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SUMMARY

This thesis is wrapped up in the analogy among arithmetic groups, mapping class groups of

surfaces, and outer automorphisms of free groups. Each of these groups satisfies Tits’ alternative

for subgroups, but there is disanalogy in the finer subgroup structure. The motivating question,

which this thesis answers in the linearly growing case, is whether or not two generator subgroups

of the outer automorphism group of a free group behave like those in arithmetic groups or

like those mapping class groups. In mapping class groups, any two mapping classes have the

property that a sufficient power of the two classes will generate a group that is either free of

rank two or abelian; this is not true in arithmetic groups, and unknown in general for outer

automorphism groups. To study the motivating question the theory of group actions on trees is

expanded, and new tools for understanding when two tree actions are compatible are introduced.

These tools are ultimately much stronger than necessary for answering the motivating question

in the linearly growing case, but it is hoped they will provide a method for answering the

motivating question in the future.

ix



CHAPTER 1

IN THE GARDEN OF FORKING PATHS

I leave to the various futures (not to all) my

garden of forking paths.

Ts’ui Pên

Begin with the most famous group which acts on a tree, SL(2,Z) and its cousin, GL(2,Z).

The classical theory of these groups touches on number theory, algebraic geometry, and topology

in myriad ways. Topologically, SL(2,Z) is the mapping class group Mod(Σ) of orientation-

preserving homeomorphisms modulo isotopy of either the torus or the once-punctured torus.

Broadening the perspective to include all homeomorphisms up to isotopy, we grow naturally

into GL(2,Z) as the extended mapping class group Mod±(Σ) of both surfaces. Free groups

enter the picture when we focus on the punctured torus Σ1,1, where π1(Σ1,1) ∼= F2 and there

are isomorphisms [24]

GL(2,Z) ∼= Mod±(Σ1,1) ∼= Out(F2).

This group SL(2,Z) marks the first fork in our path through this garden, each of these three

perspectives gives a different generalization. The first, to GL(n,Z) and arithmetic groups, and

the second, to Mod(Σ) for a finite-type surface Σ will not be taken in this work in any detail.

This thesis focuses on the third, Out(Fr) for r ≥ 2, the outer automorphisms of a free group.

These three perspectives are not wholly unrelated; the paths are similar and an analogy

among the three families of groups is incredibly deep, guiding the past fifty years of research

1
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in the area. In the case of Out(Fr), Bestvina reminds us that these connections are not only

spiritual [5]. The abelianization functor induces a surjection Out(Fr) → GL(r,Z) and any

surface Σ with fundamental group Fr gives an injection Mod(Σ)→ Out(Fr).

The Tits alternative richly illustrates the parallel techniques used in the study of Out(Fr),

Mod(Σ), and arithmetic groups [42]. In 1972 Tits [49] proved that any linear group over a

field of characteristic zero either contains a non-abelian free subgroup or a finite index solvable

subgroup. Such a dichotomy is now known as a Tits alternative. Specifically, a class of groups

G satisfies a Tits alternative when every member either contains a F2 subgroup or a finite-index

solvable subgroup. This implies the von Neumann conjecture (that a group is either amenable

or has an F2 subgroup) for G and excludes Tarskii monster groups from G. When G is the

set of subgroups of a fixed group G, a Tits alternative for G is an important component of the

study of the subgroup structure of G.

Tits’ proof exploits the dynamics of the action of a linear group G on a suitable projective

space. Tits used this action to verify a criterion for freeness, the ping-pong lemma, which dates

to Klein [34]. A version of the lemma states: if a two-generator group G = 〈a, b〉 acts on a set P

and there are disjoint non-empty subsets Pa, Pb ⊆ P such that for all n > 0 a±n(Pb) ⊆ Pa and

b±n(Pa) ⊆ Pb, then G ∼= F2. Subgroups of Mod(Σ) also satisfy a Tits alternative, as was shown

independently by McCarthy [39] and Ivanov [31]. McCarthy’s argument is analogous to Tits’,

with the Thurston boundary of Teichmüller space, the set of projective measured laminations,

playing the role of projective space. His proof also makes use of a stronger statement for two-

generator subgroups. If 〈σ, τ〉 ≤ Mod(Σ), then there exists an integer N > 0 such that 〈σN , τN 〉
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is either abelian or free of rank two. Moreover, 〈σN , τN 〉 is abelian exactly when the intersection

number of certain laminations associated to σ and τ is zero. This stronger statement about

two-generator subgroups is false in GL(n,Z), due to the presence of the Heisenberg group.

Bestvina, Feighn, and Handel established a Tits alternative for subgroups of Out(Fr) [7,8].

Their proof, in two papers, draws on analogies with both Mod(Σ) and GL(n,Z). The notion

of a lamination of a free group is introduced in the first paper [7], analogous to a lamination of

a surface. Free group laminations are algebraic; no notion of measure is introduced. Instead,

Bestvina, Feighn, and Handel develop a topological attraction theory for laminations and use

this attraction theory to play ping-pong on the set of laminations. This ping-pong argument

reduces the problem to the establishment of a Tits alternative for subgroups consisting entirely

of unipotent outer automorphisms. A unipotent outer automorphism is a polynomially grow-

ing outer automorphism with unipotent image in GL(r,Z). In the mapping class group the

analogous subgroups are all virtually abelian, but Out(Fr) contains unipotent free subgroups.

The second paper [8] addresses the case of unipotent subgroups using an analog of Kolchin’s

theorem on the existence of invariant flags for unipotent subgroups of linear groups. Their proof

of this analog makes use of the dynamics of the Out(Fr) action on a space of Fr actions on trees.

No general analog of McCarthy’s theorem on two generator subgroups is known for Out(Fr).

The analogy between Mod(Σ) and GL(n,Z) does not extend to McCarthy’s theorem and it is

of interest to know which of the two families Out(Fr) follows. The situation is summarized in

Table I.
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TABLE I

ANALOGY AND DISANALOGY FOR THE TITS ALTERNATIVE

GL(n,Z) Mod(Σ) Out(Fr)

Geometric Action Projective space Teichmüller Space Outer Space
Tits Alternative Yes Yes Yes

McCarthy’s Theorem No Yes ?

Virtually solvable subgroups of both Out(Fr) and Mod(Σ) must be virtually abelian [9,12],

in contrast with GL(n,Z). This fact, along with analogs of McCarthy’s theorem for subgroups

of Out(Fr) with special generators, motivates the following conjecture.

Conjecture A. Given a two generator subgroup 〈σ, τ〉 ≤ Out(Fr) there is an N such that

〈σN , τN 〉 is either abelian or free of rank two.

Bestvina, Feighn, and Handel [6] prove a special case, in which the two generators are

required to be fully irreducible. An outer automorphism is fully irreducible if it has no pe-

riodic free factors. A subgroup of Out(Fr) generated by two fully irreducible elements, σ and

τ , is either virtually cyclic or contains a free group generated by powers of σ and τ . The sub-

group is virtually cyclic exactly when the invariant lamination sets for the two generators are

equal. Ghosh [25] extends this result, using Handel and Mosher’s omnibus subgroup theorem,

to a larger family of exponentially growing generators. Building on the work of Cohen and

Lustig [18], and using a variation on the ping-pong technique used by Clay and Pettet [17], we
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show the conjecture holds for groups generated by Dehn twist outer automorphisms, in Chap-

ter 5; as a corollary this implies the conjecture for all linearly growing outer automorphisms.

Cohen and Lustig defined the notion of an efficient Dehn twist automorphism with respect to

a graph of groups and showed that every Dehn twist outer automorphism has a unique such

representative. A major theme of this thesis is that compatibility of efficient representatives

substitutes for intersection number, and gives a criterion for when the group generated is free of

rank two (even in cases not covered by the Clay and Pettet technique). Work in progress con-

tinues this direction, extending the techniques to a McCarthy-type result for unipotent outer

automorphisms. Every unipotent outer automorphism is represented by an efficient relative

Dehn twist with respect to a graph of groups [43], generalizing the efficient Dehn twist repre-

sentatives of Cohen and Lustig. Unfortunately, the hierarchical nature of polynomially growing

outer automorphisms makes the compatibility condition complicated to state, and it is not clear

if there is a geometric invariant to divide the cases.

In each of these McCarthy-type theorems the Out(Fr) action on a compact space of Fr

actions on trees plays a role. Culler and Vogtmann introduced Outer Space, cvr as the space

of marked metric graphs [23]. The universal cover of a marked metric graph is a metric tree

with free properly discontinuous Fr action, and we take this perspective on cvr. Restricting

to those actions with covolume 1 gives the projectivized outer space CVr. Culler and Morgan

compactified CVr using an embedding into the space of length functions on Fr [22]. It was

later shown by Cohen, Lustig, Bestvina, and Feighn that each point in the closure is realized

uniquely as the translation length function of a very small Fr action on an R-tree [10, 18] .
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The space of laminations of Fr and the boundary of CVr in this compactification both serve as

analogs of Thurston’s boundary of Teichmüller space; but unlike in surface theory the two are

not equivalent.

Guirardel [26] defined an intersection number for R-trees that generalizes the intersection

number for measured laminations of a surface. The Guirardel intersection number of π1(Σ)

actions on R-trees dual to measured laminations is equal to the lamination intersection number.

The intersection number i(A,B) of very small R-trees A and B is the “covolume” of a particular

subset C ⊆ A × B called the core. The core C(A,B) is the minimal subset of A × B invariant

under the diagonal action such that both projection maps have convex fibers. It is not always

connected, but has a canonical connected superset, the augmented core, Ĉ(A,B) with the

same covolume. When T is a simplicial tree with free action and σ a fully irreducible outer

automorphism, the asymptotic behavior of i(T, σNT ) is governed by the growth rate of σ [4],

similar to a curve under iterations of a pseudo-Anosov mapping class.

The geometry of the core provides rich information about the input trees in specific cases.

Guirardel gives a topological interpretation of the core of simplicial trees, and analyzes the core

of the two fixed trees of a geometric fully irreducible outer automorphism. The ability of the

core to measure the compatibility of length functions on a group is taken up in Chapter 3,

where it is related to the ambient vector space structure of length functions on a group. This

relationship is exploited in the specific case of trees related to unipotent outer automorphisms,

where the core is the key technical tool in the analysis in Chapter 5.
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1.1 Plan of the thesis

Moral: always carry a map when you are in

hyperbolic space!

W. P. Thurston

The many species of tree to be encountered in this thesis, and the associated theory, are

grown in Chapter 2. An analysis of their compatibility as it relates to both the vector space

structure of length functions and Guirardel’s core is conducted in Chapter 3, where the PL

structure of certain deformation spaces of trees is also described. The theory of outer automor-

phisms of a free group, and in particular unipotent outer automorphisms, arrives in Chapter 4.

This theory is connected with the compatibility of certain trees and a McCarthy-type theorem

for linearly growing outer automorphisms given in Chapter 5. Future directions for an attack

on Conjecture A, as well as what avenues would be opened up by its resolution are sketched in

Chapter 6.



CHAPTER 2

ARDORS AND ARBORS

I think that I shall never see

A poem lovely as a tree.

Joyce Kilmer

The theory of group actions on (real) trees has been an important aspect of the study of

groups in the past fifty years. This thesis, which also studies groups, is no exception, so we

review the parts of the theory that are particularly relevant.

2.1 Real trees

The key property of simplicial trees is that the geodesic joining two points is the unique arc

joining the points [28]. Taking this property to a general metric space we arrive in the forest

of real trees. First, some notation. In a uniquely geodesic metric space X, let [p, q] denote

the geodesic from p to q. If p, q, r ∈ X and r ∈ [p, q], we will use the notation [p, r, q] for the

geodesic path, for emphasis.

Definition 2.1.1. A real tree or R-tree T is a complete connected uniquely geodesic metric

space such that for any pair of points p, q ∈ T there is a unique arc [p, q] from p to q, and this

arc is isometric to [0, d(p, q)]. A subtree of a real tree is a complete connected subset S ⊆ T .

Throughout this thesis, when e ⊆ T is an arc in a real tree we will assume this arc is oriented,

that is we have a fixed isometry γ : [0, lengthT (e)]→ T . We will use the notation o(e) = γ(0) and

t(e) = γ(lengthT (e)) for the origin and terminus of the arc, and ē for the reversed orientation.

8
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To keep the notation uncluttered we will not refer to the isometry γ unless it is desperately

necessary for clarity. We will always specify an orientation when specifying an arc (or it will

inherit one from context, by being a sub-arc of an oriented arc).

Example 2.1.2. Real trees abound in mathematics, Cayley graphs of a free group (with

respect to a basis and its inverses) are a first natural example. Another example is R2 with

the so-called Paris metric: if two points x, y ∈ R2 are on the same ray based at the origin,

dP (x, y) = deuc(x, y) the euclidean distance. Otherwise, dP (x, y) = ||x||+ ||y||.

In the study of real trees, logging is a useful tool, which has a well developed vocabulary.

Definition 2.1.3. Let T be a real tree. A point p ∈ T is a branch point if T \ {p} has more

than two connected components. The order of a branch point is the number of connected

components of T \ {p}. A point p ∈ T is a leaf if T \ {p} is connected. A direction based at

p, δp ⊆ T , is a connected component of T \ {p}.

Not all real trees have leaves, and for present purposes those with leaves will turn out to be

uninteresting. Even without leaves real trees have a useful notion of an end and a boundary.

Definition 2.1.4. The visual boundary of a real tree T based at p ∈ T is the set

∂pT = {ρ ⊆ T | ρ is a geodesic ray based at p }.

The boundary is topologized by the basis of open sets

V (ρ, r) = {γ ∈ ∂pT |B(p, r) ∩ γ = B(p, r) ∩ ρ}
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for r > 0 and ρ ∈ ∂pT .

This boundary can be thought of as all the different ways a squirrel can escape a cat chasing

it along the tree. This definition is also used in the more general setting of a δ-hyperbolic metric

space, though in that generalization an equivalence relation is needed on geodesic rays. Different

base points p give different identifications of the same boundary.

Lemma 2.1.5 ([13, Proposition II.8.8]). For any p, q ∈ T ∂pT is homeomorphic to ∂qT , via the

map that takes a ray γ ∈ ∂pT to the geodesic tightening of the concatenation of paths [q, p]γ.

The above discussion applies entirely to simplicial trees, treating them as real trees by giving

the topological realization the metric induced by a choice of metric on each one cell. A real

tree that came from this procedure can be recognized,

Definition 2.1.6. A real tree T is simplicial if the set of branch points is discrete.

Lemma 2.1.7. A simplicial real tree T has the structure of a simplicial complex with no 2-cells;

this structure is the unique such structure with no valence 2 zero cells.

Remark. The metric topology and CW-topology do not agree when T has infinite order branch

points.

2.2 Lengths and actions

Definition 2.2.1. Let G be a group and ρ : G→ Isom(T ) be an injection, with T a real tree,

so that G acts on T on the right. The triple (G, ρ, T ) is a G-tree.

Throughout this thesis, and as is standard in the literature, the action of G will be clear from

context and G will be fixed, so we suppress the notation and refer to a tree T as a G-tree. If two
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trees are isometric but carry different G actions they will be referred to by separate letters, or

as necessary other great pains will be taken to clarify the situation. The restriction to actions

where ρ : G→ Isom(T ) is injective is not standard in the literature, some authors allow group

actions with kernel; however, tree actions with kernel are better treated as (G/ ker ρ)-trees.

Works that treat the more general case typically call actions without kernel effective.

The action of G extends naturally to a continuous action on ∂T (this is true of any isom-

etry of T ) [13, Corollary II.8.9]. Following a long tradition, we study the geometry of G-tree

actions via their translation length functions, which have been likened to the characters of a

representation. The elements of G-tree geometry reviewed here are for the most part based on

the exposition given by Culler and Morgan [22], with other developments cited as relevant.

Definition 2.2.2. The translation length function of a G-tree T , denoted `T : G → R is

defined by

`T (g) = inf
p∈T

dT (p, p · g).

Any G-tree T divides the elements g ∈ G into hyperbolic elements, when `T (g) > 0 and

elliptic elements, when `T (g) = 0. When an element g ∈ G is elliptic, Fix(g) will denote the

set of fixed points of g. Given a subtree S ⊆ T , Stab(S) will denote the set of group elements

that fix S pointwise, and Inv(S) the set of group elements that fix S set-wise.

The metric on a G-tree T induces a G invariant measure, and the covolume of T is

covol(T ) = inf
S⊆T
{µT (S)|S ·G = T and S is measurable}
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For a simplicial G-tree, covol(T ) is the total length of the one cells in the quotient.

2.2.1 A taxonomy

There is a well established taxonomy of G-trees for a given G, and this taxonomy is inti-

mately related to the translation length functions.

Definition 2.2.3. A G-tree T is minimal if there is no proper G invariant subtree T ′ ( T .

Definition 2.2.4. A G-tree T where for all g ∈ G, Fix(g) 6= ∅ is trivial.

For finitely generated groups this is equivalent to the condition that G has a global fixed

point, but this is not true for infinitely generated groups [40,50]. These actions are invisible to

translation length functions and will not be pursued further.

Definition 2.2.5. A G-tree T is lineal if there is a G invariant subtree homeomorphic to the

line.

Definition 2.2.6. A G-tree T is reducible if G fixes an end of T .

Lineal and reducible actions are uninteresting from the perspective of translation length

functions, in light of the foundational work of Culler and Morgan.

Theorem 2.2.7 ([22, Theorem 2.4,2.5]). If T is a lineal or reducible G-tree, then there is a

homomorphism ρ : G→ Isom(R) such that `T (g) = N(ρ(g)), where N is the translation length

function of the induced action on R.

The G-trees of interest for this thesis are the ones whose study is not an indirect study of

subgroups of Isom(R).
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Definition 2.2.8. A G-tree T is irreducible if it is minimal and neither trivial, lineal, nor

reducible.

Irreducible G-trees admit detailed study through their translation length functions, indeed

the translation length function is an isometry invariant.

Theorem 2.2.9 ([22, Theorem 3.7]). Suppose A and B are two irreducible G trees and `A = `B.

Then there is an equivariant isometry from A to B.

Chiswell, building on work of Lyndon studied based length functions Lp : G → R, where

Lp(g) = d(p, p · g). These functions are useful for concrete calculations and when establishing

the existence of an equivariant isometry between G-trees.

2.2.2 Axes

Definition 2.2.10. The characteristic set of some g ∈ G in a G-tree T is the set

CTg = {p ∈ T |d(p, p · g) = `T (g)}

of points achieving the translation length. When T is clear from context we write Cg.

Lemma 2.2.11 ([22, Lemma 1.3]). For any G-tree T and g ∈ G, the characteristic set CTg is

a closed non-empty subtree of T invariant under g. Moreover,

• If `T (g) = 0 then Cg = Fix(g).

• If `T (g) > 0 then Cg is isometric to the real line and the action of g on Cg is translation

by `T (g). In this case we call Cg the axis of g.
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• For any p ∈ T , d(p, p · g) = `T (g) + d(p, Cg).

The axis of a hyperbolic element is an important subtree. When g is a hyperbolic element

of a G-tree T , ∂Cg is a pair of fixed ends. The action of g on Cg gives Cg a natural orientation

and we always consider an axis oriented by the element specifying it, so that Cg−1 is the same

set as Cg but with the opposite orientation. The point of ∂T in the equivalence class of a

positive ray along Cg with the g orientation will be denoted ωT (g). If g is elliptic we take the

convention that g has no boundary at infinity, even if Cg is some interesting subtree. When g

is hyperbolic, ωT (g) is an attracting fixed point for the action of g on ∂T (this follows from the

third item).

Definition 2.2.12. Let T be a G-tree. The T -boundary of g ∈ G, ∂T g is the empty set if g

is elliptic, and the set {ωT (g), ωT (g−1)} if g is hyperbolic.

The intersection of characteristic sets is deeply related to the translation length function.

Lemma 2.2.13 ([22, Lemma 1.5]). Let T be a G-tree. For any g, h ∈ G such that Cg ∩Ch = ∅,

we have

`(gh) = `(gh−1) = `(g) + `(h) + 2d(Cg, Ch)

This lemma is also used in its contrapositive formulation, if `(gh) ≤ `(g) + `(h), then Cg ∩

Ch 6= ∅. For hyperbolic isometries there is a more precise relationship between the intersection

of characteristic sets and the length function.
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Lemma 2.2.14 ([22, Lemma 1.8]). Suppose g and h are hyperbolic in a G-tree T . Then

Cg ∩ Ch 6= ∅ if and only if

max{`T (gh), `T (gh−1)} = `T (g) + `T (h).

Moreover `(gh) > `(gh−1) if and only if Cg ∩Ch contains an arc and the orientations of Cg and

Ch agree on Cg ∩ Ch.

These two lemmas are proved by the construction of explicit fundamental domains. These

fundamental domains are sufficiently useful that we detail them here, that they have the claimed

properties is a consequence of the proofs of the previous two lemmas.

Definition 2.2.15. Let T be a G-tree and suppose g and h are such that Cg ∩ Ch = ∅. Let

α = [p, q] be the geodesic joining Cg to Ch. The Culler-Morgan fundamental domain for

the action of gh on Cgh is the geodesic

[p · g−1, p, q, q · h, p · h].

Definition 2.2.16. Let T be a G-tree and suppose g and h are such that Cg ∩Ch 6= ∅, at least

one of g and h is hyperbolic, and that if both g and h are hyperbolic the orientations agree.

Let α = [p, q] be the possibly degenerate (p = q) common arc of intersection with the induced

orientation. The Culler-Morgan fundamental domain for the action of gh on Cgh is the

geodesic
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[q · g−1, q, q · h].

If gh−1 is also hyperbolic, then the Culler-Morgan fundamental domain for the action of gh−1

on Cgh−1 is the geodesic

[q · g−1, q · h−1].

The axes of a minimal G-tree provide complete information about the G-tree.

Proposition 2.2.17 ([22, Proposition 3.1]). A minimal non-trivial G-tree T is equal to the

union of the axes of the hyperbolic elements.

Building from this, we also get some understanding of the topology of ∂T

Proposition 2.2.18. The endpoints of axes of hyperbolic elements are dense in ∂T for a

minimal G-tree T .

Proof. Fix a basepoint p and use the model ∂pT for ∂T . Suppose ρ ⊆ T is a geodesic ray

based at p, parameterize ρ by distance so that ρ : [0,∞) → T . If ρ ∩ Cg is a ray for some

hyperbolic g ∈ G then ρ represents either ωT (g) or ωT (g−1). Suppose ρ is not the end of any

hyperbolic group element. Since T is covered by axes, there are group elements gi such that

Cgi ∩ ρ = [pi, qi], qi →∞ and ρ =
⋃

[pi, qi], with orientation chosen to agree with that of ρ. Let

γi be the geodesic ray based at qi representing ωT (gi). By construction, [p, qi] is the geodesic

joining p to qi, so that ρi = [p, qi]∪ γi is the geodesic ray based at p representing ωT (gi). Since

qi →∞ we have ωT (gi) = ρi → ρ in ∂pT .
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2.2.3 Axioms

For irreducibleG-trees, length functions provide a complete invariant, as noted above. Culler

and Morgan characterize these length functions in terms of a list of useful properties; Parry

showed that any length function satisfying these axioms comes from an irreducible G-tree [41].

Definition 2.2.19. An axiomatic length function (or just length function) is a function

` : G→ R≥0 satisfying the following six axioms.

1. `(id) = 0.

2. For all g ∈ G, `(g) = `(g−1).

3. For all g, h ∈ G, `(g) = `(hgh−1).

4. For all g, h ∈ G, either

`(gh) = `(gh−1)

or

max{`(gh), `(gh−1)} ≤ `(g) + `(h).

5. For all g, h ∈ G such that `(g) > 0 and `(h) > 0, either

`(gh) = `(gh−1) > `(g) + `(h)

or

max{`(gh), `(gh−1)} = `(g) + `(h).
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6. There exists a pair g, h ∈ G such that

0 < `(g) + `(h)− `(gh−1) < 2 min{`(g), `(h)}.

Proposition 2.2.20 ([22]). If `T is the translation length function of an irreducible G-tree

then `T is an axiomatic length function.

Theorem 2.2.21 ([41]). If ` is an axiomatic length function on a group G then there is an

irreducible G-tree T such that ` = `T .

In the wider literature, axiom VI is omitted, including the consideration of all G-trees,

instead of only irreducible G trees. Without this axiom, length functions are no longer a

complete isometry invariant. A pair of elements witnessing Axiom VI for a given length function

` is called an good pair for `. A comprehensive treatment is given in Section 2.4.

2.2.4 Deformation spaces

The above axiomatization describes a space ILF (G) ⊆ RΩ, where Ω is the set of conjugacy

classes of G. Axiom VI guarantees that every point is non-zero, so ILF (G) ⊆ RΩ \ {0},

and the length function axioms are scale-invariant, so there is a well-defined projectivization

PILF (G) ⊆ PRΩ. Culler and Morgan show that PILF (G) is compact [22, Theorem 4.5].

Requiring trees to have a particular property gives a variety of subspaces of ILF (G) or

their projectivization that have seen study in the literature. The following subspaces will be

relevant.

• Free(G) the space of free irreducible G-trees.
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• Simp(G) the space of simplicial G-trees.

• SLF (G) the space of G-trees where no arc stabilizer contains a rank 2 free group (so-called

small trees). PSLF (G), its projectivization, is compact [22].

• cvr = Free(Fr) ∩ Simp(Fr), Culler-Vogtmann Outer Space, and CVr its projectiviza-

tion [23].

• CV r the closure of CVr in PILF (Fr). Combining the results of Cohen and Lustig with

those of Bestvina and Feighn characterize the trees of CV r in terms of certain stabiliz-

ers [10,18].

2.3 Very small trees and bounded cancellation

The work of Cohen and Lustig combined with that of Bestvina and Feighn characterizes

the Fr-trees representing projective classes in CV r as the space of all very small trees [10,18].

Definition 2.3.1. A G-tree T is very small if it is minimal, small, and has

• No obtrusive powers: for all g ∈ G \ {id} and n such that gn 6= e, Fix(g) = Fix(gn).

• No tripod stabilizers: for all a, b, c ∈ T such that the convex hull H = Hull(a, b, c) is

not a point or arc, Stab(H) = {id}.

By virtue of their free simplicial approximability, many classical results about free groups

have analogs for very small trees. One indispensable tool is Grayson and Thurston’s bounded

cancellation lemma, recorded by Cooper [20]. Fix a basis for the free group Fr and let | · |

denote word length with respect to this basis. The classical bounded cancellation lemma states
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Lemma 2.3.2 ([20]). Given an automorphism f : Fr → Fr there is a constant C such that for

all w1, w2 ∈ Fr, if |w1w2| = |w1|+ |w2| then

|f(w1w2)| ≥ |f(w1)|+ |f(w2)| − C(f).

Let T be the Fr-tree given by the Cayley graph of the fixed basis, so that | · | = Le is

a based length function on this tree. An automorphism f : Fr → Fr induces a Lipschitz

equivariant map f̃ : T → T ; f̃ is the lift of some homotopy equivalence of a wedge of circles

representing f . Lemma 2.3.2 implies that geodesics based at e get sent to the C
2 neighborhood

of the geodesic between the endpoints. Since f̃ is equivariant, we conclude that for all finite

geodesics γ : [p, q]→ T , f(γ([p, q])) is in the C
2 neighborhood of the geodesic [f(γ(p)), f(γ(q))].

This property generalizes to equivariant maps between real trees:

Definition 2.3.3. An equivariant continuous map f : S → T between Fr trees has bounded

cancellation with constant C if for all geodesics γ : [p, q] → S, f(γ) is in the C neighborhood

of the T geodesic [f(γ(p)), f(γ(q))].

In this form Bestvina, Feighn, and Handel give a bounded cancellation lemma for very small

trees.

Lemma 2.3.4 ([6, Lemma 3.1]). Suppose T0 is a free simplicial Fr-tree and T a very small

Fr-tree, and f : T0 → T is an equivariant Lipschitz map. Then f has a bounded cancellation

constant C(f) satisfying C(f) ≤ Lip(f) covol(T0).
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Their proof uses free simplicial approximation to bootstrap this result from Lemma 2.3.2.

This lemma in turn implies a form of bounded cancellation for length functions of very small

trees, reminiscent of the form of Lemma 2.3.2

Lemma 2.3.5. Suppose T is a very small Fr tree and Λ a basis for Fr. There is a constant

C(Λ, T ) such that for all g, h ∈ Fr, if |gh|Λ = |g|Λ + |h|Λ and gh is cyclically reduced with

respect to Λ, then

`T (gh) ≥ `T (g) + `T (h)− C(Λ, T )

Proof. Let SΛ be the universal cover of the rose marked by the basis Λ where all edges have

length one. Suppose f : SΛ → T is an equivariant Lipschitz surjection. (Such maps always

exist: pick ∗ ∈ SΛ and ? ∈ T , define f : S0
Λ → T on the zero skeleton by f(∗ · g) = ? · g

and extend linearly and equivariantly over edges. Since SΛ has finitely many edge orbits, this

extension is Lipschitz. Moreover, f is surjective since T is minimal.) By Lemma 2.3.4, f has

bounded cancellation. Let B = C(f) be the bounded cancellation constant. Suppose g, h ∈ Fr

satisfy |gh|Λ = |g|Λ + |h|Λ and gh is cyclically reduced. We will show that there is a constant

C such that for all q ∈ SΛ,

d(f(q), f(q · gh)) ≥ `T (g) + `T (h)− C (†)

Since f is equivariant and surjective, this implies the conclusion.
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≤ B

≤ B

f(q)

f(p)

f(p · gh)

f(q · gh)

Figure 1. A convex hull in T .

We will establish Equation † by showing that for any q ∈ SΛ there is a p ∈ CSΛ
gh so that

d(f(q), f(q · gh)) ≥ d(f(p), f(p · gh))− C ′, (2.1)

and for all p ∈ CSΛ
gh ,

d(f(p), f(p · gh)) ≥ `T (g) + `T (h)− C ′′ (2.2)

Proof of Equation 2.1. Let p be the point of CSλgh closest to q. The geodesic [q, q · gh]

contains the points p and p · gh. Consider the convex hull of the image in T of q, p, q · gh, and

p · gh (Figure 1). Since the map f has bounded cancellation, both f(p) and f(p · gh) are in

the B neighborhood of the geodesic [f(q), f(q · gh)] ⊂ T , and we have

d(f(q), f(q · gh)) ≥ d(f(p), f(p · gh))− 2B.
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Proof of Equation 2.2. Suppose now that p ∈ CSΛ
gh . We may assume that p is a vertex of

SΛ, indeed let p′ be the closest vertex to p. Since f is equivariantly Lipschitz we have

d(f(p), f(p′)) ≤ 1

2
Lip(f)

d(f(p · gh), f(p′ · gh)) ≤ 1

2
Lip(f)

and so

d(f(p), f(p · gh)) ≥ d(f(p′), f(p′ · gh))− Lip(f)

The action of Fr is transitive on the vertices of SΛ, so we may further assume that p is the

initial point of the Culler-Morgan fundamental domain for the action of gh on CSΛ
gh . Therefore,

since gh is reduced and cyclically reduced, the word length equals the translation length of gh

on SΛ. Hence |gh|Λ = |g|Λ + |h|Λ implies that p · g ∈ CSΛ
gh , and p · g is on the geodesic [p, p · gh].

Consider the image of p, p · g, and p · gh in T and the geodesic triangle they span. Let x ∈ T

be the midpoint of this triangle (Figure 2). The bounded cancellation of f implies that

d(x, f(p · g)) ≤ B. We have

d(f(p), f(p · gh)) = d(f(p), f(p · g)) + d(f(p · g), f(p · gh))− 2d(x, f(p · g))

≥ `T (g) + `T (h)− 2B
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f(p)

f(p · g)

f(p · gh)

x

Figure 2. The triangle f(p), f(p · g), f(p · gh) in T .

establishing Equation 2.2 with C ′′ = 2B + Lip(f).

Combining Equation 2.1 and Equation 2.2, we have for all q ∈ SΛ

d(f(q), f(q · gh)) ≥ `T (g) + `T (h)− 4B − Lip(f)

and therefore,

`T (gh) ≥ `T (g) + `T (h)− 4B − Lip(f).

Finally, we note that this proof holds for all equivariant Lipschitz surjections f : SΛ → T ,

andB ≤ Lip(f)·covol(SΛ) = Lip(f)·r. Taking an infimum over equivariant Lipschitz surjections

f : SΛ → T define C(SΛ, T ) = inf{Lip(f)}. We conclude

`T (gh) ≥ `T (g) + `T (h)− (4r + 1)C(SΛ, T )

where the constant C depends only on the basis and the very small tree T .
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2.4 Good pairs

Culler and Morgan used good pairs in the proof of their uniqueness statement for G-trees

coming from a given length function. They give a geometric definition.

Definition 2.4.1. Let T be a G-tree. A pair of elements g, h ∈ G is a good pair for T if

• the elements g and h are hyperbolic;

• the axes Cg and Ch meet in an arc of positive length;

• the orientations of Cg and Ch agree on the intersection;

• length(Cg ∩ Ch) < min{`(g), `(h)}.

Proposition 2.4.2 ([22, Lemma 3.6]). A pair of elements g, h ∈ G is a good pair for a G-tree

T if and only if g and h witness Axiom VI for `T .

Lemma 2.4.3. Suppose g, h ∈ G is a pair of hyperbolic elements of a G-tree T whose axes

intersect in an arc of finite length and the induced orientations agree. Then there are integers

A,B > 0 so that for all a ≥ A and b ≥ B, ga, hb is a good pair.

Proof. By hypothesis g and h satisfy the first three points of the geometric definition of a good

pair. Let N = length(Cg ∩ Ch). It is immediate that A = dN/`T (g)e and B = dN/`T (h)e are

the desired integers.

The axes of a pair of group elements satisfying the hypotheses of Lemma 2.4.3 have distinct

endpoints; this is a form of independence seen by the tree, and closely related to the algebraic

independence of group elements in the subgroup generated by a good pair.
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Definition 2.4.4. Let T be a G-tree. Two hyperbolic elements g, h ∈ G are T -independent

when

∂T g ∩ ∂Th = ∅.

Lemma 2.4.5. Suppose g, h ∈ G is a good pair for a G-tree T . Then 〈g, h〉 ∼= F2, the action of

F2 on T is free and properly discontinuous, and all x, y ∈ 〈g, h〉 are algebraically independent

if and only if x and y are T -independent.

Proof. This proof is essentially given by Culler and Morgan [22, Lemma 2.6] however we also

understand the ends of axes of elements.

Let H be the union of a fundamental domain for the action of g on Cg containing Cg ∩ Ch

and a fundamental domain for the action of h on Ch containing Cg ∩ Ch. It is evident from

the construction that H · g± and H · h± meet H in its endpoints. One can show by induction

that for any reduced word in g and h the interior of H is disjoint from H · w. Let S be the

subtree of T which is the orbit of H under 〈g, h〉. The action of 〈g, h〉 is free and properly

discontinuous on S with fundamental domain H, which implies 〈g, h〉 ∼= F2. Moreover, there is

a homeomorphism from the Gromov boundary ∂F2 to ∂S induced by the quasi-isometry given

by the Milnor-Švarc lemma [13, Proposition I.8.19, Theorem III.H.3.9]; the set ∂Tx is the image

of the endpoints in the Gromov boundary of the axis of x acting on F2, which are the limits of

x±n. Thus, if x, y ∈ 〈g, h〉 are algebraically independent, they are T -independent.

Conversely, if x, y ∈ 〈g, h〉 are T -independent, applying the inverse of the homeomorphism

used above we see that x and y are algebraically independent.
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Good pairs abound and are readily created from nice enough T -independent pairs.

Lemma 2.4.6. Suppose g, h ∈ G act hyperbolically on an irreducible G-tree T with length

function `. Suppose further that `(h) < `(g), g and h are T -independent, and that if Cg∩Ch 6= ∅

the orientations induced by g and h agree. In this case Cgh ∩ Cgh−1 is an arc of finite length.

Corollary 2.4.7. With g, h ∈ G, T as above, there exist J,K > 0 such that (gh)j , (gh−1)k is

a good pair for T , for all j ≥ J and k ≥ K.

Proof. Combine the lemma with Lemma 2.4.3.

Proof of Lemma 2.4.6. We analyze the cases for Cg ∩Ch. Since g, h are T -independent, the

only possibilities are

• Cg ∩ Ch = ∅

• Cg ∩ Ch is a bounded and non-empty arc.

Case Cg ∩ Ch = ∅. Let α denote the oriented geodesic from Cg to Ch, and set o(α) = p

and t(α) = q. The axis of Cgh−1 contains the geodesic

[p · g−1hg−1, p · hg−1, q · hg−1, q · g−1, p · g−1, p, q, q · h−1, p · h−1].

The axis of Cgh contains the geodesic

[p · g−1h−1g−1, p · h−1g−1, q · h−1g−1, q · g−1, p · g−1, p, q, q · h, p · h].
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Cgh ∩ Cgh−1

α

Ch

Cg

Cghg−1

p · h−1g−1 p · hg−1

q · h−1g−1 q · g−1 q · hg−1

p · g−1 o(α) = p

t(α) = qq · h−1 q · h

p · h−1 p · h

Figure 3. Creating a good pair from elements with disjoint axes.

These geodesics are two copies of the respective Culler-Morgan fundamental domains, and are

given in the order of their their induced orientations. Hence Cgh ∩ Cgh−1 is the geodesic

[q · g−1, p · g−1, p, q],

illustrated in Figure 3, and the induced orientations from Cgh and Cgh−1 agree.

Case Cg ∩ Ch = α. In this case we take the common induced orientation on α, with the

convention α = o(α) = t(α) when α is a point, and set o(α) = p and t(α) = q. As before,
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the Culler-Morgan fundamental domains for gh and gh−1 (note that, since `(g) 6= `(h) both

products are hyperbolic) concatenated with their images under (gh)−1 and (gh−1)−1 are the

oriented geodesics

[q · g−1h−1g−1, q · h−1g−1, q · g−1, q, q · h]

and

[q · g−1hg−1, q · hg−1, q · g−1, q · h−1]

respectively. Since `(h) < `(g), d(q ·h−1, q) < d(q ·g−1, q). If q ·h−1 ∈ α we see that Cgh∩Cgh−1

is the path q · g−1, q · h−1. Otherwise, q · g−1 /∈ α and Cgh ∩Cgh−1 = [q · g−1, p]. The situations

are illustrated in Figure 4.

2.5 A core sampler

The Guirardel core of two trees was introduced by Guirardel to give a geometric unification of

several intersection phenomena in group theory, including the intersection of curves on surfaces,

Scott’s intersection number for splittings, and Culler, Levitt, and Shalen’s core of trees dual to

measured laminations on a surface. Guirardel gives two definitions, one which makes it easy

to understand the geometry of the object and its algebraic implications, and one for which

calculations (and seeing that the core is even non-empty!) are easier.

Definition 2.5.1 ([26]). The core of two G-trees A and B, C(A,B) is the minimal closed

subset of A×B with convex fibers invariant under the diagonal action of G. The augmented
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Cgh ∩ Cgh−1

α

Cg

Ch

o(α) = p t(α) = q

q · g−1

q · h−1

q · h

α

Cgh ∩ Cgh−1

Cg

Ch

o(α) = p t(α) = q

q · g−1

q · h−1 q · h

Figure 4. Creating a good pair from elements with intersecting axes.
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core Ĉ(A,B) ⊇ C(A,B) is the minimal closed connected superset with convex fibers invariant

under the diagonal action.

Remark. If A and B have minimal subtrees A′ and B′ then the core must be contained in

A′ ×B′.

To construct the core in a more concrete fashion, given two G-trees A and B, consider

products of directions, called quadrants Q = δA × δB.

Definition 2.5.2. A quadrant Q = δA× δB ⊆ A×B in a product of G-trees is heavy if there

is a basepoint ∗ = (?, •) ∈ A×B and a sequence gk ∈ G so that

• For all k, ∗ · gk ∈ Q,

• The sequences dA(?, ? · gk) and dB(•, • · gk) both diverge.

Otherwise, we say that Q is light.

Definition 2.5.3 ([26]). The core of two G-trees A and B is the subset

C(A,B) = A×B \

 ⋃
Q light

Q

 .
The choice of basepoint is not important for the definition. Guirardel works in a very general

setting, necessitating the somewhat awkward definition for light and heavy quadrants. In our

setting, a simpler definition is available.
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Definition 2.5.4. A quadrant Q = δA × δB ⊆ A×B in a product of G-trees is made heavy

by a hyperbolic element if there is a g ∈ G and a sequence of the form gk = gk that witnesses

Q being heavy.

Lemma 2.5.5 ([26, Corollary 3.8]). Suppose A and B are irreducible G-trees. Then every

heavy quadrant is made heavy by a hyperbolic element.

For irreducible trees, the core is always non-empty, though it is not always connected.

Theorem 2.5.6 ([26, Main Theorem]). Definitions 2.5.1 and 2.5.3 are equivalent.

The augmented core also has a definition in terms of quadrants. Two directions δ, η ⊆ T

a G-tree are facing if δ ∪ η = T , two quadrants Q,P ⊆ A × B are facing if their constituent

directions are facing in both A and B.

Lemma 2.5.7 ([26, Section 4.1]). The intersection of two facing light quadrants Q ∩ P is the

product of arcs. Such an intersection is contained in a maximal rectangle R = Q′ ∩ P ′, and

R ∩ C(A,B) is the two corners that are not the basepoints of the defining quadrants, these

rectangles are called twice light rectangles. The augmented core is the union of C(A,B) and

the diagonal of each maximal twice light rectangle joining the two points of the core in that

twice light rectangle.

The (augmented) core has excellent geometry. Guirardel shows that the core is a deforma-

tion retract of the product, CAT (0) in the induced path metric, and contractible. A theme

in this thesis is that the core retains certain good properties of input trees. Guirardel proves
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a proposition in this direction, if A and B are simplicial G-trees then C(A,B) is a simplicial

subcomplex of A×B [26, Proposition 2.6].

The diagonal action of G on C(A,B) induces a notion of covolume, though this notion is

not well behaved in general. The measures on A and B induce a product measure, and the

covolume of any invariant subset C ⊆ A×B is

covol(C) = inf{µA × µB(E)|C ⊆ E ·G and E is measurable}.

Definition 2.5.8. The intersection number of two G-trees A and B is

i(A,B) = covol(C(A,B)).

The intersection number is often a useful quantity, for example when A and B are simplicial

it gives the metric area of the quotient C(A,B)/G. Unfortunately for general real trees there

is no relationship between the topological dimension of C(A,B) and the area.

Example 2.5.9. Fix algebraically independent irrational numbers α, β, γ, δ. We look at two

Z4 = 〈a, b, c, d〉 actions on R. Let Tx denote translation by x, and A and B be the Z4 trees

coming from the actions:

ρA(a) = Tα ρA(b) = Tβ ρA(c) = Tγ ρA(d) = δ

ρB(a) = Tα ρB(b) = T−β ρB(c) = Tγ ρB(d) = T−δ
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The core C(A,B) = A×B = R2, and the orbit of any point under the diagonal action is dense,

so i(A,B) = 0.

2.6 Bass and Serre’s arboretum

A group action on a tree provides information about its algebraic structure. In the case of

a simplicial tree, Bass and Serre [46] developed a detailed structure theory, relating the tree

action to a generalization of amalgamated products known as a graph of groups. Below we

recall key results of the theory and fix notation.

A graph Γ is a collection of vertices V (Γ), edges E(Γ) ⊆ V × V , so that e = (o(e), t(e)),

and an involution ·̄ : E → E, satisfying ē 6= e and o(ē) = t(e). These edges are referred to

as oriented edges, and a graph Γ has a topological realization as a CW-complex by taking

a zero cell for each vertex, and attaching a one cell to o(e), t(e) for a set of representatives for

the orbits of the involution ·̄. An orientation of a graph Γ is a set of orbit representatives for

the involution.

A simplicial tree T can be given a graph structure by taking branch points as vertices, and

for each pair of vertices p, q ∈ T such that the only vertices on the oriented arc [p, q] are p, q

the edge (p, q). The involution is given by reversing the orientation, so that [p, q] = [q, p]. The

tree T is the topological realization of this graph structure (though we use the metric topology

on T which is not equivalent to the CW topology when there are branch points with infinite

order). When it is important to do so we will distinguish between a simplicial tree and a graph

structure arising from a simplicial tree by calling the latter a graphical tree. A group G acting

on T by isometries naturally acts on this graph structure, and we say this action is without
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inversion if for all e ∈ E(T ) and g ∈ G, e · g 6= ē. An action with inversion can be turned into

an action without inversion by subdividing the graph structure of T .

Definition 2.6.1. A graph of groups is a pair (G,Γ) where Γ is a connected graph, and

G is an assignment of groups to the vertices and edges of Γ with injections ιe : Ge → Gt(e),

satisfying Ge = Gē. We will often suppress the assignment G and write Γe,Γv, etc.

The fundamental theorem of Bass-Serre theory gives an equivalence between actions on

graphical trees and graphs of groups. Given a group G acting on a graphical tree T , the

quotient graph T̄ has a graph of groups structure as follows. Pick a maximal subtree S ⊆ T̄

and an orientation Y of Γ. Define a section j : T̄ → T by first fixing a lift of S, and then

for each e ∈ Y \ E(T̄ ), define j(e) so that o(j(e)) = j(o(e)); also choose elements γe ∈ G so

that t(je) = γej(t(e)) for these edges. The assignment of γe is extended to all of E(T̄ ) by

γē = γ−1
e and γe = 1 for e ∈ E(S). Let χ be the indicator function for E(T̄ ) \ Y . The graph of

groups structure on T̄ is given by Gv = Stab(j(v)), Ge = Stab(j(e)) and the inclusion maps by

ae = γ
χ(e)−1
e aγ

1−χ(e)
e . Different choices of lift and maximal tree give isomorpic graphs of groups

structures on the quotient, with the underlying graph isomorphism the identity.

Starting from a graph of groups Γ there is an inverse operation, which recovers the group

G as the fundamental group of the graph of groups, and the tree T that G acts on so that

the quotient is Γ. This is the Bass-Serre tree of Γ, the construction depends on a choice of

maximal tree, but different choices of maximal tree give equivariantly isometric trees. We will

denote the quotient graph of groups by T̄ and its tree T . When working with properties that

are not conjugacy invariants the fundamental domain used will be specified.
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The construction of the fundamental group of a graph of groups sits naturally in the context

of the fundamental groupoid of a graph of groups, introduced by Higgins [29].

Definition 2.6.2. The fundamental groupoid π1(Γ) of a graph of groups Γ is the groupoid

with vertex set V (Γ), generated by the path groupoid of Γ and the groups Gv subject to the

following conditions. First we required that the groups Gv are sub-groupoids based at the

vertex v and the group and groupoid structures agree. Further for all e ∈ E(Γ) and g ∈ Ge, we

have

ēιē(g)e = ιe(g)

In particular this implies ē and e are inverse in π1(Γ).

By taking the vertex subgroup of π1(Γ) at a vertex v, we get the fundamental group of

π1(Γ, v). Changing basepoint results in an isomorphic group. The group π1(Γ, v) can also be

described in terms of maximal trees. Fix a maximal tree T , and take the quotient of π1(Γ)

by first identifying all vertices and then collapsing all edges of T . As explained by Higgins, it

follows from standard results in groupoid theory that the result is isomorphic to π1(Γ, v).

Let e = (e1, e2, . . . , en) be a possibly empty edge path starting at v and g = (g0, g1, . . . , gn)

a sequence of elements gi ∈ Gt(ei) with g0 ∈ Gv. These data represents an element of π1(Γ)

from v to t(en) by the groupoid product

g0e1g1 · · · engn.
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A non-identity element of π1(Γ) expressed this way is reduced if either n = 0 and g0 6= id,

or n > 0 and for all i such that ei = ēi+1, gi /∈ Geiei . By fixing appropriate left transversals, a

normal form for arrows of π1(Γ) is obtained. For each edge e ∈ E(Γ), fix a left transversal Se of

the image of Ge in Go(e) containing the identity; by inductively applying the defining relations

a reduced arrow is equivalent to a reduced arrow of the form

s0e0s1 · · · enh

with each si ∈ Sei and h ∈ Gt(en). This representation is unique [29]. By specializing to π1(Γ, v)

we obtain the Bass-Serre normal form for elements of the fundamental group based at v,

with h ∈ Gv. This normal form depends on the choice of left-transversal, but the edges used

do not.

For a conjugacy class [g] ∈ π1(Γ, v), a representative g is cyclically reduced if it is reduced,

s0 = id, and g has no sub-arrow g′ based at v such that g = cg′c−1 for c ∈ π1(Γ, v). In

particular, if o(e0) = t(e0) = v, we have that if ēn = e0, then h /∈ ιen(Gen).

When π1(Γ, v) is free, all vertex and edge groups are also free. By fixing a basis for π1(Γ, v),

the Nielsen-Schreier theorem gives a preferred basis for each Gv, and a unique left Schreier

transversal for each image Ge with respect to the preferred basis of Go(e). Further, using the

right Schreier transversal Re of Ge in Gt(e) with respect to the preferred basis, we obtain a

unique expression of the form

x0r0e1x1r1 · · · enxnrn
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where x0 ∈ ιen(Gen), each xi ∈ ιei(Gei), and ri ∈ Rei .

The combinatorial structure of a graph of groups reflects the G-tree structure of its Bass

Serre tree to an extent.

Definition 2.6.3. A graph of groups Γ is minimal if for every connected proper subgraph Γ′

and v ∈ V (Γ′) the induced map π1(Γ′, v)→ π1(Γ, v) is not surjective.

Remark. This implies that v ∈ V (Γ) for a minimal graph of groups Γ has valence one then

fe(Ge) is not surjective, with v = t(e). As long as π1(Γ) � Z or D∞, the resulting tree T is

then an irreducible π1(Γ)-tree.

Proposition 2.6.4 ([18, Proposition 9.2]). A graph of groups Γ is minimal if and only if its

Bass-Serre tree T is a minimal π1(Γ) tree.

Proof. Cohen and Lustig leave this proof to the reader. We include it here. Suppose Γ′ ⊆ Γ is

a connected proper subgraph and π1(Γ′, v)→ π1(Γ, v) is surjective. Take a lift of T ′ (the tree of

Γ′) to T . This is a π1(Γ′) invariant subtree by construction, and the action of π1(Γ is induced

by inclusion, so TΓ′ is a π1(Γ) invariant subtree, since the inclusion is surjective. Conversely,

if T ′ ⊆ T is proper and π1(Γ) invariant, then T ′/π1(Γ) is a connected proper subgraph with

graph-of-groups fundamental group π1(Γ), the induced inclusion map is an isomorphism.

To ensure that two minimal graphs of groups with equivariantly isometric Bass-Serre trees

are isomorphic as graphs of groups a certain pathology must be excluded.
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Definition 2.6.5. Let Γ be a graph of groups. A valence two vertex v ∈ V (Γ) with v = t(e1) =

t(e2) is invisible if fe1 and fe2 are isomorphisms. If Γ has no invisible vertices it is a visible

graph of groups.

Invisible vertices are readily created by barycentric subdivision of edges and result in non-

isomorphic simplicial structures on the Bass-Serre tree without changing the equivariant isom-

etry class.

2.6.1 Topological models

Several authors give, in varying stages of development, an approach to building a topological

model of a graph of groups [3,14,44,51]. The treatment given by Scott and Wall is the popular

reference [44], though Tretkoff’s account includes a significantly more extensive discussion of

the topological basis of normal forms [51]. The definitions given by the various authors are

equivalent in the cellular category, though the language is quite variable. This section will most

closely follow Tretkoff’s account.

Definition 2.6.6. A graph of spaces X over a graph Γ is a collection of cell complexes X

indexed by the vertices and edges of gamma, such that Xme = Xmē , and cellular inclusions

ιe : Xme → Xt(e). The total space of X , denoted X is the quotient of the disjoint union

tv∈V (Γ)Xv te∈E(Γ) Xe × [0, 1]
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by the identifications

Xme × [0, 1]→ Xmē × [0, 1] (x, t) 7→ (x, 1− t)

Xme × 1→ Xv (x, 1) 7→ ιe(x)

The total space X of a graph of spaces over Γ comes with a map q : X → Γ to the topological

realization of Γ by q(Xv) = v and q(Xme × {t}) = e(t), the point of e at coordinate t realizing e

as the one-cell [0, 1]. If X is a cell complex with cellular map q : X → Γ such that the preimages

of vertices and midpoints of edges gives a graph-of-spaces structure with X as the total space,

we say q induces a graph of space structure on X. Note that the image of Xme × [0, 1] in X

is the double mapping cylinder on the two inclusion maps, we denote this image Xe. (Indeed,

some authors only require the maps be π1 injective and construct the total space with the

double mapping cylinder.) The spaces Xme naturally include into the total space X via the map

Xme → Xme × {1
2}, hence the superscript m for midpoint.

By taking fundamental groups of the vertex and edge spaces of a graph of spaces we obtain

an associated graph of groups assignment G on Γ, and π1(X) ∼= π1(Γ, v). This operation of

course has an inverse, given a graph of groups Γ a natural graph of spaces over Γ can be

constructed from K(Γv, 1) and K(Γe, 1) spaces. The action on the universal cover X̃ gives a

basepoint-free definition of the fundamental group of the graph of groups.

Tretkoff gives a topological normal form for the homotopy class of a path relative to the

endpoints in a graph of spaces, taking advantage of a classification of edges in the one skeleton.
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For graph of spaces structure X with total space X, an edge in X(1) is X -nodal if it lies in

a vertex space, and X -crossing otherwise. Tretkoff’s form makes use of a fixed topological

realization of the left transversals to ensure uniqueness, we need only the topological taxonomy

of edges in the path, as formulated by Bestvina, Feighn, and Handel [8]. As a technical conve-

nience when dealing with normal forms, we require that the cellular structure of the Xe be of

the form Xme × [0, 1].

Lemma 2.6.7 ([8, Section 2.7; 51]). Every path in a graph of spaces X is homotopic relative

to the endpoints to a path of the form (called normal form)

v0H1v1H2 · · ·Hnvn

where each vi is a (possibly trivial) tight edge path of X -nodal edges, each Hi is X -crossing,

and for all 1 ≤ i ≤ n − 1, HiviHi+1 is not homotopic relative to the endpoints to an X -nodal

edge path. Any two representatives of the homotopy class of a path in normal form have the

same n. A similar statement holds for free homotopy classes of loops.

The proof of this lemma also illustrates that an edge path can be taken to normal form

by iteratively erasing a pair of crossing edges; if HiviHi+1 is homotopic relative to the

endpoints to a nodal edge path v′i then the subpath vi−1HiviHi+1vi+1 is homotopic relative to

endpoints to vi−1v
′
ivi+1 which can subsequently be tightened. Note that a path is in normal

form if and only if every sub-path is. This should be compared to the normal form for arrows in

the fundamental groupoid of a graph of groups, indeed one proof of the groupoid normal form
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is to prove this normal form and then apply the natural map from the fundamental groupoid

of the total space X to the fundamental groupoid of the graph of groups in question.



CHAPTER 3

GETTING ALONG

A brotherhood of venerable Trees.

William Wordsworth

The Guirardel intersection number measures the incompatibility of two tree actions. Sup-

pose A and B are two π1(Σ)-trees dual to measured laminations λ and µ on a surface Σ.

The intersection number i(A,B) is equal to i(λ, µ) [26]; incompatibility comes from geometric

intersection. If

i(A,B) = i(λ, µ) = 0,

then the leaves of the two laminations are either disjoint or equal, and λ∪µ is also a measured

lamination. The tree T dual to λ ∪ µ has length function `A + `B and equivariant Lipschitz

surjections T → A, T → B. Guirardel’s intersection number captures this compatibility in a

broader setting.

Definition 3.0.1. A G-tree T is a common refinement of G-trees A and B if there are

equivariant Lipschitz surjections T → A and T → B.

Theorem 3.0.2 ([26, Theorem 6.1]). Suppose A and B are two minimal G-trees such that

C(A,B) 6= ∅. Then A and B have a common refinement if and only if C(A,B) is one-dimensional.

In this case Ĉ(A,B) with the `1 metric is a common refining tree.

43
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This chapter relates Guirardel’s compatibility condition for G-trees to a compatibility con-

dition for their respective length functions, in the case that both trees are irreducible.

Theorem 3.0.3. Suppose G is a finitely generated group. Suppose A and B are irreducible

G-trees with length functions ` and m respectively. The core C(A,B) is one dimensional if and

only if ` + m is a length function on G. In this case, Ĉ(A,B) is the irreducible G-tree with

length function `+m.

Remark. Applying Guirardel’s theorem näıvely shows only that

`Ĉ(A,B)
≥ `+m,

and does not give a converse when `+m gives a G-tree.

Theorem 3.0.3 characterizes the PL structure of certain deformation spaces of G-trees.

Definition 3.0.4. A property P of G-trees is additive if for all pairs (A,B) of compatible

G-trees with property P , the augmented core Ĉ(A,B) also has property P .

We will show in Section 3.7 that stability and smallness are additive properties, but very

smallness is not. An immediate corollary of Theorem 3.0.3 describes the PL structure of a

deformation space of trees with an additive property.

Corollary 3.0.5. Suppose G is a finitely generated group and X ⊆ PLF (G) is a space of

G-trees with an additive property. The space X has a decomposition into simplices, where two

points [`], [m] ∈ X are in a common simplex if they have compatible representatives.
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The proof of Theorem 3.0.3 is in three parts. In the first, we characterize the additivity

of length functions in terms of combinatorial compatibility conditions. Secondly we show that

these compatibility conditions are equivalent to the absence of rectangles in the core. Finally

we compute the based length function of the augmented core when it is a tree, and show that it

is equal to the sum of based length functions in the input trees. A careful choice of basepoints

gives the desired conclusion.

3.1 Tree ends, boxes, and length function combinatorics

Consider a measured geodesic lamination λ of a closed hyperbolic surface Σ. Lifting λ to

the universal cover, H2 gives a dual π1(Σ)-tree T [21]. Corresponding to an oriented arc e ⊆ T

there is a subset of the boundary of H2. For each point of e coming from a leaf γ ⊆ λ, t(e)

determines a side of γ in H2, and so picks a connected component of H2 \ γ. The intersection

of the boundaries of these connected components is the subset of the boundary corresponding

to e, as in Figure 5. Endpoints of axes of the π1(Σ) action on H2 are dense in the boundary, as

are endpoints of the dual tree T , so this subset can be described entirely in terms of the group.

The description of this subset in terms of the group generalizes to G-trees. Note that for

each p ∈ e◦, the orientation of e picks a unique direction δep based at p such that t(e) ∈ δep. The

subset of ends of the tree corresponding to e is then

⋂
p∈e◦

ωT (δep).

In the sequel we will be more concerned with describing this directly from the group.
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seen
from ee

Figure 5. The part of the boundary “seen” from an arc e in the tree dual to a lamination.

Definition 3.1.1. The group ends of a direction δ ⊆ T is the set of group elements

δ(G) = {g ∈ G|ωT (g) ∈ ωT (δ)}.

Definition 3.1.2. The asymptotic horizon of an oriented arc e ⊆ T of a G-tree is

JeK =
⋂
p∈e◦

δep(G),

where δep is the unique direction based at p such that t(e) ∈ δep.
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Remark. In some figures JeK will be used to indicate the set {ω(g)|g ∈ JeK} ⊆ ∂X where X

is hyperbolic. This abuse of notation is used only in illustrative figures, and the set of group

elements will play the important role in the text. Proposition 2.2.18 implies this is not a

misleading practice.

The asymptotic horizon of an oriented arc e is all hyperbolic group elements whose axes

have an endpoint visible from e, when looking in the direction specified by the orientation. The

visibility of group ends is sufficient to find group elements whose axes either contain e or are

disjoint from e, exercises in the calculus of axes that recorded in the next two lemmas.

To fix notation, for an oriented arc e ⊆ T in a G-tree, let R−e be the connected component

of T \ e◦ containing o(e) and R+
e the component containing t(e).

Lemma 3.1.3. Suppose e ⊆ T is an oriented arc in a G-tree T . Suppose g ∈ JeK and h ∈ JēK.

Then there is an N > 0 such that for all n ≥ N, f = h−ngn is hyperbolic and e ⊆ Cf . Moreover

the orientation of e agrees with the orientation on Cf induced by f .

Proof. Consider the intersection Cg ∩ Ch. There are three cases.

Case 1: Cg ∩ Ch = ∅. Let a be the unique shortest oriented arc joining Cg to Ch with

t(a) ∈ Cg. Take

N >
dT (e, a) + length(e)

min{`T (g), `T (h)}
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and suppose n ≥ N . Consider the Culler-Morgan fundamental domain for the action of f =

h−ngn on its axis: the geodesic path b in T passing through the points

[o(a) · hn, o(a), t(a), t(a) · gn, o(a) · gn].

By hypothesis, the axis Ch meets R−e in at least a positive ray and hR−e ⊆ R−e . If o(a) ∈ T \R−e ,

then the ray of Ch based at o(a) directed at ωT (h) must pass through o(a). By the choice of

N , o(a) · hn ∈ R−e . Similarly, t(a) · gn ∈ R+
e . The arc e is the unique geodesic in T joining R−e

to R+
e , hence e ⊆ b. Moreover, the action of f takes o(b) = o(a) · hn to t(b) = o(a) · gn, so the

orientations of e and b agree, as required.

Case 2: Cg ∩ Ch = a 6= ∅, a a point or arc. Orient a according to the orientation of g.

(When a is a point, orientation does not matter; we use the convention o(a) = a = t(a).) Take

N >
dT (e, a) + length(e) + length(a)

min{`T (g), `T (h)}

and suppose n ≥ N . Again consider the Culler-Morgan fundamental domain for the action of

f = h−ngn on its axis. It contains (regardless of the agreement between the orientations of h

and a) the geodesic path b in T passing through the points

[t(a) · hn, t(a), t(a) · gn].
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As in the previous case, we find t(a) · hn ∈ R−e and t(a) · gn ∈ R+
e . We conclude e ⊆ b and the

orientations agree.

Case 3: Cg ∩ Ch contains a ray. If Cg = Ch then e ⊆ Ch−1g = Cg = Ch and N = 1

suffices. So suppose Cg 6= Ch. Let p ∈ Cg ∩ Ch be the basepoint of the common ray. Take

N >
dT (p, e) + length(e)

min{`T (g), `T (h)}

and suppose n ≥ N . Once more, a fundamental domain for the action of f = h−ngn on its axis

can be described. It contains the geodesic path b in T passing through the points

[p · hn, p, p · gn].

By the choice of n, we find p ·hn ∈ R−e and p ·gn ∈ R+
e . We conclude e ⊆ b and the orientations

agree.

Lemma 3.1.4. Suppose e ⊆ T is an oriented arc in a G-tree T . Suppose g, h ∈ JeK and

ωT (g) 6= ωT (h). Then there is an N > 0 such that for all n ≥ N , f = h−ngn is hyperbolic and

Cf ⊆ R+
e .

Proof. As in the proof of the previous lemma, there are three cases depending on Cg ∩ Ch.

Case 1: Cg ∩Ch = ∅. Let a be the oriented geodesic from Ch to Cg, so that t(a) ∈ Cg. Let

C+
g and C+

h be the positive rays of Cg and Ch based at t(a) and o(a) respectively. The infinite

geodesic C+
h ∪a∪C

+
g has both endpoints in ∂R+

e , so must be contained in R+
e , therefore a ⊆ R+

e .
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At this point it is tempting to take N = 1, however we must exercise care to ensure that the axis

of the product is contained in R+
e , as this axis is not the infinite geodesic previously mentioned.

Since g, h ∈ JeK, there is an integer N1 > 0 such that for all n ≥ N1 we have

d(t(a) · gn, t(e)) > d(t(a), t(e))

and

d(o(a) · hn, t(e)) > d(o(a), t(e)).

Let αg and αh be the geodesics from t(e) to Cg and Ch respectively, oriented such that

o(αg) = o(αh) = o(e). Since g acts by translation on its axis in the direction of ωT (g), there

is an N2 such that for all n ≥ N2, t(a) · gn > t(αg) (in the orientation on Cg induced by

the action of g). Similarly there is an N3 such that for all n ≥ N3 o(a) · hn > t(αh). Take

N = max{N1, N2, N3}.

Suppose n ≥ N . As in the previous lemma, we use the Culler-Morgan fundamental domain

for the action of f = h−ngn on Cf : the geodesic b passing through the points

[o(a) · hn, o(a), t(a), t(a) · gn].

By construction, b ⊆ R+
e . Further, the geodesic from t(αg) to t(βg) is a proper subarc of b.

Therefore, the center u of the geodesic triangle t(αg), t(αh), t(e) is in the interior of b. This

point is, by construction, the unique closest point of b to o(e). Since u is in the interior of b, u

is also the unique closest point of Cf to o(e), whence e * Cf and so Cf ⊆ R+
e as required.
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Case 2: Cg ∩ Ch = a 6= ∅, a an arc or point. Orient a so that it agrees with the

orientation of Cg induced by the action of g (again with the convention that if a is a point,

o(a) = a = t(a)). If the orientations of Cg and Ch disagree on a, then with C+
g and C+

h defined

as in the previous case, the previous argument applies. If the orientations of Cg and Ch agree

on a, let C+
g be as before and instead take C+

h to be the infinite ray of Ch based at t(a). The

infinite geodesic C+
g ∪ C+

h has both endpoints in ∂R+
e , so t(a) ∈ R+

e . The argument from the

previous case then applies, mutatis mutandis, with t(a) in place of o(a).

Case 3: Cg∩Ch contains a ray. In this case, since ωT (g) 6= ωT (h), Cg 6= Ch. Let p be the

basepoint of the common ray Cg ∩ Ch. Since g, h ∈ JeK, we must have p ∈ R+
e . The argument

from case one then applies, mutatis mutandis, with p in place of o(a).

3.2 Combinatorial compatibility conditions

Consider two measured geodesic laminations λ and µ on a closed hyperbolic surface Σ.

Suppose λ and µ have leaves that intersect transversely. This intersection produces arcs a ⊆ A

and b ⊆ B in the dual trees to λ and µ such that the horizons of a and b, with both orientations,

all intersect, as in Figure 6.

This intersection is also detected by certain pairs of elements of π1(Σ). The hyperbolic

structure on Σ gives an action of π1(Σ) on the hyperbolic plane H2, and elements of π1(Σ) act

hyperbolically. Given two elements x, y ∈ π1(Σ), if the axes of x and y are separated by a set

of leaves of positive measure of the lift λ̃ ⊆ H2 then the axes of x and y in the dual tree A will

be disjoint. On the other hand, if the axes of x and y cross a common set of leaves of µ̃ (with
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λ

µ JaK
JāK

JbK

Jb̄K

a

b

Figure 6. Intersecting measured laminations produce intersecting horizons.
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separating leaves

x

y

λ

common
crossed leaves

x

y
µ

Figure 7. Detecting the intersection of laminations from the intersection pattern of the axes of
two fundamental group elements with each lamination.

positive measure) then their axes in the dual tree B will overlap in an arc. The presence of a

pair of such elements detects the intersection of λ and µ, as illustrated in Figure 7.

Another situation in which a pair of fundamental group elements x, y ∈ π1(Σ) detect the

intersection of λ and µ occurs when the axes of x and y cross a common set of leaves of positive

measure in both λ̃ and µ̃. In this case, if the axes of x and y cross their common leaves of λ̃

with differing orientations and their common leaves of µ̃ with the same orientation, then λ̃ and

µ̃ must intersect, as in Figure 8.

Each of these situations has a natural generalization to the setting of G-trees.
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Figure 8. Detecting the intersection of laminations from the intersection orientation of the
axes of two fundamental group elements.

Definition 3.2.1. Two G-trees A and B are incompatible if there are oriented arcs a ⊆ A

and b ⊆ B such that the four sets

JaK ∩ JbK JāK ∩ JbK JaK ∩ Jb̄K JāK ∩ Jb̄K

are non empty. Trees that are not incompatible are compatible.

Remark. Behrstock, Bestvina, and Clay [4] consider a similar collection of sets when giving a

criterion for the presence of a rectangle in the Guirardel core of two free simplicial Fr trees.

This connection will be elaborated on in Section 3.4.
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Pairs of group elements with either overlapping or disjoint axes for a given action capture

the situations in Figure 7 and Figure 8. Let P (G) = G×G \∆ be the set of all distinct pairs

of elements in our group.

Definition 3.2.2. For a G-tree T the overlap set, OT ⊆ P (G), is all pairs (g, h) ∈ P (G) such

that g and h are hyperbolic and Cg ∩ Ch contains an arc.

The disjoint set, DT ⊆ P (G), is all pairs (g, h) ∈ P (G) such that Cg ∩ Ch = ∅.

This definition can also be stated for length functions.

Definition 3.2.3. For a length function ` : G→ R≥0 the overlap set, O` ⊆ P (G) is all pairs

(g, h) ∈ P (G) such that

`(gh) 6= `(gh−1).

The disjoint set, D` ⊆ P (G) is all pairs (g, h) ∈ P (G) such that

`(gh) = `(gh−1) > `(g) + `(h).

In the definition for a tree, the hyperbolicity requirement for membership in OT is necessary,

but the length function requirement implies that O` consists of pairs of hyperbolic elements.

Lemma 3.2.4. Suppose ` is a length function on G. If (g, h) /∈ D` satisfies `(g) = 0, then

`(gh) = `(gh−1) = `(h).

In particular all pairs in O` are pairs of hyperbolic elements.
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Proof. First, suppose `(h) = 0 also. Since (g, h) /∈ D`, length function axiom IV implies

max{`(gh), `(gh−1)} ≤ `(g) + `(h) = 0

and we are done. So suppose `(h) > 0. Let T be the irreducible tree realizing `. It must be the

case that Cg ∩Ch is non-empty, by Lemma 2.2.13. Consider p ∈ T and α the shortest arc from

p to Cg ∩Ch. Let q be the endpoint of α in Cg ∩Ch. Since g is elliptic, α · g ∩Cg ∩Ch contains

q, as does α ∩ α · g ∩ Ch. The element h is hyperbolic, therefore

dT (p, p · gh) ≥ dT (q, q · gh) = dT (q, q · h) = `(h)

dT (p, p · gh−1) ≥ dT (q, q · h−1) = `(h),

and we conclude `(gh) = `(gh−1) = `(h) as required.

The equivalence of definitions 3.2.2 and 3.2.3 can not be expected in general. However,

for irreducible trees, which are determined by their length functions, the two definitions are

equivalent.

Proposition 3.2.5. Suppose T is an irreducible G-tree with length function `. Then OT = O`

and DT = O`, that is, definitions 3.2.2 and 3.2.3 are equivalent.

Proof. It is immediate from the definitions that OT ⊆ O` and similarly DT ⊆ D`.



57

To demonstrate the reverse inclusions, suppose (g, h) ∈ O`. By Lemma 3.2.4, g and h are

hyperbolic. If, for a contradiction, (g, h) 6∈ OT then either Cg ∩ Ch = ∅ or Cg ∩ Ch = {∗}. In

either case we have

`(gh) = `(gh−1) = `(g) + `(h) + dT (Cg, Ch),

a contradiction.

If (g, h) ∈ D` but (g, h) /∈ DT then Cg ∩ Ch is non-empty, and so

max{`(gh), `(gh−1)} ≤ `(g) + `(h),

a contradiction.

Note that the definitions of O` and D` depend only on the projective class of `; the overlap

condition is a topological property of a tree, so this is expected. Also be aware that O` ∪D` 6=

P (G); pairs such that `(gh) = `(gh−1) = `(g) + `(h) exist.

The interaction of overlap and disjoint sets captures the situations pictured in Figure 7 and

Figure 8. We state the definitions in terms of length functions; equivalent formulations in terms

of irreducible G-trees are possible but not useful in the sequel.

Definition 3.2.6. Two length functions ` and m on a group G have compatible combina-

torics if

O` ∩ Dm = D` ∩ Om = ∅.



58

Remark. The equivalent definition for trees is trivial for abelian actions. For an abelian action

the tree is a line, and the disjoint set is empty.

Definition 3.2.7. Two length functions ` and m on a group G are coherently oriented if

for all (g, h) ∈ O` ∩ Om

`(gh−1) < `(gh)⇔ m(gh−1) < m(gh).

The figures in the motivating discussion of this section strongly suggest that these three

compatibility definitions are equivalent, at least for irreducible G-trees. Further motivation is

provided by the following lemma, which produces pairs of group elements with distinct axes,

mirroring the pictures.

Lemma 3.2.8. Suppose A and B are irreducible G-trees that are incompatible in the sense

of definition 3.2.1. Let a ⊆ A and b ⊆ B be arcs witnessing this fact. Then there exist group

elements g ∈ JaK∩JbK and α ∈ JaK∩Jb̄K such that CAg ∩CAα is bounded; and elements h ∈ JāK∩Jb̄K

and β ∈ JāK ∩ JbK such that CBh ∩ CBβ is bounded.

Proof. The argument is symmetric so we give the construction of g and α. Since A and B

are incompatible the relevant sets are non-empty. Take any g ∈ JaK ∩ JbK and α ∈ JaK ∩ Jb̄K.

If CAg ∩ CAα is bounded we are done. Suppose CAg ∩ CAα contains a ray. Let s ∈ G be any A-

hyperbolic element such that CAs ∩CAα is bounded. Such an element exists since A is irreducible

(see Proposition 2.2.17). If s is elliptic in B then αs is hyperbolic in both A and B and CAαs∩CAα

is bounded, so we may suppose that s is hyperbolic in both A and B. Since g ∈ JaK∩ JbK there
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is some N > 0 such that gNsg−N ∈ JaK ∩ JbK. Take g′ = gNsg−N . By construction CAg′ ∩ CAα is

bounded, so g′, α is the desired pair.

Corollary 3.2.9. The group elements g and α are A-independent, and the group elements h

and β are B-independent.

For irreducible G-trees, the three definitions of compatibility are equivalent. The strategy

suggested by the pictures is to use boundary points to pick suitable elements of G. This

philosophy guides the proof below.

Lemma 3.2.10. Suppose ` and m are length functions on G corresponding to the irreducible

G-trees A and B respectively. The following are equivalent.

1. The length functions ` and m do not have compatible combinatorics.

2. The length functions ` and m are not coherently oriented.

3. The trees A and B are not compatible.

Proof. We will show 1⇔ 3 and 2⇔ 3.

(1 ⇒ 3.) Suppose, without loss of generality, (g, h) ∈ D` ∩ Om. In A, by definition

CAg ∩ CAh = ∅; let a ⊆ A be the geodesic joining CAg and CAh , oriented so that t(a) ∈ CAg . We

have g± ∈ JaK and h± ∈ JāK. In B, again by definition there is an arc b = CBg ∩ CBh . Without

loss of generality we assume g and h induce the same orientation on b, and use this orientation.

Then g, h ∈ JbK and g−1, h−1 ∈ Jb̄K. We conclude the four sets

JaK ∩ JbK JāK ∩ JbK JaK ∩ Jb̄K JāK ∩ Jb̄K,
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a CA
hCA

gJaK JāK b

CB
hCB

g

JbK

Jb̄K

Figure 9. Incompatible combinatorics implies incompatible trees.

are all non-empty. (See Figure 9 for an illustration.)

(2⇒ 3.) Let g, h ∈ G witness the incoherent orientation of ` and m, so that `(gh−1) < `(gh)

but m(gh−1) > m(gh). Let a = CAg ∩ CAh and b = CBg ∩ CBh . Since (g, h) ∈ O` ∩ Om, both a

and b are arcs. Orient a according to the orientation induced by g on CAg , and similarly orient

b. The inequality implies that the orientation on a induced by h agrees with the orientation

on a; thus g, h ∈ JaK and g−1, h−1 ∈ JāK. Similarly, the inequality m(gh−1) > m(gh) implies

g, h−1 ∈ JbK and g−1, h ∈ Jb̄K. We conclude the four sets

JaK ∩ JbK JāK ∩ JbK JaK ∩ Jb̄K JāK ∩ Jb̄K,
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a
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hCA

g

JaK

JāK

b

CB
h

CB
g

JbK

Jb̄K

Figure 10. Incoherent orientation implies incompatible trees.

are all non-empty. (See Figure 10 for an illustration.)

(3 ⇒ 1 and 2.) Let a ⊆ A and b ⊆ B be arcs witnessing the incompatibility of A and B.

Fix group elements g ∈ JaK ∩ JbK, h ∈ JāK ∩ Jb̄K, α ∈ JaK ∩ Jb̄K, and β ∈ JāK ∩ JbK using Lemma

3.2.8; by Corollary 3.2.9 the ends of g and α in A are distinct, and the ends of h and β in B

are distinct.

Let NB be the integer guaranteed by Lemma 3.1.3 applied to g and α in B, and NA be

the integer supplied by Lemma 3.1.4 applied to g and α in A. (Note that the hypothesis

of Lemma 3.1.4 on the ends of g and α is satisfied.) Set N = max{NA, NB} and consider

ρ = α−NgN . Lemma 3.1.3 implies b ⊆ CBρ , and Lemma 3.1.4 implies CAρ ⊆ R+
a . Choose M by



62

a similar process applied to h and β, so that σ = β−MhM satisfies b ⊆ CBσ and CAσ ⊆ R−a . By

construction CBρ ∩CBσ ⊇ b, so (ρ, σ) ∈ Om; and CAρ ∩CAσ = ∅, so (ρ, σ) ∈ D`. Hence D`∩Om 6= ∅

and ` and m do not have compatible combinatorics, as required.

Continuing the theme, let Ja be the integer given by Lemma 3.1.3 applied to g, h and a ⊆ A,

Jb be the integer given by the application to g, h and b ⊆ B, and J = max{Ja, Jb}. Similarly,

let Ka be the integer given by Lemma 3.1.3 applied to α, β and a, Kb be the integer given

by the application to α, β and b̄ ⊆ B (note the reversed orientation), and K = max{Ka,Kb}.

Consider c = h−JgJ and γ = β−KαK . By Lemma 3.1.3 a ⊆ CAa ∩CAγ and all three orientations

agree; however b ⊆ CBc ∩CBγ , but the orientation of CBc induced by c agrees with b, while that

of CBγ induced by γ agrees with b̄. Translating this to the length functions ` and m we find

(c, γ) ∈ O` ∩Om and `(cγ−1) < `(cγ) but m(cγ−1) > m(cγ), hence ` and m are not coherently

oriented, as required.

In light of this lemma a single definition of compatible will be used throughout the remainder

of this thesis.

Definition 3.2.11. Two irreducible G-trees A and B with length functions ` and m are com-

patible if, equivalently

• The length functions ` and m have compatible combinatorics.

• The length functions ` and m are coherently oriented.

• The trees A and B are compatible in the sense of Definition 3.2.1.
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Any of the three characterizations will be used as convenient, without further explicit ref-

erence to Lemma 3.2.10. Note that this definition applies equally well to projective classes of

trees. The first two points depend only on the projective class, so if ` and m are compatible

then so are s` and tm for all s, t ∈ R>0.

3.3 Compatibility is equivalent to additivity

When two measured laminations λ and µ are compatible the transverse measures may be

summed. More is true, the compatibility of the supports implies every point in the convex cone

spanned by λ and µ is a measure on λ ∪ µ. This compatibility generalizes to length functions,

and Lemma 3.3.1 forms part of the proof of Theorem 3.0.3.

Lemma 3.3.1. Suppose ` and m are length functions on a group G. The sum `+m is a length

function on G if and only if ` and m are compatible.

Proof. First observe that `+m always satisfies length function axioms I–III. We will focus on

IV–VI.

For the forward implication, suppose ` + m is a length function on G. For a contradiction

suppose that ` and m do not have coherent orientation, and there is some pair (g, h) ∈ O`∩Om

such that `(gh−1) < `(gh) and m(gh) < m(gh−1). By Lemma 3.2.4, g and h are hyperbolic
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with respect to both ` and m, so both g and h must be hyperbolic in ` + m. Length function

axiom V implies that for ` and m respectively,

`(gh) = `(g) + `(h)

and

m(gh−1) = m(g) +m(h).

Taking a sum we have

`(gh) +m(gh−1) = `(g) +m(g) + `(h) +m(h).

By hypothesis, both

`(gh) +m(gh) < `(gh) +m(gh−1)

`(gh−1) +m(gh−1) < `(gh) +m(gh−1).

We conclude that

max{(`+m)(gh), (`+m)(gh−1)} < `(gh) +m(gh−1)

= (`+m)(g) + (`+m)(h).
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This is a contradiction, since `+m satisfies length function axiom V, which implies the above

strict inequality must be equality. We conclude that ` and m are compatible.

For the converse, suppose ` and m are compatible. As remarked previously, `+m satisfies

length function axioms I–III. We will show `+m satisfies the remaining axioms.

Axiom IV. Suppose g, h ∈ G. We will proceed through the following cases:

• (g, h) ∈ O`,

• (g, h) ∈ Om,

• (g, h) ∈ P (G) \ (O` ∪ Om).

Case (g, h) ∈ O`. Since ` satisfies axiom IV,

max{`(gh), `(gh−1)} ≤ `(g) + `(h).

Since ` and m have compatible combinatorics, (g, h) ∈ P (G) \ Dm, which implies that

max{m(gh),m(gh−1)} ≤ m(g) +m(h).

Hence we may calculate

max{(`(gh) +m(gh), `(gh−1) +m(gh−1)} ≤ max{`(gh), `(gh−1)}+ max{m(gh),m(gh−1)}

≤ `(g) + `(h) +m(g) +m(h)

and conclude that in this case `+m satisfies axiom IV.
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Case (g, h) ∈ Om. The proof is symmetric with the previous case.

Case (g, h) ∈ P (G) \ (O` ∪ Om). In this case, by hypothesis both

`(gh) = `(gh−1)

and

m(gh) = m(gh−1).

Adding, we conclude

`(gh) +m(gh) = `(gh−1) +m(gh−1)

as required.

Axiom V. Suppose g, h ∈ G satisfy `(g) + m(g) > 0 and `(h) + m(h) > 0. This implies

that g and h are both hyperbolic in at least one of ` and m. We proceed through the same

cases.

• (g, h) ∈ O`,

• (g, h) ∈ Om,

• (g, h) ∈ P (G) \ (O` ∪ Om).

Case (g, h) ∈ O`. In this case, since ` and m are compatible, (g, h) /∈ Dm and we argue by

subcases.

• m(g) > 0 and m(h) > 0,

• m(g) = 0 and m(h) ≥ 0,
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• m(g) ≥ 0 and m(h) = 0.

Subcase m(g) > 0 and m(h) > 0. Since ` and m are coherently oriented we have, without

loss of generality,

`(gh−1) < `(gh)

and

m(gh−1) ≤ m(gh)

Appealing to axiom V for ` and m we have,

`(gh) = `(g) + `(h)

and

m(gh) = m(g) +m(h).

Summing, we conclude

`(gh−1) +m(gh−1) ≤ `(gh) +m(gh)

= `(g) +m(g) + `(h) +m(h).

Therefore in this subcase `+m satisfies axiom V.
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Subcase m(g) = 0 and m(h) ≥ 0. By Lemma 3.2.4, m(gh−1) = m(gh) = m(h), so axiom

V for `+m follows immediately from axiom V for `.

Subcase m(g) ≥ 0 and m(h) = 0. This subcase is symmetric with the previous one.

Case (g, h) ∈ Om. This case is symmetric with the previous case.

Case (g, h) ∈ P (G) \ (O` ∪ Om). In this case we have

`(gh) = `(gh−1) = `(g) + `(h) + ∆`

m(gh) = m(gh−1) = m(g) +m(h) + ∆m

for real numbers ∆`,∆m ≥ 0. Immediately we have that

`(gh) +m(gh) = `(gh−1) +m(gh−1)

and from

`(gh) +m(gh) = `(g) +m(g) + `(h) +m(h) + ∆` + ∆m

we conclude that axiom V is satisfied by `+m.

Axiom VI. Finally we confirm that `+m has a good pair of elements. Let (g, h) be a good

pair of elements for `, so that

0 < `(g) + `(h)− `(gh−1) < 2 min{`(g), `(h)}.

We check the following cases
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• (g, h) ∈ Om,

• (g, h) /∈ Om.

Case (g, h) ∈ Om. In this case, since ` and m are coherently oriented, m(gh−1) < m(gh).

By Lemma 3.2.4, g and h are hyperbolic in m. Therefore, by Lemma 2.4.3, there are positive

integers a and b so that (ga, hb) is a good pair for m. Further by Lemma 2.4.3 the property

of being a good pair is preserved under taking positive powers, so (ga, hb) is a good pair for `

also. Adding the good pair inequalities, we calculate

0 < `(ga) +m(ga) + `(hb) +m(hb)− `(gah−b)−m(gah−b)

< 2(min{`(ga), `(hb)}+ min{m(ga),m(hb)})

≤ 2 min{`(ga) +m(ga), `(hb) +m(hb)}.

Hence (ga, hb) is a good pair for `+m.

Case (g, h) /∈ Om. In this case, since ` and m have compatible combinatorics, (g, h) /∈ Dm,

and we have

m(gh−1) = m(gh) = m(g) +m(h).

Adding this to the ` good pair inequality for (g, h), we have

0 < `(g) + `(h)− `(gh−1) = `(g) +m(g) + `(h) +m(h)− `(gh−1)−m(gh−1)
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Since

2 min{`(g), `(h)} ≤ 2 min{`(g) +m(g), `(h) +m(h)},

we conclude (g, h) is again a good pair for `+m.

This concludes the case analysis. We have verified axioms IV–VI for ` + m, and conclude

that `+m is a length function, as required.

Corollary 3.3.2. Every point in Cone(`,m), the convex cone spanned by ` and m in the space

of length functions, is a length function if and only if ` and m are compatible.

3.4 Compatibility and the core

In the setting of free simplicial Fr-trees, Behrstock, Bestvina, and Clay give a definition

of edge boxes similar to our asymptotic horizons, and show that intersections of edge boxes

can characterize the presence of rectangles in the core [4]. Using our definition of asymptotic

horizon we generalize this characterization to the setting of arbitrary irreducible G-trees. This

characterization connects the notions of compatibility discussed so far with Guirardel’s core.

Lemma 3.4.1. Suppose A and B are irreducible G-trees and a ⊆ A, b ⊆ B are open oriented

arcs. The rectangle a × b ⊆ C(A,B) if and only if for all closed subarcs a′ ⊆ a and b′ ⊆ b the

four sets

Ja′K ∩ Jb′K Jā′K ∩ Jb′K Ja′K ∩ Jb̄′K Jā′K ∩ Jb̄′K

are non-empty.
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Corollary 3.4.2. Two irreducible G-trees are compatible if and only if their core does not

contain a rectangle.

Remark. The argument below can be readily adapted to the following other conditions for core

membership when taking the core of irreducible G-trees.

• A point (p, q) ∈ C(A,B) if and only if for every quadrant Q = δ × η containing (p, q),

δ(G) ∩ η(G) 6= ∅.

• For an open arc b ⊆ B and a point p ∈ A, {p} × b ⊆ C(A,B) if and only if for every

direction δ ⊆ A containing p and every closed subarc b′ ⊆ b,

δ(G) ∩ Jb′K 6= ∅

A symmetric condition also holds for open subarcs a ⊆ A and points q ∈ B.

• The rectangle a × b is twice light, with main diagonal from (o(a), o(b)) to (t(a), t(b)) if

and only if for all closed subarcs a′ ⊆ a and b′ ⊆ b the sets

Ja′K ∩ Jb̄′K = Jā′K ∩ Jb̄K = ∅

These conditions collectively are referred to as many horizon conditions. When applying

the conditions we will often use the fact that JaK ⊆ Ja′K for any subarc a′ ⊆ a.
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Proof. Suppose the four sets are non-empty for all closed subarcs a′ ⊆ a and b′ ⊆ b (orient

subarcs with the same orientation as their parent arc). We will show every quadrant meeting

a × b is heavy, so that by definition a × b ⊆ C(A,B). Suppose δ × σ is a quadrant and

δ × σ ∩ a × b 6= ∅. Further suppose t(a) ∈ δ and t(b) ∈ σ. Since a × b ∩ δ × σ is non-empty

there is a point (p, q) ∈ a × b ∩ δ × σ, and we have δ+
p × δ+

q ⊆ δ × σ. Let a′ and b′ be closed

subarcs containing p and q respectively. The set Ja′K∩ Jb′K is non-empty by hypothesis, and by

definition any g ∈ Ja′K∩ Jb′K is a hyperbolic element that makes δ+
p ∩ δ+

q heavy. The other three

possible orientations of δ × σ are seen to be heavy similarly.

Now suppose a × b ⊆ C(A,B). Let a′ ⊆ a and b′ ⊆ b be any closed subarcs. We will

show Ja′K ∩ Jb′K is non-empty; the other three cases are handled symmetrically. Let δap be the

direction based at p = t(a′) containing t(a) and δbq be the direction based at q = t(b′) containing

t(b). Since a × b ∩ δap × δbq 6= ∅ and a × b ⊆ C(A,B), the quadrant δap × δbq is made heavy by

some g ∈ G, so ωA(g) ∈ ωA(δap) and ωB(g) ∈ ωB(δbq). For any points p′ ∈ a′ and q′ ∈ b′,

the directions based at p′ and q′ containing t(a′) and t(b′) respectively contain δap and δbq; we

conclude g ∈ Ja′K ∩ Jb′K.

3.5 Adding based length functions

Culler and Morgan used based length functions to show that the irreducible tree realizing

a length function is unique up to isometry. To understand the isometry type of a tree realizing

` + m when ` and m are compatible we also analyze based length functions. The following

lemma is used in the proof of Theorem 3.0.3 to conclude that the core of two compatible trees

realizes the length function `+m. Its proof will take the remainder of the section.
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Lemma 3.5.1. Suppose ` and m are compatible length functions coming from compatible G-

trees A and B respectively. Let T be the irreducible G-tree realizing ` + m. Then there are

points p ∈ A, q ∈ B, and r ∈ T such that for all g ∈ G

Pr(g) = Lp(g) +Mq(g),

where Lp,Mq, and Pr, are the based length functions on G coming from the pairs (A, p), (B, q),

and (T, r) respectively.

The basepoints will be determined by a pair (g, h) that is simultaneously a good pair for

`,m, and ` + m. Culler and Morgan used a good pair to give a formula for a based length

function L∗ at a specific basepoint ∗ in the tree realizing `. Specifically, if g, h ∈ G are a good

pair for ` a length function realized by irreducible G-tree A, then

CAg ∩ CAh ∩ CAgh−1 = {∗}

and

L∗(k) = max{dA(C,D)}, (†)

where C ranges over {CAg , CAh , CAgh−1} and D ranges over C · k.

The first tool in the proof of Lemma 3.5.1 is the existence of a simultaneous good pair for

two compatible length functions.
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Lemma 3.5.2. Suppose ` and m are compatible length functions on a group G. Then there is

a pair of elements g, h that is a good pair for both ` and m.

Remark. If (g, h) is a good pair for ` and m then it is a good pair for `+m. This is an immediate

consequence of Axiom VI.

Proof. Let A and B be the irreducible G-trees realizing ` and m respectively. The good pair

lemma (Lemma 2.4.6) and its corollary reduce the problem to finding a pair of elements that

satisfy the hypotheses of the good pair lemma in both A and B simultaneously. Indeed, if

x, y ∈ G is such a pair, then Corollary 2.4.7 implies there are numbers J`,K`, Jm,Km > 0 such

that for all j ≥ max{J`, Jm} and k ≥ max{K`,Km}, (xy)j , (xy−1)k is a good pair for both `

and m as required.

We will now find such a pair x, y ∈ G. Let g, h ∈ G be a good pair for ` and a, b ∈ G

be a good pair for m. Recall (Lemma 2.4.5) that a good pair generates a rank two free

subgroup consisting of hyperbolic elements, and that algebraically independent elements of

such a subgroup are T -independent.

Consider the group H = 〈g, h〉 ∩ 〈a, b〉 ≤ G. We consider the following cases:

• H ≥ F2,

• H is an infinite cyclic group,

• H is the trivial group.

Case H ≥ F2
∼= 〈x, y〉. Since ` and m are coherently oriented we can choose the generators

x and y so that they satisfy the orientation hypothesis of the good pair lemma for ` and m
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simultaneously. After passing to a power we may further assume `(y) < `(x) and m(y) <

m(x). Every algebraically independent pair of elements in H both A and B independent by

Lemma 2.4.5, so x, y is the desired pair.

Case H ∼= 〈z〉 an infinite cyclic group. Pick any g′ ∈ 〈g, h〉 and a′ ∈ 〈a, b〉 algebraically

independent from z. Note that g′ is hyperbolic in ` and a′ is hyperbolic in m. Since a′ is infinite

order and the action of G on A is effective, there are finitely many values nA,i > 0 such that

∂Az · g′a′nA,i ∩ ∂Az 6= ∅. Since a′ is hyperbolic in m and independent of z there is an NB such

that for n > NB the intersection ∂Bz · g′a′n ∩ ∂Bz = ∅. Fix N ≥ maxi{NAi , NB}, sufficiently

large so that y = g′a′N is hyperbolic in both ` and m. By construction we have

∂Ay ∩ ∂Az = ∂By ∩ ∂Bz = ∅.

Since ` and m are coherently oriented, we can find a (possibly negative) integer K such that

the pair zK , y satisfies the orientation and magnitude hypotheses of the good pair lemma in

both ` and m.

Case H is trivial. Pick N > 0 such that gaN is hyperbolic in both ` and m, and

∂Bga
N ∩ ∂Bb = ∅ (this last condition is possible since a and b have distinct fixed end sets).

Using an argument similar to the previous case, first pick K > 0 such that

∂Aga
N · hK ∩ ∂Ab = ∅

∂Bga
N · hK ∩ ∂Bb = ∅
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and then M > 0 such that hKbM is hyperbolic in both ` and m, and

∂Aga
N · hKbM ∩ ∂AgaN = ∅

∂Bga
N · hKbM ∩ ∂BgaN = ∅.

With x = gaN and y = hKbM , we can again use the coherent orientation of ` and m to find a

power J such that xJ , y is the desired pair.

The next lemma allows us to analyze the maximum in Equation † in a simultaneous manner

for compatible trees.

Lemma 3.5.3. Suppose ` and m are compatible length functions on G corresponding to G-

trees A and B. If f, g, h ∈ G are hyperbolic in both ` and m and CTf ∩ CTg ∩ CTh = {∗T } for

T = A,B, then for each y ∈ G there is an x ∈ {f, g, h} so that the geodesic [∗T , ∗T ·y] intersects

CTx in a point, for T = A,B.

Corollary 3.5.4. With `,m,A,B and f, g, h ∈ G as above, for all z ∈ G there is a pair

(x, y) ∈ {f, g, h} × {z−1fz, z−1gz, z−1hz} such that the geodesic [∗T , ∗T · z] meets CTx and CTy

in a point for T = A,B.

Proof of Corollary. Apply the lemma to z and z−1 and translate.

Proof of Lemma 3.5.3. Fix y ∈ G. Let α = [∗A, ∗A · y] and β = [∗B, ∗B · y]. Suppose, for a

contradiction, that for each x ∈ {f, g, h} either α∩CAx or β∩CBx is an arc. Since CAf ∩CAg ∩CAh

is a point, up to relabeling we may assume α ∩ CAf is a point and β ∩ CBf is a positively
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Figure 11. Schematic of the troublesome construction.

oriented arc. Further, up to relabeling g and h, we can assume that β meets CBg in a point, as

CBf ∩ CBg ∩ CBh is also a point. By our supposition, α ∩ CAg must be an arc, and we relabel so

that the intersection is positively oriented. Figure 11 gives a schematic.

Since f is hyperbolic in ` and CAy ∩CAf is at most a point, y−1f is hyperbolic in A. The axis

of CAy−1f contains α (this can be seen by considering the Culler-Morgan fundamental domain),

so CAy−1f ∩ Cg is an arc, and (y−1f, g) ∈ O`. Consider β ∩ CBf = [∗B, p]. The characteristic set

of CBy−1f contains [∗B · y, p, p · f ], and the shortest path from this characteristic set to the axis

CBg is the arc [∗B, p], hence CBy−1f ∩ C
B
g = ∅ and (y−1f, g) ∈ Dm. This is a contradiction, as `

and m have compatible combinatorics.

We are now well-situated to use a simultaneous good pair to establish Lemma 3.5.1.



78

Proof of Lemma 3.5.1. By Lemma 3.5.2 and the following remark, there is a pair g, h ∈ G

that is a good pair for `,m, and `+m. Let p, q, and r be the triple intersection point

CSg ∩ CSh ∩ CSgh−1

for S equal to A,B, and T respectively. Using Equation † we have for all y ∈ G

Pr(y) = max{dT (C,D)},

where C ranges over {CTg , CTh , CTgh−1} and D ranges over {CTg · y, CTh · y, CTgh−1 · y}.

Calculating the distance between particular choices of C = CTx and D = CTz , z = y−1x′y we

have

dT (CTx , C
T
z ) =

1

2
max{0, (`+m)(xz)− (`+m)(x)− (`+m)(z)}

=
1

2
max{0, `(xz)− `(x)− `(z) +m(xz)−m(x)−m(z).}

Since ` and m are coherently oriented,

`(xz)− `(x)− `(z) ≥ 0⇔ m(xz)−m(x)−m(z) ≥ 0.
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Therefore

dT (CTx , C
T
z ) =

1

2
max{0, `(xz)− `(x)− `(z)}+

1

2
max{0,m(xz)−m(x)−m(z)}

= dA(CAx , C
A
z ) + dB(CBx , C

B
z ).

Hence, it suffices to show that the maxima in Equation † for Lp(y) and Mq(y) occur for the same

pair in {g, h, gh−1}×{y−1gy, y−1hy, y−1gh−1y}. This is the exact content of Corollary 3.5.4.

Remark. In applications of Lemma 3.5.1 it will be important to use that the points p, q, and r

come from a mutually good pair (g, h).

3.6 Proof of Theorem 3.0.3

We are now in a position to give a proof of the main theorem of this chapter.

Theorem 3.0.3. Suppose G is a finitely generated group. Suppose A and B are irreducible

G-trees with length functions ` and m respectively. The core C(A,B) is one dimensional if and

only if ` + m is a length function on G. In this case, Ĉ(A,B) is the irreducible G-tree with

length function `+m.

Proof. By Lemma 3.3.1 ` + m is a length function if and only if ` and m are compatible; by

Corollary 3.4.2 this is also equivalent to C(A,B) being one-dimensional. Together, this implies

`+m is a length function if and only if C(A,B) is one-dimensional. It remains to compute the

length function of Ĉ(A,B) in this case.
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Guirardel shows that when C(A,B) is one-dimensional, Ĉ(A,B) with the metric d1, the

restriction of the `1 metric on A × B is a minimal G-tree [26, Theorem 6.1]. To complete the

proof we will show that the length function of (Ĉ(A,B), d1) is `+m.

Let T be the minimal G-tree realizing ` + m. Let g, h ∈ G be a good pair for both ` and

m, so that the points p = CAg ∩ CAh ∩ CAgh−1 , q = CBg ∩ CBh ∩ CBgh−1 , and r = CTg ∩ CTh ∩ CTgh−1

satisfy the based length function identity certified by Lemma 3.5.1; that is

Pr(y) = Lp(y) +Mq(y)

where Lp, Mq, and Pr are based length functions for A,B, and T respectively. Suppose (p, q) ∈

Ĉ(A,B), and that C(p,q) is the based length function for Ĉ(A,B). We have, for all y ∈ G

C(p,q)(y) = Lp(y) +Mq(y) = Pr(y),

and so by classical results of Alperin and Moss [2] or Imrich [30], T is equivariantly isometric

to Ĉ(A,B), and the length function on Ĉ(A,B) is `+m as required.

Why is (p, q) ∈ Ĉ(A,B)? Suppose δx × δy is a quadrant based at (x, y) containing (p, q).

Since the axes in A of the three elements g, h, and gh−1 intersect in a point, at most two of

{ωA(g), ωA(h), ωA(gh−1), ωA(g−1), ωA(h−1), ωA(hg−1)}
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are not in ωA(δx), and similarly at most two of

{ωB(g), ωB(h), ωB(gh−1), ωB(g−1), ωB(h−1), ωB(hg−1)}

are not in ωB(δy), so there is an f ∈ {g±, h±, (gh−1)±} with

ωA(f) ∈ ωA(δx) and ωB(f) ∈ ωB(δy),

that is the quadrant δx × δy is made heavy by f . Hence (p, q) ∈ Ĉ(A,B) and we are done.

Remark. The proof suggests an alternate construction of the augmented core of compatible

trees. Use Chiswell’s construction of a tree from a based length function on Lp(y) + Mq(y).

The sum decomposition gives a way to define the projection map. Verifying minimality and

convexity of fibers would then show that the resulting tree is the augmented core, giving an

alternate proof. However, this approach quickly gets technical and obscures the importance of

simultaneous good pairs, so we do not develop it further.

3.7 Additive properties of G-trees

Throughout this section suppose that A and B are compatible irreducible G-trees, so that

Ĉ(A,B) is also an irreducible G-tree. When A and B are stable or small, Ĉ(A,B) shares this

property, suggesting a meta-principle: minimal common refinements of G-trees should retain

algebraic properties shared by the base trees. The case of very small trees illustrates that this

principle is false in general, and that only arcwise properties are shared.
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The main tool in understanding the global structure of Ĉ(A,B) is the following local struc-

ture lemma.

Lemma 3.7.1. Suppose A,B and Ĉ(A,B) are G-trees. Let πT : Ĉ(A,B) → T denote the

projection maps to A and B.

No collapses. For every arc e ⊆ Ĉ(A,B)

lengthA(πA(e)) + lengthB(πB(e)) > 0.

No local folds. For every pair of geodesic arcs α, β : [0, ε) → Ĉ(A,B) with α(0) = β(0), if

πT ◦ α([0, ε)) ∩ πT ◦ β([0, ε)) for T equal to either A or B, then there is a 0 < δ < ε such

that

α([0, δ)) = β([0, δ)).

Proof. Suppose S ⊆ Ĉ(A,B) such that

diamA(πA(S)) = diamB(πB(S)) = 0.

Then πA(S) = {p} and πB(S) = {q}, hence S ⊆ {(p, q)}, a point. Therefore if e is an arc

lengthA(πA(e)) + lengthB(πB(e)) > 0.
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Now suppose α, β : [0, ε)→ Ĉ(A,B) are geodesic arcs with α(0) = β(0) = p̃ and α((0, ε)) ∩

β((0, ε)) = ∅. For a contradiction, suppose that e = πA ◦ α([0, ε)) ∩ πA ◦ β([0, ε)) contains an

arc. Let q ∈ e be a point not equal to πA(p̃). By construction, there are points

q̃α ∈ π−1
A (q) ∩ α([0, ε))

and

q̃β ∈ π−1
A (q) ∩ β([0, ε))

and q̃α 6= q̃β. Further, the unique arc joining q̃α to q̃β is the geodesic [q̃α, q̃β], which contains

p̃ by construction. Since p̃ 6∈ π−1
A (q), we conclude that the fiber over q is not convex, a

contradiction.

Corollary 3.7.2. If A and B are compatible simplicial G-trees then Ĉ(A,B) is a simplicial

G-tree and for each edge e ∈ Ĉ(1)(A,B), either πA|e or πB|e is a homeomorphism.

Proof. Guirardel shows the augmented core of simplicial trees is always a simplicial com-

plex [26, Proposition 2.6], and the projection maps are simplicial. By the lemma, for every

edge e, either πA(e) or πB(e) is an edge.

The local structure of Ĉ(A,B) immediately forces Ĉ(A,B) to inherit restrictions on the arc

stabilizers of A and B.

Lemma 3.7.3. If A and B are compatible small G-trees, then Ĉ(A,B) is also a small G-tree.
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Proof. Suppose e ⊆ Ĉ(A,B) is an arc. From the local structure lemma we may assume, without

loss of generality, that πA(e) is an arc. Since πA is equivariant, we have Stab(e) ≤ Stab(πA(e)),

hence Stab(e) is cyclic or trivial, as required. (Note that, though we assume that πA(e) is

non-trivial, since we are relabeling we do require that both A and B be small.)

Recall that the G-trees encountered in practice are often “stable” trees, and that stable

trees admit a detailed analysis via the Rips machine [11]. The definition of stability is often

stated in terms of subtrees, however it is essentially a condition on arc stabilizers.

Definition 3.7.4. Let T be a G-tree. A non-degenerate subtree S ⊂ T is a stable subtree

if for every non-degenerate S′ ⊆ S, Stab(S) = Stab(S′). A tree T is stable if for every

non-degenerate T ′ ⊆ T there is a stable subtree S ⊆ T ′.

Note that if S1 and S2 are stable subtrees of T with non-degenerate intersection then

S1∪S2 is stable, so that every stable subtree is contained in a maximal subtree. Note also that

Definition 3.7.4 could be phrased in terms of stable arcs.

Lemma 3.7.5. Suppose A and B are compatible stable G-trees, then Ĉ(A,B) is also a stable

G-tree.

Proof. Let {Ai} and {Bj} be the families of maximal stable subtrees of A and B respectively.

Since A and B are stable, A = ∪Ai and B = ∪Bj . Define Cij = Ĉ(A,B) ∩ Ai × Bj , and note

that Ĉ(A,B) = ∪Cij .

Suppose T ⊆ Ĉ(A,B) is a non-degenerate subtree. The intersection Tij = T ∩ Cij must be

non-degenerate for some i and j. There is a non-degenerate subtree S ⊆ Tij such that either
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• S = {∗} × SB

• S = SA × {∗}

• or for every non-degenerate S′ ⊆ S both πA(S′) and πB(S′) is non-degenerate.

In the first case, for all S′ ⊆ S, πA(S′) = πA(S), and in the second πB(S′) = πB(S). We claim

that S is the desired stable subtree of T . Indeed, πA(S) ⊆ Ai and πB(S) ⊆ Bj , so for any

non-degenerate S′ ⊆ S, either πT (S′) = πT (S) or πT (S′) is a non-degenerate subtree of a stable

subtree for both T = A and T = B, and we have

StabĈ(A,B)
(S′) = StabA(πA(S′)) ∩ StabB(πB(S′))

= StabA(π(S)) ∩ StabB(πB(S))

= StabĈ(A,B)
(S).

Remark. The above proof is significantly more general, and applies to any equivariant embed-

ding T → A×B, but we do not need this generality in the sequel.

Very small trees demonstrate the limitations of the näıve meta-principle suggested in the

introduction of this section. In the definition of very small, in addition to requiring that arc

stabilizers be cyclic, tripod stabilizers are required to be trivial. This second condition is not

an arc-wise condition, and is not preserved by the core, even in the nicest possible setting.
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Example 3.7.6. Let F4 = 〈a, b, c, g〉 and identify F4 with the fundamental groups of the

following two graphs of groups via the given marking.

xa

Gva = 〈a, g〉
xb

Gxb = 〈b, g〉
xc

Gxc = 〈c, g〉

Guab = 〈g〉
uab

Gubc = 〈g〉
ubc

Ā

ya
Gya = 〈a, g〉

yc
Gyc = 〈c, g〉

yb
Gyb = 〈b, g〉

Gvac = 〈g〉
vac

Gvcb = 〈g〉
vcb

B̄

Assign all edges length one, and treat Ā and B̄ as metric graphs. Observe that the Bass-Serre

trees A and B are simplicial very small F4-trees.

Claim. The trees A and B are compatible, and the augmented core Ĉ(A,B) is not very small.

Proof of Claim. recisely, we will show Ĉ(A,B) = T where T is the Bass-Serre tree of the

graph of groups

〈g〉

〈a, g〉

〈b, g〉

〈c, g〉

w
ag

G
w
a
g = 〈g〉

Gwbg = 〈g〉
wbg

w
c
g

G
w

c
g
=

〈g〉

T̄
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Define f̃A : T → A by the equivariant collapse induced by the map fA : T̄ → Ā

fA(wag) = uab

fA(wbg) = xb

fA(wcg) = ubc

and similarly define f̃B : T → B by

fB(wag) = vac

fB(wbg) = vcb

fB(wcg) = yc.

By construction, the product map f̃ : T → A×B has connected fibers an its image is connected

and F4 invariant, so Ĉ(A,B) ⊆ f̃(T ). We calculate f̃(T ) explicitly for a fundamental domain

of T which covers fundamental domains for A and B:

f̃(w̃ag) = ∆(ũab × ṽac)

f̃(w̃bg) = {x̃b} × ṽcb

f̃(w̃cg) = ũbc × {ỹc}.

Therefore f̃(T ) ∼= T .
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To show Ĉ(A,B) = T it suffices to show the three edges of a fundamental domain for T are

either in C(A,B) or are diagonals of twice light rectangles. Orient w̃ag, ũab, and ṽac consistently.

By construction JũabK = JṽacK and JũabK = JṽacK, which implies that ũab× ṽac is twice light with

the positively oriented diagonal the main diagonal, by the remark following Lemma 3.4.1. Hence

f(w̃ag) ⊆ Ĉ(A,B).

We will also use the many horizon condition to show f̃(w̃bg) ⊆ Ĉ(A,B). Orient ṽcb so that

t(ṽcb) = ỹb. Every direction δx̃bp ⊆ A containing x̃b faces some b conjugate of a hyperbolic

element, and JṽcbK contains all b conjugates, so all sets Jδx̃bp K ∩ JṽcbK are non-empty. Every

direction containing x̃b also faces either some a conjugate of some hyperbolic element or some

c conjugate; the set JṽcbK contains all a and c conjugates, so all sets Jδx̃bp K∩ JṽcbK are non-empty,

whence f̃(w̃bg) ⊆ Ĉ(A,B).

The argument to show f̃(w̃cg) ⊆ Ĉ(A,B) is symmetric. Therefore Ĉ(A,B) ∼= T as claimed,

and this tree is evidently not very small. �

3.8 The Bass-Serre case

While not all useful stabilizer restrictions are retained by the core of compatible trees, when

A and B are compatible Bass-Serre trees for graph of groups decompositions of G the structure

theory of the core still permits a very explicit description of the augmented core.

Lemma 3.8.1. Suppose Ā and B̄ are minimal visible graphs of groups with fundamental group

G � Z or Z/2Z∗Z/2Z, and compatible Bass-Serre trees A and B. The augmented core Ĉ(A,B)

is then then the Bass-Serre tree for a graph of groups Γ with fundamental group G, and the
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edge groups of Γ are in the set of conjugacy classes of the edge groups of Ā and B̄. Moreover,

Ā and B̄ are isomorphic (via inner automorphisms of G) to graphs of groups Ā′ and B̄′ so that

Γ
πĀ′

��

πB̄′

��

Ā′ B̄′

where πĀ′ and πB̄′ are quotient maps that collapse edges.

Proof. By Corollary 3.7.2, Ĉ(A,B) is a simplicial tree, with edges of three forms

{vA} × eB, eA × {vB}, or ∆ ⊆ eA × eB.

As in the proof of Lemma 3.7.5 we find, for each edge e ∈ Ĉ(A,B)

StabĈ(A,B)
(e) = StabA(πA(e)) ∩ StabB(πB(e)).

Suppose πA(e) = a ∈ E(A). We claim

StabĈ(A,B)
(e) = StabA(a).

Indeed, suppose there is some g ∈ StabA(e) but not in StabB(e). Let p ∈ a be the midpoint

and let q ∈ πB(e) be any point. The point (p, q) is in the interior of e, and since g is not in

the stabilizer, (p · g, q · g) = (p, q · g) is disjoint from e. Both (p, q), (p, g · q) ∈ π−1
A (p), which



90

is convex. However, the path in Ĉ(A,B) must pass through o(e) or t(e), neither of which is in

π−1
A (p), a contradiction. Symmetrically, if πB(e) = b ∈ E(B) we find

StabĈ(A,B)
(e) = StabB(b).

The remainder of the lemma is then immediate from standard facts in Bass-Serre theory,

with Ĉ(A,B) the Bass-Serre tree of the desired graph of groups Γ.

Remark. This characterizes the edge groups of compatible graphs of groups: An edge group Āe

is either conjugate to some B̄e or contained within a conjugate of some B̄v, and vise-versa.



CHAPTER 4

OUTER AUTOMORPHISMS

In these days the angel of topology and the

devil of abstract algebra fight for the soul of

each individual mathematical domain.
Hermann Weyl

By definition, the outer automorphism group Out(Fr) = Aut(Fr)/Inn(Fr) of a free group

Fr is the automorphism group modulo the inner automorphisms. We briefly review various

topological perspectives on elements of Out(Fr), the classification by growth, and some details

about representatives of outer automorphisms of linear growth.

4.1 Topological representatives and growth

Let Γ be a topological graph with π1(Γ) = Fr. An immersed path γ : [0, 1]→ Γ is tight if

any lift γ̃ : [0, 1] → Γ̃ is an embedding. Since Γ̃ is a tree, it is immediate that every immersed

path is homotopic relative to the endpoints to a unique tight path, called its tightening. Given

a path γ we denote the tightening [γ]. Similarly, a closed loop is tight if it is tight for every

choice of basepoint, and is freely homotopic to a unique tightening (a fundamental domain for

the action of γ∗ ∈ π1(Γ) on the universal cover Γ̃, with basepoint chosen on the axis of γ∗),

the tightening of a loop γ is denoted [[γ]]. Two paths γ and δ are composable if the end of γ

equals the start of δ, and their composition is denoted γδ; if γ is a based loop γ−1 denotes its

reverse and γm its m-fold concatenation for m ∈ Z (when m = 0 this is a constant path at the

91
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basepoint of γ). A loop γ is primitive if there is no γ′ such that [γ] = [γ′m] for some m > 1.

We will assume from here on that all paths have endpoints at the vertices of Γ.

Given an outer automorphism σ ∈ Out(Fr), we can realize σ as a homotopy equivalence

σ̂ : Γ→ Γ. Such a realization is referred to as a topological representative; particularly nice

topological representatives are indispensable in the analysis of outer automorphisms.

The growth of an outer automorphism is measured in terms of an action on a topological

representative. We say σ is exponentially growing if there is some loop γ ⊆ Γ such that

`Γ([[σ̂n(γ)]]) is bounded below by an exponential function, and that σ is polynomially grow-

ing if there is some d such that `Γ([[σ̂n(γ)]]) ∈ O(nd) for all loops γ ⊆ Γ. This classification does

not depend on the choice of topological representative, as demonstrated by Bestvina, Feighn,

and Handel [7]; the choice does matter for the details of the exponent in the exponentially

growing case, however we are not concerned with exponentially growing outer automorphisms

in this thesis.

Polynomially growing outer automorphisms can exhibit a certain amount of finite-order

periodic behavior which results in significant technical headaches. These phenomena can be

removed by passing to a uniform power. A polynomially growing outer automorphism σ is

unipotent if the induced action on the first homology H1(Fr,Z) is a unipotent matrix. Bestv-

ina, Feighn, and Handel proved that any polynomially growing outer automorphism that acts

trivially on H1(Fr,Z/3Z) is unipotent [8, Proposition 3.5], so all polynomially growing outer

automorphisms have a unipotent power.
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4.2 Upper triangular representatives and the Kolchin theorem

Unipotent polynomially growing outer automorphisms have particularly nice topological

representatives. A homotopy equivalence σ̂ : Γ→ Γ is filtered if there is a filtration ∅ = Γ0 (

Γ1 ( · · · ( Γk = Γ preserved by σ̂.

Definition 4.2.1. A filtered homotopy equivalence σ̂ is upper triangular if

• σ̂ fixes the vertices of Γ,

• Each stratum of the filtration Γi \ Γi−1 = Ei is a single topological edge,

• Each edge Ei has a preferred orientation and with this orientation there is a tight closed

path ui ⊆ Γi−1 based at t(Ei) so that σ̂(Ei) = Eiui.

The path ui is called the suffix associated to ui, and when working with an upper triangular

homotopy equivalence we will always refer to edges of the filtered graph with the preferred

orientation. A filtration assigns to each edge a height, the integer i such that E ∈ Γi \ Γi−1,

and by taking a maximum this definition extends to tight edge paths. An upper-triangular

homotopy equivalence preserves the height of each edge path.

Every upper triangular homotopy equivalence of a fixed filtered graph evidently induces a

unipotent outer automorphism, and using relative train tracks Bestvina, Feighn, and Handel

show the converse, every unipotent polynomially growing outer automorphism has an upper

triangular representative [7, Theorem 5.1.8]. Moreover, for a given filtered graph Γ the upper-

triangular homotopy equivalences taken up to homotopy relative to the vertices form a group
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under composition. The suffixes for the inverse are defined inductively up the filtration by

σ̂−1(Ei) = Eivi where vi = σ̂−1(ui).

A nontrivial path γ ⊆ Γ is a periodic Nielsen path for σ̂ if for some m > 0, we have

[σ̂m(γ)] = [γ]. If m = 1 we call γ a Nielsen path. An exceptional path in Γ is a path of

the form Eiγ
mĒj , where γ is a primitive Nielsen path, and σ̂(Ei) = Eiγ

p and σ̂(Ej) = Ejγ
q

for p, q > 0 and any m. For a unipotent automorphism, every closed periodic Nielsen path

is Nielsen [8, Proposition 3.16]. If p 6= q we say the exceptional path is a linearly growing,

otherwise it is an exceptional Nielsen path.

Every path γ ⊆ Γ has a canonical decomposition with respect to an upper triangular σ̂

into single edges and maximal exceptional paths [8, Lemma 4.26].

For all of the terms in the previous two paragraphs, when we are dealing with more than one

upper-triangular homotopy equivalence we will specify which homotopy equivalence is involved,

e.g. a path γ is σ̂-Nielsen or consider the τ̂ -canonical decomposition of γ = γ1γ2 · · · γk.

The analogy between unipotent outer automorphisms and unipotent matrices stretches

beyond having an upper-triangular basis. The classical Kolchin theorem for linear groups

states [36] that if a subgroup H ≤ GL(n,C) consists of unipotent matrices then there is a basis

so that with respect to this basis every element of H is upper triangular with 1’s on the diago-

nal. There is an analogous theorem for unipotent polynomially growing outer automorphisms,

due to Bestvina, Feighn, and Handel.
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Theorem 4.2.2 ([8, Main Theorem]). Suppose H ≤ Out(Fn) is a finitely generated subgroup

with every element unipotent. Then there is a filtered graph Γ and a fixed preferred orientation

such that every σ ∈ H is upper triangular with respect to Γ.

Remark. Bestvina, Feighn, and Handel use a different definition of upper-triangular, allowing

that σ(Ei) = viEiui, however our definition can be obtained by subdividing each edge and

doubling the length of the filtration.

4.3 Dehn twists and linear growth

Let Σ be a closed hyperbolic surface. Given γ ⊆ Σ an essential simple closed curve, consider

a homeomorphism τγ : Σ → Σ that is the identity outside an annular neighborhood of γ and

performs a twist of 2π on the annulus. Such a homeomorphism is known as a Dehn twist.

The induced map τγ∗ : π1(Σ) → π1(Σ) can be expressed in terms of the graph of groups

decomposition of π1(Σ) induced by γ, and this expression motivates the following definition for

general graphs of groups.

Definition 4.3.1. Suppose Γ is a graph-of-groups. Given a fixed collection of edges {ei} ⊆ E(Γ)

closed under the edge involution and zei ∈ Z(Gei) satisfying zēi = z−1
ei , the Dehn twist about
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{ei} by {zi}, Dz ∈ Out(π1(Γ, v)), is the outer automorphism induced by D̃z on the fundamental

groupoid of Γ, given by

D̃z(ei) = eiz
ei
i

D̃z(g) = g, g ∈ Gv, v ∈ V (Γ)

D̃z(e) = e, e /∈ {ei}

The induced outer automorphism does not depend on the choice of basepoint.

Note that Dn
z = Dzn , defining zn = {znei} for any n, and that any two twists on a fixed

graph of groups Γ commute. The requirement that each zei ∈ Z(Gei) is necessary to ensure

that the defining relations of the fundamental groupoid are respected. In turn, when π1(Γ) is

free a Dehn twist can only twist around edges with cyclic stabilizers.

Example 4.3.2. Let Γ be the graph of groups associated to the amalgamated product A ∗C B

and z ∈ Z(C). The twist of Γ about its edge by z can be represented by Dz(a) = z−1az, a ∈ A,

Dz(b) = b, b ∈ B. Since A ∪B generates π1(Γ, v) this fully specifies the automorphism.

Let H be the graph of groups associated to the HNN extension A∗C and pick z ∈ Z(C).

The twist of H about its one edge by z is represented by Dz(a) = a and Dz(t) = tz with a ∈ A

and t the edge of the extension.

Specializing these examples to splittings of π1(Σ) given by an essential closed curve in a

closed hyperbolic surface γ ⊆ Σ, this gives the previously mentioned algebraic representation

of τγ∗ as the Dehn twist about the edge of the splitting corresponding to γ by γ∗ ∈ π1(Σ).
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v
Gv = 〈a1, . . . , an〉

Gt = 〈z〉
t

Figure 12. The graph of groups used to represent Nielsen automorphisms.

Example 4.3.3 (Nielsen automorphisms of Fr). Consider the graph of groups Γ in Figure 12.

The edge morphims for the single edge are given by ιt(z) = aj and ιt̄(z) = ak. The map

F : 〈x1, . . . , xn〉 → π1(Γ, v) given by F (xi) = ai, i 6= j, and F (xj) = t gives a realization of the

Nielsen automorphism φ(xi) = xi, φ(xj) = xkxj as the Dehn twist about the single edge by z.

A Dehn twist outer automorphism has many graph of groups representatives, most of which

are not well suited to analysis using the Guirardel core, due to lots of extra information.

Certain ill-behaved stabilizers, non-minimal graphs, invisible vertices, and unused edges all

cause trouble. Cohen and Lustig identified a particularly useful class of representatives, called

efficient twists.

Definition 4.3.4. A Dehn twist D on a graph of groups Γ is efficient if

• Γ is minimal, small, and visible

• D twists about every edge (every ze 6= id).
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• (No positively bonded edges) There is no pair of edges e1, e2 ∈ E(Γ) such that

v = t(e1) = t(e2), and integers m,n 6= 0 with mn > 0, such that zme1 is conjugate in Gv to

zne2 .

Cohen and Lustig remark that it is a consequence of these three properties that Γ is nec-

essarily very small. Returning our attention to Out(Fr) a Dehn twist outer automorphism

D ∈ Out(Fr) is one that can be represented as a Dehn twist of some graph of groups decom-

position of Fr (such a decomposition necessarily only twists about those edges with cyclic edge

groups). These outer automorphisms have linear growth (and all outer automorphisms with

linear growth are roots of Dehn twists [38]).

By assigning each edge of a graph of groups Γ a positive length, the Bass-Serre tree T of

Γ becomes a metric Fr tree. Given a very small graph of groups Γ with fundamental group

Fr, the collection of projective classes of all choices of metric on T determines an open simplex

∆(Γ) ⊆ CV r in projectivized outer space. If Γ is visible and minimal, this simplex is of

dimension |E(Γ)| − 1. When D is an efficient Dehn twist on Γ, the simplex ∆(Γ) is essential

to understanding the dynamics of the action of D on CVr, and characterizes these dynamics

completely, as shown by Cohen and Lustig.

Theorem 4.3.5 ([18, Theorem 13.2]). Suppose D is a Dehn twist in Out(Fr) with an efficient

representative on a graph of groups Γ. Then for all [T ] ∈ CVr,

lim
n→∞

Dn([T ]) = lim
n→∞

D−n([T ]) ∈ ∆(Γ).
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Corollary 4.3.6. If D ∈ Out(Fr) has an efficient Dehn twist representative, then the simplicial

structure of the Bass-Serre tree of the representative is unique.

Proof. Suppose D has efficient representatives D1 on Γ1 and D2 on Γ2. By the theorem,

∆(Γ1) = ∆(Γ2) since two open simplices which share a point are equal. This completes the

claim.

An efficient graph-of-groups representative can be constructed from an upper-triangular rep-

resentation. Bestvina, Feighn, and Handel give this construction in the metric category, using

a particular upper-triangular representation that permits them to compute metric information

about the limit in cvr, but the uniqueness of the algebraic structure permits the calculation

from any upper-triangular representation. First note that an upper-triangular homotopy equiv-

alence grows linearly if and only if each suffix is Nielsen, and that each edge is either fixed or

grows linearly.

To construct the efficient representative from an upper-triangular representative we need

the notion of folding in a tree or graph, due to Stallings [47]. In a simplicial G-tree T , a fold

of two edges u, v ∈ T with o(u) = o(v) for a linear homeomorphism φ : u→ v is the quotient of

T by the smallest equivalence relation satisfying x ∼ φ(x) for all points x ∈ u and if x ∼ y and

g ∈ G then x.g ∼ y.g. The quotient map of this equivalence f̃ : T → T/ ∼ is called the folding

map, and the resulting space T/ ∼ is a G-tree (it may be necessary to subdivide to ensure

that the action is without inversions). When the action on the folded tree T/ ∼ is without

inversions, we get a graph of groups morphism on the quotient f : T̄ → T/ ∼.
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Let q : T → T̄ be a graph of groups quotient map. There is a particular type of fold

we treat in detail. Suppose there is an element g ∈ G such that the folding homeomorphism

φ : u → v is induced by the g action. In this case g ∈ T̄o(u) and g conjugates Stab(u) to

Stab(v). The folded graph of groups T/ ∼ has the same combinatorial structure as T̄ , however

Stab(u/ ∼) = 〈Stab(u), g〉. This is referred to as “pulling an element in a vertex group over an

edge”.

By subdividing an edge we may perform a partial fold of the first half of u over v. (Partial

folding can be discussed in much greater generality; we require only the midpoint version.) We

will often specify a fold by a pair of edges u and v with o(u) = o(v) in the quotient graph

of groups, it is understood that we mean the equivariant fold of all pairs of lifts ũ, ṽ with

o(ũ) = o(ṽ). The definition of folding generalizes to allow v to be an edge path, and we use this

more general definition.

Lemma 4.3.7. Suppose σ̂ : Γ→ Γ is a linearly growing upper-triangular homotopy equivalence

of a filtered graph Γ. Then there is a graph of groups fold f : Γ → G which realizes the outer

automorphism represented by σ̂ as an efficient Dehn twist.

Proof. The strategy of the proof is to collapse every fixed edge; in the resulting graph of

groups, the suffix of the lowest linear edge is in a vertex group, and so the suffix can be folded

over that edge. Working up the filtration in this fashion the result is a graph of groups with

cyclic edge stabilizers, and by twisting on every edge by the twister specified by its suffix; the

result is a Dehn twist on this graph which represents σ̂.
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The problem with this construction, as just described, is that the result may not be efficient:

there may be obtrusive powers, and there may be positively bonded edges. The first problem is

solved by using the primitive root of the suffix, but the second requires some work. One could

use Cohen and Lustig’s algorithm to remove positive bonding, however we give a different

construction similar to that of Bestvina, Feighn, and Handel [8] useful when considering more

than one Dehn twist.

We assume without loss of generality Γ is minimal (that is, the quotient of a minimal tree

under the Fr action).

Step 1: Fold Conjugates. We construct a series of folds by working up the filtration

from lowest edge to highest. Start with Γ0 = Γ. If the suffix ui of Ei is of the form γiη
k
j γ̄i,

where uj = [ηk
′
j ] so that ηj is the primitive Nielsen path associated to uj , j < i and γi a closed

path, fold the terminal half of Ei over γ̄i. Let fi : Γi−1 → Γi be the folding map in this step.

We claim the induced homotopy equivalence σ̂i = fiσ̂i−1f
−1
i is upper triangular. Let E′i denote

the unfolded initial half of Ei, and filter Γi by the filtration of Γi−1 where the ith stratum is

now E′i. It suffices to check that σ̂i(E
′
i) = E′iu

′
i. Indeed, using the equation

fiσ̂i−1(Eiγi) = σ̂i(E
′
i)

we have for some m ∈ Z

fiσ̂i−1(Eiγi) = fi(Eiγiη
k
j γ̄iγiη

m
j ) = E′iγ̄iγiη

k
j γ̄iγiη

m
j
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and so we can take σ̂i(E
′
i) = E′i[u

m+1
j ]. If the suffix ui of Ei is not of the above form, take

Γi = Γi−1 and fi = id.

Denote the total folding map fk · · · f0 = f ′ : Γ→ Γ′, and the induced automorphism σ̂′. By

construction σ̂′ is upper triangular and has the property that for every two edges Ei and Ej

with common terminal vertex, if their suffixes have conjugate roots then they are of the form

ui = [ηki ], uj = [ηkj ] for positive powers of a primitive Nielsen path η.

Step 2: Fold Linear Families. Starting now with σ̂′, we perform another sequence of

folds to ensure that twisters will not be positively bonded. For a primitive Nielsen path η, the

linear family associated to η is all edges of Γ′ with suffix [ηk] for some k 6= 0. We now work

down the filtration of Γ′. Set Γ′k = Γ′. If E′i is in some linear family associated to η, let Ej

be the next edge lower than E′i in the linear family, and fold half of E′i over all of E′j . Denote

the fold f ′i : Γ′i → Γ′i−1 in this case; otherwise set Γ′i−1 = Γi and f ′i = id. Let Γ′′ = Γ′0 be

the total result of this folding, with total folding map f ′0 · · · f ′k = f ′′ : Γ′ → Γ′′, and denote the

unfolded halves of edges by E′′i . (If an edge is not folded we will also use E′′i for the edge as

an edge of Γ′′). The graph Γ′′ is naturally filtered, with the filtration induced by f ′′. We claim

that the induced homotopy equivalence σ̂′′ = f ′′σ̂′f ′′−1 is again upper triangular. Indeed, as

in the previous case we can calculate the suffixes. For E′i denote by E′i1 , . . . E
′
il

the edges in

the linear family of E′i below E′i in descending order, so that f ′′(E′i) = E′′i E
′′
i1
· · ·E′′il . Working

inductively up the linear family, we see that σ̂′′(E′′i ) = E′′i E
′′
i1
· · ·E′′il [f

′′(η)ki−ki−1 ]Ē′′il · · · Ē
′
i1

, and

the associated primitive Nielsen path to E′′i is η′′i = E′′i1 · · ·E
′′
il

[f ′′(η)]Ē′′il · · · Ē
′′
i1

.
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Step 3: Collapse and Fold Edge Stabilizers. From σ̂′′ and Γ′′ we can now construct a

graph of groups; the previous two steps will ensure that no twisters in the result are positively

bonded. We work up the filtration once more. Let G0 be the graph of groups constructed from

Γ′′ by collapsing all edges with trivial suffix. Obtain Gi from Gi−1 as follows. If σ̂′′(E′′i ) = E′′i , set

Gi = Gi−1. If σ̂′′(E′′i ) = E′′i [η′′i
k′′i ] then obtain Gi from Gi by pulling η′′i over E′′i . By construction

η′′i represents an element in a vertex group at t(E′′i ). The result is G. The composition of

folding maps f ′′ : Γ′′ → G induces a Dehn twist σ̃ on G where the system of twisters is given by

zE′′i = η′′i
k′′i . By construction, this twist represents σ̂′′ and so σ̂; moreover the edge stabilizers

are not conjugate in the vertex groups; the resulting twist is efficient except for the possibility

of invisible vertices. Invisible vertices are an artifact of the graph of groups; removing them

gives the desired efficient twist.

Remark. It is possible that σ̂ is upper triangular with respect to several different filtrations of

Γ. By fixing a filtration a choice is being made, but the choices made do not matter because of

Corollary 4.3.6.



CHAPTER 5

POLYNOMIALLY GROWING DIPLOMACY

I had never expected that the China

initiative would come to fruition in the form

of a Ping-Pong team.

Richard M. Nixon

McCarthy’s theorem for two-generator subgroups of the mapping class group of a surface Σ

can be viewed through the lens of a compatibility condition for geometric invariants associated

to a pair of mapping classes. Recall that a mapping class σ ∈ Mod(Σ) is rotationless if the

Thurston normal form has no non-trivial permutation components. Associated to a rotationless

mapping class is a decomposition of Σ into invariant surfaces of negative Euler characteristic

Σi and annuli Aj , so that (up to isotopy) σ|Σi is either identity or pseudo-Anosov, and σ|Aj is

some power of a Dehn twist about the core curve of Aj . The supporting lamination λ of σ is

the union of the core curves of the non-trivial Dehn twist components (thought of as measured

laminations with atomic measure equal to the absolute value of the twist power on the core

curve) and the attracting measured laminations of the pseudo-Anosov components.

Theorem 5.0.1 (McCarthy). Suppose σ, τ ∈ Mod(Σ) are mapping classes of a closed hyper-

bolic surface Σ. Then there is an N such that 〈σN , τN 〉 is either abelian or free of rank two.

Moreover, 〈σN , τN 〉 ∼= F2 exactly when i(λ, µ) > 0, where λ and µ are the supporting measured

laminations of rotationless powers of σ and τ respectively.

104
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Using algebraic laminations an analogous result can be obtained for two generator subgroups

of Out(Fr) when both generators are exponentially growing; this was first done by Bestvina,

Feighn, and Handel [6] for pairs of fully irreducible outer automorphisms (with a novel proof

by Kapovich and Lustig [32]), and for exponentially growing outer automorphisms satisfying

certain technical hypotheses by Taylor [48] and Ghosh [25]. The techniques involved depend,

in one way or another, on the existence of an attracting lamination for both generators. These

approaches therefore do not apply to polynomially growing outer automorphisms, which have

no laminations. Unlike the surface setting, there is no one-to-one correspondence between trees

and laminations [42]. While this fact complicates the dynamical picture it provides new avenues

for understanding polynomially growing outer automorphisms.

The notion of tree compatibility from Chapter 3 provides insight for linearly growing outer

automorphisms. Once more, the issue of periodic behavior poses an obstacle to providing

good tree representatives, passing to a rotationless power gives a generalization of McCarthy’s

theorem to the linearly growing setting.

Theorem 5.0.2. Suppose σ and τ are linearly growing outer automorphisms. Then there is

an N such that 〈σN , τN 〉 is either abelian or free of rank two. Moreover, the latter case holds

exactly when the core of the efficient representatives of Dehn-twist powers of σ and τ contains

a rectangle.

To motivate the development of the tools needed in the proof, we will first turn to a series

of guiding examples, treating the case of commuting twists and a slight generalization of the

setting considered by Clay and Pettet [17]. The theme of the proof is to use the augmented
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core: when it is a tree, it is a small tree mutually fixed by both automorphisms, and gives a

commuting realization of the automorphisms. Should it fail to be a tree it will provide length

bounds needed to play ping-pong and find a power generating a free group.

5.1 Guiding examples

When the Guirardel core of two Bass-Serre trees has no rectangles, its quotient provides a

simultaneous resolution of the two graphs-of-groups. This construction immediately gives us a

sufficient condition for two Dehn twists to commute.

Lemma 5.1.1. Suppose σ̃, τ̃ are efficient Dehn twists based on graphs of groups Ā and B̄

covered by Fr-trees A and B respectively, representing σ, τ ∈ Out(Fr). If i(A,B) = 0 then

[σ, τ ] = 1 in Out(Fr).

Proof. Since A and B are simplicial, i(A,B) = 0 implies that Ĉ(A,B) is a tree. Therefore, by

Lemma 3.8.1 and the subsequent remarks, Ĉ(A,B) is the Bass-Serre tree of a graph of groups

Γ, and without changing the outer automorphism class of σ and τ we can assume that the

identifications of Fr with π1(Γ, (u, v)), π1(Ā, u), and π1(B̄, v) are such that in the following

diagram πĀ and πB̄ are quotient graph of groups morphisms that collapse edges.

Γ
πĀ

��

πB̄

��

Ā B̄

Moreover (and this is still the content of Lemma 3.8.1), the edge groups of Γ are edge groups

of either Ā or B̄.
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Define σ̂ on Γ by the system of twisters

ze =


zπĀ(e) πĀ(e) ∈ E(Ā)

1 otherwise

By construction, πĀσ̂ = σ̃πĀ at the level of the fundamental groupoid, so that σ̂ is also a

representative of σ. (The induced automorphism on the fundamental group coming from a

graph of groups collapse is the identity [18].) Similarly define τ̂ , thus simultaneously realizing

σ and τ as Dehn twists on Γ, whence [σ, τ ] = 1.

Towards a converse, Clay and Pettet give a partial result, using the notion of a filling pair

of Dehn twists [17].

Definition 5.1.2. Let X be a finitely generated group and T a simplicial X-tree. The free T

volume of X, covolT (X) is the number of edges with trivial stabilizer in the graph of groups

associated to the minimal subtree TX ⊂ T .

Note that covolT (〈g〉) = `T (g) for g ∈ X.

Definition 5.1.3. Two graphs of groups Ā and B̄ associated to Fr-trees A and B fill if for

every free factor X ≤ Fr,

covolA(X) + covolB(X) > 0.

Definition 5.1.4. Suppose σ̃, τ̃ are representatives of Dehn twists based on Ā and B̄, where

both graphs of groups have one edge and fundamental group Fr. If Ā and B̄ fill then we call

the induced outer automorphisms σ and τ a filling pair.
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This definition is a close parallel to the notion of a pair of filling simple closed curves, and

Clay and Pettet strengthen this parallel to a theorem.

Theorem 5.1.5 ([17, Theorem 5.3]). Suppose σ, τ ∈ Out(Fr) are a filling pair of Dehn twists.

Then there is an N such that

• 〈σN , τN 〉 ∼= F2

• If φ ∈ 〈σN , τN 〉 is not conjugate to a generator then φ is an atoroidal fully irreducible

outer automorphism.

In developing their definition of free volume, Clay and Pettet use the Guirardel core as

motivation, but give a form suited explicitly to the proof of their theorem. The definition of

filling is indeed noticed by the core.

Proposition 5.1.6. Suppose Ā and B̄ are one-edge cyclic splittings without obtrusive powers

associated to Fr trees A and B that fill. Then i(A,B) > 0 and the action of Fr on C(A,B) is

free.

Proof. First, for any (p, q) ∈ C, and x 6= id ∈ Fr, since Ā and B̄ fill, we have

`A(x) + `B(x) > 0

and therefore (p, q) · x 6= (p, q).

To see that the core contains a rectangle we will show that the two trees have incompatible

combinatorics. To fix notation let e be the edge of Ā and f be the edge of B̄. Let Ge = 〈c〉. If
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o(e) 6= t(e), let a ∈ Āo(e) be an element not conjugate into ιē(Āe), and b ∈ Āt(e) be an element

not conjugate into ιe(Āe). Set α = a and β = ebe−1 in π1(Ā, o(e)). If o(e) = t(e) take α as

before and β = e in π1(Ā, o(e)).

Since Ā and B̄ fill and `A(α) = 0, we have `B(α) > 0. By construction, `A(αβ) > 0, and so

αβ is not conjugate to ιē(c). Again, by the filling property, since `A(c) = 0, `B(c) > 0. Since αβ

and c are not conjugate, the characteristic sets of αβ and c in B meet in at most a finite number

of edges of CBc , since B is small. Thus there is some n > 0 such that CBαβ ∩ CBc−nαβcn = ∅.

However, by construction CAαβ contains the arc in A stabilized by c, so CAαβ ∩ CAc−nαβcn contains

this arc for all n. Therefore the two Bass-Serre trees are incompatible, the core contains

a rectangle, and since both trees are simplicial this implies that the intersection number is

positive, as required.

This proposition motivates a variation of Clay and Pettet’s result, in pursuit of a converse

to Lemma 5.1.1. This variation cannot make the stronger assertion that the generated group

contain an atoroidal fully irreducible element. Indeed, take σ and τ to be a filling pair of Dehn

twists for Fk and consider the automorphism σ ∗ idm and τ ∗ idm acting on Fk ∗ Fm. This is

a pair of Dehn twists of Fk+m that has powers generating a free group, but does not fill, and

every outer automorphism 〈σ ∗ idm, τ ∗ idm〉 fixes the conjugacy class of the complementary Fm

free factor, so all elements of the group generated are reducible. Nevertheless, there is a partial

converse to Lemma 5.1.1, finding free groups generated by hyperbolic-hyperbolic pairs of Dehn

twists based on one-edge graphs of groups using a variation on their argument.
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Definition 5.1.7. Suppose Ā and B̄ are minimal, visible, small graphs of groups with one

edge and associated Fr-trees A and B. The pair is hyperbolic-hyperbolic if both for the

edge e ∈ E(Ā), a generator ze of Āe acts hyperbolically on B; and for the edge f ∈ E(B̄), a

generator zf of B̄f acts hyperbolically on A.

Proposition 5.1.8. If Ā and B̄ are minimal, visible, small graphs of groups with one edge. If

Ā and B̄ are hyperbolic-hyperbolic, then i(A,B) > 0.

Proof. The proof of Proposition 5.1.6 applies immediately to show that the two Bass-Serre

trees are not compatible. The construction used only the positive translation length of `B(c)

for a generator c of an edge group of Āe and that B̄ is small.

Remark. The above proposition, as noted in the proof, is much more general, giving a sufficient

condition for incompatibility: for any two minimal, visible, small graphs of groups, if there is

an edge of one with a generator hyperbolic in the other then the core of the Bass-Serre trees

has a rectangle.

The hyperbolic-hyperbolic condition is sufficient to give a length function ping-pong argu-

ment similar to Clay and Pettet’s.

Lemma 5.1.9. Suppose σ̃ and τ̃ are efficient Dehn twist representatives of σ, τ ∈ Out(Fr), on

one-edge graphs of groups Ā and B̄ respectively. If Ā and B̄ are hyperbolic-hyperbolic, then

there is an N such that 〈σN , τN 〉 ∼= F2.

Proof. Let e denote the edge of Ā, Āe = 〈a〉, f the edge of B̄ and B̄f = 〈b〉. Let s, t be nonzero

integers so that the twisters of σ̃ and τ̃ are ze = as and zf = bt respectively. We will conduct a



111

ping-pong argument similar to Clay and Pettet’s free factor ping pong technique. Consider the

subset of conjugacy classes of Fr P = {[w] ∈ [Fr]|`A(w) + `B(w) > 0}. Note that by hypothesis

[a], [b] ∈ P so P is non-empty. Moreover, by considering the normal form of b with respect to Ā

and a with respect to B̄, we see that there are powers n,m so that a±nb±m has positive length

in both trees; as a result [〈an, bm〉] \ {[id]} ⊆ P . Partition P = Pσ t Pτ ,

Pσ = {[w] ∈ P |
√

2`A(w) < `B(w)}

Pτ = {[w] ∈ X|`B(w) <
√

2`A(w)}

The use of
√

2 is arbitrary, any irrational will ensure that this is a partition, as `A and `B are

integer valued. This is a non-trivial partition, a ∈ Pτ and b ∈ Pσ by hypothesis.

Our goal then is to find a power N such that for all n ≥ N , σ±n(Pτ ) ⊆ Pσ and τ±n(Pσ) ⊆ Pτ .

By a variation on the ping-pong lemma, this implies 〈σN , τN 〉 ∼= F2, as required. The argument

will be symmetric.

Suppose [w] ∈ Pτ , so that `A(w) > 0. Fix a cyclically reduced representative in Bass-Serre

normal form with respect to a fixed basis of Fr based at a vertex of Ā:

w = e1a
k1w1e2a

k2w2 · · · e`ak`w`

where ` = `A(w), ei ∈ {e, ē}, we are suppressing the different edge morphisms sending a into

relevant vertex groups, and each wi is in the right transversal of the image of a in the vertex
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group involved. Let C be the bounded cancellation constant for the fixed basis of Fr basis into

B. With respect to this basis, after an appropriate conjugation we have the cyclically reduced

conjugacy class representative w′ satisfying

|w′| = |ak′1 |+ · · ·+ |w′`−1|+ |ak
′
` |+ |w′`|

where w′i is the reduced word in this basis for the group element represented by joining

a±1wiei+1a
±1 to the basepoint and including the appropriate conjugating transversal elements

coming from each instance of an a, and k′i = sgn(ki)(|ki| − 2) where each w′i might have dis-

turbed at most two cyclically adjacent copies of conjugates of a depending on the particular

spelling (this follows from the normal form). We have

√
2`A(w) > `B(w) ≥

(∑
|k′i|
)
`B(a)− C`A(w).

Re-writing, we conclude ∑
|k′i| <

(√
2 + C

`B(a)

)
`A(w). (†)

Using the Dehn twist representative of σ, we calculate

σ̃n(w) = e1a
ε1snak1w1e2a

ε2snak2w2 · · · e`aε`snak`w`
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where εi ∈ {±1} according to the orientation of e represented by ei. Reducing these words, and

applying bounded cancellation in the same fashion we have

`B(σ̃n(w)) ≥
∑̀
i=1

(|εisn+ k′i|)`B(a)− C`A(w)

≥
(
|sn|`A(w)−

∑
|k′i|
)
`B(a)− C`A(w)

≥

(
|sn| −

√
2 + C

`B(a)

)
`A(w)`B(a)− C`A(w)

with the last step following from Equation †. Thus we have

`B(σ̃n(w))

`A(σ̃n(w))
=
`B(σ̃n(w))

`A(w)
≥

(
|sn| −

√
2 + C

`B(a)

)
`B(a)− C.

Therefore, to ensure σn(w) ∈ Pσ we require

(
|sn| −

√
2 + C

`B(a)

)
`B(a)− C >

√
2

that is,

|n| > 2
√

2 + 2C

|s|`B(a)
.

Define Nσ to be the least positive integer satisfying the above inequality. For any n ≥ Nσ,

σ±n(Pτ ) ⊆ Pσ. Similarly, work out a number Nτ depending on `A(b) and the bounded cancella-

tion constant for the chosen basis and A that ensures for all n ≥ Nτ , τ±n(Pσ) ⊆ Pτ . The integer
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N = max{Nσ, Nτ} is then large enough to ensure that σN , τN acting on P = Pσ t Pτ satisfies

the hypotheses of the ping-pong lemma, and we conclude 〈σN , τN 〉 ∼= F2 as required.

Remark. The reader familiar with Cohen and Lustig’s skyscraper lemma and parabolic orbits

theorem may wonder why I did not use these tools in lieu of the above proof. Both of these

tools are not strong enough to give the uniform convergence necessary to carry out a ping-pong

type argument on CV r; the skyscraper lemma has constants that depend on the particular

skyscraper involved, and the parabolic orbits theorem gives pointwise convergence of length

functions on conjugacy classes but does not control the rate of convergence. A priori, this rate

could be very bad, as demonstrated by the examples of Bestvina, Feighn, and Handel [8, Remark

4.24].

Together Lemmas 5.1.1 and 5.1.9 come very close to a proof of Theorem 5.0.2. Nature is

not so kind, and there are incompatible graphs-of-groups that are not hyperbolic-hyperbolic

and do have rectangles in their core.

Example 5.1.10. Let A and B be the Bass-Serre trees of the graphs of groups decompositions

of F3

v
Gv = 〈a−1ba, b, c〉

Ā =

Ga = 〈b〉
a

v
Gv = 〈a−1ca, b, c〉

B̄ =

Ga = 〈c〉
a
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Let σ and τ be the Nielsen transformations represented by Dehn twists about Ā and B̄ by

b and c respectively, so that

σ(a) = ba τ(a) = ca

σ(b) = b τ(b) = b

σ(c) = c τ(c) = c

We claim that C(A,B) has a rectangle, so that i(A,B) > 0. Indeed, focus on the edges e ⊆ A

and f ⊆ B, each on the axis of a with the induced orientation and the given edge stabilizers:

〈a−1ba, b, c〉 〈b, aba−1, aca−1〉

〈b〉
e

〈a−1ca, b, c〉 〈c, aba−1, aca−1〉

〈c〉
f

Note that a ∈ JeK ∩ JfK and a−1 ∈ JēK ∩ Jf̄K. Further, investigation of the diagrams shows that

b−1ab ∈ JeK ∩ Jf̄K and c−1ac ∈ JēK ∩ JfK, so by Lemma 3.4.1, e× f ⊆ C(A,B).

This example is not hyperbolic-hyperbolic; `A(c) = `B(b) = 0. Nevertheless 〈σ, τ〉 ∼= F2.

For a ping-pong set take P = {wa ∈ F3|w ∈ 〈b, c〉} the reduced words ending in a, and for

the disjoint decomposition take Pσ = {wb±a}, reduced words ending in b±a, and Pτ = {wc±a}

reduced words ending in c±a. It is immediate that for all N 6= 0, σN (Pτ ) ⊆ Pσ and the

symmetric condition holds for τ , satisfying the hypotheses of the ping-pong lemma.

Example 5.1.11. Let A and B be the Bass-Serre trees of the graphs of group decompositions

of F3
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v
Gv = 〈a−1ba, b, c〉

Ā =

Ga = 〈b〉
a

v
Gv = 〈a, c, b−1cb〉

B̄ =

Gb = 〈c〉
b

Let σ and τ be the Nielsen transformations represented by Dehn twists about Ā and B̄ by

b and c respectively, so that

σ(a) = ba τ(a) = a

σ(b) = b τ(b) = cb

σ(c) = c τ(c) = c

Again we have a rectangle in C(A,B). Consider g = a, h = bab−1. Calculating with length

functions we have

`A(g) = `A(h) = 1 `B(g) = `B(h) = 0

and also

`A(gh) = 2 6= 0 = `A(gh−1)

`B(gh) = `B(gh−1) = 2 > 0 = `B(g) + `B(h).
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Therefore A and B do not have compatible combinatorics, so by Corollary 3.4.2 C(A,B) has a

rectangle.

This example is also not hyperbolic-hyperbolic, `B(b) = 1 but `A(c) = 0. Again, however,

〈σ3, τ3〉 ∼= F2. For a ping-pong set we again use P = {wa ∈ F3|w ∈ 〈b, c〉} reduced words

ending in a, and ping-pong sets Pσ = {wb±2a} and Pτ = P \ Pσ. For all N 6= 0, we again have

σ3N (Pτ ) ⊆ Pσ and τ3N (Pσ) ⊆ Pτ . Note that it is only out of an aesthetic desire to use the

same power of N on both generators that we use τ3, it is the case that τN (Pσ) ⊆ Pτ for all

N 6= 0.

Both of these examples are presented with respect to a particularly nice basis, and by taking

the associated homotopy equivalence of the wedge of three circles marked by the given basis,

we see that all automorphisms in the above example are upper triangular (and with a bit

more work, that every element in the subgroup generated is polynomially growing). Both ping-

pong arguments rely on the interaction between the suffixes in this particular upper triangular

setting. This suggests a dichotomy, either length function ping-pong is possible, or the group

generated by a pair of Dehn twists is polynomially growing. To analyze the growth of elements

in a subgroup of Out(Fr) generated by a pair of Dehn twists we will follow the cue of Bestvina,

Feighn, and Handel, and understand the growth in topological models associated to the Dehn

twists.

5.2 Simultaneous graphs of spaces and normal forms

Guirardel gives a topological interpretation of the core of two simplicial Fr trees.
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Theorem 5.2.1 ([26, Theorem 7.1]). Given two non-trivial simplicial Fr trees A and B there

exists a cell complex X with π1(X) ∼= Fr and two 2-sided subcomplexes YA, YB ⊂ X intersecting

transversely such that i(A,B) = |π0(YA ∩ YB)|.

The space X is constructed as follows. Let X̃ = Ĉ(A,B)× T where T ∼= R̃r is the universal

cover of a fixed wedge of r circles. Let MA be the set of midpoints of edges of A and MB be the

set of midpoints of edges of B. The spaces ỸA = π−1
A (MA)× T and ỸB = π−1

B (MB)× T are a

family of two-sided subcomplexes of X̃. The connected components of ỸA ∩ ỸB are of the form

x× T where x is a point in the interior of a 2-cell of Ĉ(A,B) or a midpoint of an edge in Ĉ \ C.

The intersections of the form x × T when x is a midpoint of an edge in the augmented core

are not transverse, indeed x× T is a connected component of both ỸA and ỸB in this case. A

transverse intersection can be obtained by instead using M ′B and equivariant choice of points in

the interior of the edges of B none of which are the midpoints, denote this perturbation of ỸB

by Ỹ ′B. The intersection components of ỸA and Ỹ ′B are in one-to-one correspondence with the

2-cells of Ĉ(A,B). The quotients by the diagonal Fr action, denoted X,YA, and Y ′B respectively,

are the desired spaces.

These quotient spaces can be viewed through the lens of model spaces for graphs of groups,

discussed in Section 2.6. Let Ā and B̄ be the graphs of groups covered by A and B respectively.

The compositions πA ◦ πĈ and πB ◦ πĈ of projection maps descend to the quotient and give

maps qA : X → Ā and qB : X → B̄. These maps make X a graph of spaces over Ā and

B̄ simultaneously, with the connected components of YA and YB in the role of edge spaces.

Denote by A and B the graphs of spaces structures on X induced by qA and qB respectively,
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with Av = q−1
A (v) the vertex space over v ∈ V (Ā), Ae = q−1(e) the mapping cylinder over

the midpoint space Ame = q−1(me) of an edge e ∈ E(Ā), and similar notation for B. The goal

of this section is to establish a normal form for paths and circuits in a simultaneous graph of

spaces structure. This behavior of the core is captured in the following definition.

Definition 5.2.2. Let Ā and B̄ be two Fr graphs of groups. A complex X is a simultaneous

graph of spaces resolving Ā and B̄ if there are maps qA : X → Ā and qB : X → B̄ making

X a graph of spaces for Ā and B̄ respectively (the induced structures denoted A and B), and

the following conditions on subspaces are satisfied:

• The midpoint spaces Ame and Bmf are either equal or intersect transversely for all edges

e ∈ E(Ā) and f ∈ E(B̄).

• The intersection Av ∩Be is the mapping cylinder for the maps of Av ∩Bme into Av ∩Bo(e)

and Av ∩ Bt(e) as a sub-mapping cylinder of Be.

The core of X is the subcomplex ⋃
e∈E(Ā)
f∈E(B̄)

Ae ∩ Bf

A subcomplex Y = Ae ∩ Bf of the core is twice-light if Ame = Bmf .

Corollary 5.2.3. For any two Fr graphs of groups Ā and B̄ there is a simultaneous graph of

spaces resolving them.

Proof. The space X constructed in the proof of Theorem 5.2.1 from the core of the Bass-Serre

trees covering Ā and B̄ is the desired space.
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Remark. When X = Ĉ ×Fr T , the core of X is the closure of the preimages of the interiors of

the 2-cells of Ĉ and the edges of Ĉ \ C. The latter are the twice-light subcomplexes.

Edges e ⊆ X(1) in the 1-skeleton of a simultaneous graph of spaces fall into a taxonomy

given by the two decomopositions. Recall that in a single graph of spaces structure X , an edge

in X(1) is X -nodal if it lies in a vertex space, and X -crossing otherwise. We extend this

terminology to a simultaneous graph of spaces.

Definition 5.2.4. Let e ⊆ X(1) be an edge in the 1-skeleton of a simultaneous graph of spaces

resolving Ā and B̄. We say e is

nodal if it is both A and B nodal,

A-crossing if it is A-crossing but B-nodal,

B-crossing if it is B-crossing but A-nodal,

double-crossing if it is both A-crossing and B-crossing.

The possible ambiguity of terminology will be avoided by always making clear whether we

are considering a single graph of spaces structure or a simultaneous graph of spaces structure.

For a single graph of spaces, based paths have a normal form that gives a topological

counterpart to the Bass-Serre normal form for the fundamental groupoid. Recall Lemma 2.6.7,

that every path based in the zero skeleton of a graph of spaces is homotopic relative to the

endpoints to a path

v0H1v1H2 · · ·Hnvn



121

where each vi is a (possibly trivial) tight edge path of X -nodal edges, each Hi is X -crossing,

and for all 1 ≤ i ≤ n − 1, HiviHi+1 is not homotopic relative to the endpoints to an X -nodal

edge path. A similar normal form is possible in a simultaneous graph of spaces.

Lemma 5.2.5. Every path in X, a simultaneous graph of spaces resolving Ā and B̄, is homo-

topic relative to the endpoints to a path of the form (called simultaneous normal form)

W0,0K0,1W0,1 · · ·K0,n0W0,n0H1W1,0 · · ·HmWm,0Km,1 · · ·Km,nmWm,nm

where the Wi,j are (possibly trivial) tight edge paths of nodal edges, the Ki,j are B-crossing

edges, and the Hi are either A-crossing or double-crossing edges. Further this path is in normal

form for both A and B, so that the number of B-crossing edges plus double-crossing edges and

the number of A-crossing edges plus double-crossing edges are both invariants of the relative

homotopy class of the path. A similar statement holds for free homotopy classes of loops.

Proof. Throughout this proof all homotopies will be homotopies of paths relative to the end-

points. Suppose γ is a path in X. First, by Lemma 2.6.7, γ is homotopic to a path of the

form

v0H1v1H2v2 · · ·Hmvm

with each vi a A-nodal path and each Hi either A-crossing or double-crossing. With respect to

B, each vi is an edge path, not necessarily in normal form, of the form

Wi,0Ki,1Wi,1 · · ·Ki,niWi,ni
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where each Wi,j is B-nodal (and so nodal in the simultaneous graph of spaces) and each Ki,j is

B-crossing (in the simultaneous graph of spaces sense).

We can take this path to B-normal form by erasing pairs of crossing edges, but we must

do so without introducing A-crossing edges. Suppose for some i the path Ki,jWi,jKi,j+1 is

homotopic to a path W ′ij that is B-nodal. Suppress the common index i. Let p be the vertex of

Ā such that KjWjKj+1 ⊆ Ap, e the edge of B̄ such that KjWjKj+1 ⊆ Be, so that Wj ⊆ Bt(e)

and W ′j ⊆ Bo(e). Since KjWjKj+1 ⊆ Ap ∩ Be, this is a path in the mapping cylinder for the

inclusions of Ap ∩ Bme into the endpoints, and Wj is a fiber of this cylinder. Thus KjWjKj+1

is homotopic to a path W ′′j ⊆ Ap ∩ Bo(e). Using W ′′j to erase the pair of crossing edges, we see

that each vi can be expressed in B normal form and remain A-nodal. Thus γ is homotopic to

a path of the form

W0,0K0,1W0,1 · · ·K0,n0W0,n0H1W1,0 · · ·HmWm,0Km,1 · · ·Km,nmWm,nm

This path may not be in B-normal form. There are two possible cases, and in both we will

show that it is possible to erase a pair of B-crossing edges without destroying A-normal form.

First, suppose this path is not B-normal because there is some i such that Ki,niWi,niHi+1

(or symmetrically HiWi,0Ki,1) is homotopic to a path W ′i that is B-nodal. In this case Hi+1

must be double-crossing. Note that this path is already in A-normal form. Again suppress the

common index, and take KnWnH to a path in the B-vertex space Bq. This path will have some

number of A-crossing edges, but similar to the previous paragraph, this path is homotopic to
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one in A-normal form via a homotopy inside Bq, so that by Lemma 2.6.7 KnWnH is homotopic

to a path of the form W ′nH
′W ′ with exactly one A-crossing edge, and W ′n and W ′ are nodal.

Second, suppose the resulting path is not B-normal because there is some i such that

Ki,niWi,niHi+1Wi+1,0Ki,0 is homotopic to a path W ′i that is B-nodal. In this case Hi+1 must be

A-crossing. As before, the path W ′i ⊆ Bq is homotopic to a path in A-normal form contained

in Bq.

Therefore, a path γ is homotopic to a path in simultaneous normal form, and can be taken

to this normal form by composing the following homotopies

1. Take γ to A-normal form.

2. Take each A-nodal sub-path to B-normal form within the appropriate A vertex space.

3. Erase remaining pairs of B-crossing edges, maintaining A-normal form.

The homotopy invariance of the number of crossing edge types follows immediately from

Lemma 2.6.7.

5.3 Twisting in graphs of spaces

A Dehn twist on a graph of groups can be realized by an action on based homotopy classes

of paths in a graph of spaces. Let Γ be a graph of groups modeled by the graph of spaces X,

and D a Dehn twist based on Γ. Each crossing edge H ∈ X(1) lies over some edge e ∈ E(Γ). For
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each crossing edge H pick a loop γH in Xt(e), contained in the image of Xe × {1} representing

ze and based at t(H). The action of D on a crossing edge is the concatenation

D(H) = HγH

The action is extended to an action on all paths in X(1) by concatenation and D(v) = v for

every nodal path, and to based homotopy classes by taking one-skeleton representatives. That

this action is well-defined and represents the Dehn twist D faithfully follows from noting that

the below diagram of fundamental groupoids commutes.

π1(X,X(0))
D //

��

π1(X,X(0))

��

π1(Γ)
D

// π1(Γ)

Also from this diagram we see that if a path γ is in normal form, then so is D(γ), with the

same crossing edges.

Extending this to the setting of a simultaneous graph of spaces resolving Ā and B̄, and

twists σ̃ based on Ā and τ̃ based on B̄, we see that σ̃ preserves A-normal form (though we

can make no comment on the B-normal form) and a symmetric statement holds for τ̃ . To

understand the behavior of paths in simultaneous normal form we must track the extent to

which σ̃ alters the number of B-crossing edges and vise-versa. This interaction is contained

entirely in the graphs of groups, and applies to all twists based on the graphs.
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Definition 5.3.1. The edge twist digraph ET (Ā, B̄) of two small graphs of groups is a

directed graph with vertex set

V (ET ) = {(e, ē), |e ∈ E(Ā)} ∪ {(f, f̄)|f ∈ E(B̄)}

directed edges ((e, ē), (f, f̄)) e ∈ E(Ā), f ∈ E(B̄) when a generator Āe = 〈ze〉 or its inverse uses

f or f̄ in cyclically reduced normal form with respect to B̄, and directed edges ((f, f̄), (e, ē))

f ∈ E(B̄), e ∈ E(Ā) when a generator B̄f = 〈zf 〉 or its inverse uses e or ē in cyclically reduced

normal form with respect to Ā.

This definition is made somewhat cumbersome by the presence of orientation. The vertex set

is the unoriented edges of the two graphs of groups, and the property of crossing an unoriented

edge in normal form is shared by the generator and its inverse. We encapsulate the resulting

awkwardness here, so that subsequent arguments about paths in simultaneous normal form are

clear.

The edge-twist structure controls the growth rate of elements in any group generated by a

twist σ̃ on Ā and τ̃ on B̄.

Lemma 5.3.2. Suppose Ā and B̄ are minimal, visible, small graphs of groups with free fun-

damental group Fr and ET (Ā, B̄) is acyclic. Then for any pair of Dehn twists σ, τ ∈ Out(Fr)

represented by σ̃ based on Ā and τ̃ based on B̄, every element of 〈σ, τ〉 ≤ Out(Fr) is polyno-

mially growing. Moreover, the growth degree is at most the length of the longest directed path

in ET (Ā, B̄).
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Proof. Let X = Ĉ(A,B) ×F T be the simultaneous graph of spaces constructed from the

augmented core of the Bass-Serre trees A and B for Ā and B̄, with T̄ a wedge of circles,

equipped with the `1 metric. Note that X̃ has an equivariant Lipschitz surjection to T given by

projection and that this descends to a Lipschitz homotopy equivalence on the quotient, denoted

ρ : X → T̄ . Further, if γ is a loop in X(1) representing a conjugacy class [g] of π1(T̄ ),

`T (g) ≤ |ρ(γ)|T̄ ≤ Lip(ρ) · |γ|X

where | · | is the arclength. Further, for any w ∈ 〈σ, τ〉, by expressing w as a word in the

generators we get an action on paths w̃, with the property that w(g) is represented by w̃(γ).

Therefore, it suffices to give a polynomial bound on the growth of paths in X under the

topological representatives of σ and τ . Moreover, for any edge path γ, the growth under the

action of σ̃ and τ̃ is bounded by the number of A-crossing edges of γ times the growth of

A-crossing edges plus the similar quantity for B-crossing edges. So it suffices to bound the

growth of crossing edges. (Note, this is an upper bound, we make no attempt to understand

cancellation that might happen, as a result these bounds could be quite bad.)

First, as a technical convenience, replace Ā and B̄ by the isomorphic graphs of groups con-

structed from A and B using a fundamental domain in each that is the image under projection

of a fundamental domain for Ĉ(A,B), so that the edge stabilizers of edges covered by diagonals

of the core are not just conjugate, but equal on the nose. This does not change the outer
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automorphism class of the Dehn twists under consideration, nor does it change the edge twist

graph.

It follows that if D is a double-crossing edge of X(1) lying over e ∈ E(A) and f ∈ E(B),

the vertices (e, ē) and (f, f̄) of ET (Ā, B̄) have no outgoing edges. Moreover, we can choose a

loop representing a generator of Āe = 〈z〉 = B̄f that is nodal and based at t(D), and alter the

topological representatives of σ̃ and τ̃ so that σ̃(D) = γa and τ̃(D) = γb, concatenations of

either γ or its reverse, according to the expression of the twisters of σ̃ about e and τ̃ about f

in terms of the generator z. Thus,

σ̃sn τ̃ tn · · · σ̃s1τ̃ t1(D) = Dγa
∑
si+b

∑
ti

which has edge length at most linear in
∑
|si|+

∑
|ti|.

Suppose H is an A or B-crossing edge of X(1) lying over (e, ē) ∈ V (ET ). Let de be the

length of the longest directed path in ET (Ā, B̄) starting at e. We will use the notation polyd(x)

to stand for some polynomial of degree d in x, as we are looking for an upper bound and making

no attempt to estimate coefficients.

Claim. The length of σ̃sn τ̃ sn · · · σ̃s1 τ̃ t1(H) is at most polyde+1(
∑
|si|+

∑
|ti|).

Proof of Claim. he proof is by induction on de. As the argument is symmetric, we will

suppose H is A-crossing, so that e ∈ E(A).

Base Case: de = 0. If the edge H is double-crossing, then the growth is at most linear,

as shown in the discussion of double-crossing edges. Let γH be a loop representing a generator
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ze of Āe based at t(H) and in simultaneous normal form. Since (e, ē) has no outgoing edges in

ET , the loop γH is B-nodal. Let a be the power so that zae is the e twister of σ̃. Use γae in the

topological representative of σ̃. Then for any s, σ̃s(H) = Hγase is a B-nodal path, and we have

σ̃sn τ̃ tn · · · σ̃s1 τ̃ t1(H) = Hγ
a
∑
si

H

which has edge length at most linear in
∑
|si|+

∑
|ti|, as required.

Inductive Step: de > 0. In this case, the edge H cannot be double-crossing. Since

de > 0, (e, ē) has neighbors (f1, f̄1), . . . , (fk, f̄k). As before, use a simultaneous normal form

representative γH for a generator ze of Āe based at t(H), so that σ(H) = γaH . Since γH has an

A-nodal representative by definition, we have in simultaneous normal form

γH = W0K1 · · ·KmWm

where Ki lies over either fki or f̄ki by the definition of the edge twist graph. Further, for each

fi, the longest path in ET based at fi, dfi ≤ de − 1. Calculating, we have

σ̃sn τ̃ tn · · · σ̃s1 τ̃ t1(H) = HγasnH σ̃sn τ̃ tn(γ
asn−1

H )

· σ̃sn τ̃ tn σ̃sn−1 τ̃ tn−1(γ
asn−2

H )

...

· σ̃sn τ̃ tn · · · τ̃ t2(γas1H )
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By the induction hypothesis, the length of each Kvi under a composition of powers of σ̃ and τ̃

is bounded by a polynomial of degree at most de. Hence σ̃sn τ̃ tn · · · σ̃s2 τ̃ t2(γas1) has length at

most

|as1| · polyde

∑
i≥2

|si|+ |ti|


Similarly, we calculate

|σ̃sn τ̃ tn · · · σ̃s1 τ̃ t1(H)| ≤
n∑
i=1

|asi| · polyde

∑
j>i

|sj |+ |tj |



and this quantity is in turn at most polyde+1 (
∑
|si|+ |ti|). This completes the claim. �

Finally, suppose w = σsnτ sn · · ·σs1τ t1 ∈ 〈σ, τ〉. For any g ∈ F , let γ be a loop in simul-

taneous normal form representing the conjugacy class of g in X(1). The length `T (wN (g)) is

bounded by the length in X of w̃N (γ), which by the claim is at most

polyd+1(N ·
(∑

|si|+ |ti|
)

where d is the length of the longest directed path in ET . This is a polynomial of degree d+ 1

in N , which completes the lemma.

An interesting question, which we do not answer here but will discuss again in the conclusion,

is whether or not Lemma 5.3.2 is sharp. That is, if ET (Ā, B̄) contains a cycle, is there some pair

of twists σ, τ with representatives based on Ā and B̄ respectively so that the group generated

contains an outer automorphism with an exponentially growing stratum? In the setting of
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one-edge splittings, Clay and Pettet’s result is in this direction: two one-edge graphs of groups

that fill have a directed cycle of length two in their edge-twist graphs.

5.4 Dehn twists on incompatible graphs generate free groups

We are now in a position to give a full converse to Lemma 5.1.1. The proof is by two cases,

decided by the structure of the edge-twist graph. When the edge-twist graph contains a cycle,

this cycle enables a length function ping-pong argument that is almost identical to the proof of

Lemma 5.1.9. When the edge-twist graph is acyclic, the group generated by the pair of twists

is polynomially growing and we analyze its structure using the Kolchin theorem for Out(Fr)

of Bestvina, Feighn, and Handel. As the two arguments are significantly different, we present

them as two lemmas.

Lemma 5.4.1. Suppose σ and τ are Dehn twists with efficient representatives σ̃ and τ̃ on

graphs of groups Ā and B̄ such that ET (Ā, B̄) contains a cycle. Then there is an integer N

such that 〈σN , τN 〉 ∼= F2.

Proof. Let (u1, ū1), . . . , (uc, ūc) and (v1, v̄1), . . . , (vc, v̄c) be the vertices of a primitive cycle in

ET , with ui ∈ E(Ā) and vi ∈ E(B̄). (It is psychologically unfortunate to use u and v for edges,

but is only for this proof.) The index c is the same for both sets as ET is bipartite, and no

vertex (ui, ūi) or (vi, v̄i) is repeated. For each edge ui fix a generator 〈aui〉 = Āui and sui 6= 0

so that the twister of σ̃ about ui is zui = a
sui
ui , and similarly fix 〈bvi〉 = B̄vi and ti 6= 0. (The su

and tv are nonzero as both σ̃ and τ̃ twist on every edge of their respective graphs.) Let Ā′ and

B̄′ be the quotient graphs of groups obtained by collapsing E(Ā) \ {ui, ūi} and E(B̄) \ {vi, v̄i}

in Ā and B̄ respectively.
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We will again use conjugacy class ping-pong. Let P = {[w] ∈ Fr|`A′(w)+`B′(w) > 0}. Note

that, from the structure of the edge twist graph, we have {au, bv} ⊆ P , indeed `A′(bv) > 0 and

`B′(au) > 0 for each u ∈ {ui, ūi} and v ∈ {vi, v̄i}, so that P is non-empty. Partition P = PσtPτ

Pσ = {[w] ∈ P |
√

2`A′(w) < `B′(w)}

Pτ = {[w] ∈ P |`B′(w) <
√

2`A′(w)}

Again the use of
√

2 is arbitrary and any irrational will ensure the decomposition is a partition.

Moreover, this partition is non-trivial, the au ∈ Pτ and bv ∈ Pσ.

Once more we will find an N so that for all n ≥ N , σ±n(Pτ ) ⊆ Pσ and τ±n(Pσ) ⊆ Pτ , so

that, by the ping-pong lemma 〈σN , τN 〉 ∼= F2. The argument will be symmetric, and almost

identical to that of Lemma 5.1.9.

Suppose [w] ∈ Pτ , so that 0 < `A′(w). Fix a cyclically reduced representative of w in

Bass-Serre normal form with respect to a fixed basis of Fr and Ā′,

w = e1a
k1
e1w1e2a

k2
e2w2 · · · e`ak`e`w`

where we are suppressing the different edge morphisms, using ` = `A′(w) for legibility, ei ∈

{ui, ūi}, and each wi is in the right transversal of the image of aei in the vertex group involved.

Let C be the bounded cancellation constant for the fixed basis of Fr basis into B′. With respect
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to this basis, after an appropriate conjugation we have the cyclically reduced conjugacy class

representative w′ satisfying

|w′| = |ak
′
1
e1 |+ · · ·+ |w′`−1|+ |a

k′`
e` |+ |w′`|

where w′i is the reduced word for the group element obtained by joining a±1
ei wiei+1a

±1
ei+1

to the

basepoint and including the appropriate transversal elements coming from aei and aei+1 , and

k′i = sgn(ki)(|ki| − 2). (This follows from normal form as in the proof of Lemma 5.1.9.) Let

α = mini{`B′(aui)}. Since each (ui, ūi) is joined to some (vi, v̄i) by an edge in ET as they are

all vertices of a cycle, α > 0. We have, by bounded cancellation,

√
2`A′(w) > `B′ ≥

∑̀
i=1

|ki|`B′(aei)− C`A′(w)

≥

(
p∑
i=1

|k′i|

)
α− C`A′(w).

We conclude ∑
|k′i| <

(√
2 + C

α

)
`A′(w). (†)

Calculating with the induced relative Dehn twist on Ā′ and abusing notation to also call it

σ̃, we have

σ̃n(w) = e1a
se1n
e1 ak1

e1 σ̃
n(w1)e2a

se2n
e2 ak2

e2 · · · e`a
se`n
e` ak`e` σ̃

n(w`)

When reducing this word there is the possibility that σ̃n(wi) is of the form aεnei xia
δn
ei+1

, however

the no positive bonding condition of the efficient representative forces εn and sein to have the
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same sign, and also δn and sei+1n. So, reducing and applying bounded cancellation in the same

fashion, we have, with s = mini{|si|}

`B′(σ
n(w)) ≥

∑̀
i=1

|sein+ k′i|`B′(aei)− C`A′(w)

≥

(
|sn|`A′(w)−

p∑
i=1

|k′i|

)
α− C`A′(w)

≥

(
|sn| −

√
2 + C

α

)
α`A′(w)− C`A′(w)

with the last step following from Equation †. Thus we have

`B′(σ
n(w))

`A′(σn(w))
=
`B′(σ

n(w))

`A′(w)
≥

(
|sn| −

√
2 + C

α

)
α− C

Therefore, to ensure σn(w) ∈ Pσ we require

(
|sn| −

√
2 + C

α

)
α− C >

√
2

that is,

|n| > 2
√

2 + 2C

sα
.

Define Nσ to be the least positive integer satisfying the above inequality. For any n ≥

Nσ, σ±n(Pτ ) ⊆ Pσ. Similarly, find Nτ depending on β = mini{`A′(bvi)}, t = mini{|ti|} and

the bounded cancellation constant for the fixed basis into A′ that ensures for all n ≥ Nτ ,
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τ±n(Pσ) ⊆ Pτ . The integer N = max{Nσ, Nτ} is the desired power, and 〈σN , τN 〉 ∼= F2 by the

ping-pong lemma.

The presence of a cycle in ET (Ā, B̄) is essential in the above proof; it guarantees there is

some subset of twisters and edges where the growth of one restricted length function is linear in

the value of the other restricted length function. Without a cycle, this kind of uniform control

is unavailable, as illustrated by Examples 5.1.10 and 5.1.11. Fortunately, this is the exact case

where the generated group is polynomially growing and the Kolchin theorem can be applied.

Using the simultaneous upper triangular representatives a different form of ping-pong can be

effected.

First we require a lemma relating the core of two efficient twists and the structure of their

simultaneous upper triangular representatives.

Lemma 5.4.2. Suppose σ and τ are Dehn twist outer automorphisms with upper-triangular

relative train-track representatives σ̂ and τ̂ with respect to a filtered graph ∅ = Γ0 ( Γ1 (

· · · ( Γk = Γ, and efficient representatives σ̃ and τ̃ on graphs of groups Ā and B̄ covered by A

and B respectively. If

• Every suffix of σ̂ is τ̂ -Nielsen,

• Every suffix of τ̂ is σ̂-Nielsen,

• For every edge Ei ∈ Γi\Γi−1 if Ei is a linear edge of both σ̂ and τ̂ the associated primitive

Nielsen paths are equal (up to a reverse),

then C(A,B) does not contain a rectangle.
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Proof. The construction of efficient representatives in Lemma 4.3.7 from a relative train-track

involves first folding conjugates, then a series of folding edges in linear families, and finally a

series of graph of groups Stallings folds; it follows from Cohen and Lustig’s parabolic orbits

theorem that the simplicial structure of the resulting tree is unique (Theorem 4.3.5 and Corol-

lary 4.3.6). We carry out the same construction, using both σ̂-linear edges and τ̂ -linear edges.

A joint linear family is a collection of single edges {Ei} which have either σ̂ or τ̂ suffixes that

are a power of a fixed primitive Nielsen path γ. By hypothesis, if two edges Ei and Ej are in

the same linear family for one of the maps, then they are in the same joint linear family. As

in the construction of efficient representatives, we first fold conjugates and then linear families;

the hypotheses ensure that this can be done in a compatible fashion. The resulting folded

graph and folded representatives, σ̂′, τ̂ ′ : Γ′ → Γ′ are still upper triangular, represent σ and τ

respectively, and have the property that every linear family contains one edge.

We now construct a tree C that resolves the trees A and B. First, recall that the efficient

representative of σ̂′ on a tree A can be constructed from Γ′ as follows. Start with A0 obtained

from the universal cover of Γ′ by collapsing all σ̂′ fixed edges of Γ′. We then work up the

remaining orbits of edges of A0 by the filtration of Γ′. If σ̂′(Ei) = Ei then set Ai = Ai−1,

otherwise σ̂′(Ei) = Eiui, and each lift of ui by construction represents an element in the vertex

group based at a lift of t(Ei); the tree Ai is obtained from Ai−1 by folding the associated

primitive Nielsen path γi over Ei (the details are in Lemma 4.3.7), and the result Ak is A.

To construct the resolving tree, we start with C0, obtained from the universal cover of Γ′ by

collapsing all edges that are fixed by both σ̂′ and τ̂ ′. Then, working up the hierarchy of Γ, if
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Ei is both σ̂′ and τ̂ ′ fixed, set Ci = Ci−1, otherwise σ̂′(Ei) = Eiγ
s
i and τ̂ ′(Ei) = Eiγ

t
i for a

primitive Nielsen path γi (allowing the possibility s or t is zero); in this case by construction

lifts of γi represent elements in the vertex stabilizers of lifts of t(Ei), so we obtain Ci from Ci−1

by folding γi over Ei. The desired resolving tree is C = Ck. It is readily apparent from this

construction that C maps to A and B by collapse maps: collapse any remaining σ fixed edges

of C to obtain A, and any remaining τ fixed edges of C to obtain B.

Since collapse maps have convex fibers, by the universal property of the core [26, Corollary

5.3], the core is contained in the image of C 7→ A×B, which has no rectangles because C is a

tree.

The contrapositive of this lemma will be used to find paths suitable for ping-pong, after

applying the Kolchin theorem.

Lemma 5.4.3. Suppose σ̃, τ̃ are efficient Dehn twists based on Ā and B̄ respectively. If

ET (Ā, B̄) is acyclic and C(A,B) contains a rectangle, then there is an N > 0 such that

〈σN , τN 〉 ∼= F2.

For the proof we require some notation. For two paths γ, δ ⊆ Γ with the same initial point,

the overlap length is defined by θ(γ, δ) = 1
2(lengthΓ([γ]) + lengthΓ([δ])− length([γ̄δ])), where

we use the metric on Γ induced by assigning each edge length one. We will often understand

the overlap length by calculating the common initial segment of two tight paths, this is the

connected component of the intersection of lifts of γ and δ based at the common intersection

point containing that point. The length of this segment is equal to the overlap length.
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Proof. By Lemma 5.3.2, the group 〈σ, τ〉 is a polynomially growing subgroup of Out(Fr), so it

has a finite index subgroup that is unipotent polynomially growing, and by passing to a power

we can ensure that the group generated is UPG [8, Proposition 3.5]. Therefore, by the Kolchin

theorem for Out(Fr) (see Theorem 4.2.2) there is a filtered graph ∅ = Γ0 ( Γ1 ( · · ·Γk = Γ with

each step in the filtration a single edge, so that 〈σ, τ〉 is realized as a group of upper-triangular

homotopy equivalences of Γ with respect to the filtration. Let σ̂ and τ̂ be the realizations of

the generators. Note that since σ and τ are UPG, every periodic Nielsen path of σ̂ and τ̂ is

Nielsen, so that if a path is not fixed (up to homotopy rel endpoints) it must grow linearly.

Since C(A,B) contains a rectangle, the contrapositive of Lemma 5.4.2 implies that either (up

to relabeling) σ̂ has a linear edge Ei with suffix ui that grows under τ̂ (as in Example 5.1.11),

or there is an edge Ei so that the σ̂ and τ̂ suffixes are powers of primitive Nielsen paths which

generate non-equal cyclic subgroups (as in Example 5.1.10), and both suffixes do not grow

under either automorphism. This gives two cases.

Case 1. Let Ei be the lowest edge in the filtration such that its suffix under one automor-

phism grows linearly under the other, and without loss of generality suppose that the σ̂ suffix

ui grows linearly under τ̂ . We will use as a ping-pong set

P = {[ω(Ei)]|ω ∈ 〈σ̂, τ̂〉}

the orbits of (the based homotopy class of) Ei under tightening after applying elements of the

group generated by σ̂ and τ̂ . Since a tight path is a unique representative of a based homotopy
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class the proof will focus on the tight representatives and the homotopy class will be suppressed.

All of these classes have tight representatives of the form Eiw with w ⊆ Γi−1 a tight path based

at t(Ei), since the group is upper triangular with respect to this filtration. Let

Pσ = {p ∈ P |θ([Eiu3
i ], p) ≥ θ([Eiu3

i ], [Eiu
2
i ]) or θ([Eiū

3
i ], p) ≥ θ([Eiū3

i ], [Eiū
2
i )]}

and Pτ = P \Pσ be a partition of P . It is clear that P and Pσ are non-empty, and we will show

in the course of the proof that Pτ is non-empty. Let γk be the common initial segment of [uki ]

and [uk+1
i ], and γ−k the common initial segment of [ūki ] and [ūk+1

i ]. Note that [ūki γ1] = γ−(k−1),

the paths γj are an increasing sequence of paths, and that [σ̂(γj)] = γju
′ where u′ is the Nielsen

path associated to an exceptional Nielsen subpath of the primitive Nielsen path associated to

ui if one exists.

We claim σ̂±3N (Pτ ) ⊆ Pσ for N 6= 0. Suppose Eiw ∈ Pτ , we calculate

[σ̂3N (Eiw)] = Ei[[u
3N ]σ̂3N (w)].

Suppose [σ̂3N (w)] = γ−kw
′ for k > 3N − 1. Consider the σ̂-canonical decomposition of γ−kw

′.

Either this agrees with the σ̂-canonical decomposition of γ−k, or the last edge of γ−k participates

in a maximal exceptional subpath of w′, so that the decomposition of γ−kw
′ is obtained from
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γ−(k−1) and some w′′. In either case, since every edge of w is lower than the linear family

associated to ui, [σ̂−3N (w′′)] does not overlap [uki ] in γk, and we have

w = [σ̂−3N (γ−(k−1)w
′′)] = γ−(k−1)[σ̂

−3N (w′′)].

Since k > 3N−1, this implies Eiw ∈ Pσ, but we supposed Eiw /∈ Pσ. Therefore, Ei[u
3N σ̂3N (w)]

has Eiγ2 as an initial segment, so that σ̂3N (Eiw) ∈ Pσ. The argument for negative powers is

symmetric.

Next we claim τ̂±N (Pσ) ⊆ Pτ for N 6= 0. Let vi be the τ̂ suffix of Ei (possibly trivial). Since

ui grows linearly under τ , γ1 must contain a τ̂ -linear edge or τ̂ -linear exceptional path in its τ̂

decomposition. Neither vi nor v̄i, which are τ̂ -Nielsen, can contain a τ̂ -linear component in their

τ̂ -canonical decomposition as vi is a τ̂ suffix. A similar statement holds for γ−1. Thus vi and

v̄i do not have γ2 or γ−2 as an initial segment. Consider the highest τ̂ -linear edge of γ1; since

τ̂ is upper-triangular this edge cannot be canceled when tightening τ̂N (γ1), so [τ̂±N (γ2)] has at

most γ1 in common with γ2 (and similarly at most γ−1 in common with γ−2). Finally, suppose

[Eiγ2w] ∈ Pσ is a tight representative. By the minimality in the choice of Ei, the highest τ̂ -linear

edge of w is of the same height as that in γ2, so these edges do not cancel in the tightening of

τ̂±N (γ2)τ̂±N (w). Putting this all together, the result [τ̂±NEiγ2w] has at most Eiγ1 in common

with Ei[u
3]. Applying similar reasoning to Eiγ−2w

′, we conclude τ̂±N (Pσ) ⊆ Pτ (this shows

in particular that Pτ is non-empty). So by the ping-pong lemma 〈σ3, τ3〉 ⊆ 〈σ3, τ〉 ∼= F2 as

required.
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Case 2. Suppose no σ suffix is τ -growing and vise-versa, and that there is an edge E such

that σ̂(E) = Eu and τ̂(E) = Ev, and the associated primitive Nielsen paths u′ and v′ do not

generate isomorphic subgroups of π1(Γ, t(E)). Since v is not σ̂ growing it is σ̂-periodic, thus

[σ̂(v)] = v; similarly [τ̂(u)] = u. By hypothesis, u∗, v∗ ∈ π1(Γ, t(E)) generate a rank two free

group G. Further, for ω ∈ 〈σ̂, τ̂〉, ω(E) = Ew for some path w so that w∗ ∈ 〈u∗, v∗〉. It is

immediate that ω 7→ w∗ is an isomorphism, hence 〈σ, τ〉 ∼= F2.

The culmination of this effort is a proof of a McCarthy type theorem in the linearly growing

case.

Theorem 5.0.2. Suppose σ and τ are linearly growing outer automorphisms. Then there is

an N such that 〈σN , τN 〉 is either abelian or free of rank two. Moreover, the latter case holds

exactly when the core of the efficient representatives of Dehn-twist powers of σ and τ contains

a rectangle.

Proof. First, using train tracks Cohen and Lustig show that linearly growing automorphisms

have Dehn twist powers [19], so let σS and τT be Dehn twists, with efficient representatives

on graphs of groups Ā and B̄. If C(A,B) contains a rectangle then by either Lemma 5.4.1

or 5.4.3, there is a power such that 〈σSTN , τSTN 〉 ∼= F2; otherwise by Lemma 5.1.1, σST , τST

commute.



CHAPTER 6

NEW HORIZONS

And in a way I’m yearning

To be done with all this weighing of the truth

Nicholas Edward Cave

In this thesis, we resolve Conjecture A for linearly growing outer automorphisms, using

techniques very different from those used to resolve Conjecture A for exponentially growing

outer automorphisms. The tools developed provide hope that a resolution of Conjecture A

in general is approachable. In the course of the work, we prove Lemma 5.3.2 which gives a

quantitative condition for a subgroup of Out(Fr) to be polynomially growing. The technique of

the proof, and the proof that when the edge-twist graph contains a cycle the group generated

contains a free group, suggest that a quantitative version of a subgroup decomposition theorem

should be pursued; at the very least one might hope that that Lemma 5.3.2 is sharp, in the

sense that if the edge-twist graph contains a cycle then the subgroup of Out(Fr) generated

contains an exponentially growing element.

This work started as an attempt to show that a collection of polynomially growing outer

automorphisms and outer automorphisms fully irreducible on some free factor has a power so

that the group generated by that power of the collection is a right-angled Artin group (RAAG)

on an appropriate graph. This statement contains Conjecture A as a subcase, and the proof

of the analogous statement for the mapping class group relies on McCarthy’s theorem. The

techniques of this thesis alone do not seem sufficient to prove such a result, but there is hope

141
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that using them in a resolution of Conjecture A will clarify the situation and pave the way to

a similar result.

6.1 Approaches to Conjecture A

The first step to resolving Conjecture A is resolving Conjecture A for two polynomially

growing outer automorphisms. Ongoing work runs along the lines of Chapter 5. Using Roden-

hausen’s normalized higher Dehn twist representatives, the edge twist graph is generalized to a

higher edge-twist graph, which accounts for the higher degree growth. This object is no longer

an invariant of the graph of groups, only of the pair of automorphisms involved. When it is

acyclic, the arguments of Lemma 5.3.2 readily show that the group generated is polynomially

growing.

Unfortunately, the combinatorics of the hierarchies associated to two polynomially growing

outer automorphisms make a length function ping-pong argument significantly more difficult;

the Kolchin case is equally frustrated. Nevertheless, a resolution of Conjecture A using a

generalization of the method of proof in Chapter 5 will be completed in the immediate future.

Building a bridge between polynomially growing outer automorphisms, which do not have

laminations, and exponentially growing outer automorphisms, which do, is the next step to

pursue. Here the generality of Theorem 3.0.3 is an excellent starting point. Exponentially

growing outer automorphisms fix projective classes of trees in cvr. When an exponentially

growing outer automorphism fixes a compatible tree fixed by a polynomially growing outer

automorphism one expects to find a fixed projective line in cvr. The absence of compatible

fixed trees, or of a fixed projective line, should provide enough geometric information to effect
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a ping-pong argument and find powers generating a free group. Otherwise, Conjecture A is

reduced to analyzing the algebraic structure of stabilizers of lines in cvr.

6.2 Quantitative subgroup decomposition

Given two Dehn twists, Lemma 5.3.2 states that the edge twist graph being acyclic is

a sufficient condition for the generated group to be polynomially growing. This lemma has a

suitable generalization to unipotent polynomially growing outer automorphisms given as higher

Dehn twists in Rodenhausen’s sense. A natural question, which Clay and Pettet answer in the

affirmative for hyperbolic-hyperbolic one-edge Dehn twists (these have cycles of length two), is

whether or not Lemma 5.3.2 is sharp. Specifically,

Question. If σ̃ and τ̃ are efficient Dehn twists of Fr based on Ā and B̄, and ET (Ā, B̄) contains

a cycle, does 〈σ̃, τ̃〉 contain an exponentially growing outer automorphism?

The combinatorial information of the cycles in the edge twist graph might provide still more

information. A careful analysis of the group elements that have representatives that participate

in the cycle might identify the free factor where this exponential growth occurs. As the edge

twist graph is algorithmic, this invites the development of a quantitative theory of subgroup

decomposition in the sense of Handel and Mosher [27] in this setting.

6.3 RAAGs in Out(Fr)

Given a graph G, the right-angled Artin group (RAAG) associated to G is generated

by the vertices of G with the relation [u, v] = 1 for every edge (u, v) ∈ E(G). RAAGs are of

interest partly because they interpolate between Zr and Fr [15]. Recent work has shown that
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many important classes of groups virtually embed in RAAGs. These virtual embeddings play

a significant role in Agol’s resolution of the virtual Haken conjecture for 3-manifolds following

Wise’s program [1,52]. Describing RAAG subgroups of a group G gives quantitative information

about the complexity of subgroups of G.

RAAG subgroups of Mod(S) are abundant and well-studied. The Nielsen-Thurston classi-

fication tells us that an infinite order mapping class has a power that admits a decomposition

into a product of commuting Dehn twists and pseudo-Anosov-on-a-subsurface classes. Given a

finite collection of mapping classes consisting of independent Dehn twists and pseudo-Anosov-

on-a-subsurface classes, Koberda [35] shows that up to passing to powers of the generators

such a group is the RAAG whose graph is the intersection graph of the attracting lamina-

tions of the generators. The intersection graph has the attracting laminations as vertices and

edges when i(u, v) = 0. Koberda’s proof is dynamical. Restricting to mapping classes that

are pseudo-Anosov-on-a-subsurface, Clay, Leininger, and Mangahas [16] prove that not only do

high powers generate the RAAG associated to the intersection graph, the inclusion map is a

quasi-isometric embedding. Their proof uses the geometry of the curve complex as reflected

by Masur and Minsky’s subsurface projections [37]. Subsequent work of Kim and Koberda

connects RAAG subgroups to the combinatorics of the curve complex [33].

Outer automorphisms of a free group have a decomposition analogous to, but more com-

plicated than, the Nielsen-Thurston classification [45]. The analog of a pseudo-Anosov-on-a-

subsurface in this setting is an outer automorphism σ of the form σ′ ∗ id with respect to some
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splitting X∗Y of Fr, where σ′ is fully irreducible. In this case we say that σ is fully irreducible

on a free factor. This decomposition provides a parallel question about Out(Fr).

Question. Given a finite collection of outer automorphisms of a free group that are either

unipotent or fully irreducible on a free factor, what kind of subgroup do they generate?

Taylor [48] achieves an analog of the Clay, Leininger, and Mangahas result using the geom-

etry of the free factor complex. He proves that suitable powers of outer automorphisms that

are fully irreducible on a free factor give a quasi-isometrically embedded RAAG. The precise

statement includes a technical admissibility condition on the free factor supports of the outer

automorphisms involved, which defines the graph. A resolution of Conjecture A provides a gen-

eral answer to this question for two-generator RAAGs. A good enough resolution of Conjecture

A should also provide tools to approach this question.
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