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SUMMARY 

Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme, responsible for 

eliminating ~20% of marketed drugs (1-3); however, how CYP2D6 expression is 

regulated remains poorly understood. Of note, CYP2D6-mediated drug metabolism is 

increased during pregnancy (4-8). Importantly for this project, this clinical finding 

presents a platform for us to identify and characterize the factors involved in the 

regulation of CYP2D6 expression.  

 

 The mechanisms underlying CYP2D6 induction during pregnancy were 

completely unknown in part due to a lack of study models that could recapitulate the 

finding. For the first time, we established an animal model for the study, namely 

CYP2D6-humanized (Tg-CYP2D6) mice, by showing that CYP2D6 expression is 

induced in the mice at term pregnancy. Tg-CYP2D6 mice carry human CYP2D6 gene 

and its 2.5-kb upstream regulatory region in the mouse genome (9). Using Tg-CYP2D6 

mice, we identified a novel transcriptional repressor of CYP2D6 expression–small 

heterodimer partner (SHP). SHP is known to repress the action of other transcription 

factors including hepatocyte nuclear factor (HNF) 4α. We showed that SHP expression 

is downregulated in mouse livers at term pregnancy. Furthermore, we demonstrated in 

cell culture systems that SHP represses HNF4α transactivation of CYP2D6 promoter. 

CYP2D6 induction during pregnancy in mice is abrogated in the absence of SHP 

expression, indicating the essential role of SHP in regulation CYP2D6 expression during 

pregnancy. Retinoic acids were identified as a potential upstream regulator that is 

responsible for SHP downregulation during pregnancy: (1) administration of all-trans 

retinoic acid (atRA; a major bioactive vitamin A metabolite) to Tg-CYP2D6 mice led to 

enhanced SHP expression and decreased CYP2D6 expression and (2) hepatic levels of  
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atRA were decreased at term pregnancy as compared to the pre-pregnancy level in Tg-

CYP2D6 mice. These results are summarized in Chapter 2.  

 

 The elucidated mechanisms for CYP2D6 induction during pregnancy may 

provide a basis to better understand CYP2D6-mediated drug metabolism in general 

populations. Of note, the metabolic activity of CYP2D6 exhibits a significant 

interindividual variability (up to 1800-fold variation among individuals) (10-13). While 

genetic polymorphisms of CYP2D6 are known to contribute to the variability in CYP2D6 

activity, this is applicable to only ~10% of populations; for the majority of populations, 

genetic polymorphisms of CYP2D6 alone failed to reliably predict CYP2D6 activity level 

(3). Previous studies have shown that CYP2D6 mRNA expression is well correlated with 

CYP2D6 activity (14,15), indicating that differential transcriptional regulation of CYP2D6 

may contribute to large interindividual variability in CYP2D6 activity. Based on the results 

from studying CYP2D6 regulation during pregnancy, we hypothesized that factors 

modulating SHP expression may alter CYP2D6 expression, and this may in part explain 

interindividual variability in CYP2D6 activity.  

 

 As a proof-of-concept study, we first determined whether a known SHP inducer 

altered CYP2D6 expression. SHP is a representative target gene of farnesoid X receptor 

(FXR) (16,17). The effects of a synthetic FXR agonist GW4064 (18) on CYP2D6 

expression were examined in Tg-CYP2D6 mice. Our results showed that GW4064 

indeed repressed CYP2D6 expression in Tg-CYP2D6, and this repression was 

abrogated in mice where SHP expression is absent. Similar results (i.e., upregulation of 

SHP and downregulation of CYP2D6 by GW4064) were obtained in primary human  
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hepatocytes, indicating that the results from Tg-CYP2D6 mice are likely translatable to 

humans. These results are summarized in Chapter 3.  

 

 Bile acids are endogenous ligands of FXR (19). To further characterize the 

effects of FXR activation on CYP2D6 expression, we examined how cholestasis (a 

condition companied by elevated bile acid level in the liver) altered CYP2D6 expression. 

Two experimental animal models for cholestasis were used in our study: (1) estrogen-

induced cholestasis and (2) cholic acid (CA) feeding. Estrogen-induced cholestasis is a 

common experimental model to study the pathogenesis of intrahepatic cholestasis (20-

23). CA is a major bile acid, the plasma concentration of which increases in human 

cholestasis (24). CA feeding model is commonly used to mimic the change of bile acid 

composition under cholestasis (25-28). Estrogen-induced cholestasis was triggered by 

administration of 17α-ethinylestradiol (EE2) to Tg-CYP2D6 mice for 5 days. EE2 

administration led to increased SHP and decreased CYP2D6 expression in the mice. 

Results from chromatin immunoprecipitation assays indicate that the upregulation of 

SHP is in part through transactivation of Shp promoter by estrogen receptor (Chapter 4). 

On the contrary, CA feeding in Tg-CYP2D6 mice for 2 weeks led to decreased SHP 

expression and subsequent increases in CYP2D6 expression. These unexpected results 

are attributed to post-transcriptional regulation of SHP expression, which has not been 

reported previously (Chapter 5). Detailed molecular mechanisms underlying SHP 

regulation in CA-fed mice are currently under investigation. 

 

 In conclusion, we revealed SHP as a novel transcriptional regulator of 

CYP2D6 expression. SHP inducers, such as all-trans retinoic acid, FXR agonist 

GW4064, and EE2-induced cholestasis, repress CYP2D6 expression and activity. These  
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results suggest that differential levels of SHP inducers may contribute to interindividual 

variability in CYP2D6 activity in humans. This study provides a basis to better predict 

CYP2D6 activity level and thus to enable personalized medicine for CYP2D6 substrates. 
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1. INTRODUCTION 

1.1. Introduction to drug metabolism 

1.1.1. Drug metabolism 

Drug metabolism is the process of converting drugs to another chemical species 

that can be readily eliminated into urine or bile. The chemical modification process 

occurs in two phases (phase I and phase II) and is mediated by multiple drug-

metabolizing enzymes (Table I). Phase I reactions involve introduction of a hydrophilic 

functional group (e.g., hydroxyl group) or cleavage of functional groups through chemical 

reactions such as dealkylation, hydrolysis, and reduction. Phase II reactions are 

conjugation of drugs with a bulky functional group such as glucuronic acid, sulfate, 

acetylate, and glutathione. While these drug-metabolizing enzymes are expressed in 

many tissues (e.g., liver, kidney, intestine, or brain), liver is the major site of drug 

metabolism as the largest amounts of the enzymes are expressed. 

 

Hepatic drug metabolism plays a key role in mediating drug elimination, and thus 

it governs the extent of drug efficacy and/or toxicity. When the pharmacological activity 

originates mainly from the parent drug (but not from its metabolites), decreased hepatic 

drug metabolism may lead to accumulation of drug in the body and exaggeration of drug 

therapeutic effects. This may even lead to undesired drug toxicity as drug exposure 

increases. On the other hand, if metabolites are more pharmacologically active than the 

parent drug, opposite clinical outcome may ensue. For example, tamoxifen is an inactive 

prodrug until it is converted to the active metabolite (e.g., endoxifen). When the activity 

of drug-metabolizing enzyme responsible for the conversion of tamoxifen to endoxifen is 

decreased, one may experience decreased drug efficacy.   
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Table I. Major drug-metabolizing enzymes involved in phase I and phase II 
reactions. 
 
  Function Enzymes 

Phase I Hydroxylation Cytochrome P450 

 

Dealkylation Dehydrogenases (alcohol, aldehyde)  

 

Hydrolysis Deoxygenase  

 

Reduction Epoxide hydrolase 

 

Epoxidation Esterase 

 

  Flavin-Containing monooxygenase 

 

  Ketoreductase 

 

  Monoamine oxidase 

    Xanthine oxidase  

Phase II Conjugation Glucuronosyltransferase 

 

  Glutathione S-transferase 

 

  Methyltransferase 

 

  N-acetyltransferase  

 

  Sulfotransferase  

 
Modified from(29). 
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1.1.2. Cytochrome P450 

Cytochrome P450 (CYP) is a class of heme-containing enzymes. In addition to 

participating in the metabolism of endogenous compounds (e.g., steroid, fatty acid, 

eicosanoids, and vitamins), CYPs play a key role in detoxification of drugs via oxidative 

metabolism (29). About 75% of marketed drugs are subject to CYP-mediated 

metabolism (Fig. 1A). The CYP superfamily is classified into families (numbers) and 

subfamilies (alphabets) based on the extent of amino acid homology. CYPs that share 

40% or more identity at amino acid level fall into the same family, such as CYP1, CYP2, 

and CYP3. While those sharing more than 55% similarity are defined subfamilies with in 

the same family. To date, 57 human CYP genes have been identified and divided into 18 

families and 43 subfamilies (29-31). Among those, enzymes in CYP1, CYP2, and CYP3 

families play predominant roles in drug metabolism. CYP3A4 and CYP3A5 contribute to 

~40 % of CYP-mediated drug metabolism, followed by CYP2D6 (20%), CYP2C8/9 

(16%) and CYP1A1/2 (10%) (Fig. 1B). 
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Figure 1. Relative contribution of (A) CYP vs. non-CYP enzymes and (B) different 
CYP enzymes to overall drug metabolism. 
Modified from (3,29,32,33). 
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All CYPs undergo the same oxidative reaction cycle that requires several key 

components: heme (in CYP), electron donors (NAPDH and/or NADH), electron transfer 

proteins, and molecule oxygen (29). Stoichiometric conversion of oxygen to a substrate 

drug is accompanied by electrons transfer. Electrons from NADPH are transferred to 

CYP via cytochrome P450 reductase. Besides, cytochrome b5 accepts electron from 

NADH through cytochrome b5 reductase and further transfers it to CYP (Fig. 2). 
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Figure 2. CYP reaction cycle.  
Step 1, ferric cytochrome P450 binds to substrate, RH. Step 2, CYP-substrate complex 
is reduced by cytochrome (Cyt.) P450 reductase to oxyferous P450, followed by binding 
of oxygen. Step 3, the “second electron” is then transferred to the oxyferrous P450 by 
either cytochrome P450 reductase or Cyt.b5, followed by the cleavage of the oxygen 
bond. This results in the formation of the active oxidizing species (Step 4). Step 5, the 
more hydrophilic product (ROH) is next dissociated from the active site of CYP enzymes.  
 
Modified from (29). 
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1.2. CYP2D6-mediated drug metabolism 

1.2.1. Introduction 

CYP2D6 is a major drug-metabolizing enzyme and responsible for metabolizing 

approximately 20% of marketed drugs (Table II). Typical CYP2D6 substrates contain a 

nitrogen atom and a flat hydrophobic region of negative electrostatic potential; CYP2D6-

mediated oxidative reaction occurs at 5-10 Å from the nitrogen atom (34-36). CYP2D6 is 

mainly expressed in the liver, but it is also expressed in extra-hepatic organs including 

brain, kidney, and intestine (37). While CYP2D6 in liver plays a key role in drug 

elimination, the roles of CYP2D6 in other tissues remain unclear. Of interest, previous 

studies have shown that CYP2D6 mediates the conversion of 5-methoxytryptamin to 

serotonin (38,39). Serotonin is a neurotransmitter that is involved in multiple biological 

and behavioral functions in central nervous systems, including hormonal secretion, 

sleep-wake cycle, impulsive aggression, depression, suicidal behavior, and substrate 

abuse (40,41). CYP2D6 is also responsible for the formation of neurotransmitter 

dopamine (42) and detoxification of neurotoxin 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MTPT) (43). Of note, the latter is implicated in the development of 

Parkinson’s disease (44,45). Indeed, studies have shown that decreased CYP2D6 

activity level is associated with a significantly increased susceptibility to Parkinson’s 

disease in Caucasians, especially in British Caucasian subjects (45,46). Taken together, 

these suggest the potential physiologic and pathophysiologic roles of CYP2D6 in the 

brain.  
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Table II. Examples of CYP2D6 substrate drugs. 
 
Therapeutic class Drug 

Analgesics Codeine Ethylmorphine Oxycodone 

  Dextromethorphan Hydrocodone 

   Dihydrocodeine Norcodeine 

 Anti-ADHD Atomoxetine     

Anti-arrhythmics Aprindine Mexiletine Propafenone 

Encainide N-propylamine Sparteine 

Flecainide Procainamide 

 Anti-cancer Tamoxifen     

Anti-dementia drugs Galanthamine Nicergoline   

Anti-depressants Amitriptyline Fluvoxamine Mirtazapine 

Clomipramine Imipramine Nortriptyline 

Citalopram Maprotiline Paroxetine 

Desipramine Mianserin Venlafaxine 

Fluoxetine Minaprine 

 Anti-diabetic Phenformine     

Anti-emetics Dolasetron Ondansetron Tropisetron 

Anti-histamines Mequitazine Promethazine   

Anti-hypertensives Debrisoquine Guanoxan Indoramin 

Anti-psychotics 

Haloperidol Risperidone   

Thioridazine Perphenazine   

β-adrenergic 

blocking agents 

Alprenolol Bupranolol Timolol 

Bufuralol Metoprolol 

 Bunitrolol Propranolol 

 Calcium antagonist Perhexiline     

MAO-inhibitors Amiflamine Brofaromine   

Vasodilators Cinnarizine Flunarizine   

 
Modified from (3,33).  
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1.2.3. Interindividual variability in CYP2D6 activity 

CYP2D6-mediated drug metabolism is known to exhibit large interindividual 

variability (10,11). CYP2D6 activity levels can be determined clinically by measuring 

urinary metabolic ratio of parent drug and metabolite concentration after a single 

administration of a known CYP2D6 substrate (e.g., sparteine). Up to 1800-fold difference 

in sparteine oxidation mediated by CYP2D6 was observed in humans (10). Based on the 

urinary metabolic ratio ([parent drug]/[metabolite]), patients are classified into four 

distinct phenotypes—ultrarapid metabolizer (UM), extensive metabolizer (EM), 

intermediate metabolizer (IM), and poor metabolizer (PM) (Table III). The EM phenotype 

is expressed in the majority of the population (75-80% in Caucasians). The IM (1-5% in 

Caucasians) phenotype has impaired but detectable residual CYP2D6 activity. The PM 

(5-10% in Caucasians) phenotype is with complete absent CYP2D6 activity, leading to 

an increase of undesired side effects, and lower efficacy for drugs requiring CYP2D6 

activation. In UM (6-10% in Caucasians) phenotype, CYP2D6-mediated drug 

metabolism is extremely fast, leading to a loss of therapeutic efficacy at standard doses.  
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Table III. Interethnic differences in CYP2D6 phenotype. 
 

Phenotype CYP2D6 activity 
Ethnic Differences 

Caucasians Asians African-Americans Ethiopians and Saudi Arabians 

Poor Metabolizer None 6-10% 1-5% 2-8% 1-5% 

Intermediate Metabolizer Low 1-5% 51% — 3-9% 

Extensive Metabolizer Normal 75-80% 40-50% 80-90% 60-80% 

Ultrarapid Metabolizer High 5-10% 1% 5% 21% 

 

Modified from [47]. 
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1.3. Factors governing CYP2D6 activity 

1.3.1. Genetic polymorphisms of CYP2D6  

The large inter-individual variability in CYP2D6-mediated drug metabolism is in 

part explained by genetic polymorphisms of CYP2D6. CYP2D6 is located on 

chromosome 22q13. CYP2D6 genetic polymorphisms are associated with altered 

CYP2D6 activities in individuals (Table IV). Since the initial discovery of CYP2D6 genetic 

polymorphisms responsible for the PM phenotype of CYP2D6 was made in 1990 (48), 

over 100 different genetic polymorphisms of CYP2D6 have been identified 

(http://www.cypalleles.ki.se). Some of these polymorphisms are associated with low or 

minimal expression of CYP2D6 protein (e.g., due to frame-shift and premature stop 

codon in the open-reading frame) or expression of nonfunctional CYP2D6 proteins, 

leading to absent CYP2D6 activity (PM phenotype) (3). On the other hand, individuals 

with multiple copies of functional CYP2D6 alleles (e.g., CYP2D6 *2) were found to be 

associated with UM phenotype (10-13,49).  
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Table IV. Major variant alleles of CYP2D6 associated with altered CYP2D6 activity.  
 

Major variant alleles Mutation Consequence 

Allele frequencies (%) 

Caucasians Asians 
African 

Americans 

Ethiopians and 

Saudi Arabians 

CYP2D6 * 2xn 
Gene duplication 

/multiduplication 

Increased enzyme 

activity 
1−5 0−2 2 10−16 

CYP2D6 * 4 Defective splicing Inactive enzyme 12−23 1 2 1−4 

CYP2D6 * 5 Gene deletion No enzyme 2−7 6 4 1−3 

CYP2D6 * 10 P34S, S486T Unstable enzyme 1−2 38-70 6 3−9 

CYP2D6 * 17 T107I, R296C, S486T 
Altered affinity for 

substrates 
0 0 20−35 3−9 

 
Modified from [50]. 
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 Despite the increasing amount of knowledge on the genetic polymorphisms of 

CYP2D6, the information of CYP2D6 genotypes alone fails to reliably predict CYP2D6 

phenotype in the majority of populations (3). PM phenotypes may be predicted based on 

the genotype information of CYP2D6, but these phenotypes comprise only a small 

portion (~10%) of populations (10-13,49,51,52). In the rest of populations, the 

relationship between CYP2D6 activity levels and CYP2D6 genotypes is ambiguous. For 

example, individuals carrying two functional CYP2D6 alleles display more than 30-fold 

variability in CYP2D6 activity (10), some exhibiting the UM phenotype. And individuals 

carrying only one functional allele of CYP2D6 (instead of two) may present EM 

phenotype (3,10,53). Taken together, genetic polymorphisms of CYP2D6 cannot fully 

convey the large interindividual variability in CYP2D6 activity; other sources of CYP2D6 

variability remain elusive (Fig. 3). 
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Figure 3. CYP2D6 genotype and phenotype relationship. 
This figure illustrates the prevalence of four distinct CYP2D6 phenotypes that identified 
based on CYP2D6 activity levels—ultrarapid metabolizer (UM), extensive metabolizer 
(EM), intermediate metabolizer (IM), and poor metabolizer (PM). All PM phenotype and 
~10% of UM phenotype could be certainly predicted by testing the genotype of CYP2D6. 
The correlation between genotypes and phenotypes is week in the UM, EM, and IM 
populations. 
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1.3.2. Transcriptional regulation of CYP2D6 expression  

Previous studies have shown that the mRNA expression and enzyme activity 

levels of CYP2D6 are well correlated (14,15). For example, CYP2D6 activity in 134 

human liver tissues correlates well with CYP2D6 mRNA levels (correlation coefficient = 

0.91) (14). This level of correlation was similar to that shown for CYP3A4 (coefficient 

0.95) (54) whose activity is known to be governed at the transcriptional level (55-59). 

These results indicate that differential transcriptional regulation of CYP2D6 may 

contribute to the large individual variability in CYP2D6 activity. However, transcriptional 

regulation of CYP2D6 remains poorly understood as compared to other drug-

metabolizing enzymes including CYP3A4. To date, hepatocyte nuclear factor (HNF) 4α 

and CCAAT/enhancer-binding protein (C/EBP) α are the only two transcription factors 

known to be involved in constitutive expression of CYP2D6.  

 

HNF4α is a master regulator of hepatic genes involved in the regulation of 

hepatocyte differentiation, lipid homeostasis, glucose metabolism, insulin secretion, and 

blood coagulation (60-62). Previous studies have shown that HNF4a plays a key role in 

regulating basal expression of CYP2D6 (63,64); HNF4α binds to a response element at -

53/-41bp of CYP2D6 and transactivates the promoter (63). Knock-down of HNF4α in 

human hepatocytes and HepG2 cells leads to decreased CYP2D6 expression 

(63,65,66). Also, in CYP2D6-humanized mice where wild-type CYP2D6 gene and its 

2.5-kb upstream regulatory region were inserted into the mouse genome, conditional 

knockout of HNF4α led to a >50% decrease in CYP2D6 activity (9). These studies 

indicate critical roles of HNF4α in maintaining basal CYP2D6 expression.  

 

C/EBPα is a transcription factor involved in the regulation of cell growth, cell 

differentiation, and energy homeostasis (67). Stable transfection of C/EBPα increased 
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the mRNA expression of CYP2D6 in HepG2 cells (68). Also, a putative binding site for 

C/EBPα has been identified at -1231 to -1220 bp region of CYP2D6 promoter (69), and 

knock-down of C/EBPα expression led to decreased CYP2D6 expression in HepG2 cells 

(69). These results suggest that C/EBPα is a potential activator of CYP2D6 expression. 

Whether C/EBPα indeed regulates CYP2D6 expression in vivo remains unknown. 

 

1.3.3. Drug-drug interactions (CYP2D6 phenocopying) 

Co-administered drugs may decrease CYP2D6 activity, sometimes resulting in 

changes in CYP2D6 phenotype. Many drugs are known to inhibit catalytic activity of 

CYP2D6 (Table V). The inhibition may occur through reversible inhibition (e.g., 

reversibly binding to catalytic sites) and/or mechanism-based inhibition (e.g., forming a 

metabolite intermediate complex) of CYP2D6 metabolic activity (70,71). The latter 

typically leads to persistent inactivation of CYP2D6 enzyme through irreversible binding 

between metabolite intermediate complex and the enzyme. Administration of strong 

inhibitors of CYP2D6 may result in a change of apparent CYP2D6 phenotype, also 

known as phenocopying. For example, paroxetine (a strong CYP2D6 inhibitor (72)) can 

convert individuals with UM phenotype to EM phenotype and decrease elimination of 

CYP2D6 substrate drugs such as nortriptyline (73). Furthermore, co-administration of 

paroxetine and tamoxifen leads to substantial decreases in the metabolism of tamoxifen 

(74-76), attenuated clinical efficacy (77), and increased mortality in breast cancer 

patients (78). The effects of CYP2D6 inhibitors on CYP2D6 phenotypes can be dose-

dependent. Clinical studies in five UM subjects showed that giving paroxetine (20 mg 

daily) for 2 weeks resulted in a change in all UM individuals to the EM phenotype. While, 

doubling the paroxetine dose (to 40mg daily) in four UM subjects for 2 weeks converted 

them to PM phenotype (73). 



 17 

 

Table V. Examples of CYP2D6 inhibitor drugs. 
 
Strong Inhibitors Bupropion Paroxetine 

≥ 5-fold increase in AUC Fluoxetine Quinidine 

or > 80% decrease in CL 

  Moderate inhibitors Cinacalcet Terbinafine 

≥ 2 but < 5-fold increase in AUC Duloxetine 

 or 50-80% decrease in CL  

   Amiodarone Hydroxychloroquine 

 Celecoxib Imatinib 

 

Cimetidine Methadone 

 

Desvenlafaxine Oral contraceptives 

Weak inhibitors Diltiazem Propafenone 

≥ 1.25 but < 2-fold increase in AUC Diphenhydramine Ranitidine 

or 20-50% decrease in CL Echinacea Ritonavir 

 

Escitalopram Sertraline 

 

Febuxostat Telithromycin 

 

Gefitinib Verapamil 

  Hydralazine   

 
Modified from (79). AUC, area under the curve; CL, clearance. 
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1.3.4. CYP2D6 induction (pregnancy) 

Transcriptional regulation of CYP2D6 remains poorly understood, in part 

because CYP2D6 has been considered as a “non-inducible” gene. Prototypical inducers 

of CYP expression such as phenobarbital, rifampin, or dexamethasone enhance 

transcription of most CYPs, but not CYP2D6 (29,80). Interestingly, clinical data indicate 

that CYP2D6-mediated drug metabolism is enhanced during pregnancy (Table VI). The 

apparent induction in CYP2D6 activity during pregnancy was first observed in a study 

back in 1985, where the systemic clearance of metoprolol (a CYP2D6 substrate) was 

increased 2-3-fold at term pregnancy as compared to postpartum (4). Subsequent 

studies showed that the rate of dextromethorphan O-demethylation (mediated by 

CYP2D6) was significantly higher (by 2-fold) in pregnant women than in postpartum 

controls, indicating increased CYP2D6-mediated drug metabolism during pregnancy 

(5,6). Clonidine, a CYP2D6 substrate and an antihypertensive used during pregnancy, 

exhibited 2-fold higher oral clearance in pregnant women than non-pregnant women 

(81,82). Similarly, the systemic clearance of antidepressant paroxetine, mainly 

metabolized by CYP2D6, increased 2-fold at third trimester pregnancy compared to first 

trimester of pregnancy (7). Increased dose of CYP2D6 substrate drugs (i.e., citalopram, 

escitalopram, and sertraline) were prescribed to patients at third trimester pregnancy to 

maintain optimal therapeutic effects (8). 
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Table VI. Examples of induced elimination of CYP2D6 substrate drugs during pregnancy. 
 

CYP2D6 substrate Parameter 

Value 

Reference 
During pregnancy 

Postpartum  

(or non-pregnancy) 

Metoprolol CLiv (L/min�kg) 0.0017±0.003 0.009±0.001 [4] 

Dextromethorphan dextromethorphan/dextrorphan urinary ratio 
EM & IM: 0.001-0.005 EM & IM: 0.002-0.014 

[5] 
PM: 1.9-3.1 PM: 1.3-2.0 

Dextromethorphan dextromethorphan/dextrorphan urinary ratio 0.003±0.002 0.006±0.002 [6]	  

Clonidine CLoral (mL/min) 440±168 
245±72  

(non-pregnancy) 
[81] 

Escitalopram Plasma drug level to dose ratio 
2.3±1.5  

(36 weeks of pregnancy) 

3.6±1.6  

(2 weeks postpartum) 
[8] 

Sertraline Plasma drug level to dose ratio 
0.2-0.4  

(36 weeks of pregnancy) 

0.3-0.8  

(4-6 weeks postpartum) 
[8] 
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Despite the accumulating clinical evidence for CYP2D6 induction during 

pregnancy, the underlying mechanisms remained completely unknown. This is in part 

due to the lack of appropriate animal models to recapitulate CYP2D6 induction during 

pregnancy. Unlike the induction in CYP2D6-mediated drug metabolism shown in 

pregnant women, the expression of CYP2D6 functional homolog in rats or mice (i.e., 

CYP2D2 in rats and Cyp2d22 in mice) was decreased at term pregnancy as compared 

to pre-pregnancy or postpartum levels (83,84). Establishing an animal model of CYP2D6 

induction and elucidating underlying mechanisms could potentially lead to identification 

of novel factors involved in the regulation of CYP2D6 expression. 

 

1.4. Hypothesis and scope of the study 

In our preliminary studies, we established CYP2D6-humanized transgenic (Tg-

CYP2D6) mouse as a model to investigate regulation of CYP2D6 expression. Tg-

CYP2D6 mouse carries complete wild-type CYP2D6 gene with its 2.5-kb upstream 

regulatory region in the genome (9). In Tg-CYP2D6 mice, pregnancy led to ~2-fold 

increases in the expression and activity of CYP2D6, consistent with the induction of 

CYP2D6 activity reported in pregnant women. Importantly, these results demonstrate 

that Tg-CYP2D6 mouse model could be used to investigate molecular mechanisms 

underlying CYP2D6 induction during pregnancy.  

 

Aim 1: Elucidate mechanisms underlying CYP2D6 induction during pregnancy.  

To identify transcription factors involved in CYP2D6 induction during pregnancy, gene 

expression profiling in the livers of pregnant and non-pregnant Tg-CYP2D6 mice was 

performed by using cDNA microarray. This led to the identification of small heterodimer 

partner (SHP) as a transcription factor whose expression was downregulated during 
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pregnancy in Tg-CYP2D6 mice. The role of SHP as potential transcriptional regulator of 

CYP2D6 was investigated by using transient transfection, promoter reporter assays, and 

siRNA gene knockdown studies in Tg-CYP2D6 mice. Potential upstream regulators of 

SHP that are responsible for the SHP downregulation during pregnancy were identified 

and characterized.  

 

Aim 2: Determine whether SHP induced by FXR synthetic agonist (i.e., GW4064) alters 

CYP2D6 expression and activity. 

SHP is a representative target gene of nuclear receptor farnesoid X receptor (FXR) 

(17,85,86). To verify the role of SHP in the regulation of CYP2D6 expression, we 

examined whether FXR activation leads to changes in CYP2D6 expression, by 

administering a synthetic agonist (GW4064) to Tg-CYP2D6 mice. 

 

Aim 3: Determine whether altered level of SHP expression in a pathological condition 

(i.e., cholestasis) affects CYP2D6 expression and activity. 

Bile acids are endogenous ligands of FXR (19). To further characterize the effects of 

FXR activation on CYP2D6 expression, we examined how cholestasis (a condition 

accompanied by elevated bile acid level in the liver) can alter CYP2D6 expression. To 

this end, we examined the effects of cholestasis on CYP2D6 expression using two 

experimental animal models (17α-ethinylestradiol administration induced cholestasis 

model and cholic acid feeding induced cholestasis model).  
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2. ALTERED EXPRESSION OF SMALL HETERODIMER PARTNER GOVERNS 

CYP2D6 INDUCTION DURING PREGNANCY IN CYP2D6-HUMANIZED MICE 

[Previously published as Koh KH, Pan X, Shen HW, Arnold SL, Yu AM, Gonzalez FJ, 

Isoherranen N, Jeong H. Altered expression of small heterodimer partner governs 

cytochrome P450 (CYP) 2D6 induction during pregnancy in CYP2D6-humanized mice, J 

Biol Chem. 2014 Feb 7;289(6):3105-13.] 

2.1. Introduction 

Over 50% of pregnant women take one or more prescription drugs, and the 

average number of prescriptions per patient during pregnancy ranges from 3 to 5 

(87,88). Clinical evidence indicates that pregnancy alters hepatic drug disposition.  

However, our current understanding of the underlying mechanisms is limited due to a 

lack of appropriate study models recapitulating the complex physiological changes 

accompanying pregnancy (89). This is in turn manifested clinically by an overall paucity 

of drug safety and dosing guidelines for pregnancy.   

 

Cytochrome P450 (CYP) enzymes play a key role in hepatic elimination of 

xenobiotics as well as in hormone homeostasis. CYP expression is largely regulated by 

the actions of multiple liver-enriched transcription factors. For example, expression of 

many CYP isoforms is transcriptionally activated by xenosensor nuclear receptors 

including pregnane X receptor (PXR) and constitutive androstane receptor (CAR) (90). 

Drugs that bind and activate these transcription factors induce CYP expression, leading 

to clinically significant drug-drug interactions.  

 

CYP2D6 is a major drug-metabolizing enzyme expressed in the liver and 

extrahepatic organs including the brain, kidney, and intestine. CYP2D6 mediates the 
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hepatic metabolism of the ~20% of marketed drugs, second-largest portion only after 

CYP3A4 (3,33).  Also, CYP2D6 expressed in the brain is involved in the synthesis of 

neurotransmitters (38) and is implicated in Parkinson's disease (91). CYP2D6 has been 

considered a non-inducible gene based on the finding that none of the previously 

reported CYP-inducing compounds (including PXR-activating rifampin and CAR-

activating phenobarbital) affect CYP2D6 expression. Interestingly, however, pregnancy 

induces hepatic elimination of CYP2D6 substrates. Elimination of dextromethorphan and 

metoprolol, the prototypical CYP2D6 substrates, is increased in pregnant women as 

compared with postpartum controls (4-6). Higher doses of CYP2D6 substrates are 

required during pregnancy than before pregnancy (8). Despite the accumulating clinical 

evidence, the mechanisms underlying CYP2D6 induction during pregnancy remain 

unknown in part because appropriate experimental models have been lacking. For 

example, expression of the endogenous CYP2D6 homologs in rodents (i.e., CYP2D2 in 

rats and Cyp2d22 in mice) does not increase during pregnancy (83,84). This likely 

reflects the large divergence in the regulatory region sequences of genes encoding 

xenobiotic-metabolizing CYP enzymes between rodents and humans (92).  

 

In this study, using CYP2D6-humanized (Tg-CYP2D6) mice (9) as an animal 

model, we investigated the molecular mechanisms underlying CYP2D6 induction during 

pregnancy and demonstrated a potential role for the interplay between retinoic acids and 

hepatic transcription factors in CYP2D6 induction.   
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2.2. Materials and methods 

2.2.1. Animals 

Tg-CYP2D6, Hnf4α/AlbCre, and Shp-null transgenic mice were previously 

described (9,60,93). Adult female (8 weeks old) mice were mated with male mice of the 

similar age.  Mating between adult mice was confirmed by the presence of vaginal plugs 

(day 0). Male mice were separated from female mice immediately after a vaginal plug 

was found. Virgin mice were group-housed that their estrous cycles were suppressed. 

All procedures were carried out in accordance with the Guide for the Care and Use of 

Laboratory Animals as adopted and promulgated by the U.S. National Institutes of 

Health, and were approved by the Institution’s Animal Care and use Committee in the 

University of Illinois at Chicago. 

 

2.2.2. Chemicals and reagents 

Debrisoquine, (±)-4-hydroxydebrisoquin, and paraxanthine were purchased from 

Biomol (Plymouth Meeting, PA). Ammonium Acetate (HPLC grade), acetonitirile (Optima 

LCMS grade), and methanol (HPLC grade) were purchased from Fisher Scientific 

(Pittsburgh, PA). All-trans retinoic acid (atRA) and 13-cis retinoic acid (13cRA) were 

purchased from Sigma-Aldrich (St. Louis, MO).  

  

2.2.3. Plasmids 

To construct the pGL3-CYP2D6 plasmid, the upstream region of CYP2D6 (-2453 

to +90) was PCR-amplified using the genomic DNA of Tg-CYP2D6 mouse as a template 

and primers (forward: 3’- ATCGGGTACCCTTTCCGACATACACGCAAT -5’, reverse: 3’- 

ATCGCCATGGACCTGCCTCACTACCAAATG-5’). The PCR product was digested by 
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KpnI and NcoI restriction enzymes and cloned into promoterless pGL3-basic vectors 

(Promega, Madison, WI) digested by the same enzymes, yielding pGL3-CYP2D6. 

pcDNA3-HNF4α was received from Dr. Frances M. Sladek (University of California 

Riverside Human). pEBG-contol and pEBG-SHP expression vectors were received from 

Dr. Hueng-Sik Choi (Chonnam National University, Korea). 

 

2.2.4. Western blot 

Approximately 100mg of mouse liver samples were homogenized in PBS 

containing protease inhibitor cocktail (Sigma-Aldrich, Catalog#P8340) and phosphatase 

inhibitor cocktail (Sigma-Aldrich, Catalog#P0044), and centrifuged at 4000rpm for 3 min 

at 4°C. The pellets were suspended in buffer containing 450 mM Tris/HCl (pH 7.4), 150 

mM NaCl, 1% NP-40 (v/v), 0.25% sodium-deoxycholate, protease inhibitor cocktail, and 

phosphatase inhibitor cocktail. After incubation for 30 min on the ice, the suspension 

was centrifuged at 12,000g for 1 min and the pellets were discarded. CYP2D6, HNF4α, 

and SHP protein expression levels were determined by using the respective antibodies 

(CYP2D6, BD Gentest™, Catalog# 458246; HNF4α, Santa Cruz, sc-6556 & Aviva, 

ARP31946_P050; SHP, Santa Cruz, sc-30169; α-tubulin, EMD Millipore, Catalog#CP06; 

β-actin, Sigma-Aldrich, Catalog#A1978). Total liver lysates (approximately 50 µg protein) 

were loaded on a 12% SDS-polyacrylamide gel. After electrophoresis, protein was 

transferred onto nitrocellulose membranes. The membranes were blocked with 5% 

nonfat milk, followed by primary antibody and HRP-conjugated secondary antibody 

incubation. The immune complexes were detected with the enhanced 

chemiluminescence reagent kit and the signals were recorded by FluroChem E Imager 

(proteinsimpleTM, San Jose, CA).  
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2.2.5. CYP2D6 phenotyping  

Liver microsomes or S9 fractions were prepared as described previously (94). 

Microsomes or S9 fractions were incubated with debrisoquine (at different 

concentrations ranging from 25 to 1000 µM) for 15 min, and the reaction was stopped by 

adding two volumes of ice-cold acetonitrile. The concentration of 4-hydroxydebrisoquine 

was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS, 

Agilent 1200 HPLC interfaced with Applied Biosystems Qtrap 3200) using an 

electrospray ion source. The mobile phase consisted of water (5 mM ammonium 

acetate, pH 4.7) and acetonitrile. Separation was performed with a Nova-Pak® C18 

column (3.9 x 150mm) (Waters, Milford, MA) at a flow rate of 0.3 ml/min. Multiple 

reaction monitoring data acquisition was employed: m/z 192.3/132.2 for 4-

hydroxydebrisoquine and 181.1/124.1 for the internal standard paraxanthine. 

  

2.2.6. RNA isolation and quantitative real time-PCR (qRT-PCR) 

Total RNA was isolated from mouse liver tissues using Trizol (Life Technologies, 

Carlsbad, CA) and converted to cDNA using High Capacity cDNA Archive Kit (Life 

Technologies). Using the cDNA as template, qRT-PCR was performed using 

StepOnePlus Real-Time PCR System and primers listed in Table VII. The results are 

expressed as fold changes during pregnancy using the gene expression levels 

normalized to those of mouse Gapdh (2-ΔΔCt method). 
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Table VII. Primer sequences for qRT-PCR. 
 

SYBR green probes 

Gene Species Forward primer Reverse primer 

ApoC2 Mouse ACCTGTACCAGAAGACATACCC CCTGCGTAAGTGCTCATGG 

Hes6 Mouse TTGGGCATTCTGAGGATCTA CGCAACTGTGTTACAAACGA 

Hnf4α  Mouse CACGCGGAGGTCAAGCTAC CCCAGAGATGGGAGAGGTGAT 

Shp  Mouse GGCCTCTACCCTCAAGAACAT TGTCAACGTCTCCCATGATAGG 

SHP Human TCAAGTCCATTCCGACCAGC AAGAAGGCCAGCGATGTCAA 

Smile Mouse GAGGAAAGGGGTAAACGC AAGGTGTCGGTGGAGTTCTG 

Gapdh Mouse AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Commercial Taqman probes 

Gene  Species Catalog# Company 

CYP2D6 Human Hs.PT.49a.205234723/ Hs02576167_m1 IDT/ABI 

Cyp2d22 Mouse Mm00530542_m1 ABI 

Fxr  Mouse Mm00436425_m1 ABI 

Shp Mouse Mm.PT.51.8920508 IDT 

Gapdh Mouse Mm.PT.39a.1 IDT 
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2.2.7. Luciferase reporter assay  

HepG2 or HEK293T cells were seeded in 12-well plates at a density of 4.5x105 

cells/ml or 1x105 cells/ml, and on the next day, transfected with 0.3 µg of luciferase 

construct, 0.1 µg of expression plasmids (or empty vector as a control), and 0.006 µg of 

Renilla expression vector (Promega) using Fugene HD transfection reagent (Promega) 

according to the manufacturer’s protocol. The transfected cells were grown for 48 hours 

and were harvested for determination of luciferase activity using a luciferase assay kit 

(Promega). At least two independent experiments were performed in triplicate. 

 

2.2.8. Gene knock-down by small interfering RNA 

Small interfering RNA (siRNA) targeting SHP (Thermo scientific; 

siGenome_NR0B2 siRNA, 50 µg in 1 ml PBS) or control siRNA (siGenome_non-

targeting siRNA pool) was injected into Tg-CYP2D6 mice through tail vein. The injection 

was repeated 8 hours later. Livers were collected 3 days after the last injection for the 

examination of gene expression. 

 

2.2.9. Chromatin immunoprecipitation (ChIP) assays 

ChIP assays were performed as previously described with minor modifications 

(95). Briefly, livers were finely minced and incubated in PBS containing 1% 

formaldehyde at room temperature for 15 min, and glycine was added to stop the 

crosslinking reaction.  Cell pellets were resuspended in hypotonic buffer (15 mM 

HEPES, pH 7.9, 60 mM KCl, 2 mM EDTA, 0.5% BSA, 0.15 mM spermine, 0.5 mM 

spermidine, 0.32 M sucrose) and lysed by homogenization. Nuclei were pelleted and 

resuspended in nuclei lysis buffer (50 mM Tris-HCl, pH 8.0, 2 mM EDTA, 1% SDS, and 
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protease inhibitor cocktail). The samples were sonicated to shear DNA to the length 

ranging from 100 to 500 bp by using Misonix S-4000 sonicator (Farmingdale, NY) with 

80% amplitude for 12 min. After centrifugation, the chromatin sample was 

immunoprecipitated with 2 µg antibody (Santa Cruz; HNF4α, sc-6556x; RNA polymerase 

II, sc-899x; SHP, sc-30169; FXR, sc-13063x) or immunoglobulin G (normal rabbit IgG, 

sc-2027; normal goat IgG, sc-2028) at 4°C for overnight. The immune complex was 

collected, the magnetic beads were extensively washed, and the bound chromatin was 

eluted. Genomic DNA was purified by PCR Clean-up kit (Promega) and used as a 

template for qRT-PCR. Primer and probe sequences were listed in Table VIII. 
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Table VIII. Primer and probe sequences for ChIP assays. 
 

Custom-made Taqman probe 

Gene  Species Forward primer Reverse primer Taqman probe 

CYP2D6  Human CAACACAGCAGGTTCACT CTACCAAATGGGCTCCTCT AGGCCATCATCAGCTCCCTTTA 

SYBR green probes 

Gene  Species Forward primer Reverse primer   

ApoC2 Mouse CCATGCGTAGGGCATTAGAAGA GGCCCATCCTGTAACAGAGCTT 

Hes6 Mouse GGAGTCCTGCCCGGCCTAAGTGC ATTGGCTGTGCGTGGTCGGAGAG  

Shp Mouse GCCTGAGACCTTGGTGCCCTG CTGCCCACTGCCTGGATGC 
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2.2.10. Retinoic acid measurement 

The concentrations of all-trans retinoic acid (atRA) and 13-cis retinoic acid 

(13cRA) were analyzed by LC-MS/MS as previously described (96) with the following 

modifications: mouse livers (n=11, liver weight 36-208 mg) were homogenized with a 2 

ml glass dounce homogenizer (Kimble Glass) in a 1:1 volume of 0.9% NaCl and the 

sample transferred into a 15 ml glass culture tube. A 2:1 volume of acetonitrile with 0.1% 

formic acid was added together with atRA-d5 (internal standard). Retinoic acid was 

extracted with 10 ml of hexanes, the organic layer was transferred to a glass tube and 

dried under nitrogen at 37°C. The sample was reconstituted in 65 µl 60:40 ACN/H2O for 

liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A standard 

curve and quality control samples were generated using UV light exposed mouse liver 

homogenate spiked with atRA and 13cRA at concentrations of 0, 2, 5, 10, 15, and 20 nM 

for the standards and 3, 7.5, and 17.5 nM for the quality control samples. The published 

chromatographic method (96) was modified to consist of mobile phase A of H2O + 0.1% 

formic acid and B: ACN/ MeOH (60/40) + 0.1% formic acid with identical gradient as 

previously described. 

 

2.2.11. Primary human hepatocytes  

Freshly isolated human hepatocytes, derived from three donors, were obtained 

from Liver Tissue Cell Distribution System (Pittsburgh, PA; funded by NIH Contract # 

HHSN276201200017C). Briefly, hepatocytes were shipped overnight in cold 

preservation media. Upon receipt, the media was replaced with serum-free Williams’ E 

media (without phenol red) containing 0.1 µM dexamethasone, 10 µg/mL gentamicin, 15 

mM HEPES, 2 mM L-glutamine, and 1% insulin-transferrin-sodium selenite media 

supplement.  Cells were allowed to recover from shipping for 10 hours at 37 °C in an 
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atmosphere containing 5% CO2. After recovery, the hepatocytes were treated with 

vehicle control (DMSO) or atRA (10 µM) for 48 hours. Cell lysates were collected to 

prepare RNAs and S9 fractions.   

 

2.2.12. Statistical analysis 

The statistical difference between two groups was determined by the Student’s t-

test. For statistical testing among different treatment groups, one-way analysis of 

variance test was performed for multiple comparisons followed by posthoc Dunnett’s 

test. 
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2.3. Results 

2.3.1. Tg-CYP2D6 mice serve as a model for CYP2D6 induction during pregnancy 

The Tg-CYP2D6 mice carrying the entire human CYP2D6 gene including ~2.5-kb 

of the upstream regulatory region was previously used as a model to characterize 

CYP2D6-mediated drug metabolism in an in vivo system (9). To determine the utility of 

Tg-CYP2D6 mice as an animal model to study CYP2D6 induction during pregnancy, we 

first examined the hepatic expression and enzyme activity of CYP2D6 at different 

gestational time points [virgin, 7/14/21 days of pregnancy (G7/14/21), and 7 days 

postpartum (PP7)]. The mRNA and protein levels of CYP2D6 were elevated during 

pregnancy and returned to pre-pregnancy levels by the postpartum time point (Fig. 4A 

and 4B). In contrast, the expression of Cyp2d22 (a functional homolog of CYP2D6 in 

mice) remained unchanged during pregnancy (Fig. 4A), consistent with recent findings 

(84). Results from microsomal phenotyping (by using debrisoquine as a probe drug for 

CYP2D6) revealed a significant increase in CYP2D6 activity at term as compared with 

pre-pregnancy or postpartum (Fig. 4C), in accordance with the changes observed for 

CYP2D6 expression.   
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Figure 4. Hepatic CYP2D6 is induced in Tg-CYP2D6 mice during pregnancy.  
A, Liver tissues of Tg-CYP2D6 mice were collected at pre-pregnancy (virgin), 7/14/21 
days of pregnancy (G7, G14, and G21, respectively), or 7 days postpartum (PP7). 
mRNA expression levels of CYP2D6 and Cyp2d22 were determined by qRT-PCR.  B, 
Protein levels of CYP2D6 in the liver tissues were determined by western blot. 
Representative image of western blot is shown including a liver tissue sample from wild-
type (WT) mice (top), and the band intensities were quantified (CYP2D6/α-tubulin, 
bottom) after normalized by CYP2D6 expression in virgin mice. C, Microsomes were 
prepared from the liver tissues of Tg-CYP2D6 or WT mice, and CYP2D6 phenotyping 
was performed using debrisoquine (200 µM). Values are presented as mean ± S.D. 
(n=4), ***p < 0.001 one-way ANOVA vs. virgin. 
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The increased CYP2D6 activity was accompanied by higher Vmax values but no 

changes in Km (Table IX), indicating that CYP2D6 activity is enhanced by increased 

protein amounts rather than changes in the catalytic activity of CYP2D6. The magnitude 

of CYP2D6 induction was similar to the clinically reported increases in elimination of a 

CYP2D6 substrate metoprolol (4), suggesting that Tg-CYP2D6 mice may serve as a 

model system for identification and characterization of regulatory mechanisms for 

CYP2D6 induction during pregnancy. 
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Table IX. Kinetic parameters for debrisoquine hydroxylation activity in hepatic microsomes prepared from Tg-CYP2D6 mice. 
 
Parameter Virgin G7 G14 G21 PP7 

Vmax (pmol/min/mg protein) 749 ± 125 1130 ± 420 1240 ± 160* 2120 ± 60** 1080 ± 200 

Km (µM) 210 ± 77 291 ± 54 296 ± 87 278 ± 26 285 ± 19 

n=4, mean ± S.D., Vmax, maximum velocity; Km, Michaelis–Menten constant.  
* p < 0.05; ** p < 0.01 one way ANOVA vs. virgin. 
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2.3.2. SHP is downregulated during pregnancy and represses HNF4α-mediated 

transactivation of CYP2D6 

Hepatocyte nuclear factor (HNF) 4α is a positive regulator of basal CYP2D6 

expression under non-pregnant conditions via direct binding to the CYP2D6 promoter 

(9,63,97). To examine potential effects of pregnancy on HNF4α expression, mRNA and 

protein levels of HNF4α were examined in the livers of Tg-CYP2D6 mice at different 

gestational time points. Pregnancy did not affect hepatic HNF4α expression at the levels 

of mRNA (Fig. 5A) or protein (Fig. 5B), consistent with results from a previous study 

(98).  
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Figure 5. Pregnancy has no effect on HNF4α expression.   
Liver tissues were collected from Tg-CYP2D6 mice at different gestational time points, 
and total RNA and lysates were prepared from the tissues. A, mRNA levels of Hnf4α 
were determined by qRT-PCR. B, protein levels of HNF4α in liver tissues were 
determined by western blot. Values are presented as mean ± S.D. (n=4)  
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HNF4α activity can be functionally modulated by interaction with other 

transcription factors (99). To determine whether HNF4α activity on CYP2D6 is enhanced 

in mouse livers during pregnancy, ChIP assays were performed. To this end, liver 

tissues were collected from Tg-CYP2D6 mice at different gestational time points and 

subjected to ChIP using antibodies against HNF4α or RNA polymerase II (Pol II; a 

positive control for CYP2D6 transcription). The protein-bound DNA was measured using 

a primer set that can detect the HNF4α response element at -55/-43bp region of 

CYP2D6 promoter (63). The results showed that HNF4α and Pol II recruitments to the 

CYP2D6 promoter significantly increased at term as compared with pre-pregnancy level 

(Fig. 6), indicating increased HNF4α activity during pregnancy. 

 

 

 
 
Figure 6. Pregnancy represses HNF4α transactivation of CYP2D6 promoter.   
ChIP assays were performed using liver tissues of Tg-CYP2D6 mice collected at 
different gestational time points. Values are presented as mean ± S.D. (n=4), * p < 0.05; 
**p < 0.01, one-way ANOVA vs. virgin.   
  

A                                                      

A      B                                                  

 HNF4_�ChIP                          Pol II ChIP

*

0

** 

CYP2D6 

-79 +80 

Virg
in

G17 PP7
Virg

in
G17 PP7

50

100

150

0

10

20

30

40

H
N

F4
_

 re
cr

ui
tm

en
t

(H
N

F4
_

/Ig
G

)
�

P
ol

 II
 re

cr
ui

tm
en

t
(P

ol
 II

/Ig
G

)

PP7



 40 

 Transcriptional co-regulators acyl-CoA binding protein (100), CREB-binding 

protein (101), forkhead box protein ο 1 (102), glutamate receptor interacting protein 1 

(103), hepatocyte nuclear recetor 1 α (104), peroxisome proliferator-activated receptor γ 

coactivator 1 α (105), prospero-related homeodomain protein (106), p300 (107), 

silencing mediator for retinoid and thyroid receptors (107), small heterodimer partner 

(108), SMAD3/4 (109), SP1 (110), steroid receptor coactivator 1 (103), and sterol 

regulatory element-binding protein 2 (111) have been known to functionally modulate 

HNF4α through interacting with HNF4α, indicating altered expression of these proteins 

during pregnancy may attribute to the increased recruitment of HNF4α to CYP2D6 

promoter. Data from our previous microarray experiments (GSE50166) showed that 

pregnancy only altered the expression of small heterodimer partner (SHP). 

 

Nuclear receptor SHP functions as a corepressor of HNF4α transactivation of a 

HNF4α target gene (i.e., CYP8B1) (108). To examine whether SHP expression is altered 

during pregnancy, mRNA and protein levels of SHP were examined in liver tissues 

collected at different gestational time points. The results showed significantly decreased 

SHP expression at term as compared to pre-pregnancy or postpartum period (Fig. 7A 

and 7B).   
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Figure 7. SHP is downregulated during pregnancy.  
Liver tissues were collected from Tg-CYP2D6 mice at different gestational time points. 
A, mRNA level of SHP in liver tissues was determined by qRT-PCR. B, protein level of 
SHP in liver tissues was determined by western blot. A representative image of western 
blot (right) is shown, and band intensities (SHP/β-actin, left) were quantified after 
normalized by the expression of SHP in virgin mice. Values are presented as mean ± 
S.D. (n=4), *p < 0.05; **p < 0.01, one-way ANOVA vs. virgin.   
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To determine the effects of SHP on HNF4α transactivation of CYP2D6 promoter, 

luciferase assays were performed in HEK293T cells where basal expression of HNF4α 

is minimal. Transient transfection of HNF4α led to a significant increase in CYP2D6 

promoter activity as expected (Fig. 8A). SHP repressed HNF4α transactivation of the 

promoter in a SHP concentration dependent manner (Fig. 8A), indicating that SHP is a 

repressor of CYP2D6 promoter potentially by repressing HNF4α action.  

 

To mimic the state of pregnancy, where SHP expression is decreased, we 

knocked down SHP expression by using siRNA and examined its effects on CYP2D6 

expression. Tg-CYP2D6 mice injected with SHP-targeting siRNA exhibited substantial 

knockdown of SHP and at the same time a marked increase in CYP2D6 expression, 

when compared to those injected with scrambled siRNA (Fig. 8B). These results suggest 

that repressed SHP expression plays a role in the upregulation of CYP2D6 promoter 

activity during pregnancy.   

 

To determine whether the enhanced HNF4α activity on CYP2D6 promoter during 

pregnancy (Fig. 6) is accompanied by any changes in SHP recruitment to the promoter, 

ChIP assays were performed. Liver tissues collected at different gestational time points 

were subjected to ChIP using antibodies against SHP. The results showed that SHP 

recruitment to the CYP2D6 promoter significantly decreased at term (Fig. 8C). Together, 

these results suggest that downregulated SHP expression during pregnancy de-

represses HNF4α activity on CYP2D6 promoter.    
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Figure 8. SHP represses HNF4α transactivation of CYP2D6 promoter.  
A, CYP2D6 promoter activity was examined by dual luciferase assay in HEK293T cells 
Values are presented as mean ± S.D. (n=3). B, Tg-CYP2D6 mice were injected with 
scrambled siRNA (siRNA-control) or siRNA targeting SHP (siRNA-SHP), and mRNA 
expression levels were determined by qRT-PCR. Values are presented as mean ± S.D. 
(n=3), **p < 0.01, Student’s t-test vs. siRNA-control. C, ChIP assays were performed 
using liver tissues of Tg-CYP2D6 mice collected at different gestational time points. 
Values are presented as mean ± S.D. (n=4), * p < 0.05; **p < 0.01, one-way ANOVA vs. 
virgin.  
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2.3.3. CYP2D6 induction during pregnancy is abrogated in Hnf4α(-/wt) mice 

To verify the importance of HNF4α for CYP2D6 induction during pregnancy, we 

examined whether reduced hepatic HNF4α expression influences the extent of CYP2D6 

induction during pregnancy. Complete deletion of Hnf4α, even when localized to the 

liver, is fatal due to disruption of hepatic lipid homeostasis (60). Thus, Tg-CYP2D6 mice 

were crossed with heterozygous AlbCre;Hnf4α fl/wt mice, generating pups carrying 

CYP2D6 as well as either one or two copies of the Hnf4α allele in the liver [called 

Hnf4α(-/wt);CYP2D6 and Hnf4α(wt/wt);CYP2D6, respectively], and the extent of 

CYP2D6 induction during pregnancy was compared. None of these mice exhibited any 

prominent phenotypes, and all grew normally. The hepatic protein level of HNF4α in 

Hnf4α(-/wt);CYP2D6 mice was about half that of the littermate control, as expected (Fig. 

9A). In Hnf4α(-/wt);CYP2D6 mice, CYP2D6 induction during pregnancy was completely 

abrogated (Fig. 9B), and the enhanced HNF4α recruitment to CYP2D6 promoter was 

disappeared (Fig. 10). On the other hand, pregnancy-mediated repression of Shp was 

maintained in Hnf4α(-/wt);CYP2D6 mice (Fig. 9C) while decreased recruitment of SHP 

to the CYP2D6 promoter was abrogated in the mice (Fig. 10). Together, these results 

indicate that CYP2D6 induction during pregnancy is highly dependent on HNF4α 

expression level and suggest an essential role of HNF4α in mediating CYP2D6 induction 

by SHP during pregnancy. 
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Figure 9. Pregnancy-mediated CYP2D6 induction is abrogated in Hnf4α(-/wt) 
;CYP2D6 mice.   
A, Liver tissues were collected from Hnf4α(wt/wt);CYP2D6 and Hnf4α(-/wt);CYP2D6 
mice at pre-pregnancy.  HNF4α protein expression levels were determined by western 
blot (bottom). The image of western blot (bottom) and the quantified band intensities 
(HNF4α/β-actin, top) are shown. Values are presented as mean ± S.D. (n=4), ***, p < 
0.001, Student's t-test vs. Hnf4α(wt/wt) mice. B and C, mRNA levels of CYP2D6 (B) and 
Shp (C) in the liver tissues were determined by qRT-PCR. Values are presented as 
mean ± S.D. (n=4), ** p < 0.01; ***p < 0.001, one-way ANOVA vs. virgin mice of 
respective genotype. 
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Figure 10. Pregnancy-induced HNF4α transactivation of CYP2D6 promoter is 
abrogated in Hnf4α (-/wt);CYP2D6 mice.  
Liver tissues were collected from Hnf4α(wt/wt);CYP2D6 and Hnf4α(-/wt);CYP2D6 mice 
at different gestational time points. Recruitment of HNF4α and SHP onto CYP2D6 
promoter was analyzed by using ChIP assays. Values are presented as mean ± S.D. 
(n=4), * p < 0.05, one-way ANOVA vs. virgin mice of respective genotype. 
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To determine whether pregnancy enhances HNF4α activity on other target genes 

of HNF4α, HNF4α recruitment to promoters of two other known target genes [Hes6 

(112) and apolipoprotein C-II (ApoC2) (113,114)] was examined in the mouse livers at 

different gestational time points. HNF4α recruitment to the Hes6 promoter was not 

affected by pregnancy (Fig. 11A), in agreement with insignificant changes in the mRNA 

level of Hes6 at term as compared to pre-pregnancy level (Fig. 11B). At postpartum, 

however, Hes6 mRNA level was significantly increased, potentially due to altered 

expression and/or activities of transcription factors known to regulate Hes6 expression, 

such as achaete-scute homolog 1, myogenic differentiation 1, and Clock/Bmal1 (115-

117). On the other hand, HNF4α recruitment to the ApoC2 promoter was increased at 

term (Fig. 11C), but the extent of the increase (~2-fold) was much less than that 

observed for ApoC2 mRNA (>20-fold) (Fig. 11D), suggesting a relatively minor role of 

HNF4α in enhanced ApoC2 expression during pregnancy. Together, these results 

suggest that the regulatory effects of pregnancy on the expression of HNF4α target 

genes are likely gene-specific.   
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Figure 11. Effects of pregnancy on HNF4α activity are target gene-specific.   
Liver tissues were collected from Tg-CYP2D6 mice at different gestational time points.  
A and C, HNF4α recruitment to Hes6 promoter (A) and Apoc2 promoter (C) was 
analyzed by using ChIP assays. B and D, mRNA expression of Hes6 (B) and Apoc2 (D) 
was determined by qRT-PCR. Values are presented as mean ± S.D. (n=4), *p < 0.05, 
one-way ANOVA vs. virgin.  
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2.3.4. CYP2D6 induction during pregnancy is abrogated in Shp(-/-);CYP2D6 mice 

To verify the importance of SHP for CYP2D6 induction during pregnancy, we 

examined whether complete deletion of SHP can influence the extent of CYP2D6 

induction during pregnancy. Thus, Tg-CYP2D6 mice were crossed with Shp-null mice, 

generating pups carrying Shp(+/+);CYP2D6 or Shp(+/+);CYP2D6 genotype. None of 

Shp(+/+);CYP2D6 or Shp(-/-);CYP2D6 mice exhibited any prominent phenotypes, and 

all grew normally. Western blot results showed that SHP protein expression was 

abolished in Shp(-/-);CYP2D6 mice (Fig. 12A). In Shp(-/-);CYP2D6 mice, CYP2D6 

induction during pregnancy was completely abrogated (Fig. 12B-D). Data from ChIP 

assays showed that enhanced HNF4α recruitment and decreased SHP recruitment to 

CYP2D6 promoter were disappeared in Shp(-/-);CYP2D6 mice (Fig. 13). Together, these 

results indicate that CYP2D6 induction during pregnancy is highly dependent on SHP 

expression level and suggest an essential role of SHP in mediating CYP2D6 induction 

during pregnancy. 
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Figure 12. Pregnancy-mediated CYP2D6 induction is abrogated in Shp(-/-);CYP2D6 
mice.  
Liver tissues were collected from Shp(+/+);CYP2D6 and Shp(-/-);CYP2D6 mice at 
different gestational time points.  A, SHP protein expression levels were determined by 
western blot.  B, CYP2D6 mRNA expression level was determined by qRT-PCR.  C, 
CYP2D6 protein expression level was measured by western blot.  The image of western 
blot (bottom) is shown, and band intensities (CYP2D6/β-actin, top) were quantified after 
normalization by CYP2D6 expression in virgin mice of respective genotype.  D, S9 from 
the mice was incubated with debrisoquine (200 µM), and 4-hyrdoxydebrisoquine 
concentrations were measured by using LC-MS/MS. Data shown are 4-
hydroxydebrisoquin production rates (in pmol/min/mg protein). Values are presented as 
mean ± S.D. (n=4), * p < 0.05, one-way ANOVA vs. virgin.  
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Figure 13. Pregnancy-induced HNF4α transactivation of CYP2D6 promoter is 
abrogated in Shp(-/-);CYP2D6 mice.  
Liver tissues were collected from Shp(+/+);CYP2D6 and Shp(-/-);CYP2D6 mice at 
different gestational time points. Recruitment of HNF4α, SHP, and RNA polymerase II 
(Pol II) onto CYP2D6 promoter was analyzed by using ChIP assays. Values are 
presented as mean ± S.D. (n=4), ** p < 0.01, one-way ANOVA vs. virgin mice of 
respective genotype. 
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2.3.5. Hepatic FXR activity is enhanced at postpartum 

To identify potential upstream regulator(s) responsible for the changes in SHP 

expression during pregnancy, the effects of pregnancy on factors previously known to 

modulate SHP expression were examined.  

 

SHP is a representative target gene of farnesoid X receptor (FXR), a nuclear 

receptor activated upon binding to bile acids (17). To determine whether altered 

expression and/or activity of FXR is responsible for SHP repression during pregnancy, 

the expression levels of FXR as well as FXR recruitment to the Shp promoter were 

examined in the livers of Tg-CYP2D6 mice collected at different gestational time points.  

FXR expression showed insignificant changes during pregnancy (Fig. 14A), in 

agreement with a previous report (118). Also, ChIP results showed that FXR recruitment 

to Shp promoter did not decrease at term as compared to pre-pregnancy (Fig. 14B). Of 

note, FXR recruitment to Shp promoter increased at postpartum (Fig. 14B), suggesting a 

potential role for FXR in the return of decreased SHP expression to pre-pregnancy 

levels.   
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Figure 14. FXR expression and activity do not decrease during pregnancy.   
Liver tissues of Tg-CYP2D6 mice were collected at different gestational time points. A, 
mRNA expression was determined by qRT-PCR. B, FXR recruitment to Shp promoter 
was analyzed by using ChIP assays. Values are presented as mean ± S.D. (n=4), *p < 
0.05, one-way ANOVA vs. virgin.  
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Figure 15. RAs are decreased during pregnancy.  
The levels of all-trans retinoic acid (atRA) and 13-cis retinoic acid (13cRA) in mouse liver 
tissues collected at different gestational time points were measured by LC-MS/MS. (n=3-
4), * p < 0.05; **p < 0.01, one-way ANOVA vs. virgin.   
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Figure 16. atRA represses CYP2D6 expression and activity in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were injected intraperitoneally with atRA (5 mg/kg) or vehicle (olive oil) 
daily for 5 days.  A, CYP2D6 and Shp mRNA expression was determined by qRT-PCR.  
B, CYP2D6 and SHP protein expression levels were measured by western blot.  The 
image of western blot (right) is shown, and band intensities (divided by β-actin, left) were 
quantified after normalization by CYP2D6 or SHP expression in the vehicle-treated mice, 
respectively.  C, Liver S9 fractions from the liver tissues of Tg-CYP2D6 mice were 
incubated with debrisoquine (200 µM), and 4-hyrdoxydebrisoquine concentrations were 
measured by using LC-MS/MS. Data shown are 4-hydroxydebrisoquin production rates 
(in pmol/min/mg protein). Values are presented as mean ± S.D. (n=4), *p < 0.05; **p < 
0.01, Student’s t-test vs. vehicle treatment.  
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To determine whether repressive effect of atRA on CYP2D6 is mediated by 

changes in HNF4α activity on CYP2D6 promoter, ChIP assays were performed using 

liver tissues of Tg-CYP2D6 mice administered with atRA. The results showed that atRA 

decreased the recruitment of HNF4α as well as Pol II to CYP2D6 promoter as compared 

with the vehicle treated control, while increasing SHP recruitment to the promoter (Fig. 

17).  

 

 
 
Figure 17. atRA represses HNF4α transactivation of CYP2D6 promoter.  
Tg-CYP2D6 mice were injected intraperitoneally with atRA (5 mg/kg) or vehicle (olive oil) 
daily for 5 days. Recruitment of HNF4α, SHP, and Pol II to CYP2D6 promoter was 
analyzed by ChIP assays using mouse liver tissues. Values are presented as mean ± 
S.D. (n=4), *p < 0.05, Student’s t-test vs. vehicle treatment. 
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significantly lower (Fig. 18B), but to a small extent (~25%) as expected from the long 

degradation half-life of CYP2D6 protein (i.e., 51 hours) (120). Together, these results 

indicate that as in Tg-CYP2D6 mice, atRA represses CYP2D6 expression in human 

hepatocytes.  

 

 
Figure 18. atRA represses CYP2D6 expression and activity in primary human 
hepatocytes.  
Primary human hepatocytes (HHs) from three different donors were treated with atRA 
(10 µM) or vehicle control (DMSO) for 48 hours.  A, CYP2D6 and SHP mRNA 
expression was determined by qRT-PCR.  B, Liver S9 fractions prepared from HH2 were 
incubated with debrisoquine (200 µM), and 4-hyrdoxydebrisoquine concentrations were 
measured by LC-MS/MS. Data shown are 4-hydroxydebrisoquin production rates (in 
pmol/min/mg protein). Values are presented as mean ± S.D. (n=3), * p < 0.05; **p < 
0.01, Student’s t-test vs. vehicle treatment.   
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A model depicting the proposed mechanisms underlying CYP2D6 induction 

during pregnancy is shown in Fig. 19. We identified SHP as a novel transcriptional 

regulator of CYP2D6. SHP represses the transactivation of CYP2D6 promoter by 

HNF4α. During pregnancy, SHP plays an essential role in enhanced CYP2D6 

expression. Decreased hepatic atRA content is in part responsible for decreased SHP 

expression and subsequently enhanced CYP2D6 expression during pregnancy.  

 

Figure 19. Proposed model for CYP2D6 induction during pregnancy.  
This working model illustrates a mechanism underlying CYP2D6 induction during 
pregnancy. SHP is a novel transcriptional regulator of CYP2D6; SHP represses HNF4α 
transactivation of CYP2D6 promoter. During pregnancy, decreased SHP expression 
may be due to low retinoic acid content in the liver. Decreased SHP expression then de-
represses the transactivation of CYP2D6 promoter by HNF4α, leading to CYP2D6 
induction in expression and activity levels. As-yet-unknown factor (factor x) may also 
play a role in the regulation of CYP2D6 basal expression, but play a minimal role in up-
regulating CYP2D6 expression during pregnancy. 
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2.4. Discussion 

CYP2D6-mediated drug metabolism is increased during pregnancy, but the 

underlying mechanisms remained unknown. Results from a previous study in human 

hepatocytes indicate that estrogen and progesterone (whose concentrations increase 

>100-fold during human pregnancy) do not affect CYP2D6 expression (121), suggesting 

that female hormones play minor roles (if any) in CYP2D6 induction during pregnancy. In 

this study, using Tg-CYP2D6 mice as an in vivo model, we provide evidence that 

CYP2D6 induction during pregnancy is coordinated by liver-enriched transcription 

factors SHP and HNF4α and that this is in part triggered by the altered hepatic RA 

contents.  This study represents the first report on the mechanisms underlying CYP2D6 

induction during pregnancy.   

 

The identification of mechanisms underlying altered drug metabolism during 

pregnancy has been challenging due to the lack of appropriate experimental models. In 

this study, we demonstrate that Tg-CYP2D6 mice can serve as an in vivo model for 

CYP2D6 induction during pregnancy, achieving a major breakthrough for the 

mechanistic studies of pregnancy-mediated changes in drug metabolism.  An improved 

understanding of these mechanisms may provide a basis to develop physiologically 

based pharmacokinetic models (122) that can be used to predict dosage adjustments 

required for pregnant women.  This underscores the necessity and utility of appropriate 

in vivo mouse models for CYP2D6 regulation during pregnancy. 

 

Our mechanistic studies reveal that repressed SHP expression during pregnancy 

leads to enhanced HNF4α activity on CYP2D6 promoter. SHP is a nuclear receptor 

lacking the DNA binding domain and represses the activity of multiple transcription 
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factors (85). A previous study has shown that SHP binds to N-terminal region of HNF4α, 

thereby blocking HNF4α binding to the promoter of a target gene (123). Consistent with 

the reported mechanism, our ChIP results from Tg-CYP2D6 mice showed increased 

HNF4α recruitment to CYP2D6 promoter at term pregnancy, accompanied by decreased 

the recruitment of SHP to the promoter. The reciprocal relationship between HNF4α and 

SHP recruitment to CYP2D6 promoter is likely due to the rapid and dynamic interaction 

between DNA and transcription factors (124). Of note, in the repression of HNF4α 

transactivation of CYP2D6 by SHP, an appropriate expression level of HNF4α appears 

to be critical; the pregnancy-mediated changes in CYP2D6 expression or in SHP 

recruitment to CYP2D6 promoter were abrogated in Hnf4α(wt/-);CYP2D6 mice. HNF4α 

expression is known to decrease during hyperinsulinemia accompanying diabetes (125). 

Whether diabetes during pregnancy (affecting ~18% of pregnancies) impacts the extent 

of CYP2D6 induction remains to be determined.  

 

The pregnancy-mediated changes in HNF4α activity apparently affect only a 

subset of HNF4α target genes (including CYP2D6) because mRNA levels of other target 

genes (ApoC2 and Hes6) as well as HNF4α recruitment to their promoters exhibited 

patterns different from those of CYP2D6. These findings are in part consistent with the 

previous ChIP results that SHP associates with only a subset of the promoters occupied 

by HNF4α (126). The promoter context may provide an additional specificity of SHP-

mediated repression of HNF4α action.  

 

The essential role of SHP in CYP2D6 induction during pregnancy was further 

verified in Shp(-/-);CYP2D6 mice in that CYP2D6 induction at term was abrogated in the 

mice. Interestingly, however, the basal expression levels of CYP2D6 in Shp(-/-);CYP2D6 
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mice did not differ from those in Shp(+/+);CYP2D6 mice (Fig. 12A). This appears 

inconsistent with the results obtained in Tg-CYP2D6 mice that SHP knockdown (by 

using siRNA) led to increased CYP2D6 expression (Fig. 8B). Compensational changes 

in hepatic gene expression (or activity) in Shp(-/-);CYP2D6 mice may explain the results. 

For example, DAX-1 (dosage-sensitive sex-reversal adrenal hypoplasia congenital 

critical region on the X chromosome, gene 1, NR0B1) is a nuclear receptor that lacks the 

DNA-binding domain similarly to SHP (127), and it is known to repress HNF4α 

transactivation of a hepatic gene (128). Our qRT-PCR experiment, however, revealed 

that Dax-1 mRNA expression is undetectable in mouse liver tissues, suggesting that 

DAX-1 is not a transcription factor that may compensate for the loss of SHP in the liver. 

Another candidate is SMILE (SHP-interacting leucine zipper protein, initially identified as 

a SHP-interacting protein (129)) has been shown to repress HNF4α transactivation of 

target genes in the absence of SHP (130). Our result showed, however, the mRNA 

expression level of Smile was lower in Shp(-/-);CYP2D6 female mice as compared to the 

Shp(+/+);CYP2D6 female mice (Fig. 20). Whether the repressive transcriptional activity 

of SMILE is enhanced in Shp(-/-);CYP2D6 mice remains to be determined. While basal 

CYP2D6 expression appears to be governed by as-yet-unknown factors in Shp(-/-

);CYP2D6 mice, the abrogation of CYP2D6 induction at term pregnancy in Shp(-/-

);CYP2D6 mice indicates that SHP plays a critical role in CYP2D6 induction during 

pregnancy. The as-yet-unknown factors that maintain the basal level of CYP2D6 

expression in Shp(-/-);CYP2D6 mice play a minimal role (if any) in the regulation of 

CYP2D6 expression during pregnancy.   
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Figure 20. Smile expression is 
decreased in Shp(-/-);CYP2D6 female 
mice. 
Liver tissues were collected from Shp(-/-
);CYP2D6 and Shp(+/+);CYP2D6 female 
mice (virgin, n=4). Smile mRNA 
expression was determined by qRT-
PCR. Values are presented as mean ± 
S.D. *p < 0.05, Student’s t-test. 
 

 

 

FXR is a key mediator in maintenance of cholesterol/bile acid homeostasis; 

during cholestasis, bile acids bind to FXR, which transactivates SHP promoter. SHP in 

turn represses the expression of genes involved in bile acid synthesis (126). Hepatic 

Shp mRNA levels in Fxr-null mice was only ~80% of those in wild type (17), suggesting 

that FXR plays a key role in modulating SHP expression. Our data indicate, however, 

that pregnancy affects neither FXR expression nor FXR recruitment to Shp promoter. 

Furthermore, our microarray data (GSE50166) showed that pregnancy did not repress 

the expression of known transcriptional coactivators of FXR, namely arginine-methyl 

transferases (131), coactivator-associated arginine methyltransferase 1 (132), 

peroxisome proliferator-activated receptor γ coactivator 1 α (133), and vitamin D-

interacting protein 205 (134). Together, these results indicate that FXR plays a minimal 

role, if any, in the downregulation of SHP during pregnancy. 

 

Retinoids are derivatives of vitamin A (retinol) that provides support to many 

crucial physiological processes including embryogenesis, epithelial differentiation, vision, 

energy balance, and reproduction (135,136). Liver is an essential site for retinoids 
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uptake, storage, and metabolism. In the liver, stellate cells account for 80% of total liver 

retinoids, while hepatocytes that account for 67% of all cells present in the liver plays a 

key role in forming the bioactive metabolite atRA (137,138). Our data revealed that 

repressed SHP expression at term pregnancy was associated with decreased hepatic 

levels of atRA. The decrease in hepatic contents of atRA may be attributable to 

enhanced hepatic expression of CYP26A1 during pregnancy (139). CYP26A1 expressed 

in livers is a major RA-metabolizing enzyme and a key contributor to endogenous RA 

clearance (140). How pregnancy increases Cyp26a1 expression remains unknown. 

atRA was shown to induce SHP expression in HepG2 cells (119), and our results further 

showed that exogenously administered atRA decreases CYP2D6 expression. Together, 

these results suggest that decreased hepatic RA contents and subsequent decreases in 

SHP expression may be in part responsible for enhanced CYP2D6 expression during 

pregnancy.   

 

The repressed SHP expression levels at term pregnancy returned to pre-

pregnancy levels after delivery, while hepatic levels of RA did not. This suggests the 

presence of other regulators of SHP expression whose expression and/or activity may 

be altered during the postpartum period. Our ChIP study demonstrated a significant 

increase in FXR recruitment to the Shp promoter at postpartum, suggesting that 

activation of FXR may be responsible for the rebound in SHP expression after delivery. 

Of note, expression levels of other target genes of FXR (e.g., bile salt export pump) did 

not differ between the term pregnancy and postpartum period (GSE50166), indicating 

that enhanced FXR activity after delivery may be specific for Shp promoter. Shp 

promoter harbors an ERα-binding site overlapping with the FXR binding site (141) such 

that ligand-activated ERα can repress FXR transactivation (118). After delivery, plasma 
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concentrations of both estrogens and bile acids change in the direction of promoting 

FXR transactivation; concentrations of estrogen decrease while those of bile acid 

increase (142). These changes may lead to increased FXR transactivation of Shp 

promoter in an additive or synergistic manner. Together, SHP expression level during 

postpartum period may be coordinated by multiple endogenous substances, including 

estrogens and bile acids. 

 

CYP2D6 shows the largest phenotypic variability among drug-metabolizing 

CYPs. This is in part due to genetic polymorphisms of CYP2D6; over 100 different 

variants have been reported to date, and some of the gene products exhibit no or 

reduced enzyme activity (http://www.cypalleles.ki.se). On the other hand, CYP2D6 

activity in human liver tissues correlates well with CYP2D6 mRNA levels (the correlation 

coefficient ranging from 0.71 to 0.91) (14,15,143), suggesting that transcriptional 

regulation of CYP2D6 may play a major role in governing the extent of CYP2D6-

mediated drug metabolism. The finding of interplay among retinoic acid and hepatic 

transcription factors HNF4α and SHP during pregnancy may provide a basis to better 

understand the factors contributing to large phenotypic variability in CYP2D6 activity. For 

example, one can speculate that vitamin A deficiency or overload may impact CYP2D6-

mediated drug metabolism through modulating SHP expression. 

 

In conclusion, we present the first case of utilizing CYP-humanized mice for the 

in vivo functional and mechanistic investigation of altered drug metabolism during 

pregnancy. Our results will likely provide a basis to improve drug therapy during 

pregnancy as well as to better understand factors governing variability in CYP2D6-

mediated drug metabolism. 
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3. FARNESOID X RECEPTOR AGONIST REPRESSES CYP2D6 EXPRESSION BY 

UPREGULATING SMALL HETERODIMER PARTNER 

[Previously published as Pan X, Lee YK, Jeong H. Farnesoid X Receptor Agonist 

Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer 

Partner, Drug Metab Dispos. 2015 Apr 29. 2015 Jul;43(7):1002-7.] 

3.1. Introduction 

CYP2D6-mediated drug metabolism is known to exhibit significant interindividual 

variability (10,11); the populations can be divided into four phenotype categories ranging 

from poor metabolizer (PM) to ultra-rapid metabolizer (UM) (10-13,49). This 

interindividual variability is in part explained by genetic polymorphisms in CYP2D6 gene; 

polymorphisms associated with low or minimal expression of CYP2D6 protein (e.g., due 

to frame-shift mutation) or the expression of nonfunctional CYP2D6 proteins lead to the 

PM phenotype. On the other hand, individuals with multiple copies of CYP2D6 gene 

present UM phenotype. Of note, these individuals comprise only a small portion (~10%) 

of populations, and the sources of CYP2D6 variability in the remaining populations 

remain unclear. For example, CYP2D6 activity (as determined by urinary ratio of 

dextrorphan/dextromethorphan) exhibits significant overlap among non-PM individuals 

(53) such that CYP2D6 genotypes do not fully explain the inter-individual variability.  

 

Previous studies have shown that the mRNA expression and activity levels of 

CYP2D6 are well correlated (14,15), suggesting that differential transcriptional regulation 

of CYP2D6 may contribute to the large interindividual variability in CYP2D6 activity (14). 

Yet, transcriptional regulation of CYP2D6 is poorly understood. For example, hepatocyte 

nuclear receptor 4α (HNF4α) has been the only well-characterized transcription factor for 

the transcriptional regulation of CYP2D6 until recently (9). In Chapter 2, we have 
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demonstrated a novel transcriptional regulator of CYP2D6 expression, SHP, through 

studies of regulatory mechanisms underlying CYP2D6 induction during pregnancy (144). 

SHP is a nuclear receptor that lacks the DNA binding domain. SHP functions as a co-

repressor; SHP binds to other transcription factors (e.g., HNF4α) and inhibits their 

transcriptional activity. This leads to altered expression of many genes involved in bile 

acid homeostasis, glucose metabolism, and testosterone synthesis (85,145). We also 

demonstrated that SHP represses HNF4α transactivation of CYP2D6 promoter and that 

SHP knockdown (by using siRNA targeting SHP) led to increased CYP2D6 expression 

in CYP2D6-humanized transgenic (Tg-CYP2D6) mice (Fig. 8B) (144). What remains 

unknown is whether upstream regulators of SHP expression alter CYP2D6 expression 

such that differential hepatic levels of SHP modulators may contribute to interindividual 

variability in CYP2D6-mediated drug metabolism.  

 

SHP is a representative target gene of farnesoid X receptor (FXR). FXR is a 

ligand-activated nuclear receptor, and bile acids are its biological ligands (16). When 

hepatic concentrations of bile acids are high (e.g., in cholestasis), the ligand-activated 

FXR induces SHP transcription. SHP in turn inhibits bile acid synthesis and represses 

hepatic bile acid uptake, thereby protecting the liver from the toxicity of excess bile acids 

(145-149). Recent studies also indicate FXR as a modulator of nutrient homeostasis, 

and many synthetic FXR agonists (e.g., GW4064) are currently developed as novel 

therapeutics to treat metabolic diseases including primary biliary cirrhosis, nonalcoholic 

steatohepatitis, diabetes and insulin resistance (150). 

 

In this proof-of-concept study, we aimed to verify the role of SHP in the regulation 

of CYP2D6 expression by examining how a known regulator of SHP expression (FXR 

agonist GW4064 (18)) alters CYP2D6 expression. To this end, we investigated whether 
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a, alters CYP2D6 expression by inducing SHP expression. We provide evidence that 

GW4064 indeed represses CYP2D6 expression in a SHP-dependent manner. 

 

3.2. Materials and methods 

3.2.1. Animals  

CYP2D6-humanized transgenic (Tg-CYP2D6) and Shp-null mice were previously 

described (9,93). Both Tg-CYP2D6 and Shp-null mice were on the C57BL/6 background. 

Adult male mice (8 weeks of age; 20-25 g body weight) were used for the experiments. 

GW4064 (10 mg/kg) or vehicle (olive oil) was injected intraperitoneally into the mice daily 

for 5 days (n=4-5 mice/group). Mice were sacrificed on the 6th day, and liver tissues were 

collected. All procedures were carried out in accordance with the Guide for the Care and 

Use of Laboratory Animals as adopted and promulgated by the U.S. National Institutes 

of Health, and were approved by the Institution’s Animal Care and use Committee in the 

University of Illinois at Chicago. 

 

3.2.2. Chemicals and reagents  

Debrisoquine,  (±)-4-hydroxydebrisoquin, and paraxanthine were purchased from 

Biomol (Plymouth Meeting, PA).  GW4064, (3-[2-[2-Chloro-4-[[3-(2,6-dichlorophenyl)-5-

(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]benzoic acid) was purchased from 

Sigma-Aldrich (St. Louis, MO).  

 

3.2.3. Primary human hepatocytes  

Freshly isolated human hepatocytes, derived from three donors, were obtained 

from Liver Tissue Cell Distribution System (Pittsburgh, PA; funded by NIH Contract # 
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HHSN276201200017C). Hepatocytes were cultured as previously described in Chapter 

2. After recovery from delivery, hepatocytes were treated with vehicle control (DMSO) or 

GW4064 (1 µM) for 48 hours. Cell lysates were collected to prepare RNAs and S9 

fractions.   

 

3.2.4. Western blot  

Western blot was performed as described previously in Chapter 2. CYP2D6 and 

SHP protein expression levels were determined by using the respective antibodies 

(CYP2D6, Catalog#458246, BD Gentest™, Franklin Lakes, NJ; SHP, sc-30169, Santa 

Cruz, Dallas, TX; β-actin, Catalog#A1978, Sigma-Aldrich).   

 

3.2.5. Determination of CYP2D6 activity  

Hepatic S9 fractions were prepared as described previously (94). S9 fractions 

were incubated with debrisoquine (a CYP2D6 probe substrate, 200 µM) based on the 

report that mouse endogenous CYP2Ds play minor roles in debrisoquine hydroxylation 

(144). The concentration of 4-hydroxydebrisoquine was measured by LC-MS/MS using 

paraxanthine as the internal standard (144).   

 

3.2.6. RNA isolation and qRT-PCR  

Total RNA isolation and qRT-PCR were performed as described previously in 

Chapter 2. The PrimeTime® qRT-PCR assay for mouse and human CYP8B1 genes 

were purchased from Integrated DNA Technologies (Coralville, IA; 

Mm.PT.58.12268653.g and Hs.PT.58.40608207.g, respectively). Primer sequences for 

all other target genes were described in Table VII. Results are expressed as fold 
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changes by drug treatment by using the gene expression levels normalized to those of 

Gapdh (2-ΔΔCt method).   

 

3.2.7. ChIP assays  

Liver samples were subjected to ChIP as described previously in Chapter 2. 

qRT-PCR was performed using the following probes for Cyp8b1: 5 ʹ′-

AAGGCAGGCAAACATGGAGA-3ʹ′ (forward) and 5ʹ′- CAATGCAAAGGTTCCTGCCC-3ʹ′ 

(reverse). Primer sequences for all other genes were described in Table VIII. 

 

3.2.8. Statistical analysis  

Values were reported as mean ± standard deviation (S.D.). Statistical differences 

were determined by using Student’s t-test. 

 

 

3.3. Results 

3.3.1. FXR agonist GW4064 represses CYP2D6 expression and activity in Tg-

CYP2D6 mice   

To determine whether GW4064 alters CYP2D6 expression and activity in vivo, 

GW4064 or vehicle control was intraperitoneally administered to Tg-CYP2D6 mice for 5 

days, and hepatic CYP2D6 mRNA and protein levels were measured by qRT-PCR and 

western blot, respectively. Cyp8b1, a gene known to be down-regulated by SHP (151), 

was used as a positive control. The results showed that GW4064 significantly decreased 

both mRNA and protein expression levels of CYP2D6 by ~2-fold (Fig. 21A and 21B). 

CYP2D6 activity, determined by measuring debrisoquine hydroxylation rate in hepatic 
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S9 fraction (144), was also found decreased by ~2-fold upon GW4064 treatment (Fig. 

21C). GW4064 increased SHP expression ~2-fold (Fig. 21A and 21B), consistent with 

the previous results (86,152). 
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Figure 21. GW4064 represses CYP2D6 expression in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were administered with GW4064 (10 mg/kg) or vehicle (olive oil) 
intraperitoneally daily for 5 days (n=4).  A, CYP2D6, Shp, and Cyp8b1 mRNA expression 
was determined by qRT-PCR.  B, CYP2D6 and SHP protein expression levels were 
determined by western blot. The image of western blot (right) is shown, and the band 
intensities (after divided by β-actin, left) were quantified after normalization by CYP2D6 
or SHP expression in the vehicle-treated mice, respectively.  C, S9 fractions were 
prepared from the liver tissues of Tg-CYP2D6 mice treated with GW4064 or vehicle 
control, and CYP2D6 phenotyping was performed using debrisoquine (200 µM). Data 
shown are 4-hydroxydebrisoquin production rates (in pmol/min/mg protein).  Values are 
presented as mean ± S.D. *p < 0.05; **p < 0.01, versus vehicle treatment.  
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Previously, we showed that SHP represses HNF4α transactivation of CYP2D6 

promoter (144). To determine whether GW4064 alters CYP2D6 promoter activity in 

mice, ChIP assays were performed. Liver tissues were collected from GW4064 (or 

vehicle)-treated mice and subjected to ChIP using antibodies against SHP, HNF4α or 

RNA polymerase II (Pol II, a marker of transcription initiation). The protein-bound DNA 

was analyzed by using a primer set that can detect the HNF4α response element at -

55/-43 of CYP2D6 (63). As a positive and a negative control, recruitment of the 

transcription factors to Cyp8b1 promoter or a downstream region of CYP2D6 

(+3913/+4368), respectively, was examined. The results demonstrated increased 

recruitment of SHP and decreased recruitments of HNF4α and Pol II to CYP2D6 

promoter (Fig. 22A). The similar trends were observed for SHP, HNF4α, and Pol II 

recruitments to Cyp8b1 promoter region (that harbors HNF4α response element (151)) 

(Fig. 22B). Recruitment of the transcription factors to the downstream region of CYP2D6 

was minimal and not affected by GW4064 (Fig. 22C). Together, these results suggest 

that the repressive effect of GW4064 on CYP2D6 is potentially mediated by enhanced 

SHP expression.  
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Figure 22. GW4064 represses HNF4α transactivation of CYP2D6 promoter.  
Tg-CYP2D6 mice were administered with GW4064 (10 mg/kg) or vehicle (olive oil) 
intraperitoneally daily for 5 days (n=4). Recruitment of HNF4α, SHP, and RNA 
polymerase II onto (A) CYP2D6 promoter, (B) Cyp8b1 promoter, and (C) CYP2D6 distal 
downstream region were analyzed by ChIP assay using mouse liver tissues. Values are 
presented as mean ± S.D. *p < 0.05; **p < 0.01, n.s. = not statistically significant. 
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3.3.2. CYP2D6 repression by GW4064 is abrogated in Shp(-/-);CYP2D6 mice 

To examine the essentiality of SHP in CYP2D6 repression by GW4064, Tg-

CYP2D6 mice were crossed with Shp-null mice, and mice carrying Shp(+/+);CYP2D6 or 

Shp(-/-);CYP2D6 genotype were generated. None of Shp(+/+);CYP2D6 or Shp(-/-

);CYP2D6 mice exhibited any prominent phenotypes, and all grew normally. Western 

blot results showed that SHP protein expression was abolished in Shp(-/-);CYP2D6 mice 

(Fig. 12A). CYP2D6 repression by GW4064 or vehicle was compared between the mice 

of different genotypes. In the vehicle-treated mice, the basal mRNA expression levels of 

Cyp8b1 were higher in Shp(-/-);CYP2D6 as compared to Shp(+/+);CYP2D6 mice (Fig. 

23A; p = 0.0004) while the basal CYP2D6 expression did not differ between the mice of 

different genotypes (Fig. 23A; p = 0.16). GW4064 treatment led to decreased expression 

of CYP2D6 and Cyp8b1 in Shp(+/+);CYP2D6 mice (Fig. 23A), similar to the results from 

Tg-CYP2D6 mice (Fig. 21A). These repressive effects of GW4064 on CYP2D6 and 

Cyp8b1 expression were abrogated in Shp(-/-);CYP2D6 mice (Fig. 23A), suggesting that 

GW4064 represses CYP2D6 transcription through SHP. The protein expression as well 

as activity level of CYP2D6 was consistent with the decreased mRNA levels of CYP2D6 

by GW4064 (Fig. 23B and 23C).  
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Figure 23. CYP2D6 repression by GW4064 is abrogated in Shp(-/-);CYP2D6 mice. 
Shp(+/+);CYP2D6 or Shp(-/-);CYP2D6 mice were injected with GW4064 (10 mg/kg) or 
vehicle (olive oil) intraperitoneally daily for 5 days (n=5).  A, CYP2D6 and Cyp8b1 mRNA 
expression levels were measured by using qRT-PCR and normalized by those in 
vehicle-treated Shp(+/+);CYP2D6 mice.  B, CYP2D6 protein expression level was 
measured by western blot.  The image of western blot (right) is shown, and the band 
intensities (CYP2D6/β-actin, left) were quantified after normalization by CYP2D6 
expression in the vehicle-treated mice of respective genotype.  C, S9 from the mice was 
incubated with debrisoquine (200 µM), and 4-hyrdoxydebrisoquine concentrations were 
measured by using LC-MS/MS. Data shown are 4-hydroxydebrisoquin production rates 
(in pmol/min/mg protein).  Values are presented as mean ± S.D. *p < 0.05; **p < 0.01; 
n.s. = not statistically significant. 
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To determine whether Shp deletion leads to altered GW4064 effects on the HNF4α 

transactivation of CYP2D6 promoter, ChIP assays were performed. In Shp(+/+);CYP2D6 

mice, GW4064 decreased the recruitments of HNF4α and Pol II while increasing SHP 

recruitment to CYP2D6 promoter (Fig. 24A) as in Tg-CYP2D6 mice (Fig. 22). These 

changes in transcription factors recruitment disappeared in Shp(-/-);CYP2D6 mice (Fig. 

24A). Similar results were observed in the transcription factor recruitment to Cyp8b1 

promoter (Fig. 24B). Together, these results suggest an essential role of SHP in 

CYP2D6 repression by GW4064.  

 



 77 

Figure 24. Repressed 
HNF4α transactivation of 
CYP2D6 promoter is 
abrogated in Shp(-/-
);CYP2D6 mice.  
Shp(+/+);CYP2D6 or Shp(-
/-);CYP2D6 mice were 
injected with GW4064 (G, 
10 mg/kg) or vehicle (V, 
olive oil) intraperitoneally 
daily for 5 days (n=5). 
Recruitment of HNF4α, 
SHP, and RNA polymerase 
II (PoI II) onto (A) CYP2D6 
promoter and (B) Cyp8b1 
promoter were analyzed by 
ChIP assay using mouse 
liver tissues. Values are 
presented as mean ± S.D. 
*p < 0.05; **p < 0.01; n.s. = 
not statistically significant. 
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3.3.3. SHP represses CYP2D6 expression in primary human hepatocytes  

To determine whether GW4064 effects on CYP2D6 expression obtained in mice 

can be extrapolated to humans, primary human hepatocytes were treated with GW4064 

or vehicle for 48 hours, and CYP2D6 expression and activity were examined. The results 

showed that GW4064 treatment decreased CYP2D6 mRNA expression by ~2-fold (Fig. 

25A) while enhancing the SHP expression (Fig. 25B) in human hepatocytes. The mRNA 

expression levels of positive control gene CYP8B1 were also increased in GW4064-

treated hepatocytes (Fig. 25C). In one batch of human hepatocytes (i.e., HH2), CYP2D6 

activity levels were measured by using debrisoquine as a probe drug for CYP2D6. 

CYP2D6 activity in GW4064-treated cells was significantly lower (Fig. 25D), but to a 

small extent (~20%) as expected from the long degradation half-life of CYP2D6 protein 

(i.e., 51 hours) (120). Together, these results indicate that as in Tg-CYP2D6 mice, 

GW4064 represses CYP2D6 expression in human hepatocytes.  
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Figure 25. GW4064 represses CYP2D6 expression and activity in primary human 
hepatocytes.   
Primary human hepatocytes (HHs) from three different donors were treated with 
GW4064 (1 µM) or vehicle control (DMSO) for 48 hours.  A-C, CYP2D6, SHP, and 
CYP8B1 mRNA expression was determined by using qRT-PCR.  D, HH2 was incubated 
with debrisoquine (200 µM), and 4-hyrdoxydebrisoquine concentrations in the culture 
media were measured by using LC-MS/MS. Data shown are 4-hydroxydebrisoquin 
production rates (in pmol/min/mg protein). Values are presented as mean ± S.D. *p < 
0.05; **p < 0.01, versus vehicle treatment. 
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3.4. Discussion 

Previously, we have identified SHP as a novel regulator of CYP2D6 transcription; 

SHP represses HNF4α transactivation of CYP2D6 promoter (144). SHP being a 

representative target gene of FXR, in this study we examined whether a synthetic FXR 

agonist (GW4064) alters CYP2D6 expression and showed that GW4064 represses 

CYP2D6 expression in Tg-CYP2D6 mice as well as in human hepatocytes.  

 

Results from this study demonstrated a key role of SHP in CYP2D6 repression 

by GW4064. The decrease in CYP2D6 expression in GW4064-treated mice was 

accompanied by the increases in SHP expression as well as in SHP recruitment to 

CYP2D6 promoter. The essential role of SHP in GW4064 action on CYP2D6 expression 

was further verified in Shp(-/-);CYP2D6 mice in that CYP2D6 repression by GW4064 

was abrogated in the mice. Considering that SHP induction is a class action of FXR 

agonists, these results suggest that FXR activation by other drugs or diseases (e.g., 

cholestasis) is also expected to repress CYP2D6 expression. Indeed, we found that 

treatment of human hepatocytes with cholic acid (a major bile acid elevated in 

cholestasis) led to a significantly decrease in CYP2D6 expression (Fig. 26).  

 

 
Figure 26. Cholic acid represses 
CYP2D6 expression in primary 
human hepatocytes. 
Primary human hepatocytes were 
treated with cholic acid (100 µM) or 
vehicle control (DMSO) for 48 hours 
(n=3). CYP2D6 mRNA expression was 
determined by qRT-PCR. Values are 
presented as mean ± S.D. **p < 0.01, 
versus vehicle treatment. 
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Cholestasis is often triggered by drugs such as rifampicin, erythromycin, ethinylestradiol, 

and oxypenicilins (153). While it remains to be determined whether cholestasis 

represses CYP2D6-mediated drug metabolism in humans, results from this study 

provide a mechanistic basis for the possibility. Additionally, this study provides evidence 

that supports important roles of FXR/SHP pathway in the regulation of CYP2D6 

expression and that differential SHP expression and/or activity may potentially contribute 

to interindividual variability in CYP2D6-mediated drug metabolism in humans. Whether 

or to what extent different SHP modulators affect CYP2D6 expression and activity in 

humans remains to be examined. 

 

Many FXR agonists are currently under development for different hepatic or 

metabolic diseases including primary biliary cirrhosis, nonalcoholic steatohepatitis, and 

diabetes (150). For example, obeticholic acid (i.e., INT-747), a potent synthetic FXR 

agonist, is in phase III trials for primary biliary cirrhosis (154). Also, the hepatoprotective 

effects of GW4064 and its analogs have been shown in cholestatic rats and in mice with 

gallstones (155-159). Our results suggest that drug-drug interactions between CYP2D6 

substrates and FXR agonists may occur if these FXR agonists are approved and 

clinically used. It remains difficult to quantitatively predict the clinical outcome of these 

potential interactions based on the results from human hepatocytes. This is in part due 

to the long degradation half-lives of CYP2D6 protein (i.e., 51 hours [28]) such that 

CYP2D6 protein levels in human hepatocytes do not reach the steady state after the 

typical time of drug treatment (e.g., 48 hour) passes. In accordance, CYP2D6 mRNA 

expression decreased ~2-fold in GW4064-treated human hepatocytes whereas the 

decrease in catalytic activity of CYP2D6 (as determined in the S9 fraction of 

hepatocytes) was only ~20% (Fig. 25D). The clinical consequences of FXR agonists 

repressing CYP2D6 expression thus remain to be examined. 
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Results from our previous study in Tg-CYP2D6 mice showed that SHP 

knockdown (by using siRNA) led to increased CYP2D6 expression (Fig. 8B), indicating 

that decreased SHP expression triggers CYP2D6 induction. Interestingly, however, 

results from this study showed that the basal expression levels of CYP2D6 in Shp(-/-

);CYP2D6 mice did not differ from those in Shp(+/+);CYP2D6 mice (Fig. 23A). 

Compensational changes in hepatic gene expression (or activity) in Shp(-/-);CYP2D6 

mice may explain the results. For example, DAX-1 (dosage-sensitive sex-reversal 

adrenal hypoplasia congenital critical region on the X chromosome, gene 1, NR0B1) is a 

nuclear receptor that lacks the DNA-binding domain similarly to SHP (127), and it is 

known to repress HNF4α transactivation of a hepatic gene (128). Our qRT-PCR 

experiment, however, revealed that Dax-1 mRNA expression is undetectable in mouse 

liver tissues, suggesting that DAX-1 may not compensate for the loss of SHP in the liver. 

Also, SMILE (SHP-interacting leucine zipper protein; initially identified as a SHP-

interacting protein (129)) has been shown to repress HNF4α transactivation of target 

genes in the absence of SHP (130), suggesting that increased SMILE expression/activity 

may compensate for the loss of SHP. Our results showed, however, the mRNA 

expression levels of Smile did not differ between Shp(-/-);CYP2D6 and 

Shp(+/+);CYP2D6 male mice (Fig. 27). Whether the transcriptional activity of SMILE is 

enhanced in Shp(-/-);CYP2D6 male mice remains to be determined. Together, these 

results suggest that basal CYP2D6 expression in Shp(-/-);CYP2D6 mice may be 

governed by as-yet-unknown factors.  
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Figure 27. Smile expression does not 
change in Shp(-/-);CYP2D6 male mice.  
Liver tissues were collected from Shp(-/-
);CYP2D6 and Shp(-/-);CYP2D6 male mice 
(n=5). Smile mRNA expression was 
examined by qRT-PCR. Values are 
presented as mean ± S.D.  
 

 

 

 

In conclusion, we showed that FXR agonist GW4064 represses CYP2D6 

expression through inducing SHP expression (Fig. 28). This suggests that potential 

drug-drug interactions may occur between CYP2D6 substrates and FXR agonists that 

are currently under development for hepatic and metabolic disorders. Our results also 

provide a mechanistic basis to identify potential factors (e.g., bile acids) that may 

contribute to the interindividual variability in CYP2D6 activity. 
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Figure 28. Working model for CYP2D6 repression upon GW4064 treatment.  
GW4064 treatment induces FXR transactivation of SHP promoter and subsequently 
upregulates SHP expression. Increased level of SHP in turn suppresses HNF4α 
transactivation of CYP2D6 promoter, leading to repressed CYP2D6 expression and 
activity. 

 

  

CYP2D6

FXR

SHP

GW4064

SHP

FXRE

HNF4_
SHP



 85 

4. ESTROGEN-INDUCED CHOLESTASIS LEADS TO REPRESSED CYP2D6 

EXPRESSION IN CYP2D6-HUMANIZED MICE 

[Previously published as Pan X, Jeong H. Estrogen-Induced Cholestasis Leads to 

Repressed CYP2D6 Expression in CYP2D6-Humanized Mice, Mol Pharmacol. 2015 

Jul;88(1):106-12.]  

4.1. Introduction 

Cholestasis is a disease caused by impaired bile formation in liver cells (i.e., 

intrahepatic cholestasis) or obstruction of bile flow via bile ducts (i.e., extrahepatic 

cholestasis) (22,160,161). Intrahepatic cholestasis can be caused by medications (e.g., 

cyclosporine A) or pregnancy, and extrahepatic cholestasis by bile duct blockade from 

gallstones or tumors. Regardless of the underlying causes, cholestasis results in hepatic 

and systemic accumulation of cytotoxic bile acids. This induces liver damage 

accompanied by pruritus and indigestion, ultimately leading to biliary fibrosis and 

cirrhosis (23,162). Treatment of cholestasis involves surgical removal of underlying 

causes, if possible, and drug therapy using ursodeoxycholic acid and 

immunosuppressive drugs (163). The management of symptoms accompanying 

cholestasis may also require the use of drug therapy (e.g., serotonin reuptake inhibitors) 

(164). 

 

CYP2D6 is a major drug-metabolizing enzyme and responsible for eliminating 

~20% of marketed drugs (Table II). Despite its importance as a drug-metabolizing 

enzyme, regulation of CYP2D6 expression remains poorly understood as compared to 

that of other drug-metabolizing enzymes such as CYP3A4. Recently, we have identified 

small heterodimer partner (SHP) as a novel transcriptional regulator of CYP2D6 

expression. Previously, we showed that SHP represses hepatocyte nuclear factor (HNF) 
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4α transactivation of CYP2D6 promoter (144). Also, in CYP2D6-humanized transgenic 

(Tg-CYP2D6) mice, SHP knockdown led to a significant increase in CYP2D6 expression 

(144). SHP expression is a representative target gene of the bile acid-sensor, farnesoid 

X receptor (FXR). Upon binding to bile acids, FXR transactivates SHP promoter and 

upregulates SHP expression (86). SHP in turn represses the transcription of genes 

involved in bile acid synthesis such as CYP7A1 and CYP8B1 (86). Whether enhanced 

expression of SHP in cholestasis also leads to decreased CYP2D6 expression remains 

unknown. 

 

Estrogen is the major component in oral contraceptives and hormone 

replacement therapy. Estrogen regulates growth and differentiation as well as multiple 

physiological functions by activating its cognate receptor, estrogen receptor (ER) α and 

ERβ. In the liver, expression of ERβ is localized to the cholangiocytes (165), and ERα is 

the major isoform expressed in the parenchymal cells (166). Of note, estrogens can 

cause intrahepatic cholestasis in premenopausal women receiving oral contraceptives, 

in postmenopausal women on hormone replacement therapy (167), or in men who 

receive estrogens therapy for prostate cancer (168). Estrogen-induced cholestasis can 

also occur during pregnancy; intrahepatic cholestasis of pregnancy is the most common 

liver disease in pregnant women (169,170). An experimental intrahepatic cholestasis 

model established by 17α-ethinylestradiol (EE2) administration in rodents has been 

commonly used to study the pathogenesis of estrogen-induced intrahepatic cholestasis 

(20-23).  

 

In this study, we examined the effects of estrogen-induced intrahepatic 

cholestasis on CYP2D6-mediated drug metabolism. Our results indicate EE2-induced 

cholestasis increases SHP and represses CYP2D6 expression in Tg-CYP2D6 mice. 
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Studies of the underlying mechanisms revealed a role of ERα in CYP2D6 regulation in 

estrogen-induced cholestasis. 

 

4.2. Materials and methods 

4.2.1. Animals  

CYP2D6-humanized transgenic (Tg-CYP2D6) mice were previously described 

(9). Adult male (8 weeks of age and weighing 20-25 g) were used for the experiments. 

For estrogen-induced intrahepatic cholestasis, mice received subcutaneous injections of 

17α-ethinylestradiol (EE2, 10 mg/kg) or vehicle (olive oil) daily for 5 days (20). For the 

activation of ERα alone (without cholestasis), mice received intraperitoneal injections of 

EE2 (5 µg/kg) or vehicle (olive oil) daily for 5 days (171). Mice were sacrificed on the 6th 

day, blood and liver tissues were collected. All procedures were carried out in 

accordance with the Guide for the Care and Use of Laboratory Animals as adopted and 

promulgated by the U.S. National Institutes of Health, and were approved by the 

Institution’s Animal Care and use Committee in the University of Illinois at Chicago. 

 

4.2.2. Chemicals and reagents 

Debrisoquine, (±)-4-hydroxydebrisoquin, and paraxanthine were purchased from 

Biomol (Plymouth Meeting, PA). 17α-ethinylestradiol was purchased from Sigma-Aldrich 

(St. Louis, MO).  

 

4.2.3. Western blot 

Western blot was performed as described previously in Chapter 2 using SHP 

antibody from Santa Cruz (sc-30169).  
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4.2.4. Determination of CYP2D6 activity 

Liver S9 fractions were prepared as described previously (144). CYP2D6 activity 

was determined by incubating S9 fractions with debrisoquine (200 µM) as described 

previously in Chapter 3.  

 

4.2.5. RNA isolation and qRT-PCR 

Total RNA isolation was described previously in Chapter 2. qRT-PCR was 

performed by using probes for Cyp7a1 (Mm.PT.58.41588826, IDT); Ostβ: 3’-

CCAGGACCAGGATGGAATAA-5’ (forward); 3’- AGAGAAAGCTGCAGCCAATG -5’ 

(reverse); Stat5a: 3’- GTCTCCAGGGACACTTGCTT -5’ (forward); 3’- 

CTGCAGCAGACCCAAGAGTA -5’ (reverse). Primer sequences for all other target 

genes were described in Table VII. Results were expressed as fold changes upon drug 

treatment by using the gene expression levels normalized to those of Gapdh (2-ΔΔCt 

method).   

 

4.2.6. ChIP assays  

ChIP assays were performed as described previously in Chapter 2 using 

antibodies from Santa Cruz (ERα, sc-543x; FXR, sc-13063x; HNF4α, sc-6556x; RNA 

polymerase II, sc-899x; SHP, sc-30169). qRT-PCR was performed using the following 

probes for Ostβ_FXRE: 5 ʹ′- TGCCCTGATCGCACAATCTC -3ʹ′ (forward) and 5ʹ′- 

GTGAATGACCCCACGAATGC -3ʹ′ (reverse); Shp_FXRE/ERE: 5 ʹ′- 

GCCTGAGACCTTGGTGCCCTG -3ʹ′ (forward) and 5ʹ′- CTGCCCACTGCCTGGATGC -3ʹ′ 

(reverse). Stat5a_ERE: 5 ʹ′- CCCCCCCCTGTTTTCAAT -3ʹ′ (forward) and 5ʹ′- 
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CCCCGCCCTCTGTGTGT -3ʹ′ (reverse).  CYP2D6 probes were listed in Table VIII and 

Cyp8b1 probes were described in Chapter 3. 

 

4.2.7. Alkaline phosphatase and alanine transaminase measurement 

Plasma Alkaline phosphatase (ALP) and alanine transaminase (ALT) levels were 

measured by chemistry analyzer (Olympus AU 680, Center Valley, PA) following the 

manufacturer’s protocol. 

 

4.2.8. Statistical analysis 

Values were reported as mean ± standard deviation (S.D.). Statistical differences 

were determined by using Student’s t-test. 

 

4.3. Results 

4.3.1. EE2-induced cholestasis leads to decreased HNF4α transactivation of 

CYP2D6 promoter  

Previous studies have shown that administration of high dose estrogen triggers 

intrahepatic cholestasis (20-23). To investigate the effects of EE2-induced cholestasis 

on CYP2D6 expression and activity in vivo, Tg-CYP2D6 mice were treated with EE2 or 

vehicle control. As expected from EE2-induced cholestasis, the plasma levels of ALP (a 

marker for cholestasis (172)) and ALT (a marker for liver injury) were significantly 

increased in EE2-treated mice (Fig. 29). 
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Figure 29. EE2 induces cholestasis in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). Alkaline phosphatase (ALP) level and 
alanine aminotransferase (ALT) level were measured in mouse plasma. ** p < 0.01, 
versus vehicle treatment. 

 

 

To examine potential effects of EE2-induced cholestasis on hepatic CYP2D6 

expression, CYP2D6 mRNA and protein levels were determined in the mice by using 

qRT-PCR and western blot. The mRNA expression levels of Cyp7a1 and Cyp8b1 are 

known to be repressed in cholestasis (20,173) and were examined as controls. The 

results showed that EE2-induced cholestasis led to significant decreases in Cyp7a1 and 

Cyp8b1 expression as expected (Fig. 30A). EE2 also decreased mRNA level of CYP2D6 

by 2-fold (Fig. 30A). Results from S9 phenotyping (by using debrisoquine as a probe 

drug for CYP2D6) revealed a 3-fold decrease in CYP2D6 activity (Fig. 30B). The 

decreased CYP2D6 expression was accompanied by increased expression of SHP at 

mRNA and protein levels (Fig. 30C and 30D). EE2 did not alter mRNA expression levels 

of Hnf4α (Fig. 30A).  
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Figure 30. EE2-induced cholestasis represses CYP2D6 expression in Tg-CYP2D6 
mice.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). A and C, Hepatic CYP2D6, Cyp7a1, 
Cyp8b1, Hnf4α, and Shp mRNA expression was determined by qRT-PCR. B, S9 
fractions were prepared from the liver tissues of Tg-CYP2D6 mice treated with EE2 or 
vehicle, and CYP2D6 activity in S9 fractions was measured using debrisoquine (200 µM) 
as a probe drug. Data shown are metabolite production rates in pmol/min/mg protein. D, 
SHP protein expression level was determined by western blot. The image of western blot 
(right) is shown, and the band intensities (SHP/β-actin, left) were quantified after 
normalization by SHP expression in the vehicle-treated mice. Values are presented as 
mean ± S.D. ** p < 0.01, versus vehicle treatment. 
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To determine whether the altered SHP expression upon EE2 administration 

leads to changes in HNF4α transactivation of CYP2D6 promoter, ChIP assays were 

performed using mouse liver tissues. Livers from vehicle- or EE2-treated mice were 

collected and subjected to ChIP using antibodies against HNF4α, SHP, or RNA 

polymerase II (Pol II, a marker of transcription initiation). Based on previous reports that 

HNF4α binds to -53/-41 bp of CYP2D6 (63) and SHP suppresses HNF4α transactivation 

of CYP2D6 promoter (144), recruitment of the transcription factors to the proximal 

promoter region of CYP2D6 was examined. The results showed a significant increase in 

the recruitment of SHP to CYP2D6 promoter, accompanied by decreased recruitments 

of HNF4α and Pol II to CYP2D6 promoter (Fig. 31A). A similar pattern of changes in 

SHP, HNF4α, and Pol II recruitments was observed for Cyp7a1 and Cyp8b1, the known 

target genes of SHP (151) (Fig. 31B and Fig. 31C).  
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Figure 31. EE2-induced cholestasis represses HNF4α transactivation of CYP2D6 
promoter. 
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). Recruitment of HNF4α, SHP, and 
RNA polymerase II (Pol ll) onto (A) CYP2D6 promoter, (B) Cyp7a1 promoter, and (C) 
Cyp8b1 promoter were analyzed by ChIP assays using mouse liver tissues. Values are 
presented as mean ± S.D. * p < 0.05; ** p < 0.01, versus vehicle treatment. 
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Such changes in the transcriptional factor recruitment were absent when a PCR primer 

set detecting a downstream region (+3913/+4112 bp) of CYP2D6 gene was used as a 

negative control (Fig. 32).  

 

Figure 32. HNF4α, SHP and RNA polymerase II are not recruited to CYP2D6 
downstream region.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). Recruitment of HNF4α, SHP, and 
RNA polymerase II (Pol II) onto CYP2D6 distal downstream region was analyzed by 
ChIP assays using mouse liver tissues. Values are presented as mean ± S.D. 
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Also, the decrease in HNF4α recruitment to the promoter region was not 

observed for other target genes of HNF4α (i.e., ApoC2 and Hes6 (112,114)) (Fig. 33), 

suggesting that the repressive action of SHP on HNF4α transactivation may be target 

gene-specific. Together, these results suggest that EE2-induced cholestasis leads to 

decreased HNF4α transactivation of CYP2D6 promoter, potentially through enhanced 

SHP expression. 

 

Figure 33. Effects of EE2-induced cholestasis on HNF4α activity are target gene-
specific.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). HNF4α recruitment to the previously 
known HNF4α response elements in Apoc2 promoter (A) and Hes6 promoter (B) were 
analyzed by ChIP assays using mouse liver tissues. Values are presented as mean ± 
S.D. n.s.= not statistically significant. 
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4.3.2. ERα plays a predominant role in SHP upregulation in EE2-induced 

cholestasis 

FXR transactivates SHP promoter by binding to –294/–281 bp of SHP in humans 

(86). Interestingly, results from a previous study indicate that ERα also transactivates 

SHP promoter by binding to an overlapping promoter region (141). As the SHP promoter 

sequence is highly conserved between humans and mice (141), we examined the 

comparative roles of ERα and FXR in the regulation of SHP expression in mice with 

EE2-induced cholestasis. To this end, recruitments of ERα and FXR to Shp promoter 

were compared between the livers of EE2- vs. vehicle-treated mice by ChIP assays. 

Previously known target genes of ERα and FXR (signal transducer and activator of 

transcription 5a, Stat5a and organic solute transporter β, Ostβ, respectively (174,175)), 

were used as positive controls. The results showed that ERα recruitment to Shp 

promoter was increased significantly upon EE2 treatment (Fig. 34A). Such increase in 

ERα recruitment was not observed when a PCR primer set detecting a downstream 

region (+3968/+4158 bp) of Shp gene was used as a negative control (Fig. 35). EE2 

treatment also led to a significant increase in ERα recruitment to Stat5a promoter (Fig. 

34B) and increased mRNA expression of Stat5a (Fig. 34C). In contrast to the increased 

ERα recruitment to Shp promoter, the recruitment of FXR to the promoter region did not 

differ between the EE2-treated and the control groups (Fig. 34D). On the other hand, 

FXR recruitment to Ostβ promoter and mRNA expression of Ostβ was significantly 

increased (Fig. 34E and 34F), indicating a robust FXR activation by EE2-induced 

cholestasis. Together, these results suggest that when both ERα and FXR are activated 

in EE2-induced cholestasis, ERα may play a predominant role in the regulation of SHP 

expression.   
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Figure 34. ERα plays a major role in SHP up-regulation in EE2-induced 
cholestasis.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). Recruitment of ERα onto (A) Shp 
promoter and (B) Stat5a promoter; recruitment of FXR onto (D) Shp promoter and (E) 
Ostβ promoter were analyzed by ChIP assays using mouse liver tissues. C and F, 
Stat5a and Ostβ mRNA expression was determined by qRT-PCR. Values are presented 
as mean ± S.D. * p < 0.05; ** p < 0.01; n.s.=not statistically significant, versus vehicle 
treatment. 
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Figure 35.  ERα is not recruited to Shp distal downstream region.  
Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). Recruitment of ERα onto Shp distal 
downstream region was analyzed by using ChIP assays. Values are presented as mean 
± S.D. n.s.= not statistically significant. 
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To determine whether ERα activation alone (without accompanying cholestasis) 

can alter CYP2D6 expression via upregulating SHP, mice were administered with EE2 at 

a low dose (5 µg/kg) for 5 days, and CYP2D6 expression was examined. Plasma ALP 

levels were slightly higher in mice treated with low-dose EE2 (Fig. 36A) but within the 

normal range (i.e., 113 ± 49 U/L) for 8 week-old mice (172). ALT levels did not increase 

in EE2-treated mice (Fig. 36A). Also, the dramatic decreases in Cyp7a1 and Cyp8b1 

expression or increased Ostβ expression (i.e., hallmarks of cholestasis and FXR 
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Figure 36. Low dose EE2 dose not induce cholestasis in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were injected intraperitoneally with EE2 (5 µg/kg) or vehicle control 
(olive oil) daily for 5 days (n=4). A, Measurement of plasma ALP and ALT levels. B, 
Hepatic Cyp7a1, Cyp8b1, and Ostβ mRNA expression were determined by qRT-PCR. 
Values are presented as mean ± S.D. ** p < 0.01; n.s.=not statistically significant, versus 
vehicle treatment. 
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The treatment with EE2 at the low dose led to increased Shp and decreased 

CYP2D6 mRNA levels (Fig. 37A). The mRNA expression of Stat5a (an ERα target gene) 

was also increased in EE2-treated mice as expected (Fig. 37A). In accordance with 

increased Shp mRNA levels, SHP protein level was increased upon EE2 treatment, but 

to an extent smaller than that by EE2 at the high dose (1.5-fold vs. 2.5-fold for low- and 

high-dose EE2-treated groups, respectively) (Fig. 30D and 37B). CYP2D6 activity was 

decreased in the EE2-treated group only by ~20% as compared to the vehicle control 

group (Fig. 37C).  
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Figure 37. Low dose EE2 represses CYP2D6 expression in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were injected intraperitoneally with EE2 (5 µg/kg) or vehicle control 
(olive oil) daily for 5 days (n=4). A, Hepatic mRNA expression levels of CYP2D6, Shp, 
and Stat5a were measured by qRT-PCR. B, SHP protein expression level was 
determined by western blot. The image of western blot (right) is shown, and the band 
intensities (SHP/β-actin, left) were quantified after normalized by SHP expression in 
vehicle-treat mice. C, CYP2D6 activity in hepatic S9 fractions was measured using 
debrisoquine (200 µM) as a probe drug. Data shown are metabolite production rates (in 
pmol/min/mg protein). Values are presented as mean ± S.D. * p < 0.05, versus vehicle 
treatment. 
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Consistent with the changes in SHP and CYP2D6 expression, ChIP results showed 

increased recruitment of SHP to CYP2D6 promoter, and decreased recruitments of 

HNF4α and Pol II to CYP2D6 promoter (Fig. 38A). Such changes in transcription factor 

recruitment were not observed for Cyp8b1 (Fig. 38B).   

 

 

Figure 38. Low dose EE2 represses HNF4α transactivation of CYP2D6 promoter.  
Tg-CYP2D6 mice were injected intraperitoneally with EE2 (5 µg/kg) or vehicle control 
(olive oil) daily for 5 days (n=4). Recruitment of HNF4α, SHP, and RNA polymerase II 
(Pol II) onto CYP2D6 promoter and Cyp8b1 promoter were analyzed by ChIP assays 
using mouse liver tissues. Values are presented as mean ± S.D. * p < 0.05, n.s.= not 
statistically significant. 
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ERα recruitment to Shp promoter was increased upon low dose EE2 treatment, 

indicating enhanced ERα transactivation of Shp promoter (Fig. 39). A similar pattern was 

observed for ERα recruitment to the promoter of Stat5a (Fig. 39). Together, these results 

suggest that ERα activation leads to CYP2D6 repression through enhanced SHP 

expression although the magnitude of CYP2D6 repression was smaller than that in EE2-

induced cholestasis. 

 

 

 

Figure 39. Low dose EE2 induces ERα transactivation of its target gene 
promoters.  
Tg-CYP2D6 mice were injected intraperitoneally with EE2 (5 µg/kg) or vehicle control 
(olive oil) daily for 5 days (n=4). Recruitment of ERα to Shp promoter and Stat5a 
promoter were analyzed by ChIP assays using mouse liver tissues. Values are 
presented as mean ± S.D. * p < 0.05, versus vehicle treatment. 
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4.4. Discussion 

Previously, we have shown that SHP is a transcriptional repressor of CYP2D6 

expression (144) and that FXR activation (by using a FXR agonist GW4064) leads to 

decreased CYP2D6 expression via enhancing SHP expression (176). In this study, we 

examined whether cholestasis (a condition known to enhance FXR activity) also alters 

CYP2D6 expression by up-regulating SHP expression. To this end, we employed the 

estrogen-induced cholestasis model that is widely used to examine the mechanisms 

involved in intrahepatic cholestasis (20-23). 

 

In Tg-CYP2D6 mice, EE2 at a dose of 10 mg/kg/day led to increased plasma 

concentrations of liver enzymes and decreased expression of Cyp7a1 and Cyp8b1, a 

hallmark of cholestasis. In the EE2-treated mice, CYP2D6 expression and activity were 

significantly repressed, suggesting that CYP2D6-mediated drug metabolism may be 

decreased in cholestasis. Cholestasis is caused by factors that impair bile formation or 

bile flow. For example, in 0.4-1% of pregnant women in North American and up to 15-

20% of pregnant women in some areas of Europe, intrahepatic cholestasis occurs likely 

due to high plasma concentrations of estrogen during pregnancy (169,170,177,178). 

Based on our results, it appears possible that CYP2D6-mediated drug metabolism is 

lower in pregnant women with increased hepatic bile acid levels (than in pregnant 

women whose bile acid levels are within the normal range), and this may lead to greater 

inter-individual variability in CYP2D6 activity in pregnant women as compared to the 

nonpregnant subjects. Indeed, it was previously shown that CYP2D6 activity (i.e., 

clearance of metoprolol) exhibited greater variability during pregnancy than after delivery 

(4). Whether altered hepatic bile acid levels are indeed responsible for the increased 

inter-individual variability in CYP2D6 activity during pregnancy by controlling hepatic 

CYP2D6 expression remains to be determined. 
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CYP2D6 repression in EE2-induced cholestasis was accompanied by increased 

SHP expression and subsequent changes in transcription factor recruitment to CYP2D6 

promoter, i.e., increased SHP and decreased HNF4α recruitment to the promoter. These 

results suggest increased SHP expression may be responsible for CYP2D6 repression 

in cholestasis. SHP promoter is transactivated by FXR and ERα (86,141), both of which 

are likely activated in EE2-induced cholestasis. Of note, FXR and ERα bind to 

overlapping promoter regions (141), suggesting that the roles of ERα and FXR in SHP 

up-regulation could be mutually exclusive in EE2-induced cholestasis. To determine 

which one of two transcription factors (ERα or FXR) plays a major role in SHP induction 

in EE2-induced cholestasis, the extent of ERα and FXR recruitment to Shp promoter 

was examined. Our results showed that ERα recruitment (but not that of FXR) to Shp 

promoter was increased in mice administered with EE2 at a high dose. The results 

suggest that ERα transactivation of Shp promoter is potentially responsible for CYP2D6 

repression in EE2-induced cholestasis.  

 

Based on the results indicating an important role of ERα in the regulation of SHP 

expression, we further examined the effects of ERα activation alone (without cholestasis 

and subsequent FXR activation) on CYP2D6 expression. To this end, Tg-CYP2D6 mice 

were administered with EE2 at a low dose that does not cause cholestasis or liver 

damage. At the low dose, EE2 increased SHP and decreased CYP2D6 expression; 

however, the extent of CYP2D6 repression in these mice was much smaller than that in 

mice with EE2-induced cholestasis (2.6 vs. 1.2-fold decrease in CYP2D6 activity for 

high- and low-dose EE2 groups, respectively). The greater magnitude of CYP2D6 

repression in cholestatic mice could be in part due to bile acid-induced stabilization of 

SHP protein; bile acids increases stability of hepatic SHP protein by inhibiting its 

proteasomal degradation in an extracellular signal-regulated kinase (ERK)-dependent 
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manner (179). Indeed, the extent of increases in SHP protein level was greater in mice 

administered with high-dose EE2 than in those with low-dose EE2 (Fig. 40).  

 

 
 
 
 

Figure 40. Working model for CYP2D6 regulation in EE2-induced cholestasis.  
The working model illustrates the overlapping estrogen response element (ERE) and 
FXR response element (FXRE) in SHP promoter. In EE2-induced cholestasis, ERα 
recruitment to SHP promoter increases, leading to higher SHP expression. Also, 
cholestasis stabilizes SHP protein, further enhancing SHP expression. SHP in turn 
suppresses HNF4α transactivation of CYP2D6 promoter, leading to CYP2D6 repression 
in EE2-induced cholestasis. 
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Cholestasis triggers hepatic inflammation that is known to down-regulate CYP2D6 

expression (180), and this may have also contributed to CYP2D6 repression in EE2-

induced cholestasis. Our qRT-PCR results showed that expression levels of 

inflammatory cytokines (i.e., TNFα, IL-1β, and IL-6) were significantly higher in the livers 

of mice treated with high-dose EE2 as compared to the vehicle-treated mice, and such 

increase was not observed in mice treated with low-dose EE2 (Fig. 41A and 41B).  

 

Figure 41. TNFα, IL-1β, and IL-6 mRNA expression is increased in mice treated 
with high-dose EE2. 
A, Tg-CYP2D6 mice were injected subcutaneously with 17α-ethinylestradiol (EE2, 10 
mg/kg) or vehicle (olive oil) daily for 5 days (n=5). B, Tg-CYP2D6 mice were injected 
intraperitoneally with EE2 (5 µg/kg) or vehicle control (olive oil) daily for 5 days (n=4). 
The mRNA expression of TNFα, IL-1β, and IL-6 was measured by qRT-PCR. Values are 
presented as mean ± S.D. ** p < 0.01; * p < 0.05, versus vehicle treatment. 
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Consistent with the relatively small changes in CYP2D6 activity upon administration of 

EE2 at the low dose, clinical data suggest minor roles of estrogen (if any) in the 

regulation of CYP2D6 expression/activity in humans. For example, the use of oral 

contraceptive steroids had no influence on the urinary metabolic ratios of CYP2D6 

substrates (sparteine or dextromethorphan) (181,182). Also, sex did not affect the extent 

of CYP2D6-mediated sparteine oxidation in 194 subjects (181) or the CYP2D6 

expression levels in 300 human liver tissues (183). Overall, these results suggest that 

CYP2D6 repression in estrogen-induced cholestasis is triggered in part by a combination 

of (1) ERα activation and (2) biological changes accompanying cholestasis (e.g., SHP 

protein stabilization and inflammation). 

 

We showed that EE2-induced cholestasis increases SHP and represses 

CYP2D6 expression in Tg-CYP2D6 mice. Importantly, this study presents estrogen and 

bile acids as potential contributors to the differential regulation of CYP2D6 expression. 

This potentially provides a mechanistic basis to identify the sources of interindividual 

variability in CYP2D6-mediated drug metabolism. 
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5. CHOLIC ACID FEEDING LEADS TO INCREASED CYP2D6 EXPRESSION IN 

CYP2D6-HUMANIZED MICE  

5.1. Introduction 

Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme, 

responsible for eliminating ~20% of marketed drugs (Table II). Despite its importance as 

a drug-metabolizing enzyme, regulation of CYP2D6 expression remains poorly 

understood as compared to other drug-metabolizing enzymes such as CYP3A4. 

Recently, we have identified a transcriptional repressor small heterodimer partner (SHP) 

as a novel regulator of CYP2D6 expression using CYP2D6-humanized transgenic (Tg-

CYP2D6) mice; SHP represses hepatocyte nuclear factor (HNF) 4α transactivation of 

CYP2D6 promoter (144).  

 

SHP is a representative target gene of bile acid sensor farnesoid X receptor 

(FXR) (17). Bile acids are endogenous ligands of FXR (19). Upon bile acid binding, 

activated FXR transactivates SHP promoter via a FXR response element in the promoter 

(85). Upregulated SHP in turn represses transcription of genes involved in bile acid 

synthesis (e.g., CYP7A1 and CYP8B1) (86). Cholestasis is a condition that interrupts 

bile flow, accompanied by increased hepatic bile acid. The increased hepatic bile acid 

levels lead to FXR activation and subsequently enhanced SHP expression. In mice, Shp 

mRNA level was increased by ~2-fold within 3-24 hours feeding of cholic acid (CA) 

(95,148). However, the effects of cholestasis for longer duration of time (e.g., days or 

weeks) on SHP expression remain unknown. Also unknown is whether and how 

cholestasis alters CYP2D6 expression.  
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Cholestasis is accompanied by enlarged bile acid pool size and also a 

remarkable change in bile acid composition. In cholestasis, the composition of CA can 

increase from 40% (184) to ~80% in humans (24). Accordingly, CA feeding is commonly 

used to mimic cholestatic conditions, especially the altered bile acid pool size and 

composition, in animal models (25-28); in mice, feeding of 1% CA-supplemented diet 

generates cholestatic liver conditions and a 2-fold increase in the size of bile acid pool, 

composed predominantly of CA (25).  

 

In this study, we examined how cholestasis alters SHP and CYP2D6 expression 

in Tg-CYP2D6 mice by feeding the mice with CA for 2 weeks. Our results revealed 

unexpected directional changes in SHP protein levels, accompanied by increased and 

CYP2D6 activity in these mice.   

 

5.2. Materials and methods 

5.2.1.Animals 

Tg-CYP2D6 mice were previously described (9).  Adult male mice (8 weeks of 

age and weighing 20-25 g) were used for the experiments. Mice were fed with normal 

chow (TD.00588, Teklad Diets, Harlan Laboratories, Indianapolis, IN) or 1% (w/w) cholic 

acid-supplemented diet (TD.10056) for 14 days to mimic cholestasis conditions. Mice 

were sacrificed on the 15th day; blood and liver tissues were collected. All procedures 

were carried out in accordance with the Guide for the Care and Use of Laboratory 

Animals as adopted and promulgated by the U.S. National Institutes of Health, and were 

approved by the Institution’s Animal Care and use Committee in the University of Illinois 

at Chicago. 
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5.2.2. Chemicals and reagents 

Debrisoquine, (±)-4-hydroxydebrisoquin, and paraxanthine were purchased from 

Biomol (Plymouth Meeting, PA).  

 

5.2.3 Western blot  

Western blot was performed as described previously in Chapter 2-4.  

 

5.2.4. Determination of CYP2D6 activity  

Liver S9 fractions were prepared as described previously (144). CYP2D6 activity 

was determined by incubating S9 fractions with debrisoquine as described previously in 

Chapter 3. 

 

5.2.5. RNA isolation and qRT-PCR 

Total RNA isolation and qRT-PCR were described previously in Chapter 2-4. For 

analysis of miR-142-3p, total RNA was isolated and converted to cDNA using TaqMan® 

MicroRNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA). Specific primers 

and probes were used for miR-142-3p (Catalog#000464, Life Technologies) and 

snoRNA202 (Catalog#001232, Life Technologies). The results were expressed as fold 

changes under treatment using the gene expression levels normalized to those of 

snoRNA202 (2-ΔΔCt method).  

 

5.2.6. ChIP assays 

ChIP assays were performed as described previously in Chapter 2 using 

antibodies from Santa Cruz or EMD Millipore (C/EBPα, sc-61x; HNF4α, sc-6556x; FXR, 
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sc-13063x; RNA polymerase II, sc-899x; SHP, sc-30169; HDAC, sc-7872, Santa Cruz; 

dimethyl-H3K9, Catalog#07-521, EMD Millipore, Billerica, MA). 

 

5.2.7. Alkaline phosphatase and alanine aminotransferase measurement 

Plasma alkaline phosphatase (ALP) and alanine aminotransferase (ALT) levels 

were measured by chemistry analyzer (Olympus AU 680, Center Valley, PA) following 

the manufacturer’s protocol. 

 

5.2.8. Cytochrome P450 reductase activity  

Cytochrome P450 reductase (CPR) activity in the mouse livers was measured by 

using Cytochrome c Reductase (NADPH) Assay Kit following manufacture’s protocol 

(Catalog#CY0100, Sigma-Aldrich). 

 

5.2.9. Cytochrome b5 concentration  

The differential absorbance between β-NADH-reduced and –oxidized 

Cytochrome b5 (Cyb5) in liver S9 factions were measured using spectrometry. The 

concentration of Cyb5 was calculated using Beer-Lambert law (185,186). β-NADH was 

purchased from Sigma-Aldrich (Catalog#N4505). 

 

5.2.10. Statistical analysis 

Values were reported as mean ± standard deviation (S.D.). Statistical differences 

were determined by using Student’s t-test. 
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5.3. Results 

5.3.1. Cholic acid feeding leads to decreased SHP expression in mice 

To determine the effects of long-term cholestasis on SHP expression, Tg-

CYP2D6 mice were fed on CA-diet (or normal chow) for 2 weeks and hepatic SHP 

expression was examined. Serum ALP (a marker for cholestasis (172)) and ALT (a 

marker for liver injury) levels were significantly increased in CA-fed mice (Fig. 42), 

consistent with previous findings (25-28). 

 

 

Figure 42. Cholic acid feeding increases plasma ALP and ALT levels.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). ALP level and ALT level were measured in 
mice plasma. * p < 0.05. 
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In CA-fed mice, hepatic mRNA levels of Shp did not increase (Fig. 43A), contrary to the 

previous finding that Shp mRNA level was increased by 2-fold at 3~24 hours post-CA 

feeding (148). While FXR transactivates SHP promoter (86), CCAAT-enhancer-binding 

protein (C/EBP) α has been recently shown to transrepress SHP promoter via binding to 

C/EBPα response element (GTTAGGCAAA) of SHP promoter (-476/-466 bp) (187). In 

silico anaylsis of mouse Shp promoter revealed an identical C/EBPα putative binding site 

located at -503/-493 bp region of Shp promoter. To examine the role of FXR and 

C/EBPα in the transcriptional regulation of Shp upon CA feeding, their recruitments to 

Shp promoter was examined by using ChIP assays using liver tissues from CA-fed (or 

control diet-fed) mice. The results showed that recruitments of both FXR and C/EBPα to 

Shp promoter were increased in CA-fed mice as compared to the control mice (Fig. 

43B), suggesting that transrepression of Shp promoter by C/EBPα may offset the 

transactivation of the promoter by FXR upon long-duration CA feeding. 



 115 

 

Figure 43. CA feeding does not alter hepatic mRNA expression level of SHP in Tg-
CYP2D6 mice.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). A, Hepatic Shp mRNA expression was 
determined by qRT-PCR. B, Recruitments of FXR and C/EBPα onto Shp promoter were 
analyzed by ChIP assays using mouse liver tissues, respectively. Values are presented 
as mean ± S.D. *p < 0.05; ** p < 0.01, versus control group. 
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 To verify the lack of effects of CA feeding on Shp mRNA expression, SHP protein 

levels in CA-fed (or control diet-fed) mice were examined by western blot. Interestingly, 

the results showed that SHP protein was markedly decreased in CA-fed mice as 

compared to the control mice (Fig. 44A). Numerous studies have shown that microRNAs 

(miRNAs) influence mRNA stability and/or translation, creating a disconnect between 

mRNA and protein levels (188). To determine potential involvement of miRNA(s) in the 

regulation of SHP expression in CA-fed mice, in silico analysis was performed for 3ʹ′-

untranslated region (3’-UTR) of Shp in search for putative miRNA binding sites. This 

revealed a putative binding site for one of the miRNAs previously known to be 

upregualted in cholestatic human liver tissues, i.e., miR-142-3p (189) (Fig. 44B). To 

determine whether miR-142-3p indeed shows increased expression in cholestatic mouse 

liver, its expression levels in CA-fed (or control diet-fed) mice were examined by qRT-

PCR. The results showed that miR-142-3p expression was increased ~5-fold in the livers 

of CA-fed mice as compared to the control mice (Fig. 44C). Together these results 

suggest potential roles of miR-142-3p in regulating Shp expression in CA-fed mice.  
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Figure 44. CA feeding leads to decreased SHP protein level in Tg-CYP2D6 mice.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). A, SHP protein expression level was 
determined by western blot. B, Schematic representation of miR-142-3p putative binding 
sites in Shp 3’-UTR. C, Hepatic miR-142-3p expression was determined by qRT-PCR. 
Values are presented as mean ± S.D. ** p < 0.01, versus control group.   
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5.3.2. Cholic acid feeding leads to increased CYP2D6-mediated drug metabolism 

in mice. 

 To determine how CA feeding alters CYP2D6 expression (potentially through 

modulating SHP expression), the expression levels of CYP2D6 were examined in CA-

fed (or control diet-fed) mice by qRT-PCR and western blot. CYP2D6 mRNA and protein 

expression levels were significantly higher in CA-fed mice as compared to the control 

mice (Fig. 45A and 45B). 

 

Figure 45. CA feeding increases CYP2D6 expression.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4).  A, Hepatic CYP2D6 mRNA expression was 
determined by qRT-PCR. B, Protein level of CYP2D6 in whole liver extract was 
determined by western blot. The image of western blot (right) is shown, and the band 
intensities (CYP2D6/β-actin, left) were quantified after normalized by CYP2D6 
expression in control group. Values are presented as mean ± S.D. *p < 0.05, versus 
control group. 
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To determine whether increased CYP2D6 expression leads to the change of 

CYP2D6 activity, S9 fractions were isolated from the livers of CA-fed mice and control 

mice. CYP2D6 activity in liver S9 fractions was measured using a CYP2D6 probe drug 

debrisoquine. The concentrations of 4-hydroxylated debrisoquine (a metabolite produced 

by CYP2D6) were measured by using LC-MS/MS. Interestingly, the data showed that 

CYP2D6 activity was increased in CA-fed mice by 4-fold (Fig. 46A), which is to a greater 

extent as compared to the increase in CYP2D6 expression levels (i.e., ~1.5-fold). Of 

note, CYP2C6 activity in CA-fed mice exhibited larger variability than in control mice 

(Fig. 46A). The large extent of increase in CYP2D6 activity was also reflected in 

CYP2D6 protein levels in hepatic S9 fractions (Fig. 46B). 

 

To test the possibility that catalytic activity of CYP2D6 is potentiated by increased 

electron transferring in the reaction (190), the activity of cytochrome P450 reductase 

(CPR) and the concentration of cytochrome b5 (Cyb5) were examined. CPR activity was 

determined by measuring CPR-mediated reduction of cytochrome c by β-NADPH, while 

Cyb5 content was determined by measuring β-NAPDH-oxidized and -reduced Cyb5. The 

results showed that CPR or Cyb5 levels did not differ between the CA-fed vs. control 

diet-fed mice (Fig. 46C and 46D). Of note, CPR activity in CA-fed mice was found more 

variable (than in control mice), suggesting that CPR may be responsible for the large 

variability in CYP2D6 activity in hepatic S9 fractions from CA-fed mice.  
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Figure 46. CYP2D6-mediated drug metabolism is induced in CA-fed Tg-CYP2D6 
mice.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). A, S9 fractions were prepared from the liver 
tissues, and CYP2D6 activity in S9 fractions was measured using debrisoquine (200 µM) 
as a probe drug. Data shown are metabolite production rates in pmol/min/mg protein. B, 
Protein level of CYP2D6 in hepatic S9 fractions was determined by western blot. The 
image of western blot (bottom) is shown, and the band intensities (CYP2D6/β-actin, top) 
were quantified after normalized by CYP2D6 expression in control group. C, Cytochrome 
P450 reductase activity was performed in hepatic S9 fractions. Data shown are 
cytochrome c production rate in nmol/min/mg protein. D, Cytochrome b5 levels were 
measured in hepatic S9 fractions. Values are presented as mean ± S.D. *p < 0.05; ** p < 
0.01.  

Control CA
0

50

100

150

200
H

yd
ro

xy
de

br
is

oq
ui

ne
 p

ro
du

ct
io

n 
ra

te
*

Control CA
0

1

2

3

4

5

R
el

at
iv

e 
ex

pr
es

si
on **

CYP2D6 protein 
(liver S9 fractions)

Control CA

CYP2D6
β-actin

Control CA
0

10

20

30

C
yt

oc
hr

om
e 

P4
50

 
re

du
ct

as
e 

ac
tiv

ity
 n.s.

A B

C D

Control CA
0.0

0.1

0.2

0.3

0.4

0.5

C
yt

oc
hr

om
e 

b 5
 

co
nt

en
t (

nm
ol

/m
g)

n.s.



 121 

5.3.3. Cholic acid differentially regulates CYP2D6 and Cyp7a1 (or Cyp8b1) 

promoter  

To determine whether decreased SHP protein levels upon CA feeding leads to 

altered HNF4α transactivation of CYP2D6 promoter, ChIP assays were performed using 

livers collected from CA-fed (or control diet-fed) mice. At the end, the recruitment of 

HNF4α, SHP, and RNA polymerase II (Pol II, a marker of transcription initiation) to 

CYP2D6 promoter was examined. As a control, the recruitment of the transcription 

factors on the promoters of representative SHP target genes, Cyp7a1 and Cyp8b1 

(86,151), was also examined. The results showed that CA feeding increased the 

recruitments of HNF4α and Pol II to CYP2D6 promoter (Fig. 47), consistent with the 

increased expression levels of CYP2D6 mRNA (Fig. 45A). On the other hand, the 

recruitment of SHP onto CYP2D6 promoter was decreased in CA-fed diet although it did 

not reach a statistical significance.  

 

 
 
Figure 47. HNF4α transactivation of CYP2D6 promoter is increased in CA-induced 
cholestasis.  
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). Recruitment of SHP, HNF4α, and RNA 
polymerase II (Pol II) on to CYP2D6 promoter was analyzed by ChIP assay using mouse 
liver tissues. Values are presented as mean ± S.D. *p < 0.05; ** p < 0.01, n.s.= not 
statistically significant. 
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Interestingly, the recruitment of SHP, HNF4α, and Pol II to Cyp7a1 and Cyp8b1 

promoter exhibited the opposite patterns as compared to those for CYP2D6 promoter; 

CA feeding led to increased SHP and decreased HNF4α and Pol II recruitment to 

Cyp7a1 and Cyp8b1 promoters (Fig. 48A and 48C). This was accompanied with 

significant decreases in hepatic mRNA levels of Cyp7a1 and Cyp8b1 in CA-fed mice 

(Fig. 48B and 48D), suggesting that despite overall decreases in SHP expression upon 

CA feeding, SHP action (e.g., its recruitment to target gene promoter) to Cyp7a1 and 

Cyp8b1 persists to repress the transcription of Cyp7a1 and Cyp8b1.  
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Figure 48. CA feeding down-regulates Cyp7a1 and Cyp8b1 expression likely by suppressing promoter activity. 
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-supplemented diet (CA) for 14 days (n=4). A and C, 
Recruitment of SHP, HNF4α, and RNA polymerase II (Pol II) on to (A) Cyp7a1 promoter and (C) Cyp8b1 promoter were analyzed by 
ChIP assays using mouse liver tissues. B and D, Cyp7a1 and Cyp8b1 mRNA expression levels were measured by qRT-PCR. Values 
are presented as mean ± S.D. *p < 0.05; ** p < 0.01. 
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Previous studies have demonstrated that bile acid induces the recruitment of 

histone deacetylase (HDAC) and histone methyltransferase G9a that methylates lysine 9 

of histone 3 (H3K9), leading to “closed” chromatin and Cyp7a1 silencing (95,191). To 

explore potential mechanisms underlying differential regulation of CYP2D6 and 

Cyp7a1/Cyp8b1, chromatin modification was examined for these genes. The 

recruitments of HDAC and dimethylated H3K9 (diMet-H3K9) to the promoters of 

CYP2D6, Cyp7a1, and Cyp8b1 were measured by ChIP assays using liver tissues from 

CA-fed mice and control mice. The results showed that the recruitments of HDAC and 

diMet-H3K9 to Cyp7a1 promoter and Cyp8b1 promoter were increased in CA-fed mice 

(Fig. 49A and 49B), indicating the presence of closed chromatin structure at 

Cyp7a1/Cyp8b1 promoter region. On the other hand, the recruitment of HDAC to 

CYP2D6 promoter was decreased upon CA feeding (Fig. 49C). These results indicate 

that differential chromatin modification is associated with dissimilar regulation of 

CYP2D6 and Cyp7a1/Cyp8b1 expression upon CA-feeding.   
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Figure 49. CA-induced cholestasis causes differential chromatin modification of 
CYP2D6 and Cyp7a1/Cyp8b1. 
Tg-CYP2D6 mice were fed with normal chow (Control) or 1% (w/w) cholic acid-
supplemented diet (CA) for 14 days (n=4). Recruitments of HDAC and dimethylated 
H3K9 (diMet-H3K9) on to (A) Cyp7a1 promoter, (B) Cyp8b1 promoter, and (C) CYP2D6 
promoter were analyzed by ChIP assays using mouse liver tissues. Values are 
presented as mean ± S.D. *p < 0.05, n.s.= not statistically significant. 
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5.4. Discussion  

We have previously shown that SHP is a transcriptional repressor of CYP2D6 

expression (144). Also, the activation of FXR (by using a synthetic agonist) and 

subsequently increased SHP led to decreased CYP2D6 expression and activity (176). 

Here we examined whether increased levels of endogenous FXR ligands (i.e., bile acids) 

in cholestasis alter CYP2D6 expression in mice. Considering that cholestasis typically 

lasts days to weeks in clinical setting, a feeding period of 2 weeks was employed. The 

important finding of this study is that CA feeding-induced cholestasis increased CYP2D6 

expression and activity, accompanied by decreased SHP protein levels.  

 

SHP is a representative target gene of FXR; SHP expression is minimal in Fxr-

null mice (17), and Shp mRNA level was induced 2-fold within 3~24 hours of CA feeding 

(95,148). Unexpectedly, in this study, SHP mRNA levels were not increased in CA-fed 

mice. Different time points of sample collection after CA feeding may explain the 

discrepancy. Shp is an early response gene whose mRNA expression peaks within 2 

hours upon promoter transactivation and then normalizes to the basal levels in 24 hours 

in mouse liver (141). In most previous studies, liver tissues were collected within hours 

after feeding of CA (95,148) when SHP induction by FXR activation is likely maximal. In 

contrast, the 2-week time point used in this study may allow time for normalizing SHP 

expression to basal level, as in a previous study where 12-week CA feeding had no 

effects on mRNA levels of Shp (192). While molecular mechanisms underlying this 

process remain to be elucidated, transcriptional repressor of SHP may play a role. 

Recent studies have revealed C/EBPα as a transcriptional repressor of SHP; 

phosphorylation of C/EBPα by phosphatidylinositol 3 kinase (PI3K) represses human 

SHP gene via directly binding to C/EBPα response element located at -476/-466 bp of 

SHP (187). Our in silico analysis showed this putative C/EBPα binding site is conserved 
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in mouse SHP promoter (-503/-493 bp). Our results showed that CA feeding increases 

C/EBPα recruitment to Shp promoter, in addition to the FXR recruitment to Shp promoter 

(likely through increased bile acid levels). Potentially, activated PI3K pathway triggered 

by CA feeding (193-195) enhances C/EBPα action on Shp promoter, and this offsets 

FXR transactivation of Shp promoter.  

 

While mRNA levels of SHP did not differ between the CA-fed vs control diet-fed 

mice, protein levels of SHP were significantly decreased upon CA feeding. This 

suggests that post-transcriptional regulation may play a role in the gene regulation, 

which is often mediated by miRNAs. miR-142-3p was previously shown to exhibit 

increased expression in cholestatic human liver tissues (189). In this study, we also 

showed that hepatic expression of miR-142-3p is increased in CA-fed mice, and in silico 

analysis of 3’-UTR region of Shp revealed the presence its putative binding site. These 

findings strongly suggest that miR-142-3p is possibly involved in the regulation of SHP 

expression in CA-fed mice. Studies to determine whether miR-142-3p indeed regulates 

SHP expression by using transient transfection and luciferase reporter assays are 

currently ongoing. 

 

CA feeding led to significant increases in CYP2D6 expression at mRNA and 

protein levels, consistent with the notion that SHP is a negative regulator of CYP2D6 

expression (144) and decreased SHP protein levels in CA-fed mice. Interestingly, the 

extent of changes in CYP2D6 activity in S9 fraction of CA-fed mice was much greater 

than that in CYP2D6 expression. Our results indicate that this is likely due to a greater 

extent of increases in CYP2D6 protein levels in S9 fraction by CA feeding as compared 

to those in whole liver lysate. Changes in targeting of CYP2D6 protein to endoplasmic 

reticulum upon CA feeding may explain the findings. Recent studies have shown that in 
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addition to endoplasmic reticulum, CYP2D6 also localizes to mitochondria (196). Of 

note, S9 is composed of cytosol and endoplasmic reticulum but not mitochondria. 

Studies have shown that low protein kinase A (PKA) conditions facilitate CYP2D6 

translocation on endoplasmic reticulum membrane, while CYP2D6 is guided to 

mitochondria in high PKA conditions (196-198). PKA activity is known to be highly 

dependent on cellular levels of cAMP whose synthesis can be repressed in cholestasis 

in hamsters (199). Whether CA feeding indeed represses cAMP, deactivates PKA, and 

facilitates CYP2D6 targeting to endoplasmic reticulum need to be further studied.  

 

Results from this study demonstrate a disconnect between SHP protein levels 

and SHP activity as a transcriptional repressor, in a gene-specific manner. Despite the 

decreased SHP protein levels in CA-fed mice, SHP recruitment to the promoter regions 

of Cyp7a1 and Cyp8b1 was found increased but not for CYP2D6 promoter. 

Corresponding changes in SHP-induced chromatin modifications that lead to the 

“closed” chromatin structure (i.e., HDAC and dimethylation of H3K9) were found for 

Cyp7a1 and Cyp8b1, but not or CYP2D6. These results suggest that altering SHP 

expression alone is not sufficiently for Cyp7a1 and Cyp8b1 repression in cholestasis and 

that additional factors may be involved in Cyp7a1 and Cyp8b1 repression in cholestasis. 

Indeed, bile acid-induced repression of Cyp7a1 and Cyp8b1 expression was maintained 

in Shp-null mice (149). Subsequent studies demonstrated that SHP-independent 

mechanisms including cytokine signaling pathway (173,200) and intestinal-liver signaling 

pathway FGF15/19-FGFR4 (201-203) play critical roles in bile acid repression of Cyp7a1 

and Cyp8b1. Whether the activation of cytokine signaling or intestinal FGF15/19 

pathways is responsible for the chromatin modifications of Cyp7a1 and Cyp8b1 gene 

regulatory regions in CA-fed mice remains to be determined. 
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Previously, we demonstrated that CYP2D6 expression were repressed 

(accompanied by increased SHP expression) in estrogen-induced intrahepatic 

cholestasis (204). However, in present studies using CA-fed mice to mimic cholestatic 

conditions, we observed enhanced CYP2D6 expression and repressed SHP expression. 

The opposite impacts on CYP2D6 expression may be associated with differential gut 

environment between EE2-induced cholestasis and CA feeding induced cholestasis in 

mice. Bile (mainly bile acids) is secreted from gallbladder to the gut, and maintains the 

proper bacterial growth in intestine (205,206). Of note, EE2-induced cholestasis 

remarkably blocked bile secretion, and subsequently led to intestinal bacteria overgrowth 

(20), while CA feeding abolished intestinal bacterial overgrowth in cholestatic rodents by 

induced secretion of bile (25,207-209). Studies have shown abnormally intestinal 

bacterial growth influences signaling pathways in the liver. For example, AMP-activated 

protein kinase (AMPK) signaling pathway was activated in the livers of germ-free mice 

(210). Activation of AMPK signaling pathway repressed SHP expression through FXR in 

vitro and in vivo (211). Whether (and how) gut environment contributes to SHP/CYP2D6 

regulation needs to be investigated. 

 

In conclusion, we showed that CA-feeding increases CYP2D6 expression and 

activity in Tg-CYP2D6 mice potentially through decreased SHP protein expression. 

While the detailed molecular mechanisms underlying the phenomenon remain to be 

elucidated, potential involvement of miRNA and C/EBPα has been postulated (Fig. 50). 

Studies are currently ongoing to define the role of miR-142-3p in post-transcriptional 

regulation of SHP in CA-fed mice.  
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Figure 50. Working model for CYP2D6 regulation in CA feeding-induced 
cholestasis.  
The working model illustrates the opposite actions of C/EBPα and FXR on Shp 
promoter. In CA feeding, C/EBPα and FXR recruitments to Shp promoter are increased, 
leading to offsetting Shp mRNA expression to basal level. Induced level of miRNA-142-
3p in the liver may be responsible for decreased protein level of SHP. Decreased SHP 
level in turn de-represses HNF4α transactivation of CYP2D6 promoter, leading to 
CYP2D6 induction. 
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6. CONLUSION AND FUTURE DIRECTIONS  

 The large interinidividual variability in CYP2D6 activity is a major obstacle in 

achieving optimal drug therapy for CYP2D6 substrate drugs. Improved prediction of 

CYP2D6 activity through better understanding of factors determining CYP2D6 

expression should enable personalized medicine for CYP2D6 substrate drugs. We have 

identified a novel transcriptional regulator of CYP2D6, namely SHP. We have further 

shown that inducers of SHP expression (atRA, GW4064, and estrogen-induced 

cholestasis) lead to decreases in CYP2D6 expression and activity (Fig. 51). These 

results suggest different levels of SHP modulators may contribute to large interindividual 

variability in CYP2D6 activity.  

 

Figure 51. Potential novel factors involved in transcriptional regulation of CYP2D6.  
This illustrates that the inducers of SHP expression (all-trans retinoic acid, FXR agonist 
GW4064, and estrogen-induced cholestasis) decrease CYP2D6 expression through 
repressing HNF4α transactivation of CYP2D6 promoter. 
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 Our future study will focus on determining the portion of CYP2D6 variability in 

humans that can be explained by altered levels of SHP expression/activity. Specifically, 

we will measure levels of atRA and bile acids in a large number of healthy human liver 

tissues, and examine their relative contribution to CYP2D6 variability in the tissues.  In 

addition, considering that many genetic variants of SHP are associated with altered 

expression and functional changes of SHP (212-216), we will examine whether and how 

SHP genetic polymorphisms are linked to altered CYP2D6 expression and activity in 

human liver tissues. The results are expected to help us identify major factors 

determining CYP2D6 activity and develop a predictive model for CYP2D6 activity in an 

individual. Together, this effort should decrease adverse drug events from using 

CYP2D6 substrates.  
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