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SUMMARY

A search for quark contact interactions, extra spatial dimensions, quantum black holes, and

dark matter is presented in measurements of dijet angular distributions in proton-proton colli-

sions at a center-of-mass energy of 13TeV. The data were collected with the CMS detector at

the LHC and correspond to an integrated luminosity of 35.9 fb−1. The dijet angular distributions

are found to be in agreement with predictions from perturbative quantum chromodynamics that

include electroweak corrections. Limits for a benchmark model where only left-handed quarks

participate, contact interactions are excluded at the 95% confidence level up to a scale of 12.8

and 17.5TeV, for destructive or constructive interference, respectively. The most stringent lower

limits to date are set on the ultraviolet cutoff in the Arkani–Hamed–Dimopoulos–Dvali model

of extra dimensions. In the Giudice–Rattazzi–Wells convention, the cutoff scale below 10.1TeV

is excluded. For the first time, lower limits between 2.0 and 4.6TeV are set on the mass of a

dark matter mediator for (axial-)vector mediators with universal quark coupling gq = 1.0.
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CHAPTER 1

INTRODUCTION

At the beginning of the 20th century, with the discoveries of the electron, proton, and

neutron, and introduction of Quantum Mechanics and Special Relativity, a new era of physics

was ushered in, the era of particle physics. In the decades that followed, a remarkable insight

into the fundamental structure of matter was achieved: everything in the universe is comprised

from a few basic building blocks called elementary particles and the interactions between these

elementary particles are governed by four fundamental forces. The known elementary particles

and three of the four fundamental interactions are described by the Standard Model (SM)

of Particle Physics. The SM was firmly established in the 1970s and 1980s, with a series of

experiments that verified the existence of quarks, gluons, and W± and Z bosons. The last

elementary particle of the SM, the Higgs Boson, was discovered at the Large Hadron Collider

(LHC) on July, 2012 [1, 2].

Although the predictions of the SM have been tested with good precision up to very short

distances, or equivalently very high energies, the SM doesn’t provide a complete picture of the

universe. It describes three of the four fundamental forces: the strong force, the weak force,

and the electromagnetic (EM) force, but it doesn’t describe the gravitational force. In addition,

the SM doesn’t explain the Dark Matter (DM), a form of matter which appears to account for

approximately 80% of the matter in the universe. There are also questions that have puzzled

physicists for years that the SM doesn’t answer, such as “why is the gravitational force so weak

1
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compared to the other three fundamental forces?”, “why do the elementary particles have such

different masses?”, or “why do neutrinos have mass?”, as well as many more.

In recent decades, physicists have tried to address the shortcomings of the SM by developing

new physics (NP) models that extend the SM. This thesis focuses on testing the strong force

in the SM and searching for signatures of NP models using dijet angular distributions in high

energy proton-proton collisions at the LHC [3]. In the first and second chapters, theoretical

models relevant to this thesis will be described. The experimental apparatus and analysis

techniques used in this thesis will be discussed in Chapters 3–5. The data analysis procedure

and the results will be presented in Chapters 6–8.

1.1 The Standard Model

1.1.1 The Elementary Particles

The elementary particles described in the SM are shown in Figure 1. The particles are

classified as either fermions or bosons, depending upon their intrinsic spin. Those have half-

integer spin are called fermions while those with integer spin are called bosons. The SM includes

12 fermions, 4 gauge bosons, and a Higgs boson. The fermions are further divided into quarks

and leptons. The quarks have an electric charge of either 2/3 or -1/3 of the elementary charge

(e = 1.602 × 10−19 coulombs) and participate in all three fundamental interactions, while the

leptons have charge −e or 0 and only interact via the EM and weak forces. There are 6 quarks

(up u, down d, charm c, strange c, top t, bottom b) and 6 leptons (electron e, electron neutrino

νe, muon µ, muon neutrino νµ, tau τ, tau neutrino ντ). The quark (and lepton) types are



3

Figure 1: The elementary particles in the SM.

also called the “flavors”. Pairs of quarks and leptons are grouped to form 3 generations (see

Figure 1).

While the fermions are the building blocks from which all the visible matter in the universe

is comprised, the (spin-1) gauge bosons are the carriers of the fundamental forces in the SM.

The force carriers for the strong, EM, and weak forces are the gluon (g), the photon (γ), and

the W± and Z bosons, respectively. Besides the gauge bosons, the SM includes a Higgs boson.
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The Higgs boson is a scalar (spin-0) particle and is the quantum particle associated with the

Higgs field. SM particles acquire mass through their interactions with the Higgs field.

In high energy physics, it is conventional to express energies, momenta, and masses in terms

of natural units, in which } = c = 1, where } is the reduced Planck constant and c is the speed

of light. In this case, the energy, momentum, and mass of the particles are all expressed in unit

of electronvolt (eV).

1.1.2 The Fundamental Interactions

The three fundamental interactions in the SM describe all the known subatomic phenomena.

The strong force is responsible for binding the quarks to form bound states called hadrons, such

as the proton and neutron. The coupling strength of the strong force, denoted as αs, has a strong

dependence on the energy scale of the interaction (see Section 2.1.2). The EM force occurs

between electrically charged particles and is responsible for phenomena such as electric fields,

magnetic fields, and light. The EM coupling strength α is known as the fine structure constant

and it is given by the Coulomb’s law with α =
1

137
. The weak force explains phenomena such

as the nuclear β decay. The coupling strength of the weak interaction is about 6 orders of

magnitude smaller than the strong coupling strength at ∼ 1GeV. The SM interactions and

their strengths are summarized in Table I. At energy scales above the so called electroweak

(EW) scale, on the order of 102 GeV, the EM and weak forces are unified into the EW force

(see below).

Gauge Theory The SM interactions are described mathematically by a quantum field

theory (QFT) that respects local gauge symmetries, i.e., the Lagrangian of SM is invariant
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TABLE I: Summary of the SM fundamental interactions and their strengths.

Force Force Carrier Coupling Strength
Strong g 1

Electromagetic γ 10−2

Weak W± and Z 10−6

under a local gauge transformation. A local gauge transformation for a SM fermion field is

defined as a local phase transformation

ψ → ψ
′
= eitaαa(x)ψ, (1.1)

where ta are called the generators of the symmetry group; αa are functions of the spacetime

coordinates x; and a are the indices of the generators of the symmetry group. An U(N)

(SU(N)) group is a group of N × N complex matrices that each matrix U in the group satisfies

U†U = UU† = 1 (and the determinant of U equals 1 for SU(N)). If all the matrices in a group

can be written as U = eitaθa , where θa are numerical parameters, ta are called the generators of

the group. The number of generators of an SU(N) group is N2 − 1. The generators of a group

have to satisfy the commutation relation [ta, tb] = i f abctc, where f abc are called the structure

constants (Levi-Civita symbols) of the group. The gauge symmetry in the SM can be written as

SU(3)C × SU(2)L × U(1)Y, to which the strong force is associated with the SU(3)C symmetry

and the EW interaction is associated with the SU(2)L × U(1)Y symmetry.
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The gauge invariant Lagrangian in the QFT can be generally written as:

L = −
1
4

Fa
µνFµν

a + ψ̄i(iγ
µDµ − mi)ψi (1.2)

with the covariant derivative

Dµ = ∂µ − igtaAa
µ (1.3)

and field tensor

Fa
µν =

[Dµ, Dν]

ig
= ∂µ Aa

ν − ∂ν Aa
µ − ig f abcAb

µ Ac
ν (1.4)

where µ and ν represent the space-time indices; ψi represent the fermion fields; mi are the mass

of the fermions; γµ are the Dirac matrices; ψ̄i = ψ†γ0; Aa
µ are the gauge boson fields; and g

is the coupling constant. In the Lagrangian, each gauge group generator ta is associated with

a gauge boson Aa
µ field. The gauge boson fields couple to the fermion fields with the coupling

constant g. In order to maintain the gauge invariance in the Lagrangian, the gauge boson fields

have to transform as Aa
µ → eitaαa(x)(Aa

µ −
i
g

e−itaαa(x)∂µeitaαa(x))e−itaαa(x). The gauge bosons are

massless since if a mass term for the gauge bosons exists mAa
µ Aµ

a , the gauge invariance will be

violated.

Strong Interaction The theory that describes the strong force is based on the SU(3)C

gauge symmetry. The “charge” (quantum number) of the SU(3)C symmetry is called color.

There are 3 color charges: red (r), blue (b), and green (g). Each quark carries one color charge.

Quarks and gluons are called partons. The quark fields, ψi, are written as triplets composed
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of the color components (e.g., ψu =


ur

ub

ug

 and ψd =


dr

db

dg

 for the up and down quark fields,

respectively). The generators in the SU(3)C group correspond to the 8 Gell-Mann matrices and

give rise to the 8 gluon field carriers. Each gluon carries two color charges. Quarks interact with

each other and form colorless bound states by exchanging gluons. A more detailed discussion

about the strong force will be given in Chapter 2.

Electroweak Interaction The theory describing the EW force is based on the SU(2)L ×

U(1)Y symmetry, which is known as EW symmetry. For the SU(2)L symmetry, one left-handed

up-type quark or lepton and one left-handed down-type quark or lepton in the same generation

form doublets that transform under the SU(2)L group. The up-type quarks and leptons are u,

c, t, νe, νµ, and ντ. The down-type quarks and leptons are d, s, b, e, µ, and τ. The doublets are

written as ψ =

u

d


L

, ψ =

 e

νe


L

, etc. Weak-isospin T3 is a quantum number associated with

the SU(2)L symmetry, and takes the values of ±1
2
. Left-handed up-type quarks and leptons

carry T3 =
1
2
, and left-handed down-type quarks and leptons carry T3 = −

1
2
. The right-handed

fermions, except for right-handed neutrinos which do not exist in the SM, carry T3 = 0 and

do not participate in the weak interaction. The left- and right-hand projections of the fermion

fields ψleft/right are defined as, ψleft/right =
1 + / − γ5

2
ψ, where γ5 is the fifth Dirac matrix. The

three generators of the SU(2)L gauge group are the Pauli matrices and correspond to three
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gauge bosons: Wa (a=1,2,3). The Wa bosons have T3 values of 1, 0, and -1 for a=1, 2, and 3,

respectively.

Both left- and right-handed fermions transform under the U(1)Y symmetry. The U(1)Y

symmetry corresponds to one gauge boson (B), which couples to both left- and right-handed

fermions. The weak hypercharge Y is a quantum number associated with the U(1)Y symmetry

and it relates the electric charge Q and the third component of the weak-isospin T3 by Q =

T3 +
Y
2
.

The Higgs Mechanism and Electroweak Symmetry Breaking The gauge bosons as-

sociated to EW symmetry, Wa (a=1,2,3) and B are all massless. However, the observation of

massive W± and Z bosons suggests that EW symmetry is broken. In the SM, the EW symme-

try is a broken symmetry that is broken through the Higgs mechanism [4–9] and the W± and

Z bosons and the photon are produced by the mixings of the Wa and B gauge bosons after EW

symmetry breaking.

The Higgs mechanism adds a complex doublet field φ with Y = 1 and T3 = −
1
2
to the SM

fields. The Lagrangian for the doublet field is invariant under the EW symmetry and is written

as,

L = (Dµφ)†(Dµφ) − µ2φ†φ − λ(φ†φ)2 (1.5)

where µ2 < 0 and λ > 0. In the Lagrangian, the covariant derivative Dµ is written as

Dµ = ∂µ − igσaWa
µ + ig ′Y

2
Bµ, (1.6)
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where σa are the Pauli matrices (generators of the SU(2) group); g is the coupling constant

associated to the Wa gauge bosons; and g ′ is the coupling constant associated to the B gauge

boson. In the Lagrangian (Equation 1.5), the first term is the kinematic term of the field and

the second and third terms comprise the Higgs potential. The Higgs potential (V(φ†φ)) has a

minimum value at φ†φ = −
µ2

λ
= v2, and v is called the vacuum expectation value (VEV) of

the Higgs potential.

In general, the Higgs doublet field is written as φ =

φ1 + iφ2

φ3 + iφ4

, where φ1–φ4 are real scalar

fields. At the ground state of the Higgs potential, φ can be expressed in terms of a constant

part that reflects the non-zero value of the ground state (v) and a variable field (H(x)) that is

small for perturbations around the ground state: φ =
1√
2

 0

v+ H(x)

. Inserting φ into the

Higgs potential, we obtain the following expression:

V =
µ2

2
H2 +

µ2

λ
H3 +

µ2

4λ2 H4. (1.7)

The Higgs potential, therefore describes a scalar particle, the Higgs boson, that has mass µ
√

2.

The W± and Z boson fields and the photon field (A) are expressed by:

W±
µ =

1√
2
(W1

µ ∓ iW3
µ) (1.8)

Zµ

Aµ

 =

 cos θW sin θW

− sin θW cos θW


W2

µ

Bµ

 , (1.9)
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with masses

MW± =
1
2
vg, MZ =

1
2
v
√

g2 + g
′2, Mγ = 0, (1.10)

where cos θW =
MW±

MZ
=

g√
(g2 + g ′2)

is the Weinberg angle. From the above equations, we

see that the SM W± and Z bosons and the photon are given by mixings of the Wa (a=1,2,3)

and B gauge bosons, and the W± and Z bosons acquire masses from the non-zero VEV of the

Higgs potential.

The Mass of the Fermions Although the mass term for the fermions (miψ̄iψi) in Equa-

tion 1.2 does not violate the SU(3)C symmetry, it does violate the SU(2)L symmetry since it

mixes the left- and right-handed fermions. This is addressed by adding to the SM Lagrangian

a Yukawa coupling term between the Higgs boson and the fermions:

LYukawa = −gl L̄LφlR − gdQ̄LφdR − guQ̄LφcuR + h.c., (1.11)

where LL and QL are the left-handed lepton and quark doublets, respectively; φC is the charge

conjugate of the Higgs field; and gl,d,u are the Yukawa coupling constants. Inserting φC =

1√
2

v+ H

0

, we get

LYukawa = −gf
v√
2

ψ̄ψ −
gf√

2
ψ̄ψH. (1.12)

Therefore, by interacting with the Higgs field, the fermions acquire mass mf = gf
v√
2

that is

proportional to the Yukawa coupling.
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1.2 New Physics Models

1.2.1 Quark Contact Interactions

Contact interactions (CIs) were first introduced by Fermi’s theory of β decay in 1933 before

the complete electroweak theory was established and the W± bosons were discovered. In Fermi’s

theory, the β decay was described by a CI among a proton, a neutron, an electron, and an

anti-electron neutrino with interaction strength GF. Today, we know that Fermi’s CI is a

low-energy approximation of the EW interaction between an anti-up (up) quark and a down

(anti-down) quark, which is mediated by the W− (W+) boson. The W− (W+) then decays into

an electron (positron) and an electron anti-neutrino (electron neutrino). Similarly, quark CIs

can be regarded as the low-energy effective theory approximation of new interactions between

quarks at higher energies (see Figure 2).

One example of a new interaction is the quark compositeness model [10–12], in which quarks

are bound states of more fundamental constituents. This model is intriguing because it provides

possible answers for questions related to the number of quark generations and to why the values

of quark masses and charges are what they are. The new interactions between quark constituents

occur above a large characteristic energy scale Λ. At energies below the compositeness scale,

the new interactions can be integrated out to form a four-fermion contact interaction model.

While one can write down a great variety of different operators contributing to the quark

contact interactions with different flavor and color structures, only the most general case–the
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q

q q

q

NP

q

q q

q

Figure 2: Diagrams for a four-fermion contact interaction (left) describing the low energy
effective field theory for a new interaction between the fermions (right).

flavor-diagonal color-singlet models [11, 12] will be discussed in this thesis. The Lagrangian

describing such CIs can be written as:

Lqq =
2π

Λ2

[
ηLL(qLγµqL)(qLγµqL) + ηRR(qRγµqR)(qRγµqR) + 2ηRL(qRγµqR)(qLγµqL)

]
,

where the subscripts L and R refer to the left and right chiral projections of the quark fields,

respectively. The variables ηLL, ηRR, and ηRL are taken in various combinations of 0, +1, or

−1, with each combination corresponding to a different CI model (see Table II).

TABLE II: Quark CI models.

Model (ηLL, ηRR, ηRL)

Λ±
LL (±1, 0, 0)

Λ±
RR ( 0,±1, 0)

Λ±
VV (±1,±1,±1)

Λ±
AA (±1,±1,∓1)

Λ±
(V−A) ( 0, 0,±1)
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The quark CIs have been searched for at the CERN SppS by the UA1 [13] and UA2 [14]

Collaborations, at the Fermilab Tevatron by the CDF [15–17] and D0 [18–21] Collaborations,

and at the CERN LHC by the ATLAS [22–27] and CMS [28–33] Collaborations. The most

stringent limits on the CI models come from searches using dijet angular distributions [27, 33].

The search performed by the CMS collaboration [33] using 2.7 fb−1 of proton-proton collision

data at center-of-mass energy
√

s = 13TeV excluded quark CIs at 95% Confidence Level (CL)

up to a scale of 8.4 and 18.6TeV, depending on the details of the model. The publication from

the ATLAS Collaboration [27] using 37 fb−1 of data at
√

s = 13TeV provided lower limits on

the quark CI scales from 13.1 to 29.5TeV.

1.2.2 Extra Spatial Dimensions

An important energy scale that characterizes the gravitational force is the fundamental

Planck scale (MPl = G−1/2
N ∼ 1018 GeV where GN is the Newton’s gravitational constant), at

which gravity is expected to be as strong as the other three fundamental forces. One question

that has puzzled physicists for a long time is that why there is a huge difference between the

energy scales of the gravity and the electroweak interactions, i.e., why the fundamental Planck

scale is 1016 times greater than the EW scale (∼ 102 GeV). Arkani-Hamed, Dimopoulos, and

Dvali (ADD) proposed the extra spatial dimension model [34, 35] to address this problem.

Before describing the ADD model, it is necessary to discuss the Kaluza-Klein (KK) the-

ory [36, 37]. The KK theory was the first extra dimension (ED) model, in which one extra

spatial dimension is added to the regular 4-dimensional space. The KK theory was originally
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proposed to unify the gravitational force and the electromagnetic force in the 1920s, but it ran

into failure almost immediately since it didn’t predict the mass of the electron correctly.

A requirement of the KK theory is that any physical quantity in the ED should subject to a

periodical boundary condition, i.e., a physical quantity at point y in the extra space should be

identical to the quantity at y+2πR, where R is the size of the extra dimension. This requirement

is called compactification. Given the periodical boundary condition, the wave function of, for

example, a scalar field in the 5-dimensional space Φ(x, y), where x and y represent the regular

4-dimension and the 5th-dimension coordinates, respectively, can be written in the form of

Fourier series:

Φ(x, y) =
∞∑

n=0
φn(x)e

iny/R. (1.13)

The Fourier coefficients, φ(x)n are fields over the regular 4-dimensional space. These fields are

called the KK modes or KK towers. Applying the 5-dimensional Klein-Gordon equation to the

scalar field,

(2− ∂2
y + M2

0)Φ(x, y) = 0, (1.14)

and substituting Φ with the Fourier series, we have,

(2+ M2
n)φn(x) = 0, (1.15)

where n = 1, 2, 3, ..., and

Mn =

√
M2

0 +
n2

R2 . (1.16)
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This implies that each KK mode by itself is a particle that has mass Mn and satisfies the

Klein-Gordon equation. The zero mode (n = 0) field has mass equal to the mass of the original

5-dimensional field.

The ADD model speculates the existence of N-dimensional compact extra space with radius

R. In it, SM particles are confined in the regular 4-dimensional space and interact with the

gravity via KK modes (KK gravitons). The fundamental Planck scale in the 4+N dimensional

space, MD, is at the electroweak scale. At distances r << R, the gravity potential is written

as:

V(r) =
1

MN+2
D

m1m2

rN+1 . (1.17)

At distances r >> R, the gravitational flux in the ED cannot penetrate to the regular 4-

dimensional space, and the gravity potential is modified (by applying the Gauss’s law) to be

V(r) =
1

MN+2
D RN

m1m2
r

. (1.18)

Comparing Equation 1.18 to Newton’s law of gravity, we get the relationship between R, MD,

and MPl:

M2
Pl =

1
GN

= MN+2
D RN. (1.19)

Taking MPl = 1018GeV, MD ∼TeV, and N = 6, we see that the size of the ED could be as large

as R ∼ 0.1 mm. As R is large in the ADD model, the mass differences between the KK modes

are small (see Equation 1.16).
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In particle collision experiments, signatures of extra spatial dimensions can be searched

via the virtual KK graviton exchange process, i.e., KK graviton mediated 2 → 2 scattering

processes. The sum of all KK modes in the cross section calculation of this process diverges

and therefore needs to be truncated at an energy scale Λ expected to be of order MD. The

effective theory for the ADD model can be parametrized in three ways: Giudice-Rattazzi-Wells

(GRW) [38], Hewett [39], and Han-Lykken-Zhang (HLZ) [40]. In this analysis, only the GRW

and HLZ parametrizations will be studied. In the GRW convention, the KK graviton exchange

process is regularized by the single cutoff scale ΛT. The HLZ convention describes the process

in terms of the parameters MS and nED, where MS represents a scale also expected to be of

order MD, and nED is the number of ED. The parameters MS, nED, and ΛT are related by the

following equations [41]:

M4
S =


Λ4

T log(MS
ŝ

), nED = 2

Λ4
T

2
nED − 2

, nED > 2
(1.20)

In the HLZ convention, we consider scenarios with nED = 2–6. The case of nED = 1 is not

considered since it would require extra dimensions with sizes of order the size of the solar system

(see below). The case of nED = 2 is special in the sense that the relation between MS and ΛT

also depends on the parton-parton center of mass energy
√

ŝ.

Precision measurements of Newtonian gravity can be used to search for the extra spatial

dimensions. By searching for deviations of Newton’s law at short distances, the size of the ED

in the ADD model with nED = 2 was excluded down to R > 37 µm [42]. Evidence for virtual

graviton exchange has previously been searched for at the LHC in diphoton, dilepton, and dijet
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final states, among which the dijet search [33] provided the most stringent limits for the cutoff

scale in the ADD model.

1.2.3 Quantum Black Holes

A black hole is a region of space that has a gravitational field so intense that matter or

radiation cannot escape. Black holes are formed by the gravitational collapse of massive stars

that have masses a few times larger than the mass of the sun. However, under the context

of extra dimension models, in which the fundamental Planck scale is lowered to a few TeV,

microscopic black holes with masses at around the TeV scale can be produced. In this thesis,

two large extra dimension models are considered, the ADD model, with nED = 6, and the

Randall–Sundrum (RS) model [43, 44] with a single warped compact extra dimension (nED =

1) as benchmark models to provide low energy Planck scales for the microscopic black hole

productions.

Consider a microscopic black hole with mass MBH ≥ MD and Schwarzschild radius (radius

of the boundary of the black hole) rS. If two partons collide with
√

ŝ > MBH and impact

parameter less than rS, such a black hole can be formed. The production cross section of these

black holes is described by the geometrical cross section, πr2
S, where in the ADD model, rS is

given by [45]

rS =
1√

πMD
[
MBH
MD

8Γ(nED+3
2 )

nED + 2
]

1
nED+1 , (1.21)
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and in the RS model, rS is given by [46, 47]

rS =
1

πMe−πkRc

√
MBH

3πe−πkRc
. (1.22)

In Equation 1.22, Rc is the size of the extra dimension, k is the curvature of the 5-dimensional

space defined in the RS model, and M is the fundamental 5-dimensional Planck scale in the RS

model.

If the microscopic black holes have masses MBH >> MD, the decay of the black holes are

well understood in the framework of general relativity. These black holes evaporate via Hawking

radiation [48] and can be searched for at the LHC using multi-jet final states. If the black holes

have masses close to MD, quantum effects have to be taken into account and the black holes will

decay predominantly into dijets [49–51]. Such black holes are also called quantum black holes

(QBHs). Recent searches for QBHs decaying into dijet final states at the LHC have excluded

QBHs with masses below 8.9TeV [27, 33].

1.2.4 The Simplified Model for the Dark Matter

The earliest evidence for DM came from studying the galactic rotation curves. These anal-

yses studied the orbital velocity of objects within a galaxy as a function of their distance from

the center of the galaxy. The velocity was expected to decrease (increase) with increasing

distance outside (inside) the region where the majority of the visible matter in the galaxy is

clustered. However, the observed galactic rotation curves exhibited large discrepancies from

this expectation and suggested that either gravity needs to be modified or that there exists
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additional non-luminous matter. As an example, the rotation curve of the galaxy M33 is shown

in Figure 3, left. As can be seen in the figure, outside the region containing most of the visible

matter the orbital velocity of the objects does not decrease as expected, but instead slightly

increases with distance.

Another evidence for DM comes from the study of the bullet cluster (1E 0657-558). The

bullet cluster consists of two colliding clusters of galaxies as shown in Figure 3, right. The figure

contains three components. The first component, an optical image from the Magellan and the

Hubble Space Telescope, shows the galaxies in each of the two colliding clusters in orange

and white. The second component (pink), provided by the Chandra X-ray Observatory, shows

the distribution of hot gas in the cluster. The hot gas is created mainly by electromagnetic

interactions during the collision and contains the bulk of the normal matter in the cluster.

The last component (blue) shows the mass distribution of the bullet cluster, as measured by

gravitational lensing, which is the distortion of light from the galaxies behind the cluster by

the mass in the cluster. The separation between the blue and pink images indicates that the

majority of the mass of one cluster simply passed through the other experiencing only the

gravitational interaction. This observation provides one of the most striking evidence of DM.

Detailed analysis of the observation disfavors an alternative explanation of the images by a

model of modified gravity [52, 53].

In the standard thermal “freeze-out” picture of the universe, the DM and SM particles are

in thermal equilibrium at the beginning of the universe. As the universe keeps expanding and

cooling, the DM density kept dropping because of the annihilation of the DM particles (the
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Figure 3: The Evidence of DM. Left: the measured galactic rotation curve for M 33 galaxy
compared to the prediction obtained using only the visible matter in the galaxy. At distances
close to the center of the galaxy, the orbital velocities are measured using starlight, and at
large radii, the 21 cm hydrogen line (microwave created by electromagnetic radiation of a
neutral hydrogen atom) is used to measure the velocities of the interstellar hydrogen. Right:
the optical image from Magellan and Hubble Space Telescope for the bullet cluster 1E 0657-
558. Also shown are the hot gas (pink) and mass (blue) distributions in the bullet cluster. The
measurements of the hot gas and mass clusters are provided by the Chandra X-Ray Observatory
and gravitational lensing, respectively.

inverse of the process shown on the left in Figure 4). However, at some point, the universe

became large enough that the probability of one DM particle finding another to annihilate was

very small and the DM density stopped decreasing. The DM particles that were left over are

known as the thermal relic of the universe.

The relic density of the DM can be obtained from studying the fluctuations in the Cosmic

Microwave Background (CMB), the blackbody electromagnetic radiation left over from the

Big Bang. The CMB was formed in the early universe, once it was sufficiently cooled to allow

baryons to form and photons to propagate freely without constantly being scattered by electrons
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and protons. One source of the fluctuations in the CMB comes from the competing effects of

photon pressure pushing matter outward and gravity pushing matter inward causing oscillations

in the photon and baryon densities. If DM is present, the oscillation pattern will be changed

since DM is unaffected by the photon pressure, allowing the DM relic density to be obtained.

The Planck Collaboration [54] provided the most precise observation on the CMB to date. The

relic density for the DM extracted by the Planck Collaboration is Ωch2 = 0.118± 0.003, where

Ωc is the relic density and h is the Hubble constant and equals to 0.7. The uncertainty in the

Planck result corresponds to 68% CL.

While the existence of DM has been well established, the particle physics property of DM

remains unknown. Many NP models provide DM candidates. In principle, any particle that

satisfies the following conditions can be a DM candidate: must interact very weakly (otherwise

would have been discovered already), must be stable over cosmological time scales (otherwise

would have decayed by now), and must give the right relic density. These candidates include

axions, sterile neutrinos, weakly interacted massive particles, etc., and have masses range from a

few keV to several TeV, depending on the model. Although the searches for the DM candidates

can be model dependent, it is possible to create simplified DM models for the DM searches at

the LHC [55–57].

In the simplified model of the DM, the DM particle (χ) with mass mDM is assumed to interact

with SM particles via some new spin-0 or spin-1 mediator with mass MMed (see Figure 4). The
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coupling strengths of the mediator and quarks or DM are denoted as gq and gDM, respectively.

The spin-1 mediator (Z
′
) model has the following Lagrangian

Lvector = −gDMZ
′

µχ̄γµχ − gq

∑
q=u,d,s,c,b,t

Z
′

µq̄γµq,

and

Laxial−vector = −gDMZ ′
µχ̄γµγ5χ − gq

∑
q=u,d,s,c,b,t

Z ′
µq̄γµγ5q,

for vector and axial-vector mediators, respectively. In collider experiments, the primary search

channels for spin-1 DM mediators are the dijet channel (Figure 4 right), in which the mediators

decay to a pair of quarks, and the mono-jet channel (Figure 4 left), in which the mediators

decay to a pair of DM particles. As the DM particles cannot be directly detected by particle

detectors, the initial state radiation shown in Figure 4 left provides a mono-jet signature for

the DM decay. The fact that gq is assumed to be the same for all quark flavors makes the

spin-1 mediators particularly suitable for searches with a dijet final state. The spin-0 (scalar

and pseudo-scalar) mediators have properties similar to the Higgs boson, for which the coupling

to an SM particle is proportional to the mass of the particle. Therefore, the spin-0 mediators

are searched for using final states that contain heavy particles, such as top or bottom quarks.

In a scenario where gq = 0.25 and the relative widths in the DM decay channels are negligible,

values of MMed below 3.0TeV were excluded by narrow dijet resonance searches [27, 58] for

vector and axial-vector mediators. Mono-jet searches [59–61] have excluded vector and axial-

vector mediators below 1.8 (2.1)TeV for gq = 0.25 (gq = 1.0) and gDM = 1.0 [60].
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Figure 4: The interaction between quarks and DM particles (left) and quarks (right) mediated
by the DM mediator in the simplified DM model. As DM particles cannot be directly detected
by particle detectors, the initial state radiation shown in the left plot provides the mono-jet
signature for the DM decay at the LHC.



CHAPTER 2

QUANTUM CHROMODYNAMICS AND DIJET ANGULAR

DISTRIBUTIONS

As mentioned earlier, the quarks carry color charges and interact with each other by ex-

changing gluons. The theory describing these interactions is called Quantum Chromodynamics

(QCD). Experimentally, free partons have never been observed directly. They always bound

together to form colorless (color-neutral) hadrons. This phenomenon is called color confine-

ment. In high energy particle collision experiments, collimated sprays of hadrons created in

the final states are called jets. Jets are the experimental signature of partons. As the LHC is

a proton-proton collider, the most common interaction that takes place during the collision is

the strong interaction described by QCD and which produces jets final states. This chapter

describes QCD and jet physics in detail.

2.1 Quantum Chromodynamics

2.1.1 The Lagrangian of Quantum Chromodynamics

The QCD Lagrangian that describes the dynamics of the quarks and gluons can be written

as:

L =
∑

q=u,d,s,c,b,t
q̄a(iγ

µ(Dµ)ab − m)qb −
1
4

GA
µνGµν

A (2.1)

where,

GA
µν = ∂µ AA

ν − ∂ν AA
µ − i f ABCAB

µ AB
ν (2.2)

24
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(Dµ)ab = ∂µδab + igsTA
abAA

µ (2.3)

and A,B,C=1...8 are the gluon indices; a,b=1,2,3 are the color indices; Aµ is the gluon field;

and gs is the strong coupling and related to αs by αs =
g2

s
4π

. The color group SU(3)C generators

are written as TA = λA/2, where λA are the Gell-Mann matrices.

The first term in Equation 2.1 represents the free quark fields and quark-gluon interactions.

The second term of Equation 2.1 describes the free gluon fields and the cubic and quartic gluon

self-interaction vertices. These gluon self-interaction terms mark an important difference be-

tween QCD and the theory describing the electromagnetic force, the quantum electrodynamics

(QED). In QED, photon self-interactions are not allowed since QED is described by the U(1)

symmetry that has a structure constant of zero. Gauge theories that have a non-zero struc-

ture constant are also called Non-Abelian gauge theories. The fundamental QCD couplings are

shown in Figure 5.

a

b

A

(a) gsTA
ab

A

B

C

(b) gs f ABC

A

C

B

D

(c) g2
s f ABC f CDE

Figure 5: Fundamental coupling of QCD: quark-gluon interaction (left) and gluon self interac-
tion terms (middle and right).
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2.1.2 Perturbative QCD and the Running of the Strong Coupling Constant

In perturbative QCD (pQCD), the cross section for a QCD parton-level process can be

expanded as a perturbative series in the strong coupling constant αs,

σ = α2
s (σ0 + σ1αs + σ2α2

s + · · · ), (2.4)

where σ0, σ1, and σ2 are leading order (LO), next-to-leading order (NLO), and next-to-next-

to-leading order (NNLO) cross sections in αs, respectively. With the assumption of αs being

small, an observable (such as a cross section) can be approximated by the first few terms in

the perturbative expansion. The coupling αs is not truly constant, but is dependent on the

momentum transfer Q. This energy dependence is due to vacuum fluctuations, and as it will

be described later, it leads to a property of strong interactions called asymptotic freedom.

Using Feynman rules, the LO quantities can be calculated rather easily. Calculations for

higher order terms become complicated when loop diagrams come into play since the integrals

over the four-momenta in a loop are logarithmically divergent. The technique that overcomes

this divergence is called renormalization. During renormalization, αs is redefined such that the

infinities in the QCD observable calculations are absorbed by redefining αs that needs to be

constrained by experiments. In this way, finite order pQCD calculations can be achieved.

The renormalized αs is defined as αs(µ
2
R), where µR is an (unphysical) renormalization scale.

When µR is close to the scale of the momentum transfer Q for a given process, αS(µ
2
R ' Q2)

then indicates the effective strength of the strong interaction in that process. The dependence
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of the renormalized coupling on the scale of the momentum transfer is referred to as the running

coupling and is calculable in pQCD. A summary of measurements of the running coupling as a

function of Q is given in Figure 6 [62]. The average value of the strong coupling at the energy

scale equal to the mass of the Z boson is αs(MZ) = 0.01181 ± 0.0011.

Figure 6: Summary of the measurements of the QCD running coupling [62].

The running of the coupling constant αs(µ
2
R) is given by the renormalization group equation

(RGE):

µ2
R

∂αs(µ
2
R)

∂µ2
R

= β(αs(µ
2
R)). (2.5)
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In pQCD, the right-hand side of Equation 2.5 can be expanded in a series of terms of αs(µ
2
R)

β(αs(µ
2
R)) = −αs(µ

2
R)

2(b0 + b1αs(µ
2
R) + b2α2

s (µ
2
R) + · · · ). (2.6)

The coefficients in the expansion are determined using higher order (loop) corrections to the

vertices of the QCD interactions and the self-energy of the gluons and quarks. As an example,

the Feynman diagrams for the one-loop corrections to the self-energies of quarks and gluons are

shown in Figure 7. The first two coefficients in the expansion, given by the one- and two-loop

corrections, are b0 =
33 − 2nf

12π
and b1 =

153 − 19nf

24π2 , respectively, where nf is the number of

flavors for quarks that have a mass smaller than µR. The first term in b0,
33

12π
, comes from the

diagram in Figure 7 right, and causes the lowering of the coupling constant as Q increases since

nf ≤ 6. Retaining only the leading term b0 and solving Equation 2.5, we can get the analytic

expression of the running coupling

αs(Q
2) =

αs(µ
2
R)

1 + b0 ln(Q
2/µ2

R)αs(µ
2
R)

. (2.7)

Figure 7: The one-loop corrections to the quark (left) and gluon (middle and right) self-energies.
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The running of the strong coupling provides one of the key properties of the QCD: asymp-

totic freedom. It can be seen in Figure 6 or Figure Equation 2.7, the value of the strong coupling

becomes smaller for processes involving large momentum transfers. Such processes probe small

distances and are called “hard processes”. For processes involving small momentum transfers (or

large distances), the strong coupling is large such that pQCD will not be applicable. Denoting

the energy scale where the running coupling formally diverges as ΛQCD, we have

αs(Q) =
1

b0 ln(Q
2/Λ2

QCD)
. (2.8)

Experimental measurements give ΛQCD ' 200 MeV. This value can be considered as the bound-

ary of the region where pQCD is not valid anymore.

2.1.3 The Factorization Theorem

The factorization theorem of QCD states that the cross section calculation in high energy

proton-proton collisions can be separated into two parts. A short distance part which describes

the underlying hard process cross section and is calculable with pQCD, and a manifestly long

distance non-perturbative part that describes the momentum distributions of the partons within

the colliding protons through universal functions that have to be extracted from experimental

measurements1.

1Universal functions describing the probability of partons to fragment to hadrons are also extracted.
These functions are called fragmentation functions.
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In the factorization theorem, the cross section for a generic process in high energy proton-

proton collisions can be written as

σpp→X =
∑
i,j

∫
dxdx ′ fi/p(x, µF) fj/p(x

′
, µF)dσij→X(x, x ′, µR, αs(µR)) (2.9)

where i and j represent the initial state partons within the colliding protons, x and x
′
are

the momentum fractions carried by the colliding protons, and σij→X is the cross section for

the hard process ij → X. The functions fi/p(x, µF) and fj/p(x
′
, µF) describe the momentum

fraction distributions of partons within a proton and are called the parton distribution functions

(PDFs). A pictorial representation of the factorization theorem can be seen in Figure 8.

p

p

i

j

a

b

fi/p(x, µF)

fj/p(x
′, µF)

Figure 8: A pictorial representation of two partons i and j originated from two protons partic-
ipating a hard scattering process ij → ab. The momentum fraction distributions of partons i
and j within the two protons are parametrized by the PDFs.



31

The PDFs, fi/h(x, µF), quantify the probability to find a parton i with longitudinal mo-

mentum fraction x within a hadron h at the factorization scale µF, which characterizes the

momentum transfer scale at which the hadron is probed. The proton PDFs for u, ū, d, d̄, s

and g at µF = Q = 2 and 100 GeV extracted by the CTEQ Collaboration are shown in Fig-

ure 9 [63]. The PDFs at an arbitrary scale are related to the PDFs at a given scale Q via the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations

µ2
F

∂ fi/p(x, µF)

∂µF
=

∑
j=q,q,g

∫1

x

dz
z

αs(µF)

2π
Pij(z) fj/p(x/z, µF) (2.10)

where the Pij(z) are the splitting functions describing the probability for a parton i originating

from a parton j and carring the momentum fraction z of the original proton. The analytical

formula of the splitting functions can be calculated using pQCD and are written at LO as:

Pqq(z) =
4
3
(

1 + z2

(1 − z)+
+

3
2

δ(1 − z)) = Pqq(z) (2.11)

Pqg(z) =
1
2
(z2 + (1 − z)2) (2.12)

Pgq(z) =
4
3
(

1 + (1 − z)2

z
) = Pgq(z) (2.13)

Pgg(z) = 6(
z

(1 − z)+
+

1 − z
z

+ z(1 − z)) +
33 − 2nF

6
δ(1 − z). (2.14)

2.2 Jet Production

As mentioned before, in high energy collisions, the outgoing partons are observed as colli-

mated sprays of colorless hadrons, called jets, that travel in roughly the same direction as the
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Figure 9: The proton PDF for u, ū, d, d̄, s and g at 2GeV (left) and 100 (right)GeV [63]. The
PDF for s and s̄ are the same.

parent partons. At the start of the jet production process, the initial-state or final-state partons

can either radiate gluons or split into quark and antiquark pairs. These secondary emission

processes are known as parton branching. As the distance between the outgoing partons in-

creases, the strength of their coupling increases rapidly and virtual quark and antiquark pairs

are created from the vacuum which merge with the outgoing partons to form colorless hadrons.

This process is called hadronization.

In the following sections, the production of jets will be discussed. Included in the discussion

is the calculation of the cross section of the hard process and the simulation of jet production

in high energy proton-proton collisions.
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2.2.1 The Hard Scattering Process

Consider the 2 → 2 hard scattering of high energy partons. At LO pQCD, the differential

cross section for this process is proportional to the square of the LO matrix element |M|
2 and

is written as:

dσ

dΩ
=

α2
s

4ŝ
|M|

2, (2.15)

where Ω is the solid angle of the scattering partons, and ŝ is one of the Mandelstam variables

ŝ, t̂, and û, defined as:

ŝ = (pA + pB)
2 (2.16)

t̂ = (pA − pC)
2 (2.17)

û = (pA − pD)
2 (2.18)

where pA, pB, pC, and pD are the 4-momentum of the incoming and outgoing partons for the

AB → CD process. As the energies and momenta of the partons in the hard process are large,

the parton masses can be assumed to be zero. Given the massless parton approximation, the

Mandelstam variables satisfy the following relation

ŝ + t̂ + û = 0. (2.19)

The QCD 2 → 2 hard scattering includes multiple processes, which are defined according to

the species of the initial and final state partons. The Feynmann diagrams for these processes are



34

summarized in Figure 10. These diagrams can be categorized into three types: the s-, t-, and

u-channel diagrams. As an example, the amplitude M for the three diagrams shown from left

to right in Figure 10-d is proportional to 1
ŝ
, 1

t̂
, and 1

û
, respectively, representing the s-, t-, and

u-channel diagrams. To calculate |M|
2 for a given process, all the diagrams that contribute to

that process must be added together. For example, for the qq → qq process that has Feynmann

diagrams as shown in Figure 10 b, |M|
2 is written as

|Mqq→qq|
2 = |Mt−channel + Mu−channel|

2

= |Mt−channel|
2 + |Mu−channel|

2 + |M?
t−channelMu−channel|+ |M?

u−channelMt−channel|

(2.20)

The last two terms in Equation 2.20 are the interference terms. The LO |M|
2 for all the

processes, summed over final state color and spins and averaged over initial state color and

spins, are summarized in Table III.

Higher-order pQCD calculations for 2 → N (N > 2) processes get complicated very quickly

due to the number of sub-processes contributing in the final state. For this reason, high order

calculations do not exist for many processes, and predictions of jet production have to rely on

Monte Carlo (MC) event generators.

2.2.2 Monte Carlo Event Generators

MC event generators are software packages used to simulate high-energy proton-proton

collision events. The simulation of high energy hadronic collision events is important in high

energy experiments for comparing experimental data to theoretical predictions, estimating the
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Figure 10: Summary of the Feynman diagrams of the QCD 2 → 2 subprocesses.
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Process |M|
2

qq
′
(q̄

′
) → qq

′
(q̄

′
)

4
9
(

ŝ2 + û2

t̂2 )

qq → qq
4
9
(

ŝ2 + û2

t̂2 +
ŝ2 + t̂2

û2 −
2
3

ŝ
ût̂

)

qq̄ → q
′
q̄

′ 4
9
(

t̂2 + û2

ŝ2 )

qq̄ → qq̄
4
9
(

ŝ2 + û2

t̂2 +
û2 + t̂2

ŝ2 −
2
3

û2

ŝt̂
)

qq̄ → gg
32
27

(
t̂2 + û2

t̂û
−

9
4

û2 + t̂2

ŝ2 )

qg → qg
4
9
(−

ŝ2 + û2

ŝû
+

9
4

û2 + ŝ2

t̂2 )

gg → qq̄
1
6
(

t̂2 + û2

t̂û
−

9
4

û2 + t̂2

ŝ2 )

gg → gg
9
2
(3 −

ŝû
t̂2 −

t̂û
ŝ2 −

t̂ŝ
û2 )

TABLE III: LO matrix element for QCD 2 → 2 subprocesses.

various reconstructed object efficiencies, understanding the calibration of detectors, estimating

the background processes to various observables, calculating trigger rates for various running

conditions, etc. There are a number of MC event generators available, however, they all work

in a similar manner. The event simulation begins with the hard scattering process, which

is typically calculated to LO in QCD, and then initial-state radiation (ISR) and final-state

radiation (FSR) effects are added. Furthermore, other partons from the colliding protons can

interact as well and these secondary interactions form the underlying event (UE) which is also
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taken into account by the event generators. After all these processes have been modeled, the

resultant partons are grouped together to form the final state hadrons based on a hadronization

model. The event generator can then either allow the hadrons to decay, or leave this step for

later in the detector simulation.

Figure 11: Various processes in a collision event including the hard process (shown in red), ISR
and FSR (shown in blue), hadronization (shown in green), decays and QCD Bremsstrahlung of
unstable hadrons (shown in yellow and dark green, respectively), and UE (shown in purple) [64].
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An illustration of the processes involved in a proton-proton collision is shown in Figure 11. In

the figure, the hard process is shown in red, ISR and FSR are shown in blue, the hadronization

is shown in green, decays and QED Bremsstrahlung of unstable hadrons are shown in yellow and

dark green, respectively, and interactions between the proton remnants are shown in purple.

MC programs that can simulate all these processes are called general purpose MC event

generators. Two general purpose MC generators are used in this thesis: pythia [65, 66] and

herwig++ [67, 68]. These generators calculate the matrix elements of the hard processes

of the SM and various NP models at LO. For QCD, these generators calculate the LO matrix

elements of the 2 → 2 process, which are then combined with the parton shower (PS) to include

the ISR and FSR effects.

The Parton Shower Method: Parton Shower (PS) is a method used in MC event gen-

erators to simulate the FSR and ISR effects. It makes use of the splitting functions Pab(z) as

described in Section 2.1.3. The probability for the parton branching process a → bc, Pa→bc,

can be written as

dPa→bc =
dθ

θ
dzPab(z) (2.21)

where the two partons are separated by an angle θ. Using this probability, a cascade of splittings

can be constructed, where at each splitting the 4-momentum of the incoming parton is shared

by the outgoing partons. The PS method is different from a full high-order pQCD calculation

in that in the PS method loop diagrams are not included. The PS method continues to produce

partons from the secondary emissions until the partons reach the energy scale of ∼1GeV, at

which point, αs becomes too large and the PS calculation are no longer applicable. The PS for
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the ISR and FSR are treated separately. Since the matrix elements are calculated first, ISR is

typically propagated backward in time from the hard process, while FSR is propagated forward

in time.

Hadronization: At energy scales below 1GeV, the hadronization process takes over. This

process is parametrized using phenomenological models in the MC event generators. The

hadronization models employed by pythia and herwig++ are the Lund string model [69]

and the cluster model [70], respectively.

Underlying Event: UE is included using phenomenological models based upon multiple

parton interactions (MPI) [71–74]. The parameters in the MPI models cannot be determined

from first principles, and must be determined using data. Each set of these parameters is called

a Tune. The Tunes used in this thesis are Tune CUETP8M1 [75, 76] for pythia and Tune

CUETHS1 [76, 77] for herwig++.

While the general purpose MC generators only calculate the LO matrix elements for the

simplest processes (e.g., the QCD 2→2 process), there exist generators that can calculate

higher-order matrix elements. However, these generators need to interface with general pur-

pose MC generators to include the effects of FSR, ISR, hadronization, and UE. These gen-

erators are called matrix element generators. The matrix element generators used in this

thesis are MadGraph5_amc@nlo [78, 79], nlojet++ [80], cijet [81], and qbh [82]. Mad-

Graph5_amc@nlo can calculate the matrix elements for various SM and NP processes at LO

or NLO, depending on the process. For QCD, MadGraph5_amc@nlo can calculate the LO

matrix elements for 2 → 2 to 2 → 7 processes. Nlojet++ is able to calculate the NLO matrix
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element for QCD 2 → 3 process. The cijet and qbh programs are generators dedicated to the

CI and QBH models.

2.3 Jet Algorithms

In order to compare theoretical predictions from pQCD with experimental results, jet al-

gorithms need to be employed. The jet algorithms link together the final state stable particles

produced through the parton branching and hadronization processes to form a single object, a

jet, whose 4-momentum represents the 4-momentum of the outgoing parton.

An important requirement of a jet algorithm is to be collinear-safe, meaning that the split-

ting of a parton inside a jet into two collinear partons will not affect the jet properties. Jet

algorithms developed in the 1980s and 1990s, such as the cone algorithms [83] which cluster

particles based upon their locations with respect to an angular cone around a seed particle that

has energy above a given threshold, are not collinear-safe because the collinear splitting of the

jet seed could cause the seed pT to fall below the threshold, resulting in no jet being found.

This is illustrated in Figure 12 top.

Another important property of a jet algorithm is infrared-safety, which means the emission

of a low-energy parton from partons inside a jet will not affect the jet properties. The cone

algorithms are not infrared-safe as illustrated in Figure 12 bottom. As can be seen in the figure,

if the emitted gluon is above the seed threshold, the two jets from the outgoing partons can be

merged into one.

The sequential recombination algorithms [85–87] used in this thesis were developed in the

late 1990s and early 2000s, and satisfy the requirements of being collinear- and infrared-safe.
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Figure 12: An example of the infrared- and collinear-unsafety behaviors of the cone algorithms.
Top: the collinear splitting of the jet seed leads to the seed pT below seed threshold. Bottom:
the emission of a soft gluon leads to the merging of two jets [84].

These algorithms are based on an iterative method, in which the closest pair of objects (par-

ticles) are combined sequentially. In these algorithms, the following distance variables are

defined:

dij = min(p2p
T,i, p2p

T,j)
∆R2

ij

R2 (2.22)

and

diB = p2p
T,i, (2.23)
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where dij represents the distance between two objects labeled i and j, diB is the distance between

object i and the beam, and

∆R2
ij = (yi − yj)

2 + (φi − φj)
2. (2.24)

The distance dij is scaled by the parameter R, which is refered to as the jet size parameter. pT,

η, and φ are the jet’s transverse momentum, rapidity, and azimuthal angle, respectively (see

next section). The value of the power p in Equation 2.22 and Equation 2.23 can be +1 for the

kt [85], 0 for the Cambridge/Aachen (CA) [86], or -1 for the anti-kt [87] algorithm.

The sequential recombination jet algorithm proceeds as follows: first, dij values for each

(i,j) pair of the N input objects and diB values for each input object are computed. Then, the

minimum from all the dij and diB is found. If the minimum value is among the diB values,

the object i will be declared as a jet and the algorithm will start again using the rest of the

objects that have not been declared as jets. If the minimum value is not among the diB values,

the objects i and j with the minimum value of dij will be combined into a new object and the

algorithm will start again, with the new object replacing the objects i and j. The 4-momentum

of the new object will be the sum of the 4-momenta of objects i and j. The algorithm continues

to run until all the objects are clustered into jets. The workflow of the algorithm is illustrated

in Figure 13.

It is interesting to compare the shape of jets reconstructed by the kt, CA, and anti-kt

algorithms. The kt algorithm first clusters low-pT objects and create jets that have irregular-

shaped areas. The anti-kt algorithm, with p = −1, starts with the highest-pT objects and

produces jets that have much rounder shapes, similar to the jets from cone algorithms. The
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Figure 13: The workflow chart for the sequential recombination algorithm. The algorithm starts
with N objects (particles), which are given in the form of the 4-momentum pi, and produces K
jets [84].
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CA algorithm, with p = 0, combines the particles which are geometrically nearest to each other

and produces jets that are more round than those from the kt algorithm, but not as round as

those from the anti-kt algorithm. An example of the jet shapes produced by the kt, CA, and

anti-kt algorithms is shown in Figure 14. In the figure, the shaded jet areas are determined

by clustering additional large numbers of input objects which have negligible momentum and

uniformly distributed in the y-φ plane (“ghost particles”).

Figure 14: The jet areas for the kt, CA, and anti-kt jet algoritms [87].
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2.4 Dijet Angular Distributions

In this thesis, measurement of the dijet angular distributions is presented. Dijets are defined

as the two highest-pT jets produced in the collision. The dijet angular distributions probe the

dynamics of the underlying hard processes and can be used to confront the predictions of

pQCD and to search for signatures of NP. This section discusses the kinematics of dijet events

in proton-proton collisions.

2.4.1 The Kinematics of Dijet Events

An illustration of a dijet event in the partonic center-of-mass and lab (proton-proton) frames

is shown in Figure 15 left and right, respectively. In the figure, the z-axis is coincident with the

beam direction. The kinematics of such events can be described by either the Cartesian com-

ponents of the momenta, {px, py, pz}, or by the spherical components {θ, φ, p} of the momenta,

where φ is the azimuthal angle, θ is the polar angle with respect to the beam line, and p is the

magnitude of the momentum.

Assuming the transverse motion of the initial state partons and the parton radiations are

negligible, the two jets have to be back-to-back in the parton-parton center-of-mass frame. The

value of the polar angle θ? will be the same for both jets. However, since the longitudinal

momenta of the initial state partons are unknown and do not have to be equal to each other,

the center-of-mass frame is boosted in the z-direction. While pT and φ are invariant under

Lorentz boosts, but θ is not. Therefore, it is typical to replace θ with a quantity which has

better properties under Lorentz boosts when describing the kinematics of the proton-proton
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Figure 15: An illustration of a dijet event in the partonic center-of-mass (left) and lab (right)
frames.

collision events. Such a quantity is the rapidity, denoted as y. For a particle with 4-momentum

(px, py, pz, E), y is defined as

y =
1
2
ln E − pz

E + pz
= tanh−1(

pz
E
). (2.25)

The 4-momentum of the particle can then be expressed as

p = (mT cosh y, pT cos φ, pT sin φ, mT sinh y). (2.26)

The transverse mass mT is defined as mT
2 = pT

2 + m2, where m is the mass of the particle (or

jet). Although the rapidity itself is still not invariant under Lorentz boosts in the z-direction,

the difference between the rapidities for the two particles (or jets) is invariant.
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Related to the rapidity is the psuedo-rapidity η defined as:

η = − ln tan θ

2
. (2.27)

If the particle has zero mass, y is the same as η. Also, for highly relativistic particles, we can

approximate y with η. In such cases, the four-momentum of each outgoing parton (jet) can be

expressed as

p = pT(cosh η, cos φ, sin φ, sinh η). (2.28)

As this thesis considers only high-pT jets, the parton (jet) masses can be assumed to be negli-

gible. For the scattering of massless partons which are traveling collinear with the beam, the

longitudinal boost of the partonic center-of-mass frame with respect to the lab frame, yboost,

and θ? are obtained from the rapidities of the two jets from the two scattered partons by:

yboost =
1
2
(y1 + y2) and | cos θ?| = tanh y?, (2.29)

where y? =
1
2
|y1 − y2|, and ±y? are the rapidities of the two jets in the partonic center-of-mass

frame.

The center-of-mass energy for the colliding partons is equivalent to the invariant mass of

the dijets, i.e.,

ŝ = Mjj
2 = pµ

1 p2,µ. (2.30)
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Using Equation 2.28, we have

Mjj
2 = 4pT

2 cosh2 y?. (2.31)

The Mandelstam variables (Equation 2.16) t̂ and û can then be written in terms of Mjj and

cos θ? as

t̂ = −
1
2

Mjj
2(1 − cos θ?) (2.32)

û = −
1
2

Mjj
2(1 + cos θ?). (2.33)

2.4.2 The Dijet Angular Distributions

The dijet angular distribution is studied using the variable χdijet, defined as:

χdijet = e|y1−y2| =
1 + | cos θ?|

1 − | cos θ?|
=

û
t̂

. (2.34)

The choice of χdijet, rather than θ?, to measure the dijet angular distribution is motivated by

the fact that in Rutherford scattering, which is dominated by small angle scatterings, the χ

distribution is uniform. This follows from the fact that in Rutherford scattering, the angular

distribution has the following form:

dσ

d cos θ?
∝ 1

sin4 θ?

2

=
1

(1 − | cos θ?|)2 (2.35)
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which can be expressed in terms of χ as:

dσ

d cos θ?
∝ (χ + 1)2. (2.36)

The χ distribution can then be written as

dσ

dχ
=

dσ

d cos θ?
d cos θ?

dχ
= (

1
χ + 1

−
χ − 1

(χ + 1)2 )
dσ

d cos θ?
= Constant. (2.37)

Similarly, the χ distributions for the QCD 2 → 2 process are determined as

dσ

dχ
=

dσ

d cos θ?
d cos θ?

dχ
= 2π

dσ

dΩ

d cos θ?

dχ
=

1

(1 + χ)2
πα2

s
2ŝ

|M|
2. (2.38)

The LO |M2
| of the QCD 2 → 2 subprocesses, shown in Table III, can be expressed in terms of

χ as shown in Table IV. The |M2
| distributions divided by (1+χ)2, as a function of χ are shown

in Figure 16. In Figure 16, processes that have the same initial states are combined. The χ

distributions for nearly all the QCD subprocesses are relatively uniform in χ. The exception is

the gg → jj process, in which the contribution from the s-channel diagrams are large. This is

because s-channel diagram has an isotropic scattering angle distribution, i.e., dσ

d cos θ?
∼ 1, and

when multiplied by 1

(1 + χ)2 , a peak is produced at low χ since 1

(1 + χ)2 peaks at low χ.

The cross sections for NP processes are typically dominated by the contribution from the

s-channel diagram (see the previous chapter) and therefore will produce an excess in the χdijet

distribution at low χdijet relative to the prediction from QCD. This excess signifies the presence
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Subprocess |M|
2

qq
′
(q̄

′
) → qq

′
(q̄

′
)

4
9
[(χ + 1)2 + χ2]

qq → qq
4
9
[(2χ2 + 2χ + 2 +

2
χ
+

2

χ2 ) −
2
3
(χ + 2 +

1
χ
)]

qq̄ → q
′
q̄

′ 4
9
[

1 + χ2

(1 + χ)2 ]

qq̄ → qq̄
4
9
[(χ + 1)2 + χ2 +

1 + χ2

(1 + χ)2 +
2
3

χ2

(1 + χ)
]

qq̄ → gg
32
27

[χ +
1
χ
−

9
4

1 + χ2

(1 + χ)2 ]

qg → qg
4
9
[1 +

1
χ
+

χ

1 + χ
+

9
4
(2χ + 1 + 2χ2)]

gg → qq̄
1
6
[χ +

1
χ
−

9
4

1 + χ2

(1 + χ)2 ]

gg → gg
9
2
[3 + χ2 + χ +

1
χ
+

1

χ2 −
χ

(1 + χ)2 ]

TABLE IV: The square of the LO matrix element for the QCD 2 → 2 subprocesses expressed
in χ.

of NP. This is illustrated in Figure 17. The MC generator predictions of the χdijet distributions

in QCD and NP models will be presented in Chapter 7.

Previous Experimental Results Measurements of dijet angular distributions at the SppS

by the UA1 Collaboration [13], at the Fermilab Tevatron by the CDF [16, 17] and D0 [18, 20, 21]

Collaborations, and at the LHC by the ATLAS [22–27] and CMS [29, 30, 32, 33] Collabora-

tions have previously been reported. The most recent measurement performed by the CMS
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Figure 16: The square of the LO matrix element for the QCD 2 → 2 subprocesses, expressed
in χ, and divided by (1 + χ)2. For subprocesses which have the same initial states, the matrix
elements are combined.

Collaboration used 3 fb−1 of proton-proton collision data at
√

s = 13TeV [33], and was used to

constrain the quark CI, ADD, and QBH models.
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Figure 17: An illustration of the χ distributions from Rutherford scattering, QCD, and NP
models. NP models, which have a more isotropic scattering angle distribution than those given
by QCD, can be identified as an excess at small values of χ.



CHAPTER 3

THE LARGE HADRON COLLIDER AND THE COMPACT MUON

SOLENOID DETECTOR

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [3], built by the European Organization for Nuclear

Research (CERN), is the largest and most powerful particle accelerator in the world. It is

located near Geneva, Switzerland and is contained in a 27 km circular tunnel buried 40–175 m

beneath the ground (see Figure 18).

Inside the tunnel, two beams of charged particles travel in separate beampipes and opposite

directions with velocities close to the speed of light. The beampipes are surrounded by super-

conducting magnets, mainly dipoles and quadrupoles, which focus and accelerate the particles

and guide them around the accelerator. Depending on the mode of operation, the particle

beams consist of either protons or lead-ions. The design beam energies are 7 TeV and 2.76

TeV per nucleon for proton beams and Pb beams, respectively. For head-on collisions of two

beams with equal energy and traveling in opposite directions, the center-of-mass energy for the

collisions (
√

s) is twice the beam energy.

The proton beams are created by putting hydrogen gas in an electric field and stripping

away the electrons. The beams are then accelerated to the energy of 450 GeV in a series of

pre-acceleration steps before they are finally injected into the LHC and brought to 7 TeV. The

53
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Figure 18: The LHC accelerator and detectors at the LHC.

pre-acceleration steps are performed in accelerators including the linear accelerator (LINAC),

which focuses protons to form proton beams and accelerates the beams to the energy of 50 MeV,

the Proton Synchrotron Booster, which accelerates the beams to the energy of 1.4 GeV, the

Proton Synchrotron, which brings the beams to the energy of 26 GeV, and the Super Proton

Synchrotron, where the beams reach the energy of 450 GeV.

There are four points along the accelerator ring where the beampipes cross, and particles

are brought to collide. These points are called the interaction points (IPs). Four major experi-

ments are installed at the 4 IPs (as can be seen in Figure 18). The ATLAS (A Toroidal LHC
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ApparatuS) and CMS (Compact Muon Solenoid) experiments are general-purpose detectors

which are designed to study a broad range of physical phenomena. The LHCb (Large Hadron

Collider beauty) Experiment aims to study the decays of B-mesons with high precision and

high statistics. ALICE (A Large Ion Collider Experiment) focuses on the investigation of heavy

ion collisions.

The proton beams are split up into discrete packets called “bunches”, which are separated

by 7.5 m. This implies that the collisions happen every 25 ns (i.e., 25ns∼7.5m/c where c is

the speed of light), and the maximum number of bunches in the LHC tunnel is 2808. The

bunches are formed in the Radio Frequency Cavities in the LINAC. For proton beams, each

bunch contains about 1011 protons.

The instantaneous luminosity, L, characterizes the proton-proton collision rate, and is ex-

pressed as:

L =
N1N2Nbγ f F

4πσ2 , (3.1)

where N1 and N2 are the number of particles in beam 1 and beam 2, Nb is the number of

bunches per beam, f is the orbit frequency, F is the geometric luminosity reduction factor due

to the crossing angle at the IPs, and σ is the cross sectional area of the beam. The instantaneous

luminosity is expressed in units of inverse cross section per second, typically Hz/nb, Hz/pb, or

Hz/fb.

For a process with cross section σ, the interaction rate can be expressed as:

dNev
dt

= Lσ. (3.2)
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The total number of interaction events in a period of running time of the collider is called the

integrated luminosity L and is given by:

L =

∫
Ldt. (3.3)

To increase the event rate for rare processes, the LHC operates in high luminosity conditions.

An important consideration in the high luminosity environment is the number of instantaneous

collisions per bunch crossing (pileup). The number of pileup events Npileup can be determined

as:

Npileup = Lσpp · d, (3.4)

where L is the instantaneous luminosity, σpp = 70 mb (10−27 cm2) is the inelastic proton-proton

collision cross section, and d is the bunch spacing.
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Figure 19: The instantaneous luminosity (left) and integrated luminosity (right) for the LHC
in 2016.
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The first LHC proton-proton collision run (Run I) took place from March 2010 to April

2013. In the first part of the run, the collision energy was 7TeV, and later it was increased

to 8 TeV. The instantaneous luminosity ranged from about 0.1 to 5 Hz · nb−1. In Run I, the

LHC delivered data corresponding to the integrated luminosities of 6 fb−1 at
√

s = 7 and 23

fb−1 at
√

s = 8TeV. Using the Run I data, the CMS and ATLAS collaborations independently

made one of the most significant scientific discovery in the last several decades, the Higgs

Boson [1, 2, 88]. After Run I, the LHC went into a two-year long shutdown (LS1). During the

shutdown, various upgrades were made to the accelerator which allowed the LHC to increase

the collision energy to 13 TeV and double the instantaneous luminosity achieved in Run I. The

LHC began the Run II in April 2015. The instantaneous and integrated luminosities for the

LHC in 2016 are shown in Figure 19. The analysis for this thesis is performed using data

collected by the CMS experiment in 2016 that correspond to an integrated luminosity of 35.9

fb−1.

3.2 The Compact Muon Solenoid Detector

The CMS Detector [89], located in Cessy France, is a general purpose detector optimized

to discover the Higgs Boson and search for new physics at the LHC. It is 21.6 m long and 14.6

m in diameter and weighs 14,000 tonnes.

A central element of the CMS detector is a superconducting solenoid of 12.5 m long and

6 m internal diameter, providing an axial magnetic field with a magnitude of 3.8 T, and an

iron yoke to return the flux of the magnetic field. It is the most powerful magnetic solenoid

in the world. The trajectory of charged particles emerging from high-energy collisions at the
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LHC will be bent in the magnetic field. The high field strength allows CMS to use a relatively

compact detector design in combination with the high-granularity tracker and muon detectors

to achieve an accurate measurement of the momentum of high-energy charged particles.

The CMS sub-detectors consist of a pixel and strip tracker, an electromagnetic calorimeter

(ECAL), a hadronic calorimeter (HCAL), and muon detectors. These detectors are arranged as

concentric cylinders around the beam line (“barrel”), with “endcap” disks arranged orthogonally

to the beam at both ends of the barrel.

The CMS detector is designed to identify electrons, muons, photons, and charged and neutral

hadrons, and measure the energy and momentum of these particles with good precision. The

layout of the CMS detector can be seen in Figure 20. The signatures for different types of

particles in the CMS detector is shown in Figure 21. The trajectories of charged particles are

recorded by the tracker. The electrons and photons deposit most of their energies in ECAL,

while hadrons deposit most of their energies in the HCAL. Muons are identified in the tracker

and muon chambers. Neutrinos and other weakly interacting particles, (e.g., DM particles), do

not interact with the CMS detectors and therefore cannot be identified directly. Instead, their

presence can be inferred indirectly by measuring the total unconserved transverse momentum in

each event (Emiss
T ), given the fact that the energies and momentums for other particles produced

in the event can be well determined and the nearly 4π solid angle coverage of the detector.

The details of the trackers, calorimeters, and muon detectors are described in the following

subsections.
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Figure 20: The layout of the CMS Detector.

The CMS coordinate system is centered at the nominal collision point with the z-axis parallel

to the beam. The x-axis and y-axis are in the plane transverse to the z-axis. The x-axis points

towards the center of the LHC ring and the y-axis points in the upward direction. The azimuthal

angle φ is measured from the x-axis in the x-y plane and the polar angle θ is measured from the z-

axis. The pseudorapidity, η, is commonly used to map the polar angle, where η = − ln[tan(θ/2)]

(see Chapter 2).
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Figure 21: A slice of the CMS detector in the x-y plane, illustrating the signatures for different
types of particles in the detector.

3.2.1 The Tracker

The CMS tracker is designed to measure the position and momentum of charged particles

as well as to determine the vertex position for each collision. It is the detector located closest

to the beam. And as such it has to deal with high particle flux and radiation damages. In

addition, the tracker has to be lightweight such that particles passing through the tracker will

only lose little amount of energy before they reach the calorimeters, where their energies will

be measured. Becuase of these considerations, the CMS tracker is made up of layers of a silicon

pixel detector located nearest to the IP, followed by the silicon strip detector. A charged particle
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passing through the detectors will produce “hits” in the modules where the sensors register a

signal induced by the ionization electrons from the particle.

The determination of the momentum of charged particles can be performed by measuring the

bending of the particle trajectories (tracks) in the magnetic field. As illustrated in Figure 22, the

momentum of a charged particle in the transverse plane, pT, can be expressed as pT = eB · R,

where B is the magnetic field and R is the bending radius, which is obtained by fitting the

hits in each layer of the tracker. The momentum resolution of the measurement is therefore

proportional to the spatial resolution of the detector. This is another reason that the CMS

tracker is built to have very high granularity.

Figure 22: An illustration of a measurement of the momentum of a charged particle.

As mentioned above, the inner part of the CMS tracker is the pixel detector. It had 1440

pixel detector modules distributed in 3 (2) layers in LHC Run I, and it was upgraded in 2016
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and 2017 to have 1856 modules in 4 (3) layers in the barrel (endcap) region. The total number

of pixels in the upgraded detector is 124 million. The 3 barrel layers are located at radii of 4

to 11 cm from the beam line. Each pixel module has a size of 100×150 µm2, and a thickness

of 250 µm2, providing a position resolution of 10–20 µm, depending on η.

The strip tracker is located just outside of the pixel tracker, at radii of 20 cm to 110 cm.

The size of each strip module is 10–25 cm in lengthand 80–180 µm in width, depending on

the distance between the module and the interaction point. There are ∼15000 strip modules

distributed in 13 layers in the barrel and 14 layers in the endcaps. The position resolution of

the strip tracker is 20–40 µm, depending on η.

Figure 23: Schematic cross section view of the CMS tracker in the x-y plane and positive z
direction in LHC Run I. In 2016 and 2017, the endcap and barrel pixel tracker were upgraded
to have 3 and 4 layers, respectively.
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Overall, the tracker covers |η| < 2.5. The layout of the CMS tracker can be seen in Figure 23.

The pT resolution of reconstructed tracks [90] at |η| = 0 is 1.5% at 10 GeV and 2.0% at 100

GeV [91]. The resolution deteriorates with increasing |η|. The vertex [90] position resolution is

20 (25) µm for vertices with 30 associated tracks in x or y (z) direction [91].

3.2.2 The Calorimeter Detectors

Calorimeters are destructive detectors that are designed to measure the energy and position

of the incident particle by absorbing all the energy of the particle. When the particles interact

with the material of the detector, cascades of secondary particles (particle showers) are produced

until all the secondary particles are fully stopped and absorbed in the material. To ensure that

all the particle energy is deposited within the detector volume, the calorimeters are made of

dense materials.

There are two types of particle showers, electromagnetic and hadronic showers. Electromag-

netic showers are produced when electrons, positrons, and photons interact with the calorimeter

detector. The showers develop through the processes of bremsstrahlung and pair production,

since in most materials, bremsstrahlung and pair production are the dominant processes for

electrons (and positrons) and photons to loose energy, respectively, with energies above a few

tens MeV. The radiation length of a given material is defined as the mean length needed to

reduce the energy of a high energy electron by the factor 1/e due to bremsstrahlung, or 7/9 of

the mean free path for photon pair production in that material. It characterizes the longitudinal

development of the electromagnetic shower. The lateral spread of an electromagnetic shower

is governed mainly by the multiple scattering of the low-energy electrons in the shower and is
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characterized by Moliere radius, which is defined as the radius of a cylinder which has the same

axis as the shower axis and contains on average 90% of the electromagnetic shower’s energy.

The development of hadronic showers is initiated by nuclear inelastic collisions of the incom-

ing hadrons with the detector material. Hadronic showers are produced when hadronic particles

such as pions, protons, and neutrons interact with the detector. An important property of the

detector material is the nuclear interaction length, which is the mean length needed to reduce

the energy of a hadron by a fraction of 1/e. Like the radiation length, it is used to characterize

the longitudinal development of a hadronic shower in the material. The lateral spread of hadron

showers are caused by large transverse momentum transfers in nuclear interactions and is much

larger than the lateral spread of electromagnetic showers.

There are two types of calorimeters, homogeneous calorimeters, in which a single material

serves as both the active material (the material which produces the electronic signal) and

absorber, and sampling calorimeters, which are made of repeating layers of absorbing and

active materials. The shower energy is measured using the active material (e.g., liquid argon,

plastic scintillator, etc.) in the detector. The CMS calorimeter uses scintillators as the active

material. When ionizing particles pass through scintillator material, they excite the electrons

in the atoms of the material and then photons are emitted, typically near the blue end of

the visible spectrum, when the atoms return to their ground states. This process is called

scintillation. The scintillation photons are then collected by photodetectors, and the number

of photons are proportional to the amount of energy deposited by the ionizing particles.
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The intrinsic energy resolution of the calorimeters is typically parametrized by:

(
σ(E)

E
)2 = (

S
√

E
E

)2 + (
N
E
)2 + C2, (3.5)

where the first term is the stochastic term, the second term is the noise term, and the third

term is the constant term. As the energy detected is proportional to the number of particles

produced in a shower, the stochastic term represents the statistical fluctuations of the number

of particles in the shower and is proportional to square root of the energy. The stochastic term

for homogeneous calorimeters is in general smaller compared to those for sampling calorimeters

since in sampling calorimeters, many of the particles in the shower are produced in the absorbing

material and they are not detected. The main contribution to the noise term comes from readout

electronic noise. The contribution to the constant term comes from the nonuniformity of the

detectors due to imperfections in the detector mechanical structure, radiation damage, detector

aging, etc.

The CMS calorimeter consists of an ECAL which is optimized to measure the energy of

electrons and photons, and an HCAL, which is optimized to measure the energy of hadrons.

The components of the detectors are described below.

3.2.2.1 The Electromagnetic Calorimeter

The ECAL is made up of 61200 lead tungstate crystals (PbWO4) in the barrel region and

7324 crystals in each of the two endcap disks. The inner surface of the electromagnetic barrel

(EB) calorimeter is located 129 cm away from the beam line, and the electromagnetic endcap
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(EE) calorimeter is located 315 cm away from the nominal interaction point. It is a homoge-

neous detector, where each of the PbWO4 crystals serve as both absorber and scintillator. A

photodetector is attached to the back of each crystal to collect scintillator light.

The PbWO4 crystals have a radiation length of 0.89 cm, Moliere radius of 2.2 cm, and

nuclear interaction length of 19.5 cm. Each of the crystals has a length of ∼23 cm, equivalent to

∼25 radiation lengths. This is sufficient to contain 98% of the depth of electromagnetic showers

created by electrons of 1 TeV energy. The crystals have cross-sectional areas of 2.2×2.2 and

2.9×2.9 cm2 in EB and EE, respectively. These cross-sectional areas correspond to a granularity

in η − φ plane of ∆η × ∆φ = 0.0174 × 0.0174.

To discriminate isolated photons from high energy neutral pions, which often decay into

two photons in close spatial proximity and can mimic an isolated photon signal in the ECAL,

a high granularity endcap preshower (ES) detector made of lead and silicon sensors is installed

in front of the EE.

Overall, the CMS ECAL covers |η| < 3.0. A schematic view of the CMS ECAL can be

seen in Figure 24. Because the CMS ECAL is a homogeneous calorimeter, it has good energy

resolution. In a test beam study, S, N, and C in Equation 3.5 for a 3×3 crystals array in EB

were measured to be 2.8%, 12%, and 0.3%, respectively, for electrons with energy less than

500GeV [89]. In a study using the Z → e+e− events at
√

s = 13 TeV, the single electron energy

resolution is found to be between 1 and 5 %, depending on η and the energy [92].
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Figure 24: Schematic cross-sectional view of the CMS ECAL in the x-y plane and positive z
direction.

3.2.2.2 The Hadronic Calorimeter

The HCAL is important for the identification of jets and the measurement of jet energies

and event Emiss
T . For most materials, the nuclear interaction length is much larger than the

radiation length. Therefore, to keep the construction cost reasonable, HCALs are usually built

as sampling calorimeters. The CMS HCAL consists of 4 sub-detectors, the hadronic barrel (HB)

calorimeter, hadronic endcap (HE) calorimeter, hadronic outer (HO) calorimeter, and hadronic

forward (HF) calorimeter. The layout of the HCAL in CMS detector can be seen in Figure 25.

The HB is located just outside of the ECAL and inside the magnet with inner radius 177 cm

from the beamline and outer radius 295 cm and it covers |η| < 1.3. The two HE disks, placed 4

m away from the interaction point, cover 1.3 < |η| < 3.0. The HB and HE use brass as absorber

and plastic tiles as scintillator. Brass has a radiation length of 1.5 cm and interaction length



68

Figure 25: Schematic of the CMS Detector in the x-y plane and positive z direction, illustrating
the layout of the HCAL detectors.

of 16.4 cm. The total absorber thickness is 5.6 interaction lengths at small-|η| and increases to

10.3 with increasing |η|. The granularities for HB and HE are about ∆η × ∆φ = 0.087 × 0.087

in |η| < 1.6 and ∆η ×∆φ = 0.175 × 0.175 in 1.6 < |η| < 3.0. Each segment in HCAL is aligned

with 5×5 crystals in ECAL.

The HO is placed outside of the magnet. It is built to detect the energy of showers that

leak out of the back of the HB. The HO uses the magnet as the absorbing medium and plastic

tiles as scintillator, extending the total absorber thickness in the barrel region to 10 interaction

lengths.
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The HF calorimeter extends the η coverage of the CMS calorimeters to 3.0 < |η| < 5.0. It

uses steel as absorber and quartz fibers as the sensitive material. When high-energy charged

particles penetrate the HF, Cherenkov light is emitted in the quartz fiber and then collected

by photodetectors that create electronic signals. Two different lengths of quartz fibers are

used in the detector, long fibers with length 165 cm, or approximately 10 interaction lengths,

and short fibers with length 143 cm and start at a depth of 22 cm from the front of the

detector. The two fiber lengths provide the ability to distinguish electromagnetic and hadronic

showers: electromagnetic showers typically deposit most of their energy in the long fibers, while

hadronic showers deposit their energy in both the long and short fibers. The HF calorimeter

has a granularity of ∆η × ∆φ = 0.175 × 0.175, similar to the granularity of the HE.

The hadronic energy resolution can be parametrized in a similar fashion as the electro-

magnetic energy resolution. In a test beam study which contained both HCAL and ECAL

modules [93], S and N in Equation 3.5 for the hadronic energy resolution are 85% (198%) and

7% (9%) in the barrel (endcaps), respectively. The noise term is negligible compared to the

stochastic and constant terms.

3.2.3 The Muon Chambers

Muons are elementary particles that are very similar to electrons but have a mass that is

207 times that of the electron. Because of its heavy mass, muon bremsstrahlung is heavily

suppressed compared to electrons bremsstrahlung, and therefore muons mainly interact with

the detector via ionization and can penetrate the CMS calorimeters with very little energy loss.
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The muon detectors can therefore be placed outside of the calorimeters, and with the 1.8 T

field in the return yolk of the magnet, the muon momenta can be measured.

The muon detector consists of 1400 gaseous chambers: 250 drift tubes (DTs) and 540 cathode

strip chambers (CSCs) track the particles’ positions in barrel and endcap, respectively. Resistive

plate chambers (RPCs) are installed in between DT and CSC layers to provide precision timing

measurements. The muon chambers cover |η| < 2.4 and are located within the return york.

The overall layout of the CMS muon chambers can be seen in Figure 26.

Figure 26: Layout of the CMS muons chambers in the x-y plane and positive z direction.
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The algorithm used to measure the muon momentum in the muon chambers is similar to the

algorithm used for the tracker. The best muon momentum resolution is obtained by combining

the tracks in muon chambers and tracker.



CHAPTER 4

THE CMS TRIGGER SYSTEM

At design luminosity, the proton-proton collision rate at the LHC exceeds 1 GHz. As each

recorded event has a size of ∼1 MB, it is not feasible to save every event for later processing.

However, only a small fraction of these events are of interest to the CMS physics program, and

therefore, the experiment employs a sophisticated trigger system that identifies the interesting

events for later processing at runtime and thereby reduces the rate of events written to tape to

a manageable level. As indicated in Figure 27, the event rate for interesting physics processes

(e.g., production of Higgs bosons, high-pT jets, etc.) are orders of magnitudes lower than the

total event rate at the LHC.

The CMS trigger is a two-tiered system, with a Level-1 Trigger (L1T) and a high-level

trigger (HLT) [94]. A schematic view of the CMS trigger system is shown in Figure 28. During

data taking, the CMS sub-detectors read out collision events every 25 ns. The signals in the

sub-detectors are digitized in the front-end electronics, and the data are temporarily stored in

the readout buffers. At the same time, a copy of the data from the calorimeters and muon

detectors is sent to the L1T, and the L1T runs its selection algorithms on the data to decide

if the event worth saving or not. If so, the event, including the data from the tracker, is sent

to the HLT via a switch network system for further processing. Events that pass the HLT

selection algorithms are written to the CMS storage disks for offline physics analysis. Events

which don’t pass the L1T or HLT selections are dumped from the buffers immediately.

72



73

Figure 27: The cross section and event rate for various physical processes at different collision
energies.

The L1T is a hardware system based on customized electronics with a fixed latency of 3.2

µs. It has to decide if an event is interesting or not within this latency. The latency is limited

by the size of the readout buffer. The L1T reduces the data rate from the total collision rate

of 1 GHz to about 100 kHz.
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Figure 28: Schematic view of the two-tiered CMS trigger system.

In 2015 and 2016, CMS performed an upgrade on the L1T [95] in order to accommodate the

high luminosity environment expected by LHC in Run II. The upgrade was done to maintain

the acceptance rate of interesting events below the 100 kHz rate limit, and it was completed in

two stages, called Stage-1 and Stage-2 in early 2015 and early 2016, respectively. The Stage-1

upgrade only updated the Calorimeter Trigger, and was used only for data taking in 2015. The

Stage-2 upgrade updated all the trigger sub-systems, including the Stage-1 Calorimeter Trigger,

and was used for data taking from 2016 onward.

The HLT hardware is made of a processor farm composed of ∼20,000 Central Processing

Unit (CPU) cores. It has a latency of ∼100 ms and further reduces the event rate from 100 kHz

to ∼1 kHz. The HLT latency and rate are limited by the offline mass storage and computing

resources.
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Detailed descriptions of the Stage-2 upgraded L1T and the HLT systems are presented in

the following sections. The Stage-1 system will not be discussed as it is not used in this analysis.

A brief discussion of the CMS offline computing system will also be provided at the end of this

chapter.

4.1 The Level-1 Trigger

At the first step in the trigger processing chain, trigger primitives (TPs) are generated from

the energy deposits in the ECAL and HCAL and from the hit patterns in the muon system.

The TPs are processed to form trigger objects (jets, e/γ’s, etc.), which are then sent to the

Global Trigger (GT) and a decision is made on whether to accept the event or not. A schematic

view of the upgraded L1T is in Figure 29.

The upgraded L1T hardware is based on the µTCA (Micro Telecommunication Computing

Architecture) telecommunication standard. The trigger boards include the Calorimeter Trigger

Processor-7 (CPT7), Master Processor-7 (MP7), and Muon Track Finder-7 (MTF7) boards

featured with Xilinx Virtex-7 Field-Programmable Gate Arrays (FPGAs). These FPGAs allow

the implementation of sophisticated reconstruction algorithms to improve the position and

energy resolutions for the reconstructed physics objects in L1T. The reconstruction algorithms

lead to significant reductions in the trigger rates in Run II. More details of the L1T sub-systems

and the L1T reconstruction algorithms are discussed in the following sub-sections.

4.1.1 The Level-1 Calorimeter Trigger

The L1 Calorimeter Trigger uses the ECAL and HCAL TPs to reconstruct jets, e/γ objects,

τ leptons, and energy sums. The ECAL TPs are formed from the transverse energy detected
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Figure 29: Schematic view of the L1T.

in 5×5 blocks of crystals to form a trigger tower (TT) and converted to optical format by

the optical Serial Link Board (oSLB) at the ECAL front-end. Similarly, the transverse energy

detected in the HCAL segments forms the HCAL TPs. The HCAL TPs are received by the

L1 Calorimeter Trigger on fibers at the Micro HCAL Trigger and Readout (µHTR) boards.

Each HCAL segment corresponds to a TT. The ECAL and HCAL TTs have a η-φ coverage of

0.087×0.087 in the barrel region (|η| < 1.5) and larger in the endcaps.



77

The L1 Calorimeter Trigger has a time-multiplexing architecture as illustrated in Figure 30.

The first layer, Layer-1, consists of 18 CTP7 boards, performs pre-processing and data format-

ting. Each pre-processing board requires only a regional view of the detector. The outputs of

the Layer-1 corresponding to one event are sent to a single processing node, an MP7 board,

in the second layer, Layer-2. The Layer-2 consists of 9 MP7 boards. Each MP7 board has

access to information at trigger tower granularity. It finds particle candidates and computes

the transverse energy (ET) for each of the candidates, as well as the global energy sums and

Emiss
T . The outputs of the Layer-2 are sent to a demultiplexer board, an MP7, which formats

the data for the muon trigger and GT. As mentioned above, CPT7 and MP7 boards are µTCA

modules featuring Xilinx Virtex-7 FPGAs.

4.1.1.1 The Level-1 Trigger e/γ and τ Reconstruction Algorithms

The e/γ reconstruction algorithm is based on clusters of TTs as illustrated in Figure 31.

The clusters are seeded by a single TT that has a local maximum of ECAL transverse energy

above a predetermined threshold (the red TT in Figure 31). The local maximum is found in

an 11 TT region within a 3×5 TT window in the the η×φ directions, excluding the four TTs

in the corners of the window. The first and second neighboring towers (the orange and yellow

TTs in Figure 31) surrounding the seed are grouped to form a cluster. To reduce the impact

of the energy deposits from pileup interactions, the maximum size of each cluster is limited to

8 TTs within a 2×5 window in the η×φ directions. The motivation of restricting the cluster

within the 2×5 window is that electromagnetic showers do not spread more than 2 TTs in the

η-direction, while they can spread up to 5 TTs in the φ-direction due to the magnetic field.
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Figure 30: The L1 Calorimeter Trigger layout.

Additional background rejection is achieved by applying vetos to the shape of the clusters. The

energy of each reconstructed cluster is calculated as the sum of all the energies in the cluster.

The cluster position is determined from the energy-weighted average center of the TTs that

make up the cluster. The e/γ candidates are classified as either isolated or non-isolated.

The isolation of the e/γ candidates is based on the energy within a 5×9 TT region in η×φ

directions, around the seed in both ECAL and HCAL, excluding the TTs that contain the

footprint of the candidate. If the energy sum in the region is below a given threshold, the
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candidate is defined as isolated. The threshold is a function of η and the number of pileup

interactions and is determined from studies of zero bias data, which contain events selected by

a zero bias trigger that has no selection criteria imposed on the trigger objects.

Figure 31: An illustration of the L1T electron and photon reconstruction algorithm. A can-
didate is formed by clustering a seed TT (red) with neighbor TTs (orange and yellow). The
isolation criterion is based on the sum of the energies in the isolation region (blue) in ECAL
and HCAL. The isolation region is formed as a 5×9 TT region around the seed. The TTs that
contain the footprint of the candidate (white) are excluded.

Hadronically decaying τ leptons can be identified and reconstructed efficiently by the L1T.

The identification and reconstruction algorithm for τ leptons is similar to the algorithms used

for the e/γ candidates. Two neighboring clusters in the φ-direction are allowed to merge to
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reconstruct multi-prong decaying τ leptons. The decay products of the τ leptons produce

clusters that have different shapes to those for electrons and photons, allowing τ leptons being

identified. The isolation criterion is also developed in the same manner but larger isolation

region as those for the e/γ candidates.

4.1.1.2 The Level-1 Trigger Jet and Energy Sums Reconstruction Algorithms

The jet reconstruction algorithm is based on a 9×9 TT sliding window algorithm centered

on a local maximum as illustrated in Figure 32. The size of the windows is chosen so that

the jet size roughly matches the size from the offline jet reconstruction algorithm. To avoid

double-counting of the jets, in cases where two towers in the region have the same energy, the

energy of neighboring TTs must satisfy the inequalities shown in Figure 32. The jet energy is

calculated as the sum of the energies in all the TTs in the 9×9 TT window. The position of

the jet is assigned to the center of the window. Additional energy due to pileup is removed

using the “chunky donut” technique. In this technique, the energy of each of the four 3×9

TT regions surrounding the jet window is calculated, as illustrated in Figure 32, and the total

energy constructed from the energies of the three regions with the lowest 3×9 TT energies is

calculated and subtracted from the jet energy. The energy from the most energetic 3×9 TT

region is not used to prevent overestimating the pileup energy in cases where there is another

high-energy jet nearby.

The jet reconstruction algorithm is implemented to have performance as close to those used

in offline as possible. A comparison of the ET’s reconstructed from L1T and offline in various
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Figure 32: An illustration of the L1T jet reconstruction algorithm. A jet is reconstructed
based on a 9×9 TT sliding window (blue) algorithm centered on a local maximum (green).
The pileup energies are mitigated by subtracting the energy sums in the three of the four 3×9
PileUp Subtraction (PUS) regions (magenta) that have the lowest energies. To avoid double-
counting of the jets, in cases where two towers in the region have the same energy, the energy
of neighboring TTs must satisfy the inequalities shown in the veto (purple) and mask (blue)
regions.
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pileup conditions are shown in Figure 33. As can be seen in the figure, the ET of the jets

reconstructed in the L1T agrees well with the ET of the jets reconstructed in offline.
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Figure 33: A comparison of the jets ET from L1T and offline reconstructions in a various of
pileup conditions (left).

Three types of energy sum algorithms are computed at the L1 Calorimeter Trigger: HT,

the scalar sum of jet ET’s for jets with |η| < 3.0 and ET > 30 GeV; ET, the scalar sum of the

trigger towers with |η| < 5.0; and Emiss
T , the vector sum of the trigger towers with |η| < 3.0.

4.1.2 The Level-1 Muon Trigger

Similar to the calorimeter trigger, the upgraded L1 muon trigger consists of two layers: the

muon track finding layer and the Micro Global Muon Trigger (µGMT). The muon track finding

layer is partitioned into three components which are dedicated to finding muons in the barrel,

endcap, and overlap regions. The track finders receive TPs from the muon detectors and assign



83

pT values to the muon tracks. The track finders then send the muon candidates to the µGMT

which removes duplicates across the track finder boundaries and ranks the muon candidates

according to criteria based upon pT and quality before sending them to the GT.

The barrel muon track finder (BMTF) covers |η| < 0.8. It receives TPs from the DT and

RPC. The endcap muon track finder (EMTF) receives TPs from CSC and RPC and covers

1.2 < |η| < 2.5. The overlap muon track finder (OMTP) receives TPs from all the three muon

detectors and covers 0.8 < |η| < 1.2. The processor boards used for track finders are MP7s

for BMTF and MTF7s for OMTF and EMTF. All the processing boards are connected to the

detector front-end electronics via optical links. The µGMT uses CPT7 boards as the processing

broads.

The track finders create muon candidates by searching for track segments in adjacent muon

detector modules compatible with a muon originating from the interaction point. Quality values

based upon the number of track segments found are assigned to each of the muon candidates.

The pT values of the muon candidates are assigned based on the output from a Boosted Decision

Tree (BDT). The BDT takes the kinematic information of the muon candidates and estimates

the muon transverse momenta using regression analysis. The BDT is trained using Monte Carlo

(MC) events and implemented via the lookup tables in the MTF7 boards.

The µGMT receives muon candidates from the track finders, as well as values of energies

for each 2×2 and 5×5 TT regions from the demultiplexer board of the Layer-2 Calorimeter

Trigger. These values are used to determine the muon isolations.
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4.1.3 The Level-1 Global Trigger

The upgraded L1 GT, which is called the Micro GT (µGT), is the final step in the L1 Trigger

decision chain. The µGT hardware consists of two MP7 boards. The µGT takes as inputs the

energy and position information of the physics objects reconstructed in the calorimeter and

muon triggers and makes the final decision on whether or not to send the event to the HLT based

on the results from a set of trigger selection algorithms. The trigger algorithms include single-

object and multi-object algorithms. An example of a single-object algorithm is SingleJet450

which requires a jet with pT greater than 450 GeV. An example of a multi-object algorithm is

EG30_Mu45 which requires an e/γ candidate with pT greater than 30 GeV and a muon with

pT greater than 45 GeV. The η, φ, isolation, and quality information of the physics objects

can also be used in the algorithms. More complicated selection algorithms that are based on

the η and φ spatial separation between two objects, like invariant mass and/or transverse mass

of two objects, can also be constructed. The µGT can run a maximum number of 512 trigger

algorithms for an event.

The µGT issues a logical signal called the L1 Accept (L1A), which is set to true if any of

the 512 algorithms run by the µGT is satisfied. The L1A is sent to the Trigger Control and

Distribution System (TCDS). The TCDS receives control signals from all CMS sub-detectors.

If the L1A is satisfied and all the sub-detectors are ready to take data, the TCDS issues the

signal for Data Aquisition (DAQ) to read out the data. The TCDS is also responsible for the

synchronization of the L1T. It delivers the LHC timing reference and L1T decisions with the

corresponding bunch and event numbers.
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The µGT also runs a number of selection algorithms that have low thresholds on the trigger

objects or have minimal selection criteria imposed on the trigger objects. These are needed

to study efficiencies and possible biases in the selection algorithms. The µGT controls the

rate from these algorithms through a mechanism called prescaling. If a trigger has a prescale

N, 1 of N events that pass the trigger selection will be marked as accepted. The L1 trigger

algorithms and prescales are proposed by the various physics analysis groups in the experiment

and integrated into a trigger menu. The trigger menu contains the trigger algorithms and sets

of prescale values that are optimized for various instantaneous luminosity conditions.

4.1.4 Data Quality Monitoring of the Level-1 Trigger

To certify the quality of data recorded by the CMS detector including the L1T, a Data Qual-

ity Monitoring (DQM) system is implemented by the CMS collaboration. The system provides

visualizations of the recorded data in the form of histograms as the collisions are occurring in

real-time for shifters to monitor. The visualization is achieved using an interactive website: the

DQM Graphical User Interface (GUI). Besides the online monitoring on the incoming data, the

DQM system is also used to provide more detailed data validation offline and to validate new

releases of the CMS software.

The online DQM of the L1T provides a live monitoring on the inputs and outputs of each

layer of the trigger processing chain, as well as a live comparison between the data and the

software emulation of the trigger algorithms. Some examples of the L1T DQM histograms

are shown in Figure 34, which shows the ECAL and HCAL TP occupancies in the Layer-1

Calorimeter Trigger, and in Figure 35, which shows the ET and HT distributions in the Layer-2
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Calorimeter Trigger for central jets (i.e., jets with |η| < 3.0). Dead (white) and hot (red) spots

in Figure 34 or non-smoothness in the distributions plotted in Figure 35 indicate potential

problems with the incoming data.

Figure 34: The monitoring of ECAL (left) and HCAL (right) TPs in the Layer-1 Calorimeter
Trigger.

An important quantity to monitor is the comparison between the output from the L1T

firmware and the output from the L1T emulator. The L1T emulator is a detailed simulation of

the firmware algorithms and, in most cases, is expected to give perfect bitwise agreement with

the output from the firmware for all component of the L1T. As an example, the implementation

of the data and emulation comparisons for the Layer-1 and Layer-2 Calorimeter Triggers are

presented. In the Layer-1 comparison, the output data from the Layer-1 Calorimeter Trigger is
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Figure 35: The monitoring of jets ET (top) and HT (bottom) distributions in the Layer-2
Calorimeter Trigger.

compared to the output data from the Layer-1 emulation which takes data from the ECAL and

HCAL TPs as input. In the Layer-2 comparison, the output data from the Layer-2 Calorimeter

Trigger is compared to the Layer-2 emulation which takes the output data from the Layer-1

as input. The results of the comparisons are displayed in DQM histograms. The summary

histogram for the comparisons between the ET of the Layer-1 TTs, the ratio of the ECAL and
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HCAL energies in the Layer-1 TTs, and the number of active Layer-1 TTs in emulator and

firmware are shown in Figure 36. As can be seen in the figure, these comparisons reached

perfect agreement. At Layer-2, the ratio of the kinematic distributions for the L1 reconstructed

objects in data and emulation are also provided. For example, the ratio of central jet ET and

event HT distributions in data and emulation are shown in Figure 37. Perfect agreement is

found between central jet ET and HT distributions in data and emulation.

Figure 36: The summary of bit-by-bit data and emulation comparisons for the ET of the Layer-1
TTs, the ratio of the ECAL and HCAL energies in the Layer-1 TTs, and the number of active
Layer-1 TTs. The bins in the histogram are all empty indicating perfect agreement between
data and emulator.

Automatic alarm functionality is also implemented for the L1T DQM. The DQM GUI will

raise the alarm when histograms fail quality tests. For example, if 1% of the jets fail the data



89

Figure 37: The ratio of jets ET (top) and HT (bottom) distributions from data and the Layer-2
Calorimeter Trigger emulator.

and emulation comparison or 5% of the ECAL TPs channels are empty, the shifters at the CMS

control room will be alerted.

The L1T offline DQM and release validation systems produce the same histograms as the

online monitoring but run on prompt reconstructed events and simulated events at the CMS

offline computing centers (see Section 4.3).
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4.2 The High-Level Trigger

The HLT has access to the full detector information (raw data) and processes up to 100 kHz

of events, as selected by the L1 system. Each event is sent to a single CPU and the decision

to keep the event is made by running a series of selection algorithms, called paths, which are

independent of each other but contain common sequences that are shared by various algorithms.

An example of an HLT path is illustrated in Figure 38. Each HLT path is seeded by one or

more L1 algorithms. The events are processed through a series of producers, which reconstruct

the candidates, and filters which run the selection algorithms. At the start of the series, the

selection algorithm typically uses only information from the calorimeters or muon systems to

quickly filter out uninteresting events before passing them through to the selection algorithm

that use the tracking system. The HLT runs a version of the Particle Flow (PF) algorithm

that is optimized for speed, to reconstruct particles. The PF algorithm is the reconstruction

algorithm used in the offline analyses, which will be discussed in detail in the next chapter.

The reconstructed particles include electrons, photons, muons, tau leptons, jets, Emiss
T , HT as

well as b-tagged jets.

The selected events are sent to different data streams, which are organized in categories

such as Physics, Scouting, DQM, etc. The Physics stream contains events used for most of

the physics analyses and full event information is stored. The Scouting stream contains events

selected with lower thresholds than the events in the physics stream and are used for physics

analyses that only need the HLT-reconstructed information. The events in the physics stream
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Figure 38: An illustration of an HLT path.
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are further split into different datasets, depending on the trigger algorithms. This analysis uses

the JetHT dataset, which contains events triggered by the jet and HT triggers.

Similarly to the L1T, the HLT paths and prescales are proposed by the physics analysis

groups and integrated into the HLT menu. The trigger rate of the HLT menu, as well as the

L1T menu, need to be estimated to make sure the rate do not exceed the allocated limit before

the menus are deployed online for data taking. The rate estimation can be done using either

data or simulated events. More details regarding the rate estimate can be found in Appendix A.

4.3 The Offline Computing Systems

The CMS computing infrastructure consists of a series of computing centers located at

various locations throughout the world. The central computing center is located at CERN and

is called the Tier-0. In addition, there are 8 large computing centers distributed throughout the

world, called Tier-1’s, and more than 50 smaller scale Tier-2 and Tier-3 centers worldwide. The

Tier-0 receives the events accepted by the HLT in RAW format, which contains just the low-

level signals from the various detectors, and performs prompt event reconstruction (RECO).

The RECO dataset contains the 4-vector information for all the reconstructed particles, as

well as other useful information such as reconstructed vertices and collections of the L1T and

HLT output. The RAW and RECO datasets are transferred to the various Tier-1 centers for

permanent storage. Fractions of the data in Tier-1 centers are sent to the Tier-2 centers so

that analyzers from all over the world can access them easily. In addition, CMS makes Analysis

Object Data (AOD) dataset, a slimmed version of the RECO dataset, to reduce computing time

for the offline physics analyses. The AOD dataset contains only the most important RECO
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information for the offline physics analyses. The Tier-2 and Tier-3 centers are also responsible

for the production and storage of the simulation events.

The CMS software framework is maintained in a package called CMSSW. The CMSSW

software is written in C++ and provides all the reconstruction, simulation, calibration, and

data analysis software tools for CMS. Many of these software tools use software provided by

the ROOT [96] data analysis framework. In CMSSW, the independent C++ plugin modules are

executed using instructions and parameters provided by configuration files written in Python.



CHAPTER 5

JET RECONSTRUCTION AND CALIBRATION

As described in Chapter 2, jets are the experimental signature of the outgoing quarks and

gluons in high energy collisions. At CMS, jets are clustered using collinear- and infrared-safe

sequential recombination algorithms (see Section 2.3). The input to these algorithms can be

taken from a variety of different sources. For example, jets can be reconstructed using only

the information from the calorimeters or the trackers. These jets are called calorimeter jets

(CaloJets) or track jets (TrackJets), respectively. Jets can also be reconstructed using the

combined information from both calorimeters and trackers, and such jets are called jet-plus-

tracks jets. In this analysis, jets are reconstructed based on the output of the Particle Flow

(PF) technique [97]. The following sections describe the PF reconstruction technique, the PF

jet reconstruction algorithm, and the jet energy calibration procedure.

5.1 The Particle Flow Technique

To optimize the jet reconstruction performance, CMS employs the PF technique [97], which

combines information from all the subdetectors to identify and reconstruct each final-state

particle in the event. The reconstructed particles are called the PF candidates and include

photons, electrons, muons, and charged and neutral hadrons. The PF technique takes tracks

and calorimeter clusters as inputs. These input elements are then linked together to form

objects called PF blocks and by analyzing each PF block, the PF candidates are identified and

94



95

reconstructed. An example showing how the PF algorithm reconstructs particles is illustrated

in Figure 39, which depicts a simulated jet containing 5 particles: a π+, a π−, two photons

(from a π0 decay), and a K0
L. Event displays for the ECAL and HCAL are shown on the left and

right of the figure, respectively. Also shown in the figure are green lines (dots) which represent

the reconstructed tracks (and their associated hits) for the charged pions. The calorimeter cells

are indicated by the squares in the figure. The energy deposits within the cells are displayed

in grey with the size of the squares proportional to the energy in the cell. To reconstruct these

5 particles, the PF algorithm proceeds as follows. First, 2 tracks T1 and T2, 4 ECAL clusters

E1, E2, E3, and E4, and 2 HCAL clusters H1 and H2 are reconstructed. Then, links between

the tracks and calorimeters are established to form PF blocks. T1 is linked to E1 and H1.

T2 is linked to H2. E1 is also linked to H1. The other 3 clusters in ECAL are not linked to

anything. Finally, each PF block is analyzed to reconstruct the particles. The PF block which

contains T1, E1, and H1 is reconstructed as the π−. The block which contains T2 and H2 is

reconstructed as the π+. E2 and E3 are close to each other and are therefore reconstructed as

two photons from the π0 decay. And E4 is reconstructed as the K0
L. The PF technique provides

a global event description, and the reconstructed PF candidates are then used to reconstruct

higher-level objects such as jets, hadronic decaying τ leptons, and missing transverse momenta.

The CMS detector is well suited for PF reconstruction. The fine granularity of the tracker

and calorimeter systems provide the resolution necessary to link the tracks to the calorimeter

objects, as well as the ability to efficiently separate overlapping showers from closely spaced

particles. In the following sub-sections, more details about the reconstruction of the input
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Figure 39: An illustration of particles reconstructed by the PF algorithm for a simulated jet
containing a π+, a π−, two photons (from a π0 decay), and a K0

L [97]. Event displays in the
ECAL and HCAL are shown in the left and right of the figure, respectively. Also shown in the
figure are green lines (dots) depicting the reconstructed tracks (and their associated hits) for
the charged pions. The calorimeter cells are shown by the squares in the figure. The energy
deposits within the cells are displayed in grey with the size of the squares proportional to the
energy in the cell.
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elements to the PF algorithm, the link algorithm, and the reconstruction of the PF candidates

are provided.

5.1.1 Reconstruction of the Input Elements to the Particle Flow Algorithm

Tracks are reconstructed using a multi-stage approach based on the Kalman filter [98, 99].

In the first stage, track seeds are formed requiring only a few hits (2 or 3) in the pixel detector.

These seeds form a list of track candidates. Next, the trajectories from these seeds are extrap-

olated to each layer of the tracker, searching for additional hits that can be assigned to the

track candidate. As additional hits are identified, the track trajectories are updated accord-

ingly. In the last stage, a final fitting is performed using all reconstructed hits to determine the

charged-particle properties: origin, transverse momentum, and direction. To improve the track

finding efficiency without losing the purity (i.e., increasing the misreconstruction rate), several

iterations of the track finding algorithm are run before the final list of tracks is obtained. The

motivation for iterative track finding comes from the fact that the initial iterations search for

tracks that are easiest to find (have relatively large pT, and are produced near the interaction

region). After each iteration, hits associated with identified tracks are removed based on quality

criteria such as the χ2 of the fit, thereby reducing the combinatorial complexity, and simplify-

ing subsequent iterations when searching for tracks that are more difficult to find (low-pT, or

greatly displaced tracks).

Unlike charged hadrons, electrons can also interact in the tracker through bremsstrahlung.

This can result in a loss in efficiency for finding electrons in the tracker because the Kalman

filter may not be able to accommodate the changes in the electron momenta when the electrons



98

undergo bremsstrahlung. In these cases, the tracks tend to be lost due to insufficient number

of hits and/or too large χ2 in the fits. To recover the efficiency, the fits for these tracks are

performed using a modified version of the Kalman filter, called the Gaussian Sum Filter [100]

(GSF), which allows for sudden and substantial energy losses along the trajectory of the track

candidates.

The energy deposits in the ES, ECAL, and HCAL are clustered as follows. First, cluster

seeds are identified. A seed cell is defined as a cell with an energy larger than a given threshold,

and larger than the energy of the neighboring cells. For HCAL clusters, the cells considered as

neighbors are the four closest cells, which share a side with the seed cell. The cells considered as

neighboring cells for ECAL clusters are the eight closest cells, which share a side or a corner with

the seed cell. Then, topological clusters are constructed based on the seeds by aggregating cells

with an energy at least twice the noise energy threshold and with at least a corner shared with

a cell already in the topological cluster. With this definition, a topological cluster may contain

multiple seeds. Finally, clusters within a topological cluster are reconstructed using a Gaussian-

mixture model. In the Gaussian-mixture model, the energy deposits within a topological cluster

are described by the summation of N Gaussian functions, where N is the number of seeds in

the topological cluster. The amplitudes and means for the Gaussian functions represent the

energies and positions of the clusters, and are obtained by fitting the N Gaussian functions to

the energy deposits in the topological cluster. With this construction, energy deposits from two

nearby particles can be well separated.
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5.1.2 Link algorithm

The links between tracks and calorimeter clusters are established as follows. Each track is

extrapolated to the ECAL and HCAL to depths corresponding to the expected maximum of

a typical longitudinal electron shower profile in the ECAL, and one interaction length in the

HCAL. If the extrapolated track falls within the boundaries of a cluster, the cluster is associated

to the track. With this construction, several clusters can be linked to the same track, and several

tracks can be linked to the same cluster. To remove combinatorial complexities in these cases,

the distances between any of the extrapolated track positions and the cluster positions in the

η-φ plane are calculated and only the link that has the smallest distance is kept. To recover the

energy of photons emitted by electron bremsstrahlung, the tangential lines to the GSF tracks

at the intersection points between the track and each of the tracker layers are extrapolated to

the ECAL. If the extrapolated tangential position is within the boundaries of a cluster, and the

distance between the cluster and the extrapolated track in η is smaller than 0.05, the cluster

is linked to the track as a potential bremsstrahlung photon. The tracking system is relatively

thick in terms of radiation length and therefore bremsstrahlung photons, as well as prompt

photons, have a good possibility to convert to e+e− pairs. A dedicated conversion finder [101]

is used to recover these photons.

In addition to the links between tracks and calorimeter clusters, links are also formed be-

tween HCAL and ECAL clusters, and also ECAL and ES clusters. A link is established when

the cluster position in the more granular calorimeter (ES or ECAL) is within the cluster en-

velope of the less granular calorimeter (ECAL or HCAL). When multiple HCAL clusters are
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linked to the same ECAL cluster, or when multiple ECAL clusters are linked to the same ES

clusters, the link distances between any of the two calorimeter clusters are calculated and only

the link with the smallest distance is kept.

5.1.3 Particle Flow Candidates

As mentioned earlier, after the input elements are linked together, PF blocks are formed,

and the identification and reconstruction of the PF candidates proceeds starting from each of

the PF blocks. Muon candidates are identified first by matching the tracks reconstructed by

the muon detectors with those reconstructed by the inner tracker. Then, electrons and charged

hadrons are identified using PF blocks that have a link between a track and calorimeter clusters.

When reconstructing the electron 4-momenta, the 4-momentum of the Bremsstrahlung photons

are combined with the electron 4-momenta. As 90% of the charged hadrons are charged pions,

when reconstructing the charged hadron 4-momentum from tracks, the charged hadrons are

assumed to be charged pions and the transverse energy of the charged hadrons are calculated

using the track pT of the charged hadrons.

After muons, electrons, and charged hadrons are reconstructed, the associated tracks and

calorimeter clusters are removed from the list of PF blocks. Photons and neutral hadrons are

then reconstructed using the remaining energy deposits in ECAL and HCAL, respectively.

5.2 Particle Flow Jet Reconstruction and Calibration

PF jets are formed by clustering the muons, electrons, photons, and charged and neutral

hadrons as found by the PF algorithm. At CMS, the most commonly used jet clustering
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algorithm is the anti-kt jet clustering algorithm. The energy composition of the PF constituents

in jets are shown in Figure 40 for data and simulation as a function of pT and η.

Figure 40: PF jet constituents as a function of jet pT for jets with |η| < 1.3 (left) and jet η for
jets with 56 < pT < 74 [97].

Because the PF candidates are reconstructed using the combined information from all the

CMS sub-detectors, the measurement of the jet momenta obtained from PF jets is more reliable

than the momenta obtained from calorimeter jets. To illustrate this, the jet pT response, defined
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as the ratio of the reconstructed jet pT to the reference jet pT, and the jet pT resolution, defined

as the fluctuations in the jet pT response, from PF jets and calorimeter jets are compared in

Figure 41. Both the response and the resolution for simulated events are significantly better

for PF jets with jet momenta below ∼ 1TeV.

Figure 41: The jet response (left) and jet momentum resolution (right) for PF jets (red) and
calo jets (blue) with |η| < 1.3 [97].

5.2.1 Pileup Mitigation

As mentioned before, the LHC runs in a very high luminosity environment, which results

in as many as 50 proton-proton collisions per bunch crossing. This leads to challenges in the

event reconstruction at the LHC experiments. The kinematics of the reconstructed jets will be
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affected by the energies from adjacent pileup interactions being clustered into jets associated

with the primary interaction as illustrated in Figure 42.

Figure 42: An illustration of the pileup effects on jet clustering. The particle originated from
adjacent pileup interactions may be clustered into jets associated to the primary interaction.

The pileup effects on the jet momentum measurement are mitigated using a technique

called Charged Hadron Subtraction (CHS) [102]. In this approach, charged hadrons that are

unambiguously not associated with the event primary vertex [90] are removed from the list of

the PF candidates to be included in the jet reconstruction. The primary vertex is defined as the

reconstructed vertex with the highest sum of the squares of all associated physics objects pT.
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The physics objects are the jets returned by the anti-kt algorithm, using all tracks associated

with the vertex as input, plus the corresponding associated missing transverse momentum.

The residual pileup energy, which is mainly due to photons and neutral hadrons originating

from pileup interactions, will be corrected using a method described Section 5.2.3.1.

5.2.2 Identification and Rejection of Fake Jets

Noise in calorimeter cells can lead to fake jets and also to misreconstruction of the jet en-

ergies and directions. A set of jet identification criteria has been developed by CMS to remove

jets created by detector electronic noise. These criteria are based on the neutral hadron frac-

tion (NHF), neutral electromagnetic (photon) fraction (NEF), charged hadron fraction (CHF),

charged electromagnetic (electron) fraction (CEF), number of constituents (nconstituents) and

charged multiplicity (ncharged). For this analysis, the “tight” criteria have been applied, and

the requirements are summarized in Table V. In addition to these requirements, jets with a

muon energy fraction greater than 0.8 are rejected to suppress noise from misreconstructed

high energy muons.

TABLE V: The “tight” PF jet quality criteria.

variable |η| tight JetID
NHF < 0.9
NEF < 0.9
CHF < 2.4 > 0
CEF < 2.4 < 0.99

nconstituents > 1
ncharged < 2.4 > 0



105

5.2.3 Jet Energy Scale Calibration

The reconstructed jet pT needs to be corrected to match the pT of the particles that initiated

the jet. There are a number of reasons for this. As mentioned before, additional energy may be

clustered into jets due to pileup interactions and detector electronic noise. Energy may also be

absorbed in uninstrumented regions of the detector and therefore fail to be reconstructed. The

jet pT also needs to be corrected for the non-linear and non-uniform response of the detectors

themselves. The jet pT correction is known as the jet energy correction (JEC) or jet energy

scale calibration (JES).

The JEC is performed in a series of factorized steps as illustrated in Figure 43. The first

step, described in Section 5.2.3.1, is called the offset correction. This step corrects the jet pT

from energy contributions coming from detector electronic noise and residual pileup effects.

The second step, called the MC truth correction and described in Section 5.2.3.2, corrects

the jet pT response and is derived from simulations. The residual differences in the jet pT

response between data and simulation are taking into account using a data-driven approach in

the third step (discussed in Section 5.2.3.3). The third step is called residual correction and is

performed in two stages: first a relative correction that takes into account the η dependence of

the difference is applied. This is followed by an absolute correction that takes into account the

pT dependence of the difference. A fourth step, which accounts for differences in jet response

between jets with difference quark flavor compositions, may be applied for certain analyses

(e.g., analyses using b-jets) if necessary. This analysis does not apply the fourth step.
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Figure 43: The JES calibration workflow applied to data (top row) and simulation (bottom
raw).

The JEC is applied as a multiplicative factor C to the raw jet pT and it is expressed as:

pcorr
T = C · praw

T . (5.1)

The correction factor C is obtained by multiplying together the correction factors for each of

the JEC steps and can be expressed as

C = Coffset(praw
T ) · CMC(p

′

T, η) · Crelative(η) · Cabsolute(p
′′

T) (5.2)

where Coffset, CMC, Crelative, and Cabsolute are the correction factors for the offset, MC truth,

relative, and absolute corrections, respectively. The offset correction is a function of jet η and

number of pileup vertices in the event, and is applied to the raw jet pT. The MC truth correction

is a function of jet η and pT and is applied to the jet pT after the offset correction is applied

(p
′

T). The relative correction is a function of jet η and the absolute correction is a function of
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jet pT. The absolute correction is applied to the jet pT after the MC truth correction is applied

(p
′′

T). A detailed description for the JES in CMS can be seen in Ref. [103].

5.2.3.1 Offset Correction

The offset correction is the first step in the JEC and it subtracts the energy contribution

coming from detector electronic noise and pileup interactions from the jet pT. The correction

factor is expressed as

Coffset = 1 −
ρ · A
praw

T
(5.3)

where A is the jet area and ρ is the offset energy density.

The jet area is determined using the technique described in Section 2.3. The offset density ρ

characterizes the energy density from pileup interactions and electronic noise and it is obtained

using the random cone (RC) method. In the RC method, jet cones are randomly placed in

the η-φ plane for data events that are selected with the zero bias trigger in various luminosity

conditions. Since these events typically contain only low energy pileup collision products and

detector electronic noise, the average pT of the jets measured in the RC method can be used to

represent the offset energy in a high-pT jet reconstructed with the same jet algorithm and same

jet size parameter. A comparison of the average offset energy per additional pileup interaction

in data and simulation derived from the RC method is shown in Figure 44 [104].

5.2.3.2 Monte Carlo Truth Correction

The MC truth correction is the second step of the JEC and it corrects the reconstructed

jet pT to match the true (generated) jet pT. The correction takes advantage of the fact that
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Figure 44: Average offset energy per additonal pileup interaction in data and simulation derived
using the RC method [104].

both the true jet pT and the reconstructed jet pT are available in the MC simulations. The

simulated samples are obtained from dijet events generated by pythia that include a detailed

simulation of the CMS detector. More details about the detector simulation will be described

in the next chapter.

The jet response R =
preco

T

ptruth
T

is obtained using reconstructed jets and generated jets that are

matched in η and φ, and it is calculated in bins of the generated jet η and pT. The MC truth

correction factor CMC is then obtained as the inverse of the average jet response in each η and

pT bin. The jet response as a function of η for various jet transverse momenta are shown in

Figure 45.
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Figure 45: The simulated jet response as a function of η for various jet transverse momenta [104].

5.2.3.3 Residual Correction

The residual correction corrects for the differences in jet response in data and simulation.

It is performed in two steps: first a relative correction is applied to take into account the η

dependence of the difference. Then, an absolute correction that takes into account the pT

dependence of the difference is applied.

Relative Correction The relative correction is obtained from a sample of dijet events [105]

using the “tag” and “probe” method. In dijet events, the pT of the two leading jets must balance

in the limit of no radiation. To make sure that the pT’s of the two leading jets are truly balanced,

the dijet sample is selected with the requirements that the third leading jet pT is much smaller

than the average pT of the two leading jets and that the azimuthal angle between the two
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leading jets, ∆φ, is close to π. In this method, the “tag” (reference) jet is restricted to the

barrel region of |η| < 1.3, since the η-dependence of the jet response is small in this region, and

the “probe” jet is unconstrained in η.

The relative correction factor Crelative is based on the relative response Rrelative, which is

defined as Rrelative =
〈pprobe

T 〉
〈ptag

T 〉
. To reduce biases due to the jet pT resolution, the relative

response is binned with respect to the average pT of the “probe” and “tag” jets, pave
T , instead

of the “tag” jet pT. The relative response, binned in pave
T and “probe” jet η, is expressed as

Rrelative =
1 + 〈A〉
1 − 〈A〉

(5.4)

where

A =
pprob

T − ptag
T

2pave
T

, (5.5)

and is calculated for both data and simulation. The relative correction factor Crelative is then

obtained as the ratio between the relative response in data and simulation 〈Rdata
relative

RMC
relative

〉 in various

η bins.

A more advanced method, the Missing energy Projection Fraction (MPF) technique, has

also been developed to take into account all the hadronic activity in the events. The MPF is

based on the following relation:

~ptag
T + RMPF

relative
~pprobe

T = −
~Emiss
T . (5.6)
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where ~Emiss
T is defined as vector sum of all PF candidates pT’s and RMPF

relative is the relative

response defined in the MPF method. RMPF
relative is also binned in “probe” jet η and pave

T , and is

expressed as:

RMPF
relative =

1 + 〈B〉
1 − 〈B〉

, (5.7)

where

B =
~Emiss
T · ( ~ptag

T /ptag
T )

2pave
T

. (5.8)

The relative correction in the MPF method is then obtained as Crelative = 〈
Rdata,MPF

relative

RMC,MPF
relative

〉 in various

η bins. Crelative derived using the MPF method is shown in Figure 46 (left).

Figure 46: The relative (left) and absolute (right) jet pT corrections [104].
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Absolute Correction The absolute correction, is obtained in the rapidity region |η| < 1.3

using events that have a photon or Z boson recoiling against a jet. Similar to the dijet sample

used to derive the relative correction, the γ/Z+jet sample is selected with the requirements

that the second leading jet pT is much smaller than the pT of the photon or Z boson and that

the azimuthal angle between the leading jet and the recoil γ/Z is close to π. The Z bosons are

reconstructed in Z → e−e+ and Z → µ−µ+ channels. This method takes advantage of the fact

that the reconstructed energies for single e±’s and µ±’s are very close to their true energies.

As with the relative correction, the absolute correction can be obtained using two methods,

the pT-balance and MPF methods. In the pT-balance method, the absolute response is defined

as Rabsolute =
pjet

T

pγ/Z
T

. In the MPF method, the absolute response satisfies the relation:

~
pγ/Z

T + RMPF
absolute

~pjet
T = −

~Emiss
T (5.9)

and is expressed as

RMPF
absolute = 1 +

~Emiss
T · ~

pγ/Z
T

(
~

pγ/Z
T )2

. (5.10)

The absolute correction is then obtained as the ratio between the mean absolute response in

data and simulation 〈Rdata
absolute〉

〈RMC
absolute〉

(
〈Rdata,MPF

absolute 〉
〈RMC,MPF

absolute 〉
) in bins of the Z/γ pT for the pT-balance (MPF)

method. The absolute correction can be seen in Figure 46 (right).
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5.2.4 Jet Energy Resolution

As mentioned before, the jet pT resolution is defined as the width of the jet pT response

distribution, σ(
preco

T

ptruth
T

). Since the jet angular resolution is practically negligible [106], the jet

pT resolution is equivalent to the jet energy resolution (JER). The JER in simulation can be

obtained by comparing reconstructed jets that are matched in η and φ with truth jets in bins

of pT and η and then measuring the widths of the resultant jet pT response distributions. The

JER can also be obtained from data using the dijet asymmetry, A, which is defined as:

A =
p1

T − p2
T

p1
T + p2

T
, (5.11)

where p1
T and p2

T are the pT’s of the two leading jets. If the extra jet activity is negligible

and the two leading jets have the same η value, i.e., p1
T = p2

T and |η1
| = |η2

|, the width of the

asymmetry distribution,

σ2
A = |

∂A
∂p1

T
|
2σ2(p1

T) + |
∂A
∂p2

T
|
2σ2(p2

T), (5.12)

is related to the JER through the expression,

σ(A) =
1√
2

σ(pT)

pT
. (5.13)

The additional effects on the JER due to ISR, FSR, UE, and pileup are also included in the

JER measurements using the methods detailed in Ref. [105]. The JER derived in simulation

for two η regions, |η| < 0.5 and 3.2 < |η| < 4.7, and various pileup conditions are shown in
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Figure 47. The JER is seen to degrade as the average pileup increases at low pT, but the

degradation becomes less and less with increasing jet pT, and is independent of pileup for jet

pT > 100 GeV.

Figure 47: The JER derived in simulation for jets with |η| < 0.5 (left) and 3.2 < |η| < 4.7
(right) [104].



CHAPTER 6

MEASUREMENT OF THE DIJET ANGULAR DISTRIBUTIONS

6.1 Event Selection

The events used in this analysis are selected by either the HLT single jet or HT triggers.

The HLT selection requires that the event contains a jet with pT > 450 GeV or that the HT has

a value greater than 900 GeV. These thresholds were the lowest unprescaled thresholds used

during the 2016 run. The trigger efficiency is defined as the ratio between the total number of

events selected by the trigger and the total number of events and is shown in Figure 48 as a

function of Mjj. The efficiency is measured using a single muon trigger as the reference trigger

since the single muon trigger is used as the reference trigger because the single muon trigger

is uncorrelated with the single jet and HT triggers. As seen in the figure, the trigger is fully

efficient above Mjj = 2.0 TeV in the analysis phase space (see below).

The χdijet distribution is measured over the range 1 < χdijet < 16, which implies y?=

1
2
|y1 − y2| < 1.39, where y1 and y2 are the rapidities of the two jets with the highest pT in

the event (leading jets). In this analysis, the value of yboost, where yboost =
1
2
(y1 + y2), is also

required to be less than 1.11. These two requirements constrain |y1| and |y2| to have values

less than 2.5. This is done in order to restrict the jets to the central region of the calorimeter,

where the jet performance is maximized. It is interesting to see how the topologies of the dijets

depend on the values of y?and yboost. This is illustrated in Figure 49. As can be seen in the

115
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Figure 48: The trigger turn-on curve for the combined single jet pT > 450GeV and HT >
900GeV triggers as a function of Mjj in the analysis phase space (y? < 1.39 and yboost < 1.11).

figure, the most centrally produced jets have y? and yboost values less than one, while the most

forward dijet topologies have low values of y? and high values of yboost.

The dijet angular distributions are measured in seven Mjj bins: 2.4–3.0, 3.0–3.6, 3.6–4.2,

4.2–4.8, 4.8–5.4, 5.4–6.0, 6.0–13.0 TeV. The minimum Mjj threshold is above the point where

the triggers are fully efficient. The highest Mjj range was chosen by optimizing the search

sensitivity to the NP signals considered in this analysis.

Although the lower Mjj bound of this measurement is 2.4 TeV, events in the 1.9–2.4 TeV Mjj

range also need to be included in the analysis to account for the effect of event migrations due

to the finite JER (see details in Section 6.4) between lower Mjj values and the 2.4–3.0TeV dijet

mass bin. Since the trigger is not fully efficient in the 1.9–2.4TeV mass bin, trigger corrections
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Figure 49: Illustration of the dijet event topologies in the plane of yboost (yb) and y? [107].

are applied to these events to account for the inefficiency. The trigger corrections are obtained

as the inverse of parametric fits of the trigger turn-on curve vs. Mjj in various χdijet bins. An

inverse tangent function is used to fit the trigger turn-on curves. The fits of the trigger turn-on

curves in various χdijet ranges are shown in Figure 50.

In the analysis, events are required to contain a reconstructed primary vertex that lies within

±24 cm of the nominal detector center along the beam line, and within 2 cm of the detector

center in the plane transverse to the beam. Table VI shows the number of data events in each

mass bin after all selection criteria are applied: y? < 1.39, yboost < 1.11, “tight” jet criteria

(see Section 5.2.2), and primary vertex selection.
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Figure 50: Fits of the trigger efficiencies vs. Mjj for several χdijet bins. The trigger is fully
efficient for Mjj > 1.9TeV and χdijet < 9.

TABLE VI: The number of events in each Mjj bins after all the analysis selection criteria are
applied.

Mass bin [TeV] # events
2.4–3.0 353083
3.0–3.6 71840
3.6–4.2 16714
4.2–4.8 4287
4.8–5.4 1154
5.4–6.0 330
6.0–13.0 95
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The highest value of Mjj observed among these events is 8,153.3GeV. The event display for

this event can be seen in Figure 51. The display shows that the event has properties typical of

what one would expect in a real dijet scattering event, rather than an event that was triggered

by detector noise or some other non-collision process. The pT and rapidity of the leading jets

for this event are 2,805.3GeV and -1.1 and 2,535.6GeV and 0.9. The χdijet for this event is

7.15. The event displays from all the events in the highest Mjj bin were individually scanned

to ensure that only hard scattering events were included in the sample.

6.2 Comparison with the Detector Simulation

The CMS detector simulation was done using the geant [108] software toolkit developed

at CERN. The toolkit is used to simulate the passage of particles through the magnetic field

and detector volume, the interactions of the particles with the detector material, and the

digitization and readout of the sensitive detector elements, and includes a detailed description

of each sub-detector’s geometry and material. The geant simulation is called the Full Sim.

The inputs of the geant simulation are the events generated by the MC event generators

described earlier. The outputs of the simulation are written to disk in RAW format, the

same format used for the data. The Full Sim events are processed and reconstructed with

the same reconstruction software as the data. By running the Full Sim events through the

same reconstruction algorithms as the data, any inefficiencies or biases in the reconstruction

algorithms are present in the Full Sim samples and therefore accounted for in the ensuing

corrections.
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Figure 51: Event display for the event with the highest Mjj observed in the analysis phase
space.

A variety of comparisons are made between the data and Full Sim MC events to verify

that the simulation provides an adequate description of the QCD events observed in the data.

The MC events include those from pythia and MadGraph5_amc@nlo, which use Tune

CUETP8M1 [75, 76], and herwig++, which uses Tune CUETHS1 [76, 77].

The comparison between Mjj distributions in data and Full Sim is shown in Figure 52. In this

comparison, the total number of events in the simulations are normalized to the total number of
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events in data. The pythia and herwig++ predictions describe the Mjj distributions in data

much better than those from MadGraph5_amc@nlo. The modeling of the Mjj distributions

is important to this measurement since the simulated samples will be used characterize and

correct the effect of event migrations between Mjj bins due to the finite JER (see the following

sections).
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Figure 52: Comparison of Mjj distributions in data (points) and the Full Sim (histograms) from
the pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red) event generators.
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In addition to the Mjj comparison, comparisons of several other kinematic variables are

also performed to check the quality of the simulation. These comparisons are made for all the

Mjj bins used in the analysis. In each mass bin, the total number of events in the simulated

samples is normalized to the total number of events in data. In Figures 53 and 54, the data

pT distributions for the leading and 2nd-leading jets are compared to the MC predictions,

respectively. In Figures 55 and 56, the data to MC comparisons of the rapidities for the

leading and 2nd-leading jets are shown. The comparisons of yboost, χdijet,
pT,1 − pT,2
pT,1 + pT,2

, ∆φ1,2

(the azimuthal angle separation of the two leading jets), and Emiss
T∑
ET

(where
∑

ET is the sum of

all reconstructed particle ET’s in the event) are shown in Figures 57 to 61. As can be seen in

these figures, the simulations describe the data well for all the distributions. In addition, the

comparisons of
pT,1 − pT,2
pT,1 + pT,2

, Emiss
T∑
ET

, and ∆φ1,2 distributions show that no significant noise effects

are present in the data, as noise would significantly broaden the tails of these distributions in

the data as opposed to the MC simulations.
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Figure 53: Comparison of pT distributions for the leading jets in data (points) and the Full Sim
(histograms) from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 54: Comparison of pT distributions for the 2nd-leading jets in data (points) and the Full
Sim (histograms) from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 55: Comparison of rapidity distributions for the leading jets in data (points) and the Full
Sim (histograms) from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 56: Comparison of rapidity distributions for the 2nd-leading jets in data (points)
and the Full Sim (histograms) from pythia (green), herwig++ (blue), and Mad-
Graph5_amc@nlo(red).
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Figure 57: Comparison of yboost distributions in data (points) and the Full Sim (histograms)
from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 58: Comparison of χdijet distributions in data (points) and the Full Sim (histograms)
from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 59: Comparison of
pT,1 − pT,2
pT,1 + pT,2

distributions in data (points) and the Full Sim (his-

tograms) from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 60: Comparison of ∆φ1,2 distributions in data (points) and the Full Sim (histograms)
from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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Figure 61: Comparison of Emiss
T /

∑
ET distributions in data (points) and the Full Sim (his-

tograms) from pythia (green), herwig++ (blue), and MadGraph5_amc@nlo(red).
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6.3 Jet Energy Resolution Modeling

The largest detector effect on the measurement of the χdijet distributions comes from the

JER, which arises from energy fluctuations due to electronic noise, pile-up, energy sampling,

and non-uniformities and non-linearities in the detector response, and causes event migrations

between bins of Mjj and χdijet. The jet angular resolution [106] is much smaller than the

width of the χdijet bins, and therefore has a negligible effect on the measurement of the χdijet

distributions.

The JER in various pT and rapidity ranges determined using the Full Sim pythia simulation

are shown in Figures 62 to 67. Also shown in the figures are the distributions from Gaussian and

double-sided Crystal Ball [109] parametrizations of the JER. The Crystal Ball function consists

of a Gaussian core and a power-law low-end (high-end) tail, below (above) a certain threshold

of the jet pT response. The Gaussian parametrization describes the core of the resolution well,

while the double-sided Crystal Ball parametrization describes both the core and the high-end

part of the non-Gaussian tail. As the Mjj spectrum is steeply falling, the effect of events

migrating from higher Mjj bins to lower Mjj bins due to JER is much smaller than those from

lower Mjj bins to higher Mjj bins. Therefore, the modeling of the low-end tail is not critical for

this measurement, though it is nevertheless accounted for in the systematic uncertainties. The

Crystal Ball parametrization is finally adjusted to match the JER measured in data [103] (also

see Section 5.2.4).
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Figure 62: Jet pT response from the Full Sim pythia sample (blue) for jets with |y| < 0.5. The
Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations of the response are
also shown.
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Figure 63: Jet pT response from the Full Sim pythia sample (blue) for jets with 0.5 < |y| < 1.0.
Also shown are the Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations
of the response.
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Figure 64: Jet pT response from the Full Sim pythia sample (blue) for jets with 1.0 < |y| < 1.5.
Also shown are the Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations
of the response.
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Figure 65: Jet pT response from the Full Sim pythia sample (blue) for jets with 1.5 < |y| < 1.8.
Also shown are the Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations
of the response.
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Figure 66: Jet pT response from the Full Sim pythia sample (blue) for jets with 1.8 < |y| < 2.1.
Also shown are the Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations
of the response.
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Figure 67: Jet pT response from the Full Sim pythia sample (blue) for jets with 2.1 < |y| < 2.5.
Also shown are the Gaussian (magenta) and double-sided Crystal Ball (red) parametrizations
of the response.
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6.4 Cross Section Unfolding

As previously mentioned, the finite JER can cause migrations between bins of Mjj and/or

χdijet. It can cause event migrations in χdijet bins because lower energy jets can be misidentified

as leading jets resulting in values of χdijet different from the true values. It can also cause event

migrations in Mjj bins because fluctuations in the pT of the leading jets can result in different

values of Mjj. The migration effects are characterized using a 2D response matrix that maps

the particle-level distributions1 to detector-level ones. The 2D response matrix is binned in the

variables Mjj and χdijet and is derived using particle-level jets that are generated using pythia

and converted to detector-level (smeared) using the double-sided Crystal-Ball parametrization

of the JER. The response matrix is derived from smeared generator-level MC rather than from

the Full Sim because the Full Sim is extremely CPU intensive and it is infeasible to generate

enough events to sufficiently populate the 2D response matrix. The response matrix, integrated

over χdijet is shown in Figure 68. In the figure, the detector-level (particle-level) Mjj are denoted

as “reconstructed” (“generated”) on the y-axis (x-axis). In the response matrix, the migration

effects between Mjj bins are expressed as

Nreconstructed,i =
∑

j
RijNgenerated,j (6.1)

1The distributions that include the detector effects are called “detector-level” or “raw” distributions,
while the distributions that have been corrected for detector effects or come from simulations that do
not include detector effects, are called “particle-level distributions”.
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where i and j are the bin indices for detector-level and particle-level Mjj distributions, respec-

tively, N is the number of events the corresponding bin, and Rij is the response matrix. The

migration effects between Mjj bins are 15% to 25%, depending on the Mjj values. The response

matrix integrated over Mjj is not shown because the migration effects between χdijet bins are

very small.

The data distributions are unfolded to particle level by simply applying the inverted 2D

response matrix to the detector-level data distributions:

yparticle−level = R−1
2Dyraw, (6.2)

where y represents the data distributions. The unfolding is done using the software pack-

age RooUnfold [110]. A problem that is often encountered in the unfolding procedure is

that the inverse of the response matrix is ill-conditioned, meaning that the unfolded distri-

butions are very sensitive to small changes in the input distributions. For example, if the

inverse of the response matrix is ill-conditioned or even singular, small statistical fluctuations

in the detector-level distributions can be amplified and exhibit high-frequency oscillations in

the unfolded distributions. In such cases, the unfolding procedure needs to be regularized.

The degree to which the response matrix is ill-conditioned can be inferred from its condition

number, which is defined as the ratio of the largest and smallest singular values obtained by

the singular value decomposition of the matrix. Typically, a condition number less than 10

implies that the response matrix is a well-conditioned matrix and the unfolding procedure does
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Figure 68: The response matrix, integrated over χdijet. The numbers in the boxes correspond
to the values for Rij in Equation 6.1.

not need regularization. The condition number for the response matrix used in this thesis is

2.89. As a cross check, the unfolded distributions from the simple matrix inversion method

without regularization is compared to the distributions obtained from the D’Agostini iterative

method [111] which is regularized by the number of iterations, niter. With niter = 4, which is
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the default regularization strength for the D’Agostini method, the two results are found to be

consistent to within 5%.

A trivial closure test is performed by unfolding the χdijet distributions from the same sample

that is used to derive the response matrix. Perfect closure is obtained as shown in Figure 69.

Another closure test is performed by splitting the simulated samples into independent training

and testing samples. An unfolding matrix is determined from the training sample and then

used to unfold the χdijet distributions from the testing sample. The result of this closure test

is shown in Figure 70 and no significant discrepancies are observed in the results.

A comparison between the raw and unfolded data distributions is shown in Figure 71. The

unfolding correction changes the shape of the χdijet distributions by less than 1% across χdijet

in the lowest Mjj range and less than 8% in the highest Mjj range.

The RooUnfold package provides the covariance matrix of the unfolded data distributions.

This covariance matrix, given by the simple matrix inversion unfolding procedure, is expressed

as

Vunfold = R2D
−1Vraw(R2D

−1)T, (6.3)

where the covariance matrix for the raw distribution Vraw is a diagonal matrix where each di-

agonal element equals the variance of each bin in the raw distribution. The covariance matrices

for Mjj bins in various χdijet ranges are shown in Figure 72. As shown in the covariance matri-

ces, the off-diagonal elements are not zero, indicating that the unfolding procedure introduces
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Figure 69: Comparisons of unfolded and generated χdijet distributions, where the unfolding
correction was determined from the same MC sample. Also shown are the ratios of unfolded to
generated χdijet distributions.



144

0

0.1

0.2

0.3

0.4

0.5

9−10×

 < 3000jj2400 < m

Generated

Unfolded MC

 / ndf 2χ  25.52 / 11
p0        0.0023± 0.9992 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  25.52 / 11

p0        0.0023± 0.9992 

0

0.02

0.04

0.06

0.08

0.1

9−10×

 < 3600jj3000 < m

Generated

Unfolded MC

 / ndf 2χ  10.65 / 11
p0        0.0027± 0.9981 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  10.65 / 11

p0        0.0027± 0.9981 

0

5

10

15

20

25

12−10×

 < 4200jj3600 < m

Generated

Unfolded MC

 / ndf 2χ  4.661 / 11
p0        0.0±     1 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  4.661 / 11

p0        0.0±     1 

0

1

2

3

4

5

6

7

12−10×

 < 4800jj4200 < m

Generated

Unfolded MC

 / ndf 2χ  10.92 / 11
p0        0.0027± 0.9987 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  10.92 / 11

p0        0.0027± 0.9987 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

12−10×

 < 5400jj4800 < m

Generated

Unfolded MC

 / ndf 2χ  5.523 / 11
p0        0.004± 1.002 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  5.523 / 11

p0        0.004± 1.002 

0

0.1

0.2

0.3

0.4

0.5

0.6
12−10×

 < 6000jj5400 < m

Generated

Unfolded MC

 / ndf 2χ     12 / 11
p0        0.0071± 0.9963 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ     12 / 11

p0        0.0071± 0.9963 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

12−10×

 < 13000jj6000 < m

Generated

Unfolded MC

 / ndf 2χ  6.144 / 4
p0        0.0110± 0.9915 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2
 / ndf 2χ  6.144 / 4

p0        0.0110± 0.9915 

Figure 70: Comparisons of unfolded and generated χdijet distributions, where the unfolding
correction was determined from an independent sample of events. Also shown are the ratios of
unfolded to generated χdijet distributions.
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correlations between Mjj bins. The correlations are characterized by the correlation coefficients

of the covariance matrix. The correlation coefficients are defined as:

ρ =
V(i, j)

σ(i)σ(j)
=

V(i, j)√
V(i, i)

√
V(j, j)

, (6.4)

where i and j are the bin indices and σ is the variance for each of the bins in the distributions.

The correlation coefficients between Mjj bins are shown in Figure 73. As shown in the figure,

the correlations between Mjj bins are 15–20% in the lowest Mjj bin and 25–40% in the highest

Mjj bin, depending on the χdijet values. The correlations between χdijet bins are negligible.



146

0

5000

10000

15000

20000

25000

30000

 < 3000jj2400 < m

Data

Unfolded Data

 / ndf 2χ  5.174 / 10
p0        0.0058± 0.9887 
p1        0.000604±0.002228 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  5.174 / 10
p0        0.0058± 0.9887 
p1        0.000604±0.002228 − 

0

1000

2000

3000

4000

5000

6000

 < 3600jj3000 < m

Data

Unfolded Data

 / ndf 2χ  1.159 / 10
p0        0.0130± 0.9862 
p1        0.001368±0.002331 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  1.159 / 10
p0        0.0130± 0.9862 
p1        0.001368±0.002331 − 

0

200

400

600

800

1000

1200

1400

 < 4200jj3600 < m

Data

Unfolded Data

 / ndf 2χ  0.702 / 10
p0        0.0273± 0.9778 
p1        0.002884±0.001392 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  0.702 / 10
p0        0.0273± 0.9778 
p1        0.002884±0.001392 − 

0

50

100

150

200

250

300

350

400

 < 4800jj4200 < m

Data

Unfolded Data

 / ndf 2χ  0.7341 / 10
p0        0.0543± 0.9845 
p1        0.005793±0.004918 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  0.7341 / 10
p0        0.0543± 0.9845 
p1        0.005793±0.004918 − 

0

20

40

60

80

100

 < 5400jj4800 < m

Data

Unfolded Data

 / ndf 2χ  0.3638 / 10
p0        0.1069± 0.9825 
p1        0.0116±0.0043 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  0.3638 / 10
p0        0.1069± 0.9825 
p1        0.0116±0.0043 − 

0

5

10

15

20

25

30

35

 < 6000jj5400 < m

Data

Unfolded Data

 / ndf 2χ  0.6097 / 10
p0        0.2008± 0.9896 
p1        0.021991±0.002524 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.8

0.9

1

1.1

1.2  / ndf 2χ  0.6097 / 10
p0        0.2008± 0.9896 
p1        0.021991±0.002524 − 

0

2

4

6

8

10

12

 < 13000jj6000 < m

Data

Unfolded Data

 / ndf 2χ  0.136 / 3
p0        0.3090± 0.9202 
p1        0.03418±0.01367 − 

dijet
χ

2 4 6 8 10 12 14 16

R
at

io

0.6

0.8

1

1.2  / ndf 2χ  0.136 / 3
p0        0.3090± 0.9202 
p1        0.03418±0.01367 − 

Figure 71: Raw and unfolded χdijet distributions from data. Also shown are the ratios of the
unfolded to raw χdijet distributions.
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Figure 72: Covariance matrices for the Mjj bins.
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Figure 73: Correlation coefficients for the Mjj bins.
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6.5 Experimental Uncertainties

The dijet angular distributions are normalized to unity in each Mjj range, denoted

(1/σdijet)(dσdijet/dχdijet), (6.5)

where σdijet is the dijet cross section in the Mjj range. An advantage to using normalized

distributions is that they are relatively insensitive to many systematic effects. In particular,

they are not sensitive to uncertainties that affect the overall normalization of the distributions

such as the luminosity uncertainty. Instead, the largest systematic uncertainties come from

detector effects that change the shape of the distributions. The main systematic uncertainties

in this analysis come from the jet energy scale, the jet energy resolution, and the unfolding

correction. The effects of these uncertainties on the dijet angular distributions are discussed

below.

6.5.1 Jet Energy Scale Uncertainty

JES uncertainties are derived for each of the factorized corrections in the JES calibration

process and are provided in the form of mutually uncorrelated sources as functions of jet pT

and η. In the pT-η space covered by this analysis, the overall JES uncertainty is found to be

less than 1% [103, 104]. The variation of the JES as a function of η is less than 1% per unit η.

To calculate the effects of the JES uncertainties on the χdijet distributions, the pT of the jets

are varied according to the pT and η dependent uncertainties of the various JES uncertainty

sources and the normalized χdijet distributions are evaluated for all these variations. Ratios
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between the normalized χdijet distributions obtained using the nominal JES corrections and the

ones derived with increased (or decreased) jet pT’s are shown in Figures 74 to 77. The JES

uncertainty sources are taken into account independently in the NP limit setting procedure

since this accounts for the correlations among the Mjj and χdijet bins for each JES uncertainty

source. However, for the display of errors in the figures and tables, the total JES uncertainty is

obtained from the quadratic sum over all of these uncertainty sources and is found to be 3.6%

in the lowest Mjj range and 9.2% in the highest Mjj range.

6.5.2 Jet Energy Resolution Uncertainty

The main sources of the uncertainty on the JER come from the width of the JER core and

the size of the JER tails. The uncertainty in the width of the core is found to range from 1% to

5%, depending on η [103, 104]. To evaluate the effect of the uncertainty in the core on the χdijet

distributions, the generated jet energies are smeared using the Gaussian parametrization of the

JER with width given by the nominal JER. Then, additional jet collections are obtained by

smearing the generated jets using the same Gaussian parametrization with widths varied from

the nominal values by the JER uncertainties. The uncertainty is obtained from the ratios of the

normalized χdijet distributions obtained with the JER shifted widths in the Gaussian width to

those obtained with the widths given by the nominal JER. These ratios (before normalization)

are shown in Figure 78. This uncertainty on the χdijet distributions is found to be less than 1%

for all Mjj.

The size of tails in the jet resolution has been constrained from data only to a limited

extent [112]. Therefore, to evaluate the uncertainty due to the uncertainty in the tails, χdijet
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Figure 74: The effect of various JES uncertainty sources on the normalized χdijet distributions.
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Figure 75: The effect of various JES uncertainty sources on the normalized χdijet distributions.
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Figure 76: The effect of various JES uncertainty sources on the normalized χdijet distributions.
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Figure 77: The effect of various JES uncertainty sources on the normalized χdijet distributions.



155

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 3000jj2400 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 3600jj3000 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 4200jj3600 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 4800jj4200 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 5400jj4800 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 6000jj5400 < m

 Response -- SMEARED jetsχ vs jjM

dijet
χ2 4 6 8 10 12 14 16

R
at

io

0.96

0.98

1

1.02

1.04

σδ + σJER: 

σδ - σJER: 

 < 13000jj6000 < m

 Response -- SMEARED jetsχ vs jjM

Figure 78: The effect of the uncertainty in the width of the core of the JER on the χdijet
distributions.
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distributions obtained using the double-sided Crystal Ball parametrization of the JER are

compared to the χdijet distributions obtained using the Gaussian parametrization. These com-

parisons are shown in Figure 79. 50% of this difference on the normalized χdijet distributions is

assigned as the uncertainty due to the JER tails. The size of this uncertainty is less than 1.5%

for all Mjj.

6.5.3 Uncertainty Due to the Modeling of the Jet Energy Resolution

Another source of systematic uncertainty that was evaluated is the use of a parametric

model to simulate the jet pT resolution of the detector. The ratio between the normalized χdijet

distributions obtained using smeared jets and Full Sim jets is considered as a systematic uncer-

tainty. These ratios, along with the corresponding χdijet distributions are shown in Figure 80.

The uncertainty is found to be 0.5% and 1% in the lowest and highest Mjj ranges, respectively.

6.5.4 Uncertainty Introduced Due to the Unfolding Procedure

The potential mismodeling of the dijet kinematic distributions by the pythia event gen-

erator was considered as another source of systematic uncertainty. In practice, a mismodeling

of the Mjj distribution can affect the size of the unfolding correction. To estimate the size

of this uncertainty, distributions from MadGraph5_amc@nlo generator were used, as the

Mjj distribution from MadGraph5_amc@nlo is found to be considerably different from the

Mjj distribution obtained from pythia (see Section 6.2). The inverted response matrix de-

rived using the pythia sample is applied to the χdijet distributions obtained from the smeared

MadGraph5_amc@nlo sample and the results are compared to the corresponding Mad-

Graph5_amc@nlo particle-level χdijet distributions. The unfolded and generated distribu-
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Figure 79: χdijet distributions obtained using the double-sided Crystal Ball parametrization of
the JER (blue) compared to those obtained using the Gaussian parametrization (red).
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Figure 80: χdijet distributions obtained from generated jets (black) smeared with the double-
sided Crystal Ball parametrization of the JER (blue) compared to those obtained from the Full
Sim (red).
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tions are shown in Figure 81. The effect on the resultant normalized χdijet distributions is

found to be less than 1.5% for all Mjj.

A summary of the experimental uncertainties is shown in Table VII. While in the statistical

analysis (see Chapter 8), each systematic uncertainty is represented through a change in the

χdijet distributions correlated across all the Mjj and χdijet bins, representative values, which

are taken as the relative shifts for the lowest χdijet bins in the lowest and highest Mjj bins, are

used to illustrate the relative contributions in this table. As implied in the table, the leading

experimental uncertainty is JES uncertainty for low Mjj bins and statistical uncertainty for

high Mjj bins.

TABLE VII: The leading experimental uncertainties in the normalized χdijet distributions,
in percent. While in the statistical analysis (see Chapter 8), each systematic uncertainty is
represented through a change in the χdijet distributions correlated across all the Mjj and χdijet
bins, representative values which are taken as the relative shifts for the lowest χdijet bins in the
lowest and highest Mjj bins, are used to illustrate the relative contributions in this table.

Source of uncertainty 2.4 < Mjj < 3.0TeV Mjj > 6.0TeV
Statistical 0.7 27
JES 3.6 9.2
Jet pT resolution (core) 1.0 1.0
Jet pT resolution (tails) 1.0 1.5
Detector response model 0.5 1.0
Unfolding, model dependence 0.2 1.5
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Figure 81: Comparison of unfolded and generated χdijet distributions from Mad-
Graph5_amc@nlo. In these comparisons the response matrix used in the unfolding procedure
is derived from an independent sample of events generated by pythia.



CHAPTER 7

THEORERICAL PREDICTIONS

7.1 Theoretical Predictions for Quantum Chromodynamics

The nlojet++ [80] generator is used to calculate the predictions for the NLO QCD χdijet

distributions. Nlojet++ is integrated into the fastNLO package [113], which can calculate

the uncertainties due to PDFs and µR and µF scales with good CPU performance. The nominal

calculation is performed using the CT14 NLO PDFs [63], with the µF and µR scales to be the

average pT of the two leading jets (µF = µR = 〈pT〉).

7.1.1 Theoretical Uncertainties

The scale uncertainty in the predicted χdijet distributions is obtained by varying both µF and

µR in six combinations: (µF, µR) = (〈pT〉/2, 〈pT〉/2), (〈pT〉/2, 〈pT〉), (〈pT〉, 〈pT〉/2), (2〈pT〉,

2〈pT〉), (2〈pT〉, 〈pT〉) and (〈pT〉, 2〈pT〉) and taking the maximal downwards and upwards

deviations of the χdijet distributions from the central values. This recipe for determining the

scale uncertainties is taken from Refs. [114, 115]. The scale uncertainty for the various Mjj

regions defined in this analysis is presented in Figure 82 (red dashed line). It varies from 8.5%

in the lowest Mjj bin, to 19% in the highest mass bin and is dominated by the variation of µR.

The uncertainty in the predicted χdijet distributions due to the PDF uncertainties is eval-

uated using the set of uncertainty eigenvectors provided with the CT14 PDF set. The CT14

PDF uncertainty is obtained using the Hessian method [116, 117], where the correlated exper-
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Figure 82: Scale and PDF uncertainties for the QCD (dashed) and QCD + CI (solid) predictions
in the Mjj bins of this analysis. The CI prediction corresponds to the CI model with Λ−

LL =
18 TeV.
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imental data uncertainties on the fitted parameters in the PDFs are provided as uncertainty

eigenvectors within an orthonormalized parameter space. Since each uncertainty eigenvector in

the Hessian method is uncorrelated with all other uncertainty eigenvectors, the total impact on

χdijet is evaluated as the quadratic sum of the impact of each uncertainty eigenvector. The PDF

uncertainty is shown in Figure 82 (blue dashed line). The magnitude of the PDF uncertainty

is relative small because most of the QCD 2 → 2 processes have a uniform χdijet distribution.

As a crosscheck, the PDF uncertainty is also evaluated using a more flexible statistical

combination of multiple PDF sets as proposed by the PDF4LHC15_100 [63, 118–122] method.

The results obtained from this method exhibit only small differences as compared to the results

obtained using the CT14 PDF set as described above and have a negligible impact on the limits

for the NP models described in the next chapter.

A summary of the theoretical uncertainties is shown in Table VIII. As can be seen in the

table, the µR and µF scale uncertainty dominates the theoretical systematic uncertainties.

TABLE VIII: The theoretical systematic uncertainties in the normalized χdijet distributions,
in percent. While in the statistical analysis (see Chapter 8), each systematic uncertainty is
represented through a change in the χdijet distributions correlated across all the Mjj and χdijet
bins, representative values which are taken as the relative shifts for the lowest χdijet bins in the
lowest and highest Mjj bins, are used to illustrate the relative contributions in this table.

Source of uncertainty 2.4 < Mjj < 3.0TeV Mjj > 6.0TeV
QCD NLO scale (6 changes in µr and µf)

+8.5
−3.0

+19
−5.8

PDF (CT14 eigenvectors) 0.2 0.6
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7.1.2 Electroweak Corrections

Electroweak corrections for dijet productions have been applied [123]. In these corrections,

the electroweak interactions between quarks, e.g., the ud̄ → W+ → ud̄ process, are included

in the prediction of dijet productions. The correction factors are provided by the authors of

Ref. [123] and are shown in Figure 83. The correction factors are shown in Figure 83.
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Figure 83: The electroweak correction factors for dijet production as a function of χdijet for the
Mjj bins used in the analysis.
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7.1.3 Non-perturbative Corrections

The NLOQCD calculations are performed at parton-level and do not include non-perturbative

effects due to hadronization and multiple parton interactions. The impact of non-perturbative

effects on the predictions are evaluated using the pythia (PartonLevel:MPI, HadronLevel:Hadronize)

and herwig++ (LHCHandler:MultipleInteractionHandler, LHCHandler:HadronizationHandler)

event generators. The simulated jets are reconstructed with and without non-perturbative ef-

fects enabled in the event generators and the ratio of the χdijet distributions obtained with and

without the non-perturbative effects are taken as the non-perturbative correction factors. The

resulting correction factors are shown in Figure 84, and they are found to be negligible for both

MC generators. Therefore, no correction needs to be applied to the QCD predictions for these

non-perturbative effects.

7.2 Contact Interaction Theoretical Predictions

The CI models considered were described earlier in Section 1.2.1. The models with positive

(negative) ηLL or ηRR lead to destructive (constructive) interference with the QCD terms and

consequently a lower (higher) cross section. In the CI models studied in this thesis, NLO QCD

corrections are applied to the predictions. In proton-proton collisions, the Λ±
LL and Λ±

RR models

have identical tree level diagrams and NLO corrections, leading to same cross sections. For

Λ±
VV and Λ±

AA, as well as for Λ±
(V−A), the CI predictions are identical at tree level, but exhibit

different NLO corrections and therefore yield different cross sections. For the calculation of

the CI terms, as well as the interference between QCD and CI terms at NLO in QCD, the

cijet program version 1.0 [81] is used. The CI predictions are then combined with the NLO
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Figure 84: Non-perturbative corrections derived from pythia (black) and herwig++(green).
The y-axis corresponds to the values of the non-perturbative correction factors.

QCD+EW predictions to obtain the final predictions. The PDF set used in the CI predictions

is the CT14 NLO set.

PDF and µR and µF scale choice uncertainties for the CI predictions are calculated in the

same manner as for the QCD predictions. The CI+QCD scale and PDF uncertainties for

Λ−
LL = 18TeV are shown in Figure 82 (pink and black solid lines). The uncertainties for the

scale and PDF choices in the CI+QCD predictions in the highest mass bin are estimated to be

14% and 2%, respectively. The fact that the scale uncertainties for the CI+QCD prediction is
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smaller than the scale uncertainties for the QCD-only predictions is due to cancellations that

occur in the normalization of the χdijet distributions.

7.3 Theoretical Predictions for Extra Spatial Dimensions

The LO predictions for the ADD model are calculated using pythia in the GRW convention

using the parameters shown in Table IX. The predictions for the HLZ convention can be ob-

tained from the GRW predictions using the relations shown in Equation 1.20. The interference

between the ADD and QCD terms are included in pythia. To obtain the best estimate for the

QCD+ADD process, NLO QCD and EW corrections for the QCD term (σQCD
NLO+EW−σQCD

LO ) are

added bin-by-bin to the LO QCD+ADD prediction:

σQCD+ADD = (σQCD
NLO+EW − σQCD

LO + σQCD+ADD
LO ). (7.1)

TABLE IX: Parameters used in the pythia prediction of the ADD virtual graviton exchange
process.

parameter value description
HardQCD:all off custom dijet processes

ExtraDimensionsLED:dijets on use extra dimensions
ExtraDimensionsLED:CutOffmode 0 GRW convention
ExtraDimensionsLED:LambdaT ΛT energy scale parameter
ExtraDimensionsLED:nQuarkNew 5 outgoing mass-less quark flavours
ExtraDimensionsLED:opMode 1 use GRW convention
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7.4 Quantum Black Hole Theoretical Predictions

The qbh 3.0 generator [82] is used to calculate the predictions for QBH production. The

QCD terms do not interfere with QBH terms since gravity has no interference with the QCD

processes. Because QBHs have mass close to the fundamental Planck scale, the minimum QBH

mass, MQBH, is set to be equal to the fundamental Planck scale MD for simplicity. The other

parameters used in the qbh generator are shown in Table X.

TABLE X: Parameters used in the qbh prediction of the QBH production and decay processes.

parameter value description
setQscale true QCD scale for PDFs to be inverse gravitational radius

setLHAglue 10042 CTEQ6L1 PDF
setPlanckdef 3 definition of Planck Scale to be PDF definition

setSM false Allow violation of stardard model global symmetry
setChiral false Neutrinos are only left-handed

setMajorana false Neutrinos are Dirac particles

7.5 Dark Matter Theoretical Predictions

Interactions of quarks with dark matter particles mediated by the vector and axial-vector

mediators in the simplified model of DM [55, 56] are generated using MadDM version 2.0.6 [124,

125] at LO. The dark matter predictions are generated at fixed gDM and mDM values, where

gDM = 1.0 and mDM = 1 GeV.



169

The width of the mediators as a function of gq is shown in Figure 85. Scenarios with gq > 0.5

are of particular interest to this search, as they predict resonances with a relative width larger

than 15%. And in these scenarios, the sensitivity of searches using dijet resonances is limited.

The inclusive cross sections and the overall acceptances in the analysis phase space of various

generated mediator models as a function of the mediator mass are shown in Figures 86 and 87,

respectively. As shown in the figures, the differences in the cross sections and acceptances

between vector and axial-vector mediators are negligible for the generated samples.
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The PDF uncertainty on the DM predictions is evaluated using the NNPDF3.0 PDF set [120]

and found to be non-negligible for DM mediators that have large mass and coupling for Mjj >

MMed. For example, for an axial-vector mediator with MMed = 6TeV and gq = 1.0, which

corresponds to a resonance with a relative width of 50%, the PDF uncertainty is 14% in the

Mjj > 6.0TeV bin. The impact of the scale uncertainties on the DM models is found to be

negligible.



CHAPTER 8

RESULTS1

8.1 Comparisons between Data and Theoretical Predictions

The measured normalized χdijet distributions, unfolded to particle level, are compared to

NLO QCD predictions with EW corrections in Figures 88 and 89. Also shown are the ratios

between the unfolded data distributions and the NLO QCD+EW predictions. The level of

agreement between the data distributions and SM predictions in each Mjj bin is quantified

using: 1), a simple χ2 test, which combines the systematic and statistical uncertainties in

quadrature and assumes that the uncertainties are uncorrelated between χdijet bins, and 2),

a goodness-of-fit (GOF) test, which takes into account all uncertainties and their correlations

based on the saturated model [127] and estimates the significance with respect to the expected

goodness of fit. The results of these tests are summarized in Table XI and indicate no significant

deviation of the data from the SM predictions.

The distributions shown in Figures 88 and 89 are also compared to predictions for several NP

models: QCD+CI with Λ±
LL = 14TeV, QCD+ADD with ΛT (GRW) = 10TeV, QCD+QBH

with MQBH (ADD6) = 8TeV, and QCD+DM with MMed = 2, 3 and 5TeV and gq = 1.0. In

1The results of this thesis have been published in European Physics Journal C [126]. The copyright
policy of the European Physics Journal C can be found in Appendix C.
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Figure 88: Normalized χdijet distributions from data compared to the NLO QCD prediction
with EW corrections in the three highest mass bins. Also shown are the predictions from the CI,
ADD, QBH, and DM models. The error bars represent statistical and experimental systematic
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to the experimental and theoretical systematic uncertainty, respectively. The ratios between
the unfolded data distributions and the NLO QCD+EW predictions are shown in the lower
panels.



174

dijet
χ2 4 6 8 10 12 14 16

N
LO

 Q
C

D
 +

 E
W

D
at

a

0.8

1

1.2 dijet
χ2 4 6 8 10 12 14 16

di
je

t
χ

/d
di

je
t

σ
 d

di
je

t
σ

1/

0.06

0.08

0.1

0.12

 < 4.8 TeVjjM4.2 < 

Data

NLO QCD + EW

 (CI) = 14 TeV+
LLΛ

 (CI) = 14 TeV−
LLΛ

 (GRW) = 10 TeVTΛ

 = 1.0) = 5 TeV
q

 (DM gMedM

 (13 TeV)-135.9 fb

CMS

dijet
χ2 4 6 8 10 12 14 16

N
LO

 Q
C

D
 +

 E
W

D
at

a

0.8

1

1.2 dijet
χ2 4 6 8 10 12 14 16

di
je

t
χ

/d
di

je
t

σ
 d

di
je

t
σ

1/

0.06

0.08

0.1

0.12

 < 4.2 TeVjjM3.6 < 

Data

NLO QCD + EW

 (CI) = 14 TeV+
LLΛ

 (CI) = 14 TeV−
LLΛ

 = 1.0) = 5 TeV
q

 (DM gMedM

 (13 TeV)-135.9 fb

CMS

dijet
χ2 4 6 8 10 12 14 16

N
LO

 Q
C

D
 +

 E
W

D
at

a

0.8

1

1.2 dijet
χ2 4 6 8 10 12 14 16

di
je

t
χ

/d
di

je
t

σ
 d

di
je

t
σ

1/

0.06

0.08

0.1

0.12

 < 3.6 TeVjjM3.0 < 

Data

NLO QCD + EW

 = 1.0) = 3 TeV
q

 (DM gMedM

 = 1.0) = 5 TeV
q

 (DM gMedM

 (13 TeV)-135.9 fb

CMS

dijet
χ2 4 6 8 10 12 14 16

N
LO

 Q
C

D
 +

 E
W

D
at

a

0.8

1

1.2 dijet
χ2 4 6 8 10 12 14 16

di
je

t
χ

/d
di

je
t

σ
 d

di
je

t
σ

1/

0.06

0.08

0.1

0.12

 < 3.0 TeVjjM2.4 < 

Data

NLO QCD + EW

 = 1.0) = 2 TeV
q

 (DM gMedM

 = 1.0) = 3 TeV
q

 (DM gMedM

 = 1.0) = 5 TeV
q

 (DM gMedM

 (13 TeV)-135.9 fb

CMS

Figure 89: Same as Figure 88 but for the four lower mass bins.
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TABLE XI: Agreement between the data distributions and theoretical predictions. The χ2 in
each Mjj bin is divided by the number of degrees of freedom (DOF).

Mass bins [TeV] χ2/DOF GOF
6.0–13.0 1.2 0.4
5.4–6.0 1.0 0.4
4.8–5.4 1.9 1.3
4.2–4.8 0.7 0.3
3.6–4.2 2.2 0.2
3.0–3.6 3.4 1.5
2.4–3.0 3.9 1.7

these figures, distributions from the NP models are shown only for those Mjj ranges that have

sensitivity to the signal.

8.2 Determination of Exclusion Limits

8.2.1 Statistical Method

The exclusion limits presented in this thesis are determined using the modified frequentist

approach [128, 129]. The test statistic, which discriminates the QCD-only (background) and

QCD+NP (signal+background) hypotheses, is defined as

q = −2 ln
Lµs+b

Lµ0s+b
, (8.1)
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where µ is the signal strength and is equal to 1 (0) for the QCD+NP (QCD-only) hypothesis.

The likelihoods Ls+b and Lb are defined for the respective QCD+NP and QCD-only hypotheses

as a product of Poisson likelihood functions for each bin in the χdijet distributions,

L(ni|µsi + bi) =
∏

i

(µs + b)ni
i

ni!
· e−(µs+b)i (8.2)

where ni is the number of events in bin i in the data distributions and s and b are the predictions

for the signal and background yields in bin i. In the statistical tests, the predictions for each

Mjj range are normalized to the number of observed events in the Mjj range.

The theoretical and experimental systematic uncertainties are treated as nuisance parame-

ters θ = (θ0, θ1, · · · , θk) in the likelihood model:

L(n|µs + b, θ) = L(n|(µs(θ) + b(θ)) · ρ(θ), (8.3)

where ρ(θ) is the probability density function of the nuisance parameters. It is described by

the normal distribution:

ρ(θ) =
1√
2π

exp(−θ2

2
). (8.4)

The nuisance parameters are profiled with respect to the background-only and signal+back-

ground models by maximizing the corresponding likelihood functions. After the maximum

likelihood fit for the nuisance parameters, the profile likelihoods are written as

L(n|µs + b, θ̂), (8.5)
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where θ̂ are the maximum likelihood estimators of the nuisance parameters. Profiling the

nuisance parameters helps constrain the systematic uncertainties because of the large number

of events in the low-Mjj ranges. This gives 2–30% better observed limits on the NP scales and

masses than the limits obtained using the method in the predecessor of this search reported in

Ref. [33], where the nuisance parameters were allowed to float freely according to the systematic

uncertainties.

The p-values, PQCD+NP(q̂ ≥ q̂obs) and 1−PQCD(q̂ ≤ q̂obs), where q̂ is the profile log-likelihood

ratio and q̂obs is determined from the data, are evaluated for the QCD+NP and QCD-only

hypotheses, respectively. The p-value PQCD+NP(q̂ ≥ q̂obs) quantifies the compatibility of the

data with the signal+background hypothesis, while the p-value 1 − PQCD(q̂ ≤ q̂obs) quantifies

the compatibility of the data with the background-only hypothesis. These p-values can be

determined by generating an ensemble of pseudo-data samples according to the QCD-only and

QCD+NP predictions and comparing the q value obtained from each set of pseudo-data with

qobs. However, as generating the pseudo-data ensembles is very CPU intensive, another method

is often used to evaluate the p-values. This is called the asymptotic method [130]. If the number

of observed events is large enough, the asymptotic method gives the same results as the method

using pseudo-data. However, when the number of events is small, the asymptotic method fails.

A cross-check has been performed using the ADD model to verify that the asymptotic method

is applicable to this analysis. The difference between the results from the two methods was

found to be negligible and therefore this analysis uses the asymptotic method. The ADD model
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was chosen for this test since the ADD model has signal only in the highest mass bin, and in

this bin the total number of events is small.

Limits on the QCD+NP models are set based on the quantity

CLs =
CLs+b
CLb

=
PQCD+NP(q̂ ≥ q̂obs)

(1 − PQCD(q̂ ≤ q̂obs))
, (8.6)

which by convention is required to be less than 0.05 for a 95% confidence level (CL) of exclu-

sion. This method is called the modified frequentist method and is different from the classical

frequentist method, where limits are set based on CLs+b, in that the modified method gives

more sensible results for signals that have small yield. This can be understood by the fol-

lowing argument. If the signal yield is small, then s + b ∼ b and CLs+b ∼ CLb. When we

exclude the signal+background hypothesis using the classical frequentist method at 95% CL

(i.e., CLs+b < 0.05), we also exclude the background-only hypothesis at approximately the

same CL (i.e., CLb ∼ 0.05). However, in the modified frequentist method, this situation can be

avoided since we require CLs+b/CLb < 0.05 for a 95% CL exclusion.

To quantify the sensitivity of the analysis independent of statistical fluctuations in the data,

one can calculate expected limits. This calculation can be done by replacing qobs with q̂ at the

median of PQCD(q̂) in the CLs. With this construction, the expected limits are equivalent to

the observed limits for the case where the observed data overlap with the expectation from the

QCD-only hypothesis. In addition to the expected limits, one can also calculate the 1σ (2σ)
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variations of the expected limits by replacing q̂ at the median of PQCD(q̂) with q̂ at 16% (2.2%)

and 84% (97.7%) values of PQCD(q̂).

In the limit calculation for this analysis, only the Mjj ranges that improve the expected

limits by more than 1% are included. For the CI models, ADD models, and QBH models, mass

bins with Mjj > 3.6TeV, Mjj > 4.2TeV, and Mjj > 4.8TeV are used, respectively. For the DM

mediators, mass bins that cover the Mjj range of 0.5MMed–1.2MMed are used.

Detector-level χdijet distributions are compared to theoretical predictions that have been

folded to detector-level to determine the exclusion limits on the NP models. This is done because

for the detector-level χdijet distributions, each χdijet bin can be modeled by a Poisson likelihood

function, while in the unfolded distributions, bins are correlated among the Mjj ranges and

therefore, strictly speaking, cannot be modeled by Poisson likelihood functions. The particle-

level predictions are folded to detector-level by multiplying the particle-level distributions by the

response matrix. A cross-check was performed to verify that the limits for SM+NP predictions

folded with the response matrix derived from the pythia QCD sample (see Section 6.4) smeared

with the double-sided Crystal Ball parametrization of the jet pT resolution agree with the

SM+NP predictions smeared with the same parameterization. The details of this cross-check

is described in Appendix B.

Although the limits are extracted using detector-level theoretical predictions and data dis-

tributions, it is also useful to extract the limits using particle-level theoretical predictions and

unfolded χdijet distributions approximated by Poisson likelihood functions since the limits ob-

tained from the two methods are not expected to be very different. The resulting observed
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limits on the NP scales and masses determined at particle level are found to be ∼1% (∼10%)

more stringent than the observed limits determined at detector level for models which have

signal in the highest mass bin (across all mass bins) (see Appendix B).

Although the agreement between data and the NLO QCD+EW predictions has been quan-

tified using χ2 and GOF tests, it can also be quantified using the profile likelihood ratio by

calculating the p-value PQCD(q < qobs) (CLb) for each mass bin separately. The largest excess

is found in the Mjj >6.0TeV bin, with a significance of 1.8 standard deviations. In this calcula-

tion, Λ+
LL/RR model is used in the likelihood ratio (Equation 8.1). As mass bins are combined in

the QCD+NP models under study, the significances of the data distributions in combined mass

bins are also calculated and the results are shown in Table XII. The largest significances are

found to be between 2.7–2.8 standard deviations for the QCD+DM models with MMed between

4.5–6.0TeV and gq = 1.0.

TABLE XII: Significance of the data distributions in number of standard deviations for the
QCD+DM models with gq =1.0.

MMed [TeV] Mjj ranges [TeV] Significance
2.0 2.4–3.0 0.2
2.5 2.4–3.0 0.6
3.0 2.4–3.6 2.1
3.5 2.4–4.2 2.4
4.0 2.4–4.2 2.0
4.5 2.4–4.8 2.8
5.0 2.4–6.0 2.8
6.0 3.0–13.0 2.7
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8.2.2 Limits on New Physics Models

The observed and expected 95% CL exclusion limits for the different CI, ADD, and QBH

models studied in this analysis are shown in Figure 90. They are also displayed in Table XIII.

The observed limits are less stringent than the expected limits because of the upward fluctuation

of the data at low χdijet in the Mjj > 6.0 and the 4.2 < Mjj < 4.8TeV bins compared to the

theoretical predictions.

TABLE XIII: Observed and expected exclusion limits at 95% CL for CI, ADD, and QBH
models.

Model Observed lower limit (TeV) Expected lower limit (TeV)
Λ+

LL/RR (NLO) 12.8 14.6 ± 0.8
Λ−

LL/RR (NLO) 17.5 23.5 ± 3.0
Λ+

VV (NLO) 14.6 16.4 ± 0.8
Λ−

VV (NLO) 22.4 30.7 ± 3.7
Λ+

AA (NLO) 14.7 16.5 ± 0.8
Λ−

AA (NLO) 22.3 30.6 ± 3.8
Λ+

(V−A) (NLO) 9.2 11.5 ± 1.0
Λ−

(V−A) (NLO) 9.3 11.8 ± 1.1
ADD ΛT (GRW) 10.1 11.5 ± 0.7
ADD MS (HLZ) nED = 2 10.7 12.5 ± 0.8
ADD MS (HLZ) nED = 3 12.0 13.7 ± 0.8
ADD MS (HLZ) nED = 4 10.1 11.5 ± 0.7
ADD MS (HLZ) nED = 5 9.1 10.4 ± 0.6
ADD MS (HLZ) nED = 6 8.5 9.7 ± 0.6
QBH MQBH (ADD nED = 6) 8.2 8.5 ± 0.4
QBH MQBH (RS nED = 1) 5.9 6.3 ± 0.7
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Figure 90: 95% CL exclusion limits for CI, ADD, and QBH models. The observed (expected)
limits are indicated by the solid (dashed) vertical lines. The ±1σ (±2σ) variations of the
expected limits are given by the horizontal gray bands (black lines).
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95% CL upper limits on gq as a function of the mass of the vector or axial-vector DM

mediator with gDM = 1.0 and mDM = 1GeV are shown in Figure 91. Also shown on the

vertical axis on the right-hand side of the figure are the corresponding limits on the width of

the mediators. The limits degrade below MMed = 2.5TeV because the lower Mjj boundary of

the analysis is 2.4TeV. This causes the acceptance losses to grow as the resonance mass moves

below this boundary. The limits degrade quickly above MMed > 4TeV because resonances with

large mass and width are predominantly produced off-shell with a mass less than 2.4TeV. This

results in a loss of acceptance for these resonances as a function of increasing resonance width.

The observed limit above 5TeV is at Γ/MMed ≥ 1, which is in a region where the simplified

model of a mediator particle is no longer valid.

The limits for arbitrary DM mass (m ′
DM) as a function of MMed at fixed couplings can be

calculated based on the fact that at fixed mediator production cross sections, changes in the

width of the DM decay channel will lead to changes in the width of the quark decay channel.

The cross section of the DM mediator can be written as:

σ =
g4

q
Γ

C
MMed

(8.7)

where C is a constant and Γ is the total width of the DM mediator. The partial widths for the

quark and DM decay channels for vector and axial-vector mediators can be written as:

Γqq
vector =

g2
qMMed

4π
(1 − 4

m2
q

M2
Med

)1/2(1 + 2
m2

q

M2
Med

) (8.8)
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Figure 91: 95% CL upper limits on the quark coupling gq as a function of the mass of the
vector or axial-vector DM mediator MMed with gDM = 1.0 and mDM = 1GeV. Also shown
on the vertical axis on the right-hand side of the figure are the corresponding limits on the
width of the mediators. The observed limits, expected limits, and the one (two) σ variation of
the expected limits are indicated by the solid line, dashed line, and the green (yellow) shaded
band, respectively. The dashed horizontal gray line indicates a benchmark DM mediator with
gq = 1.0.
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ΓDM
vector =

g2
DMMMed

12π
(1 − 4

m2
DM

M2
Med

)1/2(1 + 2
m2

DM

M2
Med

) (8.9)

and

Γqq
axial−vector =

g2
qMMed

4π
(1 − 4

m2
q

M2
Med

)3/2 (8.10)

ΓDM
axial−vector =

g2
DMMMed

12π
(1 − 4

m2
DM

M2
Med

)3/2, (8.11)

respectively. From these equations, it follows that at fixed mediator production cross section,

two models with the same MMed and gDM but different mDM (m ′
DM) and gq (g ′

q) are related to

each other by:

σ =
g4

q

Γqq(gq) + ΓDM(mDM, gDM)

C
MMed

=
g ′4

q

Γqq(g ′
q) + ΓDM(m ′

DM, gDM)

C
MMed

. (8.12)

Solving Equation 8.12 for gq , the following expression is obtained:

gq =

√
A+

√
A2 + 4B
2

(8.13)

where

A =
g ′2

qΓqq(g ′
q)

Γqq(g ′
q) + ΓDM(m ′

DM, gDM)
and B =

g ′4
qΓDM(mDM, gDM)

Γqq(g ′
q) + ΓDM(m ′

DM, gDM)
. (8.14)

With these relations, the limits for models with arbitrary m ′
DM and g ′

q can be obtained using

the limits from the model with a given mDM and gq.
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In Figure 92, exclusion regions for vector (top) and axial-vector (bottom) mediators are

shown in the mDM and MMed plane for the model where gq = gDM = 1.0. As can be seen

in the figure, the exclusion range for MMed is practically independent of mDM. This behavior

is expected because in the model with gq = gDM = 1.0, the total width of the mediator is

dominated by the width of quark decay channel due to the large number of possible quark

flavors and colors.

The DM limits can also be transformed into mass limits for a leptophobic Z ′ boson. The

limits for the Z ′ boson are equivalent to the limits of the vector and axial-vector DM mediators

with ΓDM = 0. The limits on the universal coupling g ′
q between the Z ′ boson and quarks

as a function of the Z ′ mass are shown in Figure 93. The limits are also compared to limits

obtained by the dijet resonance searches at CMS [58, 131–133]. Most of the analyses, with the

exception of χdijet and broad dijet, assume that the intrinsic width is negligible compared to

the experimental resolution, and hence are valid for ΓZ ′/MZ ′ ≤ 10%. The sensitivity of the

narrow dijet resonance searches begins to degrade at the region where the widths in the quark

decay channels increase to more than 10%, where the data-driven background estimation in the

analyses becomes biased by the signal. The broad dijet analysis is valid for ΓZ ′/MZ ′ ≤ 30%,

and the χdijet analysis is valid for ΓZ ′/MZ ′ ≤ 100%. For Z ′ mass between 2.0 and 4.6TeV,

this search excludes couplings with 1.0 ≤ g ′
q ≤ 1.4, which are not accessible via dijet resonance

searches. The results of this thesis have been published in Ref. [126].
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Figure 92: The 95% CL observed (red) and expected (blue) excluded regions in the plane of
mDM and MMed, for a vector mediator (upper) and an axial-vector mediator (lower) for a DM
benchmark model with gDM = gq = 1.0. Also shown in gray are constraints from astrophysical
measurements [54] of the cosmological relic density of DM. The expected lower bound is not
seen because it overlaps with the observed lower bound.
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CHAPTER 9

CONCLUSION

Normalized dijet angular distributions have been measured at
√

s = 13TeV with the CMS

detector over a wide range of dijet invariant masses. The distributions are found to be in

agreement with predictions of perturbative QCD that include electroweak corrections and are

used to set 95% confidence level lower limits on various new physics models containing quark

contact interactions, extra spatial dimensions, quantum black holes, or dark matter. For the

first time, lower limits between 2.0 and 4.6TeV are set on the mass of a dark matter mediator for

(axial-)vector mediators, for the universal quark coupling 1.0 ≤ gq ≤ 1.4. The lower limits for

the contact interaction scale Λ range from 9.2 to 22.4TeV. The lower limits on the ultraviolet

cutoff in the Arkani–Hamed–Dimopoulos–Dvali model are in the range of 8.5–12TeV, and are

the most stringent limits available. Quantum black hole masses below 8.2TeV are excluded in

the model with six large extra spatial dimensions, and below 5.9TeV in the Randall–Sundrum

model with a single, warped extra dimension. To facilitate comparisons with the predictions of

other models, the angular distributions, corrected to particle level, are published in HEPData.
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Appendix A

TRIGGER RATE ESTIMATIONS

During data taking, trigger rates exceeding the limit of 100 kHz in L1 and ∼ 1500 Hz in

HLT can result in a loss of data in the DAQ. It is therefore crucial for CMS to estimate the

trigger rates before trigger menus are deployed online.

The trigger rates can be estimated using data and/or simulation. For the method that uses

data, the trigger rate can be written as:

Rdata =
Nev

NLS × 23.3
Nprescale. (A.1)

where 23.3 seconds is the length of a luminosity section (LS), NLS is the number of LSs in

the data sample, Nprescale is the prescale factor of the zero bias trigger, and Nev is the number

of events triggered in the sample. The data sample used to estimate the trigger rates is the

zero bias sample, which contains events triggered by the zero bias trigger that has no selection

criteria imposed on the trigger objects. Since the zero bias trigger is prescaled, Nprescale needs

to be applied in the rate estimation. Nev is obtained by running the trigger emulation on the

zero bias data sample and counting the number of triggered events.

Both the cumulative rate of a trigger menu and the rates for the individual triggers need

to be estimated. The cumulative rate for a trigger menu does not equal to the sum of the

rates of the individual triggers in the menu since one event can fire multiple triggers. The
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Appendix A (Continued)

quantity that takes into account this multiple-counting effect is called the pure rate. If an

event passes multiple triggers, it will be weighted by the inverse number of triggers it passes

in the pure rate calculation. As the LHC instantaneous luminosity was increasing every week,

the trigger rates had to be predicted in higher luminosity conditions using data collected at

lower luminosities. This is achieved by linearly (quadratically) extrapolating the pure rate for

single-object (multi-object) triggers.

For the method using the simulated events, the trigger rate can be written as:

RMC =
σMC × iL × Npass

Ntotal
. (A.2)

where σMC is the cross section of the simulated process, iL is the desired instantaneous luminos-

ity, Npass is the number of events that pass the trigger, and Ntotal is the total number of events

in the simulated sample. The zero bias events are commonly used for the L1T rate estimation

since there are no trigger thresholds applied, while events from QCD, Drell-Yan, and W boson

decay processes are used for the HLT. The MC samples are produced with a variety of pileup

scenarios to ensure that the effects of pileup are properly accounted for in the simulations.

Some examples of the trigger rates are shown in Figures 94 to 96. In Figure 94, the rates

for the L1 single electron/photon (EG) triggers with various ET thresholds as a function of

the values of the η restriction are shown. In Figure 95, the rates for the L1 single jet and HT

triggers are estimated from simulation and compared to data from a run with a similar number

of pileup vertices. As can be seen in the figure, the rates in data and simulation agree within
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Figure 94: The rates for the L1 single EG η restricted triggers with various ET thresholds as a
function of the values of the η restriction.

25%. In Figure 96, a screenshot of the estimated HLT trigger rates for a subset of the full menu

is presented. These rates are used for the HLT trigger menu development.
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Figure 95: The rate for the L1 single jet (left) and HT (right) trigger as a function of the trigger
threshold estimated from data (red) and simulation (blue).



195

Appendix A (Continued)

Figure 96: A part of the HLT menu with estimated rates.
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Appendix B

CROSS-CHECKS FOR THE LIMITS

Several cross-checks have been performed to ensure that the final limits presented are cor-

rect. One cross-check was to compare the final limits extracted using detector-level χdijet

distributions for the data and theoretical predictions to the limits extracted using the unfolded

data distributions and particle-level theoretical predictions. The particle-level limits are shown

in Figure 97 for the DM model and Table XIV for the CI, ADD, and QBH models. In the

calculation, the correlations between Mjj bins in the unfolded distributions are ignored. Com-

paring Figure 97 and table Table XIV with Figure 91 and Table XIII, we see that for most

models, the difference in the limits for the NP masses and scales are less than 3%. For the wide

resonances (DM mediators with large gq), the difference is larger (10%). This is due to the

fact that wide resonances have signals across several Mjj ranges, while the CI, ADD, and QBH

models only have signals in the highest mass bin(s).

In another cross-check, DM limits are extracted using particle-level predictions that are

smeared using the double-sided Crystal Ball parameterization of the jet pT resolution and

compared to limits extracted using particle-level theoretical predictions folded using the analysis

response matrix derived from pythia (see Section 6.4). This is another check of the robustness

of the limit extraction procedure against differences in the input Mjj spectrum. The results are

shown in Figure 98. Comparing Figure 98 with Figure 91, we see that the two sets of limits

agree within 5%.
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Figure 97: Same as Figure 91 but obtained using the unfolded distributions and particle-level
predictions.

Figure 98: Same as Figure 91 but obtained using SM+DM prediction smeared with the double-
sided Crystal Ball parameterization of the jet pT resolution.
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TABLE XIV: Same as Table XIII but obtained using the unfolded distributions and particle-
level predictions.

Model Observed lower limit (TeV) Expected lower limit (TeV)
Λ+

LL/RR (NLO) 12.7 14.8 ± 0.8
Λ−

LL/RR (NLO) 17.6 23.8 ± 3.1
Λ+

VV (NLO) 14.6 16.6 ± 0.9
Λ−

VV (NLO) 22.5 31.2 ± 3.9
Λ+

AA (NLO) 14.7 16.7 ± 0.9
Λ−

AA (NLO) 22.4 30.8 ± 3.6
Λ+

(V−A) (NLO) 9.2 11.6 ± 1.0
Λ−

(V−A) (NLO) 9.4 11.9 ± 1.1
ADD ΛT (GRW) 10.3 11.7 ± 0.8
ADD MS (HLZ) nED = 2 11.0 12.8 ± 0.9
ADD MS (HLZ) nED = 3 12.2 13.7 ± 0.9
ADD MS (HLZ) nED = 4 10.3 11.7 ± 0.8
ADD MS (HLZ) nED = 5 9.3 10.5 ± 0.7
ADD MS (HLZ) nED = 6 8.7 9.8 ± 0.5
QBH MQBH (ADD6) 8.3 8.7 ± 0.3
QBH MQBH (RS1) 6.0 6.5 ± 0.4



199

Appendix B (Continued)

Finally, a signal injection test for the DM model is performed. This test is a sanity check

to make sure that if a signal is present, it can be found by the statistical method used in this

analysis. DM signals corresponding to gq = 0.75 and MMed = 2.0, 2.25, 3.0, 3.5, 4.0, and 4.5

TeV are added to the data. Maximum likelihood fits for the signal+background distributions

to the modified data distributions are performed. The resultant fitted signal strengths (see

Section 8.2.1) are listed in Table XV and are compared to those from the fits to the unmodified

data distributions. The fitted signal strengths of the modified data distributions converge to 1

as expected. The limits for the modified data distributions are shown in Figure 99. As expected,

for the modified data distributions, the observed limits on gq are greater than 0.75.

TABLE XV: Fitted signal strengths from fits to the data+DM distributions compared to the
fitted signal strengths from the fits to the data-only distributions.

Mediator Mass (TeV) Fitted µ (Data) Fitted µ (Data+NP)
2.0 0.21 1.02
2.25 0.14 1.01
2.5 0.29 1.06
3.0 0.51 1.12
3.5 0.55 1.14
4.0 0.58 1.15
4.5 0.80 1.27
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Figure 99: Results of the signal injection test. Same as Figure 91 but replacing the data
distributions with the data+DM (gq =0.75) distributions.
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Appendix C

COPYRIGHT POLICY OF EUROPEAN PHYSICS JOURNAL C

The copyright policy of European Physics Journal C is stated in the following webpage:

https://epjc.epj.org/epjc-copyright-form. A screenshot of the webpage is provided in Fig-

ure 100.

Figure 100: A screenshot of the webpage stating the copyright policy of the European Physics
Journal C.
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