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ABSTRACT 

Uncertainty is a part of a real world optimization problem. Computational speed is critical in optimizing 

large scale stochastic problems. The major bottleneck in solving large scale stochastic optimization 

problems is the computational intensity of scenarios or samples. This research proposes a novel sampling 

technique which takes above mentioned problem. This thesis analyzes existing and novel sampling 

techniques by conducting large scale experiments with different functions.  The sampling techniques 

which were analyzed are Monte Carlo Sampling (MCS), Latin Hypercube Sampling (LHS), Hammersley 

Sequence Sampling (HSS), Latin Hypercube-Hammersley Sequence Sampling (LHS-HSS), Sobol Sampling, 

and the proposed novel technique which is Latin Hypercube-Sobol Sampling (LHS-SOBOL). It was found 

that HSS performs better up to 40 uncertain variables, Sobol up to 100 variables, LHS-HSS up to 250 

variables, and LHS-SOBOL for large scale uncertainties which was tested for 800 variables. Thus, by 

analyzing the results of this work we can conclude that LHS-HSS can be used for uncertainties from 2 to 

100 variables, and LHS-SOBOL for larger than 100 variables. 

 

Keywords: Sampling, Quasi Sequence Sampling, Sobol Sampling, Optimization under uncertainty, LHS-

Sobol sampling, stochastic supply chain network problem 
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Chapter 1. INTRODUCTION 

The problem of optimizing distribution through a supply chain has been long studied. In their seminal 

work, Geoffrion and Graves (1974) optimize the location of distribution facilities between plants and 

customers using Bender’s decomposition. Thomas and Griffin (1996), Vidal and Goetschalckx (1997), and 

Klose and Drexl (2005) present reviews of other works that focus on deterministic production and 

distribution planning (David et al., 2015). 

The uncertain nature of many elements of the supply chain, however, often means that deterministic 

approaches lead to suboptimal results. Stochastic programming, rather than linear programming, may 

better capture the realities of a business in which future conditions are uncertain (Sen and Higle 1999). A 

number of authors have addressed uncertainty in planning a single tier of the supply chain, such as 

production planning and scheduling or transportation decisions, as Sahinidis (2004) and Mula et al. (2006) 

have reviewed. However, most of the articles in supply chain management under uncertainty literature 

solve small scale problems. In real world, the problems tend to be large with many number of uncertain 

variables.  For example, consider the USG problem given below. 

 

1. 1. USG Supply chain Problem definition: 

USG is a building materials and solutions manufacturer in North America and the problem we are talking 

about focuses on Durock product line. Under this product line, several items are produced at 3 

manufacturing locations in United States. These products are passed to the customers throughout North 

America either directly or via one of the warehouses. Figure 1 shows the schematic of the network. There 

are 3 manufacturing plants, 54 warehouses, and 1500 customer locations.  
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Figure 1. Supply chain network 

 

Currently the sourcing decisions are computed by solving large scale linear programing models (LP) with 

an objective to minimize the total delivery cost. This delivery cost comprises of production, freight and 

handling cost. While achieving this objective of minimizing the cost, we consider constraints like capacity, 

demand and warehouse balance at respective manufacturing plants, customer locations and warehouses. 

The linear programming problem is very large as there are 1500 customer locations, to which products 

manufactured at 3 plants are shipped either directly or via one of the 54 warehouses. In addition, number 

of items produced at these locations are between thirty and forty, along with the choice for the inbound 

shipment to the warehouse which is via rail or truck. In the deterministic problem of USG, there are 90000 

decision variables. However, the cost parameters and demand for each location is uncertain. From the 

data provided by USG, it can be seen that there are 6000 uncertain variables in this problem. Recently 

David (David A., 2015; David et al., 2015) used the existing data to reduce the uncertain variables to 800. 

In order to solve this problem, they converted it into a chance constrained formulation as shown below. 

Problem formulation (David A., 2015): 
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 𝑀𝑖𝑛 𝑍 = 𝐸 [
∑ ∑ ∑ (𝑃𝑖 + 𝑓𝑘𝑖 +

𝐻𝑘

𝑥𝑡
) 𝑋𝑘𝑖𝑙𝑙𝑘𝑖 + ∑ ∑ ∑ (𝑃𝑖 + 𝑓𝑗𝑖𝑟 +

𝐻𝑗𝑟

𝑥𝑟
) 𝑋𝑟𝑗𝑖𝑙𝑙𝑗𝑖 +

∑ ∑ ∑ (𝑃𝑖 + 𝑓𝑗𝑖𝑡 +
𝐻𝑗𝑡

𝑥𝑡
) 𝑋𝑡𝑗𝑖𝑙𝑙𝑗𝑖 + ∑ ∑ ∑ (𝑓𝑘𝑗𝑡 +

𝐻𝑘𝑡

𝑥𝑡
) 𝑋𝑡𝑘𝑗𝑙𝑙𝑗𝑘

]…… (1) 

Subjected to constraints: 

𝑝(∑ 𝑋𝑘𝑖𝑙𝑖 +  ∑ 𝑋𝑘𝑗𝑡𝑙 −  𝑑𝑗𝑘 )  ≥ 0.95    …… (2) 

   𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑒𝑎𝑐ℎ 𝑑𝑒𝑚𝑎𝑛𝑑 𝑐𝑜𝑚𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑚𝑒𝑡 

∑ 𝑋𝑘𝑖𝑙𝑘 +  ∑ (𝑋𝑗𝑟𝑙 +  𝑋𝑗𝑡𝑙)𝑗  ≤ 𝑐𝑖  ∀ 𝑖, 𝑙    …… (3) 

∑ (𝑋𝑗𝑖𝑟𝑙 + 𝑋𝑗𝑖𝑡𝑙)𝑖  ≤ ∑ 𝑋𝑘𝑗𝑡𝑙𝑘     …... (4) 

𝑖 = 1, … 3; 𝑗 = 1, … 1500; 𝑘 = 1, … 54; 𝑙 = 1, … 37;  𝑟 = 𝑟𝑎𝑖𝑙, 𝑡 = 𝑡𝑟𝑢𝑐𝑘 

 

David et al. (2015) solved this problem by converting the chance constraint into equivalent deterministic 

constraint. However, chance constraint programming and this transformation is applicable to stable 

distributions only. The data shows that some of the distributions in the problem are not stable and hence 

need better handling. A generalized approach for solving stochastic optimization problems is shown in 

Figure 2. In deterministic optimization, only the optimization loop is required where decisions are changed 

and the effects of these changed decisions on the objective function and constraints can be noted by 

running the model. The optimizer then checks the optimality criterion and the loop continues, if the 

criterion is not satisfied till an optimal solution is found. For stochastic programming or stochastic 

optimization problem, it involves an additional internal loop where uncertainties are handled using 

sampling methods. The major bottleneck in such problems is the stochastic sampling loop, which 

calculates the estimates of probabilistic objective function and constraints. For the USG problem, we need 

to efficiently handle 800 dimensional uncertainties with this sampling loop. This is the focus of our current 

endeavors. 
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Figure 2. Stochastic optimization framework 

1. 2. Literature review of sampling techniques: 

Sampling is a statistical procedure that involves the selection of a finite number of individuals to represent 

and infer knowledge about a population of concern. Sampling techniques are used in a wide range of 

science and engineering applications; they are of basic importance in computational statistics, in 

implementation of probabilistic algorithms, and in related problems of statistical computing that have a 

stochastic ingredient (Ulas and Diwekar, 2007). 

Monte Carlo sampling (MCS) is the most simple and widely used sampling technique. It is a numerical 

method based on a pseudorandom random generator to approximate solution for a variety of 

mathematical problem (Metropolis and Ulam, 1949). The name Monte Carlo originates from the city in 

Morocco which is famous for casinos and randomness surrounded with it. Example of the pseudorandom 

number generator is the linear congruential generator developed by Lehmer (Lehmer, 1949). In general, 

Monte Carlo needs large number of samples for obtaining probabilistic information about the output. In 

most applications, the actual relationship between successive points in a sample has no physical 

significance, hence, randomness of the sample for approximating a uniform distribution is not critical 
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(Knuth, 1973). Once it was apparent that the uniformity properties are critical to the design of sampling 

techniques, constrained or stratified sampling technique became appealing (Morgan and Henrion, 1990). 

Latin Hypercube sampling (LHS) is one of the well-known stratified sampling techniques (Iman and 

Conover, 1982). In this sampling technique, each variable distribution is divided into number of equi-

probable zones and sample is taken randomly from each zone (Iman and Shortencarier, 1984). These 

single dimensional samples for each variables are then paired randomly. It has been found that LHS 

performs much better than MCS. However, LHS is not multi-dimensionally uniform, a desirable property 

for sampling. Quasi Monte Carlo methods based on low discrepancy sequences like Hammersley 

sequence, show better uniformity property. Hammersley sequence sampling (HSS) technique proposed 

by Kalagnanam and Diwekar (1997) is found to be an efficient sampling technique, for solving problems 

of small dimensional uncertainties. It has been found that HSS shows spurious correlations when applied 

to high dimensional problems. In order to circumvent this problem, Kocis and Whiten (1997) proposed 

Leaped HSS and HSS-RR2. However, both these techniques distort the k-dimensional uniformity of the 

HSS resulting in lower efficiency. In 2002, Wang et al. (2002) coupled LHS with HSS to derive a better 

sampling technique, which tries to achieve uniformity in one dimension as well as K-dimensions. Financial 

literature requires high dimensional random numbers for uncertainty evaluations. Sobol is very popular 

in financial literature. However Sobol faces the same problem of spurious correlations in higher dimension 

(Chi et al., 2005). To circumvent this problem scrambled Sobol sampling was introduced by Chi et 

al.(2005). However scrambled Sobol disturbs the k-dimensional uniformity.   

In this work, we propose a new sampling technique based on Latin Hypercube and Sobol sampling 

techniques. We compare all six different sampling techniques with 216000 experiments to study the 

behavior of the proposed and current sampling techniques.   
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Chapter 2. CURRENT SAMPLING TECHNIQUES 

2. 1. Introduction  

In chapter 1 we briefly described various sampling techniques which are mentioned below.  

 Monte Carlo Sampling technique 

 Stratified Sampling (Latin Hypercube sampling technique) 

 Hammersley Sampling technique 

 Leaped Hammersley technique 

 LHS-Hammersley Sampling technique 

 Sobol Sampling technique 

 Scrambled Sobol Sampling technique. 

This chapter concentrates on providing the details about how samples are generated from each 

sampling technique, what are the advantages and disadvantages of these sampling techniques starting 

with the Monte Carlo Sampling.  

2. 2. Monte Carlo Sampling (MCS): 

Monte Carlo is the most widely used sampling technique since 19th century. Monte Carlo sampling 

generates random samples using pseudorandom numbers (Metropolis and Ulam, 1949). One of the 

popular pseudorandom number generator is the Linear Congruential Generator algorithm by Lehmer 

(1949). Once pseudorandom number generator generates random numbers between 0 and 1 for each 

uncertain variable, specific values of the sample are generated by inverting these random numbers on 

cumulative distribution function (CDF) for each variable.  
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One of the major advantage of Monte Carlo technique is that the error bounds are not dependent on the 

dimension of the problem. Error ‘ε’ is inversely proportional to the square root of number of samples ‘n’. 

Another major advantage is that the bounds are probabilistic, which is not achieved by any other method. 

𝜀 = 𝑂/√𝑛 

However there are two important properties for any sampling technique; randomness and uniformity. In 

most applications, the actual relationship between successive points in a sample has no physical 

significance, hence, randomness of the sample for approximating a uniform distribution is not critical 

(Knuth, 1973). Figure 3 shows Monte Carlo samples for 2 uncertain variables with uniform distributions 

between 0 and 1 for each. It can be seen that the samples are not covering the square uniformly and there 

are clusters observed. This decreases the efficiency of MCS and thus requires large samples. 

 

Figure 3. Clustering effect in Monte Carlo 

Once it is apparent that the uniformity properties are critical to the design of sampling techniques, 

constrained or stratified sampling becomes appealing (Morgan and Henrion, 1990). Latin hypercube is 

one such sampling and is described below. 
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2. 3. Latin Hypercube Sampling (LHS): 

LHS aims at evenly spreading the samples in the distribution by dividing the distribution into equi-probable 

zones (Iman and Shortencarier, 1984) as shown in Figure 4 and samples are drawn randomly from each 

zone. Number of zones equals number of samples. LHS shows good one dimensional uniformity as shown 

in Figure 5. For good one dimensional uniformity, the samples have to be closer to the 45 degree line. 

 

Figure 4. Normal distribution divided into equiprobable zone (Diwekar, 2008) 
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Figure 5. Comparing one dimensional uniformity of LHS and MCS 

 

For multi-dimensional problems, samples are extracted individually and randomly paired to form the 

sample set. Due to this random pairing, uniformity in one dimension is lost for multi-dimension sample 

set (refer Figure 6).  

 

Figure 6. 100 two dimensional samples generated from LHS 
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Example: 

Let U1 has uniform distribution from 0-5 and U2 has uniform distribution from 0-20. Using LHS we first 

generate samples by dividing U1 and U2 into equi-probable zone and take random points from these zones. 

These samples and ranks are shown in Table 1. 

Rank  U2 

1 3.2 

2 6.1 

3 11.3 

4 12.8 

5 18.4 

  
Table 1. Equi-probable samples and their ranks for LHS 

In the second step these ranks are randomly paired and the samples are arranged accordingly as shown 

in Table 2 below. 

Data Set (U1, U2) 

 0.8 6.1 

2.6 18.4 

3.2 3.2 

1.4 12.8 

4.9 11.3 

 
Table 2. Random paring the samples 

 

Thus multi-dimensional uniformity is lost due to random pairing. In order to overcome this drawback 

Quasi-Monte Carlo sampling techniques are proposed. Quasi Monte Carlo methods use different low 

discrepancy sequence that perform significantly better than crude Monte Carlo sampling. Some well-

known low discrepancy sequences are Hammersley, Halton, Sobol, Niederreiter and Faure. These Quasi 

Monte Carlo techniques are used for its multi-dimensional uniformity properties.  

Rank U1 

 1 0.8 

2 1.4 

3 2.6 

4 3.2 

5 4.9 

Ranks Paired (U1, U2) 

 2 

2 5 

3 1 

4 4 

5 3 
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2. 4. Hammersley Sequence Sampling: 

This low discrepancy sequence algorithm is based on inverse prime number radix function for generating 

so called Hammersley points. These Hammersley points are then inverted on CDF to generate the actual 

sample set. Each prime number radix corresponds to each uncertain parameter. Following is the algorithm 

generating Hammersley points: 

Any integer n can be written in radix R notation as: 

  n = nmnm-1….n2n1n0        …… (5) 

  n = n0+n1R+n2R2+…nmRm        …… (6) 

A unique number between 0 & 1 called the inverse radix number is constructed by reversing the order of 

digits of n, around the decimal point as follows: 

Φr(n) = noR-1 + n1R-2 + …. + nmRm+1      …… (7) 

Hammersley points on k-dimensional hypercube are given by the following sequence: 

XK(n) = 1- ZK(n)         …… (8) 

Where,   ZK(n) = ( n/N ; Φ R1 (n); Φ R2 (n); Φ R3 (n); …. ; Φ k (n) )    …… (9) 

 

Following is an example of generating 30 Hammersley points for 2 Dimensional data set, for this example 

k = 2, and first prime, hence R1 = 2 in equation 9. Number of samples = N=30. 

Z2(n) = ( n/30 ; Φ R1 (n)) 

  



12 
 

 

  25 24 23 22 21      

  32 16 8 4 2      

Sr. 
No. 
(n) 

Sr. No. 
Integer 

in 
Binary 

Binary 
Representation  

Inverse 
Radix 
{Φr(n)} 

Inverse 
Radix 
Point 
ZK(n) 

n/N 

Hammersley Point 

Dim 1 Dim 2 

1 1         1 0.5 0.5 0.033333 0.033333 0.5 

2 10       1 0 0.25 0.75 0.066667 0.066667 0.75 

3 11       1 1 0.75 0.25 0.1 0.1 0.25 

4 100     1 0 0 0.125 0.875 0.133333 0.133333 0.875 

5 101     1 0 1 0.625 0.375 0.166667 0.166667 0.375 

6 110     1 1 0 0.375 0.625 0.2 0.2 0.625 

7 111     1 1 1 0.875 0.125 0.233333 0.233333 0.125 

8 1000   1 0 0 0 0.0625 0.9375 0.266667 0.266667 0.9375 

9 1001   1 0 0 1 0.5625 0.4375 0.3 0.3 0.4375 

10 1010   1 0 1 0 0.3125 0.6875 0.333333 0.333333 0.6875 

11 1011   1 0 1 1 0.8125 0.1875 0.366667 0.366667 0.1875 

12 1100   1 1 0 0 0.1875 0.8125 0.4 0.4 0.8125 

13 1101   1 1 0 1 0.6875 0.3125 0.433333 0.433333 0.3125 

14 1110   1 1 1 0 0.4375 0.5625 0.466667 0.466667 0.5625 

15 1111   1 1 1 1 0.9375 0.0625 0.5 0.5 0.0625 

16 10000 1 0 0 0 0 0.03125 0.96875 0.533333 0.533333 0.96875 

17 10001 1 0 0 0 1 0.53125 0.46875 0.566667 0.566667 0.46875 

18 10010 1 0 0 1 0 0.28125 0.71875 0.6 0.6 0.71875 

19 10011 1 0 0 1 1 0.78125 0.21875 0.633333 0.633333 0.21875 

20 10100 1 0 1 0 0 0.15625 0.84375 0.666667 0.666667 0.84375 

21 10101 1 0 1 0 1 0.65625 0.34375 0.7 0.7 0.34375 

22 10110 1 0 1 1 0 0.40625 0.59375 0.733333 0.733333 0.59375 

23 10111 1 0 1 1 1 0.90625 0.09375 0.766667 0.766667 0.09375 

24 11000 1 1 0 0 0 0.09375 0.90625 0.8 0.8 0.90625 

25 11001 1 1 0 0 1 0.59375 0.40625 0.833333 0.833333 0.40625 

26 11010 1 1 0 1 0 0.34375 0.65625 0.866667 0.866667 0.65625 

27 11011 1 1 0 1 1 0.84375 0.15625 0.9 0.9 0.15625 

28 11100 1 1 1 0 0 0.21875 0.78125 0.933333 0.933333 0.78125 

29 11101 1 1 1 0 1 0.71875 0.28125 0.966667 0.966667 0.28125 

30 11110 1 1 1 1 0 0.46875 0.53125 1 1 0.53125 
Table 3. 30 two dimensional Hammersley points 
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The sample points are generated by inverting Hammersley points on respective CDF (Uniform 0-1) for 

dimension 1 and 2 are shown in Table 3. This Figure 7 shows that Hammersley sequence sampling provides 

better uniformity for multi-dimensional problem. 

 

Figure 7. HSS points in 2 dimension 

Major disadvantage of HSS is that as the number dimensions increase the distance between prime 

numbers increase, and inverse radix for these large prime numbers become smaller and smaller resulting 

in spurious correlations for variables more than 40 as shown in Figure 8.  

 

Figure 8. 1000 sample points using HSS for dimension 14 and 15 
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2. 5. Leaped Hammersley 

Leaped Hammersley sampling is developed to overcome these spurious correlations for higher dimension 

(Kocis and Whiten, 1997).In this sampling technique we generate large sample points and select the 

samples with leap. 

Generalized Hammersley inverse radix function: 

𝜱𝒓𝟏(𝒏) = ∑ 𝒂𝒊𝒊 (𝒋, 𝒏) ∗ 𝒃𝒋
−𝒊−𝟏     …… (10) 

As the prime number increases, denominator becomes larger and the number which represents sample 

integer tends to get smaller and smaller. In order to avoid this, below equation is proposed by introducing 

leap to the sample integer. 

Leaped Hammersley inverse radix function: 

𝜱𝒓𝟏(𝒏𝑳) = ∑ 𝒂𝒊𝒊 (𝒋, 𝒏) ∗ 𝒃𝒋
−𝒊−𝟏    …… (11) 

In equation 11, ‘L’ represents leap. Following example shows 20 points generated by HSS for dimension 

3 and using leap we only select few of these as actual samples. (Please see table 3)  

Sr. No.  
Hammersley 

Points Dimension 
3 

 1 0.666666667 

2 0.333333333 

3 0.888888889 

4 0.555555556 

5 0.222222222 

6 0.777777778 

7 0.444444444 

8 0.111111111 

9 0.962962963 

10 0.62962963 

11 0.296296296 
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Table 4. 20 points generated by HSS for dimension 3 

Now from these HSS points we select 4 samples with a leap of 5 as shown in table 5. 

Leap of 5 
Leaped 

Hammersley 
Sample points 

5 0.222222222 

10 0.62962963 

15 0.740740741 

20 0.259259259 

 
Table 5. Sample points with leap of 5 for dimension 3 

However, these leaping distorts the K-dimensional uniformity property. 

2. 6. Sobol Sequence Sampling: 

Sobol sequence sampling is developed by Ian Sobol (Sobol et al., 1967). In this sequence we generate 

direction vectors which are dependent on primitive polynomial and the degree of polynomial depends on 

dimension of the problem. Primitive polynomial is the polynomial which cannot be factorized further.  This 

sampling is explained below. 

Primitive polynomial of degree d, all the coefficients A1 to Ad-1 are either 1 or 0 is given below. 

𝑷 = 𝑿𝒅 + 𝑨𝟏 𝑿𝒅−𝟏 + ⋯ + 𝑨𝒅−𝟏𝑿 + 𝟏     …… (12) 

12 0.851851852 

13 0.518518519 

14 0.185185185 

15 0.740740741 

16 0.407407407 

17 0.074074074 

18 0.925925926 

19 0.62962963 

20 0.259259259 
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Direction vector in dimension j are generated by recursive equation given below for i > d and the initial 

direction vectors i.e. for i < d are generated by selecting and number between 0 & 2d.  

𝑽𝒊
𝒋

=
𝑴𝒊

𝟐𝒊       …… (13) 

𝑴𝒊 =  𝟐𝟏𝑨𝟏𝑴𝒊−𝟏 ⊕ 𝟐𝟐𝑨𝟐𝑴𝒊−𝟐 ⊕ … … … ⊕ 𝟐𝒅−𝟏𝑨𝒅−𝟏𝑴𝒊−𝒅+𝟏 ⊕ 𝟐𝒅𝑴𝒊−𝒅 ⊕ 𝑴𝒊−𝒅 ….. (14) 

⊕ 𝒊𝒔 𝒃𝒊𝒕𝒘𝒊𝒔𝒆 𝒆𝒙𝒄𝒍𝒖𝒔𝒊𝒗𝒆 𝒐𝒓 𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 

Thus after generating direction vectors, Sobol number can be generated as follows. 

𝒙𝒏
𝒋

=  𝒃𝟏𝒗𝒊
𝒋
 ⊕ 𝒃𝟐𝒗𝟐

𝒋
 ⊕ . … . .⊕ 𝒃𝒘𝒗𝒘

𝒋
    …… (15) 

𝒏 =  ∑ 𝒃𝒊𝟐𝒊

𝒘

𝒊=𝟎

 

XOR operation: 

Input Output 

A B 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

Table 6. Exclusive OR operation commands 

 

Example for generating Sobol points for dimension 3: 

Identify primitive polynomial for dimension 3, i.e. it should have degree 3. 

Primitive Polynomial = 𝑿𝟑 + 𝑿 + 𝟏 

𝑀1 = 1 (Odd integer between 0 & 21) 

𝑀2 = 3 (Odd integer between 0 & 22) 

𝑀3 = 7 (Odd integer between 0 & 22) 

From Recurrent equation for i > 3 
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𝑀𝑖 = 4𝑀𝑖−2 ⊕ 8𝑀𝑖−3 ⊕ 𝑀𝑖−3    …… (16) 

Always start with last term in forming recursive equation (Equation 16) and the equation should have 

same number of terms as the degree of polynomial. Thus, 

𝑀4 = 4𝑀2 ⊕ 8𝑀1 ⊕ 𝑀1 = 12 ⊕ 8 ⊕ 1 = 1100 ⊕ 1000 ⊕ 0001 = 0101 (i. e. 5) 

𝑀5 = 4𝑀3 ⊕ 8𝑀2 ⊕ 𝑀2 = 28 ⊕ 24 ⊕ 3 = 11100 ⊕ 11000 ⊕ 00011 = 00111 (i. e. 7) 

𝑀6 = 4𝑀4 ⊕ 8𝑀3 ⊕ 𝑀3 = 20 ⊕ 56 ⊕ 7 = 010100 ⊕ 111000 ⊕ 000111 = 101011 (43) 

𝑀7 = 4𝑀5 ⊕ 8𝑀4 ⊕ 𝑀4 = 28 ⊕ 40 ⊕ 5 = 011100 ⊕ 101000 ⊕ 000101 = 110001 (49) 

 

From 𝑴𝒊 we can get 𝑽𝒊 for dimension 3 as; 

𝑽𝟏 = 𝟎. 𝟏 

𝑽𝟐 = 𝟎. 𝟏𝟏 

𝑽𝟑 = 𝟎. 𝟏𝟏𝟏 

𝑽𝟒 = 𝟎. 𝟎𝟏𝟎𝟏 

𝑽𝟓 = 𝟎. 𝟎𝟎𝟏𝟏𝟏 

𝑽𝟔 = 𝟎. 𝟏𝟎𝟏𝟎𝟏𝟏 

𝑽𝟕 = 𝟎. 𝟎𝟏𝟏𝟎𝟎𝟎𝟏 

 

Sobol points for dimension 3 can be generated as follows: 

𝒙𝟏
𝟑 = 𝟏 = 𝟏 ∗ 𝑽𝟏 = 𝟎. 𝟏 = 𝟎. 𝟓 

𝒙𝟐
𝟑 = 𝟏𝟎 = 𝟎 ∗ 𝑽𝟏 ⊕ 𝟏 ∗ 𝑽𝟐 = 𝟎. 𝟎𝟎 ⊕ 𝟎. 𝟏𝟏 = 𝟎. 𝟏𝟏 = 𝟎 . 𝟕𝟓 

𝒙𝟑
𝟑 = 𝟏𝟏 = 𝟏 ∗ 𝑽𝟏 ⊕ 𝟏 ∗ 𝑽𝟐 = 𝟎. 𝟏𝟎 ⊕ 𝟎. 𝟏𝟏 = 𝟎. 𝟎𝟏 = 𝟎. 𝟐𝟓 

𝒙𝟒
𝟑 = 𝟏𝟎𝟏 = 𝟏 ∗ 𝑽𝟏 ⊕ 𝟎 ∗ 𝑽𝟐 ⊕ 𝟏 ∗ 𝑽𝟑 = 𝟎. 𝟏𝟎𝟎 ⊕ 𝟎. 𝟏𝟏𝟏 = 𝟎. 𝟎𝟏𝟏 = 𝟎. 𝟑𝟕𝟓 

And so on till the number of samples required. 

Using Gray Code we can quickly generate Sobol Points. 
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Binary number to gray code: 

In generating Gray Code we keep the first term same and perform XOR operator to generate remaining 

terms. 

Thus  1st (Gray Code) = 1st (Binary) XOR 2nd (Binary) 

2nd (Gray Code) = 1st (Binary) XOR 2nd (Binary) 

 3rd (Gray Code) = 2nd (Binary) XOR 3rd (Binary) and so on. 

Example: 

Binary 1 0 0 1 1 

Gray Code 1 1 0 1 0 

Table 7. Binary to gray code conversion 

 

With gray codes generated we can easily write Sobol sequence algorithm as: 

𝒏 =  ∑ 𝒃𝒊𝟐𝒊

𝒘

𝒊=𝟎

 

Integer 𝒏 = 𝒃𝟏𝒃𝟐𝒃𝟑 … =  𝒈𝟏𝒈𝟐𝒈𝟑 … 

𝒙𝟏
𝒅 =  𝒈𝟏𝑽𝟏 ⊕ 𝒈𝟐𝑽𝟐 ⊕ 𝒈𝟑𝑽𝟑 … 

𝒙𝒏+𝟏
𝒅 =  𝒙𝒏

𝒅 ⊕ 𝑽𝒄 

Where bc = rightmost zero bit binary representatio 

Generated Sobol points are inverted on to the CDF to get actual sample point. Sobol sequence sampling 

has better multi-dimensional uniformity (Figure 9), but correlations have been observed for higher 

dimensions above 100 using this sequence (Figure 10). 



19 
 

 

Figure 9. 100 samples using Sobol sampling for Dimension 1 and 2 

 

 

Figure 10. 1000 samples using Sobol sampling for dimension 151 and 152 
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2. 7. Scrambled Sobol: 

In order to eliminate spurious correlations for higher dimensions Sobol sampling, scrambled Sobol 

sampling was introduced. In this technique binary integers are randomly scrambled to remove the 

correlations. The scrambling can be done in two ways, either scrambling one integer or multi-integer 

scrambling. A novel algorithm for multi-integer scrambling was shown by (Chi et al., 2005). They have used 

pure linear permutation for scrambling the binary integers prior to getting Sobol point from recursive 

equation. This technique is largely dependent on random permutations and if the permutations are not 

done properly correlations can be observed.  
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2. 8. LHS-Hammersley Sequence Sampling (LHS-HSS): 

LHS-HSS is developed by (Wang et al., 2002). In this Sampling technique we generate samples for each 

dimension using LHS sampling technique. Unlike in LHS where pairing is done randomly here we use 

Hammersley points to rank the LHS samples and pairing is done using these ranks. With this sampling 

technique one dimensional as well as multi-dimensional uniformity is achieved. 

Example: 

Here are 5 points generated by LHS for 2 dimension U1 & U2, uniform distribution from 0-1. 

U1 Ranks 
U1 

U2 Ranks 
U2 

0.8 1 3.2 1 

1.4 2 6.1 2 

2.6 3 11.3 3 

3.2 4 12.8 4 

4.9 5 18.4 5 

Table 8. Samples and ranks for LHS-HSS 

Ranking these sample points using Hammersley Points as shown in table 9: 

 

 
Table 9. Corresponding HSS points for each dimension  

Sample set generated using this ranking method are given in Table 10. 

  

HSS points 
dimension  1 

Rank 
1 

0.2 1 

0.4 2 

0.6 3 

0.8 4 

1 5 

HSS Point 
dimension 2 

Rank 
2 

0.5 3 

0.75 4 

0.25 1 

0.875 5 

0.375 2 
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U1 U2 

0.8 11.3 

1.4 18.4 

2.6 3.2 

3.2 6.1 

4.9 12.8 

Table 10. Two dimensional sample set for LHS-HSS 

 

LHS-HSS has shown good convergence properties up to 20 variables (Wang et al., 2002) and is likely to 

fail for large scale uncertainties like the problem presented in chapter 1.  Therefore, we propose a novel 

sampling technique based on LHS and Sobol sampling. This is presented in next chapter.  
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Chapter 3. NOVEL SAMPLING TECHNIQUE LHS-SOBOL 

In order to solve this supply chain problem with large number of uncertainties, 

we developed a new sampling technique LHS-Sobol by combining LHS sampling 

technique and Sobol sampling technique.  This new sampling is expected to 

have one dimensional uniformity of LHS and k-dimensional uniformity of 

Sobol.   In this technique we first draw samples for each uncertain parameter 

using LHS sampling technique thus preserving one-dimensional uniformity. 

This is achieved by using rank matrices of Sobol samples instead of pairing the 

LHS samples randomly. In order to achieve multi-dimensional uniformity we 

pair those using Sobol sequence points.  Sobol sequence needs primitive 

polynomials and direction vectors. In this work, we use primitive polynomial 

generator proposed by Bratley and Fox (1986) and extended to higher 

dimension (up to 1111) by Joe and Kuo (2008). Figure 11 presents the flow 

chart to generate LHS-Sobol sampling. The procedure is illustrated using an 

example given below. 

  

Figure 11. LHS-Sobol flow Chart 
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3. 1. LHS-Sobol generation steps and example: 

Step 1: Let us consider 3 uncertain parameters be as follows: 

  U1 = Uniform Distribution (5 – 10) 

  U2 = Uniform Distribution (15 – 25) 

  U3 = Uniform Distribution (1 – 10) 

Step 2: We plan to generate 10 samples. Following are samples generated using first step of Latin 

Hypercube where we divide the probability density function of each variables into 10 equi-probable 

strata and take random points from each strata. 

U1 U2 U3 

5.052407 15.10481 1.094332 

5.6718 16.3436 2.209239 

6.028591 17.05718 2.851464 

6.762964 18.52593 4.173336 

7.177369 19.35474 4.919264 

7.691069 20.38214 5.843925 

8.468701 21.9374 7.243663 

8.756406 22.51281 7.761529 

9.163712 23.32742 8.494681 

9.921371 24.84274 9.858466 

Table 11. Samples generated using LHS for each of the dimensions 

Step 3: Considering ranks according to Sobol sequence. 

Sobol 
U1 

Sobol 
Rank U1 

Sobol U2 Sobol 
Rank U2 

Sobol 
U3 

Sobol 
Rank U3 

0.5 5 0.5 6 0.5 5 

0.75 8 0.25 3 0.75 8 

0.25 3 0.75 8 0.25 2 

0.375 4 0.375 5 0.625 7 

0.875 9 0.875 10 0.125 1 

0.625 6 0.125 2 0.375 4 

0.125 1 0.625 7 0.875 10 

0.1875 2 0.3125 4 0.3125 3 

0.6875 7 0.8125 9 0.8125 9 

0.9375 10 6.25E-02 1 0.5625 6 

Table 12. Each dimension of LHS samples ranked with Sobol points 
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Step 4: Pairing the samples in Table 11 using ranks of the samples in Table 12. 

U1 Ranks U1 U2 Rank U2 U3 Rank U3 

8.468701 5 24.84274 6 4.919264 5 

8.756406 8 20.38214 3 2.851464 8 

6.028591 3 16.3436 8 7.761529 2 

6.762964 4 22.51281 5 5.843925 7 

5.052407 9 18.52593 10 1.094332 1 

7.691069 6 15.10481 2 9.858466 4 

9.163712 1 21.9374 7 4.173336 10 

5.6718 2 17.05718 4 2.209239 3 

7.177369 7 23.32742 9 8.494681 9 

9.921371 10 19.35474 1 7.243663 6 

Table 13. 3 dimensional sample set using LHS-Sobol 

 

This is the way we generate 3 dimensional sample set for using LHS-Sobol sampling technique.  
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Chapter 4. RESULTS AND DISCUSSION 

This chapter presents the analysis of six sampling techniques including the novel sampling technique 

proposed in Chapter 3.  In the first part of the sampling analysis, we check the one dimensional and multi-

dimensional uniformity of various sampling techniques for different dimensions. In the latter part of the 

chapter we compare efficiencies of various sampling techniques using experiments with different 

functions and dimensions. 

4. 1. One dimensional Uniformity: 

Uniformity plays a vital role while approximating a distribution by finite samples. One dimensional and 

multi-dimensional uniformity properties are very important for solving large scale stochastic optimization 

problem. It has been shown that LHS-HSS and LHS has good one-dimensional uniformity (Wang et al., 

2004). In Figure 12 we present the one-dimensional uniformity of Sobol and LHS-Sobol. It can be seen that 

LHS-SOBOL has good one-dimensional uniformity than Sobol or Monte Carlo. 



27 
 

 

Figure 12. Comparing one dimensional uniformity for LHS-Sobol, Sobol and MCS 

4. 2. Multi-Dimensional Uniformity: 

Figure 13 qualitatively shows sample set generated for two dimension using different sampling techniques 

and are plotted in unit square. From this it is clear that Quasi Monte Carlo sampling have better uniformity 

compared to Monte Carlo and Latin Hypercube Sampling for multi-dimensional approximation. LHS uses 

random pairing once each samples are generated with one-dimensional uniformity. Due to such random 

paring clusters of samples are observed in certain areas preventing uniformity. 
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Figure 13. Two dimensional 100 sample points using different sampling techniques 
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4. 3. Higher Dimensional Correlations 

It has been found that the quasi Monte Carlo methods like Hammersley and Sobol show spurious 

correlations when there no correlations exist.  For HSS this occurs as early as dimension 15-16 as 

shown in Figure 14. However, these correlations start having effects after dimension 40 as number of 

correlations starts increasing as shown in Figure 14. In SOBOL the correlations start appearing as early 

as dimension 45 (Figure 15) and as the number of dimensions increase above 100, the effect 

correlations start having effect on convergence. 

 

  

Figure 14. 1000 sample points for dimension 15, 16 and for dimension 45, 46 using HSS 
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Figure 15. 1000 sample points for dimension 45-46, 54-55, 74-75 and 105-106 using Sobol sampling 

LHS-Sobol breaks these correlations shown in Sobol (Figure 16) and hence likely to have better 

convergence above 100 uncertain variables. 

 
 

 

Figure 16. 1000 sample points for dimension 54-55 and 74-75 using LHS-Sobol  
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4.4 Efficiency and Convergence of various Sampling Techniques 

In this section we have compared the performance of various sampling technique namely LHS-Sobol, LHS-

HSS, Sobol, Hammersley, Latin Hypercube Sampling and Monte Carlo sampling by propagating samples 

generated through these sampling techniques for a set of i-input uncertain variables (Xi) through test 

functions (Y = f (X1, X2, X3, …., Xi). The four test functions are given below. We start with 20 uncertain 

variables all uniformly distributed between 0 and 1. We increase number dimensions to 40, 100, 250 and 

lastly 800 uncertain variables. The convergence of each sampling technique to the true values of mean, 

variance, and 0.95 fractile representing the tail end of output distribution is noted. 

Test function: 

1. Linear additive function   𝑌 =  ∑ 𝑋𝑖𝑖  

2. Multiplicative function   𝑌 =  ∏ 𝑋𝑖𝑖  

3. Quadratic Function   𝑌 =  ∑ 𝑋𝑖
2

𝑖  

4. Exponential Function  𝑌 =  ∑ [𝑋𝑖 ∗ exp 𝑋𝑖+1]𝑖  

True values of these quantities are determined by propagating large sample set (50,000 samples) of 

Monte Carlo sampling. Once the true values are determined we set error limit and the performance of 

different sampling technique is compared by calculating the number of samples required to converge 

within these error limits. The error limits for mean is 0.1% up to dimension 250 and for 800 dimension it 

is 0.01%. We have increased the precision as for higher dimension the changes is observed beyond third 

decimal figure. For variance we have taken 1% error limit for 20 and 40 dimension, 2% error limit for 100 

and 250 dimension and 5% error limit for 800 dimension. It is very difficult to converge variance so as the 

dimension increase we have increased the error bounds. For 0.95 fractile we have 1% error limit for 

dimensions 100, 250 and 800, for 20 and 40 dimension the values eventually converge to zero so we set 

error limit of 0.001. Given that there are 4 functions and number of dimensions varying from 20 to 800, 6 

sampling techniques, and values of mean, variance, and fractile, this results in 216000 experiments. We 

considered the graphs of exponential function (Function 4) to illustrate the results first.  
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Figure 17. Mean Vs. sample size for exponential function with 20 input variables for different sampling techniques 

  

0.84

0.842

0.844

0.846

0.848

0.85

0.852

0.854

0.856

0.858

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ea

n

Samples

Function 4 - Mean Convergence (20 Input variables)

Monte Carlo LHS Hammersley LHS HSS SOBOL LHS SOBOL



33 
 

 

Figure 18. Variance Vs. sample size for exponential function with 20 input variables for different sampling techniques 

 

 

Figure 19. Zoomed in figure 18 
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Figure 20. Fractile Vs. sample size for exponential function with 20 input variables for different sampling techniques 

 

 

Figure 21. Zoomed in figure 20 
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Figure 17 to Figure 21 show mean, variance and 0.95 fractile convergence results for various sampling 

techniques respectively, for 20 uncertain variables. Figure 17 shows that the mean obtained by MCS 

shows fluctuations beyond the error band even for 10000 samples showing MCS not converged for 10000 

samples. HSS and SOBOL did much better than MCS but LHS-HSS converged faster than any other 

sampling.  

Variance convergence shown in Figure 18 reflects that, LHS techniques variance converges to completely 

different value which is out of the error band. HSS requires relatively large samples compared to LHS-HSS, 

SOBOL and LHS-SOBOL. 

After looking at 0.95 fractile convergence as in Figure 20, we can see that LHS lies way outside the error 

band. Figure 21 shows that MCS and LHS-Sobol did not converge within the error limits for as large as 

10000 samples. LHS-HSS and HSS have converged but slightly outside error limit whereas Sobol converged 

within the error limit for for 0.95 fractile. 

Collectively looking at Mean, variance and fractile convergence it is observed that LHS-HSS performs 

consistently better compared to other sampling techniques for 20 uncertain variables.  

 



36 
 

 

Figure 22. Mean Vs. sample size for exponential function with 40 input variables for different sampling techniques 

 

Figure 23. Variance Vs. sample size for exponential function with 40 input parameters for different sampling techniques 
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Figure 24. Fractile Vs. sample size for exponential function with 40 input variables for different sampling techniques 

 

 

Figure 25. Zoomed in figure 24 
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Figure 22 to Figure 25 show results for 40 dimension problem for mean, variance and 0.95 fractile 

convergence respectively. Mean convergence results shown in Figure 22 show that MCS sampling 

technique does not converge within the error limits even for 10000 sample points. HSS and Sobol 

converge within the error limit with larger sample set but have lower efficiency as compared to LHS-HSS. 

LHS-Sobol converges within the error limit with less samples compared to HSS and Sobol, but LHS-HSS 

performs even better than LHS-Sobol.  

Variance convergence results (Figure 23) show that LHS and MCS have not converged even with 10000 

samples. HSS converges within the error limit with lesser number of samples compared to Sobol. LHS-

Sobol eventually converge but it requires more samples compared to HSS, Sobol and LHS-Sobol.  

Figure 24 shows 0.95 fractile results. From Figure 23, it is evident that LHS again has converged to different 

values which lies outside the error limits. From Figure 25, MCS and LHS-Sobol are fluctuating outside the 

error limits even with as high as 10000 samples. Sobol converges within the error limit but is has poor 

efficiency compared to HSS and LHS-HSS which has fastest convergence.  

 

Looking at 40 dimension problem and mean, variance and 0.95 fractile convergence collectively, LHS-HSS 

shows consistent good results.  
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Figure 26. Mean Vs. sample size for exponential function with 100 input variables for different sampling techniques 

 

 

Figure 27. Zoomed in figure 26 
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Figure 28. Variance Vs. sample size for exponential function with 100 input variables for different sampling techniques 

 

 

 

Figure 29. Zoomed in figure 28 
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Figure 30. Fractile Vs. sample size for exponential function with 100 input variables for different sampling techniques 
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Figure 31. Mean Vs. sample size for exponential function with 250 input variables for different sampling techniques 

 

 

Figure 32. Zoomed in figure 31 
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Figure 33. Variance Vs. sample size for exponential function with 250 input variables for different sampling techniques 

 

Figure 34. Fractile Vs. sample size for exponential function with 250 input variables for different sampling techniques 
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Figure 31 to Figure 34 show the results for mean, variance and 0.95 fractile for 250 dimensional problem 

respectively. We can see that the three top sampling techniques for 250 dimensions are SOBOL, LHS, and 

LHS-SOBOL. LHS-SOBOL is the best of all the techniques. 
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Figure 35. Mean Vs. sample size for exponential function with 800 input variables for different sampling techniques 

 

 

Figure 36. Zoomed in figure 35 
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Figure 37. Variance Vs. sample size for exponential function with 800 input variables for different sampling techniques 

 

 

Figure 38. Zoomed in figure 37
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Figure 39. Fractile Vs. sample size for exponential function with 800 input variables for different sampling techniques 

 

 

Figure 40. Zoomed in figure 39 
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Figure 35 to Figure 39 provide the results for mean, variance and 0.95 fractile for 800 dimensional problem 

respectively. From the results of mean shown in Figure 35, it is clearly evident that both HSS and LHS-HSS 

fail to converge within the error limits even for 10000 samples. From Figure 36 show that MCS also need 

large number of samples to converge. LHS shows as good results as LHS-Sobol for mean convergence. 

Sobol converges within the error limit with but it requires more number of samples compared to LHS-

Sobol. From Figure 37 for variance, HSS and LHS-HSS fail to converge. LHS and LHS-SOBOL shows promising 

results. However, looking at the fractile results shown in Figure 39, LHS converges to wrong value but LHS-

SOBOL and SOBOL perform the best. Therefore, considering all three mean, variance, and fractile 

evaluations for the 800 dimensional problem LHS-SOBOL performs the best.  

The graphs shown so far showed only one function, in order to consider all test functions we plotted 

results of convergence for various test functions in Figure 41 to Figure 49.  The convergence criterion used 

is number of samples required to converge within the error limit of the true value. The x-axis denotes the 

dimension of the problem and y axis the convergence criteria using various sampling technique. Figure 

41, Figure 42 and Figure 43 show that for function 1, HSS and LHS-HSS show better performance than 

other sampling techniques up to 40 dimensions, LHS-HSS being the best. SOBOL, LHS-HSS, and LHS-SOBOL 

are better for 100 dimensions, LHS-SOBOL being the best at and beyond 100 dimensions. Similar results 

are seen for other functions (Figure 44-Figure 49).  

In summary, HSS and LHS-HSS are good up to 40 uncertain variables but LHS-HSS outperforms HSS. SOBOL, 

LHS-HSS, and LHS-SOBOL are better from 40 to 100 uncertain variables and LHS-SOBOL is best after 100 

uncertain variables. 
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Figure 41. Function 1 mean convergence results 

 

Figure 42. Function 1 variance convergence results 

 

Figure 43. Function 1 - 0.95 fractile convergence results 
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Figure 44. Function 3 mean convergence results 

 

Figure 45. Function 3 variance convergence results 

 

Figure 46. Function 3 - 0.95 fractile convergence results 
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Figure 47. Function 4 mean convergence results 

 

Figure 48. Function 4 variance convergence results 

 

Figure 49. Function 4 - 0.95 fractile convergence results 
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Chapter 5. SUMMARY & FUTURE WORK 

Real world stochastic optimization/ programming problems involve large scale uncertainties.  This thesis 

presents a novel sampling technique for large scale uncertainties. It also analyzed various sampling 

techniques by conducting experiments with small to large dimensional functions. 

5. 1. Summary 

It has been found that Monte Carlo sampling technique is not efficient sampling technique because it lacks 

the uniformity property to cover the k-dimensional distribution. Latin Hypercube Sampling based on 

division of each variable distribution into equi-probable strata is one dimensionally uniform and performs 

better than Monte Carlo. Quasi Monte Carlo techniques like Hammersley and Sobol Sampling are multi-

dimensionally uniform but lack one-dimensional uniformity like LHS. New sampling techniques like LHS-

HSS and the proposed sampling technique LHS-SOBOL maintain uniformity in one-dimension as well as 

multi-dimension. These six sampling techniques are analyzed in this thesis using 216000 experiments 

using various functions. Convergence of mean, variance, and 95-th percentile (0.95 fractile) are used as 

criteria for measurement of efficiency of these sampling techniques. It has been found that HSS provides 

good convergence up to 40 uncertain variables. Sobol provides good convergence above 40 up to 100 

variables and LHS-HSS up to 250 variables.  LHS-Sobol provides good convergence above 40 up to 800 

variables. We recommend that LHS-HSS can be used for problems up to 100 variables and LHS-Sobol 

should be used for problems beyond 100 variables.  

5. 2. Future Work 

In this work, we studied the sampling techniques up to 800 parameters. In this future, we plan to do more 

experiments with higher dimensions to see the applicability of this novel sampling technique. 
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Large scale uncertainties abound in financial literature. The new sampling technique proposed in this work 

will be very useful for solving problems in financial literature. Therefore, in the future we will try to 

compare this new sampling with existing methods in finance. 

The large scale supply chain problem presented in the chapter 1 was solved using Chance constrained 

programming. We plan to solve the same problem using the generalized stochastic optimization 

framework (Figure 1) presented in Chapter 1 with our new proposed sampling technique.  It is expected 

that this generalized approach will provide better results. 
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