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SUMMARY 

 

 Earth System Models (ESMs) are the tools we use to experiment on the Earth, understand 

processes that drive climate, explore climate response to forcing, and project future climate. 

Their complexity has grown exponentially over the decades, and our understanding of the Earth, 

as a system, has advanced. The land surface model, one component of ESMs, allows us to 

analyze the interactions between vegetation and the carbon cycle. One important driver of model 

development has been addressing missing processes that impact the carbon cycle. In order to use 

ESMs more effectively, we must identify important pieces of biological systems that drive 

productivity and soil carbon storage that models currently lack.  

 

 One of the biggest uncertainties of climate change is determining the response of 

vegetation to many co-occurring stressors. In particular, many forests are experiencing increased 

nitrogen deposition and are expected to suffer in the future from increased drought frequency and 

intensity. Interactions between drought and nitrogen deposition are antagonistic and non-

additive, which makes predictions of vegetation response dependent on multiple factors. Earth 

system models are ill-equipped to capture the physiological feedbacks and dynamic responses of 

ecosystems to these types of stressors. In chapter 2, I review the observed effects of nitrogen 

deposition and drought on vegetation as they relate to productivity, particularly focusing on 

carbon uptake and partitioning. I identify several areas of model development that can improve 

the predicted carbon uptake under increasing nitrogen deposition and drought. They include a 

more flexible framework for carbon and nitrogen partitioning, dynamic carbon allocation, better 

representation of root form and function, age and succession dynamics, competition, and plant  
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modeling using trait-based approaches. These areas of model development have the potential to 

improve the forecasting ability and reduce uncertainty of climate models. Two of the model 

developments, dynamic roots and dynamic carbon allocation, are then addressed in Chapter 3 

and 4, respectively. 

 

 Roots are important contributors to plant development, functioning to provide nutrients 

and water for plant growth. However, roots and their functions are often simplified in earth 

system models, which limits the feedbacks of root foraging strategy on plant productivity, and 

their impacts on the carbon cycle. The goal of Chapter 3 is to introduce a new method to resolve 

the vertical structure of roots over time in the Energy Exascale Earth System Model. The method 

allows plasticity of rooting depth distribution under non-uniform profiles of water and nitrogen, 

which influences aboveground dynamics. The dynamic root model optimizes root distribution for 

both water and nitrogen uptake, but gives priority to plant water demands. The resulting root 

distribution maintains agreement with observations in most ecosystems, while marginally 

improving the gross primary productivity estimated by the model, compared to satellite 

observations. Increases in gross primary productivity are simulated in desert and boreal 

ecosystems, but decreased elsewhere. When the model distributes roots to uptake both nitrogen 

and water, a transfer of roots away from water resources toward nitrogen occurs, without a 

modeled benefit to nitrogen uptake. This results in the drop in GPP seen in most ecosystems. In 

addition, the model does not capture deep roots in the dry tropics, and therefore productivity 

losses are observed in parts of the Amazon and the African savannah. Sensitivity studies were 

performed that increased the amount of water stress experienced by the plant to explore the  
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model behavior in water-limited ecosystems. They showed, not surprisingly, as roots grew 

deeper, more water was available to the plant. This allowed GPP to increase in most ecosystems, 

with the exception of deserts, where the soil moisture was depleted and GPP decreased. The 

main conclusion of the study was additional model processes, such as climate dependent root 

depth, root hydraulics, root form and function, and better nitrogen uptake, should be considered 

to improve the root water and nitrogen uptake in ELM. 

 

 Most ESMs use simple allometric rules for carbon partitioning, which focus on fixed 

biomass ratios regardless of environmental conditions, with little to no attempt to capture plant 

plasticity. The lack of dynamics result in a limited capacity of models to predict vegetation 

response to climate change. Ideally, models should permit varying biomass ratios as a product of 

the co-limitation of resources. The work in Chapter 4 applies a new method of partitioning 

between above- and below-ground plant components using the Cobb-Douglas production 

function. The Cobb-Douglas production function is commonly used in economics to maximize 

an output given multiple inputs, analogous to a cost-benefit analysis. Here, we use the function in 

an optimization model to maximize GPP given inputs of carbon and nitrogen, where uptake of 

resources is governed by the production of leaves and roots, and a cost from the creation and 

maintenance of biomass. This allows a dynamic allocation of biomass between above and 

belowground components to simulate responsive plant development. The method is applied to 

the Energy Exascale Earth System Model (E3SM), a fully coupled climate-energy ESM, 

developed by DOE to investigate interactions between energy, climate, water, and land at high 

resolution. The model is tested using a single point resolution at various Fluxnet sites that  
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capture a diverse set of plant functional types. The usefulness of the approach is evaluated by the 

ability of the model to capture productivity at individual sites across numerous climate regions. 

The results indicate a strong dependence of fine root:leaf ratios on phenology. In particular, 

evergreen phenology vegetation has the highest fine root:leaf ratios, suggesting a more limited 

nitrogen environment. In contrast, deciduous phenology vegetation has the lowest fine root:leaf 

ratios, signaling these ecosystems are more carbon limited. In many ecosystems, the change in 

fine root:leaf ratios resulted in an increase in model simulated GPP, which also shows better 

agreement with observations at those sites. However, in nitrogen limited systems, GPP decreased 

because the nitrogen uptake in the model is not increasing. The results reveal additional model 

development activities that should be targeted to improve the dynamic carbon allocation model. 

However, the proof of concept shows promise for integrating dynamic allocation in ESMs. 

 

 Cultivation of the terrestrial land surface can create either a source or sink of atmospheric 

CO2, depending on land management practices. The Community Land Model (CLM) was 

recently updated to include representation of managed lands growing maize, soybean, and spring 

wheat. In Chapter 5, the CLM-Crop model is used to investigate the impacts of various 

management practices, including fertilizer use and differential rates of crop residue removal, on 

the soil organic carbon (SOC) storage of croplands in the continental United States over 

approximately a 170-year period. Results indicate that total U.S. SOC stocks have already lost 

over 8 Pg C (10%) due to land cultivation practices (e.g., fertilizer application, cultivar choice, 

and residue removal), compared to a land surface composed of native vegetation (i.e., 

grasslands). After long periods of cultivation, individual subgrids (the equivalent of a field plot)  
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SUMMARY (continued) 

growing maize and soybean lost up to 65% of the carbon stored, compared to a grassland site. 

Crop residue management showed the greatest effect on soil carbon storage, with low and 

medium residue returns resulting in additional losses of 5% and 3.5%, respectively, in U.S. 

carbon storage, while plots with high residue returns stored 2% more carbon. Nitrogenous 

fertilizer can alter the amount of soil carbon stocks significantly. Under current levels of crop 

residue return, not applying fertilizer resulted in a 5% loss of soil carbon. Our simulations 

indicate that disturbance through cultivation will always result in a loss of soil carbon, and 

management practices will have a large influence on the magnitude of SOC loss. 
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1 INTRODUCTION 

 

Carbon enters through the leaf. 

Photosynthesis completes. 

Growing, reaching, climbing high 

toward the sunlight in the sky. 

Till quietly falling to the ground; 

crunching, munching can be found. 

Here begins Decomposition, 

Carbon stored in transition. 

Freed as Respiration breath, 

coming from soil depth. 

There the cycle seems to end, 

only to begin again. 

 

 Land matters. The land is tightly coupled to the atmosphere. The complex nature of the 

land’s topography of mountains and rolling hills or vast stretches of sandy deserts help drive 

atmospheric processes. But those atmospheric processes also drive changes in the land by 

creating lush tropical rainforests teeming with biodiversity, rivers and lakes, ice and snow. The 

land surface can significantly alter atmosphere-land interactions through modifications to albedo, 

boundary layer, surface moisture, heat and energy fluxes. The land surface effects temperature 

and precipitation. The land surface has a large influence on hydrology and nutrient cycling. The 

land surface contributes to biogeochemical changes of soil organic carbon storage. Land matters. 

 

 Furthermore, climate change is expected to have a considerable effect on vegetation, 

influencing distribution, growth cycles, net primary productivity, and biodiversity (Sykes, 2009). 

Understanding how plants will respond to changes in temperature and precipitation is one of the 

primary concerns of biologists and climate scientists. Since elevated CO2 and aerosol loading of 

the atmosphere will continue to disturb the balance of carbon, nitrogen, and water including 
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altered temperature and precipitation, understanding changes in vegetation behavior under these 

conditions is critical for successful simulation of historical and projected climate changes in 

ecosystems and their feedback to the earth system.  

 

 Edward Wilson (1999) states in his book The Diversity of Life, “one planet, one 

experiment”. But, the creation of the Earth system model (ESM) has given scientists a tool to 

experiment on the whole earth so we can move forward and backward in time, learning from the 

past in order to predict the future. These ESMs have come a long way from their predecessors 

from 50 years ago. In a world facing climate change, focus was often on the atmosphere and the 

ocean. In fact, the first climate models to run on large scale computers, introduced in the 1960s, 

only included an atmosphere (Edwards, 2011). Ocean models were added soon after, but these 

atmosphere-ocean models (or General Circulation Models as they are now known) weren’t 

coupled to land models until the 1980s. This oversite is understandable, given the small portion 

of the planet occupied by land – 30% compared to the 70% of ocean. But, the remaining 30% 

that makes up land and ice influences albedo, energy fluxes, carbon, nutrient and water cycles. 

And, when we consider the soil and vegetation store over three time more carbon than the 

atmosphere, it is obvious, land matters.  

 

 Fortunately, the climate community recognized the important role the land surface plays 

in driving atmospheric and climate processes. To that extent, many climate models began 

incorporating increasingly complex representations of the land surface, including vegetation, 

hydrological, and biogeochemical processes. And still, the land model continues to evolve. It is 

beyond the scope of this thesis to provide a history of land surface modeling, or even a 
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theoretical overview of current land surface models. For these, see the works of Pitman (2003) 

and Sato et al. (2015). It is, however, the introduction of the carbon cycle where things really got 

interesting in climate models. 

 

 Uncertainty in the carbon cycle contributes 40% or more of the spread in temperature 

from climate model simulations (Huntingford et al., 2009). Most uncertainty comes from the 

differences in model setup and complexity (Friedlingstein et al., 2014). Yet there is also 

uncertainty from within the models. For example, one great source of uncertainty in the carbon 

cycle is from how soil moisture stress is represented in models (Trugman et al., 2018). The cause 

is largely due to the way models handle water uptake through root systems (Warren et al., 2015). 

Another example of uncertainty is in land use land cover or dynamic vegetation (Yu et al., 2016). 

Bloom et al. (2016) suggested that the carbon stocks and residence times have not been properly 

captured in models. Given the importance of feedbacks between the carbon cycle and the 

atmosphere, land surface models (LSMs) should strive to capture the full carbon cycle. But 

developing processes, calibrating those processes, and validating the models is a challenge.  

 

 Therefore, this thesis serves to improve a small number of processes in land surface 

models to better predict impacts on the carbon cycle. I will begin in Chapter 2 with a discussion 

of ecosystem response to stress and highlight opportunities for future model development to 

improve model prediction. Then in Chapters 3, 4, and 5, I will undertake some major model 

developments to integrate some of the missing processes in ESMs. 
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 While there are multiple studies that address the effects of a single stress (e.g., drought, 

elevated CO2, nitrogen deposition, etc.), there are relatively few studies that address multiple co-

occurring stressors. This subject is approached in Chapter 2 in a published manuscript in the 

journal Forests. Two types of stress are chosen, one from climate (drought) and the other from 

humans (nitrogen deposition). They are chosen because the ecosystem response to these two 

stresses are antagonistic (Meyer-Grünefeldt et al., 2013). For example, nitrogen deposition 

increases nutrient availability which causes trees to invest more biomass in stems (Pregitzer et 

al., 2008), but vegetation response to drought typically results in more root growth (Hertel et al., 

2013). The manuscript identifies the processes responsible for vegetation response to these co-

occurring stresses. The resulting discussion lists focus areas of model development for ESMs to 

capture the response of ecosystems.  

 

 Two of the model development recommendations that are discussed in Chapter 2, 

dynamic roots and dynamic carbon allocation, will be addressed in Chapters 3 and 4, 

respectively, in the E3SM Land Model (ELM). Previous work integrating dynamic vegetation 

into climate models only considered changes in vegetation distribution based on known ranges of 

temperature or precipitation regimes, with relatively narrow opportunities for vegetation to 

respond to nutrient limits except through photosynthesis downscaling, despite strong evidence 

that vegetation responds to the environment (Medlyn et al., 2015; De Kauwe et al., 2014; 

Thomas et al., 2009; Hermans et al., 2006; Ainsworth and Long, 2004). For example, most 

LSMs have fixed allocation rules governing carbon and nitrogen partitioning between leaves, 

stem, and roots (Franklin et al., 2012). This treatment restricts the plant response to changes in 

environment. Additionally, roots are represented with static depth and distribution dependent 
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only on plant functional type, greatly simplifying one of the most significant contributors to the 

carbon and hydrological cycles (Warren et al., 2015).  

 

 To address root dynamics, in Chapter 3 I introduce a new method of root distribution in 

the ELM. There have been some advances in dynamic root modeling to optimize water uptake 

(Sivandran and Bras et al., 2013), nitrogen uptake (McMurtie et al., 2012), or allow root 

distribution to shift with age (Arora and Boer, 2003). The new approach is designed to respond 

to both water and nitrogen limitations, with more emphasis on water uptake. I then compare the 

model response of gross primary productivity (GPP), total ecosystem carbon, evapotranspiration, 

and nitrogen uptake with and without dynamic roots. The manuscript concludes with a 

discussion of additional model development needed to fully utilize dynamic roots. This 

manuscript was published in the Journal of Advances in Modeling Earth Systems.   

 

 Next, in Chapter 4, I present an optimization method to dynamically allocate plant carbon 

in ELM. Using parallels between economics and ecology, plants are allowed to optimize 

productivity by choosing where to invest biomass such that water, nutrient, and carbon uptake 

are maximized. The result can expand the ability of the coupled biosphere-atmosphere model to 

respond to resource availability and improve predictions of critical exchanges of energy, water, 

and carbon between land use and the atmosphere.  

 

 But as much effort is given to improving the vegetation response to climate, we often 

forget that perhaps the most important driver are humans. Humans have managed the land by 

converting forests, prairies, and deserts to agriculture fields and urban centers, diverted rivers, 
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depleted lakes, and fragmented the landscape. And yet, human influence on the landscape has 

largely gone unnoticed in earth system models. We are aware that we have perturbed the load of 

carbon in the atmosphere through our emissions of fossil fuels. As such, we include the effect of 

elevated CO2 in the atmosphere, but the scarred land surface does not show any indication of 

human consumption. Therefore, in Chapter Five, I confront the largest uncertainty of the Earth 

system – humans. For this effort, I will bring managed lands into the Community Land Model 

(CLM) through agriculture representation.  

 

 This effort introduces three new plant functional types into the model framework: corn, 

soybean, and spring wheat. The analysis is not on the performance of the model, that is discussed 

in previous work by Drewniak et al. (2013). However, the effects of management, specifically 

the harvest of non-grain plant components for cellulosic ethanol, are evaluated for soil carbon 

storage. The model establishes a baseline approximation of the soil carbon that is lost in the US 

from agriculture practices, and estimates the amount of carbon that would be lost from different 

scenarios of harvest (from 10% to 90%). This manuscript was published in the journal 

Biogeochemistry. 

 

 All the model development discussed in the main chapters of this thesis relate to the 

carbon cycle. Chapters 2, 3 and 4 demonstrate the impacts on GPP. Chapter 3 also includes some 

discussion on total carbon storage. Chapter 5 includes soil carbon storage. Therefore, Chapter 6 

serves to synthesize the results from the studies included in this thesis, and provides an overview 

of the broader impacts.  
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2 EARTH SYSTEM MODEL NEEDS FOR INCLUDING THE INTERACTIVE 

REPRESENTATION OF NITROGEN DEPOSITION AND DROGHT EFFECTS ON 

FORESTED ECOSYSTEMS 

 

 

This chapter was previously published as Drewniak, B., and Gonzalez-Meler, M. A. 2017. Earth 

System Model needs for including the interactive representation of nitrogen deposition and 

drought effects on forested ecosystems. Forests, 8, 267: doi:10.3390/f8080267. 

 

2.1 Introduction 

 

 Earth system models (ESMs) have been used to predict the climate’s response to increased 

CO2 emissions (or concentrations), but uncertainty in land carbon (C) feedbacks results in a wide 

spread of uncertainty in model results (Friedlingstein et al., 2014). Part of this uncertainty lies in a 

general lack of knowledge of the physical processes responsible for the land feedbacks on the C 

cycle, which makes estimating the land C sink difficult. Adding to this uncertainty is the response 

of ecosystems in the face of multiple stressors, the impacts of which may be non-additive and will 

certainly be highly variable across ecosystems. One prime example is the current increase in 

nitrogen (N) deposition and the predicted increase in drought (Seneviratne et al., 2012). Most field 

studies isolate one environmental component (e.g., drought, elevated CO2, N deposition) to study 

plant behavior. This results in an incomplete knowledge of an ecosystem’s reaction to multiple 

stressors, which limits our forecasting capability. Vegetation responses have a strong influence on 

C storage. As plants adjust their partitioning strategy for C and other nutrients to optimize uptake 

while limiting costs to ensure survival, the quantity and quality of C stored and the way nutrients 

are recycled will change. 
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 Anthropogenic production of reactive N from fossil fuel combustion and fertilizer 

synthesis has led to an increased availability of reactive N in ecosystems, and this has become a 

global problem (Vitousek et al., 1997). The current N deposition rate in some systems is over 10 

kg ha−1 year−1 (Galloway et al., 2008), which is well over the deposition rate from natural 

sources at 0.5 kg ha−1 year−1 (Dentener et al., 2006). Nitrogen deposits from industrial and 

agriculture activities have led to significant N loading in soils, particularly in regions of Europe 

and the eastern United States (Aber et al., 2003; Bobbink et al., 2010). These N additions are 

within the critical load of N for sensitive ecosystems (Pardo et al., 2011; Bobbink and Roelofs, 

1995). This N loading may be further exacerbated by increases in N availability from climate 

influences (i.e., warming and elevated CO2) on internal N cycling, which can increase 

decomposition, mineralization, and biological nitrogen fixation (BNF) (Melillo et al., 2002; 

Pastor and Post, 1988; Peterjohn et al., 1994). The consequences of N loading are well known 

and include changes in biodiversity (Bobbink et al., 2010; Clark and Tilman, 2008; Simkin et al., 

2016), composition (BassiriRad et al., 2015; Minocha et al., 2015), productivity (Matson et al., 

2002), leaching (Fang et al., 2009; Dise and Wright, 1995), and possibly nitrification (Matson et 

al., 2002). Since N is strongly tied to C, understanding the impact of increased N availability in 

ecosystems in the context of climate change is crucial if we are to understand whether increased 

N availability will strengthen or weaken the land’s C sink capacity. 

 

 Understanding the vegetative response to N deposition is increasingly difficult due a wide 

variability of responses between and within species and across climate and soil regimes, as well 

as contrasting behavior when faced with other elements of climate change (e.g., elevated CO2 or 
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drought). For example, increased N availability generally results in an increase in aboveground 

woody biomass and a decrease in root biomass, but experiments with drought indicate an 

increase in root biomass at the expense of aboveground tissue (Broeckx et al., 2014; Hertel et al., 

2013; Martin-St. Paul et al., 2013; Padilla et al., 2009). This has led to the conclusion that N 

deposition may increase ecosystem vulnerability to drought (Friedrich et al., 2012), but some 

studies find that N deposition may enhance the recovery of some species post drought (Kinugasa 

et al., 2012). Therefore, a large uncertainty exists for vegetation response to increased N 

deposition under drought, especially because many of these antagonistic responses exhibit 

nonlinear behavior. 

 

 Predictions of climate change indicate an increase in the frequency and severity of 

drought (Seneviratne et al., 2012) in many regions that are already water stressed. For example, 

in the Amazon, the dry season is expected to lengthen and intensify, and the area affected by 

seasonal drought is expected to expand by up to 0.75 million km2 by the end of the century 

(Boisier et al., 2015). The southwest and central United States are forecast to experience 

increases in drought severity that exceed the severest mega drought events at millennial scales 

(Cook et al., 2015). Areas that do not experience a change in total precipitation may still 

experience changes in the timing and intensity of rainfall events. Plants under drought stress can 

experience hydraulic failure, C starvation, and increased vulnerability to disease, pests, and fire. 

Drought during peak growth periods will likely be more detrimental; juvenile and shallow-rooted 

plants are most susceptible to drought, whereas plants that are able to modify biogeochemical 

feedbacks will increase their chance of survival (Hanson and Weltzin, 2000). In general, drought 

results in decreased stomatal conductance and decreased net primary productivity (Cook et al., 
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2015). In the past, drought events over the Amazon have reduced C storage through mortality 

and slowed growth (Phillips et al., 2009); increased events in the future could result in a weaker 

C sink of boreal, temperate, and tropical biomes across the globe (He et al., 2014). This would 

contrast with the increased productivity that can result from high N deposition. Most ecosystems 

have experienced an extreme drought in the past, but extreme drought in combination with other 

climate impacts such as N deposition can put unprecedented amounts of stress on ecosystems. 

Given that the co-occurrence of drought and increased N availability are highly probable, these 

climate effects must be considered together to predict ecosystem behavior. 

 

 To answer questions about the future of the terrestrial C sink, we need to understand the 

behavior of ecosystems under long-term chronic N deposition and drought, as well as the 

interactions between these phenomena. ESMs are important tools for exploring the relationships 

between climate and vegetation responses, but current models might not be able to capture these 

processes. 

 

 The ESM community has made great strides in improving the C cycle in land surface 

models (LSMs) due to improvements to biogeochemical and hydrological cycles. Some of these 

advances constrain land C sequestration by imposing N limitations on C fertilization (Thornton 

et al., 2009), water table, and inundation dynamics (Koirala et al., 2014) and even hydraulic 

redistribution (Yan and Dickinson, 2014). However, these models still cannot capture mortality 

in trees from drought, changes in biomass partitioning due to nutrient limitations, or even 

acclimation (Leuzinger and Thomas, 2011). For example, Ukkola et al. (2016) found that 14 

LSMs overestimate seasonal drought, due partly to how models handle soil hydrology and plant 
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moisture stress. De Kauwe et al. (2015) also found that LSMs exaggerate drought effects because 

most models assume the same drought sensitivity for all vegetation types. Adding the N cycle to 

LSMs results in productivity decreases that range from 7% to 64% (Fisher et al., 2012), but the 

feedbacks between C and N are weak once a steady state is reached (Gerber et al., 2010). This 

suggests that ESMs still lack key processes. In order to simulate N deposition-drought 

interactions, we hypothesize that additional model developments are necessary to mimic 

ecosystem stress responses, particularly if ESMs are to represent the C cycle accurately. 

 

 This review seeks to determine whether the current ESM framework of the C cycle is 

sufficient to capture the vegetation response to the combined effects of drought and growing N 

loading in ecosystems. To that end, this paper will review the observed impacts on C uptake and 

allocation due to increased N availability, drought, and their combined effects. Next will be a 

review of how current ESMs represent the coupled carbon-nitrogen model for C uptake and 

partitioning. We will present recent developments in several state-of-the-art LSMs, including the 

limitations of the representations for capturing interactions from N deposition and drought stress. 

Finally, we will discuss which additional processes should be the focus of future model 

developments to reduce uncertainty and improve predictive power. 

 

2.2 Observations of N Inputs 

 

 Nitrogen is a critical component in ecosystems; it drives productivity through 

photosynthesis processes (Evans, 1989). Increased N deposition results in increased production 

because N is generally the most limiting nutrient for growth (Fisher et al., 2012, Davidson and 
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Howarth, 2007). Bala et al. (2013) estimate that an additional 175 PgC has been stored since the 

pre-industrial period due to increased N deposition. This increase results mostly from changes in 

photosynthesis (i.e., increase in foliar N) or shifts in C allocation to increase light availability 

(Figure 2.1 and Table I, Appendix A). Several mechanisms will allow plants to respond to changes 

in N such as the ability to increase photosynthetic capacity, plasticity to alter C partitioning of 

resources, and the presence or absence of other limiting factors in the system (e.g., water, P, 

mycorrhizal associations, etc.). An overview of some of the consequences of N deposition in 

ecosystems is included in Figure 2.1. 
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Figure 2.1. Effects of N deposition on ecosystems, based on the concepts of Bobbink et al. 

(2010). Up arrows represent an increase, and down arrows represent a decrease. Three main 

pathways exist: changes in foliar or leaf N, changes to biomass partitioning, and increases in 

biomass N. Changes in leaf or plant N generally lead to a positive feedback by increasing N in 

the litter pool. Changes in the partitioning of biomass can lead to changes in competition for 

resources that will ultimately affect species distribution. In general, the impacts of N deposition 

occur over short timescales (<5 years), while changes to species composition and disturbance 

occur over longer timescales (Bobbink et al., 2010). 

 

 

 Nitrogen deposition studies frequently find an increase in foliar N that results in 

decreased C:N ratios of leaves (Pregitzer et al., 2008; Elvir et al., 2005; Boggs et al., 2005). This 

relationship between N deposition and foliar N content has even been used to estimate critical 
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loads of N in Europe (Pitcairn et al., 2001). Pregitzer et al. (2008) suggested that the increase in 

foliar N is responsible for the increase in aboveground net primary productivity (ANPP) that is 

found under elevated N availability, considering the relationship N plays in photosynthetic 

capacity and C assimilation (Evans, 1989; Fleischer et al., 2013). However, reductions in N use 

efficiency and C allocation shifts away from mycorrhizae may also result in increases in ANPP 

(Talhelm et al., 2011). Increases in productivity can also lead to increases in litter production that 

can ultimately lead to increased N in soils.  

 

 Gains in productivity can be the result of changes in patterns of C partitioning within the 

plant, and they often seem to be correlated with increases in above ground biomass (Pregitzer et 

al., 2008; Wang et al., 2012; Thomas et al., 2012). Most increases in aboveground biomass from 

increased N deposition are allocated to stems (Pregitzer et al., 2008; De Vries et al., 2014; Xia et 

al., 2008), particularly for small-diameter trees (Ibáñez et al., 2016). This response results in 

faster biomass accumulation, which produces taller, skinnier trees (Ibáñez et al., 2016). Although 

this is more likely to affect young trees or seedlings exposed to elevated N, Du and Fang (2014) 

also found weak growth in a mature forest. This may increase the mortality of young trees as a 

result of light limitation or the respiratory costs of early rapid growth (Ibáñez et al., 2016). 

However, the increase in growth is not consistent or linear for all species. For example, de Vries 

et al. (2014) found that tropical forests had the least response to N deposition compared to 

temperate and boreal forests, and in some cases a negative growth relationship exists at high N 

inputs (Thomas et al., 2010). Herbaceous plants also experience biomass increases from N 

deposition (Wang et al., 2012; Verma et al., 2014), and under low levels of N deposition they can 

increase aboveground biomass more than trees (Xia et al., 2008).  
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 The increase in aboveground biomass is expected to come at the expense of belowground 

inputs Wang et al., 2012). However, it is unclear how roots respond to increased N availability; 

this response can include increases in productivity, even though decreases in biomass occur 

(Brassard et al., 2009). This occurs when increases in root turnover with N availability result in 

root biomass decreases over long time scales, even though C allocated to the roots likely 

increases. The root response is strongly associated with root sensitivity (Smithwick et al., 2013); 

the heterogeneity of the soil, substrate, and climate can result in different root responses that will 

increase root vulnerability to damage or mortality.  

 

 Finally, increases in N deposition can increase N in forest biomass (Zhu et al., 2015). 

This increase in biomass will lead to changes in N cycling as biomass eventually flows from the 

canopy into the litter pool. The enhanced amount of N in the litter pool can cause faster 

decomposition (Zhu et al., 2015) and increase N mineralization on the forest floor.  

 

 Nitrogen deposition can also increase susceptibility to disturbance factors. An increase in 

biomass N can lead to lowered resistance to pathogen infection or herbivory (Bobbink and 

Lamers, 2002). This increased vulnerability to pests can result in increased wildfires (Grulke et 

al., 2009). Ultimately, these changing conditions could lead to changes in species composition 

and biodiversity as a result of shifts in nutrient availability or toxicity, environment favorability, 

and competition Bobbink et al. (2010). 
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2.3 Observations of Drought Impacts 

 

 Under drought conditions, plants typically undergo C starvation or hydraulic failure 

(Mcdowell et al., 2008) (Figure 2.2. and Table I, Appendix A). Either condition can be fatal. 

Carbon starvation occurs when stomata close to constrain water loss, resulting in significantly 

lower C assimilation that will not only halt growth, but also risk insufficient reserves to sustain 

plant maintenance requirements. Hydraulic failure occurs when xylems become damaged or 

collapse, limiting a plant’s ability to extract water. The timing of drought and phenology will 

play a key role that drives plant response (Weißhuhn et al., 2011). For example, a drought event 

that coincides with the peak growth period will result in higher plant mortality than drought 

during a less active growth period. Another important consideration is drought intensity versus 

drought frequency (Klein et al., 2011). A severe drought with a long duration will have a 

different impact on plant response and survival than short, frequent droughts. The length of time 

a plant has been exposed to drought cycles is an important driver of trait changes that increase 

drought tolerance. Over short time scales, stomata regulate water loss, but, over longer time 

scales, changes in allometry will occur to optimize hydraulic conductance (Martin-St. Paul et al., 

2013). Plant traits may change similarly across short and long drought intervals; for example, 

leaf area may decrease with decreasing precipitation, while other processes may be delayed (i.e., 

partitioning changes between the leaf and roots) or homeostatic (e.g., xylem vulnerability) 

(Martin-St. Paul et al., 2013). Figure 2.2. shows some of the effects forests may experience under 

drought. 
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Figure 2.2. Effects of drought on ecosystems. Up arrows represent an increase, and down arrows 

represent a decrease. Four main pathways exist: changes in C availability, increases in N 

limitation, changes to C mobilization and transport, and changes to biomass partitioning (i.e., 

root:shoot). Changes in C availability and N limitation both lead to decreases in photosynthesis, 

which has a positive feedback on N limitation when less biomass is contributing N to litter pools. 

Changes in C availability and a lack of C mobilization can lead to death from carbon starvation. 

Several pathways result in altered species composition from shifts in nutrient availability and 

competition. In general, the impacts from drought occur over short timescales (<5 years), while 

changes to species composition and disturbance occur over longer timescales. 

 

 

 There are many ecological traits that can make a system more or less tolerant to drought, 

thereby leading to improved water use efficiency, including control over stomatal conductance, 

allometric plasticity, hydraulic redistribution (Baker et al., 2008), or even long-term acclimation. 
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To survive drought, plants may also reduce C demand, which can be achieved by leaf senescence 

and the down-regulation of respiration (Sala et al., 2010). 

 

 Many field studies have observed increased stomatal closure (Broeckx et al., 2014; 

Hanson and Weltzin, 2000; Cardoso et al., 2015) and increased water use efficiency during 

droughts (Broeckx et al., 2014). However, observations also found species that have less 

stomatal control and may continue to transpire well into a drought event (Cardoso et al., 2015). 

This may provide an advantage during short-term droughts but not necessarily during longer, 

more intense drought events. The ability to moderate water uptake and growth may be absent in 

the tropics; Rowland et al. (2015) found no change in the growth rate of trees in the Amazon 

under a long-term drought.  

 

 Stomata closure will reduce photosynthesis and, over long periods, lead to lower biomass 

accumulation, litter production, and ultimately N mineralization in the soil (Schimel et al., 2007). 

Additional nutrient limitations can occur during drought because of low soil moisture levels, 

which act to reduce nutrient flow and diffusion in soils. These N limitations can exacerbate the 

effects of drought by limiting photosynthesis further.  

 

 Since plants continue to demand C for metabolic respiration, when stomata close during 

drought, plants rely on reserves to meet C requirements. The ability to mobilize and transport 

stored C may be impaired by drought but is critical for species survival (Sala et al., 2010). 

Carbon reserves can help trees avoid C starvation. As these reserves are depleted, a tree may 
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suffer from C starvation. Although this theory lacks testing, McDowell et al. (2008) suspects that 

C starvation may result in the mortality of isohydric species under drought conditions.  

 

 Another adaptation to drought is through increases in the root-to-shoot ratio to maintain 

respiration during the early stages of drought, as suggested by the optimal partitioning theory. 

Hertel et al. (2013) found a doubling of root production and an increase in root-to-leaf biomass 

and production under drought in a mature beech forest. Even under significant decreases in a 

plant’s relative growth rate, its root growth may remain constant (Lotter et al., 2014). The ability 

to re-translocate biomass from leaves and stems or utilize stored nonstructural carbohydrates can 

increase survival chances (Klein et al., 2011). Furthermore, altering the morphological 

characteristics of roots (e.g., length and surface area) can also aid in fulfilling water demands 

(Meier and Leuschner, 2008). 

 

 The ability to extend root systems to deep soil layers (Hanson et al., 2007) or move water 

through the soil column from depth via hydraulic redistribution can also increase a plant’s 

chance of surviving a drought. Not only can this effect transfer water upward into dry soils, 

allowing plants to maintain transpiration and photosynthesis during dry seasons or at night, it can 

move water downward to be protected from evaporation or competition. The obvious benefit of 

hydraulic redistribution is maintaining water potential below hydraulic failure limits, but 

neighboring plants can also take advantage of the new water that is available (Prieto et al., 2012). 

The quantity of water hydraulically transferred ranges from 0.04 mm H2O d−1 up to 1.3 mm H2O 

d−1 and may be as much as 80% of the water that the plant transpires (Neumann and Cardon, 

2012). 



 22 

 

 Several other mechanisms can also play a role in drought mortality such as increased 

vulnerability to pests or fungal infection and fire (He et al., 2014; Allen et al., 2010). These 

disturbances can have a devastating impact on forest mortality and the C cycle. Similar to N 

deposition impacts on vegetation, changes in biomass, composition, mortality, and nutrient 

cycling can lead to shifts in species competition and distribution (McDowell et al., 2008) and the 

impairment of the mobilization and transport of stored C (Sala et al., 2010; Allen et al., 2010). 

 

2.4 Interactions between N and Drought 

 

 The interactions between N and drought are difficult to determine because (1) the effects 

can depend on the timing of N deposition relative to drought; (2) most experiments are done with 

young trees or herbaceous plants and not with mature vegetation; (3) many studies impose only 

weak drought conditions that might not result in drought–N feedbacks (Kleczewski et al., 2012); 

and (4) the impacts vary with ecosystem and plant traits. However, in general, the effects from 

drought and N deposition are interdependent (Friedrich et al., 2012) and not always additive 

Meyer-Grünefeldt et al., 2013; Meyer-Grünefeldt et al., 2015). A list of studies that have 

examined N deposition-drought interactions is included in Table I, Appendix A. 

 

 Drought seems to negate the increase in productivity observed from increased N 

deposition (Liu et al., 2013; Wang et al., 2012), although the effects of N addition may alleviate 

some of the impacts of drought on growth (Wang et al., 2012). This can be partially attributed to 

the countering effects of N and drought on photosynthesis; in particular, N deposition tends to 
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increase photosynthetic capacity, while drought limits photosynthesis. Other interactions 

between these two types of stress also occur. For example, N deposition tends to increase water 

use efficiency (WUE), but, during a severe drought, plants may lose the ability to utilize N, 

leading to a loss of biomass (Liu et al., 2013). Some ecosystems experience a decline in above- 

and belowground biomass (Friedrich et al., 2012; Palátová, 2004) and a loss of root functionality 

Palátová et al., 2004). In some cases, changes in allocation between above- and belowground 

biomass result in higher root-to-shoot ratios (Meyer-Grünefeldt et al., 2015).  

 

 The timing of a drought event is also an important factor considering N level effects. 

Plants are more susceptible to drought when N availability increases before drought because it 

leads to higher productivity, thereby increasing evaporative demands (Friedrich et al., 2012). 

This can even result in a loss of N allocation control and adaptive strategies to mitigate drought 

effects (Friedrich et al., 2012). Finally, increased N availability can lower concentrations of 

compounds that are important for stress tolerance, which could also increase mortality under 

more severe drought conditions (Zhou et al., 2011). 

 

 Plant age also plays a role in determining the response of N deposition combined with 

drought. Palátová (2002) found that the reduction in root biomass due to combined N deposition 

and drought was more severe for young seedlings than older trees. Trees tend to allocate more 

biomass to roots as they age, so younger trees are more susceptible to drought, and drought 

following N deposition further increases sensitivity to drought (Meyer-Grünefeldt et al., 2013).  

However, N deposition during drought may not always be detrimental. For example, drought can 

lock nutrients in an immobilized state by reducing the soil water available for 
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decomposition Hanson and Weltzin, 2000), but N deposition can increase available nutrients. 

Increased N deposition can also aid the recovery after drought of some species (Kinugasa et al., 

2012). For trees that preferentially shift allocations to stems under N deposition and drought 

(Albuquerque et al., 2013), water stress may be alleviated by the extra water storage in the tree. 

In desert systems, N deposition relieved some of the negative effects of water stress through 

increases in root weight, leaf number, leaf area, biomass, and decreased root-to-shoot ratios 

(Zhou et al., 2011; Verburg et al., 2014).  

 

2.5 Earth System Models 

 

ESMs are designed to predict the climate state by integrating feedback between the 

atmosphere, land, and ocean. One goal of these models is to capture biosphere-atmosphere 

interactions in order to understand what will be the vegetation response to changing 

environmental conditions. The land component has undergone considerable growth over the last 

decade and now has complexity that rivals atmospheric models. This growth has greatly 

improved the climate forecasting ability of ESMs, but these models still fall short of providing a 

good estimate of the land C sink. The following section and Table II details some important 

processes already included in many LSMs that are necessary to capture vegetation responses to 

increased N and drought. The limitations of these model advances are also highlighted.
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Table II. Representation of key model features from a subset of terrestrial ecosystem models. 

Process 
Model 

CLM4.5 CABLE CTEM LM3 

Reference Oleson et al., 2013 (Wang et al., 2010) 
(Arora and Boer, 2005; Arora 

et al., 2009) 

(Gerber et al., 2010; Shevliakova et al., 

2009) 

Time step 30 min to one hour 30 min 30 min to one day 30 min 

Plant Functional 

Type (PFTs) 

14 natural and two 

generic crop types 

15 natural and one 

crop type 

7 natural and 2 crop types 

(C3 and C4) 
five natural 

Dynamic 

vegetation 

Dependent on climate or 

prescribed 
NA 

Dependent on climate or 

prescribed 
Dependent on climate and light 

Plant C 

Photosynthesis 
(Farquhar et al., 1980; 

Collatz et al., 1991) 

(Farquhar et al., 

1980) 

(Farquhar et al., 1980; 

Collatz et al., 1991) 

(Farquhar et al., 1980; Collatz et al., 

1991) 

Phenology 

Evergreen, stress 

deciduous, seasonal 

deciduous, and crop 

Biome dependent, 

four states, input 

from remote sensing 

Four leaf states: maximum 

growth, normal growth, leaf 

fall, and dormancy 

Drought and cold deciduous seasonal 

Allocation Fixed fraction Fixed fraction 
Dependent on light, water, 

phenological status 

Functional balance to maintain root-to-

shoot ratio 

Plant N 

Uptake 
Dependent on N pool 

size, plant demand 

Dependent on N pool 

size, plant demand 
NA 

Michaelis-Menten kinetics, dependent 

on N pool size and root biomass; 

priority given to immobilization 

Fixation 
Function of Net Primary 

Productivity (NPP) 
External input NA 

Dependent on plant N demand, NPP, 

and light availability; C cost paid for 

biological nitrogen fixation (BNF) 

Stoichiometry 

(C:N) 
Flexible (within 0.8 N:C) 

Fixed (PFT 

dependent) 
NA Fixed (PFT dependent) 

Plant water 

Uptake 

Dependent on plant 

demand, root profile, and 

soil matric potential 

Dependent on plant 

demand, root 

fraction, and soil 

water content 

Dependent on soil moisture 

content 
NA 

Root architecture 

Double exponential for 

water uptake (Zeng et al., 

2001); single exponential 

for soil C/N cycling 

(Jackson et al., 1996) 

Exponential (Arora 

and Boer, 2005) 

Prescribed maximum rooting 

depth, root distribution 

dependent on time and PFT 

(Arora and Boer, 2003) 

NA 
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Process 
Model 

ORCHIDEE O-CN JULES LPJ-GUESS 

Reference (Krinner et al., 2005) 

(Krinner et al., 2005; 

Zaehle and Friend, 

2010) 

(Best et al., 2011; Clark et 

al., 2011) 
(Smith et al., 2001; Smith et al., 2014) 

Time step 30 min to one day 30 min to one day 30 min to one day 1 day 

PFTs 
10 natural and two 

agricultural grasses 

10 natural and two 

agricultural grasses 
5 natural 11 natural 

Dynamic 

vegetation 

Dependent on climate, 

stand structure, and light 

Dependent on 

climate, stand 

structure, and light 

Dependent on NPP and tree-

shrub-grass hierarchy from 

the Lotka-Volterra 

competition approach 

Dependent on climate, stand structure, 

light and soil resources, disturbance, 

and succession 

Plant C 

Photosynthesis 
(Farquhar et al., 1980; 

Collatz et al., 1991) 
(Friend et al., 2005) 

(Collaz et al., 1991; Collatz 

et al., 1992) 

(Collaz et al., 1991; Collatz et al., 

1992) 

Phenology 
Drought and cold 

deciduous seasonal 

Drought and cold 

deciduous seasonal 
Cold deciduous Evergreen, drought, and cold deciduous 

Allocation 

Rule-based response to 

external limits; dependent 

on light, water, and N 

Pipe model to 

maintain root-to-

shoot ratio 

Fixed fraction 
Functional balance to maintain root-to-

shoot ratio 

Plant N 

Uptake 

Implicit, dependent on 

soil humidity and soil 

temperature 

Michaelis-Menten 

kinetics, dependent  

on fine root biomass, 

plant N status, N 

pool size, and soil 
temperature 

NA 

Dependent on N pool size, plant 

demand, root mass, and soil 

temperature 

Fixation NA 

Calculate potential N 

fixation from 

evapotranspiration 

NA 
Calculate potential N fixation from 

evapotranspiration 

Stoichiometry 

(C:N) 
Prescribed 

Flexible 

(provided range) 
Fixed fraction 

Flexible  

(provided range) 

Plant water 

Uptake 

Dependent on plant 

demand, root fraction, 

and soil water content 

Dependent on plant 

demand, root 

fraction, and soil 

water content 

Dependent on plant demand, 

root fraction, and available 

soil moisture 

Dependent on plant demand and soil 

water in root zone 

Root architecture Exponential root profile 
Exponential root 

profile 
Double exponential 

Two soil layers; more roots in lower 

layer (except grass) 
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2.5.1 Nitrogen 

 

An obvious and crucial component for capturing N deposition impacts on plants is the 

treatment of N, but early versions ESMs only considered the C cycle and neglected the N cycle 

completely. Carbon-only models miss a significant N deficit and therefore overestimate C 

sequestration by ecosystems under climate change (Zaehle et al., 2015; Peñuelas et al., 2013). 

Many of the latest versions of ESMs now include N (and a rare few include phosphorus). 

However, because N is often a limiting nutrient in ecosystems, the focus is on plant response 

under limited N conditions and on the effects of the progressive N limitation (Luo et al., 2004) 

that is expected under elevated CO2. Although some models offer prescribed N, more 

sophisticated ones employ an N pool (bulk or speciated) that is available to both plants and 

decomposers. Nitrogen additions come from sources including lightning, deposition, 

mineralization, and biological fixation. Losses are from plant uptake, immobilization, leaching, 

and nitrification/denitrification processes. Models can represent N limitation in different ways, 

including using N to scale photosynthesis (Zaehle et al., 2014); Ghimire et al., 2016), 

downscaling potential gross primary productivity (GPP) to reflect N availability (Gerber et a., 

2010; Oleson et al., 2013; Wang et al., 2010; Parida, 2011), defining a C cost of N uptake (Fisher 

et al., 2010a), optimizing N allocation for leaf processes (Ali et al., 2015), or adapting a flexible 

C:N ratio for N allocation (Ghimire et al., 2016). Nitrogen uptake is scaled depending on 

demand, based on stoichiometry (see section 5.2) and availability, where photosynthesis and 

decomposition may be downscaled. More recent developments have led to the development of 

the Fixation and Uptake of Nitrogen (FUN) model (Fisher et al., 2010a), which expands N 

acquisition to include processes of passive uptake, active uptake, re-translocation, and symbiotic 
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N fixation through a C cost. Other advances in the Community Land Model (CLM) expand N 

uptake to include methods using Michaelis-Menten equations (Ghimire et al., 2016; Thomas et 

al., 2013) or equilibrium chemistry approximation (Zhu et al., 2017; Tang and Riley, 2013). 

Additional processes such as abiotic (i.e., mineral surface) competition for soil nutrients 

(Nutrient COMpetition model, (Zhu et al., 2017)) are anticipated for the next generation of the 

CLM and the Accelerated Climate Model for Energy (ACME).  

 

2.5.2 Allometry 

 

ESMs rarely include dynamic responses to changes in resource availability. The most 

common allocation approach assigns C to each plant component (usually leaf, stem, and root) via 

fixed ratios that vary with plant functional type (PFT), but not spatially or temporally (Gerber et 

al., 2010; Wang et al., 2010; Shevliakova et al., 2009; Zaehle et al., 2010; Parida, 2011; Tjiputra 

et al., 2013; Franklin et al., 2010; Goll et al., 2012). For models that include N (and less often P), 

N uptake plays a strong role in governing C assimilation and drives competition between plants 

and decomposers. In these cases, C allocation requires an additional constraint of fulfilling 

C:N:P ratios. Nitrogen uptake is controlled by plant demand and decomposition requirements 

determined from fixed C partitioning and C:N stoichiometry. When N and P demands to 

maintain stoichiometric C:N:P are unmet, photosynthesis is downscaled (Zaehle and Dalmonech, 

2011; Thornton et al., 2007). This simple approach works well for regions that have relatively 

stable environments, but it does not permit plant plasticity responses to changing nutrients. This 

method of C allocation has been highlighted as a weakness of these models (Medlyn et al., 2015; 

De Dauwe et al., 2014) and has resulted in some models swapping to more dynamic allocation 
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schemes that allow responses to stress, as in Friedlingstein et al. (1999). Carbon allocation in two 

ESMs (CTEM (Arora and Boer 2005; Arora et al., 2009) and ORCHIDEE (Krinner et al., 2005)) 

is governed by the most limiting resource; light limitation results in more biomass being 

allocated to the stem, and water and N limitations result in more biomass being allocated to the 

roots. However, because N is not explicit in these models, the N limitation is parameterized.  

The simple representation of plant allometry in ESMs can have a significant influence on 

biogeochemistry since the allocation of biomass in the form of C to woody versus non-woody (or 

photosynthetic versus non-photosynthetic) plant components drives biogeochemical cycling, the 

quality and quantity of litter, and the duration of C storage. Our ability to model C uptake and 

subsequent storage therefore depends on including C allocation relationships and their responses 

under changes in resource availability.  

 

2.5.3 Roots 

 

Another component of ESMs that is oversimplified is root forms and function. For example, 

most root algorithms in ESMs consist of a fixed rooting depth and distribution (Arora and Boer, 

2003). This constrains water uptake to the root zone (weighted by effective root fraction in each 

layer) and does not allow differential water uptake from soil layers due to changes in root 

kinetics and morphology, nor does it allow changes in root distribution or depth to increase the 

water available to the plant. Water uptake is generally a function of plant demand (for 

evapotranspiration needs), root distribution, and soil water content (Warren et al., 2015). The 

most common model approach to determine water limitation is to calculate a water stress scalar, 

which can be a function of soil water matric potential, matric potential when stomata are open or 
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closed, or soil water content (Warren et al., 2015). That water stress scalar is then multiplied by 

physiological variables such as transpiration, stomatal conductance, photosynthetic capacity, and 

maintenance respiration to capture water stress on plants. One approach to improve the 

evapotranspiration in the CLM is to add root hydraulic redistribution (Tang et al., 2015), which 

can transport water either up or down the soil column. Hydraulic redistribution does not 

influence root growth or distribution, but it does enhance water uptake by shifting the water 

distribution in the root zone.  

 

Nitrogen uptake (when included) is often less complex in ESMs; most N uptake is from a bulk 

N mineralization pool that depends on supply and demand rather than root biomass or profile, 

although some recent work has focused on uptake as a function of root biomass (Ghimire et al., 

2016). Essentially, plants are given every opportunity to extract all available N necessary for 

growth. Although this allows an implicit metric for allowing roots an opportunity to adjust their 

uptake, it is not realistic and lacks feedbacks on the biogeochemistry from changes in the root 

profile. 

 

Recently, studies focused on modeling root growth to maximize various plant traits have 

been conducted. For example, Sivandran and Bras (2013) used optimization techniques for root 

growth in the TIN-based Real-Time Integrated Basin Simulator coupled to the Vegetation 

Generator for Interactive Evolution (tRIBS + VEGGIE) model to maximize plant transpiration. 

The improved root parameterizations allowed more root C to be allocated to soil layers with high 

soil moisture, increased water uptake, and decreased plant water stress. Another study by 

McMurtrie et al. (2012) altered the vertical distribution of root mass to maximize N uptake. 
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However, the underlying limitation in all studies is that they focus on maximizing only one 

limiting resource, namely, water or N. This limits the studies’ relevance to environments that 

share those resource limitations so they may not reflect the future state of those regions or be 

suitable for global application. 

 

2.6 Model Development Priorities 

 

 While ESMs have advanced considerably, there are several processes that still require 

attention if we are to capture the effects from N deposition and drought as shown in the pathways 

in Figure 2.1 and Figure 2.2. Future model development should focus on the following goals (see 

Table III for summary): (1) allow a more flexible coupling of C and N in models; (2) integrate a 

dynamic C partitioning algorithm; (3) improve the structure and function of roots; (4) include 

succession and age classes; (5) include intra-plant competition; and (6) develop methods of trait-

based modeling rather than the traditional PFT approach. Some of these developments are being 

addressed, at least in part, for the next generation of models. For others, support needs to come 

from observation and the empirical community to develop robust methodology for inclusion in 

models.  
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Table III. Summary of recommendations for model development. 

Recommendation Description Impact Example(s) 

Flexibility of CN 

coupling 

• Allows C:N ratios in the 

leaf to vary with N 

availability  

• Dynamic partitioning of 

N in the plant 

• Effects N in the leaf with 

influences on photosynthesis 

Fixation and Uptake of 

Nitrogen (FUN) model 

(Fisher et al., 2010a)  

Leaf Utilization of 

Nitrogen for 

Assimilation (LUNA) 

(Ali et al., 2015)  

Community Land Model 

(CLM) / Accelerated 

Climate Model for 

Energy (ACME) 

(Ghimire et al., 2015) 

Adaptive 

dynamics 

approach to C 

partitioning 

• Flexibility in C allocation 

to account for plant 

plasticity across 

environmental conditions 

• Optimize nutrient uptake  

• Increase tissue allocation to 

respond to limiting resource  

CLM/ACME (Ghimire 

et al., 2015) 

Improve form and 

function of roots 

• Time varying root 

structure (depth and 

distribution)  

• Variable root depth, traits, 

plasticity, and hydraulics 

that scale across space and 

time 

• Adapt to heterogeneity of 

water and nutrients in soil  

• Optimizes below ground 

resource uptake 

Dynamic root depth (El 

Masri et al., 2015) 

Maximize N 

(McMurtrie et al., 2012) 

Maximize 

evapotranspiration (ET) 

(Sivandran and Bras, 

2013) 

Succession 

• Representing age class  

• Variable growth 

dynamics and response to 

stress with age 

• Capture disturbance and 

recovery  

• Heterogeneity in plant 

distribution, improved 

canopy light dynamics 

Ecosystem Demography 

(ED) model (Fisher et 

al., 2015) 

Competition 

• Inter- and intra-species 

competition for resources 

(e.g., light, water, N, etc.)  

• Allows competition both 

within and between PFTs 

• Alters allocation of 

resources to outcompete 

neighbors  

• Possibly altering 

productivity or shift 

vegetation distribution 

Triple Tragedy of 

Commons (McNickle et 

al., 2016) 

Competition with 

consumers (Zhu et al., 

2017) 

Trait-based 

modeling 

• Varying morphology, 

physiology, or phenology 

characteristics of 

individuals across an 

environmental gradient  

• Environment acts as filter 

for trait composition 

• Adaptation and evolution of 

species to environmental 

conditions  

• Dynamic vegetation moves 

beyond simple rules of 

existence and/or 

establishment 

Adaptive Dynamic 

Global Vegetation 

Model (aDGVM) 

(Scheiter et al., 2013) 

Jena Diversity-Dynamic 

Global Vegetation 

Model (JeDi-DGVM) 

(Pavlick et al., 2013) 

CSIRO Atmospheric 

Biosphere Land 

Exchange (CABLE) (Lu 

et al., 2016) 
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2.6.1 Flexibility of C:N Coupling in Models 

 

 Given the increase in foliar N under increased N, allowing adaptations in the 

stoichiometry of C and N would improve model responses (Mendlyn et al., 2015). The main 

impact of this will be to decrease C:N in leaves, driving increases in productivity and changes to 

soil and litter N content that would be present under increasing N deposition. Changes in C:N 

ratios occur not just over the lifecycle of the plant, but also in response to changes in nutrient 

availability, which are not captured in models. Changes in resource availability will result in 

changes to plant C allocation and partitioning. Furthermore, plant responses will be limited under 

fixed C:N ratios, which in turn drive changes in belowground biogeochemistry and ultimately C 

uptake and storage. However, our understanding of how C:N ratios change with plant age and 

resource status is limited. Therefore, more observations of how C:N is partitioned within the 

plant over optimal conditions and under climate change are needed. 

 

2.6.2 Adaptive Dynamics Approach to C Allocation 

 

 Possibly the most challenging improvement that would likely provide the most benefit for 

models predicting C uptake would be to address how C is partitioned within the plant and how 

that varies over time and with changes to the environment. According to Franklin et al. (2012), 

the difficulty is that C allocation is the result of several processes, which makes a mechanistic 

approach to represent C allocation difficult. The most robust approach for modeling allocation is 

adaptive dynamics that include evolution strategies that can emerge through population 

dynamics and can result in an evolutionary stable strategy (Franklin et al., 2012). This type of 
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implementation will be difficult in an ESM, given the complexity of integrating dynamic C 

allocation and the computational demand required to run at high resolution over global scales. 

However, optimization techniques such as those proposed by Lynch (2015) may be an 

alternative; vegetation may be able to take on the form of optimal response through a cost-

benefit approach or game theoretical optimization (Franklin et al., 2012). This approach allows a 

flexible plant response to local and regional environmental conditions and nutrient availability. 

In addition, this functionality would allow PFTs in models to optimize nutrient capture by 

focusing resources to improve the uptake of the most limiting resources. In a scenario with N 

deposition and drought, a PFT would be able to alter its root:shoot ratio to increase allocation to 

roots to increase water uptake or to the stem to increase light competition. 

 

2.6.3 Improving Form and Function of Roots 

 

 In order to allow ecosystems to respond to changes in the environment such as climate 

change, roots must be allowed to adapt to the heterogeneity of water and nutrients in the soil. 

Improving the form and function of roots will allow PFTs the opportunity to respond to the 

heterogeneity of resources, thus increasing the potential for N and/or water uptake. Increasing 

root depth alone is not sufficient to improve modeled water uptake in water-stressed systems; 

models also need to consider root distribution, plasticity, and hydraulics (Nippert and Holdo, 

2015). At a minimum, root profiles should include time-varying structures as leaves and stems. 

Although models tend to have homogeneous soil horizontally (in a grid cell), the vertical 

structure of resources is dynamic. Allowing roots to proliferate in soil layers where resources are 

concentrated gives PFTs the chance to adapt to changes in environment and can further change 
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the vertical distribution of C and N. Baker et al. (2008) improved the modeled Net Ecosystem 

Exchange cycle in the Simple Biosphere Model compared with observations in the Amazon by 

adding hydraulic redistribution and soil depth to 10 m. Other elements of root systems that 

should be included in models are root order and classification (which will differ in respiration, 

uptake, turnover, and storage capacity), root phenology and turnover, and resource uptake 

response to heterogeneity of resources (Smithwick et al., 2014). Warren et al. (2015) provided 

additional suggestions for improving root representation in models, including scaling root 

function across temporal and spatial scales and including root traits that inform function and 

hydraulic redistribution. Although most work in ESM development has focused on improving 

aboveground productivity, some effort has targeted belowground activities. For example, recent 

work used optimization techniques to modify root growth to maximize plant transpiration 

(Sivandran and Bras, 2013) and N uptake (McMurtrie et al., 2012). Arora and Boer (2003) 

developed a method to represent root distribution as a function of root biomass, which is a proxy 

for plant age, to allow root depth to increase when plants are young but grow horizontally when 

plants are mature. This was implemented in the Integrated Science Assessment Model (El Masri 

et al., 2015) to capture seasonal leaf area index and GPP in northern high-latitude ecosystems. 

These methods should be expanded to optimize the most limiting resource, rather than focusing 

on only one limiting resource.  

 

2.6.4 Succession 

 

 Most models do not consider succession or stand age, despite the evidence that old-

growth forests do not respond as strongly as young trees to short-term changes in soil moisture or 
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N availability (Odum, 1969). This results in a homogeneous distribution of vegetation rather than 

the heterogeneous plant cover that occurs due to the variation of soils and climate across 

landscapes. This also limits a model’s ability to capture disturbance and recovery events, which 

are major drivers of C and nutrient cycling. Including succession could help models capture 

different responses to N and drought stress as a result of tree age by, for example, simulating the 

higher mortality of young trees. A method to capture succession was implemented by Fisher et 

al. (2010b) in the Community Land Model by separating vegetation into cohorts of age, PFT, and 

height; this method was tested against deciduous–evergreen forest boundaries (Fisher et al., 

2015). These techniques can capture the variability of individual PFTs within a grid cell, adding 

large-scale heterogeneity in plant distribution, and can be the first step toward a more trait-based 

modeling approach (see section 6.6). 

 

2.6.5 Competition 

 

 In many LSMs, plants compete for resources such as light, water, and nutrients within a 

grid cell based on their weight on the grid cell. In these cases, the competition is between 

different PFTs and not within a PFT. Dynamic vegetation models can force one PFT to replace 

another when climate conditions are favorable (Quillet et al., 2010). A few LSMs have adopted 

Lotka-Volterra predator/prey equations (Arora and Boer, 2006) to represent colonization rates. 

However, no model currently implements a game-theoretic approach to the competition for 

resources that can produce an overabundance of biomass for resource uptake to outcompete 

neighbors. This method has the potential to improve estimates of plant production, respond to 

changing resources, and lead to an evolutional stable strategy (McNickle and Brown, 2012). 
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PFTs would have the opportunity to alter biomass allocation (i.e., shifts in the root:shoot ratio) to 

outcompete neighbors for limiting resources, which would lead to shifts in productivity and 

vegetation species distribution. Although it is hindered by the current model’s resolution, as 

continuously expanding computational capabilities move toward high-resolution models (DOE, 

2017), game theory is an achievable target. 

 

2.6.6 Trait-Based Modeling 

 

 The current PFT approach to modeling vegetation is limited to feedback that results from 

changes in species distribution since most models assume that attributes within a PFT do not 

change with climate (Van Bodegom et al., 2012). To capture the adaptation and evolution of 

vegetation, the concept of trait-based modeling was introduced by Lavorel and Garnier (2002). 

Trait-based modeling links plant traits that act as plant responses to the environment with plant 

traits that represent the effect of plants on the ecosystem in order to capture the plant assemblage 

of a region. A trait can be defined as a feature that describes the morphology, physiology, or 

phenology characteristics of an individual, which can vary across an environmental gradient 

(Garnier and Navas, 2012). Trait based modeling allows dynamic vegetation to move beyond 

simple climate based temperature controls on vegetation existence and establishment. Therefore, 

species distribution would be a response to N and drought in the ecosystem. This approach has 

been used to improve two dynamic vegetation models (aDGVM, (Scheiter et al., 2013); JeDi-

DGVM, (Pavlick et al., 2013)). The Jedi-DGVM outperformed other leading dynamic vegetation 

models for Leaf Area Index (LAI), NPP, CO2 seasonality, C fluxes, and, in some regions, C 

stocks (Pavlick et al., 2013). Incorporating plant traits in the CSIRO Atmospheric Biosphere 
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Land Exchange (CABLE) model improved the biogeographical distribution of major forests that 

have multiple dominant PFTs (Lu et al., 2016). Using plant traits to capture whole-plant 

hydraulics has even been suggested to improve C and water use responses to drought (Matheny 

et al., 2016). The benefit of trait-based modeling is that the environment acts as a filter for trait 

composition, analogous to evolutional selection processes (Van Bodegom et al., 2012), and is not 

limited by climate and geography. This is particularly important considering that McNeil et al. 

(2005) found that species’ foliar N responses to N deposition were dependent on two main plant 

traits, leaf mass area and shade tolerance. Matheny et al. (2016) also suggested several plant 

traits that could influence the availability of water to a plant that span across leaves, stems, and 

roots. The challenge is finding data to support the choice of traits and how different traits co-

vary. 

 

2.7 Conclusions 

 

 We have provided a review of the impacts of N and drought on ecosystems and a list of 

future model recommendations that serves to address the missing processes needed in LSMs to 

capture those interactions. While this list is extensive, it is by no means exhaustive. Our 

suggestions target two co-occurring stressors, but additional stresses will also be present that 

should be considered such as warming, elevated CO2, and herbivory. For example, herbivory 

could reduce the N benefits of elevated productivity from consumption (Throop et al., 2005) or 

be a source of N deposition. Effects from elevated CO2 can vary; CO2 fertilization can help 

mitigate extreme heat and drought (Roy et al., 2016), or fertilization effects on productivity may 

be eliminated during drought and nutrient limitation (Reich et al., 2014). These additional 
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impacts on ecosystems are important, considering that CO2 fertilization currently plays a larger 

role than N deposition in increasing productivity (Los et al., 2013).  

 

 Another example is the interactions that exist between N availability, drought, and air 

temperature. It is thought that forest productivity should increase with temperature at the global 

scale, but droughts often associated with increases in temperature have lowered the NPP 

potential in some regions (Zhao and Running, 2010). For instance, tropical forests can increase 

Net Ecosystem Exchange (NEE) with modest increases in air temperature, and drought effects 

could be ameliorated with increases in atmospheric CO2 (Gonzalez-Meler et al., 2014). The 

interactions of temperature with drought and N can also affect the surface properties of forests 

beyond evapotranspiration. Drought sensitive forests (deciduous forests) tend to have a higher 

surface albedo than drought resistant ones (e.g., conifer forests), affecting the regional energy 

balance (Jackson et al., 2008). Further, increases in temperature can increase decomposition and 

N mineralization rates in the absence of drought, but N mineralization will not respond to 

temperature if moisture is the limiting factor (Hyvönen et al., 2007). These biophysical 

properties are important in understanding the global net effect of drought and N deposition on 

biosphere climate interactions (Anderson et al., 2011) and are not the focus of this work. It is 

important to note that, in most elevated temperature ecosystem experiments, drought is a 

secondary effect caused by elevated temperature treatments (Wu et al., 2011; Gonzalez-Meler et 

al., 2017), making it difficult to distinguish primary from integrated responses of forests to 

drought and temperature on biogeochemical and biophysical processes. 
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 This study only focused on two stressors to ecosystems, N and drought. Although some 

of the identified processes targeted by this manuscript may help models to capture impacts from 

other climate-related effects, additional ecosystem processes will need to be addressed in the 

future. As the community integrates additional processes in models to capture vegetation 

responses to N inputs, we can revisit the resulting C uptake to evaluate the sink capacity of the 

terrestrial surface. However, special care should be taken when implementing additional 

parameters and processes into models, particularly so that models are not over-parameterized and 

so that the resulting C cycle response is not constrained by incomplete observational data. In the 

near term, model sensitivity studies can be used to determine the most sensitive parameters and 

processes that drive changes in C and nutrient cycles. More research on the structural uncertainty 

of models can provide insight on those processes that have strong feedbacks or introduce 

instability. Finally, when rigorous model testing through benchmarking is complete, we can 

focus on additional questions related to the fate of C in the land.  

 

 Improving estimates of the global terrestrial C sink is a priority for ESM development. In 

order to improve the predictions and reduce uncertainty, model development should focus on the 

processes that will be affected by multiple co-occurring stressors such as N deposition and 

drought. We have suggested avenues of model improvement that are possible in the near future 

with hopes that future generations of models can benefit and capture the response to increased N 

availability and drought. 
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3 SIMULATING DYNAMIC ROOTS IN THE ENERGY EXASCALE EARTH 

SYSTEM LAND MODEL 

 

This chapter was previously published as Drewniak, B. A. 2019. Simulating dynamic roots in the 

Energy Exascale Earth System Land Model. Journal of Advances in Modeling Earth Systems, 

doi:10.1029/2018MS001334. 

 

3.1 Introduction 

 

 Fine roots are responsible for water and nutrient uptake for plant needs (Jackson et al., 

1997), functioning to couple aboveground and belowground ecosystems. Roots control surface 

energy fluxes through soil interactions that affect water availability to the plant, and by extension 

evapotranspiration (ET). Roots also moderate photosynthesis and biomass acclamation. As such, 

roots play an important role in the carbon cycle through respiration and carbon storage (Raich 

and Schlesinger, 1992; Lee et al., 2005; Nepstad et al., 1994; Balesdent and Balabane, 1996; 

Clemmensen et al., 2013).  

 

 Roots respond to their environment with foraging strategies to improve nutrient 

acquisition (de Kroon and Mommer, 2006). Examples of such behavior are increased root 

density in soil regions where resources are high (Hodge, 2004), increased productivity under 

elevated nutrients (Yuan and Chen, 2012), or changes in biomass allocation under nutrient 

shortage (Hermans et al., 2006). Barley plants responded to low nutrient soils by increasing 

resources to roots and increasing roots in soil regions with the highest nutrient concentration 
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(Grossman and Rice, 2012). Increased rooting depth, biomass, and production enhanced nutrient 

uptake under elevated CO2 conditions (Iversen, 2010; Iversen et al., 2011; Finzi et al., 2007).  

 

 Plants also respond to moisture heterogeneity to enhance water uptake (Wilcox et al., 

2004). Plants with root plasticity in their rooting depth distribution can alter the source of water 

uptake depending on the season (Dawson and Pate, 1996; Knight, 1999; Zencich et al., 2002; 

Zhu et al., 2016; Wang et al., 2017). Or, when surface soils dry, some species of plants can 

compensate by efficiently taking up water for plant transpiration from deep roots (Lai and Katul, 

2000; Yang et al., 2015). Bao et al. (2014) found that plant roots grew asymmetrically toward a 

water source as sensed from microscale differences in environment. It is important that models 

allow roots to adapt to heterogeneity of water and nitrogen in the soil, in order to allow 

ecosystems to respond to changes in environment, especially those associated with climate 

change. However, roots have one of the simplest representations in Earth system models (ESMs). 

 

 Root systems have largely been ignored in ESMs for several reasons. First, ESMs can 

capture aboveground productivity fairly well without explicitly modeling roots. Second, there are 

limited data available for benchmarking root models. Belowground studies are more difficult 

(and destructive) than aboveground studies. Finally, there is a significant scale discrepancy 

between the model resolution (typically 1 or higher) and the heterogeneity of the environment 

as experienced by the root (millimeters for the rhizosphere). In a typical ESM, all the vegetation 

growing on the grid cell share the soil column, and the only heterogeneity occurs across vertical 

soil layers (if they exist). Root water uptake across small scales with heterogeneous water 

distribution has been addressed (Couvreur et al., 2012; Couvreur et al., 2014) but has not been 
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incorporated into an ESM. Recently, the possibility of including root system architecture in the 

Community Land Model (CLM) was tested by Bouda and Saiers (2017) and showed promising 

improvements in root water uptake in a grid cell. 

  

 Most root algorithms in ESMs consist of a fixed maximum rooting depth and distribution 

(Arora and Boer, 2003). The Energy Exascale Earth System Land Model (ELM) distinguishes 

between fine roots and coarse roots for woody vegetation (Oleson et al., 2013). Fine roots 

generally refer to roots that are less than 2 mm in diameter, and coarse roots make up the 

remaining root biomass, although this division is not explicit in models. Fine roots have the 

primary role of nutrient and water uptake (Jackson et al., 1997), while coarse roots provide 

structural support and serve as transporters (Tobin et al., 2007; Reubens et al, 2007). The ELM 

does not distinguish between these roles but does include different growth, respiration, and 

decomposition for coarse versus fine roots (Oleson et al., 2013). Although models generally 

recognize that root traits vary with plant functional type (PFT), they represent most root profiles 

with an exponential distribution similar to that found in Jackson et al. (1996; hereafter J96). This 

method works, in general, for many ecosystems, but there are several regions (e.g., arid and 

boreal) where root distribution is either overestimated or underestimated, resulting in stress-

induced lost gross primary productivity (GPP). This approach also results in an inconsistency, as 

pointed out by Arora and Boer (2003); for example, small and large trees have the same root 

distribution, root depth, and root fraction in each soil layer. Fixed root distribution is also 

problematic in agricultural systems, where plant growth begins from a seed and experiences 

rapid growth to maturity over a short growing season. At a minimum, root profiles should 

include time-varying structure (i.e., distribution) as leaves and stems. 
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 Root function is also poorly represented in most ESMs. For example, many ESMs do not 

include or parameterize nutrient uptake. When nitrogen is included, uptake is from a bulk 

nitrogen mineralization pool dependent on supply and demand rather than root biomass. 

Although water supply is handled within the soil column more explicitly, without a robust root 

distribution, water stress can result in an unrealistic downscaling of physiology (Warren et al., 

2015). Furthermore, root function, production, and resource uptake are highly variable between 

models (Warren et al., 2015). 

 

 Despite the many advances in our understanding of root function, turnover, and 

distribution (Matamala and Stover, 2013), ESMs continue to represent roots in a rudimentary 

way (Warren et al., 2015), although some recent work has focused on improving belowground 

processes in ESMs, including root developments. For example, recent work simulated root 

growth using optimization techniques to maximize plant transpiration (Sivandran and Bras, 

2013) and nitrogen uptake (McMurtrie et al. 2012). Arora and Boer (2003) developed a method 

to represent root distribution as a function of root biomass, which was tested against boreal (El 

Masri et al., 2015) and agricultural systems (Song et al., 2013). Finally, Yang et al. (2016) 

estimated effective rooting depth using a carbon cost-benefit model of water uptake. These 

efforts to improve root representation are still limited, because they focus on maximizing only 

one limiting resource: water or nitrogen. This limits the relevancy to environments that share 

those resource limitations and may not reflect the future state of those regions or may not be 

suitable for global application. 
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 The goal of this work is to develop a new dynamic root approach for the Energy Exascale 

Earth System Model (E3SM; formerly known as the Accelerated Climate Model for Energy) 

Land Model (ELM), which accounts for both water and nutrient limitations, such that plants can 

adjust for whichever resource is limiting. I anticipate that this approach will improve plant 

response to drought and/or nutrient limitation, since plants can adapt to their environment, 

moderating the carbon cycle and storage of an ecosystem. Specifically, I expect that allowing 

roots to dynamically respond to resources will improve plant productivity in regions that are arid 

or have seasonal dry periods. In tropics and subtropics, I do not expect plant productivity to 

change much because I assume that water availability is sufficient and only nitrogen uptake can 

increase. The original model design, introduced in Drewniak et al. (2013) for agriculture, is 

expanded to take advantage of new developments in the below ground biogeochemistry 

introduced in ELM, in particular the vertically resolved nitrogen profile. I will analyze the 

resulting GPP, total ecosystem carbon storage (TEC), ET, and nitrogen uptake. It should also be 

noted that this model does not include phosphorus (which is now included ELM), which will be 

important in phosphorus limited regions such as the tropics. A description of the model is 

outlined in section 2. The resulting root distribution is presented in section 3, followed by a 

discussion in section 4. 

 

3.2 Materials and Methods 

 

3.2.1 Model Description 
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 The E3SM is a fully coupled ESM developed by the U.S. Department of Energy (DOE) 

to simulate the atmosphere, ocean, and land. The E3SM shares lineage with the Community 

Earth System Model (CESM) v1.2, and thus, the E3SM Land Model (ELM) v0 is based on the 

CLM (CLM4.5). The ELM v1, which is used in this study, had additional development including 

improvements to the biogeochemistry model. 

 

 The current root distribution in ELM is an exponential profile with the root fraction in 

each soil layer based on Zeng (2001): 

𝑟𝑖 =   {
0.5 [

𝑒𝑥𝑝(−𝑟𝑎𝑧ℎ,𝑖−1) + 𝑒𝑥𝑝(−𝑟𝑏𝑧ℎ,𝑖−1) −

𝑒𝑥𝑝(−𝑟𝑎𝑧ℎ,𝑖) − 𝑒𝑥𝑝(−𝑟𝑏𝑧ℎ,𝑖)
]        𝑓𝑜𝑟 1 ≤ 𝑖 <  𝑁𝑙𝑒𝑣𝑠𝑜𝑖

 0.5[𝑒𝑥𝑝(−𝑟𝑎𝑧ℎ,𝑖−1) + 𝑒𝑥𝑝(−𝑟𝑏𝑧ℎ,𝑖−1)]             𝑓𝑜𝑟 𝑖 =   𝑁𝑙𝑒𝑣𝑠𝑜𝑖          

 (1) 

where zh,i is the depth between the soil surface and the interface between the current and next soil 

layer and ra and rb are the root distribution parameters dependent on PFT (see Table 8.3 in 

Oleson et al., 2013). The ELM v1 has up to 10 soil layers with increasing thickness with depth, 

and root depth at the bottom of the soil layer (3.8 m). The exponential distribution of roots agrees 

well with global observations but does not allow changes in root distribution in response to 

changes in water or nutrients, nor does it capture the rooting profile of ecosystems in arctic or 

arid regions. 

 

 The new rooting profile is updated as new carbon inputs are allocated to roots. This 

algorithm is similar to that of Drewniak et al. (2013), which was implemented for crops to 

capture the rapid growth and development of agriculture root systems. Fine root carbon, C, in 

each soil layer i is calculated each time step as 

𝐶𝑖 =  𝐶𝑖,𝑡−1 + 𝑟𝑖,𝑡𝐶𝑛𝑒𝑤                     (2) 
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where Cnew is the new carbon allocated to the roots at time t and Ci,t-1 represents the root carbon 

in layer i during the previous time step, which includes senescence due to turnover, calculated as 

the loss of carbon proportional to the root fraction in the soil layer. Just as the previous model of 

Drewniak et al. (2013), the senescence term does not influence the final root distribution, 

however, in future versions of this algorithm could represent turnover weighted toward soil 

layers that lack resources. Finally, ri,t is the new root fraction in each soil layer at time t: 

𝑟𝑖,𝑡 =  (1 − 𝑓) ∗ 𝑟𝑤𝑖 + 𝑓 ∗ 𝑟𝑛𝑖      (3) 

The root fraction is weighted by the water availability summed across the number of soil layers 

(nlevsoi) in the rooting zone (f),  

𝑓 =  ∑ 𝑚𝑎𝑥(0, 𝑤𝑖 ∗ 𝑟𝑖,𝑡−1)𝑛𝑙𝑒𝑣𝑠𝑜𝑖
1      (4) 

where the plant wilting factor, wi, is defined as (Oleson et al., 2013) 

𝑤𝑖 =  
Ψ𝑐−Ψ𝑖

Ψ𝑐−Ψ𝑜
∗ 𝑝𝑒𝑓𝑓        (5) 

Ψi is the soil matrix potential (mm) in soil layer, i; Ψc is soil water potential at stomatal closure; 

and Ψo is the soil water potential at full stomatal opening. The plant wilting factor is weighted by 

the effective porosity, peff, which takes into account the soil ice fraction. The relative available 

soil moisture in each soil layer (rwi) is then calculated as 

𝑟𝑤𝑖 =
𝑅𝑤,𝑖

∑ 𝑅𝑤
𝑛𝑙𝑒𝑣𝑠𝑜𝑖
1

          (6) 

where 

𝑅𝑤,𝑖 = 𝑚𝑎𝑥(0, 𝑤𝑖) ∗ 𝑑𝑧𝑖       (7) 

and the relative nutrient distribution in each soil layer (rni) is 

𝑟𝑛𝑖 =
𝑠𝑚𝑖𝑛𝑛𝑖∗𝑑𝑧𝑖

∑ 𝑠𝑚𝑖𝑛𝑛𝑖∗𝑑𝑧𝑖
𝑛𝑙𝑒𝑣𝑠𝑜𝑖
1

        (8) 
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where sminni is the soil mineral nitrogen in layer i and dzi is the soil thickness of layer i. If the 

vertical nitrogen profile is not active, then a nitrogen profile is prescribed as an exponential 

decay with a decay constant of 3/m, consistent with Jobbágy and Jackson (2001) and Batjes 

(1996). Once the new root carbon in each soil layer is calculated, the new root fraction in each 

soil layer is determined by normalizing the root carbon over all the soil layers. 

 

 Crops have an additional root component that determines changes in rooting depth over 

the growing season to allow the rapid development of roots over short time scales (i.e., one 

growth cycle). Crop root depth is initialized at the bottom of the second soil layer (~4 cm). Root 

depth increases linearly with growing degree days over the growing cycle and reaches maximum 

depth at the beginning of the grain fill stage. Maximum rooting depth for crops varies with crop 

type: 120, 160, and 90 cm for corn, soybean, and wheat, respectively (Mayaki et al., 1976; Araki 

and Iijima, 2001; Amos and Walters, 2006). A maximum rooting depth is also assigned to other 

PFTs, although the depth does not change over the growing season. Table IV lists the maximum 

rooting depths for all PFTs, calculated using the asymptotic equation and extinction coefficients 

in J96 with a cumulative root fraction of 0.99. Tropical plants were assumed to have deeper root 

depths (Nepstad et al., 1994; Fan et al., 2017) and therefore were given a default depth of 3 m. 
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Table IV. Maximum rooting depth of PFTs in ELM. 

 

PFT 

Maximum 

rooting 

depth (m) 

Needleleaf evergreen temperate tree 1.89 

Needleleaf evergreen boreal tree 1.17 

Needleleaf deciduous boreal tree 1.17 

Broadleaf evergreen tropical tree 3.00 

Broadleaf evergreen temperate tree 1.89 

Broadleaf deciduous tropical tree 3.00 

Broadleaf deciduous temperate tree 1.33 

Broadleaf deciduous boreal tree 1.17 

Broadleaf evergreen shrub 1.25 

Broadleaf deciduous temperate shrub 1.25 

Broadleaf deciduous boreal shrub 0.73 

C3 arctic grass 0.51 

C3 nonarctic grass 1.17 

C4 grass 1.62 

C3 generic crop 1.15 

C3 generic crop – irrigated 1.15 

Corn 1.20 

Spring wheat 0.90 

Soybean 1.60 

 

 

 The new root fraction impacts on ELM are demonstrated in Figure 3.1. The direct impact 

from the new root fraction is to soil moisture via shifts in water uptake in the root column. 

Changes to soil moisture content can influence both soil moisture stress and nitrogen availability. 

Although not shown in Figure 3.1, soil moisture stress and nitrogen availability are the 

components that drive changes in root fraction. Stomatal conductance and the maximum rate of 

carboxylation (Vcmax) are weighted by soil moisture stress, which can reduce photosynthesis 

and ET. Photosynthesis is also downscaled by nitrogen stress. Finally, changes to ET and 

photosynthesis will impact energy fluxes, productivity, and ultimately the amount of carbon that 
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can be stored in the ecosystem, or TEC. TEC includes the combined carbon in the litter, 

vegetation, and soil mineral pools, and can be considered the carbon storage for the land. 

 

 
Figure 3.1. Schematic demonstrating the influence of root fraction on resource uptake, energy 

fluxes, and productivity in the Energy Exascale Earth System Land Model (ELM).  

 

 

3.3 Model Simulations 

 

 The ELM was run off line using the accelerated spin-up procedure described in Koven et 

al. (2013) with modifications from D. Ricciuto (personal communication, February 2, 2016) with 

atmospheric data from 1972 to 2004 (Qian et al., 2006) cycled for a total of 1,000 model years. 

Following the accelerated spin-up, atmospheric forcing was cycled three times from 1972 to 

2004 from Qian et al. (2006). The final 33 years were used for model evaluation to test the 
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behavior of root structure and to examine the impact of dynamic roots on vegetation 

productivity, nutrient, and water uptake. 

 

 Three additional experiments were performed to explore the sensitivity of productivity to 

water availability. The first sensitivity simulations set water availability, f in equation (3), to 0, 

so the vegetation was always considered to be fully water stressed and the resulting root profile 

was dependent only on water availability and not nitrogen availability. The goal was to examine 

how much water limitation was still playing a role in vegetation development and productivity 

after a dynamic rooting depth distribution was added. The second sensitivity experiment allowed 

f to range between 0 and a maximum of 0.5 to ensure that at least half of the root growth was 

focused in soil layers with water availability. Finally, a simulation that allowed f to range 

between 0 and a maximum of 0.9 forced the vegetation to have a minimal water demand. Table 

V summarizes the various model simulations that were performed. 

 

Table V. Summary of simulations. 

Simulation Dynamic 

roots 

Water stress Nitrogen 

stress 

CONTROL No NA NA 

DYNROOT Yes Dynamic Yes 

DYNROOT-W Yes Always stressed, set f = 0 in equation (3) No 

DYNROOT-50W Yes Max. 50%, set f ≤ 0.5 in equation (3) Yes 

DYNROOT-90W Yes Max. 10%, set f ≤ 0.9 in equation (3) Yes 

 

3.4 Results 

 

3.4.1 Root Distribution 
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 Root distribution with the dynamic root model compares well with observations of root 

profiles. Grid cells that have inactive vegetation are included in the analysis; however, the root 

profiles of the inactive vegetation are set to the default distribution in equation (1). Here I 

compare the output from the DYNROOT and CONTROL simulations with observational data 

from J96 and Schenk and Jackson (2002a). Observations from J96 consist of a database of 250 

root studies across 11 biomes, used to solve the extinction coefficient in the asymptotic equation 

of cumulative root fraction proposed by Gale and Grigal (1987). Schenk and Jackson (2002a) 

expand that study further with a database of 475 root profiles, which were used to extrapolate the 

50% and 95% root depth and analyze the relationships between rooting depths and climate, soil, 

and vegetation. Figure 3.2 shows the percent of root biomass above the top 30 cm of soil (similar 

to Figure 3.2 from J96). In agreement with J96, boreal and arctic regions include nearly 80–

100% of root biomass in the top 30 cm of soil. Croplands also have a large percentage of roots 

(~80%) in the top 30 cm of soil, although this is somewhat higher than the J96 observations. The 

Amazon basin, the African Congo, and the island chain of Malaysia and Indonesia, as well as 

other moist climate regions, also have over 70% of roots in the top 30 cm. Dry and desert 

regions, such as Australia, south Africa, and east Brazil, tend to have fewer roots (60–70%) in 

the top 30 cm of soil. However, there are other regions that tend to overestimate or underestimate 

the fraction of roots in the top 30 cm. ELM underestimates root biomass in regions like the 

Sahel, western India, and northern Australia. ELM overestimates root biomass in the western 

United States, in the African savannahs, along the plains and the Brazilian highlands in South 

America, and in eastern China.  
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Figure 3.2. Percent of root biomass above 30 cm depth. 

 

 

 

 Another way of looking at the root distribution is the depth at which 50% (D50) and 95% 

(D95) of the root biomass exists. Figure 3.3 and Figure 3.4 show this, broken down by climate 

classification (see Figure 3.5, Appendix B, for the breakdown of climate zones based on Peel et 

al., 2007, downloaded from ORNL DAAC 2017; note that the crop biome includes all grid cells 

that have more than 50% crop cover and can include any of the other biomes). In much of the 

world, D50 is above 10 cm, and almost globally (with some exceptions), D50 is within the top 20 

cm. This is somewhat shallower than observations; the range of D50 was generally between 0.09 

and 0.16 m, with an average depth of 0.13 m in ELM, but Schenk and Jackson (2002a) suggest 

that the average should be closer to 0.18 m, with a range between 0.05 and 0.28 m. The 

variability of D50 is quite low, but there are exceptions, particularly for some tropical and desert 

biomes that have the shallowest and deepest D50 extremes. In general, the mean depth of D50 is 

lower for colder and drier biomes and higher for warmer and wetter biomes, but there is 
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considerable overlap. A global map of D50 and the difference in D50 between DYNROOT and 

CONTROL are shown in Figure 3.6 and Figure 3.7, Appendix B, respectively. In most regions, 

the dynamic root model predicts shallower depths, but some regions (i.e., the western United 

States, eastern Africa, and Australia) have a slightly deeper depth.  

 
Figure 3.3. Box plot of soil layer depth (m) above which 50% root biomass exists for different 

climate classification zones from Figure 3.5, Appendix B. 
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 The depth of 95% of root biomass is quite variable (Figure 3.4). This is in part due to the 

difference in maximum root depths between different vegetation types (e.g., tropical vegetation 

has a maximum rooting depth of 3 m, whereas boreal grass only has a 0.5 m maximum rooting 

depth). The same pattern of deeper depths of D95 occurs for warm and tropical or desert regions 

and shallower depths for cold or dry climates and is consistent with observations (Schenk and 

Jackson, 2002b). The average D95, which is modeled at 0.98 m, is much closer to observational 

estimates of 1.02 m (Schenk and Jackson, 2002a). The range of D95 is generally between 0.62 

and 1.12 m, whereas Schenk and Jackson (2002a) found a range of 0.40 and 1.5 m. Table VI lists 

the D95 in each of the climate zones shown in Figure 3.4. Figure 3.6, Appendix B, shows the 

global map of soil depth to 95% root biomass. In general, high latitudes have shallower depths of 

D95 than tropical regions. This is also clear in the difference plot between the dynamic root 

model and the control (see Figure 3.7, Appendix B), which shows shallower root depths in boreal 

and tropical regions but deeper depths for drier and desert regions. Part of this difference is the 

result of the shallower soil depths in ELM for boreal vegetation combined with the permafrost 

soil layers that restrict root growth in arctic regions. In these regions, D95 is located above 0.65 

m. This contrasts with tropical regions that have D95 of 1.5 m, or in some cases, such as 

Australia, below 2 m. The strong gradient that exists in Australia in Figure 3.6, Appendix B, is 

due to the sharp transition from temperate to tropical vegetation (arbitrarily chosen to be along 

the 23.25S latitude). In the northern half of the continent, the majority of the PFTs are broadleaf 

deciduous tropical trees, while the southern half has mostly broadleaf deciduous temperate 

shrubs. D95 captures some of the maximum rooting depths estimated by Fan et al. (2017), in 

polar regions and in the western United States. However, the model does not capture the deepest 

roots that are expected to occur in the eastern United States, the dry season Amazon, India, and 
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central South America, mainly due to the limited root depth prescribed in ELM. Figure 3.8 

shows the relationship of D95 with latitude. There is no relationship for low latitudes that 

encompass mostly tropical vegetation types, but for temperate latitudes, D95 decreases with 

increasing latitude. This relationship is in agreement with Schenk and Jackson (2002a). The 

increase in rooting depth at high latitudes (above 75°) is an artifact of vegetation that is present 

in grid cells but is not active; therefore, the root distribution reverts back to the default model 

value. 
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Figure 3.4. Box plot of soil layer depth (m) above which 95% root biomass exists for different 

climate classification zones from Figure 3.5, Appendix B. 
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Figure 3.8. Soil layer depth above which 95% of root biomass exists as a function of latitude. 

The open circles represent latitudes between 30 north and south, and the closed circles are 

latitudes higher than 30 north or south. 

 

 

  



 73 

Table VI. Climate zone averaged D95 (soil depth above which 95% of root biomass exists) and 

GPP (gross primary productivity) for the CONTROL, DYNROOT, AND DYNROOT-50W 

simulations. Values in parenthesis represent the percent change from CONTROL. 

Ecosystem D95 (m)  
CONTROL DYNROOT DYNROOT-50W 

Tropical 1.57 1.01 1.97 

Tropical savannah 1.47 1.24 2.25 

Desert 1.33 1.24 1.41 

Steppe 1.31 1.13 1.43 

Temperate—dry summer 1.36 1.00 1.55 

Temperate—dry winter 1.35 1.03 1.74 

Temperate—no dry season 1.47 0.92 1.82 

Cold—dry summer 1.34 0.73 1.13 

Cold—dry winter 1.31 0.66 1.07 

Cold—no dry season 1.30 0.73 1.19 

Polar 1.45 0.68 1.03 

Crop 1.04 0.94 1.46 

Global 1.44 0.99 1.61     

 
GPP (g C m-2 year-1)  

CONTROL DYNROOT DYNROOT-50W 

Tropical 1396 1371 (1.8) 1425 (2.1) 

Tropical savannah 1429 1385 (-3.1) 1513 (5.8) 

Desert 222 222 (-0.1) 222 (-0.1) 

Steppe 475 474 (-0.2) 480 (0.9) 

Temperate—dry summer 903 881 (-2.4) 936 (3.7) 

Temperate—dry winter 1152 1097 (-4.7) 1183 (2.7) 

Temperate—no dry season 1576 1530 (-2.9) 1604 (1.8) 

Cold—dry summer 443 434 (-2.1) 445 (0.5) 

Cold—dry winter 711 703 (-1.2) 708 (-0.4) 

Cold—no dry season 782 773 (-1.1) 783 (0.1) 

Polar 413 408 (-1.4) 416 (0.7) 

Crop 1198 1180 (-2.0) 1237 (2.1) 

Global 832 815 (-2.0) 849 (2.1) 
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 The distribution of roots as measured by the cumulative root fraction (Figure 3.9) for 

PFTs falls between the Zeng (2001) and J96 profiles. The cumulative root fraction from ELM is 

found from the PFT-weighted root profile, averaged across all simulated years (i.e., 1972-2004). 

For the observations, the root profile is taken from the asymptotic equation and corresponding ß 

found in J96. While the simulated root profile from DYNROOT does not always show 

improvement from CONTROL compared with observations, the purpose of these comparisons is 

to demonstrate that even though roots are allowed to change dynamically, the model can still 

produce root distributions that are acceptable. Trees tend to have more shallow roots under the 

dynamic root profile, but they also have roots at the depths seen in J96. This response is strong 

due to the grouping of all trees together, as results from individual tree PFTs vary (see Figure 

3.10, Appendix B). For example, boreal forests in DYNROOT have root distributions that follow 

the J96 curve (Figure 3.10a, Appendix B), while the default root profile in ELM has too many 

roots at depth and too deep a root profile. Temperate evergreen forests (Figure 3.10b, Appendix 

B) also have too many shallow roots, but the cumulative root fraction curve follows the Zeng 

(2001) profile more closely than the J96 profile, while deciduous and tropical evergreen forests 

(Figure 3.10c–e, Appendix B) fall somewhere in between. Shrubs have shallower root profiles, 

but this is largely the result of the shallow root depth in ELM compared with that from J96. 

Grasses seem to fall between the Zeng (2001) and J96 profiles (Figure 3.8 and Figure 3.10f–g, 

Appendix B). Finally, crops (Figure 3.9 and Figure 3.10h, Appendix B) always have shallower 

root profiles than J96, although this could be the result of differences in the rooting depth 

modeled by DYNROOT as compared to observations.  
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Figure 3.9. Cumulative root fraction of (top left) trees, (top right) shrubs, (bottom left) grasses, 

and (bottom right) crops for DYNROOT (blue line), CONTROL (black line), and J96 (red line). 
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3.4.2 Plant Productivity and Uptake 

 

 Changes to the root distribution result in altered ET and nitrogen uptake by the plant. 

Figure 3.11 shows the difference between DYNROOT and CONTROL (note that all difference 

plots are represented as experiment—control) for ET and nitrogen uptake. Increases occur in 

regions that are water limited. These include regions such as the western United States, South 

Africa, along the Sahel, India, Australia, and many boreal regions. However, there are more 

regions that have a loss in both ET and nitrogen uptake. Those regions include parts of South 

America, Central Africa, southern China, and Vietnam. 

 

 
 

Figure 3.11. Difference between DYNROOT and CONTROL of (a) gross primary productivity 

(g C m-2 year-1); (b) total ecosystem carbon (kg C/m2); (c) evapotranspiration (mm/year); and (d) 

nitrogen uptake (g N m-2 year-1). 
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 Observed increases or decreases in productivity are generally correlated with increases or 

decreases in ET and nitrogen uptake. Although all climate zones experience on average a 

decrease in GPP (see Table VI), this varies regionally. Figure 3.11a shows the GPP difference 

between DYNROOT and the CONTROL. Most regions that experience small increases in GPP 

are in arid or dry ecosystems, but because the GPP in these systems is small, the percent increase 

can be as large as 50%. Regions with GPP losses tend to be in more productive areas, and thus, 

the percent loss of GPP is small. For example, in South America losses of GPP occur in some 

grasslands that are greater than 200 g C/year, but the percent loss of GPP is less than 10%.  

Globally, the percent decrease in GPP is 2%, or 2.1 Gt C/year. 

 

 Despite the modest decrease in global GPP, the dynamic root model improves ELM GPP 

bias compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP data 

product (Zhao and Running, 2010). A comparison between the model performance and MODIS 

is shown in Table VII for each season during the period of 2000–2004, the time period when the 

model and MODIS data overlapped. The data are presented as the seasonal average for each 

climate zone (Figure 3.5, Appendix B). The seasons are broken down as follows: winter includes 

December, January, and February; spring includes March, April, and May; summer includes 

June, July, and August; and fall includes September, October, and November.  

 

 The statistics that were used to examine model performance in Table VII are the average 

root mean square error (RMSE) and bias of GPP for each biome in each season. RMSE is 

calculated as  
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𝑅𝑀𝑆𝐸 =  √
∑ �̂�𝑖−𝑦𝑖

𝑛
𝑖=1

𝑛
       (9) 

where yi are the observed values, �̂�i are the model simulated values, and n is the number of 

samples. Bias is calculated as 

𝐵𝑖𝑎𝑠 =  �̂�𝑖 − 𝑦𝑖        (10) 

All the improvements in model performance are marginal. Improvements in RMSE occur during 

all seasons in cold climate and temperate-no dry season zones, whereas tropical savannah and 

temperate-dry winter zones are always worse. Other climate zones vary with season. Changes in 

model bias are similar, with a lower bias in DYNROOT for tropics, deserts, and cold climate 

zones during all seasons. All other regions vary in bias with season except for tropical savannah, 

which always performs worse in DYNROOT. To understand how the bias varies spatially, a map 

of the change in percent relative error (PRE) is shown in Figure 3.12. The PRE in this case is 

calculated as 

𝑃𝑅𝐸 = 100 ∗ |
�̂�𝑖−𝑦𝑖

𝑦𝑖
|       (11) 

and the change in PRE is defined in Figure 3.12 as 

∆𝑃𝑅𝐸 =  𝑃𝑅𝐸𝐷𝑅𝑌𝑁𝑅𝑂𝑂𝑇  – 𝑃𝑅𝐸𝐶𝑂𝑁𝑇𝑅𝑂𝐿     (12) 

The largest improvements are in the eastern United States, parts of Europe and eastern Asia, 

Australia, and the Amazon tropics. The regions where the model performance is worse in 

DYNROOT are the seasonally dry areas of the Amazon, African tropics, and southern Asia.  

  



 79 

Table VII. The RMSE and Bias of model simulations compared with MODIS GPP. 

DJF RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 84.75 84.79 17.54 18.44 

Tropical savannah 72.13 70.57 -12.03 -9.57 

Desert 20.65 20.81 -37.79 -38.85 

Steppe 33.03 33.09 -26.84 -26.79 

Temperate-dry 

summer 

51.08 50.85 -13.00 -10.78 

Temperate-dry winter 74.59 71.93 -23.38 -18.37 

Temperate-no dry 

season 

55.60 56.42 5.35 9.71 

Cold-dry summer 8.48 9.21 88.20 107.89 

Cold-dry winter 23.20 23.97 329.10 350.18 

Cold-no dry season 5.79 6.13 42.47 53.03 

Polar 51.32 52.29 -7.88 -6.68 

Crop 37.82 38.04 7.54 8.02      

MAM RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 83.08 82.55 14.61 15.33 

Tropical savannah 73.37 71.18 -14.48 -11.84 

Desert 22.81 22.94 -43.06 -43.79 

Steppe 38.62 38.78 -22.85 -22.07 

Temperate-dry 

summer 

60.20 61.28 -3.84 -2.24 

Temperate-dry winter 84.53 82.47 -17.39 -11.90 

Temperate-no dry 

season 

68.42 68.95 15.08 17.92 

Cold-dry summer 45.70 46.42 76.50 80.81 

Cold-dry winter 49.05 50.68 80.20 82.86 

Cold-no dry season 44.65 46.22 51.14 55.13 

Polar 35.72 36.79 30.97 33.61 

Crop 61.59 62.58 28.63 30.43      
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JJA RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 78.69 78.75 12.21 12.90 

Tropical savannah 71.22 70.03 -15.26 -11.85 

Desert 24.55 24.42 -39.94 -41.02 

Steppe 39.25 38.85 -14.96 -16.09 

Temperate-dry 

summer 

72.92 73.87 -35.49 -36.06 

Temperate-dry winter 80.49 80.27 2.11 6.42 

Temperate-no dry 

season 

80.88 81.68 18.59 21.03 

Cold-dry summer 55.83 54.80 -22.16 -20.49 

Cold-dry winter 66.49 68.03 4.90 5.90 

Cold-no dry season 61.99 62.78 -10.85 -9.80 

Polar 42.12 42.63 -56.77 -57.87 

Crop 89.56 90.13 40.61 41.04      

SON RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 75.76 75.19 9.98 11.00 

Tropical savannah 69.83 67.70 -12.22 -9.29 

Desert 20.41 20.52 -38.67 -39.67 

Steppe 30.87 30.78 -15.22 -15.97 

Temperate-dry 

summer 

56.71 56.49 -26.35 -25.40 

Temperate-dry winter 69.22 68.33 -2.36 2.88 

Temperate-no dry 

season 

62.26 62.85 8.28 11.57 

Cold-dry summer 22.48 22.32 14.81 16.29 

Cold-dry winter 40.50 41.76 65.16 68.29 

Cold-no dry season 18.77 19.12 17.92 20.07 

Polar 23.62 23.74 -6.50 -6.73 

Crop 48.79 48.55 24.06 25.47 
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Figure 3.12. The change in percent relative error calculated as PREDYNROOT – PRECONTROL. 

 

 

 Dynamic roots also decreased the bias in modeled ET as compared with the MODIS ET 

data product (Zhao et al., 2013) in most ecosystems (Table VIII). Table VIII lists the average 

RMSE and bias of ET for each biome in each season. RMSE and bias are calculated as in 

equation (9) and (10). Again, all improvements from dynamic roots are marginal. Tropical 

regions do not have an improved RMSE or bias during any season. Tropical savannah has 

improved RMSE during fall and improved bias during all seasons. Crops have lower RMSE and 

bias during fall and winter (not typically active growing periods). Regions with cold seasons 

have improved fit with observations during spring, summer, and fall. Regions where agreement 

with observations improved include the central United States, the southern half of South 

America, and central Africa. Although these regions experienced decreased ET, the high bias of 
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ET was reduced. However, regions such as northern and central South America, southern Asia, 

and parts of central Africa show decreased agreement with observations due to a decrease in ET 

in already low-biased regions. 

 

 

Table VIII. The RMSE and Bias of model simulations compared with MODIS ET. 

DJF RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 23.71 23.64 -4.51 -3.89 

Tropical savannah 33.73 33.54 10.47 11.72 

Desert 23.10 23.39 32.96 35.38 

Steppe 28.05 28.17 18.42 19.42 

Temperate-dry 

summer 

18.51 18.44 -21.70 -19.33 

Temperate-dry winter 27.59 27.44 3.26 5.14 

Temperate-no dry 

season 

34.53 35.58 9.92 11.99 

Cold-dry summer 17.47 17.24 -109.92 -108.31 

Cold-dry winter 13.59 13.46 -86.44 -85.63 

Cold-no dry season 12.27 12.17 -129.86 -128.53 

Polar 10.98 10.93 -121.43 -120.26 

Crop 21.83 21.75 -29.45 -28.45      

MAM RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 24.42 24.07 -3.72 -3.38 

Tropical savannah 37.49 37.11 13.29 14.59 

Desert 19.20 19.21 78.88 78.73 

Steppe 25.24 25.16 45.34 45.83 

Temperate-dry 

summer 

24.38 25.32 21.79 23.33 

Temperate-dry winter 30.27 29.86 13.01 15.50 

Temperate-no dry 

season 

20.73 21.08 -0.76 0.02 

Cold-dry summer 25.25 25.49 -21.52 -20.99 

Cold-dry winter 21.68 21.95 -26.43 -26.22 

Cold-no dry season 22.71 22.72 -55.07 -54.94 

Polar 20.85 20.92 -96.97 -97.34 

Crop 32.34 31.76 31.83 31.17 
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JJA RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 31.52 31.48 -8.15 -7.83 

Tropical savannah 32.13 31.47 0.64 2.20 

Desert 24.05 23.85 104.02 103.07 

Steppe 32.13 31.77 77.84 76.70 

Temperate-dry 

summer 

23.48 23.86 -2.53 -2.63 

Temperate-dry winter 27.64 27.30 10.57 10.82 

Temperate-no dry 

season 

21.70 22.12 1.06 2.15 

Cold-dry summer 28.60 29.04 -7.29 -4.91 

Cold-dry winter 29.16 29.19 -8.43 -8.00 

Cold-no dry season 25.43 25.73 -17.04 -16.35 

Polar 44.86 45.07 -66.33 -66.78 

Crop 33.31 33.34 32.29 32.90      

SON RMSE Bias  
DYNROOT CONTROL DYNROOT CONTROL 

Tropical 25.28 24.89 -5.35 -4.81 

Tropical savannah 39.77 40.20 16.86 18.49 

Desert 19.00 19.03 80.28 80.06 

Steppe 26.91 27.04 59.18 59.09 

Temperate-dry 

summer 

17.30 17.40 3.90 4.29 

Temperate-dry winter 29.08 29.39 15.68 17.00 

Temperate-no dry 

season 

27.16 27.99 11.37 12.69 

Cold-dry summer 14.55 14.44 -30.32 -30.33 

Cold-dry winter 13.06 13.13 -22.70 -22.22 

Cold-no dry season 11.94 11.90 -50.07 -49.67 

Polar 16.71 16.73 -98.99 -99.12 

Crop 23.39 23.83 15.72 16.66 

 

 

 

 Changes in GPP ultimately lead to changes in the carbon uptake and storage in vegetated 

and soil systems. Under DYNROOT, changes in plant productivity translate to lower TEC 

globally of 2.5%, or 34.4 Gt C, and the pattern generally coincides with the differences in GPP. 
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DYNROOT has higher TEC in regions such as the western United States, South Africa, India, 

southern Australia, and the Arctic. Lower TEC is concentrated in South America along the 

highlands, the Congo Basin in Africa, and South Asia, with up to 30% of the ecosystem carbon 

being lost. The bulk of the difference is in the vegetation and soil carbon pools with relatively 

small decreases in the litter pool. 

 

3.4.3 Sensitivity to Water Column Profile 

 

 When the dynamic root algorithm is modified to have an increased water stress factor, the 

model response is quite different. When the water stress is high, root allocation is focused more 

strongly in soil layers with water, which shifts the bulk of root distribution, in general, to deeper 

soil layers. DYNROOT-W produced a significant amount of root biomass in deep soil layers, 

resulting in highly dimorphic (in this case, root biomass increases with depth) root profiles in all 

ecosystems. DYNROOT-W had a global root profile with significant roots at depth, including a 

deeper D50 (0.5 m) and D95 (1.6 m). The DYNROOT-50W global root profile also had 

significant roots at depth, producing dimorphic roots that result in a deep D50 (0.22 m) and D95 

(1.6 m). However, increases in root depth did not occur everywhere. In polar and arid regions, 

roots are still shallower than CONTROL. However, the root profiles in DYNROOT-50W are 

deeper than DYNROOT (Table VI), demonstrating that imposing water stress in these regions 

drives deeper root growth. Root profiles for DYNROOT-90W were similar to DYNROOT, 

suggesting that the water stress imposed was not significant enough to alter the root profiles. 

 



 85 

 The impacts of perceived water stress on root profiles are seen in GPP. Figure 3.13 and 

Figure 3.14, Appendix B, show the difference between DYNROOT-W and CONTROL and 

DYNROOT-50W and CONTROL, respectively. When water stress is high, arid and semiarid 

regions experience a decrease in GPP, whereas humid and tropical regions experience an 

increase in GPP. The increase in global GPP for the high-water stress DYNROOT-W 

(DYNROOT-50W) scenarios results in an increase in GPP of 4.5 Gt C/year (2.1 Gt C/year) and 

an increase in TEC of 12 Gt C (1.8 Gt C) stored compared with the control simulation. The 

increases in GPP do not always coincide with increases in nitrogen uptake (Figure 3.13 and 

Figure 3.14, Appendix B). When water stress is low, as in DYNROOT-90W (Figure 3.15, 

Appendix B), results are similar to those of DYNROOT, suggesting that the mild water stress 

imposed is fairly typical in many regions. Globally, GPP decreases 1.4 Gt C/year and TEC 

decreases 27 Gt C/year. 

  



 86 

 

 

 
  

Figure 3.13. Difference between DYNROOT-W and CONTROL of (a) gross primary 

productivity (g C m-2 year-1); (b) total ecosystem carbon (kg C/m2); (c) evapotranspiration 

(mm/year); and (d) nitrogen uptake (g N m-2 year-1). 

 

 

3.5 Discussion 

 

 Allowing roots in ELM to shift their rooting depth distribution with resource demands 

and availability has resulted in root profiles that vary with region and PFT with implications for 

the carbon cycle. Regionally, GPP increases in arid and polar climate zones and GPP decreases 

in many of the tropics and subtropics. Globally, the net effect is a loss of productivity and carbon 

storage. 
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 The model behavior can be explained as follows. Referring back to Figure 3.1, the 

fraction of roots in each soil layer affects the soil moisture content and the soil moisture stress, 

which has a direct influence on GPP through modifications to stomatal conductance and Vcmax. 

The water stress factor (equation (4)) determines the weight of the root distribution emphasized 

toward water uptake. Higher values of f result in more weight in soil layers with nitrogen, 

whereas lower values of f result in more weight toward soil layers with water. Figure 3.16 shows 

the distribution of f-values overlaid with the nitrogen stress factor. Regions that have nitrogen 

stress and water stress factors close to 1 (small or no stress) experience little change or increased 

GPP (Figure 3.11). Also, regions that have moderate to strong water stress, but no nitrogen stress 

also have increases in GPP. This is because the model is distributing roots to increase water 

availability, which has a strong influence on GPP. However, regions with moderate (but not 

strong) water stress and low nitrogen availability experience decreases in GPP. In these areas, the 

model is trying to compensate for both limiting factors: water and nitrogen, and therefore 

distributes roots accordingly. In ELM, root nitrogen uptake is based on the availability of 

nitrogen in the soil layer, and not where the root biomass is located in the soil layers. Therefore, 

nitrogen uptake is highest in soil layers where nitrogen is in the largest quantity, which may not 

correlate with root biomass. As such, the transfer of root biomass away from water toward 

nitrogen could result in a loss of water uptake without a benefit of nitrogen uptake. This 

translates to a stronger modeled response to water stress on GPP than nitrogen stress.  

 

 Much of the model behavior (i.e., large-scale reductions in GPP) is the result of missing 

processes or limitations in ELM. First, the capping of root depths could limit water available by 

restricting uptake to shallow soil layers. This effect would deny the plant available water in deep 
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soil layers (if the plant could establish roots at depth) and is important at dry sites (Nepstad et al., 

1994; Knight, 1999). The lack of hydraulic redistribution, which is widely observed in semiarid 

ecosystems (Bleby et al., 2010), will reduce the amount of water available for plant use. Second, 

root water uptake is based on fixed parameters and not dependent on root functionality (Warren 

et al., 2015). Although roots are allowed to shift distribution, water uptake is still dependent on 

plant demand and soil matric potential. Roots are not allowed to modify function by shifting 

water uptake from shallow dry soil layers to deep wet soil layers during drought as observations 

indicate (Warren et al., 2005; Lai and Katul, 2000). This functional specialization has also been 

seen in variable nutrient uptake with depth (da Silva et al., 2011). Third, the way nitrogen uptake 

is modeled in ELM limits the dynamic root capability. Allowing nitrogen uptake based on root 

weight rather than total nitrogen availability could increase nitrogen uptake. Additionally, 

allowing roots to obtain nitrogen from biological nitrogen fixers or mycorrhizal associations is 

also not included further limiting nitrogen availability. Finally, this model does not include 

phosphorus (which is now included ELM), which will be important in phosphorus-limited 

regions such as the tropics. This could be addressed in future modifications to the dynamic root 

model.  
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Figure 3.16. Overlay of water stress factor (in color) and the nitrogen stress factor (textured) 

from the DYNROOT simulation. 

 

 

 The model response has implications for climate change and how ecosystem roots should 

be represented in models. Not allowing roots to respond to environmental stresses could result in 

an overestimate or underestimate of modeled plant productivity. Plants have several means of 

adjusting to water stress. For example, seasonal water variability can lead to seasonal shifts in 

root production (Peek et al., 2006). In semiarid regions, isotope studies have found that root 

plasticity in rooting depth distribution allows water extraction from shallow soil depths during 

the rainy season and deep soil depths during the dry season (Wang et al., 2017; Yang et al., 2015; 

Dawson and Pate, 1996). Furthermore, hydrology often determines effective rooting depth. 

Roots in saturated soils are often limited by anoxic conditions, while roots in well-drained soils 

may not be able to overcome the dry gap between precipitation-wetted surface soils and the 

capillary fringe above the water table (Fan et al., 2017). 
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 The new dynamic root model shows a strong hydrological response to reductions in 

precipitation with a deepening of root systems to counter water stress. An example can be seen in 

the relationship between effective rooting depth (here defined as D95) and precipitation over the 

33-year period of DYNROOT. Figure 3.17 shows the Pearson’s correlation coefficient (PCC) 

between precipitation and D95. In most regions, there is a negative correlation, which indicates 

that as rainfall increases, effective rooting depth decreases. During years with higher rainfall, soil 

water and nitrogen would be concentrated near the surface, resulting in more roots in shallow 

layers.  

 

 Tropical and some boreal regions (including wetlands/bogs and tundra) exhibit no or very 

low correlation between rainfall and D95. The lack of water stress in the wet tropics, wetlands, 

and humid ecosystems leads to shallower rooting profiles that depend more on nitrogen and 

respond less to precipitation events. In boreal and tundra systems permafrost limits the depth that 

roots can penetrate and restricts water movement, thus limiting roots to shallow soil layers. This 

could result in a stronger stress response to short-term drought events for these ecosystems. This 

is demonstrated by a drying of shallow soil layers in Figure 3.18, Appendix B. However, the 

deepening root structure in arid ecosystems suggests that over long-term droughts, the model can 

respond to available water in deeper soils. 
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Figure 3.17. Pearson’s correlation coefficient between D95 and rain for the last 33 years of the 

DYNROOT simulation. 

 

 

 Positive correlations occur in some desert regions, but mostly at high latitudes or high-

elevation areas. These regions correspond to areas that receive low amounts of precipitation, so 

roots would be more dependent on water stored in deeper soil layers. The deepening of root 

structure during drought is consistent with observations (Grossiord et al., 2017). With dryland 

area already expanding from climate change (Huang et al., 2017), not allowing roots to respond 

to water stress will result in missed opportunities to capture climate feedback from changes to 

vertical root structure. 

 

 Finally, most seasonally dry tropic regions have a negative correlation with rainfall, 

simulating shallower rooting depths that rely too heavily on precipitation events. This behavior is 



 92 

not consistent with observations that suggest deeper root profiles are commonly used to tap into 

groundwater and continue transpiration throughout the dry season (O’Grady et al., 1999 Juárez et 

al., 2007; Karam and Bras, 2008). This could be a result of a poor root response for stress- 

deciduous plants in those regions, which results in a shallow root profile that dries the top of the 

soil column quickly following the rainy season. Since stress phenology PFTs in ELM rely on soil 

moisture in the top 10 cm to trigger leaf onset and leaf-off, lack of soil water would force the 

PFT into dormancy. Indeed, the number of active growing days (not shown) for stress phenology 

PFTs in DYNROOT is less than in the control simulation, resulting in lower GPP and 

transpiration. This behavior is a problem in other models as well, the cause from equal weighting 

of soil moisture content in all soil layers (De Kauwe et al., 2015), and results in an abrupt 

transition to drought. De Kauwe et al. (2015) found that varying the contribution of soil water 

potential such that the weight shifts from the upper layers when wet to lower layers as the soil 

dried greatly improved the model response to drought. Another solution to address the lack of 

growth during the dry-season tropics is to redefine the rooting depth in these regions to allow 

deeper roots, perhaps through a minimum water stress parameter to encourage deeper root 

profiles. In addition, hydraulic lift allows deep rooted plants to bring water from deep soil layers 

to supply the water needs of shallow-rooted grasses and shrubs, which could improve the 

performance in tropical savannahs (Ludwig et al., 2003; Oliveira et al., 2005; Kurz-Besson et al., 

2006). Finally, rethinking the moisture stress trigger for stress deciduous plants would improve 

the response of dry-season tropics, particularly by allowing the stress trigger to be dependent on 

total root-available water and not just the surface soil moisture.  
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 Although observed increases or decreases in modeled ET correspond with increases or 

decreases in GPP, there are some ecosystems in ELM where ET is biased high but GPP is biased 

low, particularly dry seasonal ecosystems. Therefore, the decrease in ELM estimated GPP and 

ET result in an improvement in ET, but a degraded GPP agreement. Some reasons these regions 

are difficult to model is ELM has a high ET bias in semiarid regions, caused by too strong soil 

evaporation, particularly for grass PFTs (Swenson and Lawrence, 2014), the lack of root 

hydraulic redistribution (Tang et al., 2015), and poor hydraulic parameterizations (Tang et al., 

2015). This suggests that the improvements in ET are for the wrong reasons and additional 

processes should be considered. Particularly, Swenson and Lawrence (2014) added a dry surface 

layer as a resistance to water movement out of the soil. Schultz et al. (2016) found that soil 

moisture was depleted in dry tropics and hypothesized that the root system and parameterizations 

should be modified in addition to revisions to the stomatal conductance model. However, Bouda 

and Saiers (2017) suggested that the root distribution might be fine, but the formulation for root 

water uptake should not allow increasing amounts of soil water to be removed from the deepest 

soil depths during drought. Finally, Tang et al. (2015) suggest that there are additional 

approaches to refine water uptake through hydraulic redistribution but should include better 

below ground representations of deep roots, soil texture, hydraulic parameters, and water table 

dynamics. 

 

 When I force the model to acknowledge some water stress, rooting depth responds with 

deeper root profiles. In humid regions and the tropics, water availability may increase, 

particularly if the shallow surface soils, which tend to store more nitrogen than deep soils, dry 

out occasionally or do not hold sufficient water to meet plant demands. Indeed, these regions 



 94 

experience some increases in GPP and ET in the DYNROOT-W and DYNROOT-50W 

simulations. This is also obvious in the soil volumetric water content (Figure 3.18, Appendix B), 

which shows the DYNROOT-50W having more water in the top 0.5 m of soil but less in deeper 

soils than DYNROOT. However, the largest increases in GPP occur in seasonally dry regions. 

The deep dimorphic root structure allows these PFTs to decouple from precipitation by tapping 

into deep soil water, thereby allowing the plants to increase productivity. In contrast, arid and 

desert regions experience a drop in GPP and ET. This response is driven by interactions between 

soil water availability and the stress deciduous plant phenology in the model, which dominate 

these regions. Forcing water stress causes PFTs to deepen root systems that tend to deplete water 

through a deeper layer of the soil column, triggering moisture stress and leaf-off. This is also 

seen in the differences in soil volumetric water content (Figure 3.18, Appendix B). Both 

DYNROOT and DYNROOT-50W have fairly constant soil water in the shallow soil layers, but 

below the top 10–20 cm the soil, volumetric water decreases sharply in the DYNROOT-50W 

compared to the other simulations. 

 

 The relationship between effective rooting depth and productivity can be further 

examined with the PCC between the annual average of GPP and D95 across four simulations: 

CONTROL, DYNROOT, DYNROOT-50W, and DYNROOT-90W. These simulations were 

chosen because their root distributions were the most realistic when compared with observations. 

Figure 3.19 shows the PCC map. Most humid and seasonally dry regions have a strong positive 

relationship between D95 and GPP, meaning GPP increases as root depth increases. In addition, 

dry, arid, and boreal regions (including northern Canada, Siberia, the western United States, 

southern Australia, and parts of western and southern Africa) tend to have a strong negative 
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relationship between D95 and GPP. There are only a few regions where there is a weak 

relationship between D95 and GPP, for example, in the Amazon tropics and along transition 

zones.  

 

 

 
 

Figure 3.19. Pearson’s correlation coefficient between gross primary productivity and D95 with 

CONTROL, DYNROOT, DYNROOT-50W, and DYNROOT-90W. 

 

 

 Since water availability increases with soil depth, forcing water stress results in a 

deepening, dimorphic root profile. In the tropics and dry-seasonal tropics, deepening roots allow 

increased access to water, which results in an increase in transpiration and GPP. It also allows 

PFTs in the dry tropics to continue growth longer during the dry season by delaying the drying of 

the shallow soil layer. In deserts, the deepening roots dry out the soil column. This drying effect 
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results in a decrease in water use efficiency (WUE; not shown) and causes a decline in 

transpiration and GPP. However, the dimorphic root profile is not realistic in many regions and 

does not match with the majority of observations. Furthermore, it can lead to decreases in soil 

water in deep soil layers, which can have consequences over time (e.g., plant die-off), 

particularly if the water table is not replenished as quickly as it is depleted.  

 

 There are several model developments that can be performed to improve the dynamic 

rooting model. One consideration for future model improvement is to allow maximum rooting 

depth to vary not just as function of PFT, but perhaps as a function of climate zone. Climate-

dependent rooting depth could address limitations in the root model presented here, such as the 

lack of deep roots in the arid or dry-season tropical regions. Deep roots are important drivers of 

plant hydraulic lift and redistribution, nutrient uptake, and soil weathering, and they can 

contribute to soil carbon sequestration (Maeght et al., 2013). In many of the dry-season tropics, 

ELM simulates shallow roots where observations indicate deeper roots are present (J96; Schenk 

and Jackson, 2002a; Yang et al., 2016; Fan et al., 2017). A deeper root profile should be used in 

these regions, which could act to increase the opportunity for root foraging in deep soil layers 

and enhance productivity and ET by continuing growth during the dry season. This would allow 

roots to access the water table, which is quite deep in these regions, and improve water uptake 

ability. In addition, in many arid regions, such as the southwestern United States, hydrology 

regulates root depth and restricts growth to shallow layers (Fan et al., 2017). Creating a variable 

rooting depth that is dependent on climate and soil thickness may be one way to capture the 

variability in rooting depth better in the dynamic root algorithm. 
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 One model improvement to support variable root depth is removing soil depth 

constraints. Although the majority of root biomass is in the top 1 m of soil (Schenk and Jackson, 

2002a), in arid and semiarid climates, periodic drought can result in rooting depths much deeper 

than the 3.8 m soil column in models, in some cases to depths of tens of meters. In other regions, 

such as in high-latitude systems, shallow soil thickness limits rooting depth. The variable soil 

depth to bedrock data set developed by Brunke et al. (2016) prescribes estimates of global soil 

thickness. Combining the Brunke et al. (2016) data set with dynamic roots and variable root 

depth could improve the dynamic rooting model. For example, shallow soil thickness would put 

a cap on the rooting depth, while deep soil thickness would prevent some roots from foraging too 

deeply in a dry soil gap. However, care should be taken to avoid root foraging in the water table, 

which would limit necessary oxygen requirements for root respiration and could potentially 

cause an unrealistic buildup of soil carbon in deep soil layers as roots die. 

 

 There are other considerations for future model development that can improve the 

representation of roots in ESMs. Some of these include allowing different root forms for 

different functions (i.e., water versus nitrogen uptake). In addition, including a representation for 

root surface area and increased root length under drought (Padilla et al., 2015; Padilla et al., 

2009) would have a significant influence on nutrient and water uptake with the same quantity of 

biomass. Root function could allow roots to distinguish water sources such that vegetation could 

focus water extraction from specific depths, allowing some plants to pull water from deep soil 

depths and not from surface layers, thus removing competition with shallower rooted vegetation. 

This could also include variable weights given to soil layers to shift water uptake from shallow to 

deep roots depending on water availability similarly to De Kauwe et al. (2015). In addition, 
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adding root hydraulics that would transport water from wet soil layers to dry soil layers to 

compensate for dry zones (Zhu et al., 2017) can increase plant available water during dry seasons 

and can be a major source of transpiration (Lee et al., 2018; Neumann and Cardon, 2012). 

Hydraulic lift has been found in all types of biomes (Prieto et al., 2012) and can also work in 

reverse, moving water from shallow soil layers to deep soil layers, which can protect that water 

from evaporation and can also give some plants a competitive advantage (Lee et al., 2018). 

Finally, allowing interactions from biological nitrogen fixers or mycorrhizal associations, and 

their influence on carbon allocation within the plant, might allow for greater uptake of nutrients 

at a lower expense of root investment for plants. This has been proposed in the Fixation and 

Uptake of Nitrogen (FUN) model (Fisher et al., 2010). 

 

3.6 Conclusions 

 

 The new dynamic root model allows the dynamic allocation of fine roots to soil layers to 

reflect water and nitrogen needs while maintaining sufficient root distributions as compared with 

observations reported by Jackson et al. (1996) and Schenk and Jackson (2002a). The resulting 

changes in productivity favor increases in regions that are water limited, but not in regions with 

sufficient water during the active growing seasons. The model captures the shallow rooting depth 

of arid and polar ecosystems and improves the GPP agreement with observations but fails to 

produce the dimorphic root structure that allows plants in the dry season tropics to grow during 

the dry season. However, when a minimum water stress is included in the root module, the 

effective rooting depth increases, causing increases in transpiration and GPP for the dry season 
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tropics, but this dries out the soil column in desert regions. This result indicates that changes in 

precipitation regime can lead to shifts in rooting profiles. 

 

 The form and function of root systems is an important driver of aboveground 

productivity. Capturing the response of roots to heterogeneity of water and nutrients in the soil 

profile is critical to predict the carbon sink capacity of the terrestrial surface. I provide a new 

method for representing the changing distribution of roots in the ELM that includes interactions 

with both water and nitrogen, two of the most limiting resources in ecosystems. The approach 

allows root plasticity (i.e., shifts in biomass distribution) to changes in environment (i.e., water 

and nitrogen availability), and in most systems, results in small reductions in productivity, water, 

and nutrient uptake, while maintaining the observed distribution of roots over many different 

biomes. These modest changes in productivity help to reduce model bias of GPP in some 

ecosystems but fail in seasonally dry regions. The resulting behavior of the model sheds light on 

model processes regarding water and nitrogen uptake, providing incite on shortcomings of model 

representation and possible new avenues of research to improve vegetation response to resource 

limitations.  
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4 AN OPTIMIZATION APPROACH FOR DYNAMIC CARBON ALLOCATION IN 

THE E3SM LAND MODEL 

 

4.1 Introduction 

 

 Terrestrial photosynthesis (gross primary productivity; GPP) is responsible for taking up 

150-175 gigatons of CO2 from the atmosphere every year (Welp et al., 2011) with rates of GPP 

varying widely among ecosystem types (Beer et al., 2010).  As rates of GPP may have increased 

about 31% over the last century (Campbell et al., 2017), there is large potential for feedbacks 

from plant physiological response to influence future climate (Cao et al., 2009). Furthermore, the 

response of plants to environmental change can have implications on the carbon cycle, if the 

reported increases in GPP result in increases in net primary productivity (NPP; Nemani et al., 

2003) and biomass or soil carbon (C) storage (Ise et al., 2010; Matamala et al., 2003; Schmidt et 

al., 2011). Therefore, in order to understand the impact of future changes in GPP on climate, it is 

imperative to predict the partitioning of GPP into not only NPP and respiration (Delucia et al., 

2007; Hopkins et al., 2013) but also into plant biomass components (McNickle et al., 2016; Song 

et al., 2016). Currently, most Earth system models (ESMs) used to predict biosphere-atmosphere 

feedbacks do not allow for dynamic allocation of GPP into biomass for different plant tissues. 

     

 Earth system models use simplistic rule-based allocation to partition plant biomass 

between leaves, stems, and roots. However, studies show that actual partitioning of biomass is 

not so simple. Plants respond to resource availability with physiological plasticity. According to 

Optimal Partitioning Theory, plants allocate biomass to maximize the uptake of the most limiting 

resource (Bloom et al., 1985). For example, trees in the Amazon shifted investment away from 



 108 

maintenance to prioritize growth during drought (Doughty et al., 2015). In fact, changes in 

seasonal growth rate in the tropics are likely caused by shifts in allocation, rather than 

productivity (Doughty et al., 2014). Chen et al. (2013) found forests traded NPP allocated to 

roots for stem when nitrogen availability increased. But, when nitrogen stressed, plants will 

increase allocation to roots (Hermans, 2006). Kobe et al. (2010) also found increased allocation 

to roots when nitrogen was limiting, but suggested that additional resources were moving into 

non-structural carbon storage as well. This behavior suggests plants that have plasticity can 

optimize growth such that they maximize uptake of limiting resources. As such, the use of fixed 

allocation rules can lead to an overestimation in stem carbon, biomass and residence time, while 

underestimating leaf carbon and NPP (Song et al., 2016). This can have serious consequences for 

the carbon cycle, however, methods have been applied to dynamically allocate carbon in models 

to improve ESM models and their predictions.  

 

 For example, Xia et al. (2017) used the approach from Friedlingstein et al. (1999), to 

dynamically allocate biomass based on water, nitrogen and light limitation. Xia et al. (2017) 

showed that including dynamic allocation of C not only enhanced the carbon sink of the 

Community Atmosphere Biosphere Land Exchange (CABLE) model, but a long-term trend of 

increasing carbon sink was discovered. Another study by Montané et al. (2017) tested a dynamic 

allocation scheme that varied the ratio of coarse root:stem and stem:leaf carbon based on the 

annual NPP suggested by Litton et al (2007) in Community Land Model (CLM4.5). They noted 

that this method improved the leaf:stem ratio and reduced the overestimation of above-ground 

biomass (Montané et al., 2017). Alternatively, Gim et al. (2017) introduced a new allocation 

scaling scheme (based on Dickinson et al., 1998) in the Noah-MP model that increased the 
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allocation to leaves in the early growing season as a function of NPP. Although the model did 

improve GPP and ecosystem respiration (ER), the model did not include allocation response to 

the environment (Gim et al., 2017). The difficulty in adding a dynamic allocation of C to plant 

parts resides in the difficulty to parameterize models and the paucity of data to validate them.  

 

 Recently, a novel method for dynamic allocation was proposed by Lynch, 2015 using the 

Cobb-Douglas production function. The Cobb-Douglas production function is an economic 

approach of cost-benefit analysis to maximize production with multiple inputs (Cobb and 

Douglas, 1928). The method relies on the similarities between ecosystems and economics 

(Bloom et al., 1985). Economic frameworks have been used in ecological applications for root 

distribution (Lynch, 2015), storage (Chapin et al., 1990), and animal foraging behavior (Jorge et 

al., 2012), to name a few. In our model, carbon and nitrogen are analogous to the inputs, whereas 

the production output is plant biomass or net primary productivity (NPP).  

 

 We propose to incorporate this new method of dynamic allocation that uses a Cobb-

Douglas type production function to maximize NPP based on the benefit of carbon and nitrogen 

uptake against the cost of producing and maintaining biomass. The approach has been used to 

predict productivity, biome distribution, and plant response to resource limitations (McNickle et 

al., 2016). We anticipate that by allowing plants to dynamically allocate carbon, ESMs will 

improve plant response to resources, thereby allowing the model to more accurately capture 

GPP, NPP and thus, the carbon cycle. Our method is designed as a proof-of-concept to test the 

feasibility of such an approach in a state-of-the-art ESM. As such, we will consider two plant 

component pools (leaves and fine roots) and evaluate how the model distributes carbon across a 
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variety of ecosystems with different plant functional types (PFTs). We will compare the 

simulated GPP with observations to validate the results. Finally, we will conclude with 

suggestions for expanding the pilot study to a fully dynamic allocation scheme.   

 

4.2 Methods 

 

 The Energy Exascale Earth System Model (E3SM) is a fully coupled atmosphere, ocean, 

and land ESM developed by the U.S. Department of Energy (DOE). The E3SM is a branch from 

the Community Earth System Model (CESM) v1.2, and the land model of the E3SM (ELM) v0 

is similar to the Community Land Model v4.5 (CLM4.5). The ELM v1 is used in this study and 

has additional model developments, particularly in the biogeochemistry component of the model 

and also has a recently added dynamic root module (Drewniak et al., 2019). 

 

 In brief, ELM uses fixed carbon allocation ratios to assign new growth to different 

vegetation tissue components. These fixed allocation ratios are defined as new growth to: fine 

roots:leaf, coarse root:stem, stem:leaf and live wood:total wood. Although these tissue 

component ratios are fixed, they vary with plant functional type (PFT), with an exception of the 

stem component. In ELM, the stem:leaf ratio is a function of NPP such that allocation to stem 

increases under favorable growth environments (Oleson et al., 2013). For all woody plants PFTs 

represented in ELM, the fine root:leaf ratio is 1, whereas for the grasses fine roots:leaf ratio has a 

value of 2. 
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 The dynamic C allocation model incorporated here estimates the optimal fine root:leaf 

ratio using principles from the Cobb-Douglas production function as proposed in Lynch (2015). 

Instead of considering the whole plant, consisting of root (below ground) vs shoot (above 

ground), as in Lynch (2015) and Ågren and Franklin (2002), here we focus solely on the 

ephemeral tissues consisting of leaves and fine roots. We considered introducing dynamic 

allocation to these two tissue types because 1) leaves and roots are the two plant components in 

ELM fully responsible for taking up the C and nitrogen (N) resources, 2) we are introducing the 

Cobb-Douglas production function in ELM as a proof of concept, and 3) varying all the 

allometric ratios at once could result in non-convergence of the formula and/or result in difficult 

to explain model behavior. Here, we center modeling efforts on C and N resources, and do not 

separate the N species, nor do we consider phosphorus uptake differently in this model. We 

apply the same equations from Lynch (2015), but substituting the parameters from model output 

as detailed below. When parameters and processes were not included in the model, they were 

assumed from the Lynch (2015) study. 

 

 For the Cobb-Douglas production function, we assume that vegetation is maximizing 

productivity (NPP in this case). The function introduced recognizes that C acquisition requires N 

investment in leaves, and that N acquisition requires investment of C in roots. Therefore, we 

need to determine some optimum allocation of biomass such that the uptake of resources (i.e., C 

and N) are maximized given the costs associated with growth of plant tissues. Writing the uptake 

of C as πC and the uptake of N as πN, the Cobb-Douglas equation for productivity as a function of 

leaf (ul) and root biomass (ur) can be written as: 

𝑃(𝑢𝑙 , 𝑢𝑟) =  𝜋𝐶
𝛼𝜋𝑁

𝛽      (1) 
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The exponents 𝛼 and 𝛽 represent the relative demand of C and N, respectively. The relative 

demand 𝛼 and 𝛽 symbolize the plant stoichiometric ratio of C and N, and therefore, sum to one. 

Although observations suggest 𝛼 and 𝛽 can vary over time and space, we will consider them 

fixed in ELM. This is because the C:N ratios for the plant components are held fixed in ELM, 

although they do vary with PFT and with plant component (i.e., leaves, roots, stems, etc.). The 

uptake of C can be written as (harvest functions): 

𝜋𝐶 = 𝐻𝐶(𝑢𝑙) − 𝑐𝐶(𝑢𝑙) − 𝑐𝐶(𝑢𝑟)      (2) 

and for N 

𝜋𝑁 = 𝐻𝑁(𝑢𝑟) − 𝑐𝑁(𝑢𝑙) − 𝑐𝑁(𝑢𝑟)      (3) 

where 𝐻𝐶 and 𝐻𝑁 stand for the uptake of carbon and nitrogen and 𝑐𝐶 and 𝑐𝑁 are the carbon and 

nitrogen cost associated with growing and maintaining above and below ground biomass, as a 

function of the leaf biomass (ul) and root biomass (ur). In order to keep the equation simple, and 

to ensure the law of diminishing returns is met, we assume the C and N uptake are of the form: 

𝐻𝐶 = 𝐺𝑃𝑃𝑝𝑜𝑡 ∗ (1 − 𝑒−(𝑢𝑙+𝑢𝑙∗𝑠𝑡𝑒𝑚_𝑙𝑒𝑎𝑓))    (4) 

and 

𝐻𝐶 = 𝑁𝑎𝑙𝑙𝑜𝑐𝑝𝑜𝑡 ∗ (1 − 𝑒−𝑢𝑟)     (5) 

where 𝐺𝑃𝑃𝑝𝑜𝑡 is the annual potential GPP (i.e., the GPP without N limitation) and 𝑁𝑎𝑙𝑙𝑜𝑐𝑝𝑜𝑡 is 

the potential N uptake (i.e., without any N competition from decomposition). Therefore, the 

uptake equations represent the maximum uptake without any constraints and are considered 

potential uptake rates. The C uptake in equation (4) also includes the stem component (for 

woody vegetation) as a function of leaf C (i.e., via the stem:leaf ratio (stem_leaf)). 
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 The cost functions (𝑐𝐶 and 𝑐𝑁) represent the maintenance costs and new growth costs of 

tissue for both C and N. They are written as: 

𝑐𝑐(𝑙) = 𝑢𝑙 ∗ (𝑚𝑟 + 𝑔𝑟) ∗ (1 + 𝑠𝑡𝑒𝑚_𝑙𝑒𝑎𝑓)    (6) 

and 

𝑐𝑐(𝑟) = 𝑢𝑟 ∗ (𝑚𝑟 + 𝑔𝑟) + 𝑢𝑙(𝑚𝑟 + 𝑔𝑟) ∗ 𝑠𝑡𝑒𝑚_𝑙𝑒𝑎𝑓 ∗ 𝑐𝑟𝑜𝑜𝑡_𝑠𝑡𝑒𝑚 (7) 

Similar to the harvest functions, cost functions include the C and N costs of the above- and 

below-ground plant components, specifically the stem and coarse roots for woody vegetation. 

They are written as a function of the leaf C in order to maintain only two unknown variables in 

the algorithm. Even though ELM only considers carbon costs of new tissue (i.e., 𝑐𝑁=0), we 

include nitrogen costs in this study. The N costs are assumed to be the same as the C costs 

weighted by the C:N ratio of the components already provided for each PFT in ELM.  

 

 This allows us to solve two equations with two unknowns, while still considering the 

whole plant (PFT) for the optimization. The first step of the optimization is done by taking the 

derivative of equation (1) with respect to leaf biomass and root biomass separately. Finally, they 

should satisfy: 

𝜕𝑃(𝑢𝑙,𝑢𝑟)

𝜕𝑢𝑙
=

𝜕𝑃(𝑢𝑙,𝑢𝑟)

𝜕𝑢𝑟
= 0      (8) 

The optimization is solved using the Newton-Raphson method with a finite difference 

approximation for the derivatives. The allocation parameters for fine root:leaf ratio is updated 

annually.  

 

 The impacts of this dynamic C allocation algorithm are shown in Figure 4.1. When the 

fine root:leaf ratio decreases, more carbon is allocated to leaves and less to roots. This has a 
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direct effect on photosynthesis by increasing the leaf area index (LAI). Increased LAI affects the 

stomatal conductance and the maximum rate of carboxylation (Vcmax), so overall 

photosynthesis and therefore GPP can be increased. Increases to stomatal conductance and 

Vcmax can also increase evapotranspiration (ET) decreasing soil moisture. Decreases in soil 

moisture content that lead to soil moisture stress, may lower stomatal conductance, Vcmax, and 

potentially the nitrogen available for uptake, all factors that can result in decreased GPP. When 

fine root:leaf ratio increases, more carbon is allocated to roots than leaves. The resulting lower 

LAI reduces GPP. The new dynamic root model, introduced by Drewniak (2019) allows roots to 

shift distribution such that water and nitrogen uptake can be optimized, but gives priority to plant 

water demands. This plasticity of rooting depth distribution under non-uniform profiles of water 

and nitrogen can help plants increase nutrient uptake by resolving the vertical structure of roots 

over time. Despite the new dynamic root allocation, N uptake is not generally increased because 

uptake is based on plant demand and not biomass. However, since root C:N ratios are less than 

leaves, the N demand can decrease, thereby lowering N limitation. It should be noted that since 

PFTs in ELM are modeled using the big-leaf approach, the optimization will be a team optimum, 

rather than an individual. Therefore, competition within a PFT is not considered, and the result is 

more representative of a monoculture, similar to a cropland. Future versions of the model should 

take this into account and include such competition. 
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Figure 4.1. Schematic of the interactions of changing the fine root:leaf ratio. 

 

 

 

 For our simulations, ELM was run offline in point mode at 31 FLUXNET2015 (Fluxnet, 

2016) sites (Table IX). Each site was run two times: once with the default model setup with fixed 

C allocation (CONTROL) and once with the Cobb-Douglas production function representing the 

dynamic C (and N) allocation (DCA). These sites encompass 12 of the 16 PFTs in ELM and 

cover a range of temperature and precipitation environments across 13 countries. From these, 

over one-third represent evergreen vegetation, over one-third are seasonal deciduous forests and 

the remaining six are stress deciduous phenology vegetation types. Many sites include multiple 

PFTs, indicated as MIX in Table IX, and for these cases the most dominant PFT types are 

shown. Each site is run independently using with atmospheric forcing local to that site as 
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provided by the Oak Ridge National Laboratory (D. Ricciuto, personal communication, February 

2, 2016; see Table IX). Therefore, the years simulated in the model will vary with site. 

Regardless, for each site the atmospheric forcing data was cycled to get a minimum of 250 years 

accelerated spin-up and then for a minimum of 200 years during the post spin-up to ensure each 

site was at equilibrium following the spin-up procedure as suggested by Koven et al. (2013) and 

D. Ricciuto (personal communication, February 2, 2016). Finally, each site was run from 1850 

until the end of the observation period (see Table IX) with transient land cover turned off and 

transient CO2 turned on. Phosphorus was also active in the model; however, phosphorus 

limitation only occurred at five sites (AU-Tum, BR-Sa1, RU-Cok, RU-Sam, and US-UMB) and 

the phosphorus limitation did not exceed N limitation at any site. The DCA model reached 

steady state in fine root:leaf ratio early in the simulations for all sites except for three grassland 

sites US-Tom, US-Var, and US-Wkg, where the fine root:leaf ratio continued to vary throughout 

the simulation. All analyses were done on the last years of the simulation that match those of the 

observed years in Table IX.
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Table IX. List of sites included in the simulations 

Site Longitude Latitude Elevation 

(m) 

Primary 

PFT* 

Years MAT 

(°C) 

MAP 

(mm) 

Fine Root: 

Leaf ratio 

Evergreen Phenology 
     

BE-Bra 4.5206 51.3092 16 ENFT (1) 1996-2013 9.8 750 0.60 

BE-Vie 5.9968 50.3055 450 ENFT (1) 1996-2014 7.8 1062 0.50 

CA-Gro -82.1556 48.2167 300 MIX (1/7) 2003-2014 1.3 831 0.79 

CZ-BK1 18.5384 49.5026 908 ENFT (1) 2000-2012 6.7 1316 0.56 

DE-Tha 13.5669 50.9636 380 ENFT (1) 1996-2014 8.2 843 0.51 

NL-Loo 5.744 52.1679 25 ENFT (1) 1996-2014 9.8 786 0.59 

US-Blo -120.6328 38.3953 1315 ENFT (1) 1997-2007 11.09 1226 1.13 

US-Syv -89.3477 46.242 540 MIX (1/7) 2001-2014 3.81 826 0.97 

FI-Hyy 24.2848 61.8474 181 ENFB (2) 1996-2014 3.8 709 1.78 

IT-Lav 11.2812 45.9553 1370 ENFB (2) 2003-2012 7.8 1291 2.18 

IT-Ren 11.4347 46.5878 1747 ENFB (2) 1998-2013 4.7 809 1.04 

BR-Sa1 -54.9589 -2.8567 88 MIX (4/6) 2002-2011 26.13 2075 0.98 

AU-Tum 148.152 -35.6557 1200 EBFT (5) 2001-2013 9.5 963 0.81 

Seasonal Deciduous Phenology 
     

DK-Sor 11.6458 55.4869 40 DBFT (7) 1996-2012 8.2 660 0.48 

FR-Pue 3.5958 43.7414 270 MIX (1/7) 2000-2013 13.5 3041 0.25 

IT-Ro2 11.9209 42.3903 224 DBFT (7) 2002-2012 15.15 876 0.55 

US-Ha1 -72.1715 42.5378 303 MIX (1/7) 1991-2012 6.62 1071 0.48 

US-Oho -83.8438 41.5545 230 DBFT (7) 2004-2013 10 849 0.21 

US-PFa -90.2723 45.9459 470 MIX (1/7) 1995-2014 4.33 823 0.35 

US-UMB -84.7138 45.5598 234 DBFT (7) 2000-2014 5.83 803 0.16 

US-Wcr -90.0799 45.8059 520 DBFT (7) 1999-2014 4.02 787 0.41 

DK-ZaH -20.5503 74.4732 38 BDST (11) 2000-2009 -9 211 0.48 

RU-Cok 147.883 70.6167 30 BDST (11) 2003-2013 -14.3 232 0.35 
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Site Longitude Latitude Elevation 

(m) 

Primary 

PFT* 

Years MAT 

(°C) 

MAP 

(mm) 

Fine Root: 

Leaf ratio 

AT-Neu 11.3175 47.1167 970 C3GA (12) 2002-2012 6.3 852 0.33 

RU-Sam 126.4958 72.3738 0 C3GA (12) 2002-2014 -11.9 101 0.32 

Stress Deciduous Phenology 
      

US-Los -89.9792 46.0826 480 BDSB (10) 2000-2014 4.08 828 0.51 

DE-Hai 10.452 51.0793 430 MIX (13/15) 2000-2012 8.3 720 0.35 

US-Ton -120.966 38.1159 -9 C3G (13) 2001-2014 15.8 559 0.34† 

US-Var -120.9507 38.4067 129 C3G (13) 2000-2014 15.8 559 0.44† 

US-Wkg -109.9419 31.7365 1531 C4G (14) 2004-2014 15.64 407 0.40† 

BE-Lon 4.7445 50.5522 165 CRO (15) 2004-2014 10 800 0.41 

 

* ENFT = Evergreen Needleleaf Temperate Forest, ENFB = Evergreen Needleleaf Boreal Forest, EBFT = Evergreen Broadleaf 

Temperate Forest, DBFT = Deciduous Broadleaf Temperate Forest, BDST = Broadleaf Deciduous Temperate Shrub, C3GA = C3 

Arctic Grass, BDSB = Broadleaf Deciduous Boreal Shrub, C3G = C3 Grass, C4G = C4 Grass, CRO = C3 Cropland (grass), Mix = a 

mixture of PFTs 

† indicates the average fine root:leaf ratio is reported



 119 

4.3 Results 

 

4.3.1 Fine Root:Leaf Ratio 

 

 The root:leaf ratio is mostly correlated with PFT (and by extension, phenology type).  For 

most sites, more biomass was allocated to leaves than roots, therefore keeping the fine root:leaf 

ratios below 1 (Table IX). Across all sites, the average root:leaf ratio was 0.62. 

 

 The highest simulated fine root:leaf ratio occurred for evergreen phenology PFTs, with 

an average of 0.96. Four sites had a fine root:leaf ratio greater than one. Of those, three sites (FI-

Hyy, IT-Lav, and IT-Ren) are needleleaf evergreen boreal forests. The other site, US-Blo is a 

needleleaf evergreen temperate forest. The site IT-Lav had the highest root:leaf ratio of 2.17. 

 

 By comparison, the lowest fine root:leaf ratios occurred for seasonal deciduous 

phenology PFTs, averaging 0.37. The minimum root:leaf ratio was 0.17 at the US-UMB site, a 

deciduous broadleaf temperate forest. Three of the lowest root:leaf ratios occurred at deciduous 

broadleaf temperate forest sites.  

 

  Finally, stress deciduous PFTs had an average fine root:leaf ratio of 0.41. Three of the 

grassland sites had a variable fine root:leaf ratio. The range over one atmospheric cycle was 

small, from 0.33-0.36, 0.41-0.48, 0.34-0.46 at the US-Tom, US-Var, and US-Wkg, respectively. 
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4.3.2 Gross Primary Productivity (GPP) 

 

 The DCA model increased GPP in most ecosystems (Figure 4.2), compared to 

CONTROL (i.e. fixed allocation), particularly in those with root:leaf ratios less than one. The 

largest increases in GPP occurred in the evergreen needleleaf temperate PFTs and the C3 

grasslands. However, reductions in GPP occurred in evergreen needleleaf boreal and evergreen 

broadleaf tropical PFTs. The largest increase in GPP did not correlate with the lowest root:leaf 

ratios as more biomass allocated to leaves did not always result in proportional increases in GPP.  

 

 

Figure 4.2. Simulated and observed mean annual GPP (kg C m-2 yr-1) for different PFTs. ENFT: 

Evergreen Needleleaf Forest (Temperate), ENFB: Evergreen Needleleaf Forest (Boreal), ENFTr: 

Evergreen Needleleaf Forest (Tropical), EBFT: Evergreen Broadleaf Forest (Temperate), DBFT: 

Deciduous Broadleaf Forest (Temperate), BDSB: Broadleaf Deciduous Shrub (Boreal), BDST: 

Broadleaf Deciduous Shrub (Temperate), C3GA: C3 Arctic Grass, C3G: C3 Grass, C4G: C4 

Grass.  
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 Model performance at evergreen sites was mixed, with some sites simulating increases in 

GPP from the DCA model and others simulating decreases compared with CONTROL. At eight 

of the evergreen phenology sites, the model simulated increased GPP compared with CONTROL 

(Figure 4.3, Figure 4.4-Figure 4.8, Appendix C, Figure 4.9, Appendix C, and Figure 4.10, 

Appendix C): BE-Bra, BE-Vie, CA-Gro, CZ-BK1, DE-Tha, NL-Loo, IT-Ren, and AU-Tum. 

These evergreen sites had fine root:leaf ratios less than one and are located in temperate zones, 

except for IT-Ren. IT-Ren had a fine root:leaf ratio of slightly greater than one (1.04) and is 

classified as a boreal forest site. The modeled increase in GPP between DCA and CONTROL 

ranged from 2.9% up to 23.9%. In general, the lower the fine root:leaf ratio, the higher the 

simulated increase in GPP. Also at these sites, with the exception of IT-Ren, the CONTROL 

model underestimated GPP compared with observations more so than the DCA model, so all 

changes in the fine root:leaf ratio from the DCA model resulted in improved model agreement 

with observations. 
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Figure 4.3. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

De-Tha (evergreen needleleaf phenology) site. 

 

 

 

 Five of the evergreen sites simulated decreased GPP with the DCA model compared with 

CONTROL. Three of the five sites had root:leaf ratios greater than one, although the other two 

evergreen sites that had root:leaf less than 1 had mixed vegetation, US-Syv (Figure 4.11, 

Appendix C) and BR-Sa1 (Figure 4.12, Appendix C). At these sites, one of the PFTs had a 

root:leaf ratio of less than one and one had a root:leaf ratio greater than one, resulting in the 

average root:leaf greater than 1. Therefore, at evergreen phenology sites, the decrease in GPP 
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coincides with root:leaf ratios greater than one. The strongest decrease was at IT-Lav (Figure 

4.13) and FI-Hyy (Figure 4.14, Appendix C) which coincided with the highest root:leaf ratios. 

The DCA simulated decreases in GPP were 41% and 27% greater than CONTROL at IT-Lav 

and FY-Hyy, respectively. The remaining three sites had small simulated decreases in GPP 

compared with CONTROL, ranging between 2.2% and 6.9%. At four of the sites where GPP is 

decreased in DCA, the model underestimates GPP compared with observations (Figure 4.11, 

Appendix C, Figure 4.13, and Figure 4.14-Figure 4.15, Appendix C), making DCA agreement 

with observations worse than CONTROL. At one site (BR-Sa1, Figure 4.12, Appendix C), the 

DCA and CONTROL model overestimates GPP.  
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Figure 4.13. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

IT-Lav (evergreen needleleaf phenology) site. 

 

 

 Most of the seasonal deciduous sites simulated increases in GPP estimates. However, the 

smallest modeled increases in GPP occurred at sites with broadleaf deciduous temperate 

vegetation types, despite having some of the lowest root:leaf ratios (Figure 4.16 and Figure 4.17-

Figure 4.26, Appendix C). All of the broadleaf deciduous forest sites had simulated increases in 

GPP ranging between 3.8%-9.7%, most were close to 5%. Many of these sites have improved 

agreement with observations since CONTROL underestimates GPP more so than the DCA 

model (i.e., sites DK-Sor, US-Ha1, US-Oho, US-FPa, US-UMB, US-WCr, AT-Nue), and 

therefore the DCA model performed better than the CONTROL. However, there are a few sites 
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where both the CONTROL and the DCA model overestimate GPP (i.e., FR-Pue, DK-Zah, RU-

Cok, and RU-Sam). The strongest increase in GPP was at sites RU-Cok and RU-Sam, a 

deciduous shrub and arctic grassland in boreal regions. However, these sites overestimated GPP 

compared with observations (Figure 4.24 and Figure 4.26, Appendix C, respectively) so GPP 

estimates were worse than CONTROL by about 60%. 

 

 

 

  

Figure 4.16. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-UMB (seasonal deciduous phenology) site. 
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 One seasonal deciduous site had a decrease in GPP, a deciduous broadleaf temperate 

forest. This site (IT-Ro2) had a root:leaf ratio less than one (Figure 4.27), and an increased 

allocation to leaves resulted in GPP estimates lower than that of the CONTROL. Here the DCA 

model compared slightly worse than CONTROL in simulated GPP versus observed GPP.  

 

 

Figure 4.27. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

IT-Ro2 (broadleaf deciduous phenology) site. 
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 The stress deciduous sites all had an overall increase in GPP (Figure 4.28 and Figure 

4.29-Figure 4.33, Appendix C). However, in two of the grassland sites (US-Var and US-Wkg), 

the GPP did not increase compared with CONTROL for all years. Some years, the DCA model 

simulated increases in GPP compared with CONTROL, and other years a decrease was 

simulated. Figure 4.28 shows an example of the variability at the US-Var site. In US-Wkg 

(Figure 4.32, Appendix C), the GPP seems anticorrelated with observations and the CONTROL 

model performed better. Over all sites, simulated increases in GPP ranged between 11-27%. The 

stress deciduous shrub at site US-Los had an increase in GPP, but since the model tends to 

overestimate GPP at this site (Figure 4.29, Appendix C), overall performance was degraded by 

the DCA model. 
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Figure 4.28. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Var (stress deciduous phenology) site. 

 

 

4.3.3 Model Agreement with Observations 

 

4.3.3.1 Gross Primary Productivity 

 

 The largest model improvement was for the standard deviation (SD) (Figure 4.34), as the 

DCA model matches observed variability more closely than the CONTROL model. The 

evergreen sites showed the largest improvements in SD. In particular, evergreen sites that had 



 129 

fine root:leaf ratios of less than 1 and modeled increases in GPP also have improved SD with 

observations compared with CONTROL (i.e., BE-Bra, Be-Vie, CA-Gro, CZ-BK1, DE-Tha, NL-

Loo, and AU-Tum). However, the correlation with observations was worse for the DCA model 

than CONTROL for these sites. The remaining evergreen sites in the DCA had worse SD 

agreement with observations than the CONTROL (i.e., US-Blo, US-Syv, FI-Hyy, IT-Lav, IT-

Ren, and BR-Sa1). These sites also had simulated fine root:leaf ratios of greater than one and 

where DCA simulated GPP generally decreased. Most of the difference was small, with the 

exception of two sites, FI-Hyy and IT-Lav, where the highest fine root:leaf ratios occurred and 

where the largest decrease in GPP occurred in DCA. However, a few sites did increase 

correlation with observations compared with control (US-Blo, FI-Hyy, IT-Lav, and BR-Sa1). 
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Figure 4.34. Taylor diagram for GPP, broken down by phenology. Top left shows evergreen 

sites, top right shows seasonal deciduous sites, and bottom shows stress deciduous sites. Sites 

that do not appear on the plot indicate the variance is very large. 
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 Some of the seasonal deciduous sites experienced improvements in SD agreement with 

observations (Figure 4.34; i.e., DK-Sor, US-Ha1, US-Oho, US-UMB, and AT-Nue). Most of the 

improvements were small. The remaining sites had worse SD agreement with observations with 

DCA compared with CONTROL (FR-Pue, IT-Ro2, US-PFa, US-Wcr, DK-Zah, RU-Cok, and 

RU-Sam). The largest change in SD occurs at sites RU-Cok, and RU-Sam. Not surprisingly, 

these are also sites where the largest overestimation of GPP occurs for the DCA model compared 

with observations (Figure 4.24 and Figure 4.26, Appendix C). Only three sites had improved 

correlation with the DCA model, FR-Pue, AT-Neu, and RU-Sam. All changes in correlation 

were small, regardless of sign. 

 

 The stress deciduous sites also saw mostly improved variance agreement (Figure 4.34), 

with the exception of the C4 site (US-Wkg) and the broadleaf shrub site (US-Los). The largest 

improvements in SD were for US-Ton and US-Var. Only two sites also saw improvements in 

correlation with the DCA model compared with CONTROL, US-Ton, and US-Var, but these 

were also small. 

 

4.3.1.2 Net Ecosystem Exchange 

 

 Given the tight coupling of the carbon and nitrogen cycling in the model, we expect that 

the changes in NEE would match the changes in GPP, and indeed, the patterns are quite similar. 

The largest model improvement was for the standard deviation (SD) (Figure 4.35).  
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Figure 4.35. Taylor diagram for NEE, broken down by phenology. Top left shows evergreen 

sites, top right shows seasonal deciduous sites, and bottom shows stress deciduous sites. Sites 

that do not appear on the plot indicate the variance is very large. 

 

 

 Most of the largest improvements to SD between DCA and observations compared with 

CONTROL were at evergreen sites (BE-Bra, BE-Vie, CZ-BK1, DE-Tha, NL-Loo, IT-Ren, and 
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AU-Tum). The site NL-Loo also had improved correlation with observations with the DCA 

compared with CONTROL. There were several evergreen sites where DCA SD was worse 

compared with CONTROL (i.e., CA-Gro, US-Blo, US-Syv, FI-Hyy, IT-Lav, and BR-Sa1). 

However, three of those sites (US-Blo, FI-Hyy, and IT-Lav) had improved correlations.  

 

 A few of the seasonal deciduous sites did see improvement with SD agreement with 

observations, (US-Ha1, US-Oho, and US-UMB), but the remaining sites had worse agreement 

(Figure 4.35). These changes in SD agreement were smallest compared with other phenology 

sites, except for the shrub and arctic grasslands, which have some of the largest changes in SD 

between DCA and CONTROL. Only two sites also saw increases in correlation, FR-Pue and AT-

Neu. 

 

 The stress deciduous sites in general have better SD agreement with observations with 

DCA than CONTROL. The largest improvements were at the C3 grass sites (US-Ton and US-

Var). However, the C4 site (US-Wkg) and the broadleaf shrub site (US-Los) showed worse SD 

agreement with observations using the DCA model compared with CONTROL. Two sites also 

had improved correlation with observations using the DCA model, DE-Hai, and US-Var. 

 

4.4 Discussion 

 

 Allowing plants to dynamically allocate C and N based on resource growth demands in 

ELM has resulted in fine root:leaf ratios that vary with site (Table IX). The resulting shift in 

plant biomass is reflected in changes in LAI (Table IX), and has implications for the ecosystem 
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C cycle. The response of vegetation is dependent on the phenology of the PFT(s). DCA 

improved agreement with observations at some sites when compared to the current model, but 

not everywhere. The resulting root:leaf ratios of the DCA simulation indicate vegetation are 

responding to resource limitations in order to maximize NPP. The success of this proof of 

concept demonstrates the importance of dynamic carbon allocation and highlights additional 

nutrient and water uptake processes that would benefit both the ELM and the dynamic carbon 

allocation model.  

 

 The patterns of fine root:leaf ratio simulated by DCA show a clear relationship with 

phenology type. The highest fine root:leaf ratios are simulated at the evergreen phenology sites. 

Since the dynamic allocation model is driven by the most limiting resource, high fine root:leaf 

ratios indicate the limiting resource is N, because more C is directed to fine roots. In ELM, 

evergreen phenology has the slowest nutrient cycling, which could result in less N availability. 

For example, the leaf and root turnover (i.e., the lifetime of a leaf or root) is highest (3.5 years) at 

the needleleaf evergreen boreal forests and second highest (1.5 years) at the needleleaf evergreen 

temperate forests. In addition, in ELM, the stoichiometry requirements of C:N in evergreen 

leaves is higher than other PFTs, requiring less N. The slowness of the biomass (i.e. leaves and 

roots) entering the litter pool and the lower N inputs from the higher C:N ratios could result in an 

N limited environment for plant growth. Therefore, lower N availability drives higher fine 

root:leaf ratios in evergreen PFTs. 

 

 On the contrary, seasonal deciduous sites have much lower fine root:leaf ratios, 

suggesting a C limited environment. Seasonal deciduous vegetation in ELM has a faster nutrient 
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cycle than evergreen plants. For example, the active growing season is limited by day length and 

thus leaf turnover is short (1 year). In addition, the stoichiometry of deciduous leaves has a lower 

C:N ratio requirement, requiring more N. The faster rate of inputs with higher N amounts could 

result in higher N availability at seasonal deciduous sites. Therefore, C would be the stronger 

limiting nutrient at these sites and result in lower fine root:leaf ratios.  

 

 Finally, stress deciduous sites also have low fine root:leaf ratios, suggesting a C limited 

environment. Grasses have the fastest nutrient cycle of all PFTs in ELM, especially since grasses 

don’t have a woody component. Woody material decomposes slowly due to its high C:N ratio. 

Therefore, decomposing stem and coarse roots immobilizes some nitrogen in the decomposition 

process for trees and shrubs. Strong variability in the soil nitrogen mineralization pool (not 

shown) is evidence of the high turnover at grass sites. When available nitrogen is highest, DCA 

responds with lower root:leaf ratios, when available nitrogen drops, the root:leaf ratio increases. 

The differences in nutrient turnover drive the patterns of root:leaf ratio produced by the DCA 

model.  

 

 Despite the importance of nutrient turnover on biomass allocation in the model, tissue 

turnover rate in models is largely inconsistent (De Kauwe et al, 2014). Studies of root turnover 

found that different orders of roots had residence times of months to years (Lynch et al., 2013; 

Liu et al., 2015). Others showed that root turnover, even in elevated CO2 environments, had root 

turnover of years to decades (Matamala et al., 2003). De Kauwe et al. (2014) found that wood 

turnover did increase in elevated CO2. The process of root and biomass turnover times should be 
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addressed in future model development since it will have an important role in how carbon is 

allocated and stored in ESMs. 

 

 Nearly all the sites (evergreen, seasonal deciduous and stress deciduous) that had a 

root:leaf ratio less than one had simulated increases in GPP. The increased LAI caused by 

increased allocation to the leaf compartment in the DCA simulation resulted in increased GPP 

(Figure 4.1 and Figure 4.2). The increased GPP in the dynamic carbon allocation model shows 

that the default configuration in ELM does not optimize GPP, but has the potential to increase 

GPP by replacing the strict C allometric rules with a more flexible C partitioning method. Our 

test of the method on a small set of grid cells was sufficient to determine trends from the 

different PFTs, and shows promise that this method of dynamic carbon allocation can be applied 

to an ESM. Furthermore, the vegetation plasticity response in the dynamic carbon allocation 

model shows that ELM can increase the terrestrial carbon sink capacity. 

 

 Sites with the lowest root:leaf ratios did not necessarily have  large increases in GPP. The 

largest annual increase in GPP (not shown) compared with CONTROL occurred at evergreen 

sites, despite having the lowest fine leaf:root ratios in DCA. In fact, increases in GPP at 

deciduous sites were half to one-quarter of those simulated in evergreen sites. The difference in 

GPP response can be attributed to several factors. First, evergreen PFTs have a longer growing 

season, so they can continue to accumulate GPP when seasonal deciduous trees are dormant. In 

addition, evergreen PFTs have a higher Vcmax parameter in ELM than broadleaf PFTs, which, 

along with increases in LAI, can increase photosynthesis (Figure 4.1). Finally, it is possible that 

the deciduous vegetation are self-shading, resulting in smaller increases in GPP as the 
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diminishing return is approached for increases in LAI. Therefore, smaller changes in fine 

root:leaf ratio will have a stronger impact on evergreen than deciduous PFTs. 

 

 Evergreen sites that had root:leaf ratios greater than one had simulated decreases in GPP 

compared with CONTROL. Decreased LAI from decreased leaf allocation resulted in decreased 

GPP. To understand this behavior, one must consider how nitrogen uptake is simulated by ELM. 

Increases in root biomass do not translate to increases in nitrogen uptake, since nitrogen uptake is 

simulated based on its availability and not root biomass or area. Future versions of the model 

should correct this behavior such that nutrient uptake is increased as root biomass/area increases. 

The lower LAI, therefore, plays a stronger role driving a decrease in GPP. Therefore, at nitrogen 

limited sites, when more carbon is allocated to the root than the leaf, GPP is not optimized by the 

DCA model. 

 

 There is one site with low root:leaf ratios but had a decrease in GPP, IT-Ro2. Despite 

having a root:leaf ratio less than one, GPP decreased. This site is located in a Mediterranean 

climate with high temperature and low, seasonal rainfall. The simulated increase to LAI can 

increase transpiration, reducing soil moisture and causing water stress (see Figure 4.1). The 

resulting decrease in water use efficiency downregulated GPP. This is a known problem in 

modeling seasonally dry ecosystems (Drewniak et al., 2019). One solution would be to shift the 

water uptake to be a weighted function of water availability such that shallow roots can extract 

water during the wet season and deep roots will continue to function during the dry season (De 

Kauwe et al., 2015). Other studies have suggested using hydraulic redistribution to improve 

water uptake (Tang et al., 2015). Finally, improvements to the root parameterizations and 
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stomatal conductance model could help improve the soil water extracted from different depths 

(Bouda and Saiers, 2017). Soil moisture plays a strong role mediating GPP in dry season sites, 

but increasing water availability should improve the performance of the dynamic carbon 

allocation model. 

 

 While the DCA improves the standard deviation of GPP and NEE compared with 

observations (Figure 4.34 and Figure 4.35), other metrics such as correlation with observations 

were largely unchanged. This could be an indicator that the model misses the timing of onset and 

offset of the active growing period. The lack of correlation could also be an artifact of noise in 

the data (both observed and modeled). In fact, the simulated GPP at most sites is underestimated 

by the model, even with the new DCA model. However, the DCA model seems to have a 

stronger peak in GPP, which would contribute more to improve the variance than the correlation 

of the existing CONTROL model. Further testing is warranted with a full Cobb-Douglas 

dynamic carbon allocation model and at sites with biomass partitioning data for comparison. 

 

 The DCA model optimizes NPP by altering only one variable, the fine root:leaf ratio. 

However, we did not include in the production function the other components of biomass, 

including live wood and coarse roots, or storage, which are fixed. These long-lived biomass 

pools do not provide additional carbon or nitrogen uptake benefit in the model, but, they do 

provide structural support and contribute to the overall carbon storage, growth and maintenance 

respiration (costs) of the plant. Furthermore, it was argued by Wolf et al. (2011) that the wood 

component of the stem is more important than the foliage for allocation dynamics. In fact, under 

elevated CO2, allocation to stem increased in ecosystems (De Kauwe et al., 2014), which could 
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have serious consequences for the carbon storage capacity of forests given the longer lifetimes of 

stem compared with leaves and roots. However, longer growing seasons and fertilization reduce 

the density of wood (Petzsch et al., 2018), which may counter some of the effect on carbon 

sequestration. Regardless, dynamic allocation will have a stronger impact on long term carbon 

fluxes than short term carbon fluxes (Montane et al., 2017). The dynamic carbon allocation 

model should be expanded to include all parts of the plant, not just those that are responsible for 

carbon and nitrogen uptake. In addition, other nutrients should be considered by the dynamic 

carbon allocation model. ELM has both nitrate and ammonium species of nitrogen and 

phosphorus. The dynamic carbon allocation model is flexible enough to include these additional 

species and should be expanded. 

 

4.5 Conclusion 

 

 The Cobb-Douglas dynamic carbon allocation model shows promise for including a 

dynamic approach to carbon partitioning in ESMs. DCA simulated fine root:leaf ratios are 

correlated with nutrient cycling. At most sites tested, the DCA model increased GPP. The DCA 

method was not as effective increasing GPP in evergreen ecosystems when nitrogen was the 

limiting resource or in dry season deciduous ecosystems which can suffer from decreased WUE. 

This failure was largely the result of missing processes in the model, such as nitrogen uptake 

based on root biomass. The effect of DCA was mixed in grasslands. In the future, the Cobb-

Douglas algorithm should consider woody tissue (stem and coarse roots) and grain (for crops). In 

addition, phosphorus nutrients and distinguishing the nitrogen species of nitrate and ammonium 

should be included the Cobb-Douglas equation.  
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5 MODELING THE IMPACT OF AGRICULTURAL LAND USE AND 

MANAGEMENT ON U.S. CARBON BUDGETS 

 

This chapter was previously published as Drewniak, B. A., Mishra, U., Song, J., Prell, J., and 

Kotamarthi, V. R. 2015. Modeling the impact of agricultural land use and management on US 

carbon budgets. Biogeosciences, 12, 2119-2129, https://doi.org/10.5194/bg-12-2119-2015. 

 

5.1 Introduction 

 

 Bioenergy crops are promoted as a renewable energy source capable of improving energy 

security and mitigating greenhouse gas (GHG) emissions from fossil fuels. These crops are 

considered environmentally friendly and economically competitive, because CO2 emitted by 

biofuel combustion is partially balanced by atmospheric uptake through photosynthesis (Hughes 

et al., 2010). The Renewable Fuel Standard of the U.S. Energy Independence and Security Act 

(EISA 2007) sets a national target of producing 136 billion liters of renewable fuels by 2022. Of 

this, at least 61 billion liters is expected to come from cellulosic ethanol (U.S. Environmental 

Protection Agency, 2010). Though maize grain and sugarcane are currently the major global 

sources for bioethanol production, maize production in the United States is not sufficient to meet 

the renewable fuel targets. Furthermore, recent studies suggest that production of ethanol from 

maize grain might in fact increase GHG emissions because of changes in land use (Searchinger 

et al., 2008; Kim et al., 2009; Melillo et al., 2009). For these reasons, cellulosic biofuels 

produced from cellulose and hemicellulose plant biomass are considered a viable alternative to 

conventional crop-based biofuels.  
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 Cellulosic biofuels can be made from perennial feedstocks or from residues of annual 

cropping and forestry activities, thereby reducing or eliminating the need for additional 

agricultural land. The use of crop residues for bioethanol production shows promise for fulfilling 

U.S. renewable fuel goals, but more research is needed on the effects on soil organic carbon 

(SOC) of crop residue removal from croplands (Mishra et al., 2013) and net GHG balance 

(McKone et al., 2011). Furthermore, crop residues play a crucial role in sustainability and 

resilience of agroecosystems (Karlen et al., 2009). Therefore, to understand the environmental 

consequences of using crop residues for bioenergy production on large spatial scales, it is 

essential to know the impacts on the SOC pool of differential rates of crop residue removal and 

nitrogenous fertilizer applications. 

 

 Crop residue is responsible for maintaining soil moisture, returning carbon and other 

nutrients to soil, and erosion mitigation; in general, it provides a sustainable environment for 

cultivation activities (Lal, 2009). Without residue cover, wind and water erosion will increase 

(Van Pelt et al., 2013). Long-term residue harvest results in loss of yields and productivity by 

decreasing the nutrient content of soils (Blanco-Canqui and Lal, 2009a). These arguments 

demonstrate that using crop residues as a bioenergy fuel resource could have detrimental impacts 

on agroecosystems (Blanco-Canqui and Lal, 2009a). 

 

 Globally, soils store more carbon than the atmosphere and biosphere combined, acting 

both as a source and sink of atmospheric CO2 (IPCC, 2013). However, cultivation loss of SOC 

ranges from 50% to70% (Lal and Bruce, 1999). Over the U.S. Midwest, land conversion led to a 

25-50% reduction of soil carbon (Houghton et al., 1999; Lal, 2002). The result is large carbon 
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payback times, ranging from a few years to several centuries (Fargione et al., 2008; Gibbs et al., 

2008; Searchinger et al., 2008). On the other hand, conversion from cultivation to native 

grasslands, such as through enrollment in the Conservation Reserve Program, resulted in 

increased soil carbon (Anderson-Teixeira et al., 2009; Pineiro et al., 2009). Therefore, it is 

critical to evaluate the impact of agricultural land use and management on regional carbon 

budgets. 

 

 The influence of agriculture on the carbon cycle is complex; carbon capture and storage 

in croplands are dependent on management practices, including tillage, fertilizer applications, 

residue management, and crop sequence (West and Post, 2002; Hooker et al., 2005; Dou and 

Hons, 2006; Huggins et al., 2007; Khan et al., 2007; Kim et al., 2009). SOC stocks and fluxes at 

a particular location are soil and site specific and reflect the long-term balance between organic 

matter inputs from vegetation and losses due to decomposition, erosion, and leaching. Some 

studies have attempted to quantify carbon sequestration from mitigation strategies such as no-till 

or conservation tillage practices, residue management, use of cover crops, and restoration and 

reserve actions (Conant et al., 2001; West and Post, 2002). These studies showed that as farming 

techniques are improved to maximize yield and minimize disturbance, SOC can be maintained 

and perhaps even increased over time.  

 

 However, the effect of altered management on agricultural soil’s ability to store or emit 

carbon is unresolved, largely as a result of conflicting evidence. For example, some studies on 

the effects of nitrogen fertilizer indicated a decrease in SOC caused by increased decomposition 

(Khan et al., 2007; Russell et al., 2009), while others reported an increase in SOC from increased 
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biomass returned to the soil after harvest (Jung and Lal, 2011; Halvorson et al., 1999; Wilts et 

al., 2004). SOC increases when crop residue is returned to the land (Buyanovsky and Wagner, 

1998; Wilhelm et al, 2004; van Groenigen et al., 2011), but residue can also increase 

decomposition in warm, moist areas (Johnson et al., 2005). Perhaps the disagreement is the result 

of the large variability and uncertainty of field measurements, which make developing 

conclusions difficult (Karlen et al., 2011). For example, Smith et al. (2012) found no differences 

between the residue-returned and residue-harvested treatments, and in some cases the residue-

harvested sites had increased SOC. Thorburn et al. (2012) also found no consensus regarding 

residue harvest and SOC response. Nonetheless, most studies found a loss of SOC with residue 

harvesting. Although the variability of SOC measurements can be attributed to any number of 

effects — including topography (Senthilkumar et al., 2009b), SOC baseline (Senthilkumar et al., 

2009a), aggregate protection (Ananyeva et al., 2013), and even depth (Kravchenko and 

Robertson, 2011; Syswerda et al., 2011) — it is generally agreed that if crop residue is used as 

feedstock for biofuels, additional carbon losses can occur (Karlen et al., 2011).  

 

 Soil organic carbon losses can be mitigated through recommended management 

practices, but studies disagree on the limits of harvestable crop residue to maintain SOC levels in 

soils. Estimates of harvestable non-grain biomass range from 13% (Tan et al., 2012) to 50% 

(Blanco-Canqui and Lal, 2009a), with an average of about 25%, although that might require 

stabilization of SOC (Tan et al., 2012). These estimates consider erosion, soil productivity, 

maintaining SOC, surface crusting, porosity, aggregate breakdown, compaction, and soil 

temperature, but the wide range in estimated biomass available for harvest leaves questions 

regarding the sustainability of cellulosic ethanol. However, because the rate of SOC loss tends to 
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increase with increased biomass harvest (Lemke et al., 2010), harvesting small amounts of 

residue for biofuel might be feasible. 

 

 Modeling studies can supplement observational data and explore possible differences in 

SOC by investigating idealized cases. A benefit is that the wide study area can be extended to 

regional or global scales without resorting to geospatial methods of interpolating sparse data. In 

this study, we evaluated the influence of cultivation on SOC by using the agriculture version of 

the Community Land Model (CLM), CLM-Crop (Drewniak et al., 2013). Our analysis includes 

impacts of changes in land use and also in management practices, such as crop residue harvesting 

and fertilizer application. A description of the model and the simulations performed is presented 

in Sect. 2, followed by results and a discussion in Sect. 3 and Sect. 4, respectively.  

 

5.2 Methods 

 

5.2.1 CLM-Crop model description 

 

 CLM-Crop, the agriculture version of CLM, includes representations of maize, spring 

wheat, and soybean crop types with fully coupled carbon-nitrogen cycling (Drewniak et al., 

2013). The variation of carbon and nitrogen allocation to plant components with the growth 

phase of crop development is based on the dynamic vegetation model Agro-IBIS (Kucharik and 

Brye, 2003). The growth phases are defined as planting, emergence, grain fill, and harvest. Plant 

date and growth period are determined from the Crop Calendar Dataset (Sacks et al., 2010), and 
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each phase is reached according to a phenological heat unit (PHU) method (see Drewniak et al., 

2013).  

 

 Several processes governing nitrogen cycling are included in CLM-Crop to represent 

nitrogen retranslocation, fertilization, and nitrogen fixation in soybean. Nitrogen retranslocation 

occurs during the grain fill growth phase, when nitrogen in the leaves and stem are mobilized to 

meet organ demands. Fertilizer is applied during the emergence phase for 20 days at constant 

rates of 150 kg/ha for maize, 80 kg/ha for spring wheat, and 25 kg/ha for soybean. The 20-day 

fertilization period is designed to optimize nitrogen usage and reduce loss of excess nitrogen 

through denitrification. Soybean nitrogen fixation allows soybean crops to behave as legumes 

fixing additional nitrogen through roots — a treatment similar to that of the SWAT model 

(Neitsch et al., 2005). 

 

 Harvest occurs as soon as maturity is reached. Grain is removed from the system to 

represent the consumption of that plant component. The remaining stems and leaves are 

considered residue and are split into litter and product pools. Litter is returned to the soil through 

the decomposition process, while product is removed with the grain for uses such as biofuels, 

animal bedding, etc. The amount of residue returned as litter can be varied for different 

scenarios. High returns represent sustainable agriculture practices to maintain soil fertility, and 

low returns are indicative of high cellulosic biofuel usage.  

 

5.2.2 Input data 
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 CLM-Crop requires two types of input: climate data and surface data. The climate data 

from the National Center for Environmental Protection reanalysis for 1948-2004 (Kalnay et al., 

1996) include temperature, wind speed, humidity, precipitation, solar radiation, and surface 

pressure at 3-hr intervals. Because the spin-up of the model requires over 600 yr of simulation, 

we cycled through the reanalysis data to reach a steady state (Thornton and Rosenbloom, 2005).  

 

 Surface data sets assign the proportion of each land type and plant functional type in a 

grid cell; crops are grown separately from natural vegetation to eliminate competition for 

resources. Natural vegetation prescribed from Bonan et al. (2002) includes a generic crop area. 

Crop distribution for 1992 from Leff et al. (2004) is used to construct maize, wheat, and soybean 

coverage from the total generic crop area. Because the wheat coverage includes both spring and 

winter wheat, we model winter wheat as spring wheat in CLM-Crop. Some crop areas 

overestimated as double cropping in the data set might result in a crop area being counted twice.  

 

 In addition to land use, the surface data include the planting dates and growth period of 

each crop type from the Crop Calendar Dataset (Sacks et al., 2010). Planting date is the average 

day of year when planting occurs, aggregated from 0.5° resolution to 2.8° for CLM-Crop. In 

regions where data are not available, Sacks et al. (2010) used nearest-neighbor extrapolation to 

infer planting date. Growth period is calculated in Sacks et al. (2010) as the average number of 

PHUs between the average planting date and the average harvest date for the 30-yr Climatic 

Research Unit data set (New et al., 1999). 
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5.2.3 Simulations 

 

 CLM-Crop was run at a resolution of 2.8° × 2.8° by using the spin-up procedure in 

Thornton and Rosenbloom (2005). During spin-up, only natural vegetation was active, and 

croplands were simulated as grass until a steady SOC state was reached. At the end of the spin-

up, the land use was converted to include agriculture, representative of the early 1990’s land use 

maps from Leff et al. (2004). CLM does not have a dynamic vegetation capability when crops 

are active, so land use/land cover is held constant for the remaining simulations. Several case 

studies were designed and run to evaluate the influence of management practices on SOC (Table 

X). Each case study was run for a total of 171 years (three complete cycles of the 1948-2004 

data) at an hourly time step to represent the most intense cultivation period in North America 

(Ramankutty and Foley, 1999). However, we consider only the last 57 yr of simulation for 

analysis with averaged data. The control simulation, representing current fertilizer and 

management practices over North America, is compared to an extension of the spin-up, with 

crops represented as grass. Additional experiments compared the impact on soil carbon from four 

agricultural practices (high, medium, and low residue levels and zero fertilizer) with our control 

simulation. 
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Table X. CLM-Crop simulations performed. 

Run name Land use Fertilizer Residue 

Control Leff et al., 2004 Yes 70% — all crops 

High residue Leff et al., 2004 Yes 90% — all crops 

Medium residue Leff et al., 2004 Yes 30% — maize 

30% — wheat 

40% — soybean  

Low residue Leff  et al., 2004 Yes 10% — all crops 

No fertilizer Leff  et al., 2004 No 70% — all crops 

Grass Bonan  et al., 2002 Not applicable Not applicable 

 

 

 

 To investigate the effects of land use changes on SOC, different residue management 

practices, and varied fertilizer application, the results from six scenarios were analyzed (Table 

X). First, conventional crop management (control run, 70% residue) is compared with crops 

simulated as grass (grass run). Second, effects of high (90%), medium (30-40%), and low (10%) 

residue are compared with values for the control run. Third, the effect of no fertilizer application 

(with 70% residue) is evaluated by comparison with the control run. 

 

5.3 Results 

 

5.3.1 Soil organic carbon 

 

 Simulated SOC values from the control run range from < 2 kg C m-2 in the Southwest to 

> 20 kg C m-2 in the northern United States (Figure 5.1). Average SOC values are lower in crop 

ecosystems than in natural vegetation systems because of biomass removal and other land 

management. The total stored SOC over all land surface types in the United States, as calculated 
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by CLM-Crop, is 84 Pg C, which falls within the range of previous estimates of 78-85 Pg C 

(Kern, 1994). CLM-Crop-simulated SOC for agriculture sites over the contiguous United States 

(CONUS) has a pattern similar to that of total SOC, with higher SOC in the northern part of the 

country and lower SOC in the southern regions.  

 

 

Figure 5.1. (a) Total SOC (kg C m-2) simulated by CLM-Crop over the contiguous United States. 

(b) Total SOC from the IGBP over the same domain as in (a). (c) Percent difference between (a) 

and (b). 
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 The general spatial pattern of the model-calculated SOC over CONUS is evaluated by 

using available spatially gridded data sets of SOC. The data developed by the global soil carbon 

International Geosphere-Biosphere Program (IGBP; Global Soil Data Task Group, 2000) for 

CONUS are summarized in Figure 5.1b. The SOC pattern and magnitude are similar to the 

model-calculated values (Figure 5.1a). The differences between the model-calculated SOC and 

the IGBP data set are shown in Figure 5.1c. In most regions, the percent difference between the 

data set and the model simulation is < 5%. Areas with higher percent differences are in boreal 

regions, where CLM tends to underestimate soil carbon (Koven et al., 2013).  

 

 Figure 5.1 includes both managed and natural lands. To evaluate the model-simulated 

SOC over agricultural lands, we selected self-identified measurements of SOC from agricultural 

lands available from the International Soil Carbon Network (ISCN; 2014). This data set has over 

4,000 unique SOC measurements to 1-m depth from croplands over CONUS. Although CLM 

soil depth (3.8 m) is deeper than the observations (1 m), since nearly two-thirds of SOC is found 

within the top 1 m (Jobbagy and Jackson, 2000), the bulk of the soil carbon is still captured in 

the observations. Because the ISCN data were collected over a wide variety of soils, at different 

points in the crop cycle and different times since the change in land used, variability is large, and 

the number of outliers from the median of the sample is significant. The plot in Figure 5.2 shows 

the range of values with significant occurrences in the upper quartile and above the 90th 

percentile of the distribution. We filtered out outliers with SOC measurements > 50 kg C m-2 in 

this figure only to improve readability of the graph, since only a small portion (2.5%) of the 

measured values were higher than 50 kg C m-2 and SOC in agriculture lands is typically less than 

50 kg C (Kern et al., 1994; Mishra et al., 2010). The model results for the grid cells identified as 
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cropland are included in Figure 5.2. The model results have a smaller range than the ISCN data, 

as would be expected for SOC values extracted at the end of the simulation period and post-

harvest. In addition, the SOC in the model is less variable because of the larger grid cells with 

uniform soil type. Nevertheless, the median SOC values simulated by CLM-Crop fall within 

range of the middle 50% of the ISCN measurements (Figure 5.2), and thus the simulated values 

are comparable, on average, with the observations. In order to compensate for the mismatch of 

soil depth, we added an additional 36% of SOC to the observed stocks (to account for the ~1/3 

carbon between 2-3 m soil depth; Jobbagy and Jackson, 2000). The resulting increase in 

observed SOC (not shown) caused median CLM-Crop SOC stocks to fall outside the 50 

percentile of the observations, but the top 75 percentile of CLM SOC still fall within the 

observed range. 
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Figure 5.2. Box plot of the weighted average total SOC over croplands, as simulated in CLM-

Crop and in observations from the ISCN. Observations reporting > 50 kg C m-2 were removed 

from the analysis. 

 

 

 In a further evaluation of the model’s performance over agricultural lands, we completed 

a site-by-site comparison of modeled SOC to observed SOC. We applied a filter to separate soil 

over the modeling domain into three types (clay, sand, and silt), to examine the model behavior 

against the different textures. Figure 5.3 plots simulation results versus observations of SOC for 

values selected as described above. Each point indicates the mean observational SOC stock at the 
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model grid scale with the standard deviation. The plot indicates that although the model does 

tend to underestimate soil carbon over croplands, CLM does reasonably well at catching a wide 

range of SOC values at agricultural sites for all soil textures. The model does not capture the 

individual site observations well (RMSE = 13.1 kg C m-2; R2 = 0.016), due to the high spatial 

variability. CLM tends to simulate high SOC in sandy soils, low SOC for silt soils, and clay SOC 

in between, however the soil texture is determined from the model data and therefore may not 

accurately represent the soil texture of the observations. This result is encouraging, in view of 

difficulties in comparing CLM-Crop-simulated SOC with observations at agriculture sites. First, 

the large grid size used in the model simulation cannot resolve the small-scale variability 

between farm-scale measurements, which are apparent from the large standard deviation in 

observations. Second, the model is run with static management for long time periods and cannot 

capture changes in management or land use over long temporal and large spatial resolutions 

while observations are taken over various time frames with vastly different land use history. 

Finally, measurements are 1 m depth, and CLM-Crop estimates SOC for the total soil column (> 

300 cm). When we attempt to adjust the observed SOC to include carbon at deeper soil layers 

(by adding ~1/3 more carbon as in Figure 5.2), RMSE increases to 18.8 kg C m-2, although R2 

did not change. Despite these challenges, CLM can capture the range of SOC present at many 

agriculture sites and in many cases CLM SOC estimates fall within the standard deviation of the 

observations. 
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Figure 5.3. CLM-modeled SOC (kg C m-2) versus ISCN observations for model derived soil 

texture types clay, sand, and silt. Each point represents the mean observed SOC value in the grid 

cell; error bars show the standard deviation. The black line represents the 1:1 ratio.  

 

 

 

 In order to explore the model performance further, we examined the effect of climate 

variability on SOC stocks. CLM SOC stocks decrease with increasing mean annual temperature 

and total annual precipitation (Figure 5.4), which is also supported by observations. Higher 

temperatures and soil moisture generally result in higher below ground activity and therefore 

faster turnover of soil carbon (Wei et al., 2014). Natural vegetation follows the same temperature 
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trends, but regions with higher annual precipitation indicate higher SOC stock. This is possibly 

the result of increased productivity when precipitation is high, however the variability in natural 

vegetation is quite large making conclusions difficult. 
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Figure 5.4. The effects of temperature (top) and precipitation (bottom) on SOC stock from CLM 

crops (blue) and natural vegetation (green) and ISCN observations (red).  
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 Finally, we also consider the ability of the model to capture temporal changes in SOC 

from land use conversion. Percent SOC loss since conversion from forest to agriculture, as 

summarized in Wei et al. (2014), is plotted in Figure 5.5 over temporal periods ranging from 1-

207 years with a subset (500 points) of CLM SOC percent loss taken from random grids and 

time periods. Although CLM does not simulate the rapid loss of SOC that occurs in some field 

observations, by the end of the simulation, CLM does capture the range of SOC loss as seen in 

observations. Initial lower SOC stocks likely cause the initial modest decline in SOC simulated 

by the model, since SOC loss increases with increasing initial SOC concentration (Wei et al., 

2014). This result highlights CLMs ability to capture changes in SOC over long time periods. 
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Figure 5.5. Percent decrease of SOC after conversion from natural vegetation to cropland. 

Percent decrease data from Wei et al. (2014) are in red (US points are orange) and CLM percent 

loss is blue. 
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5.3.2 CLM-Crop-simulated changes in soil carbon  

 

 Most grid cells lost between 3% and 45% of total SOC, averaged across the grid cell. The 

amount of SOC lost was correlated with the size of the agriculture land base; higher agriculture 

land use resulted in larger SOC loss. Individual crop soil columns indicate high losses of SOC, 

up to a maximum of 75% of total SOC, although average soil loss is 33-51%. Total loss also 

varied with crop type; maize and wheat lost about 10% less SOC than soybean. This is 

understandable, given the low residue of soybean crops, although this result varied with location. 

For example, total simulated SOC loss over maize and soybean soil columns at the Bondville site 

in Illinois was 48%. At the Mead, Nebraska, site, losses of SOC for maize and soybean columns 

were approximately 44% and 52%, respectively.  

 

 While these site-level SOC losses are comparable with observations (Lal, 2004), 

comparison with the SOC values in the control simulation might be exaggerated as a result of the 

subgrid hierarchy, because the accumulated SOC estimated by the grass simulation was 

influenced by all vegetation types in the soil column, while the soil column in the control 

simulation only included one crop type. In addition, Ramankutty and Foley (1999) showed that 

most early croplands from the late 1800s were formed through deforestation and later prairie 

removal. This implies that our estimation might be exaggerated, because grassland ecosystems 

can hold more carbon than forests (Schlesinger, 1997). Overall, a 10% loss in total SOC over the 

United States between the control run and the grass run accounts for a nationwide carbon loss of 

more than 8 Pg (Figure 5.6).  
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Figure 5.6. Simulated change in total U.S. SOC (Pg C) due to agricultural land management for 

all scenarios.  

 

 

 Residue management can have the largest impact on soil carbon. Increasing the residue 

left on the field to 90% results in a 2.6% increase of SOC, but allowing a 10% residue amount 

(as a potential result of increased cellulosic biofuel demand) leaves an SOC decrease of over 

5.7%. The difference between these two scenarios is over 7 Pg C, almost the same amount as the 

total carbon loss due to agricultural land use. Interestingly, we found no notable differences 

between crop responses. Even a more modest decrease in the residue returned to the field (30-

40%) results in a 3.5% loss of SOC compared to the control simulation. Increasing the residue 
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harvest will increase the amount of SOC loss (Anderson-Teixeira et al., 2009; Blanco-Canqui 

and Lal, 2009b). Harvesting residue results in the loss of not only soil carbon, but also soil 

fertility, indicated by declining yields (Figure 5.7). This implies that increased residue harvest for 

cellulose might result in expansion of croplands to counter yield declines. 

 

 

Figure 5.7. The effect of agricultural land management change on crop annual average nitrogen 

uptake. 
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 Eliminating fertilizer use showed the biggest impact on yields and SOC, simulating over 

6% loss (Figure 5.6). Globally, decreases in yields of roughly 60-70% occurred for maize and 

wheat, but soybeans, relying less on fertilizer inputs, suffered a 22% decrease in yields. The 

different response between plant types was large: individual maize and wheat soil columns lost 

an average of 63% SOC, whereas soybean only lost 11%. Despite low yields, leaving 70% 

residue allowed carbon inputs to maintain nearly the same SOC level as in the run with low 

residue return. This indicates a critical role for fertilization in soil carbon storage, without which 

an additional 5 Pg C might be lost due to cultivation. The observed result is not surprising, as 

fertilizer contributes to the total biomass accumulated during crop development, and increased 

biomass returned as residue will allow the soil to retain some of the nutrients taken up during 

crop growth, improving the soil fertility.  

 

5.4 Discussion 

 

 CLM-Crop has proven to be a valuable tool for evaluating changes in soil carbon under 

various management practices. Our results indicate that the SOC for agricultural sites will be 

reduced through any management practice while disturbance continues, with the total amount 

lost depending on the management practice. Model-estimated U.S. losses of SOC due to current 

cultivation practices are around 10%, with a potential for greater loss as the amount of harvested 

residue increases. 

 

 The amount of biomass residue left on the field after grain harvest has the most 

significant effect on SOC. Cellulosic biofuels rely on harvesting the stems and leaves of crops, 
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resulting in an additional 5% loss of carbon within the soil system. Currently, model subgrids 

growing a single crop type on an independent soil column typically lose 33-51% of SOC, and 

that loss increases to nearly 90% when residue is harvested. Over long time scales, this effect can 

degrade the sustainability of the soil for crop growth and can negatively affect yield. For 

example, plant nitrogen uptake (Figure 5.8) decreased linearly with increasing residue harvest. 

The high residue returns uptake 7.4% more N than the current residue runs, whereas medium and 

low residue returns have 6.6% and 15.6% lower N uptake, respectively. When fertilizer is not 

included, the resulting N uptake is 57% lower. This impact is transferred to yields (Figure 5.7) 

resulting in 9% and 17% lower yields for the medium and low residue returns, respectively. 

Thus, the effects of residue management on SOC are very important, and increasing the amount 

of residue used for cellulosic ethanol production could have a significant impact on soil carbon 

storage and ultimately plant productivity. Leaving plant residue from crop production in the soil 

decreases the amount of carbon lost to the atmosphere. However, meeting cellulosic biofuel 

demand through cultivation of managed grasses such as switchgrass and Miscanthus has been 

shown to increase soil carbon storage over time (Anderson-Teixeira et al., 2009), most likely 

because nutrient demands and management practices are different for these types of biofuel 

crops. 
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Figure 5.8. The effect of agricultural land management change on annual crop yield. 

 

 

 

 Disagreement between studies about the possible effect of fertilizer on SOC leaves this 

management practice open for further research. Our findings suggest that fertilizer use might 

improve yield and increase the amount of carbon returned to the soil in crop residue; however, 

increased residue removal for biofuels could reduce this effect. As fertilizers improve and are 

applied to maximize plant uptake while minimizing loss to leaching and denitrification, fertilizer 

might provide an important tool for farmers to mitigate the soil carbon loss due to increasing 

residue harvest for biofuel use. However, care must be taken to ensure that fertilizer inputs do 
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not exceed plant uptake, which could result in increased nitrogen leached into the groundwater 

and increased greenhouse gas emission of N2O via nitrification and denitrification pathways. The 

effect of increased decomposition when fertilizer is used also needs to be explored.  

 

 Expanding the model to incorporate other management practices (rotation, tillage, 

irrigation, etc.) is important activity for future model development. Erosion, for example, is 

expected to increase as a result of crop residue harvest (Lal and Pimentel, 2007). This secondary 

effect of residue harvest can have multiple consequences. First, soil fertility will decline with the 

loss or transport of soil organic matter. Second, erosion processes result in the breakdown of soil 

aggregates promoting oxidation of SOC. Both effects will reduce nutrient and water holding 

capacities of the soil (Lal and Pimentel 2008). Finally, the loss of nutrients will result in a 

decline of crop productivity, further enhancing SOC loss. As such, our result should be 

considered a lower bound estimate of SOC loss from residue harvest. Including these effects and 

expanding agricultural models to a global scale should be a priority for future model 

development. Given the challenges comparing with observations, focusing on model 

developments that capture cropland SOC dynamics is equally important as developing datasets 

that can be used for climate model validation, especially considering the increasing complexity 

of ESMs that include cropland representation. Although the crop representation in CLM-Crop is 

flexible enough for expansion to a global scale, rigorous testing is needed to ensure that crop 

behavior is consistent with regional observations. 

 

 There are some limitations to our modeling approach that lead to uncertainties in the 

model prediction of SOC. For example, changes in land use and land cover are not included in 
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CLM. Historical changes in land use indicate a steady increase in cultivated land which peaked 

in the 1940’s and declined thereafter (Waisanen and Bliss, 2002). Using a modern land use cover 

over the historical period may result in an over prediction of SOC loss, because the model will 

overestimate the agricultural land base in some (early) years and the model won’t capture 

increases in SOC when agriculture land is abandoned. This also limits the influence of beneficial 

agriculture practices such as crop rotation and fallowing. Historical changes in land management 

are also not represented in the model, such as changes in residue harvest over time or organic 

matter additions. For example, Lal et al. (1999) suggest early cultivation removed residue 

following harvest until after 1940 when residue was returned to the field. The high spatial 

variability and difficulty finding these types of historical data is a major challenge for trying to 

add these features to CLM.  

 

 Finally, further research is needed for full evaluation of the importance of agro-

ecosystem impacts on soil carbon. We have shown here that SOC loss can vary greatly, 

depending on management practices. Practices such as residue management can have significant 

impact on SOC retained in agricultural soils, with higher residue removal from soil leading to 

higher SOC losses. Use of fertilizer can compensate for some of the loss, but the benefit is 

limited. Further modeling studies are important for simulating these competing effects on carbon 

storage. Our study suggests that considerable care is needed in designing appropriate 

management practices to realize the full carbon mitigation benefits of using biofuels from 

cellulosic ethanol. 
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6 CONCLUSION 

 

 Climate change is expected to have a significant influence on temperature, the hydrology 

cycle, extreme events, and sea level rise. The primary driver behind the evolution of land surface 

models (LSMs) is to capture the interactions between the land and the atmosphere, but LSMs 

also need to predict changes in vegetation dynamics as a response to climate change. These 

feedbacks are drivers of climate and are the target of much of the model development work being 

done today. In order to estimate the full influence of climate on the earth and energy systems, we 

must include the appropriate ecosystem responses that have significant feedbacks to the energy 

and carbon cycle. This premise of this thesis is land representation in earth system models falls 

short of being able to accurately predict Earth’s future under climate change. To that extent, I 

have identified a limited set of areas that can be targets for improvement, all of which influence 

the carbon cycle. Some of these improvements have been tested in two Earth System Land 

Models, the Energy Exascale Earth System Land Model (ELM), the newest of climate models 

available to the community, and the Community Earth System Land Model (CLM). The work to 

update the LSMs is the first step to a stronger understanding of the biosphere-climate system and 

will enhance our ability to predict future climate impacts.  

 

 I identified in Chapter 2 several processes that are missing in LSMs that are necessary to 

capture ecosystem response to multiple co-occurring stressors. Some of the model development 

can be thought of as near-term targets such as a more flexible framework for representing the 

allocation and storage of vegetation carbon through better carbon-nitrogen coupling, dynamic 

allocation, and dynamic roots. Other development suggestions can be considered long-term work 

such as succession, competition, and trait-based modeling. Regardless, all the activities will 
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impact how vegetation grow and respond to environmental factors with potential for influencing 

the carbon storage capacity of the land surface. 

 

 Addressing two of the suggested developments, dynamic roots and dynamic allocation 

revealed additional work to be done. Although the changes did impact the productivity of 

vegetation in the model, the changes were incremental, and the response indicated that the water 

and nitrogen uptake are still areas of model development that need attention. Particularly, 

allowing variable water and nitrogen uptake (this could include phosphorus too), with depth and 

time, could benefit the model greatly and improve performance in those tricky spots (for 

example the dry season Amazon). These studies also highlighted the importance of integrating 

water and biogeochemistry. Despite the tight coupling of water and biogeochemistry, current 

research seems to be considering each independently. They need to be addressed together to 

really impact model performance and improve predictability.  

 

 The most significant impact came from adding agricultural land management to the 

model. This is not surprising, but it should be alarming in the sense that we are modifying the 

land without any regard for the consequences. Even more important is the role that humans have 

played to modify the land through management, land use and land cover change, and the 

subsequent effects on carbon storage and turnover of those activities. Humans have turned lush 

forests and prairies into farmland, covered wetlands with impervious asphalt and concrete, 

withdrawn freshwater for irrigation and drinking, changed the course of rivers, created and 

destroyed lakes, and fragmented ecosystems through logging, farming, and urban buildup. All 

these activities have an influence on the carbon cycle, which was highlighted in Chapter 5 in the 
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change in SOC from agriculture alone, reinforcing the notion that land matters. Our decisions 

and actions are the biggest player of uncertainty and they are not being accounted for in most 

ESMs. 

 

 One major limitation of this work is the coupling between the atmosphere and land is not 

addressed. I began in the introduction describing the importance of the land in the climate system 

and yet, I have not turned on the atmosphere in any of the results presented in this thesis. One 

argument for this is that the model needs to be tested offline before coupling to the atmosphere 

as a test of validity. Another argument is the results are revealing in how they stand without 

coupling the atmosphere. Both of these arguments are compelling, but, the feedbacks between 

the land and atmosphere are critical to test before the results are to be believed. It is unlikely that 

the dynamic roots and carbon allocation would change significantly when coupled to the 

atmosphere. But human land management is likely to have strong interactions with the 

atmosphere. 

 

 Adding to the complexity of this work is the issue of scale. Land processes occur across a 

variety of spatial and temporal scales. At the resolution of the current ESMs, only some 

processes can be represented. Others are included empirically or not at all, either because they 

are believed to be less important to model at the coarse ESM resolution or because they are 

difficult to observe or impossible to parameterize. Our efforts to bridge across scales are limited. 

One solution is to couple models of different resolutions (i.e. site model with a regional or global 

model). But these couplings are generally problematic, as they require models of different 

languages to communicate effectively. This can lead to a loss of information along the way. 
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Another method is to scale up point or regional models to global resolutions (or vice versa by 

scaling down global models to field scale). In the former, additional data is required that is often 

not available or difficult to validate across large areas. In the latter, models are still missing 

processes that are important to capture small scale or temporal events. As such, there is a push in 

the modeling community to develop scale-aware parameterizations that adjust according to 

resolution. In the meantime, models are tuned separately for coarse and fine resolutions. 

Observations play a key role in this effort, by highlighting not only the processes that are 

important, but at which scales they become so.   

 

 One final thought is while this thesis has added a few important model processes into 

LSMs, there are many more, several identified in the results of the studies included here. 

However, one question remains: are these model improvements significant enough to justify 

increasing complexity at the expense of a parsimonious model? Each addition comes with more 

degrees of freedom, extra parameters to tune, increased likelihood of non-convergence, and the 

possibility of the model becoming unwieldy both to understand and to untangle. On the other 

hand, each new process added to ESMs give users an opportunity to explore interactions that 

might not be possible in a lab or in a field. We increase the resolution of the model and begin to 

resolve finer scale processes. Should all these new processes be added permanently to ESMs – 

certainly not. But the advances in supercomputing allow modelers to be more bold and 

adventurous in exploring the earth system. The experiences also provide a chance for modelers 

and empiricists to share experiences so models and observations can inform each other. The 

importance of data to drive the design of model development, as well as provide a means to 

verify and validate model results, cannot be understated. 
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 In short, the brief presence of modern humans on the earth has had significant 

consequences. We need to understand how our actions have shaped the climate and perhaps 

minimize our impact as we shape the next phase of the Earth’s life cycle. Earth system models 

are one tool we have to further that understanding. These models will continue to evolve as we 

learn more from observations with the hope that they will help inform our decisions. After all, 

our actions related to land matters demonstrate how much land matters. 
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7 APPENDICES 

A. Supplementary Material for Chapter 2 

 

 

Table I. Summary of previous studies that have investigated nitrogen deposition, drought, and the interactions of ecosystems. 

Nitrogen Deposition 

Ecosystem PFT Region Study Type Nitrogen Treatment Finding Reference 

NA NA Global Overview NA N limited ecosystems have stronger growth 

responses to N deposition, and N 

mineralization and leaching rates increase. 

Diversity changes usually result from N 

deposition. 

Matson et al., 

2002 

Acer saccharum BDT Michigan, 

USA 

N fertilization 

study 

30 kg NO3
- ha-1 yr-1 Observed increases in photosynthesis, woody 

carbon, and soil carbon; no change in leaf mass 

or area was found. 

Pregitzer et 

al., 2008 

Acer saccharum, 

Fagus 

grandifolia, and 

Picea rubens 

BDT Maine, USA N fertilization 

study 

25.2 kg NH4 ha-1 yr-1 Foliar N increased with increasing N 

deposition. 

Elvir et al., 

2005 

Fagus 

grandifolia, Acer 

saccharum, and 

Betula 

alleghaniensis 

BDT North Carolina 

and Virginia, 

USA 

N deposition 

gradient study 

9–15 kg N ha-1 yr-1 N deposition caused increase in foliar N in all 

species and an increase in basal area in sugar 

maple. 

Boggs et al., 

2005 

Calluna vulgaris 
 

Europe N deposition 

gradient study 

1–15 kg N ha-1 yr-1 Foliar N increased with increasing N 

deposition. 

Pitcairn et al., 

2001 

73 forest sites 

including 

evergreen 

needleleaf, 

evergreen 

broadleaf, 

deciduous 

broadleaf, and 

mixed forest 

NET, 

BET, 

BDT 

Global (mainly 

focused on N. 

America, 

Europe, and 

some S. 

America) 

Statistical 

analysis of 

FLUXNET 

data paired 

with estimates 

of N 

deposition 

0.5–30 kg N ha-1 yr-1 In general, the maximum rate of 

photosynthesis has a positive nonlinear 

correlation with N deposition for evergreen 

needleleaf forests, but no relationship in 

deciduous forests. A positive relationship 

between N deposition and foliar N exists, but 

not for all forests. Separating climate effects 

on carbon cycle is difficult. 

Fleischer et 

al., 2013 
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Nitrogen Deposition 

Ecosystem PFT Region Study Type Nitrogen Treatment Finding Reference 

Acer saccharum BDT Michigan, 

USA 

N deposition 

gradient study 

6.8–11.8 kg N ha-1 yr-1 

(mostly NO3
-) 

N fertilization increased foliar N, but did not 

stimulate photosynthesis, but nutrient 

deficiencies may have been present. Nitrogen 

Use Efficiency (NUE) alsodecreased at treated 

sites. 

Talhelm et al., 

2011 

Miscanthus C4 

Gras

s 

Illinois N fertilization 

study 

0 and 224 kg N ha-1 (form 

of urea) 

Productivity and yield increased as a result of 

higher canopy leaf area, but no effect on 

photosynthesis or photosynthetic capacity. 

Wang et al., 

2012a 

24 most common 

species in 

temperate forests 

NET, 

BET, 

BDT 

North-Central 

USA 

Forest 

inventory 

analysis 

3–11 kg N ha-1 yr-1 Nitrogen deposition caused enhanced growth 

in most species with mycorrhizal associations. 

Some had no response and a few had negative 

growth response. Species with 

ectomycorrhizal associations showed 

decreased survivorship. 

Thomas et al., 

2010 

Needleleaf, 

deciduous 

broadleaf, 

evergreen 

boradleaf 

NET, 

BET, 

BDT 

Boreal, 

temperate, and 

tropical 

Statistical 

analysis 

NA N addition leads to increased carbon uptake in 

wood. 

de Vries et al., 

2014 

All NA Global Meta-analysis low (<100 kg N ha-1) and 

high (>100 kg N ha-1) 

N enrichment resulted in increases in foliar N 

and biomass, more for herbaceous than woody 

species. The biomass increase effect decreased 

with increasing latitude and with decreasing 

precipitation. 

Xi and Wan, 

2008 

Acer saccharum BDT Great Lakes 

region 

N fertilization 

study 

30 kg NO3
- ha-1 yr-1 N deposition resulted in increased biomass in 

stems, increased maximum tree height, and 

increased growth rate and mortality of small 

individuals. 

Ibanez et al., 

2015 

Needleleaf 

boreal 

NET Northeast 

China 

3-year N 

enrichment 

experiment in 

an old growth 

forest 

low (20 kg N ha-1 yr-1) 

medium (50 kg N ha-1 yr-1) 

high (100 kg N ha-1 yr-1) 

Foliar N increased, woody biomass increased, 

and NPP increased. 

Du and Fang, 

2014 
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Nitrogen Deposition 

Ecosystem PFT Region Study Type Nitrogen Treatment Finding Reference 

Herbaceous 

(grasslands) 

C3 

and 

C4 

grass 

India N fertilization 

study 

60 kg N ha-1 yr-1 and  

120 kg N ha-1 yr-1 

 (form of urea) 

N deposition caused an increase in biomass 

and trait shifts leading to a reduction in N-

fixing species. 

Verma et al., 

2014 

Temperate mixed 

forest 

NET, 

BET, 

BDT 

New York, 

USA 

Survey 5-10 kg N ha-1 yr-1 Foliar N increased with increasing N 

deposition. 

McNeil et al., 

2007 

Drought 

Ecosystem PFT Region Study Type Water Treatment Finding Reference 

Temperate 

forests 

NET, 

BET, 

BDT 

United States Review NA Forest response to drought will likely include: 

reduction in NPP and water use, increase in 

mortality of small plants, and buildup of 

undecomposed material on forest floor. Deep-

rooted plants and those with substantial carbon 

reserves have higher chance of survival. 

Hanson and 

Weltzin et al., 

2000 

Rainforest NET, 

BET, 

BDT 

Amazon Synthesis NA Amazon forests are suceptable to water stress 

through carbon loss. 

Phillips et al., 

2009 

All All Global Review NA Drought reduces productivity and weakens 

carbon uptake, increases vulnerability to 

wildfire and mortality from both indirect and 

direct effects. 

He et al., 

2014 

Grasslands C3 

and 

C4 

grass 

Europe Greenhouse 

experiment 

with 9 species 

Watered to field capacity 

and watered only when 

leaves withered. 

Drought reduced biomass production and 

alloction to roots. Drought did not impact 

Specific Leaf Area (SLA). The impacts of 

droght varied with provenance. 

WeiBhuhn et 

al., 2011 

Pinus halepensis NET NA (seed 

source Mount 

Carmel, Isreal) 

Greenhouse 

experiment 

4 water treatments: 100% 

(350 mL/week/pot) and 

75%, 50%, and 25% 

Tree growth most sensitive to high drought, 

with increased biomass to roots and decreased 

biomass to stems. 

Klein et al., 

2011 

Quercus ilex NET Mediterranean Precipitation 

gradient and 

throughfall 

exclusion 

experiment 

Along gradient, 

precipitation increased 

twofold. Throughfall 

exclusion experiment 

experienced ambient and 

28% of annual 

precipitation. 

Leaf production and litterfall decreased with 

decreasing precipitation. Although root 

production also decreased, the ratio of root to 

leaf increased with lower water availability. 

An increasing stem area to leaf area ratio was 

found with decreasing precipitation, which 

disapeared after many years and suggests a 

long-term acclimation process. 

Martin-St. 

Paul et al., 

2013 

Drought 
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Ecosystem PFT Region Study Type Water Treatment Finding Reference 

Populus BDT Belgium Study over a 

dry season 

Dry spring resulted in 15–

25% less precipitation 

Dry season resulted in lower GPP and leaf 

growth. Increased WUE and root allocation 

during stomatal closure. 

Broeckx et al., 

2014 

C4 grasses 

Napier grass and 

Mulato II 

C4 

Gras

s 

Palmira, 

Columbia 

Greenhouse 

experiment 

Well watered and 

progressive drying over 21 

days 

Drought resulted in a 35% reduction in shoot 

mass for both grasses and a 20–50% reduction 

in root biomass. Napier grass sustained carbon 

assimilation longer, while Mulato conserved 

water with early stomatal closure. 

Cardoso et al., 

2015 

Tropical forest BET, 

BDT 

Eastern 

Amazon 

Throughfall 

exclusion 

experiment 

Two treatments: ambient 

and 50% reduction in 

precipitation 

No eveidnce found to support changes in 

carbon allocation or growth rate from drought, 

no depletion in carbon stores occured. Suggest 

hydraulics are the cause of mortality. 

Rowland et 

al., 2015 

Fagus sylvatica 

forest 

BDT Germany Precipitation 

gradient 

540–820 mm/yr Fine root biomass increases with decreasing 

precipitation, support optimal partitioning 

theory. 

Hertel et al., 

2013 

Aspalathus 

linearis (rooibos) 

BDS South Africa Greenhouse 

experiment 

Two treatments: weekly 

watering 100 ml distilled 

water and no water for 

6 weeks. 

Decrease in maximum photosynthetic rate and 

energy storage. Relative growth rate 

decreased, roots not affected but decline in 

shoot production. WUE and C/N increased. 

Lotter et al., 

2014 

Fagus sylvatica 

forest 

BDT Germany Precipitation 

gradient and 

contrasting 

precipitation 

years 

520–970 mm/yr; one year 

had 20% less precipitation 

and one year had 20% 

more precipitation than 

average 

Decrease in root biomass with decreasing 

precipitation. Carbon partitioning between 

root:leaf increased with increasing moisture. 

Suggest optimal partitioning is relative and not 

absolute, root turnover should be considered. 

Meier et al., 

2008 

Mediterranean 

shrubs 

BDS, 

BES 

Spain Greenhouse 

experiment 

Two water amounts: 

ambient (typical 

precipitation amounts) and 

30% reduction. 

More biomass was allocted to roots in water 

stressed plants. Frequency of water supply did 

not affect biomass allocation. Biomass was not 

affected by water supply or frequency. 

Pradilla et al., 

2009 

N and Drought 

Ecosystem PFT Region Study Type Water Treatment Finding Reference 

Perennial grass 

(Molinia 

caerulea) 

C3 

Gras

s 

Germany Fertilization/ 

drought 

greenhouse 

study 

N: 0 and 48 kg NH4NO3 

ha-1 yr-1 

W: 18% less water 

treatment 

N deposition caused increased evaporative 

demands and increased drought susceptibility. 

Grasses were unable to control N allocation 

during senescence. 

Friedrich et 

al., 2012 
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N and Drought 

Ecosystem PFT Region Study Type Water Treatment Finding Reference 

Shrub (Calluna 

vulgaris) 

BDS  NA Fertilization/ 

drought 

greenhouse 

study 

N: 0 and 48 kg NH4NO3 

ha-1 yr-1   

W: 12% less water 

treatment (30% less soil 

water content) 

N and drought treatment resulted in an 

increased biomass production, increased 

shoot:root ratios, and N content in biomass. 

Drought weakened the growth stimulation 

from the N treatment.  

Meyer-

Grünefeldt et 

al., 2013 

Shrub (Calluna 

vulgaris) 

BDS  Germany Fertilization/dr

ought 

greenhouse 

and field study 

N: 0, 35 kg NH4NO3 ha-1 

yr-1  

W: 25% reduction in 

growing season 

precipitation (35% less soil 

water content) 

Significant nitrogen drought interactions 

resulted in lower shoot-to-root ratios than 

expected from individual treatment. Drought 

susceptibility is dependent on plant age, since 

investement in above ground biomass is a 

priority during early development.  

Meyer-

Grünefeldt et 

al., 2015 

Deciduous 

woody tree (R. 

pseudoacacia) 

BDT NA Pot 

manipulation 

experiment 

with three 

water 

treatments and 

two N 

treatments. 

N: 0, 154 mg NH4NO3 kg-1 

dw soil 

W: water content of 70-

75%, 50-55%, and 30-35% 

of field capacity 

Positive effects (i.e., biomass accumulation 

leaf WUE) from N fertilization were reduced 

under severe drought, but did result in reduced 

transpiration water loss.   

Liu et al., 

2013 

Ash (temperate 

forest) 

BDT Northeast 

China 

Manipulation 

experiment 

looking at 

three water and 

nitrogen 

regimes 

N: 0, 100 kg NH4NO3 ha-1 

yr-1 

W: low (33% less), 

ambient, and high (33% 

increase) in precipitation 

Rubisco increased in leaves under low water 

and high N treatment, but had no impact on 

photosynthesis. However, N treatment 

weakened the reduced growth response caused 

by low water treatment. 

Wang et al., 

2012 

Picea abies NET Czech 

Republic 

N and drought 

experiment in 

two 12-year-

old stands 

N: 0, 100 kg NH4 ha-1 yr-1 

W: 60% precipitation 

reduction 

N and drought resulted in reduced stem 

biomass, needle length, and fine root biomass. 

The distribution of roots also occurred with 

fine roots in deeper soil layers. 

Palatova, 

2004 
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N and Drought 

Ecosystem PFT Region Study Type Water Treatment Finding Reference 

Desert plants 

Brassicaceae and 

Chenopodiaceae 

(Malcolmia 

africana and 

Brassia 

hyssopifolia) 

C3 

Gras

s or 

BDS 

China Nitrogen and 

drought pot 

experiment, 3 

levels of N 

treatment and 

3 levels of 

water 

treatment 

N: 0, 94, 370 kg N ha-1 yr-1 

W: 60–70%, 30–40%, and 

10–20% field capacity 

N increased root weight, leaf area, and total 

biomass, but less so in the drought treatment. 

Net photosynthetic rate and shoot:root ratio 

also increased. N deposition in this ecosystem 

may alleviate some water stress. 

Zhou et al., 

2011 

Pinus sylvestris NET Czech 

Republic 

Pot and 12-

year-old stand 

N and drought 

experiment 

N: 0 and 100 kg N ha-1 yr-1 

as NH4 

W: 60% of precipitation 

The combined N and drought effect was a 

reduced aboveground and root biomass in both 

the stand and pots. Mycorrhizal infection was 

also reduced. 

Palatova, 

2002 

Mongolian 

grassland 

C3 

and 

C4 

Gras

s 

Mongolia N fertilization 

study during 

drought and 

non-drought 

years in grazed 

and non-

grazed plots. 

N: 0, 3 kg N ha-1 yr-1, 15 

kg N ha-1 yr-1 as 

NH4NO3 

W: about 50% of 

precipitation during 

drought years 

Drought reduced above ground biomass 

dispite N addition. During non-drought years, 

high N addition significantly increased 

biomass. N addition increased recovery after 

drought. 

Kinugasa et 

al., 2012 

Jatropha curcas BES Brazil Greenhouse 

experiment 

with 4 N 

treatments and 

4 water 

treatments 

N: 0, 0.8, 1.7, and 2.5 

g/plant as NH4 

W: 40%, 60%, 80%, 100% 

of plant available water 

Drought reduced the effects of N (i.e., 

increased stem basal area and plant height and 

leaf area growth). 

Albuquerque 

et al., 2013 

Larrea tridentata BES Desert 

ecosystem 

Two 

treatments of 

N and soil 

moisture 

N: 0 and 40 kg N ha-1 yr-1  

W: 7% (w/w) and 15% 

(w/w) moisture content 

Leaf biomass was lower under water stress, but 

water content did not affect root-to-shoot ratio. 

N availability did not seem to have an impact 

on C uptake. 

Verburg et al., 

2014 
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B. Supplementary Material for Chapter 3 

 

 

Figure 3.5. Global map of condensed Köppen-Geiger Climate Classification zones based on Peel 

et al. (2007). Original data downloaded from ORNL DAAC (2017). 
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Figure 3.6. Soil layer depth (m) above which (a) 50% and (b) 95% of root biomass exist for the 

DYNROOT simulation.  
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Figure 3.7. Difference in soil layer depth (m) above which (a) 50% and (b) 95% of root biomass 

exist between DYNROOT and CONTROL (shown as DYNROOT – CONTROL). 
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Figure 3.10. Cumulative root fraction averaged different vegetation types in ELM for 

DYNROOT (blue line), CONTROL (black line), and Jackson et al., 1996 (red line). The 

vegetation types included are (a) Boreal forest; (b) grassland; (c) arctic grass; (d) temperature 

evergreen forest; (e) tropical evergreen forest; (f) temperate deciduous forest; (g) tropical 

deciduous forest; and (h) crops. The PFT(s) in each ecosystem are denoted by a letter 

combination which represent: NET: needleleaf evergreen tree; NDT: needleleaf deciduous tree, 

BDT: broadleaf deciduous tree; BET: broadleaf evergreen tree. 



 192 

 

Figure 3.14. Difference between DYNROOT-50W and CONTROL of (a) gross primary 

productivity (g C m-2 year-1); (b) total ecosystem carbon (kg C/m2); (c) transpiration (mm/year); 

and (d) nitrogen uptake (g N m-2 year-1). 
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Figure 3.15. Difference between DYNROOT-90W and CONTROL of (a) gross primary 

productivity (g C m-2 year-1); (b) total ecosystem carbon (kg C/m2); (c) transpiration (mm/year); 

and (d) nitrogen uptake (g N m-2 year-1). 
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Figure 3.18. Climate zone averaged volumetric soil water (mm3 mm-3) with soil depth for 

DYNROOT (blue line), CONTROL (red line), DYNROOT_50W (black line) and 

DYNROOT_90W (orange line). Average D95 for each climate zone is shown in dashed lines for 

DYNROOT (blue dashed line), CONTROL (red dashed line) and DYNROOT_50W (black 

dashed line). 
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C. Supplementary Material for Chapter 4 

 

 

 

 

Figure 4.4. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

BE-Bra site.  
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Figure 4.5. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

BE-Vie site.  
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Figure 4.6. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

CA-Gro site.  
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Figure 4.7. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

CZ-BK1 site.  
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Figure 4.8. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

NL-Loo site. 
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Figure 4.9. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

IT-Ren site. 
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Figure 4.10. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

AU-Tum site. 
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Figure 4.11. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Syv site.  
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Figure 4.12. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

BR-Sa1 site. 
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Figure 4.14. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

FI-Hyy site. 
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Figure 4.15. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Blo site. 
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Figure 4.17. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

DK-Sor site.  
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Figure 4.18. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

FR-Pue site. 
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Figure 4.19. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Ha1 site.  
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Figure 4.20. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Oho site. 
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Figure 4.21. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-PFa site. 
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Figure 4.22. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Wcr site.  

  



 212 

 

 

Figure 4.23. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

DK-Zah site. 
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Figure 4.24. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

RU-Cok site. 
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Figure 4.25. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

AT-Nue site. 
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Figure 4.26. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

RU-Sam site. 
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Figure 4.29. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Los site. 
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Figure 4.30. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

DE-Hai site. 
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Figure 4.31. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Ton site. 
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Figure 4.32. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

US-Wkg site. 
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Figure 4.33. GPP of DCA (red line), CONTROL (blue line), and observations (black dots) at the 

BE-Lon site. 
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This is an open access article distributed under the Creative Commons Attribution License which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original 

work is properly cited (CC BY 4.0). 

 

Until 2008, most articles published by MDPI contained the note: "© year by MDPI 

(http://www.mdpi.org). Reproduction is permitted for noncommercial purposes". During 2008, 

MDPI journals started to publish articles under the Creative Commons Attribution License  and 

are now using the latest version of the CC BY license, which grants authors the most extensive 

rights. All articles published by MDPI before and during 2008 should now be considered as 

having been released under the post-2008 Creative Commons Attribution License. 

 

This means that all articles published in MDPI journals, including data, graphics, and 

supplements, can be linked from external sources, scanned by search engines, re-used by text 

mining applications or websites, blogs, etc. free of charge under the sole condition of proper 

accreditation of the source and original publisher. MDPI believes that open access publishing 

fosters the exchange of research results amongst scientists from different disciplines, thus 
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The following license and copyright agreement is valid for any article published by Copernicus 

Publications whose original manuscript was received from 10 December 2007 on. 

Copyright  

Creative Commons Attribution 3.0 License 

Anyone is free: 

to Share — to copy, distribute and transmit the work 

to Remix — to adapt the work 

Under the following conditions: 

Attribution — The original authors must be given credit 

For any reuse or distribution, it must be made clear to others what the license terms of this work 

are. 

Any of these conditions can be waived if the copyright holders give permission. 

Nothing in this license impairs or restricts the author's moral rights. 

The full legal code of this license can be found at: 

https://creativecommons.org/licenses/by/3.0/legalcode 

Copyright transfers  

Many authors have strict regulations in their contract of employment regarding their works. A 

transfer of copyright to the institution or company, as well as the reservation of specific usage 

rights, is typical. Please note that in the case of open-access publications in combination with a 

Creative Commons License, a transfer of the copyright to the institution is possible, as it belongs 

to the author anyway and is not subject to the publisher. 

Any usage rights are regulated through the Creative Commons License. As Copernicus 

Publications uses the Creative Commons Attribution 3.0 License, anyone (the author, his/her 

institution/company, the publisher, as well as the public) is free to copy, distribute, transmit, and 

adapt the work as long as the original author is given credit (see above). Therefore, specific usage 

rights cannot be reserved by the author or his/her institution/company, and the publisher cannot 

include a statement "all rights reserved" in any published paper. 

A copyright transfer from the author to his/her institution/company will be expressed in a special 

"Copyright Statement" at the end of the publication rather than on the first page in the article 

citation header. Authors are asked to include the following sentence: "The author's copyright for 

this publication is transferred to institution/company". 
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