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SUMMARY 

One of the most important discoveries that has come from recent advances in DNA sequencing 

technology is finding bacteria present in complex communities almost everywhere we have looked for it.  

Notable for its relevance to human health, one of the places that has been found to harbor rich ecosystems 

of bacteria is the human body.  In fact, every human individual has from three to five pounds of bacteria 

living on and inside them.  We term these populations of bacteria the ‘microbiome’.  These populations of 

bacteria are not all harmful to human health and many are in fact beneficial, if not crucial, to their human 

host.  These bacteria help us to fight off infections, assist us in digesting our food, and forge close 

associations with our healthy immune systems.  When these communities are out of balance however, they 

can also contribute to making us sick, predisposing us to obesity, increasing our risk of cancer, and leading 

to inflammatory diseases such as Irritable Bowel Syndrome.  Understanding how these recently discovered 

communities of bacteria interact with you is important to your health and may provide tools for fighting 

disease.  Analyzing these bacterial communities however can be very difficult.  A single teaspoon of a 

microbiome might include over ten billion bacteria, and few if any of these bacteria can be grown and 

studied in a biological laboratory.  Studying these bacterial communities requires the application of 

advanced DNA sequencing technologies and complex computer analysis approaches. 

In this study “Modeling Host-Microbiome Interactions”, we present a series of computational 

analyses that span multiple biological scales.  In the first analysis, we computationally explore the 

interaction of a single group of bacteria, the Pseudomonads, with both human and plant hosts.  In the second 

analysis, we examine the relationships of two human volunteers with their bacterial communities, how 

those communities can change in response to what their host eats, and how those communities can make 

their hosts sick.  In the third analysis, we use what we learned in the first two analyses to investigate a series 

of larger experiments using laboratory mice to investigate the interactions between a mouse and its 

microbiome.  Using the mouse microbiome data, we build predictive models of how a microbiome changes 

blank 
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SUMMARY (CONTINUED) 

 

 

with the mouse’s diet, models to predict what sort of metabolic activities might be occurring within a 

mouse’s microbiome, and a computational model that predict the effects of a mouse’s microbiome on the 

likelihood that the mouse will be predisposed to obesity.  When we assemble these models into a single 

computational tool, a computational model we call the iMOUSE, we can perform ‘experiments’ on this 

simulated mouse that closely match the results that are observed in real-world laboratory mouse 

experiments.  Using the iMOUSE model, we can perform many millions of simulated experiments very 

quickly, allowing us to investigate the interactions between mice and their microbiome.  We have used this 

computational model to search many millions of possible diets to find a diet that will reduce the risk of 

obesity in a mouse with a microbiome that predisposed it to gain weight. 

The success of our iMOUSE model provides a potentially powerful tool for investigating the 

interactions between a host and its microbiome.  This tool will help identify methods for improving human 

health and fighting disease through understanding and manipulating your symbiotic bacterial communities. 
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1. INTRODUCTION 

 

 

We live in a world dominated by the action of bacterial communities.  By biomass, bacteria are 

the planet earth’s dominant form of life (Whitman et al. 1998).  Not only do microbial communities 

influence all of the planet’s biogeochemical cycles (O'dor et al. 2009, Hoegh-Guldberg 2010), but 

bacterial communities also form tightly knit symbiotic interactions with more complex organisms 

(Bourne et al. 2008, Ezenwa et al. 2012, Wylie et al. 2012, Yoon et al. 2015).  While these symbiotic 

communities have been with us and around us all along, they have until recently remained nearly opaque 

to methodical investigation.  The vast majority of bacteria cannot be easily cultured and characterized in 

the laboratory and cannot be well described by microscopy techniques.  It is only through the advent of 

ultra-high throughput DNA sequencing of community-derived DNA that these communities have now 

become amenable to investigation (Shannon et al. 2003, Gilbert and Dupont 2011, Wang et al. 2015).  

These communities can be described in a number of ways:  The community structure is the type and 

relative abundance of bacterial species present in a community; the metagenome is the type and 

abundance of specific genes or gene functions present in an entire population; the proteome is the 

abundance and predicted function of all of the proteins being expressed in a microbiome community; the 

community metabolome is the total of all the metabolic and transport reactions that can occur in a 

population, as encoded in the metagenome. 

Bacterial communities have been found in nearly every environmental niche, from boiling water 

(Hugenholtz et al. 1998, Barns et al. 1999) to within millennia-old ice (Shtarkman et al. 2013), from 

surviving deep in the earth’s crust (Takai et al. 2001, Edwards et al. 2006, Teske and Sorensen 2008) to 

living among the clouds (Fierer et al. 2008, Bowers et al. 2009). One important collection of 
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environments that have been discovered to be home to a rich and varied microbial ecology is the human 

body and human associated environments (Wylie et al. 2012, Lax et al. 2014, Lax et al. 2017).  Humans 

exist, we have discovered, not as individuals, but as superorganisms comprised of human cells that live in 

an inseparable symbiotic relationship with a vast ecosystem of microorganisms.  By some measures, 

humans are actually in the minority in this superorganism. The number of human cells is outnumbered by 

bacterial cells in this ecosystem by more than an order of magnitude.  The number of bacterial genes in 

this ecosystem outnumbers human genes by several orders of magnitude (Ding and Schloss 2014).  These 

human-associated communities are collectively referred to as the human microbiome.  Large-scale studies 

for identifying and characterizing microbiome communities, such as the Metagenomics of the Human 

Intestinal Tract (MetaHIT) project (http://www.metahit.eu/), the American Gut Project 

(http://americangut.org/), and the Human Microbiome Project (HMP) (http://www.hmpdacc.org/), have 

each contributed to our understanding of the relationships between microbiome community composition 

and the host. These studies have highlighted the microbiome as a valuable target for contributing to 

human health (Stulberg et al. 2016).  These investigations in the microbiome have also highlighted that 

the tremendous diversity of the microbiome presents a significant challenge for analysis of human 

microbiome data.  

 

1.1 Statement of the Problem: Understanding Disease in a Post-Koch’s Postulates World 

In 1884, Robert Koch and Friedrich Loeffler identified a set of criteria for linking a specific 

microorganism to a specific disease (Gradmann 2014).  Koch’s Postulates are: 

1. The microorganism must be found in abundance in all organisms suffering from the disease, but 

should not be found in healthy organisms. 

2. The microorganism must be isolated from a diseased organism and grown in pure culture. 

3. The cultured microorganism should cause disease when introduced into a healthy organism. 
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4. The microorganism must be re-isolated from the inoculated, diseased experimental host and 

identified as being identical to the original specific causative agent. 

Many of these postulates have been subject to significant modifications over time.  For example, not 

all microbial infections lead to disease in all hosts and not all microorganisms, such as viruses, can be 

cultured.   Nonetheless, these postulates, with modifications, have served as the foundation for 

microbiology for well over a century.  As we develop the technology to explore the microbiome, 

however, we have found ourselves in a world where Koch’s Postulates no longer strictly hold sway.  We 

now know that many diseases are not caused by the presence of any single bacterium.  Rather, disease can 

be defined as an emergent property of the microbiome community.  An emergent property is a categorial 

novum that occurs when the properties of a system arise from interactions in the system’s component 

elements, where no individual component of the system exhibits those properties.  The whole is not only 

more, but in some way fundamentally different than the sum of its parts. 

The question before us then is: How do we functionally and computationally define disease as an 

emergent property of the microbiome in the post-Koch’s Postulate era and how do we use that 

understanding to propose methods to treat and prevent microbiome-based dysbiosis? 

 

1.2 Purpose of the Study: Generating System-Scale Models of Host-Microbiome Interactions 

The complex nature of host-microbiome interactions provides a multitude of specific 

opportunities to generate novel computational methods that elucidate how host health is influenced by the 

microbiome.  A number of previously published host-microbe interaction experiments provide the 

necessary datasets for the development and validation of computational analysis methods.  Each analysis 

in this research addresses host-microbiome interactions at a particular scale and, when taken together, 

comprises a coherent and novel framework for the identification of the molecular mechanisms of host-
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microbiome interactions and for hypothesizing methods of manipulating microbiome community 

structures to optimize host health. 

The overarching goal of this research is to better understand, predict, and manipulate host-

microbiome interactions to treat human disease and to promote health.  The research has been divided 

into three aims, each aim spanning a specific scale of host-microbiome interactions.  Together, these 

completed goal can be synthesized into a coherent framework to modeling and understanding the 

interactions between host microbiome and host phenotype as an emergent property of the microbiome 

community.   

 

1.3 Significance of the Problem: Providing a Koch’s Postulates for the Microbiome Era 

The microbiome has been linked to a wide variety of diseases in humans.  Associating a 

particular microbiome community structure to a specific disease state however is challenging. It has been 

reported that relevant patterns can be found among the highly varied microbiome communities. For 

example, a study of the microbiomes of a cohort of 4,788 microbiomes taken from 242 adults revealed 

that although community structures varied, specific metabolic pathways were found across multiple 

microbiome metagenomes (Huttenhower et al. 2012). In another study, it was reported that although the 

microbiome community structures of individuals and various sampled regions were distinct from one 

another, the community structures from one part of the body of an individual were predictive of the 

community structure of other body regions on the same individual (Ding and Schloss 2014). An 

individual’s microbiome community structure is also dependent on the environment and the people, 

animals, and surfaces with which they interact (Lax et al. 2014, Lax et al. 2017).  

Observing that there is a significant correlation between the relative abundances of some 

microbiome community members and human health does not necessarily identify the underlying 

molecular mechanisms driving this relationship.  To leverage the microbiome community for the benefit 
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of human health, any new analysis approaches will have to explore more than just the community 

structures of microbiomes to find biologically relevant patterns.  It is necessary to generate predictive 

models, describing how microbiome communities interact with each other and their host to influence 

health.   

The computational models outlined here are predicated on a novel insight very different from 

Koch’s Postulates: The key mechanisms of host-microbiome interactions are not dependent upon the 

presence or absence of a single bacterial species or microbial genes.  Rather, the effects of host 

microbiome interactions are an emergent property of the microbial community.  Clearly defining 

analytical and computational approaches that link microbiomes to host health will provide the ‘Koch’s 

Postulates’ for the 21st century and, perhaps, the next century of research and discovery. 

 

1.4 Significance of the Study: New Tools for Analyzing the Emergent Properties of Microbiome 

Communities 

In a recent National Science and Technology Council Committee of US government scientists 

(Stulberg et al. 2016), a “priority need for new tools, technologies, and databases” was identified as the 

most pressing need for advancing microbiome research.  This research effort directly addresses the need 

for advanced computational tools by developing a set of novel, predictive microbiome analysis 

methodologies for omics microbiome data.  The analysis tools can be further utilized to generate system-

scale models of host-microbiome interactions and directly propose additional biological experiments and, 

potentially novel therapeutic interventions for manipulating the microbiome to drive a desired host 

phenotype. 

In a recent review of microbiome and metabolic diseases, specific genera, classes, or species of 

bacteria cannot be positively or negatively correlated with specific host phenotypes (Fukuda and Ohno 

2014).  This suggests that to confidently link microbiomes with host-microbiome interactions, more 
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information than microbiome community structure is needed.  This need is directly addressed in the 

system-scale computational tools developed here, surpassing the previous limitations of microbiome 

analysis. 

In addition to the significance of system-scale models for host-microbiome interactions to 

scientific and clinical milieus, this dissertation also extends several technical innovations including 

developing innovative approaches to modeling microbiome community dynamics, innovative statistical 

analysis approaches for predicting microbiome community enzyme function profiles from community 

structure, and a unique approach to quantifying a bacterial transcriptome from genomic sequence 

analysis.  

 

1.5 Outline of Dissertation 

The remainder of the dissertation is divided into six chapters. 

Chapter 2 provides a brief review of available literature to provide context for host-microbiome 

interactions, methods for investigating the microbiome, and previous microbiome community modeling 

approaches. 

A collection of computational analysis tools for investigating the microbiome that we have 

developed in previous research efforts and are either used or improved in our current research are 

described in Chapter 3. 

In Chapters 4, 5, and 6, our computational models are presented, spanning multiple and 

expanding scales of host-microbiome interactions.   

Chapter 4 is “Pseudomonas-Host Interactions”.  Current high throughput sequencing technology 

can assemble genomes directly from environmentally collected DNA from otherwise uncharacterized and 

uncultured bacteria.  In the case of human microbiome metagenomes, those uncharacterized bacteria 
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might include antibiotic resistant pathogens or other hospital acquired infections.  A method is needed for 

predicting a potentially newly discovered bacteria’s ecological host-interaction niche from an annotated 

genome alone so that genomic information can be translated into effective therapeutic interventions.   

We have chosen to focus on the bacteria Pseudomonads for our methods development and 

validations.  Pseudomonads are ubiquitous components of environmental ecosystems as well as the 

second most commonly acquired opportunistic infection in hospitals (de Bentzmann and Plesiat 2011, 

Silby et al. 2011).  From annotated genomes, metabolomic and transportomic models can be generated for 

Pseudomonads.  We have developed and validated a novel transportomic modeling approach, namely, 

Predicted Relative Transmembrane Transport, for use in this analysis.  Genomic, metabolomic, and 

transportomic modeling data can be analyzed using Support Vector Machines (SVMs) not only to predict 

if a sequenced Pseudomonad is likely to be a pathogen, but also to propose the molecular mechanisms of 

host-microorganism interaction.  These predictions may lead to the identification of specific molecular 

targets for the development of new antibiotics and innovative therapies to treat antibiotic resistant hospital 

acquired infections. 

Much of this analysis was initially published in (Larsen et al. 2014, 2015a) and uses many of our 

previously published tools in (Larsen et al. 2011). 

Chapter 5 is “Modeling Human Dysbiosis”.  “Dysbiosis” is any condition in which perturbations 

to a host’s microbiome leads to a negative impact on the host’s health.  Microbiome community 

structures, however, can differ vastly from host to host and over time within the same host, making it 

difficult to generalize the molecular mechanisms of host-microbiome interaction that lead to dysbiosis.  

We propose that it is not the microbiome community structure that is most informative of host-

microbiome interaction, but rather the emergent properties of the microbiome community that must be 

considered.  The emergent properties of the microbiome community structure are community enzyme 

function profiles, and community metabolome.  SVMs can be used to predict host dysbiosis using 

community structure, enzyme function profile, or community metabolome.  This method also proposes 
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the specific organisms, enzyme activities, and metabolites that are predictive of host dysbiosis and 

hypothesizes sets of specific molecular targets for possible therapeutic interventions. When the SVM 

dysbiosis predictor is combined with a dynamic model of the effects of the host’s diet on a microbiome 

community structure, a system-scale model of host-microbiome interactions is created with the capacity 

to accurately predict diet conditions that are likely to result in diet-induced dysbiosis.  

 Portions of this have been previously published in (Larsen and Dai 2015) and utilizes our 

previously published approaches in (Larsen et al. 2012a, Larsen et al. 2015b). 

Chapter 6 is “Generating a System-Scale Model of a Mouse Obesity Host-Microbiome 

Interaction”.  The relationships between host, microbiome, and host phenotype are complex.  While the 

opportunity to conduct longitudinal studies or hypothesis-driven experiments of human subjects is 

limited, the use of gnotobiotic mice, mice that have completely characterized microbiome compositions, 

provide a powerful experimental model for studying the interactions between host, microbiome, and the 

environment.  The goal of this chapter is to develop a predictive model of host-microbiome interactions as 

a function of starting microbiome community structure and host diet, incorporating the metabolomic 

models and phenotype-predictions tools developed in Chapter 5.  The result is a system-scale model of 

mouse-obesity host-microbiome interactions, called iMOUSE, which accurately predicts a series of 

previously published biological observations through in silico modeling.  Of greatest value, the system 

model is capable of recapitulation of a set of experiments in which gnotobiotic mice with microbiomes 

transplanted from obese humans are themselves prone to obesity.  This system-scale model can then be 

used to propose a specific diet that will manipulate the host-microbiome interactions to yield a non-obese 

phenotype for the host for any starting microbiome community structure.   

Chapter 7 discusses the conclusions that can be drawn from this research, the potential 

weaknesses of the individual approaches, and outlines the future directions that the computational tools 

can take us.  
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2. BACKGROUND AND LITERATURE SURVEY 

 

 

 

We become hosts to a vast community of microorganisms within the first few moments of our 

lives (Gritz and Bhandari 2015, Shin et al. 2015, Yang et al. 2016b), and these communities begin their 

work of our decomposition at the instant of our deaths (Metcalf et al. 2016).  Between times, our 

microbiomes grow and change with us, molding the development of our immune systems, guiding our 

metabolisms, defending us from infection, and helping us to digest our food (Fukuda and Ohno 2014, 

Putignani et al. 2014, Yang and Jobin 2014, Aw and Fukuda 2015).  It has often been written that the 

number of bacterial cells in the human body outnumber the human cells by as much as two orders of 

magnitude (Sender et al. 2016).  Perhaps it would be more accurate to state that for every one hundred or 

so cells in a human, one or two cells are non-bacterial.  In many ways, our microbiomes comprised of 

bacteria derived from a multitude of sources are as much a part of us, and what makes us human, as the 

eukaryotic cells we inherited from our parents.   

Following, we discuss the diversity of the human microbiome, the ways that our microbiomes 

influence our health, and the mechanisms by which we can investigate the communities that make up our 

microbiomes. 

 

2.1 Diversity of the Human Microbiome 

Large-scale studies for identifying and characterizing microbiome communities such as the 

Metagenomics of the Human Intestinal Tract (MetaHIT) (http://www.metahit.eu/), the American Gut 

Project (http://americangut.org/), and the Human Microbiome Project (HMP) (http://hmpdacc.org/) have 

contributed to our understanding of the relationships between microbiome community composition and 
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host.  It has also highlighted that the tremendous diversity of microbiome populations presents a 

significant challenge in the analysis of human microbiome data.  There are four phyla that predominate in 

the gut microbiome of most mammals, Firmicutes, Bacteroides, Actinobacteria, and Proteobacteria (Qin 

et al. 2010), but the actual number of species present can be in the thousands.  A human microbiome is 

highly dynamic, changing in response to host behavior, environment, and diet (Theriot et al. 2014, Ursell 

et al. 2014, Rojo et al. 2015).  Human microbiomes are so highly divergent from host to host, that it has 

been proposed that an individual might have a microbiome community structure that is unique (Kostic et 

al. 2013, Kostic et al. 2014).  Host environment, diet, and genetics have been implicated in driving this 

diversity, although much of the variation among human microbiomes remains unexplained.  The dynamic 

nature of these communities impedes our ability to make generalizations applicable across individual 

hosts and across microbiomes.   

While a number of human ‘ecosystems’ have been well characterized, including skin, lung, and 

oral microbiomes (Huttenhower et al. 2012, Wylie et al. 2012, Aagaard et al. 2013, Ding and Schloss 

2014), the largest component of our microbiome, by biomass, is the gut microbiome.  The gut 

microbiome comprises 99% of the total microbial mass of the human microbiome (Schwabe and Jobin 

2013).  The GI tract is also one of the largest interfaces between the internal human environment and the 

rest of the world (Furness et al. 1999), making the gut microbiome one of the most important of out 

personal bacterial ecosystems.  Additional information on the impact of the microbiome on their hosts can 

be found in Chapters 5 and 6. 

 

2.2 The Microbiome Plays an Important Role in Human Health 

The human microbiome provides many benefits to their hosts, including providing essential 

vitamins and nutrients and aiding in digesting proteins and complex carbohydrates (Bou Saab et al. 2014, 

Walsh et al. 2014), maintaining a healthy immune system (Calder 2013, Greer et al. 2013, Cantorna et al. 
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2014, Romano-Keeler and Weitkamp 2015) and defending against colonization by harmful or pathogenic 

organisms (Dutton and Turnbaugh 2012, Fuller 2012, Ramakrishna 2013, Hennessy et al. 2014), 

However, Dysbiosis occurs when perturbations in these microbiomes communities have a negative effect 

on the host’s health (Tamboli et al. 2004, Yang and Jobin 2014, McLean et al. 2015).  The negative 

effects that the microbiome can have on the host include increased propensity for obesity (Moran and 

Shanahan 2014, Sanz and Moya-Perez 2014, Cox and Blaser 2015), such as Irritable Bowel Syndrome 

(IBS) (Collins 2014, Dupont 2014, Kostic et al. 2014, Cammarota et al. 2015), increased vulnerability to 

cancers (Kipanyula et al. 2013, Schwabe and Jobin 2013, Viaud et al. 2014), and autoimmune disorders 

(Collado et al. 2015, McLean et al. 2015).  Dysbiosis of the gut microbiome has been shown to coincide 

with the human host’s mental health (Foster and McVey Neufeld 2013, Borre et al. 2014, Fond et al. 

2015), including an increased risk of depression (Luna and Foster 2015). 

Understanding the relationships between human health and the associated microbiome provides 

new and valuable tools for diagnostics and potential mechanisms for human therapeutic interventions and 

prophylaxes.  A number of possible microbiome-based interventions have been proposed in the current 

scientific literature.  Probiotics manipulate the microbiome community through the administration of live 

microorganisms indented to supplant negative bacterial species or to enhance the abundance of beneficial 

species in the microbiome (Kobyliak et al. 2016, Yoo and Kim 2016).  Prebiotics influence the 

microbiome through supplementation of the host’s diet with materials indigestible by the host but 

fermentable by the bacteria in the gut (Varankovich et al. 2015, Cockburn and Koropatkin 2016).  In fecal 

microbiome transplants, the microbiome from a presumed healthy individual is transferred into a new 

host (Khoruts and Sadowsky 2016, Marotz and Zarrinpar 2016).  Already, microbiome transplants have 

proven a powerful tool for curing otherwise intractable diseases such as IBS (Aroniadis and Brandt 2014, 

Distrutti et al. 2016, Gupta et al. 2016) or antibiotic resistant Clostridium differences infections (Brandt et 

al. 2011, Borody et al. 2013, Rubin et al. 2013, Gupta et al. 2016).  Perhaps the most direct method of 

manipulating the microbiome community is through host diet (Muegge et al. 2011, Wu et al. 2011, David 
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et al. 2014b).  Diet provides fuel for both the host and the microbiome, but diet can also act to influence 

the microbiome in more subtle ways.  Sources of nitrogen, polyphenols, triglycerides, and flavanoids in 

the diet have been shown to have an effect on microbiome community dynamics (Amiot et al. 2016, 

Huang et al. 2016, Liu et al. 2016, Portune et al. 2016, Rial et al. 2016, Thaiss et al. 2016, Sung et al. 

2017). 

 

Figure 2.1.  Plato’s microbiome.  It is important to remember that our view of the microbiome is always 

through some intermediate form of observation.  We do see not the microbiome itself, but the molecular 

shadows cast by the microbiome.  

 

2.3 Methods for Investigating the Microbiome 

While the microbiome undeniably plays a crucial role in human health, it is important to 

remember that no one has ever actually seen a microbiome in corpus, as it were, in the flesh.  The vast 

majority of microorganisms in the microbiome cannot be easily cultured in the laboratory as a single 

strain and, for the most part, one bacteria looks pretty much like another under the microscope.  To study 

the microbiome, we must resort to indirect methods of observation, sorting through extracted nucleotides 

or proteins or metabolites culled in bulk from microbiomes, then re-assembled in order to reconstruct a 

picture of the intact community (Figure 2.2). 
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2.3.1 Metagenomics.   

Perhaps the most common method for studying the microbiome is through metagenomics DNA 

sequencing approaches (Gilbert and Dupont 2011, Gjesing and Pedersen 2012, Larsen et al. 2012b) .  In 

metagenomics, DNA is extracted directly from complex communities, sequenced, and analyzed.  The 

resulting DNA sequence data is use to generate a reconstructed image of the microbiome.  There are two 

principle methods for analyzing microbiomes from sequenced DNA: 16S rRNA sequence analysis and 

shotgun metagenomics. 

 

2.3.1.1 16S rRNA Sequence analysis.   

The ribosome is a crucial component of the molecular machinery for translating RNA sequences 

into protein.  In bacteria, a key component of the ribosome is the 30S small subunit of a prokaryotic 

ribosome (16S rRNA).  Due to its essentiality for living processes, all bacteria have at least one 16S 

rRNA gene.  Due to the specificity of function of 16S rRNA, it has a slow and predictable rate for the 

accumulation of mutations.  These characteristics have made it possible to utilize the 16S rRNA 

ribosomal subunit as a measure of bacterial phylogeny (Gilbert and Dupont 2011, Larsen et al. 2012d).  In 

this analysis, the 16S rRNA genes are sequenced from PCR fragments designed to recognize invariant 

regions of the gene. As the vast majority of bacteria in the gut microbiome (and, in fact the world of 

bacterial ecology in general) the most commonly accepted measure of taxonomy using 16S rRNA data is 

the Operational Taxonomic Unit (OTU).  An OTU is group of 16S rRNA sequences within a microbiome 

community, typically at a sequence identity of 97%, that is presumed to represent a single bacterial 

species (Gilbert and Dupont 2011).  Often, the identity of an observed OTU is determined by closed 

homology to 16S rRNA gene in previously sequenced and annotated bacterial genomes.   

A number of publically available tools, such as QIIME (Caporaso et al. 2010) and muther 

(Schloss et al. 2009) analyze 16S RNA sequence data, generating microbiome community structure data 
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from UniFrac distances (Lozupone et al. 2007).  Other tools generate microbiome community structure 

from metagenomics sequence data.  The principle advantage of 16S rRNA data is the relative ease at 

which this form of data can be collected and analyzed.  The main disadvantages in using 16S rRNA 

sequence data is that the main assumptions are sometimes violated in observed sequenced genomes: a 

bacterium may have more than one copy of 16Sr RNA gene per genomes and bacteria with similar 16S 

rRNA genes sequences sometimes are quite divergent in the rest of their genomic sequences.  Also, the 

selection of specific PCR primers used in analysis can contribute to bias in the final predicted microbiome 

community n structure. 

 

2.3.1.2 Shotgun metagenomics  

In shotgun metagenomics, all of the DNA present in a microbiome is sequenced (Gilbert and 

Dupont 2011, Gilbert et al. 2011, Larsen et al. 2012b, Noecker et al. 2017).  The results of sequencing are 

DNA fragments that can be computationally assembled into longer stretches of contiguous sequences 

(contigs) up to potentially complete bacterial chromosomes.  Contigs are searched for probable gene 

sequences and the functions of potential genes are determined by homology to genes/proteins that have 

previously been assigned functional annotations.  The advantages of this method is a far more complete 

picture of bacteria and distribution of genes present in a microbiome that can be collected from 16S rRNA 

data alone.  The disadvantages include that shotgun metagenomics is far more expensive than 16S rRNA 

sequence analysis, both in terms of sequencing costs and computational effort.  Assembly of contigs can 

also lead to chimaeras, erroneous computational assembly of fragment in into contigs that do not 

represent DNA sequences actually present in the population.  Annotation of shotgun metagenomics can 

also be subject to error as, in some cases, even high sequence homology between genes does not always 

translate into genes of similar function and the existing databases of protein functions can be subject to 

incorrect or irrelevant annotations. 



15 
 

 
 

Prediction of microbiome community structure from metagenomic sequence data is a potentially 

more accurate approach than 16S rRNA analysis as metagenomic sequences are presumably free from the 

sequence bias potentially introduced by 16S rRNA amplification steps.  MEGAN is one tool for 

identifying the taxonomic content of a microbiome community from its sequenced metagenome (Huson et 

al. 2007).  MEGAN works by aligning metagenomics sequences to existing databases, such as by 

BLAST, then utilizing the database of NCBI taxonomy to rank the results.  Reads are assigned to a taxon 

using a lowest common ancestor algorithm.  CARMA is an alternate approach that uses a search for 

conserved functional protein domains with a set of translated DNA sequences and assembles a 

phylogenetic tree based on protein function similarities, and classified reads into higher-order taxonomy 

(Krause et al. 2008).  MetaPhyler is an approach that identifies a microbiome’s community structure from 

metagenomic data by searching for the presence of specific marker genes in the metagenome that can be 

uniquely ascribed to a specific taxonomy with high confidence, although the overall accuracy of this 

approach is limited by the ability to correctly identify suitable marker genes (Liu et al. 2011).   Kraken 

addresses a particular challenge in determining microbiome community structures from metagenomic 

sequence data which is the speed of application (Wood and Salzberg 2014).  Kraken uses k-mer exact 

alignments to substantially speed microbiome community analysis and achieves accuracy comparable to 

that of the BLAST algorithm.   

In addition to using metagenomic data to determine microbiome community structure, 

metagenomics data can also be used to identify the specific nature, function, and relative abundance of 

genes present in a microbiome community.  Gene function and identify is determined by sequence 

homology to databases of genes and proteins of known function.   MG-RAST (Meyer et al. 2008, Keegan 

et al. 2016), and Integrated Microbial Genomes (IMG) (Chen et al. 2017) are commonly available tools 

for annotating metagenome sequence data with function.  The accuracy of metagenome annotation 

approach is necessarily limited to the quality of the reference database 
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It is also possible to infer the metagenomic sequence annotation directly from microbiome 

community structure.   PI-CRUST generates prediction of a microbiome’s metagenome from community 

structure by assigning a detected OTU to the most similar bacteria with a completely sequenced genome 

according to 16S rRNA sequence homology (Langille et al. 2013).  Tax4Fun elaborates on this approach 

by using a linear combination of precomputed genomic reference profiles instead of simply the available 

genome identified by 16S rRNA gene homology (Asshauer et al. 2015).  Potential weaknesses of the PI-

CRUST and Tax4Fun methods is the assumption that the closest 16S rRNA homology is always the best 

sequenced genome for representing an OTU and the lack of the ability to optimize metagenome 

predictions given a set of known metagenomes. 

 A new approach that specifically addresses these weaknesses, Taxonomic Average function 

Profile prediction (TAP-prediction), is described in Chapter 3 and elaborated in Chapter 6. 

 

2.3.2 Metatranscriptomics  

Metatranscriptomics is the collection and sequencing of the message RNA (mRNA) present in a 

microbiome community (Gilbert and Dupont 2011, Gilbert and Hughes 2011, Gilbert et al. 2011, 

Franzosa et al. 2014, Mandal et al. 2015, Bashiardes et al. 2016).  Similar to shotgun metagenomics, 

metatranscriptomics looks into the molecular functions present in a community of organisms that is not or 

cannot be cultured, but rather than DNA, the functional potential of a community, metatranscriptomics 

considers the mRNA, the functional actualization of a community.  While the data analysis approaches 

are generally similar to that for shotgun metagenomics (i.e. sequence assembly, gene predictions, and 

annotation of the assembled gene sequences), the metatranscriptome is in many ways more informative 

than the metagenome.  The transcriptome identifies populations that are transcriptionally active and those 

bacteria that are actively undergoing growth and metabolism, as opposed to those that may be present by 

their DNA sequence but are not contributing to the metabolomic capacity of the microbiome community. 
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2.3.3 Metaproteomics.   

Metaproteomics is the collection and identification of the proteins present in a microbiome.  

Theoretically, proteomics is the analysis approach that comes closest to identifying the true functional 

capacity of a microbiome community (Verberkmoes et al. 2009, Xiong et al. 2015).  Proteomics identifies 

not only what proteins are potentially present (as in metagenomics) and are currently expressed at some 

level in the community (as in metatranscriptomics), but also potentially post-translational modification to 

proteins and the rates of degradation of proteins (Haange and Jehmlich 2016).  There are however 

currently significant limitation to the capacity to perform proteomic analyses of microbiomes.  The cost of 

proteomics is high in terms of time, money, and computation and the coverage of metaproteomic analysis 

is low, with only a small fraction of the possible proteins potentially present in the gut microbiome that 

can be confidently identified. 

 

2.3.4 Metabolomics  

Community Metabolomics (perhaps more appropriately, but less commonly used ‘meta-

metabolomics’ (van Baarlen et al. 2013)) is the analysis of the small molecules in a community that are 

the end products of bacterial processes.  Modern metabolomics approaches can detect thousands of small 

molecules in biological samples through nuclear resonance spectroscopy and mass spectrometry.  

(Meta)Metabolomics has the capacity to see past the vast diversity of microbiome community 

composition and multiplicity of enzyme functions to identify the microbiome’s ‘metabolomic phenotype’ 

that is a key emergent property of the microbiome’s community driving HMIs (Ursell et al. 2014, 

Smirnov et al. 2016, Shaffer et al. 2017). 
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2.3.5 Multi-omics   

Ideally, microbiome analyses draw from multiple ‘omics data types (Turnbaugh and Gordon 

2008, Jansson et al. 2011, Larsen et al. 2012d, van Baarlen et al. 2013, Larsen et al. 2015b).  By 

combining approaches, these methods for investigating the microbiome supplement one another and 

identify interactions across scales and biological data types that would be invisible by any other means. 

 

2.3.6 Computational modeling 

The final component to the analysis of microbiomes is computational modeling (Henry et al. 

2011, Larsen et al. 2012b, Larsen et al. 2012d).  A computational model of the host-microbiome 

interactions should, ideally, have the capacity to utilize multiple types of microbiome omics data, detect 

all possible mechanisms of interactions within the microbiome community and between the microbiome 

and the host.  These models should be able to propose the specific molecular mechanisms of HMI and 

lead to relevant biological experiments to validate model predictions.  The ultimate goal of modeling is to 

generate potential therapeutic interventions to rationally manipulate host-microbiome interactions.  

Computational modeling is a kind of lens that permits us to peer into those biological regions not 

otherwise amenable to direct observation and make meaningful discoveries about what is happening 

there.  The ultimate goal of computational modeling is to provide a bridge from data analysis and machine 

learning back to experimental biology where it can drive deeper understanding of HMI and propose 

specific molecular mechanisms of HMI. 

 

2.3.6.1 Modeling Microbiome Community Metabolism 

A common approach for generating metabolic models from annotated genomes or metagenomes 

is Flux Balance Analysis (FBA).  FBA is used to computationally simulate growth of an organism is 
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response to a chemically defined environment (Varma and Palsson 1994a, b).  In FBA, the interior of the 

modeled cell is assumed to exist in a quasi-steady state and transport reactions across the cell membrane 

are only allows if the transported ligand is in the set of defined environmental parameters.  ModelSeed 

(Henry et al. 2010) and KBase (https://www.kbase.us/) are examples of automated platforms for 

generation genomic or metagenomics FBA models. 

One potential weakness of FBA models is its dependence on a defined media environment and 

the typically used assumption that FBA models should be solved to optimize biomass.  Also, FBA are less 

able to predict the behavior of secondary metabolites that are not directly associated with biomass 

accumulation.  An alternative approach, Predicted Relative Metabolic Turnover (Larsen et al. 2011),  is 

described in in Chapter 3. 

 

2.3.6.2 Models for Predicting Microbiome Community Dynamics 

There are also a variety of computational tools that predict microbiome community composition 

or population dynamics from environmental parameters (Larsen et al. 2012b, Larsen et al. 2012d).  These 

methods differ in the kinds of data used to make a prediction and in the specific nature of microbiome 

predictions attempted. 

Bioclimatic models:  Bioclimatic models link microbiome community and presence and absence 

of possible bacterial species to environmental parameters.  One bioclimatic modeling approach is to 

generate networks of correlative interactions between abiotic environmental conditions and biotic 

measurements. Bioclimatic models delineate the potentially habitable ranges of a species as a function of 

environmental parameters (Risto K. Heikkinen 2006, Heikkinen et al. 2007, Jeschke and Strayer 2008). 

Envelope models, species distribution, and ecological niche model are all examples of bioclimatic 

models. Multiple computational approaches can be used to generate bioclimatic models, including 

generalized additive models (Hastie and Tibshirani 1990, Hastie et al. 1992), logistic regression (Bolker 

https://www.kbase.us/
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et al. 2009), classification and regression trees (Che et al. 2011), fitting of the minimal envelope that 

defines an bacterium potential habitats in high-dimensional parameter space (i.e., BIOCLIM (Busby 

1991), DOMAIN (Carpenter et al. 1993), and HABITAT (Walker and Cocks 1991)); and neural networks 

(Stockwell and Noble 1992, Stockwell and Peters 1999, Larsen et al. 2012a, Larsen et al. 2012c). 

Function-based models:  Functional models parameterize bacterial metabolic capacity to generate 

ecosystem models, linking the environmental metabolome with the environmental conditions. Functional 

models use factors that represent the aggregate activities or functional capacities for groups of multiple 

bacterial species (Hood et al. 2006, Ward et al. 2010).   In diversity-based models the interactions 

between environmental conditions and specific bacterial functional traits are modeled (Bruggeman and 

Kooijman 2007, Follows et al. 2007, Merico et al. 2009). Bacterial functions include biological features 

like cell size, growth rate, or capacity to metabolic specific nutrients potentially found in the environment.  

Individual-based models:  Individual-based (IB) models link the bacterial community structure 

and the community metabolome to predict microbiome dynamics.  IB represents a microbiome by 

creating a representation in the model for every individual cell and that cell’s metabolism in the 

community and representing the environment as a lattice where the nutrient composition for each cell in 

the lattice is defined (O'Donnell et al. 2007, Ferrer et al. 2008). Since IB models are computationally 

intense, this approach is best suited to small areas, brief time scales, and relatively small numbers of well-

characterized bacteria (Scheffer et al. 1995, Gras et al. 2010). 

 

2.3.6.3 Computationally Modeling the Relationships between the Microbiome and Human Disease 

One previously published and highly relevant attempt to link community metabolome with HMI 

has been described by Shoaie et al.  They describe a computational approach, i.e. Community and 

Systems-level Interactive Optimization (CASINO) (Shoaie et al. 2015), for linking modeled microbiome 

community dynamics to host phenotype.   CASINO models the human microbiome as a mix of a 
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selection of culture-able bacterial species representative bacteria commonly in high abundance in the gut 

microbiome (e.g. B. thetaiotomicron, E. ractale, B. adolescentis, F. praumsitzii, and L. reuteri).  Highly 

detailed FBA models of communities, optimized to biomass and constrained to the relative abundance of 

each species were constructed.  Models were constructed in two variations: as metabolisms 

compartmentalized by bacterial species and a mixed-bag approach considering microbiome metabolome 

as a single metabolic model comprised of the combined metabolic activities on microbiome community 

model species using the following assumptions: host diet was converted into bacterial growth conditions 

considering three short chain fatty acids (SCFAs) and fourteen amino acids, and assuming that all host’s 

dietary carbohydrates are converted entirely to glucose molecules.  The host’s phenotype in this system 

was defined as the blood serum and fecal composition for SCFAs and amino acids, a subset of which 

correlated with several observed host obesity-related phenotypes. The model was constructed on 

parameters derived from laboratory cultured in M2 glucose media and then validated using diets and 

microbiome community compositions from ‘overweight’ and ‘obese’ human subjects and the model 

predicted some metabolite levels in feces.  The CASINO model was used to determine what changes in 

diet in Low Gene Counts (LGC) individuals, specifically an increase in eight amino acids in the diet, 

would modify the microbiome community metabolism to more closely resemble High Gene Count (HGC) 

microbiome metabolisms.   

While the CASINO model makes a number of interesting observations and, in some cases, 

generates a model that can correctly reproduces some aspects of biological observations, it has some 

notable limitations.  The CASINO model could determine changes in microbiome metabolism as a 

function of the host’s diet parameters, however, it does not determine changes in microbiome community 

structure.  Serum amino acid levels, while important diagnostic indicators in a variety of possible disease 

sates including obesity-related phenomenon, are not necessarily directly a direct function of the digestive 

processes in the gut microbiome and the diagnostic markers also derive from other biological 

phenomenon including endocrine disorders, liver diseases, muscle diseases, neoplastic diseases, 

neurological disorders, nutritional disturbances, or renal failure (Hortin 2012).  It is also unclear if a small 
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number of bacteria can effectively model the full complexity of diverse microbiome communities and that 

the behavior of bacteria cultured alone in minimal media closely mimics the dynamic behavior of bacteria 

in complex communities and in the highly variable environment of the human gastrointestinal tract. 
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3. CURRENT STRATEGIES FOR MICROBIOME ANALYSIS AND COMPUTATIONAL 

MODELING 

 

 

In our previous and current research efforts, we have developed a diverse collection of 

microbiome analysis tools.  The following descriptions outline our analysis tool set that have been 

utilized in this study, but have not necessarily been developed directly in the course of this analysis. 

First, we will define the terms used throughout this analysis.  The purpose of this is to avoid any 

ambiguity in terms used to describe microbiome characteristics, features, and datatypes.  Then we will 

briefly outline the computational tools that will be used throughout this study, the nature of their required 

inputs and resultant outputs, and support for these approaches in the published literature. 

 

3. 1 Definitions of Microbiome Terms 

An effort has been made to use a consistent terminology for the types of data and microbiome 

interactions used in this analysis. 

 

3.1.1 Microbiome Community Structure  

Microbiome community structure is a vector of the taxonomic identities and relative abundances 

of bacterial species present in a single microbiome.  Generally this refers to a 16S rRNA amplicon 

dataset, but can also be from analysis of 16S rRNA sequences in a shotgun metagenome dataset.  In this 

study, the community structure is most often presented at a taxonomic level less specific than species or 

OTU.  A microbiome community structure can contain multiple taxonomic levels.  A collection of 
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microbiome community structures can be organized as a microbiome community structure matrix, where 

columns are individual microbiomes and rows are taxon and cells are relative abundances of a taxon in a 

microbiome population. 

While we acknowledge that the full microbiome also potentially includes viral, archaeal, and 

eukaryotic components of communities, for the purpose of this study, we will use the more common 

descriptions of microbiomes that are limited to the their bacterial components. 

 

3.1.2 Enzyme Function Profile (EFP)  

An Enzyme Function Profile (EFP) is a vector of enzyme function and the relative proportion of 

the metagenome that is comprised of the genes annotated with that function (Larsen et al. 2015a, Larsen 

and Dai 2015).  An EFP is the subset of genes present in a metagenome that are annotated to code for 

proteins with enzymatic functions.  A collection of EFPs can be organized into an EFP-matrix, where 

columns are microbiomes and rows are metabolites.  When there is the possibility of confusion, a 

computationally predicted EFP is distinguished from an EFP that is derived from observed shotgun 

metagenomics data as a ‘predicted EFP’ and an ‘observed EFP’ respectively in the subsequent text. 

 

3.1.3 Microbiome Community Metabolome  

The microbiome community metabolome is the aggregate metabolic capacity of all the individual 

members of a  microbiome community.  While there are a number of possible methods for computing the 

community metabolome from metagenomic data (many of which were described in Chapter  2), for the 

purpose of this study, we model the community metabolome using PRMT-scores (Larsen et al. 2011).   In 

the calculation of PRMT-scores, the community metabolome does not consider compartmentalization of 

individual bacteria, but rather considers a community metabolome as a single, well-mixed reaction vessel 
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comprised of the metabolically active enzymes of all members of the microbiome.  A metabolome can be 

represented as a set of enzyme-mediated interactions. 

While the community metabolome might also refer to direct chemical/physical measurements of 

metabolites present in a microbiome-containing environmental sample, for this study the ‘metabolome’ 

refers only to computational models of metabolism and not direct physical measurements. 

 

3.1.4 Host-Microbiome Interactions (HMIs)  

Host-Microbiome Interactions (HMIs) are those interactions within a microbiome community and 

between the microbiome community and its host.  These interactions can be associated with some feature, 

molecular mechanism, or emergent property of the microbiome.  Some examples of HMI mechanisms 

that are specifically relevant for mammalian gut-microbiome interactions are: 

 Biosynthesis of vitamins and secondary bile acid biosynthesis.  The gut microbiome is a vital 

source of important vitamins, especially vitamins B and K (Conly and Stein 1992, Degnan et al. 

2014).  Essential amino acids, particularly lysine and threonine, are synthesized by the gut 

microbiome (Metges 2000, Metges and Petzke 2005).  Secondary bile acids are derived in the 

mammalian gut from primary bile acids by the enzymatic activity of the microbiome.   

Secondary bile acids can be a risk factor in incidence of colon cancer, particularly for individuals 

with a high-fat diet (Ajouz et al. 2014). 

 Biocontrol.  Some host benefits provided by the microbiome include defense against pathogens.  

There are several mechanisms by which biocontrol can occur.  Mechanisms of biocontrol may be 

direct.  For example, pathogens may be controlled by the synthesis of compounds with local 

antibiotic activities or chemo-repellent properties or through predation.  Mechanisms may also be 

indirect, for example, by outcompeting potential pathogens for nutrients or by displacing 

competing bacterial species for available space or through biofilm formation.  The microbiome 
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can also indirectly contribute to pathogen resistance by interacting with the host immune system 

and reducing inflammatory responses (Round and Mazmanian 2009, Rooks and Garrett 2016, Shi 

et al. 2017) 

 Host signaling.  In addition to interactions with host immune systems, the microbiome can 

synthesize neural and endocrine compounds that interact with host regulatory systems (Foster and 

McVey Neufeld 2013, Yang and Jobin 2014, Carabotti et al. 2015).   

 Increased access to nutrients in diet.  The gut microbiome allows the host to utilize nutrient 

sources, such as recalcitrant carbon sources like some plant polysaccharides.  The microbiome 

can also allow the host to extract greater energy from diet, by breaking down fatty acids or 

complex carbohydrates into simple sugars more readily absorbed and metabolized by the host 

(Turnbaugh et al. 2006, Rosenbaum et al. 2015). 

 

3.1.5 Emergent Properties 

 Emergence has been given a number of possible definitions since it was first introduced in the 

context of the evolution of the human mind in the 19th Century (Corning 2012).  For the analyses 

performed here, we define emergent properties as the interaction of components at different biological 

scales to create the observable properties in the integrated system that are not present in any of the 

component elements.  We will consider integrated computational models to possess emergent properties 

when the model can successfully predict known biological behaviors that were not used to train or build 

the model’s component elements. 

 

3.2 A review of previously published analysis tools 

A number of previously published computational approaches developed by this laboratory are key 

elements of the current modeling work.  Although not explicitly developed in the course of the work in 
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this thesis, these tools play a prominent role here.   These approaches are described briefly in the 

following sections. 

 

3.2.1 Generating community interaction networks (CINs) 

A Community Interaction Network (CIN) is a network indicating predicted causal relationship 

between changes in environmental parameters and changes in bacterial abundances in a microbiome 

population (Larsen et al. 2012c, Lax et al. 2014, Metcalf et al. 2016).  Interactions can be between 

environmental parameters and a bacterium, or between two bacteria.  In these networks, bacteria are 

frequently represented at some taxonomic level higher than that of species or OTU. 

As it is not possible to anticipate all of the possible mechanisms of community interaction before-

hand, even if armed with a complete set of sequenced and annotated genomes for all community 

members, we utilize a statistical approach to describe the web of interactions among a microbiome 

community, and between a microbiome community and its environment.  Communities of bacteria and 

microorganisms interact with their environment and with one another to form complex networks of 

positive or negative, mutualistic or antagonistic relationships.  Some of those possible interactions are:  

• Syntrophy: A community must have the basic ability to consume a selected carbon source, either 

within a single bacterium or divided across multiple species (Morris et al. 2013).  Syntrophy may 

be species dependent (the same set of species always co-occur) or functionally dependent 

(multiple species may mix and match provided that key metabolic functions are present in the 

community), or there is a single core species that may form exclusive or non-exclusive 

partnerships with multiple possible companion species. 

• Colonizers: Some species may be ‘pioneer’ species and are potentially independent of a specific 

environmental condition but are required for the subsequent colonization of carbon-specific 

consortia (Jefferson 2004, Zhang et al. 2006).  Colonization may be due to the generation of 
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extracellular matrixes that permit other species to colonize, breaking down recalcitrant forms of 

nutrients into forms more easily consumed by other species, or production of chemo-attractants 

that recruit other species to an environment. 

• Defenders: The role of some species in microbiome communities is to prevent other species from 

colonizing (Clay 2014).  Possible mechanisms include sequestering carbon making it unavailable 

to other bacteria, or generation of antibiotics or other forms of chemo-repellants. 

• Microenvironment: Some species principle role may be to generate a habitable microenvironment 

for other species in a fashion other than Syntrophy (Wong et al. 2016).  For example, a species 

may be able to generate an anoxic microenvironment in an otherwise oxygen-available condition, 

provide an electron source/sink that is distinct from enzymes specific for carbon source 

degradation, or metal scavenging from an environment to make a microenvironment favorable for 

some bacteria or unfavorable to others. 

A number of microbiome community interaction models (Stein et al. 2013, Cardona et al. 2016, 

Henry et al. 2016) consider only metabolic interactions within and among community members.  These 

approaches, at best, can only capture syntrophic interactions and competition for biomass accumulation.  

We utilize a Dynamic Bayesian Network (DBN) approach to generate a Community Interaction 

Network (CIN) (Figure 3.1).  Analysis of a CIN topology can provide insight into the relationships 

between microbiome sub-populations with specific environmental parameters, identify bacterial taxa that 

interact with changing environmental conditions mostly or exclusively through interactions with other 

bacterial taxa, the direction and rate at which microbial taxa may migrate from one sub-location to 

another in a dynamic environment, and propose trophic interactions.  While a statistical analysis approach 

will not necessarily immediately identify the specific nature of an interaction, any and all types of the 

interactions described above can be captured by CIN analysis.  We have been successful in applying this 

approach in the analysis of several microbiome communities (Larsen et al. 2012c, Lax et al. 2014, 

Metcalf et al. 2016, Lax et al. 2017). 
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3.2.2 Microbial Assemblage Prediction (MAP) models 

While a CIN may implicitly contain all of the possible interaction types described above, the CIN 

itself it does not identify their specific nature of interaction, or suggest the directionality (i.e. positive or 

negative) of the interaction.  A number of microbiome community models consider only syntrophic 

interactions, modeling communities as sets of individual metabolic pathways linked to their environment 

and to one another through suites of transmembrane transporters (Cardona et al. 2016, Henry et al. 2016).  

While powerful and useful in their own right, metabolism and a presumed goal of optimizing biomass 

alone cannot account for most of the key positive and negative interaction mechanisms that drive 

microbiomes.  Synthesis of chemo-attractants that recruit organisms into a community may indeed 

 

Figure 3.1. Community Interaction Networks 

(CIN).  One key for describing microbiome 

communities and their interactions with their 

environment and their host is the CIN.  In a CIN, nodes 

are environmental parameters or microbiome 

community members.  Edges are predicted causal 

interactions between nodes, as from DBN.  The 

example here is from a previous publication (Metcalf, 

2015) for the analysis of how microbiome community 

members change in abundance in relationship to 

changing soil parameters during mammalian corpse 

decomposition. 
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increase the biomass of bacterial taxa within a community, but the mechanisms of action is 

communication and regulation, not incorporation of the compound as fuel for biomass in a metabolic 

network. 

In previous publications, we have proposed a method for modeling microbiome communities 

using an approach that is called Microbial Assemblage Prediction (MAP) models (Larsen et al. 2012a, 

Larsen et al. 2012c, Larsen et al. 2015b).   The first step in this modeling approach is to generate a CIN as 

described above in ‘Community Interaction Networks’.  To transform the network structure of the CIN 

into a computational engine suitable for generating biological predictions, we use the CIN as a scaffold 

for a system of equations (Figure 3.2).  In this system of equations, we can define the value of any node 

in the network, equivalent to the relative or absolute abundance of a bacterial taxa, as a function of the 

values of its parent nodes, equivalent to the abundance of other bacterial taxa in the community, the 

abundance of bacterial taxa at a previous time point, or the measured or inferred values of environmental 

parameters.  Environmental parameters can be nutrient availability (e.g. presence of sugars or other 

carbon sources), availability and nature of nitrogen-, phosphorus-, or sulfur-containing carbon 

compounds, metal ion availability, or non-nutritive environmental factors such as photosynthetically 

available radiation, temperature, and pH, or presence of molecules that have little contribution to 

metabolism, but crucial effects on cell-signaling, such as bacterial quorum-sensing compounds, alarm 

pheromones, biofilm formation/dissolution signals, or information-rich compounds derived from a 

microbiome’s host organism/environment.  In the context of this study, environmental factors are most 

frequently defined as the diet parameters of the microbiome’s host. 
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3.2.3 Taxonomic Average Profile (TAP) prediction 

The gold standard for microbiome analysis is shotgun metagenomic sequencing, for which the 

total microbial DNA is extracted from an environment and sequenced, partially or completely assembled 

into contigs or even full bacterial genomes, and annotated for potential gene regions and their likely 

functions.  While shotgun genomics provides some of the most complete information about a 

metagenomic community, it is costly and computationally burdensome (Thomas et al. 2012, Jovel et al. 

2016).  Alternatively, community structure data, in the form of 16S rRNA data is comparatively simple to 

collect and far cheaper to sequence.  This approach focusses only on a single ubiquitous microbial gene, 

the 16S rRNA, and uses this sequence to propose the evolutionary distance between members of the 

microbiome community and associate a specific 16S rRNA sequence with the closest available bacterial 

genome with a sequenced genome or the presence of closely similar 16S rRNA sequences discovered in 

other metagenome sequence data (described in Chapter 2). 

In order to maximize the utility of 16S rRNA microbiome community data, one possible strategy 

is to leverage previously sequenced and annotated microbial genomes to infer a full metagenome from 

community structure data.  If all of the bacteria present in a community have fully sequenced genomes, 

Figure 3.2. MAP-model for 

predicting microbiome community 

dynamics.  In simplified CIN here, a 

microbiome community can be 

described as interactions between 

three environmental parameters (e1-

3) and five bacterial taxa (t1-t5).  

Network on left can be converted into 

MAP-model on right be describing 

network as set of equations for which 

the value of every node in the network 

is a function of the values of its parent 

nodes. 
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then the ability to determine the metagenome as a linear function of sequenced genomes would be a 

trivial matter, but in the vast majority of metagenomic communities, the community members do not have 

sequenced genomes, and might in fact be completely uncharacterized by any biological means and known 

only by its DNA sequences from metagenomic analyses. 

One possible method to approach the problem of unknown genomes present in a microbiome 

community is to find the nearest evolutionary similar bacteria with known genome, inferred by homology 

with 16S rRNA sequence, and assuming the genome of the unknown bacteria is identical to the sequenced 

bacteria.  This approach is taken by a number of existing tools, such as PiCRUST, SILVAngs, and 

Tax4Fun (Langille et al. 2013, Quast et al. 2013, Asshauer et al. 2015).  The advantage of this approach is 

that it quickly leverages existing data to infer metagenomic sequences and relies on the assumption that 

closely-related bacteria will have similar genomes.  The disadvantage is that the closest evolutionary 

neighbor by in the database inferred from 16S rRNA sequence may not be biologically or functionally 

similar.  Even genomes from closely-related bacteria within the same taxonomic group might differ 

significantly in their actual genomic sequence or possess very different functional capacities. 

We have developed and previously published a variation of the linear combination of sequenced 

genomes approach that provides significant improvement over other metagenome prediction tools.  The 

approach also generates predictions that are ideally suited for MAP-model community predictions and for 

use in PRMT microbiome metabolome predictions (Larsen et al. 2011, Larsen et al. 2012a, Larsen et al. 

2015b).  In this approach, Taxonomic Averaged Profile Prediction (TAP-prediction), rather than associate 

an OTU with the most closely related sequenced genome by 16S rRNA sequence, bacteria are considered 

at a higher level of taxonomic resolution (e.g. Genus, Order, or Class).  The approach is summarized as 

following: 
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𝐸𝐶𝑖
𝑛 = ∑ 𝑇𝐴𝑃(𝑖, 𝑗) ∗ 𝑇𝑎𝑥𝑎𝑗

𝑛

𝑻𝒂𝒙𝒂

𝑗=1

 

Eq. 3.1 

 

Where 𝐸𝐶𝑖
𝑛 is the abundance of enzyme function i in microbiome n, Taxa is the set of bacterial taxa 

reported present in the microbiome, TAP(i,j) is the TAP-matrix for enzyme function i in taxa j, and 

𝑇𝑎𝑥𝑎𝑗
𝑛 is the relative abundance of taxa j in microbiome n.  The values of 𝑇𝑎𝑥𝑎𝑗

𝑛 are derived from an 

analysis of thousands to tens-of thousands published sequenced and annotated genomes.  A single taxa 

might be represented from anywhere from very few to hundreds of genomes, and a single microbiome 

might be described from a dozen or so taxa to hundreds of taxa.  The complete set of all 𝑇𝑎𝑥𝑎𝑗
𝑛  for all 

taxa j and enzyme functions i is called the Taxonomic Average Profile Matrix (TAP-matrix). 

The TAP-matrix is a matrix of enzyme functions and the average abundance of genes with those 

functions in a set of sequenced and annotated genomes collected to represent a specific taxonomic 

grouping (e.g. Class, Order, or Genus) (Larsen and Dai 2015, Larsen et al. 2015b).   

There are several advantages to the TAP-prediction approach.  First, it becomes possible to 

express a predicted metagenome as a function of statistical certainty.  While the ‘true’ metagenome is not 

known, by incorporating the average and variance of gene function counts in the prediction, it becomes 

possible to express metagenomic predictions as a statistically-informed range of values rather than a 

single value representing the expected abundance of an enzyme function in a sequenced genome.  The 

ability to select a taxonomic level for description of prediction metagenomes permits a user to select 

between tradeoffs for confidence of prediction (i.e. lower taxonomic levels for narrow-distributions of 

enzyme function predictions with lower confidence, or higher taxonomic levels for wider-distributions of 

enzyme function predictions with higher confidence).  The inputs to TAP-prediction are called TAP-

matrix is a collection of vectors of enzyme functions and the average abundance of genes with those 

functions in a set of sequenced and annotated genomes collected to represent a specific taxonomic 
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grouping (e.g. Class, Order, or Genus).  The output of TAP-prediction is an Enzyme Function Profile 

(EFP), a vector of enzyme functions and their abundances present in a microbiome community.  A 

collection of EFPs is an EFP-matrix.  

The TAP-prediction approach is utilized in its previously published form in Chapter 5.  In 

Chapter 6, the TAP-prediction is improved by the incorporation of new statistical analysis approaches that 

modify the TAP-matrix.  

 

3.2.4 Predicted Relative Metabolic Turnover (PRMT) 

One of the most important features of a microbiome community is the community metabolome, 

the cumulative metabolic functions of all of its member species modified by their relative abundance.  

One common approach to inferring a microbiome metabolome from metagenomic data is statistical 

enrichment/depletion of gene activities found in a metagenome that are annotated to belong to known 

metabolic pathways, e.g. KEGG pathways.  An alternative approach is Flux Balance Analysis (FBA) 

modeling of microbiome communities (Bucci and Xavier 2014, Henson and Hanly 2014, Bosi et al. 

2017).  FBA is a computationally inexpensive method for modeling the steady-state metabolic fluxes for 

genome-scale reconstructions of metabolic networks.  Applying FBA to microbiome communities can 

either consider a mixed model, in which the entire microbiome is modeled as a single ‘cell’ with a 

metabolism that is the weighted combination of the metabolic pathways of its constituent members, or 

else as a set of compartmentalized metabolisms, linked to one another through transmembrane transport 

reactions. 

One disadvantage of this approach is that FBA generally utilizes biomass optimization for 

generating metabolic models, which relies on metabolic compounds associated with primary metabolism.  

In many cases, key metabolites associated with microbiome-host interactions are derived from 

‘secondary’ metabolism or with chemical compounds whose primary function in a community is not 
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primarily metabolic but rather environmental signaling and sensing in nature.  While FBA is certainly 

capable of modeling the biosynthesis of such signaling or regulatory compounds, if those compounds are 

not previously implicated in microbiome community interactions or components of primary metabolism, 

then those compounds are unlikely to be included in the FBA model.  Another disadvantage of this 

approach is the necessity for incorporating the environmental ‘media’ composition of the community.  

While it may be possible to measure the composition of a complex environment such as soil, rumen, or 

intestine, that information is not always available or easy to collect.  Related to this is the Procrustean 

excess of FBA modeling, which requires that observed data be fit into an existing metabolic network and 

minimizes the opportunity to let the observations inform the analysis.  Finally, in the case of agent-based 

models, while FBA can be quite rapid, the necessity of calculating potentially thousands of discrete 

bacterial entities in some environmental space, iterated over any considerable length of time, greatly 

increases the compute effort of these models, necessitating either simplification of community 

composition or truncating the ‘time’ of microbiome community simulations. 

To address these limitations when considering microbiome metabolomes, we have developed a 

novel computational metric, the Predicted Relative Metabolic Turnover (PRMT) score (Larsen et al. 

2011).  Rather than attempt to create a comprehensive computational model of a single community, 

PRMT explicitly considers only the predicted relative change in metabolite turnover in one metagenomic 

dataset relative to another by considering the differences in abundances for enzymes with a specific 

metabolic activity between metagenomes.  While this approach sacrifices the ability to consider the 

absolute abundances of individual metabolites, PRMT-scores allow all possible metabolic interactions, 

for primary and secondary metabolism, to be easily calculated.  PRMT considers community meta-

metabolome as a single, well-mixed reaction vessel comprised of the enzymes with metabolic functions 

of all members of the microbiome community.   

The overall approach for calculating PRMT-score is summarized in Figure 3.3.  PRMT-scores 

are unit-less values that represent the change of the turnover of a metabolite in a predicted metabolome 
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relative to a reference metabolome. A PRMT-score is calculated for every metabolite in the EMM for a 

metagenome. The value and sign (positive or negative) of a PRMT-score provides information about a 

metabolite's relative turnover. Although a thorough interpretation of a PRMT-score requires that it be 

considered in the greater context of the complete network, it can be broadly interpreted as follows: A 

positive PRMT score predicts increased metabolic turnover and relatively greater consumption of a 

metabolite. A negative PRMT-score predicts decreased turnover and relatively greater accumulation of a 

metabolite. It is important to note that PRMT-scores do not predict net production or consumption of a 

metabolite.  A metabolite with a positive PRMT is not necessarily being consumed faster than it is being 

synthesized; only perhaps that it is being synthesized at a lower predicted rate when compared to another 

metagenome. 

The PRMT metabolomic models have been successfully used previously by our lab (Larsen et al. 

2011, Larsen et al. 2014, 2015a, Larsen and Dai 2015, Larsen et al. 2015b, Larsen et al. 2016, Shinde et 

al. 2017) as well as by other researchers (Desai et al. 2012, Mason et al. 2014, Louca et al. 2016). 
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Figure 3.3. Calculation of community metabolome as PRMT-scores.  (A) A set of all enzyme functions 

from an EFP are collected (a-f in figure).  From a set of known metabolic interactions, all possible enzymatic 

transformations with those enzymes are collected.  (B) The enzyme reactions are assembled into a metabolic 

network.  (C) The metabolic network is transformed into a connectivity matrix.  (D) Connectivity matrix is 

normalized such that all in-edges sum to 1 and all out-edges sum to -1.  This matrix, for the purpose of this 

figure, is called the Environmental Metabolic Matrix (EMM).  (E) PRMT-scores are calculated for each 

compound c in the EMM, where 𝐸𝐶𝑚
𝑐  is the log2 normalized relative abundance of enzyme function c in 

metagenome m and EMM[c,v] is the cth row and vth column of the EMM. 
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4.  PSEUDOMONAS-HOST INTERACTIONS 

 

 

 

The ability to assemble complete bacterial genomes from community metagenomics data has 

become increasingly commonplace (Gilbert and Dupont 2011).  However, there may be very little 

opportunity or capacity to isolate and characterize these bacteria that are known only through 

metagenomic data.  To understand the role that these otherwise uncharacterized bacteria play in their 

microbiome community, we must turn to computational modeling and machine learning when direct 

biological characterization of a bacterium is impossible.   

The goal of Chapter 4 is to address the ever growing abundance of sequenced bacterial genomes, 

such as those that might derive from metagenomic sequence from microbiome communities.  The 

metabolomic and transportomic models, constructed from annotated genomes, are used to determine the 

HMI class filled by a bacterium through application of machine learning techniques.  The result of this 

study is a computational tool for the identification of the specific bacterial molecular mechanisms that 

drives HMIs.  This information can be used to identify ways positive host interactions can be enhanced 

and negative interactions can be mitigated, such as addressing antibiotic resistance in hospital acquired 

bacterial infections. 

 

4.1 Background 

Pseudomonads, Gram negative bacteria in the Gammaproteobacteria Class, are nearly ubiquitous 

(Silby et al. 2011).  These bacteria can be found in ocean waters, in terrestrial soils, living in symbiotic 

associations with plant roots, and within the GI tracks of mammals (Clarke 1982, Ridgway et al. 1990, 
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Ryan and Heaner 2014).  Their adaptation to a wide range of possible ecological niches is made possible 

by Pseudomonad’s wide array of secondary metabolic capacities (Palleroni 1992).   

 

4.1.1 Pseudomonads Can Occupy Multiple HMI Classes 

Here, we focus on Pseudomonas for their capacity to occupy two very different but highly 

important ecological niches: Pseudomonas are bacteria that form symbiotic relationships with terrestrial 

plant roots (Lugtenberg et al. 2001, Silby et al. 2009) and Pseudomonads are the second most common 

cause of pneumonia infections in intensive care units (de Bentzmann and Plesiat 2011). 

 

4.1.1.1 Pseudomonads as Plant Growth Promoting (PGP) bacteria 

Just like humans, terrestrial plants also possess complex communities of microorganisms that 

help them access nutrients, defend against disease, and regulate growth  (Cook et al. 1995, Frey-Klett et 

al. 2011, Kurek et al. 2013, Giles et al. 2014, Cumming et al. 2015).  Beneficial bacteria in these plant-

root associated microbiomes provide PGP effects, enhancing a plant’s capacity to acquire biomass, even 

in sub-optimal growth conditions.  In return for their Plant Growth Promoting (PGP) services, the 

communities of beneficial microorganisms receive carbon, in the form of photosynthetically derived 

sugars.  Pseudomonas fluorescens and Pseudomonas protegens, commonly found in the soil and 

frequently associated with aspen tree roots, are such PGP bacteria (Gottel et al. 2011, Brown et al. 

2012b).  Aspen are highly relevant trees for study as they are the most abundant tree in the American 

Northwest and are an important tree species used as an experimental model organism for understanding 

terrestrial carbon sequestration for the Department of Energy (DOE) (Djerbi et al. 2005, Tuskan et al. 

2006).  While the beneficial effects of Pseudomonas fluorescens on aspen is well established, the 

molecular mechanisms that underlie PGP effects remain unknown.  The goal of this analysis on plant-
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pseudomonad HMIs is to uncover the specific mechanisms by which Pseudomonads enhance aspen 

growth. 

 

4.1.1.2. Pseudomonas as Antibiotic Resistant Hospital Acquired Infections (HAIs) 

From the CDC, “Gram-negative bacteria cause infections including pneumonia, bloodstream 

infections, wound or surgical site infections, and meningitis in healthcare settings. Gram-negative bacteria 

are resistant to multiple drugs and are increasingly resistant to most available antibiotics. These bacteria 

have built-in abilities to find new ways to be resistant and can pass along genetic materials that allow 

other bacteria to become drug-resistant as well.” (CDC 2011).  In the 2013 CDC Antibiotic Resistance 

Threat Report (CDC 2013), Pseudomonas aeruginosa that develop multidrug resistance was given a 

threat level of “Serious” with 13% of all Pseudomonas aeruginosa HAIs being multi-drug resistant.  To 

counter the rising threat of deadly Pseudomonas aeruginosa infections, the goal of this analysis of 

human-Pseudomonad HMIs is to identify potentially novel targets for antibiotics or development of 

methods to mitigate their pathogenicity. 

 

4.1.2 Previous publications for Pseudomonas HMI Class Identification 

An approach for elucidating the molecular mechanisms of HMI-class occupation by 

Pseudomonads in Aspen root from genomic sequence data has been published by Timm at al. (Timm et 

al. 2015).  In that study, the ecological niches under consideration were rhizosphere, found living on or 

very near the surface of aspen roots, or endosphere, living within the cells of aspen roots.  In this 

approach, 19 genome sequences (4 rhizosphere and 15 endosphere) were collected from bacteria cultured 

from the rhizosphere and the endosphere of environmentally sampled aspen tree roots.  From assembled 

and annotated genomes, FBA models were constructed for bacteria.  FBA identified differenced in 
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predicted primary metabolism between endosphere and rhizosphere Pseudomonads, but in this study there 

was no opportunity to consider the approach as a predictive tool. 

A previously published tool for predicting a bacteria’s pathogenic capacity from genomic data, 

Huang et al., is Path-Based Human Microbe-Disease Association (PBHMDA) (Huang et al. 2017).  In 

that study, known microbe-disease associations were used to train a model based on the Gaussian 

interaction profile kernel similarity for microbes and diseases.  In a 5-fold CV scheme, the approach 

successfully associated 292 bacteria with 39 diseases, collected from HMDAD database 

(http://www.cuilab.cn/hmdad). 

Another computational approach, published by Suzuki et al. (Suzuki et al. 2014), predicts 

antibiotic resistance from gene expression profiles.  Using laboratory evolution of E. coli to several 

antibiotics, authors identifies instances of antibiotic cross-resistance as well as instances where increased 

resistance to one antibiotic lead to increased susceptibility to other antibiotics.  Using transcriptomic 

analysis, authors demonstrate that while the specific mutation leading to antibiotic resistance might vary, 

the resulting change in patterns of gene expression was consistent for a given resistance phenotype. 

 

4.1.3. Key Knowledge Gaps and Innovations 

This Aim fills specific knowledge gaps and puts forth a number of key technical innovations.  

While we have used of PRMT-method for modeling complex metabolisms successfully in the past, in this 

aim we develop a companion metric to the PRMT-score, the Predicted Relative Transmembrane 

Transport (PRTT) score.  This metric is not only a novel analytical tool, but modeling the Transportome 

through PRTT-scores proves to be a highly effective approach for predicting Pseudomonad HMI-classes.  

Although a number of prior published research efforts described above have generated predictive models 

of HMI, few of them are capable of proposing the molecular mechanisms that drive HMI or to propose 

specific experiments to validate predictions.  Not only do our tools point directly to specific molecular 



42 
 

 
 

mechanisms of HMI that can be validated through hypothesis-driven biological experiments, but through 

collaborators at Argonne National Laboratory, a number of predicted mechanisms for Pseudomonad-plant 

HMIs have already led to experimentation and prediction validation, as described below and first reported 

in (Larsen et al. 2014, 2015a). 

 

4.2 Outline of Experimental Approach 

In order to construct predictive models that associate a Pseudomonad strain with a specific HMI class, 

a highly-curated collection of data needed to be acquired.  Needed for this analysis were: 

 A set of human and aspen Pseudomonad HMI classes that could be confidently assigned to a 

Pseudomonas species in strict Boolean fashion. 

 An available set of sequenced and annotated Pseudomonas genomes. 

 A clear, published reference by which a Pseudomonas strain could be ascribed to one of the 

selected HMI classes. 

The set of niche types was taken from a Pseudomonas review published by Silby et al (Silby et al. 

2011).  The host interaction types selected span plant-related positive and negative PGP effects and 

human pathogenicity interactions: 

 Antibiotic Resistance: Bacteria with ‘Antibiotic Resistance’ HMI have the Mobile Genetic 

Elements (MGEs) and efflux systems that confer resistance not only to antibiotics, but potentially 

also other stress conditions (Arnold et al. 2003, Hacker et al. 2004, Jackson et al. 2005). 

 Biocontrol: Pseudomonas can provide PGP functions to its plant host by antagonizing potential 

pathogens, directly influencing the host’s growth and disease resistance (Haas and Defago 2005, 

Ryan et al. 2008, Garbeva and de Boer 2009). 

 Biofilm formation:  Biofilms are complex structures comprised of multiple individuals bound 

together on a substrate through the excretion of materials such as extracellular polysaccharides.  
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The capacity for forming biofilms includes the capacity to send and receive specific messages to 

other members of the same bacterial species to coordinate biofilm formation.  Biofilms can 

protect communities against antibiotics and create oxygen limiting microenvironments that influx 

local redox conditions (Rudrappa et al. 2008, Alhede et al. 2014, Quiles and Humbert 2014). 

 Pathogen:  Pseudomonas have the capacity to cause disease in a wide range of organisms.  

Pathogenicity includes possession of virulence factors and specific secretion systems.  

Pathogenicity often co-occurs with biofilm formation and antibiotic resistance (Clarke 1982, 

Silby et al. 2011, Fernandez et al. 2015).  

 Plant Growth: Pseudomonas have a variety of mechanisms for inducing increased growth of 

plants, including the capacity to mobilize nutrients in soil that would otherwise be unavailable to 

plant roots or stimulation of root growth through production of plant signaling compounds (Silby 

et al. 2009, Frey-Klett et al. 2011)  

 Plant Disease: Some Pseudomonads have the ability to cause disease in plants, a very distinct 

phenotype from the ability to cause disease in animals.  Plant disease is influenced by the ability 

to inject proteins into plant cells and the capacity to synthesize phytotoxins (Sands et al. 1970, 

Silby et al. 2009, Mansfield et al. 2012). 

These HMI classes are non-exclusionary and any Pseudomonad may belong to some, any, all, or 

none of them.  Niche types represent that capacity to occupy a niche, and not the requirement that it do so.  

Membership to an HMI class by a Pseudomonas can be conditional, for example a single bacterium may 

be a plant growth promoting under some circumstances and cause plant disease in others, but the capacity 

for HMI-class membership is inherent to the bacterial strain. 
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4.3 Selected Pseudomonas Genomes for Analysis 

At the time of this research, there were 43 sequenced and annotated Pseudomonas available that 

could also be traced to a specific HMI class through published references.  The Pseudomonad species, 

number of genomes associated with that species, the membership to ecological niches, and the relevant 

references are listed in TABLE 4.1.  Genome references can be found in Appendix A. 

 

Table 4.1. Available Pseudomonad Genomes with Known HMI Classes 

Species 
# 

Genomes 
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References 

Aeruginoa 9 Y Y N Y Y Y 
(Silby, Winstanley et al. 

2011) 

Brassicacearum 1 N N Y N N N (Ortet, Barakat et al. 2011)  

Denitrificans 1 N N Y N N N 
(Ainala, Somasundar et al. 

2013) 

Entomophila 1 N N Y N N N 
(Vodovar, Vallenet et al. 

2006) 

Flourescens 4 N Y Y Y Y Y 
(Silby, Winstanley et al. 

2011) 

Fulva 1 N N N N N N 
(Renault, Deniel et al. 

2007) 

Mendocina 2 Y N Y Y N N 
(Silby, Winstanley et al. 

2011) 

ND 1 N N N N Y N (Li, Zhao et al. 2013) 

Poae 1 N N Y Y N Y 
(Muller, Zachow et al. 

2013) 

Protogens 2 N N Y Y Y Y 
(Jousset, Schuldes et al. 

2014) 

Putida 11 Y Y Y Y N Y 
(Silby, Winstanley et al. 

2011) 

Stutzeri 6 N Y N N N Y 
(Silby, Winstanley et al. 

2011) 

Syringae 3 Y Y Y Y Y N 
(Silby, Winstanley et al. 

2011) 
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4.3.1 Standardize Annotation of Pseudomonad Genomes 

To reduce the possibility that differences between Pseudomonas by their annotated genomes are 

due, in part, to variations in how and when their genomes were annotated, the 43 genomes used here were 

re-annotated to a uniform set of conditions.  To accomplish this, a novel database of annotated protein 

sequences was generated using the database of Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Ogata et al. 1999, Bairoch 2000, Mitra et al. 2011, Kanehisa et al. 2012).   

 

4.3.1.1 Database of Annotated Bacterial Proteins 

Two sets of protein annotations were considered in this analysis: Enzyme Commission (EC) 

annotations (Bairoch 2000) for description of enzyme functions and a subset of KEGG Orthology (KO) 

annotations (Mao et al. 2005) for description of transmembrane transport functions.   

 

4.3.1.2 Unique Enzyme Function Annotations 

EC annotations are numerical classifications of enzyme functions based of the specific chemical 

reactions they catalyze.  EC annotations are comprised of four numbers separated by ‘.’s, in which each 

subsequent number is associated with increasingly specific descriptions of enzyme catalyzed reaction 

(Bairoch 2000).  All KEGG bacterial proteins with an enzyme commission (EC) annotation were 

collected for our database of enzyme functions, and were comprised of 2,605 unique enzyme EC 

annotations and 754,066 protein sequences. 
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4.3.1.3 Transmembrane Transporter Function Annotations 

KEGG Orthology (KO) annotations are a unique resource associated with the KEGG database.  

KO annotations link experimental evidence of enzyme function through sequence homology.  Similar to 

EC annotations, KO annotations are grouped into a hierarchical structure of increasing specificity of 

enzyme function descriptions.  For this analysis, the subset of KO annotations from the 

“Metabolism/Environmental Information Processing/Membrane Transport” category were used.  For each 

annotation, the set of ligands transported by that annotation were manually curated and ligand identifiers 

were selected to match the ontology of metabolites in KEGG reactions.  All KEGG bacterial proteins with 

a transmembrane transporter KO annotation were collected, resulting in a database of 164,321 protein 

sequences annotated to one of 891 unique transporter functions and associated with the transport of 272 

possible ligands or environmental information type. 

 

4.3.1.4 Re-annotate Pseudomonad Genomes 

Amino acid fasta formatted (*.faa) files were collected from the NCBI database 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/) for all 43 Pseudomonas genomes.  Pseudomonad genomes were re-

annotated by best BLAST-P (NCBI-Blast 2.2.23+) hit with e-values < 1x10-10 between predicted 

Pseudomonas gene product sequences and our generated databases of enzyme and transporters.  Note that 

by this method, it is possible for a single protein sequence to have both an enzyme and transporter 

annotation.  The complete set of re-annotated genome information can be found in the published reference 

(Larsen et al. 2015a).  Genome annotations are in the format of vectors of enzyme or transporter functions 

and the number of genes in the genome with that annotation.  In this way, all annotated genomes can be 

described by vectors of uniform lengths. 
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Figure 4.1.  Pan-Pseudomonas metabolic and transportomic model.  In this visualization, metabolites 

are circles and extracellular ligands transported by transmembrane transporters are triangle.  Enzyme 

mediated metabolic interactions, transforming one metabolite into another, are blue edges.  Transmembrane 

protein-mediated transport interactions are red edges.  Metabolites highlighted with purple edges are 

secondary metabolites.  Nodes are colored by their predicted association with a specific host interaction 

type: purple for antibiotic resistance, orange for biocontrol, blue for biofilm formation, red for pathogen, 

yellow for plant disease, green for plant growth promotion, and black for membership to multiple host 

interaction types.  

 

 

4.3.2 Generate Metabolomic and Transportomic Models  

Using PRMT and PRTT (Larsen et al. 2011, Larsen et al. 2014, 2015a), as described in detail in 

Chapter 3, metabolic and transportomic models were made, calculated relative to the average enzyme 

function profile or transporter function profile across all 43 Pseudomonads.  A Secondary PRMT 

metabolome was generated using only enzymatic reactions found in KEGG Pathway 01110, 

“Biosynthesis of Secondary Metabolites” (http://www.genome.jp/keggbin/show_pathway?map01110).   

http://www.genome.jp/keggbin/show_pathway?map01110
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The resulting pan-Pseudomonas model is visualized in Figure 4.1.   The model has 6642 enzyme 

interactions between 3688 metabolites mediated by 2386 unique enzyme functions and 271 

transmembrane transported ligands.  Of the metabolic interaction, there are 1649 enzyme mediated 

interactions between 1494 metabolites associated with Secondary Metabolism.  

 

4.4 Train SVMs to Identify Pseudomonas HMI Classes from Microbiome Data 

The re-annotated genomes and metabolic and transportomic model data were used to train 

Support Vector Machines (SVMs) to predict Pseudomonad HMI classes according to the procedure 

described below. 

 

4.4.1 Feature Selection for Training SVMs 

There are four data types collected or generated for the 42 Pseudomonads: Enzyme Function 

Profiles, Metabolome and Secondary Metabolome models (as PRMT-scores), and Transportome model 

(as PRTT-scores). 

For all metabolic and transportomic models, training data were restricted by the following 

conditions: 

 Due to the nature of PRMT calculations, some sets metabolites will have identical 

PRMT-scores across all genomes (e.g. fatty acids of different lengths, in which the same 

enzyme functions are involved in multiple steps of the fatty acid biosynthesis pathway).  

All metabolites with identical PRMT-scores were concatenated into a single meta-

metabolites. 

 All metabolites with PRMT-scores with a standard deviation less than 0.2 across all 

genomes were removed to subtract metabolites for which there is little variation in 

metabolic capacity across Pseudomonads. 

 

After this down-selection of features, the following number of features, by data type, remained: 
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 606 Enzyme Function Profiles (EC annotations) 

 2149 Metabolic Models (PRMT-scores)  

 714 Secondary Metabolism (PRMT-scores) 

 169 Transportome (PRTT-scores) 

These selected features were used in the subsequent step for training and validating SVM for 

prediction of Pseudomonad’s host interaction types. 

 

4.4.2 Validate models using a LOO-CV Approach 

The four datatypes described above were each used to train Support Vector Machines  (SVMs) to 

predict a Pseudomonad’s set of host interaction types.  SVMs ia a supervised machine learning  approach 

that, given a novel observatio, predicts its membership to two or more possible classes.  Here, SVMs were 

trainied in a Leave-One-Out Cross Validation (LOO-CV) scheme.  LOO-CV is a specific case of an 

exhaustive leave n out cross validation where n is equal to 1.  One SVM was considered for each of the 6 

host interacion types.  The outline of the training and validation approach is summarized in Figure 4.2.  A 

total of 24 SVM models were constructed (i.e. 6 host interaction types x 4 possible types), which in a 

LOO-CV scheme totals to 1,032 SVMs (i.e. 24 SVM types x 43 LOO-CV).  Construction of SVMs was 

performed using package ‘e1071’ in R (R-Project).  SVMs were trained using a 10-fold cross validation 

and linear kernels.  In all subsequent discussions, only the results of the validations are presented. 
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Figure 4.2. Outline of SVM Training and Validation Method.  (A) The Pseudomonas genome data set 

is comprised of n Pseudomonads.  Each Pseudomonad is defined as binary memberships to one of four 

possible ecological niche types (Biocontrol, Biofilm, Plant Pathogen, or Plant Growth) and an array of x 

data features.  Pseudomonads may be annotated with all, none, or any combination of possible ecological 

niche types.  Pseudomonad genome i is selected from the set of n genomes to serve as a validation.  (B) 

SVM binary classifiers are trained on training genomes from (A).  Four separate SVM classifiers are 

generated, one for each environmental niche type.  (C) Ecological niche types for validation Pseudomonad 

i are predicted using SVMs from (B).  Note that due to use of binary classifiers, it is possible for 

Pseudomonad i to have a specific pattern of ecological niche type memberships that was not present in the 

training data set.  (D) This procedure is repeated n times such that every Pseudomonad genome is used as 

validation sample once. 

 

 

Accuracy of predictions were calculated as F-scores, which is a measure that combines recall and 

precision.  F-score is calculated as 

 

 

F-score =  2 * (precision + recall) / (precision * recall) Eq. 4.1 

precision = TP / (TP+FP) Eq. 4.2 

recall = TP / (TP+FN) Eq. 4.3 
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Where TP is the number of true positives in prediction, FP is number of false positives, and FN is the 

number of false negative predictions.  An F-score of 1 indicates perfect prediction.  The results of LOO-

CV are summarized in Figure 4.3. 

 

 

 

Figure 4.3. F-scores for SVM predictions of host interaction class by data type.  The number of features 

from each data type (Enzyme Function Profile, Metabolome, Secondary Metabolome, and Transportome) 

are indicated by number in parenthesis.  Prediction results are presented as F-score, with an F-score of 1 

indicating perfect prediction 

 

 

 

For all HMI classes except for Pathogen, the Transportome datatype is most predictive.  For all 

HMI classes except Plant Disease, enzyme function profile is the least predictive.  All SVM validation 

results are relatively strong with F-scores greater than 0.8 for secondary metabolism and Transportome 

data types.  For pathogen, plant disease, and biocontrol, Enzyme Function Profile and Primary 

Metabolism have the worst F-scores.  The predictive power of transportomic and metabolomic data 

provides an interesting insight into possible mechanisms of HMI.  Those HMI that are most strongly 
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associated with interaction with a host and center on sensing and signaling capacity – Pathogenicity of 

human or plant and Biocontrol – are best predicted by Transportome.  Those HMI that might be more 

likely associated with interaction with specific compounds in the environment –Biofilm formation, 

Antibiotic resistance, and Plant growth – are best predicted by metabolome.   

As Secondary Metabolome based predictions are under all conditions as good or better than 

predictions based on total Metabolome, only Secondary Metabolism will be considered in subsequent 

analysis. 

 

4.5 Identify Most Predictive Features for Each HMI Class 

While the capacity to predict a Pseudomonad’s ability to interact with a plant or animal host is a 

potentially powerful tool when applied to the analysis of newly sequenced Pseudomonad genomes, 

prediction of HMI class alone will not lead to novel discoveries into the molecular mechanisms of HMIs.  

Fortunately, SVM models have a relevant output in addition to class prediction; from SVMs, the relative 

weight of all features in the predictive model are reported, with higher weight features being more 

strongly predictive in the SVM.  Here, we propose that those features that are most predictive are also 

most likely to provide biological insight into the molecular mechanisms of host- Pseudomonad 

interactions. 

A feature i is identified as highly predictive when: 

 

FeatureWeighti > AVE(All Feature Weights) + 2 x STDEV (All Feature Weights) Eq. 4.4 

 

Where FeatureWeighti is the reported weight of feature i, AVE is the average of all feature weights in an 

SVM and STDEV is the standard deviation of all feature weights in an SVM. 

 Predictive features are listed in Tables 4.2 and 4.3. 
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Table 4.2.  Predictive Features of Plant-Microbe Interactions 

HMI-Class Predictive Features Proposed Molecular Mechanisms 

Biocontrol 

Cobamide coenzyme (vitamin 

B12) 

Resistance against pathogens and 

biosynthesis of plant growth factors 

Monosaccharide transport 
Plant wound response and pathogen 

detection 

Acetyl-D-glucosamine 

metabolism 
Defense against fungal infections 

Isoniazid metabolism Production of antimicrobial compounds 

Biofilm 

Protoporphyrin and 

methyglyoxal metabolism 

Defense against biofilm formation 

inhibiting compounds 

Anthranilate degradation Biofilm formation 

Shikimate pathway Biofilm formation 

Plant Disease 

Fatty acid biosynthesis 
Lipid signaling in plant-pathogen 

interactions 

Arabinose and polyamine 

transport 

Plant stress signaling and plant pathogen 

defense response 

Plant Growth 

Promotion 

Indole, eriodictyol, neringenin 
Plant signaling compounds association 

with plant growth promotion 

C4-dicarboxylate transport Increased organic acid metabolism 

Calcium transport 
Plant signaling and associated with plant 

growth promotion 

Rhizosphere 

2-O-alpha-manosyl-D-glycerate Osmoregulation in soil environment 

3-hydroxyphenylpropionic 
Capacity to degrade/consume plant 

material 

Cation transport Charge balance in soils 

catecholamine biosynthesis 
Production of plant stress regulatory 

compounds 
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Table 4.3.  Predictive Features of Human-Microbe Interactions 

HMI-Class Predictive Features Proposed Molecular Mechanisms 

Pathogenicity 

Colicin transport Bacteriocin 

Homoserine 
Signaling compounds associated with 

biofilm formation 

Sugar/Carbohydrate transport Virulence factor 

Zinc, MG2+, K+ transport 

Highly predictive of pathogenicity in 

Pseudomonas and associated with 

metal intoxication 

Antibiotic 

Resistance 

Macrolide transport Antibiotic efflux 

Protein and colicin transport 

Bacteriocins are species-specific 

antimicrobials that are normally 

produced by Gram-negative bacteria 

to kill competitors 

Homoserine transport 
Signaling/quorum sensing in gram 

negative bacteria 

Metal ion transport 
Metal toxicity resistance is co-

selected with antibiotic resistance 

Metabolism of terpenoids and 

polyketides 
Antibiotic degradation pathways 

Human Host 

3-Hydrosyphenyl-propionate 

Affects ROS in tissues and in 

circulation 

L-Arginine Immune response to pathogen 

Dopamine Gut-Brain axis 

Protoporphyrin 

Metal complexing in metal poor 

human environment 

 

The predicted mechanisms for Biofilm Formation, one of the selected Animal-microbe HMI types, is found 

in Table 4.2 and is not repeated here. 

 

 

4.6 Summary of Results 

Results have been divided into two biologically meaningful groups: Plant- Pseudomonad 

Interactions and Human-Pseudomonad Interactions.  Plant-Pseudomonad interactions are comprised of 

Biocontrol, Plant Disease, and Pant Growth Promotion.  Human-Pseudomonad interactions are composed 

of Pathogen and Antibiotic Resistance.  Biofilm Formation is a member of both Plant- and Human- 

Pseudomonad interactions. 
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Strongly predictive features are not necessarily unique to a single host-interaction phenotype 

(Figure 4.4 and 4.5).  While features that are unique to a specific HMI phenotype can confidently be 

associated with that HMI class, there are multiple reasons predictive features might belong to multiple 

Figure 4.4. Venn diagrams for 

significant features identified by 

SVM for each data type and host 

interaction class for Plant-Microbe 

interactions.  Values are presented as 

percent of total highly predicted 

features for that data type. 
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HMI classes.  It may be that shared features comprise common molecular mechanisms for both HMI 

phenotypes.  For example, shared predictive features between the capacities for inducing plant disease 

and for promoting plant growth, which could be attributed to common plant-sensing capacities or 

overlapping capacities in the ability to colonize plant tissues.  Alternately, overlapping features may be 

due to co-occurrence of features in the genomes and do not derive from any biologically relevant overlap 

of functions.  For example, if many Pseudomonads possess both Plant Growth Promotion and Biocontrol 

functions, then some features specific to one of the HMI classes might be misattributed to the other with 

some frequency. 

In the following results, groupings of Plant-Microbe and Human-Microbe HMI classes will be 

considered separately as there is not any expected biologically relevant functional overlap between these 

two hosts. 

 

4.6.1. Predicted Plant-Microbe Interaction Mechanisms 

The overlap between predictive features in Plant-Microbe interaction phenotypes is summarized 

in a Venn diagram in Figure 4.4.  Consideration of those features that are unique and those that are 

shared between more than on HMI-type provides potential insights into the different molecular 

mechanisms that underlie host interactions.  Plant Growth Promotion has the largest proportion of 

uniquely predictive Enzyme Function Profile features for all data types, suggesting that this HMI 

phenotype is almost entirely independent of other HMI classes.  Biocontrol HMI class has the least 

unique features by Secondary Metabolism or Transportome, but the second largest proportion of 

predictive Enzyme Function Profile features, suggesting that Biocontrol is a function of a few specific 

enzyme activities that are not well integrated into the rest of Pseudomonad metabolic pathways.  

Transportome has by far the least overlap between predictive HMI phenotype features, indicating that the 

Pseudomonad’s Transportome is highly specific to its environment and its capacity to interact with a plant 

host. 
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From the observed overlap between predictive features, we propose an HMI meta-class: Survival 

in the Rhizosphere.  The features common to all plant HMI phenotypes are hypothesized here to be those 

biological functions required for colonization and survival on or near plant roots, and are a prerequisite 

for all other plant interactions.  

In Table 4.2, specific features associated with the plant-microbe HMI phenotypes (including 

Rhizosphere) are presented that can, supported by evidence in the previously published literature, provide 

possible specific insights into the specific molecular mechanisms that drive specific Plant-HMIs. 

From this table of features, some general trends emerge.  Biocontrol is not only associated with the 

production of compounds associated with antibacterial and antifungal characteristics, but also compounds 

that are proposed to directly stimulate the plant’s immune system.  Vitamin B12 might be a precursor for 

additional biosynthetic capabilities in Pseudomonad metabolism or else possibly provided directly to their 

plant host to induce pathogen resistance pathways.  Biofilm Formation includes not just those inter-

bacterial signaling compounds previously associated with biofilms, but also metabolic capacity for anti-

biofilm compounds.  It is possible that Pseudomonads possess this later capacity to degrade biofilm-

disruption compounds synthesized by competitors in their environment, or else use them to disrupt the 

biofilm formation of other bacteria that compete for space in colonizing plant roots.  Those features 

predictive for the ability to cause disease in plants are comprised of plant signaling compounds, either 

fatty acids or small molecules associated with plant pathogens.  Plant Growth Promotion is predicted to 

possess two mechanisms of action: biosynthesis of plant regulatory compounds that stimulate growth 

directly and production of organic acids that can help to mobilize mineralized nutrients in soil, making 

them available for uptake by plant roots.  Those features predicted to be necessary for life in this 

rhizosphere regulate plant stress, presumably avoiding activation plant anti-bacterial defense mechanisms, 

regulate osmolality and charge balance in the challenging soil environment, and take advantage of plant-

specific carbon sources in the soil. 
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4.6.2. Predicted Human-microbiome Interactions 

A similar approach to analysis of the Plant-microbe interaction mechanism is applied to the 

Human-microbe interaction mechanisms.  In spite of there being fewer HMI-phenotypes for human 

Figure 4.5. Venn diagrams for 

significant features identified by 

SVM for each data type and host 

interaction class for Animal-

Microbe Interactions.  Values are 

presented as percent of total highly 

predicted features for that data type. 
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pathogen-related function than for plant-interactions, there is greater overlap between set of predictive 

features (Figure 4.5).  When considering which features are uniquely predictive for an HMI-class and 

which are shares, the largest proportion of unique feature is found in Secondary Metabolism predictive for 

Antibiotic Resistance.  This may be indicative of the range of metabolic functions requires to effectively 

degrade or otherwise transform antibiotics in the environment.  Unique Transportomic features are 

roughly evenly distributed over the three HMI-phenotypes.  There is a larger overlap however between 

Pathogen and Antibiotic Resistance, indicating that there are either several common molecular 

mechanisms between these HMI types or else Antibiotic resistance and Pathogenicity frequently co-occur 

is Pseudomonads, i.e. Pseudomonads that are pathogenic are also frequently resistant to antibiotics. 

Also, similarly to the analysis of Plant-microbe predictive features, we propose a HMI metaclass, 

“Survival in a Human Host”, which is comprised of those predictive features common to Pathogen, 

Antibiotic Resistance, and Biofilm Formation HMIs.  If we advocate, as we did for plant-microbe 

interactions, that overlapping predictive features are those more general to survival in the host organism, 

then from these results we suggest that the human host is a more challenging environment for 

Pseudomonads than is the rhizosphere. 

In Table 4.3, specific features associated with the human-microbe HMI phenotypes (including 

Survival in Human Host) are presented that provide insight into HMI mechanisms via mechanisms 

supported in previously published literature. 

Pathogenicity is characterized both by specific markers of pathogenicity as well as compounds 

associated with reducing completion from other bacterial strains.  The colicin transport function makes an 

appealing potential target for novel therapeutic interventions.  Reducing a pathogens competitive 

advantage against other bacteria might permit the normal, healthy members of the microbiome to keep a 

pathogenic species in check without the use of non-specifically killing antibiotics.  Antibiotic Resistance 

is dominated by efflux capacity and the metabolic capacity to degrade antibiotics.  The quorum sensing 

features may enable colonies of bacteria to coordinate responses to antibiotics, and propose an additional 

mechanism to reduce antibiotic resistance.  Interfering with inter-bacterial signaling may inhibit 
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Pseudomonads ability to coordinate responses and increase their susceptibility to antibiotics to which they 

may otherwise be resistant.   

There are two general mechanisms proposed here for surviving within a human host.  One is 

survival in a metal-poor environment through ion scavenging.  The other is to interact directly with the 

host by influencing the gut-brain axis and regulating host immune responses.  A potential intervention 

proposed by the Human Host HMI meta-class is to interfere with a pathogen’s ability to gather necessary 

metal ions.  Another is to inhibit the bacteria’s capacity to influence host immune response via arginine or 

dopamine biosynthesis and export, potentially making the bacteria vulnerable to the host’s native immune 

system without resorting to the use of traditional antibiotics. 
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5. MODELING HUMAN DYSBIOSIS 

 

 

 

The human microbiome can have a profound effect on human health, both positive and negative.  

Gut microbiome communities interact with the human immune system to ward off infections, help the 

host to digest food, and synthesize crucial nutrients (Ramakrishna 2013, Bou Saab et al. 2014, Hennessy 

et al. 2014, Walsh et al. 2014).  Dysbiosis occurs, however, when the microbiome has negative effects on 

the host’s health.  A dysbiotic microbiome can lead to irritable bowel syndrome, predispose its host to a 

variety of cancers, and increase the risks for obesity and diabetes (Collado et al. 2007, Moran and 

Shanahan 2014, Sanz and Moya-Perez 2014, Cox and Blaser 2015, McLean et al. 2015).  An unhealthy 

microbiome has been implicated in depression and autism (Foster and McVey Neufeld 2013, Fond et al. 

2015, Luna and Foster 2015).  

Not only does the microbiome play an important part in human health, but the human microbiome 

is also a highly diverse community, constantly evolving in dynamic interactions with their host and the 

host’s environment (Theriot et al. 2014, Ursell et al. 2014, Rojo et al. 2015).   It is this vast diversity of 

the microbiome that confounds efforts to associate members of the microbiome community with effects 

on their host.  Isolating what features are relevant to a specific HMI and what features are associated with 

any of the other factors that differentiate one individual from another is a substantial challenge (Fukuda 

and Ohno 2014, Walters et al. 2014). 

Fortunately, the functional diversity of the gut microbiome is far simpler than the microbiome’s 

taxonomic variability (Turnbaugh et al. 2009a, Consortium 2012).  This suggests for a given microbiome 

functional capacity, there are a potentially wide range of community compositions that can provide the 

relevant molecular mechanisms to assemble a given HMI function.  The microbiome uses a finite set of 

molecular tools, distributed across the genomes of its members that can be arranged and re-arranged to 
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comprise a vast repertoire of HMI classes.   Thus, HMI is less dependent upon the specific identity and 

relative abundance of its community members than on emergent properties of the entire microbiome.   

The goal of Chapter 5 is to generate computational models of human HMIs that link microbiome 

community, diet, and host dysbiosis.  We hypothesize that a dysbiotic HMI is an emergent property of the 

microbiome and that community functional profiles and metabolomes will be more predictive of specific 

HMIs than community structure alone.  This aim will generate a system of predictive computational 

models that will (i) predict host dysbiosis from emergent properties of the microbiome community, (ii) 

predict microbiome community dynamics as a function of host diet parameters, and (iii) link the previous 

models in a system-sale model that will predict diet-induced dysbiosis. 

 

5.1 Background 

All of us are communities.  We are complex ecosystems that have within us entire worlds of 

organisms that interact with us, our diet, and our environment to influence our health.  Recognizing that 

humans are superorganisms, a single entity comprised of many, many interacting parts provides a unique 

insight into fighting human disease maintaining human health (Figure 5.1). 

 

 

 

Figure 5.1. Microbiome, host, and diet 

interact with one another in the human 

superorganism.  In the human ecosystem, diet and 

microbiome and host health are irrevocably linked 

into complex networks of mutual interactions.  While 

diet can influence the microbiome community 

structure, the microbiome in turn affects our ability to 

digest and derive nutrients from food.  While host 

behavior and environment has a profound influence 

on the microbiome, so too does the microbiome 

impact host health.  Understanding and disentangling 

these mutual dependencies and influences between 

microbiome, host, and diet is a principle goal of HMI 

modeling. 
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5.1.1 Host Diet Influences Host Microbiome Community Structure 

Long term changes in the host’s diet can alter the microbiome’s community structure.  For 

example, the differences in the microbiome communities between meat-eating and vegetarian humans 

mirror the differences in the microbiomes of carnivorous and herbivorous animals (Muegge et al. 2011).  

These shifts in microbiome can be explained by the different metabolic requirements of protein 

catabolism and the fermentation of carbohydrates and indicate that the microbiome community can adapt 

to the changing behaviors of the host in order to optimize nutrient acquisition from the available food 

sources.  The human microbiome can also respond to changes in the host’s diet in far shorter time spans 

(David et al. 2014a, David et al. 2014b).  Alterations in diet, in conjunction with changes in activity 

levels, can significantly alter the diversity and composition of the microbiome (Clarke et al. 2014).  The 

bacteria in our changing microbiome can colonize us from a variety of sources, from within and upon the 

foods we eat (Economou and Gousia 2015), the environments we occupy (Lax et al. 2017), and even the 

other people and animals with which we associate (Lax et al. 2014). 

 

5.1.2 Human HMI 

While diet can alter host microbiome, the microbiome has a significant influence on host health.  

The abundance of some specific strains of bacteria is associated with a dysbiotic state.  Human males with 

type 2 diabetes were found to have significantly lower abundances of the Firmicutes Clostridia and higher 

abundances of Betaproteobacteria than non-diabetic males in a different study (Larsen et al. 2010).  IBS 

is linked to decreased levels of Firmucutes and Bacteriodetes and increased levels of Proteobacteria and 

Actinobacteria with an overall higher abundance of Gram-negative bacteria (Manichanh et al. 2012, 

Kostic et al. 2014).    

 

5.1.3 Diet-Induced Dysbiosis 

When the interactions between diet, host, and microbiome are out of balance, the result can be 

diet-induced dysbiosis.  High-fat (Zhang et al. 2010), high-fat and high-sugar (Turnbaugh et al. 2009b), 
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and low fiber diets (Johansson et al. 2014, Holscher et al. 2015)  have all been previously identified as 

capable of inducing dysbiosis in a human host.  The mechanism of dysbiosis has been proposed to be due, 

in part, to increased inflammation in the host (Brown et al. 2012a, Devkota and Chang 2013). 

 

5.1.4 Investigating Human HMI 

Numerous attempts have been made to computationally link microbiome community to specific 

HMI.  Shotgun metagenomic data of gut microbiome populations were used to predict type 2 diabetes 

using a cohort of 145 64-year old European women with significant accuracy (Karlsson et al. 2013).   

However, when the same approach was used on a similar cohort of Chinese women, although type 2 

diabetes could still be predicted with similar accuracy, the metagenomic markers between European and 

Chinese cohorts were very different (Qin et al. 2012).  This supports the hypothesis that it is not the 

specific microbiome community structure itself, but rather an emergent property of the community that 

drives HMIs.  In fact, in the conclusion of a review of microbiome and metabolic disease, specific genera, 

classes, or species of bacteria cannot be positively or negatively correlated with specific HMI (Fukuda 

and Ohno 2014).  To confidently link microbiomes with HMIs, more information than microbiome 

community structure is needed. 

 

5.1.5 Key Knowledge Gaps and Innovation 

While previous modeling efforts have attempted to link metabolic models with microbiome 

community interactions and HMI mechanisms, these approaches are inherently limited and miss many of 

the most crucial HMI mechanisms.  Not all HMI interactions can be ascribed to the metabolic 

consumption and transformation of host diet-derived metabolites and few bacterial interactions are limited 

to syntrophy or completion for biomass accumulation.  Many of the HMI interaction are associated with 

the biosynthesis of compounds that interact directly with the host’s immune, endocrine, or nervous 

system (Kipanyula et al. 2013, Ridlon et al. 2013, Boesjes and Brufau 2014, Dupont 2014, Carabotti et al. 

2015, Gomez-Arango et al. 2016).  Competition for nutrients alone cannot account for many of ways that 
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bacteria interact in the gut, such as biofilm formation, antibiotic biosynthesis, predation, and quorum 

signaling (Lister et al. 2009, de Bentzmann and Plesiat 2011, Alhede et al. 2014).   

Here, we apply a statistical approach combined with machine learning to computationally-derived 

emergent properties of microbiome communities to elucidate the molecular mechanisms of HMI.  To 

accomplish this, we will consider community members, not as collections of specific sequenced genomes, 

but as a statistical distributions of genome features observed across bacterial taxonomic groupings to 

describe microbiome communities.  We will use this novel approach to describing microbiome 

communities to generate superior predictions of metagenomes and apply our metabolic modeling tool, 

PRMT, to generate metabolic models comprised of thousands of metabolites and enzymatic 

transformations.  The final result will be a complete, system-scale model of diet-induced dysbiosis HMI 

as emergent properties of the microbiome community. 

 

5.2 Outline of Experimental Approaches 

This chapter is divided into three Tasks. 

 

Task 1: Predict dysbiosis as a function of microbiome community. “Dysbiosis” is any condition in 

which perturbations to a host’s microbiome leads to a negative impact on the host’s health.  

Microbiome community structures, however, can differ vastly from host to host and over time 

within the same host, making it difficult to generalize the molecular mechanisms of host-

microbiome interaction that lead to dysbiosis.  We propose that it is not the microbiome 

community structure that is most informative of host-microbiome interaction, but rather the 

emergent properties of the microbiome community that must be considered.  A machine learning 

tool, e.g. SVM, can be used to predict host dysbiosis using from structure, enzyme function 

profile, or community metabolome data.  The model also proposes the specific enzyme activities 
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and metabolites that are predictive of host dysbiosis and provide biologically testable hypotheses 

for identifying specific molecular targets for therapeutic intervention.  

Task 2: Generate a dynamic model of microbiome community changes in response to diet.    Using 

our MAP-model for computational modeling of microbiome community structure as a function of 

environmental parameters, a significant modification to MAP-model will be created that will 

create dynamic models of microbiome communities.  Specifically, the current host’s microbiome 

community structure will be described as functions of the host’s current diet and host’s previous 

microbiome community structure.  This dynamic model will allow us to track the evolution of 

human microbiome community structure over time in response to a changing host’s diet. 

Task 3: Predict diet-induced dysbiosis for human microbiomes.  In the third task, models from Task 1 

and Task 2 will be integrated into system-scale model for predicting diet-induced dysbiosis.  This 

system-scale model will be used to predict diets that can induce dysbiosis in the host. 

 

5.2.1 Selection of a Microbiome Dataset: A Longitudinal Study of Human Microbiome Dynamics 

All Tasks in this Chapter use a common human microbiome dataset (David et al. 2014b).  In a 

2014 study of human microbiome communities, two donors (identified as ‘Donor A’ and ‘Donor B’ in the 

publication) tracked their gut microbiome community structures and recorded their diet parameters at 

nearly daily intervals for about one year (Figure 5.2).  Over the course of the study, both donors 

coincidently experienced periods of dysbiosis.  Donor A experienced dysbiosis upon international travel 

“to the developing world” and Donor B upon encountering food poisoning.  Donor A and B microbiome 

populations were significantly distinct from one another, both during ‘Healthy’ periods and during 

periods of ‘Dysbiosis’.  Further, while upon returning to a healthy, non-dysbiosis state, Donor A’s 

microbiome community returned to the same pre-travel community composition.  Alternativrly, after 

dysbiosis the microbiome community of Donor B assumed a completely different microbiome 

community structure after dysbiosis compared to the community structure before dysbiosis.  This dataset 
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provides a truly unique opportunity for microbiome modeling.  Not only are longitudinal studies of 

human subjects rare, but the fortuitous (for our purposes of modeling, anyway) experience of dysbiosis by 

both donors provides an exceptional opportunity to ask questions about the emergent properties of 

community that are associated with dysbiosis.   

 

 

Figure 5.2. Longitudinal observations from human microbiomes.  81 bacterial genera were used to 

describe human microbiome communities.  On x-axis, blue highlight indicated time points for which donor 

phenotype is ‘Healthy’, red highlights indicate ‘Dysbiosis’ microbiomes.  The change in community 

structure during periods of Dysbiosis can be seen in these figures, as well as the shift in Healthy community 

structure before and after Dysbiosis in Donor B. 

 

 

The observations in the dataset fit well with our prior expectations.  The very different population 

structurers observed here precludes dysbiosis being dependent upon the presence or absence of specific 

bacterial species.  Rather, dysbiosis HMI must be an emergent property of the community. 
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The dataset itself was generously provided by Dr. Lawrence David at the Duke Center for 

Genomics and Computational Biology. 

 

 

 

 

Figure 5.3. Outline of dysbiosis prediction approach.  (A) Microbiome community structure data 

(Figure 5.2) is collected from the David et al. manuscript.  Using the TAP-prediction approach (B) Enzyme 

Function Profiles (EFPs) are predicted from community structures (C).  Using PRMT (D), microbiome 

community metabolomes are modeled using EFPs.  Each datatype is divided into training and validation 

subsets (F).  Two methods of validation are considered by this approach: mixed donor in which training 

data is selected from both Donor A and B data, and cross-donor in which training data is taken from one 

donor and validation data is taken from the other.  Training dataset is used to train SVMs for the prediction 

of Dysbiosis microbiomes (G), and models are validated on validation subsets (H).  The ultimate goal of 

this approach is not no accurately identify Dysbiosis microbiomes, but to use the SVMs to propose the 

molecular mechanisms by which the microbiome induces dysbiosis in the host. 

 

 

5.3 Predicting Human Dysbiosis 

In the first Task, the motivation is to generate a predictive model of host dysbiosis predicted as a 

function of the microbiome community.  The selected David et al. dataset is well suited for this purpose.  

The dataset contains three distinct examples of ‘Healthy’ microbiome community structures (Donor A 

‘before and after travel’, Donor B ‘before illness’, and Donor B ‘after illness’) and two examples 
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‘Dysbiosis’ population structures (Donor A and Donor B).  The goal of this Aim is to predict host state, 

Healthy or Dysbiosis, from gut microbiome data. 

To propose the emergent properties of microbiome communities from community structure data, 

enzyme function profile data and metabolomic model data were generated.  Microbiome data was used to 

train SVM models to predict dysbiosis.  It is hypothesized that community structure should be a weak 

predictor of dysbiosis and that emergent properties of microbiome community such as microbiome 

community metabolome will be a better predictor of dysbiosis.  The overall approach taken by this Task 

is summarized in Figure 5.3.  Many of the results of this analysis have been previously published in 

(Larsen and Dai 2015). 

 

5.3.1 Data selection and Prediction of Microbiome Emergent Properties 

 From the David et al. longitudinal survey of human microbiome analysis (David et al. 2014a), a 

subset of microbiomes was selected.  From these selected microbiomes, the emergent properties of the 

microbiome communities, the EFP and metabolome, were calculated. 

 

5.3.1.1 Describe the Selected Microbiome Dataset at the Taxonomic level of Genera 

As has been done in previous microbiome analysis methods (Larsen et al. 2012a, Larsen and Dai 

2015, Larsen et al. 2015b), community structure was described at a higher taxonomic level than either 

species or OTU.   When considered at the level of OTU, the observed population structures are very 

sparse for many bacteria, with many OTUs only infrequently observed, appearing in just a few 

observations.  For this analysis, the taxonomic level of Genera was chosen for describing the population 

structure.  There were 442 to bacterial Genera identified in the initial data across all microbiomes.  For 

use in subsequent modeling steps, only the top-most 81 abundant Genera, selected to account for more 

than 99.5% of all population abundances, with the remaining bacteria comprising the final 0.05% 

abundance of the microbiome communities not incorporated into the models.  Populations community 

structures were normalized such that total population abundances always sum to 100.   



70 
 

 
 

Due to the significant imbalance between Healthy and the much less prevalent Dysbiosis 

microbiome, for modeling analysis a subset of the data was considered that represents of more balanced 

distribution between Healthy and Dysbiosis microbiomes (Table 5.1).  Microbiomes were selected from 

each category at random except for Donor B Dysbiosis.  All 7 Dysbiosis Donor B microbiomes were used 

for analysis. 

 

Table 5.1.  Microbiome class distribution for prediction of dysbiosis 

Microbiome Class 

Donor 

A 

Donor 

B 

“Healthy” (Before Dysbiosis) 15 15 

“Dysbiosis” 13 7 

“Healthy” (After Dysbiosis) 15 15 

 

 

 

5.3.1.2 Generate Enzyme Function Profiles  

Using the approach described in Chapter 3, selected microbiome community structure data was 

used to generate Enzyme Function Profiles (EFPs).  Taxonomic Average Profile (TAP) matrix was 

generated from available database of 2888 sequences and annotated genomes and 2055 unique enzyme 

functions collected from the PiCRUST database (Langille et al. 2013).  Of the 81 genera in microbiome 

community structures, 15 did not have representation at the level of genera in the set of genomes so these 

bacteria were considered at the level of order for the purpose of EFP predictions.  In total, there were 

2340 sequenced genomes with taxonomies represented in the selected microbiome dataset. 

 

5.3.1.3 Predict Microbiome Community Metabolomes 

The resulting EFPs utilized the average genomic information of the selected 81 genera to EFPs 

were used to generate metabolic models using the PRMT method, as described in Chapter 2.  A 

Secondary Metabolome was also generated with PRMT using only enzymatic reactions found in KEGG 
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Pathway 01110, “Biosynthesis of Secondary Metabolites” (http://www.genome.jp/kegg-

bin/show_pathway?map01110).  The final metabolomic model for Donor A and B microbiome 

metabolome has 2824 metabolites connected by 4284 enzymatic transformations mediated by 1897 

unique enzyme functions (Table 5.2). 

 

 

Table 5.2. Four datatypes used for predicting dysbiosis from microbiome 

Data Type 

Number 

of 

Features 

Community Structure 81 

Enzyme Function 

Profile 
2,055 

Metabolism 1,492 

Secondary Metabolism 122 

 

 

 

5.3.1.4 Comparison of Collected Microbiome Datatypes 

Analysis to this point has yielded four datatypes that can be used to train models for prediction of 

Dysbiosis from gut microbiome: Community Structure, EFP, Metabolism, and Secondary Metabolism. 

To visualize the relative degree of similarity between individual microbiomes and to determine if 

Dysbiotic microbiomes are distinct from Healthy microbiomes, Multidimensional Scaling Plots (MDS) 

were generated.  MSD Plots were generated in R and results are shown in Figure 5.4. 

 

 

 

http://www.genome.jp/kegg-bin/show_pathway?map01110
http://www.genome.jp/kegg-bin/show_pathway?map01110
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Figure 5.4. MDS Plots of human microbiome data types.  Each point in an MDS plot is a single 

observation.  Points are identified as ‘Before Dysbiosis’, ‘Dysbiosis’, and ‘After Dysbiosis’ and identified 

as being from either Donor A or Donor B. 

 

 

 

Visualization of data by MDS plots supports the expectation that dysbiosis is an emergent 

property of the microbiome.  When plotted by Genera, Healthy and Dysbiosis microbiomes do not 

separate well and the best grouping is by Donor.  For Enzyme Function Profile data, Healthy and 

Dysbiosis microbiomes more clearly form separate groups.  Metabolism and Secondary metabolism show 

the best separation between Dysbiosis and Healthy microbiome microbiomes with the best separation 

observed for the complete Metabolism datatype. 

A more quantitative approach for comparing datatypes was also considered.  The Bray-Curtis 

(BC) similarity between the average microbiome values for each datatype was calculated.  BC 

dissimilarity score is a statistical measurement from ecology that compares the relative species 

compositions from two locations.  The BC dissimilarity is calculated as: 
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𝐵𝐶 =  
∑ |𝑠𝑖𝑡𝑒1𝑖 − 𝑠𝑖𝑡𝑒2𝑖|𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑖=1

∑ 𝑠𝑖𝑡𝑒1𝑖 + 𝑠𝑖𝑡𝑒2𝑖
𝑠𝑝𝑒𝑐𝑖𝑒𝑠
𝑖=1

 
Eq. 5.1 

 

 

Where species is the number of species/counted taxa in the populations being compared and site1i and 

site2i are the abundances of the ith taxa at site1 and site2 respectively. 

 

 

 

Figure 5.5. Bray-Curtis dissimilarity between the average microbiome community datatypes.  A BC 

score of 100 indicates identical populations and a score of 0 indicated that there are no common elements 

between populations.  Values in figure a highlighted such that highest values are red and lowest values are 

green. 

 

 

 

Comparing microbiome datatypes using BC dissimilarity allows us to quantify many of the 

observations that could be inferred qualitatively from MDS plots (Figure 5.5).  Considering microbiome 

populations by their community structure, it is seen that before and after dysbiosis population for Donor 

A are very similar while for donor B, populations after dysbiosis are distinct.  By community structure, 

Donor A and Donor B Healthy populations are about as different from one another as are Healthy from 
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Dysbiosis populations.  By EFP, the populations become much more similar, supporting the hypothesis 

those populations very different by their population composition may still be highly similar by their 

functional compositions.  Most notable here, it can be seen that while Donor B’s before and after 

Dysbiosis population were distinct by taxonomic composition, they are very similar in their functional 

composition.  While microbiome populations were found to increase similarity by EFP relative to 

similarity by population structure, microbiome metabolome finds increased diversity between 

populations.  This indicates that the small differences in populations by EFP can translate into quite 

significant differences in metabolomic capacities.  By metabolome, we find that while Healthy 

microbiomes are somewhat divergent between donors, Dysbiosis microbiomes are notably more similar 

in their metabolomic capacity.  This result suggests that while there are many possible metabolomic 

functional compositions that can yield a Healthy microbiome, Dysbiosis microbiomes are quite similar to 

one another in their misery.  This result is particularly striking given that the events inciting dysbiosis in 

Donors were considerably different, i.e. international travel vs. food poisoning. 

Now that it has been established that there are differences between Dysbiosis and Healthy 

microbiomes, and the nature and degree of those differences is dependent upon the microbiome datatype 

considered, the next step in analysis is to identify which microbiome datatype features are most predictive 

for distinguishing Healthy vs. Dysbiosis microbiomes. 

 

5.3.2 Select Microbiome Features Most Predictive of Dysbiosis 

Here, the goal is to identify the microbiome features most predictive for dysbiosis.  The tool used 

for prediction in this section is SVM. 

For each of the four datatypes, features were ranked by Fisher-score.  Fisher-scores, for a given 

datatype feature i, are calculated as: 
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𝐹𝑖𝑠ℎ𝑒𝑟𝑖 =
|𝐀𝐕𝐄𝐑𝐀𝐆𝐄(𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑖) − 𝐀𝐕𝐄𝐑𝐀𝐆𝐄(𝐷𝑦𝑠𝑏𝑖𝑜𝑠𝑖𝑠𝑖)|

𝐒𝐓𝐃𝐄𝐕(𝐴𝑙𝑙𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖)
 

Eq. 5.2 

 

 

Where Fisheri is the Fisher score for feature i, AVERAGE(Healthyi) is the average value of all feature i 

from Healthy microbiomes, AVERAGE(Dysbiosisi) is the average value of all feature i from all 

Dysbiosis microbiomes, and STDEV(AllFeaturesi) is the standard deviation of feature i across all 

observations. 

SVMs were used to predict Dysbiosis class microbiomes.  A separate SVM was constructed for 

each datatype, Genera, EFP, Metabolism, and Secondary Metabolism.  As described initially in Chapter 4, 

package ‘e1071’ v1.6-1 in R-project was used to make SVMs.  SVMs used linear kernels and 10-fold 

cross validation.  SVMs were trained using the 60 Healthy and 20 Dysbiosis microbiomes (Table 5.1).  

Models were validated on the remaining microbiome data, comprised of 375 microbiomes of class 

‘Healthy’ and 22 microbiomes of class ‘Dysbiosis’. 

Subsets of datatypes were used to identify most predictive features from each datatype.  SVMs 

were trained on the top most 100, 90, 80, 70, 60, 50, 50, 30, 20, and 10% of features as ranked by Fisher 

score.  For datatypes EFP and Metabolism, additional subsets from the top 5, 2.5, 1.25, and 0.625% 

Fisher-score ranked features were also considered.  Results are reported as F-scores for each subset of 

each datatype (Figure 5.6). 

While all datatypes and subset sizes produced fairly good predictive results (F-scores > 0.75 in all 

cases), the most predictive subset for each datatype demonstrated very good predictive power for 

identifying Dysbiosis-class microbiomes from every datatype.  The most predictive subset sizes are listed 

in Table 5.3. 
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Figure 5.6.  Identifying the most predictive features for dysbiosis from multiple microbiome 

datatypes.  Four microbiome datatypes, Genera, EFP, Metabolism, and Secondary Metabolism, were 

ranked by Fisher score and SVM were trained on differently sized sets to find subset that best predicts 

Dysbisois microbiomes, where prediction is ranked by F-score.  In figure, red ‘X’s indicate the datatype 

subset that gave the highest F-score for validation microbiomes.  Values and datatype subset sizes for best 

predictions are listed in Table 5.2. 

 

 

 

Table 5.3.  Number of features in subsets most predictive for Dysbiosis 

Data Type # Features F-score 

Community Structure (Genera) 24 0.97 

EFP 380 0.95 

Metabolism 36 0.97 

Secondary Metabolism 24 0.96 

 

 

Contrary to what might have been expected from MDS plots and BC-dissimilarity scores, there is 

no difference in the predictive power of metabolome over genera for identifying Dysbiosis microbiomes.  

Based upon MDS and BC results, it may have been expected that Metabolome would be more predictive 

that Genera.  While the identified datatype subsets will be analyzed in subsequent sections to propose 

possible molecular mechanisms of dysbiosis, first the relative predictive power of different microbiome 

datatypes will be considered using a cross-donor validation approach. 
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5.3.3 Cross-Donor Validation of Dysbiosis Prediction 

We have previously proposed that dysbiosis in the human microbiome, and HMIs in general, are 

emergent properties of the microbiome population.  According to this hypothesis, it is not the abundance 

or absence of a particular bacterium that drives HMIs, but rather the results of the entire community and 

the particular set of biological functions that is manifest by the community as a whole.  The previous 

results for predicting dysbiosis from multiple microbiome datatypes appears not to support this 

hypothesis; community composition was no more and no less predictive that the emergent property of 

microbiome metabolome.  Here, we delve deeper into this observation by considering a new validation 

scheme for dysbiosis prediction: Cross-donor validation. 

In the cross-donor validation scheme, SVM predictors are trained on data from one donor and 

validated on data from the other donor.  For training data, the most predictive features of each datatype 

identified in the previous section will be used.  The same SVM parameters will be used as described in 

the previous section and predictive power of results are expressed as F-scores.  Results are summarized in 

Figure 5.7. 

Results of cross-donor validation show a range of predictive outcomes.  SVM trained on Genera 

are the least predictive with SVM trained on Donor B and validated on Donor A fairing particularly 

poorly.  This makes intuitive sense as Donor B had the most varied Healthy microbiomes, with before and 

after dysbiosis populations being very different from one another.  The emergent properties of EFP, 

Metabolome and Secondary Metabolome perform much better in the cross-donor validation approach.  In 

spite of the significant differences in observed population structure between donors, these datatypes show 

very strong abilities to predict dysbiosis in the alternate donor.  Though the absolute predictive abilities 

varies by training set and by datatype, from these results Metabolome is the most predictive datatype, 

followed by Secondary Metabolome and then Enzyme Function Profile. 

Contrary to the mixed donor data results in the previous section, here we find our main 

hypothesis well supported: dysbiosis and HMI are emergent properties of microbiome communities.  
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Population structure alone has only a poor capacity to predict an HMI type when faced with the variety of 

human microbiome communities. 

 

 

 

 

 

 

5.3.4 Enriched Metabolic Pathways in Dysbiotic Microbiomes 

While it has now been demonstrated that the emergent properties of microbiome communities can 

be effective predictors of dysbiosis, the utility of this approach as a diagnostic is of questionable value.  If 

the goal of an analysis is to identify a state of dysbiosis in human subjects, then one might imagine 

simpler observations that detailed molecular characterization of their microbiomes.  The more relevant 

value of this approach is in the identification of the predictive microbiome features of dysbiosis, for by 

using those features, the molecular mechanisms by with the microbiome can induce dysbiosis upon its 

host may be deduced. 

Figure 5.7. Cross-

donor dysbiosis 

prediction results.  Red 

‘X’s indicate the F-score 

for combined donor 

results, shown in Figure 

X and reproduced here 

to show cross-donor 

validation results in 

context of results for 

mixed-donor validation 

(from Figure X). 
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While the complete list of  specific predictive features for dysbiosis can be found in (Larsen and 

Dai 2015), simply listing those features does not provide much insight into the potential set of biological 

functions they represent.  To place the predictive features into the broader biological context, the specific 

KEGG pathways enriched for sets of dysbiosis predictive features, relative to the total features in each 

datatype was calculated.  Enrichment for a KEGG pathway for a given datatype was calculated as a 

cumulative Hypergeometric Distribution: 

 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡𝑃 = 1 −  ∑
(𝐾

𝑘
)(𝑁−𝐾

𝑖−𝑘
)

(𝑁
𝑖
)

𝑛

𝑖=1

 
Eq. 5.3 

 

 

Where EnrichmentP is the p-value for enrichment of KEGG Pathway P, N is the total number of 

microbiome features, n is the number of predictive microbiome features, K is the total number of 

microbiome features that map to KEGG pathway P, and k is the number of predictive features that map to 

KEGG pathway P. An enrichment value close to 0 indicates a significant enrichment.  A threshold of p-

value less than 0.05 was used to determine significance of KEGG pathway enrichment.  Tables of 

predictive features and enriched KEGG Pathways follow for Enzyme Function Profiles (Table 5.4), 

Metabolome (Table 5.5), and Secondary Metabolome (Table 5.6). 
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Table 5.4. Enriched pathways in most predictive community enzyme function profile features 

KEGG ID Pathway Enzyme Functions 
Enrichment 

p-Val 

map00121 
Secondary bile acid 

biosynthesis 
1.-.-.-, 4.2.1.-, 6.-.-.- 0.00E+00 

map01053 

Biosynthesis of 

siderophore group 

nonribosomal peptides 

1.3.1.28 , 3.3.2.1, 2.7.7.58, 6.3.2.- 1.08E-02 

map00540 
Lipopolysaccharide 

biosynthesis 

2.4.1.56, 2.4.-.-, 3.6.1.- , 2.7.1.-, 5.1.3.20, 

3.1.3.-, 5.-.-.-, 2.3.1.-, 6.-.-.-, 2.4.1.44 
1.65E-02 

map00904 Diterpenoid biosynthesis 1.14.11.-, 1.14.13.-, 2.3.1.- 3.06E-02 

map00053 
Ascorbate and aldarate 

metabolism 

4.2.1.42, 4.1.1.85, 4.2.1.40, 3.1.1.-, 

4.1.2.20, 3.7.1.-, 5.1.3.22, 1.1.1.122, 

1.1.1.130, 3.1.3.-, 5.1.3.4, 2.7.1.53 

3.45E-02 

map00480 Glutathione metabolism 

3.5.1.78, 3.4.11.23, 4.1.1.17, 6.3.2.3, 

1.8.1.7, 1.17.4.1, 2.5.1.18, 2.3.2.2, 

6.3.1.8 , 3.5.2.9 

3.76E-02 

map00906 Carotenoid biosynthesis 1.-.-.-, 2.5.1.-, 1.14.13.-, 5.-.-.-, 2.3.1.- 4.68E-02 
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Table 5.5. Enriched pathways in most predictive total community metabolome model features 

KEGG ID Pathway Metabolites 
Enrichment 

p-Val 

map00770 
Pantothenate and CoA 

biosynthesis 

CoA, Pantetheine 4'-phosphate, Apo- acyl-

carrier-protein   
2.86E-04 

map00561 
Glycerolipid 

metabolism 

Phosphatidate, Diglucosyl-diacylglycerol, 

Glycerophosphoglycoglycerolipid   
5.16E-04 

map00030 
Pentose phosphate 

pathway 

5-Phospho-alpha-D-ribose 1-diphosphate, 

D-Ribose 1,5-bisphosphate, 2-Dehydro-3-

deoxy-6-phospho-D-gluconate  

6.71E-04 

map00361 

Chlorocyclohexane and 

chlorobenzene 

degradation 

2-Maleylacetate, 2,4-Dichlorophenol, cis-

2-Chloro-4-carboxymethylenebut-2-en-

1,4-olide, 2-Chloromaleylacetate  

2.57E-03 

map00240 Pyrimidine metabolism 
, 5-Phospho-alpha-D-ribose 1-diphosphate, 

Thymine 
4.72E-03 

map00362 Benzoate degradation 
2,3-Dihydroxybenzoate, S-Benzoate 

coenzyme A, 2-Maleylacetate  
6.56E-03 

map00627 
Aminobenzoate 

degradation 

2,3-Dihydroxybenzoate, S-Benzoate 

coenzyme A, 2-Maleylacetate 
6.56E-03 

map01120 
Microbial metabolism 

in diverse environments 

5-Phospho-alpha-D-ribose 1-diphosphate, 

2,3-Dihydroxybenzoate, S-Benzoate 

coenzyme A, 2-Maleylacetate, 2,4-

Dichlorophenol, 5,10-

Methenyltetrahydromethanopterin, 5,10-

Methylenetetrahydromethanopterin, 2-

Dehydro-3-deoxy-6-phospho-D-gluconate, 

cis-2-Chloro-4-carboxymethylenebut-2-en-

1,4-olide, Aerobactin, Ectoine, 2-

Chloromaleylacetate, 2-Hydroxy-cis-hex-

2,4-dienoate, 4-Fluoromuconolactone, 2-

Chloro-5-methylmaleylacetate  

1.57E-02 
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Table 5.6. Enriched pathways in most predictive secondary community metabolome model features 

KEGG ID Pathway Secondary Metabolites 
Enrichment 

p-Val 

map01061 
Biosynthesis of 

phenylpropanoids 

L-Tryptophan, p-Coumaroyl-CoA, 

Coniferyl alcohol, 4-Coumarate, Caffeate, 

Ferulate, Coniferyl aldehyde, 4-

Hydroxycinnamyl aldehyde, 5-

Hydroxyferulate, 5-

Hydroxyconiferaldehyde  

7.93E-07 

map01120 

Microbial metabolism 

in diverse 

environments 

5-Phospho-alpha-D-ribose 1-diphosphate, 

2,3-Dihydroxybenzoate, S-Benzoate 

coenzyme A, 2-Maleylacetate, 2,4-

Dichlorophenol, 5,10-

Methenyltetrahydromethanopterin, 5,10-

Methylenetetrahydromethanopterin, 2-

Dehydro-3-deoxy-6-phospho-D-

gluconate, cis-2-Chloro-4-

carboxymethylenebut-2-en-1,4-olide, 

Aerobactin, Ectoine, 2-

Chloromaleylacetate, 2-Hydroxy-cis-hex-

2,4-dienoate, 4-Fluoromuconolactone, 2-

Chloro-5-methylmaleylacetate   

1.57E-02 

map00940 
Phenylpropanoid 

biosynthesis 

p-Coumaroyl-CoA, Coniferyl alcohol, 4-

Coumarate, Caffeate, Ferulate, Coniferyl 

aldehyde, 4-Hydroxycinnamyl aldehyde, 

5-Hydroxyferulate, 5-

Hydroxyconiferaldehyde, 5-

Hydroxyconiferyl alcohol, N1,N5,N10-

Tri- hydroxyferuloyl -spermidine   

1.47E-06 

map04974 
Protein digestion and 

absorption 
L-Tryptophan, L-Leucine, Tyramine   1.26E-02 

 

 

Interestingly, although each of the datatypes for Enzyme Function Profile, Metabolome, and 

Secondary Metabolome have very similar predictive abilities by F-score (Figure 5.7), each datatype 

proposes an entirely different set of enriched pathways.  When combined, the three datatypes generate a 

more system-scale picture of the molecular mechanisms of host dysbiosis, proposing several putative 

molecular mechanisms by which the microbiome induces dysbiosis in its host. 
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5.3.5 Predict Molecular Mechanisms of Dysbiosis 

 From the sets of enriched pathways in the lists of features predictive for dysbiosis, it is possible to 

draw a number of possible hypotheses for the molecular mechanisms of dysbiosis. 

 

5.3.5.1 Vitamin Metabolism is Altered in the Dysbiotic Metabolome 

Disruption is the biosynthesis of vitamins that are important to the host is one of the mechanism 

proposed by which host dysbiosis occurs (Ursell et al. 2014, Yoon et al. 2015).  Vitamin-associated 

KEGG Pathways for “Pantothenate and Co biosynthesis” (vitamin B) (Table 5.5), “Ascorbate and 

aldarate metabolism” (vitamin C) (Table 5.4), and “Carotenoid biosynthesis” (antioxidants) (Table 5.4) 

are all enriched in the dysbiotic microbiome. 

 

5.3.5.2 Dysbiosis Affects Host’s Digestion 

One mechanism of dysbiosis that appears in these results is a disruption in the host’s ability to 

digest or extract nutrients from food.  Enriched KEGG pathways “Biosynthesis of phenylpropanoids”, 

“Phenylpropanoid biosynthesis” (Russell et al. 2013) (Table 5.6), and “Protein digestion and absorption” 

(Table 5.6), and metabolites putrescine and spermidine (Table 4) implicate changes in the capacity to 

digest proteins in dysbiosis (Larque et al. 2007).  Likewise, enrichment for the pathways “Glycerolipid 

metabolism” (Table 5.5) and “Secondary bile acid biosynthesis” (Table 5.4) indicate that the capacity to 

digest fatty acids is affected.  Secondary bile acids is a particularly provoking observation as are 

secondary bile acids are those that result directly from bacterial metabolic activities on primary, host-

synthesized bile acids. 

 

5.3.5.3 Dysbiosis is Associated for Markers of Bacterial Virulence 

The enriched KEGG pathway for “Biosynthesis of siderophore group nonribosomal peptides” 

(Table 5.4) suggests the importance of bacterial virulence factors in causing dysbiosis (Oves-Costales et 
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al. 2009, Garenaux et al. 2011).  The enriched KEGG pathways “Aminobenzoate degradation “and 

“Benzoate degradation” (Table 5.5) are implicated in IBS (Rossi et al. 2011, Rooks et al. 2014). 

 

5.3.6 Summary of Results 

Linking HMIs to microbiome community structures is confounded by the native variability of the 

human microbiome.  Here, we show that through emergent properties of the microbiome derived from 

metagenome predictions and metabolome modeling, the HMI type Dysbiosis can be effectively predicted 

from microbiome community structure.  More importantly, these predictions provide insight into the 

putative mechanisms of dysbiosis, potentially pointed the way to microbiome-based therapies to protect 

patients from the consequences of dysbiosis.  Disruption of vitamin biosynthesis, protein and fatty acid 

digestion, and known virulence have been identified here as potential molecular mechanisms of dysbiosis 

in the human microbiome.  These predictions are well supported by previously publications, lending 

credibility to these results. 

Predictions of human dysbiosis, however, is the result of the analysis of only two individuals.  

While this is a necessary consequence of the limited availability of human longitudinal microbiome data, 

it is not clear that these results can be generalized beyond the individuals in this experimental dataset.  

Directly addressing these concerns, Chapter 6 utilizes microbiome data collected laboratory model of 

HMI that enables microbiome studies with far greater biological replication. 

 

 

5.4 Model a Dynamic Microbiome Population as Function of the Host’s Diet 

The gut microbiome changes in response to host diet, identifying a potential method that can be 

used to deliberately manipulate the microbiome into a desired community structure (Varankovich et al. 

2015, Cockburn and Koropatkin 2016) .  Here, we used the David et al. microbiome data (David et al. 

2014a) to generate a dynamic computational model of gut microbiome community structure as a function 

of host diet. 
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An opportunity to make a significant improvement in the MAP-model for predicting microbiome 

community structures as a function of environmental parameters is exploited in the current analysis.  In 

previous application of the MAP-models (Larsen et al. 2012a, Larsen et al. 2015b), the predicted 

microbiome community structure was a function of that time point’s environmental parameters.  This is 

appropriate in marine environments, where the current continuously renews the environment or in soil 

microbiomes that are sampled only infrequently.  The longitudinal nature of the available David et al. 

microbiome data however makes it possible to create a dynamic MAP-model, which is significantly 

distinct from previously published models.  In the dynamic MAP-model, all bacterial abundances are 

calculated as a function of diet parameters at the current time pont and the population structure at the prior 

time point.  This creates a predictive model of microbiome community structure that evolves over time as 

the previous population structure is able to inform the population structure of the subsequent time point in 

response to a changing host diet. 

 In this Task, there are three principle steps: (i) define longitudinal human microbiome community 

structure at level of Order, (ii) generate a CIN from microbiome community structure and host’s diet, and 

(iii) use the CIN as the scaffold for a dynamic MAP-model of human microbiome community in response 

to changes in the host’s diet. 

 

5.4.1 Microbiome Data Selection and Data Pre-Processing 

Again, we turn to the David et al. microbiome dataset (David et al. 2014a) as a valuable source of 

longitudinal microbiome community data.  For this analysis, we restrict ourselves to the provided Donor 

A microbiome and diet parameters.  Donor B is less appropriate for this analysis for several reasons: there 

are far few available data points for Donor B for which both microbiome community and diet parameters 

are available and the significant discontinuity in Donor B’s microbiome community structure after 

Dysbiosis period makes diet manifestly a less important contributor to community structure dynamics in 

this dataset. 
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There are 140 Healthy-state microbiomes for Donor A that have accompanying diet parameters.  

For this model, we considered the population structure at the taxonomic level of Order.  Of the 68 

taxonomic orders detected in the dataset, only the 20 most abundant Orders, accounting for over 99.5% of 

the bacterial population, are used in the model (Table 5.7).  The 48 Orders comprising the remaining 

0.05% of population abundance were discarded for the remainder of this analysis.  Population abundances 

for each observation were normalized to sum to 100 and values were log2 transformed (Figure 5.8). 

To describe host diet, there are 10 available parameters: calcium, carbohydrates, cholesterol, fat, fiber, 

protein, saturated fats, sodium, and sugar (Table 5.7).  Units of diet parameters were not provided with 

lists of nutrient parameters and all measurements were normalized to arbitrary values between 20 and 80 

(Figure 5.8).  

 

 

Table 5.7. Taxonomic identification of microbiome community structure 

Order 

Number 

of 

Genomes 

Brief Description 

Actinomycetales 191 

Actinomycetales are gram positive bacteria with 

complex cell wall structures.  Many species of 

Actinomycetes produce antimicrobial compounds. 

Bacteroidales 81 Uncultured bacteria found in animals. 

Bifidobacteriales 40 

Bifidobacterium are gram-positive, non-motile, 

anaerobes found in the human gut, vagina, and oral 

cavity.  Bifidobacteria are sometimes used as 

probiotics. 

Burkholderiales 118 
Burkholderiales is an Order of Gram-negative 

bacteria that includes several pathogens. 

Campylobacterales 81 
The Campylobacterales are gram-negative 

microaerophiles. 

Caulobacterales 10 Caulobacteraceae are gram-negative bacteria. 

Clostridiales 166 
Clostridiales are Gram-positive bacteria commonly 

found in healthy guts.  
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Coriobacteriales 15 

Coriobacteriales commonly found in healthy gut 

microbiomes and are present at low abundance in 

IBS. 

Desulfovibrionales 14 

The Desulfovibrionales are Gram-negative obligate 

anaerobes.  The majority of .Desulfovibrionales 

reduce sulfur. 

Enterobacteriales 234 

The Enterobacteriales are Gram-negative facultative 

anaerobes. It is frequently found on human skin, 

where it is 400% more abundant in females than 

males. 

Erysipelotrichales 10 

The Erysipelotrichia are commonly found in the 

human gut microbiome and increase in abundance 

with a high-fat diet. 

Fusobacteriales 18 

Fusobacteriales are obligate anaerobes found in in 

the microbiomes for human gut, lungs, mouth, and 

urinary tract. They are in low abundance in the gut 

microbiome in Crohn’s Disease. 

Lactobacillales 307 

Lactobacillales are Gram-positive, acid-tolerant 

bacteria that produce lactic acid as the major 

metabolic end product of carbohydrate fermentation. 

MIZ46 0 An uncharacterized bacteria. 

Pasteurellales 52 

Pasteurellales are Gram-negative bacteria 

commonly found in the gut.  A few can be 

pathogens. 

Pseudomonadales 65 
The Pseudomonadales are common in soils and a 

few are opportunistic pathogens. 

Rhizobiales 105 
The Rhizobiales are an order of Gram-negative 

Alphaproteobacteria. 

Rhodospirillales 23 
The Rhodospirillales produce acetic acid during 

respiration. 

Erysipelotrichales 10 

Erysipelotrichia are common in the gut microbiome, 

and are found at higher abundance in response to a 

high-fat diet. 

Xanthomonadales 26 
The Xanthomonadales are gram negative obligate 

aerobes. 

 

Bacterial information collected from the NCBI Taxonomy Browser 

(https://www.ncbi.nlm.nih.gov/taxonomy)  
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Table 5.8. Diet parameters is Human longitudinal microbiome data 

Human Diet Parameters 

Calcium 

Calorie 

Carbohydrate 

Cholesterol 

Fat 

Fiber 

Protein 

Saturated Fat 

Sodium 

Sugar 

 

 

 

 

 

Figure 5.8. Diet and Order-level microbiome community structure for Donor A.   
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5.4.2 Dynamic MAP-Model for Prediction of Microbiome Community Structure Changes in Response 

to Host Diet 

There are two steps to generating an MAP-model for predicting a microbial population structure 

from environmental or microbiome-host interactions, as has been previously presented in detail in 

Chapter 3.  The first step is to generate a community interaction network, using DBN.  The second step is 

to use that network as the architecture for a system of equations that determines the abundance of a 

bacterial taxon as a function of the environmental parameters and other bacterial taxa that are its parents 

in the community interaction network. 

 

5.4.2.1 Generate a Community Interaction Network 

Normalized and log-transformed community structure data and normalized diet parameters were 

used to generate an environmental interaction network to identify the possible relationships between taxa 

and between taxa and host diet in the human microbiome.  A CIN was generated as a DBN using BANJO.  

BANJO, a freely available tool for generating Bayesian Networks (Smith et al. 2006) 

(https://users.cs.duke.edu/~amink/software/banjo/), was run using the following parameters: ‘Greedy’ 

searcher, discretization policy of 5 integer values, and a maximum of five parents per node.  In addition to 

input parameters, Diet Parameter nodes were not allowed to have parents in the final network, requiring 

that diet parameters are always root nodes of the final network and current time point taxa nodes could 

only have parents from the previous time point’s taxa.  The complete set of BANJO parameters are listed 

in Appendix B.  The final network is shown in Figure 5.9.  In the calculated network, all taxa are 

included but the diet parameters carbohydrates and protein are not found in the final network.  In the 

community interaction network, the diet features of fiber, saturated fats, and sodium are the dietary 

parameters that have the largest effects, i.e. have the highest connectivity, on microbiome community 

structure in this individual.   
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5.4.2.2 Generate MAP Model 

The CIN generated in the previous section was used to describe the community interaction 

network as a system of equations such that the value of every node is a function of the value of its parent 

nodes.  The complete CIN network is found in Appendix C.  Equations were generated using an Machine 

Intelligence (MI) evolutionary algorithm for finding the best non-linear equations to fit a dataset 

(‘Eureqa’ v 1.2), over 4.2 billion possible solutions were searched to identify the set of mathematic 

equations that best describe microbiome population structure as a function of current time step’s diet and 

previous time step’s population structure.  All MAP-model equations are found in Appendix D. 

 

 

 

 

 

Figure 5.9. MAP-model of human 

microbiome population structure, 

predicted as a function of diet 

parameters.  (A) The DBN for community 

interaction of a gut microbiome identifies how 

diet parameters and relative abundance of 

microbial taxa drive changes in the gut 

microbiome population profile.  In this network, 

top nodes are diet parameters (diamonds), and 

all other nodes are microbial taxa (circles).  

Nodes for taxa are sized proportionately to their 

average abundance across all Donor A 

microbiomes.  Diet parameters (Calories, Sugar, 

Cholesterol, Fat, Saturated Fat, Fiber, Sodium, 

and Calcium) were taken from David et al and 

taxa abundance were considered at the level of 

Order.  Edges between nodes are predicted 

relationships between taxa and diet or between 

taxa and other taxa.  This network can be used as 

the basis of an MAP-model, in which the value 

of any taxa node is described as a function of the 

values of its parent diet or taxa nodes.   
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Using the data generated in (David et al. 2014) and our MAP-modeling approach, predicted 

microbiome community structures significantly correlate with observed microbiome (p-value less than 

0.00001, determined by 10,000-iteration bootstrap analysis of results) (Figure 5.10).   While this 

prediction appears strong, the microbiome community structures under investigation are relatively stable 

over the course of these observations.  To make sure that the correlation is due to successful application 

of modeling procedure and not a function of the relative consistency of population structure across 

observations, computational results were also compared to an ‘average-abundance model’.  In the average 

abundance model, the relative abundance of a taxa for any observation is predicted to be equal to the 

average of observations across all time points.  MAP-model prediction is also superior to the average 

abundance model (p-value 0.00003, determined by 10,000-iteration bootstrap analysis). 

 

 

 

Figure 5.10. Predicted microbiome community structures significant correlates with observed 

community structures.  Note that correlation drops when Donor experiences dysbiosis (about one third of 

the way through series).  This indicated that while dynamic MAP-models can be used to predict microbiome 

from diet, some environmental perturbations are not included in this model. 

 

 

5.4.3 Summary of Results 

Analysis of the CIN finds that that fiber, sugar, and sodium are the most important drivers of gut 

microbiome community structure in this dataset for Donor A.  Fiber is well known as being crucial to 
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influencing the gut microbiome and promotion of positive gut HMIs (Blaut 2002, Lesmes et al. 2008, 

Shen et al. 2012).  Likewise, dietary sugars have been reported in the prior literature as having a profound 

influence of microbiome community (Beards et al. 2010, Arora et al. 2012, Shen et al. 2013).  The 

prediction that sodium is a strong driver of microbiome community structure is more intriguing in this 

context.  Sodium is not generally reported as having a strong influence on microbiome.  In a 2012 survey 

of 37 microbiologists with research interests in the effects of diet, disease, and metabolism on 

microbiomes (http://humanfoodproject.com/guts-germs-and-meals-what-37-microbiologist-say-about-

diet/), sodium was ranked low (3.6 of an scale of 1 to 10) in its perceived relevance to microbiomes.  

Sodium, however, is never present in diet simply as sodium ions, so a question presents itself from these 

results: What food components are most likely to co-occur with the presence of sodium in the diet?  

While it is unlikely that sodium itself has a strong influence of microbiome community structure, food 

preservatives that contain sodium (Table 5.9) are known to have a significant effect on the microbiome 

(McKnight et al. 1999, Chassaing et al. 2015, Lennerz et al. 2015).  We propose that it is not sodium in 

this model that is has a strong influence of microbiome community; rather we hypothesize that it is 

sodium-containing food preservatives that alter microbiome community composition. 

  

http://humanfoodproject.com/guts-germs-and-meals-what-37-microbiologist-say-about-diet/
http://humanfoodproject.com/guts-germs-and-meals-what-37-microbiologist-say-about-diet/
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Table 5.9.  Food preservatives that contain sodium 

Compound Name Food to Which the Compound Is Added 

Sodium acetate Baked goods, seafood 

Sodium benzoate Beverages, fermented vegetables, jams, fruit 

fillings, salad dressings 

Sodium propionate Cheese, baked goods 

Sodium diacetate Condiments 

Sodium nitrate Cured meats 

Sodium sulfite Fruit and vegetable products, seafood 

Sodium ascorbate Meat products 

Sodium lactate Meat products 

Sodium phosphates Meat products, cheese, puddings or custards 

Sodium erythorbate Meat, soft drinks 

Disodium 

ethylenediaminetetraacetic acid 

(EDTA) 

Salad dressing, mayonnaise, canned seafood, 

fruit fillings 

Sodium dehydroacetate Squash 

 

A list of sodium-containing food preservatives, taken from (Doyle and Beuchat 2001). 

 

 

 

5.5. Modeling Diet-induced Dysbiosis 

The host’s diet influences microbiome community structure, and microbiome community can in 

turn cause dysbiosis in the host.  Here, we will combine the models built in Task 1 and Task 2 to predict a 

microbiome community structure that is a consequence of diet, and then predict whether or not that 

microbiome community will result in dysbiosis of the host.  While there is no opportunity to follow up 

predictions of diet-induced dysbiosis with experimental data, it is possible to determine if diets that lead 

to dysbiosis in the model are supported by the available literature.  If the model of diet-induced dysbiosis 

matches well with biological expectation, then we can be confident that the system-scale model of human 

microbiome is truly extrapolative as well as predictive and that the computational model has captured 

some key biological elements that underlie HMIs. 
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Here, we combined MAP-model and SVM for prediction of host dysbiosis from microbiome 

metabolome models.  The complete system-scale modeling approach is summarized in Figure 5.11. 

 

 

 

 

 

 

Figure 5.11. Summary of system-scale model for diet-induced dysbiosis. The model accepts as input a 

stating microbiome community structure and a set of diet parameters.  Using the dynamic MAP-model 

approach, the system-scale model predicts the change in microbiome community structure after n days on 

the proposed diet.  The resultant microbiome community is used to generate a prediction of the community 

enzyme function profile and a community metabolome model.  The community metabolome is used as 

input to an SVM for prediction of host dysbiosis. 

  

 

5.5.1 Data Selection and Preprocessing 

Again, for this Task we return to the David et al. longitudinal microbiome data for Donor A, 

using diet parameter data and community structure data as the taxonomic level of Order.   

 

5.5.1.1 Non-Independent Diet Parameters: Calories and Carbohydrates 

In the set of diet parameters provided by the David et al. study, not all parameters are independent 

of one another.  Calories, for example, is an aggregate measurement derived from a combination of 
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parameters such as dietary sugars, fats, and proteins.  Total carbohydrates are likewise a combination of 

the amounts of sugar and fiber in the diet.  While parameters such as calories might ordinarily be 

estimated as a mathematical function of the known caloric content of the other diet parameters (e.g. 

dietary sugar, fats, and protein content), the lack of available unit measurements in the provided data 

make this problematic.  The solution chosen here was to use the available dietary data and solve a set of 

equations such that calories is a function of all other diet parameters and carbohydrates in a function of 

sugar and fiber. An MI approach was used to determine the best equations to fit observed data, using the 

same parameters as utilized above. 

The identified equations were: 

 

 

Calories = 0.7763 * carbohydrate + 0.0001354 * cholesterol * fat * protein Eq. 5.4 

Carbohydrate = 0.65 * sugar + 0.271 * fiber Eq. 5.5 

 

 

Predicted calorie parameters correlates with reported calories with PCC of 0.910.  Predicted 

carbohydrate parameter correlates with reported carbohydrate with a PCC of 0.762. 

 

 

5.5.2 Predict new Microbiome Communities for Hypothetical Diets 

There are three steps for predicting microbiome communities from hypothetical diets: (i) use 

MAP-model to predict microbiome community structure from diet parameters, (ii) use TAP-predict 

method to estimate EFP from community structure, and (iii) use PRMT to predict microbiome community 

metabolomes from EFPs.   
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5.5.2.1 Predict Microbiome Community Structures: MAP-model 

Using the dynamic MAP-model for microbiome community structure prediction as a function, the 

response of microbiome community to a variety of hypothetical diet conditions was determined.  The 

starting microbiome community structure for all diets was taken from the Day 1 observed microbiome 

community parameters for Donor A.  A total of 80 diets were considered.  Diet parameters for calcium, 

cholesterol, fat, fiber, protein, saturated fat, sodium, and sugar were set to values between 10 and 100 

units, in intervals of 10 units, with all other parameters set equal to the average of all diet parameters for 

Donor A.  Diet parameters for carbohydrates and calories were determined as a function of all other diet 

parameters using equations described in previous section (Eqs. 5.4 and 5.5).  The MAP-model 

constructed earlier in this chapter was used to determine microbiome population community structures 

after modeling 14 days on new diet.  Fourteen days was empirically determined to be enough time-steps 

for microbiome population to achieve a new stable structure in response to diet change.  New population 

structures are found in Appendix and are shown in Figure 5.12. 

 

 

 

 

Figure 5.12.  Microbiome community structures predicted for 80 hypothetical diet conditions.  

Population composition is presented as the log2 of relative percent population abundances.  Data is 

hierarchically clustered by population composition, using Euclidian distances. 
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From Figure 5.12, it is observed that Pateurellales abundance is increased with increasing fat, 

fiber, and sugar in diet.  Pseudomondalaes and Actinomycetales are increased in diets very low in sugar.  

Erysipelotrichales and Bifidobacterales are increased in diets low in calcium and Bifidobacterales are 

increased in high fiber diets. 

In addition to the 80 microbiome community structures generated here, we also incorporated 75 

observed Order-level population structures from Donor A: 35 from Dysbiosis and 40 from Healthy 

(divided evenly between pre- and post-dysbiosis) microbiomes.  This subset of observed data will be 

carried through the subsequent analysis steps described below and will serve as the training data for SVM 

prediction of dysbiosis from microbiome community metabolome data. 

 

5.5.2.2 Predict Microbiome EFPs: TAP-prediction 

Previously in Chapter 5, EFPs were predicted from genus-level taxonomic descriptions of 

microbiome community structure data.  Here, we have used the same approach, applied to the same set of 

Order-level population descriptions as was used in the dynamic MAP-model of microbiome community.   

An Order-level TAP-matrix was generated for the 20 Orders present in the microbiome MAP-

model.  A total of 1556 genomes belonging to the orders were available for generating the TAP-matrix 

(Table 5.7).  No genomes were available for reported bacterium “MIZ46”, so for TAP-matrix, the 

average of the 1331 remaining annotated genomes was used to calculate the average and standard 

deviations for enzyme function abundances in MIZ46.  The resulting EFPs were comprised of 1901 

unique enzyme functions. 

 

5.5.2.3 Predict Microbiome Community Metabolomes: PRMT 

Using the EFPs generated in the previous section, metabolic models were constructed using 

PRMT approach for the 80 hypothetical diet microbiomes and for the 75 observed Donor A microbiomes, 

as initially described in Chapter 3.  The predicted CIN had 4370 metabolic interactions between 2864 

metabolites mediated by 1305 unique enzyme functions.  The metabolites identified as most predictive for 
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dysbiosis earlier in this chapter were all represented in the order-level community metabolic model 

(Figure 5.13). 

 

 

 

 

Figure 5.13. Metabolic models (PRMT) for microbiome communities derived from hypothetical host 

diet conditions.  In this figure, only the metabolites previously identified at predictive for dysbiosis are 

shown.  While also calculated, the metabolome of selected 75 observed Dysbiotic and Healthy Donor A 

microbiomes are not pictured here. 

 

 

 

5.5.3 Predict Diet-Induced Dysbiosis Using SVM 

With the metabolic model data generated in the previous section, SVM models will be generated 

to predict which, if any, of the hypothetical diets cause diet-induced dysbiosis in the host.  For training 

models, only those metabolites previously identified as most predictive of host dysbiosis (23 metabolites, 

Table 5.6) will be used. 

SVM models were trained using observed Donor A microbiome data (40 Healthy and 25 

Dysbiosis microbiomes, as described above) using the same parameters as described in previous sections.  

SVM trained on observed microbiome data was used to predict which of the hypothetical diet-derived 

microbiomes are dysbiotic (Table 5.10). 
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Table 5.10. Computational model predicts that 14 days of low carbohydrate or high fat diets induce 

dysbiosis in host  

  

  10 20 30 40 50 60 70 80 90 100 

D
ie

t 
P

a
ra

m
et

er
 

Calcium N N N N N N N N N N 

Cholesterol N N N N N N N N N N 

Fat N N N N N N N N D D 

Fiber D N N N N N N N N N 

Protein N N N N N N N N N N 

Saturated 

Fat N N N N N N N N N N 

Sodium N N N N N N N N N N 

Sugar D N N N N N N N N N 

 

The changes in microbiome community structure in response to 14 days on different diets were calculated.  

In novel diet conditions, one diet parameter was set to a value between 10 and 100 while all other diet 

parameters were set to a value equal to the average diet parameter across all observations.  For each resulting 

microbiome community structure, EFP and Metabolome were determined.  Host dysbiosis was predicted 

from microbiome metabolome.  In these predictions, a diet low in fiber, low sugar, and high fat induced 

dysbiosis in host.  Diet conditions resulting in dysbiosis are ‘D’s highlighted with red text and light red 

backgrounds and non-dysbiosis microbiomes are ‘N’.  Diet conditions that approximate observed average 

diet conditions are highlighted in blue text. 

 

 

5.5.4 Summary of Results  

Two different diet conditions are linked to dysbiosis in this predictive model: diets high in fat and 

diets low in the carbohydrates sugar and fiber.  This matches well with prior observations and a diet high 

in fat is reliably associated with dysbiosis (Schulz et al. 2014, Murphy et al. 2015, Camilleri 2016, Zhang 

and Yang 2016).  Low fiber intake is also associated with dysbiosis in this prediction.  This too matches 

well with expectations.  Diets very low in sugar were predicted to induce host dysbiosis, which seems less 

intuitive, but is a prediction that actually also fits quite well with prior published observations.  While a 

diet low in sugar (specifically, low relative to the typical ‘Western’ diet) undoubtedly has health benefits 

to a human host, starving the gut microbiome for fermentable sugars decreases microbiome diversity 
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(Beards et al. 2010, Arora et al. 2012, Shen et al. 2012).  In the model generated here, we propose that the 

predicted link between very low sugar diets and dysbiosis is due to this reduction in diversity. 

One of the opportunities that derive from this analysis is to compare TAP-predictions for 

microbiome communities described at the level of order and ant the level of genus.  One relevant question 

is how similar are the EFPs for the same populations where predicted from different taxonomic levels.  

For the 75 microbiome community microbiomes selected for analysis, the average PCC between order 

and genus-level EFP predictions is 0.872.  This is a good correlation, but these results indicate that EFPs 

generated for the same microbiome communities are not identical when they are predicted from different 

taxonomic-level descriptions of population structure.  If there was a known metagenome for these 

communities, then the question could be asked, which EFP is a closer to the biological observation.  

Unfortunately, for this dataset there is no metagenomic data available.  However, this question will be 

explicitly addressed in Chapter 6, using gnotobiotic mouse microbiome data. 
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6. GENERATING A SYSTEM-SCALE MODEL OF A MOUSE OBESITY HOST-MICROBIOME 

INTERACTIONS 

 

 

While the importance of the microbiome to human health is undeniable, the opportunity to 

analyze the human microbiome in situ is fraught with difficulty.  Humans are genetically diverse, 

influencing their predisposition to diseases, and the way they interact with their microbiome.  They also 

encounter a wide variety of environments and other humans, making their microbiomes a continually 

evolving, dynamic community.  This mutability makes it difficult to peel back the layers of interactions 

and identify the specific role the microbiome plays in a given human’s phenotype.  A powerful laboratory 

system that enables hypothesis-driven experiments on the interactions between host, microbiome, and 

environment is the gnotobiotic mouse.  Gnotobiotic mice, from ‘gnostos’ meaning known and ‘bios’ 

meaning life, are laboratory animals with a completely characterized microbiomes and therefore are ideal 

for laboratory experiments linking microbiome to host phenotype. 

Previous chapters have used available data to predict HMI interactions, but all prior efforts in this 

study have come up against the same limitations: the availability of data and the opportunity to validate 

model predictions in a controlled laboratory environment.  Both the Pseudomonas-host interaction and 

human microbiome studies have been observational in nature and did not include experimentally 

manipulated parameters. 

In this Chapter, the analysis methods developed in previous chapters will be leveraged for the 

analysis of a set of gnotobiotic laboratory animal studies of HMI mechanisms.  New analyses will 

explicitly address the weaknesses identified in previous chapters.  Multiple datatypes and data sources 

will be utilized to generate an integrated system of computational models to link host diet, microbiome 

functional capacity, and host phenotype for an investigation into the microbiome’s role in host obesity.  
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Results will be applied to predicting specific diet approaches for reducing host propensity to obesity as a 

function of microbiome community structure. 

 

6.1 Background 

From a 2014 study, over a quarter of the world’s population is overweight and over 8% are obese 

(Sonnenburg and Backhed 2016).  Obesity results in a significantly increased risk in mortality (Figure 

6.1) (Global et al. 2016), and obesity is associated with elevated risk for serious health conditions such as 

hypertension, type 2 diabetes, heart disease, stroke, osteoarthritis, and some cancers (Consortia 1998, 

Kasen et al. 2008, Bhaskaran et al. 2014, Ryan and Heaner 2014).   In estimates from 2008, obesity-

related medical costs were $147 billion in the U.S. (Finkelstein et al. 2009), with an additional $3.38 to 

$6.38 billion in lost productivity.  It has been predicted that by 2030 obesity-related medical costs in the 

U.S. could rise by an additional $48 to $66 billion per year (Wang et al. 2011).  Even a small reduction in 

obesity in the U.S. could lead to billions in reduced medical costs and prevent tens of thousands of 

premature deaths. 

 

 

 

 

Figure 6.1. Risk of 

mortality increases with 

BMI.  Increased risk of 

mortality is calculated 

relative to a BMI of 25 

kg/m3, considered to be a 

healthy weight 
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6.1.1 The Microbiome and Obesity 

The microbiome is known to play a significant role in obesity.  Understanding the relationship 

between obesity and the microbiome will be a powerful tool for combating obesity in the U.S. and around 

the world.    In a meta-analysis of microbiome obesity association studies collected by (Walters et al. 

2014), the bacterial taxa in microbiomes associated with obesity were compiled from multiple studies 

(Table 6.1).  The most salient feature of this table is that no result in which a bacterial taxa was identified 

as obesity-related has been duplicated in an alternate study and in one case, the same bacteria has been 

associated with both lean and obese microbiomes in different studies.  One previously reported common 

feature to most studies is that the relative abundances of Bacteroidetes are decreased and Fimicutes are 

increased in the microbiome of obese individuals (Turnbaugh et al. 2009a, Walters et al. 2014).  

However, even this commonly held view has been questioned by other experimental observations 

(Duncan et al. 2008, Schwiertz et al. 2010).  

The summary of microbiome analyses indicates that obesity markers in the microbiome have 

highly multivariate features that may be dependent upon a wide range of factors not explicitly controlled 

in these studies of human subjects.  It may not be achievable to assemble a sufficient body of human 

microbiome data available for analysis due to the tremendous inherent variability in the human 

populations and the great many factors that contribute to obesity.  In order to address the questions of how 

the microbiome predisposes a host to obesity, it is necessary to turn to experimental animal models. 
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Table 6.1. Bacterial taxa that have been linked to obesity by previously published analyses 

Taxa Inc Dec References 

Actinobacteria      

 Bifidobacterium (genus)   + (Schwiertz et al. 2010) 

  Bifidobacterium animalis   + (Brandt and Aroniadis 2013) 

Euryarchaeota      

 Methanobrevibacter smithii + + (Schwiertz et al. 2010, Patil et al. 2012) 

Firmicutes      

 Oscillospira [sp]   + (Tims et al. 2013) 

 Clostridium cluster XIVa +   (Verdam et al. 2013) 

  Roseburia intestinalis +   (Tims et al. 2013, Verdam et al. 2013) 

  Eubacterium rectale +   

(Furet et al. 2010, Ferrer et al. 2013, Tims et al. 

2013) 

 Faecalibacterium prausnitzii   + (Furet et al. 2010, Verdam et al. 2013) 

 Lactobacillus (genus) +   (Collado et al. 2007, Bervoets et al. 2013) 

  Lactobacillus casei/paracasei   + (Brandt and Aroniadis 2013) 

  Lactobacillus reuteri +   (Brandt and Aroniadis 2013) 

Bacteroidetes      

 Bacteroides (genus) +   (Patil et al. 2012, Tims et al. 2013) 

  Bacteroides vulgates   + (Bervoets et al. 2013, Verdam et al. 2013) 

  Bacteroides uniforms   + (Verdam et al. 2013) 

 Alistipes (genus)   + (Verdam et al. 2013) 

Cells are highlighted in red if bacteria listed in left column has been associated with an Increase (“Inc”) or 

Decrease (“Dec”) in abundance in obesity according the to references in the right column.  Note that is no 

case has a link between a change in bacterial taxa abundance and host obesity been replicated consistently 

across studies. 

 

 

6.1.2 Gnotobiotic Animal Models for Studying HMIs 

A significant difficulty in the analysis of human HMIs is the great diversity of the human 

microbiome.  Another is the ethical barriers preventing experimental manipulation of human subjects that 

would enable hypothesis-driven laboratory experiments in HMI.  To overcome these difficulties, we turn 

to gnotobiotic laboratory animal models.  Gnotobiotics is the use of animal models where the microbiome 

community is either completely known or else tightly controlled (Ward and Trexler 1958). 
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A variety of host-microbiome systems have been used to identify correlations between 

abundances of specific microbiome taxa and host phenotype and to molecular mechanisms of HMIs 

(Kostic et al. 2013).  The Hawaiian bobtailed squid, for example, is a well-studied HMI in which the host 

squid actively acquire V. fisheri, a luminescent bacterium, from their environment and cultivate that 

bacteria in special light organs within the squid (Nyholm et al. 2000, Nyholm and McFall-Ngai 2003, 

2004).  Drosophila melanogaster, the fruit fly and reliable laboratory model animal, has been used to 

study the role of their comparatively simple microbiomes on microbial parthenogenesis and effect on host 

innate immunity (Dionne and Schneider 2008, O'Callaghan and Vergunst 2010).  While zebrafish have 

been used as a model of vertebrate HMIs (McFall-Ngai 2007, Maynard et al. 2012), a more common tool 

for laboratory models of HMI is the mouse (Spor et al. 2011, Walters et al. 2014).  

The use of the mouse model has many significant advantages (Bouskill et al. 2011).  The set of 

available genetic tools for mouse genome manipulation and the range of available genotypes and 

phenotypes of laboratory mouse make this animal model highly appealing for hypothesis-driven 

experiments.  The mouse model also comes with a deep background in murine immunology, genetics, and 

gastroenterology owing to its long and common use in scientific and medical research.  Previously 

published experiments have shown that microbiome communities collected from human donors can be 

successfully transplanted into germ-free mice and that the microbiome community is capable of 

establishing itself in its new host (Turnbaugh et al. 2006, Yi and Li 2012, Kostic et al. 2013). 

One previously published gnotobiotic mouse experiment, by (Ridaura et al. 2013), provides a 

specific and highly relevant example of the utility of using gnotobiotic mice as a model system for human 

HMIs (Figure 6.2).  In this experiment, microbiomes were collected from twins where one twin was 

obese and the other non-obese.  Collected microbiomes were transplanted into germ-free mice and, once 

it was established that the transplanted communities had taken up residence in their new hosts, it was 

determined that mice that had received a transplant from an obese human donor were themselves prone to 

obesity (Figure 6.2).  This experiment demonstrates clearly the advantages of using the mouse model, 
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specifically (i) a human microbiome can be transplanted into a mouse gut, and (ii) the resulting mouse 

phenotype (i.e. propensity for obesity) is representative of the human phenotype from which the 

microbiome was collected.  

 

 

 

6.1.3. Knowledge Gaps and Innovation 

A recent meta-analysis of microbiome studies for prediction of host obesity concluded that 

although subjects could be classified as lean or obese by their microbiomes within a study with significant 

accuracy, signatures of obesity were not consistent between studies (Walters et al. 2014).  A key 

knowledge gap that this Chapter seeks to overcome is to develop a computational model that successfully 

predicts obesity from microbiome community data across multiple datasets and numerous experimenters. 

This will be achieved through several technical innovations.  First, significant improvements will 

be made to the TAP-prediction tool for estimated EFPs from microbiome community structures.  This 

Figure 6.2. Microbiome community 

can dramatically change how 

otherwise similar hosts will respond to 

the same environmental conditions.  In 

a previously published experiment, 

microbiomes from lean (red) and obese 

(blue) twins were transplanted into germ-

free mice (black mouse).  In this experiment, 

it was found that the ‘Obese’ microbiome 

leads to an Obese phenotype, ‘Lean’ 

microbiome leads to lean phenotype in mice 

given the same diet (tan pellets).  Our goal is 

to use predictive and metabolomic modeling 

to identify a diet (colored pellets) that will 

restore a Lean phenotype to mice with 

‘Obese’ microbiomes.   
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will be accomplished through a statistical evaluation of thousands of published sequenced and annotated 

genomes and a stochastic approach to modifying the TAP-matrix within biologically determined dynamic 

ranges to optimize predictions of EFP using a large database of mouse microbiome metagenomes.  

Second, the dynamic MAP-model approach will be further refined to make accurate predictions of 

dynamic microbiome communities both as a function of the initial microbiome community structure and 

diet parameters, but also interactions between bacteria in the final microbiome community structure.  

Third, we will apply a novel Machine Intelligence approach for prediction of host obesity from a 

microbiome community that is robust across multiple experimental treatments, starting microbiome 

community structures, and laboratories. 

 

6.2. Outline of Experimental Approaches 

The goal of this chapter is to combine tools and biological understanding accumulated in Chapters 4 

and 5 with a novel dynamic microbiome population model developed in this aim.  The collected 

microbiome and phenotype data investigating the relationships between microbiome, diet, and obesity in 

a gnotobiotic mouse model will serve as the training and validation sets from this analysis.  The combined 

models will enable the following predictions:  

1. Predict new microbiome population structure given an initial microbiome population and diet.   

2. From a predicted microbiome, predict the microbiome metabolome.   

3. From a predicted metabolome, predict if that microbiome will lead to an obese or lean mouse host 

phenotype.   

This combined set of models will be used in a GA approach that will predict the best diet for selecting 

lean mouse host phenotype for any arbitrary starting metagenome population structure.  Additional 

significant advancements to the procedure, specifically the inclusion of community metabolome to the 

dynamic model, are also proposed. 
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This Chapter is divided into four closely linked Tasks: 

Task 1: Generate a dynamic model of the mouse microbiome community structure.  This Task 

builds upon the MAP-model approach to generate predictive models of the final mouse microbiome 

community structure that results from a consequence of the host’s diet and initial microbiome 

community structure. 

Task 2: Predict microbiome community enzyme function profiles from community structures.  This 

Task makes significant improvements to the TAP-prediction methods for estimating metagenomes 

from microbiome community structure by taking advantage of an available dataset of known mouse 

microbiome community structures and metagenomes. 

Task 3: Predict Obesity from microbiome metabolomes.  This Task enables prediction of mouse 

propensity for obesity resulting from interactions with the gut microbiome.  The measure of success 

in this Task will be creating a predictive model of microbiome-induces obesity that is robust across 

multiple experimental datasets. 

Task 4:  Construct a system-scale computational model of mouse gut HMI.  In this Task, the 

individual computational models build and validated in Tasks 1 through 3 will be combined into a 

single, system-scale model of mouse obesity HMI.  This model is called the integrated Microbiome 

models of Obesity for the Understanding of System-scale Emergent properties (iMOUSE).  The 

iMOUSE model will enable in silico experiments for mouse obesity HMI and will be used to 

propose diets that maximize a lean HMI phenotype conditional upon the starting microbiome 

community structure. 
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6.3 Selected Microbiome Datasets 

Each task of this chapter draws from a different mouse microbiome published study.  Four 

different microbiome datasets were utilized in the aim, drawing from a wide variety of experimental 

sources to construct the different computational models proposed in this aim.  Datasets were integrated 

such that all experimental data could be described using a uniform set taxonomic descriptors for 

community structure and refer to a common set of host dietary parameters.  For simplicity, the datasets 

are referred to as ‘Transplant’, ‘Gradient’ ‘Obesity’ and ‘Catalog’. 

 

6.3.1 “Gut Microbiome from Twins Discordant for Obesity Modulate Metabolism in Mice” 

The manuscript by Ridaura et al. (Ridaura et al. 2013) describes an experiment in which the 

obesity phenotype of human donors is transferred into mice via a microbiome transplant.  In this study, 

germ-free C57BL/6J male mice were inoculated with microbiome communities collected from twins 

discordant for obesity.  Mice that received an ‘Obese Microbiome’ gained more weight, even on a LF 

diet, than mice that received a ‘Lean Microbiome’ transplant.  Microbiome community structures for 

Lean- and Obese-microbiomes were collected from the Supplemental Files of this manuscript.  This 

dataset is used primarily as an opportunity to validate the iMOUSE model. 

This dataset is referred to as the ‘Transplant’ data in subsequent analyses. 

 

6.3.2 “A Catalog of the Mouse Gut Metagenome”  

A mouse gut microbiome dataset “A catalog of the mouse gut metagenome” (Xiao et al. 2015), 

was used for this Task.  This data set is comprised of 184 mouse gut microbiomes with paired 

metagenome and population abundance data.  Microbiomes were collected from a wide variety of mouse 

strains (8 strains) that were maintained at seven different housing labs/facilities (Table 6.2).  68% of the 
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mice in the dataset are male and 74% were raised on a LF diet.  Data was available through the 

GigaDatabase website, companion website for the GigaScience journal 

(http://gigadb.org/dataset/100114).  There were 67 bacterial Classes in the community structure data 

and1558 unique enzyme functions (EC annotations) present in the available metagenomic data.  Results 

from this study indicated that mouse provider and housing conditions had a marked effect on microbiome 

community structure and functional representation in the microbiome metagenome.  This dataset is used 

to improve our ability to predict EFPs from microbiome community compositions. 

This dataset is referred to as the ‘Catalog’ data in subsequent analyses. 

 

 

Table 6.2. Distribution of lab location, mouse strain, mouse gender, and diet in ‘Catalog’ dataset 

 

Housing Lab  Strain  Gender  Diet 

DTU 24  CB7BL/6 100  Male 126  High Fat 44 

NIFES 35  CV129 34  Female 58  Low Fat 140 

UCPH 10  BALB/c 8       
Pfizer 80  SJL 8       
BGI 15  129S 8       
CMR 20  SJL-CB75BL/6 8       

   NOD 8       

     Swiss Webster 10           

 

Housing Labs abbreviations are DTU: The Danish Technical University, NIFES: National Institute of 

Nutrition and Seafood Research, UCPH: University of Copenhagen, BGI:  University of Chinese Academy 

of Sciences, and CMR: CMR Facility.   Note that strain C57BL/6, highlighted in bold, is the most common 

strain in this study and is also the strain of lab mouse used in the other available datasets (i.e. Gradient, 

Obesity, and Transplant). 

 

 

 

http://gigadb.org/dataset/100114
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6.3.3 “Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota” 

A dramatic shift in mouse microbiome community structures have been observed between mice 

on HF and LF diets.  In the manuscript by Carmody et al. (Carmody et al. 2015), authors hypothesize that 

the large changes in community structure are due to the significant differences between the HF and LF 

diet conditions.  In an experiment presented in this manuscript, mice were given diets representing a 

gradient between HF and LF diet conditions.  Adult male C57BL/6J mice raised on LF diets were fed 

mixed LF and HF-diet pellets in proportions of 0, 1, 10, 25, 50, 75, and 100% HF diet for seven days.  

Data were collected from 33 mice from the initial microbiome communities and again after seven days on 

the new diet for a total of 66 microbiome community observations.  Data was collected from MG-RAST 

(http://metagenomics.anl.gov/) using the ‘MGRASTer’ tool (https://github.com/braithwaite/MGRASTer/) 

in R.  This data was used here to generate predictive models for the effects of diet of microbiome 

community structures. 

This dataset is referred to as the ‘Gradient’ dataset in subsequent experiments. 

 

6.3.4 “Data and Analysis of Diet-induced and Obesity-Associated Alterations of Gut Microbiota of 

129S/Sv and C57BL/6J Mice” 

Changes in microbiome community structure that is simply in response to host’s diet and changes 

in microbiome community structure that promote obesity in the host are difficult to distinguish in mouse 

microbiomes.  In a dataset published by Xiao et al. (Xiao et al. 2017) (http://gigadb.org/dataset/100271), 

this difficulty is addressed by considering two different mouse genotypes.  In mouse strain C57BL/6J 

(BL6), treatment of mice with a cyclooxygenase (COX) inhibitor prevents HF-diet induced obesity.  In 

mouse strain129S6/SvEvTac (Sv129), treatment with a COX inhibitor accentuates HF-diet induced 

obesity.  Data was available through the GigaDatabase website, companion website for the GigaScience 

journal (http://gigadb.org/dataset/100114).  In the study by Xiao, the host’s diet was found to be the 

https://github.com/braithwaite/MGRASTer/
http://gigadb.org/dataset/100114
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principle driver of the microbiome community and no strong relationship between obesity in the host and 

microbiome was uncovered.  This data is comprised of 54 microbiome community structures and were 

used primarily to generate computational models that predict host obesity from emergent properties of 

microbiome community. 

This dataset is referred to as the ‘Obesity’ dataset in subsequent experiments. 

 

6.3.5 Describe Microbiome Experimental Using a Common Set of Identifiers 

 In order to integrate the selected microbiome manuscripts into a single, cohesive dataset suitable 

for meta-analysis, all experimental results must first be described using the same set of microbiome 

community and experimental condition identifiers. 

 

6.3.5.1 Select Taxonomic levels for Microbiome Community Structure Descriptions 

In order to integrate the selected datasets, all microbiome communities need to be described using 

a common set of bacterial taxonomic identifiers.  Twenty taxa (4 Orders, 15 Genera, and one category for 

‘Other’) were selected.  The class ‘Other’ comprised on average less than 3% of the total microbiome 

populations for ‘Gradient’ data set.  In the ‘Catalog’ dataset, the category ‘Other’ averages less than 13% 

of population composition on average and less than 10% in the ‘Transplant’ dataset. 

The complete set of taxa used in this Task is listed in Table 6.3. 
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Table 6.3. Bacterial taxa used to describe mouse microbiome community structures 

Taxa 

Taxonomic 

Level Brief Description 

Anaerostipes Genus 
Anaerostipes is anaerobic, Gram-positive, and occurs in the 

human gut. 

Bacteroides Genus 

Bacteroides species commonly found in the human gut, where 

they play a fundamental role in processing of complex 

carbohydrates. 

Blautia Genus 
Blautia are common in the human gut microbiome and produce 

acetate.  IBS patients have increased levels of Blautia species. 

Butyrivibrio Genus 
Butyrivibrio are common in the gastrointestinal systems of many 

plant-eating animals. 

Clostridium Genus 
Clostridium are Gram-positive bacteria, and includes the 

diarrhea-causing Clostridium difficile.  

Collinsella Genus 
The abundance of Collinsella correlate strongly with high levels 

of inflammatory compounds. 

Erysipelotrichaceae Genus 

Erysipelotrichaceae increase abundance with a high-fat diet and 

are associated with inflammation-related disorders of the 

gastrointestinal tract. 

Eubacterium Genus 
Eubacterium are common in the gut microbiome and help to 

digest resistant starches. 

Lachnospiraceae Genus 

The Lachnospiraceae are an anaerobic bacteria found in the 

human gut.  Members of this family are linked to obesity and 

may protect against colon cancer in humans by producing butyric 

acid. 

Lactobacillus Genus 
Lactobacillus are Gram-positive, facultative anaerobes or 

microaerophilic and are commonly found in the gut microbiome. 

Oribacterium Genus 

Oribacterium are found in higher abundance in the gut 

microbiome with high-fat diets and are potentially linked to 

inflammation. 

Parabacteroides Genus 
Parabacteroides help digest high-fiber diets and their levels are 

elevated in the presence of resistant starches. 

Porphyromonas Genus 
Porphyromonas are Gram-negative obligate anaerobes.  Some 

species are associated with autoimmune diseases. 
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Ruminococcaceae Genus 

Ruminococcaceae are common bacteria in the gut microbiome 

and help to digest resistant starches.  Ruminococcaceae increase 

in abundance with a diet high in plant starches. 

Ruminococcus Genus 

Ruminococcus are Gram-positive gut anaerobes commonly found 

in gut microbiome. They help digest resistance starches and are 

associated with reduced risk of diabetes and colon cancer. 

Clostridiales Order 
Clostridia are obligate anaerobes.  They are commonly found in 

animal microbiomes and some can be pathogens. 

Atopobium Order  Atopobium are Gram-positive anaerobes. 

Desulfotomaculum Order 

Desulfotomaculum are sulfate-reducing, obligate anaerobes. 

Desulfotomaculum can cause food spoilage in poorly processed 

canned foods. 

Lactococcus Order 
Lactococcus produce lactic acid as the sole product of glucose 

fermentation. 

OTHER N/A   

Bacterial description information was collected from the NCBI Taxonomy Browser 

(https://www.ncbi.nlm.nih.gov/taxonomy). 
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6.3.5.2 Define Mouse Host Diet Parameters 

Similar to how diet was described as a vector of nutrient parameters for modeling effects of diet 

of microbiome community in Chapter 5, it is necessary to be able to describe LF and HF diets as a vector 

of nutrient parameters for modeling mouse microbiome community dynamics.  Low Fat (LF) diet 

parameters were collected from available data sheets for ENVIGO “Teklad Custom Diet” 

(http://www.envigo.com/products-services/teklad/laboratory-animal-diets/), comprised of Diet Mix 

TD.08811 made with Mineral Mix TD.94046 and Vitamin Mix TD.94047.  High Fat (HF) data 

parameters were collected from available datasheets for LabDiet “JL Rat and Mouse/Auto 6F 

(http://www.labdiet.com/).  Additionally, the amino acid composition for casein in LF diet was inferred 

from an analysis found in Gordon et al (Gordon et al. 1949).  The complete set of HF and LF diet 

parameters are listed in Table 6.4.  For use in this analysis, all diet parameters were normalized to 

arbitrary values between 20 and 80 and log2 transformed. 

 

  

http://www.envigo.com/products-services/teklad/laboratory-animal-diets/
http://www.labdiet.com/
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Table 6.4. Mouse diet compositions for High Fat (HF) and Low Fat (LF) 
 

Nutrient 

(g/Kg) HF LF   Nutrient (g/Kg) HF LF 

  Protein 19.3 18  

M
in

er
a

ls
 

Calcium 1.5351 1.17 

A
m

in
o

 A
ci

d
s 

Ile 0.89 0.87  Potassium 1.347534 0.66 

Leu 1.73 1.52  Magnesium 0.10449 0.22 

Lys 1.51 0.97  Iron 0.026058 0.038 

Met+Cys 0.62 0.98  Zinc 0.007095 0.0085 

Phe+Tyr 1.97 1.41  Magnesium 0.002709 0.016 

Thr 0.78 0.68  Copper 0.001333 0.0011 

Val 1.09 0.9  Iodine 0.000043 0.00021 

Trp 0.20 0.23  

V
it

a
m

in
s 

Niacin 0.0057 0.009 

His 0.49 0.44  Panthothenate 0.00304 0.0037 

Ala 0.53 1.13  Pyridoxine 0.00133 0.001 

Arg 0.65 1.03  Riboflavin 0.00114 0.0009 

Asp 1.47 1.87  Folic acid 0.00038 0.00019 

Glu 4.25 4.52  Biotin 0.000038 0.00003 

Gly 0.33 0.94  Vit B12 0.00475 0.005 

Pro 1.81 1.53  Vit E 0.0285 0.0045 

Ser 1.08 0.98  Vit A 0.00152 0.002 

C
a
rb

o
h

y
d

ra
te

s 

Carbohydrate 50.34 39.79  Vit D3 0.00038 0.00043 

Starch 11.7 38.9  Vit K 0.000143 0.002 

Glucose 0 0.12  

  Kcal/g 4.7 3.17 

Fructose 0 0.15      

Sucrose 34.84 0.62      

Lactose 3.8 0      
Fiber 

(cellulose) 5 15      

F
a

ts
 

Total Fat 23.2 6.2      

Saturated  14.15 1.24      

Mono saturated 7.192 1.37      
Poly 

unsaturated 1.856 0.24      
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6.4 Predict Changes in Microbiome Community Structures in Response to Host Diet: Dynamic 

MAP-Model 

The goal of this Task is to create a computational model that predicts the final mouse microbiome 

community structure that results as a function of the microbiome initial population structure and host’s 

diet.  This will be accomplished by making significant improvements to the dynamic MAP-model 

approach, such that diet, initial microbiome community structure, and predicted community bacterial 

interactions are used in prediction.  The model will provide two principle tools to provide insights into 

HMI.  The first is a CIN for microbiome community and host diet, which will highlight specific 

relationships between taxa and diet.  The second is a predictive MAP-model that can be integrated into a 

system-scale model of mouse obesity HMI. 

As before, generation of a MAP-model requires two consecutive steps.  The first step is to 

generate a Community Interaction Network (CIN) using Bayesian Network Inference.  Here, the CIN will 

predict microbiome community interactions as nutrient parameters, initial microbiome community 

structure, and final microbiome community structure.  The second step in the MAP-model procedure is to 

transform the CIN into a system of integrated mathematical equations, such that the value of every child 

node is a function of the values of its parent nodes.  For this Task, the CIN-based equations will be solved 

as linear functions using a least squares estimate.  This will enable an additional form of information to be 

extracted from the CIN, specifically whether the relationship between a parent and a child node is positive 

or negative (i.e. does an increase in the value/abundance of a parent node lead to an increase or a decrease 

in the abundance of a child node). 

 

6.4.1 Selection of ‘Gradient’ Mouse Microbiome Dataset 

This Task utilizes the ‘Gradient’ dataset.  In this dataset, each microbiome observation is 

comprised of the following data: diet parameters, initial microbiome community structure and final 

microbiome community structure.  Diet parameters are comprised of 50 diet features (Table 6.3). Initial 



118 
 

 
 

and final microbiome community structures are comprised of 20 taxonomic bacterial abundances (Table 

6.4). 

 

6.4.2 Generate CIN from ‘Gradient’ data  

As described in previous sections, CIN for interactions between mouse microbiome and diet were 

generated as DBN.  DBN were generated using BANJO (Smith et al. 2006) 

(https://users.cs.duke.edu/~amink/software/banjo/documentation/) using the same parameters as in 

previous sections.  In addition, the following restrictions were made.  No node is permitted to the parent 

of a diet parameter node or a prior time step’s taxa and prior time steps taxa can only be parents of current 

time step’s taxa.  The complete set of BANJO parameters can be found in Appendix E.   

A visualization of the mouse microbiome CIN can be found in Figure 6.3 and the CIN network 

itself in Appendix F.  In the interaction network, 46% of nutrient parameters are amino acids, 13% are 

carbohydrates, 4% are fats, 13% are minerals, and 25% are vitamins.  Relative to the distribution of 

nutrient types in the total set of diet parameters, network diet nodes are significantly enriched for vitamin 

nutrient features (calculated as hypergeometric mean, p-value less than 0.05).  The bacteria that have the 

greatest influence of population structure (i.e. the most child nodes in network) are Parabacteroides and 

Butyrivibrio.  The bacterial nodes most regulated by other community interactions are Desulfotomaculum, 

Ruminococcus, Clostridium, and ‘Other’.  Only Bacteroides and Lactobacillus have no direct parent 

nodes that are nutrient parameters.  Porphyromonas, the most abundant bacteria in the mouse microbiome 

in this dataset, has only nutrient parameter parents and no predicted interaction with other taxa.  

Ruminococcus, which is known to be associated with digestion of complex carbohydrates in the 

microbiome (Ze et al. 2012), is positively affected by the nutrient parameter ‘Fiber’ in the interaction 

network.   The only bacteria taxa associated with fat intake in the network is Eubacterium, and 

https://users.cs.duke.edu/~amink/software/banjo/documentation/
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Eubacterium have been previously shown to have an advantage in the microbiome in high fat, high sugar 

diets (Turnbaugh et al. 2008).   

 

 

 

 

Figure 6.3. Mouse diet-gut microbiome interaction network.  This figure combines the host-microbiome 

CIN with results from the dynamic MAP-model.  Diamonds are diet parameters, colored by the nutrient 

category (Table X).  Circles are bacterial taxa and are sized by their average relative abundance across all 

Donor A microbiomes.  Edge thickness is proportionate to the absolute value of edge weight in the map-

Model.  Edges are green when edge weight is positive and red when negative. 
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6.4.3 Generate Dynamic MAP-Models from ‘Gradient’ Microbiome Data 

The second step of the dynamic MAP-model approach is to use the CIN network to determine a 

system of equations that can be used to generate a prediction model of a microbiome community structure 

as a function of environmental factors.  For this model, MAP-model, we will consider the relative 

abundance of a taxa in microbiome community to be: 

 

  

𝐌𝐀𝐏 − 𝐦𝐨𝐝𝐞𝐥: 
 𝑡𝑎𝑥𝑎𝑖

𝑡 = ∑ 𝑤𝑗,𝑖𝑑𝑖𝑒𝑡𝑗
𝑡𝐷𝑖𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖

𝑗=1
+ ∑ 𝑤𝑘,𝑖𝑡𝑎𝑥𝑎𝑡

𝑡𝑇𝑎𝑥𝑎𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖

𝑘=1 + 

∑ 𝑤𝑙,𝑖𝑡𝑎𝑥𝑎𝑙
𝑡−1𝑇𝑎𝑥𝑎(𝑡−1)𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖

𝑙=1 +  𝑐𝑖 
Eq. 6.1 

 

 

Where  𝑡𝑎𝑥𝑎𝑖
𝑡 is the relative abundance of taxa i at time t, 𝐷𝑖𝑒𝑡𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖 is the set of diet parameters 

that are parents of taxa i in CIN, 𝑇𝑎𝑥𝑎𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖 is the set of taxa abundances that are parents of taxa i in 

CIN, 𝑇𝑎𝑥𝑎(𝑡 − 1)𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑖 is the set of taxa abundances from previous time point, t-1, that are parents 

of taxa i in CIN, 𝑤𝑥,𝑖 is a weight between CIN node x and taxa i, and ci is a constant value associated with 

taxa i 

In addition to the dynamic MAP-model, two additional methods for prediction of microbiome 

community structure were considered.  In these approaches, microbiome community structures were 

calculated as functions of all diet and/or all initial microbiome taxa without consideration of the 

relationships inferred by the CIN.    The goal of these methods is to determine how much, if any, 

predictive value is conferred to the model by incorporation of the CIN for microbiome population 

structure.  We hypothesize that models built using the CIN will demonstrate a higher accuracy in 

predicting microbiome community structure than models that do not use the CIN. 
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Diet Only: 

 

𝑡𝑎𝑥𝑎𝑖
𝑡 = ∑ 𝑤𝑗,𝑖𝑑𝑖𝑒𝑡𝑗

𝑡

𝐴𝑙𝑙𝐷𝑖𝑒𝑡

𝑗=1

+  𝑒𝑖 

 

Eq. 6.2 

 

Diet and Data: 𝑡𝑎𝑥𝑎𝑖
𝑡 = ∑ 𝑤𝑗,𝑖𝑑𝑖𝑒𝑡𝑗

𝑡

𝐴𝑙𝑙𝐷𝑖𝑒𝑡

𝑗=1

+ ∑ 𝑤𝑙,𝑖𝑡𝑎𝑥𝑎𝑙
𝑡−1

𝐴𝑙𝑙𝑇𝑎𝑥𝑎𝑡−1

𝑙=1

+  𝑒𝑖 Eq. 6.3 

 

 

Where AllDiet and AllTaxat-1 indicate that all nutrient parameters and taxa relative abundances, not just 

those that are parent nodes in the CIN, are considered as parameters in these equations. 

Data were randomly divided into training (23 microbiome pairs) and validation (9 microbiome 

pairs) subsets.  The three models of microbiome community (‘Map-model’, ‘Diet Only’, and ‘Diet and 

Taxa’) were solved using least squares estimate (QR decomposition of matrix in R).  The same training 

and validation subsets were used for each model.  Predictive power of models was determined by the 

Pearson Correlation Coefficient between the predicted and observed population structures (as log2 relative 

abundances) for both training and validation subsets.  The resulting edge weights from equations inform 

edge weights in Figure 6.3.  Significance of predictions were calculated using a bootstrap approach 

(10,000 iterations).  Results for training and validation subset are summarized in Figure 6.4. 
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Figure 6.4. Results for mouse microbiome community predictions.  Three modeling approaches were 

considered: “MAP-model’, “Diet Only”, and “Diet and Taxa”.  Predictions that performed statistically 

significantly better than random (p-value less than 0.05) are indicated with an “*”. 

 

 

6.4.4 Summary of Results 

‘Diet and Taxa’ model has good results for the training set, but the poor results for validation 

suggest that this approach is vulnerable to overfitting, possibly due to the relatively small sample size.  

‘Diet’ only model has a good result for the validation set.  It may be hypothesized that this is because the 

model is constructed from an experiment where population structures at the initial time point are fairly 

similar, therefore including taxa at the initial time point does not add that much new and relevant 

information to the model.  ‘MAP-model’ has the best predictive results for both the training and 

validation datasets with significant PCC of about 0.95 for validation data subset.  This strong prediction 

accuracy provides evidence that using this model in subsequent analysis steps will likely result in 

biologically meaningful results. 

By combining the most predictive MAP-model results with the CIN, additional insights into the 

community interactions can be gained.  More than 70% of the interaction types are positive in nature and 
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the average weight of positive edges is greater than the average weight of negative edges, although 

difference is not statistically significant. 

 

6.5 Optimize Prediction of EFP from Community Structure Data: TAvP-prediction 

Previously, we have utilized a method for predicting microbiome’s Enzyme Function Profile 

from community structure (Chapter 5).  When applied to the ‘Catalog’ database of microbiomes and 

metagenomes (as described in detail below), this approach generates a set of predicted metagenomes that 

correlates with the observed metagenomes with a median Spearman’s Correlation of 0.88.  This compares 

favorably with the Tax4Fun method which reports a median Spearman’s correlation of 0.75 for their best 

approach for mammalian gut metagenome predictions (Asshauer et al. 2015).  While by this metric 

TAvP-prediction considerably outperforms prior published results, a direct comparison between methods 

is complicated by the use different datasets, different starting datatypes, and different ontologies for 

metagenome annotations.  At the very least, it can be confidently stated that the TAP-prediction method is 

of comparable accuracy to other published metagenome prediction methods. 

Results from Chapter 5 provide additional insight into opportunities to improve the TAP-

prediction methods.  In that chapter, EFPs were predicted from microbiome community structures 

described at the taxonomic level of Order and at the level of Genus.  One relevant question is how similar 

are the EFPs for the same populations when predicted from different taxonomic levels.  For the 75 

microbiome community microbiomes selected for analysis, the average PCC between order and genus-

level EFP predictions is 0.872.  This is a good correlation, but EFP-prediction from different taxonomic 

levels results indicate that EFPs for the same microbiome communities are not identical when they are 

predicted from different taxonomic-level descriptions of population structure.   

There remains considerable opportunity for improvement in the TAP-prediction of mouse gut 

EFPs from community structures.  In this task, an approach to incorporate a deeper statistical analysis of 
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published sequenced genomes and observed mouse gut microbiome metagenomes into the prediction of 

EFPs from community structure data is proposed.  These efforts resulted in a substantial increase in EFP 

prediction accuracy over previous TAP-prediction results. 

 

6.5.1 Selection of ‘Catalog’ Mouse Microbiome Data 

This Task utilized the dataset from ‘Catalog’ mouse microbiome experiment (Xiao et al. 2015), 

which is comprised of 184 paired microbiome shotgun metagenome and population structure data 

collected from a range of different mouse strains housed in different research labs and with different diet 

regimes.  Having a set of known metagenomes, by which the accuracy of metagenomic predictions from 

community structure can be tested, provides an ideal opportunity to make significant improvements to the 

initial version of the metagenome TAP-prediction tool introduced in Chapter 3 and used in Chapter 5. 

For this analysis, data were randomly divided into sets of 122 training microbiomes and 62 

validation microbiomes. 

 

6.5.2 Describe Multiple Approaches for Predicting EFPs from Microbiome Community Structures 

The initial method, first discussed in Chapter 3, predicts enzyme function abundance in TAP-

prediction is calculated as the following: 

 

𝐸𝐶𝑖
𝑛 = ∑ 𝐴𝑣𝑒𝐸𝐶𝑖

𝑗
∗ 𝑇𝑎𝑥𝑎𝑗

𝑛

𝑻𝒂𝒙𝒂

𝑗=1

 

Eq. 6.4 
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Where 𝐸𝐶𝑖
𝑛 is the abundance of enzyme function i in microbiome n, Taxa is the set of bacterial taxa 

reported present in the microbiome, 𝐴𝑣𝑒𝐸𝐶𝑖
𝑗
 is the average number of genes for enzyme function i in taxa 

j, and 𝑇𝑎𝑥𝑎𝑗
𝑛 is the relative abundance of taxa j in microbiome n. 

While this method has served well in previous analyses, there is an opportunity for improvement.  

For example, the numbers of genes for an enzyme function attributed to a taxa in this method is derived 

from the average of gene abundances for genomes in a published database.  It is unlikely that the 

distribution of bacteria within a given taxa in the database is identical to the distribution found in the 

microbiome community.  Also, using only the average gene abundance for a function in a taxa provides 

no information about the possible distribution of gene abundance counts across the genomes that 

represent a given bacterial taxa.  For example, two separate bacterial taxa both might have an average of 

five copies for ‘glucose-fructose oxidoreductase’ genes per genome.  But if one taxon has a standard 

deviation in abundance of 0.2 and the other a standard deviation of 7.0, then an equivalent abundance of 

these two taxa in different microbiome populations will have very different consequences on the expected 

variation in glucose-fructose oxidoreductase in the resulting EFP. 

The novel modifications described here, named Taxonomic Average and Variance Profile 

prediction (TAvP-prediction), will not only utilize the average abundances of gene functions within a 

taxonomic grouping, but also the distribution in order to increase the accuracy of TAP-predictions by 

fitting prediction results to observed metagenomes. 

Three methods for fitting predicted EFP to observed EFP were considered: Average Difference, 

TAvP-Uniform, and TAvP-Boltzmann.  Each approach is described in detail below.  Additionally, the 

unmodified TAP-prediction approach will be used as a control. 
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6.5.2.1 Average Difference 

The simplest approach to leveraging observed metagenomes to optimize TAP EFP predictions is 

to add a simple error term to the initial TAP-prediction method: 

 

𝐸𝐶𝑖
𝑛 = ( ∑ 𝐴𝑣𝑒𝐸𝐶𝑖

𝑗
∗ 𝑇𝑎𝑥𝑎𝑗

𝑛

𝑻𝒂𝒙𝒂

𝑗=1

) + 𝒆𝒊 

Eq. 6.5 

 

 

Where ei is calculated as the difference between the average of predicted enzyme function abundance 

across a set of metagenomes and the average of observed enzyme function abundance.  In this fashion, a 

single error term is added to each enzyme function abundance prediction in order to improve the 

correlation between predicted and observed EFPs. 

 

6.5.2.2 Taxonomic Average and Variance Profile Prediction (TAvP-prediction) 

The alternative approach, TAvP-prediction, considers not only the average abundance of an 

enzyme function in a taxonomically grouped set of sequences bacterial genomes, but also the spread of 

observed enzyme functions counts from the mean.  An alternative approach is to add an error term to each 

average enzyme function for each taxa in the microbiome: 

 

 

𝐸𝐶𝑖
𝑛 = ∑ (𝐴𝑣𝑒𝐸𝐶𝑖

𝑗
+ 𝒆𝒋

𝒊) ∗ 𝑇𝑎𝑥𝑎𝑗
𝑛

𝑻𝒂𝒙𝒂

𝑗=1

 

Eq. 6.6 
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Where 𝑒𝑗
𝑖 is an error term that is added to the average enzyme function abundance for enzyme activity i in 

bacterial taxa j.  This error term is calculated such that the range of possible values is determined from the 

observed distribution in published genomes for the number of genes for enzyme function i in taxa j.  

These taxa and enzyme-specific terms can be identified for an entire TAP-matrix using a stochastic 

approach. 

 

The TAvP-prediction approach for optimizing the TAP-matrix is described using the following 

pseudocode: 

 

 
 

Pseudocode for TAvP-matrix optimization: 

   

Given: Pop = Matrix of microbiome population structures 

 EFPobs = EFP for Pop microbiomes, collected from 

observed/published metagenomics data 

 EFPrange = the dynamic ranges between min and max values 

for each enzyme function 

 TFCave, TFCsd = Initial Taxonomic Function Count averages 

and standard deviations.   

 

Function PREDICT_EFC(Pop, TFC): returns a predicted EFP given a 

microbiome population structure and a TAP-matrix 

 

Function TWEAK(taxa, enzyme, TFCave, TFCsd): Modifies enzyme function 

count for taxa by an amount informed by TFCsd. 

 

Function PCC(EFC1, EFC2) Returns PCC between EFCs 

 

Function SelectEnzyme(EFPrange): If linear approach, return enzyme 

with uniform probability.  If Boltzman approach, return enzyme, 

preferentially selecting those that have larger dynamic ranges 

across observed metagenomes 

 

Function SelectTaxa(enzyme, TFCsd): If linear approach, return taxa 

with uniform probability.  If Boltzman approach, return taxa, 

preferentially selecting those that have large SD for enzyme 

 

bestEFP = PREDICT_EFC(Pop, TFCave) 

bestPCC = PCC(EFPobs, EFCinitial) 

bestTFC = TFCave 

 

For i = 1 to NumInterations 

 

 Enzyme = SelectEnzyme(EFPrange) 

Taxa = SelectTaxa(Enzyme, TCFsd) 
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newTFC = TWEAK(taxa, enzyme, TFCave, TFCsd) 

newEFP = PREDICT_EFP(Pop, newTFC) 

newPCC = PCC(newEFP, bestEFP) 

if newPCC > bestPCC then 

 bestPCC = newPCC 

 bestTFC = newTFC 

 bestEFP = newEFP 

 

Output bestEFP, bestPCC 

 

END 

 

 

 

There are two versions of the function ‘TWEAK’ for this approach: Uniform and Boltzmann.  In 

the Uniform method, each taxa and each enzyme is randomly selected with equal probability.  In the 

Boltzmann method, selection of enzyme function is weighted such that enzyme function abundances that 

are highly variable across microbiomes, and such that taxa that have higher standard deviations for the 

abundance of that function are selected more frequently.  This weighting of selections was done using the 

Boltzmann distribution (McQuarrie 2000): 

 

𝑝𝑖 =
𝑒𝜀𝑖 𝑘𝑇⁄

∑ 𝑒𝜀𝑗 𝑘𝑇⁄𝑀
𝑗=1

 
Eq. 6.7 

 

 

Where pi is the probability of selecting enzyme function or taxa i.i is the equal to the standard deviation 

of function abundances.  kT is the Boltzmann constant multiplied by the temperature of the system.  M is 

the total possible number of either enzyme functions or taxa in the system. 
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6.5.3 Compare EFP Prediction Methods 

The methods TAvP-Uniform and TAvP-Boltzmann were each run using one million iterations.  

The number of times each taxon and each enzyme were ‘Tweaked’ (Figures 6.5 and 6.6) and the running 

‘BestPCC’ (Figure 6.7) were collected during the million iterations for both methods. 

 

Figure 6.5. Frequency at which specific enzymes and taxa were selected across 1 million iterations.  

Graphs show that ‘Boltzmann’ approach lead to very different frequencies for selection for enzymes and 

taxon relative to the ‘Uniform’ approach.  The most frequently selected taxa by the Boltzmann approach 

was the general bin for ‘Other’ 
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Figure 6.6. Frequency at which specific enzymes were selected across 1 million iterations. Graphs 

show that the ‘Boltzmann’ approach lead to very different frequency of selection for enzymes and taxa 

relative to the ‘Uniform’ approach.  Enzymes are ranked in this figure on the x-axis from most frequently 

modified to least.  The most selected enzyme function by the Boltzmann approach was 2.7.1.69, a sugar 

transporting phosphotransferase system.  The least selected was 5.99.1.4, a 2-hydroxychromene-2-

carboxylate isomerase. 
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Figure 6.7.  Tracking increasing best correlations over iterations for ‘Uniform’ and ‘Boltzmann’ 

approaches.  In this figure, log10 iteration is on x-axis and correlation between observed and predicted 

EFP is on y-axis. 

  

 

6.5.3.1 Differences between Uniform and Boltzmann approaches 

From the results, the difference between Uniform and Boltzmann selection approaches is 

apparent.  The Boltzmann approach resulted in a difference of about three-fold difference between the 

frequency of the most and least frequently selected taxa (Figure 6.5).  The differences between 

frequencies of selection for enzyme activity, however, are far more dramatic.  There is a difference of 

over four orders of magnitude between the most and least frequently selected enzyme function (Figure 

6.6).  The Uniform method, as expected, selects taxa and enzyme function with fairly uniform frequency.  

While the TAP-matrices optimized using the Boltzmann approach show a considerable lead in EFP 

prediction for the great majority of iterations, the Uniform selection catches up with the Boltzmann 

method towards the end of one million iterations (Figure 6.7).  At the end of TAP-matrix optimization, 
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both the Boltzmann and the Uniform methods yield TAP-matrices that predict EFPs with strong 

correlations with the observed EFPs (PCC 0.9702 for Boltzmann, 0.9703 for Uniform). 

From these results, an interesting question arises: While Boltzmann and Uniform optimization 

methods lead to nearly identical EFP predictions, do they do so by arriving at the same TAP-matrix?  The 

results will suggest very different possible interpretations of this approach.  If the two methods arrive at 

different TAP-matrices, then perhaps the method arrives at an effective mathematical solution, but not 

one that necessarily reflects the distribution of metabolic and enzymatic functions across species in the 

microbiome.  If both methods arrive at similar TAP-matrices, then the probability that the best 

computational solution is also reflective of a true biological state is increased.  To determine the similarity 

between MAP-matrices, pair-wise correlations between the initial Boltzmann-optimized and Uniform-

optimized were calculated (Table 6.5). 

 

 

Table 6.5. Correlations between EFP predictions based on initial and optimized TAP-matrices 
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Initial  1     

TAvP-Uniform 0.905 1   

TAvP-Boltzmann 0.903 0.984 1 
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Results in Table 6.5 show that Boltzmann and Uniform are very similar to one another (PCC 

0.984) and are approximated equally different from the initial TAP-matrix.  This demonstrates that 

optimization methods arrive at very similar TAP-matrix solutions, enhancing the expectations that these 

matrices represent an insight into the underlying biological distribution of metabolic functions in the 

mouse gut microbiome, in addition to being a computationally effective approach for improving 

metagenome predictions from microbiome community data. 

 

6.5.3.2 Application to Validation Subset Microbiomes 

So far, only the training set data has been considered for the accuracy of EFP predictions from 

microbiome community structures.  To determine the utility of the optimized TAP-matrices and TAvP-

prediction for metagenomes outside the training set, and to compare these results with the initial and 

Average Difference control approach, the 62 community structures and metagenome data set aside for 

validation will be considered.  The results of predictions, as correlations between predicted and observed 

EFPs, are shown in Figure 6.8. 

 

 

Figure 6.8. Correlations between observed EFP and predicted EFPs generated using different 

metagenome prediction methods.   



134 
 

 
 

Results for EFPs predictions show that all methods, Average Difference, TAvP-Boltzmann, and 

TAvP-Uniform, show considerable increases in the accuracy of EFP predictions from community 

structures over the initial TAP-prediction approach.  Average Difference approach actually performs quite 

well, resulting in a predicted EFP that correlated with the observed EFP with a PCC of 0.963 for the 

validation subset.  However, TAvP-predictions, using either Boltzmann or Uniform optimized TAP-

matrices perform even better, correlation with biological observations with a PCC of 0.972.  Boltzmann 

or Uniform approach results were nearly identical in outcomes, with both training and validation PCC 

results differing only at the ten thousandths decimal place. 

 

6.5.4 Summary of Results 

Here, we have demonstrated a method, TAvP-predictions, that results in a substantial (13%) 

increase in the accuracy of predicting metagenomes from community structure.  Accuracy of predictions 

is not only much improved over our own previously published method, TAP-prediction, but accuracy is 

also easily equivalent or better that the top most-effective metagenome-predicting tools present in the 

available literature (Larsen et al. 2015b, Shoaie et al. 2015).  The stochastic approach for fitting EFP 

predictions using observed EFPs and a statistical analysis of thousands of previously sequenced and 

annotated genomes represents a significant innovation over alternate available prediction tools. 

While both Boltzmann and Uniform-optimized TAP-matrices yielded nearly identical results in 

their accuracy of metagenome prediction from community structure, only one can be chosen for use in the 

subsequent analysis steps here.  In the remaining analyses in this chapter, TAvP-predictions using 

Boltzmann-optimized TAP-matrix will be used. 
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6.6 Predict Host Obesity as Function of Microbiome Community 

When it comes to the relationship between diet, microbiome community, and obesity, it can be 

difficult to separate out cause from effects.  Observed changes in the microbiome community structure are 

due only to a change in host diet and which changes in microbiome structure are influencing host obesity 

cannot be easily disentangled.  To address these questions, we turn to the published ‘Obesity’ dataset 

(Xiao et al. 2017).  In this study, genetic variants of mice that are conditionally either resistant or 

susceptible to obesity in response to a HF diet are considered in order to deconvolute the diet and obesity-

specific changes in microbiome community. 

In the conclusions reported by Xiao et al. (Xiao et al. 2017), they state that “[t]he changes in the 

composition of the gut microbiota were predominantly driven by high-fat feeding rather than reflecting 

the obese state of the mice”.  They also report that in their analysis that the abundance of butyrate and 

propionate producing bacteria in microbiome may “at least in part contribute to” the differences between 

obese and non-obese mice. 

In previous analysis (Chapter 5 as well as (Larsen et al. 2015a, Larsen and Dai 2015)), we have 

reported that microbiome community metabolome is more predictive of host dysbiosis than microbiome 

community structure.  We anticipate that our approach will positively associate host’s obesity with 

emergent properties of the microbiome where the Xiao et al analysis could not.  In this Task, we will 

generate predictive models of both host obesity and HF-diet from microbiome community data. 
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6.5.1 Selected of ‘Obesity’ and ‘Transplant’ Microbiome Datasets 

The ‘Obesity’ dataset, which uses different mouse genotypes to distinguish the relationship 

between diet and microbiome and the relationship between microbiome and host obesity, is utilized in this 

analysis (Figure 6.9).  The 54 ‘Obesity’ dataset microbiomes were divided into subsets for model training 

(36 microbiomes) and validation (18 microbiomes).  In addition, a further validation condition was 

included: the two microbiomes derived from human microbiome transplants in the ‘Transplant’ dataset.  

From the published experimental observations in the ‘Transplant’ dataset, an ‘Obese-microbiome’ 

transplanted community is expected to confer an Obese phenotype of host and the ‘Lean-microbiome’ 

transplanted microbiome a Lean phenotype. Microbiome community structures are represented in Figure 

6.10 and analyzed by hierarchical clustering in Figure 6.11.  Effective predictions of host obesity have to 

work not only on microbiomes from the ‘Obesity’ dataset, but also have to be effective in extrapolating to 

microbiome community data gathered from other available sources such as the ‘Transplant’ dataset.   

 

 

Figure 6.9. Relationships between genotype, 

diet, and obesity in two laboratory mouse 

strains.  Two mouse genotypes, SV129 and BL6, 

have different responses to a high fat (HF) diet in 

the presence of a COX-inhibitor.  In the figure, 

little blue mice indicate a Lean phenotype and 

large orange mice indicate an Obese phenotype.  

The numbers on the mouse indicates the number 

of microbiomes for that experimental condition in 

the available data. 
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6.6.2 Predict Emergent Properties of Mouse Microbiome ‘Obesity’ and ‘Gradient’ Communities 

Using the TAvP-prediction approach and the Boltzmann TAP-matrix calculated in Task 2, and 

described in the previous section, and the PRMT-score metabolic modeling approach described in 

Chapter 3, ‘Obese’ and ‘Transplant’ data community structure data were used to predict EFPs for all 

microbiomes (Figure 6.10).  EFPs were used to calculate PRMT-score metabolic models (Figure 6.11).   

 

 

Figure 6.10. ‘Obesity’ and ‘Transplant’ microbiome community structures. 
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Figure 6.11. Hierarchical cluster microbiome community structures for ‘Obesity’ and ‘Transplant’ 

datasets 
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Figure 6.12.  Hierarchical cluster EFP for ‘Obesity’ and ‘Transplant’ datasets. 
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Figure 6.13.  Hierarchical cluster PRMT-scores for ‘Obesity’ and ‘Transplant’ datasets. 
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 From the clustering images of microbiome data, patterns emerge.  In the cluster of ‘Obesity’ and 

‘Transplant’ microbiome community population structure data (Figure 6.9), microbiomes cluster by diet, 

HF or LF, with ‘Transplant’ microbiomes clustering separately.  Within diet types, microbiomes cluster 

by mouse strain.  When microbiomes are clustered by EFP (Figure 6.10), more clusters become apparent 

with Sv129 HF, BL6 HF with and without COX inhibitor treatment, and LF diets regardless of mouse 

strain form more distinct clusters.  When clustered by EFP, ‘Transplant’ microbiomes remain outliers.  

When microbiomes are clustered by PRMT-scores (Figure 6.11), microbiomes are most likely to cluster 

by mouse strain, but not by phenotype (obese or lean).  Clustering by PRMT highlights that ‘Transplant’ 

microbiomes are very distinct from ‘Obesity’ microbiomes more strongly than when microbiomes are 

clusters by either community structure or EFP.  Under no conditions do microbiomes cluster by obese and 

lean mouse phenotypes. 

 

6.6.3 Train SVM to Predict Host Obesity and Host Diet from Microbiome Community Data 

The SVM approach for linking a microbiome community population structure and a community 

metabolome with HMI types has produced excellent results in previous portions of this analysis as well as 

previously published results (Larsen et al. 2015a, Larsen and Dai 2015).  Therefore, we turn to this 

method for linking mouse microbiome community to predicting obesity in its host. 

Metabolic models will be used to generate predictive SVM for two host states: obesity and HF 

diet.  We anticipate that the best predictors of host obesity will not necessarily be predictors of a 

microbiome’s response to a host’s HF diet.   

Models were trained on two datatypes: community structure and metabolomic models.  All 20 

taxa (Table 6.3) will be used in Community Structure SVMs.  For training SVM on metabolic model 

data, all metabolites with unique PRMT-scores were ranked by Fisher score (Eq. 5.2).  SVMs were 

trained on all 1386 metabolites and the top Fisher-score ranked 700, 600, 500, 400, 300, 250, 200, 150, 



142 
 

 
 

100, 50, and 25 metabolite subsets.  SVMs were generated using the same approach as previously 

described. 

Accuracy of predictions were calculated as Mathews Correlation Coefficients (MCC).  MCC is 

calculated as: 

 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 Eq. 6.8 

 

Where TP is the number of true positives, TN is the number of true negatives, FP is the number of false 

positives, and FN is the number of false negatives.  An MCC of 1 indicates a perfect prediction, 0 

indicates no prediction, and -1 indicates an inverse prediction. 

Results of SVM predictions are summarized in Figure 6.14.  

From SVM results, community structure data is an excellent predictor of host HF-diet for both 

training and validation subsets.  Metabolic models, although the results from training datasets show 

strong predictions for a host HF-diet, are not predictive of host diet in the validation dataset subset.  For 

obesity, results are even less encouraging.  Although both taxa and metabolism perform well in training 

sets, neither data type is predictive for validation data.  Further, neither taxa nor metabolism is capable of 

predicting the host’s phenotype for ‘Transplant’ mouse data indicating that SVMs may be suffering from 

overfitting in these models.  So far, our analysis closely concurs with that of Xiao et al. (Xiao et al. 2017): 

HF-diet strongly drives mouse microbiome community, but host obesity does not leave a clear signal in 

the microbiome. 

These results indicate that an alternative approach for distinguishing the differences between the 

microbiome’s response to host diet and the host’s phenotypic changes in response to its microbiome will 

be required. 
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Figure 6.14. Results for SVM prediction of Obesity and HF Diet from microbiome metabolome and 

community structure.  Results are presented as MCC scores for both training (blue bars) and validation 

(orange bars) sets.  The nature of the data used to train the SVM are listed on the X-axis: Top Fisher-score 

ranked subsets of metabolic model data (PRMT), or microbiome community structure (Taxa).  For Obesity 

HMI, an additional dataset was included: data from ‘Transplant’ microbiome experiments. 
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In the next section, a Machine Intelligence (MI) approach, utilizing the Nutonian ‘Eureqa’ tool 

(http://www.nutonian.com/) for predicting a host phenotype from the microbiome is attempted as an 

alternative to SVMs. 

 

6.6.4 Machine Intelligence Prediction of Obesity from Microbiome 

As an alternative to the SVM approach, the Machine Intelligence (MI) approach will be utilized 

for construction predictive models of HMI for host obesity and host HF-diet types.  For the ‘Eureqa’ MI 

method, two different datatypes were considered.  For the ‘Taxa’ dataset, all 20 taxa were used for model 

construction.  For the ‘Metabolism’ dataset, the 128 PRMT metabolites with the highest Fisher scores 

(Obese vs Lean microbiomes) were considered in the model.  MI equations were set up as the following: 

 

and 

 

Where ‘model features’ are the 128 PRMT scores or the 20 taxonomic abundances in 

microbiomes.  Functions were generated in ‘Eureqa’ using the equation elements addition, subtraction, 

multiplication, division, and constant, and the MI evolutionary equation fitting algorithm was allowed to 

run until stability and convergence were greater than 95%.  The result of these functions is termed an 

Obesity Score (OS) or HF-diet Score (HFS). 

It is expected that although the functions are trained on values of 1 and 0, most applications of the 

functions will potentially fall into intermediate values.  For establishing host phenotypes from OS, we 
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have chosen to use a Relative Propensity for Obesity (RPO) score and Relative Expectation for HF Diet 

(RHF) score.  The RPO-score and RHF-score are calculated as:  

 

RPO = log2(OS / Ave(all OSs) ) Eq. 6.9 

RHF = log2(HFS / Ave(all HFSs) ) Eq. 6.10 

 

Where values less than zero indicates assignment of the phenotype ‘Obese’ or ‘HF-diet’ to microbiomes. 

The resulting functions for the prediction of host obesity and host HF-diet from microbiome data 

were: 

 

OSmet = 2.434 + 0.5053*MET1152 + MET1152/(0.4903 - MET904) - 

MET1238*MET051^2 
Eq. 6.11 

OStaxa = 87.68*Por + 0.4109*Bec*Eub + Cls*Col*Lact - Eub - Des*Par Eq. 6.12 

HFSmet = 1.027 + MET070*MET063 + 8.764*MET070*MET1360 + 

1.681*MET619*MET070^2*MET063^2 - 2.246*MET070*MET1018 
Eq. 6.13 

HFStaxa = (8558102.7*Col*Rumi^5 - 12.59)/(3784.4 + 8547675.6*Col*Rumi^5) Eq. 6.14 

 

In Equations 6.11-6.14, the relative abundances of bacterial taxa are identified by the first 3 or 4 unique 

letters of the full taxonomic name.  Metabolism MET# identifiers are associated with their metabolic 

model compound in Table 6.6.  The results of MI models predictions of obesity and HF-diets are 

summarized in Figure 6.15. 
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Results from the MI model for prediction of a HF-diet show that both taxa and metabolism are good 

predictors of host diet, with MCC validation results of 1.0 for both data types.  However, for prediction of 

host Obesity, metabolomic data is found to be a stronger predictor than taxa (MCC of 0.79 and 0.48 

respectively).  This is in accordance with our previous results (Larsen et al. 2014, Larsen and Dai 2015) 

that indicate that a microbiome community metabolism is a better predictor of HMI than community 

structure.  MI models are also far better predictors of both HF-diet and Obesity than SVM trained on the 

same data.  Most importantly, accurate predictions of obesity of the ‘Transplant’ dataset indicates that the 

model generated here may be generalized beyond the ‘Obesity’ dataset and will be a useful tool for 

predicting the interactions between diet, microbiome, and host obesity in other microbiome datasets.  

 

 

 

 

Figure 6.15. Results for MI prediction of Obesity and HF Diet from microbiome metabolome 

and community structure.  Results are presented as MCC scores for both training (blue bars) and 

validation (orange bars) sets.  The nature of the data used to train the SVM are listed on the X-axis: 

Top Fisher-score ranked subsets of metabolic model data (PRMT), or microbiome community 

structure (Taxa).  For Obesity HMI, an additional dataset was included: data from ‘Transplant’ 

microbiome experiments. 
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Table 6.6. Metabolites predictive of host HF-diet and obesity in MI models  

  ID Metabolite KEGG Pathway 

H
F

-D
ie

t 

MET063 

N1-(5-Phospho-alpha-D-

ribosyl)-5,6-

dimethylbenzimidazole 

Metabolism of cofactors and vitamins 

MET070 
Phenanthrene-4,5-

dicarboxylate 

Polycyclic aromatic hydrocarbon 

degradation 

MET1018 Phosphonoacetaldehyde Amino acid metabolism 

MET1360 
L-Rhamnulose 1-

phosphate 
Carbohydrate metabolism 

MET619 

1D-1-Guanidino-3-amino-

1,3-dideoxy-scyllo-

inositol 

Antibiotic biosynthesis 

O
b

es
it

y
 

MET051 1-Acylglycerol 

Glycerolipid metabolism, Fat digestion 

and absorption,   

Vitamin digestion and absorption 

MET1152 

alpha-Oxo-benzeneacetic 

acid and 4-

Hydroxyphenylglyoxylate 

Phenylalanine metabolism 

MET1238 Deoxycytidine Pyrimidine metabolism 

MET904 Leukotriene D4 

Neuroactive ligand-receptor interaction, 

Arachidonic acid metabolism,    

Fc epsilon RI signaling pathway 

 

 

 

The metabolites identified as predictive for host HF-diet and obesity also provide insights into 

molecular mechanisms of HMIs.  The difference between HF and LF diet in a microbiome community 

structure can be defined exclusively by the relative abundances of Collinsella and Ruminococcaceae.  

Metabolic functions associated with a HF diet are primarily associated with bacterial metabolism: amino 

acid metabolism, carbohydrate metabolism, biosynthesis of co-factors, and metabolism of complex ringed 

molecules.  This is consistent with a microbial population that changes its community structure in 
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response to new nutrient sources, which in this case is the different sugar and fat contents between a LF 

and HF host diet.  Those predicted microbiome features that are associated with host obesity however are 

very different in nature.  Seven of the twenty taxa in the microbiome community structure are associated 

with host obesity in the MI model.  Bacteroides, Clostridium, Lactobacillus, and Parabacteroides have 

previously been associated with obesity (Million et al. 2012, Le Chatelier et al. 2013, Leung et al. 2013, 

Walsh et al. 2014, Kasai et al. 2015).  There is no direct association between Eubacterium and obesity 

found in the available literature, but the predicted mouse gut microbiome CIN and dynamic MAP-model 

from the previous section in this analysis, the abundance of Eubacterium is positively associated with 

dietary fat intake.  The molecules and functions associated with obesity are primarily associated with host 

interaction.  "Glycerolipid metabolism, Fat digestion and absorption, and Vitamin digestion and 

absorption" are pathways associated with the host’s ability to absorb nutrients from diet rather than a 

bacteria’s capacity to consume them.  Pathways “Neuroactive ligand-receptor interaction, Arachidonic 

acid metabolism, and Fc epsilon RI signaling pathway” seem to point directly to the specific molecules 

that mediate interactions in the gut-brain axis, interfacing the microbiome community directly with the 

host’s regulatory networks and perhaps even the host’s behavior.  Leukotierenes are directly associated 

with obesity (Back et al. 2014), inflammatory pathways (Busse 1998), and response to insulin (Martinez-

Clemente et al. 2011, Li et al. 2015).  Phenylalanine pathways have been previously observed to be highly 

enriched in the microbiomes of obese hosts (Liu et al. 2017) and pyrimidine metabolism has been 

observed to be reduced in non-obese animals (Yang et al. 2016a).  4-Hydroxyphenylglyoxylate is an 

inhibitor of fatty acid oxidation that can lead to liver disease and affect the digestion of fatty acids in the 

gut (Keung et al. 2013).  Cytidine deaminase, the enzyme responsible for deoxycytidine metabolism in 

the obesity-predictive metabolites is also known to be linked to obesity-associated reduction of immune 

B-cell responses (Frasca et al. 2008, Frasca et al. 2016). 
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6.6.5 Summary of Results 

In this Task, our goal was to generate predictive models of host obesity from microbiome data.  A unique, 

previously published dataset using mouse genetic variants was used to train models.  This dataset allowed 

models to distinguish between the effects of HF-diets on the microbiome and the effects of the 

microbiome on the host’s obesity.  Unlike in previous results, both in this study and in our previously 

published manuscripts (Larsen et al. 2015a, Larsen and Dai 2015), using SVM to predict HMI from 

mouse microbiome data was found to suffer from overfitting.  While microbiome community structure 

was found to be a good predictor of host HF-diet by SVM, for all other conditions and data types, the 

validation of SVMs were weak.  An alternative approach for predicting obesity from microbiome data 

needed to be found. 

Using an MI approach, specific functions were found that could accurately predict both host 

obesity and host HF-diet from microbiome data.  Here, as in our previous analyses, we find that emergent 

properties of the microbiome community, specifically the emergent property of the microbiome 

community metabolome, are more predictive of HMI than is microbiome community structure alone.  

More importantly for our proposed research plan, the MI approach, when trained on ‘Obesity’ data could 

predict obesity in microbiomes observed in the ‘Transplant’ dataset.  This ability to extrapolate 

predictions to very different microbiome population structures across different experimental observations 

validates our approach and indicates that this will be an effective tool for predicting HMIs for multiple 

biological conditions. 

Predictions of host obesity and host HF-diets also provide insights into some of the specific 

mechanisms of HMIs.  The microbiome’s responses to a change in the host’s diet were exclusively 

metabolic in nature: changing metabolic capacity to accommodate the change in available nutrients from 

a LF to HF diet.  The microbiome’s influence of host obesity however, was entirely associated with 

synthesis of molecules that interact with the host’s immune system, induce inflammation in the host, or 

signaling mechanisms for the gut-brain axis.  Obesity in this model then is not primarily about the 
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microbiome changing the amount of energy that can be extracted from the host’s diet, but rather due to 

the microbiome’s influence on a variety of host immune responses. 

 

6.7 Combine Computational Models for System-scale Predictions of Host-Microbiome Interactions 

A suite of microbiome-related models have been proposed and validated in prior Tasks in this 

Chapter:  

 Dynamic MAP-model predicts changes in a microbiome community resulting from the host’s 

diet.  

 TAvP-prediction extrapolates EFPs from a microbiome community structure using a statistical 

analysis of thousands of previously sequenced and annotated genomes.   

 PRMT can be used to generate microbiome community metabolic models from EFPs. 

 RPO-scores, for predicting host obesity from the microbiome community metabolome, have been 

constructed from community metabolomic model data.   

All analysis engines specific developed in this analysis have been constructed and validated using a 

variety of prior biological observations, with each model component drawing from different available 

mouse microbiome datasets (Figure 6.16).   

Here, we combine analysis engines to create iMOUSE, a dynamic, system-scale model of host-

microbiome interactions for prediction of host obesity.  The complete iMOUSE model is validated by 

repeating published biological experiments in silico.  The validated system-scale model will then applied 

to a novel biological question: mice with an Obese microbiome transplant have an increased propensity 

for obesity even when on a LF-diet, but is there a configuration of diet parameters that can produce a 

‘Lean’ host phenotype in a mouse with an ‘Obese’ microbiome? 
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This Task will accomplish several goals.  The first is to combine previously generated and 

validated computational models of the mouse microbiome into a single, system-scale model.  The second 

is to validate the iMOUSE model by reproducing, in silico, the ‘Gradient’ biological experiment and to 

apply the ‘Gradient’ experimental design to the ‘Transplant’ ‘Lean’ and ‘Obese’ microbiome transplant 

community structures.  Finally, a Genetic Algorithm (GA) approach will be applied to the iMOUSE 

model to identify diets that will provide a ‘Lean’ phenotype for mice with an Obese-transplant 

microbiome. 

 

6.7.1 The iMOUSE Model 

The specific mechanisms used to link previous models into the Mouse HMI System Model, 

iMOUSE, are shown in Figure 6.16.  Some modifications however needed to be made to model 

components.  In previous Tasks in this chapter, methods for predicting an EFP of thousands of enzyme 

functions and metabolic models with thousands of metabolites have been demonstrated.  However, only a 

very small fraction of those metabolites were identified as relevant for the prediction of host obesity 

(Table 6.6).  Therefore, we propose the concept of the Obesity-Specific Metabolome, which includes 

only those metabolites needed for prediction of host obesity and those enzyme functions required for 

modeling those metabolites for the system-scale model of mouse obesity HMIs (Table 6.7). 
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Figure 6.16. iMOUSE, a system-scale model of mouse HMI. By combining models created and 

validated from a wide variety of microbiome datasets and databases of annotated sequences genomes, a 

complete system-scale model of mouse obesity HMI can be constructed.  In this model, starting with an 

initial microbiome community structure and a set of diet parameters, a dynamic MAP-model will be used 

to determine how the microbiome community changes in response to diet conditions.  From predicted 

microbiome community, an Obesity-Specific EFP is created and used to calculate the Obesity-Specific 

metabolome.  The Obesity-Specific metabolome is used to calculate an RPO-score for the prediction of a 

host’s predisposition for obesity  
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Table 6.7. The Obesity-specific HMI metabolome 

Obesity-Related 

Metabolome Function 

E
n

zy
m

e 
F

u
n

ct
io

n
s 2.3.2.- Gamma-glutamylaminecyclotransferase 

2.3.2.2 Gamma-glutamyltransferase 

3.1.1.23 Acylglycerol lipase 

3.1.1.3 Triacylglycerol lipase 

3.1.3.5 5'-nucleotidase 

3.5.4.5 Cytidine deaminase 

4.1.1.7 Benzoylformate decarboxylase 

M
et

a
b

o
li

te
s 

1-Acylglycerol 

Glycerolipid metabolism, Fat digestion and 

absorption,  Vitamin digestion and 

absorption 

alpha-Oxo-

benzeneacetic_acid 
Phenylalanine metabolism 

Deoxycytidine Pyrimidine metabolism 

Leukotriene_D4 

Neuroactive ligand-receptor interaction, 

Arachidonic acid metabolism,   Fc epsilon RI 

signaling pathway 

4-Hydroxyphenyl-

glyoxylate 
Biosynthesis of antibiotics 

 

 

6.7.2 Validate iMOUSE Model by reproducing prior biological experimental results in silico  

The iMOUSE model outlined in Figure 6.10 will be validated using two host-microbiome in silico 

experiments: 

1) In Silico ‘Gradient’ Experiment.   Here, we use iMOUSE model to recreate the ‘Gradient’ 

experimental data.  From a predicted microbiome structure, generate a community metabolome 

model and predict the relative propensity for obesity that derives from the ‘Gradient’ diets, 

ranging from 100% HF to 100% HF diets. 
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2) Predict effect of diet on ‘Obese’ and ‘Lean’ microbiome transplants for mouse obesity HMI.  

We hypothesize that iMOUSE model will predict that mice with an ‘Obese’ microbiome 

transplant have greater propensity to obesity than mice with a ‘Lean’ microbiome transplant, 

matching the experimental observations. 

Each experiment can be described using the following conditions.  The starting microbiome 

community structures used in the in silico experiment and the set of diet conditions that are applied to the 

starting microbiomes.  The results from the iMOUSE model are predicted microbiome community 

structures, predicted obesity-related EFPs and metabolomes, and calculated RPO-scores. 

 

6.7.2.1. In Silico Diet Gradient Experiment 

Goal: The goal of this experiment is to reproduce in silico the results of biological experiment that 

generated the ‘Gradient’ dataset. 

Starting microbiome conditions: From the ‘Gradient’ dataset, microbiome community structures from 

the five ‘control’ microbiomes were selected that, in the initial experiment, were maintained on a LF 

diet both for Initial and Final microbiome conditions. 

Diet Conditions: The same diet conditions –  0, 1, 10, 25, 50, 25, and 100% HF-diet – as used in the 

initial ‘Gradient’ experiment were used in this in silico experiment.   
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Results:  The resulting RPO-scores are summarized in Figure 6.17.  With increasing proportion of HF 

diet, there is a corresponding increase in RPO-scores. 

Conclusions: Results closely follow biological expectations: with increasingly HF-diets, the resulting 

HMI’s are increasingly predicted to produce an ‘Obese’ phenotype in the host.  What makes these 

results significant is that the model correctly extrapolates obesity in ‘Gradient’ data mice when 

‘Gradient’ data was not used in training the Obesity function.  Furthermore, community structures 

from ‘Gradient’ and ‘Obesity’ are quite distinct from one another, suggesting that Obesity Function 

has indeed identified a potential underlying biological mechanism linking the microbiome community 

metabolism to obesity HMI. 

 

 

 

Figure 6.17. Predicted Relative 

Propensity for Obesity (RPO) scores 

for mice on increasingly HF diets.  

Average and standard deviations for 

predictions generated from replicated 

experimental conditions.  In these 

models, a higher RPO-score indicated a 

greater propensity for obesity in the 

host.  Diets are comprised of a mix of 

HF and LF pellets, where HF-n 

indicates a diet that is composed of n% 

HF pellets. 
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6.7.2.2. In Silico Microbiome Transplant Experiment 

Goal:  This in silico experiment is more ambitious than the previous.  First, this experiment utilizes data 

not used to train any component of the system-scale model.  Second, this experiment attempts to 

reproduce a biological phenomenon that did not appear in any of the model training data, specifically 

that an Obese-microbiome transplant predisposes the host to obesity regardless of diet.   

Starting microbiome conditions:  This experiment uses the ‘Lean’ and ‘Obese’ microbiome community 

transplant structures from the ‘Transplant’ dataset.   

Diet Conditions: The same diet regimes used in the ‘Gradient’ experiment (i.e. 0, 1, 10, 25, 50, 75, and 

100% HF diets) are used here.   

Results:  RPO-scores are presented in Figure 6.18.  Here it is shown that mice with an Obese 

microbiome transplants are constantly more likely to have an obese phenotype regardless of diet 

conditions.  Obesity for both ‘Lean’ and ‘Obese’ microbiome transplants is increased by a HF-diet. 

 

 

 

Figure 6.18.  Mice with ‘Obese’ 

microbiome transplants have 

increased predicted propensity 

for obesity over mice with ‘Lean’ 

microbiome transplants.  While 

increasing HF-content of diet 

increases the likelihood for obesity 

in mice with both ‘Obese’ and 

‘Lean’ microbiome transplants, 

mice with ‘Obese’ microbiome 

transplants are predicted to be far 

more prone to obesity at all diet 

types.  Diets are comprised of a mix 

of HF and LF pellets, where HF-n 

indicates a diet that is composed of 

n% HF pellets. 
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Conclusions: Results are strongly supportive of the hypothesis that we can model the effects an ‘Obese’ 

microbiome that predisposes the host to an obese phenotype.  In spite of not being trained on the 

‘Transplant’ data, the model correctly predicts several key biological observations.  An ‘Obese’ 

microbiome is more likely than a ‘Lean’ microbiome to result in an obese mouse, regardless of diet. 

 

6.7.2.3. Summary of iMOUSE in Silico Experiments 

These results demonstrate the robust extrapolative power of the iMOUSE model.  The 

‘Transplant’ dataset was not used to train any portion of the component models in the system-scale 

model.  Not only does the system-model correctly reproduce in silico the results of the ‘Transplant’ 

biological experiment, but the model also correctly extrapolated the diet-resistant effects of an ‘Obese’ 

microbiome in spite of the fact that there were no equivalent observations in the data used to train the 

models.  These results are very strongly suggestive that the in silico system-scale model of mouse HMIs 

has accurately captured relevant biological interactions capable of making relevant predictions for the 

outcome of biological experiments. 

 

6.7.3 Use Genetic Algorithm for Identifying ‘Diet for Lean Phenotype  

The Mouse HMI System Model has been effectively validated through the successful prediction 

of multiple biological observations from experiments not explicitly used to train the models.  Here, our 

goal is to apply the validated system model to determine a potential diet that restores ‘Lean’ phenotype to 

mice with an ‘Obese’ microbiome transplant.  Our approach is to use a GA approach to search the range 

of possible diet parameter combinations that minimizes RPO scores for modeled microbiomes that have 

initial community compositions from ‘Lean’ and ‘Obese’ transplant microbiomes.  We anticipate three 

possible outcomes to this approach: (i) restoration of lean microbiome community structure from an 

initial obese microbiome community, (ii) identification of diet that will restore lean phenotype in spite of 
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obese microbiome, or (iii) identification of a novel microbiome state achievable from starting obese 

microbiome, that will yield a lean phenotype. 

One possible approach would be to screen all possible diet parameter combinations and select the 

one which minimized OS.  This however would necessitate the calculation of around 2x1026 possible diets 

(24 diet parameters, each with a possible integer value from 1 to 100, for two possible starting 

microbiome community structures).  Even if each diet condition could be evaluated in one hundred 

thousandths of a second, it would still take about 6.34x1011 processor years to search this space.  We 

utilize a variation of a Genetic Algorithm (GA) approach to somewhat reduce computation time.   

In a GA approach, populations of possible solutions are randomly generated.  The best solutions 

from every ‘generation’ are selected, then used to make the next population of novel solutions by 

randomly mixing and mutating solutions in the previous generation of solutions.  The GA approach 

described below follows a ‘bacterial population sharing an antibiotic resistance phenotype’ biological 

model rather than a ‘genetic hybrid offspring of two parents’ model for its evolutionary process 

(Overballe-Petersen et al. 2013). 

The GA approach utilized the following inheritance rules: 

 The previous generation of solutions are sorted from best to worst by Obesity Score 

 The best/highest ranked diet always survives unchanged to the next generation 

 One copy of the best diet, subjected to random mutations always survives to the next generation 

 For every diet after that, each diet parameter has a chance of being replaced by the parameter of a 

higher ranked diet 

o The probability of a diet parameter being replaced increases with diet rank.  Weights are 

such that the lowest ranked diets are, on average, almost completely derived of 

parameters swapped from higher-ranked diets 
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o Selection of the diet from which the swapped diet parameter is derived is weighted such 

that higher-ranked diets are more likely to be the source of the cross-over 

 Each diet after the highest ranked diet is mutated in 0 to max_mutation parameters 

This approach is implemented in the method described by the following pseudocode: 

 

 

 

 

Pseudocode for Optimizing Diets for any Initial Microbiome Community 

Structure 

 

Given: 

Microbiome = Starting Microbiome Populations 

Initial Diet conditions = vector of diet parameters 

 

maxPop = total number of individuals in population 

mut = mutation frequency 

gen = Number of generations  

 

Functions: 

SortResults: sort population of diets by ObesityFunction values 

iMOUSE: Given a diet condition and starting population structure,  

- calculate new microbiome community structure,  

- calculate obesity-related EFP,  

- calculate obesity-related PRMT, 

- return Obesity Function score calculated from 

metabolome 

 

GA_Diet(Microbiome) 

    For g = 1 To gen 

 

        Call SortResults 

         

   #### Cross breed current diets… 

 

        For diet = maxPop To 2 Step -1 

            For dp = 1 To 24 #-- there are 24 diet parameters… 

                If Rnd * maxPop + 1 < diet Then 

                    c = 1 

                    Do While Rnd < 0.5 And c < diet - 1 

                        c = c + 1 

                    Swap diet parameter dp with value from cth-ranked 

 diet 

                End If 

         

        Save the highest ranked diet unchanged 
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        #--- Add mutations… 

        For diet = 2 To maxPop 

            m = Int(Rnd * mut) 

            If m > 0 Then 

                For i = 1 To m 

                    dp = Int(Rnd * 24) + 1 

                    nv = Rnd * 94 + 5 

                    diet parameter dp in dietth ranked diet = nv 

                Next i 

            End If 

        Next diet 

         

        For each diet in population 

  iMOUSE(community, diet) 

             

    Next g 

     

    #--- a final sort to make sure best diet is identified 

    Call SortResults 

     

-END 

 

 

 

The GA optimization method was run using ‘Lean’ and ‘Obese’ microbiome transplant 

community structures for initial population conditions and LF diet for initial diet parameters.  GA was run 

with a population size of 50 diet parameter combinations for 100,000 generations.  Through observations 

of method implementation, the GA algorithm reached a ‘best’ solutions after approximately 30,000 

generations with no further decrease in Obesity Function observed after that. 

 

6.7.3.1 Optimized Diets are Different Depending on Starting Microbiome Community Structure   

Diet parameters that result in the most Lean phenotypes, by Obesity Function-score are different 

depending on whether the mouse starts with  a ‘Lean’ or ‘Obese’ transplanted microbiome (Figure 6.19).   

 



161 
 

 
 

 

Figure 6.19. Optimized diet parameters for achieving a ‘Lean’ HMI phenotype from a starting 

‘Lean’ or ‘Obese’ microbiome community 

 

 

6.7.3.2 Optimized Microbiome Community Structures are Different Depending on Starting Microbiome 

Community Structure 

The final population structures that result from optimize diet conditions are very different 

depending on whether the mouse began with a ‘Lean’ or ‘Obese’ microbiome transplant community 

structure (Figure 6.20).   
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Figure 6.20. Initial and final microbiome 

community structures in diet optimizations.  

Population structures are for the initial 

microbiome ‘Obese’ and ‘Lean’ transplanted 

communities and for the community structures 

that result from diets that optimize microbiome 

community RPO-scores. 

 

 

6.7.3.3 Optimized EFPS are Very Similar, Independent of Starting Microbiome Community Structure 

These results indicate that very different population structures can have very similar enzyme 

profiles and, therefore, similar effects on the host-microbiome interaction (Figure 6.21).  This agrees with 

our initially stated hypothesis that HMIs are an emergent property of a microbiome community.  
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Figure 6.21. Obesity-specific EFPs for diet-optimized Lean and Obese microbiome communities. 

 

6.7.4 Validation of iMOUSE Model 

Without follow up biological experiments, there is no way to truly validate how accurate are the 

predictions for optimal diet parameters targeting ‘Lean’ and ‘Obese’ microbiome community structures.  

We can, however, consider the results in light of prior biological knowledge to gauge how ‘reasonable’ 

the predicted solutions are through a consideration of what is previously known about the distributions of 

mouse microbiome community structures. 

 

6.7.4.1 Are diets ‘reasonable’? 

It may be that the GA approach is capable of generating a diet that nurtures the microbiome 

community but leaves the host to starve.  We can ask of the results, how well do the optimized diets fall 

within parameters of known diets.  In model development stages, all diet parameters were normalized to 
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arbitrary values between 20 and 80.  Optimized diets were restricted to values between 1 and 100 for all 

diet parameters, so no predicted diet can be more than 20 arbitrary units outside of the actual observed 

range of diet parameters.  In the diet optimized for ‘Obese’ microbiomes, there are 3 parameters below 20 

units and 7 parameters above.  For the diet optimized for ‘Lean’ microbiomes, there are three diet 

parameters each above 80 or below 20.  The majority of diet parameters then fall into intermediate levels 

between standard HF and LF-diets including the parameters for fats, sugars, starch, and fiber.  Perhaps 

unsurprisingly, the optimal diet for ‘Obese’ microbiomes is slightly reduced for saturated fat content  

(18.6 arbitrary units) relative to standard laboratory diets.  Overall, there seems to be no reason to believe 

that predicted diets are incompatible with supporting the host mouse.  The answer to our initial question 

then is ‘yes’, the predicted diets are reasonable ones. 

 

6.7.4.2 Are final population structures ‘reasonable’? 

It is also possible that the predicted microbiome populations, while predictive of a Lean HMI 

phenotype, are biologically implausible.  Again, while there is no way outside of additional biological 

experimentation to determine if the predicted population structures are actually achievable, we can turn to 

the existing observation of microbiome community structures to see if the predicted structures are likely.  

In the predicted community structures, there are no taxonomic abundances that exceed those in the 

collected microbiome populations (‘Oscillation’, ‘Catalog’, ‘Obesity’, and ‘Transplant’) except Blauta in 

the Obesity microbiome optimized data.  Blauta are associated with healthy gut microbiomes and 

decreased host inflammation (Hong et al. 2011, Bajaj et al. 2012) .  The abundance of Lactobacillis in the 

Lean microbiome optimized community structure is high, but not higher than has been previously 

reported in the set of communities analyzed here.  The lean microbiome-optimized diet correlated most 

closely (by PCC between log2 transformed relative population abundances) with a ‘Catalog’ microbiome 

for a male SV129 mouse on LF diet.  The obese-microbiome diet correlated most strongly with a 

‘Catalog’ microbiome for a male C57BL/6 mouse on a LF diet.  So again, the answer to our question is 
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‘yes’, there is no reason to consider that the microbiome community structures that result from diet 

optimization to be unrealistic. 
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7. CONCLUSIONS 

 

 

 

Microbiomes play a crucial role in living systems and have profound and diverse effects on their 

hosts.  Understanding the molecular mechanisms of HMI are complicated however by the tremendous 

diversity of microbiome communities.  Here, through application of our central hypothesis that HMI are 

an emergent property of the microbiome community, we have investigated HMI’s at multiple scales and 

in multiple biological systems.  These studies have resulted in the creation of iMOUSE, a system-scale 

model of mouse obesity HMI.  Through these analyses we have accomplished two principle goals.  The 

first is to unambiguously support our central hypothesis that HMI is an emergent property of 

microbiomes.  The second is to generate a set of computational models of HMI that span multiple 

biological scales, accurately replicate previously reported biological experiments in silico, and can 

propose novel biological approaches for the rational manipulation of microbiome communities for the 

benefits of the host’s health. 

 

7.1. Pseudomonas-Host Interactions 

Genomic information and models built from annotated genomes were used to accurately predict 

plant root and human host HMI classes in Pseudomonads.  Emergent properties of the genome, the 

metabolome and the transportome, are more predictive than simply the identity of the genes in a genome.  

In all cases but one, genomic information alone (in the format of Enzyme Function Profiles) are the least 

accurate predictors of HMI classes.  In every case but one (Plant Disease), transportomic models (i.e. 

PRTT-scores) is the most predictive data type.  This suggests that Transportome, the capacity of a 

microorganism to sense, manipulate, and engage directly with its environment, is the most biologically 

relevant capacity for a Pseudomonad to interact with a host organism.  These findings support the 

hypothesis that HMI derive from the emergent properties of an interacting network of genes and proteins 
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that dictates a Pseudomonad’s ability to interact with its environment and there are multiple possible 

arrangements of genes that are able to achieve that HMI class. 

While the predictive abilities of this approach are strong, the potentially far more biologically 

relevant results are insights into the specific molecular mechanisms that enable human and plant 

pseudomonad-host interactions.  Those mechanisms, with regard to human pathogenicity, point to 

possible methods for disrupting antibiotic resistance (e.g. quorum sensing, biofilm formation, or 

bacteriocin production) and interfering with the capacity of a pathogen to evade the host immune system 

(e.g. arginine and dopamine biosynthesis).  These molecular targets may lead to new human therapeutic 

interventions that address the rising dangers of antibiotic resistant bacterial infections.  With regard to 

enhancing the potentially positive PGP activities of Pseudomonads, the predicted molecular mechanisms 

of host interactions provide insights as well.  Possible mechanisms to increase the PGP effects in 

Pseudomonads include manipulation of biosynthetic pathways for plant-signaling compounds such as 

auxin (indole) or neringenin.  Greater benefit to a plant host by Pseudomonads might be achieved by 

enhancing bacterial production of antimicrobial or antifungal compounds.  These hypotheses, generated 

from computational analysis of HMI and available genomic data, are directly testable by laboratory 

experiments. 

The method proposed here of using metabolomic and transportomic models to classify 

Pseudomonas by HMI class can be generalized to other HMI classes and other species of bacteria.  There 

is no reason that a far wider range of organisms than Pseudomonads could not be considered, and the list 

of possible HMI classes for analysis is vast.  We expect that this analysis approach will be a useful and 

powerful tool for genomic analysis for a wide range of bacteria and bacterial-host or bacteria-

environmental interactions. 

 

7.1.1. Potential Weaknesses 

One possible weakness of this study is the relatively small set of available genomes suitable for 

analysis.  While there are hundreds of possible sequenced Pseudomonas genomes available in NCBI and 
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thousands of genomes or partial genomes collected from metagenomics studies, very few of those can 

also be confidently traced to a specific set of HMI classes by direct observation in the reported literature 

or through experimental laboratory manipulations.  We fully expect that, as additional organisms are 

sequenced and characterized, the method described here will successfully incorporate them into analyses 

and the predictive power of this approach will be further improved. 

Also, the definitions and assignation of HMI classes to Pseudomonads may not be optimal.  HMI 

classes, gathered from Silby et al. (Silby et al. 2011), and verified by investigation into the primary 

literature, still may be too coarse grained for optimal descriptions of different bacteria-host interactions.  

Here, a necessary balance between tractable numbers of HMI classes that can be ascribed to a reasonable 

number of individual species needed to be selected.  In future work, additional HMI classes of greater 

specificity with a larger number of representative species for use in training computational models will be 

required. 

Fortunately, these potential weaknesses can be easily addressed with the addition of more and 

more Pseudomonas species for which HMI classes can be determined.  With the vast and rapid increase in 

sequenced genomes being deposited in public databases there will be an ever increasing resource of well-

characterized genomes for use in analysis.   

 

7.1.2. Proposed Future Work 

The results of this analysis show that much additional research can still be accomplished.  The 

approach presented here was highly accurate at predicting HMI types from genomic model data for 

Pseudomonads, and we anticipate that this approach will be a genome annotation and analysis tool that 

has great value to the scientific community, particularly for the annotation of newly sequenced bacterial 

genomes assembled directly from metagenomic sequence data.  For this to happen, a more accessible 

analysis pipeline must be created using the principles we have shown.  Currently, we are working with 

researchers at KBASE (http://kbase.us/) to establish our tool as a standard analysis pipeline that will 

automate many of the genome annotation and SVM training and validation steps demonstrated here.  

http://kbase.us/


169 
 

 
 

KBASE is a data analysis platform for systems biology analysis maintained by the Department of Energy.  

Establishing our analysis method for predicting HMI types from genomic sequence data will ensure that 

this becomes a common tool for genome analysis. 

The results of this analysis had led to a number of specific biological hypotheses that can 

potentially be experimentally validated.  Analysis of pathogenicity in Pseudomonas and the identification 

of potential molecular mechanisms by which pathogenicity could be mediated would require studies in 

animal models.  It is far easier to design and conduct laboratory experiments for plant-microbe interaction 

mechanisms than for mammalian-gut microbiome interactions.  One such set of experiments is currently 

underway and has led to published results, described in greater detail below. 

 

7.1.3. Biological Validation: Pseudomonas fluorescens Transportome Is Linked to Strain-Specific 

Plant Growth Promotion in Aspen Seedlings under Nutrient Stress 

In our recent publication (Shinde et al. 2017), we have had an opportunity to experimentally 

validate the results of the Plant Growth Promotion HMI computational modeling presented here.  In this 

laboratory experiment, aspen (Populus tremuloides) seedlings were co-cultured with four Pseudomonas 

species: one Pseudomonas protegens (Pf-5) and three Pseudomonas fluorescens strains (Pf0-1, SBW25, 

and WH6).  Cultures were grown under replete, low nitrogen, and low phosphorus conditions.  A total of 

16 phenotypic measurements were collected from aspen seedlings: dry weight (mg), shoot length (mm), 

number of leaves, leaf chlorophyll (Chl) concentration (μg mg−1 FW), Chl a/b ratio, shoot anthocyanin 

concentration (μg mg−1 FW), shoot NO−3 concentration (mg g−1 DW), shoot P concentration (mg g−1 

DW), root dry weight (mg), root branching (integer value), root length (cm), number of rootlets, root 

anthocyanin concentration (μg mg−1 FW), root total N (%), root NO−3 concentration (μg g−1 DW), and 

root P concentration (mg g−1 DW).  The relative capacity of different Pseudomonas species to promote 

plant growth and mediate nutrient-related stress in aspen seedlings was correlated with Pseudomonas 

transportomic capacity (PRTT-scores) and results analyzed in the context of the results of this study.  Of 

particular relevance to this current study was the implication of arabinose transport, a plant-stress singling 
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compound, as important to Pseudomonas-plant root interactions for promotion of PGP activities.  This 

experimental observation confirms some of the computational results presented here.  In the laboratory, 

Pseudomonas arabinose transporters have been cloned, synthesized and molecularly characterized.  

Arabinose transporter knock-out mutants have since been generated in Pseudomonads.  At the time of this 

writing, the arabinose knock-out mutants are being co-cultured with aspen seedlings to validate the role of 

Pseudomonas arabinose transport in aspen seedling stress remediation and PGP.  Thus, a complete cycle 

of analysis, hypothesis, and experimental validation using the computational approach presented here has 

been accomplished and will contribute significantly to the understanding of Pseudomonad PGP HMIs. 

 

7.2. Modeling Human Dysbiosis 

A longitudinal human microbiome dataset was used to generate and validate computational 

models for prediction of host dysbiosis, modeling microbiome community dynamics, and predicting diet 

conditions that will lead to diet-induced dysbiosis.   

Dysbiosis is most accurately predicted by the microbiome metabolome, supporting the central 

hypothesis that HMIs are emergent properties of the microbiome community and less dependent upon the 

specific presence, absence, or relative abundance of any specific bacterial species or taxa.  Model results 

propose specific molecular mechanisms of dysbiosis, including disruption of fat and protein digestion by 

the host, disruption of vitamin biosynthesis by the microbiome community, and the presence of potential 

virulence factors.  These predicted mechanisms of host dysbiosis are supported by previously-published 

experimental observations. 

A model of microbiome community dynamics was generated using the dynamic MAP-model 

approach, which is based on significant technical advancement of our previously published MAP-model 

method.  The dynamic MAP-model predicts that the diet parameter that has the greatest effect of 

microbiome dynamics is fiber, followed by saturated fats and, potentially, sodium-containing food 

preservatives.  These predictions are corroborated by prior biological knowledge from published 

literature. 
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The prediction of diet-induced dysbiosis was accomplished by linking together the model of 

microbiome community dynamics with the prediction of host dysbiosis from the emergent properties of a 

microbiome community.  Using this novel computational approach, it is predicted that the microbiome 

community that results after fourteen days of a very high fat diet, a very low fiber diet, or a very low 

sugar diet induces dysbiosis in the host.  These conditions for diet-induced dysbiosis are supported by 

evidence in the scientific literature. 

The power of these results lies within the models capacity to extrapolate well beyond the 

information used to construct the computational models to propose novel results and generate new 

biological hypotheses.  The model used to identify dysbiosis was not trained on any information derived 

from diet-induced dysbiosis.  The model that predicted microbiome community dynamics did not 

incorporate any information regarding host dysbiosis.  Yet when these models are combined, the resultant 

system-scale model linking host, host diet, and microbiome community is capable of accurately deducing 

the dietary conditions – high fat, low fiber, and low sugar – known to induce host dysbiosis.  This result 

indicated that the computational models, far from only being able to return the data on which it was 

trained, have captured some distillations of biological truth and that these models are valuable engines for 

understanding HMIs and proposing relevant hypotheses to drive future experiments. 

 

7.2.1. Potential Weaknesses 

There are a few key weaknesses in this analysis that should be highlighted.  One is the very 

limited number of people (n=2) in this analysis.  The small sample size in this study is typical of 

microbiome analyses from human subjects, where often many individuals’ microbiomes are sampled once 

or a few times, or a small number of individuals’ microbiomes are sampled more frequently.  While the 

depth of data collected in the David et al. experiment is exceptional in its coverage over time, the small 

number of donors available in the study makes it difficult to determine how likely model results are 

generalizable outside of the human donors involved in this study.  For now, this is a necessary trade off 

due to the monetary and computational costs associated with microbiome sample collection, sequencing, 
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and analysis.  The other main weakness of this analysis is the availability and identification of dysbiotic 

microbiomes.  Donor A’s dysbiosis was reported as being due to international travel and Donor B’s 

dysbiosis was due to a specific bacterial incursion by food poisoning.  It is possible that while “dysbiosis” 

accurately describes the donors’ phenotypes, two very different mechanisms of HMI are responsible for 

dysbiosis that arises from these examples of very different dysbiosis- inciting incidents for each donor.  

This objection is tempered somewhat by the fact that common predictive features for dysbiosis were 

discovered between donors, but it is reasonable to expect that a larger sample set with repeated examples 

of similar forms of dysbiosis would be even more informative.  Related to this objection is the method 

used to identify which microbiomes are ‘Dysbiosis’ and which are ‘Healthy’.  Without further 

information, which was unavailable from the David et al. publication, it is difficult to identity the specific 

criteria by which a microbiome was labeled as Healthy or Dysbiosis, whether some of those microbiomes 

may be mislabeled, or if there should be additional identifiers, for example ‘Pre-dysbiosis’.  The lack of 

additional disruptions to microbiome community structures also limits the opportunities to generate 

MAP-models from this data.  Although in results, a MAP-model was found to be more predictive that an 

‘Average-abundance’ model, the general observation of relatively steady microbiome community 

structures provided fewer opportunities to model more dynamic microbiomes.  The final potential 

weakness is the lack of opportunity for experimental validation of results.  While it would be theoretically 

possible to ask that ‘Donor A’ eat an extremely high-fat diet every day for two weeks to validate the 

dysbiosis model predictions, the likelihood of actually accomplishing this are slim, at best. 

 

7.2.2. Future Work 

Many of the solutions to addressing the weaknesses described above would be impossible, 

impractical, or unethical to implement on human subjects, such as deliberately inducing dysbiosis, finding 

a very large cohort of genetically similar human volunteers, or dictating a host’s diet in such a way that it 

might be unhealthy or harmful to the volunteer.  The best solution to the problems associated with limited 

human-microbiome datasets is to perform hypothesis-driven experiments using animal models, where 
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many more experimental parameters can be controlled and biological replication may be included.  

Chapter 6 of this study directly addresses the use of animal-microbiome laboratory models. 

 

7.3. Generating a System-Scale Model of a Mouse Obesity Host-Microbiome Interaction 

In this last chapter, a dynamic model of a mouse microbiome was generated, a significant 

advancement in the prediction of EFP from microbiome community composition was made, and a robust 

MI model for the prediction of mouse obesity from microbiome community was validated.  By combining 

these models, iMOUSE, a complete mouse obesity HMI system-scale model, was constructed and 

validated through the successful reproduction of biological experiments in silico.  Using the system-scale 

model of mouse HMI, it becomes possible to search a large number of theoretically possible diet 

parameter combinations to propose a diet that optimizes for a ‘Lean’ microbiome community structure for 

any initial microbiome community structure. 

The dynamic model of a mouse microbiome community as a function of the host’s diet accurately 

predicts biological observations in a dataset set aside for model validation.  Fat, sugar, and fiber diet 

components were discovered to play a prominent role in shaping the microbiome community structure, as 

might have been anticipated.  More unexpectedly, it was identified that the set of relevant diet parameters 

for microbiome structure was significantly enriched for vitamin composition.  Vitamins, particularly 

vitamin D (Dimitrov and White 2017, Sirtori et al. 2017), have been implicated in influencing the 

microbiome community in previous studies.  The prominence of dietary vitamin intake in this model 

suggests that vitamins might be a powerful tool for rationally manipulating microbiome communities.  

We expect that computational models, including the iMOUSE model constructed in this study, will play a 

prominent role in determining strategies for manipulating the microbiome through diet and vitamin 

therapy for patient care. 

The TAvP-prediction method, a significant technical advancement of our previously published 

tool TAP-prediction, calculates an Enzyme Function Profile (EFP) from microbiome community 
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structures.  A database of paired shotgun mouse microbiome metagenomes and community structures was 

combined with a statistical analysis of thousands of sequenced and annotated bacterial genomes to 

generate highly accurate EFP predictions.  The TAvP-prediction tool is expected to become a common 

and highly valuable application to the scientific community for microbiome analysis. 

The prediction approach for host obesity from a microbiome community accurately predicts HMI 

from the microbiome metabolome.  This result is highly significant for a number of reasons.  These 

results once again support our overarching hypothesis that HMI are emergent properties of the 

microbiome community.  A previous meta-analysis of microbiome-obesity studies reports that markers 

for obesity are not shared across experiments (Walters et al. 2014) and in an analysis of the mouse 

microbiome dataset we used here, no strong correlations between microbiome community and host 

obesity were identified (Xiao et al. 2017).  In our study, the Obesity Function, calculated from 

microbiome metabolome, was found to successfully predict obesity across a range of experimental 

conditions so the limitations in linking microbiome to host phenotype,  as identified in multiple 

microbiome studies and meta-analyses of studies  (Fukuda and Ohno 2014, Walters et al. 2014, Xiao et al. 

2017), has effectively been overcome.   

While each of the modeling approaches developed in Chapter 6 have been proven to be useful 

analysis tools individually, the true strength of the modeling approaches developed in this aim is their 

ability to be assembled into a single system-scale model of mouse obesity HMI, the iMOUSE.  The 

iMOUSE  model was validated by successfully reproducing in silico a series of previous biological 

experiments: the transplanting of ‘Obese’ microbiomes into a mouse host predisposed the host for obesity 

and a gradient of diets from low fat to high fat lead to a similar gradient in propensity for microbiome-

associated obesity in mice.  Successful validation of the iMOUSE model is a highly significant result.  

iMOUSE model components (i.e. microbiome community composition prediction, estimation of EFP 

from community structure, calculation of metagenome from EFP, and prediction of host obesity from 

microbiome metagenome) were each trained on very different datasets, collected by different laboratories 
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and using mice possessing different gut microbiome communities.  For example, the dynamic-MAP 

model trained on data from one published dataset correctly predicts the behavior of mouse-microbiome 

interactions in another published dataset, in spite of the fact that the two experiments use mice with very 

different microbiome community structures.  This demonstration that the dynamic MAP-model can 

accurately extrapolate observation from one experiment to predict another suggests that the computational 

models have indeed captured key biological phenomenon.   The capacity of the complete iMOUSE  

model to correctly predict an important biological observation that was not present in any of the training 

data, i.e. that an ‘Obese’ microbiome predisposes a mouse to obesity regardless of the host’s diet 

conditions, indicates that the model can generate highly relevant biological predictions and provide 

valuable hypotheses for experimental validation.  Using the validated iMOUSE model, diets for mice for 

the minimization of obesity and based on initial microbiome community structures were determined with 

high confidence in the biological relevance of the model’s predictions.  While both the ‘Lean’-optimized 

diets and final microbiome community structures were dependent upon initial microbiome community 

conditions, the resulting microbiomes shared nearly identical obesity-related Enzyme Function Profiles.  

The predicted host diets and community microbiome structures are within the ranges of previous 

biological observations, suggesting that the iMOUSE model has likely generated biologically meaningful 

results. 

 

7.3.1. Potential Weaknesses 

In spite of the general success in predicting mouse microbiome obesity HMIs and in the 

application of the iMOUSE model to in silico experiments, a number of potential weaknesses will need to 

be addressed in future work.  For the dynamic modeling of mouse microbiomes, the ‘Gradient’ diet 

conditions are not the ideal dataset for modeling dynamic populations.  Although the ‘Gradient’ data 

provided a range of diet parameters, a superior set of experimental diets would matrix diet parameters in a 

more complicated combination of features than the simpler linear combinations of HF and LF used in the 
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‘Gradient’ data.  This would provide a richer collection of varied diets on which the dynamics MAP-

models could be trained.  There is no immediate solution to this challenge except through conducting 

additional biological experiments that are designed at the outset to provide the best dynamic ranges of diet 

parameters for training dynamic MAP-models. 

Although the TAvP-prediction tool has been proven to be highly accurate at predicting mouse 

microbiome EFPs from community structure, it has been optimized here only for mouse gut microbiome 

communities.  If other microbiome community structures are to be analyzed by this approach, new 

environment-specific TAP-matrixes will need to be generated.  The datasets for this proposed work 

already exist for a range of microbiome environments (Asshauer et al. 2015) and it is our expectation that 

the TAvP-prediction tool will soon be applied to other microbiome environments, such as soils, marine 

environments, and hypersaline microbial mats. 

While biological validation of model prediction results are outside of the scope of this study, only 

additional laboratory experiments can truly determine the relative value of the results presented here.  

Efforts must be made to connect computational models with laboratory science if the promise of 

manipulating HMI for the benefit of improving human health is to be achieved. 

 

7.3.2. Proposed Future Work 

Results of this Aim propose a number of scientifically valuable applications and new research 

objectives that can be drawn from these analyses. 
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An additional modification to the dynamic MAP-model approach is suggested by these results.  

Metabolome had been proven to be a key driver in microbiome populations and HMI repeatedly 

throughout these analyses.  An additional MAP-model parameter that derives from this observation is: 

 

 𝑡𝑎𝑥𝑎𝑖
𝑡 = ∑ 𝑤𝑗,𝑖𝑑𝑖𝑒𝑡𝑗

𝑡

𝐷𝑖𝑒𝑡

𝑗=1

+ ∑ 𝑤𝑘,𝑖𝑡𝑎𝑥𝑎𝑘
𝑡

𝑇𝑎𝑥𝑎

𝑘=1

+ ∑ 𝑤𝑚,𝑖𝑡𝑎𝑥𝑎𝑚
𝑡

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑠𝑚

𝑚=1

 Eq. 7.1 

 

Where the terms are the same as in Eq. 6.1, with the addition of new terms for the community 

metabolome (highlighted in red in Eq. 7.1).  In this variation of dynamic community modeling, the 

current time point’s community structure is also influenced by the previous time point’s microbiome 

community metabolome.  While this is an appealing approach, the data required for this is not present in 

any of the relevant mouse microbiome datasets: a more varied set of initial microbiome community 

structures, a well-considered matrix of diet parameters, and varied final microbiome community 

compositions.  Implementation of this model must depend upon the identification or generation of 

appropriate microbiome experiments. 

Also, if these modeling results are to have an impact on human health in a clinical setting, the 

differences between laboratory mouse models and humans must be bridged.  While, as previously stated, 

there is ample reason to believe that for many applications, a mouse model can provide useful insight into 

human health and disease, there are significant differences between mouse and human diets, their 

gastrointestinal systems, and their immune systems (Nguyen et al. 2015).  One approach to bridging the 

laboratory model to clinical practice for microbiome-based interventions is to take computational models 

built on copious mouse data and use those models as a scaffold for the analysis of sparser but more 

clinically relevant human data.  It may be that through minimal and targeted changes to the mouse data-

built computational models, the integrated models such as iMOUSE can be rationally modified to better 
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conform to observations in human subjects.  In this way, cooperation between the laboratory scientist, 

clinical researchers, and computational modelers can leverage all of the available data to generate useful 

predictive and diagnostic tools for investigating the human microbiome. 

Finally, it is our goal to take predictive modeling of HMIs beyond obesity.  Microbiomes play a 

role in cancer, autoimmune diseases, diabetes, and a host of other potentially disruptive forms of 

dysbiosis.  The tools and approaches we have developed and validated here will be highly valuable to 

future investigations into HMIs and potential microbiome-based clinical intervention strategies.  We feel 

that the results of this analysis will prove to be a very important tool for the general scientific community 

for the modeling and investigations into HMI. 
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Appendix A.  Pseudomonas Genomes 

 

 

 

 

Pseudomonas Species 
Taxonomy 

Browser Link 

Link to NCBI 

Sequence 

Additional 

references 

Pseudomonas aeruginosa B136-33 ID=1280938 RefSeq    

Pseudomonas aeruginosa DK2 ID=1093787 RefSeq  PMID:22672046 

Pseudomonas aeruginosa LES431 ID=1408272 RefSeq  PMID:22672046 

Pseudomonas aeruginosa M18 ID=941193 RefSeq  PMID:21884571 

Pseudomonas aeruginosa NCGM2.S1 ID=1089456 RefSeq  PMID:22123763 

Pseudomonas aeruginosa PA7 ID=381754 RefSeq  PMID:20107499 

Pseudomonas aeruginosa PAO1 ID=1147787 RefSeq  PMID:10984043 

Pseudomonas aeruginosa RP73 ID=1340851 RefSeq  PMID:23908295 

Pseudomonas aeruginosa UCBPP-PA14 ID=208963 RefSeq  PMID:17038190 

Pseudomonas brassicacearum NFM421 ID=930166 RefSeq  PMID:21515771 

Pseudomonas denitrificans ATCC 13867 ID=1294143 RefSeq  

PMID:23723394 

PMC:2618026/ 

Pseudomonas entomophila L48 ID=384676 RefSeq  PMID:16699499 

Pseudomonas fluorescens A506 ID=1037911 RefSeq  PMID:22792073 

Pseudomonas fluorescens F113 ID=1114970 RefSeq  PMID:22328765 

Pseudomonas fluorescens Pf0-1 ID=205922 RefSeq  PMID:19432983 

Pseudomonas fluorescens SBW25 ID=216595 RefSeq  PMID:19432983 

Pseudomonas fulva 12-X ID=743720 RefSeq  PMID:17668039 

Pseudomonas mendocina NK-01 ID=1001585 RefSeq  PMID:21551299 

Pseudomonas mendocina ymp ID=399739 RefSeq  PMID:17384310 

Pseudomonas putida ND6 ID=231023 RefSeq  PMID:23046581 

Pseudomonas poae RE*1-1-14 ID=1282356 RefSeq  PMID:23516179 

Pseudomonas protegens CHA0 ID=1124983 RefSeq  

PMID:24762936 

SAM:PprotCHA0  

Pseudomonas protegens Pf-5 ID=220664 RefSeq  PMID:15980861 

Pseudomonas putida BIRD-1 ID=931281 RefSeq  PMID:21183676 

Pseudomonas putida DOT-T1E ID=1196325 RefSeq  PMID:22819823 

Pseudomonas putida F1 ID=351746 RefSeq  PMC:3056050/ 

Pseudomonas putida GB-1 ID=76869 RefSeq  PMC:3056050/ 

Pseudomonas putida H8234 ID=1331671 RefSeq  PMID:23868128 

Pseudomonas putida HB3267 ID=1215088 RefSeq  PMID:24465371 

Pseudomonas putida KT2440 ID=160488 RefSeq  

PMC:3056050/ 

PMID:12534463 

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1280938
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_B136_33_uid196598/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1093787
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_DK2_uid168996/
http://www.ncbi.nlm.nih.gov/pubmed/22672046
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1408272
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_LES431_uid232245/
http://www.ncbi.nlm.nih.gov/pubmed/22672046
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=941193
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_M18_uid162089/
http://www.ncbi.nlm.nih.gov/pubmed/21884571
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1089456
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_NCGM2_S1_uid162173/
http://www.ncbi.nlm.nih.gov/pubmed/22123763
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=381754
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_PA7_uid58627/
http://www.ncbi.nlm.nih.gov/pubmed/20107499
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1147787
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1147787
http://www.ncbi.nlm.nih.gov/pubmed/10984043
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1340851
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_RP73_uid209328/
http://www.ncbi.nlm.nih.gov/pubmed/23908295
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=208963
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_aeruginosa_UCBPP_PA14_uid57977/
http://www.ncbi.nlm.nih.gov/pubmed/17038190
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=930166
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_brassicacearum_NFM421_uid66303/
http://www.ncbi.nlm.nih.gov/pubmed/21515771
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1294143
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_denitrificans_ATCC_13867_uid195459/
http://www.ncbi.nlm.nih.gov/pubmed/23723394
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2618026/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=384676
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_entomophila_L48_uid58639/
http://www.ncbi.nlm.nih.gov/pubmed/16699499
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1037911
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_A506_uid165185/
http://www.ncbi.nlm.nih.gov/pubmed/22792073
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1114970
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_F113_uid87037/
http://www.ncbi.nlm.nih.gov/pubmed/22328765
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=205922
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_Pf0_1_uid57591/
http://www.ncbi.nlm.nih.gov/pubmed/19432983
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=216595
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_SBW25_uid158693/
http://www.ncbi.nlm.nih.gov/pubmed/19432983
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=743720
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fulva_12_X_uid67351/
http://www.ncbi.nlm.nih.gov/pubmed/17668039
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1001585
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_mendocina_NK_01_uid66299/
http://www.ncbi.nlm.nih.gov/pubmed/21551299
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=399739
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_mendocina_ymp_uid58723/
http://www.ncbi.nlm.nih.gov/pubmed/17384310
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=231023
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_ND6_uid167583/
http://www.ncbi.nlm.nih.gov/pubmed/23046581
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1282356
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_poae_RE_1_1_14_uid188480/
http://www.ncbi.nlm.nih.gov/pubmed/23516179
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1124983
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_CHA0_uid203393/
http://www.ncbi.nlm.nih.gov/pubmed/24762936
http://www.sciencedirect.com/science/article/pii/S0723202011000294
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=220664
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_fluorescens_Pf_5_uid57937/
http://www.ncbi.nlm.nih.gov/pubmed/15980861
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=931281
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_BIRD_1_uid162055/
http://www.ncbi.nlm.nih.gov/pubmed/21183676
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1196325
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_DOT_T1E_uid171260/
http://www.ncbi.nlm.nih.gov/pubmed/22819823
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=351746
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_F1_uid58355/
http://www.ncbi.nlm.nih.gov/pubmed/22819823
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=76869
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_GB_1_uid58735/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056050/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1331671
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_H8234_uid208673/
http://www.ncbi.nlm.nih.gov/pubmed/23868128
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1215088
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_HB3267_uid184078/
http://www.ncbi.nlm.nih.gov/pubmed/24465371
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=160488
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_KT2440_uid57843/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056050/
http://www.ncbi.nlm.nih.gov/pubmed/12534463
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Pseudomonas putida NBRC 14164 ID=1211579 RefSeq  PMID:24526630 

Pseudomonas putida S16 ID=1042876 RefSeq  PMID:21914868 

Pseudomonas putida W619 ID=390235 RefSeq  PMC:3056050/ 

Pseudomonas sp. UW4 ID=1207075 RefSeq  PMC:3596284/ 

Pseudomonas stutzeri A1501 ID=379731 RefSeq  PMID:18495935 

Pseudomonas stutzeri ATCC 17588 ID=96563 RefSeq  PMID:21994926 

Pseudomonas stutzeri CCUG 29243 ID=1196835 RefSeq  PMID:23144395 

Pseudomonas stutzeri DSM 10701 ID=1123519 RefSeq  PMID:22965097 

Pseudomonas stutzeri DSM 4166 ID=996285 RefSeq  PMID:21515765 

Pseudomonas stutzeri RCH2 ID=644801 RefSeq  JGI=PsestuRCH2 

Pseudomonas syringae pv. phaseolicola 1448A ID=264730 RefSeq  PMID:16159782 

Pseudomonas syringae pv. syringae B728a ID=205918 RefSeq  PMID:16043691 

Pseudomonas syringae pv. tomato DC3000 ID=223283 RefSeq  PMID:12928499 

 

 

  

http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1211579
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_NBRC_14164_uid208670/
http://www.ncbi.nlm.nih.gov/pubmed/24526630
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1042876
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_S16_uid68747/
http://www.ncbi.nlm.nih.gov/pubmed/21914868
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=390235
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_W619_uid58651/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3056050/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1207075
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_putida_UW4_uid182733/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596284/
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=379731
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ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Pseudomonas_stutzeri_DSM_4166_uid162113/
http://www.ncbi.nlm.nih.gov/pubmed/21515765
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Appendix B. BANJO Parameters for Human Donor A CIN 

 
 
 
 
 
 

###------------------------------------------------- 

### Project information 

###------------------------------------------------- 

 

project =      Microbiome Data, Fa, Order + Nutrition 

user =                                        PLarsen 

dataset =                    30-vars-144-observations 

notes =                         Dynamic network prediction 

 

###------------------------------------------------- 

### Search component specifications 

###------------------------------------------------- 

 

searcherChoice =                           SimAnneal   

proposerChoice =                     RandomLocalMove 

evaluatorChoice =                            default 

deciderChoice =                              default 

 

###------------------------------------------------- 

### Input and output locations 

###------------------------------------------------- 

 

inputDirectory =              /disk1/Microbiome_BNI/data 

observationsFile =                   MicrobiomeFa_Data.txt 

outputDirectory =           /disk1/Microbiome_BNI/output 

reportFile =                 MicrobiomeOrderFa-q4.@TS@.txt 

 

variablesAreInRows=    yes 

###------------------------------------------------- 

### We require this only to validate the input 

###------------------------------------------------- 

 

variableCount =                                 30 

 

###------------------------------------------------- 

### Pre-processing options 

###------------------------------------------------- 

 

discretizationPolicy =                          i4   

discretizationExceptions =   

createDiscretizationReport =                      no 

 

###------------------------------------------------- 

### Network structure properties 

###------------------------------------------------- 

 

minMarkovLag =                                     0 

maxMarkovLag =                                     1 

dbnMandatoryIdentityLags =                          

equivalentSampleSize =                           1.0 

maxParentCount =                                   5 

defaultMaxParentCount =                            7 

 

###------------------------------------------------- 
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### Network structure properties, optional 

###------------------------------------------------- 

 

initialStructureFile =            

mustBePresentEdgesFile =          

mustNotBePresentEdgesFile =       MicrobiomeFa_NoEdges.txt 

 

###------------------------------------------------- 

### Stopping criteria 

###------------------------------------------------- 

 

maxTime =                                       12 h 

maxProposedNetworks =                     

maxRestarts =                                  10000 

minNetworksBeforeChecking =                     1000 

 

###------------------------------------------------- 

### Search monitoring properties 

###------------------------------------------------- 

 

nBestNetworks =                                    3 

bestNetworksAre =              

screenReportingInterval =                       10 m 

fileReportingInterval =                         60 m 

 

###------------------------------------------------- 

### Parameters used by specific search methods 

###------------------------------------------------- 

 

### For simulated annealing: 

initialTemperature =                           10000 

coolingFactor =                                  0.7 

reannealingTemperature =                         800 

maxAcceptedNetworksBeforeCooling =              2500 

maxProposedNetworksBeforeCooling =             10000 

minAcceptedNetworksBeforeReannealing =           500 

 

### For greedy: 

minProposedNetworksAfterHighScore =             1000 

minProposedNetworksBeforeRestart =              3000 

maxProposedNetworksBeforeRestart =              5000 

restartWithRandomNetwork =                       yes 

maxParentCountForRestart =                         3 

 

###------------------------------------------------- 

### Command line user interface options 

###------------------------------------------------- 

 

askToVerifySettings =                             no 

 

###------------------------------------------------- 

### Post-processing options 

###------------------------------------------------- 

 

createDotOutput =                                no 

computeInfluenceScores =                         yes 

computeConsensusGraph =                          yes 

createConsensusGraphAsHtml =                     no 

fileNameForTopGraph =                 top.graph.@TS@ 

fileNameForConsensusGraph =     consensus.graph.@TS@ 

dotGraphicsFormat =                              jpg 

dotFileExtension =                               txt 

htmlFileExtension =                             html 
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fullPathToDotExecutable = ### C:/Program Files/ATT/Graphviz/bin/dot.exe 

timeStampFormat =                   yyyy.MM.dd.HH.mm 

 

###------------------------------------------------- 

### Memory management and performance options 

###------------------------------------------------- 

 

precomputeLogGamma =                             yes 

useCache =                                fastLevel2 

cycleCheckingMethod =                            dfs   

 

###------------------------------------------------- 

### Misc. options 

###------------------------------------------------- 

 

displayMemoryInfo =                              yes  

displayStructures =                              yes 
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Appendix C. Human Microbiome CIN Network 

 

 

 

 

 
rhi reg act 

rho reg act 

FIBER reg bif 

bif reg bif 

FIBER reg cor 

SATFAT reg cor 

bif reg cor 

cor reg cor 

cau reg cor 

FIBER reg bac 

bif reg bac 

ery reg bac 

FAT reg lac 

FIBER reg lac 

bif reg lac 

MIZ reg lac 

FIBER reg tur 

NA reg tur 

SUGAR reg tur 

tur reg tur 

des reg tur 

CA reg clo 

CAL reg clo 

FIBER reg clo 

bif reg clo 

SATFAT reg fus 

NA reg fus 

NA reg cau 

cau reg cau 

xan reg cau 

bif reg rhi 

rhi reg rhi 

rho reg rhi 

ery reg rhi 

tur reg rho 

clo reg rho 

CHOL reg bur 

FIBER reg bur 

lac reg bur 

bur reg bur 

des reg bur 

FIBER reg des 

des reg des 

MIZ reg des 

pas reg des 

FAT reg MIZ 

FIBER reg MIZ 

rho reg MIZ 

SATFAT reg cam 

bif reg cam 

fus reg cam 

des reg ent 

ent reg ent 

fus reg pas 

pse reg pas 
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xan reg pas 

cau reg pse 

bur reg xan 

xan reg xan 

CA reg ery 

lac reg ery 

cau reg ery 

ery reg ery 
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Appendix D. Human Microbiome MAP-model Equations 

 

 

 

 

act = 17.1947317090088 + 0.227234544300032*p_rho + 0.175778051656537/(p_rhi - 23.4011062795208) 

bif = 0.785831107465239*p_bif + 15.2458249927945*FIBER/p_bif 

cor = p_cor + 0.139509966963015*p_cau + 3.95343118419879*p_bif/FIBER - 0.000172868152336152*SUGAR*p_cor^2 

bac = 78.7500014696244 + 51.7447003873334/(57.8726383953475*p_xan - 1797.33149731475) - 

0.164581077019052*p_bif - 0.00209827783966129*FIBER*p_ery 

lac = 40.1818558074202 + 0.279073083925966*p_bif + -0.181120215668366*FIBER*p_act/p_MIZ - 

0.285913967839153*FAT 

tur = 19.8124296826635 + 367.420490954211*p_des*p_tur^2/(NA*SUGAR*FIBER^2) 

clo = 43.8461189706724 + 0.316628457923367*FIBER + (CAL + 5.5804007400402*p_bif)/FIBER - 

0.0762358440090073*CA 

fus = 19.9678852676837 + 0.818683836288815/(80.0246031534957 - SUGAR) + 0.410074822705735/(63.2196727056844 - 

NA) 

cau = 20.0210794455955 + 409.599181569476*p_cau^2/(1086955.39506134*NA + 77338.0397387806*p_xan^2 - 

108607.188703335*NA*p_xan) 

rhi = 19.9930696210875 + p_rho/(8540.0499990765 - 267.190252916424*p_ery) + (19.4922268060283 - p_rhi)/(p_bif - 

80.0398538782457) 

rho = 19.999760769633 + 25499.0144717232/(3643590286.02303 + 2094.36414023524*p_tur^2*p_clo^2 - 

5525681.47252487*p_tur*p_clo) 

bur = 30.9624032752801 + 0.201388089157056*p_bur + -3.02311929602648*FIBER/p_des - 

0.00286302363187179*CHOL*p_lac 

des = 20.3986236999421 + (0.784402829724915*p_des*p_MIZ - 13.6196917674685*p_MIZ)/(30.4596514370755 + FIBER 

- p_pas) 

MIZ = 20 + 0.475844708415161/(FIBER - FAT) + -0.106979754081751/(p_bur - 36.9778119801856) 

cam = 24.7335359486652 + -2.03076219001744/(SATFAT - 20.0375895226518) + p_bif/(p_fus - 79.4028198889855) 

ent = -26.0847036297922/(p_des - 80.4432216217961) + -186.201696782273/(0.10809656553104*p_ent - 

11.4066396146836) 

pas = 2147.94957328786/(108.218823198348 + p_xan - p_fus - p_pse) 

pse = 20.6159363029704 + -17.0022020859454/(737.133926507937 - 22.4090977710957*p_cau) 

xan = 20.0449206592275 + 0.757484054456456/(p_xan - 39.7120078504478) + 0.0113601408727396/(p_bur - 

22.9255035496149) 

ery = 32.2041204229574 + 0.429681272546127*p_ery + 0.00707333473907525*p_lac*p_cau - 0.312427420510187*CA 
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Appendix E. BANJO Parameters for ‘Gradient’ Mouse Microbiome CIN 

 

 
 
 

###------------------------------------------------- 

### Project information 

###------------------------------------------------- 

project =                     MinCommunituy 

user =                                          PEL 

notes =           dynamic bayesian network inference 

 

###------------------------------------------------- 

### Input and output locations 

###------------------------------------------------- 

 

inputDirectory =             FinalGradient 

observationsFile =           Gradeint-init_ForBNI.txt 

 

outputDirectory =            FinalGradient 

reportFile =                 BN_Gradient-init.@TS@.txt 

 

 

###------------------------------------------------- 

### Required data 

###------------------------------------------------- 

 

variablesAreInRows= yes 

variableCount =                                  68 

 

###------------------------------------------------- 

### Optional data 

###------------------------------------------------- 

 

mustNotBePresentEdgesFile = Gradeint-init_ForBNI_NoInteractions.txt 

 

 

###------------------------------------------------- 

###  Pre-processing options 

###------------------------------------------------- 

 

discretizationPolicy =                          i5   

          

 

 

###------------------------------------------------- 

###  Search specifications 

###------------------------------------------------- 

 

searcherChoice =                              Greedy 

proposerChoice =                       AllLocalMoves 

evaluatorChoice =                            default 

deciderChoice =                              default 

statisticsChoice =                           default 

 

 

###------------------------------------------------- 

### Search "problem domain" constraints 

###------------------------------------------------- 

 

minMarkovLag =                                     0 

maxMarkovLag =                                     0 
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dbnMandatoryIdentityLags =                         1 

equivalentSampleSize =                           1.0 

maxParentCount =                                   5 

computeInfluenceScores = yes 

 

###------------------------------------------------- 

### Search monitoring properties 

###------------------------------------------------- 

 

nBestNetworks =                                    5 

bestNetworksAre =             nonidenticalThenPruned 

screenReportingInterval =                       60 s 

fileReportingInterval =                         60 m 

 

 

###------------------------------------------------- 

### Stopping criteria 

###------------------------------------------------- 

 

maxTime =                                       12 h 

maxProposedNetworks =                         

maxRestarts =                                      

minNetworksBeforeChecking =                     1000 

 

 

###------------------------------------------------- 

### Parameters used by specific methods 

###------------------------------------------------- 

 

### For simulated annealing: 

initialTemperature =                            1000 

coolingFactor =                                  0.8 

maxAcceptedNetworksBeforeCooling =              1000 

maxProposedNetworksBeforeCooling =             10000 

minAcceptedNetworksBeforeReannealing =           200 

reannealingTemperature =                         500 

 

### For greedy: 

minProposedNetworksAfterHighScore =             1000 

minProposedNetworksBeforeRestart =              3000 

maxProposedNetworksBeforeRestart =              5000 

restartWithRandomNetwork =                       yes 

maxParentCountForRestart =                         3 

 

 

###------------------------------------------------- 

### Misc. options 

###------------------------------------------------- 

 

displayMemoryInfo =                              yes  

displayStructures =                              yes 
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Appendix F. Mouse Microbiome CIN 

 

 

 

 
d_Asp reg t_Porphyromonas 

d_Calcium reg t_Clostridium 

d_Calcium reg t_Butyrivibrio 

d_Glu reg t_Atopobium 

d_Gly reg t_Desulfotomaculum 

d_Gly reg t_Lactococcus 

d_His reg t_Oribacterium 

d_Ile reg t_Collinsella 

d_Lactose reg t_Erysipelotrichaceae 

d_Magnesium reg t_Lachnospiraceae 

d_Met+Cys reg t_Parabacteroides 

d_Monosat reg t_Eubacterium 

d_Starch reg t_Lactococcus 

d_Starch reg t_Lactococcus 

d_Starch reg t_Clostridium 

d_Sucrose reg t_OTHER 

d_Val reg t_Desulfotomaculum 

d_Vit A reg t_Atopobium 

d_Vit D3 reg t_Erysipelotrichaceae 

t_Anaerostipes reg t_OTHER 

t_Bacteroides reg t_Ruminococcaceae 

t_Butyrivibrio reg t_Ruminococcaceae 

t_Butyrivibrio reg t_OTHER 

t_Clostridium reg t_Lactobacillus 

t_Clostridium reg t_Oribacterium 

t_Clostridium reg t_Collinsella 

t_Collinsella reg t_Ruminococcaceae 

t_Desulfotomaculum reg t_Bacteroides 

t_Lachnospiraceae reg t_Ruminococcus 

t_Lactococcus reg t_Desulfotomaculum 

t_OTHER reg t_Ruminococcus 

t_Parabacteroides reg t_Clostridium 

t_Parabacteroides reg t_Erysipelotrichaceae 

t_Porphyromonas reg t_Clostridium 

t_Porphyromonas reg t_Atopobium 

t_Ruminococcaceae reg t_Lachnospiraceae 

t_Ruminococcus reg t_Clostridium 

t_Ruminococcus reg t_Clostridium 

t_Ruminococcus reg t_Clostridium 

t-1_Anaerostipes reg t_Anaerostipes 

t-1_Butyrivibrio reg t_Ruminococcus 

t-1_Collinsella reg t_Ruminococcus 

t-1_Erysipelotrichaceae reg t_OTHER 

t-1_Oribacterium reg t_Desulfotomaculum 

t-1_Parabacteroides reg t_Blautia 

t-1_Porphyromonas reg t_Clostridiales 

t-1_Ruminococcus reg t_Clostridiales 

d_Ala reg t_Anaerostipes 

d_Ala reg t_Anaerostipes 

d_Biotin reg t_Desulfotomaculum 

d_Biotin reg t_Desulfotomaculum 

d_Fiber (cellulose) reg t_Ruminococcus 

d_Fiber (cellulose) reg t_Ruminococcus 

d_Riboflavin reg t_Oribacterium 

d_Riboflavin reg t_Oribacterium 
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d_Ser reg t_OTHER 

d_Ser reg t_OTHER 

d_Thr reg t_Parabacteroides 

d_Thr reg t_Parabacteroides 

d_Trp reg t_Atopobium 

d_Trp reg t_Atopobium 

d_Vit B12 reg t_OTHER 

d_Vit B12 reg t_OTHER 

d_Vit E reg t_Lactococcus 

d_Vit E reg t_Lactococcus 

t_Atopobium reg t_Lactobacillus 

t_Atopobium reg t_Lactobacillus 

t_Butyrivibrio reg t_Erysipelotrichaceae 

t_Butyrivibrio reg t_Erysipelotrichaceae 

t_Clostridiales reg t_Butyrivibrio 

t_Clostridiales reg t_Butyrivibrio 

t_Lactococcus reg t_Oribacterium 

t_Lactococcus reg t_Oribacterium 

t_Ruminococcaceae reg t_Anaerostipes 

t_Ruminococcaceae reg t_Anaerostipes 

t_Ruminococcus reg t_Clostridium 

t_Ruminococcus reg t_Clostridium 

t-1_Lactobacillus reg t_OTHER 

t-1_Oribacterium reg t_Bacteroides 

t-1_Oribacterium reg t_Bacteroides 

t-1_Parabacteroides reg t_Clostridiales 

t-1_Parabacteroides reg t_Clostridiales 
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