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SUMMARY

This thesis work was performed within the “AERMEC” and the “GreatLab” laboratories

of Politecnico di Torino.

The Great Lab works in collaboration with Avio S.p.A in order to develop new aeronautical

engines for civil transportation within the project GREAT 2020, which aims to meet the require-

ments established by the European committee for Horizon 2020, in order to reduce emissions

and produce more e�cient and environmentally friendly engines.

The objective of this thesis is the study of burst speed of turbomachinery rotating disks,

considering the presence of non-axisymmetry in them.

In particular, this work is focusing on the certification against burst used in the design of ro-

tating disks, which are among the most stressed parts in a aeronautic turbine.

The first part of the work presents the theory of rotating disks and the current practice

used by Avio and most of the competitors in order to validate the rotor against burst speed.

In the second part of the thesis, the numerical models developed during this work are presented.

The idea is to perform elasto-plastic analysis in order to consider the e↵ect of large deformations

and the plastic behavior of materials when studying the burst. This leads to the validation of

the use of a numerical method to find the burst limit based upon the hypothesis of inertial

instability of rotating disks.

xii



CHAPTER 1

INTRODUCTION

Most modern airplanes are equipped with air-breathing turbo-engines that guarantee high

performance at relatively acceptable costs. A typical kind of air-breathing turbo-engine is, for

example, the Turbojet engine (Figure 1) which is made by a compressor, a combustor, a turbine

and an exhaust nozzle. Air is compressed in the compressor, then combustion occurs into the

combustion chamber, and finally hot gasses are expanded into the turbine stages and expelled

through the nozzle to produce thrust. [1]

Figure 1: Turbojet engine

1
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Turbines, are among the most stressed components of the entire engine: they su↵er very high

stresses due to temperature gradient (hot gasses coming from the combustor and very low ex-

ternal temperatures), corrosive environment (combusted gasses) and high rotational speed.

The object of the study done in the present thesis work are the turbomachinery rotating

disks which are in charge to carry the blades invested by the fluid and to transmit the power

to the shaft. In particular the research is focused on the prediction of the maximum angular

velocity that those disks can su↵er before failing because of burst.

Rotor burst is one of the most important issues to care about whenever it comes to design

a turbomachinery disk: the consequences of a failure can, in fact, be dramatic, since the disk

disintegrates into multiple pieces and they are flung away in all the direction at very high speed.

Figure 2: Disk burst on a Quantas A380
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The problem with the burst of a rotating disk is that the pieces in which it breaks have huge

inertia: they can destroy the engine and, eventually, pass through the nacelle (as it is possible

to see in Figure 2 and Figure 3).

Prevent turbine disks from failure in overspeed conditions is, for this reason, one of the key-point

of the safety certifications from both EASA in Europe and FAA in the US. Those certifications

ask to test the failure of the rotor disk considering it as separated from the rest of the turbine

system and to find the maximum velocity that satisfy their requirements. For this reason the

bust study is conducted on a single disk in rotation around its axis.

The innovative approach proposed in this research is to consider the real behavior of the

material and validate a consistent model in which plastic deformations are taken into account.

The numerical model implemented in Ansys, then, has been built in order to consider the large

displacement related to the plastic deformations and simulate the real behavior at burst of a

rotating disk.

The validation of such a numerical model passes through the study of the theory of rotating

disks and a brief description of the Finite Element Method.

Previous works [2] were focused on the validation of a bi-dimensional model for axisymmetric

disks, using a planar description with elements that consider the symmetry around the rota-

tional axis, and justifying the results obtained performing the FEM analysis with the condition
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Figure 3: Rotor disk burst on an American Airlines Boeing 787

of inertial instability that is causing the divergence of the numerical results at burst.

The object of the discussion presented in this thesis is, instead, to deeply analyze the burst

conditions of non-axisymmetric disks focusing on failures in the hoop mode. Those simulations

need the definition of a three-dimensional model, so, only after that it has been proved that

this kind of model gives consistent results, the study will be focused on holed disks, comparing

again the results obtained with those given by the analytic formula.

Di↵erent geometrical models are going to be implemented in the numerical code in order to

evaluate the maximum angular velocity that di↵erent disks can withstand before failing and to

compare those results with those obtained using the analytic formula that is currently adopted

(with very little corrections) by many companies in the aerospace industries. Thus, the limits of

this current practice are going to be highlighted, discussing whether the use of a Finite Element
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might be more accurate and a preferable choice when designing rotating disks.

Finally, since the Finite Element analysis of three-dimensional structures is much more

time demanding than the one performed in two-dimensions, the aim of the research is also to

provide a valid alternative solution that allows to consider the presence of holes also in the

two-dimensional model of the disk. In this way it might be possible to perform a much faster

study without having to model a complex body, with reasonably accurate results.



CHAPTER 2

THE PROBLEM OF DISK BURST

This chapter presents a general overview on the turbine rotor disks in order to outline the

main reasons that foster the research in this field, focusing mainly on the di↵erent loading

conditions, on the materials and on the limiting conditions that rotor disks have to tolerate in

order to satisfy the international standards.

A brief introduction to the use of finite elements codes, finally, is shown in order to consider

the pros and the cons of this kind of numerical simulation, while the actual presentation of the

non linear analysis is done later on in this thesis.

2.1 Rotating disks: loading conditions

Rotating disks are very common rotating devices used both in compressors and turbines to

transmit power between the shaft and the blades. They can be used at very high speed, espe-

cially when used in turbines, so that it is possible to produce more power or greater centrifugal

fields.

The mechanical stresses they su↵er depend on the particular working conditions and not all of

them are related to the angular velocity. Loads a↵ected by rotational speed are all the inertia

forces: centrifugal field, gyroscopic moments and angular acceleration; while axial loads, torque

and fitting loads are independent from angular velocity. Among the other factors that influence

the distribution of stresses in rotating disks are the presence of a thermal field and the variation

6
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in geometry (sharp variation and holes imply the presence of notch e↵ects and higher stresses).

This research is focusing, as said in the introduction, on turbine disks, which are much dif-

ferent from the compressor ones, especially because the working condition turbines experience

are much more stressful in terms of temperature gradients and transmitted power.

Figure 4: Cross-section view of a turbofan engine
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Once that loading conditions are described, it is possible to define the exact geometry of the

disk and proceed with the design optimization. This optimization is made considering in first

analysis the burst speed of the disk and the fatigue life, but also caring about lightness and

other dimensional constraints that have to be taken into account in case of aeronautic turbines.

For what concerns the safety factor of turbine rotating disks against burst, the study is

performed taking into account three main kind of load: thermal field, blades load and centrifugal

load. [3]

1. Thermal loads: produced by the non uniform distribution of temperature in the disk

when it is working. The external region of the rotor that is closer to the hot gasses, in

fact, is hotter than the internal area. This non uniform temperature gradient causes a

deformation of the material, related to the coe�cient of thermal expansion.

2. Influence of the blades and slots: that are on the external rim of the disk. The

presence of those bodies on the external ring causes an additional traction load in the

radial direction, since blades and slots behave like concentrated masses under the e↵ect

of the centrifugal field.

3. Centrifugal forces: originated in the rotor, as an inertial body with not negligible

mass. So whenever it rotates, a centrifugal load associated with the angular velocity is

originated.

Once the loading conditions are known, the optimization of the disk geometry is carried out

taking into account mainly two factors: costs and weight. The idea is to reduce the material



9

used, in order to obtain a su�cient light rotor with the highest strength (according to the

standards), but it is important also to consider the production costs and the fact that usually

those turbine disks are made of very expensive materials, so every machining process has to be

made taking care about containing the total cost of the device.

2.2 Materials

Another very important thing to consider in order to improve the design of a turbomachin-

ery disk is the choice of the material and the manufacturing techniques. As said before, the

values of temperature and pressure in the di↵erent parts of the engine are varying a lot as is

possible to see in the Figure 5.

Both pressure and temperature reach their maximum right into the combustor, due to the high

temperature of the combustion process. The pressure tendency is roughly symmetric: air is

compressed while it passes through the compressor stages, while combusted gasses are expanded

into the turbines. On the other hand, the temperatures occurring in the compressor are much

lower than the turbine (turbines work at temperature around 1000�).

The presence of higher temperature and, more in general, of a more stressful environment

(corrosive gasses, higher rotational speeds, etc.) justify the use of di↵erent material for com-

pressors and turbines.
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Figure 5: Temperature and pressure profiles inside a turbo engine

In Figure 6 it is possible to look at the di↵erent kind of materials used for the principal

components of a turbofan engine.At a first glance it is clear that the use of nickel alloys for

both combustors an turbine is due to the higher temperatures occurring in those parts.

Turbine disks and their blades are usually made of nickel super-alloys, while compressor ones

are made of titanium alloys. The term super-alloy (made by nickel, cobalt or nickel+steel) is

used to refer to those metal alloys that keep their mechanical properties constant at very high

temperature and are more resistant to corrosion due to corrosive environment (look at Figure
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Figure 6: Principal kind of materials used in a turbo engine

7). The capacity of preserving a very high strength at temperature that are close to the

80% of the melting point temperature explain why nickel super alloys are used to build turbine

components, in which very hot and chemically harsh gasses are expanded. A very common

nickel super-alloy used for turbine disks is, for instance, the “INCONEL® 718”, which is the

commercial name, property of Special Metals Corporation, of a very complex alloy characterized

by the presence of a elevate number of metals (principally Nickel, Chromium, Iron, Titanium,

Cobalt and Aluminum). The elevate number of elements in the alloy is the characteristic that

guarantees the high strength of this material, because of the precipitation at grain boundary.
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Figure 7: Variation of the specific strength of metal alloys as temperature changes

This precipitate prevents slip and thereby increases the resistance of the material.

Regarding production techniques, it interesting to notice the di↵erent methods used for disks

and blades: disks are manufactured by forging, in order to obtain a poly-crystalline with smaller

grains; blades, instead, are produced by casting controlling the cooling in order to obtain

a mono-crystalline structure. Finally, slots on the external rim of the disk are realized by

broaching, thus by removing material until the desired shape is realized.
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Figure 8: Example of a turbine disk

2.3 Types of failure

As said before, the burst of a rotor disk is a very dangerous phenomenon and, for this reason,

has been strictly regulated by international agencies (EASA and FAA. Producers have to satisfy

strict safety requirements in order to obtain the certification to flight. Many experimental tests

were conducted with the purpose of understanding what causes failure in a rotating disk and

the fracture modes.

If we consider the studies concerning response of disks to centrifugal loads two main phenomena

can be identified as the ones that cause burst [4,5].

• Elastoplastic instability;

• Propagation of a fatigue crack that leads to an unexpected burst.
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The first case is verified whenever the stresses induced by an high rotational speed (higher

than the working speed) are so elevated that they exceed the yield point. This leads to high

radial deformation into the disk, which causes an increase of the centrifugal load and, finally,

the structure reaches a critical condition. In the FE method used in this thesis a static analysis

is conducted for increasing rotational speeds, investigating the case of elastic instability when

the analysis stops because of a not converging solution and the burst speed is taken equal to

the one used for the last step.

In case of fatigue failure, instead, burst is caused by the propagation of a fatigue crack (due

to cyclic loading) at normal operating speed. Several examples [6] available in literature deal

with the propagation of fatigue cracks and they all verified that generally fatigue develop in

the most stressed areas: fir-tree rim region, the hub region, and the assembly holes.

Another very important issue to be concerned about is to determine how the disks behave

in the post critical condition, or in other words, how they break and evaluate the number of

fragments generated by the burst. The studies conducted by Dhondt (1993), Bert and Paul

(1995), Dhondt and Kohl (1999) focus on this theme. They demonstrated that the larger the

fragments are, the more translation energy is possessed by them. [7] For this reason the research

has also to predict the number of fragments and their kinetic energy (dependent on the angular

velocity) and study various techniques to improve the disk safety, such as the autofrettage,
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which induces a compressive layer in the internal region of the rotor.

Fracture can occur in two di↵erent ways as shown in Figure 9:

- rim peel burst ;

- hoop mode burst.

Figure 9: Fracture modes

The first fracture mode, the rim peel burst, usually appears in presence of high radial stresses

in the web area (especially when holes are present): a circumferential crack causes the detach-

ment of the external part of the disk from the internal one; the internal part usually does not

fragment itself into pieces, while the remaining part disintegrates in many parts.
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On the other side, the elevated centrifugal load proportional to the square angular velocity

causes the hoop mode burst : a fracture in which the detachment surfaces develops radially from

the bore to the external rim.

Other experimental works (Shikida and Kanayama, 1980) study the critical condition at

burst in case of notched disks, in order to understand, looking at the propagation of the Lüders’

bands, the plasticization areas of the material for both notched and unnotched disks and, even-

tually, the fragment generated when the disk fails.

In case of unnotched disks, the Lüders’ lines “originate at the bore and spread rapidly toward

the outside” [8], therefore the disk plastic deformation has a quasi-circular shape.

In the notched disks, plastic deformation appears in the region of the notch root and spreads

from the notch tips to the outside of the disk, so three distinct plastic areas can be identified

studying the Lüders bands (Figure 10). It was also demonstrated that notched disks broke in

two distinct parts along the diameter contained in the notch roots (Figure11(b)). [8]
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Figure 10: Propagation of Lüders’ bands into a notched disk

(a) Unnothched (b) Notched

Figure 11: Comparison of burst between notched and unnotched disk
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2.4 International standars for rotor integrity

The two main international authorities that regulates the safety of air transportation, the

European Aviation Safety Agency in Europe and the Federal Aviation Administration in the

USA, had set the requirements that turbine disks have to satisfy in order to be used for civil

air transportation. Military regulation, instead, can vary from a country to another, since they

depend only on internal regulations, but generally this internal regulations are very similar to

the two international ones cited above.

The condition that the turbine disks have to satisfy are listed in the two certification reported

in the Table I for the “CS-E 840 - Rotor Integrity” [9] and the “FAR 33.27 - Turbine, compressor,

fan, and turbosupercharger rotor overspeed” [10].

They both aim to guarantee the integrity of the turbine in case they have to operate in overspeed

conditions.

All the turbines used in civil airplanes have to satisfy all the conditions listed in the table

in order to obtain the certification to flight, and after the test disks have to remain intact, with

no residual plastic deformations.

The first line of Table I refers to the highest velocity at which the rotor can rotate in a nor-

mal mission (e.g. takeo↵ rotational speed of the rotor), defined during the thermodynamic

design. The second entries are intended to consider the maximum velocity that cause failure of

some component into the motor, bringing the rotor to over-speed. The last line of the table,

finally, consider as maximum velocity the one that arises when a critical component breaks and,

meanwhile, another failure is verified.
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TABLE I: ROTOR INTEGRITY CONDITIONS

EASA CS-E 840 FAR 33.27
120% of the maximum permissible rotor speeds
associated with any of the ratings except OEI
ratings of less than 2 1/2-minutes.

120 percent of its maximum permissible r.p.m.
if tested on a rig and equipped with blades or
blade weights.

115% of the maximum permissible rotor speeds
associated with any OEI ratings of less than 2
1/2-minutes.

115 percent of its maximum permissible r.p.m.
if tested on an engine.

105% of the highest rotor speed that would re-
sult from the failure of the component or system
which is the most critical with respect to over-
speeding

105 percent of the highest speed that would re-
sult from failure of the most critical component
or system in a representative installation of the
engine.

100% of the highest rotor speed that would re-
sult from the failure of the component or system
which, in a representative installation of the en-
gine, is the most critical with respect to over-
speeding when operating at any OEI ratings of
less than 2 1/2-minutes.

The highest speed that would result from the
failure of any component or system in a repre-
sentative installation of the engine, in combina-
tion with any failure of a component or system
that would not normally be detected during a
routine preflight check or during normal flight
operation.

The conditions listed in the table have to be verified through experimental tests in which the

engine is run for at least 5 minutes, measuring the deformation of the rotor disk and verifying

that tolerances and material properties are still acceptable in any of those conditions. The

time constraint is very important for the testing purpose, even if the burst phenomenon is not

supposed to be time dependent. Safety normatives have to ensure that engines are not stopping

their run in any of those conditions, besides, all the mechanical components (e.g. bolts, flanges,

etc.) at their first run have time to adapt and this makes possible to measure the variation
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from working conditions.

Eventually, it is important to point out that the certification of a disk against burst requires

to run it for 5 minutes at the estimated value of burst speed (calculated analytically or by

numerical models like in this thesis), but in order to be sure that the set value is not oscillating

under the desired one, tests are usually run at higher speed than the estimated one, so that it

is possible to ensure the safety conditions also in presence of some little imperfections.

2.5 Finite Elemet Method

The FEM (Finite Element Method) Analysis is nowadays one of the most used method to

study complex systems both in academical and industrial field. This kind of analysis can be

used for structural analysis (both static and dynamic) as well as for fluids or electrical field.

The goal of this method is to use the high calculation capacity of modern computers in order

to solve problems that usually require the solution of partial di↵erential equations are and are

too complex to be solved analytically.

The mathematical procedure behind that is based on the division of the domain into a large

number of very small elements that are easier to solve: the solution is obtained by defining a lo-

cal sti↵ness matrix (on each element), then, assembling all the elemental matrices into a global

sti↵ness matrix that is representing the equilibrium problem and, finally, expand, through con-

tinuity, the solution to the whole system.

The great advantage of using this kind of calculation is to provide solution for every kind

of system, no matter how complex it might be. However, it is important to point out that in
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order to correctly study a problem using this method the users have to precisely understand

how the code operates and interpret the result considering the physical meaning of it.

Therefore, the main advantage of the FEM (the discretization over a large number of small

elements), turns it self into the main drawback. In fact, the solution of the problem is approx-

imated because the real problem has been reduced to an algebraic system and the solution is

simulating, using appropriate shape functions, the displacement of the nodes of each element.

The numerical solution of this matricial problem is correct (unless mathematical approxima-

tions) only on the nodes of the elements, while for the rest of the element the mean in calculated.

Hence, great importance is given to the preliminary analysis of the problem, since the mesh

has to be correctly dimensioned in order to be small enough to fit the smaller geometry pertur-

bations and to produce the most accurate solution, but, on the other side, the increase of the

number of elements requires longer calculation time and more powerful computers.

For this thesis, the commercial code Ansys has been used in order to build a finite element

model of a disk that follows in the most accurate way the behavior of a real turbine disk.

Ansys is one of the most famous commercial FEM code and it o↵ers a large variety of elements

and di↵erent solution options that were used to study the part in di↵erent ways, as it will be

described later in this thesis.

Researches carried out previously [2] on this topic were focused on validating the use of such a

method and the comparison of it with some analytic analysis present in literature. Some easy

model where studied and the results confirmed the robustness of the hypothesis used to model
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this kind of problem.

On the other side, a comparison can be made also between the values given by the practice

used by Avio group and the results obtained from the FEM, looking at the di↵erent approaches

that justify the failure in the over-speed conditions.

Starting from those key-points the present study aims to develop a three dimensional FE

model of a real disk using both Small Displacement and Large Displacement calculations in

order to find the burst limit when the plasticity of the material is taken into account.

Again, a discussion on the safety design of rotating disk will originate from the comparison of

the results in terms of burst speed of the disk obtained using the numerical method and the

same values obtained with the analytic approaches present in literature.



CHAPTER 3

CONSTITUTIVE EQUATIONS OF ROTATING DISKS

Most of the structural problems are tridimensional problems, usually complex to solve an-

alytically and, for this reason, treated in easier ways from the designers. Therefore, some

simplifications can be made in order to reduce the set of equations needed to only one equation

to use for solving the problem of rotating disks using an analytic approach: for example it is

possible to reduce the 3D problem to a bi-dimensional one and apply the equilibrium and the

stress-strain relations.

Not all the disks geometries allow this kind of simplification and for this reason numerical

models, like the one developed for this thesis, are sometimes needed in order to carry out the

complete calculation. It is, however, interesting to show in this chapter the stresses induced by

rotation in an axisymmetric disk and discuss the failure theories on which the practice currently

used by Avio S.p.A. to design turbine rotors is based.

The hypothesis that allow to develop a simplified equation in two-dimensions is based on

two conditions: the axisymmetry, and plane stress.

The conditions necessary in order to satisfy the hypothesis of axisymmetry are:

• Isotropic material, or axisymmetric orthotropic material;

• Axisymmetric geometry of the body;

23
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• Axisymmetric applied load.

The second simplification used to study the rotating disks is to consider the problem as a plane

stress one, even if this assumption should be used only for thin disks (constant thickness much

lower than the radius), while for thick disks the plane strain case is more adequate. [3]

Such a problem can be classified as a plane stress one if the following conditions are verified:

• Homogeneus and isotropic material;

• No body forces on the axial direction;

• Plane body forces can vary only in the plane and not in the axial direction;

• Boundary conditions are not varying along the axial direction.

Figure 12: Plane stress vs plane strain
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It is, however, possible to show that in case of zero body forces the plane stress and the plane

strain theories bring to the same expression of stresses in the plane.

Thanks to the two simplification explained above it is possible to find an analytical solution

to the simplified problem, where all the quantities vary only as a function of the radial coordi-

nate, r, and do not depend on both ✓ (axisymmetry) or z (plane stress). Hence ⌧

rc

= �

rc

= 0,

meaning that �

r

and �

c

are principal stresses, while �

a

is zero in case of plane stress and not

zero in case of plane strain.

This chapter presents a very common analytical dissertation on rotating disk, showing that

the assumptions made above lead to only one non trivial equation of equilibrium. It is also

shown how to derive the equation for radial and circumferential stress in case of elastic materials

and plastic materials. This theoretical basis was fundamental to start the development of an

advanced FEM calculation on parts that are impossible to solve analytically. In particular, the

comparison between the numerical and the analytic solutions was object of previous studies on

the FE model and proved the accuracy of the model and validated the numerical approach with

Ansys. [11]

3.1 Equation of equilibrium

Considering to the two hypotheses listed before, the problem we are dealing with is the

study of a bi-dimensional problem in a cylindrical coordinate system, where both the geometry
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and the load are axisymmetric (look for example the disk in Figure 13).

Figure 13: Axisymmetric disk under axisymmetric load

If we consider an infinitesimal element obtained cutting the disk with two radii that form

an infinitesimal angle d✓ and included in two circumferences distant dr like done in Figure 14,

it is possible to write the equations of equilibrium, and, consequently, find the stresses in the

rotating disk.
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Figure 14: Infinitesimal element on a disk

Once that the appropriate reference system is defined, a set of three local cartesian axes

can be identified for the infinitesimal element (Figure 15):

• An axis a parallel to the revolution axis of the disk;

• An axis r in the radial direction;

• A circumferential axis c, tangent to the circle that passes through the center of mass of

the infinitesimal element.
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Figure 15: Local cartesian axes

In this reference system the stresses along the Cartesian axes: �
a

, �
r

and �

c

(Figure 16) are

principal and it is possible to write the six equations of equilibrium.

Figure 16: Stresses on the infinitesimal element
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Five out of six equations of equilibrium are satisfied by the hypotheses made before. In

particular the equilibrium of forces along the axis a and moments about the axes r and c are

satisfied thanks to the plane stress assumption, while the equilibrium of the moment about

the a axis and the forces along the c axis are satisfied because all the forces in the plane are

axisymmetric.

Thus the only remaining equation is the equilibrium of forces along the radial direction r. In

Figure 17 it is possible to look at the equilibrium of forces on the infinitesimal element, where b

is the thickness of the element, �
r

is the radial stress, �
c

is the circumferential (or hoop) stress

and �
V

is the body force per unit volume (centrifugal force in case of rotating disks).

(a) Radial component (b) Hoop component

Figure 17: Equilibrium

Three components have to be considered when considering the radial equilibrium:
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1. A radial component due to �

r

(Figure 17(a)):

d

dr

(�
r

r d✓ b) dr (3.1)

2. The radial component of the hoop stress �
c

:

2�
c

dr b sin

✓
d✓

2

◆
⇠= 2�

c

dr b

d✓

2
= �

c

dr b d✓ (3.2)

3. A radial body force (Figure 17(b)):

�
V

r d✓ b dr (3.3)

Grouping all the terms together, the equation of equilibrium along the radial direction r is:

d

dr

(�
r

r d✓ b) dr � �

c

b d✓ dr + �
V

r b d✓ dr = 0 (3.4)

3.2 Strain-Displacement relations

Consider now the deformation of the infinitesimal element, denoting the r displacement

by u. The general deformation experienced by the element in the radial direction is shown in

Figure 18.
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Figure 18: Radial displacement

The radial strain "

r

is associated with the u displacement, and the relationship between

them is the following:

"

r

=
du

dr

(3.5)

The tangential strain owing to u (deformation per unit length) is:

"

c

=
(r + u) d✓ � r d✓

r d✓

=
u

r

(3.6)

Combining the two equations (Equation 3.5 and Equation 3.6) it is possible to rewrite "

r

as:

"

r

=
d ("

c

r)

dr

(3.7)
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Two eqivalent formulation of the compatibility equation are, therefore, derived:

d

dr

("
c

r)� "

r

= 0 (3.8a)

d"

c

dr

r � ("
r

� "

c

) = 0 (3.8b)

3.3 Elastic field: Hooke’s law

In case the study is conducted only on the elastic part of the stress-strain curve, neglecting

the plasticization of the structure, the Hooke’s law is used to express the relation between

stresses and strains. In particular, for elastic materials under the yield point, this relation is

linear and the constant of proportionality is the Young’s modulus. Hence � = E ".

To write Hooke’s law in polar coordinates in the case of plane stress, it is necessary to con-

sider �
a

= 0. So the direct (Equation 3.9) and inverse (Equation 3.10) stress-strain relationships

are expressed as follows:

Direct relationship

8
>><

>>:

"

r

=
1

E

(�
r

� ⌫ �

c

� ⌫ �

a

) =
1

E

(�
r

� ⌫ �

c

)

"

c

=
1

E

(�
c

� ⌫ �

r

� ⌫ �

a

) =
1

E

(�
c

� ⌫ �

r

)

(3.9)

Inverse relationship

8
>>><

>>>:

�

r

=
E

1� ⌫

2
("

r

+ ⌫ "

c

)

�

c

=
E

1� ⌫

2
("

c

+ ⌫ "

r

)

(3.10)
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The third constitutive equation of the material represents the strain in the axial direction due

to the planar stress:

"

a

=
1

E

(�
a

� ⌫ �

r

� ⌫ �

c

) =
�⌫

E

(�
r

+ �

c

) (3.11)

3.4 Thermal expansion term

Considering an unconstrained elastic body, the e↵ects of the increase or decrease of the

temperature result in an expansion or contraction of the solid. Two cases have to be separately

considered.

In case the body is heated in such a way to produce a non uniform temperature field and

the material exhibits an anisotropic behavior, or the boundary conditions are preventing the

free expansion in some direction, then the thermal e↵ects are translated into additional stresses.

On the other side, if the material is isotropic and free to expand, there is an additional

strain component "
t

to be taken into account and it is equal in all the directions:

"

t

= ↵�T (3.12)

where ↵ is the coe�cient of linear thermal expansion, and �T is the change in temperature.
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Regarding the case of the rotating disks discussed here, where a plane stress problem and

isotropic material is considered, the thermal strain "

t

can be added to the strains defined in the

Equation 3.9 that is updated as follows:

8
>><

>>:

"

r

=
1

E

(�
r

� ⌫ �

c

) + ↵�T

"

c

=
1

E

(�
c

� ⌫ �

r

) + ↵�T

(3.13)

3.5 Equations for disks in the elastic field

Considering the elastic behavior of the material, thus relying on the Hooke’s law, the equa-

tions of equilibrium can be used to solve simple problems like the two easy cases reported

below.

3.5.1 Rotating disks of constant thickness

The equation of equilibrium, Equation 3.4, can be used to treat the case of rotating disks of

constant thickness. In this particular case, the thickness b is constant and can be carried out

from the derivative and simplified, while the body force has to be taken into account and it is

equal to the centrifugal force. The body force per unit volume is �
V

= ⇢!

2
r, where ⇢ is the

mass density and ! is the angular velocity.

By carrying out b, substituting the definition of �
V

and simplifying the terms dr and d✓, the

equilibrium can be rewritten as:

d�

r

dr

+
�

r

� �

c

r

+ ⇢!

2
r = 0 (3.14)
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Considering the stress-strain relationship (Inverse Hooke’s Law, Equation 3.10) and substituting

into it the strain-displacement relations (Equation 3.5 and Equation 3.6) we get:

8
>>><

>>>:

�

r

=
E

1� ⌫

2

✓
du

dr

+ ⌫

u

r

◆

�

c

=
E

1� ⌫

2

✓
u

r

+ ⌫

du

dr

◆ (3.15)

So, the Equation 3.14 becomes:

E
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2
u

dr

2
+

⌫

r

du

dr

� ⌫ u

r

2
+

1

r

✓
du

dr

+ ⌫

u

r

� u
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d
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2
+

1

r
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r

2
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�
1� ⌫

2
�

E

⇢!

2
r (3.16)

It can be easily proven that the complete solution of this di↵erential equation is:

u = �
⇢!

2
r

3
�
1� ⌫

2
�

8E
+ c1 r +

c2

r

(3.17)

where c1 and c2 are the integration constants and depend on boundary conditions. The complete

solution (Equation 3.17), upon substitution into the definition of stresses in Equation 3.15

provides the following expressions for radial and tangential stresses:
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Annular disks

In case of an annular rotating disk with zero pressure on both the inner and outer boundaries

(19) the distribution of stresses is due only to the rotational e↵ects.

Ri
Re

Figure 19: Annular disk

The boundary conditions for this particular case are:

(�
r

)
r=Ri

= 0 ; (�
r

)
r=Re

= 0 (3.19)
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Combining the boundary conditions with Equation 3.18 it is possible to find the two constants

c1 and c2:

c1 = ⇢!

2

�
R

i

2 +R

e

2
�

E

(1� ⌫) (3 + ⌫)

8
(3.20)

c2 = ⇢!

2

✓
R

i

2
R

e

2

E

◆
(1 + ⌫) (3 + ⌫)

8
(3.21)

Isolating, then, the reference circumferential stress �0 = ⇢!

2
R

e

2 calculated on a very thin disk

with zero radial extension, the final expression for the stresses into an annular disk is derived:
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Finally, knowing that u = r"

c

it is possible to write the expression of the radial displacement

in an annular rotating disk:

u =
D

2E
(�

c

� ⌫ �

r

) = �0D
3 + ⌫
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3.5.2 Rotating disks of variable thickness

Turbomachinery disks seldom have constant thickness: they usually are thicker near the

center and much thinner as the radius increases. This is made in order to reduce stress concen-

trations on the inner radius preserving the disk lightness.
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For a variable thickness disk, the thickness term b in the equilibrium equation cannot be

neglected because it varies with the radius ( b = b (r) ), hence the Equation 3.4 becomes:

d

dr

(�
r

r d✓ b)� �

c

b = �⇢!

2
r

2
b (3.24)

Note that also in this case the shear stresses are zero because of the symmetry of the problem.

Considering, now, the constitutive equations of the material expressed in Equation 3.13 the

following compatibility equation can be obtained:
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� �

c
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E r

= 0 (3.25)

The solution for the stress distribution ( �
r

and �

c

) in a variable thickness disk comes from

the combination of the Equation 3.24 and the Equation 3.25 and can be computed manually us-

ing the well known step-wise profile approximation proposed by Grammel (Grammel’s method,

1923) [12] or a finite di↵erence method, such as the Manson’s method (1947) [13].

3.6 Plastic field models

In the elastic field, or rather for low stresses, a metallic specimen follows the Hooke’s law,

so as the load increases the deformation also increases proportionally to the Young’s Modulus

E (� = E"). In this elastic condition, when the load is removed, the specimen returns to the

original configuration, following the same path on the stress-strain diagram.
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Metallic materials behave in a totally di↵erent way when the applied stress exceeds the

yielding value. After this stress value (defined as conventional limit of elasticity1), the material

is permanently deformed and after removing the external load it does not return into the origi-

nal configuration, but preserves some deformation. Yielding is, then, the transition phase that

stands between the elastic and the plastic behaviour of the materials and is typically followed

by an hardening phase.

Plasticity can be explained as the macro-scale result of the molecular modifications that occur

in a material under certain loading conditions. In particular yielding and hardening are both

due to irreversible modifications caused by the dislocation motion. [14]

In Figure 20, three typical material behaviors are compared showing the stress-strain curves.

Brittle materials present a restricted hardening phase: after the elastic area they reach the

fracture very rapidly with low deformation. Hardening materials are characterized by a large

increase of deformation in the plastic area and a corresponding increase of stress before reaching

the fracture point, while the yielding zone is absent. Ductile materials (like the “INCONEL®

718”) exhibit a very wide yielding phase, in which deformation increases without a substantial

increase of stress.

1Conventional limit of elasticity: is the unit stress corresponding to an elongation which is not
proportional to the stress on the test piece so that the excess of elongation beyond proportionality is
equal to a fixed percentage of the initial gauge length (generally 0.2%)
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Figura 4. 1 – Curve tensione-deformazione per diversi tipi di materiale  

La plasticità, e quindi lo snervamento, sono rappresentativi, a livello macroscopico, di 

fenomeni che trovano spiegazione a livello microscopico, sulla scala dell'organizzazione 

molecolare del materiale. Nei materiali metallici, la plasticità può essere spiegata sulla 

base di modificazioni irreversibili del loro reticolo cristallino, cioè in termini della teoria 

delle dislocazioni (a tale conclusione pervennero contemporaneamente già nel 1934 gli 

studiosi Egon Orowan, Michael Polanyi e Geoffrey Ingram Taylor). 

In altri materiali, come i polimeri, il comportamento plastico non può esse re spiegato 

con la suddetta teoria delle dislocazioni, in quanto mancano di una regolarità di 

struttura molecolare (la struttura cristallina). In tal caso, la plasticità è spiegata come un 

effetto della sollecitazione che induce una regolarità, orientata secondo la sollecitazione, 

nel caos delle catene molecolari del polimero.  

Ductile Material Hardening Material

Brittle Material

Figure 20: Typical material behaviours

Plasticity gains a relevant role in ductile materials, since they can experience very large

deformation before the fracture. It is also influenced by the environmental conditions, and in

particular by temperature. The presence of high temperatures, in fact, fosters the plasticity

behaviour of materials, while low temperatures reduce it.
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The equations derived in the previous sections are not verified if plasticity has to be taken

into account, because the Hooke’s law is not valid anymore after the yielding point.

The correct mathematical theory to use in case of plasticity, the flow plasticity theory, or incre-

mental theory of plasticity (that will be further discussed later on in this thesis), was developed

in 1960s and uses a set of non-linear, non-integrable equations to describe the correlation be-

tween stress and strains. [15] This theory is based on an incremental approach, studying the

relationship between the infinitesimal load increments Ṗ , and the corresponding increments in

term of stresses, strains and displacements (�̇, "̇ and u̇).

The flow theory is based on three main axioms:

1. Materials are characterized by a threshold resistance. This means that the possible stresses

are a limited.

2. Deformations are irreversible, the material does not recover its original configuration after

a loading cycle.

3. For low stresses, the behavior of the material can be considered as elastic.

Two material models are commonly used to describe the plasticity of a material: the Elastic

Perfectly Plastic model, and the Ramberg-Osgood model.

3.6.1 Elastic perfectly plastic model

A very common model is the one of an Elastic Perfectly Plastic (EPP) material, in which a

very extended yielding is considered with a flatten top stress-strain curve, that has large plastic
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deformation at a constant stress level.

Figure 21: EPP material compared to hardening material

In this model all the admissible stresses are below the yielding point and the ultimate tensile

strength is equal to the yielding:

�  �

yield

⌘ �

UTS

Plasticity occurs whenever the stress reaches the yielding, so the yielding function f (�) = 0 is

defined as:

Yielding function : f (�) = � � �

y
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In conclusion, this model describes the material as analogous to an ideally elastic one if the

stress state is not exceeding the yield point. On the contrary, plasticization occurs and the

material cannot su↵er the increase of strain, so it brings to failure.

3.6.2 Ramberg-Osgood model

A second model of plasticity, developed by Ramberg and Osgood [16] is used in order to

consider the non linear relationship between stress and strain near the yield point in the case

of an hardening material.

In its original form, the Ramberg-Osgood equation for strain is:

" =
�

E

+K

⇣
�

E

⌘
n

(3.26)

where:

- " is the strain,

- � is the stress,

- E is the Young’s modulus,

- K and n are constants that depend on the material.

Looking at the right side of the equation, two terms can be identified: the first one,
�

E

, is equal

to the elastic strain; the second one, K
⇣
�

E

⌘
n

, is the plastic strain and the two parameters K

and n describe the hardening behavior of the material.

Introducing the yield strength, �
y

it is possible to rewrite the second term in a more convenient
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way. A new parameter ↵ related to K is defined as ↵ = K

⇣
�

y

E

⌘
n�1

, so the second term

becomes:
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Hence the Ramberg-Osgood equation for the strain can be written as:
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⌘ ✓
�

�

y

◆
n

(3.27)

In this last form, the material behavior is linked to the value of the two constants, ↵ and n.

Moreover, looking at the formula, it comes out that plastic deformations theoretically exists

also for very low stress levels, even if for low loading speed and average values of the constants,

they are neglected if compared to the elastic ones. Only with the increase of the stress level

over the yield point (� > �

y

) plastic deformation increase its magnitude and become bigger

than the elastic one.

The value of ↵
�

y

E

can be seen as a yield o↵set, as shown in Figure 22. The value assumed by

the constant n are usually greater than 5. Value for ↵, on the other side, are fixed by knowing

the yield o↵set: it can be fixed a yield o↵set of 0.2% and from this find ↵ by inverting the

relationship:

↵

�

y

E

= 0.002
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Figure 22: Stress-strain curve and o↵set line using Ramberg-Osgood model

3.7 Equations for annular disks in the plastic field (constant thickness)

It appears now clear that the constitutive equations developed in the previous sections are

satisfied for the undeformed case rather than the deformed one, so they are not valid anymore

in case plasticity has to be taken into account.

From the elastic stress analysis of an annular rotating disk it is known that, “as angular velocity

is gradually increased, the yield limit is first reached in the interior surface”. [17] As rotational

speed increases, relevant plastic deformations with stable attributes may occur in the disk

(starting from the inner radius moving toward the external rim), before the instability is verified



46

at the bursting speed.

The maximum elastic stress (at r = a):
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2
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(3.28)

where a and b are respectively the inner and the outer radius, ⇢ is the density of the material,

and ! is the angular velocity.

Under the hypothesis of assuming elastic strains negligible if compared to the plastic ones,

and the use of Tresca’s yield criterion and the associated flow theory, the Initial Yielding,

the Partial Yielding and Complete Yielding can be studied.

Initial yielding

At the beginning of the chapter it was pointed out that for the considered axisymmetrical

problem of a rotating disk, the principal stresses are the hoop stress �

c

, the radial stress �

r

and the axial stress �

a

. According to Tresca’s yield criterion, none of the principal shearing

stresses
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can exceed a critical value that depends on

the strain-hardening material.

Using a Poisson’s ratio ⌫ =
1

3
, it is possible to find the critical speed !0 from the Equation 3.28:
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✓
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2
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◆1/2

(3.29)
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Partial yielding

For angular velocities that exceed the initial yielding one, !0, but lower than speeds resulting

in total plasticity of the disk, disks are characterized by both an elastic and a plastic region

(Figure 23).

ba
c

Plastic

Elastic

Figure 23: Partially plasticized disk

By replacing the maximum hoop stress �
c

with the yield stress �
y

, the equation of equilib-

rium for a uniform thickness hollow disk (Equation 3.14) becomes:

d

dr

(r �
r

)� �

y

+ ⇢!

2
r

2 = 0 (3.30)
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The solution of this di↵erential equation is given by:
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2
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3

3
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Where the constant c1 can be determined by imposing the boundary conditions. In case of an

annular disk the boundary condition �

r

= 0 at r = a provides the expression for c1 and the

Equation 3.30 becomes:
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while the stress in the plastic region is determined by considering the radius of the plastic region

as r = c:
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In the elastic region, instead, the stresses can be found imposing the following two conditions

into Equation 3.18:

- �

r

= �

r

(r = c) at r = c;

- �

r

= 0 at r = b.

In this way the two integration constants c1 and c2 of Equation 3.18 can be found and, upon

sostitution, the stress field in the outer (elastic) region can be found:
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Thus, by simply substituting in this last equation the value of yield strength �

y

instead of �
c

and this makes possible to describe the stress field of a rotating annular disk and the related

rotational speed ! that cause yielding up to a specific radius c.

Complete yielding

It is, finally, possible to study the case in which the disk becomes fully plastic. The Equa-

tion 3.31 becomes:

�

r

� �

y

+
⇢!

2
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3
+
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= 0 (3.35)

Applying the boundary conditions (�
r

= 0 for both r = a and r = b) the constant c1 is defined

as:

c1 = a�
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It is easy, then, to find the critical speed !1 at which all the disk is in the plastic region:
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Hence, knowing that in the plastic field the hoop stress has been considered constant and

equal to the yielding stress, the equation for the radial stress in a fully plasticized disk can be

written as follows:
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3.8 Failure criteria for rotating disks

The determination of the burst limit brought to the formulation of several theories and

criteria that prescribe the procedure to determine the rotational speed that causes failure.

Among them, two are used in this thesis and, thus, are here presented: the Robinson’s Crite-

ria [18], also called average hoop stress criterion; and the critical strain criterion.

3.8.1 Robinson Criterion

The Robinson Criterion is a semi-empiric method developed in order to easily find the burst

speed in the hoop mode knowing the ultimate tensile strength, �
UTS

and the mean hoop stress,

�

c,mean

. According to this criteria “burst occurs when the mean hoop stress on a disk section

becomes equal to the nominal tensile strength of the material, determined from an uniaxial

tensile stress”. [19]

Then the mathematical formulation is:

!

burst

= !

r
�

UTS

�

c,mean

(3.39)



51

It is important to point out, however, that the ultimate strength considered by the Robinson

Criteria is the engineering stress, that di↵ers from the true stress that, instead is used by Ansys.

When passing from engineering stress to true stress, the following relations have to be applied:

"

true

= ln (1 + "

eng

)

�

true

= �

eng

(1 + "

eng

)

Figure 24: True stress versus engineering stress
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Robinson formula has been modified in several ways. One of this is the Hallinan Formula,

which extends the use of the Robinson criteria taking into account the maximum hoop stress,

�

c,max

,introducing a factor S to weight the influence of the maximum stress over the mean

stress.

!

burst

= 0.95!


S

✓r
�

UTS

�
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�
r

�

UTS

�

c,max

◆
+
r

�

UTS

�

c,max

�
(3.40)

This two criteria are actually degenerating into the same formula if the value of S is close to 1,

such as for disks made of ductile materials.

So, in general, the concept of calculating the average stress is associated with the ductility

of material, and no di↵erence occurs between the two formulations; while if the disk is made

of brittle material it is more appropriate to weight the influence of the maximum stress by

applying the Hallinan Formula.

3.8.2 Critical strain criterion (inertial instability)

The critical strain criterion is usually associating burst with a critical deflection, hence the

burst limit is fixed when a critical cumulated plastic strain is reached at any integration point.

This criterion is then correlating directly burst with instability, that is going to be discussed

in the following chapter. Instability, in fact, takes place whenever the spin softening is greater

than the material hardening.

Considering a rotating disk that has to undertake the inertial load due to centrifugal force, an

elevate deflection can cause the failure of the disk because of elastic instability. If strains are

taken into account, for each increment of the angular velocity, or rather of the inertial load, the

radial deflection u increases. Let r0 denote the initial radius of a particle of the rotating disk,
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and let r be the radius of the same particle when the angular velocity is !. Then if the radial

displacement is denoted by u, the following expression is valid:

r = r0 + u

where both r and u can be considered as function of the independent variables r0 and ! (note

that the sign of ! is not a↵ecting the result, hence it can be considered as a variable also its

squared value, !2, in order to get rid of the sign issue).

The centrifugal force, on its side, can be expressed, as done previously, by the formula:

�
V

= m!

2
r

So as the angular velocity ! increases, the e↵ect produced is double: on one side the cen-

trifugal load is increasing directly due to the increase of !; on the other side, the stresses

induced by the rotation of the disk are causing a deflection that implies an additional increase

of the centrifugal load.

Furthermore, it is important to point out that inertial instability is not related to the definition

of a material curve in the plastic dominion: the increase of strain is not related to plasticity

(even if in the plastic part strains are greater), but it can occur both in elastic and plastic

dominion, since instability is actually regulated only by the sti↵ness of the materials. Hence, if

it might be not so common to find metallic structures that become unstable in the elastic field

(because of usually very high sti↵ness), when instead the yielding point is passed, instability
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acquires great importance due to the gradual reduction of the sti↵ness in the hardening path

of the stress-strain curve that fosters the instability because of the double e↵ect of increasing

inertial load and decreasing sti↵ness at each increment of angular velocity.

The drawback of this criterion is that is usually very complex to formulate a mathematical

expression that takes into account the spin softening, the material hardening and condition of

inertial instability. For this reason, in this thesis, the Large Displacement option in the Finite

Element Method is applied to find the burst limit.



CHAPTER 4

FINITE ELEMENT MODEL USING ANSYS

This chapter goes on a general overview of the Finite Element Method describing the non

linear calculation which is performed by the commercial code Ansys in order to solve static

problems that are using the Large Displacement option.

The first part of the chapter is focusing on the general equation that are used in a finite

element calculations, while the following sections are focused on the main settings used in order

to run the simulations both in the 2D case and the 3D one.

4.1 The finite element method general formulation

A Finite Element analysis is based, as said in Section 2.5, on the division of the entire

domain into smaller elements that can be easily solved.

The unknowns of the finite element calculation are the nodal coordinates {q}: those depend on

the type of element used and assume a finite value di↵erent from zero if any kind of external

load is applied on the discretized structure. The global sti↵ness matrix, [K] is generated by as-

sembling all the local (elemental) sti↵ness matrices that characterize the elements. The sti↵ness

matrix, [K], can be determined by applying the principle of virtual work to the deformation

energy. [20]

55
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Calling the Cauchy stress tensor [�] and the Strain tensor ["], with "

ij

=
1
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✓
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+
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j

@x

i

◆
,

it is possible to write the potential deformation energy as:

W =
1

2

Z
�

ij

"

ij

dV (4.1)

Deformation, and thus also strain, can be written as a linear combination of the nodal

coordinates, by simply considering the Shape functions matrix [N ]: {� (x)} = [N ] {q}. So,

[B] = r [N ] is the matrix that expresses the relationship between strains and nodal coordinates,

such that ["] = [B] {q}.

On the other side, it is possible to write a matrix [D] that contains all the information about

the material behavior and allows to define the stress-strain relationship in the matrix form:

[�] = [D] ["] = [D] [B] {q}. In this way the equation of the elastic work (Equation 4.1) can be

rewritten as:

W =
1

2

Z
["]T [�] dV =

Z
{q}T [B]T [D] [B] {q} (4.2)

Since the vector of nodal coordinates does not depend on the coordinates x, y, z it is possible

to put it outside from the integration, hence:

W =
1

2
{q}T

✓Z
[B]T [D] [B]

◆
{q} = {q}T [K] {q} (4.3)

Where [K] =
R
[B]T [D] [B] is the Sti↵ness matrix.
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The formulation shown above is defining the Sti↵ness matrix that is used for elastic analy-

sis or elasto-plastic calculation whenever only Small Displacement is taken into account. The

deformation energy considered, in fact, is not taking into account the e↵ect of non-linearity.

As soon as the Large Displacement option is activated in Ansys, the calculation of the Sti↵ness

matrix [K] has to be carried out considering the non-linear e↵ects: in an elasto-plastic analysis,

given a material curve to the software, the matrix is then updated every substep considering

several parameters, such as yield criterion, hardening rule and relative flow rule. The defor-

mation energy, thus, has an additional term that influence the formulation of [K] as shown in

Section 3.6 of the Help of Ansys [21]:

W
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@u

k
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j

� 2"
ik

"

jk

◆
dV (4.4)

The Equation 4.4 shows that the Ansys consider an additional term when the LD option

is activated, complicating the formula used in the SD analysis (Equation 4.1), so that it is

possible to consider the contribution of the elastic deformations. This redefines the definition

of the Sti↵ness matrix, hence the problem becomes not linear.

The second part of the integral represents the Stress sti↵ening matrix, [S], that allows to update

the definition of the sti↵ness matrix taking into account both the loading condition and the

deformation status. The solving equation for the two cases is:

Small Displacement: [K] {q} = {P}

Large Displacement: ([K] + [S]) {q} = {P (q)}
(4.5)
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In the study of rotating structures, then, the formulation included in the Large Displacement,

much more sophisticated than the one of Small Displacement, since it includes also the e↵ects of

deformations, is preferable upon the Small Displacement. It is more conservative, then, to use

this kind of solution option, letting the software consider all the non linear terms that influence

the results in terms of burst speed and stress distribution, obtaining also a better correlation

of those results with the material curve, as it will be shown later on in this thesis.

4.2 Setup of a finite element analysis using Ansys

4.2.1 Preprocessing: model generation and mesh properties

The first step to go through in order to perform a FE analysis is to set up a geometrical

model that represents the structure to study. In this thesis two di↵erent models where created:

one in two-dimensions, that was using the axisymmetric option allowed by Ansys on certain el-

ements; the other in three-dimensions, instead, was modeled using the cyclic symmetry feature.

Ansys operations are divided into modules and the one dedicated to the model creation

and meshing are contained into the Preprocessor module. In this section,then, the main

commands required to model a component in Ansys are listed:

• Modeling: In the modeling menu are available a set of instructions useful to create a

geometry directly in Ansys. After the creation of keypoints, lines, areas and volumes can

be built on them or directly giving their parameters. Other modeling operations can be

carried out in the Operate section. Here the extrusion command is used when dealing with
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3D models and is used for example to extrude areas about an axis. Booleans operations

are very used to finalize the geometry: they allow to make operations like adding or

subtracting areas and volumes, or dividing them into parts.

• Element Type: is the section used to add, modify or delete the elements used to mesh

the component and perform on them the finite element calculation. The elements are

classified by number of nodes and their configuration. Basically three kind of elements

where used in the analysis that where carried out during this thesis.

For the bi-dimensional study, the element Plane42, which uses four nodes with two degrees

of freedom each, was adopted using the option for axisymmetry.

For the three-dimensional model, instead, two elements have to be set up: Mesh200 in

its 8-noded quadrilateral configuration and Solid95, which is using a brick with 20 nodes.

• Material Props: here the material model is defined. For structural analysis it is possible

to set the density (in ton/mm

3 if the metric system is used), the elastic properties (Young’s

modulus and Poisson’s ratio) choosing Linear Isotropic behavior, and the non linear path

indicating a maximum of 100 discrete point of the � � " curve.

• Meshing: In this section is possible to set up all the options to use in order to obtain

the desired meshing grid to discretize the body. The MeshTool is enclosing most of

this options in a GUI that easily allows to set up the number of divisions of a line (the

equivalent of the command LESIZE ), or the desired dimensions of the areal elements.
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4.2.2 Processing: load increasing simulations

After having correctly defined the geometry and the mesh on which the analysis is going to

be performed, the set up of the FEM software requires to select the correct solution options and

to define the boundary conditions. All those parameters are defined in the Solution module.

Boundary conditions are indicated in the Define Loads menu, in which it is possible to fix the

displacement on one side and apply loads on the part.

The Analysis Type menu, instead, is containing all the information regarding the solution

options to adopt for the calculation, which are:

- Small displacement: tells the software to ignore the deflections of the structure when

calculating the stress state at di↵erent load steps. Ansys, infact, tends to reach the

equilibrium under external loads using a time-dependent technique, in which the final

condition is reached after an initial transient in which an increasing load is applied by

dividing the total one in substeps. The solution, then is evolving in time, but if this

option is selected, no information about deformation is taken into account in the iterative

process.

- Large displacement: by selecting this solution option, instead, all the deformations that

are occurring in the structure at each substep of the loading in the time-dependent solution

process are considered. Considering the e↵ect of deformations implies that large strains

are e↵ecting the calculation of the stress state of the structure.

When dealing with rotating structures, as done in this thesis, the centrifugal load increases

at each substep, which correspond to increasing fraction of the imposed angular velocity.
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This cause an increase of radial deformation of the disk, the so called “spin softening”,

and this deformation is considered as an input in following substeps. Another e↵ect, the

“stress sti↵ening”, is also considered when using the Large displacement : the sti↵ening

of the structure is a consequence of having set a plastic material curve, so a higher load

is implying higher sti↵ness.

Both these e↵ects are then considered by Ansys when the sti↵ness matrix is updated

passing from a substep to the following one.

- Automatic Time Stepping: this options allows to control the division in substeps that

the software operate before performing the equilibrium calculation. If the entry “OFF”

is chosen, the user is in charge to decide the total number of substeps that have to be

considered in the analysis and the software is equally spacing the load increments upon

them. Otherwise, if the entry “ON” is selected, three parameters have to be set up:

“Number of substeps” is the value used for the first division; “Max no. of substeps” stand

for the maximum number of substeps that Ansys can use for the analysis, or also the

smallest increment that it will be used during the iterative process (usually a much higher

number than the other two); “Min no. of substeps” is, instead, the minumum number of

substeps to consider for the analysis. This kind of solution option is more refined of the

first one, since there is an increasing number of divisions around the instability point. A

third option, “Program Chosen”, lets the software to decide by it self which of the two

methods use after having imposed the three parameters listed above.
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Figure 25: Loading sequence and division in substeps

- Nonlinear Options: here Ansys gives the user the possibility to choose between two meth-

ods to solve non-linear problems: the Newton-Raphson method and the Arc Length. Both

these methods can be applied in a static analysis, and are based on bisection if con-

vergence is not reached in the first iteration. The Newton-Raphson method is basically

finding the zero upon linear approximations with the tangent at the curve and the value

found converges if the error is below a threshold value. The Arc Length, instead, is

looking for a converging solution to be inside a reference radius initially calculated as

r = (Total load) / (Maxno. of substeps) and then applying bisection if convergence is

not reached.

For each substep the maximum number of iterations is fixed within 15 and 26 iterations

by the software, so the analysis is stopped if convergence is reached after all the loading

increments, or the convergence is not found after the selected number of iterations for the
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Figure 26: Newton-Raphson method vs arc length method

lowest loading increment (minimum multiplier).

A good setup of the options listed above allows to optimizing the time required for obtaining

a su�ciently refined solution. It is recommended to use the Arc Length especially when the

force-displacement function is not anymore injective or surjective, or if dealing with a stability

problem. In those cases, in fact, the Newton-Raphson method is usually failing in finding the

convergence value.

4.3 Elasto-plastic calculations in Ansys

How is convergence reached when external loads cause an equivalent stress greater than

yielding?

The main issue in an elasto-plastic analysis is to update the sti↵ness matrix [K] when a material
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curve is considered, so in the non linear path after yielding. The sti↵ness matrix in a non

linear analysis is not constant anymore, but is function of the nodal coordinates {q}, hence

[K] = f ({q}).

So, the non linear problem can be written as:

[K (q)] {q} = {p} (4.6)

The convergence of the final solution is obtained by iterations, recalculating each time the

value of {q}
i

and, consequently, updating the value of [K] until it has:

[K (q)] {q}� {p} = {p
n

}� {p} = 0 (4.7)

where {p
n

}� {p} is the deficit between the nodal load vector at each iteration, {p
n

}, and the

external load, {p}.

In reality, Ansys does not set at zero the convergence value, instead a series of parameters are

defined to set the convergence condition as follows:

|| {p
n

}� {p} || = �

toll

p

rif

(4.8)

where p

rif

is the norm of the nodal loads vector which increases at each substep.

The plot in Figure 27, where u stands for the nodal deflections q
i

, shows how the sti↵ness

matrix [K], represented by the tangent, is updated at each iteration. The Newton-Raphson
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Figure 27: Update of the matrix [K] at each iteration

method is here applied choosing in Ansys the option for: “full” method, which updates [K] at

each iteration in the plastic field (it is also possible to store the initial sti↵ness value requiring

more, but less demanding, iterations at each substep); or “auto”, that lets the software to

decide whether to recalculate the value of [K] or not in a mixed way.

It is now necessary to define some elements on which an elastoplastic analysis is based and

explain briefly how Ansys commands elaborate this analyses using such components: yield cri-

terion, hardening rule, flow rule.

First of all, it is important to say that Ansys places automatically the yielding point where the

proportionality between � and " in the material curve (implemented using the MELA, MISO or
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MKIN commands) is interrupted. Before starting the solution process, however, the software

checks that the Young’s modulus, or in other words the slope of the first part of the curve, is

actually corresponding to the calculated value from the yield point calculation.

The yield criterion allows to state if a certain stress state is corresponding to an elastic or

to a plastic working condition. It consists in calculating the equivalent stress using Tresca or

von Mises, and comparing the obtained value with the one of �
y

. Called �1, �2 and �3 the

three principal stresses, the equivalent stress is:

Tresca: �

eq

= max (|�1 � �2|, |�1 � �3|, |�2 � �3|)

von Mises: �

eq

=
1p
2

q
(�1 � �2)

2 + (�1 � �3)
2 + (�2 � �3)

2

(4.9)

Figure 28: Yield criteria
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In Figure 28 the two criteria are compared: the red line shows the equivalent stress calculated

using Tresca, while the blue line is referring to the von Mises criterion.

The yielding function can, then, be formulated as follows:

F (�
eq

) = �

eq

� �0 (4.10)

The value of �0 in plastic field is updated every iteration and it becomes as much bigger than

�

y

as the hardening becomes greater, it increases, then, with the plastic deformation. If we are

in the plastic field, the value of the yielding function F can be zero or less than zero, but the

second condition is not physically possible, so it is corrected by other iterations.

The hardening rule defines how the value of �0 has to be updated with increasing plastic

deformation "

p

: �0 is a threshold value that increases when �

eq

falls in the plastic field.

At this point the di↵erences between the options used in order to define the material curve in

Ansys arise.

If the von Mises criterion is applied, �0 is represented by the blue ellipse in Figure 28: if the

commands MISO (multilinear isotropic hardening) or MELA (equivalent to MISO in loading),

as plasticization increases, the ellipse is increasing in dimension of the same quantity in each

direction (Figure 29(a)) and the yielding function is the one defined in Equation 4.10; while if

the option MKIN (multilinear kinematic hardening is used, the yielding surface is translated
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along a principal direction (Figure 29(b)).

(a) MISO (b) MKIN

Figure 29: Models for updating �0

Finally, the flow rule is in charge of evaluating the increment of plastic deformation "

p

correlated to a stress increment.

In elasto-plastic field, this increment is usually expressed in an incremental form by the Prandtl-

Reuss relationship:

{d"
p

} = d�

⇢
@F (�

ij

)

@�

ij

�
(4.11)
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Where d� is called plastic multiplier and is the factor that allows to amplify the yielding surface

after an increment of stress. Hence the plastic multiplier is the one in charge of updating �0.

Figure 30: Amplification of the allowable ellipse due to cumulated plastic deformation

For almost all metallic materials, it has F = Q, where Q is the plastic potential, hence:

F (�
eq

, "

p

) = {�
eq

}t {d"
p

} (4.12)

Knowing that:

{d�} = [D] {d"
p

} = [D] ({d"}� {d"
p

}) (4.13)
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And that, in order to be on the plastic boundary it has to be verified the following compat-

ibility expression:

dF =

⇢
@F

@�

�
t

d� +

⇢
@F

@"

p

�
d"

p

= 0 (4.14)

It is possible to combine those equations in order to calculate the plastic multiplied d�:

⇢
@F

@�

�
t

[D] {d"}�
⇢
@F

@�

�
t

[D] d�

⇢
@F

@�

�
+

⇢
@F

@"

p

�
t

d�

⇢
@F

@�

�
= 0 (4.15)

By inverting this last equation it is easy to get the expression of d�:

d� =

⇢
@F

@�

�
t

[D]

⇢
@F

@�

�
t

[D]

⇢
@F

@�

�
�
⇢
@F

@"

p

�
t

⇢
@F

@�

� · {d"} (4.16)

The value of this plastic multiplier, guarantees that after an infinitesimal increment of

deflection, the point expressing the final stress state is still laying on the yielding surface, which

has been updated. This updating process is carried out by substituting the value of d�

calculated numerically using finite di↵erences into the Equation 4.13, obtaining:

{d�} = [D] d" =

0

BBB@
[D]�

[D]

⇢
@F

@�

�
t

⇢
@F

@�

�
[D]

⇢
@F

@�

�
t

[D]

⇢
@F

@�

�
�
⇢
@F

@"

p

�
t

⇢
@F

@�

�

1

CCCA
d" = [D]

i

d" (4.17)



71

Figure 31: Update of the yielding surface

From Equation 4.17 it is clear that the updated sti↵ness [D]
i

is reduced by the subtractive term

that depends on plastic deformation "

p

.

Hence, the next step is to recalculate the sti↵ness matrix by simply applying its definition:

[K]
i

=

Z
[B]T [D]

i

[B] (4.18)

This showed shortly the procedure applied by Ansys to update the sti↵ness matrix in order

to adapt the material properties to the loading conditions and, consequently, when the material

is working in the plastic field, the sti↵ness is progressively reduced as prescribed by applied

material curve. The procedure showed above is based on an iterative method, so the calculation

is repeated many times, until the convergence condition, which implies that the F (�0, "p) = 0,

is fulfilled.
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When the Large Displacement option is enabled, finally, the contributes of spin softening and

stress sti↵ening have to be added to the global sti↵ness matrix as said before.



CHAPTER 5

COMPUTATION OF INERTIAL INSTABILITY OF ROTATING DISKS

The overspeed burst of rotating disk has been discussed in several di↵erent ways during the

years, and, as mentioned in Chapter 2, the modes of fracture can be various and depend on the

loading conditions and on the presence of notches that cause fatigue failure.

If only the inertial loads are taken into account, it can be demonstrated that the reason that

brings to burst of the disk is the inertial instability of the material. This is a strain dominated

phenomenon and it is directly related to the material properties and the sti↵ness both in the

elastic and plastic fields.

It was verified experimentally (Percy et al., 1974) that the failure of a disk can be due

to instability of the material, such that failure can occur for values of the equivalent stress,

�

eq

, lower than the ultimate strength, �
UTS

. The exponential increase of the inertial forces,

or rather centrifugal loads, in fact, causes a fast increase of deformation until a condition of

instability is reached and, finally, it culminates with burst. [22]

In Figure 32(a) and 32(b) it is possible to look at those experiments, and notice how a disk

that rotates at speeds slightly below the calculated instability burst speed shows evident plastic

deformation near the bore. The necking near the bore is the macroscopic e↵ect of the deforma-

tions that rapidly increase at high rotational speed and explains why it should be important to

consider this kind of behavior when developing a formula for safety factor against burst.

73
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(a) necking at the bore (b) instability a the bore

Figure 32: Plastic deformations prior to fracture

Figure 33: View of the fracture surface of a disk showing evident necking

The instability approach totally redefines the burst limit analysis, since all the other ana-

lytic criteria are considering only the tensile strength of the material as the governing parameter

to explain the phenomenon. Instead, the study on inertial instability revealed that fracture is

preceded by a condition of tensile instability: this condition is strain dominated and, there-
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fore burst strictly depends on the material behavior in plastic field as pointed out in Section 3.8.

The e↵ects of inertial instability have been considered for di↵erent types of materials: the

work done by Brunelle et al. (1971) is taking into account beams and disks made of isotropic

materials [23], while Tutuncu (2000) focused onto orthotropic materials. [24]

Following the mathematical approach used by Brunelle, the analytic results obtained for the

instability rotating beams and disks and the numerical results obtained by using the FEM code

Ansys, were compared. [2] Thus, the following sections the two examples of the rotating beam

with a tip mass and the rotating disk are reported, so that it can be possible to show the quality

of a bi-dimensional model created using Ansys.

Eventually, it is important to remind that instability, as confirmed by the following compar-

isons, can occur both in elastic and plastic dominion, since it is regulated only by the sti↵ness

of the materials. In particular the material set for the comparison is only considering a linear

elastic trend in order to investigate inertial instability.

5.1 Rotating beam with tip mass

The easiest model to study for inertial instability is a beam with a mass on its tip, which

rotates around a axis perpendicular to the beam it self.

Brunelle considers the beam as a one-dimensional problem characterized by mass per unit

length m, length l, and mass on tip called M, while the rotational speed is ! and the radial

displacement u.
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The radial equilibrium, then, is rather easy to write as a function of the non-dimensional

parameter ⇠ = u/l:

E Au

xx

= ml!

2 (⇠ l + u) (5.1)

where the term ml!

2
u is the one that is taking into account the spin softening, or rather the

additional centrifugal load given by the deformation u in the radial direction.

Considering the following boundary conditions:

8
>>><

>>>:

u (0) = 0

u

x

(1) =
M l

AE [l + u (1)] !2

(5.2)

the equation Equation 5.1 yields to the solutions for diplacement u and stress � reported below,

where k is defined as k =
ml!

2

E A

:

u (⇠) = l

⇢
sin k⇠

k cos k (1� (ml/M) k tan k)

�
� ⇠

�
(5.3)

� (⇠) = E

⇢
cos k⇠

cos k (1� (ml/M) k tan k)

�
� 1

�
(5.4)

On the other side, the classical values for u (⇠) and � (⇠), where no spin softening e↵ect is

considered, are used as reference and are here distinguished by the subscript cl.

u (⇠)
cl

= k

2
l


M

ml (6� k

2)
+ 3� ⇠

2

�
⇠/6 (5.5)
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� (⇠)
cl

= k

2
E


M

ml (6� k

2)
+ 3� 3 ⇠2

�
/6 (5.6)

It is noticed from Equation 5.3 and Equation 5.4 that u (⇠) and � (⇠) tend to infinite if k tan k =

ml/M , while no instability points are prescribed by Equation 5.5 and Equation 5.6. The

evolution of � at the root (⇠ = 0) has been calculated for di↵erent values of ml/M , making it

possible to draw the graph of �/�
cl

over the variable k.

From the Figure 34 it is possible to see that the ratio �/�

cl

tends to diverge as a critical value
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Figure 34: Divergence of stresses for varying k and mass rates
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of k is reached (asymptotic behavior). So the values of k
crit

have been found for each mass rate.

TABLE II: CRITICAL VALUES OF K VS MASS RATE

ml/M k

crit

0.05 0.2218
0.1 0.3109
0.2 0.4328
0.3 0.5216
0.4 0.5932
0.5 0.6531
0.6 0.7049
0.7 0.7505
0.8 0.7909
0.9 0.8273
1 0.858

The results obtained by simply applying this mathematical formulation can be compared

with the finite element analysis implemented with Ansys using for this purpose the Large

Displacement model (LD model) and 400 substeps. The model was set up using the element

LINK8 for the beam, and the MASS21 for the mass, assigning the following dimensional

parameters E = 207600MPa, A = 25mm

2, M = 10�3
tonn, L = 1000mm, letting the density

(⇢ = m/A) to vary as it governing parameter for the mass rate defined above (ml/M).
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Figure 35: Ansys model for the rotating beam with mass on tip

Looking at the values reported in the Table III and the plot in Figure 36, it is possible to

deduce that the numeric model developed using Ansys in the Large Displacement configuration

is producing the same results of the analytic formulation in the case of the rotating beam.
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Figure 36: Comparison between analytic and numeric results
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TABLE III: INSTABILITY BURST SPEED OF A ROTATING BEAM: COMPARISON
BETWEEN ANALYTIC AND NUMERIC RESULTS

ml/M k

critic

!

burst analytic

[rad/s] !

burst Ansys

[rad/s]
0.05 0.2218 2261.80 2258
0.1 0.3109 2227.19 2240
0.2 0.4328 2196.65 2204
0.3 0.5216 2168.08 2171
0.4 0.5932 2129.89 2138.8
0.5 0.6531 2098.43 2108
0.6 0.7049 2068.61 2078
0.7 0.7505 2040.48 2050
0.8 0.7909 2010.62 2023
0.9 0.8273 1982.13 1997
1 0.858 1957.91 1972

5.2 Rotating disk of uniform thickness

The same procedure has been followed for a rotating disk, considering the spin softening

e↵ect in the analytic formulation and properly setting the problem with the FE code. This

allow to finally test the fidelity of the numerical model if it is compared with the formula that

describe burst for instability. [2]

The stress-strain relations for a generic orthotropic material in the matrix formulation are

expressed as: 8
>>>>>><

>>>>>>:

�

r

�

c

⌧

r

c

9
>>>>>>=

>>>>>>;

=

2

6666664

A11 A12 0

A21 A22 0

0 0 A66

3

7777775

8
>>>>>><

>>>>>>:

"

r

"

c

�

r

c

9
>>>>>>=

>>>>>>;

(5.7)
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If the material is assumed to be isotropic, then A11 = A22 = E/ (1� ⌫) and A12 = A21 =

E ⌫/ (1� ⌫).

The e↵ect of spin softening can be added to equation of radial equilibrium:

⇢!

2 (r + u) +
d�

r

dr

+
�

r

� �

c

r

= 0 (5.8)

This equation can be rewritten as function of the displacement u as:

r

2
d

2
r

du

2
+

rdu

dr

+


⌦2

⇣
r

b

⌘2
� 1

�
u =

�⌦2
r

3

b

2
(5.9)

where

- ⌦2 =
�
1� ⌫

2
�
⇢! b

2
/E;

- a is the radius at the bore;

- b is the radius at the rim.

Since the bore is considered to be fixed, while the rim can deform, the following boundary

conditions can be used: u (a) = � (b) = 0. Then, the solution of the Equation 5.9, which is a

non-homogeneous Bessel equation is:

u/b = AJ1 (⌦ r/b) +BY1 (⌦ r/b)� r/b (5.10)
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Where J1 and Y1 are respectively the first and second order Bessel’s functions, while A and B

are the two integration constants and, with the boundary condition expressed above, they are

equal to:

A = [(1 + ⌫)Y1 (⌦ a/b)� (a/b)⌦Y0 (⌦) + (a/b) (1� ⌫)Y1 (⌦)] /C (5.11a)

B = [(a/b)⌦ J0 (⌦)� (a/b) (1� ⌫) J1 (⌦)� (1 + ⌫) J1 (⌦ a/b)] /C (5.11b)

C = Y1 (⌦ a/b) [⌦ J0 (⌦)� (1� ⌫) J1 (⌦)] + J1 (⌦ a/b) [(1� ⌫)Y1 (⌦)� ⌦Y0 (⌦)] (5.11c)

Once that the values for a and b have been fixed, the constants reported above are only function

of the parameter ⌦ which depends from the angular velocity !.

Also the stresses can be expressed in the non dimensional form as funcition of the the same

parameters:

�
1� ⌫

2
�
�

r

/E = A [⌦ J0 (⌦ r/b)� (b/r) (1� ⌫) J1 (⌦ r/b)]

+B [⌦Y0 (⌦ r/b)� (b/r) (1� ⌫)Y1 (⌦ r/b)]� (1 + ⌫)

(5.12a)

�
1� ⌫

2
�
�

c

/E = A [(b/r) (1� ⌫) J1 (⌦ r/b) + ⌫ ⌦ J0 (⌦ r/b)]

+B [(b/r) (1� ⌫)Y1 (⌦ r/b) + ⌫ ⌦Y0 (⌦ r/b)⌦]� (1 + ⌫)

(5.12b)

As done in the previus section for the rotating beam, the the hoop stress at the bore, �
c

(a)

can be calculated for di↵erent form factors � = a/b. The plot in Figure 37 shows the tendency of

the ratio between the hoop stress calculated as shown before and the classical one (without spin

softening e↵ect) as the dimensionless parameter ⌦ is varying. This results can be compared
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Figure 37: Divergence of stresses for di↵erent ⌦ and geometry rates

with the one calculated using Ansys. As done before for the beam, some real geometry values

have to be set to allow the calculation, hence E = 207600MPa, ⇢ = 8219 · 10�12
tonn/mm

3,

⌫ = 0.3, b = 1000mm.

In this case the the large displacement solution option was not fitting the results prop-

erly, since the analysis stopped before the instability point was reached, as shown in Figure

38. For this reason the option KSPIN has been used to consider the reduction of sti↵ness due

to the spin softening but keeping the small displacement activated. A closer analysis at the

KSPIN option [21] shows, in truth, that this is following exactly the same approach Brunelle
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used in the analytic formulation, while the LD option, which is indeed more accurate, reaches

instability earlier. Moreover, it can be proven that in case of the one-dimensional beam, the

Large Displacement is actually degenerating in the KSPIN, giving the same results obtained

by Brunelle. [2]
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Figure 38: Comparison between Ansys results and analytic model: LD option

Using the KSPIN setting the matching between analytic formulation and numerical model

results to be very neat and to obtain comparable values of burst speed (Figure 39).
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Figure 39: Comparison between Ansys results and analytic model: KSPIN option

Eventually, the table gathers some numerical values calculated for di↵erent geometry ratios,

a/b, which, if all the other parameters are constant, govern the burst speed no matter of the

absolute dimensions.

TABLE IV: INSTABILITY BURST SPEED OF A ROTATING DISK: COMPARISON
BETWEEN ANALYTIC AND NUMERIC RESULTS

a/b ⌦
crit

!

burst analytic

!

burst Ansys

0.1 2.088 10997 10980
0.3 2.404 12666 12630
0.5 3.183 16763 16750
0.7 5.193 27366 27300
0.9 15.604 82207 82025



CHAPTER 6

COMPARISON BETWEEN TWO-DIMENSIONAL AND

THREE-DIMENSIONAL MODELS

The study shown in the previous chapter, which was explaining the instability condition of

a rotating disk modeled as a bi-dimensional axisymmetric structure, compared the results ob-

tained by using the finite element simulations with the analytic formulation and is fundamental

in order to validate the e↵ectiveness of a bi-dimensional numerical model implemented using

the software Ansys.

The two-dimensional model works perfectly in case of axisymmetric disks, since Ansys allows

to set up a plane problem using the option of axisymmetry, but if some asymmetries, like for

instance a certain number of holes in the web area, are present, the finite element analysis

requires several complications, so the study of a tri-dimensional model becomes necessary.

Thus, the aim of this chapter is to show that a simple three-dimensional model of an

axisymmetric disk with no holes, built using the Cyclic Symmetry command, is consistent with

the two-dimensional one, that is instead using the axisymmetry option of the Plane42 element

in Ansys.

The analysis has been carried out studying the problem firstly using the Small Displacement

option, then by setting the Large Displacement and testing the behavior of the structure using

some idealized bi-linear material curves.

86
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Those fictional bi-linear material curves allows easily to vary the plastic part of the material

curve, keeping constant all the other parameters: in particular, the elastic line and the ultimate

stress considered are conserved, while the strain at the UTS is the only varying parameter.

It is important, however, to point out that the all the bi-linear curves used in this particular

analysis are not real, but have been arbitrary sketched with the only purpose of stressing out

the reaction of the numerical model when larger strains are allowed.

6.1 Two-dimensional model

The two-dimensional model is considering a planar case using the element Plane42 (Figure

40) that is defined by four nodes having two degrees of freedom each (translations in the nodal

x and y directions), setting the option for the axisymmetry of the problem. The mesh has

been created by manually defining the size of the areas of each element and using the free mesh

option.

Figure 40: Plane42 element
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In Figure 41 it is possible to see the meshed 2D model with the boundary condition: the

displacement of a node at the inner radius have been set to zero, so that the displacement in

the axial direction (y-axis) is constantly equal to zero.

Uy=0

Figure 41: Bidimensional model

6.2 Three-dimensional model

For what concerns the three-dimensional model, the geometry model has been created using

the cyclic symmetry on a sector of 10� in order to reduce the total number of nodes involved
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in the calculation. The definition a high level and a low level surface, which are linked using

particular constraint relations, allows the cyclic option to consider the repetition of the basic

sector and to build the solution on the expanded geometry.

In Figure 42 it is possible to see the basic sector that is going to be considered for the analy-

sis, obtained by extruding the cross-sectional area that is used for the 2D model about the y-axis.

Figure 42: Basic Sector
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The three-dimensional mesh of the basic sector has been perfomed defining two elements:

a quadrilateral plane element, Mesh200, with 8 nodes; and a 20-noded brick element, Solid95.

The quadrilateral Mesh200 is used on the high level boundary surface of the cyclic sector,

setting the divisions to use for each segment and defining a mapped mesh of the areas. The

Solid95 element is used, instead, by sweeping the volumes. Ansys is automatically recognizing

the second surface as linked to the high level edge and doubling the areal mesh.

(a) Mesh200 (b) Solid95

Figure 43: Elements used in the three-dimensional case

The mesh of the high edge component is shown in Figure 44(a), while the full sweep is

shown in Figure 44(c).
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(a) High edge mesh (b) Partially swept mesh

(c) Complete mesh (d) Cyclic expansion

Figure 44: Three-dimensional model mesh

As for the two-dimensional model, it fundamental to set a boundary condition that prevents

the rigid body motion of the disk in the axial direction. For this reason, the displacement on

one line belonging to the bore surface has been fixed to zero in the y direction (U
Y

= 0).
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Uy=0

Figure 45: Three-dimensional: lines and boundary condition

6.3 Finite element analysis of the burst limit

The Finite Element analysis is run for both the two-dimensional and three-dimensional

model in order to verify that they provide the same burst speed with comparable results.

The material properties implemented are varied using some fictional curves that on purpose

let the strain at the fracture point to change in an exaggerated and arbitrary way, while the

Young’s modulus (elastic behavior of material) and the yield point are kept constant. In this

way it is possible to investigate the variation of the burst speed as the plastic behavior is more
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or less extended.

The two options for Small Displacement and Large Displacement are used to compare the

results obtained whether the software is considering the non linear e↵ect of plasticity or not.

From the discussion made in Chapter 4 it is expected, then, that the burst speed is not varying

if the SD option is enabled, while if the LD option is used it should be verified a decrease of

burst limit as the plastic strain at the UTS is increasing.

6.3.1 Small displacement simulations

For the small displacement analysis the following material properties have been used:

• Young’s modulus: E = 206700MPa;

• Poisson’s ratio: ⌫ = 0.3;

• Density: ⇢ = 8.219 · 10�9
ton/mm

3;

• Two fictional bi-linear curves in the ��" plane, with constant yield point at " = 0.004299

and � = 888.6033MPa and variable "

UTS

at � = 1275MPa (Figure 46).

Only two curves are used in this analysis to show that the results obtained with the Small

Displacement option are not varying if the material curve is changing its shape only in the

post-yield area. So, the two curves shown in Figure 46 are considering the increase of the strain

at the Ultimate Tensile Strength that goes from "

UTS

= 0.1 to "

UTS

= 0.3.
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Figure 46: Bi-linear material curves used in the SD analysis

The angular velocity has been set as ! = 1500 rad/s, and the analysis is considering 100

equally spaced substeps using the line search option (Newton-Raphson criteria). The condition

of inertial instability is verified whenever the software fails to find the convergence value for the

solution, so that specific substep is directly referring to the burst speed.

As expected the burst speed using the Small Displacement is not varying if the material

curve is arbitrary changing its tendency in the plastic field, as in this case the increase of the

strain value at the fracture point. In Table V it is possible to read the results obtained using

both the 2D model and the 3D model for the two material curves discussed before.

From the results shown in the table it is also evident that the two-dimensional and the

three-dimensional model give back the same results, at least in terms of bursting speed. In
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TABLE V: SMALL DISPLACEMENT ANALYSIS: BURST SPEED

"

UTS

!

burst 2D [rad/s] !

burst 3D [rad/s]
"

UTS

= 0.1 1290 1290
"

UTS

= 0.3 1290 1290

addition it is also possible to show the equivalency of the two models by looking at the plots

of principal and equivalent stresses. Principal stresses of the 2D and the 3D models, �
c

and �

r

(respectively the first and the second principal), are perfectly matching with a relative error

less than 2% (Figure 47).
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Figure 47: Comparison of principal stresses tendencies before burst (SD)
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Figure 48: Comparison of equivalent stresses tendencies before burst (SD)

Figure 48 shows clearly that change in the plastic part of the material bi-linear curve is not

e↵ecting at all the Small Displacement results, since for both curves (Curve 1 and Curve 2 in

Figure 46) the burst speed is !
burst SD

= 1290 rad/s and the tendency of the equivalent stress

along the radius is not changing.
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(a) First principal 2D (b) Second principal 2D

(c) First principal 3D (d) Second principal 3D

Figure 49: Contour plots of the principal stresses, SD analysis

It might be useful, finally, to look at the evolution of the equivalent stress during the

loading phase, as shown in Figure 50. It is interesting to notice that near the yielding load,

approximately 890MPa, the �

eq

curve flattens since the region closer to the bore (the most

stressed one) is plasticizing and has lower sti↵ness, while the external part of the disk (that is

less stressed) is still working in the elastic field, thus the higher sti↵ness of this part contains
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the deformations of the disk preventing the total plasticization of the disk and keeping constant

the stress until load (speed) increases.
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Figure 50: Loading evolution of the �

eq

In conclusion, when using the Small Displacement option, burst is a condition dominated

only by the elastic part of the material curve, while no di↵erences are noticed if variations are

introduced in the plastic region.
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6.3.2 Large displacement analysis

By enabling the Large Displacement option it is possible to study the correlation between

the burst speed and the material curve as the plastic behavior is changed. For this analysis

the material models used are the same used for the Small Displacement analysis, but this time

more curves are going to be considered:

• Young’s modulus: E = 206700MPa;

• Poisson’s ratio: ⌫ = 0.3;

• Density: ⇢ = 8.219 · 10�9
ton/mm

3;

• Five fictional bi-linear curves in the ��" plane, with constant yield point at " = 0.004299

and � = 888.6033MPa and variable "

UTS

at � = 1275MPa (Figure 51).

Again, the angular velocity set in the loading option is ! = 1500 rad/s, and the simula-

tion uses 100 equally spaced substeps (Automatic time stepping o↵ ), solving the non-linearity

through the line search option.
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Figure 51: Bi-linear material curves used in the LD analysis

While for the SD analysis the burst speed was always the same and equal to !

burst SD

=

1290 rad/s, using the LD option the burst speed is influenced by the material curve used and

it as much lower as the plastic strain at fracture ( "
UTS

) is higher.

In Table VI the burst speed for each case considered is shown, while in Figure 52 it is

possible to look at the trend of in the ! � " plane.
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TABLE VI: VARIATION OF BURST SPEED

Curve "

UTS

!

burst

[rad/s]
1 0.02 1250
2 0.06 1200
3 0.10 1155
4 0.15 1110
5 0.20 1080
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Figure 52: Burst speed trend as function of "
UTS
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In order to evaluate the equivalence of the 3D and 2D models, the plots of principal and

equivalent stresses for one of the material curves are compared, as done in Figure 53 and Figure

54 for the Curve 3. The equivalence is easy to read from graphs, since the relative error of the

principal stresses plot is always below 1.5 %, while the equivalent stresses in both the 2D and

the 3D models follow exactly the same path along the radial coordinate.

Generalizing this result it is possible to state that a three-dimensional model like the one showed

in this chapter is perfectly equivalent to the two-dimensional model that was used in the analysis

of Chapter 4 to prove the consistency of the results obtained by Ansys for inertial instability.
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Figure 53: Comparison of principal stresses tendencies before burst (LD)
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Figure 54: Comparison of equivalent stresses tendencies before burst (LD)

It might be also interesting to compare the loading history when di↵erent curves are con-

sidered, in order to look at the di↵erent values of �
eq

corresponding to each loading condition

in terms of angular velocity.

Curve 2 ("
UTS

= 0.06) and curve 5 ("
UTS

= 0.15) have been considered in order to show the

great influence that the variation of the plastic segment of the fictional bi-linear curves has in

terms of stresses induced into the disk.
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Figure 55: Comparison of the equivalent stresses in loading for curve 2 and curve 5 (LD)
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Looking at Figure 55, the fist di↵erence that is possible to notice is that the equivalent

stress is never exceeding the yielding point when the curve 5 for the material is set, while if

curve 2 is considered, the disk plasticize for high loads (near burst speed), thus the equivalent

stress reaches higher values and, eventually, for the last substep before failure the internal part

of the disk is actually su↵ering the �

UTS

.

This shows perfectly the relationship that exists between burst and the plastic part of the

material curve, highlighting the biggest drawback of the Robinson formula showed in Chapter

3 that is not considering at all the influence of plastic behavior for the determination of burst

speed.

Inertial instability, instead, perfectly matches with the burst limit modification due to large

deformations: as it is possible to see in Figure 56, in fact, the displacements at the rim of the

disk show a asymptotic behavior at the burst speed, with a sharp increase of displacement that

brings to failure.

Moreover, a first intuition can derive from the implementation of this “fake curves”: the most

the curve is flattened (highest strain at fracture) the lowest are the stresses that the rotating

disk can su↵er and consequently the burst speed.
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Figure 56: Displacements at rim for curve 5

After proving that the two models, both the two-dimensional and the three-dimensional

one, give the same results and that the Large Displacement analysis is largely influenced by the

variation of the material curve in the plastic region, it might be useful to look up for some more

realistic results using experimental material curves obtained by testing the “INCONEL® 718”.

Since the experimental tests have, of course, a normal distribution of occurrences, each material

characterization is represented by a set of curves that are contained between a minimum curve

and a maximum curve.

In Figure 57 is reported the dimensionless � � " plot of one of this curve with the minimum,

the maximum and the mean tendencies and it is also sketched a box of allowable statistical

variations of �
UTS

and "

UTS

.
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Figure 57: Experimental material curve with variation ranges

In second analysis is possible, starting from the mean curve of Figure 57, to consider the

worst combination of stress and strain at the UTS, sketching the curve that presents the greatest

reduction in sti↵ness in the plastic region preserving the same value at yield: lowest �
UTS

and

largest "
UTS

(Curve 1A in Figure 58).
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Figure 58: Mean curve and modified curve

The results obtained by using the Finite Element analysis with the option for Large Dis-

placement allows to complete the following table that shows the results obtained by using the

numerical code for both the cases of the mean real curve and the modified one.
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TABLE VII: COMPARISON BETWEEN MEAN REAL CURVE AND WORST
OCCURRENCE

Curve !

burst Ansys

[rad/s]
Mean Curve 1320
Curve 1A 1290

The plot in Figure 59 shows the the displacement at the rim as function of the angular

velocity: this plot is very meaningful since it allows to loot at the relationship between burst

speed and displacement, explaining in this way the instability condition due to the sharp increase

of deformation.
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Figure 59: Displacement at the rim for real material curves
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6.4 Comparison with Robinson’s criterion

Finally, it is possible to compare the burst speed estimated by the numerical code Ansys

over the three-dimensional model with the results obtained by simply applying the Robinson

criterion cited in Section 3.8.

In order to apply the simple proportion formulated by Robinson in 1944 [18], it is fundamental

to know two governing parameters: the engineering tensile strength, �
UTS eng

, and the mean

hoop stress, �
c m

.

The engineering tensile strength is obtained from the known true values, by simply applying

the following two formulas:

"

true

= ln (1 + "

eng

)

�

true

= �

eng

(1 + "

eng

)

For what concerns the average hoop stress, two equivalent methods can be used in our case.

The first way to obtain the average hoop stress is to use the numerical code and ask the

software for the centroid hoop stress for each element at a certain angular velocity and, subse-

quently, average this value, obtaining the average hoop stress over the two-dimensional model.

Important is to pick a su�ciently low rotational speed so that the Large Displacement analysis
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in Ansys gives the same results that it would be obtained in a Small Displacement simulation.

Robinson, in fact, is not considering at all the plastic behavior of materials and the e↵ects of

deformations (variations of r
G

and A influence the final result), so the angular velocity to use

for the proportion has to be such that the resultant stress is in the elastic field.

A second possible solution to find the mean hoop stress is to solve a simple equilibrium

problem on a half-disk, since in this particular situation only centrifugal loads are acting on the

disk. So, the forces acting on the disk are 2 ·A · �
c m

and F

c

= M · !2 · r
G

acting on the center

of gravity G (Figure 60).

Figure 60: Equilibrium on a half-disk
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By simply substituting the formula for the center of gravity of an annular disk and the

value of the area it is possible to obtain the following expression for the mean hoop stress as a

function of the angular velocity !:

�

c m

=
2/3!2

⇢

�
R

3
rim

�R

3
bore

�

2 (R
rim

�R

bore

)
(6.1)

The proportion in Equation 3.39, !
burst

= !

r
�

UTS

�

c,mean

, then, gives back the burst speed

value.

For the bi-linear material curves, all having the same value of �
UTS

the Robinson criterion

gives the same result: once that the engineering ultimate strength is fixed, the burst speed

is not influenced at all by the plastic part of the material curve, since the only conditioning

material parameter is �
UTS

.

Hence, for all this cases we have :

!

burst Robinson

= 1258 rad/s

In Figure 61 the displacements at the rim for all the di↵erent curves are reported together

with the value of burst speed calculated using the Robinson criterion. It appears from the

picture that the Robinson’s value of burst speed is more conservative than the values obtained

implementing an elsto-plastic analysis in ansys using the Large Displacement option. Moreover,

this value is much more conservative as the sti↵ness of the second segment is reducing compared
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to the sti↵ness of the elastic part. This perfectly shows one of the limit of the semi empiric

analytic formula developed by Robinson: it doesn’t consider at all the plastic deformation of

materials and it only depends on the value of UTS. However, Robinson can still be applied

as a rule of thumb: its easiness, in fact, compensate the overestimation of burst speed, and

even though the failure for inertial instability is totally di↵erent from the one in the Robinson’s

hypothesis, the results obtained with the elasto-plastic analysis using Ansys are close enough

to consider Robinson’s result as a starting point for design optimization.
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Figure 61: Displacements at rim for the di↵erent curves compared with Robinson

The same thing has been done also for the real material curves used in the previous section

to perform a Large Displacement analysis in Ansys. In this case the curves were entered in the
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FEM software as true stress-strain discrete points, so it is important in this case to remember

that the analytic formula needs the engineering stress.

The estimated burst speeds for the two cases: mean real curve and modfied real curve (Curve

1A) are reported in the table below:

TABLE VIII: BURST SPEED CALCULATED USING ROBINSON FOR REAL CURVES

Robinson’s criteria [rad/s] Ansys LD [rad/s]
Mean Curve 1338 1320
Curve 1A 1242 1290

From the results in Table VIII, it is very important to notice that changing the material

curve from the mean real curve to one created considering the worst statistical occurrences in

terms of stress and strain, so with the lowest �
UTS

and the largest "
UTS

, there is an incoherence

when Robinson’s criterion is applied.

If the mean curve is taken into account, the value calculated using the analytic criteria is

still slightly conservative if compared with the value obtained using Ansys.

On the other side, with the modified curve, the value obtained applying Robinson is smaller

than the numerical one, and this makes the Robinson criterion to loose its conservative ap-

proach.
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Figure 62: Displacements at rim for real curves compared with Robinson

In conclusion, it is possible to state that in the case of axisymmetric disks the Robinson’s

criterion provides relatively reliable results with very little e↵orts that can be used as a rule of

thumb for the design of a rotating disk.

However, some limits are pointed out from the comparison of the results obtained applying

the formula with the divergence values of the elasto-plastic analyses conducted in Ansys: using

the real material curve and considering the worst occurrence of the combination stress-strains

allowed in the statistical distribution, Robinson looses its conservative approach and is under-

estimating the value of burst speed. The indication provided by the this method in case of

axisymmetric disks, then, is not to be taken as a true value, but only as an indication of the

maximum angular velocity that the structure can withstand.



CHAPTER 7

THREE-DIMENSIONAL MODEL WITH HOLES

Starting from the results obtained by the comparison carried out in the previous chapter,

it is possible to state that a three-dimensional model of the disk with cyclic symmetry over a

basic sector can be used in a Large Displacement finite element simulation in order to predict

numerically the burst due to inertial instability. It was verified, in fact, that the results obtained

by using this kind of model are perfectly matching the ones obtained using an axisymmetric

model, which was proven to satisfy the hypothesis of inertial instability.

Besides, the use of the three-dimensional model allows to study the case of a non-axisymmetric

rotating disk, such as, for example, a rotating disk with a variable number of holes in the web

area. Holes located in the web area are usually added in order to allow the connection between

two or more turbine disks using connecting rods fastened with bolts.

In this chapter, then, the three-dimensional model used previously in the comparison with

a two-dimensional one, is modified with the purpose of studying the influence of the number

and the dimension of holes onto burst speed.

7.1 Model description

In order to consider the e↵ects due to the presence of a hole on the disk web, it is fundamental

to redefine the basic sector by extruding the cross-sectional area by an angle that depends on

116
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the number of holes to consider: ✓
basic sector

=
360�

no. of holes

.

The disk used for this analysis is the same simple disk showed in the previous chapters, where

the web has constant thickness of 4.5mm. Since the aim of this chapter is only to show the

influence of the number of holes and their dimension onto the burst phenomenon, the position

of the holes has been chosen arbitrary in the middle of the web area, not taking into account

all the other geometrical constraints that are considered during the design process in order to

correctly place the holes.

The extrusion of the basic sector is done by letting Ansys to create 3 equal volume extrusions

around the rotation axis, so that it is possible to modify only the central sector that is containing

the hole. The hole is created by extruding a solid cylinder in the middle of the web and then

subtracting it from the central volume of the previously extruded disk (Figure 63).

As it is possible to see in Figure 63, the volume that contains the hole has been divided into

four “slices” that allow to control the mesh around the hole.

The idea is, in fact, to rebuild the mesh of that particular sector using the LESIZE command

that allows to set the number of elements on a line and the spacing ratio between elements

on the same line. In this way, the mesh can be created using mapped 8-noded quadrilateral

(Mesh200 )for the boundary area of the cyclic sector and sweeping the volume with brick ele-

ments that have 20 nodes each (Solid95 ).

The mesh obtained is pretty regular and easy to replicate, in Figure 64 the mesh for the entire

basic sector is shown, and it is also possible to notice the refinement done in the hole area.
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Figure 63: Basic sector with the hole: volume division

(a) Basic sector (b) Cyclic expansion

Figure 64: Mesh of the holed disk
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7.2 Burst speed analyses

The analysis is carried out for an increasing number and increasing dimension of the holes.

As a first analysis, the models considered aim to look at the di↵erences occurring when the

number of holes is increased: 5, 8 and 12 holes, keeping constant the dimension of holes at

d = 30mm, but considering di↵erent plastic behavior of material.

Later on in this section, the study is focused on the e↵ects of the size of the hole is conducted

on the disks with 5 and 12 holes considering the diameters of 10mm, 20mm, 30mm, 50mm and

60mm, considering this time a real material curve.

7.2.1 Variation of the number of holes

In order to conduce a first study on the variation of burst speed with the number of holes in

the web of the turbine disks, two fictional bi-linear material curves from those defined in Chap-

ter 6 have been chosen calling them: curve 1, with "

UTS

= 0.06; curve 2, with "

UTS

= 0.11.

In this way it is possible to look at the influence of the presence of holes if the plastic region

of the material curve is more or less extended, or in other words for larger or smaller allowed

deformations at the ultimate strength.

1For all the other material properties please refer to the Chapter 6
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Figure 65: Bi-linear material curves

As for the analysis of the solid disk, the failure of the disk is identified in Ansys by the

divergence of the solution at a specific substeps at which the rotational speed corresponds to

the burst speed.

Since the values are close to each other, to have more accurate definition of the burst speed

the solution option Automatic time stepping has been activated, allowing the software to choose

the automatically the time step. The parameters used to control the time stepping for this first

set of analysis are the following:

- Number of substeps: 3;

- Maximum number of substeps: 300;

- Minimum number of substeps: 1.
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This means that the first step increment is 1/3rd of the total angular velocity, while the analysis

runs until the convergence is reached using the smallest substep increment equal to 1/300th of

the total angular velocity set in as inertial load to 1500 rad/s.

Considering the Curve 1 ("
UTS

= 0.06) for a disk with 5, 8 or 12 holes, it is possible to

observe that a burst speed decreases with the increase of the number of holes (Table IX).

The trend of burst angular velocities is also shown in Figure 66, where the results listed in the

table are plotted on the !
burst

�No. of holes plane. It is possible to see that the simulation gave

the same results,within the range of 5 rad/s (1/300th of the total angular velocity set as load),

for the burst speeds of the disk with 8 holes and the one with 12 holes, showing an asymptotic

trend for higher number of holes.

TABLE IX: VARIATION OF BURST SPEED WITH THE NUMBER OF HOLES - CURVE
1

No. of holes !

burst

[rad/s]
0 1200
5 1161
8 1152
12 1152
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Figure 66: Variation of burst speed with the number of holes (curve 1)

Together with the considerations made about the variation of burst speed with the number

of holes, plots of the equivalent stresses at the last substep before failure are here reported so

that it is possible to highlight the dynamics of burst. Those plots have been defined along two

di↵erent paths, both in the radial direction: the first path (path 1 ) is picking the equivalent

stress in a section far away from the hole (Figure 67), while the second one (path 2 ) passes

through the hole (Figure 70).

From the first path (Figure 67) it is interesting to notice that in a section located far from

the holes, the equivalent stress presents a reduction in magnitude in the web area as the number

of holes increases and, eventually, there is a minimum for the case with 12 holes, when the pitch

between holes is smaller.
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Figure 67: Comparison of quivalent stresses before burst (curve 1, path 1)

Totally di↵erent is the equivalent stress tendency along the path that passes through the

holes (Figure 68).

The presence of the hole creates a peak of stress along the radial coordinate: plasticization

begins at the holes boundaries and, at the last substep before burst, it is possible to see that

part of the disk near the hole is at the UTS (�
eq

= �

UTS

).

This allows to use of the three-dimensional model also to predict the weaker section in case

of holed disks: for all the studied configurations, in fact, failure is more likely occurring in

the radial direction that passes through the holes, since form the plots the equivalent stress is

reaching the ultimate strength.

Failure again occurs for inertial instability, which now can be considered as the predominant
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cause of failure when disks are only loaded by the centrifugal load, since some residual stresses

could have been undertaken by the portion of the disk not working at UTS.
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Figure 68: Comparison of equivalent stresses before burst (curve 1, path 2)

The same analysis has been performed for the Curve 2 ("
UTS

= 0.1). It shows that the

reduction of burst speed for the same number of holes in the web area (Table X) is comparable

with the one obtained with the other material curve, but, as expected, burst speeds are lower

this time, since the new curve allows larger deformation, hence the inertial instability is induced

earlier. Besides, since the plastic part of the material curve is more extended, the di↵erences
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between the various cases are more clearly outlined as well as the decrease of burst speed is not

reaching any asymptotic behavior (Figure 69).

TABLE X: VARIATION OF BURST SPEED WITH THE NUMBER OF HOLES - CURVE 2

No. of holes !

burst

[rad/s]
0 1155
5 1128
8 1118
12 1109
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Figure 69: Variation of burst speed with the number of holes (curve 2)

Again, the principal stresses tendencies are plotted for two paths: in Figure 70 at a section

far from the hole (path 1 ), and in Figure 71 at a section which passes through the hole (path

2 ).

In this simulation it is possible to highlight form the plot in Figure 71 the di↵erences that occur

when the number of holes increases: it is more evident, in fact, the fact that the disk with 5

holes has an higher burst speed, since the part working at the UTS is more extended, meaning

that the disk survived some load increments more than the other two cases.
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Figure 70: Comparsion of equivalent stresses before burst (curve 2, path 1)
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Figure 71: Comparsion of equivalent stresses before burst (curve 2, path 2)
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A further study has been conducted considering a real material curve (the mean curve

showed in the previous chapter, Figure 72) and performing an elasto-plastic analysis with Large

Displacements.

The material curve used is the same presented in the previous chapter, where the one

considered is the mean curve of the experimental set.
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Figure 72: Mean real material curve

In order to show qualitatively the tendency of both bust speed and stresses along the ra-

dial direction, the same analyses conducted before for the idealized curves have been repeated,

varying the number of holes each of 30mm diameter, comparing also the results with the one
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obtained using the Small Displacement option.

The trend of burst speed variation as the number of holes increases is shown both in Table

XI and in Figure 73. Again, according to the Large Displacement analysis on the 3D model

set with a cyclic symmetry, there is a reduction of burst speed, though moderate, when the

number of holes increases.

TABLE XI: VARIATION OF BURST SPEED WITH THE NUMBER OF HOLES - REAL
CURVE

No. of holes !

burst

[rad/s]
0 1320
5 1295
8 1290
12 1285
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Figure 73: Variation of burst speed with the number of holes (real curve)

The same plots of stresses produced for the previous two simulation can be generated also

for the real curve, reported here in dimensionless form, like the material curve itself.

So in Figure 74 and in Figure 75 it is possible to look at the equivalent stresses at the last

substep before burst, traced respectively in a section between the holes and in a section passing

through one of them.

Notice that on the same plot it has been reported also the trend of equivalent stress calculated

using the Small Displacement option, which gives exactly the same results for all the three

di↵erent cases: 5, 8 and 12 holes. Using the SD option the software provides, as expected, an

higher rotational speed at which the analysis is interrupted, since burst occurs when in all the

disk the equivalent stress is reached (!
burst SD

= 1430rad/s).

This confirms the hypothesis of failure due to inertial instability and that it occurs in the radial
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direction (hoop mode) along those direction that passes through the hole, since near the holes

the disk has an equivalent stress equal to the ultimate strength.
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Figure 74: Comparsion of equivalent stresses before burst (real curve, path 1)
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Figure 75: Comparsion of equivalent stresses before burst (real curve, path 2)

Figure 76, finally, shows evolution of the equivalent stress along the second path for the case

of a disk with 5 holes.

The rotational speed at which part of the disk starts to plasticize (passes the yielding

stress) is between 750 rad/s and 900 rad/s, while the total plasticization of the cutting section

(�
eq

> �

y

at each radii) is verified around 1125 rad/s.
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Figure 76: Evolution of equivalent stress in loading (5 holes, real curve)

7.2.2 Variation of the holes dimension

A second study, instead, is focusing on the e↵ect of the dimension of the holes onto burst.

Considering the mean real material curve defined previously and fixing the number of holes,

their dimension has been varied from a minimum diameter of 10mm to a maximum of 50mm.

So, in the following table are reported the value of burst speed given by the numberical code

for two cases of disks with 5 and 12 holes and holes having the following diameters: 10mm,

20mm, 30mm, 40mm and 50mm.
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TABLE XII: VARIATION OF BURST SPEED WITH HOLES DIMENSION - REAL
CURVE

5 Holes 12 Holes
Holes diameter [mm] !

burst

[rad/s] !

burst

[rad/s]
10 1310 1309
20 1300 1297
30 1295 1285
40 1285 1277
50 1275 1270

As shown in Table XII, Ansys points out a decreasing value of burst speed as the dimension

of holes increases, with a monotonic tendency. Moreover, for small dimensions very little di↵er-

ences (below the threshold value of 5 rad/s, which is the lowest increment of angular velocity

set in the software) occur between the case with 5 holes and the one with 12 holes.

For the configuration with 12 holes, plots of the equivalent stress against the radial coordi-

nate are reported in Figure 77 and Figure 78. Those plots allow to confirm that the presence

of the holes moves the direction of preferential failure in the section that passes through the

holes, since the equivalent stress reaches the highest value, equal to the ultimate strength, in

proximity of the hole.
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Figure 77: Comparison of equivalent stress before burst as dimension of holes varies (12 holes,
path 1)
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Figure 78: Comparison of equivalent stress before burst as dimension of holes varies (12 holes,
path 2)
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Curious is to notice from Figure 77, in which the equivalent stresses are considered in a

section far from the holes, that as the holes dimension increases the stress in the web area

(where holes are located) su↵ers a great reduction as it is evident looking at the two cases with

diameters of 40mm and 50mm where it is widely below the yield value.

This means that the considering larger holes increases the perturbation in the stress com-

position in the area interested by the presence of the holes.

Having a look at the principal stresses along the same path is then really interesting, as re-

ported in Figure 79. From this plot, in fact, it is clear that at radial position that correspond

to the location of the holes, the first principal (hoop stress) tend to decrease, while the second

principal (radial stress) increases.

Finally, for the case with the largest holes (d = 50mm), the two principal stresses are locally

equal each other. This condition might represents a limiting case, since a further increase of the

radial stress would cause a di↵erent burst behavior and, most likely, a mode of fracture more

similar to the rim peel.
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Figure 79: Principal stresses along path 1 for varying holes dimensions (12 holes)

In order to understand if rim peel is actually prevailing over the hoop mode, the study of

the radial paths has to be compared with the plot of the stresses along the arc of circumference

that passes through the hole (Figure 80).
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Circumferential Path

Figure 80: Circumferential path

For this reason, in the following pages a set of compared plots of principal stresses (S1=hoop

stress ; S2=radial stress) and principal stresses for some of the above configurations are reported

in order to show the di↵erences between them and look also into the circumferential path traced

upon the basic sector.
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• 5 holes - d = 10mm:

Figure 81: Disk with 5 holes of 10mm diameter
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Figure 82: Comparison of stresses along di↵erent paths (5 holes, d = 10mm)
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• 5 holes - d = 30mm:

Figure 83: Disk with 5 holes of 30mm diameter
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Figure 84: Comparison of stresses along di↵erent paths (5 holes, d = 30mm)
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• 5 holes - d = 50mm:

Figure 85: Disk with 5 holes of 50mm diameter
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Figure 86: Comparison of stresses along di↵erent paths (5 holes, d = 50mm)
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• 12 holes - d = 10mm:

Figure 87: Disk with 12 holes of 10mm diameter
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Figure 88: Comparison of stresses along di↵erent paths (12 holes, d = 10mm)
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• 12 holes - d = 30mm:

Figure 89: Disk with 12 holes of 30mm diameter
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Figure 90: Comparison of stresses along di↵erent paths (12 holes, d = 30mm)
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• 12 holes - d = 50mm:

Figure 91: Disk with 12 holes of 50mm diameter
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Figure 92: Comparison of stresses along di↵erent paths (12 holes, d = 50mm)
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By comparing the results showed above it is possible to deduce that the rim peel burst is not

verified in any of those configurations. Looking at the equivalent stress along the circumfer-

ential path, in fact, it appears clear that the equivalent stress at di↵erent ✓ is never reaching

the UTS, condition that is instead verified along the radial path that passes through the hole

(Path 2 ).

Moreover, from the plots it is not di�cult to notice that the holes tend to ovalize along the cir-

cumferential direction (as shown also in Figure 93), since on the edges of the hole the hoop stress

(S1) is zero and the radial stress (S2) is negative, hence it induces a compressive deformation.

Figure 93: Deformed and undeformed shapes

The rim peel burst is a rather rare failure mode, verified when the disk in the web area fails

in keeping the rim attached to the bore, due to a prevalent e↵ect of the radial stress over the
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hoop stress. From the case studied before, one limiting case, if the only load is the centrifugal

force, might be for example the configuration with 12 holes of 50mm diameter, since the radial

and the hoop stress reach the same value in the area between the holes. It has been investigated,

to confirm this idea, the same case of the disk with holes of 50mm, but increasing the number

of holes up to 36 and from the contour plot of equivalent stress in Figure 94 it is possible to

notice how this is maximum along the circumference, which indicates the predominance of rim

peel over hoop mode.

Figure 94: Contour plot of the equivalent stress: disk with 36 holes (d = 50mm)
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Comparing the two contour plots of the von Mises equivalent stress showed in Figure 94

and 95 it is possible to see that the area at maximum stress is di↵erent if considering the rim

peel (Figure 94), since this is located in the gap between the holes. Also the composition of the

equivalent stress is di↵erent: in the hoop mode burst, where the maximum stress is maximum

along the radial direction (Figure 95) the greatest contribution to it derives from the hoop

stress, since the radial stress is taken as zero at the holes boundary; on the other side, the rim

peel the greatest component of the equivalent stress in the peak area is the radial stress (Figure

94).

Figure 95: Contour plot of the equivalent stress: disk with 12 holes (d = 50mm)



CHAPTER 8

EQUIVALENT TWO-DIMENSIONAL MODEL FOR HOLED DISKS

The three-dimensional model created in the previous chapter can be considered as a refer-

ence when studying the inertial instability through a Finite Element analysis. The results, in

fact, show that Ansys correctly recognizes the burst conditions for both hoop mode burst and

rim peel burst if the Large Displacement is used on that kind of model. However, this kind

of analysis has a significant drawback, since the complexity of the model requires really time

demanding calculations.

The challenge, then, is to build an equivalent two-dimensional model that can consider the

presence of holes in the web area in order to perform a burst analysis in much less time. More-

over, the Robinson criteria can be applied on a 2D case as done in Chapter 6, with the only

constrain that Robinson is only working if hoop mode burst is considered.

In this chapter, then, a modified two-dimensional model is presented and, for a bunch

of selected configurations among the ones presented in Chapter 7, the burst limit is found

considering both the value given by the FE code as the substep corresponding to instability,

and the one found by applying the Robinson’s criterion.

The considered configurations in terms of number of holes and dimensions are considering a

148
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disk with 5 holes and one with 12 holes, with holes of diameter equal to 10mm, 30mm and

50mm.

8.1 Model description: geometry and material properties

Starting from the geometry described in Section 6.1, the presence of holes can be modeled

modifying the material properties of the disk in the region in which holes are present.

This has been done by considering a suitable orthotropic material in the region in which holes

are present and scaling the values of all the mechanical properties by a ratio that depends on

the removed material, namely the number of holes.

Confronto burst: Ansys3D vs Ansys2D vs Robinson’s criterion
Dopo aver studiato la velocità di burst, considerando questa come uguale a quella che restituisce 
Ansys come substep corrispondente alla divergenza della soluzione, è possibile confrontare i 
risultati ottenuti con un equivalente modello bi-dimensionale che fa uso di un materiale ortotropo 
impostato come segue (nel sistema di riferimento dove x è la coordinata radiale del disco, y quella 
assiale):

• Ex_ort = r * Ex 
• Ey_ort = r * Ex
• Ez = 1
• PRxy_ort = r * PRxy
• PRxz_ort = 0.001
• PRyz_ort = 0.001
• Gxy_ort = Ex_ort / [2*(1+ PRxy_ort)]
• rho_ort = r* rho

dove r = ratio = ( V_tot - V_fori ) / V_tot   è  il fattore di scaling calcolato sulla fascia interessata 
dalla presenza di fori.

Il confronto è stato eseguito nel caso di dischi con 5 e 12 fori, con dimensioni dei fori crescenti, 
d=10mm, d=30mm e d=50mm.

Il criterio di Robinson può essere applicato per questi casi e confrontato con i risultati ottenuti dal 
modello in tre dimensioni dal momento che dall’analisi di quest’ultimo è risultato essere verificato 
solo il caso di hoop mode burst. Quindi Robinson può essere usato nella sua formula classica, 
avendo cura di ricavare la sigma_hoop,media per velocità che siano sufficientemente basse da 
garantire un carico equivalente che sia al di sotto dello snervamento (quindi in campo lineare 
elastico).

y

x

Figure 96: Bi-dimensional model with orthotropic material in the holes region
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In figure 96 it is possible to see the meshed model for one particular configuration: the

highlighted elements are those which consider the new orthotropic material and this area is as

much wide as the holes diameter.

An orthotropic material has generally three axes of elastic symmetry, so it presents a matrix

of elastic coe�cient is characterized by 9 parameters. Its mechanical properties are di↵erent

along each axis, thus the orthotropic materials are anisotropic materials.

So, the material model that has been set in the holes area is using an linear orthotropic mate-

rial model with scaled values with respect to the isotropic material in the radial and the axial

direction, while all the values in the tangential direction are zero.

The proposed scaling in a cylindrical coordinate system is the following:

E

z

= E

r

= E · � E

✓

= 0

⌫

rz

= ⌫ · � ⌫

r✓

= ⌫

z✓

= 0

G

rz

=
E

r

2 (1 + ⌫

rz

)
G

r✓

= G

z✓

= 0

⇢ = ⇢ · �

where:
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• � = Truevolume/Fullvolume is the material properties scaling factor;

• E is the longitudinal modulus of elasticity;

• G is the shear modulus;

• ⌫ is the Poisson’s ratio;

• ⇢ is the density.

Since Ansys does not accept zero values for the modulus of elasticity and for the shear

modulus, those values have been substituted with 1, which is very close to 0 if compared to

the numbers that usually characterize those two parameters. Besides, considering that we are

dealing with a Cartesian reference frame used in the geometry generation (and also shown in

Figure 96), r = x, z = y and ✓ = z.

For what concerns the other part of the disk, the material model is configured as isotropic

considering the mean real material curve used for the study conducted in the previous chapter

and shown in Figure 72. In this way it is possible to carry out a comparison between the

results obtained by using this bi-dimensional configuration, the Robinson’s criterion and the

three-dimensional model (that is used as a reference).

8.2 Burst limit comparison with the 3D model and the Robinson’s criterion

Having set up a two-dimensional model that considers the presence of holes, it is possible

to present a comparison between the results obtained using the Large Displacement option in

Ansys over both the 2D model and the 3D model and, eventually, consider the results obtained
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by applying the Robinson’s criterion.

Using a two-dimensional model, in fact, it is possible to implement Robinson extracting the

average circumferential stress at a specific substep and, then, use the proportionality defined

by the formula in Equation 3.39.

The solution options used to run the Large Displacement simulation on the new model are

the following:

• Automatic time stepping: O↵ and 300 substeps considered for the load increments, with

the set global angular velocity of 1500 rad/s;

• Line search: On, which tells the software to use the Newton-Raphson method for the

non-linear calculation.

Robinson, on the other hand, does not consider any deflection, so the Small Displacement

option should be used to calculate the average hoop stress (�
c,m

) or, equivalently, the Large

Displacement results can be used having care to look for �

c,m

for loads that are not causing

plasticization.

In the following table the burst speeds obtained by using those three methods over the

selected geometries are listed.
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TABLE XIII: BURST SPEED FOR HOLED DISKS USING ANSYS 2D, ANSYS 3D AND
ROBINSON’S CRITERION

Holes and dimension Ansys 3D LD [rad/s] Ansys 2D LD [rad/s] Robinson [rad/s]
5 Holes - d = 10mm 1310 1305 1339
5 Holes - d = 30mm 1295 1275 1341
5 Holes - d = 50mm 1275 1250 1346

12 Holes - d = 10mm 1309 1305 1339
12 Holes - d = 30mm 1285 1280 1345
12 Holes - d = 50mm 1270 1260 1256

The values from Table XIII can be represented graphically in the plane ! � No. of holes

in order to compare the results obtained using the two-dimensional model with the ones of

the previous chapter. From the plots is much easier to understand graphically if either the

elasto-plastic analysis using the modified 2D model and Robinon’s criterion are proposing re-

sults comparable with the ones obtained with the 3D model described in Chapter 7.

Figure 97 shows that the two-dimensional model gives back some reasonable results if the

burst limit is identified as the value at which the solution diverge.

The trend obtained, in fact, follows quite well the one pointed out by the study conducted on

the three-dimensional model: burst speed, hence, is lower if larger holes are considered; while

increasing the number of holes from 5 to 12, di↵erences in terms of burst speed are as bigger

as the dimension of holes increases.
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Figure 97: Comparison 2D model vs 3D model
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Comparing, instead, the tendencies of stresses obtained in the two-dimensional model with

those in the three-dimensional analysis for the particular case of a disk with 5 holes of 30mm

diameter, it is possible to see whether the modified 2D model is following the same stress

tendency along the radial direction.
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Figure 98: Stress along the readius - 2D model (5 holes, d = 30mm)

As it is possible to see comparing Figure 98 and 99, the new two-dimensional model

presents a di↵erent evolution of stresses if compared to the two paths highlighted for the three-

dimensional one. In particular, some non-real results are displayed in the hole area. This is

due to the definition of the orthotropic material that was set in order to correctly recognize
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Figure 99: Stress paths along the radius - 3D model (5 holes, d = 30mm)

the variations in term of burst speed as the holes configurations vary. Neglecting this part

of the disk and considering only the other results on the elements modeled with the isotropic

material, instead, stresses are sort of an averaged value from those obtained following the two

paths (traced at di↵erent angles).

It can be concluded that the bi-dimensional model created here, with the orthotropic material

instead of holes, can be correctly compared to the reference 3D model if looking at the burst

speed, but it doesn’t give enough information regarding the stresses, meaning that it does not

identify the mode of fracture.

On the other hand, a totally di↵erent trend in terms of burst speed is obtained using the

Robinson’s criterion. This completely fails in recognizing the presence of holes as clearly shown

in Figure 100, where the tendency obtained applying the proportionality expressed by Robinson
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Figure 100: Comparison Robinson vs 3D model
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is diverging from the results achieved using the Large Displacement option in Ansys over the

3D model.

Robinson’s criterion gives much larger values for burst speed for each configuration and those

values tend to increase as the number of holes and their dimensions increase, in countertrend

to what was pointed out using the numerical method on both the other studied models.

A reason to this result can be derived thinking about the way the formula is working when

the material in the holes area is changing. The Robinson’s formula (Equation 3.39) consid-

ers only the hoop stress occurring in the disk at a certain rotational speed and the ultimate

strength, those values are used to carry out a proportion and to find the bust limit.

With the material model set up in the new bi-dimensional model, however, the tangential sti↵-

ness is ideally null, so the holes area gives a zero contribution to the average hoop stress. At

the same time, the scaling of the material properties has been done also on the density of the

material. This causes a reduction on the centrifugal load (�
V

= mr !

2), and for this reason

the burst speed increases for greater material removals (larger holes).

As a proof, the same calculations have been repeated scaling the materials in all its mechanical

properties, except for the density. As expected, with this setting, the average hoop stresses

found are the same for all the holes configurations, no matter of their number or dimensions.

This allows to state that the Robinson’s criterion is certainly failing if used on this praticular

kind of model that substitutes the holes with an orthotropic material: Robinson considers the
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proposed scaling used for the material only because when dealing with the density reduction in

a region of the body, while the change in Young’s modulus don’t a↵ect at all the burst. Looking

at the formula showed in Equation 6.1, in fact, only density and �

UTS

are present, while the

Young’s moduls, E, is not present at all.



CHAPTER 9

CONCLUSIONS AND FURTHER DELOPMENTS

The research work carried out to complete this thesis allows, in conclusion, to show how the

study of the burst condition of turbine rotor disks is possible using in the commercial Finite

Element code Ansys both a two-dimensional model and a three-dimensional one.

The initial considerations developed from previous research in the field on inertial instability,

can be extended confirming that burst is actually following this hypothesis and it is a strain

dominated phenomenon, since the e↵ect of the material curve are largely influencing the results

in the elasto-plastic analysis conducted using the Large Displacement option. This kind of

simulation, much more realistic than the one using the Small Displacement consider the update

of the geometry, thus the increase of the inertial load due to the radial deflection of the disk

is eventually causing an unbearable situation for the disk and its failure, as shown in Chapter 5.

The main goal of this thesis was, however, to focus the study on a non-axisymmetric disk,

that can consider the e↵ects of redundant geometry interruptions, such as holes in the web area

or the presence of slots in the rim.

For this reason, after showing the e↵ectiveness of the two-dimensional model for a solid axisym-

metric disk, this has been compared with a three-dimensional model that is using the cyclic

symmetry feature of Ansys. This new model perfectly matches with the first one, and it can

be used as a reference in the elasto-plastic analysis for burst speed in presence of holes in the

160
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web area, like it was done in Chapter 7.

The implementation of a three-dimensional model in Ansys is very useful in order to under-

stand the behavior at burst of the disk: it emerged from the simulation that inertial instability

is still the dominant phenomenon that cause failure of the disk, even in presence of holes, and

that usually burst can be classified as hoop mode burst, since the failure more likely occurs along

the radial direction and fracture starts near the hole. However, it was proven that as the pitch

between holes is reduced (for example the holes dimension increases or the number of holes is

very high) burst can eventually be in the rim peel mode, which is not even considered by the

semi-empirical theory developed by Robinson.

A keypoint of the this research topic is, in fact, to bring into discussion the application of

the Robinson’s criterion, which is still largely used for its easiness. This formula gives some

acceptable results if applied on axisymmetric disks: even if it does not consider the plastic

deformations, but only the ultimate strength of the material, the results are quite close (in a

conservative way) to those obtained by Ansys. For this reason, this criterion is usually accepted

as a rule of thumb when studying burst for an axisymmetric structure.

Totally di↵erent results were found, instead, in case of a holed disk: in this case Robinson

clearly fails in following the correct trend in terms of burst speed reduction when the number

of holes and their dimension increase. Moreover, Robinson is not considering at all the possible
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rim peel burst condition, hence it should not be considered as a reliable method to investigate

burst in case holes are present in the disk.

In order to apply the analytic formula, in Chapter 8 it has been presented a new two-dimensional

model that uses a scaled orthotropic material so that it is possible to consider the presence of

holes in the web area.The elasto-plastic numerical analysis has been performed with quite ac-

curate results in terms of burst also for this new model, but with much less time demanding

calculations than the three-dimensional one.

So in conclusion it is possible to a�rm two things. First of all Robinson’s criterion is not as

reliable as many companies in the aerospace industry think: it doesn’t consider at all the e↵ects

of a plasticity of material overestimating the value of burst and it is not properly working in

case of holed disk. Secondly a three-dimensional model set as shown in this thesis correctly

recognizes the burst condition for both hoop mode burst and rim peel burst, and also provides

a lot of information regarding the distribution of stresses in the disk at loads before burst.

However, this kind of analysis is very time demanding, so it has been shown that in case of hoop

mode burst of a disk with holes in the web area, a two-dimensional model as the one described

in Chapter 8 can be used in order to have an general indication about the entity of the burst

speed, even if it does not give enough details on the stress occurring in the structure, for which

the application of the three-dimensional study has revealed to be fundamental.
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Future studies may start from the results presented here. In particular, more complex

geometries can be studied using Large Displacement simulations in Ansys for both three and two

dimensions. For example the presence of blade slots or connecting flanges can be implemented,

as well as the load due to the force applied on blades or the e↵ects of thermal loads.

Moreover, the setup of the two-dimensional model can be refined, investigating more deeply

the e↵ects of the scaling of the orthotropic material in presence of non-axisymmetries, looking

both at the burst speed variations and stress tendencies, so that this kind of model can be used

as a preliminary study on the design of rotating disks.
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