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ABSTRACT 

Water is essential to life, and knowing the consumption trends in water is paramount if we aspire 

to become more sustainable. The traditional statistical tools such as mean and standard deviation, 

can easily fail to capture these trends. For this work, the limits of these traditional statistical tools 

are first highlighted and a new network approach then developed and applied to better 

understand trends in water consumption. Data from the United States Geological Survey (USGS) 

for the years 1985, 1990, 1995 and 2005 were used in gallons of water per-capita per day for all 

US counties. Essentially, a network is formed between counties when they have consumption 

values within a certain range, ± ξ, of one another. A giant cluster rapidly emerges, containing 

more than 80% of the nodes for a ξ of 1%. The counties with the highest number of connections 

are associated with the mode of distribution, and multi-modal patterns are observed for earlier 

years. Moreover, the average shortest-path length can be seen as the spread of a distribution. The 

diameter and density of the networks are also used. Overall, beyond a possible process of 

homogenization, water consumption patterns do not seem to have evolved much from 1985 to 

2005, and no spatial correlation was detected. While the methodology is yet to be formalized, it 

manages to give meaningful insights while addressing the limitations of traditional statistical 

analyses. 
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1. INTRODUCTION 

 

The critical nature of water is well known. Indeed, water is the most essential element for any 

living organism and the presence of water is the most distinctive feature of Earth over the other 

planets of the universe. In fact, no living organism can survive without water. Although, water 

covers approximately 70.9% of the earth’s surface (Chin 2002), only 1.8% of total water is 

available for use, not only for human beings but also for every living organism that depends on 

freshwater. Of this limited quantity of usable water, less than 0.3% is found in lakes and rivers, 

which is known as surface water, and the rest is found in the form of groundwater and polar ice 

(Gleick 1993). Water is used extensively in almost every sector including domestic, commercial, 

agricultural and industrial. More specifically, the United Sates depends to a great extent on 

surface water and in 2005 surface water withdrawals accounted for 80% of the total water 

withdrawal in the nation (Kenny et al. 2009). With the growth of population and advancement in 

human civilization, water consumption has increased significantly but the amount of water 

available for use remains constant, which makes water one of the most critical resources for 

mankind. As water is the most important element for every sector, thus water-use systems must 

be sustainable and able to support human habitation. Water-use systems include water treatment 

systems, water distribution systems, wastewater collection systems, wastewater treatment 

systems and irrigation systems. For well-functioned water-use systems, water demand should be 

measured precisely.  

 

Thus, understanding how water is being used is paramount. In other words, identifying current 

trends in water consumption is critical if we aspire to live in a more sustainable world. This is 
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further reinforced by the fact that urbanization requires that large quantities of water are 

distributed and disposed of in small areas. 

Traditional statistical indicators (e.g., mean and standard deviation) are commonly used 

to study and compare water consumption trends in different regions. These indicators are also 

used to define and explain density and distribution functions (e.g., probability distribution 

functions and cumulative distribution functions). A distribution is characterized by its location, 

spread and shape, where, the location indicates an expected value, the spread designates a 

measure of variation and finally shape specifies the general shape of a function. Generally, the 

arithmetic mean is used as the location and standard deviation as the spread of the distribution. 

Additionally, these traditional indicators are most often used first-hand in models to predict the 

water demand; such models include the ‘per-capita’ model, ‘extrapolation’ model, 

‘disaggregation’ model, ‘multiple-regression’ model, and the ‘land-use’ model to name a few 

(Chin 2002). 

Numerous studies have been carried out to study water consumption. A quick search of 

the keyword ‘Consumption of Water’ in Scopus revealed 67,287 results. The U.S. Geological 

Survey (USGS), for instance, has published many reports and publications using these standard 

indicators to analyze US water consumption trends (Solley, Pierce, and Perlman 1998; Solley, 

Merk, and Pierce 1988; Solley, Pierce, and Perlman 1993; Hutson 2004; Kenny et al. 2009). 

While these indicators offer many benefits, the results are somewhat limited and they may even 

be biased because of errors and outliers contained in the original datasets or because of issues 

with binning the data in meaningful bins. 

The main objective of this dissertation is to partially remediate this problem by 

developing a novel methodology that can give extra information about water consumption trends 
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and therefore supplement traditional analyses. The proposed methodology takes a network 

approach that links two regions when they share similar water consumption levels. The realm of 

network science has emerged strongly in the past 15 years, and it has been applied in myriad 

fields, including telecommunication networks, computer networks, biological networks, 

cognitive and semantic networks, and social networks (Newman 2010; Easley and Kleinberg 

2010). Search for the term ‘Network Science” in Scopus resulted in 118,066 documents.  In this 

dissertation, adopting this approach can be essentially related to a process of forming 

“friendship” networks (akin to social networks). Social network is one of the most common 

network present around us. Moreover, it is also very complex in nature. Every social actor (e.g., 

individuals or institutions) act as a node and the interactions between them denoted as links. 

Different complex theories such as “Six Degrees of Separation”, “80/20 Rule” are common in 

social network. In the context of this work, linking two entities that share similar consumption 

values is most closely related to the concept of homophily in social networks; homophily 

essentially relates two individuals that share common attributes such as income for instance. 

Once formed, these networks have measurable properties that can be analyzed and offer insights 

about consumption trends. Moreover, this methodology is more effective to determine outliers 

and errors in the data. In this dissertation, a traditional statistical analysis is first performed, 

where I point out its limits, and I then introduce the new network methodology and apply it to 

US water consumption data. 

Several federal agencies exist that offer pertinent data on water resources, whether 

hydrologic and geologic data, or more specifically water consumption data. The major agencies 

include the National Climatic Data Center (NCDC), the U.S Army Corps of Engineering 

(USACE), the U.S Bureau of Reclamation (USBR), the U.S Environmental Protection Agency 
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(USEPA), the U.S Geological Survey(USGS), the U.S National Weather Service (NWS), the U.S 

Natural Resources Conservation Service (NRCS) (Chin 2002). To achieve the objective of this 

dissertation, the data was collected specifically from the U.S. Geological Survey (USGS 2014). 

The data provide estimates of water withdrawals by county, source of water and category of use, 

in five-year intervals. Of relevance, the USGS provides water withdrawals data for public 

supply, domestic, irrigation, livestock, aquaculture, industrial, mining and thermo-electric power. 

The majority of the water is withdrawn for irrigation and thermo-electric power purposes. The 

total withdrawals by category is shown in Figure 1. 

 

Figure 1 Total Water Withdrawals by Category in 2005 (Source: USGS) 

 Among the different categories, I focus specifically on public supply, which is defined as: “… 

water withdrawn by public and private water suppliers that provide water to at least 25 people or 

have a minimum of 15 connections… [and] … is delivered to users for domestic, commercial, 

and industrial purposes, and also is used for public services and system losses” (Kenny et al. 
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2009). Although it only accounts for 11% of the total water withdrawal in the US, it is directly 

linked to personal demand, which is the focus of this research. Moreover, specifically for this 

study, the datasets from 1985-2005 are used for 3,109 US counties (i.e. all counties except the 

counties of Alaska, Hawaii, Puerto Rico and Virgin islands). Moreover, the dataset for the year 

2000 was not used since data for Connecticut, Hawaii, Kentucky, Maine, Massachusetts, Ohio, 

Pennsylvania, Tennessee, Texas , Utah were missing for this year. Finally, to pursue the network 

analysis, the free python library igraph is used extensively (Csardi and Nepusz 2006). 

This dissertation is largely based on the article “Evolution of Public Supply Water 

Withdrawal in the USA: A Network Approach” that is currently in press for publication. 
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2. LITERATURE REVIEW 

 

2.1 Water-Use Systems 

As water is one of the key elements for human habitation, water-use systems should be designed, 

in principal, to meet the demand for water. Water for these systems are collected from lakes, 

rivers and groundwater. Additionally, the rates of withdrawal should be, in principal, sustainable 

due to the limited availability of water as highlighted in the Introduction. The design  of these 

systems are dictated by different demographic, economic, commercial and industrial 

requirements. Some main design facets are given below (Chin 2002). Four main types of water 

systems exist. 

 

Domestic water-supply systems 

Domestic water-supply systems extract water from a source, from which it is treated in a water 

treatment plant and finally distributed to the users. Moreover, these systems are designed in a 

way that the rate of extraction should meet the requirements for sustainability; treatment ensures 

sufficient quality and distribution confirms adequate amount and pressure during the peak hour; 

typically kept at about 240 kPa. 

 

Domestic wastewater collection systems 

Domestic wastewater collection systems are responsible for the collection and treatment of the 

wastewater. The treatment plant ensures that the wastewater is clean, that it can be discharged, 

and that the discharged water is not able to degrade the quality of the receiving water. 
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Irrigation systems 

Water requirement of the crops are met by the rainfall and irrigation. To design the irrigation 

systems, estimation of crops water requirement is necessary. Generally, water is extracted from 

groundwater for irrigation. Additionally, care must be taken to ensure sustainable extraction rates 

similar to domestic water-supply systems. 

 

Hydroelectric power systems 

One of the most important use of water is for hydroelectric power generation. In fact, the largest 

power plant in the world is the Three Gorges hydroelectric plant in China, producing more than 

22.5 MW or 92.2 TWh per year(Bin 2004; Jackson and Sleigh 2000). The open channels used 

for this purpose typically have flows that vary seasonally and that experience frequent drought, 

and dams and reservoirs are commonly built to make it economically feasible. Reservoirs are 

used to store water for continuous supply to human habitation and water released from the 

reservoirs behind the dams is used to generate electricity. 

 

2.2 Estimated Use of Water in the United States 

Numerous U.S federal agencies provide information regarding water in the United-States. In 

their publications, the United-States Geological Survey (USGS) offer significant information on 

water use, available from 1960 onwards for every 5 years. Estimations at the county level are 

available from 1985. From 1960 to 1980, data are available on state level. One of the most 

important variables that affect water consumption is simply population, which essentially drives 

demand. In the US, the population has doubled from 1950 to 2005. Moreover and symptomatic 

of the general trend of the past two centuries, the urban population has increased significantly 
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faster than the rural population. Thus, the spatial patterns of water usage have also changed over 

this time period. The trends in public supply water withdrawal are given in Table 1. The data 

comes from the USGS and the measurements were performed at the source (i.e., water treatment 

plants), which therefore includes any losses due to pipe leakage. 

 

Table 1 Water Consumption Trend in the USA 

Year Population Served in  

Million 

Total withdrawn in Mega-

gallon per day (Mgd) 

Per Capita Usage in gpcd 

1960 136 21,000 151 

1965 153 23,600 155 

1970 165 27,000 166 

1975 175 29,000 168 

1980 186 34,000 183 

1985 200 36,500 183 

1990 210 38,500 184 

1995 225 40,200 179 

2000 242 43,300 179 

2005 258 44,200 171 

 

 From the table 1, we can observe that per capita usage kept increasing from 1960 to 1990, 

reaches to its culmination in 1990, when per capita usage was 184 gpcd. After 1990 per capita 

usage decreased slightly despite the continuous increment of  population and population served. 

 

2.3 Consumption of Water 

As mentioned earlier, the realm of water and water-use is one of the key elements for human 

habitation. Therefore, numerous studies have been performed on water consumption. Searching 

for the keyword “Consumption of Water” in Scopus resulted in 67,324 documents as shown in 
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Figure 2. The exponential growth in the past 45 years clearly highlights the relevance of the topic 

in the scientific community. 

 

 

Figure 2 Number of Documents for “Consumption of Water” by year in Scopus 

 

2.4 Water Sustainability 

Along with water consumption, the later part of the twentieth century also saw the advent of 

sustainability and sustainable development. Among all the natural resources, water is vital 

because of its extensive use and limited availability. Water and sustainability therefore go 

naturally hand in hand. Using Scopus once again, the keyword “water sustainability” returned a 

total of 13,487 documents between 1980 to 2013. The results are shown in Figure 3 that shows a 

similar trend with Figure 2. 
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 Figure 3 Number of Documents for “Water Sustainability” by year in Scopus 
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used statistical indicator. It represents an average point in the data and it is also used as a 

measurement of the central tendency either of a probability distribution or a random distribution. 

The median represents the middle point in a dataset when arranged is ascending order. The 

standard deviation is a measurement of the spread of the distribution. Although the mean is often 
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In general in most datasets, some observations are distant from the general trends. These 

observations are known as outliers. An outlier can be a real observation or may appear due to 

error. Outliers can easily biased the outcome of the traditional analysis. Thus, they are often 

excluded from an analysis. Most commonly, outliers are discarded from a dataset using the 

following equation. 

   








IQRQthangreaterisvaluetheif

IQRQthanlowerisvaluetheif
Outlier

5.1

5.1

3

1
              (1) 

 

where, 
1Q represents the lower quartile, 3Q represents the upper quartile and IQR is the inter 

quartile range. 

 

For a graphical representation of the distribution, histograms are typically used, and it was first 

introduced by Karl Pearson (Pearson 1895). To construct a histogram, the range of the 

distribution, which is the difference between the maxima and minima, is first divided into 

separate bins. Then, the number of observations for each bin is recorded. Finally, the histogram 

is plotted, where the base of each histogram represents the bin width and the height represents 

the frequency for that particular bin. Although histograms are ubiquitous and present in all 

standard statistical textbooks (Scott 1992), finding an appropriate bin width turns out to be a 

major and highly non-trivial challenge. Indeed, and the selection of different bin width can easily 

provide different types of distributions. 

  

Mathematically, histograms involve discrete data. When normalized, these histograms are 

defined as Probability Density Function (PDF): 

  
dx

dx
xx

dx
xP

xfPDF
ii )

22
(

)(:



           (2) 
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where, )
22

(
dx

xx
dx

xP ii   represents the probability of variable x to lie in the given range. 

Thus, a range has to be provided, which refers back to the issue of defining a bin width. Any 

errors are then transferred in the calculation of the cumulative distribution function (CDF), which 

is the integral of the PDF between 0 and 1. Naturally, the provision of different ranges or bin 

widths can generate different PDFs a given dataset.  

 

To further study how these distributions have evolved in the time periods studied, two more 

measures can be calculated: the Gini coefficient and entropy. These two measures have notably 

been used in income distribution studies to estimate how “equally” wealth is distributed in a 

nation. For this study, Gini coefficient and entropy quantify the homogeneity of the data. 

 This conception of equality was first introduced by Vilfredo Pareto. While gardening, 

Pareto found that 80 percent of his peas are produced by 20 percent of peapods. He also carefully 

observed that 80% of the land in Italy is owned by 20% people. This phenomenon is very 

common in all societies and it is known as the Pareto principle or the 80/20 rule (Barabási 2002). 

The Gini coefficient was initially developed in 1912 (Ceriani and Verme 2012). It is defined 

mathematically based on the Lorenz curve (Lorenz 1905), which is the cumulative distribution of 

a probability or in our case the cumulative consumption of water. The Gini coefficient divides 

the area above the Lorenz curve by the area under an equivalent 45° line (i.e., that assumes a 

perfectly uniform distribution and also known as line of equality). The coefficient is therefore 

bounded by 0 and 1; a low value suggest a more equal distribution, with 0 representing perfect 

equality, and the opposite is true for high values. A Typical Lorenz curve and line of equality is 

shown in Figure 4, and the Gini coefficient calculates the ratio of the area A by the area of A + 

B.  
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Figure 4 Typical Lorenz Curve and Line of Equality 

The concept of entropy was first applied by Theil (1967) to measure inequality in a 

distribution. Nonetheless, it originates from statistical mechanics developed by Boltzmann 

(1872) and popularized in information theory by Shannon (2001). Mathematically it is defined 

as: 

                                                  ii xpxpxH log  (3) 

where H(x) is the entropy, and p(xi) is the probability of event xi, Entropy is bounded by 0 and 

infinity. A low value suggests an unequal distribution, while the large value suggests a more 

equal distribution unlike the Gini coefficient. 
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2.6 Network Science 

The foundation of Graph Theory, the “father” of Network Science, was laid by Leonhard 

Euler in 1736 in his famous paper  ‘Seven Bridges of Königsberg’ (Shields 2012). Later, Paul 

Erdős and Alfréd Rényi developed probabilistic theory in Network Science in eight papers on 

random graphs (P. Erdös and Rényi 1959); Paul Erdös and Rényi 1960). Much later in the late 

1990s, Duncan Watts and Steven Strogatz described the small world problem mathematically in 

1998 (Watts and Strogatz 1998), where in a small world network most nodes are accessible 

through a small number of hops or steps.  

  

           Figure 5 Number of Documents for “Network Science” by year in Scopus 

 

At the same time, Albert-László Barabási’s scale free networks (Barabási and Albert 1999) 

popularize the realm of Network Science, where the degree distribution of a scale free network 
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myriad fields. A search in Scopus for the term “Network Science” resulted in 118,066 documents 

from 1938 to 2013 (shown in Figure 5). 

 

2.7 Network Theory and Measures 

A network or a graph G is a collection of vertices/nodes N joined by edges/links L; G={N, L}. 

While two nodes can be connected by multiple links, or nodes can be connected to themselves 

(i.e. self-edge or self-loop), these types of nodes and links are not relevant for this work. 

Moreover, networks can be directed or undirected if a direction is given to a link. A node ni is 

connected to another node nj by a link lij. These connections are typically represented in the form 

of an adjacency matrix Aij where: 





                                             otherwise 0

n and  nodesbetween link  a is  thereif 1 ji

ij

n
A  (4) 

The first measure that can be calculated is the degree k of a node, i.e., its total number of 

connections, defined as 𝑘𝑖 = ∑ 𝐴𝑖𝑗𝑗 . In fact, the study of the distribution of degrees is common in 

network analysis, i.e., how many nodes have a degree 1, 2, 3, and so on. Some networks tend to 

follow normal distributions and they are sometimes called Erdös and Rényi networks (Erdös and 

Rényi 1959, 1960), while others follow power-law distributions and they are sometimes called 

scale-free networks (Barabási and Albert 1999). Analyzing the distribution of a property in 

networks can uncover significant insights about their properties. 

Another important aspect of networks relates to distance. In particular, the concept of 

geodesic distance or shortest path-length between two nodes is relevant for us. As the name 

suggests, this is essentially the least number of “hops” or nodes that must be visited to join any 

pair of nodes. It follows that average shortest path length is defined as the average of the shortest 

path lengths of that network. In our context, the average shortest path length is used to analyze 
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the spread of the network, in a similar philosophy as the standard deviation. Also of relevance is 

the largest of all these shortest path lengths, which is called the diameter of a network. For us, 

the diameter is conceptually close to the difference between maxima and minima. In other words, 

the diameter of a network is used to determine the extent of a connected network. 

A popular measure in network theory is related to the concept of connectivity. One 

measure of connectivity is called density. Density ρ basically calculates the number of links in a 

network divided by the total number of potential links in this network, which can be calculated 

as ½ N(N-1). Density therefore takes the form: 

)1(

2




NN

L
  (3) 

A final concept that will be relevant in our study is that of giant cluster. Although it was 

not mentioned previously, all nodes in a network do not have to belong to one single network. 

This is referred to a connected versus disconnected network. Figure 6 shows two such examples, 

where network 6b contains three sub-networks. 

 

Figure 6 Connected versus Disconnected Networks. A) Connected. B) Disconnected 
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Some networks, as they grow, i.e., as they accumulate more links, start to have one sub-

network that tends to absorb most of the links. This particular sub-network is referred to as a 

giant cluster, and this concept will be used directly in the results section. 

 

One of the most commonly studied types of networks are social network, where each actor of a 

society is a node and they are connected to others via their interactions. The main conception of 

social network analysis is to analyze the complete network instead of individual actor and their 

activities (Wasserman and Galaskiewicz 1994). A social network can be very complex in nature 

and it therefore often possesses interesting properties. One of the famous theory about social 

networks is that everyone and everything six or fewer steps away from each other, which is 

known as “Six Degrees of Separation”. It was first introduced by Frigyes Karinthy in 1929 in a 

short story.  

 

Figure 7 Number of Documents for “Social Network” by year in Scopus 
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Though that short story was not that popular but it was the first published version of the popular 

concept of “Six Degrees of Separation”. Later it was rediscovered by Stanley Milgram, who was 

a Professor of Psychology at Harvard. His goal was to find the distance between two random 

people in the USA (Barabási 2002). Numerous studies have also been produced in the realm of 

“Social Network”, Scopus showing 87,797 documents when searching the term (Figure 7). 

 

2.8 Homophily 

Homophily is an interesting and prevalent aspect of social network. A propensity for human 

being to link with similar others is known as homophily. The existence of homophily is observed 

in myriad network studies. Persons in homophilic relationships share common attributes such as 

beliefs, education, and social status (McPherson, Smith-Lovin, and Cook 2001). Homophily 

frequently prompt homogamy, where homogamy is the marriage between people with alike 

individualities. In our case, we apply this concept of homophily to counties that share similar 

water consumption properties. 

 

2.9 Complexity Science 

Complexity science is a relatively new and rapidly developing science discipline. A complex 

system consists of many individual parts that are interacting with one another and that show 

emerging behavior. Using tools and techniques from the realm of “Complexity Science”, a 

cornucopia of new and pertinent information can be extracted. Network Science is often 

associated as a sub-discipline of Complexity Science. Abundant research has been produced in 

this in the last two decade. A search in Scopus for the term “Complexity Science” resulted in 

40,331 documents. The results are shown in Figure 8. 
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Figure 8 Number of Documents for “Complexity Science” by year in Scopus 
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3. METHODOLOGY 

 

In this section, we first highlight the limits of these traditional statistical tools and we then offer a 

new network approach to study water consumption. 

 

3.1 Traditional Analysis 

From the water consumption data collected, the per-capita national average, the per-capita 

arithmetic mean, the per-capita median, and the standard deviation of water consumption in the 

US from 1985 to 2005 are first calculated. A box plot analysis is also produced for all the years. 

The per-capita national average is calculated by dividing the total national consumption by the 

total population served (where we essentially aggregated values from county level data). In 

contrast, the arithmetic mean is calculated by taking the mean of all values given at the county 

level. Since those values are already mean per-capita consumption values per county, they carry 

mean-of-the-mean type errors. Although these types of errors are significant, they are commonly 

overlooked, often because of data availability issue. Both approaches is pursued because 

population is not always given in this type of analysis, which can have serious impacts. The 

median and the standard deviation were also calculated with county level data. Moreover, we 

pursued this analysis for two different scenarios: (1) with and (2) without outliers. 

 

          To get a better sense of the distribution of consumption values, a histogram analysis is also 

performed for different bin-width. Moreover, from a spatial perspective, we can also visualize 

how consumption patterns differ across the US for the four years. To further study how these 

distributions have evolved in the time periods studied, two more measures can be calculated: the 
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Gini coefficient and entropy. To supplement this initial analysis, the next section introduces a 

new approach based on network analysis. 

 

3.2 Formal Methodology 

For this study, the nodes in this network are the counties, and we therefore have 3,109 nodes. 

The counties are then linked if they have similar consumption patterns. In other words, a county i 

is linked to county j when:  

     11 iji  (4) 

where, 𝜇𝑖 is the per-capita consumption of county i, 𝜇𝑗 is the per-capita consumption of county j, 

and ξ is called the cutoff percentage. Different cutoff percentages ξ output different networks, 

with different network properties that can be analyzed accordingly. Naturally, the different 

properties introduced above, along with the cutoffs, can also be compared longitudinally, which 

is relevant here since we have data for the years 1985, 1990, 1995, and 2005. The selection of ξ 

in the network approach may seem analogous to binning but it is not. Conventionally, a bin 

represent a range between two values but the selection of ξ in the network mimics a range around 

each individual value, which is completely different. In fact, this network approach is more 

similar to a machine learning approach where we increase the cutoff ξ and calculate different 

network properties to better understand the nature of the relationship. All ξ are therefore used 

unlike bins.
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4. RESULTS 

 

4.1 Traditional Analysis Result 

Table 2 shows the evolution of the per-capita national average, the per-capita arithmetic mean, 

the per-capita median, and the standard deviation of water consumption in the US from 1985 to 

2005. A box plot of all the four years is provided in Figure 9. All values shown are in gallons 

per-capita per day (gpcd). 

 

Figure 9 Box plot of water consumption of US counties from 1985 to 2005 (without outliers) 
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Table 2 Traditional statistical measures for US public supply water consumption 

Year 
National 

Average 

Arithmetic Mean Median 
Standard 

Deviation Gini 

Coefficient 
Entropy 

with 

outliers 

without 

outliers 

with 

outliers 

without 

outliers 

with 

outliers 

without 

outliers 

1985 183.52 207.01 149.38 145.25 139.97 582.07 69.37 0.43 7.44 

1990 184.76 212.67 157.05 153.39 148.18 580.48 72.24 0.42 7.45 

1995 179.67 217.82 156.26 153.02 147.44 611.90 72.03 0.44 7.4 

2005 171.41 297.30 150.57 147.28 141.60 3871.62 75.80 0.49 6.12 

 

Overall, while the national average has decreased in the time period studied, the mean 

with outliers has significantly increased and the median has stayed relatively constant. The 

difference between the national average and mean suggests that counties with lower population 

may tend to consume more water, which is creating this upward bias. This is also reflected in the 

medians that are lower than both the national average and the mean.  

The means without the outliers are much more closely aligned with the medians. 

Regardless of this phenomenon, the fact these three measures, with and without errors, follow 

different trends is problematic and it gives us little useful information about the actual 

consumption patterns. 

 The standard deviation with outliers stayed relatively constant from 1985 to 1995, and 

then increased significantly. This rapid increase can suggest that the method of collection may 

have changed between 1995 and 2005, or that the data collected contains outliers. The latter 

proposition is slightly more likely since the highest consumption value found for 2005 was 

211,610 gpcd compared to the calculated mean of 297.3 gpcd. Moreover, this type of error is 

also possibly affecting the national average data, which invalidates the trends observed above. 
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The standard deviation without outliers is much more stable, although it seemed to have 

increased slightly over the past 30 years. 

Figure 10 shows the histogram analysis with a bin-width of 20 gpcd. In this figure, a 

constant bin width of 20 gpcd was kept up to 500 gpcd, after which all counties were included in 

one single bin. A histogram analysis is also performed for different bin width for all the four 

years. Detail results are provided in Appendix section (A2,A3,A4,A5). The problem with data-

binning is well known and difficult to solve, despite being presented in all standard statistical 

textbooks (Scott 1992). As observed in Figure 10, some problems occur in the first bin because 

several counties have no public use water consumption (they are mostly rural using private 

wells). 

 

Figure 10 Histogram of Distribution of Water Consumption in US Counties 
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Despite that, the data tend to best fit lognormal distributions. Lognormal distributions are 

in fact skewed towards large values, which partially explains the apparent upward bias noted 

earlier. Indeed, we can see that the averages, means, and medians calculated earlier are 

systemically located right of the mode of the distribution. In fact, identifying the mode (i.e., 

peak) of the distribution here is critical since it is arguably more representative of overall 

patterns than the average. On the figure, we observe a single peak in the 120-140 gpcd bin, 

except for the 1990 data where it may be in the 140-160 gpcd bin. 

 

From a spatial perspective, we can also visualize how consumption patterns differ across the US 

for the four years. Figure 11 shows the same data in a map form, distributed in seven bins for 

clarity. Despite the higher resolution, no trends can be identified except the possible observation 

that counties in Western US may have higher consumption levels. 

 

Figure 11 Spatial Distribution of Water Consumption in US Counties. A) 1985. B) 1990. 

C) 1995. D) 2005 
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           From Table 2, we see that both the Gini coefficient and entropy stay relatively constant 

for the three first years. The Gini coefficient then increases significantly for 2005 and entropy 

follows the opposite trend. While these results would suggest that water consumption is 

becoming more “unequal”, the possible presence of errors in the data prevents us from making 

any formal conclusion 

. 

4.2 Network Analysis Result 

This section discusses the results from the application of the methodology outlined above. 

First, as the cutoff percentage increased, rapid emergence of a giant cluster is observed 

that tends to link all the nodes in the network, indicating that the majority of the value in this data 

are homogenious. This becomes evident in Figure 12A that shows the proportional size of the 

giant cluster (i.e. ratio of number of nodes in the giant cluster to the total number of nodes). 

Indeed, with a cutoff of 1%, more than 80% of the counties are present in one single network. 

The growth of this giant cluster, however, is not gradual. In fact, it undergoes sudden 

jumps that can be refer to as phase transitions. For all years, the size of the giant cluster increases 

sharply for cutoffs ξ between 0.1% and 0.5%, it then increases mildly betweenn 0.5% and 1.0%, 

before finally increaseing steadily after 1.0% (not shown here). During the initial and sharp 

increase, large phase transitions can also be singled out significantly. In 1985, 1990 and 1995, 

this happens between 0.20 and 0.30%. In 2005 two major phase transitions are observed between 

0.20 and 0.25% and between 0.35 and 0.40%. 

Regarding the spread of these distributions, the average shortest-path length and diameter 

of the network are analyzed in Figures 12B and 12C respectively. Essentially, the average 

shortest path-length is conceptually close to the standard deviation since it offers a measure of 

the spread of the distribution, while the diameter is conceptually close to the the difference 
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between maxima and minima. By increasing the cutoffs ξ, similar hasty changes, akin to the 

growth of the giant cluster, are observed for the average path length and the diameter. For 1985, 

1990 and 1995, the average path length reaches its peak at ξ = 0.4% and in 2005 this happens 

when ξ = 0.45%. The diameter of the giant cluster reaches its peak in 1985 at ξ = 0.4%; in 1990 

at ξ = 0.4%; in 1995 at ξ = 0.55%; in 2005 at ξ = 0.45%. Despite these phase transitions, we can 

see that all four years follow similar kinds of patterns. In fact, for a cutoff of 1%, with the 

potential exception of 1995, the average path length of each year remains almost unchanged, 

which suggests that water consumption is neither becoming more equal or less equal. A similar 

observation can be made for the diameter. 

 

                      Figure 12 Change in A) Proportional size of giant cluster B) Average shortest-path          

length C) Diameter D) Density with cutoff percentage 
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Moreover, to emphasize on connectivity in the giant cluster specifically, the densities ρ at 

different cutoffs are calculated and plotted on Figure 12D. From the figure, the giant clusters 

possessess high-density values for low cutoffs, but they drop very rapidly with an increase in ξ. 

This essentially relates to the fact that the giant cluster is becoming bigger. If the giant cluster 

increases by N nodes, the potential number of links increases by N2 (equation 4). Despite that, 

density becomes stable at around ξ = 0.4% for all years, after which it grows slowly. Here again, 

the fact that the same trend is present for all four years suggest that the system, or here water 

consumption trends, have not evolved much over the time period considered. 

 

 Furthermore, the degree distribution of the networks can offer significant insights. Figure 

13 shows the degree distribution of our networks for a cutoff percentage of 1%. As mentioned, 

studying the frequency distribution of degrees is common in the network literature. Here 

however, the degree of a node is simply plotted against its water consumption value. This is 

therefore closer to a scatter plot than of a density function despite appearances. This is relevant 

and particularly insightful in our context. Indeed, nodes with higher degrees can be seen as more 

“representative” since their consumptions are more “similar” than other nodes. This notion 

directly reflects the idea of the mode of a distribution, which is arguably more useful as 

discussed ealier, although no specific data binning procedure is used. 

Overall, these distributions tend to follow lognormal patterns, echoing the results from 

Figure 8, but again no data-binning process was used. Here, more detailed information can be 

observed. Indeed, the results for 1985 and 1990 show two peaks (which partially explains the 

significant difference in the mean, median, and average from Table 1); the peaks are at 123.44 

gpcd (Mower County, Minnesota) and 170.61 gpcd (Lewis County, New York) for 1985, and at 
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143.51 (Wayne County, Illinois) and 160.32 gpcd (Ross County, Ohio) for 1990, with degrees 

around 70. The highest peaks in 1995 and 2005 occur at 136.47 gpcd (Giles County, Virginia) 

and 141.06 gpcd (Harrison County, West Virginia) respectively, with degrees also around 70. 

This multi-modal feature is interesting and may be a manifestation of more complex behaviors 

especially since they seem to converge towards one single peak. More crudely, these results also 

suggest that per-capita water consumption has stayed relatively stable since 1985, but not in a 

uniform fashion. Despite that, it is interesting to note the maximum and mimum values of 

consumption for each year in the giant sub graph.  

 

                             Figure 13 Degrees versus consumption. A) 1985 B)1990 C)1995 D)2005 
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While minima are consistant across the four data sets, maxima vary. For 1985 and 1990, maxima 

are around 400 gpcd; this decreases to about 340 gpcd for 1995 and increases to 440 gpcd for 

2005. This partially explained why the average path length of 1995 was slightly smaller than 

other years as seen above. 

 

Spatially, to visualize the counties that belong to the giant cluster before and after these major 

phase transitions, Figure 14 shows maps of the US for cutoffs ξ of 0.25% and 1% for all four 

years. 

 

Figure 14 Number of counties in the giant cluster for cutoffs of 0.25% (left) 1.0% (right). 

A)1985 B)1990 C)1995 D)2005 



31 
 

 
 

In this figure, counties can either be part of the giant cluster or not. While we intially expected to 

find that counties with similar properties (i.e., climate, population, and so on) would be spatially 

correlated, this does not seem to be the case. Indeed, except for several large counties in Western 

US located in the Rocky Mountains that are mostly rural, no inference can be made. This is 

surprising since water consumption is often thought to be correlated to climate. We also plotted 

water consumption vs. population density for all counties, and no statistical correlation could be 

established here either (not shown). Moreover, this lack of correlation also highlights that water 

consumption may not depend on whether or not a county is located close to a large body of 

water. For instance, many counties in the American Southwest are facing significant challenges, 

with groundwater aquifers reaching seriously low levels, and yet their water use remains part of 

the giant cluster. To further highlight the benefits of this network methodology, counties which 

have similar consumption with Cook County in 2005 are depicted in the Appendix A6. A full 

JavaScript visualization is also presented on the Complex and Sustainable Urban Networks 

(CSUN) Lab’s website at http://csun.uic.edu. 

These findings are discussed in the next section. 

 

 

http://csun.uic.edu/
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5. DISCUSSION 

 

Despite being common and nearly ubiquitous, traditional statistical tools and techniques are 

limited and they can often fail to capture complex phenomena. Without accounting for outliers 

for instance, the Gini coefficient and entropy measures suggested that the water consumption 

trends were becoming less “equal”, while this was a pure artifice of the data set. These errors are 

actually significant and in fact increasingly likely in this era of “Big Data”. Although, this 

problem can be partially remediated by removing outliers, the method often end up sending 

mixed and sometimes contradictory signals about a phenomenon. One of the notable benefits of 

introducing a new network methodology is in fact the ability to select a sub-sample from the 

dataset that automatically identifies outliers. Another benefit is the fact that no binning process is 

required to study the data, which can be highly subjective and further bias the results. 

Furthermore, the topological properties calculated from these networks are not affected by the 

presence of outliers, which corroborates the robustness of the methodology. For comparison 

change in average shortest path length and diameter of the giant cluster is provided in 

supplementary section S7. 

Essentially, this network topology can be compared to the construction of a social 

network, where two counties are linked if they share similar consumption patterns. By increasing 

the value of the cutoff percentage ξ, we rapidly see the emergence of a giant cluster. This is 

essentially part of the process of selection of a sub-sample. The evolution of this giant cluster 

grows through abrupt changes, referred to as “phase transitions”, before becoming more stable 

for ξ between 0.4% and 0.5%.  
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This type of evolution accompanied with phase transitions is not atypical in the social 

network literature. In our case, at 1%, the giant cluster is comprised of more than 80% of all 

counties. This does not suggest that the data for 20% of the counties is erroneous, but it does 

suggest that including these other counties might bias the results and provide wrong insights into 

consumption trends. 

In our context, we find that comparing the degree of a node with its consumption can 

help determine important trends, akin to the mode of a distribution. This notably helped us 

identify the multi-modal feature of the data in earlier years. Despite that, the plots seem to evolve 

towards a single peak, which may suggest a process of “homogenization” in consumption. In 

other words, water consumption may in fact become more “equal” despite the results in Gini 

coefficient and entropy. Because of the transition from multi-modal to uni-modal, no definite 

conclusions can be made from considering the values beyond the fact that the consumption 

values for the highest degrees evolved from 136 gpcd to 141 gpcd between 1995 to 2005. The 

difference between the two values is too small to actually determine whether consumption trends 

have increased or stayed relatively constant. 

Moreover, here, the average path length and diameter can be used as proxies to the 

standard deviation and the difference between maximum and minimum. After stabilizing the 

value of the cutoff ξ, these indicators are fairly close for all years although maxima may have 

had an impact. Indeed, the maximum for 2005 was higher than all other years. Therefore, 

although we witness a single peak in the consumption trends of 2005, we can also witness a 

wider base. Studying the evolution of density, we find that it decreases rapidly before settling for 

a cutoff of 0.4. This result suggests that values for cutoffs smaller than 0.4 may not have a 

meaning, hence the need to test various cutoff percentages for any application. 
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Finally and despite early intuition, no spatial patterns were found in the data by mapping 

the members of the giant clusters at cutoffs ξ of 0.25 and 1%. In particular, climate does not 

seem to have an impact of water consumption. This is therefore an area that requires further 

studying. 
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6. CONCLUSION 

  

The main goal of this dissertation was to analyze the evolution of water consumption in the 

USA. To achieve this goal, I used per-capita daily consumption data at the county scale for the 

years 1985, 1990, 1995, and 2005 from the USGS. Identifying current trends is paramount if we 

aspire to develop effective policies to become more sustainable. Traditional statistics, however, 

can fail to capture these current trends, and we first highlighted the limits of traditional statistics 

by calculating several measures and noting conflicting and biased results, notably due to errors in 

the dataset. 

Having these limitations in mind, I formulated a new approach based on network theory. 

Essentially, two counties were linked if they showed similar consumption values, within plus or 

minus a cutoff percentage ξ. Immidiately, we observed the formation of a giant cluster, 

containing more than 80% of the counties with a cutoff ξ of 1%. We then looked at the evolution 

of the average shortest path length, diameter, and density, and we found that the networks tend to 

stabilize after a cutoff ξ of 0.4%. More importantly, we found that these measures do not evolved 

significantly over the 20 year periods. Looking at the degree of each nodes versus consumption, 

we made a parallel between the nodes with the highest degrees and the mode of a distribution. 

We also observed multi-modal features in earlier years, perhaps capturing complex patterns, 

while the data showed uni-modal distributions for 1995 and 2005, with the highest degree node 

showing a consumption of 141 gpcd in 2005.  
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It is, however, impossible at this point to determine whether consumption trends are 

increasing or staying constant, which is in itself a clearer and more consistent message than the 

conflicting patterns found in the traditional analysis. Finally, the spatial analysis of the giant 

cluster showed no relationship between water consumption and geography. In other words, the 

data cannot corroborate a relationship between water consumption and climate for instance. 

Overall, considering the limitations of traditional statistical tools to capture current 

trends, a novel and more robust method is necesary. In this article, we used a network approach 

to study consumption patterns, and while the methodology itself remains to be formalized, and it 

still succeeded in providing meaningful insights. Future work should therefore concentrate on 

formalizing this method and applying it to many other resources, thus effectively analyzing 

current trends so as to eventually develop policies contributing to a more sustainable world. 
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8. APPENDIX 

 

 

A.  Additional Figures 

     A1 Histogram of Distribution of Water Consumption in US Counties in 1985 
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             A2 Histogram of Distribution of Water Consumption in US Counties in 1990 
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A3 Histogram of Distribution of Water Consumption in US Counties in 1995 
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A4 Histogram of Distribution of Water Consumption in US Counties in 2005 
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A5 Counties whose Consumptions are Similar to Cook, Illinois in 2005 
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B. Python Code Used for Computation 

from igraph import* 

import csv 

import time 

from math import sin, cos, sqrt, atan2, radians 

R = 6371.0 

start=time.time() 

File_Name=raw_input("Name of file :") 

out=open(File_Name+".csv",'rb') 

data=csv.reader(out) 

geoid=[] 

consumption=[] 

latitude=[] 

longitude=[] 

 

for row in data: 

    geoid.append(row[0]) 

    consumption.append(eval(row[1])) 

    latitude.append(eval(row[2])) 

    longitude.append(eval(row[3])) 

out.close() 

g=Graph() 

g.add_vertices(len(geoid)) 

g.vs["geoid"]=geoid 

g.vs["consumption"]=consumption 

g.vs["lat"]=latitude 

g.vs["long"]=longitude 

#g.vs["label"]=geoid 

g.es["weight"]=[] 
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summary(g) 

a= float(input("enter the cutoff percentage : ")) 

b= a/100 

i=0 

k=0 

for i in range (0,len(geoid)): 

 for k in range(0,len(geoid)): 

   

  if g.vs["consumption"][i]-

(g.vs["consumption"][i]*b)<=g.vs["consumption"][k]<=g.vs["consumption"][i]+(g.vs["consumption"][i]*

b) and i!=k and g.are_connected(i,k)==False: 

   g.add_edges((i,k)) 

   lat1 = radians(g.vs["lat"][i]) 

   lon1 = radians(g.vs["long"][i]) 

   lat2 = radians(g.vs["lat"][k]) 

   lon2 = radians(g.vs["long"][k]) 

 

   dlon = lon2 - lon1 

   dlat = lat2 - lat1 

   d = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2 

   c = 2 * atan2(sqrt(d), sqrt(1-d)) 

   distance = R * c 

   g[i,k]=distance 

   k+=1 

 

 i+=1 

 if i==int(len(geoid)*.10): 

  print "10 percent completed..." 

  continue 

 if i==int(len(geoid)*.20): 

  print "20 percent completed..." 
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  continue 

 if i==int(len(geoid)*.30): 

  print "30 percent completed..." 

  continue 

 if i==int(len(geoid)*.40): 

  print "40 percent completed..." 

  continue 

 if i==int(len(geoid)*.50): 

  print "50 percent completed..." 

  continue 

 if i==int(len(geoid)*.60): 

  print "60 percent completed..." 

  continue 

 if i==int(len(geoid)*.70): 

  print "70 percent completed..." 

  continue 

 if i==int(len(geoid)*.80): 

  print "80 percent completed..." 

  continue 

 if i==int(len(geoid)*.90): 

  print "90 percent completed..." 

  continue 

 if i==int(len(geoid)*.95): 

  print "95 percent completed..." 

  continue 

#g.simplify(multiple=True,loops=True,combine_edges=None) 

summary(g) 

#print g.strength(2,mode=ALL,loops=False,weights="weight") 

#print g.es["weight"] 

c1=g.clusters(2) 
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c2=g.get_edgelist() 

c3=c1.giant() 

out=open(File_Name+"_{}".format(a)+".csv","wb") 

new=csv.writer(out) 

new.writerow(['Summary']) 

new.writerow(['Vertices', g.vcount()]) 

new.writerow(['Edges', g.ecount()]) 

new.writerow(['Diameter',g.diameter()]) 

new.writerow(['Density',g.density()]) 

new.writerow(['Average path length',g.average_path_length()]) 

if g.is_weighted()== True: 

 new.writerow(["Graph edges are Weighted"]) 

else: 

 new.writerow(["Graph edges are not Weighted"]) 

new.writerow(["geoid","consumption","Degree","Cluster_id","strength"]) 

for i in range(0,len(geoid)): 

 new.writerow([g.vs["geoid"][i],g.vs["consumption"][i],g.degree(i),c1.membership[i],g.strength(i,

mode=ALL,loops=False,weights="weight")]) 

new.writerow(["Cluster_id","Vertex_list","No of vertices"]) 

for i in range (0,len(c1)): 

 new.writerow(["{}".format(i),c1[i],len(c1[i])]) 

 

new.writerow(['Summary_Giant']) 

new.writerow(['Vertices', c3.vcount()]) 

new.writerow(['Edges', c3.ecount()]) 

new.writerow(['Diameter',c3.diameter()]) 

new.writerow(['Density',c3.density()]) 

new.writerow(['Average path length',c3.average_path_length()]) 

#new.writerow(['Maximum_consumption',max(c3.vs["consumption"])]) 

new.writerow(["Edge_list","source_node","Target_node","Type","ID","Label","Weight"]) 



50 
 

 
 

 

for i in range (0,g.ecount()): 

 new.writerow([c2[i],c2[i][0],c2[i][1],"Undirected","{}".format(i),"{}".format(i),g.es["weight"][i]

]) 

new.writerow(["Processing_time ",(time.time()-start)/60,"minutes"]) 

out.close() 

# print g.es["weight"] 

# if g.is_weighted()== True: 

#  print "true" 

# else: 

#  print "false" 

# print g.density() 

virtual_style={} 

virtual_style['vertex_size']=12 

layout=g.layout("circle") 

plot(g,File_Name+"_{}".format(a)+".png",layout=layout,**virtual_style) 

# print "it took",(time.time()-start)/60,'minutes' 
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