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SUMMARY

In the planted partition problem, the n vertices of a random graph are partitioned into k

“clusters,” and edges between vertices in the same cluster and different clusters are included

with constant probability p and q, respectively (where 0 ≤ q < p ≤ 1). In this work, we give an

efficient spectral algorithm that recovers the clusters with high probability, provided that the

sizes of any two clusters are either very close or separated by ≥ Ω(
√
n). The algorithm recovers

the clusters one by one via iterated projection: it constructs the orthogonal projection operator

onto the dominant k-dimensional eigenspace of the random graph’s adjacency matrix, uses it

to recover one of the clusters, then deletes it and recurses on the remaining vertices.

Copyright note: This summary was taken from the abstract of my paper (1). See Appendix B

for copyright information.
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CHAPTER 1

INTRODUCTION

Copyright note: Parts of this introduction were taken from my papers (1; 2). See Appendix B

for copyright information.

A central problem in data science is that of community detection. In this problem, one wishes

to divide the nodes of a network into communities or clusters which are “more connected” than

the network as a whole. For example, we can consider Facebook R© to be a network in which

the nodes are users, and two nodes are “connected” if those two users are friends. Our task is

then to divide the users into groups within which there are more connections (i.e. friendships)

relative to the size of the groups than in the network as a whole. In other words, we wish to

partition the users into groups of high density compared to that of the network overall. See (3)

for a survey of community detection.

A well-studied mathematical model for community detection is the planted partition prob-

lem, first introduced in the 1980s (4; 5; 6). In this model,the n vertices of a random graph are

partitioned into k unknown clusters C1, . . . , Ck, and edges added independently with probabil-

ities p and q between pairs of vertices in the same cluster and different clusters, respectively,

with 0 ≤ q < p ≤ 1 fixed. The problem is then to recover the unknown partition given only this

randomly generated graph—i.e., to determine exactly which pairs of vertices are in the same

cluster and which pairs are in different clusters with probability tending to 1 as n→∞.

1
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In this thesis, which is based on previous work with Shmuel Friedland and Lev Reyzin (1; 2),

we give an efficient spectral algorithm (i.e., based on the eigenvalues and eigenvectors of the

random graph’s adjacency matrix) which accomplishes this when the clusters are all size s =

Ω(
√
n) (Chapter 3), and then we show how to adapt the algorithm to a more general setting in

which the clusters need not be the same size (Chapter 4). Our algorithm is far from the first

algorithm for planted partition, but it compares favorably to other spectral algorithms. To the

best of our knowledge, it is the first algorithm which:

• Is purely spectral. Many other polynomial-time algorithms utilize convex/semidefinite

programming (7; 8; 9).

• Handles the case when all clusters are size s = Θ(
√
n). The well-known spectral algo-

rithms (10; 11; 12) require that k = o(
√
n) and hence do not work when all clusters are

size Θ(
√
n) (though they work in considerably more general settings than ours).

• Has worst-case running time which is polynomial in n. Giesen and Mitsche’s algo-

rithm (13) satisfies both of the previous criteria but has running time exponential in

k.

In addition, our algorithm is very simple and intuitive compared to (11; 12; 13): all of these

randomly bipartition the vertices of the graph before performing a projection, and hence must

merge the parts back together at the end.

Ω(
√
n) cluster size is generally accepted to be the barrier for efficient algorithms for “planted”

problems. There is much evidence of this for the for the simpler problem planted clique (14;
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15; 16), in which only a single large clique is planted in a random graph. Evidence for the diffi-

culty of beating the
√
n barrier dates back to Jerrum (15), who showed a specific Markov chain

approach will fail to find smaller cliques. Feige and Krauthgamer (17) showed that Lovász-

Schrijver SDP relaxations run into the same barrier, while Feldman et al. (18) show that all

“statistical algorithms” also provably fail to efficiently find smaller cliques in a distributional

version of the planted clique problem. These lower bounds all pertain to planted clique, while

there seem to be relatively few such results for planted partition; this is a possible direction for

future work.

1.1 Problem definition

We now formally define the planted partition problem. We refer the reader to Chapter 2

and Appendix A for relevant definitions and notation.

Copyright note: This is taken from (2, Section 2). See Appendix B for copyright information.

Definition 1 (Planted partition/stochastic block model). Let C = {C1, . . . , Ck} be a partition

of the set [n] := {1, . . . , n} into k sets called clusters, with |Ci| =: si for i = 1, . . . , k. For

constants 0 ≤ q < p ≤ 1, we define the planted partition model (also known as the stochastic

block model) to be the probability distribution G(n, C, p, q) of graphs with vertex set [n], with

edges uv (for u 6= v) included independently with probability p if u and v are in the same cluster

in C and probability q otherwise.

See Figure 1. Note that the case k = 1 gives the standard Erdős-Rényi model G(n, p) (19),

and the case k = n gives G(n, q).
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Figure 1. An illustration of the planted partition model. Edges between two vertices in the

same cluster are added with probability p, while edges between two vertices in different

clusters are added with probability q.

Problem 1 (Planted partition). Identify (or recover) the unknown partition C = {C1, . . . , Ck}

(up to a permutation of [k]) given only a random graph Ĝ ∼ G(n, C, p, q). Equivalently, deter-

mine H(C) (see Definition 4) given only Ĝ ∼ G(n, C, p, q).

Observe that, by considering the adjacency matrix of Ĝ, we can think of this as a prob-

lem about random symmetric matrices whose above-diagonal entries are independent Bernoulli

random variables.

1.2 Notation

We will denote as follows the main quantities to consider in this thesis.
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Copyright note: This was taken from (2, Section 4.1). See Appendix B for copyright infor-

mation.

• n – the number of vertices.

• p, q – edge probabilities. Except when stated otherwise, we will assume that p and q are

constant and 0 ≤ q < p ≤ 1.

• C = {C1, . . . , Ck} – a partition of the vertex set [n].

• si := |Ci| for i = 1, . . . , k. We will always assume without loss of generality that s1 ≥

. . . ≥ sk. When s1 = . . . = sk (as will be the case in Chapter 3), we will denote the size

of all clusters by s.

• Ĝ = ([n], Ê) – a random graph obtained from an unknown planted partition distribution

G(n, C, p, q). This is what the cluster identification algorithm receives as input.

• c = c(p, q) – a constant which controls the minimum cluster size. We will assume that

si ≥ c
√
n for all i. Its exact value will be specified later.

• ε = ε(p, q) – a small tolerance depending on p− q. Its exact value will be specified later.

• Â = (âuv)
n
u,v=1 ∈ {0, 1}n×n – the adjacency matrix of Ĝ.

• E[Â] := (E[âuv])
n
u,v=1 – the entrywise expectation of Â.

• A = (auv)
n
u,v=1 := E[Â] + pIn – the expectation of the adjacency matrix Ĝ with ps added

to the diagonal (to make it a rank k). We will often refer to this as the “expectation

matrix” of Ĝ rather than E[Ĝ].
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• B̂ = (b̂uv)
n
u,v=1 := Â+pIn− qJn. We will refer to this as the normalized adjacency matrix

of Ĝ. This will be used in Chapter 4.

• B = (buv)
n
u,v=1 := E[B̂] = A− qJn. This will be used in Chapter 4.

See Appendix A for general notation.

1.3 Main results

The main contribution of this thesis is a polynomial time algorithm for recovering planted

partitions in which all parts are size ≥ Ω(
√
n). In Chapter 3, we present an algorithm for

recovering planted equipartitions, i.e. planted partitions in which all clusters are the same size.

This yields the following result (1, Theorem 1):

Theorem 1. There exists a deterministic, polytime algorithm which, for sufficiently large n,

with probability 1 − o(1) correctly recovers planted partitions in which all clusters are size s ≥

c
√
n, where c = O(1/(p− q)2).

Our algorithm has the following basic structure:

1. Construct the dominant rank-k projector Pk(Â) of the input graph’s adjacency matrix Â

(see Definition 14), where k is the number of clusters.

2. Let v be a certain (carefully chosen) column of Pk(Â), and let W be the indices of the

“large” entries of v. With high probability, W will consist mostly of vertices from a single

cluster Ci.

3. Ci can be recovered exactly with high probability by taking the vertices v with “many”

neighbors in W , i.e., with large |W ∩N(v)|.
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Why does it make sense to use Pk(Â)? If there are k clusters, then Â is a random perturba-

tion of a rank-k matrix (see Section 3.2). Intuitively, while Â itself will usually have full rank,

the projector Pk(Â) reveals its “true” underlying rank-k structure. This allows us to recover

one of the clusters, delete it, and recurse on the remaining vertices.

Chapter 4, we show that, with minor modifications, the same algorithm can be used to

recover planted partitions in a much more general setting: namely, the setting in which the

clusters are partitioned into “superclusters,” where clusters in the same supercluster are ap-

proximately the same size, while clusters in different superclusters have sizes separated by

≥ Ω(
√
n) (and, as in the equitable case, all clusters are size ≥ Ω(

√
n)). Our main result is the

following:

Theorem 2. There exists a deterministic, polytime algorithm which, for sufficiently large n,

with probability 1− o(1) correctly recovers planted partitions C satisfying the assumptions spec-

ified in Section 4.1.

These theorems are stated more precisely as Theorems 16 and 17, respectively. Finally, in

Chapter 5, we discuss how to extend our results for planted partitions in random graphs to

planted partitions in random symmetric matrices.

1.4 Previous algorithms

As discussed in the introduction, our algorithm is far from the first to provably recover

planted partitions a.s. However, it compares favorably to previously known algorithms (see

Chapter 7). In this section we present some of the best-known algorithms.
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1.4.1 Trivial common neighbors algorithm

If the clusters are large enough, one can recover them by simply looking at the number of

common neighbors each pair of vertices has: pairs of vertices in the same cluster will a.s. have

more neighbors in common that pairs in different clusters, so this can be used to distinguish

between the two cases. For simplicity, we assume that all clusters are size s, but similar

algorithms exist for more general settings.

Algorithm 1 Common neighbors

Given a graph Ĝ = (V̂ , Ê), cluster size s:

1. For each pair of distinct vertices u, v, compute Nu,v := |N(u) ∩N(v)|.

2. For each pair of distinct vertices u, v, identify u and v as being in the same cluster iff.

Nu,v ≥ (s− 2)p2 + (n− s)q2 − 3
2

√
n lnn.

This algorithm was first introduced by Dyer and Frieze in 1989 for the case k = 2 (20) and

was extended to general k by Chen and Xu in 2014 (21, Section 2.4).

Theorem 3. Algorithm 1 a.s. recovers planted partitions in which all parts are size s ≥

Ω
(√

n logn
(p−q)2

)
.
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Proof. Let Nu,v denote the number of common neighbors of u, v ∈ V̂ , i.e. Nu,v := |N(u)∩N(v)|.

For u 6= v, this is the sum of n− 2 independent Bernoulli random variables. Fix t > 0. Observe

that if u and v are in the same cluster, then

E[Nu,v] = (s− 2)p2 + (n− s)q2,

and by Hoeffding’s inequality (Theorem 5)

Pr[Nu,v ≤ E[Nu,v]− t] ≤ e−2t2/(n−2).

Similarly, if u and v are in different clusters, then

E[Nu,v] = 2(s− 1)pq + (n− 2s)q2,

and

Pr[Nu,v ≥ E[Nu,v] + t] ≤ e−2t2/(n−2).

If we take a union bound (Theorem 4) over all pairs u, v, with u 6= v, the probability that any

of the events hold is
(
n
2

)
e−2t2/(n−2). We want to make this probility o(1). One can easily verify

that setting t = 3
2

√
n lnn accomplishes this.

Thus, a.s. the following are true:

• Nu,v ≥ (s− 2)p2 + (n− s)q2 − 3
2

√
n lnn for all pairs u, v in the same cluster.
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• Nu,v ≤ 2(s− 1)pq + (n− 2s)q2 + 3
2

√
n lnn for all pairs u, v in different clusters.

Thus, we are able to distinguish between the two cases as long as

(s− 2)p2 + (n− s)q2 − 3

2

√
n lnn > 2(s− 1)pq + (n− 2s)q2 +

3

2

√
n lnn.

That is, we can identify all pairs with at least (s−2)p2 +(n−s)q2− 3
2

√
n lnn common neighbors

as being in the same cluster, and all remaining pairs as being in different clusters (and there

will a.s. be no conflicts). Requiring s ≥ 5
√
n lnn

(p−q)2 is sufficient to satisfy the above inequality.

This simplistic algorithm requires the cluster sizes to be Ω(
√
n log n). More sophisticated

algorithms (7; 8; 9; 11; 12; 1; 2) are able to recover planted partitions in which (at least some

of) the clusters are size Θ(
√
n) using spectral techniques or convex programming. Interestingly,

the algorithms we present in Chapters 3 and 4 of this thesis use a similar Hoeffding argument

as one of the ingredients in their proofs (Lemmas 8 and 17).

1.4.2 Spectral algorithms

Spectral algorithms for planted partition exploit properties of the spectrum (i.e. eigenval-

ues and eigenvectors) of the input graph’s adjacency matrix in order to recover the unknown

partition of the vertices. This technique was pioneered in the 1990s by Alon, Krivelevich,

and Sudakov (14), who used the eigenvector corresponding to the second largest eigenvalue

of the adjacency matrix to solve the simpler problem of planted clique. (In this problem, one

wishes to recover an unknown high-density subset instead of an unknown high-density partition;

see (15; 16).) Their algorithm works roughly as follows:
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1. Construct the adjacency matrix Â of the input graph Ĝ, and let v be an eigenvector

corresponding to its second largest eigenvalue.

2. Let W be the indices of the “large” entries of v (in absolute value). With high probability,

W will consist mostly of vertices from the planted clique.

3. The planted clique can be recovered exactly with high probability by taking the vertices

v with “many” neighbors in W , i.e., with large |W ∩N(v)|. This follows from a Hoeffding

argument similar to the one in Section 1.4.1.

This elegant algorithm correctly recovers planted cliques of size ≥ Ω(
√
n). This demonstrates

the power of spectral algorithms, as previously known degree based algorithms required the size

of the clique to be ≥ Ω(
√
n log n) (16).

For planted partitions with k clusters, rather than using a single eigenvector of Â, many

spectral algorithms, including those we will present in Chapters 3 and 4, use the dominant

rank-k projector Pk(Â) (Definition 14). This matrix encodes the eigenvalues corresponding to

the k largest eigenvalues of Â and thus captures Â’s “true” rank-k structure.

The most famous spectral algorithm for planted partition is due to McSherry (11, Sec-

tion 1.2). Like our algorithms, McSherry’s is based on projection matrices. The following is an

outline of the algorithm, omitting the details:

1. Randomly partition the columns of Â into two submatrices Â1 and Â2. This is done to

enforce some regularity among the columns.
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2. Compute the combinatorial projections P̂1 and P̂2 of Â1 and Â2. See (11, Section 3.2) for

details. Let p̂v be the column of P̂1 or P̂2 corresponding to vertex v.

3. For each vertex v, mark all vertices u for which ||p̂u − p̂v||2 ≤ τ as being in the same

cluster as v, where τ > 0 is some small tolerance.

If p and q are constant, this algorithm a.s. recovers the planted partition as long as

(p− q)2(si + sj) ≥ Ω

(
k

(
n

sk
+ log n

))

for any i 6= j (11, Theorem 4). In particular, when all cluster sizes are within a constant factor

of each other, i.e. si = Θ(n/k) for all i, this implies that the cluster sizes must all be ≥ Ω(n2/3).

Thus, our algorithm beats McSherry’s in this regime, as it can handle the case when all clusters

are size Θ(
√
n).

On the other hand, MchSherry’s algorithm has the advantage that it is faster. The most

expensive operation in both algorithms is computing the appropriate projection operators, as

this is done via SVD. Whereas our algorithm computes a projector in each of its k iterations,

McSherry’s only computes two projectors (P̂1 and P̂2) and is thus asymptotically faster than

ours by a factor of k ≤
√
n. See Section 3.1.1 for analysis of our algorithm’s running time.

Our algorithm, which we introduced in Seciton 1.3 and will present in detail in Chapters 3

and 4, can be thought of as a “spiritual successor” to the original spectral algorithm of Alon et

al. (14), as its overall structure is very similar: it uses the “large” entries Pk(Â) to construct a

set W consisting mostly of vertices from a single cluster, recovers the cluster exactly by taking
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the vertices with the most neighbors in W , then deletes the recovered cluster and recurses on

the remaining vertices.

See Chapter 7 for comparison of our algorithm to McSherry’s and other well-known spectral

algorithms.

1.4.3 Optimization-based algorithms

Suppose we get a random graph Ĝ from an unknown planted partition distribution G(n, C, p, q).

The best we could possibly do to recover the unknown partition C would be to choose the par-

tition Ĉ which maximizes the likelihood of producing Ĝ as a random sample. In other words,

Ĉ = arg max
P

Pr
F̂∼G(n,P,p,q)

[F̂ = Ĝ], (1.1)

where the maximum is taken over all k-partitions P of [n]. This technique is known as max-

imum likelihood estimation, and is a common technique in statistics; see e.g. (22, Chapter 6).

Observe that by identifying each partition P with its incidence matrix H(P) (Definition 4),

(Equation 1.1) is equivalent to determining

Ĥ = arg max
H

Pr
F̂∼G(n,H,p,q)

[F̂ = Ĝ], (1.2)

where the maximum is taken over all k-partition matrices H (Definition 5). Note that we are

abusing notation by writing H in place of its associated partition P in G(n,H, p, q).

Unfortunately, solving the above optimization problem is impractical: it would take expo-

nential time to try all possible partition matrices H, and no polynomial-time method is known if
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P 6= NP. However, one way around this is to instead solve a convex relaxation of (Equation 1.2)

and prove that, under certain conditions, the result is actually equal to the true maximizer.

That is, instead of optimizing over all k-partition matrices H, we optimize over an appropriately

chosen convex set containing all k-partition matrices. In general general convex optimization

is hard, but in certain special cases it can be done efficiently; see (23) for an introduction to

this topic.

This is the approach used by Chen et al. in (8; 21). Rather than optimizing over all k-

partition matrices H ∈ {0, 1}n×n, they optimize over the set of all H = (huv)
n
u,v=1 such that

1. ||H||∗ ≤ n, where || · ||∗ denotes the trace norm of a matrix, i.e. the sum of its singular

values (24, Theorem 5.6.42),

2.
∑

u,v huv =
∑k

i=1 s
2
i ,

3. 0 ≤ huv ≤ 1 for all u, v.

It is easy to verify that this is indeed a convex set. Essentially, the first constraint ensures

that the solution will have low rank (i.e., correct number of clusters), while the second ensures

it will have the correct number of 1s. The authors prove that if si ≥ Ω(
√
n), then w.h.p. the

solution to this convex optimization problem will, in fact, be the incidence matrix of the planted

partition!
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This is similar to the approach used by Oymak and Hassibi (9). They observe that the

adjacency matrix Â of Ĝ ∼ G(n, C, p, q) can be decomposed as the sum of a sparse matrix and

a low-rank matrix. This leads to the convex optimization problem

min
L,S∈Rn×n

||L||∗ + λ||S||1

s.t. L ∈ [0, 1]n×n

L+ S = Â,

where λ is an appropriately chosen constant. They show that w.h.p. the low-rank component

L of the optimal solution will be the incidence matrix of the planted partition, as long as all

custer sizes are ≥ Ω(
√
n). As in (8; 21), minimizing ||L||∗ forces L to have low rank, and now

minimizing ||S||1 forces S to be sparse.



CHAPTER 2

BACKGROUND

In this chapter we go over the mathematical background necessary to understand our results.

We assume familiarity with basic graph theory, linear algebra, and probability theory. See,

e.g., (25; 24; 22) for background. We review the most important concepts in the sections below.

For notation, see Appendix A.

2.1 Set partitions

We begin by introducing the notion of a set partition:

Definition 2 (Partition). A partition of a finite set S is collection P of disjoint, nonempty

subsets of S whose union is S. The subsets in this collection are known as the parts of the

partition. If |P| = k, then P is called a k-partition of S.

An equipartition is a set partition in which all parts are approximately the same size.

Definition 3 (Equipartition). An equitable partition or equipartition of a finite set S is a

partition P of S in which the sizes of any two parts differ by at most 1. If |P| = k, then P is

called a k-equipartition of S.

We can identify a partition of a set S with its incidence matrix as follows:

Definition 4 (Incidence matrix). Let P be a partition of a set S of size n. The incidence

matrix of P, denoted H(P), is the n×n 0-1 matrix with rows and columns indexed by S whose

(u, v)th entry is 1 iff. u and v are in the same part of P.

16
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Definition 5 (Partition matrix). An n× n matrix is a partition matrix iff. it is the incidence

matrix of a partition of [n]. It is called a k-partition matrix iff. it is the incidence matrix of a

k-partition matrix of [n].

Observe that each n × n partition matrix is the incidence matrix of a unique partition of

[n]; thus there is a 1-1 correspondence between partitions and partition matrices over an index

set S. In addition:

Observation 1. The following are equivalent:

1. H is an n× n k-partition matrix.

2. H is the adjacency matrix of a graph G consisting of k disjoint cliques with a loop on

each vertex.

3. H is permutation similar to diag(Jn1 , . . . , Jnk
) for some integers n1 ≥ . . . ≥ nk ≥ 1 such

that n1 + . . . + nk = n; i.e., H can be obtained by permuting the rows and columns of a

block diagonal matrix with k ones matrices as the diagonal blocks.

2.2 Probability theory

As this thesis concerns random graphs and matrices, we will need to make use of some basic

results from probability theory. See (22) for introduction and (26) for a more formal treatment

of the topic. In addition, (27) is a wonderful introduction to the probabilistic method—the use

of probability theory in other areas of mathematics, particularly combinatorics.

We will occasionally use a “union bound” to upper bound the probability that any of a

collection of events occur with the sum of their individual probabilities:
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Theorem 4 (Union bound). Let A1, . . . , An be events in a probability space. Then

Pr

[
n⋃
i=1

Ai

]
≤

n∑
i=1

Pr[Ai],

and

Pr

[
n⋂
i=1

Ai

]
≥ 1−

n∑
i=1

Āi.

The second inequality follows by applying the first inequality to the complements ofA1, . . . , An.

The following well-known result shows that the sum of independent random variables is

tightly concentrated about its mean (28):

Theorem 5 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables with

support contained in [0, 1]. Define Sn := X1 + . . .+Xn. Then for any t > 0,

Pr[Sn ≥ E[Sn] + t] ≤ e−2t2/n,

Pr[Sn ≤ E[Sn]− t] ≤ e−2t2/n,

and

Pr[|Sn − E[Sn]| ≥ t] ≤ 2e−2t2/n.

Note that the last inequality follows from the first two inequalities by taking a union bound.

We will also frequently use the term “almost surely” to describe events that occur with high

probability.
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Definition 6 (Almost surely/with high probability). Let (Ωn,An, Pn) be a probability space

and An ∈ An an event in the probability space, for n = 1, 2, . . .. Then An occurs almost surely

(a.s.) or with high probability (w.h.p.) if limn→∞ Pr[An] = 1.

In our case, (Ωn,An, Pn) will be a probability space of random graphs on n vertices or

random n× n matrices, and we will be concerned with events whose probabilities tend to 1 as

the number of vertices or rows increases. Observe that An occurs a.s. iff. Pr[Ān]→ 0 as n→∞,

where Ān denotes the complement of event An.

2.3 Graph theory

We assume the reader is familiar with basic graph theory. See (25) for a survey of the topic.

For our purposes, we will assume all graphs are simple, undirected graphs with no loops.

2.3.1 Adjacency matrix

The field of spectral graph theory studies various matrices associated with graphs and the

properties of their eigenvalues and eigenvectors. These matrices are introduced in (25) and

covered in depth in (29). The most common of these matrices, and the one on which our planted

partition algorithm and its analysis are based, is the adjacency matrix (25, Section 1.1):

Definition 7 (Adjacency matrix). Let G = (V,E) be a simple graph on n vertices. The

adjacency matrix of G is a symmetric n× n matrix A(G) = (auv)uv∈V with rows and columns

indexed by V , where

auv :=

 1 if uv ∈ E

0 else
,

for u, v ∈ V .
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2.3.2 Random graphs

The planted partition problem is largely studied because of its applications in network

science, but at its core it is a problem about random graphs. A random graph is simply a graph

drawn from some probability distribution over a set of graphs. The most common such model

is the Erdős-Rényi random graph first introduced in (19):

Definition 8 (Erdős-Rényi random graph). The Erdős-Rényi random graph distribution is the

probability distribution G(n, p) of graphs with vertex set [n], with edges uv (for u 6= v) included

independently with probability p. We will denote a graph drawn from this distribution as G(n, p).

We usually treat p = p(n) as a function of n. If p = Ω(1) we call G(n, p) as dense random

graph, and if p = o(1) we call G(n, p) sparse. Erdős-Rényi random graphs are known to have

a number of beautiful and surprising properties a.s. For example, if p is fixed then the size

of the largest clique in G(n, p) is Θ(log n) a.s., and if p = Ω(log n/n) then G(n, p) connected

a.s. See (25, Chapter 13) for an introduction to the Erdős-Rényi model and (30) for a formal,

in-depth analysis of this an other models.

The planted partition model (or stochastic block model) introduced in Section 1.1 is a

generalization of this model. Instead of including all edges with probability p, we include edges

between pairs of vertices in the same cluster with probability p and edges between pairs of

vertices in different clusters with probability q. See Definition 1.
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2.4 Linear algebra

As the adjacency matrix of a simple graph is a symmetric, 0-1 matrix, we will largely be

concerned with real symmetric matrices. Here we review some results that we will use in our

analysis. See, e.g., (24; 31) for reference.

When we refer to the spectrum of a matrix, we are referring to its eigenvalues and corre-

sponding eigenvectors. The following result characterizes the spectrum of a symmetric matrix:

Theorem 6 (Spectral theorem). Let A ∈ Rn×n. Then A is symmetric iff. all of the following

are true:

1. A has real eigenvalues λ1(A) ≥ . . . ≥ λn(A).

2. Rn has an orthonormal basis u1, . . . ,un of eigenvalues A, where Aui = λi(A)ui for i =

1, . . . , n.

3. A can be diagonalized as A = UΛ(A)U>, where Λ(A) := diag(λ1(A), . . . , λn(A)) and

U = (u1 . . .un).

See (24, Theorem 4.1.5). Note that the above diagonalization is the same as the singu-

lar value decomposition (SVD) of A, and that analogous results hold for complex Hermitian

matrices.

We will also occasionally encounter normal matrices.

Definition 9 (Normal matrix). A matrix A ∈ Cn×n is normal if A∗A = AA∗.

We will make frequent use of the `2- and Frobenius matrix norms. We review their definitions

and some basic results:
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Definition 10 (`p-norm). Let F ∈ {R,C} and p > 0. Let v = (v1, . . . , vn)> ∈ Fn and A ∈ Fn×n.

The `p-norms of v and A are defined as

||v||p :=

(
n∑
i=1

|vi|p
)1/p

,

and

||A||p := sup
x∈Fn\0

||Ax||p
||x||p

.

Theorem 7. Let A ∈ Cn×n be normal. Then ||A||2 =
n

max
i=1
|λi(A)|.

For this reason, the `2-norm of a matrix is referred to as its spectral norm. For general

matrices, the `2-norm is equal to the largest singular value. Note that in particular the above

theorem holds for real symmetric matrices.

Definition 11 (Frobenius norm). Let A = (aij)
n
i,j=1 ∈ Cn×n. The Frobenius norm of A is

defined as

||A||F :=

√√√√ n∑
i,j=1

|aij |2.

This is simply the `2-norm of A if we treat A as a vector in Cn2
. The next theorem follows

immediately from the fact that ||A||F =
√

tr(A∗A):

Theorem 8. Let A ∈ Cn×n be Hermitian. Then

||A||2F =
n∑
i=1

λi(A)2 ≤ rk(A) · ||A||22.
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Again, note that in particular this theorem holds for real symmetric matrices.

Finally, the following theorem shows that if a matrix is perturbed by adding a matrix with

small norm, then the eigenvalues of the perturbed matrix aren’t too far off from those of the

original matrix:

Theorem 9 (Weyl’s inequalities). Let X, ∆ ∈ Cn×n be Hermitian matrices and Y = X + ∆.

Then

λi(X) + λn(∆) ≤ λi(Y ) ≤ λi(X) + λ1(∆)

for i = 1, . . . , n.

See, e.g., (31, Theorem 4.4.6) for proof. Observe that by Theorem 7 this implies that

|λi(X)− λi(Y )| ≤ ||∆||2

for i = 1, . . . , n.

2.4.1 Dominant eigenspaces and projectors

The notion of dominant eigenspaces and projectors will be extremely important to our

planted partition algorithm and its analysis.

Definition 12 (Dominant eigenspace). Let A ∈ Rn×n be a symmetric matrix such that λk(A) >

λk+1(A) for some k < n. The dominant k-dimensional eigenspace of A is the subspace of Rn

spanned by eigenvectors corresponding to λ1(A), . . . , λk(A).

Note that as long as λk(A) > λk+1(A) this subspace is unique and has dimension k.
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Definition 13 (Orthogonal projection operator). Let U be a subset of Rn with orthonormal

basis u1, . . . ,ur. The orthogonal projection operator or orthogonal projector onto U is

PU :=

k∑
i=1

uiu
>
i .

This matrix, when applied to a vector v, gives the projection of v onto U, i.e., the “closest”

vector in U to v. More precisely,

PUv = arg min
u∈U

||u− v||2.

The most important step in our planted partition algorithm is constructing the dominant

rank-k projector of the input graph’s adjacency matrix. This is defined as follows:

Definition 14 (Dominant rank-k projector). Let A ∈ Rn×n be a symmetric matrix λk(A) >

λk+1(A) for some k < n. The dominant rank-k projector of A, denoted Pk(A), is defined as

PU, where U is the subspace of Rn spanned by eigenvectors of A corresponding to its k largest

eigenvalues.

2.4.2 The Cauchy Integral Formula for projectors

Copyright note: This section is taken from my previous work in (1, Section 6.1) and (2,

Section 7). See Appendix B for copyright information.
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Recall that an analytic function f : C → C can be extended to a function of matrices via

its Taylor series (31):

f(Z) := f(a)In +
f ′(a)

1!
(Z − aIn) +

f ′′(a)

2!
(Z − aIn)2 + . . . .

In particular, if Z is diagonalizable as Z = PDP−1 (as is any symmetric matrix), then f(Z) =

Pf(D)P−1, where f(D) is evaluated by simply applying f to each diagonal entry.

Accordingly, we also get an extension of the Cauchy integral formula to matrices (31, The-

orem 3.4.2):

Theorem 10 (Cauchy integral formula for matrices). Let Ω be an open set in C. Assume that

Γ is a finite set of disjoint simple, closed curves such that Γ is the boundary of an open set

D, and Γ ∪ D ⊂ Ω. Assume that Z ∈ Cn×n and λi(Z) ∈ D for i = 1, . . . , n. Then for any

f : C→ C analytic on Ω

f(Z) =
1

2πi

∫
Γ
(zIn − Z)−1f(z)dz.

We get the following as a corollary (31, Problem 3.4.10):

Theorem 11 (Cauchy integral formula for projectors). Let X ∈ Rn×n be a real symmetric

matrix. Let γ ⊂ C be a simple, closed curve which is the boundary of an open set D such that

λ1(X), . . . , λr(X) ∈ D and λr+1(X), . . . , λn(X) /∈ D ∪ γ. Then

Pr(X) =
1

2πi

∫
γ
(zIn −X)−1dz.
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Proof. Let γ′ be a simple, closed curve which is the boundary of an open set D′ such that

λr+1(X), . . . , λn(X) ∈ D′ and D ∪ γ and D′ ∪ γ′ are separated. Let Γ = {γ, γ′}. Let Ω1,Ω2 be

disjoint open sets containing D ∪ γ and D′ ∪ γ′, respectively (this is possible since the latter

are separated), and let Ω = Ω1 ∪ Ω2.

Now define f to be a function analytic on Ω such that f ≡ 1 on Ω1 and f ≡ 0 on Ω2. Note

that by the identity theorem (32, Corollary 4.9) f cannot be analytic on any connected, open

set that intersects both Ω1 and Ω2. Observe that Pr(X) = f(X); thus, by Theorem 10 we have

Pr(X) = f(X) =
1

2πi

(∫
γ
(zIn −X)−1f(z) +

∫
γ′

(zIn −X)−1f(z)

)
.

The theorem follows, as f(z) = 1 for z ∈ γ and f(z) = 0 for z ∈ γ′.

We can apply this theorem to bound the difference in norm of two projection operators if

their largest eigenvalues are both “well-separated” from each other’s smallest eigenvalues:

Theorem 12. Let X,Y ∈ Rn×n be symmetric. Suppose that the largest r eigenvalues of both

X and Y are ≥ β, and the remaining n− r eigenvalues of both X and Y are ≤ α, where α < β.

Then

||Pr(X)− Pr(Y )||2 ≤
||X − Y ||2
β − α

(2.1)

and

||Pr(X)− Pr(Y )||F ≤
√

2r||X − Y ||2
β − α

. (2.2)
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C
γ2M

M

M

x0α β

λn, . . . , λr+1 λr, . . . , λ1

Figure 2. The largest r eigenvalues of both X (◦) and Y (•) are in the interior of γ, while the

remaining n− r eigenvalues are in the exterior.

Proof. We will prove (Equation 2.1) using Theorem 11. Define γ to be the boundary of a

2M × 2M square in the complex plane with upper and lower sides are on the lines y = ±M ,

left side on the line x = x0, and right side on the line x = x0 + 2M , where x0 := (α+ β)/2 and

we will let M → ∞. Thus, the interior of γ contains exactly the largest r eigenvalues of both

X and Y (see Figure 2).

Applying the Cauchy integral formula,

Pr(X) =
1

2πi

∫
γ
(zIn −X)−1dz,

Pr(Y ) =
1

2πi

∫
γ
(zIn − Y )−1dz.
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Hence

Pr(X)− Pr(Y ) =
1

2πi

∫
γ
(zIn −X)−1

(
(zIn − Y )− (zIn −X)

)
(zIn − Y )−1dz

=
1

2πi

∫
γ
(zIn −X)−1

(
X − Y

)
(zIn − Y )−1dz,

and so we get

‖Pr(X)− Pr(Y )‖2 ≤ 1

2π

∫
γ
‖(zIn −X)−1

(
X − Y

)
(zIn − Y )−1‖2|dz| (2.3)

≤ 1

2π

∫
γ
‖(zIn −X)−1‖2‖X − Y ‖2‖(zIn − Y )−1‖2|dz|.

Observe that for each z ∈ C the matrices zIn −X and zIn − Y are normal. Hence

‖(zIn −X)−1‖2 =
1

minj∈[n] |z − λj(X)|
, ‖(zIn − Y )−1‖2 =

1

minj∈[n] |z − λj(Y )|
.

Let us first estimate the contribution to the integral (Equation 2.3) on the left side of γ. Let

z = x0 + yi, y ∈ R. That is, z lies on the line x = x0. By our assumption about the eigenvalues

of X and Y , all eigenvalues of X and Y are a horizontal distance of at least d := (β − α)/2

from the line x = x0; hence

|z − λj(X)|, |z − λj(Y )| ≥
√
d2 + y2
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for z = x0 + yi. Therefore, the contribution to (Equation 2.3) from the left side of γ is upper

bounded by

1

2π

∫ ∞
−∞

||X − Y ||2
d2 + y2

dy =
||X − Y ||2

2d
=
||X − Y ||2
β − α

.

The contributions from the other sides of γ go to 0 as M → ∞. This completes the proof

of (Equation 2.1).

To show (Equation 2.2), observe that Pr(X) and Pr(Y ) both have rank r, so Pr(X)−Pr(Y )

has rank at most 2r. Hence, Pr(X) − Pr(Y ) has at most 2r nonzero eigenvalues. Recall that

for any real symmetric n× n matrix H

||H||2F =
n∑
i=1

λi(H)2 ≤ rk(H) · ||H||22.

The lemma thus follows from (Equation 2.1):

||Pr(X)− Pr(Y )||2F ≤ 2r||Pr(X)− Pr(Y )||22 ≤
2r||X − Y ||22

(β − α)2
.

2.5 Eigenvalues of random symmetric matrices

Copyright note: This section is taken from my work in (1, Section 4). See Appendix B for

copyright information.

By associating a graph with its adjacency matrix, we may consider a random graph from

a planted partition distribution to be a random symmetric, 0-1 matrix in which the diagonal

entries are 0 and the above-diagonal entries are independent Bernoulli random variables. We
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advertise that our planted partition algorithm is “spectral,” and its input is a random graph, so

we had better be able to say something about the eigenvalues of a random symmetric matrix.

We will show that the eigenvalues of such a random matrix X are close to those of its expectation

matrix E[X]. To do so, we will need the following well-known result of Füredi and Komlós about

the concentration of eigenvalues of random symmetric matrices (33, Theorem 2):

Theorem 13. Let X = [xij ] ∈ Rn×n be a random symmetric matrix where xij are independent

random variables for 1 ≤ i ≤ j ≤ n. Assume that there exists κ, σ > 0 so that the following

conditions hold independent of n:

1. E[xij ] = 0 for 1 ≤ i ≤ j ≤ n.

2. |xij | ≤ κ for 1 ≤ i ≤ j ≤ n.

3. E[x2
ij ] ≤ σ2 for 1 ≤ i ≤ j ≤ n.

Then

n
max
i=1
|λi(X)| ≤ 2σ

√
n+ 50κn

1
3 log n (2.4)

with probability ≥ 1− n−10 for n ≥ n0.

Note that the original paper by Füredi and Komlós assumes that E[x2
ij ] = σ2 for all i, j,

which in turn makes the bound (Equation 2.4) tight. However, if all we need is the upper

bound in (Equation 2.4), as is the case in this thesis, then the proof in (33) goes through with

E[x2
ij ] ≤ σ2. (Actually, it was pointed out by Vu (34) that the proof in (33) contains a minor

mistake, so we follow the corrected proof in (34).)
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Unfortunately, the n−10 failure probability isn’t small enough for our purposes, as we will

need to apply Theorem 13 simultaneously to 2O(
√
n) submatrices of an n × n random matrix

(see Section 3.4.3); however, we may combine it with the following concentration result to get

exponentially small failure probability (35, Theorem 1):

Theorem 14. Let X = [xij ] ∈ Rn×n be a random symmetric matrix where xij are independent

random variables such that |xij | ≤ 1 for 1 ≤ i ≤ j ≤ n. Then for every 1 ≤ j ≤ n the probability

that λj(X) deviates from its median by more than t is at most 4e−t
2/32j2.

Combining Theorems 13 and 14, we get the following:

Theorem 15. Let X be defined as in Theorem 13. Then

n
max
i=1
|λi(X)| ≤ 2(σ + 3κ)

√
n

with probability ≥ 1− e−n for n ≥ n0.

Proof. By Theorem 13,

Pr

[
n

max
i=1
|λi(X)| ≥ 2σ

√
n+ 50κn

1
3 log n

]
<

1

n10
. (2.5)

For n ≥ n0, we have

50n
1
3 log n ≤ 0.2

√
n⇒ 2σ

√
n+ 50κn

1
3 log n ≤ 2(σ + 0.1κ)

√
n.
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Let λ be the median of the random variable λ1(X). We claim that

|λ| ≤ 2(σ + 0.1κ)
√
n. (2.6)

Indeed,

Pr[λ1(X) ≥ 2(σ + 0.1κ)
√
n] ≤ 1

n10
≤ 1

2

by (Equation 2.5). Now consider the random matrix −X. It satisfies the assumptions of

Theorem 13. Therefore we have

Pr[λn(−X) ≥ 2(σ + 0.1κ)
√
n] ≤ 1

n10
≤ 1

2
.

As λn(−X) = −λ1(X), this is the same as Pr[λ1(X) ≤ −2(σ+0.1κ)
√
n]. Hence (Equation 2.6)

follows by definition of median.

We are now ready to apply Theorem 14. Let Y = 1
κX. So now each entry of Y is in [−1, 1].

Clearly the median of the random variable λ1(Y ) is λ/κ. By (Equation 2.6) and Theorem 14

Pr[λ1(X) ≥ 2(σ + 3κ)
√
n] ≤ Pr

[∣∣∣∣λ1(Y )− λ

κ

∣∣∣∣ ≥ 5.8
√
n

]
≤ 4e

−(5.8)2n
32 ≤ 1

2
e−n.

Similarly, we may apply the entire argument above to −X to get

Pr[λ1(−X) ≥ 2(σ + 3κ)
√
n] ≤ 1

2
e−n.
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Noting that maxi |λi(X)| is either λ1(X) or −λn(X) = λ1(−X), we get

Pr

[
n

max
i=1
|λi(X)| ≥ 2(σ + 3κ)

√
n

]
≤ e−n,

as claimed.



CHAPTER 3

ITERATED SPECTRAL RECOVERY OF PLANTED EQUIPARTITIONS

In this chapter we give an efficient spectral algorithm to recover planted equipartitions, i.e.

partitions in which all parts are the same size. For the entirety of this chapter, we will assume

that each cluster Ci has size s := n/k.

Copyright note: This chapter is based on joint work with Shmuel Friedland and Lev Reyzin (1).

See Appendix B for copyright information.

3.1 The cluster identification algorithm

Our main result is that Algorithm 2 below recovers clusters of size c
√
n:

Theorem 16. For sufficiently large n with probability ≥ 1 − 2−Ω(
√
n), Algorithm 2 correctly

recovers planted partitions in which all clusters are size s ≥ c
√
n, where c := max

{
88
p−q ,

72
(p−q)2

}
.

We refer the reader back to Section 1.2 for a review of notation.

34
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Algorithm 2 Equitable iterated projection

Given a graph Ĝ = (V̂ , Ê) and cluster size s:

1. Let Â be the adjacency matrix of Ĝ, n := |V̂ |, k := n/s.

2. Let Pk(Â) =: (p̂ij)i,j∈V̂ be the orthogonal projection operator onto the subspace of Rn

spanned by eigenvectors corresponding to the largest k eigenvalues of Â.

3. For each column j of Pk(Â), let p̂i1j ≥ . . . ≥ p̂in−1j be the entries other than p̂jj in

nonincreasing order. Let Wj := {j, i1, . . . , is−1}, i.e., the indices of the s − 1 greatest

entries of column j of Pk(Â), along with j itself.

4. Let j∗ be the column j that maximizes ||Pk(Â)1Wj ||2, i.e. j∗ := arg maxj∈V̂ ||Pk(Â)1Wj ||2.

It will be shown that Wj∗ has large intersection with a single cluster Ci ∈ C a.s.

5. Let C be the set of s vertices in Ĝ with the most neighbors in Wj∗ . It will be shown that

C = Ci a.s.

6. Remove C and repeat on Ĝ[V̂ \ C]. Stop when there are < s vertices left.

The overview of Algorithm 2 is as follows. The algorithm gets a random graph Ĝ generated

according to G(n, C, p, q). We first construct the projection operator which projects onto the

subspace of Rn spanned by the eigenvectors corresponding to the largest k eigenvalues of Ĝ’s

adjacency matrix. This, we will argue, gives a fairly good approximation of at least one of
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the clusters, which we can then find and “fix up.” Then we remove the cluster and repeat the

algorithm.

Note that we ensure that Algorithm 2 works in every iteration a.s. by “preprocessing the

randomness”; more precisely, we will show that a.s. certain events occur simultaneously on all

(exponentially many) subgraphs of Ĝ induced on a subset of the clusters, and that as long as

they all hold Algorithm 2 will definitely succeed. See Section 3.4.

3.1.1 Running time

Let us analyze the running time of one iteration of Algorithm 2. Steps 2 and 4 are the most

costly.

• In step 2, computing Pk(Â) can be done via classical subspace iteration methods in

time O(n2k) (36; 37). Alternatively, one may utilize one of several recent randomized

algorithms (37; 38; 39; 40) which allow this to be done faster, e.g. in time O(n2 log k) (38).

• Step 4 can be done näıvely in O(n3) time. However, this can be improved to O(n2k) by

instead multiplying Pk(Â)Ĥ and taking the norm of each column, where Ĥ is defined as

in Section 3.4.1. From step 2 we get an orthonormal decomposition of Pk(Â), i.e. an n×k

orthogonal matrix U such that UU> = Pk(Â). Thus, we can compute Pk(Â)Ĥ = UU>Ĥ

in O(n2k) time by first multiplying a k × n matrix and an n × n matrix, then an n × k

matrix and a k × n matrix.

In theory, this step can be sped up further using a fast matrix multiplication algorithm (41;

42), but such algorithms are rarely used in practice due to numerical instability and large

constants hidden in their asymptotic running times.



37

Thus, each iteration of Algorithm 2 can be done in O(n2k) time. Since there are k iterations,

the overall running time is O(n2k2). In particular, as k ≤
√
n, this is O(n3).

3.2 Spectral properties of the adjacency matrix

The goal of this section is to prove a separation of the first k eigenvalues of both A and Â

from the remaining n− k. We begin by examining the eigenvalues of A.

Without loss of generality, we may assume C1 = {1, . . . , s}, C2 = {s + 1, . . . , 2s}, . . . , Ck =

{n− s+ 1, . . . , n}. Then the expectation matrix A looks like:

A =



p . . . p q . . . q q . . . q

...
. . .

...
...

. . .
... · · ·

...
. . .

...

p . . . p q . . . q q . . . q

q . . . q p . . . p q . . . q

...
. . .

...
...

. . .
... · · ·

...
. . .

...

q . . . q p . . . p q . . . q

...
...

. . .
...

q . . . q q . . . q p . . . p

...
. . .

...
...

. . .
... · · ·

...
. . .

...

q . . . q q . . . q p . . . p



= qJn + (p− q) diag(Js, . . . , Js),

where Jm is the m×m ones matrix. Thus, A contains all the information about the unknown

partition C.

The following lemma is easily verified:



38

Lemma 1. The eigenvalues of A are

λ1(A) = (p− q)s+ qn,

λi(A) = (p− q)s for i = 2, . . . , k,

λi(A) = 0 for i = k + 1, . . . , n.

So we see that the smallest positive eigenvalue is proportional to the size of the clusters.

We continue by bounding the spectral norm of Â − A (recall that the spectral norm of a

symmetric matrix X ∈ Rn×n is ||X||2 = maxni=1 |λi(X)|; see (31, Corollary 4.11.13)).

Lemma 2. For sufficiently large n,

‖Â−A‖2 ≤ 8
√
n (3.1)

with probability ≥ 1− e−n.

Proof. Set X = (xij) = Â − E[Â]. Let σij be the standard deviation of xij and let σ ≥

σij for i, j ∈ [n]. Hence, X satisfies the conditions of Theorem 15, with

κ = 1, σ = max(
√
p(1− p),

√
q(1− q)) ≤ 1

2
.

Thus,

||X||2 =
n

max
i=1
|λi(X)| ≤ 2(σ + 3κ)

√
n ≤ 7

√
n (3.2)
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with probability ≥ 1− e−n by Theorem 15.

Observe that

Â−A = Â− E[Â]− pIn = X − pIn

⇒

‖Â−A‖2 = ‖X − pIn‖2 = ‖X‖2 + ‖pIn‖2 ≤ ‖X‖2 + p.

From (Equation 3.2) we deduce that

||Â−A||2 ≤ 7
√
n+ p ≤ 8

√
n

with probability > 1− e−n for n > n0.

We can now use the lemma above to characterize the eigenvalues of Â (and A) as follows:

Lemma 3. Assume Â satisfies (Equation 3.1) and s ≥ c
√
n. Then the largest k eigenvalues of

A and Â are in the interval [c′
√
n, n] and all other eigenvalues of A and Â are in the interval

[−8
√
n, 8
√
n], where

c′ := (p− q)c− 8. (3.3)

Proof. Applying Weyl’s inequalities (Theorem 9) to Lemma 2 yields

|λi(Â)− λi(A)| ≤ max(|λn(A− Â)|, |λ1(A− Â)|) = ||A− Â||2 ≤ 8
√
n
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for i = 1, . . . , n. Thus, by Lemma 1 we get

λi(Â) ≥ (p− q)s− 8
√
n

≥ ((p− q)c− 8)
√
n for i = 1, . . . , k,

|λi(Â)| ≤ 8
√
n for i = k + 1, . . . , n.

The lemma thus follows by definition of c′.

Note that the upper bound of n follows from the fact that for any X = (xij) ∈ Rn×n we

have λ1(X) ≤ maxi
∑

j |xij |.

Lemma 3 shows that a.s. we have a separation between the largest k eigenvalues and the

remaining eigenvalues of both A and Â, provided that c′ > 8, or equivalently

c >
16

p− q
. (3.4)

We will assume this is the case from now on.

Note that the argument above shows that, in fact, λ1(Â) ≥ qn + (p − q)s − 8
√
n = Θ(n),

while λ2(Â), . . . , λk(Â) ≤ (p−q)s+8
√
n = O(s), but this information will not be needed hence.

Figure 3 illustrates the distribution of eigenvalues of A and Â.
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−8
√
n 0 8

√
n nc′

√
n

λ1λ2, . . . , λkλk+1, . . . , λn

Figure 3. The distribution of eigenvalues of A (◦) and Â (•).

3.3 Deviation between the projectors

In this section, we will prove bounds on ‖Pk(Â) − Pk(A)‖2 and ‖Pk(Â) − Pk(A)‖F , where

‖ · ‖2 and ‖ · ‖F are the spectral and the Frobenius matrix norms, respectively. The following

lemma characterizes Pk(A):

Lemma 4.

Pk(A) =
1

s

k∑
i=1

1Ci1
>
Ci

=
1

s
H, (3.5)

where H := H(C) is the incidence matrix of C.

Proof. Let ui := 1√
s
1Ci ∈ Rn for i = 1, . . . , k, and let U be the subspace of Rn spanned

by eigenvectors corresponding to λ1(A), . . . , λk(A). It is easily verified that u1, . . . ,uk are an

orthonormal basis for U. Thus, letting PU denote the orthogonal projection operator onto U,

we get

Pk(A) = PU =

k∑
i=1

uiu
>
i =

1

s

k∑
i=1

1Ci1
>
Ci
.
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If we assume C1 = {1, . . . , s}, C2 = {s + 1, . . . , 2s}, . . . , Ck = {n − s + 1, . . . , n} as in

Section 3.2, then Pk(A) looks like:

Pk(A) =
1

s



1 . . . 1 0 . . . 0 0 . . . 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...

1 . . . 1 0 . . . 0 0 . . . 0

0 . . . 0 1 . . . 1 0 . . . 0

...
. . .

...
...

. . .
... · · ·

...
. . .

...

0 . . . 0 1 . . . 1 0 . . . 0

...
...

. . .
...

0 . . . 0 0 . . . 0 1 . . . 1

...
. . .

...
...

. . .
... · · ·

...
. . .

...

0 . . . 0 0 . . . 0 1 . . . 1



=
1

s
diag(Js, . . . , Js)

when represented in the standard basis for Rn.

So we see that the columns of Pk(A) are essentially the indicator vectors of the unknown

clusters C1, . . . , Ck. The central idea behind Algorithm 2 is that if ||Pk(A)− Pk(Â)||F is suffi-

ciently small, then some column of Pk(Â) is a good approximation to the corresponding column

of Pk(A) and can thus be used to recover the corresponding cluster.

As Pk(Â) and Pk(A) are projection operators, we have

|Pk(Â)‖2 = ‖Pk(A)‖2 = 1 ⇒ ‖Pk(Â)− Pk(A)‖2 ≤ 2.
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In fact, we can make this difference arbitrarily small by increasing the cluster size appropriately,

as shown in the following lemma.

Lemma 5. Assume Â satisfies (Equation 3.1) and s ≥ c
√
n. Then

‖Pk(Â)− Pk(A)‖2 ≤ ε (3.6)

and

‖Pk(Â)− Pk(A)‖F ≤
√

2kε (3.7)

provided that

8

(p− q)c− 16
≤ ε, (3.8)

Proof. By (Equation 3.1) and Lemma 3, we can apply Theorem 12 with

X = A, Y = Â, α = (p− q)c
√
n− 8

√
n, β = 8

√
n

to get

||Pk(A)− Pk(Â)||2 ≤ 8
√
n

(p− q)c
√
n− 16

√
n

=
8

(p− q)c− 16

≤ ε,

We get (Equation 3.7) similarly by applying (Equation 2.2).
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3.4 Proof of algorithm’s corectness

The proof of Algorithm 2’s correctness goes roughly as follows. We will prove using the

spectral analysis in Sections 3.2-3.3 that a.s. there is a column j for which ||Pk(Â)1Wj ||2 is

“large” (Lemma 6). Next, we will show that any for any such j, the set Wj consists mostly of

vertices from a single cluster (Lemma 7). Finally, we show how to recover this cluster exactly

by looking at how many neighbors each vertex has in Wj (Lemmas 8-9).

This argument shows that Algorithm 2 succeeds in iteration 1 a.s. To show that it succeeds

in every iteration, we will apply the same argument to all “cluster subgraphs” of Ĝ—i.e.,

those subgraphs induced on a subset of the clusters. We will prove that all 2k such subgraphs

have certain desirable properties a.s., in which case our algorithm deterministically succeeds in

identifying a cluster. Therefore, when we remove it we are considering another cluster subgraph,

so the algorithm again succeeds, and so on. Thus, we are able to restrict our analysis to these

cluster subgraphs, bounding the number of events that need to occur in order to ensure the

algorithm’s success. This is how we avoid the need to randomly split the graph into parts, as

in (13; 11; 12). The details of this approach, which we call “preprocessing the randomness,”

are presented in Section 3.4.3

3.4.1 Notation

We will use the following notation in our proof:

• H = (hij)
n
i,j=1 := H(C) – the incidence matrix of C (Definition 4), i.e., hij = 1 if i and j

are in the same cluster, 0 else.

• W1, . . . ,Wn as defined as in step 3 of Algorithm 2.
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• Ĥ = (ĥij)
n
i,j=1 := (1W1 , . . . ,1Wn) – the “estimated incidence matrix.” The idea is that at

least one column of Ĥ will be a good approximation of the corresponding column of H,

and we will give a way to find such a column. Note that each column of Ĥ has exactly s

1s and that Ĥ need not be symmetric.

3.4.2 Technical lemmas

The proof of Theorem 16 relies on several additional lemmas. Lemmas 6-9 fit together

roughly as follows:

• Lemma 6 says that a.s. there is a column j for which ||Pk(Â)1Wj ||2 is large.

• Lemma 7 says that for such a column j, Wj consists mostly of vertices from a single

cluster Ci.

• Lemmas 8 and 9 say that a.s. vertices in Ci will have many neighbors in Wj , while vertices

outside Ci will have relatively few neighbors in Wj ; hence, we can recover Ci by taking

the s vertices with the most neighbors in Wj .

Lemma 6. Assume Â satisfies (Equation 3.1). Then there exists a column j such that

||Pk(Â)1Wj ||2 ≥ (1− 8ε2 − ε)
√
s. (3.9)

Proof. Lemma 5 gives

||Pk(A)− Pk(Â)||2F ≤ 2kε2.
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By definition of Ĥ,

tr(H2) = tr(Ĥ>Ĥ) = ns

and, letting Pk(Â) = (p̂ij)
n
i,j=1, for each column j ∈ [n] we have

(Ĥ>Pk(Â))jj =
n∑
i=1

ĥij p̂ij ≥
n∑
i=1

hij p̂ij = (HPk(Â))jj ⇒ tr(Ĥ>Pk(Â)) ≥ tr(HPk(Â)).

Recall also (Equation 3.5) that Pk(A) = 1
sH. Therefore

2kε2 ≥ ||Pk(Â)− Pk(A)||2F

= ‖1

s
H − Pk(Â)‖2F

=
1

s2
tr(H2) + tr(Pk(Â)2)− 2

1

s
tr(HPk(Â))

≥ 1

s2
tr(Ĥ>Ĥ) + tr(Pk(Â)2)− 2

1

s
tr(Ĥ>Pk(Â))

= ‖1

s
Ĥ − Pk(Â)‖2F .

The triangle inequality then yields:

‖1

s
H − 1

s
Ĥ‖F ≤ ‖

1

s
H − Pk(Â)‖F + ‖1

s
Ĥ − Pk(Â)‖F ≤ 2ε

√
2k.

Thus

||H − Ĥ||2F =
n∑
j=1

(
n∑
i=1

(hij − ĥij)2

)
≤ 8kε2s2,
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so by averaging there exists a column j∗ such that

n∑
i=1

(hij∗ − ĥij∗)2 ≤ 1

n
· 8kε2s2 = 8ε2s. (3.10)

Now let Ci∗ be the cluster containing j∗. Define W = Wj∗ , U = W ∩Ci∗ , V = W \U . Thus

we have

Pk(A)1U =
|U |
s

1Ci∗ , Pk(A)1V =
∑
i 6=i∗

ai1Ci , 0 ≤ ai,
∑
i 6=i∗

ai =
s− |U |
s

.

By (Equation 3.10) we have |U | ≥ (1− 8ε2)s, so

||Pk(A)1W ||22 = ||Pk(A)1U ||22 + ||Pk(A)1V ||22 ≥ ||Pk(A)1U ||22 =
|U |2

s
≥ (1− 8ε2)2s.

Finally, note that by Lemma 5 we have ||Pk(Â)−Pk(A)||2 ≤ ε, so the triangle inequality yields

the desired result:

||Pk(Â)1W ||2 ≥ ||Pk(A)1W ||2 − ||(Pk(Â)− Pk(A))1W ||2

≥ ||Pk(A)1W ||2 − ||Pk(Â)− Pk(A)||2||1W ||2

≥ (1− 8ε2)
√
s− ε

√
s.

Lemma 7. Assume Â satisfies (Equation 3.1) and j satisfies (Equation 3.9). Then |Wj∩Ci| ≥

(1− 3ε)s for some i ∈ [k].
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Proof. For W ⊆ [n] define

t(W ) :=
k

max
i=1
|Ci ∩W |, τ := min

W
t(W ),

where the minimum is taken over all W ⊆ [n] such that |W | = s and

||Pk(A)1W ||2 ≥ (1− 8ε2 − 2ε)
√
s. (3.11)

We will argue that

t(Wj) ≥ τ ≥ (1− 3ε)s,

which proves the lemma.

The first inequality is easy: for W = Wj , the triangle inequality yields

||Pk(A)1W ||2 ≥ ||Pk(Â)1W ||2 − ||Pk(A)− Pk(Â)||2||1W ||2

≥ (1− 8ε2 − ε)
√
s− ε

√
s

= (1− 8ε2 − 2ε)
√
s.

So t(Wj) ≥ τ . We just need to show that τ ≥ (1− 3ε)s.

For W ⊆ [n], i ∈ [k], let ti(W ) := |Ci ∩W |. Construct W ⊆ [n] such that

• |W | = s.

• W satisfies (Equation 3.11).
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• t(W ) = τ .

• ||Pk(A)1W ||2 is as large as possible.

We will argue that W must have a special structure: namely, it is split between two clusters.

By relabeling the clusters, we may assume without loss of generality that

τ = t(W ) = t1(W ) ≥ . . . ≥ tk(W ).

We claim that

1. t2(W ) < t1(W ). Suppose to the contrary. Maximize
∑k

i=1 x
2
i , such that x1 = x2 ≥

x3 ≥ . . . ≥ xk ≥ 0 and
∑k

i=1 xi = s. It is easy show that the maximum occurs when

x1 = x2 = s
2 and x3 = . . . = xk = 0. Hence

∑k
i=1 ti(W )2 ≤ s2

2 . By (Equation 3.11) we

have

(1− 8ε2 − 2ε)2s ≤ ||Pk(A)1W ||22 =
1

s

k∑
i=1

ti(W )2 ≤ s

2
,

which is equivalent to (1 − 8ε2 − 2ε) ≤ 1√
2
. Choosing ε sufficiently small (ε ≤ .1 works)

we get a contradiction.

2. t3(W ) = . . . = tk(W ) = 0. Assume this is not the case. Then

τ = t(W ) = t1(W ) > t2(W ) ≥ t3(W ) ≥ 1,

k∑
i=1

ti(W ) = s.
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In particular, C3 ∩W and C2 \W are both nonempty. Now construct W̃ from W by

replacing a vertex from C3 ∩W with one from C2 \W . Clearly |W̃ | = s, and t(W̃ ) = τ

since only t2 increases and t2(W ) < t1(W ) = τ . But

||Pk(A)1W̃ ||
2
2 − ||Pk(A)1W ||22 =

1

s

k∑
i=1

ti(W̃ )2 − 1

s

k∑
i=1

ti(W )2

=
1

s

[
(t2(W ) + 1)2 + (t3(W )− 1)2 − t2(W )2 − t3(W )2

]
=

2

s
(t2(W )− t3(W ) + 1)

> 0,

contradicting the maximality of ||Pk(A)1W ||2.

Thus, W is split between two clusters C1 and C2; i.e., W = U ∪V , where U := W ∩C1 and

V := W ∩ C2. So by (Equation 3.11) we have

(1− 8ε2 − 2ε)2s ≤ ||Pk(A)1W ||22 = ||Pk(A)(1U + 1V )||22 =
|U |2

s
+

(s− |U |)2

s
.

Solving the inequality for |U | yields

τ = max{|U |, |V |} ≥ (1− 3ε)s,

provided ε is small enough (again ε ≤ .1 is sufficient). This completes the proof.
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Lemma 8. Consider cluster Ci and vertex j ∈ [n]. If j ∈ Ci, then

|NĜ(j) ∩ Ci| ≥ (p− ε)s (3.12)

with probability ≥ 1− e−ε2s, and if j /∈ Ci, then

|NĜ(j) ∩ Ci| ≤ (q + ε)s (3.13)

with probability ≥ 1− e−ε2s.

Proof. Let j ∈ Ci. Then E[|N(j)∩Ci|] = p(s−1), so Hoeffding’s inequality (Theorem 5) yields

Pr[|N(j) ∩ Ci| ≤ (p− ε)s] ≤ e−2(εs−p)2/(s−1) ≤ e−ε2s

for n (hence s) sufficiently large. On the other hand, if j /∈ Ci. Then E[|N(j) ∩ Ci|] = qs, so

Pr[|N(j) ∩ Ci| ≥ (q + ε)s] ≤ e−2ε2s ≤ e−ε2s.

Lemma 9. Let W ⊆ [n] such that |W | = s and |W ∩ Ci| ≥ (1− 3ε)s for some i ∈ [k]. Then

a) If j ∈ Ci and j satisfies (Equation 3.12), then |NĜ(j) ∩W | ≥ (p− 4ε)s.

b) If j ∈ [n] \ Ci and j satisfies (Equation 3.13), then |NĜ(j) ∩W | ≤ (q + 4ε)s.
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Proof. Assume j ∈ Ci and j satisfies (Equation 3.12). As |Ci| = s, we have |Ci \W | ≤ 3ε.

Therefore,

|N(j) ∩W | ≥ |N(j) ∩W ∩ Ci|

= |N(j) ∩ Ci| − |(N(j) ∩ Ci) \W |

≥ |N(j) ∩ Ci| − |Ci \W |

≥ (p− ε)s− 3εs

= (p− 4ε)s.

Part b) follows by a similar argument.

This lemma gives us a way to differentiate between vertices j ∈ Ci and vertices j /∈ Ci as

shown in Figure 4, provided

p− 4ε ≥ q + 4ε. (3.14)

3.4.3 Main proof

To prove Theorem 16, we will define certain (exponentially many) events on the probability

space G(n, C, p, q) and show that

1. As long as they all occur, Algorithm 2 definitely succeeds.

2. They all occur simultaneously a.s.

Therefore, Algorithm 2 succeeds a.s.

Before we define the events let us introduce some notation:
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W ∩ Ci

W

j ∈ Ci

≥ (p− 4ε)s

j /∈ Ci

≤ (q + 4ε)s

Figure 4. If W has large overlap with Ci, then a.s. vertices in Ci will have many neighbors in

W , while vertices not in Ci will have relatively few neighbors in W .

• For J ⊆ [k], define ĜJ to be the subgraph of Ĝ induced by clusters Ci, i ∈ J , i.e.

ĜJ := Ĝ
[⋃

i∈J Ci
]
. Then for any fixed J we have

ĜJ ∼ G(|J |s, {Ci : i ∈ J}, p, q). (3.15)

• For an n × n matrix B define BJ to be principal submatrix of B with row and column

indices in the clusters Ci, i ∈ J , i.e. BJ := B
[⋃

i∈J Ci
]
.

We will refer to these subgraphs and submatrices as cluster subgraphs and cluster submatrices.

Now we define two types of events in G(n, C, p, q):

• Spectral events: for J ⊆ [k], let EJ be the event that ||ÂJ −AJ ||2 ≤ 8
√
|J |s.

• Degree events: for 1 ≤ i ≤ k, 1 ≤ j ≤ n, let Di,j be the event that |NĜ(j)∩Ci| ≥ (p− ε)s

if j ∈ Ci, or the event that |NĜ(j) ∩ Ci| ≤ (q + ε)s if j /∈ Ci.
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Thus, we have defined a total of 2k + nk events. Essentially, these are the events that every

ĜJ satisfies (Equation 3.1) and that (Equation 3.12) and (Equation 3.13) are satisfied for all

i ∈ [k], j ∈ [n]. Note that the events are well-defined, as their definitions depend only on the

underlying probability space G(n, C, p, q) and not on the random graph Ĝ sampled from the

space.

Now we are finally ready to prove the theorem:

Proof of Theorem 16. Assume EJ and Di,j hold for all J ⊆ [k], i ∈ [k], j ∈ [n]. We will prove

by induction that Algorithm 2 succeeds in every iteration.

For the base case, take the original graph Ĝ = Ĝ[k] considered in the fist iteration. Since

E[k] is assumed to hold, (Equation 3.1) is satisfied. Thus, by Lemma 6, the column j = j∗

identified in step 4 satisfies (Equation 3.9). Then by Lemma 7 we have |Wj∗ ∩ Ci| ≥ (1− 3ε)s

for some i ∈ [k]. Finally, since Di,j is assumed to hold for all j ∈ [n], step 5 correctly identifies

C = Ci by Lemma 9.

Now assume Algorithm 2 succeeds in the first t iterations, i.e., it correctly identifies a cluster

and removes it in each of these iterations. Then the graph considered in the (t+ 1)st iteration

is a cluster subgraph ĜJ for some J ⊆ [k], |J | = k − t. Note that ĜJ has |J |s = (k − t)s

vertices. Now we apply Lemmas 3-7 with ÂJ instead of Â, AJ instead of A, k − t instead of k,

and (k − t)s instead of n.

Since EJ is assumed to hold, by Lemma 6 the column j = j∗ identified in step 4 of Algo-

rithm 2 satisfies ||Pk−t(ÂJ)1Wj ||2 ≥ (1−8ε2− ε)
√
s. Note that Ĥ and Wj (Sections 3.4.1-3.4.2)

are constructed from ĜJ , not the original graph Ĝ. Now by Lemma 7 we have |Wj∗ ∩ Ci| ≥
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(1− 3ε)s for some i ∈ J . Finally, since Di,j is assumed to hold for all j ∈ [n], step 5 once again

correctly identifies C = Ci by Lemma 9.

We have thus proved that Algorithm 2 succeeds as long as EJ and Di,j hold for all J ⊆

[k], i ∈ [k], j ∈ [n]. Now, for any fixed nonempty J ⊆ [k] we have ĜJ ∼ G(|J |s, {Ci : i ∈ J}, p, q),

so by Lemma 2

Pr[EJ ] ≥ 1− e−|J |s ≥ 1− e−s.

By Lemma 8, for any i, j

Pr[Di,j ] ≥ 1− e−ε2s.

Taking a union bound (Theorem 4) over all J, i, j, the probability that all EJ and Di,j hold is

≥ 1− 2ke−s− nke−ε2s. Therefore, as ε is constant and k ≤
√
n ≤ s, Algorithm 2 succeeds with

probability ≥ 1−
(

2
e

)−√n − n3/2e−
√
n.

Note that we require (Equation 3.14) in order for step 5 of Algorithm 2 to correctly recover

a cluster according to Lemma 9. In addition, the proof of Lemma 7 requires ε ≤ .1. By (Equa-

tion 3.8), we can satisfy both of these conditions by setting c := max
{

88
p−q ,

72
(p−q)2

}
.



CHAPTER 4

EXTENSION TO NON-EQUITABLE PARTITIONS

In this chapter we prove that, with minor modifications, the algorithm for recovering planted

equipartitions can be used to recover more general planted partitions (subject to certain con-

straints).

Copyright note: This chapter is based on previous work in my paper (2), to appear in

an upcoming issue of Linear Algebra and its Applications. See Appendix B for copyright

information.

4.1 The “superclusters” setting

Without much work, one can show that, in fact, Algorithm 2 works when all clusters are

almost the same size—i.e., when (1 − ε)nk ≤ |Ci| ≤ (1 + ε)nk for all i, where ε = O(p − q).

A natural next step is to try to extend it to the case when the clusters are divided into K

“superclusters,” where clusters in the same supercluster have roughly the same size, while

clusters in different superclusters have sizes separated by ≥ c
√
n. This is the setting which we

consider for the remainder of this chapter.

More precisely:

• Let C = {C1, . . . , Ck} be the set of clusters.

56



57

• Let si := |Ci| for i = 1, . . . , k and assume without loss of generality that

s1 ≥ . . . ≥ sk ≥ c
√
n. (4.1)

• Assume C is partitioned into K “superclusters” C = C1 ∪ . . . ∪ CK .

• Let ki := |Ci| be the number of clusters in supercluster Ci, for i = 1, . . . ,K.

• Assume that the sizes of clusters in different superclusters are separated by ≥ c
√
n.

Furthermore, we may assume that the Ci are arranged in decreasing order of their cluster

sizes; i.e.,

min
C∈Ci
|C| ≥ max

C∈Ci+1

|C|+ c
√
n (4.2)

for i = 1, . . . ,K − 1. Thus, by (Equation 4.1) we have

C1 = {C1, . . . , Ck1}, C2 = {Ck1+1, . . . , Ck1+k2}, . . . , CK = {Ck−kK+1, . . . , Ck}. (4.3)

• Within the superclusters the sizes are approximately the same:

max
C∈Ci

|C| ≤ (1 + ε) min
C∈Ci
|C| (4.4)

for i = 1, . . . ,K, where ε = ε(p, q) will be specified later.

• We may sometimes abuse notation and use Ci to refer to the set of indices j such that

Cj ∈ Ci or the set of vertices u ∈
⋃
C∈Ci C.
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We refer the reader back to Section 1.2 for a review of notation.

Our goal is still to recover the individual clusters exactly; we do not care about identifying

which pairs of clusters belong to the same supercluster. Note that we assume that we know p,

q, and k1, . . . , kK a priori. We will discuss how to determine these parameters empirically in

Section 8.1.

A key difference between the equitable and non-equitable cases is that the algorithm and

analysis are based on normalized versions of A and Â:

B̂ = (b̂uv)
n
u,v=1 := Â+ pIn − qJn, B = (buv)

n
u,v=1 := E[B̂] = A− qJn.

This simplifies the spectral analysis considerably, since B is essentially a block diagonal matrix

(after permuting the rows and columns). We will refer to B̂ as the normalized adjacency matrix

of Ĝ. In order to compute B̂, we assume that our algorithm has access to the exact values of p

and q, or at least good approximations. We discuss this further in Section 8.1.2.

4.2 The algorithm

We now show how to adapt Algorithm 2 to the “superclusters” setting presented in Sec-

tion 4.1. The key difference is that we will project onto the eigenspace of B̂ corresponding to its

largest k1 (rather than k) eigenvalues. Because we have an Ω(
√
n) separation between C1 and

C2, this will allow us to recover one of the clusters in C1. When we have recovered all clusters

in C1, we will move on to C2, then C3, and so on.
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Another complication is that, since the clusters are not all the same size, it is no longer

reasonable to assume we know the cluster sizes exactly. However, we will see that the eigenvalues

of B̂ give good approximations to the cluster sizes. More precisely, for u ∈ Ci ∈ Cj , λu(B̂)/(p−q)

is a good approximation to si. In fact, since all clusters in Cj are approximately the same size,

it is a good approximation to the size of any cluster in Cj . This allows us to construct an

approximate cluster of roughly the correct size, as in Step 4 of Algorithm 2.
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Algorithm 3 Non-equitable iterated projection

Given a graph Ĝ = (V̂ , Ê), supercluster sizes k1, . . . , kK :

1. Let Â be the adjacency matrix of Ĝ, n := |V̂ |, B̂ := Â− qJn + pIn.

2. Let Pk1(B̂) =: (p̂uv)u,v∈V̂ be the orthogonal projection operator onto the dominant k1-

dimensional eigenspace of B̂.

3. Let ŝ := (λ1(B̂) + 7
√
n)/(p − q). We will see that this is approximately the size of the

largest cluster.

4. For each column v of Pk1(B̂), let Wv := {u ∈ V̂ : p̂uv ≥ 1
2ŝ}, i.e., the indices of the “large”

entries of column v of Pk1(B̂).

5. Let v∗ be the column v such that |Wv| ≤ (1 + ε)s and ||Pk1(B̂)1Wv ||2 is maximum, i.e.

v∗ := arg maxv:|Wv |≤(1+ε)ŝ ||Pk1(B̂)1Wv ||2. It will be shown that such a v∗ exists and Wv∗

has large intersection with a single cluster Ci ∈ C1 a.s.

6. Let C be the set of vertices in Ĝ with ≥ (p − 10ε)ŝ neighbors in Wv∗ . It will be shown

that C = Ci a.s.

7. Remove C and repeat on Ĝ[V̂ \ C], with supercluster sizes k1 − 1, k2, . . . , kK . If k1 = 1,

instead use k2, . . . , kK as the supercluster sizes (i.e., k2 becomes the “new” k1, k3 the

“new” k2, and so on). Stop when all supercluster sizes are 0.
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The main result of this chapter is the following:

Theorem 17. Let C be an unknown partition of [n] satisfying the conditions in Section 4.1,

with ε = O(p−q) and c = Ω
(

1
(p−q)ε

)
. Then Algorithm 3 recovers C given only Ĝ ∼ G(n, C, p, q)

with probability ≥ 1− 2−Ω(
√
n).

Sections 4.3-4.6 are devoted to proving the correctness of Algorithm 3, mirroring the analysis

in (1). Sections 4.3 and 4.4 develop the linear algebra tools necessary for the proof, Section 4.5

uses these tools to prove that Steps 4-6 of Algorithm 3 successfully recover a single cluster a.s.,

while Section 4.6 shows that the algorithm as a whole successfully recovers all clusters a.s.

4.3 Spectral properties of the normalized adjacency matrix

Observe that by permuting the rows and columns of B we get B ∼ (p−q) diag(Js1 , . . . , Jsk).

Thus, its eigenvalues are trivial to compute:

Lemma 10. B is a rank-k matrix with eigenvalues

λi(B) = (p− q)si for i = 1, . . . , k,

λi(B) = 0 for i = k + 1, . . . , n.

As in the equitable case, we a.s. get a deviation of at most O(
√
n) between the eigenvalues

of B and B̂ by applying a modified version of Füredi and Komlós’s well-known result on the

distribution of eigenvalues of random symmetric matrices (33):
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Lemma 11. With probability ≥ 1− e−n,

||B − B̂||2 ≤ 7
√
n (4.5)

for sufficiently large n.

Proof. Apply Theorem 15 to X := B̂ −B with κ = 1, σ = 1/2 to get

||B − B̂||2 =
n

max
i=1
|λi(X)| ≤ 7

√
n

with probability ≥ 1− e−n.

By Weyl’s inequalities (Theorem 9), we get

|λi(B)− λi(B̂)| ≤ 7
√
n (4.6)

for i = 1, . . . , n; i.e., we can approximate the eigenvalues of B with those of B̂ (and vice versa)

with at most O(
√
n) error. This yields an Ω(

√
n) separation in the eigenvalues of both B and

B̂ between different superclusters; i.e., for i = 1, . . . ,K − 1,

min
Cj∈Ci

min{λj(B), λj(B̂)} ≥ max
Cj∈Ci+1

max{λj(B), λj(B̂)}+ Ω(
√
n),
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λn, . . . , λk+1 λk, . . . , λk−kK+1 λk1+k2 , . . . , λk1+1 λk1 , . . . , λ1. . .

Ω(
√
n) Ω(

√
n) Ω(

√
n)0

Figure 5. The distribution of eigenvalues of B (◦) and B̂ (•)

as shown in Figure 5. However, such a separation between C1 and C2 will suffice, since Al-

gorithm 3 computes Pk1(·) in each iteration on a submatrix of the original B̂ from the first

iteration.

Lemma 12. Assume (Equation 4.5) holds. Then

(p− q)sk1 − 7
√
n ≤ λi(B), λi(B̂) ≤ (p− q)s1 + 7

√
n

for i = 1, . . . , k1, while

λi(B), λi(B̂) ≤ (p− q)sk1+1 + 7
√
n

for i = k1 + 1, . . . , n.

Proof. First we handle B. For i ≤ k1 we have

(p− q)sk1 ≤ λi(B) = (p− q)si ≤ (p− q)s1.
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By definition of k1, we have C1 = {C1, . . . , Ck1}; thus, by (Equation 4.2) we have

λi(B) = (p− q)si ≤ (p− q)sk1+1

for i = k1 + 1, . . . , k, and for i > k we have

λi(B) = 0 ≤ (p− q)sk1+1.

The lemma thus follows by (Equation 4.6)

Thus, the eigenvalues of B and B̂ corresponding to the clusters in C1 are separated from the

remaining eigenvalues by at least ((p− q)c−14)
√
n, since sk1 ≥ sk1+1 + c

√
n by (Equation 4.2).

This quantity is positive as long as

c >
14

p− q
.

4.4 Deviation between the projection operators

We can apply Theorem 12 to B and B̂ to get the following:

Lemma 13. Assume (Equation 4.5) holds. Then we have

||Pk1(B)− Pk1(B̂)||2 ≤ ε (4.7)

and

||Pk1(B)− Pk1(B̂)||F ≤
√

2k1ε, (4.8)
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provided that

c ≥ 14

(p− q)ε
. (4.9)

Proof. By (Equation 4.5) and Lemma 12, we can apply Theorem 12 with

X = B, Y = B̂, α = (p− q)sk1 − 7
√
n, β = (p− q)sk1+1 + 7

√
n

to get

||Pk1(B)− Pk1(B̂)||2 ≤ 7
√
n

(p− q)(sk1 − sk1+1)− 14
√
n

≤ 7
√
n

(p− q)c
√
n− 14

√
n

≤ 14

(p− q)c

≤ ε,

where the second inequality follows from (Equation 4.2). We get (Equation 4.8) similarly by

applying (Equation 2.2).

Thus, we see that c has an inverse dependence on ε and p − q. In order for the proofs in

Section 4.5.2 to go through, we will require that ε = O(p− q). Thus, by (Equation 4.9) c must

be Ω((p− q)−2).

Why is Lemma 13 useful? Observe that

Pk1(B) =

k1∑
i=1

1

si
1Ci1

>
Ci
.
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Thus, the nonzero entries of Pk1(B) tell us precisely which pairs of vertices belong to the same

cluster C ∈ C1. Of course our algorithm does not have access to this matrix, but by Lemma 13

Pk1(B̂) ≈ Pk1(B) a.s., so we should be able to use Pk1(B̂) in place of Pk1(B) to recover the

clusters. Sections 4.5 and 4.6 go over the details of this approach.

4.5 Recovering a single cluster

In this section we show how to use the spectral results in Sections 4.3 and 4.4 to recover a

single cluster. In Section 4.5.1 we will show how to construct a.s. a set W with large intersection

with a single cluster Ci (Steps 4-5 of Algorithm 3), and in Section 4.5.2 we will show how to

recover Ci exactly a.s. by looking at the number of neighbors in W of each vertex (Step 6). In

Section 4.6 we will show how to recover all clusters using this procedure.

4.5.1 Constructing an approximate cluster

We do not assume that our algorithm has access to the exact cluster sizes, so let us begin

by showing that ŝ as defined in Step 3 of Algorithm 3 is a good approximation to the size of

the clusters in C1 (recall that by (4.1) they are all approximately the same size).

Lemma 14. Assume (Equation 4.5) holds and define

ŝ :=
λ1(B̂) + 7

√
n

p− q
.

Then

sk1 ≤ . . . ≤ s1 ≤ ŝ ≤ (1 + 2ε)sk1 . (4.10)
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Proof. By Lemma 10, λ1(B) = (p− q)s1, so by (Equation 4.5) and Weyl’s inequalities we have

(p− q)s1 − 7
√
n ≤ λ1(B̂) ≤ (p− q)s1 + 7

√
n.

Thus, ŝ is an upper bound on s1. Finally, as s1 ≤ (1 + ε)sk1 by equation (Equation 4.4), we

have

ŝ ≤ λ1(B) + 14
√
n

p− q

= s1 +
14
√
n

p− q

= sk1

(
s1

sk1
+

14
√
n

(p− q)sk1

)
≤ sk1

(
1 + ε+

14

(p− q)c

)
≤ (1 + 2ε)sk1 .

Note that the last inequality follows from (Equation 4.9).

We will now show how to use Pk1(B̂) to construct an “approximate cluster,” (a set with small

symmetric difference with one of the clusters) as in Steps 4-5 of Algorithm 3. The following

lemma gives a way to produce such an approximate cluster using only B̂:

Lemma 15. Assume (Equation 4.5) holds. If |W | ≤ (1+ε)ŝ and ||Pk1(B̂)1W ||2 ≥ (1−3ε)
√
sk1,

then |W ∩ Ci| ≥ (1− 6ε)sk1 for some Ci ∈ C1.
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Proof. Observe that by (Equation 4.10) we have

|W | ≤ (1 + ε)(1 + 2ε)sk1 ≤ (1 + 4ε)sk1 ,

provided ε ≤ 1/2. By the triangle inequality,

||Pk1(B)1W ||2 ≥ ||Pk1(B̂)1W ||2 − ||Pk1(B)− Pk1(B̂)||2||1W ||2

≥ (1− 3ε)
√
sk1 − ε

√
(1 + 4ε)sk1

≥ (1− 5ε)
√
sk1 . (4.11)

We will show that in order for this to hold, W must have large intersection with some cluster

in C1.

Fix t such that
(1+4ε)sk1

2 ≤ t ≤ sk1 . Assume by way of contradiction that |W ∩ Ci| ≤ t for

all i ≤ k1. Observe that

||Pk1(B)1W ||22 =

k∑
i=1

1

si
|W ∩ Ci|2. (4.12)

Consider the optimization problem

max

k1∑
i=1

1

si
x2
i

s.t.

k1∑
i=1

xi ≤ (1 + 4ε)sk1 ,

0 ≤ xi ≤ t for i = 1, . . . , k1,
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with variable xi representing |W ∩ Ci|. It is easy to see that the maximum occurs when xk1 =

t, xk1−1 = (1+4ε)sk1− t, xi = 0 for all i < k1−1, and the maximum is t2

sk1
+

((1+4ε)sk1−t)
2

sk−1
. Note

that the value of of xk1−1 is legal by our assumption that t ≥ (1+4ε)sk1
2 . Thus, by (Equation 4.11)

and (Equation 4.12) we have

(1− 5ε)2sk1 ≤ ||Pk1(B)1W ||22 ≤
t2

sk1
+

((1 + 4ε)sk1 − t)2

sk1−1
≤ t2

sk1
+

((1 + 4ε)sk1 − t)2

sk1
.

Solving for t, this implies

t ≥
(

1 + 4ε

2
+

1

2

√
1− 28ε+ 34ε2

)
sk1 .

If we make ε small enough (ε ≤ .01 suffices), then this is > (1 − 6ε)sk1 . Thus, if we pick

t = (1− 6ε)sk1 we have a contradiction.

Therefore, it must be the case that |W ∩ Ci| > (1 − 6ε)sk1 for some i ≤ k1. Note that for

the proof to go through we require 1+4ε
2 ≤ 1− 6ε, which is certainly satisfied if ε ≤ .01.

This lemma shows that we can a.s. produce an approximate cluster by trying all sets W ⊆ V

with |W | ≤ (1 + ε)ŝ and taking the one which maximizes ||Pk1(B̂)1W ||2. However, this would

take Ω(nsk1 ) time, so we need to narrow the search space. The next lemma shows that we can,

in fact, produce such a W by defining

Wv :=

{
u : the (u, v) entry of Pk1(B̂) is ≥ 1

2ŝ

}
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for each v ∈ [n] and taking the Wv which maximizes ||Pk1(B̂)1Wv ||2. This is exactly what is

done in Steps 4-5 of Algorithm 3.

Lemma 16. Assume (Equation 4.5) holds. Then there exists v ∈ [n] such that |Wv| ≤ (1 + ε)ŝ

and ||Pk1(B̂)1Wv ||2 ≥ (1− 3ε)
√
sk1.

Proof. Let H = (huv)
n
u,v=1 := H(C) be the incidence matrix of C1 (Definition 4. This is the

matrix that results from rounding the nonzero entries of Pk1(B) to 1. Now we similarly define

Ĥ = (ĥuv)
n
u,v=1 to be the matrix that results from rounding the “large” entries of Pk1(B̂) to 1:

ĥuv :=

 1 if the (u, v) entry of Pk1(B̂) is ≥ 1

2ŝ

0 else
.

Observe that column v of Ĥ is 1Wv .

Now consider the errors between H and Ĥ. By definition of Ĥ, each error contributes ≥ 1
4ŝ2

to ||Pk1(B)− Pk1(B̂)||2F . Thus, by Lemma 13 we have

1

4ŝ2
·

 # errors in

cols. v ∈ C1

 ≤ ||Pk1(B)− Pk1(B̂)||2F ≤ 2k1ε
2.
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Let n1 := s1 + . . .+ sk1 = the number of vertices (columns) in C1. Averaging over the columns

in C1, there must exist a vertex v ∈ C1 with at most 8k1ε
2ŝ2/n1 errors. Let Ci be the cluster

containing v. Then by (Equation 4.10)

|Wv \ Ci|+ |Ci \Wv| = # errors in column v of Ĥ

≤ 8k1ε
2ŝ2

n1

≤
8k1ε

2(1 + 2ε)2s2
k1

n1

≤ 8n1ε
2(1 + 2ε)2sk1
n1

≤ 9ε2sk1

≤ εsk1 .

Thus,

|Wv ∩ Ci| = si − |Ci \Wv| ≥ si − εsk1 ≥ (1− ε)si,

and

|Wv| = |Wv ∩ Ci|+ |Wv \ Ci| ≤ si + εsk1 ≤ (1 + ε)si ≤ (1 + ε)ŝ.

Finally, we must argue that ||Pk1(B̂)1Wv ||2 ≥ (1− 3ε)
√
sk1 . First,

||Pk1(B)1Wv ||22 =

k1∑
j=1

|Wv ∩ Cj |2

sj

≥ |Wv ∩ Ci|2

si

≥ (1− ε)2si.
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Then by the triangle inequality and (Equation 4.7)

||Pk1(B̂)1Wv ||2 ≥ ||Pk1(B)1Wv ||2 − ||Pk1(B)− Pk1(B̂)||2||1Wv ||2

≥ (1− ε)
√
si − ε

√
|Wv|

≥ (1− ε)
√
si − ε

√
(1 + ε)si

≥ (1− 3ε)
√
si.

This completes the proof.

Lemmas 15 and 16 fit together as follows: Lemma 15 shows that any set W such that

W ≤ (1 + ε)ŝ and ||Pk1(B̂)1W ||2 ≥ (1− 3ε)
√
sk1 must come mostly from a single cluster, while

Lemma 16 shows that there must be such a W among the Wv. Thus, we can a.s. produce an

approximate cluster W by simply taking the Wv such that |Wv| ≤ (1 + ε)ŝ and ||Pk1(B̂)1Wv ||2

is maximum.

Note that this approach does not require any access to s1, . . . , sm. However, we assume

k1, . . . , kK are known so that we know how many eigenvectors to project onto (i.e., k = k1).

4.5.2 Recovering the cluster exactly

Once we have a set W with small symmetric difference with a cluster Ci, we show how to

recover Ci exactly a.s. by looking at the number of neighbors each vertex has in W . First, we

show that vertices in Ci are distinguished from those outside Ci by their number of neighbors

in Ci itself (Lemma 17). Then we show that using W in place of Ci does not throw things off

by too much (Lemma 18).
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Lemma 17. Consider cluster Ci and vertex u ∈ [n]. If u ∈ Ci, then

|NĜ(u) ∩ Ci| ≥ (p− ε)si (4.13)

with probability ≥ 1− e−ε2si, and if u /∈ Ci, then

|NĜ(u) ∩ Ci| ≤ (q + ε)si (4.14)

with probability ≥ 1− e−ε2si.

The proof is essentially the same as that of Lemma 8 and is therefore left as an exercise.

Lemma 18. Assume (Equation 4.5) holds. Suppose |W | ≤ (1 + ε)ŝ and |W ∩Ci| ≥ (1− 6ε)sk1

for some Ci ∈ C1. Then

a) If u ∈ Ci and u satisfies (Equation 4.13), then |NĜ(u) ∩W | ≥ (p− 10ε)ŝ.

b) If u ∈ [n] \ Ci and u satisfies (Equation 4.14), then |NĜ(u) ∩W | ≤ (q + 10ε)ŝ.

Proof. Assume u ∈ Ci and u satisfies (Equation 4.13). We want to lower bound |N(u) ∩W | in

terms of |N(u) ∩ Ci|. The worst case is when as many as possible of u’s neighbors in Ci come

from Ci \W , i.e., when u is adjacent to all vertices in Ci \W . Thus, we have

|N(u) ∩W | ≥ |N(u) ∩ Ci| − |Ci \W | ≥ (p− ε)si − |Ci \W |.
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As |Ci| = si and |W ∩ Ci| ≥ (1− 6ε)sk1 , we have

|Ci \W | ≤ si − (1− 6ε)sk1 ≤ si −
1− 6ε

1 + ε
si ≤ 7εsi.

Therefore,

|N(u) ∩W | ≥ (p− ε)si − 7εsi ≥ (p− 8ε)sk1 .

Therefore, by (Equation 4.10) we have

|N(u) ∩W | ≥ p− 8ε

1 + 2ε
ŝ ≥ (p− 10ε)ŝ.

This proves part a).

For part b), assume u /∈ Ci and u satisfies (Equation 4.14). Now we want to upper bound

|N(u) ∩W | in terms of |N(u) ∩ Ci|. Now the worst case is when u has as many neighbors as

possible in W \ Ci, i.e., when u is adjacent to all vertices in W \ Ci. In this case,

|N(u) ∩W | ≤ |N(u) ∩ Ci|+ |W \ Ci| ≤ (q + ε)si + |W \ Ci|.

As |W | ≤ (1 + ε)ŝ and |W ∩ Ci| ≥ (1− 6ε)sk1 , we have

|W \ Ci| ≤ (1 + ε)ŝ− (1− 6ε)sk1 ≤ (1 + ε)ŝ− 1− 6ε

1 + 2ε
ŝ ≤ 9εŝ.
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W ∩ Ci

W

u ∈ Ci

≥ (p− 10ε)ŝ

u /∈ Ci

≤ (q + 10ε)ŝ

Figure 6. If W has large overlap with Ci, then a.s. vertices in Ci will have many neighbors in

W , while vertices not in Ci will have relatively few neighbors in W .

Therefore,

|N(u) ∩W | ≤ (q + ε)si + 9εŝ ≤ (q + 10ε)ŝ.

This completes the proof of b).

Thus, if we have a set W which has large intersection with Ci, we can use |N(u) ∩W | to

distinguish between u ∈ Ci and u /∈ Ci as shown in Figure 4, provided

p− 10ε > q + 10ε,

or, equivalently,

ε <
p− q

20
.
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Note that we apply Lemma 18 to the Wu, which themselves depend on the random sample

Ĝ, so we cannot simply treat |N(u)∩W | as the sum of |W | independent random variables and

follow a Hoeffding argument as in Lemma 17. This is why we need both Lemmas 17 and 18.

4.6 The “delete and recurse” step

After we have found one cluster, we cannot simply say that Algorithm 3 finds the remaining

clusters by the same argument. Some care has to be taken because the iterations of Algorithm 3

cannot be handled independently: the event that iteration t correctly recovers a cluster certainly

depends on whether or not iterations 1, . . . , t− 1 correctly recovered clusters.

We can get around this by “preprocessing the randomness” as in Section 3.4.3. Essentially,

we apply the analysis in Sections 4.3-4.5 to all 2k cluster submatrices of B̂ (principle subma-

trices induced by a subset of the clusters) and show via a union bound that the overall failure

probability is still small.

Formally, we define the 2k cluster submatrices as

B̂J := B̂

[⋃
i∈J

Ci

]

for J ⊆ [k]. We define cluster submatrices of B analogously Next, we define the following events

on G(n, C, p, q):

• Spectral events: for J ⊆ [k], let EJ be the event that ||BJ − B̂J ||2 ≤ 7
√

dim(BJ) =

7
√∑

i∈J si. These are the events that the eigenvalues of the cluster submatrices are close

to their expectations.
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• Degree events: for 1 ≤ i ≤ k, 1 ≤ u ≤ n, let Di,u be the event that |NĜ(u)∩Ci| ≥ (p−ε)si

if u ∈ Ci, or the event that |NĜ(u) ∩ Ci| ≤ (q + ε)si if u /∈ Ci. These are the events that

each vertex has approximately the expected number of neighbors in each cluster.

Thus, we have defined a total of 2k + nk events. Essentially, these are the events that every

B̂J satisfies (Equation 4.5) and that (Equation 4.13) and (Equation 4.14) are satisfied for all

i ∈ [k], u ∈ [n]. Note that the events are well-defined, as their definitions depend only on the

underlying probability space G(n, C, p, q) and not on the random graph Ĝ sampled from the

space.

These final two lemmas prove that Algorithm 3 succeeds with probability at least

1−
(

2

e

)sk
+
n3/2

eε2sk
= 1− 2−Ω(

√
n) :

Lemma 19. Assume EJ and Di,u hold for all J ⊆ [k], 1 ≤ i ≤ k, and 1 ≤ u ≤ n. Then

Algorithm 3 successfully recovers C.

Lemma 20. Pr

 ⋃
J⊆[k]

ĒJ ∪
⋃

i∈[k],j∈[n]

D̄i,u

 ≤ (2

e

)sk
+
n3/2

eε2sk
= 2−Ω(

√
n).

We omit the proofs, as they are essentially the same as the proof of the main theorem in

Section 3.4.3. The main difference is that one argues that Algorithm 3 first recovers C1, then C2,

etc. Thus, we really only have to take the union bound over 2k1 + . . .+2kK cluster submatrices,

not all 2k.



CHAPTER 5

PLANTED PARTITIONS IN RANDOM SYMMETRIC MATRICES

Copyright note: This chapter is taken from my previous work in (2, Section 11). See Ap-

pendix B for copyright information.

We now attempt to push Algorithm 3 to the most general setting possible. In Chap-

ters 3 and 4 we receive as input a random graph or, equivalently, a random symmetric matrix

Â = (âuv)
n
u,v=1 whose diagonal entries are 0 and whose off-diagonal entries are Bernoulli ran-

dom variables with expectation p or q. More generally, we can assume that Â is a random

symmetric matrix whose entries come from arbitrary distributions (under certain assumptions)

with expectations p and q.

Definition 15 (Planted partition model for random symmetric matrices). Let C = {C1, . . . , Ck}

be a partition of the set [n] into k clusters. For distributions D1, D2, D3 on R, we define the

planted partition model PP(n, C, D1, D2, D3) to be the probability space of real symmetric n×n

matrices Â = (âuv)
n
u,v=1, where âuv are distributed independently for 1 ≤ u ≤ v ≤ n such that

âuv ∼


D1 if u 6= v and u, v in the same cluster

D2 if u 6= v and u, v in different clusters

D3 if u = v

.

Furthermore, we assume the following:

1. E[D1] = p,E[D2] = q, and E[D3] = 0, where 0 ≤ q < p.
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2. Var[âuv] ≤ σ2 for all u, v.

3. |âuv − E[âuv]| ≤ κ for all u, v. I.e., the support of each random variable âuv is contained

in an interval of length 2κ centered at its mean.

Problem 2 (Planted partition in a random symmetric matrix). Identify (or “recover”) the

unknown partition C1, . . . , Ck (up to a permutation of [k]) given only a random matrix Â ∼

PP(n, C, D1, D2, D3).

We will assume that C satisfies the superclusters assumptions of Section 4.1, with the fol-

lowing changes:

• We replace (Equation 4.1) and (Equation 4.2) with

s1 ≥ . . . ≥ sk ≥ ∆

and

min
C∈Ci
|C| ≥ max

C∈Ci+1

|C|+ ∆,

respectively.

• We now allow the parameters p, q, σ, κ,∆, and ε to depend on n.

• We assume without loss of generality that p > q, but we no longer require that 0 ≤ q <

p ≤ 1.
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Our goal is thus to give conditions on the various parameters that are sufficient for Algorithm 3

to succeed a.s. (Section 5.4), noting that the algorithm now receives a random matrix Â ∼

PP(n, C, D1, D2, D3) as input instead of a random graph Ĝ ∼ G(n, C, p, q).

We now indicate briefly the changes to the analysis in Sections 4.3-4.6 necessary to make

Algorithm 3 work in this more general setting, leaving the details as an exercise.

5.1 Spectral results

We can define A, B, and B̂ as in Section 1.2. The main difference in the spectral results of

Section 4.3 is that we get

||B − B̂||2 ≤ (2σ + 6κ)
√
n (5.1)

a.s. in place of Lemma Equation 4.5. This dependence on σ and κ makes sense intuitively

because these parameters control how concentrated the entries of B̂ are about their means: if

they are too spread out, we should not expect B and B̂ to be “close.” Conversely, if σ, κ = o(1),

then we should expect B̂ to be closer to B than when these parameters are constant.

This yields a separation of ≥ (p− q)∆− (4σ+ 12κ)
√
n between the eigenvalues of B and B̂

corresponding to indices in different superclusters (cf. Lemma 12). This, in turn, allows us to

bound Pk1(B)− Pk1(B̂) in norm as in Lemma 13, provided that

∆ ≥ (4σ + 12κ)
√
n

(p− q)ε
. (5.2)
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5.2 Constructing an approximate cluster

In Step 3 of Algorithm 3, define

ŝ :=
λ1(B̂) + (2σ + 6κ)

√
n

p− q
.

Then (Equation 4.10) holds as in the Bernoulli case, assuming (Equation 5.1) holds. Thus, Lem-

mas 15 and 16 remain exactly the same as in the Bernoulli case (except replace (Equation 4.5)

with (Equation 5.1)).

5.3 Recovering the cluster exactly

In the Bernoulli case, we use the random variables

|NĜ(u) ∩ Ci| =
∑
v∈Ci

âuv

to distinguish between u ∈ Ci and u /∈ Ci (Lemmas 17 and 18). Thus, for general distributions

we define the random variable

Su,W :=
∑
v∈W

âuv

for u ∈ [n] and W ⊆ [n]. (Recall that a random variable is actually a measurable function from

a probability space to R; hence, Su,W is actually a function of the random matrix Â.)

Proceeding as in Lemma 17, for each cluster Ci we get

Su,Ci ≥ (p− ε)si (5.3)
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for all u ∈ Ci, and

Su,Ci ≤ (q + ε)si (5.4)

for all u /∈ Ci, each with probability ≥ 1− exp

(
−ε

2si
3κ2

)
.

We now argue that if W has large intersection with some Ci, then we get bounds on Su,W

which are not far off from those on Su,Ci . However, since the entries of Â need not be 0 or 1,

each element of W4Ci can throw off the bounds by as much as

max
u,v
|âuv| ≤ µ+ κ,

where

µ := max{|p|, |q|}.

More precisely:

Lemma 21. Assume (Equation 5.1) holds. Suppose |W | ≤ (1 + ε)ŝ and |W ∩Ci| ≥ (1− 6ε)sk

for some Ci ∈ C1. Then

a) If u ∈ Ci and u satisfies (Equation 5.3), then Su,W ≥ (p− (18µ+ 16κ+ 1)ε)ŝ.

b) If u ∈ [n] \ Ci and u satisfies (Equation 5.4), then Su,W ≤ (q + (16µ+ 16κ+ 1)ε)ŝ.

We omit the proof, as it parallels that of Lemma 18.

Thus, we are able to recover the cluster a.s. as long as

p− (18µ+ 16κ+ 1)ε > q + (16µ+ 16ε+ 1)ε,
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or equivalently,

ε <
p− q

34µ+ 32κ+ 2
. (5.5)

It may be possible to optimize these constants slightly by breaking the proof of Lemma 21 into

cases based on whether p and q are positive or negative, but there will always be a dependence

on p, q and κ.

5.4 Parameter dependencies

By (Equation 5.2), the above inequality (Equation 5.5) is satisfied if

(2σ + 6κ)
√
n

(p− q)∆
≤ p− q

34µ+ 32κ+ 2
.

This can be accomplished if we require

∆ = Ω

(
κ(max{|p|, |q|}+ κ)

√
n

(p− q)2

)
. (5.6)

In addition, observe that we need the failure probability of exp
(
− ε2si

3κ2

)
above to be o((nk)−1),

since we take a union bound over nk “degree events” (see Section 4.6). This can be accomplished

if we require

∆ = ω

(
(max{|p|, |q|}+ κ)2κ2 log n

(p− q)2

)
. (5.7)

Thus, we get the following theorem:
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Theorem 18. Let C be defined as in the beginning of Chapter 5, and assume that (Equation 5.5)-

(Equation 5.7) are satisfied. Then C can be recovered a.s. in polynomial time given only

Â ∼ PP(n, C, D1, D2, D3).

Observe that since ∆ ≤ n, (Equation 5.6) and (Equation 5.7) together imply

κ(max{|p|, |q|}+ κ})�
√
n

log n
.

So a necessary condition for Algorithm 3’s success is that |p|, |q|, and κ aren’t too big. On the

other hand, if κ is small (i.e., the entries of B̂ are highly concentrated), we can potentially get

away with a smaller-than-
√
n separation between the cluster sizes. Note also that our goal was

to make Algorithm 3 work in the most general setting possible; it may be possible to obtain

better conditions on the parameters in certain special cases. One can do this by mirroring the

analysis in Sections 4.3-4.6.



CHAPTER 6

NUMERICAL RESULTS

In this chapter we show how our algorithms perform in practice. We performed the following

experiment:

1. For n = 100, 200, . . . , 3600, and k = 2, 3, . . . , kmax(n), generate 20 random graphs from a

planted partition distribution with p = .99, q = .01 and k parts of size bn/kc or bn/kc+1.

2. For each (n, k) pair, run Algorithm 3 on the graphs generated and record the number for

which the planted partition was successfully recovered.

3. For each n, kmax(n) is the smallest k for which the proportion of successes was < .6.

The results are summarized in Figure 7. Note that for simplicity we are testing on planted

equipartitions, but we implemented Algorithm 3 rather than Algorithm 2 because it works in

a more general setting.

Essentially, for each n we want to find the largest k = kmax(n) − 1 for which planted

k-equipartitions can be reliably recovered. By Theorem 17, this k should be Θ(
√
n). From Fig-

ure 7, kmax(n) certainly appears to be an increasing, concave function of n, though it is unclear

whether it is Θ(
√
n) due to the limited amount of data. Obtaining more convincing numerical

results is a work in progress.

The main obstacle to obtaining more satisfying numerical results is the running time of our

algorithm. See Section 3.1.1. One area where there is room for improvement is the computation
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Figure 7. Success of Algorithm 3 on planted equipartitions with n vertices and k clusters,

taken over 20 trials, with p = .99, q = .01
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of the dominant rank-k projector Pk(B̂). As noted in Section 3.1.1, this can be done in O(n2k)

time by performing a truncated SVD (only computing the largest k singular values and singular

vectors). However, our algorithm is implemented näıvely using the full SVD, which takes Θ(n3)

time. Thus, our the current implementation of our algorithm takes Θ(n3k) time instead of

O(n2k2). This could represent a significant slowdown when n is large and k is small, as is the

case in the above experiment.

Figure 8 shows the average running time of our algorithm on planted equipartitions with 2,

3, 4, 5, and 6 clusters. For each (n, k) pair, the algorithm was run on 20 random graphs from

a planted partition distribution with p = .99, q = .01 and k parts of size bn/kc or bn/kc+ 1.

Algorithm 3 and associated experiments were implemented in Python
TM

using the SciPy and

Matplotlib. The code can be found online at https://github.com/smpcole/planted-partition.

https://github.com/smpcole/planted-partition


88

Figure 8. Average running time of Algorithm 3 on planted equipartitions with n vertices and

k clusters, taken over 20 trials, with p = .99, q = .01



CHAPTER 7

COMPARISON WITH PREVIOUS RESULTS

In this section we compare the performance of Algorithm 3 with that of several well-known

spectral algorithms on both dense and sparse random graphs. In both cases, we will assume

for simplicity that all parts of the planted partition are the same size, i.e. si = s := n/k for

i = 1, . . . , k.

Copyright note: This chapter is taken from my previous work in (2, Section 12). See Ap-

pendix B for copyright information.

7.0.1 Dense random graphs, many clusters

As noted in the introduction, Algorithm 3 compares favorably to well-known spectral al-

gorithms on dense random graphs with many clusters of size Ω(
√
n). More precisely, let us

assume p and q are fixed constants and all clusters are size s = n/k. We would like to know

the smallest s (i.e., largest k) for which each algorithm is guaranteed to recover the planted

partition a.s. Table I summarizes the algorithms’ guarantees:

To the best of the author’s knowledge, Algorithm 3 is the first spectral algorithm which

recovers planted partitions in which all clusters are size Θ(
√
n) in polynomial time, though other

algorithms (e.g. (7; 8; 9)) are able to achieve this using convex or semidefinite programming.

Note that the above algorithms are able to recover planted partitions in which some of the

clusters are size Θ(
√
n), but only if there are also clusters of size ω(

√
n).

89
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Paper Minimum cluster size

Coja-Oghlan 2010 (10, Theorem 2) Ω(n4/5)

McSherry 2001 (11, Theorem 4) Ω(n2/3)

Vu 2014 (12, Theorem 2) ω(
√
n log n)

This result Theorem 17 Ω(
√
n)

TABLE I

Comparison of results in the dense regime

Also note that the above algorithms apply to more general planted partition distributions

than ours. In particular, they allow for edge probabilities pij between pairs of vertices in clusters

Ci and Cj , for i, j = 1, . . . , k. In particular, this allows there to be “unclustered” vertices, i.e.,

clusters whose intra-cluster probability is no greater than the background edge probability.

Extending Algorithm 3 to this setting remains an open problem.

7.0.2 Sparse random graphs, constant number of clusters of linear size

Planted partitions with many clusters of size Θ(
√
n) are of theoretical interest because they

approach the conjectured
√
n-barrier for efficient algorithms, but the setting in which there are

few edges and a constant number of clusters of linear size is perhaps more realistic in practice.

More precisely, we will assume p, q = o(1) and k = O(1) (hence s = Ω(n)). For simplicity, we



91

Paper Minimum edge probability

Coja-Oghlan 2010 (10, Theorem 2) Ω(log n/n)

McSherry 2001 (11, Theorem 4) Ω(log6 n/n)

Vu 2014 (12, Theorem 2) Ω(
√

log n/n)

This result Theorem 18 Ω(n−1/4)

TABLE II

Comparison of results in the sparse regime

will further assume that p = Θ(q). We are now interested in the smallest p and q for which

each algorithm is guaranteed to recover the planted partition a.s.

If we apply Theorem 18 with ∆ = Θ(n), κ = 1, and p = Θ(q) = o(1), then (Equation 5.6)

implies
√
n

p2
≤

√
n

(p− q)2
= O(n).

Hence, we get p, q ≥ Ω(n−1/4). Table II compares this to the guarantees of well-known spectral

algorithms:

Thus, the above algorithms all outperform Algorithm 3 on sparse random graphs. Optimiz-

ing Algorithm 3 for the sparse regime is a possible direction for future work.



CHAPTER 8

FUTURE WORK

8.1 Parameter-free planted partition

Until this point, we have assumed that our algorithm has access to p, q, and k1, . . . , kK ,

but not s1, . . . , sk. In this section, we discuss what to do when we don’t have access to these

parameters’ exact values.

Copyright note: This section is taken from my previous work in (2, Section 10). See Ap-

pendix B for copyright information.

8.1.1 Unknown supercluster sizes

Let us assume that only p and q are known. As it turns out, we can reduce this case to the

case when k1, . . . , kK are known at the expense of slightly increasing c.

Assume (Equation 4.5) holds. Then by (Equation 4.2)

Ci, Ci+1 in different

superclusters
⇒ λi(B̂) ≥ λi+1(B̂) + ((p− q)c− 14)

√
n. (8.1)

Thus, let us go down the list of eigenvalues of B̂ in decreasing order and whenever we see a

separation of at least ((p−q)c−14)
√
n record the number of eigenvalues seen since the last such

separation. Ignore the last group, as these eigenvalues correspond to the n− k zero eigenvalues

of B. Let k̂1, . . . , k̂L be this sequence of numbers.
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Consider the clustering

Ĉ1 := {C1, . . . , Ck̂1},

Ĉ2 := {Ck̂1+1, . . . , Ck̂1+k̂2
},

...

ĈL := {Ck̂1+...+k̂L−1+1, . . . , Ck̂1+...+k̂L
}.

Observation 2. If (Equation 4.5) holds, then Ĉ1, . . . , ĈL is a refinement of C1, . . . , CK (as

partitions of C).

Proof. Consider Ĉ1. By definition of k̂1,

λi(B̂) < λi+1(B̂)− ((p− q)c− 14)
√
n

for i = 1, . . . , k̂1 − 1. By the contrapositive of (Equation 8.1), this means Ci, Ci+1 are in the

same Cj for i = 1, . . . , k̂1− 1. A similar argument applies for each Ĉi. Hence, each Ĉi is a subset

of some Cj .

Observation 3. Assume (Equation 4.5) holds. Then si ≥ si+1 +
(
c− 28

p−q

)√
n whenever

Ci, Ci+1 are in different Ĉj. Equivalently,

min
C∈Ĉj

|C| ≥ max
C∈Ĉj+1

|C|+
(
c− 28

p− q

)√
n
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for i = 1, . . . , L− 1.

Thus, by these two observations, we a.s. have a separation into superclusters Ĉ1, . . . , ĈL such

that

• si ≥ si+1 + c′
√
n whenever Ci, Ci+1 are in different Ĉj , where

c′ := c− 28

p− q
(8.2)

(by Observation 3).

• si ≤ (1+ε)si+1 whenever Ci, Ci+1 are in the same Ĉj (by Observation 2 and (Equation 4.4)).

This is sufficient to recover C, since we only care about recovering the individual clusters, not

which supercluster each cluster belongs to.

Note that since c = Ω((p− q)−2), c′ is still a large positive constant. Hence, in order for the

analysis in Sections 4.3-4.6 to go through, we simply require

c ≥ 14

(p− q)ε
+

28

p− q
=

14

(p− q)ε
(1 + 2ε).

in place of (Equation 4.9). As ε ≤ .01, setting c ≥ 15
(p−q)ε suffices.

8.1.2 Unknown edge probabilities

Unfortunately, we still need to assume that Algorithm 3 has access to the exact values of p

and q so that it can compute B̂ := Â+ pIn − qJn. There are two possible ways around this:
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1. Obtain good estimates on the eigenvalues of A so that the algorithm can use Â instead

of B̂, as in the equitable case. Since

A = B + qJn, (8.3)

Weyl’s inequalities give the bounds

(p− q)si ≤ λi(A) ≤ (p− q)si−1

for i = 2, . . . , k. However, in order for the spectral results in Sections 4.3 and 4.4 to go

through we need a separation between λi(A) and λi−1(A) when Ci and Ci−1 are in different

superclusters. Thus, the above bounds are not good enough. However, by (Equation 8.3)

we may view A as a rank-1 perturbation of B (whose eigenvalues are known), so we may

attempt to use perturbation results such as (43; 44; 45) to compute its eigenvalues.

2. Estimate p and q empirically. We must find a way to do so with ≤ O(1/
√
n) error in

order to overcome the O(
√
n) error introduced by the random noise (see Lemma 11). One

promising approach is to use the theory of graphons (46). In (47; 48), the authors use

the theory of large deviations (49) to show that the edge and triangle or l-star densities

of “most” graphs together induce a multipodal (i.e. stochastic block model) structure in

the limiting graphon. Thus, one might hope to estimate p, q, and s1, . . . , sk by looking

at the graphon induced by these statistics on Ĝ.

.
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8.2 Lower bounds

In this section we discuss limitations of efficient algorithms for planted partition. In Sec-

tion 8.2.1 we give an informal discussion of why planted partition becomes impossible when the

cluster sizes are O(log n); however, it is only known how to efficiently recover planted partitions

in which the cluster sizes are Ω(
√
n). Closing the gap between log n and

√
n is a major open

problem in computer science. It is generally believed that the problem becomes intractable

when the cluster sizes are o(
√
n), but proving this formally in the framework of complexity

theory seems rather hopeless (Section 8.2.2); instead, one may attempt to show that specific

algorithms or classes of algorithms provably fail when the cluster sizes are too small.

8.2.1 Information theoretic lower bound

In this section, we will show that if the sizes of the parts in a planted partition is O(log n),

then there is no hope of recovering the planted partition with high probability. Essentially, an

Erdős-Rényi random graph will a.s. have a partition of the vertices into cliques of size Ω(log n);

thus, a planted partition in which the parts are size O(log n) would be indistinguishable from

a “naturally occurring” clique partition in a random graph.

Let us formalize this a bit. We will first need to define the notions of an equitable coloring

and the equitable chromatic number of a graph (50):

Definition 16 (Equitable coloring). An equitable k-coloring of a graph G = (V,E) is a vertex

coloring of G with k colors such that sizes of any two color classes differ by at most 1.

That is, an equitable coloring is a vertex coloring in which all color classes are approximately

the same size.
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Definition 17 (Equitable chromatic number). The equitable chromatic number of a graph

G = (V,E), denoted χ=(G), is the smallest integer k such that G has a proper equitable k-

coloring (i.e., no two vertices in the same color class share an edge).

In (50), the authors prove that the equitable chromatic number of a random graph is ap-

proximately the same as its chromatic number:

Theorem 19. Let G(n, p) be an Erdős-Rényi random graph, where n−1/5+ε < p < .99 for some

ε > 0. Then a.s. χ(G(n, p)) ≤ χ=(G(n, p)) ≤ (1 + o(1))χ(G(n, p)).

Recall the classic result of Bollobás (51) that the chromatic number of G(n, p) is Θ(log n):

Theorem 20. For any fixed p ∈ (0, 1), χ(G(n, p)) =

(
1

2
+ o(1)

)
n

log1/(1−p) n
a.s.

Thus, we get the following as a corollary:

Corollary 1. Let p ∈ (0, .99) be fixed. Then a.s. both of the following are true:

1. χ=(G(n, p)) =

(
1

2
+ o(1))

)
n

log1/(1−p) n

2. There exists a proper coloring of G(n, p) in which all color classes are size (2−o(1)) log1/(1−p) n.

Finally, observe that a partition of the vertices of a graph G = (V,E) into disjoint cliques

corresponds to a coloring of its complement Ḡ. Thus, by part 2 of Corollary 1 we get the

following:

Corollary 2. Let p ∈ (.01, 1) be fixed. Then a.s. the vertices G(n, p) can be partitioned into

cliques of size (2− o(1)) log1/p n.
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Note that the size of the cliques in the above corollary is approximately the same as the

clique number of G(n, p) (52).

How does this relate to planted partition? Consider a planted partition distribution G(n, C, 1, q)

in which edges are added deterministically within the parts of the partition. Assume that all

parts are size s ≤ (2− ε) log1/q n for some constant ε > 0. Then by Corollary 2 Ĝ ∼ G(n, C, 1, q)

will a.s. contain at least two distinct partitions into cliques of size s: the planted partition, and

one guaranteed to exist by Corollary 2.

Formalizing this graph theoretic argument is a possible direction for future work. More

formal information theoretic lower bounds have been proved in (21, Section 2.1) and (53; 54).

8.2.2 Average case complexity

Copyright note: Parts of this section are taken from the introduction of my paper (2). See

Appendix B for copyright information.

We may view “planted” problems like planted clique as distributional versions of classic NP-

hard problems like MAX-CLIQUE, MAX-CUT, or SPARSEST-CUT (55). Ideally, one would

hope to prove such problems are distNP-complete if the cluster sizes are o(
√
n), where distP and

distNP are distributional analogues of P and NP (56)). However, this goal seems unrealistic at

present, as showing the existence of a “natural” distNP-complete problem is a major unresolved

problem in complexity theory (see (57, Chapter 18)). Instead, various authors have shown that

specific algorithmic techniques fail when the size of the parts is too small (17; 18; 15). We

discuss one quite general class of algorithms below.
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8.2.3 Statistical lower bound

A statistical algorithm is one which, instead of receiving a random graph Ĝ as input, can

query an oracle for the values of statistics on the distribution of Ĝ within some tolerance τ (58).

The authors of that paper show that for the related problem of planted clique (14; 15; 16),

statistical algorithms require exponentially many queries when the size of the planted clique is

≤ n
1
2
−δ. At present, no such result exists for planted partition.

The proof of the statistical lower bound for planted clique hinges on showing that any

sufficiently large family of s-subsets of the vertices will have small average pairwise intersection.

However, complications arise when trying to apply this technique to planted partition: it is

not clear what the appropriate notion of “intersection” is for partitions, and there are far

more partitions of a set of size n into sets of size s = O(
√
n) than there are subsets of size

s. One possibility is to attempt to show that a large family of partitions must have small

average pairwise overlap, where the overlap of two partitions P,Q of a finite set S is defined as

max
P∈P,Q∈Q

|P ∩ Q|.
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Appendix A

NOTATION

Copyright note: Parts of this appendix were taken from (2, Section 4.1). See Appendix B

for copyright information.

• ∼ – “sampled from”—i.e., if P is a probability space, then ω ∼ P means ω is a random

sample drawn from P.

• 〈·, ·〉 – standard inner product of two vectors in Rn or Cn.

• | · | – size of a finite set or absolute value of a real or complex number

• || · ||∗ – trace norm of a matrix (24, Theorem 5.6.42)

• || · ||F – the Frobenius norm of a matrix (Definition 11).

• || · ||p – the `p- norm of a vector or matrix (Definition 10).

• 0 – the 0 vector in a vector space.

• 1S – the indicator vector ∈ {0, 1}n for the set S ⊆ [n].

• 1n – the all 1s vector ∈ Rn, i.e. 1[n].

• A> – transpose of A

• A∗ – conjugate transpose of A

• A(G) – adjacency matrix of a graph G (Definition 7)

• A[S] – the principal submatrix of A with row and column indices restricted to S.
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Appendix A (Continued)

• a.s. – almost surely, i.e. with probability 1− o(1) as n→∞ (Definition 6).

• C – the set of complex numbers

• dG(v) := |NG(v)| – the degree of vertex v in G. Again, we will omit the subscript when

the meaning is clear.

• dim(A) – the dimension of a square matrix A. If A is n× n, then dim(A) = n.

• Ē – complement of event E (the probability space is implied by context)

• ED[X] – the expectation of a random variable X over a distribution D. If X is matrix or

vector valued, then the expectation is taken entrywise. The distribution may be omitted

if it is clear from context.

• e1, . . . , en – standard basis vectors in Rn.

• Fm×n – vector space of m× n matrices over the field F.

• Fn – vector space of dimension n over the field F. Vectors are represented as ordered

n-tuples in the standard basis.

• G = (V,E) – a simple, undirected graph with vertex set V and edge set E.

• G(n, C, p, q) – the planted partition (also known as stochastic block model) distribution

(Definition 1)

• G(n, p) – a single Erdős-Rényi random graph sampled from the distribution G(n, p) (Def-

inition 8)

• G(n, p) – the Erdős-Rényi random graph distribution (Definition 8)
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• G[S] – the induced subgraph of G on S ⊆ V (G).

• H(P) – incidence matrix of a partition P (Definition 4)

• In – the n× n identity matrix.

• Jn – the n× n 1s matrix.

• NG(v) – neighborhood of vertex v in a graph G. We will omit the subscript G when the

meaning is clear.

• [n] := {1, . . . , n}

• O(·), Ω(·), Θ(·), o(·) – asymptotic notation. Roughly speaking,

– f(n) = O(g(n)) means f(n) grows at most as fast as g(n).

– f(n) = Ω(g(n)) means f(n) grows at least as fast as g(n).

– f(n) = Θ(g(n)) means f(n) grows at “about the same rate” as g(n).

– f(n) = o(g(n)) means f(n) grows “much slower” than g(n).

– f(n) = ω(g(n)) means f(n) grows “much faster” than g(n).

See, e.g., (59) for formal definitions.

• Pk(A) – dominant rank-k projector of A (Definition 14)

• PP(n, C, D1, D2, D3) – the planted partition distribution for random symmetric matrices

(Definition 15)

• PrD[A] - probability of event A over distribution D. The distribution may be omitted if

it is clear from context.
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• PU – orthogonal projection operator onto subspace U (Definition 13)

• R – the set of real numbers

• rk(·) – rank of a matrix

• tr(·) – trace of a matrix

• VarD[X] – variance of a random variable X over distribution D. The distribution may

be omitted if it is clear from context.

• w.h.p. – same as a.s. (Definition 6)

• λi(A) – the ith largest eigenvalue of a symmetric matrix A (recall from Theorem 6 that

symmetric matrices have real eigenvalues).

• λi(G) – the ith largest eigenvalue of G’s adjacency matrix.
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