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SUMMARY 

Flexible multibody systems (MBS) are systems of interconnected rigid and flexible bodies and are 

typically characterized by large reference translations and rotations. Examples of such systems 

include automotive vehicles, trains, aircrafts and musculoskeletal systems. The flexible bodies 

found in MBS models can be characterized by small and large deformation. The MBS dynamics 

literature consists of various methods of formulating the governing equations of motion, describing 

the MBS models and incorporating component flexibility. In case of flexible MBS models, the 

fidelity, accuracy and efficiency of the model will depend on the formulation and numerical 

methods used by the MBS software, which keep evolving and improving over time. The goal of 

this thesis is to develop a new computational framework for the modeling and integration of finite 

element (FE) tires in MBS dynamics algorithms. Historically tire modeling techniques used in 

MBS computer programs have consisted of curve-fitted analytical formulations, 

discrete/compliant-type elastic tire models and co-simulated classical FE models. This thesis 

proposes a new method of FE-based tire modeling that utilizes the absolute nodal coordinate 

formulation (ANCF) elements and can be systematically implemented in non-incremental MBS 

dynamics algorithms. The advantages of such a type of tire modeling are two-fold: the distributed 

inertia and elasticity of the tire can be successfully represented, and the model can exploit the 

existing MBS dynamics algorithms for obtaining efficient and reliable solutions. Along with the 

overall structural modeling aspects of tires, a new approach for the inclusion of surface geometry 

within ANCF FEs is developed, with tire tread details being a good example of such type of 

geometry. This thesis also discusses locking phenomena in fully parameterized ANCF beam and 

plate/shell elements and proposes a new locking alleviation technique. Finally, this thesis will 

demonstrate the feasibility of developing new and detailed vehicle models that include a large  
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SUMMARY (continued) 

number of interconnected rigid and flexible bodies that could have structural discontinuities and 

are subjected to small and large deformation. 

In the new computational multibody system framework proposed in this thesis for 

developing accurate tire models, ANCF FEs are used to create the geometry and perform the 

FE/MBS analysis. The computational procedure used in this thesis allows for modeling composite 

tires and for using a continuum-based air pressure and contact tire force models. The ANCF tire 

mesh, which allows for high spinning speed, has a constant inertia matrix and zero Coriolis and 

centrifugal forces. The concept of the ANCF reference node, is used to develop linear connectivity 

conditions between the tire mesh and rim, thereby allowing for imposing these linear conditions at 

a preprocessing stage. Using this approach, the dependent variables are eliminated at a 

preprocessing stage before the start of the simulation. The ANCF reference node, which is not 

associated with a particular FE, is used to define the inertia of the rigid rims. The inertia 

coefficients associated with the rim reference nodes are first developed in terms of the ANCF 

position and gradient coordinates. The rigidity of each rim reference node is enforced during the 

dynamic analysis using six nonlinear algebraic constraint equations that are combined with the 

dynamic differential equations of motion using the technique of Lagrange multipliers. It is shown 

in this thesis that the concept of the ANCF reference node can be used to develop a complete 

vehicle model using one ANCF mesh in which the redundant variables are systematically 

eliminated at a preprocessing stage, and consequently, the number of differential and algebraic 

equations that need to be solved is significantly reduced. 

In order to better capture the tire surface geometric details, this thesis introduces a new 

method for the integration of localized surface geometry within fully parameterized ANCF FEs. 
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SUMMARY (continued) 

The localized surface geometry details can be described on ANCF element surfaces without the 

need for mesh refinement. The localized surface is represented using a standard computational 

geometry method, Non-uniform rational B-spline (NURBS), which can describe both conic 

surface and freeform surface efficiently and accurately. The basic idea of the integration of 

localized surface geometry with ANCF elements lies in the inclusion of such detail in the element 

mass matrix and forces. The integration can be implemented by overlapping the localized surface 

geometry on the original ANCF element or by directly trimming the ANCF element domain to fit 

the required shape. During the integration process, a mapping between ANCF local coordinates 

and NURBS localized geometric parameters is used for a consistent implementation of the 

overlapping and trimming methods. Additionally, two numerical integration methods are 

compared for the rate of convergence. The results show that the proposed subdomain integration 

method is better, since it is optimized for dealing with complex geometry. The proposed 

subdomain method can be used with any fully parameterized ANCF element. In order to analyze 

the accuracy of the proposed method, a cantilever plate example with localized surface geometry 

is used, and the simulation results with the proposed method are compared with the simulation 

results obtained using a commercial FE code. Two other examples that include contact with ground 

and localized surface geometry are also provided. These examples are a simple plate structure with 

surface geometry and a tire with tread details. The incompressible hyperelastic Mooney–Rivlin 

material model is used to describe the material used in the tire tread. It is shown through the tire 

contact patch that the proposed method can successfully capture the effect of the tread grooves. 

The rate of convergence and volumetric locking of fully parameterized ANCF elements are also 

discussed in this thesis. 
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As it is the case with conventional FEs, fully parameterized ANCF FEs can experience the 

phenomenon of locking as well. This thesis proposes a new locking alleviation technique for 

ANCF beam and plate/shell elements based on a strain split approach. The thesis also surveys 

classical FE and ANCF locking alleviation techniques discussed in the literature. Because ANCF 

beam elements, which allow for the cross section stretch, fully capture the Poisson effect, Poisson 

locking is an issue when such beam elements are considered. The two-dimensional fully-

parameterized ANCF beam element is primarily used in the locking analysis because such an 

element can serve as a good surrogate model for three-dimensional ANCF beams and plates/shells 

as far as membrane, bending and transverse shearing behavior is concerned. In addition to 

proposing the strain split method (SSM) for ANCF locking alleviation, this thesis also assesses 

the ANCF FE performance in the cases of higher-order interpolation, enhanced assumed strain 

method, elastic line method, and the enhanced continuum mechanics approach; and demonstrates 

the design of the enhanced strain interpolation function by using the shape functions of higher-

order ANCF elements. Additionally, a new higher-order ANCF two-dimensional beam element is 

proposed in order to compare its performance with other FEs that require the use of other locking 

alleviation techniques proposed and reviewed in the thesis. Finally, several numerical examples 

are shown to demonstrate the effectiveness of the locking alleviation methods applied to ANCF 

elements. The purpose of the work on locking in this thesis is to show that dealing with locking in 

fully-parameterized ANCF elements is feasible and that several methods exist to effectively 

improve the ANCF element performance without sacrificing important ANCF element properties 

and features including position vector gradient continuity. Because of the use of ANCF position 

vector gradients as nodal coordinates, complex stress-free initially-curved geometries can be  
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systematically obtained. Such initially-curved geometries require special attention when 

attempting to solve locking problems, as will be discussed in this thesis. 

Finally, this thesis demonstrates an approach for developing new and detailed vehicle 

models that include flexible components with complex geometries, including chassis, and airless 

and pneumatic tires with distributed inertia and flexibility. The methodology used is based on 

successful integration of geometry, and small and large deformation analysis using a mechanics-

based approach. The floating frame of reference (FFR) formulation is used to model the small 

deformations, whereas ANCF is used for the large deformation analysis. Both formulations are 

designed to correctly capture complex geometries including structural discontinuities. To this end, 

a new ANCF-preprocessing approach based on linear constraints that allows for systematically 

eliminating dependent variables and significantly reducing the component model dimension is 

proposed. One of the contributions of this thesis is the development of the first ANCF airless tire 

model which is integrated in a three-dimensional MBS algorithm designed for solving the 

differential/algebraic equations of detailed vehicle models. On the other hand, relatively stiff 

components with complex geometries, such as the vehicle chassis, are modeled using the FE/FFR 

formulation which creates a local linear problem that can be exploited to eliminate high frequency 

and insignificant deformation modes. Numerical examples that include a simple ANCF pendulum 

with structural discontinuities and a detailed off-road vehicle model consisting of flexible tires and 

chassis are presented. Three different tire types are considered in this study; a brush-type tire, a 

pneumatic FE/ANCF tire, and an airless FE/ANCF tire. The numerical results are obtained using 

the general-purpose MBS computer program SIGMA/SAMS (Systematic Integration of 

Geometric Modeling and Analysis for the Simulation of Articulated Mechanical Systems). 
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CHAPTER 1 

INTRODUCTION 

Multibody system (MBS) dynamics computer programs have become an important part of product 

development and analysis in several industries, and thus require continuous evolution in order to 

provide users with better modeling fidelity and solution accuracy. As MBS dynamics computer 

programs evolved over time, they saw the incorporation of finite element (FE) based modeling 

methods for the coupled analysis of rigid and deformable bodies. The incorporation of small 

deformation behavior was achieved through the floating frame of reference (FFR) formulation 

while the absolute nodal coordinate formulation (ANCF) helped develop fully coupled flexible 

MBS models capable of undergoing large deformation. With the advent of high performance 

computing, the fidelity and solution times of MBS models have improved as well. The constant 

evolution of MBS dynamics has not only led to more user friendly, efficient and accurate MBS 

codes, but also to better engineered products. One such product is the tire. Modeling tires in MBS 

computer programs is of importance to the automotive, aerospace, construction and agricultural 

machinery industries. In order to do so the MBS dynamics computer programs must be capable of 

capturing the correct geometry, material, and joint conditions, all of which may be highly nonlinear 

in nature. Capturing the geometric and material nonlinearities is of importance when modeling 

tires in MBS algorithms and computer programs, since tire modeling fidelity can significantly 

impact the stability, NVH (noise-vibration-harshness) and/or durability analysis of wheeled 

vehicles.  The methods proposed in this thesis help simplify the process of integration of FE tire 

models in MBS algorithms and computer programs. Furthermore, this thesis also contributes to 

the integration of geometry within FE models, thus helping improve their fidelity while keeping 

their computational cost relatively low. This thesis contributes to the successful integration of 
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computer-aided design and analysis (I-CAD-A) and demonstrates how geometry and analysis 

models can be unified. Another subject that this thesis addresses is locking in ANCF FEs. Locking 

is a phenomenon that adversely affects the FE solution and must be dealt with for the sake of 

solution accuracy. Several methods on FE locking alleviation exist in the vast FE literature. This 

thesis reviews many of these methods used in the classical FE and ANCF literature and proposes 

a new method of locking alleviation for ANCF beam and plate/shell elements.  

 

1.1 Tire Modeling 

Tires are widely used in many automotive, aerospace, and construction machine applications. The 

stability and performance of these systems as well as their safe operation depend on the tire design 

and reliability. While the importance of tires for the safe operation of many systems is recognized, 

many tire modeling techniques do not correctly capture the tire distributed inertia and elasticity. 

Tire modeling and virtual prototyping techniques mainly employ three main techniques (Alvarez 

et al., 2005; Canudas-de-Wit et al., 2003; Clover and Bernard, 1998; Deur et al., 2004; Deur et al., 

2005; Gim and Nikravesh, 1990; Gipser, 2005; Gruber et al., 2012; Kim et al., 2008; Koishi et al., 

1998; Lee et al., 1997; Lugner et al., 2005; Pacejka, 2002; Sugiyama and Suda, 2009; Zegelaar et 

al., 2008). These techniques are the analytical approach, the discrete element approach, and the 

continuum-based FE approach, each of which has its advantages and disadvantages. A detailed 

review of tire modeling can be found in the work of Lugner et al. (2005) and Pacejka (2002). 

Analytical tire models, on the other hand, are based on experimentally acquired data which are 

curve fitted to match the vehicle dynamic response (Gim and Nikravesh, 1990; Kim et al., 2008). 

The discrete element models, which employ simplifying assumptions, do not capture important 

tire deformation modes and do not account for the distributed inertia and elasticity of the tires. 
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Most existing FE tire models, on the other hand, are not practical for efficient implementation in 

MBS algorithms and require the use of thousands of degrees of freedom (Lee et al., 1997). 

Additionally, these existing FE tire models employ elements that do not ensure the continuity of 

the rotation field at the element interfaces and nodal points, and these models require the use of 

co-simulation techniques when used with MBS algorithms. Because of the high dimensionality 

and limitations of existing tire models, the integration of FE tire models with computational MBS 

algorithms is still at a level that precludes full exploitation of the powerful computational MBS 

algorithms in developing more detailed vehicle models that include significant details. This thesis 

aims at addressing this deficiency in the literature by proposing a new approach for developing 

continuum-based tire models that have distributed inertia and elasticity.  

In order to address the complexity and high dimensionality of existing FE tire models, 

ANCF FEs are used in this thesis. While ANCF FEs allow for accurately describing the spinning 

motion and account for the forces resulting from high speed reference rotations, these elements 

lead to a constant mass matrix, a feature that can be exploited to develop efficient tire models that 

can be integrated with MBS algorithms (Shabana, 2012). Furthermore, ANCF FEs allow for 

describing arbitrary geometry including the tire curved geometry using a relatively small number 

of FEs as previously demonstrated in the literature in other application areas including belt drives 

and track chains (Dufva et al., 2007; Maqueda et al., 2010). These elements also allow for 

describing the contact surface geometry by employing spline functions that can be potentially used 

to define complex tread shapes. Both ANCF beams and plate/shell elements can be effectively 

used in developing new tire models. New constrained dynamics concepts must be introduced in 

order to develop efficient tire assembly models. ANCF FEs allow for developing an efficient tire 

assembly model that can be systematically integrated with MBS algorithms. The flexible tire belt 



4 
 

structure and the rigid rim are modeled as one FE mesh, thereby allowing for the tire assembly at 

a preprocessing stage. The interface between the flexible belt and rigid rim is represented using 

linear algebraic equations which are used to eliminate dependent variables at a preprocessing stage 

before the start of the simulation. This can be achieved because the use of the ANCF absolute 

positions and gradients as nodal coordinates allows defining joints, including rigid joints, using 

linear constraint equations. An ANCF preprocessor can also be developed such that the joints can 

be defined at arbitrary points that are not necessarily nodal points (Hamed et al., 2015). The rigid 

rim can be defined using the concept of the ANCF reference node which is not associated with any 

of the tire mesh FEs (Shabana, 2015A; Shabana, 2015B). The concept of the reference node allows 

for developing a detailed tire assembly model as the one shown in Figure 1 using one ANCF mesh. 

In this assembly model, each tire has its own spin rotation degree of freedom (Shabana, 2015B). 

The ANCF reference node has a set of nodal coordinates that include absolute position vector and 

three gradient vectors when fully parameterized ANCF FEs are used.  

 

Figure 1.  One ANCF-mesh-four-wheel assembly 
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If gradient deficient plate FEs are used, the rim reference node has a set of coordinates that include 

absolute position vector and two gradient vectors. Using the rim reference node and linear 

interpolation, the inertia coefficients associated with the position and gradient coordinates of the 

rim reference node can be systematically developed. In the assembled tire model proposed in this 

thesis, it is necessary to define the rim inertia associated with the gradient coordinates of the rim 

node in order to obtain a non-singular inertia matrix for the tire mesh. Because of the fact that this 

positive definite inertia matrix is constant, a Cholesky transformation can be used to obtain an 

identity generalized inertia matrix associated with the ANCF Cholesky coordinates (Shabana, 

2012). A set of nonlinear algebraic constraint equations is imposed on the reference node gradient 

vectors during the dynamic simulation in order to ensure the rigidity of the rim. These equations 

are solved simultaneously with the tire dynamic equations. 

 

1.2 Localized Surface Geometry in FEs 

Because detailed localized surface geometry is found in many structural and mechanical system 

applications, considering the effect of such geometry during the FE or flexible MBS analysis is 

important. An example of localized geometry that affects the behavior of a system is the tread 

details in a tire. Table 1 shows a classification of the different kinds of tread details that are specific 

to the application type of the tire they are designed for. In some cases, simplification of the tire 

model by ignoring such details may be a reasonable assumption, however in certain analyses like 

hydroplaning situations ignoring the tread details can lead to incorrect results. Hence, including 

localized geometry in the FE or flexible MBS analysis is essential in certain simulation scenarios. 

When classical FE methods are used with MBS dynamics codes, difficulties are encountered in 

achieving the correct solution for problems involving large deformation and rotation due to the 
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Table 1. Tread classification for commercial tires [https://www.yokohamaotr.com/otr/tires-
101/otr-technology/tread-designs] 

Type Pattern Properties 

Rock 

 

 Application: Off-the-road vehicles 
(OTR) 

 Excellent cut resistance 
 Large ground contact area 

Traction 

 

 Application: High traction vehicle 
(OTR, truck) 

 Directional tread pattern 
 Excellent traction 

Block/Lug 

 

 Application: Trucks, OTR vehicles 
 Wide tread and rounded shoulders 
 Low contact pressure 
 Good on soft and muddy terrains 
 Excellent traction 

Rib 

 

 Application: Automotive, trucks 
 Grooves running parallel to 

direction of motion 
 High directional stability 
 Excellent fuel economy 

Smooth 

 

 Application: Underground mines, 
construction 

 High wear and cut resistance 
 Used for compaction and leveling 
 Narrow groove on edge used to 

measure tread wear 

 
 

incremental-rotation assumptions used in existing FE formulations (Neto et al., 2004; Shabana, 

1997; Das et al., 2010). The ANCF method which uses absolute positions and gradients as nodal 

coordinates can not only capture correct rigid body motion and large deformation but also has the 

advantages of a constant inertia matrix and zero Coriolis and centrifugal forces, and can describe 

a freeform surface's geometry accurately (Sanborn and Shabana, 2009; Lan and Shabana, 2010). 

Due to the fact that a non-incremental solution procedure can be used, ANCF elements can be 

easily implemented in general purpose MBS algorithms. Although ANCF has many advantages in 
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the simulation of very flexible bodies, the representation of localized surface geometry, such as 

holes, grooves and protrusions which can play significant roles in the overall dynamics of the 

structure, without mesh refinement remains a challenge (Cho et al., 2004; Gipser, 2005; Lugner et 

al., 2005; Pacejka, 2006). Depending on the goal of the simulation, ignoring such details could 

potentially lead to incorrect solutions (Cho et al., 2004). 

Capturing detailed localized geometry is a challenging research topic in the Computer 

Aided Design (CAD) field as well (Li and Ke, 2000; Schmidt et al., 2012). In the CAD field, the 

main methods for representing complex shapes include trimming, sewing and Boolean operations, 

wherein small surface patches or small solids are used to represent complex geometric shapes; an 

approach that can be computationally quite expensive and may cause problems such as geometric 

error or numerical instabilities (Li and Ke, 2000). In order to circumvent such processes in the 

Computer Aided Engineering (CAE) field, the FE models are often simplified by simply removing 

local geometric features from the overall body before meshing or subjected to mesh refinement 

until the desired geometry details are captured (Cho et al., 2004; Ito et al., 2009; Kagan et al., 

2003). Nonetheless as previously mentioned, ignoring some of these geometric details may not be 

acceptable in certain analysis scenarios. On the other hand, refining the mesh may cause the mesh 

data to increase exponentially and prolong the computation time greatly. Sometimes a very fine 

mesh can make the analysis almost impossible because of the limitations on the computer memory 

and processing capabilities. Several researchers have recently focused their investigations on new 

meshing methods or elements that enable local refinement (Kagan et al., 2003; Kleiss et al., 2012) 

by making use of hierarchical B-splines and NURBS (Bornemann and Cirak, 2013), T-splines 

(Uhm and Youn, 2009) and PHT splines (Wang et al., 2011).  Such methods are effective both in 

reducing the mesh size and obtaining accurate results (Cho et al., 2004). These methods however 
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are complicated to implement, and their effectiveness depends on the given geometry being 

analyzed. Furthermore, such methods that are dependent on a rigid recurrence scheme could pose 

several problems when used with ANCF elements (Gantoi et al., 2013). 

 

1.3 Locking in ANCF FEs 

ANCF was proposed as a new FE formulation designed for correctly and efficiently capturing 

large deformation and rotation effects in a non-incremental solution framework (Shabana, 1997). 

Over the past two decades, a significant amount of research has been conducted on ANCF elements 

and its applications. ANCF element technology includes several different types of beam, 

plate/shell and solid elements based on standard polynomial basis functions (Von Dombrowski, 

1997; Omar and Shabana, 2001; Mikkola and Shabana, 2003; Shabana, 2013; Olshevskiy et al., 

2014), rational basis functions (Sanborn and Shabana, 2009; Pappalardo et al. 2016A) and with 

rotations as degrees of freedom instead of gradient vectors (Zheng and Shabana, 2017; Pappalardo 

et al., 2016B). ANCF elements have been used in a diverse range of applications like tracked 

vehicles, tires, satellites and pantograph-catenary systems (Hamed et al., 2015; Patel et al., 2016; 

Liu et al., 2011; Kulkarni et al., 2017). However, like classical FEs, ANCF elements can suffer 

from the locking phenomenon. ANCF locking has been studied by several authors in the past and 

solutions have been proposed. Detailed reviews on ANCF formulation and elements can be found 

in the work of Gerstmayr et al. (2013) and Nachbagauer (2014). Some types of locking that ANCF 

elements can suffer from include shear, volumetric and Poisson locking. Of these, Poisson locking 

particularly affects ANCF beam and plate/shell elements due to the different orders of interpolation 

in the longitudinal/in-plane and thickness direction. This thesis proposes a new locking alleviation 

technique for dealing with Poisson locking in ANCF beam and plate/shell elements and reviews 
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and compares several other locking alleviation techniques used with such structural ANCF 

elements. 

 

1.4 Vehicle Modeling: Small and Large Deformation and Structural Discontinuities 

This thesis is also concerned with the development of new detailed MBS small- and large-

deformation vehicle models consisting of components with complex geometries including 

structural discontinuities. Despite the fact that computational rigid MBS algorithms have been 

widely used in the analysis of vehicle systems since the 1980s (Orlandea, 1973; Haug et al., 1981), 

incorporating component flexibility is necessary in order to develop high fidelity vehicle models 

that can be effectively used in accurate and reliable durability investigations. The finite element 

floating frame of reference (FE/FFR) formulation, introduced in the early 1980’s for the small-

deformation analysis of MBS applications with structural discontinuities (Shabana, 2013), leads 

to accurate representation of the nonlinear inertia forces and coupling between the reference and 

elastic displacements. An example of a vehicle component with structural discontinuities is the 

chassis depicted in Figure 2 which shows slope discontinuities at several locations in which beam 

structures are connected.  

 

Figure 2. Structural discontinuities in a truck chassis (http://roadstershop.com/product/full-

chassis/1967-72-c10-truck-spec-chassis/) 
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Because in the FFR formulation, the FE deformation is described in the body coordinate system 

and the large rotation and translation of the flexible body are described using the local body 

coordinate system which serves as the body reference, the FE/FFR formulation allows using non-

isoparametric elements with large-rotation non-incremental MBS solution procedures.  

 

 

Figure 3. Pneumatic off-road tire (upper figure) and airless off-road tire (lower figure) 

 (Upper figure: http://www.nittotire.com/light-truck-tires/trail-grappler-mud-terrain-light-

truck-tire/; lower figure: http://croctyres.com.au/wp-content/uploads/2015/12/image10.jpg/) 
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   The analysis of the large deformation, on the other hand, can be accomplished using ANCF 

(Patel et al., 2016; Recuero et al., 2016B; Shabana, 2012). ANCF elements employ gradient 

vectors instead of infinitesimal rotations as nodal coordinates, allowing for exact description of 

rigid body motion even in the case of beam, plate, and shell elements. Fully parameterized ANCF 

elements, in particular, can be used to systematically describe structural discontinuities of 

components made of relatively softer materials such as tires. Figure 3 depicts two different types 

of tires that will be considered in this thesis. The first is a pneumatic tire which has smooth nominal 

geometry, while the second is an airless tire which has slope discontinuities. The fact that there is 

no distinction between plate and shell structures when ANCF elements are used allows for 

developing complex geometry models by proper selection of the nodal coordinates in the reference 

configuration. 

   MBS dynamics, widely used in the analysis of wheeled vehicles (Blundell and Harty, 

2004), provides significant insight on the design and performance of the vehicle before a working 

prototype can be manufactured. While the FE/FFR formulation was introduced more than three 

decades ago, long before ANCF elements were introduced, there exists a large number of vehicle 

applications in which the use of the small-deformation FE/FFR formulation can contribute to 

developing accurate and efficient computer models, particularly when combined with an ANCF 

large-deformation approach. Efficient modeling of vehicle systems that include stiff chassis and 

more flexible tires will require efficient implementation of both methods in computational MBS 

algorithms. The two methods, however, employ two fundamentally different approaches for the 

treatment of structural discontinuities. In the FE/FFR approach, in which infinitesimal rotations 

are used as nodal coordinates, a conventional vector coordinate transformation is used; while in 

the ANCF approach, in which gradients are used as nodal coordinates, a gradient transformation 
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must be used to account for the effect of structural discontinuities. In the FFR approach, an 

intermediate element coordinate system must be introduced, while the ANCF approach does not 

require the use of such an intermediate coordinate system for the treatment of structural 

discontinuities because of the use of the position vector gradients. 

Several vehicle components like the chassis shown in Figure 2 are typically modeled using 

the FE/FFR approach since a small-deformation assumption can be made. The FE/FFR 

formulation was used to study the nonlinear dynamics of a vehicle traversing over an obstacle with 

the goal of examining the chassis deformation by Shabana (1985). The FFR three-dimensional 

beam element was used to model the chassis of a dune buggy subjected to external excitation 

through a half-sine function based road bump (Agrawal and Shabana, 1986). Ambrosio and 

Goncalves (2001) compared the results of the rigid and flexible chassis models of a detailed sport 

vehicle undergoing various maneuver tests. Sampo (2011) studied the dynamics of a formula 

student vehicle by considering the chassis flexibility. Shiiba et al. (2012) investigated the effect of 

using several non-modal model order reduction techniques on the flexible chassis of a detailed 

racing vehicle model with specific emphasis on ride characteristics. Carpinelli et al. (2012) 

compared rigid and flexible body models for the prediction of ride and handling characteristics of 

a commercial sedan vehicle. Goncalves and Ambrosio (2003) optimized the suspension spring and 

damper coefficients of a wheeled vehicle that included a flexible chassis.  

   Another deformable vehicle component whose behavior has significant effect on the 

vehicle performance is the tire whose behavior is characterized by large rotation and deformation. 

Several tire models have been proposed over the past two decades for use with MBS vehicle 

models that include formula-based curve-fitted, discrete mass-spring-damper-based, and FE-based 

models. The formula-based tire models are typically used for vehicle dynamics simulations where 
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the analysis is concerned with low-frequency tire and vehicle dynamics. The Magic Formula tire 

model proposed by Pacejka (2002) is an example of a widely used formula-based tire model. The 

discrete mass-spring-damper models yield better fidelity and are typically used in ride quality and 

durability simulations. Several commercial MBS software have implemented the discrete mass-

spring-damper-based FTire model proposed by Gipser (2005). The FE-based tire models can 

capture a larger spectrum of frequency response and are also used for NVH (noise-vibration-

harshness) and durability analyses where the tire high frequency response and stress is studied as 

well (Koishi et al., 1998). While there is a very large number of investigations on the FE modeling 

of tires, there is a relatively small number of investigations that couple FE tires and MBS vehicle 

models without the use of co-simulation techniques. A new ANCF method of tire-rim assembly 

was recently proposed (Shabana, 2015B), and was used by Patel et al. (2016) to develop a new tire 

model in which the tire was modeled using ANCF plate/shell elements and the rim was modeled 

using the ANCF reference node. Recuero et al. (2016B) demonstrated the use of ANCF elements 

in the simulation of the tire/soil interaction, whereas Pappalardo et al. used the rational ANCF 

elements (2016A) and the so-called consistent rotation-based formulation (ANCF/CRBF) 

elements (2016B) to model the tire. Yamashita et al. (2016) modeled the tire using the bilinear 

ANCF shell element and demonstrated braking and cornering scenarios with the tire model. 

Sugiyama and Suda (2009) modeled the tire as a ring-type structure using planar curved ANCF 

beam elements and compared its vibration modes with analytical and experimental results. 

Recuero et al. (2017) examined the tire-soil interaction using a co-simulated rigid body vehicle 

model, FE tire model that utilized bilinear shell elements, and DEM (discrete element method) soil 

model. 
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1.5 Scope and Organization of the Thesis 

Chapter 2 was published in the Proceedings of the Institution of Mechanical Engineers, Part K: 

Journal of Multi-body Dynamics and is used in this thesis based on the author reuse rights as shown 

in Appendix A (Patel et al., 2016). Chapter 2 is focused on making the following specific new 

contributions regarding tire modeling in MBS models. It is shown for the first time how ANCF 

tire models can be integrated with computational MBS algorithms by using new concepts recently 

introduced. The concept of the ANCF reference node is used to develop a tire assembly in which 

a vehicle model, including the tires, can be represented using one ANCF mesh in which the linear 

connectivity conditions are used to eliminate redundant variables at a preprocessing stage. 

Example of such vehicle models that will be considered in this chapter is shown in Figure 4.  

 

Figure 4. Wheeled bulldozer model 

 

Integration of high fidelity FE tire models with MBS algorithms using existing solution procedures 

requires the use of co-simulation techniques in which two different computer codes, FE and MBS 

codes, are used. This chapter shows how FE vehicle models that include tires with distributed 
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inertia and elasticity can be developed without the need for using co-simulation techniques. In this 

chapter, only one MBS computer code is used in the analysis of the new vehicle models. In the 

developed ANCF vehicle mesh, the reference node inertia matrix must be correctly formulated in 

order to avoid singularities. It is shown in this chapter how the optimum sparse matrix structure of 

the dynamic equations of motion can be preserved by introducing a minimum set of nonlinear 

algebraic equations that ensure the rigidity of the rims, axles, and possibly the chassis of the 

vehicle. Chapter 2 also presents a continuum-based air pressure model that allows for accounting 

for the change of the inner surface area of the tire. In this continuum-based air pressure model, 

Nanson’s formula is used to define the area in the current deformed configuration in terms of the 

area in the reference configuration. This new continuum-based air pressure model can be used as 

alternative to the discrete spring models often used in the literature to model the tire air pressure. 

General and more accurate tire models require the use of composite materials. It is shown in this 

chapter how an ANCF composite tire model can be systematically developed and integrated with 

MBS algorithms. To this end, fully parameterized ANCF plate elements are used. The results 

obtained using the composite and non-composite tire models are compared. The result of this 

chapter will allow developing new efficient detailed tire models which can be integrated with MBS 

algorithms. This, in turn, will allow for exploiting the powerful MBS techniques in the analysis of 

new vehicle models that include significant details that cannot be captured using existing analysis 

and simulation methods. 

Chapter 3 was published in Computer Methods in Applied Mechanics and Engineering 

and is used in this thesis based on the author reuse rights as shown in Appendix A (He et al., 2017). 

Chapter 3 proposes a new method for the implementation of localized geometry into ANCF FE 

surfaces. The proposed method can be used with any fully parameterized ANCF element. This 
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chapter reviews the three levels of including localized surface geometry in FE methods, briefly 

introduces the concepts and methodologies used in the definition of fully parameterized ANCF 

elements, describes two methods of integrating localized surface geometry with ANCF elements, 

compares the results obtained using the global domain integration method and subdomain 

integration method and briefly describes the governing equations of motion and the contact method 

used in the numerical examples presented in this chapter. Chapter 3 also presents three numerical 

examples and compares the results obtained using the approach described in this chapter with the 

results obtained using a commercial FE code in order to demonstrate the effectiveness of the 

proposed approach. 

The aim of Chapter 4 (Patel and Shabana, 2017; submitted to Acta Mechanica) is multi-

fold; however, the overall focus of the chapter is on locking alleviation techniques in ANCF. Two-

dimensional ANCF beam elements are primarily used in this chapter to demonstrate the 

effectiveness of the locking alleviation techniques proposed and discussed in this chapter since 

they can be considered as a good surrogate to understand and quantify the membrane, bending and 

transverse shear related response of three-dimensional beam and plate/shell elements. The contents 

of this chapter are as follows: Locking alleviation techniques in the classical FE literature are 

reviewed and discussed in order to emphasize the fact that locking is a commonly occurring 

phenomenon in most FEs and can be dealt with in the case of fully-parameterized ANCF elements 

by identifying the cause of the locking and studying previous contributions in this area. Existing 

ANCF locking alleviation techniques are briefly reviewed and ANCF element kinematics and the 

general continuum mechanics approach are briefly discussed. A new two-dimensional higher-

order beam element is proposed, followed by a short discussion on the effect of constitutive model 

assumptions on the planar ANCF beam element. A new locking alleviation technique called the 
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strain split method (SSM) is proposed for two-dimensional beam elements, and is generalized for 

three-dimensional beam and plate/shell elements. The enhanced continuum mechanics approach 

and the elastic line approach are briefly reviewed. The enhanced assumed strain approach is also 

reviewed and a method of incorporating higher-order ANCF shape functions in lower-order beams 

through enhanced strains is demonstrated. Finally, this chapter compares the locking alleviation 

techniques proposed and discussed in it using five numerical examples that include three static and 

two dynamic examples. 

Chapter 5 (Patel et al., 2017; submitted to International Journal of Vehicle Performance) 

focuses on developing a computational framework based on the integration of geometry and small- 

and large-deformation analysis for the nonlinear dynamics of detailed vehicle models that consist 

of rigid and flexible bodies. The proposed approach captures accurately structural discontinuities 

that characterize the chassis (as the one shown in Figure 2) and airless tires (shown in Figure 3). 

In this geometry-based approach, the chassis and tires are modeled as flexible bodies using the 

small-deformation FFR and large-deformation ANCF elements, respectively. Specifically, the 

main contents of this chapter can be summarized as follows: The first ANCF airless tire model 

with distributed inertia and elasticity is developed in this chapter and integrated with computational 

MBS algorithms without the need for using co-simulation techniques. The FE model accurately 

captures the structural discontinuities that characterize this tire type. An approach for vehicle 

assembly based on the integration of rigid body, small-deformation FFR, and large-deformation 

ANCF algorithms is proposed for developing new and detailed vehicle models. Stiff components 

such as the chassis are modeled using FFR elements, while more flexible components such as the 

tires are modeled using ANCF elements. A new method for the treatment of structural 

discontinuities using ANCF elements is proposed. In the new approach, linear algebraic constraint 
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equations are formulated at a preprocessing stage, thereby allowing for systematically reducing 

the model dimension by eliminating dependent variables before the start of the dynamic 

simulation. A damping model for ANCF pneumatic tires is introduced which accounts for the 

energy dissipation in the tire material as well as due to the pressurized air in a tire model. New 

high-mobility multi-purpose wheeled vehicle (HMMWV) models are developed in this chapter as 

well. In one model, airless tires are used, while in a second model pneumatic tires are used. Both 

tires models are described using ANCF elements. In the vehicle models developed, the chassis is 

modeled using FFR elements, and a component-mode synthesis method is used to eliminate 

insignificant high frequency modes. Using the HMMWV model, the chapter presents a 

comparative study based on three different vehicle models. The first model is the vehicle with 

brush-type tires, the second is a vehicle with pneumatic tires, and the third is a vehicle with airless 

tires. The results obtained using these three different models are compared. 

 Chapter 6 consists of a summary of the conclusions regarding the approaches proposed 

and numerical examples discussed in Chapters 2 to 5. Chapter 6 also briefly discusses potential 

future work with regards to the methods proposed in this thesis. 
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CHAPTER 2 

ANCF TIRE MODELING 

This chapter (published as Patel et al., 2016) introduces a new computational multibody system 

(MBS) framework for developing accurate tire models using the finite element (FE) absolute nodal 

coordinate formulation (ANCF). ANCF plate/shell FEs are used to create the geometry and 

perform the FE/MBS analysis of the tires. It is important to note that in ANCF there is no difference 

between plate and shell elements due to the use of position vector gradients which help with 

shaping the element to the required geometry. The computational procedure used in this study 

allows for modeling composite tires and for using a continuum-based air pressure and contact tire 

force models. The ANCF tire mesh, which allows for high spinning speed, has a constant inertia 

matrix and zero Coriolis and centrifugal forces. The concept of the ANCF reference node, 

introduced recently, is used to develop linear connectivity conditions between the tire and rim, 

thereby allowing for imposing these linear conditions at a preprocessing stage. Using this 

approach, the dependent variables are eliminated at a preprocessing stage before the start of the 

simulation. The reference node, which is not associated with a particular FE, is used to define the 

inertia of the rigid rims. The inertia coefficients associated with the rim reference nodes are first 

developed in terms of the ANCF position and gradient coordinates. The rigidity of each rim is 

enforced during the dynamic analysis using six nonlinear algebraic constraint equations that are 

combined with the dynamic differential equations of motion using the technique of Lagrange 

multipliers. It is shown in this chapter that the concept of the ANCF reference node can be used to 

develop a complete vehicle model using one ANCF mesh in which the redundant variables are 

systematically eliminated at a preprocessing stage, and consequently, the number of differential 

and algebraic equations that need to be solved is significantly reduced. The use of the new 
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approach proposed in this chapter is demonstrated using a vehicle model described by one ANCF 

mesh. 

 

2.1 ANCF Tire Geometry 

ANCF FEs will be used in this chapter for creating the geometry and performing the analysis of 

the tire system. These elements can be used as the basis for a successful integration of computer 

aided design and analysis (ICADA). The ANCF position field can be written as      ,t tr x S x e

, where r  is the global position vector,  Tx y zx  is the vector of the element spatial 

coordinates, t  is time,  S S x  is the element shape function matrix, and  te  is the vector of 

the element nodal coordinates that include absolute position and gradient coordinates (Shabana, 

2012). The vector of ANCF nodal coordinates  te  can be written as     o dt t e e e , where oe  

is the vector of nodal coordinates in the reference configuration, and de  is the vector of nodal 

displacements. Using this partitioning, the assumed displacement field can be written as 

          o d,t t t  r x S x e S x e e . This description is consistent with the general continuum 

mechanics description    ,t ,t r X X u X , where X  is the absolute position vector of an 

arbitrary point in the reference configuration, and u  is the displacement vector. This can be made 

clearer if one writes oX Se  and du Se . By appropriate choice of the vector oe , initially curved 

structures can be defined in a straight forward manner using ANCF FEs (Shabana, 2015B). The 

relationship between the volume of the curved structure oV  in the initial configuration to the 

volume of the straight structure V  (Figure 5) is defined as o odV J dV , where o oJ  J  is the 

determinant of the matrix of position vector gradients  o o     J X x Se x , which is constant. 
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Therefore, integration with respect to the domain oV  can be converted to integration with respect 

to the straight element domain V  by using the relation o odV J dV . This allows for using the 

original element dimensions to carry out the integrations associated with the initially curved 

configuration.  

 

Figure 5. Initially curved ANCF structures 

 The Lagrangian strain tensor ε  is defined as   2T ε J J I . This tensor can be defined 

using the ANCF description as  

  1 1
o e o
                   

Ser r x
J J J J

X x X x
            (1) 

where  e   J Se x . Therefore, the Lagrangian strain tensor can be written as 
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    1 11 1

2 2
T T T

o e e o
    ε J J I J J J J I           (2) 

The relationship between the volume in the current deformed configuration v  and the volume in 

the curved reference configuration oV  can be written as odv JdV , where J  J  is the 

determinant of the matrix of position gradients J . It follows that 1
o e o odv JdV dV  J J . Using 

the relationship o odV J dV , one has edv dV J  (Shabana, 2012). The procedure described in 

this section to model the initial curvature was used in the literature in the analysis of belt drives 

and rubber chains (Dufva et al., 2007; Maqueda et al., 2010). 

 Several ANCF beam and plate FEs can be used to develop efficient tire models that have 

distributed inertia and elasticity. Fully parameterized ANCF FEs allow for capturing important tire 

details using a spline function parametric relationship that converts a volume to a surface with 

arbitrary shape. In this chapter, fully parameterized ANCF plate elements are used. The superscript 

i  will be used to refer to the tire number, while the superscript j  will refer to the element number. 

When ANCF fully parameterized elements are used, the global position vector ijr  of an arbitrary 

point on the element j  of a tire i  can be defined using the element shape function matrix ijS  and 

the vector of nodal coordinates ije  as  ( , , )ij ij ijx y z tr S e , where t  is time, and x , y , and z  are 

the local element coordinates. As previously mentioned, the vector of nodal coordinates ije  

consists of absolute position and gradient coordinates. A node of a fully parameterized element in 

the three-dimensional analysis can have twelve coordinates that define the global position vector 

of the node and the three gradient vectors ,ij ij ij ij
x yx y     r r r r , and ij ij

z z  r r  (Shabana, 

2012; Dufva et al., 2007; Maqueda et al., 2010; Gantoi et al., 2013). The representation 
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 ( , , )ij ij ijx y z tr S e  describes a volume since three parameters (coordinate lines) x , y , and z  

are used for this fully parameterized element.  

 While this chapter will be mainly concerned with the contributions outlined in Section 1.5 of 

Chapter 1, it is important to point out that the ANCF representation allows for systematically 

converting volume geometry to surface geometry (Gantoi et al., 2013). This can be accomplished 

by eliminating one of the independent parameters by writing this parameter in terms of the other 

two. For example, the use of the functional relationship  z f y  converts the ANCF volume 

geometry to surface geometry by writing     , ,ij ij ijx y f y tr S e , where  f y  is a known 

function that can be used to define the surface shape. A more general two-parameter function 

relationship such as  ,z f x y  can also be used. Spline function representations can be used to 

define the parametric relationship. 

 

2.2 Air Pressure and Contact Forces 

In this section, a continuum-based air pressure tire force model is introduced. This pressure force 

model can be used instead of the discrete spring models often used in the literature to model the 

tire air pressure. The formulation of the tire/ground contact force used in this chapter is also 

explained in this section. 

2.2.1 Air Pressure Force 

Air pressure tire forces require integration over areas as shown in Figure 6. One approach to 

consider the effect of the air pressure in tire applications is to write an expression for the tire 

pressure acting on the surface of the element j  of the tire i  as  ,ij
t tp p t e , where ije  is the 
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vector of ANCF tire coordinates. The pressure is assumed to apply in a direction normal to the 

surface defined by the unit normal ijn . One can therefore define the pressure vector 

 ,ij ij
t t tt p p p e n . The position vector of the material points on the surface can be written as 

 1 2,ij ij  r r , where 1  and 2  are the parameters that define the surface. Using ANCF 

description, one can, without any loss of generality, select 1  and 2  such that 1 x   and 2 y 

. A unit normal to the surface ijn  can be defined as 
1 2 1 2

ij ij ij ij ij
     n r r r r .  

 

Figure 6. Air pressure 

The virtual work of the pressure force can then be written as ij T ij ij
p ts

W ds   p r , where ijs  is the 

area in the current configuration. Using Nanson’s formula, one can write ijds  in terms of the area 

defined in the reference configuration as  ij ij ijT ij ijT ij ij
ods J dS n J J n , where ijJ  is the 

determinant of the matrix of position vector gradients ijJ , and ij
oS  is the area in the reference 

configuration. It follows that the virtual work of the tire pressure forces can be written as 
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 ij
o

T
ij ij ij ijT ij ijT ij ij ij
p t oS

W J p dS   n n J J n r . One can also define ij
oS  in terms of ijS  that defines 

the area in the straight configuration.  

Using the ANCF description  ij ij ijr S x e , one can write the virtual work of the pressure 

force as     ij
o

T
ij ij ij ijT ij ijT ij ij ij ij
p t oS

W J p dS    
  n n J J n S x e . This equation can be written as  

ij ij T ij
p pW  Q e , where the vector of generalized pressure forces is defined as  

 ij
o

ij ijT ij ij ijT ij ijT ij ij
p t oS

J p dS Q S n n J J n . This vector, which has dimension equal to the 

dimension of the vector of generalized coordinates of the FE, can be evaluated using numerical 

integration methods. In the case of small deformation, 1ij ijT ij ijT ijJ n J J n , and the expression 

of the vector of generalized pressure force reduces to  ij
o

ij ijT ij ij
p t oS

p dS Q S n . 

2.2.2 Tire/Ground Contact Force 

 A simple contact model is employed in this chapter for the tire/ground contact. The model is based 

on a penalty approach and coulomb friction and is similar to the model used for belt drives by 

Dufva et al. (2007). A grid of contact points is generated on each plate element and the normal and 

tangential contact forces are applied at these points as shown in Figure 7. Each point is detected 

for ground penetration and for its relative velocity with respect to the ground in order to apply the 

corresponding normal and tangential forces. The contact forces are treated as point forces in this 

chapter where the normal component is defined as )(  ij
n p pk d dc f n , where ij

nf  is the normal 

component of the contact force,  is the ground stiffness coefficient,  is the ground damping pk pc
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coefficient,  is the penetration,  is the rate of penetration, and n is the unit normal to the ground 

surface.  

 

Figure 7. Contact forces 

The ground surface can be described by surface functions that can be possibly generated through 

experimentally recorded ground surface data. Using these data and curve fitting, the unit normal 

to the surface can be determined and used in the formulation of the contact force. The penetration 

 is calculated as  ij g
P Pd   r r n , where ij

Pr  is the global position of the contact point on the tire 

and g
Pr  is the global position of the corresponding contact point on the ground surface. The velocity 

vector at the contact point on the element can be written as ( , ) ( ) ( )ij ij ij
P t t r x S x e , and the tangential 

velocity which is used to define the direction of the friction forces is given as ( )ij ij ij
tP P P  v r r n n  . 

The direction of the friction force is based on the direction of the corresponding tangential velocity 

d d

d
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of the contact point, and is thus defined using the unit vector  ij ij ij
tP tPt v v . The friction force is 

then defined as follows: 

                

γ
sin       

2

ij ij ij
n tP s

ij
t

ij ij ij
n tP s

v

v





 

 


 



f t v
f

f t v

 
                                               (3) 

where ij
tP sv  v ,  and  is a problem dependent slip velocity. The second expression of the 

friction force that is used when the magnitude of ij
tPv  is less than  helps smooth the transition of 

the friction force when it changes directions, thus avoiding a discontinuity in the friction force 

function which improves the computational efficiency of the model. Finally, the vector of contact 

forces is given by ij ij ij
c n t f f f . The expression for the vector of generalized contact forces can be 

obtained by using the virtual work of the contact forces and is given by  ( )ij ijT ij
c cQ S x f . Depending 

on the dimensions of the tire model considered, the number of contact points can be varied in order 

to yield more efficient simulations. Additionally, since the tire is pressurized, and Gauss 

integration is used to obtain the pressure distribution on its inner surface, the contact forces can be 

evaluated at the Gauss integration points mapped on the tire outer surface for ease of 

implementation. 

2.2.3 Spin Velocity 

While the simple contact force model discussed in the preceding subsection is used for simplicity, 

other ANCF contact force models can be used as well. Some of the tire contact forces require 

extracting kinematic variables that define the tire rotations at the contact point. For instance, some 

of the creep force models include a spin moment that is function of the angular velocity at the 

contact point. In order to evaluate the spin angular velocity at an arbitrary point, one needs to 

sv

sv
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evaluate the velocity gradient tensor L , which can be written as 

   1         L r r r X X r JJ  , where superscripts that refer to the tire and element numbers 

are dropped for the simplicity of the notation, and  T oX Y Z X Se . The velocity gradient 

tensor can be written as  L D W , where    T1/ 2   D L L  is the symmetric rate of 

deformation tensor and    T 1 / 2   W L L is the skew-symmetric spin tensor.  Using ANCF FEs, 

the velocity gradient tensor can be written in terms of the gradient vectors at an arbitrary point as 

(Recuero et al., 2016A) 

 
1
1

1 1 1 1 1
2 1 2 3
1
3

R

Y R R RX

R

Z RX Y Z



    



 
       


 


J

L JJ r r r J r J r J r J

J

                     (4) 

where 1
Ri
J  denotes the thi  row of the inverse of the matrix of position vector gradients, and   

denotes outer (dyadic) product of two vectors. The spin tensor can be obtained from the velocity 

gradient tensor as  

 1 1 1 1 1 1
1 2 3 1 2 3

1

2 R RX Y Z X Y ZR R R R
               W ω r J r J r J J r J r J r            (5)  

where ω  is the skew symmetric matrix associated with the angular velocity vector ω . Using this 

equation, one can show that the angular velocity vector can be written in terms of the ANCF 

gradients as (Recuero et al., 2016A)  

 1 1 1
1 2 3

1

2 XR R RY Z
      ω J r J r J r                          (6) 

This expression of the angular velocity vector at an arbitrary point takes into account the effect of 

the rigid body motion and the elastic deformation of the tire. 
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2.3 ANCF Reference Node 

The concept of the ANCF reference node (ANCF-RN) can be used to define bodies which are not 

associated with FEs. Using this concept, one can develop an ANCF mesh which has a constant 

inertia matrix. Such a mesh allows also for eliminating at a preprocessing stage the linear algebraic 

equations that define linear constraint conditions between the element nodes and the ANCF 

reference nodes.  The ANCF reference nodes also allow for defining rigid bodies as components 

of the ANCF mesh. These rigid bodies can represent the tire rims, axles, and/or the chassis of the 

vehicle model.  

2.3.1 Preprocessor Reference Node/Element Node Constraints 

The ANCF-RN can have a number of coordinates equal to the number of coordinates used for the 

element nodes (Shabana, 2015A; Shabana, 2015B). In this section, superscript i  refers to the 

subsystem, superscript r  refers to the reference node, and superscript k  refers to the flexible body 

node at the interface. If irJ  is the matrix of the reference node position vector gradients and ikJ  is 

the matrix of the kth node position vector gradients, then one has ik ir ikrJ J J , where ikrJ  is a 

constant matrix that defines the orientation of the gradient vectors of node k  with respect to the 

reference node. It is also important to point out that an assumption is made in the development 

presented in this section that the reference node, which is not an element node, will be represented 

by a rigid triad, that is, the ANCF-RN gradient vectors will remain orthogonal unit vectors 

(Shabana, 2015A; Shabana, 2015B).  
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Figure 8. ANCF tire assembly (         Relative position and gradient vector constraints) 

In order to connect a flexible tire to a rim or an axle defined by a reference node as shown in Figure 

8, the following linear algebraic constraint equations are imposed at a preprocessing stage: 

1

ik ir ik ir ik ir ik ir
x y z

ik ik ik ir ir ir ikr
x y z x y z r

x y z ,

, k , ,m

    


         

r r r r r

r r r r r r J 
                          (7) 

In this equation, the parameters ,x y , and z  used for the reference node gradients can be assumed 

to coincide with the mesh parameters ,X Y , and Z , ikr  is the global position of node k  on the 

flexible body/rigid body interface, irr  is the global position of the reference node, rm  is the 

number of nodes at the interface, and ik ikx , y , and ikz  are the coordinates of node k  with respect 

to the reference node in the initial reference configuration. Since rigidity conditions will be applied 

to the reference node during the dynamic simulation, the right hand side of the first equation in 
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Eq. 7, ik ir ik ir ik ir
x y zx y z r r r , will ensure a constant length between the two points since it is defined 

by three constant coordinates along three orthogonal unit vectors. 

2.3.2 Preprocessor Reference Node Inertia 

Because the reference node is not an element node, the inertia associated with the ANCF-RN 

position and gradient coordinates must be properly defined to ensure having a positive definite 

inertia matrix. A linear interpolation can be used as the basis for the definition of the reference 

node inertia. Such an interpolation leads to exact description of the inertia if the reference node is 

used to represent a rigid body and the ANCF-RN gradient vectors remain orthogonal unit vectors 

at the initial configuration as well as during the dynamic simulation. If the tire rim, for example, 

is treated as a rigid body, the location of an arbitrary point on the rim can be written as (Shabana, 

2015A; Shabana, 2015B) 

 ira ir ir ir ir
x y z

x

x, y,z y

z

 
       
  

r r r r r         (8) 

In this equation, x, y , and z  are the coordinates that define the position vector of an arbitrary point 

on the rigid rim with respect to the reference node. A virtual change in this position vector leads 

to  ira ir ir ir ir
x y zx, y,z x y z       r r r r r , and the virtual work of the rim inertia forces can be 

written as 
ir

ir ir iraT ira ir
i V

W dV    r r , where irV and ir  are, respectively, the volume and mass 

density of the rim. The virtual work of the rim inertia forces can be written as ir irT ir
iW  Q e , 

where ir ir irQ M e , where irM  is the reference node symmetric and constant mass matrix. One 

can show that the elements of this mass matrix can be expressed in terms of the mass moments of 

inertia, while the other elements define moments of mass. The dimension of the inertia matrix irM  
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is equal to the number of the ANCF-RN coordinates. For use with the fully parameterized plate 

element considered in this chapter, the dimension of irM  is 12 12 . Because irM  is constant, it 

can be evaluated at a preprocessing stage and used with the inertia matrices of the FEs that define 

the flexible tire to construct the tire mesh inertia matrix that can be used to develop the Cholesky 

transformation used to define an identity generalized inertia matrix (Shabana, 2012). 

2.3.3 ANCF-RN Rigidity Constraints 

An ANCF-RN rigid body can be defined by imposing six nonlinear algebraic constraint equations 

that can be introduced to the dynamic formulation using the technique of Lagrange multipliers. 

Using this approach, an identity generalized mass matrix for the ANCF mesh can still be used, 

leading to an optimum sparse matrix structure for the dynamic equations of motion. The ANCF-

RN rigidity constraint equations must be satisfied at the position, velocity, and acceleration levels. 

These six nonlinear constraint equations, which can be written mathematically as 

1 1 1ir ir ir
x y z, , ,  r r r  and   0 0 0ir ir ir ir ir ir

x y x z y z, ,     r r r r r r , ensure the rim rigidity. Using 

this approach, multi-wheel assembly, as the one shown in Figure 1 (Chapter 1), can be described 

using one ANCF mesh. Using this concept, a vehicle model that has several rigid rims, axles, and 

rigid chassis can be represented using one ANCF mesh. 

 

2.4 Composite Tires 

Modern tires are complicated composite structures generally made of wide ranges of composite 

materials, such as rubber, synthetic fabric with high tensile strength and steel. The tread is a type 

of rubber composite manufactured to provide traction and reduce wear and tear under different 

ground conditions. The belt layer and ply are also made from fibrous composite materials with 
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continuous steel fibers embedded in rubber. For this reason, the tire material needs to be modeled 

using anisotropic and nonlinear constitutive laws, and the belt and ply layers in the FE models 

need to be defined independently.  

 

Figure 9. Composite laminated tire cross section 

As shown in Figure 9, composite laminated tire structures can be meshed by the composite 

laminated ANCF plate elements. The element layers are assumed to be bonded together, and the 

bonds are assumed to be infinitesimally thin and perfect so that there is no relative motion between 

the laminae. For the tire rth layer of orthotropic material, the constitutive equations can be written 

in the primed coordinate system ' ' ', ,r r rx y z  as (Liu et al., 2011) 
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                  (9) 
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where  ij r
  and  ij r

  are, respectively, the components of the stress and strain vectors rσ  and 

rε  of the rth layer, and ijC  are the constants that define the matrix of elastic coefficients rC  which 

has nine independent parameters that are required to model the material anisotropy (Kollar and 

Springer, 2003). The matrix of the elastic coefficients can be defined in the unprimed coordinate 

system using the transformation relation 1ˆ ˆ
r r r r

 σC T C T , where the transformation matrices ˆ
rσT  

and ˆ
rT  are the matrices required to transform the stress and strain vectors defined in Eq. 9, that 

is, ˆ
r r r σσ T σ  and  ˆ

r r r εε T ε . The transformation matrices ˆ
rσT  and ˆ

rT  are functions of the rotation 

angles between the unprimed and primed systems as shown in Figure 9. More discussion on the 

form of these transformation matrices can be found in the work of Liu et al. (2011).  

Using this ANCF composite laminated plate element, the continuity of the nodal position 

vector will be satisfied automatically. In addition, it is assumed that the element deformation is 

elastic in each layer, and the failure behavior of the laminate is not considered. In Figure 9, XYZ  

represents the global coordinate system, and x  is the local position vector of an arbitrary point P  

on the FE, which is defined in the element coordinate system 1 1 1X Y Z . As shown by Liu et al. 

(2011), the elastic forces of the rth layer of the composite plate of the tire can be obtained using the 

following expression of the virtual work: 

    =
1

: :
2 r

T T
r rsr rV

W dV   D ε J J J J              (10) 

where rD  is the fourth-order tensor of the elastic coefficients, J is the matrix of position vector 

gradients, and rV  is the volume of layer r in the reference configuration. The virtual change in the 

matrix of position vector gradients J  can be expressed in terms of the virtual changes in the 
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ANCF plate element coordinates. The reader can find the detailed description of an efficient 

implementation of the elastic forces in the work by Liu et al. (2011). The integral in the preceding 

equation is evaluated numerically. The domain of integration for each ANCF FE must be divided 

into several subdomains. The number of subdomains can be the number of the element layers. In 

the integration process, the tensor of the elastic coefficients rD  and the coordinate transformation 

matrices will assume values that depend on the specific layer. 

 

2.5 Numerical Results 

This section provides a numerical example that demonstrates the use of the ANCF reference node 

to develop a vehicle model described by one FE mesh only. This example also shows how tire 

models used in MBS applications can be developed using a small number of ANCF FEs that 

describe the geometry and spinning motion accurately.  

2.5.1 ANCF Fully Parameterized Plate Element Tire Assembly 

One of the goals of this chapter is to develop a tire assembly meshed with ANCF fully 

parameterized plate elements and the ANCF-RN. The plate elements are used to create the three 

dimensional tire mesh while the ANCF-RN is used to describe the rigid rim inertia as shown in 

Figure 1 (Chapter 1). As described previously in this chapter, the reference node is connected to 

the corresponding rim nodes on the plate elements at a preprocessing stage, thereby allowing for 

reducing the MBS problem dimension and the number of degrees of freedom required in the 

dynamic simulation. As shown in Figure 1 (Chapter 1), six independent gradient vector constraints 

are imposed on the reference node in order to define a rigid triad that has six degrees of freedom; 

three translations and three rotations. Figure 8 shows the assembly of the tire and the rim in one 
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unified mesh which is obtained by imposing relative position and gradient vector constraints 

between the rim reference node and the tire ANCF plate nodes that lie on the rim circumference. 

These constraints between the reference node and flexible tire nodes can be applied at a 

preprocessing stage in order to reduce the problem dimensionality. The high order of interpolation 

of the ANCF fully parameterized plate element and the use of gradient vectors as nodal coordinates 

allow for modeling highly curved structures like a tire in a straightforward manner, as 

demonstrated in this chapter. Thus, the number of elements required to accurately mesh the curved 

tire geometry can be reduced significantly. 

2.5.2 Bulldozer Vehicle Model 

In order to demonstrate the implementation of the procedures and concepts introduced in this 

chapter, the vehicle model shown in Figure 4 (Chapter 1) is used. This vehicle is mainly used in 

mining and construction industries (Caterpillar, 2013). Typically, wheeled bulldozers like the 

model considered in this numerical study do not have any suspension, so the wheels are directly 

attached to the chassis. Additionally, in order to steer, the chassis of the vehicle is divided into two 

distinct pieces that are connected by a central revolute joint; each piece having a set of wheels. For 

simplicity and since the vehicle model developed in this chapter is made to move only in the 

forward or longitudinal direction, the chassis is considered as a single entity and is modeled using 

one reference node. Nonetheless, as demonstrated in the literature, a revolute joint can be 

introduced at a preprocessing stage allowing for the systematic elimination of the dependent 

variables using the resulting linear algebraic equations of the ANCF revolute joints.  Along with 

the chassis, the vehicle model has two axles that serve as the connection points for the four wheels. 

Each axle is modeled using two reference nodes, one at each end of the axle. The rim reference 

nodes are attached to the axle reference nodes at a preprocessing stage leading to a vehicle model 
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that is completely described by one ANCF FE mesh. Figure 10 shows the constraints applied 

between different reference nodes. The inertia properties of the vehicle model are provided in 

Table 2 and the initial configuration of the vehicle is described in Table 3.  

Table 2. Inertia properties of vehicle reference nodes 

Component Reference Node Mass (kg) 
Principal Moments of Inertia 

( 2kg m  ) ( xx yy zz,  ,  I I I  ) 

Chassis 45000 20000, 20000, 20000 
Axle 150 100, 10, 100 
Rim 750 300, 350, 300 

 
Table 3. Initial global positions of vehicle reference nodes (COM: center of mass) 

Component Reference Node 
Number of Reference 

Nodes 
Initial Position (x,y,z) (m) 

Chassis (COM) 1 3.28298145, 0, 1.314 

Axle 4 
5.9409629,  1.665382, 1.314 

0.625,  1.665382, 1.314 

Rim 4 
5.9409629,  1.665382, 1.314 

0.625,  1.665382, 1.314 
 

 

Figure 10. All ANCF vehicle model (CR: Chassis reference node; AR: Axle reference node; RR: 

Rim reference node;          Rigid joint;  ----- Revolute joint) 
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The overall dimensions of the tire used in this vehicle model are based on 45/65 R45 L-4 I STAR 

tire manufactured by Michelin. Figure 11 shows the cross section of the ANCF tire used in this 

chapter. This ANCF tire mesh consists of three curved plate elements in its cross section and a 

total of thirty-six plate elements for one tire. Since the emphasis of this chapter is to demonstrate 

the application of the ANCF-RN in the development of a tire assembly and a vehicle model, a 

linear elastic material model is used for the tire for simplicity.  

 

Figure 11. ANCF fully parameterized plate element tire cross section and mid-surface 

representation 

Two vehicle models are considered in this chapter, one with single material tires which will be 

referred to as the non-composite tire model henceforth, and one with composite tires. The 

geometric and material properties of the non-composite (single material) tires used in this chapter 

are provided in Table 4 and 5, respectively. The geometric properties of the composite tires are the 

same as that of the non-composite tires provided in Table 4 whereas the elastic moduli of different 

layers of the composite tires used in this chapter are given in Table 5 which correspond to that of 

the belt, cap-ply, and carcass (Yang, 2011). The belt, cap-ply, and carcass make up most of the 

elastic parts of the tire cross section and therefore have a very dominant effect on the overall 
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stiffness of the tire structure in comparison to its relatively less stiff rubber components. Finally, 

this vehicle model is described by 9 ANCF-RNs (4 for the tires, 4 for the axles, and 1 for the 

chassis), 144 ANCF fully parameterized plate elements, 408 constraint equations describing the 

tire-rim-vehicle assembly that are eliminated at a preprocessing stage, 26 gradient vector 

constraints that ensure the rigidity of the reference nodes and a total of 2412 nodal coordinates. 

Because of the dependency established among the vehicle reference node coordinates at the 

preprocessing stage, the number of gradient vector constraints required to be enforced during the 

dynamic analysis is reduced from 54 to only 26. 

 
Table 4. ANCF plate element tire geometric properties 

Tire Property Value 
Size Specification 45/65 R45 
Rim Diameter (m) 1.143 

Overall Diameter (m) 2.628 
Element Dimensions (m) (L, W, T) 1.114, 0.299, 0.100  

Density (kg/m3) 1500 
No. of ANCF Plate Elements Per Tire 36 

 
 
 

Table 5. ANCF plate element tire material properties 
Non-composite (single material)  

Density (kg/m3) 1500 
Modulus of Elasticity (GPa) 2.0 
Modulus of Rigidity (GPa) 1.0 

Composite (multi material) 
Density (kg/m3) 1500 

Cap-Ply Modulus of Elasticity (GPa) 4.18 
Belt Modulus of Elasticity (GPa) 11.3 

Carcass Modulus of Elasticity (GPa) 2.05 
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2.5.3 Simulation Results 

Two different dynamic simulation vehicle models are considered in this section. In the first model, 

the tires are assumed to be made of non-composite material, while in the second model a composite 

material constitutive law is used for the tires in order to demonstrate the generality of the 

implementation. The goal of these simulations is to demonstrate the effectiveness of using the 

ANCF-RN in developing new FE vehicle and tire models. In these simulations, vehicle static 

equilibrium positions are first achieved by allowing the vehicle system to settle at the beginning 

of the dynamic simulation. After reaching the vehicle static equilibrium position, a forward force 

is applied to the chassis reference node in order to induce free rolling of the tires between 0.3s and 

1.5s. To compare the results, the same contact and tire pressure parameters are used for both 

models, these parameters are provided in Table 6. A 10 10  grid of integration points is created 

on the tire plate elements in order to evaluate the pressure and contact forces whereas a 7 7 3   

grid of integration points is used to calculate the elastic forces of the plate elements. The results of 

both simulations are shown in Figures 12-17. Figure 12 shows the longitudinal or forward 

displacement of the chassis whereas Figure 13 shows the chassis vertical displacement. Because 

this vehicle model does not have a suspension and no damping is used, the chassis vertical 

displacement shows oscillations.  

Table 6. Simulation parameters 
Parameter Value 

Ground Stiffness (MN/m) 22.5 
Ground Damping (MN˖s/m) 0.3 

Friction Coefficient    0.85 

Slip Velocity (m/s) 0.01 
Tire Pressure (kPa) 400 
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The results presented in Figure 13 also show a difference in the vertical behavior of the composite 

and non-composite tire vehicle models. The composite tire vehicle model has smaller vertical 

displacement than the non-composite vehicle model due to its higher stiffness which leads to 

smaller tire deformation. In order to show that ANCF plate elements used in this study can capture 

the tire spinning motion, Figure 14 shows the time evolution of the first component of the gradient 

vector xr  of the reference node that represents the front right rim. This value oscillates between 1 

and -1, which demonstrates that the large tire rotation is indeed captured.  

 

Figure 12. Chassis reference node longitudinal displacement ( Noncomposite;  

  Composite) 

The numerical results presented in Figure 15, which show the longitudinal velocity of the chassis, 

clearly demonstrate the effect of the application of the forward force between 0.3s and 1.5s when 

the vehicle is accelerating, and the deceleration of the vehicle after 1.5s due to the presence of the 

friction force generated by the tire/ground interaction. Figure 16 shows the shape of the contact 
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patch and the normal force distribution of the non-composite front right tire when the vehicle is 

not moving whereas Figure 17 shows the shape of the contact patch and the normal force 

distribution of the same tire when the vehicle is accelerating. As expected and can be seen from 

the results presented in Figure 17, the location of the maximum normal force in the contact patch 

of an accelerating tire is found to be slightly displaced in the direction of motion when compared 

to that of the static case.  

 

Figure 13. Chassis reference node vertical displacement ( Noncomposite; 

   Composite) 

 

This behavior is consistent with tire mechanics as can be seen in Figure 18 that shows the analytical 

contact force distribution of a static tire and a rolling tire (Blundell and Harty, 2004). Furthermore, 

the normal force distribution of the front right tire when the vehicle is static is also consistent with 

the analytical description shown in Figure 18, with both being symmetric in the longitudinal 

direction and the maximum value being in the center of the contact patch. 
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Figure 14. First component of xr  gradient of front right rim reference node (

Noncomposite;   Composite) 

 

 

Figure 15. Chassis longitudinal speed ( Noncomposite;   Composite) 
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Figure 16. Contact patch of noncomposite material vehicle tire in static (non-rolling) condition 

 

Figure 17. Contact patch of noncomposite material vehicle tire in rolling condition 
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Figure 18. Analytical tire contact force distribution (Blundell and Harty, 2004) 

 

2.6 Concluding Remarks  

In this chapter, a new computational procedure for modeling tire and vehicle systems is presented. 

The chapter demonstrates the integration of ANCF tire models with computational MBS 

algorithms by using the new concept of the ANCF reference node. This concept is used to develop 

a tire assembly in which a vehicle model, including the tires, can be represented using one ANCF 

mesh in which the linear connectivity conditions are used to eliminate redundant variables at a 

preprocessing stage. The computational approach used in this chapter allows for developing 

detailed FE vehicle models that include tires with distributed inertia and elasticity without the need 

for using co-simulation techniques, only one MBS simulation environment is required. The 

optimum sparse matrix structure of the dynamic equations of motion is preserved by introducing 

a minimum set of nonlinear algebraic equations that ensure the rigidity of the rims, axles, and 

possibly the chassis of the vehicle. A continuum-based air pressure tire model that allows for 
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accounting for the change of the inner surface area of the tire due to the contact forces is proposed. 

In this continuum-based air pressure model, Nanson’s formula is used to define the area in the 

current deformed configuration in terms of the area in the reference configuration. This continuum-

based air pressure model can be used as an alternative to the discrete spring models often used in 

the literature to model the tire pressure forces. Because general and more accurate tire models 

require the use of composite materials, it is shown how an ANCF composite tire model can be 

systematically developed and integrated with MBS algorithms. To this end, fully parameterized 

ANCF plate elements are used. Numerical results are presented in this chapter in order to 

demonstrate the implementation of the proposed computational MBS approach. 
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CHAPTER 3 

LOCALIZED SURFACE GEOMETRY IN ANCF FINITE ELEMENTS 

This chapter (published as He et al., 2017) introduces a new method for the integration of localized 

surface geometry with fully parameterized absolute nodal coordinate formulation (ANCF) finite 

elements. In this chapter, ANCF finite elements are used to create the global geometry and perform 

the finite element (FE)/multibody system (MBS) analysis of deformable bodies. The localized 

surface geometry details can be described on ANCF element surfaces without the need for mesh 

refinement. The localized surface is represented using a standard computational geometry method, 

Non-uniform rational B-spline (NURBS), which can describe both conic surface and freeform 

surface efficiently and accurately. The basic idea of the integration of localized surface geometry 

with ANCF elements lies in the inclusion of such detail in the element mass matrix and forces. 

The integration can be implemented by overlapping the localized surface geometry on the original 

ANCF element or by directly trimming the ANCF element domain to fit the required shape. During 

the integration process, a mapping between ANCF local coordinates and NURBS localized 

geometric parameters is used for a consistent implementation of the overlapping and trimming 

methods. Additionally, two numerical integration methods are compared for the rate of 

convergence. The results show that the proposed subdomain integration method is better, since it 

is optimized for dealing with complex geometry. The proposed subdomain method can be used 

with any fully parameterized ANCF element. In order to analyze the accuracy of the proposed 

method, a cantilever plate example with localized surface geometry is used, and the simulation 

results with the proposed method are compared with the simulation results obtained using a 

commercial FE code. Two other examples that include contact with ground and localized surface 

geometry are also provided. These examples are a simple plate structure with surface geometry 
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and a tire with tread details. The incompressible hyperelastic Mooney-Rivlin material model is 

used to describe the material used in the tire tread. It is shown through the tire contact patch that 

the proposed method can successfully capture the effect of the tread grooves. The ANCF tire model 

is also used to demonstrate that convergence of the position level results can be achieved. 

 

3.1 Localized Surface Geometry Modeling Methods 

There are three different levels in the FE analysis at which the local surface geometry can be 

implemented in the model. For level one, the geometry details are included while building the 

CAD model, for level two, these details are included while generating the FE mesh, and for level 

three, the details are included during the numerical integration process of the FE problem. Thus, 

the localized surface geometry modeling approach can be classified as the geometric shape design 

level (Kagan et al., 2003; Bouclier et al., 2016; Chemin et al., 2015), mesh level and numerical 

integration level (Wang, 2000; Nicolas and Fouquet, 2013).  

In the CAD field, the techniques used to represent the localized geometry mainly include 

local and global refinement methods, trimming and the merging methods (Piegl and Tiller, 1997; 

Schmidt et. al, 2012). Global refinement is the simplest refinement technique in geometric design 

(Li and Ke, 2000). For example, the most useful method when B-spline and NURBS are used is 

to insert knots where the local feature exists (Kagan et al., 2003; Yu and Shabana, 2015). However, 

the patches near the local geometric feature must be refined simultaneously to ensure conformity, 

and this may introduce many undesired control points. The disadvantage of this approach is that it 

leads to rapidly growing computing and storage requirements. Trimmed NURBS surface has 

become one of the most effective and widely used methods in current CAD systems for modeling 

complex surfaces because it provides a promising alternative for representing NURBS domains of 
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arbitrarily complex topology (Schmidt et al., 2012). The trimmed NURBS surface approach makes 

adding localized surface geometry convenient and easy. One disadvantage of the trimmed NURBS 

surface method is that it can lead to difficulties during mesh generation, by often making the mesh 

irregular and overly fine, which may lead to highly deformed elements in the reference 

configuration, error in the FE solution due to a distorted mesh, and a higher computational cost in 

case of an overly fine mesh. In order to improve the flexibility of splines and enable local 

refinement, several new splines have been developed recently, including hierarchical B-splines 

and NURBS (Bornemann and Cirak, 2013; Bouclier et al., 2016), LRB-splines and T-splines (Uhm 

and Youn, 2009; Wang et al., 2011; Schillinger et al., 2012). T-splines have attracted considerable 

attention in both the computational geometry and analysis communities since they can also 

represent trimmed multi-patch geometries. PHT-splines which are based on T-splines have been 

used in the framework of isogeometric analysis (Bouclier et al., 2016). Forsey and Bartels (1988) 

introduced the concepts of hierarchical B-splines, which provide the capability for local refinement 

of surfaces and multi-resolution surface editing. Since this method is not restricted to the 

underlying B-spline mathematics, it is applicable to any parametric tensor product or triangular 

representation. There are several methods in the CAD field for localized surface geometry 

modeling, but it is difficult to use them in conjunction with ANCF since they are very complicated 

to implement and might lead to issues regarding the continuity and conformity between elements 

which is an important aspect of the ANCF method. 

Methods for the inclusion of localized geometry at the mesh level also consist of global 

refinement and local refinement. There are several major approaches that allow adaptive 

refinement in the FE analyses including the h-refinement, p-refinement and r-refinement (Chemin 

et al., 2015; Wang, 2000). H-refinement is considered a non-local refinement method because more 
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than one element is refined at the same time. The algorithm for h-refinement is simple and it is 

easy to apply to complicated domains. There are similar refinement techniques based on a 

hierarchical split of the standard finite element which allow localized surface geometry modeling 

(Wang, 2000; Nicolas and Fouquet, 2013). However, most adaptive mesh refinement methods are 

approximations of the original mesh to within a given tolerance, and therefore, conformance of the 

elements can be difficult to achieve. Furthermore, as finer meshes are being developed in order to 

capture fine geometry details, the computing and storage requirements and the number of degrees 

of freedom of the mesh increase. Since the ANCF method employs higher order displacement 

polynomials in order to achieve gradient continuity, conformance in some elements, and more 

detailed deformation shapes, ANCF elements normally have more degrees of freedom as compared 

to the classical FEs which can lead to long simulation time.  

In the FE method, the inertia and elastic force coefficients in the weak form of the 

equilibrium equations are evaluated using numerical integration methods. Hence the influence of 

a local geometric shape can also be considered by adjusting the integration domain or the 

distribution of integration points when calculating these inertia and force coefficients which are 

required in order to obtain the solution of the FE problem. The detailed localized surface can be 

described by a curve or surface which is then used to adjust the integration points. In this case, the 

original mesh does not need to be refined to the size factor of the geometric feature to be captured. 

Integration point level methods include the subdomain method and the adaptive integration 

method. In the adaptive integration method, the mesh or the geometric domain area can be divided 

into several smaller domains that use different integration methods depending on the accuracy 

requirements or shape representation (Bouclier et al., 2016; Schillinger et al., 2012). Recently, a 

large number of investigations have been focused on virtual domains and meshless methods which 
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can be considered as numerical methods developed for inclusion of details and features that cannot 

be easily captured using the traditional FE shape functions (Schillinger et al., 2012). When ANCF 

elements are used, it is more practical to use the integration point level method to model localized 

surface geometry because this method does not require any kind of mesh refinement and it is easy 

to implement. 

 

3.2 ANCF Geometry 

In MBS applications, the method used to create the model geometry as well as to analyze the FE 

mesh developed using this geometry must ensure the consistency and accuracy of the results. 

ANCF has shown its versatility in dealing with complex geometry such as tires, leaf springs, tank 

cars etc. (Patel et al., 2016; Yu et al., 2016). This section briefly reviews the ANCF equations that 

will be used in other sections of this chapter. 

Flexible bodies that undergo large deformation do not always have uniform dimensions 

throughout the body. For example, the geometric shape and transverse deformation in the thickness 

cannot always be ignored. Considering this modeling complexity, fully parameterized ANCF 

elements are good choices for the analysis of large deformation problems. Amongst the collection 

of fully parameterized ANCF elements, the conforming plate element, which ensures gradient 

continuity on the element edges, is selected for the development presented in this chapter (Mikkola 

and Shabana, 2003). As described in Chapter 2, the global position vector of an arbitrary point on 

an ANCF plate element j  on body i  can be defined using the element generalized coordinates ije  

and the element shape function matrix ijS  as ( , , , ) ( , , ) ( )ij ij ijx y z t x y z tr S e , where t  is time, and 

 , ,x y z are the element local coordinates. The vector of nodal coordinates ije  can be written as 
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1 2 3 4( )
Tij ijT ijT ijT ijTt    e e e e e , where the subscript refers to the node number. The generalized 

coordinates at a given node k  include absolute position and three gradient vector coordinates, 

which can be written as ( ) ( / ) ( / ) ( / )
Tij ij T ij T ij T ij T

k k k k kx y z        e r r r r  for 1, 2,3, 4k  . 

When fully parameterized ANCF elements are used to represent the flexible bodies, the parameter 

z  can be expressed as a function of x  and y , allowing the thickness of the element to vary with 

the other two local coordinates. Using this concept, the position vector of an arbitrary point on the 

element can be defined as ( , , , ) ( , , ( , )) ( )ij ij ijx y z t x y f x y tr S e , this equation is obtained by simply 

substituting the local coordinate z  using a function  ,f x y  (Gantoi et al., 2013). Using this 

simple method, any given localized surface geometry can be described in the ANCF element 

without the need for further mesh refinement. By writing one parameter, z , in terms of the other 

two parameters, x  and y , a surface with an arbitrary shape can be defined using the function 

relationship  ,z f x y . The function  ,f x y  can be used to represent complex geometry and 

can also be defined analytically or numerically. 

 

3.3 Integration of Localized Surface 

This section introduces the integration of localized surface geometry with the global ANCF surface 

geometry. The concept of NURBS which is used to describe localized surface geometry is also 

briefly introduced. 

3.3.1 The Definition of Localized Surface 

In this chapter, the localized surface geometry to be integrated with the fully parameterized ANCF 

elements is defined using the NURBS representation, which is a generalized version of the B-
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spline method and has become a standard geometric modeling method in CAD and computer 

graphics industries. Unlike general Lagrange polynomials, NURBS can describe a circle and 

sphere exactly and will be briefly reviewed in this section. Let  1 2 1, ,..., n pu u u  U , called the 

knot vector, be a non-decreasing sequence of parameter values, where p is the degree of the 

NURBS curve, n  is the number of control points, and iu  is the knot value and the set of all knot 

values makes up the knot vector U . The i-th B-spline basis function of degree p , denoted by 

, ( )i pN u  is defined as (Piegl and Tiller, 1997) 

  1
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, , 1 1, 1

1 1
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B-spline curves are defined as follows: 
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where P  is the vector of control points of the B-spline curve. NURBS curve, which is the weighted 

and rational form of B-spline, can be expressed as follows (Piegl and Tiller, 1997): 
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where iw  is the weight of i-th control point. A NURBS surface of degree p  in the direction u  

and degree q  in direction v  is represented as follows (Piegl and Tiller, 1997): 
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where the size of control points matrix ijP  and weights ijw  is n m . 

3.3.2 Localized Geometry and ANCF Elements 

In this section, two methods for integrating the localized geometry with ANCF elements are 

described. The global geometry of the structure is represented by the ANCF shape functions and 

the element nodal coordinates, whereas the shape of localized geometry is described using the 

NURBS representation. As mentioned earlier the basic ANCF geometry that the localized 

geometry is superimposed on can be defined as ( , , , ) ( , , ) ( )x y z t x y z tr S e . In this section, r  refers 

to the ANCF element geometry that accounts for the local geometry features, whereas r  refers to 

the ANCF geometry without localized geometry modifications. When a local feature such as a 

protrusion is added in an element domain l , its shape can be defined by overlapping a height 

value on the basic element shape along a direction normal to the surface. Accordingly, the modified 

position field with the groove in the element can be denoted as 

        
     

, , ,                          ,
, , ,

, , , ,        ,
l

l

x y z t x y
x y z t

x y z t h x y x y

   

r
r

r n
                                 (15) 

where n  is the normal to the basic ANCF surface calculated as ( ) /x y x y  n r r r r , ( , )h x y  is 

the thickness of the localized geometry, which may be represented by a NURBS curve or surface, 

and l  is the domain on which localized geometry is defined. As shown in Figure 19(a), if the 

height is set to a positive value, a protrusion can be defined in the ANCF element. This method 
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can also be used to define other localized geometries by defining different NURBS curves and 

surfaces. 

 

(a) Overlapping method 

 

(b) Domain trimming method 

Figure 19.  Integration of localized geometry with ANCF geometry 

Another method that is quite useful in defining localized surface geometry, especially when 

dealing with features like a groove, can be implemented by trimming a given ANCF domain with 
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a boundary curve described by NURBS as is illustrated in Figure 19(b). This method can be more 

general than the overlapping method particularly when multiple curves or surfaces are used to 

define the boundary. However, for the fully parameterized ANCF elements considered in this 

chapter, the focus is on the simple situation of a single type of localized geometry, so only one 

NURBS curve or NURBS surface is used to define the trimming boundary. The easiest way to 

implement this method is to augment the original thickness domain of the element from 

 0 0.5,0.5z    to either  ,0.5minz z  or  0.5, maxz z   where the upper and lower surface of the 

element can be locally defined by the dimensionless coordinates maxz  and minz  respectively which 

may be controlled by a function ( , )f x y , and  ,  refers to a closed interval. 

Since during the numerical integration process  , ,x y z are the local coordinates in the 

element straight configuration and the parameters of NURBS are commonly based on the arc 

length of the curve or the isoparametric curves, a mapping, ( , ) ( , )x y u v , is required between the 

ANCF local coordinates and NURBS localized geometric parameters, which is shown in Figure 

20. For example, if the localized geometry is defined on the top surface of the ANCF element, the 

domain of this geometry can be defined along the element longitudinal and lateral directions as 

 0,1x  and  ,a by y y  respectively. However, the range of the function defining the geometry 

may only vary with y . For such geometry and for the overlapping and the trimming methods 

described in this section, the mapping process between ANCF and NURBS can be summarized as 

follows: 

Step 1:  If  ,a by y y ,    a b ay y y y y   , GOTO Step 2; ELSE GOTO Step 5.2 

Step 2:  Initialize 0u y  
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Step 3:  Carry out Newton iteration:  1 ( ) ( )T T
k k k ku u u y u   B c B c , where 

 0 1 0
T

B  

Step 4:  If 1k ku u    , where   is a specified tolerance, GOTO Step 3, ELSE GOTO 

Step 5.1 

Step 5.1:   max 1, , ( )kx y z u  c ; GOTO Step 6 

Step 5.2:     max, , , ,0.5x y z x y ; GOTO Step 6 

Step 6:  Calculate numerical integration points and weights in vertical domain  max0.5, z  

Step 7: Calculate actual element global coordinates by either overlapping or domain 

trimming method 

 

 

Figure 20.  Mapping between the localized geometry parameters and ANCF element coordinates 
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Using the procedure described in this section, the mapping between the NURBS parameters and 

the ANCF local coordinates can be achieved, and the localized geometry can be superimposed on 

the ANCF surface. 

 

3.4 Numerical Integration Method 

The basic idea of the FE method is to approximate the governing differential equations of the 

flexible body by mesh discretization and numerical integration. Mesh refinement is currently the 

only way to define detailed geometry using ANCF elements. A very fine mesh of ANCF elements 

without parallel computation could lead to long simulation run times. Since the computational 

implementation of the FE method as well as the new concepts proposed in this chapter heavily rely 

on numerical integration, this section will discuss the numerical integration method used and its 

accuracy. 

3.4.1 Global Domain and Subdomain Integration Method 

The number and distribution of the integration points has a significant influence on the simulation 

accuracy. The Gauss integration method is the standard method used in the FE analysis since it is 

the most accurate numerical integration method for a given number of integration points. 

Therefore, the Gauss integration method is used in this chapter as well. In order to integrate the 

localized geometry in this chapter, two methods: the global domain and the subdomain methods 

are used and compared. 

In the global domain integration method, there is only one integration domain g  for every 

element, and an integration point can be identified by its coordinates in the element as 
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    , , , , ,i i i i i i i ix y z x y f x y q . A function  , ,i i ix y z can be numerically integrated using the 

global domain method as 

    
1 1

, , , , ,
g gn n

g i i i i i i i i i
i i

x y z w x y f x y w 
 

                                     (16) 

where gn  is the total number of integration points, and iw  is the weight corresponding to the thi  

integration point. The weights are usually dependent on the orthonormal functions used in the 

integration scheme and the number of integration points in each direction. 

In the subdomain integration method, on the other hand, the whole domain   of an 

element is divided into dn  subdomains 1 2, ,...,
dn   where this set of subdomains satisfies 

1 2 ,...,
dn       and k l     when k l . There are in  integration points in each 

subdomain j , and the function ( , , )i i ix y z  can be numerically integrated on   using the 

subdomain method as 

  
1 1

, , ,
d in n

l ji ji ji ji ji
j i

x y f x y w
 

                                           (17) 

where jiw  is the integration weight related to the corresponding integration point defined by

    , , , , ,ji ji ji ji ji ji ji jix y z x y f x y q . 

Figure 21 shows the distribution of integration points generated by the two integration 

methods in the same integration domain that includes localized geometry. One major difference 

between the two methods is that the subdomain method allows for much more flexibility and 

control of integration points in the domain that is being integrated since the regular single domain 

or global domain integration is constrained by the abscissa of the integration points which are the 
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roots of the Legendre polynomial, whereas with the subdomain integration the subdomains can be 

adjusted based on the configuration of the local geometry. As can be seen in Figure 21, the global 

domain integration method leads to 3 integration points capturing the localized geometry, whereas 

the use of the subdomain method would lead to 9 integration points capturing the effect of the 

localized geometry and leading to more accurate results. 

y

z

ya yb

z = f(y)

 

(a) Global domain method           

 

y

z

ya yc yd yb

z = f(y)

 

(b) Subdomain method 

Figure 21.  Distribution of integration points using the global domain and subdomain methods 
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3.4.2 Comparison of the Two Integration Methods 

Figure 22 compares the two integration methods described previously in this section. Figure 22(a) 

shows the discretization of the element in the y  direction using the subdomain method. The 

element thickness is varied using the function ( )z f y  defined on the domain  1 6,y y , wherein 

the local geometry feature of interest is located in the middle of the given domain. The whole 

domain is divided into five subdomains, of which subdomains  2 3,y y ,  3 4,y y  and  4 5,y y  are 

used to define the local feature. Figure 22(b) shows the detailed localized geometry shape, which 

is represented by a NURBS curve and its control points, which are also shown in the figure. In 

order to compare between the global and subdomain integration methods, the norm of the mass 

matrix is evaluated for a plate element with the localized geometry information given in Figure 

22(a) and 22(b) superimposed on its lower surface. Figure 22(c) shows the results of the norm of 

the mass matrix evaluated using the two numerical integration methods. The mass matrix of ANCF 

elements is defined as T
o

V

J dV M S S , where   is the mass density, V  is the volume in the 

straight configuration, and oJ  is the determinant of the matrix of position vector gradients that 

define the curved geometry in the reference configuration. In this example, the density   is 

assumed to be 31500 /kg m , the length and width both are taken to be 1m , and the thickness is 

0.05m. As can be seen in Figure 22(c), while using the subdomain integration method, increasing 

the number of integration points to more than 3 in every subdomain leads to faster convergence in 

the norm of the mass matrix. However, when using the global domain integration method, even 

increasing the number of integration points to more than 40 does not lead to satisfactory 

convergence of the norm of the mass matrix. These results show that local and more dense 
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distribution of the integration point mesh using the subdomain method is a better choice 

considering the balance between solution accuracy and computational cost. 
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                                  (a) Division of subdomain                       (b) Localized geometry  (    Control point) 
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(c) Comparison of mass matrix norm using the two integration methods 
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Figure 22. Comparison of global domain and subdomain integration method 
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3.5 ANCF Governing Equations 

In this chapter, the dynamic equations of motion are formulated using ANCF elements. This 

formulation leads to a constant mass matrix and nonlinear elastic force vector. Regardless of the 

complexity of the geometry superimposed on the ANCF elements, the mass matrix remains 

constant and the Coriolis and centrifugal forces are identically zero vectors. Using the expressions 

of the kinetic energy, strain energy and the virtual work of external forces, the dynamic equations 

of the ANCF element can be defined in the form  k e Me Q Q , where M  is the mass matrix, e  

is the vector of nodal coordinates, kQ  is the vector of elastic forces, and eQ  is the vector of 

generalized external forces including the gravity force and contact force cQ . Using the continuum 

mechanics approach, the virtual work of the elastic forces of fully parameterized elements can be 

written as = :P2k V
W dV   σ ε  where P2σ  is the second Piola-Kirchhoff stress tensor conjugate 

to ε  which is the Green-Lagrange strain tensor defined as 
1

( )
2

T ε J J I , where J  is the matrix 

of position vector gradients. In case of a curved reference configuration 

1
e o

            

r r x
J J J

X x X
 where r  and X  are, respectively, the position vector of a material 

point in the current configuration and reference configuration, and  Tx y zx is the vector of 

element spatial coordinates. For generality, P2σ  can be derived from the strain energy function as 

2P2 rU  σ C , where U  is the strain energy potential function, and rC  is the right Cauchy-

Green deformation tensor defined as T
r C J J  (Ogden, 1984; Shabana, 2012). In the case of the 

hyperelastic nearly incompressible Mooney-Rivlin material model used in one of the examples in 

this chapter,      2

10 1 01 2

1
3 3 1

2
U I I k J        where 10 01,     are material coefficients, 
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1 2,  I I are the invariants of the deviatoric part of the rC tensor, k  is the penalty term and J  J  

(Ogden, 1984; Shabana, 2012; Orzechowski and Fraczek, 2015). 

Similar to the contact model described in Chapter 2, a simple contact model based on a 

penalty approach and coulomb friction is used in this chapter as well. The contact forces are treated 

as point forces where the normal component is defined as =( )n p pk d c df n , where nf is the normal 

component of the contact force, pk  is the ground stiffness coefficient, pc  is the ground damping 

coefficient, d  and d  are the penetration and the rate of penetration respectively, and n  is the unit 

normal to the ground surface at the contact point. The penetration is calculated as ( )g
P Pd   r r n  

, where Pr  is the global position of the contact point on the flexible body, and g
Pr  is the global 

position of the corresponding contact point on the ground (Patel et al., 2016). For the tangential 

contact forces, each contact point is detected for its relative velocity with respect to the ground in 

order to apply the tangential force that depends on the coefficient of friction  . The expression 

for the generalized contact forces associated with the ANCF generalized nodal coordinates can be 

obtained by using the virtual work of the contact forces and is given by ( )T
c cQ S x f , where 

c n t f f f , where subscripts n  and t  refer to normal and tangential directions, respectively. 

 

3.6 Numerical Results 

Three numerical examples are presented in this section to demonstrate the method of adding 

localized surface geometry. In the first example, a plate-like structure with localized geometry 

meshed with ANCF plate elements is used in the simulation of contact with a ground. Different 

numbers of subdomains and integration points are used to compare their influence on the accuracy 
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of the results. In the second example, the deformation of a cantilever plate with grooves under a 

concentrated force at a corner of the free end is simulated and the results are compared with the 

results obtained using a commercial FE code (ANSYS, 2013).  In the third example, ANCF plate 

elements with a nearly incompressible Mooney-Rivlin rubber material are used to model a tire 

with tread details, and the convergence of this model is demonstrated by refining the tire mesh.  

3.6.1 Plate Contact Example 

In this example, localized surface geometry is overlapped on the ANCF elements and the structure 

is allowed to free fall and contact with a ground. The length and width of the plate element are 

both 1m and the thickness is 0.05m. The localized geometry that is defined between  0.4,0.6  of 

the non-dimensional y  coordinate of the element is shown in Figure 23(a). The material and 

contact properties are given in Table 7 and 8, respectively. There is one integration domain in the 

vertical and longitudinal directions of the element with 3 and 7 integration points, respectively, 

whereas the integration domain in lateral direction is divided into several subdomains according 

to the shape of the localized geometry, and the number of integration points in the lateral 

subdomains is varied from 2 to 5 in order to examine the effectiveness of the subdomain integration 

scheme. Figure 23(b) shows the contact patch of one ANCF plate element with localized surface 

geometry. 

In order to analyze the effect of the subdomain division and number of integration points 

per subdomain, the vertical position of a contact point on the plate lower surface is shown. First 

the influence of the number of integration points per subdomain is analyzed by dividing the 

element lateral domain into 3 subdomains. As shown in Figure 24, as the number of integration 

points per subdomain is increased from 2 to 5, the solution converges.  
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Table 7. Material properties used in the plate contact example 
Linear Elastic  

Density (kg/m3) 7860 
Modulus of Elasticity (MPa) 0.2 
Modulus of Rigidity (MPa) 0.1 

 

 

Table 8. Contact parameters used in the plate contact example 
Parameter Value 

Ground Stiffness (N/m) 8500 
Ground Damping (N˖s/m) 20.0 

Friction Coefficient   0.75 

 

 

 

(a) The definition of localized geometry 
(     Control point) 
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(b) Contact force at t=1.0s 

Figure 23. One-plate contact example 

However, it can be seen from the enlarged drawing in Figure 24 that 3 integration points per 

subdomain are sufficient for obtaining a converged solution when compared against the extra 

computational cost of 5 integration points per subdomain. The effect of the number of subdomains 

per element is investigated using the same example. It can be seen from Figure 25 that increasing 

the number of subdomains from 2 to 4, with 3 integration points per subdomain yields converged 

results as well. Furthermore, it can be seen from the enlarged plot in Figure 25 that 3 subdomains 

lead to sufficiently converged results. The number of integration points per subdomain and the 

number of subdomains per element may have to differ for more complicated geometry; however, 

this example shows that the subdomain method is a viable and relatively computationally efficient 

method for including localized geometry details in an ANCF mesh without further mesh 

discretization. 
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Figure 24. Vertical displacement using different numbers of integration points 
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Figure 25.  Vertical displacement using different numbers of subdomains 

( ) 



69 
 

 

(a) Vertical displacement of contact point 

  

 (b) Contact force distribution at the structure mid-section at t = 1.0s 
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  (c) Contact force at t = 1.0s 

Figure 26. 2 2  ANCF plate element mesh with localized geometry 

 

Figures 26(a), (b) and (c) show the results of the aforementioned contact example with a 2 2  

mesh of ANCF plate elements with two grooves representing the localized surface geometry. The 

groove localized geometry shape, overall structure dimensions and the material properties are the 

same as one element mesh. Figure 26(a) shows the time evolution of the vertical position of the 

center point at the plate lower surface. Figures 26(b) and 26(c) show the contact force distribution 

at 1t s , which clearly shows the effect of the grooves is captured in the contact force distribution. 

3.6.2 Cantilever Plate Validation 

In order to show that the method proposed in this chapter is able to capture the effect of the local 

surface geometry, a validation example in the form of a cantilever plate with a tip force at its free 

end is provided. The ANCF results are compared with those obtained from a commercial FE code 
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(ANSYS, 2013). The conforming fully parameterized plate element is used for the ANCF mesh 

whereas SOLID186 element which has a quadratic displacement field is used in the commercial 

FE code. Figure 27 shows the reference configuration of the cantilever plate. The material model 

is assumed to be linear elastic and the material properties are given in Table 9. The overall length, 

width, and thickness of the structure is taken to be 1 1 0.05 m  . Each ANCF element in its lateral 

direction is divided into 3 subdomains with 3 integration points per subdomain in order to account 

for the localized geometry. The loading function at point P which is the tip of the free end shown 

in Figure 27 is a linear function of time and reaches its maximum value of 50N  at 1st  .  

 

Figure 27. Cantilever plate reference configuration and cross section 

Table 9. Material properties used in the cantilever plate example 
Linear Elastic  

Density (kg/m3) 2000 
Modulus of Elasticity (MPa) 2.0 
Modulus of Rigidity (MPa) 1.0 
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Table 10. Comparison of the cantilever plate tip vertical position with and without localized 
geometry 

Mesh With Local Geometry (m) Without Local Geometry (m) 

ANCF 

2 2   -0.4098 -0.3763 
3 3  -0.4649 -0.4332 

4 4  -0.5030 -0.4654 
5 5  -0.5232 -0.4774 
6 6  -0.5335 -0.4853 
8 8  -0.5412 -0.4928 

12 12  -0.5469 -0.4966 
16 16  -0.5511 -0.4981 

Classical FE converged mesh -0.5669 -0.5022 

 

Figures 28 and 29 show the convergence of the classical FE mesh and ANCF mesh for the given 

geometry, respectively, and Figure 30 shows the error in the ANCF results against the converged 

classical FE solution. There is a small difference in the converged solutions of classical FE method 

and ANCF. This difference can be attributed to the way how each method accounts for the 

localized geometry in a different manner, however when compared to the total deformation of the 

structure, the difference in the vertical displacement of the tip point P is approximately 2.79%. 

Furthermore, Table 10 compares the ANCF solution for the same cantilever plate problem with 

and without the localized geometry details against a converged classical FE solution. Table 10 

gives the vertical position of the tip point P shown in Figure 27 at t=1s. Accounting for the 

localized geometry has a softening effect on the structure since removing material in the 

longitudinal and lateral directions of the structure will reduce its bending stiffness as can be seen 

from the ANCF and classical FE solutions with and without the local geometry. Thus, the method 

proposed in this chapter can successfully capture the effect of the localized geometry in a given 

ANCF mesh. 



73 
 

 

Figure 28. Convergence of classical FE code solution for plate structure with local geometry 
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Figure 29. Convergence of ANCF solution for plate structure with local geometry 
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Figure 30. Difference between ANCF solution and classical FE solution 

3.6.3 Tire Contact Example 

In this numerical example, a tire meshed with 240 ANCF plate elements is dropped on ground and 

the resulting contact patch is examined. NURBS is used to create the tire tread details, which are 

the grooves in the tire. This type of detail in the tire surface geometry is known as the rib type 

tread as shown in Table 1 (Chapter 1). The tire is based on the 45/65 R45 tire size and a nearly 

incompressible hyperelastic Mooney-Rivlin material is used to represent the rubber in the tread. 

Figure 31 shows the overall shape and cross section of the tire without any tread details. The 

material and contact parameters used for this example can be found in Tables 11 and 12 

respectively. The NURBS method using parameter mapping is used to superimpose the localized 

tread geometry on the outer surface of the tire. Figure 32(a) shows the control points and the shape 

of the NURBS curve used for representing the grooves in the tire, whereas the contact patch from 
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the tire-ground contact is shown in Figure 32(b). Figure 32(b) clearly shows that the contact force 

is zero in the groove regions of the tire and the tire is supported on the rib regions that are in contact 

with the ground. Figure 33 shows the determinant of the Jacobian (matrix of position vector 

gradients) at the center point of the tire tread lower surface, clearly illustrating that the material 

stays nearly incompressible during the large deformation of the tire. This example clearly shows 

the effectiveness of the subdomain method in capturing the localized surface geometry in the case 

of tires in contact with ground using the ANCF framework.  

 

Figure 31. ANCF tire geometry 

Table 11. Material properties used in the tire example 
Mooney-Rivlin 

Density (kg/m3) 1500 

Coefficient 𝜇ଵ଴ (MPa) 2.5 

Coefficient  𝜇଴ଵ (MPa) 2.0 

Penalty coefficient k 81.33 10   

 



76 
 

 

(a) Localized surface geometry of the tire tread 
                                                            (     Control point)  

 

 
(b) Tire tread contact patch 

Figure 32.  Tire tread with four grooves  
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Figure 33.  Value of J  at the middle point on the bottom of the tire tread surface 

 

 (                ) 

Figure 34. Position convergence of ANCF solution for tire contact example 
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Table 12. Contact parameters used in the tire example 
Parameter Value 

Ground Stiffness (kN/m) 70 
Ground Damping (N˖s/m) 160 

Friction Coefficient   0.75 

 

Furthermore, in order to demonstrate the convergence of the model, the tire mesh is refined 

and the convergence of the model against results acquired from a commercial FE code is shown 

in Figure 34 through the evolution of the vertical position of node 1 on the tire mesh. The mesh 

code provided in Figure 34 follows an n m  format where n  refers to the number of elements in 

the tire radial direction, whereas m  refers to the number of elements in the tire lateral direction. 

The commercial FE code mesh consisted of 22,631 quadratic tetrahedral elements in order to be 

able to correctly capture the localized geometry on the surface of the tire.  The material and contact 

parameters used for this convergence analysis are provided in Tables 11 and 12 respectively. For 

the ANCF results, selectively reduced integration was used on the volumetric term of the Mooney 

Rivlin material model, whereas full integration was used on the deviatoric terms. The small 

difference between the converged ANCF result and the commercial FE code results can be 

attributed to the presence of some shear locking in the model since the deviatoric term of the 

Mooney Rivlin model used full integration in the x and y element directions. The reason for this is 

the usage of subdomain integration in the element lateral direction which adds more integration 

points in that domain in order to capture the localized geometry. Reduced integration with 

subdomain integration would lead to 1 integration point in every subdomain which might lead to 

spurious modes, potential hourglassing in the elements and a very crude approximation of the 

localized geometry. The study of reduced integration with subdomain integration requires more 

investigation and can be a considered as a topic of research in the future. These results also lead to 
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the conclusion that special attention must be paid to the tire mesh discretization as well as element 

locking phenomena in order to have a good ANCF model that yields accurate results. Further 

validation is required to ensure the correlation with a physical model; however, this study also 

shows that the continuum-based fully parameterized plate element can achieve convergence with 

mesh refinement and locking alleviation techniques. 

 

3.7 Concluding Remarks 

In this chapter, a method for the integration of localized surface geometry with fully parameterized 

ANCF elements is proposed. ANCF FEs are used to create the global geometry and perform the 

FE/MBS analysis of the bodies. The surface geometry details can be added without refining the 

mesh to the scale of the detailed features. The localized surface may be represented by NURBS 

and can accurately describe complex geometric shapes such as a conic surface and freeform 

surface. The basic idea lies in the integration of the localized surface with the global surface by 

augmenting the geometry during the numerical integration process. Two methods for including the 

localized geometry in the ANCF elements are proposed. The overlapping method simply changes 

the thickness of the element using a function that is dependent on the lateral and longitudinal 

coordinates of the element. The domain trimming method takes advantage of the powerful NURBS 

geometry as a tool to trim the domain of original ANCF element according to the shape of the 

localized geometry. While using NURBS to define the localized geometry, a mapping between 

ANCF local coordinates and NURBS localized geometric parameters is used in both geometric 

integration methods.  Furthermore, a comparison of two numerical integration methods, the global 

domain and the subdomain methods is presented in this chapter. The results show that the 

subdomain method is better suited for integrating complex geometry in ANCF elements since it 



80 
 

has more flexibility in the distribution of the Gauss integration points. Using the subdomain 

method, any kind of geometry can be superimposed in the case of fully parameterized ANCF 

elements without the need for further mesh refinement during dynamic simulations. A cantilever 

plate example with localized surface geometry is provided to validate the proposed method by 

comparing the simulation results obtained with the proposed methods against a commercial FE 

code. A model of a flexible ANCF plate contacting with rigid ground is used to study the effect of 

the number of subdomains and the number of integration points per subdomain used in accounting 

for the localized geometry. Finally, a tire model meshed with ANCF plate elements and described 

by a hyperelastic incompressible Mooney-Rivlin material with four grooves integrated as localized 

surface geometry is considered. The results from the tire simulation that capture the effect of the 

grooves in the tire contact patch show the effectiveness of the proposed methods whereas the 

convergence study performed with the tire model helps support the basis of the proposed concepts 

by demonstrating that the model can achieve convergence with mesh refinement and reduced 

integration techniques which help alleviate locking. In summary, the proposed method does a good 

job of capturing surface geometry without significantly increasing the computational cost that 

comes from mesh refinement. Future studies can be focused on eliminating the limitations of the 

method that include the fact that very localized deformations of the more intricate geometry cannot 

be easily captured since the element deformation field is still governed by its basis functions, and 

that the method will be challenging to use with very complex three-dimensional changes in the 

structure’s geometry. Studying the effects of reduced integration within the subdomain integration 

scheme can also be considered as a topic of future investigations. 
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CHAPTER 4 

ANCF LOCKING ALLEVIATION: STRAIN SPLIT METHOD 

This chapter (Patel and Shabana, 2017) proposes a new locking alleviation technique for absolute 

nodal coordinate formulation (ANCF) beam and plate elements based on a strain split approach. 

The chapter also surveys classical finite elements (FEs) and ANCF locking alleviation techniques 

discussed in the literature. Because ANCF beam elements, which allow for the cross section 

stretch, fully capture the Poisson effect, Poisson locking is an issue when such beam elements are 

considered. The two-dimensional fully-parameterized ANCF beam element is primarily used in 

this chapter because such an element can serve as a good surrogate model for three-dimensional 

ANCF beams and plates as far as membrane, bending and transverse shearing behavior is 

concerned. In addition to proposing the strain split method (SSM) for ANCF locking alleviation, 

this chapter assesses the ANCF FE performance in the cases of higher-order interpolation, 

enhanced assumed strain method, elastic line method, and the enhanced continuum mechanics 

approach; and demonstrates the design of the enhanced strain interpolation function by using the 

shape functions of higher-order ANCF elements. Additionally, a new higher-order ANCF two-

dimensional beam element is proposed in order to compare its performance with other FEs that 

require the use of other locking alleviation techniques proposed and reviewed in the chapter. 

Finally, several numerical examples are shown to demonstrate the effectiveness of the locking 

alleviation methods applied to ANCF elements. The purpose of this chapter, apart from proposing 

a new locking alleviation technique, a new higher-order beam element, and comparing several 

existing locking alleviation techniques, is to show that dealing with locking in fully-parameterized 

ANCF elements is feasible and that several methods exist to effectively improve the ANCF 

element performance without sacrificing important ANCF element properties and features 
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including position vector gradient continuity. Because of the use of ANCF position vector 

gradients as nodal coordinates, complex stress-free initially-curved geometries can be 

systematically obtained. Such initially-curved geometries require special attention when 

attempting to solve locking problems, as will be discussed in this chapter. 

 

4.1 Locking Alleviation in Classical FEs 

Because many classical FEs suffer from locking problems, locking has been thoroughly 

investigated by the FE community and numerous techniques have been proposed over the years 

for effectively eliminating its effect on the element solution. Some of the locking mechanisms that 

affect classical FEs include shear, Poisson, curvature thickness, membrane and volumetric locking. 

A significant amount of literature exists for locking alleviation techniques in case of commonly 

used elements like the classical beam, shell, and hexahedral elements. These techniques typically 

include improvement of element kinematics, modification of constitutive models, usage of mixed 

formulations or a specifically tailored numerical fix for the locking problem at hand. This section 

will review some of the general locking alleviation techniques used in the classical FE theory and 

locking alleviation methods specifically designed for classical beams. Due to the immense amount 

of literature available on the topic of FE locking, only a tiny fraction of it pertaining to specific 

locking alleviation techniques will be presented in this section. 

One of the most widely used techniques to alleviate locking is reduced integration and two 

of the earliest investigations on this topic are by Zienkiewicz et al. (1971, 1974) where the 

performances of the shell element, isoparametric quadrilateral element, and the beam element are 

improved. Reduced and selective integration was applied to plate elements by Hughes et al. (1978) 

to alleviate shear locking in the thin regime. Malkus and Hughes (1978) demonstrated the 
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equivalence of certain mixed formulations and the displacement formulation using reduced 

integration, and showed that reduced integrated elements can match the performance of their 

mixed formulation counterpart. Hughes et al. (1977) used reduced integration to significantly 

improve the behavior of a bilinear plate element in bending applications. Noor and Peters (1981) 

used reduced and selective integration for curved beams and discussed the equivalence and ‘near 

equivalence’ of mixed and displacement based beam models by comparing their stiffness matrices.  

The B-bar and the F-bar methods have been popular strategies for dealing with volumetric 

locking. The B-bar method is a generalized extension of selectively reduced integration where the 

strain displacement matrix is split into deviatoric and dilatational parts and the dilatational part is 

modified to help alleviate volumetric locking (Hughes, 1987). The F-bar approach is similar to the 

B-bar approach, but also applicable in the nonlinear regime. In the simplified F-bar approach, the 

deformation gradient is scaled using its determinant at the integration point and at the centroid of 

the element (de Souza Neto et al., 2008).  

Mixed methods have been extensively used in FE literature for tackling issues like 

incompressibility, excessive bending stiffness, and shear locking. Sussman and Bathe (1987) used 

a mixed displacement and pressure formulation to alleviate volumetric locking in the 

incompressible regime. Pian (1985) proposed a mixed element based on the Hellinger-Reissner 

variational principle and consistently assumed stress and displacement fields to improve the 

bending behavior of beams and plates. Liu et al. (1988) proposed the so called flexurally super-

convergent elements which are based on the Veubeke-Hu-Washizu variational principle, showing 

good accuracy in coarse meshes. Dorfi and Busby (1994) proposed a mixed curved composite 

beam element that showed good convergence for displacements and stresses. Kim and Kim (1998) 

proposed a mixed-hybrid curved beam element with nodeless degrees of freedom that is free of 
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locking and can accurately predict stresses as well. Taylor et al. (2003) proposed a mixed FE 

method for beam and frame problems that is locking free and has properties similar to the 

flexibility method. A popular locking alleviation technique that has its variational basis in mixed 

methods is the enhanced assumed strain method that was proposed by Simo and Rifai (1990) and 

is a generalization of the method of incompatible modes that was proposed by Bazeley et al. (1965) 

and studied by Wilson et al. (1973) and Taylor et al. (1976) for rectangular elements. The enhanced 

strain method was extended to geometrically nonlinear problems by Simo and Armero (1992). 

Furthermore, it was demonstrated that the method of incompatible modes is a special case of the 

enhanced strain approach (Simo and Rifai, 1990). The enhanced strain approach was used by Simo 

et al. (1993) to improve the performance of tri-linear brick elements in the nearly incompressible 

regime. Even though the enhanced strain technique can significantly improve the element behavior 

in incompressible and bending deformations, the element might exhibit hour-glassing in case of 

large strain compression (Wriggers and Reese, 1996). Andelfinger and Ramm (1993) developed 

two- and three-dimensional plate and shell elements using the enhanced strain approach and 

showed their equivalence to the assumed stress elements based on the Hellinger-Reissner approach 

(Pian and Sumihara, 1984). Stolarski and Chen (1995) improved the bending behavior of the two-

dimensional isoparametric quadrilateral element by studying the deformation modes of the element 

and enhancing the strains based on physical considerations. Schwarze and Reese (2009) applied 

reduced integration and the enhanced strain approach to the eight-node solid-shell element and 

demonstrated that the element can satisfy exactly the membrane and bending patch tests. Bischoff 

and Romero (2007) proposed a generalized method of incompatible modes which is based on a 

pure displacement formulation, yet its elements are equivalent to the mixed formulation based 

enhanced strain elements.  
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There is also a significant amount of work done on understanding locking in the FE 

literature. A seminal work on understanding locking was carried out by Babuska and Suri (1992A) 

who provided quantification for the FE tendency to exhibit locking and investigated the element 

robustness as certain parameters of the model approached limiting values. As a specific case of a 

limiting parameter, Babuska and Suri (1992B) investigated locking onset in two-dimensional 

elements as the Poisson ratio approached 0.5 and studied the robustness of h and p FE refinements.  

Armero (2000) investigated the material instabilities of enhanced strain elements under plane 

strain finite deformation and expanded on locking quantification in the finite deformation range.  

Bathe (2001) and Gilewski and Sitek (2011) used a numerical inf-sup test to quantify the 

convergence properties of shell elements under bending deformation. According to Bathe (2001), 

satisfaction of ellipticity, consistency, and inf-sup conditions typically means that the shell element 

will be robust and perform well in both membrane and bending dominated problems. Prathap and 

Bhashyam (1982) explained locking in beams as the presence of spurious constraints related to 

certain deformations like pure bending in case of conventional elements which might be field-

inconsistent. Prathap and Babu proposed field consistent elements by using reduced integration or 

field consistent strain interpolation (1986A). Rakowski (1990, 1991) explained the phenomena of 

shear locking in linear and quadratic beam elements by showing that using their shape functions 

leads to the solution of differential equations that are different from those arising from beam 

theory. Stolarski and Belytschko (1983) studied shear and membrane locking in curved 0C  beam 

elements and demonstrated that shear and membrane locking are interrelated, reduced integration 

weakens the flexural-membrane coupling that exists in curved elements and that mixed curved 

elements could also suffer from membrane and shear locking.  
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Another method for tackling locking is improving the element itself. There is a significant 

amount of literature on beam elements where the improved element targets specific locking 

mechanisms. Heyliger and Reddy (1988) proposed a higher-order shear deformable beam element 

specifically for bending and vibration problems that can correctly account for the parabolic shear 

stress distribution in the cross-section, thus eliminating the need for shear correction coefficient. 

Lee and Sin (1994) made use of curvatures as degrees of freedom in order to alleviate locking in 

curved beam structures and accurately represent their bending energy. The rotations and radial and 

tangential displacements can be retrieved from relationships between the curvature derivatives and 

beam strain measures in the Lee and Sin element. Yunhua (1998) used the field consistence 

approach to explain shear and membrane locking in low order beam elements and consequently 

used the field consistence approach to improve element performance. Friedman and Kosmatka 

(1993) developed a locking free two-node shear deformable beam element by using cubic and 

quadratic polynomials for transverse and rotational degrees of freedom, respectively, and having 

them satisfy Timoshenko’s beam differential equations. Raveendranath et al. (1999) proposed a 

shear deformable curved beam element that produces no spurious constraints in thin regimes, 

hence showing excellent performance for thin curved beam structures. A detailed review on shear 

deformable beam theory and beam elements associated with it can be found in the work of Reddy 

(1997) and Reddy et al. (1997). Furthermore, shear and membrane locking free beam elements can 

be found in the works of Prathap and Babu (1986B), Reddy (1997) and Choi and Lim (1995). 

Some other methods to alleviate locking include stress projection methods and stiffness 

scaling methods. Belytschko et al. (1985) used the mode decomposition method to remove shear 

and membrane locking in beam elements. The mode decomposition method which is a special case 

of stress projection methods essentially projects the nodal displacements on a subspace of 
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displacements such that certain modes of deformation like inextensional bending can be correctly 

captured. Stolarski and Belytschko (1986A, 1986B) demonstrated the equivalence of the mode 

decomposition method and mixed FEs based on the Hellinger-Reissner principle. Carpenter et al. 

(1986) utilized shear scaling factors to alleviate shear locking in 0C  beam elements by splitting 

the stiffness matrix into bending and shear parts and modifying the shear part using a shear scaling 

factor that is computed using the element material and dimensional parameters. The shear scaling 

factor method was also used by Tessler and Hughes (1983) to accurately represent the transverse 

shear energy in case of plate elements. Furthermore, they demonstrated that the modified stiffness 

matrices remain well conditioned for almost the entire range of length-to-thickness ratios. It must 

be noted that shear scaling is different from shear correction factor. Shear correction factor that 

was proposed by Timoshenko (1921) and discussed in detail by Dong et al. (2010) is a standard 

technique used in all lower-order beam elements in order to capture a good approximation of the 

shear energy within the element. 

 

4.2 Locking Alleviation in ANCF Elements 

Like classical FEs, ANCF elements are not, in general, locking free. The locking mechanisms 

affecting classical FEs also affect ANCF elements, i.e. shear, Poisson, curvature thickness, and 

volumetric locking. While this section will review some of the investigations on the quantification 

and alleviation of locking in ANCF elements with emphasis on beams; for a detailed review on 

ANCF elements and their locking mechanisms, the reader may also refer to Gerstmayr et al. (2013) 

and Nachbagauer (2014). 

Sopanen and Mikkola (2003) studied the fully-parameterized ANCF three-dimensional 

beam element for bending, shear and torsional deformations using three different elastic force 
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formulations and concluded that the element does not suffer from significant shear locking and 

that modifying the constitutive model for the beam element based on continuum mechanics 

approach can improve its performance. Schwab and Meijaard (2005) compared the modal 

properties of the ANCF three-dimensional beam element with the classical beam element by 

improving the ANCF beam bending deformation through the elastic line approach and shear 

deformation through independent shear stress and strain fields introduced via the Hellinger-

Reissner and the Veubeke-Hu-Washizu principles, respectively. Gerstmayr and Matikainen (2006) 

developed a higher-order beam element that is of fifth order in the longitudinal direction and linear 

in the cross-section and demonstrated improvement in the prediction of axial and shear stress when 

compared to solution from a commercial FE code. Garcia-Vallejo et al. (2007) explained the 

phenomena of curvature thickness locking and shear locking in the two-dimensional ANCF beam 

element by studying the kinematics of the element. Furthermore, they proposed a quadratic beam 

element that has good bending characteristics. Dufva et al. (2005) used a mixed displacement and 

shear strain interpolation to alleviate the two-dimensional ANCF beam element of shear locking 

by considering a linear distribution of the shear deformation along the longitudinal axis and 

improving its bending behavior by neglecting the Poisson coupling between the longitudinal and 

transverse normal strains. Gerstmayr and Irschik (2008) studied the axial and bending deformation 

of ANCF beams in detail using the elastic line approach and proposed modifications to the strain 

measures in order to improve element accuracy in bending deformation. Hussein et al. (2007) used 

the elastic line approach without Poisson coupling and a Hellinger-Reissner based independent 

shear stress interpolation in the dynamic analysis of stiff and thin beams. Gerstmayr et al. (2008) 

improved the performance of the original two-dimensional ANCF beam element by forming the 

elastic forces using two distinct and separate methods, the first is the enhanced continuum 
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mechanics approach which is like selectively reduced integration and the second is based on the 

Reissner or Simo-Vu Quoc beam theory. In order to deal with volumetric locking in case of nearly 

incompressible materials, Orzechowski and Fraczek (2015) resorted to selectively reduced 

integration and the generalized F-bar approach in the three-dimensional ANCF beam element. In 

the past decade, several ANCF beam elements with specific locking alleviation strategies have 

been proposed. Kerkkanen et al. (2005) proposed a two-dimensional linear ANCF beam element 

and used selectively reduced integration on the shear energy in order to avoid shear locking. 

Sugiyama and Suda (2007) introduced a fully-parameterized curved beam element that used 

independent shear stress and transverse normal strain interpolations. Sugiyama et al. (2010) 

proposed a curved gradient deficient ANCF beam element with normal strain and curvature 

measures described with respect to the curved reference configuration such that tangential and 

radial deformations can be correctly captured. Matikainen et al. (2010) improved the original 

ANCF beam element by introducing a trapezoidal deformation mode in the cross-section 

kinematics, thus alleviating it of Poisson locking. Nachbagauer et al. (2011, 2013A) proposed two- 

and three-dimensional linear and quadratic beam elements that used structural mechanics approach 

and enhanced continuum mechanics formulation to alleviate locking. Shen et al. (2014) proposed 

a higher-order three-dimensional ANCF beam element that had quadratic interpolation for the 

cross-section deformation. The higher-order element effectively eliminated Poisson locking and 

could capture the warping effect in beams. This higher-order beam element was further analyzed 

by Orzechowski and Shabana (2016) in case of buckling, torsional deformation and different cross-

sectional geometries. Ebel et al. (2016A) developed and analyzed several higher-order beam 

elements that can completely avoid Poisson locking due to improved cross-sectional deformation 

and showed the efficacy of the elements via the Princeton beam experiment. Hurskainen et al. 
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(2017) developed a hybrid ANCF beam element with an independently interpolated shear 

deformation field, and demonstrated good convergence for bending problems. Mohamed and Liu 

(2014) developed a gradient deficient beam element that uses a combination of plane strain and 

elastic line approach, thus exhibiting less locking than the pure continuum mechanics approach. 

Locking alleviation techniques similar to those used with ANCF beam elements have also been 

proposed for ANCF plate/shell elements. Dmitrochenko et al. (2009) extended the work of Hussein 

et al. (2007) to three-dimensional beam and plate elements. Mikkola and Matikainen (2006) 

extended the mixed interpolation approach to three-dimensional plate elements and demonstrated 

its superior performance in bending scenarios compared to the original element. Ebel et al. (2016B) 

developed higher-order plate elements that alleviate shear and Poisson locking by making use of 

higher-order interpolation in the cross-section. Yamashita et al. (2015) proposed a bilinear ANCF 

shell element and improved its membrane and bending behavior by using the assumed natural 

strain and the enhanced assumed strain approach. In case of membrane dominated problems, 

Sanborn et al. (2011) identified the issue of curve induced distortion and membrane locking that 

occurs in thin plate elements and proposed a method known as flat mapped extension modeling to 

modify the axial strain by systematically excluding the effect of the curvature. Valkeapää et al. 

(2015) used an elastic middle surface approach which is analogous to the elastic line approach 

along with assumed natural strain and the enhanced assumed strain methods in order to alleviate 

locking in the ANCF shell element. 

 

4.3 ANCF FEs 

This section briefly describes the nonlinear absolute nodal coordinate formulation (ANCF) and the 

continuum mechanics approach for formulating the elastic forces. This brief review presents some 
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of the basic equations that will be used repeatedly and/or referred to in the chapter. One of the 

contributions of this chapter is to introduce a new higher-order beam element which will be used 

as the basis for comparison with lower-order ANCF elements. In addition to introducing this 

element in this section, the effect of the constitutive model selection on the behavior of the planar 

ANCF beam elements is also discussed. 

In addition to using global nodal position vectors, ANCF has the distinguished feature of 

using the position vector gradients as nodal coordinates. The position vector gradients are tangents 

to the element coordinate lines, and therefore, their transformation when the elements are 

assembled differ from the conventional coordinate transformation used in the classical FE 

literature. Furthermore, ANCF beams differ from their classical FE counterparts which do not 

allow for the cross-section deformations. Because of the use of the transverse gradient vectors as 

degrees of freedom, ANCF elements allow for the stretch of the cross-section. For this reason, 

Poisson effect is fully captured when ANCF elements are used, and as a consequence, ANCF beam 

elements may experience Poisson locking which is not observed when conventional beam 

elements are used, as will be discussed in this chapter. The use of the gradient vectors allows for 

obtaining complex geometries including initially curved geometries that require special attention 

when attempting to solve the locking problem, as will be discussed in this chapter.  

4.3.1 ANCF Kinematics 

In ANCF, the global position vector of an arbitrary point on the flexible body can be written as 

     , t tr x S x e , where  S x  is the matrix of shape functions and  te  is the vector of nodal 

position and gradient vectors that are defined in the global coordinate system. Depending on the 

element, ( )te  can also consist of curvature vectors. The ANCF formulation leads to a constant 

mass matrix and zero Coriolis and centrifugal forces. Furthermore, in order to avoid 
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computationally expensive matrix inversion or LU decomposition, Cholesky decomposition can 

be applied to obtain an identity generalized mass matrix associated with the ANCF Cholesky 

coordinates. Over the past two decades several researchers have proposed a wide range of ANCF 

elements. These elements include several beam, plate/shell, hexahedral and tetrahedral elements 

(Shabana, 2012). For ANCF elements, no distinction is made between plate and shell elements 

since initially curved structures can be systematically obtained using appropriate vector of nodal 

coordinates in the reference configuration. The constant ANCF element mass matrix can be written 

as 
0

0
T

V
dV M S S , where   and 0V  are respectively, the mass density and volume in the 

reference configuration. The ANCF generalized external force vector due to a given force ef can 

simply be written as ( )T
e eQ S x f . 

4.3.2 General Continuum Mechanics Approach 

The general continuum mechanics approach can be used to formulate the elastic forces of the 

ANCF elements. Using the Green-Lagrange strain and second Piola-Kirchhoff stress tensors which 

are defined with respect to the reference configuration, the virtual work of the elastic forces can 

be written as 
0

2 0:k PV
W dV   σ ε  where 2Pσ  is the second Piola-Kirchhoff stress tensor and ε  

is the Green-Lagrange strain tensor. This general approach allows for incorporating any type of 

material and geometric nonlinearities in the FE analysis. The stress tensor 2Pσ  can be defined as 

 2 2P rU  σ C , where U is the strain energy potential function that is typically written in terms 

of the invariants of the right Cauchy deformation tensor rC , defined as T
r C J J . (Bonet and 

Wood, 1997; Ogden, 1984; Shabana, 2012). Alternatively, the elastic forces can be derived directly 

from the strain energy potential as  k U  Q e  where e  is the vector of nodal coordinates. 
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4.3.3 Higher-Order Planar Beam Element 

One method for dealing with some locking types is using higher-order elements that have richer 

displacement interpolations that can capture certain important deformation modes in the element, 

including pure bending. The use of such higher-order elements has the advantage of being able to 

accurately capture complex geometries that cannot be captured with low-order elements that fail 

to satisfy some continuity conditions for beam-like structures where curvatures have significant 

effects. The ANCF two-dimensional shear deformable beam element proposed by Omar and 

Shabana (2001) can be considered to be a higher-order element considering the fact that there are 

other ANCF beam elements proposed by Nachbagauer et al. (2011) in the literature that are of 

lower-order. Omar and Shabana element is cubic in the longitudinal direction and linear in the 

transverse direction, whereas the elements proposed by Nachbagauer et al. (2011) are linear in the 

transverse direction and linear and quadratic in the longitudinal directions. All these elements, 

however, suffer from severe locking when used with the general continuum mechanics approach 

and a non-zero Poisson ratio. One must resort to using specialized elastic force formulations like 

the enhanced continuum mechanics approach and the Reissner-Simo-Vu-Quoc structural 

mechanics-based approach in order to achieve good performance from these elements. One of the 

main reason for the poor performance of these elements with the general continuum mechanics 

approach is the linear interpolation considered in the transverse direction. As explained by Shen 

et al. (2014) and Orzechowski and Shabana (2016), the use of Hooke’s law in this case leads to a 

stiff behavior in the element response to non-uniform strain distribution like bending. One 

approach explored in previous investigations is refining the displacement polynomial of the lower-

order elements to be quadratic in the transverse directions to allow the element to deform in a way 

that correctly captures the Poisson coupling effect within the element. A new higher-order element 
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is hence proposed here in order to explore the efficacy of this approach in the two-dimensional 

analysis and to later compare the use of the higher-order element approach with other locking 

alleviation approaches. The higher-order element, which is quadratic in the beam transverse 

direction, has the following interpolating polynomial: 

2 2 2 3
0 1 2 3 4 5 6 7

2 2 2 3
0 1 2 3 4 5 6 7

a a x a y a xy a x a y a xy a x

b b x b y b xy b x b y b xy b x

       
         

r            (18) 

The vector of nodal coordinates of a node i  for the new higher-order element is given as 

Ti iT iT iT iT
x y yy   e r r r r , where r  is the global position vector,    r r  is a gradient 

vector where ,x y  , and 2 2
yy y  r r  is a curvature vector. The vectors r , r , yyr  are two-

dimensional vectors. The shape functions for the element based on the polynomials of Eq. 18 are 

provided in Appendix B.1. As can be noticed from the displacement polynomial and the shape 

functions, the element is quadratic in the y coordinate and hence the normal transverse strain will 

no longer be constant in the y direction, allowing reducing the Poisson locking effect specifically 

in bending situations. This element can be considered as a special (two-dimensional) case of the 

three-dimensional higher-order element proposed by Shen et al. (2014) and analyzed by 

Orzechowski and Shabana (2016). Even though the shape functions of this two-dimensional 

element can be considered as a subset of the set of the three-dimensional higher-order element 

shape functions, its performance, as will be demonstrated in the next section, is dependent on the 

constitutive model and on plane stress or plane strain used in the case of linear materials.  

4.3.4 Plane Stress and Plane Strain Assumptions 

The use of the appropriate constitutive model is important in the two-dimensional analysis of 

ANCF beams. The two available linear constitutive models are the plane strain and the plane stress 

models. Plane strain assumes the strain components 0zz xz yz     , whereas plane stress 
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assumes the stress components 0zz xz yz      (Bonet and Wood, 1997; Ogden, 1984; 

Shabana, 2012). Even though several previous ANCF investigations suggest that the analyst may 

choose either of the two assumptions, the effect of these assumptions on ANCF element 

performance has not been previously investigated. This chapter also examines the effect of plane 

strain versus plane stress assumption on the ANCF two-dimensional beam elements using the 

general continuum mechanics approach. Since in case of a beam, typically the thickness of the 

structure is not larger than the length, plane stress is recommended as the appropriate assumption. 

The effect of the constitutive model can be demonstrated through a simple example of a beam 

undergoing small deformation. Two types of elements are considered in this case, the original two-

dimensional beam element that was proposed by Omar and Shabana (2001) and the higher-order 

element proposed in this chapter. A cantilever beam problem is considered with material properties 

112 10E   Pa, 0.3  , beam length of 1m, height of 0.01m and thickness of 0.01m. The 

cantilever beam, shown in Figure 35, is subjected to a vertical tip load of -10N. The results for 

plane strain and plane stress static analysis on the two element types are shown in Table 13. Since 

this is a thin beam, the classical Euler-Bernoulli beam theory predicts the analytical vertical tip 

deformation to be -0.02m.  

 
Figure 35. Slender cantilever beam problem (deformation with respect to undeformed state is 

magnified for graphical purposes) 
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Table 13. Effect of using plane stress and plane strain (Om-Sh: Omar and Shabana beam) 

Number of 
Elements 

Plane Strain Plane Stress 

Om-Sh (m) Higher-Order (m) Om-Sh (m) Higher-Order (m) 
5 -0.014690096 -0.017941054 -0.017979431 -0.019726994 
10 -0.014817360 -0.018138433 -0.018148212 -0.019936221 
20 -0.014845969 -0.018181342 -0.018183872 -0.019979401 
50 -0.014853811 -0.018193062 -0.018193509 -0.019991023 

 

As can be seen from Table 13, the plane stress assumption leads to accurate results with the higher-

order beam element and some under-prediction of deformation with the Omar and Shabana 

element. The plane strain assumption on the other hand results in significant under-prediction of 

deformation in both beam models as they cannot achieve the analytical solution. This simple 

analysis demonstrates that the constitutive model also affects the element performance and such a 

constitutive model must be carefully selected in case of two-dimensional ANCF beam analysis. 

 

4.4 ANCF Strain Split Method 

In this section, the ANCF strain split method (SSM) for solving the ANCF beam and plate locking 

problems is proposed and discussed. The basic differences between this method and some specific 

locking solution methods proposed in the literature will also be discussed in this chapter. 

4.4.1 Strain Split Method (SSM) 

A new method is proposed in this chapter in order to address the locking problem in ANCF beams 

and plates/shells. Specifically, this approach targets the Poisson locking present in ANCF beam 

and plate/shell elements. The basic idea is to analyze the element kinematics and then decouple 

the higher-order terms found in the axial strain and the transverse strain through an additive 

decomposition of the Green-Lagrange strain tensor and the constitutive law. According to the 

analysis performed by Sugiyama et al. (2006), the two-dimensional shear deformable beam 

element position field and gradients can be written, respectively, as  



97 
 

, ,    c c
y x x y x y yy y    r r r r r r r r                   (19) 

where c corresponds to the centerline. Accordingly, the matrix of position vector gradients can be 

written as c
x y x y x yy       J r r r r r . The matrix of position vector gradients can be 

additively decomposed as  

c c k
x y y xy        J r r r 0 J J                     (20) 

where c c
x y   J r r  is associated with the centerline, and k

y xy   J r 0  is associated with the 

curvature and shear deformation of the element. Thus, the Green-Lagrange strain and the right 

Cauchy deformation tensor can be written, respectively, as  

 1 1

2 2
T

r

cT c cT k kT c kT k
r

       
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ε J J I C I

C J J J J J J J J

                  (21) 

where each matrix that appears in the rC  expression can be written as 

2

0
,           ,

0

0
,        

0 0 0 0
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                  (22) 

Accordingly, the strain tensor can be written as  

2
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21 22
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cT c cT T cT T
x x x yx yx yx x y yx y

T c T T
y x y yx y y
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 
 

       
               

r r r r r r r r r r
ε

r r r r r r
         (23) 

The strain tensor can be split into two parts, one associated with the beam centerline and the other 

part associated with the higher-order terms that contribute to cross-section deformation, bending, 

and curvature definition as c k ε ε ε  where 
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                    (24) 

In order to alleviate locking, Poisson coupling can be used only in the lower-order terms of the 

normal strains that are contained in the expression of cε . Thus, the second Piola-Kirchhoff stress 

can be written in Voigt form as c c k k
v v v σ E ε E ε , where the strains are also in Voigt form. With 

an assumption of plane strain the matrices of elastic coefficients can be defined as  

 
2 0

2 0 , , ,

0 0

c k
s

s

diag E E k

k

  
   



 
    
  

E E          (25) 

where   and   are the Lamé parameters, E  is the Young’s modulus, sk  is the shear correction 

coefficient defined as  10(1 ) 12 11sk      and   is the Poisson’s ratio. This leads to 

uncoupling of the transverse normal strain and the higher-order terms associated with bending that 

are contained in the longitudinal normal strain. This type of uncoupling in the deformation modes 

can significantly improve the element bending behavior as will be demonstrated in the numerical 

results section of this chapter.  

  With regard to its treatment of the coupling between transverse normal and higher order 

strains, SSM is different from locking alleviation techniques proposed in classical FE literature 

like the enhanced assumed strain (Simo and Rifai, 1990) and the free formulation (Bergan and 

Nygard, 1984) that work with either element kinematics or the stiffness matrix to deal with locking. 

In case of the enhanced assumed strain approach, an incompatible strain field is added to the 

compatible strain field to improve element performance as will be discussed in Section 4.5 of this 

chapter. The free formulation is based on the concept of using nonconforming higher order 
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displacement field along with the so called basic displacement components which include the rigid 

body and constant strain element modes. The stiffness in the free formulation is written as the sum 

of the basic stiffness and the higher order stiffness (Felippa, 1989). Furthermore, the stiffness 

coupling between the basic element modes and higher order modes is modified to improve element 

convergence. It should be noted that this approach is different from the SSM approach since the 

SSM approach relies on the strain decomposition and different constitutive models to alleviate 

locking. In case of the free formulation, the same constitutive model is used in all stiffness 

calculations, hence the method relies purely on a kinematic enhancement approach. In the 

conclusion of Felippa’s paper (1989) it is noted that the free formulation has to do with “freedom” 

from element conformity requirements which can help improve its performance. Since in the SSM 

approach no such requirement or assumption is exercised on the element in order to alleviate 

locking, SSM is fundamentally different from the free formulation as a locking alleviation 

technique. 

4.4.2 SSM Generalization 

The strain split method proposed for the two-dimensional beam element can be easily extended to 

the three-dimensional beam and plate/shell elements since these elements share similar features 

with the ANCF planar elements considered in this chapter. The behavior of the spatial beam and 

plate/shell elements depends on the geometry of the centerline or mid-surface and the definition 

of the transverse gradients. According to Sugiyama et al. (2006), in case of a three-dimensional 

ANCF beam element, the position field and gradients can be written as   

,      

c
y z

c
x x y x z x

y y z z

y z

y z

  
   
  

r r r r

r r r r

r r r r

        (26) 

The matrix of position vector gradients can be written as  
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c c k
x yx zx y zy z      J r r r r r J J          (27) 

where c c
x y z   J r r r , and k

yx zxy z   J r r 0 0  Using this split of the matrix of position 

vector gradients, the Green-Lagrange strain can be written as c k ε ε ε  where  

   1 1
,

2 2
c cT c k cT k kT c kT k    ε J J I ε J J J J J J                (28) 

and finally, the second Piola-Kirchhoff stress can be defined in Voigt form as  c c k k
v v v σ E ε E ε  

where 
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                   (29) 

In case of three-dimensional ANCF plate/shell elements, the position field and gradients can be 

described using the element mid-surface and transverse gradient vector as 

, ,

,

m m
z x x zx

m
y y zy z z

z z

z

    


   

r r r r r r

r r r r r
              (30) 

Accordingly, the matrix of position vector gradients and its additive split can be defined as 

m m m k
x zx y zy zz z      J r r r r r J J                     (31) 

In this equation, m m m
x y z   J r r r , and k

zx zyz z   J r r 0 . The derivation for the plate/shell 

element strains and stresses follows the same procedure as discussed for the beam element. 
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4.4.3 SSM Objectivity and Initially Curved Geometry  

In the case of initially curved stress-free geometry, the Green-Lagrange strain tensor can be written 

as   2T ε J J I , where 1
0e
J J J , e   r xJ , 0   X xJ , x  is the element spatial 

coordinates in the straight configuration,   0X S x e  is the element parameters in the stress-free 

reference configuration, and 0e  is the vector of the ANCF element coordinates in the reference 

configuration. Therefore, the Green-Lagrange strain tensor can be written as 

 1
0 0 2T T

e e
  ε J J J J I . One can write the strain tensor in terms of the covariant strain tensor ε  as 

   0 0
1 1

0 0 0 0
1
2

T T
e e

T T     
 

 J J J Jε J J J ε J            (32) 

In this equation,  0 0 2T T
e e ε J J J J . The matrix of position vector gradients in the current and 

reference configurations can be split into centerline and higher-order parts, respectively, as 

c k
e e e J J J , and 0 0 0

c k J J J . Using this split, the covariant strain tensor can be written as 

        0 0 0 0

1

2

T Tc k c k c k c k
e e e e     J J J J J J J Jε               (33) 

Thus ε  can be split as the sum of two parts as c k ε ε ε   , where 
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ε J J J J

ε J J J J J J J J J J J J




                         (34) 

Finally, a push forward operation can be applied on the covariant strains to obtain cε and kε as 

  1
0 0

T c k  ε J ε ε J  , which can be written as  

   1 1
0 0 0 0

c k T c T k      ε ε ε J ε J J ε J                      (35) 
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Using this SSM procedure, curved structures can be easily analyzed. This method is also applicable 

to straight structures as well because in straight structures, 0J  is an identity matrix and 0
kJ  is a null 

matrix. 

In order to demonstrate that the strains remain objective, consider a rotation applied to eJ  

such that *
e eJ RJ , where R  is a proper orthogonal rotation matrix. Consequently, *

eJ  can be 

written as * ( )c k
e e e J R J J  and the covariant strains as 
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ε J R RJ J J J J J J ε

ε
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 



 

          (36) 

That is, the strain split method does not affect the strain objectivity. 

 

4.5 Other Locking Solution Approaches 

This section briefly discusses the enhanced assumed strain, elastic line, and enhanced continuum 

mechanics approaches used in the numerical investigation performed in this chapter to compare 

with the SSM results. The brief description of these methods, which are well documented in 

literature, will shed light on the differences between different locking solution techniques. 

Furthermore, an enhanced strain approach based on using higher-order ANCF element shape 

functions with lower-order ANCF elements is demonstrated.  

4.5.1 Enhanced Assumed Strain (EAS) and Method of Incompatible Modes 

The method of incompatible modes was introduced by Bazeley et al. (1965) and studied by Taylor 

et al. (1976) in order to improve the bending behavior of the classical quadrilateral element. The 

enhanced assumed strain approach proposed by Simo and Rifai (1990) is a generalization of the 
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method of incompatible modes. In fact, Simo and Rifai (1990) demonstrated that the method of 

incompatible modes is a special case of the enhanced assumed strain approach. In the enhanced 

strain approach, the incompatible strain field is defined using certain carefully designed 

interpolations by ensuring that the set of interpolating polynomials meet a list of conditions that 

are required for convergence and stability of the element. The basic idea is the enhancement of the 

element strain field by enriching its strain components so that its performance improves in non-

uniform strain conditions. One disadvantage of this approach is the requirement of adding more 

variables to every element. Consider the Veubeke-Hu-Washizu energy functional in the reference 

configuration (Bischoff and Ramm, 1997): 

     
0 0

2 0 2 0

1
, , :

2
T

VHW P P ext

V V

U dV dV U       
  r ε σ ε σ J J I ε   (37) 

where 2Pσ  is the second Piola-Kirchhoff stress tensor, ε  is the Lagrangian strain tensor, and U  

and extU  are, respectively, the internal and external potential energy functions. The strain field is 

enhanced as com enh ε ε ε , where comε  is the compatible strain field obtained from the Green-

Lagrange strain tensor, and enhε  is the enhanced strain field that is element-wise discontinuous. 

Substituting the enhanced strain in the Veubeke-Hu-Washizu functional and making a design 

choice for the enhanced strain field such that 
0

2 0: 0enh
PV

dV  σ ε  leads to  

   
0

0, enh com enh
VHW ext

V

U dV U   r ε ε ε                      (38) 

The position and enhanced strain fields can be discretized as ( )r S ξ e  and ( )enh
sε M ξ α  , where 

sM  is a shape function matrix, α  is a vector of additional enhanced strain variables called internal 

variables,  T ξ , x l  , y l   are the dimensionless element parameters, and l  is the 
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length of the element. Equating the variation of the Veubeke-Hu-Washizu functional to zero, leads 

to the following set of equations  

 

 
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0

0
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e ε
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α ε

       (39) 

Newton’s method can be used to solve the nonlinear system of equations shown in Eq. 39. After 

linearization, the equations used in the iterative Newton-Raphson procedure can be written in the 

following form: 

     
           

K P e f

S G α g
      (40) 

where the sub-matrices in this equation are defined in Appendix B.2. Alternatively, the internal 

variables α  can be eliminated at the element level using a static condensation based on the second 

equation of Eq. 40, 1( )    α G g S e  , which leads to the following system of equations 

 1 1     K PG S e f PG g     (41) 

After applying the static condensation on the internal variables α , the equilibrium equations can 

be assembled for the entire mesh, the boundary conditions applied, and the resulting system is 

solved for e  . Once e  is determined, α  can be updated for every element (Simo and Armero, 

1992; Yamashita et al., 2015). The procedure can be generalized to the dynamic case in which the 

element coordinates e  are assumed known from the numerical integration. These element 

coordinates can be substituted into the equation ( , ) g e α 0  which can be used to determine the 

internal variables α  to be used in the formulation of the strain energy and elastic forces. The 
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guidelines for designing and using the enhanced strain interpolation functions is briefly reviewed 

in Appendix B.3. 

4.5.1.1 EAS Strain Interpolation 

In case of the two-dimensional shear deformable element (Omar and Shabana, 2001), Poisson 

locking can cause poor convergence even after significant mesh refinement. One way to alleviate 

this type of FE locking (as was discussed in Section 4.3) is to consider a quadratic displacement 

interpolation in the element transverse direction that would yield a linear transverse normal strain 

distribution which can be sufficient to account for stiffness coupling resulting from the use of 

Hooke’s law. Therefore, one method to achieve this type of enhancement is to consider the 

enhanced assumed strain interpolation to be linear in the element transverse direction. The 

interpolation matrix and the enhanced strain in Voigt form can be written in the parametric domain 

as  

         0 0
Tenh    ε M                  (42) 

This leads to a linear enhancement of the transverse normal strain and it can be shown that this 

type of assumed strain interpolation satisfies Eq. B.3 (Appendix B) because 
1

2

0
2

 0
h

l
h

l

d d  


  . 

The fact that the higher-order two-dimensional ANCF beam element proposed in the 

preceding section is quadratic in the element transverse direction suggests using its “higher-order” 

shape functions as the interpolation polynomials for the enhanced strain field in order to improve 

the performance of the lower-order element. Keeping this concept in mind, the enhanced strain 

field can be assumed to be the linearized strain tensor that uses the “higher-order” shape functions 

that are  2 2 2 2 2
1 2  2,      2HO HOs l s l       . It follows that the higher-order shape function 

matrix can be written as 1 2
HO HO HOs s   S I I , and the matrix of higher-order displacement 
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gradients and enhanced strain tensor can be written using the element enhanced strain parameters 

as  

  1
,   

2

THO HO HO enh HO HO
d x y d d    J S α S α ε J J               (43) 

Furthermore, it can be shown that the enhanced strain in Voigt form can be written as 
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where HO
abS  corresponds to the thb  row of the matrix HO HO

a a  S S , and ,a x y . One issue with 

this type of enhanced strain interpolation is that 
1

2
1,0
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This violates the condition of Eq. B.3 (Appendix B). In order to address this problem, the method 

of the constant correction matrix proposed by Ibrahimbegovic and Wilson (1991) is used. The 

matrix of interpolating functions in the physical domain is modified by adding a constant 

correction matrix such that s c M M M , where the matrix M  satisfies the second part of Eq. 

B.3 (Appendix B). The correction matrix cM  can be defined using the equation 

0
0 0s cV

dV V  M M 0 , which leads to 

      
0

0
0

1
c s

V

dV
V

  M M           (45) 

In this case, M  is used as the interpolation matrix to define the enhanced strain instead of sM

which violates Eq. B.3 (Appendix B). 

4.5.2 Elastic Line Approach 
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The ANCF elastic line approach, used by Schwab and Meijaard (2005) and Hussein et al. (2007), 

can be an effective method for formulating the elastic forces for thin and stiff beams. The elastic 

line approach strain energy can be written as tot l s bU U U U   , where , ,l s bU U U  represent beam 

centerline (line integral) based extensional, shear and bending energies respectively. Schwab and 

Meijaard (2005) considered the Poisson coupling of the normal strains in their work whereas 

Hussein et al. (2007) did not consider this Poisson coupling. For details on the derivation of the 

elastic forces using the elastic line approach, the reader may refer to the publications by Schwab 

and Meijaard (2005) and Hussein et al. (2007). A mixed method that was employed with ANCF 

elements in order to reduce shear locking in conjunction with the elastic line approach was the 

Hellinger-Reissner principle, where the shear stress field was interpolated independently within 

the element (Schwab and Meijaard, 2005; Hussein et al., 2007). 

4.5.3 Enhanced Continuum Mechanics Approach 

As mentioned in Section 4.2, another method proposed in the ANCF literature to deal with Poisson 

locking is the enhanced continuum mechanics approach that was proposed by Gerstmayr et al. 

(2008). The roots of this method lie in the concept of classical FE selectively reduced integration. 

The matrix of elastic coefficients is split into two parts, one that considers Poisson coupling 

between the normal strains and one that does not consider this effect. While the strain split method 

proposed earlier in this chapter is similar to the enhanced continuum mechanics approach when 

considering the constitutive model split, there are some fundamental differences between the two 

methods. In case of the enhanced continuum mechanics approach, selectively reduced integration 

is used and the same strain matrix is used for the full integration and reduced integration parts, 

whereas in case of the strain split method, full integration is used and different strain matrices are 

used with two different constitutive matrices. It will be demonstrated in the numerical results 
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section that the strain split method can be used to obtain comparable results to those of the 

enhanced continuum mechanics approach without the need for using reduced integration. 

4.6 Numerical Examples 

In order to demonstrate and compare the effect of the locking alleviation techniques on the 

performance of ANCF beam elements, five numerical examples are considered: three static 

analysis examples and two dynamic analysis examples. The first static example is that of a slender 

beam subjected to small deformation. The second static example is a thick beam subjected to large 

deformation. The third static example is that of a curved beam subjected to large deformation. The 

first dynamic analysis example is a two-dimensional beam pendulum subjected to gravity loading. 

The second dynamic analysis example is a three-dimensional cantilever beam structure subjected 

to gravity loading. Because all the static examples are planar, the plane stress assumption is used 

in all static analyses. Table 14 provides appropriate abbreviations that will be used to refer to 

different locking alleviation techniques. All locking alleviation techniques in Table 14 with the 

exception of HOEL are used with the Omar and Shabana (referred to as Om-Sh henceforth) beam 

element. HOEL refers to the higher-order beam element proposed in this chapter in Section 4.3. In 

all the examples, the shear correction factor  10(1 ) 12 11sk      is used with the Om-Sh beam 

element and not with HOEL, unless specified otherwise. 

Table 14. Locking alleviation technique abbreviations 
Abbreviation Type 

GCM General continuum mechanics 
ECM Enhanced continuum mechanics 

EAS-1 Single parameter enhanced assumed strain 
EAS-2 Higher-order shape function based enhanced assumed strain 
SSM Strain split method 

EL-SM Schwab-Meijaard elastic line 
EL-HS Hussein et al. elastic line 

ELHR-SM Schwab-Meijaard elastic line with Hellinger Reissner shear improvement 
ELHR-HS Hussein et al. elastic line with Hellinger Reissner shear improvement 

HOEL Higher-order beam element with GCM 
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4.6.1 Slender Beam: Small Deformation 

A slender cantilever beam subjected to a vertical tip force is considered with the same element 

dimensions and material properties as that of the problem described in Section 4.3.4. As was 

mentioned previously, the analytical solution is known in this case from the classical Euler-

Bernoulli theory and is calculated to be -0.02m. The results for the static analysis are reported in 

Table 15 which shows the converged beam tip vertical displacement. As can be seen from these 

results, the Om-Sh beam element with general continuum mechanics approach cannot converge to 

the correct solution due to excessive stiffness resulting from Poisson locking. All the other cases 

can converge to the correct solution. The enhanced continuum mechanics approach, EAS-1, EAS-

2 and the strain split approach show almost identical convergence in this small deformation case. 

Based on the results reported in Table 15, the Hellinger-Reissner principle did not improve the 

convergence or the solution. 

Table 15. Small deformation of cantilever beam static example: tip vertical displacement (m) 
TYPE 5 elements 10 elements 20 elements 50 elements 100 elements 
GCM -0.01797943 -0.01814821 -0.01818387 -0.01819351 -0.018194876 
ECM -0.01974402 -0.01994094 -0.01998069 -0.01999130 -0.019992806 

EAS-1 -0.01974404 -0.01994095 -0.01998069 -0.01999130 -0.019992806 
EAS-2 -0.01974414 -0.01994097 -0.01998069 -0.01999130 -0.019992806 
SSM -0.01974403 -0.01994095 -0.01998069 -0.01999130 -0.019992806 

HOEL -0.01972699 -0.01993622 -0.01997940 -0.01999102 -0.019992674 
EL-SM -0.01974323 -0.01994464 -0.01998333 -0.01999130 -0.019991743 
EL-HS -0.01974800 -0.01994487 -0.01998334 -0.01999130 -0.019991743 

ELHR-SM -0.01973830 -0.01993950 -0.01997930 -0.01998984 -0.019991308 
ELHR-HS -0.01974306 -0.01993973 -0.01997931 -0.01998984 -0.019991308 
Analytical -0.02 

 

4.6.2 Thick Beam: Large Deformation 

A thick beam example undergoing large deformation, shown in Figure 36, is considered. The beam 

structure is 2m long and has a cross section that is 0.5m high and 0.1m wide. The modulus of 

elasticity is assumed 112.07 10E   Pa, and Poisson ratio is assumed 0.3  . A fully clamped 
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boundary condition is applied at the left end of the beam, whereas a vertical force of 8 35 10 h    

N is applied to the right end. For this example, the curvature degrees of freedom at the beam 

clamped end are also constrained in case of the higher-order beam element due to the large 

deformation nature of the problem and large cross-section which could lead to significant cross-

section deformation at the clamped end. The results of a static analysis reported in Table 16 show 

the converged beam tip vertical displacement. The reference solution of -0.71342 m, obtained 

using a commercial FE code (ANSYS, 2013), was achieved with 10,000 quadratic quadrilateral 

elements.  

 

 

 
Figure 36. Thick cantilever beam problem (actual deformation shown with respect to 

undeformed state) 
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Table 16. Large deformation of cantilever beam static example: tip vertical displacement (m) 

TYPE 5 elements 10 elements 20 elements 50 elements 100 elements 
GCM -0.65915558 -0.66424157 -0.66567545 -0.66620894 -0.66633102 
ECM -0.70648069 -0.71210192 -0.71364032 -0.71421138 -0.71434336 

EAS-1 -0.70749271 -0.71303640 -0.71458220 -0.71516154 -0.71529576 
EAS-2 -0.70914733 -0.71423843 -0.71582370 ---- ---- 
SSM -0.70703906 -0.71261927 -0.71416020 -0.71473509 -0.71486816 

HOEL -0.69531347 -0.70527450 -0.70867124 -0.70994038 -0.71018834 
EL-SM -0.68327030 -0.68431265 -0.68437627 -0.68439711 -0.68440429 
EL-HS -0.68356363 -0.68475960 -0.68484925 -0.68487219 -0.68487886 
ANSYS -0.713420 (converged) 

 

As can be seen from Table 16, the general continuum mechanics approach without locking 

alleviation converges to the incorrect solution. The higher-order beam element, enhanced 

continuum mechanics approach, SSM, and the EAS-1 approach can successfully alleviate locking 

in this example. The EAS-2 method, however, failed to converge when more than 25 elements are 

used. It was observed that as the element length-to-height ratio significantly decreases, numerical 

instabilities similar to spurious modes or hourglassing were observed when the EAS-2 method is 

used with the thick beam example. Recall that EAS-2 makes use of the correction matrix along 

with the enhanced strain formulation. A possible explanation for this phenomenon is the ill-

conditioning of the stiffness matrix caused by correction matrices as the element ratio approaches 

zero. Such numerical instability was not seen in the EAS-2 method in case of relatively thin beams. 

The critical element length-to-height ratio is found to be around 0.15 for the EAS-2 method in this 

specific example. It should be reported that if the height of the beam in this example was reduced 

to 0.1m, the numerical instability disappeared in the EAS-2 method for meshes which have more 

than 25 elements. A similar type of numerical instability was reported by Sussman and Bathe 

(2014) when using of incompatible mode elements in the case of geometrically nonlinear analyses 

and small strain conditions. 
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4.6.3 Initially Curved Beam: Large Deformation 

An initially curved beam structure is subjected to large deformation in this numerical example as 

shown in Figure 37. The beam is clamped at one end and a constant tip force is applied in the 

global X  direction. The value of the force is 9 31 10 h   N. The initially curved beam arc length 

is 1m and the arc radius is 0.6366m. The beam height and width are 0.05m each. The material 

properties are 112.0 10E   Pa, 0.3  , and 1sk  . The results from the static analysis are shown 

in Table 17 which shows the beam tip horizontal displacement. The reference solution of 

0.17291m was obtained using a commercial FE code (ANSYS, 2013) with 1000 classical beam 

element mesh. The ANCF higher-order beam element, EAS-1 and EAS-2 methods can converge 

close to the reference solution.  

 

 
Figure 37. Curved cantilever beam problem (actual deformation shown with respect to 

undeformed state) 
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Table 17. Large deformation of curved cantilever beam static example: tip X displacement (m)  

TYPE 5 elements 10 elements 20 elements 50 elements 100 elements 
GCM 0.15338680 0.16172381 0.16199009 0.16196139 0.16195412 
ECM 0.16989437 0.17938015 0.17974234 0.17972820 0.17972255 

EAS-1 0.16295031 0.17215697 0.17250459 0.17249109 0.17248574 
EAS-2 0.16311305 0.17225897 0.17263943 0.17271119 0.17273819 
SSM 0.16988736 0.17937894 0.17974213 0.17972815 0.17972252 

HOEL 0.16298605 0.17213835 0.17247560 0.17246368 0.17246014 
ECM-L 0.16409531 0.17247265 0.17258737 0.17250808 0.17249346 
SSM-L 0.16408860 0.17247216 0.17258704 0.17250726 0.17249244 
ANSYS 0.17291 (converged) 

  
 

Significant locking is observed in the beam with the general continuum mechanics approach. The 

strain split and enhanced continuum mechanics methods slightly over-predict the deformation. The 

reason for this is the loss of the constitutive coupling that occurs in curved structures between 

higher-order longitudinal strain terms and transverse normal strain. Such a type of coupling is fully 

present in the general continuum mechanics approach which is used with the ANCF higher-order 

beam element. One remedy to avoid the over-prediction of the solution in case of the strain split 

method for curved structures is the consideration of coupling coefficients in the kE  matrix that 

could represent weak coupling between the higher-order longitudinal and transverse normal 

strains, however, it is still not yet clear how to determine such coupling coefficients for the strain 

split method. For example, if the kE  matrix is modified such that (1, 2) (2,1)k k Ev E E , the SSM 

converged solution is 0.1705m, which is an improvement compared to the solution obtained 

without modifying kE .  

  A more effective method for improving the performance of the strain split and enhanced 

continuum mechanics methods in case of initially curved structures is based on giving a “local” 

meaning to the constitutive model used in the SSM and ECM approaches. This entails the 
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transformation of either the constitutive coefficients into the global frame with the understanding 

that the constitutive coefficients are defined with respect to the element local frame or carry out 

strain and stress transformations between the global and element local frames (Nachbagauer et al., 

2013B). Since the transformation of the constitutive coefficients is rather cumbersome, the Green-

Lagrange strain tensor used in the ECM approach and the cε and kε strain matrices used with the 

SSM approach can be first transformed into the element local frame, the local stress can be 

evaluated within this element frame and then the resulting local stress can be transformed back 

into the global frame in order to evaluate the element elastic forces (Nachbagauer et al., 2013B). 

Using such a procedure, the SSM and ECM techniques yield accurate results for initially curved 

structures as can be seen in Table 17, where the results for the two approaches are labeled as SSM-

L and ECM-L referring to the local interpretation of the constitutive model used. A tangent element 

frame can be defined in case of ANCF beam elements at the first node as    A i Ii , where 

x xi r r , and      1 2 1 2, 0 1 , 1 0
T T   I a a a a . Similarly, a cross section element frame 

can be defined as    A Ij j , where y yj r r . These frames are defined using the beam 

reference configuration, and hence do not change with time. It was observed that using either 

tangent frame or cross-section frame did not make significant difference for the problem under 

investigation. In case of using the local interpretation for the constitutive model, the coupling 

coefficients in the kE  matrix discussed previously are no longer required. Furthermore, the local 

frame is also more appropriate to use with shear correction factors used with beams. It must also 

be reported that the softening of the beam in case of initially curved structures discussed earlier is 

dependent on the beam radius of curvature, that is, less softening for a larger radius of curvature 

in case of SSM. 



115 
 

4.6.4 Dynamic Analysis: Pendulum Problem 

A dynamic example is presented in order to demonstrate that the newly proposed strain split 

method can contribute to locking alleviation in dynamic problems as well. A beam pendulum 

meshed with 30 elements is considered, with a length of 1m, height of 0.25298m and a width of 

0.00632m as was presented by Omar and Shabana (2001). The material properties of the pendulum 

are 57.0 10E   Pa, 0.3   and 5540  kg/m3. Gravity load is considered to be the external 

force in this problem and an assumption of plane stress was used in the analysis. The vertical 

displacement of the beam tip is shown as a function of time in Figure 38.  

 

 
Figure 38. Comparison of beam tip vertical displacement for different formulations in case of 

plane stress ( GCM, ECM, SSM, HOEL) 

 

The Om-Sh element with general continuum mechanics approach, the strain split method, the 

enhanced continuum mechanics approach, and the proposed ANCF higher-order beam element are 
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compared in Figure 38. Results show good convergence between different models for a dynamic 

analysis. The deformation seen in the higher-order element model is slightly larger than the other 

models since this element has curvature coordinates that add additional cross-section flexibility to 

the element. Figure 39 shows the results of the beam tip vertical displacement obtained using the 

general continuum mechanics approach and the strain split method using the plane strain 

assumptions and the Om-Sh element.  

 

 
Figure 39. Comparison of beam tip vertical displacement between general continuum mechanics 

and strain split method with plane strain assumption ( GCM, SSM) 
 

The effect of locking is more evident in case of plane strain with the general continuum mechanics 

approach. Figure 40 shows the beam configurations at different times during the plane strain 

dynamic analysis. The colored beam in Figure 40 shows the axial strain in case of the strain split 
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model, whereas the gray beam shows the configuration of the beam obtained using the general 

continuum mechanics approach. 

 

 
Figure 40. Graphical representation of the pendulum motion in case of plane strain (Gray: GCM; 

colored: SSM with axial strain contours) 
 

4.6.5 Three-Dimensional Dynamic Analysis: Cantilever Beam 

Finally, a dynamic analysis of a three-dimensional cantilever beam structure is presented. This 

problem is identical to the one considered by Orzechowski and Shabana (2016) where they 

compared the Yakoub and Shabana (2001) ANCF beam element with the Shen et al. (2014) higher-

order beam element. The higher-order three-dimensional beam element does not have the locking 

seen in the relatively lower-order Yakoub and Shabana element. The beam structure length is 1m 

and the cross-section height and thickness are 0.1m and 0.07m, respectively. The material 
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properties considered are 660 10E   Pa, 0.3v  , and 7200  kg/m3. Gravity loading is 

considered as external force. Figure 41 shows the beam reference and deformed configurations. 

 

 
Figure 41. Three-dimensional cantilever beam dynamic analysis (Gray: beam configuration at 

t=0s; colored: beam configuration with axial strain contours at t=0.32s) 
 

Figure 42 compares the Yakoub and Shabana element with the general continuum mechanics 

approach, strain split method, and the elastic line approach to the solution obtained from the 

higher-order Shen et al. (2014) element that used the general continuum mechanics approach. A 

mesh of 10 elements is considered for all models shown in Figure 42. It can be seen from the 

results presented in Figure 42 that the lower-order element with general continuum mechanics 

approach exhibits significant locking, whereas the other models compare well with the higher-

order three-dimensional beam element. This example also demonstrates the effectiveness of the 

strain split method in three-dimensional beam elements. The elastic line approach gives good 

results in this case since the beam cross-sectional dimensions are much smaller than its length. 
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Figure 42. Comparison of cantilever beam tip horizontal position for different models (

Yakoub and Shabana beam with GCM, Yakoub and Shabana beam with SSM, 

Higher-order Shen et al. beam with GCM, Yakoub and Shabana beam with elastic line 
approach) 

 

4.7 Concluding Remarks 

The ANCF beam element locking was the subject of this chapter which presented a literature 

review of classical FE and ANCF locking alleviation techniques. This literature review shows the 

significant contributions reported in the FE literature and clearly demonstrates that, while locking 

is a common problem in most FEs, it can be dealt with relatively easily and effectively. ANCF 

locking alleviation techniques can be broadly classified into two distinct categories: kinematics- 

and kinetics-based methods. Kinematics-based locking alleviation techniques alter the kinematic 

description of the element in order to improve its performance. Such methods include 
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improvement in the displacement polynomials or improvement of the strain measures. Kinetics-

based methods operate at the elastic force level by modifying the stresses without directly affecting 

the basic element kinematics. Such methods include different formulations of the strain energy 

function and reduced integration. The locking alleviation techniques investigated and compared in 

this chapter can be categorized in the aforementioned two types. These include the new method 

that is proposed in this chapter to solve the ANCF beam and plate locking problems, known as the 

strain split method (SSM). A new higher-order two-dimensional ANCF beam element was also 

developed for the purpose of comparison with other locking alleviation methods. Implementation 

of the enhanced assumed strain method in ANCF beams using one parameter interpolation and 

using ANCF higher-order beam shape functions was presented and discussed. Three planar static 

examples that include a slender beam, a thick beam and a curved beam structure undergoing small 

and large deformations, one planar dynamic pendulum problem and one three-dimensional 

dynamic cantilever beam problem were presented, and the locking alleviation techniques were 

compared. The newly proposed SSM concept in curved structures was discussed and its 

advantages and drawbacks were discussed. 
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CHAPTER 5 

VEHICLE MODELING: STRUCTURAL DISCONTINUITY, SMALL AND LARGE 

DEFORMATION 

The goal of this chapter (Patel et al., 2017) is to propose an approach for developing new and 

detailed vehicle models that include flexible components with complex geometries, including 

chassis, and airless and pneumatic tires with distributed inertia and flexibility. The methodology 

used is based on successful integration of geometry, and small and large deformation analysis 

using a mechanics-based approach. The floating frame of reference (FFR) formulation is used to 

model the small deformations, whereas the absolute nodal coordinate formulation (ANCF) is used 

for the large deformation analysis. Both formulations are designed to correctly capture complex 

geometries including structural discontinuities. To this end, a new ANCF-preprocessing approach 

based on linear constraints that allows for systematically eliminating dependent variables and 

significantly reducing the component model dimension is proposed. One of the main contributions 

of this chapter is the development of the first ANCF airless tire model which is integrated in a 

three-dimensional multibody system (MBS) algorithm designed for solving the 

differential/algebraic equations of detailed vehicle models. On the other hand, relatively stiff 

components with complex geometries, such as the vehicle chassis, are modeled using the finite 

element (FE) FFR formulation which creates a local linear problem that can be exploited to 

eliminate high frequency and insignificant deformation modes. Numerical examples that include 

a simple ANCF pendulum with structural discontinuities and a detailed off-road vehicle model 

consisting of flexible tires and chassis are presented. Three different tire types are considered in 

this chapter; a brush-type tire, a pneumatic FE/ANCF tire, and an airless FE/ANCF tire. The 

numerical results are obtained using the general-purpose MBS computer program SIGMA/SAMS 
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(Systematic Integration of Geometric Modeling and Analysis for the Simulation of Articulated 

Mechanical Systems). 

 

5.1 Small and Large Deformation Analysis 

Accurate and efficient modeling of vehicle system applications requires the integration of small- 

and large-deformation formulations. The stresses of relatively stiff components such as rods and 

chassis can be efficiently modeled using a small-deformation formulation that allows for 

systematically eliminating insignificant deformation modes. More flexible components such as 

tires and belt drives, on the other hand, require the use of a large-deformation formulation. This 

section briefly discusses the two formulations used to describe the component flexibility in this 

chapter. These two fundamentally different formulations, FFR and ANCF, are integrated in one 

MBS computational algorithm designed for solving the differential/algebraic equations that govern 

the dynamics of vehicle systems. The brief presentation in this and the following sections is 

necessary in order to have an understanding of the fundamental differences between the two 

formulations in the way the coordinates are selected, and the structural discontinuities are handled. 

In the FE/FFR method, a conventional coordinate transformation based on orthogonal 

transformation matrices is used; while for ANCF elements, transformation between parameters or 

coordinate lines is used leading to a non-orthogonal gradient transformation. 

5.1.1 FE/FFR Formulation 

In the FFR formulation, the absolute position vector of an arbitrary point on body i  can be written 

as i i i i r R A u , where iR  is the absolute position vector of body reference, iA  is the rotation 

matrix that defines the orientation of the body  reference, and iu  is the local position vector of the 

arbitrary point. If the body is deformable, the absolute position vector can be written as 
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 0
i i i i i

f  r R A u u , where 0
iu  is the local position vector of the point in the undeformed state 

and i
fu  is the time-dependent deformation vector. 

  Beam elements will be used in this chapter to model the chassis in the FE/FFR formulation. 

The displacement field of the beam element can be written as w Se , where S  is the element 

shape function matrix and e  is the vector of the element nodal coordinates. The shape function 

matrix of the FE/FFR beam element is provided in Appendix C.1. In order to be able to correctly 

model structural discontinuities in the FE/FFR formulation, four coordinate systems are used:  the 

global coordinate system (GCS), body coordinate system (BCS), intermediate coordinate system 

(ICS), and the element coordinate system (ECS) as shown in Figure 43.  

 

 

Figure 43. Coordinate systems involved in FE-FFR formulation (Black: GCS; Blue: BCS; Red: 

ICS; Green: ECS) 
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For every ECS, there exists an ICS which is initially parallel to the ECS and fixed with respect to 

the BCS. Using the concept of the ICS, the beam displacement field of an element j  on body i  

can be written in the ICS as ij ij ij
ICS ICSw S e , where the subscript ICS  refers to vectors defined in 

ICS. Furthermore, ij
ICSe  can be written in terms of the nodal coordinates described in BCS as 

ij ij ij
ICS ne C q , where ij

nq is the vector of nodal coordinates described in BCS, and ijC  is a constant 

transformation matrix between ICS and BCS, composed of orthogonal transformation matrices. 

The location of the point in the BCS can be written as ij ij ij
ICSu C w  or ij ij ij ij ij

nu C S C q , where ijC  

is an orthogonal transformation matrix that defines the ICS with respect to the BCS. The nodal 

coordinates of element j  can be written in terms of the total vector of nodal coordinates of the 

body as 1
ij ij i
n nq B q , where 1

ijB  is a Boolean matrix. Consequently, the local position vector can be 

written as 1
ij ij ij ij ij i

nu C S C B q  (Shabana, 2013). In order to define a unique displacement field by 

eliminating the rigid body modes of the element shape function matrix, a set of reference 

conditions must be applied. To this end, the body nodal coordinates are written as 0
i i i
n f q q q , 

where 0
iq  is the vector of body nodal coordinates in the un-deformed configuration and i

fq  is the 

vector of body nodal deformations which can be written as 2
i i i
f fq B q , where 2

iB  is the linear 

transformation matrix obtained using the reference conditions. Using the transformation 

2
i i i
f fq B q , the local position vector iju  can be written as 

   1 0 2 0 2
ij ij ij ij ij i i i ij i i i ij i

f f n    u C S C B q B q N q B q N q .  

  The analysis presented in this section shows that assembly of elements that have different 

orientations in the reference configuration requires the use of constant orthogonal transformation 

matrices ( ijC  and ijC ). The use of these transformations in the FE/FFR formulation is necessary 
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in order to have exact modeling of the rigid body dynamics. In the FE/FFR formulation, the vector 

of body generalized coordinates is written as 
Ti iT iT iT

f   q R θ q , where iR  and iθ  are the 

body reference translation and rotational coordinates, respectively. The kinetic energy can be 

defined using the generalized velocities and the body mass matrix as 

1

1 1

2 2
eni iT i i iT ij i

j
T


    q M q q M q     , where en  is the number of elements, ijM  is the mass matrix 

of element j , and iM  is the body mass matrix which is a highly nonlinear function of the 

coordinates. The virtual work of the elastic forces is defined as 
ij

ij ijT ij ij
s V

W dV   ε σ , where a 

linear isotropic material is assumed for the stress-strain relationship. The element stiffness matrix 

can be written as 
ij

ij ijT ij ij ij
ff V

dV K V E V , where 2
ij ij ij iV D N B , ijE is the matrix of elastic 

coefficients, and ijD  is the matrix that relates the strains and displacements, such that ij ij ij
fε D u . 

Using the transformations previously developed in this section, the element stiffness matrices can 

be assembled to obtain the stiffness matrix i
ffK  which can be used to define the stiffness matrix 

iK  associated with the total vector of coordinates of the body (Shabana, 2013). Using the mass 

and stiffness matrices, the FE/FFR equations of motion for an unconstrained body i  can be written 

as  

i i i i i i
e v  M q K q Q Q                        (46) 

where  i
eQ  is the vector of generalized external forces, and i

vQ  is the Coriolis and centrifugal 

quadratic velocity vector. For flexible vehicle components with complex geometry such as the 

chassis shown in Figure 2 (Chapter 1), the number of elastic coordinates in Eq. 46 can be very 

large. For this reason, coordinate reduction techniques are often used to reduce the problem 

dimensionality. In this chapter, the number of elastic coordinates of the chassis is reduced using 
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component mode synthesis methods by performing an eigenvalue analysis of the system 

i i i i
ff f ff f M q K q 0 , where i

ffM  is the partition of the mass matrix associated with the vector of 

body nodal deformations. Because of the application of the reference conditions, the stiffness 

matrix i
ffK  is a symmetric positive-definite matrix (Shabana, 2013). Using the eigenvalue 

analysis, the vector of nodal coordinates can be written as i i i
f m fq B p , where i

mB  is the modal 

transformation matrix whose columns contain the eigenvectors that represent significant 

deformation modes, and i
fp  is the vector of modal coordinates. Because insignificant high 

frequency mode shapes are eliminated from i
mB , the number of elastic coordinates can be 

significantly reduced as demonstrated by the HMMWV vehicle example used in this chapter.  

5.1.2 ANCF Finite Elements 

Unlike the FE/FFR formulation, ANCF elements lead to highly nonlinear elastic forces and a 

constant mass matrix, and therefore, the Coriolis and centrifugal inertia forces are zero when these 

elements are used. ANCF coordinates consist of position and gradient/slope vectors that are 

defined in the global coordinate system. Several ANCF elements have been proposed in the 

literature. These ANCF elements include beam, plate/shell, solid, triangular, and tetrahedral 

elements that can be defined using non-rational or rational polynomials (Yakoub and Shabana, 

2001; Mikkola and Shabana, 2003; Olshevskiy et al., 2014; Pappalardo et al., 2017A; Pappalardo 

et al., 2017B; Shabana, 2012). When ANCF elements are used, the global position vector of an 

arbitrary point on element j  of body i  can be written using the element shape functions and nodal 

coordinates as ij ij ijr S e , where ijS  is the element shape function matrix, and ije  is the vector of 

element nodal coordinates. In this chapter, both pneumatic and airless tires will be modeled using 

ANCF plate/shell elements whose shape functions are provided in Appendix C.2. The vector of 
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the four-node plate/shell element nodal coordinates ije  can be written as 

1 2 3 4

Tij ijT ijT ijT ijT   e e e e e , where the coordinates of node n  can be written in the case of a fully-

parameterized element as        
TT T Tij ijT ij ij ij

n n n n nx y z         
e r r r r , 1, 2,3, 4n  , where 

 Tx y zx  are element parameters. No distinction is made between ANCF plate and shell 

elements because an ANCF shell element has the same assumed displacement field of the ANCF 

plate element. The shell geometry can be systematically defined using the element nodal 

coordinates in the reference configuration 0
ije , where the subscript 0 refers to reference 

configuration. The use of the position vector gradients as nodal coordinates allows for obtaining 

complex shell geometry by a proper choice of 0
ije . The mass matrix of ANCF elements 

0
0ij

ij ij ijT ij ij

V
dV M S S  can be defined using the kinetic energy, where ij  and 0

ijV  are, 

respectively, the mass density and volume in the reference configuration. Given an external force 

vector ij
ef , the ANCF generalized force vector can be written as ij ijT ij

e eQ S f . For fully 

parameterized ANCF elements, the continuum mechanics approach can be used to formulate the 

elastic forces. Given an elastic energy potential function ijU , the second Piola-Kirchhoff stress 

tensor can be written as 2
ij ij ij
P U  σ ε , where   / 2ij ijT ij ε J J I  is the Green-Lagrange strain 

tensor, 
ijij ij  J r X  is the matrix of position vector gradients, and 0

ij ij ijX S e  is the vector of the 

element  parameters in the reference configuration. The vector of element elastic forces can be 

formulated based on a hyper-elastic model as  
0

0ij

Tij ij ij ij ij
k v vV

dV   Q ε e σ , where the subscript v  

refers to Voigt (engineering) notation of the strain and stress tensors. In case of ANCF, the 
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equations of motion of an unconstrained ANCF body i  can be written as i i i i
k e M e Q Q , where 

i
eQ  is the vector of external forces.  

  As previously mentioned, ANCF plate/shell elements are used in this chapter to obtain 

accurate initially-curved geometry description for both pneumatic and airless tires. The stress-free 

initially-curved geometry in the reference configuration can be achieved by writing the matrix of 

position vector gradients as 1
0e
J J J , where e   r xJ , 0   X xJ ,  Tx y zx  is vector 

of element coordinates in the straight configuration, and 0X Se  as previously defined. With the 

appropriate selection of 0e , curved structures can be easily modeled using ANCF elements. 

Additionally, volume transformation can be written between the straight and initially-curved 

configuration as 0 0dV dV J  (Bonet and Wood, 1997; Ogden, 1984; Shabana, 2012), where V  

and 0V   is the volume in the straight and reference configurations, respectively. 

 

5.2 FFR and ANCF Modeling of Structural Discontinuities 

Structural discontinuities appear at the locations of intersection of rigidly-connected segments 

which have different orientations. These discontinuities characterize vehicle system components 

such as the chassis shown in Figure 2 (Chapter 1) and the airless tire shown in Figure 3 (Chapter 

1). In order to develop accurate computational models for these components in MBS applications, 

it is necessary to use approaches that account for the slope discontinuities. This section briefly 

describes the methods used for handling structural discontinuities in the two FE formulations used 

in this chapter. A new ANCF approach for the treatment of structural discontinuities is also 

proposed in this section. In this approach, a constant velocity transformation matrix is developed 

and used to eliminate the dependent variables at a preprocessing stage. The new approach offers 
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the flexibility and generality of combining structural discontinuity constraints with other 

constraints since it retains the original element coordinates before any coordinate transformation 

is performed. 

 

 

Figure 44. FE-FFR structural discontinuity (subscripts b, i and e correspond to BCS, ICS and 

ECS respectively) 

5.2.1 FE/FFR Formulation 

The element intermediate coordinate system (ICS) used in the FE/FFR formulation plays a crucial 

role in modeling structural discontinuities. The ICS concept is similar to that of the parallel axis 

theorem used in rigid body dynamics (Shabana, 2013). Consider the structure shown in Figure 44 

that consists of two non-isoparametric beam elements forming an L-shaped structural discontinuity 
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at their intersection. For brevity, BCS, ECS and ICS in Figure 44 refer to body, element, and 

intermediate coordinate systems, respectively. It can be seen from Figure 44 that the orientation of 

ECS-1 (corresponding to element 1) is the same as that of the BCS, while the orientation of ECS-

2 (corresponding to element 2) is different from that of the BCS. The shape functions of the non-

isoparametric beam element used can correctly capture rigid body translation but, since this 

element uses infinitesimal rotations as nodal degrees of freedom, large finite rotations cannot be 

correctly modeled. In order to correctly capture the inertia of this structure and obtain correct rigid 

body kinematics, two ICSs are introduced at the BCS which are parallel to their respective ECS as 

shown in Figure 44. The nodal coordinates defined in the BCS corresponding to each of the two 

elements can be transformed into their respective ICSs using the ijC  matrix used in Section 5.1.1. 

Using this transformation, the shape function matrix of the non-isoparametric beam element can 

be used to yield the correct position of the material points with respect to the ICS. The position of 

the material point obtained in the ICS can then be transformed to the BCS by using the constant 

transformation matrix ijC  which is the transformation matrix that defines the ICS orientation with 

respect to the BCS as discussed in Section 5.1.1. Therefore, the use of the ICS concept allows 

modeling different types of geometric discontinuities (T-, V-, and L-sections) in the FE mesh, 

while correctly representing the rigid body kinematics, inertia and dynamics. 

5.2.2 ANCF Finite Elements 

In case of ANCF elements, handling structural discontinuities requires the use of a fundamentally 

different approach that involves gradient transformations that have a structure different from the 

orthogonal vector transformations (Shabana and Mikkola, 2003). To this end, an appropriate 

coordinate transformation matrix that exists between the body and element parameterizations must 

be used, and no intermediate coordinate systems are required because of the use of the ANCF 



131 
 

position vector gradients. The nodal coordinates defined with respect to the body parameterization 

can be transformed to coordinates with respect to the element parameterization as e Tp , where 

e  and p  are the set of coordinates defined with respect to the element and body parameterizations, 

respectively, and the transformation T  can be written as 

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

j j j

j j j

j j j

 
 
 
 
 
 

I 0 0 0

0 I I I
T

0 I I I

0 I I I

     (47) 

where , 0( )m n m nj x  S e  are the components of the matrix of position vector gradients 0J   

defined at the reference configuration and mS  is the mth row of S  (Shabana and Mikkola, 2003). 

The transformation T  only affects the gradient vector coordinates of the given node, not the 

position vector coordinates. Employing this method, the structural discontinuities can be modeled 

using the conventional FE assembly procedure. By doing so, the connection between two ANCF 

elements having a structural discontinuity at a given common node is taken into account employing 

a standard connectivity matrix of the FE mesh. For example, consider the structure depicted in 

Figure 45, which is the same as the one considered in the previous section. Without loss of 

generality, it is assumed that the BCS is parallel to the GCS. The structural discontinuity occurs at 

the shared node between the ANCF fully parameterized beam element 1 and element 2 as shown 

in Figure 45. It can be seen from Figure 45 that the orientation of the gradients in element 1 is the 

same as that of the BCS, whereas the orientation of the gradients of element 2 is rotated with 

respect to the shown BCS. In this case, the transformation matrix that transforms the coordinates 

from the body to element parameterization will be an identity matrix at the shared node for element 

1. For element 2, the transformation matrix will depend on the direction cosines between the 

gradients at the shared node in element 2 and the BCS assuming that the set of gradient vectors at 
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the discontinuity node is an orthonormal set (no initial curvature). A similar procedure can be used 

for gradient deficient ANCF elements (Shabana and Maqueda, 2008). 

 

 

Figure 45. ANCF structural discontinuity 

 

  In this chapter, a new method for modeling structural discontinuities using ANCF elements 

is proposed. The proposed method generalizes the technique previously developed (Shabana and 

Mikkola, 2003) to structural discontinuities located at arbitrary points of an FE/ANCF mesh. 

Instead of directly applying the coordinate transformation e Tp  to switch to the body 

coordinates, a constant structural discontinuity constraint Jacobian matrix is defined. This Jacobian 

matrix can be used to define a constant velocity transformation matrix that can be used to 

systematically eliminate dependent variables. This approach offers the generality and flexibility of 
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combining the structural discontinuity constraint equations with other constraint equations before 

switching to the body coordinates. By using this approach, structural discontinuities that occur at 

nodal locations of the FE/ANCF mesh can also be modeled, and therefore, the method previously 

developed in (Shabana and Mikkola, 2003) can be considered as a special case of the method 

proposed in this section.  

  In the method proposed in this section, a set of ANCF structural discontinuity algebraic 

constraint equations is developed. Since these algebraic constraint equations are linear, they and 

the associated dependent variables can be systematically eliminated at a preprocessing stage, 

leading to reduced order models that can be efficiently solved. In order to obtain the general set of 

constraint equations associated with structural discontinuities, the proposed method is composed 

of two steps. In the first step, two sets of coordinate lines, which represent geometric lines 

associated with the material fibers of the continuum body, are defined. The first set of coordinate 

lines referred to as  Tx y zx  represents the element material fibers, whereas the second set 

of coordinate lines referred to as  Tx y zx  represents the body material fibers. The set of 

coordinate lines x  are also referred to as Cartesian coordinates and serve as a unique standard for 

the FE mesh assembly, while the coordinate lines x   are simply referred to as element coordinate 

lines. Using these basic continuum mechanics concepts, the position field of a three-dimensional 

continuum body is defined as  1 2 3

T
r r rr  and it can be written as a function of the element 

coordinate lines x  or as a function of the body coordinate lines x . By using the chain rule of 

differentiation, one can write         b         r x r x x x r x J , where bJ  is the Jacobian 

matrix that represents the transformation between the body coordinate lines and the element 

coordinate lines. Without loss of generality, the structural or body parameterization is defined 
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considering the reference configuration of the continuum body, and therefore, the Jacobian matrix 

of the body parametrization bJ  is identical to the matrix of the position vector gradients 0J  defined 

in the body reference configuration. This tensor transformation can be rewritten in matrix form as 

follows: 

 
11 12 13

0 21 22 23

31 32 33

x y z x y z x y z

j j j

j j j

j j j

 
              
  

r r r r r r J r r r     (48) 

where ,m nj  are the components of the matrix 0J . By adding an identity transformation for the 

ANCF nodal position vector, the preceding equation can be rewritten as 

11 21 31

12 22 32

13 23 33

x x y z

y x y z

z x y z

j j j

j j j

j j j

 
   
   
   

r r

r r r r

r r r r

r r r r

      (49) 

For a general node of an ANCF fully-parameterized element, the nodal coordinate vector 

associated with the element coordinate lines can be defined as 
TT T T T

x y z   e r r r r , whereas 

the nodal coordinate vector associated with the structural (body) parametrization can be given by 

TT T T T
x y z   p r r r r .  Therefore, as mentioned before in this section, one can write e Tp , 

where T  is the transformation matrix previously defined. On the other hand, the matrix of position 

vector gradients defined by differentiation with respect to the body parameters can be written as 

        1
b b
            r x r x x x r x J r x H , where 1

b b
H J . Assuming again that the 

Jacobian matrix of the body parametrization bJ  is identical to the matrix of the position vector 

gradients 0J  defined in the body reference configuration, this inverse tensor transformation can 

be rewritten in matrix form as follows:  
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11 12 13

0 21 22 23

31 32 33

x y z x y z x y z

h h h

h h h

h h h

 
              
  

r r r r r r H r r r    (50) 

where ,m nh  are the components of the matrix 1
0 0

H J . It follows that  

 
 
 

11 21 31 11 21 31

12 22 32 12 22 32

13 23 33 13 23 33

x x y z x y z x

y x y z x y z y

z x y z x y z z

h h h h h h

h h h h h h

h h h h h h

      
       


       

r r r r S S S e S Tp

r r r r S S S e S Tp

r r r r S S S e S Tp

            (51) 

where  11 21 31x x y zh h h  S S S S ,  12 22 32y x y zh h h  S S S S , and  13 23 33z x y zh h h  S S S S . 

By using these equations, one is able to write the gradient vectors of a given ANCF element as 

functions of the structural (body) vector of nodal coordinates. Therefore, considering two material 

points iP  and jP  belonging to the element i  and j , respectively, one can write a set of structural 

discontinuity constraint equations for the connection of points iP  and jP  as follows:  

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( )

i i j j i i j j
x x

i i j j i i j j
y y z z

P P P P

P P P P

    


    

r r 0 r r 0

r r 0 r r 0
          (52)          

or equivalently  

, ,

,

i i i j j j i i i j j j
x x

i i i j j j i i i j j j
y y z z

    


    

S T p S T p 0 S T p S T p 0

S T p S T p 0 S T p S T p 0
          (53)     

Considering the vector of structural nodal coordinates    
TT Tk i j    

p p p  that appears in the 

preceding equation, the structural discontinuity constraint Jacobian matrix can be written as  

k i j

i i j j

i i j j
k k k x x

i i j j
y y
i i j j
z z

 
       
 

  

p p p

S T S T

S T S T
C C C

S T S T

S T S T

        (54)     
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where kC  denotes the vector of structural discontinuity constraint equations of Eq. 52 and 53 at 

node k . Since the structural discontinuity constraint equations are a set of linear algebraic 

equations grouped in the vector kC ,  the Jacobian matrix k

k

p
C  of this set of algebraic equations is 

constant, and therefore, the constraint equations and the associated dependent variables can be 

systematically eliminated at a preprocessing stage by developing an appropriate velocity 

transformation matrix. The use of the velocity transformation matrix offers the flexibility and 

generality of combining the structural discontinuity constraint equations with other constraint 

equations which are formulated in terms of the original element nodal coordinates. The basic idea 

of the method proposed for obtaining the structural discontinuity constraint equations is to define 

the gradients with respect to a unique set of coordinate lines (body coordinate lines) since in case 

of structural discontinuity the element gradients at a shared node that are defined with respect to 

two different sets of element coordinate lines cannot be simply equated.   

 

5.3 MBS Equations of Motion 

The equations of motion used in this chapter for the dynamic simulation of a vehicle system that 

consists of rigid, FE/FFR, and ANCF bodies are presented in this section. The 

differential/algebraic equations of motion are obtained using the principle of virtual work and the 

technique of Lagrange multipliers. The set of generalized coordinates used are 

TT T T
r f   q q q p , where 

TT T
r R    q q q  are the rigid body translational and rotational 

coordinates collectively referred to as reference coordinates, fq  represents the FE/FFR 

coordinates, and p   represents the vector of structural FE/ANCF coordinates. The equations of 

motion can be written as   
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              (55) 

where rrM  and ffM  are the mass matrices associated with the reference and FE/FFR deformation 

coordinates, respectively; rfM  and frM  represent the inertia coupling between the FE/FFR 

reference and deformation coordinates; ppM  is the mass matrix associated with the ANCF 

coordinates; 
rqC , 

fqC , and pC  are the Jacobian matrices of the nonlinear MBS joint constraint 

equations associated, respectively, with the reference, FE/FFR deformation, and ANCF 

coordinates; λ  is the vector of Lagrange multipliers; rQ , fQ , and eQ  are the applied and elastic 

force vectors associated with the reference, FE/FFR deformation, and ANCF coordinates 

respectively; 
rvQ and 

fvQ are the Coriolis and centrifugal force vectors associated with the 

reference and FE/FFR deformation coordinates, respectively; and cQ  is the quadratic velocity 

vector that arises from differentiating the constraint equations twice with respect to time.  

  For numerically solving the equations of motion, the two-loop implicit sparse matrix 

numerical integration (TLISMNI) method that utilizes the concept of coordinate partitioning and 

the second-order backward difference formula for time integration is used in this work (Aboubakr 

and Shabana, 2015). An important feature of TLISMNI is that it satisfies the constraint equations 

at the position, velocity, and acceleration levels. A component mode synthesis method is used for 

the FE/FFR model to reduce the size of the modal transformation matrix by eliminating 

insignificant high frequency modes. Furthermore, the concept of the ANCF reference node is used 

to model the rigid rim in the ANCF tire assembly. Using the ANCF reference node, linear 

constraint equations can be formulated for the tire-rim connection and the dependent variables in 
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the tire mesh can then be eliminated thus reducing the model dimensionality and the number of 

Lagrange multipliers needed in the dynamic analysis (Shabana, 2015A; Patel et al. 2016). As 

described in Chapter 2, the rigidity of the ANCF reference node is ensured by imposing six 

nonlinear constraint equations that ensure that its gradient vectors remain unit orthogonal vectors 

in order to define an orthonormal rigid body coordinate system. 

 

5.4 Numerical Results and Discussion 

This section presents and discusses two simple ANCF pendulum problems and a complex off-road 

vehicle model that includes flexible ANCF tires and FE/FFR chassis in order to demonstrate the 

use of the new velocity transformation-based approach introduced in Section 5.2.2 for modeling 

structural discontinuities in the analysis of a complex vehicle model with flexible chassis and tires 

without the need for co-simulation. 

5.4.1 L-shaped Beam and Y-shaped Plate Pendulums 

In order to demonstrate the implementation of the new ANCF approach discussed in Section 5.2.2 

for modeling structural discontinuities, beam and plate pendulum models are used in this section. 

The beam model, which is an L-shaped pendulum model shown in Figure 46, consists of two 

ANCF fully parameterized beam elements that are connected at a structural discontinuity node. 

Three beam pendulum models are considered in this numerical example: rigid body, ANCF with 

modulus of elasticity 122 10E   Pa, and ANCF with modulus of elasticity 72 10E   Pa. The 

length, width, and height of the beams are 1m, 0.1m, and 0.1m, respectively. A density 1000   

kg/m3 and Poisson’s ratio 0   are assumed. Figure 47 shows the time evolution of the pendulum 

tip vertical position for the three models. As can be seen from Figure 47, the rigid body and stiff 

ANCF pendulum models are overlapping, whereas there is some difference in the results of the 
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soft ANCF pendulum model. The soft ANCF pendulum, however, follows a similar trend as that 

exhibited by the other two models. In order to examine the results of the new implementation, 

Figure 48 compares two scalar quantities and their difference at the structural discontinuity node 

of the ANCF model with 72 10E   Pa. These scalar quantities are 1 2
T
x xr r and 1 1

T
x zr r , where the 

subscript   refers to the   coordinate line on element  . The scalar quantity 1 2
T
x xr r  

corresponds approximately to the cosine of the angle between the two beams, whereas 1 1
T
x zr r  

corresponds to the engineering shear strain at the structural discontinuity node. It is shown in 

Figure 48 that 1 2
T
x xr r  and 1 1

T
x zr r  overlap and their difference is identically zero throughout the 

simulation.  

 

 

Figure 46. L-shaped beam pendulum with structural discontinuity 
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Figure 47. L-shaped beam tip vertical position: ANCF and rigid body model comparison (

Rigid;  ANCF ( 122 10E    Pa);  ANCF ( 72 10E    Pa) ) 

 

Figure 48. ANCF L-shaped beam engineering shear strain and cosine of angle at structural 

discontinuity (
1 2

T
x xr r  ;  

11

T
x zr r ;  

11 2 1

T T
x x x zr r r r ) 
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The plate/shell model consists of three fully parameterized ANCF plate/shell elements 

connecting at common structural discontinuity nodes and making a Y-shaped plate structure as 

shown in Figure 49. The two angled plates connect to the horizontal plate at a 45  angle measured 

from the horizontal plane. Figure 50 compares the right tip vertical position of the upper angled 

plate of a rigid body model to an ANCF model with 122 10E   Pa. The length, width and height 

of the plates are 1m, 1m, and 0.1m respectively. A density 1000   kg/m3 and Poisson’s ratio 

0  are used for the ANCF plate pendulum. As can be seen from Figure 50, even in this case, the 

rigid body and stiff ANCF pendulum models produce the same results, thus demonstrating the 

effectiveness of the proposed ANCF approach for modeling structural discontinuities. 

 

Figure 49. Y-shaped plate/shell pendulum model 
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Figure 50. Y-shaped plate/shell pendulum tip vertical position: ANCF and rigid body model 

comparison ( Rigid;  ANCF 122 10E   Pa) 

 

5.4.2 Wheeled Vehicle Model 

An off-road four-wheel drive vehicle model, HMMWV model shown in Figure 51, is considered 

as a numerical example in this section. A MBS model with a detailed suspension model was 

developed. The chassis and tires are considered flexible bodies in this MBS vehicle model. The 

chassis is modeled using the FE/FFR formulation whereas the tires are modeled using ANCF 

elements. Two types of flexible tires that include a pneumatic tire and an airless (non-pneumatic) 

tire are considered and the results obtained using these distributed inertia and elasticity tire models 

are compared with a rigid brush-type tire model. 
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Figure 51. Off-road wheeled vehicle model 

 

5.4.2.1 MBS Vehicle Model 

The vehicle model considered in this numerical example is a four-wheel drive vehicle capable of 

operating both on-road and off-road. The vehicle has a 190-horsepower engine, a double ‘A’ arm 

suspension with coil springs and double-acting shock absorbers and a recirculating ball, worm and 

nut based power assisted steering. The gross operating mass of the vehicle can vary; however, a 

good estimate of the vehicle curb mass is approximately 2500 kg. The maximum vehicle on-road 

speed is around 113 km/h. For simplicity, powertrain dynamics are not considered in the MBS 

model used in this numerical example. The steering system is modeled using a rack-pinion system. 

The vehicle subsystems like suspension, car-body, chassis, and tires are modeled in detail using 

several rigid and deformable bodies. Table 18 shows the body inertia of the vehicle components, 

whereas Tables 19 and 20 show the different types of ideal and compliant joints used in the model.  
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Table 18. Vehicle inertia properties 

Components Mass (kg) xxI  (kg.m2) yyI  (kg.m2) zzI  (kg.m2) 

Chassis 708.35 156.83 1647.4 1767.3 
Car body 1378.18 712.38 1952.25 2358.16 

Front sub-frame 50.000 61.0000 10  61.0000 10  61.0000 10  
Rear sub-frame 45.359 42.9264 10  42.9264 10  42.9264 10  

Front left and right suspensions 
Upright 3.6382 24.0800 10  24.2300 10  38.3400 10  

Upper arm 5.4431 22.3300 10  23.6100 10  21.3200 10  
Lower arm 16.329 0.14688 0.23163 0.11852 
Upper strut 5.0000 61.0000 10  61.0000 10  61.0000 10  
Lower strut 5.0000 61.0000 10  61.0000 10  61.0000 10  

Tire 68.039 1.1998 1.7558 1.1998 
Tierod 0.5545 35.7854 10  35.7854 10  51.7745 10  
Tripot 1.9851 31.1019 10  31.1019 10  48.1390 10  

Drive shaft 4.2175 0.16599 0.16599 46.9283 10  
Spindle 1.1028 44.7790 10  44.7790 10  44.9628 10  

Rear left and right suspensions 
Upright 3.6382 24.0800 10  24.2300 10  38.3400 10  

Upper arm 5.9320 0.068400 0.091400 0.024000 
Lower arm 16.287 0.29036 0.51811 0.23229 
Upper strut 0.45359 42.9264 10  42.9264 10  42.9264 10  
Lower strut 0.45359 42.9264 10  42.9264 10  42.9264 10  

Tire 68.039 1.1998 1.7558 1.1998 
Tierod 2.0412 24.2200 10  24.2200 10  41.9000 10  
Tripot 2.0307 31.1383 10  31.1383 10  48.4254 10  

Drive shaft 6.0495 0.24565 0.24565 31.4463 10  
Spindle 1.5046 47.7539 10  47.7539 10  49.2387 10  

 

Table 19. Ideal joints used in vehicle model 

Joint type 
Number of 

joints 
Spherical/ball 25 
Revolute/pin 16 
Rigid/bracket 4 
Cylindrical 8 

Relative angular velocity 5 
Gear 8 

Rack pinion 1 
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Table 20. Compliant joint elements used in vehicle model 

Joint type 
Number of 
elements 

Bushing 4 

Bearing 16 

 

Figure 52 shows a detailed view of the suspension system and some driveline components used in 

this model. Three different types of tires are used with the model, these include rigid brush-type 

tire, FE/ANCF pneumatic tire, and FE/ANCF airless tire. The computer implementation of the 

new approach proposed in this chapter in Section 5.2.2 for the treatment of the structural 

discontinuities was used in the analysis of the ANCF airless tire model developed in this chapter. 

 

Figure 52. Front left suspension close-up 

 

 For the assembly of the vehicle model, four subsystems are considered: car body, chassis, 

suspension, and wheels. The wheels are connected to the spindles (suspension component), and 

the spindle is connected to the upright using revolute joints. A component called the subframe 
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connects the suspension, chassis and car body. The chassis is connected to the front and rear 

subframes at the NDRC locations shown in Figure 53 using bearing elements. In this chapter, 

NDRC is an abbreviation for nodal displacement reference conditions, which refer to the locations 

on the chassis where the node displacements are constrained in order to achieve a unique 

displacement field for the FE/FFR chassis mesh. Furthermore, the car body is also connected to 

the sub-frames at the same locations as that of the chassis using bearing elements. The upper and 

lower arms of the suspension shown in Figure 52 are connected to their respective sub-frame using 

revolute joints. 

 

Figure 53. FFR chassis mesh (NDRC: nodal displacement reference conditions) 

 

5.4.2.2 Flexible Subsystems: Chassis and Tires 

The FE/FFR method is used to model the vehicle chassis which is meshed using 435 non-

isoparametric three-dimensional beam elements with displacement and rotations as nodal 

coordinates. The shape function matrix for this non-isoparametric beam element is given in 

Appendix C.1. The material parameters considered are modulus of elasticity 112.1 10E    Pa, 

Poisson ratio 0.33  , and mass density 7200   kg/m3. The cross-section is assumed to be 
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rectangular with width 0.05w   m and height 0.1h   m. The FE mesh and the applied reference 

conditions are shown in Figure 53. As shown in this figure, the reference conditions are selected 

to constrain the x, y and z nodal displacement at 8 nodes/points which represent joint locations 

between the vehicle suspension subsystem and chassis. The dimension of the chassis model is 

reduced by eliminating high-frequency modes and keeping the first 15 modes in the model. Modal 

damping is used in order to account for the dissipation due to structural damping. A damping ratio 

of 1% is used for the first 5 modes and a damping ratio of 5% is used on the remaining higher 

frequency modes in order to damp out insignificant high-frequency oscillations and improve the 

computational efficiency of the model. The first five modes of the chassis are shown in Figure 54, 

while Table 21 shows the frequencies associated with the 15 modes of the chassis. 

 

Table 21. Chassis frequencies 
Mode number Frequency (Hz) 

1 30.9 
2 65.35 
3 70.48 
4 74.27 
5 78.23 
6 82.08 
7 91.98 
8 95.38 
9 97.21 

10 99.28 
11 116.21 
12 121.45 
13 129.75 
14 137.83 
15 148.87 
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Figure 54. FFR chassis first five mode shapes and frequencies 
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  ANCF fully-parameterized plate/shell elements, on the other hand, are used to model the 

pneumatic and airless tires. The 36-element pneumatic tire is shown in Figure 55, while the 25-

element airless tire is shown in Figure 56. The material properties selected are 1500   kg/m3, 

75 10E    Pa, and 0v  . The air-pressure considered in the pneumatic tire is 250 kPa. The 

tire/ground contact penalty stiffness, damping, and coulomb friction coefficients are selected to be 

45 10k   N/m, 34 10c   N.s/m, and 0.8  , respectively. More details on the ANCF 

tire/ground contact formulation can be found in the Chapter 2.  

 

 

 

Figure 55. ANCF pneumatic tire 
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Figure 56. ANCF airless tire 

 

  Finally, a new radial damping model for the pneumatic tire is introduced wherein the 

relative velocity between the tire material point and the ANCF reference node that is used to model 

the rim is used in the formulation of the damping force as shown in Figure 57. This type of damping 

is introduced in the model to simulate the effect of the more realistic material damping that would 

occur in the tire structure. However, using this type of damping, one can relate the damping 

coefficient to radial damping used in several non-FE based ring type tire models which are 

parametrized using test data. The relative velocity between the tire material point and the ANCF 

reference node, rv ,  is calculated and its projection on the outward normal to the tire surface at 

that material point is used in the damping force expression. Hence, the generalized damping forces 
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can be written as ( )T T
d rs

c ds Q S v n n , where c  is a damping coefficient, S  is the matrix of 

shape functions, n  is the outward normal to the tire surface as shown in Figure 57, and s  is the 

tire surface area. The generalized damping forces used in this chapter are distributed forces 

calculated from integration over the tire surface area.  

 

Figure 57. Distributed radial damping model (ANCF-RN: ANCF reference node) 
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Furthermore, this damping formulation does not affect the ability of the ANCF mesh to correctly 

exhibit rigid body motion since the relative velocity of the material point with respect to the ANCF 

rim node instead of its absolute velocity is used in the formulation of the damping force. The tire 

edges are clamped to the rim using linear constraints at the preprocessing stage, hence removing 

any rigid body motion between the tire and its respective rim reference node (Shabana, 2015A). A 

damping coefficient of 42 10c   N.s/m was used with the pneumatic tire model in the numerical 

model. Adding the damping to the tire model significantly improved its computational efficiency 

and improved the quality of the results.  

5.4.2.3 Comparative Study 

In order to compare the response of different tire models considered in this chapter as well as the 

vehicle response, the off-road wheeled vehicle model described in Section 5.4.2.1 is made to 

traverse several curb-like bumps. The three vehicle models used in this analysis have the same 

kinematic constraints and model topology. The models with the airless ANCF tire, pneumatic 

ANCF tire, and brush tire will be henceforth referred to as airless, pneumatic, and brush models 

respectively. The topology of the test track, shown in Figure 58, can be used to assess vehicle 

durability and the noise-vibration-harshness (NVH) response of the vehicle. The vehicle is allowed 

to settle initially, and then driving moments are applied to the wheels from 0.5s to 8.5s, after which 

the driving moments are removed, and the vehicle is allowed to decelerate. The vehicle reaches a 

maximum velocity of around 17 km/h during the 15s simulation. Figure 59 shows the chassis 

longitudinal velocity of the three vehicle models. Figure 60 shows the chassis longitudinal 

displacement of the three vehicle models. There are some differences in the vehicle longitudinal 

displacement due to the different rolling resistance coefficients of the tires that are in turn 
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dependent on the tire geometry and the resulting contact patch as well as the normal contact force 

distribution.  

 

Figure 58. Durability vehicle simulation test track 

 

 

Figure 59. Chassis longitudinal velocity ( Airless;   Pneumatic;  

Brush) 
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Figure 60. Chassis longitudinal displacement ( Airless;   Pneumatic;  

Brush) 

 

Figure 61. Chassis vertical displacement ( Airless;   Pneumatic;  

Brush) 
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Figure 61 shows the vertical displacement of the chassis reference. It can be noted from Figure 61 

that, objectively, the vertical motion of the chassis frame of reference is quite similar for all three 

tire models. The chassis vertical displacement for the brush tire model is slightly larger than the 

FE/ANCF tire models since the brush tire model is based on a rigid tire assumption with a flexible 

contact patch, and leads to larger force transmission, hence slightly larger vibration amplitude of 

the chassis which is modeled as a sprung mass. Figure 62 shows the vertical displacement of the 

front left spindle as the suspension subsystem traverses the seven curb-like bumps in the test track. 

It can be noted from Figure 62 that the upward displacement due to a bump in case of the brush 

tire model occurs with a slight delay when compared to that of the FE/ANCF tire models. The 

reason for this phenomenon is that the brush tire model has a single contact point directly below 

the wheel center, hence the bump is only detected by the brush tire model when the brush tire 

center coincides with the start of the bump. In case of the FE/ANCF tires, since the contact 

detection is done for the elements near the ground while accounting for the variation in the ground 

geometry due to the bumps, the FE tires can detect the sudden change in ground geometry away 

from wheel center with much higher accuracy than the brush tire model. However, it must be noted 

that the brush tire model is typically used in ride quality simulations instead of NVH-type 

durability simulations. Figures 63 and 64 show the strains in the front right airless and pneumatic 

tires as they come into contact with the second bump of the test track, respectively. Along with 

examining the dynamic events occurring in the flexible tires, the chassis that is modeled using the 

FE/FFR approach can be analyzed for deformation and stress hot spots in order to improve its 

design or simply ensure that stresses remain within the material yield limit when the model is 

tested under certain external excitations and loads. Figure 65 shows the chassis total deformation 

for the dynamic event of the vehicle front tires passing over the second bump.  
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Figure 62. Front left spindle vertical displacement ( Airless;   Pneumatic; 

 Brush) 

 

Figure 63. Airless tire hitting second bump with yy  strain contours 
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Figure 64. Pneumatic tire hitting second bump with yy  strain contours 

 

Figure 65. FFR chassis total deformation instance during dynamic simulation (with deformation 

contours) 
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Figure 66 shows the vertical deformation time history of point P shown in Figure 65. Since the 

deformation data shown in Figure 66 contain some high frequencies, it can be harder to correlate 

it with the vehicle overall motion, for this reason, Figure 67 shows the vertical deformation of 

chassis point P after applying a low-pass filter with a cut-off frequency of 3.33 Hz. Similar to 

analyzing the deformations, element stresses can also be extracted and analyzed. Figure 68 shows 

the axial stress at point P whereas Figure 69 shows the same result after applying the low-pass 

filter. It can be seen from the results of Figures 66-69 that the trend in the chassis vertical 

deformation and axial stress for the three types of tire models traversing the test track is quite 

similar. The deformation in the chassis used with brush tire model is larger than its FE/ANCF 

counterparts due to the reason previously mentioned, that is, the rigidity of the tire which leads to 

larger force transmission.  

 

 

Figure 66. Vertical deformation at chassis point P with respect to BCS ( Airless; 

  Pneumatic;  Brush) 
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Figure 67. Vertical deformation at chassis point P with respect to BCS after applying low-pass 

filter ( Airless;   Pneumatic;  Brush) 

 

Figure 68. Axial stress at chassis point P with respect to BCS ( Airless;   

Pneumatic;  Brush) 
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Figure 69. Axial stress at chassis point P with respect to BCS after applying low-pass filter (

Airless;   Pneumatic;  Brush) 

 

5.5 Concluding Remarks 

The goal of this chapter is to develop a computational framework for complex vehicle systems that 

consist of components with geometry characterized by structural discontinuities as in the cases of 

chassis and airless tires. Accurate durability analysis of such systems requires the integration of 

small- and large-deformation formulations. The chapter proposes a new ANCF approach for 

modeling structural discontinuities in which a constant velocity transformation matrix that allows 

combining the structural discontinuity constraint equations with other ANCF constraint equations 

before the application of any coordinate transformation. The ANCF linear constraint equations are 

used to eliminate dependent variables at a preprocessing stage. The chapter also proposes a new 

radial damping model for the tires and demonstrates its use in MBS vehicle system applications. 

The use of the new computational framework proposed in this chapter is demonstrated by 
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developing and performing the simulation of a detailed wheeled vehicle model that consists of 

rigid body, FFR, and ANCF components. The vehicle components undergoing small deformations 

are modeled using the FFR approach, whereas the components undergoing large deformations and 

finite rotations are modeled using the ANCF approach. Three types of tire models that include a 

rigid brush-type tire model, an ANCF airless tire model, and an ANCF pneumatic tire model are 

compared as the vehicle traverses a series of bumps. The airless tire is modeled for the first time 

using ANCF fully parameterized plate/shell elements, which is one of the main contributions of 

this chapter. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this thesis, a new computational procedure for modeling tire and vehicle systems is presented. 

The thesis demonstrates the integration of absolute nodal coordinate formulation (ANCF) tire 

models with computational multibody system (MBS) algorithms by using the new concept of the 

ANCF reference node. This concept is used to develop a tire assembly in which a vehicle model, 

including the tires, can be represented using one ANCF mesh in which the linear connectivity 

conditions are used to eliminate redundant variables at a preprocessing stage. The computational 

approach used in this thesis allows for developing detailed finite element (FE) vehicle models that 

include tires with distributed inertia and elasticity without the need for using co-simulation 

techniques, only one MBS simulation environment is required. The optimum sparse matrix 

structure of the dynamic equations of motion is preserved by introducing a minimum set of 

nonlinear algebraic equations that ensure the rigidity of the rims, axles, and possibly the chassis of 

the vehicle. A continuum-based air pressure tire model that allows for accounting for the change 

of the inner surface area of the tire due to the contact forces is developed. In this continuum-based 

air pressure model, Nanson’s formula is used to define the area in the current deformed 

configuration in terms of the area in the reference configuration. This continuum-based air pressure 

model can be used as an alternative to the discrete spring models often used in the literature to 

model the tire pressure forces. Because general and more accurate tire models require the use of 

composite materials, it is shown how an ANCF composite tire model can be systematically 

developed and integrated with MBS algorithms. To this end, fully parameterized ANCF plate 
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elements are used. Numerical results are presented in this thesis in order to demonstrate the 

implementation of the proposed computational MBS approach. 

In this thesis, a method for the integration of localized surface geometry with fully 

parameterized ANCF elements is proposed as well. ANCF FEs are used to create the global 

geometry and perform the FE/MBS analysis of the bodies. The surface geometry details can be 

added without refining the mesh to the scale of the detailed features. The localized surface may be 

represented by NURBS and can accurately describe complex geometric shapes such as a conic 

surface and freeform surface. The basic idea lies in the integration of the localized surface with the 

global surface by augmenting the geometry during the numerical integration process. Two methods 

for including the localized geometry in the ANCF elements are proposed. The overlapping method 

simply changes the thickness of the element using a function that is dependent on the lateral and 

longitudinal coordinates of the element. The domain trimming method takes advantage of the 

powerful NURBS geometry as a tool to trim the domain of original ANCF element according to 

the shape of the localized geometry. While using NURBS to define the localized geometry, a 

mapping between ANCF local coordinates and NURBS localized geometric parameters is used in 

both geometric integration methods.  Furthermore, a comparison of two numerical integration 

methods, the global domain and the subdomain methods is presented in this thesis. The results 

show that the subdomain method is better suited for integrating complex geometry in ANCF 

elements since it has more flexibility in the distribution of the Gauss integration points. Using the 

subdomain method, any kind of geometry can be superimposed in the case of fully parameterized 

ANCF elements without the need for further mesh refinement during dynamic simulations. A 

cantilever plate example with localized surface geometry is provided to validate the proposed 

method by comparing the simulation results obtained with the proposed method against a 
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commercial FE code. A model of a flexible ANCF plate contacting with rigid ground is used to 

study the effect of the number of subdomains and the number of integration points per subdomain 

used in accounting for the localized geometry. Finally, a tire model meshed with ANCF plate 

elements and described by a hyperelastic incompressible Mooney-Rivlin material with four 

grooves integrated as localized surface geometry is considered. The results from the tire simulation 

that capture the effect of the grooves in the tire contact patch show the effectiveness of the 

proposed method whereas the convergence study performed with the tire model helps support the 

basis of the proposed concepts by demonstrating that the model can achieve convergence with 

mesh refinement and reduced integration techniques which help alleviate locking. In summary, the 

proposed method does a good job of capturing surface geometry without significantly increasing 

the computational cost that comes from mesh refinement. Future studies can be focused on 

eliminating the limitations of the method that include the fact that very localized deformations of 

the more intricate geometry cannot be easily captured since the element deformation field is still 

governed by its basis functions, and that the method will be challenging to use with very complex 

three-dimensional changes in the structure’s geometry.  

ANCF beam element locking was another subject studied in this thesis, which also 

presented a literature review of classical FE and ANCF locking alleviation techniques. This 

literature review shows the significant contributions reported in the FE literature and clearly 

demonstrates that, while locking is a common problem in most FEs, it can be dealt with relatively 

easily and effectively. ANCF locking alleviation techniques can be broadly classified into two 

distinct categories: kinematics- and kinetics-based methods. Kinematics-based locking alleviation 

techniques alter the kinematic description of the element in order to improve its performance. Such 

methods include improvement in the displacement polynomials or improvement of the strain 
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measures. Kinetics-based methods operate at the elastic force level by modifying the stresses 

without directly affecting the basic element kinematics. Such methods include different 

formulations of the strain energy function and reduced integration. The locking alleviation 

techniques investigated and compared in this thesis can be categorized in the aforementioned two 

types. These include the new method that is proposed in this thesis to solve the ANCF beam and 

plate locking problems, known as the strain split method (SSM). A new higher-order two-

dimensional ANCF beam element was also developed for the purpose of comparison with other 

locking alleviation methods. Implementation of the enhanced assumed strain method in ANCF 

beams using one parameter interpolation and using ANCF higher-order beam shape functions was 

presented and discussed. Three planar static examples that include a slender beam, a thick beam 

and a curved beam structure undergoing small and large deformations, one planar dynamic 

pendulum problem and one three-dimensional dynamic cantilever beam problem were presented, 

and the locking alleviation techniques were compared. The newly proposed SSM concept in 

curved structures was discussed and its advantages and drawbacks were discussed. 

One of the goals of this thesis is to develop a computational framework for complex vehicle 

systems that consist of components with geometry characterized by structural discontinuities as in 

the cases of chassis and airless tires. Accurate durability analysis of such systems requires the 

integration of small- and large-deformation formulations. The thesis proposes a new ANCF 

approach for modeling structural discontinuities in which a constant velocity transformation matrix 

is used that allows combining the structural discontinuity constraint equations with other ANCF 

constraint equations before the application of any coordinate transformation. The ANCF linear 

constraint equations are used to eliminate dependent variables at a preprocessing stage. The thesis 

also proposes a new radial damping model for the tires and demonstrates its use in MBS vehicle 
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system applications. The use of the new computational framework proposed in this thesis is 

demonstrated by developing and performing the simulation of a detailed wheeled vehicle model 

that consists of rigid body, FFR, and ANCF components. The vehicle components undergoing 

small deformations are modeled using the FFR approach, whereas the components undergoing 

large deformations and finite rotations are modeled using the ANCF approach. Three types of tire 

models that include a rigid brush-type tire model, an ANCF airless tire model, and an ANCF 

pneumatic tire model are compared as the vehicle traverses a series of bumps. The airless tire is 

modeled for the first time using ANCF fully parameterized plate/shell elements, which is one of 

the main contributions of this thesis. 

6.2 Future Work 

Some future work that can improve the concepts and methodologies proposed in this thesis include 

the following: 

1. Consideration of the physics that occurs at the rim-tire interface by relaxation of some of 

the rim reference node to tire-rim interface node constraints.  

2. Improvement of the pressure force model by considering the effect of the change in the 

volume of the air cavity on the air pressure value, in order to avoid the simplification of 

constant air pressure. Incorporation of thermodynamics will also improve the pressure 

force fidelity. 

3. Consideration of viscoelastic effects in the ANCF tire material model.  

4. Extension of the proposed SSM method in order to fully alleviate the locking seen in ANCF 

beams in response to pure torsion and twisting deformations. 

5. Study of the effects of reduced integration within the subdomain integration scheme can 

also be considered as a topic of future investigations. 
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APPENDIX B 

B.1 Higher-Order ANCF Planar Element Shape Functions 

The shape functions for the new higher-order two-dimensional element proposed in Section 4.3.3 

are given as:  
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where x l   , y l   are the dimensionless element parameters and l  is the element length. 

The matrix of shape functions can be written as  1 2 3 4 5 6 7 8s s s s s s s sS I I I I I I I I  . 

B.2 Enhanced Strain Submatrices 

The submatrices used in Eq. 40 are given as follows: 
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B.3 Design of Enhanced Strain Field 

In a state of constant stress or a patch test, 
0

2 0: 0enh
P

V

dV  σ ε  must be satisfied. This leads to the 

following expression 
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where   is the element parametric domain, M  and sM  is the matrix of enhanced strain 

interpolation functions defined in the parametric domain and physical reference domain 

respectively. Satisfying Eq. B.3 is important for the stability and convergence properties of the 

enhanced strain-based element. Furthermore, another condition required for element stability is 

that the intersection of the subspaces spanned by the compatible and enhanced strain fields must 

be a null set. Finally, in order to ensure that the objectivity of the strain tensor is ensured, the 

enhanced strain interpolation functions must demonstrate frame invariance in the parametric 

domain (Simo and Armero, 1992). The enhanced strain field interpolation functions defined in the 

parametric domain can be transformed into the reference domain using the following operation 

  T

s c c

M J J T M  where J  is the matrix of position vector gradients at the integration point in 

the reference configuration (Simo and Rifai, 1990), c represents element coordinates 

corresponding to the center of the element and the transformation matrix T  is given as 

(Andelfinger and Ramm, 1993)  
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where ijJ  is the thij  element of the matrix of position vector gradients defined in the reference 

configuration. 
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APPENDIX C 

C.1 FE/FFR Beam Element Shape Function Matrix 

The shape function matrix for the non-isoparametric beam element used with the FE/FFR model 

in this thesis is given as  
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C.2  ANCF Plate/Shell Element Shape Functions 

The shape function matrix and the shape functions of the ANCF fully-parameterized plate/shell 

element with gradient conformity at element edges are given, respectively, as 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16S S S S S S S S S S S S S S S SS I I I I I I I I I I I I I I I I  

(C.2)  

and 
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where , x l y w   , and z t   in which ,l w , and t  are, respectively, the length, width, and 

thickness of the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 



173 
 

CITED LITERATURES 

1. Aboubakr, A.K., and Shabana, A.A., 2015, “Efficient and Robust Implementation of the TLISMNI 

Method”, Journal of Sound and Vibration, 353, pp. 220-242. 

2. Agrawal, O.P., and Shabana, A.A., 1986, “Application of Deformable-Body Mean Axis to Flexible 

Multibody System Dynamics”, Computer Methods in Applied Mechanics and Engineering, 56, pp. 

217-245. 

3. Alvarez, L, Yi, J., Horowitz, R., and Olmos, L., 2005, “Dynamic Friction Model-Based Tire-Road 

Friction Estimation and Emergency Braking Control”, ASME Dynamic Systems, Measurement and 

Control, 127, pp. 22-32. 

4. Ambrosio, J.A.C, and Goncalves, J.P.C., 2001, “Complex Flexible Multibody Systems with 

Application to Vehicle Dynamics”, Multibody System Dynamics, 6, pp. 163-182. 

5. Andelfinger, U., and Ramm, E., 1993, “EAS-elements for Two-Dimensional, Three-Dimensional, 

Plate and Shell Structures and their Equivalence to HR-Elements”, International Journal for 

Numerical Methods in Engineering, 36(8), pp. 1311-1337. 

6. ANSYS® Academic Research Mechanical APDL Documentation, ANSYS Inc. Release 15.0, 

2013. 

7. Armero, F., 2000, “On the Locking and Stability of Finite Elements in Finite Deformation Plane 

Strain Problems”, Computer & Structures, 75(3), pp. 261-290. 

8. Babuska, I., and Suri, M., 1992A, “Locking Effects in the Finite Element Approximation of 

Elasticity Problems”, Numerische Mathematik, 62(1), pp. 439-463. 

9. Babuska, I., and Suri, M., 1992B, “On Locking and Robustness in the Finite Element Method”, 

SIAM Journal for Numerical Analysis, 29(5), pp. 1261-1293. 



174 
 

10. Bathe, K.J., 2001, “The Inf-Sup Condition and its Evaluation for Mixed Finite Element Methods”, 

Computers & Structures, 79(2), pp. 243-252. 

11. Bazeley, G.P., Cheung, Y.K., Irons, B.M., and Zienkiewicz, O.C, 1965, “Triangular Elements in 

Plate Bending – Conforming and Nonconforming Solutions”, Proc. First Conference on Matrix 

Methods in Structural Mechanics, Wright-Patterson ATBFB, Ohio. 

12. Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N., and Ong, J.S.J, 1985, “Stress Projection 

for Membrane and Shear Locking in Shell Finite Elements”, Computer Methods in Applied 

Mechanics & Engineering, 51(1-3), pp. 221-258. 

13. Bergan, P.G., and Nygard, M.K., 1984, “Finite Elements with Increased Freedom in Choosing 

Shape Functions”, International Journal for Numerical Methods in Engineering, 20(4), pp. 643-

663. 

14. Bischoff, M., and Ramm, E., 1997, “Shear Deformable Shell Elements for Large Strains and 

Rotations”, International Journal for Numerical Methods in Engineering, 40(23), pp. 4427-4449. 

15. Bischoff, M., and Romero, I., 2007, “A Generalization of the Method of Incompatible Modes”, 

International Journal for Numerical Methods in Engineering, 69(9), pp. 1851-1868. 

16. Blundell, M., and Harty, D., 2004, Multibody Systems Approach to Vehicle Dynamics, Elsevier, 

New York. 

17. Bonet, J., and Wood, R.D., 1997, Nonlinear Continuum Mechanics for Finite Element Analysis, 

Cambridge University Press, Cambridge. 

18. Bornemann, P. B., and Cirak, F., 2013, “A Subdivision-based Implementation of the Hierarchical 

B-spline Finite Element Method”, Computer Methods in Applied Mechanics & Engineering, 253, 

pp. 584–598. 



175 
 

19. Bouclier, R., Passieux, J. C., and Salaün, M., 2016, “Local Enrichment of NURBS Patches using 

a Non-intrusive Coupling Strategy: Geometric Details, Local Refinement, Inclusion, Fracture”, 

Computer Methods in Applied Mechanics & Engineering, 300, pp. 1–26. 

20. Canudas-de-Wit, C., Tsiotras, P., Velenis, E., Basset, M., and Gissinger, G., 2003, “Dynamic 

Friction Models for Road/Tire Longitudinal Interaction”, Vehicle System Dynamics, 39, pp.189-

226. 

21. Carpenter, N., Belytschko, T., and Stolarski, H., 1986, “Locking and Shear Scaling Factors in 0C  

Bending Elements”, Computers & Structures, 22(1), pp. 39-52.  

22. Carpinelli, M., Mundo, D., Tamarozzi, T., Gubitosa, M., Donders, S., and Desmet, W., 2012, 

“Integrating Vehicle Body Concept Modelling and Flexible Multibody Techniques for Ride and 

Handling Simulation”, Proc. Of ASME 11th Biennial Conference on Engineering Systems Design 

and Analysis, Nantes, France, July 2-4. 

23. Caterpillar. 834K Wheel Dozer. Caterpillar, 2013. Print. 

24. Chemin, A., Elguedj, T., and Gravouil, A., 2015, “Isogeometric Local H-refinement Strategy 

Based on Multigrids”, Finite Elements in Analysis & Design, 100, pp. 77–90. 

25. Cho, J. R., Kim, K. W., Yoo, W. S., and Hong, S. I., 2004, “Mesh Generation Considering Detailed 

Tread Blocks for Reliable 3D Tire Analysis”, Advances in Engineering Software, 35(2), pp. 105–

113. 

26. Choi, J., and Lim, J., 1995, “General Curved Beam Elements Based on the Assumed Strain Fields”, 

Computers & Structures, 55(3), pp. 379-386. 

27. Clover, C. L., and Bernard, J. E., 1998, “Longitudinal Tire Dynamics”, Vehicle System Dynamics, 

29, pp. 231–260. 



176 
 

28. Das, M., Barut, A., and Madenci, E., 2010, “Analysis of Multibody Systems Experiencing Large 

Elastic Deformations”, Multibody System Dynamics, 23(1), pp. 1-31.  

29. Deur, J., Asgari, J., and Hrovat, D., 2004, “A 3D Brush-Type Dynamic Tire Friction Model”, 

Vehicle System Dynamics, 42, pp. 133-173. 

30. Deur, J., Ivanović, V., Pavković, D., Hrovat, D., Asgari, J., Troulis, M., and Miano, C., 2005, 

“Experimental Analysis and Modelling of Longitudinal Tyre Friction Dynamics for Abrupt 

Transients”, Vehicle System Dynamics, 43, pp. 525-539. 

31. De Souza Neto, E.A., Peric, D., and Owen, D.R.J, 2008, Computational Methods For Plasticity: 

Theory And Applications, John Wiley and Sons, West Sussex. 

32. Dmitrochenko, O., Hussein, B.A., and Shabana, A.A., 2009, “Coupled Deformation Modes in the 

Large Deformation Finite Element Analysis: Generalization”, ASME Journal of Computational & 

Nonlinear Dynamics, 4(2), pp. 021002-1 – 021002-8. 

33. Dong, S.B., Alpdogan, C., and Taciroglu, E., 2010, “Much Ado about Shear Correction Factors in 

Timoshenko Beam Theory”, International Journal of Solids & Structures, 47(13), pp. 1651-1665. 

34. Dorfi, H.R., and Busby, H.R., 1994, “An Effective Curved Composite Beam Finite Element based 

on the Hybrid-Mixed Formulation”, Computers & Structures, 53(1), pp. 43-52. 

35. Dufva, K.E., Sopanen, J.T., and Mikkola, A.M., 2005, “A Two-Dimensional Shear Deformable 

Beam Element based on Absolute Nodal Coordinate Formulation”, Journal of Sound & Vibration, 

280(3-5), pp. 719-738. 

36. Dufva, K., Kerkkanen, K., Maqueda, L.G., and Shabana, A.A., 2007, “Nonlinear Dynamics of 

Three-Dimensional Belt Drives Using the Finite Element Method”, Nonlinear Dynamics, 48, pp. 

449-466. 



177 
 

37. Ebel, H., Matikainen, M.K., Hurskainen, V., and Mikkola, A., 2016A, “Higher-Order Beam 

Elements based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity”, 

Nonlinear Dynamics, 88(2), pp. 1075-1091. 

38. Ebel, H., Matikainen, M.K., Hurskainen, V., and Mikkola, A., 2016B, “Higher-Order Plate 

Elements for Large Deformation Analysis in Multibody Applications”, Proceedings of the ASME 

2016 International Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference, Charlotte, North Carolina, USA, August 21-24. 

39. Felippa, C.A., 1989, “The Extended Free Formulation of Finite Elements in Linear Elasticity”, 

ASME Journal of Applied Mechanics, 56(3), pp. 609-616. 

40. Forsey, D. R., and Bartels, R. H., 1988, “Hierarchical B-Spline Refinement”, ACM SIGGRAPH 

Computer Graphics, 22(4), pp. 205-212. 

41. Friedman, Z., and Kosmatka, J.B., 1993, “An Improved Two-Node Timoshenko Beam Finite 

Element”, Computers & Structures, 47(3), pp. 473-481. 

42. Gantoi, F.M., Brown, M.A., and Shabana, A.A., 2013, “Finite Element Modeling of the Contact 

Geometry and Deformation in Biomechanics Applications”, ASME Journal of Computational and 

Nonlinear Dynamics, 8 (4), pp. 041013-1 – 041013-11. 

43. Garcia-Vallejo, D., Mikkola, A., and Escalona, J.L., 2007, “A New Locking-Free Shear 

Deformable Finite Element based on Absolute Nodal Coordinates”, Nonlinear Dynamics, 50(1), 

pp. 249-264. 

44. Gerstmayr, J., and Matikainen, M., 2006, “Analysis of Stress and Strain in the Absolute Nodal 

Coordinate Formulation”, Mechanics Based Design of Structures and Machines: An International 

Journal, 34(4), pp. 409-430. 



178 
 

45. Gerstmayr, J., and Irschik, H., 2008, “On the Correct Representation of Bending and Axial 

Deformation in the Absolute Nodal Coordinate Formulation with an Elastic Line Approach”, 

Journal of Sound & Vibration, 318(3), pp. 461-487. 

46. Gerstmayr, J., Matikainen, M.K., and Mikkola, A.M., 2008, “A Geometrically Exact Beam 

Element based on the Absolute Nodal Coordinate Formulation”, Multibody System Dynamics, 20, 

pp. 359-384. 

47. Gerstmayr, J., Sugiyama, H., and Mikkola, A., 2013, “Review on the Absolute Nodal Coordinate 

Formulation for Large Deformation Analysis of Multibody Systems”, ASME Journal of 

Computational & Nonlinear Dynamics, 8(3), pp. 031016-1 – 031016-12. 

48. Gilewski, W., and Sitek, M., 2011, “The Inf-Sup Condition Tests for Shell/Plate Finite Elements”, 

Archives of Civil Engineering, 57(4), pp. 425-447. 

49. Gim, G. H., and Nikravesh, P. E., 1990, “An Analytical Model of Pneumatic Tires for Vehicle 

Dynamic Simulations. Part 1: Pure Slips”, International Journal of Vehicle Design, 11, pp. 589-

618.  

50. Gipser, M., 2005, “FTire: A Physically Based Application-Oriented Tyre Model for Use with 

Detailed MBS and Finite-Element Suspension Models”, Vehicle System Dynamics, 43, pp. 76-91.  

51. Goncalves, J.P.C., and Ambrosio, J.A.C., 2003, “Optimization of Vehicle Suspension Systems for 

Improved Comfort of Road Vehicles using Flexible Multibody Dynamics”, Nonlinear Dynamics, 

34, pp. 113-131. 

52. Gruber, P., Sharp, R. S., and Crocombe, A. D., 2012, “Normal and Shear Forces in the Contact 

Patch of a Braked Racing Tyre. Part 2: Development of a Physical Tyre Model”, Vehicle System 

Dynamics, 50, pp. 339-356.  



179 
 

53. Hamed, A.M., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Recuero, A.M., Shabana, A.A., 

2015, “Ideal Compliant Joints and Integration of Computer Aided Design and Analysis”, ASME 

Journal of Computational and Nonlinear Dynamics, 10(2), pp. 021015-1 – 021015-14. 

54. Haug, E.J., Wehage, R.A., Barman, N.C., and Beck, R.R., 1981, “Dynamic Analysis and Design of 

Constrained Mechanical Systems”, Technical Report No. 50, Contract No. DAAK30-78-C-0096. 

55. He, G., Patel, M., and Shabana, A.A., 2017, “Integration of Localized Surface Geometry in Fully 

Parameterized ANCF Finite Elements”, Computer Methods in Applied Mechanics and 

Engineering, 313, pp. 966-985. 

56. Heyliger, P.R., and Reddy, J.N., 1988, “A Higher-order Beam Finite Element for Bending and 

Vibration Problems”, Journal of Sound & Vibration, 126(2), pp. 309-326. 

57. Hughes, T.J.R, Taylor, R., and Kanoknukulchai, W., 1977, “A Simple and Efficient Finite Element 

for Plate Bending”, International Journal for Numerical Methods in Engineering, 11(10), pp. 

1529-1543. 

58. Hughes, T.J.R, Cohen, M., and Haroun, M., 1978, “Reduced and Selective Integration Techniques 

in the Finite Element Analysis of Plates”, Nuclear Engineering and Design, 46(1), pp. 203-222. 

59. Hughes, T.J.R., 1987, The Finite Element Method: Linear Static and Dynamic Finite Element 

Analysis, Prentice Hall, New Jersey. 

60. Hurskainen, V.T., Matikainen, M.K., Wang, J., and Mikkola, A.M., 2017, “A Planar Beam Finite-

Element Formulation with Individually Interpolated Shear Deformation”, ASME Journal of 

Computational & Nonlinear Dynamics, 12(4), pp. 041007-1 – 041007-8. 

61. Hussein, B.A., Sugiyama, H., and Shabana, A.A., 2007, “Coupled Deformation Modes in the 

Large Deformation Finite-element Analysis: Problem Definition”, ASME Journal of 

Computational & Nonlinear Dynamics, 2(2), pp. 146-154. 



180 
 

62. Ibrahimbegovic, A., and Wilson, E.L., 1991, “A Modified Method of Incompatible Modes”, 

International Journal for Numerical Methods in Biomedical Engineering, 7(3), pp. 187-194. 

63. Ito, Y., Shih, A., Koomullil, R., Kasmai, N., Jankun-Kelly, M., and Thompson, D., 2009, “Solution 

Adaptive Mesh Generation using Feature-aligned Embedded Surface Meshes”, AIAA Journal, 

47(8), pp. 1879–1888. 

64. Kagan, P., Fischer, A., and Bar-Yoseph, P. Z., 2003, “Mechanically Based Models: Adaptive 

Refinement for B-spline Finite Element”, International Journal for Numerical Methods in 

Engineering, 57(8), pp. 1145–1175. 

65. Kerkkanen. K.S., Sopanen, J.T., and Mikkola, A.M., 2005, “A Linear Beam Finite Element based 

on the Absolute Nodal Coordinate Formulation”, ASME Journal of Mechanical Design, 127(4), 

pp. 621-630. 

66. Kim, J.G., and Kim, Y.Y., 1998, “A New Higher-Order Hybrid-Mixed Curved Beam Element”, 

International Journal for Numerical Methods in Engineering, 43(5), pp. 925-940. 

67. Kim, S., Nikravesh, P. E., and Gim, G., 2008, “A Two-Dimensional Tire Model on Uneven Roads 

for Vehicle Dynamic Simulation”, Vehicle System Dynamics, 46, pp. 913-930. 

68. Kleiss, S. K., Juttler, B., and Zulehner, W., 2012, “Enhancing Isogeometric Analysis by a Finite 

Element-based Local Refinement Strategy”, Computer Methods in Applied Mechanics & 

Engineering, 213-216, pp. 168–182. 

69. Kollar, L.P. and Spriner, G.S., 2003, Mechanics of Composite Structures, Cambridge University 

Press, Cambridge. 

70. Koishi, M., Kabe, K., and Shiratori, M., 1998, “Tire Cornering Simulation Using an Explicit Finite 

Element Analysis Code”, Tire Science and Technology, 26, pp. 109-119. 



181 
 

71. Kulkarni, S., Pappalardo, C.M., and Shabana, A.A., 2017, “Pantograph/Catenary Contact 

Formulations”, ASME Journal of Vibrations & Acoustics, 139(1), pp. 011010-1-011010-12. 

72. Lan, P., and Shabana, A. A., 2010, “Integration of B-spline Geometry and ANCF Finite Element 

Analysis”, Nonlinear Dynamics, 61(1-2), pp. 193–206. 

73. Lee, C.R., Kim, J.W., Hallquist, J.O., Zhang, Y., and Farahani, A.D., 1997, “Validation of a FEA 

Tire Model for Vehicle Dynamic Analysis and Full Vehicle Real Time Proving Ground 

Simulations”, SAE Technical Paper 971100. 

74. Lee, P., and Sin, H., 1994, “Locking-Free Curved Beam Element based on Curvature”, 

International Journal for Numerical Methods in Engineering, 37(6), pp. 989-1007. 

75. Li, J., and Ke, Y., 2000, “Feature-based Surface Modeling of Complex Surface in Reverse 

Engineering”, Chinese Journal of Mechanical Engineering, 36(5), pp. 18–22. 

76. Liu, C., Tian, Q., Hu, H.Y., 2011, “Dynamics of Large Scale Rigid-Flexible Multibody System 

Composed of Composite Laminated Plates”, Multibody System Dynamics, 26, pp. 283-305. 

77. Liu, W.K., Belytschko, T., and Chen, J., 1988, “Nonlinear Versions of Flexurally Superconvergent 

Elements”, Computer Methods in Applied Mechanics & Engineering, 71(3), pp. 241-258. 

78. Lugner, P., Pacejka, H., and Plochl, M., 2005, “Recent Advances in Tyre Models and Testing 

Procedures”, Vehicle System Dynamics, 43, pp. 413-436. 

79. Malkus, D., and Hughes, T.J.R, 1978, “Mixed Finite Element Methods – Reduced and Selective 

Integration Techniques: A Unification of Concepts”, Computer Methods in Applied Mechanics 

and Engineering, 15(1), pp. 63-81. 

80. Maqueda, L.G., Mohamed, A.A., and Shabana, A.A., 2010, “Use of General Nonlinear Material 

Models in Beam Problems: Application to Belts and Rubber Chains”, ASME Journal of 

Computational and Nonlinear Dynamics, 5, pp. 021003-1 – 021003-10. 



182 
 

81. Matikainen, M.K., Dmitrochenko, O., and Mikkola, A., 2010, “Beam Elements with Trapezoidal 

Cross Section Deformation Modes based on the Absolute Nodal Coordinate Formulation”, 

International Conference on Numerical Analysis and Applied Mathematics, Rhodes, Greece, 

September 19-25. 

82. Mikkola, A.M., and Shabana, A.A., 2003, “A Non-Incremental Finite Element Procedure for the 

Analysis of Large Deformation of Plates and Shells in Mechanical System Applications”, 

Multibody System Dynamics, 9(3), pp. 283-309. 

83. Mikkola, A.M., and Matikainen, M.K., 2006, “Development of Elastic Forces for a Large 

Deformation Plate Element based on the Absolute Nodal Coordinate Formulation”, ASME Journal 

of Computational & Nonlinear Dynamics, 1(2), pp. 103-108. 

84. Mohamed, A.N.A., and Liu, J, 2014, “The Three-Dimensional Gradient Deficient Beam Element 

(Beam9) using the Absolute Nodal Coordinate Formulation”, Proceedings of the ASME 2014 

International Design Engineering Technical Conferences & Computers and Information in 

Engineering Conference, Buffalo, New York, USA, August 17-20. 

85. Nachbagauer, K., Pechstein, A.S., Irschik, H., and Gerstmayr, J., 2011, “A New Locking-Free 

Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements based on 

the Absolute Nodal Coordinate Formulation”, Multibody System Dynamics, 26(3), pp. 245-263. 

86. Nachbagauer, K., Gruber, P., and Gerstmayr, J., 2013A, “Structural and Continuum Mechanics 

Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and 

Linearized Dynamic Examples”, ASME Journal of Computational & Nonlinear Dynamics, 8(2), 

pp. 021004-1 – 021004-7. 



183 
 

87. Nachbagauer, K., Gruber, P., and Gerstmayr, J., 2013B, “A 3D shear deformable finite element 

based on absolute nodal coordinate formulation”, Multibody Dynamics: Computational Methods 

in Applied Sciences, 28, pp. 77-96, Springer, Amsterdam. 

88. Nachbagauer, K., 2014, “State of the Art of ANCF Elements Regarding Geometric Description, 

Interpolation Strategies, Definition of Elastic Forces, Validation and Locking Phenomenon in 

Comparison with Proposed Beam Finite Elements”, Archives of Computational Methods in 

Engineering, 21(3), pp. 293-319. 

89. Neto, M. A., Ambrosio, J. A. C., and Leal, R. P., 2004, “Flexible Multibody Systems Models using 

Composite Materials Components”, Multibody System Dynamics, 12(4), pp. 385–405. 

90. Nicolas, G., and Fouquet, T., 2013, “Adaptive Mesh Refinement for Conformal Hexahedral 

Meshes”, Finite Elements in Analysis & Design, 67, pp. 1–12. 

91. Noor, A., and Peters, J., 1981, “Mixed Models and Reduced/Selective Integration Displacement 

Models for Nonlinear Analysis of Curved Beams”, International Journal for Numerical Methods 

in Engineering, 17(4), pp. 615-631. 

92. Ogden, R.W., 1984, Nonlinear Elastic Deformations, Ellis Harwood Ltd., Chichester. 

93. Olshevskiy, A., Dmitrochenko, O., and Kim, C.W., 2014, “Three-Dimensional Solid Brick 

Element using Slopes in the Absolute Nodal Coordinate Formulation”, ASME Journal of 

Computational & Nonlinear Dynamics, 9(2), pp. 021001-1-021001-10. 

94. Omar, M.A., and Shabana, A.A., 2001, “A Two-Dimensional Shear Deformable Beam for Large 

Rotation and Deformation Problems”, Journal of Sound & Vibration, 243(3), pp. 565-576. 

95. Orlandea, N., 1973, “Node-analogous, Sparsity-oriented Methods for Simulation of Mechanical 

Dynamic Systems”, Ph.D. Thesis, University of Michigan, Ann Arbor. 



184 
 

96. Orzechowski, G., and Fraczek, J., 2015, “Nearly Incompressible Nonlinear Material Models in the 

Large Deformation Analysis of Beams using ANCF”, Nonlinear Dynamics, 82, pp. 451-464. 

97. Orzechowski, G., and Shabana, A.A., 2016, “Analysis of Warping Deformation Modes using 

Higher-Order ANCF Beam Element”, Journal of Sound and Vibration, 363, pp. 428-445. 

98. Pacejka, H. B., 2002, Tire and Vehicle Dynamics, First Edition, Society of Automotive Engineers 

(SAE), Warrendale, PA. 

99. Pacejka, H. B., 2006, Tire and Vehicle Dynamics, Third Edition, Society of Automotive Engineers 

(SAE), Warrendale, PA. 

100. Pappalardo, C.M., Yu, Z., Zhang, X., and Shabana, A.A., 2016A, “Rational ANCF Thin Plate 

Finite Element”, ASME Journal of Computational & Nonlinear Dynamics, 11(5), pp. 051009-1 – 

051009-15. 

101. Pappalardo, C. M., Wallin, M., and Shabana, A. A., 2016B, “A New ANCF/CRBF Fully 

Parametrized Plate Finite Element”, ASME Journal of Computational and Nonlinear Dynamics, 

12(3), pp. 031008-1-031008-13. 

102. Pappalardo, C. M., Wang, T., and Shabana, A. A, 2017A, “On the Formulation of the Planar 

ANCF Triangular Finite Elements”, Nonlinear Dynamics, 89(2), pp. 1019-1045. 

103. Pappalardo, C. M., Wang, T., and Shabana, A. A., 2017B, “Development of ANCF Tetrahedral 

Finite Elements for the Nonlinear Dynamics of Flexible Structures”, Nonlinear Dynamics, 89(4) 

pp. 2905-2932. 

104. Patel, M., Orzechowski, G., Tian, Q., and Shabana A.A., 2016, “A New Multibody System 

Approach for Tire Modeling using ANCF Finite Elements”, Proceedings of Institution of 

Mechanical Engineers Part K: Journal of Multibody Dynamics, 230(1), pp. 69-84. 



185 
 

105. Patel, M., and Shabana, A.A., 2017, “Locking Alleviation in the Large Displacement Analysis of 

Beam Elements: The Strain Split Method”, submitted to Acta Mechanica. 

106. Patel, M., Pappalardo, C.M., Wang, G., and Shabana, A.A., 2017, “Integration of Geometry and 

Small and Large Deformation Analysis for Vehicle Modelling: Chassis, and Airless and Pneumatic 

Tire Flexibility”, submitted to International Journal of Vehicle Performance. 

107. Pian, T.H.H., 1985, “Finite Elements based on Consistently Assumed Stresses and 

Displacements”, Finite Elements in Analysis and Design, 1(2), pp. 131-140. 

108. Pian, T.H.H., and Sumihara, K., 1984, “Rational Approach for Assumed Stress Finite Elements”, 

International Journal for Numerical Methods in Engineering, 20(9), pp. 1685-1695. 

109. Piegl, L. and Tiller, W., 1997, The NURBS Book, Second Edition, Springer-Verlag, Berlin 

Heidelberg. 

110. Prathap, G. and Babu, R., 1986A, “Field-Consistent Strain Interpolations for the Quadratic Shear 

Flexible Beam Element”, International Journal for Numerical Methods in Engineering, 23(11), 

pp. 1973-1984. 

111. Prathap, G., and Babu, R., 1986B, “An Isoparametric Quadratic Thick Curved Beam Element”, 

International Journal for Numerical Methods in Engineering, 23(9), pp. 1583-1600. 

112. Prathap, G., and Bhashyam, G.R., 1982, “Reduced Integration and the Shear-Flexible Beam 

Element”, International Journal for Numerical Methods in Engineering, 18(2), pp. 195-210. 

113. Rakowski, J., 1990, “The Interpretation of the Shear Locking in Beam Elements”, Computers & 

Structures, 37(5), pp. 769-776. 

114. Rakowski, J., 1991, “A Critical Analysis of Quadratic Beam Finite Elements”, International 

Journal for Numerical Methods in Engineering, 31(5), pp. 949-966. 



186 
 

115. Raveendranath, P., Singh, G., and Pradhan, B., 1999, “A Two-Noded Locking-Free Shear Flexible 

Curved Beam Element”, International Journal for Numerical Methods in Engineering, 44(2), pp. 

265-280. 

116. Recuero, A.M., Aceituno, J.F., Escalona, J.L., and Shabana, A.A., 2016A, “A Nonlinear Approach 

for Modeling Rail Flexibility Using ANCF Finite Elements”, Nonlinear Dynamics, 83(1-2), pp. 

463-481. 

117. Recuero, A., Contreras, U., Patel, M., and Shabana, A.A., 2016B, “ANCF Continuum-based Soil 

Plasticity for Wheeled Vehicle Off-road Mobility”, ASME Journal of Computational and 

Nonlinear Dynamics, 11, pp. 044504-1 – 044504-5. 

118. Recuero, A., Serban, R., Peterson, B., Sugiyama, H., Jayakumar, P., and Negrut, D., 2017, “A 

High-fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires 

Operating on Granular Material”, Journal of Terramechanics, 72, pp. 39-54. 

119. Reddy, J.N., 1997, “On Locking-Free Shear Deformable Beam Finite Elements”, Computers 

Methods in Applied Mechanics & Engineering, 149(1-4), pp. 113-132. 

120. Reddy, J.N., Wang, C.M., and Lee, K.H., 1997, “Relationships Between Bending Solutions of 

Classical and Shear Deformation Beam Theories”, International Journal of Solids & Structures, 

34(26), pp. 3373-3384. 

121. Sampo, E., 2011, “Modelling Chassis Flexibility in Vehicle Dynamics Simulation”, Ph.D. Thesis, 

University of Surrey, Surrey. 

122. Sanborn, G. G., and Shabana, A. A., 2009, “A Rational Finite Element Method Based on the 

Absolute Nodal Coordinate Formulation”, Nonlinear Dynamics, 58(3), pp. 565–572. 



187 
 

123. Sanborn, G.G., Choi, J., and Choi, J.H., 2011, “Curve-Induced Distortion of Polynomial Space 

Curves, Flat-Mapped Extension Modeling, and their Impact on ANCF Thin-plate Elements”, 

Multibody System Dynamics, 26(2), pp. 191-211. 

124. Schillinger, D., Dedè, L., Scott, M. A., Evans, J. A., Borden, M. J., Rank, E., and Hughes, T. J. 

R., 2012, “An Isogeometric Design-Through-Analysis Methodology Based on Adaptive 

Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-spline CAD Surfaces”, 

Computer Methods in Applied Mechanics & Engineering, 249-252, pp. 116–150. 

125. Schmidt, R., Wuchner, R., and Bletzinger, K.-U., 2012, “Isogeometric Analysis of Trimmed 

NURBS Geometries”, Computer Methods in Applied Mechanics & Engineering, 241-244, pp. 93–

111. 

126. Schwab, A.L., and Meijaard, J.P., 2005, “Comparison of Three-Dimensional Flexible Beam 

Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate 

Formulation”, Proceedings of ASME International Design Engineering Technical Conferences 

and Computer and Information in Engineering Conference, Long Beach, CA, September 24-28. 

127. Schwarze, M., and Reese, S., 2009, “A Reduced Integration Solid-Shell Finite Element based on 

the EAS and ANS Concept – Geometrically Linear Problems”, International Journal for 

Numerical Methods in Engineering, 80(10), pp. 1322-1355. 

128. Shabana, A.A., 1985, “Substructure Synthesis Methods for Dynamic Analysis of Multibody 

Systems”, Computers and Structures, 20(4), pp. 737-744. 

129. Shabana, A.A., 1997, “Definition of the Slopes and the Finite Element Absolute Nodal Coordinate 

Formulation”, Multibody System Dynamics, 1(3), pp. 339-348. 

130. Shabana, A.A., 2012, Computational Continuum Mechanics, Second Edition, Cambridge 

University Press, Cambridge. 



188 
 

131. Shabana, A.A., 2013, Dynamics of Multibody Systems, Fourth Edition, Cambridge University 

Press, Cambridge. 

132. Shabana, A.A., 2015A, “ANCF Reference Node for Multibody System Applications”, Proc. of 

Institute of Mechanical Engineers Part K: Journal of Multibody Dynamics, 229(1), pp. 109-112. 

133.  Shabana, A.A., 2015B, “ANCF Tire Assembly Model for Multibody System Applications”, 

ASME Journal of Computational and Nonlinear Dynamics, 10(2), pp. 024504-1 – 024504-4. 

134. Shabana, A.A., and Maqueda, L.G., 2008, “Slope Discontinuities in the Finite Element Absolute 

Nodal Coordinate Formulation: Gradient Deficient Elements”, Multibody System Dynamics, 20(3), 

pp. 239-249. 

135. Shabana, A.A., and Mikkola, A., 2003, “Use of Finite Element Absolute Nodal Coordinate 

Formulation in Modeling Slope Discontinuity”, ASME Journal of Mechanical Design, 125(2), pp. 

342-350. 

136. Shen, Z., Li, P., Liu, C., and Hu, G., 2014, “A Finite Element Beam Model Including Cross-

Section Distortion in the Absolute Nodal Coordinate Formulation”, Nonlinear Dynamics, 77(3), 

pp. 1019-1033. 

137. Shiiba, T., Fehr, J., and Eberhard, P., 2012, “Flexible Multibody Simulation of Automotive 

Systems with Non-modal Model Reduction Techniques”, Vehicle System Dynamics, 50(12), pp. 

1905-1922. 

138. Simo, J.C., and Rifai, M.S., 1990, “A Class of Mixed Assumed Strain Methods and the Method 

of Incompatible Modes”, International Journal for Numerical Methods in Engineering, 29(8), pp. 

1595-1638. 



189 
 

139. Simo, J.C., and Armero, F., 1992, “Geometrically Non-Linear Enhanced Strain Mixed Methods 

and the Method of Incompatible Modes”, International Journal for Numerical Methods in 

Engineering, 33(7), pp. 1413-1449. 

140. Simo, J.C., Armero, F., and Taylor, R.L., 1993, “Improved Versions of Assumed Enhanced Strain 

Tri-linear Elements for 3D Finite Deformation Problems”, Computer Methods in Applied 

Mechanics and Engineering, 110(3-4), pp. 359-386. 

141. Sopanen, J., and Mikkola, A., 2003, “Studies on the Stiffness Properties of the Absolute Nodal 

Coordinate Formulation for Three-Dimensional Beams”, Proceedings Of Design Engineering 

Technical Conferences & Computers & Information in Engineering Conference, Chicago, Illinois, 

USA, September 2-6. 

142. Stolarski, H., and Belytschko, T., 1983, “Shear and Membrane Locking in Curved 0C  Elements”, 

Computer Methods in Applied Mechanics & Engineering, 41(3), pp. 279-296. 

143. Stolarski, H, and Belytschko, T., 1986A, “On the Equivalence of Mode Decomposition and Mixed 

Finite Elements based on the Hellinger-Reissner Principle. Part 1: Theory”, Computer Methods in 

Applied Mechanics & Engineering, 58(3), pp. 249-263. 

144. Stolarski, H, and Belytschko, T., 1986B, “On the Equivalence of Mode Decomposition and Mixed 

Finite Elements based on the Hellinger-Reissner Principle. Part 2: Applications”, Computer 

Methods in Applied Mechanics & Engineering, 58(3), pp. 265-284. 

145. Stolarski, H., and Chen, Y, 1995, “Assumed Strain Formulation for the Four-Node Quadrilateral 

with Improved In-Plane Bending Behavior”, International Journal for Numerical Methods in 

Engineering, 38(8), pp. 1287-1305. 



190 
 

146. Sugiyama, H., and Suda, Y., 2007, “A Curved Beam Element in the Analysis of Flexible Multi-

body Systems using the Absolute Nodal Coordinates”, Proc. of Institute of Mechanical Engineers 

Part K: Journal of Multibody Dynamics, 221(2), pp. 219-231. 

147. Sugiyama, H., Gerstmayr, J., and Shabana, A.A., 2006, “Deformation Modes in the Finite Element 

Absolute Nodal Coordinate Formulation”, Journal of Sound and Vibration, 298(4-5), pp. 1129-

1149. 

148. Sugiyama, H., and Suda, Y., 2009, “Nonlinear Elastic Ring Tire Model Using the Absolute Nodal 

Coordinate Formulation”, Proc. of Institute of Mechanical Engineers Part K: Journal of Multibody 

Dynamics, 223(3), pp. 211-219. 

149. Sugiyama, H., Koyama, H., and Yamashita, H., 2010, “Gradient Deficient Curved Beam Element 

using Absolute Nodal Coordinate Formulation”, ASME Journal of Computational & Nonlinear 

Dynamics, 5(2), pp. 021001-1 – 021001-8. 

150. Sussman, T., and Bathe, K.J., 1987, “A Finite Element Formulation for Nonlinear Incompressible 

Elastic and Inelastic Analysis”, Computers & Structures, 26(1-2), pp. 357-409. 

151. Sussman, T., and Bathe, K.J., 2014, “Spurious Modes in Geometrically Nonlinear Small 

Displacement Finite Elements with Incompatible Modes”, Computers & Structures, 140, pp. 14-

22. 

152. Taylor, R.L., Beresford, P.J., and Wilson, E.L., 1976, “A Non-Conforming Element for Stress 

Analysis”, International Journal for Numerical Methods in Engineering, 10(6), pp. 1211-1219. 

153. Taylor, R.L., Filippou, F.C., Saritas, A., and Auricchio, F., 2003, “A Mixed Finite Element 

Method for Beam and Frame Problems”, Computational Mechanics, 31(1), pp. 192-203. 



191 
 

154. Tessler, A., and Hughes, T.J.R., 1983, “An Improved Treatment of Transverse Shear in the 

Mindlin-Type Four Node Quadrilateral Element”, Computer Methods in Applied Mechanics & 

Engineering, 39(3), pp. 311-335. 

155. Timoshenko, S.P., 1921, “On the Correction for Shear of the Differential Equation for Transverse 

Vibrations of Prismatic Beams”, Philosophical Magazine, 41, pp. 744-746. 

156. Uhm, T.-K., and Youn, S.-K., 2009, “T-spline Finite Element Method for the Analysis of Shell 

Structures”, International Journal for Numerical Methods in Engineering, 80(4), pp. 507–536. 

157. Valkeapää, A.I., Yamashita, H., Jayakumar, P., and Sugiyama, H., 2015, “On the Use of Elastic 

Middle Surface Approach in the Large Deformation Analysis of Moderately Thick Shell Structures 

using Absolute Nodal Coordinate Formulation”, Nonlinear Dynamics, 80(3), pp. 1133-1146. 

158. Von Dombrowski, S., 1997, “Modellierung von Balken bei grossen Verformungen fur ein 

kraftreflektierendes Eingabegerat”, Diploma thesis, University Stuttgart & DLR. 

159. Wang, P., Xu, J., Deng, J., and Chen, F., 2011, “Adaptive Isogeometric Analysis using Rational 

PHT-splines”, Computer Aided Design, 43(11), pp. 1438–1448. 

160. Wang, W., 2000, “Special Quadratic Quadrilateral Finite Elements for Local Refinement with 

Irregular Nodes”, Computer Methods in Applied Mechanics & Engineering, 182, pp. 109–134. 

161. Wilson, E.L., Taylor, R.L., Doherty, W.P., and Ghaboussi, J., 1973, “Incompatible Displacement 

Models”, Numerical and Computer Models in Structural Mechanics, pp. 43-57. 

162. Wriggers, P., and Reese, S., 1996, “A Note on Enhanced Strain Methods for Large Deformations”, 

Computer Methods in Applied Mechanics & Engineering, 135(3-4), pp. 201-209. 

163. Yakoub, R.Y., and Shabana, A.A., 2001, “Three-Dimensional Absolute Nodal Coordinate 

Formulation for Beam Elements: Implementation and Applications”, ASME Journal of 

Mechanical Design, 123(4), pp. 614-621. 



192 
 

164. Yamashita, H., Valkeapää, A.I., Jayakumar, P., and Sugiyama. H., 2015, “Continuum Mechanics 

based Bilinear Shear Deformable Shell Element Using the Absolute Nodal Coordinate 

Formulation”, ASME Journal of Computational & Nonlinear Dynamics, 10(5), pp. 051012-1 - 

051012-9. 

165. Yamashita, H., Jayakumar, P. and Sugiyama, H., 2016, “Physics-based Flexible Tire Model 

Integrated with LuGre Tire Friction for Transient Braking and Cornering Analysis”, ASME 

Journal of Computational and Nonlinear Dynamics, 11(3), pp. 031017-1 – 031017-17. 

166. Yang, X., 2011, “Finite Element Analysis and Experimental Investigation of Tyre Characteristics 

for Developing Strain-based Intelligent Tire System”, PhD Thesis, College of Engineering and 

Physical Sciences, University of Birmingham. 

167. Yu, Z., and Shabana, A.A., 2015, “Mixed-Coordinate ANCF Rectangular Plate Finite Element”, 

ASME Journal of Computational and Nonlinear Dynamics, 10(6), pp. 061003-1 – 061003-14. 

168. Yu, Z., Liu, Y., Tinsley, B., and Shabana, A. A., 2016, “Integration of Geometry and Analysis for 

Vehicle System Applications: Continuum-based Leaf Spring and Tire Assembly”, ASME Journal 

of Computational and Nonlinear Dynamics, 11, pp. 031011-1- 031011-11. 

169. Yunhua, L., 1998, “Explanation and Elimination of Shear Locking and Membrane Locking with 

Field Consistence Approach”, Computer Methods in Applied Mechanics and Engineering, 162(1-

4), pp. 249-269. 

170. Zegelaar, P.W.A., Gong, S., and Pacejka, H.B., 2008, “Tyre Models for the Study of In- Plane 

Dynamics”, Vehicle System Dynamics, Supplement, 23, pp. 578-590. 

171. Zheng, Y., and Shabana, A.A., 2017, “A Two-Dimensional Shear Deformable ANCF Consistent 

Rotation-based Formulation Beam Element”, Nonlinear Dynamics, 87(2), pp. 1031-1043. 



193 
 

172. Zienkiewicz, O.C., Taylor, R., and Too, J.M., 1971, “Reduced Integration Technique in General 

Analysis of Plates and Shells”, International Journal for Numerical Methods in Engineering, 3(2), 

pp. 275-290. 

173. Zienkiewicz, O.C., Owen, D.R.J, and Lee, K.N., 1974, “Least Square-Finite Element for Elasto-

Static Problems. Use of ‘Reduced’ Integration”, International Journal for Numerical Methods in 

Engineering, 8(2), pp. 341-358. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



194 
 

VITA 

MOHIL PATEL 

EDUCATION 

Doctor of Philosophy, Mechanical Engineering, May 2018, University of Illinois at Chicago, 
Focus in Dynamic Analysis of Multi-body Systems, GPA 3.91/4.00 

Bachelor of Science, Mechanical Engineering, May 2014, University of Illinois at Chicago, 
GPA 3.71/4.00 

 

PROFESSIONAL EXPERIENCE 

Research and Teaching Assistant, University of Illinois at Chicago, Department of Mechanical 
and Industrial Engineering, 2014-2017 

Associate Mechanical Engineer, Alion Science & Technology, Warren, MI, May 2016 – 
August 2016 

Consultant, Computational Dynamics Inc., Berwyn, IL, August 2015 – April, 2016 

 

JOURNAL PUBLICATIONS 

 

1. Patel, M., Orzechowski, G., Tian, Q., and Shabana A.A., 2016, “A New Multibody 
System Approach for Tire Modeling using ANCF Finite Elements”, Proceedings of 
Institution of Mechanical Engineers Part K: Journal of Multibody Dynamics, 230(1), pp. 
69-84. 
 

2. Pappalardo, C.M., Patel, M., Tinsley, B., and Shabana, A.A., 2016, “Contact Force 
Control in Multibody Pantograph/Catenary Systems”, Proceedings of Institution of 
Mechanical Engineers Part K: Journal of Multibody Dynamics, 230(4), pp. 307-328. 
 

3. Recuero, A., Contreras, U., Patel, M., and Shabana, A.A., 2016, “ANCF Continuum-based 
Soil Plasticity for Wheeled Vehicle Off-road Mobility”, ASME Journal of Computational 
and Nonlinear Dynamics, 11, pp. 044504-1 – 044504-5. 
 

4. He, G., Patel, M., and Shabana, A.A., 2017, “Integration of Localized Surface Geometry 
in Fully Parameterized ANCF Finite Elements”, Computer Methods in Applied 
Mechanics and Engineering, 313, pp. 966-985.  
 



195 
 

5. Patel, M., and Shabana A.A., 2017, “Locking Alleviation in the Large Displacement 
Analysis of Beam Elements: The Strain Split Method”, Submitted to Acta Mechanica. 
 

6. Patel, M., Pappalardo, C.M., Wang, G., and Shabana A.A., 2017, “Integration of 
Geometry and Small and Large Deformation Analysis for Vehicle Modelling: Chassis 
and Airless and Pneumatic Tire Flexibility”, Submitted to International Journal of 
Vehicle Performance.  
 

7. Shabana, A.A., and Patel, M., 2017, “Coupling Between Shear and Bending in the 
Analysis of Beam Problems: Planar Case”, Accepted in Journal of Sound and Vibration. 

 

CONFERENCE PUBLICATIONS 

 

1. Patel, M., Orzechowski, G., Tian, Q., Shabana, A. A., “A novel method for modeling 
ANCF based finite element tire assemblies”, Proceedings of the ASME 2015 
International Design Engineering Technical Conference & Computers and Information 
in Engineering Conference. August 2-5, 2015, Boston, MA, USA. 

 
2. Pappalardo, C. M., Patel, M., Tinsley, B., Shabana, A. A., “Pantograph/Catenary contact 

force control”, Proceedings of the ASME 2015 International Design Engineering 
Technical Conference & Computers and Information in Engineering Conference. August 
2-5, 2015, Boston, MA, USA. 

 

PROFESSIONAL SERVICE 

Journal Reviewer: 

 Proceedings of Institution of Mechanical Engineers Part K: Journal of Multibody 
Dynamics 

 ASME Journal of Computational and Nonlinear Dynamics 

Conference Reviewer: 

 ASME IDETC/CIE 2015 

Other: 

 Mentored a team of undergraduate seniors for their senior design project 
 Guided senior mechanical engineering students to acquire jobs in the industry 

 

PROFESSIONAL AFFILIATIONS 

 American Society of Mechanical Engineers 
 Society of Automotive Engineers 



196 
 

RESEARCH PROJECTS AND COLLABORATIONS 

 

Development of a high fidelity off-road vehicle model 

 Developed a multibody model of the HMMWV vehicle in the general purpose flexible 
multibody dynamics code SIGMA/SAMS 

 Integrated FFR chassis, ANCF pneumatic and ANCF airless tires with the vehicle model  
 Implemented rack and pinion joint using a position level based formulation 

 

Locking in ANCF finite elements 

 Investigated locking effects in fully parameterized ANCF finite elements with emphasis 
on improving element performance  

 

Development of new tire modeling techniques in a multibody dynamics framework                              

 Demonstrated a new technique for modeling tires using a nonlinear finite element 
formulation (ANCF) suitable for modeling large deformation and rotation  

 Implemented an algorithm in MATLAB to mesh tires using ANCF plate elements 
 Tested the new tire modeling technique on a bulldozer vehicle model with a simplified 

composite material model 
 Developed a new method of including tire tread details in the ANCF tire mesh using 

NURBS geometry 
 Implemented the hyperelastic incompressible Mooney-Rivlin material in order to model 

the rubber in tires 
  

Tire-soil interaction                                             

 Implemented a ‘flex-to-flex’ contact algorithm for the tire-soil interaction problem 
 Soil was modeled using ANCF solid elements and the Drucker-Prager plasticity model  

 

Control of pantograph/catenary systems on high speed trains                                             

 Developed a detailed flexible multibody model of pantograph/catenary system operating 
at a speed of 200km/hr 

 Analyzed the deformation and wave propagation characteristics of the catenary at varying 
train speeds 

 Implemented three types of controllers in order to reduce the contact force standard 
deviation in the pantograph/catenary system 

 
RESEARCH INTERESTS 
 
Flexible multibody dynamics, Computational methods, Vehicle dynamics, Large deformation 
theory, Nonlinear finite element analysis, Contact mechanics, Computational geometry 


