Original code:

i f (((i>>j) & 1) !=0)

Parsed as:

i f ((i > j & 1) != 0)

• Original code:

h ˆ= (h >>> 41) ˆ (h >>> 2 0) ;

Parsed as:

h ˆ= h > 41 ˆ h > 20 ;

• Original code:

h ˆ= (h >>> 14) ˆ (h >>> 7) ;

Parsed as:

h ˆ= h > 14 ˆ h > 7 ;

In this case the solution was again to change the syntax of the instructions. For the first

example i>>j was changed into i>>=j , then the if-statement was modified as

i f ((i & 1) !=0) .

47

8.2 Phase 2 & 3: Instrumentation & Execution

In this section we are going to describe the second and third phases of the underlying process

for α5: the instrumentation and execution phases.

As the mutation phase the instrumentation stages is very delicate since determining what

kind of statement to instrument involves a current tuning in the trade-off between precision of

the predicates and speed of the procedure.

In order to instrument a program two main strategy can be pursuit:

1. Monitor field of interest using reflections from the bytecode (after compiling)

2. Insert additional statements in the source code (before compiling)

Solution one was implemented by Saurabh Dingolia, a former student of Professor Mark

Grechanik, using the Java Reflection API and JavaAssist [324]. The usage of Reflection allows

the access to classes, methods, fields and constructors. It was exploited for the following

instrumentations:

• Data Collection Instrumentor. Instruments the input byte-code based upon a configu-

ration file provided by the user to collect the values of the output variables at specific

execution points (entry or exit of any method).

• Return Value Instrumentor. Instruments all the methods with non-void return types of

the input program to collect their return values for each execution of that method.

48

• Trace File Instrumentor. Instruments the main method of the input program to open

a file stream to the trace file in order to write the execution trace and values of output

variables to the trace file. Also, closes the file stream at the end of main method.

Unfortunately the usage of Reflections is not enough for α5, since it cannot capture control

flow, data flow and value of variables inside methods. Therefore solution two needs to be

implemented in conjunction with solution one. In order to obtain this result, OJ is exploited

again (as in MuJava) to build the parse tree of the application. Three additional kind of

instrumentation can be applied in this way:

• Statement Identifier Instrumentor. Assigns a unique identifier to each statement in the

source program. The identifier is the fully qualified name of the method containing that

statement followed by a unique number. The statement Ids thus assigned produce the

execution trace when the instrumented code is executed. Also, the run-time execution

trace is analyzed for producing control dependencies among statements.

• Expression Value Instrumentor. Creates a unique id for the value of interests. The selected

expression value is then assigned to the new generated id and printed out in the execution

trace.

• Data Dependency Instrumentor. Prints on the data dependencies between variables. To

know more about how they are calculated refer to Section 8.2.1

49

8.2.1 Taming complexity

Instrumentation and execution phases can be very time consuming. Fortunately a huge

improvement can be achieved using parallelization given the independence of each mutant to

instrument and execute. Assuming to have enough resources, a full parallelization of the process

can indeed improve the time performances from days to few hours. To better understand the

impact of parallelization please refer to results in Section 10. To meet the necessity of costumers,

α5 users can specify in the property file the desired degree of parallelization.

Another speed-up can be achieved from sampling inputs during the execution phase. The

strategy currently implemented selects random values from the input range provided, but is

still possible for the user to select specific values. A potential improvement to this strategy

can be to select inputs using Combinatorial Interaction Testing (CIT), ” a black box sampling

technique derived from the statistical field of design of experiments” [325].

As stated before tuning the complexity of instrumentation is a trade-off between time and

precision of the results. Since we want α5 to be as flexible as possible for the most wide range

of applications, we included two properties in the properties file.

The first property, expressionLimit allows the user to properly tune the length of the expres-

sions for which apply the Expression Value Instrumentor. For example if for any application-

dependent only the value of expression with more than 4 operands need to be recorded, it is

possible to set the value of the property to 4. If the AUT needs to be instrumented in the least

amount of time possible, is achievable by setting the property value to zero, resulting in a less

precise but faster inference process.

50

The second property, ddexpr allows the user to enable/disable the Data Dependency In-

strumentor. Again, disabling it will result in a less precise but faster process. However the

Data Dependency Instrumentor exploits a clever algorithm to extract dependencies. The way

compiler calculates data dependencies is generally expensive from the computation point of

view, it requires to calculate Def/Use set by the help of a Symbol Table, where all the reference

to variables are registered with their relative scope. This leads to additional overhead both in

space (an hash table needs to be maintained) and both in time (different scopes needs to be

taken in consideration). α5 can overcome this difficulties since the aim of the process is to build

a probabilistic graph, making possible to lose some certainty degree for a faster execution. This

is reflected in the way dependencies are extracted: instead of keeping track of different scopes,

dependencies are calculated by the use of the memory address of the variables. To make this

more clear let’s consider an example:

int i = 0; //line1 int j = i; //line2

Assuming that the memory address of variable i is $addressI and the memory address of

variable j is $addressJ α5 will produce the following set of predicates:

Def(line1, $addressI) Use(line2, $addressI) Def(line2, $addressJ)

This predicates can be post processed after to easily infer that line2 has a data dependency

on line1. The address of the variables can be obtained using the Unsafe library by Peter Lawrey

[326]. There is no guarantee that the address will not change due to garbage collection, but the

probabilistic graph will give smaller weights to dependencies appearing only sporadically.

51

8.2.2 Technical Issues

Dealing with complicated processes like parallel parsing can result in several subtle problems.

A first technical problem arises during execution phase, where mutants can exhibit different

behavior, one of which can be infinite loops. For this reason we implemented a timeout in the

AUT configuration, adjustable depending on application specific needs. However this generated

not so evident bugs, one of which was truncated trace files that caused crashes in the system.

After careful debugging all the deriving bugs were resolved.

A second technical problem was due to the use of an undocumented and deprecated [327]

library: com.sun.tools.javac.Main used to compile mutants. This problem arose in all the phases

of mutation and instrumentation. The compile method used indeed was not able to include

external libraries and Java Archive (JAR) files in the compilation classpath, resulting in several

compiling errors for AUTs. The solution to this problem was to switch to an updated library:

the (javax.tools) package.

A third important problem was linked to the use of OJ to build the parse tree. As stated

in Section 8.1.2 OJ is an old library, supporting up to JDK version 6. To overcome this limit,

we try to switch to another, updated tree parser: the org.eclipse.jdt.core library [328] [329].

This library is indeed part of the Eclipse Java development tools (JDT) which contains the

core functions used by Eclipse to build the Abstract Syntax Tree (AST) of the application

[330]. At the end this resulted in an integration problem. Part of the system was developed

using OJ and in particular the Statement Identifier Instrumentor described in Section 8.2,

responsible for assigning unique IDs to statements. The way this Instrumentor works, relies on

52

the evaluateDown() method present in OJ. The Instrumentor written using the JDT used a

different evaluateDown() method, that resulted in misalignment of statement identifiers. Since

statement IDs uniquely identify locations during the construction of MLN, this problem was

not acceptable for our system and resulted in the rewriting of the parser using OJ.

8.3 Phase 4 & 5: Differential Execution Analysis & Markov Logic Network Generation

In this section we are going to describe the fourth and fifth phases of the underlying process

for α5: the Differential Execution Analysis and Markov Logic Network Generation phases.

The aim of the Analysis phase is to collect the execution traces produced in the previous

stages and compare them in order to obtain the differences in control flow, data flow and values

from the original execution. In particular one the control flow start to diverge from the original

path, α5 will stop producing data flow statements.

After statements are collected, they became inputs for Alchemy [331]. Alchemy is an open

source software package able to perform statistic inference through several algorithms for sta-

tistical relational learning and probabilistic logic inference, which rely on the Markov logic

representation.

The process is represented in Figure 12.

After the execution of the AUTs with different inputs, Behaviors are collected, for example:

HasFault(line1, mutant5) Reached (line4) DataDependency (line4,line5) ControlFlow (line4,line5)

Failed (line1, symptom1)

53

Figure 12. α5 process visualized.

54

This behaviors, are processed by Alchemy in the Abductive MLN generator together with

abductive rules (e.g.: DataDependency (a,b) and Infected (a) ->Infected(b)).

An important consideration to remark is that the behaviors and the rules are processed

altogether in the .mln file, from which Alchemy will produce and store a MLN. This process

needs to be executed only one time.

After the user submits the Observations inference can be applied on the previously generated

MLN through the provided rules.

However this process is not so simple, since several features needs to consider for this

procedure, including:

• Feature 1. what needs to be included as rules for inference ∈ {only formulas, formulas+pre-

collected behavior};

• Feature 2. whether weights are assigned for rules ∈ {Yes, No};

– Feature 2.1. if feature 2 = Yes, whether we train the weights for rules are trained or

manually assigned ∈ {Yes, No};

∗ Feature 2.1.1. if we train the rules, what evidence should be used for train-

ing ∈ {whole set of pre-collected behavior, only the subset related to specific

failure(s)};

• Feature 3. what are considered as evidence for inference ∈ {only field behavior, field

behavior + pre-collected behavior};

55

– Feature 3.1. if we include pre-collected behavior as part of the evidence, whether

we use the whole set, or only the subset related to specific failures(s) ∈ {whole set,

subset}.

• Feature 4. what type of rules to use ∈ {deductive, abductive}. In α5 we decided to use

deductive rules.

Since each feature above is binary, 48 possible decisions are possible (24 after fixing feature

4, since it’s indipendent from all the others). However some of them are invalid, and some of

them are identical. Indeed, as shown in a simplified decision tree in Figure 13 both this cases

occur:

• Variation 1 (V1) and 3 are invalid, because we are not using pre-collected behaviors

anywhere. This way, when we have field behaviors rules (either with weights or not),

what we can get are only the query predicates grounded on the statements that are used

in field behaviors. For example, if we have Failed(1), Failed(2), DataDependency(2,3) as

field behaviors, the only possible predicates obtainable when we query for hasFault are

hasFault(1), hasFault(2), and hasFault(3).

• V6 and V2 are identical variances: in V6, we provide formulas and field behavior, so it is

redundant to include field behavior again as the evidence for inference, which essentially

make it the same case as V2. Same idea applied to V8 and V4.

56

Figure 13. Simplified decision tree for features to select during the inference process.

CHAPTER 9

VALIDATION

In this chapter we will present our strategy to validate α5. In particular we will cover the

following steps:

• Validity check for Java syntax parsing

• Selection of AUTs

9.1 Java Syntax Checking

In order to validate our framework experiments needs to be run to check if all the Java

syntactic constructions are correctly handled. For this reason we build different configuration

files , each one of which uses a different keyword. The main class of these configurations

are reported here, omitting the test class for brevity. The result of this test reveled that the

keywords native and strictfp are not supported by OJ and resulted in the fix of the bugs

described in Section 8.1.2.

9.2 Subject applications selection

Selecting AUTs is not an easy task and it can be considered an entire project by himself.

Indeed the master project of Phani Theja Swarup Vempalli, a former Graduated UIC Master

student of Dr. Mark Grechanik, was dedicated to automatically extract the source code for

Java applications on GitHub, in order to be used as subjects for α5. However extraction of

57

58

application is not sufficient, since additional filter must be imposed for the app to be an actual

subject. In particular the following requirements must be imposed:

1. The application must have bug repository from where the problem and the fix can be

identified. This requirement is necessary in order to be able to measure the actual effec-

tiveness of α5 since we need to measure the ’distance’ from the proposed fix location to

the actual fix location.

2. The application must be supported by OJ, so it should compile with JDK 6.

3. The application must not contain GUI or networking distributed features. This require-

ment is not essential. Running GUI apps with α5 means that the test driver must handle

GUI interfaces, therefore it requires a design/development effort to incorporate the driver

(e.g., Selenium [333]) into α5.

4. The application must be written mostly in Java.

5. The application must contain a test suite. This is necessary in order to build the main test

class. Moreover α5 is targeted to software applications already deployed, so the existence

of a test suite is assumed.

6. The application must exhibit a clear input/output format, since it needs to be easy to

monitor. If complex output is involved (e.g.: XML files) specifying symptoms for the

AUT became extremely difficult.

The code is written in Python and uses the *NIX application cloc [334] to check if the subject is

written in Java. In particular requirements 1 and 2 filtered out most of applications. Table XI

59

show different parameters for several repositories analyzed, where column ’Issues’ refers to all

the GitHub bugtracker issues (including configuration problems, features extension and so on),

while the column ’Bugs’ refers to issue marked as bug by the developer. Most of the code

not written in Java was part of EXtensible Markup Language (XML), YAML Ain’t Markup

Language (YAML), Bash or Maven files. The description or each repository can be found in

Appendix A

Figure 14. A result screen from the script to extract repositories

60

TABLE XI

REPOSITORIES STATISTICS
Repository Issues Bugs Unique Java Java Total Total Test

files files code files code cases

/ReactiveX/RxJava 926 157 468 448 64459 453 64680 188

/hamcrest/JavaHamcrest 37 3 158 138 6139 147 6375 63

/Esri/geometry-api-java 53 25 319 306 73231 309 73496 46

/fommil/matrix-toolkits-java 54 25 240 226 14682 235 15124 104

/googlegenomics/api-client-java 42 2 76 70 3103 72 3324 34

/FasterXML/java-classmate 17 0 77 68 6690 69 6856 35

/laforge49/JActor 42 0 245 240 6716 243 6984 50

/functionaljava/functionaljava 58 29 350 278 28544 317 29998 27

/thelinmichael/spotify-web-api-java 16 0 147 108 9782 111 9928 33

/mikiobraun/jblas 35 0 130 74 11839 122 20475 16

/vkostyukov/la4j 140 23 122 115 13045 117 13135 29

/nmcl/JavaSim 28 0 69 61 3608 62 3638 20

CHAPTER 10

RESULTS

In this chapter we will describe the experiments executed on the α5 framework. In particular

two set of experiment will be presented:

• Inoculated experiments: we auto-generated Java applications and run them through α5

in order to get performance estimate.

• ’Real world’ experiments: we processed the applications described in Section 9.2 and

analyzed the results produced.

10.1 Performance experiments

To analyze performance measures of α5 we made use of a former project of Professor Mark

Grechanik, a program able to automatically generate Java programs [335]. In order to evaluate

different real world size, experiments were conducted with auto generated programs (AGPs)

with 1k, 5k, 10k, 50k and 100k lines of code. All the experiments were evaluated on a Dell

server R720 with two CPUs Intel Xeon E5-2609 2.40GHz,10M Cache, 6.4GT/s QPI, with 32GB

of RAM.

Table XII shows the results for the experiments on each one of the applications considered.

• Mutation phase: result for the mutation phase are shown in Figure 15. The fit is

almost perfectly linear, just the 100K AGP deviates a little from the fitting curve. The

61

62

least-squares best fit curve it’s indeed not linear, but a quadratic curve: 6.4406110−9x2+

0.000274876x+ 2.0717

• Instrumentation phase: result for the instrumentation phase are shown in Figure 16.

The least-squares best fit curve it’s a cubic: 1.3510−8x2 − 0.000367465x + 6.0941. How-

ever discarding the 100K AGP (since it may have degraded the performance on a single

machine), a logaritmich fit achieves a R2 measure of 0.95/1, resulting even better then a

linear fit. This is visually represented in Figure 17, where the 100K AGP performances

have been discarded.

• Execution phase: The execution phase has been executed with 100 threads in parallel as

discussed in 10.1.2. A timeout of 10 seconds as been set for all the applications. The least-

squares best fit curve almost perfectly fits the data and it’s a quadratic: 5.2113210−9x2+

0.0000275524x+ 0.109555. The second grade term start to be greater than 10 hour when

an application reaches the size of 50KLOC.

• Differential Execution Analysis phase: result for the Differential Execution Analysis

phase are shown in Figure 19 where the values for the 50K and 100K AGP were extrapo-

lated from the fitting model. The least-squares best fit curve it’s linear: 0.0000717459x−

0.0473115.

• Inference phase: result for the Differential Execution Analysis phase are shown in

Figure 20 where the values for the 50K and 100K AGP were extrapolated from the fitting

model. The least-squares best fit curve it’s linear: 0.0000700738x+ 0.0116066.

63

Figure 21 and Figure 22 summarize the total performances.

TABLE XII

EXPERIMENTS RESULT FOR AGPS
Time (hours)

AUT size (LOC) 1,000 5,000 10,000 50,000 100,000

Mutation time 1.091 3.688 7.069 31.374 94.085

Instrumentation time 0.842 6.082 8.603 19.642 104.753

Execution time 0.086 0.488 0.851 14.517 54.978*

Differential Execution Analysis time 0.033 0.296 0.677 3.54* 7.127*

Alchemy time 0.08 0.365 0.711 3.515* 7.019*

Total 2.132 10.919 17.911 72.587 267.962

Total (days) 0.089 0.455 0.746 3.024 11.165

* Results estimated from the 1K,5K,10KLOC performances.

64

Figure 15. Mutation phase results

65

Figure 16. Instrumentation phase results

66

Figure 17. Inference phase results discarding the 100K AGP

67

Figure 18. Execution phase results

68

Figure 19. Differential Execution Analysis phase results

69

Figure 20. Inference phase results

70

Figure 21. Time performances of the whole process (including the 100K AGP).

71

Figure 22. Time performances of the whole process (excluding the 100K AGP).

72

10.1.1 Mutants number

Table XIV and Table XV report respectively the number of class mutants and traditional

mutants produced during the mutation phase of α5. This numbers are fundamental for the whole

process, since all the phases relies on them: instrumentation phase needs to instrument each

one of this mutants, execution phase executes each one of them and the Differential Execution

Analysis phase produces a database for each one mutant produced.

Therefore an extremely challenging trade-off is present: from one side we desire to keep the

number of mutants as low as possible to increase time performances, from the other side we

also may want as much mutants as possible to collect a variety of symptoms.

Table XIII summarize the total number of mutants for each application. A linear model

fits well the data (14.2051x+ 6602.83 produces an R2 of 0.98) as shown in Figure 23. However,

is worth noticing that the structure of AGPs is slightly different from ’real worlds’ program,

since it’s generated from a probabilistic grammar, therefore a lower number of mutants may be

expected in future experiments.

73

Figure 23. Total number of mutants produced

TABLE XIII

MUTANTS PRODUCED FOR AGPS
Size (LOC) 1,000 5,000 10,000 50,000 100,000

Total mutants 30,927 103,085 192,690 569,187 1,495,167

Class mutants 221 234 830 854 1,618

Traditional mutants 30,706 102,851 191,860 568,333 1,493,549

74

TABLE XIV

CLASS MUTANTS PRODUCED FOR DIFFERENT AGPS
Size 1,000 5,000 10,000 50,000 100,000

Class mutants 221 234 830 854 1,618

IHI 10 9 24 15 25

IHD 0 0 0 4 0

IOD 19 24 45 35 44

IOP 0 0 0 0 0

IOR 11 16 19 15 22

ISI 5 10 2 7 10

ISD 0 0 0 0 0

IPC 0 0 0 0 0

PNC 142 95 553 580 1325

PMD 0 0 27 53 19

PPD 0 0 8 20 18

PCI 0 2 0 2 0

PCC 8 6 18 6 55

PCD 0 0 0 0 0

PRV 0 0 0 0 0

OMR 0 0 0 0 0

OMD 0 0 0 0 0

OAN 0 0 0 0 0

JTI 0 0 0 0 0

JTD 0 0 0 0 0

JSI 17 37 59 52 44

JSD 0 1 14 7 0

JID 9 34 61 58 56

JDC 0 0 0 0 0

EOA 0 0 0 0 0

EOC 0 0 0 0 0

EAM 0 0 0 0 0

EMM 0 0 0 0 0

75

TABLE XV

TRADITIONAL MUTANTS PRODUCED FOR DIFFERENT AGPS
Size 1,000 5,000 10,000 50,000 100,000

Traditional 30,706 102,851 191,860 568,333 1,493,549

AORB 7,612 26,044 48,064 143,636 385,568

AORS 56 216 437 1,757 4,817

AOIU 460 1,339 2,758 6,779 15,893

AOIS 6,778 22,496 42,128 122,020 322,096

AODU 59 123 231 424 1,074

AODS 0 0 0 0 0

ROR 2,619 8,440 15,277 43,057 116,531

COR 346 1,082 1,964 5,494 14,848

COD 0 0 0 0 0

COI 720 2,398 4,345 12,956 34,501

SOR 0 0 0 0 0

LOR 0 0 0 0 0

LOI 1,893 6,219 11,694 33,440 87,653

LOD 0 0 0 0 0

ASRS 0 0 0 0 0

SDL 1,729 5,583 10,925 33,839 85,154

VDL 1,838 6,357 11,881 36,986 93,656

CDL 583 2,013 3,938 11,723 30,571

ODL 6,013 20,541 38,218 116,222 301,187

76

10.1.2 Degree of parallelism

As described in Section 8, α5 is able to handle concurrent execution. To determine the right

amount of threads the server is able to run, different experiments were executed with the 1K

LOC AGP. The timeout was set to 100 seconds and the number of threads was empirically

determined, after monitoring the amount of failed executions. Figure 24,Figure 25 and Fig-

ure 26 shows the smoothed memory utilization during execution, while Figure 27,Figure 28 and

Figure 29 shows the non-smoothed version of the same data.

All the figures shows different spikes. The more the spikes are accentuated, the higher the

number of threads that failed. For example, when looking at Figure 29 it becomes clear what

is happening: used memory increases to very high value, threads fail due to excessive memory

usage and are aborted, and used memory decreases again due to this failure. In particular

Figure 29 contains more accentuated spikes than Figure 28, and Figure 28 in turn contains

more picks than Figure 27.

The curve produces when executing the AUT using 100 thread has a very smooth profile,

therefore it may be considered a good trade-off between precision and speed performances.

Table XVI shows how many mutants executions fails, depending on the number of thread

specified for the execution. In particular two kind of situation may lead to a sudden increase

of free memory:

• The current application run times out, resulting in an abortion.

• The current application run throws the following exception:

java.io.IOException: Cannot run program ”java”: error=24, Too many open files

77

Using 1,000 thread resulted in less executions timeouts, but only because several runs were

aborted before resulting in a timeout.

TABLE XVI

PERFORMANCES TRADE-OFF ON VARIATION OF THREAD NUMBERS
Lines Of Code 100 100 100

Concurrent Threads 1,000 500 100

Execution time (minutes) 17.3 19.65 39.5

mutants to be executed 22791 22791 22791

timeout 527 431 845

”too many open files” error 13342 7647 46

78

Figure 24. Memory Utilization during execution with 100 thread

79

Figure 25. Memory Utilization during execution with 500 thread

80

Figure 26. Memory Utilization during execution with 1,000 thread

81

Figure 27. Memory Utilization during execution with 100 thread

82

Figure 28. Memory Utilization during execution with 500 thread

83

Figure 29. Memory Utilization during execution with 1,000 thread

84

10.2 ’Real world’ experiments

As described in Section 9.2 we selected real world applications presenting some field failure

reported in the bug tracker. Table XVII reports the different versions selected from the AUT,

each one of them corresponding to a different bug. Each one of them was mutated using

MuJava, but interestingly enough some application triggered different exceptions while the

AST was build, so distinct version of OJ were used as shown in Table XIX. This selected

applications will be further analyzed to validate α5.

85

TABLE XVII

BUGS DESCRIPTION FOR REPOSITORIES USED

searchbox-io/Jest

Jest/issues/219 Parameters are not applied
to configuration

Jest/issues/197 Double String
Jest/issues/165 Date format
Jest/issues/142 Missing field
Jest/pull/139 Missing field
Jest/pull/134 Date format
Jest/pull/133 NPE
Jest/issues/111 Wrong class of object
Jest/issues/84 toString() doesn’t work on

Long class
Jest/issues/78 Missing field, parameters

not assigned
Jest/issues/68 new Object() created,

should use old
Jest/issues/59 missing encoding, slash will

cause a 400 error
Jest/issues/60 Whitespaces removed,

wrong encoding
Jest/issues/62 ˆ
Jest/issues/71 ˆ

fommil/matrix-toolkits-java

matrix-toolkits-java/issues/68 Wrong parameter
matrix-toolkits-java/issues/58 Wrong value
matrix-toolkits-java/issues/26 Date format
matrix-toolkits-java/issues/25 Integer.MAX VALUE
matrix-toolkits-java/issues/13 Illegal value
matrix-toolkits-java/issues/12
matrix-toolkits-java/issues/10 Wrong formula

peter-lawrey/Java-Chronicle
Java-Chronicle/issues/9 Wrong value
Java-Chronicle/issues/5 wrong index

mikiobraun/jblas

jblas/issues/56 Double Float
jblas/issues/42 Row/columns inverted
jblas/issues/36 Wrong formula
jblas/issues/29 Parameters are not applied

to configuration

vkostyukov/la4j

la4j/issues/162 >32
la4j/issues/98 Wrong rank?
la4j/issues/94 ˆ
la4j/issues/93 Wrong algorithm
la4j/issues/82 Wrong algorithm
la4j/issues/64 Infinite loop
la4j/issues/53 Int Double
la4j/issues/44 Wrong algorithm
la4j/issues/16 + ->-

86

TABLE XIX

OPENJAVA ERRORS USING DIFFERENT VERSIONS
AUT TOTAL Abstract OJv0 OJv1 OJv2 OJv3 OJv4 OJv5 LOC Mutated

geometry 261 85 42 52 42 42 36 42 73231 140

rxjava 228 45 92 86 92 83 158 92 64459 100

ONLP 547 118 152 126 152 124 301 152 61049 305

Apache-bcel 389 80 48 19 48 29 58 48 30895 290

jest 129 12 9 8 9 8 20 9 18248 109

fommil 123 24 43 23 43 23 24 43 14682 76

Chronicle 75 30 18 19 18 14 25 18 13163 31

la4j 87 43 8 3 8 8 18 8 13045 41

jblas 57 6 8 8 8 5 13 8 11839 46

spotify 40 1 0 0 0 0 16 0 9782 39

jactor 134 30 1 2 1 1 22 1 6716 103

classmate 34 8 9 8 9 7 13 9 6690 19

hamcrest 74 14 22 21 22 17 54 22 6139 43

javasim 41 1 3 3 3 3 2 3 3608 38

CHAPTER 11

FUTURE WORKS

We carried out our preliminary experiments on a number of Java applications whose sizes

ranged from 10 to 100,000 LOC. The time it takes to inject faults, instrument, and execute the

AUTs, and perform differential analyses on symptoms varies from approximately two hours for

1KLOC to less than 300 hours for 100KLOC. The same experiment with 200 VMs in parallel

will finish in one hour and it will cost less than $100 of the cloud time and storage. We

already started exploring the issues of performance and scalability, and a scalable alternative

to Alchemy may be Tuffy, which will significantly speeds up inference using MLN [336]. In

addition, there are many opportunities to parallelise algorithms in Alchemy [337,338] – recent

work suggests using SMT solvers to improve the performance of Tuffy and Alchemy [339], thus,

based on the experimental data, we expect that we can reduce the total time to less than a

day for 100KLOC AUT. We plan to deploy α5 in a highly parallel cloud setting where many

instances of Alchemy or Tuffy will be running inference on the large MLN fault model, thus

combining cloud computing and machine learning for production fault localisation.

The short-term impact of our work will be in the software testing community, where devel-

opers and testers will use α5 to localise production faults automatically. The long-term impact

will be on tools for software testing and analysis for commercial applications to allow stakehold-

ers to localise production faults in their software applications with a high degree of automation

and precision.

87

88

This research contains a strong educational component. Currently, software engineering and

courses on probabilistic graphic models (as part of machine learning/data mining curriculum)

are often taught without regard to each other, since they are considered orthogonal. However,

it has been shown that machine learning and data mining algorithms and techniques can be

used as part of solutions to many software engineering problems [340–343]. This research will

contribute to forming a holistic view of problems in software engineering that benefit from

using machine learning algorithms and possibly lead to the creation of new courses with the

central theme to use machine learning and data mining in different software engineering tasks,

especially in software testing.

11.1 Improving Effectiveness of the Sensitivity Analysis

The idea of injecting faults for sensitivity analysis of systems and eventually for fault lo-

calization is not new – it is routinely used in electrical, electronic, mechanical, automotive

and many other industries as well as for software [344–346]. Fault injection was successfully

used in validating reliability of file caches [347], comparing functionalities of operating sys-

tems [348, 349], web servers [350] and databases [351]. Various research shows that injecting

artificial faults or mutants models real faults with a good approximation [352] – it is known as

the competent programmer hypothesis [353] [7, 354].

Debroy and Wong proposed strategies for automatically locating faults in a program by

using mutation [298, 299]. Papadakis et. al. used mutation for fault localisation [300–303].

Recent work of Moon, Kim and Yoo on MUSE also showed that fault localisation is more

effective using mutants [304]. Zhang and Khurshid used mutation to simulate developer edits

89

to localise faults [355]. However, these approaches use program mutation in conjunction with

SBFL, whereas we solve a problem of localising production faults.

In α5, we plan to experiment with fault injection to determine a strategy for the increased

effectiveness of fault localization. A baseline fault injection strategy is execute a program

with some chosen input data and then to apply mutation operators to program statements

and expression that lie on the execution path for this input data. However, there are two

problems with fault injection that affect its effectiveness: combinatorial explosion and fault

interference. A root of the problem with the combinatorial explosion is that applying fault

injection or mutation operators indiscriminately to all instructions results in a very large number

of injected faults (i.e., mutants). In general, the number of generated mutants is proportional

to the number of classes and references in object-oriented programs [356]; however, the number

of all combinations of injected faults is very large. Since the Sensitivity Analyser executes each

mutant program with different input values for differential analysis, we should address this

problem in the future to make α5 feasible.

The problem of combination explosion of injected faults can be tackled in four ways. First,

it’s possible to use PreFail, a programmable failure-injection tool that enables testers to create

a wide range of policies to prune down the large space of multiple failures [357]. Second,

for multiple injected faults (i.e., higher-order mutants (HOM)), we may utilize search-based

approaches to identify subsuming HOMs that showed a potential for taming combinatorial

explosion [358]. Third, we can utilize ideas from a recent approach called PAIN that shows

that it is possible to significantly reduce interference of applications in parallel fault injection

90

[359]. An idea of parallelising software testing is not new [360–362] and with the availability

of cloud computing infrastructures this idea is finally realised for improving the problem of

combinatorial explosion [363]. For example, in D-Cloud, multiple copies of the same applications

were installed in a large number of virtual machines and independently run without much

interference [364,365].

Finally, the fourth idea is to use algorithms for combinatorial interaction testing (CIT), a

field that identifies a small but systematic set of configurations under which to test [366–370].

For example, with a CIT approach, developers choose an interaction strength t and compute

a covering array, which is a set of configurations such that all possible t-way combinations

of option settings appear at least once. We hypothesize that using CIT in conjunction with

sampling input parameter spaces will significantly reduce the exploration space and enable

effective fault injection.

The other problem is that when injecting faults, interference is caused between the existing

(unknown) faults in the AUT and the new injected faults. Of course, the issue of interference

among faults has been studied to a certain extent [371,372]. Some production faults linger due

to the effect of being obscured by other faults [373]. As stated by one development manager

in our interviews, “it makes a big difference to localise a fault in the presence of multiple fault

interactions when compared with localization of a single fault, but there is not much difference

in the fault localisation effort between say two and five interacting faults,” a statement that

resonated with an empirical study on the effects of the quantity of faults on fault localization

techniques [374]. In future works, we will study the effect of multiple faults, including the effect

91

on injected faults on latent production (unknown) faults: 1© a positive effect when an injected

fault masks the latent fault or vice versa to produce a correct result and 2© when injected fault

adds new symptoms.

APPENDICES

92

93

Appendix A

REPOSITORIES DESCRIPTION

Repository URL: https://github.com/ReactiveX/RxJava/

Repository Description: RxJava Reactive Extensions for the JVM a library for

composing asynchronous and event-based programs using observable sequences for the Java

VM.

Repository URL: https://github.com/hamcrest/JavaHamcrest/

Repository Description: Java (and original) version of Hamcrest

Repository URL: https://github.com/Esri/geometry-api-java/

Repository Description: The Esri Geometry API for Java enables developers to write

custom applications for analysis of spatial data. This API is used in the Esri GIS Tools for

Hadoop and other 3rd-party data processing solutions.

Repository URL: https://github.com/fommil/matrix-toolkits-java/

Repository Description: Java linear algebra library powered by BLAS and LAPACK

Repository URL: https://github.com/googlegenomics/api-client-java/

Repository Description: A command line tool for Google Genomics API queries.

Repository URL: https://github.com/cloudfoundry/java-buildpack-auto-reconfiguration/

Repository Description: Auto-reconfiguration functionality for the Java Buildpack

Repository URL: https://github.com/FasterXML/java-classmate/

94

Appendix A (continued)

Repository Description: Library for introspecting generic type information of types,

member/static methods, fields. Especially useful for POJO/Bean introspection.

Repository URL: https://github.com/laforge49/JActor/

Repository Description: Actors for Java

Repository URL: https://github.com/functionaljava/functionaljava/

Repository Description: Functional programming in Java

Repository URL: https://github.com/thelinmichael/spotify-web-api-java/

Repository Description: A Java wrapper for the new Spotify Web API.

Repository URL: https://github.com/mikiobraun/jblas/

Repository Description: Linear Algebra for Java

Repository URL: https://github.com/vkostyukov/la4j/

Repository Description: Linear Algebra for Java

Repository URL: https://github.com/nmcl/JavaSim/

Repository Description: JavaSim simulation classes and examples

CITED LITERATURE

1. Allspaw, J.: Fault injection in production. Queue, 10(8):30:30–30:35, August 2012.

2. Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T.:
What makes a good bug report? SIGSOFT ’08/FSE-16, pages 308–318, New
York, NY, USA, 2008. ACM.

3. Jeffrey, V., Larry, M., and Keith, M.: Predicting where faults can hide from testing.
Technical report, 1991.

4. Jin, W. and Orso, A.: Bugredux: Reproducing field failures for in-house debugging. In
Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 474–484, Piscataway, NJ, USA, 2012. IEEE Press.

5. Beizer, B.: Software Testing Techniques. New York, Van Nostrand Reinhold, 2nd edition,
1990.

6. Jones, T. C.: Estimating Software Costs. New York, NY, USA, McGraw-Hill, Inc., 2
edition, 2007.

7. Ammann, P. and Offutt, J.: Introduction to Software Testing. New York, NY, USA,
Cambridge University Press, 2008.

8. Myers, G. J.: Art of Software Testing. New York, NY, USA, John Wiley & Sons, Inc.,
1979.

9. Leveson, N. G. and Turner, C. S.: An investigation of the therac-25 accidents. Computer,
26(7):18–41, July 1993.

10. Guevara, J., Stegman, E., and Hall, L.: It key metrics data 2010: Key applications
measures: Support quality and practices: Current year. December 2009.

11. Evolven: Downtime, outages and failures - understanding their true costs. December
2012.

95

96

CITED LITERATURE (continued)

12. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,
V. J., and Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pages 190–

200, New York, NY, USA, 2005. ACM.

13. Upton, D., Hazelwood, K., Cohn, R., and Lueck, G.: Improving instrumentation speed
via buffering. In Proceedings of the Workshop on Binary Instrumentation and
Applications, WBIA ’09, pages 52–61, New York, NY, USA, 2009. ACM.

14. Uh, G.-R., Cohn, R., Yadavalli, B., Peri, R., and Ayyagari, R.: Analyzing dynamic binary
instrumentation overhead. In Proceedings of the WBIA Workshop at ASPLOS,
WBIA ’06, pages 52–61, New York, NY, USA, 2006. ACM.

15. Jin, W. and Orso, A.: F3: Fault localization for field failures. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pages

213–223, New York, NY, USA, 2013. ACM.

16. Wu, R., Zhang, H., Cheung, S.-C., and Kim, S.: Crashlocator: Locating crashing faults
based on crash stacks. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages 204–214, New York, NY, USA,
2014. ACM.

17. Cao, Y., Zhang, H., and Ding, S.: Symcrash: Selective recording for reproduc-
ing crashes. In Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages 791–802, New York, NY, USA,

2014. ACM.

18. Artzi, S., Kim, S., and Ernst, M. D.: Recrashj: A tool for capturing and reproduc-
ing program crashes in deployed applications. In Proceedings of the the 7th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ESEC/FSE
’09, pages 295–296, New York, NY, USA, 2009. ACM.

19. Clause, J. and Orso, A.: A technique for enabling and supporting debugging of
field failures. In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE Com-
puter Society.

97

CITED LITERATURE (continued)

20. Li, M.-L., Ramachandran, P., Sahoo, S. K., Adve, S. V., Adve, V. S., and Zhou, Y.:
Understanding the propagation of hard errors to software and implications for
resilient system design. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operating Systems, AS-

PLOS XIII, pages 265–276, New York, NY, USA, 2008. ACM.

21. Elbaum, S., Chin, H. N., Dwyer, M. B., and Dokulil, J.: Carving differential unit
test cases from system test cases. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, SIGSOFT

’06/FSE-14, pages 253–264, New York, NY, USA, 2006. ACM.

22. Edwards, A., Tucker, S., and Demsky, B.: Afid: An automated approach to collecting
software faults. Automated Software Engg., 17(3):347–372, September 2010.

23. Parnin, C. and Orso, A.: Are automated debugging techniques actually helping program-
mers? In Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 199–209, New York, NY, USA, 2011. ACM.

24. Orso, A. and Rothermel, G.: Software testing: A research travelogue (2000–2014).
In Proceedings of the on Future of Software Engineering, FOSE 2014, pages 117–
132, New York, NY, USA, 2014. ACM.

25. Zeller, A.: Why Programs Fail, Second Edition: A Guide to Systematic Debugging. San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc., 2nd edition, 2009.

26. Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund, A. J. C.: A practical evaluation
of spectrum-based fault localization. J. Syst. Softw., 82(11):1780–1792, November
2009.

27. Clarke, L. A.: A system to generate test data and symbolically execute programs. IEEE
Trans. Softw. Eng., 2(3):215–222, 1976.

28. DeMillo, R. A. and Offutt, A. J.: Constraint-based automatic test data generation. IEEE
Trans. Softw. Eng., 17(9):900–910, 1991.

29. Godefroid, P.: Compositional dynamic test generation. In POPL, pages 47–54, 2007.

30. Majumdar, R. and Sen, K.: Hybrid concolic testing. In ICSE, pages 416–426, 2007.

98

CITED LITERATURE (continued)

31. Baresi, L. and Young, M.: Test oracles. Technical Report CIS-TR-01-02, University of
Oregon, Dept. of Computer and Information Science, Eugene, Oregon, U.S.A.,
August 2001. http://www.cs.uoregon.edu/~michal/pubs/oracles.html.

32. Peters, D. and Parnas, D. L.: Generating a test oracle from program documentation: work
in progress. In ISSTA ’94: Proceedings of the 1994 ACM SIGSOFT international
symposium on Software testing and analysis, pages 58–65, New York, NY, USA,

1994. ACM Press.

33. Richardson, D. J., Leif-Aha, S., and O’Malley, T. O.: Specification-based Test Oracles for
Reactive Systems. In Proceedings of the 14th ICSE, pages 105–118, May 1992.

34. Richardson, D. J.: Taos: Testing with analysis and oracle support. In ISSTA ’94:
Proceedings of the 1994 ACM SIGSOFT ISSTA, pages 138–153, New York, NY,
USA, 1994. ACM Press.

35. Dillon, L. K. and Yu, Q.: Oracles for checking temporal properties of concurrent systems.
In Proceedings of the ACM SIGSOFT ’94, pages 140–153, December 1994.

36. Liu, C., Fei, L., Yan, X., Han, J., Member, S., and Midkiff, S. P.: Statistical debugging:
A hypothesis testing-based approach. IEEE Transaction on Software Engineering,
32:831–848, 2006.

37. Arumuga Nainar, P., Chen, T., Rosin, J., and Liblit, B.: Statistical debugging using com-
pound boolean predicates. In Proceedings of the 2007 International Symposium
on Software Testing and Analysis, ISSTA ’07, pages 5–15, New York, NY, USA,
2007. ACM.

38. Chilimbi, T. M., Liblit, B., Mehra, K., Nori, A. V., and Vaswani, K.: Holmes: Effec-
tive statistical debugging via efficient path profiling. In Proceedings of the 31st
International Conference on Software Engineering, ICSE ’09, pages 34–44, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

39. Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I.: Bug isolation via remote
program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, PLDI ’03, pages 141–154,
New York, NY, USA, 2003. ACM.

40. Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I.: Scalable statis-
tical bug isolation. In Proceedings of the 2005 ACM SIGPLAN Conference on

99

CITED LITERATURE (continued)

Programming Language Design and Implementation, PLDI ’05, pages 15–26, New
York, NY, USA, 2005. ACM.

41. Hofer, B., Wotawa, F., and Abreu, R.: Ai for the win: Improving spectrum-based fault
localization. SIGSOFT Softw. Eng. Notes, 37(6):1–8, November 2012.

42. Hao, D.: Testing-based interactive fault localization. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06, pages 957–960, New
York, NY, USA, 2006. ACM.

43. Jones, J. A.: Semi-automatic Fault Localization. Doctoral dissertation, Georgia Institute
of Technology, Atlanta, GA, USA, 2008. AAI3308774.

44. Zuddas, D., Jin, W., Pastore, F., Mariani, L., and Orso, A.: Mimic: Locating and
understanding bugs by analyzing mimicked executions. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE

’14, pages 815–826, New York, NY, USA, 2014. ACM.

45. Liblit, B.: Cooperative bug isolation. Doctoral dissertation, University of California,
Berkeley, 2007.

46. Liblit, B.: Cooperative debugging with five hundred million test cases. In Proceedings of
the ACM/SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2008, Seattle, WA, USA, July 20-24, 2008, pages 119–120, 2008.

47. Liblit, B.: Reflections on the role of static analysis in cooperative bug iso-
lation. In Static Analysis, 15th International Symposium, SAS 2008, Valencia,
Spain, July 16-18, 2008. Proceedings, pages 18–31, 2008.

48. de Kleer, J. and Kurien, J.: Fundamentals of model-based diagnosis.
In Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes, June 2003.

49. Dow, E. and Farr, E.: Differential diagnosis for software systems: A meta-methodology
for in-field root cause analysis. In Proceedings of the 7th Proactive Problem
Prediction, Avoidance and Diagnosis Conference, Yorktown Heights, NY, April
2009, USA, pages 18–29, 2009.

50. Edwards, A., Tucker, S., Worms, S., Vaidya, R., and Demsky, B.: AFID: an automated
fault identification tool. In Proceedings of the ACM/SIGSOFT International

100

CITED LITERATURE (continued)

Symposium on Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA,
July 20-24, 2008, pages 179–188, 2008.

51. Bell, J., Sarda, N., and Kaiser, G.: Chronicler: Lightweight recording to reproduce
field failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 362–371, Piscataway, NJ, USA, 2013. IEEE Press.

52. Rahman, M.: Droidmln: A markov logic network approach to detect android
malware. In Proceedings of the 2013 12th International Conference on Machine
Learning and Applications - Volume 02, ICMLA ’13, pages 166–169, Washington,
DC, USA, 2013. IEEE Computer Society.

53. Chahuara, P., Portet, F., and Vacher, M.: Making context aware decision from
uncertain information in a smart home: A markov logic network approach.
In Proceedings of the 4th International Joint Conference on Ambient Intelligence
- Volume 8309, AmI 2013, pages 78–93, New York, NY, USA, 2013. Springer-

Verlag New York, Inc.

54. Cheng, V. and Li, C. H.: Topic detection via participation using markov logic network.
In Proceedings of the 2007 Third International IEEE Conference on Signal-Image
Technologies and Internet-Based System, SITIS ’07, pages 85–91, Washington,

DC, USA, 2007. IEEE Computer Society.

55. Souza, C. R. C. and Santos, P. E.: Probabilistic logic reasoning about traffic scenes.
In Proceedings of the 12th Annual Conference on Towards Autonomous Robotic
Systems, TAROS’11, pages 219–230, Berlin, Heidelberg, 2011. Springer-Verlag.

56. Chatzikonstantinou, G., Kontogiannis, K., and Attarian, I.-M.: A goal driven frame-
work for software project data analytics. In Proceedings of the 25th International
Conference on Advanced Information Systems Engineering, CAiSE’13, pages 546–
561, Berlin, Heidelberg, 2013. Springer-Verlag.

57. Ferilli, S., Basile, T. M. A., and Di Mauro, N.: Markov logic networks for document layout
correction. In Proceedings of the 24th International Conference on Industrial
Engineering and Other Applications of Applied Intelligent Systems Conference
on Modern Approaches in Applied Intelligence - Volume Part I, IEA/AIE’11,

pages 275–284, Berlin, Heidelberg, 2011. Springer-Verlag.

58. Riedel, S., Chun, H.-W., Takagi, T., and Tsujii, J.: A markov logic approach to bio-
molecular event extraction. In Proceedings of the Workshop on Current Trends

101

CITED LITERATURE (continued)

in Biomedical Natural Language Processing: Shared Task, BioNLP ’09, pages 41–
49, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

59. Zawawy, H., Kontogiannis, K., Mylopoulos, J., and Mankovskii, S.: Towards a
requirements-driven framework for detecting malicious behavior against soft-
ware systems. In Proceedings of the 2011 Conference of the Center for Advanced
Studies on Collaborative Research, CASCON ’11, pages 15–29, Riverton, NJ,

USA, 2011. IBM Corp.

60. Lee, S., Lee, J., Noh, H., Lee, K., and Lee, G. G.: Grammatical error simulation for
computer-assisted language learning. Know.-Based Syst., 24(6):868–876, August
2011.

61. Wen, W.: Software fault localization based on program slicing spectrum. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages

1511–1514, Piscataway, NJ, USA, 2012. IEEE Press.

62. Liu, Y., Li, W., Jiang, S., Zhang, Y., and Ju, X.: An approach for fault localization based
on program slicing and bayesian. In Proceedings of the 2013 13th International
Conference on Quality Software, QSIC ’13, pages 326–332, Washington, DC, USA,
2013. IEEE Computer Society.

63. Sedlmeyer, R. L., Thompson, W. B., and Johnson, P. E.: Knowledge-based fault lo-
calization in debugging: Preliminary draft. In Proceedings of the Symposium on
High-level Debugging, SIGSOFT ’83, pages 25–31, New York, NY, USA, 1983.

ACM.

64. Liu, C., Fei, L., Yan, X., Han, J., and Midkiff, S. P.: Statistical debugging: A hypothesis
testing-based approach. IEEE Trans. Softw. Eng., 32(10):831–848, October 2006.

65. Zhang, S. and Zhang, C.: Software bug localization with markov logic. In Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE

Companion 2014, pages 424–427, New York, NY, USA, 2014. ACM.

66. Zeller, A. and Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng., 28(2):183–200, February 2002.

67. Yu, K., Lin, M., Chen, J., and Zhang, X.: Towards automated debugging in software
evolution: Evaluating delta debugging on real regression bugs from the developers’
perspectives. J. Syst. Softw., 85(10):2305–2317, October 2012.

102

CITED LITERATURE (continued)

68. Cleve, H. and Zeller, A.: Locating causes of program failures. In Proceedings of the 27th
International Conference on Software Engineering, ICSE ’05, pages 342–351, New
York, NY, USA, 2005. ACM.

69. Misherghi, G. and Su, Z.: Hdd: Hierarchical delta debugging. In Proceedings of the 28th
International Conference on Software Engineering, ICSE ’06, pages 142–151, New
York, NY, USA, 2006. ACM.

70. Zeller, A.: Isolating cause-effect chains from computer programs. In Proceedings of the
10th ACM SIGSOFT Symposium on Foundations of Software Engineering, SIG-

SOFT ’02/FSE-10, pages 1–10, New York, NY, USA, 2002. ACM.

71. Zeller, A.: Yesterday, my program worked. today, it does not. why? In Proceedings of the
7th European Software Engineering Conference Held Jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,

ESEC/FSE-7, pages 253–267, London, UK, UK, 1999. Springer-Verlag.

72. Zeller, A.: Search-based program analysis. In Proceedings of the Third International
Conference on Search Based Software Engineering, SSBSE’11, pages 1–4, Berlin,
Heidelberg, 2011. Springer-Verlag.

73. Jin, G., Zhang, W., Deng, D., Liblit, B., and Lu, S.: Automated concurrency-
bug fixing. In Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 221–236, Berkeley, CA, USA, 2012.

USENIX Association.

74. Park, S., Vuduc, R. W., and Harrold, M. J.: Falcon: Fault localization in concurrent
programs. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE ’10, pages 245–254, New York, NY, USA,
2010. ACM.

75. Copty, S. and Ur, S.: Toward automatic concurrent debugging via minimal program
mutant generation with aspectj. Electron. Notes Theor. Comput. Sci., 174(9):151–
165, June 2007.

76. Park, S., Vuduc, R., and Harrold, M. J.: A unified approach for localizing non-
deadlock concurrency bugs. In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, ICST ’12, pages 51–
60, Washington, DC, USA, 2012. IEEE Computer Society.

103

CITED LITERATURE (continued)

77. Choi, J.-D. and Zeller, A.: Isolating failure-inducing thread schedules. In Proceedings
of the 2002 ACM SIGSOFT International Symposium on Software Testing and

Analysis, ISSTA ’02, pages 210–220, New York, NY, USA, 2002. ACM.

78. Park, S.: Debugging non-deadlock concurrency bugs. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pages
358–361, New York, NY, USA, 2013. ACM.

79. Park, S., Harrold, M. J., and Vuduc, R.: Griffin: Grouping suspicious memory-access pat-
terns to improve understanding of concurrency bugs. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013, pages

134–144, New York, NY, USA, 2013. ACM.

80. Steimann, F. and Frenkel, M.: Improving coverage-based localization of multiple faults
using algorithms from integer linear programming. In Proceedings of the 2012
IEEE 23rd International Symposium on Software Reliability Engineering, ISSRE

’12, pages 121–130, Washington, DC, USA, 2012. IEEE Computer Society.

81. Masri, W.: Fault localization based on information flow coverage. Softw. Test. Verif.
Reliab., 20(2):121–147, June 2010.

82. Wong, E., Wei, T., Qi, Y., and Zhao, L.: A crosstab-based statistical method for ef-
fective fault localization. In Proceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, ICST ’08, pages 42–51, Washing-

ton, DC, USA, 2008. IEEE Computer Society.

83. Wang, X., Cheung, S. C., Chan, W. K., and Zhang, Z.: Taming coincidental correct-
ness: Coverage refinement with context patterns to improve fault localization. In
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 45–55, Washington, DC, USA, 2009. IEEE Computer Society.

84. Yu, K., Lin, M., Chen, J., and Zhang, X.: Practical isolation of failure-inducing changes for
debugging regression faults. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2012, pages 20–29, New

York, NY, USA, 2012. ACM.

85. Yu, K., Lin, M., Gao, Q., Zhang, H., and Zhang, X.: Locating faults using multiple
spectra-specific models. In Proceedings of the 2011 ACM Symposium on Applied
Computing, SAC ’11, pages 1404–1410, New York, NY, USA, 2011. ACM.

104

CITED LITERATURE (continued)

86. Liu, C., Zhang, X., and Han, J.: A systematic study of failure proximity. IEEE Trans.
Softw. Eng., 34(6):826–843, November 2008.

87. Wotawa, F. and Soomro, S.: Fault localization based on abstract depen-
dencies. In Proceedings of the 18th International Conference on Innovations in
Applied Artificial Intelligence, IEA/AIE’2005, pages 357–359, London, UK, UK,
2005. Springer-Verlag.

88. Lucia, Lo, D., Jiang, L., and Budi, A.: Comprehensive evaluation of association measures
for fault localization. In Proceedings of the 2010 IEEE International Conference
on Software Maintenance, ICSM ’10, pages 1–10, Washington, DC, USA, 2010.

IEEE Computer Society.

89. Masri, W., Abou-Assi, R., El-Ghali, M., and Al-Fatairi, N.: An empirical study
of the factors that reduce the effectiveness of coverage-based fault localiza-
tion. In Proceedings of the 2Nd International Workshop on Defects in Large
Software Systems: Held in Conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2009), DEFECTS ’09,

pages 1–5, New York, NY, USA, 2009. ACM.

90. Hsu, H.-Y., Jones, J. A., and Orso, A.: Rapid: Identifying bug signatures to support
debugging activities. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 439–442, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

91. Fleurey, F., Traon, Y. L., and Baudry, B.: From testing to diagnosis: An automated ap-
proach. In Proceedings of the 19th IEEE International Conference on Automated
Software Engineering, ASE ’04, pages 306–309, Washington, DC, USA, 2004.

IEEE Computer Society.

92. Wang, S., Lo, D., Jiang, L., Lucia, and Lau, H. C.: Search-based fault localiza-
tion. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’11, pages 556–559, Washington, DC,
USA, 2011. IEEE Computer Society.

93. Lucia, Lo, D., and Xia, X.: Fusion fault localizers. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering, ASE

’14, pages 127–138, New York, NY, USA, 2014. ACM.

105

CITED LITERATURE (continued)

94. Machado, P., Campos, J., and Abreu, R.: Mzoltar: Automatic debugging of android
applications. In Proceedings of the 2013 International Workshop on Software
Development Lifecycle for Mobile, DeMobile 2013, pages 9–16, New York, NY,
USA, 2013. ACM.

95. Lei, Y., Mao, X., and Chen, T. Y.: Backward-slice-based statistical fault localization
without test oracles. In Proceedings of the 2013 13th International Conference on
Quality Software, QSIC ’13, pages 212–221, Washington, DC, USA, 2013. IEEE

Computer Society.

96. Xie, X., Wong, W. E., Chen, T. Y., and Xu, B.: Metamorphic slice: An application in
spectrum-based fault localization. Inf. Softw. Technol., 55(5):866–879, May 2013.

97. Chen, C., Gross, H.-G., and Zaidman, A.: Spectrum-based fault diagnosis for service-
oriented software systems. In Proceedings of the 2012 5th IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), SOCA

’12, pages 1–8, Washington, DC, USA, 2012. IEEE Computer Society.

98. Yu, Z., Hu, H., Bai, C., Cai, K.-Y., and Wong, W. E.: Gui software fault localization using
n-gram analysis. In Proceedings of the 2011 IEEE 13th International Symposium
on High-Assurance Systems Engineering, HASE ’11, pages 325–332, Washington,

DC, USA, 2011. IEEE Computer Society.

99. Yu, Z., Bai, C., and Cai, K.-Y.: Mutation-oriented test data augmentation for gui software
fault localization. Inf. Softw. Technol., 55(12):2076–2098, December 2013.

100. Ocariza Jr., F. S., Pattabiraman, K., and Mesbah, A.: Autoflox: An automatic fault local-
izer for client-side javascript. In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, ICST ’12, pages 31–

40, Washington, DC, USA, 2012. IEEE Computer Society.

101. Ma, C., Zhang, Y., Liu, J., and Mengzhao: Locating faulty code using failure-causing
input combinations in combinatorial testing. In Proceedings of the 2013 Fourth
World Congress on Software Engineering, WCSE ’13, pages 91–98, Washington,

DC, USA, 2013. IEEE Computer Society.

102. Song, S.: Estimating the effectiveness of spectrum-based fault localiza-
tion. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 814–816, New York, NY,
USA, 2014. ACM.

106

CITED LITERATURE (continued)

103. Ren, X. and Ryder, B. G.: Heuristic ranking of java program edits for fault local-
ization. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, pages 239–249, New York, NY, USA, 2007. ACM.

104. Alves, E., Gligoric, M., Jagannath, V., and d’Amorim, M.: Fault-localization using
dynamic slicing and change impact analysis. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE

’11, pages 520–523, Washington, DC, USA, 2011. IEEE Computer Society.

105. Ren, X., Chesley, O. C., and Ryder, B. G.: Identifying failure causes in java programs:
An application of change impact analysis. IEEE Trans. Softw. Eng., 32(9):718–
732, September 2006.

106. Fouché, S., Cohen, M. B., and Porter, A.: Towards incremental adaptive covering arrays.
In The 6th Joint Meeting on European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering:
Companion Papers, ESEC-FSE companion ’07, pages 557–560, New York, NY,
USA, 2007. ACM.

107. Ju, X., Jiang, S., Chen, X., Wang, X., Zhang, Y., and Cao, H.: Hsfal: Effective fault
localization using hybrid spectrum of full slices and execution slices. J. Syst.
Softw., 90:3–17, April 2014.

108. Guo, H.-F., Qiu, Z., and Siy, H.: Locating fault-inducing patterns from struc-
tural inputs. In Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 1100–1107, New York, NY, USA, 2014. ACM.

109. Baudry, B., Fleurey, F., and Le Traon, Y.: Improving test suites for efficient fault
localization. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 82–91, New York, NY, USA, 2006. ACM.

110. Hao, D., Pan, Y., Zhang, L., Zhao, W., Mei, H., and Sun, J.: A similarity-aware ap-
proach to testing based fault localization. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05, pages

291–294, New York, NY, USA, 2005. ACM.

111. Hao, D., Zhang, L., Zhong, H., Mei, H., and Sun, J.: Eliminating harmful redun-
dancy for testing-based fault localization using test suite reduction: An experimen-
tal study. In Proceedings of the 21st IEEE International Conference on Software

107

CITED LITERATURE (continued)

Maintenance, ICSM ’05, pages 683–686, Washington, DC, USA, 2005. IEEE Com-
puter Society.

112. Hao, D., Xie, T., Zhang, L., Wang, X., Sun, J., and Mei, H.: Test input reduction for result
inspection to facilitate fault localization. Automated Software Engg., 17(1):5–31,
March 2010.

113. Hao, D., Zhang, L., Pan, Y., Mei, H., and Sun, J.: On similarity-awareness in testing-based
fault localization. Automated Software Engg., 15(2):207–249, June 2008.

114. Yu, Y., Jones, J. A., and Harrold, M. J.: An empirical study of the effects of test-suite re-
duction on fault localization. In Proceedings of the 30th International Conference
on Software Engineering, ICSE ’08, pages 201–210, New York, NY, USA, 2008.

ACM.

115. Dandan, G., Tiantian, W., Xiaohong, S., and Peijun, M.: A test-suite reduction ap-
proach to improving fault-localization effectiveness. Comput. Lang. Syst. Struct.,
39(3):95–108, October 2013.

116. Gonzalez-Sanchez, A., Abreu, R., Gross, H.-G., and van Gemund, A. J. C.: An em-
pirical study on the usage of testability information to fault localization in soft-
ware. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC
’11, pages 1398–1403, New York, NY, USA, 2011. ACM.

117. Kim, S. and Baik, J.: An effective fault aware test case prioritization by incorporating a
fault localization technique. In Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM ’10,

pages 5:1–5:10, New York, NY, USA, 2010. ACM.

118. Gong, L., Lo, D., Jiang, L., and Zhang, H.: Diversity maximization speedup for fault
localization. In Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2012, pages 30–39, New York, NY, USA,
2012. ACM.

119. Zhang, X., Gu, Q., Chen, X., Qi, J., and Chen, D.: A study of relative redundancy
in test-suite reduction while retaining or improving fault-localization effective-
ness. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 2229–2236, New York, NY, USA, 2010. ACM.

108

CITED LITERATURE (continued)

120. Demott, J. D., Enbody, R. J., and Punch, W. F.: Systematic bug finding and fault local-
ization enhanced with input data tracking. Comput. Secur., 32:130–157, February
2013.

121. Jones, J. A. and Harrold, M. J.: Empirical evaluation of the tarantula automatic
fault-localization technique. In Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’05, pages 273–282, New

York, NY, USA, 2005. ACM.

122. Steimann, F. and Bertschler, M.: A simple coverage-based locator for multiple
faults. In Proceedings of the 2009 International Conference on Software Testing
Verification and Validation, ICST ’09, pages 366–375, Washington, DC, USA,

2009. IEEE Computer Society.

123. Eric Wong, W., Debroy, V., and Choi, B.: A family of code coverage-based heuristics for
effective fault localization. J. Syst. Softw., 83(2):188–208, February 2010.

124. Burger, M. and Zeller, A.: Minimizing reproduction of software failures. In Proceedings of
the 2011 International Symposium on Software Testing and Analysis, ISSTA ’11,

pages 221–231, New York, NY, USA, 2011. ACM.

125. Masri, W. and Assi, R. A.: Cleansing test suites from coincidental correctness to enhance
fault-localization. In Proceedings of the 2010 Third International Conference on
Software Testing, Verification and Validation, ICST ’10, pages 165–174, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

126. Bandyopadhyay, A.: Improving spectrum-based fault localization using proximity-based
weighting of test cases. In Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 660–664, Wash-

ington, DC, USA, 2011. IEEE Computer Society.

127. Masri, W. and Assi, R. A.: Prevalence of coincidental correctness and mitigation of its
impact on fault localization. ACM Trans. Softw. Eng. Methodol., 23(1):8:1–8:28,
February 2014.

128. Bandyopadhyay, A.: Mitigating the effect of coincidental correctness in spectrum
based fault localization. In Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, ICST ’12, pages

479–482, Washington, DC, USA, 2012. IEEE Computer Society.

109

CITED LITERATURE (continued)

129. Bandyopadhyay, A. and Ghosh, S.: Tester feedback driven fault local-
ization. In Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, ICST ’12, pages 41–50, Washing-
ton, DC, USA, 2012. IEEE Computer Society.

130. Liu, C. and Han, J.: Failure proximity: A fault localization-based ap-
proach. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’06/FSE-14, pages 46–56, New

York, NY, USA, 2006. ACM.

131. Debroy, V., Wong, W. E., Xu, X., and Choi, B.: A grouping-based strategy to improve
the effectiveness of fault localization techniques. In Proceedings of the 2010 10th
International Conference on Quality Software, QSIC ’10, pages 13–22, Washing-

ton, DC, USA, 2010. IEEE Computer Society.

132. Wong, W. E., Debroy, V., Li, Y., and Gao, R.: Software fault localization using
dstar (d*). In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability, SERE ’12, pages 21–30, Washington, DC, USA,
2012. IEEE Computer Society.

133. Weiglhofer, M., Fraser, G., and Wotawa, F.: Using spectrum-based fault localiza-
tion for test case grouping. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE ’09, pages 630–634, Wash-

ington, DC, USA, 2009. IEEE Computer Society.

134. Guo, L., Roychoudhury, A., and Wang, T.: Accurately choosing execution runs for soft-
ware fault localization. In Proceedings of the 15th International Conference on
Compiler Construction, CC’06, pages 80–95, Berlin, Heidelberg, 2006. Springer-
Verlag.

135. Xu, J., Zhang, Z., Chan, W. K., Tse, T. H., and Li, S.: A general noise-reduction
framework for fault localization of java programs. Inf. Softw. Technol., 55(5):880–
896, May 2013.

136. Zhang, L., Kim, M., and Khurshid, S.: Faulttracer: A change impact and regression fault
analysis tool for evolving java programs. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering, FSE

’12, pages 40:1–40:4, New York, NY, USA, 2012. ACM.

110

CITED LITERATURE (continued)

137. Zhang, L., Kim, M., and Khurshid, S.: Localizing failure-inducing program edits based
on spectrum information. In Proceedings of the 2011 27th IEEE International
Conference on Software Maintenance, ICSM ’11, pages 23–32, Washington, DC,
USA, 2011. IEEE Computer Society.

138. Robetaler, J., Fraser, G., Zeller, A., and Orso, A.: Isolating failure causes through test
case generation. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pages 309–319, New York, NY, USA, 2012.

ACM.

139. Li, Z., Cheng, L., Qiu, X.-S., and Wu, L.: Fault diagnosis for high-level applications based
on dynamic bayesian network. In Proceedings of the 12th Asia-Pacific Network
Operations and Management Conference on Management Enabling the Future
Internet for Changing Business and New Computing Services, APNOMS’09,

pages 61–70, Berlin, Heidelberg, 2009. Springer-Verlag.

140. Steinder, M. and Sethi, A. S.: Probabilistic fault localization in communication systems
using belief networks. IEEE/ACM Trans. Netw., 12(5):809–822, October 2004.

141. Jeffrey, D., Gupta, N., and Gupta, R.: Fault localization using value replace-
ment. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ISSTA ’08, pages 167–178, New York, NY, USA, 2008. ACM.

142. Shu, G., Sun, B., Podgurski, A., and Cao, F.: Mfl: Method-level fault localization with
causal inference. In Proceedings of the 2013 IEEE Sixth International Conference
on Software Testing, Verification and Validation, ICST ’13, pages 124–133, Wash-

ington, DC, USA, 2013. IEEE Computer Society.

143. Parsa, S., Naree, S. A., and Koopaei, N. E.: Software fault localization via min-
ing execution graphs. In Proceedings of the 2011 International Conference on
Computational Science and Its Applications - Volume Part II, ICCSA’11, pages

610–623, Berlin, Heidelberg, 2011. Springer-Verlag.

144. Parsa, S., Vahidi-Asl, M., and Asadi-Aghbolaghi, M.: Hierarchy-debug: A scalable sta-
tistical technique for fault localization. Software Quality Control, 22(3):427–466,
September 2014.

145. Liu, C., Yan, X., Yu, H., Han, J., and Yu, P. S.: Mining behavior graphs for ”backtrace”
of noncrashing bugs. In Proceedings of the 2005 SIAM International Conference

111

CITED LITERATURE (continued)

on Data Mining, SDM 2005, Newport Beach, CA, USA, April 21-23, 2005, pages
286–297, 2005.

146. Liu, C., Yan, X., and Han, J.: Mining control flow abnormality for logic error
isolation. In Proceedings of the Sixth SIAM International Conference on Data
Mining, April 20-22, 2006, Bethesda, MD, USA, pages 106–117, 2006.

147. Sözer, H., Abreu, R., Aksit, M., and van Gemund, A. J. C.: Increasing system availability
with local recovery based on fault localization. In Proceedings of the 2010 10th
International Conference on Quality Software, QSIC ’10, pages 276–281, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

148. Artzi, S., Dolby, J., Tip, F., and Pistoia, M.: Fault localization for dynamic web applica-
tions. IEEE Trans. Softw. Eng., 38(2):314–335, March 2012.

149. Nguyen, H. V., Nguyen, H. A., Nguyen, T. T., and Nguyen, T. N.: Database-aware
fault localization for dynamic web applications. In Proceedings of the 2013
IEEE International Conference on Software Maintenance, ICSM ’13, pages 456–
459, Washington, DC, USA, 2013. IEEE Computer Society.

150. Artzi, S., Dolby, J., Tip, F., and Pistoia, M.: Directed test generation for effec-
tive fault localization. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 49–60, New York, NY, USA,
2010. ACM.

151. Artzi, S., Dolby, J., Tip, F., and Pistoia, M.: Practical fault localization for dynamic web
applications. In Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ICSE ’10, pages 265–274, New York, NY,
USA, 2010. ACM.

152. Al-Kofahi, J., Nguyen, H. V., and Nguyen, T. N.: Fault localization for build code errors
in makefiles. In Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, pages 600–601, New York, NY,

USA, 2014. ACM.

153. Wang, T. and Roychoudhury, A.: Automated path generation for software fault lo-
calization. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05, pages 347–351, New York, NY, USA,
2005. ACM.

112

CITED LITERATURE (continued)

154. Delahaye, M., Briand, L. C., Gotlieb, A., and Petit, M.: µtil:
Mutation-based statistical test inputs generation for automatic fault lo-
calization. In Proceedings of the 2012 IEEE Sixth International Conference on
Software Security and Reliability, SERE ’12, pages 197–206, Washington, DC,
USA, 2012. IEEE Computer Society.

155. Soffa, M. L., Walcott, K. R., and Mars, J.: Exploiting hardware advances for soft-
ware testing and debugging (nier track). In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 888–891, New York, NY,

USA, 2011. ACM.

156. Zuo, Z.: Efficient statistical debugging via hierarchical instrumentation. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ISSTA

2014, pages 457–460, New York, NY, USA, 2014. ACM.

157. Dean, B. C., Pressly, W. B., Malloy, B. A., and Whitley, A. A.: A linear programming
approach for automated localization of multiple faults. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering, ASE

’09, pages 640–644, Washington, DC, USA, 2009. IEEE Computer Society.

158. Kannan, K. and Bhamidipaty, A.: A differential approach for configuration fault lo-
calization in cloud environments. In Proceedings of the 2013 IEEE International
Conference on Cloud Engineering, IC2E ’13, pages 250–257, Washington, DC,

USA, 2013. IEEE Computer Society.

159. Dallmeier, V., Lindig, C., and Zeller, A.: Lightweight defect localization
for java. In Proceedings of the 19th European Conference on Object-Oriented
Programming, ECOOP’05, pages 528–550, Berlin, Heidelberg, 2005. Springer-
Verlag.

160. Gore, R., Reynolds, P. F., and Kamensky, D.: Statistical debugging with elastic pred-
icates. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’11, pages 492–495, Washington, DC,

USA, 2011. IEEE Computer Society.

161. Clark, S. R., Cobb, J., Kapfhammer, G. M., Jones, J. A., and Harrold, M. J.: Lo-
calizing sql faults in database applications. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, ASE

’11, pages 213–222, Washington, DC, USA, 2011. IEEE Computer Society.

113

CITED LITERATURE (continued)

162. Hewett, R.: Program spectra analysis with theory of evidence. Adv. Soft. Eng., 2012:1:1–
1:1, January 2012.

163. Ghandehari, L. S. G., Lei, Y., Xie, T., Kuhn, R., and Kacker, R.: Identifying
failure-inducing combinations in a combinatorial test set. In Proceedings of
the 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, ICST ’12, pages 370–379, Washington, DC, USA, 2012. IEEE

Computer Society.

164. Shakya, K., Xie, T., Li, N., Lei, Y., Kacker, R., and Kuhn, R.: Isolating failure-
inducing combinations in combinatorial testing using test augmentation and
classification. In Proceedings of the 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, ICST ’12, pages 620–623, Washing-

ton, DC, USA, 2012. IEEE Computer Society.

165. Wong, W. E., Shi, Y., Qi, Y., and Golden, R.: Using an rbf neural network to lo-
cate program bugs. In Proceedings of the 2008 19th International Symposium on
Software Reliability Engineering, ISSRE ’08, pages 27–36, Washington, DC, USA,
2008. IEEE Computer Society.

166. Zhang, Z., Chan, W. K., Tse, T. H., Yu, Y. T., and Hu, P.: Non-parametric statistical
fault localization. J. Syst. Softw., 84(6):885–905, June 2011.

167. Xuan, J. and Monperrus, M.: Test case purification for improving fault localiza-
tion. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 52–63, New York, NY,
USA, 2014. ACM.

168. Jiang, B., Zhang, Z., Chan, W. K., Tse, T. H., and Chen, T. Y.: How well does test case
prioritization integrate with statistical fault localization? Inf. Softw. Technol.,
54(7):739–758, July 2012.

169. Gonzalez-Sanchez, A., Abreu, R., Gross, H.-G., and van Gemund, A. J. C.:
Prioritizing tests for fault localization through ambiguity group reduc-
tion. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’11, pages 83–92, Washington, DC, USA,
2011. IEEE Computer Society.

170. Sun, C.-A., Zhai, Y. M., Shang, Y., and Zhang, Z.: Bpeldebugger: An effective bpel-
specific fault localization framework. Inf. Softw. Technol., 55(12):2140–2153, De-

114

CITED LITERATURE (continued)

cember 2013.

171. Perez, A., Abreu, R., and Riboira, A.: A dynamic code coverage approach to maximize
fault localization efficiency. J. Syst. Softw., 90:18–28, April 2014.

172. Zhang, Z., Jiang, B., Chan, W. K., Tse, T. H., and Wang, X.: Fault localization through
evaluation sequences. J. Syst. Softw., 83(2):174–187, February 2010.

173. Ma, C., Tan, T., Chen, Y., and Dong, Y.: An if-while-if model-based
performance evaluation of ranking metrics for spectra-based fault localiza-
tion. In Proceedings of the 2013 IEEE 37th Annual Computer Software and
Applications Conference, COMPSAC ’13, pages 609–618, Washington, DC, USA,
2013. IEEE Computer Society.

174. Le, T.-D. B., Thung, F., and Lo, D.: Theory and practice, do they match? a case with
spectrum-based fault localization. In Proceedings of the 2013 IEEE International
Conference on Software Maintenance, ICSM ’13, pages 380–383, Washington, DC,
USA, 2013. IEEE Computer Society.

175. Debroy, V. and Wong, W. E.: On the equivalence of certain fault localization
techniques. In Proceedings of the 2011 ACM Symposium on Applied Computing,
SAC ’11, pages 1457–1463, New York, NY, USA, 2011. ACM.

176. Gong, C., Zheng, Z., Zhang, Y., Zhang, Z., and Xue, Y.: Factorising the mul-
tiple fault localization problem: Adapting single-fault localizer to multi-fault
programs. In Proceedings of the 2012 19th Asia-Pacific Software Engineering
Conference - Volume 01, APSEC ’12, pages 729–732, Washington, DC, USA, 2012.
IEEE Computer Society.

177. Le, T.-D. B. and Lo, D.: Will fault localization work for these failures? an automated
approach to predict effectiveness of fault localization tools. In Proceedings of the
2013 IEEE International Conference on Software Maintenance, ICSM ’13, pages

310–319, Washington, DC, USA, 2013. IEEE Computer Society.

178. DeMillo, R. A., Pan, H., and Spafford, E. H.: Critical slicing for software fault local-
ization. In Proceedings of the 1996 ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA ’96, pages 121–134, New York, NY, USA,

1996. ACM.

115

CITED LITERATURE (continued)

179. Surendran, A. and Samuel, P.: Fault localization using forward slicing spectrum.
In Proceedings of the 2013 Research in Adaptive and Convergent Systems, RACS
’13, pages 397–398, New York, NY, USA, 2013. ACM.

180. Kusumoto, S., Nishimatsu, A., Nishie, K., and Inoue, K.: Experimental evaluation of
program slicing for fault localization. Empirical Softw. Engg., 7(1):49–76, March
2002.

181. Mao, X., Lei, Y., Dai, Z., Qi, Y., and Wang, C.: Slice-based statistical fault localization.
J. Syst. Softw., 89:51–62, March 2014.

182. Roychowdhury, S. and Khurshid, S.: Software fault localization using feature selection.
In Proceedings of the International Workshop on Machine Learning Technologies
in Software Engineering, MALETS ’11, pages 11–18, New York, NY, USA, 2011.
ACM.

183. Huang, T.-Y., Chou, P.-C., Tsai, C.-H., and Chen, H.-A.: Automated fault localiza-
tion with statistically suspicious program states. In Proceedings of the 2007
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, LCTES ’07, pages 11–20, New York, NY, USA, 2007. ACM.

184. Ruthruff, J. R., Prabhakararao, S., Reichwein, J., Cook, C., Creswick, E., and Burnett,
M.: Interactive, visual fault localization support for end-user programmers. J.
Vis. Lang. Comput., 16(1-2):3–40, February 2005.

185. Ruthruff, J. R., Burnett, M., and Rothermel, G.: An empirical study of fault localization
for end-user programmers. In Proceedings of the 27th International Conference
on Software Engineering, ICSE ’05, pages 352–361, New York, NY, USA, 2005.
ACM.

186. Hofer, B., Riboira, A., Wotawa, F., Abreu, R., and Getzner, E.: On
the empirical evaluation of fault localization techniques for spreadsheets.
In Proceedings of the 16th International Conference on Fundamental Approaches
to Software Engineering, FASE’13, pages 68–82, Berlin, Heidelberg, 2013.

Springer-Verlag.

187. Ruthruff, J. R., Burnett, M., and Rothermel, G.: Interactive fault localization tech-
niques in a spreadsheet environment. IEEE Trans. Softw. Eng., 32(4):213–239,
April 2006.

116

CITED LITERATURE (continued)

188. Yoo, S., Harman, M., and Clark, D.: Fault localization prioritization: Comparing
information-theoretic and coverage-based approaches. ACM Trans. Softw. Eng.
Methodol., 22(3):19:1–19:29, July 2013.

189. Ackling, T., Alexander, B., and Grunert, I.: Evolving patches for software re-
pair. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’11, pages 1427–1434, New York, NY, USA, 2011. ACM.

190. Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S.: Automatically finding patches
using genetic programming. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 364–374, Washington, DC, USA, 2009.
IEEE Computer Society.

191. Forrest, S., Nguyen, T., Weimer, W., and Le Goues, C.: A genetic programming approach
to automated software repair. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, GECCO ’09, pages 947–954, New York,
NY, USA, 2009. ACM.

192. Le Goues, C., Dewey-Vogt, M., Forrest, S., and Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings
of the 34th International Conference on Software Engineering, ICSE ’12, pages 3–
13, Piscataway, NJ, USA, 2012. IEEE Press.

193. Martinez, M., Weimer, W., and Monperrus, M.: Do the fix ingredients already ex-
ist? an empirical inquiry into the redundancy assumptions of program repair
approaches. In Companion Proceedings of the 36th International Conference on
Software Engineering, ICSE Companion 2014, pages 492–495, New York, NY,

USA, 2014. ACM.

194. Kern, C. and Esparza, J.: Automatic error correction of java programs. In Proceedings
of the 15th International Conference on Formal Methods for Industrial Critical

Systems, FMICS’10, pages 67–81, Berlin, Heidelberg, 2010. Springer-Verlag.

195. Schulte, E., DiLorenzo, J., Weimer, W., and Forrest, S.: Automated repair of binary
and assembly programs for cooperating embedded devices. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages 317–328, New York, NY,
USA, 2013. ACM.

117

CITED LITERATURE (continued)

196. Arcuri, A.: Evolutionary repair of faulty software. Appl. Soft Comput., 11(4):3494–3514,
June 2011.

197. Schulte, E., Forrest, S., and Weimer, W.: Automated program repair through the evolution
of assembly code. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ASE ’10, pages 313–316, New York, NY, USA,

2010. ACM.

198. Zhang, X., Gupta, N., and Gupta, R.: Locating faults through automated predi-
cate switching. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 272–281, New York, NY, USA, 2006. ACM.

199. Yilmaz, C. and Williams, C.: An automated model-based debugging approach. In
Proceedings of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 174–183, New York, NY, USA,
2007. ACM.

200. Sedlmeyer, R. L., Thompson, W. B., and Johnson, P. E.: Diagnostic reasoning in software
fault localization. In Proceedings of the Eighth International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’83, pages 29–31, San Francisco, CA, USA,
1983. Morgan Kaufmann Publishers Inc.

201. Banerjee, A., Roychoudhury, A., Harlie, J. A., and Liang, Z.: Golden implementation
driven software debugging. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10,

pages 177–186, New York, NY, USA, 2010. ACM.

202. Malik, M. Z., Ghori, K., Elkarablieh, B., and Khurshid, S.: A case for automated
debugging using data structure repair. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, pages

620–624, Washington, DC, USA, 2009. IEEE Computer Society.

203. Köb, D. and Wotawa, F.: Fundamentals of debugging using a resolution calculus.
In Proceedings of the 9th International Conference on Fundamental Approaches
to Software Engineering, FASE’06, pages 278–292, Berlin, Heidelberg, 2006.
Springer-Verlag.

204. Griesmayer, A., Staber, S., and Bloem, R.: Automated fault localization for c programs.
Electron. Notes Theor. Comput. Sci., 174(4):95–111, May 2007.

118

CITED LITERATURE (continued)

205. Jose, M. and Majumdar, R.: Bug-assist: Assisting fault localization in ansi-c pro-
grams. In Proceedings of the 23rd International Conference on Computer Aided
Verification, CAV’11, pages 504–509, Berlin, Heidelberg, 2011. Springer-Verlag.

206. Jose, M. and Majumdar, R.: Cause clue clauses: Error localization using maximum satisfi-
ability. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 437–446, New York, NY,

USA, 2011. ACM.

207. Balakrishnan, G. and Ganai, M.: Ped: Proof-guided error diagnosis by triangulation
of program error causes. In Proceedings of the 2008 Sixth IEEE International
Conference on Software Engineering and Formal Methods, SEFM ’08, pages 268–
278, Washington, DC, USA, 2008. IEEE Computer Society.

208. Griesmayer, A., Staber, S., and Bloem, R.: Fault localization using a model checker.
Softw. Test. Verif. Reliab., 20(2):149–173, June 2010.

209. Jirong, S., Zhishu, L., Jiancheng, N., and Feng, Y.: Priority strategy of software
fault localization. In Proceedings of the 6th Conference on WSEAS International
Conference on Applied Computer Science - Volume 6, ACOS’07, pages 499–505,

Stevens Point, Wisconsin, USA, 2007. World Scientific and Engineering Academy
and Society (WSEAS).

210. Savor, T. and Seviora, R. E.: Hierarchical supervisors for automatic detection of soft-
ware failures. In Proceedings of the Eighth International Symposium on Software
Reliability Engineering, ISSRE ’97, pages 48–, Washington, DC, USA, 1997. IEEE

Computer Society.

211. Gopinath, D., Zaeem, R. N., and Khurshid, S.: Improving the effectiveness of
spectra-based fault localization using specifications. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering, ASE

2012, pages 40–49, New York, NY, USA, 2012. ACM.

212. Sahoo, S. K., Criswell, J., Geigle, C., and Adve, V.: Using likely invariants for automated
software fault localization. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 139–152, New York, NY, USA, 2013. ACM.

213. Roychowdhury, S. and Khurshid, S.: A novel framework for locating software faults
using latent divergences. In Proceedings of the 2011 European Conference on

119

CITED LITERATURE (continued)

Machine Learning and Knowledge Discovery in Databases - Volume Part III,
ECML PKDD’11, pages 49–64, Berlin, Heidelberg, 2011. Springer-Verlag.

214. Deng, F. and Jones, J. A.: Inferred dependence coverage to support fault contextu-
alization. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages 512–515, Washington, DC,
USA, 2011. IEEE Computer Society.

215. Bohnet, J., Voigt, S., and Döllner, J.: Projecting code changes onto execution traces
to support localization of recently introduced bugs. In Proceedings of the 2009
ACM Symposium on Applied Computing, SAC ’09, pages 438–442, New York,

NY, USA, 2009. ACM.

216. Ge, N., Nakajima, S., and Pantel, M.: Efficient online analysis of acci-
dental fault localization for dynamic systems using hidden markov model.
In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS
Integrative M&S Symposium, DEVS 13, pages 16:1–16:8, San Diego, CA, USA,
2013. Society for Computer Simulation International.

217. Baah, G. K., Gray, A., and Harrold, M. J.: On-line anomaly detection of deployed software:
A statistical machine learning approach. In Proceedings of the 3rd International
Workshop on Software Quality Assurance, SOQUA ’06, pages 70–77, New York,

NY, USA, 2006. ACM.

218. Casanova, P., Schmerl, B., Garlan, D., and Abreu, R.: Architecture-based run-
time fault diagnosis. In Proceedings of the 5th European Conference on Software
Architecture, ECSA’11, pages 261–277, Berlin, Heidelberg, 2011. Springer-Verlag.

219. Casanova, P., Garlan, D., Schmerl, B., and Abreu, R.: Diagnosing unobserved components
in self-adaptive systems. In Proceedings of the 9th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014,
pages 75–84, New York, NY, USA, 2014. ACM.

220. Gao, Z., Chen, Z., Feng, Y., and Luo, B.: Mining sequential patterns of predicates
for fault localization and understanding. In Proceedings of the 2013 IEEE 7th
International Conference on Software Security and Reliability, SERE ’13, pages

109–118, Washington, DC, USA, 2013. IEEE Computer Society.

221. Kaleeswaran, S., Tulsian, V., Kanade, A., and Orso, A.: Minthint: Automated synthesis
of repair hints. In Proceedings of the 36th International Conference on Software

120

CITED LITERATURE (continued)

Engineering, ICSE 2014, pages 266–276, New York, NY, USA, 2014. ACM.

222. Abreu, R., Zoeteweij, P., and Van Gemund, A. J. C.: A new bayesian approach to
multiple intermittent fault diagnosis. In Proceedings of the 21st International Jont
Conference on Artifical Intelligence, IJCAI’09, pages 653–658, San Francisco, CA,

USA, 2009. Morgan Kaufmann Publishers Inc.

223. Stumptner, M. and Wotawa, F.: A survey of intelligent debugging. AI Commun., 11(1):35–
51, January 1998.

224. Zhou, B., Kulkarni, M., and Bagchi, S.: Wukong: Effective diagnosis of bugs at large sys-
tem scales. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’13, pages 317–318, New York, NY,
USA, 2013. ACM.

225. Mayer, W. and Stumptner, M.: Modeling programs with unstructured control flow for
debugging. In Proceedings of the 15th Australian Joint Conference on Artificial
Intelligence: Advances in Artificial Intelligence, AI ’02, pages 107–118, London,
UK, UK, 2002. Springer-Verlag.

226. Casanova, P., Garlan, D., Schmerl, B., and Abreu, R.: Diagnosing architectural
run-time failures. In Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS ’13, pages 103–

112, Piscataway, NJ, USA, 2013. IEEE Press.

227. Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.: An observation-based model
for fault localization. In Proceedings of the 2008 International Workshop on
Dynamic Analysis: Held in Conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2008), WODA ’08, pages
64–70, New York, NY, USA, 2008. ACM.

228. Abreu, R. and van Gemund, A. J. C.: Diagnosing multiple intermittent failures using
maximum likelihood estimation. Artif. Intell., 174(18):1481–1497, December 2010.

229. Wei, Y., Pei, Y., Furia, C. A., Silva, L. S., Buchholz, S., Meyer, B., and Zeller, A.: Auto-
mated fixing of programs with contracts. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA ’10, pages 61–72, New York,
NY, USA, 2010. ACM.

121

CITED LITERATURE (continued)

230. Ceballos, R., Gasca, R. M., Del Valle, C., and Borrego, D.: Diagnosing errors in
dbc programs using constraint programming. In Proceedings of the 11th Spanish
Association Conference on Current Topics in Artificial Intelligence, CAEPIA’05,

pages 200–210, Berlin, Heidelberg, 2006. Springer-Verlag.

231. Mayer, W. and Stumptner, M.: Better debugging through more abstract observations.
In Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference
on Artificial Intelligence August 29 – September 1, 2006, Riva Del Garda, Italy,

pages 779–780, Amsterdam, The Netherlands, The Netherlands, 2006. IOS Press.

232. Abreu, R., Gonzalez-Sanchez, A., and van Gemund, A. J. C.: Exploiting count spectra
for bayesian fault localization. In Proceedings of the 6th International Conference
on Predictive Models in Software Engineering, PROMISE ’10, pages 12:1–12:10,

New York, NY, USA, 2010. ACM.

233. Yang, B., Zhang, M., and Zhang, Y.: Applying answer set programming to points-
to analysis of object-oriented language. In Proceedings of the 7th International
Conference on Advanced Intelligent Computing, ICIC’11, pages 676–685, Berlin,
Heidelberg, 2011. Springer-Verlag.

234. Abreu, R., Zoeteweij, P., and van Gemund, A. J. C.: Simultaneous debugging of software
faults. J. Syst. Softw., 84(4):573–586, April 2011.

235. Stumptner, M.: Intelligent information processing ii. chapter Model-based Diagnosis and
Debugging, pages .26–.27. London, UK, UK, Springer-Verlag, 2005.

236. Stumptner, M.: Using design information to identify structural software faults.
In Proceedings of the 14th Australian Joint Conference on Artificial Intelligence:
Advances in Artificial Intelligence, AI ’01, pages 473–486, London, UK, UK, 2001.
Springer-Verlag.

237. Abreu, R., Mayer, W., Stumptner, M., and van Gemund, A. J. C.: Refining spectrum-
based fault localization rankings. In Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC ’09, pages 409–414, New York, NY, USA, 2009. ACM.

238. Bourahla, M.: Model-based diagnostic using model checking. In Proceedings of the
2009 Fourth International Conference on Dependability of Computer Systems,

DEPCOS-RELCOMEX ’09, pages 229–236, Washington, DC, USA, 2009. IEEE
Computer Society.

122

CITED LITERATURE (continued)

239. Wotawa, F.: On the relationship between model-based debugging and program slicing.
Artif. Intell., 135(1-2):125–143, February 2002.

240. Peischl, B. and Wotawa, F.: Error traces in model-based debugging of hardware
description languages. In Proceedings of the Sixth International Symposium on
Automated Analysis-driven Debugging, AADEBUG’05, pages 43–48, New York,
NY, USA, 2005. ACM.

241. Wotawa, F., Stumptner, M., and Mayer, W.: Model-based debugging or how to diagnose
programs automatically. In Proceedings of the 15th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems: Developments in Applied Artificial Intelligence, IEA/AIE ’02, pages

746–757, London, UK, UK, 2002. Springer-Verlag.

242. Mayer, W. and Stumptner, M.: Abstract interpretation of programs for model-based
debugging. In Proceedings of the 20th International Joint Conference on Artifical
Intelligence, IJCAI’07, pages 471–476, San Francisco, CA, USA, 2007. Morgan

Kaufmann Publishers Inc.

243. Struss, P., Shivashankar, V., and Zahoor, M.: A fault-model-based debugging aid for data
warehouse applications. In Proceedings of the 2010 Conference on ECAI 2010:
19th European Conference on Artificial Intelligence, pages 419–424, Amsterdam,
The Netherlands, The Netherlands, 2010. IOS Press.

244. Mayer, W. and Stumptner, M.: Model-based debugging – state of the art and future
challenges. Electron. Notes Theor. Comput. Sci., 174(4):61–82, May 2007.

245. Mayer, W. and Stumptner, M.: Intelligent information processing ii. chapter Model-
based Debugging with High-level Observations, pages 299–309. London, UK, UK,
Springer-Verlag, 2005.

246. Mayer, W. and Stumptner, M.: Evaluating models for model-based debug-
ging. In Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’08, pages 128–137, Washington, DC,

USA, 2008. IEEE Computer Society.

247. Liu, C., Lian, Z., and Han, J.: How bayesians debug. In Proceedings of the Sixth
International Conference on Data Mining, ICDM ’06, pages 382–393, Washington,
DC, USA, 2006. IEEE Computer Society.

123

CITED LITERATURE (continued)

248. Abreu, R., González, A., Zoeteweij, P., and van Gemund, A. J. C.: Automatic software
fault localization using generic program invariants. In Proceedings of the 2008
ACM Symposium on Applied Computing, SAC ’08, pages 712–717, New York,

NY, USA, 2008. ACM.

249. Li, H., Liu, Y., Zhang, Z., and Liu, J.: Program structure aware fault local-
ization. In Proceedings of the International Workshop on Innovative Software
Development Methodologies and Practices, InnoSWDev 2014, pages 40–48, New
York, NY, USA, 2014. ACM.

250. Baah, G. K., Podgurski, A., and Harrold, M. J.: Causal inference for statistical fault local-
ization. In Proceedings of the 19th International Symposium on Software Testing
and Analysis, ISSTA ’10, pages 73–84, New York, NY, USA, 2010. ACM.

251. Baah, G. K.: Statistical Causal Analysis for Fault Localization. Doctoral dissertation,
Georgia Institute of Technology, Atlanta, GA, USA, 2012. AAI3535858.

252. Guo, X., Song, X., Hung, W. N. N., Gu, M., and Sun, J.: Fault localization with par-
tially reliable test results using dempster-shafer theory. In Proceedings of the
2014 Theoretical Aspects of Software Engineering Conference (Tase 2014), TASE
’14, pages 58–65, Washington, DC, USA, 2014. IEEE Computer Society.

253. Baah, G. K., Podgurski, A., and Harrold, M. J.: Mitigating the con-
founding effects of program dependences for effective fault localization.
In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11, pages 146–
156, New York, NY, USA, 2011. ACM.

254. Zhao, L., Wang, L., Xiong, Z., and Gao, D.: Execution-aware fault localization based
on the control flow analysis. In Proceedings of the First International Conference
on Information Computing and Applications, ICICA’10, pages 158–165, Berlin,

Heidelberg, 2010. Springer-Verlag.

255. Zhang, Z., Chan, W. K., Tse, T. H., Jiang, B., and Wang, X.: Capturing propagation
of infected program states. In Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ESEC/FSE ’09, pages 43–52, New

York, NY, USA, 2009. ACM.

124

CITED LITERATURE (continued)

256. Feng, M. and Gupta, R.: Learning universal probabilistic models for fault lo-
calization. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, PASTE ’10, pages 81–88,
New York, NY, USA, 2010. ACM.

257. Mousavian, Z., Vahidi-Asl, M., and Parsa, S.: Scalable graph analyzing approach for
software fault-localization. In Proceedings of the 6th International Workshop on
Automation of Software Test, AST ’11, pages 15–21, New York, NY, USA, 2011.
ACM.

258. Naish, L., Lee, H. J., and Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol., 20(3):11:1–11:32, August 2011.

259. Stoerzer, M., Ryder, B. G., Ren, X., and Tip, F.: Finding failure-inducing changes in java
programs using change classification. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, SIGSOFT

’06/FSE-14, pages 57–68, New York, NY, USA, 2006. ACM.

260. Peyvandi-Pour, A. and Parsa, S.: Effective software fault localization by statistically
testing the program behavior model. In Proceedings of the Second International
Conference on Information Computing and Applications, ICICA’11, pages 136–

144, Berlin, Heidelberg, 2011. Springer-Verlag.

261. Baah, G. K., Podgurski, A., and Harrold, M. J.: The probabilistic program dependence
graph and its application to fault diagnosis. IEEE Trans. Softw. Eng., 36(4):528–
545, July 2010.

262. Baah, G. K., Podgurski, A., and Harrold, M. J.: The probabilistic program depen-
dence graph and its application to fault diagnosis. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, pages

189–200, New York, NY, USA, 2008. ACM.

263. Mariani, L., Pastore, F., and Pezze, M.: Dynamic analysis for diagnosing integration
faults. IEEE Trans. Softw. Eng., 37(4):486–508, July 2011.

264. Cellier, P., Ducassé, M., Ferré, S., and Ridoux, O.: Formal concept analysis enhances
fault localization in software. In Proceedings of the 6th International Conference
on Formal Concept Analysis, ICFCA’08, pages 273–288, Berlin, Heidelberg, 2008.
Springer-Verlag.

125

CITED LITERATURE (continued)

265. Dhoolia, P., Mani, S., Sinha, V. S., and Sinha, S.: Debugging model-transformation
failures using dynamic tainting. In Proceedings of the 24th European Conference
on Object-oriented Programming, ECOOP’10, pages 26–51, Berlin, Heidelberg,

2010. Springer-Verlag.

266. Jobstmann, B., Staber, S., Griesmayer, A., and Bloem, R.: Finding and fixing faults.
J. Comput. Syst. Sci., 78(2):441–460, March 2012.

267. Zhang, C., Liao, J., and Zhu, X.: Probabilistic event-driven heuristic fault localization
using incremental bayesian suspected degree. In Proceedings of the 2008 The 9th
International Conference for Young Computer Scientists, ICYCS ’08, pages 653–

658, Washington, DC, USA, 2008. IEEE Computer Society.

268. Li, C., Liu, L., and Pang, X.: A dynamic probability fault localization algorithm using
digraph. In Proceedings of the 2009 Fifth International Conference on Natural
Computation - Volume 06, ICNC ’09, pages 187–191, Washington, DC, USA, 2009.
IEEE Computer Society.

269. Novotny, P., Wolf, A. L., and Ko, B. J.: Fault localization in manet-hosted service-
based systems. In Proceedings of the 2012 IEEE 31st Symposium on Reliable
Distributed Systems, SRDS ’12, pages 243–248, Washington, DC, USA, 2012.
IEEE Computer Society.

270. Sharma, A. B., Chen, H., Ding, M., Yoshihira, K., and Jiang, G.: Fault de-
tection and localization in distributed systems using invariant relationships.
In Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), DSN ’13, pages 1–8, Washington, DC,
USA, 2013. IEEE Computer Society.

271. Nguyen, H., Shen, Z., Tan, Y., and Gu, X.: Fchain: Toward black-box online fault lo-
calization for cloud systems. In Proceedings of the 2013 IEEE 33rd International
Conference on Distributed Computing Systems, ICDCS ’13, pages 21–30, Wash-

ington, DC, USA, 2013. IEEE Computer Society.

272. Nguyen, H., Tan, Y., and Gu, X.: Pal: Propagation-aware anomaly localization for
cloud hosted distributed applications. In Managing Large-scale Systems via the
Analysis of System Logs and the Application of Machine Learning Techniques,

SLAML ’11, pages 1:1–1:8, New York, NY, USA, 2011. ACM.

126

CITED LITERATURE (continued)

273. Song, L. and Lu, S.: Statistical debugging for real-world performance problems.
In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of

SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 561–578, 2014.

274. Bahl, P., Chandra, R., Greenberg, A., Kandula, S., Maltz, D. A., and Zhang,
M.: Towards highly reliable enterprise network services via inference of
multi-level dependencies. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, SIG-

COMM ’07, pages 13–24, New York, NY, USA, 2007. ACM.

275. Prakash, P., Kompella, R. R., Ramasubramanian, V., and Chandra, R.: dfault:
Fault localization in large-scale peer-to-peer systems. In Proceedings of the
ACM/IFIP/USENIX 11th International Conference on Middleware, Middleware

’10, pages 252–272, Berlin, Heidelberg, 2010. Springer-Verlag.

276. Kim, J., Yang, Y.-M., Park, S., Lee, S., and Chung, B.: Service fault localization using
functional events separation and modeling of service resources. In Proceedings
of the 12th Asia-Pacific Network Operations and Management Conference on
Management Enabling the Future Internet for Changing Business and New

Computing Services, APNOMS’09, pages 462–465, Berlin, Heidelberg, 2009.
Springer-Verlag.

277. Natu, M. and Sethi, A. S.: Using temporal correlation for fault localization in dynamically
changing networks. Int. J. Netw. Manag., 18(4):301–314, August 2008.

278. Mysore, R. N., Mahajan, R., Vahdat, A., and Varghese, G.: Gestalt: Fast, unified
fault localization for networked systems. In Proceedings of the 2014 USENIX
Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages

255–268, Berkeley, CA, USA, 2014. USENIX Association.

279. Steinder, M. and Sethi, A. S.: Probabilistic fault diagnosis in communication systems
through incremental hypothesis updating. Comput. Netw., 45(4):537–562, July
2004.

280. Abreu, R., Zoeteweij, P., and Gemund, A. J. C. v.: Spectrum-based multiple fault lo-
calization. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, ASE ’09, pages 88–99, Washington, DC, USA,
2009. IEEE Computer Society.

127

CITED LITERATURE (continued)

281. Janssen, T., Abreu, R., and van Gemund, A. J.: Zoltar: A spectrum-based fault
localization tool. In Proceedings of the 2009 ESEC/FSE Workshop on Software
Integration and Evolution @ Runtime, SINTER ’09, pages 23–30, New York, NY,
USA, 2009. ACM.

282. Diaz, M. and Frances, D. M.: Bayesian inference using gibbs sampling in applications
and curricula of decision analysis. INFORMS Trans. Edu., 14(2):86–95, February
2014.

283. Stern, R. and Kalech, M.: Model-based diagnosis techniques for internet delay diagnosis
with dynamic routing. Applied Intelligence, 41(1):167–183, July 2014.

284. Liu, Z. and Han, Z.: Fault diagnosis of electric railway traction substation with model-
based relation guiding algorithm. Expert Syst. Appl., 41(4):1730–1741, March
2014.

285. Mishra, N., Kumar Choudhary, A., Tiwari, M. K., and Shankar, R.: Rollout strategy-
based probabilistic causal model approach for the multiple fault diagnosis. Robot.
Comput.-Integr. Manuf., 26(4):325–332, August 2010.

286. Straszecka, E.: Combining uncertainty and imprecision in models of medical diagnosis.
Inf. Sci., 176(20):3026–3059, October 2006.

287. Bae, H., Chun, S.-P., and Kim, S.: Predictive fault detection and di-
agnosis of nuclear power plant using the two-step neural network mod-
els. In Proceedings of the Third International Conference on Advances in Neural
Networks - Volume Part III, ISNN’06, pages 420–425, Berlin, Heidelberg, 2006.

Springer-Verlag.

288. Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L.: Efficient software-based
fault isolation. In Proceedings of the Fourteenth ACM Symposium on Operating
Systems Principles, SOSP ’93, pages 203–216, New York, NY, USA, 1993. ACM.

289. Denaro, G. and Pezzè, M.: An empirical evaluation of fault-proneness models. In
Proceedings of the 24th International Conference on Software Engineering, ICSE
’02, pages 241–251, New York, NY, USA, 2002. ACM.

290. Ren-Wu, Y. and Jin-Ding, C.: Fault diagnosis of power electronic circuit based on random
forests algorithm and ar model. In Proceedings of the 2009 Second International

128

CITED LITERATURE (continued)

Conference on Information and Computing Science - Volume 01, ICIC ’09, pages
285–288, Washington, DC, USA, 2009. IEEE Computer Society.

291. Liu, J. and Tian, W.: A novel fault diagnosis model research for electronic cir-
cuit. In Proceedings of the 2Nd International Asia Conference on Informatics in
Control, Automation and Robotics - Volume 2, CAR’10, pages 5–8, Piscataway,

NJ, USA, 2010. IEEE Press.

292. Misera, S., Vierhaus, H. T., and Sieber, A.: Simulated fault injections and their accelera-
tion in systemc. Microprocess. Microsyst., 32(5-6):270–278, August 2008.

293. Calvano, J. V., De Mesquita Filho, A. C., Alves, V. C., and Lubaszewski, M. S.: Fault
models and test generation for opamp circuits—the ffm. J. Electron. Test.,
17(2):121–138, April 2001.

294. Azarian, A. and Siadat, A.: A global modular framework for automotive diagnosis. Adv.
Eng. Inform., 26(1):131–144, January 2012.

295. Biamonte, J. D., Allen, J. S., and Perkowski, M. A.: Fault models for quantum mechanical
switching networks. J. Electron. Test., 26(5):499–511, October 2010.

296. Tao, J.: Design of resource space model in fault diagnosis knowledge of rotating machin-
ery. In Proceedings of the 2008 Fourth International Conference on Semantics,
Knowledge and Grid, SKG ’08, pages 501–502, Washington, DC, USA, 2008. IEEE
Computer Society.

297. Koller, D. and Friedman, N.: Probabilistic Graphical Models: Principles and Techniques
- Adaptive Computation and Machine Learning. The MIT Press, 2009.

298. Debroy, V. and Wong, W. E.: Using mutation to automatically suggest fixes for faulty
programs. In Proceedings of the 2010 Third International Conference on Software
Testing, Verification and Validation, ICST ’10, pages 65–74, Washington, DC,

USA, 2010. IEEE Computer Society.

299. Debroy, V. and Wong, W. E.: Combining mutation and fault localization for automated
program debugging. J. Syst. Softw., 90:45–60, April 2014.

300. Papadakis, M. and Le Traon, Y.: Using mutants to locate ”unknown”
faults. In Proceedings of the 2012 IEEE Fifth International Conference on

129

CITED LITERATURE (continued)

Software Testing, Verification and Validation, ICST ’12, pages 691–700, Washing-
ton, DC, USA, 2012. IEEE Computer Society.

301. Papadakis, M. and Traon, Y. L.: Effective fault localization via mutation analysis: a
selective mutation approach. In Symposium on Applied Computing, SAC 2014,
Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1293–1300, 2014.

302. Papadakis, M., Delamaro, M. E., and Traon, Y. L.: Proteum/fl: A tool for localizing faults
using mutation analysis. In 13th IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands,
September 22-23, 2013, pages 94–99, 2013.

303. Papadakis, M. and Traon, Y. L.: Using mutants to locate ”unknown” faults. In
2012 IEEE Fifth International Conference on Software Testing, Verification and
Validation, Montreal, QC, Canada, April 17-21, 2012, pages 691–700, 2012.

304. Moon, S., Kim, Y., Kim, M., and Yoo, S.: Ask the mutants: Mutating faulty programs
for fault localization. In IEEE Seventh International Conference on Software
Testing, Verification and Validation, ICST 2014, March 31 2014-April 4, 2014,
Cleveland, Ohio, USA, pages 153–162, 2014.

305. Cai, H., Jiang, S., jie Zhang, Y., Zhang, Y., and Santelices, R.: Sensa: Sensitivity
analysis for quantitative change-impact prediction. IEEE SCAM ’14, pages 110–
119, Washington, DC, USA, 2014. IEEE Computer Society.

306. Wainwright, H. M., Finsterle, S., Jung, Y., Zhou, Q., and Birkholzer, J. T.: Making sense
of global sensitivity analyses. Comput. Geosci., 65:84–94, April 2014.

307. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., and Tarantola, S.: Global Sensitivity Analysis: The Primer. New York, NY,
USA, Wiley-Interscience; 1 edition, 2008.

308. Qi, D., Roychoudhury, A., Liang, Z., and Vaswani, K.: Darwin: An approach to de-
bugging evolving programs. ACM Trans. Softw. Eng. Methodol., 21(3):19:1–19:29,
July 2012.

309. Richardson, M. and Domingos, P.: Markov logic networks. Mach. Learn., 62(1-2):107–136,
February 2006.

130

CITED LITERATURE (continued)

310. Parag, P.: Markov Logic: Theory, Algorithms and Applications. Doctoral dissertation,
Seattle, WA, USA, 2009. AAI0821714.

311. Gong, L., Zhang, H., Jiang, L., and Lo, D.: Interactive fault localization leveraging
simple user feedback. In Proceedings of the 2012 IEEE International Conference
on Software Maintenance (ICSM), ICSM ’12, pages 67–76, Washington, DC, USA,
2012. IEEE Computer Society.

312. Ramamurthi, A., Roy, S., and Srikant, Y. N.: Probabilistic dataflow analysis using
path profiles on structure graphs. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software

Engineering, ESEC/FSE ’11, pages 512–515, New York, NY, USA, 2011. ACM.

313. Luckow, K., Păsăreanu, C. S., Dwyer, M. B., Filieri, A., and Visser, W.: Exact
and approximate probabilistic symbolic execution for nondeterministic programs.
In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pages 575–586, New York, NY, USA, 2014. ACM.

314. Wang, J., Byrnes, J., Valtorta, M., and Huhns, M.: On the combination of logical and
probabilistic models for information analysis. Applied Intelligence, 36(2):472–497,
March 2012.

315. Claret, G., Rajamani, S. K., Nori, A. V., Gordon, A. D., and Borgström, J.: Bayesian in-
ference using data flow analysis. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pages 92–102, New York,

NY, USA, 2013. ACM.

316. Fatima, J.: Clinical Decision Support System: Differential Diagnosis. Germany, LAP
Lambert Academic Publishing, 2012.

317. Fischer, C. and Gregor, S.: Forms of reasoning in the design science research
process. In Proceedings of the 6th International Conference on Service-oriented
Perspectives in Design Science Research, DESRIST’11, pages 17–31, Berlin, Hei-
delberg, 2011. Springer-Verlag.

318. Jeff offutt home page. https://cs.gmu.edu/~offutt/. Accessed: 2015-10-05.

319. Mujava home page. https://cs.gmu.edu/~offutt/mujava/. Accessed: 2015-10-05.

131

CITED LITERATURE (continued)

320. Description of class mutation mutation operators for java. https://cs.gmu.edu/

~offutt/mujava/mutopsClass.pdf. Accessed: 2015-10-05.

321. Description of method-level mutation operators for java. https://cs.gmu.edu/~offutt/
mujava/mutopsMethod.pdf. Accessed: 2015-10-05.

322. Oj (f.a.k.a. openjava) : An extensible java. http://openjava.sourceforge.net/. Ac-
cessed: 2015-10-05.

323. Bitwise and bit shift operators (the java tutorials; learning the java language; language ba-
sics). https://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.

html. Accessed: 2015-10-05.

324. Javassist, java bytecode engineering toolkit since 1999. http://jboss-javassist.

github.io/javassist/. Accessed: 2015-10-05.

325. Combinatorial interaction testing portal. http://cse.unl.edu/~citportal/. Accessed:
2015-10-05.

326. sun.misc: Unsafe.java. http://www.docjar.com/html/api/sun/misc/Unsafe.java.

html. Accessed: 2015-10-05.

327. sun.tools.javac.main : Java glossary. http://mindprod.com/jgloss/javacmain.html.
Accessed: 2015-10-05.

328. Eclipse corner article: Abstract syntax tree. https://www.eclipse.org/articles/

article.php?file=Article-JavaCodeManipulation_AST/index.html. Ac-
cessed: 2015-10-05.

329. Help - eclipse platform. http://help.eclipse.org/mars/index.jsp?topic=\%2Forg.

eclipse.jdt.doc.isv\%2Freference\%2Fapi\%2Forg\%2Feclipse\%2Fjdt\

%2Fcore\%2Fdom\%2FAST.html. Accessed: 2015-10-05.

330. Eclipse java development tools (jdt). http://www.eclipse.org/jdt/. Accessed: 2015-
10-05.

331. Alchemy: Open source ai. https://alchemy.cs.washington.edu/. Accessed: 2015-10-
05.

132

CITED LITERATURE (continued)

332. Abductive reasoning - wikipedia, the free encyclopedia. https://en.wikipedia.org/

wiki/Abductive_reasoning#Deduction.2C_induction.2C_and_abduction. Ac-
cessed: 2015-10-05.

333. Selenium - web browser automation. http://www.seleniumhq.org/. Accessed: 2015-10-
05.

334. Cloc – count lines of code. http://cloc.sourceforge.net/. Accessed: 2015-10-05.

335. Hussain, I., Csallner, C., Grechanik, M., Xie, Q., Park, S., Taneja, K., and Hossain, M.:
Rugrat: Evaluating program analysis and testing tools and compilers with large
generated random benchmark applications. Software: Practice and Experience,
2014.

336. Niu, F., Ré, C., Doan, A., and Shavlik, J.: Tuffy: Scaling up statistical inference in markov
logic networks using an rdbms. Proc. VLDB Endow., 4(6):373–384, March 2011.

337. Domingos, P.: Parallelising Alchemy, 2006 (accessed January 10, 2015).

338. Beedkar, K., Del Corro, L., and Gemulla, R.: Fully parallel inference in markov logic net-
works. In 15th GI-Symposium Database Systems for Business, Technology and
Web (BTW 2013), Magdeburg, Germany, 2013. Bonner Kllen.

339. Chaganty, A., Lal, A., Nori, A. V., and Rajamani, S. K.: Combining relational
learning with smt solvers using cegar. In Proceedings of the 25th International
Conference on Computer Aided Verification, CAV’13, pages 447–462, Berlin, Hei-
delberg, 2013. Springer-Verlag.

340. Rashid, E., Patnayak, S., and Bhattacherjee, V.: A survey in the area of machine learning
and its application for software quality prediction. SIGSOFT Softw. Eng. Notes,
37(5):1–7, September 2012.

341. Zhang, D. and Tsai, J. J. P.: Machine Learning Applications in Software Engineering.
World Scientific Pub Co Inc, February 2005.

342. Zhang, D. and Tsai, J. J. P.: Advances in Machine Learning Applications in Software
Engineering. IGI Global, February 2007.

133

CITED LITERATURE (continued)

343. Haran, M., Karr, A. F., Orso, A., Porter, A. A., and Sanil, A. P.: Applying classification
techniques to remotely-collected program execution data. In ESEC/SIGSOFT
FSE, pages 146–155, 2005.

344. Duraes, J. A. and Madeira, H. S.: Emulation of software faults: A field data study and a
practical approach. IEEE Trans. Softw. Eng., 32(11):849–867, November 2006.

345. Cotroneo, D. and Natella, R.: Fault injection for software certification. IEEE Security
and Privacy, 11(4):38–45, July 2013.

346. Voas, J. M. and McGraw, G.: Software Fault Injection: Inoculating Programs Against
Errors. New York, NY, USA, John Wiley & Sons, Inc., 1997.

347. Ng, W. T. and Chen, P. M.: The design and verification of the rio file cache. IEEE Trans.
Comput., 50(4):322–337, April 2001.

348. Duraes, J. and Madeira, H.: Multidimensional characterization of the impact of faulty
drivers on the operating systems behavior. Transactions of IEICE (Institute of
the Electronics, Information and Communication Engineers), 86(12):2563–2570,

2003.

349. Koopman, P. and DeVale, J.: The exception handling effectiveness of posix operating
systems. IEEE Trans. Softw. Eng., 26(9):837–848, September 2000.

350. Durães, J., Vieira, M., and Madeira, H.: Dependability benchmarking of web-servers.
In Computer Safety, Reliability, and Security, 23rd International Conference,
SAFECOMP 2004, Potsdam, Germany, September 21-24, 2004, Proceedings,

pages 297–310, 2004.

351. Vieira, M. and Madeira, H.: A dependability benchmark for oltp application environments.
In VLDB, pages 742–753, 2003.

352. Andrews, J. H., Briand, L. C., and Labiche, Y.: Is mutation an appropriate tool for testing
experiments? In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 402–411, New York, NY, USA, 2005. ACM.

353. Duraes, J., Madeira, H., Cotroneo, D., and Natella, R.: On fault representativeness of
software fault injection. IEEE Transactions on Software Engineering, 39(1):80–96,
2013.

134

CITED LITERATURE (continued)

354. Mathur, A. P.: Foundations of Software Testing. Addison-Wesley Professional, 1st edi-
tion, 2008.

355. Zhang, L., Zhang, L., and Khurshid, S.: Injecting mechanical faults to localize devel-
oper faults for evolving software. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013, pages 765–784, 2013.

356. Mateo, P. R., Usaola, M. P., and Offutt, J.: Mutation at system and functional levels.
ICSTW ’10, pages 110–119, Washington, DC, USA, 2010. IEEE Computer Society.

357. Joshi, P., Gunawi, H. S., and Sen, K.: Prefail: A programmable tool for multiple-
failure injection. In Proceedings of the 2011 ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA

’11, pages 171–188, New York, NY, USA, 2011. ACM.

358. Jia, Y. and Harman, M.: Constructing subtle faults using higher order mutation test-
ing. 2013 IEEE 13th International Working Conference on Source Code Analysis
and Manipulation (SCAM), 0:249–258, 2008.

359. Winter, S., Schwahn, O., Natellay, R., Suri, N., and Cotroneo, D.: No pain, no gain?
the utility of parallel fault injections. In Proceedings of the 37th International
Conference on Software Engineering, ICSE ’15, page to appear, New York, NY,
USA, 2015. ACM.

360. Duarte, A., Cirne, W., Brasileiro, F., and Machado, P.: Gridunit: Software test-
ing on the grid. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 779–782, New York, NY, USA, 2006. ACM.

361. Yoon, I., Sussman, A., Memon, A., and Porter, A.: Testing component compatibility in
evolving configurations. Inf. Softw. Technol., 55(2):445–458, February 2013.

362. Lastovetsky, A.: Parallel testing of distributed software. Inf. Softw. Technol., 47(10):657–
662, July 2005.

363. Al-qadhi, M. and Keung, J.: Cloud-based support for global software engineering: Poten-
tials, risks, and gaps. In Proceedings of the International Workshop on Innovative
Software Development Methodologies and Practices, InnoSWDev 2014, pages 57–

64, New York, NY, USA, 2014. ACM.

135

CITED LITERATURE (continued)

364. Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., Hanawa, T., and Sato, M.: D-
cloud: Design of a software testing environment for reliable distributed systems
using cloud computing technology. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10,

pages 631–636, Washington, DC, USA, 2010. IEEE Computer Society.

365. Hanawa, T., Banzai, T., Koizumi, H., Kanbayashi, R., Imada, T., and Sato, M.:
Large-scale software testing environment using cloud computing technology
for dependable parallel and distributed systems. In Proceedings of the 2010
Third International Conference on Software Testing, Verification, and Validation
Workshops, ICSTW ’10, pages 428–433, Washington, DC, USA, 2010. IEEE

Computer Society.

366. Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C.: The aetg system:
An approach to testing based on combinatorial design. IEEE Trans. Softw. Eng.,
23(7):437–444, July 1997.

367. Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton, G. C.: The AETG system: an
approach to testing based on combinatorial design. Trans. Soft. Eng., 23(7):437–
44, 1997.

368. Yoon, I., Sussman, A., Memon, A., and Porter, A.: Testing component compatibility
in evolving configurations. Information and Software Technology, 55(2):445 – 458,
2013.

369. Reisner, E., Song, C., Ma, K.-K., Foster, J. S., and Porter, A.: Using symbolic evaluation
to understand behavior in configurable software systems. In ICSE, pages 445–454,
2010.

370. Song, C., Porter, A., and Foster, J. S.: itree: efficiently discovering high-coverage config-
urations using interaction trees. In ICSE, pages 903–913, 2012.

371. Debroy, V. and Wong, W. E.: Insights on fault interference for programs with multi-
ple bugs. In Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering, ISSRE ’09, pages 165–174, Washington, DC, USA, 2009.
IEEE Computer Society.

372. Jones, J. A., Bowring, J. F., and Harrold, M. J.: Debugging in parallel. In Proceedings of
the 2007 International Symposium on Software Testing and Analysis, ISSTA ’07,

pages 16–26, New York, NY, USA, 2007. ACM.

136

CITED LITERATURE (continued)

373. DiGiuseppe, N. and Jones, J. A.: Fault interaction and its repercussions. In Proceedings
of the 2011 27th IEEE International Conference on Software Maintenance, ICSM
’11, pages 3–12, Washington, DC, USA, 2011. IEEE Computer Society.

374. DiGiuseppe, N. and Jones, J. A.: On the influence of multiple faults on coverage-
based fault localization. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 210–220, New York, NY, USA,
2011. ACM.

VITA

NAME Davide Pagano

EDUCATION

Master of Science in Computer Science, University of Illinois at
Chicago, Dec 2015, USA

Master of Science in Computer Engineering, Polytechnic of Milan, Dec
2015, Italy

Bachelor of Science in Computer Engineering, Polytechnic of Milan,
Jul 2013, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2013 - TOEFL examination (102/120)

A.Y. 2014/15 One Year of study abroad in Chicago, Illinois

SCHOLARSHIPS

Fall 2015 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Spring 2015 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Fall 2014 Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

PUBLICATIONS

2011 Pagano Francesco, and Pagano Davide. ”Using in-memory encrypted
databases on the cloud.” In Securing Services on the Cloud (IWSSC),
2011 1st International Workshop on, pp. 30-37. IEEE, 2011.

2012 Damiani Ernesto, Francesco Pagano, and Davide Pagano. ”iPrivacy: a
Distributed Approach to Privacy on the Cloud.” International Journal
on Advances in Security 4.3 and 4 (2012): 185-197. (2012).

137

138

VITA (continued)

2015 Pagano Davide, Mikel Vuka, Marco Rabozzi, Riccardo Cattaneo, Do-
natella Sciuto, and Marco D. Santambrogio. ”Thermal-aware floorplan-
ning for partially-reconfigurable FPGA-based systems.” In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhi-
bition, pp. 920-923. EDA Consortium, 2015.

WORK EXPERIENCE AND PROJECTS

Sep 2009 - Sep
2012

Stage at P&P Informatics as Software Engineer and Software Developer

2013 Interdisciplinary project, Integration of Genetic Association Database
in Genomic and Proteomic Data Warehouse:
Genomic and Proteomic Data Warehouse (GPDW) collects biomedical
data distributed over a large number of databases and integrate them
with each other, checking consistency, allowing scientist to perform
cross-checking the information contained in different databases with a
few simple steps.

2013 Information Systems:
Aim of the project was to design the technological components of a
system highlighting the architecture, the systems for the management
of data and communication networks for the construction of an in-
formation system in a company. Use Case, ER Diagram, UX Model,
Boundary-Control-Entity (BCE), Logic DB Diagram were produced.

2013 Software Engineering, Horse Fever:
The project involved the design and implementation of a client and a
server talking through Socket and RMI, where client players can use
both a command line or a GUI to play the board game. Strong UML
documentation was produced, including Class Diagrams, Use Case Di-
agrams, Sequence Diagrams.

2014 Software Engineering, Travel Dreams:
The project involved the design and implementation of an e-commerce
system to support its sale process. The system was developed on
the JEE platform using JavaServer Faces (JSF), EclipseLink (JPA)
and Glassfish. In particular, we used EJBs to develop the business
logic with a web application user interface and MySQL to program
the database. Strong UML documentation was produced including
Requirements Analysis and Specification Document (RASD), Design
document (DD), Function Point and COCOMO approach to estimate
effort in the project.

139

VITA (continued)

2014 Statistical Natural Language Processing, Polarization of Internet slang
words previously unseen in formal dictionaries:
The success of the Internet and the increase of variety of communication
forms has led to a language evolution and with that new words have
been created. In this project, we polarized new terms coming from the
Internet slang, in particular from the Urban Dictionary website. To
reach our goal, different classifiers like Support Vector Machines, Naive
Bayes, Maximum Entropy, Logistic Regression have been trained and
ensembled to achieve better results.

2014 Data Mining, Kaggle Competition: MLSP 2014 Schizophrenia Classi-
fication Challenge:
Development of a classification method to detect schizophrenia from
data coming from brain scans of patients, exploiting the Python library
scikit-learn and the Java tool Weka.

2014 Formal methods for concurrent and real-time systems: formal specifi-
cation of hybrid car sharing system using logic formulas:
Designed a modular TRIO specification of a parallel Hybrid Electric
Vehicle (HEV) including safety requirements on braking performance
and a specification for the car-sharing system for parallel HEVs, and
verified them formally by using the automated tool Zot.

2014 High Performance Processor Systems: Thermal-Aware Floorplanning
for Partially-Reconfigurable FPGA-based Systems:
Field Programmable Gate Arrays (FPGAs) systems are being more
and more frequent in high performance applications. Temperature af-
fects both reliability and performance, therefore its optimization has
become challenging for system designers. We developed a novel ther-
mal aware floorplanner based on both Simulated Annealing (SA) and
Mixed- Integer Linear Programming (MILP).

2014 Logic and Algebra: DiffieHellmanMerkle key exchange from the alge-
braic point of view:
Analyzed the DiffieHellmanMerkle key exchange algorithm from the
algebraic point of view of finite fields.

2015 Compiler Design, C- compiler:
Implemented a compiler written in C++ able to generate LLVM IR
code for programs written using the ”C-” programming language. This
included constructing the Abstract Syntax Tree and the Symbol Table
after parsing the source code with the appropriate Bison grammar and
Flex lexer.

