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SUMMARY 

Multibody systems (MBS) in general include two collections of bodies. One collection consists of 

bulky and compact solids which can be treated as rigid bodies, while the second collection includes 

bodies that can be treated as flexible bodies that experience small and large deformations and 

undergo large rotations. Many technological and industrial problems such as liquid sloshing, textile 

hyper-elastic, biomechanics and vehicle terrain interaction require efficient and accurate modeling 

of flexible bodies. One of the objectives of this thesis is to develop a low order continuum-based 

liquid sloshing model that can be successfully integrated with multibody system algorithms. The 

liquid sloshing model proposed in this thesis allows for capturing the effect of the distributed 

inertia and the viscosity of the fluid. The fluid viscous forces are defined using the Navier-Stokes 

equations. In order to demonstrate the use of the approach presented in this study, the assumption 

of an incompressible Newtonian fluid is considered with a total Lagrangian approach. Fluid 

properties such as the incompressibility condition are formulated using a penalty method. The low 

order model that could capture the effect of the distributed fluid inertia on the vehicle dynamics is 

developed in this thesis using the floating frame reference (FFR) formulation. The use of this 

approach allows for developing an inertia-variant fluid model that accounts for the dynamic 

coupling between different modes of the fluid displacements. The matrix of position vector 

gradients and its derivative are formulated using the FFR kinematic description. The position and 

velocity gradient tensors are used to define the Navier-Stokes stress forces. The proposed liquid 

sloshing model is integrated with a MBS railroad vehicle model in which the rail/wheel interaction 

is formulated using a three-dimensional elastic contact formulation that allows for the wheel/rail  
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SUMMARY (continued) 

separation. Several simulation scenarios are used to examine the effect of the distributed liquid 

inertia on the motion of the railroad vehicle. The results, obtained using the sloshing model, are 

compared with the results obtained using a rigid body vehicle model. The comparative numerical 

study presented in this thesis shows that the effect of the sloshing tends to increase the possibility 

of wheel/rail separation as the forward velocity increases, thereby increasing the possibility of 

derailments at these relatively high speeds.  

Another objective of this thesis is to develop a total Lagrangian non-incremental liquid 

sloshing solution procedure based on the finite element (FE) absolute nodal coordinate formulation 

(ANCF). The proposed liquid sloshing modeling approach can be used to avoid the difficulties of 

integrating most of fluid dynamics formulations, which are based on the Eulerian approach, with 

MBS dynamics formulations, which are based on a total Lagrangian approach. The proposed total 

Lagrangian FE fluid dynamics formulation, which can be systematically integrated with 

computational MBS algorithms, differs significantly from the conventional FE or finite volume 

methods which are based on an Eulerian representation that employs the velocity field of a fixed 

control volume in the region of interest. The ANCF fluid equations are expressed in terms of 

displacement and gradient coordinates of material points, allowing for straight forward 

implementation of kinematic constraint equations and for the systematic modeling of the 

interaction of the fluid with the external environment or with rigid and flexible bodies. The fluid 

incompressibility conditions and surface traction forces are considered and derived directly from 

the Navier Stokes equations. Two ANCF brick elements, one of which is obtained using an  
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incomplete polynomial representation and the other of which is obtained from a B-spline volume 

representation, are used. The new approach ensures the continuity of the displacement gradients at 

the nodal points and allows for imposing higher degree of continuity across the element interface 

by applying algebraic constraint equations that can be used to eliminate dependent variables and 

reduce the model dimensionality. Regardless of the magnitude of the fluid displacement, the fluid 

has a constant mass matrix, leading to zero Coriolis and centrifugal forces. The analysis presented 

in this thesis demonstrates the feasibility of developing an efficient non-incremental total 

Lagrangian approach for modeling sloshing problems in MBS system applications in which the 

bodies can experience large displacements including finite rotations. Several examples are 

presented in order to shed light on the potential of using the ANCF liquid sloshing formulation 

developed in this study. 

This thesis also presents a new flexible MBS approach for modeling textile systems including 

roll-drafting sets used in chemical textile machinery. The proposed approach can be used in the 

analysis of textile materials such as lubricated polyester filament bundles (PFB) which have un-

common material properties best described by specialized continuum mechanics constitutive 

models. In this thesis, the ANCF is used to model PFB as a hyper-elastic transversely isotropic 

material. The PFB strain energy density function is decomposed into a fully isotropic component 

and an orthotropic, transversely isotropic component expressed in terms of five invariants of the 

right Cauchy-Green deformation tensor. Using this energy decomposition, the second Piola-

Kirchhoff stress and the elasticity tensors can also be split into isotropic and transversely isotropic  
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parts. The constitutive equations are used to define the generalized material forces associated with 

the coordinates of three-dimensional fully-parameterized ANCF finite elements. The proposed 

approach allows for modeling the dynamic interaction between the rollers polyester filament 

bundle and allows for using spline functions to describe the PFB forward velocity. The textile 

material constitutive equations and the MBS algorithms can be used effectively to obtain numerical 

solutions that define the state of strain and cross section deformation of the textile material and the 

relative slip and contact forces between rollers and PFB.  
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CHAPTER 1 

INTRODUCTION 

Multibody systems (MBS) consist of interconnected rigid and/or flexible bodies, each of which 

can undergo large translation and finite rotation. Many mechanical, structural, and biological 

systems such as vehicles, trains, aircrafts, robotic manipulators and human body joints can be 

considered as MBS examples. An important MBS example is railroad vehicles. Considering recent 

train accidents (King, 2015; Yan and Conlon, 2015) which involved freight tank cars carrying 

crude oil and other hazardous liquid materials, it is necessary to understand the dynamic behavior 

of liquid sloshing in tank cars under different motion scenarios in order to avoid serious accidents. 

Successful integration of fluid constitutive models with the railroad vehicle dynamics in 

computational MBS algorithms that allow for systematically formulating the kinematic and 

boundary constraint conditions is necessary to better understand the liquid sloshing phenomenon. 

Another challenging problem is the roll-drafting process in the chemical textile industry. Over the 

past decades, researchers, technicians, and engineers have attempted to control the bundle 

deformation regions during the roll-drafting process by using various diameters, different numbers 

of rollers in a drawing machine, and/or changing roller material, for instance, using rubber. These 

attempts are often based on experience or experiments because of the lack of accurate 

computational MBS models, and the difficulties in measuring the roller contact forces, PFB 

internal tension the velocity of certain points on the bundle, and/or the cross section deformation 

during the roll-drafting process. It is therefore critical to develop a new constitutive model for 

textile material and successfully integrate that with computational MBS algorithm which can be 
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used in the analysis and virtual prototyping of the textile machine in general and in the roll-drafting 

process in particular. 

1.1 Background 

The effect of liquid sloshing has been a subject of a large number of investigations. In many of 

these investigations, the effect of the fluid dynamics on the vehicle motion was the main concern. 

To this end, simple fluid models that have discrete inertia were developed; some of these models 

are represented using a simple planar pendulum model (Dodge and Kana, 1966; Kana, 1987; Kane, 

1989; McIvor, 1989; Pinson, 1964; Sumner, 1965; Tritton, 1986; Unruh et al., 1986; Werner and 

Coldwell, 1961; Bauer, 1960). While the main focus of many of these investigations was on the 

effect of the fluid on the vehicle dynamics, the simplified models developed in these previous 

studies failed to capture the effect of the distributed inertia of the fluid due to the change in the 

fluid shape. The main goal of these past investigations, as well as this thesis, is not the development 

of an accurate fluid model that captures turbulence and other nonlinear effects, rather the main 

goal is to develop a simplified fluid model that allows for studying the effect of sloshing on the 

system dynamics. 

These simplified liquid sloshing models can be of great value in many areas of science and 

engineering, including space, marine, and highway applications. Of particular interest in this study 

are railroad vehicle systems. As the speeds and loads of freight trains continue to increase, more 

investigations of the nonlinear dynamic behavior of railroad vehicle systems are needed. There are 

many factors that have a significant effect on the wheel/rail dynamic interaction, including the 
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wheel and rail profiles, car body vibration, track irregularities, and wheel/rail contact forces 

(Iwnicki, 2006; Shabana et al., 2008). The objective of this thesis is to propose a reduced order 

liquid sloshing model that can be integrated with three-dimensional multibody system (MBS) 

algorithms to study the effect of the liquid motion and its distributed inertia on the nonlinear 

dynamics of the rail vehicles. When a tank car is partially filled, the sloshing can cause a change 

in the shape and the location of the center of gravity of the car, resulting in time-varying inertia 

forces. These distributed inertia forces can have a significant effect on the wheel/rail contact forces 

and can lead to serious and costly accidents, particularly in the case of transporting hazardous 

liquid materials. An example is the recent derailment accident, in which a train consisting of 72 

cars filled with oil derailed in Lac-Megantic, Quebec, Canada. As the result of this accident, 15 

people died, 60 were missing, and 30 buildings were destroyed (CBS News, 2013). Meanwhile, 

the statistics published by the U.S. Department of Transportation (U.S. Dep. Transportation, 2013) 

show that the property damage due to hazardous material accidents reached about $25.2 million in 

2007 and had an average yearly cost of $12.6 million between 2000 and 2010. Thus, considerable 

savings and better rolling stock performance can be achieved by improving the stability, safety 

margins, maximum allowable speed, and liquid carrying capacity of freight cars.  

The development of computational models is the most economic and efficient method to 

design and evaluate the performance of physics and engineering systems. The use of virtual 

prototyping reduces the cost and allows for efficient examination of the effect of various system 

parameters. In particular, the MBS approach is the most suitable simulation technique for vehicle 

dynamics. Nonetheless, modeling of partially filled tank cars remains a challenging problem, as 
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evident by the simple pendulum sloshing models reported in the literature. The integration of an 

accurate sloshing model and MBS algorithms requires successful integration of a finite element 

(FE) or finite difference and MBS algorithms. Generally speaking, sloshing phenomena involve 

arbitrary motion of the free surface of a liquid. For instance, the motion of the liquid surface inside 

a partially filled container can be caused by disturbances to the vehicle motion as well as the design 

and shape of the container. The motion can be planar, non-planar, rotational, symmetric, 

asymmetric, quasi-periodic and even chaotic motion. In fact, many industrial, aerospace and 

structural applications exhibit these phenomena, including tank cars transported by trucks and 

freight trains, aerospace vehicles, large rockets, water reservoirs, nuclear vessels, etc. 

This thesis is also concerned with developing a new continuum-based MBS approach for 

modeling textile systems. This investigation is motivated by the fact that only simple models exist 

in the literature for the analysis of such complex and highly nonlinear systems. The dynamic 

behavior of such complex textile systems, however, cannot be accurately captured using simplified 

approaches. In order to shed light on the complexity of such textile systems, MBS algorithms are 

used. The polyester as-spun fiber, obtained from melt spinning process, is a material commonly 

used in textile roll-drafting machines. This fiber has fairly weak crystallinity and orientation 

properties which make the fiber unsuitable for many practical uses. In the chemical fiber industry, 

subsequent processing, such as drawing (or roll-drafting) and setting, must be performed on the 

as-spun fiber in order to improve its fiber structure and surface morphology. The roll-drafting 

process leads to a higher performance fiber and increases its added value. 

Compared with the polyester filament bundle (PFB) setting process, the drawing process 
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involves many complex factors and craft parameters. The most widely used setup in the PFB roll-

drafting process is to link three sets of drawing machines together and draw and stretch the PFB 

among them consecutively, as shown in Fig. 1. Two hot water tanks with different temperatures 

are used to modify the PFB mechanical properties by reducing the modulus of elasticity and 

facilitating elongation. The complete drawing process increases the PFB length three to five times 

and the first two sets of drawing machines accomplish approximately 80~90 percent of the work. 

The rollers in each set of drawing machines are driven by controlled motors which produce the 

same roller angular velocity in each set of drawing machine. Sliding between the fiber and the 

rollers must be avoided; and for that reason, seven rollers are usually used in a drawing machine 

and one holding roller at the output side. Rollers of different sets of the drawing machine stretch 

the PFB, whereas rollers of the same set of the drawing machine drive the bundle forward. 

HotHot waterwater tanktank 2 HotHot waterwater tanktank 1

n3=145r/min=145r/min

(v(v3=3.0m/s)=3.0m/s)

TheThe movementmovement

directiondirection ofof thethe

filamentfilament bundlebundle

polyesterpolyester

filamentfilament bundlebundle

rollerroller

ω

rubberrubber rollerroller

TheThe movementmovement

directiondirection ofof thethe

filamentfilament bundlebundle

n2=95r/min.=95r/min.

(v(v2=2.0m/s)=2.0m/s)

n1=35r/min.=35r/min.

(v(v1=0.73m/s=0.73m/s)

rollerroller diameterdiameter
400mm400mm

SetSet ofof rollersrollers #1#1 SetSet ofof rollersrollers #2#2 SetSet ofof rollersrollers #3#3

Figure 1. Roll-drafting process 

During this process, millions of filaments are bundled together and fed into the drawing 

machine. The total amount of filament can reach 1.5 million Denier; a Denier is equivalent to the 

weight in grams of 9,000 meters of yarn. The output speed of the bundle after the drawing process 

is approximately 180 m/min. During the roll-drafting process, the PFB undergoes large elastic and 

plastic deformation; therefore, the cross section of the PFB can change dramatically. In order to 
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have these deformations under control, the plastic deformation between two sets of drawing 

machines must be concentrated in a certain region in the hot water tanks. Failure in controlling the 

concentrated plastic deformation region can lead to unpredictable fiber elongation ratio, which will 

not only produce non-uniform thickness, but also cause un-stretched filaments. Both of these flaws 

highly affect the quality of polyester fiber; consequently, fixing and controlling the position of 

deformation points is crucial in the industrial post processing stage of polyester fiber. Other craft 

requirements, such as making the PFB parallel to each other and homogenously distributed on the 

rollers, have to be taken into consideration in order to ensure proper filament tension. 

A key point in the drawing process of PFB is to make the deformed material remain in a certain 

area while the PFB is moving at a high speed. Through the roll-drafting process, the contact forces 

between rollers and textile material, the PFB internal force distribution, the variation of cross 

section of the filament bundle, the configurations of rollers, and the sliding between bundle and 

machine are all factors that affect the distribution of the deformed material. Over the past decades, 

researchers, technicians, and engineers have attempted to control the bundle deformation regions 

during the roll-drafting process by using various diameters, different numbers of rollers in a 

drawing machine, and/or changing roller material, for instance, using rubber. These attempts are 

often based on experience or experiments because of the lack of accurate computational MBS 

models, and difficulties in measuring the roller contact forces, PFB internal tension the velocity of 

certain points on the bundle, and/or the cross section deformation during the roll-drafting process. 

It is therefore critical to develop a computational MBS method that can be used in the analysis and 

virtual prototyping of the textile machine in general and in the roll-drafting process in particular. 
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Such a computational MBS approach can be used effectively in the design and the analysis of 

different drawing machine configurations. 

1.2 Liquid Sloshing Phenomenon Modeling 

Different analytical approaches have been developed in order to simulate the dynamic response of 

liquid-filled tanks (Ibrahim et al., 2001; Ibrahim, 2005; Rebouillat and and Liksonov, 2010), taking 

into account not only the nature of the sloshing but special types of tank geometry as well. Early 

contributions were focused on developing equivalent mechanical models by means of mass-spring 

systems or by a using set of pendulums as previously mentioned (Graham, 1951; Graham and 

Rodríguez, 1952; Abramson, 1966; Zheng et al., 2012). In spite of its linear nature, which made 

these simplified models insufficient to account for the effect of rapid velocity changes of energy 

dissipation, new more detailed models have been developed incorporating dashpot elements to 

take into account the effect of nonlinear motion (Ranganathan et al., 1989). Broadly speaking, 

equivalent mechanical models have been developed for linear planar liquid motion, in the form of 

a series of mass-spring-dashpot systems or a set of simple pendulums, and for nonlinear sloshing 

phenomena as well by using spherical or compound pendulums which may represent rotational 

and chaotic sloshing. These models, however, still cannot capture the accurate inertia distribution 

of the liquid and the shape of the free surface as discussed by Aliabadi et al. (2003) who compared 

the FE fluid and the discrete element models and demonstrated the limitations of the discrete 

element model. In order to overcome the limitations of the equivalent mechanical models, more 

realistic spatial fluid models using computational and numerical methods were proposed. The 
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Eulerian and Lagrangian approaches are the two main methods to study the motion of the fluid 

(Reddy and Gartling, 2010). The Lagrangian description traces the material points, while the 

second is the Eulerian description in which the interest is focused on the fluid movement at fixed 

region or control volume. Lagrangian description has the advantage of tracing the fluid material 

points and examining systematically their interactions with other bodies and external environment, 

such a description has not been fully utilized in the study of the effect of liquid sloshing in MBS 

applications including vehicle systems. The Eulerian approach, which is not quite suitable for MBS 

applications, remains the most popular approach in the CFD field (Versteeg et al., 2007; Reddy et 

al., 2001; Zienkiewicz et al., 2005; Anderson, 1995; Zikanov et al., 2010). Integration of an 

Eulerian fluid procedure with MBS algorithms can be difficult even for simple liquid sloshing 

problems where turbulence is not an issue. Nonetheless, the existing more detailed FE models are 

not suitable for integration with MBS algorithms due to many factors that include the problem 

dimensionality, the basic differences between the FE and MBS approaches, differences in 

numerical solution procedures, and the way large displacements and rotations are treated in 

existing FE models.  

While some mesh-free methods have been developed for fluid dynamics using the Lagrangian 

approach, the computational cost still hinders these methods from being practical and efficient for 

MBS applications (Son, 2005; Sussman et al., 1994; Gingold et al., 1977; Liu et al., 2010, Negrut 

et al., 2012; Idelsohn et al., 2006; Pin et al., 2007). Therefore, it is the objective of this thesis to 

address these deficiencies in the literatures by proposing a new approach for solving liquid sloshing 

problems. The focus will be on the integration of the fluid dynamics in computational MBS 
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algorithms. A new Lagrangian method which allows for the large displacements of the fluid and 

the systematic description of the interactions with the other MBS component is proposed. The 

general finite element FFR and ANCF approach can be used to develop systematically Lagrangian 

meshes and has the potential for solving efficiently the sloshing problem in MBS applications 

(Shabana, 1998; Wei et al., 2014). 

1.3 Textile Material Modeling 

Thorough theoretical study of the roll-drafting process is necessary in order to further improve the 

polyester filament drawing process. In order to analyze the roll-drafting process, it is necessary to 

select a proper constitutive law for textile materials, which have been scientifically studied for 

over 40 years. A brief review on the textile material research is provided in this section.  

 An early theoretical study on ropes was presented by Vose (1944), who proposed several 

approaches to examine the behavior of cords and gave brief analytical solutions to some cord 

problems. Original work on elastic textile materials can be found in a series of publications by 

Platt et al (1958, 1959), which focused on a single yarn. However, the first constitutive equations 

of filament bundles were proposed by Curiskis and Carnaby (1985) who treated the filament 

bundle as a continuum material, thereby allowing for using various mathematical techniques to 

investigate its mechanical properties. For instance, in Curiskis and Carnaby’s work (1985), it is 

assumed that the filament bundle can be mechanically characterized as a degenerate square-

symmetric homogeneous continuum. Pan et al. (1989, 1992) considered the fibers as a transversely 

isotropic material and performed experiments to obtain mechanical properties of staple yarn (short 
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fibers). Cai and Gutowski (1992) and Simacek and Karbhari (1996) modeled the filament bundle 

as a transversely isotropic material in order to analyze some practical problems, such as the 

filament winding, consolidation, and fiber waviness.  

 The abovementioned investigations were focused on the textile material behavior, but lacked 

addressing important practical issues. However, with the aid of computer technology, complex 

computational filament bundle models were developed using the finite element (FE) method. The 

mechanic behavior of textile materials was examined using FE analysis by dividing long filament 

bundles into several meshed elements in several investigations (Luijk et al., 1984; Djaja, 1992; 

Zhao et al., 2001). The PFB dynamic behavior in a roll-drafting process has also been analyzed 

recently using planar models (Huh and Kim, 2004, 2006; Kim et al., 2008). These models 

considered the extension of the fiber along the axial direction but did not consider three-

dimensional constitutive equations or cross-section deformations. Other properties such as the 

thermal effect (Bechtel et al., 2002; Mbarek et al., 2012) and plasticity (Dyke and Hedgepeth, 1969; 

Jones, 1974; McLaughlin, 1972) of the fiber have also been examined. These properties can be 

modeled by choosing appropriate stress-strain and strain rate relationships in the constitutive 

equations.  

 Textile materials are fairly soft and can lead to large extension, deflection, and bending 

deformations. In order to analyze complex textile processes, it is necessary to use a large 

displacement, nonlinear formulation capable of taking into account the effect of rigid body motion. 

The ANCF is a nonlinear finite element method that can systematically model rigid body motion 

and large deformation, and allows for using general continuum mechanics constitutive equations. 
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For large deformation, linear constitutive relationships are not in general adequate, and for this 

reason, nonlinear theories must be adopted (Maqueda and Shabana, 2007; Jung and Kang, 2005). 

Fully parameterized ANCF beam finite elements, which employ a complete set of parameters, 

allow for the use of general constitutive relationships, and therefore, can be used to model the 

overall orthotropic mechanical behavior of a bundle of fibers, as demonstrated in this thesis in the 

case of transversely isotropic models in which the material coefficients are assumed constant over 

the cross section (Pan et al., 1989). 

1.4 Scope and Organization of the Thesis 

Chapter 2 was first published in the ASME Journal of Computational and Nonlinear Dynamics 

(Wang et al. 2015a) and is reproduced in this thesis with permission which is provided in Appendix 

A. This chapter addresses the limitation due to the lack of a distributed inertia liquid model that 

can be effectively used in nonlinear vehicle dynamics. To this end, a reduced order continuum-

based total Lagrangian liquid sloshing model that captures the shape of the free surface and the 

inertia distribution of the liquid due to the sloshing is developed. The FE/FFR formulation, which 

allows for arbitrary large displacements and captures the inertia coupling between different modes 

of fluid displacements, is used in the fluid modeling. Crucial to the development presented in this 

chapter is the definition of the FFR position and velocity gradient tensors that are used to define 

the fluid strain rates. These strain rates are used to formulate the generalized Navier-Stokes stress 

forces associated with the fluid modes of displacements. This continuum model is integrated with 

the spatial MBS algorithms to study the effect of liquid sloshing on the nonlinear dynamics of 
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railroad vehicles. The use of the proposed method is demonstrated using a simple Newtonian fluid 

model. It is assumed that the fluid is an incompressible continuum material that has internal energy 

dissipation due to sloshing. For simplicity, complex fluid behaviors such as vortex and turbulence 

flow are not considered in this thesis. The simulation scenarios considered in this chapter show 

that the effect of the distributed inertia of the fluid can be significant. Furthermore, the time-

varying inertia and the change in the shape of the fluid due to sloshing can lead to wheel/rail 

separations that can increase the possibility of vehicle derailments. In order to focus on the main 

procedures without delving into the details of the integration of shell finite element formulations 

with complex fluid shapes, a simple rectangular tank car model is used in the simulation scenarios 

presented in this thesis. Rectangular tank cars have been previously used in the literature (Celebi 

and Akyildiz, 2001). 

Chapter 3 was first published in the ASME Journal of Computational and Nonlinear 

Dynamics (Wei et al. 2015) and is reproduced in this thesis with permission which is provided in 

Appendix A. This chapter proposes a new approach for modeling fluid problems in which the 

incompressibility conditions and surface traction forces are considered and derived from the 

Navier Stokes equations. Two ANCF brick finite elements are used, the first is defined using 

incomplete polynomial representation, while the second is obtained using a B-spline volume 

geometry. Both ANCF brick elements are described and the effect of applying continuity 

conditions at the nodal points is examined. This approach allows for modeling arbitrary large 

displacements, ensures the continuity of the displacement gradients, leads to a constant inertia 

matrix regardless of the magnitude of the fluid displacements, and allows for efficient and 
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systematic integration of fluid/MBS algorithms for the study of the liquid sloshing problems. 

Furthermore, an obvious advantage of the proposed new approach is the ability to handle MBS 

sloshing problems using a continuum method. The examples presented in this chapter show that 

fluid simulations can be performed efficiently in the framework of a total Lagrangian formulation. 

When applicable, comparison is also made with the results obtained using the FFR formulation 

that employs linear modes. 

Chapter 4 was first published in the ASME Journal of Computational and Nonlinear 

Dynamics (Wang et al. 2015b) and is reproduced in this thesis with permission which is provided 

in Appendix A. This chapter proposes a new MBS approach for modeling the textile process. In 

order to demonstrate the use of this new approach, the PFB three-dimensional, large deformation 

behavior during the drawing process is examined using a transversely isotropic hyper-elastic 

material (Bonet and Burton, 1997; Limbert and Middleton, 2004; Kulkarni et al., 2014). The strain 

energy for transversely isotropic materials is decomposed into a fully isotropic component and an 

orthotropic, transversely isotropic component expressed in terms of five invariants of the right 

Cauchy-Green deformation tensor. Using this energy decomposition, the second Piola-Kirchhoff 

stress tensor and the tensor of the elastic coefficients can also be split into isotropic and 

transversely isotropic parts. In order to generalize the strain energy equations to the fully nonlinear 

regime, the neo-Hookean potential is used to describe the isotropic component of the strain density 

function, while the orthotropic, transversely isotropic part follows the strain density function 

defined by Bonet and Burton (1997). The total strain energy function is written in terms of five 

strain invariants and the resulting constitutive equations are expressed in terms of five independent 



14 
 

coefficients. Different Poisson ratios are used in order to capture the coupling between deformation 

modes in different directions. The textile machine, composed of rollers, is modeled as a multibody 

system. The rollers are considered as rigid bodies, whereas the PFB is treated as a flexible body. 

Constraints and contact forces are used to model the PFB/roller interaction. The computational 

algorithm developed in this chapter integrates filament bundle transversely isotropic nonlinear 

material model and ANCF finite elements. The MBS approach presented in this chapter allows for 

examination of roller contact forces, internal tension of filament bundle, PFB velocity, and 

filament cross-section deformation. Further phenomena, such as thermal and plastic effects, are 

not considered in this study and will be the subject of future investigations.  
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CHAPTER 2 

FFR LIQUID SLOSHING MODEL 

The objective of this chapter is to develop a low order continuum-based liquid sloshing model that 

can be successfully integrated with multibody system (MBS) algorithms. The liquid sloshing 

model proposed in this chapter allows for capturing the effect of the distributed inertia and 

viscosity of the fluid. The fluid viscous forces are defined using the Navier-Stokes equations. In 

order to demonstrate the use of the approach presented in this study, the assumption of an 

incompressible Newtonian fluid is considered with a total Lagrangian approach. Fluid properties 

such as the incompressibility condition are formulated using a penalty method. The low order 

model that captures the effect of the distributed fluid inertia on the vehicle dynamics is developed 

in this chapter using the floating frame reference (FFR) formulation. The use of this approach 

allows for developing an inertia-variant fluid model that accounts for the dynamic coupling 

between different modes of the fluid displacements. The matrix of position vector gradients and 

its derivative are formulated using the FFR kinematic description. The position and velocity 

gradient tensors are used to define the Navier-Stokes stress forces. The proposed liquid sloshing 

model is integrated with a MBS railroad vehicle model in which the rail/wheel interaction is 

formulated using a three-dimensional elastic contact formulation that allows for the wheel/rail 

separation. Several simulation scenarios are used to examine the effect of the distributed liquid 

inertia on the motion of the railroad vehicle. The results, obtained using the sloshing model, are 

compared with the results obtained using a rigid body vehicle model. The comparative numerical 

study presented in this chapter shows that the effect of the sloshing tends to increase the possibility 
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of wheel/rail separation as the forward velocity increases, thereby increasing the possibility of 

derailments at these relatively high speeds. 

 

Figure 2. FFR coordinate system 

2.1 FFR Fluid Body 

The proposed liquid sloshing model developed in this chapter is based on the FE/FFR total 

Lagrangian formulation. In the FE/FFR formulation, the motion of the fluid body is defined as the 

motion of its reference frame plus the motion of the material points of the fluid body with respect 

to its reference, as shown in Fig. 2. Using this kinematic description, the inertia of the liquid can 

be formulated in terms of a set of constant inertia shape integrals that enter into the formulation of 

the nonlinear mass matrix of the fluid body. Crucial in the development presented in this section 

is the definition of the position and velocity gradient tensors required to define the generalized 

Navier-Stokes stress forces of the fluid body in terms of the FFR generalized coordinates. In this 

section, the FFR motion description is briefly reviewed and used to define the basic kinematics 

and forces equations required to develop the low order fluid body model. 

2.1.1 FFR Kinematic Description 

In order to explain how the position and velocity gradient tensors are formulated in terms of the 
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FFR generalized coordinates, some basic FFR kinematic equations are first presented. As shown 

in Fig. FFR coordinate system, the global position vector of an arbitrary point P  on a fluid body 

i  can be defined in the spatial analysis as (Shabana, 2014) 

    )i i i i i i i i i i i i i

o f o f       r R A u R A u u R A (u S q  (1) 

where 
i

R  is the global position vector of the origin of the fluid body reference, 
i

A is the 

transformation matrix that defines the orientation of the body reference in the global coordinate 

system, i

ou is the position of point P  in the undeformed state, i

fu  is the deformation vector, 

 1 2 3, ,i i i i ix x xS S  is a space-dependent shape matrix, 
1 2,i ix x , and 

3

ix  are the spatial coordinates, 

and i

fq  is the vector of time-dependent elastic generalized coordinates of the fluid body i . 

Differentiating Eq. 1 with respect to time yields 

i i i i i i i i i i i i

f     r R A u A u R A u A S q                   (2) 

 The kinetic energy of the fluid body is defined as   T1 2
i

i i i i i

V
T dV= r r , where i  is the 

mass density, and 
iV  is the volume. The vector of time dependent generalized velocities is 

T
T T T    i i i i

f
   q R θ q . The kinetic energy can then be rewritten as   T1 2i i i iT  q M q , where 

i
M is the symmetric mass matrix of the FFR fluid body. In the FFR formulation, this mass matrix 

is highly nonlinear regardless of the finite element used.  

2.1.2 Incompressible Viscous Newtonian Fluid 

Since the main goal of this chapter is to develop a continuum-based fluid body model that can be 

used to study the effect of liquid sloshing in MBS vehicle dynamics, the assumption of an 

incompressible Newtonian fluid is sufficient for this purpose. This assumption allows the use of a 

simple expression for the constitutive relationship in which the stresses are proportional to the 
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strain rates. While the incompressibility condition is imposed using the penalty method, the 

Navier-Stokes equations are used to formulate the viscous stress forces. The formulation of these 

forces requires the use of some basic continuum mechanics concepts and relationships. It is shown 

in this section how the FFR description can be used to evaluate the continuum mechanics kinematic 

relationship required to formulate the fluid body forces.  

Recall that the determinant of the matrix of position vector gradients 
i

J  can be written as 

 
1 2 3

i i i i i

x x xJ    J r r r , where 1 2 3
i

i

x ,i , ,r , is the gradient vector obtained by differentiation of 

the position vector 
i

r  with respect to the spatial coordinate 
ix  (Spencer, 1980; Bonet and Wood, 

1997; Shabana, 2012). In the FFR representation, one can show that the determinant 

 
1 2 3

i i i i i

x x xJ    J r r r  can be written as  

1 2 3 1 2 3

i i i i i i
i i i i

f f fJ
x x x x x x

              
                                

u u u S S S
i q j q k q    (3) 

In this equation,  
T

1 0 0i ,  
T

0 1 0j , and  
T

0 0 1k . The determinant in the 

preceding equation is used in many basic continuum mechanics relationships. Recall that 

1 2 3

idx dx dx dV , where 
idV  is the volume of an infinitesimal element in the reference 

configuration. The relationship between the volumes in the current and reference configurations is 

i i idv J dV , where 
iv  is the volume in the current configuration. The incompressibility condition 

for a fluid body i  in the FFR formulation implies that 1i iJ  J . It follows that 0iJ  , an 

identity that can be utilized to enforce the penalty condition at the velocity level. The 3 3  matrix 

of position vector gradients at an arbitrary point P  can be defined as 

1 2 3

i i i i ix x x           J r x r r r . Using Eq. 1, one has 
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1 2 3

i i i i
i i i i i

f f f
x x x

         
                    

r S S S
J A I q q q

x
     (4) 

This equation can be written compactly as 

 
ii
fi i i i

d

 
        

ur
J A I A I J

x x
       (5) 

In this equation,  
T

1 2 3x x xx , and 

1 2 3

i i i i
fi i i i

d f f f
x x x

        
       

          

u S S S
J q q q

x
      (6) 

If the condition 1iJ   is imposed, one has 

1i i i i i i i

r d d dJ       J J J A I J I J                     (7) 

where i i

r J A  is the Jacobian matrix associated with the rigid body rotation, and  i i

d d J I J  

is the Jacobian matrix associated with the fluid body deformation. If the condition 0iJ   is 

imposed, the time derivative of 
iJ  can be evaluated as 

 
3

31 2

1 1 2 3

tr
i ii i

i i i i ik

k k

r rr r
J J J J

r r r r

   
     

    
 D                (8) 

where 
i

D  is the rate of deformation tensor, and     
3

1i i i k k ik
r r r x x r


       . One also 

has  1

1 2 3r r r          J x r x x x , and  1 2 3
x x x         J r x r r r . 

Therefore, Eq. 8 can be written as  
1 T

i i i iJ J
 

  
 

J : J , where in the FFR formulation, 

i i i i i

d d
    J A I J A J . 

2.1.3 FFR Navier-Stokes Generalized Stress Forces 

If the fluid is assumed to be isotropic, one can write the following fluid constitutive equations 

  tr 2i i i iP     σ D I D  (Spencer, 1980; Bonnet and wood, 1997; and Shabana, 2012), 
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where   and   are viscosity coefficients that depend on the fluid density and temperature, 
i

σ  

is the Cauchy stress tensor, iP  is the hydrostatic pressure, and the symmetric rate of deformation 

tensor 
i

D  can be expressed in terms of the Lagrangian strain rate 
i
ε  as    

T1 1
i i i i

 

D J ε J , 

where 
i

J  is the matrix of position vector gradients. It is clear from the preceding equation that if 

the velocity gradients are equal to zero, the shear stresses are equal to zero; and the normal stress 

components reduce to the hydrostatic pressure 
iP . In the aforementioned fluid equation,   is 

the coefficient of shear viscosity, and   2 3   is called the coefficient of bulk viscosity. If 

 2 3 0   , on has the Stokes’ relation. For incompressible fluids, 1iJ  , and since 

 tr i i iJ JD , it follows that  tr 0i D . Consequently, imposing the incompressibility 

condition at the velocity level 0iJ   ensures that  tr 0i D . In this special case, the mass 

density   is constant, and the fluid constitutive equation reduces to 2i i iP   σ I D . One can 

also show that in the case of incompressible fluid, enforcing the condition 1iJ  , allows for the 

use of the Navier-Stokes stress relationship  2i iσ D . 

In general, the virtual work of the fluid stress forces can be written as  

2: :
i i

i i i i i i i

s P

v V

W dv dV      σ J σ ε        (9) 

In this equation, 
iv  is the volume in the current configuration, and    

T1 1

2

i i i i i

P J
  

  
 

σ J σ J  

is the second Piola-Kirchhoff stress tensor. One can also write the virtual work of the stress forces 

as :
i

i i i i i

s

V

W J dV   σ J  in order to allow performing the integration over the volume in the 

reference configuration. The virtual change in the strain tensor can be written as 

    T T1 2i i i i i

d d d d   ε J J J J . This equation can also be written in the form 
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    T T1 2i i i i i

d d d d   ε J J J J . Using the FFR kinematic description to define the tensor i

dJ  , 

the virtual change in the strain tensor can be written as 

T

T1

2

i i

f fi i i

d d  
      
                 

u u
ε J J

x x
      (10) 

It follows that 

1 2 3 1 2 3

i i i i i i i
f f f f i i i

f f f
x x x x x x

    
               

                            

u u u u S S S
q q q

x
  (11) 

The preceding two equations, which show that 
iε  can be written as a linear function in i

fq , 

can be used to write the virtual work of the FFR Navier-Stokes generalized forces as 

2 :
i

i i i i i i

s P ns f

V

W dV     σ ε Q q        (12) 

Alternatively, one can use directly the expression :
i

i i i i i

s

V

W J dV   σ J , where 
iJ  can be 

determined using Eq. 4. The FFR Navier-Stokes generalized force vector i

nsQ  can be introduced 

to the dynamic equations that govern the motion of the FFR fluid body. 

2.1.4 FFR Incompressibility Generalized Forces 

In this chapter, the penalty method is used to formulate the FFR generalized forces resulting from 

the conditions 1iJ   and 0iJ  . A strain energy function    
2

1 2 1i i

ICU k J   is used to 

enforce the incompressibility condition 1iJ  , where k  is a stiffness coefficient. One can also 

impose the incompressibility condition at the velocity level by formulating the dissipation function 

   
2

1 2i i

DPU c J  resulting from the condition 0iJ  , where c  is a damping coefficient. The 

stiffness and damping coefficients k  and c  can be selected to ensure that the incompressibility 
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condition is satisfied. Using 
ICU  and 

DPU , the penalty forces from incompressibility condition 

can be obtained by differentiation with respect to the FFR elastic coordinates and velocities as  

 T

T

1
IC

i i
i iIC

i i

f f

i i
i iDP
DP i i

f f

U J
k J

U J
cJ

 
   
  


   

  

Q
q q

Q
q q

        (13) 

The definition  
1 2 3

i i i i i

x x xJ    J r r r  and the use of basic cross product identities lead to 

T T T

2 3 1 3 1 2 1 2 3

i i i i i ii i i i i
f f f f f f

i i

f f

J J

x x x x x x x x x

              
                               

u u u u u uS S S

q q
  (14) 

This equation can be used to define the generalized penalty forces associated with the generalized 

FFR coordinates. Note that when the incompressibility condition is used, the element mass 
idm  

can be expressed in the reference and current configurations as 
0

i i i i idm dV dv   , where 
0

i  

and i  are, respectively, the mass density in the reference and current configurations. Because 

i i idv J dV , it is clear that 
0

i i iJ  . In the case of incompressible materials for fluid body i , 

1i iJ  J . It follows that 
0

i i  , which implies that the mass density remains constant. This 

allows carrying out the integration required to determine the mass matrix and inertia forces of the 

FFR fluid body using properties defined in the reference configuration. 

2.1.5 Dynamic Equations 

The equations of equilibrium for the fluid body i  can be written in a vector form as 

 
T

Ti i i i

b    σ f a 0         (15) 

In this equation, i

bf  is the vector of body forces, and 
i ia r  is the vector of absolute acceleration 

of an arbitrary point on the fluid body. In order to solve this partial differential equation that 
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depends on space and time, the principle of virtual work and approximation techniques are used 

to convert the partial differential equations to a set of discrete ordinary differential equations. In 

order to evaluate the virtual work of forces, the preceding equation is multiplied by 
ir  and 

integrated over the current volume leading to  
T

T
T 0

i

i i i i i i

b

v

dv     
   σ f a r . Using Gauss 

theorem, one obtains 

  
T1

T iT: ( ) 0
i i i i

i i i i i i i i i i i i i i

b

s v v v

ds dv dv dv    


      n σ r σ J J f r a r    (16) 

In this equation, 
i

n  is the unit normal on a surface 
is . The first term in this equation represents 

the virtual work of surface traction forces, the second term is the virtual work of internal viscous 

forces, the third term is the virtual work of body forces, and the last term is the virtual work of 

inertia forces. The virtual work of inertia force can be written as 
T

i

i i i i i

i
V

W dV    r r and the 

virtual work of the body force is defined as 
T T

i

i i i i i i

e b e
V

W dV    f r Q q , where i

eQ  is the 

external generalized force vector. If 
FB

i
Q  denotes the viscous and penalty forces, the fluid body 

Lagrange-D’Alembert equations can be written as. 

 
T

T T

FB
i

i i i i i i i

f e
f

V

dV     r r Q q Q q        (17) 

This equation will be used to couple the fluid dynamics with the dynamics of the multibody vehicle 

system.  

2.2 FE/FFR Low Order Fluid Body Model 

The equations that govern the flow of fluids are partial differential equations, which are functions 

of the flow variables and their derivatives. Furthermore, in the case of tank car sloshing, the fluid 
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can be subjected to arbitrary displacements. Therefore, for such problems the use of FE/MBS 

algorithms is recommended in order to be able to accurately define the fluid inertia and its effect 

on the dynamics of the vehicle system. Using a FE/MBS approach based on the FFR formulation, 

the fluid inertia can be expressed in terms of a set of constant inertia shape integrals that enter into 

the formulation in the nonlinear fluid mass matrix. This approach also allows for reducing the 

number of coordinates of the fluid body using conventional modal reduction methods. 

2.2.1 Hexahedral Element and Finite Element Coordinate Systems 

In a general MBS approach based on the FE/FFR formulation, a deformable body is normally 

divided into more than one element. In this chapter, superscript ij  refers to an element j  on the 

fluid body i . Using the finite element coordinate systems shown in Fig.3, a systematic and 

efficient procedure can be developed to study the effect of the distributed inertia of the fluid body.  

 

Figure 3. Finite element coordinate systems 
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 In Fig. 3, 
1 2 3

ij ij ij
X X X  is the element coordinate system that translates and rotates with the 

element and has an origin rigidly attached to a point on the element; 
1 2 3

i i i
X X X  is the fluid body 

coordinate system that need not to be rigidly attached to a point on the body; 
1 2 3

ij ij ij

i i iX X X  is an 

intermediate element coordinate system whose origin is rigidly attached to the origin of the body 

1 2 3

i i i
X X X  coordinate system and is assumed to have a fixed orientation with respect to the body 

coordinate system. Using these coordinate systems, the position coordinates of an arbitrary point 

on the finite element with respect to the origin of the fluid body coordinate system can be written 

as ij ij ij ij ij ij ij ij

i nu  = C S e C S C q . In this equation, 
ij

C  is a transformation matrix that defines the 

orientation of the element coordinate system with respect to the body coordinate system, 
ij

C  is 

the orthogonal constant transformation matrix, the dimension of which depends on the number of 

nodal coordinates of the element, 
ij

S  is the element shape function, 0

ij ij ij

n f q q q  is the vector 

of nodal coordinates of element ij  defined with respect to the coordinate system of the fluid body 

i , and 
0

ij
q  is the vector of nodal coordinates in the reference configuration (Shabana, 2014).  

While the FFR formulation presented in this study allows for the use of any finite element 

including conventional structural elements that employ infinitesimal rotations as nodal coordinates, 

in the numerical study presented in this chapter, a standard hexahedral element is used in the 

analysis of three-dimensional viscous flow problems. The element used is the 8-node linear brick 

element. In this case, without loss of generality, the element coordinate system is assumed to be 

parallel to the body coordinate system, 
3 3

ij

C I  and 
24 24

ij

C I . The shape function matrix 

ij
S  of the brick element can be written as  1 2 3 4 5 6 7 8       s s s s s s s sS I I I I I I I I , where I is a 3 × 3 
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identity matrix and , 1,2, ,8is i  , are    1 1 8 1 1 1s       , 

   2 1 8 1 1 1s       ,    3 1 8 1 1 1s       ,    4 1 8 1 1 1s       ,

   5 1 8 1 1 1s       ,    6 1 8 1 1 1s       ,    7 1 8 1 1 1s       ,

   8 1 8 1 1 1s       , where
1x a  ,

2 x b  ,
3 x c  , and 2a , 2b , 2c  are the 

dimensions of the element in three directions. 

2.2.2 FFR Fluid Element Mass Matrix 

Using the definition 
1

ij ij ij ij ijN C S C B , where 
1

ij
B  is a constant Boolean transformation which 

defines the connectivity of the element, and assuming that 
2

i
B is a linear transformation that arises 

from imposing the reference conditions, the mass matrix of the fluid finite element j  of the fluid 

body i  can be written as (Shabana, 2014) 

2

T T T T
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.
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   (18) 

where I  is a 3×3 identity matrix, 
i

G  is the matrix that relates the angular velocity vector to 

the time derivatives of the orientation parameters. This matrix, which can be written in terms of 

the orientation parameters 
i , can be nonlinear in the orientation parameters if Euler angles are 

used. This matrix also accounts for the effect of the dynamic coupling between the large reference 

displacements of the fluid and its movements with respect to its reference. The mass matrix of the 

fluid body can be obtained by assembling the mass matrices of its elements (Shabana, 2014). 
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2.2.3 Low Order Fluid Body Model 

As previously mentioned, the goal of this chapter is to develop an FFR/MBS low order model for 

liquid sloshing that allows for accurately capturing the effect of the distributed fluid inertia on the 

dynamics of vehicle systems. In this case, some important modes of the fluid displacements can 

be identified and used to define the fluid inertia in the MBS algorithm. This approach, which 

captures the effect of the distributed inertia of the fluid, allows for developing more accurate liquid 

sloshing models as compared to the discrete inertia pendulum models used in the literature.  

As the finite element discretization of the fluid results in a large number of nodal coordinates, 

component mode synthesis methods can be used to reduce the number of coordinates. This can be 

accomplished systematically because the FFR formulation allows for defining a local linear 

problem. The modes of displacement of the fluid can be assumed by the analyst. Another alternate 

approach, that is more systematic, is to define a fluid body FE mesh at a pre-processing stage and 

assume certain stiffness parameters to define a mesh local stiffness matrix i

ffK . The explicit 

expression for the stiffness matrix for element j  of the fluid body i  is defined as 

T

( ) ( )
ij

ij ij ij ij ij ij ij

ff
V

dV K D N E D N , where 
ij

D is a spatial derivative operator relating strains and 

displacements, and 
ij

E is the matrix of elastic coefficients. The stiffness parameters are obtained 

from the constitutive model of conventional structural mechanics in which the Possion ratio is 

assumed to be 0.49 for the incompressible material and the bulk modulus is 
92.2 10 Pa . This 

local stiffness matrix is only used at a preprocessing stage to identify possible modes of 

displacements of the fluid. That is, this stiffness matrix is not used in the equations of motion of 
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the fluid and it is used only to determine the assumed displacement modes. This approach can also 

be used in the case of compressible fluid in which 
iJ  can vary from one.  

If the fluid is assumed to vibrate freely with respect to its reference, one has 

i i i i

ff f ff f m q K q 0 , where i

ffm  is the assembled matrix of the element ij

ffm  matrices. This 

equation can be used to determine the mode shapes (assumed modes of displacements). The mode 

shapes can be used to form the modal matrix i

nΦ , which has a number of columns 
fn  equal to 

the number of elastic nodal coordinates of the fluid. A reduced order model can be achieved by 

solving only for 
mn  mode shapes. A coordinate transformation from the physical nodal 

coordinates to the modal elastic coordinates using nm modes can be written as i i i

f m fq Φ p , where 

i

mΦ  is the modal transformation matrix, whose columns are the selected 
mn  fundamental mode 

shapes, and i

fp is the 
mn -vector of modal coordinates. 

While this approach defines low order model for the fluid body, it has several clear advantages. 

It is a more realistic model as compared to the discrete inertia models that employ pendulum 

systems, it allows for capturing the fluid body distributed inertia, it allows for studying the 

contribution of each mode of displacement on the vehicle dynamics and identifying the modes that 

are the cause of accidents, and it can be systematically integrated into the computational algorithms 

implemented in most commercial MBS computer programs. 

2.3 Integration with MBS Algorithms 

This section explains the procedure for integrating the viscous fluid model with computational 

MBS algorithms which are designed to solve a system of differential/algebraic equations (DAE’s). 

The differential equations define the system equations of motion, while the algebraic equations 
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define the kinematic constraints that describe mechanical joints and specified motion trajectories. 

These constraint functions can be written in a vector form as ( , )t C q 0 , where q is the total 

vector of system generalized coordinates, t  is time, C is the vector of linearly independent 

constraint functions. The virtual change in the generalized coordinates leads to δ qC q 0 , where 

qC  is the constraint Jacobian matrix. 

 

Figure 4. Fluid element boundary constraints 

2.3.1 Fluid Boundary Constraints 

In the finite element analysis, the global mass and stiffness matrices of the fluid body are obtained 

by assembling the element mass and stiffness matrices of its finite elements. The linear brick 

element used in this chapter has three translational degrees of freedom (DOFs) per node. The 

conditions imposed on the surface nodes of the fluid in a rectangular container can be classified 

into four different types: free nodes, surface constrained nodes, edge constrained nodes, and corner 

constrained nodes. In order to demonstrate the differences between different nodes, Fig. 4 depicts 
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a simplified fluid model having eight elements that includes all these four conditions. Each of the 

free nodes has three translational degrees of freedom at that node and this node can move freely 

subject to the incompressibility condition only. A surface node has two degrees of freedom that 

allow the node to move on that surface without penetration or separation. An edge node has only 

one degree of freedom along that edge allowing the node to move along the edge of the tank only. 

A corner node has all degrees of freedom fixed to the fluid body coordinate system.  

2.3.2 System Equations of Motion 

Using Eqs. 3 and 15 and the expression for damping forces, one can write the constrained MBS 

dynamic equations of motion of the fluid body as 

T ,   1,2...,i
FB

i i i i i

e v bi n    
q

M q C λ Q Q Q                    (19) 

where 
bn
 
is the total number of bodies in the system, i

q
C

 
is the constraint Jacobian matrix, λ  

is the vector of Lagrange multipliers, and i

vQ
 
is a quadratic velocity vector that absorbs Coriolis 

and centrifugal forces. The preceding equation can be written in a partitioned matrix form as 

follows: 
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  (20) 

This equation represents a system of second-order differential equations whose solution has to 

satisfy the algebraic constraint equations ( , )t C q 0 . This mixed system of differential and 

algebraic equations has to be solved simultaneously. The preceding equation can be systematically 
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integrated with MBS algorithms to study the effect of the liquid inertia on the dynamics of railroad 

vehicle systems. This equation allows for arbitrary displacement of the fluid container. 

Using component mode synthesis techniques discussed in preceding section, the preceding 

equation can be written in terms of modal coordinates as 

 

 

 
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where subscript r refers to reference, i

rrm = i

rrm , i

rfm = Ti

frm = i i

rf mm Φ , Ti i i i

ff m ff mm Φ m Φ , 

Ti i i i

D m D mC Φ C Φ ,    i i

e e
r r
Q Q ,    Ti i i

e m e
f f
Q Φ Q ,    i i

v v
r r
Q Q ,    Ti i i

v m v
f f
Q Φ Q , 

i i
r r


p q

C C , i i
f f

i

m
p q

C C Φ , and    T

FB

i i i

FB m
f f
Q Φ Q  (Shabana, 2014). In this equation, 

mn  can 

be significantly less than 
fn . 

2.4 Numerical Examples 

In this section, different computer simulation scenarios are used to examine the effect of the time-

variant distributed inertia due to liquid sloshing on railroad vehicle dynamics. In order to increase 

the effect of the sloshing, in some simulation scenarios, the forward velocity of the vehicle is 

increased to initiate flange contacts. In some other examples, an initial lateral velocity is used to 

initiate the hunting motion. A sudden increase of the vehicle velocity is also considered to make 

the effect of the liquid inertia on the vehicle dynamics more predominant. The data of the railroad 

vehicle model used in this chapter are the same as the data of the model used by Shabana et al. 

(2008). 
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Figure 5. Railroad Vehicle model 

2.4.1 Description of the Model 

The vehicle model used to examine the sloshing effect is shown in Fig.5. This MBS vehicle model 

has 15 bodies, 14 of which are rigid bodies and one is a fluid body that represents a water tank. 

One rigid body is the rail which is fixed to the ground. There are two bogies, each of which consists 

of 6 bodies; two wheelsets: two equalizers on both sides connected to the wheelsets by bearing 

elements, and one frame and one bolster connected by revolute joint. The tank car is another rigid 

body which holds the fluid body. Twenty assumed modes are used in the numerical study presented 

in this section to describe the change of the shape of the fluid body. A trajectory coordinate 

constraint was used to prescribe the forward velocity of the vehicle. 

The dynamic interaction between the wheel and the rail is formulated using an elastic contact 

formulation (Shabana et al., 2008). The wheel/rail contact is described using a compliant force 

element instead of kinematic constraints, thereby allowing for wheel/rail separations. The rigid 

rectangular tank is assumed to have dimensions12m 1.52m 1.33m  , and is attached to a massless 
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plate using rigid joint. The plate is connected to the bolster with several bushing elements.  

The liquid used in this chapter is assumed to be water. Numerical experimentation showed that 

a penalty coefficient of 10000k   N.m leads to acceptable results consistent with water 

properties, and allows the simulation to be completed in reasonable CPU time. Using this penalty 

coefficient k , the simulation time for 10s is approximately 4 hours and for 20s is approximately 

9 hours. The simulations were performed using HP-Z210 PC with CPU unit of Intel Core i5-2400. 

Only single processor was used in the simulation (sequential computations). The effect of 

increasing the damping coefficients is examined in the following section. 

 

Figure 6. The S-shape curved track 

2.4.2 Sloshing Effect  

In order to examine the sloshing effect on the motion of the vehicle, another equivalent rigid-body 

model was used for the purpose of comparison. This rigid body model is obtained by assuming the 
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fluid body to be rigid while keeping all other model parameters the same. The speed at which the 

rigid-body model on a tangent track would derail was found to be 90m/s  (201 mph), while it is 

60m/s  (134 mph) for the model which has the fluid body. If the curved track shown in Fig. 6 is 

used, this speed is 35 m/s (78 mph) for the fluid body model. 

 

Figure 7. Lateral displacement of the rear wheelset with forward velocity of 25m/s  (56mph)  

( Rigid body ,  Flexible body) 



35 
 

 

Figure 8. Lateral displacement of the rear wheelset with forward velocity of 35m/s  (78mph) 

( Rigid body ,  Flexible body) 

 

Figure 9. Lateral displacement of the rear wheelset with forward velocity of 60m/s  (134mph)  

( Rigid body ,  Flexible body) 



36 
 

 

Figure 10. Lateral displacement of the car body with forward velocity of 60m/s  (134mph)  

( Rigid body ,  Flexible body) 

 

Figure 11. Normal contact force on the right wheel of the rear wheelset of the rear bogie in the 

rigid body model with forward velocity of 60m/s  (134mph) 
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Figure 12. Normal contact force on the right wheel of the rear wheelset of the rear bogie in the 

fluid body model with forward velocity of 60m/s  (134mph) 

In the first simulation scenario considered, two constant forward velocities of 25 m/s (56 mph) 

and 35m/s (78 mph) along the tangent track are considered. All wheelsets are assumed to have 

0.5 m/s  initial lateral velocity. Figures 7 and 8 show that, at the low speed when hunting is not 

significant, the fluid body introduces damping that tends to reduce the amplitude of the hunting 

oscillations, making the system more stable as compared to the rigid body model. However, if the 

forward velocity is increased to 60 m/s (134 mph), the fluid body model becomes more unstable 

as compared to the rigid body model, as demonstrated by the results of Fig. 9. Figure 10 shows 

significant changes in the lateral displacement of center of mass of the fluid body at this relatively 

high speed. Figures 11 and 12 show the normal force for the rigid and fluid body models, 

respectively. The results presented in these two figures show that the liquid sloshing can cause 
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impulsive forces between the wheel and the rail, leading to spikes in the contact force. More 

importantly, the liquid sloshing can lead to wheel/rail separations which can increase the 

possibility of rollover and derailment (Fig. 12).  

 

Figure 13. Change of the fluid shape due to sloshing 

The second simulation scenario is used to demonstrate that the proposed approach can capture 

the effect of the three-dimensional fluid body distributed inertia which cannot be captured using 

the simplified two-dimensional motion pendulum models often used to study liquid sloshing in 

vehicle dynamics. Figure 13 shows the change in the shape of the liquid due to a sudden forward 

acceleration accompanied by the hunting motion. It is clear from this figure that the reduced order 

model proposed in this study can be used to predict the change of the shape of the fluid body. 
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Figure 14. Lateral displacement of the rear wheelset with respect to the track  

( Rigid body,  Fluid body) 

 

Figure 15. Change of the center of mass with respect to the track  

( Rigid body ,  Fluid body) 
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Figure 16. Normal contact force of the right wheel of the rear wheelset of the rear bogie 

( Rigid body,  Fluid body) 

 

Figure 17. Normal contact force of the left wheel of the rear wheelset of the rear bogie 

( Rigid body ,  Flexible body)
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Figure 18. Lateral displacement of the car body using different damping coefficients  

(  c = 0,  c = 50,  c = 100,  Rigid model) 

 In a third simulation scenario, the results obtained using the rigid and fluid body models are 

compared when the vehicle negotiates a curved track at 35 m/s  speed with no initial lateral 

velocity. Figure 14, which depicts the lateral displacement of the wheelset with respect to the track, 

shows that the fluid body model has larger lateral displacement due to the sloshing effect. Figure 

15 shows the change in the location of the center of gravity of the fluid body in the lateral Y  

direction. The results of this figure show that the change in the position of the center of mass is 

more significant when the vehicle negotiates a curved track. The results of Figs. 16 and 17 show 

that changing the location of the fluid body center of mass leads to a different distribution of the 

normal contact forces on the wheels. That is, the wheels which carry the highest loads in the fluid 

body and the rigid body models can be different. The results presented in Fig. 18 show that 
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increasing the viscosity of the fluid leads to a more stable behavior because an increase in the 

viscosity produces more resistance to the fluid motion.  

2.5 Concluding Remarks 

In this chapter, a low order three-dimensional liquid sloshing model based on the FFR formulation 

is proposed. This liquid sloshing model can capture the free surface motion and the distributed 

inertia of the fluid. Using a total Lagrangian approach and the FFR formulation, the liquid sloshing 

model was successfully integrated with MBS algorithms and used to study the effect of the 

sloshing on the dynamics of railroad vehicles. The FE method and modal analysis techniques are 

used to develop a reduced order fluid body model. The results presented in this chapter shows that 

liquid sloshing can have a significant effect on the contact forces and the dynamics of the vehicle. 

This was demonstrated using a three-dimensional wheel/rail contact model that allows for accurate 

description of the wheel and rail profiles. The results presented in this chapter showed that the 

wheels that carry the highest loads in the fluid body and rigid body models can be different. The 

results also show that liquid sloshing tends to increase the possibility of wheel/rail separation. 

While the liquid sloshing approach proposed in this study defines a low order model, it has 

several clear advantages compared to existing models. It is a more realistic model as compared to 

the discrete inertia models that employ pendulum systems and used in the area of vehicle dynamics, 

it allows capturing the effect of the fluid body distributed inertia, it allows studying the contribution 

of each mode of the fluid displacement on the vehicle dynamics and identifying the modes that are 

the cause of accidents, and it can be systematically integrated into the computational algorithms 

implemented in most commercial MBS computer programs. As previously mentioned in this 

chapter, the goal is not to study the effect of the vehicle motion on the fluid, rather the goal is to 

study the effect of the distributed inertia of the fluid on the vehicle dynamics.  
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CHAPTER 3 

ANCF FLUID MODEL 

The objective of this chapter is to develop a total Lagrangian non-incremental liquid sloshing 

solution procedure based on the finite element (FE) absolute nodal coordinate formulation 

(ANCF). The proposed liquid sloshing modeling approach can be used to avoid the difficulties of 

integrating most of fluid dynamics formulations, which are based on the Eulerian approach, with 

multibody system (MBS) dynamics formulations, which are based on a total Lagrangian approach. 

The proposed total Lagrangian FE fluid dynamics formulation, which can be systematically 

integrated with computational MBS algorithms, differs significantly from the conventional FE or 

finite volume methods which are based on an Eulerian representation that employs the velocity 

field of a fixed control volume in the region of interest. The ANCF fluid equations are expressed 

in terms of displacement and gradient coordinates of material points, allowing for straight forward 

implementation of kinematic constraint equations and for the systematic modeling of the 

interaction of the fluid with the external environment or with rigid and flexible bodies. The fluid 

incompressibility conditions and surface traction forces are considered and derived directly from 

the Navier-Stokes equations. Two ANCF brick elements, one of which is obtained using an 

incomplete polynomial representation and the other obtained from a B-spline volume 

representation, are used. The new approach ensures the continuity of the displacement gradients at 

the nodal points and allows for imposing higher degree of continuity across the element interface 

by applying algebraic constraint equations that can be used to eliminate dependent variables and 

reduce the model dimensionality. Regardless of the magnitude of the fluid displacement, the fluid 
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has a constant mass matrix, leading to zero Coriolis and centrifugal forces. The analysis presented 

in this chapter demonstrates the feasibility of developing an efficient non-incremental total 

Lagrangian approach for modeling sloshing problems in MBS system applications in which the 

bodies can experience large displacements including finite rotations. Several examples are 

presented in order to shed light on the potential of using the ANCF liquid sloshing formulation 

developed in this chapter. A two-loop implicit sparse matrix numerical integration (Aboubakr, 

2015) which include numerical damping is used in this section. 

3.1 Fluid Dynamics Description 

The Eulerian and Lagrangian approaches are often used to study the motion of the fluid (Reddy, 

2001). In the Eulerian approach, the interest is focused on the fluid motion at specific locations in 

the space, while in the Lagrangian approach, one traces the motion of the fluid particles. In this 

section, the basic fluid equations used in this investigation to formulate the liquid sloshing problem 

are summarized. For simplicity, the case of isotropic, Newtonian, viscous and incompressible fluid 

will be considered. Other detailed fluid dynamic models can be found in the literature (Anderson, 

1995; Reddy et al., 2001). The fluid continuity equation can be written as 

 
 

,
0

t

t





 



r
u         (22)

 

where   is the mass density, t  is time, and r  and u  are the position and velocity vectors, 

respectively. In the case of incompressible fluid, the density is constant, and the continuity equation 

becomes 0 u . The partial differential equation of the fluid can be written as 

  
T

T

b    σ f a 0                          (23) 
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where a is the acceleration vector, σ  is the symmetric Cauchy stress tensor, and 
bf  is the vector 

of body forces per unit volume. Considering the simple case of isotropic Newtonian fluid, it can 

be shown that the fluid constitutive equations can be written as 

        , , tr 2 ,p T T T       σ D I D , where   and   are viscosity coefficients that 

depend on the fluid mass density   and temperature T , p  is the hydrostatic pressure defined 

as  
3

1
1 3 iii

p


  σ , I  is a 3 3  identity matrix, “  tr ” refers to the trace of a matrix, and 

D  is the rate of deformation tensor (Spencer, 1980; Shabana, 2012). If the effect of temperature 

is neglected and the incompressibility assumption is used, the constitutive equations can be 

simplified and written as 

   tr 2p    σ D I D         (24) 

Substituting this equation in Eq. 23 leads to 

        
T

tr 2 bp        I D I D f a 0      (25) 

This is the equilibrium equation which will be used to develop the proposed ANCF fluid finite 

elements employed in this chapter. 

Since the focus of this chapter is on capturing the liquid motion using a computational 

procedure based on integrating the fluid dynamics with MBS algorithms, a total Lagrangian 

description will be used. The Green-Lagrangian strain ε  and the second Piola-Kirchhoff stress 

tensor 2Pσ  are used. One can write 
T1 1

2P J  σ J σJ and 
T

1 1 
D J εJ , where J  is the matrix of 

position vector gradients. Using these equations, one can write  

    1 1 1 1

2 tr 2P r r r rpJ J J       σ C D C C εC      (26)
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where J  J , and T

r C J J  is the right Cauchy-Green deformation tensor. 

3.2 ANCF Brick Element Kinematics 

In this section, the ANCF fluid elements used in this chapter are introduced. Two ANCF brick 

elements are considered in this section. The first element is based on an incomplete polynomial 

representation, while the second element has a complete polynomial representation. The assumed 

displacement field of the two elements, and the continuity conditions at the element interface are 

discussed. It is shown that the use of the element with incomplete polynomials allows for 

developing a finer mesh with a significantly smaller number of degrees of freedom. This ANCF 

brick element allows for applying linear conditions that lead to a higher degree of continuity at the 

element interface. These conditions can be applied at a preprocessing stage, thereby allowing for 

eliminating the dependent nodal variables before the start of the dynamic simulation. 
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Figure 19. The 8-node brick fluid element 
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3.2.1 Brick Element with Incomplete Polynomial Representation 

The three-dimensional ANCF brick element, with an incomplete polynomial representation, used 

in this investigation is an 8-node element shown in Fig.19. The nodal coordinates jk
e  at the node 

k  of the finite element j  can be defined as  

T T T T T

1, 2,...,8jk jk jk jk jk

x y z k  
 

e r r r r       (27) 

where jk
r  is the absolute position vector at the node k  of the finite element j , and jk

xr , jk

yr

and jk

zr  are the position vector gradients obtained by differentiation with respect to the spatial 

coordinates ,x y  and z , respectively. The displacement field of each coordinate of the brick 

fluid element can be defined using an incomplete polynomial with 32 coefficients as (Olshevskiy, 

2013; Wei and Shabana, 2014) 
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       

   32

3z xyz

  (28) 

In this equation, , 1,2, ...,32k k  , are the polynomial coefficients. Using this polynomial 

description, the shape functions of the ANCF brick fluid element can be derived as follows: 
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where ,a b , and c  are, respectively, the dimensions of the element along the axes ,x y , and z  

directions, / , / , /x a y b z c     ,  ,  ,  0,1    , and 
k k k, ,    are the dimensionless 

nodal locations for node k . The position vector of an arbitrary material point on element j  can 

be written as 

8
,1 ,2 ,3 ,4

1

j k k k k jk j j

k

S S S S


   r I I I I e S e      (30) 

Where I  is the 3 3  identity matrix, 
j

S  and 
j

e  are, respectively, the element shape function 

matrix and the vector of nodal coordinates which can be written as 

T T T T T T T T

1,1 1,2 1,3 1,4 8,1 8,2 8,3 8,4

T
1 2 3 4 5 6 7 8

 ...j

j j j j j j j j j

S S S S S S S S    


  
  

S I I I I I I I I

e e e e e e e e e
   (31) 

Because the proposed element has 96 degrees of freedom (DOFs), by using one element, complex 

fluid shapes can be captured as demonstrated in the numerical example section. 

3.2.2 ANCF Element with Complete Polynomial Representation 

The configuration of this element is the same as the one with the incomplete polynomial ANCF 

element shown in Fig. 19. The element has 8 nodes, but the number of nodal coordinates at each 

node is 24 instead of 12. These nodal coordinates are defined as follows: 

T T T T T T T T T

1,2...,8jk jk jk jk jk jk jk jk jk

x y z xy yz xz xyz k  
 

e r r r r r r r r    (32) 

The element discussed in this section is obtained from a B-spline volume representation that has 

the following Bernstein functions in the three directions ,    , and  : 
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 (33) 

Using these B-spline basis functions, the 64 shape functions of the ANCF brick element with 

complete polynomial representation can be written as follows: 
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  (34) 

These shape functions can be used to define the element displacement field in the manner described 

by Eqs. 30 and 31. 

3.2.3 Continuity Conditions 

In this chapter, the incomplete polynomial ANCF element will be referred to as IPAE, while the 

B-spline/ANCF element will be referred to as BSAE. The first element ensures the continuity of 

the displacement gradients at the nodes, while the second element ensures the continuity of the 

gradients as well as the curvature vectors which appear in Eq. 32. Nonetheless, IPAE linear 

algebraic equations can be developed and applied at a preprocessing stage in order to increase the 

degree of continuity of the IPAE mesh. This procedure allows for developing initially a finer IPAE 

mesh. One can then not only reduce the mesh dimensionality by applying constraint equations to 

obtain the desired continuity required in the fluid simulations and but at the same time significantly 

reduce the model dimension as well. 
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Figure 20. Continuity at the element interface 

Figure 20 shows the continuity conditions at the element interface using a two-element mesh, 

the numbers indicate the node numbers of the individual elements, while the letter superscripts p  

and q  denote the element number. For the IPAE mesh, the 0C , 1

yC and 1

zC  continuities at the 

element interface are automatically ensured using standard FE element assembly procedure, where 

subscripts ,x y , and z  will be used in this chapter to refer to the coordinate along which the 

continuity conditions apply. As shown in Fig. 21, the 1

xC  continuity is not ensured for the IPAE 

mesh, while Fig. 22 shows that the 1

xC  continuity is ensured for the BSAE mesh. The coordinate 

systems used in Figs. 21 and 22 are the same as the coordinate system used in Fig. 20. In Fig. 21a, 

one can notice the discontinuity along the x  coordinate at the boundary of two adjacent elements, 

and Fig. 21b shows this discontinuity in the direction of the gradient vectors. One, however, can 

increase the IPAE degree of continuity at the element interface by imposing linear algebraic 

equations at a preprocessing stage. For example, using the algebraic equations 

   1, , 0, ,p q

x x       S e S e  ensures the continuity of the IPAE gradient vector along the 

x  coordinate at the element interface. Nonetheless, these eight algebraic equations are not 
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sufficient to ensure the IPAE 
xr  continuity at the element interface which is ensured 

automatically by using the BSAE mesh. In order to achieve 
xr  continuity at the element interface 

in addition to the continuity of this gradient vector at the nodal points when the IPAE mesh is used, 

one must also ensure the continuity of the IPAE 
xyr  and 

xzr  curvature vectors at the nodal points 

of the IPAE mesh. Therefore, the continuity of the 
xr  gradient vector at the element interface for 

the two-element IPAE mesh requires the formulation of 24 linear algebraic equations that can be 

used to reduce the model dimensionality at a preprocessing stage. This process, which can be 

automated and advantageous in many applications since it can significantly reduce the model 

dimension, will also reduce the number of displacement modes that can be assumed by the fluid. 

In many applications, however, the remaining modes are sufficient for obtaining an accurate 

solution, and therefore the use of the IPAE mesh can be advantageous computationally. For 

example, to ensure 1C  continuity at the element interface of an eight-IPAE mesh which has 27 

nodes and 324 coordinates as shown in Fig. 23, one has to ensure 1C  continuity in all directions 

at the element interface. After eliminating redundant constraints, the number of degrees of freedom 

of the mesh is reduced to 168. Compared with the two-BSAE mesh which has 288 coordinates and 

automatically ensures 1

xC  by using the standard FE assembly without the need for imposing 

constraint equations, it is clear that the eight-IPAE mesh which ensures the continuity of the 
xr  

gradient vector at the element interface has fewer degrees of freedom, and therefore, is more 

computationally efficient than the BSAE mesh. 
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(a)                                (b) 

Figure 21.  Interface discontinuity in two-IPAE mesh 

 

(a)                               (b) 

Figure 22.  Continuity after applying continuity constraints 

 

Figure 23. Eight-IPAE mesh 
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3.3 ANCF Fluid Dynamics Model 

The fluid Navier-Stokes equations, the viscous forces, the incompressibility condition, and the 

surface tension of the ANCF fluid elements are introduced in this section. 

3.3.1 Navier-Stokes Generalized Stress Forces 

As previously discussed in this chapter, the fluid constitutive equations can be written as 

  tr 2p    σ D I D . In this fluid equation,   is the coefficient of shear viscosity, and 

  2 3   is called the coefficient of bulk viscosity. If  2 3 0   , one has the Stokes’ 

relation. For incompressible fluids element j , the determinant of the matrix of position vector 

gradients j
J  must be equal to one, that is 1jJ  , and since  tr j j jJ JD , it follows that 

 tr 0j D . Consequently, imposing the incompressibility condition at the velocity level 0jJ   

ensures that  tr 0j D . In this special case, the mass density   remains constant, and the fluid 

constitutive equation reduces to 2j j jp   σ I D . One can also show that in the case of 

incompressible fluid, by enforcing the condition 1jJ  , the Navier-Stokes stress relationship 

reduces to 2j jσ D  (Spencer, 1980; Wang et al., 2014). 

 In general, the virtual work of the fluid stress forces can be written as 

1

2: :
j j

j j j j j j j j

s P

v V

W dv dV  


    σ J J σ ε      (35) 

In this equation, jv  is the volume in the current configuration, jV is the volume defined in the 

reference configuration, and    
T1 1

2

j j j j j

P J
  

  
 

σ J σ J  is the second Piola-Kirchhoff stress 

tensor. One can also write the virtual work of the stress forces as  
1

:
j

j j j j j j

s

V

W J dV 


   σ J J  
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in order to allow performing the integration over the volume in the reference configuration. The 

virtual change in the strain tensor can be written as  j j j j   ε ε e e , in which j j ε e  can 

be written using vector notations as: 

T T T T T T T

2 2 2
j

j j j j j j j j j j j j j j j j j j

x x y y z z x y y z z xj

vector

       

ε
S S e S S e S S e S S e S S e S S e

e
  (36) 

The fluid viscous forces can then be written as follows: 

     
T

1 11 1

2 : 2
j j

j j j j j j j j j j j j j j j

v r r v

V V

W J dV J dV     
    

      
  

 J D J ε C ε C : ε Q e  (37) 

where  
T T T T T T T T T T T T T

2 2 2j j j j j j j j j j j j j j j j j j j j j j j j j

x x y y z z x y y z z x
vector

 
 

ε e S S e e S S e e S S e e S S e e S S e e S S e , is 

the vector form of the time rate of strain. Using the preceding equation, one can show that the 

generalized viscous force vector can be written as 

 
1 1

2 :
j

j
j j j j j

v r r j

V

J dV
  

 

ε

Q C ε C
e

      (38) 

This vector of generalized forces associated with the ANCF nodal coordinates will be used to 

define the equations of motion of the fluid. 

3.3.2 Incompressibility Condition 

The conservation of mass implies 
0dm dV dv   , where 

0  and dV  are, respectively, the 

density and the volume of the undeformed element, while   and dv  are, respectively, the 

density and the volume in the current configuration. The relationship between the volumes in the 

undeformed reference and current configurations is (Spencer, 1980; Shabana, 2012) 

    x y z x y zdv dx dy dz dxdydz JdV      r r r r r r     (39) 
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where x y zJ  J r r r . It follows that 
0 J  . In the case of incompressible materials, as 

previously mentioned, 1J  J . In the numerical implementation, the penalty method is used to 

enforce the incompressibility condition. In order to enforce the condition 1j jJ  J
 
for the 

element j , the penalty strain energy    
2

1 2 1j j j

IC ICU k J   is used, where j

ICk  is a penalty 

coefficient. One can obtain the penalty force j

ICQ  by differentiating the energy with respect to 

the nodal coordinates of element j  as   
T

1j j j j j j j

IC IC ICU k J J      Q e e . Keeping in 

mind that 
j j j j j

x y zJ  J r r r , one has 

     
T T T

T
j

j j j j j j j j j

x y z y z x z x yj

J 
      

 
S r r S r r S r r

e
     (40) 

where ,j j

x yS S , and j

zS  are, respectively, the derivatives of the shape function matrix with respect 

to ,x y  and z  spatial coordinates of element j . It follows that the penalty force vector of the 

incompressible fluid element can be written using the ANCF element shape functions as 

        
T T T T

1j j j j j j j j j j j j

IC IC x y z y z x z x yk J      Q S r r S r r S r r    (41) 

One can also impose the incompressibility condition at the velocity level by formulating the 

dissipation function    
2

1 2j j j

TD TDU c J  resulting from the condition 0jJ  , where j

TDc  is 

another penalty coefficient. Following the same procedure one can write 

 Tj j j j j j j

TD TD TDU c J J     Q e e , where  trj j jJ J D  and j j j jJ J    e e . It follows 

that the penalty force due to enforcing the condition 0jJ   can be written as 

        
T T TT trj j j j j j j j j j j j j

TD TD x y z y z x z x yc J     Q D S r r S r r S r r    (42) 
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The incompressibility condition at velocity level can also be written using Eq. 26 and the virtual 

work. The second term of Eq. 26 is   1trJv rJ σ D C  which is used in the following virtual 

work expression: 

  
1

tr :
j

j j j j j j j j j

Jv r Jv

V

W J dV   


   D C ε Q e     (43) 

where j  is the viscosity coefficient which can be written as 
2

3

j j jk   , where jk  is the 

bulk modulus of the fluid element. The vectors j

JvQ  and j

TDQ  have the same effect in imposing 

the incompressibility condition at the velocity level. 

3.3.3 Surface Traction Forces 

The partial differential equation of the fluid was previously defined in this chapter as 

 
T

T

b    σ f a 0 . Multiplying this equation by r  and integrating over the current volume, 

one obtains   
T

T 0b

v

dv     σ f a r . Using Gauss theorem, one can write 

   
T

T 1 T: 0b

s v v v

ds dv dv dv          n σ r σ J J f r a r     (44) 

where the first integral in this equation represents the virtual work of the surface traction forces, 

the second integral is the virtual work of the internal elastic forces which are described in the 

previous sections and the third and fourth terms are the virtual work of the body and inertia forces, 

respectively (Spencer, 1980; Shabana, 2012). The virtual work of the surface traction forces for 

element j  is 
T

j

j j j j j

t

s

W ds   n σ r , where 
j

n  is the unit normal to the surface, and js  is the 

current area. By relating the area in the current and reference configurations using Nanson's 
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formula (Ogden, 1984; Shabana, 2012), one has 
Tj j j j j jJ dS dsN J n  which shows that 

 
T T 1j j j j j jJ dS ds



n N J , where jS  and j
N  are, respectively, the area and normal to the 

surface in the reference configuration. It follows that the virtual work of the surface traction forces 

can be written as 

 
T T 1 T 1

j j

j
j j j j j j j j j j j j j j j j j

t j

ss S

dS
W ds J ds J dS

ds
   

 

    n σ r N J σ r N J σ r  (45) 

where j j j r S e . One can then write 
T 1

j

j j j j j j j j j j

t t

S

W J dS  


  N J σ S e Q e . In this case, the 

surface traction force can be defined as follows: 

 
T 1 T

1
j j

j j j j j j j j j j j

t P

S S

J dS dS


  Q N J σ S N σ S      (46) 

where 
1

1

j j j j

P J


σ J σ  is the first Piola-Kirchhoff stress tensor, and j
S  is the shape function 

matrix of the ANCF brick element. 

3.3.4 Equations of Motion 

Because of the conservation of mass, 
odv dV  , the virtual work of the inertia forces for 

element j  in the reference configuration as  
j

j j j j j j j j

I

V

U dV       a r M e e , where 

T

j

j
j j j j

V

dV M S S  is the constant symmetric mass matrix of the fluid element j . This matrix 

is constant regardless of the magnitude of the fluid displacement. The virtual work of the body 

forces can also be obtained as 
T T

j j

j j j j j j j j j j

b b b b

V V

U dV dV      f r f S e Q e . Using the virtual 

work of the inertia and other forces, one obtains the following element equations of motion: 

 j j j j j j j

b t IC TD v    M e Q Q Q Q Q       (47)  
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In this equation, j

bQ  is the vector of the body forces. These equations can be used to solve for the 

acceleration vector j
e . In the case of using more than one element, the element equations can be 

assembled to obtain the equations of motion of the ANCF mesh, which can be used to solve for 

the mesh accelerations. 

3.4. Boundary Constraints and MBS Algorithms 
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Figure 24. Boundary conditions 

In many applications, the fluid interacts with the environment or with rigid and flexible bodies 

such as in the case of automobile or spacecraft with tanks filled with liquid. There are clear 

advantages of using a total Lagrangian approach for the integration of fluid and MBS algorithms. 

The constraints between the fluid and a surface can be systematically developed by using algebraic 

equations expressed in terms of the surface and fluid nodal coordinates. The use of the position 

vector gradients can facilitate the formulation of these algebraic constraint equations. Consider a 

rigid body i  which interacts with the fluid body j  as shown in Fig. 24. The configuration of 

the body is assumed to be defined using the reference coordinates 
T

T Ti i i   q r θ , where 
i

r  and  
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i
θ  are, respectively, the global position coordinates of the origin of the body reference and the set 

of orientation parameters which can be selected to be Euler parameters (Shabana, 2014). The 

transformation matrix that defines the body orientation is denoted as i
A . Similarly, the 

coordinates of a selected marker p  (coordinate system) on the body can be defined in the body 

coordinate system using the vector i

pu , where subscript p  refers to the marker point. The 

marker local transformation matrix can be defined as 
i i i i

p px py pz
   A n n n , where ,  i i

px pyn n  and 

i

pzn  are three orthogonal unit vectors that define the axes of the marker coordinate system in the 

body coordinate system. Note that the global components of these axes can be defined as 

,  ,  ,  i i i

pk pk k x y z n A n . Note also that the position vector of the marker reference point is given 

by i i i i

p p r R A u . Using these simple kinematic equations, the boundary constraints between the 

fluid and a surface that has an arbitrary displacement can be systematically developed. For example, 

the boundary constraints between the fluid nodes and the x y  marker surface can be described 

using the three constraints 0,  0jk i jk i

x pz y pz   r n r n , and   0jk i i

p pz  r r n , where superscript 

k  refers to the node number on the ANCF fluid body. These constraint equations prevent the fluid 

from penetrating the surface defined by the marker p . These algebraic equations can be 

implemented in a MBS algorithm in a straight forward manner. To this end, one defines the vector 

of boundary constraint functions as  

   
T

,jk i jk i jk i jk i i

x pz y pz p pz
      
 

C e q r n r n r r n 0     (48) 

In this equation, 
jk

e  is the vector of ANCF coordinates at node k . The constraint Jacobian 

matrix of the algebraic constraint equations can be written as 
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  (49) 
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Figure 25. Fluid element in a container 

Similar kinematic equations can also be used to model the fluid in a container as shown in Fig. 25. 

Other constraint types can also be developed and implemented systematically in MBS algorithms 

which are based on the following general Lagrangian virtual work principle

 T T 0e   qq Mq C λ Q , where q  is the vector of system coordinates, M  is the system mass 

matrix, λ  is the vector of Lagrange multipliers, and eQ  is the vector of applied forces. 
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3.5. Numerical Examples 

The objective of this chapter is to examine the performance of ANCF brick elements in solving 

liquid sloshing problems. To this end, several examples are considered in this section. The fluid 

ground interaction example is used to check if the boundary constraints were imposed in the 

dynamic system; the simple pendulum model is introduced to check the effects of the continuity 

condition; the zero gravity droplet model which is commonly used to check the if the surface 

tension (Yu et al., 2012, Thürey et al. 2010) is imposed correctly or not and in the end a sloshing 

model both in ANCF and FFR are made to see if the model could be well integrated with the MBS. 

3.5.1 Fluid/Ground Surface Interaction 

Only one finite element is used in this example with the assumption of Newtonian fluid. The results 

presented in this section clearly show that complex fluid shapes can be obtained using one ANCF 

element. The dimensions of the element are 1ma b c   , while the mass density 

3 3=1.0 10 kg/m  , the gravity force  
T 2= 0   0  -9.8 m/sgF , the penalty coefficient 

61.0 10 N/mICk   , and the shear viscosity 0.00093Pas  . The simulation time is assumed to 

be 1s. In this simulation scenario, the fluid element bottom surface is assumed to be in contact with 

the ground. The fluid is assumed to move freely under the effect of gravity. The results of the 

simulation for the IPAE and BSAE one-element mesh are shown in Figs. 26a and 26b, respectively. 

These results show that the fluid collapses rapidly as evident by the decrease of the height from 1 

m to very small value. The results show that the one-BSAE mesh can capture more displacement 

modes as compared to the one-IPAE mesh. The top surface of the BSAE mesh assumes the 
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expected circular shape, while the surface of the IPAE mesh maintains rectangular shape as shown 

in Fig. 26. The results obtained also demonstrated that the fluid maintained constant volume. This 

simulation scenario also shows that the proposed ANCF fluid elements can capture large 

displacements using a total Lagrangian approach. 

 

(a) IPAE example 

 

(b) BSAE example 

Figure 26. Fluid/ground surface interaction using one element 

3.5.2 Continuity Conditions 

In this example, the eight-IPAE mesh, shown in Fig. 23, which consists of 8 elements, each of 

which has the same dimensions and material properties as the one-element mesh previously 
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considered will be used to examine the effect of changing the degree of continuity. In this example, 

the fluid body has dimensions 2mA B C   . The total simulation time for all the scenarios 

considered is 1s. In one scenario, no continuity conditions are imposed except for the continuity 

achieved by a standard FE assembly procedure, as previously discussed in this chapter, this is the 

case shown in Fig. 27a. In the second scenario, Fig. 27b, the linear algebraic constraint equations 

previously discussed in this chapter are applied in order to ensure continuity at the element 

interface. The simulation results demonstrated that the IPAE fluid model with higher degree of 

continuity assumes the expected circular shape under the gravity effect, while the model without 

the continuity constraints cannot describe the geometry accurately in this example. Figure 28. 

shows that the IPAE mesh with continuity constraints has smoother gradients than the one without 

continuity condition. 

 

(a) Without continuity constraints 

1C
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(b) With continuity constraints 

Figure 27. Fluid/ground surface interaction without and with continuity constraints using an 

eight-IPAE mesh. 

 

Figure 28. The Z component of xr  of node number 10 in eight-IPAE mesh ( Continuity , 

 Without continuity) 

3.5.3 Effect of Surface Tension 

In this simulation scenario, the fluid body is modeled using an eight-IPAE mesh. No continuity 

conditions are used and the fluid is assumed to deform freely under the effect of the surface tension 
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( 1000σ I , where I  is a 3 3  identity matrix). The gravity effect is not considered in this 

example. This scenario can be used to simulate the motion of a liquid cube in space. The surface 

tension has the effect of changing the cubic shape to a nearly sphere droplet as shown in Fig. 29. 

However, because of the assumed polynomial functions, the cubic shape does not change to exact 

sphere. In order to have exact sphere or conic shapes, rational ANCF brick elements need to be 

used. The development of rational ANCF brick elements will be the subject of future investigations. 

 

Figure 29. Effect of surface tension using eight-IPAE mesh 

3.5.4  Sloshing in Moving Containers 

In this example, the one-element model previously considered in this section is used to fill a 

container subjected to a prescribed harmonic motion with different frequencies in the y  direction. 

As shown in Fig. 30, when the container movement is  0.1sin 3t , the fluid experiences sloshing 

and the height reaches 1.16 m. The height reaches 1.35m for the  0.1sin 8t  movement and 2.23m 

for the  0.3sin 8t  movement. By investigating these three results, one could see that if the 

harmonic motions have the same amplitude, increasing the frequency would lead to the more sever 

fluid sloshing, while in the other case, if the harmonic motions have the same frequency, increasing 
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the amplitude would also lead to more sever fluid sloshing, which are consistent with common 

sense. 

 

Figure 30. Sloshing problem solution using one element (Wei and Shabana, 2014) 

 

Figure 31. Sloshing problem using the FFR formulation 

3.5.5  Comparison with the FFR Model 

A fluid in a moving container model was developed using the floating frame of reference (FFR) 

formulation (Wang et al., 2014). The container is subjected to a prescribed harmonic motion in the 
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lateral direction defined by the function  0.1sin 3t . It can be noticed from the results presented 

in Fig. 31 that the shape of the free surface could only be described properly by using large number 

of finite elements when the FFR formulation is used. The results show that one ANCF finite 

element tends to perform better than large number of elements of the FFR formulation in which 

linear modes are used to describe the fluid motion (Wang et al., 2014). 

3.6 Concluding Remarks 

A total Lagrangian ANCF finite element approach is proposed for liquid sloshing problems. The 

ANCF fluid elements allow for successful integration of fluid and MBS algorithms. Using the total 

Lagrangian approach, the fluid boundary conditions can be systematically introduced. The 

proposed ANCF brick elements have a constant inertia matrix, ensure the gradient continuity at 

the element nodes, and do not impose any restriction on the amount of rotation or deformation 

within the elements. The feasibility of implementing these fluid elements was demonstrated using 

several simple examples. The results show that complex fluid geometry can be obtained using one 

ANCF finite element. The results also show that in some simulation scenarios more realistic 

geometry can be obtained by increasing the degree of continuity at the IPAE interface. Furthermore, 

more complex geometry can be captured by using ANCF meshes with more finite elements, 

allowing for future investigations of more complex fluid problems using a total Lagrangian 

approach. The future work will focus on integrating this fluid model with vehicle or any flexible 

or rigid multibody system to study the interaction between the solid and liquid. 
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CHAPTER 4 

ANCF TEXTILE MATERIAL AND ROLL-DRAFTING PROCESS 

This chapter presents a new flexible multibody system (MBS) approach for modeling textile 

systems including roll-drafting sets used in chemical textile machinery. The proposed approach 

can be used in the analysis of textile materials such as lubricated polyester filament bundles (PFB), 

which have un-common material properties best described by specialized continuum mechanics 

constitutive models. In this investigation, the absolute nodal coordinate formulation (ANCF) is 

used to model PFB as a hyper-elastic transversely isotropic material. The PFB strain energy density 

function is decomposed into a fully isotropic component and an orthotropic, transversely isotropic 

component expressed in terms of five invariants of the right Cauchy-Green deformation tensor. 

Using this energy decomposition, the second Piola-Kirchhoff stress and the elasticity tensors can 

also be split into isotropic and transversely isotropic parts. The constitutive equations are used to 

define the generalized material forces associated with the coordinates of three-dimensional fully-

parameterized ANCF finite elements. The proposed approach allows for modeling the dynamic 

interaction between the rollers polyester filament bundle and allows for using spline functions to 

describe the PFB forward velocity. This chapter demonstrates that the textile material constitutive 

equations and the MBS algorithms can be used effectively to obtain numerical solutions that define 

the state of strain of the textile material and the relative slip between rollers and PFB. 

4.1 Textile Material Constitutive Equations 



69 
 

In this section, the transversely isotropic linear and nonlinear constitutive models of textile 

material are discussed. The elastic coefficients which enter into the formulation of the two 

constitutive models are defined (Bonet and Burton, 1997). The PFB constitutive models are used 

as examples in this investigation. In the development of the nonlinear model presented in this 

section, the total strain energy for transversely isotropic materials is expressed in terms of five 

strain invariants and is written as the sum of a fully isotropic component and an orthotropic, 

transversely isotropic component. Similarly, the second Piola-Kirchhoff stress tensor and the 

tensor of the elastic coefficients are split into isotropic and transversely isotropic parts. In order to 

generalize the strain energy equations to the fully nonlinear regime, the neo-Hookean potential is 

used to describe the isotropic component of the strain density function, while the orthotropic, 

transversely isotropic part follows the strain density function defined by Bonet and Burton (Bonet 

and Burton, 1997). In the nonlinear constitutive model presented in this section, the total strain 

energy function is written in terms of five independent coefficients, and coupling between different 

deformation modes is captured by using different Poisson ratios. 
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Figure 32. Filament coordinate system for transverse isotropy 



70 
 

 

 

Figure 33. Filament bundle and its cross section 

4.1.1 Small Strain Orthotropic Elasticity 

Curisks and Carnaby (1985) treated the PFB as a continuum material. The PFB symmetric 

properties are used to relate the six stress components to the six strain components through a 

tangent compliance matrix, which defines the constitutive properties of the material. This matrix 

has been widely used to improve textile structure models. If expressed in a vector form, the strain-

stress relationship can be written as 
v vε Cσ , where 

vε  is the strain vector, C  is the 

compliance matrix, and 
vσ  is the stress vector. The coordinate system of the filament bundle is 

oriented as shown in Fig. 32, where l  defines the longitudinal direction along the fiber axis and 

the cross section is defined in the y z  plane. As shown in Fig. 33, in the ideal case, all the 

filaments in the bundle can be assumed to be arranged parallel to each other. The gap among 

bundle filaments is filled with oil and water, thus making the PFB cross section mechanically 

isotropic. The linear transversely isotropic material strain-stress relationship can be written as 
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   (50) 

where
ij  and , , , ,ij i j l y z  denote axial and shear Green-Lagrange strains, respectively, 

LE  is 

the longitudinal elastic modulus governing uniaxial loading in the longitudinal direction l  , 
LTv  

is the Poisson ratio that accounts for the effect of the longitudinal strains in the transverse directions, 

TE  is the transverse elastic modulus governing uniaxial loading in the transverse ( y or z ) 

direction, 
TTv  is the associated Poisson ratio governing the resultant strains in the remaining 

orthogonal transverse directions ( y or z ), 
TLv is the corresponding Poisson ratio governing the 

induced strain in the longitudinal direction, 
TLG  is the shear modulus governing shear in the 

longitudinal direction, and 
TTG  is the shear modulus governing shear in the transverse plane. For 

the strain energy function to exist, the matrix of elastic coefficients must be symmetric. This 

implies the relation TL T LT Lv E v E    must hold. Also, there exist other restrictions in the 

range of permitted values for these material constants (Christensen, 1979), for instance, 

, , , 0L TL TTT G GE E  ,  2 1TT T TTG E v    ,  
1/2

TTL LEv E ,  
1/2

LT L TEv E , 1,TTv   

and 21 2TT LT T Lv v E E  . Using these relations, one can also write the stress-strain relationship 

v vσ Dε , where D  is the matrix of elastic coefficients and 
1D C . 



72 
 

 

 
 

 
 

 
 

 
 

2 2

2 2

1
0 0 0

1
0 0 0

1 1

1
0 0 0

1 1

0 0 0 0

0 0 0 0

0 0 0 0

L TT L LT L LT

T LT T LT TTL LT

TT TT

T LT TT T LTL LT

TT TT

TL

TL

TT

E v E v E v

m m m

E nv E nv vE v

m m v m v

E nv v E nvE v

m m v m v

G

G

G

 
 
 
  
 

  
 

   
 

 
 
 
 
 
 
 

D    (51) 

where 
T Ln E E , 21 2TT LTm v nv   . 

4.1.2 Invariants of Transversely Isotropic Materials 

Let x  be the position vector of a material point in the undeformed (reference) configuration, and 

 , tr r x  be the corresponding position vector in the deformed configuration. The matrix of 

position vector gradients J  is defined as   J r x . It is required that J  satisfies 0J  J , 

where J  is the determinant of J  and it represents the ratio of the deformed volume dv  to the 

undeformed volume dV . The right Cauchy-Green deformation tensor is defined as T

r C J J . 

The second Piola-Kirchhoff stress tensor may be obtained using the derivative of the elastic energy 

as 2 2P rU  σ C , where U is the strain energy density function. The first Piola-Kirchhoff 

stress tensor may be defined in terms of the second Piola-Kirchhoff stress tensor as 1 2P Pσ Jσ , 

and the Cauchy stress tensor 1 T

2PJ σ Jσ J . In this case, the elasticity tensor can be derived as 

2 2

22 4P r rU     C σ C C . For the nonlinear hyper-elastic case, the elasticity tensor can be 

function of the strains, unlike the linear case considered in section 4.1.1. 
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It is convenient to represent the strain energy function in terms of the invariants of 
rC . In the 

isotropic case, one can write  1 2 3,  ,  isoU U I I I , where 
isoU  stands for the strain energy for the 

isotropic material, and the three principal invariants of 
rC  are defined as 

         
2 2

1 2 3

1
tr ,  tr tr ,  det

2
r r r rI I I   C C C C      (52) 

In the case of incompressible materials, 1J  , and therefore, the strain energy depends only on 

the first and second invariants, that is,  , 1 2,  iso incU U I I . 

In the case of transversely isotropic material with one family of fibers oriented along one 

direction, there are two additional invariants. If the fibers are aligned in the direction of the unit 

vector 
0a  in the reference configuration, the structure tensor is defined as 0 0 0 A a a (Spencer, 

1971), and the new invariants that can be used to describe the deformation of the fiber family are 

2

4 0 5 0: , :r rI I C A C A         (53) 

The invariant 
4I  has a straightforward physical meaning and can be calculated as 2

4I  a
, where 

a
 is the fiber stretch, and 5I  is related to the way the fibers couple shear deformations. The 

vector a is a unit vector which corresponds to 0a  into the current configuration, that is, 

0 0a Ja Ja . 

In the case of two families of fibers, there are four additional invariants of the deformation 

tensor. If the fibers are aligned in the directions of 0a  and 0g  in the reference configuration, the 

structure tensors characterizing these fiber families are 0 0 0 A a a  and 0 0 0 G g g  (Kao et 

al., 2010). In addition to the invariants from the transversely isotropic case, 6 9I   are defined as 

   2

6 0 7 0 8 0 0 9 0 0: ,  : ,  tr ,  trr r rI I I I   C G C G C A G A G      (54) 
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If 
0a  and 

0g  are orthogonal to one another, the invariant 
8I  is identically zero and does not 

enter into the formulation of the material model. The filament bundle model considered in this 

chapter is assumed to be a transversely isotropic material which involves five of the invariants 

mentioned above. For this case, the strain energy function may be written as  

 1 2 3 4 5,  ,  ,  ,  trnU U I I I I I         (55) 

where 
trnU  stands for the strain energy density function of the transversely isotropic material. 

Using the equations presented in this section, the stress and elasticity tensors for the nonlinear 

transversely isotropic material can be derived. 

4.1.3 Transversely Isotropic Material Constitutive Equations 

The strain energy for transversely isotropic materials can be decomposed into a fully isotropic 

component and an orthotropic, transversely isotropic component (Bonet and Burton, 1997). Using 

the developments previously presented in this section, one can write the total strain energy as 

   1 2 3 1 2 3 4 5,  ,  ,  ,  ,  ,  iso trnU U I I I U I I I I I         (56) 

Consequently, the second Piola-Kirchhoff stresses and the elasticity tensor can also be split into 

isotropic and transversely isotropic parts as 

2 2( ) 2( )

2 2

2 2

2 2

4 4

iso trn
P P iso P trn

r r

iso trn
iso trn

r r

U U

U U

  
      


     

  

σ σ σ
C C

C C C
C C

       (57) 

In order to generalize the strain energy equations to the fully nonlinear regime, the neo-Hookean 

potential is used to describe the isotropic component of the strain density function, and the 
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transversely part follows the strain density function defined by Bonet and Burton (1997). One can 

then use the following strain energy expressions: 

   

     

2

1

4 4 5

1
3 ln ln

2 2

ln 1 1 1
2

iso

trn
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U J I I I


 


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
    


         

     (58) 

Note that if the material has initially no strain energy stored, 
1 3I  , 1J  , 

4 5 1I I  , and the 

preceding equations lead to zero strain energy as expected. The coefficients in the preceding 

equations are defined as  

 
 
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 



    (59) 

There are only five independent material constants, which are LE , TE , TTv , LTv , TLG . In this 

investigation, different Poisson ratios ( TT LTv v ) are used in order to be consistent with the 

definition of transversely isotropic material. This modified constitutive model will be used to 

formulate the PFB mechanical properties which define the generalized stress forces as will be 

discussed in the following section. 

4.2 Elastic Force Implementation 

The constitutive equations presented in the preceding section are implemented in this investigation 

using a three-dimensional, fully-parameterized ANCF beam element (Shabana and Yakoub, 2001). 
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ANCF elements can describe rigid body motion using a non-incremental solution procedure and 

allow for a straightforward implementation of nonlinear constitutive equations.  

4.2.1 Element Kinematics 
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Figure 34. ANCF three-dimensional beam element 

In this subsection, the ANCF three-dimensional beam element, shown in Fig. 34, is briefly 

discussed. This element employs polynomials that are cubic in the longitudinal direction x and 

linear in the transverse directions y and z, where x, y, and z are the local element spatial coordinates. 

The configuration of the beam element is determined by the position and gradient vectors of the 

two end nodes A and B. Each node has 12 coordinates which may be arranged in a column vector. 

For example, the coordinates of node i , can be written as 
T

T T T T  i i i i i

x y z
   e r r r r , where 

i
r  is 

the position vector of node i , ,i A B , and i

xr , i

yr , and i

zr  are the gradient vectors defined in 

the global inertial system XYZ . The element has 24 nodal coordinates given by the vector 

T
T T A B   e e e . The location of an arbitrary point P on the beam element can be written as 

 , ,x y zr S e , where S is a space dependent element shape function matrix which is defined as 

 1 2 3 4 5 6 7 8       S S S S S S S SS I I I I I I I I , I is the 3×3 identity matrix, and 2 3

1 1 3 2S     ,
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 2 3

2 2 ,S l       3 ,S l     4 S l    , 2 3

5 3 2 ,S     2 3

6 ,S l    

7 ,  S l and 
8S l  are the shape functions, where the dimensionless parameters , , and

 are defined as / ,  x l  / ,y l  and /z l  , and l  is the length of the beam element in the 

undeformed configuration. 

4.2.2 Cross Section Deformation 

Nanson’s formula (Ogden, 1984) defines the relationship between the area in the current 

configuration ds  and the area in the undeformed reference configuration dS as 

 T Tds J dS n JJ n , where   x y z
   J r r r  is the position vector gradient matrix, J is the 

determinant of J , n  is a unit vector perpendicular to the cross section area in the current 

configuration, which can be defined as  y z y z  n r r r r . Using ANCF finite elements, 

Nanson’s formula can be evaluated in a straightforward manner. It has been observed that when a 

linear elastic constitutive law is used in modeling textile materials subjected to large deformation, 

the deformed area decreases and may reach zero or even negative values. These singular 

configurations are not encountered when nonlinear constitutive laws are used with ANCF finite 

elements as previously reported in the literature (Maqueda and Shabana, 2007). 

4.2.3 Generalized Elastic Forces for Transversely Isotropic Materials 

Using the strain energy function presented previously in this chapter, one can easily obtain the 

ANCF elastic forces for the hyper-elastic transversely isotropic material. The generalized elastic 

forces for the isotropic and transversely isotropic parts, isoQ  and trnQ , respectively, are obtained 

by differentiating the strain energy with respect to the elastic nodal coordinates as  
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The coefficients used in this equation were previously defined in this chapter. Without any loss of 

generality, in the three-dimensional textile machine model used in the numerical study presented 

in this investigation, the direction of the fibers is assumed to be along the Y  axis. Therefore, one 

can define the unit vector  
T

0 0 1 0a . In this case, one has 
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   (61) 

where 
xS , 

yS , and 
zS  denote the first derivative of the shape function matrix with respect to 

the element coordinates, and the subscript “,i” denotes the first component (row) of a vector 

(matrix). The resulting elastic forces 
el trn iso Q Q Q  can be written in terms of the derivatives 

of the shape functions and the gradient vectors. Since the strains and stresses are defined in the 

reference configuration, the integration can be carried out using the element dimensions at the 

reference configuration. Gauss quadrature method is used to evaluate the integrations required for 

the evaluation of the generalized elastic forces. 
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4.3. Roll-drafting MBS Algorithm 

This section describes the MBS model developed in this chapter to integrate the flexible filament 

bundle and the textile machine. The aim is to analyze the roll-drafting process accounting for the 

interaction between motion of the rollers, the hyper-elastic transversely isotropic PFB, and the 

velocity at the boundaries of one set of rollers (see Fig. 1). The contact formulation that captures 

the interaction between the flexible body and the rigid rollers, and the MBS constrained dynamics 

formulation used are also discussed in this section. 

4.3.1 Roll-Drafting Model 
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Figure 35. Angular velocity of the rollers  

(  first scenario,  second scenario) 

The roll-drafting model is developed in the YZ plane and consists of 7 rollers which have the same 

properties (shown in Table 1). The filament bundle is modeled using 127 ANCF fully 

parameterized three-dimensional beam elements. Some of the finite elements have an initially 

curved structure to match the geometry of rollers. The data of the beam elements are listed in Table 

2. All the rollers are assumed to be connected to the ground by revolute joints, and their angular 

velocity is specified using spline data. Two different prescribed roller angular velocities, which 

are used in the numerical simulation to represent the influence of the machine operation parameters 

on the PFB deformation state, are introduced to the formulation as kinematic constraints. The time 

evolution of the angular velocity of these two sets of rollers is shown in Fig. 35. Contact forces are 

formulated using a penalty method which allows for small interpenetration and accounts for the 

effect of friction, which is required in the roll-drafting processes. In order for the filament bundle 
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on the output side to be driven straight, an additional support roller (Roller 8 in Fig. 37) is added 

to the textile machine. In the model developed in this investigation, the stretch of the filament 

bundle is produced using two sets of prescribed velocity constraints (as shown in Fig. 36). These 

constraints are imposed at the first and last nodes of the 127-node PFB model. The ratio of the 

front and end nodes velocity is utilized to introduce elongation in the textile material. Figure 37 

shows the model developed for this study, while the numerical parameters of the simulations are 

shown in Table 3. 

 

Figure 36. Forward velocity of the front and rear nodes ( first scenario rear node,  first 

scenario front node,  second scenario front node,  second scenario rear node) 
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Figure 37. Snapshot of the system initial configuration 

4.3.2 Starting the Roll-Drafting Process 

Drawing machines start by smoothly increasing the angular velocity of rollers from zero to the 

maximum constant velocity in order to avoid a sudden change of the velocity that can cause high 

impulse forces. These forces can cause damage to the drawing machine. Therefore, the forward 

velocity constraints for the front and rear nodes must follow the same pattern. In this case, several 

spline functions are used to define constraints to smoothly increase the roller angular velocities 

and the PFB forward velocity. Because of introducing these velocity constraints and because the 

rollers are connected to the ground using revolute joints, the rollers have no remaining degrees of 

freedoms. The prescribed roller velocities as function of time are shown in Figs. 35-36.  

4.3.3 Contact Forces 
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The filament-roller frictional contact model used in this chapter is similar to that proposed by 

Dufva et al. (2007). The penetration at the contact point between the finite element and the roller 

surface is determined and used in the calculation of the normal forces. The time rate of penetration 

is used to introduce damping forces that lead to energy dissipation. For an element i  and a roller 

k , the normal force vector is defined as  ˆ ˆik ik ik ik ik ik

n r rF E d c d  f n n , where ik

nf  is the normal 

force vector which has a magnitude 
ikF  , 

rE  and 
rc  are the contact stiffness and damping 

coefficients, respectively,  
ikd  is the penetration, 

ikd  is the time derivative of the penetration, 

 ˆ ik i k i k  n r r r r , as shown in Fig. 38, is the unit normal, and 
i

r  is the global position 

vector of the contact point on element i and 
k

r  is the global position vector of the geometric 

center of the thk  roller. The penetration at a contact point is determined as 
ik k ikd R  d  , 

where  
kR  is the radius of the roller k  and 

ik i k d r r  is a vector that defines the position of 

the contact point on element i  with respect to the center of the roller k defined by point kO . The 

vector 
ik

d can be used to define the current normal to the surface and, consequently, will be taken 

as the normal force direction. Contact is assumed if 
k ikR  d .  
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Figure 38 Description of filament-roller contact 

The tangential or friction component of the contact force, ik

ff , depends on the relative 

velocity at the contact point. The relative velocity vector at the contact point is defined as 

ik i k

r  v v v  where i
v  is the velocity vector of the contact point on element i , which is obtained 

as a function of the element absolute nodal coordinates as i iv Se , and 
k

v  is the velocity vector 

of the contact point on the roller surface. The tangential component of the relative velocity ik

tv  

can be written as  T ˆ ˆik ik ik ik ik

t r r v v v n n . A unit tangent vector 
ik

t  in the direction of the slip can 

then be defined as 
ik ik ik

t tt v v . The friction force can then be defined as ik ik ik

f F f t , where 

  is the friction coefficient between the roller k  and the filament bundle. In this study, the 

friction coefficients are considered to be constant. However, an exponential smoothing technique 

is used to avoid numerical problems when the friction forces change sign in the neighborhood of 
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zero relative velocity at the contact point. The total contact force acting on the finite element can 

then be written as the sum of the normal and friction forces as ik ik ik

c n f f f f . 

4.3.4 MBS Equations of Motion 

The three-dimensional roll-drafting model developed in this chapter is implemented in a general 

flexible MBS algorithm designed for the analysis of interconnected rigid and flexible components. 

Each body may undergo arbitrary displacements including large rotations. Joint constraints and 

contact forces between the rollers and the filament bundle are introduced using the augmented 

Lagrangian formulation. The system equations of motion can be written as (Shabana, 2013) 

T

T

e

r

r

rr r r

ee

c
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e

q e

M 0 C q Q

0 M C e Q

C C 0 λ Q

      (62) 

where rrM  and eeM  are, respectively, the rigid body mass matrix and the constant ANCF mass 

matrix; 
rqC  is the constraint Jacobian matrix associated with the reference coordinates 

rq ,  
eC  

is the constraint Jacobian matrix associated with absolute nodal coordinates e , 
rqC  and 

eC  

account for the effect of the prescribed velocity and kinematic (joint) constraints; λ  is the vector 

of Lagrange multipliers; rQ and eQ  are the generalized force vectors associated with reference 

and absolute nodal coordinates; these vectors includes the contact forces as well as the hyper-

elastic generalized forces, and cQ  is the quadratic velocity vector resulting from differentiation 

of the kinematic constraint equations twice with respect to time. The kinematic constraints in the 

model considered in this investigation include the revolute joint constraints, the prescribed roller 

angular velocities, and the forward velocity constraints on the first and last nodes. The augmented 
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form of the equations of motion can be solved for the vector of accelerations and Lagrange 

multipliers. The independent accelerations are integrated to determine the independent coordinates 

and velocities. The numerical solution used in this chapter ensures that the kinematic constraint 

equations are satisfied at the position, velocity, and acceleration levels.  

4.4. Numerical Results 

In this section, the PFB dynamic behavior in the textile machine during the roll-drafting process is 

examined. Several numerical examples are considered. A simple cantilever beam model is used 

first in order to check the implementation of the transversely isotropic material with the nonlinear 

isotropic neo-Hookean material models previously discussed in this chapter. The numerical results 

obtained using the textile set discussed in this chapter are then presented and analyzed. The 

arrangement of rollers and PFB for the initial configuration is depicted in Fig. 37. The roll-drafting 

process is simulated by using two different scenarios of roller and end node velocity constraints in 

order to ensure PFB stretch during the simulation. 

4.4.1 Cantilever Beam Model 
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Figure 39. Nodal position in the Y direction (axial loading) 

 (  a,  b,  c) 

 
Figure 40. Nodal position in the Y direction (transverse load) 

 (  a,  b,  c) 
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A simple cantilever beam model in the YZ  plane is divided into 10 ANCF three-dimensional 

fully parameterized beam elements with properties shown in Table 4. There are three sets of 

element properties: (a) isotropic neo-Hookean material, (b) transversely isotropic material but with 

L TE E  and 
TT LTv v , and (c) transversely isotropic material with L TE E  and 

TT LTv v . 

Model b  is used to obtain the fully isotropic model as a special case of the transversely isotropic 

model. This will allow for checking the new implementation of the transversely isotropic material 

model. In order to examine the axial deformation of this model, a force proportional to time is 

longitudinally applied at the end of the beam. To check the bending behavior, a time-variant force 

is applied at the end of the beam in the vertical direction. Figures 39-41 show the nodal 

displacement at the end of the beam along the two perpendicular axes. Figure 39 shows the 

response to the axial loading, whereas Figs. 40 and 41 show the response to the transverse loading. 

It can be observed that the results of the axial and bending deformations of models a and b agree 

well, demonstrating that the isotropic material is a special case of the transversely isotropic 

material when the longitudinal and transverse elastic coefficients and Poisson ratio are the same. 

It can also be concluded that, for model c, the new constitutive model leads to a different 

mechanical behavior as compared with the fully isotropic material. Good convergence of the new 
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constitutive model (model c in Tab. 4) can be observed from the results presented in Figs. 42-44. 

Figure 42 shows the Y displacements due to an axial load, whereas Figs. 43 and 44 show the nodal 

displacement at the end of the beam along the Y and Z directions, respectively. These results 

demonstrate that the fully parameterized ANCF beam element, with the newly proposed 

constitutive model, has good convergence characteristics even in the case of large deformations. 

 

Figure 41. Nodal position in the Z direction (transverse load) 
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(a) Original plot 

 

(b) Enlarged plot #1                  (c) Enlarged plot #2 

Figure 42. Nodal Position in the Y direction (axial loading) 

(  10-element,  20-element,  40-element,  80-element) 
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Figure 43. Nodal position in the Y direction (transverse load) 

(  10-element,  20-element,  40-element,  80-element) 

 

Figure 44. Nodal position in the Z direction (transverse load) 

(  10-element,  20-element,  40-element,  80-element) 
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4.4.2 Roll-Drafting MBS Model 

The roll-drafting MBS model is investigated in this subsection. Results, such as the elongation 

ratio, the shrinkage of the cross section, the axial strain distribution, the nodal contact forces, and 

the nodal relative velocity can be obtained. In this section, various machine operating conditions 

are examined by specifying different velocity constraints of the rollers and nodes, which lead to a 

range of PFB dynamic deformation states.  

Elongation ratio In this chapter, two sets of velocity constraints are investigated and compared 

(see Figs. 35 and 36). By examining the initial configuration of the system and the configuration 

at the end of the simulation, one can obtain the position of the first node and last node, as shown 

in Figs. 45a and b for the first and second cases, respectively. Using the position of the nodes, one 

can determine an approximate value for the change of total length of the filament bundle. Therefore, 

the elongation ratio of the filament bundle can be calculated as     0 0 100 %tl l l    , where 

  is the elongation ratio, 0l  is the initial length of the filament bundle, and tl  is the current 

length of the bundle. For the first case, at 3s,t    1 12.26 10.16 10.16 20.67%    , while for 

the second case  2 13.31 10.16 10.16 31.0%    . Since the input and output velocity for the 

first case are 2m/s  and 3m/s , respectively, as the PFB is drafted, the final velocity ratio will 

reach 150% . For the second case, with an input velocity of 1.5m/s , the final ratio will be 200% .  
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(a) First scenario 

 
(b) Second scenario 

Figure 45. Nodal position of the first and last node in the Y direction  

( Node # 1, and  Node # 128) 
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(a) First scenario 

 
(b) Second scenario 

Figure 46. Axial strain for several ANCF elements  

( Element # 10,  Element # 70 and  Element # 120) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

A
x

ia
l 

S
tr

ai
n

 Time(s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.1

0.2

0.3

0.4

0.5

A
x

ia
l 

S
tr

ai
n

 Time(s)



95 
 

 
(a) First scenario 

 
(b) Second scenario 

Figure 47. Cross-section area ratio for several ANCF elements  

( Element # 10,  Element # 70 and  Element # 120) 
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Axial strain and cross-section deformation The use of the ANCF fully parameterized 

elements allow to obtain the Green-Lagrangian strains at an arbitrary point in the textile material 

during the drawing process in a straightforward manner. The strain results can help in 

understanding the influence of several PFB simulation parameters. Figures 46a and b show the 

axial strain results for different elements obtained using the two simulation scenarios. Figure 46b 

shows that the element 70 and element 120 experience strains larger than those in Fig. 46a. This 

is due to the fact that, for the second set of rollers, the velocity constraints lead to a larger 

elongation ratio over time. The same trend may be observed in Fig. 47, which shows the change 

of the cross-section area for the same finite elements. The shrinkage of the cross section area for 

the second case is larger than that of the first case; this behavior is consistent with the time 

evolution of the axial strain shown in Fig. 46. The deformation state of the entire textile fiber can 

be plotted at different time steps in order to analyze the regions of strain concentration. The axial 

strain distribution for the two sets of rollers at two different time steps is displayed in Fig. 48. From 

the strain distribution results in Fig. 48, it can be seen that, at the same instant of time, the output 

point in the second case undergoes larger elongation as compared to the first case. Moreover, the 

strains in the elements in contact with the rollers are smaller than those when there is no contact 

with the rollers, which indicates that the elongation is occurring mainly on the input and output 

points.  
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       (a) At 1.5t s , first scenario              (b) At 1.5t s , second scenario 

 
        (c) At 2.5t s , first scenario             (d) At 2.5t s , second scenario 

Figure 48 Axial Green-Lagrange strain distribution in the filament bundle at two time steps 
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(a) First scenario 
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(b) Second scenario 

Figure 49. Contact force at node # 83 (number of roller in contact is indicated in the plot) 



99 
 

Contact forces and relative velocity The flexible MBS model allows for easily extracting 

system information. For example, the time history of the contact forces can be obtained to examine 

the roller reaction forces as a function of the angular velocity. Figures 49a and b show the contact 

forces associated with node 83, which is located initially between the third and the fourth roller. 

The results of Figs. 49a and b show that the contact forces range from zero to peak values. This 

behavior is expected and is attributed to engagements and disengagements with various rollers. 

Between rollers, the contact force falls to zero, whereas when there is contact with a roller, 

increasing the forward velocity produces a rapid increase in the value of the total force, as seen in 

Fig. 49. Figures 50a and b show the forward velocity of node 83 when it is in contact with rollers. 

The velocity of the fiber (solid line) as well as the velocity of the rollers (dashed line) can be seen. 

For the first set of rollers, it may be observed that there is a negligible relative velocity between 

the filament bundle and the rollers 4 and 5. However, due to the fact that the output velocity is 

larger than the velocity of the rollers, there is a relative velocity between the filament bundle and 

the rollers. Nonetheless, for the second set of rollers, the difference between the velocity at the 

output point and rollers is larger, and the relative velocity is only small on roller 4, where the PFB 

velocity is close to the velocity of rollers. The relative velocity oscillations shown in Fig. 50 are 

due to the hyper-elastic material behavior. This phenomenon may be mostly attributed to the elastic 

deformation in the axial direction, which leads to cross section shrinkage. 
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(a) First scenario 
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(b) Second scenario 

Figure 50. Forward velocity of node #83 (number of roller in contact is indicated in the plot) 

(— nodal velocity, --- line velocity of rollers) 
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Figure 51. The torques on each roller 

(  1,  2,  3,  4,  5,  6,  7) 
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computational efforts and time. This important issue will be addressed in future investigations by 

the authors. 

4.5 Concluding Remarks 

In this chapter, a transversely isotropic hyper-elastic constitutive law is employed to develop a 

new MBS computational approach for the virtual prototyping of textile systems. The work 

presented in this chapter can be considered as a first step in developing detailed MBS textile 

models. The strain energy for transversely isotropic materials is decomposed into a fully isotropic 

component and an orthotropic, transversely isotropic component expressed in terms of five 

invariants of the right Cauchy-Green deformation tensor. Using this energy decomposition, the 

second Piola-Kirchhoff stress tensor and the tensor of the elastic coefficients are split into isotropic 

and transversely isotropic parts. The strain energy equations are generalized to the fully nonlinear 

regime by using the neo-Hookean potential to describe the isotropic component, while the 

orthotropic, transversely isotropic part follows the strain density function defined by Bonet and 

Burton (1997). The total strain energy function is written in terms of five strain invariants and the 

resulting constitutive equations are expressed in terms of five independent elastic coefficients. 

Different Poisson ratios are used in order to capture the coupling between deformation modes in 

different directions. The roll-drafting process is simulated by imposing boundary velocity 

constraints in order to reproduce the effects of PFB/roller interactions and the motors in the textile 

machine. ANCF finite elements are used for to develop a new PFB model. The use of hyper-elastic 

materials and ANCF kinematics avoids deformation singularity problems encountered when linear 
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constitutive laws are employed. The results obtained in this investigation show that the PFB model 

can capture translation and rotation, large strains, and the shrinkage of the cross section during the 

drawing process. The contact information during the drawing process can be extracted to assess 

slippage between fiber and rollers. The model used in this chapter demonstrates the effectiveness 

of using ANCF finite elements and MBS algorithms for the analysis of textile machinery.  

 There are, however, several phenomena that need to be addressed in future investigations in 

order to enhance the simulation capabilities, capture more details, and improve the textile models. 

For example, plastic effects can be included in the PFB constitutive equations; the thermal effects 

of hot water tanks can be accounted for by space-dependent parameters, such as Young modulus, 

and surface-to-surface contact can also be included in future studies.  Consideration of these 

effects will improve the accuracy of the model and will be considered for future investigations by 

the authors. Another important issue is the study of the complete roll-draft process. As previously 

mentioned, this initial study of this new MBS application is mainly focused on the transient effect 

at the beginning of the roll-drafting process with the goal of demonstrating that ANCF finite 

elements can be effectively used in developing new models of these systems and capturing the 

deformation of the yarn cross section. The study of the complete process and reaching the steady 

state requires the use of much longer yarn that will require more array space and more 

computational efforts and time. This important issue will be addressed in future investigations by 

the authors. 
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CHAPTER 5 

CONCLUSIONS 

In this thesis, a low order three-dimensional liquid sloshing model based on the FFR formulation 

is proposed. This liquid sloshing model can capture the free surface motion and the distributed 

inertia of the fluid. Using a total Lagrangian approach and the FFR formulation, the liquid sloshing 

model was successfully integrated with MBS algorithms and used to study the effect of the 

sloshing on the dynamics of railroad vehicles. The FE method and modal analysis techniques are 

used to develop a reduced order fluid body model. The results presented in this thesis shows that 

liquid sloshing can have a significant effect on the contact forces and the dynamics of the vehicle. 

This was demonstrated using a three-dimensional wheel/rail contact model that allows for accurate 

description of the wheel and rail profiles. The results presented in this thesis showed that the 

wheels that carry the highest loads in the fluid body and rigid body models can be different. The 

results also show that liquid sloshing tends to increase the possibility of wheel/rail separation.  

 While the liquid sloshing approach proposed in this thesis defines a low order model, it has 

several clear advantages compared with existing models. It is a more realistic model as compared 

with the discrete inertia models that employ pendulum systems and used in the area of vehicle 

dynamics, it allows capturing the effect of the fluid body distributed inertia, it allows studying the 

contribution of each mode of the fluid displacement on the vehicle dynamics and identifying the 

modes that are the cause of accidents, and it can be systematically integrated into the computational 

algorithms implemented in most commercial MBS computer programs. As previously mentioned 

in this thesis, the goal is not to study the effect of the vehicle motion on the fluid, rather the goal 

is to study the effect of the distributed inertia of the fluid on the vehicle dynamics. 
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And a total Lagrangian ANCF finite element approach is proposed for liquid sloshing 

problems. The ANCF fluid elements allow for successful integration of fluid and MBS algorithms. 

Using the total Lagrangian approach, the fluid boundary conditions can be systematically 

introduced. The proposed ANCF brick elements have a constant inertia matrix, ensure the gradient 

continuity at the element nodes, and do not impose any restriction on the amount of rotation or 

deformation within the elements. The feasibility of implementing these fluid elements was 

demonstrated using several simple examples. The results show that complex fluid geometry can 

be obtained using one ANCF finite element. The results also show that in some simulation 

scenarios more realistic geometry can be obtained by increasing the degree of continuity at the 

IPAE interface. Furthermore, more complex geometry can be captured by using ANCF meshes 

with more finite elements, allowing for future investigations of more complex fluid problems using 

a total Lagrangian approach. The future work will focus on integrating this fluid model with 

vehicle or any flexible or rigid multibody system to study the interaction between the solid and 

liquid. 

In this thesis, a transversely isotropic hyper-elastic constitutive law is employed to develop a 

new MBS computational approach for the virtual prototyping of textile systems. The work 

presented in this thesis can be considered as a first step in developing detailed MBS textile models. 

The strain energy for transversely isotropic materials is decomposed into a fully isotropic 

component and an orthotropic, transversely isotropic component expressed in terms of five 

invariants of the right Cauchy-Green deformation tensor. Using this energy decomposition, the 

second Piola-Kirchhoff stress tensor and the tensor of the elastic coefficients are split into isotropic 
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and transversely isotropic parts. The strain energy equations are generalized to the fully nonlinear 

regime by using the neo-Hookean potential to describe the isotropic component, while the 

orthotropic, transversely isotropic part follows the strain density function defined by Bonet and 

Burton (1997). The total strain energy function is written in terms of five strain invariants and the 

resulting constitutive equations are expressed in terms of five independent elastic coefficients. 

Different Poisson ratios are used in order to capture the coupling between deformation modes in 

different directions. The roll-drafting process is simulated by imposing boundary velocity 

constraints in order to reproduce the effects of PFB/roller interactions and the motors in the textile 

machine. ANCF finite elements are used for to develop a new PFB model. The use of hyper-elastic 

materials and ANCF kinematics avoids deformation singularity problems encountered when linear 

constitutive laws are employed. The results obtained in this thesis show that the PFB model can 

capture translation and rotation, large strains, and the shrinkage of the cross section during the 

drawing process. The contact information during the drawing process can be extracted to assess 

slippage between fiber and rollers. The model used in this thesis demonstrates the effectiveness of 

using ANCF finite elements and MBS algorithms for the analysis of textile machinery.  

 There are, however, several phenomena that need to be addressed in future investigations so 

as to enhance the simulation capabilities, capture more details, and improve the textile models. For 

example, plastic effects can be included in the PFB constitutive equations; the thermal effects of 

hot water tanks can be accounted for by space-dependent parameters, such as Young’s modulus, 

and surface-to-surface contact can also be included in future studies. Consideration of these effects 

will improve the accuracy of the model and will be considered for future investigations by the 
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authors. Another important issue is the study of the complete roll-draft process. As previously 

mentioned, this initial study of this new MBS application is mainly focused on the transient effect 

at the beginning of the roll-drafting process with the goal of demonstrating that ANCF finite 

elements can be effectively used in developing new models of these systems and capturing the 

deformation of the yarn cross section. The study of the complete process and reaching the steady 

state requires the use of much longer yarn that will require more array space and more 

computational efforts and time. This important issue will be addressed in future investigations by 

the authors. 
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